

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@po.state.ct.us Web Site: www.state.ct.us/csc/index.htm

December 23, 2003

Michele G. Briggs Manager of Real Estate Southwestern Bell Mobile Systems, LLC 500 Enterprise Drive Rocky Hill, CT 06067-3900

RE:

EM-CING-086-031209 - Southwestern Bell Mobile Systems, LLC notice of intent to modify an existing telecommunications facility located at 557 Route 82, Montville, Connecticut.

Dear Ms. Briggs:

At a public meeting held on December 22, 2003, the Connecticut Siting Council (Council) acknowledged your notice to modify this existing telecommunications facility, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies.

The proposed modifications are to be implemented as specified here and in your notice dated December 8, 2003. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to an existing facility site that would not increase tower height, extend the boundaries of the tower site, increase noise levels at the tower site boundary by six decibels, and increase the total radio frequencies electromagnetic radiation power density measured at the tower site boundary to or above the standard adopted by the State Department of Environmental Protection pursuant to General Statutes § 22a-162. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Any additional change to this facility will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

Thank you for your attention and cooperation.

Very truly yours,

Pamela B. Katz, P.E.

Chairman

PBK/laf

c: Honorable Howard R. Beetham, Jr., Mayor, Town of Montville Marcia Vlaun, Town Planner, Town of Montville Thomas J. Regan, Brown Rudnick Berlack Israels LLP Sandy M. Carter, Verizon Wireless Christopher B. Fisher, Esq., Cuddy & Feder LLP

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@po.state.ct.us
Web Site: www.ct.gov/csc

December 10, 2003

Honorable Howard R. Beetham, Jr. Mayor
Town of Montville
Town Hall
310 Norwich New London Turnpike
Uncasville, CT 06382

RE: **EM-CING-086-031209** - Southwestern Bell Mobile Systems, LLC notice of intent to modify an existing telecommunications facility located at 557 Route 82, Montville, Connecticut.

Dear Mayor Beetham:

The Connecticut Siting Council (Council) received this request to modify an existing telecommunications facility, pursuant to Regulations of Connecticut State Agencies Section 16-50j-72.

The Council will consider this item at the next meeting scheduled for December 22, 2003 at 1:30 p.m. in Hearing Room One, Ten Franklin Square, New Britain, Connecticut.

Please call me or inform the Council if you have any questions or comments regarding this proposal.

Thank you for your cooperation and consideration.

Derek Phelps

Very truly yours

Executive Director

SDP/amb

Enclosure: Notice of Intent

c: Marcia Vlaun, Town Planner, Town of Montville

Southwestern Bell Mobile Systems, LLC

500 Enterprise Drive

Rocky Hill, Connecticut 06067-3900

Phone: (860) 513-7700 Fax: (860) 513-7190

Michele G. Briggs
Manager of Real Estate

December 8, 2003

Ms. Pam Katz, Chairman Connecticut Siting Council 10 Franklin Square New Britain, Connecticut 06051

CONNECTICUT SITING COUNCIL

Re: Notice of Exempt Modification – Existing Sprint Telecommunications Tower Facility at 557 Route 82, Montville, Connecticut

Dear Chairman Katz:

Southwestern Bell Mobile Systems, LLC ("SBMS") intends to install telecommunications antennas and associated equipment at an existing multicarrier telecommunications tower off Route 82 in Montville, Connecticut.

The Sprint Montville facility is located at 557 Route 82, approximately ¼ mile east of Route 163. Tower coordinates (NAD 83) are N 41° 30′ 13.3″ and W 72° 11′ 31.6″. The facility is owned and operated by Sprint Sites USA ("Sprint"), with offices at 535 E. Crescent Avenue, Ramsey, NJ 07446. Sprint leases the land from Carolyn Besade of Montville.

Please accept this letter as notification to the Council, pursuant to R.C.S.A. Section 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2). In compliance with R.C.S.A. Section 16-50j-73, a copy of this letter is being sent to the Mayor of Montville.

SBMS, the local component of the nationwide Cingular Wireless network, is licensed by the Federal Communications Commission ("FCC") to provide cellular mobile telephone service in the New London Connecticut Metropolitan Statistical Area, which includes the area to be served by SBMS' proposed installation. The public need for cellular service has been predetermined by the FCC.

Sprint has agreed to plans put forth by SBMS pursuant to mutually acceptable terms and conditions and has also authorized SBMS to obtain necessary government approvals. Attached to this Notice are a site location map, a proposed site plan, the proposed tower profile, and a structural analysis report that shows the tower is structurally capable of supporting the proposed SBMS telecommunications equipment.

The Sprint facility was approved by local zoning authorities on December 9, 1999. Because

zoning approval pre-dated the <u>Covello</u> decision concerning Council and Town jurisdiction for tower siting, the tower is legally zoned. The tower came under Council jurisdiction with Verizon's application to co-locate in TS-VER-086-010328, which was approved on April 12, 2001.

The Route 82 facility consists of a 180-foot monopole within a roughly 35' x 50' rectangular compound surrounded by 6-ft high chain link fence topped with barbed wire. Sprint operates panel antennas at the top of the monopole and equipment cabinets mounted on a concrete pad. Verizon operates panel antennas at the 170' level and houses its equipment in a 12' x 30' shelter at the rear of the compound. AT&T operates panel antennas at the 160' level of the tower and has its equipment on a concrete pad.

As shown on the attached drawings and as further described below, SBMS proposes to install up to twelve CSS DUO4-8670 panel antennas, approximately 48 inches in height, with the center of radiation approximately 150 feet above ground level. Associated equipment to be installed on the tower are up to six ADC Co. dual-band tower top amplifiers ("TTA's"; small metal boxes approximately 26 pounds apiece) immediately behind the antennas, and up to three very small (5 pounds apiece) CSS dual-band "combiners." SBMS also proposes to place a 12' x 20' prefabricated concrete equipment building near the base of the tower.

The existing fenced compound is too small to accommodate Cingular's equipment building. Therefore, we propose to expand the compound by fencing an additional 18' x 36' on the west side of the compound. (See attached plan drawing.) All work will be done within Sprint's existing 75' x 75' lease area. No trees will be disturbed.

With the "GSM-only" configuration, SBMS will broadcast up to:

- 2 channels, 296 Watts ERP, 880 894 MHz; and
- 2 channels, 427 Watts ERP, 1930 1935 MHz.

Statutory Considerations

The changes to the Montville tower facility do not constitute a modification as defined in Connecticut General Statutes ("C.G.S.") Section 16-50i(d) because the general physical characteristics of the facility will not be significantly changed or altered. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for in R.C.S.A. Section 16-50j-72(b)(2) because they will not result in any substantial adverse environmental effect.

- 1. The height of the overall structure will be unaffected.
- 2. The proposed changes will not affect the property boundaries. Although the fenced compound will be expanded, all new construction will take place on property leased by Sprint.
- 3. The proposed additions will not increase the noise level at the existing facility by six decibels or more.

