



## **PROJECT NARRATIVE**



# TOTALLY COMMITTED.

May 20, 2022

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Request of DISH Wireless LLC for an Order to Approve the Shared Use of an Existing Tower 139 Sharp Hill Rd. Montville, CT 06443

Latitude: 41'26'56.300" / Longitude: -72'9'4.100"

#### Dear Ms. Bachman:

Pursuant to Connecticut General Statutes ("C.G.S.") §16-50aa, as amended, DISH Wireless LLC ("DISH") hereby requests an order from the Connecticut Siting Council ("Council") to approve the shared use by DISH of an existing telecommunication tower at 139 Sharp Hill Rd. in Montville (the "Property"). The existing 100-foot self-support tower is owned by American Tower Corporation ("ATC"). The underlying property is owned by Global Tower Assets III LLC. DISH requests that the Council find that the proposed shared use of the ATC tower satisfies the criteria of C.G.S. §16-50aa and issue an order approving the proposed shared use. A copy of this filing is being sent to Ronald K. McDaniel, Mayor of the Town of Montville, David Jensen, Town of Montville Building Official and Global Tower Assets III LLC as the property owner.

#### **Background**

This facility was approved by the Town of Montville's Zoning and Planning Commission on March 15, 1984. A copy of the approval letter is included in this filing. The existing ATC facility consists of a 100-foot self-support tower located within an existing leased area. Antennas are maintained by Others at the 86-foot and 92-foot levels. Equipment associated with these antennas are located at various positions within the tower and compound.

DISH is licensed by the Federal Communications Commission ("FCC") to provide wireless services throughout the State of Connecticut. DISH and ATC have agreed to the proposed shared use of the 139 Sharp Hill Rd. tower pursuant to mutually acceptable terms and conditions. Likewise, DISH and ATC have agreed to the proposed installation of equipment cabinets on the ground within the existing compound. ATC has authorized DISH to apply for all necessary permits and approvals that may be required to share the existing tower. (See attached Letter of Authorization)



## TOTALLY COMMITTED.

DISH proposes to install three (3) antennas, (1) Tower platform mount, (6) Remote radio units at the 75-foot level along with, (1) over voltage protection device (OVP) and (1) Hybrid cable. DISH will install an equipment cabinet on a 5'x7' equipment platform. DISH's Construction Drawings provide project specifications for all proposed site improvement locations.

The construction drawings also include specifications for DISH's proposed antenna and groundwork.

- C.G.S. § 16-50aa(c)(1) provides that, upon written request for approval of a proposed shared use, "if the Council finds that the proposed shared use of the facility is technically, legally, environmentally and economically feasible and meets public safety concerns, the council shall issue an order approving such a shared use." DISH respectfully submits that the shared use of the tower satisfies these criteria.
- **A. Technical Feasibility.** The existing ATC tower is structurally capable of supporting DISH's proposed improvements. The proposed shared use of this tower is, therefore, technically feasible. A Feasibility Structural Analysis Report ("Structural Report") prepared for this project confirms that this tower can support DISH's proposed loading. A copy of the Structural Report has been included in this application.
- **B.** Legal Feasibility. Under C.G.S. § 16-50aa, the Council has been authorized to issue order approving the shared use of an existing tower such as the ATC tower. This authority complements the Council's prior-existing authority under C.G.S. § 16-50p to issue orders approving the construction of new towers that are subject to the Council's jurisdiction. In addition, § 16-50x(a) directs the Council to "give such consideration to the other state laws and municipal regulations as it shall deem appropriate" in ruling on requests for the shared use of existing tower facilities. Under the statutory authority vested in the Council, an order by the Council approving the requested shared use would permit the Applicant to obtain a building permit for the proposed installations.
- **C. Environmental Feasibility**. The proposed shared use of the ATC tower would have a minimal environmental effect for the following reasons:
  - 1. The proposed installation will have no visual impact on the area of the tower. DISH's equipment cabinet would be installed within the existing facility compound. DISH's shared use of this tower therefore will not cause any significant change or alteration in the physical or environmental characteristics of the existing site.
  - 2. Operation of DISH's antennas at this site would not exceed the RF emissions standard adopted by the Federal Communications Commission ("FCC"). Included in the EME report of this filing are the approximation tables that demonstrate that DISH's proposed facility will operate well within the FCC RF emissions safety standards.
  - 3. Under ordinary operating conditions, the proposed installation would not require the use of any water or sanitary facilities and would not generate air emissions or discharges to water bodies or sanitary facilities. After construction is complete the proposed installations would not generate any increased traffic to the ATC facility other than periodic maintenance. The proposed shared use of the ATC tower, would, therefore, have a minimal environmental effect, and is environmentally feasible.



## TOTALLY COMMITTED.

- D. **Economic Feasibility**. As previously mentioned, DISH has entered into an agreement with ATC for the shared use of the existing facility subject to mutually agreeable terms. The proposed tower sharing is, therefore, economically feasible.
- E. **Public Safety Concerns**. As discussed above, the tower is structurally capable of supporting DISH's full array of three (3) antennas, (1) Tower platform mount, (6) Remote radio units, (1) over voltage protection device (OVP) and (1) Hybrid cable and all related equipment. DISH is not aware of any public safety concerns relative to the proposed sharing of the existing ATC tower.

#### Conclusion

For the reasons discussed above, the proposed shared use of the existing ATC tower at 139 Sharp Hill Rd. satisfies the criteria stated in C.G.S. §16-50aa and advances the Council's goal of preventing the unnecessary proliferation of towers in Connecticut. The Applicant, therefore, respectfully requests that the Council issue an order approving the prosed shared use.

Sincerely,

David Hoogasian

David Hoogasian Project Manager





## LETTER OF AUTHORIZATION



#### LETTER OF AUTHORIZATION LICENSEE: DISH WIRELESS L.L.C.

I, Margaret Robinson, Senior Counsel for American Tower\*, owner/operator of the tower facility located at the address identified above (the "Tower Facility"), do hereby authorize DISH WIRELESS L.L.C., its successors and assigns, and/or its agent, (collectively, the "Licensee") to act as American Tower's non-exclusive agent for the sole purpose of filing and consummating any land-use or building permit application(s) as may be required by the applicable permitting authorities for Licensee's telecommunications' installation.

We understand that this application may be denied, modified or approved with conditions. The above authorization is limited to the acceptance by Licensee only of conditions related to Licensee's installation and any such conditions of approval or modifications will be Licensee's sole responsibility.

\*American Tower includes all affiliates and subsidiaries of American Tower Corporation.

| Project # | Project # ATC Site # ATC Site Name |                          | ATC Site Address                         |  |  |
|-----------|------------------------------------|--------------------------|------------------------------------------|--|--|
| 13688133  | 208450                             | Enfield                  | 1A Ecology Drive, Enfield CT             |  |  |
| 13700322  | 209115                             | Ridgefield 2             | 320 Old Stagecoach Road, Ridgefield, CT  |  |  |
| 13688136  | 209185                             | Burlington 2             | 87 Monce Road, Burlington CT             |  |  |
| 13700320  | 209271                             | Brookfield 2             | 100 Pocono Road, Brookfield CT           |  |  |
| 13693702  | 243036                             | WEST HAVEN & RT 162 CT   | 668 Jones Hill Road, West Haven CT       |  |  |
| 13693677  | 280501                             | ROXBURY CT               | 377 Southbury Road, Roxbury CT           |  |  |
| 13685406  | 281416                             | WILLINGTON CT            | 196 Tolland Turnpike, Willington CT      |  |  |
| 13709418  | 281862                             | BRIDGEWATER CT           | 111 SECOND HILL RD, Bridgewater CT       |  |  |
| 13693659  | 283418                             | NORTH HAVEN CT           | 50 Devine Street, North Haven CT         |  |  |
| 13694329  | 283419                             | PINE ORCHARD BRANFORD CT | 123 Pine Orchard Road, Branford CT       |  |  |
| 13694332  | 283422                             | SHORT BEACH BRANFORD CT  | 171 Short Beach Road, Branford CT        |  |  |
| 13698427  | 283423                             | NAUGATUCK CT             | 880 Andrew Mountain Road, Naugatuck CT   |  |  |
| 13685464  | 283563                             | MANSFIELD CT             | 343 Daleville Road, Willington CT        |  |  |
| 13692735  | 284983                             | OLD LYME CT              | 61-1 Buttonball Road, Old Lyme CT        |  |  |
| 13693120  | 284984                             | PAWCATUCK CT             | 166 Pawcatuck Ave, Pawcatuck CT          |  |  |
| 13693144  | 284988                             | GUILFORD CT              | Moose Hill Road, Guilford CT             |  |  |
| 13694582  | 302465                             | Colchester CT 6          | 355 Route 85, Colchester CT              |  |  |
| 13683501  | 302468                             | Petro Lock               | 99 Meadow St, Hartford CT                |  |  |
| 13685427  | 302469                             | Bridgeport CT 2          | 1069 Connecticut Avenue, Bridgeport CT   |  |  |
| 13683503  | 302472                             | Andover-bunker Hill Road | 104 Bunker Hill Road, Andover CT         |  |  |
| 13683507  | 302473                             | E H F R - Prestige Park  | 310 Prestige Park Road, East Hartford CT |  |  |



| Project# | ct # ATC Site # ATC Site Name |                               | ATC Site Address                                           |  |
|----------|-------------------------------|-------------------------------|------------------------------------------------------------|--|
| 13683510 | 302474                        | South Windsor                 | 391 Niederwerfer Road, South Windsor CT                    |  |
| 13683513 | 302483                        | Brln - Berlin                 | 286 Beckley Road, Berlin CT                                |  |
| 13692185 | 302488                        | Cntn - Canton                 | 4 Hoffmann Road, Canton CT                                 |  |
| 13692173 | 302495                        | Tolland CT                    | 56 Ruops Road, Tolland CT                                  |  |
| 13694579 | 302496                        | Clch - Colchester             | Chestnut Hill Road, Colchester CT                          |  |
| 13701212 | 302501                        | Plymouth CT 3                 | 297 North Street, Plymouth CT                              |  |
| 13685414 | 302515                        | SMFR - North                  | 5 High Ridge Park Road, Stamford CT                        |  |
| 13702496 | 302516                        | Mlfd - Milford                | 438 Bridgeport Ave, Milford CT                             |  |
| 13688395 | 302518                        | Newtown CT 3                  | 25 Meridian Ridge Drive, Newton CT                         |  |
| 13692174 | 302529                        | Vernon CT 6                   | 777 Talcotville Road, Vernon Rockville CT                  |  |
| 13693124 | 311014                        | NORWICH CT                    | 202 N Wawecus Hill Rd, Norwich CT                          |  |
| 13702522 | 311305                        | GLFD-GUILFORD REBUILD CT      | 10 Tanner Marsh Road, Guilford CT                          |  |
| 13693127 | 370623                        | MONTVILLE CT                  | 139 Sharp Hill Road, Uncasville CT                         |  |
| 13681964 | 370625                        | Old Saybrook                  | 77 Springbrook Road, Old Saybrook CT                       |  |
| 13702535 | 383660                        | North Madison Volunteer FD    | 864 Opening Hill Road, Madison CT                          |  |
| 13702538 | 411180                        | Good Hill CT                  | 481 GOOD HILL ROAD, Woodbury CT                            |  |
| 13693709 | 411182                        | Nepaug CT                     | 20 Antolini Road, New Hartford CT                          |  |
| 13693131 | 411183                        | WATERFORD CT                  | 53 Dayton Rd., Waterford CT                                |  |
| 13693135 | 411184                        | SALEM CT SQA                  | 399 West Road, Salem CT                                    |  |
| 13692177 | 411186                        | West Granby, CT CT            | 207 West Granby Road, Granby CT                            |  |
| 13692178 | 411187                        | Hartford North 2 CT           | 811 Blue Hills Avenue, Bloomfield CT                       |  |
| 13693705 | 411188                        | Southbury CT                  | 111 Upper Fishrock Road, Southbury CT                      |  |
| 13692179 | 411256                        | CANTON CT                     | 14 CANTON SPRINGS ROAD, Canton CT                          |  |
| 13681988 | 411257                        | Middle Haddam Road-CROWN CT   | 191 Middle Haddam Rd, Portland CT                          |  |
| 13692180 | 411258                        | Farmington North 2 CT         | 199 Town Farm Road, Farmington CT                          |  |
| 13692182 | 411259                        | CT Collinsville CAC 802816 CT | 650 Albany Turnpike, Collinsville CT                       |  |
| 13692184 | 416862                        | SUFFIELD SW CT CT             | 106 South Grand St., West Suffield CT                      |  |
| 13694578 | 6260                          | NORTH STONINGTON CT           | 118C Wintechog Hill Rd., off of Rt. 2, North Stonington CT |  |
| 13681397 | 88013                         | Killingworth                  | 131 Little City Road, Killingworth CT                      |  |

Signature:

Print Name: Margaret Robinson

Senior Counsel American Tower\*



## LETTER OF AUTHORIZATION LICENSEE: DISH WIRELESS L.L.C.

#### NOTARY BLOCK

Commonwealth of MASSACHUSETTS County of Middlesex

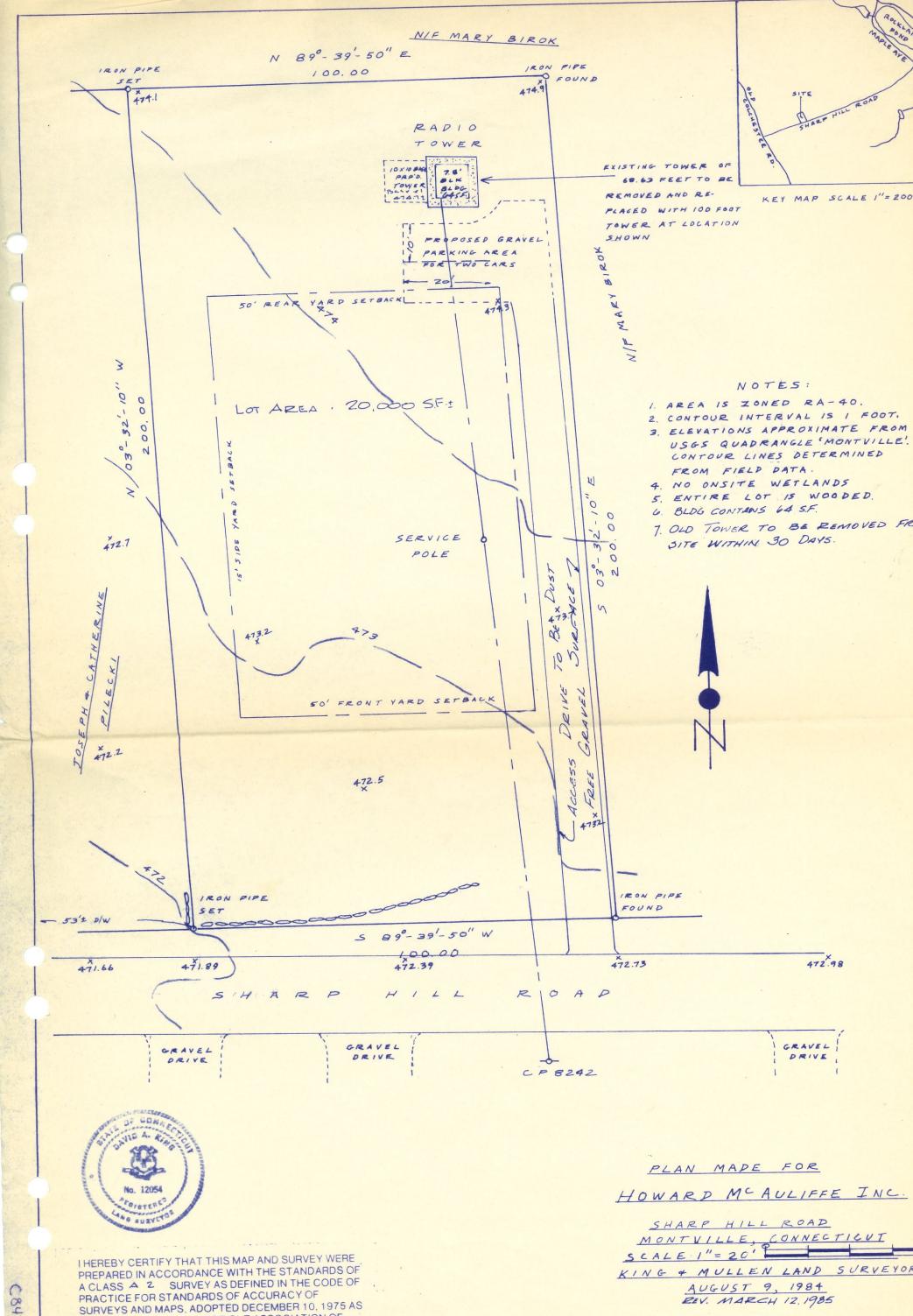
This instrument was acknowledged before me by Margaret Robinson, Senior Counsel for American Tower\*, personally known to me (or proved to me on the basis of satisfactory evidence) to be the person whose name is subscribed to the within instrument and acknowledged to me that he executed the same.

WITNESS my hand and official seal, this 10th day of September 2021.

MELISSA ANN METZLER

Notary Public
Commonwealth of Massachusetts
My Commission Expires March 14, 2025

NOTARY SEAL


Notary Public

My Commission Expires: March 14, 2025





## ORIGINAL FACILITY APPROVAL



C84-32-13

BELIEF

AMENDED BY THE CONNECTICUT ASSOCIATION OF LAND SURVEYORS, INC., AND IS SUBSTANTIALLY CORRECT TO THE BEST OF MY KNOWLEDGE AND

TITLE LIC. Land Surveyor

#### TOWN OF MONTVILLE

# The Zoning & Planning Commission TOWN PLANNER/ZONING ENFORCEMENT OFFICER 310 NORWICH-NEW LONDON TPKE. UNCASVILLE, CONNECTICUT 06382

848-8549

#### NOTICE OF DECISION

At a meeting of the Montville Zoning & Planning Commission held on March 12, 1985 in Montville Town Hall, it was voted:

TO APPROVE, with conditions the Special Permit request of Howard McAuliffe, Inc. to allow construction of a private communications tower on Sharp Hill Road, Montville, Ct. Assessor's Map 22, Lot 23.

Maps showing above approvals are on file in the Office of the Montville Town Planner, Town Hall Annex. Special Permit shall become effective upon filing Notice of Decision in land records in Montville Town Clerk's Office.

Dated at Montville, Connecticut this 15th day of March, 1984.

MONTVILLE ZONING & PLANNING COMMISSION Charles Korenkiewicz, Chm. Magnus Wade, Secy.

TO BE INSERTED IN THE DAY ON March 20, 1985.

LICATION FOR A ZONING PERMIT, TOWN OF MONTVILLE, CONNECTICUT To be filled out by Applicant - 1 original and two carbon copies e January 22, 1985. undersigned hereby applies to the Zoning and Planning Commission for a permit to Construct a 100 foot high radio tower ation of Property Sharp Hill Road ne of Subdivision N/A Lot No. essor's Block No. 33 , Assessor's Parcel No. 33 e of (Owner) (Agent) Howard McAuliffe, Inc. \_\_\_. Address \_\_ Middletown, Ct. e of Building in ft.: Front overall N/A, Depth overall N/A, Area of stories N/A Height in ft. 100 No. of rooms N/A No. of bedrooms N/A of bathrooms N/A Zoning District RA-40 . Area of Lot 20,000 sq. ft., Lot frontage 100 ft. Width 100 ft., Front Yard Depth 170 ft. Rear Yard Depth 20 ft., Side Yard Depth 18 ft. pose of building and/or use is Private Communications Tower None er Supply to consist of Sanitary facility to consist of\_ \_\_\_\_\_, Date of Sanitation Officer approval\_ arks I hereby agree to conform to all requirements of the Laws of the State of Connecticut and the inances and Regulations of the Town of Montville, and to notify the Zoning and Planning t the agree that the above described facility is to he located at the proper distance from all

mission of any alteration in the plans for which this permit is being asked. I furthermore agree eet lines as required by the Zoning Regulations or any other applicable local and state ordinances regulations and it is understood that the facility upon completion will be used in compliance with Zoning Regulations of the Town of Montville. Construction of Radio Tower for

I hereby apply for a Certificate of Use and Compliance for Howard McAuliffe described in the above application for a mit. It is my understanding that the facility can not be occupied until a Certificate of Use and pliance has been issued by the Zoning and Planning Commission

Tel. No. 848-7741

oved by Zoning Agent ng Permit No. issued. pproved by Date

| TOWN OF MONTVILLE, CONNECTICUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ZONING PERMIT NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| and the second s | Fee Paid: \$ 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dare: 3/20/85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Pemission is hereby granted to Acron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| to erect a frevale Communications tower on 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| distance from road center line/90 ft; distance from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N 18 ft; S 175 ft; for the use of the facility as a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Towed with Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AS PGR VARIANCE BY ZBA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zoning and Planning Commission, Town of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Moniville, Connecticut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| THIS PERMIT IS VALID FOR ONE YEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zoning Agent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| the owner, agrees to comply with all applicable of and the State Statutes of the State of Connecticut to be instituted. It is furthermore understood that the use and Compliance has been issued by the Zoning use similarly does require a new Certificate of Use Compliance will be issued a plot plan drawn to a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | he condition that he, as owner or as representing redinances and regulations of the Town of Montville regarding the use, occupancy and type of activity the facility can not be used until a Certificate of g and Planning Commission and that any change of a cond Compliance. Before a Certificate of Use and scale of 1" - 10" prepared and certified in 1.2 of the Zoning Regulations must be submitted to poundaries of the property and as is location(s) of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second s |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TOWN OF MONTVILLE, CONNECTICUT - C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CERTIFICATE OF USE AND COMPLIANCE NO. — Dated: 10/10/86 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Permission is hereby granted to use the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | facility located on Map 22, lot 23,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| in occordance with the application for a zonic<br>with the Zoning Regulations for the Town of N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Zoning and Planning Commission, Town of Montville                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Connecticut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · Ma I Ma - O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Agent for the Zoning and Planning Comm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| The recipient of this Certificate acce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | epts this Certificate on the condition that he, as the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | comply with all applicable ordinances and regulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s of the State of Connecticut regarding the use,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d. It is furthermore understood that any change of use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Compliance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ing issued does require a new Certificate of Use and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ter issuance of the Zoning Permit are to be clearly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| specified in the Certificate of Use and Compl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | iance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 11.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FC 700 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |





## **ENGINEERING DRAWINGS**

# dish wireless.

DISH WIRELESS, L.L.C. SITE ID:

### BOBOS00024A

DISH WIRELESS, L.L.C. SITE ADDRESS:

## **139 SHARP HILL ROAD UNCASVILLE, CT 06382**

#### CONNECTICUT CODE COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:

CODE TYPE BUILDING

2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS MECHANICAL

|              | SHEET INDEX                                       |
|--------------|---------------------------------------------------|
| SHEET NO.    | SHEET TITLE                                       |
| T-1          | TITLE SHEET                                       |
| A-1          | OVERALL AND ENLARGED SITE PLAN                    |
| A-2          | ELEVATION, ANTENNA LAYOUT AND SCHEDULE            |
| A-3          | EQUIPMENT PLATFORM AND H-FRAME DETAILS            |
|              |                                                   |
| A-4          | EQUIPMENT DETAILS                                 |
| A-5          | EQUIPMENT DETAILS                                 |
| A-6          | EQUIPMENT DETAILS                                 |
| E-1          | ELECTRICAL/FIBER ROUTE PLAN AND NOTES             |
| E-2          | ELECTRICAL DETAILS                                |
| E-3          | ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE |
|              |                                                   |
| G-1          | GROUNDING PLANS AND NOTES                         |
| G-2          | GROUNDING DETAILS                                 |
| G-3          | GROUNDING DETAILS                                 |
| RF-1         | RF CABLE COLOR CODE                               |
| RF-2         | RF PLUMBING DIAGRAM                               |
|              | LEGENO, AND ADDROGRATIONS                         |
| GN-1<br>GN-2 | LEGEND AND ABBREVIATIONS                          |
| GN-2<br>GN-3 | GENERAL NOTES GENERAL NOTES                       |
| GN-4         | GENERAL NOTES  GENERAL NOTES                      |
|              | Cartarona (10) tao                                |
|              |                                                   |
|              |                                                   |
|              |                                                   |

#### SCOPE OF WORK

THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIVALENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:

- INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR)
- INSTALL (3) PROPOSED ANTENNA MOUNTS (1 PER SECTOR)
- INSTALL PROPOSED JUMPERS
- INSTALL (6) PROPOSED RRUs (2 PER SECTOR)
- INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP)

- GROUND SCOPE OF WORK:
   INSTALL (1) PROPOSED METAL PLATFORM
- INSTALL
- PROPOSED ICE BRIDGE
  PROPOSED PPC CABINET
- INSTALL
- PROPOSED EQUIPMENT CABINET INSTALL PROPOSED POWER CONDUIT
- PROPOSED TELCO CONDUIT INSTALL (1
- INSTALL PROPOSED TELCO-FIBER BOX
- PROPOSED GPS UNIT
- INSTALL (1 PROPOSED SAFETY SWITCH (IF REQUIRED)
- INSTALL PROPOSED CIENA BOX (IF REQUIRED)

#### INSTALL (1) PROPOSED METER SOCKET

#### SITE PHOTO





#### **UNDERGROUND SERVICE ALERT CBYD 811** UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455 WWW.CBYD.COM

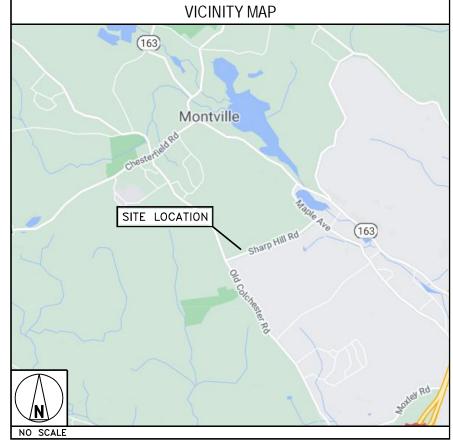
CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTIO

#### **GENERAL NOTES**

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL PROPERTY.

THE PROJECT DEPICTED IN THESE PLANS QUALIFIES AS AN ELIGIBLE FACILITIES REQUEST ENTITLED TO EXPEDITED REVIEW UNDER 47 U.S.C. § 1455(A) AS A MODIFICATION OF AN EXISTING WIRELESS TOWER THAT INVOLVES THE COLLOCATION, REMOVAL, AND/OR REPLACEMENT OF TRANSMISSION EQUIPMENT THAT IS NOT A SUBSTANTIAL CHANGE UNDER CFR § 1.61000 (B)(7).

#### 11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED


CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCFEDING WITH THE WORK.

#### SITE INFORMATION PROJECT DIRECTORY PROPERTY OWNER: DISH WIRELESS, L.L.C. ADDRESS: 139 SHARP HILL ROAD 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 UNCASVILLE, CT 06382 303-706-5008 SELF SUPPORT TOWER TOWER TYPE: TOWER OWNER: AMERICAN TOWER TOWER CO SITE ID: 370623 10 PRESIDENTIAL WAY WOBURN, MA 01801 TOWER APP NUMBER: 13693127 NB+C ENGINEERING SERVICES, LLC. COUNTY: NEW LONDON ENGINEER: 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 LATITUDE (NAD 83): 41: 26' 56 300" N 41.44897222 LONGITUDE (NAD 83): 72' 9' 4.100" W -72 15113889 ZONING JURISDICTION: CONNECTICUT SITING COUNCIL SITE ACQUISITION: DAVID GOODFELLOW DAVID.GOODFELLOW@DISH.COM ZONING DISTRICT: CONSTRUCTION MANAGER: CHAD WILCOX PARCEL NUMBER: 86-022/023-000 CHAD WILCOX@DISH.COM ARVIN SEBASTIAN OCCUPANCY GROUP: RF ENGINEER: ARVIN.SEBASTION@DISH.COM CONSTRUCTION TYPE:

#### **DIRECTIONS**

TELEPHONE COMPANY: FRONTIER COMMUNICATIONS

FROM DOWNTOWN NEW LONDON CTSTART OUT GOING NORTH ON HUNTINGTON ST TOWARD GOVERNOR WINTHROP BLVD. TURN RIGHT ONTO WILLIAMS ST. TURN RIGHT ONTO MOHEGAN AVE. MOHEGAN AVE BECOMES MOHEGAN AVENUE PKWY/CT-32. TURN LEFT ONTO RICHARDS GROVE RD. TURN RIGHT ONTO OLD NORWICH RD. TURN LEFT ONTO OLD COLCHESTER RD. TURN RIGHT ONTO SHARP HILL RD. 163 SHARP HILL RD, UNCASVILLE, CT 06382-2037, 163 SHARP HILL RD IS ON THE LEFT.





5701 SOUTH SANTA FE DRIVE



8601 SIX FORKS ROAD, SUITE 540

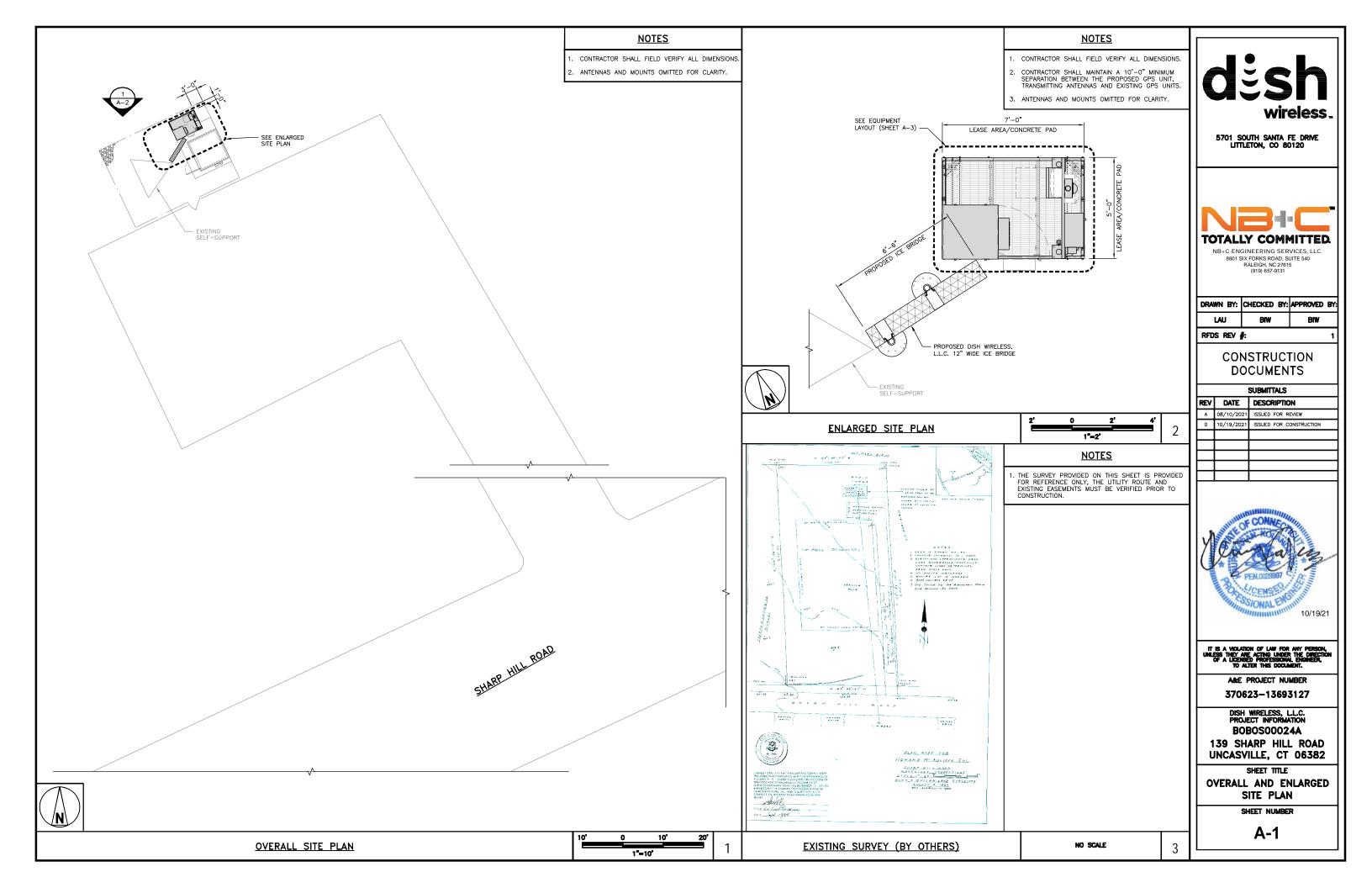
| DRAWN BY: | CHECKED BY: | APPROVED BY: |
|-----------|-------------|--------------|
| LAU       | BIW         | BIW          |
| RFDS REV  | ļ:          | 1            |

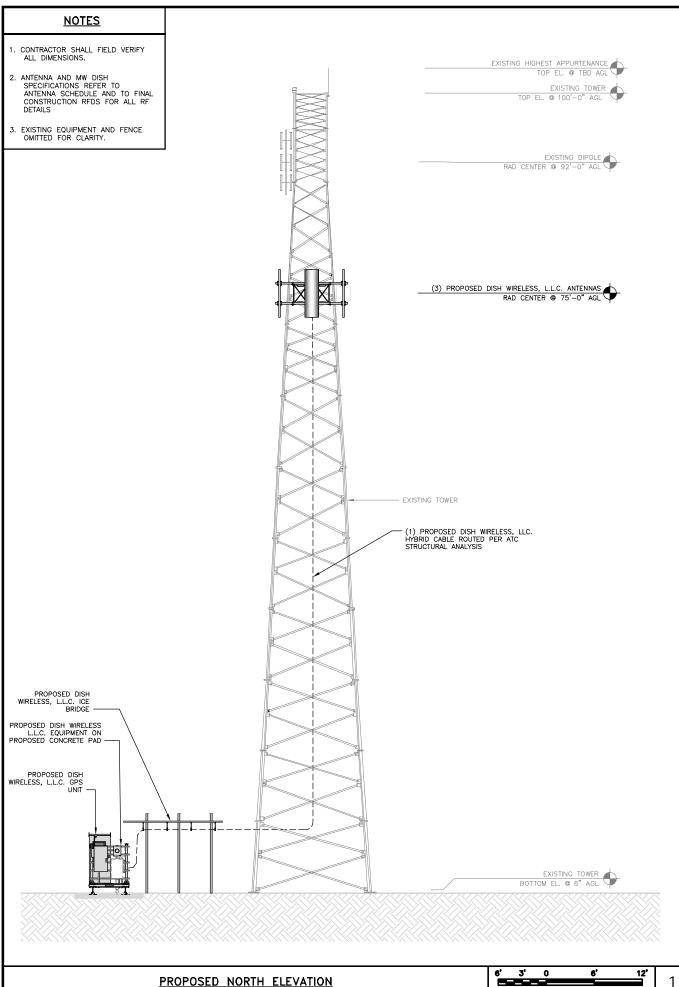
#### CONSTRUCTION **DOCUMENTS**

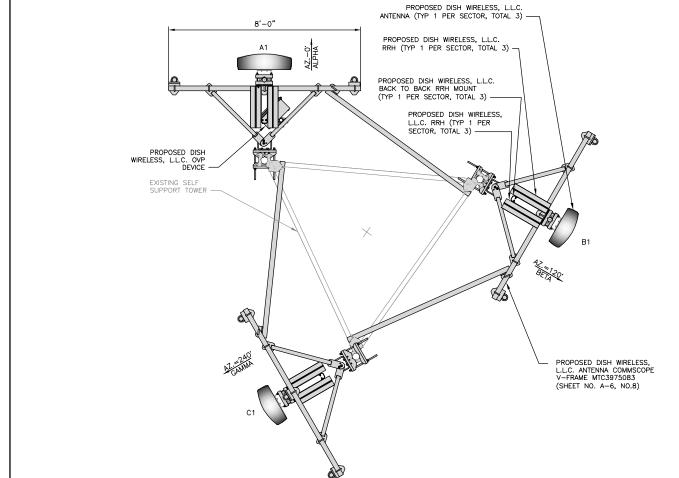
|                      | SUBMITTALS |                         |  |  |  |  |  |  |  |  |
|----------------------|------------|-------------------------|--|--|--|--|--|--|--|--|
| REV DATE DESCRIPTION |            |                         |  |  |  |  |  |  |  |  |
| Α                    | 08/10/2021 | ISSUED FOR REVIEW       |  |  |  |  |  |  |  |  |
| 0                    | 10/19/2021 | ISSUED FOR CONSTRUCTION |  |  |  |  |  |  |  |  |
|                      |            |                         |  |  |  |  |  |  |  |  |
|                      |            |                         |  |  |  |  |  |  |  |  |
|                      |            |                         |  |  |  |  |  |  |  |  |
|                      |            |                         |  |  |  |  |  |  |  |  |
|                      |            |                         |  |  |  |  |  |  |  |  |

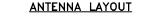


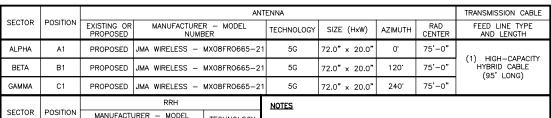
A&E PROJECT NUMBER


370623-13693127


DISH WIRELESS, L.L.C. PROJECT INFORMATION BOBOSO0024A 139 SHARP HILL ROAD UNCASVILLE, CT 06382


> SHEET TITLE TITLE SHEET


SHEET NUMBER


T-1











|   | GAMMA  | C1       | PROPOSED       | JMA WIRELESS -        | MX08FR0665-2 | 1 |  |
|---|--------|----------|----------------|-----------------------|--------------|---|--|
|   |        | POSITION | RRH            |                       |              |   |  |
|   | SECTOR |          | MANUFACTU<br>N | TECHNOLOGY            | 1            |   |  |
| I | ALPHA  | A1       | FUJITSU —      | TA08025-B605          | N66,N70      | 2 |  |
|   | ALFTIA | A1       | FUJITSU -      | TA08025-B604          | N29,N71      |   |  |
|   | BETA   | B1       | FUJITSU -      | TA08025-B605          | N66,N70      |   |  |
|   | DEIA   | B1       | FUJITSU —      | TA08025-B604          | N29,N71      |   |  |
|   | GAMMA  | C1       | FUJITSU —      | TA08025-B605          | N66,N70      |   |  |
|   | GAMIMA | C1       | FUJITSU —      | TA08025-B604          | N29,N71      |   |  |
|   |        |          |                | OVP                   |              |   |  |
|   | SECTOR | POSITION |                | JRER — MODEL<br>UMBER | TECHNOLOGY   |   |  |
| ı | ALPHA  | -        | RAYCAP - RE    | DIDC-9181-PF-48       |              |   |  |

- CONTRACTOR TO REFER TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS.

ANTENNA AND RRH MODELS MAY CHANGE DUE TO EQUIPMENT AVAILABILITY. ALL EQUIPMENT CHANGES MUST BE APPROVED AND REMAIN IN COMPLIANCE WITH THE PROPOSED DESIGN AND STRUCTURAL ANALYSES.

SHEET TITLE

SHEET NUMBER

**A-2** 

ANTENNA SCHEDULE

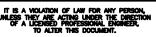
1"=6"

NO SCALE



5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

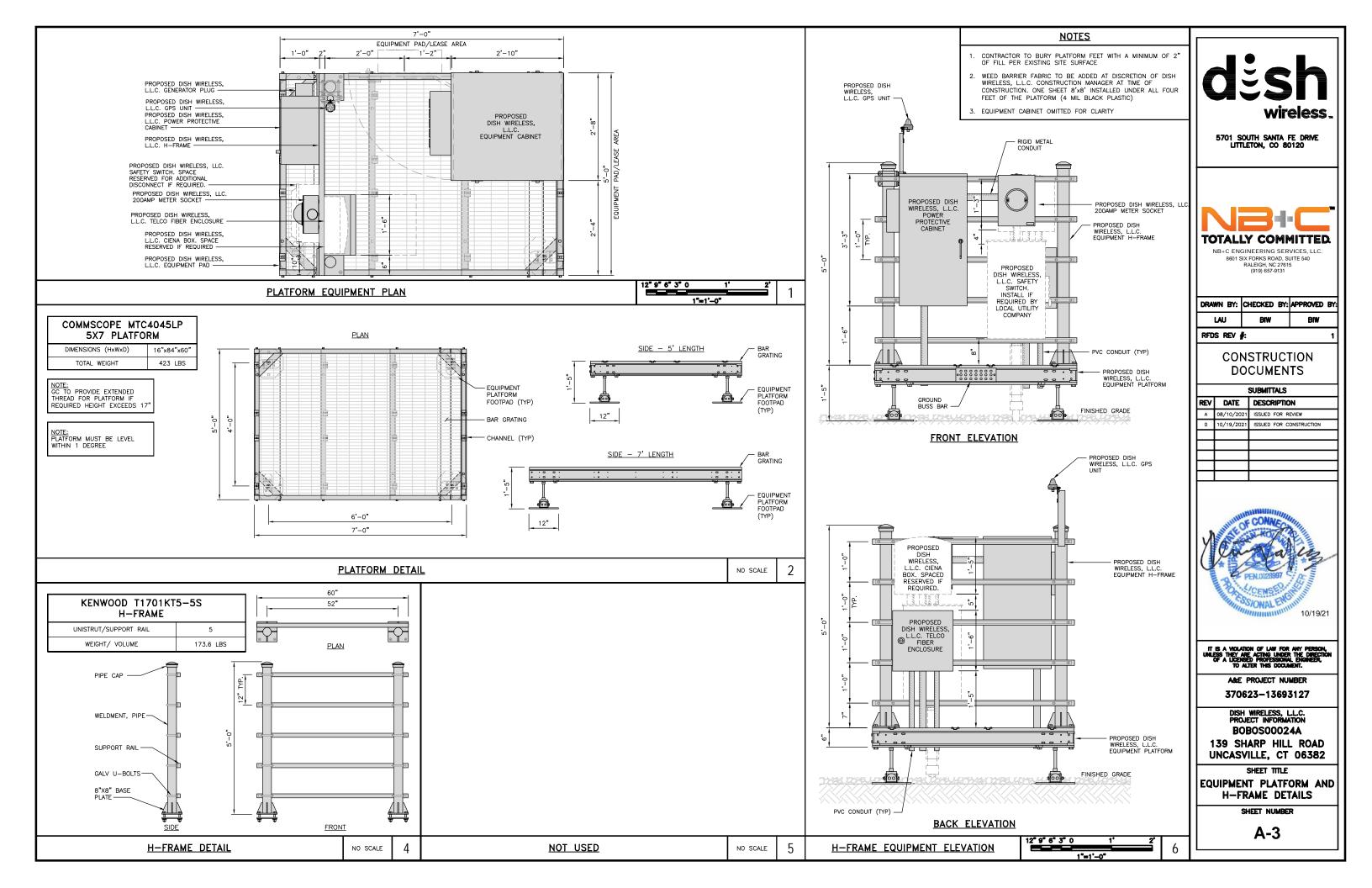


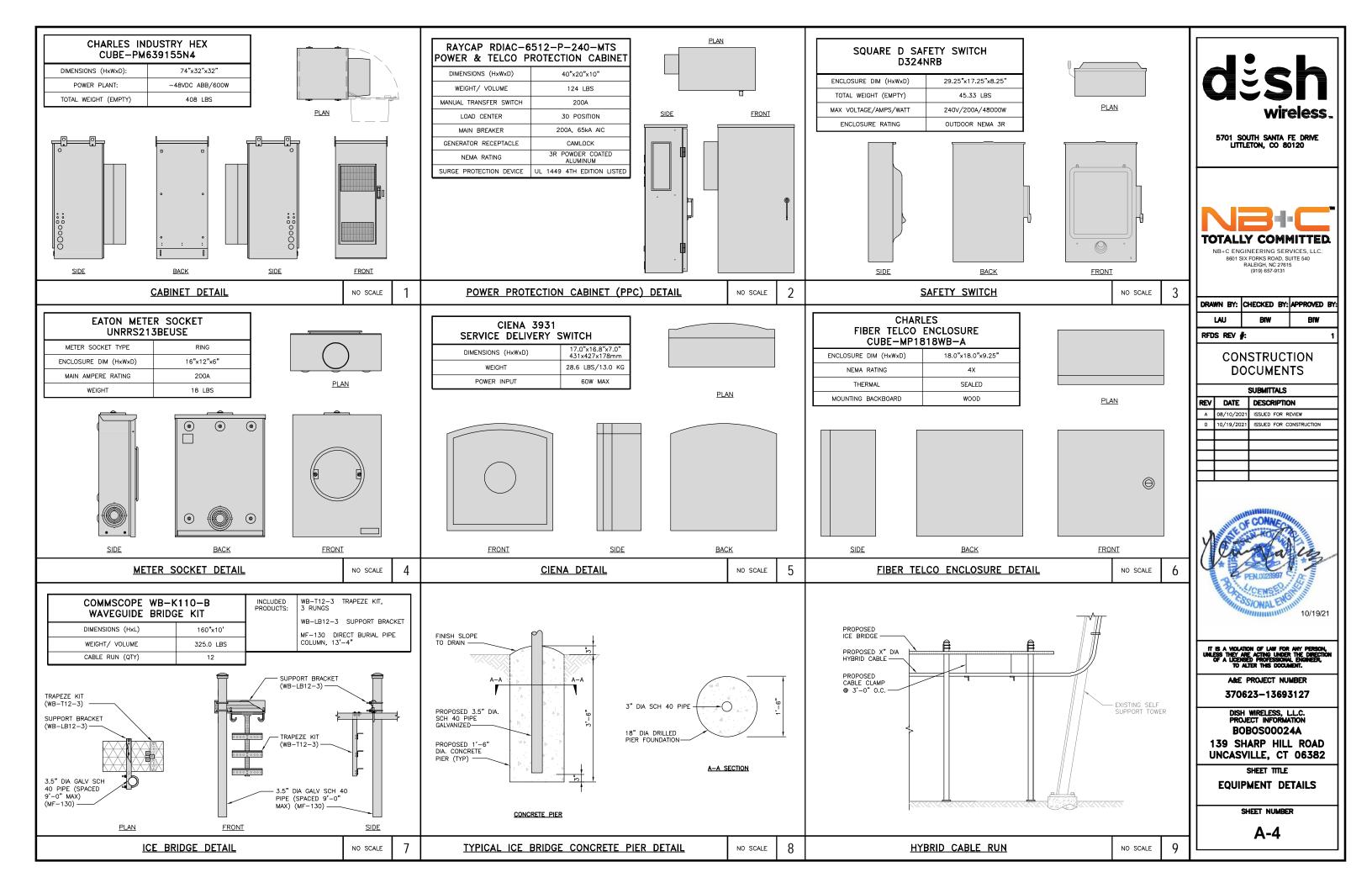

NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

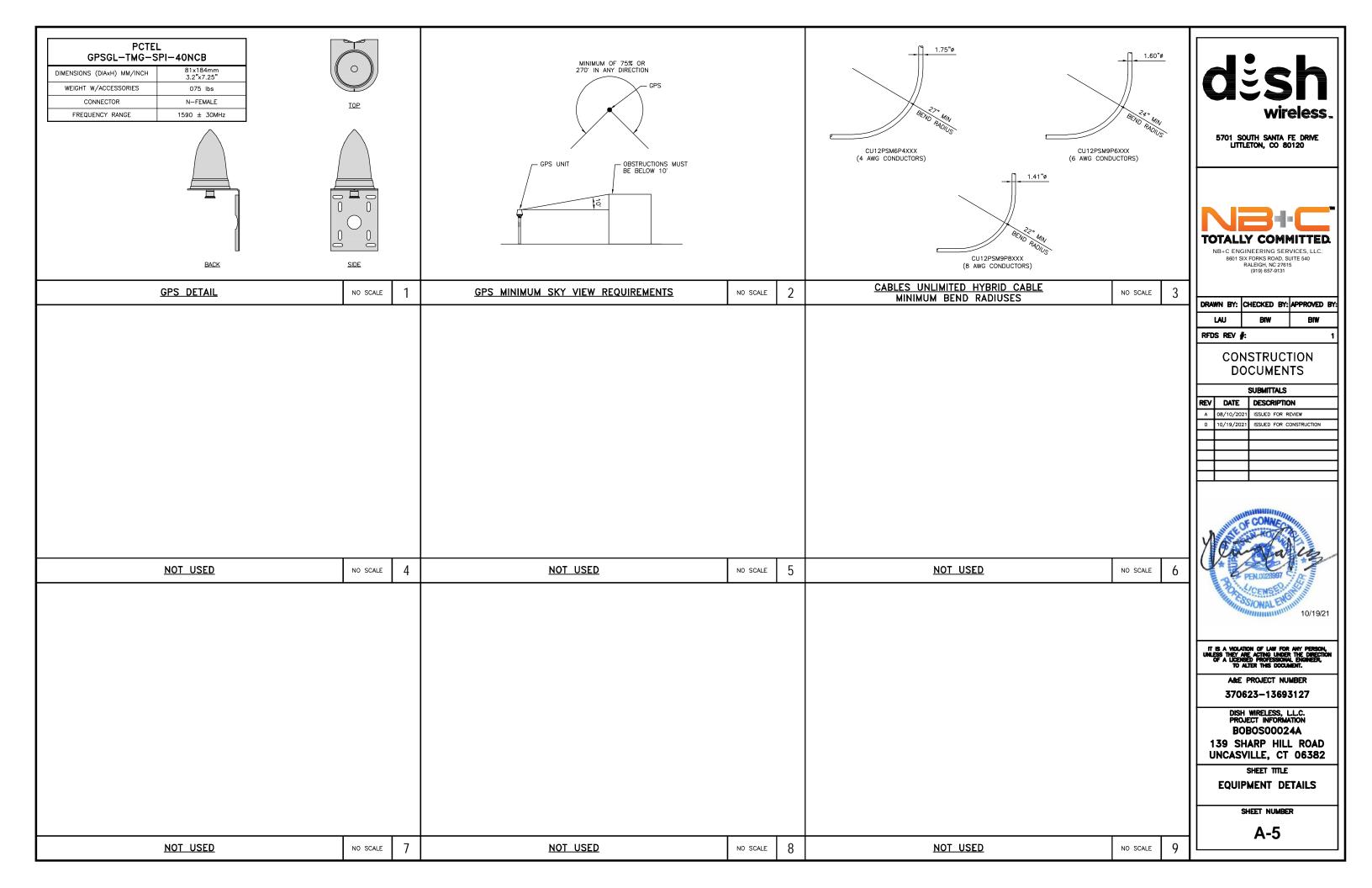
| DRAWN BY: | CHECKED BY: | APPROVED BY: |
|-----------|-------------|--------------|
| LAU       | BIW         | BIW          |
| RFDS REV  | <u> </u> :  | 1            |

