

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

November 8, 2021

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Exempt Modification Application 280 Elm Street, Naugatuck CT 06770

> Latitude: 41.481250 Longitude: 73.053250 Site#: 87631_ Crown_Dish

Dear Ms. Bachman:

Based on the 2020 merger between T-Mobile and Sprint, and as part of the agreement, the DOJ required T-Mobile to divest some sites to Dish in order to create an additional wireless provider. This site is part of the agreement.

Dish Wireless LLC is requesting to file an exempt modification for an existing tower located at 280 Elm Street, Naugatuck CT 06770. Dish Wireless LLC proposes to install three (3) antennas at the 142-foot level of the existing 150-foot tower. The property is owned by Lanxess Corporation and the tower is owned by Crown Castle. This modification includes hardware that is 5G capable.

Dish Wireless LLC Planned Modifications:

Remove:

- (2) Antenna mounts (at 142-ft & 134-ft)
- (3) APX18
- (12) Decibel Antenna

Remove and Replace: NONE

Install New:

- (1) Commscope MC-PK8-DSH platform mount
- (3) LMA MX08FRO665-20 Antenna
- (3) TA08025-B604 RRU
- (3) TA08025-B605 RRU
- (1) Raycap
- (1) 1-5/8" Hybrid (Inside Pole)

Existing to Remain: NONE

Ground Work: (within existing compound)
New H-Frame
Equipment Cabinet
Power/Telco Cabinet
Ice Bridge
7'x 5' Steel Platform

The facility was approved by the Naugatuck Zoning Commission on September 18, 1997. Please see attached.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § 16- SOj-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-SOj-73, a copy of this letter is being sent to Mayor N. Warren Hess III, Elected Official and Lori Rotella, Town Planner for the Borough of Naugatuck, as well as the property owner and the tower owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing structure.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, Dish Wireless LLC respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Denise Sabo

Denise Sabo

Mobile: 203-435-3640 Fax: 413-521-0558

Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments cc:

N. Warren Hess III, Mayor Borough of Naugatuck Mayor Office 229 Church Street 2nd Fl, Naugatuck CT 06770

Lori Rotella, Town Planner Borough of Naugatuck Planning & Zoning 229 Church Street 2nd Fl, Naugatuck CT 06770

Lanxess Corporation, Property Owner 111 Ridc Park West Dr, Pittsburgh PA 15275

Mail to:

Lanxess Solutions US Inc 2 Armstrong Rd, Shelton CT 06484

Crown Castle, Tower Owner

Exhibit A

Original Facility Approval

MEMORANDUM

DATE:

September 18, 1997

TO:

Christine Rosenthal

FROM:

John W. Knuff, Esq.

RE:

Naugatuck; Site No. 035

CC:

Steve Paisner Steve Kotfila Scott Chasse Steve Crotty HARRIS BEACH & WILCOX

ATTORNEYS AT LAW

147 NORTH BROAD STREET PO. BOX 112 MILPORD, CONNECTICUT 06460-0112 (203) 877-8000 (203) 678-8600 (Fex.)

Pete Gardell and I appeared before the Naugatuck Zoning Commission to present Sprint's application for a Special Permit and Site Plan review. The commission closed the public hearing and voted 4-1 to approve the application.

I will record the Special Permit as soon as I receive it and a building application can be

COPINICACION

TALOURO TALOURO

PARTS

MILPORD, CY

ALBANY

ITHACA

BOUSIEBTER

HARRIS

ATTORNEYS AT LAW 147 North Broad Street PO. BOX 112 MILFORD, CONNECTICUT 06460-0112 (203) 877-8000 (203) 878-9800 (Flax)

Memorandum

To:

Christine Rosenthal

cc.:

Steve Paisner Steve Kotfila Scott Chasse

Steve Crotty

From: John W. Knuff, Esq.

Date: September 9, 1997

Re.:

Naugatuck 035

Last night I appeared before the Naugatuck Planning Commission in regard to Sprint's application for a Special Permit. The commission unanimously approved the application. The practical effect of the approval is that the application can now be approved by a simple majority of the Zoning Commission, if the Planning Commission had disapproved the application, four out of a possible five votes would be required for approval from the Zoning Commission. The Zoning Commission will conduct its public hearing on September 17, 1997.

APPILIATE

MILEONE CT

ALBANY NJPPALO

HARRIS BEACH & WILCOX

ATTORNEYS AT LAW

147 NORTH BROAD STREET PO. BOX 112 MILFORD, CONNECTICUT 08460-0112 (203) 877-8000 (203) 878-9900 (Fax)

MEMORANDUM

DATE:

August 15, 1997

TO:

Christine Rosenthal

Steve Paisner
Steve Kotfila
Scott Chasse
Steve Crotty
Jennifer Charland

FROM:

John W. Knuff, Esq.

RE:

Naugatuck; Site No. 035

On Wednesday night I attended the meeting of the Naugatuck Inland Wetland Commission during which the Commission voted unanimously to approve Sprint's application for soil erosion control.

CUPENHAGEN

TIACENO VALETVIEN

TACING

PARM

WASSESSION, DE

ALBANY

_ NEW YOR ITSIACA

NOCHESTER STRACTISE

HARRIS

attorneys at I.AW 147 Nokih bikiad street

(203) 877-8000 (203) 876-9800 (Pax)

PO, BOX 112 MILFORD, CONNECTICUT 06460-0112

MEMORANDUM

DATE:

July 17, 1997

TO:

Christine Rosenthal

FROM:

John W. Knuff, Esq.

RE:

Naugatuck: Site No. 035

Last night, Justin Moses, Tim Crotty and I appeared before the Naugatuck Architectural Review Board to present Sprint's application for architectural review. It was pointed out that the site was in harmony with neighboring uses because the site is within an industrial zone, is across the street from the main Uniroyal plant, substantial screening exists and the site is at a substantially lower ground elevation than the neighboring houses. After further discussion, the Board unanimously approved the application.

I also attended the Zoning Commission hearing after the Architectural Review Board meeting. The Zoning Commission officially accepted Sprint's application for a special permit and scheduled it to be heard at a public hearing on August 20, 1997.

COPENIAGEN LIVE CENTRAGON LOS

PANI

MANUFACTOR DO

ALMANY MUTULLI _ HEW YORK ____ FTHACA NEW YORK CYTY

BULLETTEN SYNALUSE

Exhibit B

Property Card

Map Block Lot

5.5-20W20

Building #

PID 128902 Account

068-7770

Property Information

Property Location	0 ELM ST	0 ELM ST				
Owner	LANXES	S CORPO	RATION			
Co-Owner						
Mailing Address	111 RIDC	PARK W	EST DR			
	PITTSBURGH PA 15275					
Land Use	4400	VACA	NT IND			
Land Class	1					
Zoning Code						
Census Tract						

Neighborhood	J	
Acreage	86.56	
Utilities		
Lot Setting/Desc		
Book / Page	1064/0694	
Additional Info		

Photo

Sketch

Primary Construction Details

Year Built	0
Building Desc.	VACANT IND
Building Style	UNKNOWN
Building Grade	
Stories	
Occupancy	
Exterior Walls	
Exterior Walls 2	NA
Roof Style	
Roof Cover	
Interior Walls	
Interior Walls 2	NA
Interior Floors 1	
Interior Floors 2	

Heating Fuel	
Heating Type	
AC Type	
Bedrooms	0
Full Bathrooms	0
Half Bathrooms	0
Extra Fixtures	0
Total Rooms	0
Bath Style	NA
Kitchen Style	NA
Fin Bsmt Area	
Fin Bsmt Quality	
Bsmt Gar	0
Fireplaces	0

(*Industrial / Commercial Details)

Building Use	Vacant
Building Condition	
Sprinkler %	NA
Heat / AC	NA
Frame Type	NA
Baths / Plumbing	NA
Ceiling / Wall	NA
Rooms / Prtns	NA
Wall Height	NA
First Floor Use	NA
Foundation	NA

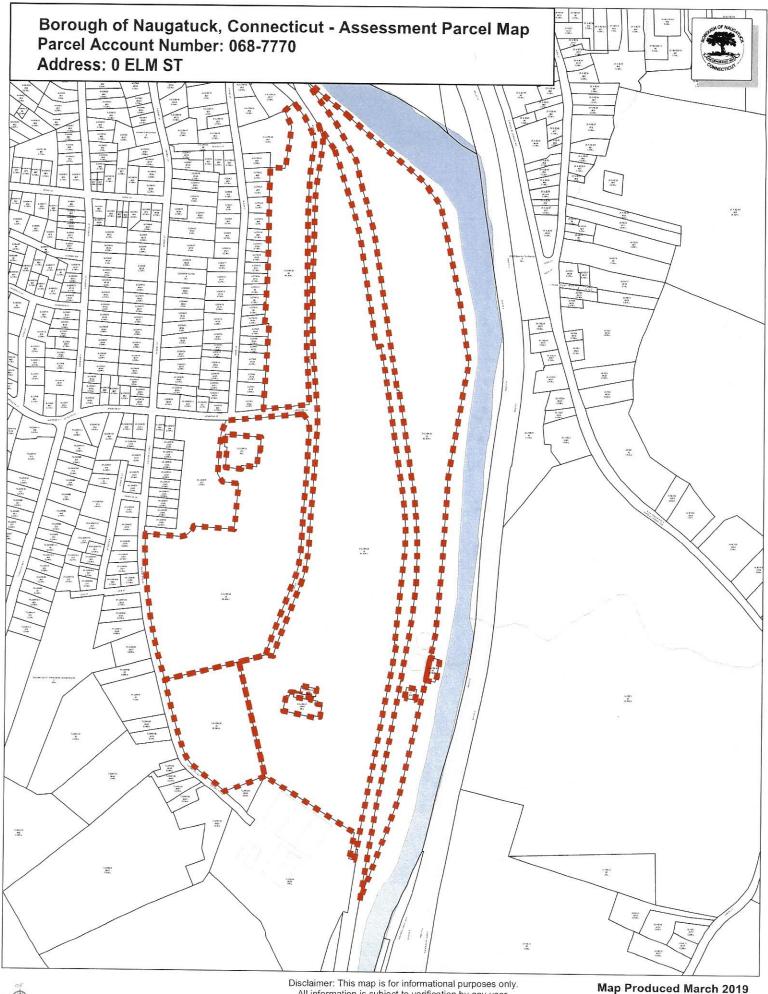
Report Created On

10/18/2021

Town of Naugatuck, CT

Property Listing Report

Map Block Lot


5.5-20W20

Building # 1

PID 128902 Account

068-7770

Valuation Sum			0% of Appraised Value)	Sub Areas		T	
Item	Appi	raised	Assessed	Subarea T	ype	Gross Area (sq ft	Living Area (sq fi
Buildings	0		0				
Extras	0		0				
Improvements							
Outbuildings	142090		99470				
Land	1611800		1128270				
Total	1753890		1227740				
Outbuilding a	nd Extra F	eatures					
Туре		Description	on				
CELL TOWER		150 HEIGHT	[]				
Patio		60 S.F.					
			20000		***************************************		
							00000170
		7.00.00					
				Total Area		0	0
Sales History							
Owner of Record				Book/ Page	Sale Date	Sale I	Price
ANXESS CORPOR	ATION			1064/0694	2021-02-0	0 0	
ANXESS SOLUTIO	NS US INC			1017/0532	2018-10-0	0 0	
CHEMTURA CORPO	PRATION			0842/0475	2009-02-1	17 0	
JNIROYAL CHEMIC	AL CO INC			0601/0217	2003-03-3	31 0	
JNIROYAL CHEMIC	AL CO INC			0601/0216	2003-03-3	31 0	
ROMPTON MANUE	ACTURING			0584/0275	2002-11-2	7 0	

Disclaimer: This map is for informational purposes only.

All information is subject to verification by any user.

The Borough of Naugatuck and its mapping contractors assume no legal responsibility for the information contained herein.

Exhibit C

Construction Drawings

BOHVN00024A DISH Wireless L.L.C. SITE ID:

DISH Wireless L.L.C. SITE ADDRESS:

NAUGATUCK, 280 ELM STREET CT 06770

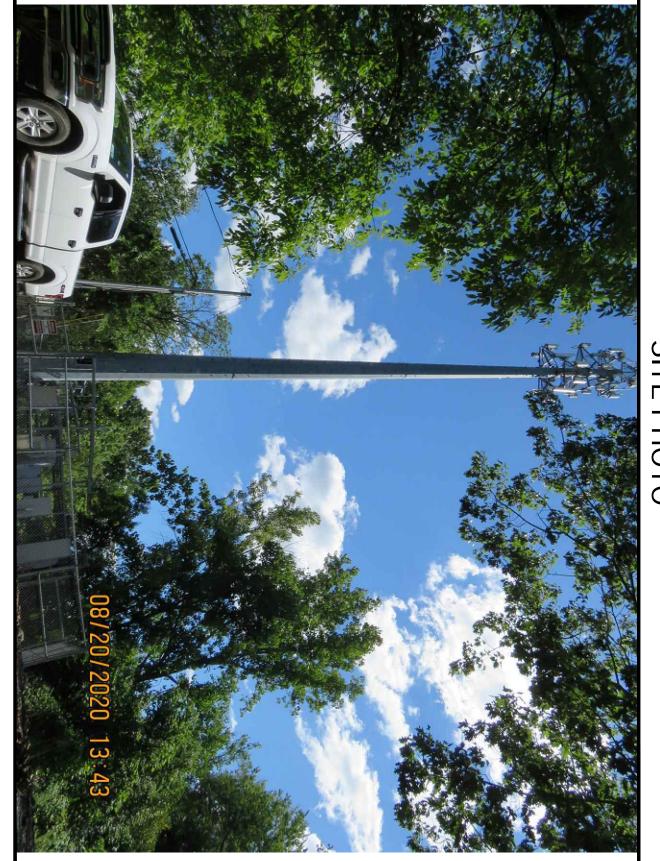
CONNECTICUT CODE COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:

GN-3	GN-2	GN-1	RF-1	G-3	G-2	G-1	E-3	E-2	E-1	A-6	A-5	A-4	A-3	A-2	A-1	T-1	SHEET NO.	
	GENERAL NOTES	LEGEND AND ABBREVIATIONS	RF CABLE COLOR CODE	GROUNDING DETAILS	GROUNDING DETAILS	GROUNDING PLANS AND NOTES	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE	ELECTRICAL DETAILS	ELECTRICAL/FIBER ROUTE PLAN AND NOTES	EQUIPMENT DETAILS	EQUIPMENT DETAILS	EQUIPMENT DETAILS	EQUIPMENT PLATFORM AND H-FRAME DETAILS	ELEVATION, ANTENNA LAYOUT AND SCHEDULE	OVERALL AND ENLARGED SITE PLAN	TITLE SHEET	SHEET TITLE	SHEELINDEX

SCOPE OF WORK

NCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. LY CONSISTS OF THE FOLLOWING:


- SED PANEL ANTENNAS (1 PER SECTOR)
- RRUs (2 PER SECTOR)
 OVER VOLTAGE PROTECTION DEVICE (OVP)
 HYBRID CABLE

- METAL PLATFORM
 ICE BRIDGE
 PPC CABINET
 EQUIPMENT CABINET
 POWER CONDUIT
 TELCO CONDUIT
 TELCO—FIBER BOX
- TY SWITCH (IF REQUIRED)

 N BOX (IF REQUIRED)

 EXISTING H-FRAME TO BE UTILIZED

SITE PHOTO

RFDS REV #:

N/A

CJW

CONSTRUCTION DOCUMENTS

UNDERGROUND SERVICE ALERT CBYD 811
UTILITY NOTIFICATION CENTER OF CONNECTICUT
(800) 922-4455
WWW.CBYD.COM

DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED. GENERAL NOTES

11"x17" PI OT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

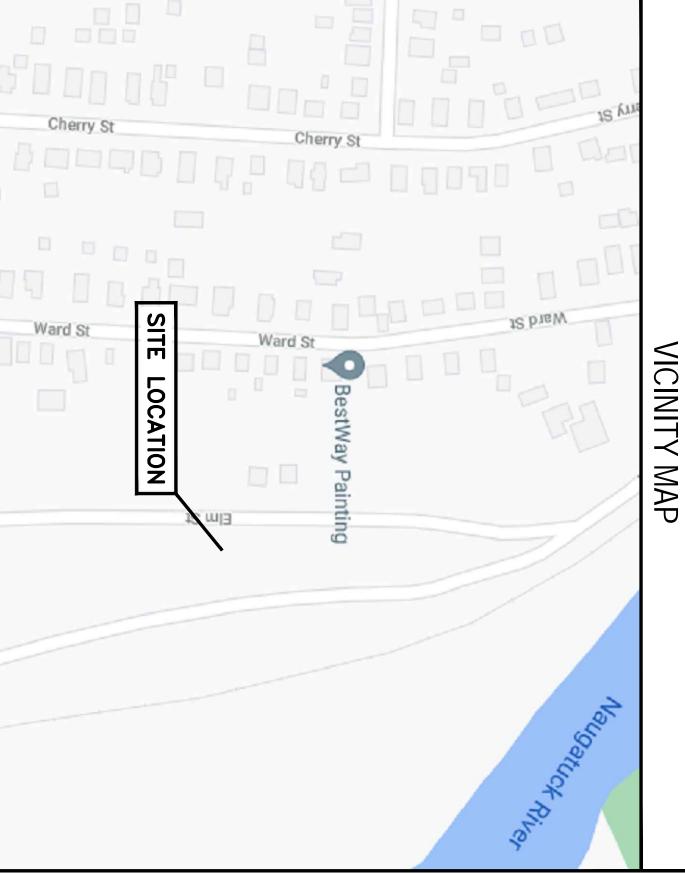
NO

SCALE

Elm St

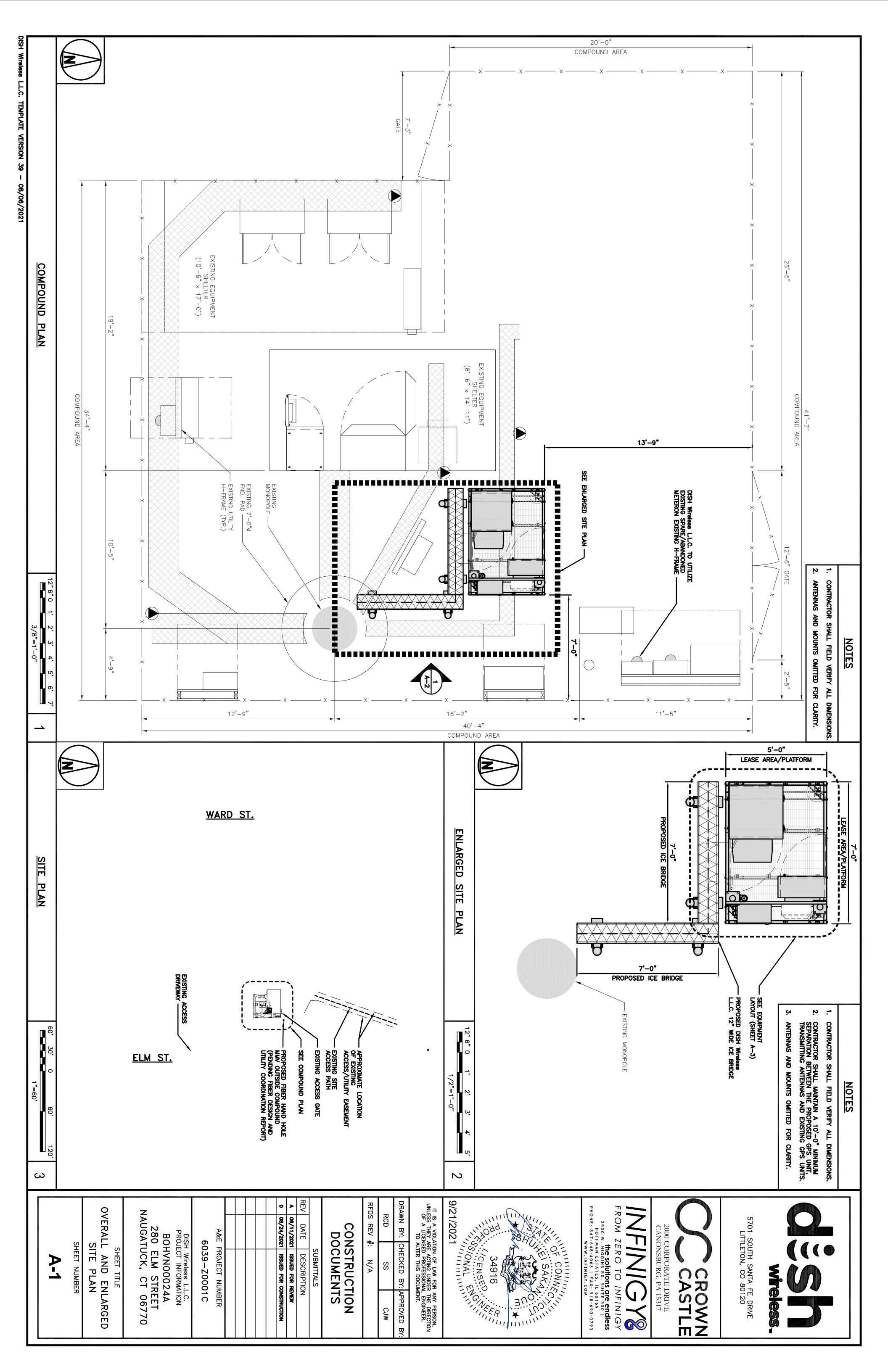
L.L.C. TEMPLATE VERSION 39

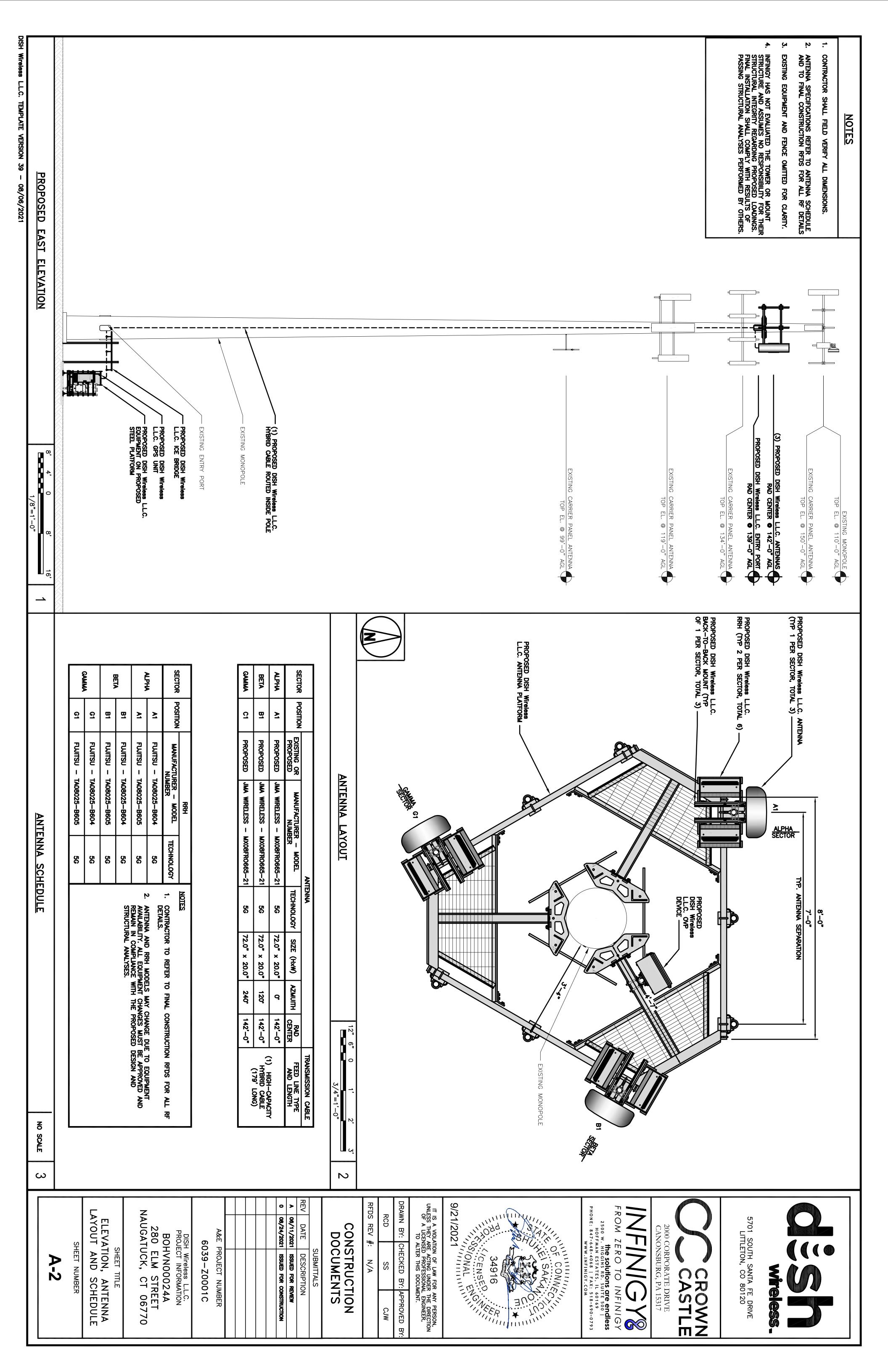
08/06/2021

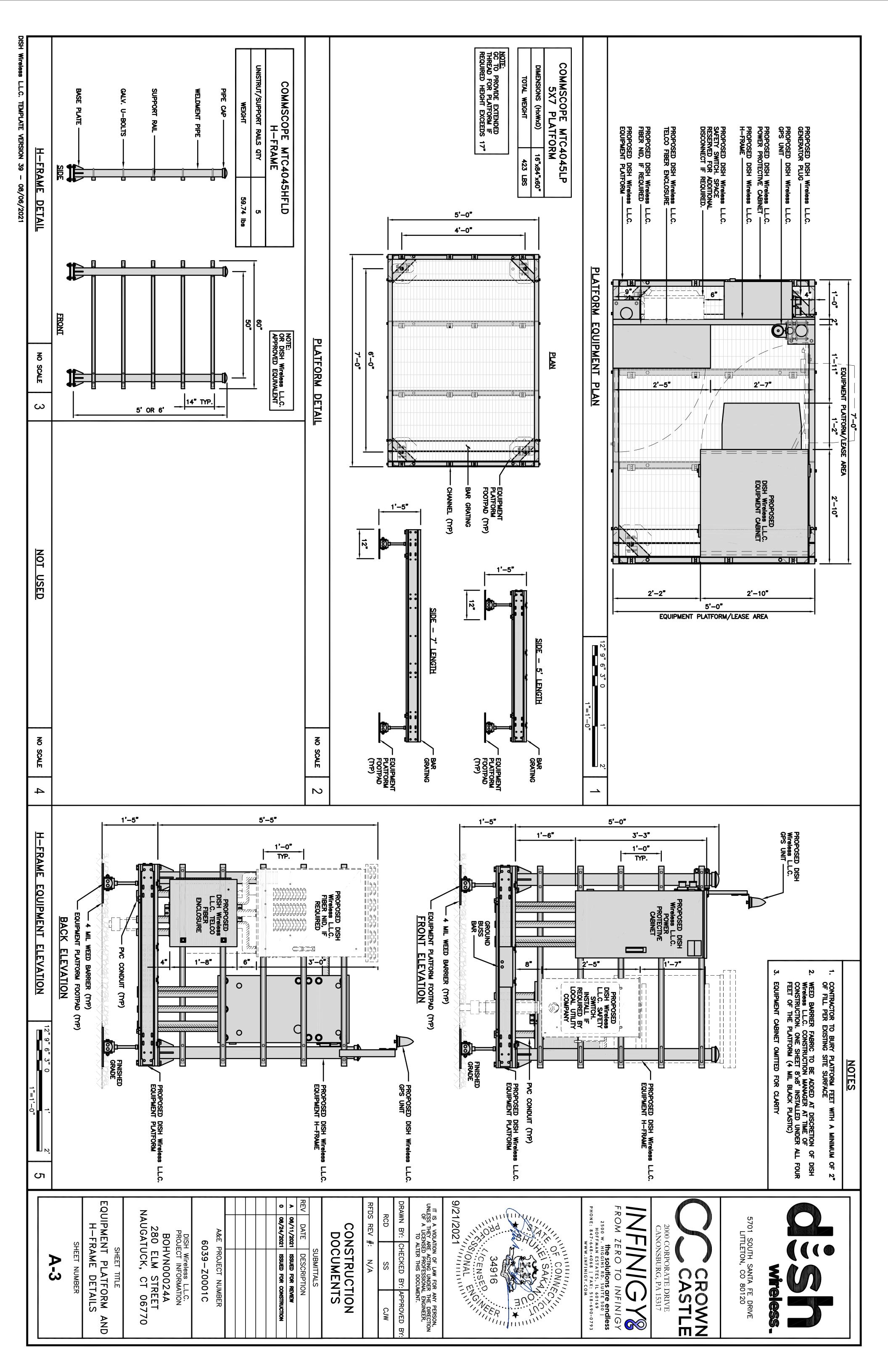

TELEPHONE COMPANY: CONSTRUCTION TYPE: OCCUPANCY GROUP: LONGITUDE (NAD 83): LATITUDE COUNTY: TOWER APP TOWER TYPE: ADDRESS: JURISDICTION: SITE (NAD 83): NUMBER: INFORMATION 41.481250 N 73° 3′ 11.67″ W 553365 **Y-B TBD** \Box NEW HAVEN 73.053250 MONOPOLE CANONSBURG, 2000 CORPORATE DRIVE I-VACANT IND RF ENGINEER: CONSTRUCTION MANAGER: APPLICANT: OWER OWNER: ITE DESIGNER: PROJECT DIRECTORY INFINIGY (877) 486-9377 2000 CORPORATE DRIVE CANONSBURG, PA 15317 CROWN CASTLE LITTLETON, CO 80120 (847) 648-4068

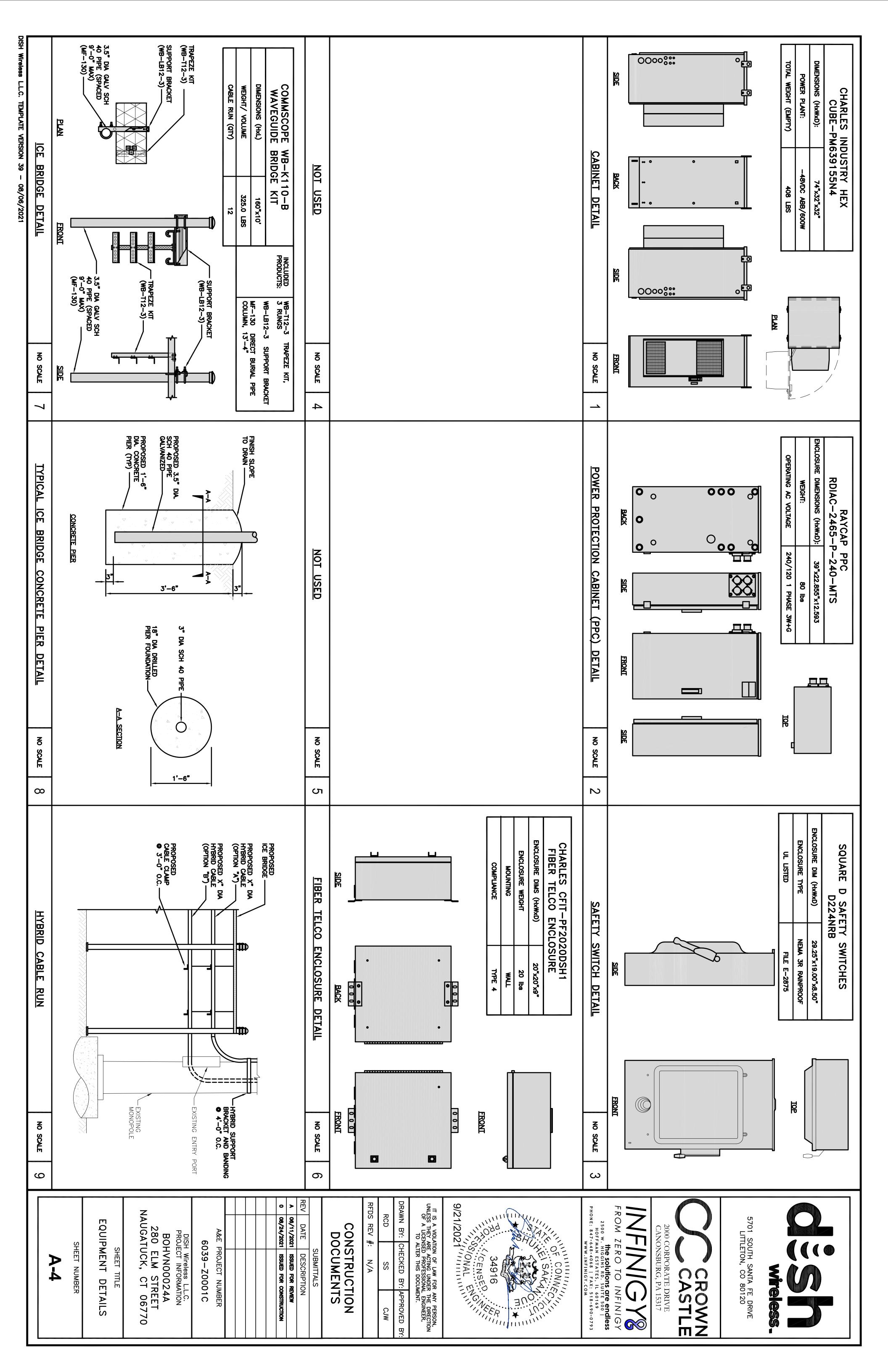
reless.