4. Operation of the additional antennas will not increase the total radio frequency electromagnetic radiation power density, measured at the tower base, to or above the standard adopted by the State of Connecticut and the FCC. The "worst-case" exposure calculation in accordance with FCC OET Bulletin No. 65 (1997) for a point of interest at the base of the tower in relation to the operation of the currently proposed antenna array is as follows:

Company	Centerline Height (feet)	Frequency (MHz)	Number of Channels	Power Per Channel (Watts)	Power Density [†] (mW/cm ²)	Standard Limits (mW/cm²)	Percent of Limit	
Sprint *	180	1975	12	250	0.0333	1.0000	3.33	
Verizon *	170	890	30	250	0.0933	0.5933	15.73	
AT&T*	160	D: 1945 E: 1985	12	250	0.0421 1.0000	1.0000	4.21	
Cingular GSM	150	880 - 894	2	296	0.0095	0.5867	1.61	
Cingular GSM	150	1930 - 1935	2	427	0.0136	1.0000	1.36	
Total							26.25%	

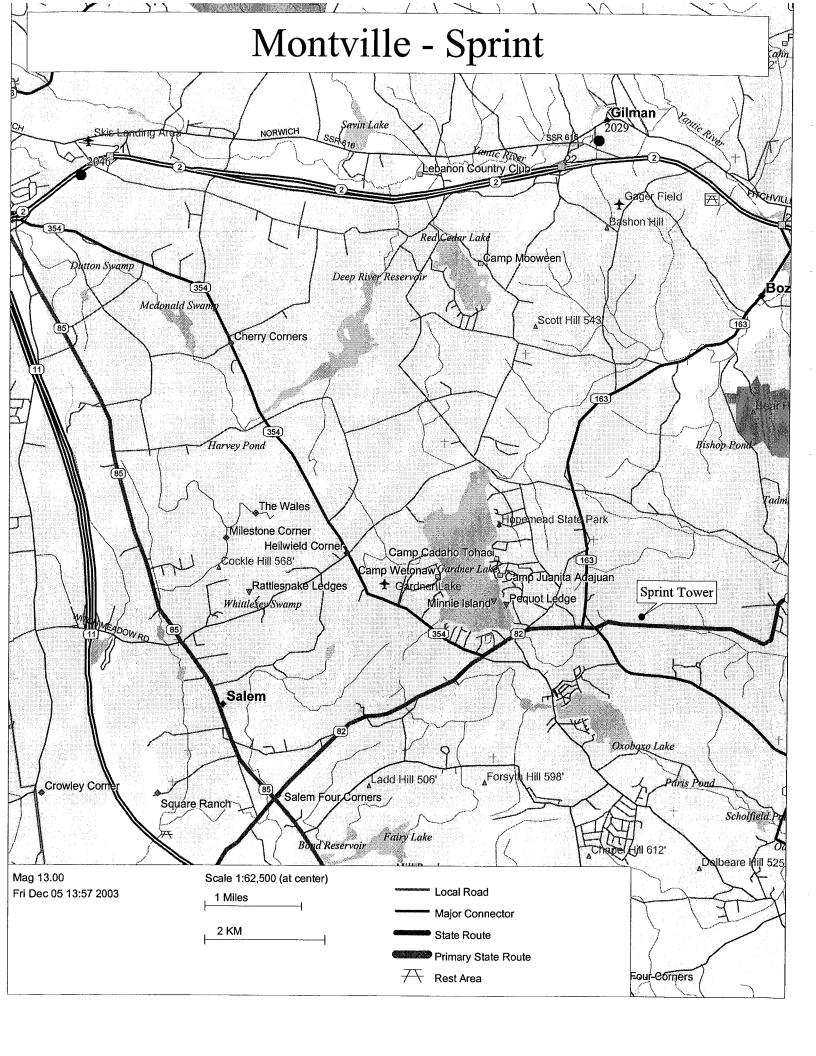
Power density parameters taken from AT&T's application to the Council in EM-AT&T-086-030108.

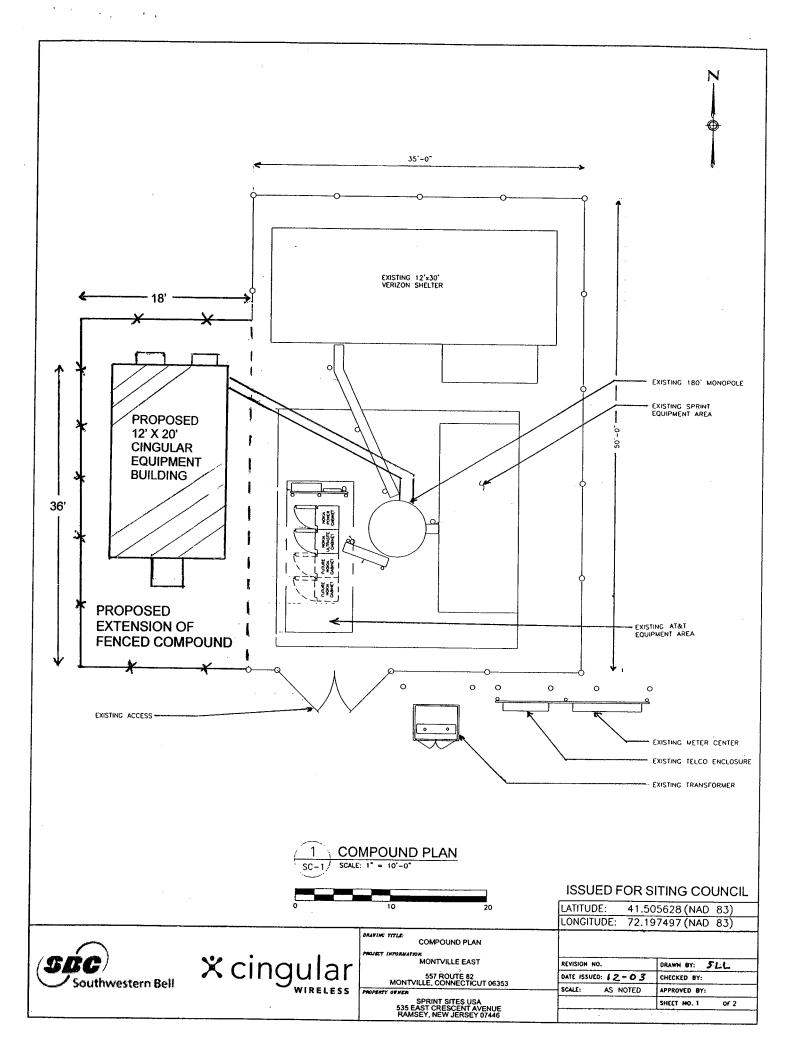
As the table demonstrates, the cumulative "worst-case" exposure would be approximately 26% of the ANSI/IEEE standard, as calculated for mixed frequency sites. Total power density levels resulting from SBMS' use of the tower facility would thus be within applicable standards.

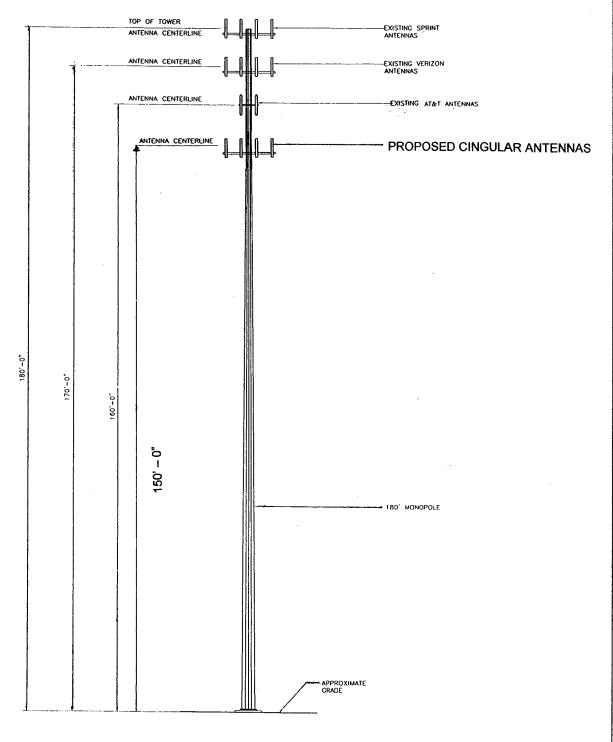
For the foregoing reasons, SBMS respectfully submits that proposed changes to implement expanded shared use at the Montville site constitute an exempt modification under R.C.S.A. Section 16-50j-72(b)(2).

