Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

January 8, 2024

Via Electronic Mail

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 71 Moxley Hill Road, Montville (Uncasville), Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an existing wireless telecommunications facility at the above-referenced property address (the "Property"). The facility consists of antennas on an existing tower and related equipment on the ground, near the base of the tower. The original tower was approved by the Town of Montville (the "Town") in January of 1998. Cellco's shared use of the tower was approved by the Siting Council in April of 2016 (EM-VER-086-160311). A copy of the Town's approval and Cellco's EM-VER-086-160311 approval are included in Attachment 1.

Cellco now intends to modify its facility by replacing nine (9) antennas and six (6) remote radio heads ("RRHs") with nine (9) new antennas and six (6) new RRHs on Cellco's existing antenna mounting structure. A set of project plans showing Cellco's proposed facility modifications and the new antenna and RRH specifications are included in <u>Attachment 2</u>.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Montville's Chief Elected Official and Land Use Officer. A copy of this letter is also being sent to the owner of the Property.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. Cellco's new antennas and RRHs will be installed at the same height on the tower.

28593369-v1

Robinson+Cole

Melanie A. Bachman, Esq. January 8, 2024 Page 2

- 2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The installation of Cellco's new antennas and RRHs will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. Included in <u>Attachment 3</u> is a Calculated Radio Frequency Emissions Report demonstrating that the proposed modified facility will comply with the FCC safety standards. The modified facility will be capable of providing Cellco's 5G wireless service.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. According to the attached Structural Analysis Report ("SA")¹ and Antenna Mount Analysis Report ("MA"), the existing tower, tower foundation and antenna mounts can support Cellco's proposed modifications. Copies of the SA and MA are included in <u>Attachment 4</u>.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in Attachment 6.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Kenneth C. Baldwin

Kunig mu

Enclosures Copy to:

Leonard Bunnell Sr., Mayor Meredith Badalucca, Assistant Planner Ernest and Walter Wainwright, Property Owner Aleksey Tyurin

¹ In addition to the new antenna described above, the SA includes three (3) BXA-70063-6CF antennas in the final loading table. Theses antennas are "place holders" for leasing purposes and will not be installed as a part of th modification proposal. The MA does not include these place-holder antennas.

ATTACHMENT 1

TEL: 848-254. FAX: 848-2354

TOWN OF MONTVILLE PLANNING & ZONING COMMISSION

310 NORWICH-NEW LONDON TPKE. UNCASVILLE, CONNECTICUT 06382-2599

LEGAL NOTICE

The Montville Planning and Zoning Commission at its meeting held on January 13, 1998, took the following action:

APPROVED site plan for Wireless Solutions, Ltd./Walter & Ernest Wainwright to construct a 190' radio tower and antenna for wireless communication purposes with appropriate guide wires and chain link fence with four small utility sheds and driveway on property located at 71 Moxdey Road, Montville, Ct. Shown on Assessor's Map 17, Lot 12.

Maps and documentation concerning the above applications are on file in the office of the Town Planner, Town Hall Annex, Montville, Ct.

Dated at Montville, Ct. this 14th day of January, 1998.

MONTVILLE PLANNING AND ZONING COMMISSION

Gregory Majewski, Chairman

PUBLISH IN THE NEW LONDON DAY January 16, 1998

PLEASE REFERENCE PURCHASE ORDER 6100 G 1 ON INVOICE.

TOWN OF MONTVILLE PLANNING DEPARTMENT STAFF REPORT

DATE: 01/13/98

APPLICANT: WIRELESS SOLUTIONS LLC.

OWNER: ERNEST &WALTER IR., WAINWRIGHT

ADDRESS: 71 MOXLEY ROAD MONTVILLE, CT.,

ASSESSOR'S MAP # 17 LOT #2

TYPE: SITE PLAN

	REQUIRED	PROVIDED
	80,000 SF	623,000SF/LEASEHOLD AREA
GHT INDUSTRIAL ZONE	200 FEET	558.64 FEET
RONTAGE	50 FT/50 FT	50 FT/50 FT
E I DALAS FAIOTITION	30 FT	30 FT
ATER & SEWER	3011	WELL & SEPTIC

COMMENTS ASSISTANT PLANNER

APPLICATION IS TO CONSTRUCT A 190' RADIO TRANSMISSION AND RECEIVING TOWER IN A LIGHT INDUSTRIAL ZONE. USE IS PERMITTED UNDER SECTION 13.2.6 OF THE REGULATIONS. THE APPLICATION AND SITE PLAN MAP MEET THE REQUIREMENTS OF THE REGULATIONS.

THE TELECOMMUNICATIONS ACT OF 1996 HAS EMPOWERED THE LOCAL AUTHORITY TO DETERMINE THE LOCATION OF TOWERS PROVIDED THEY DO NOT RESTRICT COMPETITION OR INTERFERE WITH THE SEAMLESS WEB NEEDED TO PROVIDE SERVICE.

A NEW TOWER PERMIT HAS BEEN ISSUED TO WIRELESS COMMUNICATION ON PROPERTY AT 57 COOK DR. OWNED BY ROBERT KINGSBOROUGH. THIS LOCATION IS IN CLOSE PROXIMITY TO TWO OTHER TOWERS, OWNED BY SNET AND WICH. THE LOCATION NEXT TO THESE TOWERS WAS A CONSIDERATION IN GRANTING THE PERMIT. WIRELESS SOLUTIONS IS NOT A LICENSED PROVIDER. WIRELESS SOLUTIONS OWNS TOWERS AND LEASES SPACE ON THE TOWERS FOR EQUIPMENT. APPLICANT WILL SHOW HIS PROPOSED COVERAGE AREA AND HIS LEASE AGREEMENT. THIS WAS REQUESTED BY THE COMMISSION AT THE 12/9/97 MEETING.

TWO PERMITS HAVE BEEN ISSUED BY THIS OFFICE IN THE PAST YEAR FOR EQUIPMENT TO BE INSTALLED ON EXISTING STRUCTURES. THE PERMITS TO TECHSTAR COMMUNICATIONS WERE ISSUED FOR PROPERTY LOCATED AT RICHARD BROWN DR. AND GAY HILL RD.. THE RICHARD BROWN DR. PROPERTY IS OWNED BY HE CITY OF NORWICH DEPARTMENT OF PUBLIC UTILITIES. THE EQUIPMENT IS MOUNTED ON TOP OF THE WATER TOWER. AT THE GAY HILL ROAD SITE THE EQUIPMENT IS MOUNTED ON AN EXISTING 190' TOWER OWNED BY HALL COMMUNICATIONS (WNLC). SEE MAPS OF COVERAGE AREA AND LETTER ATTACHED.

THE MAP AND LETTER PROVIDED BY TECHSTAR INDICATES THAT THE COVERAGE AREA PROPOSED BY WIRELESS SOLUTIONS IS ALREADY PROVIDED BY THE PIE HILL SITE, HALL COMMUNICATIONS HAS INDICATED BY PROVIDING SPACE THAT THE TOWER IS AVAILABLE FOR OTHER PROVIDERS. THERE DOES NOT APPEAR TO BE ANY NEED AT PRESENT TO ERECT AN ADDITIONAL TOWER IN THIS AREA OF THE TOWN OF MONTVILLE.

UNDER THE TELECOMMUNICATIONS ACT OF 1996 THE TWO MOST IMPORTANT PARTS NOT TO RESTRICT COMPETITION OR INTERFERE WITH THE SEAMLESS WEB NEEDED TO PROVIDE SERVICE, ARE ALREADY PROVIDE FOR IN THIS AREA OF THE TOWN.

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
www.ct.gov/csc

April 4, 2016

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street. Hartford, CT 06103-3597

RE: EM-VER-086-160311 - Cellco Partnership d/b/a Verizon Wireless notice of intent to modify an existing telecommunications facility located at 71 Moxley Road, Montville, Connecticut.

Dear Attorney Baldwin:

The Connecticut Sizing Council (Council) hereby acknowledges your notice to modify this existing telecommunications facility, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies with the following conditions:

- The proposed feed lines and diplexers shall be installed in accordance with the structural analysis report prepared by Velocitel, Inc. dated April 22, 2015 and stamped by Dennis D. Abel;
- Reinforcements shall be made in accordance and consistent with the structural analysis report and modification drawings prepared by Velocitel, Inc. dated April 22, 2015 and stamped by Dennis D. Abel;
- 3. Within 45 days following completion of the equipment installation, Verizon shall provide documentation certified by a Professional Engineer that its installation complied with the recommendations of the structural analysis;
- Any deviation from the proposed modification as specified in this notice and supporting materials
 with the Council shall render this acknowledgement invalid;
- 5. Any material changes to this modification as proposed shall require the filing of a new notice with the Council;
- 6. Within 45 days after completion of construction, the Council shall be notified in writing that construction has been completed;
- Any nonfunctioning antenna and associated antenna mounting equipment on this facility owned and operated by Cellco shall be removed within 60 days of the date the antenna ceased to function;
- 8. The validity of this action shall expire one year from the date of this letter; and
- The applicant may file a request for an extension of time beyond the one year deadline provided that such request is submitted to the Council not less than 60 days prior to the expiration.

The proposed modifications including the placement of all necessary equipment and shelters within the tower compound are to be implemented as specified here and in your notice dated March 10, 2016. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to an existing facility site that would not increase tower height, extend the boundaries of the tower site by any dimension, increase noise levels at the tower site boundary by six

decibels or more, and increase the total radio frequencies electromagnetic radiation power density measured at the tower site boundary to or above the standards adopted by the Federal Communications Commission pursuant to Section 704 of the Telecommunications Act of 1996 and by the state Department of Energy and Environmental Protection pursuant to Connecticut General Statutes § 22a-162. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below state and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Please be advised that the validity of this action shall expire one year from the date of this letter. Any additional change to this facility will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Thank you for your attention and cooperation.

Very truly yours,

Melanie A. Bachman Acting Executive Director

MAB/CH/lm

The Honorable Ronald K. McDaniel, Mayor, Town of Montville Marcia Vlaun, Town Planner, Town of Montville SBA Communications Corporation Ernest C. & Walter N. Wainwright, Property Owners

ATTACHMENT 2

WIRELESS COMMUNICATIONS FACILITY

UNCASVILLE CT 71 MOXLEY ROAD UNCASVILLE, CT 06382 PROJECT TYPE: UPGRADE TO EXISTING WIRELESS TELECOMMUNICATIONS INSTALLATION ON EXISTING 192'± GUYED TOWER

NEW LONDON COUNTY

A.K. DEGUING COORN.
201 BOTTON POOT ROAD WEST, SAITE 101
WAREDOWNORI, M. 01722
(SOI) 44—7400
WAR ARCHITECTURE CONTRIBUTIONS
WAS ARCHITECTURE CONTRIBUTIONS

CHAPPELL

SBA 🔊

SIN COMMUNICATIONS CORP.
134 FLANDERS ROAD, SURE 122
WESTBORBOOK, MA 01661
(505) 25 -0720

verizon

ZO ALEMBER DIWE, 240 FLOOR WALLINGFORD, CT 06462 (205) 74"-7338

ANTERNA MOUNT STRUCTURAL AVALYRIS DATE. 11/77/20 JITY COLLIES I BIIGNIESING & DESIGN ARTENIA SUPPORT STRUCTURE (QUYED TOWER) STRUCTURAL ANALYRIS DATE: 192003

NADIO FREGUENCY (RP) DESIGN DATE: CHATIMS

SUPPORTING DOCUMENTS

FUZE PROJECT NUMBER: 16272079 MDG LOCATION ID: 5000243394

VICINITY MAP

SITE INFORMATION

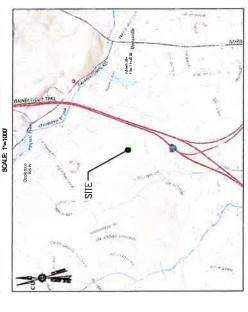
VEHIZOW MIGG LOCATION ID:	5000243194
VERIZON SITE NAME:	UNCASVILLE CT
FUZE PROJECT ID:	10272079
SBA SITE NUMBETI:	CTIO016-A
SBA SITE NAME:	MONTVILLE 3, CT
SBA COLLO APP NUMBER:	241548, V1
SITE ADDRESS:	71 MOXLEY ROAD UNCASVILLE, CT 06382
PROPERTY OWNER:	ERNEST WAINWRIGHT & WALTER WAINWRIGHT, JR. 149 GREAT NECK ROAD WATENFORD, CT 062185
TOWEH CWIVEH:	SBA TOWENS II, LLC USOT CONGREESS AIRWUE USOCA PATON, FL 33417 PHONE 961 228 9523
COUNTY:	NEW LONDON, CT
ZONING DISTRICT:	(HAU) RESIDENTIAL
STRUCTURE TYPE	GUYED TOWER
STRUCTURE HEIGHT:	162'±
STRUCTURE HEIGHT WIAPPURTENANCE:	167±
GROUND ELEVATION:	198'±
TOTALAMSL	305/≖
SITE CONTROL POINT:	CENTER OF EXISTING GUYED TOWER N.41"-20"-03 71" (41 4352"), (MAD '83) W 72"-47"-23 55" (-72,1430") (MAD '83)
ARCHITECT/BNGINEEH:	CHAPPELL ENGINEEHING ASSOCATES, LLC 201 GOSTON POST ROAD WEST, SUITE 101 MARLBOHOUGH, MA 01752

GENERAL NOTES

- CONTINCTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON JOB SITE, CONTINCTOR SHALL IMMEDIATELY NOTIFY THE ARCHITECTENGINEER IN WAITING OF ANY ANG WITH THE WORK FAILINE TO NOTIFY THE RESPONSIBILITY ON THE CONTRACTOR TO CORRECT THE DISCREPANCIES BEFORE PROCEEDING WITH THE W ARCHITECT/IBNGINEER PLACES THE RESPONSIBILITY DISCREPANCIES AT THE CONTRACTOR'S EXPENSE.
 - NEW CONSTRUCTION SHALL CORFORM TO ALL APPLICABLE CODES AND OFFORMACES

 BULDANG CODE: ZARO CANABETICAL TIST BEILDING CODE

 ELECTRICAL CODE: TARONAT DIALA LECTRICAL CODE


 FINICALICAL CODE: TARONAT DIALA LECTRICAL CODE

 FINICALICAL CODE: TARONAT DIALA LECTRICAL CODE

 SUPPORTING STRUCTURES AND AFTERNOS

 SUPPORTING STRUCTURES AND AFTERNOS

DRIVING DIRECTIONS

PROM WILLINGSPID, TAKE OT 48 E-85; "URALLETT ONTO MANN STREET, TURN RIGHT ONTO M-MUDOLIFH MOUD TURN MIGHT ONTO THE OT 350 JUTH MAY PROMISED. SOME OF 350 JUTH MAY PROMISED CONTO IS BOTH MAY DE TO SOME WELL TO MEN THE OFFICE AND THE MEN THE MEN THE PLET TO MEN THE OFFICE AND THE MEN THE PLET TO MEN THE MEN THE

SHEET INDEX

	IPTION	HEV.
	EET	
	LNOTES	-
	Z	
	IND PLAN	•
	TOWER ELEVATIONS	•
A04 ANTENNA	ANTENNA PLANS & SITE DETAILS	. 1
RF01 RFDATA		•
HF02 HFPLUMB	HF PLUMBING DAGRAM	
нета весодон	HF COLDH CODE SPECIFICATIONS	-
E01 GROUNDIN	GROUNDING NOTES & DETAILS	•

SUBMITTALS

APPROPED BY:

DO NOT SCALE DRAWINGS

1 11/8/20 IMAZES FOR COMPRICEON CAC 0 12/81/20 IMAZES FOR FEBER CAC

PARTY NAME & ADDRESS

UNCASVILLE CT

71 MOXLEY ROAD BROASWILL, GT 06502

HA WAS DEPTINE BREINGENORS WOUTDOOK AT THE ERRONGEDIGT OF ITS BINLE IN WEREIGN THE FILLD DIRECT HE CONSTRUCTOR HAVE THE PROPAGE OWNERS. WE HAVE THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF SECUL INDUSTRESS HAVE THE PROPERTY OF SECUL INDUSTRESS HAVE THE PROPERTY OF THE PROPERTY OF SECUL INDUSTRESS HAVE THE PROPERTY OF THE PROPERT

PROJECT DESCRIPTION

- 1. This is an unanned and restricted access equipment installation and the used the telephonesistic of the consistency of the purpose of province the consistency of the consistency of

SCOPE OF WORK

12 ANT BNIAS

12 ANT BNIAS

13 LINCTION ROX (OVF)

1 COAXIAL CABLE

INSTALL:

BANTENIAS

BINACOS

I JUNCTION BOX (OVI)

I HYBRID CABLE

T01

THESPEET

FUZE PROJECT TO: MDO LOCATION ID:

FOR the August of Constitution Datement, the Politimes detections should after a constitution that the second state of the second secon

L FROR TO THE SIGNESSIN OF BOX, THE BOOMS SUBCOMPLICTOR SHULL YEST THE COLL SITE TO FALLMAZE WITH THE YEST CHARACTER WITH THE WAY OF THE COMMUNICATION COMMU

A ALL WITDALA FRENDEZ AND REGILLO SAVIL DE IN STOCK ACCORDANZ WITH ALL APPLICATE CONTEX, REDAKTOROS, NO CORRANZO, SECONTRACTOR SALL EDGE ALL AVERNOSMEST MINES AND CANADES WITH ALL DAS CONDUCES, RILLS, ESSLATING, HID LAWEL CONTEX OF ANY YORKS ALLINGWEY RESPONSES THE PROFESSAVES, OF THE WORK.

, ali dicki garedi olit savli, comply nthi ali applicate illanceal, and utiliy colsaray spesifizikis and local Unedictoral, codes, grounances and applicate regulatione. DWINES PROKED HER ME HET TO BE SOLED AND ME HEDGED TO SHOW CURSE ONLY.

uness mote) ophermee, the work shall nollide formermo antigals, equipment, appartements, and labor edestart to complete all installations as indicated on the opherics.

THE SUBCOMPACTOR SWILL BETALL ALL EXHIBITION WITHOUTS IN ACCORDANCE WITH MANUFACTURER'S SYMMETRY STATED OTHERWISE.

ADDRINGTON SHILL DETENDER ATTAL ROOMING OF CONDUIT POWER AND 11 CARLIN, GROOGING CARLIS AS STORM PROVIDED THAN BEING SHILL FOR SHILL FOR THAN SHILL PERMISS THE SHILL SHOW HE SHILL SHOWN HE SHILL CHARGE HE SHILL SHOWN HE SHOWN HE SHOWN HE SHILL SHOWN HE I FTE STEPED ENUMBER CAMMER BE NOTALED AS SEEN ON THESE ENUMBRIS, THE SUBCONTRACTOR SHALL MODEWRITHE INSTALLATION FOR APPRICALL OF THE CONTRACTOR.

A. THE SIRCONTINCTOR SHALL PROTECT DISTING MINICIPALLY, INMIDIATE, CORES, LINDISCHING AND STRUCTURES, ANY MINICIPAL SE SIZVENEES AT SIGNORY, OF THE CHINAL. i, sucnativactor smil legali add proteky osyvoc of all stape widemis such as oakaal caels and patan itas feloadi fram the eastwo fallint, mithews relayed small be rethemed to the orner's desimant

SUCCESSION SAME LEWE PRESSES IN CLEAN CONCINCIA

3. THE SERSONINGTING SHALL SPETNINGS AND ORBITS THE PRIMARY DESCRIPED HYBIRAT THE SURCOUNTRYCTOR SHALL RESIDENCES, AND PROCESSURES THE ACCORDANGE OF THE WORK UNERFINES THE COMMUNICATION ALL PORTIONS OF THE WORK UNERFINES.

4. SIRCHITHAGIRI SWILL KOTRY CWAPPLI, DAZRESDRE ASSICATIS, ILC. 48 HOUSE IN ADMACE OF POLIMIA CONCEST. NORTH TILKE INCHEST, SUSAIR NOW, PRILL PRETINGIBLE & POST DOWN, THRESHO REY WILLS OR HAVE EXEMPLAL CHARGENINE AND EXPRESSIVE RIVER.

A, CONTRACTION SHILL COMPLY WITH VERSION WHILESS INTRODY, SEMEMAD (PERDICS) TO THE MACHINE DITERT FEMORIES. PRESENCE ON LARTE HY DESCRIPTION ON HEREE PROSENCE. IL SALIONITIACTION SYLLL YESPY ALL EXISTING INNEXISCING AND CONNITIONE PRIOR TO COLAMBICION ANY WORK, ALL MINESTRATION OF EXISTING CONSTITUTION SYLLL MOTE THE CONNICIONAL STATEMENT SYLLL MOTE THE CONTINUENCE AND CONSTRUCTION OF MICH. CONSTRUCTION.

77. THE DESTING COLL SITE ID IN FULL COMMENSAL ANY CONSTITUCION WORK BY SURCOMPLATTRE SAWLL NOT SOSMENT THE ENSTINE HANKILL SPECIALISM, ANY THORN ON PERSING DESTINATION IN THE CONTRIBUTION. ACM, THOM SPOLLD HE SUBSLUED FOR AN APPRICATION, MAINTHANCE BROOM ISSUALY IN DIF THANSPERSONS AFTER.

IS SUCC. THE COLL SITE IS APPREAD. HALL SPICE WEIGHT IS THICK WICH WENDER ARCHIO WHILL ISSUED SPICE THE DESTRUCTION WITHOUT THE DESTRUCTION WITHOUT THE DESTRUCTION OF THE THICK SPICE SPICE WITHOUT THE DESTRUCTION OF THE SPICE SP

SITE WORK GENERAL NOTES:

1. ALL DOTTING ACTIVE STATE, WITH DAY, ILLETTING, AND OTHER MARTINS WERE CHOOSINEDED IN THE WANK STALL BE PRINCED BY ACTIVE ACTIVE ACTIVE WORLD ON THE PROPER DESCRIPTION OF THE WANK STALL OF RELIGIOUS PRES. MARING OF REACHES, CONTRACT CALIFOR WORLD ON THE SEASON HAVE WON DESCRIPTION FROM MARKED BY THE WASHING THE WASHING WORLD ON THE BELLED OF THE WASHING WORLD ON THE WASHING WORLD ON THE BELLED OF THE WASHING WORLD ON THE BELLED OF THE WASHING WORLD ON THE BELLED OF THE WASHING WORLD ON THE WASHING WORLD ON THE BELLED OF THE WASHING WORLD ON THE WASHING SUCCHINACION SALL CONTACT UTLIY LOCKING SENACES PROR TO THE STAFF OF CONSTRUCTION.

I, F. MEDSSHRY, RUMBSH, STUAPS, DIZDHS, STOCKS, STOCKS AND OTHER REPUSE SHALL RE REJAOFED FROM THE SITE AND VISYOSED OF LESALTY. I, ALL STE TOOK SYAL BE AS NOTATED ON THE DIVIDINGS AND PROJECT SPEETSYCKTON

d, no pil or eughwaldt witzwi, sywl de placed om friozen ground, friozen watswis, skow or n'e sywl. Wot de placed in may fall or engwaldent. A THE STIE SHALL BE OWNED TO CAUSE SAWACE WITCH TO FLOW MAY FROM THE UTS ECASYMENT AND TOWAY ARIVES

A. AL DASTRIO MUCHE SERVI, MOTEL, DAS, ELEDIRO, AND OTHER UTUTIES, WHICH MITEDSTEE WITH THE DESERVEN OF THE WINNES PRESENTED IT PRESENTED IN THE PROTECTION OF THE WINNESS AND THE SUB OWNEE SHALL BE COMPACTED AND BROUGHT TO A SUDCIFIC LARROW GAMOE FRIGHT TO FINISHED SUPPLICE. PRICEDLY

A SECURENCIA SALL MANDE CENTRÁNCE DO DOTRAGOETE DURAGO CONCINCIDOL, ENZON COMPLA, FO DORRED CONTRÁCTOR, SALL, ER. M. CONTRÁNICE, WITH THE LOCAL CURIOLAGE, FOR EXCENDITA APO SENADIT COMPLA. I, TE, ARSO OF THE OMEDS PROFERIT OCKNINGED BY THE WERK, AND INIT COMED BY THE TURBE, EQUIPMENT OF MEMBERS, SAME, SE GAMOD TO A UNITIDE SELECTED BY THE PROJECT PERSONAL SECREPTED BY THE PROJECT PERSONAL SECREPTED BY THE PROJECT PROSESS AS SPECIFIED BY THE PROSESS AS SPECIFIED BY TH

1. The subcommutar syml promoe site stange in accombance with the vercon wreless specificating for site space.

<u>XXXX8ETE_AND_RENFORCING_SIDEL_NOTES.</u> ONE CONSERTENCE SHE EN LACORAGE WITH EN CONSERTENCE SHE ALEA, ASTE ALEA, ASTE ALES AND THE SHEW, AND OBSERTATIONS FOR USER-EF-LACE CONCRETE.

, ALL CONCRETE SHALL HAVE A MEMBEUR COMPRESSAR SINDORTH OF 3000 FSI AT 28 DAYS, UNESS MOTED DIABREER. A BLEEN STROWTH (GOOTS) MAY BE LESD, ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ALL SAIL DONE SUCKREAPERS.

I. REPREMEMS STED, SAVIL, CONTOM, TO ACTU A GIT, CANCE ON, DETUNDED UNIVERS METED OFFENDER, WEDDEN WEE THERE ON SAVIL IN: ELLOSS TY AND ALL DESCRIPTION, IN SECURITIES AND ALL DESCRIPTION, INC.

A, THE TRUDONG MARKAN CONNECTE CHAST SHALL RE PROPRIDE FOR REMANDERS STORM OFFERINGS. OR ADMINISTRATION OF THE CHAST SHALL BE T

I RETALIDA OF CASCET DOWNOVINDOR ACCOL, SNLL OF TO WANTCHIRDTS WRITCH INCOMEDIATE OF THE ACCOUNT OF A SOWN THE CANOCIOUS OF THE ACCOUNT OF A SOWN THE CANOCIOUS OF THE ACCOUNT OF A SOWN THE CANOCIOUS OF THE CANO A DWIFTER NY SIVILL OF PROVIDED AT ALL COPPEDS CONTROLS, UNC. IN ACCORDANCE WITH ACL 301 SECTION 423A.

LIS MI ALTENATAE TO ITBUT 7, TEST OCLORENS SIMULTEE TWEST BUTULLY AND THEFERFIER FOR EHERY SO YMINS OF TAXABLE PROBED SICKLE BY SHELL SHEL

D. EXHPLENT SHALL HOT BE PLAKED ON HEAF PLOS TRY SEATCH DANS AFTER PAD IS MOURED, UNLESS IT IS VERYEDD BY CALMEDS TESTS THAT CAMPRESSARE STREAMEN HAS BEEN ATTARED.

STRUCTURAL STEEL NOTES:

2. ALI NEJING SALLI SE RESTRIAZIO USINO ETIOX BEGINDOES AD WEJING SAULI CONFORM TO ASO AND ARS D1.1, WESTE, ILLIEN MED SATE ARE MOSTORIA, PROPRIE TRE ILLIEN STEP CONFORMATION TO THE AREA THANK OF STEEL CONGINICATION THIS DITING. THE TOLOGRAPH OF THE TOLOGRAPH O grid confections swill les board the Ash A23 bolts (A"V) no sivil iver length of tho bolts unless of dispersions. HOMESTICATION COMMITTIONS FOR STITL GANING MAY USC N. ASTA A ASTA DAD UMESS HOTTO OTHERWISE.

A ANGEL AND AN OCCUPATION OF THE ANGEL AND ANGEL ANGEL ANGEL AND ANGEL A

CONTRICTOR THELL SAME SIGN DIVININGS FOR ENCHETR ROW'R & APPROVE, ON PROJECTS REDURNO STRUCTURAL STEEL , AL STRUCTURAL STEEL WORK SAILL BE DONE IN ADOMEWASE WITH ASS SPEED FLATORS.

SOIL COMPACTION NOTES FOR SLAB ON CHADE

COMPACINON CEREPICATION: MI INSPECTION AND WINTED CERTIFICATION BY A QUALIFIED OCCUTESHINGLI. TECHNICAN ON ENGNEESP MOSSIFIALE. DOWNTERS REQUIRED TO REJUNE VECENITION AND TOPISM. TO EXPOSE WINNING, SPRIGANCE, AND PLACE CRESHED STONE AS YOURTH. A AS AN ATTRAKTE TO INSPETITUA AND WINTEN COMPICATION, THE "UNDSTARBED SOLI" BASE SWILL BE COMPATTED WITH COMPANTION COMPANTION COMPANTION TO ASTELLATE OF SOST METHOD C. A, G. M. ALZHWETT DIES 2, M.S. J. NE GRABIOUS EUER DIE 5 NESSO NA ALBENN KOOT DE SANDER FATS OWEGEN SEDEN FOR BENOME SER VIZIÑ GE, HANN-DERBEIDS SAND EUER FORMEN RALIST (SEPIN GE ROWGEN ESS.). AMS SOTT SEES THIN FOR DEVOKRÎZED SONUL DE REGARDS AND HET NACH WELLEN, BELLEN, GRAMALIN FILL AND COMPACTION AS STATES AND SEES SONUL DE REGARDS AND SERVICES. I, COMPACTO SUBMOS SIMIL RE LIMPORA AND LPROLOS, PROMOS OF LIMBIAN CRUSHOS STORE ON GRAMO, COMPACTOS IN 3º AGONE, COMPACTOS SOLI, GRAMO, SAMLI, RE, INTIDIAN, OR CRUSHOS WITH 100S PASSING \$\| STORE.

COMPACTION EQUIPMENT

INVERTIGATED DOUBLE DRILL, NEWTON' ROLLE, VIRGORY PLATE COMPACTOR OR JUMPING JUCK COMPACTOR.

CONSTRUCTION HOTES:

RELD VERBENTRON. BECOMMENDER SHALL FELD VERBEY SCOFE OF WEINK, VERZEN WHELESS ANTENAM, PLATFORM LIGICITION AND PERVISED.

L COORDINATION OF WORK.

CORE VADOR RACK. The New BIT COMPAN. To THE MEM BIT COMPAN.

WINDER, PACENTA, AND SUPPORT METHODS AND MUTDAMAS SAMIL COMPLY WITH THE REQUIREMENTS OF THE NEX.

2. SINCOMPACTOR SAMIL MODEY DISTING CABLE THAY SYSTIM AS INCOUNDS TO SUPPORT AS AND THANSPORT CABLING TO THE NEW BIS EQUIPMENT, SUBCOMPACTOR SAMIL SUBART MEDIFICATIONS TO COMPACTOR FOR AFFROME. e al crouts sivil de somesato and windra magna care sexantoa as regued by the Ned Androa. Blooma

, CABLES SHALL NOT BE ROUTED THROUGH LADGET-STATE CABLE THAY RANGE.

POWER PHASE CONCUSTONS (AL, MOTE) SHALL HE LABOLDS WITH OCCIOE-COOKE REALATION ON ELECTRICAL THE NAME DESTINANCE HE OF WASHINGTON, ON EASTER, THATE CONCUSTON COOKE ALL CONCUSTON PRESIDENCES, THAT CONCUSTON COOKE ALL CONCUSTON PRESIDENCES. . ALI BETTRAL COMPONENTS SHALL BE CLEMRY LABIDS WITH DRIBAND LAMKOOD PLATTIC LABISLA ALL OUTPIANS THAT BY THE LABIDIA WITH THEN WITH CHEMICAL COMPONENTS, WELL CHEMICAL ROUND TO SHALL BUTTAN AND CHEMICAL CHEMICAL SHALL BUTTAN AND CHEMICAL I, ELCH END OF EJERY PORFIR, GROUNOMS, AND 11 COMMUNITY AND CHIEF SHALL HE LABEIDS WITH CALDIS-COORT GRUINING HOR BERTHAGA, VICE, CHIEBAND, L'A MORT MATCH LILLIMEN, VICENTING MONTHON, OR I EDUNAL THE EDINFOXUM HERDO SHALL CORPORT HITH HELD AS ISSAM, AND MACH EDITING MONTHON REQUESTION.

In Property (o'nametrs) and mitteral chroliff between (chroliff de nametrs) saull be clearly labold. The bespect labolds (o'nametrs) and mitteral chroliff between (chroliff de nametrs) saull be clearly labold.

, alt tie winys shall be cut fillsh with appliance cutting tool to fishing shaip edges

II, SHPTUNON, UDPREST GOLDO WHIGH LOUID MODOSC SHILLE, ESCL. GOLDOUD (A) AND ON UNION ON Y, Q, ROZDINT THA GA THIN-2 CHILD HOLLOW, GUES & STRAGED COPPO GUEL AND FOR 90 °C. RET AND ONLY ONLY AND THE LOUIDS AND MECHANISM STRIN USE, WALLSS CHERWISE FOR THE USE OF THE LOUIDS AND MECHANISM STRIN USE, WALLSS CHERWISE.

2. Supplemental cupalent gancano wanga locato dutokots, or below gande, sawil de single compustos 13 arc solo tared copper cable, unless otherses specped. A FORTH AND CANTED, WERGE, MUT IN TURBO OR CONDUT, SHALL BE MALT-CONDUCTOR, TYPE TO CAME (\$9) and our LARGE), NOW Y, OR RESERVAT THE GRITHMAN, CASS I STIMURED COPPER, QUELE MICE THE RIN TO THE MONTH OUTS, WALLES OTHERWISE OF THE LOCKTOR WERE OUT WALLES OTHERWISE OF THE CONTINUED OF THE THE CONTINUED OF THE STIMURE OF THE THE CONTINUED OF THE STIMURE OF THE THE CONTINUED OF THE I.4, ALL FONTS), AND GROUNDING CONGESSIONS SHALL BE CRIME STATE, COMPRESSION WITH LUCS, AND WRITE HATS BY THANKING MISTERS (OR REQUEL), LUCS AND WIRE MITS SHALL BE RATED FOR OPFORDION AT NO LESS THAN THE (GOTE F THANKING). С. РАСОВИУ АНО ОИМЕ ТНАУ SHALL INE LISTED OR LAWELED FOR BLETTINGAL LISE IN ACCORDANCE WITH HEMA, U., HOSTED, AND NESS.

A. HOW INCOME OF CASE THY WILL MATCH THE EXITTING METALLATION WHITE POSSIBLE.

THE BESTIFICAL MEDIALIC TURNS (BIT), EBETTHOOK NOMERALIC TURNS (BIT), OR HOLD KOMMENALIC CONDUIT (RICE). STREEME 40) SHALL BE USD FOR CONCOLED INDOOR LOCATIONS. 77. ELETINION NETWLIC TURNO (BAIT) OR HIGH HANDHORTHLIC CONDUIT (E., 1930 PAG SCHOULE A), OR RUDD PAC SCHOULE BO FOR LICHTONS SUBJECT TO PRINCEL DIMAGE) SWAL TE UED FOR EXPORD MOON LICHTONS. IS, OLYMETE STEL METWERNE MENLE CORDET (Mr.) SHAL IN 1970 FOR CUITOOR LOCATORS AROK ONCE 16. WED HOMETHLED CONDUIT (LE., REID PRE SCHEDLE A) OR ROLD PRE SCHEDLE (D) SHALL BE USED MEMBERURING DREST ENDER IN MEMBER OF COCKROMAL LIGHT VEHICLE TWEFTS ON EXCEND IN RESPECTABLE THE PREST OF MEMBER AND PRESENCED IN A RESPECTABLE THE PRESENCED FOR A RESPECTABLE THE PRESENCED FOR THE PRESENCED FO

CHARETS, BODES, AND INFORM'S SWILL DE LISTED OR LABOLED FOR ELECTRICAL, LISE IN ACCORDANCE WITH HELM, MESTERS, AND NEE. 1. LIGURO-TIONT FLEXIBLE METALLIC CONDUIT (LICUID—TITE FLEX) SHWLL BE USED INDORNS AND OUTDOONS, WHERE SHANDAL OCCURS OR FLEXIBLE METAED. z. conduit and turnio fittings spall et theraded on compression—the and approach for the location ted), set sober fittings are not acceptable.

MEGNATI SHULL BE GROYN-COUND (GAN') AND HICLIDE A HANGD CONDY, RESIDEND TO STRIKE OPEN DOMININD. THE PRINCET TITLE E (ON EXULL), AND MITCH NEW 1 (ON BETTER) INDOORS, ON MEAN 3R (ON BETTER) IN CANNETS, BONES, AND MEDIUMS TO MATCH THE DIGTHE BETALATION WHERE POSSIBLE.

AL EXUMENT CHARET, ITRAMM, KIDES, AMETINA BIDES, AND PALID KEINS SHALL BE GULMANDON OR THE CONTRACTORID SHEET STEEL, SHALL MEET OR DOCKED U. GO, AND PARID KEIM. 1 (OR BETIEV) MODORS, OR NEAM PR (OR BETIEV) UNIONEDS: ATT STATE WEED TO SHARE SHARED, AND DEWAKE BOXES SHALL RET ONLIVENCED, EPOWT-COATED, OR NON-COATEDORING. WEED THE ORD STORESTOL (5.14 AND MEMORY OF SHARED HOUSE), NOTIONES, OR NEOTHER PROPRIETED PROPERTY OF SHARED SHARE

nd. The strockingactor same promoe vedessamt takeng on the meanstro, carles and distribution pareds In accordance with the applicable cours and structures to sectication asayest life and preparty. ZII. NOMBETALIO, RIZZETAKLE, SWITOV, AND DENCE BODES SWALL MEET ON BOCEDI NEDA, OS 2; AND RATED NEDA, (on Betten) nodoos, on Weavhor Protested (np or Betten) Outdoors. de, the succentrication shall notify and obtain independent authorization from the contractor before subsective runs on the ac forest distribution parties.

APLORATE LOS CORS. 22. Conouit nouthos are schemats, subcompactor shall natal, conoutrs so that access to expressit variables.

20 ALEXANDER DRIVE, 2ND FLOOR WALLINGFLIND, CT DRIVEZ (203) 741—7336

SBA 🔊

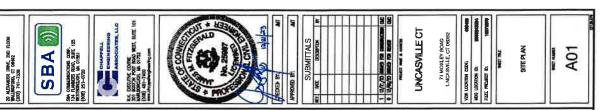
CHAPPELL SPGINSSING AROCKITS, LO

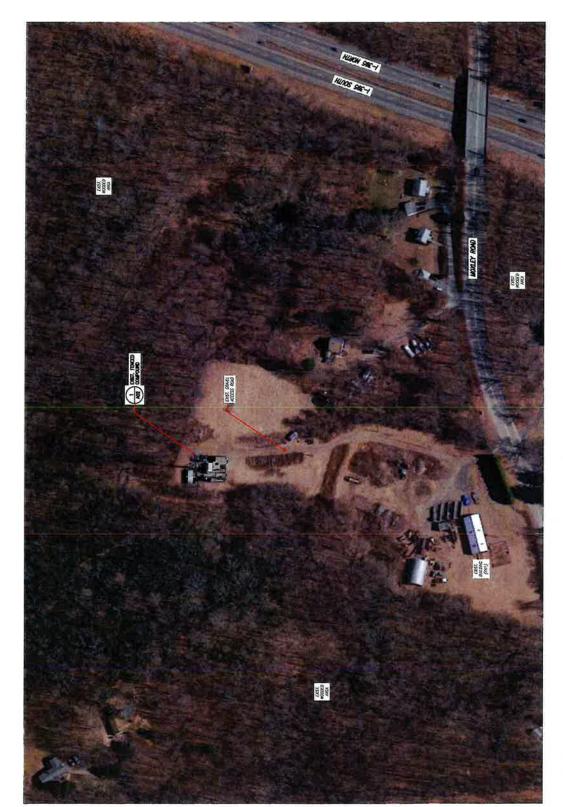
R.Y. DECUME CENTRE 221 INCRNI POST INAU WEST, SUITE 101 MATERIAN POST INAU WEST, SUITE 101 (SOI) 46 –7400 www.chopendingheanty.com

NO DEC DESCRIPTION SUBMITTALS

1 U/b/D SEE TO COMMUNICATION CAC.

UNCASMILECT

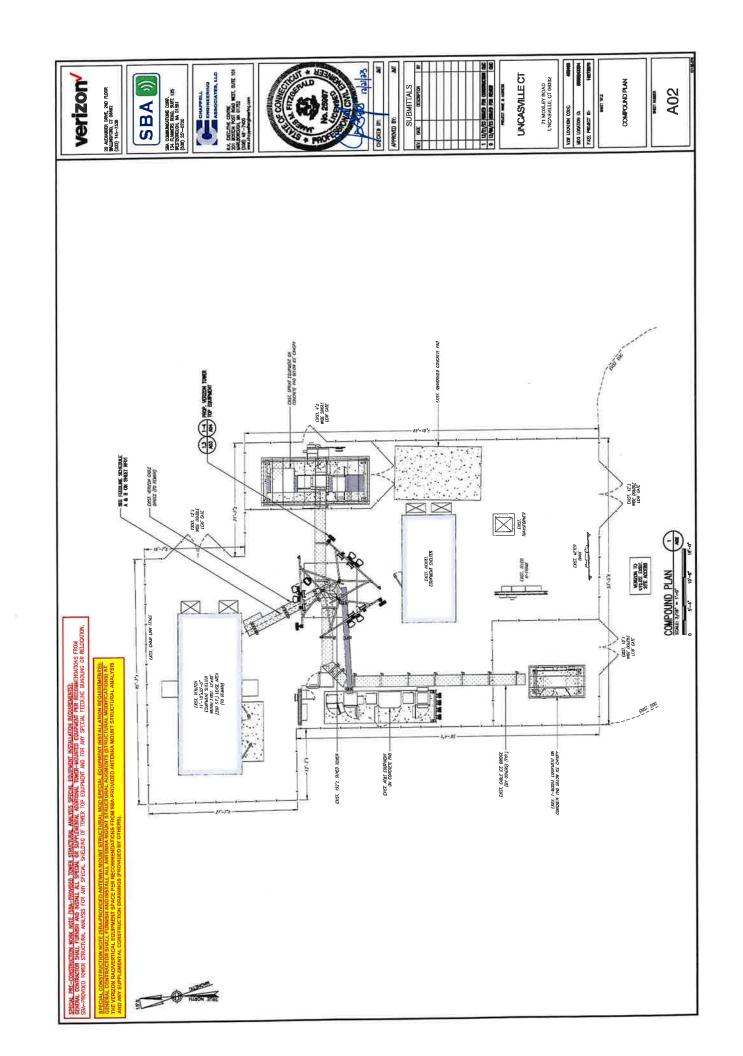

71 MONLEY ROAD UNCASVILLE, CT 08382

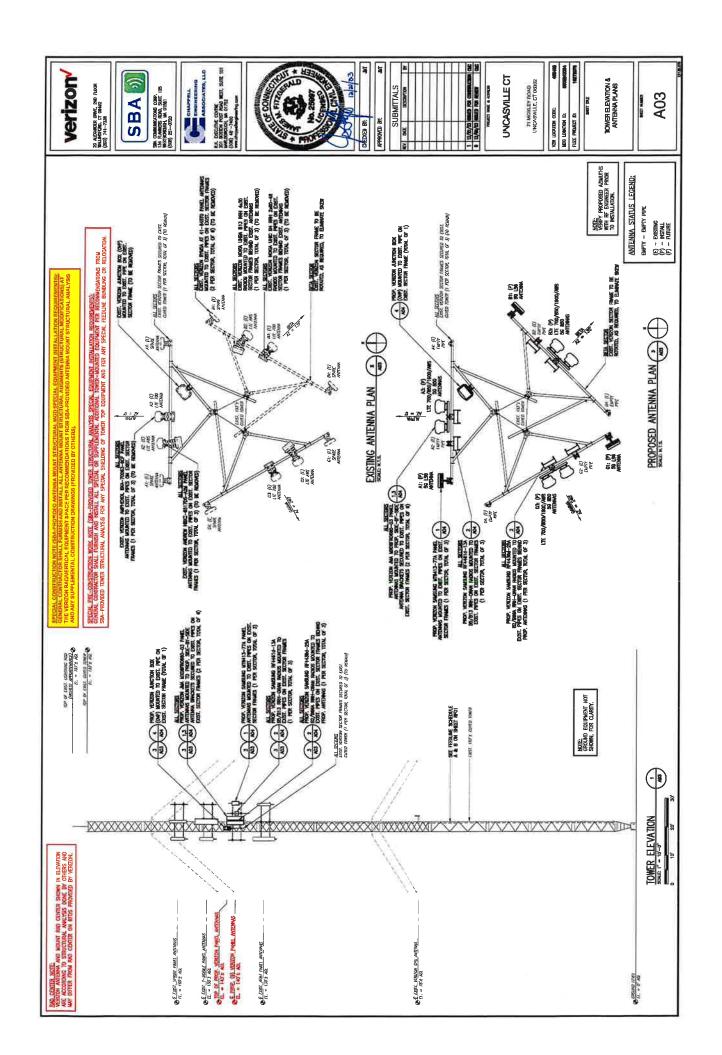

VZM LOGNTON CODE: MIDO LOGATION TO: FLUCE PROJECT EX:

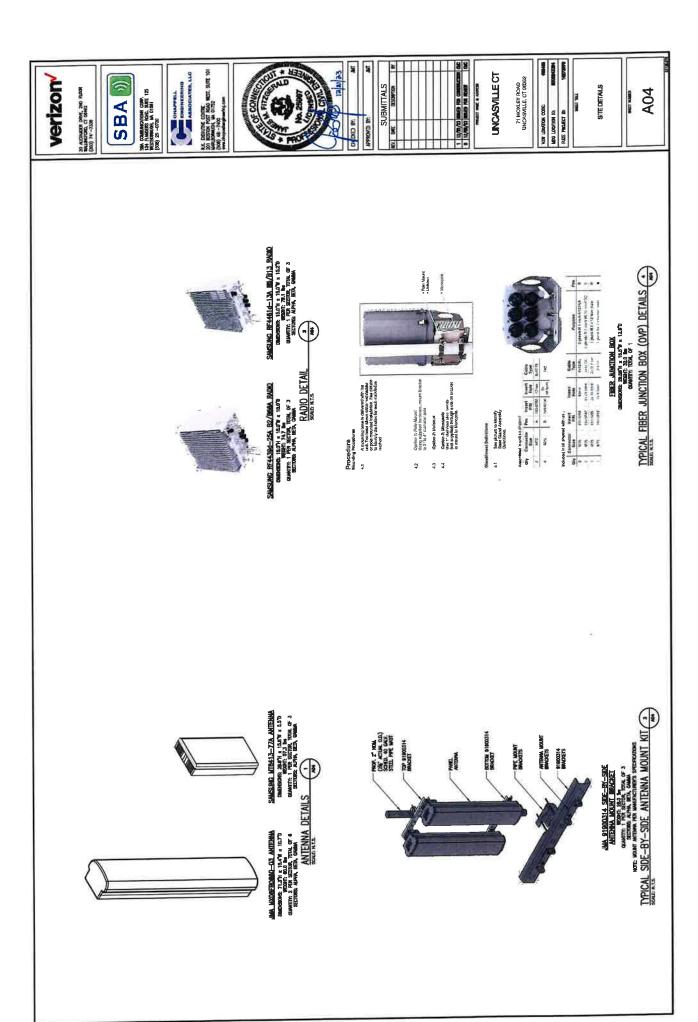
THE CHIEF

GENERAL NOTES

GN01







S PRISM IN

Verizon

				EXISTING	EXISTING EQUIPMENT CONFIGURATION	CONFIGURAL	S						
SECTOR	EQUIPMENT MAKE & MODEL	d)	(TRUE NORTH)	ANTENNA RAD	BAND	MECHANICAL	E_ECTRICAL DOWNTILT	EQUIPMENT	I É	≠Ê	<u> 2</u>	WEIGHT (LBS)	HYBRID CABLE SIZE & QTY
	AND A 11-04SED AND WILL		À	1401 AG.	398955		4	3613		Ŀ			
AI DUA	ANGELY 1500-155755-478 ANEXM	36		145'± AB	S#Y 227	٥	5	3613	78.0	120	22	40.6	
5	ANTE INST-1005-60 ANTINE			TIP 2 4(3)	111. 100	b	×	2613	210	624	6.0	110	
	AMORTH HEXX-651605-AZM ANTOWA	-	٥	24.234	Sant			3613					
	MISSELLE ALL ALESSO ANIZONI	ī	STI	101 10	Syste			3613					
į	ANDREA HOLD-650005-ADA ANDREA	1	571	11872 140	584 337	à	Z	3813	25.0	120	6.5	40.8	
2	ANTE SIN-TOST-SOL ANTENNA		571	1401 401	(11.700	٠	i,	EINE	71.0	3	6.0	17.0	
	ANDREA HELD - GENERAL AND ANDREAS	-	517	CV 7,511	3005			3613			,	,	EUST. (12) 1-1/4" COUNT. CABLES
	RPLES AT 41-64SID ANIGORA	ė,	240	140.1 AG.	Syste	38	8	3613	16		Ţ	,	The court is one in the court
CALINA	ANGREW SOOT-651705-ADV ANEDION	r	246"	140'± AQ	(1E ANS		5	3833	75.0	12.0	6.5	40.8	
Semilia	ANTE ELECTRONIC ANTENNA	,	240	140.3 AGL	(11 /00	٥	7	3613	210	111	970	17.0	
	ANGELY AGEST SQUEEZING ANGENOR	,	240"	140'± AG	3945		1	JB13	٠	1			
	ADM DESCRIPTION AND SAME	5	99	360	9	3	i	TSHF	21.4	12.0	22	210	
₹	ACHIEVE SHE SH ANN 2455-AP ANDES	2	7	**	j	¥	÷	36/3	37.0	011	8.9	55.0	
	12-0W	,	n:			,		361)	29.6	14.5	12.6	0.01	
MOTERS	1. TETE ODMITS TOGRING TO RELAWAY. 2. THE ODMITS TORNING TO RELAMOND: 3. WERSTELLEND, ME WITHOUT MOVEMEN PROCESTS. 4. NETOWARTON IS BASD ON PEDS DATED 06/11/23.	CHETS.											73.

SA COMMENTOR COPT.
SA COMMENTOR COPT.
SETTORACE MA CORD.
(SON) 25 -4722

verizon

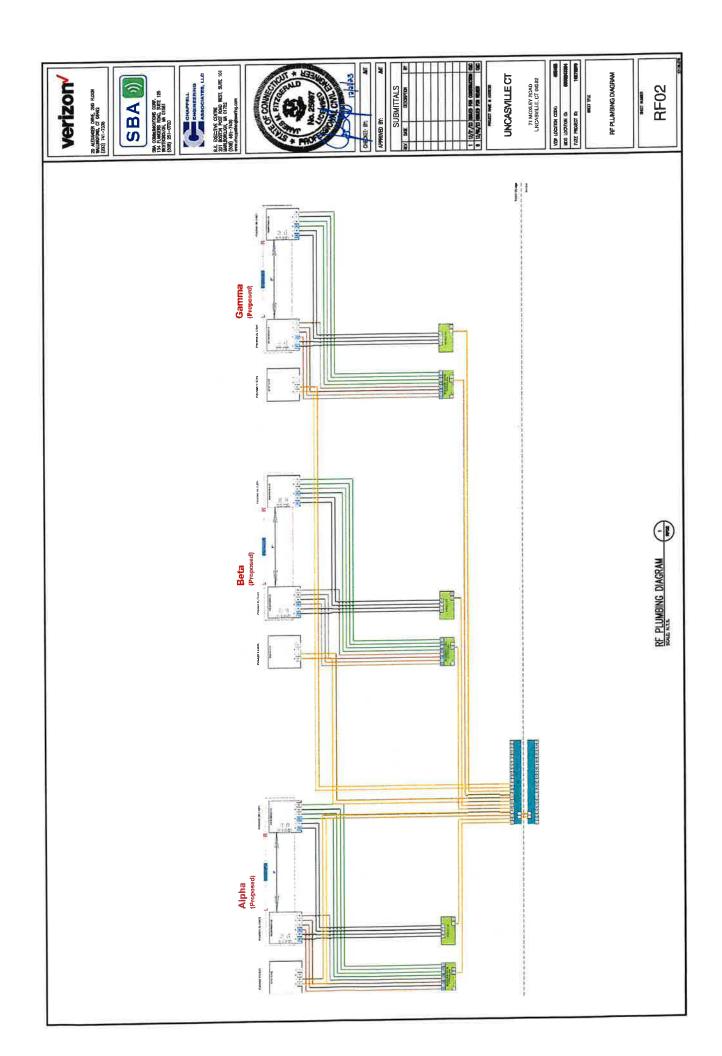
20 ALEVANDER DRWE, 2ND FLOOR WALLMETURD, CT 06492 (203) 74:-73.88

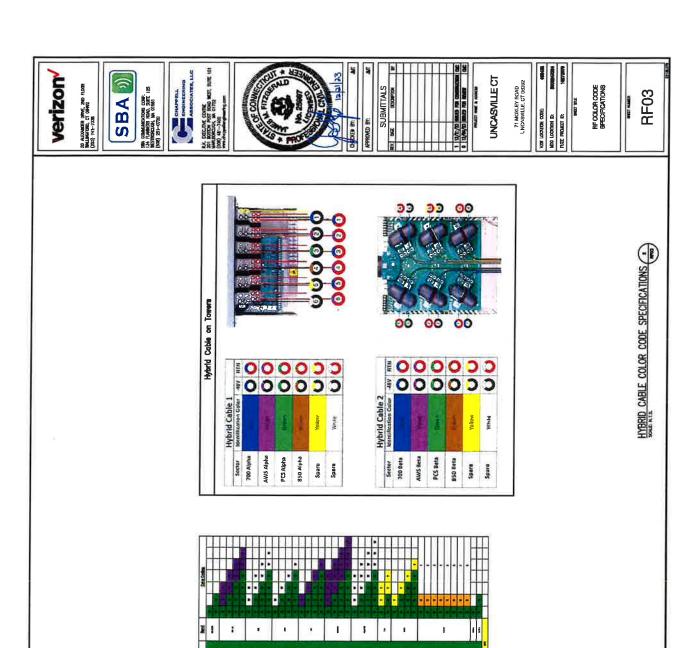
				FINA	FINAL EQUIPMENT CONFIGURATION	NFIGURATION	z						
SECTOR	EQUIPMENT MAKE & MODEL	Ą	(TRUE NORTH)	ANTENNA RAD	BAND	MECHANICAL DOWNTILT	E_ECTRICAL DOWNTILT	EQUIPMENT STATUS	ΞΞ	æ ĝ	- E	WEIGHT (LBS)	HYBRID CABLE SIZE & QTY
	SMETHIC MITHEST ANTENNA	-	ь	140'± AGL	85.03	ь	h	MEN	i	2	25	67.3	
ALPHA	JAIA KROSFFICERO-63 JAITEMAS	64	ь	140'± ACL	LTE 700/800/1900/ARS	0/0/0/0	2/2/2/2	i di	Z,F	3	10.7	908	
į	SAMSUND MID413-77A ANTENNA	-	139	140'± ACL	80 US	b	h	MON	28.5	2	2	57.3	
BETA	JAM KKORFROBO-GS ARTENAS	2	131	140'± AG.	LTE 700/800/1900/AFS 56 850	0/0/0/0	2/2/2/1	•	21.5	3	10.7	9	DUST. (11) 1-%. CONOU CHRES
	SALCHING MISH13-77A ANTDRIK	-	340	140'± AG	BC 128	ь	h	100	38.9	28.9 15.0	6.0	57.3	CINST. (1) GATS INTERED CARLE
GAMMA	JAM KKORTROBBO-03 ANTENNS	2	240	140'± AQL	LTE 700/MDD/1900/AWS	0/0/0/0	2/2/2/2	ğ	2,	₹	10.7	008	
	SAUSING 82/300A IFFAX66-22A SHOOS	173	ì		,		1	AGN.	50	ā	8	747	
¥	SAMSAND EN/BIS IERARI 6-134 AUDOS	-7	2		Ľ		i	10	55	3	2	1,5	
	12-0M	-			1			101	28.6	20.6 18.5 12.6	-	38.0	
HOTES	1. "LIPE DENOTES "DOSTING TO REALWH". 2. "LINE" DENOTES "DOSTING TO DE REALWHD". 3. WEGHTS LEYED ARE WITHOUT MOANTING BRACKETS.	SES.								1			

		FEEDLINE SCHEDULE	
SCHEDULE		FEEDLINES	LOCATION
	Costals to resume	(I) by cow care for cas antinua (II) 1-34" coura cares (I) data hreno care	
c	DUSTING TO BE REMOMEN.	ENSTRY TO BE REMORDS: (1) 1-1%" CONON. CARE	STRUCTURE.
	PROPOSED:	(1) Oalz Hitero CARLE	
EXISTING VENC	TON EQUIPMENT FEEDLINE LEADERS MAY THERE	MATE. TOTATING VIOLUM EQUIPMENT PESTURE INVENTIVE INSERT ON CHERCHED PELD CONDITIONS. WITH AND PEDGLAS. THE SERVICE DATE ENTRY THE PESTURE INVESTIGATION OF THE PERSON OF THE PERSON OF THE PERSON OF THE PEDGLAS.	NO PEDDLANE

9 5	2 4 4	88
CONTRACTOR OF THE PROPERTY OF	SEMITALS	ALC FOR ENEW
A Consolination of the Consoli	The Cooper of th	2/8/m -

1	TA.		š	H	Н	H	8	8	ſ
		BMITTALS	USOFFICE				AS No common	MD for right	THE PARTY
	20 CE-008	ß	¥	\parallel		Ħ	0/8/0	0/8/0	FREDR
	\$	L	è		Ш	П	F	•	L


THE P VOICE	SMILECT
WORK WE S	UNCASVIL


06002 06002	ı
71 MOXLEY ROAD UNCASVILLE, GT 06382	R LOUKTON COURS

	1000000	1 Craw
3005	ă	5
VZM LOUATION CODE	MDO LOCATION IS	PLOZE PROJECT IO:
ΝZΛ	ğ	5

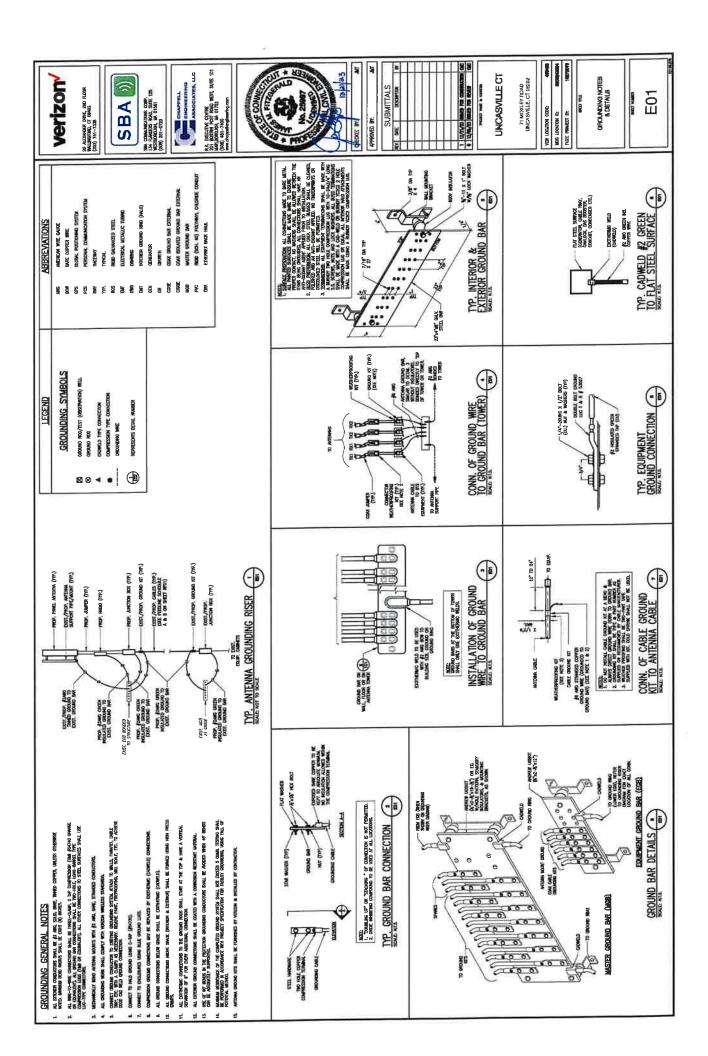
CC) NORECE	F01
W (U)	품

RF DATA

e

ı

1


1

1

CABLE NOTE: See Pediline Schedule A & B on Sheet Redi for Existing & Proposed Cable Quantities.