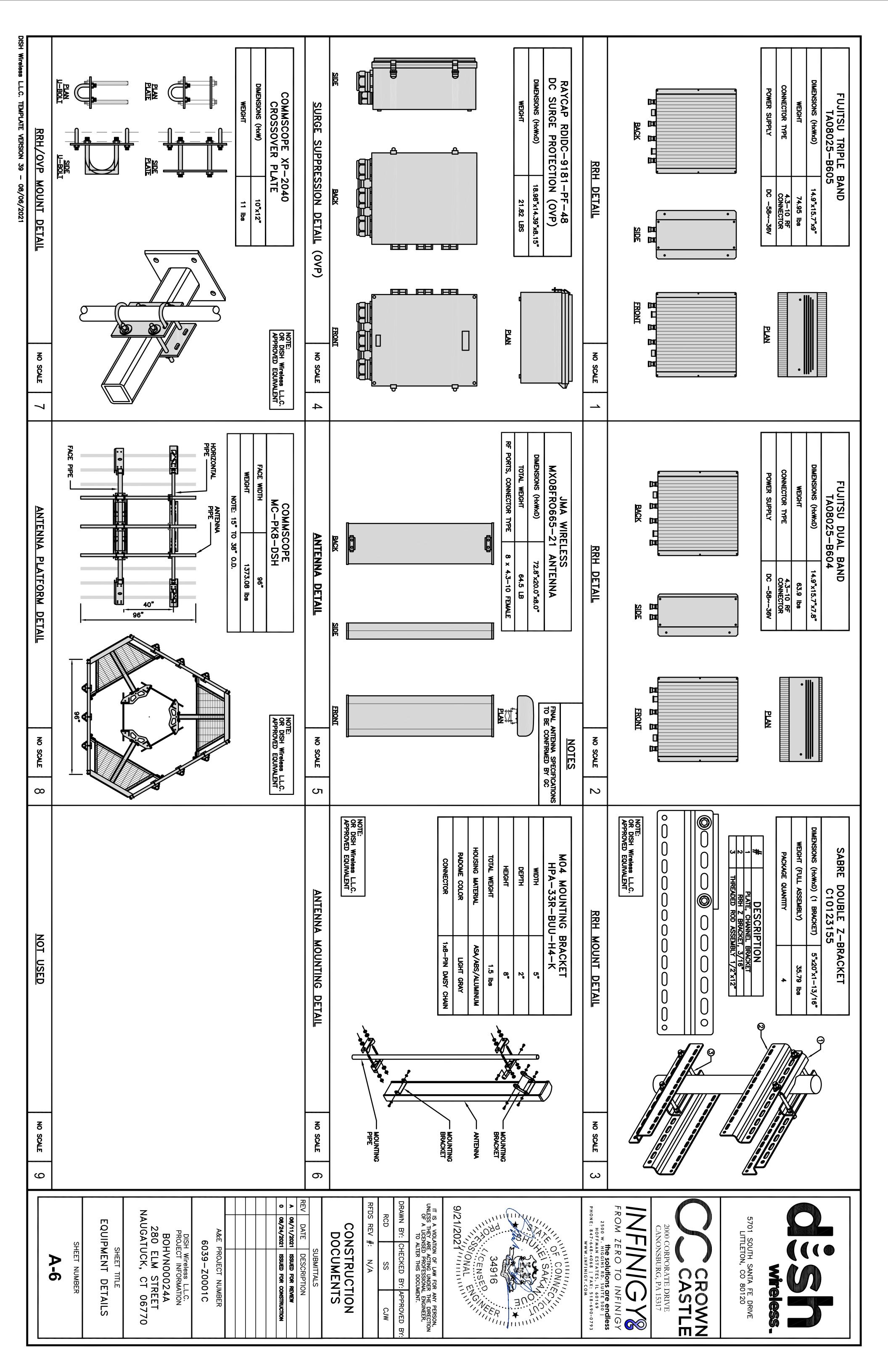
DIRECTIONS

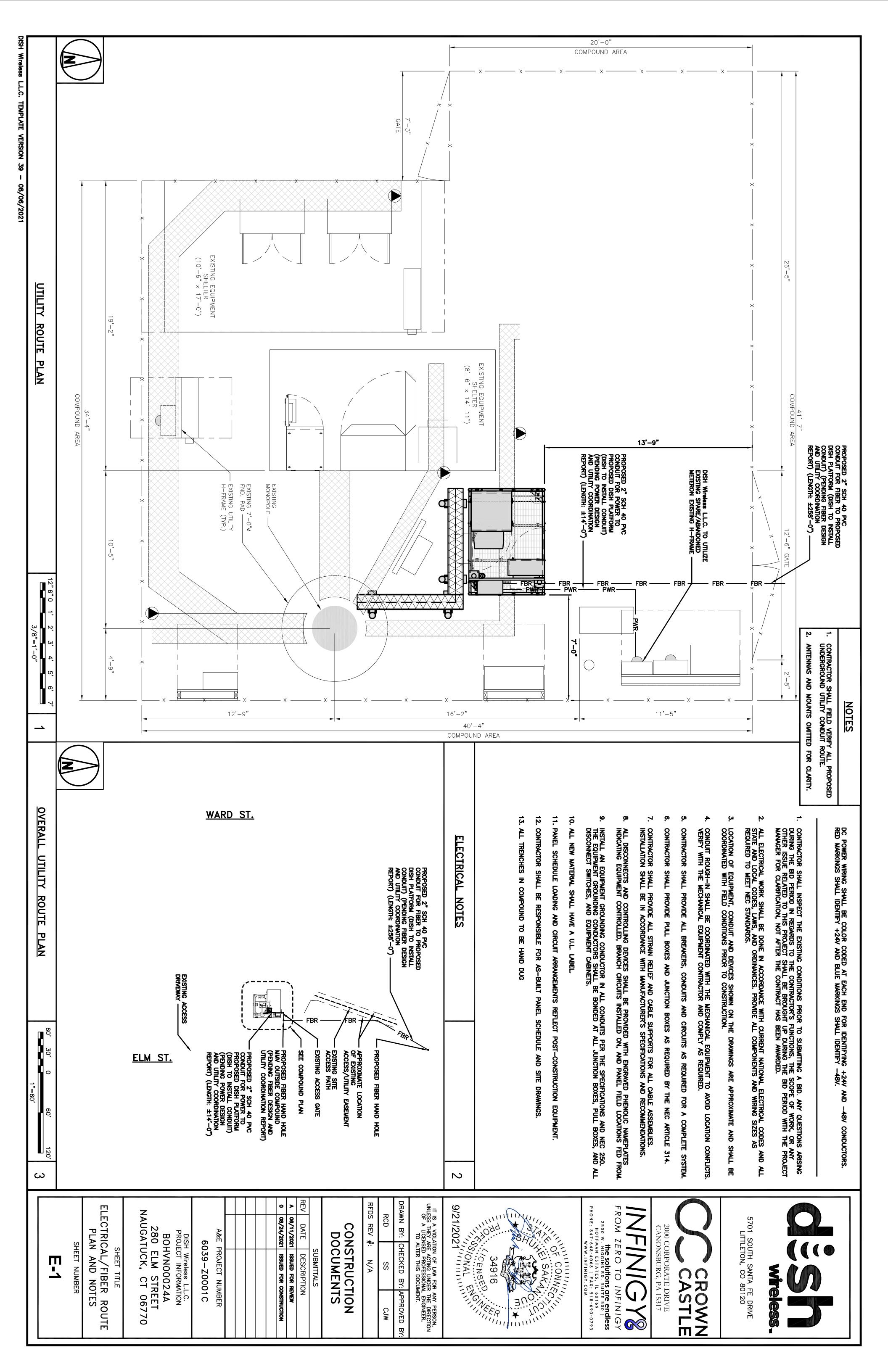

DIRECTIONS FROM WATERBURY-OXFORD AIRPORT:

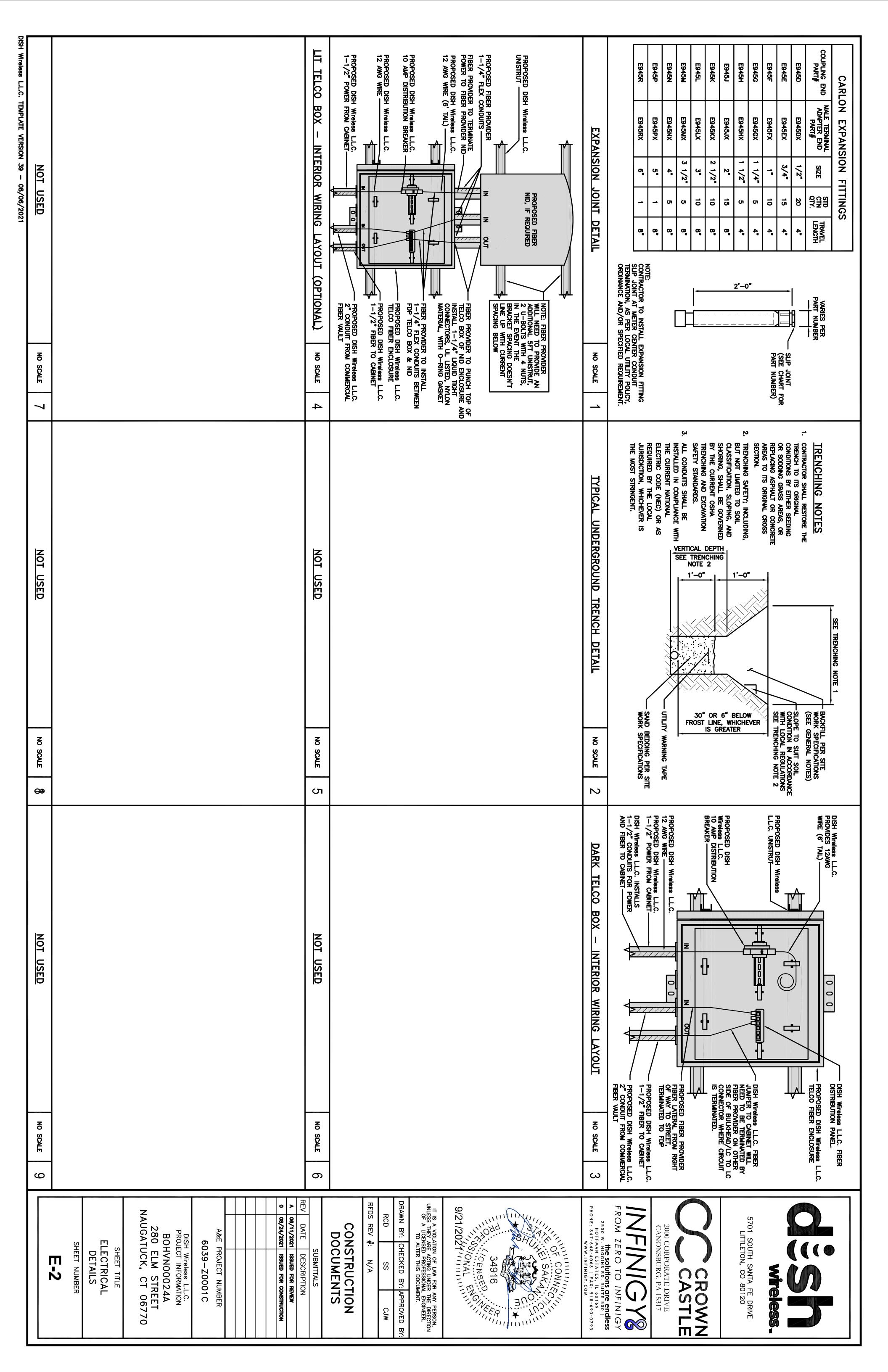

DEPART AND HEAD NORTHWEST ON PROKOP RD, ROAD NAME CHANGES TO JULIANO DR, TURN LEFT ONTO CHRISTIAN ST, TURN RIGHT ONTO OXFORD AIRPORT RD, TURN RIGHT ONTO CT-188 / STRONGTOWN RD, TURN LEFT ONTO OLD WATERBURY RD, ARRIVE AT 280 ELM STREET, NAUGATUCK, CT 06770

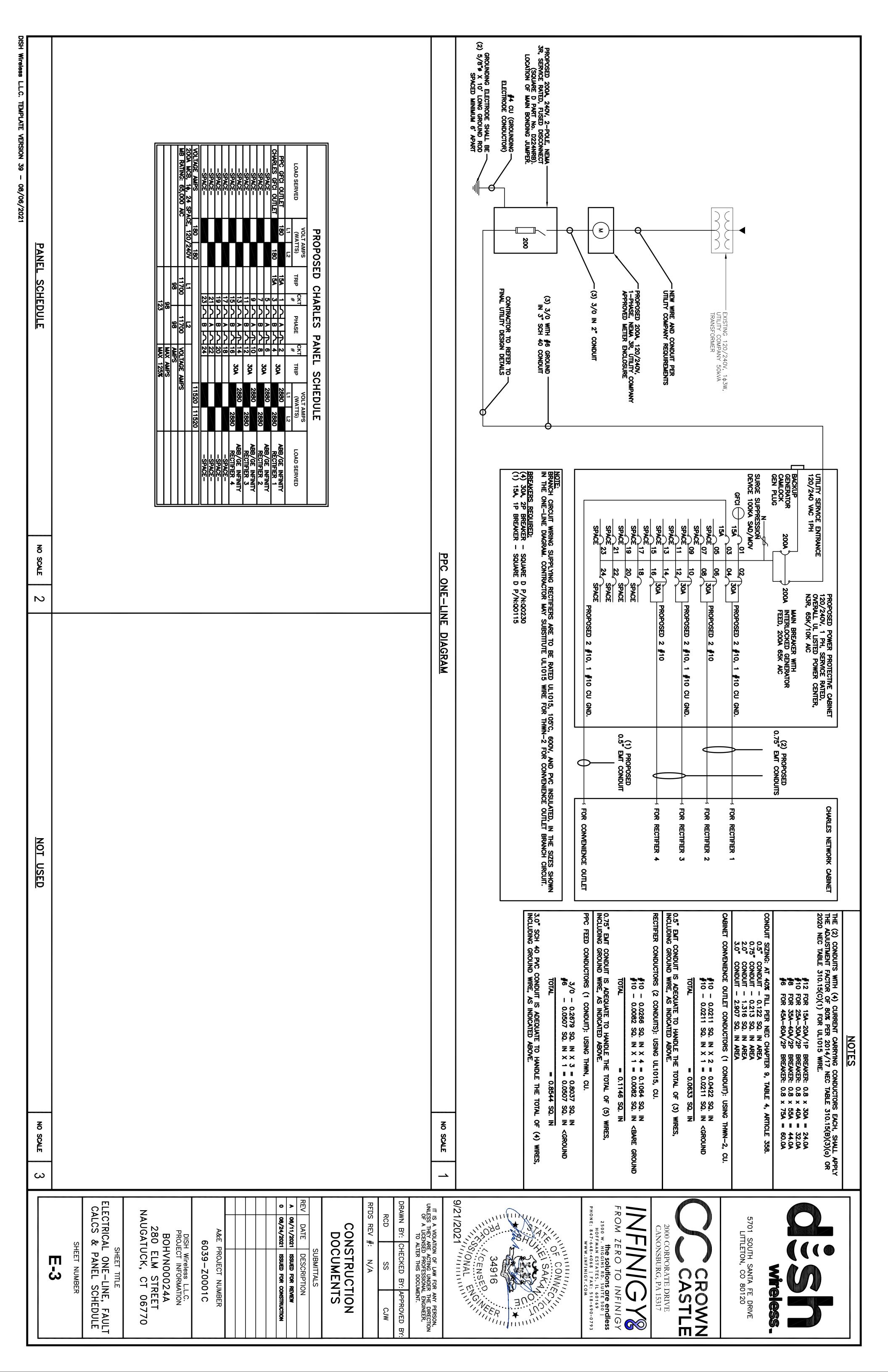


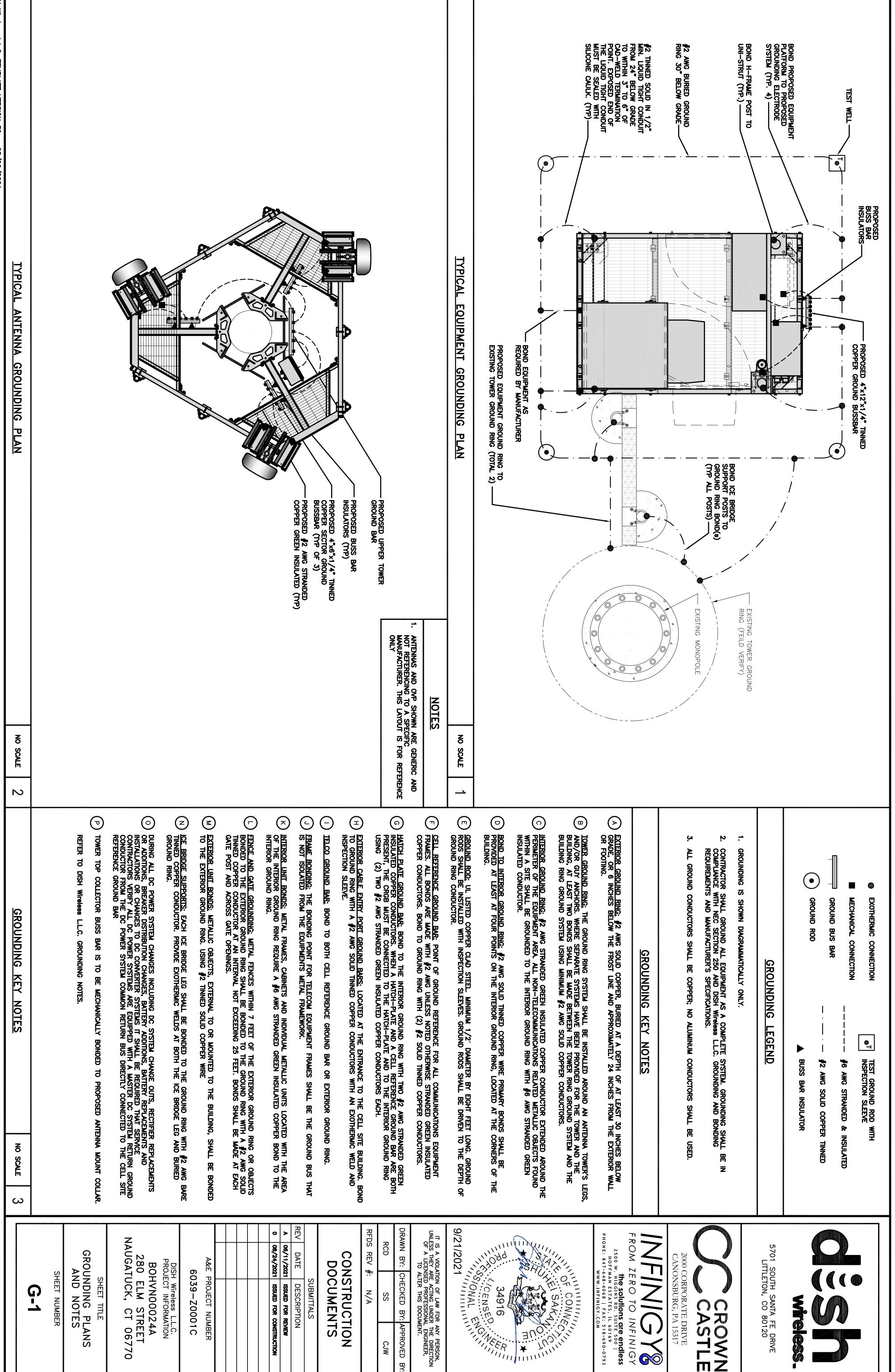

DISH Wireless L.L.C. 5701 SOUTH SANTA FE DRIVE 2500 W. HIGGINS RD. STE. 500 HOFFMAN ESTATES, IL 60169 (617) 839-6514 SYED ZAIDI SYED.ZAIDI@DISH.COM JAVIER SOTO DISH.COM NICHOLAS CURRY NICHOLAS.CURRY OCROWNCASTLE.COM 9/21/2021 DRAWN BY: IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. the solutions are endless 2500 w. HIGGINS RD. SUITE 500 | HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4068 | FAX: 518-690-0793 www.infinigy.com FROM 21/2021 INFINIGY 8 RCD 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 2000 CORPORATE DRIVE CANONSBURG, PA 15317 ZERO CHECKED BY: APPROVED BY SS CASTL TO INFINIG CROWN

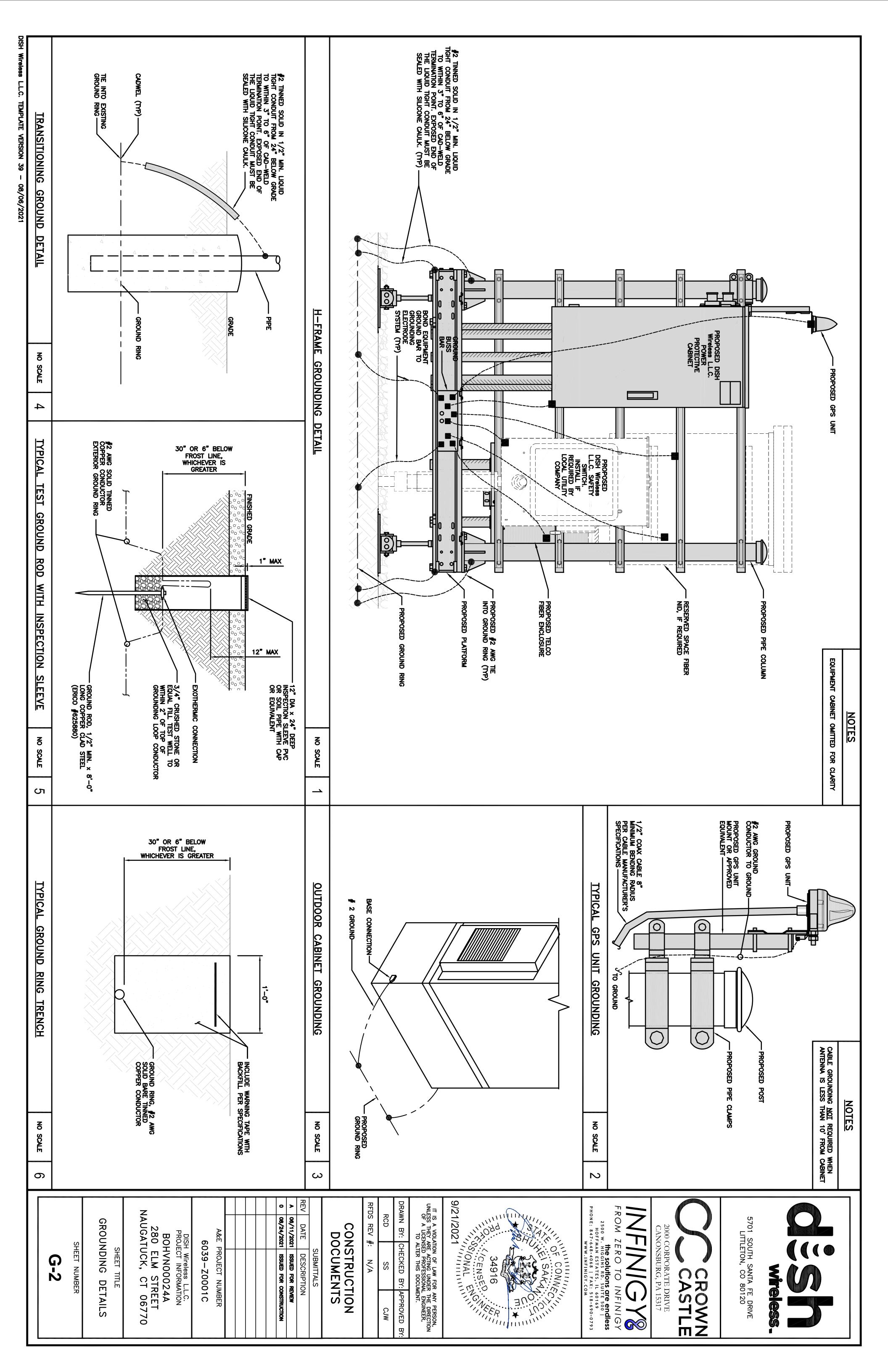

			7				0	>	REV	
	S _F	TII .	DISH PROJE BOH 280 JAUGATI	60	A&E F		08/24/2021	06/11/2021	DATE	
T-1	SHEET NUMBER	SHEET TITLE	DISH Wireless L.L.C. PROJECT INFORMATION BOHVNOO024A 280 ELM STREET NAUGATUCK, CT 06770	6039-Z0001C	A&E PROJECT NUMBER		ISSUED FOR CONSTRUCTION	ISSUED FOR REVIEW	DESCRIPTION	SUBMITTALS

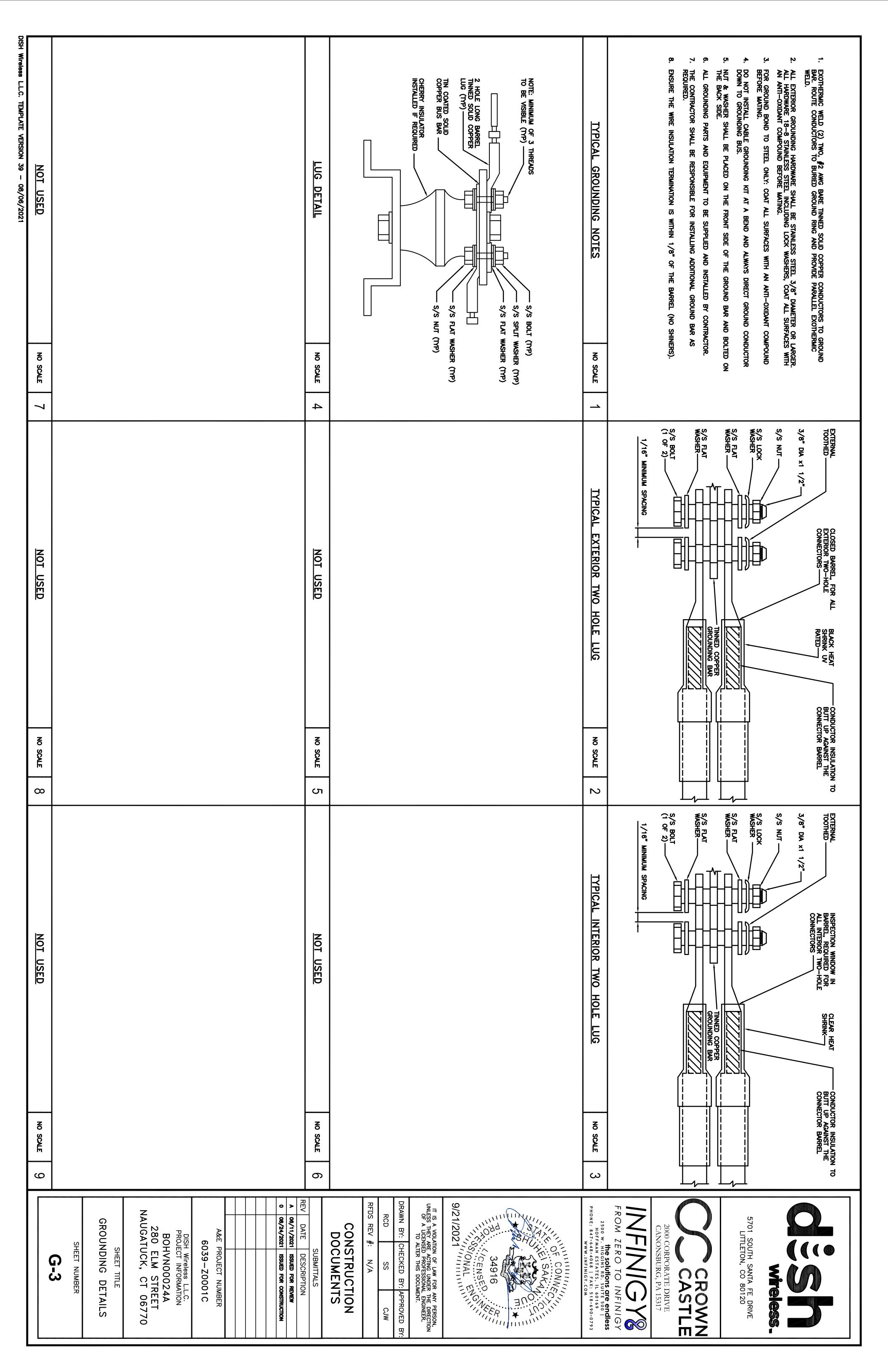


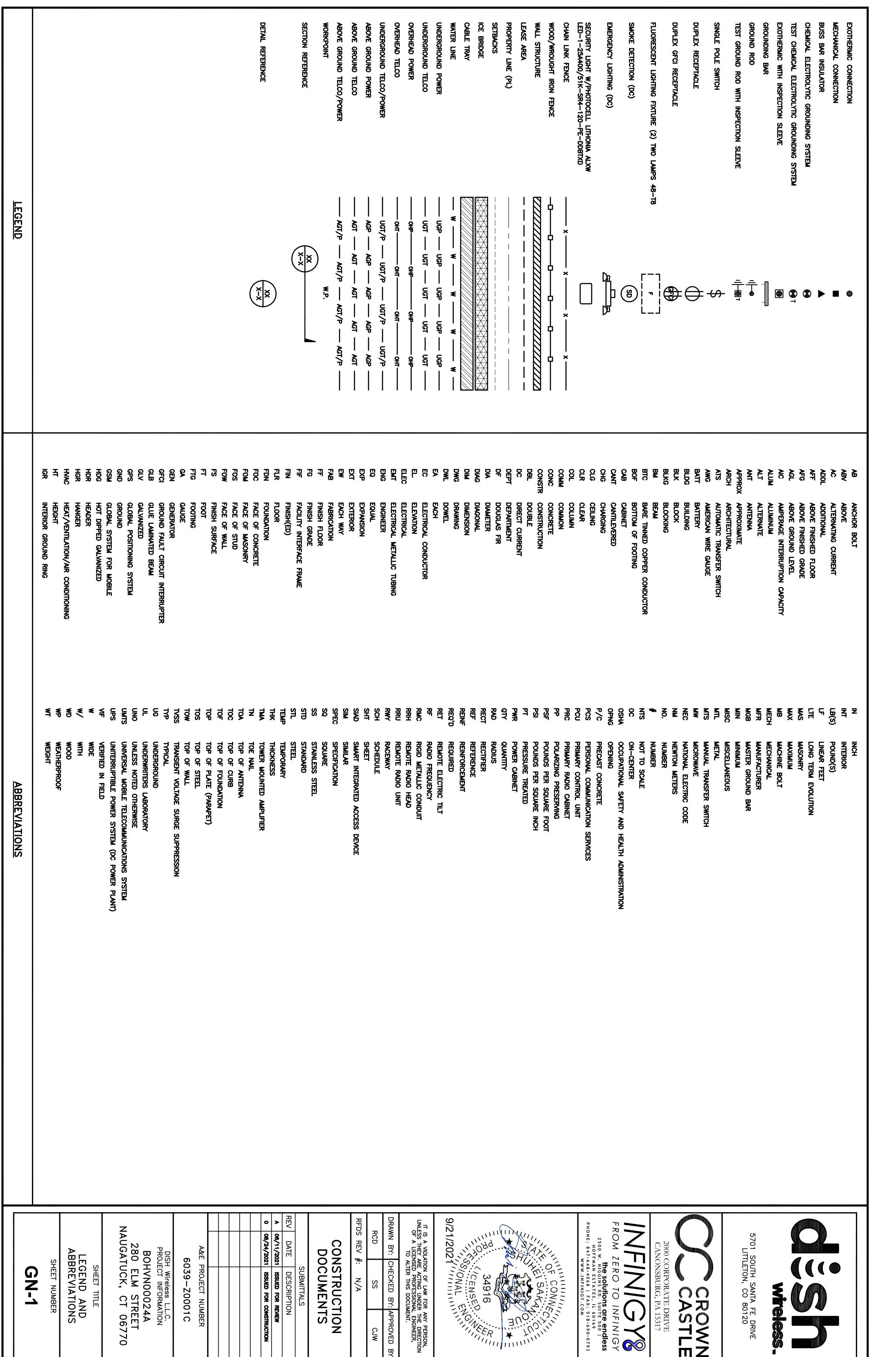












CJW

CJW

INFINIG

SITE ACTIVITY REQUIREMENTS:

- (NTP) NOTICE TO PROCEED — NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTION MANAGER. 7 **PROCEED** DISH Wireless
- "LOOK UP" DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH Wireless L.L.C. AND DISH Wireless L.L.C. AND TOWER OWNER POCONDITIONS OF THE NOCE TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

- 3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
- 4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH Wireless L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) II ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION). Z
- 5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARI INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS." "STANDARD F S R
- 6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING CHANGE OF INSTALLATION. SHALL A ANY SUCH
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- UNLESS œ THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS SPECIFICALLY STATED OTHERWISE.
- CONSTRUCTION. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIO 지 표 START
- 10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY
- 11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT LATEST APPROVED REVISION. SPECIFICATIONS,
- 12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE ADISPOSED OF LEGALLY. ₽
- WORK, ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE K, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH Wireless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.
- 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SI SITE SIGNAGE ELTERS.
- 16. THE APPLICATION. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED AND TOWER SURFACE AREAS.
- 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.
- 18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER. ₽ NY
- 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWN LOCATION. OWNER'S OTHER
- 21. BASIS. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FRON SITE 9 8 DAILY
- 22. NO BE PLACED L OR EMBANKMENT MATERIAL ANY FILL OR EMBANKMENT. FILL OR SHALL BE **PLACED** 2 FROZEN GROUND. FROZEN MATERIALS, SNOW O CE CE

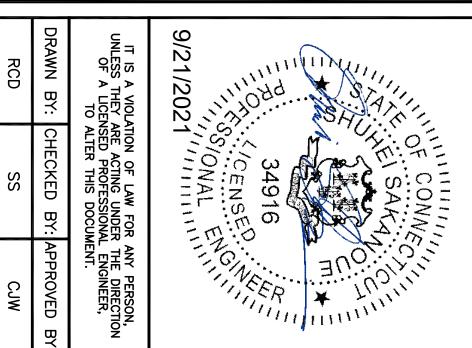
THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR: GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless LLC.