Please feel free to call me at (860) 513-7700 with questions concerning this application. Thank you for your consideration in this matter.

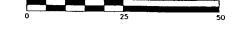
Respectfully yours,


Michele G. Briggs


Manager of Real Estate


Enclosures

cc: Honorable Howard R. Beetham, Jr., Mayor, Town of Montville


Please note that the standard power density equation provided by the Council in its memo of January 22, 2001 incorporates a ground reflection factor of 2.56 (i.e., the square of 1.6) as described in FCC OET Bulletin No. 65.

LATITUDE: 41.505628 (NAD 83) LONGITUDE: 72.197497 (NAD 83) LATITUDE:

Southwestern Bell

X cingular

DRAWING TITLE: TOWER ELEVATION MONTVILLE EAST

557 ROUTE 82 MONTVILLE, CONNECTICUT 06353

SPRINT SITES USA 535 EAST CRESCENT AVENUE RAMSEY, NEW JERSEY 07446

REVISION NO.	DRAWN BY: SLL
DATE ISSUED: 12-03	CHECKED BY:
SCALE: AS NOTED	APPROVED BY:
	SHEET NO.

November 11, 2003

Reference:

Structural Analysis of a 180' Monopole

Site Name: CT33XC061 Site Location: Montville, CT EEI Job Number: 6063 EEI Drawing #: GS51874

Table of Contents

able of Contents	•
executive Summary	
ntroduction	
Marysis Critcha	_
TOHODORE LOADING	_
tohopole Results	_
oundation results	_
onclusion	

Executive Summary

The monopole and foundation are adequate to carry the proposed loads and new configuration presented herein.

Introduction

The monopole was analyzed under the proposed loading presented by Russ Van Oudenaren of Sprint Sites on the Tower Loading Form.

Structure Type:

Monopole - 18 Poly-Sided

Manufacturer: Engineered Endeavors, Inc.

EEI used an "in-house" program to analyze the multi-sided pole structure. The

7610 Jenther Drive

Mentor, OH 44060

Phone (440) 918-1101 • Fax (440) 918-1108

Site Name: CT33XC061 EEI Job Number: 6063

CELLPOLE is a geometrically nonlinear program for tubular steel structures employing the finite element method (FEM) to perform the calculations. This program performs a nonlinear geometric analysis to account for secondary moments caused by structural deflections due to anticipated loading. The program has been verified against closed form solutions and full-scale load tests, both providing excellent results.

Analysis Criteria

The objective of this analysis is to determine if the monopole can structurally support the desired configuration and meet the requirements of the:

- 1. EIA/TIA 222-F Code
- 2. Manual of Steel Construction ASD Ninth Edition American Institute of Steel Construction
- 3. American Concrete Institute's Building Code Requirements for Structural Concrete (ACI 318-95)
- 4. American Society of Civil Engineers (A.S.C.E.) Design of Steel Transmission Pole Structures

Monopole Loading

For further information on the structural loading, refer to the *EEI* analysis cover sheet and calculations. All mounts are assumed to be EEI's standard mounting systems, unless noted otherwise. All transmission lines are assumed running inside of the pole shaft.

Monopole Results

This monopole is structurally adequate to support the desired antennas and ancillary equipment. The maximum bending stress in the shaft $(48.6 \, ksi)$ occurs at the upper middle splice elevation, 90 ft, on the structure. The allowable strength at this point is $48.7 \, ksi$. Refer to Case 1 of the design calculations for the full design loading output. In addition, all other components of the structure are adequate to support the proposed loading, e.g., the base plate and anchor bolts. Refer to Table I for a summary of the maximum capacity of the individual structural components.

Site Name: CT33XC061 EEI Job Number: 6063

Table I: Capacity Usage on Pole

Description	% of Capacity			
Maximum Shaft	100			
Base Plate	88			
Anchor Bolts	85			

Foundation Results

The original foundation design for this site was provided by EEI and is depicted in drawing 6063-Spread. Table II provides a comparison of foundation loads between the original design loading and the new base loads; the overturning moment is 5% greater than the original moment. For the spread footer under the new loads, the safety factor against overturning is 1.8, which is greater than the allowable of 1.5. As a result, the foundation is adequate. Assuming that the foundation has been installed exactly according to the above referenced design and is in excellent condition, it will be adequate to support the desired loading. It is noted that the strength of concrete varied from 3530 psi to 4270 psi from the original break tests.

Table II: Foundation Base Loads

	New Base Loads	Original Base Loads	% of Design
Moment - ft-kips	3347.0	3207.5	1.05
Shear – <i>kips</i>	26.0	25.5	1.02
Axial - kips	34.1	32.3	1.06

Conclusion

The monopole and foundation are adequate to handle the desired loading configuration, refer to the EEI cover sheet for the summary of the loading configuration. No hand holes exist at the $150 \, ft$, (3) 6 x 12 hand holes of adequate strength and thickness can be installed at this elevation. The diameter at the $150 \, ft$ elevation is 24.3 inches.

Site Name: CT33XC061 EEI Job Number: 6063

It is the responsibility of Sprint Sites USA to verify that the monopole modeled and analyzed is the correct structure that exists. This report is intended for use with regard to this specific monopole discussed in general herein and any substantial changes in mounting or loading should be brought to EEI's attention so that we may determine how this may effect our conclusions.

Michael R. Moro

ENGINEERED Customer SPRINT SITES USA By MRM _ 11/11/03 Date INCORPORATED Structure ____180' MONOPOLE Checked -06063 Job/Quote No.

SITE LOCATION - MONTVILLE, NEW LONDON COUNTY, CT SITE NAME - CT33XC061

ANALYSIS

ANTENNA LOADING:

- (12) DB980H90E-M PANEL ANTENNAS LOW PROFILE PLATFORM @ 180' (SPRINT)
- (12) DB844H90 PANEL ANTENNAS LOW PROFILE PLATFORM @ 170' (VERIZON)
- (6) ALLGON 7250 PANEL ANTENNAS
- (2) NOKIA CS72993.07 STAND-OFF ARM @ 160' (AT&T)
- (12) CSS1417-8686 PANEL ANTENNAS
- (6) ADC TMAs
- (3) CSS COMBINERS LOW PROFILE PLATFORM @ 150' (CINGULAR)

DESIGN NOTES:

DESIGNED IN ACCORDANCE WITH TIA/EIA 222-F 85 MPH BASIC WIND SPEED 1/2" RADIAL ICE

CASE 1 - 85 MPH BASIC WIND SPEED CASE 2 - 75% OF 85 MPH WIND LOAD WITH 1/2" RADIAL ICE

NOTE: IT IS THE RESPONSIBILITY OF THE PURCHASER TO VERIFY THAT THE WIND LOADS AND DESIGN CRITERIA SPECIFIED MEET THE REQUIREMENTS OF ALL LOCAL BUILDING CODES

> 7610 Jenther Drive * Mentor, Ohio Telephone: (440) 918-1101 * Telefax: (440) 918-1108

170'

180'

160

150'

Southwestern Bell Mobile Systems, LLC

500 Enterprise Drive Rocky Hill, Connecticut 06067-3900

Phone: (860) 513-7700 Fax: (860) 513-7190

Michele G. Briggs Manager of Real Estate

December 8, 2003

Honorable Howard R. Beetham, Jr. Mayor, Town of Montville Town Hall, 310 Norwich-New London Turnpike Uncasville, Connecticut 06382

Re: Notice of Exempt Modification – Existing Sprint Telecommunications Tower Facility at 557 Route 82, Montville, Connecticut

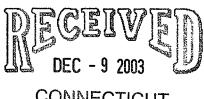
Dear Mayor Beetham:

Southwestern Bell Mobile Systems, LLC ("SBMS") intends to install telecommunications antennas and associated equipment at an existing multicarrier telecommunications tower off Route 82 in Montville, Connecticut.