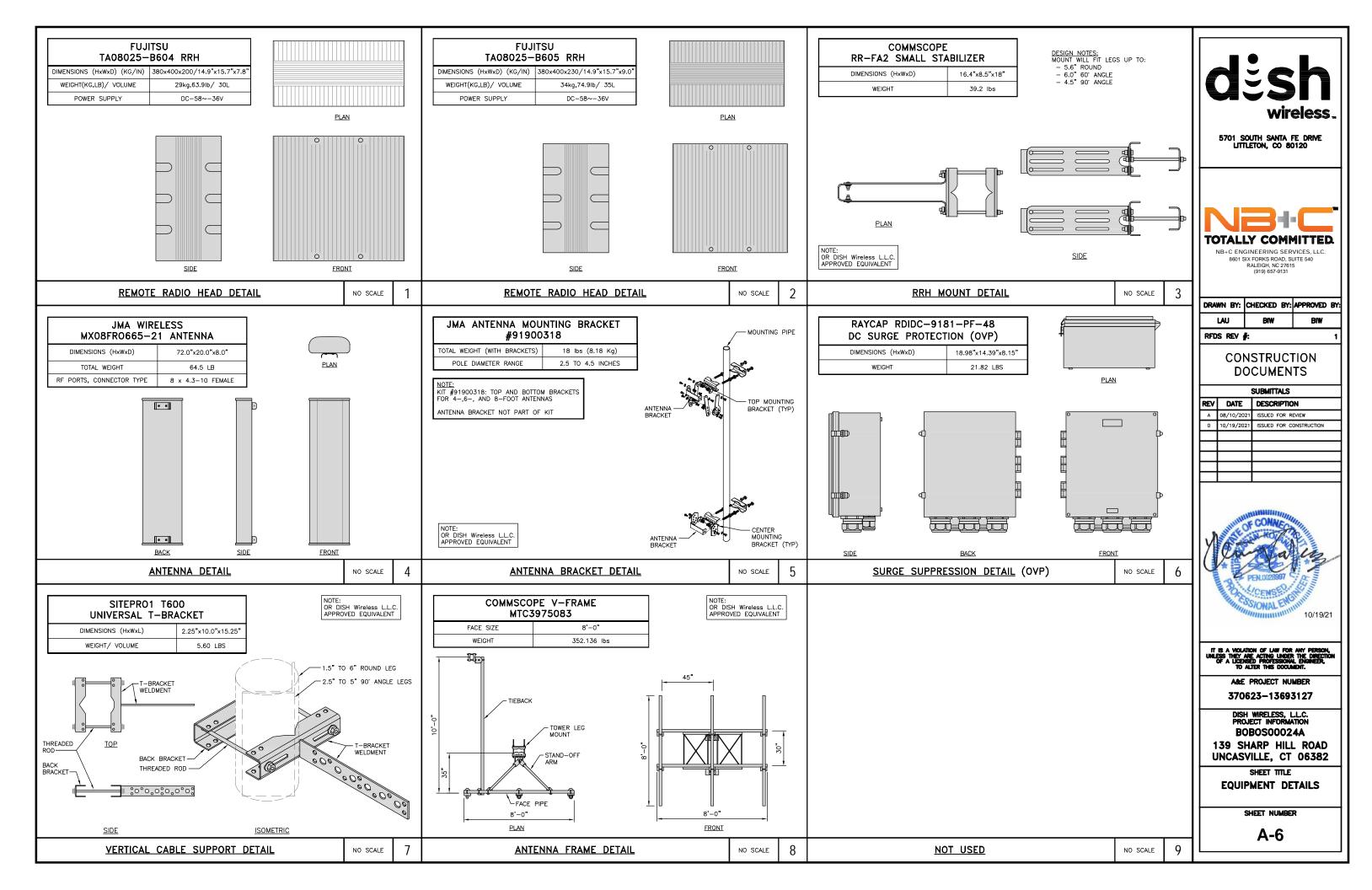
#### CONSTRUCTION DOCUMENTS

| SUBMITTALS           |            |                         |  |  |  |  |  |  |  |  |
|----------------------|------------|-------------------------|--|--|--|--|--|--|--|--|
| REV DATE DESCRIPTION |            |                         |  |  |  |  |  |  |  |  |
| Α                    | 08/10/2021 | ISSUED FOR REVIEW       |  |  |  |  |  |  |  |  |
| 0                    | 10/19/2021 | ISSUED FOR CONSTRUCTION |  |  |  |  |  |  |  |  |
|                      |            |                         |  |  |  |  |  |  |  |  |
|                      |            |                         |  |  |  |  |  |  |  |  |
|                      |            |                         |  |  |  |  |  |  |  |  |
|                      |            |                         |  |  |  |  |  |  |  |  |
|                      |            |                         |  |  |  |  |  |  |  |  |





A&E PROJECT NUMBER 370623-13693127


DISH WIRELESS, L.L.C. PROJECT INFORMATION BOBOSO0024A 139 SHARP HILL ROAD UNCASVILLE, CT 06382

**ELEVATION, ANTENNA** LAYOUT AND SCHEDULE









#### NOTES

- . CONTRACTOR SHALL FIELD VERIFY ALL PROPOSED UNDERGROUND UTILITY CONDUIT ROUTE.
- ANTENNAS AND MOUNTS OMITTED FOR CLARITY.

PROPOSED UNDERGROUND FIBER CONDUIT (LENGTH: TBD±) (COORDINATE WITH LOCAL

PROPOSED UNDERGROUND POWER CONDUIT (LENGTH: TRD±)

(COORDINATE WITH LOCAL UTILITY COMPANY)

UTILITY COMPANY)

PROPOSED METER & DISCONNECT (COORDINATE WITH LOCAL UTILITY

DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING  $\pm 24V$  AND  $\pm 48V$  CONDUCTORS. RED MARKINGS SHALL IDENTIFY  $\pm 24V$  AND BLUE MARKINGS SHALL IDENTIFY  $\pm 48V$ .

- CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
- 2. ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS.
- 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
- 4. CONDUIT ROUGH—IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS. VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
- 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
- 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
- 7. CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
- 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
- 9. INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250. THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL DISCONNECT SWITCHES, AND EQUIPMENT CABINETS.
- 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.
- 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT.
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS.
- 13. ALL TRENCHES IN COMPOUND TO BE HAND DUG

NO SCALE

NOTES

 THE SURVEY PROVIDED ON THIS SHEET IS PROVIDED FOR REFERENCE ONLY, THE UTILITY ROUTE AND EXISTING EASEMENTS MUST BE VERIFIED PRIOR TO CONSTRUCTION.



5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120



NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

| DRAWN BY: | CHECKED BY: | APPROVED BY: |
|-----------|-------------|--------------|
| LAU       | BIW         | BIW          |
| RFDS REV  | f:          | 1            |

## CONSTRUCTION DOCUMENTS

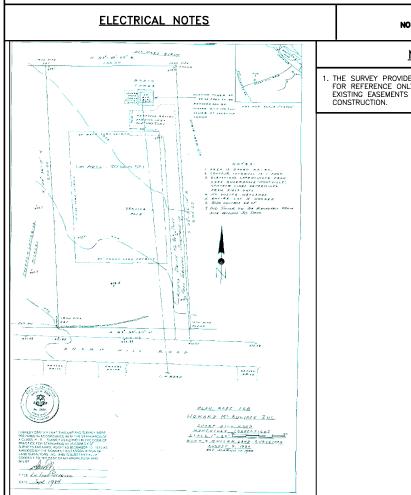
|     | SUBMITTALS       |                         |  |  |  |  |  |  |
|-----|------------------|-------------------------|--|--|--|--|--|--|
| REV | DATE DESCRIPTION |                         |  |  |  |  |  |  |
| Α   | 08/10/2021       | ISSUED FOR REVIEW       |  |  |  |  |  |  |
| 0   | 10/19/2021       | ISSUED FOR CONSTRUCTION |  |  |  |  |  |  |
|     |                  |                         |  |  |  |  |  |  |
|     |                  |                         |  |  |  |  |  |  |
|     |                  |                         |  |  |  |  |  |  |
|     |                  | ·                       |  |  |  |  |  |  |



#### IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTIO OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

A&E PROJECT NUMBER

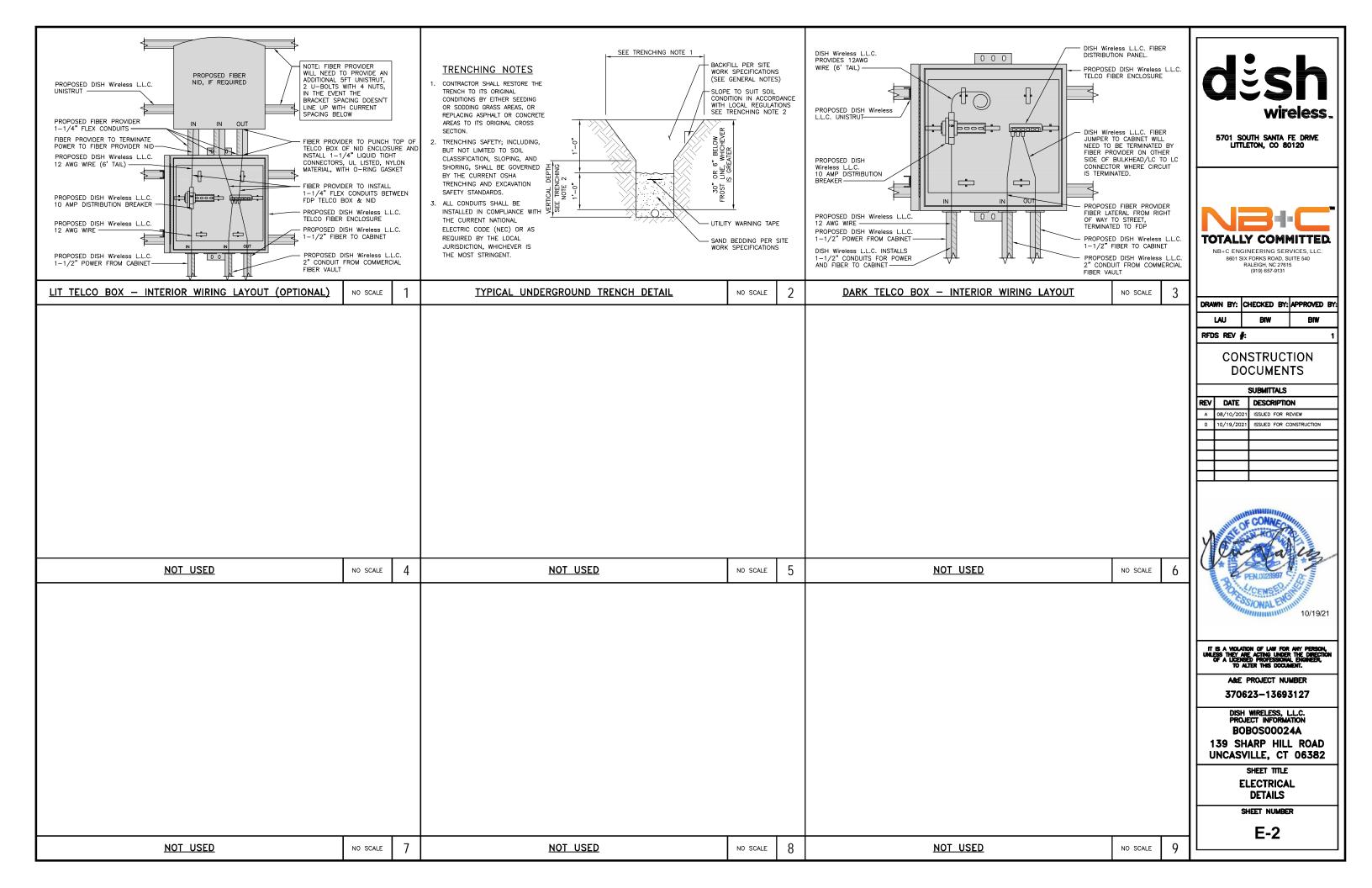
370623-13693127

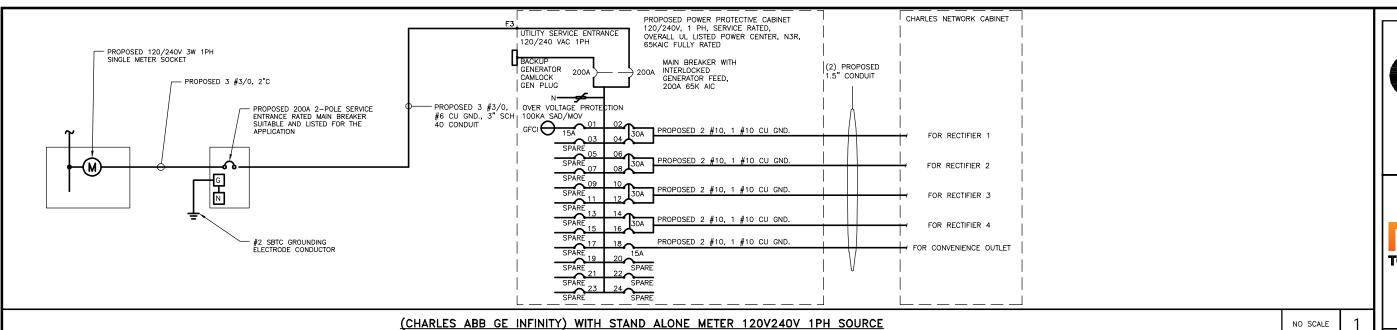

DISH WIRELESS, L.L.C.
PROJECT INFORMATION

BOBOSO0024A 139 SHARP HILL ROAD UNCASVILLE, CT 06382

SHEET TITLE
ELECTRICAL/FIBER ROUTE
PLAN AND NOTES

SHEET NUMBER


E-1




UTILITY ROUTE PLAN

EXISTING SURVEY (BY OTHERS)

NO SCALE





|                   | PROPOSED PANEL SCHEDULE    |             |     |     |          |                                                                                   |      |           |        |                      |                     |             |
|-------------------|----------------------------|-------------|-----|-----|----------|-----------------------------------------------------------------------------------|------|-----------|--------|----------------------|---------------------|-------------|
| LOAD SERVED       | VOLT AMPS<br>(WATTS)       |             |     |     | TRIP CK  |                                                                                   |      | CKT       |        | VOLT AMPS<br>(WATTS) |                     | LOAD SERVED |
|                   | L1                         | L2          |     | "   |          |                                                                                   | "    |           | L1     | L2                   |                     |             |
| GFCI IN PPC CAB.  | 1440A                      |             | 15A | 1   | M        | $^{A}$                                                                            | 2    |           | 2880   |                      | ABB/GE INFINITY     |             |
| -SPARE-           |                            |             |     | 3   | $\sim$   | B                                                                                 | 4    | 30A       |        | 2880                 | RÉCTIFIER 1         |             |
| -SPARE-           |                            |             |     | 5   | $\sim$   | $A \vdash \uparrow \uparrow$                                                      | - 6  | 30A       | 2880   |                      | ABB/GE INFINITY     |             |
| -SPARE-           |                            |             |     | 7   | М        | ΒĻ                                                                                | - 8  | JUA       |        | 2880                 | RECTIFIER 2         |             |
| -SPARE-           |                            |             |     | 9   | М        | <u> </u>                                                                          | 10   | 30A       | 2880   |                      | ABB/GE INFINITY     |             |
| -SPARE-           |                            |             |     | 11  | М        | $B \vdash \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | 12   | 30A       |        | 2880                 | RECTIFIER 3         |             |
| -SPARE-           |                            |             |     | 13  | М        | <u> </u>                                                                          | 14   | 30A       | 2880   |                      | ABB/GE INFINITY     |             |
| -SPARE-           |                            |             |     | 15  | $\sim$   | В ├                                                                               | 16   | 307       |        | 2880                 | RECTIFIER 4         |             |
| -SPARE-           |                            |             |     | 17  | $\sim$   |                                                                                   | 18   | 15A       | 1920   |                      | CHARLES GFCI OUTLET |             |
| -SPARE-           |                            |             |     | 19  | $\sim$   | в ├∕                                                                              | 20   |           |        |                      | -SPARE-             |             |
| -SPARE-           |                            |             |     | 21  | $\sim$   | $^{\perp}$                                                                        | - 22 |           |        |                      | -SPARE-             |             |
| -SPARE-           |                            |             |     | 23  | $\sim$   | в ├                                                                               | 24   |           |        |                      | -SPARE-             |             |
| VOLT AMPS         | 1440                       |             |     |     |          |                                                                                   |      |           | 12960A | 11520                |                     |             |
| 200A MCB, 1¢, 3W, | 200A MCB, 1¢, 3W, 120/240V |             |     |     |          | L2                                                                                |      |           |        |                      |                     |             |
| MB RATING: 65,000 | MB RATING: 65,000 AIC      |             | 144 | 00  | 11       | 520                                                                               | VOL  | VOLT AMPS |        |                      |                     |             |
|                   | ·                          |             |     | 0   |          | 96                                                                                | AMF  | AMPS      |        |                      |                     |             |
|                   |                            | 120         |     | MAX | MAX AMPS |                                                                                   |      |           |        |                      |                     |             |
|                   |                            | 150 MAX 125 |     |     | 125%     |                                                                                   |      |           |        |                      |                     |             |

PANEL SCHEDULE
(CHARLES ABB GE INFINITY) WITH STAND ALONE METER 120V240V 1PH SOURCE

NO SCALE 2

CESIN wireless...

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120



NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

DRAWN BY: CHECKED BY: APPROVED BY:

LAU BIW BIW

RFDS REV #: 1

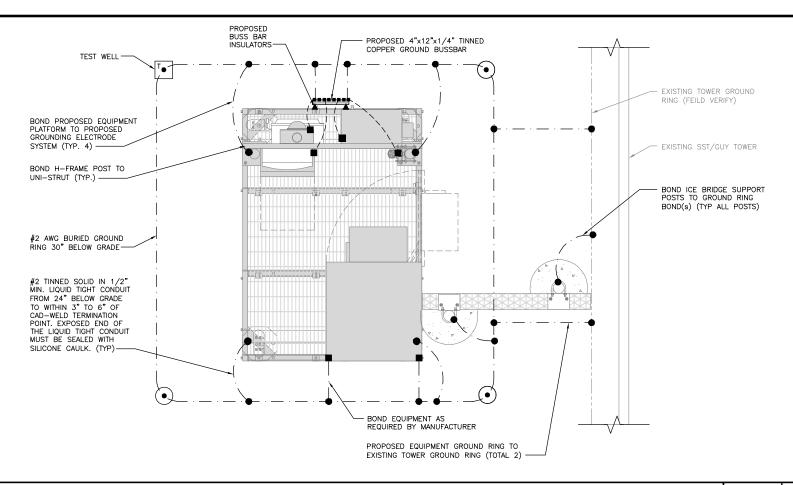
## CONSTRUCTION DOCUMENTS

|     |            | SUBMITTALS              |
|-----|------------|-------------------------|
| REV | DATE       | DESCRIPTION             |
| Α   | 08/10/2021 | ISSUED FOR REVIEW       |
| 0   | 10/19/2021 | ISSUED FOR CONSTRUCTION |
|     |            |                         |
|     |            |                         |
|     |            |                         |
|     |            |                         |
|     |            |                         |



IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

A&E PROJECT NUMBER 370623-13693127

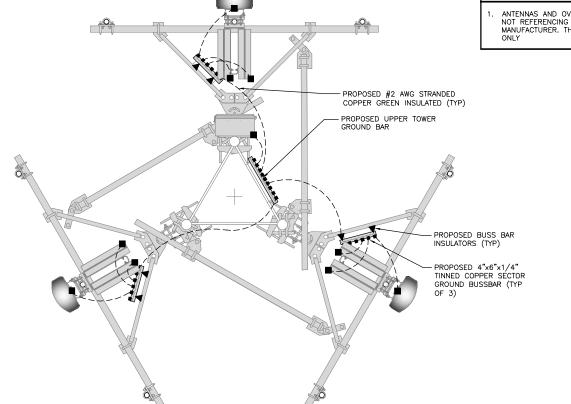

DISH WIRELESS, L.L.C.
PROJECT INFORMATION
BOBOSO0024A
139 SHARP HILL ROAD
UNCASVILLE, CT 06382

SHEET TITLE
ELECTRICAL ONE-LINE, FAULT
CALCS & PANEL SCHEDULE

SHEET NUMBER

E-3

NOT USED NO SCALE 3 NO SCALE




#### TYPICAL EQUIPMENT GROUNDING PLAN

NO SCALE

#### **NOTES**

ANTENNAS AND OVP SHOWN ARE GENERIC AND NOT REFERENCING TO A SPECIFIC MANUFACTURER. THIS LAYOUT IS FOR REFERENCE



EXOTHERMIC CONNECTION

MECHANICAL CONNECTION

GROUND BUS BAR

GROUND ROD

TEST GROUND ROD WITH INSPECTION SLEEVE

---- #6 AWG STRANDED & INSULATED

— · — · — #2 AWG SOLID COPPER TINNED

▲ BUSS BAR INSULATOR

#### **GROUNDING LEGEND**

- 1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY
- 2. CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM. GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH WIRELESS, L.L.C. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS.
- 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED.

#### **GROUNDING KEY NOTES**

- (A) EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM THE EXTERIOR WALL OR FOOTING.
- TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS, B TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED ANDOND AN ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS.
- (c) Interior ground ring: #2 awg stranded green insulated copper conductor extended around the perimeter of the equipment area. All non-telecommunications related metallic objects found within a site shall be grounded to the interior ground ring with #6 awg stranded green
- **b** <u>Bond to interior ground ring;</u> #2 awg solid tinned copper wire primary bonds shall be provided at least at four points on the interior ground ring, located at the corners of the
- (E) GROUND ROD: UL LISTED COPPER CLAD STEEL. MINIMUM 5/8" DIAMETER BY EIGHT FEET LONG. GROUND RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. GROUND RODS SHALL BE DRIVEN TO THE DEPTH OF GROUND RING CONDUCTOR.
- CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GREEN INSULATED COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUCTORS.
- (G) HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH.
- (H) EXTERIOR CABLE ENTRY PORT GROUND BARS; LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING, BOND TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTORS WITH AN EXOTHERMIC WELD AND
- JELCO GROUND BAR: BOND TO BOTH CELL REFERENCE GROUND BAR OR EXTERIOR GROUND RING.
- (K) FRAME BONDING: THE BONDING POINT FOR TELECOM EQUIPMENT FRAMES SHALL BE THE GROUND BUS THAT IS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEWORK.
- L INTERIOR UNIT BONDS: METAL FRAMES, CABINETS AND INDIVIDUAL METALLIC UNITS LOCATED WITH THE AREA OF THE INTERIOR GROUND RING REQUIRE A #6 AWG STRANDED GREEN INSULATED COPPER BOND TO THE
- FENCE AND GATE GROUNDING: METAL FENCES WITHIN 7 FEET OF THE EXTERIOR GROUND RING OR OBJECTS BONDED TO THE EXTERIOR GROUND RING SHALL BE BONDED TO THE GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEEDING 25 FEET. BONDS SHALL BE MADE AT EACH GATE POST AND ACROSS GATE OPENINGS.
- (N) EXTERIOR UNIT BONDS: METALLIC OBJECTS, EXTERNAL TO OR MOUNTED TO THE BUILDING, SHALL BE BONDED TO THE EXTERIOR GROUND RING. USING #2 TINNED SOLID COPPER WIRE
- (P) ICE BRIDGE SUPPORTS: EACH ICE BRIDGE LEG SHALL BE BONDED TO THE GROUND RING WITH #2 AWG BARE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRIDGE LEG AND BURIED
- DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEMENTS AND INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICE CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPPED WITH A MASTER DC SYSTEM RETURN GROUND CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED TO THE CELL SITE REFERENCE GROUND BAR
- (R) TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICALLY BONDED TO PROPOSED ANTENNA MOUNT COLLAR. REFER TO DISH WIRELESS, L.L.C. GROUNDING NOTES.

wireless

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120



NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

| DRAWN BY: | CHECKED BY: | APPROVED BY: |
|-----------|-------------|--------------|
| LAU       | BIW         | BIW          |
| RFDS REV  | ļ:          | 1            |

#### CONSTRUCTION **DOCUMENTS**

|     |            | SUBMITTALS              |
|-----|------------|-------------------------|
| REV | DATE       | DESCRIPTION             |
| Α   | 08/10/2021 | ISSUED FOR REVIEW       |
| 0   | 10/19/2021 | ISSUED FOR CONSTRUCTION |
|     |            |                         |
|     |            |                         |
|     |            |                         |
|     |            |                         |
|     |            |                         |

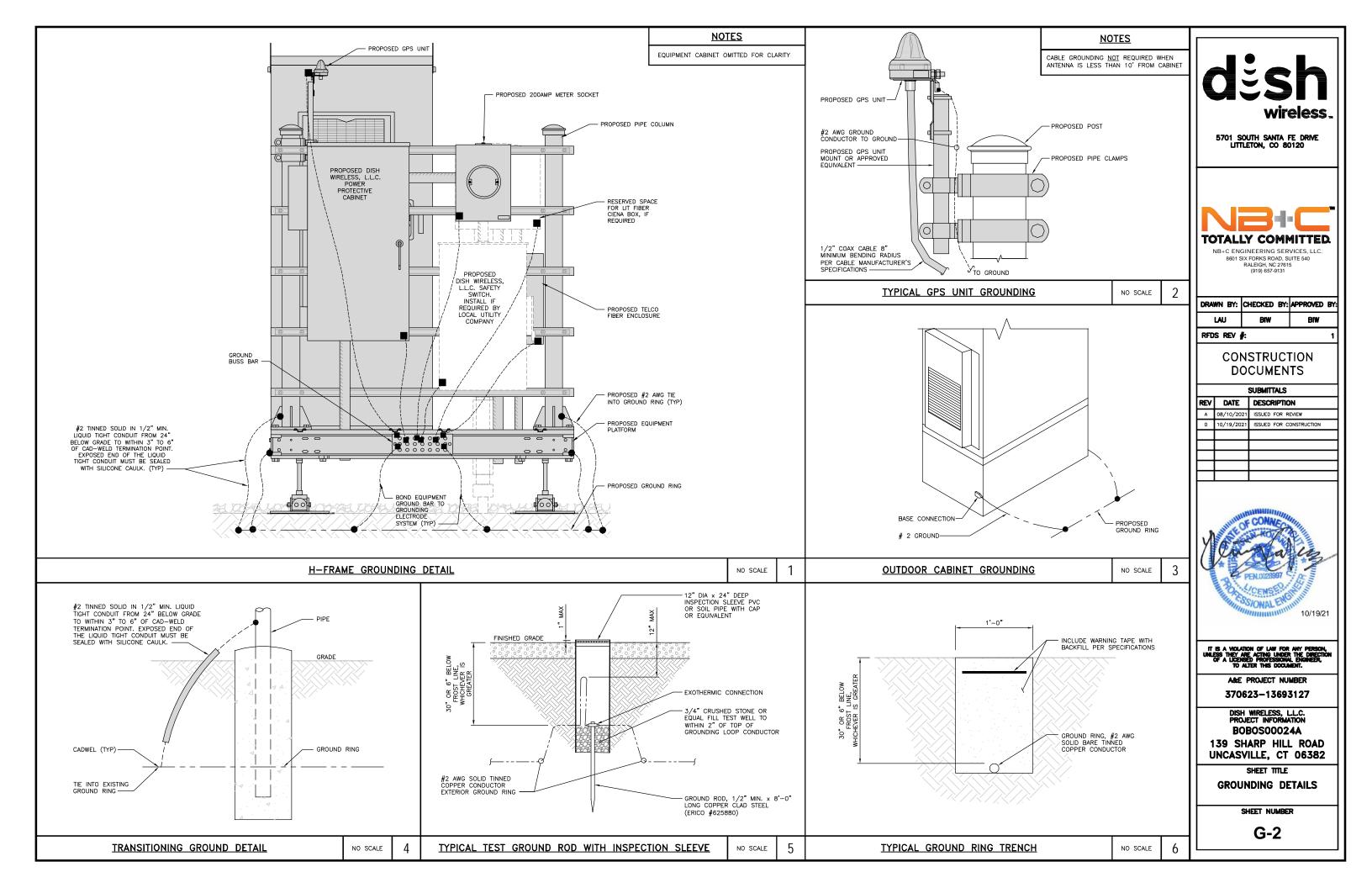


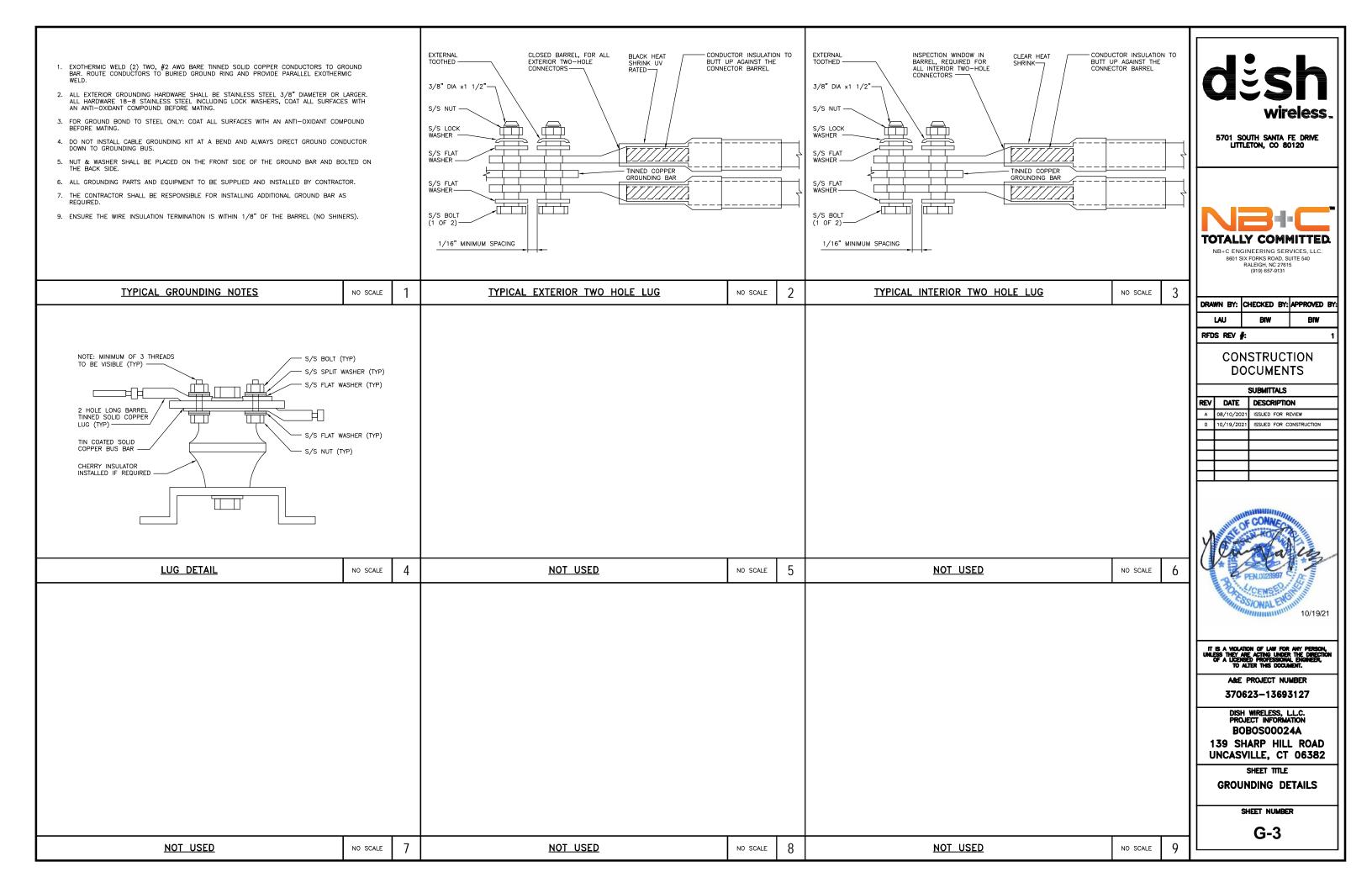
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTIO OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

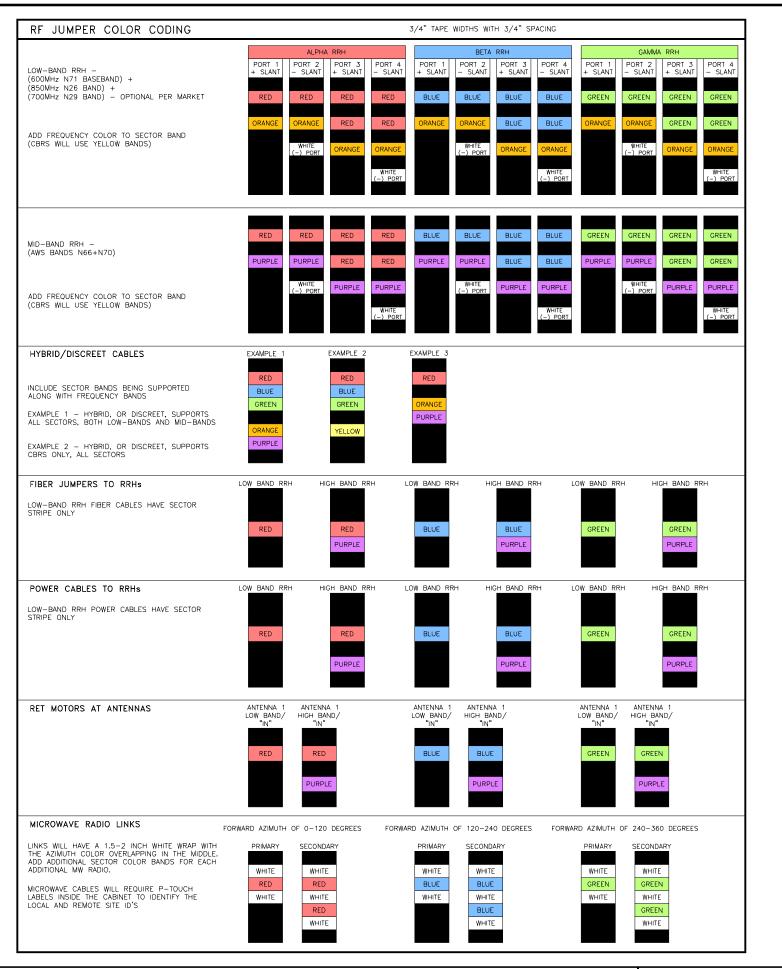
A&E PROJECT NUMBER

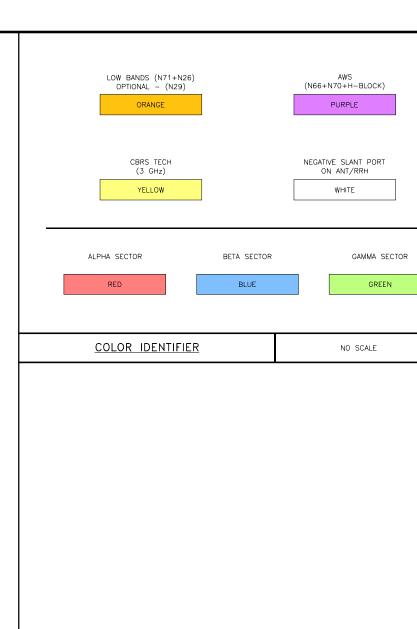
370623-13693127

DISH WIRELESS, L.L.C. PROJECT INFORMATION BOBOSO0024A 139 SHARP HILL ROAD UNCASVILLE, CT 06382


SHEET TITLE **GROUNDING PLANS** AND NOTES


SHEET NUMBER


**G-1** 


**GROUNDING KEY NOTES** 

NO SCALE









NOT USED

NO SCALE



5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120



NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

| DRAWN | BY: | CHECKED | BY: | APPROVED | BY: |
|-------|-----|---------|-----|----------|-----|
| LAU   |     | BIW     |     | BI₩      |     |

RFDS REV #:

## CONSTRUCTION DOCUMENTS

|   |     |            | SUBMITTALS              |
|---|-----|------------|-------------------------|
|   | REV | DATE       | DESCRIPTION             |
| П | Α   | 08/10/2021 | ISSUED FOR REVIEW       |
| П | 0   | 10/19/2021 | ISSUED FOR CONSTRUCTION |
| П |     |            |                         |
| П |     |            |                         |
| П |     |            |                         |
| П |     |            |                         |
|   |     |            |                         |



IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

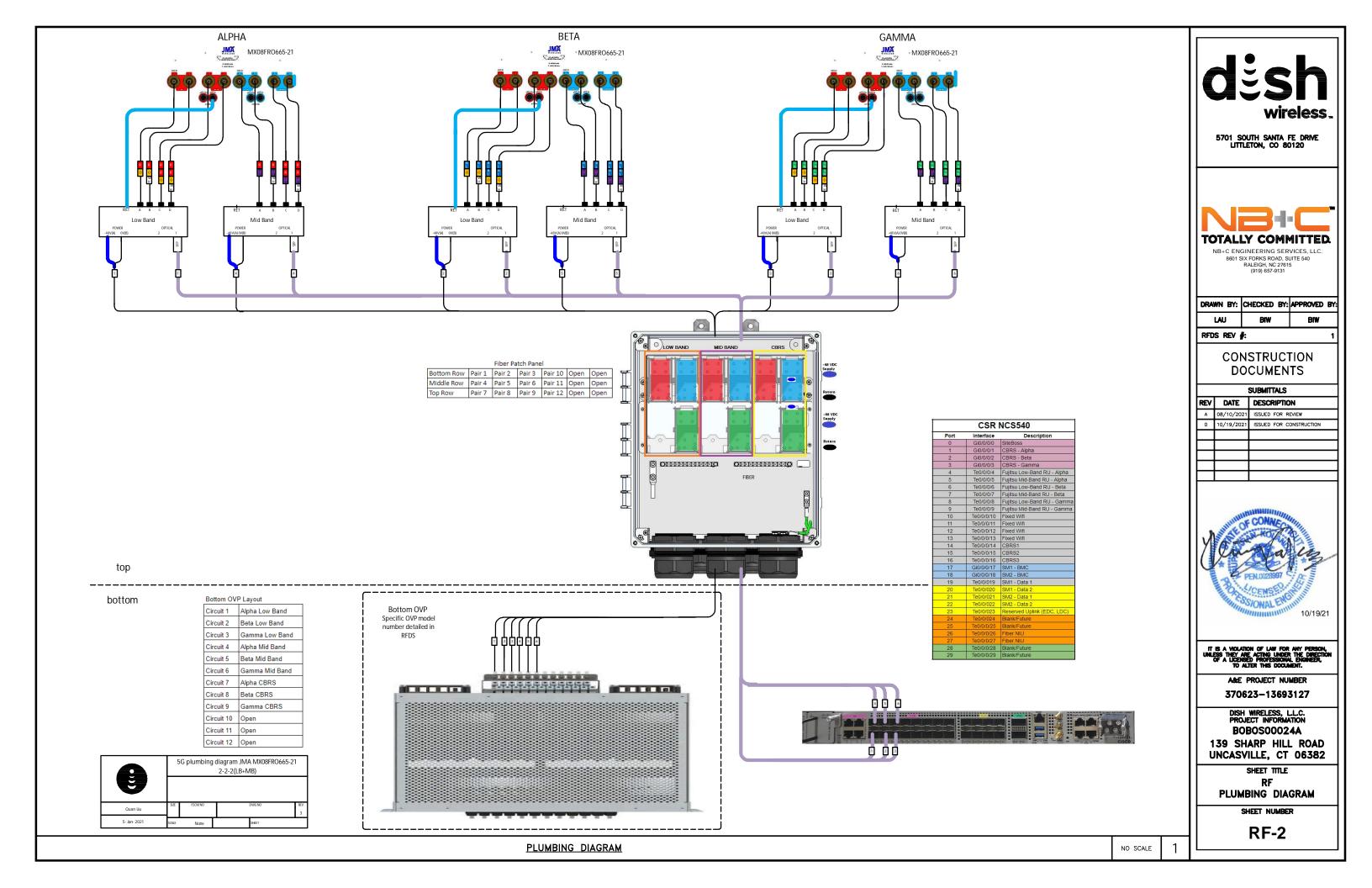
A&E PROJECT NUMBER

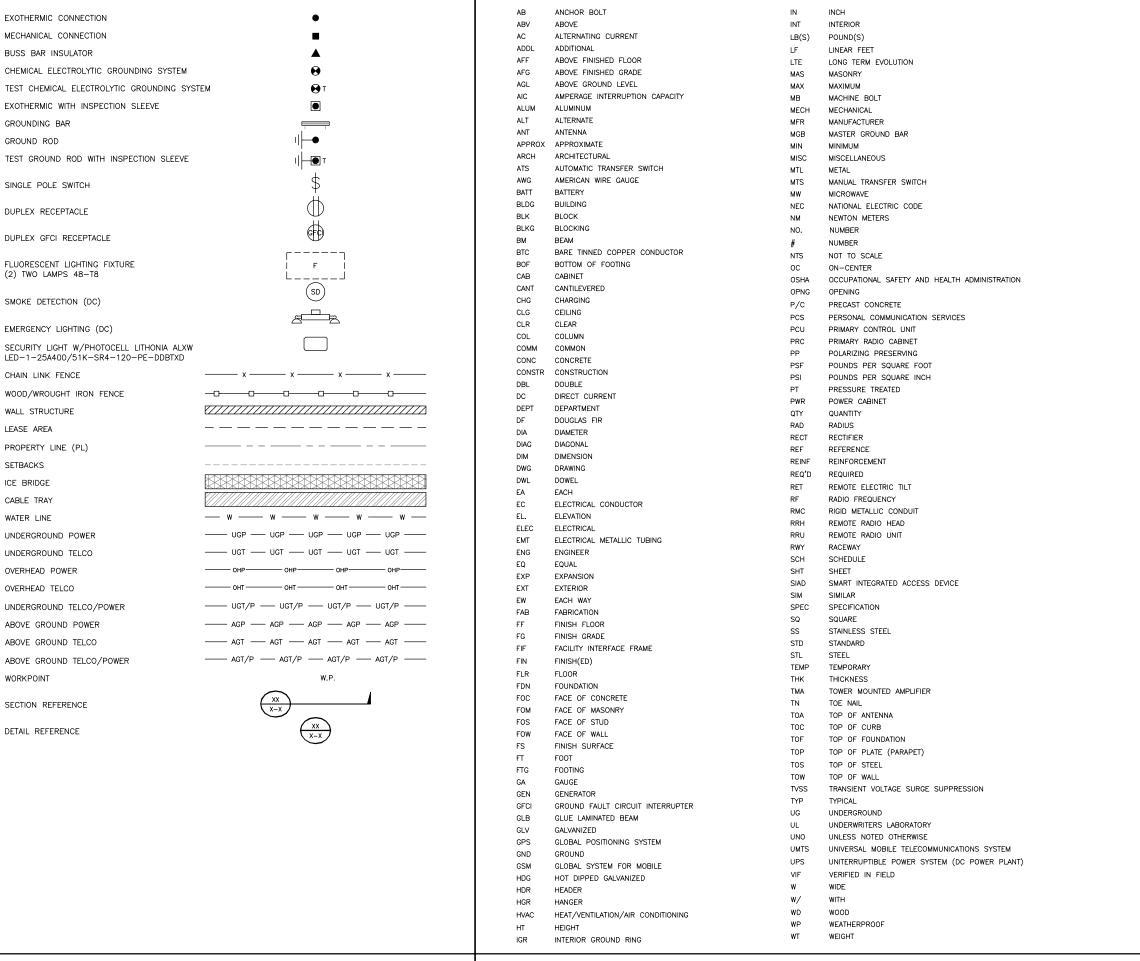
370623-13693127

DISH WIRELESS, L.L.C. PROJECT INFORMATION

BOBOSO0024A

139 SHARP HILL ROAD UNCASVILLE, CT 06382


SHEET TITLE RF


CABLE COLOR CODES

SHEET NUMBER

RF-1

RF CABLE COLOR CODES NO SCALE 1 NOT USED NO SCALE 4







5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120



NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

| DRAWN BY: | CHECKED BY: | APPROVED BY: |
|-----------|-------------|--------------|
| LAU       | BIW         | BIW          |
|           |             |              |

RFDS REV #:

## CONSTRUCTION DOCUMENTS

|     |            | SUBMITTALS              |
|-----|------------|-------------------------|
| REV | DATE       | DESCRIPTION             |
| Α   | 08/10/2021 | ISSUED FOR REVIEW       |
| 0   | 10/19/2021 | ISSUED FOR CONSTRUCTION |
|     |            |                         |
|     |            |                         |
|     |            |                         |
|     |            |                         |
|     |            |                         |



#### IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

A&E PROJECT NUMBER

370623-13693127

DISH WIRELESS, L.L.C.
PROJECT INFORMATION
BOBOSO0024A
139 SHARP HILL ROAD
UNCASVILLE, CT 06382

SHEET TITLE

LEGEND AND
ABBREVIATIONS

SHEET NUMBER

GN-1

ABBREVIATIONS

**LEGEND** 

#### SITE ACTIVITY REQUIREMENTS:

- 1. NOTICE TO PROCEED NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH WIRELESS, L.L.C. AND TOWER OWNER NOC & THE DISH WIRELESS, L.L.C. AND TOWER CONSTRUCTION MANAGER.
- "LOOK UP" DISH WIRELESS, L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH WIRELESS, L.L.C. AND DISH WIRELESS, L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

- 3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
- 4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELESS, L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).
- 5. ALL SITE WORK TO COMPLY WITH DISH WIRELESS, L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH WIRELESS, L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
- 6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH WIRELESS, L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.
- 11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
- 12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIRELESS, L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.
- 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
- 15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
- 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.
- 18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.
- 22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT

#### **GENERAL NOTES:**

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR: GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER: DISH WIRELESS, L.L.C.