OWNER: TOWER OWNER

- 2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
- 3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, IS SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY. ETC.
- 4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.
- 5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.
- 6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND POC AND THE CELL SITE TO FAMILIARIZE WITH THE SHOWN ON THE CONSTRUCTION DRAWINGS. ANY TOWER OWNER.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALREGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AN ORDINANCES AND APPLICABLE REGULATIONS. AND L APPLICABLE CODES, REGULATIONS
 L LAWS, ORDINANCES, RULES,
 OF THE WORK. ALL WORK CARRIED
 ND LOCAL JURISDICTIONAL CODES,
- 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- UNLESS THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH SPECIFICALLY STATED OTHERWISE. MANUFACTURER'S RECOMMENDATIONS
- IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE INSTALLATION.
- 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.
- DAMAGED HE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO
- CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWN PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER LL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY



5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CROW

the solutions are endless 2500 W. HIGGINS RD. SUITE 500 | HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4068 | FAX: 518-690-0793 WWW.INFINIGY.COM ROM ZERO 70 INFINIG

RCD SS	DRAWN BY: CHECKED BY: APPROVED BY:	UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.
CJW	APPROVED BY:	R THE DIRECTION AL ENGINEER, MENT.

CONSTRUCTION DOCUMENTS

		0	A	REV		
		08/24/2021	06/11/2021	DATE		
		ISSUED FOR CONSTRUCTION	ISSUED FOR REVIEW	DESCRIPTION	SUBMITTALS	

6039-Z0001C PROJECT NUMBER

BOHVN00024A 280 ELM STREET NAUGATUCK, CT 067: DISH Wireless L.L.C. PROJECT INFORMATION 06770

GENERAL NOTES

GZ-2

SHEET NUMBER

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

- 1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE. ASTM A184, ASTM A185 ₽ND 出 **DESIGN**
- psf. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS SSUMED 70 1000
- 3. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°f AT TIME OF PLACEMENT. N O
- 4. CONCRETE EXPOSED TO FREEZE—THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER—TO—CEMENT RATIO (W/C) OF 0.45. 晤
- 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

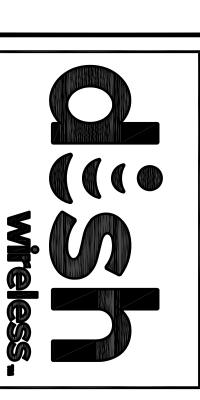
#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

- 6. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN DRAWINGS: OTHERWISE ON
- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2"
- 7. A TOOLED EDGE OR A 3/4" CHAMFER IN ACCORDANCE WITH ACI 301 SECTION 4.2.4. SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE,

- ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ., STATE, AND LOCAL CODES/ORDINANCES. **₽**L **APPLICABLE**
- AND 2. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IP HAZARDS ARE ELIMINATED. $\overline{\mathbf{v}}$ BLOCKED
- WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
- ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEO
- EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF AL ELECTRICAL CODE.
- 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION. CIRCUIT THE
- 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE LABELED WITH COLOR—CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV FEQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA. E SHALL BE PROTECTION,
- ID'S). 6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT
- PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.
- TIE WRAPS ARE NOT ALLOWED.
- 9. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LATYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. OR LARGER) **HTI**
- OTHERWISE SPECIFIED. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS
- 12. TYPE **HTIM**
- POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), THW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

 ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMA (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75°C (90°C IF AVAILABLE). THOMAS AND
- RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND
- 15. ELECTRICAL METALLIC EXPOSED INDOOR LOCATIONS. TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL 踞 USED FOR


ISH Wireless L.L.C. TEMPLATE VERSION 39

08/06/2021

ELECTRICAL METALLIC TUBING (EMT) OR METAL—CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.

16.

- GRADE SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE PVC CONDUIT.
- OCCURS LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OR FLEXIBILITY IS NEEDED.
- 19. SCREW CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SET FITTINGS ARE NOT ACCEPTABLE. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND
- 20. NEC. 품
- 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, (WIREMOLD SPECMATE WIREWAY). DESIGNED TO SWING OPEN DOWNWARDS
- SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).
- 23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERN THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE. WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF JURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO DUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE L AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT CONCRETE, PLASTER OR DIRT CAPPED FLUSH TO MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED
- 24. EQUIPMENT CABINETS, TERMINAL STEEL. SHALL MEET OR EXCEED UL 50 EXTERIOR LOCATIONS. BOXES, JUNCTION BOXES AND PULL AND BE RATED NEMA 1 (OR BETTER) BOXES SHALL |
 FOR INTERIOR BE BE GALVANIZED OR EPOXY—COATED SHEET LOCATIONS AND NEMA 3 (OR BETTER) FOR
- BETTER) FOR EXTERIOR LOCATIONS. EXCEED METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY—COATED OR NON—CORRODING; SHALL MEET OR UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR
- 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS.
- 27. TOWER THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS. AND
- 28. WITH THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AN THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY. D DISTRIBUTION PANELS IN ACCORDANCE
- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.".
- ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317 CROW ASTI

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM ZERO 70 INFINIG

RFDS REV DRAWN BY: IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. 9/21/2021 RCD CHECKED BY: SS APPROVED BY CJW

CONSTRUCTION DOCUMENTS

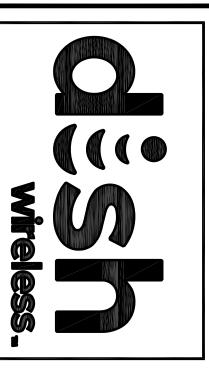
		0	A	REV	
		08/24/2021	06/11/2021	DATE	
		ISSUED FOR CONSTRUCTION	ISSUED FOR REVIEW	DESCRIPTION	SUBMITTALS

6039-Z0001C PROJECT NUMBER

BOHVN00024A 280 ELM STREET NAUGATUCK, CT 067: DISH Wireless L.L.C. PROJECT INFORMATION 06770

SHEET NUMBER

GENERAL NOTES

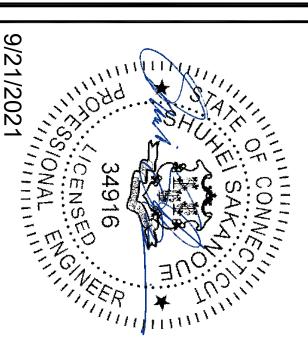

HILE

GN-3

GROUNDING NOTES:

- 1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 2. THE CONTRACTOR SHALL PERFORM IEEE FALL—OF—POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
- 4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
- 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
- 8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.

 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.
- 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
- 13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.
- 15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 6. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.
- 19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDUITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
- 21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE BUILDING SHALL NOT BE SMALLER THAN 2/0 COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.



5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

FROM ZERO TO INFINIGY

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY

DRAWN BY: CHECKED BY: APPROVED BY:

RCD SS CJW

RFDS REV #: N/A

CONSTRUCTION

REV DATE DESCRIPTION

A 08/11/2021 ISSUED FOR REVIEW

O 08/24/2021 ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER

6039-Z0001C

DISH Wireless L.L.C.
PROJECT INFORMATION
BOHVN00024A
280 ELM STREET
NAUGATUCK, CT 06770

GENERAL NOTES

3N-4

SHEET NUMBER

Exhibit D

Structural Analysis Report

Date: June 12, 2021

Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 (724) 416-2000

Subject: Structural Analysis Report

Carrier Designation: DISH Network Co-Locate

Site Number: BOHVN00024A Site Name: CT-CCI-T-876319

Crown Castle Designation: BU Number: 876319

Site Name: NAUGATUCK 2 UNIROYAL

 JDE Job Number:
 645176

 Work Order Number:
 1966157

 Order Number:
 553365 Rev. 2

Engineering Firm Designation: Crown Castle Project Number: 1966157

Site Data: 280 Elm Street, NAUGATUCK, NEW HAVEN County, CT

Latitude 41° 28′ 52.54″, Longitude -73° 3′ 11.67″

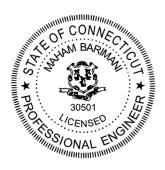
150 Foot - Monopole Tower

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity - 54.6%


*The structure has sufficient capacity once the loading changes, described in the Recommendations section of this report, are completed.

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - "Analysis Criteria".

Structural analysis prepared by: Dolly Hsu

Respectfully submitted by:

Maham Barimani, P.E. Senior Project Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

Table 2 - Non-Carrier Equipment To Be Conditionally Removed

Table 3 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

3.1) Analysis Method

3.2) Assumptions

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Table 6 - Tower Component Stresses vs. Capacity - LC7

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 150 ft Monopole tower designed by SUMMIT.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Wind Speed: 125 mph

Exposure Category:
Topographic Factor:
Ice Thickness:
Wind Speed with Ice:
Service Wind Speed:

B
1.5 in
50 mph
60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)		Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
142.0	142.0	3	fujitsu	TA08025-B604	1	1-1/2
		3	fujitsu	TA08025-B605		
		3	jma wireless	MX08FRO665-21 w/ Mount Pipe		
		1	raycap	RDIDC-9181-PF-48		
		1	tower mounts	Commscope MC-PK8-DSH		

Table 2 - Non-Carrier Equipment To Be Conditionally Removed

Mounting Level (ft)			Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
142.0	142.0	3	rfs celwave	APXV18-206517S-C		
		142.0	172.0	1	tower mounts	Pipe Mount [PM 601-3]
134.0		12	decibel	844G90VTA-SX w/ Mount Pipe	12	1-1/4
134.0	134.0	1	tower mounts	Platform Mount [LP 1201-1]	12	1-1/4

Table 3 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model		Feed Line Size (in)
	153.0	1	dragonwave	A-ANT-23G-1-C		
150.0	152.0	3	dragonwave A-ANT-23G-2-C			
	150.0	1	-	MC-PA 12L-B		1/4 5/16 1/2 1-1/4 Conduit
		3	alcatel lucent	1900MHz RRH (65MHz)	3 3 4 4	
		3	alcatel lucent	800 EXTERNAL NOTCH FILTER		
		3	alcatel lucent	800MHZ RRH		
		3	alcatel lucent	TD-RRH8x20-25	1	
		9	rfs celwave	ACU-A20-N		
		3	rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe		

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Antenna Model Manufacturer		Number of Feed Lines	Feed Line Size (in)	
		3	rfs celwave	APXVTM14-C-120 w/ Mount Pipe			
		3	argus technologies	LLPX310R w/ Mount Pipe			
	148.0	6	samsung telecommunications	FDD_R6_RRH			
119.0	120.0	3	ericsson	AIR -32 B2A/B66AA w/ Mount Pipe	10	1-5/8	
		3	ericsson	ERICSSON AIR 21 B2A B4P w/ Mount Pipe			
		3	ericsson	KRY 112 144/1			
		3	ericsson	RADIO 4449 B71/B85A			
				3	rfs celwave	APXVAARR24_43-U-NA20 w/ Mount Pipe	
	119.0	1	-	SitePro1 [P/N: HRK-12-U]			
		1	-	SitePro1 [P/N: PRK-1245]			
		1	tower mounts	Platform Mount [LP 303-1]			
99.0	100.0	1	lucent	KS24019-L112A	1	1/2	
99.0	99.0	1	crown mounts	Side Arm Mount [SO 702-1]	l	1/2	

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	1529732	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	1447037	CCISITES
4-TOWER MANUFACTURER DRAWINGS	1446973	CCISITES

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

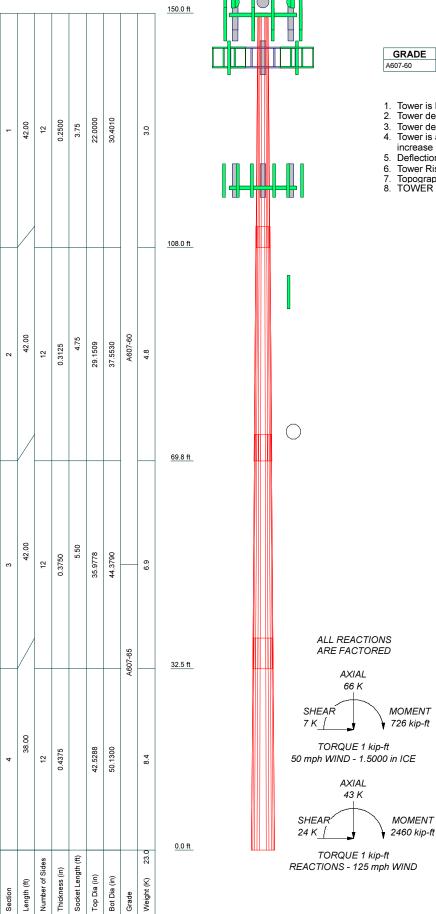
Table 5 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	150 - 108	Pole	TP30.401x22x0.25	1	-14.38	1341.96	38.7	Pass
L2	108 - 69.75	Pole	TP37.553x29.1509x0.3125	2	-21.07	2070.52	54.6	Pass
L3	69.75 - 32.5	Pole	TP44.379x35.9778x0.375	3	-30.32	3182.20	53.2	Pass
L4	32.5 - 0	Pole	TP50.13x42.5288x0.4375	4	-43.14	4300.01	51.6	Pass
							Summary	
						Pole (L2)	54.6	Pass
						Rating =	54.6	Pass

Table 6 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	48.6	Pass
1	Base Plate	0	49.6	Pass
1	Base Foundation (Structure)	0	46.3	Pass
1	Base Foundation (Soil Interaction)	0	25.1	Pass

Structure Rating (max from all components) =	54.6%
--	-------

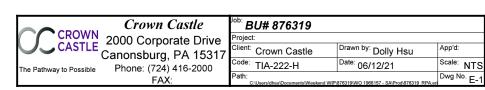

Notes:

4.1) Recommendations

Once the equipment in Table 2 is removed, the tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

¹⁾ See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

APPENDIX A TNXTOWER OUTPUT



MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A607-60	60 ksi	75 ksi	A607-65	65 ksi	80 ksi

TOWER DESIGN NOTES

- Tower is located in New Haven County, Connecticut.
 Tower designed for Exposure B to the TIA-222-H Standard.
- 3. Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard.
- Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.
- 5. Deflections are based upon a 60 mph wind.
- Tower Risk Category II.
 Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 54.6%

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower is located in New Haven County, Connecticut.
- Tower base elevation above sea level: 233.00 ft.
- Basic wind speed of 125 mph.
- Risk Category II.
- Exposure Category B.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.00 ft.
- Nominal ice thickness of 1.5000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60 mph.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: K_{es}(F_w) = 0.95, K_{es}(t_i) = 0.85.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- √ Use Code Safety Factors Guys Escalate Ice Always Use Max Kz Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
 Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination

Sort Capacity Reports By Component
Triangulate Diamond Inner Bracing
Treat Feed Line Bundles As Cylinder
Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

 ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption

Poles

- √ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets
- √ Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	
L1	150.00-108.00	42.00	3.75	12	22.0000	30.4010	0.2500	1.0000	A607-60 (60 ksi)
L2	108.00-69.75	42.00	4.75	12	29.1509	37.5530	0.3125	1.2500	A607-60 (60 ksi)
L3	69.75-32.50	42.00	5.50	12	35.9778	44.3790	0.3750	1.5000	A607-65 (65 ksi)
L4	32.50-0.00	38.00		12	42.5288	50.1300	0.4375	1.7500	A607-65 (65 ksi)

Tapered	Pole	Pro	perties
----------------	------	-----	---------

Section	Tip Dia.	Area	1	r	С	I/C	J	It/Q	W	w/t
	in	in²	in⁴	in	in	in³	in⁴	in²	in	
L1	22.6879	17.5087	1057.2060	7.7865	11.3960	92.7699	2142.1860	8.6173	5.2260	20.904
	31.3852	24.2716	2816.3524	10.7941	15.7477	178.8419	5706.6935	11.9457	7.4775	29.91
L2	30.8457	29.0187	3080.3908	10.3242	15.1002	203.9971	6241.7070	14.2821	6.9749	22.32
	38.7675	37.4733	6633.4331	13.3321	19.4525	341.0075	13441.133 9	18.4432	9.2267	29.525
L3	38.0983	42.9903	6955.4340	12.7458	18.6365	373.2160	14093.595 1	21.1585	8.6370	23.032
	45.8122	53.1348	13132.565 0	15.7534	22.9883	571.2711	26610.137 0	26.1513	10.8886	29.036
L4	45.0137	59.2962	13409.051 9	15.0687	22.0299	608.6741	27170.374 6	29.1838	10.2252	23.372
	51.7441	70.0043	22064.415 1	17.7899	25.9673	849.6987	44708.486 9	34.4540	12.2623	28.028

Tower	Gusset	Gusset	Gusset Grade Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness	A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)			A_r		Spacing Diagonals	Spacing Horizontals	Spacing Redundants
ft	ft ²	in				in	in	in
L1 150.00-	7.		1	1	1			
			· ·	1	ļ			
108.00								
L2 108.00-			1	1	1			
69.75								
L3 69.75-			1	1	1			
32.50								
L4 32.50-0.00			1	1	1			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face	Allow	Exclude	Componen	Placement	Total	Number	Clear	Width or	Perimete	Weight
	or	Shield	From	t		Number	Per Row	Spacing	Diamete	r	
	Leg		Torque	Type	ft			in	r		plf
			Calculation						in	in	

Feed Line/Linear Appurtenances - Entered As Area

Description	Face		Exclude	Componen	Placement	Total		C_AA_A	Weight
	or Leg	Shield	From Torque	t Type	ft	Number		ft²/ft	plf
	_		Calculation	1					
Safety Line 3/8	С	No	No	CaAa (Out	150.00 - 5.00	1	No Ice	0.04	0.22
•				Of Face)			1/2" Ice	0.14	0.75

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation	Type	ft			f l' /ft	plf
							1" Ice	0.24	1.28
							2" Ice	0.44	2.34
5/8 rod/step	С	No	No	CaAa (Out	150.00 - 5.00	1	No Ice	0.02	0.27
•				Of Face)			1/2" Ice	0.12	0.70
				,			1" Ice	0.22	1.74
*							2" Ice	0.42	5.65
 HB114-21U3M12-	С	No	No	Inside Pole	150.00 - 0.00	1	No Ice	0.00	1.22
XXXF(1-1/4)							1/2" Ice	0.00	1.22
							1" Ice	0.00	1.22
							2" Ice	0.00	1.22
LDF4-50A(1/2)	С	No	No	Inside Pole	150.00 - 0.00	4	No Ice	0.00	0.15
	_						1/2" Ice	0.00	0.15
							1" Ice	0.00	0.15
							2" Ice	0.00	0.15
9207(5/16)	С	No	No	Inside Pole	150.00 - 0.00	3	No Ice	0.00	0.60
3207 (3/10)	O	110	140	moide i die	130.00 - 0.00	3	1/2" Ice	0.00	0.60
							1" Ice		0.60
								0.00	
0050(4(4)	_	NI-	NI-	Leader Bala	450.00 0.00	•	2" Ice	0.00	0.60
9258(1/4)	С	No	No	Inside Pole	150.00 - 0.00	3	No Ice	0.00	0.04
							1/2" Ice	0.00	0.04
							1" Ice	0.00	0.04
							2" Ice	0.00	0.04
HB114-1-0813U4-	С	No	No	Inside Pole	150.00 - 0.00	3	No Ice	0.00	1.20
M5J(1-1/4)							1/2" Ice	0.00	1.20
							1" Ice	0.00	1.20
							2" Ice	0.00	1.20
2" Rigid Conduit	С	No	No	Inside Pole	150.00 - 0.00	1	No Ice	0.00	2.80
g	_					-	1/2" Ice	0.00	2.80
							1" Ice	0.00	2.80
							2" Ice	0.00	2.80
*** CU12PSM9P6XXX	С	No	No	Inside Pole	142.00 - 0.00	1	No Ice	0.00	2.35
(1-1/2)	_						1/2" Ice	0.00	2.35
(, =)							1" Ice	0.00	2.35
							2" Ice	0.00	2.35
***							2 100	0.00	2.00
LDF7-50A(1-5/8)	С	No	No	Inside Pole	119.00 - 0.00	6	No Ice	0.00	0.82
(,							1/2" Ice	0.00	0.82
							1" Ice	0.00	0.82
							2" Ice	0.00	0.82
HCS 6X12	С	No	No	Incida Pola	119.00 - 0.00	3	No Ice	0.00	2.40
4AWG(1-5/8)	C	NO	INO	maide i die	113.00 - 0.00	3	1/2" Ice	0.00	2.40
7/10/0(1-0/0)							1" Ice	0.00	
									2.40
MILLINGS	_	NI-	NJ -	Inchide Del	440.00 0.00	,	2" Ice	0.00	2.40
MLE HYBRID	С	No	No	inside Pole	119.00 - 0.00	1	No Ice	0.00	1.07
9POWER/18FIBE							1/2" Ice	0.00	1.07
R RL 2(1-5/8)							1" Ice	0.00	1.07
***							2" Ice	0.00	1.07
*** LDF4-50A(1/2)	С	No	No	Inside Pole	99.00 - 0.00	1	No Ice	0.00	0.15
	9	0	. 10		30.00 0.00	'	1/2" Ice	0.00	0.15
							1" Ice	0.00	0.15
							2" Ice	0.00	0.15
							2 IU U	0.00	0.13

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation				In Face	Out Face	
n	ft		ft ²	ft ²	ft ²	ft ²	K
L1	150.00-108.00	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	2.415	0.67
L2	108.00-69.75	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	2.199	1.01
L3	69.75-32.50	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	2.142	0.98
L4	32.50-0.00	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	1.581	0.85

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Sectio	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft	Lea	in	ft ²	ft ²	ft ²	ft ²	K
L1	150.00-108.00	A	1.460	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	26.947	0.87
L2	108.00-69.75	Α	1.407	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	24.541	1.19
L3	69.75-32.50	Α	1.332	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	23.108	1.15
L4	32.50-0.00	Α	1.185	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	16.232	0.97

Feed Line Center of Pressure

Section	Elevation	CP _X	CPz	CP _X	CPz
				Ice	Ice
	ft	in	in	in	in
L1	150.00-108.00	-0.3307	0.1909	-2.0012	1.1554
L2	108.00-69.75	-0.3328	0.1922	-2.1278	1.2285
L3	69.75-32.50	-0.3341	0.1929	-2.1487	1.2405
L4	32.50-0.00	-0.2811	0.1623	-1.7993	1.0388

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

B'	
Discrete Tower	i nads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	0	ft		ft ²	ft ²	К
**** LLPX310R w/ Mount Pipe	А	From Leg	4.00 0.00 -2.00	0.0000	150.00	No Ice 1/2" Ice	3.88 4.29 4.72	2.36 2.73 3.12	0.06 0.09 0.13

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft ²	ft²	K
						1" Ice 2" Ice	5.61	3.94	0.24
LLPX310R w/ Mount Pipe	В	From Leg	4.00	0.0000	150.00	No Ice	3.88	2.36	0.06
ZZI NOTOK W MOGRET IPO		1 10 Log	0.00	0.0000	100.00	1/2"	4.29	2.73	0.09
			-2.00			Ice	4.72	3.12	0.13
						1" Ice 2" Ice	5.61	3.94	0.24
LLPX310R w/ Mount Pipe	С	From Leg	4.00	0.0000	150.00	No Ice	3.88	2.36	0.06
			0.00			1/2"	4.29	2.73	0.09
			-2.00			Ice	4.72	3.12	0.13
						1" Ice 2" Ice	5.61	3.94	0.24
(2) FDD_R6_RRH	Α	From Leg	4.00	0.0000	150.00	No Ice	1.53	0.68	0.03
			0.00			1/2"	1.69	0.80	0.04
			-2.00			Ice 1" Ice	1.85	0.92	0.06
						2" Ice	2.20	1.19	0.09
(2) FDD_R6_RRH	В	From Leg	4.00	0.0000	150.00	No Ice	1.53	0.68	0.03
			0.00			1/2"	1.69	0.80	0.04
			-2.00			lce 1" lce	1.85 2.20	0.92 1.19	0.06 0.09
						2" Ice	2.20	1.13	0.03
(2) FDD_R6_RRH	С	From Leg	4.00	0.0000	150.00	No Ice	1.53	0.68	0.03
·		3	0.00			1/2"	1.69	0.80	0.04
			-2.00			Ice	1.85	0.92	0.06
						1" Ice 2" Ice	2.20	1.19	0.09
*									

APXVTM14-C-120 w/	Α	From Leg	4.00	0.0000	150.00	No Ice	4.09	2.86	0.08
Mount Pipe			0.00			1/2"	4.48	3.23	0.13
			0.00			Ice	4.88	3.61	0.19
						1" Ice	5.71	4.40	0.33
APXVTM14-C-120 w/	В	From Leg	4.00	0.0000	150.00	2" Ice No Ice	4.09	2.86	0.08
Mount Pipe	ь	Fioni Leg	0.00	0.0000	130.00	1/2"	4.48	3.23	0.08
mount ipo			0.00			Ice	4.88	3.61	0.19
						1" Ice	5.71	4.40	0.33
						2" Ice			
APXVTM14-C-120 w/	С	From Leg	4.00	0.0000	150.00	No Ice	4.09	2.86	0.08
Mount Pipe			0.00			1/2"	4.48	3.23	0.13
			0.00			lce 1" lce	4.88 5.71	3.61 4.40	0.19 0.33
						2" Ice	0.7 1	4.40	0.00
APXVSPP18-C-A20 w/	Α	From Leg	4.00	0.0000	150.00	No Ice	4.60	4.01	0.10
Mount Pipe			0.00			1/2"	5.05	4.45	0.16
			0.00			Ice	5.50	4.89	0.23
						1" Ice 2" Ice	6.44	5.82	0.42
APXVSPP18-C-A20 w/	В	From Leg	4.00	0.0000	150.00	No Ice	4.60	4.01	0.10
Mount Pipe	_	-	0.00	2.0000		1/2"	5.05	4.45	0.16
•			0.00			Ice	5.50	4.89	0.23
						1" Ice 2" Ice	6.44	5.82	0.42
APXVSPP18-C-A20 w/	С	From Leg	4.00	0.0000	150.00	No Ice	4.60	4.01	0.10
Mount Pipe		3	0.00			1/2"	5.05	4.45	0.16
			0.00			Ice	5.50	4.89	0.23
						1" Ice 2" Ice	6.44	5.82	0.42
800 EXTERNAL NOTCH	Α	From Leg	4.00	0.0000	150.00	No Ice	0.66	0.32	0.01
FILTER			0.00			1/2"	0.76	0.40	0.02
			0.00			Ice	0.87	0.48	0.02
						1" Ice	1.11	0.67	0.04

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
	- 0		Vert ft ft ft	o	ft		ft ²	ft²	К
						2" Ice			
800 EXTERNAL NOTCH	В	From Leg	4.00	0.0000	150.00	No Ice	0.66	0.32	0.01
FILTER			0.00			1/2"	0.76	0.40	0.02
			0.00			Ice 1" Ice	0.87 1.11	0.48 0.67	0.02 0.04
						2" Ice	1.11	0.07	0.04
800 EXTERNAL NOTCH	С	From Leg	4.00	0.0000	150.00	No Ice	0.66	0.32	0.01
FILTER			0.00			1/2"	0.76	0.40	0.02
			0.00			Ice	0.87	0.48	0.02
						1" Ice	1.11	0.67	0.04
00014117 DD11			4.00	0.0000	450.00	2" Ice	0.40	4	0.05
800MHZ RRH	Α	From Leg	4.00 0.00	0.0000	150.00	No Ice 1/2"	2.13 2.32	1.77 1.95	0.05 0.07
			0.00			Ice	2.52	2.13	0.07
			0.00			1" Ice	2.92	2.13	0.16
						2" Ice			00
800MHZ RRH	В	From Leg	4.00	0.0000	150.00	No Ice	2.13	1.77	0.05
		_	0.00			1/2"	2.32	1.95	0.07
			0.00			Ice	2.51	2.13	0.10
						1" Ice	2.92	2.51	0.16
900MUZ DDU	С	From Log	4.00	0.0000	150.00	2" Ice No Ice	2.12	1 77	0.05
800MHZ RRH	C	From Leg	4.00 0.00	0.0000	150.00	1/2"	2.13 2.32	1.77 1.95	0.05 0.07
			0.00			Ice	2.51	2.13	0.07
			0.00			1" Ice	2.92	2.51	0.16
						2" Ice			
(3) ACU-A20-N	Α	From Leg	4.00	0.0000	150.00	No Ice	0.07	0.12	0.00
			0.00			1/2"	0.10	0.16	0.00
			0.00			Ice	0.15	0.21	0.00
						1" Ice 2" Ice	0.26	0.34	0.01
(3) ACU-A20-N	В	From Leg	4.00	0.0000	150.00	No Ice	0.07	0.12	0.00
(3) AOO AZO 14	Ь	1 Tom Log	0.00	0.0000	150.00	1/2"	0.10	0.12	0.00
			0.00			Ice	0.15	0.21	0.00
						1" Ice	0.26	0.34	0.01
/ -	_					2" Ice			
(3) ACU-A20-N	С	From Leg	4.00	0.0000	150.00	No Ice	0.07	0.12	0.00
			0.00 0.00			1/2" Ice	0.10 0.15	0.16 0.21	0.00 0.00
			0.00			1" Ice	0.13	0.21	0.00
						2" Ice	0.20	0.01	0.01
TD-RRH8x20-25	Α	From Leg	4.00	0.0000	150.00	No Ice	4.05	1.53	0.07
			0.00			1/2"	4.30	1.71	0.10
			0.00			Ice	4.56	1.90	0.13
						1" Ice	5.10	2.30	0.20
TD-RRH8x20-25	Α	From Leg	4.00	0.0000	150.00	2" Ice No Ice	4.05	1.53	0.07
1 D-1(1(10x20-25	^	1 Tolli Leg	0.00	0.0000	130.00	1/2"	4.30	1.71	0.07
			0.00			Ice	4.56	1.90	0.13
						1" Ice	5.10	2.30	0.20
						2" Ice			
TD-RRH8x20-25	С	From Leg	4.00	0.0000	150.00	No Ice	4.05	1.53	0.07
			0.00			1/2"	4.30	1.71	0.10
			0.00			lce 1" lce	4.56 5.10	1.90 2.30	0.13 0.20
						2" Ice	0.10	2.00	0.20
1900MHz RRH (65MHz)	Α	From Leg	4.00	0.0000	150.00	No Ice	2.31	2.38	0.06
(· - /		- 3	0.00			1/2"	2.52	2.58	0.08
			0.00			Ice	2.73	2.79	0.11
						1" Ice	3.17	3.24	0.18
1000MH- DDH (CEMU-)	В	From Leg	4.00	0.0000	150.00	2" Ice No Ice	2.31	2.38	0.06
1900MHz RRH (65MHz)	D	From Leg	0.00	0.0000	130.00	1/2"	2.51	2.38 2.58	0.06
			0.00			Ice	2.73	2.79	0.11
						1" Ice	3.17	3.24	0.18

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	o	ft		ft ²	ft ²	К
1900MHz RRH (65MHz)	С	From Leg	4.00 0.00 0.00	0.0000	150.00	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	2.31 2.52 2.73 3.17	2.38 2.58 2.79 3.24	0.06 0.08 0.11 0.18
(2) Pipe Mount	Α	From Leg	4.00 0.00 0.00	0.0000	150.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.20 1.50 1.81 2.47	1.20 1.50 1.81 2.47	0.02 0.03 0.04 0.08
(2) Pipe Mount	В	From Leg	4.00 0.00 0.00	0.0000	150.00	No Ice 1/2" Ice 1" Ice	1.20 1.50 1.81 2.47	1.20 1.50 1.81 2.47	0.02 0.03 0.04 0.08
(2) Pipe Mount	С	From Leg	4.00 0.00 0.00	0.0000	150.00	2" Ice No Ice 1/2" Ice 1" Ice	1.20 1.50 1.81 2.47	1.20 1.50 1.81 2.47	0.02 0.03 0.04 0.08
MC-PA 12L-B	С	None		0.0000	150.00	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	15.60 19.40 23.20 30.80	15.60 19.40 23.20 30.80	1.23 1.54 1.85 2.47
MX08FRO665-21 w/ Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	142.00	No Ice 1/2" Ice 1" Ice	8.01 8.52 9.04 10.11	4.23 4.69 5.16 6.12	0.11 0.19 0.29 0.52
MX08FRO665-21 w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	142.00	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	8.01 8.52 9.04 10.11	4.23 4.69 5.16 6.12	0.11 0.19 0.29 0.52
MX08FRO665-21 w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	142.00	No Ice 1/2" Ice 1" Ice 2" Ice	8.01 8.52 9.04 10.11	4.23 4.69 5.16 6.12	0.11 0.19 0.29 0.52
TA08025-B604	Α	From Leg	4.00 0.00 0.00	0.0000	142.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.96 2.14 2.32 2.71	0.98 1.11 1.25 1.55	0.06 0.08 0.10 0.15
TA08025-B604	В	From Leg	4.00 0.00 0.00	0.0000	142.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.96 2.14 2.32 2.71	0.98 1.11 1.25 1.55	0.06 0.08 0.10 0.15
TA08025-B604	С	From Leg	4.00 0.00 0.00	0.0000	142.00	No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32 2.71	0.98 1.11 1.25 1.55	0.06 0.08 0.10 0.15
TA08025-B605	Α	From Leg	4.00 0.00 0.00	0.0000	142.00	2" Ice No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32 2.71	1.13 1.27 1.41 1.72	0.08 0.09 0.11 0.16
TA08025-B605	В	From Leg	4.00	0.0000	142.00	2" Ice No Ice	1.96	1.13	0.08