The facility is owned and operated by Sprint Sites USA ("Sprint"), with offices at 535 E. Crescent Avenue, Ramsey, NJ 07446. Sprint leases the land from Carolyn Besade of Montville, CT.

A Notice of Exempt Modification has been filed with the Connecticut Siting Council as required by Regulations of Connecticut State Agencies ("R.C.S.A.") Section 16-50j-73. Please accept this letter as notification to the Town of Montville under Section 16-50j-73 of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2).

The attached letter fully sets forth the SBMS proposal. However, if you have any questions or require any further information on the plans for the site or the Siting Council's procedures, please contact the undersigned or Mr. Derek Phelps, Executive Director of the Connecticut Siting Council, at (860) 827-2935.


Sincerely,

Michele G. Briggs Manager of Real Estate

-

Enclosure

CONNECTICUT SITING COUNCIL

ENGINEERED ENDEAVORS INCORPORATED

7610 Jenther Drive ■ Mentor, Ohio 44060 Telephone: (440) 918-1101 ■ Telefax: (440) 918-1108 Sprint PCS Structural Analysis 180' Monopole Site: BESADE/CT33XC061 EEI Job #: 06063-P01

November 11, 2003

Reference:

Structural Analysis of a 180' Monopole

Site Name: CT33XC061 Site Location: Montville, CT *EEI* Job Number: 6063 EEI Drawing #: GS51874

Table of Contents

Table of Contents	1
Executive Summary	
Introduction	
Analysis Criteria	
Monopole Loading	
Monopole Results	
Foundation Results	
Conclusion	

Executive Summary

The monopole and foundation are adequate to carry the proposed loads and new configuration presented herein.

Introduction

The monopole was analyzed under the proposed loading presented by Russ Van Oudenaren of Sprint Sites on the Tower Loading Form.

Structure Type:

Monopole – 18 Poly-Sided

Manufacturer:

Engineered Endeavors, Inc.

EEI used an "in-house" program to analyze the multi-sided pole structure. The

7610 Jenther Drive

Engineered Endeavors, Inc.

Mentor, OH 44060

Phone (440) 918-1101 • Fax (440) 918-1108

Site Name: CT33XC061 EEI Job Number: 6063

CELLPOLE is a geometrically nonlinear program for tubular steel structures employing the finite element method (FEM) to perform the calculations. This program performs a nonlinear geometric analysis to account for secondary moments caused by structural deflections due to anticipated loading. The program has been verified against closed form solutions and full-scale load tests, both providing excellent results.

Analysis Criteria

The objective of this analysis is to determine if the monopole can structurally support the desired configuration and meet the requirements of the:

- 1. EIA/TIA 222-F Code
- 2. Manual of Steel Construction ASD Ninth Edition American Institute of Steel Construction
- 3. American Concrete Institute's Building Code Requirements for Structural Concrete (ACI 318-95)
- 4. American Society of Civil Engineers (A.S.C.E.) Design of Steel Transmission Pole Structures

Monopole Loading

For further information on the structural loading, refer to the *EEI* analysis cover sheet and calculations. All mounts are assumed to be EEI's standard mounting systems, unless noted otherwise. All transmission lines are assumed running inside of the pole shaft.

Monopole Results

This monopole is structurally adequate to support the desired antennas and ancillary equipment. The maximum bending stress in the shaft (48.6 ksi) occurs at the upper middle splice elevation, 90 ft, on the structure. The allowable strength at this point is 48.7 ksi. Refer to Case 1 of the design calculations for the full design loading output. In addition, all other components of the structure are adequate to support the proposed loading, e.g., the base plate and anchor bolts. Refer to Table I for a summary of the maximum capacity of the individual structural components.

Site Name: CT33XC061 EEI Job Number: 6063

Table I: Capacity Usage on Pole

Description	% of Capacity
Maximum Shaft	100
Base Plate	88
Anchor Bolts	85

Foundation Results

The original foundation design for this site was provided by EEI and is depicted in drawing 6063-Spread. Table II provides a comparison of foundation loads between the original design loading and the new base loads; the overturning moment is 5% greater than the original moment. For the spread footer under the new loads, the safety factor against overturning is 1.8, which is greater than the allowable of 1.5. As a result, the foundation is adequate. Assuming that the foundation has been installed exactly according to the above referenced design and is in excellent condition, it will be adequate to support the desired loading. It is noted that the strength of concrete varied from 3530 psi to 4270 psi from the original break tests.

Table II: Foundation Base Loads

	New Base Loads	Original Base Loads	% of Design
Moment - ft-kips	3347.0	3207.5	1.05
Shear – <i>kips</i>	26.0	25.5	1.02
Axial - kips	34.1	32.3	1.06

Conclusion

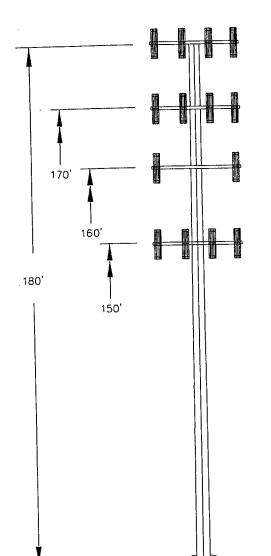
The monopole and foundation are adequate to handle the desired loading configuration, refer to the EEI cover sheet for the summary of the loading configuration. No hand holes exist at the $150 \, ft$, (3) 6 x 12 hand holes of adequate strength and thickness can be installed at this elevation. The diameter at the $150 \, ft$ elevation is 24.3 inches.

7610 Jenther Drive Mentor, OH 44060 Reference: Structural Analysis of a 180' Monopole in Montville, CT Site Name: CT33XC061 EEI Job Number: 6063

It is the responsibility of Sprint Sites USA to verify that the monopole modeled and analyzed is the correct structure that exists. This report is intended for use with regard to this specific monopole discussed in general herein and any substantial changes in mounting or loading should be brought to EEI's attention so that we may determine how this may effect our conclusions.

Michael R. More

ENGINEERED
Customer SPRINT SITES USA By MRM 11/11/03


ENDEAVORS
Structure 180' MONOPOLE Checked 06063

Job/Quote No.