TOWER OWNER:TOWER OWNER

- 2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
- 3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.
- 4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.
- 5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.
- 6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION
- 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN
- 12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH WIRELESS. L.L.C. AND TOWER OWNER
- 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.



5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120



NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

| DRAWN BY: | CHECKED BY: | APPROVED BY: |
|-----------|-------------|--------------|
| LAU       | BIW         | BIW          |
| RFDS REV  | <b>j</b> :  | 1            |

## CONSTRUCTION DOCUMENTS

|     | ;          | SUBMITTALS              |
|-----|------------|-------------------------|
| REV | DATE       | DESCRIPTION             |
| Α   | 08/10/2021 | ISSUED FOR REVIEW       |
| 0   | 10/19/2021 | ISSUED FOR CONSTRUCTION |
|     |            |                         |
|     |            |                         |
|     |            |                         |
|     |            | _                       |
|     |            |                         |



IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

A&E PROJECT NUMBER

370623-13693127

DISH WIRELESS, L.L.C.
PROJECT INFORMATION
BOBOSO0024A
139 SHARP HILL ROAD
UNCASVILLE, CT 06382

SHEET TITLE
GENERAL NOTES

SHEET NUMBER

GN-2

#### CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

- 1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST—IN—PLACE CONCRETE.
- 2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.
- 3. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90'f AT TIME OF PLACEMENT.
- 4. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.
- 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

- 6. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:
- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2"
- 7. A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

#### **ELECTRICAL INSTALLATION NOTES:**

- 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.
- 2. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
- 3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
- 4. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.
- 4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.
- 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.
- 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR—CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
- 6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).
- 7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.
- 8. TIE WRAPS ARE NOT ALLOWED.
- 9. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.
- 12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75 C (90° C IF AVAILABLE).
- 14. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.
- 15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

- . ELECTRICAL METALLIC TUBING (EMT) OR METAL—CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.
- 18. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- 19. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.
- 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE NEC.
- 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).
- 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).
- 23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.
- 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY—COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS
- 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH WIRELESS, L.L.C. AND TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- 28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH WIRELESS, L.L.C.".
- 30. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.



5701 SOUTH SANTA FE DRIVE



NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

| DRAWN BY: | CHECKED BY: | APPROVED BY: |
|-----------|-------------|--------------|
| LAU       | BIW         | BIW          |
| RFDS REV  | ı.          | 1            |

## CONSTRUCTION DOCUMENTS

|     | :          | SUBMITTALS              |
|-----|------------|-------------------------|
| REV | DATE       | DESCRIPTION             |
| Α   | 08/10/2021 | ISSUED FOR REVIEW       |
| 0   | 10/19/2021 | ISSUED FOR CONSTRUCTION |
|     |            |                         |
|     |            |                         |
|     |            |                         |
|     |            |                         |
|     |            |                         |



IT IS A VIOLATION OF LAW FOR ANY PERSON, INLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

A&E PROJECT NUMBER

370623-13693127

DISH WRELESS, L.L.C. PROJECT INFORMATION BOBOSO0024A

139 SHARP HILL ROAD UNCASVILLE. CT 06382

SHEET TITLE
GENERAL NOTES

SHEET NUMBER

GN-3

#### GROUNDING NOTES:

- 1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 2. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
- 4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS FOLIPMENT
- 6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
- 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
- 8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. USE OF 90' BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45' BENDS CAN BE ADEQUATELY SUPPORTED.
- 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
- 13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.
- 15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.
- 19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
- 21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/O COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

#### STRUCTURAL STEEL NOTES:

- 1. STRUCTURAL STEEL SHALL CONFORM TO THE LATEST EDITION OF THE AISC "SPECIFICATION FOR THE DESIGN, FABRICATION AND FRECTION OF STRUCTURAL STEEL FOR BUILDINGS."
- 2. STRUCTURAL STEEL ROLLED SHAPES, PLATES AND BARS SHALL CONFORM TO THE FOLLOWING ASTM DESIGNATIONS:
- A. ASTM A-572, GRADE 50 ALL W SHAPES, UNLESS NOTED OR A992 OTHERWISE
- B. ASTM A-36 ALL OTHER ROLLED SHAPES, PLATES AND BARS UNLESS NOTED OTHERWISE
- C. ASTM A-500, GRADE B HSS SECTION (SQUARE, RECTANGULAR, AND ROUND)
- D. ASTM A-325, TYPE SC OR N ALL BOLTS FOR CONNECTING STRUCTURAL MEMBERS
- E. ASTM F-1554 07 ALL ANCHOR BOLTS, UNLESS NOTED OTHERWISE
- 3. ALL EXPOSED STRUCTURAL STEEL MEMBERS SHALL BE HOT-DIPPED GALVANIZED AFTER FABRICATION PER ASTM A123. EXPOSED STEEL HARDWARE AND ANCHOR BOLTS SHALL BE GALVANIZED PER ASTM A153 OR B695.
- 4. ALL FIELD CUT SURFACES, FIELD DRILLED HOLES AND GROUND SURFACES WHERE EXISTING PAINT OR GALVANIZATION REMOVAL WAS REQUIRED SHALL BE REPAIRED WITH (2) BRUSHED COATS OF ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURER'S RECOMMENDATIONS
- 5. DO NOT DRILL HOLES THROUGH STRUCTURAL STEEL MEMBERS EXCEPT AS SHOWN AND DETAILED ON STRUCTURAL DRAWINGS.
- CONNECTIONS:
- A. ALL WELDING TO BE PERFORMED BY AWS CERTIFIED WELDERS AND CONDUCTED IN ACCORDANCE WITH THE LATEST EDITION OF THE AWS WELDING CODE D1.1.
- B. ALL WELDS SHALL BE INSPECTED VISUALLY. 25% OF WELDS SHALL BE INSPECTED WITH DYE PENETRANT OR MAGNETIC PARTICLE TO MEET THE ACCEPTANCE CRITERIA OF AWS D1.1. REPAIR ALL WELDS AS NECESSARY.
- C. INSPECTION SHALL BE PERFORMED BY AN AWS CERTIFIED WELD INSPECTOR.
- D. IT IS THE CONTRACTORS RESPONSIBILITY TO PROVIDE BURNING/WELDING PERMITS AS REQUIRED BY LOCAL GOVERNING AUTHORITY AND IF REQUIRED SHALL HAVE FIRE DEPARTMENT DETAIL FOR ANY WELDING ACTIVITY.
- E. ALL ELECTRODES TO BE LOW HYDROGEN, MATCHING FILLER METAL, PER AWS D1.1, UNLESS NOTED OTHERWISE.
- F. MINIMUM WELD SIZE TO BE 0.1875 INCH FILLET WELDS, UNLESS NOTED OTHERWISE.
- G. PRIOR TO FIELD WELDING GALVANIZING MATERIAL, CONTRACTOR SHALL GRIND OFF GALVANIZING ½" BEYOND ALL FIELD WELD SURFACES. AFTER WELD AND WELD INSPECTION IS COMPLETE, REPAIR ALL GROUND AND WELDED SURFACES WITH ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURERS RECOMMENDATIONS.
- . THE CONTRACTOR SHALL PROVIDE ADEQUATE SHORING AND/OR BRACING WHERE REQUIRED DURING CONSTRUCTION UNTIL ALL ONNECTIONS ARE COMPLETE.
- I. ANY FIELD CHANGES OR SUBSTITUTIONS SHALL HAVE PRIOR APPROVAL FROM THE ENGINEER, AND DISH WIRELESS L.L.C. PROJECT MANAGER IN WRITING



5701 SOUTH SANTA FE DRIVE



NB+C ENGINEERING SERVICES, LLC. 8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

DRAWN BY: CHECKED BY: APPROVED BY:

LAU BIW BIW

RFDS REV #: 1

## CONSTRUCTION DOCUMENTS

|                      | SUBMITTALS |                         |  |
|----------------------|------------|-------------------------|--|
| REV DATE DESCRIPTION |            |                         |  |
| Α                    | 08/10/2021 | ISSUED FOR REVIEW       |  |
| 0                    | 10/19/2021 | ISSUED FOR CONSTRUCTION |  |
|                      |            |                         |  |
|                      |            |                         |  |
|                      |            |                         |  |
|                      |            |                         |  |
|                      |            |                         |  |



IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

A&E PROJECT NUMBER

370623-13693127

DISH WIRELESS, L.L.C. PROJECT INFORMATION BOBOSO0024A
139 SHARP HILL ROAD UNCASVILLE. CT 06382

SHEET TITLE
GENERAL NOTES

SHEET NUMBER

GN-4



## **ENGINEERING:**

## STRUCTURAL ANALYSIS

**MOUNT ANALYSIS** 



## **Structural Analysis Report**

Structure : 100 ft Self Support Tower

ATC Site Name : MONTVILLE CT,CT

ATC Site Number : 370623

Engineering Number : 13693127\_C3\_02

Proposed Carrier : DISH WIRELESS L.L.C.

Carrier Site Name : BOBOS00024A

Carrier Site Number : BOBOS00024A

Site Location : 139 Sharp Hill Road

Uncasville, CT 06382-0000

41.449, -72.1511

County : New London

Date : August 20, 2021

Max Usage : 69%

Result : Pass

Prepared By: Reviewed By:

Nicholas Beam Structural Engineer

Nicholan Bear

COA: PEC.0001553



### **Table of Contents**

| Introduction                    | 3 |
|---------------------------------|---|
| Supporting Documents            |   |
| Analysis                        |   |
| Conclusion                      |   |
| Existing and Reserved Equipment |   |
| Equipment to be Removed         |   |
| Proposed Equipment              |   |
| Structure Usages                |   |
| Foundations                     |   |
| Deflection, Twist and Sway*     |   |
| Standard Conditions             |   |
| CalculationsAttached            |   |



# Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 100 ft Self Support tower to reflect the change in loading by DISH WIRELESS L.L.C..

# **Supporting Documents**

| <b>Tower Drawings</b> Mapping by Intellisite Report #0548, dated August 14, 2014 |                                                                        |  |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------|--|
| Foundation Drawing                                                               | Mapping by Delta Oaks Group Project # BGI21-10896-02, dated August 11, |  |
|                                                                                  | 2021                                                                   |  |
| Geotechnical Report                                                              | GEOServices Project #31-141216P, dated August 6, 2014                  |  |

# **Analysis**

The tower was analyzed using American Tower Corporation's tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

| Basic Wind Speed:             | 125 mph (3-second gust)                                          |
|-------------------------------|------------------------------------------------------------------|
| Basic Wind Speed w/ Ice:      | 50 mph (3-second gust) w/ 1.00" radial ice concurrent            |
| Code:                         | ANSI/TIA-222-H / 2015 IBC / 2018 Connecticut State Building Code |
| Exposure Category:            | В                                                                |
| Risk Category:                | II                                                               |
| Topographic Factor Procedure: | Method 1                                                         |
| Topographic Category:         | 1                                                                |
| Crest Height (H):             | 0 ft                                                             |
| Crest Length (L):             | 0 ft                                                             |
| Spectral Response:            | $Ss = 0.20, S_1 = 0.05$                                          |
| Site Class:                   | D - Stiff Soil - Default                                         |

### Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.



# **Existing and Reserved Equipment**

| Elev.1 (ft) | Qty | Equipment          | Mount Type | Lines         | Carrier |
|-------------|-----|--------------------|------------|---------------|---------|
| 92.0        | 1   | Generic 22' Dipole | Stand-Off  | (1) 1/2" Coax | OTLIED  |
| 86.0        | 1   | Generic 12' Dipole | Stand-Off  | (1) 1/2" Coax | OTHER   |

# **Equipment to be Removed**

| Elev.1 (ft)                                                    | Qty | Equipment | Mount Type | Lines | Carrier |
|----------------------------------------------------------------|-----|-----------|------------|-------|---------|
| No loading was considered as removed as part of this analysis. |     |           |            |       |         |

# **Proposed Equipment**

|      | Elev.1 (ft) | Qty                        | Equipment                  | Mount Type   | Lines                | Carrier            |
|------|-------------|----------------------------|----------------------------|--------------|----------------------|--------------------|
| 75.0 |             | 3                          | Fujitsu TA08025-B604       | Sector Frame | (1) 1.60" (40.6mm)   | DICH WIDELECCT L C |
|      | 75.0        | 3                          | JMA Wireless MX08FRO665-21 |              |                      |                    |
|      | 1           | Commscope RDIDC-9181-PF-48 | Sector Frame               | Hybrid       | DISH WIRELESS L.L.C. |                    |
|      | 3           | Fujitsu TA08025-B605       |                            |              |                      |                    |

 $<sup>^{1}</sup> Contracted \ elevations \ are \ shown \ for \ appurtenances \ within \ contracted \ installation \ tolerances. \ Appurtenances \ outside \ of \ contract \ limits \ are \ shown \ at \ installed \ elevations.$ 

Install proposed lines anywhere on tower.



# **Structure Usages**

| Structural Component | Controlling<br>Usage | Pass/Fail |
|----------------------|----------------------|-----------|
| Legs                 | 69%                  | Pass      |
| Diagonals            | 28%                  | Pass      |
| Horizontals          | 7%                   | Pass      |
| Anchor Bolts         | 53%                  | Pass      |
| Leg Bolts            | 58%                  | Pass      |

# **Foundations**

| Reaction Component | Analysis Reactions | % of Usage |
|--------------------|--------------------|------------|
| Download (kips)    | 42.0               | 25%        |
| Moment (Kips-Ft)   | 358.4              | 38%        |
| Shear (Kips)       | 4.1                | 16%        |

The structure base reactions resulting from this analysis were found to be acceptable through analysis based on geotechnical and foundation information, therefore no modification or reinforcement of the foundation will be required.

# **Deflection, Twist and Sway\***

| Antenna<br>Elevation<br>(ft) | Antenna                    | Carrier              | Deflection<br>(ft) | Twist<br>(°) | Sway<br>(Rotation)<br>(°) |
|------------------------------|----------------------------|----------------------|--------------------|--------------|---------------------------|
|                              | Commscope RDIDC-9181-PF-48 |                      | 0.080              | 0.004        | 0.122                     |
| 75.0                         | Fujitsu TA08025-B604       | DISH WIRELESS L.L.C. |                    |              |                           |
| 75.0                         | Fujitsu TA08025-B605       | DISH WIRELESS L.L.C. |                    |              |                           |
|                              | JMA Wireless MX08FRO665-21 |                      |                    |              |                           |

<sup>\*</sup>Deflection, Twist and Sway was evaluated considering a design wind speed of 60 mph (3-Second Gust) per ANSI/TIA-222-H



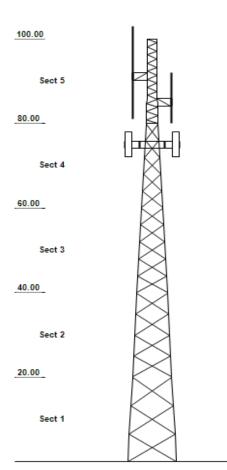
# **Standard Conditions**

All engineering services performed by A.T. Engineering Service, PLLC are prepared on the basis that the information used is current and correct. This information may consist of, but is not limited to the following:

- Information supplied by the client regarding antenna, mounts and feed line loading
- Information from drawings, design and analysis documents, and field notes in the possession of A.T. Engineering Service, PLLC

It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete.

All assets of American Tower Corporation, its affiliates, and subsidiaries (collectively "American Tower") are inspected at regular intervals. Based upon these inspections and in the absence of information to the contrary, American Tower assumes that all structures were constructed in accordance with the drawings and specifications.


Unless explicitly agreed by both the client and A.T. Engineering Service, PLLC, all services will be performed in accordance with the current revision of ANSI/TIA-222.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information supplied herein.

JOB INFORMATION

Asset: 370623, MONTVILLE CT Client DISH WIRELESS L.L.C. Code: ANSI/TIA-222-H Height: 100 ft Base Width: 10.5 ft Shape: Triangle

#### Quadrant 1



### SITE PARAMETERS

Nominal Wind: 125 mph wind with no ice

Exposure : B

Site Class : D

Ice Wind: 50 mph wind with 1" radial

Topo Method: Method 1

Risk Cat: II

Service Wind: 60 mph Serviceability

Topo Feature:

S<sub>s</sub>: 0.197 S<sub>1</sub>: 0.054

|         |                       | SECTION PROPERTIES          |                       |
|---------|-----------------------|-----------------------------|-----------------------|
| Section | Leg Members           | Diagonal Members            | Horizontal Members    |
|         |                       |                             |                       |
| 1       | PX 50 ksi 2-1/2" DIA  | SAE 36 ksi 1.75X1.75X0.1875 |                       |
| 2       | PST 50 ksi 2-1/2" DIA | SAE 36 ksi 1.5X1.5X0.1875   |                       |
| 3       | PX 50 ksi 2" DIA PIPE | SAE 36 ksi 1.5X1.5X0.1875   |                       |
| 4       | PST 50 ksi 2.375" x 0 | SAE 36 ksi 1.5X1.5X0.1875   |                       |
| 5       | SOL 50 ksi 1 1/2" SOL | SOL 36 ksi 5/8" SOLID       | SOL 36 ksi 5/8" SOLID |

### REDUNDANT SECONDARY BRACING

Section Sub Diag 1 Sub Horiz 1 Sub Diag 2 Sub Horiz 2 Sub Diag 3 Sub Horiz 3

1-5 - - - -

|                                                    | DISCRETE APPURTENANCE                                                              |             |                                                                                                           |  |  |  |  |
|----------------------------------------------------|------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------|--|--|--|--|
| Elev (ft)                                          | Type                                                                               | Qty         | Description                                                                                               |  |  |  |  |
| 92.00<br>86.00<br>86.00<br>75.00<br>75.00<br>75.00 | DIPOLE<br>Side Arm<br>DIPOLE<br>Side Arm<br>BOB/SSB<br>PANEL<br>RRU/RRH<br>RRU/RRH | 1<br>3<br>3 | Generic Flat Side Arm<br>Commscope RDIDC-9181-PF-48<br>JMA Wireless MX08FRO665-21<br>Fujitsu TA08025-B605 |  |  |  |  |
|                                                    | Sector Frame                                                                       |             | Fujitsu TA08025-B604<br>Generic Flat Light Sector Fram                                                    |  |  |  |  |

| LINEAR APPURTENANCE |          |           |                                     |                  |  |
|---------------------|----------|-----------|-------------------------------------|------------------|--|
| Elev (ft<br>Fro     | •        | Qty       | Description                         |                  |  |
| 0.0<br>0.0<br>0.0   | 0 86.00  | 1         | 1/2" Coax<br>1/2" Coax<br>Waveguide |                  |  |
| 0.0                 |          |           | 1.60" (40.6mm) Hybrid               |                  |  |
|                     | GLOBAL B | ASE FOUND | ATION DESIGN LOADS                  |                  |  |
| Load Case           | Momen    | t (k-ft)  | Vertical (kip)                      | Horizontal (kip) |  |

| GLOBAL BASE FOUNDATION DESIGN LOADS |                 |                |                  |  |  |  |
|-------------------------------------|-----------------|----------------|------------------|--|--|--|
| Load Case                           | Moment (k-ft)   | Vertical (kip) | Horizontal (kip) |  |  |  |
| DL+WL<br>DL+WL+IL                   | 358.37<br>94.81 | 7.68<br>14.45  | 6.35<br>1.68     |  |  |  |

| INDIVIDUAL BASE FO | UNDATION DESIGN LO | DADS             |
|--------------------|--------------------|------------------|
| Vertical (kip)     | Uplift (kip)       | Horizontal (kip) |
| 41.97              | 35.69              | 4.07             |

JOB INFORMATION

Asset: 370623, MONTVILLE CT
Client DISH WIRELESS L.L.C.
Code: ANSI/TIA-222-H

Height: 100 ft
Base Width: 10.5 ft
Shape: Triangle

© 2007 - 2020 by ATC LLC. All rights reserved.

|                 | ANALYSIS PAR           | RAMETERS                 |          |
|-----------------|------------------------|--------------------------|----------|
| Location:       | New London County, CT  | Height:                  | 100 ft   |
| Type and Shape: | Self Support, Triangle | Base Elevation:          | 0.00 ft  |
| Manufacturer:   | Undetermined           | Bottom Face Width:       | 10.50 ft |
| Kd              | 0.85                   | Top Face Width:          | 2.17 ft  |
| Ke:             | 0.98                   | Anchor Bolt Detail Type: | С        |
|                 | ICE & WIND PA          | RAMETERS                 |          |

Exposure Category: В Design Wind Speed Without Ice: 125 mph Ш Risk Category: Design Wind Speed with Ice: 50 mph Topographic Factor Procedure: Method 1 Operational Windspeed: 60 mph Topographic Category: Flat Design Ice Thickness: 1.00 in Crest Height: 0 ft HMSL: 475 ft

|                       |                                 | SEISMIC           | PARAMETERS |                                        |       |
|-----------------------|---------------------------------|-------------------|------------|----------------------------------------|-------|
| Analysis Method:      | Equivalent Lateral Force Method |                   |            |                                        |       |
| Site Class:           | D - Stiff Soil                  |                   |            | Period Based on Rayleigh Method (sec): | 0.69  |
| T <sub>L</sub> (sec): | 6                               | P:                | 1          | C <sub>s:</sub>                        | 0.042 |
| S <sub>s:</sub>       | 0.197                           | S <sub>1:</sub>   | 0.054      | C <sub>s,</sub> Max:                   | 0.042 |
| F <sub>a:</sub>       | 1.600                           | $F_{v:}$          | 2.400      | C <sub>s,</sub> Min:                   | 0.030 |
| S <sub>ds:</sub>      | 0.210                           | S <sub>d1</sub> : | 0.086      |                                        |       |

| 40.                         | •                              |  |
|-----------------------------|--------------------------------|--|
|                             | LOAD CASES                     |  |
| 1.2D + 1.0W Normal          | 125 mph wind with no ice       |  |
| 1.2D + 1.0W 60°             | 125 mph wind with no ice       |  |
| 1.2D + 1.0W 90°             | 125 mph wind with no ice       |  |
| 0.9D + 1.0W Normal          | 125 mph wind with no ice       |  |
| 0.9D + 1.0W 60°             | 125 mph wind with no ice       |  |
| 0.9D + 1.0W 90°             | 125 mph wind with no ice       |  |
| 1.2D + 1.0Di + 1.0Wi Normal | 50 mph wind with 1" radial ice |  |
| 1.2D + 1.0Di + 1.0Wi 60°    | 50 mph wind with 1" radial ice |  |
| 1.2D + 1.0Di + 1.0Wi 90°    | 50 mph wind with 1" radial ice |  |
| 1.2D + 1.0Ev + 1.0Eh Normal | Seismic                        |  |
| 1.2D + 1.0Ev + 1.0Eh 60°    | Seismic                        |  |
| 1.2D + 1.0Ev + 1.0Eh 90°    | Seismic                        |  |
| 0.9D - 1.0Ev + 1.0Eh Normal | Seismic (Reduced DL)           |  |
| 0.9D - 1.0Ev + 1.0Eh 60°    | Seismic (Reduced DL)           |  |
| 0.9D - 1.0Ev + 1.0Eh 90°    | Seismic (Reduced DL)           |  |
| 1.0D + 1.0W Service Normal  | 60 mph Wind with No Ice        |  |
| 1.0D + 1.0W Service 60°     | 60 mph Wind with No Ice        |  |

60 mph Wind with No Ice

1.0D + 1.0W Service 90°

| TO | NC | /FR | 210 | ADI | NG |
|----|----|-----|-----|-----|----|
|    |    |     |     |     |    |

| Discrete Appurtenance Properties 1.2D + 1.0V | Discrete | Appurtenance | Properties | 1.2D + 1.0W |
|----------------------------------------------|----------|--------------|------------|-------------|
|----------------------------------------------|----------|--------------|------------|-------------|

| Elev |                                |     | Wt.   | EPA I | _ength | Width | Depth |       | Orient | Vert     | Mu      | $Q_z$ | F <sub>a</sub> (WL) | P <sub>a</sub> (DL) |
|------|--------------------------------|-----|-------|-------|--------|-------|-------|-------|--------|----------|---------|-------|---------------------|---------------------|
| (ft) | Description                    | Qty | (lb)  | (sf)  | (ft)   | (in)  | (in)  | $K_a$ | Factor | Ecc (ft) | (lb-ft) | (psf) | (lb)                | (lb)                |
| 00.0 | One on's Flat Oids Assa        |     | 400   | 0.0   | 0.0    | 0.0   | 0.0   | 4.00  | 4.00   | 0.0      | 0.00    | 00.05 | 470                 | 005                 |
| 92.0 | Generic Flat Side Arm          | 1   | 188   | 6.3   | 0.0    | 0.0   | 0.0   | 1.00  | 1.00   | 0.0      | 0.00    | 32.25 | 173                 | 225                 |
| 92.0 | Generic 22' Dipole             | 1   | 66    | 8.3   | 22.0   | 3.0   | 3.0   | 1.00  | 1.00   | 0.0      | 0.00    | 32.25 | 227                 | 79                  |
| 86.0 | Generic 12' Dipole             | 1   | 40    | 4.5   | 12.0   | 3.0   | 3.0   | 1.00  | 1.00   | 0.0      | 0.00    | 31.63 | 121                 | 48                  |
| 86.0 | Generic Flat Side Arm          | 1   | 188   | 6.3   | 0.0    | 0.0   | 0.0   | 1.00  | 1.00   | 0.0      | 0.00    | 31.63 | 169                 | 225                 |
| 75.0 | Commscope RDIDC-9181-PF-48     | 1   | 22    | 1.9   | 1.3    | 14.0  | 8.0   | 0.80  | 1.00   | 0.0      | 0.00    | 30.42 | 39                  | 26                  |
| 75.0 | Fujitsu TA08025-B604           | 3   | 64    | 2.0   | 1.3    | 15.0  | 7.9   | 0.80  | 0.50   | 0.0      | 0.00    | 30.42 | 61                  | 230                 |
| 75.0 | Fujitsu TA08025-B605           | 3   | 75    | 2.0   | 1.3    | 15.0  | 9.1   | 0.80  | 0.50   | 0.0      | 0.00    | 30.42 | 61                  | 270                 |
| 75.0 | JMA Wireless MX08FRO665-21     | 3   | 65    | 12.5  | 6.0    | 20.0  | 8.0   | 0.80  | 0.64   | 0.0      | 0.00    | 30.42 | 496                 | 232                 |
| 75.0 | Generic Flat Light Sector Fram | 3   | 400   | 17.9  | 0.0    | 0.0   | 0.0   | 0.75  | 0.75   | 0.0      | 0.00    | 30.42 | 781                 | 1440                |
| -    | Totals                         | 17  | 2.313 | 130.2 |        |       |       |       |        |          |         |       | 2.128               | 2.776               |

# TOWER LOADING

# Discrete Appurtenance Properties 0.9D + 1.0W

| Elev<br>(ft) | Description                    | Qty | Wt.<br>(lb) | EPA l<br>(sf) | _ength<br>(ft) | Width<br>(in) | Depth<br>(in) | Ka   | Orient<br>Factor | Vert<br>Ecc (ft) | M <sub>u</sub><br>(Ib-ft) | Q <sub>z</sub><br>(psf) | F <sub>a</sub> (WL) (lb) | P <sub>a</sub> (DL)<br>(lb) |
|--------------|--------------------------------|-----|-------------|---------------|----------------|---------------|---------------|------|------------------|------------------|---------------------------|-------------------------|--------------------------|-----------------------------|
| 92.0         | Generic Flat Side Arm          | 1   | 188         | 6.3           | 0.0            | 0.0           | 0.0           | 1.00 | 1.00             | 0.0              | 0.00                      | 32.25                   | 173                      | 169                         |
| 92.0         | Generic 22' Dipole             | 1   | 66          | 8.3           | 22.0           | 3.0           | 3.0           | 1.00 | 1.00             | 0.0              | 0.00                      | 32.25                   | 227                      | 59                          |
| 86.0         | Generic 12' Dipole             | 1   | 40          | 4.5           | 12.0           | 3.0           | 3.0           | 1.00 | 1.00             | 0.0              | 0.00                      | 31.63                   | 121                      | 36                          |
| 86.0         | Generic Flat Side Arm          | 1   | 188         | 6.3           | 0.0            | 0.0           | 0.0           | 1.00 | 1.00             | 0.0              | 0.00                      | 31.63                   | 169                      | 169                         |
| 75.0         | Commscope RDIDC-9181-PF-48     | 1   | 22          | 1.9           | 1.3            | 14.0          | 8.0           | 0.80 | 1.00             | 0.0              | 0.00                      | 30.42                   | 39                       | 20                          |
| 75.0         | Fujitsu TA08025-B604           | 3   | 64          | 2.0           | 1.3            | 15.0          | 7.9           | 0.80 | 0.50             | 0.0              | 0.00                      | 30.42                   | 61                       | 173                         |
| 75.0         | Fujitsu TA08025-B605           | 3   | 75          | 2.0           | 1.3            | 15.0          | 9.1           | 0.80 | 0.50             | 0.0              | 0.00                      | 30.42                   | 61                       | 202                         |
| 75.0         | JMA Wireless MX08FRO665-21     | 3   | 65          | 12.5          | 6.0            | 20.0          | 8.0           | 0.80 | 0.64             | 0.0              | 0.00                      | 30.42                   | 496                      | 174                         |
| 75.0         | Generic Flat Light Sector Fram | 3   | 400         | 17.9          | 0.0            | 0.0           | 0.0           | 0.75 | 0.75             | 0.0              | 0.00                      | 30.42                   | 781                      | 1080                        |
|              | Totals                         | 17  | 2,313       | 130.2         |                |               |               |      |                  |                  |                           |                         | 2,128                    | 2,082                       |

### **TOWER LOADING**

Discrete Appurtenance Properties 1.2D + 1.0Di + 1.0Wi

|      |                                |        |     | Ice   | Ice   |        |       |       |       |        |          |         |       |           |           |
|------|--------------------------------|--------|-----|-------|-------|--------|-------|-------|-------|--------|----------|---------|-------|-----------|-----------|
| Elev |                                |        |     | Wt    | EPA   | Length | Width | Depth |       | Orient | Vert Ecc | $M_u$   | $Q_z$ | $F_a(WL)$ | $P_a(DL)$ |
| (ft) | Description                    |        | Qty | (lb)  | (sf)  | (ft)   | (in)  | (in)  | $K_a$ | Factor | (ft)     | (lb-ft) | (psf) | (lb)      | (lb)      |
| 92.0 | Generic Flat Side Arm          |        | 1   | 272   | 8.3   | 0.0    | 0.0   | 0.0   | 1.00  | 1.00   | 0.0      | 0.00    | 5.16  | 36        | 310       |
| 92.0 | Generic 22' Dipole             |        | 1   | 220   | 16.5  | 22.0   | 3.0   | 3.0   | 1.00  | 1.00   | 0.0      | 0.00    | 5.16  | 73        | 234       |
| 86.0 | Generic 12' Dipole             |        | 1   | 125   | 9.1   | 12.0   | 3.0   | 3.0   | 1.00  | 1.00   | 0.0      | 0.00    | 5.06  | 39        | 133       |
| 86.0 | Generic Flat Side Arm          |        | 1   | 272   | 8.3   | 0.0    | 0.0   | 0.0   | 1.00  | 1.00   | 0.0      | 0.00    | 5.06  | 36        | 310       |
| 75.0 | Commscope RDIDC-9181-PF-48     |        | 1   | 57    | 2.4   | 1.3    | 14.0  | 8.0   | 0.80  | 1.00   | 0.0      | 0.00    | 4.87  | 8         | 62        |
| 75.0 | Fujitsu TA08025-B604           |        | 3   | 100   | 2.5   | 1.3    | 15.0  | 7.9   | 0.80  | 0.50   | 0.0      | 0.00    | 4.87  | 13        | 338       |
| 75.0 | Fujitsu TA08025-B605           |        | 3   | 114   | 2.5   | 1.3    | 15.0  | 9.1   | 0.80  | 0.50   | 0.0      | 0.00    | 4.87  | 13        | 386       |
| 75.0 | JMA Wireless MX08FRO665-21     |        | 3   | 224   | 14.2  | 6.0    | 20.0  | 8.0   | 0.80  | 0.64   | 0.0      | 0.00    | 4.87  | 90        | 710       |
| 75.0 | Generic Flat Light Sector Fram |        | 3   | 586   | 27.2  | 0.0    | 0.0   | 0.0   | 0.75  | 0.75   | 0.0      | 0.00    | 4.87  | 190       | 1999      |
|      |                                | Totals | 17  | 4,017 | 184.2 |        |       |       |       |        |          |         |       | 497       | 4,480     |

### TOWER LOADING

Discrete Appurtenance Properties 1.0D + 1.0W Service

| Elev |                            |     | Wt.  | EPA L | ength | Width | Depth |       | Orient | Vert     | $M_u$   | $Q_z$ | F <sub>a</sub> (WL) | P <sub>a</sub> (DL) |
|------|----------------------------|-----|------|-------|-------|-------|-------|-------|--------|----------|---------|-------|---------------------|---------------------|
| (ft) | Description                | Qty | (lb) | (sf)  | (ft)  | (in)  | (in)  | $K_a$ | Factor | Ecc (ft) | (lb-ft) | (psf) | (lb)                | (lb)                |
|      |                            |     |      |       |       |       |       |       |        |          |         |       |                     |                     |
| 92.0 | Generic Flat Side Arm      | 1   | 188  | 6.3   | 0.0   | 0.0   | 0.0   | 1.00  | 1.00   | 0.0      | 0.00    | 7.43  | 40                  | 188                 |
| 92.0 | Generic 22' Dipole         | 1   | 66   | 8.3   | 22.0  | 3.0   | 3.0   | 1.00  | 1.00   | 0.0      | 0.00    | 7.43  | 52                  | 66                  |
| 86.0 | Generic 12' Dipole         | 1   | 40   | 4.5   | 12.0  | 3.0   | 3.0   | 1.00  | 1.00   | 0.0      | 0.00    | 7.29  | 28                  | 40                  |
| 86.0 | Generic Flat Side Arm      | 1   | 188  | 6.3   | 0.0   | 0.0   | 0.0   | 1.00  | 1.00   | 0.0      | 0.00    | 7.29  | 39                  | 188                 |
| 75.0 | Commscope RDIDC-9181-PF-48 | 1   | 22   | 1.9   | 1.3   | 14.0  | 8.0   | 0.80  | 1.00   | 0.0      | 0.00    | 7.01  | 9                   | 22                  |
| 75.0 | Fujitsu TA08025-B604       | 3   | 64   | 2.0   | 1.3   | 15.0  | 7.9   | 0.80  | 0.50   | 0.0      | 0.00    | 7.01  | 14                  | 192                 |
| 75.0 | Fujitsu TA08025-B605       | 3   | 75   | 2.0   | 1.3   | 15.0  | 9.1   | 0.80  | 0.50   | 0.0      | 0.00    | 7.01  | 14                  | 225                 |
| 75.0 | JMA Wireless MX08FRO665-21 | 3   | 65   | 12.5  | 6.0   | 20.0  | 8.0   | 0.80  | 0.64   | 0.0      | 0.00    | 7.01  | 114                 | 194                 |

| Elev |                                |        |     | Wt.   | EPA L | _ength | Width | Depth |       | Orient | Vert     | $M_{u}$ | $Q_z$ | F <sub>a</sub> (WL) | P <sub>a</sub> (DL) |
|------|--------------------------------|--------|-----|-------|-------|--------|-------|-------|-------|--------|----------|---------|-------|---------------------|---------------------|
| (ft) | Description                    |        | Qty | (lb)  | (sf)  | (ft)   | (in)  | (in)  | $K_a$ | Factor | Ecc (ft) | (lb-ft) | (psf) | (lb)                | (lb)                |
| 75.0 | Generic Flat Light Sector Fram |        | 3   | 400   | 17.9  | 0.0    | 0.0   | 0.0   | 0.75  | 0.75   | 0.0      | 0.00    | 7.01  | 180                 | 1200                |
|      |                                | Totals | 17  | 2,313 | 130.2 |        |       |       |       |        |          |         |       | 490                 | 2,313               |