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	0	ft		ft ²	ft²	К
			0.00			1/2" Ice 1" Ice	2.14 2.32 2.71	1.27 1.41 1.72	0.09 0.11 0.16
TA08025-B605	С	From Leg	4.00 0.00 0.00	0.0000	142.00	2" Ice No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32 2.71	1.13 1.27 1.41 1.72	0.08 0.09 0.11 0.16
RDIDC-9181-PF-48	Α	From Leg	4.00 0.00 0.00	0.0000	142.00	2" Ice No Ice 1/2" Ice 1" Ice	2.31 2.50 2.70 3.12	1.29 1.45 1.61 1.96	0.02 0.04 0.06 0.12
Commscope MC-PK8-DSH	С	None		0.0000	142.00	2" Ice No Ice 1/2" Ice 1" Ice	34.24 62.95 91.66 149.08	34.24 62.95 91.66 149.08	1.75 2.10 2.45 3.15
(2) 8' x 2" Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	142.00	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	1.90 2.73 3.40 4.40	1.90 2.73 3.40 4.40	0.03 0.04 0.06 0.12
(2) 8' x 2" Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	142.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.90 2.73 3.40 4.40	1.90 2.73 3.40 4.40	0.03 0.04 0.06 0.12
(2) 8' x 2" Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	142.00	No Ice 1/2" Ice 1" Ice	1.90 2.73 3.40 4.40	1.90 2.73 3.40 4.40	0.03 0.04 0.06 0.12
*** *** *						2" Ice			
ERICSSON AIR 21 B2A B4P w/ Mount Pipe	Α	From Leg	4.00 0.00 1.00	0.0000	119.00	No Ice 1/2" Ice 1" Ice	3.14 3.45 3.77 4.43	2.59 2.88 3.19 3.84	0.11 0.16 0.23 0.38
ERICSSON AIR 21 B2A B4P w/ Mount Pipe	В	From Leg	4.00 0.00 1.00	0.0000	119.00	2" Ice No Ice 1/2" Ice 1" Ice	3.14 3.45 3.77 4.43	2.59 2.88 3.19 3.84	0.11 0.16 0.23 0.38
ERICSSON AIR 21 B2A B4P w/ Mount Pipe	С	From Leg	4.00 0.00 1.00	0.0000	119.00	2" Ice No Ice 1/2" Ice 1" Ice	3.14 3.45 3.77 4.43	2.59 2.88 3.19 3.84	0.11 0.16 0.23 0.38
APXVAARR24_43-U-NA20 w/ Mount Pipe	Α	From Leg	4.00 0.00 1.00	0.0000	119.00	2" Ice No Ice 1/2" Ice 1" Ice	14.69 15.46 16.23 17.82	6.87 7.55 8.25 9.67	0.19 0.31 0.46 0.79
APXVAARR24_43-U-NA20 w/ Mount Pipe	В	From Leg	4.00 0.00 1.00	0.0000	119.00	2" Ice No Ice 1/2" Ice 1" Ice	14.69 15.46 16.23 17.82	6.87 7.55 8.25 9.67	0.19 0.31 0.46 0.79
APXVAARR24_43-U-NA20	С	From Leg	4.00	0.0000	119.00	2" Ice No Ice	14.69	6.87	0.19

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	0	ft		ft ²	ft²	K
w/ Mount Pipe			0.00 1.00			1/2" Ice 1" Ice	15.46 16.23 17.82	7.55 8.25 9.67	0.31 0.46 0.79
AIR -32 B2A/B66AA w/ Mount Pipe	Α	From Face	4.00 0.00 1.00	0.0000	119.00	2" Ice No Ice 1/2" Ice 1" Ice	3.76 4.12 4.48 5.24	3.15 3.49 3.84 4.58	0.19 0.25 0.32 0.48
AIR -32 B2A/B66AA w/ Mount Pipe	В	From Face	4.00 0.00 1.00	0.0000	119.00	2" Ice No Ice 1/2" Ice	3.76 4.12 4.48	3.15 3.49 3.84	0.19 0.25 0.32
AIR -32 B2A/B66AA w/ Mount Pipe	С	From Face	4.00 0.00 1.00	0.0000	119.00	1" Ice 2" Ice No Ice 1/2" Ice	5.24 3.76 4.12 4.48	4.58 3.15 3.49 3.84	0.48 0.19 0.25 0.32
KRY 112 144/1	Α	From Leg	4.00 0.00 1.00	0.0000	119.00	1" Ice 2" Ice No Ice 1/2" Ice	5.24 0.35 0.43 0.51	4.58 0.17 0.23 0.30	0.48 0.01 0.01 0.02
KRY 112 144/1	В	From Leg	4.00 0.00 1.00	0.0000	119.00	1" Ice 2" Ice No Ice 1/2" Ice	0.70 0.35 0.43 0.51	0.46 0.17 0.23 0.30	0.03 0.01 0.01 0.02
KRY 112 144/1	С	From Leg	4.00 0.00	0.0000	119.00	1" Ice 2" Ice No Ice 1/2"	0.70 0.35 0.43	0.46 0.17 0.23	0.03 0.01 0.01
RADIO 4449 B71/B85A	Α	From Leg	4.00 0.00	0.0000	119.00	Ice 1" Ice 2" Ice No Ice 1/2"	0.51 0.70 1.64 1.80	0.30 0.46 1.31 1.46	0.02 0.03 0.07 0.09
RADIO 4449 B71/B85A	В	From Leg	1.00	0.0000	119.00	Ice 1" Ice 2" Ice No Ice	1.97 2.33 1.64	1.61 1.94 1.31	0.11 0.16 0.07
		, and the second	0.00 1.00			1/2" Ice 1" Ice 2" Ice	1.80 1.97 2.33	1.46 1.61 1.94	0.09 0.11 0.16
RADIO 4449 B71/B85A	С	From Leg	4.00 0.00 1.00	0.0000	119.00	No Ice 1/2" Ice 1" Ice	1.64 1.80 1.97 2.33	1.31 1.46 1.61 1.94	0.07 0.09 0.11 0.16
Platform Mount [LP 303-1]	С	None		0.0000	119.00	2" Ice No Ice 1/2" Ice 1" Ice	14.69 18.01 21.34 28.08	14.69 18.01 21.34 28.08	1.25 1.57 1.94 2.85
SitePro1 [P/N: PRK-1245]	С	None		0.0000	119.00	2" Ice No Ice 1/2" Ice 1" Ice	11.84 16.96 22.08 32.32	11.84 16.96 22.08 32.32	0.47 0.79 1.11 1.75
SitePro1 [P/N: HRK-12-U]	С	None		0.0000	119.00	2" Ice No Ice 1/2" Ice 1" Ice	5.38 7.22 8.88 12.20	5.38 7.22 8.88 12.20	0.41 0.50 0.63 0.88
*						2" Ice			

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			Vert ft ft ft	o	ft		ft²	ft²	K

KS24019-L112A	В	From Leg	4.00 0.00 1.00	0.0000	99.00	No Ice 1/2" Ice	0.10 0.18 0.26	0.10 0.18 0.26	0.01 0.01 0.01
			1.00			1" Ice 2" Ice	0.42	0.42	0.01
Side Arm Mount [SO 702-1]	В	None		0.0000	99.00	No Ice 1/2" Ice	1.00 1.25 1.50	1.43 2.05 2.67	0.03 0.04 0.05
***						1" Ice 2" Ice	2.00	3.91	0.07

					Dishe	es					
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	o	ft	ft		ft ²	K
**** A-ANT-23G-2-C	А	Paraboloid w/Shroud (HP)	From Leg	4.00 0.00 2.00	0.0000		150.00	2.17	No Ice 1/2" Ice 1" Ice 2" Ice	3.72 4.01 4.30 4.88	0.03 0.05 0.07 0.11
A-ANT-23G-2-C	В	Paraboloid w/Shroud (HP)	From Leg	4.00 0.00 2.00	0.0000		150.00	2.17	No Ice 1/2" Ice 1" Ice 2" Ice	3.72 4.01 4.30 4.88	0.03 0.05 0.07 0.11
A-ANT-23G-2-C	С	Paraboloid w/Shroud (HP)	From Leg	4.00 0.00 2.00	0.0000		150.00	2.17	No Ice 1/2" Ice 1" Ice 2" Ice	3.72 4.01 4.30 4.88	0.03 0.05 0.07 0.11
A-ANT-23G-1-C	С	Paraboloid w/Shroud (HP)	From Leg	4.00 0.00 3.00	0.0000		150.00	1.13	No Ice 1/2" Ice 1" Ice 2" Ice	0.99 1.15 1.30 1.60	0.03 0.04 0.05 0.06

Load Combinations

Comb. No.	Description
100.	
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice

Comb.	Description	
No.		
14	1.2 Dead+1.0 Wind 180 deg - No Ice	
15	0.9 Dead+1.0 Wind 180 deg - No Ice	
16	1.2 Dead+1.0 Wind 210 deg - No Ice	
17	0.9 Dead+1.0 Wind 210 deg - No Ice	
18	1.2 Dead+1.0 Wind 240 deg - No Ice	
19	0.9 Dead+1.0 Wind 240 deg - No Ice	
20	1.2 Dead+1.0 Wind 270 deg - No Ice	
21	0.9 Dead+1.0 Wind 270 deg - No Ice	
22	1.2 Dead+1.0 Wind 300 deg - No Ice	
23	0.9 Dead+1.0 Wind 300 deg - No Ice	
24	1.2 Dead+1.0 Wind 330 deg - No Ice	
25	0.9 Dead+1.0 Wind 330 deg - No Ice	
26	1.2 Dead+1.0 Ice+1.0 Temp	
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	
37 38	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	
39	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp Dead+Wind 0 deg - Service	
40	Dead+Wind 30 deg - Service	
41	Dead+Wind 60 deg - Service	
42	Dead+Wind 90 deg - Service	
43	Dead+Wind 120 deg - Service	
44	Dead+Wind 150 deg - Service	
45	Dead+Wind 180 deg - Service	
46	Dead+Wind 210 deg - Service	
47	Dead+Wind 240 deg - Service	
48	Dead+Wind 270 deg - Service	
49	Dead+Wind 300 deg - Service	
50	Dead+Wind 330 deg - Service	

Maximum Member Forces

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Avia	Minor Axis
Sectio n	⊑ievation ft	Component Type	Condition	Gov. Load	Axiai	Major Axis Moment	Moment
No.	n	туре		Comb.	K	kip-ft	kip-ft
L1	150 - 108	Pole	Max Tension	1	0.00	0.00	0.00
L1	130 - 100	i ole	Max. Compression	26	-29.23	1.31	1.61
			Max. Mx	20	-14.41	330.42	-0.43
			Max. My	20	-14.38	-2.39	336.60
			Max. Vy	8	13.73	-329.79	4.40
			Max. Vx	14	13.73	3.01	-336.09
			Max. Torque	8	13.91	3.01	0.87
L2	108 - 69.75	Pole	Max Tension	1	0.00	0.00	0.00
LZ	100 - 09.73	rule	Max. Compression	26	-38.46	1.56	1.49
			Max. Mx	20	-21.09	906.83	-1.49
				14		900.63 5.46	
			Max. My		-21.07		-919.66
			Max. Vy	8	17.21	-906.60	8.06
			Max. Vx	14	17.39	5.46	-919.66
	00.75 00.5	Б.	Max. Torque	8	0.00	0.00	0.82
L3	69.75 - 32.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-50.41	1.83	1.34
			Max. Mx	8	-30.33	-1595.59	11.56
			Max. My	14	-30.32	7.82	-1615.19
			Max. Vy	8	20.46	-1595.59	11.56
			Max. Vx	14	20.63	7.82	-1615.19
			Max. Torque	8			0.76
L4	32.5 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-66.05	2.09	1.19
			Max. Mx	8	-43.14	-2431.36	15.08

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Type		Load		Moment	Moment
No.		••		Comb.	K	kip-ft	kip-ft
			Max. My	14	-43.14	10.20	-2457.56
			Max. Vy	8	23.49	-2431.36	15.08
			Max. Vx	14	23.66	10.20	-2457.56
			Max. Torque	32			-0.79

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, Z K
Pole	Max. Vert	27	66.05	-0.01	6.59
role					
	Max. H _x	20	43.15	23.46	-0.03
	Max. H _z	2	43.15	-0.07	23.62
	Max. M _x	2	2455.72	-0.07	23.62
	Max. M _z	8	2431.36	-23.47	0.09
	Max. Torsion	38	0.79	3.28	5.70
	Min. Vert	11	32.36	-20.29	-11.75
	Min. H _x	8	43.15	-23.47	0.09
	$Min. H_z$	14	43.15	0.06	-23.64
	Min. M _x	14	-2457.56	0.06	-23.64
	Min. M _z	20	-2430.91	23.46	-0.03
	Min. Torsion	32	-0.79	-3.27	-5.70

Tower Mast Reaction Summary

Load	Vertical	Shear _x	Shearz	Overturning	Overturning	Torque
Combination	K	K	K	Moment, M_x kip-ft	Moment, M _z kip-ft	kip-ft
Dead Only	35.96	0.00	0.00	-0.48	0.50	-0.00
1.2 Dead+1.0 Wind 0 deg -	43.15	0.07	-23.62	-2455.72	-10.59	-0.72
No Ice						
0.9 Dead+1.0 Wind 0 deg - No Ice	32.36	0.07	-23.62	-2427.27	-10.60	-0.71
1.2 Dead+1.0 Wind 30 deg - No Ice	43.15	11.82	-20.48	-2131.14	-1227.85	-0.64
0.9 Dead+1.0 Wind 30 deg - No Ice	32.36	11.82	-20.48	-2106.41	-1213.86	-0.63
1.2 Dead+1.0 Wind 60 deg - No Ice	43.15	20.36	-11.87	-1237.45	-2110.01	-0.75
0.9 Dead+1.0 Wind 60 deg - No Ice	32.36	20.36	-11.87	-1223.01	-2085.88	-0.73
1.2 Dead+1.0 Wind 90 deg - No Ice	43.15	23.47	-0.09	-15.08	-2431.36	-0.65
0.9 Dead+1.0 Wind 90 deg - No Ice	32.36	23.47	-0.09	-14.71	-2403.56	-0.64
1.2 Dead+1.0 Wind 120 deg - No Ice	43.15	20.29	11.75	1217.24	-2099.62	-0.03
0.9 Dead+1.0 Wind 120 deg - No Ice	32.36	20.29	11.75	1203.39	-2075.64	-0.02
1.2 Dead+1.0 Wind 150 deg - No Ice	43.15	11.66	20.46	2126.52	-1202.73	0.66
0.9 Dead+1.0 Wind 150 deg - No Ice	32.36	11.66	20.46	2102.17	-1189.08	0.66
1.2 Dead+1.0 Wind 180 deg - No Ice	43.15	-0.06	23.64	2457.56	10.20	0.75
0.9 Dead+1.0 Wind 180 deg - No Ice	32.36	-0.06	23.64	2429.40	9.89	0.74
1.2 Dead+1.0 Wind 210 deg - No Ice	43.15	-11.75	20.51	2133.50	1219.39	0.64
0.9 Dead+1.0 Wind 210 deg - No Ice	32.36	-11.75	20.51	2109.05	1205.19	0.63

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 240 deg - No Ice	43.15	-20.33	11.85	1233.60	2106.78	0.75
0.9 Dead+1.0 Wind 240 deg - No Ice	32.36	-20.33	11.85	1219.52	2082.38	0.73
1.2 Dead+1.0 Wind 270 deg - No Ice	43.15	-23.46	0.03	3.58	2430.91	0.65
0.9 Dead+1.0 Wind 270 deg	32.36	-23.46	0.03	3.69	2402.79	0.64
- No Ice 1.2 Dead+1.0 Wind 300 deg	43.15	-20.30	-11.77	-1221.49	2102.75	-0.00
- No Ice 0.9 Dead+1.0 Wind 300 deg	32.36	-20.30	-11.77	-1207.26	2078.40	-0.01
- No Ice 1.2 Dead+1.0 Wind 330 deg	43.15	-11.72	-20.43	-2122.15	1213.75	-0.66
- No Ice						
0.9 Dead+1.0 Wind 330 deg - No Ice	32.36	-11.72	-20.43	-2097.54	1199.63	-0.66
1.2 Dead+1.0 Ice+1.0 Temp	66.05	-0.00	-0.00	-1.19	2.09	0.00
1.2 Dead+1.0 Wind 0	66.05	0.01	-6.59	-726.21	-0.11	-0.73
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	66.05	3.30	-5.71	-629.93	-360.79	-0.49
1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	66.05	5.69	-3.30	-365.58	-622.99	-0.19
1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	66.05	6.56	-0.02	-4.22	-718.71	0.16
1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	66.05	5.67	3.28	359.16	-620.98	0.54
1.2 Dead+1.0 Wind 150	66.05	3.27	5.70	626.77	-355.68	0.79
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 180	66.05	-0.01	6.59	724.27	4.13	0.74
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 210	66.05	-3.28	5.71	628.06	363.15	0.49
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 240	66.05	-5.68	3.30	362.44	626.43	0.19
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 270	66.05	-6.56	0.00	-0.49	722.71	-0.16
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300	66.05	-5.68	-3.28	-362.40	625.75	-0.55
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330	66.05	-3.28	-5.70	-628.14	362.18	-0.79
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	35.96	0.02	-5.13	-529.62	-1.88	-0.16
Dead+Wind 30 deg - Service	35.96	2.56	-4.45	-459.67	-264.22	-0.14
Dead+Wind 60 deg - Service	35.96	4.42	-2.58	-267.06	-454.34	-0.16
Dead+Wind 90 deg - Service Dead+Wind 120 deg -	35.96 35.96	5.09 4.40	-0.02 2.55	-3.63 261.94	-523.59 -452.09	-0.14 -0.00
Service Dead+Wind 150 deg -	35.96	2.53	4.44	457.90	-258.81	0.14
Service Dead+Wind 180 deg -	35.96	-0.01	5.13	529.26	2.59	0.16
Service Dead+Wind 210 deg -	35.96	-2.55	4.45	459.41	263.19	0.14
Service Dead+Wind 240 deg -	35.96	-4.41	2.57	265.47	454.43	0.16
Service Dead+Wind 270 deg -	35.96	-5.09	0.01	0.39	524.28	0.14
Service Dead+Wind 300 deg -	35.96	-4.41	-2.55	-263.62	453.56	-0.00
Service Dead+Wind 330 deg - Service	35.96	-2.54	-4.43	-457.73	261.97	-0.14

Solution Summary

		of Applied Force			Sum of Reactio		
Load	PX	PY	PZ	PX	PY	PZ	% Erro
Comb.	K	K	K	K	K	K	
1	0.00	-35.96	0.00	0.00	35.96	0.00	0.000%
2	0.07	-43.15	-23.62	-0.07	43.15	23.62	0.000%
3	0.07	-32.36	-23.62	-0.07	32.36	23.62	0.000%
4	11.82	-43.15	-20.48	-11.82	43.15	20.48	0.000%
5	11.82	-32.36	-20.48	-11.82	32.36	20.48	0.000%
6	20.36	-43.15	-11.87	-20.36	43.15	11.87	0.000%
7	20.36	-32.36	-11.87	-20.36	32.36	11.87	0.000%
8	23.47	-43.15	-0.09	-23.47	43.15	0.09	0.000%
9	23.47	-32.36	-0.09	-23.47	32.36	0.09	0.000%
10	20.29	-43.15	11.75	-20.29	43.15	-11.75	0.000%
11	20.29	-32.36	11.75	-20.29	32.36	-11.75	0.000%
12	11.66	-43.15	20.46	-11.66	43.15	-20.46	0.000%
13	11.66	-32.36	20.46	-11.66	32.36	-20.46	0.000%
14	-0.06	-43.15	23.64	0.06	43.15	-23.64	0.000%
15	-0.06	-32.36	23.64	0.06	32.36	-23.64	0.000%
16	-11.75	-43.15	20.51	11.75	43.15	-20.51	0.000%
17	-11.75	-32.36	20.51	11.75	32.36	-20.51	0.000%
18	-20.33	-43.15	11.85	20.33	43.15	-11.85	0.0007
19	-20.33	-32.36	11.85	20.33	32.36	-11.85	0.0007
20	-23.46	-43.15	0.03	23.46	43.15	-0.03	0.0007
21	-23.46	-32.36	0.03	23.46	32.36	-0.03	0.0007
22	-20.30	-32.36 -43.15	-11.77	20.30	43.15	-0.03 11.77	0.0009
23	-20.30	-43.15 -32.36	-11.77 -11.77	20.30	32.36	11.77	0.000%
23 24	-20.30 -11.72	-32.36 -43.15	-20.43	20.30 11.72	32.36 43.15	20.43	
							0.000%
25	-11.72	-32.36	-20.43	11.72	32.36	20.43	0.000%
26	0.00	-66.05	0.00	0.00	66.05	0.00	0.000%
27	0.01	-66.05	-6.59	-0.01	66.05	6.59	0.000%
28	3.30	-66.05	-5.71	-3.30	66.05	5.71	0.000%
29	5.69	-66.05	-3.30	-5.69	66.05	3.30	0.000%
30	6.56	-66.05	-0.02	-6.56	66.05	0.02	0.000%
31	5.67	-66.05	3.28	-5.67	66.05	-3.28	0.000%
32	3.27	-66.05	5.70	-3.27	66.05	-5.70	0.000%
33	-0.01	-66.05	6.59	0.01	66.05	-6.59	0.000%
34	-3.28	-66.05	5.71	3.28	66.05	-5.71	0.000%
35	-5.68	-66.05	3.30	5.68	66.05	-3.30	0.000%
36	-6.56	-66.05	0.00	6.56	66.05	-0.00	0.000%
37	-5.68	-66.05	-3.28	5.68	66.05	3.28	0.000%
38	-3.28	-66.05	-5.70	3.28	66.05	5.70	0.000%
39	0.02	-35.96	-5.13	-0.02	35.96	5.13	0.000%
40	2.56	-35.96	-4.45	-2.56	35.96	4.45	0.000%
41	4.42	-35.96	-2.58	-4.42	35.96	2.58	0.000%
42	5.09	-35.96	-0.02	-5.09	35.96	0.02	0.000%
43	4.40	-35.96	2.55	-4.40	35.96	-2.55	0.000%
44	2.53	-35.96	4.44	-2.53	35.96	-4.44	0.000%
45	-0.01	-35.96	5.13	0.01	35.96	-5.13	0.000%
46	-2.55	-35.96	4.45	2.55	35.96	-4.45	0.000%
47	-4.41	-35.96	2.57	4.41	35.96	-2.57	0.000%
48	-5.09	-35.96	0.01	5.09	35.96	-0.01	0.000%
49	-4.41	-35.96	-2.55	4.41	35.96	2.55	0.000%
50	-2.54	-35.96	-4.43	2.54	35.96	4.43	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.0000001	0.00000001
2	Yes	4	0.0000001	0.00051663
3	Yes	4	0.0000001	0.00023772
4	Yes	5	0.0000001	0.00088944
5	Yes	5	0.0000001	0.00041915
6	Yes	5	0.0000001	0.00091327
7	Yes	5	0.0000001	0.00043156
8	Yes	4	0.0000001	0.00099057
9	Yes	4	0.0000001	0.00060635
10	Yes	5	0.0000001	0.00086223