LINE COLOR CODE SPECIFICATIONS (**)

C-band 64T64R

Gen 2

* Preliminary Design: External appearance and mechanical design can be subject to change

GEN 2. 64164M C-CAIND MIND DIRECTRONS	400 x 734 x 140 mm (15.75 x 20.90 x 5.51 inch)	26kg (57.3 lb)	
GBM 2. Sellon	Size (WxHxD)	Weight	

וופרוופווורפו מפאוצוו רפנו מה אמואפרו נס כוופנואפ	Gan 2, 64764R C-band MMU Dimensions	400 x 734 x 140 mm (15.75 x 28.90 x 5.51 inch)	26kg (57.3 lb)
medialical or	Gan 2, 64764	Size (WxHxD)	Weight

Itam	Gen 2 64T64R (MT6413-77A)
Air Technology	NR n77/TDD
Frequency	3700 – 3980 MHz
IBW	200 MHz
OBW	200 MHz
Carrier Bandwidth	20(HW ready)/40/60/80/100 MHz
# of Carriers	2 carriers
Layer	DL:16L, UL:16RX (8L)
RF Chain	64T64R
Antenna Configuration	4V16H with 192 AE
EIRP	80.5 dBm @320W (55 dBm + 25.5 dBi)
Conductive Power	320W
Spectrum Analyzer	TX/RX support
RX Sensitivity	Typical -97,8dBm @(1Rx, 18,36MHz with 30kHz,51RBs)
Modulation	DL 256QAM support, (DL 1024QAM with 1~2dB power back-off)
Function Split	DL/UL option 7-2x
Input Power	-48 VDC (-38 VDC to -57 VDC)
Power Consumption	1,287W (100% load, room temp.)
Size (WHD)	400 x 734 x 140 mm (15.75 x 28.90 x 5.51 lnch)
Volume	41.11
Weight	26kg (57.3 lb)
Operating Temperature	-40°C - 55°C (w/o solar load)
Cooling	Natural convection
	3GPP 38:104
	FCC 47 CFR 27.53 : < -13dBm/MHz
Unwanted Emission	< -40 dBm/MHz @ above 4 GHz <-50 dBm /MHz @ 4,040 ~ 4,050 MHz, <-60 dBm /MHz @ above 4,050 MHz
Optic Interface	15km, 4 ports (25Gbps x 4), SPP28, single mode, Bi-di (Option: Duplex)
Mounting Options	Pole, wall
NB-IoT	Not support
External Alarm	4fX
Fronthaul Interface	ECPRI

© Samsung Electronics All Rights Reserved.

SAMSUNG

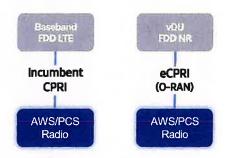
AWS/PCS MACRO RADIO

DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This AWS/PCS 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

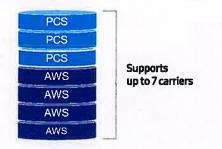
Model Code

RF4439d-25A



Points of Differentiation

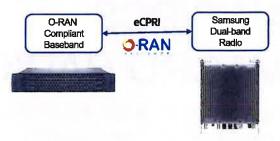
Continuous Migration


Samsung's AWS/PCS macro radio can support each incumbent CPRI interface as well as advanced eCPRI interfaces. This feature provides installable options for both legacy LTE networks and added NR networks.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). Supporting many carriers is essential for using all frequencies that the operator has available.

The new AWS/PCS dual-band radio can support up to 3 carriers in the PCS (1.9GHz) band and 4 carriers in the AWS (2.1GHz) band, respectively.


Technical Specifications

Item	Specification
Tech	LTE/NR
Brand	B25(PCS), B66(AWS)
Frequency Band	DL: 1930 – 1995MHz, UL: 1850 – 1915MHz DL: 2110 – 2200MHz, UL: 1710 – 1780MHz
RF Power	(B25) 4 × 40W or 2 × 60W (B66) 4 × 60W or 2 × 80W
IBW/OBW	(B25) 65MHz/30MHz (B66) DL90MHz, UL70MHz/60MHz
Installation	Pole, Wall
Size/ Weight	14.96 x 14.96 x 10.04inch (36.8L) / 74.7lb

O-RAN Compliant

A standardized O-RAN radio can help in implementing costeffective networks, which are capable of sending more data without compromising additional investments.

Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Brand New Features in a Compact Size

Samsung's AWS/PCS macro radio offers several features, such as dual connectivity for baseband for both CDU and vDU, O-RAN capability, more carriers and an enlarged PCS spectrum, combined into an incumbent radio volume of 36.8L

Same as an incumbent radio volume

700/850 4T4R Macro 320W ORU - New Filter (RF4461d-13A)

Specifications

* 5MHz supporting in BI3(700MHz) depends on 3GPP stal and UE capability. External filters in interferer and victim sides for Mexican boarder to support 5MHz service need to be considered
** Finger guard is not needed.

tem	Spedi	Specification
Air Interface	LTE, NR(HW)	LTE, NR(HW resource ready)
Band	Band13 (700MHz)	Band5 (850MHz)
	DL: 746756MHz	DL: 869~894MHz
Frequency	UL: 777-787MHz	UL: 824~849MHz
WBI	10MHz	25MHz
OBW	10MHz	25MHz
Carrier Bandwidth	LTE/NR 5-y10MHz	LTE 5/10MHz NR 5/10/15/20MHz
# of carriers	\$C+	30
Total # of carriers	4C + B1	4C + B13 (SDL) 1C
RF Chain	4T4R/2T4 2T2R+2T	4T4R/2T4R/2T2R/1T2R 2T2R+2T2R bi-sector
RF Output Power		Total : 320W
	4 x 40W of 2 x 50W	4 x 40W or 2 x 60W
Spectrum Analyzer	TX/RX	TX/RX Support
RX Sensitivity	Typ104,5d8m (@1Rx (25RBs 5MHz)
Modulation	256QAM support, (1024QA)	256QAM support, (1024QAM with 1~2dB power back-off)
Input Power	-48VDC (-38)	-48VDC (-38VDC to -57VDC)
Power Consumption	1,165 Watt @ 100% R	1,165 Watt @ 100% RF load, room temperature
Size (WHD)	380 x 380 x 260 mm (1	380 x 380 x 260 mm (14.96 x 14.96 x 10.23 inch)
Volume	**	37.5 L
Weight (W/o Solar Shield & finger quard)	35.9 kg	35.9 kg (79.1 lb)
Operating Temperature	-40°C (-40°F) ~ 55°C (1	-40°C (-40°F) ~ 55°C (131°F) (Without solar load)
Cooling	Natural	Natural convection
	3GPP 36.104	3GPP 36.104
Unwanted Emission	FCC 47 CFR 27.53 c), f)	FCC 47 CFR 22.917
		-69 d8m/100 kHz per path @ 896 ~901MHz
CPRI Cascade	Not s	Not supported
Optic Interface	20km, 2 ports (9.8Gbps x 2), SFP+	20km, 2 ports (9.8Gbps x 2), SFP+, single mode, Duplex (Option: Bi-Ji)
RET & TMA Interface	A)	AISG 3.0
Blas-T	4 ports (2 p	4 ports (2 ports per band)
Mounting Options	Po	Pole, wall
N8-ioT	2G8+2IB or 4IB	2SA+2GB or 2GB+2IB or 4GB
PIM Cancellation	3	Support
# of antenna port		P
External Alarm		*
Fronthaul Interface	Opt. 8 CPRI / Opt. 7-2x selec	Opt. 8 CPRI / Opt. 7-2x selectable (not simultaneous support)

© Samsung Electronics. All Rights Reserved, Confidential and Proprietary.

ATTACHMENT 3

C Squared Systems, LLC
65 Dartmouth Drive
Auburn, NH 03032
(603) 644-2800
support@csquaredsystems.com

Calculated Radio Frequency Emissions Report

Uncasville CT 71 Moxley Hill Road, Montville, CT 06382

January 4, 2024

Table of Contents

1. Introduction
2. FCC Guidelines for Evaluating RF Radiation Exposure Limits
3. RF Exposure Prediction Methods
4. Antenna Inventory
5. Calculation Results4
6. Conclusion6
7. Statement of Certification6
Attachment A: References7
Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)
Attachment C: Verizon Antenna Model Data Sheets and Electrical Patterns10
<u>List of Figures</u>
Figure 1: Graph of General Population % MPE vs. Distance
Figure 2: Graph of FCC Limits for Maximum Permissible Exposure (MPE)
<u>List of Tables</u>
Table 1: Proposed Antenna Inventory
Table 2: Maximum Percent of General Population Exposure Values
Table 4: FCC Limits for Maximum Permissible Exposure

1. Introduction

The purpose of this report is to investigate compliance with applicable FCC regulations for the proposed modification of Verizon's antenna arrays to be mounted at 140' on an existing guyed lattice tower located at 71 Moxley Hill Road in Montville, CT. The coordinates of the tower are 41° 26' 6.61" N, 72° 7' 23.9" W.

Verizon is proposing the following:

- 1) Install six (6) multi-band antennas, one (1) per sector to support its commercial LTE network.
- 2) Install three (3) C-Band antenna, one (1) per sector.

This report considers the planned antenna configuration for Verizon¹ as well as existing² antenna configuration for AT&T, and T-Mobile to derive the resulting % MPE of its proposed modification.

2. FCC Guidelines for Evaluating RF Radiation Exposure Limits

In 1985, the FCC established rules to regulate radio frequency (RF) exposure from FCC licensed antenna facilities. In 1996, the FCC updated these rules, which were further amended in August 1997 by OET Bulletin 65 Edition 97-01. These new rules include Maximum Permissible Exposure (MPE) limits for transmitters operating between 300 kHz and 100 GHz. The FCC MPE limits are based upon those recommended by the National Council on Radiation Protection and Measurements (NCRP), developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI).

The FCC general population/uncontrolled limits set the maximum exposure to which most people may be subjected. General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Public exposure to radio frequencies is regulated and enforced in units of milliwatts per square centimeter (mW/cm²). The general population exposure limits for the various frequency ranges are defined in the attached "FCC Limits for Maximum Permissible Exposure (MPE)" in Attachment C of this report.

Higher exposure limits are permitted under the occupational/controlled exposure category, but only for persons who are exposed as a consequence of their employment and who have been made fully aware of the potential for exposure, and they must be able to exercise control over their exposure. General population/uncontrolled limits are five times more stringent than the levels that are acceptable for occupational, or radio frequency trained individuals. Attachment C contains excerpts from OET Bulletin 65 and defines the Maximum Exposure Limit.

Finally, it should be noted that the MPE limits adopted by the FCC for both general population/uncontrolled exposure and for occupational/controlled exposure incorporate a substantial margin of safety and have been established to be well below levels generally accepted as having the potential to cause adverse health effects.

Uncasville CT 1 January 4, 2024

.

¹ As referenced to Verizon's Radio Frequency Design Sheet updated 08/11/2023.

² As referenced to T-Mobile's Connecticut Siting Council Notice of Exempt Modification – 71 Moxley Hill Road, Montville, Connecticut, dated 3/07/2019

3. RF Exposure Prediction Methods

The emission field calculation results displayed in the following figures were generated using the following formula as outlined in FCC bulletin OET 65:

Power Density =
$$\left(\frac{\text{GRF}^2 \times 1.64 \times \text{ERP}}{4\pi \times R^2}\right)$$
 X Off Beam Loss

Where:

EIRP = Effective Isotropic Radiated Power

$$R = \text{Radial Distance} = \sqrt{(H^2 + V^2)}$$

H = Horizontal Distance from antenna in meters

V = Vertical Distance from radiation center of antenna in meters

Off Beam Loss is determined by the selected antenna patterns

Ground reflection factor (GRF) of 1.6

These calculations assume that the antennas are operating at 100 percent capacity, that all antenna channels are transmitting simultaneously, and that the radio transmitters are operating at full power. Obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. The calculations assume even terrain in the area of study and do not take into account actual terrain elevations which could attenuate the signal. As a result, the predicted signal levels reported below are much higher than the actual signal levels will be from the final installations.

4. Antenna Inventory

Table 1 below outlines Verizon's proposed antenna configuration for the site. The associated data sheets and antenna patterns for these specific antenna models are included in Attachments C.

Operator	Sector / Call Sign	TX Freq (MHz)	Power at Antenna (Watts)	Ant Gain (dBi)	Power EIRP (Watts)	Antenna Model	Beam Width	Mech. Tilt	Length (ft)	Antenna Centerline Height (ft)
		700	160	14.4	4407		60.5			
		850	160	14.0	4019	MX06FRO660-03	53.0	0	5.94	140
	Alpha /	1900	160	18.0	10095	MA001 RO000-05	55.0	0		
÷		2100	240	18.2	15857		55.5			
		3700	320	25.5	113540	MT6413-77A	(A)	0	2.46	140
		700	160	14.4	4407		62.5			
Verizon Beta / 135°	850	160	14.0	4019	MX06FRO660-03	53.5	0	5.94	140	
	1900	160	18.0	10095	MXU0FRO000-03	55				
	2100	240	18.2	15857	55					
	3700	320	25.5	113540	MT6413-77A	40)	0	2.46	140	
		700	160	14.4	4407		62.5			
		850	160	14.0	4019	N.CVO(ED.C)(0.03	53.5	0	5.04	140
	Gamma / 240°	1900	160	18.0	10095	MX06FRO660-03	55	0	5.94	140
	240	2100	240	18.2	15857		55			
		3700	320	25.5	113540	MT6413-77A	- 4	0	2.46	140

Table 1: Proposed Antenna Inventory³⁴

Uncasville CT 3 January 4, 2024

³ Antenna heights are in reference to Verizon's Radio Frequency Design Sheet updated 08/11/2023,

⁴ Transmit power assumes 0 dB of cable loss.

5. Calculation Results

The calculated power density results are shown in Figure 1 below. For completeness, the calculations for this analysis range from 0 feet horizontal distance (directly below the antennas) to a value of 3,000 feet horizontal distance from the site. In addition to the other worst-case scenario considerations that were previously mentioned, the power density calculations to each horizontal distance point away from the antennas was completed using a local maximum off beam antenna gain (within \pm 5 degrees of the true mathematical angle) to incorporate a realistic worst-case scenario.

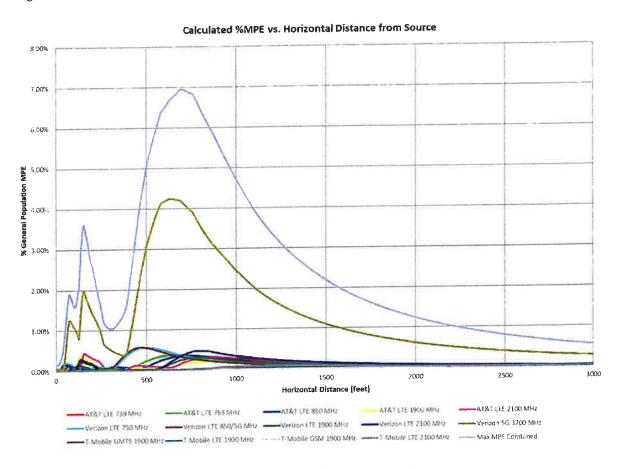


Figure 1: Graph of General Population % MPE vs. Distance

The highest percent of MPE (6.96% of the General Population limit) is calculated to occur at a horizontal distance of 703 feet from antennas. Please note that the percent of MPE calculations close to the site take into account off beam loss, which is determined from the vertical pattern of the antennas used. Therefore, RF power density levels may increase as the distance from the site increases. At distances of approximately 1000 feet and beyond, one would now be in the main beam of the antenna pattern and off beam loss is no longer considered. Beyond this point, RF levels become calculated solely on distance from the site and the percent of MPE decreases significantly as distance from the site increases.

Table 2 below lists percent of MPE values as well as the associated parameters that were included in the calculations. The highest percent of MPE value was calculated to occur at a horizontal distance of 703 feet from the site (reference Figure 1).

As stated in Section 3, all calculations assume that the antennas are operating at 100 percent capacity, that all antenna channels are transmitting simultaneously, and that the radio transmitters are operating at full power. Obstructions (trees, buildings etc.) that would normally attenuate the signal are not taken into account. In addition, a six foot height offset was considered in this analysis to account for average human height. As a result, the predicted signal levels are significantly higher than the actual signal levels will be from the final configuration. The results presented in Figure 1 and Table 2 assume level ground elevation from the base of the tower out to the horizontal distances calculated.

Carrier	Number of Transmitters	Power out of Base Station Per Transmitter (Watts)	Antenna Height (Feet)	Distance to the Base of Antennas (Feet)	Power Density (mW/cm²)	Limit (mW/cm²)	% MPE
AT&T LTE 1900 MHz	1	160.0	130.0	703	0.001478	1.000	0.15%
AT&T LTE 2100 MHz	1	240.0	130.0	703	0.001916	1.000	0.19%
AT&T LTE 739 MHz	1	160.0	130.0	703	0.001869	0.493	0.38%
AT&T LTE 763 MHz	1	160.0	130.0	703	0.001869	0.509	0.37%
AT&T LTE 850 MHz	1	160.0	130.0	703	0.002021	0.567	0.36%
T-Mobile GSM 1900 MHz	1	15.0	150.0	703	0.000031	1.000	0.00%
T-Mobile LTE 1900 MHz	2	40.0	150.0	703	0.000163	1.000	0.02%
T-Mobile LTE 2100 MHz	2	60.0	150.0	703	0.000091	1.000	0.01%
T-Mobile UMTS 1900 MHz	1	40.0	150.0	703	0.000082	1.000	0.01%
Verizon 5G 3700 MHz	1	320.0	140.0	703	0.041414	1.000	4.14%
Verizon LTE 1900 MHz	1	160.0	140.0	703	0.002637	1.000	0.26%
Verizon LTE 2100 MHz	1	240.0	140.0	703	0.003788	1.000	0.38%
Verizon LTE 750 MHz	1	160.0	140.0	703	0.001844	0.500	0.37%
Verizon LTE 850/5G MHz	1	160.0	140.0	703	0.001844	0.567	0.33%
						Total	6.96%

Table 2: Maximum Percent of General Population Exposure Values⁵

Uncasville CT 5 January 4, 2024

⁵ In the case where antenna pattern data was unavailable from the manufacturer, generic antenna pattern was used based on the frequency, bandwidth and gain of the antenna

6. Conclusion

The above analysis verifies that RF exposure levels from the site with Verizon's proposed antenna configuration will be well below the maximum permissible levels as outlined by the FCC in the OET Bulletin 65 Ed. 97-01. Using the conservative calculation methods and parameters detailed above, the maximum cumulative percent of MPE in consideration of all transmitters is calculated to be 6.96% of the FCC limit (General Population/Uncontrolled). This maximum cumulative percent of MPE value is calculated to occur 703 feet away from the site.

7. Statement of Certification

I certify to the best of my knowledge that the statements in this report are true and accurate. The calculations follow guidelines set forth in ANSI/IEEE Std. C95.3, ANSI/IEEE Std. C95.1 and FCC OET Bulletin 65 Edition 97-01.

Report Prepared By:

Ram Acharya

RF Engineer

C Squared Systems, LLC

Main & Law

January 3, 2024 Date

Reviewed/Approved By:

Martin Lavin

Senior RF Engineer C Squared Systems, LLC January 4, 2024 Date

Attachment A: References

OET Bulletin 65 - Edition 97-01 - August 1997 Federal Communications Commission Office of Engineering & Technology

IEEE C95.1-2005, IEEE Standard Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz IEEE-SA Standards Board

IEEE C95.3-2002 (R2008), IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, 100 kHz-300 GHz IEEE-SA Standards Board

Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)

(A) Limits for Occupational/Controlled Exposure⁶

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	$(900/f^2)*$	6
30-300	61.4	0.163	1.0	6
300-1500	RE		f/300	6
1500-100,000	-	£	5	6

(B) Limits for General Population/Uncontrolled Exposure⁷

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	$(180/f^2)^*$	30
30-300	27.5	0.073	0.2	30
300-1500	=	*	f/1500	30
1500-100,000	-	-	1.0	30

f = frequency in MHz * Plane-wave equivalent power density

Table 3: FCC Limits for Maximum Permissible Exposure

Uncasville CT 8 January 4, 2024

⁶ Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

⁷ General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

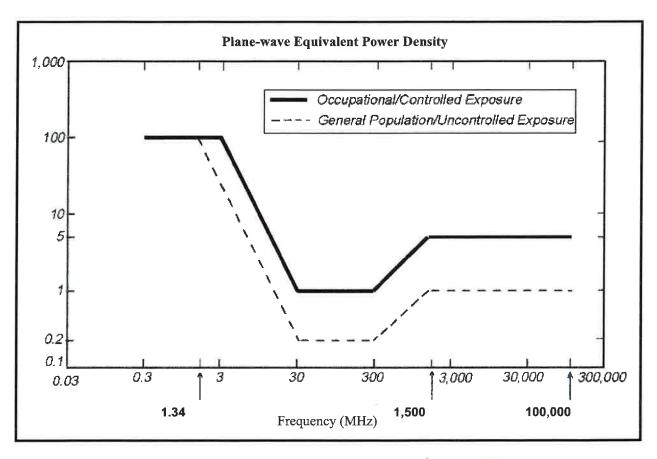


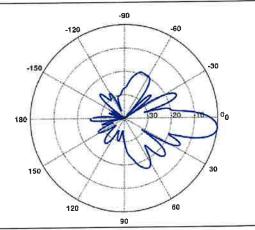
Figure 2: Graph of FCC Limits for Maximum Permissible Exposure (MPE)

Attachment C: Verizon Antenna Model Data Sheets and Electrical Patterns

750 MHz

Manufacturer: JMA

Model #: MX06FRO660-03


Frequency Band: 698-798 MHz

Gain: 14.4 dBi

Vertical Beamwidth: 13.1° Horizontal Beamwidth: 60.5°

Polarization: ±45°

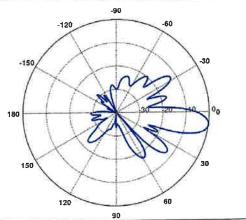
Dimensions (L x W x D): 71.3" x 15.4" x 10.7"

885 MHz

Manufacturer: JMA

Model #: MX06FRO660-03

Frequency Band: 824-894 MHz


Gain: 14.0 dBi

Vertical Beamwidth: 11.8°

Horizontal Beamwidth: 53.0°

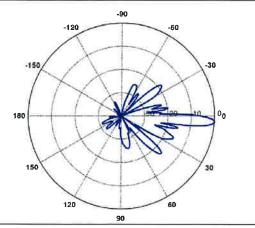
Polarization: ±45°

Dimensions (L x W x D): 71.3" x 15.4" x 10.7"

1900 MHz

Manufacturer: JMA

Model #: MX06FRO660-03


Frequency Band: 1850-1990 MHz

Gain: 18.0 dBi

Vertical Beamwidth: 5.5° Horizontal Beamwidth: 55.0°

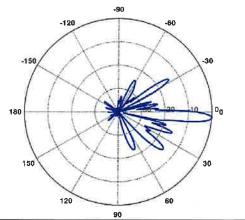
Polarization: ±45°

Dimensions (L x W x D): 71.3" x 15.4" x 10.7"

2100 MHz

Manufacturer: JMA

Model #: MX06FRO660-03


Frequency Band: 1920-2200 MHz

Gain: 18,2 dBi

Vertical Beamwidth: 5.5° Horizontal Beamwidth: 55.5°

Polarization: ±45°

Dimensions (L x W x D): 71.3" x 15.4" x 10.7"

ATTACHMENT 4

STRUCTURAL ANALYSIS REPORT

190' Modified Guyed Tower

71 Moxley Road Ucansville, CT 06382 41.4352 N, 72.1233 W

SBA Site Name: CT10016-A SBA Site ID: Montville 3 CT

Verizon Site Name: Uncasville CT Verizon Site ID: 5000243394 Application ID: 241546, v1

GPD Project Number: 2024778.10016.03

Analysis Results

	,	
Tower Components	66.9%	Sufficient
Foundation	To any	
Net Change in Tower Stress Ratio	+ 5.0%	As compared to the Previous Structural Analysis detailed on Page 3

Verizon Mount Replacement/Reinforcement

Net Change in Tower Stress Ratio due to Mount Replacement/Reinforcement	N/A
Net Change in Tower Stress Ratio due to Mount Replacement/Reinforcement	N/A

December 20, 2023

Respectfully submitted by:

12/20/2023 Christopher J. Scheks, P.E. Connecticut P.E. #: 0030026

Analysis Criteria

The purpose of this analysis is to verify the existing modified guyed tower is structurally capable of carrying the proposed antenna and feedline loads as specified by Verizon to SBA. This report was commissioned by Sheba Samuel of SBA.

The existing modified structure and its foundations have been analyzed per the following requirements:

Governing Code(s)	TIA-222-H & 2022 Connecticut State Building Code	
Wind Speed	126 MPH 3-Second Gust	
Wind Speed w/ Ice	50 MPH 3-Second Gust	
Radial Ice Thickness	1.00"	
Risk Category		
Exposure Category	В	
Topographic Category	1	

Analysis Method

tnxTower (Version 8.2.2.0), a commercially available software program, was used to create a three-dimensional model of the tower and calculate member stresses for various dead, live, wind and ice load cases. Selected output from the analysis is included in the appendices of this report.

Tower Description

The existing 190' modified self-support tower is located in Uncasville, CT. The tower was originally designed for SBA Network Services, Inc. by ROHN in April 1998. The tower was originally designed in accordance with TIA-222-F for a 90-mph 3-second gust wind speed with 1/2" of radial ice (w/ a 25% wind load reduction) in accordance with EIA/TIA-222-F.

Documents Provided

Documents Provided						
Document Type	Remarks	Source				
Original Tower & Foundation Drawings	ROHN Eng. File #: 37183AE001 Dated: 4/21/1998	SBA				
Geotechnical Report	FDH Project #: 1102193EG1 Dated: 8/10/2011	SBA				
Modification Drawings	FDH: Project #: 1465RU1400 Dated, 5/29/2014	SBA				
Modification Drawings	FDH: Project #: 15BJIT1400 Dated 4/22/2015	SBA				
AT&T Mount Analysis	TEP Project #: 323466.754398 Rev.2 Dated: 5/8/2023	SBA				
Previous Structural Analysis	GPD Project #: 2023778.10016.02 Dated: 8/31/2023	SBA				
Verizon Mount Analysis	Colliers Project #: 21777086 (Rev 2) Dated 11/27/2023	SBA				
Collocation Application	SBA Application #: 241546, v1 Dated: 12/4/2023	SBA				

Tower Modification Summary

Modification Type	Description	Designer
Diagonals	Replace existing pipe diagonals from 87.6' to 90' with L2x2x1/4 members.	FDH (5/29/2014)
Legs	Bolt on split P3 STD members to existing legs from 130' to 150'	FDH (5/29/2014)
Legs	Bolt on split P3 STD members to existing legs from 110' to 130'	FDH (4/22/2015)

Tower Materials

TOWER MILLERIALS				
Material Strength				
ASTM A572 (50 KSI Yield Strength)				
ASTM A500-42 (42 KSI Yield Strength)				
A325X				
EHS				

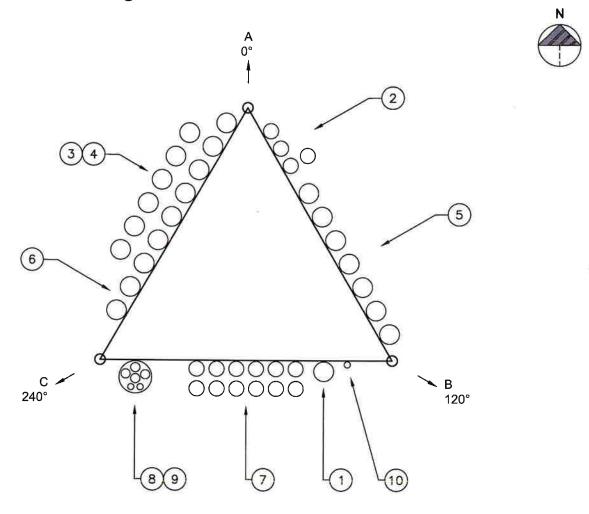
Tower Loading

The following data shows the major loading that the modified tower supports. All existing, leased, and proposed loading information was provided by SBA, or taken from the previous structural analysis.

Existing/Leased Loading

Carrier	Mounting Level (ft)	Center Line Elevation (ft)	# of Antennas	Antenna Manufacturer	Antenna/Mount Model	# of Coax	Coax Size (in)	Note		
			3	Commscope	FFVV-65B-R2					
Dish			3	Samsung	RF4450t-71A	1				
Wireless	180.0	180.0	3	Samsung	RF4451d-70A	1 1	1-3/4 Hybrid	l		
			1	Raycap	RDIDC-9181-PF-48			Ì		
			3	Commscope	MTC3975083 Sector Mount					
			3	RFS	APXVSPP18-C-A20					
			3	RFS	APXVTM14-C-I20	1	1-1/4 Hybrid			
Contact			4	RFS	ACU-A20-N RET					
Sprint Nextel	160.0	160.0	3	Alcatel Lucent	1900 MHz RRH	4				
MEXIC			3	Alcatel Lucent	800 MHz RRH	1 1	1 I/4 Hybrid			
	1		3	Alcatel Lucent	TD-RRH8x20-25	1				
	1 1	:	3	Alcatel Lucent	800 MHz Filter	- 1				
	 		3	A malana	Sector Mount					
					3	Andrew RFS	RR65-18-VDPL2	-		
T-Mobile 15	150.0	150.0	3	Ericsson	APXVAARR24_43-U-NA20 Air32 KRD901146-	10 3	1-5/8 1-5/8 Hybrid			
	16	. 100.0	6	Ericsson	1_B66A_B2A KRY 112 144/1					
			3	Ericsson	4449 B71+B12					
			3	Unknown	Sector Mount					
			6	Commscope	HBXX-6517DS-A2M	 	+			
			3	Commscope	LNX-8513DS-VTM	1				
		141.0	3	Antel	BXA-70063-6CF-EDIN-6	1 1				
Verizon	139.5	141.0	6	RFS	FD9R6004/2CL-3CL	12	1-5/8			
			3	Alcatel Lucent	RH 2x60-AWS	1 1	1-5/8 Hybrid			
		L			1	RFS	DB-T1-6Z-8AB-0Z	1 1		
		139.5	3		Sector Mount	1 1				
	<u> </u>	132.0	3	Ericsson	Air 6419 B77G					
			1	CCI	TPA65R-BU8DA-K]				
			1	CCI	DMP65R-BU8DA					
			1	CCI	TPA65R-BU6DA-K] [
			11	CCI	OPA65R-BU8DA]				
ATOT	400.0		1	CCI	TPA65R-BU4D	12	1-1/4			
AT&T	130.0	130.0	1	CCI	OPA65R-BU4DA	2	1/2 Fiber			
			3	Ericsson	4449 B5/B12] 4	3/4 DC			
			3	Ericsson	8843 B2/B66A					
				Raycap	DC6-48-60-18-8F					
	1		1	Raycap	DC9-48-60-24-8C-EV					
	-	120.0	3		Sector Mount	<u> </u>				
		128.0	3	Ericsson	Air 6449 B77D					
Verizon	76.0	76.0	1		GPS	1	1/2			
					Standoff		.,			

Final Proposed Loading Configuration


Carrier	Mounting Level (ft)	Center Line Elevation (ft)	# of Antennas	Antenna Manufacturer	Antenna/Mount Model	# of Coax	Coax Size (in)	Note	
		444.6	3	Antel	BXA-70063-6CF-EDIN-6				
Verizon 139.5		141.0	6	RFS	FD9R6004/2CL-3CL	_			
			6	JMA	MX06FRO660-03				
			3	Samsung	MT6413 77A				
		420.5	140 0	3	Samsung	B2/B66A RRH ORAN (RF4439d-25A)	7 2	1-5/8 1-5/8 Hybrid	
		3	Samsung	B5/B13 RRH ORAN (RF4461d-13A)]	0,011,0114	1		
					1	Raycap	RVZDC-6627-PF-48		
			3	JMA	91900314				
		139.5	3		Sector Mount				
			1		GPS	_ 1	1/2		
	76.0	76.0	1		Standoff				

Notes:

This loading represents Verizon's final configuration on the tower. See the next page for the proposed feedline layout.

Proposed Feedline Configuration

#	CARRIER	SIZE	QTY.	ELEVATION	NOTES
1	Dish Wireless	1-3/4"	1	180'	Hybrid
2	Sprint	1-1/4"	4	160'	Hybrid
3	T-Mobile	1-5/8"	10	150'	
4	T-Mobile	1-5/8"	3	150'	Hybrid
5	Verizon	1-5/8"	7	139.5'	
6	Verizon	1-5/8"	2	139.5'	Hybrid ((1) Proposed)
7	AT&T	1-1/4"	12	130'	
8	AT&T	1/2"	2	130'	Fiber. Within Conduit
9	AT&T	3/4"	4	130'	DC Power. Within Conduit
10	Verizon	1/2"	1	76'	

Tower Section Results

Capacity Summary of Structural Components

Notes	Component	% Capacity	Pass / Fail	
	Legs	64.2	Pass	
	Diagonals	66.9	Pass	
	Horizontals	25.4	Pass	
	Member Bolts	66.9	Pass	
	Guy Wires	53.6	Pass	
	Torque Arms	35.6	Pass	
	Tower Base Foundation	22.6	Pass	
	Guy Anchor Foundation	70.9	Pass	

Conclusions & Recommendations

The designs of the modified tower and its foundations are sufficient to support the proposed loading configuration and will not require further modification.

Assumptions

This structural analysis is based on the theoretical capacity of the members and is not a condition assessment of the tower. This analysis is from information supplied, and therefore, its results are based on and are as accurate as that supplied data. GPD has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural analysis.

- Tower and structures were built in accordance with the manufacturer's specifications.
- 2) The tower and structures have been maintained in accordance with the manufacturer's specification.
- The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in the Existing/Reserved Loading and Proposed Loading Tables, and the specified documents.
- 4) All mounts, if applicable, are considered adequate to support the loading. No actual analysis of the mount(s) is performed. This analysis is limited to analyzing the tower only.
- 5) Mount sizes, weights, and manufacturers are best estimates based on photos provided and determined without the benefit of a site visit by GPD.
- All member connections and foundation steel reinforcing are assumed designed to meet or exceed the load carrying capacity of the connected member and surrounding soils respectively unless otherwise specified in this report.
- 7) Tower leg azimuths have been estimated based on the use of satellite imagery software.
- 8) The existing feedline layout has been modeled based on the previous structural analysis and site photos.
- 9) The proposed feedlines shall be installed as illustrated in order for the results of this analysis to be valid.

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and GPD should be allowed to review any new information to determine its effect on the structural integrity of the tower.

Disclaimer of Warranties

GPD has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD in connection with this Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

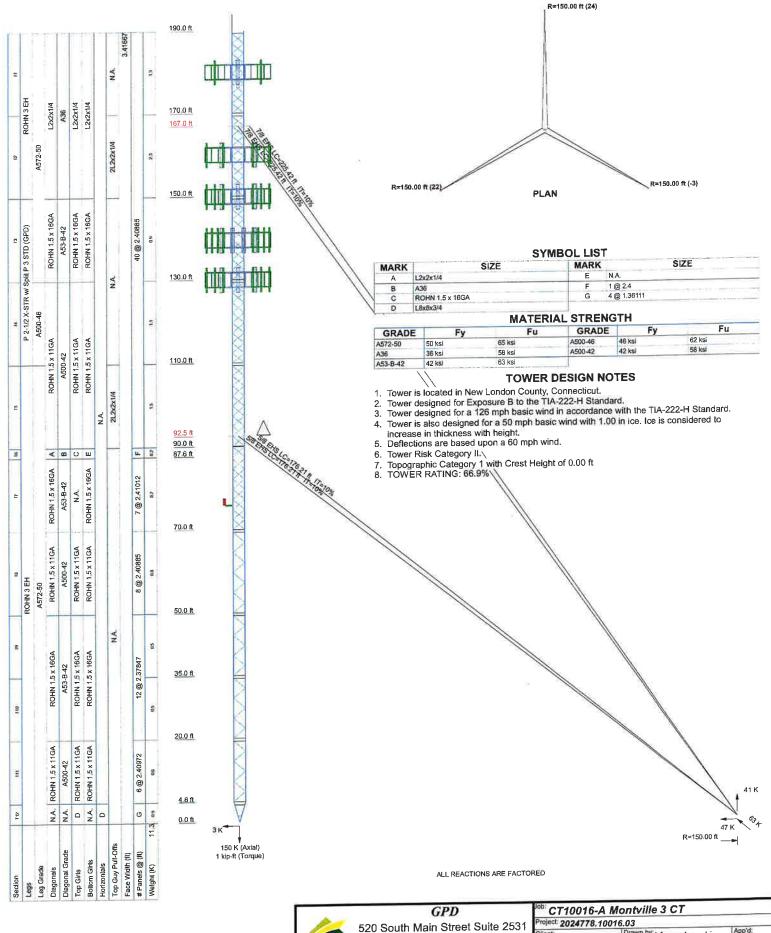
This analysis is limited to the designated maximum wind and seismic conditions per the governing tower standards and code. Wind forces resulting in tower vibrations near the structure's resonant frequencies were not considered in this analysis and are outside the scope of this analysis. Lateral loading from any dynamic response was not evaluated under a time-domain based fatigue analysis.

GPD does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the capability of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the code specified amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

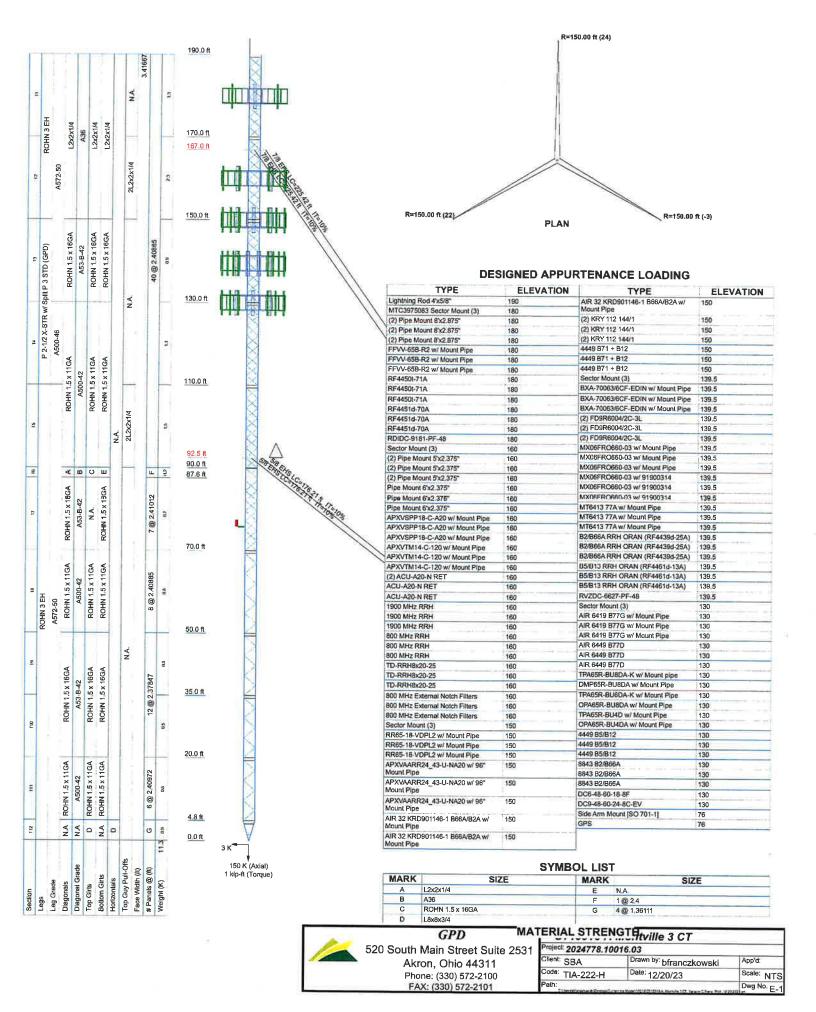

Towers are designed to carry gravity, wind, and ice loads. All members, legs, diagonals, struts, and redundant members provide structural stability to the tower with little redundancy. Absence or removal of a member can trigger catastrophic failure unless a substitute is provided before any removal. Legs carry axial loads and derive their strength from shorter unbraced lengths by the presence of redundant members and their connection to the diagonals with bolts or welds. If the bolts or welds are removed without providing any substitute to the frame, the leg is subjected to a higher unbraced length that immediately reduces its load carrying capacity. If a diagonal is also removed in addition to the connection, the unbraced length of the leg is greatly increased, jeopardizing its load carrying capacity. Failure of one leg can result in a tower collapse because there is no redundancy. Redundant members and diagonals are critical to the stability of the tower.

GPD makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD pursuant to this report will be limited to the total fee received for preparation for this report.

TNX TOWER OUTPUT

520 South Main Street Suite 2531

Akron, Ohio 44311


Phone: (330) 572-2100

FAX: (330) 572-2101

Policit: 2024778.10016.03

Client: SBA Drawn by: bfranczkowski App'd:
Code: TIA-222-H Date: 12/20/23 Scale: NTS

Path: Date: 12/20/23 Dwg No. E-1

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job	CT10016-A Montville 3 CT	Page 1 of 36
Project	2024778.10016.03	Date 14:37:44 12/20/23
Client	SBA	Designed by bfranczkowski

Tower Input Data

The main tower is a 3x guyed tower with an overall height of 190.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 3.42 ft at the top and tapered at the base.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower is located in New London County, Connecticut.

Tower base elevation above sea level: 196.00 ft.

Basic wind speed of 126 mph.

Risk Category II.

Exposure Category B.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1.

Crest Height: 0.00 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

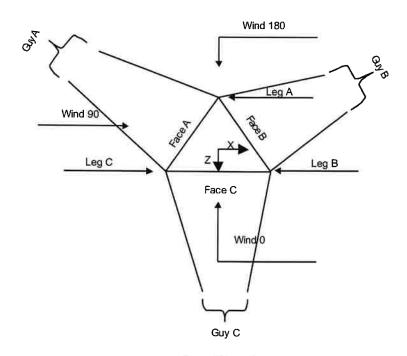
Pressures are calculated at each section.

Stress ratio used in tower member design is 1.

Safety factor used in guy design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options


- Consider Moments Legs
- Consider Moments Horizontals
- Consider Moments Diagonals
- Use Moment Magnification
- √ Use Code Stress Ratios
- ✓ Use Code Safety Factors Guys
 Escalate Ice
 - Always Use Max Kz Use Special Wind Profile
- √ Include Bolts In Member Capacity
 Leg Bolts Are At Top Of Section
 Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)
 SR Members Have Cut Ends
 - SR Members Are Concentric Distribute Leg Loads As Uniform

- Assume Legs Pinned
- Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
- √ Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- Project Wind Area of Appurtenances Alternative Appurt. EPA Calculation
- √ Autocalc Torque Arm Areas Add IBC .6D+W Combination
- √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules
- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation
- √ Consider Feed Line Torque
 - Include Angle Block Shear Check
 Use TIA-222-H Bracing Resist. Exemption
 Use TIA-222-H Tension Splice Exemption
 Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

GPD

Job		Page
	CT10016-A Montville 3 CT	2 of 36
Project		Date
	2024778.10016.03	14:37:44 12/20/23
Client	SBA	Designed by bfranczkowski

Face Guyed

1011CI OCOLIOII GEOIIIELI V	Tower	Section	Geometry	ı
-----------------------------	-------	---------	----------	---

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database	•	Width	of	Length
					Sections	9
	ft			fi		ft
T1	190.00-170.00			3.42	1	20.00
T2	170.00-150.00			3.42	1	20.00
T3	150.00-130.00			3.42	1	20.00
T4	130.00-110.00			3.42	1	20.00
T5	110.00-90.00			3.42	1	20.00
T6	90.00-87.60			3.42	1	2.40
T7	87.60-70.00			3.42	1	17.60
T8	70.00-50.00			3.42	1	20.00
T 9	50.00-35.00			3.42	1	15.00
T10	35.00-20.00			3.42	1	15.00
T 11	20.00-4.81			3.42	1	15.19
T12	4.81-0.00			3.42	1	4.81

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job	CT10016-A Montville 3 CT	Page 3 of 36
Project	2024778.10016.03	Date 14:37:44 12/20/23
Client	SBA	Designed by bfranczkowski

Tower Section Geometry (cont'd)

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace	Has Horizontals	Top Girt Offset	Bottom Gir Offset
	Ø	ft		End Panels		in	in
Tl	190.00-170.00	2.41	CX Brace	No	Yes	7.3750	1.3750
T2	170.00-150.00	2.41	CX Brace	No	Yes	7.3750	1.3750
T3	150.00-130.00	2.41	CX Brace	No	Yes	7.3750	1.3750
T4	130.00-130.00	2.41	CX Brace	No	Yes	7.3750	1.3750
T5	110.00-90.00	2.41	CX Brace	No	Yes	7.3750	1.3750
T6	90.00-87.60	2.40	CX Brace	No	Yes	0.0000	0.0000
T7	87.60-70.00	2.41	CX Brace	No	Yes	7.3750	1.3750
	70.00-70.00	2.41	K Brace Left	No	Yes	7.3750	1.3750
T8	50.00-35.00	2.38	K Brace Left	No	Yes	7.3750	1.3750
T9	35.00-20.00	2.38	K Brace Left	No	Yes	7.3750	1.3750
T10		2.38	K Brace Left	No	Yes	7.3750	1.3750
T11 T12	20.00-4.81 4.81-0.00	1.36	K Brace Left	No	Yes	7.3750	1.3750

Tower Section Geometry (cont'd)

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation	Туре	Size	Grade	Туре	Size	Grade
ft						426
T1 190.00-170.00	Pipe	ROHN 3 EH	A572-50	Equal Angle	L2x2x1/4	A36
	•		(50 ksi)			(36 ksi)
T2 170,00-150.00	Pipe	ROHN 3 EH	A572-50	Equal Angle	L2x2x1/4	A36
	•		(50 ksi)			(36 ksi)
T3 150.00-130.00 A	rbitrary Shape	P 2-1/2 X-STR w/ Split P 3	A572-50	Pipe	ROHN 1.5 x 16GA	A53-B-42
15 150.00 150.00 1		STD (GPD)	(50 ksi)			(42 ksi)
T4 130.00-110.00 A	rbitrary Shape	P 2-1/2 X-STR w/ Split P 3	A500-46	Pipe	ROHN 1.5 x 11GA	A500-42
14 150.00 110.00 1.	20122, 4F	STD (GPD)	(46 ksi)			(42 ksi)
T5 110.00-90.00	Pipe	ROHN 3 EH	A572-50	Pipe	ROHN 1.5 x 11GA	A500-42
15 110.00-90.00	Tipo		(50 ksi)			(42 ksi)
T6 90.00-87.60	Pipe	ROHN 3 EH	A572-50	Equal Angle	L2x2x1/4	A36
10 90.00-67.00	Tipo		(50 ksi)	_		(36 ksi)
T7 87.60-70.00	Pipe	ROHN 3 EH	A572-50	Pipe	ROHN 1.5 x 16GA	A53-B-42
1 / 8 / .00 - / 0.00	Tipe	2102211 2 = 4-	(50 ksi)	-		(42 ksi)
T8 70.00-50.00	Pipe	ROHN 3 EH	À572-50	Pipe	ROHN 1.5 x 11GA	A500-42
16 /0.00-30.00	Tipo	202212	(50 ksi)	•		(42 ksi)
700 50 00 25 00	Dina	ROHN 3 EH	A572-50	Pipe	ROHN 1.5 x 16GA	A53-B-42
T9 50.00-35.00	Pipe	ROIN 5 EII	(50 ksi)	1		(42 ksi)
5710 0 7 00 00 00	D:	ROHN 3 EH	A572-50	Pipe	ROHN 1.5 x 16GA	A53-B-42
T10 35.00-20.00	Pipe	KOIIIV 3 EII	(50 ksi)			(42 ksi)
	D' -	ROHN 3 EH	A572-50	Pipe	ROHN 1.5 x 11GA	À500-42
T11 20.00-4.81	Pipe	KOIII J EII	(50 ksi)	- 70		(42 ksi)
		noini 2 EII	A572-50	Equal Angle		`A36´
T12 4.81-0.00	Pipe	ROHN 3 EH	(50 ksi)	Liquit Angle		(36 ksi)

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	CT10016-A Montville 3 CT	4 of 36
Project		Date
	2024778.10016.03	14:37:44 12/20/23
Client	00.	Designed by
	SBA	bfranczkowski

Tower Section Geometry (cont'd)

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Giri Grade
T1 190.00-170.00	Equal Angle	L2x2x1/4	A36	Equal Angle	L2x2x1/4	A36
T2 170.00-150.00	Single Angle	L2x2x1/4	(36 ksi) A36 (36 ksi)	Equal Angle	L2x2x1/4	(36 ksi) A53-B-42
T3 150.00-130.00	Pipe	ROHN 1.5 x 16GA	A53-B-42 (42 ksi)	Pipe	ROHN 1.5 x 16GA	(42 ksi) A53-B-42
T4 130.00-110.00	Pipe	ROHN 1.5 x 11GA	A500-42 (42 ksi)	Pipe	ROHN 1.5 x 11GA	(42 ksi) A500-42
T5 110.00-90.00	Pipe	ROHN 1.5 x 11GA	A500-42	Pipe	ROHN 1.5 x 11GA	(42 ksi) A500-42
T6 90.00-87.60	Pipe	ROHN 1.5 x 16GA	(42 ksi) A53-B-42	Pipe		(42 ksi) A36
T7 87.60-70.00	Pipe		(42 ksi) A36	Pipe	ROHN 1.5 x 16GA	(36 ksi) A53-B-42
T8 70.00-50.00	Pipe	ROHN 1.5 x 11GA	(36 ksi) A53-B-42	Pipe	ROHN 1.5 x 11GA	(42 ksi) A53-B-42
T9 50.00-35.00	Pipe	ROHN 1.5 x 16GA	(42 ksi) A53-B-42	Pipe	ROHN 1.5 x 16GA	(42 ksi) A53-B-42
T10 35.00-20.00	Pipe	ROHN 1.5 x 16GA	(42 ksi) A53-B-42	Pipe	ROHN 1.5 x 16GA	(42 ksi) A53-B-42
T11 20.00-4.81	Pipe	ROHN 1.5 x 11GA	(42 ksi) A500-42	Pipe	ROHN 1.5 x 11GA	(42 ksl) A500-42
T12 4.81-0.00	Equal Angle	L8x8x3/4	(42 ksi) A36 (36 ksi)	Equal Angle	L8x8x3/4	(42 ksi) A36 (36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation	No. of Mid	Mid Girt Type	Mid Girt Size	Mid Girt Grade	Horizontal Type	Horizontal Size	Horizontai Grade
fi	Girts						
T12 4.81-0.00	None	Flat Bar		A36	Equal Angle	L8x8x3/4	A36
	_			(36 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A_f	Adjust. Factor A,	Weight Mult.	Double Angle Stitch Bolt Spacing	Stitch Bolt Spacing	Stitch Bolt Spacing
ft	ft²	in					Diagonals in	Horizontals in	Redundants in
T1 190.00-170.00	0.00	0.3750	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000
T2 170.00-150.00	0.00	0.3750	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000
T3 150.00-130.00	0.00	0.3750	A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000
T4	0.00	0.1757	A36	1	1	1	36.0000	36.0000	36.0000

Page Job *tnxTower* 5 of 36 CT10016-A Montville 3 CT Date **Project GPD** 14:37:44 12/20/23 2024778.10016.03 520 South Main Street Suite 2531 Designed by Client Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101 **SBA** bfranczkowski

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A_f	Adjust. Factor A,	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
ft	ft ²	in	2000				ın	· · ·	
130.00-110.00 T5	0.00	0.3750	(36 ksi) A36	1	1	1	36.0000	36.0000	36.0000
110.00-90.00 T6 90.00-87.60	0.00	0.3750	(36 ksi) A36	1	1	1	36.0000	36.0000	36.0000
T7 87.60-70.00	0.00	0.3750	(36 ksi) A36	1	1	1	36.0000	36.0000	36.0000
T8 70.00-50.00	0.00	0.3750	(36 ksi) A36	1	1	1	36.0000	36.0000	36.0000
T9 50.00-35.00	0.00	0.3750	(36 ksi) A36	i	Ï	1	36.0000	36.0000	36.0000
T10	0.00	0.3750	(36 ksi) A36	1	1	1	36.0000	36.0000	36.0000
35.00-20.00 T11 20.00-4.81	0.00	0.3750	(36 ksi) A36	1	1	1	36.0000	36.0000	36.0000
T12 4.81-0.00	0.00	0.3750	(36 ksi) A36 (36 ksi)	1	1	1	36.0000	36.0000	36.0000

Tower Section Geometry (cont'd) K Factors1 Horiz. Sec. Inner Girts Single Legs K CalcX CalcTower Horiz. Brace Brace Brace Diags Elevation K K Diags Diags Single Solid X X X X X Rounds X X Angles Y Y Y 1 1 Yes No T1 190.00-170.00 Yes No 1 T2 1 170.00-150.00 1.1819 No Yes 150.00-130.00 1.1819 Yes No T4 130.00-110.00 1 T5 Yes No 110.00-90.00 No Yes T6 90.00-87.60 No 1 Yes T7 87.60-70.00 No 1 Yes 70.00-50.00 No Yes 50.00-35.00 T10 No 1

35.00-20.00

T11

20.00-4.81

T12 4.81-0.00

No

Yes

1

1

Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	CT10016-A Montville 3 CT	6 of 36
Project		Date
	2024778.10016.03	14:37:44 12/20/23
Client		Designed by
	SBA	bfranczkowski

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg	Leg		Leg		Diagonal		Top Girt		Bottom Girt		Girt	Long Ho	rizontal	Short Horizontal	
The state of the s	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U		
T1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75		
190.00-170.00 T2 170.00-150.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75		
T3 150.00-130.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75		
T4 130.00-110.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75		
T5 110.00-90.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75		
T6 90.00-87.60	0.0000	1	0.0000	0.75	0.0000	1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75		
T7 87.60-70.00	0.0000	1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75		
T8 70.00-50.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75		
T9 50.00-35.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75		
T10 35.00-20.00	0.0000	1	0.0000	1	0.0000	î	0.0000	î	0.0000	0.75	0.0000	0.75	0.0000	0.75		
T11 20.00-4.81	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75		
T12 4.81-0.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	0.75	0.0000	1	0.0000	0.75		

Tower Elevation ft	Redui Horiz		Redund Diago		Reduna Sub-Diag		Redui Sub-Ho		Redundan	t Vertical	Redund	lant Hip		lant Hip gonal
	Net Widtl Deduct in	ı U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 190.00-170.00	0.0000	0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75(1)
170100 170100	0.0000	0.75 (2)	0.0000	0.75							0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	(2) 0.75							0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	(3) 0.75							0.0000	0.75 (4)	0.0000	0.75 (4)
T2 170.00-150.00	0.0000	0.75 (1)	0.0000	(4) 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
170.00-130.00	0.0000	0.75 (2)	0.0000	(1) 0.75							0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	(2) 0.75							0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	(3) 0.75							0.0000	0.75 (4)	0.0000	0.75 (4)
T3 150.00-130.00	0.0000	0.75 (1)	0.0000	(4) 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75(1)
130.00-130.00	0.0000	0.75 (2)	0.0000	(1) 0.75							0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	(2) 0.75							0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	(3) 0.75							0.0000	0.75 (4)	0.0000	0.75 (4)
T4 130.00-110.00	0.0000	0.75 (1)	0.0000	(4) 0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75(1)

GPD

Job		Page
	CT10016-A Montville 3 CT	7 of 36
Project	2024778.10016.03	Date 14:37:44 12/20/23
Client	SBA	Designed by bfranczkowski

Tower Elevation	Redun Horize		Reduna Diago		Reduna Sub-Diag		Redun Sub-Hor		Redundan	t Vertical	Reduna	lant Hip		lant Hip zonal
fi	Net Width Deduct in	ı U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
	0.0000	0.75 (2)	0.0000	0.75							0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	(2) 0.75							0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	(3) 0.75							0.0000	0.75 (4)	0.0000	0.75 (4)
T5	0.0000	0.75 (1)	0.0000	(4) 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
110.00-90.00	0.0000	0.75 (2)	0.0000	(1) 0.75							0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)		(2) 0.75							0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)		(3) 0.75							0.0000	0.75 (4)	0.0000	0.75 (4)
T6 90.00-87.60		0.75 (1)		(4) 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75(1)
10 70.00 07.00		0.75 (2)		(1) 0.75					ŀ		0.0000	0.75 (2)	0.0000	0.75 (2)
		0.75 (3)		(2) 0.75							0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)		(3) 0.75							0.0000	0.75 (4)	0.0000	0.75 (4)
ma 0.2 co 20 00		0.75 (1)		(4) 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75(1)
T7 87.60-70.00		0.75 (2)		(1) 0.75	0.0000	• • • • • • • • • • • • • • • • • • • •					0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000			(2) 0.75							0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (3)		(3) 0.75	900						0.0000	0.75 (4)	0.0000	0.75 (4)
	0.0000	0.75 (4)		(4) 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
T8 70.00-50.00		0.75 (1)	[(1) 0.75	0,0000	0.75	0.0000	0.75			0.0000	0.75 (2)	0.0000	0.75 (2)
		0.75 (2)		(2)							0.0000	0.75 (3)	0.0000	0.75 (3)
		0.75 (3)		0.75							0.0000	0.75 (4)	0.0000	0.75 (4)
	0.0000	0.75 (4)		0.75 (4)			2 0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)
T9 50.00-35.00	0.0000	0.75 (1)	0.0000	0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.73		0.75 (1)	0.0000	0.75 (2)
	0.0000	0.75 (2)		0.75 (2)							0.0000		0.0000	0.75 (3)
	0.0000	0.75 (3)	0.0000	0.75 (3)							0.0000	0.75 (3)		
	0.0000	0.75 (4)	0.0000	0.75 (4)							0.0000	0.75 (4)	0.0000	0.75 (4)
T10 35.00-20.00	0.0000	0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75(1)
33,00-20.00	0.0000	0.75 (2)	0.0000	0.75							0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	0.75							0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	0.75							0.0000	0.75 (4)	0.0000	0.75 (4)
T11 20.00-4.81	0.0000	0.75 (1)	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (1)	0.0000	0.75 (1)