# TOWER LOADING

# Linear Appurtenance Properties

| From (ft) | To<br>(ft) | Description           | Qty | Width<br>(in) | Weight (lb/ft) |     | Spread On Faces | Bundling   | Cluster Dia<br>(in) | Out of<br>Zone | Spacing (in) | Orient<br>Factor | K <sub>a</sub><br>Override |
|-----------|------------|-----------------------|-----|---------------|----------------|-----|-----------------|------------|---------------------|----------------|--------------|------------------|----------------------------|
| 0.0       | 92.0       | 1/2" Coax             | 1   | 0.63          | 0.15           | 100 | 2               | Individual | 0.00                | N              | 1.00         | 1.00             | 0.00                       |
| 0.0       | 86.0       | 1/2" Coax             | 1   | 0.63          | 0.15           | 100 | 2               | Individual | 0.00                | Ν              | 1.00         | 1.00             | 0.00                       |
| 0.0       | 75.0       | 1.60" (40.6mm) Hybrid | 1   | 1.60          | 2.34           | 100 | 1               | Individual | 0.00                | Ν              | 1.00         | 1.00             | 0.00                       |
| 0.0       | 75.0       | Waveguide             | 1   | 2.00          | 6.00           | 100 | Lin App         | Individual | 0.00                | Ν              | 1.00         | 1.00             | 0.00                       |

|                                   |                  |                         |                        |                        |                         |                    |              | SECTIO       | ON FOR               | RCES                    |                        |                          |                           |              |                |                      |                        |                   |
|-----------------------------------|------------------|-------------------------|------------------------|------------------------|-------------------------|--------------------|--------------|--------------|----------------------|-------------------------|------------------------|--------------------------|---------------------------|--------------|----------------|----------------------|------------------------|-------------------|
|                                   |                  |                         |                        |                        |                         |                    |              | 02011        | J. ( ) ( )           | TOLO                    |                        |                          |                           |              |                |                      |                        |                   |
| .2D + 1.0V<br>25 mph wi           |                  |                         |                        |                        |                         | Response           |              | ` '          |                      | 0.85<br>1.00            |                        |                          |                           |              |                |                      |                        |                   |
| Sect<br>#                         | Elev<br>(ft)     | Q <sub>Z</sub><br>(psf) | A <sub>f</sub><br>(sf) | A <sub>r</sub><br>(sf) | Ice A <sub>r</sub> (sf) | е                  | $C_f$        | $D_f$        | D <sub>r</sub>       | T <sub>iz</sub><br>(in) | A <sub>e</sub><br>(sf) | EPA <sub>a</sub> (sf)    | EPA <sub>ai</sub><br>(sf) | Wt.<br>(lb)  | Ice Wt         | F <sub>st</sub> (lb) | F <sub>a</sub>         | Force (lb         |
| 5                                 | 90               | 32.05                   | 0.000                  | 7.856                  | 0.00                    | 0.159              | 2.74         | 1.00         | 1.00                 | 0.0                     | 4.55                   | 12.47                    | 0.00                      | 653          | 0              | 340                  | 19                     | 358               |
| 4                                 | 70               | 29.83                   | 6.370                  | 7.930                  | 0.00                    | 0.192              | 2.62         | 1.00         | 1.00                 | 0.0                     | 10.92                  | 28.61                    | 0.00                      | 862          | 0              | 725                  | 151                    | 876               |
| 3<br>2                            | 50<br>30         | 27.09<br>23.41          | 8.272<br>8.741         | 7.930<br>9.599         | 0.00                    | 0.142<br>0.118     | 2.80<br>2.89 | 1.00<br>1.00 | 1.00<br>1.00         | 0.0                     | 12.77<br>14.16         | 35.77<br>40.96           | 0.00                      | 1011<br>1090 | 0<br>0         | 824<br>815           | 171<br>148             | 995<br>963        |
| 1                                 | 10               | 23.39                   | 9.952                  | 9.599                  | 0.00                    | 0.110              | 2.96         | 1.00         | 1.00                 | 0.0                     | 15.37                  | 45.53                    | 0.00                      | 1292         | 0              | 905                  | 148                    | 1053              |
| .2D + 1.0V                        | / 60°            |                         |                        |                        | Gust F                  | Respons            | e Facto      | or (Gh):     |                      | 0.85                    |                        |                          |                           | 4,909        | 0              |                      |                        | 4,246             |
| 25 mph wi                         | nd with          | no ice                  |                        |                        | Wind I                  | mportan            | ce Fac       | tor (lw)     |                      | 1.00                    |                        |                          |                           |              |                |                      |                        |                   |
| Sect<br>#                         | Elev<br>(ft)     | Q <sub>Z</sub><br>(psf) | A <sub>f</sub><br>(sf) | A <sub>r</sub><br>(sf) | Ice A <sub>r</sub> (sf) | е                  | $C_f$        | $D_f$        | $D_r$                | T <sub>iz</sub><br>(in) | A <sub>e</sub><br>(sf) | EPA <sub>a</sub><br>(sf) | EPA <sub>ai</sub><br>(sf) | Wt.<br>(lb)  | Ice Wt<br>(lb) | F <sub>st</sub> (lb) | F <sub>a</sub><br>(lb) | Force (lb         |
| 5                                 | 90               | 32.05                   | 0.000                  | 7.856                  | 0.00                    | 0.159              | 2.74         | 0.80         | 1.00                 | 0.0                     | 4.55                   | 12.47                    | 0.00                      | 653          | 0              | 340                  | 19                     | 358               |
| 4                                 | 70               | 29.83                   | 6.370                  | 7.930                  | 0.00                    | 0.192              | 2.62         | 0.80         | 1.00                 | 0.0                     | 9.64                   | 25.27                    | 0.00                      | 862          | 0              | 641                  | 151                    | 792               |
| 3<br>2                            | 50<br>30         | 27.09<br>23.41          | 8.272<br>8.741         | 7.930<br>9.599         | 0.00                    | 0.142<br>0.118     | 2.80<br>2.89 | 0.80         | 1.00<br>1.00         | 0.0                     | 11.11<br>12.42         | 31.13<br>35.90           | 0.00                      | 1011<br>1090 | 0<br>0         | 717<br>714           | 171<br>148             | 888<br>862        |
| 1                                 | 10               | 23.41                   | 9.952                  | 9.599                  | 0.00                    | 0.110              | 2.96         | 0.80         | 1.00                 | 0.0                     | 13.38                  | 39.64                    | 0.00                      | 1292         | 0              | 714                  | 148                    | 936               |
| -                                 |                  |                         |                        |                        |                         |                    |              |              |                      |                         |                        |                          |                           | 4,909        | 0              |                      |                        | 3,836             |
| .2D + 1.0V                        | / 90°            |                         |                        |                        | Gust F                  | Respons            | e Facto      | r (Gh):      |                      | 0.85                    |                        |                          |                           |              |                |                      |                        |                   |
| 125 mph wi                        | nd with          | no ice                  |                        |                        |                         | mportan            |              | ` '          |                      | 1.00                    |                        |                          |                           |              |                |                      |                        |                   |
| Sect<br>#                         | Elev<br>(ft)     | Q <sub>Z</sub><br>(psf) | A <sub>f</sub><br>(sf) | A <sub>r</sub><br>(sf) | Ice A <sub>r</sub> (sf) | е                  | $C_f$        | $D_f$        | Dr                   | T <sub>iz</sub><br>(in) | A <sub>e</sub> (sf)    | EPA <sub>a</sub> (sf)    | EPA <sub>ai</sub><br>(sf) | Wt.<br>(lb)  | Ice Wt         | F <sub>st</sub> (lb) | F <sub>a</sub> (lb)    | Force (lb         |
| 5                                 | 90               | 32.05                   | 0.000                  | 7.856                  | 0.00                    | 0.159              | 2.74         | 0.85         | 1.00                 | 0.0                     | 4.55                   | 12.47                    | 0.00                      | 653          | 0              | 340                  | 19                     | 358               |
| 4                                 | 70               | 29.83                   | 6.370                  | 7.930                  | 0.00                    | 0.192              | 2.62         | 0.85         | 1.00                 | 0.0                     | 9.96                   | 26.11                    | 0.00                      | 862          | 0              | 662                  | 151                    | 813               |
| 3                                 | 50               | 27.09                   | 8.272                  | 7.930                  | 0.00                    | 0.142              | 2.80         | 0.85         | 1.00                 | 0.0                     | 11.53                  | 32.29                    | 0.00                      | 1011         | 0              | 744                  | 171                    | 915               |
| 2<br>1                            | 30<br>10         | 23.41<br>23.39          | 8.741<br>9.952         | 9.599<br>9.599         | 0.00                    | 0.118<br>0.100     | 2.89<br>2.96 | 0.85<br>0.85 | 1.00<br>1.00         | 0.0                     | 12.85<br>13.88         | 37.16<br>41.11           | 0.00                      | 1090<br>1292 | 0<br>0         | 740<br>818           | 148<br>148             | 888<br>965        |
|                                   | 10               | 23.39                   | 9.952                  | 9.599                  | 0.00                    | 0.100              | 2.90         | 0.65         | 1.00                 | 0.0                     | 13.00                  | 41.11                    | 0.00                      | 4,909        | 0              | 010                  | 140                    | 3,939             |
| ).9D + 1.0V                       | / Norma          | al                      |                        |                        | Gust F                  | Respons            | e Facto      | ır (Gh)·     |                      | 0.85                    |                        |                          |                           | •            |                |                      |                        | •                 |
| 125 mph wi                        |                  |                         |                        |                        |                         | mportan            |              | ` '          |                      | 1.00                    |                        |                          |                           |              |                |                      |                        |                   |
| Sect                              | Elev             | Q <sub>Z</sub>          | A <sub>f</sub>         | A <sub>r</sub>         | Ice A <sub>r</sub>      | е                  | $C_f$        | $D_f$        | Dr                   | T <sub>iz</sub>         | A <sub>e</sub>         | EPA <sub>a</sub>         | EPA <sub>ai</sub>         | Wt.          | Ice Wt         | F <sub>st</sub>      | F <sub>a</sub>         | Force (lb         |
| #<br>5                            | (ft)<br>90       | (psf)<br>32.05          | (sf)<br>0.000          | (sf)<br>7.856          | (sf)<br>0.00            | 0.159              | 2.74         | 1.00         | 1.00                 | (in)<br>0.0             | (sf)<br>4.55           | (sf)<br>12.47            | (sf)<br>0.00              | (lb)<br>490  | (lb)<br>0      | (lb)<br>340          | (lb)<br>19             | 358               |
| 4                                 | 70               | 29.83                   | 6.370                  | 7.930                  | 0.00                    | 0.192              | 2.62         | 1.00         | 1.00                 | 0.0                     | 10.92                  | 28.61                    | 0.00                      | 647          | 0              | 725                  | 151                    | 876               |
| 3                                 | 50               | 27.09                   | 8.272                  | 7.930                  | 0.00                    | 0.142              | 2.80         | 1.00         | 1.00                 | 0.0                     | 12.77                  | 35.77                    | 0.00                      | 758          | 0              | 824                  | 171                    | 995               |
| 2                                 | 30               | 23.41                   | 8.741                  | 9.599                  | 0.00                    | 0.118              | 2.89         | 1.00         | 1.00                 | 0.0                     | 14.16                  | 40.96                    | 0.00                      | 818          | 0              | 815                  | 148                    | 963               |
| 1                                 | 10               | 23.39                   | 9.952                  | 9.599                  | 0.00                    | 0.100              | 2.96         | 1.00         | 1.00                 | 0.0                     | 15.37                  | 45.53                    | 0.00                      | 969<br>3,682 | 0              | 905                  | 148                    | 1053<br>4,246     |
| 00 . 4 014                        | 1.000            |                         |                        |                        | O 5                     |                    |              | - (Ob)       |                      | 0.05                    |                        |                          |                           | 0,002        | Ü              |                      |                        | 7,270             |
|                                   |                  | no ice                  |                        |                        |                         | Respons<br>mportan |              | , ,          |                      | 0.85<br>1.00            |                        |                          |                           |              |                |                      |                        |                   |
|                                   |                  |                         |                        | ٨                      | Ice A <sub>r</sub>      | е                  | $C_{f}$      | $D_f$        | $D_r$                | $T_{iz}$                | $A_{e}$                | EPA <sub>a</sub>         | EPA <sub>ai</sub>         | Wt.          | Ice Wt         | $F_{st}$             | $F_a$                  | Force (lb         |
| 25 mph wi                         | Elev             | $Q_{Z}$                 | $A_f$                  | $A_r$                  |                         |                    |              |              |                      |                         | (sf)                   | (sf)                     | (sf)                      | (lb)         | (lb)           | (lb)                 | (lh)                   |                   |
| 25 mph wii<br>Sect<br>#           | (ft)             | (psf)                   | (sf)                   | (sf)                   | (sf)                    |                    | 0.71         | 0.00         | 4.00                 | (in)                    |                        |                          |                           |              |                |                      | (lb)                   | 050               |
| 25 mph wir<br>Sect<br>#<br>5      | (ft)<br>90       | (psf)<br>32.05          | (sf)<br>0.000          | (sf)<br>7.856          | (sf)<br>0.00            | 0.159              | 2.74         | 0.80         | 1.00                 | 0.0                     | 4.55                   | 12.47                    | 0.00                      | 490          | Ó              | 340                  | 19                     | 358<br>792        |
| 25 mph wir<br>Sect<br>#<br>5<br>4 | (ft)             | (psf)                   | (sf)                   | (sf)                   | (sf)                    | 0.159<br>0.192     | 2.62         | 0.80         | 1.00<br>1.00<br>1.00 |                         |                        |                          |                           |              |                |                      |                        | 358<br>792<br>888 |
| #<br>5                            | (ft)<br>90<br>70 | (psf)<br>32.05<br>29.83 | 0.000<br>6.370         | 7.856<br>7.930         | 0.00<br>0.00            | 0.159              |              |              | 1.00                 | 0.0                     | 4.55<br>9.64           | 12.47<br>25.27           | 0.00                      | 490<br>647   | 0              | 340<br>641           | 19<br>151              | 792               |

|                            |              |                         |                        |                     |                         |                    |              | SECTIO       | ON FOR       | RCES                    |                        |                       |                           |                       |                |                      |                     |            |
|----------------------------|--------------|-------------------------|------------------------|---------------------|-------------------------|--------------------|--------------|--------------|--------------|-------------------------|------------------------|-----------------------|---------------------------|-----------------------|----------------|----------------------|---------------------|------------|
| Sect<br>#                  | Elev<br>(ft) | Q <sub>Z</sub><br>(psf) | A <sub>f</sub><br>(sf) | A <sub>r</sub> (sf) | Ice A <sub>r</sub> (sf) | е                  | $C_{f}$      | $D_f$        | $D_{r}$      | T <sub>iz</sub><br>(in) | A <sub>e</sub><br>(sf) | EPA <sub>a</sub> (sf) | EPA <sub>ai</sub><br>(sf) | Wt.<br>(lb)           | Ice Wt<br>(lb) | F <sub>st</sub> (lb) | F <sub>a</sub> (lb) | Force (lb) |
|                            | (,           | (60.)                   | (0.)                   | (0.)                | (0.)                    |                    |              |              |              | ()                      | (0.)                   | (0.)                  | (0.)                      | 3,682                 | 0              | (.2)                 | ()                  | 3,836      |
| 0.9D + 1.0W                |              |                         |                        |                     |                         | Respons            |              | ` '          |              | 0.85                    |                        |                       |                           |                       |                |                      |                     |            |
| 125 mph wir                | nd with      | no ice                  |                        |                     | Wind I                  | mportan            | ce Fac       | tor (lw):    | :            | 1.00                    | 1                      |                       |                           |                       |                |                      |                     |            |
| Sect                       | Elev         | $Q_Z$                   | $A_f$                  | $A_r$               | Ice A <sub>r</sub>      | е                  | $C_f$        | $D_f$        | $D_r$        | $T_{iz}$                | $A_{e}$                | EPA <sub>a</sub>      | EPA <sub>ai</sub>         | Wt.                   | Ice Wt         | $F_{st}$             | Fa                  | Force (lb) |
| #                          | (ft)         | (psf)                   | (sf)                   | (sf)                | (sf)                    |                    |              |              |              | (in)                    | (sf)                   | (sf)                  | (sf)                      | (lb)                  | (lb)           | (lb)                 | (lb)                |            |
| 5<br>4                     | 90<br>70     | 32.05<br>29.83          | 0.000<br>6.370         | 7.856<br>7.930      | 0.00                    | 0.159<br>0.192     | 2.74<br>2.62 | 0.85<br>0.85 | 1.00<br>1.00 | 0.0                     | 4.55<br>9.96           | 12.47<br>26.11        | 0.00                      | 490<br>647            | 0              | 340<br>662           | 19<br>151           | 358<br>813 |
| 3                          | 50           | 27.09                   | 8.272                  | 7.930               | 0.00                    | 0.132              | 2.80         | 0.85         | 1.00         | 0.0                     | 11.53                  | 32.29                 | 0.00                      | 758                   | 0              | 744                  | 171                 | 915        |
| 2                          | 30           | 23.41                   | 8.741                  | 9.599               | 0.00                    | 0.118              | 2.89         | 0.85         | 1.00         | 0.0                     | 12.85                  | 37.16                 | 0.00                      | 818                   | 0              | 740                  | 148                 | 888        |
| 1                          | 10           | 23.39                   | 9.952                  | 9.599               | 0.00                    | 0.100              | 2.96         | 0.85         | 1.00         | 0.0                     | 13.88                  | 41.11                 | 0.00                      | 969                   | 0              | 818                  | 148                 | 965        |
| 4.00 . 4.00                | : . 4 01/    | V: Name al              |                        |                     | O 5                     |                    | - F4-        | (Ob).        |              | 0.05                    |                        | 1-                    |                           | 3,682                 | 0              |                      | 4.00                | 3,939      |
| 1.2D + 1.0D<br>50 mph wind | -            |                         |                        |                     |                         | Respons<br>mportan |              | ` '          |              | 0.85                    |                        |                       |                           | ance Fac<br>Load Fact |                |                      | 1.00                |            |
| ·                          |              |                         |                        |                     |                         | •                  |              | ,            |              |                         |                        |                       |                           |                       |                |                      |                     |            |
| Sect                       | Elev         | Q <sub>Z</sub>          | A <sub>f</sub>         | A <sub>r</sub>      | Ice A <sub>r</sub>      | е                  | $C_f$        | $D_f$        | $D_r$        | T <sub>iz</sub>         | A <sub>e</sub>         | EPA <sub>a</sub>      | EPA <sub>ai</sub>         | Wt.                   | Ice Wt         | F <sub>st</sub>      | F <sub>a</sub>      | Force (lb) |
| #<br>5                     | (ft)<br>90   | (psf)<br>5.13           | (sf)<br>0.000          | (sf)<br>25.879      | (sf)<br>18.02           | 0.488              | 1.92         | 1.00         | 1.00         | (in)<br>1.1             | (sf)<br>17.66          | (sf)<br>33.85         | (sf)<br>18.02             | (lb)<br>1312          | (lb)<br>659    | (lb)<br>148          | (lb)<br>11          | 159        |
| 4                          | 70           | 4.77                    | 6.370                  | 24.642              | 16.71                   | 0.398              | 2.07         | 1.00         | 1.00         | 1.1                     | 22.03                  | 45.55                 | 16.71                     | 1883                  | 1020           | 185                  | 66                  | 251        |
| 3                          | 50           | 4.33                    | 8.272                  | 26.740              | 18.81                   | 0.298              | 2.30         | 1.00         | 1.00         | 1.0                     | 24.27                  | 55.88                 | 18.81                     | 2173                  | 1162           | 206                  | 77                  | 283        |
| 2                          | 30<br>10     | 3.75                    | 8.741                  | 28.074              | 18.47                   | 0.233              | 2.49         | 1.00         | 1.00         | 1.0                     | 25.05                  | 62.39                 | 18.47                     | 2248                  | 1157<br>1061   | 199                  | 68<br>67            | 267<br>276 |
|                            | 10           | 3.74                    | 9.952                  | 25.832              | 16.23                   | 0.181              | 2.66         | 1.00         | 1.00         | 0.9                     | 24.71                  | 65.76                 | 16.23                     | 2352<br>9,968         | 5,059          | 209                  | 67                  | 1,236      |
| 1.2D + 1.0D                | i + 1 0V     | Vi 60°                  |                        |                     | Gust F                  | Respons            | e Facto      | r (Gh)·      |              | 0.85                    |                        | lo                    | e Import:                 | ance Fac              | •              |                      | 1.00                | ,          |
| 50 mph wind                |              |                         |                        |                     |                         | mportan            |              | . ,          | :            | 1.00                    |                        |                       | •                         | oad Fact              |                |                      | 1.00                |            |
| Sect                       | Elev         | $Q_{Z}$                 | $A_{f}$                | $A_r$               | Ice A <sub>r</sub>      | е                  | $C_{f}$      | $D_f$        | $D_r$        | $T_{iz}$                | $A_{e}$                | EPA <sub>a</sub>      | EPA <sub>ai</sub>         | Wt.                   | Ice Wt         | $F_{st}$             | $F_a$               | Force (lb) |
| #_                         | (ft)         | (psf)                   | (sf)                   | (sf)                | (sf)                    |                    |              |              |              | (in)                    | (sf)                   | (sf)                  | (sf)                      | (lb)                  | (lb)           | (lb)                 | (lb)                |            |
| 5<br>4                     | 90<br>70     | 5.13<br>4.77            | 0.000<br>6.370         | 25.879<br>24.642    | 18.02<br>16.71          | 0.488<br>0.398     | 1.92<br>2.07 | 0.80         | 1.00<br>1.00 | 1.1<br>1.1              | 17.66<br>20.75         | 33.85<br>42.91        | 18.02<br>16.71            | 1312<br>1883          | 659<br>1020    | 148<br>174           | 11<br>66            | 159<br>240 |
| 3                          | 50           | 4.33                    | 8.272                  | 26.740              | 18.81                   | 0.298              | 2.30         | 0.80         | 1.00         | 1.0                     | 22.61                  | 52.07                 | 18.81                     | 2173                  | 1162           | 192                  | 77                  | 269        |
| 2                          | 30           | 3.75                    | 8.741                  | 28.074              | 18.47                   | 0.233              | 2.49         | 0.80         | 1.00         | 1.0                     | 23.30                  | 58.04                 | 18.47                     | 2248                  | 1157           | 185                  | 68                  | 253        |
| 1                          | 10           | 3.74                    | 9.952                  | 25.832              | 16.23                   | 0.181              | 2.66         | 0.80         | 1.00         | 0.9                     | 22.72                  | 60.46                 | 16.23                     | 2352<br>9,968         | 1061<br>5,059  | 192                  | 67                  | 259        |
| 1.2D + 1.0D                | i ± 1 0V     | Vi a∩°                  |                        |                     | Guet F                  | Respons            | e Facto      | r (Ch):      |              | 0.85                    |                        | lo                    | e Import                  | ance Fac              |                |                      | 1.00                | 1,181      |
| 50 mph wind                |              |                         |                        |                     |                         | mportan            |              |              |              | 1.00                    |                        |                       |                           | oad Fact              |                |                      | 1.00                |            |
|                            |              |                         |                        |                     |                         |                    |              |              |              |                         |                        |                       |                           |                       |                |                      |                     |            |
| Sect                       | Elev         | Q <sub>Z</sub>          | A <sub>f</sub>         | A <sub>r</sub>      | Ice A <sub>r</sub>      | е                  | $C_f$        | $D_f$        | $D_r$        | T <sub>iz</sub>         | A <sub>e</sub>         | EPA <sub>a</sub>      | EPA <sub>ai</sub>         | Wt.                   | Ice Wt         | F <sub>st</sub>      | F <sub>a</sub>      | Force (lb) |
| #5                         | (ft)<br>90   | (psf)<br>5.13           | (sf)<br>0.000          | (sf)<br>25.879      | (sf)<br>18.02           | 0.488              | 1.92         | 0.85         | 1.00         | (in)<br>1.1             | (sf)<br>17.66          | (sf)<br>33.85         | (sf)<br>18.02             | (lb)<br>1312          | (lb)<br>659    | (lb)<br>148          | (lb)<br>11          | 159        |
| 4                          | 70           | 4.77                    | 6.370                  | 24.642              | 16.71                   | 0.398              | 2.07         | 0.85         | 1.00         | 1.1                     | 21.07                  | 43.57                 | 16.71                     | 1883                  | 1020           | 177                  | 66                  | 243        |
| 3                          | 50           | 4.33                    | 8.272                  | 26.740              | 18.81                   | 0.298              | 2.30         | 0.85         | 1.00         | 1.0                     | 23.03                  | 53.02                 | 18.81                     | 2173                  | 1162           | 195                  | 77                  | 273        |
| 2                          | 30<br>10     | 3.75<br>3.74            | 8.741<br>9.952         | 28.074<br>25.832    | 18.47<br>16.23          | 0.233<br>0.181     | 2.49<br>2.66 | 0.85<br>0.85 | 1.00<br>1.00 | 1.0<br>0.9              | 23.74<br>23.22         | 59.12<br>61.79        | 18.47<br>16.23            | 2248<br>2352          | 1157<br>1061   | 188<br>197           | 68<br>67            | 257<br>263 |
|                            | 10           | 3.74                    | 9.902                  | 23.032              | 10.23                   | 0.101              | 2.00         | 0.65         | 1.00         | 0.9                     | 23.22                  | 61.79                 | 10.23                     | 9,968                 | 5,059          | 197                  | 67                  | 1,195      |
| 1.0D + 1.0W                | / Servic     | e Normal                |                        |                     | Gust F                  | Respons            | e Facto      | r (Gh):      |              | 0.85                    | ;                      |                       |                           |                       |                |                      |                     |            |
| 60 mph Win                 | d with N     | No Ice                  |                        |                     |                         | mportan            |              |              | :            | 1.00                    |                        |                       |                           |                       |                |                      |                     |            |
| Sect<br>#                  | Elev<br>(ft) | Q <sub>Z</sub><br>(psf) | A <sub>f</sub><br>(sf) | A <sub>r</sub> (sf) | Ice A <sub>r</sub> (sf) | е                  | $C_f$        | $D_{f}$      | Dr           | T <sub>iz</sub><br>(in) | A <sub>e</sub><br>(sf) | EPA <sub>a</sub> (sf) | EPA <sub>ai</sub><br>(sf) | Wt.<br>(lb)           | Ice Wt<br>(lb) | F <sub>st</sub> (lb) | F <sub>a</sub> (lb) | Force (lb) |
| 5                          | 90           | 7.38                    | 0.000                  | 7.856               | 0.00                    | 0.159              | 2.74         | 1.00         | 1.00         | 0.0                     | 4.55                   | 12.47                 | 0.00                      | 545                   | 0              | 78                   | 4                   | 83         |
| 4                          | 70           | 6.87                    | 6.370                  | 7.930               | 0.00                    | 0.192              | 2.62         | 1.00         | 1.00         | 0.0                     | 10.92                  | 28.61                 | 0.00                      | 719                   | 0              | 167                  | 35                  | 202        |
| 3                          | 50           | 6.24                    | 8.272                  | 7.930               | 0.00                    | 0.142              | 2.80         | 1.00         | 1.00         | 0.0                     | 12.77                  | 35.77                 | 0.00                      | 843                   | 0              | 190                  | 39                  | 229        |
| 2<br>1                     | 30<br>10     | 5.39<br>5.39            | 8.741<br>9.952         | 9.599<br>9.599      | 0.00                    | 0.118<br>0.100     | 2.89<br>2.96 | 1.00<br>1.00 | 1.00<br>1.00 | 0.0                     | 14.16<br>15.37         | 40.96<br>45.53        | 0.00                      | 909<br>1076           | 0              | 188<br>209           | 34<br>34            | 222<br>243 |
| ı                          | 10           | ა.აჟ                    | ჟ.უე∠                  | 3.533               | 0.00                    | 0.100              | ۷.50         | 1.00         | 1.00         | 0.0                     | 13.31                  | ₩0.00                 | 0.00                      | 10/6                  | U              | 209                  | 54                  | <b>4</b> 3 |

|             |              |                         |                        |                        |                            |          |         | SECTIO    | או בטו         | 2050                    |                        |                          |                           |             |                |                         |                        |            |
|-------------|--------------|-------------------------|------------------------|------------------------|----------------------------|----------|---------|-----------|----------------|-------------------------|------------------------|--------------------------|---------------------------|-------------|----------------|-------------------------|------------------------|------------|
|             |              |                         |                        |                        |                            |          |         | SECTION   | JN FUI         | KUES                    |                        |                          |                           |             |                |                         |                        |            |
| Sect<br>#   | Elev<br>(ft) | Q <sub>Z</sub><br>(psf) | A <sub>f</sub><br>(sf) | A <sub>r</sub> (sf)    | Ice A <sub>r</sub><br>(sf) | е        | $C_f$   | $D_f$     | D <sub>r</sub> | T <sub>iz</sub><br>(in) | A <sub>e</sub><br>(sf) | EPA <sub>a</sub><br>(sf) | EPA <sub>ai</sub><br>(sf) | Wt.<br>(lb) | Ice Wt<br>(lb) | F <sub>st</sub> (lb)    | F <sub>a</sub><br>(lb) | Force (lb) |
|             |              |                         |                        |                        |                            |          |         |           |                |                         |                        |                          |                           | 4,091       | 0              |                         |                        | 978        |
| 1.0D + 1.0W | / Service    | e 60°                   |                        |                        | Gust F                     | Response | e Facto | r (Gh):   |                | 0.85                    | ;                      |                          |                           |             |                |                         |                        |            |
| 60 mph Win  | d with N     | lo Ice                  |                        |                        | Wind I                     | mportan  | ce Fac  | tor (lw): | :              | 1.00                    | )                      |                          |                           |             |                |                         |                        |            |
|             |              |                         |                        |                        |                            |          |         |           |                |                         |                        |                          |                           |             |                |                         |                        |            |
| Sect<br>#   | Elev<br>(ft) | Q <sub>Z</sub><br>(psf) | A <sub>f</sub><br>(sf) | A <sub>r</sub><br>(sf) | Ice A <sub>r</sub><br>(sf) | е        | $C_{f}$ | $D_{f}$   | $D_r$          | T <sub>iz</sub><br>(in) | A <sub>e</sub><br>(sf) | EPA <sub>a</sub><br>(sf) | EPA <sub>ai</sub><br>(sf) | Wt.<br>(lb) | Ice Wt<br>(lb) | F <sub>st</sub><br>(lb) | F <sub>a</sub><br>(lb) | Force (lb) |
| 5           | 90           | 7.38                    | 0.000                  | 7.856                  | 0.00                       | 0.159    | 2.74    | 0.80      | 1.00           | 0.0                     | 4.55                   | 12.47                    | 0.00                      | 545         | 0              | 78                      | 4                      | 83         |
| 4           | 70           | 6.87                    | 6.370                  | 7.930                  | 0.00                       | 0.192    | 2.62    | 0.80      | 1.00           | 0.0                     | 9.64                   | 25.27                    | 0.00                      | 719         | 0              | 148                     | 35                     | 182        |
| 3           | 50           | 6.24                    | 8.272                  | 7.930                  | 0.00                       | 0.142    | 2.80    | 0.80      | 1.00           | 0.0                     | 11.11                  | 31.13                    | 0.00                      | 843         | 0              | 165                     | 39                     | 205        |
| 2           | 30           | 5.39                    | 8.741                  | 9.599                  | 0.00                       | 0.118    | 2.89    | 0.80      | 1.00           | 0.0                     | 12.42                  | 35.90                    | 0.00                      | 909         | 0              | 165                     | 34                     | 199        |
| 1           | 10           | 5.39                    | 9.952                  | 9.599                  | 0.00                       | 0.100    | 2.96    | 0.80      | 1.00           | 0.0                     | 13.38                  | 39.64                    | 0.00                      | 1076        | 0              | 182                     | 34                     | 216        |
|             |              |                         |                        |                        |                            |          |         |           |                |                         |                        |                          |                           | 4,091       | 0              |                         |                        | 884        |
| 1.0D + 1.0W | / Service    | e 90°                   |                        |                        | Gust F                     | Response | e Facto | r (Gh):   |                | 0.85                    | ;                      |                          |                           |             |                |                         |                        |            |
| 60 mph Win  |              |                         |                        |                        |                            | mportan  |         | ` '       |                | 1.00                    |                        |                          |                           |             |                |                         |                        |            |
|             |              |                         |                        |                        |                            |          |         |           |                |                         |                        |                          |                           |             |                |                         |                        |            |
| Sect        | Elev         | $Q_{Z}$                 | $A_f$                  | $A_r$                  | Ice A <sub>r</sub>         | е        | $C_{f}$ | $D_f$     | $D_r$          | $T_{iz}$                | $A_{e}$                | EPAa                     | EPAai                     | Wt.         | Ice Wt         | $F_{st}$                | $F_a$                  | Force (lb) |
| #           | (ft)         | (psf)                   | (sf)                   | (sf)                   | (sf)                       |          |         |           |                | (in)                    | (sf)                   | (sf)                     | (sf)                      | (lb)        | (lb)           | (lb)                    | (lb)                   | , ,        |
| 5           | 90           | 7.38                    | 0.000                  | 7.856                  | 0.00                       | 0.159    | 2.74    | 0.85      | 1.00           | 0.0                     | 4.55                   | 12.47                    | 0.00                      | 545         | 0              | 78                      | 4                      | 83         |
| 4           | 70           | 6.87                    | 6.370                  | 7.930                  | 0.00                       | 0.192    | 2.62    | 0.85      | 1.00           | 0.0                     | 9.96                   | 26.11                    | 0.00                      | 719         | 0              | 153                     | 35                     | 187        |
| 3           | 50           | 6.24                    | 8.272                  | 7.930                  | 0.00                       | 0.142    | 2.80    | 0.85      | 1.00           | 0.0                     | 11.53                  | 32.29                    | 0.00                      | 843         | 0              | 171                     | 39                     | 211        |
| 2           | 30           | 5.39                    | 8.741                  | 9.599                  | 0.00                       | 0.118    | 2.89    | 0.85      | 1.00           | 0.0                     | 12.85                  | 37.16                    | 0.00                      | 909         | 0              | 170                     | 34                     | 204        |
| 1           | 10           | 5.39                    | 9.952                  | 9.599                  | 0.00                       | 0.100    | 2.96    | 0.85      | 1.00           | 0.0                     | 13.88                  | 41.11                    | 0.00                      | 1076        | 0              | 188                     | 34                     | 222        |
|             |              |                         |                        |                        |                            |          |         |           |                |                         |                        |                          |                           | 4,091       | 0              |                         |                        | 907        |

| EQUIVALENT LATERAL FORCE METHOD                                                |        |  |
|--------------------------------------------------------------------------------|--------|--|
| Spectral Response Acceleration for Short Period (S <sub>S</sub> ):             | 0.20   |  |
| Spectral Response Acceleration at 1.0 Second Period (S <sub>1</sub> ):         | 0.05   |  |
| Long-Period Transition Period (T <sub>L</sub> – Seconds):                      | 6      |  |
| Importance Factor (I <sub>e</sub> ):                                           | 1.00   |  |
| Site Coefficient F <sub>a:</sub>                                               | 1.60   |  |
| Site Coefficient F <sub>v</sub> :                                              | 2.40   |  |
| Response Modification Coefficient (R):                                         | 3.00   |  |
| Design Spectral Response Acceleration at Short Period (S <sub>ds</sub> ):      | 0.21   |  |
| Design Spectral Response Acceleration at 1.0 Second Period (S <sub>d1</sub> ): | 0.09   |  |
| Seismic Response Coefficient (C <sub>s</sub> ):                                | 0.04   |  |
| Upper Limit C <sub>S</sub> :                                                   | 0.04   |  |
| Lower Limit C <sub>S</sub> :                                                   | 0.03   |  |
| Period based on Rayleigh Method (sec):                                         | 0.69   |  |
| Redundancy Factor (p):                                                         | 1.00   |  |
| Seismic Force Distribution Exponent (k):                                       | 1.09   |  |
| Total Unfactored Dead Load:                                                    | 6.40 k |  |
| Seismic Base Shear (E):                                                        | 0.27 k |  |

| <u>ad Case</u> : 0.9D - 1.0Ev + 1.0Eh |                           | Seismic        |                           |       |                          |               |
|---------------------------------------|---------------------------|----------------|---------------------------|-------|--------------------------|---------------|
|                                       | Halabi Abasa              | M/stale(       | 107                       |       | H-2                      | Vertical      |
| Section                               | Height Above<br>Base (ft) | Weight<br>(lb) | W <sub>Z</sub><br>(lb-ft) | Cvx   | Horizontal<br>Force (lb) | Force<br>(lb) |
| 5                                     | 90.00                     | 545            | 74,918                    | 0.140 | 38                       | 467           |
| 4                                     | 70.00                     | 719            | 75,099                    | 0.140 | 38                       | 617           |
| 3                                     | 50.00                     | 843            | 60,940                    | 0.114 | 31                       | 723           |
| 2                                     | 30.00                     | 909            | 37,571                    | 0.070 | 19                       | 780           |
| _<br>1                                | 10.00                     | 1,076          | 13,374                    | 0.025 | 7                        | 923           |
| Generic Flat Side Arm                 | 92.00                     | 188            | 26,423                    | 0.050 | 13                       | 161           |
| Generic 22' Dipole                    | 92.00                     | 66             | 9,301                     | 0.017 | 5                        | 57            |
| Generic 12' Dipole                    | 86.00                     | 40             | 5,236                     | 0.010 | 3                        | 34            |
| Generic Flat Side Arm                 | 86.00                     | 188            | 24,543                    | 0.046 | 12                       | 161           |
| Commscope RDIDC-9181-PF-48            | 75.00                     | 22             | 2,468                     | 0.005 | 1                        | 19            |
| Fujitsu TA08025-B604                  | 75.00                     | 192            | 21,603                    | 0.040 | 11                       | 164           |
| Fujitsu TA08025-B605                  | 75.00                     | 225            | 25,355                    | 0.048 | 13                       | 193           |
| JMA Wireless MX08FRO665-21            | 75.00                     | 194            | 21,806                    | 0.041 | 11                       | 166           |
| Generic Flat Light Sector Frame       | 75.00                     | 1,200          | 135,228                   | 0.253 | 68                       | 1,030         |
|                                       | Totals                    | 6,404          | 533,864                   | 1.000 | 268                      | 5,495         |

| SEISMIC |
|---------|
|---------|

<u>Load Case</u>: 1.2D + 1.0Ev + 1.0Eh Seismic

| Section               | Height Above<br>Base (ft) | Weight<br>(lb) | $W_Z$ (lb-ft) | Cvx   | Horizontal<br>Force (lb) | Vertical<br>Force<br>(lb) |
|-----------------------|---------------------------|----------------|---------------|-------|--------------------------|---------------------------|
| 5                     | 90.00                     | 545            | 74,918        | 0.140 | 38                       | 676                       |
| 4                     | 70.00                     | 719            | 75,099        | 0.141 | 38                       | 893                       |
| 3                     | 50.00                     | 843            | 60,940        | 0.114 | 31                       | 1,047                     |
| 2                     | 30.00                     | 909            | 37,571        | 0.070 | 19                       | 1,129                     |
| 1                     | 10.00                     | 1,076          | 13,374        | 0.025 | 7                        | 1,337                     |
| Generic Flat Side Arm | 92.00                     | 188            | 26,423        | 0.050 | 13                       | 233                       |
| Generic 22' Dipole    | 92.00                     | 66             | 9,301         | 0.017 | 5                        | 82                        |
| Generic 12' Dipole    | 86.00                     | 40             | 5,236         | 0.010 | 3                        | 50                        |

| ASSET:<br>CUSTOMER | # 370623, MONTVILLE CT<br>DISH WIRELESS L.L.C. |        |       |         | STANDARD<br>ENG NO.: | ANSI/TIA-22<br>13693127_C |       |
|--------------------|------------------------------------------------|--------|-------|---------|----------------------|---------------------------|-------|
| Generic Flat       | Side Arm                                       | 86.00  | 188   | 24.543  | 0.046                | 12                        | 233   |
|                    | RDIDC-9181-PF-48                               | 75.00  | 22    | 2.468   | 0.005                | 1                         | 27    |
| Fujitsu TA080      |                                                | 75.00  | 192   | 21,603  | 0.040                | 11                        | 238   |
| Fujitsu TA080      | 025-B605                                       | 75.00  | 225   | 25,355  | 0.048                | 13                        | 279   |
| JMA Wireless       | s MX08FRO665-21                                | 75.00  | 194   | 21,806  | 0.041                | 11                        | 240   |
| Generic Flat       | Light Sector Frame                             | 75.00  | 1,200 | 135,228 | 0.253                | 68                        | 1,490 |
|                    |                                                | Totals | 6,404 | 533,864 | 1.000                | 268                       | 7,954 |

STANDARD ANSI/TIA-222-H ENG NO.: 13693127\_C3\_02

### FORCE/STRESS SUMMARY

| Section 1 - Bolt Elevation 0.0 (ft) and I | Heiaht 20.00 (ft)  |
|-------------------------------------------|--------------------|
| Bon Elovation 6.6 (it) and i              | 10.9.11 20.00 (11) |

|                          |                       |                  |          |             |                 |              | Shear            | Bear       |      |        |      |            |
|--------------------------|-----------------------|------------------|----------|-------------|-----------------|--------------|------------------|------------|------|--------|------|------------|
|                          | Pu                    | Len Bı           | racing % | )           | F' <sub>v</sub> | $\Phi_c P_n$ | $\Phi R_{nv}$    | $\Phi R_n$ |      | #      | # Us | e          |
| Max Compression          | (kip) Load Case       | (ft) X           | Ϋ́Ζ      |             | (ksi)           | (kip)        | (kip)            | (kip)      | Во   | lt Hol | е '  | % Controls |
| L PX - 2-1/2" DIA PIPE   | -40.69 1.2D + 1.0W N  | 6.678 100        | 100 100  | 86.72       | 50.0            | 58.42        | 0.00             | 0.00       |      | 0      | 0 6  | 9 Member X |
| D SAE - 1.75X1.75X0.1875 | -1.13 1.2D + 1.0W N   | 12.16 50         | 50 50    | 212.71      | 36.0            | 3.93         | 8.84             | 10.44      |      | 1      | 1 2  | 8 Member Z |
|                          |                       |                  |          |             | Shear           | Bear         | Blk Sh           | near       |      |        |      |            |
|                          | Pu                    | F <sub>v</sub>   | $F_{u}$  | $\Phi_c$ Pn | $\Phi R_{nv}$   | $\Phi R_n$   | Ф <sub>t</sub> I | $P_n$      | #    | #      | Use  |            |
| Max Tension Member       | (kip) Load Case       | (ksi)            | (ksi)    | (kip)       | (kip)           | (kip)        | (kip             | ၁)         | Bolt | Hole   | %    | Controls   |
| L PX - 2-1/2" DIA PIPE   | 34.75 0.9D + 1.0W 60° | 50.0             | 65       | 101.25      | 0.00            | 0.00         |                  |            | 0    | 0      | 34   | Member     |
| D SAE - 1.75X1.75X0.1875 | 1.04 1.2D + 1.0W N    | 36.0             | 58       | 16.82       | 8.84            | 6.20         | 5.7              | '1         | 1    | 1      | 18   | Blk Shear  |
|                          | Pu                    | ΦR <sub>nt</sub> | Use      | Num         |                 |              |                  |            |      |        |      |            |
| Max Splice Forces        | (kip) Load Case       | (kip)            | %        | Bolts       | Bolt            | Type         |                  |            |      |        |      |            |
| Top Tension              | 29.84 0.9D + 1.0W 60° | 0.00             | 0        | 0           |                 |              |                  |            |      |        |      |            |
| Bot Tension              | 35.91 0.9D + 1.0W 60° | 81.36            | 20       | 4           | 5/8"            | A449         |                  |            |      |        |      |            |
| Bot Compression          | 42.02 1.2D + 1.0W N   | 83.17            | 53       | 0           |                 |              |                  |            |      |        |      |            |
|                          |                       |                  |          |             |                 |              |                  |            |      |        |      |            |
|                          |                       |                  |          |             |                 |              |                  |            |      |        |      |            |

### Section 2 - Bolt Elevation 20.0 (ft) and Height 20.00 (ft)

| Max Compression<br>L PST - 2-1/2" DIA PIPE<br>D SAE - 1.5X1.5X0.1875 | Pu<br>(kip) Load Case<br>-34.12 1.2D + 1.0W N<br>-0.89 1.2D + 1.0W 90° | (ft) X<br>4.925 100 1 | acing %<br><u>Y Z</u><br>100 100<br>50 50 | KL/R        | F' <sub>y</sub><br>(ksi)<br>50.0<br>36.0 | Φ <sub>c</sub> P <sub>n</sub> (kip) 57.68 3.93 | ФR <sub>nv</sub><br>(kip)<br>0.00 | Bear<br>ΦR <sub>n</sub><br>(kip)<br>0.00<br>10.44 | Во   | lt Hol | 0 5 | e <u>Controls</u> Member X  Member Z |
|----------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------|-------------------------------------------|-------------|------------------------------------------|------------------------------------------------|-----------------------------------|---------------------------------------------------|------|--------|-----|--------------------------------------|
|                                                                      |                                                                        |                       |                                           |             | Shear                                    | Bear                                           | Blk She                           | ear                                               |      |        |     |                                      |
|                                                                      | Pu                                                                     | $F_{v}$               | $F_{u}$                                   | $\Phi_c Pn$ | $\Phi R_{nv}$                            | $\Phi R_n$                                     | Φ <sub>t</sub> P                  | 'n                                                | #    | #      | Use |                                      |
| Max Tension Member                                                   | (kip) Load Case                                                        | (ksi)                 | (ksi)                                     | (kip)       | (kip)                                    | (kip)                                          | (kip)                             | ) E                                               | Bolt | Hole   | %   | Controls                             |
| L PST - 2-1/2" DIA PIPE                                              | 30.04 0.9D + 1.0W 60°                                                  | 50.0                  | 65                                        | 76.68       | 0.00                                     | 0.00                                           |                                   |                                                   | 0    | 0      | 39  | Member                               |
| D SAE - 1.5X1.5X0.1875                                               | 0.94 0.9D + 1.0W 90°                                                   | 36.0                  | 58                                        | 13.85       | 8.84                                     | 6.20                                           | 4.69                              | 9                                                 | 1    | 1      | 20  | Blk Shear                            |
|                                                                      | Pu                                                                     | $\Phi R_{nt}$         | Use                                       | Num         |                                          |                                                |                                   |                                                   |      |        |     |                                      |
| Max Splice Forces                                                    | (kip) Load Case                                                        | (kip)                 | %                                         | Bolts       | Bolt                                     | Type                                           |                                   |                                                   |      |        |     |                                      |
| Top Tension                                                          | 23.45 0.9D + 1.0W 60°                                                  | 0.00                  | 0                                         | 0           |                                          |                                                |                                   |                                                   |      |        |     |                                      |
| Bot Tension                                                          | 29.84 0.9D + 1.0W 60°                                                  | 51.08                 | 58                                        | 4           | 1/2 /                                    | 4325                                           |                                   |                                                   |      |        |     |                                      |

# Section 3 - Bolt Elevation 40.0 (ft) and Height 20.00 (ft)

|                        |                       |               |                    |                         | Shear Bear              |                      |
|------------------------|-----------------------|---------------|--------------------|-------------------------|-------------------------|----------------------|
|                        | Pu                    | Len Bracii    | ing %              | $F'_{v} \Phi_{c} P_{n}$ | $\Phi R_{nv}  \Phi R_n$ | # # Use              |
| Max Compression        | (kip) Load Case       | (ft) X Y      | Y Z KL/R           | (ksi) (kip)             | (kip) (kip)             | Bolt Hole % Controls |
| L PX - 2" DIA PIPE     | -26.45 1.2D + 1.0W N  | 4.007 100 100 | 0 100 62.77        | 50.0 49.93              | 0.00 0.00               | 0 0 52 Member X      |
| D SAE - 1.5X1.5X0.1875 | -0.86 1.2D + 1.0W 90° | 7.472 50 50   | 50 153.02          | 36.0 6.48               | 8.84 10.44              | 1 1 13 Member Z      |
|                        |                       |               |                    |                         |                         |                      |
|                        |                       |               |                    | Shear Bear              | Blk Shear               |                      |
|                        | Pu                    | $F_v$         | $F_u$ $\Phi_c P_n$ | $\Phi R_{nv}  \Phi R_n$ | $\Phi_t P_n$            | # # Use              |
| Max Tension Member     | (kip) Load Case       | (ksi) (       | (ksi) (kip)        | (kip) (kip)             | (kip)                   | Bolt Hole % Controls |
| L PX - 2" DIA PIPE     | 22.67 0.9D + 1.0W 60° | 50.0          | 65 66.60           | 0.00 0.00               |                         | 0 0 34 Member        |
| D SAE - 1.5X1.5X0.1875 | 0.85 1.2D + 1.0W 90°  | 36.0          | 58 13.85           | 8.84 6.20               | 4.69                    | 1 1 18 Blk Shear     |
|                        | Pu                    | ΦP            | Lloo Num           |                         |                         |                      |
|                        |                       | 111           | Use Num            | D # T                   |                         |                      |
| Max Splice Forces      | (kip) Load Case       | (kip)         | % Bolts            | 71                      |                         |                      |
| Top Tension            | 14.95 0.9D + 1.0W 60° | 0.00          | 0 0                | )                       |                         |                      |
| Bot Tension            | 23.45 0.9D + 1.0W 60° | 51.08         | 46 4               | 1/2 A325                |                         |                      |