11 Yes 5 0.00000001 0.00048216 12 Yes 5 0.00000001 0.000486257 13 Yes 5 0.00000001 0.000496763 14 Yes 4 0.00000001 0.0004857 15 Yes 4 0.00000001 0.00048675 16 Yes 5 0.00000001 0.00042930 17 Yes 5 0.00000001 0.00042930 18 Yes 5 0.00000001 0.00047187 19 Yes 5 0.00000001 0.00047187 20 Yes 4 0.00000001 0.00047187 20 Yes 4 0.00000001 0.00047187 21 Yes 4 0.00000001 0.000471805 21 Yes 4 0.00000001 0.0004895 22 Yes 5 0.00000001 0.0004805 25 Yes 5 0.00000001 0.00048161 <t< th=""><th></th><th></th><th></th><th></th><th></th></t<>					
13 Yes 5 0.00000001 0.00040763 14 Yes 4 0.00000001 0.00078857 15 Yes 4 0.00000001 0.00045675 16 Yes 5 0.00000001 0.00042930 17 Yes 5 0.00000001 0.00042930 18 Yes 5 0.00000001 0.00047187 19 Yes 5 0.00000001 0.00047187 19 Yes 4 0.00000001 0.00041141 20 Yes 4 0.00000001 0.00041141 20 Yes 4 0.00000001 0.0004895 21 Yes 4 0.00000001 0.0004895 22 Yes 5 0.00000001 0.0004895 22 Yes 5 0.00000001 0.00048968 25 Yes 5 0.00000001 0.00048968 25 Yes 5 0.00000001 0.00042282 2	11	Yes	5	0.0000001	0.00040816
14 Yes 4 0.00000001 0.00078857 15 Yes 4 0.00000001 0.00045675 16 Yes 5 0.00000001 0.0009025 17 Yes 5 0.00000001 0.00042930 18 Yes 5 0.00000001 0.00047147 19 Yes 5 0.00000001 0.00047141 20 Yes 4 0.00000001 0.00047185 21 Yes 4 0.00000001 0.0004895 22 Yes 5 0.00000001 0.0004895 22 Yes 5 0.00000001 0.0004895 22 Yes 5 0.00000001 0.00048802 23 Yes 5 0.00000001 0.00088022 23 Yes 5 0.00000001 0.00088022 24 Yes 5 0.00000001 0.00088468 25 Yes 5 0.00000001 0.00042282 26	12	Yes	5	0.0000001	0.00086257
15 Yes 4 0.00000001 0.00045675 16 Yes 5 0.00000001 0.00090925 17 Yes 5 0.00000001 0.00042930 18 Yes 5 0.00000001 0.00042187 19 Yes 5 0.00000001 0.00041141 20 Yes 4 0.00000001 0.0004895 21 Yes 4 0.00000001 0.0004895 22 Yes 5 0.00000001 0.0004805 22 Yes 5 0.00000001 0.0004805 22 Yes 5 0.00000001 0.0004805 22 Yes 5 0.00000001 0.00048682 23 Yes 5 0.00000001 0.00048468 25 Yes 5 0.00000001 0.00042282 26 Yes 4 0.00000001 0.00042282 26 Yes 5 0.00000001 0.00042444 29<	13	Yes	5	0.0000001	0.00040763
16 Yes 5 0.00000001 0.00090925 17 Yes 5 0.00000001 0.00042930 18 Yes 5 0.00000001 0.00047187 19 Yes 5 0.00000001 0.00041141 20 Yes 4 0.00000001 0.000414141 20 Yes 4 0.00000001 0.00040895 21 Yes 4 0.00000001 0.0004895 22 Yes 5 0.00000001 0.0004895 22 Yes 5 0.00000001 0.0004885 22 Yes 5 0.00000001 0.00048468 25 Yes 5 0.00000001 0.00042282 26 Yes 4 0.00000001 0.00042282 26 Yes 4 0.00000001 0.00042282 27 Yes 5 0.00000001 0.00048444 29 Yes 5 0.00000001 0.00048608	14	Yes	4	0.0000001	0.00078857
17 Yes 5 0.00000001 0.00042930 18 Yes 5 0.00000001 0.00087187 19 Yes 5 0.00000001 0.00041141 20 Yes 4 0.00000001 0.00041414 20 Yes 4 0.00000001 0.00040895 21 Yes 4 0.00000001 0.00048022 23 Yes 5 0.00000001 0.00048462 24 Yes 5 0.00000001 0.00042282 26 Yes 4 0.00000001 0.00042282 26 Yes 4 0.00000001 0.00042269 27 Yes 5 0.00000001 0.00048242 28 Yes 5 0.00000001 0.00048608 <t< td=""><td>15</td><td>Yes</td><td></td><td>0.0000001</td><td>0.00045675</td></t<>	15	Yes		0.0000001	0.00045675
18 Yes 5 0.00000001 0.00087187 19 Yes 5 0.00000001 0.00041141 20 Yes 4 0.00000001 0.00071805 21 Yes 4 0.00000001 0.00040895 22 Yes 5 0.00000001 0.00048022 23 Yes 5 0.00000001 0.00041611 24 Yes 5 0.00000001 0.00042282 26 Yes 5 0.00000001 0.00042282 26 Yes 4 0.00000001 0.00042282 26 Yes 5 0.00000001 0.00042282 26 Yes 4 0.00000001 0.0004249 28 Yes 5 0.00000001 0.0004249 28 Yes 5 0.00000001 0.00048444 29 Yes 5 0.00000001 0.00048608 30 Yes 5 0.00000001 0.00047677	16	Yes	5	0.0000001	0.00090925
19 Yes 5 0.00000001 0.00041141 20 Yes 4 0.00000001 0.00071805 21 Yes 4 0.00000001 0.00040895 22 Yes 5 0.00000001 0.00048022 23 Yes 5 0.00000001 0.00041611 24 Yes 5 0.00000001 0.0004282 26 Yes 4 0.00000001 0.00042282 26 Yes 4 0.00000001 0.00042282 27 Yes 5 0.00000001 0.00042282 26 Yes 4 0.00000001 0.00042249 28 Yes 5 0.00000001 0.0004249 28 Yes 5 0.00000001 0.00048608 30 Yes 5 0.00000001 0.00048608 30 Yes 5 0.00000001 0.00047677 32 Yes 5 0.00000001 0.00047429	17	Yes	5	0.0000001	0.00042930
20 Yes 4 0.00000001 0.00071805 21 Yes 4 0.00000001 0.00040895 22 Yes 5 0.00000001 0.00088022 23 Yes 5 0.00000001 0.00041611 24 Yes 5 0.00000001 0.00089468 25 Yes 5 0.00000001 0.00042282 26 Yes 4 0.00000001 0.00042282 26 Yes 4 0.00000001 0.0004249 28 Yes 5 0.00000001 0.0004249 28 Yes 5 0.00000001 0.00048444 29 Yes 5 0.00000001 0.00048608 30 Yes 5 0.00000001 0.00048608 30 Yes 5 0.00000001 0.00047677 31 Yes 5 0.00000001 0.00047429 33 Yes 5 0.00000001 0.00047429	18	Yes		0.0000001	0.00087187
21 Yes 4 0.00000001 0.00040895 22 Yes 5 0.00000001 0.00088022 23 Yes 5 0.00000001 0.00041611 24 Yes 5 0.00000001 0.00089468 25 Yes 5 0.00000001 0.00042282 26 Yes 4 0.00000001 0.00002269 27 Yes 5 0.00000001 0.00042249 28 Yes 5 0.00000001 0.0004249 28 Yes 5 0.00000001 0.00042444 29 Yes 5 0.00000001 0.00048608 30 Yes 5 0.00000001 0.00048608 30 Yes 5 0.00000001 0.00047677 32 Yes 5 0.00000001 0.00047677 32 Yes 5 0.00000001 0.00047429 33 Yes 5 0.00000001 0.0004823	19	Yes	5	0.0000001	0.00041141
22 Yes 5 0.00000001 0.00088022 23 Yes 5 0.00000001 0.00041611 24 Yes 5 0.00000001 0.00089468 25 Yes 5 0.00000001 0.00042282 26 Yes 4 0.00000001 0.00042289 27 Yes 5 0.00000001 0.00040249 28 Yes 5 0.00000001 0.0004244 29 Yes 5 0.00000001 0.00048608 30 Yes 5 0.00000001 0.00048608 30 Yes 5 0.00000001 0.00047677 31 Yes 5 0.00000001 0.00047677 32 Yes 5 0.00000001 0.0004823 33 Yes 5 0.00000001 0.0004823 35 Yes 5 0.00000001 0.00048242 36 Yes 5 0.00000001 0.00048242 3	20	Yes	4	0.0000001	0.00071805
23 Yes 5 0.00000001 0.00041611 24 Yes 5 0.00000001 0.00089468 25 Yes 5 0.00000001 0.00042282 26 Yes 4 0.00000001 0.00042289 27 Yes 5 0.00000001 0.0004249 28 Yes 5 0.00000001 0.00048608 30 Yes 5 0.00000001 0.00048608 30 Yes 5 0.00000001 0.0004777 31 Yes 5 0.00000001 0.0004777 32 Yes 5 0.00000001 0.00047429 33 Yes 5 0.00000001 0.0004829 33 Yes 5 0.00000001 0.0004877 34 Yes 5 0.00000001 0.0004823 35 Yes 5 0.00000001 0.0004823 36 Yes 5 0.00000001 0.0004824 37 <td>21</td> <td>Yes</td> <td></td> <td>0.0000001</td> <td>0.00040895</td>	21	Yes		0.0000001	0.00040895
24 Yes 5 0.00000001 0.00089468 25 Yes 5 0.00000001 0.00042282 26 Yes 4 0.00000001 0.00002269 27 Yes 5 0.00000001 0.0004249 28 Yes 5 0.00000001 0.00048444 29 Yes 5 0.00000001 0.00048608 30 Yes 5 0.00000001 0.00039475 31 Yes 5 0.00000001 0.00039475 31 Yes 5 0.00000001 0.00047677 32 Yes 5 0.00000001 0.00047677 32 Yes 5 0.00000001 0.00048229 33 Yes 5 0.00000001 0.00048823 35 Yes 5 0.00000001 0.0004823 35 Yes 5 0.00000001 0.00048242 36 Yes 5 0.00000001 0.00048434	22	Yes	5	0.0000001	0.00088022
25 Yes 5 0.00000001 0.00042282 26 Yes 4 0.00000001 0.00002269 27 Yes 5 0.00000001 0.0004249 28 Yes 5 0.00000001 0.00048444 29 Yes 5 0.00000001 0.00048608 30 Yes 5 0.00000001 0.00039475 31 Yes 5 0.00000001 0.00047677 32 Yes 5 0.00000001 0.00047677 32 Yes 5 0.00000001 0.00047429 33 Yes 5 0.00000001 0.00047429 33 Yes 5 0.00000001 0.0004823 35 Yes 5 0.00000001 0.0004823 35 Yes 5 0.00000001 0.00048242 36 Yes 5 0.00000001 0.00048242 36 Yes 5 0.00000001 0.00048434 3		Yes	5		0.00041611
26 Yes 4 0.00000001 0.00002269 27 Yes 5 0.00000001 0.00040249 28 Yes 5 0.00000001 0.00048444 29 Yes 5 0.00000001 0.00048608 30 Yes 5 0.00000001 0.00039475 31 Yes 5 0.00000001 0.00047677 32 Yes 5 0.00000001 0.00047677 32 Yes 5 0.00000001 0.00047429 33 Yes 5 0.00000001 0.00038897 34 Yes 5 0.00000001 0.0004823 35 Yes 5 0.00000001 0.0004823 36 Yes 5 0.00000001 0.00048242 36 Yes 5 0.00000001 0.00048242 36 Yes 5 0.00000001 0.00048242 36 Yes 5 0.00000001 0.00048244		Yes		0.0000001	0.00089468
27 Yes 5 0.00000001 0.00040249 28 Yes 5 0.00000001 0.00048444 29 Yes 5 0.00000001 0.00048608 30 Yes 5 0.00000001 0.00039475 31 Yes 5 0.00000001 0.00047677 32 Yes 5 0.00000001 0.00047429 33 Yes 5 0.00000001 0.00047429 33 Yes 5 0.00000001 0.00039897 34 Yes 5 0.00000001 0.0004823 35 Yes 5 0.00000001 0.00048242 36 Yes 5 0.00000001 0.00048243 38 Yes 5 0.00000001 0.00048434 <td< td=""><td></td><td>Yes</td><td></td><td></td><td></td></td<>		Yes			
28 Yes 5 0.00000001 0.00048444 29 Yes 5 0.00000001 0.00048608 30 Yes 5 0.00000001 0.00039475 31 Yes 5 0.00000001 0.00047677 32 Yes 5 0.00000001 0.00047429 33 Yes 5 0.00000001 0.00039897 34 Yes 5 0.00000001 0.0004823 35 Yes 5 0.00000001 0.00048242 36 Yes 4 0.00000001 0.00048434 38 Yes 4 0.00000001 0.00049171 <td< td=""><td></td><td>Yes</td><td></td><td></td><td></td></td<>		Yes			
29 Yes 5 0.00000001 0.00048608 30 Yes 5 0.00000001 0.00039475 31 Yes 5 0.00000001 0.00047677 32 Yes 5 0.00000001 0.00047429 33 Yes 5 0.00000001 0.0003897 34 Yes 5 0.00000001 0.0004823 35 Yes 5 0.00000001 0.00048242 36 Yes 5 0.00000001 0.00039876 37 Yes 5 0.00000001 0.00048434 38 Yes 5 0.00000001 0.00048144 38 Yes 5 0.00000001 0.0004814 38 Yes 4 0.00000001 0.00048171 39 Yes 4 0.00000001 0.0004746 40 Yes 4 0.00000001 0.0001824 41 Yes 4 0.00000001 0.00005375 43<	27	Yes	5	0.0000001	0.00040249
30 Yes 5 0.00000001 0.00039475 31 Yes 5 0.00000001 0.00047677 32 Yes 5 0.00000001 0.00047429 33 Yes 5 0.00000001 0.00039897 34 Yes 5 0.00000001 0.0004823 35 Yes 5 0.00000001 0.00048242 36 Yes 5 0.00000001 0.00039876 37 Yes 5 0.00000001 0.00048434 38 Yes 5 0.00000001 0.00048171 39 Yes 4 0.00000001 0.0004746 40 Yes 4 0.00000001 0.0004746 40 Yes 4 0.00000001 0.00018824 41 Yes 4 0.00000001 0.000520897 42 Yes 4 0.00000001 0.00018369 44 Yes 4 0.00000001 0.00018369					
31 Yes 5 0.00000001 0.00047677 32 Yes 5 0.00000001 0.00047429 33 Yes 5 0.00000001 0.00039897 34 Yes 5 0.00000001 0.00048823 35 Yes 5 0.00000001 0.00048242 36 Yes 5 0.00000001 0.00039876 37 Yes 5 0.00000001 0.00048434 38 Yes 5 0.00000001 0.00048434 38 Yes 5 0.00000001 0.00048171 39 Yes 4 0.00000001 0.0004746 40 Yes 4 0.00000001 0.0004746 40 Yes 4 0.00000001 0.00018824 41 Yes 4 0.00000001 0.00020897 42 Yes 4 0.00000001 0.00018369 44 Yes 4 0.00000001 0.00018369	29	Yes	5	0.0000001	0.00048608
32 Yes 5 0.00000001 0.00047429 33 Yes 5 0.00000001 0.00039897 34 Yes 5 0.00000001 0.0004823 35 Yes 5 0.00000001 0.00048242 36 Yes 5 0.00000001 0.00039876 37 Yes 5 0.00000001 0.00048434 38 Yes 5 0.00000001 0.00049171 39 Yes 4 0.00000001 0.00049171 39 Yes 4 0.00000001 0.00049171 39 Yes 4 0.00000001 0.00018824 41 Yes 4 0.00000001 0.00020897 42 Yes 4 0.00000001 0.00018369 44 Yes 4 0.00000001 0.00018369 44 Yes 4 0.00000001 0.00018369 44 Yes 4 0.00000001 0.00018369 <td< td=""><td></td><td>Yes</td><td></td><td></td><td></td></td<>		Yes			
33 Yes 5 0.00000001 0.00039897 34 Yes 5 0.00000001 0.0004823 35 Yes 5 0.00000001 0.00048242 36 Yes 5 0.00000001 0.00039876 37 Yes 5 0.00000001 0.00048434 38 Yes 5 0.00000001 0.00049171 39 Yes 4 0.00000001 0.00049171 39 Yes 4 0.00000001 0.00018824 40 Yes 4 0.00000001 0.00020897 42 Yes 4 0.00000001 0.00018369 44 Yes 4 0.00000001 0.00018261 <td< td=""><td></td><td>Yes</td><td></td><td></td><td></td></td<>		Yes			
34 Yes 5 0.00000001 0.00048823 35 Yes 5 0.00000001 0.00048242 36 Yes 5 0.00000001 0.00039876 37 Yes 5 0.00000001 0.00048434 38 Yes 5 0.00000001 0.00049171 39 Yes 4 0.00000001 0.0004746 40 Yes 4 0.00000001 0.00018824 41 Yes 4 0.00000001 0.00020897 42 Yes 4 0.00000001 0.0005375 43 Yes 4 0.00000001 0.00018369 44 Yes 4 0.00000001 0.00018123 45 Yes 4 0.00000001 0.00020521 47 Yes 4 0.00000001 0.00018281 48 Yes 4 0.00000001 0.00018201 49 Yes 4 0.00000001 0.00018281		Yes	5		
35 Yes 5 0.00000001 0.00048242 36 Yes 5 0.00000001 0.00039876 37 Yes 5 0.00000001 0.00048434 38 Yes 5 0.00000001 0.00049171 39 Yes 4 0.00000001 0.0004746 40 Yes 4 0.00000001 0.00018824 41 Yes 4 0.00000001 0.00020897 42 Yes 4 0.00000001 0.0005375 43 Yes 4 0.00000001 0.00018369 44 Yes 4 0.00000001 0.0001823 45 Yes 4 0.00000001 0.00020521 47 Yes 4 0.00000001 0.00018281 48 Yes 4 0.00000001 0.00019476	33	Yes	5		0.00039897
36 Yes 5 0.00000001 0.00039876 37 Yes 5 0.00000001 0.00048434 38 Yes 5 0.00000001 0.00049171 39 Yes 4 0.00000001 0.00004746 40 Yes 4 0.00000001 0.00018824 41 Yes 4 0.00000001 0.00020897 42 Yes 4 0.00000001 0.00005375 43 Yes 4 0.00000001 0.00018369 44 Yes 4 0.00000001 0.0001823 45 Yes 4 0.00000001 0.0004952 46 Yes 4 0.00000001 0.00018281 47 Yes 4 0.00000001 0.00018281 48 Yes 4 0.00000001 0.00019476			5		
37 Yes 5 0.00000001 0.00048434 38 Yes 5 0.00000001 0.00049171 39 Yes 4 0.00000001 0.00004746 40 Yes 4 0.00000001 0.00018824 41 Yes 4 0.00000001 0.00020897 42 Yes 4 0.00000001 0.00005375 43 Yes 4 0.00000001 0.00018369 44 Yes 4 0.00000001 0.00018123 45 Yes 4 0.00000001 0.00004952 46 Yes 4 0.00000001 0.00018281 47 Yes 4 0.00000001 0.00005204 49 Yes 4 0.00000001 0.00019476	35	Yes		0.0000001	0.00048242
38 Yes 5 0.00000001 0.00049171 39 Yes 4 0.00000001 0.00004746 40 Yes 4 0.00000001 0.00018824 41 Yes 4 0.00000001 0.00020897 42 Yes 4 0.00000001 0.00005375 43 Yes 4 0.00000001 0.00018369 44 Yes 4 0.00000001 0.00018123 45 Yes 4 0.00000001 0.0004952 46 Yes 4 0.00000001 0.00020521 47 Yes 4 0.00000001 0.00018281 48 Yes 4 0.00000001 0.00019476			5		
39 Yes 4 0.00000001 0.00004746 40 Yes 4 0.00000001 0.00018824 41 Yes 4 0.00000001 0.00020897 42 Yes 4 0.00000001 0.00005375 43 Yes 4 0.00000001 0.00018369 44 Yes 4 0.00000001 0.00018123 45 Yes 4 0.00000001 0.00004952 46 Yes 4 0.00000001 0.00020521 47 Yes 4 0.00000001 0.00018281 48 Yes 4 0.00000001 0.00019476					
40 Yes 4 0.00000001 0.00018824 41 Yes 4 0.00000001 0.00020897 42 Yes 4 0.00000001 0.00005375 43 Yes 4 0.00000001 0.00018369 44 Yes 4 0.00000001 0.00018123 45 Yes 4 0.00000001 0.00004952 46 Yes 4 0.00000001 0.00020521 47 Yes 4 0.00000001 0.00018281 48 Yes 4 0.00000001 0.00005204 49 Yes 4 0.00000001 0.00019476					
41 Yes 4 0.00000001 0.00020897 42 Yes 4 0.00000001 0.00005375 43 Yes 4 0.00000001 0.00018369 44 Yes 4 0.00000001 0.00018123 45 Yes 4 0.00000001 0.00004952 46 Yes 4 0.00000001 0.00020521 47 Yes 4 0.00000001 0.00018281 48 Yes 4 0.00000001 0.00005204 49 Yes 4 0.00000001 0.00019476					
42 Yes 4 0.00000001 0.00005375 43 Yes 4 0.00000001 0.00018369 44 Yes 4 0.00000001 0.00018123 45 Yes 4 0.00000001 0.00004952 46 Yes 4 0.00000001 0.00020521 47 Yes 4 0.00000001 0.00018281 48 Yes 4 0.00000001 0.00005204 49 Yes 4 0.00000001 0.00019476	-				
43 Yes 4 0.00000001 0.00018369 44 Yes 4 0.00000001 0.00018123 45 Yes 4 0.00000001 0.00004952 46 Yes 4 0.00000001 0.00020521 47 Yes 4 0.00000001 0.00018281 48 Yes 4 0.00000001 0.00005204 49 Yes 4 0.00000001 0.00019476					
44 Yes 4 0.00000001 0.00018123 45 Yes 4 0.00000001 0.00004952 46 Yes 4 0.00000001 0.00020521 47 Yes 4 0.00000001 0.00018281 48 Yes 4 0.00000001 0.00005204 49 Yes 4 0.00000001 0.00019476					
45 Yes 4 0.00000001 0.00004952 46 Yes 4 0.00000001 0.00020521 47 Yes 4 0.00000001 0.00018281 48 Yes 4 0.00000001 0.00005204 49 Yes 4 0.00000001 0.00019476	-	Yes	-		
46 Yes 4 0.00000001 0.00020521 47 Yes 4 0.00000001 0.00018281 48 Yes 4 0.00000001 0.00005204 49 Yes 4 0.00000001 0.00019476					
47 Yes 4 0.00000001 0.00018281 48 Yes 4 0.00000001 0.00005204 49 Yes 4 0.00000001 0.00019476	-				
48 Yes 4 0.00000001 0.00005204 49 Yes 4 0.00000001 0.00019476	-				
49 Yes 4 0.00000001 0.00019476					
	-				
50 Yes 4 0.00000001 0.00020189					
	50	Yes	4	0.0000001	0.00020189

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	0
L1	150 - 108	17.019	40	0.9917	0.0022
L2	111.75 - 69.75	9.523	40	0.8294	0.0008
L3	74.5 - 32.5	4.111	40	0.5326	0.0003
L4	38 - 0	1.053	40	0.2516	0.0001

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
153.00	A-ANT-23G-1-C	40	17.019	0.9917	0.0022	56940
152.00	A-ANT-23G-2-C	40	17.019	0.9917	0.0022	56940
150.00	LLPX310R w/ Mount Pipe	40	17.019	0.9917	0.0022	56940
142.00	MX08FRO665-21 w/ Mount Pipe	40	15.372	0.9653	0.0019	35587
119.00	ERICSSON AIR 21 B2A B4P w/	40	10.835	0.8708	0.0010	9183
	Mount Pipe					
99.00	KS24019-L112A	40	7.417	0.7385	0.0006	7409

Maximum	Tower	Deflections	- Design	Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	150 - 108	78.996	4	4.6041	0.0103
L2	111.75 - 69.75	44.223	4	3.8552	0.0039
L3	74.5 - 32.5	19.090	4	2.4749	0.0016
L4	38 - 0	4.888	4	1.1682	0.0006

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
153.00	A-ANT-23G-1-C	4	78.996	4.6041	0.0103	12459
152.00	A-ANT-23G-2-C	4	78.996	4.6041	0.0103	12459
150.00	LLPX310R w/ Mount Pipe	4	78.996	4.6041	0.0103	12459
142.00	MX08FRO665-21 w/ Mount Pipe	4	71.360	4.4838	0.0088	7787
119.00	ERICSSON AIR 21 B2A B4P w/	4	50.309	4.0476	0.0048	2006
	Mount Pipe					
99.00	KS24019-L112A	4	34.447	3.4329	0.0028	1610

Compression Checks

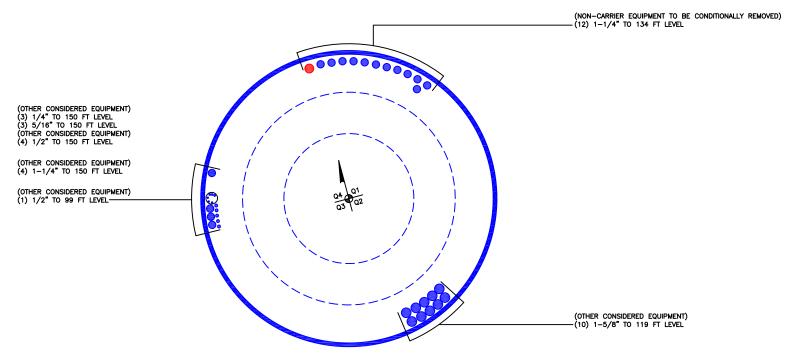
Po	e l	Des	ian	Data
			. 4::	Data

Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	K	K	ϕP_n
L1	150 - 108 (1)	TP30.401x22x0.25	42.00	0.00	0.0	23.667 7	-14.38	1278.06	0.011
L2	108 - 69.75 (2)	TP37.553x29.1509x0.312 5	42.00	0.00	0.0	36.517 1	-21.07	1971.92	0.011
L3	69.75 - 32.5 (3)	TP44.379x35.9778x0.375	42.00	0.00	0.0	51.806 4	-30.32	3030.67	0.010
L4	32.5 - 0 (4)	TP50.13x42.5288x0.4375	38.00	0.00	0.0	70.004 3	-43.14	4095.25	0.011

Pole Bending Design Data

Section No.	Elevation	Size	M _{ux}	φ <i>M</i> _{nx}	Ratio M _{ux}	M _{uy}	ф <i>M</i> _{ny}	Ratio M _{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	150 - 108 (1)	TP30.401x22x0.25	337.43	857.03	0.394	0.00	857.03	0.000
L2	108 - 69.75 (2)	TP37.553x29.1509x0.312 5	921.23	1641.28	0.561	0.00	1641.28	0.000
L3	69.75 - 32.5 (3)	TP44.379x35.9778x0.375	1616.97	2949.93	0.548	0.00	2949.93	0.000
L4	32.5 - 0 (4)	TP50.13x42.5288x0.4375	2459.55	4631.98	0.531	0.00	4631.98	0.000

	Pole Shear Design Data							
Section No.	Elevation	Size	Actual V _u	φV _n	Ratio V _u	Actual T _u	φ <i>T</i> _n	Ratio T _u
	ft		K	K	$\overline{\phi V_n}$	kip-ft	kip-ft	$\overline{\phi T_n}$
L1	150 - 108 (1)	TP30.401x22x0.25	13.92	383.42	0.036	0.50	991.59	0.001
L2	108 - 69.75 (2)	TP37.553x29.1509x0.312 5	17.40	591.58	0.029	0.54	1888.43	0.000
L3	69.75 - 32.5 (3)	TP44.379x35.9778x0.375	20.64	909.20	0.023	0.59	3431.28	0.000
L4	32.5 - 0 (4)	TP50.13x42.5288x0.4375	23.67	1228.58	0.019	0.64	5370.23	0.000


Pole Interaction Design Data									
Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	φ <i>M</i> _{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	150 - 108 (1)	0.011	0.394	0.000	0.036	0.001	0.406	1.050	4.8.2
L2	108 - 69.75 (2)	0.011	0.561	0.000	0.029	0.000	0.573	1.050	4.8.2
L3	69.75 - 32.5 (3)	0.010	0.548	0.000	0.023	0.000	0.559	1.050	4.8.2
L4	32.5 - 0 (4)	0.011	0.531	0.000	0.019	0.000	0.542	1.050	4.8.2

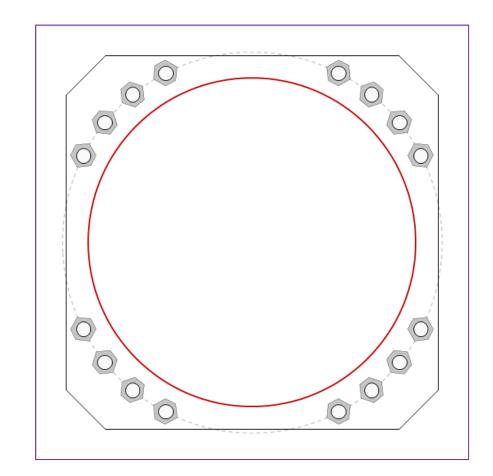
Section Capacity Table								
Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L1	150 - 108	Pole	TP30.401x22x0.25	1	-14.38	1341.96	38.7	Pass
L2	108 - 69.75	Pole	TP37.553x29.1509x0.3125	2	-21.07	2070.52	54.6	Pass
L3	69.75 - 32.5	Pole	TP44.379x35.9778x0.375	3	-30.32	3182.20	53.2	Pass
L4	32.5 - 0	Pole	TP50.13x42.5288x0.4375	4	-43.14	4300.01	51.6	Pass
							Summary	
						Pole (L2)	54.6	Pass
						RATING =	54.6	Pass

APPENDIX B BASE LEVEL DRAWING

(PROPOSED EQUIPMENT CONFIGURATION) (1) 1-1/2" TO 142 FT LEVEL

APPENDIX C ADDITIONAL CALCULATIONS

Monopole Base Plate Connection



Site Info		
	BU#	876319
9	Site Name	AUGATUCK 2 UNIROYA
	Order#	553365 Rev. 2

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	No
I _{ar} (in)	1.5

Applied Loads	
Moment (kip-ft)	2459.55
Axial Force (kips)	43.14
Shear Force (kips)	23.67

^{*}TIA-222-H Section 15.5 Applied

Stress Rating:

Connection Properties

Anchor Rod Data

(16) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 58" BC

Anchor Spacing: 6 in

Base Plate Data

57" W x 3" Plate (A572-50; Fy=50 ksi, Fu=65 ksi); Clip: 6 in

Stiffener Data

N/A

Pole Data

50.13" x 0.4375" 12-sided pole (A607-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results

Anchor Rod Summary	(u	nits of kips, kip-in)
Pu_t = 124.44	φPn_t = 243.75	Stress Rating
Vu = 1.48	φVn = 149.1	48.6%
Mu = n/a	φMn = n/a	Pass
Base Plate Summary		
Max Stress (ksi):	23.42	(Flexural)
Allowable Stress (ksi):	45	

49.6%

Pass

CCIplate - Version 4.1.1	Analysis Date: 6/12/2021
--------------------------	--------------------------

Drilled Pier Foundation

BU # : 876319 Site Name: NAUGATUCK 2 UNIROYAL Order Number: 553365 Rev. 2 TIA-222 Revison: H Tower Type: Monopole

Applied Loads								
Comp. Uplift								
Moment (kip-ft)	2459.55							
Axial Force (kips)	43.15							
Shear Force (kips)	23.65							

Material Properties								
Concrete Strength, f'c:	3	ksi						
Rebar Strength, Fy:	60	ksi						
Tie Yield Strength, Fyt:	40	ksi						

	Pier Design Data									
	Depth	26	ft							
	Ext. Above Grade	0.5	ft							
	Pier	Section 1								
	From 0.5' above grade to 26' below grade									
	Pier Diameter	7	ft							
Г	Rebar Quantity	32								
	Rebar Size	11								
	Clear Cover to Ties	4	in							
	Tie Size	5								
	Tie Spacing	18	in							

23

Groundwater Depth

Rebar & Pier Options	
Embedded Pole Inputs	Ŀ
Embedded Fole inputs	L
Belled Pier Inputs	

Analysis Results							
Soil Lateral Check	Compression	Uplift					
$D_{v=0}$ (ft from TOC)	6.65	-					
Soil Safety Factor	5.04	-					
Max Moment (kip-ft)	2627.64	-					
Rating*	25.1%	ı					
Soil Vertical Check	Compression	Uplift					
Skin Friction (kips)	643.53	ı					
End Bearing (kips)	209.21	ı					
Weight of Concrete (kips)	174.90	-					
Total Capacity (kips)	852.73	1					
Axial (kips)	218.05	-					
Rating*	24.4%	-					
Reinforced Concrete Flexure	Compression	Uplift					
Critical Depth (ft from TOC)	6.55	1					
Critical Moment (kip-ft)	2627.58	-					
Critical Moment Capacity	7499.89	-					
Rating*	33.4%	-					
Reinforced Concrete Shear	Compression	Uplift					
Critical Depth (ft from TOC)	19.33	-					
Critical Shear (kip)	291.68	-					
Critical Shear Capacity	600.36	-					
Rating*	46.3%	-					

Structural Foundation Rating*	46.3%
Soil Interaction Rating*	25.1%

Soil Profile

of Layers

Analysi	s Results			Additional Longitudinal Reb	ar
il Lateral Check	Compression	Uplift	<u>.</u>	Input Effective Depths (else Actual):	
$D_{v=0}$ (ft from TOC)	6.65	1		Shear Design Options	
Soil Safety Factor	5.04	ı		Check Shear along Depth of Pier:	
Max Moment (kip-ft)	2627.64	1		Utilize Shear-Friction Methodology:	
Rating*	25.1%	-		Override Critical Depth:	
il Vertical Check	Compression	Uplift	· -	Go to Soil Cal	cul
Skin Friction (kips)	643.53	1			
End Bearing (kips)	209.21	ı			
Weight of Concrete (kips)	174.90	ı			
Total Capacity (kips)	852.73	ı			
Axial (kips)	218.05	-			
Rating*	24.4%	-			
inforced Concrete Flexure	Compression	Uplift	_		
Critical Depth (ft from TOC)	6.55	-			
Critical Moment (kip-ft)	2627.58	-			
Critical Moment Capacity	7499.89	-			
Rating*	33.4%	-			
	•				

Critical Depth (it from 10C)	19.33	-
Critical Shear (kip)	291.68	1
Critical Shear Capacity	600.36	-
Rating*	46.3%	1
Structural Foundation Rating*	46.	.3%
Soil Interaction Rating*	25.	.1%

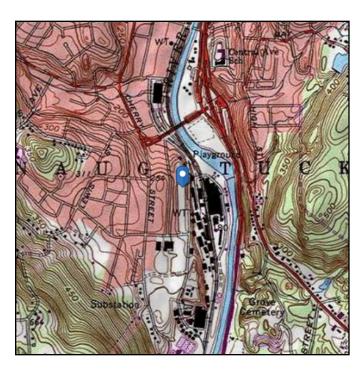
Check Limitation

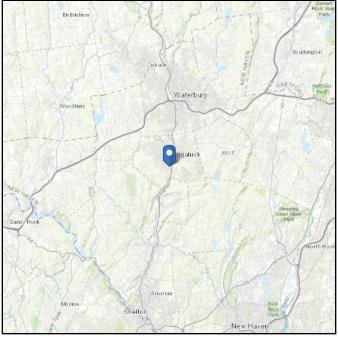
Apply TIA-222-H Section 15.5:

Layer	Top (ft)	Bottom (ft)	Thickness (ft)	γ _{soil} (pcf)	Y _{concrete} (pcf)	Cohesion (ksf)	Angle of Friction (degrees)	Calculated Ultimate Skin Friction Comp (ksf)	Calculated Ultimate Skin Friction Uplift (ksf)	Ultimate Skin Friction Comp Override (ksf)	i Ulitimate Skin I	Ult. Net Bearing Capacity (ksf)	SPT Blow Count	Soil Type
1	0	3.5	3.5	125	150	0	0	0.000	0.000					Cohesionless
2	3.5	8	4.5	125	150	0	34	0.845	0.845				48	Cohesionless
3	8	15	7	125	150	0	34	1.498	1.498				22	Cohesionless
4	15	23	8	125	150	0	34	2.165	2.165				16	Cohesionless
5	23	26	3	62	87.6	0	34	2.469	2.469			4	57	Cohesionless

Version 5.0.1

Address:

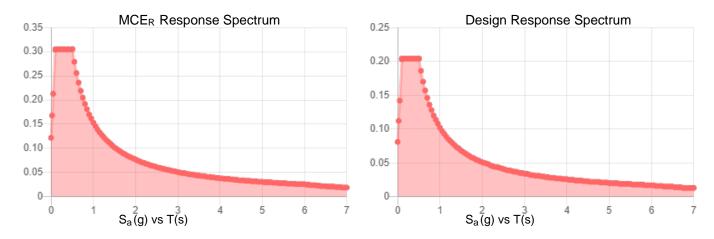

No Address at This Location


ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 232.9 ft (NAVD 88)

Risk Category: || Latitude: 41.481261

Soil Class: D - Stiff Soil Longitude: -73.053242



Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _S :	0.191	S _{DS} :	0.204	
S_1 :	0.064	S_{D1} :	0.102	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA:	0.1	
S_{MS} :	0.305	PGA _M :	0.159	
S _{M1} :	0.153	F _{PGA} :	1.6	
		L ·	1	

Seismic Design Category B

Data Accessed: Wed Jun 02 2021

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating

Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with

ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Wed Jun 02 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Date: August 2, 2021

Darcy Tarr Crown Castle 3530 Tornigdon Way, Suite 300 Charlotte, NC 28277 (704) 405-6589

Trylon 1825 W. Walnut Hill Lane, Suite 302 Irving, TX 75038 214-930-1730

Subject: Mount Replacement Analysis Report

Carrier Designation: DISH Network Equipment Change Out

Carrier Site Number:BOHVN00024ACarrier Site Name:CT-CCI-T-876319

Crown Castle Designation: Crown Castle BU Number: 876319

Crown Castle Site Name: NAUGATUCK 2 UNIROYAL

Crown Castle JDE Job Number: 645176 Crown Castle Order Number: 553365 Rev. 2

Engineering Firm Designation: Trylon Report Designation: 189335

Site Data: 280 Elm Street, Naugatuck, New Haven County, CT, 06770

Latitude 41°28'52.54" Longitude -73°3'11.67"

Structure Information: Tower Height & Type: 150.0 ft Monopole

Mount Elevation: 142.0 ft
Mount Type: 8.0 ft Platform

Dear Darcy Tarr,

Trylon is pleased to submit this "Mount Replacement Analysis Report" to determine the structural integrity of DISH Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform Sufficient
*Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Jordan Everson, E.I.T.

Respectfully Submitted by: Cliff Abernathy, P.E.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

9) APPENDIX E

Supplemental Drawings

1) INTRODUCTION

This is a proposed 3 sector 8.0 ft Platform, designed by Commscope.

2) ANALYSIS CRITERIA

Building Code: 2015 IBC / 2018 CTSBC

TIA-222 Revision: TIA-222-H

Risk Category:

Ultimate Wind Speed: 125 mph

Exposure Category: В Topographic Factor at Base: 1.0 Topographic Factor at Mount: 1.0 Ice Thickness: 1.5 in Wind Speed with Ice: 50 mph Seismic S_s: 0.190 Seismic S₁: 0.062 Live Loading Wind Speed: 30 mph Man Live Load at Mid/End-Points: 250 lb Man Live Load at Mount Pipes: 500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
		3	JMA WIRELESS	MX08FRO665-21	O O # Dlo#form
142.0	142.0	3	FUJITSU	TA08025-B604	8.0 ft Platform [Commscope MC-
142.0	142.0	3	FUJITSU	TA08025-B605	PK8-DSH]
		1	RAYCAP	RDIDC-9181-PF-48	FR6-D3HJ

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source	
Crown Application	DISH Network Application	553365 Rev. 2	CCI Sites	
Mount Manufacturer Drawings	Commscope	MC-PK8-DSH	TSA	

3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed, using Microsoft Excel, by Trylon was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate

HSS (Rectangular)

Pipe

ASTM A36 (GR 36)

ASTM A500 (GR B-46)

ASTM A53 (GR 35)

Connection Bolts

ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Trylon should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Platform, All Sectors)

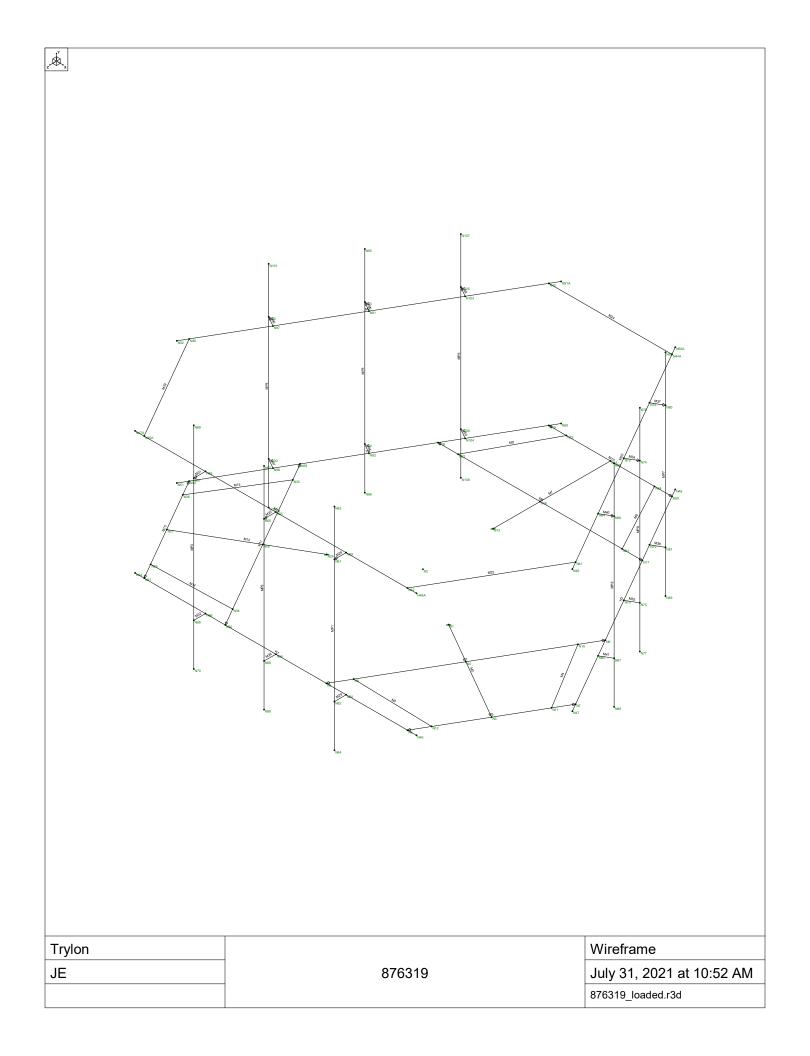
Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
	Mount Pipe(s)	MP3	142.0	28.0	Pass
	Horizontal(s)	H1		11.3	Pass
1, 2	Standoff(s)	M2		47.8	Pass
	Bracing(s)	M11		38.8	Pass
	Mount Connection(s)			19.5	Pass

Structure Rating (max from all components) =	47.8%
on dotal of Nating (max from an components) –	47.1070

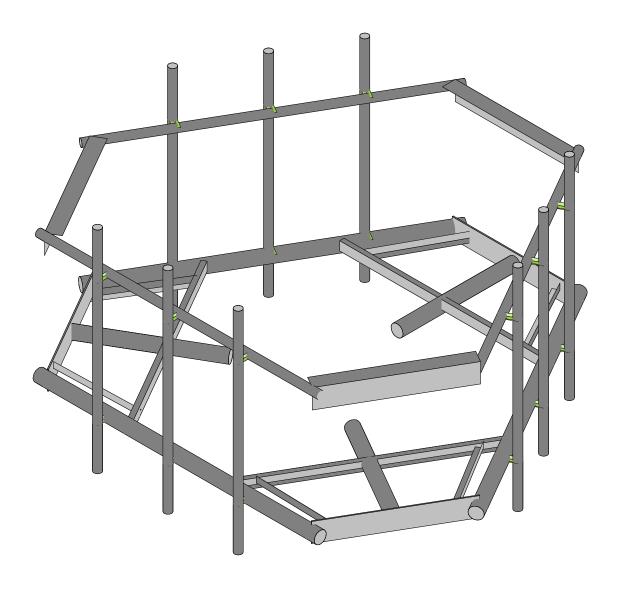
Notes:

4.1) Recommendations

The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed.