GPD

520 South Main Street Suite 2531

Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	CT10016-A Montville 3 CT	8 of 36
Project		Date
	2024778.10016.03	14:37:44 12/20/23
Client		Designed by
	SBA	bfranczkowski

Tower Elevation ft	Redur Horiz	ontal	Redund Diago		Reduna Sub-Diag		Redui Sub-Ho		Redundan	t Vertical	Redun	dant Hip		lant Hip gonal
	Net Width Deduct in		Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
	0.0000	0.75 (2) 0.75 (3)		0.75 (2) 0.75 (3)							0.0000	0.75 (2) 0.75 (3)	0.0000	0.75 (2) 0.75 (3)
T12 4.81-0.00		0.75 (4) 0.75 (1)	0.0000	0.75 (4) 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 (4) 0.75 (1)	0.0000	0.75 (4) 0.75 (1)
				(1)	L									
	0.0000	0.75 (2)	0.0000	0.75 (2)							0.0000	0.75 (2)	0.0000	0.75 (2)
	0.0000	0.75 (3)	0.0000	0.75 (3)							0.0000	0.75 (3)	0.0000	0.75 (3)
	0.0000	0.75 (4)	0.0000	0.75 (4)							0.0000	0.75 (4)	0.0000	0.75 (4)

Tower Section Geometry (cont'd)

Tower Elevation	Leg Connection	Leg		Diagor	nal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hori	zontal
ft	Туре														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T1	Flange	0.7500	4	0.6250	1	0.6250	1	0.6250	1	0.6250	0	0.6250	0	0.6250	0
190.00-170.00		A325X		A325X		A325X		A325X		A325N		A325N		A325N	
T2	Flange	0.7500	4	0.6250	1	0.6250	1	0.6250	1	0.6250	0	0.6250	0	0.6250	0
170.00-150.00		A325X		A325X		A325X		A325X		A325N		A325N		A325N	
T3	Flange	0.7500	4	0.5000	1	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0
150.00-130.00		A325X		A325X		A325X		A325X		A325N		A325N		A325N	
T4	Flange	0.7500	4	0.5000	1	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0
130.00-110.00		A325X		A325X		A325X		A325X		A325N		A325N		A325N	
T5	Flange	0.7500	4	0.5000	1	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0
110.00-90.00		A325X		A325X		A325X		A325X		A325N		A325N		A325N	
T6 90.00-87.60	Flange	0.7500	0	0.6250	1	0.5000	1	0.5000	0	0.6250	0	0.6250	0	0.6250	0
		A325X		A325X		A325X		A325X		A325N		A325N		A325N	
T7 87.60-70.00	Flange	0.7500	4	0.5000	1	0.5000	0	0.6250	1	0.6250	0	0.6250	0	0.6250	0
		A325X		A325X		A325X		A325X		A325N		A325N		A325N	
T8 70.00-50.00	Flange	0.7500	4	0.5000	1	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0
		A325X		A325X		A325X		A325X		A325N		A325N		A325N	
T9 50.00-35.00	Flange	0.7500	4	0.5000	1	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0
		A325X		A325X		A325X		A325X		A325N		A325N		A325N	
T10	Flange	0.7500	4	0.5000	1	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0
35.00-20.00		A325X		A325X		A325X		A325X		A325N		A325N		A325N	
T11 20.00-4.81	Flange	0.7500	4	0.5000	1	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0
		A325X		A325X		A325X		A325X		A325N		A325N		A325N	

GPD

Job	CT10016-A Montville 3 CT	Page 9 of 36
Project	2024778.10016.03	Date 14:37:44 12/20/23
Client	SBA	Designed by bfranczkowski

Tower Leg Elevation Connection		Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
fi	Type	Bolt Size	No.	Bolt Size in	No.	in	No.								
T12 4.81-0.00	Flange	0.7500 A325X	0	0.5000 A325X	1	0.6250 A325X	0	0.5000 A325X	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	

Guy Data												
Guy Elevation	Guy Grade		Guy Size	Initial Tension	%	Guy Modulus	Guy Weight	L_{u}	Anchor Radius	Anchor Azimuth Adj.	Anchor Elevation	End Fitting Efficiency
Ð				K		ksi	plf	ft	ft	0	ft	%
166.977	EHS	A	7/8	7.97	10%	24000	1.581	205.69	150.00	0.0000	24.00	100%
100.9//	EHIS	В	7/8	7.97	10%	24000	1.581	225.27	150.00	0.0000	-3.00	100%
		0	7/8	7.97	10%	24000	1.581	207.08	150.00	0.0000	22.00	100%
		Ċ			10%	23000	0.813	163.03	150.00	0.0000	24.00	100%
92.5234	EHS	A	5/8	4.24				176.07	150.00	0.0000	-3.00	100%
		В	5/8	4.24	10%	23000	0.813			0.0000	22.00	100%
		C	5/8	4.24	_10%	23000	0.813	163.88	150.00	0.0000	22.00	10070

Guy Data(cont'd)									
Guy Elevation ft	Mount Type	Torque-Arm Spread	Torque-Arm Leg Angle	Torque-Arm Style	Torque-Arm Grade	Torque-Arm Type	Torque-Arm Size		
166.977	Torque Arm	6.83	0.0000	Channel	A36	Channel	MC18x42.7		
92.5234	Torque Arm	6.83	0.0000	Channel	(36 ksi) A36 (36 ksi)	Channel	C12x20.7		

	Guy Data (cont'd)										
Guy Elevation	Diagonal Grade	Diagonal Type	Upper Diagonal Size	Lower Diagonal Size	Is Strap	Pull-Off Grade	Pull-Off Type	Pull-Off Size			
166.98	A572-50	Solid Round			No	A36	Double Equal	2L2x2x1/4			
92.52	(50 ksi) A572-50 (50 ksi)	Solid Round			No	(36 ksi) A36 (36 ksi)	Angle Double Equal Angle	2L2x2x1/4			

GPD

Job		Page
	CT10016-A Montville 3 CT	10 of 36
Project		Date
	2024778.10016.03	14:37:44 12/20/23
Client	CDA.	Designed by
	SBA	bfranczkowski

Guy Data (cont'd)									
Guy Elevation ft	Cable Weight A K	Cable Weight B K	Cable Weight C K	Cable Weight D K	Tower Intercept A	Tower Intercept B	Tower Intercept C	Tower Intercept D	
66.977	0.33	0.36	0.33		4.14	4.95	4.20		
92.5234	0.13	0.14	0.13		2.53	3.8 sec/pulse 2.95	3.5 sec/pulse 2.56		
					2.7 sec/pulse	3.0 sec/pulse	2.8 sec/pulse		

			Guy Data (cont'd)							
			Torqu	ie Arm	Pul	Off	Diag	gonal		
Guy Elevation ft	Calc K Single Angles	Calc K Solid Rounds	K _x	K_{ν}	K,	K _y	K_x	K_y		
166.977	No	No	1	1	1	1	1	1		
92.5234	No	No	1	1	1	1	1	1		

	Guy Data (cont'd)											
		Torq	ue-Arm			Pu	l Off			Dia	gonal	
Guy Elevation ft	Bolt Size in	Number	Net Width Deduct in	U	Bolt Size in	Number	Net Width Deduct in	U	Bolt Size in	Number		U
166.977	0.8750 A325N	2	0.0000	0.75	0.6250 A325N	0	0.0000	0.75	0.6250 A325N	0	0.0000	0.75
92.5234	0.8750 A325N	2	0.0000	0.75	0.6250 A325N	0	0.0000	0.75	0.6250 A325N	0	0.0000	0.75

			Guy Pre	ssures	
Guy Elevation ft	Guy Location	z ft	q_z	q _z Ice psf	Ice Thickness in
166.977	A	95.49	33	5	1.1121
	В	81.99	32	5	1.0953
	C	94.49	33	5	1.1109
92.5234	A	58.26	29	5	1.0585
	В	44.76	27	4	1.0310
	C	57.26	29	5	1.0567

tnxTower	Job	CT10016-A Montville 3 CT	Page 11 of 36
GPD 520 South Main Street Suite 2531	Project	2024778.10016.03	Date 14:37:44 12/20/23
Akron, Ohio 44311 Phone: (330) 572-2100	Client	SBA	Designed by bfranczkowski

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or Leg	Allow Shield	Exclude From Torque	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
Climbing Pegs	A	No	Calculation No	Ar (CaAa)	190.00 -	0.0000	0.5	1	ï	0.2500	0.1500		0.31
Cumbing regs	71			, ,	8.00	0.0000	0.5	1	1	0.3750	0.3750		0.22
Safety Line (3/8") ***	Α	No	No	Ar (CaAa)	190.00 - 8.00	0.0000	0.5	1	Ê				
Guyed Tower Coax Bracket	Α	No	No	Af (CaAa)	190.00 - 8.00	0.0000	0	1	1	1.7599	1.7599		0.75
Guyed Tower	В	No	No	Af (CaAa)	190.00 - 8.00	0.0000	0	1	1	1.7599	1.7599		0.75
Coax Bracket Guyed Tower Coax Bracket	С	No	No	Af (CaAa)	190.00 - 8.00	0.0000	0	1	1	1.7599	1.7599		0.75
LDF7-50A (1-5/8 FOAM)	A	No	No	Ar (CaAa)	150.00 - 8.00	0.0000	0.1	13	7	0.6250	1.9800		0.82
*** 1-5/8" Hybrid	Α	No	No	Ar (CaAa)	139.50 - 8.00	0.0000	-0.25	2	2	0.6250	1.9800		0.82
***										1.0000	2.0000		0.32
2" Flex Conduit	С	No	No	Ar (CaAa)	130.00 - 8.00	0.0000	0.4	1	1				
1/2" Fiber Cable	С	No	No	Ar (CaAa)	130.00 - 8.00	0.0000	0.4	2	2	0.0000	0.6300		0.15
3/4" DC	C	No	No	Ar (CaAa)	130.00 - 8.00	0.0000	0.4	4	4	0.0000	0.7500		0.33
Power Line LDF6-50A (1-1/4 FOAM)	С	No	No	Ar (CaAa)	130.00 - 8.00	0.0000	0	12	6	1.0000	1.5500		0.66
*** 1-3/4" Hybrid	С	No	No	Ar (CaAa)	180.00 - 8.00	0.0000	-0.25	1	1	1.0000	1.7500		1.00
***										1 0000	0.6200		0.15
LDF4P-50A (1/2 FOAM) ***	С	No	No	Ar (CaAa)	76.00 - 8.00	0.0000	-0.3	1	1	1.0000	0.6300		
LDF7-50A (1-5/8 FOAM) ***	В	No	No	Ar (CaAa)	139.50 - 8.00	0.0000	0.1	7	7	0.6250	1.9800		0.82
*** 1-1/4" Hybrid Cable ***	В	No	No	Ar (CaAa)	160.00 - 8.00	0.0000	-0.25	4	3	1.0000	1.2500		1.00

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	C _A A _A Out Face	Weight
Section	Elevation fi		ft ²	ft²	In Face ft²	ft ²	K
T1	190,00-170.00	A	0.000	0.000	6.916	0.000	0.03
11	190.00-170.00	В	0.000	0.000	5.866	0.000	0.01
		Č	0.000	0.000	7.616	0.000	0.02
T2	170.00-150.00	Ā	0.000	0.000	6.916	0.000	0.03
12	170.00-150.00	В	0.000	0.000	10.866	0.000	0.05
		č	0.000	0.000	9.366	0.000	0.03
Т3	150.00-130.00	A	0.000	0.000	62.158	0.000	0.25
13	130.00-130.00	В	0.000	0.000	29.033	0.000	0.15
		Č	0.000	0.000	9.366	0.000	0.03

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	CT10016-A Montville 3 CT	12 of 36
Project		Date
	2024778.10016.03	14:37:44 12/20/23
Client		Designed by
	SBA	bfranczkowski

Tower Section	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
	ft		ft ²	-ft²	ft ²	ft ²	K
T4	130.00-110.00	A	0.000	0.000	66.316	0.000	0.27
		В	0.000	0.000	43.586	0.000	0.21
		Ċ	0.000	0.000	59.086	0.000	0.21
T5	110.00-90.00	A	0.000	0.000	66.316	0.000	0.27
		В	0.000	0.000	43.586	0.000	0.21
		С	0.000	0.000	59.086	0.000	0.23
T6	90.00-87.60	A	0.000	0.000	7.958	0.000	0.03
		В	0.000	0.000	5.230	0.000	0.03
		С	0.000	0.000	7.090	0.000	0.03
T 7	87.60-70.00	Α	0.000	0.000	58.358	0.000	0.24
		В	0.000	0.000	38.356	0.000	0.18
		С	0.000	0.000	52.374	0.000	0.21
T8	70.00-50.00	Α	0.000	0.000	66.316	0.000	0.27
		В	0.000	0.000	43.586	0.000	0.21
		С	0.000	0.000	60.346	0.000	0.24
T9	50.00-35.00	Α	0.000	0.000	49.737	0.000	0.20
		В	0.000	0.000	32.690	0.000	0.16
		C	0.000	0.000	45,260	0.000	0.18
T10	35.00-20.00	A	0.000	0.000	49.737	0.000	0.20
		В	0.000	0.000	32.690	0.000	0.16
		C	0.000	0.000	45.260	0.000	0.18
T11	20.00-4.81	Α	0.000	0.000	39.790	0.000	0.16
		В	0.000	0.000	26.152	0.000	0.13
		C	0.000	0.000	36.208	0.000	0.14
T12	4.81-0.00	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	0.000	0.00

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	C_dA_d	C_AA_A	Weight
Section	Elevation	or	Thickness		-	In Face	Out Face	8
	ſŧ	Leg	in	ſ₽	fi ²	ft^2	ft ²	K
T1	190.00-170.00	Α	1.185	0.000	0.000	21.135	0.000	0.19
		В		0.000	0.000	10.606	0.000	0.09
		C		0.000	0.000	14.726	0.000	0.15
T2	170.00-150.00	Α	1.171	0.000	0.000	20.968	0.000	0.19
		В		0.000	0.000	23.026	0.000	0.24
		C		0.000	0.000	18.734	0.000	0.20
T3	150.00-130.00	Α	1.155	0.000	0.000	83.129	0.000	1.15
		В		0.000	0.000	59.530	0.000	0.67
		C		0.000	0.000	18.610	0.000	0.19
T4	130.00-110.00	A	1.138	0.000	0.000	93.343	0.000	1.23
		В		0.000	0.000	85.977	0.000	0.96
		C		0.000	0.000	98.064	0.000	1.25
T5	110.00-90.00	Α	1.117	0.000	0.000	92.824	0.000	1.22
		В		0.000	0.000	85.629	0.000	0.95
		C		0.000	0.000	97.399	0.000	1.23
T6	90.00-87.60	Α	1.104	0.000	0.000	11.099	0.000	0.14
		В		0.000	0.000	10.249	0.000	0.11
		C		0.000	0.000	11.637	0.000	0.15
T7	87.60-70.00	A	1.091	0.000	0.000	81.101	0.000	1.05
		В		0.000	0.000	74.962	0.000	0.82
		C		0.000	0.000	86.651	0.000	1.08
T8	70.00-50.00	A	1.062	0.000	0.000	91.420	0.000	1.18
		В		0.000	0.000	84.689	0.000	0.91
		C		0.000	0.000	101.108	0.000	1.24
T9	50.00-35.00	Α	1.026	0.000	0.000	67.885	0.000	0.86

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job	CT10016-A Montville 3 CT	Page 13 of 36
Project	2024778.10016.03	Date 14:37:44 12/20/23
Client	SBA	Designed by bfranczkowski

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$ In Face	C _A A _A Out Face	Weight
Section Elevation fi		Thickness in	ft²	ft²	ft ²	ft ²	K	
		B		0.000	0.000	63.061	0.000	0.67
		č		0.000	0.000	74.852	0.000	0.90
T10	35.00-20.00	A	0.982	0.000	0.000	67.059	0.000	0.84
110	33.00-20.00	В	0.702	0.000	0.000	62.508	0.000	0.65
		Č		0.000	0.000	73.664	0.000	0.88
TC1 1	20.00-4.81	A	0.907	0.000	0.000	52.512	0.000	0.64
T11	20.00-4.01	В	0.501	0.000	0.000	49.247	0.000	0.49
		C		0.000	0.000	57.298	0.000	0.66
TD1.0	4.81-0.00	A	0.770	0.000	0.000	0.000	0.000	0.00
T12	4.81-0.00	В	0.770	0.000	0.000	0.000	0.000	0.00
		Č		0.000	0.000	0.000	0.000	0.00

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP _z Ice
				Ice	
	fi	in	in	in	în
T1	190.00-170.00	0.1988	-0.0324	0.2119	-1.0596
T2	170.00-150.00	0.7047	-0.6448	0.6379	-1.4061
T3	150.00-130.00	-0.5176	-4.1470	-0.1712	-3.6418
T4	130.00-110.00	-0.4777	-2.3322	-0.4971	-2.0453
T5	110.00-90.00	-0.4718	-2.3088	-0.4899	-2.0254
T6	90.00-87.60	-0.4126	-2.0867	-0.3796	-1.6231
T7	87.60-70.00	-0.4449	-2.3020	-0.4235	-2.0291
T8	70.00-50.00	-0.3951	-2.3217	-0.2899	-2.0983
T9	50.00-35.00	-0.3938	-2.3148	-0.2907	-2.0989
	35.00-20.00	-0.3938	-2.3148	-0.2934	-2.1111
T10	20.00-4.81	-0.3686	-2.1708	-0.2782	-1.9985
T11 T12	4.81-0.00	0.0000	0.0000	0.0000	0.0000

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K _a	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
T1	1	Climbing Pegs	170.00 -	0.6000	0.4352
**	-		190.00		
T1	2	Safety Line (3/8")	170.00 -	0.6000	0.4352
11		Salety Line (4.4.)	190.00		
70.1	4	Guyed Tower Coax Bracket	25,000,000,000	0.6000	0.4352
T1	4	Guyen Tower Coax Bracker	190.00	W. C. E. C.	
	اء ا	Guyed Tower Coax Bracket		0.6000	0.4352
T1	5	Guyed Tower Coax Bracker	190.00	0.0000	
		S IN C Desire	(56/0000000)	0.6000	0.4352
T1	6	Guyed Tower Coax Bracket	190.00	0.0000	0.4552
	1125		88,010	0.6000	0.4352
T1	17	1-3/4" Hybrid		0.0000	0.4332
		164	180.00	0.4000	0.4007
T2	1	Climbing Pegs		0.6000	0.4236
1.55.57			170.00		0200222
T2	2	Safety Line (3/8")	150.00 -	0.6000	0.4236
			170.00		
T2	4	Guyed Tower Coax Bracket	150.00 -	0.6000	0.4236

GPD

Job		Page
	CT10016-A Montville 3 CT	14 of 36
Project		Date
	2024778.10016.03	14:37:44 12/20/23
Client	SBA	Designed by bfranczkowski

Section Record No. Segment Elev No Ice Record No. T2	Tower	Food I in -	D 1 -:		7. 1	
T2			Description			
T2	20011011	1100074170			No ice	Ice
T2	T2	5	Guyed Tower Coax Bracke	150.00 -	0.6000	0.4236
T2	T2	6	Guyed Tower Coax Bracket	150.00 -	0.6000	0.4236
T2	T2	17	1-3/4" Hybrid	150.00 -	0.6000	0.4236
T3	T2	23	1-1/4" Hybrid Cable	150.00 -	0.6000	0.4236
T3	Т3	1	Climbing Pegs	130.00 -	0.6000	0.4679
T3	Т3	2	Safety Line (3/8")	130.00 -	0.6000	0.4679
T3	T3	4	Guyed Tower Coax Bracket	130.00 -	0.6000	0.4679
T3	T3	5	Guyed Tower Coax Bracket	130.00 -	0.6000	0.4679
T3		6	Guyed Tower Coax Bracket		0.6000	0.4679
T3				130.00 - 150.00	0.6000	0.4679
T3			1-5/8" Hybrid		0.6000	0.4679
T3				150.00		0.4679
T4	1			139.50	0.6000	/a- /at-out
T4	3,50	1		150.00		0.4679
T4			0.000	130.00		
T4 5 Guyed Tower Coax Bracket 110.00 - 130.00	2824			130.00		
T4 6 Guyed Tower Coax Bracket 110.00 - 130.00	272	ì		130.00		
T4 8 LDF7-50A (1-5/8 FOAM) 110.00 - 0.6000 0.4716 T4 10 1-5/8" Hybrid 110.00 - 0.6000 0.4716 T4 12 2" Flex Conduit 110.00 - 0.6000 0.4716 T4 13 1/2" Fiber Cable 110.00 - 0.0000 0.0000 T4 14 3/4" DC Power Line 110.00 - 0.0000 0.0000 T5 LDF6-50A (1-1/4 FOAM) 110.00 - 0.6000 0.4716 T6 17 1-3/4" Hybrid 110.00 - 0.6000 0.4716 T7 21 LDF7-50A (1-5/8 FOAM) 110.00 - 0.6000 0.4716 T8 21 LDF7-50A (1-5/8 FOAM) 110.00 - 0.6000 0.4716 T9 21 LDF7-50A (1-5/8 FOAM) 110.00 - 0.6000 0.4716 T9 22 Safety Line (3/8") 90.00 - 110.00 0.6000 0.4710 T5 4 Guyed Tower Coax Bracket 90.00 - 110.00 0.6000 0.4710 T5 5 Guyed Tower Coax Bracket 90.00 - 110.00 0.6000 0.4710		1		130.00		
T4			-	130.00		
T4				130.00		
T4		8-53		130.00		-c-0-0
T4	5-000			130.00		S4590000000
T4				130.00		
T4 17 1-3/4" Hybrid 110.00 - 0.6000 0.4716 T4 21 LDF7-50A (1-5/8 FOAM) 110.00 - 0.6000 0.4716 T4 23 1-1/4" Hybrid Cable 110.00 - 0.6000 0.4716 T5 1 Climbing Pegs 9.000 - 110.00 0.6000 0.4710 T5 2 Safety Line (3/8") 90.00 - 110.00 0.6000 0.4710 T5 4 Guyed Tower Coax Bracket 90.00 - 110.00 0.6000 0.4710 T5 5 Guyed Tower Coax Bracket 90.00 - 110.00 0.6000 0.4710				130.00		17.55556650
T4 21 LDF7-50A (1-5/8 FOAM) 110.00 - 0.6000 0.4716 T4 23 1-1/4" Hybrid Cable 110.00 - 0.6000 0.4716 T5 1 Climbing Pegs 90.00 - 110.00 0.6000 0.4710 T5 2 Safety Line (3/8") 90.00 - 110.00 0.6000 0.4710 T5 4 Guyed Tower Coax Bracket 90.00 - 110.00 0.6000 0.4710 T5 5 Guyed Tower Coax Bracket 90.00 - 110.00 0.6000 0.4710	014		·	130.00		
T4 23 1-1/4" Hybrid Cable 110.00 - 0.6000 0.4716 T5 1 Climbing Pegs 90.00 - 110.00 0.6000 0.4710 T5 2 Safety Line (3/8") 90.00 - 110.00 0.6000 0.4710 T5 4 Guyed Tower Coax Bracket 90.00 - 110.00 0.6000 0.4710 T5 5 Guyed Tower Coax Bracket 90.00 - 110.00 0.6000 0.4710				130.00		
T5 1 Climbing Pegs 90.00 - 110.00 0.6000 0.4710 T5 2 Safety Line (3/8") 90.00 - 110.00 0.6000 0.4710 T5 4 Guyed Tower Coax Bracket 90.00 - 110.00 0.6000 0.4710 T5 5 Guyed Tower Coax Bracket 90.00 - 110.00 0.6000 0.4710	AAC A		5-m-30-13-24-34-34-54-54-54-54-54-54-54-54-54-54-54-54-54	130.00		
T5 2 Safety Line (3/8") 90.00 - 110.00 0.6000 0.4710 T5 4 Guyed Tower Coax Bracket 90.00 - 110.00 0.6000 0.4710 T5 5 Guyed Tower Coax Bracket 90.00 - 110.00 0.6000 0.4710		1	•	130.00		
T5 Guyed Tower Coax Bracket 90.00 - 110.00 0.6000 0.4710		2	Safety I ine (3/8")	90.00 - 110.00		
T5 Guyed Tower Coax Bracket 90.00 - 110.00 0.6000 0.4710		4	Guved Tower Coax Bracket	90.00 - 110.00		120 120 120 120
	T5	5	Guyed Tower Coax Bracket	90.00 - 110.00		X22-7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
	T5		Guyed Tower Coax Bracket	90.00 - 110.00		0.4710

tnxTower **GPD**

Job		Page
300	CT10016-A Montville 3 CT	15 of 36
Project	2024778.10016.03	Date 14:37:44 12/20/23
Client	SBA	Designed by bfranczkowski

			Food Time	V	K _a
Tower	Feed Line	Description	Feed Line	K _a No Ice	Ice
Section	Record No.	LDF7-50A (1-5/8 FOAM)	Segment Elev.	0.6000	0,4710
T5	8	LDF7-50A (1-5/8 FUAM)	90.00 - 110.00	0.6000	0.4710
T5	10	2" Flex Conduit	90.00 - 110.00	0.6000	0.4710
T5	12	1/2" Fiber Cable	90.00 - 110.00	0.0000	0.0000
T5	13	3/4" DC Power Line		0.0000	0.0000
T5	14 15	LDF6-50A (1-1/4 FOAM)	90.00 - 110.00	0.6000	0.4710
T5	17	1-3/4" Hybrid	90.00 - 110.00	0.6000	0.4710
T5 T5	21	LDF7-50A (1-5/8 FOAM)	90.00 - 110.00	0.6000	0.4710
T5	23	1-1/4" Hybrid Cable	90.00 - 110.00	0.6000	0.4710
T6	1	Climbing Pegs	87.60 - 90.00	0.6000	0.3655
T6	2	Safety Line (3/8")	87.60 - 90.00	0.6000	0.3655
T6	4	Guyed Tower Coax Bracket	87.60 - 90.00	0.6000	0.3655
T6	5	Guyed Tower Coax Bracket	87.60 - 90.00	0.6000	0.3655
T6	6	Guyed Tower Coax Bracket	87.60 - 90.00	0.6000	0.3655
Т6	8	LDF7-50A (1-5/8 FOAM)	87.60 - 90.00	0.6000	0.3655
Т6	10	1-5/8" Hybrid	87.60 - 90.00	0.6000	0.3655
Т6	12	2" Flex Conduit	87.60 - 90.00	0.6000	0.3655
Т6	13	1/2" Fiber Cable	87.60 - 90.00	0.0000	0.0000
Т6	14	3/4" DC Power Line	87.60 - 90.00	0.0000	0.0000
Т6	15	LDF6-50A (1-1/4 FOAM)	87.60 - 90.00	0.6000	0.3655
Т6	17	1-3/4" Hybrid	87.60 - 90.00	0.6000	0.3655
Т6	21	LDF7-50A (1-5/8 FOAM)	87.60 - 90.00	0.6000	0.3655
Т6	23	1-1/4" Hybrid Cable	87.60 - 90.00	0.6000	0.3655
T7	1	Climbing Pegs	70.00 - 87.60	0.6000 0.6000	0.5026 0.5026
T7	2	Safety Line (3/8")	70.00 - 87.60	0.6000	0.5026
T7	4	Guyed Tower Coax Bracket	70.00 - 87.60	0.6000	0.5026
T7	5	Guyed Tower Coax Bracket	70.00 - 87.60 70.00 - 87.60	0.6000	0.5026
T7	6	Guyed Tower Coax Bracket	70.00 - 87.60	0.6000	0.5026
T7	8	LDF7-50A (1-5/8 FOAM)	70.00 - 87.60	0.6000	0.5026
T7	10	1-5/8" Hybrid 2" Flex Conduit	70.00 - 87.60	0.6000	0.5026
T7	12	1/2" Fiber Cable	(20)	0.0000	0.0000
T7	13	3/4" DC Power Line	70.00 - 87.60	0.0000	0.0000
T7	14 15	LDF6-50A (1-1/4 FOAM)	70.00 - 87.60	0.6000	0.5026
T7 T7	17	1-3/4" Hybrid	70.00 - 87.60	0.6000	0,5026
T7	19	LDF4P-50A (1/2 FOAM)	70.00 - 76.00	0.6000	0.5026
T7	21	LDF7-50A (1-5/8 FOAM)	70.00 - 87.60	0.6000	0.5026
T7	23	1-1/4" Hybrid Cable	70.00 - 87.60	0.6000	0.5026
T8	1	Climbing Pegs	50.00 - 70.00	0.6000	0.6000
T8	2	Safety Line (3/8")	50.00 - 70.00	0.6000	0.6000
T8	4	Guyed Tower Coax Bracket	50.00 - 70.00	0.6000	0.6000
T8	5	Guyed Tower Coax Bracket		0.6000	0.6000
T8	6	Guyed Tower Coax Bracket		0.6000	0.6000
T8	8	LDF7-50A (1-5/8 FOAM)	50.00 - 70.00	0.6000	0.6000
T8	10	1-5/8" Hybrid		0.6000	0.6000
T8	12	2" Flex Conduit		0.6000	0.6000
Т8	13	1/2" Fiber Cable		0.0000	0.0000
Т8	14	3/4" DC Power Line	50.00 - 70.00	0.0000	0.0000
Т8	15	LDF6-50A (1-1/4 FOAM)	50.00 - 70.00	0.6000	
Т8	17	1-3/4" Hybrid	50.00 - 70.00	0.6000	
T8	19	LDF4P-50A (1/2 FOAM)	50.00 - 70.00	0.6000	0.6000
Т8	21	LDF7-50A (1-5/8 FOAM)		0.6000	
T8	23	1-1/4" Hybrid Cable		0.6000	0.6000 0.6000
Т9	1	Climbing Pegs		0.6000	0.6000
Т9	2	Safety Line (3/8")		0.6000	0.6000
Т9	4	Guyed Tower Coax Bracket	35.00 - 50.00	0.6000 0.6000	0.6000
Т9	- 5	Guyed Tower Coax Bracket	35.00 - 50.00	0.6000	0.6000
Т9	6	Guyed Tower Coax Bracket		0.6000	200
Т9	8	LDF7-50A (1-5/8 FOAM)		0.6000	0.6000
T9	10	1-5/8" Hybrid 2" Flex Conduit		0.6000	0.6000
T9	12				222222222
T9	13	1/2 Pipel Cable	35.00 - 50.00	1. (2.22.22.2)	

GPD

520 South Main Street Suite 2531

Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	CT10016-A Montville 3 CT	16 of 36
Project		Date
	2024778.10016.03	14:37:44 12/20/23
Client		Designed by
	SBA	bfranczkowski

	77				
Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
Т9	14	3/4" DC Power Line	35.00 - 50.00	0.0000	0.0000
T9	15	LDF6-50A (1-1/4 FOAM)		0.6000	0.6000
T9	17	1-3/4" Hybrid		0.6000	0.6000
T9	19	LDF4P-50A (1/2 FOAM)	35.00 - 50.00	0.6000	0.6000
T9	21	LDF7-50A (1-5/8 FOAM)	35.00 - 50.00	0.6000	0.6000
T9	23	1-1/4" Hybrid Cable	35.00 - 50.00	0.6000	0.6000
T10	1	Climbing Pegs	20.00 - 35.00	0.6000	0.6000
T10	2	Safety Line (3/8")		0.6000	0.6000
T10	4	Guyed Tower Coax Bracket	20.00 - 35.00	0.6000	0.6000
T10	5	Guyed Tower Coax Bracket	20.00 - 35.00	0.6000	0.6000
T10	6	Guyed Tower Coax Bracket	20.00 - 35.00	0.6000	0.6000
T10	8	LDF7-50A (1-5/8 FOAM)	20.00 - 35.00	0.6000	0.6000
T10	10	1-5/8" Hybrid	20.00 - 35.00	0.6000	0.6000
T10	12	2" Flex Conduit	20.00 - 35.00	0.6000	0.6000
T10	13	1/2" Fiber Cable	20.00 - 35.00	0.0000	0.0000
T10	14	3/4" DC Power Line	20.00 - 35.00	0.0000	0.0000
T10	15	LDF6-50A (1-1/4 FOAM)	20.00 - 35.00	0.6000	0.6000
T10	17	1-3/4" Hybrid	20.00 - 35.00	0.6000	0.6000
T10	19	LDF4P-50A (1/2 FOAM)	20.00 - 35.00	0.6000	0.6000
T10	21	LDF7-50A (1-5/8 FOAM)	20.00 - 35.00	0.6000	0.6000
T10	23	1-1/4" Hybrid Cable	20.00 - 35.00	0.6000	0.6000
T11	1	Climbing Pegs	8.00 - 20.00	0.6000	0.6000
T11	2	Safety Line (3/8")	8.00 - 20.00	0.6000	0.6000
T11	4	Guyed Tower Coax Bracket	8.00 - 20.00	0.6000	0.6000
T11	5	Guyed Tower Coax Bracket	8.00 - 20.00	0.6000	0.6000
T11	6	Guyed Tower Coax Bracket	8.00 - 20.00	0.6000	0.6000
T11	8	LDF7-50A (1-5/8 FOAM)	8.00 - 20.00	0.6000	0.6000
T11	10	1-5/8" Hybrid	8.00 - 20.00	0.6000	0.6000
T11	12	2" Flex Conduit	8.00 - 20.00	0.6000	0.6000
T11	13	1/2" Fiber Cable	8.00 - 20.00	0.0000	0.0000
T11	14	3/4" DC Power Line	8.00 - 20.00	0.0000	0.0000
T11	15	LDF6-50A (1-1/4 FOAM)	8.00 - 20.00	0.6000	0.6000
T11	17	1-3/4" Hybrid	8.00 - 20.00	0.6000	0.6000
T11	19	LDF4P-50A (1/2 FOAM)	8.00 - 20.00	0.6000	0.6000
T11	21	LDF7-50A (1-5/8 FOAM)	8.00 - 20.00	0.6000	0.6000
T11	23	1-1/4" Hybrid Cable	8.00 - 20.00	0.6000	0.6000

Discrete Tower Loads									
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft fi	0	ft		ft²	ft²	K
Lightning Rod 4'x5/8"	С	From Leg	0.00 0.00 2.00	0.0000	190.00	No Ice 1/2" Ice 1" Ice	0.25 0.66 0.97	0.25 0.66 0.97	0.00 0.01 0.01
MTC3975083 Sector Mount (3)	A	None		0.0000	180.00	No Ice 1/2" Ice 1" Ice	20.14 30.60 41.06	20.14 30.60 41.06	1.59 1.87 2.15

Job	At .	Page
Job	CT10016-A Montville 3 CT	17 of 36
Project	2024778.10016.03	Date 14:37:44 12/20/23
Client	SBA	Designed by bfranczkowski

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	Leg	Турс	Lateral	y					
	0		Vert				67	ft²	K
			ft ft	۰	fi		ft²	Jr	K
(D) D' 14 (D) 2 075		From Leg	ft 4.00	0.0000	180.00	No Ice	2.30	2.30	0.05
(2) Pipe Mount 8'x2.875"	A	FIOIII Leg	0.00	0.0000	100.00	1/2" Ice	3.13	3.13	0.06
			0.00			1" Ice	3.62	3.62	0.09
(2) Pipe Mount 8'x2.875"	В	From Leg	4.00	0.0000	180.00	No Ice	2.30	2.30	0.05
(2) Pipe Moulit 8 x2.873		I IOIII LOG	0.00			1/2" Ice	3.13	3.13	0.06
			0.00			1" Ice	3.62	3.62	0.09
(2) Pipe Mount 8'x2.875"	С	From Leg	4.00	0.0000	180.00	No Ice	2.30	2.30	0.05
(2) Tipe Would o Azio, s	_		0.00			1/2" Ice	3.13	3.13	0.06
			0.00			1" Ice	3.62	3.62	0.09
FFVV-65B-R2 w/ Mount	С	From Leg	4.00	0.0000	180.00	No Ice	12.51	7.41	0.10
Pipe			0.00			1/2" Ice	13.11	8.60	0.19 0.29
			0.00			1" Ice	13.67	9.50	0.29
FFVV-65B-R2 w/ Mount	В	From Leg	4.00	0.0000	180.00	No Ice	12.51	7.41	0.10
Pipe			0.00			1/2" Ice	13.11	8.60	0.19
-			0.00		400.00	1" Ice	13.67	9.50	0.10
FFVV-65B-R2 w/ Mount	Α	From Leg	4.00	0.0000	180.00	No Ice	12.51	7.41 8.60	0.19
Pipe			0.00			1/2" Ice	13.11 13.67	9.50	0.29
			0.00	0.0000	100.00	1" Ice	2.06	1.38	0.09
RF4450t-71A	С	From Leg	2.00	0.0000	180.00	No Ice 1/2" Ice	2.24	1.53	0.12
			0.00			1" Ice	2.43	1.68	0.14
			0.00	0.0000	190.00	No Ice	2.06	1.38	0.09
RF4450t-71A	В	From Leg	2.00	0.0000	180.00	1/2" Ice	2.24	1.53	0.12
			0.00			1" Ice	2.43	1.68	0.14
		- ·	0.00	0.0000	180.00	No Ice	2.06	1.38	0.09
RF4450t-71A	Α	From Leg	2.00 0.00	0.0000	100.00	1/2" Ice	2.24	1.53	0.12
			0.00			1" Ice	2.43	1.68	0.14
	_	Erom Log	2.00	0.0000	180.00	No Ice	1.88	1.11	0.06
RF4451d-70A	С	From Leg	0.00	0.0000	100.00	1/2" Ice	2.05	1.25	0.08
			0.00			1" Ice	2.22	1.39	0.10
DD4453 1 70 A	В	From Leg	2.00	0.0000	180.00	No Ice	1.88	1.11	0.06
RF4451d-70A	ь	LIOIII LEE	0.00	0.0000		1/2" lce	2.05	1.25	0.08
			0.00			1" Ice	2.22	1.39	0.10
DE44614 70 A	Α	From Leg	2.00	0.0000	180.00	No Ice	1.88	1.11	0.06
RF4451d-70A	А	1 IOIII Deg	0.00			1/2" Ice	2.05	1.25	0.08
			0.00			1" Ice	2.22	1.39	0.10
RDIDC-9181-PF-48	A	From Leg	2.00	0.0000	180.00	No Ice	2.56	1.34	0.02
KDIDC-9181-11-48	2.2	110111 208	0.00			1/2" Ice	2.76	1.49	0.04
			0.00			1" Ice	2.97	1.66	0.07
***		None		0.0000	160.00	No Ice	30.43	30.43	1.69
Sector Mount (3)	Α	None		0.0000	100.00	1/2" Ice	43.02	43.02	2.30
						1" Ice	55.43	55.43	3.10
(A) D: 3.6 - (E) 0.0000	A	From I ac	2.00	0.0000	160.00	No Ice	1.19	1.19	0.02
(2) Pipe Mount 5'x2.375"	Α	From Leg	0.00	0.0000	100.00	1/2" Ice	1.50	1.50	0.03
			0.00			1" Ice	1.81	1.81	0.04
(2) Dina Marrat Flu 2 2751	В	From Leg	2.00	0.0000	160.00	No Ice	1.19	1.19	0.02
(2) Pipe Mount 5'x2.375"	ь	1 IOM LOE	0.00			1/2" Ice	1.50	1.50	0.03
			0.00			1" Ice	1.81	1.81	0.04
(2) Pipe Mount 5'x2.375"	С	From Leg	2.00	0.0000	160.00	No Ice	1.19	1.19	0.02
(2) ripe Mount 3 x2.3/3	C	110111 1108	0.00			1/2" Ice	1.50	1.50	0.03
			0.00			1" Ice	1.81	1.81	0.04
Pipe Mount 6'x2.375"	Α	From Leg	4.00	0.0000	160.00	No Ice	1.43	1.43	0.03
Tipe Mount ox2.373	11		0.00			1/2" Ice	1.92	1.92	0.04
	-		0.00			1" Ice	2.29	2.29	0.05
	P	E I aa	4.00	0.0000	160.00	No Ice	1.43	1.43	0.03
Pipe Mount 6'x2.375"	В	From Leg	4.00	0.0000	100.00	1/2" Ice	1.92	1.92	0.04

GPD

Job		Page
	CT10016-A Montville 3 CT	18 of 36
Project		Date
	2024778.10016.03	14:37:44 12/20/23
Client		Designed by
	SBA	bfranczkowski

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	1108	- 21	Vert						
		187	.ft ft	0	ft		ft²	ft²	K
			ft						
			0.00			1" Ice	2.29	2.29	0.05
Pipe Mount 6'x2.375"	C	From Leg	4.00	0.0000	160.00	No Ice	1.43	1.43	0.03
			0.00			1/2" Ice	1.92	1.92	0.04
ADVICEDDIO C A20/		Б. т	0.00			1" Ice	2.29	2.29	0.05
APXVSPP18-C-A20 w/ Mount Pipe	A	From Leg	4.00	0.0000	160.00	No Ice	8.02	6.71	0.08
would ripe			0.00 0.00			1/2" Ice	8.48	7.66	0.14
APXVSPP18-C-A20 w/	В	From Leg	4.00	0.0000	160.00	i" Ice No Ice	8.94 8.02	8.49	0.22
Mount Pipe	-	I Ioni Leg	0.00	0.0000	100.00	1/2" Ice	8.48	6.71 7.66	0.08
•			0.00			1" Ice	8.94	8.49	0.14 0.22
APXVSPP18-C-A20 w/	C	From Leg	4.00	0.0000	160.00	No Ice	8.02	6.71	0.22
Mount Pipe			0.00	0.0000	100.00	1/2" Ice	8.48	7.66	0.14
			0.00			1" Ice	8.94	8.49	0.22
APXVTM14-C-120 w/	Α	From Leg	4.00	0.0000	160.00	No Ice	6.58	4.96	0.08
Mount Pipe			0.00			1/2" Ice	7.03	5.75	0.13
4 DVD (CD) 41 4 C) 4 C)	_	- 9	0.00			1" Ice	7.47	6.47	0.19
APXVTM14-C-120 w/	В	From Leg	4.00	0.0000	160.00	No Ice	6.58	4.96	0.08
Mount Pipe			0.00			1/2" Ice	7.03	5.75	0.13
APXVTM14-C-120 w/	С	E T	0.00	0.0000	1.00.00	1" Ice	7.47	6.47	0.19
Mount Pipe	C	From Leg	4.00 0.00	0.0000	160.00	No Ice	6.58	4.96	0.08
Would I ipe			0.00			1/2" Ice	7.03	5.75	0.13
(2) ACU-A20-N RET	Α	From Leg	2.00	0.0000	160.00	1" Ice No Ice	7.47 0.07	6.47	0.19
(=) 1100 1100 11101		1 Ioiii Log	0.00	0.0000	160.00	1/2" Ice	0.07	0.12 0.16	0.00
			0.00			1" Ice	0.15	0.16	0.00 0.00
ACU-A20-N RET	В	From Leg	2.00	0.0000	160.00	No Ice	0.07	0.12	0.00
		_	0.00			1/2" Ice	0.10	0.16	0.00
			0.00			1" Ice	0.15	0.21	0.00
ACU-A20-N RET	С	From Leg	2.00	0.0000	160.00	No Ice	0.07	0.12	0.00
			0.00			1/2" Ice	0.10	0.16	0.00
1000 MII- DDII			0.00			1" Ice	0.15	0.21	0.00
1900 MHz RRH	A	From Leg	2.00	0.0000	160.00	No Ice	2.59	2.55	0.06
			0.00			1/2" Ice	2.81	2.76	0.09
1900 MHz RRH	В	From Leg	0.00 2.00	0.0000	160.00	1" Ice	3.03	2.98	0.12
1700 MILE RACE	D	Trom Leg	0.00	0.0000	160.00	No Ice 1/2" Ice	2.59	2.55	0.06
			0.00			1/2 1ce	2.81 3.03	2.76 2.98	0.09
1900 MHz RRH	C	From Leg	2.00	0.0000	160.00	No Ice	2.59	2.55	0.12 0.06
		J	0.00	-1000	100.00	1/2" Ice	2.81	2.76	0.09
			0.00			1" Ice	3.03	2.98	0.12
800 MHz RRH	Α	From Leg	2.00	0.0000	160.00	No Ice	1.70	1.28	0.05
			0.00			1/2" Ice	1.86	1.43	0.07
COO MIT DRIL	_	_	0.00			1" Ice	2.03	1.58	0.09
800 MHz RRH	В	From Leg	2.00	0.0000	160.00	No Ice	1.70	1.28	0.05
			0.00			1/2" Ice	1.86	1.43	0.07
800 MHz RRH	С	From Leg	0.00	0.0000		1" Ice	2.03	1.58	0.09
SOO WILL KIKII	C	riom Leg	2.00 0.00	0.0000	160.00	No Ice	1.70	1.28	0.05
			0.00			1/2" Ice	1.86	1.43	0.07
TD-RRH8x20-25	Α	From Leg	2.00	0.0000	160.00	1" Ice No Ice	2.03 3.70	1.58	0.09
	- •	- 10 206	0.00	0.0000	100.00	1/2" Ice	3.70	1.29 1.46	0.07
			0.00			1" Ice	4.20	1.46	0.09 0.12
TD-RRH8x20-25	В	From Leg	2.00	0.0000	160.00	No Ice	3.70	1.04	0.12
		-	0.00			1/2" Ice	3.95	1.46	0.09
			0.00			1" Ice	4.20	1.64	0.12
TD-RRH8x20-25	C	From Leg	2.00	0.0000	160.00	No Ice	3.70	1.29	0.07
			0.00			1/2" Ice	3.95	1.46	0.09

GPD

Job		Page 10 of 20
	CT10016-A Montville 3 CT	19 of 36
Project	2024778.10016.03	Date 14:37:44 12/20/23
Client	SBA	Designed by bfranczkowski

P. College	Face	Offset	Offsets:	Azimuth	Placement		C_AA_A	C_AA_A	Weight
Description	or	Туре	Horz Lateral	Adjustment			Front	Side	
	Leg		Vert				0.7	ω2	K
			ft	Ø.	fi		ft²	ft²	Λ
			ft ft						0.17
			0.00			1" Ice	4.20	1.64	0.12 0.01
800 MHz External Notch	Α	From Leg	2.00	0.0000	160.00	No Ice	0.66 0.76	0.29 0.36	0.02
Filters			0.00			1/2" Ice	0.76	0.45	0.02
			0.00		160.00	1" Ice	0.66	0.43	0.01
800 MHz External Notch	В	From Leg	2.00	0.0000	160.00	No Ice 1/2" Ice	0.76	0.36	0.02
Filters			0.00			1" Ice	0.87	0.45	0.02
			0.00	0.0000	160.00	No Ice	0.66	0.29	0.01
800 MHz External Notch	С	From Leg	2.00	0.0000	100.00	1/2" Ice	0.76	0.36	0.02
Filters			0.00 0.00			1" Ice	0.87	0.45	0.02
***			5.5-			T	20.42	20.42	1.69
Sector Mount (3)	Α	None		0.0000	150.00	No Ice	30.43	30.43	2.30
200001 1121 213 ()						1/2" Ice	43.02	43.02 55.43	3.10
					4.50.00	1" Ice	55.43	3.66	0.04
RR65-18-VDPL2 w/ Mount	Α	From Leg	4.00	0.0000	150.00	No Ice	4.91 5.50	4.73	0.08
Pipe			0.00			1/2" Ice 1" Ice	6.00	5.51	0.13
•			0.00	0.0000	150.00	No Ice	4.91	3.66	0.04
RR65-18-VDPL2 w/ Mount	В	From Leg	4.00	0.0000	150.00	1/2" Ice	5.50	4.73	0.08
Pipe			0.00			1" Ice	6.00	5.51	0.13
	_		0.00	0.0000	150.00	No Ice	4.91	3.66	0.04
RR65-18-VDPL2 w/ Mount	С	From Leg	4.00	0.0000	150.00	1/2" Ice	5.50	4.73	0.08
Pipe			0.00			1" Ice	6.00	5.51	0.13
		D T	0.00	0.0000	150.00	No Ice	20.24	10.79	0.16
APXVAARR24_43-U-NA20	A	From Leg	4.00 0.00	0.0000	150.00	1/2" Ice	20.89	12.21	0.29
w/ 96" Mount Pipe			0.00			1" Ice	21.55	13.49	0.44
	- 10	From Leg	4.00	0.0000	150.00	No Ice	20.24	10.79	0.16
APXVAARR24_43-U-NA20	В	Tioni reg	0.00	510 44 -		1/2" Ice	20.89	12.21	0.29
w/ 96" Mount Pipe			0.00			1" Ice	21.55	13.49	0.44
4 DS/574 A D D 24 42 TI NA 20	С	From Leg	4.00	0.0000	150.00	No Ice	20.24	10.79	0.16
APXVAARR24_43-U-NA20 w/ 96" Mount Pipe		110 ===	0.00			1/2" Ice	20.89	12.21	0.29
W/ 96 Mount 1 ipc			0.00			1" Ice	21.55	13.49	0.44
AIR 32 KRD901146-1	A	From Leg	4.00	0.0000	150.00	No Ice	6.58	5.90	0.15
B66A/B2A w/ Mount Pipe			0.00			1/2" Ice	6.97	6.56	0.21
BOOM BENT WITH MICHIEL TO			0.00			1" Ice	7.37	7.24	0.28 0.15
AIR 32 KRD901146-1	В	From Leg	4.00	0.0000	150.00	No Ice	6.58	5.90 6.56	0.13
B66A/B2A w/ Mount Pipe			0.00			1/2" Ice	6.97	7.24	0.28
-			0.00		150.00	1" Ice	7.37 6.58	5.90	0.15
AIR 32 KRD901146-1	С	From Leg	4.00	0.0000	150.00	No Ice 1/2" Ice	6.97	6.56	0.21
B66A/B2A w/ Mount Pipe			0.00			1" Ice	7.37	7.24	0.28
			0.00	0.0000	150.00	No Ice	0.35	0.17	0.01
(2) KRY 112 144/1	Α	From Leg	2.00	0.0000	150.00	1/2" Ice	0.43	0.23	0.01
			0.00 0.00			1" Ice	0.51	0.30	0.02
	Б	E I oo	2.00	0.0000	150.00	No Ice	0.35	0.17	0.01
(2) KRY 112 144/1	В	From Leg	0.00	0.0000	150.00	1/2" Ice	0.43	0.23	0.01
			0.00			1" Ice	0.51	0.30	0.02
(B) 77777 110 144/1	0	From Leg	2.00	0.0000	150.00	No Ice	0.35	0.17	0.01
(2) KRY 112 144/1	С	i iom rog	0.00			1/2" Ice	0.43	0.23	0.01
			0.00			1" Ice	0.51	0.30	0.02
4449 B71 + B12	Α	From Leg	2.00	0.0000	150.00	No Ice	1.63	1.00	0.07
4443 D/I T DIZ	11		0.00			1/2" Ice	1.79	1.13	0.09
			0.00			1" Ice	1.95	1.27	0.11
4449 B71 + B12	В	From Leg	2.00	0.0000	150.00	No Ice	1.63	1.00	0.07
411/ 111 / 112	_		0.00			1/2" Ice	1.79	1.13	0.09 0.11
			0.00		1.50.00	1" Ice	1.95	1.27 1.00	0.07
4449 B71 + B12	С	From Leg	2.00	0.0000	150.00	No Ice	1.63	1.00	0.07

Job		Page
	CT10016-A Montville 3 CT	20 of 36
Project	2024778.10016.03	Date 14:37:44 12/20/23
Client	SBA	Designed by bfranczkowski

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C₁A₁ Front	C _A A _A Side	Weight
			Vert ft ft ft	۰	fi		ft²	ft^2	K
			0.00			1/2" Ice	1.79	1.13	0.09
***			0.00			1" Ice	1.95	1.27	0.11
Sector Mount (3)	Α	None		0.0000	139.50	NI- I	20.42	20.42	
(-)		110110		0.0000	139.30	No Ice 1/2" Ice	30.43 43.02	30.43 43.02	1.69
						1" Ice	55.43	55.43	2.30 3.10
3XA-70063/6CF-EDIN-6 w/	Α	From Leg	4.00	0.0000	139.50	No Ice	8.07	5.66	0.05
Mount Pipe			0.00			1/2" Ice	8.74	6.92	0.11
NA TOOCHEOF FRRIE	_	_	1.50			1" Ice	9.37	8.04	0.18
3XA-70063/6CF-EDIN-6 w/	В	From Leg	4.00	0.0000	139.50	No Ice	8.07	5.66	0.05
Mount Pipe			0.00			1/2" Ice	8.74	6.92	0.11
XA-70063/6CF-EDIN-6 w/	С	From Lon	1.50	0.0000		1" Ice	9.37	8.04	0.18
Mount Pipe		From Leg	4.00 0.00	0.0000	139.50	No Ice	8.07	5.66	0.05
			1.50			1/2" Ice	8.74	6.92	0.11
(2) FD9R6004/2C-3L	Α	From Leg	4.00	0.0000	139.50	1" Ice No Ice	9.37 0.31	8.04	0.18
		6	0.00	3.0000	127.50	1/2" Ice	0.31	0.08 0.12	$0.00 \\ 0.01$
			1.50			1" Ice	0.39	0.12	0.01
(2) FD9R6004/2C-3L	В	From Leg	4.00	0.0000	139.50	No Ice	0.31	0.08	0.01
			0.00			1/2" Ice	0.39	0.12	0.01
(a) FD0D (00 4/0 C a)	_		1.50			1" Ice	0.47	0.17	0.01
(2) FD9R6004/2C-3L	С	From Leg	4.00	0.0000	139.50	No Ice	0.31	0.08	0.00
			0.00			1/2" Ice	0.39	0.12	0.01
IX06FRO660-03 w/ Mount	Α	From I	1.50	0.0000		1" Tce	0.47	0.17	0.01
Pipe	Λ.	From Leg	4.00 0.00	0.0000	139.50	No Ice	10.11	8.99	0.09
1.10			0.50			1/2" Ice	10.68	10.15	0.17
X06FRO660-03 w/ Mount	В	From Leg	4.00	0.0000	139.50	1" Ice No Ice	11.22 10.11	11.03	0.27
Pipe		2.0%	0.00	0.0000	139.30	1/2" Ice	10.11	8.99 10.15	0.09
			0.50			1" Ice	11.22	11.03	0.17 0.27
IX06FRO660-03 w/ Mount	C	From Leg	4.00	0.0000	139.50	No Ice	10.11	8.99	0.09
Pipe			0.00			1/2" Ice	10.68	10.15	0.17
MANAGEROGGO			0.50			1" Ice	11.22	11.03	0.27
MX06FRO660-03 w/	A	From Leg	4.00	0.0000	139.50	No Ice	9.87	7.34	0.06
91900314			0.00			1/2" Ice	10.34	7.78	0.13
MX06FRO660-03 w/	В	From Lon	0.50	0.0000		1" Ice	10.82	8.24	0.20
91900314	ь	From Leg	4.00	0.0000	139.50	No Ice	9.87	7.34	0.06
			0.00 0.50			1/2" Ice 1" Ice	10.34	7.78	0.13
MX06FRQ660-03 w/	С	From Leg	4.00	0.0000	139.50	No Ice	10.82 9.87	8.24 7.34	0.20
91900314		~-6	0.00	0.000	137.30	1/2" Ice	10.34	7.34 7.78	0.06 0.13
			0.50			1" Ice	10.82	8.24	0.13
T6413 77A w/ Mount Pipe	Α	From Leg	4.00	0.0000	139.50	No Ice	4.65	2.89	0.28
			0.00			1/2" Ice	5.20	3.58	0.12
T6/13 77 A w/ Mana A Direct	D	F	0.50			1" Ice	5.68	4.14	0.16
T6413 77A w/ Mount Pipe	В	From Leg	4.00	0.0000	139.50	No Ice	4.65	2.89	0.08
			0.00			1/2" Ice	5.20	3.58	0.12
Γ6413 77A w/ Mount Pipe	С	From Leg	0.50	0.0000	120.50	1" Ice	5.68	4.14	0.16
/ /II/ MOUNT I IPE	C	TIOHI FER	4.00 0.00	0.0000	139.50	No Ice	4.65	2.89	0.08
			0.50			1/2" Ice	5.20	3.58	0.12
B2/B66A RRH ORAN	A	From Leg	4.00	0.0000	139.50	1" Ice No Ice	5.68	4.14	0.16
(RF4439d-25A)			0.00	0.0000	137.30	1/2" Ice	1.87 2.03	1.25 1.39	0.07
,			0.50			1" Ice	2.03	1.54	0.09 0.11
B2/B66A RRH ORAN	В	From Leg	4.00	0.0000	139.50	No Ice	1.87	1.25	0.11
(RF4439d-25A)		_	0.00			1/2" Ice	2.03	1.39	0.07
			0.50			1" Ice	2.21	1.54	0.11

GPD

Job		Page
1005	CT10016-A Montville 3 CT	21 of 36
Project	2024778.10016.03	Date 14:37:44 12/20/23
Client	SBA	Designed by bfranczkowski