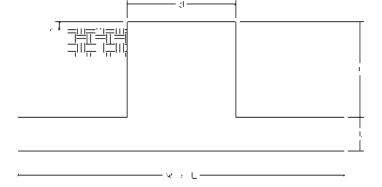
# Section 4 - Bolt Elevation 60.0 (ft) and Height 20.00 (ft)

|                                    | F                         | ORCE/STRESS SUMMARY                             |                                                              |
|------------------------------------|---------------------------|-------------------------------------------------|--------------------------------------------------------------|
|                                    |                           |                                                 | Shear <sub>Bear</sub>                                        |
|                                    | Pu                        | Len Bracing %                                   | $F'_{v}$ $\Phi_{c} P_{n}$ $\Phi R_{nv}$ $\Phi R_{n}$ # # Use |
| Max Compression                    | (kip) Load Case           | (ft) X Y Z KL/R                                 | (ksi) (kip) (kip) Bolt Hole % Controls                       |
| L PST - 2.375" x 0.218"            | -16.73 1.2D + 1.0W N      | 3.94 100 100 100 61.72                          | 50.0 50.41 0.00 0.00 0 0 33 Member                           |
| D SAE - 1.5X1.5X0.1875             | -1.19 1.2D + 1.0W 90°     | 5.025 50 50 50 107.17                           | 36.0 12.19 8.84 10.44 1 1 13 Bolt She                        |
|                                    |                           |                                                 |                                                              |
|                                    |                           |                                                 | Shear Bear Blk Shear                                         |
|                                    | Pu                        | F <sub>ν</sub> F <sub>u</sub> Φ <sub>c</sub> Pn | $\Phi R_{nv}$ $\Phi R_n$ $\Phi_t P_n$ # # Use                |
| Max Tension Member                 | (kip) Load Case           | (ksi) (ksi) (kip)                               | (kip) (kip) (kip) Bolt Hole % Controls                       |
| L PST - 2.375" x 0.218"            | 14.86 1.2D + 1.0W 60°     | 50.0 65 66.60                                   | 0.00 0.00 0 0 22 Member                                      |
| D SAE - 1.5X1.5X0.1875             | 1.12 1.2D + 1.0W 90°      | 36.0 58 13.85                                   | 8.84 6.20 4.69 1 1 23 Blk Shear                              |
|                                    |                           |                                                 |                                                              |
|                                    | Pu                        | ФR <sub>nt</sub> Use Num                        |                                                              |
| Max Splice Forces                  | (kip) Load Case           | (kip) % Bolts                                   | Bolt Type                                                    |
| Top Tension                        | 4.36 0.9D + 1.0W 60°      | 0.00 0 0                                        | •                                                            |
| Bot Tension                        | 14.95 0.9D + 1.0W 60°     | 51.08 29 4                                      | 1/2 A325                                                     |
|                                    |                           |                                                 |                                                              |
| Section 5 – Bolt Elevation 80.0 (  | ft) and Haight 20 00 (ft) |                                                 |                                                              |
| Section 5 – Boit Elevation 60.0 (i | it) and neight 20.00 (it) |                                                 |                                                              |
|                                    |                           |                                                 | Shear <sub>Bear</sub>                                        |
|                                    | Pu                        | Len Bracing %                                   | $F'_y$ $\Phi_c P_n$ $\Phi R_{nv}$ $\Phi R_n$ # # Use         |
| Max Compression                    | (kip) Load Case           | (ft) X Y Z KL/R                                 | (ksi) (kip) (kip) Bolt Hole % Controls                       |
| L SOL - 1 1/2" SOLID               | -4.89 1.2D + 1.0W N       | 0.952 200 200 200 60.95                         | 50.0 60.60 0.00 0.00 0 0 8 Member                            |
| H SOL - 5/8" SOLID                 | -0.31 1.2D + 1.0W 60°     | 2.52 100 100 100 126.00                         | 36.0 4.31 0.00 34.80 1 0 7 Member                            |
| D SOL - 5/8" SOLID                 | -0.67 1.2D + 1.0W 90°     | 2.686 100 100 100 144.64                        | 36.0 3.31 0.00 34.80 1 0 20 Member                           |
|                                    |                           |                                                 | Chan                                                         |
|                                    |                           |                                                 | Shear Bear Blk Shear                                         |
|                                    | Pu                        | F <sub>y</sub> F <sub>u</sub> Φ <sub>c</sub> Pn | $\Phi R_{nv}$ $\Phi R_n$ $\Phi_t P_n$ # # Use                |
| Max Tension Member                 | (kip) Load Case           | (ksi) (ksi) (kip)                               | (kip) (kip) (kip) Bolt Hole % Controls                       |
| L SOL - 1 1/2" SOLID               | 4.12 1.2D + 1.0W 60°      | 50.0 65 79.52                                   | 0.00 0.00 0 0 5 Member                                       |
| H SOL - 5/8" SOLID                 | 0.31 1.2D + 1.0W N        | 36.0 58 9.94                                    | 0.00 20.66 0.00 1 0 3 Member                                 |
| D SOL - 5/8" SOLID                 | 0.60 1.2D + 1.0W N        | 36.0 58 9.94                                    | 0.00 20.66 0.00 1 0 6 Member                                 |
|                                    |                           |                                                 |                                                              |
|                                    | Pu                        | ФR <sub>nt</sub> Use Num                        |                                                              |
| Max Splice Forces                  | (kip) Load Case           | (kip) % Bolts                                   | 71                                                           |
| Bot Tension                        | 4.36 0.9D + 1.0W 60°      | 51.08 9 4                                       | 1/2 A325                                                     |

| DETAILED REACTIONS                             |                                  |                           |            |                          |                            |                         |                |
|------------------------------------------------|----------------------------------|---------------------------|------------|--------------------------|----------------------------|-------------------------|----------------|
| pad Case                                       | Radius                           | Elevation                 | Azimuth    | Node                     | *(-) U <sub>l</sub><br>*Fx | plift and (+) L<br>*Fy  | Down<br>*Fz    |
| ad Case                                        | (ft)                             | (ft)                      | (deg)      | Node                     | (kip)                      | (kip)                   | (kip)          |
| 2D + 1.0W Normal                               | 6.06                             | 0.00                      | 0          | 1                        | 0.00                       | 41.97                   | -4.07          |
| a.                                             | 6.06                             | 0.00                      | 120        | 1a                       | 1.40                       | -17.14                  | -1.14          |
|                                                | 6.06                             | 0.00                      | 240        | 1b                       | -1.40                      | -17.14                  | -1.14          |
| + 1.0W 60°                                     | 6.06                             | 0.00                      | 0          | 1                        | -0.26                      | 21.43                   | -2.00          |
|                                                | 6.06                             | 0.00                      | 120        | 1a                       | -1.86                      | 21.43                   | 0.77           |
|                                                | 6.06                             | 0.00                      | 240        | 1b                       | -3.03                      | -35.18                  | -1.75          |
| + 1.0W 90°                                     | 6.06                             | 0.00                      | 0          | 1                        | -0.31                      | 2.56                    | -0.16          |
|                                                | 6.06                             | 0.00                      | 120        | 1a                       | -3.01                      | 35.43                   | 1.55           |
|                                                | 6.06                             | 0.00                      | 240        | 1b                       | -2.71                      | -30.31                  | -1.39          |
| + 1.0W Normal                                  | 6.06                             | 0.00                      | 0          | 1                        | 0.00                       | 41.28                   | -4.02          |
|                                                | 6.06                             | 0.00                      | 120        | 1a                       | 1.44                       | -17.76                  | -1.16          |
|                                                | 6.06                             | 0.00                      | 240        | 1b                       | -1.44                      | -17.76                  | -1.16          |
| 0 + 1.0W 60°                                   | 6.06                             | 0.00                      | 0          | 1                        | -0.26                      | 20.72                   | -1.95          |
|                                                | 6.06                             | 0.00                      | 120        | 1a                       | -1.82                      | 20.72                   | 0.75           |
|                                                | 6.06                             | 0.00                      | 240        | 1b                       | -3.06                      | -35.69                  | -1.77          |
| + 1.0W 90°                                     | 6.06                             | 0.00                      | 0          | 1                        | -0.31                      | 1.92                    | -0.12          |
|                                                | 6.06                             | 0.00                      | 120        | 1a                       | -2.97                      | 34.75                   | 1.53           |
|                                                | 6.06                             | 0.00                      | 240        | 1b                       | -2.75                      | -30.91                  | -1.41          |
| + 1.0Di + 1.0Wi Normal                         | 6.06                             | 0.00                      | 0          | 1                        | 0.00                       | 15.24                   | -1.10          |
|                                                | 6.06                             | 0.00                      | 120        | 1a                       | 0.35                       | -0.40                   | -0.29          |
|                                                | 6.06                             | 0.00                      | 240        | 1b                       | -0.35                      | -0.40                   | -0.29          |
| + 1.0Di + 1.0Wi 60°                            | 6.06                             | 0.00                      | 0          | 1                        | -0.07                      | 9.92                    | -0.57          |
|                                                | 6.06                             | 0.00                      | 120        | 1a                       | -0.53                      | 9.92                    | 0.22           |
|                                                | 6.06                             | 0.00                      | 240        | 1b                       | -0.81                      | -5.38                   | -0.47          |
| 1.0Di + 1.0Wi 90°                              | 6.06                             | 0.00                      | 0          | 1                        | -0.08                      | 4.82                    | -0.07          |
|                                                | 6.06                             | 0.00                      | 120        | 1a                       | -0.84                      | 13.70                   | 0.43           |
|                                                | 6.06                             | 0.00                      | 240        | 1b                       | -0.72                      | -4.07                   | -0.37          |
| + 1.0Ev + 1.0Eh Normal                         | 6.06                             | 0.00                      | 0          | 1                        | 0.00                       | 4.02                    | 0.25           |
|                                                | 6.06                             | 0.00                      | 120        | 1a                       | 0.39                       | 1.80                    | -0.23          |
| . 4 0E 4 0Eb 000                               | 6.06                             | 0.00                      | 240        | 1b                       | -0.39                      | 1.80                    | -0.23          |
| · 1.0Ev + 1.0Eh 60°                            | 6.06                             | 0.00                      | 0          | 1                        | 0.00                       | 3.23                    | 0.32           |
|                                                | 6.06                             | 0.00                      | 120        | 1a                       | 0.28                       | 3.23                    | -0.16          |
| 1.05v . 1.05b 00°                              | 6.06                             | 0.00                      | 240        | 1b                       | -0.44                      | 1.16                    | -0.25          |
| + 1.0Ev + 1.0Eh 90°                            | 6.06                             | 0.00                      | 120        | 1                        | -0.01                      | 2.54                    | 0.38           |
|                                                | 6.06                             | 0.00                      | 120        | 1a                       | 0.23                       | 3.83                    | -0.14          |
| 1 05v + 1 05b Normal                           | 6.06                             | 0.00                      | 240        | 1b                       | -0.43                      | 1.25                    | -0.25          |
| - 1.0Ev + 1.0Eh Normal                         | 6.06                             | 0.00                      | 120        | 1                        | 0.00                       | 3.24                    | 0.31           |
|                                                | 6.06                             | 0.00                      | 120        | 1a                       | 0.44                       | 1.01                    | -0.26          |
| 1.05v + 1.05h 60°                              | 6.06                             | 0.00                      | 240        | 1b                       | -0.44                      | 1.01                    | -0.26          |
| 1.0Ev + 1.0Eh 60°                              | 6.06                             | 0.00                      | 120        | 1                        | 0.00                       | 2.45                    | 0.38           |
|                                                | 6.06                             | 0.00                      | 120        | 1a<br>1b                 | 0.33                       | 2.45                    | -0.19<br>-0.28 |
| ) - 1.0Ev + 1.0Eh 90°                          | 6.06                             | 0.00                      | 240        | 1b                       | -0.49<br>-0.01             | 0.37                    |                |
| , - 1.UEV T 1.UEH 3U                           | 6.06                             | 0.00                      | 0<br>120   | 1                        | -0.01<br>0.28              | 1.75<br>3.04            | 0.44           |
|                                                | 6.06<br>6.06                     | 0.00                      | 120<br>240 | 1a<br>1b                 |                            | 3.04<br>0.47            | -0.17<br>-0.27 |
| 0 + 1.0W Service Normal                        | 6.06                             | 0.00<br>0.00              | 240        | 1                        | -0.48<br>0.00              | 10.85                   | -0.27<br>-0.46 |
| 7 T 1.000 Service Indiffidi                    |                                  |                           |            |                          |                            |                         |                |
|                                                | 6.06                             | 0.00                      | 120        | 1a<br>1b                 | 0.71<br>-0.71              | -2.22<br>-2.22          | -0.48<br>-0.48 |
| + 1.0W Service 60°                             | 6.06<br>6.06                     | 0.00<br>0.00              | 240<br>0   | 1                        | -0.71<br>-0.06             | -2.22<br>6.29           | -0.48<br>0.01  |
| 1.000 Gervice OU                               | 6.06                             | 0.00                      | 120        | 1<br>1a                  | -0.06<br>-0.02             | 6.29                    | -0.05          |
|                                                | 6.06                             | 0.00                      | 240        | 1b                       | -0.02<br>-1.08             | 6.29<br>-6.18           | -0.05          |
| + 1.0W Service 90°                             | 6.06                             | 0.00                      | 0          | 1                        | -0.07                      | 2.13                    | 0.42           |
| 1 1.0VV OCIVICE 30                             | 6.06                             | 0.00                      | 120        | 1<br>1a                  | -0.07<br>-0.28             | 2.13<br>9.42            | 0.42           |
|                                                | 6.06                             | 0.00                      | 240        | 1b                       | -0.26<br>-1.01             | -5.15                   | -0.54          |
| May Unlift: 05.00 (Lin)                        | Momont los:                      | 04.04 (1::- 4)            |            | lomant:                  | 0.57                       | 0 07 /lsim ft\          |                |
| Max Uplift: 35.69 (kip)  Max Down: 41.97 (kip) | Moment Ice: Total Down Ice:      | 94.81 (kip-ft)            |            | loment:<br>otal Down:    |                            | 8.37 (kip-ft)           |                |
| · · · /                                        | Total Down Ice: Total Shear Ice: | 14.45 (kip)<br>1.68 (kip) |            | otal Down:<br>otal Shear |                            | 7.68 (kip)<br>6.35(kip) |                |
| Max Shear: 4.07 (kip)                          |                                  |                           |            |                          |                            | tr 2.1(KIII)            |                |

| d Case                                                                                             | Elevation<br>(ft) | Deflection<br>(ft) | Twist (deg)      | Sway<br>(deg)    | Resultant<br>(deg) |
|----------------------------------------------------------------------------------------------------|-------------------|--------------------|------------------|------------------|--------------------|
|                                                                                                    |                   | , ,                | , ,              | , 0,             | · · · · · ·        |
| 0 + 1.0W Normal 125 mph wind with no ice                                                           | 75.90             | 0.362              | -0.0177          | 0.5618           | 0.5620             |
| 0 + 1.0W Normal 125 mph wind with no ice                                                           | 85.71             | 0.462              | -0.0156          | 0.5992           | 0.5994             |
| 0 + 1.0W Normal 125 mph wind with no ice                                                           | 92.38             | 0.532              | -0.0131          | 0.5994           | 0.5995             |
| 0 + 1.0W 60° 125 mph wind with no ice                                                              | 75.90             | 0.351              | 0.0183           | 0.5485           | 0.5488             |
| 0 + 1.0W 60° 125 mph wind with no ice<br>0 + 1.0W 60° 125 mph wind with no ice                     | 85.71<br>92.38    | 0.450<br>0.518     | 0.0165<br>0.0143 | 0.5873<br>0.5875 | 0.5875<br>0.5876   |
| 0 + 1.0W 90° 125 mph wind with no ice                                                              | 75.90             | 0.352              | -0.0180          | 0.5487           | 0.5490             |
| 0 + 1.0W 90° 125 mph wind with no ice                                                              | 85.71             | 0.450              | -0.0159          | 0.5851           | 0.5853             |
| 0 + 1.0W 90° 125 mph wind with no ice                                                              | 92.38             | 0.518              | -0.0135          | 0.5852           | 0.5853             |
| 0 + 1.0W Normal 125 mph wind with no ice                                                           | 75.90             | 0.361              | -0.0133          | 0.5603           | 0.5606             |
| D + 1.0W Normal 125 mph wind with no ice                                                           | 85.71             | 0.461              | -0.0156          | 0.5978           | 0.5980             |
| D + 1.0W Normal 125 mph wind with no ice                                                           | 92.38             | 0.531              | -0.0132          | 0.5980           | 0.5981             |
| D + 1.0W 60° 125 mph wind with no ice                                                              | 75.90             | 0.350              | 0.0177           | 0.5455           | 0.5458             |
| D + 1.0W 60° 125 mph wind with no ice                                                              | 85.71             | 0.447              | 0.0157           | 0.5837           | 0.5839             |
| D + 1.0W 60° 125 mph wind with no ice                                                              | 92.38             | 0.515              | 0.0133           | 0.5839           | 0.5839             |
| D + 1.0W 90° 125 mph wind with no ice                                                              | 75.90             | 0.351              | -0.0180          | 0.5474           | 0.5477             |
| D + 1.0W 90° 125 mph wind with no ice                                                              | 85.71             | 0.449              | -0.0159          | 0.5838           | 0.5840             |
| D + 1.0W 90° 125 mph wind with no ice                                                              | 92.38             | 0.517              | -0.0135          | 0.5838           | 0.5839             |
| D + 1.0Di + 1.0Wi Normal 50 mph wind with 1" radial ice                                            | 75.90             | 0.096              | 0.0043           | 0.1498           | 0.1499             |
| D + 1.0Di + 1.0Wi Normal 50 mph wind with 1" radial ice                                            | 85.71             | 0.123              | 0.0035           | 0.1607           | 0.1608             |
| 0 + 1.0Di + 1.0Wi Normal 50 mph wind with 1" radial ice                                            | 92.38             | 0.141              | 0.0027           | 0.1609           | 0.1609             |
| 0 + 1.0Di + 1.0Wi 60° 50 mph wind with 1" radial ice                                               | 75.90             | 0.094              | 0.0049           | 0.1478           | 0.1478             |
| 0 + 1.0Di + 1.0Wi 60° 50 mph wind with 1" radial ice                                               | 85.71             | 0.121              | 0.0038           | 0.1590           | 0.1590             |
| 0 + 1.0Di + 1.0Wi 60° 50 mph wind with 1" radial ice                                               | 92.38             | 0.140              | 0.0028           | 0.1591           | 0.1591             |
| 0 + 1.0Di + 1.0Wi 90° 50 mph wind with 1" radial ice                                               | 75.90             | 0.095              | -0.0045          | 0.1484           | 0.1484             |
| 0 + 1.0Di + 1.0Wi 90° 50 mph wind with 1" radial ice                                               | 85.71             | 0.121              | -0.0037          | 0.1594           | 0.1595             |
| 0 + 1.0Di + 1.0Wi 90° 50 mph wind with 1" radial ice                                               | 92.38             | 0.140              | -0.0029          | 0.1595           | 0.1596             |
| 0 + 1.0Ev + 1.0Eh Normal Seismic                                                                   | 75.90             | 0.014              | 0.0009           | 0.0206           | 0.0206             |
| 0 + 1.0Ev + 1.0Eh Normal Seismic                                                                   | 85.71             | 0.018              | 0.0005           | 0.0211           | 0.0211             |
| 0 + 1.0Ev + 1.0Eh Normal Seismic                                                                   | 92.38             | 0.020              | 0.0003           | 0.0211           | 0.0211             |
| 0 + 1.0Ev + 1.0Eh 60° Seismic                                                                      | 75.90             | 0.013              | 0.0008           | 0.0185           | 0.0185             |
| 0 + 1.0Ev + 1.0Eh 60° Seismic                                                                      | 85.71             | 0.016              | 0.0004           | 0.0185           | 0.0185             |
| 0 + 1.0Ev + 1.0Eh 60° Seismic                                                                      | 92.38             | 0.018              | 0.0002           | 0.0185           | 0.0185             |
| 0 + 1.0Ev + 1.0Eh 90° Seismic                                                                      | 75.90             | 0.014              | 0.0006           | 0.0206           | 0.0206             |
| 0 + 1.0Ev + 1.0Eh 90° Seismic                                                                      | 85.71             | 0.018              | -0.0004          | 0.0211           | 0.0211             |
| 0 + 1.0Ev + 1.0Eh 90° Seismic                                                                      | 92.38             | 0.020              | -0.0003          | 0.0211           | 0.0211             |
| 0 - 1.0Ev + 1.0Eh Normal Seismic (Reduced DL)                                                      | 75.90             | 0.014              | 0.0009           | 0.0206           | 0.0206             |
| 0 - 1.0Ev + 1.0Eh Normal Seismic (Reduced DL)                                                      | 85.71             | 0.018              | 0.0005           | 0.0211           | 0.0211             |
| 0 - 1.0Ev + 1.0Eh Normal Seismic (Reduced DL)                                                      | 92.38             | 0.020              | 0.0003           | 0.0211           | 0.0211             |
| 0 - 1.0Ev + 1.0Eh 60° Seismic (Reduced DL)                                                         | 75.90             | 0.013              | 0.0007           | 0.0184           | 0.0184             |
| 0 - 1.0Ev + 1.0Eh 60° Seismic (Reduced DL)                                                         | 85.71             | 0.016              | 0.0004           | 0.0185           | 0.0185             |
| 0 - 1.0Ev + 1.0Eh 60° Seismic (Reduced DL)                                                         | 92.38             | 0.018              | 0.0002           | 0.0184           | 0.0184             |
| 0 - 1.0Ev + 1.0Eh 90° Seismic (Reduced DL)                                                         | 75.90             | 0.014              | -0.0007          | 0.0206           | 0.0206             |
| 0 - 1.0Ev + 1.0Eh 90° Seismic (Reduced DL)                                                         | 85.71             | 0.018              | -0.0004          | 0.0211           | 0.0211             |
| 0 - 1.0Ev + 1.0Eh 90° Seismic (Reduced DL)                                                         | 92.38<br>75.90    | 0.020              | -0.0003          | 0.0211           | 0.0211             |
| 0 + 1.0W Service Normal 60 mph Wind with No Ice<br>0 + 1.0W Service Normal 60 mph Wind with No Ice | 75.90<br>85.71    | 0.080<br>0.101     | 0.0034<br>0.0027 | 0.1219<br>0.1290 | 0.1219<br>0.1291   |
| D + 1.0W Service Normal 60 mph Wind with No Ice                                                    | 92.38             | 0.116              | 0.0027           | 0.1289           | 0.1291             |
| 0 + 1.0W Service Normal 60 mph Wind with No Ice                                                    | 75.90             | 0.116              | 0.0021           | 0.1289           | 0.1269             |
| 0 + 1.0W Service 60° 60 mph Wind with No Ice                                                       | 85.71             | 0.098              | 0.0037           | 0.1164           | 0.1163             |
| D + 1.0W Service 60° 60 mph Wind with No Ice                                                       | 92.38             | 0.113              | 0.0020           | 0.1258           | 0.1258             |
| D + 1.0W Service 90° 60 mph Wind with No Ice                                                       | 75.90             | 0.078              | -0.0037          | 0.1196           | 0.1196             |
| , Corrido do los impristratos Williams 100                                                         | 10.00             | 0.070              |                  | 5.1100           |                    |
| 0 + 1.0W Service 90° 60 mph Wind with No Ice                                                       | 85.71             | 0.099              | -0.0029          | 0.1267           | 0.1267             |

Site Name: MONTVILLE CT, CT
Site Number: 370623
Tower Type: SST w/3 Legs
Design Loads (Factored) - Analysis per TIA-222-H Standards


# **Monolithic Mat & Pier Foundation Analysis**

| Design / Analysis / Mapping:  Compression/Leg:  Uplift/Leg:  Total Shear:  Moment:  Tower + Appurtenance Weight:  Depth to Base of Foundation (I + t - h):  Diameter Base Plate (d):  Length of Pier (I):  Height of Pier above Ground (h):  Width of Pad (W):  Length of Pad (L):  Thickness of Pad (t):  Damping -  42.0 k  42.0 k  42.0 k  42.0 k  42.0 k  42.0 k  6.4 k  A fit  7.7 k  4.7 ft  0 ft  4.7 ft  0 ft  4.7 ft  14 ft  14 ft  Thickness of Pad (L):  Thickness of Pad (t):  Thickness of Pad (t): |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Uplift/Leg:  Total Shear:  6.4 k  Moment:  Tower + Appurtenance Weight:  Depth to Base of Foundation (I + t - h):  Diameter Base Plate (d):  Length of Pier (I):  Height of Pier above Ground (h):  Width of Pad (W):  Length of Pad (L):  Thickness of Pad (t):  5 ft                                                                                                                                                                                                                                                                                                                                       |
| Total Shear:  Moment:  358.4 k-ft  Tower + Appurtenance Weight:  Depth to Base of Foundation (I + t - h):  Diameter Base Plate (d):  Length of Pier (I):  Height of Pier above Ground (h):  Width of Pad (W):  Length of Pad (L):  Thickness of Pad (t):  6.4 k  8  6.4 k  14  6.4  K-ft  7.7 k  0 ft  0 ft  14  15  14  15  16  16  17  18  18  18  18  18  18  18  18  18                                                                                                                                                                                                                                  |
| Moment:  Tower + Appurtenance Weight:  Depth to Base of Foundation (I + t - h):  Diameter Base Plate (d):  Length of Pier (I):  Height of Pier above Ground (h):  Width of Pad (W):  Length of Pad (L):  Thickness of Pad (t):  358.4 k-ft  7.7 k  4.7 ft  0 ft  4.7 ft  0 ft  Height of Pier above Ground (h):  10 ft  11 ft  12 ft  13 ft                                                                                                                                                                                                                                                                  |
| Tower + Appurtenance Weight:  Depth to Base of Foundation (I + t - h):  Diameter Base Plate (d):  Length of Pier (I):  Height of Pier above Ground (h):  Width of Pad (W):  Length of Pad (L):  Thickness of Pad (t):  7.7 k  4.7 ft  0 ft  4.7 ft  0 ft  4.7 ft  14 ft  14 ft  Thickness of Pad (t):  5 ft                                                                                                                                                                                                                                                                                                  |
| Depth to Base of Foundation (I + t - h):  Diameter Base Plate (d):  Length of Pier (I):  Height of Pier above Ground (h):  Width of Pad (W):  Length of Pad (L):  Thickness of Pad (t):  4.7  ft  0  ft  H. Thickness of Foundation (I + t - h):  0  ft  14  ft  Thickness of Pad (t):  5  ft                                                                                                                                                                                                                                                                                                                |
| Diameter Base Plate (d):  Length of Pier (I):  Height of Pier above Ground (h):  Width of Pad (W):  Length of Pad (L):  Thickness of Pad (t):  0 ft  0 ft  14 ft  5 ft                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Length of Pier (I):  Height of Pier above Ground (h):  Width of Pad (W):  Length of Pad (L):  Thickness of Pad (t):  0 ft  14 ft  15 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Height of Pier above Ground (h):  Width of Pad (W):  Length of Pad (L):  Thickness of Pad (t):  0 ft  14 ft  5 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Width of Pad (W):  Length of Pad (L):  Thickness of Pad (t):  14 ft  15 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Length of Pad (L): 14 ft Thickness of Pad (t): 5 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Thickness of Pad (t): 5 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T 1 0 1 1 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tower Leg Center to Center: 10.5 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Number of Tower Legs: 3 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Tower Center from Mat Center: 0 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Depth Below Ground Surface to Water Table: 99 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Unit Weight of Concrete: 150 pcf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Unit Weight of Soil Above Water Table: 125 pcf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Unit Weight of Water: 62.4 pcf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Unit Weight of Soil Below Water Table: 62.6 pcf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Friction Angle of Uplift: 15 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Coefficient of Shear Friction: 0.35 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ultimate Compressive Bearing Pressure: 10,500 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ultimate Passive Pressure on Pad Face: 0 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| f <sub>Soil and Concrete Weight</sub> : 0.9 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| f <sub>Soil</sub> : 0.75 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Overturning Moment Usage     |        |      |  |  |  |
|------------------------------|--------|------|--|--|--|
| Design OTM:                  | 390.1  | k-ft |  |  |  |
| OTM Resistance:              | 1025.9 | k-ft |  |  |  |
| Design OTM / OTM Resistance: | 38%    | Pass |  |  |  |

| Soil Bearing Pressure Usage                        |             |          |
|----------------------------------------------------|-------------|----------|
| Net Bearing Pressure:                              | 2005        | psf      |
| Factored Nominal Bearing Pressure:                 | 7875        | psf      |
| Factored Nominal (Net) Bearing Pressure:           | 25%         | Pass     |
| Load Direction Controling Design Bearing Pressure: | Diagonal to | Pad Edae |

| Sliding Factor of Safety              |      |      |
|---------------------------------------|------|------|
| Ultimate Friction Resistance:         | 53.7 | k    |
| Ultimate Passive Pressure Resistance: | 0.0  | k    |
| Total Factored Sliding Resistance:    | 40.3 | k    |
| Sliding Design / Sliding Resistance:  | 16%  | Pass |



# INFINIGY8

# **MOUNT ANALYSIS REPORT**

September 16, 2021

| Dish Wireless Site Name   | BOBOS00024A          |
|---------------------------|----------------------|
| Dish Wireless Site Number | BOBOS00024A          |
| NSS/DISH Site Name        | •                    |
| NSS/DISH Site Number      | •                    |
| Infinigy Job Number       | 1197-F0001-B         |
| Client                    | NSS/DISH             |
| Carrier                   | Dish Wireless        |
|                           | 139 Sharp Hill Road  |
|                           | Montville, CT 06353  |
| Site Location             | New London County    |
|                           | 41.44897200 N NAD83  |
|                           | 72.15113889 W NAD83  |
| Mount Type                | 8.0 ft Sector Frames |
| Mount Elevation           | 75.0 ft AGL          |
| Structural Usage Ratio    | 40.0                 |
| Overall Result            | Pass                 |

The enclosed mount structural analysis has been performed in accordance with the 2018 Connecticut State Building Code (2015 IBC) based on an ultimate 3-second gust wind speed of 125 mph. The evaluation criteria and applicable codes are presented in the next section of this report.



# **CONTENTS**

- 1. Introduction
- 2. Design/Analysis Parameters
- 3. Proposed Loading Configuration
- 4. Supporting Documentation
- 5. Results
- 6. Recommendations
- 7. Assumptions
- 8. Liability Waiver and Limitations
- 9. Calculations

# 1. INTRODUCTION

Infinigy performed a structural analysis on the Dish Wireless proposed telecommunication equipment supporting Sector Frames mounted to the existing structure located at the aforementioned address. All referenced supporting documents have been obtained from the client and are assumed to be accurate and applicable to this site. The mount was analyzed using Risa-3D version 17.0.4 analysis software.

# 2. DESIGN/ANALYSIS PARAMETERS

| Wind Speed                      | 125 mph (3-Second Gust)                         |
|---------------------------------|-------------------------------------------------|
| Wind Speed w/ ice               | 50 mph (3-Second Gust) w/ 1.0" ice              |
| Code / Standard                 | TIA-222-H                                       |
| Adopted Code                    | 2018 Connecticut State Building Code (2015 IBC) |
| Risk Category                   |                                                 |
| Exposure Category               | В                                               |
| Topographic Category            | 1                                               |
| Calculated Crest Height         | 0 ft.                                           |
| Seismic Spectral Response       | $S_s = 0.197 \text{ g} / S_1 = 0.054 \text{ g}$ |
| Live Load Wind Speed            | 60 mph                                          |
| Man Live Load at Mid/End Points | 250 lbs                                         |
| Man Live Load at Mount Pipes    | 500 lbs                                         |

# 3. PROPOSED LOADING CONFIGURATION - 75.0 ft. AGL Sector Frames

| Antenna<br>Centerline<br>(ft) | Qty. | Appurtenance Manufacturers | Appurtenance Models |
|-------------------------------|------|----------------------------|---------------------|
|                               | 3    | JMA WIRELESS               | MX08FRO665-21       |
| 75.0                          | 3    | FUJITSU                    | TA08025-B605        |
| 75.0                          | 3    | FUJITSU                    | TA08025-B604        |
|                               | 1    | RAYCAP                     | RDIDC-9181-PF-48    |

# 4. SUPPORTING DOCUMENTATION

| Proposed Loading            | Dish Wireless Asset ID CT-ATC-T-370623 Rev 0, Site #BOBOS00024A, dated May 25, 2021 |
|-----------------------------|-------------------------------------------------------------------------------------|
| Mount Manufacturer Drawings | Commscope Document # MTC3975083, dated March 17, 2021                               |
| Construction Drawings       | NB+C, A&E Project #370623-13693127, dated August 10, 2021                           |

# 5. RESULTS

| Components     | Capacity | Pass/Fail |
|----------------|----------|-----------|
| Mount Pipes    | 19.3%    | Pass      |
| Horizontals    | 8.7%     | Pass      |
| Standoffs      | 40.0%    | Pass      |
| Connections    | 6.2%     | Pass      |
| MOUNT RATING = | 40.0%    | Pass      |

# Notes:

# 6. RECOMMENDATIONS

Infinigy recommends installing Dish Wireless's proposed equipment loading configuration on the mount at 75.0 ft. The installation shall be performed in accordance with the construction documents issued for this site.

Pradin Suinyal Magar Project Engineer II | INFINIGY

<sup>1.</sup> See additional documentation in Appendix for calculations supporting the capacity consumed and detailed mount connection calculations.

### 7. ASSUMPTIONS

The antenna mounting system was properly fabricated, installed and maintained in accordance with its original design and manufacturer's specifications.

The configuration of antennas, mounts, and other appurtenances are as specified in the proposed loading configuration table.

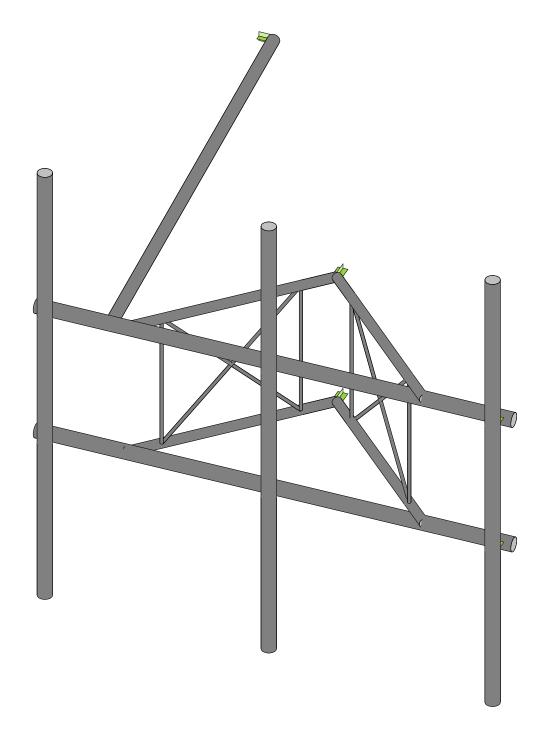
All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.

The analysis will require revisions if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.

Steel grades have been assumed as follows, unless noted otherwise:

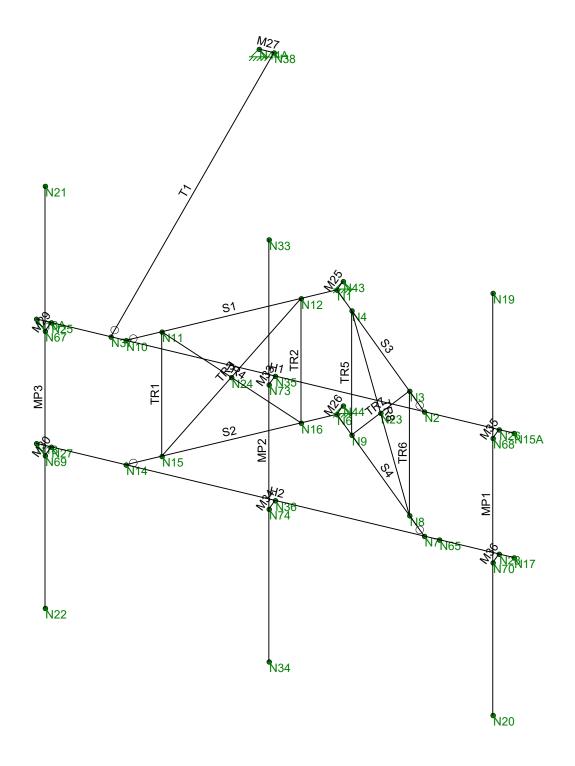
Channel, Plate, Built-up Angle ASTM A1011 36 KSI Solid Round ASTM A529 Gr 50 Structural Angle ASTM A529 Gr. 50 HSS (Rectangular) **ASTM A500-B GR 46 ASTM A500-B GR 42** HSS (Circular) Pipe ASTM A500 Gr 46 **Connection Bolts** ASTM A449 **U-Bolts** ASTM A307

All bolted connections are pretensioned in accordance with Table 8.2 of the RCSC 2014 Standard


### 8. LIABILITY WAIVER AND LIMITATIONS

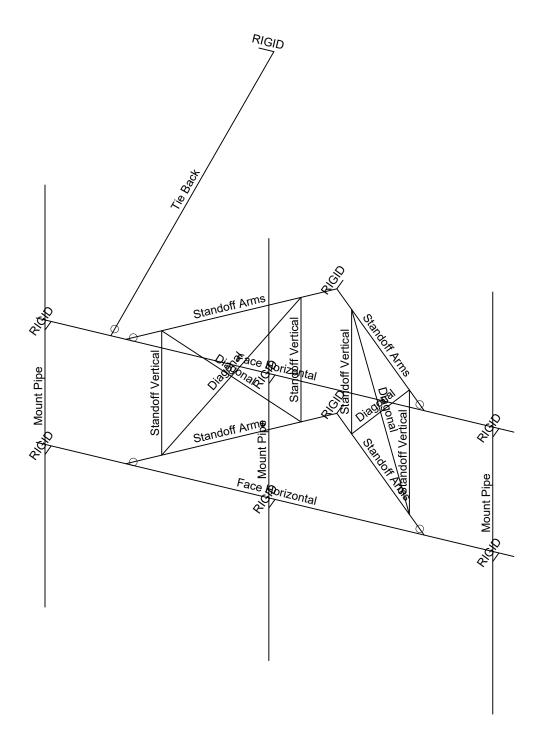
Our structural calculations are completed assuming all information provided to Infinigy is accurate and applicable to this site. For the purposes of calculations, we assume an overall structure condition as erected and all members and connections to be free of corrosion and/or structural defects. The structure owner and/or contractor shall verify the structure's condition prior to installation of any proposed equipment. If actual conditions differ from those described in this report, Infinigy should be notified immediately to assess the impact on the results of this report.

Our evaluation is completed using industry standard methods and procedures. The structural results, conclusions and recommendations contained in this report are proprietary and should not be used by others as their own. Infinigy is not responsible for decisions made by others that are or are not based on the stated assumptions and conclusions in this report.


This report is an evaluation of the mount structure only and does not determine the adequacy of the supporting structure, other carrier mounts or cable mounting attachments. The analysis of these elements is outside the scope of this analysis, are assumed to be adequate for the purpose of this report and to have been installed per their manufacturer requirements. This document is not for construction purposes.

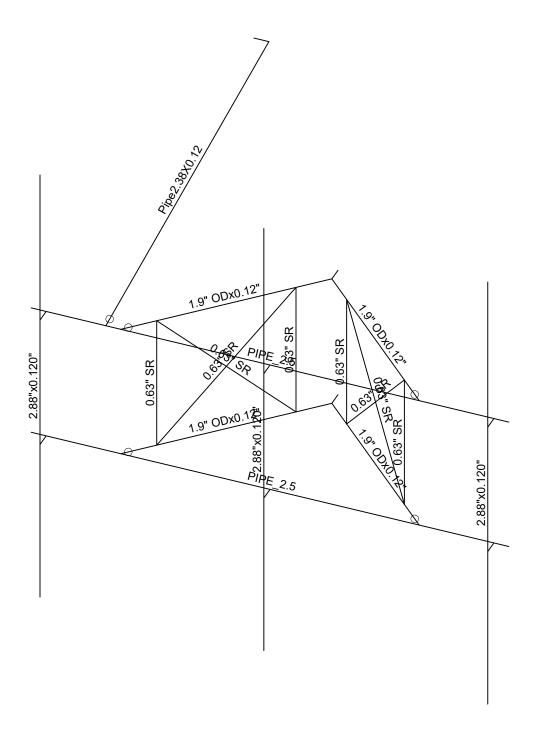





| Infinigy Engineering, PLLC |             | Rendered                  |
|----------------------------|-------------|---------------------------|
| PSM                        | BOBOS00024A | Sept 16, 2021 at 10:53 AM |
| 1197-F0001-B               |             | BOBOS00024A_loaded.r3d    |

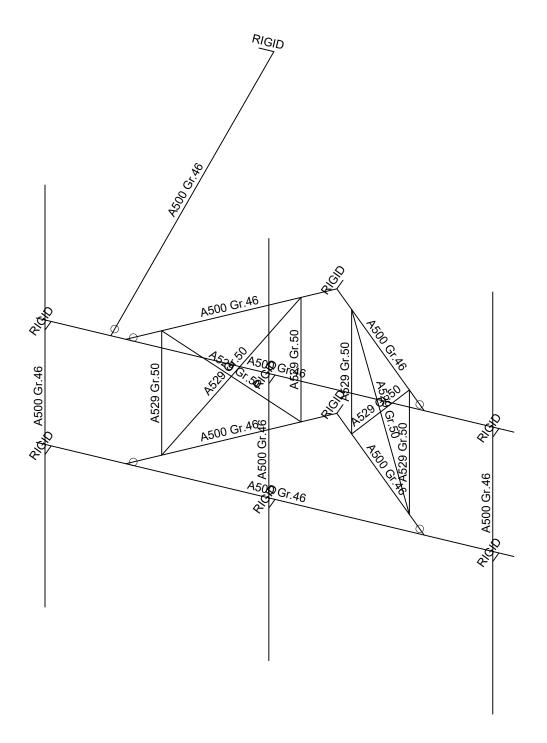





| Infinigy Engineering, PLLC |             | WireFrame                 |
|----------------------------|-------------|---------------------------|
| PSM                        | BOBOS00024A | Sept 16, 2021 at 10:56 AM |
| 1197-F0001-B               |             | BOBOS00024A_loaded.r3d    |

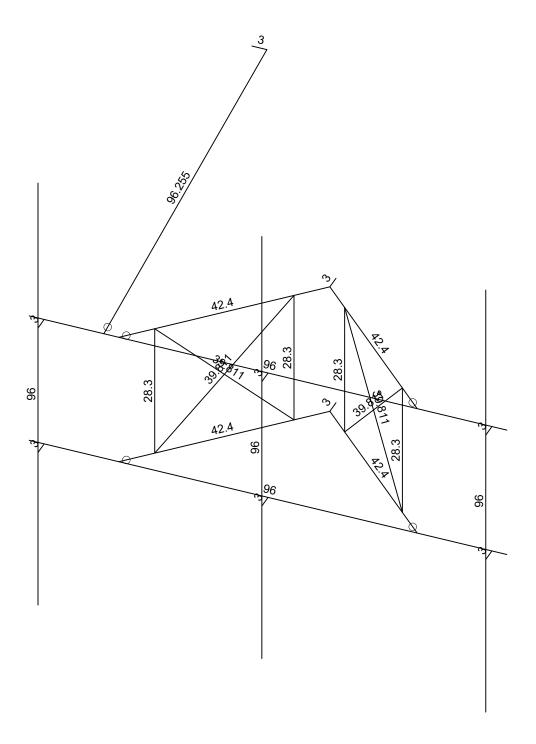





| Infinigy Engineering, PLLC |             | Section Sets              |  |
|----------------------------|-------------|---------------------------|--|
| PSM                        | BOBOS00024A | Sept 16, 2021 at 10:57 AM |  |
| 1197-F0001-B               |             | BOBOS00024A_loaded.r3d    |  |



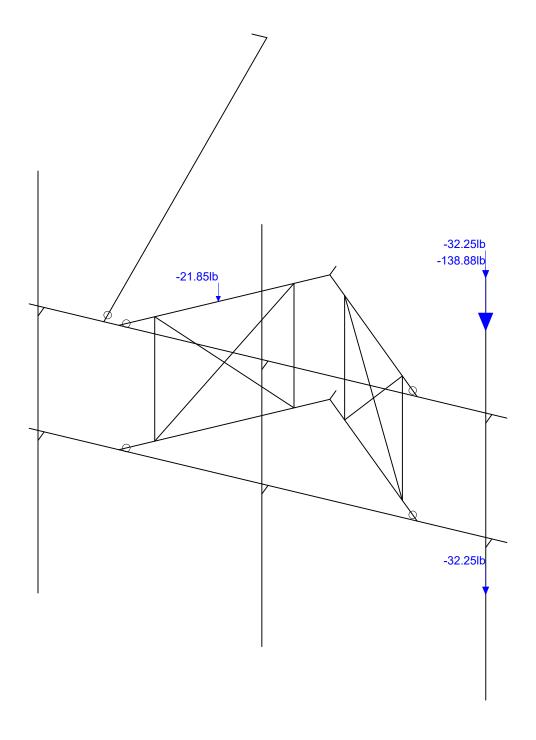



| Infinigy Engineering, PLLC |             | Member Shapes             |
|----------------------------|-------------|---------------------------|
| PSM                        | BOBOS00024A | Sept 16, 2021 at 10:57 AM |
| 1197-F0001-B               |             | BOBOS00024A_loaded.r3d    |





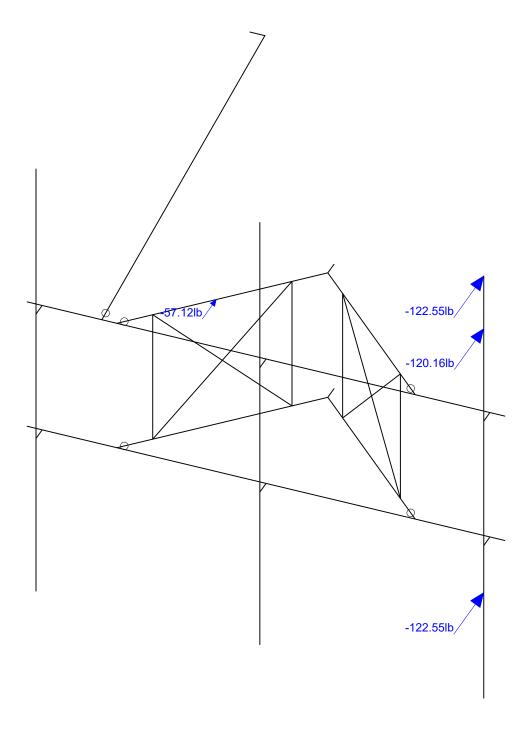
| Infinigy Engineering, PLLC |             | Material Sets             |
|----------------------------|-------------|---------------------------|
| PSM                        | BOBOS00024A | Sept 16, 2021 at 10:57 AM |
| 1197-F0001-B               |             | BOBOS00024A_loaded.r3d    |