Commscope MC-PK8-DSH.

No structural modifications are required at this time, provided that the above-listed changes are implemented.


¹⁾ See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.

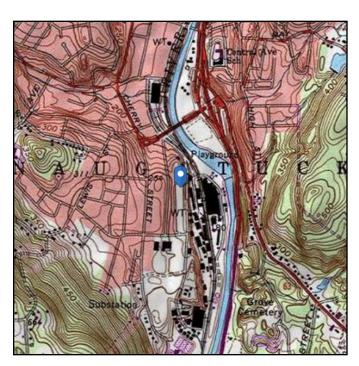
²⁾ Rating per TIA-222-H, Section 15.5

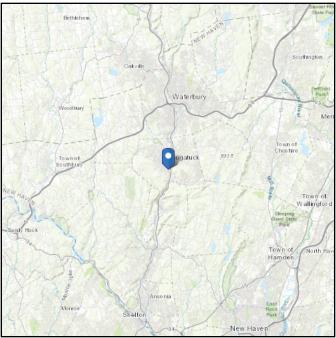
APPENDIX A WIRE FRAME AND RENDERED MODELS

Trylon		Render
JE	876319	July 31, 2021 at 10:52 AM
		876319_loaded.r3d

APPENDIX B SOFTWARE INPUT CALCULATIONS

Address:


No Address at This Location


ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 232.9 ft (NAVD 88)

Risk Category: || Latitude: 41.481261

Soil Class: D - Stiff Soil Longitude: -73.053242

Ice

Results:

Ice Thickness:0.75 in.Concurrent Temperature:15 FGust Speed:50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Mon Aug 02 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

TIA LOAD CALCULATOR 2.0

PROJECT DATA	
Job Code:	189335
Carrier Site ID:	876319
Carrier Site Name:	876319

CODES AND STANDARDS	
Building Code:	2015 IBC
Local Building Code:	2018 CTSBC
Design Standard:	TIA-222-H

STRUCTURE DETAILS		
Mount Type:	Platform	
Mount Elevation:	119.0	ft.
Number of Sectors:	3	
Structure Type:	Monopole	
Structure Height:	160.0	ft.

ANALYSIS CRITERIA		
Structure Risk Category:	II	
Exposure Category:	В	
Site Class:	D - Stiff Soil	
Ground Elevation:	232	ft.

TOPOGRAPHIC DATA		
Topographic Category:	1.00	
Topographic Feature:	N/A	
Crest Point Elevation:	0.00	ft.
Base Point Elevation:	0.00	ft.
Crest to Mid-Height (L/2):	0.00	ft.
Distance from Crest (x):	0.00	ft.
Base Topo Factor (K _{zt}):		
Mount Topo Factor (K _{zt}):	1.00	

WIND PARAMETERS		
Design Wind Speed:	125	mph
Wind Escalation Factor (K _s):	1.00	
Velocity Coefficient (K _z):	1.04	
Directionality Factor (K _d):	0.95	
Gust Effect Factor (Gh):	1.00	
Shielding Factor (K _a):	0.90	
Velocity Pressure (q _z):	39.14	psf

ICE PARAMETERS		
Design Ice Wind Speed:	50	mph
Design Ice Thickness (t _i):	1.50	in
Importance Factor (I _i):	1.00	
Ice Velocity Pressure (qzi):	39.14	psf
Mount Ice Thickness (tiz):	1.71	in

WIND STRUCTURE C	ALCULATIONS	
Flat Member Pressure:	70.45	psf
Round Member Pressure:	42.27	psf
Ice Wind Pressure:	7.40	psf

SEISMIC PARAMETERS		
Importance Factor (I _e):	1.00	
Short Period Accel .(S _s):	0.19	g
1 Second Accel (S ₁):	0.06	g
Short Period Des. (S _{DS}):	0.20	g
1 Second Des. (S _{D1}):	0.10	g
Short Period Coeff. (F _a):	1.60	
1 Second Coeff. (F _v):	2.40	
Response Coefficient (Cs):	0.10	
Amplification Factor (A _S):	1.20	

LOAD COMBINATIONS [LRFD]

#	Description
1	1.4DL
2	1.2DL + 1WL 0 AZI
3	1.2DL + 1WL 30 AZI
4	1.2DL + 1WL 45 AZI
5	1.2DL + 1WL 60 AZI
6	1.2DL + 1WL 90 AZI
7	1.2DL + 1WL 120 AZI
8	1.2DL + 1WL 135 AZI
9	1.2DL + 1WL 150 AZI
10	1.2DL + 1WL 180 AZI
11	1.2DL + 1WL 210 AZI
12	1.2DL + 1WL 225 AZI
13	1.2DL + 1WL 240 AZI
14	1.2DL + 1WL 270 AZI
15	1.2DL + 1WL 300 AZI
16	1.2DL + 1WL 315 AZI
17	1.2DL + 1WL 330 AZI
18	0.9DL + 1WL 0 AZI
19	0.9DL + 1WL 30 AZI
20	0.9DL + 1WL 45 AZI
21	0.9DL + 1WL 60 AZI
22	0.9DL + 1WL 90 AZI
23	0.9DL + 1WL 120 AZI
24	0.9DL + 1WL 135 AZI
25	0.9DL + 1WL 150 AZI
26	0.9DL + 1WL 180 AZI
27	0.9DL + 1WL 210 AZI
28	0.9DL + 1WL 225 AZI
29	0.9DL + 1WL 240 AZI
30	0.9DL + 1WL 270 AZI
31	0.9DL + 1WL 300 AZI
32	0.9DL + 1WL 315 AZI
33	0.9DL + 1WL 330 AZI
34	1.2DL + 1DLi + 1WLi 0 AZI
35	1.2DL + 1DLi + 1WLi 30 AZI
36	1.2DL + 1DLi + 1WLi 45 AZI
37	1.2DL + 1DLi + 1WLi 60 AZI
38	1.2DL + 1DLi + 1WLi 90 AZI
39	1.2DL + 1DLi + 1WLi 120 AZI
40	1.2DL + 1DLi + 1WLi 135 AZI
41	1.2DL + 1DLi + 1WLi 150 AZI

#	Description
42	1.2DL + 1DLi + 1WLi 180 AZI
43	1.2DL + 1DLi + 1WLi 210 AZI
44	1.2DL + 1DLi + 1WLi 225 AZI
45	1.2DL + 1DLi + 1WLi 240 AZI
46	1.2DL + 1DLi + 1WLi 270 AZI
47	1.2DL + 1DLi + 1WLi 300 AZI
48	1.2DL + 1DLi + 1WLi 315 AZI
49	1.2DL + 1DLi + 1WLi 330 AZI
50	(1.2+0.2Sds) + 1.0E 0 AZI
51	(1.2+0.2Sds) + 1.0E 30 AZI
52	(1.2+0.2Sds) + 1.0E 45 AZI
53	(1.2+0.2Sds) + 1.0E 60 AZI
54	(1.2+0.2Sds) + 1.0E 90 AZI
55	(1.2+0.2Sds) + 1.0E 120 AZI
56	(1.2+0.2Sds) + 1.0E 135 AZI
57	(1.2+0.2Sds) + 1.0E 150 AZI
58	(1.2+0.2Sds) + 1.0E 180 AZI
59	(1.2+0.2Sds) + 1.0E 210 AZI
60	(1.2+0.2Sds) + 1.0E 225 AZI
61	(1.2+0.2Sds) + 1.0E 240 AZI
62	(1.2+0.2Sds) + 1.0E 270 AZI
63	(1.2+0.2Sds) + 1.0E 300 AZI
64	(1.2+0.2Sds) + 1.0E 315 AZI
65	(1.2+0.2Sds) + 1.0E 330 AZI
66	(0.9-0.2Sds) + 1.0E 0 AZI
67	(0.9-0.2Sds) + 1.0E 30 AZI
68	(0.9-0.2Sds) + 1.0E 45 AZI
69	(0.9-0.2Sds) + 1.0E 60 AZI
70	(0.9-0.2Sds) + 1.0E 90 AZI
71	(0.9-0.2Sds) + 1.0E 120 AZI
72	(0.9-0.2Sds) + 1.0E 135 AZI
73	(0.9-0.2Sds) + 1.0E 150 AZI
74	(0.9-0.2Sds) + 1.0E 180 AZI
75	(0.9-0.2Sds) + 1.0E 210 AZI
76	(0.9-0.2Sds) + 1.0E 225 AZI
77	(0.9-0.2Sds) + 1.0E 240 AZI
78	(0.9-0.2Sds) + 1.0E 270 AZI
79	(0.9-0.2Sds) + 1.0E 300 AZI
80	
81	
	`
	(0.9-0.2Sds) + 1.0E 315 AZI (0.9-0.2Sds) + 1.0E 330 AZI 1.2D + 1.5 Lv1

#	Description
89	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP1
90	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP1
91	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP1
92	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP1
93	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP1
94	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP1
95	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP1
96	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP1
97	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP1
98	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP1
99	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP1
100	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP1
101	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP1
102	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1
103	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1
104	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP1
105	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2
106	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2
107	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2
108	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2
109	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2
110	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2
111	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2
112	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2
113	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP2
114	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2
115	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2
116	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2
117	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2
118	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2
119	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2
120	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2

#	Description
121	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3
122	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3
123	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3
124	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3
125	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3
126	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3
127	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3
128	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3
129	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3
130	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3
131	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3
132	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3
133	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3
134	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3
135	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3
136	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP3
137	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP4
138	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP4
139	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP4
140	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP4
141	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP4
142	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP4
143	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP4
144	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP4
145	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP4
146	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP4
147	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP4
148	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP4
149	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP4
150	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP4
151	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP4
152	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP4

^{*}This page shows an example of maintenance loads for (4) pipes, the number of mount pipe LCs may vary per site

EQUIPMENT LOADING

Appurtenance Name/Location	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
MX08FRO665-21	3	119	No Ice	8.01	3.21	82.50
MP2/MP5/MP8, 0/120/240			w/ Ice	9.63	4.63	279.49
TA08025-B604	3	119	No Ice	1.96	0.98	63.90
MP2/MP5/MP8, 0/120/240			w/ Ice	2.38	1.31	68.58
TA08025-B605	3	119	No Ice	1.96	1.13	75.00
MP2/MP5/MP8, 0/120/240			w/ Ice	2.38	1.47	73.07
RDIDC-9181-PF-48	1	119	No Ice	2.01	1.17	21.85
MP2, 0			w/ Ice	2.44	1.52	72.01
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

EQUIPMENT WIND CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	K _{zt}	Kz	K _d	t _d	q _z [psf]	q _{zi} [psf]
MX08FRO665-21	3	119	1.00	1.04	0.95	1.71	39.14	6.26
TA08025-B604	3	119	1.00	1.04	0.95	1.71	39.14	6.26
TA08025-B605	3	119	1.00	1.04	0.95	1.71	39.14	6.26
RDIDC-9181-PF-48	1	119	1.00	1.04	0.95	1.71	39.14	6.26

EQUIPMENT LATERAL WIND FORCE CALCULATIONS

Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
MX08FRO665-21	3	No Ice	282.13	155.33	239.87	113.06	239.87	155.33
MP2/MP5/MP8, 0/120/240		w/ Ice	54.29	33.15	47.24	26.11	47.24	33.15
TA08025-B604	3	No Ice	69.16	43.21	60.51	34.56	60.51	43.21
MP2/MP5/MP8, 0/120/240		w/ Ice	13.42	8.87	11.90	7.36	11.90	8.87
TA08025-B605	3	No Ice	69.16	47.13	61.82	39.78	61.82	47.13
MP2/MP5/MP8, 0/120/240		w/ Ice	13.42	9.56	12.13	8.27	12.13	9.56
RDIDC-9181-PF-48	1	No Ice	70.86	48.58	63.43	41.15	63.43	48.58
MP2, 0		w/ Ice	13.72	9.86	12.44	8.57	12.44	9.86
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice w/ Ice						
		No Ice w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		W, 100		1	<u> </u>		1	

EQUIPMENT SEISMIC FORCE CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	Weight [lbs]	F p [lbs]
MX08FRO665-21	3	119	82.5	10.03
TA08025-B604	3	119	63.9	7.77
TA08025-B605	3	119	75	9.12
RDIDC-9181-PF-48	1	119	21.85	2.66

APPENDIX C SOFTWARE ANALYSIS OUTPUT

fţ `cVUŁ'A cXY` GYHjb[g

Ö~1 ^ 6`14 O T > 6T 6T A (lí á
Öã] æ ÂÛ^&dã} } • Á[¦ÁT ^{ à^¦ÁÔæ &•	ÍÁ
T agrÁQ c^\} adÁQ^&a{} • Á[\AT^{ a^\}AOab&•	JÏÁ
Q8 å^AU@æ\AÖ^{[{ ææa}}}Ñ	Ÿ^•
(1) & ^æ ^ ÁÞ æððð * ÁÖæ) æðð áČ Á[ÁY ð] åÑ	Ϋ́Λ•
Φ& a^A/ æ] a * Ñ	ΫΛ•
V¦æ)•ÁS[æåÁÖc;}ÁQ;c^¦•^&cā)*ÁY[[åÁYæ)N	ΫΛ•
OE^æÁŠ[æåÁT^•@ÁÇAjâGD	FII
T^ *^Áv[^ æ) &^Á@, D	È G
ÚËÖ^ cæÁOE; æf`•ãrÁ/[^¦æ;}&^	€Ě€Ã
Q,& `å^ÁÚËÖ^ æÁ{¦¦Á/æ •Ñ	ΫΛ•
OE of { æaa8æ ^Áo2^\æe^Áùcã-}^••Á[¦Ár æ •Ñ	Ϋ́^•
Tæ¢Á@^\aeaa[}•Á[¦ÁYæþÁUcã-}^••	Н
Õ¦æçãc ÁOB&\ ^¦æaa[} ÁÇa Ð^&âGD	HÌÏÈ
YællÁT^•@ÁUã^ÁÇalD	G
Óat ^} •[' cat } AÖ[∫ ç^ * ^} &^ AV[ÞÁGF ÞÓÐ	
X^¦a®ædAOt¢ã	Ϋ
Õ [[àæþÁT^{ à^¦ÁU¦ã^}]cæðā[]}ÁÚ æ}^	ÝZ
Úcæa&ÁÚ[ç^	Ù] æ••^ÁOB&^ ^¦æe^å
Ö^}æ{ 8&AU[ç^\	OB&\ ^\ae\å\Û ç^\
المار مد در الا	
P[ơÁÜ[^ åÁÛơ^^ ÁÔ[å^	OEDÙÔÁFÍ c@CHÎ €ËFÎ DHÁŠÜØÖ
Cãb • cÂucã-} ^••Ñ	Ÿ^• @ \¦æãc^D
ÜQÜQÊ(} } ^ &ca } } AÔ(a^	OBOVÔÁFÍ cOGHÍ EÉFÍ DHÁSÚ ØÖ
O	OED)ØÛF€€ÉFGKSÜØÖ
Y [å/Ô[å^	CEY ÖÁÞ ÖÙÉFÍ KÁCEÚÖ
Y [[å Á /^{] ^¦æc	ŁÆ€Ø
0[}&\^&\0[a^\)	CEOCHTI ETI
Tæ[} \^\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	OEÔCÁ HEÉFHAÚC^}*c@
OF { a \ AO a^	OEDÁORÓT FÉFEKÉSÜ ØÖ ÁZÍÓ * ájá áj *
Ùæaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	OEDŮŐÁTI COGHÍ €ÉF€DÁSÜØŐ
Cab • CAUCA-; ^•• IN	Ÿ^• @ `\¦æ s ç^D
⊢ (λλ Æ Â [Øλ → Æ] λ .	
Þ { à ^ / (A Û @ æ A Û ^ * a[] •	
Ü^* (1) AÛ] æ&3 * AQ& ^{ ^} cAQ3 D	O con O dO cont I cont I
Óãæ;ãæ;ÁÖ[`{} AT^c@[å	O¢æ\$oÁQ; c^* ¦ææ[; }
Úæl { ^ÁO^ æælæse[ÁÇÚ ÔOED	Ëİ
0[}&\^&\AUd^•• AO [&\	Ü^&ca) * * al
W•^ÂÔ;æ&\^åÂÛ^&@{}}•Ñ	ΫΛ•
W•^ÁÔlæ&\^åÁÙ^&@[}•ÁÙ æàÑ	ΫΛ•
ÓæåÁØlæ{ ā,*Á/æ}}ã,*•Ñ	Þ[
W, * • ^ å Æ2[¦ & ^ ÁY æ æ } ē] * • Ñ	ΫΛ•
TájÁrÁÓæÁÖæé ÉÁÚJææðáj*Ñ	Þ[
Ô[} &¦^&\^\&AÜ^àæ\AÙ^c	ÜÒӌܴÙÒV´ŒÙVTŒÎFÍ
T \$\tilde{A}\tilde{A}\tilde{\tilde{U}}c^\ \tilde{A}\tilde{\tilde{U}}\tilde	F
Tæ¢ÁÑÁÙ¢^^ Á[¦ÁÔ[ˇ{}	Ì

fļ`cVUŁAcXY`GYhijb[gž7cblijbi YX

Ù^ã{ 88/kÔ[å^	ŒÙÔÒÄ ËF€
Ù^ã{ ã&ÁÓæ•^ÁÒ ^çæaã }ÁQ;D	Þ[🐠 & '^å
ŒaåÁÓæ•^ÁY^ãt@Ñ	Ÿ^•
ÔæÝ	ÆG
ÔÁZ	E€G
VÄÝÁĢ^&D	Þ[🐠 🖒 e^ ¦^ å
<i>√ÆÆ</i> ••	Þ[ðÔ) e\^å
ÜŔ	Н
ÜÆ	H
ÔớÔ¢] ÉÝ	ĚÍ
ÔæÔ¢] ÉZ	Ěi
ÙÖF	F
ÙÖÙ	F
ÙĘ	F
VŠÁÇ^&D	İ
Üã∧ ÂÔæc	QA LÁQQ
Öl ão/Ôæc	U@\
U{ Æ	F
U{ #	F
	F
ÔåÂÝ	F
ÜQÆ	F
Ü @ K	F

<chFc``YX'GhYY`DfcdYfl]Yg

	Šæà^	ÒÃX • ãa	ÕÆX•ãa	þř	V@\{ ÁÇEF ÒÈ	BÖ^}•ãcÎŽÐdÌ	ÈŸã∧¦åŽj∙ãã	Ü^	Ø*Žj•ãã	Üc
F	ŒJG	GJ€€€	FFFÍ I	ÈH	ĒÍ	ÈJ	Í€€€€	FÈ	îÍ€€€	FÈ
G	OEHÎ ÁÕ¦ÈHÎ	GJ€€€	FFFÍ I	È	ĒÍ	ÈJ	HÎ €€€	FĚ	ÍÌ€€€	FÈG
Н	OÉÏGÁÕ¦Ě€	GJ€€€	FFFÍ I	ÈH	ĒÍ	ÈJ	Í€€€€	FÈ	îÍ€€€	FÈ
1	OÉ €€ÁÕ¦ÈÓÁÜÞÖ	GJ€€€	FFFÍ I	ÈH	ĒÍ	ĚĞ	IŒ€€	FÈ	ÍÌ€€€	FÈH
ĺ	OÉ €€ÁŐ¦ÈÓÁÜ^&c	GJ€€€	FFFÍ I	ÈH	ĒÍ	ĚĞ	I΀€€	FÈ	ÍÌ€€€	FÈH
Î	OÉ HÁÕ¦ ÈÓ	GJ€€€	FFFÍ I	È	ĒÍ	ÈJ	HÍ €€€	F₿	î €€€€	FÈG
Ϊ	OEF€ÌÍ	GJ€€€	FFFÍ I	ÈH	ĒÍ	ÈJ	Í€€€€	FÈ	î퀀€	FÈH

<chFc``YX'GhYY'GYWfjcb'GYhg</pre>

	Šæà^	Ù@ ≱ ^	V^]^	Ö^∙ã*}ÁŠãic	Tæc^¦ãæ⇔	Ö^• ã} Áܡ ⊞	ÈOEÄŽjGá	Q^Ããjlá	Q:ÆÄjlá	RÁŽAjIá
F	Ú æ•^•	ÎËÄ¢€ÈHÏÄÄÚ æ¢	Ó^æ{	ÜÒÔV	CÉ HÁÕ¦ ÈÓ	V^]	GÈEÍ	È€GÏ	ÌÈÎÌ	ÌE€Î
G	Õ¦ænā}*ÁÓ¦æs&a}*	ŠG¢G¢H	Ó^æ{	Ùaj * ^ ÁOE * ^	OEHÎ ÁÕ¦ÈHÎ	V^] 28æ	ĖGG	ΕĞΪF	ÈÄF	È€J
Н	Ùæ}å[⊶	ÚQÚÒ´HĚ	Ó^æ	Úą ^	CÉ HÁÕ¦ ÈÓ	V^]	ŒĚ	ΙĚG	ΙĚG	JÈ€I
- 1	Ùcæ); å[~ÁÓ¦æ&ã]*	ÔHÝÍ	Ó^æ{	Ô@a}}^	OEHÎ ÁÕ¦ÈHÎ	V^]	FÈΪ	ΕĠF	FÈÍ	ÈEIH
ĺ	Pæ}妿aj•	ÚŒÓÓ GÈE	Ó^æ	Úą^	CÉ HỚC ÈÓ	V^]	FÈ€G	ĒĠ	ĒĠ	FĚGÍ
Î	Pæ}妿ã[ÁÔ[¦}^¦•	ŠÍÁÍÐÌ¢IÁÏÐF΢ÈÈÈ	Ó^æ(Ùaj * ^ ÁOEj * ^	OEHÎ ÁÕ¦ÈHÎ	V^]	GÈEHJ	HĚJH	JĚÏÍ	È€GH
Ϊ	P[¦ã[}æ••	ÚŒÓ HĚ	Ó^æ	Úą ^	CÉ HỚC ÈÓ		ŒĚ	ΙĚG	ΙĚG	JÈ€l
Ì	T [ັ } ơÁÚā] ^∙	ÚŒÓÓ ŒÈ	Ó^æŧ	Úā ^	CÉ HÁÕ¦ ÈÓ	V^1	FÈ€G	ĒĠ	ĒĠ	FÈGÍ

>c]bhi6 ci bXUfm7 cbX]hjcbg

	R[ãjoÁŠæà∧	ÝÁŽEB)á	ŸÃŽĐĄjá	ZÁŽEAjá	ÝÁÜ[dĚŽËdĐæåá	ŸÁÜ[dÈŽËdĐæåá	ZÁÜ[dŽŽË-6Dæåá
F	ÞĞ	Ü^æ \$a {}}	Ü^æ & æ []	Ü^æ&aãi}	Ü^æ \$a [}	Ü^æ &a [}	Ü^æ&a i }
G	ÞF	Ü^æ \$ æ [}	Ü^æ \$ æ []	Ü^æ&aãi}	Ü^æ \$a [}	Ü^æ &a [}	Ü^æ&a i }
Н	ÞFH	Ü^æ s æ[}	Ü^æ & æ (a i }	Ü^æ&æ[] }	Ü^æ \$a { }	Ü^æ &a }	Ü^æ&a{i}}

6 Ug]W@:UX'7 UgYg

6 Ugjw @ UX 7 Ug Yg									
ÓŠÔÁÖ^•&¦ā[æ]}	Ôæe^*[¦^	Ý ÁÕ¦æçãcî	ŸÁŐ¦æçãcî	ZÁÕ¦æçãcî	R[ã]c	Ú[ặc	Öã dãa čo	a OEr∧æQT∧EE	Ù"¦æ&^QÚÈÈ
F Ù^ -ÁY ^ ât @c	ÖŠ		Ë		• •	ĒΉ		H	
G Ùd &c l^Ár a åÆ	Y ŠZ						ĺF		
H Ùd *&c '\^ÁY aj åÁY	Y ŠÝ						ĺF		
I YāļåÁŠ[æåÆÁOEZQ	Y ŠZ					GÎ			
Í YājåÁŠjæåÁH€ÁOEZQ	Þ[}^					Ĝ			
Î YajaAŠ aşAÁ Á AOEZQ	Þ[}^					GÎ			
ï YājåÁŠjæåÁÌ€ÁOEZQ	Þ[}^					GÎ			
ì YājåÁŠjæåÁJ€ÁOEZQ	Y ŠÝ					GÎ			
J YājåÁŠ[æåÁFG€Á0EZQ	þ[}^					GÎ			
F€ YãjåÁŠ[æåÁFHÍÁOEZQ	Þ[}^					GÎ			
FF YãjåÁŠ[æåÁFÍ€Á05ZQ	Þ[}^					Ĝ			
FG (24^ÁY ^ā* @c	UŠF					FH	ĺF	Н	
FH Q&\AÛd`&č¦\AY ajaAZ	UŠG						ĺF		
FI Q&^ÁÙ¢~&č¦^ÁrājåÁr	UŠH						ĺF		
FÍ C&AÁÝã) åÁŠ[æåÁ€ÁOZQ	UŠG					GÎ			
FÎ C&VÁY ã) åÁŠ[æåÁH€ÁOEZO,	Þ[}^					GÎ			
FÏ C&VÁY ã) åÁŠ[æåÁNÍÁOEZO,	Þ[}^					Ĝ			
Fì C&t^Ár ã) åÁŠ[æåÁn€ÁOEZO,	Þ[}^					GÎ			
FJ C&t^Ár ãjåÁŠ[æåÁJ€ÁOEZC]	UŠH					Ĝ			
G€ CB\ÁY ã åÁŠ[æåÁFG€ÁOZQ	Þ[}^					GÎ			
GF O&VÁY ã åÁŠ[æåÁFHÍÁOZQ	Þ[}^					GÎ			
GG O&AY ã åÁŠ[æåÁFÍ€ÁOZQ	Þ[}^					GÎ			
GH Ù^ãr{ã&ÁŠ[æåÁZ	ÒŠZ			⊞FÌ		FH			
GIÙ^ãr{ã&AŠ[æåÁÝ	ÒŠÝ	⊞FÌ				FH			
GÍ Šãç^ÁŠ[æåÁFÁQŠçD	Þ[}^					F			
GÎ Šãç^ÁŠ[æåÁGÁÇŠçD	Þ[}^					F			
GÏ Šãç^ÁŠ[æåÁHÁÇŠçD	Þ[}^					F			
GÌ Šãç^ÁŠ[æåÁÁÁÇŠçD	Þ[}^					F			
GJ Šãç^ÁŠ[æåÁÁÁÇŠçD	Þ[}^					F			
H€ Šãç^ÁŠ[æåÁÁÁÇŠçD	Þ[}^					F			
HF Šãç^ÁŠ[æåÁÁÁÇŠçD	Þ[}^					F			
HG Šãç^ÁŠ[æåÁÁÁÇŠçD	Þ[}^					F			
HH Šãç^ÁŠ[æåÁJÁÇŠçD	Þ[}^					F			
H Tænj c^} æ) &^ Ág æ á/F Ág##	Þ[}^					F			
HÍ Tæði, c^) æ) &^ÁĞ[æåÁGÁÇÌÌÈ	Þ[}^					F			
HÎ Tæği c^} æ) &^ ÁĞ[æåÁ+ÁÇÌÌÌ	Þ[}^					F			
Hi Tæn (°) æ) &^ Áğ æå Á ÁÇII	Þ[}^					F			
Hì Tæn (°) æ) &^ Áð (æ) Á ÁDE	Þ[}^					F			
HJ Tænn (°) ænn &^Áta ænn Áta	Þ[}^					F			
€ Tænn (°) ænn &^Áta ænn Áta	Þ[}^					F			
F Tæn o' æ) & A (æ) Å Á (æ)	Þ[}^					F			
G Tæij c^} æj &^ Æj æj ÁJÁÇIII	Þ[}^					F			
	Þ[}^						J		
ÓŠÔÁFGÁV¦æj•æ}oÁŒ^ÈÈ	þ[}^						J		