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	C_AA_A	Weight
	or Leg	Туре	Horz Lateral	Adjustment			Front	Side	
	208		Vert	0			ft²	ft²	K
			ft ft		ft		JE	Л	A
		Post Iss	4.00	0.0000	139.50	No Ice	1.87	1.25	0.07
B2/B66A RRH ORAN	С	From Leg	0.00	0.0000	137.50	1/2" Ice	2.03	1.39	0.09
(RF4439d-25A)			0.50			1" Ice	2.21	1.54	0.11
B5/B13 RRH ORAN	A	From Leg	4.00	0.0000	139.50	No Ice	1.87	1.28	0.08
	A	Tiom Log	0.00	0.00		1/2" Ice	2.03	1.42	0.10
(RF4461d-13A)			0.50			1" Ice	2.21	1.57	0.12
B5/B13 RRH ORAN	В	From Leg	4.00	0.0000	139.50	No Ice	1.87	1.28	0.08
(RF4461d-13A)	_	110111 = -8	0.00			1/2" Ice	2.03	1.42	0.10
(KI-4401d-13A)			0.50			1" Ice	2.21	1.57	0.12
B5/B13 RRH ORAN	С	From Leg	4.00	0.0000	139.50	No Ice	1.87	1.28	0.08
(RF4461d-13A)	-		0.00			1/2" Ice	2.03	1.42	0.10
(10 44010 1511)			0.50			1" Ice	2.21	1.57	0.12
RVZDC-6627-PF-48	Α	From Leg	4.00	0.0000	139.50	No Ice	3.79	2.51	0.03
RV2DC 0027 11 10		Č	0.00			1/2" Ice	4.04	2.73	0.06
			0.50			1" Ice	4.30	2.95	0.10
***		.,		0.0000	130.00	No Ice	30.43	30.43	1.69
Sector Mount (3)	A	None		0.0000	150.00	1/2" Ice	43.02	43.02	2.30
						1" Ice	55.43	55,43	3.10
		D . I	4.00	0.0000	130.00	No Ice	3.87	2.32	0.08
AIR 6419 B77G w/ Mount	Α	From Leg	0.00	0.0000	150.00	1/2" Ice	4.18	2.72	0.11
Pipe			2.00			1" Ice	4.50	3.13	0.15
	ъ	E-om Log	4.00	0.0000	130.00	No Ice	3.87	2.32	0.08
AIR 6419 B77G w/ Mount	В	From Leg	0.00	0.0000	200.00	1/2" Ice	4.18	2.72	0.11
Pipe			2.00			1" Ice	4.50	3.13	0.15
AIR 6419 B77G w/ Mount	С	From Leg	4.00	0.0000	130.00	No Ice	3.87	2.32	0.08
	C	110m Ecg	0.00			1/2" Ice	4.18	2.72	0.11
Pipe			2.00			1" Ice	4.50	3.13	0.15
AIR 6449 B77D	Α	From Leg	4.00	0.0000	130.00	No Ice	4.02	2.14	0.08
AIR 0449 B77D	21	110111 208	0.00			1/2" Ice	4.28	2.35	0.11
			-2.00			1" Ice	4.55	2.57	0.14
AIR 6449 B77D	В	From Leg	4.00	0.0000	130.00	No Ice	4.02	2.14	0.08
AIR 0449 B1 12		110	0.00			1/2" Ice	4.28	2.35	0.11
			-2.00			1" Ice	4.55	2.57	0.14
AIR 6449 B77D	С	From Leg	4.00	0.0000	130.00	No Ice	4.02	2.14	0.08
7 HK 04 17 B. 72	_		0.00			1/2" Ice	4.28	2.35	0.11
			-2.00			1" Ice	4.55	2.57	0.14
TPA65R-BU8DA-K w/	A	From Leg	4.00	0.0000	130.00	No Ice	17.87	10.42	0.13
Mount pipe		_	0.00			1/2" Ice	18.50	11.85	0.26
1120 and p -p -			0.00			1" Ice	19.14	12.94	0.39
DMP65R-BU8DA w/ Mount	Α	From Leg	4.00	0.0000	130.00	No Ice	17.87	10.02	0.03 0.15
Pipe			0.00			1/2" Ice	18.50	11.44	0.13
			0.00			1" Ice	19.14	12.72	0.28
TPA65R-BU6DA-K w/	В	From Leg	4.00	0.0000	130.00	No Ice	12.95	7.26	0.19
Mount Pipe			0.00			1/2" Ice	13.55	8.43	0.19
*			0.00	X(1" Ice	14.11	9.31	0.03
OPA65R-BU8DA w/ Mount	В	From Leg	4.00	0.0000	130.00	No Ice	18.09	10.10 11.52	0.15
Pipe			0.00			1/2" Ice	18.72	12.80	0.28
-			0.00	0.0000	120.00	1" Ice	19.36 8.76	4.93	0.28
TPA65R-BU4D w/ Mount	Α	From Leg	4.00	0.0000	130.00	No Ice		5.73	0.14
Pipe			0.00			1/2" Ice	9.31	6.41	0.22
-			0.00	0.0000	120.00	1" Ice	9.82 8.91	4.98	0.07
OPA65R-BU4DA w/ Mount	C	From Leg	4.00	0.0000	130.00	No Ice 1/2" Ice	8.91 9.46	5.79	0.14
Pipe			0.00			1/2" Ice 1" Ice	9.46	6.47	0.22
-			0.00	0.0000	130.00	No Ice	1.97	1.41	0.07
4449 B5/B12	Α	From Leg	2.00	0.0000	130.00	1/2" Ice	2.14	1.56	0.09
			0.00			1/2 100	4.17	1.50	

GPD

520 South Main Street Suite 2531

Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	CT10016-A Montville 3 CT	22 of 36
Project		Date
	2024778.10016.03	14:37:44 12/20/23
Client		Designed by
	SBA	bfranczkowski

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft	0	ft		ft²	ft^2	K
			ft						
4440 DE/D13	_		0.00			1" Ice	2.33	1.73	0.11
4449 B5/B12	В	From Leg	2.00	0.0000	130.00	No Ice	1.97	1.41	0.07
			0.00			1/2" Ice	2.14	1.56	0.09
4440 D.C.D.C.			0.00			1" Ice	2.33	1.73	0.11
4449 B5/B12	C	From Leg	2.00	0.0000	130.00	No Ice	1.97	1.41	0.07
\$20			0.00			1/2" Ice	2.14	1.56	0.09
			0.00			1" Ice	2.33	1.73	0.11
8843 B2/B66A	Α	From Leg	2.00	0.0000	130.00	No Ice	1.98	1.70	0.08
			0.00			1/2" Ice	2.16	1.86	0.10
			0.00			1" Ice	2.34	2.04	0.12
8843 B2/B66A	В	From Leg	2.00	0.0000	130.00	No Ice	1.98	1.70	0.08
			0.00			1/2" Ice	2.16	1.86	0.10
			0.00			1" Ice	2.34	2.04	0.12
8843 B2/B66A	C	From Leg	2.00	0.0000	130.00	No Ice	1.98	1.70	0.08
			0.00			1/2" Ice	2.16	1.86	0.10
			0.00			1" Ice	2.34	2.04	0.12
DC6-48-60-18-8F	Α	From Leg	2.00	0.0000	130.00	No Ice	2.20	2.20	0.02
			0.00			1/2" Ice	2.40	2.40	0.04
			0.00			1" Ice	2.60	2.60	0.07
DC9-48-60-24-8C-EV	В	From Leg	2.00	0.0000	130.00	No Ice	2.74	4.78	0.03
			0.00			1/2" Ice	2.96	5.06	0.06
			0.00			I" Ice	3.20	5.35	0,10

ide Arm Mount [SO 701-1]	С	From Leg	1.50	0.0000	76.00	No Ice	0.85	1.67	0.07
			0.00			1/2" Ice	1.14	2.34	0.08
8			0.00			1" Ice	1.43	3.01	0.09
GPS	C	From Leg	3.00	0.0000	76.00	No Ice	0.12	0.12	0.00
			0.00			1/2" Ice	0.21	0.21	0.00
			0.00			1" Ice	0.28	0.28	0.01

Load Combinations

Comb. No.	Description	
1	Dead Only	
2	1.2 Dead+1.0 Wind 0 deg - No Ice+1.0 Guy	
3	1.2D+1.0W (pattern 1) 0 deg - No Ice+1.0 Guy	
4	1.2D+1.0W (pattern 2) 0 deg - No Ice+1.0 Guy	
5	1.2D+1.0W (pattern 3) 0 deg - No Ice+1.0 Guy	
6	1.2 Dead+1.0 Wind 30 deg - No Ice+1.0 Guy	
7	1.2D+1.0W (pattern 1) 30 deg - No Ice+1.0 Guy	
8	1.2D+1.0W (pattern 2) 30 deg - No Ice+1.0 Guy	
9	1.2D+1.0W (pattern 3) 30 deg - No Ice+1.0 Guy	
10	1.2 Dead+1.0 Wind 60 deg - No Ice+1.0 Guy	
11	1.2D+1.0W (pattern 1) 60 deg - No Ice+1.0 Guy	
12	1.2D+1.0W (pattern 2) 60 deg - No Ice+1.0 Guy	
13	1.2D+1.0W (pattern 3) 60 deg - No Ice+1.0 Guy	
14	1.2 Dead+1.0 Wind 90 deg - No Ice+1.0 Guy	
15	1.2D+1.0W (pattern 1) 90 deg - No Ice+1.0 Guy	
16	1.2D+1.0W (pattern 2) 90 deg - No Ice+1.0 Guy	

GPD

520 South Main Street Suite 2531

Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job	CT10016-A Montville 3 CT	Page 23 of 36
Project	2024778.10016.03	Date 11:37:44 12/20/23
Client	SBA	Designed by bfranczkowski

Comb.	Description
No.	
17	1.2D+1.0W (pattern 3) 90 deg - No Ice+1.0 Guy
18	1.2 Dead+1.0 Wind 120 deg - No Ice+1.0 Guy
19	1.2D+1.0W (pattern 1) 120 deg - No Ice+1.0 Guy
20	1.2D+1.0W (pattern 2) 120 deg - No Ice+1.0 Guy
21	1.2D+1.0W (pattern 3) 120 deg - No Ice+1.0 Guy
22	1.2 Dead+1.0 Wind 150 deg - No Ice+1.0 Guy
23	1.2D+1.0W (pattern 1) 150 deg - No Ice+1.0 Guy
24	1.2D+1.0W (pattern 2) 150 deg - No Ice+1.0 Guy
25	1.2D+1.0W (pattern 3) 150 deg - No Ice+1.0 Guy
26	1.2 Dead+1.0 Wind 180 deg - No Ice+1.0 Guy
27	1.2D+1.0W (pattern 1) 180 deg - No Ice+1.0 Guy
28	1.2D+1.0W (pattern 2) 180 deg - No Ice+1.0 Guy
29	1.2D+1.0W (pattern 3) 180 deg - No Ice+1.0 Guy
30	1.2 Dead+1.0 Wind 210 deg - No Ice+1.0 Guy
31	1.2D+1.0W (pattern 1) 210 deg - No Ice+1.0 Guy
32	1.2D+1.0W (pattern 2) 210 deg - No Ice+1.0 Guy
33	1.2D+1.0W (pattern 3) 210 deg - No Ice+1.0 Guy
34	1.2 Dead+1.0 Wind 240 deg - No Ice+1.0 Guy
35	1.2D+1.0W (pattern 1) 240 deg - No Ice+1.0 Guy
36	1.2D+1.0W (pattern 2) 240 deg - No Ice+1.0 Guy
37	1.2D+1.0W (pattern 3) 240 deg - No Ice+1.0 Guy
38	1.2 Dead+1.0 Wind 270 deg - No Ice+1.0 Guy
39	1.2D+1.0W (pattern 1) 270 deg - No Ice+1.0 Guy
40	1.2D+1.0W (pattern 2) 270 deg - No Ice+1.0 Guy
41	1.2D+1.0W (pattern 3) 270 deg - No Ice+1.0 Guy
42	1.2 Dead+1.0 Wind 300 deg - No Ice+1.0 Guy
43	1.2D+1.0W (pattern 1) 300 deg - No Ice+1.0 Guy
44	1.2D+1.0W (pattern 2) 300 deg - No Ice+1.0 Guy
45	1.2D+1.0W (pattern 3) 300 deg - No Ice+1.0 Guy
46	1.2 Dead+1.0 Wind 330 deg - No Ice+1.0 Guy
47	1.2D+1.0W (pattern 1) 330 deg - No Ice+1.0 Guy
48	1.2D+1.0W (pattern 2) 330 deg - No Ice+1.0 Guy
49	1.2D+1.0W (pattern 3) 330 deg - No Ice+1.0 Guy
50	1.2 Dead+1.0 Ice+1.0 Temp+Guy
51	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp+1.0 Guy
52	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp+1.0 Guy
53	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp+1.0 Guy
54	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp+1.0 Guy
55	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp+1.0 Guy
56	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp+1.0 Guy
57	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp+1.0 Guy
58	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp+1.0 Guy
59	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp+1.0 Guy
60	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp+1.0 Guy
61	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp+1.0 Guy
62	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp+1.0 Guy
63	Dead+Wind 0 deg - Service+Guy
64	Dead+Wind 30 deg - Service+Guy
65	Dead+Wind 60 deg - Service+Guy
66	Dead+Wind 90 deg - Service+Guy
67	Dead+Wind 120 deg - Service+Guy
68	Dead+Wind 150 deg - Service+Guy
69	Dead+Wind 180 deg - Service+Guy
70	Dead+Wind 210 deg - Service+Guy
71	Dead+Wind 240 deg - Service+Guy
72	Dead+Wind 270 deg - Service+Guy
73	Dead+Wind 300 deg - Service+Guy
74	Dead+Wind 330 deg - Service+Guy

GPD ...

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	CT10016-A Montville 3 CT	24 of 36
Project		Date
	2024778.10016.03	14:37:44 12/20/23
Client		Designed by
*1	SBA	bfranczkowski

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	۰
Tl	190 - 170	0.465	73	0.0912	0.0435
T2	170 - 150	0.848	73	0.0967	0.0416
T3	150 - 130	1.234	73	0.0683	0.0543
T4	130 - 110	1.344	73	0.0167	0.0750
T5	110 - 90	1.125	73	0.0646	0.0424
T6	90 - 87.6	0.866	73	0.0318	0.0204
T7	87.6 - 70	0.853	73	0.0263	0.0206
T8	70 - 50	0.828	73	0.0108	0.0249
T9	50 - 35	0.771	73	0.0309	0.0315
T10	35 - 20	0.640	73	0.0577	0.0348
T11	20 - 4.8125	0.406	73	0.0830	0.0295
T12	4.8125 - 0	0.101	73	0.0977	0.0086

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	•	٥	Curvature ft
190.00	Lightning Rod 4'x5/8"	73	0.465	0.0912	0.0435	164872
180.00	MTC3975083 Sector Mount (3)	73	0.651	0.0966	0.0417	82436
166.98	Guy	73	0.911	0.0950	0.0422	85984
160.00	Sector Mount (3)	73	1.057	0.0869	0.0451	38419
150.00	Sector Mount (3)	73	1.234	0.0683	0.0543	14874
139.50	Sector Mount (3)	73	1.337	0.0301	0.0690	13104
130.00	Sector Mount (3)	73	1.344	0.0167	0.0750	12768
92.52	Guy	73	0.885	0.0383	0.0208	13812
76.00	Side Arm Mount [SO 701-1]	73	0.830	0.0117	0.0216	84507

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	•	0
T1	190 - 170	2.588	47	0.6664	0.3164
T2	170 - 150	4.261	47	0.6804	0.3079
T3	150 - 130	6.163	38	0.5242	0.3565
T4	130 - 110	7.000	38	0.1389	0.4166
T5	110 - 90	6.460	2	0.3557	0.2557
T6	90 - 87.6	5.616	5	0.2688	0.1524
T7	87.6 - 70	5.580	5	0.2491	0.1521
T8	70 - 50	5.462	5	0.1664	0.1441
T9	50 - 35	4.922	5	0.2317	0.1472
T10	35 - 20	3.965	5	0.3838	0.1380
T11	20 - 4.8125	2.467	5	0.5175	0.0935
T12	4.8125 - 0	0.609	5	0.5922	0.0382

tnxTower	Job	CT10016-A Montville 3 CT	Page 25 of 36
GPD 520 South Main Street Suite 2531	Project	2024778.10016.03	Date 14:37:44 12/20/23
Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Client	SBA	Designed by bfranczkowski

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
		Comb.	in	0	0	ft
190.00	Lightning Rod 4'x5/8"	47	2.588	0.6664	0.3164	9813
	MTC3975083 Sector Mount (3)	47	3,398	0.6815	0.3082	4906
180.00	Guy	47	4.539	0.6742	0.3105	3550
166.98	Sector Mount (3)	46	5.226	0.6416	0.3225	7357
160.00	Sector Mount (3)	38	6.163	0.5242	0.3565	2707
150.00		38	6.802	0.3050	0.4052	2564
139.50	Sector Mount (3)	38	7.000	0.1389	0.4166	2622
130.00	Sector Mount (3)	5	5.673	0.2923	0.1548	3235
92.52 76.00	Guy Side Arm Mount [SO 701-1]	5	5.503	0.1835	0.1474	11559

Bo	lŧ	D	29	ian	Data
				-	Duta

Section	Elevation	Component	Bolt	Bolt Size	Number	Maximum	Allowable	Ratio	Allowable Ratio	Criteria
No.		Туре	Grade		Of	Load	Load per Bolt	Load	. Kano	
	ft			in	Bolts	per Bolt K	рег Бои К	Allowable		
	190	Leg	A325X	0.7500	4	2.92	30.10	0.097	1	Bolt Tension
11	190	Diagonal	A325X	0.6250	1	2.08	9.11	0.228	1	Member Block
		Diagonar	1151011							Shear
		Top Girt	A325X	0.6250	1	0.01	9.11	0.001	1	Member Block
		Top our							26	Shear
		Bottom Girt	A325X	0.6250	1	0.58	9.11	0.063	1	Member Block
		2000								Shear
T2	170	Leg	A325X	0.7500	4	9.84	30.10	0.327	1	Bolt Tension
12	1.0	Diagonal	A325X	0.6250	1	6.09	9.11	0.669	1	Member Block
										Shear
		Top Girt	A325X	0.6250	1	1.27	9.11	0.139	1	Member Block
									£5.	Shear
		Bottom Girt	A325X	0.6250	1	2.05	9.89	0.208	1	Member Block Shear
								0.056		Bolt Shear
		Torque Arm	A325N	0.8750	2	6.94	27.06	0.256	1	Bolt Silear
		Top@166.977					20.40	0.000		Bolt Tension
T3	150	Leg	A325X	0.7500	4	11.74	30.10	0.390	1	Member Bearing
		Diagonal	A325X	0.5000	1	2.41	5.92	0.408	*	Member Bearing
		Top Girt	A325X	0.5000	1	1.51	5.92	0.254 0.254	1	Member Bearing
		Bottom Girt	A325X	0.5000	1	1.51	5.92	0.254	1	Bolt Tension
T4	130	Leg	A325X	0.7500	4	3.25	30.10	0.108	1	Gusset Bearing
		Diagonal	A325X	0.5000	1	5.14	9.78	0.326	\$	Gusset Bearing
		Top Girt	A325X	0.5000	1	1.47	9.78	0.150	-	Gusset Bearing Gusset Bearing
		Bottom Girt	A325X	0.5000	1	1.47	9.78	0.150	- 7	Bolt Tension
T5	110	Leg	A325X	0.7500	4	4.78	30.10	0.139	1	Bolt Shear
		Diagonal	A325X	0.5000	1	5.46	11.04	0.494	1	Bolt Shear
		Top Girt	A325X	0.5000	1	1.21	11.04	0.109	1	Bolt Shear
		Bottom Girt	A325X	0.5000	1	1.24	11.04 22.08	0.112	î	Member Bearing
		Torque Arm	A325N	0.8750	2	6.40	22.08	0.290	*	Member Bearing
		Top@92.5234				2.00	9.11	0.329	1	Member Block
T6	90	Diagonal	A325X	0.6250	1	2.99	9.11	0.329	A :	Shear
				0.7000		1.01	5.92	0.171	1	Member Bearing
		Top Girt	A325X	0.5000	1	1.01 3.87	30.10	0.171	1	Bolt Tension
T7	87.6	Leg	A325X	0.7500	4	2.61	5.92	0.128	î	Member Bearing
		Diagonal	A325X	0.5000	1	0.89	5.26	0.170	î	Member Bearing
		Bottom Girt	A325X	0.6250	1 4	4.86	30.10	0.170	i	Bolt Tension
T8	70	Leg	A325X	0.7500	4	4.00	50.10	0.101	-	

GPD

520 South Main Street Suite 2531

Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	CT10016-A Montville 3 CT	26 of 36
Project	\$	Date
	2024778.10016.03	14:37:44 12/20/23
Client	004	Designed by
	SBA	bfranczkowski

Section	Elevation	Component	Bolt	Bolt Size	Number	Maximum	Allowable	Ratio	Allowable	Criteria
No.		Type	Grade		Of	Load	Load	Load	Ratio	
	ft			in	Bolts	per Bolt K	per Bolt K	Allowable		
		Diagonal	A325X	0.5000	1	3.31	11.04	0.300	1	Bolt Shear
		Top Girt	A325X	0.5000	1	1.34	11.04	0.121	1	Bolt Shear
		Bottom Girt	A325X	0.5000	1	1.01	11.04	0.091	1	Bolt Shear
T9	50	Leg	A325X	0.7500	4	4.98	30.10	0.166	1	Bolt Tension
		Diagonal	A325X	0.5000	1	1.31	7.02	0.186	1	Member Bearing
		Top Girt	A325X	0.5000	1	1.05	5.92	0.177	1	Member Bearing
		Bottom Girt	A325X	0.5000	1	1.05	5.92	0.177	1	Member Bearing
T10	35	Leg	A325X	0.7500	4	4.49	30.10	0.149	1	Bolt Tension
10		Diagonal	A325X	0.5000	1	1.69	5.92	0.286	1	Member Bearing
		Top Girt	A325X	0.5000	1	1.04	5.92	0.175	1	Member Bearing
		Bottom Girt	A325X	0.5000	1	1.04	5.92	0.175	1	Member Bearing
T11	20	Leg	A325X	0.7500	4	4.26	30.10	0.141	I	Bolt Tension
		Diagonal	A325X	0.5000	1	2.84	11.04	0.257	1	Bolt Shear
		Top Girt	A325X	0.5000	1	0.93	11.04	0.084	1	Bolt Shear
		Bottom Girt	A325X	0.5000	1	5.81	11.04	0.526	1	Bolt Shear

Guy E	esign)	Data
-------	--------	------

Section No.	Elevation	Size	Initial Tension	Breaking Load	Actual T _u	Allowable ϕT_n	Required S.F.	Actual S.F.
	ft		K	K	K	K		
T2	166.98 (A) (483)	7/8 EHS	7.97	79.70	18.18	47.82	1.000	2.630
	166.98 (A) (484)	7/8 EHS	7.97	79.70	17.76	47.82	1.000	2.692
	166.98 (B) (479)	7/8 EHS	7.97	79.70	18.71	47.82	1.000	2.556
	166.98 (B) (480)	7/8 EHS	7.97	79.70	19.10	47.82	1.000	2.504
	166.98 (C) (472)	7/8 EHS	7.97	79.70	18.00	47.82	1.000	2.657
	166.98 (C) (473)	7/8 EHS	7.97	79.70	17.92	47.82	1.000	2.669
T5	92.52 (A) (498)	5/8 EHS	4.24	42.40	12.59	25.44	1.000	2.020
	92.52 (A) (499)	5/8 EHS	4.24	42.40	12.29	25.44	1.000	2.069
	92.52 (B) (494)	5/8 EHS	4.24	42.40	13.43	25.44	1.000	1.894
	92.52 (B) (495)	5/8 EHS	4.24	42.40	13.63	25.44	1.000	1.866
	92.52 (C) (487)	5/8 EHS	4.24	42.40	12.53	25.44	1.000	2.031
	92.52 (C) (488)	5/8 EHS	4.24	42.40	12.52	25.44	1.000	2.033

tnxTower	Job	CT10016-A Montville 3 CT	Page 27 of 36
GPD	Project	2024778.10016.03	Date 14:37:44 12/20/23
tnxTower	Client	SBA	Designed by bfranczkowski

Compression Checks

Leg Design Data (Compression)

Section	Elevation	Size	L	L_{ii}	Kl/r	A	P_u	ϕP_n	Ratio Pu
No.	ft		ft	fŧ		in^2	K	K	ϕP_n
T1	190 - 170	ROHN 3 EH	20.00	0.11	1.2 K=1.00	3.0159	-15.56	135.70	0.115
T2	170 - 150	ROHN 3 EH	20.00	0.11	· 1.2 K=1.00	3.0159	-73.22	135.70	0.540
T3	150 - 130	P 2-1/2 X-STR w/ Split P 3 STD (GPD)	20.00	2.41	36.9 K=1.18	3.3678	-86.97	137.18	0.634
T4	130 - 110	P 2-1/2 X-STR w/ Split P 3	20.00	2.41	36.9 K=1.18	3.3678	-81.69	127.22	0.642
T5	110 - 90	STD (GPD) ROHN 3 EH	20.00	2.41	25.4 K=1.00	3.0159	-58.44	129.44	0.451
Т6	90 - 87.6	ROHN 3 EH	2.40	2.40	25.3 K=1.00	3.0159	-53.49	129.49	0.413
T7	87.6 - 70	ROHN 3 EH	17.60	2.41	25.5 K=1.00	3.0159	-50.34	129.44	0.389
T8	70 - 50	ROHN 3 EH	20.00	2.41	50.9 K=2.00	3.0159	-57.53	112.32	0.512
Т9	50 - 35	ROHN 3 EH	15.00	2.38	50.2 K=2.00	3.0159	-60.41	112.85	0.535
T10	35 - 20	ROHN 3 EH	15.00	2.38	50.2 K=2.00	3.0159	-59.29	112.85	0.525
T11	20 - 4.8125	ROHN 3 EH	15.19	2.41	50.9	3.0159	-53.50	112.30	0.476
T12	4.8125 - 0	ROHN 3 EH	5.20	1.59	K=2.00 16.8 K=1.00	3.0159	-55.08	132.93	0.414

 $^{^{1}}P_{u}/\phi P_{u}$ controls

Diagonal Design Data (Compression)

Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_u	Ratio P _u
No.	ft		ft	ft		in^2	K	K	ϕP_u
T 1	190 - 170	L2x2x1/4	4.18	3.58	115.0 K=1.05	0.9375	-2.13	19.72	0.108
T2	170 - 150	L2x2x1/4	4.18	3.58	115.0 K=1.05	0.9375	-5.90	19.72	0.299 1
T3	150 - 130	ROHN 1.5 x 16GA	4.18	3.82	89.9 K=1.00	0.2627	-2.71	6.04	0.449 1
T4	130 - 110	ROHN 1.5 x 11GA	4.18	3.82	93.7 K=1.00	0.5202	-5.14	11.47	0.449 ¹
T5	110 - 90	ROHN 1.5 x 11GA	4.18	3.82	93.7 K=1.00	0.5202	-5.46	11.47	0.476 ¹
T6	90 - 87.6	L2x2x1/4	4.18	3.58	114.9 K=1.05	0.9375	-3.40	19.74	0.172 1
T7	87.6 - 70	ROHN 1.5 x 16GA	4.18	3.82	89.9	0.2627	-2.41	6.04	0.399
T8	70 - 50	ROHN 1.5 x 11GA	4.18	3.82	K=1.00 93.7	0.5202	-3.31	11.47	0.288
T9	50 - 35	ROHN 1.5 x 16GA	4.16	3.81	K=1.00 89.6	0.2627	-1.31	6.07	0.215 1

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	CT10016-A Montville 3 CT	28 of 36
Project	i i	Date
	2024778.10016.03	14:37:44 12/20/23
Client	12	Designed by
U.	SBA	bfranczkowski

Section No.	Elevation	Size	L	L_{\shortparallel}	Kl/r	A	P_u	φ <i>P</i> ,,	Ratio
	ft		ft	ft		in ²	K	K	$\frac{P_u}{\phi P_u}$
T10	35 - 20	ROHN 1.5 x 16GA	4.16	3.81	K=1.00 89.6 K=1.00	0.2627	-1.97	6.07	0.325 1
T11	20 - 4.8125	ROHN 1.5 x 11GA	4.18	3.82	93.7 K=1.00	0.5202	-2.53	11.47	0.221 1

 $^{^{1}} P_{u} / \phi P_{n}$ controls

Horizontal Design	Data (Compression)
-------------------	--------------------

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_{u}	φ <i>P</i> _n	Ratio
110.	ft		ft	ft		in^2	K	K	$\frac{P_u}{\phi P_n}$
T12	4.8125 - 0	L8x8x3/4	1.05	0.76	62.9 K=10.92	11.4375	-1.36	360.56	0.004

 $^{^{1}}P_{u}/\phi P_{n}$ controls

Top Girt Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	fl		in ²	K	K	ΦP_n
Tl	190 - 170	L2x2x1/4	3.42	2.89	104.3 K=1.18	0.9375	-0.00	22.21	0.000 1
T2	170 - 150	L2x2x1/4	3.42	2.89	104.3 K=1.18	0.9375	-1.27	22.21	0.057 1
T3	150 - 130	ROHN 1.5 x 16GA	3.42	3.13	73.5 K=1.00	0.2627	-1.51	7.13	0.211 1
T4	130 - 110	ROHN 1.5 x 11GA	3.42	3.13	76,6 K=1.00	0.5202	-1.47	13.72	0.107 1
T5	110 - 90	ROHN 1.5 x 11GA	3.42	3.13	76,6 K=1.00	0.5202	-1.01	13.72	0.074 1
Т6	90 - 87.6	ROHN 1.5 x 16GA	3.42	3.13	73.5 K=1.00	0.2627	-1.01	7.13	0.142 1
T8	70 - 50	ROHN 1.5 x 11GA	3.42	3.13	76.6 K=1.00	0.5202	-1.12	13.72	0.082 1
T9	50 - 35	ROHN 1.5 x 16GA	3.42	3.13	73.5 K=1.00	0.2627	-1.05	7.13	0.147 1
T10	35 - 20	ROHN 1.5 x 16GA	3.42	3.13	73.5 K=1.00	0.2627	-1.04	7.13	0.145 1
T11	20 - 4.8125	ROHN 1.5 x 11GA	3.42	3.13	76.6 K=1.00	0.5202	-0.93	13.72	0.068 1
T12	4.8125 - 0	L8x8x3/4	2.98	2.69	70.2 K=3.43	11.4375	-1.01	347.87	0.003 1

¹ P_u / ϕP_n controls

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job	CT10016-A Montville 3 CT	Page 29 of 36
Project	2024778.10016.03	Date 14:37:44 12/20/23
Client	SBA	Designed by bfranczkowski

		Bottom	Girt D	esign	Data	(Comp	oressio	n)	
Section	Elevation	Size	$L_{_{i}}$	L_{u}	Kl/r	A	P_u	ϕP_n	Ratio P _u
No.	ft		ft	ft		in ²	K	K	ϕP_n
Tl	190 - 170	L2x2x1/4	3.42	2.89	104.3 K=1.18	0.9375	-0.49	22.21	0.022
T2	170 - 150	L2x2x1/4	3.42	2.89	104.3 K=1.18	0.9375	-1.33	23.67	0.056 1
Т3	150 - 130	ROHN 1.5 x 16GA	3.42	3.13	73.5 K=1.00	0.2627	-1.51	7.13	0.211 1
T4	130 - 110	ROHN 1.5 x 11GA	3.42	3.13	76.6 K=1.00	0.5202	-1.47	13.72	0.107 1
T5	110 - 90	ROHN 1.5 x 11GA	3.42	3.13	76.6 K=1.00	0.5202	-1.01	13.72	0.074
T7	87.6 - 70	ROHN 1.5 x 16GA	3.42	3.13	73.5 K=1.00	0.2627	-0.89	7.13	0.126 1
Т8	70 - 50	ROHN 1.5 x 11GA	3.42	3.13	76.6 K=1.00	0.5202	-1.01	13.72	0.074 1
Т9	50 - 35	ROHN 1.5 x 16GA	3.42	3.13	73.5 K=1.00	0.2627	-1.05	7.13	0.147 1
T10	35 - 20	ROHN 1.5 x 16GA	3.42	3.13	73.5 K=1.00	0.2627	-1.04	7.13	0.145 1
T11	20 - 4.8125	ROHN 1.5 x 11GA	3.42	3.13	76.6 K=1.00	0.5202	-0.93	13.72	0.068 1

 $^{^{1}}P_{u}/_{\phi}P_{u}$ controls

		Top Guy l	Pull-Off	Desi	gn Da	ta (Co	mpress	sion)	
Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio Pu
No.	ft		ft	ft		in ²	K	K	ϕP_n
T2	170 - 150	2L2x2x1/4	3.42	3.13	61.6 K=1.00	1.8800	-8.07	59.61	0.135 1
T5	110 - 90	2L2x2x1/4	3.42	3.13	61.6 K=1.00	1.8800	-8.07	59.61	0.135 1

¹ P_u / ϕP_n controls

Top Guy Pull-Off Bending Design Data								
Section	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M _{ux}	M_{uy}	ϕM_{ny}	Ratio Muy
No.	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{sy}
T2 T5	170 - 150 110 - 90	2L2x2x1/4 2L2x2x1/4	0.00 0.00	2.00 2.00	0.000 0.000	0.00 0.00	2.73 2.73	0.000 0.000

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	CT10016-A Montville 3 CT	30 of 36
Project		Date
	2024778.10016.03	14:37:44 12/20/23
Client		Designed by
	SBA	bfranczkowski

Top Gu	y Pull-Off	Interaction	Design	Data
--------	------------	-------------	--------	-------------

Section No.	Elevation	Size	Ratio P _u	Ratio M _{ux}	Ratio M _w	Comb. Stress	Allow. Stress	Criteria
	ft		ϕP_{n}	ϕM_{uu}	ϕM_{mv}	Ratio	Ratio	
T2 T5	170 - 150 110 - 90	2L2x2x1/4 2L2x2x1/4	0.135 0.135	0.000 0.000	0.000	0.135 ¹ 0.135 ¹	1.000 1.000	

¹ P_u / ϕP_n controls

Torque-Arm Top Design Data

Section No.	Elevation	Size	L	$L_{\rm u}$	Kl/r	A	P_u	фР"	Ratio Pu
	ft		ft	ft		in ²	K	K	ϕP_n
T2	170 - 150 (474)	MC18x42.7	3.42	3.27	36.7 K=1.00	12.6000	-3.64	380.32	0.010
T2	170 - 150 (475)	MC18x42.7	3.42	3.27	36.7 K=1.00	12.6000	-3.45	380.32	0.009
T2	170 - 150 (481)	MC18x42.7	3.42	3.27	36.7 K=1.00	12.6000	-3.58	380.32	0.009
T2	170 - 150 (482)	MC18x42.7	3.42	3.27	36.7 K=1.00	12.6000	-3.42	380.32	0.009
T2	170 - 150 (485)	MC18x42.7	3.42	3.27	36.7 K=1.00	12.6000	-4.05	380.32	0.011
T2	170 - 150 (486)	MC18x42.7	3.42	3.27	36.7 K=1.00	12.6000	-3.65	380.32	0.010
T5	110 - 90 (489)	C12x20.7	3.42	3.27	49.1 K=1.00	6.0900	-4.46	173.78	0.026
T5	110 - 90 (490)	C12x20.7	3.42	3.27	49.1 K=1.00	6.0900	-4.50	173.78	0.026
T5	110 - 90 (496)	C12x20.7	3.42	3.27	49.1	6.0900	-4.75	173.78	0.027
T5	110 - 90 (497)	C12x20.7	3.42	3.27	K=1.00 49.1	6.0900	-6.13	173.78	0.035
T5	110 - 90 (500)	C12x20.7	3.42	3.27	K=1.00 49.1	6.0900	-5.14	173.78	0.030
T5	110 - 90 (501)	C12x20.7	3.42	3.27	K=1.00 49.1 K=1.00	6.0900	-6.24	173.78	0.036

Torque-Arm Top Bending Design Data

Section	Elevation	Size	$M_{\mu_{\rm X}}$	ϕM_{nx}	Ratio	$M_{\mu\nu}$	$\phi M_{m'}$	Ratio
No.					M_{ux}			$M_{\nu y}$
	fl		kip-fî	kip-ft	ϕM_{m}	kip-fi	kip-ft	ϕM_{nv}
T2	170 - 150 (474)	MC18x42.7	-40.52	200.88	0.202	0.00	18.99	0.000
T2	170 - 150 (475)	MC18x42.7	-40.07	200.88	0.199	0.00	18.99	0.000
T2	170 - 150 (481)	MC18x42.7	-46.45	200.88	0.231	0.00	18.99	0.000
T2	170 - 150 (482)	MC18x42.7	-40.53	200.88	0.202	-0.00	18.99	0.000
T2	170 - 150 (485)	MC18x42.7	-46.54	200.88	0.232	0.00	18.99	0.000
T2	170 - 150 (486)	MC18x42.7	-40.14	200.88	0.200	-0.00	18.99	0.000
T5	110 - 90 (489)	C12x20.7	-17.02	68.58	0.248	0.00	7.01	0.000
T5	110 - 90 (490)	C12x20.7	-16.98	68.58	0.248	-0.00	7.01	0.000
T5	110 - 90 (496)	C12x20.7	-23.51	68.58	0.343	0.00	7.01	0.000

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

		Page
Job	CT10016-A Montville 3 CT	31 of 36
Project	2024778.10018.03	Date 14:37:44 12/20/23
Client	SBA	Designed by bfranczkowski

Section	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M _{ux}	M_{uy}	ϕM_{ny}	Ratio M _{uy}
No.	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{n_2} 0.000
T5 T5 T5	110 - 90 (497) 110 - 90 (500) 110 - 90 (501)	C12x20.7 C12x20.7 C12x20.7	-17.17 -23.43 -16.74	68.58 68.58 68.58	0.250 0.342 0.244	-0.00 0.00 -0.00	7.01 7.01 7.01	0.000

Torque-Arm Top Interaction Design Data

Section No.	Elevation	Size	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Comb. Stress	Allow. Stress	Criteria
710.	ft		ϕP_n	ϕM_{nx}	ϕM_{nv}	Ratio	Ratio	
T2	170 - 150 (474)	MC18x42.7	0.010	0.202	0.000	0.207	1.000	
	170 - 150 (474)	MC18x42.7	0.009	0.199	0.000	0.204	1.000	
T2	170 - 150 (475)	MC18x42.7	0.009	0.231	0.000	0.236	1.000	
T2	170 - 150 (481)	MC18x42.7	0.009	0.202	0.000	0.206	1.000	
T2		MC18x42.7	0.011	0.232	0.000	0.237	1.000	
T2	170 - 150 (485)	MC18x42.7	0.010	0.200	0.000	0.205	1.000	
T2	170 - 150 (486)	C12x20.7	0.026	0.248	0.000	0.261	1.000	
T5	110 - 90 (489)	C12x20.7	0.026	0.248	0.000	0.261	1.000	
T5	110 - 90 (490)		0.027	0.343	0.000	0.356	1.000	
T5	110 - 90 (496)	C12x20.7	0.027	0.250	0.000	0.268	1.000	
T5	110 - 90 (497)	C12x20.7	0.030	0.342	0.000	0.356	1.000	
T5	110 - 90 (500)	C12x20.7		0.244	0.000	0.262	1.000	
T5	110 - 90 (501)	C12x20.7	0.036	0.244	0.000	0.202	2,000	

Tension Checks

Leg Design Data (Tension)

Section	Elevation	Size	L	L_{μ}	K7/r	A	P_{μ}	ϕP_n	Ratio P _u
No.	ft		ft	ft		in ²	K	K	ϕP_n
		POID 2 FII	20.00	0.11	1.2	3.0159	11.68	135.72	0.086
T1	190 - 170	ROHN 3 EH	20.00	0.11	1.2	3.0159	39.34	135.72	0.290
T2	170 - 150	ROHN 3 EH		2.41	31.2	3.3678	51.73	151.55	0.341
T3	150 - 130	P 2-1/2 X-STR w/ Split P 3	20.00	2.41	31.2	5.5070			
		STD (GPD)	20.00	0.61	8.0	3.3678	46.94	139.43	0.337
T4	130 - 110	P 2-1/2 X-STR w/ Split P 3	20.00	0.01	0.0	3.3070	,		
		STD (GPD)	00.00	2.41	25.4	3.0159	20.47	135.72	0.151
T5	110 - 90	ROHN 3 EH	20.00		25.4	3.0159	3.82	135.72	0.028
T6	90 - 87.6	ROHN 3 EH	2.40	2.40		3.0159	0.56	135.72	0.004
T7	87.6 - 70	ROHN 3 EH	17.60	0.61	6.5		2.07	135.72	0.015
Т8	70 - 50	ROHN 3 EH	20.00	0.11	1.2	3.0159		135.72	0.024
T9	50 - 35	ROHN 3 EH	15.00	2.38	25.1	3.0159	3.25		0.024
T10	35 - 20	ROHN 3 EH	15.00	0.61	6.5	3.0159	2.22	135.72	0.010

 $^{^{1}}P_{u}/\phi P_{n}$ controls

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311

Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	CT10016-A Montville 3 CT	32 of 36
Project		Date
	2024778.10016.03	14:37:44 12/20/23
Client	SBA	Designed by
	SDA	bfranczkowski

	Diagonal Design Data (Tension)											
Section No.	Elevation	Size	L	L_{μ}	Kl/r	A	P_{u}	ϕP_n	Ratio P _u			
	fì		ft	ft		in^2	K	K	φP,,			
Tl	190 - 170	L2x2x1/4	4.18	3.58	75.4	0.5625	2.08	24.47	0.085			
T2	170 - 150	L2x2x1/4	4.18	3.58	75.4	0.5625	6.09	24.47	0.249 1			
T3	150 - 130	ROHN 1.5 x 16GA	4.18	3.82	89.9	0.1902	2.41	8.99	0.269			
T4	130 - I 10	ROHN 1.5 x 11GA	4.18	3.82	93.7	0.3702	4.71	16.11	0.292 1			
T5	110 - 90	ROHN 1.5 x 11GA	4.18	3.82	93.7	0.3702	5.20	16.11	0.323			
T6	90 - 87.6	L2x2x1/4	4.18	3.58	75.3	0.5625	2.99	24.47	0.122 1			
T7	87.6 - 70	ROHN 1.5 x 16GA	4.18	3.82	89.9	0.3023	2.61	8.99	0.122			
T8	70 - 50	ROHN 1.5 x 11GA	4.18	3.82	93.7	0.3702	3.09	16.11				
T9	50 - 35	ROHN 1.5 x 16GA	4.16	3.81	89.6	0.1902	0.93		0.192 1			
T10	35 - 20	ROHN 1.5 x 16GA	4.16	3.81	89.6	0.1902		8.99	0.104 1			
T11	20 - 4.8125	ROHN 1.5 x 11GA	4.18	3.82	93.7	0.1902	1.69 2.84	8.99 16.11	0.188^{-1} 0.176^{-1}			

 $^{^{1}}P_{u}/\phi P_{n}$ controls

Horizontal Design Data (Tension)									
Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_u	фР"	Ratio
T10	ft	111-57-11-57-11-57-11-	fi	ſŧ		in²	K	K	Φ_n
T12	4.8125 - 0	L8x8x3/4	1.05	0.76	3.7	11.4375	1.50	370.57	0.004 1

 $^{^{1}}$ P_{u} / ϕP_{u} controls

	Top Girt Design Data (Tension)										
Section No.	Elevation	Size	L	$L_{\scriptscriptstyle\sf H}$	Kl/r	A	P_{u}	ϕP_n	Ratio P _u		
	ft		ft	ft		$i\pi^2$	K	K	φP,		
T1	190 - 170	L2x2x1/4	3.42	2.89	61.6	0.5625	0.01	24.47	0.000		
T2	170 - 150	L2x2x1/4	3.42	2.89	61.6	0.5625	1.27	24.47	0.052 1		
T3	150 - 130	ROHN 1.5 x 16GA	3.42	3.13	73.5	0.1902	1.51	8.99	0.168 1		
T4	130 - 110	ROHN 1.5 x 11GA	3.42	3.13	76.6	0.3702	1.47	16.11	0.100		
T5	110 - 90	ROHN 1.5 x 11GA	3.42	3.13	76.6	0.3702	1.21	16.11	0.075		
T6	90 - 87.6	ROHN 1.5 x 16GA	3.42	3.13	73.5	0.1902	1.01	8.99	0.073		
T8	70 - 50	ROHN 1.5 x 11GA	3.42	3.13	76.6	0.3702	1.34	17.49	0.113		
T9	50 - 35	ROHN 1.5 x 16GA	3.42	3.13	73.5	0.1902	1.05	8.99	0.077 0.116 ¹		
T10	35 - 20	ROHN 1.5 x 16GA	3.42	3.13	73.5	0.1902	1.03	8.99 8.99			
T11	20 - 4.8125	ROHN 1.5 x 11GA	3.42	3.13	76.6	0.1902	0.93		0.115		
T12	4.8125 - 0	L8x8x3/4	2.98	2.69	13.1	11.4375	5.73	16.11 370.57	0.058 ¹ 0:015 ¹		

 $^{^{1}} P_{u} / \phi P_{u}$ controls

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job	CT10016-A Montville 3 CT	Page 33 of 36
Project	2024778.10016.03	Date 14:37:44 12/20/23
Client	SBA	Designed by bfranczkowski

Bottom	Girt	Design	Data (Tension)
---------------	------	--------	--------	---------	---

Section	Elevation	Size	L	L_u	Kl/r	A	P_{u}	ϕP_n	$Ratio$ P_u
No.	ft		ft	ft		in^2	K	K	ϕP_n
(T)1	190 - 170	L2x2x1/4	3.42	2.89	61.6	0.5625	0.58	24.47	0.024
T1	170 - 170	L2x2x1/4	3.42	2.89	61.6	0.5625	2.05	26.58	0.077 1
T2	2,0	ROHN 1.5 x 16GA	3.42	3.13	73.5	0.1902	1.51	8.99	0.168 1
T3	150 - 130	ROHN 1.5 x 11GA	3.42	3.13	76.6	0.3702	1.47	16.11	0.091 1
T4	130 - 110	ROHN 1.5 x 11GA ROHN 1.5 x 11GA	3.42	3.13	76.6	0.3702	1.24	16.11	0.077 1
T5	110 - 90		3.42	3.13	73.5	0.1318	0.89	6.23	0.144^{-1}
T7	87.6 - 70	ROHN 1.5 x 16GA	3.42	3.13	76.6	0.3702	1.01	17.49	0.058^{-1}
T8	70 - 50	ROHN 1.5 x 11GA	3.42	3.13	73.5	0.1902	1.05	8.99	0.116^{-1}
T9	50 - 35	ROHN 1.5 x 16GA		3.13	73.5	0.1902	1.04	8.99	0.115^{-1}
T10	35 - 20	ROHN 1.5 x 16GA	3.42		,	0.1302	5.81	16.11	0.361
T11	20 - 4.8125	ROHN 1.5 x 11GA	3.42	3.13	76.6	0.5/02	5.01	10.11	0.501

^I P_u / ϕP_n controls

Top	Guy Pu	ıll-Off	Design	Data	(Tension)	١
100	Guy Ft		Design	Dutu	1101011	L

Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
No_*	ft		ft	ft		in²	K	K	ϕP_n
T2 T5	170 - 150 110 - 90	2L2x2x1/4 2L2x2x1/4	3.42 3.42	3.13 3.13	61.6 61.6	1.8800 1.8800	8.49 11.08	60.91 60.91	0.139

 $^{{}^{1}}P_{u} / \phi P_{u}$ controls

Top Guy Pull-Off Bending Design Data

Section	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M _w	M_{uv}	$\phi M_{ m in}$	Ratio M_{uy}
No_*	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{zv}
T2	170 - 150	2L2x2x1/4	0.00	2.00	0.000	0.00	2.73	0.000
T5	110 - 90	2L2x2x1/4	0.00	2.00	0.000	0.00	2.73	0.000

Top Guy Pull-Off Interaction Design Data

Section No.	Elevation	Size	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Comb. Stress	Allow- Stress	Criteria
IVO.	fi		ΦP_n	ϕM_{nx}	ϕM_{ny}	Ratio	Ratio	
T2 T5	170 - 150 110 - 90	2L2x2x1/4 2L2x2x1/4	0.139 0.182	0.000 0.000	0.000	0.139 ¹ 0.182 ¹	1.000 1.000	

 $^{^{1}}P_{u}/\phi P_{n}$ controls

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311

Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	CT10016-A Montville 3 CT	34 of 36
Project	2024778.10016.03	Date 14:37:44 12/20/23
Client	SBA	Designed by bfranczkowski

Toro	ue-Arm	Ton	Design	Data
1014	ue-Alli	rop	Design	Dala

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{μ}	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T2	170 - 150 (474)	MC18x42.7	3.42	3.27	36.7	9.1125	0.37	396.39	0.001
T2	170 - 150 (475)	MC18x42.7	3.42	3.27	36.7	9.1125	0.85	396.39	0.002
T2	170 - 150 (481)	MC18x42.7	3.42	3.27	36.7	9.1125	0.69	396.39	0.002
T2	170 - 150 (482)	MC18x42.7	3.42	3.27	36.7	9.1125	0.48	396.39	0.002
T2	170 - 150 (485)	MC18x42.7	3.42	3.27	36.7	9.1125	0.21	396.39	0.001
T2	170 - 150 (486)	MC18x42.7	3.42	3.27	36.7	9.1125	0.49	396.39	0.001
T5	110 - 90 (489)	C12x20.7	3.42	3.27	49.1	4.3560	4.81	189.49	0.001
T5	110 - 90 (490)	C12x20.7	3.42	3.27	49.1	4.3560	0.02	189.49	0.025
T5	110 - 90 (496)	C12x20.7	3.42	3.27	49.1	4.3560	5.01	189.49	0.006
T5	110 - 90 (497)	C12x20.7	3.42	3.27	49.1	4.3560	4.89	189.49	0.026
T5	110 - 90 (500)	C12x20.7	3.42	3.27	49.1	4.3560	4.67	189.49	0.026
T5	110 - 90 (501)	C12x20.7	3.42	3.27	49.1	4.3560	4.96	189.49	0.025

Torque-Arm Top Bending Design Data

Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M _{ux}	M_{uy}	ϕM_{ny}	Ratio M _{uy}
	ft		kip-ft	kip-ft	$\frac{1}{\Phi M_{nx}}$	kip-ft	kip-ft	$\phi M_{n\nu}$
T2	170 - 150 (474)	MC18x42.7	-38.79	200.88	0.193	0.00	18.99	0.000
T2	170 - 150 (475)	MC18x42.7	-38.65	200.88	0.192	-0.00	18.99	0.000
T2	170 - 150 (481)	MC18x42.7	-44.59	200.88	0.222	0.00	18.99	0.000
T2	170 - 150 (482)	MC18x42.7	-37.88	200.88	0.189	-0.00	18.99	0.000
T2	170 - 150 (485)	MC18x42.7	-44.03	200.88	0.219	-0.00	18.99	0.000
T2	170 - 150 (486)	MC18x42.7	-37.36	200.88	0.186	0.00	18.99	0.000
T5	110 - 90 (489)	C12x20.7	-15.36	68.58	0.224	0.00	7.01	0.000
T5	110 - 90 (490)	C12x20.7	-17.56	68.58	0.256	0.00	7.01	0.000
T 5	110 - 90 (496)	C12x20.7	-20.30	68.58	0.296	0.00	7.01	0.000
T5	110 - 90 (497)	C12x20.7	-15.37	68.58	0.224	0.00	7.01	0.000
T5	110 - 90 (500)	C12x20.7	-19.52	68.58	0.285	0.00	7.01	0.000
T5	110 - 90 (501)	C12x20.7	-14.89	68.58	0.217	0.00	7.01	0.000

Torque-Arm Top Interaction Design Data

Section No.	Elevation	Size	Ratio P _u	Ratio M_{ux}	Ratio M ₁₀ ,	Comb. Stress	Allow. Stress	Criteria
	fl		ϕP_n	ϕM_{nc}	ϕM_{nv}	Ratio	Ratio	
T2	170 - 150 (474)	MC18x42.7	0.001	0.193	0.000	0.194	1.000	
T2	170 - 150 (475)	MC18x42.7	0.002	0.192	0.000	0.193	1.000	
T2	170 - 150 (481)	MC18x42.7	0.002	0.222	0.000	0.223	1.000	
T2	170 - 150 (482)	MC18x42.7	0.001	0.189	0.000	0.189	1.000	
T2	170 - 150 (485)	MC18x42.7	0.001	0.219	0.000	0.219	1.000	
T2	170 - 150 (486)	MC18x42.7	0.001	0.186	0.000	0.187	1.000	
T5	110 - 90 (489)	C12x20.7	0.025	0.224	0.000	0.237	1.000	
T5	110 - 90 (490)	C12x20.7	0.000	0.256	0.000	0.256	1.000	
T5	110 - 90 (496)	C12x20.7	0.026	0.296	0.000	0.309	1.000	
T5	110 - 90 (497)	C12x20.7	0.026	0.224	0.000	0.237	1.000	
T5	110 - 90 (500)	C12x20.7	0.025	0.285	0.000	0.297	1.000	
T5	110 - 90 (501)	C12x20.7	0.026	0.217	0.000	0.230	1.000	

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

T		Page
Job	CT10016-A Montville 3 CT	35 of 36
Project	2024778.10016.03	Date 11:37:44 12/20/23
Client	SBA	Designed by bfranczkowski

Section Capacity Table

Section	Elevation	Component	Size	Critical Element	P K	$ otag P_{allow} $	% Capacity	Pass Fail
No_*	ft	Туре				135.70	11.5	Pass
T1	190 - 170	Leg	ROHN 3 EH	3	-15,56		54.0	Pass
T2	170 - 150	Leg	ROHN 3 EH	59	-73.22	135.70		
T3	150 - 130	Leg	P 2-1/2 X-STR w/ Split P 3 STD (GPD)	116	-86.97	137.18	63.4	Pass
T4	130 - 110	Leg	P 2-1/2 X-STR w/ Split P 3 STD (GPD)	173	-81.69	127.22	64.2	Pass
T5	110 - 90	Leg	ROHN 3 EH	230	-58.44	129.44	45.1	Pass
		Leg	ROHN 3 EH	287	-53.49	129.49	41.3	Pass
T6	90 - 87.6	-	ROHN 3 EH	299	-50.34	129.44	38.9	Pass
T7	87.6 - 70	Leg	ROHN 3 EH	347	-57.53	112.32	51.2	Pass
T8	70 - 50	Leg	ROHN 3 EH	380	-60.41	112.85	53.5	Pass
T9	50 - 35	Leg		407	-59.29	112.85	52.5	Pass
T10	35 - 20	Leg	ROHN 3 EH		-53.50	112.30	47.6	Pass
T11	20 - 4.8125	Leg	ROHN 3 EH	434		132.93	41.4	Pass
T12	4.8125 - 0	Leg	ROHN 3 EH	461	-55.08			Pass
T1	190 - 170	Diagonal	L2x2x1/4	13	-2.13	19.72	10.8 22.8 (b)	
T2	170 - 150	Diagonal	L2x2x1/4	106	-5.90	19.72	29.9 66.9 (b)	Pass
T3	150 - 130	Diagonal	ROHN 1.5 x 16GA	169	-2.71	6.04	44.9	Pass
T4	130 - 110	Diagonal	ROHN 1.5 x 11GA	184	-5.14	11.47	44.9 52.6 (b)	Pass
T5	110 - 90	Diagonal	ROHN 1.5 x 11GA	283	-5.46	11.47	47.6 49.4 (b)	Pass
Т6	90 - 87.6	Diagonal	L2x2x1/4	295	-3.40	19.74	17.2 32.9 (b)	Pass
Т7	87.6 - 70	Diagonal	ROHN 1.5 x 16GA	340	-2.41	6.04	39.9 44.1 (b)	Pass
T8	70 - 50	Diagonal	ROHN 1.5 x 11GA	376	-3.31	11.47	28.8 30.0 (b)	Pass
TO	50 25	Diagonal	ROHN 1.5 x 16GA	403	-1.31	6.07	21.5	Pass
T9	50 - 35	Diagonal	ROHN 1.5 x 16GA	416	-1.97	6.07	32.5	Pass
T10 T11	35 - 20 20 - 4.8125	Diagonal	ROHN 1.5 x 11GA	446	-2.53	11.47	22.1 25.7 (b)	Pass
		771	L8x8x3/4	468	1.29	370.57	1.2	Pass
T12	4.8125 - 0	Horizontal	L2x2x1/4	4	0.01	24.47	0.2	Pass
T1	190 - 170	Top Girt	L2x2x1/4 L2x2x1/4	61	-1.27	22.21	5.7	Pass
T2	170 - 150	Top Girt	L/ZAZAI/+				13.9 (b)	
Т3	150 - 130	Top Girt	ROHN 1.5 x 16GA	118	-1.51	7.13	21.1 25.4 (b)	Pass
T4	130 - 110	Top Girt	ROHN 1.5 x 11GA	175	-1.47	13.72	10.7 15.0 (b)	Pass
T5	110 - 90	Top Girt	ROHN 1.5 x 11GA	234	1.21	16.11	7.5 10.9 (b)	Pass
T6	90 - 87.6	Top Girt	ROHN 1.5 x 16GA	290	-1.01	7.13	14.2 17.1 (b)	Pass
Т8	70 - 50	Top Girt	ROHN 1.5 x 11GA	351	-1.12	13.72	8.2 12.1 (b)	Pass
Т9	50 - 35	Top Girt	ROHN 1.5 x 16GA	382	-1.05	7.13	14.7 17.7 (b)	Pass
T10	35 - 20	Top Girt	ROHN 1.5 x 16GA	409	-1.04	7.13	14.5 17.5 (b)	Pass
T11	20 - 4.8125	Top Girt	ROHN 1.5 x 11GA	436	-0.93	13.72	6.8 8.4 (b)	Pass
T1.7	4.8125 - 0	Top Girt	L8x8x3/4	463	5.73	370.57	1.5	Pass
T12 T1	4.8125 - 0 190 - 170	Bottom Girt	L2x2x1/4	7	0.58	24.47	2.4 6.3 (b)	Pass
T2	170 - 150	Bottom Girt	L2x2x1/4	66	2.05	26.58	7.7	Pass

GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	CT10016-A Montville 3 CT	36 of 36
Project		Date
	2024778.10016.03	14:37:44 12/20/23
Client	004	Designed by
	SBA	bfranczkowski

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	ø $P_{allow} \ K$	%	Pass Fail
140.	J	-77		Liement			Capacity	ran
T3	150 - 130	Bottom Girt	ROHN 1.5 x 16GA	121	-1.51	7.13	20.8 (b) 21.1	Pass
			TOTAL TID A TOOM	121	-1.51	7.13	25.4 (b)	1 488
T4	130 - 110	Bottom Girt	ROHN 1.5 x 11GA	178	-1.47	13.72	10.7	Pass
			110 1110 111011	170	-17/	13.72	15.0 (b)	1 055
T5	110 - 90	Bottom Girt	ROHN 1.5 x 11GA	236	1.24	16.11	7.7	Pass
					1.2	10.11	11.2 (b)	1 435
T7	87.6 - 70	Bottom Girt	ROHN 1.5 x 16GA	301	0.89	6.23	14.4	Pass
					0.03	0.23	17.0 (b)	1 400
T8	70 - 50	Bottom Girt	ROHN 1.5 x 11GA	352	-1.01	13.72	7.4	Pass
						10112	9.1 (b)	1 =00
T9	50 - 35	Bottom Girt	ROHN 1.5 x 16GA	385	-1.05	7.13	14.7	Pass
							17.7 (b)	
T10	35 - 20	Bottom Girt	ROHN 1.5 x 16GA	412	-1.04	7.13	14.5	Pass
							17.5 (b)	
Γ11	20 - 4.8125	Bottom Girt	ROHN 1.5 x 11GA	439	5.81	16.11	36.1	Pass
							52.6 (b)	
T2	170 - 150	Guy A@166.977	7/8	483	18.18	47.82	38.0	Pass
T5	110 - 90	Guy A@92.5234	5/8	498	12.59	25.44	49.5	Pass
T2	170 - 150	Guy B@166.977	7/8	480	19.10	47.82	39.9	Pass
T5	110 - 90	Guy B@92.5234	5/8	495	13.63	25.44	53.6	Pass
Т2	170 - 150	Guy C@166.977	7/8	472	18.00	47.82	37.6	Pass
Т5	110 - 90	Guy C@92.5234	5/8	487	12.53	25.44	49.2	Pass
Т2	170 - 150	Top Guy	2L2x2x1/4	476	8.49	60.91	13.9	Pass
		Pull-Off@166.977				00.72	10.5	Z GDD
Τ5	110 - 90	Top Guy	2L2x2x1/4	493	11.08	60.91	18.2	Pass
		Pull-Off@92.5234				000,1	10.2	2 4655
T2	170 - 150	Torque Arm	MC18x42.7	485	-4.05	380.32	23.7	Pass
		Top@166.977				200.02	25.6 (b)	1 455
T5	110 - 90	Torque Arm	C12x20.7	500	-5.14	173.78	35.6	Pass
		Top@92.5234				1.5.70	30.0	1 200
							Summary	
						Leg (T4)	64.2	Pass
						Diagonal	66.9	Pass
						(T2)		
						Horizontal	1.2	Pass
						(T12)		
						Top Girt	25.4	Pass
						(T3)		_ 1100
						Bottom Girt	52.6	Pass
						(T11)	0	_ 000
						Guy A (T5)	49.5	Pass
						Guy B (T5)	53.6	Pass
						Guy C (T5)	49.2	Pass
						Top Guy	18.2	Pass
						Pull-Off	10,2	1 1100
						(T5)		
						Torque Arm	35.6	Pass
						Top (T5)	33.0	1 435
						Bolt Checks	66.9	Pass
						RATING =	66.9	Pass
	4 - 100					WILLIAM -	00.7	1 922

ADDITIONAL CALCULATIONS

BUILT-UP MEMBER ANALYSIS CROOLS A Monthle J. CT JOAN PLEVENCE.