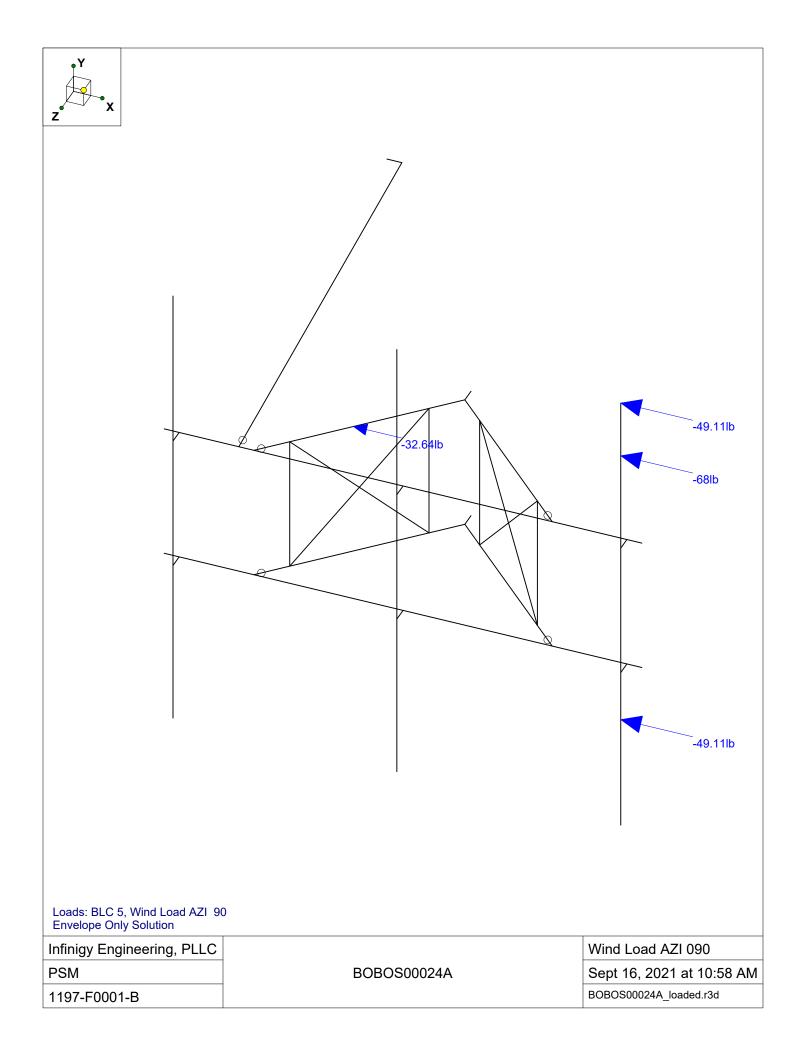

Member Length (in) Displayed Envelope Only Solution

| Infinigy Engineering, PLLC |             | Member Lengths            |  |
|----------------------------|-------------|---------------------------|--|
| PSM                        | BOBOS00024A | Sept 16, 2021 at 10:57 AM |  |
| 1197-F0001-B               |             | BOBOS00024A_loaded.r3d    |  |

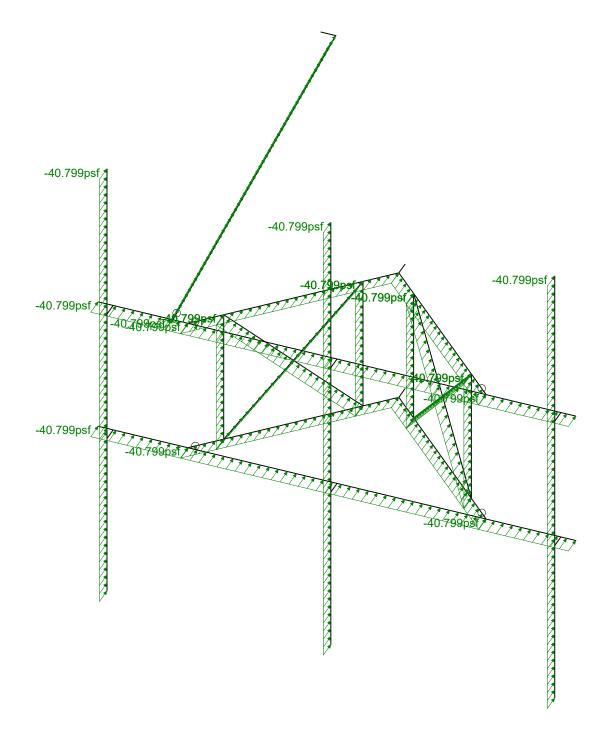





Loads: BLC 1, Self Weight Envelope Only Solution


| Ir | nfinigy Engineering, PLLC |             | Self Weight               |
|----|---------------------------|-------------|---------------------------|
| P  | SM                        | BOBOS00024A | Sept 16, 2021 at 10:58 AM |
| 1  | 197-F0001-B               |             | BOBOS00024A_loaded.r3d    |

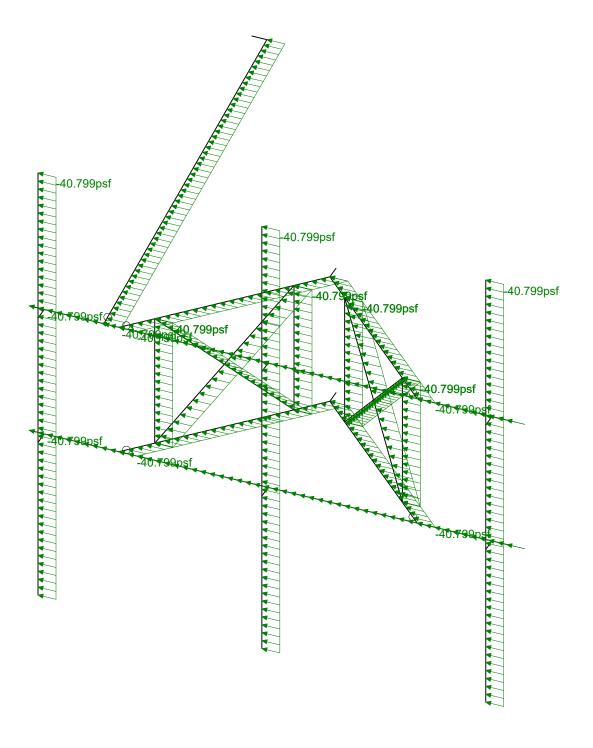





Loads: BLC 2, Wind Load AZI 0 Envelope Only Solution

| Infinigy Engineering, PLLC |             | Wind Load AZI 000         |
|----------------------------|-------------|---------------------------|
| PSM                        | BOBOS00024A | Sept 16, 2021 at 10:58 AM |
| 1197-F0001-B               |             | BOBOS00024A_loaded.r3d    |

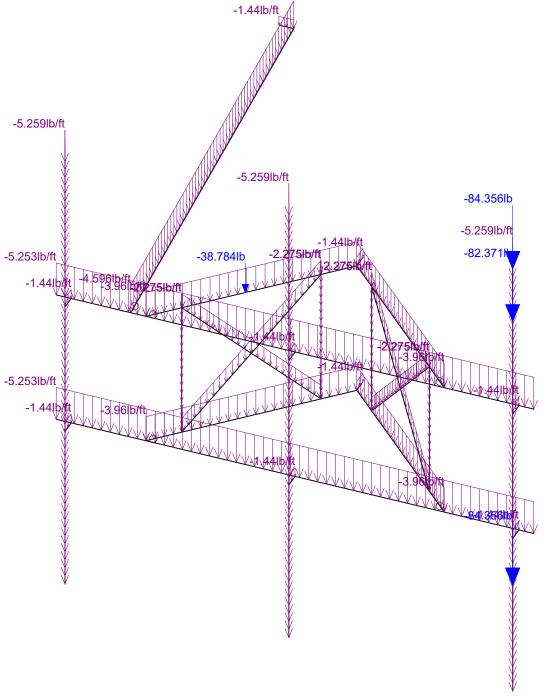







Loads: BLC 14, Distr. Wind Load Z Envelope Only Solution

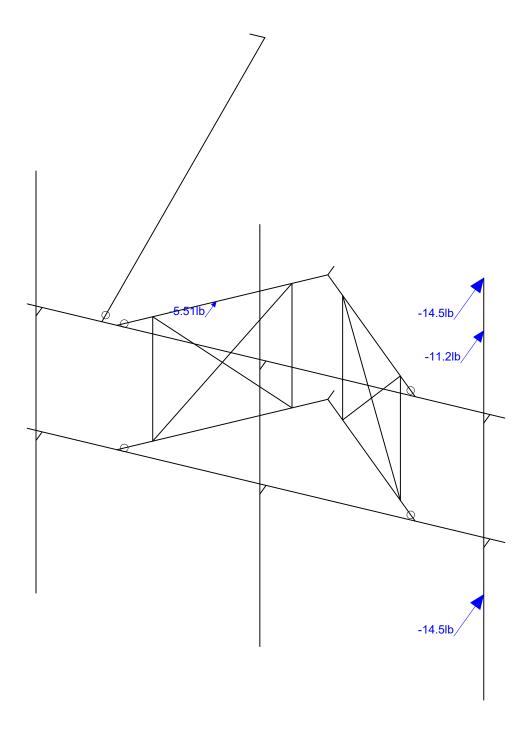
| Infinigy Engineering, PLLC |             | Distr Wind Load AZI 000   |
|----------------------------|-------------|---------------------------|
| PSM                        | BOBOS00024A | Sept 16, 2021 at 10:58 AM |
| 1197-F0001-B               |             | BOBOS00024A_loaded.r3d    |





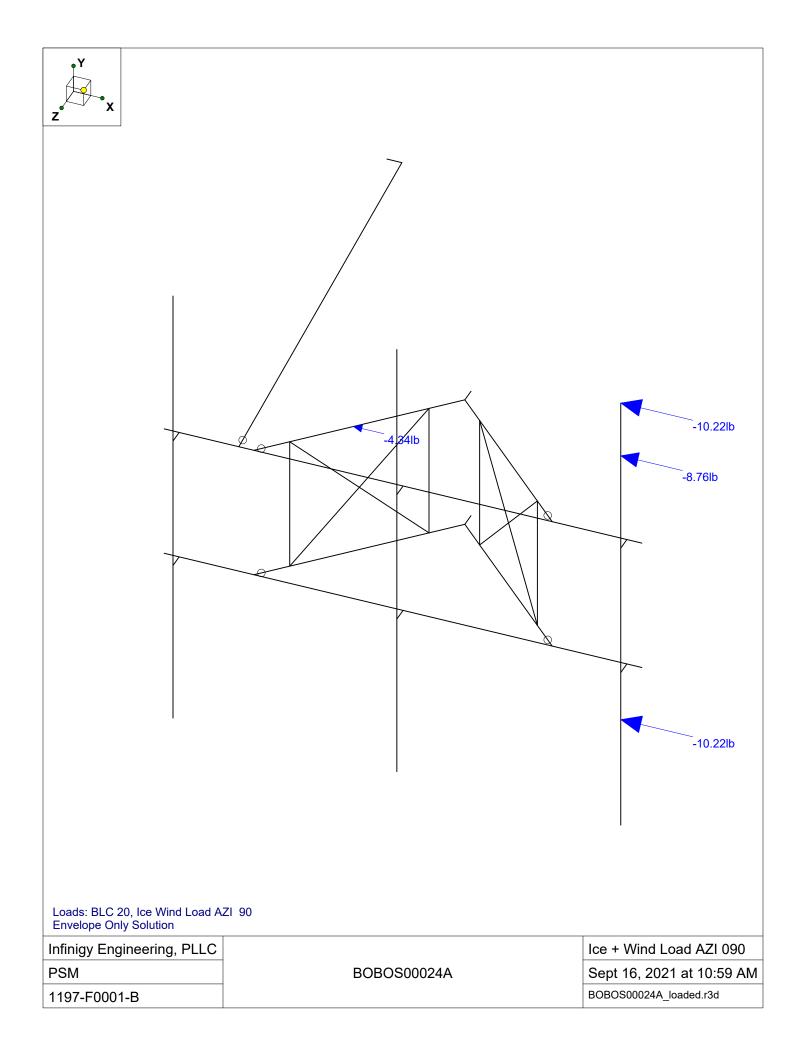

Loads: BLC 15, Distr. Wind Load X Envelope Only Solution

| Infinigy Engineering, PLLC |             | Distr Wind Load AZI 090   |
|----------------------------|-------------|---------------------------|
| PSM                        | BOBOS00024A | Sept 16, 2021 at 10:59 AM |
| 1197-F0001-B               |             | BOBOS00024A_loaded.r3d    |

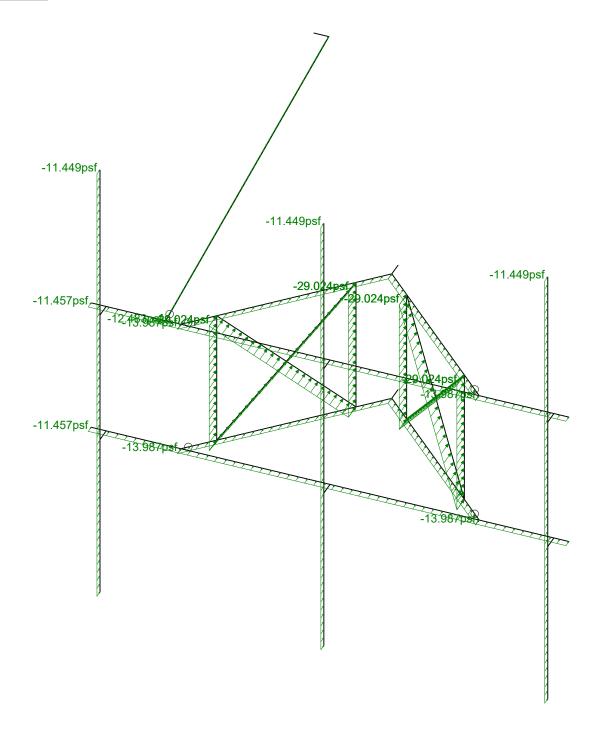





Loads: BLC 16, Ice Weight Envelope Only Solution


| Infinigy Engineering, PLLC |             | Ice Weight                |  |
|----------------------------|-------------|---------------------------|--|
| PSM                        | BOBOS00024A | Sept 16, 2021 at 10:59 AM |  |
| 1197-F0001-B               |             | BOBOS00024A_loaded.r3d    |  |





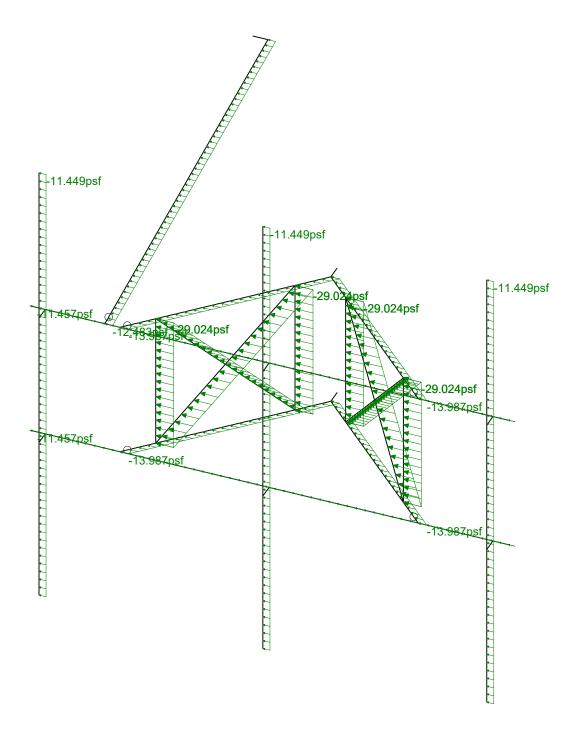

Loads: BLC 17, Ice Wind Load AZI 0 Envelope Only Solution

| Infinigy Engineering, PLLC |             | Ice + Wind Load AZI 000   |
|----------------------------|-------------|---------------------------|
| PSM                        | BOBOS00024A | Sept 16, 2021 at 10:59 AM |
| 1197-F0001-B               |             | BOBOS00024A_loaded.r3d    |





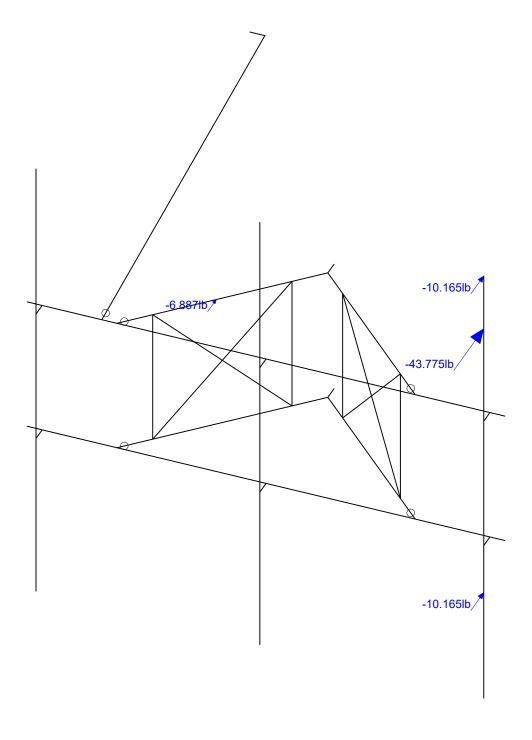



Loads: BLC 29, Distr. Ice Wind Load Z Envelope Only Solution

| Infinigy Engineering, PLLC |  |
|----------------------------|--|
| PSM                        |  |
| 1197-F0001-B               |  |

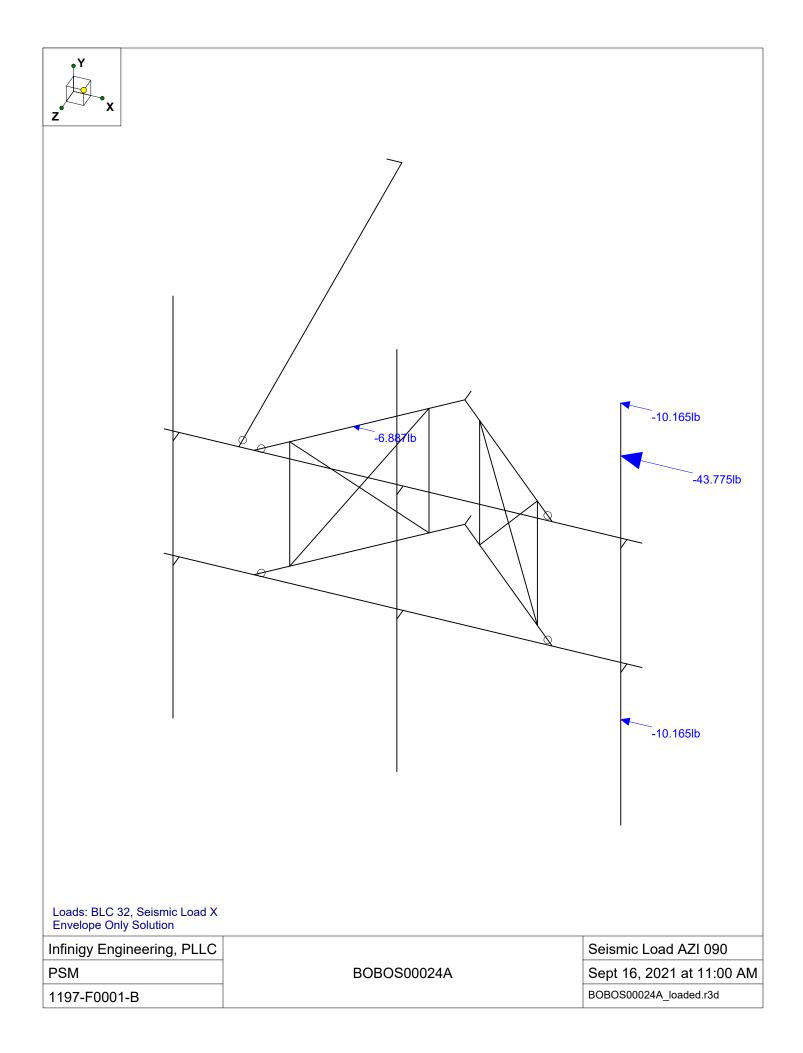
BOBOS00024A

Distr Ice + Wind Load AZI 000 Sept 16, 2021 at 11:00 AM BOBOS00024A\_loaded.r3d

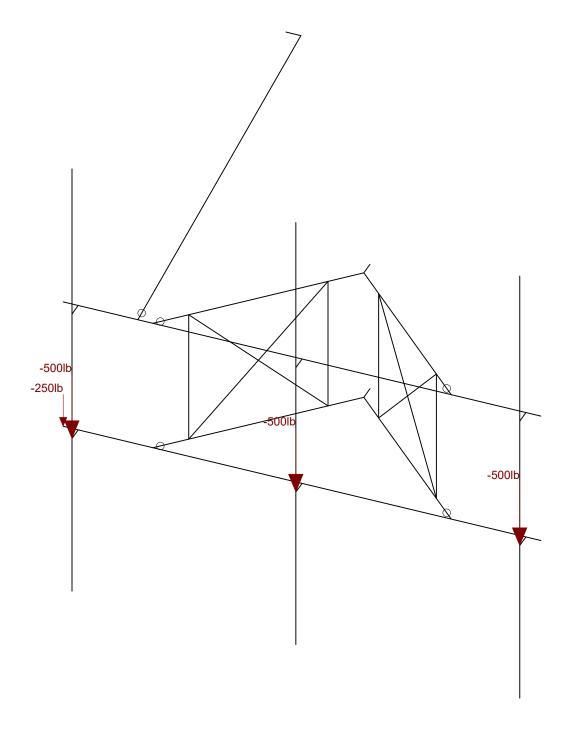





Loads: BLC 30, Distr. Ice Wind Load X Envelope Only Solution

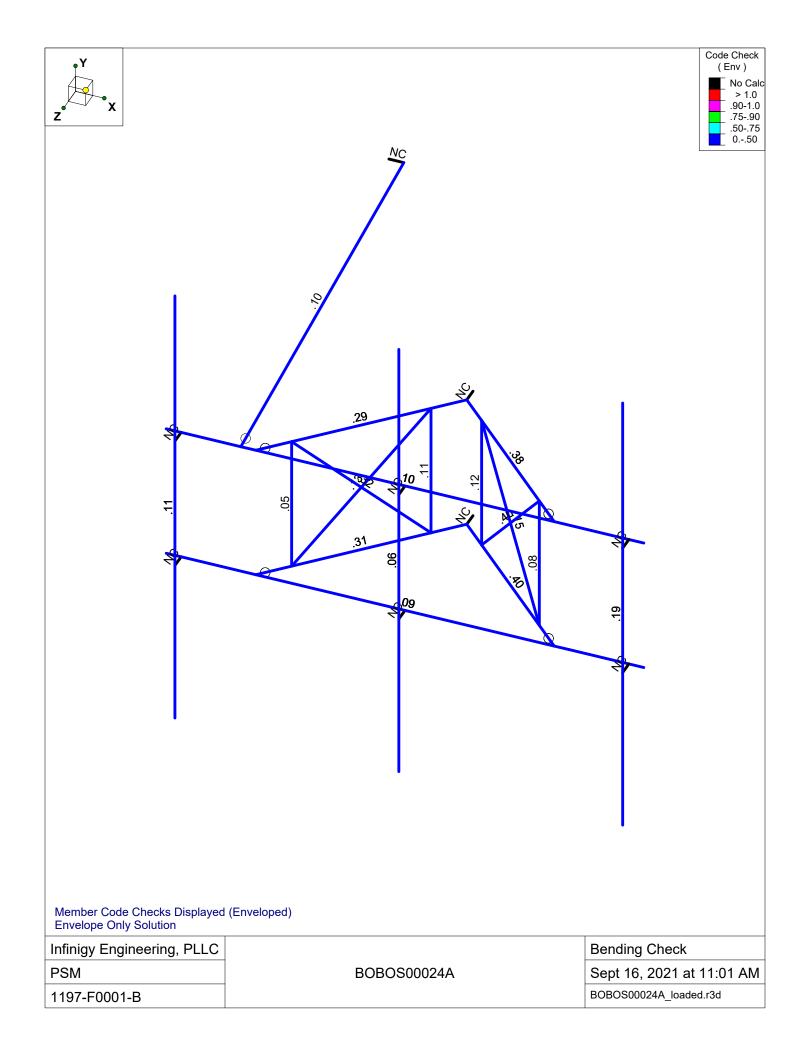

| Infinigy Engineering, PLLC | LC          | Distr Ice + Wind Load AZI 090 |
|----------------------------|-------------|-------------------------------|
| PSM                        | BOBOS00024A | Sept 16, 2021 at 11:00 AM     |
| 1197-F0001-B               |             | BOBOS00024A_loaded.r3d        |

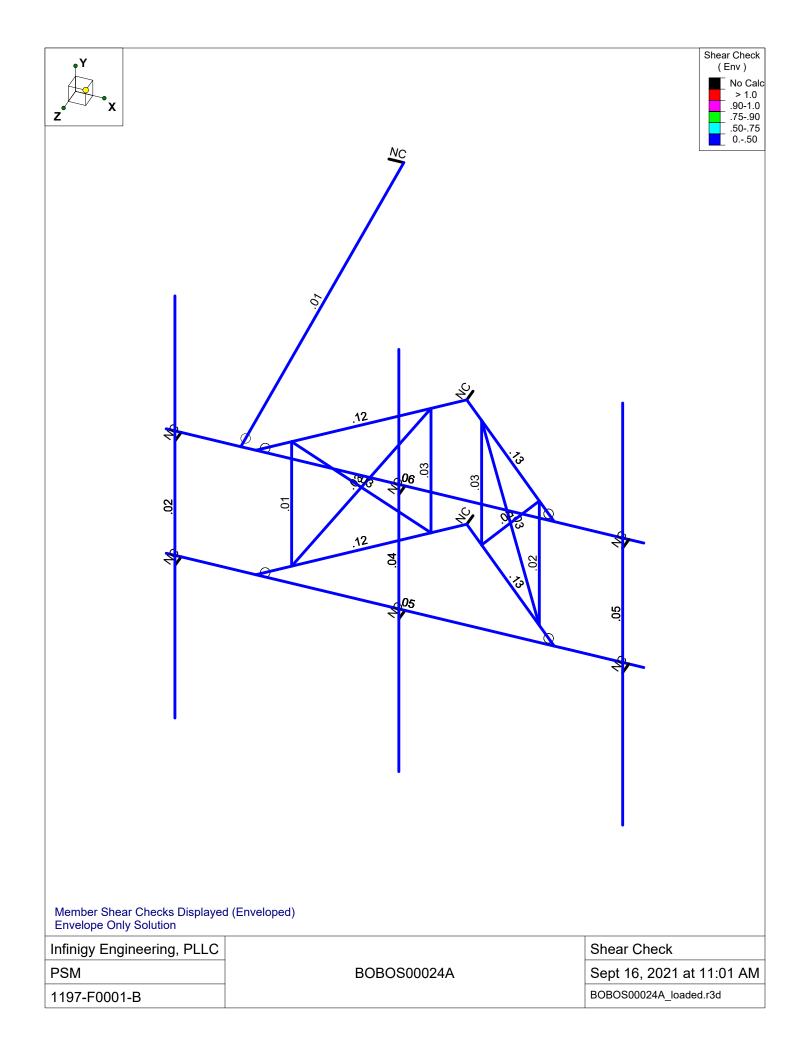





Loads: BLC 31, Seismic Load Z Envelope Only Solution

| Infinigy Engineering, PLLC |             | Seismic Load AZI 000      |
|----------------------------|-------------|---------------------------|
| PSM                        | BOBOS00024A | Sept 16, 2021 at 11:00 AM |
| 1197-F0001-B               |             | BOBOS00024A_loaded.r3d    |






Loads: LL - Live Load Envelope Only Solution

| Infinigy Engineering, PLLC |             | Non-concurrent Live Loads |
|----------------------------|-------------|---------------------------|
| PSM                        | BOBOS00024A | Sept 16, 2021 at 11:01 AM |
| 1197-F0001-B               |             | BOBOS00024A_loaded.r3d    |





# **Program Inputs**

| PROJECT INFORMATION |                           |  |
|---------------------|---------------------------|--|
| Client: ATC         |                           |  |
| Carrier:            | Dish Wireless             |  |
| Engineer:           | Pradin Suinyal Magar, M.S |  |

| SITE INFORMATION       |                          |  |
|------------------------|--------------------------|--|
| Risk Category:         | П                        |  |
| Exposure Category:     | В                        |  |
| Topo Factor Procedure: | Method 1, Category 1     |  |
| Site Class:            | D - Stiff Soil (Assumed) |  |
| Ground Elevation:      | 475.92 ft *Rev H         |  |

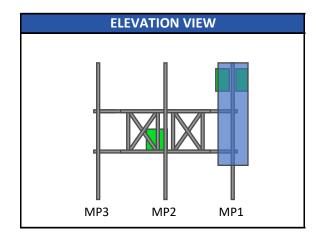
| MOUNT INFORMATION |              |    |  |
|-------------------|--------------|----|--|
| Mount Type:       | Sector Frame |    |  |
| Num Sectors:      | 3            |    |  |
| Centerline AGL:   | 75.00        | ft |  |
| Tower Height AGL: | 101.00       | ft |  |

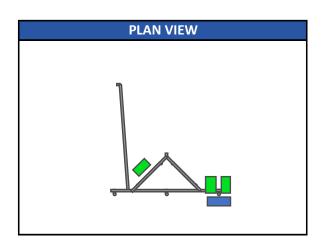
| TOPOGRAPHIC DATA  |     |    |  |
|-------------------|-----|----|--|
| Topo Feature: N/A |     | /A |  |
| Slope Distance:   | N/A | ft |  |
| Crest Distance:   | N/A | ft |  |
| Crest Height:     | N/A | ft |  |

| FACTORS                                 |       |             |
|-----------------------------------------|-------|-------------|
| Directionality Fact. (K <sub>d</sub> ): | 0.950 |             |
| Ground Ele. Factor (K <sub>e</sub> ):   | 0.983 | *Rev H Only |
| Rooftop Speed-Up (K <sub>s</sub> ):     | 1.000 | *Rev H Only |
| Topographic Factor (K <sub>zt</sub> ):  | 1.000 |             |
| Gust Effect Factor (G <sub>h</sub> ):   | 1.000 |             |

| CODE STANDARDS |           |  |
|----------------|-----------|--|
| Building Code: | 2015 IBC  |  |
| TIA Standard:  | TIA-222-H |  |
| ASCE Standard: | ASCE 7-16 |  |

| WIND AND                              | WIND AND ICE DATA |     |  |  |  |  |  |  |  |  |  |
|---------------------------------------|-------------------|-----|--|--|--|--|--|--|--|--|--|
| Ultimate Wind (V <sub>ult</sub> ):    | 125               | mph |  |  |  |  |  |  |  |  |  |
| Design Wind (V):                      | N/A               | mph |  |  |  |  |  |  |  |  |  |
| Ice Wind (V <sub>ice</sub> ):         | 50                | mph |  |  |  |  |  |  |  |  |  |
| Base Ice Thickness (t <sub>i</sub> ): | 1                 | in  |  |  |  |  |  |  |  |  |  |
| Flat Pressure:                        | 67.998            | psf |  |  |  |  |  |  |  |  |  |
| Round Pressure:                       | 40.799            | psf |  |  |  |  |  |  |  |  |  |
| Ice Wind Pressure:                    | 6.528             | psf |  |  |  |  |  |  |  |  |  |


| SEISMIC DATA                            |       |   |  |  |  |  |  |  |  |  |
|-----------------------------------------|-------|---|--|--|--|--|--|--|--|--|
| Short-Period Accel. (S <sub>s</sub> ):  | 0.197 | g |  |  |  |  |  |  |  |  |
| 1-Second Accel. (S <sub>1</sub> ):      | 0.054 | g |  |  |  |  |  |  |  |  |
| Short-Period Design (S <sub>DS</sub> ): | 0.210 |   |  |  |  |  |  |  |  |  |
| 1-Second Design (S <sub>D1</sub> ):     | 0.086 |   |  |  |  |  |  |  |  |  |
| Short-Period Coeff. (F <sub>a</sub> ):  | 1.600 |   |  |  |  |  |  |  |  |  |
| 1-Second Coeff. (F <sub>v</sub> ):      | 2.400 |   |  |  |  |  |  |  |  |  |
| Amplification Factor (A <sub>s</sub> ): | 3.000 |   |  |  |  |  |  |  |  |  |
| Response Mod. Coeff. (R):               | 2.000 |   |  |  |  |  |  |  |  |  |




Infinigy Load Calculator V2.1.7

BOBOS00024A\_BOBOS00024A 9/16/2021

# **Program Inputs**







Infinigy Load Calculator V2.1.7

|                            | APPURTENANCE INFORMATION |      |                |                      |                                     |                                     |                           |                           |                 |                    |                      |  |  |
|----------------------------|--------------------------|------|----------------|----------------------|-------------------------------------|-------------------------------------|---------------------------|---------------------------|-----------------|--------------------|----------------------|--|--|
| Appurtenance Name          | Elevation                | Qty. | K <sub>a</sub> | q <sub>z</sub> (psf) | EPA <sub>N</sub> (ft <sup>2</sup> ) | EPA <sub>T</sub> (ft <sup>2</sup> ) | Wind F <sub>z</sub> (lbs) | Wind F <sub>x</sub> (lbs) | Weight<br>(lbs) | Seismic<br>F (lbs) | Member<br>(α sector) |  |  |
| JMA WIRELESS MX08FRO665-21 | 75.0                     | 3    | 0.90           | 34.00                | 8.01                                | 3.21                                | 245.10                    | 98.22                     | 64.50           | 20.33              | MP1                  |  |  |
| FUJITSU TA08025-B605       | 75.0                     | 3    | 0.90           | 34.00                | 1.96                                | 1.19                                | 60.08                     | 36.39                     | 74.95           | 23.62              | MP1                  |  |  |
| FUJITSU TA08025-B604       | 75.0                     | 3    | 0.90           | 34.00                | 1.96                                | 1.03                                | 60.08                     | 31.61                     | 63.93           | 20.15              | MP1                  |  |  |
| RAYCAP RDIDC-9181-PF-48    | 75.0                     | 1    | 0.90           | 34.00                | 1.87                                | 1.07                                | 57.12                     | 32.64                     | 21.85           | 6.89               | S1                   |  |  |
|                            |                          |      |                |                      |                                     |                                     |                           |                           |                 |                    |                      |  |  |
|                            |                          |      |                |                      |                                     |                                     |                           |                           |                 |                    |                      |  |  |
|                            |                          |      |                |                      |                                     |                                     |                           |                           |                 |                    |                      |  |  |
|                            |                          |      |                |                      |                                     |                                     |                           |                           |                 |                    |                      |  |  |
|                            |                          |      |                |                      |                                     |                                     |                           |                           |                 |                    |                      |  |  |
|                            |                          |      |                |                      |                                     |                                     |                           |                           |                 |                    |                      |  |  |
|                            |                          |      |                |                      |                                     |                                     |                           |                           |                 |                    |                      |  |  |
|                            |                          |      |                |                      |                                     |                                     |                           |                           |                 |                    |                      |  |  |
|                            |                          |      |                |                      |                                     |                                     |                           |                           |                 |                    |                      |  |  |
|                            |                          |      |                |                      |                                     |                                     |                           |                           |                 |                    |                      |  |  |
|                            |                          |      |                |                      |                                     |                                     |                           |                           |                 |                    |                      |  |  |
|                            |                          |      |                |                      |                                     |                                     |                           |                           |                 |                    |                      |  |  |
|                            |                          |      |                |                      |                                     |                                     |                           |                           |                 |                    |                      |  |  |
|                            |                          |      |                |                      |                                     |                                     |                           |                           |                 |                    |                      |  |  |
|                            |                          |      |                |                      |                                     |                                     |                           |                           |                 |                    |                      |  |  |
|                            |                          |      |                |                      |                                     |                                     |                           |                           |                 |                    |                      |  |  |
|                            |                          |      |                |                      |                                     |                                     |                           |                           |                 |                    |                      |  |  |
|                            |                          |      |                |                      |                                     |                                     |                           |                           |                 |                    |                      |  |  |
|                            |                          |      |                |                      |                                     |                                     |                           |                           |                 |                    |                      |  |  |
|                            |                          |      |                |                      |                                     |                                     |                           |                           |                 |                    |                      |  |  |

BOBOS00024A\_BOBOS00024A 9/16/2021

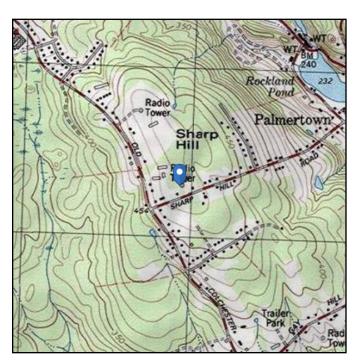


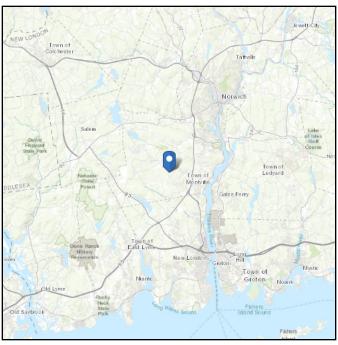
#### Address:

No Address at This Location

# **ASCE 7 Hazards Report**

Standard: ASCE/SEI 7-16 Eleva


Risk Category: ||


Soil Class: D - Default (see

Section 11.4.3)

Elevation: 475.92 ft (NAVD 88)

**Latitude:** 41.448972 **Longitude:** -72.151139





Thu Sep 16 2021

#### Wind

#### Results:

Wind Speed: 125 Vmph
10-year MRI 75 Vmph
25-year MRI 85 Vmph
50-year MRI 97 Vmph
100-year MRI 102 Vmph

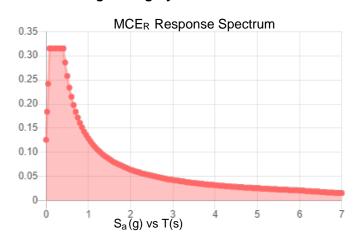
Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2

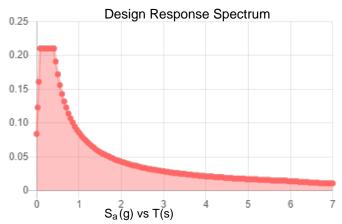
Date Accessed: Thu Sep 16 2021

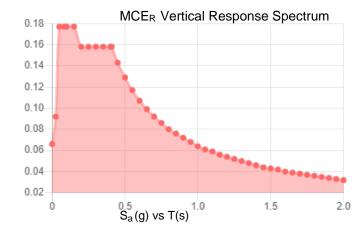
Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

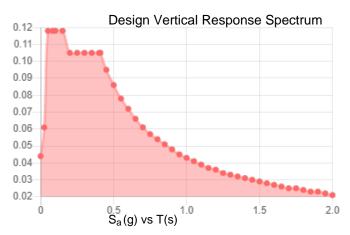
Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.




#### Seismic


Site Soil Class: D - Default (see Section 11.4.3)


Results:


| <b>c</b> .        | 0.407 | <b>.</b>           | 0.006 |
|-------------------|-------|--------------------|-------|
| S <sub>s</sub> :  | 0.197 | S <sub>D1</sub> :  | 0.086 |
| $S_1$ :           | 0.054 | T <sub>L</sub> :   | 6     |
| F <sub>a</sub> :  | 1.6   | PGA:               | 0.109 |
| $F_v$ :           | 2.4   | PGA <sub>M</sub> : | 0.172 |
| S <sub>MS</sub> : | 0.315 | F <sub>PGA</sub> : | 1.582 |
| S <sub>M1</sub> : | 0.129 | l <sub>e</sub> :   | 1     |
| S <sub>DS</sub> : | 0.21  | C <sub>v</sub> :   | 0.7   |

#### Seismic Design Category B









Data Accessed:

Thu Sep 16 2021

**Date Source:** 

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.



#### **Ice**

#### Results:

Ice Thickness: 1.00 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed: Thu Sep 16 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.



Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOBOS00024A

Sept 16, 2021 10:46 AM Checked By:\_

#### **Member Primary Data**

|    | Label | I Joint | J Joint | K Joint | Rotate( | . Section/Shape   | Туре | Design List | Material   | Design Rules |
|----|-------|---------|---------|---------|---------|-------------------|------|-------------|------------|--------------|
| 1  | S3    | N2      | N1      |         | ,       | Standoff Arms     | Beam | Pipe        | A500 Gr.46 | Typical      |
| 2  | S4    | N7      | N6      |         |         | Standoff Arms     | Beam | Pipe        | A500 Gr.46 | Typical      |
| 3  | TR6   | N3      | N8      |         |         | Standoff Vertical | None | None        | A529 Gr.50 | Typical      |
| 4  | TR5   | N4      | N9      |         |         | Standoff Vertical | None | None        | A529 Gr.50 | Typical      |
| 5  | TR8   | N4      | N8      |         |         | Diagonal          | None | None        | A529 Gr.50 | Typical      |
| 6  | TR7   | N3      | N9      |         |         | Diagonal          | None | None        | A529 Gr.50 | Typical      |
| 7  | S1    | N10     | N1      |         |         | Standoff Arms     | Beam | Pipe        | A500 Gr.46 | Typical      |
| 8  | S2    | N14     | N6      |         |         | Standoff Arms     | Beam | Pipe        | A500 Gr.46 | Typical      |
| 9  | TR1   | N11     | N15     |         |         | Standoff Vertical | None | None        | A529 Gr.50 | Typical      |
| 10 | TR2   | N12     | N16     |         |         | Standoff Vertical | None | None        | A529 Gr.50 | Typical      |
| 11 | TR3   | N12     | N15     |         |         | Diagonal          | None | None        | A529 Gr.50 | Typical      |
| 12 | TR4   | N11     | N16     |         |         | Diagonal          | None | None        | A529 Gr.50 | Typical      |
| 13 | H1    | N16A    | N15A    |         |         | Face Horizontal   | Beam | Pipe        | A500 Gr.46 | Typical      |
| 14 | H2    | N18     | N17     |         |         | Face Horizontal   | Beam | Pipe        | A500 Gr.46 | Typical      |
| 15 | MP3   | N21     | N22     |         |         | Mount Pipe        | Colu | Pipe        | A500 Gr.46 | Typical      |
| 16 | MP1   | N19     | N20     |         |         | Mount Pipe        | Colu | Pipe        | A500 Gr.46 | Typical      |
| 17 | MP2   | N33     | N34     |         |         | Mount Pipe        | Colu | Pipe        | A500 Gr.46 | Typical      |
| 18 | T1    | N37     | N38     |         |         | Tie Back          | None | None        | A500 Gr.46 | Typical      |
| 19 | M29   | N25     | N67     |         |         | RIGID             | None | None        | RIGID      | Typical      |
| 20 | M30   | N27     | N69     |         |         | RIGID             | None | None        | RIGID      | Typical      |
| 21 | M33   | N35     | N73     |         |         | RIGID             | None | None        | RIGID      | Typical      |
| 22 | M34   | N36     | N74     |         |         | RIGID             | None | None        | RIGID      | Typical      |
| 23 | M35   | N26     | N68     |         |         | RIGID             | None | None        | RIGID      | Typical      |
| 24 | M36   | N28     | N70     |         |         | RIGID             | None | None        | RIGID      | Typical      |
| 25 | M25   | N43     | N1      |         |         | RIGID             | None | None        | RIGID      | Typical      |
| 26 | M26   | N44     | N6      |         |         | RIGID             | None | None        | RIGID      | Typical      |
| 27 | M27   | N44A    | N38     |         |         | RIGID             | None | None        | RIGID      | Typical      |

#### Hot Rolled Steel Design Parameters

|    | Label | Shape             | Lengt  | Lbyy[in] | Lbzz[in] Lcomp t | Lcomp b | L-tor | . Kyy | Kzz | Cb | Func |
|----|-------|-------------------|--------|----------|------------------|---------|-------|-------|-----|----|------|
| 1  | S3    | Standoff Arms     | 42.4   | ,,,,     | Lbyy             |         |       |       |     |    | Late |
| 2  | S4    | Standoff Arms     | 42.4   |          | Lbyy             |         |       |       |     |    | Late |
| 3  | TR6   | Standoff Vertical | 28.3   |          | Lbyy             |         |       | .65   | .65 |    | Late |
| 4  | TR5   | Standoff Vertical | 28.3   |          | Lbyy             |         |       | .65   | .65 |    | Late |
| 5  | TR8   | Diagonal          | 39.811 |          | Lbyy             |         |       | .7    | .7  |    | Late |
| 6  | TR7   | Diagonal          | 39.811 |          | Lbyy             |         |       | .5    | .5  |    | Late |
| 7  | S1    | Standoff Arms     | 42.4   |          | Lbyy             |         |       |       |     |    | Late |
| 8  | S2    | Standoff Arms     | 42.4   |          | Lbyy             |         |       |       |     |    | Late |
| 9  | TR1   | Standoff Vertical | 28.3   |          | Lbyy             |         |       | .65   | .65 |    | Late |
| 10 | TR2   | Standoff Vertical | 28.3   |          | Lbyy             |         |       | .65   | .65 |    | Late |



Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOBOS00024A

Sept 16, 2021 10:46 AM Checked By:\_

## Hot Rolled Steel Design Parameters (Continued)

|    | Label | Shape           | Lengt  | Lbyy[in] | Lbzz[in] | Lcomp t | Lcomp b | L-tor | . Куу | Kzz | Cb | Func |
|----|-------|-----------------|--------|----------|----------|---------|---------|-------|-------|-----|----|------|
| 11 | TR3   | Diagonal        | 39.811 |          |          | Lbyy    |         |       | .7    | .7  |    | Late |
| 12 | TR4   | Diagonal        | 39.811 |          |          | Lbyy    |         |       | .5    | .5  |    | Late |
| 13 | H1    | Face Horizontal | 96     |          |          | Lbyy    |         |       |       |     |    | Late |
| 14 | H2    | Face Horizontal | 96     |          |          | Lbyy    |         |       |       |     |    | Late |
| 15 | MP3   | Mount Pipe      | 96     |          |          | Lbyy    |         |       |       |     |    | Late |
| 16 | MP1   | Mount Pipe      | 96     |          |          | Lbyy    |         |       |       |     |    | Late |
| 17 | MP2   | Mount Pipe      | 96     |          |          | Lbyy    |         |       |       |     |    | Late |
| 18 | T1    | Tie Back        | 96.255 |          |          | Lbyy    |         |       |       |     |    | Late |

#### Member Advanced Data

|    | Label | I Release | J Release | I Offset[in] | J Offset[in] | T/C Only | Physical | Defl Ra  | Analysis | Inactive | Seismi |
|----|-------|-----------|-----------|--------------|--------------|----------|----------|----------|----------|----------|--------|
| 1  | S3    | BenPIN    |           |              |              |          | Yes      | Default  |          |          | None   |
| 2  | S4    | BenPIN    |           |              |              |          | Yes      | Default  |          |          | None   |
| 3  | TR6   |           |           |              |              |          | Yes      | ** NA ** |          |          | None   |
| 4  | TR5   |           |           |              |              |          | Yes      | ** NA ** |          |          | None   |
| 5  | TR8   |           |           |              |              |          | Yes      | ** NA ** |          |          | None   |
| 6  | TR7   |           |           |              |              |          | Yes      | ** NA ** |          |          | None   |
| 7  | S1    | BenPIN    |           |              |              |          | Yes      | Default  |          |          | None   |
| 8  | S2    | BenPIN    |           |              |              |          | Yes      | Default  |          |          | None   |
| 9  | TR1   |           |           |              |              |          | Yes      | ** NA ** |          |          | None   |
| 10 | TR2   |           |           |              |              |          | Yes      | ** NA ** |          |          | None   |
| 11 | TR3   |           |           |              |              |          | Yes      | ** NA ** |          |          | None   |
| 12 | TR4   |           |           |              |              |          | Yes      | ** NA ** |          |          | None   |
| 13 | H1    |           |           |              |              |          | Yes      |          |          |          | None   |
| 14 | H2    |           |           |              |              |          | Yes      |          |          |          | None   |
| 15 | MP3   |           |           |              |              |          | Yes      | ** NA ** |          |          | None   |
| 16 | MP1   |           |           |              |              |          | Yes      | ** NA ** |          |          | None   |
| 17 | MP2   |           |           |              |              |          | Yes      | ** NA ** |          |          | None   |
| 18 | T1    | BenPIN    |           |              |              |          | Yes      | ** NA ** |          |          | None   |
| 19 | M29   |           |           |              |              |          | Yes      | ** NA ** |          |          | None   |
| 20 | M30   |           |           |              |              |          | Yes      | ** NA ** |          |          | None   |
| 21 | M33   |           |           |              |              |          | Yes      | ** NA ** |          |          | None   |
| 22 | M34   |           |           |              |              |          | Yes      | ** NA ** |          |          | None   |
| 23 | M35   |           |           |              |              |          | Yes      | ** NA ** |          |          | None   |
| 24 | M36   |           |           |              |              |          | Yes      | ** NA ** |          |          | None   |
| 25 | M25   |           |           |              |              |          | Yes      | ** NA ** |          |          | None   |
| 26 | M26   |           |           |              |              |          | Yes      | ** NA ** |          |          | None   |
| 27 | M27   |           | _         | -            |              |          | Yes      | ** NA ** |          |          | None   |



Company : Infinigy Engined Designer : PSM Job Number : 1197-F0001-B Model Name: BOBOS00024A

Sept 16, 2021 10:46 AM Checked By:\_

#### **Material Takeoff**

|    | Material         | Size          | Pieces | Length[in] | Weight[LB] |
|----|------------------|---------------|--------|------------|------------|
| 1  | General          |               |        |            |            |
| 2  | RIGID            |               | 9      | 27         | 0          |
| 3  | Total General    |               | 9      | 27         | 0          |
| 4  |                  |               |        |            |            |
| 5  | Hot Rolled Steel |               |        |            |            |
| 6  | A500 Gr.46       | 1.9" ODx0.12" | 4      | 169.6      | 32.27      |
| 7  | A500 Gr.46       | PIPE 2.5      | 2      | 192        | 87.656     |
| 8  | A500 Gr.46       | 2.88"x0.120"  | 3      | 288        | 84.933     |
| 9  | A500 Gr.46       | Pipe2.38X0.12 | 1      | 96.3       | 23.255     |
| 10 | A529 Gr.50       | 0.63" SR      | 8      | 272.4      | 24.082     |
| 11 | Total HR Steel   |               | 18     | 1018.3     | 252.196    |

#### Hot Rolled Steel Section Sets

|   | Label             | Shape         | Type | Design List | Material | Design  | . A [in2] | lyy [in | .lzz [in | . J [in4] |
|---|-------------------|---------------|------|-------------|----------|---------|-----------|---------|----------|-----------|
| 1 | Face Horizontal   | PIPE 2.5      | Beam | Pipe        | A500 G   |         |           | 1.45    |          | 2.89      |
| 2 | Standoff Arms     | 1.9" ODx0.12" | Beam | Pipe        | A500 G   | Typical | .671      | .267    | .267     | .534      |
| 3 | Diagonal          | 0.63" SR      | None | None        | A529 G   | Typical | .312      | .008    | .008     | .015      |
| 4 | Mount Pipe        | 2.88"x0.120"  | Colu | Pipe        | A500 G   | Typical | 1.04      | .993    | .993     | 1.985     |
| 5 | Tie Back          | Pipe2.38X0.12 | None | None        | A500 G   | Typical | .852      | .545    | .545     | 1.091     |
| 6 | End Support Pipe  | 3.5"x0.120    | None | None        | A500 G   | Typical | 1.274     | 1.822   | 1.822    | 3.644     |
| 7 | Standoff Vertical | 0.63" SR      | None | None        | A529 G   | Typical | .312      | .008    | .008     | .015      |

#### **Basic Load Cases**

|    | BLC Description    | Category | X Gr | Y Gr | Z Gr | Joint | Point | Distributed | Area(Memb | Surface(Plate/Wall) |
|----|--------------------|----------|------|------|------|-------|-------|-------------|-----------|---------------------|
| 1  | Self Weight        | DL       |      | -1   |      |       | 5     |             | ,         | , ,                 |
| 2  | Wind Load AZI 0    | WLZ      |      |      |      |       | 10    |             |           |                     |
| 3  | Wind Load AZI 30   | None     |      |      |      |       | 10    |             |           |                     |
| 4  | Wind Load AZI 60   | None     |      |      |      |       | 10    |             |           |                     |
| 5  | Wind Load AZI 90   | WLX      |      |      |      |       | 10    |             |           |                     |
| _  | Wind Load AZI 1    | 1 10110  |      |      |      |       | 10    |             |           |                     |
| 7  | Wind Load AZI 1    | · None   |      |      |      |       | 10    |             |           |                     |
|    | Wind Load AZI 1    |          |      |      |      |       | 10    |             |           |                     |
|    | Wind Load AZI 2    |          |      |      |      |       | 10    |             |           |                     |
|    | Wind Load AZI 2    |          |      |      |      |       | 10    |             |           |                     |
|    | Wind Load AZI 2    |          |      |      |      |       | 10    |             |           |                     |
|    | Wind Load AZI 3    |          |      |      |      |       | 10    |             |           |                     |
| 13 | Wind Load AZI 3    | None     |      |      |      |       | 10    |             |           |                     |
| 14 | Distr. Wind Load Z | WLZ      |      |      |      |       |       | 27          |           |                     |



Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOBOS00024A

Sept 16, 2021 10:46 AM Checked By:\_

## Basic Load Cases (Continued)

|    | BLC Description    | Category | X Gr | Y Gr | Z Gr | Joint | Point | Distributed | Area(Memb | Surface(Plate/Wall) |
|----|--------------------|----------|------|------|------|-------|-------|-------------|-----------|---------------------|
| 15 | Distr. Wind Load X | WLX      |      |      |      |       |       | 27          |           |                     |
| 16 | Ice Weight         | OL1      |      |      |      |       | 5     | 27          |           |                     |
| 17 | Ice Wind Load A    | OL2      |      |      |      |       | 10    |             |           |                     |
| 18 | Ice Wind Load A    | None     |      |      |      |       | 10    |             |           |                     |
| 19 | Ice Wind Load A    | None     |      |      |      |       | 10    |             |           |                     |
| 20 | Ice Wind Load A    | OL3      |      |      |      |       | 10    |             |           |                     |
| 21 | Ice Wind Load A    | None     |      |      |      |       | 10    |             |           |                     |
| 22 | Ice Wind Load A    | None     |      |      |      |       | 10    |             |           |                     |
| 23 | Ice Wind Load A    | None     |      |      |      |       | 10    |             |           |                     |
| 24 | Ice Wind Load A    | None     |      |      |      |       | 10    |             |           |                     |
| 25 | Ice Wind Load A    | None     |      |      |      |       | 10    |             |           |                     |
| 26 | Ice Wind Load A    | None     |      |      |      |       | 10    |             |           |                     |
| 27 | Ice Wind Load A    | None     |      |      |      |       | 10    |             |           |                     |
| 28 | Ice Wind Load A    | None     |      |      |      |       | 10    |             |           |                     |
| 29 | Distr. Ice Wind L  | OL2      |      |      |      |       |       | 27          |           |                     |
| 30 | Distr. Ice Wind L  | OL3      |      |      |      |       |       | 27          |           |                     |
| 31 | Seismic Load Z     | ELZ      |      |      | 315  |       | 5     |             |           |                     |
| 32 | Seismic Load X     | ELX      | 315  |      |      |       | 5     |             |           |                     |
| 33 | Service Live Loa   | LL       |      |      |      | 1     |       |             |           |                     |
| 34 | Maintenance Loa    | LL       |      |      |      | 1     |       |             |           |                     |
| 35 | Maintenance Loa    | LL       |      |      |      | 1     |       |             |           |                     |
| 36 | Maintenance Loa    | LL       |      |      |      | 1     |       |             |           |                     |

#### **Load Combinations**

|    | Description         | S | P | S | В | Fa  | .B | Fa | .B | Fa   | .B | Fa   | .B | Fa | В | Fa | .B | Fa | .B | Fa | .B | .Fa | .B | Fa |
|----|---------------------|---|---|---|---|-----|----|----|----|------|----|------|----|----|---|----|----|----|----|----|----|-----|----|----|
| 1  | 1.4DL               | Y | Υ |   | 1 | 1.4 |    |    |    |      |    |      |    |    |   |    |    |    |    |    |    |     |    |    |
| 2  | 1.2DL + 1WL AZI 0   | Y | Υ |   | 1 | 1.2 | 2  | 1  | 14 | 1    | 15 |      |    |    |   |    |    |    |    |    |    |     |    |    |
| 3  | 1.2DL + 1WL AZI 30  | Y | Υ |   | 1 | 1.2 | 3  | 1  | 14 | .866 | 15 | .5   |    |    |   |    |    |    |    |    |    |     |    |    |
| 4  | 1.2DL + 1WL AZI 60  | Y | Υ |   | 1 | 1.2 | 4  | 1  | 14 | .5   | 15 | .866 |    |    |   |    |    |    |    |    |    |     |    |    |
| 5  | 1.2DL + 1WL AZI 90  | Y | Υ |   | 1 | 1.2 | 5  | 1  | 14 |      | 15 | 1    |    |    |   |    |    |    |    |    |    |     |    |    |
| 6  | 1.2DL + 1WL AZI 120 | Υ | Υ |   | 1 | 1.2 | 6  | 1  | 14 | 5    | 15 | .866 |    |    |   |    |    |    |    |    |    |     |    |    |
| 7  | 1.2DL + 1WL AZI 150 | Y | Υ |   | 1 | 1.2 | 7  | 1  | 14 | 8    | 15 | .5   |    |    |   |    |    |    |    |    |    |     |    |    |
| 8  | 1.2DL + 1WL AZI 180 | Y | Υ |   | 1 | 1.2 | 8  | 1  |    | -1   |    |      |    |    |   |    |    |    |    |    |    |     |    |    |
| 9  | 1.2DL + 1WL AZI 210 | Υ | Υ |   | 1 | 1.2 | 9  | 1  | 14 | 8    | 15 | 5    |    |    |   |    |    |    |    |    |    |     |    |    |
| 10 | 1.2DL + 1WL AZI 240 | Υ | Υ |   | 1 | 1.2 | 10 | 1  | 14 | 5    | 15 | 8    |    |    |   |    |    |    |    |    |    |     |    |    |
| 11 | 1.2DL + 1WL AZI 270 | Υ | Υ |   | 1 | 1.2 | 11 | 1  | 14 |      | 15 | -1   |    |    |   |    |    |    |    |    |    |     |    |    |
| 12 | 1.2DL + 1WL AZI 300 | Y | Υ |   | 1 | 1.2 | 12 | 1  | 14 |      |    | 8    |    |    |   |    |    |    |    |    |    |     |    |    |
| 13 | 1.2DL + 1WL AZI 330 | Y | Υ |   | 1 | 1.2 | 13 | 1  | 14 | .866 | 15 | 5    |    |    |   |    |    |    |    |    |    |     |    |    |
| 14 | 0.9DL + 1WL AZI 0   | Y | Υ |   | 1 | .9  | 2  | 1  | 14 | 1    | 15 |      |    |    |   |    |    |    |    |    |    |     |    |    |
| 15 | 0.9DL + 1WL AZI 30  | Y | Υ |   | 1 | .9  | 3  | 1  | 14 | .866 | 15 | .5   |    |    |   |    |    |    |    |    |    |     |    |    |
| 16 | 0.9DL + 1WL AZI 60  | Y | Υ |   | 1 | .9  | 4  | 1  | 14 | .5   | 15 | .866 |    |    |   |    |    |    |    |    |    |     |    |    |



Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOBOS00024A

Sept 16, 2021 10:46 AM Checked By:\_

## Load Combinations (Continued)

|    | Description                    | SF         |   | SB. | .Fa  | .B  | Fa   | .B  | .Fa  | В  | Fa   | В  | Fa   | В | Fa | В | Fa | В | Fa | .В | Fa | В | Fa |
|----|--------------------------------|------------|---|-----|------|-----|------|-----|------|----|------|----|------|---|----|---|----|---|----|----|----|---|----|
| 17 | 0.9DL + 1WL AZI 90             |            | Y | 1   | .9   |     | 1    | 14  |      | 15 |      |    |      |   |    |   |    |   |    |    |    |   |    |
| 18 | 0.9DL + 1WL AZI 120            | Y <b>`</b> | Y | 1   | .9   | 6   | 1    |     | 5    |    |      |    |      |   |    |   |    |   |    |    |    |   |    |
| 19 | 0.9DL + 1WL AZI 150            |            |   | 1   | .9   | 7   | 1    | 14  | 8    | 15 | .5   |    |      |   |    |   |    |   |    |    |    |   |    |
| 20 | 0.9DL + 1WL AZI 180            | Y <b>'</b> | Y | 1   | .9   | 8   | 1    | 14  |      | 15 |      |    |      |   |    |   |    |   |    |    |    |   |    |
| 21 | 0.9DL + 1WL AZI 210            | Y <b>\</b> | Y | 1   | .9   | 9   | 1    | 14  | 8    | 15 | 5    |    |      |   |    |   |    |   |    |    |    |   |    |
| 22 | 0.9DL + 1WL AZI 240            | Y <b>`</b> | Y | 1   | .9   | 10  | 1    | 14  | 5    | 15 | 8    |    |      |   |    |   |    |   |    |    |    |   |    |
| 23 |                                |            | Y | 1   | .9   | 11  | 1    | 14  |      | 15 | -1   |    |      |   |    |   |    |   |    |    |    |   |    |
| 24 | 0.9DL + 1WL AZI 300            | Y <b>'</b> | Y | 1   | .9   | 12  | 1    |     |      |    | 8    |    |      |   |    |   |    |   |    |    |    |   |    |
| 25 | 0.9DL + 1WL AZI 330            | Y <b>`</b> | Y | 1   | .9   | 13  | 1    | 14  | .866 | 15 | 5    |    |      |   |    |   |    |   |    |    |    |   |    |
| 26 |                                |            | Y | 1   | 1.2  | 16  | 1    |     |      |    |      |    |      |   |    |   |    |   |    |    |    |   |    |
| 27 | 1.2D + 1.0Di +1.0Wi AZI 0      | Y <b>\</b> | Y | 1   | 1.2  | 16  | 1    | 17  | 1    | 29 | 1    | 30 |      |   |    |   |    |   |    |    |    |   |    |
| 28 | 1.2D + 1.0Di +1.0Wi AZI 30     | Y <b>'</b> | Y | 1   | 1.2  | 16  | 1    | 18  | 1    | 29 | .866 | 30 | .5   |   |    |   |    |   |    |    |    |   |    |
| 29 | 1.2D + 1.0Di +1.0Wi AZI 60     | Y <b>'</b> | Y | 1   | 1.2  | 16  | 1    | 19  | 1    | 29 | .5   | 30 | .866 |   |    |   |    |   |    |    |    |   |    |
| 30 | 1.2D + 1.0Di +1.0Wi AZI 90     | Y <b>'</b> | Y | 1   | 1.2  | 16  | 1    | 20  |      | 29 |      | 30 | 1    |   |    |   |    |   |    |    |    |   |    |
| 31 | 1.2D + 1.0Di +1.0Wi AZI 120    | Y <b>`</b> | Y | 1   | 1.2  | 16  | 1    | 21  | 1    | 29 | 5    | 30 | .866 |   |    |   |    |   |    |    |    |   |    |
| 32 | 1.2D + 1.0Di +1.0Wi AZI 150    | Y <b>'</b> | Y | 1   | 1.2  | 16  |      | 22  | 1    | 29 | 8    | 30 | .5   |   |    |   |    |   |    |    |    |   |    |
| 33 | 1.2D + 1.0Di +1.0Wi AZI 180    | Y <b>`</b> | Y | 1   | 1.2  | 16  | 1    | 23  |      | 29 | -1   | 30 |      |   |    |   |    |   |    |    |    |   |    |
| 34 | 1.2D + 1.0Di +1.0Wi AZI 210    | Y <b>'</b> | Y | 1   | 1.2  | 16  | 1    | 24  | 1    | 29 | 8    | 30 | 5    |   |    |   |    |   |    |    |    |   |    |
| 35 | 1.2D + 1.0Di +1.0Wi AZI 240    | Y <b>'</b> | Y | 1   | 1.2  | 16  | 1    | 25  |      | 29 | 5    | 30 | 8    |   |    |   |    |   |    |    |    |   |    |
| 36 | 1.2D + 1.0Di +1.0Wi AZI 270    | Y <b>'</b> | Y | 1   | 1.2  | 16  |      | 26  | 1    | 29 |      | 30 | -1   |   |    |   |    |   |    |    |    |   |    |
| 37 | 1.2D + 1.0Di +1.0Wi AZI 300    |            | Y | 1   | 1.2  | 16  |      |     |      | 29 |      |    | 8    |   |    |   |    |   |    |    |    |   |    |
| 38 | 1.2D + 1.0Di +1.0Wi AZI 330    | Y <b>'</b> | Y | 1   | 1.2  | 16  | 1    | 28  | 1    | 29 | .866 | 30 | 5    |   |    |   |    |   |    |    |    |   |    |
| 39 | (1.2 + 0.2Sds)DL + 1.0E AZI 0  | Y <b>`</b> | Y | 1   | 1.2. |     | 1    | 32  |      |    |      |    |      |   |    |   |    |   |    |    |    |   |    |
|    | (1.2 + 0.2Sds)DL + 1.0E AZI 30 |            |   | 1   | 1.2. | .31 | .866 | 32  | .5   |    |      |    |      |   |    |   |    |   |    |    |    |   |    |
| 41 | (1.2 + 0.2Sds)DL + 1.0E AZI 60 | Y <b>\</b> | Y | 1   | 1.2. | .31 | .5   | 32  | .866 |    |      |    |      |   |    |   |    |   |    |    |    |   |    |
| 42 | (1.2 + 0.2Sds)DL + 1.0E AZI 90 | Y <b>\</b> | Y | 1   | 1.2. | .31 |      | 32  | 1    |    |      |    |      |   |    |   |    |   |    |    |    |   |    |
| 43 | (1.2 + 0.2Sds)DL + 1.0E AZI 1  | Y <b>\</b> | Y | 1   | 1.2. | .31 | 5    | 32  | .866 |    |      |    |      |   |    |   |    |   |    |    |    |   |    |
|    | (1.2 + 0.2Sds)DL + 1.0E AZI 1  |            |   | 1   | 1.2. | .31 | 8    | .32 | .5   |    |      |    |      |   |    |   |    |   |    |    |    |   |    |
| 45 | (1.2 + 0.2Sds)DL + 1.0E AZI 1  | Y <b>\</b> | Y | 1   | 1.2. |     |      |     |      |    |      |    |      |   |    |   |    |   |    |    |    |   |    |
| 46 | (1.2 + 0.2Sds)DL + 1.0E AZI 2  | Y <b>\</b> | Y | 1   | 1.2. | .31 | 8    | .32 | 5    |    |      |    |      |   |    |   |    |   |    |    |    |   |    |
| 47 | (1.2 + 0.2Sds)DL + 1.0E AZI 2  | Y <b>\</b> | Y | 1   | 1.2. | .31 | 5    | 32  | 8    |    |      |    |      |   |    |   |    |   |    |    |    |   |    |
| 48 | (1.2 + 0.2Sds)DL + 1.0E AZI 2  | Y <b>\</b> | Y | 1   |      |     |      | 32  | -1   |    |      |    |      |   |    |   |    |   |    |    |    |   |    |
| 49 | (1.2 + 0.2Sds)DL + 1.0E AZI 3  | Y <b>`</b> | Y | 1   | 1.2. | .31 | .5   | 32  | 8    |    |      |    |      |   |    |   |    |   |    |    |    |   |    |
| 50 | (1.2 + 0.2Sds)DL + 1.0E AZI 3  | Y <b>\</b> | Y | 1   | 1.2. | .31 | .866 | 32  | 5    |    |      |    |      |   |    |   |    |   |    |    |    |   |    |
| 51 | (0.9 - 0.2Sds)DL + 1.0E AZI 0  | Y          | Y | 1   | .858 |     |      |     |      |    |      |    |      |   |    |   |    |   |    |    |    |   |    |
| 52 | (0.9 - 0.2Sds)DL + 1.0E AZI 30 | Y          | Y | 1   | .858 | 31  | .866 | 32  | .5   |    |      |    |      |   |    |   |    |   |    |    |    |   |    |
|    | (0.9 - 0.2Sds)DL + 1.0E AZI 60 | Y          | Y | 1   |      |     |      |     | .866 |    |      |    |      |   |    |   |    |   |    |    |    |   |    |
|    | (0.9 - 0.2Sds)DL + 1.0E AZI 90 | Y          | Y | 1   | .858 | 31  |      | 32  | 1    |    |      |    |      |   |    |   |    |   |    |    |    |   |    |
| 55 | (0.9 - 0.2Sds)DL + 1.0E AZI 1  | Y          | Y | 1   | .858 | 31  | 5    | 32  | .866 |    |      |    |      |   |    |   |    |   |    |    |    |   |    |
|    | (0.9 - 0.2Sds)DL + 1.0E AZI 1  | Y          | Y | 1   | .858 |     |      |     |      |    |      |    |      |   |    |   |    |   |    |    |    |   |    |
|    | (0.9 - 0.2Sds)DL + 1.0E AZI 1  | Y          | Y | 1   |      |     | -1   |     |      |    |      |    |      |   |    |   |    |   |    |    |    |   |    |
| 58 | (0.9 - 0.2Sds)DL + 1.0E AZI 2  | Y          | Y | 1   | .858 | 31  | 8    | .32 | 5    |    |      |    |      |   |    |   |    |   |    |    |    |   |    |



Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOBOS00024A

Sept 16, 2021 10:46 AM Checked By:\_

## Load Combinations (Continued)

|      | Description S                  | S P              | .SB. | Fa   | В  | Fa  | В  | Fa   | В  | Fa   | В  | Fa   | В | Fa | В | Fa | В | Fa | В | Fa | В | Fa |
|------|--------------------------------|------------------|------|------|----|-----|----|------|----|------|----|------|---|----|---|----|---|----|---|----|---|----|
| 59   | (0.9 - 0.2Sds)DL + 1.0E AZI 2  | ′ Y              | 1    |      |    | 5   |    |      |    |      |    |      |   |    |   |    |   |    |   |    |   |    |
| 60   | (0.9 - 0.2Sds)DL + 1.0E AZI 2) | ′ Y              | 1    | .858 | 31 |     | 32 | -1   |    |      |    |      |   |    |   |    |   |    |   |    |   |    |
| 61   | (0.9 - 0.2Sds)DL + 1.0E AZI 3) | ′ Y              | 1    | .858 | 31 |     |    | 8    |    |      |    |      |   |    |   |    |   |    |   |    |   |    |
| 62   | (0.9 - 0.2Sds)DL + 1.0E AZI 3\ | ′ Y              | 1    |      |    |     |    | 5    |    |      |    |      |   |    |   |    |   |    |   |    |   |    |
| 63   | 1.0DL + 1.5LL + 1.0SWL (60 )   | ′ Y              | 1    | 1    | 2  | .23 | 14 | .23  | 15 |      | 33 | 1.5  |   |    |   |    |   |    |   |    |   |    |
| 64   | 1.0DL + 1.5LL + 1.0SWL (60 )   | ′ Y              | 1    | 1    | 3  | .23 | 14 | .2   | 15 | .115 | 33 | 1.5  |   |    |   |    |   |    |   |    |   |    |
| 65   | 1.0DL + 1.5LL + 1.0SWL (60 )   | ′ Y              | 1    | 1    | 4  | .23 | 14 | .115 | 15 | .2   | 33 | 1.5  |   |    |   |    |   |    |   |    |   |    |
| 66   | 1.0DL + 1.5LL + 1.0SWL (60 )   | ′ Y              | 1    | 1    | 5  | .23 | 14 |      | 15 | .23  | 33 | 1.5  |   |    |   |    |   |    |   |    |   |    |
| 67   | 1.0DL + 1.5LL + 1.0SWL (60 )   | ′ Y              | 1    | 1    | 6  | .23 | 14 | 1    | 15 | .2   | 33 | 1.5  |   |    |   |    |   |    |   |    |   |    |
| 68   | 1.0DL + 1.5LL + 1.0SWL (60 )   | ′ Y              | 1    | 1    | 7  | .23 | 14 | 2    | 15 | .115 | 33 | 1.5  |   |    |   |    |   |    |   |    |   |    |
| 69   | 1.0DL + 1.5LL + 1.0SWL (60 )   | ′ Y              | 1    | 1    | 8  | .23 | 14 | 23   | 15 |      | 33 | 1.5  |   |    |   |    |   |    |   |    |   |    |
| 70   | 1.0DL + 1.5LL + 1.0SWL (60 )   |                  | 1    | 1    | 9  |     |    | 2    |    |      |    |      |   |    |   |    |   |    |   |    |   |    |
| 71   | 1.0DL + 1.5LL + 1.0SWL (60 )   |                  | 1    | 1    | 10 | .23 | 14 | 1    | 15 | 2    | 33 | 1.5  |   |    |   |    |   |    |   |    |   |    |
|      | 1.0DL + 1.5LL + 1.0SWL (60 )   |                  | 1    | 1    | 11 | .23 | 14 |      | 15 | 23   | 33 | 1.5  |   |    |   |    |   |    |   |    |   |    |
| 73   | 1.0DL + 1.5LL + 1.0SWL (60 )   | ′ Y              | 1    | 1    | 12 |     |    | .115 |    |      |    |      |   |    |   |    |   |    |   |    |   |    |
| 74   | 1.0DL + 1.5LL + 1.0SWL (60 )   | ′ <mark>Y</mark> | 1    | _    | _  |     |    | .2   | 15 | 1    | 33 | 1.5  |   |    |   |    |   |    |   |    |   |    |
| 75   | 1.20L · 1.0LL                  | ′ Y              | 1    | 1.2  | 33 | 1.5 |    |      |    |      |    |      |   |    |   |    |   |    |   |    |   |    |
| 76   | 1.2DL + 1.5LM-MP1 + 1SWL ()    |                  | 1    |      |    |     | _  | .058 |    |      |    |      |   |    |   |    |   |    |   |    |   |    |
| 77   | 1.2DL + 1.5LM-MP1 + 1SWL ()    |                  |      |      |    |     | _  | .058 |    |      |    |      |   |    |   |    |   |    |   |    |   |    |
|      | 1.2DL + 1.5LM-MP1 + 1SWL ()    |                  | 1    |      | _  |     | _  | .058 |    |      |    |      |   |    |   |    |   |    |   |    |   |    |
|      | 1.2DL + 1.5LM-MP1 + 1SWL ()    |                  | 1    |      | 1  |     | _  | .058 |    | l    |    | .058 |   |    |   |    |   |    |   |    |   |    |
|      | 1.2DL + 1.5LM-MP1 + 1SWL ()    |                  | 1    |      |    |     | _  | .058 |    |      |    |      |   |    |   |    |   |    |   |    |   |    |
| 0.   | 1.2DL + 1.5LM-MP1 + 1SWL ()    |                  | 1    |      | _  |     |    | .058 |    |      |    |      |   |    |   |    |   |    |   |    |   |    |
| 82   | 1.2DL + 1.5LM-MP1 + 1SWL ()    |                  | 1    |      |    |     |    | .058 | _  |      |    |      |   |    |   |    |   |    |   |    |   |    |
| 83   | 1.2DL + 1.5LM-MP1 + 1SWL ()    |                  | 1    |      | _  |     | _  | .058 |    |      |    |      |   |    |   |    |   |    |   |    |   |    |
| 0 1  | 1.2DL + 1.5LM-MP1 + 1SWL ()    |                  | 1    |      |    |     |    | .058 |    |      |    |      |   |    |   |    |   |    |   |    |   |    |
|      | 1.2DL + 1.5LM-MP1 + 1SWL ()    |                  | 1    |      |    |     |    | .058 |    |      |    | 0    |   |    |   |    |   |    |   |    |   |    |
|      | 1.2DL + 1.5LM-MP1 + 1SWL ()    |                  | 1    |      |    |     |    | .058 |    |      |    |      |   |    |   |    |   |    |   |    |   |    |
| , O. | 1.2DL + 1.5LM-MP1 + 1SWL ()    |                  | 1    |      | 1  |     |    | .058 |    |      |    |      |   |    |   |    |   |    |   |    |   |    |
|      | 1.2DL + 1.5LM-MP2 + 1SWL ()    |                  |      |      |    |     |    | .058 |    |      |    |      |   |    |   |    |   |    |   |    |   |    |
|      | 1.2DL + 1.5LM-MP2 + 1SWL ()    |                  |      |      |    |     |    | .058 |    |      |    |      |   |    |   |    |   |    |   |    |   |    |
|      | 1.2DL + 1.5LM-MP2 + 1SWL ()    |                  |      |      |    |     | _  | .058 |    |      |    |      |   |    |   |    |   |    |   |    |   |    |
|      | 1.2DL + 1.5LM-MP2 + 1SWL ()    |                  |      |      |    |     | _  | .058 |    |      |    | .058 |   |    |   |    |   |    |   |    |   |    |
|      | 1.2DL + 1.5LM-MP2 + 1SWL ()    |                  | 1    |      | _  |     | _  | .058 |    |      |    |      |   |    |   |    |   |    |   |    |   |    |
|      | 1.2DL + 1.5LM-MP2 + 1SWL ()    |                  | 1    |      | _  |     |    | .058 |    |      |    |      |   |    |   |    |   |    |   |    |   |    |
|      | 1.2DL + 1.5LM-MP2 + 1SWL ()    |                  |      |      |    |     | _  | .058 |    |      |    |      |   |    |   |    |   |    |   |    |   |    |
|      | 1.2DL + 1.5LM-MP2 + 1SWL ()    |                  |      |      |    |     |    | .058 |    |      |    |      |   |    |   |    |   |    |   |    |   |    |
|      | 1.2DL + 1.5LM-MP2 + 1SWL ()    |                  |      |      |    |     |    | .058 |    |      |    |      |   |    |   |    |   |    |   |    |   |    |
|      | 1.2DL + 1.5LM-MP2 + 1SWL ()    |                  |      |      |    |     |    | .058 |    |      |    | 0    |   |    |   |    |   |    |   |    |   |    |
|      | 1.2DL + 1.5LM-MP2 + 1SWL ()    |                  |      |      |    |     |    | .058 |    |      |    |      |   |    |   |    |   |    |   |    |   |    |
|      | 1.2DL + 1.5LM-MP2 + 1SWL ()    |                  |      |      |    |     |    | .058 |    |      |    |      |   |    |   |    |   |    |   |    |   |    |
| 100  | 1.2DL + 1.5LM-MP3 + 1SWL ()    | ′ Y              | 1    | 1.2  | 36 | 1.5 | 2  | .058 | 14 | .058 | 15 |      |   |    |   |    |   |    |   |    |   |    |



Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOBOS00024A

Sept 16, 2021 10:46 AM Checked By:

## Load Combinations (Continued)

|     | Description                | SP         | S        | B | .Fa | В  | Fa  | В  | .Fa  | В  | Fa   | В  | Fa   | В | .Fa | В | Fa | В | Fa | .B | Fa | В | Fa |
|-----|----------------------------|------------|----------|---|-----|----|-----|----|------|----|------|----|------|---|-----|---|----|---|----|----|----|---|----|
| 1   | 1.2DL + 1.5LM-MP3 + 1SWL ( |            |          | 1 | 1.2 | 36 | 1.5 | 3  | .058 | 14 | .05  | 15 | .029 |   |     |   |    |   |    |    |    |   |    |
|     | 1.2DL + 1.5LM-MP3 + 1SWL ( |            |          | 1 | 1.2 | 36 | 1.5 | 4  | .058 | 14 | .029 | 15 | .05  |   |     |   |    |   |    |    |    |   |    |
| 103 | 1.2DL + 1.5LM-MP3 + 1SWL ( | Y <b>\</b> | /        | 1 | 1.2 | 36 | 1.5 | 5  | .058 | 14 |      | 15 | .058 |   |     |   |    |   |    |    |    |   |    |
|     | 1.2DL + 1.5LM-MP3 + 1SWL ( |            |          | 1 | 1.2 | 36 | 1.5 | 6  | .058 | 14 | 0    | 15 | .05  |   |     |   |    |   |    |    |    |   |    |
| 105 | 1.2DL + 1.5LM-MP3 + 1SWL ( | Y <b>\</b> | <u> </u> | 1 | 1.2 | 36 | 1.5 | 7  | .058 | 14 | 05   | 15 | .029 |   |     |   |    |   |    |    |    |   |    |
| 106 | 1.2DL + 1.5LM-MP3 + 1SWL ( | Y <b>\</b> | /        | 1 | 1.2 | 36 | 1.5 | 8  | .058 | 14 | 0    | 15 |      |   |     |   |    |   |    |    |    |   |    |
|     | 1.2DL + 1.5LM-MP3 + 1SWL ( |            |          | 1 | 1.2 | 36 | 1.5 | 9  | .058 | 14 | 05   | 15 | 0    |   |     |   |    |   |    |    |    |   |    |
|     | 1.2DL + 1.5LM-MP3 + 1SWL ( |            |          | 1 | 1.2 | 36 | 1.5 | 10 | .058 | 14 | 0    | 15 | 05   |   |     |   |    |   |    |    |    |   |    |
| 1   | 1.2DL + 1.5LM-MP3 + 1SWL ( |            |          | 1 | 1.2 | 36 | 1.5 | 11 | .058 | 14 |      | 15 | 0    |   |     |   |    |   |    |    |    |   |    |
| 110 | 1.2DL + 1.5LM-MP3 + 1SWL ( | Y <b>\</b> | /        | 1 | 1.2 | 36 | 1.5 | 12 | .058 | 14 | .029 | 15 | 05   |   |     |   |    |   |    |    |    |   |    |

#### **Joint Boundary Conditions**

|   | Joint Label | X [k/in] | Y [k/in] | Z [k/in] | X Rot.[k-ft/rad] | Y Rot.[k-ft/rad] | Z Rot.[k-ft/rad] |
|---|-------------|----------|----------|----------|------------------|------------------|------------------|
| 1 | N1          |          |          |          |                  |                  |                  |
| 2 | N6          |          |          |          |                  |                  |                  |
| 3 | N38         |          |          |          |                  |                  |                  |
| 4 | N43         | Reaction | Reaction | Reaction |                  |                  |                  |
| 5 | N44         | Reaction | Reaction | Reaction |                  |                  |                  |
| 6 | N44A        | Reaction | Reaction | Reaction |                  |                  |                  |

#### **Envelope Joint Reactions**

|   | Joint   | X [lb]        | LC | Y [lb]  | LC  | Z [lb]   | LC  | MX [lb-ft] | LC  | MY [lb-ft] | LC  | MZ [lb-ft] | LC  |
|---|---------|---------------|----|---------|-----|----------|-----|------------|-----|------------|-----|------------|-----|
| 1 | N43     | <br>855.618   | 78 |         | 89  | 736.044  | 25  | 0          | 110 | 0          | 110 | 0          | 110 |
| 2 |         | <br>-1571.965 | 96 | 185.86  | 20  | -1853.3  | . 7 | 0          | 1   | 0          | 1   | 0          | 1   |
| 3 | N44     | <br>1557.148  | 91 | 648.297 | 107 | 1605.2   | 88  | 0          | 110 | 0          | 110 | 0          | 110 |
| 4 |         | <br>-840.572  | 85 | 187.521 | 14  | 287.127  | 20  | 0          | 1   | 0          | 1   | 0          | 1   |
| 5 | N44A    | <br>89.194    | 6  | 32.694  | 37  | 634.559  | 7   | 0          | 110 | 0          | 110 | 0          | 110 |
| 6 |         | <br>-89.448   | 12 | 9.943   | 55  | -635.397 | 25  | 0          | 1   | 0          | 1   | 0          | 1   |
| 7 | Totals: | <br>583.249   | 17 | 1322.9  | 96  | 923.357  | 2   |            |     |            |     |            |     |
| 8 |         | <br>-583.249  | 23 | 409.62  | 53  | -923.357 | 20  |            |     |            |     |            |     |

#### Member Point Loads (BLC 1 : Self Weight)

|   | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|---|--------------|-----------|---------------------|----------------|
| 1 | MP1          | Υ         | -32.25              | 0              |
| 2 | MP1          | Υ         | -32.25              | 72             |
| 3 | MP1          | Υ         | -74.95              | 12             |
| 4 | MP1          | Υ         | -63.93              | 12             |
| 5 | S1           | Υ         | -21.85              | 20             |



Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOBOS00024A

Sept 16, 2021 10:46 AM Checked By:

#### Member Point Loads (BLC 2: Wind Load AZI 0)

|    | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|----|--------------|-----------|---------------------|----------------|
| 1  | MP1          | X         | 0                   | 0              |
| 2  | MP1          | Z         | -122.55             | 0              |
| 3  | MP1          | X         | 0                   | 72             |
| 4  | MP1          | Z         | -122.55             | 72             |
| 5  | MP1          | X         | 0                   | 12             |
| 6  | MP1          | Z         | -60.08              | 12             |
| 7  | MP1          | X         | 0                   | 12             |
| 8  | MP1          | Z         | -60.08              | 12             |
| 9  | S1           | X         | 0                   | 20             |
| 10 | S1           | Z         | -57.12              | 20             |

#### Member Point Loads (BLC 3: Wind Load AZI 30)

|    | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|----|--------------|-----------|---------------------|----------------|
| 1  | MP1          | X         | -52.09              | 0              |
| 2  | MP1          | Z         | -90.23              | 0              |
| 3  | MP1          | X         | -52.09              | 72             |
| 4  | MP1          | Z         | -90.23              | 72             |
| 5  | MP1          | X         | -27.08              | 12             |
| 6  | MP1          | Z         | -46.9               | 12             |
| 7  | MP1          | X         | -26.48              | 12             |
| 8  | MP1          | Z         | -45.87              | 12             |
| 9  | S1           | X         | -25.5               | 20             |
| 10 | S1           | Z         | -44.17              | 20             |

#### Member Point Loads (BLC 4: Wind Load AZI 60)

|    | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|----|--------------|-----------|---------------------|----------------|
| 1  | MP1          | X         | -58.43              | 0              |
| 2  | MP1          | Z         | -33.74              | 0              |
| 3  | MP1          | X         | -58.43              | 72             |
| 4  | MP1          | Z         | -33.74              | 72             |
| 5  | MP1          | X         | -36.64              | 12             |
| 6  | MP1          | Z         | -21.15              | 12             |
| 7  | MP1          | X         | -33.54              | 12             |
| 8  | MP1          | Z         | -19.36              | 12             |
| 9  | S1           | X         | -33.57              | 20             |
| 10 | S1           | Z         | -19.38              | 20             |

#### Member Point Loads (BLC 5: Wind Load AZI 90)

|   | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|---|--------------|-----------|---------------------|----------------|
| 1 | MP1          | X         | -49.11              | 0              |
| 2 | MP1          | Z         | 0                   | 0              |



Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-B Model Name: BOBOS00024A

Sept 16, 2021 10:46 AM Checked By:

#### Member Point Loads (BLC 5: Wind Load AZI 90) (Continued)

|    | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|----|--------------|-----------|---------------------|----------------|
| 3  | MP1          | X         | -49.11              | 72             |
| 4  | MP1          | Z         | 0                   | 72             |
| 5  | MP1          | X         | -36.39              | 12             |
| 6  | MP1          | Z         | 0                   | 12             |
| 7  | MP1          | X         | -31.61              | 12             |
| 8  | MP1          | Z         | 0                   | 12             |
| 9  | S1           | X         | -32.64              | 20             |
| 10 | S1           | Z         | 0                   | 20             |

#### Member Point Loads (BLC 6: Wind Load AZI 120)

|    | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|----|--------------|-----------|---------------------|----------------|
| 1  | MP1          | X         | -58.43              | 0              |
| 2  | MP1          | Z         | 33.74               | 0              |
| 3  | MP1          | X         | -58.43              | 72             |
| 4  | MP1          | Z         | 33.74               | 72             |
| 5  | MP1          | X         | -36.64              | 12             |
| 6  | MP1          | Z         | 21.15               | 12             |
| 7  | MP1          | X         | -33.54              | 12             |
| 8  | MP1          | Z         | 19.36               | 12             |
| 9  | S1           | X         | -33.57              | 20             |
| 10 | S1           | Z         | 19.38               | 20             |

#### Member Point Loads (BLC 7: Wind Load AZI 150)

|    | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|----|--------------|-----------|---------------------|----------------|
| 1  | MP1          | X         | -52.09              | 0              |
| 2  | MP1          | Z         | 90.23               | 0              |
| 3  | MP1          | X         | -52.09              | 72             |
| 4  | MP1          | Z         | 90.23               | 72             |
| 5  | MP1          | X         | -27.08              | 12             |
| 6  | MP1          | Z         | 46.9                | 12             |
| 7  | MP1          | X         | -26.48              | 12             |
| 8  | MP1          | Z         | 45.87               | 12             |
| 9  | S1           | X         | -25.5               | 20             |
| 10 | S1           | Z         | 44.17               | 20             |

#### Member Point Loads (BLC 8: Wind Load AZI 180)

|   | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|---|--------------|-----------|---------------------|----------------|
| 1 | MP1          | X         | 0                   | 0              |
| 2 | MP1          | Z         | 122.55              | 0              |
| 3 | MP1          | X         | 0                   | 72             |
| 4 | MP1          | Z         | 122.55              | 72             |



Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-B Model Name: BOBOS00024A

Sept 16, 2021 10:46 AM Checked By:

#### Member Point Loads (BLC 8: Wind Load AZI 180) (Continued)

|    | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|----|--------------|-----------|---------------------|----------------|
| 5  | MP1          | X         | 0                   | 12             |
| 6  | MP1          | Z         | 60.08               | 12             |
| 7  | MP1          | X         | 0                   | 12             |
| 8  | MP1          | Z         | 60.08               | 12             |
| 9  | S1           | X         | 0                   | 20             |
| 10 | S1           | Z         | 57.12               | 20             |

#### Member Point Loads (BLC 9: Wind Load AZI 210)

|    | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|----|--------------|-----------|---------------------|----------------|
| 1  | MP1          | X         | 52.09               | 0              |
| 2  | MP1          | Z         | 90.23               | 0              |
| 3  | MP1          | X         | 52.09               | 72             |
| 4  | MP1          | Z         | 90.23               | 72             |
| 5  | MP1          | X         | 27.08               | 12             |
| 6  | MP1          | Z         | 46.9                | 12             |
| 7  | MP1          | X         | 26.48               | 12             |
| 8  | MP1          | Z         | 45.87               | 12             |
| 9  | S1           | X         | 25.5                | 20             |
| 10 | S1           | Z         | 44.17               | 20             |

#### Member Point Loads (BLC 10: Wind Load AZI 240)

|    | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|----|--------------|-----------|---------------------|----------------|
| 1  | MP1          | X         | 58.43               | 0              |
| 2  | MP1          | Z         | 33.74               | 0              |
| 3  | MP1          | X         | 58.43               | 72             |
| 4  | MP1          | Z         | 33.74               | 72             |
| 5  | MP1          | X         | 36.64               | 12             |
| 6  | MP1          | Z         | 21.15               | 12             |
| 7  | MP1          | X         | 33.54               | 12             |
| 8  | MP1          | Z         | 19.36               | 12             |
| 9  | S1           | X         | 33.57               | 20             |
| 10 | S1           | Z         | 19.38               | 20             |

#### Member Point Loads (BLC 11 : Wind Load AZI 270)

|   | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|---|--------------|-----------|---------------------|----------------|
| 1 | MP1          | X         | 49.11               | 0              |
| 2 | MP1          | Z         | 0                   | 0              |
| 3 | MP1          | X         | 49.11               | 72             |
| 4 | MP1          | Z         | 0                   | 72             |
| 5 | MP1          | X         | 36.39               | 12             |
| 6 | MP1          | Z         | 0                   | 12             |



Company : Infinigy Enginee
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOBOS00024A

Sept 16, 2021 10:46 AM Checked By:

#### Member Point Loads (BLC 11: Wind Load AZI 270) (Continued)

|    | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|----|--------------|-----------|---------------------|----------------|
| 7  | MP1          | X         | 31.61               | 12             |
| 8  | MP1          | Z         | 0                   | 12             |
| 9  | S1           | X         | 32.64               | 20             |
| 10 | S1           | Z         | 0                   | 20             |