SITE LOCATION - MONTVILLE, NEW LONDON COUNTY, CT SITE NAME - CT33XC061

ANALYSIS

antenna loading:

- (12) DB980H90E-M PANEL ANTENNAS LOW PROFILE PLATFORM @ 180' (SPRINT)
- (12) DB844H90 PANEL ANTENNAS LOW PROFILE PLATFORM @ 170' (VERIZON)
- (6) ALLGON 7250 PANEL ANTENNAS
- (2) NOKIA CS72993.07 STAND-OFF ARM @ 160' (AT&T)
- (12) CSS1417-8686 PANEL ANTENNAS
- (6) ADC TMAs
- (3) CSS COMBINERS LOW PROFILE PLATFORM @ 150' (CINGULAR)

DESIGN NOTES:

DESIGNED IN ACCORDANCE WITH TIA/EIA 222-F 85 MPH BASIC WIND SPEED 1/2" RADIAL ICE

CASE 1 - 85 MPH BASIC WIND SPEED CASE 2 - 75% OF 85 MPH WIND LOAD WITH 1/2" RADIAL ICE

NOTE: IT IS THE RESPONSIBILITY
OF THE PURCHASER TO VERIFY
THAT THE WIND LOADS AND DESIGN
CRITERIA SPECIFIED MEET THE REQUIREMENTS
OF ALL LOCAL BUILDING CODES

Engineered Endeavors Inc.

7610 Jenther Drive Mentor, Ohio 44060 Tel (440) 918-1101 Fax (440) 918-1108

Communications Structure Nonlinear Analysis and Design Program

15:56:58

11-11-2003

Revision 1.3 - 2/07/00

Engineer: MRM

Customer SPRINT SITES USA

Job Name 06063

Structure 180 MONOPOLE Location MONTVILLE, CT

Site CT33XC061

OD	OD NUM		TAPER	LENGTH	JOINT	JOINT	YIELD	WEIGHT	JOINT
BOT	TOP SIDE		IN/FT	FT	INCH	TYPE	KSI	LBS	HEIGHT
27.99 37.05 45.76 54.00	18.00 18 26.51 18 35.20 18 43.56 18	0.3125 0.3750 0.4375		GHT		BASEPL 27114.	65.0 65.0 65.0 65.0 POUNDS	5202. 7976. 11085.	46.00

= 29600.0 KSI UNIT WGT = 0.283 LBS/CU IN AISC constants are used for stress reductions. TUBE SECTIONS HAVE 18 SIDES AND ARE TREATED AS ROUND Internal bend radius = 3 X T Tube diameters are measured flat to flat. Tube diameters are increased by 1.020 for wind across points. Drag coefficients are increase by 1.300 for steps on the pole. AISC Tube Shape Coefficient of 1.000 is applied. REVISED DATA FILE NAME 6063180

APPURTENANCES

DESCRIPTION	NUM. ELEV. Kz	AREA WGT Ca	AREA WGT Ca FACTOR
DB 980H	12 180. 1.624	< WITHOUT ICE >	< עריד דרים .
CLASSIC LOW PROFILE 1 DB 844H	1 180. 1.624	11.25 1500. 2.0000	3.00 29. 2.0000 0.75 14.10 2250. 2.0000 1.00
CLASSIC LOW PROFILE	12 170. 1.597 1 170. 1.597	4.00 IU. 2.0000	3.25 20 2 0000 0 π =
7250.02	6 160. 1.570	2.68 15. 1.5000	14.10 2250. 2.0000 1.00 3.16 23. 1.5000 0.87
CLASSIC LOW PROFILE DU01417-8686	1 160. 1.570 12 150. 1.541	11.25 1500. 2.0000	14.10 2250 2 0000 1 00
LOW PROFILE PLATFORM	1 150. 1.541	7.50 1500. 2.0000	5.10 42. 1.4000 0.85 9.20 1750. 2.0000 1.00

LOAD CASE 1

BASIC LOADING

DEAD LOAD FACTOR 1.00 WIND PSF REDUCTION 1.00 RADIAL ICE 0.00 IN.

WIND VELOCITY 85 BOTTOM 18.65 PSF TOP 30.04 PSF MAX BASE ROTATION 0.00 DEG

	APPLIED AP	PURTENAN	CE FORCES
	ELEVATION	WEIGHT	WIND
	FT	KIPS	KIPS
DB 980H	180.00	0.102	2.284
CLASSIC LOW PROFILE PLATFORM	180.00	1.500	1.142
DB 844H	170.00	0.120	2.561
CLASSIC LOW PROFILE PLATFORM	170.00	1.500	1.123
7250.02	160.00	0.092	1.030
CLASSIC LOW PROFILE PLATFORM	160.00	1.500	1.104
DUO1417-8686	150.00	0.252	3.213
LOW PROFILE PLATFORM	150.00	1.500	0.723
1			

A Company of the Party of the P	TUBE ELEV	PROPER DIAM	RTIES WALL		EMBER FO			RESSES BEND.	ALLOW	STRESS RATIOS	TOTAL DEFL TILT
j	FT	IN	IN	K	K-FT	K	KSI	KSI	KSI		IN DEG
	180.00		0.2500	3.89	0.00	1.31	0.09		51.99		158.1 8.36
	170.00		0.2500	3.89	38.53	1.31	0.08		51.99		141.0 8.28
	160.00	22.25	0.2500	8.34	121.06	2.86		15.46			124.2 8.04
(decise)	150.00			11.27	232.69	4.71		24.68			108.0 7.64
1	142.00		0.2500		359.25	6.53		33.24		0.67	95.8 7.22
	135.00	27.56	0.2500		473.41	7.10		39.14	49.45	0.80	85.6 6.78
1				PE OF	JOINT: S						
Ì	135.00		0.3125		473.37	8.37		33.03		0.64	85.6 6.78
,	123.00		0.3125		677.13	8.37		39.31		0.77	69.6 6.08
3	112.00		0.3125		872.65	9.61		43.39		0.86	56.5 5.39
	101.00		0.3125			10.92		46.36		0.94	44.9 4.71
)	90.00	36.50	0.3125	19.38	1289.25			48.55	48.72	1.00	34.9 4.03
				PE OF	JOINT: S						
1	90.00	35.75	0.3750	20.32	1289.26	14.92		42.42		0.83	34.9 4.03
1	76.00				1573.12			44.00		0.88	24.2 3.28
	66.00	40.85	0.3750	21.16	1784.38			44.79		0.91	17.9 2.76
)	56.00	42.97	0.3750	21.85	2002.65	18.72		45.35		0.93	12.6 2.27
	46.00	45.10	0.3750	22.53				45.75	48.36	0.95	8.4 1.79
3				PE OF	JOINT: S						
1	46.00	44.22	0.4375	23.32	2227.80	24.93		40.98		0.82	8.4 1.79
-{	33.00					24.93		41.17		0.83	4.2 1.25
}	22.00				2795.37			41.21		0.85	1.9 0.81
	11.00				3067.22			41.17		0.85	0.5 0.40
, ' para ' scanner	0.00	54.00	0.4375	25.85	3346.56	34.08	0.46	41.07	48.05	0.86	0.0 0.00

	REACTION	COMPONENTS (KIPS AND F	T-KI	PS)		
TRANSVERSE	VERTICAL	WIND				ABOUT	MOMENT ABOUT
SHEAR	FORCE	SHEAR	TRANSVE		VERTI		WIND AXIS
0.000	34.078	-25.847	3346.	. 559	C	0.000	0.000

LOAD CASE 2

BASIC LOADING PLUS ICE

DEAD LOAD FACTOR 1.00 WIND PSF REDUCTION 0.75 RADIAL ICE 0.50 IN.