	10.00 (10	And the second s	
	## #50 OH THE ##1	100 100 100 100 100 100 100 100 100 100	
	2 1/4	And the second s	A Banks 11.25
	20 20 20 20 20 20 20 20 20 20 20 20 20 2		AND THE PERSON NAME OF THE PERSO
out.	- Section Co.	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	
	100		100
	100 mm m m m m m m m m m m m m m m m m m	Harry Section 1	
	20 10 10 10 10 10 10 10 10 10 10 10 10 10	100 100 100 100 100 100 100 100 100 100	100
Color of Street	Parameter in the second	America (Control of Control of Co	
	100	4000	17

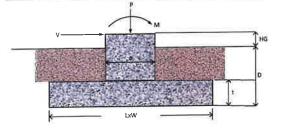
Mat Foundation Analysis CT10016-A Montville 3 CT 2024778.10016.03

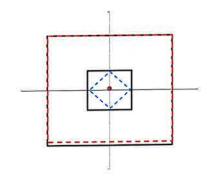
General b	rfo
Foundation Criteria	GPD
TIA Code	TIA-222-H
Apply TIA-222-H Section 15.5?	No
Soil Code	AASHTO 2012
Cancrete Code	ACI 318-14
Seismic Design Category	В
Tower Height	190 ft
Bearing On	Soil
Foundation Type	Guyed Pad
Pier Type	Square
Reinforcing Knawn	Yes
Max Bearing Capacity	105%
Max Overturning Capacity	105%

Tower Reactions	
Moment, M	
Axial, P	150 k
Shear, V	3 k

Pad & Pier Geomet	ry
Pier Width, ø	2.5 (1
Pad Length, L [y]	7 fL
Pad Width, W [x]	7 ft
Pad Thickness, t	1.75 ft
Depth, D	5 R
Height Above Grade, HG	0,5 ft
Tower Centroid, X	3.5 ft
Tower Centroid, Y	3.5 ft
Tower Eccentricity	0.0000 ft

Pad & Pier R	eInforcing
Rebar Fy	60 ksi
Concrete F'c	3 ksi
Pier Reinforcing Clear Cover	3 in
Shear Rebar Type	Tie
Shear Rebar Size	#3
Pad Reinforcing Clear Cover	3 in
Reinforced Top & Battom?	No
Pad Reinforcing Size	#6
Pad Quantity Per Layer	8
Pier Rebar Size	#7
Pier Quantity of Rebar	8


Spil Properties						
Soil Type	Granular					
Soil Unit Weight	125 pcf					
Angle of Friction, ø	43					
Base Friction Coeff, Provided in Geo?	Yes					
Base Friction Coefficient, µ	0.4					
Bearing Type	Net					
Ultimate Bearing	30 ksf					
Water Table Depth	4 ft					
Neglected Depth	4 ft					


	Bearing Summary						
Case	Demand/Limits	Capacity/Availability	Check	Eccentricity	Load Case		
Oxmax	3.99 ksf	18.34 ksf	OK, <= 105%	L/87.0	1.2D+1 ₀ W		
Qvmax	3.99 ksf	18.34 ksf	OK, <= 105%	W/87.0	1.2D+1.0W		
Omax @ 45°	3,81 ksf	18,34 ksf	OK, <= 105%	W/35000.0	1.2D+1.0W		
Controlling	Capacity	21.7%	Pass				

ase Demand/				Overturning Summary									
	Limits Capacity/Avallability	Check		Load Case									
Ovtx 15.0 k	-ft 653,9 k-ft	3.1%	ОК	0.9D+1.0W									
Ovtv 15,0 k	-ft 653.9 k-ft	3,1%	ок	0,9D+1.0W									
ovtxy 0,0 k-		0.0%	ок	0.9D+1.0W									

Stiding Summary								
Case	Demand/Limits	Capacity/Availability	Check		Load Case			
Slidingx	3.0 k	56,8 k	5.3%	ОК	0,9D+1.0W			
Slidingy	3.0 k	56.8 k	5.3%	ок	0,9D+1,0W			

V. T. L. L. L. L.		Reinforcement	Summary		
Component	Demand/Limits	Capacity/Avoilability	Check		Load Case
Pad Flexural Bending	58,3 k-ft	259,5 k-ft	22.5%	ОК	1,2D+1,0W
One-Way Shear in Pad	19.6 k	116,5 k	16.8%	ок	1,2D+1,0W
Two-Way Shear in Pad	117,6 k	519.9 k	22.6%	ок	0,9D+1,0W
Compression on Pier	154.2 k	2983.5 k	5.2%	ок	1,2D+1.0W
Moment on Pier	11.3 k-ft	341.4 k-ft	3.3%	ок	1,2D+1,0W
Pad Flexural 2-Way	6,8 k-ft	247.3 k-ft	2.7%	ОК	1,2D+1.0W
As Min Pad Met?	0,50 sq. in.	0,22 sq. in.	Yes		
As Min Pier Met?	4,80 sq.in.	4.50 sq. in.	Yes		
Controlling C	apacity	22.6%	Pass		

Guyed Tower Anchor Foundation CT10016-A Montville 3 CT 2024778.10016.03

41 k	47 k	ometry	3 ft	3 ft	10 ft
Vertical	Horizontał	Anchor Block Geometr	Width	Height	Length

f_spsf

2200 2650 2750

1000 2200 2100

Yenuse Pef 150 150 150 150

Ysolv Pcf 110 120 120 115

C,, psf

Soil Properties Layer 5 4 4 4

User Input Angle (°) Angle for Uplift (°)

Consider soil for uplift

Ignored Depth Water Table

րգրլի

tdgisH

Width × Length

A 150 190

Radius (ft) Tower Height (ft)

ă ă ă

70.9%

Soil Capacity=

Capacity Summary

kzimuth/Leg

Guy Anchor Location

		_		Ï	Г					
3 ft	3 ft	10 ft	12 ft			GPD	TIA-222-H	105%	105%	No
Width	Height	Length	Depth		General Info	Foundation Criteria	TIA Code	Soil	Reinforcement/Steel	Anniv T14,222,H Section 15,52

					ŏ	OK
Iculations	109.71 k	7.88 k	92.68 k	66.25 k	44.2%	70.9%
Soil Capacity Calculations	Ws	We	Uplift Resistance	Horizontal Resistance	Uplift Capacity=	Horizontal Capacity=

Anchor Block Reinforcement	orcement	
Is Reinforcement Known?	yes	
fc'	m	ksi
Fy	9	ksi
ф (shear)	0.75	
Clear Cover	eo	Ε
Top Bar Size	2#	
Top Bar Quantity	4	
Front Bar Size	47	
Front Bar Quantity	3	
Back & Bottom Bar Size		
Back & Bottom Bar Quantity		

					_	_					
	ksi	ks		E							
200	m	90	0.75	ო	2#	4	47	e			#3
	fc'	Fy	ф (shear)	Clear Cover	Top Bar Size	Top Bar Quantity	Front Bar Size	Front Bar Quantity	Back & Bottom Bar Size	Back & Bottom Bar Quantity	Tie Size

Calculations	Unknown	
Guy Anchor Shaft Calculations	Shape of Anchor Shaft	

	Block Moment and Sh	near Calculations		
Moment Check				
M _{un} =	51,25 k-ft	M _{try} =	58.75 k-ft	
φM _{ra} ≂	339.15 k-ft	φM _{ry} =	255.95 k-ft	
Capacity	15.1% OK	Capacity	23.0%	OK
Shear Check				
V _n ·n	20.50 k	V _{tiv} =	23.50 k	
φV _{ra} =	95.20 k	φν _ν =	95.20 k	
Capacity	21.5% OK	Capacity	24.7%	ŏ

GPD Guyed Tower Anchor Foundation Analysis - V4.03

Guyed Tower Anchor Foundation CT10016-A Montville 3 CT 2024778.10016.03

150 190

Radius (ft) Tower Height (ft)

Azimuth/Leg

Guy Anchor Location

S	41 k	47 k
Tower Reactions	Vertical	Horizontal

And Width Height Length Depth

fupsf

P_{p,bot}, psf 1400

Y congrete, pcf

ф, degrees

C_u, psf

Soil Properties

ă ă ă

51.9%

Reinforcing Capacity= Soil Capacity=

Capacity Summary

150 150

Ysolt Pcf 110 115 125

43

600

User Input Angle (°) Angle for Uplift (°)

Consider soil for uplift

Ignored Depth Water Table

General Info	
Foundation Giteria	GPD
TIA Code	TIA-222-H
Soil	105%
Reinforcement/Steel	105%
Apply TIA-222-H Section 15.5?	ON

		١
Soil Capacity Calculations	culations	
w,	119.27 k	
We	7,88 k	
Uplift Resistance	99.98 k	
Horizontal Resistance	90,56 k	
Uplift Capacity=	41.0%	ŏ
Horizontal Capacity=	51.9%	OK

Anchor Block Reinforcement

js.	Width * Lungth	
المحمد		
		1

alculations	Unknown		
Guy Anchor Shaft Calculations	Shape of Anchor Shaft		

	Block Moment and Shear Calculations	leal carculations		
Moment Check				
M _{int} =	51.25 k-ft	M _{uv} =	58.75 k-ft	
φM _{re} =	339.15 k-ft	φM _{rv} =	255.95 k-ft	
Capacity	15.1% OK	Capacity	23.0%	ŏ
Shear Check				
V _{11x} =	20.50 k	V _{try} =	23.50 k	
φV _{rs} =	95,20 k	φV _m =	95.20 k	
Capacity	21.5% OK	Capacity	24.7%	ÖK

GPD Guyed Tower Anchor Foundation Analysis - V4.03

Guyed Tower Anchor Foundation CT10016-A Montville 3 CT 2024778.10016.03

ns	41 k	47 k
Tower Reactions	Vertical	Horizontal

chor Block

C., psf

Soil Properties Layer

f_vpsf

700 1250 1250 2250 2250 2750 2000 2850 2850 3300 User input Angle (*) Angle for Uplit (*)

Y_{sol} Pcf 110 115 120 120 120 115

35 24 24 24 36 36

C 150 190

Azimuth/Leg Radius (ft) Tower Height (ft)

8 8 8

Reinforcing Capacity= Soil Capacity=

%2'99

Capacity Summary

Guy Anchor Location

General Inf	
Foundation Criteria	GPD
TIA Code	TIA-222-H
Soil	105%
Reinforcement/Steel	105%
Apply TIA-222-H Section 15.5?	No

Ignored Depth Water Table

		I	ı
Soll Capacity Calculations	culations		
Ws	108.09 k		
Wc	7.88 k		
Uplift Resistance	91.45 k		
Horizontal Resistance	70.45 k		
Uplift Capacity=	44.8%	ŏ	
Horizontal Capacity=	%2'99	ŏ	

Anchor Block Reinforcement	forcement	
Is Reinforcement Known?	yes	
fc'	e	ks
Fy	60	ksi
ф (shear)	0.75	
Clear Cover	6	Ē
Top Bar Size	4.7	
Top Bar Quantity	4	
Front Bar Size	2#	
Front Bar Quantity	6	
Back & Bottom Bar Size		
Back & Bottom Bar Quantity		
Tie Size	*	

	updag "7	MgisH	¥
		and the second	Width x Longth
Ž.			

culations	Unknown	
Guy Anchor Shaft Calculations	Shape of Anchor Shaft	

	Block Moment and S	hear Calculations		
Moment Check				
M _{ux} =	51.25 k-ft	M _{uy} =	58.75 k-ft	
φM _π ≈	339.15 k-ft	φM ₁₇ =	255,95 k-ft	
Capacity hear Check	15.1% OK	Capacity	23.0%	ğ
V _{ue} =	20.50 k	V ₁₁ y=	23.50 k	
φV _{rx} =	95.20 k	φV _{rr} ≃	95.20 k	
Capacity	21.5% OK	Capacity	24.7%	ŏ

.03
7
S
75
Å
Б
dati
Š
윤
ķ
Ä
er/
Š
-
좕
Ō
360

Colliers Engineering & Design,
Architecture, Landscape Architecture,
Surveying, CT P.C.
1055 Washington Boulevard
Stamford, CT 06901
203.324.0800
peter.albano@collierseng.com

Antenna Mount Analysis Report and PMI Requirements

Mount ReAnalysis-VZW

SMART Tool Project #: 10214212 Colliers Engineering & Design Project #: 21777086 (Rev 2)

November 27, 2023

Site Information

Site ID:

5000243394-VZW / UNCASVILLE CT

Site Name: Carrier Name: UNCASVILLE CT Verizon Wireless

Address:

71 Moxley Hill Rd

Uncasville, Connecticut 06382

New London County

Latitude:

41.43517°

Longitude:

-72.12331°

Structure Information

Tower Type:

180-Ft Guyed

Mount Type:

13.33-Ft Sector Frame

FUZE ID # 16272079

Analysis Results

Sector Frame: 89.7% Pass

*Antennas and equipment to be installed in compliance with PMI Requirements of this mount analysis.

***Contractor PMI Requirements:

Included at the end of this MA report
Available & Submitted via portal at https://pmi.vzwsmart.com
For additional questions and support, please reach out to:
pmisupport@colliersengineering.com

Report Prepared By: Vincent DiGirolamo

November 27, 2023 Site ID: 5000243394-VZW / UNCASVILLE CT Page | 2

Executive Summary:

The objective of this report is to determine the capacity of the antenna support mount at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards. Any modification listed under Sources of Information was assumed completed and was included in this analysis.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

Sources of Information:

Document Type	Remarks
Radio Frequency Data Sheet (RFDS)	Verizon RFDS Site ID: 675074
	Dated August 11, 2023
Mount Mapping Report	Hudson Design Group, LLC Site ID: 468485
	Dated February 9, 2021

Analysis Criteria:

Codes and Standards:	ANSI/TIA-222-H
----------------------	----------------

2022 Connecticut State Building Code Effective October 1, 2022

Wind Parameters:	Basic Wind Speed (Ultimate 3-sec. Gust), Vult:	125 mph
	las Missi Ossard (O	

Ice Wind Speed (3-sec. Gust): 50 mph Design Ice Thickness: 1.00 in Risk Category: Ш Exposure Category: В Topographic Category: 1 Topographic Feature Considered: N/A Topographic Method: N/A Ground Elevation Factor, Ke: 0.993

Seismic Parameters: Ss: 0.198 g

S₁: 0.054 g

Maintenance Parameters: Wind Speed (3-sec. Gust): 30 mph

Maintenance Live Load, Lv: 250 lbs. Maintenance Live Load, Lm: 500 lbs.

Analysis Software: RISA-3D (V17)

Final Loading Configuration:

The following equipment has been considered for the analysis of the mounts:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status
(1.7	<u> </u>	6	JMA Wireless	MX06FRO660-03	
	}	3	Samsung	MT6413-77A	
139.50	140.00	1	Raycap	RVZDC-6627-PF-48	Added
133.30	1.5.66	3	Samsung	RF4439d-25A	
		3	Samsung	RF4461d-13A	

Any proposed antennas not currently installed should be mounted such that the centerline of the antennas does not exceed 6 inches vertically from the center of the antenna mounts.

It is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required unless replacing an existing OVP.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

Standard Conditions:

- All engineering services are performed on the basis that the information provided to Colliers Engineering & Design and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation. Any deviation from the loading locations specified in this report shall be communicated to Colliers Engineering & Design to verify deviation will not adversely impact the analysis.
- Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

- For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped in accordance with the NSTD-446 Standard, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- All member connections are assumed to have been designed to meet or exceed the load carrying capacity
 of the connected member unless otherwise specified in this report.
- The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.

November 27, 2023 Site ID: 5000243394-VZW / UNCASVILLE CT Page | 4

- All services are performed, results obtained, and recommendations made in accordance with generally
 accepted engineering principles and practices. Colliers Engineering & Design is not responsible for the
 conclusion, opinions, and recommendations made by others based on the information supplied.
- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

o Channel, Solid Round, Angle, Plate

ASTM A36 (Gr. 36)

o HSS (Rectangular)

ASTM 500 (Gr. B-46)

o Pipe

ASTM A53 (Gr. B-35)

o Threaded Rod

F1554 (Gr. 36)

o Bolts

ASTM A325

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Colliers Engineering & Design.

Analysis Results:

Component	Utilization %	Pass/Fail
Mount Pipe	25.7	Pass
Standoff Horizontal	16.5	Pass
Standoff Vertical	58.8	Pass
Standoff Diagonal	38.4	Pass
Face Horizontal	13.3	Pass
Tie Back	3.7	Pass
Back Standoff Bar	54.5	Pass
Standoff Bar	89.7	Pass
Mount Connection	31.9	Pass

Structure Rating – (Controlling Utilization of all Components)	89.7%
--	-------

BASELINE mount weight per SBA agreement: 454.00 lbs

Increase in mount weight due to Verizon loading change per SBA agreement: No Change

The weights listed above include 1 sector.

Mount Steel (EPA)a per ANSI/TIA-222-H Section 2.6.11.2:

lce	Mount Pipe	s Excluded	Mount Pipes Included			
Thickness (In)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)		
0	24.0	16.3	31.9	24.2		
0.5	34.8	24.2	45.8	35.2		
1	44.9	31.5	59.0	45.6		

Notes

- (EPA)a values listed above may be used in the absence of more precise information
- (EPA)a values in the table above include 1 sector(s).
- Ka factors included in (EPA)a calculations

November 27, 2023 Site ID: 5000243394-VZW / UNCASVILLE CT Page | 5

Requirements:

The existing mounts are **SUFFICIENT** for the final loading configuration shown in attachment 2 and do not require modifications. Additional requirements are noted below.

Contractor shall inspect climbing facilities and safety climb and ensure they are in good condition. Contractor shall install safety climb wire rope guides in locations where wire rope is contacting the mount or mount-to-tower connection steel. Wire brush clean any observed corrosion and protect with two (2) coats of cold galvanization (Zinga or Zinc Kote). Contractor shall provide photos of wire rope guide installation as part of PMI documents. Contact EOR if additional guidance is required.

If required, ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other. Separate review fees will apply.

Attachments:

- 1. Contractor Required Post Installation Inspection (PMI) Report Deliverables
- 2. Antenna Placement Diagrams
- 3. Mount Photos
- 4. Mount Mapping Report (for reference only)
- 5. Analysis Calculations

Mount Desktop - Post Modification Inspection (PMI) Report Requirements

Documents & Photos Required from Contractor – Passing Mount Analysis

Passing Mount Analysis requires a PMI due to a modification in loading.

Electronic pdf version of this can be downloaded at https://pmi.vzwsmart.com.

For additional questions and support, please reach out to pmisupport@colliersengineering.com

MDG #: 5000243394

SMART Project #: 10214212

Fuze Project ID: 16272079

<u>Purpose</u> – to provide SMART Tool structural vendor the proper documentation in order to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the installation was completed in accordance with this Passing Mount Analysis.
- Contractor shall relay any data that can impact the performance of the mount, this includes safety issues.

Base Requirements:

- If installation will cause damage to the structure, the climbing facility, or safety climb if present or any installed system, SMART Tool vendor to be notified prior to install. Any special photos outside of the standard requirements will be indicated on the drawings.
- Provide "as built mount drawings" showing contractor's name, contact information, preparer's signature, and date. Any deviations from the drawings (Proposed modification) shall be shown.
 NOTE: If loading is different than what is conveyed in the passing mount analysis (MA) contact the SMART Tool vendor immediately.
- Each photo should be time and date stamped
- Photos should be high resolution.
- Contractor shall ensure that the safety climb wire rope is supported and not adversely
 impacted by the install of the modification components. This may involve the install of wire
 rope guides, or other items to protect the wire rope. If there is conflict, contact the SMART Tool
 engineer for recommendations.
- The PMI can be accessed at the following portal: https://pmi.vzwsmart.com

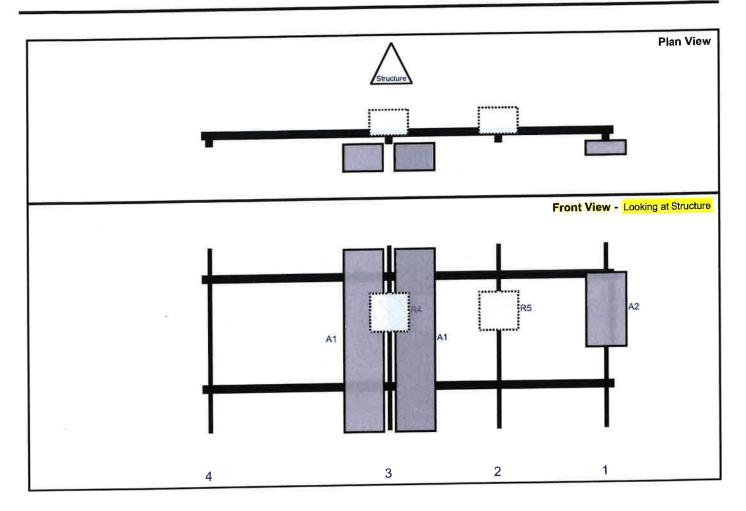
Photo Requirements:

- Photos taken at ground level
 - o Photo of Gate Signs showing the tower owner, site name, and number.
 - o Overall tower structure after installation.
 - Photos of the mount after installation; if the mounts are at different rad elevations, pictures must be provided for all elevations that equipment was installed.
- Photos taken at Mount Elevation
 - Photos showing the safety climb wire rope above and below the mount prior to installation.
 - Photos showing the climbing facility and safety climb if present.
 - Photos showing each individual sector after installation. Each entire sector shall be in one photo to show the interconnection of members.

- These photos shall also certify that the placement and geometry of the equipment on the mount is as depicted in the antenna placement diagram in this form.
- O Photos that show the model number of each antenna and piece of equipment installed per sector.

Antenna & equipment placement and Geometry Confirmation:

•	The contractor shall certify that the antenna & equipment placement and geometry is in accordance with the sketch and table as included in the mount analysis and noted below.
	\Box The contractor certifies that the photos support and the equipment on the mount is as depicted on the sketch and table included in this form and with the mount analysis provided.
	OR
	☐ The contractor notes that the equipment on the mount is not in accordance with the sketch and has noted the differences below and provided photo documentation of any alterations.
Specia	al Instructions / Validation as required from the MA or any other information the contractor
deem	s necessary to share that was identified:
shall conn (Zing	ractor shall inspect climbing facilities and safety climb and ensure they are in good condition. Contractor install safety climb wire rope guides in locations where wire rope is contacting the mount or mount-to-tower ection steel. Wire brush clean any observed corrosion and protect with two (2) coats of cold galvanization a or Zinc Kote). Contractor shall provide photos of wire rope guide installation as part of PMI documents. act EOR if additional guidance is required.
Respo	onse:
Speci	al Instruction Confirmation:
	\square The contractor has read and acknowledges the above special instructions.
	\square All hardware listed in the Special Instructions above (if applicable) has been properly installed, and the existing hardware was inspected.
	☐ The material utilized was as specified in the SMART Tool engineering vendor Special Instructions above (if applicable) and included in the material certification folder is a packing list or invoice for these materials.

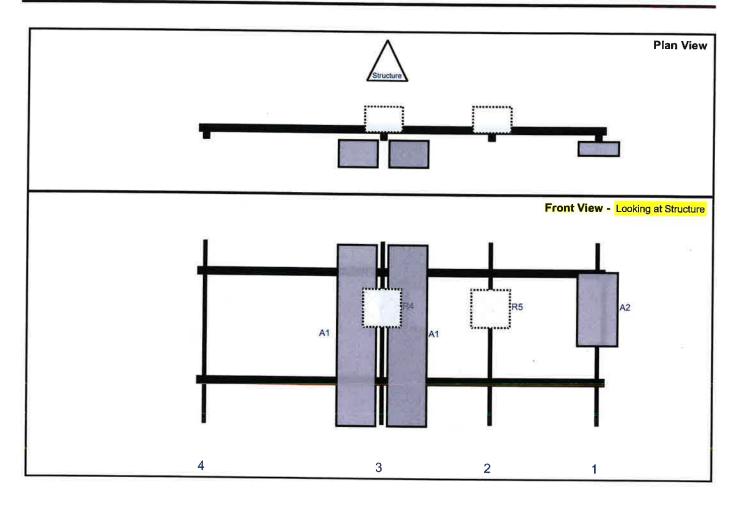

approvai is inci	uded as part of the contractor	submission.
ments:		
wastow soutifies t	handle the transfer	
ractor certifies t	nat the climbing facility / sa	fety climb was not damaged prior to starting wo
☐ Yes	□ No	
ractor certifies n	o new damage created duri	ng the groupt installation.
ractor certifics in	o new damage created dum	ing the current installation:
☐ Yes	□ No	
ractor to cortifu	the condition of the set-to-	
ractor to certify	the condition of the safety o	limb and verify no damage when leaving the site
☐ Safety Clim	in Good Condition	☐ Safety Climb Damaged
forium tu divide a t		
fying Individual:		
Compar	ny:	
Employee Nam		
Contact Phor Ema		

Structure: 500024 94-VZW - UNCASVILLE CT

Sector: A 11/27/2023

Structure Type: Guyed 10214212

Mount Elev: 139.50 Page: 1

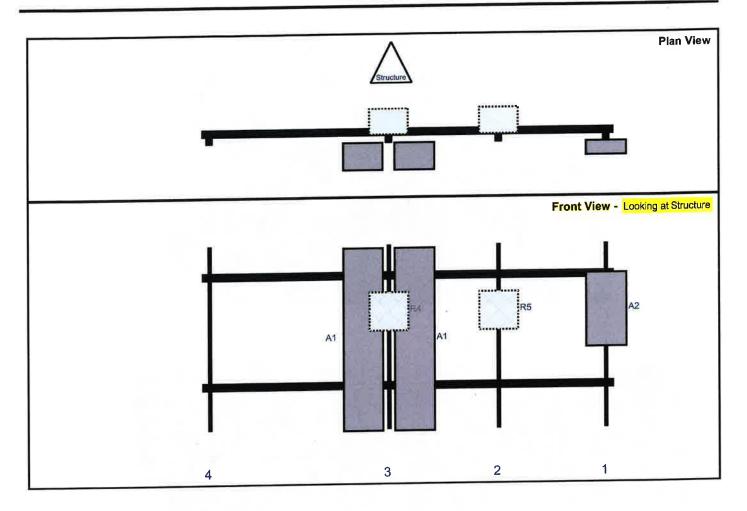

R4	RF4439d-25A	15								Added	
B.4		15	15	72.5	3	а	Behind	26.04	0	Added	
A1	MX06FRO660-03	71.3	15.4	72.5	3	b	Front	36.96	-10	Added	
A1	MX06FRO660-03	71.3	15.4	72.5	3	а	Front	36.96	10	Added	
R5	RF4461d-13A	15	15	115	2	а	Behind	_	0	Added	A TOLLY
A2	MT6413-77A	28.9	15.8	157	1	а	Front	26.04	0	Added	
Ref#	Model	Height (in)	Width (in)	H Dist	Pipe #	Pipe Pos V	Ant Pos	C. Ant	Ant H Off	Status	Validation

Structure: 500024 94-VZW - UNCASVILLE CT

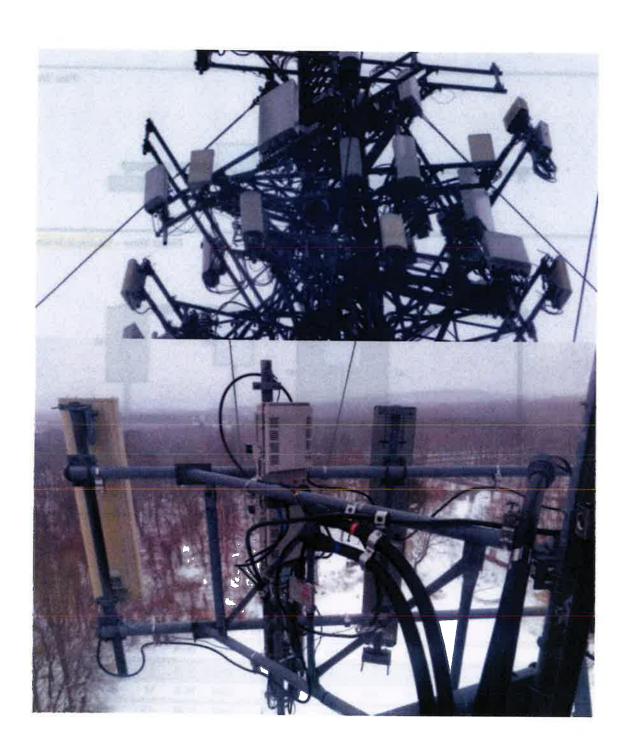
Sector: **B** 11/27/2023

Structure Type: Guyed 10214212

Mount Elev: 139.50 Page: 2


Ref#	Model	Height (in)	Width (in)	H Dist Frm L.	Pipe #	Pipe Pos V	Ant Pos	C. Ant	Ant H Off	Status	Validation
A2	MT6413-77A	28.9	15.8	157	1	а	Front	26.04	0	Added	
R5	RF4461d-13A	15	15	115	2	а	Behind	26.04	0	Added	
A1	MX06FRO660-03	71.3	15.4	72.5	3	а	Front	36.96	10	Added	
A1	MX06FRO660-03	71.3	15.4	72.5	3	b	Front	36.96	-10	Added	
R4	RF4439d-25A	15	15	72.5	3	а	Behind	26.04	0	Added	

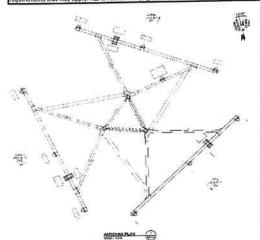
Structure: 500024 94-VZW - UNCASVILLE CT


Sector: C 11/27/2023

Structure Type: Guyed 10214212

Mount Elev: 139.50 Page: 3

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A2	MT6413-77A	28.9	15.8	157	1	а	Front	26.04	0	Added	
R5	RF4461d-13A	15	15	115	2	а	Behind	26.04	0	Added	17 18
A1	MX06FRO660-03	71.3	15.4	72.5	3	а	Front	36.96	10	Added	
A1	MX06FRO660-03	71.3	15.4	72.5	3	b	Front	36.96	-10	Added	
R4	RF4439d-25A	15	15	72.5	3	а	Behind	26.04	0	Added	



14

4

Antenna Mount Mapping Form (PATENT PENDING) 1213901 Mapping Date: SBA TOWERS Tower Owner: Site Name: Site Number or ID: Site Number of ID: 468485 Tower Height (FL): 180 Mapping Contractor: HUDSON DESIGN GROUP, LLC. Mount Elevation (FL): 141.5 This antenna mapping form is the property of TES and under Partier PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication modification or disclosure by any method is prohibited except by express written permission of TES, all means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA and other safety requirements that may apply. TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements. Guyed Tower

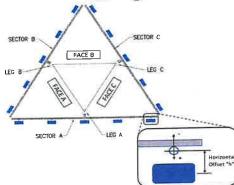
Sector / Position	Mount Pipe Size & Length	Vertical Offset Dimension	Horizontal Offset "C1, C2, C3, etc."	Sector / Position	eometries [Unit = Inches] Mount Pipe Size & Length	Vertical Offset Dimension """	Horizontal Offset "C1, C2, C3, etc."
A1	2" 5TD. x 72" LONG	55.00	3.00	C1	2" STD. x 72" LONG	55.00	3.00
	2" STD. x 96" LONG	66.00	45.00	C2	2" STD. x 96" LONG	66.00	45,00
	2" STD. x 72" LONG	55.00	75.00	G	2" STD. x 72" LONG	55.00	75.00
	2" STD. x 72" LONG	55.00	157.00	C4	2" STD. x 72" LONG	55.00	157.00
AS	Z SID. X / Z LC. I.S			CS			
A6				C6			
	2" STD. x 72" LONG	55.00	3.00	D1			
B2	2" STD. x 96" LONG	66.00	45.00	D2			
83	2" STD. x 72" LONG	55.00	75.00	D3			
	2" STD. x 72" LONG	55.00	157.00	D4			-
85				D5			
B6				D6). Unit is inches. See 'Mount Elev Ref' t		20.00

Distance from top of bottom support rail to lowest tip of ant,/eqpt. of Carrier above. (N/A if > 10 ft.):

Distance from top of bottom support rail to highest tip of ant,/eqpt. of Carrier below. (N/A if > 10 ft.): Please enter additional infomation or comments below.

Tower Face Width at Mount Elev. (ft.): 44 Tower Leg Size or Pole Shaft Diameter at Mount Elev. (in.):

10.00


1.50

15.00

6.00

28.00

7,00

	Enter antenn	a model.	If not labe	led, enter '	'Unknown'	(*)	Mountin (Units are incl	g Locations hes and de		Photos of antennas
Ants, Items	Antenna Models if Known	Width (in.)	Depth (in.)	Height (in.)	Coax Size and Qty		Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches)	Horiz. Offset "h" (Use "-" if Ant is behind)	Antenna Azimuth (Degrees)	Photo Numbers
					Sector A					
Ant ₁₄										
Ant _{1b}	AT41-645TO	12.00	4.00	53.00		140.583	46.00	8.00	20.00	4
Ant _{1c}								_		4
Ant _{2a}	B4 RRH 2x60-4R	11.00	5.50	36.00		143.333		-7.00		_
Ant _{2h}	HBXX-6517D5-A2M	12.00	6.50	75.00		141.167	50.00	9.00	20.00	4
Ant _{2c}										
Anta									20.00	4
Ant _{3b}	BXA-70063-6CF	11.00	4.00	71.00		141,417	36.00	10.00	20.00	
Ant₃c								2.00		7
Ant ₄	TMA	6.00	1.50	7.00		140.417	48.00	-3.00	20.00	7
Ante	AT41-645TO	12.00	4.00	53.00		140.583	46.00	8.00	20.00	
Ant _{4c}										_

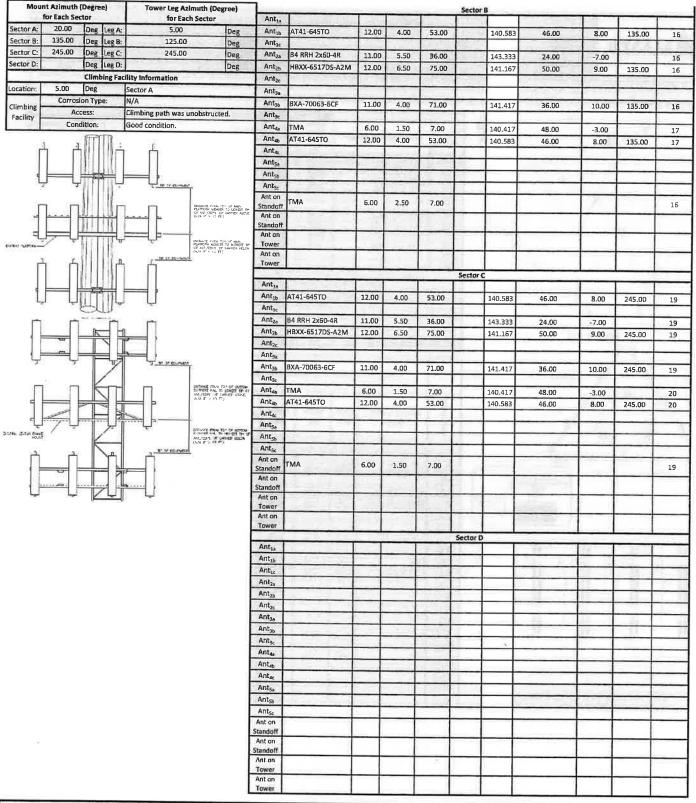
17,00

-3.00

41	Aprina	Ž.	Antse	2	Antie	£	Ante	£	Anta
L	ž		7	L	ž		Ž	L-	
ĺ									
C1	Antie		Antas		SAntie		Ante		Anthe
	7 6	2		C4					
					C5				

Antsa Ant_{Sb} Antsc

Ant on


Standoff

Ant on

Standoff Ant on Tower Ant on

OVP BOX

TMA

	Observed Safety and Structural Issues During the Mount Mapping	
issue #	Description of Issue	Photo #

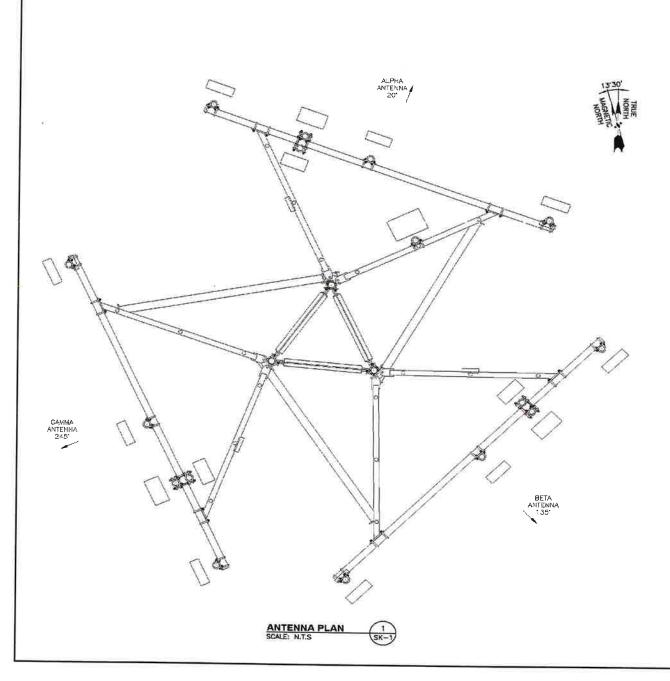
1	100000000000000000000000000000000000000	124
2	(12) 1-5/8" COAX CABLES & (1) 1-1/4" HYBID CABLE	
3		
4		
5		
6		
7		
8		W

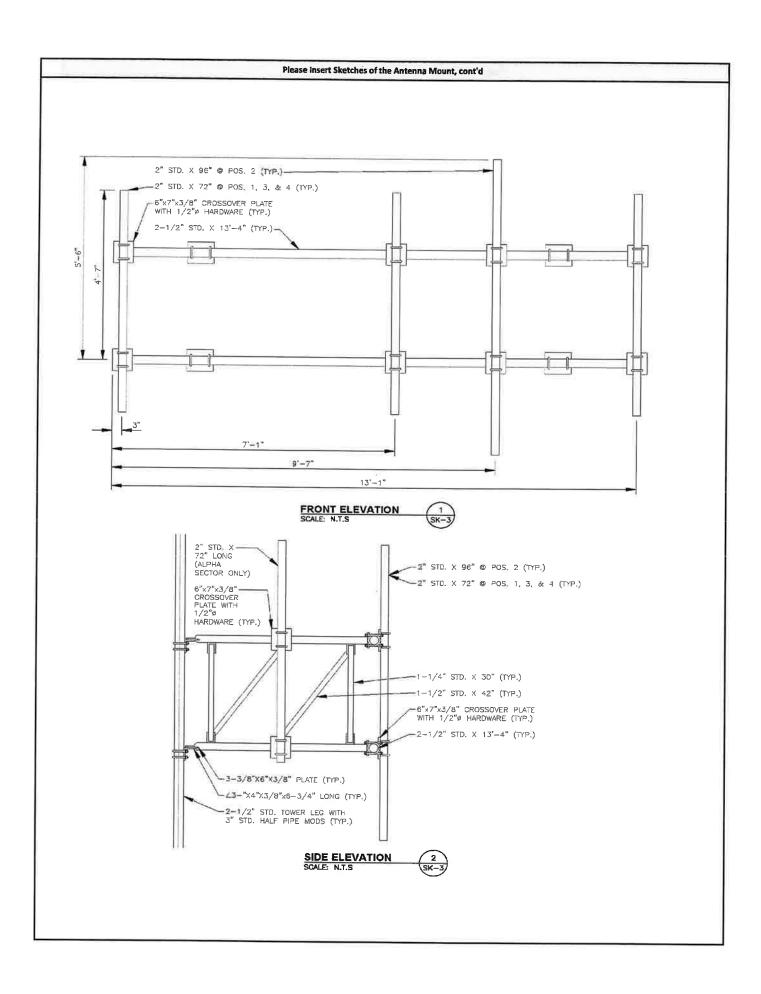
Mapping Notes

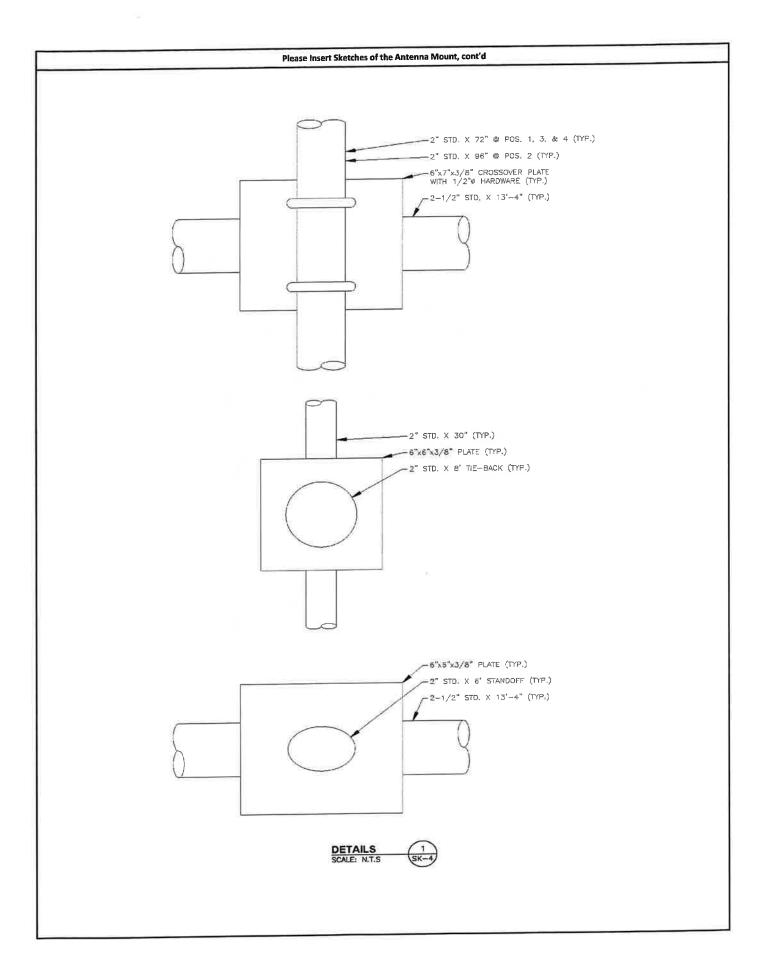
- 1. Please report any visible structural or safety issues observed on the antenna mounts (Damaged members, loose connections, tilting mounts, safety climb issues, etc.)
- 2. If the thickness of the existing pipes or tubing can't be obtained from a general tool (such as Caliper), please use an ultrasonic measurement tool (thickness gauge) to measure the thickness. 2. If the thickness of the existing pipes or tubing can't be obtained from a general tool (such as Caliper), please use an ultrasonic mea:
 3. Please create all required detail sketches of the mounts and insert them into the "Sketches" tab.
 4. Please measure and enter the bolt sizes and types under the Members Box in the spreadsheet of the mount type.
 5. Take and label the photos of the tower, mounts, connections, antennas and all measurements. Minimum 50 photos are required.
 6. Please measure and report the size and length of all existing antenna mounting pipes.
 7. Please measure and report the antenna information for all sectors.
 8. Pool't delete at regregate any shart of contents of any sheet from this manning form.

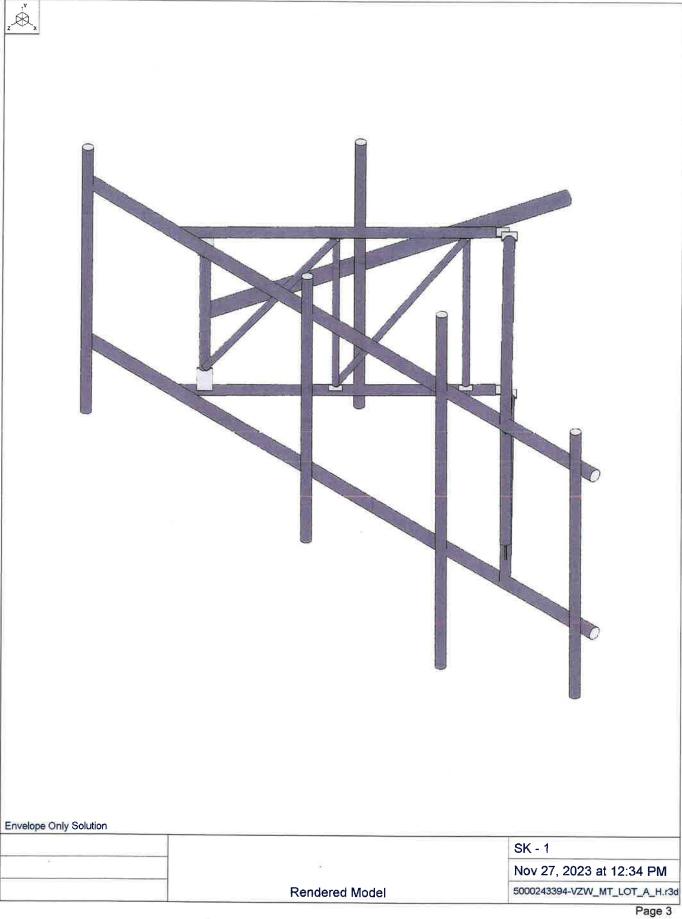
- 8. Don't delete or rearrange any sheet or contents of any sheet from this mapping form.

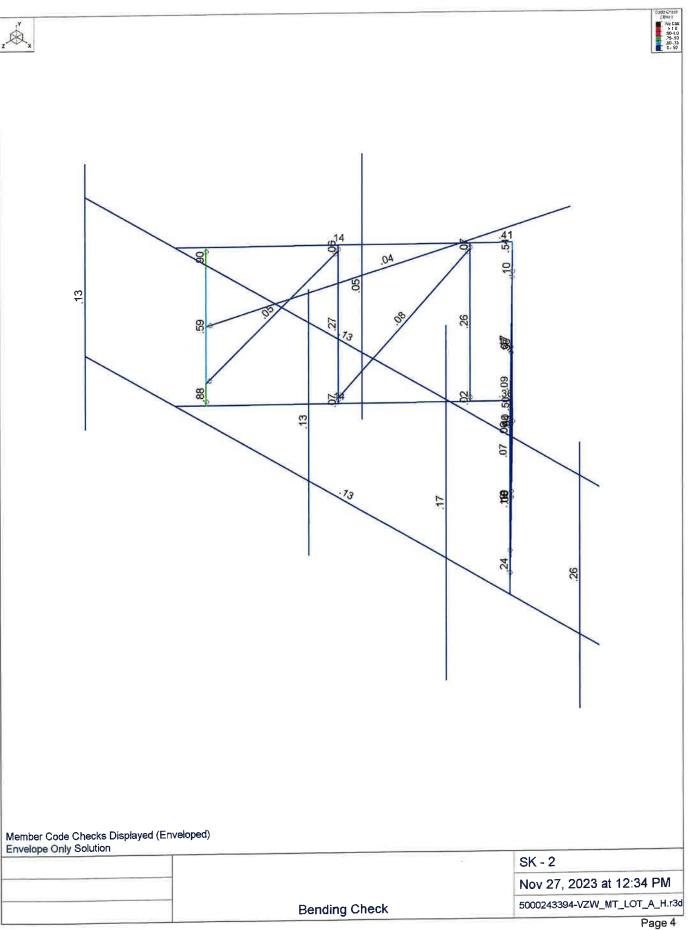
Standard Conditions

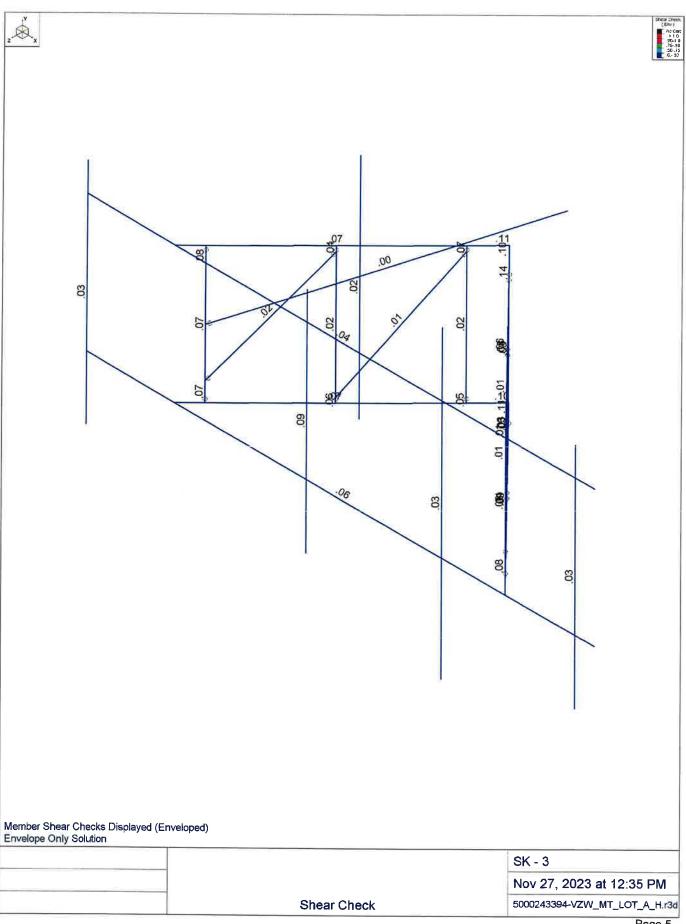

1. Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping are to be reported in this mapping. However, this mount mapping is not a condition assessment of the mount.




		V3.0 Updated on 8-31-2020			
Antenna Mount Mapping Form (PATENT PENDING)				FCC#	
				1213901	
			02.09.2021		
UNCASVILLE CT			Guyar	Guyed Tower	
468485					
HI IDSON DESIGN CROUP IT C			- 18	180	
	Mount Elevation (Ft.):	141.5			
	SBA TOWERS UNCASVILLE CT 468485 HUDSON DESIGN GROUP, LLC.	UNCASVILLE CT Tower Type: 468485 Tower Height (Ft.): HUDSON DESIGN GROUP, LLC. Mount Elevation (Ft.):	Antenna Mount Mapping Form (PATENT PENDING) SBA TOWERS Mapping Date: UNCASVILLE CT Tower Type: 468485 Tower Height (FL):	SBA TOWERS	


This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication, modification or disclosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10,48, OSHA, FCC, FAA and other safety requirements that may apply, TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements.