@UX'7ca V]bUh]cbg

	A 7 ca vjborjeby																				
	Ö^•&¦ājcā[}	Ù[ÈĚ	<u></u> 並並並必必必	œ lli ŏ	ŠÔØæ&À	ĎŠÔ:	Øæ&H	ĎŠÔ	Øæ&È	ĎŠÔ	Øæ& III	ÓŠÔ.	2 ∞&⊞) ČŽČ	2 68 ⊞	<u>ÔĚ</u> Ĉ	Øæ&À	ĚŠÔ	Øæ&È	ĎŠÔ	Øæ&HH
F	FÈ ÖŠ	Ÿ^• `	, ÖŠ E	È																	
G	FÈGÖŠÆÆFY ŠÆÆDZ	QŸ^• \`	ÖŠ F	ÈG	G F	Н		_	F												
Н	FÉGÖŠÆÆFYŠÆH€ÆOZQ	Ÿ^• `	ÖŠF	ÈG	G Èîî	Н	Ě	ĺ	F												
1	FŘEGÖŠÁÉÁFY ŠÁLÍÁOEZQ	Ÿ∧• Ň			GË€Ï		ÈËËÏ	Î	F												
ĺ	FÈGÖŠÆÆFYŠÆR€Æ		ÖŠ F			Н		Ť	F												
Î	FÈGÖŠÆÁFYŠÁJ€ÁOZQ	Ÿ∧• Ň	ÖŠ F			Н	F	ì	F												
Ϊ	FÈGÖŠÆÆFY ŠÆFŒÆOZC				G⊞	Н		J	F												
ì	FÉGÖŠÆÁFY ŠÆHÍ ÁOZC		ÖŠ F		G⊞eï	Н		F€	F												
J	FÈGÖŠÆÆFYŠÆFÍ€ÁOZC				G ∰îî	Н	Ě	FF	F												
F€	FÉGÖŠÆÆY ŠÆÑ €ÁOZC	- 1	ÖŠ F		G EF	Н		Η.	Ë												
FF	FÉGÖŠÆÆFY ŠÆGF€ÁOZC				G⊞ÎÎÎ		Η̈́	í	Ë												
FG	FÉGÖSÁÉÁFY SÁGG ÁOZO		ÖŠ F		G⊞eï		<u>ш</u> ∄ €	î	Ë												
FH	FÉGÖŠÆÁFY ŠÁGI€ÁOZO				G III		Ħîî	ij	Ë												
	FÉGÖŠÆÁFY ŠÁGÏ €ÁOZC		ÖŠ F				Ë	ì	Ë												
FI	FÉGÖSÁÉÁFY SÁHEEÁOZO				G ř	Н	<u>#</u>	_	Ë												
FÍ	FÉGÖSÁÉÁFY SÁHFÍ ÁOZC		00.					J													
FÎ	FÉGÖSÁÉÁFY SÁNHEÁOZO				GĖ€Ï	_	## <u>#</u>	F€													
FΪ					G ÈÎÎ	Н	<u> </u>	FF	Ë												
FÌ	€ÈÖŠÆÆY ŠÆÆDZ				G F	Н		1	<u>F</u>												
FJ	€ÈÖŠÆÆYŠÆÆOZQ		Ż ÖŠ I		G Èîî	Н	Ě	1	<u>_F_</u>			_								\sqcup	
G€	€ÈÖŠÆÆFYŠÁÍÁOZQ		ÖŠ I	_	GË€Ï	Н		ı.	F												
GF	€ÈÖŠÆÆFYŠÂR €ÁOZQ				G Ě	Н		Ĺ	<u>_F_</u>								<u> </u>			\sqcup	
GG	€ÈÜĞÄÆÁFYŠÁJ€ÁOZQ				G	Н	F		F												
GH	€ÈÖŠÆÆFYŠÆFŒÆOZC				G 🏥	Н		J	<u>F</u>								<u> </u>			Ш	
G	€DÖŠÆÆFYŠÆFHÁDZC			Ė	G⊞eï	Н		F€	F												
GÍ	€ÈÖŠÆÆFYŠÆFÍ€ÁOZC		0 0 1		G⊞ÎÎÎ	Н	Ě	FF	F												
GÎ	(€E)ÖŠÆÆFYŠÆFÌ€ÁOZC			E E	G Ë	Н			Ë												
GÏ	€ÈJÖŠÆÁFYŠÆGF€Á0ZC		ÖŠ I		G∰îî	Н	ËĚ	ĺ	Ë											Ш	
GÌ	€ÈÖŠÆÆFYŠÆGGÁOZC		Ż ÖŠ I	j [G⊞eï	Н	ËË	Î	Ë												
GJ	€ÈÖŠÆÁFYŠÁGI€ÁOZC		ÖŠ I) [G∣⊞≝	Н	Ħîî	Ϊ	Ë												
H€	€ÈÖŠÆÆFYŠÆGÏ€ÁOZC		ÖŠ I	∃	G	Н	Ë	Ì	Ë												
HF	€ÈÖŠÆÁFYŠÁH€ÉÁOZC	γ^• v	ÖŠ	Ė	G Ě	Н	Ħîî	J	Ë												
HG	€ÈÖŠÆÆFYŠÆHFÍÆOZC	į Ϋ́^• Ϋ́	ÖŠI	Ė	GĖ€Ï	Н	ËË	F€	Ë												
НН	€ÈJÖŠÆÁFYŠÁHH€ÁOZC	γ^• v			G Èîî	Н	ΪĬ	FF	Ë												
Н	FÉGÖSÁÉÁFÖSÁÆÁFY ŠÁÁÉ	Ϋ́Λ• ̈́́	ÖŠF	ÈGU	ŠF F	FH	F	FI		FÍ	F										
HÍ	FÉGÖSÁÉÁFÖSÆÉÁFY ŠÆÁÉ	Ϋ́Λ• ̈́́	ÖŠ F			FΗ	Èîî	FI	Ě	FÎ	F										
HÎ	FÉGÖSÁÉÁFÖSÆÉÁFY ŠÆÉ	Ϋ́Λ• ̈́́	ÖŠ F			FH	ÈËËÏ	FI	Ë€Ï	FΪ	F										
HÏ	FÉGÖSÁÉÁFÖSÁÉÁFY ŠÁÁÉ	Ÿ^• \			ŠF F	FH			Èîî		F										
HÌ	FÉGÖŠÆÁFÖŠÆÁFY ŠÆÆ	Ϋ́^• \			ŠF F			FI			F										
HJ	FESÖSÁÉÁFÖSÁÉÁFY SÁÁÐ		ÖŠ F	FG U	ŠF F	FH	ΉŤ	FL													
	FEGÖSÆÆFÖSÆÆFY SÆÆ				ŠF F																
	FEGÖSÁÉÁFÖSÁÉÁFY SÁÁÐ				ŠF F					Œ											
	FÉGÖSÆÆFÖSÆÆFY SÆÆ				ŠF F					ΕÍ											
	FÉGÖSÆÆFÖSÆÆFY SÆÆ				ŠF F				ΞĬ												
11	FÉGÖSÁÉÁFÖSÁÉÁFY ŠÁÁÉ				ŠF F																
lĺ	FÉGÖSÁÉÁFÖSÁÉÁFY ŠÁÁÉ				ŠF F																
	FEGÖSÆÆFÖSÆÆFY SÆÆ					FH			Ë												
	FEGÖSÆÆFÖSÆÆFY SÆÆ				ŠF F																
ΙΪ	FEGÖSÆÆFÖSÆÆFY SÆÆ																				
11	FEGÖSÆÆFÖSÆÆFY SÆÆ				ŠF F							-									
I J					ŠF F		III	FI	ш	نك	<u>H</u>										
	ÇFÉCÉ€ÉGÙª• DÖŠÆÆFÒÆ				3H F		ř														
LIF	ŢĒŒÉ€ĒĠÙå•DÖŠÆÆFÒÆĒ	<u>+</u> Υ^• \	ÖŠFI	ЭЩ(3H <u></u> Èîî	G	H										<u> </u>			Ш	

@UX'7ca V]bUhjcbg'f7cbhjbi YXŁ

90				\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			,,	V V A	,,		,,	V V A	.,	· · · ·	,,	V V A					,,,
			ٌӊÔ					ĐSO	Øæ&⊞	ĐSO	Øæ&⊞	DSO	Øæ&⊞	DSO	Øæ&E	ĐSO	Øæ&B	E DSO	Øæ&#</td><td>DSO</td><td>Øæ&III</td></tr><tr><td></td><td>ÇFÉCÉ€ÉGÙå•DÖŠÆÆFÒÆÉ</td><td></td><td></td><td>ÉG∰GH</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>ĮΗ</td><td>ÇFİEÉ€İEĞÜÅ•DÖĞÆÆFÖÄ</td><td></td><td></td><td>±Ġ∰(GH</td><td></td><td>G</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td>ÇFÉCÉ€ÉGÙå•DÖŠÆÆÆÓÁÐÐ</td><td></td><td></td><td>EGIII GH</td><td></td><td>G</td><td>F</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>ΙÍ</td><td>ÇFÊEÉ€ÊBÙå•DÖŠÆÆÆÒÆEË</td><td></td><td></td><td>-ÈG∰GH</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>ĺĺ</td><td>ÇFÉCÉ€ÉGÙå•DÖŠÆÆFÒÆET</td><td></td><td></td><td>±B##GH</td><td></td><td></td><td>Ë€Ï</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>ĺÏ</td><td>ÇFÉCÉ€ÉGÙå•DÖŠÆÆFÒÆÉ</td><td>′^• Ÿ</td><td>ÖŠF</td><td>-£G##GH</td><td>ΪÎ</td><td>G</td><td>Ě</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>ĺÌ</td><td>ÇFÉEÉ€ÉÐÙå•DÖŠÆÆFÓÆÉÍ</td><td>′^• Ÿ</td><td>ÖŠF</td><td>-£3∰GH</td><td>Ë</td><td>G</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>ĺJ</td><td>ÇFÉCÉ€ÉGÙå•DÖŠÆÆFÒÆH</td><td>′^• Ÿ</td><td>ÖŠF</td><td>EGIII GH</td><td>ĤÎÎ</td><td>G</td><td>ËΪ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>΀</td><td>ÇFÉEÉ€ÉSÙå•DÖŠÆÆFÒÆET</td><td>′^• Ÿ</td><td>ÖŠF</td><td>±G##GH</td><td>ËË</td><td>G É</td><td>ËË</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>ÎF</td><td>ŒÉÉÉEDÙª• DÖŠÆÆFÒÆE</td><td>′^• Ÿ</td><td></td><td>±Ġ##GH</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>ÎG</td><td>(FÍCÉ€ÉDÙå• DÖŠÆÆFÒÆET)</td><td>⁄∧• Ÿ</td><td></td><td>TGIII GH</td><td></td><td>G</td><td>Ë</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td>ŢĒĒĒĒDŮå• DÖŠÆÆTOÆ</td><td></td><td></td><td>EGIII GH</td><td></td><td>G E</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>ÎI</td><td>ŢĒŒĒĒŪå• DÖŠÆÆFÒÆĒ</td><td></td><td></td><td>EGIII GH</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>îí</td><td>ŢĒŒĒĒŪå• DÖŠÆÆFÒÆĒ</td><td></td><td></td><td>EGIII GH</td><td></td><td></td><td>Η̈́</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>ÎÎ</td><td>ŒÈËŒÈŮå• DÖŠÆÆFÒÆ</td><td></td><td></td><td>ÈÎF GH</td><td></td><td>G</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>ÎÏ</td><td>ŒÈ ËŒÈ Ùå• DÖ ŠÆÆFÒÆÐ</td><td></td><td></td><td>≟îFGH</td><td></td><td></td><td>Ě</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>îì</td><td>ŒÈËŒŒŮå• ØŠÆÆFÒÁË</td><td></td><td></td><td>ÈÎF GH</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>ÎJ</td><td>ŒÈËŒŒŮå• DÖŠÆÆFÒÂË</td><td></td><td></td><td>ÈÎF GH</td><td></td><td>G</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td>ŒÈËŒŒŮå• ØŠÆÆŌÁ</td><td></td><td></td><td>ÈÎF CH</td><td></td><td>G</td><td>F</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>ÏF</td><td>ŒÈËŒŒÛå• DÖŠÆÆÒÆÈ</td><td></td><td></td><td>≖ir GH ÈÎF GH</td><td></td><td>G</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>ÏG</td><td>ŒÈËŒŒŮå• ØŠÆÆŌÆË</td><td></td><td></td><td>ÈÎF CH</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>-:-</td><td>ŒÈËŒŒŮå• ØŠÆÆÒÆË</td><td></td><td></td><td>±ir GH ÈîF GH</td><td></td><td></td><td>Ě</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>I H</td><td>ŒÈËŒŒÛå• DÖŠÆÆÒÆË</td><td></td><td></td><td></td><td></td><td></td><td>ш</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>ΪΙ</td><td> -</td><td></td><td>ÖŠ</td><td>ÈÎF CH</td><td><u>H</u></td><td>G</td><td>#¥</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> </td><td>ŒÈËŒÈÀ</td><td></td><td>US</td><td>ÌÎF GH</td><td>## 11</td><td>G</td><td>Ħ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>ĨĨ</td><td>ŒÙËŒŒŮå• ŒŠÆÆFÒÆŒ</td><td></td><td></td><td>ÈÎF GH</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> </td><td>ŒÙËŒŒŮå• ŒŠÆÆFÒÆŒ</td><td></td><td></td><td>ÈÎF GH</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>Ϊİ</td><td>ĢĒDĒĒDŮå• DÖŠÆÆFÒÆÐ</td><td></td><td></td><td>ÈÎF GH</td><td></td><td>G</td><td>Ë</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>ĺĴ</td><td>ĢĒĖĖĖĖČŪå• DÖŠÆÆFÒÆÐ</td><td></td><td></td><td>ÈÎF GH</td><td></td><td>GI E</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\sqcup</td><td></td></tr><tr><td>_</td><td>ÇEÈËETEÙå•DÖŠÆÆFÒÁ</td><td></td><td></td><td>ÈÎF GH</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>ÌF</td><td>Ç€ÈJËŒĠÙå•DÖŠÆÆFÒÁH</td><td></td><td></td><td>ÈÎFGH</td><td></td><td>G</td><td>⊞</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>ÌG</td><td>1 ECO/ E/R OQ1</td><td>′^• Ÿ</td><td></td><td>FÈG G</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>ÌΗ</td><td>1 BOOLDIK OQU</td><td>′^• Ÿ</td><td></td><td>FÈG GÎ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>ÌΙ</td><td>FÉGÖSÁÉÁFŠÇH Š</td><td>′^• Ÿ</td><td>ÖŠ</td><td>FÈG GÜ</td><td>FĚ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>ÌÍ</td><td>FÉGÖŠÆÆFŠÇI Š</td><td>′^• Ÿ</td><td>ÖŠ</td><td>FÈG GÌ</td><td>FĚ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>ÌÎ</td><td>FÈSÖŠÆÆFŠÇÍ</td><td>′^• Ÿ</td><td>ÖŠ</td><td>FÈG GJ</td><td>FĚ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>ÌÏ</td><td>FÈSÖŠÆÆŠçÎ</td><td>′^• Ÿ</td><td>ÖŠ</td><td>FÈG H€</td><td>FĚ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>ìì</td><td>FÈSÖŠÆÆFŠÇÏ</td><td>′^• Ÿ</td><td>ÖŠ</td><td>FÈG HF</td><td>FĚ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>ÌJ</td><td></td><td>′^• Ÿ</td><td></td><td>FÈG HG</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>J€</td><td>FÉGÖŠÆÆFŠÇJ</td><td>′^• Ÿ</td><td></td><td>FÈG HH</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>JF</td><td>FÉGÖŠÁÉÁFÉÍŠ(ÁÉÁFY ÉÉ Ý</td><td>′^• Ÿ</td><td></td><td>FÈG HI</td><td>FĚ</td><td>G</td><td>ÈÉÍÌ</td><td>Н</td><td></td><td>T</td><td>È€ÍÌ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>JG</td><td>FÈGÖŠÆÆFĚŠ(ÆÆFYÈÈŠ</td><td>′^• Ÿ</td><td></td><td>FÉG HI</td><td>FĚ</td><td>G</td><td>ÈÍ</td><td></td><td>È€GJ</td><td>ĺ</td><td>È€ÍÌ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>JH</td><td>FEGÖSÁÉÁFÉ Š(ÁÉÁFY ÉÉ Ý</td><td>⁄∧• Ÿ</td><td></td><td>FÉG HI</td><td>FĚ</td><td>G</td><td>È∃F</td><td></td><td></td><td>•</td><td>ÈÉÍÌ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>JI</td><td>FÉGÖSÁÉÁFÉ ŠÍ ÁÉÁFY ÉÉ Í</td><td></td><td></td><td>FÉG HI</td><td></td><td></td><td>ÈŒJ</td><td></td><td></td><td></td><td>ÈÉIÌ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>JÍ</td><td>FÉGÖSÁÉÁFÉ Š ÁÉÁFY ÉÉ Ý</td><td></td><td></td><td>FÉG HI</td><td></td><td>G</td><td></td><td>Н</td><td>È Ì</td><td></td><td>È€ÍÌ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>JÎ</td><td>FÉGÖSÁÉÁFÉ Š(ÁÉÁFYÉÉ Š</td><td></td><td></td><td>FEG HI</td><td></td><td></td><td>È€GJ</td><td></td><td></td><td></td><td>È€ÍÌ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>JÏ</td><td>FÉGÖSÁÉÁFÉ Š(ÁÉÁFY ÉÉ Ý</td><td></td><td>ÖŠ</td><td>FEG H</td><td>FĚ</td><td>G</td><td>Ë∏F</td><td>Н</td><td>È F</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>JÌ</td><td></td><td></td><td></td><td>FEG H</td><td></td><td>G</td><td>Π̈́€Í</td><td>Н</td><td>ÈEGJ</td><td>FF</td><td>ÈÉÌ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>11</td><td>FÉGÖSÁÉÁFÉ Š(ÁÉÁFY ÉÉ Y</td><td></td><td></td><td>FEG H</td><td></td><td></td><td>ŧ€íì</td><td></td><td></td><td></td><td>EE(i)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td>FÉGÖSÁÉÁFÉ Š ÁÉÁFY ÉÉ Ý</td><td></td><td></td><td>FEG H</td><td></td><td><u>د</u></td><td>iiizí</td><td>Ц</td><td>ËEGJ</td><td></td><td>Œ(ì</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td>FÉGÖSÁÉÁFÉ ŠÍ ÁÉÁFY ÉÉ Ý</td><td></td><td></td><td>FEG H</td><td></td><td></td><td></td><td></td><td>ËEIF</td><td></td><td>⊞€íì</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td>FEGÖSÆÆFEŠ ÆÆFY È</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>EEÍÌ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td>FEGÖSÁEÁFE S, ÆÆFY EE Y</td><td></td><td></td><td>FÈG H</td><td></td><td></td><td>TEGI</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>Ŀ₩</td><td>FESUSAEARES AEARY BE</td><td>′^• Ϋ</td><td></td><td>FÉG H</td><td>上性</td><td>G</td><td></td><td>Н</td><td>Œíì</td><td></td><td>Œ€ÍÌ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Щ</td><td></td></tr></tbody></table>		

@UX'7ca V]bUhjcbg'f7cbhjbi YXŁ

S OX 7 Ca VIDOIJC DG															
Ö^• &¦āj cāj}		ĦŎŠÔÆ&ĦĎŠÔ					1.00	ÔØ&E	ĎŠÔ	Øæ&HHČ	<u>)</u>	æ &HÖ Š	<u>ÍlæQÇ</u>	E ŠÔ	Øæ&III
F€ FÈSÖŠÆÆFĚŠ(ÆÆFYÈ		ÖŠFĒGH			Н⊞		Œ€Í Ì								
F€Í FÈGÖŠÆÁFĚŠ(ÆÁFYÉ	È Ÿ^• Ÿ	ÖŠ FĖG HI	FĚ G	}BEF											
FEÎ FÊGÖŠÆÆÆFĚŠ(ÆÆFYÉ		ÖŠFĖGHI	FĚ G	BÉÍ	H⊞EG	기 FF	'Œ€íì								
F€Ï FÉGÖŠÆÆÆFĚŠ(ÆÆFYÉ	ÈΫΛ• Ϋ	ÖŠ FÈG HÍ	FĚ G	;ÈEÍÌ	Н	П	ÈÉÍÌ								
FEGÖSÁÉÁFÉĞ ÁÉÁFYÉ	ÈŸ^• Ÿ	ÖŠ FÈG HÍ		ÈÉÍ	H ȀG.	ΙÍ	ÈÉÌ								
F€J FÉGÖŠÆÁFÉŠ(ÆÆFY É		ÖŠ FĒG HÍ		; È F	H E		ÈÉÌ							П	
FF€ FÈSÖSÆÆÆFĚŠ(ÆÆFY È		ÖŠ FĒG HÍ		ÈEGJ	H È€Í	_	ÈÉÌ								
FFF FESÖSÁÉÁFÉLŠ(ÁÉÁFY É	ÈΫΛ• Ϋ	ÖŠ FĒG HÍ			H E		ÈÉÍÌ								
FFG FESÖSÆÆÆFE Š ÆÆFY E		ÖŠ FĖG HÍ		EEGJ	H ÈÉÍ	J	ÈÉÌ								
FFH FÉGÖSÁÉÁFÉ Š ÁÉÁFY É	ÈΫΛ• Ϋ	ÖŠ FĒG HÍ		HEELF	H 🖭										
FFI FÉGÖSÁÉÁFÉ Š(ÁÉÁFY É		ÖŠ FĒG HÍ			H ÈC										
FFÍ FÉGÖSÁEÁFÉ Š(ÁEÁFY É		ÖŠ FĒG HÍ		; EE(i	H		Œ(ì								
FFÎ FÊGÖSÆÆÆÊŠ(ÆÆYÊ		ÖŠ FĒG HÍ			H EE€G		EE(i)								
FFI FEGÖSÆÆÆFEŠ ÆÆÆY E	ÈΫ́^• Ϋ́	ÖŠ FĒG HÍ			HEE		Œ(i)							\vdash	
FFÌ FÈSÖŠÆÆFĚŠ(ÆÆYÈ	ÈŸ^• Ÿ						IIEÍÌ								
FFJ FÉSÖSÁLÁFILS ÁLÁFY É	È ŸAa Ÿ	ÖŠ FĖG HÍ			H EE										
		ÖŠ FĒG HÍ			H EE		EE(i)								
FŒ FÊSÖŠÆÆFĚŠ(ÆÆYÈ		ÖŠ FĒG HÍ		ÈEGJ ÈEGJ	H EE		EE(i)								
FOF FROOSÁEÁFE Š ÁEÁFY É		ÖŠ FĒG HÍ													
FG FEGÖSÆÆFEŠ ÆÆFY E		ÖŠ FĒG HÍ			H ⊞€G	FF.									
FGH FÉGÖSÁÉÁFÉ Š ÁÉÁFY É		ÖŠ FÉG HÎ			H	ļ	ÈÉ Ì							Ш	
FG FESÖSÆÆÆEĚŠ ÆÆFY È		ÖŠ FĒG HÎ			H ȀG.		ÈÉÌ								
FG FEGÖSÆÆÆEĚŠ(ÆÆYE	ĖΫ́^• Ϋ́	ÖŠ FÉG HÎ			H BE		ÈÉÍÌ								
FG FEGÖSÆÆÆFEŠ ÁEÆFY E	ÈΫ́^• Ϋ́	ÖŠ FÉG HÎ			H È		ÈÉIÌ								
FG FEGÖSÁÉÁFÉ Š ÁÉÁFY É	ÈΫ́^• Ϋ́	ÖŠ FĖG HÎ	FĚ G	}	HŒÍÌ	ì	È€ÍÌ								
FG FÉGÖSÁÉÁFÉ Š(ÁÉÁFY É		ÖŠ FĒG HÎ	FĚ G	; ⊞ €GJ	HÈ€Í	J	ÈÉÌ								
FGJ FÉGÖSÁÉÁFÉ Š(ÁÉÁFY É		ÖŠ FÈG HÎ	FĚ G	BÉEIF	H ȀI F	F€	ÈÉÌ								
FHE FÉGÖSÁÉÁFÉĞ ÁÉÁFYÉ	ÈΫΛ• Ϋ	ÖŠ FÉG HÎ			H ȀG.										
FHF FÉGÖSÁÉÁFÉÍS(ÁÉÁFY É	ÈΫΛ• Ϋ	ÖŠ FÉG HÎ		; ⊞€íì	Н	T	Œ€íì								
FHG FÉGÖSÁÉÁFÉÍS(ÁÉÁFY É		ÖŠ FÉG HÎ	FĚ C	G ⊞€Í	H ⊞EG	Jί	Œ€í ì								
FHH FECSÖSÁEÁFE Š ÁEÁFY É		ÖŠ FÉG HÎ			H ⊞EI		Œ€íì								
FH FESÖSÆÆÆFE Š ÆÆFY E	ÈΫ́^• Ϋ́	ÖŠ FÉG HÎ		; ⊞EGJ	H EE		⊞€íì								
FHÍ FÉGÖSÁÉÁFÉ Š(ÁÉÁFY É		ÖŠ FĒG HÎ			HEE		Œ€ÍÌ								
FHÎ FÊGÖŞÆÆFÊĞ ÆÆFY Ê		ÖŠ FĒG HÎ		; ÈEGJ	HEE		Œ€ÍÌ								
FHI FRESOSÁEÁFELS ÁEÁFY E	ÈΫ́^• Ϋ́	ÖŠ FĒG HÎ		EF F		_	1								
FH FEGÖSÆÆÆFEŠ ÆÆÆY		ÖŠ FĒG HÎ			H ⊞€G										
FHJ FÉGÖSÁEÁFÉ Š(ÁEÁFY É					_	, LL	ÈÉÌ							\vdash	
FI € FÉSÖSÆÆFÉS ÆÆFY É	È Ÿ^• Ÿ	ÖŠ FĒG HĪ ÖŠ FĒG HĪ			H Èc		EE I								
FIF FÉSÖSÆÆFÉS ÆÆFYE															
		ÖŠ FĒG HĪ					ÈÉ Ì								
FIG FÉSÖSÆÆÆÉŠ(ÆÆYÉ	ÈŸ^• Ÿ	ÖŠ FĒG HĪ					È								
FIH FÉSÖSÁÉÁFÉ Š(ÁÉÁFY É	ÈΫ́^• Ϋ́	ÖŠ FĒG HĪ			H E		ÈÉ Ì								
FII FÉGÖSÁÉÁFÉ Š ÁÉÁFY É		ÖŠ FÉG HÏ	FE C	j ⊞€GJ	H €	_	ÈÉ Ì								
FIÍ FÈGÖSÁÉÁFÉ ŠĮ ÁÉÁFY É		ÖŞ FÉG HÏ	FE C	; HEIF	H E	F€	⊞								
FIÎ FÊGÖŞÆÆÆFĚŠ(ÆÆFYÈ		ÖŞ FÉG HÏ					⊞ I								
FIÏ FÈCOSÁÉÁFĚŠ ÁÉÁFYÈ	ÈΫ́^• Ϋ́	ÖŠ FĒG HÏ				Ļ	Œ€íì								
FIÌ FÈSÖŠÆÆÆFĚŠ(ÆÆFYÈ		ÖŠ FĒG HĪ			H⊞€G		Œ€íì								
FIJ FÉGÖSÁÉÁFÉĞ ÁÉÁFYÉ		ÖŠ FĒG HÏ			H⊞€		Œ€íì								
FÍ€ FÉGÖSÁÉÁFÉŠ(ÁÉÁFYÉ		ÖŠ FĒG HÏ					Œ€íì								
FÍF FÉGÖSÁÉÁFÉ Š(ÁÉÁFY É		ÖŠ FĒG HÏ			H ⊞€í	ì	ËŒĺÌ								
FÍG FÉGÖSÁÉÁFÉÍS(ÁÉÁFY É		ÖŠ FĒG HĪ			Н⊞	J	⊞€íì								
FÍH FÉGÖSÁÉÁFÉ Š(ÁÉÁFY É		ÖŠ FĒG HÏ													
FÍI FÉGÖSÁÉÁFÉÍS ÁÉÁFYE		ÖŠ FĒG HĪ													
FÍÍ FÉGÖSÁÉÁFÉ Š ÁÉÁFY É		ÖŠ FĒG HÌ				T	ÈÉÍÌ								
1.1 ==================================			. 1	, I —	111										

@UX'7ca V]bUhjcbg'f7cbhjbi YXŁ

		. r ca vjbc																							
		Ö^• &¦₫ (Ù⊯ÓŠÔ										ĦĎŠÔ	Øæ&H	ĎŠÔ	Øæ&Ĥ	P ŠÔ	Øæ&À	T ĎŠÔ	Øæ&H	ĎŠÔſ	Øæ &⊞
F		FÉGÖŠÆÆÆÆ Š(ÖŠ	FÈG	Hİ	FÉ	G	È	Н	ÈEGJ	Ì	EE Ì										
Fi		FÉGÖŠÆÆÆÆ				ÖŠ	FÈG	HÌ	FĚ	G	ÈEIF	Н	ÈEIF	Î	ÈÉIÌ										
		FÈCOSÁEÁFÉ Š				ÖŠ	FÈG	HÌ	FĚ	G	ÈEGJ	Н	ÈÉÍ	Ϊ	ÈÉIÌ										
F	J	FÉGÖŠÆÆÆFĚŠ(ÆÆY	莊 Ÿ^	• Ÿ	ÖŠ	FÈG	HÌ	FĚ	G		Н	È€ÍÌ	ì	ÈÉÍÌ										
FÍ	€	FEGÖŠÆÆFĚŠ(ÆÆY	逆 Ÿ^	• Ÿ		FÈG				ËŒGJ		ÈÍ	J	ÈÉÌ										
		FŘEGÖŠÆÆÆFŘĚŠ					FÈG				Ë€IF		È∃F		ÈÉÍÌ										
		FÉGÖŠÆÆÆFĚŠ(FÈG				ŒΘ		È€GJ												
		FŘEGÖŠÆÆÆFŘŠ(FEG		FĚ		EEÍ Ì	Н			Œ€íì										
		FÈGÖŠÆÆÆÆŠ(FÈG		FĚ	G	⊞€Í		ËŒGJ		Œíì										
		FÉGÖŠÆÆÆÆ					FEG				⊞EIF		⊞EIF		EE(i)										
		FÈGÖŠÆÆFĚŠ									ËEGJ				Œ(ì										
		FÉGÖŠÆÆFÉŠ					FÈ				шЕС			-	Œ(ì									_	
		FEGÖSÆÆÆÆ Š					FÈ			G	اکترا				EE Î										
							FÈ				ÈGJ			_											
		FÈGÖŠÆÆÆÉŠ			• Ÿ		FÈG				È∃F		⊞EIF												
		FÈGÖŠÆÆÆÆŠ					FÈG				Œ ĺ		ŒŒGJ	FF											
		FÈCOSÁEÁFÉ Š					FÈG				È Ì	Н	<u> </u>	1	ÈÉÌ										
		FÈCOSÁÉÁFÉ Š					FÈ				È		È€GJ		È Ì										
_		FÈGÖŠÆÆFĚŠ(FÈ						È F		ÈÉÌ										
F		FÈGÖŠÆÆFĚŠ(FÈ				ÈŒU		É	Ţ	ÈÉÌ										
F		FÈCOSÁEÁFE Š					FÈG						ÈÉÌ	<u> </u>	ÈÉIÌ										
F		FÉGÖŠÆÆÆÆ Š(FÈG				ŒGJ		È	_	ÈÉÍÌ										
F		FÈCOSÁEÁFÉ Š					FÈG			G	ŒIF		È∃F												
		FÉGÖŠÆÆÆÆ Š				ÖŠ	FÈG	Ш			ŒΘ	Τ	ÈGJ												
		FÉGÖŠÆÆÆFĚŠ(ÖŠ	FÈG	HJ	FĚ	G	Œ€ĺÌ	Η			Œ€íì										
		FÉGÖŠÆÆÆÆ				ÖŠ	FÈG	Ш	FĚ	G	Ė		⊞EGJ	ĺ	Œ€íì										
		FÉGÖŠÆÆÆÆÉ				ÖŠ	FÈG	Ш	FĚ	G	Ë€IF	Н	ËEIF	Î	Œ€íì										
FÌ	G	FÉGÖŠÆÆÆÆÉ	ÆÆY	並 Ÿ^	• Ÿ		FÈG				ËEGJ		ËΞ	Ϊ	Œ€íì										
Fì	Н	FÉGÖŠÆÆÆÆÉ	ÆÆY	莊 Ÿ^	• Ÿ		FÈG			G		Η	Œ€íì	ì	⊞€íì										
F	Т	FÈCOSÁÉÁFÉ Š	ÆÆY	逆 Ÿ^	• Ÿ		FÈG				ÈŒJ	Н	⊞€Í	J	Œ€íì										
F	ĺ	FÉGÖŠÆÆÆÆÉ	ÆÆY	逆 Ÿ^	• Ÿ		FÈG				È∃F		Ë€IF	F€	Œ€íì										
		FÈCOSÆÆÆÆ					FÈG						ËŒGJ												
		FÈCOSÁÉÁFÉ Š					FÈG				È€ÍÌ	Н		T	ÈÉÍÌ									\Box	
		FŘEGÖŠÆÆÆFŘŠ					FÈG			G			È€GJ	ĺ	ÈÉÌ										
		FÈCOSÁÉÁFÉ Š					FÈG				È∃F		È∃F	î	ÈÉIÌ										
		FÉGÖŠÆÆÆÆ Š					FÈG				È€GJ	_	ÈÍ	İ	Èi										
		FÉGÖŠÆÆÆÆ					FEG			G			<u>B</u>	Ť	ÈΕÍÌ										
F	IG.	FÉGÖŠÆÆÆÆŠ(ÆÆY	Η̈́ Ϋ́^	• Ÿ		FEG				Ë€GI			J	ÈÉÌ										
		FÉGÖŠÆÆÆÆŠ(FÈG							•											
F	<u> </u>	FÉGÖŠÆÆÆÆŠ(ÆY	H Ÿ^	• Ÿ		FÈ																		
-	ii	FÉGÖŠÆÆÆÆŠ(ΛΈΛΕΥ	<u> </u>	• Ÿ		FÈG						ш.		EE(i)										
	JÎ.	FÉGÖŠÆÆÆÆŠ(ÆÆV	H Ÿ^	• Ÿ	ÖŠ	FEG	16		G		Ш	Ë€GU		EE(i)										
	JI II	FÉGÖŠÆÆFÉŠ	ÁÉ ÁEV	立 "^	• Ÿ	ÖČ	FEG	16	CĘ.	0	∰EI F	П	iii€i ⊑		Œ(ì										
		FEGÖSÆÆÆÆ Š					FEG								Œ(i)										
		FEGÖSÆÆÆÆ Š					FEG								EE(i)									-	
<u> </u>		FEGÖSÆÆÆÆ Š	/iL/KT	正 (^^	• Y • Ÿ		FEG								EE(i)										
		FEGÖSÆÆÆÆÉŠ(•											
							FÈ																		
G	نك	FÈGÖŠÆÆÆÉŠ(HEAR Y	<u> </u>	• Ÿ		FÈ						it E (J)												
		FÈGÖŠÆÆÆÆŠ(FÈG					Н	١٠		ÈÉ Ì										
		FÈCOSÁÉÁFÉŠ(FÈG						È€GJ		ÈÉ Ì										
		FÈCOSÁÉÁFÉŠ					FÈ								ÈÉÌ										
		FÈGÖŠÆÆÆÆŠ(FÈG						É		ÈÉÍ Ì										
LG	┫	FÉGÖŠÆÆÆÆ	ÆÆY	Œ Y^	• Y	OŠ	FÈG	l F	F⊞	G		Н	ÈÉIÌ		ÈÉÌ										