WIND VELOCITY 85 BOTTOM 13.99 PSF TOP 22.53 PSF MAX BASE ROTATION 0.00 DEG

	APPLIED AP	PURTENAN(CE FORCES
	ELEVATION	WEIGHT	WIND
	${ m FT}$	KIPS	KIPS
DB 980H	180.00	0.343	2.056
CLASSIC LOW PROFILE PLATFORM	180.00	2.250	1.073
DB 844H	170.00	0.240	2.191
CLASSIC LOW PROFILE PLATFORM	170.00	2.250	1.056
7250.02	160.00	0.139	0.911
CLASSIC LOW PROFILE PLATFORM	160.00	2.250	1.038
DUO1417-8686	150.00	0.504	2.634
LOW PROFILE PLATFORM	150.00	1.750	0.665

}	TUBE	PROPER	RTIES	M	EMBER FO	RCES		RESSES		STRESS	TOT	
	ELEV	DIAM	WALL	SHEAR	BENDING	AXIAL	AXIAL		ALLOW	RATIOS	\mathtt{DEFL}	
	FT	IN	IN	K	K-FT	K	KSI	KSI	KSI		IN	DEG
	180.00	18.00	0.2500	3.65	0.01	2.40	0.17		51.99		139.6	
ļ	170.00	20.13	0.2500	3.65	36.25	2.40	0.15		51.99		124.3	
	160.00	22.25	0.2500	7.64	112.04	4.95		14.31			109.3	
	150.00	24.38	0.2500	10.33	214.59	7.66	0.40	22.76		0.45	94.9	
Ì	142.00	26.08	0.2500	14.28	328.09			30.35		0.61	84.0	
	135.00	27.56	0.2500	14.63	429.92			35.54	49.45	0.73	75.0	5.99
)			T	YPE OF	JOINT: S							- 00
	135.00	26.94	0.3125	15.12	429.91			30.00		0.59	75.0	
•	123.00	29.49	0.3125	15.12	610.40			35.43			60.9	
1	112.00	31.83	0.3125	15.67	782.16			38.89			49.3	
	101.00	34.16	0.3125	16.22	960.04			41.34			39.1	
}	90.00	36.50	0.3125	16.77	1144.06			43.08	48.72	0.89	30.4	3.54
				YPE OF	JOINT: S						20.4	2 50
	90.00	35.75	0.3750		1144.06			37.64			30.4	
)	76.00	38.72	0.3750		1387.92			38.82			21.0	
	66.00	40.85	0.3750		1568.24			39.36			15.5	
1	56.00	42.97			1753.60			39.71			10.9	
-	46.00	45.10	0.3750	19.04	1943.92	24.55		39.92	48.36	0.83	7.2	1.55
					JOINT: S						A	4 FF
}	46.00					28.08		35.76				1.55
Ì	33.00		0.4375		2198.67			35.77				1.08
}	22.00		0.4375		2419.97			35.67				0.70
1	11.00	51.66	0.4375	20.59	2646.46	33.23		35.52				0.34
-	0.00	54.00	0.4375	21.42	2878.24	37.23	0.51	35.32	48.05	0.74	0.0	0.00
1												

	REACTION	COMPONENTS (KIPS AND	FT-KI	PS)		
TRANSVERSE	VERTICAL	WIND	MOMENT	ABOUT	MOMENT	ABOUT	MOMENT ABOUT
SHEAR	FORCE	SHEAR	TRANS	/ERSE	VERT:	CAL	WIND AXIS
0.000	37.233	-21.416	2878	3.235	(0.000	0.000

	SUMMARY TAB	LE		
ELEV	STRESS RATIO	AXIAL	BENDING	LOADING
180.00	0.01	1.31	0.0	1 BASIC LOADING
170.00	0.12	1.31	38.5	1 BASIC LOADING
160.00	0.30	2.86	121.1	1 BASIC LOADING
150.00	0.49	4.71	232.7	1 BASIC LOADING
142.00	0.67	6.53	359.2	1 BASIC LOADING
135.00	0.80	7.10	473.4	1 BASIC LOADING
123.00	0.77	8.37	677.1	1 BASIC LOADING
112.00	0.86	9.61	872.7	1 BASIC LOADING
101.00	0.94	10.92	1076.7	1 BASIC LOADING
90.00	1.00	12.33	1289.3	1 BASIC LOADING
76.00	0.88	14.92	1573.1	1 BASIC LOADING
66.00	0.91	16.93	1784.4	1 BASIC LOADING
56.00	0.93	18.72	2002.6	1 BASIC LOADING
46.00	0.95	20.60	2227.8	1 BASIC LOADING
33.00	0.83	24.93	2530.9	1 BASIC LOADING
22.00	0.85	27.54	2795.4	1 BASIC LOADING
11.00	0.85	30.07	3067.2	1 BASIC LOADING
0.00	0.86	34.08	3346.6	1 BASIC LOADING