Please Insert Sketches of the Antenna Mount



Basic Load Cases

Das	C LOAU CASES				a construction of the last	180-180-101	-	5 1 . 11 1		Curfoco/D
	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Antenna D	None					27			
2	Antenna Di	None					27			-
3	Antenna Wo (0 Deg)	None					27			
4	Antenna Wo (30 Deg)	None					27			
5	Antenna Wo (60 Deg)	None					27			
6	Antenna Wo (90 Deg)	None					27			
7	Antenna Wo (120 Deg)	None					27			
	Antenna Wo (150 Deg)	None					27			
8	Antenna Wo (180 Deg)	None	_	-			27			
9							27		10/11	
10	Antenna Wo (210 Deg)	None			-		27			
11	Antenna Wo (240 Deg)	None		-			27			
12	Antenna Wo (270 Deg)	None			-		27			
13	Antenna Wo (300 Deg)	None						+		
14	Antenna Wo (330 Deg)	None					27			-
15	Antenna Wi (0 Deg)	None					27			
16	Antenna Wi (30 Deg)	None					27			_
17	Antenna Wi (60 Deg)	None					27			
18	Antenna Wi (90 Deg)	None					27			3
19	Antenna Wi (120 Deg)	None					27			
20	Antenna Wi (150 Deg)	None					27			
21	Antenna Wi (180 Deg)	None					27			
	Antenna Wi (210 Deg)	None					27			
22				 			27			
23	Antenna Wi (240 Deg)	None					27			
24	Antenna Wi (270 Deg)	None					27	1		1
25	Antenna Wi (300 Deg)	None			-		27	-		
26	Antenna Wi (330 Deg)	None						-		-
27	Antenna Wm (0 Deg)	None					27			
28	Antenna Wm (30 Deg)	None					27	-		
29	Antenna Wm (60 Deg)	None					27			_
30	Antenna Wm (90 Deg)	None					27			
31	Antenna Wm (120 Deg)	None					27			
32	Antenna Wm (150 Deg)						27			
	Antenna Wm (180 Deg)						27			
33							27			
34	Antenna Wm (210 Deg)			1			27			
35	Antenna Wm (240 Deg)			-			27			
36	Antenna Wm (270 Deg)			-	-		27			
37	Antenna Wm (300 Deg)							-		
38	Antenna Wm (330 Deg)	None					27			+
39	Structure D	None		-1						-
40	Structure Di	None						38		_
41	Structure Wo (0 Deg)	None						76		
42	Structure Wo (30 Deg)							76		
12	Structure Wo (60 Deg)							76		
	141 (00 D)	None						76		
44	Structure Wo (120 D	None						76		
								76		
46		None	*					76		
47	Structure Wo (180 D	None	-					76		
48	Structure Wo (210 D	None	+					76		
49	Structure Wo (240 D	None								_
50	Structure Wo (270 D	None						76		_
51	Structure Wo (300 D	None						76		_
52	Structure Wo (330 D	None						76		-
53	Structure Wi (0 Deg)	None						76		
54	Structure Wi (30 Deg)							76		
55	Structure Wi (60 Deg)							76		
								76		
56			+					76		
57	Structure Wi (120 De	None	-					76		
58	Structure Wi (150 De	None						76		
59		None			-			76		
60	Structure Wi (210 De	None								
61	Structure Wi (240 De	None			<u> </u>			76		

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	7 Gravity	Joint	Point	Distributed	Δτοο/Μο	Surface(P.,
62	Structure Wi (270 De.,	None		- Cidrily	L CIGVILY	Joint	1 Ome	76	Aleativie	Juliace F.
63	Structure Wi (300 De	None						76		
64	Structure Wi (330 De	None						76		
65	Structure Wm (0 Deg)	None						76		
66	Structure Wm (30 De	None						76		
67	Structure Wm (60 De	None						76		
68	Structure Wm (90 De	None						76		
69	Structure Wm (120 D	None						76		
70	Structure Wm (150 D.,	None						76		
71	Structure Wm (180 D	None						76		
72	Structure Wm (210 D	None						76		
73	Structure Wm (240 D	None						76		
74	Structure Wm (270 D.	None						76	7	
75	Structure Wm (300 D.	None						76		
76	Structure Wm (330 D	None						76		
77	Lm1	None					1	70		
78	Lm2	None					1			
79	Lv1	None					1			
80	Lv2	None					1			
81	Antenna Ev	None					27			
82	Antenna Eh (0 Deg)	None					18			
83	Antenna Eh (90 Deg)	None					18			
84	Structure Ev	ELY		042			- 10			
85	Structure Eh (0 Deg)	ELZ			106					
86	Structure Eh (90 Deg)	ELX	.106							-

	Description	S	P 5	5	В	Fa.	<u>.B.</u>	,E	a	В	Fa	В	<u>-а.,</u>	В	ra	.В	ra	D	ra	.D	Fd	D	1 4	···	10
П	1.2D+1.0Wo (0 Deg)	Yes	Y		1	1.2					1	41		_	_	_								-	
2	1,2D+1.0Wo (30 Deg)	Yes	Y		1		3			4	1	42	1						-	-				_	-
3	1,2D+1.0Wo (60 Deg)	Yes	Y			1.2					1	43	1		_	_			_	-	_				
1	1.2D+1.0Wo (90 Deg)	Yes				1.2				6	1	44	1							-					-
5	1.2D+1.0Wo (120 Deg)	Yes	Y			1.2				7	_1_	45	1	\vdash	_						_	-	-		
3	1,2D+1.0Wo (150 Deg)	Yes				1.2					1	46	1	-		-		-				-	-		H
7	1.2D+1.0Wo (180 Deg)	Yes	Y			1.2					_1_	47	1		_	-				-				-	H
3	1,2D+1,0Wo (210 Deg)	Yes	Y		1					10	1_	48	_1	-	_	-			_	-	-	-	-	-	-
9	1.2D+1.0Wo (240 Deg)		_		1	1.2	3	9 1	.2	11	_1_	49	_1	_		_			_		-				H
0	1.2D+1.0Wo (270 Deg)	Yes			1	1.2				12	_1_	50	1	\vdash	_	-		H		-		H	-	-	-
1	1.2D+1.0Wo (300 Deg)	Yes			1	1.2					_1_	51	1	-		-		-	_	-	-	-	-		
2	1.2D+1.0Wo (330 Deg)	Yes	Y		1	_	_	_	_	14	1	52	1			-		-		-	-	-	-		H
3	12D + 1.0Di + 1.0Wi (0 Deg)	Yes	_		1	1.2				_	_1_	40	1	15		53				-	-		-		H
4	1.2D + 1.0Di + 1.0Wi (30 Deg)	Yes	Y		1	1.2				2	1	40	1	16	1	54	$\overline{}$			-	-		-	-	\vdash
5	1.2D + 1.0Di + 1.0Wi (60 Deg	Yes	Y		1		2 3	~ -		2	1	40	1	17	1	55		_	_	-	-	-	-		H
6	1.2D + 1.0Di + 1.0Wi (90 Deg)	Yes	Y		1	1.2	-	_		2	1	40	1	18		56	1	V		-			-		H
7	1.2D + 1.0Di + 1.0Wi (120 Deg)	Yes	Y		1		2 3	_		2	1	40	1	19	1	57	1		_	-	_	-	-		-
8	1.2D + 1.0Di + 1.0Wi (150 Deg)	Yes	Y		1	1.2	2 3	9 1	.2	2	_1_	40	1	20	1	58			_	-		\vdash			H
9	1.2D + 1.0Di + 1.0Wi (180 Deg)	Yes	Y		1	1.2	2 3	9 1	.2	2	1	40	1	21	1	59			-	-	_	-	-		⊢
0	1.2D + 1.0Di + 1.0Wi (210 Deg)	Yes	Y		1	1.2	2 3	9 1	.2	2	1	40	1	22	1	60				-	_		-		-
1	1.2D + 1.0Di + 1.0Wi (240 Deg)	Yes	Y		1	1.2	2 3	9 1	.2	2	1	40	1	23	1	61	1	_	_	-		_			H
2	1.2D + 1.0Di + 1.0Wi (270 Deg)	Yes	Y		1		2 3				1	40	1	24	1	62	1	_		-	_		-		-
3	1.2D + 1.0Di + 1.0Wi (300 Deg)	Yes	Y		1	1.2	2 3	9 1	.2	2	1	40	1	25		63		_	_	-		_	-	_	H
4	1.2D + 1.0Di + 1.0Wi (330 Deg)	Yes	Y		1	1.2	2 3	9 1	.2	2	1	40	1	26		64	1		_	-			-		H
25	1.2D + 1.5Lm1 + 1.0Wm (0 Deg)	Yes	Y		1	1.2	2 3	9 1	.2	77	1.5	27	1	65	1			\perp		-			_	_	H
6	1.2D + 1.5Lm1 + 1.0Wm (30 Deg)	Yes	Y		1	1.2	2 3	9 1	.2	77	1.5	28	1	66	1						1		-	-	╀
7	1.2D + 1.5Lm1 + 1.0Wm (60 Deg)	Yes	Y	П	1	1.2	2 3	9 1	.2	77	1.5	29	1	67	1			_		_	_	_		_	-
8	1.2D + 1.5Lm1 + 1.0Wm (90 Deg)	Yes	Y		1	1.2	2 3	9 1	.2	77	1.5	30	1	68	1							_	_	_	1
9	1.2D + 1.5Lm1 + 1.0Wm (120 Deg)	-			1	1.2	2 3	9 1	.2	77	1.5	31	1	69	1							_	I	_	\perp

Load Combinations (Continued)

	Description	SP.	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fo	В	Fa	B	Fo	В	Ea	D	Ea	D	En
30	1.2D + 1.5Lm1 + 1.0Wm (150 Deg)	Yes Y	1 1	1	1.2	39	1.2	77	1.5	32	1	70	1	T	T	Τ	T	1	1 4.	T	<u> </u>	D	Fa.,
31	1.2D + 1.5Lm1 + 1.0Wm (180 Deg)	Yes Y		1	1.2	39	12	77	1.5	33	1	71				†		1		1			
32	1.2D + 1.5Lm1 + 1.0Wm (210 Deg)	Yes Y								34		72		\vdash		1	+	+	+	+		_	
33	1.2D + 1.5Lm1 + 1.0Wm (240 Deg)	Yes Y		1	1 2	39	1 2	77	1 5	35	1	73			1	✝	1	+	+	+		_	
34	1.2D + 1.5Lm1 + 1.0Wm (270 Deg)	Yes Y								36		74		\vdash	_	\vdash	1	+	+	-			
35	1.2D + 1.5Lm1 + 1.0Wm (300 Deg)	Yes Y								37		75		\vdash		\vdash	-	+	+	-	-		_
36	1.2D + 1.5Lm1 + 1.0Wm (330 Deg)	Yes V	+							38		76		\vdash	-	-	\vdash	+	\vdash	\vdash		-	
37	1,2D + 1.5Lm2 + 1.0Wm (0 Deg)	Yes Y	\rightarrow							27		_		-	-	-	+-	-	-	+-	-		
38	1.2D + 1.5Lm2 + 1.0Wm (30 Deg)			1	1.2	30	1.2	70	1.0	28	1	66		\vdash		-	-	+	-	+		-	_
39	1.2D + 1.5Lm2 + 1.0Wm (60 Deg)	Yes V	1							29				-	-	-	\vdash	+	-	-			
40	1.2D + 1.5Lm2 + 1.0Wm (90 Deg)	Ves V	1	1	1 2	20	1 2	140	1.0	30	4	67	_	-	-	-	-	\vdash		-			_
41	1.2D + 1.5Lm2 + 1.0Wm (120 Deg)	Ves V	+									68	_	-		-	-	\vdash	-	\vdash	_		_
42	1.2D + 1.5Lm2 + 1.0Wm (150 Deg)	Vog V	+	1	1.2	20	1.2	140	1.0	31	1	69					-	-	-	-	_		
43	1.2D + 1.5Lm2 + 1.0Wm (180 Deg)	Ved V	+	1	1.2	28	1.4	1/8 70	1.5	32	1	70	_	-	-	-	-	-					
44	1.2D + 1.5Lm2 + 1.0Wm (210 Deg)	Vod V		1	1.2	39	1.2	148	1.5	33	1	71	_					-		-			
45	1.2D + 1.5Lm2 + 1.0Wm (240 Deg)	Vac V		1	1.4	29	1.2	1/8	1.5	34	1	72	1				-	-		_			
46	1.2D + 1.5Lm2 + 1.0Wm (270 Deg)	Von V		1	1.2	39	1.2	1/8	1.5	35	1	73	1	_			-	-	-			_	
47	1.2D + 1.5Lm2 + 1.0Wm (300 Deg)	You V	+ +	+	1.2	39	1.2	1/8	1.5	36	1	74		_		_		_	_	_			
48	1.2D + 1.5Lm2 + 1.0Wm (330 Deg)									37		75			_	_	_	_	_				
49	1.2D + 1.5Lv1			1	1.2	39	1.2	1/8	1.5	38	1	76	1			_			-	_			
50	1.2D + 1.5Lv2	Yes Y		1	1.2	39	1.2	79	1.5			-		_		_	_		ļ				
51	1.4D	Yes Y		11	1.2	39	1.2	80	1.5	-	_												
52	1.4D 1.2D + 1.0Ev + 1.0Eh (0 Deg)	Yes Y		1	1.4	39	1.4									_	_						
53	1.2D + 1.0Ev + 1.0Eh (0 Deg)						1.2			E		82		83		E		E					
54	1.2D + 1.0Ev + 1.0Eh (60 Deg)	Yes Y					1.2			E	1						.866		.5	_			
55	1.2D + 1.0Ev + 1.0Eh (90 Deg)	Yes Y					1.2			E	1	82	.5	_	.866	_	.5	E.,,	_				
56		Yes Y					1.2		1	E	1	82				E,,,,		E	1		_		
57	1.2D + 1.0Ev + 1.0Eh (150 Deg)	Yes Y	-				1.2			E	1						5						
58		Yes Y	-	1	1.2	39	1.2	81		E	1		- 8			_	-,8		.5			_	
59		Yes Y	_	1	1.2	39	1.2	81		E	1	82	-1	83		E		E,					
60		Yes Y	\vdash				1.2			E	1	82	8	83	5	E	8	E	5				
61	1 1 1	Yes Y	_	1	1.2	39	1.2	81		E	1		-,5				5						
62		Yes Y		1	1.2	39	1.2	81		E	1	82		83				E	-1				
63	1	Yes Y					1.2			E	1	82			8				8				
64		Yes Y					1.2			E	1						.866		5		_		
	0.9D - 1.0Ev + 1.0Eh (0 Deg)	Yes Y	_	1			.9			E		82		83		E		E					
66	0.9D - 1.0Ev + 1.0Eh (30 Deg)	Yes Y	_	1			.9			E		82	.866	83	.5	E	.866						
66	0.9D - 1.0Ev + 1.0Eh (60 Deg)	res Y	_	1			.9					82			.866	E			.866				
	0.9D - 1.0Ev + 1.0Eh (90 Deg)				.9		.9			E		82		83		E		E	1				
68		Yes Y		1			.9					82							_		_		
69	0.9D - 1.0Ev + 1.0Eh (150 Deg)	Yes Y	_				.9				-1					_	-,8	_	.5				
70	0.9D - 1.0Ev + 1.0Eh (180 Deg)	Yes Y	_			39				-		82				E							
71		Yes Y		1		39				E		82							5				
72		Yes Y					.9				-1	82	5	83	8	E			8		J.		
73	0.9D - 1.0Ev + 1.0Eh (270 Deg)	Yes Y	_	1			.9		-1			82		83				E	-1			J	
74	0.9D - 1.0Ev + 1.0Eh (300 Deg)	Yes Y			.9							82							8				
75	0.9D - 1.0Ev + 1.0Eh (330 Deg)	Yes Y		1	.9	39	.9	81	-1	E	-1	82	.866	83	5	Ε	.866	E	5				

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z Ifti	Temp [F]	Detach From Diap.
1	N1	-0.166667	0.166667	0.166667	0	Dougli Form Blub.
2	N4	-0.166667	0.166667	0	0	
3	N5	-0.166667	-3.416667	0.166667	0	
4	N10	-4.5	0.166667	4.583333	0	
5	N11	4.166667	0.166667	4.583333	0	
6	N11A	-6.833333	0.166667	4.583333	0	
7	N12	6.5	0.166667	4.583333	Ő	
8	N14	-4.5	-3.416667	4.583333	0	
9	N15	4.166667	-3.416667	4.583333	0	
10	N16	-6.833333	-3.416667	4.583333	0	
11	N17	6.5	-3.416667	4.583333	0	

Joint Coordinates and Temperatures (Continued)

		emperatures (Co			T (F)	Detach From Diap.
	Label	X [ft]	Y [ft]	Z [ft] 0.345119	Temp (F)	Detacij Florii Diap.
12	N17A	-0.341752	0.166667	0.345119	0	
13	N18	0.008419	0.166667		0	
14	N19	-0.341752	-3.416667	0.345119	0	
15	N20	0.008419	-3.416667	0.345119	0	
16	N21	0.38777	0.166667	0.731765		
17	N22	0.38777	-3.416667	0.731765	0	
18	N23	2.08026	0.166667	2.456803	0	
19	N24	2.08026	-3.416667	2.456803	0	
20	N25	3.77275	0.166667	4.181841	0	
21	N26	3.77275	-3.416667	4.181841	0	
22	N27	0.38777	-3.291667	0.731765	0	
23	N28	2.08026	-3.291667	2.456803	0	
24	N29	0.38777	0.041667	0.731765	0	
	N30	2.08026	0.041667	2.456803	0	
25	N31	3.77275	-2.916667	4.181841	0	
26		3.77275	-0.333333	4.181841	0	
27	N32	-0.721103	0.166667	0.731765	0	
28	N33		-3.416667	0.731765	0	
29	N34	-0.721103	0.166667	2.456803	0	
30	N35	-2.413593	-3.416667	2.456803	0	
31	N36	-2.413593		4.181841	0	
32	N37	-4.106083	0.166667		0	
33	N38	-4.106083	-3.416667	4.181841	0	
34	N39	-0.721103	-3.291667	0.731765		
35	N40	-2.413593	-3.291667	2.456803	0	
36	N41	-0.721103	0.041667	0.731765	0	
37	N42	-2.413593	0.041667	2.456803	0	
38	N43	-4.106083	-2.916667	4.181841	0	
39	N44	-4.106083	-0.333333	4.181841	0	
40	N45	-6.583333	0.166667	4.583333	0	
	N46	-6.583333	-3.416667	4.583333	0	
41	N47	-6.583333	0.166667	4.833333	0	
42		-6.583333	-3.416667	4.833333	0	
43	N48	-6.583333	1.166667	4.833333	0	
44	N49		-4.833333	4.833333	0	
45	N50	-6.583333	0.166667	4.583333	0	
46	N51	-0.791667	-3.416667	4.583333	0	
47	N52	-0.791667		4.833333	Ö	
48	N53	-0.791667	0.166667	4.833333	0 ·	
49	N54	-0.791667	-3.416667		0	A PERSONAL PROPERTY OF THE PERSON NAMED IN COLUMN TWO IN COLUMN TO THE PERSON NAMED IN COLUMN TO
50	N55	-0.791667	1.166667	4.833333	0	
51	N56	-0.791667	-4.833333	4.833333	0	
52	N57	6.25	0.166667	4.583333		
53	N58	6.25	-3.416667	4.583333	0	
54	N59	6.25	0.166667	4.833333	0	
55	N60	6.25	-3.416667	4.833333	0	
56	N61	6.25	1.166667	4.833333	0	
	N62	6.25	-4.833333	4.833333	0	
57	N65	-0.166667	-3.416667	0	0	
58		6.25	-1	4.833333	0	
59	N80	-4.106083	-1.625	4.181841	0	
60	N66A	2.75	0.166667	4.583333	0	
61	N62A		-3.416667	4.583333	0	
62	N63A	2.75		4.833333	0	
63	N64	2.75	0.166667	4.833333	0	
64	N65A	2.75	-3.416667		0	
65	N66	2.75	2.083333	4.833333	0	
66	N67	2.75	-5.916667	4.833333		
67	N68	2.75	-1	4.833333	0	19.00
68	N69	-2.092604	0.166667	2.129641	0	
69	N70	-2.245812	0.166667	2.001083	0	
70	N71	-2.092604	-3.416667	2.129641	0	
71	N72	-2.245812	-3.416667	2.001083	0	
		-2.245812	-3.916667	2.001083	0	

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
73	N74	-2.245812	2.083333	2.001083	0	Detacit From Diap
74	N75	-2	-1.625	-3.175426	n	
75	N76A	6.25	1	4.833333	0	
76	N77	6.25	-3	4.833333	ñ	
77	N78	-6.583333	-1.625	4.833333	Ů.	
78	N79	1.941667	-3.416667	4.583333	0	
79	N80A	1.3	-3.416667	4.583333	0	
80	N81	-0.033333	-3.416667	4.583333	0	
81	N83	6.25	0	4.833333	0	
82	N84	6.25	-2	4.833333	0	
83	N84A	2.75	.75	4.833333	n	
84	N85	2.75	-2.75	4.833333	0	

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design R.,	A lin21	lvv [in4]	Izz [in4]	J [in4]
. 1.	Antenna Pipe	PIPE 2.0	Column	Pipe	A53 Gr. B	Typical	1.02	.627	.627	1.25
2	Standoff Horizontal	PIPE 2.0	Beam	Pipe	A500 Gr. C 50	Typical	1.02	.627	.627	1.25
3	Standoff Vertical	PIPE 2.0	Beam	Pipe	A500 Gr. C 50	Typical	1.02	.627	.627	1.25
4	Standoff Diagonal	HSS1.500x.06	Beam	Pipe	A500 Gr. C 50		.282	.073	.073	.146
_5	Face Horizontal	PIPE 2.5	Beam	Pipe	A500 Gr. C 50		1.61	1.45	1.45	2.89
6	Tie Back	PIPE 3.0	Beam	Pipe	A53 Gr. B	Typical	2.07	2.85	2.85	5.69
7	Back Standoff Bar	PL3/8X3.375	Beam	RECT	A36 Gr.36	Typical	1.266	.015	1.201	.055
8	TES BSB	PL1/2X4	Beam	RECT	A36 Gr.36	Typical	2	.042	2.667	.154
9	Standoff Bar	PL3/8X3	Beam	RECT	A36 Gr.36	Typical	1.125	.013	.844	.049
10	Mount Angle	L4X3X6	Beam	Single Angle	A36 Gr.36	Typical	2.49	1.89	3.94	.123
11	Kickers	L2.5x2.5x3	Beam	Single Angle	A36 Gr.36	Typical	.901	.535	.535	.011
12	Standoff Bar 2	PL3/8x3.5	Beam	BAR	A36 Gr.36	Typical	.963	.006	.983	.023

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E.	Density[k/ft	Yield[ksi]	Rv	Fu[ksi]	Pt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A53 Gr. B	29000	11154	.3	.65	.49	35	1.5	60	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1 1	65	1.1
4	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
5	A500 Gr. B 42.	29000	11154	.3	.65	.49	42	1.4	58	1.1
6	A500 Gr. B 46	29000	11154	.3	.65	.49	46	1.4	58	1.3
7	A500 Gr. C 50	29000	11154	.3	.65	.49	50	1.5	62	1.0

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
1	M2	N1	N4			RIGID	None	None	RIGID	Typical
2	M5	N1	N17A		90	Back Standoff	Beam	RECT	A36 Gr.36	Typical
3	M6	N1	N18		90	Back Standoff	Beam	RECT	A36 Gr.36	Typical
4	M7	N11A	N12			Face Horizontal		Pipe	A500 Gr	Typical
5	M8	N5	N19		90	Back Standoff	Beam	RECT	A36 Gr.36	Typical
6	M9	N5	N20		90	Back Standoff	Beam	RECT	A36 Gr.36	Typical
7	M10	N16	N17			Face Horizontal		Pipe	A500 Gr	Typical
8	M11	N17A	N10			Standoff Horiz	Beam	Pipe	A500 Gr	Typical
9	M12	N18	N11			Standoff Horiz	Beam	Pipe	A500 Gr	Typical
10	M13	N19	N14			Standoff Horiz	Beam	Pipe	A500 Gr	Typical
11	M14	N20	N15			Standoff Horiz	Beam	Pipe	A500 Gr	Typical
12	M15	N21	N29	N1	- 10	Standoff Bar	Beam	RECT	A36 Gr.36	Typical
13	M16	N29	N28		90	Standoff Diago	Beam	Pipe	A500 Gr	Typical
14	M17	N23	N30	N1		Standoff Bar	Beam	RECT	A36 Gr.36	Typical
15	M18	N30	N31		90	Standoff Diago	Beam	Pipe	A500 Gr	Typical
16	M19	N26	N31	N1		Standoff Bar 2	Beam	BAR	A36 Gr.36	Typical
17	M20	N27	N22	N1		Standoff Bar	Beam	RECT	A36 Gr.36	Typical

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List		Design Rules
10	M21	N28	N24	N1		Standoff Bar	Beam	RECT	A36 Gr.36	Typical
18	M22	N29	N27	N1		Standoff Diago	Beam	Pipe	A500 Gr	Typical
19	M23	N30	N28	N1		Standoff Diago	Beam	Pipe	A500 Gr	Typical
20		N31	N32	N1		Standoff Vertical	Beam	Pipe	A500 Gr	Typical
21	M24	N32	N25	N1		Standoff Bar 2	Beam	BAR	A36 Gr.36	Typical
22	M25	N33	N41	N1		Standoff Bar	Beam	RECT	A36 Gr.36	Typical
23	M26	N41	N40		90	Standoff Diago	Beam	Pipe	A500 Gr	Typical
24	M27		N42	N1	1 00	Standoff Bar	Beam	RECT	A36 Gr.36	Typical
25	M28	N35	N43	181	90	Standoff Diago	Beam	Pipe	A500 Gr	Typical
26	M29	N42		N1	30	Standoff Bar 2	Beam	BAR	A36 Gr.36	Typical
27	M30	N38	N43	N1	+	Standoff Bar	Beam	RECT	A36 Gr.36	Typical
28	M31	N39	N34		-	Standoff Bar	Beam	RECT	A36 Gr.36	Typical
29	M32	N40	N36	N1 N1	-	Standoff Diago	Beam	Pipe	A500 Gr	Typical
30	M33	N41	N39			Standoff Diago	Beam	Pipe	A500 Gr	Typical
31	M34	N42	N40	N1		Standoff Vertical	Beam	Pipe	A500 Gr	Typical
32	M35	N43	N44	N1		Standoff Bar 2	Beam	BAR	A36 Gr.36	Typical
33	M36	N44	N37	N1	-	RIGID	None	None	RIGID	Typical
34	M37	N45	N47					None	RIGID	Typical
35	M38	N46	N48			RIGID	None	Pipe	A53 Gr. B	The second secon
36	MP4A	N49	N50		-		Column	None	RIGID	Typical
37	M40	N51	N53			RIGID	None		RIGID	Typical
38	M41	N52	N54			RIGID	None	None	A53 Gr. B	
39	MP3A	N55	N56			Antenna Pipe	Column	Pipe		Typical
40	M43	N57	N59			RIGID	None	None	RIGID	Typical
41	M44	N58	N60			RIGID	None	None	RIGID	The second secon
42	MP1A	N61	N62			Antenna Pipe	Column	Pipe	A53 Gr. B	
43	M46	N66A	N75			Tie Back	Beam	Pipe	A53 Gr. B	
44	M46A	N5	N65			RIGID	None	None	RIGID	Typical
45	M45	N62A	N64			RIGID	None	None	RIGID	Typical
46	M46B	N63A	N65A			RIGID	None	None	RIGID	Typical
47	MP2A	N66	N67				Column	Pipe	A53 Gr. B	Commence of the Commence of th
48	M48	N69	N70			RIGID	None	None	RIGID	Typical
49	M49	N71	N72			RIGID	None	None	RIGID	Typical
50	M50	N74	N73			Antenna Pipe	Column	Pipe	A53 Gr. B	Typical

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only		Defl RatAnalysis	. Inactive	Seismic.
1	M2						Yes	** NA **		None
2	M5	Ollar					Yes	Default		None
3	M6						Yes	Default		None
4	M7						Yes			None
5	M8						Yes	Default		None
6	M9						Yes	Default		None
7	M10						Yes			None
	M11						Yes			None
8		-					Yes			None
9	M12						Yes			None
10	M13						Yes			None
11	M14	00000					Yes			None
12	M15	00000X	D DINI				Yes	Default		None
13	M16	BenPIN	BenPIN				Yes	Boldan		None
14	M17	00000X	D. DIN				Yes	Default		None
15	1M18	BenPIN	BenPIN			-	Yes	Deladit		None
16	M19	00000X					Yes			None
17	M20		000000				Yes			None
18	M21		000000							None
19	M22						Yes			None
20	M23						Yes			None
21	M24						Yes	D (#		None
22	M25		000000				Yes	Default		
23	M26	00000X					Yes			None
24	M27	BenPIN	BenPIN				Yes		V	None

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat.	Analysis	Inactive	Seismic
25	M28	00000X			1 7		Yes				None
26	M29	BenPIN	BenPIN				Yes	110			None
27	M30	00000X					Yes				None
28	M31		000000				Yes			T 112	None
29	M32		000000				Yes				None
30	M33						Yes				None
31	M34						Yes				None
32	M35						Yes		11.0		None
33	M36		000000				Yes				None
34	M37						Yes	** NA **		11 / 10 / 10	None
35	M38						Yes	** NA **			None
36	MP4A						Yes	** NA **			None
37	M40						Yes	** NA **			None
38	M41						Yes	** NA **			None
39	MP3A						Yes	** NA **			None
40	M43						Yes	** NA **			None
41	M44						Yes	** NA **			None
42	MP1A						Yes	** NA **			None
43	M46	BenPIN					Yes	Default			None
44	M46A						Yes	** NA **			None
45	M45							** NA **			None
46	M46B						Yes	** NA **	W 112		None
47	MP2A						Yes	** NA **			None
48	M48							** NA **			None
49	M49						Yes	** NA **			None
50	M50	12.5 T					Yes	** NA **			None

Member Point Loads (BLC 1 : Antenna D)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Y	-23	1.33
2	MP3A	My	021	1.33
3	MP3A	Mz	.019	1.33
4	MP3A	Y	-23	4.83
5	MP3A	My	021	4.83
6	MP3A	Mz	.019	4.83
7	MP3A	Υ	-23	1.33
8	MP3A	My	021	1.33
9	MP3A	Mz	019	1.33
10	MP3A	Y	-23	4.83
11	MP3A	My	021	4.83
12	MP3A	Mz	019	4.83
13	MP1A	Y	-28.65	1.17
14	MP1A	My	014	1.17
15	MP1A	Mz	0	1.17
16	MP1A	Y	-28.65	3.17
17	MP1A	My	014	3.17
18	MP1A	Mz	0	3.17
19	M50	Y	-32	1.5
20	M50	My	0	1.5
21	M50	Mz	0	1.5
22	MP3A	Y	-74.7	2.17
23	MP3A	My	.037	2.17
24	MP3A	Mz	0	2.17
25	MP2A	Y	-79.1	2.17
26	MP2A	My	.04	2.17
27	MP2A	Mz	0	2.17

Member Point Loads (BLC 2 : Antenna Di)

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]

Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
4	MP3A	Y	-82.547	1.33
1	MP3A	My	076	1.33
2		Mz	.069	1.33
3	MP3A	Y	-82.547	4.83
4	MP3A	My	076	4.83
5	MP3A	Mz	.069	4.83
6	MP3A	IVIZ V	-82.547	1.33
7	MP3A	My	076	1.33
8	MP3A		069	1.33
9	MP3A	Mz	-82.547	4.83
10	MP3A		076	4.83
11	MP3A	My	069	4.83
12	MP3A	Mz	-29.809	1.17
13	MP1A	Y		1.17
14	MP1A	My My	015	1.17
15	MP1A	Mz	0	3.17
16	MP1A	Υ	-29.809	3.17
17	MP1A	My	015	
18	MP1A	Mz	0	3.17
19	M50	Y	-76,027	1.5
20	M50	My	0	1.5
21	M50	Mz	0	1.5
22	MP3A	Υ	-44.947	2.17
23	MP3A	My	.022	2.17
24	MP3A	Mz	0	2.17
25	MP2A	Y	-45.423	2.17
26	MP2A	My	.023	2.17
27	MP2A	Mz	0	2.17

Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
4	MP3A	X	0	1.33
1		Z	-87.281	1.33
2	MP3A	Mx	073	1.33
3	MP3A	X	0	4.83
4	MP3A	7	-87.281	4.83
5	MP3A	Mx	073	4.83
6	MP3A		0	1.33
7	MP3A	X	-87.281	1.33
88	MP3A	Z	.073	1.33
9	MP3A	Mx	0	4.83
10	MP3A	X		4.83
11	MP3A	Z	-87.281	4.83
12	MP3A	Mx	.073	1.17
13	MP1A	X	0	1.17
14	MP1A	Z	-69.936	1.17
15	MP1A	Mx	0	3.17
16	MP1A	X	0	
17	MP1A	Z	-69.936	3.17
18	MP1A	Mx	0	3,17
19	M50	X	0	1.5
20	M50	Z	-116.99	1.5
21	M50	Mx	0	1.5
22	MP3A	X	0	2.17
23	MP3A	Z	-57.203	2.17
24	MP3A	Mx	0	2.17
25	MP2A	X	0	2.17
26	MP2A	Ž	-69.013	2.17
27	MP2A	Mix	0	2.17

Member Point Loads (BLC 4 : Antenna Wo (30 Deg))

/lembe	r Point Loads (DL	.C 4 . Alitellia V	0 130 D Cg//	
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]

Member Point Loads (BLC 4: Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	40.896	1.33
2	MP3A	Z	-70.833	1.33
3	MP3A	Mx	097	1.33
4	MP3A	X	40.896	4.83
5	MP3A	Z	-70.833	4.83
6	MP3A	Mx	097	4.83
7	MP3A	X	40.896	1.33
8	MP3A	Z	-70.833	1.33
9	MP3A	Mx	.022	1.33
10	MP3A	X	40.896	4.83
11	MP3A	Z	-70.833	4.83
12	MP3A	Mx	.022	4.83
13	MP1A	X	29.593	1.17
14	MP1A	Z	-51.256	1.17
15	MP1A	Mx	015	1.17
16	MP1A	X	29.593	3.17
17	MP1A	Z	-51.256	3.17
18	MP1A	Mx	015	3.17
19	M50	X	54.989	1.5
20	M50	Z	-95.244	1.5
21	M50	Mx	0	1.5
22	MP3A	X	26.249	2.17
23	MP3A	Ž	-45.464	2.17
24	MP3A	Mx	.013	2.17
25	MP2A	X	31.762	2.17
26	MP2A	Ž	-55.013	2.17
27	MP2A	Mx	.016	2.17

Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
1	MP3A	X	61.325	1.33
2	MP3A	Z	-35.406	1.33
3	MP3A	Mx	086	1.33
4	MP3A	X	61.325	4.83
5	MP3A	Z	-35.406	4.83
6	MP3A	Mx	086	4.83
7	MP3A	X	61.325	1.33
8	MP3A	7	-35.406	1.33
9	MP3A	Mx	027	1.33
10	MP3A	X	61.325	4.83
11	MP3A	Z	-35.406	4.83
12	MP3A	Mx	027	4.83
13	MP1A	X	32.637	
14	MP1A	Z	-18.843	1.17
15	MP1A	Mx	016	1.17
16	MP1A	X	32.637	1.17
17	MP1A	7	-18.843	3.17
18	MP1A	Mx	016	3.17
19	M50	X	83.098	3.17
20	M50	Z	-47.977	1.5
21	M50	Mx	-47.977	1.5
22	MP3A	X	37.314	1.5
23	MP3A	7		2.17
24	MP3A	Mx	-21.543	2.17
25	MP2A	X	.019	2.17
26	MP2A	Ž	45.504	2.17
27	MP2A	Mx	-26.272	2.17
	IVII Z/A	IVIX	.023	2.17

Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

Member Label	Direction	Magnitude(lb,k-ft)	Location[ft.%]
		wagintade[ib]K-It[LUCALIUIIII. 761

Member Point Loads (BLC 6 : Antenna Wo (90 Deg)) (Continued)

	Momber Label	Direction	Magnitude[lh,k-ft]	Location[ft.%]
1	MP3A	X	65.322	1.33
2	MP3A	Z	0	1.33
	MP3A	Mx	06	1.33
3	MP3A	X	65.322	4.83
4	MP3A	Z	0	4.83
5		Mx	06	4.83
6	MP3A	X	65.322	1.33
1	MP3A	Z	0	1,33
8	MP3A	Mx	06	1.33
9	MP3A	X	65.322	4.83
10	MP3A	Ž	0	4.83
11	MP3A		06	4.83
12	MP3A	Mx X	26.936	1.17
13	MP1A		0	1.17
14	MP1A	Z	013	1.17
15	MP1A	Mx		3.17
16	MP1A	X	26.936	3.17
17	MP1A	Z	0	3.17
18	MP1A	Mx	013	1.5
19	M50	X	88.942	1.5
20	M50	Z	0	
21	M50	Mx	0	1.5
22	MP3A	X	38.381	2.17
23	MP3A	Z	0	2.17
24	MP3A	Mx	.019	2.17
25	MP2A	X	47.054	2.17
26	MP2A	Z	0	2.17
27	MP2A	Mx	.024	2.17

Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	61.325	1.33
2	MP3A	Z	35.406	1.33
	MP3A	Mx	027	1.33
3	MP3A	X	61.325	4.83
4	MP3A	Z	35,406	4.83
5	MP3A	Mx	027	4.83
6		X	61.325	1.33
7	MP3A	Z	35,406	1.33
8	MP3A	Mx	086	1.33
9	MP3A	X	61.325	4.83
10	MP3A	Z	35.406	4.83
11	MP3A	Mx	086	4.83
12	MP3A	X	32.637	1.17
13	MP1A	Ž	18.843	1,17
14	MP1A		016	1.17
15	MP1A	Mx	32.637	3.17
16	MP1A	X	18.843	3,17
17	MP1A	Z	016	3.17
18	MP1A	Mx		1.5
19	M50	X	83.098	1.5
20	M50	Z	47.977	1.5
21	M50	Mx	0	2.17
22	MP3A	X	37.314	2.17
23	MP3A	Z	21.543	2.17
24	MP3A	Mx	.019	2.17
25	MP2A	X	45.504	2.17
26	MP2A	Z	26.272	
27	MP2A	Mx	.023	2.17

Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	AND DESCRIPTION OF THE PERSON NAMED IN COLUMN 1		
Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]

Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	40.896	1.33
2	MP3A	Z	70.833	1.33
3	MP3A	Mx	.022	1.33
4	MP3A	X	40.896	4.83
5	MP3A	Z	70.833	4.83
6	MP3A	Mx	.022	4.83
7	MP3A	X	40.896	1.33
8	MP3A	7	70.833	1.33
9	MP3A	Mx	097	1.33
10	MP3A	X	40.896	4.83
11	MP3A	Z	70.833	4.83
12	MP3A	Mx	097	4.83
13	MP1A	X	29.593	1.17
14	MP1A	Z	51.256	1.17
15	MP1A	Mx	015	1.17
16	MP1A	X	29.593	3.17
17	MP1A	Z	51.256	3.17
18	MP1A	Mx	015	3.17
19	M50	X	54.989	1.5
20	M50	7	95.244	1.5
21	M50	Mx	0	1.5
22	MP3A	X	26.249	2.17
23	MP3A	Z	45.464	2.17
24	MP3A	Mx	.013	2.17
25	MP2A	X	31.762	2.17
26	MP2A	Z	55.013	2.17
27	MP2A	Mx	.016	2.17

Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	0	1.33
2	MP3A	Z	87.281	1.33
3	MP3A	Mx	.073	1.33
4	MP3A	X	0	4.83
5	MP3A	Z	87.281	4.83
6	МРЗА	Mx	.073	4.83
7	MP3A	X	0	1,33
8	MP3A	Z	87,281	1.33
9	MP3A	Mx	073	1.33
10	MP3A	X	0	4.83
11	MP3A	Z	87.281	4.83
12	MP3A	Mx	073	4.83
13	MP1A	X	0	1.17
14	MP1A	Z	69.936	1.17
15	MP1A	Mx	0	1.17
16	MP1A	X	0	3.17
17	MP1A	Z	69.936	3.17
18	MP1A	Mx	0	3.17
19	M50	X	0	1.5
20	M50	Z	116.99	1.5
21	M50	Mx	0	1.5
22	MP3A	X	0	2.17
23	MP3A	Z	57.203	2.17
24	MP3A	Mx	0	2.17
25	MP2A	X	0	2.17
26	MP2A	Z	69.013	2.17
27	MP2A	Mx	0	2.17

Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

Member Label Direction Magnitude[lb,k-ft] Location[ft,%]

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
1. 1	MP3A	X	-40.896	1.33
2	MP3A	Z	70.833	1.33
3	MP3A	Mx	.097	1.33
4	MP3A	X	-40.896	4.83
5	MP3A	Z	70.833	4.83
6	MP3A	Mx	.097	4.83
7	MP3A	X	-40.896	1.33
8	MP3A	Z	70.833	1.33
9	MP3A	Mx	022	1.33
10	MP3A	X	-40.896	4.83
11	MP3A	Z	70.833	4.83
12	MP3A	Mx	022	4.83
13	MP1A	X	-29.593	1.17
14	MP1A	Z	51.256	1.17
15	MP1A	Mx	.015	1.17
16	MP1A	X	-29.593	3.17
17	MP1A	Z	51.256	3.17
18	MP1A	Mx	.015	3.17
19	M50	X	-54.989	1.5
20	M50	Z	95.244	1.5
21	M50	Mx	0	1.5
22	MP3A	X	-26.249	2.17
23	MP3A	Z	45.464	2.17
24	MP3A	Mx	013	2.17
25	MP2A	X	-31.762	2.17
26	MP2A	Z	55.013	2.17
27	MP2A	Mx	016	2.17

Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-61.325	1.33
2	MP3A	Z	35.406	1,33
3	MP3A	Mx	.086	1.33
4	MP3A	X	-61.325	4.83
5	MP3A	Z	35.406	4.83
6	MP3A	Mx	.086	4.83
7	MP3A	X	-61.325	1.33
8	MP3A	Z	35.406	1.33
9	MP3A	Mx	.027	1.33
10	MP3A	X	-61.325	4.83
11	MP3A	Z	35.406	4.83
12	MP3A	Mx	.027	4.83
	MP1A	X	-32.637	1.17
13	MP1A	Z	18.843	1.17
14		Mx	.016	1.17
15	MP1A	X	-32.637	3.17
16	MP1A	Z	18.843	3,17
17	MP1A	Mx	.016	3.17
18	MP1A	X	-83.098	1.5
19	M50	Z	47.977	1.5
20	M50		0	1.5
21	M50	Mx	-37.314	2.17
22	MP3A	X	21.543	2.17
23	MP3A	Z		2.17
24	MP3A	Mx	019	2.17
25	MP2A	X	-45.504	2.17
26	MP2A	Z	26.272	
27	MP2A	Mx	023	2.17

Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

Member Label Direction Magnitude[lb,k-ft]	Location[ft,%]
---	----------------

Member Point Loads (BLC 12 : Antenna Wo (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-65.322	1.33
2	MP3A	Z	0	1.33
3	MP3A	Mx	.06	1.33
4	MP3A	X	-65.322	4.83
5	MP3A	Z	0	4.83
6	MP3A	Mx	.06	4.83
7	MP3A	X	-65.322	1.33
8	MP3A	Z	0	1.33
9	MP3A	Mx	.06	1.33
10	MP3A	X	-65.322	4.83
11	MP3A	Z	0	4.83
12	MP3A	Mx	.06	4.83
13	MP1A	X	-26.936	1.17
14	MP1A	Z	0	1,17
15	MP1A	Mx	.013	1.17
16	MP1A	X	-26.936	3.17
17	MP1A	Z	0	3.17
18	MP1A	Mx	.013	3.17
19	M50	X	-88.942	1.5
20	M50	Z	0	1.5
21	M50	Mx	0	1.5
22	MP3A	X	-38.381	2.17
23	MP3A	Z	0	2.17
24	MP3A	Mx	019	2.17
25	MP2A	X	-47.054	2.17
26	MP2A	Z	0	2.17
27	MP2A	Mx	024	2.17

Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-61.325	1.33
2	MP3A	Z	-35.406	1.33
3	MP3A	Mx	.027	1.33
4	MP3A	X	-61.325	4.83
5	MP3A	Z	-35.406	4.83
6	MP3A	Mx	.027	4.83
7	MP3A	X	-61.325	1.33
8	MP3A	Z	-35.406	1.33
9	MP3A	Mx	.086	1.33
10	MP3A	X	-61.325	4.83
11	MP3A	Z	-35.406	4.83
12	MP3A	Mx	.086	4.83
13	MP1A	X	-32.637	1.17
14	MP1A	Z	-18.843	1.17
15	MP1A	Mx	.016	1.17
16	MP1A	X	-32.637	3.17
17	MP1A	Z	-18.843	3.17
18	MP1A	Mx	.016	3.17
19	M50	X	-83.098	1.5
20	M50	Z	-47.977	1.5
21	M50	Mx	0	1.5
22	MP3A	X	-37,314	2.17
23	MP3A	Z	-21.543	2.17
24	MP3A	Mx	019	2.17
25	MP2A	X	-45.504	2.17
26	MP2A	Z	-26.272	2.17
27	MP2A	Mx	023	2.17

Member Point Loads (BLC 14 : Antenna Wo (330 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
--------------	-----------	--------------------	----------------

Member Point Loads (BLC 14: Antenna Wo (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft.%]
1	MP3A	X	-40.896	1,33
2	MP3A	7	-70.833	1.33
3	MP3A	Mx	022	1.33
4	MP3A	X	-40.896	4.83
5	MP3A	Z	-70.833	4.83
6	MP3A	Mx	022	4,83
7	MP3A	X	-40,896	1.33
8	MP3A	Z	-70.833	1.33
9	MP3A	Mx	.097	1.33
10	MP3A	X	-40.896	4.83
11	MP3A	Z	-70.833	4.83
12	MP3A	Mx	.097	4.83
13	MP1A	X	-29.593	1.17
14	MP1A	Ž	-51.256	1,17
15	MP1A	Mx	.015	1.17
	MP1A	X	-29.593	3.17
16	MP1A	Ž	-51.256	3.17
	MP1A	Mx	.015	3.17
18		X	-54.989	1.5
19	M50 M50	Ž	-95.244	1.5
20	M50	Mx	0	1.5
21		X	-26.249	2.17
22	MP3A	Z	-45.464	2.17
23	MP3A	Mx	013	2.17
24	MP3A	X	-31.762	2.17
25	MP2A	Z	-55.013	2.17
26 27	MP2A MP2A	Mx	-35.013 016	2.17

Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
1	MP3A	X	0	1.33
2	MP3A	Z	-31.779	1.33
3	MP3A	Mx	026	1.33
4	MP3A	X	0	4.83
5	MP3A	Z	-31.779	4.83
6	MP3A	Mx	026	4.83
7	MP3A	X	0	1.33
8	MP3A	Z	-31.779	1,33
9	MP3A	Mx	.026	1.33
10	MP3A	X	0	4.83
11	MP3A	7	-31.779	4.83
12	MP3A	Mx	.026	4.83
13	MP1A	X	0	1.17
14	MP1A	Z	-12.793	1,17
	MP1A	Mx	0	1.17
15	MP1A	X	Ŏ	3.17
17	MP1A	7	-12.793	3.17
	MP1A	Mx	0	3.17
18	M50	X	0	1.5
19	M50	Z	-25.437	1.5
20		Mx	0	1.5
21	M50	X	0	2.17
22	MP3A	Z	-13.214	2.17
23	MP3A	Mx	0	2.17
24	MP3A	X	0	2.17
25	MP2A	Z	-13.214	2.17
26 27	MP2A MP2A	Mx	0	2.17

Member Point Loads (BLC 16 : Antenna Wi (30 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]

Member Point Loads (BLC 16: Antenna Wi (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	14.922	1.33
2	MP3A	Z	-25.846	1.33
3	MP3A	Mx	035	1.33
4	MP3A	X	14.922	4.83
5	MP3A	Z	-25.846	4.83
6	MP3A	Mx	035	4.83
7	MP3A	X	14.922	1.33
8	MP3A	Z	-25.846	1.33
9	MP3A	Mx	.008	1.33
10	MP3A	X	14.922	4.83
11	MP3A	Z	-25.846	4.83
12	MP3A	Mx	.008	4.83
13	MP1A	X	5.473	1.17
14	MP1A	Z	-9.479	1.17
15	MP1A	Mx	003	1.17
16	MP1A	X	5.473	3.17
17	MP1A	Z	-9.479	3.17
18	MP1A	Mx	003	3.17
19	M50	X	11.714	1.5
20	M50	Z	-20.289	1.5
21	M50	Mx	0	1.5
22	MP3A	X	6.104	2.17
23	MP3A	Z	-10.573	2.17
24	MP3A	Mx	.003	2.17
25	MP2A	X	6.124	2.17
26	MP2A	Z	-10.608	2.17
27	MP2A	Mx	.003	2.17

Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
1	MP3A	X	22.496	1.33
2	MP3A	Z	-12.988	1.33
3	MP3A	Mx	031	1.33
4	MP3A	X	22.496	4.83
5	MP3A	Z	-12.988	4.83
6	MP3A	Mx	031	4.83
7	MP3A	X	22.496	1.33
8	MP3A	Z	-12.988	1.33
9	MP3A	Mx	01	1.33
10	MP3A	X	22.496	4.83
11	MP3A	Z	-12.988	4.83
12	MP3A	Mx	01	4.83
13	MP1A	X	6.279	1.17
14	MP1A	Z	-3.625	1.17
15	MP1A	Mx	003	1.17
16	MP1A	X	6.279	3.17
17	MP1A	Z	-3.625	3.17
18	MP1A	Mx	003	3.17
19	M50	X	16.809	1.5
20	M50	Z	-9.705	1.5
21	M50	Mx	0	1.5
22	MP3A	X	8.831	2.17
23	MP3A	Z	-5.099	2.17
24	MP3A	Mx	.004	2.17
25	MP2A	X	8.936	2.17
26	MP2A	Z	-5.159	2.17
27	MP2A	Mx	.004	2.17

Member Point Loads (BLC 18 : Antenna Wi (90 Deg))

Magnitude (ib, K-It) Location (It, 70)	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
--	--------------	-----------	--------------------	----------------

Member Point Loads (BLC 18 : Antenna Wi (90 Deg)) (Continued)

N.	lember Label	Direction	Magnitude[lb.k-ft]	Location[ft.%]
1	MP3A	X	24.041	1.33
2	MP3A	Z	0	1.33
3	MP3A	Mx	022	1.33
4	MP3A	X	24.041	4.83
5	MP3A	Z	0	4.83
6	MP3A	Mx	022	4.83
7	MP3A	X	24.041	1.33
8	MP3A	Z	0	1.33
9	MP3A	Mx	022	1.33
10	MP3A	X	24.041	4.83
11	MP3A	Z	0	4.83
12	MP3A	Mx	022	4.83
13	MP1A	X	5.402	1.17
14	MP1A	7	0	1.17
15	MP1A	Mx	-,003	1.17
16	MP1A	X	5.402	3.17
17	MP1A	Z	0	3.17
18	MP1A	Mx	003	3.17
19	M50	X	17.4	1.5
20	M50	Z	0	1.5
	M50	Mx	0	1.5
21 22	MP3A	X	9.192	2.17
23	MP3A	Z	0	2.17
	MP3A	Mx	.005	2.17
24	MP2A	X	9.353	2.17
25	MP2A	Z	0	2.17
26		Mx	.005	2.17
27	MP2A	I IVIA	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	22.496	1.33
2	MP3A	Z	12.988	1.33
3	MP3A	Mx	01	1.33
4	MP3A	X	22.496	4.83
5	MP3A	7	12.988	4.83
6	MP3A	Mx	01	4.83
7	MP3A	X	22.496	1.33
8	MP3A	Z	12.988	1.33
9	MP3A	Mx	031	1.33
10	MP3A	X	22.496	4.83
11	MP3A	Z	12.988	4.83
12	MP3A	Mx	031	4.83
13	MP1A	X	6,279	1.17
14	MP1A	Z	3.625	1.17
15	MP1A	Mx	003	1.17
16	MP1A	X	6.279	3.17
17	MP1A	7	3.625	3.17
18	MP1A	Mx	003	3.17
19	M50	X	16.809	1.5
20	M50	Z	9.705	1.5
21	M50	Mx	0	1.5
22	MP3A	X	8.831	2.17
23	MP3A	7	5.099	2.17
24	MP3A	Mx	.004	2.17
25	MP2A	X	8.936	2.17
26	MP2A	Z	5.159	2.17
27	MP2A	Mx	.004	2.17

Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

			1 t! rct 0/ 1
	Direction	Magnitude[lb,k-ft]	Location[ft,%]
Member Label	Direction	Magnitude[ib,k it]	

Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	14.922	1.33
2	MP3A	Z	25.846	1.33
3	MP3A	Mx	.008	1.33
4	MP3A	X	14.922	4.83
5	MP3A	Z	25.846	4.83
6	MP3A	Mx	.008	4.83
7	MP3A	X	14.922	1.33
8	MP3A	Z	25.846	1.33
9	MP3A	Mx	035	1.33
10	MP3A	X	14.922	4.83
11	MP3A	Z	25.846	4.83
12	MP3A	Mx	035	4.83
13	MP1A	X	5.473	1.17
14	MP1A	7	9.479	1.17
15	MP1A	Mx	003	1.17
16	MP1A	X	5,473	3.17
17	MP1A	Z	9,479	3.17
18	MP1A	Mx	003	3.17
19	M50	X	11.714	1.5
20	M50	Z	20.289	1.5
21	M50	Mx	0	1.5
22	MP3A	X	6.104	2.17
23	MP3A	Z	10.573	2.17
24	MP3A	Mx	.003	2.17
25	MP2A	X	6.124	2.17
26	MP2A	Z	10.608	2.17
27	MP2A	Mx	.003	2.17

Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	0	1.33
2	MP3A	Z	31.779	1.33
3	МР3А	Mx	.026	1.33
4	MP3A	X	0	4.83
5	MP3A	Z	31,779	4.83
6	МРЗА	Mx	.026	4.83
7	MP3A	X	0	1.33
8	MP3A	Z	31,779	1.33
9	MP3A	Mx	026	1.33
10	MP3A	X	0	4.83
11	MP3A	Z	31.779	4.83
12	MP3A	Mx	026	4.83
13	MP1A	X	0	1.17
14	MP1A	Z	12.793	1.17
15	MP1A	Mx	0	1.17
16	MP1A	X	0	3.17
17	MP1A	Z	12.793	3.17
18	MP1A	Mx	0	3.17
19	M50	X	0	1.5
20	M50	Z	25.437	1.5
21	M50	Mx	0	1.5
22	MP3A	X	0	2.17
23	MP3A	Z	13.214	2.17
24	MP3A	Mix	0	2.17
25	MP2A	X	Ö	2.17
26	MP2A	Z	13.214	2.17
27	MP2A	Mx	0	2.17

Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
--------------	-----------	--------------------	----------------

Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

nonn-x	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
1	MP3A	X	-14.922	1.33
2	MP3A	Z	25.846	1.33
3	MP3A	Mx	.035	1.33
	MP3A	X	-14.922	4.83
5	MP3A	Z	25.846	4.83
	MP3A	Mx	.035	4.83
6	MP3A	X	-14.922	1.33
7		Z	25.846	1.33
8	MP3A	Mx	008	1.33
9	MP3A	X	-14.922	4.83
10	MP3A	\hat{z}	25.846	4.83
11	MP3A		008	4.83
12	MP3A	Mx	-5.473	1.17
13	MP1A	X	9.479	1.17
14	MP1A	Z		1.17
15	MP1A	Mx	.003	3.17
16	MP1A	X	-5.473	3.17
17	MP1A	Z	9.479	3.17
18	MP1A	Mx	.003	1.5
19	M50	X	-11.714	
20	M50	Z	20.289	1.5
21	M50	Mx	0	1.5
22	MP3A	X	-6.104	2.17
23	MP3A	Z	10.573	2.17
24	MP3A	Mx	003	2.17
25	MP2A	X	-6.124	2.17
26	MP2A	Z	10.608	2.17
27	MP2A	Mx	003	2.17

Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1 [MP3A	X	-22.496	1.33
2	MP3A	Z	12.988	1.33
3	MP3A	Mx	.031	1.33
4	MP3A	X	-22.496	4.83
	MP3A	Z	12.988	4.83
5	MP3A	Mx	.031	4.83
7	MP3A	X	-22.496	1.33
-	MP3A	Z	12.988	1.33
8		Mx	.01	1.33
9	MP3A	X	-22.496	4.83
10	MP3A	Z	12.988	4.83
11	MP3A	Mx	.01	4.83
12	MP3A	X	-6.279	1.17
13	MP1A	Z	3.625	1.17
14	MP1A		.003	1.17
15	MP1A	Mx	-6.279	3.17
16	MP1A	X	3.625	3.17
17	MP1A	Z		3.17
18	MP1A	Mx	.003	1.5
19	M50	X	-16.809	1.5
20	M50	Z	9.705	1.5
21	M50	Mx	0	
22	MP3A	X	-8.831	2.17
23	MP3A	Z	5.099	2.17
24	MP3A	Mx	004	2.17
25	MP2A	X	-8.936	2.17
26	MP2A	Z	5.159	2.17
27	MP2A	Mx	004	2.17

Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]

Member Point Loads (BLC 24 : Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-24.041	1.33
2	MP3A	Z	0	1.33
3	MP3A	Mx	.022	1.33
4	MP3A	X	-24.041	4.83
5	MP3A	Z	0	4.83
6	MP3A	Mx	.022	4.83
7	MP3A	X	-24.041	1.33
8	MP3A	Z	- 0	1.33
9	MP3A	Mx	.022	1.33
10	MP3A	X	-24.041	4.83
11	MP3A	7	0	4.83
12	MP3A	Mx	.022	4.83
13	MP1A	X	-5.402	1.17
14	MP1A	Z	0	1.17
15	MP1A	Mx	.003	1.17
16	MP1A	X	-5.402	3.17
17	MP1A	7	0	3.17
18	MP1A	Mx	.003	3.17
19	M50	X	-17.4	1.5
20	M50	7	0	1.5
21	M50	Mx	0	1.5
22	MP3A	X	-9.192	2.17
23	MP3A	7	-9.192	2.17
24	MP3A	Mx	005	2.17
25	MP2A	X	-9.353	2.17
26	MP2A	Ž	-9,555	
27	MP2A	Mx	005	2.17 2.17

Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
1	MP3A	X	-22.496	1.33
2	MP3A	Z	-12.988	1.33
3	MP3A	Mx	.01	1.33
4	MP3A	X	-22.496	4.83
5	MP3A	Z	-12.988	4.83
6	MP3A	Mx	.01	4.83
7	MP3A	X	-22.496	1.33
8	MP3A	Z	-12.988	1.33
9	MP3A	Mx	.031	1.33
10	MP3A	X	-22.496	4.83
11	MP3A	Z	-12.988	4.83
12	MP3A	Mx	.031	4.83
13	MP1A	X	-6.279	1.17
14	MP1A	Z	-3.625	1.17
15	MP1A	Mx	.003	1.17
16	MP1A	X	-6.279	3.17
17	MP1A	Z	-3.625	3.17
18	MP1A	Mx	.003	3.17
19	M50	X	-16.809	1.5
20	M50	Z	-9.705	1.5
21	M50	Mx	0	1.5
22	MP3A	X	-8.831	2.17
23	MP3A	Ž	-5.099	2.17
24	MP3A	Mx	004	2.17
25	MP2A	X	-8.936	2.17
26	MP2A	Z	-5.159	2.17
27	MP2A	Mx	004	2.17

Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

Member Label Direction Magnitude[lb,k-ft] Location[ft,%]

Member Point Loads (BLC 26 : Antenna Wi (330 Deg)) (Continued)

	Momber Label	Direction	Magnitude[lb.k-ft]	Location[ft.%]
1	MP3A	X	-14.922	1.33
2	MP3A	Z	-25.846	1.33
3	MP3A	Mx	-,008	1.33
	MP3A	X	-14.922	4.83
4	MP3A	Ž	-25.846	4.83
5	MP3A	Mx	008	4.83
7	MP3A	X	-14.922	1.33
		Z	-25.846	1.33
8	MP3A	Mx	.035	1.33
9	MP3A	X	-14.922	4.83
10	MP3A	Z	-25.846	4.83
11	MP3A	Mx	.035	4.83
12	MP3A	X	-5.473	1.17
13	MP1A	Ž	-9.479	1.17
14	MP1A		.003	1.17
15	MP1A	Mx	-5.473	3.17
16	MP1A	X	-9.479	3.17
17	MP1A		.003	3.17
18	MP1A	Mx	-11.714	1.5
19	M50	X	-20.289	1.5
20	M50	Z	-20.289	1.5
21	M50	Mx		2.17
22	MP3A	X	-6.104	2.17
23	MP3A	Z	-10.573	2.17
24	MP3A	Mx	003	2.17
25	MP2A	X	-6.124	
26	MP2A	Z	-10.608	2.17
27	MP2A	Mx	003	2.17

Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
1	MP3A	X	0	1.33
2	MP3A	Z	-5.027	1.33
	MP3A	Mx	004	1.33
3		X	0	4.83
4	MP3A	Z	-5.027	4.83
5	MP3A	Mx	004	4.83
6	MP3A	X	0	1.33
7	MP3A	Ž	-5.027	1.33
8	MP3A	Mx	.004	1.33
9	MP3A	X	0	4.83
10	MP3A		-5.027	4.83
11	MP3A	Z	.004	4.83
12	MP3A	Mx	0	1.17
13	MP1A	X		1.17
14	MP1A	Z	-4.028	1.17
15	MP1A	Mx	0	3.17
16	MP1A	X	0	3.17
17	MP1A	Z	-4.028	
18	MP1A	Mx	0	3.17
19	M50	X	0	1.5
20	M50	Z	-6.739	1.5
21	M50	Mx	0	1.5
22	MP3A	X	0	2.17
23	MP3A	Z	-3.295	2.17
24	MP3A	Mx	0	2.17
25	MP2A	X	0	2.17
26	MP2A	Z	-3.975	2.17
27	MP2A	Mx	0	2.17

Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

of I Office Louds (DE			
Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]

Member Point Loads (BLC 28 : Antenna Wm (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	2.356	1.33
2	MP3A	Z	-4.08	1.33
3	MP3A	Mx	006	1.33
4	MP3A	X	2.356	4.83
5	MP3A	Z	-4.08	4.83
6	MP3A	Mx	006	4.83
7	MP3A	X	2.356	1.33
8	MP3A	Z	-4.08	1.33
9	MP3A	Mx	.001	1.33
10	MP3A	X	2.356	4.83
11	MP3A	7	-4.08	4.83
12	MP3A	Mx	.001	4.83
13	MP1A	X	1.705	1.17
14	MP1A	Z	-2.952	1.17
15	MP1A	Mx	000853	1.17
16	MP1A	X	1.705	3.17
17	MP1A	Z	-2.952	3.17
18	MP1A	Mx	000853	3.17
19	M50	X	3.167	1.5
20	M50	7	-5.486	1.5
21	M50	Mx	0	1.5
22	MP3A	X	1.512	2.17
23	MP3A	7	-2.619	2.17
24	MP3A	Mx	.000756	2.17
25	MP2A	X	1.829	2.17
26	MP2A	Z	-3.169	2.17
27	MP2A	Mx	.000914	2.17

Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
1	MP3A	X	3.532	1.33
2	MP3A	Z	-2.039	1.33
3	MP3A	Mx	005	1.33
4	MP3A	X	3.532	4.83
5	MP3A	Z	-2.039	4.83
6	MP3A	Mx	005	4.83
7	MP3A	X	3.532	1.33
8	MP3A	Z	-2.039	1.33
9	MP3A	Mx	002	1.33
10	MP3A	X	3.532	4.83
11	MP3A	Z	-2.039	4.83
12	MP3A	Mx	002	4.83
13	MP1A	X	1.88	1.17
14	MP1A	Z	-1.085	1.17
15	MP1A	Mx	00094	1.17
16	MP1A	X	1.88	3.17
17	MP1A	Ž	-1.085	3.17
18	MP1A	Mx	00094	3.17
19	M50	X	4.786	1.5
20	M50	Z	-2.763	1.5
21	M50	Mx	0	1.5
22	MP3A	X	2.149	2.17
23	MP3A	Z	-1.241	2.17
24	MP3A	Mx	.001	2.17
25	MP2A	X	2.621	2.17
26	MP2A	Z	-1.513	2.17
27	MP2A	Mx	.001	2.17

Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

Member Label Direction Magnitude[lb,k-ft] Location[ft,%]

Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
1	MP3A	X	3.763	1.33
2	MP3A	Z	0	1.33
3	MP3A	Mx	003	1.33
4	MP3A	X	3.763	4.83
5	MP3A	Z	0	4.83
6	MP3A	Mx	003	4.83
7	MP3A	X	3.763	1.33
8	MP3A	Z	0	1.33
9	MP3A	Mx	003	1.33
	MP3A	X	3,763	4.83
10	MP3A	Ž	0	4.83
	MP3A	Mx	003	4.83
12	MP1A	X	1.551	1,17
13	MP1A	Z	0	1.17
14	MP1A	Mx	000775	1.17
15		X	1.551	3.17
16	MP1A	Z	0	3.17
17	MP1A	Mx	000775	3.17
18	MP1A	X	5.123	1.5
19	M50	Z	0	1.5
20	M50		0	1.5
21	M50	Mx	2.211	2.17
22	MP3A	X	0	2.17
23	MP3A	Z	.001	2.17
24	MP3A	Mx		2.17
25	MP2A	X	2.71	2.17
26	MP2A	Z	0	2.17
27	MP2A	Mx	.001	2.11

Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	3.532	1.33
-	MP3A	Z	2.039	1.33
2		Mx	002	1.33
3	MP3A	X	3.532	4.83
4	MP3A	Z	2.039	4.83
5	MP3A	Mx	002	4.83
6	MP3A	X	3.532	1.33
7	MP3A	Ž	2.039	1.33
8	MP3A	Mx	005	1.33
9	MP3A	X	3.532	4.83
10	MP3A	7	2.039	4.83
11	MP3A		005	4.83
12	MP3A	Mx	1.88	1.17
13	MP1A	X	1.085	1.17
14	MP1A	Z		1.17
15	MP1A	Mx	00094	3.17
16	MP1A	X	1.88	3.17
17	MP1A	Z	1.085	3.17
18	MP1A	Mx	00094	1.5
19	M50	X	4.786	1.5
20	M50	Z	2.763	1.5
21	M50	Mx	0	2.17
22	MP3A	X	2.149	
23	MP3A	Z	1.241	2.17
24	MP3A	Mx	.001	2.17
25	MP2A	X	2.621	2.17
26	MP2A	Z	1.513	2.17
27	MP2A	Mx	.001	2.17

Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
10101111001			

Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

1	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	2.356	1.33
2	MP3A	Z	4.08	1.33
3	MP3A	Mx	.001	1.33
4	MP3A	X	2.356	4.83
5	MP3A	Z	4.08	4.83
6	MP3A	Mx	.001	4.83
7	MP3A	X	2.356	1.33
8	MP3A	Z	4.08	1.33
9	MP3A	Mx	006	1.33
10	MP3A	X	2.356	4.83
11	MP3A	Z	4.08	4.83
12	MP3A	Mx	006	4.83
13	MP1A	X	1.705	1.17
14	MP1A	7	2.952	1.17
15	MP1A	Mx	000853	1.17
16	MP1A	X	1.705	3.17
17	MP1A	Z	2.952	3.17
18	MP1A	Mx	000853	3.17
19	M50	X	3.167	1.5
20	M50	Z	5.486	1.5
21	M50	Mx	0	1.5
22	MP3A	X	1.512	2.17
23	MP3A	Z	2.619	2.17
24	MP3A	Mx	.000756	2.17
25	MP2A	X	1.829	2.17
26	MP2A	Z	3.169	2.17
27	MP2A	Mx	.000914	2.17

Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	0	1.33
2	MP3A	Z	5.027	1.33
3	MP3A	Mx	.004	1.33
4	MP3A	X	0	4.83
5	MP3A	Z	5.027	4.83
6	MP3A	Mx	.004	4.83
7	MP3A	X	0	1.33
8	MP3A	Z	5.027	1.33
9	MP3A	Mx	004	1.33
10	MP3A	X	0	4.83
11	MP3A	Z	5.027	4.83
12	MP3A	Mx	004	4.83
13	MP1A	X	0	1.17
14	MP1A	Z	4.028	1.17
15	MP1A	Mx	0	1.17
16	MP1A	X	0	3.17
17	MP1A	Z	4.028	3.17
18	MP1A	Mx	0	3.17
19	M50	X	o l	1.5
20	M50	7	6.739	1.5
21	M50	Mx	0.733	1.5
22	MP3A	X	0	2.17
23	MP3A	7	3.295	2.17
24	MP3A	Mx	0	2.17
25	MP2A	X	0	2.17
26	MP2A	Z	3.975	
27	MP2A	Mx	0	2.17 2.17

Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

Member Label Direction Magnitude[lb,k-ft] Location[ft,%]

Member Point Loads (BLC 34 : Antenna Wm (210 Deg)) (Continued)

	Momber Label	Direction	Magnitude[lh.k-ft]	Location[ft.%]
1	MP3A	X	-2.356	1.33
2	MP3A	7	4.08	1.33
3	MP3A	Mx	.006	1.33
4	MP3A	X	-2.356	4.83
5	MP3A	Z	4.08	4.83
6	MP3A	Mx	.006	4.83
7	MP3A	X	-2.356	1.33
	MP3A	Z	4.08	1.33
8	MP3A	Mx	001	1.33
9		X	-2.356	4.83
10	MP3A	Z	4.08	4.83
11	MP3A	Mx	001	4.83
12	MP3A MP1A	X	-1.705	1.17
13		Z	2.952	1,17
14	MP1A	Mx	.000853	1.17
15	MP1A	X	-1.705	3.17
16	MP1A	7	2.952	3.17
17	MP1A		.000853	3.17
18	MP1A	Mx	-3.167	1.5
19	M50	X	5.486	1.5
20	M50		0	1.5
21	M50	Mx	-1.512	2.17
22	MP3A	X		2.17
23	MP3A	Z	2.619	2.17
24	MP3A	Mx	000756	2.17
25	MP2A	X	-1.829	2.17
26	MP2A	Z	3.169	2.17
27	MP2A	Mx	000914	2.11

Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-3.532	1.33
2	MP3A	Z	2.039	1,33
3	MP3A	Mx	.005	1.33
4	MP3A	X	-3.532	4.83
5	MP3A	7	2.039	4.83
6	MP3A	Mx	.005	4.83
7	MP3A	X	-3.532	1.33
8	MP3A	Z	2.039	1.33
9	MP3A	Mx	.002	1.33
10	MP3A	X	-3.532	4.83
11	MP3A	Z	2.039	4.83
12	MP3A	Mx	.002	4.83
13	MP1A	X	-1.88	1.17
14	MP1A	Z	1.085	1.17
15	MP1A	Mx	.00094	1.17
16	MP1A	X	-1.88	3.17
17	MP1A	Z	1.085	3.17
18	MP1A	Mx	.00094	3.17
19	M50	X	-4.786	1.5
20	M50	Z	2.763	1.5
21	M50	Mx	0	1.5
22	MP3A	X	-2.149	2.17
23	MP3A	Z	1.241	2.17
24	MP3A	Mx	001	2.17
25	MP2A	X	-2.621	2.17
26	MP2A	Z	1.513	2.17
27	MP2A	Mx	001	2.17

Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]

Member Point Loads (BLC 36 : Antenna Wm (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
1	MP3A	X	-3.763	1.33
2	MP3A	Z	0	1.33
3	MP3A	Mx	.003	1.33
4	MP3A	X	-3.763	4.83
5	MP3A	Z	0	4.83
6	MP3A	Mx	.003	4,83
7	MP3A	X	-3.763	1.33
8	MP3A	Z	0	1.33
9	MP3A	Mx	.003	1.33
10	MP3A	X	-3.763	4.83
11	MP3A	Z	0	4.83
12	MP3A	Mx	.003	4.83
13	MP1A	X	-1.551	1.17
14	MP1A	7	0	1.17
15	MP1A	Mx	.000775	1.17
16	MP1A	X	-1.551	3.17
17	MP1A	Z	0	3.17
18	MP1A	Mx	.000775	3.17
19	M50	X	-5.123	1.5
20	M50	Ž	0	1.5
21	M50	Mx	0	1.5
22	MP3A	X	-2.211	2.17
23	MP3A	Ž	0	2.17
24	MP3A	Mx	001	2.17
25	MP2A	X	-2.71	2.17
26	MP2A	Ž	0	2.17
27	MP2A	Mx	001	2.17

Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-3.532	1.33
2	MP3A	Z	-2.039	1.33
3	MP3A	Mx	.002	1.33
4	MP3A	X	-3.532	4.83
5	MP3A	Z	-2.039	4.83
6	MP3A	Mx	.002	4.83
7	MP3A	X	-3.532	1.33
8	MP3A	Z	-2.039	1.33
9	MP3A	Mx	.005	1.33
10	MP3A	X	-3.532	4.83
11	MP3A	Z	-2.039	4.83
12	MP3A	Mx	.005	4.83
13	MP1A	X	-1.88	1.17
14	MP1A	Z	-1.085	1.17
15	MP1A	Mx	.00094	1.17
16	MP1A	X	-1.88	3.17
17	MP1A	Z	-1.085	3.17
18	MP1A	Mx	.00094	3.17
19	M50	X	-4.786	1.5
20	M50	Z	-2.763	1.5
21	M50	Mx	0	1.5
22	MP3A	X	-2 149	2.17
23	MP3A	Z	-1.241	2.17
24	MP3A	Mx	001	2.17
25	MP2A	X	-2.621	2.17
26	MP2A	Z	-1.513	2.17
27	MP2A	Mx	001	2.17

Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

Member Label	Direction	Magnitude[lb.k-ft]	Location[ft %]
= = ====	DII COHOH	Madilitudelib.k-iti	EGGANOIDI 761

Member Point Loads (BLC 38 : Antenna Wm (330 Deg)) (Continued)

	Member Label	Direction	Magnitudellb.k-ftl	Location[ft,%]
1	MP3A	X	-2.356	1.33
2	MP3A	7	-4.08	1.33
	MP3A	Mx	001	1.33
3	MP3A	X	-2.356	4.83
4	MP3A	Z	-4.08	4.83
5		Mx	001	4.83
7	MP3A MP3A	X	-2.356	1.33
		7	-4.08	1.33
8	MP3A	Mx	.006	1.33
9	MP3A	X	-2.356	4.83
10	MP3A	Z	-4.08	4.83
11	MP3A	Mx	.006	4.83
12	MP3A	X	-1.705	1.17
13	MP1A	Ž	-2.952	1.17
14	MP1A	Mx	.000853	1.17
15	MP1A	X	-1.705	3.17
16	MP1A	Z	-2.952	3.17
17	MP1A		.000853	3,17
18	MP1A	Mx	-3.167	1.5
19	M50	X	-5.486	1.5
20	M50	Z	-5.480	1.5
21	M50	Mx	-1.512	2.17
22	MP3A	X		2.17
23	MP3A	Z	-2.619	2.17
24	MP3A	Mx	000756	2.17
25	MP2A	X	-1.829	2.17
26	MP2A	Z	-3,169	2.17
27	MP2A	Mx	000914	2.11

Member Point Loads (BLC 77 : Lm1)

	PUIN LUAUS IDE	The state of the s	Magnitude[lb,k-ft]	Location[ft,%]
	Member Label	Direction		%98.13
1	M10	Y	-500	/030.10

Member Point Loads (BLC 78 : Lm2)

	er Point Loads (BL	Direction	Magnitude[lb.k-ft]	Location[ft,%]
	Member Label	Direction	-500	%45
1 I	M10	Y	-300	78 10

Member Point Loads (BLC 79 : Lv1)

		Direction	Magnitude[lb,k-ft]	Location[ft,%]
4	Member Label	Direction	-250	%50
1	M10	<u> </u>	-230	7000

Member Point Loads (BLC 80 : Lv2)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M10	Y	-250	0

Member Point Loads (BLC 81 : Antenna Ev)

rembe	Manager abol	Direction	Magnitude[lb,k-ft]	Location[ft,%]
	Member Label	Direction	972	1.33
1	MP3A		000891	1.33
2	MP3A	My	TANKS AND THE PARTY OF THE PART	1.33
3	MP3A	Mz	.00081	
4	MP3A	Y	972	4.83
5	MP3A	Mv	000891	4.83
	MP3A	Mz	.00081	4.83
6		VIZ V	972	1.33
	MP3A		000891	1.33
8	MP3A	My		1.33
9	MP3A	Mz	00081	4.83
10	MP3A	Υ	972	
11	MP3A	Mv	000891	4.83
12	MP3A	Mz	00081	4.83
13	MP1A	Y	-1.21	1.17

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
14	MP1A	My	000605	1.17
15	MP1A	Mz	0	1.17
16	MP1A	Y	-1.21	3.17
17	MP1A	Μv	000605	3.17
18	MP1A	Mz	0	3.17
19	M50	Y	-1.352	1.5
20	M50	Mv	0	1.5
21	M50	Mz	Ď	1.5
22	MP3A	Y	-3.155	2.17
23	MP3A	Mv	.002	2.17
24	MP3A	Mz	0	2.17
25	MP2A	Y	-3.341	2.17
26	MP2A	My	.002	2.17
27	MP2A	Mz	0	2.17

Member Point Loads (BLC 82 : Antenna Eh (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
_1	MP3A	Z	-2.429	1.33
2	MP3A	Mx	002	1.33
3	MP3A	Z	-2.429	4.83
4	MP3A	Mx	002	4.83
5	MP3A	Z	-2.429	1.33
6	MP3A	Mx	.002	1.33
7	MP3A	Z	-2.429	4.83
8	MP3A	Mx	.002	4.83
9	MP1A	Z	-3.025	1.17
10	MP1A	Mx	0	1.17
11	MP1A	7	-3.025	3.17
12	MP1A	Mx	0	3.17
13	M50	7	-3.379	1.5
14	M50	Mx	0	1.5
15	MP3A	7	-7.888	2,17
16	MP3A	Mx	0	2.17
17	MP2A	7	-8.353	2.17
18	MP2A	Mx	0	2.17

Member Point Loads (BLC 83 : Antenna Eh (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	2.429	1.33
2	MP3A	Mx	002	1.33
3	MP3A	X	2.429	4.83
4	MP3A	Mx	002	4.83
5	MP3A	X	2.429	1.33
6	MP3A	Mx	002	1.33
7	MP3A	X	2.429	4.83
8	MP3A	Mx	002	4.83
9	MP1A	X	3.025	1.17
10	MP1A	Mx	002	1.17
11	MP1A	X	3.025	3.17
12	MP1A	Mx	002	3.17
13	M50	X	3.379	1.5
14	M50	Mx	0	1.5
15	MP3A	X	7.888	2.17
16	MP3A	Mx	.004	2.17
17	MP2A	X	8.353	2.17
18	MP2A	Mx	.004	2.17

Joint Loads and Enforced Displacements

Joint Label	L.D.M	Direction	Magnitude[(lb.k-ft), (in,rad), (lb*s^2/ft, lb*s^2*ft)]
Soint Labor		No Data to	Print

Member Distributed Loads (BLC 40 : Structure Di)

Member Label	abel Direction Start Magnitude[lb/ft,F,ksf]		End Magnitude[lb/ft,F,ksf]	Start Location[fEnd Location[f	
1 M5	Y	-7.319	-7.319	0	%100
2 M6	Y	-7.319	-7.319	0	%100
3 M7	Ý	-5.687	-5.687	0	%100
4 M8	Ý	-7.319	-7.319	0	%100
5 M9	Ÿ	-7.319	-7.319	0	%100
6 M10	Ý	-5.687	-5.687	0	%100
7 M11	Ÿ	-4.982	-4.982	0	%100
8 M12	Ý	-4.982	-4.982	0	%100
9 M13	Ý	-4.982	-4.982	0	%100
10 M14	Ý	-4.982	-4.982	0	%100
11 M15	Ý	-5.896	-5.896	0	%100
12 M16	Ý	-4.311	-4.311	0	%100
	V	-5.896	-5.896	0	%100
	Y	-4.311	-4.311	0	%100
	Ý	-5.896	-5.896	0	%100
	Y	-5.896	-5.896	0	%100
16 M20	Y	-5.896	-5.896	0	%100
17 M21	Y	-4.311	-4.311	0	%100
18 M22	Y	-4.311	-4.311	0	%100
19 M23	Y	-3.973	-3.973	0	%100
20 M24	Y	-5.896	-5.896	0	%100
21 M25	Y	-5.896	-5.896	0	%100
22 M26	Y	-4.311	-4.311	0	%100
23 M27	Y	-5.896	-5.896	0	%100
24 M28	Y	-4.311	-4.311	0	%100
25 M29		-5.896	-5.896	0	%100
26 M30	Y	-5.896	-5.896	0	%100
27 M31	Y	-5.896	-5.896	0	%100
28 M32	Y	-4.311	-4.311	0	%100
29 M33	Y	-4.311	-4.311	Ů Ů	%100
30 M34	Y		-3.973	0	%100
31 M35	Y	-3.973	-5.896	0	%100
32 M36	Y	-5.896	-4.982	0	%100
33 MP4A	Y	-4.982	-4.982	Ö	%100
34 MP3A	Y	-4.982	-4.982 -4.982	0	%100
35 MP1A	Y	-4.982	-4.962 -6.569	0	%100
36 M46	Y	-6.569		0	%100
37 MP2A					%100
	Y	-4.982 -4.982	-4.982 -4.982	0	

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f.	.End Location[ft.
4 1	The state of the s	T V	0	0	0	%100
1	<u>M5</u>		905	905	0	%100
2	M5		905	0	0	%100
3	M6	X	0		0	%100
4	M6	Z	905	905	0	
5	M7	X	0	0	U	%100
6	M7	7	-10.61	-10.61	0	%100
7		X	0	0	0	%100
/	M8	Z	905	905	0	%100
8	M8			0	0	%100
9	M9	X	0		0	%100
10	M9	Z	905	905	0	%100
11	M10	X	0	0	0	
12	M10	7	-10.61	-10.61	0	%100
13	M11	X	0	0	0	%100

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F.ksf]	Start Locationif	End Location[ft
14	M11	Z	-4.299	-4.299	0	%100
15	M12	X	0	0	0	%100
16	M12	Z	-4.299	-4.299	0	%100 %100
17	M13	X	0	0	0	%100
18	M13	Z	-4.299	-4.299		
19	M14	X	0		0	%100
20	M14	Z	-4.299	0	0	%100
21	M15	X		-4,299	0	%100
22	M15		0	0	0	%100
		Z	-1.461	-1.461	0	%100
23	M16	X	0	0	0	%100
24	M16	Z	-5.781	-5.781	0	%100
25	M17	X	0	0	0	%100
26	M17	Z	-1.461	-1.461	0	%100
27	M18	X	0	0	0	%100
28	M18	Z	-5.492	-5.492	0	%100 %100
29	M19	X	0	0	0	%100 %100
30	M19	Z	-1.961	-1.961	0	%100 %100
31	M20	X	0	-1.961		
32	M20	Z	-1.461		0	%100
33	M21	X	0	-1.461	0	%100
34	M21	Ž		0	0	%100
			-1.461	-1.461	0	%100
35	M22	X	0	0	0	%100
36	M22	Z	-6.499	-6.499	0	%100
37	M23	X	0	0	0	%100
38	M23	Z	-6.499	-6.499	0	%100
39	M24	X	0	0	0	%100
40	M24	Z	-5.409	-5.409	0	%100
41	M25	X	0	0	0	%100
42	M25	Z	-1.961	-1.961	0	%100
43	M26	X	0	0	0	%100 %100
44	M26	Z	-1.461	-1.461		
45	M27	X	0		0	%100
46	M27	Z	-5.781	0	0	%100
47	M28	X		-5.781	0	%100
48	M28		0	0	0	%100
		Z	-1.461	-1.461	0	%100
49	M29	X	0	0	0	%100
50	M29	Z	-5.492	-5.492	0	%100
51	M30	X	0	0	0	%100
52	M30	Z	-1.961	-1.961	0	%100
53	M31	X	0	0	0	%100
54	M31	Z	-1.461	-1.461	0	%100
55	M32	X	0	0	0	%100
56	M32	Z	-1.461	-1.461	0	%100 %100
57	M33	X	0	0	0	%100
58	M33	Z	-6.499	-6.499	0	
59	M34	X	-0.433			%100
60	M34	Ž	-6.499	0	0	%100
61	M35	X		-6.499	0	%100
62	M35	Z	0	0	0	%100
			-5.409	-5.409	0	%100
63	M36	X	0	0	0	%100
64	M36	Z	-1.961	-1.961	0	%100
65	MP4A	X	0	0	0	%100
66	MP4A	Z	-8.765	-8.765	0	%100
67	MP3A	X	0	0	0	%100
68	MP3A	Z	-8.765	-8.765	Ö	%100 %100
69	MP1A	X	0	0	0	%100 %100
70	MP1A	Z	-8.765	-8.765	0	%100 %100
71	M46	X	0	-0.705	0	
72	M46	Z	978	978		%100
73	MP2A	X	976		0	%100
74	MP2A	Ž		0 705	0	%100
	IVII ZA		-8.765	-8.765	0	%100

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)

TO THE	Member Label		Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft.F.ksf]	Start Location[f.	End Location[ft
75	M50	X	0	U	0	
76	M50	7	-8.765	-8.765	0	%100

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F.ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f	%100
1	M5	X	.057	.057	0	%100 %100
2	M5	Z		1		%100 %100
3	M6	X	.856	.856	0	%100 %100
4	M6	Z	-1.483	-1.483	0	%100
5	M7	X	3.979	3.979	0	%100
6	M7	Z	-6.892	-6.892	0	
7	M8	X	.057	.057	0	%100
8	M8	Z	-,1	=.1	0	%100
9	M9	X	.856	.856	0	%100
10	M9	Z	-1.483	-1.483	0	%100
11	M10	X	3.979	3.979	0	%100
2	M10	Z	-6.892	-6.892	0	%100
13	M11	X	.273	.273	0	%100
14	M11	Z	473	473	0	%100
15	M12	X	4.068	4.068	0	%100
16	M12	Z	-7.045	-7.045	0	%100
17	M13	X	.273	.273	0	%100
18	M13	Z	473	473	0	%100
19	M14	X	4.068	4.068	0	%100
20	M14	Z	-7.045	-7.045	0	%100
	M15	X	1.932	1.932	0	%100
21	M15	Z	-3.346	-3.346	0	%100
22		X	3.419	3.419	0	%100
23	M16	Ž	-5.922	-5.922	0	%100
24	M16	X	1.932	1.932	0	%100
25	M17	Ž	-3.346	-3.346	0	%100
26	M17	X	3.35	3.35	0	%100
27	M18	Ž	-5.803	-5.803	0	%100
28	M18		2.119	2.119	0	%100
29	M19	X	-3.671	-3.671	0	%100
30	M19	Z	1.932	1,932	0	%100
31	M20	X	-3.346	-3.346	0	%100
32	M20	Z	1.932	1.932	0	%100
33	M21	X		-3.346	0	%100
34	M21	Z	-3.346	3.25	0	%100
35	M22	X	3.25	-5.629	0	%100
36	M22	Z	-5.629	3.25	0	%100
37	M23	X	3.25	-5.629	0	%100
38	M23	Z	-5.629	2,704	Ö	%100
39	M24	X	2.704	-4.684	0	%100
40	M24	Z	-4.684	2.119	0	%100
41	M25	X	2.119	-3.671	Ö	%100
42	M25	Z	-3.671	1.932	0	%100
43	M26	X	1.932	-3.346	0	%100
44	M26	Z	-3.346	2.373	0	%100
45	M27	X	2.373	-4.111	0	%100
46	M27	Z	-4.111		0	%100
47	M28	X	1.932	1.932	0	%100
48	M28	Z	-3.346	-3.346	0	%100
49	M29	X	2.155	2.155	0	%100
50	M29	Z	-3.732	-3.732		%100
51	M30	X	2.119	2.119	0	%100 %100
52	M30	Z	-3.671	-3.671	0	%100 %100
53	M31	X	1.932	1.932	0	
54	M31	Z	-3.346	-3.346	0	%100
55	M32	X	1.932	1.932	0	%100
56	M32	Z	-3.346	-3.346	0	%100

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location(f	.End Location[ft.
57	M33	X	3.25	3.25	0	%100
58	M33	Z	-5.629	-5.629	Ō	%100
59	M34	X	3.25	3.25	Ö	%100
60	M34	Z	-5.629	-5.629	O O	%100
61	M35	X	2.704	2.704	0	%100
62	M35	Z	-4.684	-4.684	0	%100
63	M36	X	2.119	2.119	0	%100
64	M36	Z	-3.671	-3.671	0	%100 %100
65	MP4A	X	4.383	4.383	0	%100 %100
66	MP4A	Z	-7.591	-7.591	0	%100
67	MP3A	X	4.383	4.383	0	%100
68	MP3A	Z	-7.591	-7.591	0	%100 %100
69	MP1A	X	4.383	4.383	0	%100 %100
70	MP1A	Z	-7.591	-7.591	0	%100
71	M46	X	.379	.379	0	%100 %100
72	M46	Z	657	657	0	%100 %100
73	MP2A	X	4.383	4.383	0	%100 %100
74	MP2A	Z	-7.591	-7.591	0	
75	M50	X	4.383	4.383	0	%100
76	M50	Z	-7.591	-7 .591	0	%100 %100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude(lb/ft,F,ksf)	Start Location[f.	End Location(ft
1	M5	X	.115	.115	0	%100
2	M5	Z	066	066	Ö	%100
3	M6	X	1.498	1.498	0	%100
4	M6	Z	865	865	Ö	%100
5	M7	X	2.297	2.297	0	%100
6	M7	Z	-1.326	-1.326	Ö	%100
7	M8	X	.115	.115	Ö	%100
8	M8	Z	066	066	0	%100
9	M9	X	1.498	1.498	0	%100
10	M9	Z	865	865	Ö	%100
11	M10	X	2.297	2.297	0	%100 %100
12	M10	Z	-1.326	-1.326	0	%100
13	M11	X	.545	.545	0	%100
14	M11	Z	315	315	Ö	%100
15	M12	X	7.118	7.118	Ö	%100
16	M12	Z	-4.109	-4.109	Ö	%100
17	M13	X	.545	.545	0	%100 %100
18	M13	Z	315	315	ŏ	%100
19	M14	X	7.118	7.118	Ö	%100 %100
20	M14	Z	-4.109	-4.109	0	%100 %100
21	M15	X	7.507	7.507	0	%100
22	M15	Z	-4.334	-4.334	0	%100
23	M16	X	5.942	5.942	0	%100 %100
24	M16	Z	-3.431	-3.431	0	%100 %100
25	M17	X	7.507	7.507	0	%100 %100
26	M17	Z	-4.334	-4.334	0	%100
27	M18	X	5.825	5.825	0	%100
28	M18	Z	-3.363	-3.363	Ö	%100
29	M19	X	7.616	7.616	0	%100 %100
30	M19	Z	-4.397	-4.397	0	%100 %100
31	M20	X	7.507	7.507	0	%100 %100
32	M20	Z	-4.334	-4.334	0	%100
33	M21	X	7.507	7.507	0	%100
34	M21	Z	-4,334	-4.334	0	%100 %100
35	M22	X	5.629	5.629	0	%100 %100
36	M22	Z	-3.25	-3.25	0	%100 %100
37	M23	X	5.629	5.629	0	%100
38	M23	Z	-3.25	-3.25	Ö	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg)) (Continued)

	ember Label	Direction	Start Magnitude [lh/ft F kef]	End Magnitude[lb/ft.F.ksf]	Start Location[f	End Location[fl
39	M24	X	4.684	4.684	0	%100
40	M24	Z	-2.704	-2.704	0	%100
41	M25	X	7.616	7.616	0	%100
42	M25	Z	-4.397	-4.397	0	%100
43	M26	X	7.507	7.507	0	%100
44	M26	Z	-4.334	-4.334	0	%100
45	M27	X	4,131	4.131	0	%100
46	M27	Z	-2.385	-2,385	0	%100
47	M28	X	7.507	7.507	0	%100
48	M28	Ž	-4.334	-4.334	0	%100
49	M29	X	3.755	3.755	0	%100
50	M29	Z	-2.168	-2.168	0	%100
51	M30	X	7.616	7.616	0	%100
52	M30	Z	-4.397	-4.397	0	%100
53	M31	X	7.507	7.507	0	%100
	M31	Z	-4.334	-4.334	0	%100
54	M32	X	7.507	7.507	0	%100
55	M32	Z	-4.334	-4.334	0	%100
56	M33	X	5.629	5.629	0	%100
57	M33	Ž	-3.25	-3.25	0	%100
58		X	5.629	5.629	0	%100
59	M34	Ž	-3.25	-3.25	0	%100
60	M34	X	4.684	4.684	0	%100
61	M35	Ž	-2.704	-2.704	0	%100
62	M35	X	7.616	7.616	0	%100
63	M36	Ž	-4.397	-4.397	0	%100
64	M36	X	7.591	7.591	0	%100
65	MP4A	Ž	-4.383	-4.383	0	%100
66	MP4A		7.591	7.591	0	%100
67	MP3A	X	-4.383	-4.383	0	%100
68	MP3A		7.591	7.591	0	%100
69	MP1A	X	-4.383	-4.383	0	%100
70	MP1A	Z	5,403	5,403	0	%100
71	M46	X	-3.119	-3.119	0	%100
72	M46	Z	7.591	7.591	0	%100
73	MP2A	X	-4.383	-4.383	Ö	%100
74	MP2A	Z		7.591	0	%100
75	M50	X	7.591	-4.383	0	%100
76	M50	Z	-4.383	-4.505		

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f.	
4	M5	X	.94	.94	0	%100
-		Z	0	0	0	%100
2	M5	X	.94	.94	0	%100
3	M6	Z	0	0	0	%100
4	M6		Ö	0	0	%100
5	<u>M7</u>	X	0	Ŏ	0	%100
6	M7	-		.94	0	%100
7	8 <u></u>	X	.94 0	0	0	%100
8	M8	Z		.94	0	%100
9	M9	X	.94	0	0	%100
10	M9	Z	0	0	0	%100
11	M10	X	0		0	%100
12	M10	Z	0	0	0	%100 %100
13	M11	X	4.466	4.466	0	%100
14	M11	Z	0	0		%100 %100
15	M12	X	4.466	4.466	0	
16	M12	Z	0	0	0	%100
17	M13	X	4.466	4.466	0	%100
18	M13	Ž	0	0	0	%100_
19	M14	X	4.466	4.466	0	%100
20	M14	7	0	0	0	%100

Member Distributed Loads (BLC 44: Structure Wo (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f	End Location[ft.
21	M15	X	11.072	11.072	0	%100
22	M15	Z	0	0	0	%100
23	M16	X	5.827	5.827	0	%100
24	M16	2	0	0	0	%100
25	M17	X	11.072	11.072	0	%100
26	M17	Z	0	0	0	%100
27	M18	X	5.544	5.544	0	%100
28	M18	Z	0	0	0	%100
29	M19	X	11.072	11.072	0	%100
30	M19	Z	0	0	0	%100
31	M20	X	11.072	11.072	0	%100
32	M20	Z	0	0	0	%100
33	M21	X	11.072	11.072	0	%100
34	M21	Z	0	0	0	%100
	M22	X	6.499	6.499	0	%100
36	M22	Z	0	0	0	%100
38	M23 M23	Z	6.499	6.499	0	%100
39	M24	X	0	0	0	%100
40	M24	Z	5.409	5.409	0	%100
41	M25	X	0	0	0	%100
42	M25	Ê	11.072	11.072	0	%100
43	M26	X	11.072	0	0	%100
44	M26	Ž	0	11.072	0	%100
45	M27	X	5.827	<u>0</u> 5.827	0	%100
46	M27	Ž	0.027	0	0	%100
47	M28	X	11.072	11.072	0	%100
48	M28	Z	0	0	0	%100
49	M29	X	5.544	5.544	0	%100 %100
50	M29	Ž	0	0	0	%100 %100
51	M30	X	11.072	11.072	0	%100 %100
52	M30	Z	0	0	0	%100
53	M31	X	11.072	11.072	0	%100
54	M31	Z	0	0	0	%100
55	M32	X	11.072	11.072	0	%100
56	M32	Z	0	0	Ö	%100
57	M33	X	6.499	6.499	0	%100
58	M33	Z	0	0	0	%100
59	M34	X	6.499	6.499	0	%100
60	M34	Z	0	0	0	%100
61	M35	X	5.409	5.409	0	%100
62	M35	Z	0	0	0	%100
63	M36	X	11.072	11.072	0	%100
64	M36	Z	0	0	0	%100
65	MP4A	X	8.765	8.765	0	%100
66	MP4A	Z	0	0	0	%100
67	MP3A	X	8.765	8.765	0	%100
68	MP3A	Z	0	0	0	%100
69	MP1A	<u> </u>	8.765	8.765	0	%100
70	MP1A	Z	0	0	0	%100
71	M46	X	11.939	11.939	0	%100
72	M46	Z	0	0	0	%100
73	MP2A	X	8.765	8.765	0	%100
74	MP2A	Z	0	0	0	%100
75	M50	X	8.765	8.765	0	%100
76	M50	Z	0	0	0	%100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg))

ř	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude(lb/ft,F,ksf)	Start Locationif.	.End Location(ft
11	M5	X	1.498	1.498	0	%100
2	M5	Z	.865	.865	0	%100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,kof]	End Magnitude[lb/ft F ksf]	Start Location[f	%100
3	M6	X	.115	.115	0	%100
4	M6	Z	.066		0	%100
5	M7	X	2.297	2.297	Ö	%100
6	M7	Z	1.326	1.326		%100
7	M8	X	1.498	1.498	0	
8	M8	Z	.865	.865	0	%100
9	M9	X	.115	.115	0	%100
10	M9	Z	.066	.066	0	%100
11	M10	X	2.297	2.297	0	%100
12	M10	Z	1.326	1.326	0	%100
13	M11	X	7.118	7.118	0	%100_
	M11	Z	4.109	4.109	0	%100
14	M12	X	.545	.545	0	%100_
15		Ž	.315	.315	0	%100
16	M12		7.118	7.118	0	%100
17	M13	X	4.109	4.109	0	%100
18	M13	Z	.545	.545	0	%100
19	M14	X		.315	0	%100
20	M14	Z	.315	7.507	0	%100
21	M15	X	7.507	4.334	0	%100
22	M15	Z	4.334		0	%100
23	M16	X	4.131	4.131	0	%100
24	M16	Z	2.385	2.385		%100
25	M17	X	7.507	7.507	0	%100
26	M17	Z	4.334	4.334	0	
27	M18	X	3.755	3.755	0	%100
28	M18	Z	2,168	2.168	0	%100
29	M19	X	7.616	7.616	0	%100
30	M19	Z	4.397	4.397	0	%100
	M20	X	7.507	7.507	0	%100
31		Ž	4.334	4.334	0	%100
32	M20		7.507	7.507	0	%100
33	M21	X	4.334	4.334	0	%100
34	M21	Z		5.629	0	%100
35	M22	X	5.629	3.25	0	%100
36	M22	Z	3.25	5.629	0	%100
37	M23	X	5.629	3.25	0	%100
38	M23	Z	3.25		0	%100
39	M24	X	4.684	4.684	0	%100
40	M24	Z	2.704	2.704		%100
41	M25	X	7.616	7.616	0	
42	M25	Z	4.397	4.397	0	%100
43	M26	X	7.507	7.507	0	%100
44	M26	Z	4.334	4.334	0	%100
45	M27	X	5.942	5.942	0	%100
	M27	Z	3.431	3.431	0	%100
46		X	7.507	7.507	0	%100
47	M28	Z	4.334	4.334	0	%100
48	M28		5.825	5.825	0	%100
49	M29	X		3.363	0	%100
50	M29	Z	3.363	7.616	0	%100
51	M30	X	7.616	4.397	0	%100
52	M30	Z	4.397	7.507	0	%100
53	M31	X	7.507		0	%100
54	M31	Z	4.334	4.334	0	%100
55	M32	X	7.507	7.507		%100
56	M32	Z	4.334	4.334	0	
57	M33	X	5.629	5.629	0	%100
58	M33	Z	3.25	3.25	0	%100
	M34	X	5.629	5.629	0	%100
59		Ž	3.25	3.25	0	%100
60	M34		4.684	4.684	0	%100
61	M35	X	2.704	2.704	0	%100
62	M35 M36	Z X	7.616	7.616	0	%100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start LocationIf	.End Location[ft.
64	M36	Z	4.397	4.397	0	%100
65	MP4A	X	7.591	7.591	0	%100
66	MP4A	Z	4.383	4.383	O O	%100
67	MP3A	X	7.591	7.591	0	%100
68	MP3A	Z	4.383	4.383	, o	%100
69	MP1A	X	7.591	7.591	0	%100
70	MP1A	Z	4,383	4.383	Ů,	%100
71	M46	X	10.529	10.529	0	%100
72	M46	Z	6.079	6.079	Ŏ	%100
73	MP2A	X	7.591	7.591	n	%100
74	MP2A	Z	4.383	4.383	ň	%100
75	M50	X	7.591	7.591	0	%100
76	M50	Z	4.383	4.383	0	%100

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg))

r	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f	"End Location[ft.
1	M5	X	.856	.856	0	%100
2	M5	Z	1.483	1.483	0	%100
3	M6	X	.057	.057	0	%100
4	M6	Z	1	.1	0	%100
5	M7	X	3.979	3.979	0	%100
6	M7	Z	6.892	6.892	0	%100
7	M8	X	.856	.856	0	%100
8	M8	Z	1.483	1.483	0	%100
9	M9	X	.057	.057	0	%100
10	M9	Z	.1	.1	0	%100
11	M10	X	3.979	3.979	0	%100
12	M10	Z	6.892	6.892	0	%100
13	M11	X	4.068	4.068	0	%100
14	M11	Z	7.045	7.045	0	%100
15	M12	X	.273	.273	0	%100
16	M12	Z	.473	.473	0	%100
17	M13	X	4.068	4.068	0	%100
18	M13	Z	7.045	7.045	0	%100
19	M14	X	.273	.273	0	%100
20	M14	Z	.473	.473	0	%100
21	M15	X	1.932	1.932	0	%100
22	M15	Z	3.346	3.346	0	%100
23	M16	X	2.373	2.373	0	%100
24	M16	Z	4.111	4.111	0	%100
25	M17	X	1.932	1.932	0	%100
26	M17	Z	3.346	3.346	0	%100
27	M18	X	2.155	2.155	0	%100
28	M18	Z	3.732	3.732	0	%100
29	M19	X	2.119	2.119	0	%100
30	M19	Z	3.671	3.671	0	%100
31	M20	X	1.932	1.932	0	%100
32	M20	Z	3.346	3.346	0	%100
33	M21	X	1.932	1.932	0	%100
34	M21	Z	3.346	3.346	0	%100
35	M22	X	3.25	3.25	0	%100
36	M22	7	5.629	5.629	0	%100
37	M23	X	3.25	3.25	0	%100
38	M23	Z	5.629	5.629	0	%100
39	M24	X	2.704	2.704	0	%100
40	M24	Z	4.684	4.684	0	%100
41	M25	X	2.119	2.119	0	%100
42	M25	Z	3.671	3.671	Ö	%100
43	M26	X	1.932	1.932	0	%100
44	M26	Z	3.346	3.346	0	%100
45	M27	X	3.419	3.419	0	%100

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg)) (Continued)

Momi	oer Label	Direction	Start Magnitudo[lb/ft,F,ksf]	End Magnitude[lb/ft,F.ksf]	Start Location[f.	
	A27	Z	5.922	5.922	0	%100
	128	X	1.932	1.932	0	%100
	/128	Ž	3.346	3.346	0	%100
14	129	X	3.35	3.35	0	%100
14	/129	Ž	5.803	5.803	0	%100
-	//30	X	2.119	2.119	0	%100
	//30	Z	3.671	3.671	0	%100
	//31	X	1.932	1.932	0	%100
	M31	Z	3.346	3.346	0	%100
		X	1.932	1.932	0	%100
-	<u>//32</u>	Ž	3.346	3.346	0	%100
	<u>//32</u>	X	3.25	3.25	0	%100
-	//33 ****	Ż	5.629	5.629	0	%100
00	<u>//33</u>		3.25	3.25	0	%100
	<u>//34</u>	X	5.629	5.629	0	%100
	/ 34		2.704	2.704	0	%100
	M35	X		4.684	0	%100
	И35	Z	4.684	2.119	0	%100
	<u> </u>	X	2.119	3.671	0	%100
	M36	Z	3.671	4.383	0	%100
	P4A	X	4.383	7.591	Ö	%100
	P4A	Z	7.591	4.383	0	%100
01	P3A	X	4.383	7.591	0	%100
68 M	P3A	Z	7.591	4.383	0	%100
69 M	P1A	X	4.383		0	%100
70 M	P1A	Z	7.591	7.591	0	%100
71	M46	X	3.339	3.339	0	%100
72 1	M46	Z	5.783	5.783	0	%100
	IP2A	X	4.383	4.383	0	%100
	IP2A	Z	7.591	7.591		%100
	M50	X	4.383	4.383	0	%100
	M50	Z	7.591	7.591	0	70 100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F.ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f.	
4	Member Label M5	X	O	0	0	%100
1		7	.905	.905	0	%100
2	M5	X	0	0	0	%100
3	<u>M6</u>	7	.905	.905	0	%100
4	M6	X	0	0	0	%100
5	M7	Ž	10.61	10.61	0	%100
6	M7		0	n n	0	%100
7	M8	X	.905	.905	0	%100
8	M8		.903	0	0	%100
9	M9	X	.905	.905	0	%100
10	M9		.905	0	0	%100_
11	M10	X		10.61	0	%100
12	M10	Z	10.61 0	0	0	%100
13	M11	X		4.299	0	%100
14	M11	Z	4.299	0	0	%100
15	M12	X	0	4.299	0	%100
16	M12	Z	4.299	4.299	0	%100
17	M13	X	0	4.299	0	%100
18	M13	Z	4.299	0 .	0	%100
19	M14	X	0		0	%100
20	M14	Z	4.299	4.299 0	0	%100
21	M15	X	0		0	%100
22	M15	Z	1.461	1.461	0	%100
23	M16	X	0		0	%100
24	M16	Z	5.781	5.781	0	%100
25	M17	X	0	0	0	%100
26	M17	Z	1.461	1.461	0	%100
27	M18	X	0	0	J. U	76100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F.ksf]	Start Location(f	.End Location[ft.
28	M18	Z	5.492	5.492	0	%100
29	M19	X	0	0	0	%100
30	M19	Z	1.961	1.961	0	%100
31	M20	X	0	0	0	%100
32	M20	Z	1.461	1.461	0	%100
33	M21	X	0	0	0	%100
34	M21	Z	1.461	1.461	Ö	%100
35	M22	X	0	0	0	%100
36	M22	Z	6.499	6.499	0	%100
37	M23	X	0	0	0	%100
38	M23	Z	6.499	6.499	Ö	%100
39	M24	X	0	0	0	%100 %100
40	M24	Z	5.409	5.409	O O	%100
41	M25	X	0	0.400	0	%100 %100
42	M25	Z	1.961	1.961	O O	%100 %100
43	M26	X	0	0	0	%100 %100
44	M26	Z	1.461	1.461	0	%100 %100
45	M27	X	0	0	0	%100
46	M27	Ž	5,781	5.781	0	%100 %100
47	M28	X	0	0	0	%100 %100
48	M28	Z	1.461	1.461	0	%100 %100
49	M29	X	0	0	0	%100 %100
50	M29	Z	5.492	5.492	0	%100 %100
51	M30	X	0	0	0	%100
52	M30	Z	1.961	1.961	0	%100 %100
53	M31	X	0	0	0	%100
54	M31	Z	1.461	1.461	0	%100
55	M32	X	0	0	0	%100 %100
56	M32	Z	1.461	1.461	0	%100
57	M33	X	0	0	0	%100 %100
58	M33	Z	6.499	6.499	0	%100 %100
59	M34	X	0	0	0	%100 %100
60	M34	Z	6.499	6.499	0	%100
61	M35	X	0	0	0	%100
62	M35	Z	5.409	5.409	0	%100
63	M36	X	0	0	0	%100 %100
64	M36	Z	1.961	1.961	0	%100
65	MP4A	X	0	0	0	%100
66	MP4A	Z	8.765	8.765	0	%100
67	MP3A	X	0	0.765	0	%100 %100
68	MP3A	Z	8.765	8.765	0	%100 %100
69	MP1A	X	0	0.703	0	%100 %100
70	MP1A	Z	8.765	8.765	0	%100 %100
71	M46	X	0	0	0	%100 %100
72	M46	7	.978	.978	0	%100 %100
73	MP2A	X	0	<u>.97</u> 6	0	%100 %100
74	MP2A	Z	8.765	8.765	0	%100 %100
75	M50	X	0.705	0.765	0	%100 %100
76	M50	Z	8.765	8.765	0	%100 %100

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F.ksf]	Start Location[f	End Location(ft
1	M5	X	057	057	0	%100
2	M5	Z	.1	.1	0	%100
3	M6	X	856	856	0	%100
4	M6	Z	1.483	1.483	0	%100
5	M7	X	-3.979	-3.979	0	%100
6	M7	Z	6.892	6.892	0	%100
7	M8	X	057	057	0	%100
8	M8	Z	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	n n	%100
9	M9	X	856	856	0	%100

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

	ber Label	Direction	(BLC 48 : Structure Wo	End Magnitude[lb/ft,F,ksf]	Start Location[f.	End Location[ft
10	M9	Z	1.483	1.483	0	%100
11	M10	X	-3.979	-3.979	0	%100
	M10	Z	6.892	6.892	0	%100
		X	273	273	0	%100
	M11	Ž	.473	.473	0	%100
	M11		-4.068	-4.068	0	%100
	M12	X	7.045	7.045	0	%100
	M12	Z		273	0	%100
	M13	X	273	.473	0	%100
	M13	Z	.473	-4.068	0	%100
	M14	X	-4.068	7.045	0	%100
	M14	Z	7.045	-1.932	0	%100
	M15	X	-1.932	3.346	0	%100
	M15	Z	3.346		0	%100
	M16	X	-3.419	-3.419	0	%100
24	M16	Z	5.922	5.922	0	%100 %100
	M17	X	-1.932	-1.932	0	%100 %100
	M17	Z	3.346	3.346		%100 %100
	M18	X	-3.35	-3.35	0	%100 %100
	M18	Z	5.803	5.803	0	
	M19	X	-2.119	-2.119	0	%100
30	M19	Z	3.671	3.671	0	%100
	M20	X	-1.932	-1.932	0	%100
	M20	Z	3.346	3.346	0	%100
	M21	X	-1.932	-1.932	0	%100
	M21	Ž	3.346	3.346	0	%100
	M22	X	-3.25	-3.25	0	%100
35		Z	5.629	5.629	0	%100
36	M22	X	-3.25	-3.25	0	%100
	M23	Ž	5.629	5.629	0	%100
38	M23		-2.704	-2.704	0	%100
39	M24	X	4.684	4.684	0	%100
40	M24	Z	-2.119	-2.119	0	%100
41	M25	X		3.671	0	%100
42	M25	Z	3.671	-1.932	0	%100
43	M26	X	-1.932	3.346	0	%100
44	M26	Z	3.346	-2.373	0	%100
45_	M27	X	-2.373	4.111	0	%100
46	M27	Z	4.111	-1.932	0	%100
47	M28	X	-1.932	3.346	0	%100
48	M28	Z	3.346		0	%100
49	M29	X	-2.155	-2.155	0	%100
50	M29	Z	3.732	3.732	0	%100
51	M30	X	-2.119	-2.119		%100
52	M30	Z	3.671	3.671	0	%100 %100
53	M31	X	-1.932	-1.932	0	%100
54	M31	Z	3.346	3.346	0	
55	M32	X	-1.932	-1.932	0	%100
56	M32	Z	3.346	3.346	0	%100
57	M33	X	-3.25	-3.25	0	%100
58	M33	Z	5.629	5.629	0	%100
59	M34	X	-3.25	-3.25	0	%100
	M34	Z	5.629	5.629	0	%100
60		X	-2.704	-2.704	0	%100
61	M35	Z	4.684	4.684	0	%100
62	M35		-2.119	-2.119	0	%100
63	M36	X		3.671	0	%100
64	M36	Z	3.671	-4.383	0	%100
	MP4A	X	-4.383	7.591	Ö	%100
	MP4A	Z	7.591	-4.383	0	%100
67	MP3A	X	-4.383		0	%100
68	MP3A	Z	7.591	7.591	0	%100
	MP1A	X	-4.383	-4.383		%100
	MP1A	Z	7.591	7.591	0	70100

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitudelib/ft.F.ksfl	End Magnitude[lb/ft,F.ksf]	Start Locationif	End Location[ft
71	M46	X	379	379	0	%100
72	M46	Z	.657	.657	Ö	%100
73	MP2A	X	-4.383	-4.383	0	%100
74	MP2A	Z	7.591	7.591	Ö	%100
75	M50	X	-4.383	-4.383	0	%100
76	M50	Z	7.591	7,591	0	%100

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[End Location[ft.
1	M5	X	115	115	0	%100
2	M5	Z	.066	.066	0	%100
3	M6	X	-1.498	-1.498	0	%100
4	M6	Z	.865	.865	0	%100
5	M7	X	-2.297	-2.297	0	%100
6	M7	Z	1.326	1.326	0	%100
7	M8	X	115	115	0	%100
8	M8	Z	.066	.066	0	%100
9	M9	X	-1.498	-1.498	0	%100
10	M9	Z	.865	.865	0	%100
11	M10	X	-2.297	-2.297	0	%100
12	M10	Z	1.326	1.326	0	%100
13	M11	X	545	545	0	%100
14	M11	Z	.315	.315	0	%100
15	M12	X	-7.118	-7.118	0	%100
16	M12	Z	4.109	4.109	0	%100
17	M13	X	545	545	0	%100
18	M13	Z	.315	.315	0	%100
19	M14	X	-7.118	- 7.118	0	%100
20	M14	Z	4.109	4.109	0	%100
21	M15	X	-7.507	-7.507	0	%100
22	M15	Z	4.334	4.334	0	%100
23	M16	X	-5.942	-5.942	0	
24	M16	Ž	3.431	3.431	0	%100
25	M17	X	-7.507	-7.507	0	%100
26	M17	Z	4.334	4.334		%100
27	M18	X	-5.825	-5.825	0	%100
28	M18	Z	3.363		0	%100
29	M19	X	-7.616	3.363	0	%100
30	M19	Z	4.397	-7.616	0	%100
31	M20	X	-7.507	4.397	0	%100
32	M20	Z	4.334	-7.507	0	%100
33	M21	X	-7.507	4.334	0	%100
34	M21	Ž		-7.507	0	%100
35	M22	X	4.334	4.334	0	%100
36	M22	Z	-5.629 3.25	-5.629	0	%100
37	M23	X	-5.629	3.25	0	%100
38	M23	Ž		-5.629	0	%100
39	M24	X	3.25	3.25	0	%100
40	M24	Z	-4.684	-4.684	0	%100
41	M25		2.704	2.704	0	%100
42	M25	Z	-7.616	-7.616	0	%100
			4.397	4.397	0	%100
43 44	M26	X	-7.507	-7.507	0	%100
45	M26 M27	Z	4.334	4.334	0	%100
46	M27	X	-4.131	-4.131	0	%100
47		Z	2.385	2.385	0	%100
	M28	X	-7.507	-7.507	0	%100
48	M28	Z	4.334	4.334	0	%100
49	M29	X	-3.755	-3.755	0	%100
50	M29	Z	2.168	2.168	0	%100
51	M30	X	-7.616	-7.616	0	%100
52	M30	Z	4.397	4.397	0	%100

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,kaf]	End Magnitude[lb/ft,F,ksf]	Start Location[f.	End Location
53	M31	X	-7.507	-7.507	0	%100
		Z	4.334	4,334	0	%100
54	M31	X	-7.507	-7.507	0	%100
55	M32	Z	4.334	4,334	0	%100
56	M32	X	-5.629	-5.629	0	%100
57	M33	Ż	3.25	3.25	0	%100
58	M33		-5.629	-5.629	0	%100
59	M34	X	3.25	3.25	0	%100
60	M34	Z	-4.684	-4.684	0	%100
61	M35	X		2.704	0	%100
62	M35	Z	2.704	-7.616	0	%100
63	M36	X	-7.616	4.397	0	%100
64	M36	Z	4.397	-7.591	0	%100_
65	MP4A	X	-7.591		0	%100
66	MP4A	Z	4.383	4.383	0	%100
67	MP3A	X	-7.591	-7.591	0	%100
68	MP3A	Z	4.383	4.383		%100 %100
69	MP1A	X	-7.591	-7.591	0	%100
70	MP1A	Z	4.383	4.383	0	
71	M46	X	-5.403	-5.403	0	%100
72	M46	Z	3.119	3.119	0	%100
73	MP2A	X	-7.591	-7.591	0	%100
74	MP2A	Z	4.383	4.383	0	%100
75	M50	X	-7.591	-7.591	0	%100
76	M50	Z	4.383	4.383	0	%100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg))

	Member Label	Direction	(BLC 50 : Structure Wo	End Magnitude[lb/ft,F,ksf]	Start Location[f	End Location
1 T	M5	X	94	94	0	%100
2	M5	Z	0	0	0	%100
3	M6	X	94	94	0	%100
	M6	Z	0	0	0	%100
5	M7	X	0	0	0	%100
	M7	Ž	0	0	0	%100
6 7	M8	X	94	94	0	%100
		Ż	0	0	0	%100
8	M8 M9	X	94	94	0	%100
9		Ž	0	0	0	%100
10	M9	X	0	0	0	%100
11	M10	Ž	0	0	0	%100
12	M10	X	-4.466	-4.466	0	%100
13	M11	Z	0	0	0	%100
14	M11		-4.466	-4.466	0	%100
15	M12	X	-4.400	0	0	%100
16	M12	Z	-4.466	-4.466	0	%100
17	M13	X	-4.400	0	0	%100
18	M13	Z		-4.466	0	%100
19	M14	X	-4.466	1.400	0	%100
20	M14	Z	0	-11.072	0	%100
21	M15	X	-11.072	0	0	%100
22	M15	Z	0	-5.827	0	%100
23	M16	X	-5.827	-5.627	0	%100
24	M16	Z	0	-11.072	O O	%100
25	M17	X	-11.072	-11.072	Ö	%100
26	M17	Z	0	-5.544	0	%100
27	M18	X	-5.544		0	%100
28	M18	Z	0	0	0	%100
29	M19	X	-11.072	-11.072 0	0	%100
30	M19	Z	0		0	%100
31	M20	X	-11.072	-11.072	0	%100
32	M20	Z	0	0	0	%100 %100
33	M21	X	-11.072	-11.072	0	%100 %100
34	M21	Z	0	0	1 0	70100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location	fEnd Location[ft.
35	M22	X	-6.499	-6.499	0	%100
36	M22	Z	0	0	0	%100
37	M23	X	-6.499	-6.499	0	%100
38	M23	Z	0	0	0	%100
39	M24	X	-5.409	-5.409	0	%100
40	M24	Z	0	0	0	%100
41	M25	X	-11.072	-11.072	0	%100
42	M25	Z	0	0	0	%100
43	M26	X	-11.072	-11.072	0	%100
44	M26	Z	0	0	0	%100
45	M27	X	-5.827	-5.827	0	%100
46	M27	Z	0	0	0	%100
47	M28	X	-11.072	-11.072	0	%100
48	M28	Z	0	0	O	%100
49	M29	X	-5.544	-5.544	0	%100
50	M29	Z	0	0	, o	%100
51	M30	X	-11.072	-11.072	0	%100
52	M30	Z	0	0	O O	%100
53	M31	X	-11.072	-11.072	0	%100
54	M31	Z	0	0	Ö	%100
55	M32	X	-11.072	-11.072	0	%100
56	M32	Z	0	0	0	%100
57	M33	X	-6.499	-6.499	0	%100
58	M33	Z	0	0	0	%100
59	M34	X	-6.499	-6.499	0	%100
60	M34	Z	0	0	0	%100
61	M35	X	-5.409	-5.409	0	%100
62	M35	Z	0	0	0	%100
63	M36	X	-11.072	-11.072	0	%100
64	M36	Z	0	0	0	%100
65	MP4A	X	-8.765	-8.765	0	%100
66	MP4A	Z	0	0	0	%100
67	MP3A	X	-8.765	-8.765	0	%100
68	MP3A	Z	0	0	Ů Ů	%100
69	MP1A	X	-8.765	-8.765	0	%100
70	MP1A	Z	0	0	Ö	%100
71	M46	X	-11.939	-11.939	0	%100
72	M46	Z	0	0	0	%100
73	MP2A	X	-8.765	-8.765	Ö	%100
74	MP2A	Z	0	0	O	%100
75	M50	X	-8.765	-8.765	0	%100
76	M50	Z	0	0	Ŏ	%100

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F.ksf]	End Magnitude[lb/ft,F,ksf]	Start Location(f.	.End Location[ft.
1	M5	X	-1.498	-1.498	0	%100
2	M5	Z	865	865	Ô	%100
3	M6	X	115	115	0	%100
4	M6	Z	066	066	0	%100
5	M7	X	-2.297	-2.297	0	%100
6	M7	Z	-1.326	-1.326	i o	%100
7	M8	X	-1.498	-1.498	0	%100
8	M8	Z	865	865	Ö	%100
9	M9	X	115	115	0	%100
10	M9	Z	066	066	0	%100
11	M10	X	-2.297	-2.297	0	%100
12	M10	Z	-1.326	-1.326	Ö	%100
13	M11	X	-7.118	-7.118	0	%100
14	M11	Z	-4.109	-4.109	Ö	%100
15	M12	X	545	545	0	%100
16	M12	Z	315	315	0	%100

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg)) (Continued)

	nber Label	Direction	Start Magnitude[lh/ft,F,ksf]	End Magnitude[lb/ft.F.ksf] -7.118	Start Location[f	End Locations %100
	M13	X	-7.118	-4.109	0	%100
	M13	Z	-4.109	545	0	%100
	M14	X	545	315	0	%100
	M14	Z	315	-7.507	0	%100
	M15	X	-7.507	-4.334	O O	%100
	M15	Z	-4.334	-4.131	0	%100
	M16	X	-4.131	-4.131 -2.385	0	%100
	M16	Z	-2.385	-2.365 -7.507	0	%100
	M17	X	-7.507		0	%100
	M17	Z	-4.334	-4.334	0	%100 %100
	M18	X	-3.755	-3.755	0	%100
28	M18	Z	-2.168	-2.168	0	%100 %100
	M19	X	-7.616	-7.616		%100 %100
30	M19	Z	-4.397	-4.397	0	%100 %100
31	M20	X	-7.507	-7.507	0	
	M20	Z	-4.334	-4.334	0	%100
33	M21	X	-7.507	-7.507	0	%100
	M21	Z	-4.334	-4.334	0	%100
	M22	X	-5.629	-5.629	0	%100
	M22	Z	-3.25	-3.25	0	%100
	M23	X	-5.629	-5.629	0	%100
	M23	Z	-3.25	-3.25	0	%100
39	M24	X	-4.684	-4.684	0	%100
10	M24	Z	-2.704	-2.704	0	%100
	M25	X	-7.616	-7.616	0	%100
	M25	Z	-4.397	-4.397	0	%100
13	M26	X	-7.507	-7.507	0	%100
14	M26	Z	-4.334	-4.334	0	%100
45	M27	X	-5.942	-5.942	0	%100
46	M27	Z	-3.431	-3.431	0	%100
47	M28	X	-7.507	-7.507	0	%100
48	M28	Z	-4.334	-4.334	0	%100
19	M29	X	-5.825	-5.825	0	%100
50	M29	Z	-3.363	-3.363	0	%100
51	M30	X	-7.616	-7.616	0	%100
52	M30	Z	-4.397	-4.397	0	%100
53	M31	X	-7.507	-7.507	0	%100
54	M31	Z	-4.334	-4.334	0	%100
55	M32	X	-7.507	-7.507	0	%100
56	M32	Z	-4.334	-4.334	0	%100
		X	-5.629	-5.629	0	%100
57 58	M33 M33	7	-3,25	-3.25	0	%100
	M34	X	-5.629	-5.629	0	%100
59	M34	Z	-3.25	-3.25	0	%100
60		X	-4.684	-4.684	0	%100
31	M35	Z	-2.704	-2.704	0	%100
32	M35	X	-7.616	-7.616	0	%100
63	M36	Z	-4.397	-4.397	0	%100
64	M36		-7.591	-7.591	0	%100
	MP4A	X	-4.383	-4.383	0	%100
	MP4A	Z	-4.363 -7.591	-7.591	0	%100
	MP3A	X	-4.383	-4.383	0	%100
	MP3A	Z	-4.363 -7.591	- 7.591	0	%100
	MP1A	X	-7.591 -4.383	-4.383	Ö	%100
	MP1A	Z		-10.529	0	%100
71	M46	X	-10.529	-6.079	0	%100
72	M46	Z	-6.079	-7.591	0	%100
	MP2A	X	-7.591	-7.591 -4.383	0	%100
	MP2A	Z	-4.383		0	%100
75	M50	X	-7.591	<u>-7.591</u>	0	%100
76	M50	Z	-4.383	-4.383	U	/0100