@UX'7ca V]bUh]cbg'ff'cbh]bi YXŁ

Ö^• &¦āj cāj}		HEÓŠÔØ88HEÓŠÔØ88H	ĎŠÔØæ£HHĎŠ	ÔØæ&HH	ĎŠÔ@	ZESENTÉ ŠÔ	2 68.HHÖ ŠÔ	Øæ&HHÖŠĆ) Øæ sili ÖŠ()Øæ&HHÖ	ŠÔØæ&HE
GE FÉGÖSÁÉÁFÉŠ ÁÉÁFY É		ÖŠ FĒG I F FĒ	G ŒGJ H		•	ĭi∥					
GEJ FÉGÖSÁÉÁFÉ Š(ÁÉÁFY É		ÖŠ FĒG I F FĒ	G EEF H	IÈEF							
GF€ FÉGÖŠÆÆÆFĚŠ(ÆÆFY É		ÖŠ FĒG I F FĒ		IÈEGJ							
GFF FÉGÖSÁÉÁFÉ Š(ÁÉÁFY É		ÖŠ FĒG I F FĒ	G Œ(Ì H			€ ÍÌ					
GFG FÉGÖSÁÉÁFÉ Š(ÁÉÁFY É		ÖŠ FĒG I F FĒ		IËEGJ	•	ŒĺÌ					
GFH FÉGÖSÁÉÁFÉ Š(ÁÉÁFY É		ÖŠ FĒG I F FĒ		HEEIF		ŒĺÌ					
GFI FÉGÖSÁÉÁFÉ Š(ÁÉÁFY É		ÖŠ FĒG I F FĒ	G ⊞EGJ H	l 🖽		Œ ĺÌ					
GFÍ FÉGÖSÆÆÆFÉŠ(ÆÆFYÉ		ÖŠ FĒG I F FĒ	G H			ŒĺÌ					
GFÎ FÎBOĞÂÉÁFÎĚŠ(ÁÉÁFY É		ÖŠ FĒG I F FĒ	G ÈŒU H			Œ ĺÌ					
GFÏ FÌÈGÖŠÆÆÆFĚŠ(ÆÆFYÉ		ÖŠ FĒG I F FĒ	G EF H								
GFÌ FÈCOSÁÉÁFÉ Š ÁÉÁFY É		ÖŠ FĒG I F FĒ	G È€Í H	IËEGJ							
GFJ FÉGÖSÁÉÁFÉ Š(ÁÉÁFY É		ÖŠ FĒG I G FĒ	G ĦÌ H	-		ĕì					
GG€ FÉGÖŠÆÆÆFĚŠ(ÆÆFYÉ		ÖŠ FĒG I G FĒ	G È€Í H			ĕì					
GGF FÉGÖSÁÉÁFÉ Š ÁÉÁFY É		ÖŞ FEG I G FÉ	G E F H			ĕì					
GGG FÉGÖSÁÉÁFÉ Š ÁÉÁFY É		ÖŠ FĒG I G FĒ	G ÈŒGJ H	V / V		ĕì					
GGH FTEGÖSÁÉÁFIÐ SK ÆÁFY E		ÖŠ FĒG I G FĒ	G H			ĕ ì					
GG FÉGÖSÁÉÁFÉ Š ÁÉÁFY É		ÖŠ FÉG I G FÉ	G ŒŒGJ H		•	ĕ ì					
GG FÈCÖŠÆÆFĚŠ ÆÆFY	並 Ϋ^• Ÿ	ÖŞ FÉG I G FÉ		IÈEF						\perp	
GGÎ FÊGÜŞÆFÊĞ ÆFY E	並 Ÿ^• Ÿ	ÖŞ FÉG I G FÉ		ÌŒGJ							
GG FÈCOSÁÉÁFÉ Š ÁÉÁFY É		ÖŞ FÉG I G FÉ	G ⊞ÉÛ H		•	Œ ÍÌ					
GG FEGÖSÆÆÆFE Š ÆÆFY E		ÖŞ FÉG I G FÉ		IEEGJ	•	Œ ÍÌ					
GGJ FÉGÖSÁÉÁFÉ Š ÁÉÁFY É		ÖŞ FÉG I G FÉ		EEEIF		Œ ÍÌ					
GH€ FÈCÖŠÆÆFĚŠ(ÆÆFYÉ		ÖŞ FÉG I G FÉ	G ⊞EGI H			Œ ÍÌ					
GHF FÈCOSÁÉÁFÉ Š ÁÉÁFY É		ÖŞ FÉG I G FÉ	G H			Œ ĺÌ					
GHG FÈCÖŠÆÆFĚŠ ÆÆFY		ÖŞ FÉG I G FÉ	G ŒGJ H		_	Œ ĺÌ					
GH FÈGÖŠÆÆÆFĚŠ(ÆÆFYE		ÖŞ FEG I G FÊ	G E F H								
GH FÉGÖSÁÉÁFÉ Š ÁÉÁFY É	並 Ϋ^• Ÿ	ÖŠ FĒG I G FĒ	GÈEI⊓H	IEEGJ	FFŒ	€					

9bj YcdY'>c]bhFYUM]cbg

	R[ãjc		ÝÆjaá	ŠÔ	ŸÁŽàá	ŠÔ	ZÁŽaá	ŠÔ	ΤΎΑΪζὰËσά	ŠÔ	ΤΫÆζάË-cá	ŠÔ	ΤΖΑξζάΕσά	ŠÔ
F	ÞĞ	{ æ¢	ÌHHÈEÍG	€	FJÍHĒÍÍ	Н	FĤÍÈÏG	Н	Gj€jEGj	НН	FÍÍÎÈH€G	Н	FH Ě€Ì	HF
G		{ a	ËHĖ€H	FG	ÎŒHÎÎ	HF	ËĤFÈIÎ	GÏ	ËGFFÍËLL	ΙF	ËÍÍÍĒFF	ĠÏ	ËHI FŒ ÌH H	ΙHÌ
Н	ÞF	{ æ¢	ÌĤĒ	Ì	FJÍHĒTÍ	Ιĺ	FHÎİÈÎ	FΪ	GÌ€ÈĞÍI	FJ	FÍÍÍĒJÌ	Ġ	HI FŒĠ G	ΙÎ
1		{ a	ËHHÈ∃J	H	ÎŒHÌÌ	Œ	ËĤFÈH	GÍ	ËGFFÍËLLÌ	ΙH	LÉG ÌÌ HÀ	FΪ	ËHÉ€Î	GF
ĺĺ	ÞFH	{ æ¢	FH JÐJG	8	FÌÌHĚF	Н	HÍ€ÈJÌ	FÌ	HÌHJÈHG	Н	FGJGÈ€F	H€		FÎΪ
Î		{ a	ËΉ JÈJF	₩	GÌÈÌÎ	Ĝ	ËHÎ ÈHÎ H	F€	ËGHÌÈ€ÎF	Ĝ	ËFGJGÈ€€	Œ	ĦÌÌĤIJĺ	ŒН
Ϊ	V[œ ; K	{ æ¢	GÍÍΪÈÈÌΙ	8	ÍIIŒÏÍÎ	1 F	G̈ΉĚ̈Ϊ	FÌ						
Ì		{ a	ËGÍÏÈÈÌI	H€	FIGHĒÍÌ	ÌF	ËĞİHİĚİF	F€						

9bj YcdY5=G7 % h fl *\$!% L @F: 8 GhYY 7cXY7\ YWg

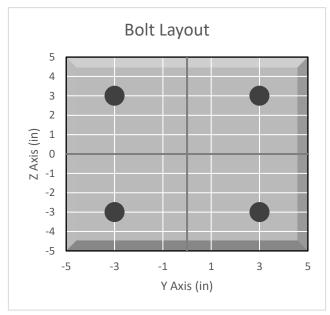
	T^{ à^¦	Ù@ ≱ ^	Ô[å^ÁÔ@^&\	Š[&Ž[jáŠÔ	Ù@ælÁEEŠ &ŽĄ a	áÖáiŠÔ]@AEÚ}&ÁHHH;@AEÚ}ơÁHHH;@AET}ÁHHH;@AET}ÁHHHÖà Ò`}
F	TFG	ÚŒÓ HĚ	Ě€G	I€ HJ	ÈÉÍÌ∣I€	FFİÍ GÎ GĒÌ Ï ÌÏ İ € Ï JÍ HĒĒÍ Ï JÍ HĒĒÍ GËÈP FĒĖÀ
G	TG	ÚQÚÒ´HĚ	Ě€G	I€ IÍ	ÈÉÍÌ∣I€	J ĭí Gì GĒÌ TÌ Tị í € TJÍ HĒĒÍ TJÍ HĒĒÍ GĒĒP FĒFÀ
Н	ΤÏ	ÚQÚÒ´HĚ	ÈÌΗ	I € H	ÈÉÍF∣I€	G## Í GÎ GĒÌ Ï Ì Ï Í € Ï JÍ HĒĒÍ Ï JÍ HĒĒÍ G##P FĒFÀ
I	TFF	ÔHÝÍ	È€Ï	H ÈÍÎ HJ	ÈIGÎHÈÏÏ	
ĺ	TF	ÔHÝÍ	È€Ï	HÈÍÎĮÍ	ÈIGÎĔĤ	^ HIFFGEGEDEËLIÏÎGÌ JÌFEGÎH IF€I FEEPFËTÀ
Î	ΤÎ	ÔHÝÍ	ΕĤJ	H È Í Î H	ÈHÎ ÎHÈÏÏ	
Ϊ	T ÚH	ÚŒÓÓ ŒÈ	È	ÍÏ Í	ÈEIF∣ÍÏ	
Ì	T ÚF	ÚŒÓ GÈE	ĖJI	ÍÏFÍ	È≣F ÍÏ	F€GEÌÎÎËË HOFH€ FÌÏFĒG FÌFĒG FËÈ

9bj YcdY5=G7 '% h, fl *\$!% L '@F: 8 'GhYY '7cXY7\ YWg 'fl cbhjbi YXL

	T^{ à^¦	Ù@ 4^	Ô[å^ÁÔ@^&\	Š[8Ž]á	áŠÔ	Ù@ælÆ	Š[&Ž]á	áÖálŠÔ]@AEÚ}&ÁHHH @AEÚ}oÁZHHH @AET}ÁHHH @AET}ÁHHHÖà Ò`}
J	ΤÚG	ÚŒÓÓ GÈE	ÈGI€	ĺÏ	F	IJ	ÍÏ	(GE)ÎÎËË HGFH€ FÌÏFËGÍ FÌËFËGÍ FËËPFËFÀ
F€	ΤÚΙ	ÚŒÓÓ GÈE	ÉGÌÎ	ĺĺ	F€	ÈĠ	ÍÏ	(GE)ÎÎËË HOFHE FÎFÊG FÎFÊG FË À
FF	ΤÚJ	ÚŒÓÓ GÈE	ÉGÌÎ	ÍΪ	F€	È€GÌ	ÍΪ	FÍŒÎÎÎË ŒHŒHE FÌÏFĒGÍ FÌÏFĒĞ
FG	T ÚÍ	ÚŒÓÓ GÈE	ÉĞÏÍ	ÍΪ	F€	È∃H	ÍΪ	F€ŒÎÎÎËËHOFH€ FÎÏFĒG FÎFĒG FËÈ
FH	ΤÚÌ	ÚŒÓÓ GÈE	ÈĞÏÍ	ÍΪ	F€	ÈEIH	ÍΪ	F€ŒÎÎÎËËHGFH€ FÌÏFĒĞ FÌÏFĒĞ FËËÀ
FI	ΤÚÎ	ÚŒÓÓ GÈE	ĚĠÍJ	ÍΪ	FÎ	È€HÏ	ÍΪ	I GEÌÎÎËË HGFH€ FÌÏFËGÍ FÌÏFËĞ
FÍ	ΤÚΪ	ÚŒÓÓ GÈE	ÈÉÍJ	ÍΪ		È€HÏ	ÍΪ	FÎŒÎÎÎËËHŒHE FÎÏFĒĞ FÏFĒĞ FËËÀ
FÎ	T FÍ	Î LÊ AÇELÎ AKÛLÎÊ	ÈGÏ	Œ	ì	È€JF	Ъ	^ GH FHEE €
FΪ	ΤÍ	Î LÊ AÇELÎ AKÛLÎÊ	ÈGÏ	Œ	FG	È€JF	Ъ	^ GH FHEE €
FÌ	TF€	Î LÊ AÇELÎ AKÛLÎÊ	ÈGI	Œ	G	ÈÌÌ	Ъ	^ H FHEE €
FJ	TI	ŠG¢G¢H	ÈHG	€	FH	ÈEH€	€	^ FFI € FE HGHUGE Í Í Í É FI FGHJEGJ HEPGEF
G€	T FH	ŠG¢G¢H	ÈHG	€	Ï	ÈEH€	€	: HFÌ € FË ŒGHJŒÌ Í Í Ï Ë FÏ FGHJÈJ ŒËPŒ
GF	PF	ÚŒÓ HĚ	ÈFJ	ΙÌ	F€Î	Èìì	G	FeÎêÎÎÊEE ÏÌÏÍ€ ÏJÍHĒÍÏJÍHĒÍ FEĒà
Œ	TJ	ŠG¢G¢H	ÈΕΓÌ	€	G	È€GJ	€	^ Î P € FË HGHUGË Í Í Ï Ë FÏ FGHJEGJ HEPGË
GH	ΤÌ	ŠG¢G¢H	ÈFÌ	€	G	ÈŒGJ	€	: Hì Fì € FË ŒGHJŒÌ Í Í Ï Ë FÏ FGHJÈJŒËPŒË
G	PG	ÚŒÓ HĚ	ÈΕΓÎ	ΙÌ	FJÎ	ÈÈÌG	ΪG	Í Î€ÎÎÎÈEËËÏÌÏÍ€ÏÏJÍHĒÍÏJÍHĒÍ Ē
GÍ	PH	ÚŒÓ HĚ	ÈΕΓÎ	ΙÌ	FIÎ	ÈÈÌG	G	FÍ΀ÎÎÊEËËÏÌÏÍ€ÏÏJÍHĒÍÏJÍHĒÍFËË
Ĝ	T FI	ŠG¢G¢H	ÈΕΓÍ	€		ŒHF	€	^ Hi Fi € FEË EEGHUGË Í Í Ï EË FÏ FGHUËGJ GEEPGËF
GÏ	ΤH	ŠG¢G¢H	ÈFÍ	€	FG	ÈHF	€	: IJ FÌ €Í FËË ŒGHJUGË Í Í Ï ËË FÏ FGHJÈGJ ŒŒPŒË
GÌ	T FJ	ÚŒÓÓ GÈE	ÈΕΓΙ	G	F€	È€Ì	G	G FIJFÎÈEÈÈ HOFHE FÎFÊĞ FÎFÊĞ FEÊÂ
GJ	TŒ	ÚŒÓ GÈE	ÈFG	G	FÎ	È€€	ΪG	Ì FIJFÎÈEÈË HOFH€ FÌÏFĒĠ FÌÏFĒĠ FËËÀ
H€	TGF	ÚŒÓÓ GÈE	ÈFG	ΪG		È€€	G	FGFI JFÎÈEÈË HOFH€ FÎÏFÊÎGÍ FÌÏFÊÎGÍ FËËPËFË
HF	TGH	ŠÎÁĐÌ¢IÁÏÐEÈ	È€l	ΙG	НН	È€GJ	G	^ FÏ FÍ IÍ HÈEÈÈÎÎ €ÎÎË ÈËF€I €ĔJF HEHFÈEÏÎ ŒË PŒË
HG	TŒ	ŠÎÁĐ¢IÁ DÀL	È€l	€	FJ	È€GJ	€	^ H FÍ IÍ HÈEÈÈÎÎ €ÎÎË ÈËF€I €ĔJF HEHFÈEÏÎ ŒË PŒË
HH	TG	ŠÎÁĪĐ¢IÁÏÐEÈ	ÈÌÎ	Œ	FÌ	È€GÏ	€	^ FIFIIIHE HE Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î

APPENDIX D ADDITIONAL CALCUATIONS

Analysis date: 7/31/2021



BOLT TOOL 1.5.2

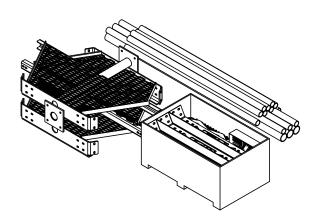
Project Data										
Job Code:	189335									
Carrier Site ID:	876313									
Carrier Site Name:	JOHNSON AVE. BURNT I									

Co	de
Design Standard:	TIA-222-H
Slip Check:	No
Pretension Standard:	-

Bolt Properties										
Connection Type:	В	olt								
Diameter:	0.625	in								
Grade:	A325									
Yield Strength (Fy):	92	ksi								
Ultimate Strength (Fu):	120	ksi								
Number of Bolts:	4									
Threads Included:	Yes									
Double Shear:	No									
Connection Pipe Size:	-	in								

Connection Description	
Standoff to Collar	

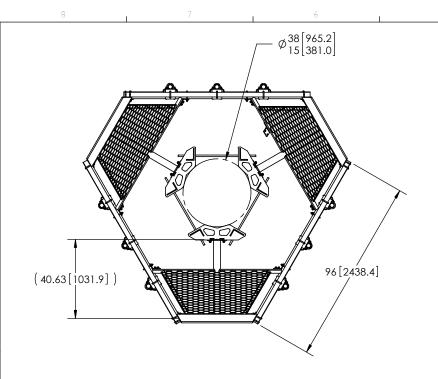
Bolt C	heck*	
Tensile Capacity (ϕT_n) :		lbs
Shear Capacity (ϕV_n) :		lbs
Tension Force (T _u):	4173.0	lbs
Shear Force (V _u):	614.0	lbs
Tension Usage:	19.5%	
Shear Usage:	4.2%	
Interaction:	19.5%	Pass
Controlling Member:	M12	
Controlling LC:	42	

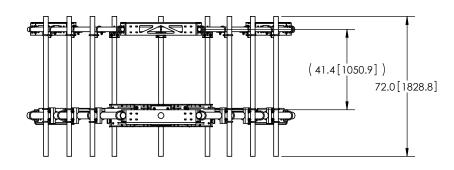

^{*}Rating per TIA-222-H Section 15.5

APPENDIX E SUPPLEMENTAL DRAWINGS

ITEM	PART NO.	DESCRIPTION	QTY.	WEIGHT	NOTE NO.
1 MTC3006SB	STEEL BUNDLE FOR SNUB NOSE PLATFORM	1 402.64 LBS			
2 MCPK8CSB	PIPE STEEL BUNDLE FOR MC-PK8-C	1 464.27 LBS			
3 MCPK8CHWK	HARDWARE KIT FOR MC-PK8-C	1 543.22 LBS			

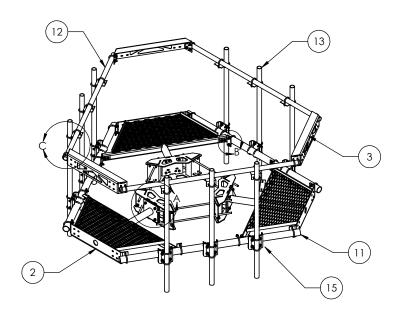
REVISIONS						
REV.	ECN	DESCRIPTION	BY	DATE		
Α		Initial release	DRR	12/27/11		
В	8000005979	CHANGE NOSE CORNER BRKT, ADD GUB-4240	MSM	11/25/14		
С	8000007579	NEW RINGMOUNT WELDMENT DESIGN	RJC	04/07/15		

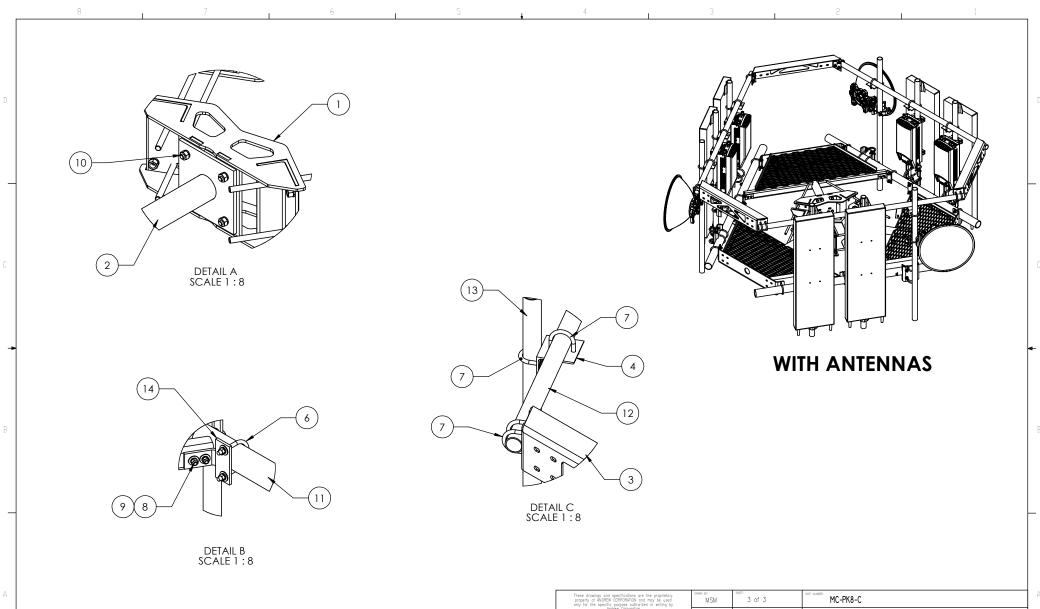

FOR BOM ENTRY ONLY



NOTES:

1. CUSTOMER ASSEMBLY SHEETS 2-3.


	property of ANDREW CORPORATION and may be used only for the specific purpose outbricted in writing by Andrew Corporation. ALL DIMENSIONS ARE IN INCHES U.O.S.		MSM	1 of 3	MC-PK8-C
			онохо ву: ТР	NTS	LOW PROFILE PLATFORM KIT 8' FACE
	TOLERANCES UNLESS OTHERWISE SPECIFIED: $X = \pm .12$ ANGLES $XX = \pm .06$ FRACTIONS	±2° ±1/32	10/18/11	A36, A500	ASSEMBLY DRAWING
	.XXX= ± .03 REMOVE BURRS AND BREAK EDGES .005	11/02	REVISION:	GALV A123	WESTCHESTER, IL, 60154
	DO NOT SCALE THIS PRIN	NT	C	1410.14 LBS	ANDREW @ U.S.A.


NOTES:

- 1. ALL METRIC DIMENSIONS ARE IN BRACKETS.
 2. WILL FIT MONOPOLES 15"-38" OD.

	ITEM	PART NO.	DESCRIPTION	QTY.	WEIGHT
>	1	MC-RM1550-3	12" - 50" OD RINGMOUNT	1	230.42 LBS
	2	MTC300601	Low Profile Co-Location Platform Snub Nose	3	134.21 LBS
	3	MT195801	Corner Weldment Snub Nose Handrail	3	27.10 LBS
	4	XA2020.01	CROSS OVER ANGLE	9	2.65 LBS
	5	GUB-4356	1/2" X 3-5/8" X 6" GALV U-BOLT	18	0.82 LBS
	6	GUB-4355	1/2" X 3-5/8" X 5" GALV U-BOLT	12	0.71 LBS
	7	GUB-4240	1/2" X 2-1/2" X 4" GALV U-BOLT	48	0.56 LBS
	8	GB-04145	1/2" X 1-1/2" GALV BOLT KIT	12	0.13 LBS
	9	GWF-04	1/2" GALV FLAT WASHER	24	0.03 LBS
	10	GB-0520A	5/8" X 2" GALV BOLT KIT (A325)	12	0.27 LBS
	11	MT54796	3.50" OD X 96" GALV PIPE	3	60.28 LBS
	12	MT-651-96	Ø 2.375" OD X 96" PIPE	3	29.07 LBS
Ī	13	MT-651	2.375" OD x 72" PIPE	9	21.80 LBS
Ī	14	MT19617	MT196 Pipe Mount Plate	6	2.49 LBS
	15	MT21701	PIPE MOUNT PLATE	9	7.93 LBS

These drawings and specifications are the proprietary property of ANDREW CORPORATION and may be used only for the specific purpose authorized in writing by Andrew Corporation.	MSM	2 of 3	MC-PK8-C
LL DIMENSIONS ARE IN INCHES U.O.S.	онахиах вт: ТР	NTS	25" OD Snub Nose MT-196
OLERANCES UNLESS OTHERWISE SPECIFIED: .X = \pm .12 ANGLES \pm 2' .XX = \pm .06 FRACTIONS \pm 1/32	10/18/11	A36, A53	BRANG TYSE ASSEMBLY DRAWING
.XXX= ± .03 REMOVE BURRS AND BREAK EDGES .005	REVISION:	GALV A123	WESTCHESTER, IL, 60154
DO NOT SCALE THIS PRINT	C	1361.27 LBS	ANDREW & U.S.A.

NTS

A36, A53 FNSH GALV A123

1361.27 LBS

10/18/11

С

DO NOT SCALE THIS PRINT

25" OD Snub Nose MT-196

WESTCHESTER, IL. 60154

ASSEMBLY DRAWING

NOTES:

1. ALL METRIC DIMENSIONS ARE IN BRACKETS.

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOHVN00024A

876319 280 Elm Street Naugatuck, Connecticut 06770

August 31, 2021

EBI Project Number: 6221004806

Site Compliance Summary					
Compliance Status:	COMPLIANT				
Site total MPE% of FCC general population allowable limit:	10.86%				

August 31, 2021

Dish Wireless

Emissions Analysis for Site: BOHVN00024A - 876319

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **280 Elm Street** in **Naugatuck, Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 280 Elm Street in Naugatuck, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) 4 n66 channels (AWS Band 2190 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 5) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative

estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 6) The antennas used in this modeling are the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector A, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector B, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antenna mounting height centerline of the proposed antennas is 142 feet above ground level (AGL).
- 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 9) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	Α	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665- 20	Make / Model:	JMA MX08FRO665- 20	Make / Model:	JMA MX08FRO665- 20
Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz	Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz	Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz
Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd
Height (AGL):	I42 feet	Height (AGL):	I42 feet	Height (AGL):	142 feet
Channel Count:	12	Channel Count:	12	Channel Count:	12
Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts
ERP (W):	5,236.31	ERP (W):	5,236.31	ERP (W):	5,236.31
Antenna A1 MPE %:	1.28%	Antenna B1 MPE %:	1.28%	Antenna C1 MPE %:	1.28%

environmental | engineering | due diligence

Site Composite MPE %					
Carrier	MPE %				
Dish Wireless (Max at Sector A):	1.28%				
Nextel	0.37%				
Verizon	1.08%				
Clearwire	0.09%				
Sprint	2.56%				
T-Mobile	5.48%				
Site Total MPE %:	10.86%				

Dish Wireless MPE % Per Sector							
Dish Wireless Sector A Total:	1.28%						
Dish Wireless Sector B Total:	1.28%						
Dish Wireless Sector C Total:	1.28%						
Site Total MPE % :	10.86%						

Dish Wireless Maximum MPE Power Values (Sector A)							
Dish Wireless Frequency Band / Technology (Sector A)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE				
Dish Wireless 600 MHz n71	4	223.68	142.0	1.74	600 MHz n71	400	0.43%
Dish Wireless 1900 MHz n70	4	542.70	142.0	4.22	1900 MHz n70	1000	0.42%
Dish Wireless 2190 MHz n66	4	542.70	142.0	4.22	2190 MHz n66	1000	0.42%
						Total:	1.28%

[•] NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)
Sector A:	1.28%
Sector B:	1.28%
Sector C:	1.28%
Dish Wireless Maximum MPE % (Sector A):	1.28%
Site Total:	10.86%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is 10.86% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320 West Henrietta, NY 14586

Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

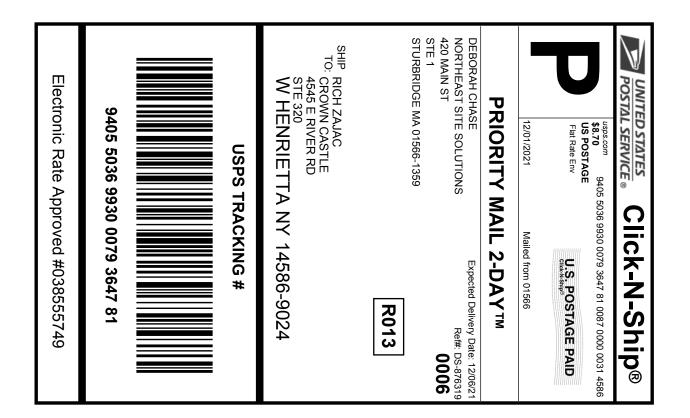
Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Tower Share Application

Crown Castle telecommunications site at: 280 ELM STREET, NAUGATUCK, CT 06770


GLOBAL SIGNAL ACQUISITIONS II LLC ("Crown Castle") hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name: 876319/NAUGATUCK 2 UNIROYAL Customer Site ID: BOHVN00024A/CT-CCI-T-876319 Site Address: 280 Elm Street, NAUGATUCK, CT 06770

Crow	yn Castle		
Ву: _	Mil 3	Date:	9/7/2021
	Kichard Zajac		
	Site Acquisition Specialist		

Exhibit H

Recipient Mailings

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0079 3647 81

549716905 12/01/2021 Trans. #: Print Date: Ship Date: 12/01/2021 12/06/2021 Delivery Date:

Priority Mail® Postage: Total:

\$8.70 \$8.70

Ref#: DS-876319

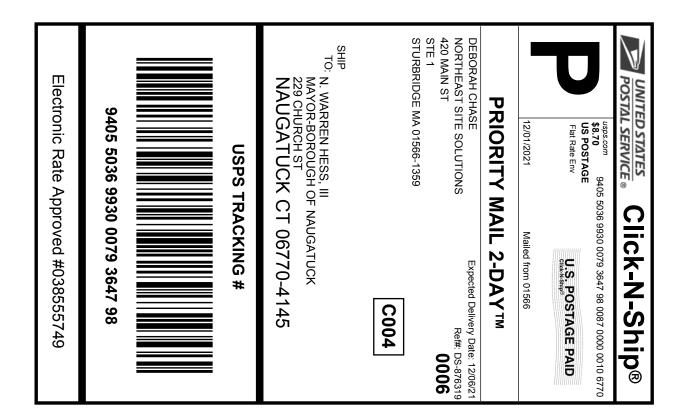
From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


RICH ZAJAC

CROWN CASTLE 4545 E RIVER RD

STE 320

W HENRIETTA NY 14586-9024

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0079 3647 98

Trans. #: 549716905 12/01/2021 Print Date: Ship Date: 12/01/2021 12/06/2021 Delivery Date:

Priority Mail® Postage: Total:

\$8.70 \$8.70

Ref#: DS-876319

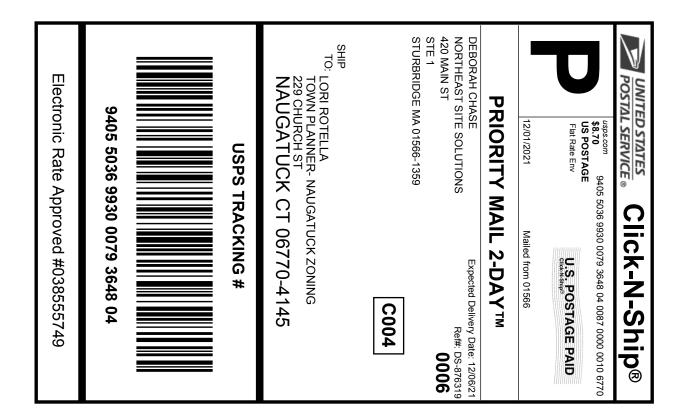
From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


N. WARREN HESS, III

MAYOR-BOROUGH OF NAUGATUCK

229 CHURCH ST

NAUGATUCK CT 06770-4145

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0079 3648 04

Trans. #: 549716905 12/01/2021 Print Date: Ship Date: 12/01/2021 12/06/2021 Delivery Date:

Priority Mail® Postage: Total:

\$8.70 \$8.70

Ref#: DS-876319

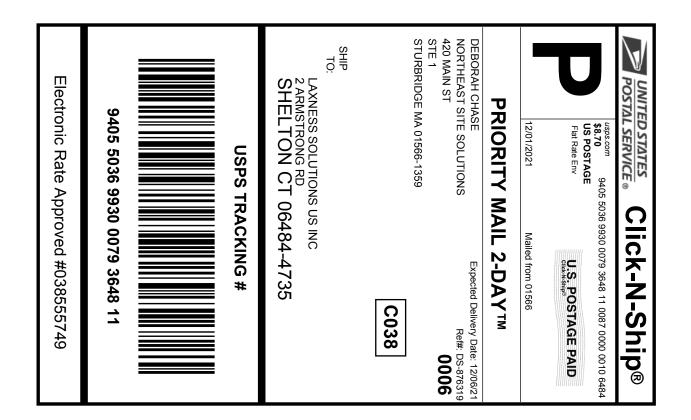
From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


LORI ROTELLA

TOWN PLANNER- NAUGATUCK ZONING DEPARTMENT

229 CHURCH ST

NAUGATUCK CT 06770-4145

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0079 3648 11

Trans. #: 549716905 12/01/2021 Print Date: Ship Date: 12/01/2021 12/06/2021 Delivery Date:

Priority Mail® Postage: Total:

\$8.70 \$8.70

Ref#: DS-876319

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

LAXNESS SOLUTIONS US INC

2 ARMSTRONG RD SHELTON CT 06484-4735

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

UNIONVILLE 24 MILL ST UNIONVILLE, CT 06085-9998 (800)275-8777

10 (00 100-1	(800)275-8	3777	
12/02/2021			01:06 PM
Product	Qty	Unit Price	Price
Prepaid Mail West Henrie Weight: 0 Acceptance Thu 12/ Tracking #:	1 etta, NY 145 b 2.00 oz Date: 02/2021	86	\$0.00
Prepaid Mail Naugatuck, Weight: 0 1 Acceptance Thu 12/ Tracking #: 9405 500	CT 06770 b 10.50 oz Date:	9 3647 98	\$0,00
Prepaid Mail Naugatuck, (Weight: 0 lk Acceptance [Thu 12/0 Tracking #: 9405 503	CT 06770 Date:	3648 04	\$0.00
Prepaid Mail Shelton, CT Weight: O lb Acceptance D Thu 12/0 Tracking #: 9405 503	06484 10.50 oz late:	3648 11	\$0.00
irand Total:			\$0.00