MAXIMUM SUPPORT MOMENT K-FT 3346.56 CORRESPONDING AXIAL FORCE KIPS 34.08 CORRESPONDING SHEAR FORCE KIPS 25.85

BASE	PLATE	AT	ELEVATION	0.00	FEET
------	-------	----	-----------	------	------

TUBE DIAMETER 54.00 INCHES
DESIGN MOMENT, 3346.6 KIP FT
DESIGN MOMENT IS 0. DEGREES FROM THE WIND DIRECTION

BOLTS ARE ON THE KNUCKLES OF THE TUBE

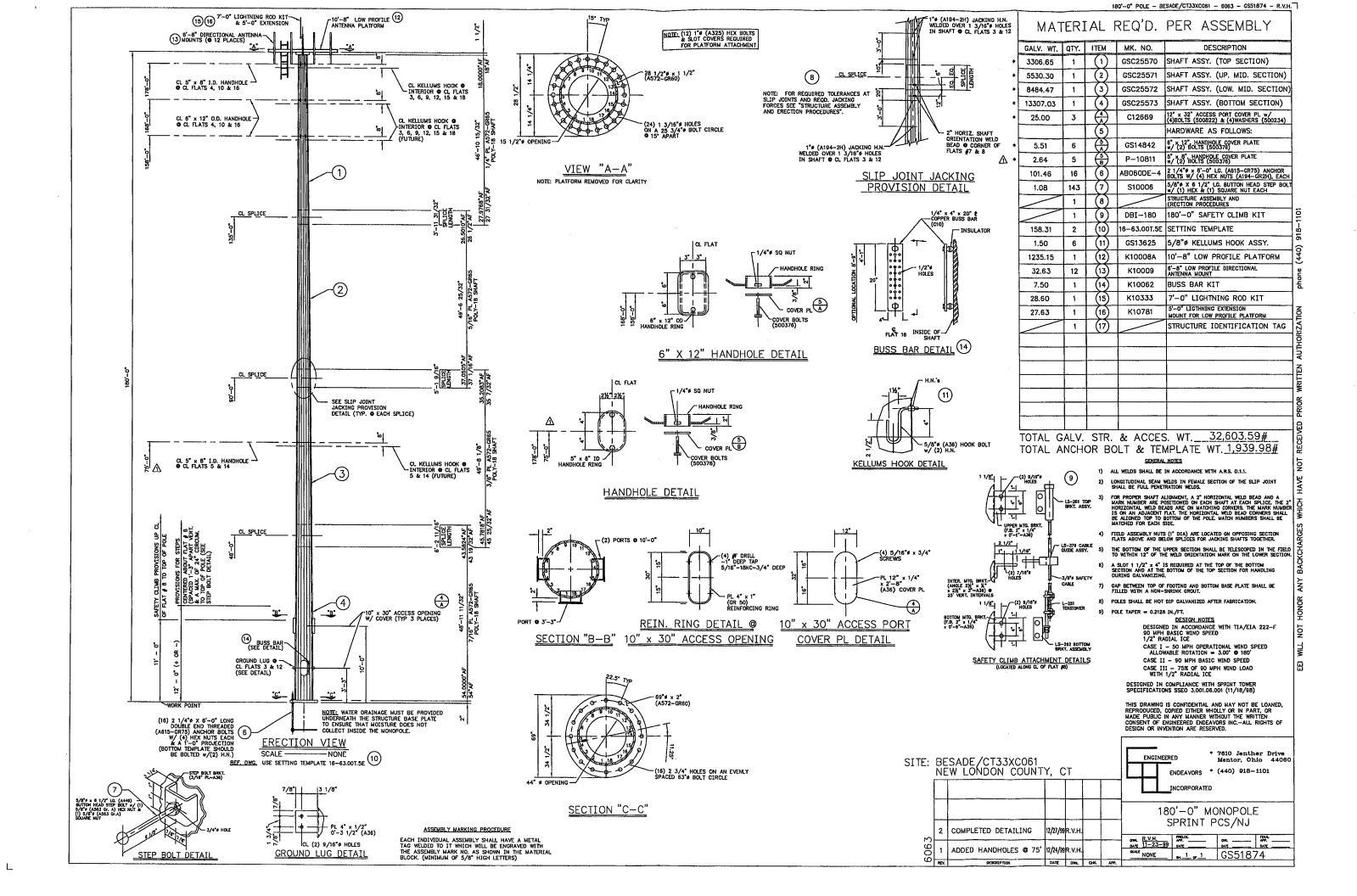
25.85 KIPS

APPLIED AXIAL FORCE 34.1 KIPS APPLIED SHEAR

BOLT DATA

BOLT TYPE	A615	GR75
BOLTS ARE EVENLY SPACED		
DIAMETER	2.250	INCHES
EFFECTIVE AREA	3.250	SQ IN
TOTAL LENGTH	6.0	FEET
End plates are requ	ired.	
MINIMUM EMBEDMENT	5.0	FEET
NUMBER OF BOLTS	16	
BOLT CIRCLE DIAMETER	63.00	INCHES
ALLOWABLE STRESS	60.0	KSI
APPLIED AXIAL STRESS	49.7	KSI
MAX BOLT FORCE	161.5	KIPS
BOLT BENDING STRESS	2.3	KSI
COMBINED BOLT STRESS	52.0	KSI
CLEARANCE UNDER PLATE	3.25	INCHES
BOLT WEIGHT	1353.6	POUNDS

PLATE DATA


DIAMETER OF PLATE	69.00	INCHES
MATERIAL	A572MO	D60
PROVIDED THICKNESS	2.000	INCHES
REQUIRED THICKNESS	1.872	INCHES
BOLT HOLE DIAMETER	2.625	INCHES
CENTER HOLE SIZE	44.00	INCHES
NET WEIGHT	1206.8	POUNDS
RAW STOCK WEIGHT	2694.7	POUNDS
SURFACE AREA	29.61	SQ FT
ALLOWABLE STRESS	54.00	KSI
MAX APPLIED STRESS	47.28	KSI
CONCRETE STRENGTH	3000.	PSI

Base Plate - use 69.00 inch ROUND x 2.000 inch A572MOD60 with (16) 2.250 diameter x 6.00 foot caged A615 GR75 bolts on a 63.00 inch bolt circle. End plates are required.

Reference: Structural Analysis of a 180' Monopole in Montville, CT Site Name: CT33XC061 EEI Job Number: 6063

MONOPOLE

Drawing GS54572

Reference: Structural Analysis of a 180' Monopole in Montville, CT T-Mobile Site Name: CT33XC061 EEI Job Number: 6063

Foundation Design & Analysis

FOUNDATION DESIGN CALCULATIONS FOR

SPREAD FOOTING FOUNDATION

ENGINEERED ENDEAVORS INC.
7610 Jentner Drive * Mentor, Ohio 44060
Tel:(216)918-1101 * Fax:(216)918-1108

11-Nov-03 05:14 PM

CUSTOMER STRUCTURE EEI PROJECT LOCATION SITE NAME

Safety Factor

Sf=

SPRINT PCS
180' MONOPOLE
6063 REV.II
NEW LONDON CO., CT
BESADE/CT33XC061

SERVICE LOADS AT BASE OF THE MONOPOLE

		Design Loading			
Moment, kip-ft		3346.6			
Shear, kips		25.9			
Axial Load, kips		34.1			
Anchor Bolts	Quantity	16.0			
	Length, ft	6.0			
	Circle Dia., in	63.0			
	Projection, in	12.0			
Foundation Parameters	,	, =, 0			
Pedestal Min. Width, in		81.00			
Pedestal Projection, in		12.0			
Found. Min Height, ft		5.5			
	Height, ft	Width, ft	Soil Unit Wt.,	pcf	0.00
Footing	5.00	25.00	Concrete Unit		150.00
Pedestal	0.00	0.00	Angle of fricti	ion	30.00
Foundation Weight, kips Concrete, cub.yd. Soil Weight, kips Total Vertical Load, kips		468.75 115.74 0.00 502.85	H= B=	-1.00 23.85	
Kern of Eccentricity, ft		4.17			
Actual Eccentricity, ft Overturning Moment, kip-ft		6.91 3476.10			
Resisting Moment, kip-ft		6285.63			
Allowable Gross Soil Pressu		0.0			
Allowable Net Soil Pressure		12.0		(gross)	(net)
Gross Soil Pressure, (Service	c Load), ksf		max q= min q=	2.40 0.00	1.65