#### Member Point Loads (BLC 12: Wind Load AZI 300)

|    | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|----|--------------|-----------|---------------------|----------------|
| 1  | MP1          | X         | 58.43               | 0              |
| 2  | MP1          | Z         | -33.74              | 0              |
| 3  | MP1          | X         | 58.43               | 72             |
| 4  | MP1          | Z         | -33.74              | 72             |
| 5  | MP1          | X         | 36.64               | 12             |
| 6  | MP1          | Z         | -21.15              | 12             |
| 7  | MP1          | X         | 33.54               | 12             |
| 8  | MP1          | Z         | -19.36              | 12             |
| 9  | S1           | X         | 33.57               | 20             |
| 10 | S1           | Z         | -19.38              | 20             |

## Member Point Loads (BLC 13: Wind Load AZI 330)

|    | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|----|--------------|-----------|---------------------|----------------|
| 1  | MP1          | X         | 52.09               | 0              |
| 2  | MP1          | Z         | -90.23              | 0              |
| 3  | MP1          | X         | 52.09               | 72             |
| 4  | MP1          | Z         | -90.23              | 72             |
| 5  | MP1          | X         | 27.08               | 12             |
| 6  | MP1          | Z         | -46.9               | 12             |
| 7  | MP1          | X         | 26.48               | 12             |
| 8  | MP1          | Z         | -45.87              | 12             |
| 9  | S1           | X         | 25.5                | 20             |
| 10 | S1           | Z         | -44.17              | 20             |

#### Member Point Loads (BLC 16 : Ice Weight)

|   | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|---|--------------|-----------|---------------------|----------------|
| 1 | MP1          | Υ         | -84.356             | 0              |
| 2 | MP1          | Υ         | -84.356             | 72             |
| 3 | MP1          | Υ         | -42.562             | 12             |
| 4 | MP1          | Υ         | -39.809             | 12             |
| 5 | S1           | Υ         | -38.784             | 20             |

#### Member Point Loads (BLC 17 : Ice Wind Load AZI 0)

| Member Label | Direction                                | Magnitude[lb,lb-ft] | Location[in,%] |
|--------------|------------------------------------------|---------------------|----------------|
|              | 50 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 10000000011         |                |



Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-B Model Name: BOBOS00024A

Sept 16, 2021 10:46 AM Checked By:

#### Member Point Loads (BLC 17 : Ice Wind Load AZI 0) (Continued)

|    | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|----|--------------|-----------|---------------------|----------------|
| 1  | MP1          | X         | 0                   | 0              |
| 2  | MP1          | Z         | -14.5               | 0              |
| 3  | MP1          | X         | 0                   | 72             |
| 4  | MP1          | Z         | -14.5               | 72             |
| 5  | MP1          | X         | 0                   | 12             |
| 6  | MP1          | Z         | -5.6                | 12             |
| 7  | MP1          | X         | 0                   | 12             |
| 8  | MP1          | Z         | -5.6                | 12             |
| 9  | S1           | X         | 0                   | 20             |
| 10 | S1           | Z         | -5.51               | 20             |

#### Member Point Loads (BLC 18: Ice Wind Load AZI 30)

|    | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|----|--------------|-----------|---------------------|----------------|
| 1  | MP1          | X         | -6.72               | 0              |
| 2  | MP1          | Z         | -11.63              | 0              |
| 3  | MP1          | X         | -6.72               | 72             |
| 4  | MP1          | Z         | -11.63              | 72             |
| 5  | MP1          | X         | -2.66               | 12             |
| 6  | MP1          | Z         | -4.61               | 12             |
| 7  | MP1          | X         | -2.63               | 12             |
| 8  | MP1          | Z         | -4.56               | 12             |
| 9  | S1           | X         | -2.61               | 20             |
| 10 | S1           | Z         | -4.52               | 20             |

#### Member Point Loads (BLC 19 : Ice Wind Load AZI 60)

|    | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|----|--------------|-----------|---------------------|----------------|
| 1  | MP1          | X         | -9.78               | 0              |
| 2  | MP1          | Z         | -5.65               | 0              |
| 3  | MP1          | X         | -9.78               | 72             |
| 4  | MP1          | Z         | -5.65               | 72             |
| 5  | MP1          | X         | -4.14               | 12             |
| 6  | MP1          | Z         | -2.39               | 12             |
| 7  | MP1          | X         | -3.98               | 12             |
| 8  | MP1          | Z         | -2.3                | 12             |
| 9  | S1           | X         | -4.01               | 20             |
| 10 | S1           | Z         | -2.32               | 20             |

#### Member Point Loads (BLC 20 : Ice Wind Load AZI 90)

|   | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|---|--------------|-----------|---------------------|----------------|
| 1 | MP1          | X         | -10.22              | 0              |
| 2 | MP1          | Z         | 0                   | 0              |



Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-B Model Name: BOBOS00024A

Sept 16, 2021 10:46 AM Checked By:

#### Member Point Loads (BLC 20 : Ice Wind Load AZI 90) (Continued)

|    | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|----|--------------|-----------|---------------------|----------------|
| 3  | MP1          | X         | -10.22              | 72             |
| 4  | MP1          | Z         | 0                   | 72             |
| 5  | MP1          | X         | -4.51               | 12             |
| 6  | MP1          | Z         | 0                   | 12             |
| 7  | MP1          | X         | -4.25               | 12             |
| 8  | MP1          | Z         | 0                   | 12             |
| 9  | S1           | X         | -4.34               | 20             |
| 10 | S1           | Z         | 0                   | 20             |

#### Member Point Loads (BLC 21 : Ice Wind Load AZI 120)

|    | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|----|--------------|-----------|---------------------|----------------|
| 1  | MP1          | X         | -9.78               | 0              |
| 2  | MP1          | Z         | 5.65                | 0              |
| 3  | MP1          | X         | -9.78               | 72             |
| 4  | MP1          | Z         | 5.65                | 72             |
| 5  | MP1          | X         | -4.14               | 12             |
| 6  | MP1          | Z         | 2.39                | 12             |
| 7  | MP1          | X         | -3.98               | 12             |
| 8  | MP1          | Z         | 2.3                 | 12             |
| 9  | S1           | X         | -4.01               | 20             |
| 10 | S1           | Z         | 2.32                | 20             |

#### Member Point Loads (BLC 22 : Ice Wind Load AZI 150)

|    | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|----|--------------|-----------|---------------------|----------------|
| 1  | MP1          | X         | -6.72               | 0              |
| 2  | MP1          | Z         | 11.63               | 0              |
| 3  | MP1          | X         | -6.72               | 72             |
| 4  | MP1          | Z         | 11.63               | 72             |
| 5  | MP1          | X         | -2.66               | 12             |
| 6  | MP1          | Z         | 4.61                | 12             |
| 7  | MP1          | X         | -2.63               | 12             |
| 8  | MP1          | Z         | 4.56                | 12             |
| 9  | S1           | X         | -2.61               | 20             |
| 10 | S1           | Z         | 4.52                | 20             |

#### Member Point Loads (BLC 23 : Ice Wind Load AZI 180)

|   | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|---|--------------|-----------|---------------------|----------------|
| 1 | MP1          | X         | 0                   | 0              |
| 2 | MP1          | Z         | 14.5                | 0              |
| 3 | MP1          | X         | 0                   | 72             |
| 4 | MP1          | Z         | 14.5                | 72             |



Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-B

: Infinigy Engineering, PLLC

Model Name: BOBOS00024A

Sept 16, 2021 10:46 AM Checked By:

#### Member Point Loads (BLC 23 : Ice Wind Load AZI 180) (Continued)

|    | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|----|--------------|-----------|---------------------|----------------|
| 5  | MP1          | X         | 0                   | 12             |
| 6  | MP1          | Z         | 5.6                 | 12             |
| 7  | MP1          | X         | 0                   | 12             |
| 8  | MP1          | Z         | 5.6                 | 12             |
| 9  | S1           | X         | 0                   | 20             |
| 10 | S1           | Z         | 5.51                | 20             |

#### Member Point Loads (BLC 24 : Ice Wind Load AZI 210)

|    | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|----|--------------|-----------|---------------------|----------------|
| 1  | MP1          | X         | 6.72                | 0              |
| 2  | MP1          | Z         | 11.63               | 0              |
| 3  | MP1          | X         | 6.72                | 72             |
| 4  | MP1          | Z         | 11.63               | 72             |
| 5  | MP1          | X         | 2.66                | 12             |
| 6  | MP1          | Z         | 4.61                | 12             |
| 7  | MP1          | X         | 2.63                | 12             |
| 8  | MP1          | Z         | 4.56                | 12             |
| 9  | S1           | X         | 2.61                | 20             |
| 10 | S1           | Z         | 4.52                | 20             |

#### Member Point Loads (BLC 25 : Ice Wind Load AZI 240)

|    | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|----|--------------|-----------|---------------------|----------------|
| 1  | MP1          | X         | 9.78                | 0              |
| 2  | MP1          | Z         | 5.65                | 0              |
| 3  | MP1          | X         | 9.78                | 72             |
| 4  | MP1          | Z         | 5.65                | 72             |
| 5  | MP1          | X         | 4.14                | 12             |
| 6  | MP1          | Z         | 2.39                | 12             |
| 7  | MP1          | X         | 3.98                | 12             |
| 8  | MP1          | Z         | 2.3                 | 12             |
| 9  | S1           | X         | 4.01                | 20             |
| 10 | S1           | Z         | 2.32                | 20             |

#### Member Point Loads (BLC 26 : Ice Wind Load AZI 270)

|   | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|---|--------------|-----------|---------------------|----------------|
| 1 | MP1          | X         | 10.22               | 0              |
| 2 | MP1          | Z         | 0                   | 0              |
| 3 | MP1          | X         | 10.22               | 72             |
| 4 | MP1          | Z         | 0                   | 72             |
| 5 | MP1          | X         | 4.51                | 12             |
| 6 | MP1          | Z         | 0                   | 12             |



Company : Infinigy Enginee
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOBOS00024A

Sept 16, 2021 10:46 AM Checked By:

#### Member Point Loads (BLC 26 : Ice Wind Load AZI 270) (Continued)

|    | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |  |
|----|--------------|-----------|---------------------|----------------|--|
| 7  | MP1          | X         | 4.25                | 12             |  |
| 8  | MP1          | Z         | 0                   | 12             |  |
| 9  | S1           | X         | 4.34                | 20             |  |
| 10 | S1           | Z         | 0                   | 20             |  |

#### Member Point Loads (BLC 27 : Ice Wind Load AZI 300)

|    | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|----|--------------|-----------|---------------------|----------------|
| 1  | MP1          | X         | 9.78                | 0              |
| 2  | MP1          | Z         | -5.65               | 0              |
| 3  | MP1          | X         | 9.78                | 72             |
| 4  | MP1          | Z         | -5.65               | 72             |
| 5  | MP1          | X         | 4.14                | 12             |
| 6  | MP1          | Z         | -2.39               | 12             |
| 7  | MP1          | X         | 3.98                | 12             |
| 8  | MP1          | Z         | -2.3                | 12             |
| 9  | S1           | X         | 4.01                | 20             |
| 10 | S1           | Z         | -2.32               | 20             |

#### Member Point Loads (BLC 28 : Ice Wind Load AZI 330)

|    | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|----|--------------|-----------|---------------------|----------------|
| 1  | MP1          | X         | 6.72                | 0              |
| 2  | MP1          | Z         | -11.63              | 0              |
| 3  | MP1          | X         | 6.72                | 72             |
| 4  | MP1          | Z         | -11.63              | 72             |
| 5  | MP1          | X         | 2.66                | 12             |
| 6  | MP1          | Z         | -4.61               | 12             |
| 7  | MP1          | X         | 2.63                | 12             |
| 8  | MP1          | Z         | -4.56               | 12             |
| 9  | S1           | X         | 2.61                | 20             |
| 10 | S1           | Z         | -4.52               | 20             |

#### Member Point Loads (BLC 31 : Seismic Load Z)

|   | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|---|--------------|-----------|---------------------|----------------|
| 1 | MP1          | Z         | -10.165             | 0              |
| 2 | MP1          | Z         | -10.165             | 72             |
| 3 | MP1          | Z         | -23.624             | 12             |
| 4 | MP1          | Z         | -20.151             | 12             |
| 5 | S1           | Z         | -6.887              | 20             |

#### Member Point Loads (BLC 32 : Seismic Load X)

| Member Label | Direction        | Magnitude[lb,lb-ft] | Location[in,%] |  |
|--------------|------------------|---------------------|----------------|--|
|              | 50 ) ) ) ) ) ) ) | \D0D0000014         |                |  |



Company

: Infinigy Engineering, PLLC

Job Number : 1197-F0001-B Model Name: BOBOS00024A

Sept 16, 2021 10:46 AM Checked By:

### Member Point Loads (BLC 32 : Seismic Load X) (Continued)

|   | Member Label | Direction | Magnitude[lb,lb-ft] | Location[in,%] |
|---|--------------|-----------|---------------------|----------------|
| 1 | MP1          | X         | -10.165             | 0              |
| 2 | MP1          | X         | -10.165             | 72             |
| 3 | MP1          | X         | -23.624             | 12             |
| 4 | MP1          | X         | -20.151             | 12             |
| 5 | S1           | X         | -6.887              | 20             |

#### Joint Loads and Enforced Displacements (BLC 33: Service Live Loads)

|   | Joint Label | L,D,M | Direction | Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)] |
|---|-------------|-------|-----------|---------------------------------------------------------|
| 1 | N18         | L     | Υ         | -250                                                    |

#### Joint Loads and Enforced Displacements (BLC 34 : Maintenance Load 1)

|   | Joint Label | L,D,M | Direction | Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)] |
|---|-------------|-------|-----------|---------------------------------------------------------|
| 1 | N69         | L     | Υ         | -500                                                    |

#### Joint Loads and Enforced Displacements (BLC 35 : Maintenance Load 2)

|   | Joint Label | L,D,M | Direction | Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)] |
|---|-------------|-------|-----------|---------------------------------------------------------|
| 1 | N70         | L     | Υ         | -500                                                    |

#### Joint Loads and Enforced Displacements (BLC 36 : Maintenance Load 3)

|   | Joint Label | L,D,M | Direction | Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)] |
|---|-------------|-------|-----------|---------------------------------------------------------|
| 1 | N74         | L     | Υ         | -500                                                    |

#### Member Distributed Loads (BLC 14 : Distr. Wind Load Z)

|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magn | Start Location | End Location[in,%] |
|----|--------------|-----------|------------------------|----------|----------------|--------------------|
| 1  | S3           | SZ        | -40.799                | -40.799  | 0              | %100               |
| 2  | S4           | SZ        | -40.799                | -40.799  | 0              | %100               |
| 3  | TR6          | SZ        | -40.799                | -40.799  | 0              | %100               |
| 4  | TR5          | SZ        | -40.799                | -40.799  | 0              | %100               |
| 5  | TR8          | SZ        | -40.799                | -40.799  | 0              | %100               |
| 6  | TR7          | SZ        | -40.799                | -40.799  | 0              | %100               |
| 7  | <b>S</b> 1   | SZ        | -40.799                | -40.799  | 0              | %100               |
| 8  | S2           | SZ        | -40.799                | -40.799  | 0              | %100               |
| 9  | TR1          | SZ        | -40.799                | -40.799  | 0              | %100               |
| 10 | TR2          | SZ        | -40.799                | -40.799  | 0              | %100               |
| 11 | TR3          | SZ        | -40.799                | -40.799  | 0              | %100               |
| 12 | TR4          | SZ        | -40.799                | -40.799  | 0              | %100               |
| 13 | H1           | SZ        | -40.799                | -40.799  | 0              | %100               |
| 14 | H2           | SZ        | -40.799                | -40.799  | 0              | %100               |



Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-B

: Infinigy Engineering, PLLC: PSM

Model Name: BOBOS00024A

Sept 16, 2021 10:46 AM Checked By:

#### Member Distributed Loads (BLC 14: Distr. Wind Load Z) (Continued)

|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magn | .Start Location | End Location[in,%] |
|----|--------------|-----------|------------------------|----------|-----------------|--------------------|
| 15 | MP3          | SZ        | -40.799                | -40.799  | 0               | %100               |
| 16 | MP1          | SZ        | -40.799                | -40.799  | 0               | %100               |
| 17 | MP2          | SZ        | -40.799                | -40.799  | 0               | %100               |
| 18 | T1           | SZ        | -40.799                | -40.799  | 0               | %100               |
| 19 | M29          | SZ        | 0                      | 0        | 0               | %100               |
| 20 | M30          | SZ        | 0                      | 0        | 0               | %100               |
| 21 | M33          | SZ        | 0                      | 0        | 0               | %100               |
| 22 | M34          | SZ        | 0                      | 0        | 0               | %100               |
| 23 | M35          | SZ        | 0                      | 0        | 0               | %100               |
| 24 | M36          | SZ        | 0                      | 0        | 0               | %100               |
| 25 | M25          | SZ        | 0                      | 0        | 0               | %100               |
| 26 | M26          | SZ        | 0                      | 0        | 0               | %100               |
| 27 | M27          | SZ        | 0                      | 0        | 0               | %100               |

#### Member Distributed Loads (BLC 15 : Distr. Wind Load X)

|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magn | Start Location | End Location[in,%] |
|----|--------------|-----------|------------------------|----------|----------------|--------------------|
| 1  | S3           | SX        | -40.799                | -40.799  | 0              | %100               |
| 2  | S4           | SX        | -40.799                | -40.799  | 0              | %100               |
| 3  | TR6          | SX        | -40.799                | -40.799  | 0              | %100               |
| 4  | TR5          | SX        | -40.799                | -40.799  | 0              | %100               |
| 5  | TR8          | SX        | -40.799                | -40.799  | 0              | %100               |
| 6  | TR7          | SX        | -40.799                | -40.799  | 0              | %100               |
| 7  | S1           | SX        | -40.799                | -40.799  | 0              | %100               |
| 8  | S2           | SX        | -40.799                | -40.799  | 0              | %100               |
| 9  | TR1          | SX        | -40.799                | -40.799  | 0              | %100               |
| 10 | TR2          | SX        | -40.799                | -40.799  | 0              | %100               |
| 11 | TR3          | SX        | -40.799                | -40.799  | 0              | %100               |
| 12 | TR4          | SX        | -40.799                | -40.799  | 0              | %100               |
| 13 | H1           | SX        | -40.799                | -40.799  | 0              | %100               |
| 14 | H2           | SX        | -40.799                | -40.799  | 0              | %100               |
| 15 | MP3          | SX        | -40.799                | -40.799  | 0              | %100               |
| 16 | MP1          | SX        | -40.799                | -40.799  | 0              | %100               |
| 17 | MP2          | SX        | -40.799                | -40.799  | 0              | %100               |
| 18 | T1           | SX        | -40.799                | -40.799  | 0              | %100               |
| 19 | M29          | SX        | 0                      | 0        | 0              | %100               |
| 20 | M30          | SX        | 0                      | 0        | 0              | %100               |
| 21 | M33          | SX        | 0                      | 0        | 0              | %100               |
| 22 | M34          | SX        | 0                      | 0        | 0              | %100               |
| 23 | M35          | SX        | 0                      | 0        | 0              | %100               |
| 24 | M36          | SX        | 0                      | 0        | 0              | %100               |
| 25 | M25          | SX        | 0                      | 0        | 0              | %100               |
| 26 | M26          | SX        | 0                      | 0        | 0              | %100               |



Company : Infinigy Engined
Designer : PSM
Job Number : 1197-F0001-B

: Infinigy Engineering, PLLC

Model Name: BOBOS00024A

Sept 16, 2021 10:46 AM Checked By:

#### Member Distributed Loads (BLC 15 : Distr. Wind Load X) (Continued)

|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magn | .Start Location | End Location[in,%] |
|----|--------------|-----------|------------------------|----------|-----------------|--------------------|
| 27 | M27          | SX        | 0                      | 0        | 0               | %100               |

#### Member Distributed Loads (BLC 16 : Ice Weight)

|    | Member Label | Direction | Start Magnitude[lb/ft, | . End Magn. | .Start Location. | .End Location[in,%] |
|----|--------------|-----------|------------------------|-------------|------------------|---------------------|
| 1  | S3           | Υ         | -3.96                  | -3.96       | 0                | %100                |
| 2  | S4           | Υ         | -3.96                  | -3.96       | 0                | %100                |
| 3  | TR6          | Υ         | -2.275                 | -2.275      | 0                | %100                |
| 4  | TR5          | Υ         | -2.275                 | -2.275      | 0                | %100                |
| 5  | TR8          | Υ         | -2.275                 | -2.275      | 0                | %100                |
| 6  | TR7          | Υ         | -2.275                 | -2.275      | 0                | %100                |
| 7  | <b>S</b> 1   | Υ         | -3.96                  | -3.96       | 0                | %100                |
| 8  | S2           | Υ         | -3.96                  | -3.96       | 0                | %100                |
| 9  | TR1          | Υ         | -2.275                 | -2.275      | 0                | %100                |
| 10 | TR2          | Υ         | -2.275                 | -2.275      | 0                | %100                |
| 11 | TR3          | Υ         | -2.275                 | -2.275      | 0                | %100                |
| 12 | TR4          | Υ         | -2.275                 | -2.275      | 0                | %100                |
| 13 | H1           | Υ         | -5.253                 | -5.253      | 0                | %100                |
| 14 | H2           | Υ         | -5.253                 | -5.253      | 0                | %100                |
| 15 | MP3          | Υ         | -5.259                 | -5.259      | 0                | %100                |
| 16 | MP1          | Υ         | -5.259                 | -5.259      | 0                | %100                |
| 17 | MP2          | Υ         | -5.259                 | -5.259      | 0                | %100                |
| 18 | T1           | Υ         | -4.596                 | -4.596      | 0                | %100                |
| 19 | M29          | Υ         | -1.44                  | -1.44       | 0                | %100                |
| 20 | M30          | Υ         | -1.44                  | -1.44       | 0                | %100                |
| 21 | M33          | Υ         | -1.44                  | -1.44       | 0                | %100                |
| 22 | M34          | Υ         | -1.44                  | -1.44       | 0                | %100                |
| 23 | M35          | Υ         | -1.44                  | -1.44       | 0                | %100                |
| 24 | M36          | Υ         | -1.44                  | -1.44       | 0                | %100                |
| 25 | M25          | Υ         | -1.44                  | -1.44       | 0                | %100                |
| 26 | M26          | Υ         | -1.44                  | -1.44       | 0                | %100                |
| 27 | M27          | Υ         | -1.44                  | -1.44       | 0                | %100                |

#### Member Distributed Loads (BLC 29 : Distr. Ice Wind Load Z)

|   | Member Label | Direction | Start Magnitude[lb/ft, | End Magn | Start Location. | End Location[in,%] |
|---|--------------|-----------|------------------------|----------|-----------------|--------------------|
| 1 | S3           | SZ        | -13.987                | -13.987  | 0               | %100               |
| 2 | S4           | SZ        | -13.987                | -13.987  | 0               | %100               |
| 3 | TR6          | SZ        | -29.024                | -29.024  | 0               | %100               |
| 4 | TR5          | SZ        | -29.024                | -29.024  | 0               | %100               |
| 5 | TR8          | SZ        | -29.024                | -29.024  | 0               | %100               |
| 6 | TR7          | SZ        | -29.024                | -29.024  | 0               | %100               |
| 7 | <b>S</b> 1   | SZ        | -13.987                | -13.987  | 0               | %100               |



Company : Infinigy Engined
Designer : PSM
Job Number : 1197-F0001-B

: Infinigy Engineering, PLLC: PSM

Model Name: BOBOS00024A

Sept 16, 2021 10:46 AM Checked By:

#### Member Distributed Loads (BLC 29 : Distr. Ice Wind Load Z) (Continued)

|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magn | Start Location | End Location[in,%] |
|----|--------------|-----------|------------------------|----------|----------------|--------------------|
| 8  | S2           | SZ        | -13.987                | -13.987  | 0              | %100               |
| 9  | TR1          | SZ        | -29.024                | -29.024  | 0              | %100               |
| 10 | TR2          | SZ        | -29.024                | -29.024  | 0              | %100               |
| 11 | TR3          | SZ        | -29.024                | -29.024  | 0              | %100               |
| 12 | TR4          | SZ        | -29.024                | -29.024  | 0              | %100               |
| 13 | H1           | SZ        | -11.457                | -11.457  | 0              | %100               |
| 14 | H2           | SZ        | -11.457                | -11.457  | 0              | %100               |
| 15 | MP3          | SZ        | -11.449                | -11.449  | 0              | %100               |
| 16 | MP1          | SZ        | -11.449                | -11.449  | 0              | %100               |
| 17 | MP2          | SZ        | -11.449                | -11.449  | 0              | %100               |
| 18 | T1           | SZ        | -12.483                | -12.483  | 0              | %100               |
| 19 | M29          | SZ        | 0                      | 0        | 0              | %100               |
| 20 | M30          | SZ        | 0                      | 0        | 0              | %100               |
| 21 | M33          | SZ        | 0                      | 0        | 0              | %100               |
| 22 | M34          | SZ        | 0                      | 0        | 0              | %100               |
| 23 | M35          | SZ        | 0                      | 0        | 0              | %100               |
| 24 | M36          | SZ        | 0                      | 0        | 0              | %100               |
| 25 | M25          | SZ        | 0                      | 0        | 0              | %100               |
| 26 | M26          | SZ        | 0                      | 0        | 0              | %100               |
| 27 | M27          | SZ        | 0                      | 0        | 0              | %100               |

#### Member Distributed Loads (BLC 30 : Distr. Ice Wind Load X)

|    | Member Label | Direction | Start Magnitude[lb/ft, | . End Magn | Start Location. | .End Location[in,%] |
|----|--------------|-----------|------------------------|------------|-----------------|---------------------|
| 1  | S3           | SX        | -13.987                | -13.987    | 0               | %100                |
| 2  | S4           | SX        | -13.987                | -13.987    | 0               | %100                |
| 3  | TR6          | SX        | -29.024                | -29.024    | 0               | %100                |
| 4  | TR5          | SX        | -29.024                | -29.024    | 0               | %100                |
| 5  | TR8          | SX        | -29.024                | -29.024    | 0               | %100                |
| 6  | TR7          | SX        | -29.024                | -29.024    | 0               | %100                |
| 7  | <b>S</b> 1   | SX        | -13.987                | -13.987    | 0               | %100                |
| 8  | S2           | SX        | -13.987                | -13.987    | 0               | %100                |
| 9  | TR1          | SX        | -29.024                | -29.024    | 0               | %100                |
| 10 | TR2          | SX        | -29.024                | -29.024    | 0               | %100                |
| 11 | TR3          | SX        | -29.024                | -29.024    | 0               | %100                |
| 12 | TR4          | SX        | -29.024                | -29.024    | 0               | %100                |
| 13 | H1           | SX        | -11.457                | -11.457    | 0               | %100                |
| 14 | H2           | SX        | -11.457                | -11.457    | 0               | %100                |
| 15 | MP3          | SX        | -11.449                | -11.449    | 0               | %100                |
| 16 | MP1          | SX        | -11.449                | -11.449    | 0               | %100                |
| 17 | MP2          | SX        | -11.449                | -11.449    | 0               | %100                |
| 18 | T1           | SX        | -12.483                | -12.483    | 0               | %100                |
| 19 | M29          | SX        | 0                      | 0          | 0               | %100                |



Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-B
Model Name : BOBOS00024A

Sept 16, 2021 10:46 AM Checked By:

#### Member Distributed Loads (BLC 30 : Distr. Ice Wind Load X) (Continued)

|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magn | Start Location | End Location[in,%] |
|----|--------------|-----------|------------------------|----------|----------------|--------------------|
| 20 | M30          | SX        | 0                      | 0        | 0              | %100               |
| 21 | M33          | SX        | 0                      | 0        | 0              | %100               |
| 22 | M34          | SX        | 0                      | 0        | 0              | %100               |
| 23 | M35          | SX        | 0                      | 0        | 0              | %100               |
| 24 | M36          | SX        | 0                      | 0        | 0              | %100               |
| 25 | M25          | SX        | 0                      | 0        | 0              | %100               |
| 26 | M26          | SX        | 0                      | 0        | 0              | %100               |
| 27 | M27          | SX        | 0                      | 0        | 0              | %100               |

#### Member Area Loads

| Joint A | Joint B | Joint C | Joint D  | Direction | Distribution | Magnitude[psf] |
|---------|---------|---------|----------|-----------|--------------|----------------|
|         |         | No Data | to Print |           |              |                |

#### Envelope AISC 15th(360-16): LRFD Steel Code Checks

|    | Member | Shape        | Code Check | Loc[in] | LC | She  | .Loc[in] | Dir | LC | phi*P | phi*P | .phi*M | .phi*Mn z-z [lb. | Cb Eq   | n  |
|----|--------|--------------|------------|---------|----|------|----------|-----|----|-------|-------|--------|------------------|---------|----|
| 1  | TR7    | 0.63" SR     | .400       | 39.811  | 88 | .026 | 19.905   |     |    | 4409  |       |        | 147.295          | 2 H1-   |    |
| 2  | S4     | 1.9" ODx0.1  | .395       | 35.333  | 91 | .134 | 42.4     |     | 94 | 2049  | 2777  | 1314   | 1314.45          | 1 H1-   | 1b |
| 3  | S3     | 1.9" ODx0.1  | .378       | 35.333  | 94 | .134 | 42.4     |     | 88 | 2049  | 2777  | 1314   | 1314.45          | 1 H1-   | 1b |
| 4  | TR4    | 0.63" SR     | .318       | 39.811  | 87 | .030 | 19.905   |     | 90 | 4409  | 1402  | 147.2  | 147.295          | 2 H1-   | 1a |
| 5  | S2     | 1.9" ODx0.1  | .307       | 35.333  | 85 | .119 | 42.4     |     | 84 | 2049  | 2777  | 1314   | 1314.45          | 1 H1-   | 1b |
| 6  | S1     | 1.9" ODx0.1  | .292       | 35.333  | 81 | .118 | 42.4     |     | 87 | 2049  | 2777  | 1314   | 1314.45          | 1.79H1- | 1b |
| 7  | MP1    | 2.88"x0.120" | .193       | 33      | 2  | .052 | 33       |     | 8  | 2249  | 43056 | 3156   | 3156.75          | 4 H1-   | 1b |
| 8  | TR8    | 0.63" SR     | .153       | 0       | 94 | .026 | 19.905   |     | 81 | 2249  | 1402  | 147.2  | 147.295          | 2 H1-   | 1b |
| 9  | TR3    | 0.63" SR     | .125       | 0       | 81 | .030 | 19.905   |     | 96 | 2249  | 1402  | 147.2  | 147.295          | 2 H1-   | 1b |
| 10 | TR5    | 0.63" SR     | .119       | 0       | 94 | .033 | 0        |     | 95 | 5162  | 1402  | 147.2  | 147.295          | 2 H1-   | 1b |
| 11 | TR2    | 0.63" SR     | .110       | 0       | 81 | .034 | 0        |     | 95 | 5162  | 1402  | 147.2  | 147.295          | 2 H1-   | 1b |
| 12 | MP3    | 2.88"x0.120" | .109       | 33      | 81 | .022 | 61       |     | 87 | 2249  | 43056 | 3156   | 3156.75          | 4 H1-   | 1b |
| 13 | H1     | PIPE 2.5     | .104       | 77      | 8  | .065 | 78       |     | 2  | 3348  | 66654 | 4726.5 | 4726.5           | 2 H1-   | 1b |
| 14 | T1     | Pipe2.38X0   | .099       | 96.255  | 7  | .008 | 96.255   |     | 30 | 1328  | 3527  | 2114   | 2114.85          | 1 H1-   | 1b |
| 15 | H2     | PIPE 2.5     | .087       | 93      | 96 | .047 | 78       |     | 94 | 3348  | 66654 | 4726.5 | 4726.5           | 2 H1-   | 1b |
| 16 | TR6    | 0.63" SR     | .076       | 28.3    | 90 | .016 | 0        |     | 96 | 5162  | 1402  | 147.2  | 147.295          | 2 H1-   | 1b |
| 17 | MP2    | 2.88"x0.120" | .062       | 33      | 8  | .038 | 33       |     | 93 | 2249  | 43056 | 3156   | 3156.75          | 4 H1-   | 1b |
| 18 | TR1    | 0.63" SR     | .053       | 28.3    | 77 | .015 | 28.3     |     | 96 | 5162  | 1402  | 147.2  | 147.295          | 2 H1-   | 1b |



#### **Bolt Calculation Tool, V1.5.1**

| PROJECT DATA                                      |             |  |  |  |  |
|---------------------------------------------------|-------------|--|--|--|--|
| Site Name:                                        | BOBOS00024A |  |  |  |  |
| Site Number:                                      | BOBOS00024A |  |  |  |  |
| Connection Description: Sector Frame to Tower Leg |             |  |  |  |  |

| MAXIMUM BOLT LOADS |        |     |  |  |  |  |
|--------------------|--------|-----|--|--|--|--|
| Bolt Tension:      | 926.68 | lbs |  |  |  |  |
| Bolt Shear:        | 849.32 | lbs |  |  |  |  |

| WORST CASE BOLT LOADS <sup>1</sup> |        |     |  |  |  |  |
|------------------------------------|--------|-----|--|--|--|--|
| Bolt Tension:                      | 0.00   | lbs |  |  |  |  |
| Bolt Shear:                        | 849.32 | lbs |  |  |  |  |

| BOLT PROPERTIES     |              |    |  |
|---------------------|--------------|----|--|
| Bolt Type:          | Threaded Rod | -  |  |
| Bolt Diameter:      | 0.625        | in |  |
| Bolt Grade:         | A449         | -  |  |
| # of Threaded Rods: | 2            | -  |  |
| Threads Excluded?   | No           | -  |  |

<sup>&</sup>lt;sup>1</sup> Worst case bolt loads correspond to Load combination #91 on member M26 in RISA-3D, which causes the maximum demand on the bolts.

# Member Information I nodes of M25, M26

| BOLT CHECK                     |          |       |
|--------------------------------|----------|-------|
| Tensile Strength               | 20340.15 |       |
| Shear Strength                 | 13805.83 |       |
| Max Tensile Usage              | 4.6%     |       |
| Max Shear Usage                | 6.2%     |       |
| Interaction Check (Worst Case) | 0.00     | ≤1.05 |
| Result                         | Pass     |       |





#### **Bolt Calculation Tool, V1.5.1**

| Doit Calculation 1001, VI.3.1                |             |  |  |  |
|----------------------------------------------|-------------|--|--|--|
| PROJECT DATA                                 |             |  |  |  |
| Site Name:                                   | BOBOS00024A |  |  |  |
| Site Number:                                 | BOBOS00024A |  |  |  |
| Connection Description: Tieback to Tower Leg |             |  |  |  |

| MAXIMUM BOLT LOADS      |  |  |  |  |  |  |
|-------------------------|--|--|--|--|--|--|
| Bolt Tension: 44.72 lbs |  |  |  |  |  |  |
| Bolt Shear: 317.61 lbs  |  |  |  |  |  |  |

| WORST CASE BOLT LOADS <sup>1</sup> |  |  |  |  |  |
|------------------------------------|--|--|--|--|--|
| Bolt Tension: 41.34 lbs            |  |  |  |  |  |
| Bolt Shear: 317.61 lbs             |  |  |  |  |  |

| BOLT PROPERTIES     |              |    |  |  |  |
|---------------------|--------------|----|--|--|--|
| Bolt Type:          | Threaded Rod | -  |  |  |  |
| Bolt Diameter:      | 0.5          | in |  |  |  |
| Bolt Grade:         | A449         | -  |  |  |  |
| # of Threaded Rods: | 2            | -  |  |  |  |
| Threads Excluded?   | No           | -  |  |  |  |

 $<sup>^{1}</sup>$  Worst case bolt loads correspond to Load combination #13 on member M27 in RISA-3D, which causes the maximum demand on the bolts.

# Member Information I nodes of M27

| BOLT CHECK                      |          |      |
|---------------------------------|----------|------|
| Tensile Strength                | 12770.86 |      |
| Shear Strength                  | 8835.73  |      |
| Max Tensile Usage*              | 0.3%     |      |
| Max Shear Usage*                | 3.6%     |      |
| Interaction Check (Worst Case)* | 0.00     | ≤1.0 |
| Result                          | Pass     |      |

<sup>\*</sup>Usage per TIA-222-H Section 15.5







# **POWER DENSITY STUDY**



## RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOBOS00024A

BOBOS00024A 139 Sharp Hill Road Montville, Connecticut 06353

October 27, 2021

EBI Project Number: 6221003990

| Site Compliance Summary                                    |           |  |  |
|------------------------------------------------------------|-----------|--|--|
| Compliance Status:                                         | COMPLIANT |  |  |
| Site total MPE% of FCC general population allowable limit: | 4.97%     |  |  |



October 27, 2021

Dish Wireless

Emissions Analysis for Site: BOBOS00024A - BOBOS00024A

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at 139 Sharp Hill Road in Montville, Connecticut for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ( $\mu$ W/cm²). The number of  $\mu$ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ( $\mu$ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400  $\mu$ W/cm² and 467  $\mu$ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000  $\mu$ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.



Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

#### CALCULATIONS

Calculations were done for the proposed Dish Wireless antenna facility located at 139 Sharp Hill Road in Montville, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) 4 n66 channels (AWS Band 2190 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 5) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative



estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 6) The antennas used in this modeling are the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector A, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector B, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antenna mounting height centerline of the proposed antennas is 75 feet above ground level (AGL).
- 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 9) Emissions from additional carriers were not included because emissions data for the site location are not available.
- 10) All calculations were done with respect to uncontrolled / general population threshold limits.



## **Dish Wireless Site Inventory and Power Data**

| Sector:             | Α                                    | Sector:             | В                                    | Sector:             | С                                    |
|---------------------|--------------------------------------|---------------------|--------------------------------------|---------------------|--------------------------------------|
| Antenna #:          | I                                    | Antenna #:          | I                                    | Antenna #:          | I                                    |
| Make / Model:       | JMA MX08FRO665-<br>21                | Make / Model:       | JMA MX08FRO665-<br>21                | Make / Model:       | JMA MX08FRO665-<br>21                |
| Frequency Bands:    | 600 MHz / 1900<br>MHz / 2190 MHz     | Frequency Bands:    | 600 MHz / 1900<br>MHz / 2190 MHz     | Frequency Bands:    | 600 MHz / 1900<br>MHz / 2190 MHz     |
| Gain:               | 17.45 dBd / 22.65<br>dBd / 22.65 dBd | Gain:               | 17.45 dBd / 22.65<br>dBd / 22.65 dBd | Gain:               | 17.45 dBd / 22.65<br>dBd / 22.65 dBd |
| Height (AGL):       | 75 feet                              | Height (AGL):       | 75 feet                              | Height (AGL):       | 75 feet                              |
| Channel Count:      | 12                                   | Channel Count:      | 12                                   | Channel Count:      | 12                                   |
| Total TX Power (W): | 440 Watts                            | Total TX Power (W): | 440 Watts                            | Total TX Power (W): | 440 Watts                            |
| ERP (W):            | 5,236.31                             | ERP (W):            | 5,236.31                             | ERP (W):            | 5,236.31                             |
| Antenna A1 MPE %:   | 4.97%                                | Antenna BI MPE %:   | 4.97%                                | Antenna CI MPE %:   | 4.97%                                |

| Site Composite MPE %                           |       |  |  |  |
|------------------------------------------------|-------|--|--|--|
| Carrier                                        | MPE % |  |  |  |
| Dish Wireless (Max at Sector A):               | 4.97% |  |  |  |
| no additional carriers listed on CTSC database | N/A   |  |  |  |
| Site Total MPE %:                              | 4.97% |  |  |  |

| Dish Wireless MPE % Per Sector     |       |  |  |  |  |
|------------------------------------|-------|--|--|--|--|
| Dish Wireless Sector A Total:      | 4.97% |  |  |  |  |
| Dish Wireless Sector B Total:      | 4.97% |  |  |  |  |
| Dish Wireless Sector C Total: 4.97 |       |  |  |  |  |
|                                    |       |  |  |  |  |
| Site Total MPE % :                 | 4.97% |  |  |  |  |

| Dish Wireless Maximum MPE Power Values (Sector A)    |               |                               |                  |                              |                    |                           |                  |
|------------------------------------------------------|---------------|-------------------------------|------------------|------------------------------|--------------------|---------------------------|------------------|
| Dish Wireless Frequency Band / Technology (Sector A) | #<br>Channels | Watts ERP<br>(Per<br>Channel) | Height<br>(feet) | Total Power Density (µW/cm²) | Frequency<br>(MHz) | Allowable MPE<br>(μW/cm²) | Calculated % MPE |
| Dish Wireless 600 MHz n71                            | 4             | 223.68                        | 75.0             | 6.76                         | 600 MHz n71        | 400                       | 1.69%            |
| Dish Wireless 1900 MHz n70                           | 4             | 542.70                        | 75.0             | 16.39                        | 1900 MHz n70       | 1000                      | 1.64%            |
| Dish Wireless 2190 MHz n66                           | 4             | 542.70                        | 75.0             | 16.39                        | 2190 MHz n66       | 1000                      | 1.64%            |
|                                                      |               |                               | •                |                              |                    | Total:                    | 4.97%            |

<sup>•</sup> NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.



#### **Summary**

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

| Dish Wireless Sector                    | Power Density Value (%) |
|-----------------------------------------|-------------------------|
| Sector A:                               | 4.97%                   |
| Sector B:                               | 4.97%                   |
| Sector C:                               | 4.97%                   |
| Dish Wireless Maximum MPE % (Sector A): | 4.97%                   |
|                                         |                         |
| Site Total:                             | 4.97%                   |
|                                         |                         |
| Site Compliance Status:                 | COMPLIANT               |

The anticipated composite MPE value for this site assuming all carriers present is **4.97**% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.





# UNDERLYING PROPERTY INFORMATION



## Property Card: 139 SHARP HILL RD

Town of Montville, CT

#### **Parcel Information**

| Location:  | 139 SHARP HILL RD | Property Use:  | Public Utility | Primary Use:   | Utility Building |
|------------|-------------------|----------------|----------------|----------------|------------------|
| Unique ID: | M0079800          | Map Block Lot: | 022-023-000    | Acres:         | 0.45             |
|            |                   | Zone:          | R40            | Volume / Page: | 0616/0128        |
|            |                   | Sale Date:     | 06/06/2016     | Sale Price:    | \$0              |

#### **Value Information**

|                       | Appraised Value | Assessed Value |
|-----------------------|-----------------|----------------|
| Land                  | 78400           | 54880          |
| Buildings             | 4000            | 2800           |
| Detached Outbuildings | 271200          | 189840         |
| Total                 | 353600          | 247520         |

#### **Owner's Information**

| Owner's Data                |
|-----------------------------|
| GLOBAL TOWER ASSETS III LLC |
| P O BOX 723597              |
| ATLANTA, GA 31139           |

### **Building 1**





| Category:           | Commercial       | Siding:          | Metal    | Total Rooms:       | 0 |
|---------------------|------------------|------------------|----------|--------------------|---|
| Stories:            | 1.00             | Fuel:            | Wood     | Beds/Units:        | 0 |
| GLA:                | 48               | Heating:         | None     | Baths:             | 0 |
| Year Built:         | 1990             | Fireplace:       | 0        |                    |   |
| Class:              | Masonry          | Cooling Percent: | None     | Half Baths:        | 0 |
| Use:                | Utility Building | Floors:          | Concrete | Basement Garage:   | 0 |
| Construction Style: | Utility Building | Roof Material:   |          | Finished Basement: | 0 |



15 UTILITY BLDG





# **NOTIFICATIONS**

# **USPS Tracking**®

#### Track Another Package +

**Tracking Number:** 9505511588612143477549

Remove X

Your item has been delivered to an agent for final delivery in ATLANTA, GA 30339 on May 26, 2022 at 12:09 pm.

USPS Tracking Plus<sup>®</sup> Available ✓

## **OVER IT IS NOT SENT OF SENT O**

May 26, 2022 at 12:09 pm ATLANTA, GA 30339

Get Updates ✓

| Text & Email Updates | ~ |
|----------------------|---|
| Tracking History     | ~ |
| USPS Tracking Plus®  | ~ |
| Product Information  | ~ |

See Less ∧

Feedbac



Dear Customer,

The following is the proof-of-delivery for tracking number: 776933304828

**Delivery Information:** 

Status: Delivered

Signed for by: A.HARRING

Service type: FedEx 2Day

Special Handling: Deliver Weekday

310 Norwich-New London Tpke.

UNCASVILLE, CT, 06382

Montville Town Hall, 2nd Floor

Shipping/Receiving

**Delivery date:** May 24, 2022 11:05

Shipping Information:

**Tracking number:** 776933304828 **Ship Date:** May 23, 2022

**Weight:** 0.5 LB/0.23 KG

Recipient:

Ronald K. McDaniel, Montville Town Hall, 2nd Floor 310 Norwich-New London Tpke. UNCASVILLE, CT, US, 06382 Shipper:

**Delivered To:** 

**Delivery Location:** 

Corey Milan, NB+C 100 Apollo Dr. Suite 303 CHELMSFORD, MA, US, 01824

Reference 100814

Shipping/Receiving

Lower Level, Room B-4

UNCASVILLE, CT, 06382

May 24, 2022 11:05

310 Norwich-New London Tpke.



Dear Customer,

The following is the proof-of-delivery for tracking number: 776933370678

**Delivery Information:** 

Delivered Status:

A.HARRING Signed for by: **Delivery Location:** 

Service type: FedEx 2Day

Special Handling: Deliver Weekday

Delivery date:

Shipping Information:

Tracking number: Ship Date: 776933370678 May 23, 2022

> Weight: 0.5 LB/0.23 KG

Recipient:

David Jensen - Bldg Official, Montville Town Hall Lower Level, Room B-4 310 Norwich-New London Tpke. UNCASVILLE, CT, US, 06382

Shipper:

**Delivered To:** 

Corey Milan, NB+C 100 Apollo Dr. Suite 303 CHELMSFORD, MA, US, 01824

Reference 100814