1.81

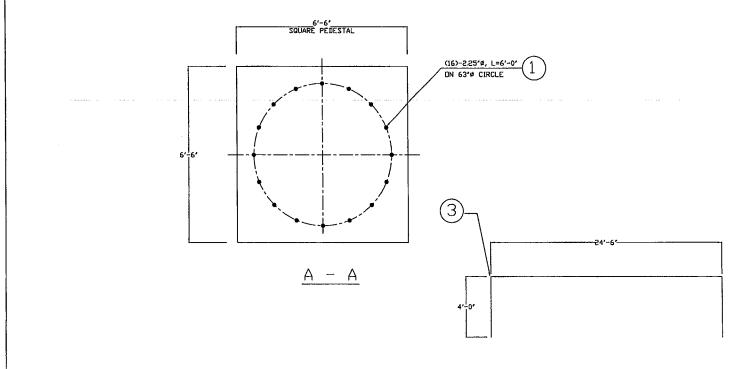
ULTIMATE STRENGTH DESIGN OF FOOTING

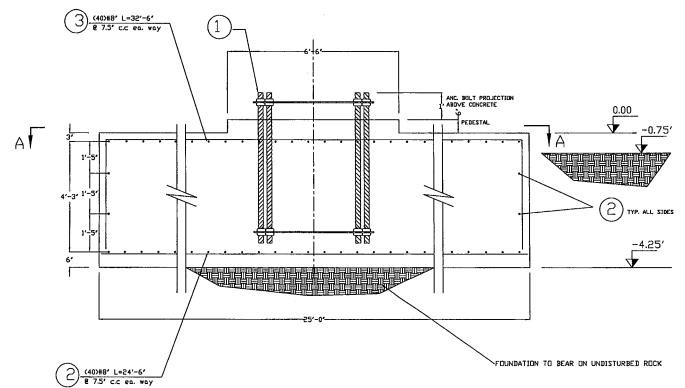
CONCRETE, psi

STEEL, KSI

	orded, Roi				•		
SHEAR IN FO	OOTING						
1. CASE I -DEAD	LOAD, TWO-WA	AY SHEAR		U=	= 1.4*D		
	Ultimate Vertica	l Load, kips		703.99			
	Ultimate Pressur	e, ksf		1.13			
	Ultimate shear				681.18	OK	
	Design shear Vn	, kips			2172.14	O.K.	
2. CASE II - WIN	D LOAD, ONE-W	AY SHEAR		Ω:	=0.9*D+1.3*W		
	Ultimate Momen	nt, kip-ft		4518.93			
	Ultimate Vertica	ıl Load, kips		452.57			
	Eccentricity, ft			9.99			
	Ultimate Pressur		qult=	4.80			
	-	to critical sect., ft		8.00			
	Pressure distanc		c=	7.54			
	Pressure @ critic	cal section, ksf		0.00			
	Ultimate Shear,	kins		452.57			
	Design Shear, ki	=		1508.43		O.K.	
FLEXURE STRE	ENGTH DESIGN	!					
	Ultimate Mome	nt. kip-ft		Case I	2199.97		
		•		Case II	4518.93	q1=	0.00
	Carffeiant af D			P	69.0		
	Coefficient of R Reinforcement I			Rn= r=	68.9 0.00116		
	Min. Reinforcer			r min	0.00118		
	Min. Steel Area			A1	29.16		
	Type of Bars	, 54.111.		#	8		
	1,700 01 2003			 Ab,in^2=	0.79		
	ВОТТОМ	Min. Number of	Bars	,	36.91		
		Actual Number			40.00		
		Actual Steel Ar			31.60		
		Steel Ratio Act	ıal	ra=	0.00195		
		Revised Coef. o	f Resist	Rn=	117.03		
		Design Momen	t, kip-ft		7678.36		
		Horizontal Space	ing, in	shor=	7.54		
	TOP	Min. Steel Area	, sq.in		29.16		
		Min. Number o			36.91		
		Actual Number			40.00		
		m 0. 1.			04.00		

shor=


Top Steel Area, sq.in


Horizontal Spacing, in

3000 60

31.60

7.54

MATERIAL LIST

FOUNDATION LOADING

MOMENT, kip-ft	3207.5
SHEAR, kips	25.5
AXIAL, kips	32.3

ITEM	QTY.	LENGTH	DESCRIPTION
1	16	6'-0"	2.25°Ø A.B. W/(4)H.H.N. A615-GR.75
S	88	24'-6 "	#8 (ASTM A615-GR.60)
3	80	32′-6 ″	#8 (ASTM A615-GR.60)

CONCRETE	(cub.yd.)	118.0	4000 psi

GENERAL NOTES:

- FOUNDATION DESIGN IS BASED ON THE GEOTECHNICAL REPORT PROVIDED BY DR. CLARENCE WELTI, P.E., P.C. ON OCTOBER 29, 1999.
 GEOTECHNICAL AND CONSTRUCTION INSPECTION IS REQUIRED. SOIL REPORT SHOULD BE CONSULTED PRIOR TO CONSTRUCTION.

- CONCRETE MIX DESIGN AND CONSTRUCTION PROCEDURE SHALL BE IN COMPLIANCE WITH ACI 318-95.
 MINIMUM COMPRESSIVE STRENGTH SHALL BE 4000 PSI AT 28 DAYS.
 REINFORCING STEEL SHALL CONFORM TO ASTM A615-87, GR. 60. REINFORCEMENT SHALL BE ASSEMBLED USING STEEL WIRE.
 WELDING OF CROSSING BARS OR SPLICES IS NOT PERMITTED.
 MAINTAIN MINIMUM CONCRETE COVER OF 3 in.
- 5. REFER TO EEI DWG. NO. GS51874 FOR ANCHOR BOLTS, TEMPLATES AND BASE PLATE REQUIREMENTS.
- 6. FOUNDATION INSTALLER MUST VERIFY ANCHOR BOLT LENGTH, QUANTITY, AND PATTERN PRIOR TO INSTALLATION.
 7. ANCHOR BOLT ORIENTATION REQUIRED PRIOR TO INSTALLATION.
- 8. TOWER GROUNDING BY OTHERS.
- 9. FOUNDATION IS DESIGNED IN ACCORDANCE WITH ACI 318-95 AND TIA/EIA-222F.
- 10. FOUNDATION CAN SUPPORT ADDITIONAL EQUIPMENT (POWER CABINETS) UP TO 10,000 LBS. POWER CABINETS SHALL BE PROPERLY ANCHORAGE TO THE FOUNDATION.

ENGINEERED 7610 Jenther Drive Mentor, □hio 44060 ENDEAVORS (440)918-1101 INCORPORATED

SPRINT PCS 180 ft MONOPOLE BESADE/CT33XC061 CELLULAR SITE NEW LONDON CO., CT

	DESCRIPTION	DWN. BY	CHK. BY	DATE	PROJECT NO.
RELEASE		B.S.F.		11/23/99	6063
					DRAWING NO. 6063-SPREAD

Reference: Structural Analysis of a 180' Monopole in Montville, CT T-Mobile Site Name: CT33XC061 EEI Job Number: 6063

Monopole Loading Provided to EEI

Tower Loading Form

e:	te Refere	nce Info	orma	tion:													\neg	
L																		
Cascade #: CT33XC061									% of Structural Capacity									
Site Address: 557 Route 82, Montville, CT 06370									Lease Area 75x75									
Structure Height: 180								C	Compound Size: 30x35									
To	Tower Manufacturer: Engineered Endeavours										Structu	re Type: Mo	onopo	ole				
Tower Contact #: 440-918-1101								Fi	le #: GS5	5187	4 60	05						
	ginal Desigi				□1	Carrier	□ 2	Carrier	⊠ 3 Car	rier	4 Car	rier 🔲 _	_Car	rier				
Pre	epared By: R	uss van O	udenan	en														
		_															 1	
Sp	rint Anteı	nna Info	rmat	tion:	,		 											
AC	L # of Ant.	Freque	ency	Model #			Type Orientation							of Cal		Cable Size		
18	0 12	* 1710- 1990		DB980H90E-M		Panel		0-120-24			Platform		12		1-4	1-5/8"		
 	* *			*			*				*		*		*			
	*	*				*					*		*	*				
٦	o-locatio	n Infor	natio	n'														
L					TV /		Mada		Antonno T	······································	Orientation	Mounting T	.ne	# of Cables	Cable	Cable Loc. I		
1d	Carrier Verizon	170	# of An	* 869-880		output atts	Model # DB844H90		Panel	уре	30-150- 270	Platform	уре	12	1-5/8"			
2	ATT	160	6	* 850 AND	20 Watts		Aligon 7250		Panel		0-120- 240			12	1-5/8"	Ins	×	
3	Cingular	150	12	* 850&1900	100	100 Watts		1417-	Panel		143- 263-23			12	1-5/8"			
3	Cingular	150		*	*			TMA's	*			*		*	*	*		
3	Cingular	150	3	*	*	*		biners	_			"						
2	ATT	160	2	*	*			a 2993.0	*			*		*	*	*		
*	*		*	*	*		7		*			*		*	*	*	$\dagger \Box$	
*	*		*	*	*	*			*			*		*	*	*		
*	*		*	*	*				*			*		*	*	*	10	
<u>*</u>	*		<u></u>		<u> </u>		<u> </u>					<u> </u>		<u></u>		<u></u>		
	Contact I	nforma	tion:															
												=	11					
Co ld Contact Person 1 Sandy Carter			Phone Nur 203-294-8							E-Mail Address ndria.carter@verizonwireless.com								
			Oandy Oanto			203-												
																		
				· · · · · · · · · · · · · · · · · · ·		_												
_																		
-								 ·		<u></u>								
\vdash																		