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location(f.	.End Location[ft
1	M5	X	856	856	0	%100
2	M5	Z	-1.483	-1.483	0	%100
3	M6	X	057	057	Ö	%100
4	M6	Z	1	1	0	%100
5	M7	X	-3.979	-3.979	0	%100
6	M7	Z	-6.892	-6.892	0	%100
7	M8	X	856		0	
8	M8	Z		856		%100
9	M9	X	-1.483	-1.483	0	%100
10	M9	Ž	057	057	0	%100
11	M10		1	1	0	%100
		X	-3.979	-3.979	0	%100
12	M10	Z	-6.892	-6.892	0	%100
13	M11	X	-4.068	-4.068	0	%100
14	M11	Z	-7.045	-7.045	0	%100
15	M12	X	273	273	0	%100
16	M12	Z	473	473	0	%100
17	M13	X	-4.068	-4.068	0	%100
18	M13	Z	-7.045	-7.045	0	%100
19	M14	X	273	273	0	%100
20	M14	Z	473	473	Ö	%100
21	M15	X	-1.932	-1.932	Ö	%100
22	M15	Z	-3.346	-3.346	0	%100
23	M16	X	-2.373	-2.373	0	%100 %100
24	M16	Z	-4.111	-4.111	0	%100
25	M17	X	-1.932			
26	M17	Ž		-1.932	0	%100
27	M18	X	-3.346	-3.346	0	%100
28	M18	Ž	-2.155	-2.155	0	%100
			-3.732	-3.732	0	%100
29	M19	X	-2.119	-2.119	0	%100
30	M19	Z	-3.671	-3.671	0	%100
31	M20	X	-1.932	-1.932	0	%100
32	M20	Z	-3.346	-3.346	0	%100
33	M21	X	-1.932	-1.932	0	%100
34	M21	Z	-3.346	-3.346	0	%100
35	M22	X	-3.25	-3.25	0	%100
36	M22	Z	-5.629	-5.629	0	%100
37	M23	X	-3.25	-3.25	0	%100
38	M23	Z	-5.629	-5.629	0	%100
39	M24	X	-2.704	-2.704	0	%100
40	M24	Z	-4.684	-4.684	0	%100
41	M25	X	-2.119	-2.119	0	%100
42	M25	Z	-3.671	-3.671	Ö	%100
43	M26	X	-1.932	-1.932	0	%100 %100
44	M26	Z	-3.346	-3.346	0	%100 %100
45	M27	X	-3.419	-3.419	0	%100 %100
46	M27	Ž	-5.922	-5.922	0	%100 %100
47	M28	X	-1.932			
48	M28	Z	-3.346	-1.932	0	%100
49	M29	X		-3.346	0	%100
50			-3.35	-3.35	0	%100
	M29	Z	-5.803	-5.803	0	%100
51	M30	X	-2.119	-2.119	0	%100
52	M30	Z	-3.671	-3.671	0	%100
53	M31	X	-1.932	-1.932	U	%100
54	M31	Z	-3.346	-3.346	0	%100
55	M32	X	-1.932	-1.932	0	%100
56	M32	Z	-3.346	-3.346	0	%100
57	M33	X	-3.25	-3.25	0	%100
58	M33	Z	-5.629	-5.629	0	%100
59	M34	X	-3.25	-3.25	0	%100
60	M34	Z	-5.629	-5.629	Ö	%100 %100
		X				

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft_F.kcf]	End Magnitude[lb/ft.F.ksf]	Start Locationif.	End Location[ft
62	M35	7 7	-4.684	-4.684	0	%100
_	M36	X	-2.119	-2.119	0	%100
63	M36	Ż	-3.671	-3.671	0	%100
64			-4.383	-4.383	0	%100
65	MP4A	X	-7.591	-7.591	0	%100
66	MP4A			-4.383	0	%100
67	MP3A	<u>X</u>	-4.383	-7.591	0	%100
68	MP3A	Z	-7.591		0	%100
69	MP1A	X	-4.383	-4.383		
70	MP1A	Z	-7.591	-7.591	0	%100
71	M46	X	-3.339	-3.339	0	%100
72	M46	7	-5.783	-5.783	0	%100
_	MP2A	X	-4,383	-4.383	0	%100
73		2	-7.591	-7.591	0	%100
74	MP2A		-4.383	-4.383	0	%100
75 76	M50 M50	X 7	-7.591	-7.591	0	%100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg))

	Member Label	Direction	(BLC 53 : Structure WI Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f	End Location[f
1	M5	X	0	0	0	%100
2	M5	Z	535	535	0	%100
3	M6	X	0	0	0	%100
4	M6	Z	535	535	0	%100
5	M7	X	0	0	0	%100
6	M7	Z	-3.062	-3.062	0	%100
7	M8	X	0	0	0	%100
8	M8	Z	535	535	0	%100
9	M9	X	0	0	0	%100
10	M9	Z	535	535	0	%100
11	M10	X	0	0	0	%100
12	M10	Z	-3.062	-3.062	0	%100
13	M11	X	0	0	0	%100
14	M11	Z	-1.357	-1.357	0	%100
15	M12	X	0	0	0	%100
16	M12	Z	-1.357	-1.357	0	%100
17	M13	X	0	0	0	%100
18	M13	Z	-1.357	-1.357	0	%100
19	M14	X	0	0	0	%100
20	M14	Z	-1.357	-1.357	0	%100
	M15	X	0	0	0	%100
21	M15	Z	-1.029	-1.029	0	%100
	M16	X	0	0	0	%100
23	M16	Z	-1.974	-1.974	0	%100
24	M17	X	0	0	0	%100
25	M17	Z	-1.029	-1.029	0	%100
26	M18	X	0	0	0	%100
27	M18	Z	-1.861	-1.861	0	%100
28		X	0	0	0	%100
29	M19 M19	Z	-1.112	-1.112	0	%100
30		X	0	0	0	%100
31	M20	Z	-1.029	-1.029	0	%100
32	M20 M21	X	0	0	0	%100
33		Z	-1.029	-1.029	0	%100
34	M21	X	0	0	0	%100
35	M22	Z	-2.21	-2.21	0	%100
36	M22		0	0	0	%100
37	M23	Z	-2.21	-2.21	0	%100
38	M23		-2.2	0	0	%100
39	M24	X	-1.937	-1.937	0	%100
40	M24	Z	-1.937	0	0	%100
41	M25	X	-1.112	-1.112	0	%100
42	M25 M26	Z	-1.112	0	0	%100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude(lb/ft,F,ksf)	Start Location(f	.End Location[ft.
44	M26	Z	-1.029	-1.029	0	%100
45	M27	X	0	0	0	%100
46	M27	Z	-1.974	-1.974	0	%100
47	M28	X	0	0	Ö	%100
48	M28	Z	-1.029	-1.029	0	%100
49	M29	X	0	0	0	%100
50	M29	Z	-1.861	-1.861	0	%100
51	M30	X	0	0	0	%100
52	M30	Z	-1.112	-1.112	0	%100
53	M31	X	0	0	0	%100
54	M31	Z	-1.029	-1.029	Ö	%100
55	M32	X	0	0	0	%100
56	M32	Z	-1.029	-1.029	0	%100
57	M33	X	0	0	0	%100
58	M33	Z	-2,21	-2.21	0	%100
59	M34	X	0	0	0	%100
60	M34		-2.21	-2.21	0	%100
61	M35	X	0	0	0	%100
62	M35	Z	-1.937	-1.937	0	%100
63	M36	X	0	0	0	%100
64	M36	Z	-1.112	-1.112	0	%100
65	MP4A	X	0	0	0	%100
66	MP4A	Z	-2.766	-2.766	0	%100
67	MP3A	X	0	0	0	%100
68	MP3A	Z	-2.766	-2.766	0	%100
69	MP1A	X	0	0	0	%100
70	MP1A	Z	-2.766	-2.766	O	%100
71	M46	X	0	0	0	%100
72	M46	Z	26	26	o o	%100
73	MP2A	X	0	0	0	%100
74	MP2A	Z	-2.766	-2.766	0	%100
75	M50	X	0	0	0	%100
76	M50	Z	-2.766	-2.766	0	%100

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Locationif	End Locationift
1	M5	X	.034	.034	0	%100
2	M5	Z	059	059	, o	%100
3	M6	X	.506	.506	0	%100
4	M6	Z	877	877	0	%100
5	M7	X	1.148	1.148	0	%100
6	M7	Z	-1.989	-1.989	0	%100
7	M8	X	.034	.034	0	%100
8	M8	Z	059	059	0	%100
9	M9	X	.506	.506	0	%100
10	M9	Z	877	877	0	%100
11	M10	X	1.148	1.148	0	%100
12	M10	Z	-1.989	-1.989	0	%100
13	M11	X	.086	.086	0	%100
14	M11	Z	149	149	Ö	%100
15	M12	X	1.284	1.284	0	%100
16	M12	Z	-2.224	-2.224	0	%100
17	M13	X	.086	.086	0	%100
18	M13	Z	149	149	0	%100
19	M14	X	1.284	1.284	0	%100
20	M14	Z	-2.224	-2.224	0	%100
21	M15	X	.707	.707	0	%100
22	M15	Z	-1.224	-1.224	0	%100 %100
23	M16	X	1.168	1.168	0	%100 %100
24	M16	Z	-2.023	-2.023	0	%100
25	M17	X	.707	.707	0	%100

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lh/ff,F,ksf]	End Magnitude[lb/ft.F.ksf]	Start LocationIf.	%100
26	M17	Z	-1.224	-1.224	0	%100
27	M18	X	1.135	1.135	0	%100
28	M18	Z	-1.966	-1.966	0	%100
29	M19	X	.738	.738	0	%100
30	M19	Z	-1.279	-1.279		%100
31	M20	X	.707	.707	0	%100 %100
32	M20	Z	-1.224	-1.224	0	%100
33	M21	X	.707	.707	0	%100 %100
34	M21	Z	-1.224	-1.224	0	%100 %100
35	M22	X	1.105	1.105	0	%100
36	M22	Z	-1.914	-1.914	0	
37	M23	X	1,105	1.105	0	%100 %100
38	M23	Z	-1.914	-1.914	0	
39	M24	X	.968	.968	0	%100
40	M24	Z	-1.677	-1.677	0	%100
41	M25	X	.738	.738	0	%100
42	M25	Z	-1.279	-1.279	0	%100
43	M26	X	.707	.707	0	%100
44	M26	Z	-1.224	-1.224	0	%100
45	M27	X	.811	.811	0	%100
46	M27	Z	-1.404	-1.404	0	%100
47	M28	X	.707	.707	0	%100
48	M28	Z	-1.224	-1.224	0	%100
49	M29	X	.73	73	0	%100
50	M29	Z	-1.265	-1.265	0	%100
51	M30	X	.738	.738	0	%100
52	M30	Z	-1.279	-1.279	0	%100
53	M31	X	.707	.707	0	%100
54	M31	Z	-1.224	-1.224	0	%100
55	M32	X	.707	.707	0	%100
56	M32	Z	-1.224	-1.224	0	%100
57	M33	X	1.105	1.105	0	%100
58	M33	Z	-1.914	-1.914	0	%100
59	M34	X	1.105	1.105	0	%100
60	M34	Z	-1.914	-1.914	0	%100
61	M35	X	.968	.968	0	%100
62	M35	Z	-1.677	-1.677	0	%100
63	M36	X	.738	.738	0	%100
64	M36	Z	-1.279	-1.279	0	%100
	MP4A	X	1.383	1.383	0	%100
65		Ž	-2.396	-2,396	0	%100
66	MP4A	X	1.383	1.383	0	%100
67	MP3A		-2.396	-2.396	0	%100
68	MP3A	X	1.383	1.383	0	%100
69	MP1A		-2.396	-2.396	0	%100
70	MP1A	Z	-2.396 .101	.101	0	%100
71	M46	X Z	175	175	0	%100
72	M46			1.383	0	%100
73	MP2A	X	1.383 -2.396	-2.396	0	%100
74	MP2A	Z		1.383	0	%100
75 76	M50 M50	X	1.383 -2.396	-2.396	0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f.	.End Location[ft
1	M5	X	.068	.068	0	%100
2	M5	7	039	039	0	%100
2	M6	X	.886	.886	0	%100
3	M6	2	511	511	0	%100
4	M7	X	.663	.663	0	%100
6	M7	7	383	383	0	%100
7	M8	X	.068	.068	0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg)) (Continued)

11	Member Label	Direction	Start Magnitude[lb/ft,F.ksf]	End Magnitude[lb/ft,F,ksf]		.End Location[ft
8	M8	Z	039	039	0	%100
9	M9	X	.886	.886	Ö	%100
10	M9	Z	511	511	Ö	%100
11	M10	X	.663	.663	0	%100
12	M10	Z	383	383	Ö	%100
13	M11	X	.172	.172	0	%100
14	M11	Z	099	099	0	%100
15	M12	X	2.247	2.247	0	%100
16	M12	Z	-1.297	-1.297		
17	M13	X	.172	.172	0	%100
18	M13	Ž			0	%100
19			099	099	0	%100
20	M14	Z	2.247	2.247	0	%100
	M14		-1,297	-1.297	0	%100
21	M15	X	1.89	1.89	0	%100
22	M15	Z	-1.091	-1.091	0	%100
23	M16	X	2.029	2.029	0	%100
24	M16	Z	-1.172	-1.172	0	%100
25	M17	X	1.89	1.89	0	%100
26	M17	Z	-1.091	-1.091	0	%100
27	M18	X	1.974	1.974	0	%100
28	M18	Z	-1.14	-1.14	0	%100
29	M19	X	1.91	1.91	0	%100
30	M19	Z	-1.103	-1.103	0	%100
31	M20	X	1.89	1.89	0	%100
32	M20	Z	-1.091	-1.091	0	%100
33	M21	X	1.89	1.89	0	%100
34	M21	Z	-1.091	-1.091	0	%100
35	M22	X	1.914	1.914	Ö	%100
36	M22	Ž	-1.105	-1.105	0	%100
37	M23	X	1.914	1.914	0	%100 %100
38	M23	Z	-1.105	-1.105	0	%100
39	M24	X	1.677	1.677		
40	M24	Z	968		0	%100
41	M25	X		968	0	%100
42	M25	Ž	1.91	1.91	0	%100
			-1.103	-1.103	0	%100
43	M26	X	1.89	1.89	0	%100
44	M26	Z	-1.091	-1.091	0	%100
45	M27	X	1.411	1.411	0	%100
46	M27	Z	814	814	0	%100
47	M28	X	1.89	1.89	0	%100
48	M28	Z	-1.091	-1.091	0	%100
49	M29	X	1.272	1.272	0	%100
50	M29	Z	735	735	0	%100
51	M30	X	1.91	1.91	0	%100
52	M30	Z	-1.103	-1.103	0	%100
53	M31	X	1.89	1.89	0	%100
54	M31	Z	-1.091	-1.091	0	%100
55	M32	X	1.89	1.89	0	%100
56	M32	Z	-1.091	-1.091	0	%100
57	M33	X	1.914	1.914	Ö	%100
58	M33	Z	-1.105	-1.105	0	%100
59	M34	X	1.914	1.914	0	%100
60	M34	Z	-1.105	-1.105	0	%100 %100
61	M35	X	1.677	1.677	0	%100
62	M35	Z	968	968	0	%100 %100
63	M36	X	1.91	1.91	0	%100 %100
64	M36	Z	-1.103	-1.103	0	%100 · %100
65	MP4A	X	2.396			
66	MP4A	Z	-1.383	2.396	0	%100
67	MP3A			-1.383	0	%100
68	MP3A	Z	2.396	2.396	0	%100
UO	IVITJA		-1.383	-1.383	0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f.	End Locationift
CO.	MP1A	Y	2.396	2.396	0	%100
69		7	-1.383	-1.383	0	%100
70	MP1A	- V	1.435	1.435	0	%100
71	M46	2	829	829	0	%100
72	M46		2.396	2.396	0	%100
73	MP2A		-1.383	-1.383	0	%100
74	MP2A	\ \ \ \ \	2.396	2.396	0	%100
75	M50	+			0	%100
76	M50	Z	-1.383	-1.383	0	1 %10

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg))

Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f.	.End Location[f
1 M5	X	.556	.556	0	%100
2 M5	Z	0	0	0	%100
3 M6	X	.556	.556	0	%100
4 M6	Z	0	0	0	%100
5 M7	X	0	0	0	%100
6 M7	Z	0	0	0	%100
7 M8	X	.556	.556	0	%100
8 M8	Z	0	0	0	%100
9 M9	X	.556	.556	0	%100
10 M9	Z	0	0	0	%100
11 M10	X	0	0	0	%100
12 M10	Z	0	0	0	%100
13 M11	X	1.41	1.41	0	%100
14 M11	Z	0	0	0	%100
15 M12	X	1.41	1.41	0	%100
16 M12	Z	0	0	0	%100
17 M13	X	1.41	1.41	0	%100
18 M13	Z	0	0	0	%100
19 M14	X	1.41	1.41	0	%100
20 M14	Z	0	0	0	%100
21 M15	X	2.567	2.567	0	%100
22 M15	Z	0	0	0	%100
23 M16	X	1.99	1.99	0	%100
24 M16	Z	0	0	0	%100
25 M17	X	2.567	2.567	0	%100
26 M17	Z	0	0	0	%100
27 M18	X	1.879	1.879	.0	%100
28 M18	Z	0	0	0	%100
29 M19	X	2.57	2.57	0	%100
30 M19	Z	0	0	0	%100
31 M20	X	2.567	2.567	0	%100
32 M20	Z	0	0	0	%100
33 M21	X	2.567	2.567	0	%100
34 M21	Z	0	0	0	%100
35 M22	X	2.21	2.21	0	%100
36 M22	Z	0	0	0	%100
37 M23	X	2.21	2.21	0	%100
38 M23	Z	0	0	0	%100
	X	1.937	1.937	0	%100
39 M24 40 M24	Z	0	0	0	%100
	X	2.57	2.57	0	%100
41 M25	Z	0	0	0	%100
42 M25	X	2.567	2.567	0	%100
43 M26	Z	0	0	0	%100
44 M26		1.99	1.99	0	%100
45 M27	X	1.99	0	0	%100
46 M27	Z	2.567	2.567	0	%100
47 M28	X		0	0	%100
48 M28	Z	0 1.879	1.879	0	%100
49 M29	X		0	0	%100
50 M29	Z	0	I. U.		

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location(f	End Location[ft
51	M30	X	2.57	2.57	0	%100
52	M30	Z	0	0	Ö	%100
53	M31	X	2.567	2.567	0	%100
54	M31	Z	0	0	0	%100
55	M32	X	2.567	2.567	Ö	%100
56	M32	Z	0	0	0	%100
57	M33	X	2.21	2.21	0	%100
58	M33	Z	0	0	Ö	%100
59	M34	X	2.21	2.21	0	%100
60	M34	Z	0	10	Ŏ	%100
61	M35	X	1.937	1.937	Õ	%100
62	M35	Z	0	0	0	%100
63	M36	X	2.57	2.57	0	%100
64	M36	Z	- 0	0	Ŏ	%100
65	MP4A	X	2.766	2.766	Ö	%100
66	MP4A	Z	0	0	0	%100
67	MP3A	X	2.766	2.766	0	%100
68	MP3A	Z	0	0	0	%100
69	MP1A	X	2.766	2.766	0	%100 %100
70	MP1A	Z	0	0	Ö	%100
71	M46	X	3.171	3.171	0	%100
72	M46	Z	0	0	0	%100 %100
73	MP2A	X	2.766	2.766	0	%100 %100
74	MP2A	Z	0	0	0	%100
75	M50	X	2,766	2.766	0	%100 %100
76	M50	Z	0	0	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft.F.ksf]	Start LocationIf	End Location[ft.
1	M5	X	.886	.886	0	%100
2	M5	Z	.511	.511	0	%100
3	M6	X	.068	.068	0	%100
4	M6	Z	.039	.039	0	%100
5	M7	X	.663	.663	0	%100
6	M7	Z	.383	.383	0	%100
7	M8	X	.886	.886	0	%100
8	M8	Z	.511	.511	0	%100
9	M9	X	.068	.068	0	%100
10	M9	Z	.039	.039	0	%100
11	M10	X	.663	.663	0	%100
12	M10	Z	.383	.383	0	%100
13	M11	X	2.247	2.247	0	%100
14	M11	Z	1.297	1.297	0	%100
15	M12	X	.172	.172	0	%100
16	M12	Z	.099	.099	0	%100
17	M13	X	2.247	2.247	0	%100
18	M13	Z	1.297	1.297	0	%100
19	M14	X	.172	.172	0	%100
20	M14	Z	.099	.099	0	%100
21	M15	X	1.89	1.89	0	%100
22	M15	Z	1.091	1.091	0	%100
23	M16	X	1.411	1.411	0	%100
24	M16	Z	.814	.814	0	%100
25	M17	X	1.89	1.89	0	%100
26	M17	Z	1.091	1.091	0	%100
27	M18	X	1.272	1.272	0	%100
28	M18	Z	.735	.735	0	%100
29	M19	X	1.91	1.91	0	%100
30	M19	Z	1.103	1.103	0	%100
31	M20	X	1.89	1.89	0	%100
32	M20	Z	1.091	1.091	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg)) (Continued)

	lember Label	Direction	Start Magnitude[ib/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f.	End Location[ft
33	M21	X	1.89	1.89	0	%100
34	M21	Z	1,091	1.091	0	%100
35	M22	X	1.914	1.914	0	%100
36	M22	Z	1.105	1.105	0	%100
37	M23	X	1.914	1.914	0	%100
38	M23	Ž	1.105	1.105	0	%100
39	M24	X	1.677	1.677	0	%100
40	M24	Z	.968	.968	0	%100
41	M25	X	1.91	1.91	0	%100
42	M25	Z	1.103	1.103	0	%100
43	M26	X	1.89	1.89	0	%100
44	M26	Ž	1.091	1.091	0	%100
45	M27	X	2.029	2.029	0	%100
46	M27	Z	1.172	1.172	0	%100
47	M28	X	1.89	1.89	0	%100
48	M28	Z	1.091	1.091	0	%100
49	M29	X	1.974	1.974	0	%100
50	M29	Z	1.14	1.14	0	%100
51	M30	X	1.91	1.91	0	%100
52	M30	Z	1.103	1.103	0	%100
53	M31	X	1.89	1.89	0	%100
54	M31	Z	1.091	1.091	0	%100
55	M32	X	1.89	1.89	0	%100
56	M32	Ž	1.091	1.091	0	%100
57	M33	X	1.914	1.914	0	%100
58	M33	Z	1.105	1.105	0	%100
59	M34	X	1.914	1.914	0	%100
60	M34	Z	1.105	1.105	0	%100
61	M35	X	1.677	1.677	0	%100
62	M35	Z	.968	.968	0	%100
63	M36	X	1.91	1.91	0	%100
64	M36	Ž	1.103	1.103	0	%100
65	MP4A	X	2.396	2.396	0	%100
66	MP4A	Ž	1.383	1.383	0	%100
67	MP3A	X	2.396	2.396	0	%100
68	MP3A	Z	1.383	1.383	0	%100
69	MP1A	X	2,396	2.396	0	%100
70	MP1A	Z	1.383	1.383	0	%100
71	M46	X	2.797	2.797	0	%100
72	M46	Z	1.615	1.615	0	%100
73	MP2A	X	2.396	2.396	0	%100
74	MP2A	Z	1.383	1.383	0	%100
75	M50	X	2.396	2.396	0	%100
76	M50	Z	1.383	1.383	0	%100

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f.	
4		X	.506	.506	0	%100
1	M5		.877	.877	0	%100
2	M5	Z		.034	0	%100
3	M6	X	.034		0	%100
4	M6	Z	.059	.059	0	%100
5	M7	X	1.148	1.148	0	
6	M7	Z	1.989	1.989	0	%100
7	M8	X	.506	.506	0	%100
6		7	.877	.877	0	%100
8	M8	X	.034	.034	0	%100
9	<u>M9</u>			.059	0	%100
10	M9	Z	.059	1,148	0	%100
11	M10	X	1.148		0	%100
12	M10	Z	1.989	1.989	0	
13	M11	X	1.284	1.284	0	%100
14	M11	7	2.224	2.224	0	%100

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f	End Location[ft
15	M12	X	.086	.086	0	%100
16	M12	Z	.149	.149	ŏ	%100
17	M13	X	1.284	1.284	0	%100
18	M13	Z	2.224	2.224	0	%100
19	M14	X	.086	.086	0	
20	M14	Z	.149			%100
21	M15	X	.707	.149	0	%100
22	M15	Z		.707	0	%100
23	M16	X	1.224	1.224	0	%100
24			.811	.811	0	%100
	M16	Z	1.404	1.404	0	%100
25	M17	X	.707	.707	0	%100
26	M17	Z	1.224	1.224	0	%100
27	M18	X	.73	.73	0	%100
28	M18	Z	1.265	1.265	0	%100
29	M19	X	.738	.738	0	%100
30	M19	Z	1.279	1.279	0	%100
31	M20	X	.707	.707	Ö	%100
32	M20	Z	1.224	1.224	Ö	%100
33	M21	X	.707	.707	0	%100 %100
34	M21	Ž	1.224	1.224	0	
35	M22	X	1.105			%100
36	M22	Ž		1.105	0	%100
37	M23		1.914	1.914	0	%100
		X	1.105	1.105	0	%100
38	M23	Z	1,914	1.914	0	%100
39	M24	X	.968	.968	0	%100
40	M24	Z	1.677	1.677	0	%100
41	M25	X	.738	.738	0	%100
42	M25	Z	1.279	1.279	0	%100
43	M26	X	.707	.707	0	%100
44	M26	Z	1.224	1.224	0	%100
45	M27	X	1.168	1.168	Ö	%100 %100
46	M27	Z	2.023	2.023	0	%100 %100
47	M28	X	.707	.707	0	
48	M28	Z	1.224			%100
49	M29	X		1.224	0	%100
50	M29	Z	1.135	1.135	0	%100
			1.966	1.966	0	%100
51	M30	X	.738	.738	0	%100
52	M30	Z	1.279	1.279	0	%100
53	M31	X	.707	.707	0	%100
54	M31	Z	1.224	1.224	0	%100
55	M32	X	.707	:707	0	%100
56	M32	Z	1.224	1.224	0	%100
57	M33	X	1.105	1.105	0	%100
58	M33	Z	1.914	1.914	0	%100
59	M34	X	1.105	1.105	0	%100
60	M34	Z	1.914	1.914	0	%100
61	M35	X	.968	.968	0	%100 %100
62	M35	Z	1.677	1.677	0	
63	M36	X	.738			%100
64	M36			.738	0	%100
65	MP4A	Z	1.279	1.279	0	%100
		X	1.383	1.383	0	%100
66	MP4A	Z	2,396	2.396	0	%100
67	MP3A	X	1.383	1.383	0	%100
68	MP3A	Z	2.396	2.396	0	%100
69	MP1A	X	1.383	1.383	0	%100
70	MP1A	Z	2.396	2.396	0	%100
71	M46	X	.887	.887	0	%100
72	M46	Z	1.536	1.536	0	%100
73	MP2A	X	1.383	1.383	0	%100
74	MP2A	Z	2.396	2.396	0	
75	M50	X	1.383			%100
	IVIOU		1,303	1.383	0	%100

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg)) (Continued)

Mam	ber Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft.F.ksfl	Start Location[f	
	M50	7	2.396	2.396	0	%100

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg))

	nember Label	Direction	(BLC 59 : Structure Wi Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f.	End Location
1	M5		0	0	0	%100 %100
2	M5	X	.535	.535	0	
3	M6	X	0	0	0	%100
4	M6	Z	.535	.535	0	%100
5	M7	X	0	0	0	%100
6	M7	Z	3.062	3.062	0	%100
7	M8	X	0	0	0	%100
	M8	Z	.535	.535	0	%100
8	M9	X	0	0	0	%100
9		Ž	.535	.535	0	%100
10	M9	X	0	0	0	%100
11	M10	Ž	3.062	3.062	0	%100
12	M10		0	0	0	%100
13	M11	X	1.357	1.357	0	%100
14	M11	Z		0	0	%100
15	M12	X	0	1.357	0	%100
16	M12	Z	1.357	0	0	%100
17	M13	X	0	1.357	0	%100
18	M13	Z	1.357		0	%100
19	M14	X	0	0	0	%100
20	M14	Z	1.357	1.357		%100
21	M15	X	0	0	0	%100 %100
22	M15	Z	1.029	1.029	0	
23	M16	X	0	0	0	%100
24	M16	Z	1.974	1.974	0	%100
25	M17	X	0	0	0	%100
26	M17	Z	1.029	1.029	0	%100
27	M18	X	0	0	0	%100
	M18	Z	1.861	1.861	0	%100
28	M19	X	0	0	0	%100
29		Z	1.112	1.112	0	%100
30	M19		0	0	0	%100
31	M20	Z	1.029	1.029	0	%100
32	M20			0	0	%100
33	M21	X	1.029	1.029	0	%100
34	M21	Z		0	0	%100
35	M22	X	0	2.21	0	%100
36	M22	Z	2.21		0	%100
37	M23	X	0	0	Ö	%100
38	M23	Z	2.21	2.21		%100
39	M24	X	0	0	0	%100 %100
40	M24	Z	1.937	1.937		%100 %100
41	M25	X	0	0	0	%100 %100
42	M25	Z	1.112	1.112	0	
43	M26	X	0	0	0	%100
44	M26	Z	1.029	1.029	0	%100
45	M27	X	0	0	0	%100
46	M27	Z	1.974	1.974	0	%100
47	M28	X	0	0	0	%100
		Z	1.029	1.029	0	%100
48	M28	X	0	0	0	%100
49	M29	1 3	1.861	1.861	0	%100
50	M29	Z		0	0	%100
51	M30	X	0	1.112	0	%100
52	M30	Z	1.112	0	0	%100
53	M31	X	0	1.029	0	%100
54	M31	Z	1.029		0	%100
55	M32	X	0	0	0	%100
56	M32	Z	1.029	1.029	0	%100 %100
57	M33	X	0	0	U	70 100

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location If	.End Location[ft.
58	M33	Z	2.21	2.21	0	%100
59	M34	X	0	0	Ö	%100
60	M34	Z	2.21	2.21	0	%100
61	M35	X	0	0	0	%100
62	M35	Z	1.937	1.937	Ŏ	%100
63	M36	X	0	0	0	%100 %100
64	M36	Z	1.112	1.112	O O	%100
65	MP4A	X	0	0	0	%100
66	MP4A	Z	2.766	2.766	0	%100
67	MP3A	X	0	0	0	%100
68	MP3A	Z	2.766	2.766	0	%100
69	MP1A	X	0	0	0	%100
70	MP1A	Z	2.766	2.766	0	%100
71	M46	X	0	0	0	%100 %100
72	M46	Z	.26	.26	0	%100
73	MP2A	X	0	0	0	%100
74	MP2A	Z	2.766	2.766	0	
75	M50	X	0	0	0	%100 %100
76	M50	Ž	2.766	2.766	0	%100 %100

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f.	End Location(ft
1	M5	X	034	034	0	%100
2	M5	Z	.059	.059	0	%100
3	M6	X	506	506	0	%100
4	M6	Z	.877	.877	0	%100
5	M7	X	-1.148	-1.148	0	%100
6	M7	Z	1.989	1.989	0	%100
7	M8	X	034	034	0	%100
8	M8	Z	.059	.059	0	%100
9	M9	X	506	506	0	%100
10	M9	Z	.877	.877	0	%100
11	M10	X	-1.148	-1.148	0	%100
12	M10	Z	1.989	1.989	0	%100
13	M11	X	086	086	0	%100
14	M11	Z	.149	.149	Ö	%100 %100
15	M12	X	-1.284	-1.284	0	%100 %100
16	M12	Z	2.224	2.224	0	%100
17	M13	X	086	086	0	%100
18	M13	Z	.149	.149	Ö	%100 %100
19	M14	X	-1.284	-1.284	0	%100
20	M14	Z	2.224	2.224	0	%100
21	M15	X	707	707	0	%100
22	M15	Z	1.224	1.224	0	%100 %100
23	M16	X	-1.168	-1.168	0	%100 %100
24	M16	Z	2.023	2.023	Ö	%100 %100
25	M17	X	707	707	0	%100 %100
26	M17	Z	1.224	1.224	0	%100 %100
27	M18	X	-1.135	-1.135	0	%100
28	M18	Z	1.966	1.966	0	%100
29	M19	X	738	738	0	%100 %100
30	M19	Z	1.279	1.279	0	%100
31	M20	X	707	707	0	%100
32	M20	Z	1.224	1.224	0	%100
33	M21	X	707	707	0	%100 %100
34	M21	Z	1.224	1.224	0	%100 %100
35	M22	X	-1.105	-1.105	0	%100 %100
36	M22	Z	1.914	1.914	0	%100 %100
37	M23	X	-1.105	-1.105	0	%100 %100
38	M23	Z	1.914	1.914	0	%100 %100
39	M24	X	968	968	0	%100 %100

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

Member	Label Direction	Start Magnitudellb/ft.F.ksfl	End Magnitude[lb/ft.F.ksf]	Start Location[f	End Location[f
40 M2		1.677	1.677	0	%100
41 M2		738	738	0	%100
42 M2		1.279	1.279	0	%100
43 M2		707	707	0	%100
44 M2		1.224	1.224	0	%100
45 M2		811	811	0	%100
46 M2		1.404	1.404	0	%100
47 M2	-	707	707	0	%100
48 M2		1,224	1.224	0	%100
		73	73	0	%100
		1.265	1,265	0	%100
		738	738	0	%100
		1.279	1.279	0	%100
		707	707	0	%100
53 M3		1.224	1.224	0	%100
54 M3		707	707	0	%100
55 M3		1.224	1.224	0	%100
56 M3		-1.105	-1.105	0	%100
57 M3	3 X	1.914	1.914	0	%100
58 M3		-1.105	-1.105	0	%100
59 M3		1.914	1.914	0	%100
60 M3		968	968	0	%100
61 M3		1.677	1.677	0	%100
62 M3		738	738	0	%100
63 M3		1.279	1.279	0	%100
64 M3		-1.383	-1.383	0	%100
65 MP			2.396	0	%100
66 MP		2.396 -1.383	-1.383	0	%100
67 MP:			2.396	0	%100
68 MP		2.396	-1.383	0	%100
69 MP		-1.383	2.396	0	%100
70 MP		2.396	101	0	%100
71 M4		101	.175	0	%100
72 M4		.175	-1.383	0	%100
73 MP		-1.383	2.396	0	%100
74 MP		2.396		0	%100
75 MS	50 X	-1.383	-1.383	0	%100
76 M5	50 Z	2.396	2.396	U	/0100

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg))

	te what shall	Direction	Start Magnitude[lb/ft,F.ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f	
4 1	Member Label	X	068	068	0	%100
1	M5	Z	.039	.039	0	%100
2	M5		886	886	0	%100
3	<u>M6</u>	X		.511	0	%100
4	M6	Z	.511	663	0	%100
5	M7	X	663	.383	0	%100
6	M7	Z	.383		0	%100
7	M8	X	068	068	0	%100
8	M8	Z	.039	.039	0	%100
9	M9	X	886	886	0	%100
10	M9	Z	.511	.511		%100
11	M10	X	663	663	0	The second second second second
12	M10	Z	.383	.383	0	%100
13	M11	X	172	172	0	%100
14	M11	Z	.099	.099	0	%100
15	M12	X	-2.247	-2.247	0	%100
16	M12	7	1.297	1.297	0	%100
17	M13	X	172	172	0	%100
18	M13	Z	.099	.099	0	%100
	M14	X	-2.247	-2.247	0	%100
19		7	1.297	1.297	0	%100
20	M14 M15	X	-1.89	-1.89	0	%100

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f.	End Location[ft.
22	M15	Z	1.091	1.091	0	%100
23	M16	X	-2.029	-2.029	0	%100
24	M16	Z	1,172	1.172	0	%100
25	M17	X	-1.89	-1.89	0	%100
26	M17	Z	1.091	1.091	0	%100
27	M18	X	-1.974	-1.974	0	%100
28	M18	Z	1.14	1.14	Ŏ	%100
29	M19	X	-1.91	-1.91	0	%100
30	M19	Z	1.103	1.103	Ö	%100
31	M20	X	-1.89	-1.89	0	%100
32	M20	Z	1.091	1.091	0	%100
33	M21	X	-1.89	-1.89	0	%100
34	M21	Z	1.091	1.091	0	%100
35	M22	X	-1.914	-1.914	0	
36	M22	Ž	1.105	1.105		%100
37	M23	X	-1.914		0	%100
38	M23	Ž	1.105	-1.914	0	%100
39	M24	X		1.105	0	%100
40	M24	Ž	-1.677	-1.677	0	%100
41	M25		.968	.968	0	%100
42	M25	X	-1.91	-1.91	0	%100
43	M26		1.103	1.103	0	%100
		X	-1.89	-1.89	0	%100
44	M26	Z	1.091	1.091	0	%100
45	M27	X	-1.411	-1.411	0	%100
46	M27	Z	.814	.814	0	%100
47	M28	X	-1.89	-1,89	0	%100
48	M28	Z	1.091	1.091	0	%100
49	M29	X	-1.272	-1.272	0	%100
50	M29	Z	.735	.735	0	%100
51	M30	X	-1.91	-1.91	0	%100
52	M30	Z	1.103	1.103	0	%100
53	M31	X	-1.89	-1.89	0	%100
54	M31	Z	1.091	1.091	0	%100
55	M32	X	-1.89	-1.89	0	%100
56	M32	Z	1.091	1.091	0	%100
57	M33	X	-1.914	-1.914	0	%100
58	M33	Z	1.105	1.105	0	%100
59	M34	X	-1.914	-1.914	0	%100
60	M34	Z	1.105	1,105	0	%100
61	M35	X	-1.677	-1.677	0	%100
62	M35	Z	.968	.968	Ö	%100
63	M36	X	-1.91	-1.91	0	%100
64	M36	Z	1.103	1.103	0	%100 %100
65	MP4A	X	-2.396	-2.396	0	%100 %100
66	MP4A	Z	1.383	1.383	0	%100 %100
67	MP3A	X	-2.396	-2.396	0	
68	MP3A	Z	1.383	1.383		%100
69	MP1A	X	-2.396	-2.396	0	%100
70	MP1A	Z	1.383		0	%100
71	M46	X	-1.435	1.383	0	%100
72	M46	Z	-1.435 .829	-1.435	0	%100
73	MP2A			.829	0	%100
74	MP2A	X	-2.396	-2,396	0	%100
75		Z	1.383	1.383	0	%100
76	M50	X	-2.396	-2.396	0	%100
76	M50	Z	1.383	1.383	0	%100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start LocationIf	End Locationift
1	M5	X	556	556	0	%100
2	M5	Z	0	0	0	%100
3	M6	X	556	556	0	%100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg)) (Continued)

Memb	er Label	Direction	Start Magnitudoflb/ft.F.ksfl	End Magnitude[lb/ft,F.ksfl	Start Location[f.	%100
4 N	/16	Z	0	0	0	%100
	17	X	.0	0	0	%100
6 N	//7	Z	0	0	0	
	18	X	556	556	0	%100
	/18	Z	0	0	0	%100
	<i>M</i> 9	X	556	556	0	%100
	19	Z	0	0	0	%100
	110	X	0	0	0	%100
	110	Z	0	0	0	%100
	111	X	-1.41	-1.41	0	%100
	11	Ž	0	0	0	%100
	112	X	-1.41	-1.41	0	%100
	112	Z	0	0	0	%100
	113	X	-1.41	-1.41	0	%100
		Z	0	0	0	%100
	113	X	-1.41	-1.41	0	%100
	114	Ž	0	0	0	%100
	114		-2.567	-2.567	0	%100
	115	X	0	0	0	%100
	115	Z	-1.99	-1.99	0	%100
	116	X	-1.99	0	0	%100
	116	Z		-2.567	0	%100
	117	X	-2.567 0	0	0	%100
	117	Z		-1.879	0	%100
	118	X	-1.879	0	0	%100
	118	Z	0	-2.57	0	%100
	119	X	-2.57	0	0	%100
	119	Z	0	-2.567	0	%100
31 N	120	X	-2.567		0	%100
32 N	120	Z	0	0 507	0	%100
33 N	121	X	-2.567	-2.567	0	%100
	121	Z	0	0		%100
	122	X	-2.21	-2.21	0	%100
36 N	122	Z	0	0	0	%100
	123	X	-2.21	-2.21	0	%100 %100
	123	Z	0	0	0	
	124	X	-1.937	-1.937	0	%100 %100
	124	Z	0	0	0	
	125	X	-2.57	-2.57	0	%100
	125	Z	0	0	0	%100
	126	X	-2.567	-2.567	0	%100
	126	Z	0	0	0	%100
	127	X	-1.99	-1.99	0	%100
	127	Z	0	0	0	%100
	128	X	-2.567	-2.567	0	%100
	128 128	Z	0	0	0	%100
	л <u>го</u> Л29	X	-1.879	-1.879	0	%100
	129 129	Z	0	0	0	%100
		X	-2.57	-2.57	0	%100
	M30	Ž	0	0	0	%100
	/30	X	-2.567	-2.567	0	%100
	/31	Z	0	0	0	%100
	<u>//31</u>		-2.567	-2.567	0	%100
	/32	X	-2.367	0	0	%100
	//32	Z		-2.21	0	%100
	//33	X	-2.21	0	0	%100
	И33	Z	0	-2.21	0	%100
	/134	X	-2.21	0	0	%100
	/34	Z	0		0	%100
	M35	X	-1.937	-1.937	0	%100
	/ 35	Z	0	0 0 57	0	%100
	/36	X	-2.57	-2.57	0	%100
	//36	Z	0	0		70 100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F.ksf]	Start LocationIf	End Location[ft
65	MP4A	X	-2.766	-2.766	0	%100
66	MP4A	Z	0	0	0	%100
67	MP3A	X	-2.766	-2.766	Ö	%100
68	MP3A	Z	0	0	0	%100
69	MP1A	X	-2.766	-2.766	0	%100
70	MP1A	Z	0	0	0	%100
71	M46	X	-3.171	-3,171	0	%100
72	M46	Z	0	0	n	%100
73	MP2A	X	-2.766	-2.766	n	%100
74	MP2A	Z	- 0	0	0	%100
75	M50	X	-2.766	-2.766	0	%100 %100
76	M50	Z	0	0	0	%100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f.	"End Location[ft
1	M5	X	886	886	0	%100
2	M5	Z	511	511	0	%100
3	M6	X	068	068	0	%100
4	M6	Z	039	039	0	%100
5	M7	X	663	663	0	%100
6	M7	Z	383	383	0	%100
7	M8	X	886	886	0	%100
8	M8	Z	511	511	0	%100
9	M9	X	068	068	0	%100
10	M9	Z	039	039	0	%100
11	M10	X	663	663	0	%100
12	M10	Z	383	383	0	%100
13	M11	X	-2.247	-2.247	0	%100
14	M11	Z	-1.297	-1.297	0	%100
15	M12	X	172	172	0	%100
16	M12	Z	099	099	0	%100 %100
17	M13	X	-2.247	-2.247	0	%100
18	M13	Z	-1.297	-1.297	0	%100
19	M14	X	172	172	0	%100 %100
20	M14	Z	099	099	0	%100 %100
21	M15	X	-1.89	-1.89	0	%100 %100
22	M15	Z	-1.091	-1.091	0	
23	M16	X	-1.411	-1.411	0	%100
24	M16	Z	814	814	0	%100
25	M17	X	-1.89	614 -1.89		%100
26	M17	Z	-1.091		0	%100
27	M18	X	-1.272	-1.091	0	%100
28	M18	Z	735	-1.272	0	%100
29	M19	X	/35 -1.91	735	0	%100
30	M19	Z		-1.91	0	%100
31	M20	X	-1.103	-1.103	0	%100
32	M20	Ž	-1.89	-1.89	0	%100
33	M21	X	-1.091	-1.091	0	%100
34	M21	Z	-1.89	-1.89	0	%100
35	M22		-1.091	-1.091	0	%100
36		X	-1.914	-1.914	0	%100
	M22	Z	-1.105	-1.105	0	%100
37	M23	X	-1.914	-1.914	n	%100
38	M23	Z	-1.105	-1.105	0	%100
39	M24	X	-1.677	-1.677	0	%100
40	M24	Z	968	968	0	%100
41	M25	X	-1.91	-1.91	0	%100
42	M25	Z	-1.103	-1.103	0	%100
43	M26	X	-1.89	-1.89	0	%100
44	M26	Z	-1.091	-1.091	0	%100
45	M27	X Z	-2.029	-2.029	0	%100
46	M27	Z	-1.172	-1.172	0	%100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f.	
47	M28	X	-1.89	-1.89	0	%100
48	M28	Z	-1.091	-1.091	0	%100
49	M29	X	-1.974	-1.974	0	%100
50	M29	Z	-1.14	-1.14	0	%100
51	M30	X	-1.91	-1.91	0	%100
52	M30	Z	-1.103	-1.103	0	%100
53	M31	X	-1.89	-1.89	0	%100
54	M31	Z	-1.091	-1.091	0	%100
55	M32	X	-1.89	-1.89	00	%100
56	M32	Z	-1.091	-1.091	0	%100
57	M33	X	-1.914	-1.914	0	%100
58	M33	Z	-1.105	-1.105	0	%100
59	M34	X	-1.914	-1.914	0	%100
60	M34	Ž	-1.105	-1.105	0	%100
61	M35	X	-1.677	-1.677	0	%100
62	M35	Z	968	968	0	%100
63	M36	X	-1.91	-1.91	0	%100
64	M36	Z	-1.103	-1.103	0	%100
65	MP4A	X	-2.396	-2.396	0	%100
66	MP4A	Z	-1.383	-1.383	0	%100
67	MP3A	X	-2.396	-2.396	0	%100
	MP3A	Z	-1.383	-1.383	0	%100
68 69	MP1A	X	-2.396	-2.396	0	%100
70	MP1A	Z	-1.383	-1.383	0	%100
		X	-2.797	-2.797	0	%100
71	M46 M46	Ž	-1.615	-1.615	0	%100
72		X	-2.396	-2.396	0	%100
73	MP2A	Ž	-1.383	-1.383	0	%100
74	MP2A	X	-2.396	-2.396	0	%100
75 76	M50 M50	Z	-1.383	-1.383	0	%100

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f	
1	M5	X	506	506	0	%100
2	M5	Z	877	877	0	%100
3	M6	X	034	034	0	%100
4	M6	Z	059	059	0	%100
5	M7	X	-1.148	-1.148	0	%100
6	M7	Z	-1.989	-1.989	0	%100
7	M8	X	506	506	0	%100
-	M8	Z	877	877	0	%100
8		X	034	034	0	%100
9	M9	Z	059	059	0	%100
10	M9	X	-1.148	-1.148	0	%100
11	M10	Ž	-1.989	-1.989	0	%100
12	M10	X	-1.284	-1.284	0	%100
13	M11	Z	-2.224	-2.224	0	%100
14	M11		086	086	0	%100
15	M12	X	149	-,149	0	%100
16	M12	X	-1.284	-1.284	0	%100
17	M13		-2.224	-2.224	0	%100
18	M13	Z	086	086	0	%100
19	M14	X	149	149	0	%100
20	M14	Z		707	0	%100
21	M15	X	707	-1.224	0	%100
22	M15	Z	-1.224	811	0	%100
23	M16	X	811	-1.404	0	%100
24	M16	Z	-1.404	-,707	0	%100
25	M17	X	707	-1.224	0	%100
26	M17	Z	-1.224	-1.224	0	%100
27	M18	X	73	-1.265	0	%100
28	M18	Z	-1.265	-1,200		70100

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f.	End Location[ft.
29	M19	X	738	738	0	%100
30	M19	Z	-1.279	-1.279	0	%100
31	M20	X	707	707	0	%100
32	M20	Z	-1.224	-1.224	0	%100
33	M21	X	707	707	0	%100
34	M21	Z	-1.224	-1.224	0	%100
35	M22	X	-1.105	-1.105	0	%100
36	M22	Z	-1.914	-1.914	0	%100
37	M23	X	-1.105	-1.105	0	%100
38	M23	Z	-1.914	-1.914	0	%100
39	M24	X	968	968	0	%100
40	M24	Z	-1.677	-1.677	0	%100
41	M25	X	738	738	0	%100
42	M25	Z	-1.279	-1.279	0	%100
43	M26	X	707	707	0	%100
44	M26	Z	-1.224	-1.224	0	%100
45	M27	X	-1.168	-1.168	0	%100
46	M27	Z	-2.023	-2.023	0	%100
47	M28	X	707	707	0	%100
48	M28	Z	-1.224	-1.224	0	%100
49	M29	X	-1.135	-1.135	0	%100
50	M29	Z	-1.966	-1.966	0	%100
51	M30	X	738	738	0	%100
52	M30	Z	-1.279	-1.279	0	%100
53	M31	X	707	707	0	%100
54	M31	Z	-1.224	-1.224	0	%100
55	M32	X	707	707	0	%100
56	M32	Z	-1.224	-1.224	0	%100
57	M33	X	-1.105	-1.105	0	%100
58	M33	Z	-1.914	-1.914	0	%100
59	M34	X	-1.105	-1.105	0	%100
60	M34	Z	-1.914	-1.914	0	%100
61	M35	X	968	968	0	%100
62	M35	Z	-1.677	-1.677	0	%100
63	M36	X	738	738	0	%100
64	M36	Z	-1.279	-1.279	0	%100
65	MP4A	X	-1.383	-1.383	0	%100
66	MP4A	Z	-2.396	-2.396	0	%100
67	MP3A	X	-1.383	-1.383	0	%100
68	MP3A	Z	-2.396	-2.396	0	%100
69	MP1A	X	-1.383	-1.383	0	%100
70	MP1A	Z	-2.396	-2.396	0	%100
71	M46	X	887	887	0	%100
72	M46	Z	-1.536	-1.536	0	%100
73	MP2A	X	-1.383	-1.383	0	%100
74	MP2A	Z	-2.396	-2.396	0	%100
75	M50	X	-1.383	-1.383	0	%100
76	M50	Z	-2.396	-2.396	0	%100

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start LocationIf.	.End Location[ft
1	M5	X	0	0	0	%100
2	M5	Z	052	052	0	%100
3	M6	X	0	0	0	%100
4	M6	Z	052	052	0	%100
5	M7	X	0	0	0	%100
6	M7	Z	611	611	0	%100
7	M8	X	0	0	0	%100
8	M8	Z	052	052	0	%100
9	M9	X	0	0	0	%100
10	M9	Z	052	052	0	%100

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg)) (Continued)

Me	mber Label	Direction	Start Magnitude[lb/ft.F.ksf]	End Magnitude(lb/ft,F.ksfl	Start Location[f.	End Location[ft.
11	M10	X	0	0	0	%100 %100
12	M10	Z	611	611	0	%100 %100
13	M11	X	0	0	0	
14	M11	Z	248	248	0	%100
15	M12	X	0	0	0	%100
16	M12	Z	248	248	0	%100
17	M13	X	0	0	0	%100
	M13	Z	248	248	0	%100
18	M14	X	0	0	0	%100
19		Z	248	248	0	%100
20	M14		0	0	0	%100
21	M15	X	084	084	0	%100
22	M15	Z		0	0	%100
23	M16	X	0	333	0	%100
24	M16	Z	333	0	0	%100
25	M17	X	0		0	%100
26	M17	Z	084	084	0	%100
27	M18	X	0	0		%100
28	M18	Z	316	316	0	
29	M19	X	0	0	0	%100
30	M19	Z	113	113	0	%100
31	M20	X	0	0	0	%100
32	M20	Z	084	084	0	%100
33	M21	X	0	0	0	%100
	M21	Z	084	084	0	%100
34	M22	X	0	0	0	%100
35		Ž	374	374	0	%100
36	M22		574	0	0	%100
37	M23	X	374	374	0	%100
38	M23	Z		0	0	%100
39	M24	X	0	312	0	%100
40	M24	Z	312	312	0	%100
41	M25	X	0		0	%100
42	M25	Z	113	113	0	%100
43	M26	X	0	0		%100
44	M26	Z	084	084	0	0/100
45	M27	X	0	0	0	%100
46	M27	Z	333	333	0	%100
47	M28	X	0	0	0	%100
48	M28	Z	084	084	0	%100
49	M29	X	0	0	0	%100
	M29	Z	316	316	0	%100
50		X	0	0	0	%100
51	M30		113	113	0	%100
52	M30	Z	113	0	0	%100
53	M31	X		084	0	%100
54	M31	Z	084	0	0	%100
55	M32	X	0	084	0	%100
56	M32	Z	084		0	%100
57	M33	X	0	0	0	%100
58	M33	Z	374	374		%100 %100
59	M34	X	0	0	0	%100 %100
60	M34	Z	374	374	0	
61	M35	X	0	0	0	%100
62	M35	Z	312	312	0	%100
63	M36	X	0	0	0	%100
	M36	Z	113	113	0	%100
64		X	0	0	0	%100
65	MP4A		505	505	0	%100
66	MP4A	Z		0	0	%100
67	MP3A	X	0	505	0	%100
68	MP3A	Z	505		0	%100
69	MP1A	X	0	0	0	%100
70	MP1A	Z	505	505		%100
71	M46	X	0	0	0	1 /0100

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F.ksf]	Start Location[f.	Fnd Location(ft
72	M46	Z	056	- 056	0	%100
73	MP2A	X	0	0	0	%100
74	MP2A	Z	505	505	Ô	%100
75	M50	X	0	0	0	%100
76	M50	Z	505	505	0	%100

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location(f.	.End Location[ft.
1	M5	X	.003	.003	0	%100
2	M5	Z	006	006	0	%100
3	M6	X	.049	.049	0	%100
4	M6	Z	085	085	0	%100
5	M7	X	.229	.229	0	%100
6	M7	Z	397	397	Ö	%100
7	M8	X	.003	.003	0	%100
8	M8	Z	006	006	0	%100
9	M9	X	.049	.049	0	%100 %100
10	M9	Z	085	085	O O	%100
11	M10	X	.229	.229	0	%100 %100
12	M10	Z	397	397	0	%100
13	M11	X	.016	.016	0	%100 %100
14	M11	Z	027	027	0	%100
15	M12	X	.234	.234	0	%100 %100
16	M12	Z	406	406	0	
17	M13	X	.016	.016		%100
18	M13	Z	027	027	0	%100
19	M14	X	.234	.234		%100
20	M14	Z	406		0	%100
21	M15	X	.111	406	0	%100
22	M15	Ž	193	.111	0	%100
23	M16	X	.197	193	0	%100
24	M16	Ž		.197	0	%100
25	M17	X	341	341	0	%100
26	M17	Z	.111	.111	0	%100
27	M18	X	193	193	0	%100
28	M18	Z	.193	.193	0	%100
29	M19	X	334	334	0	%100
30	M19	Ž	.122	.122	0	%100
31	M20		211	211	0	%100
32	M20	X Z	.111	.111	0	%100
33	M21		193	193	0	%100
34	M21	X	.111	.111	0	%100
35		Z	193	193	0	%100
	M22	X	.187	.187	0	%100
36	M22	Z	324	324	0	%100
37	M23	X	.187	.187	0	%100
38	M23	Z	324	324	0	%100
39	M24	X	.156	.156	0	%100
40	M24	Z	27	27	0	%100
41	M25	X	.122	.122	0	%100
42	M25	Z	211	211	0	%100
43	M26	X	.111	.111	0	%100
44	M26	Z	193	193	0	%100
45	M27	X	.137	.137	0	%100
46	M27	Z	237	237	0	%100
47	M28	X	.111	.111	0	%100
48	M28	Z	193	193	0	%100
49	M29	X	.124	.124	0	%100
50	M29	Z	215	215	0	%100
51	M30	X	.122	.122	0	%100
52	M30	Z	211	211	0	%100
53	M31	X	.111	.111	0	%100

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude(lb/ft,F,ksfl	End Magnitude[lb/ft,F,ksf]	Start Location[f.	
E4 T		7	193	-,193	0	%100
54	M31	X	111	.111	0	%100
55	M32		193	193	0	%100
56	M32	Z	.187	.187	0	%100
57	M33	X		324	0	%100
58	M33	Z	324	.187	Ŏ	%100
59	M34	X	.187	324	Ŏ	%100
60	M34	Z	324		0	%100
61	M35	X	.156	.156	0	%100
62	M35	Z	27	27	0	%100
63	M36	X	.122	.122		%100
64	M36	Z	211	211	0	
65	MP4A	X	.252	.252	0	%100
66	MP4A	Z	437	437	0	%100
67	MP3A	X	.252	.252	0	%100
68	MP3A	Ž	437	437	0	%100
	MP1A	X	.252	.252	0	%100
69	MP1A	Ž	437	437	0	%100
70		X	.022	.022	0	%100
71	M46	Ž	038	038	0	%100
72	M46		.252	.252	0	%100
73	MP2A	X		437	0	%100
74	MP2A	Z	437	.252	0	%100
75	<u>M50</u>	X	.252	437	0	%100
76	M50	Z	437	-,431		78100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg))

	- 1	Direction	(BLC 67 : Structure Wr. Start Magnitude[lb/ft,F.ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f.	
4 1	Member Label M5	X	.007	.007	0	<u>%100</u>
2	M5	Z	004	004	0	%100
2	M6	X	.086	.086	0	%100
3		Ž	05	05	0	%100
4	M6	X	.132	.132	0	%100
5	M7	Ž	076	076	0	%100
6	M7		.007	.007	0	%100
7	M8	X	004	004	0	%100
8	M8	Z	.086	.086	0	%100
9	M9	X	05	05	0	%100
10	M9	Z	.132	.132	0	%100
11	M10	X	076	076	0	%100
12	M10	Z	.031	.031	0	%100
13	M11	X		018	0	%100
14	M11	Z	018	.41	0	%100
15	M12	X	.41	237	0	%100
16	M12	Z	237	.031	Ö	%100
17	M13	X	.031	018	o o	%100
18	M13	Z	018	018	0	%100
19	M14	X	.41		0	%100
20	M14	Z	237	237	0	%100
21	M15	X	.432	.432	0	%100
22	M15	Z	25	25	0	%100
23	M16	X	.342	.342	0	%100
24	M16	Z	198	198		%100 %100
25	M17	X	.432	.432	0	%100
26	M17	Z	25	25	0	%100
27	M18	X	.336	.336	0	%100
28_	M18	Z	194	194	0	%100
29	M19	X	.439	.439	0	
30	M19	Z	253	253	0	%100
31	M20	X	.432	.432	0	%100
32	M20	Ž	25	25	0	%100
33	M21	X	.432	.432	0	%100
34	M21	Z	-,25	25	0	%100
3 4 35	M22	X	.324	.324	0	%100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location(f.	End Location[ft.
36	M22	Z	-,187	187	0	%100
37	M23	X	.324	.324	0	%100
38	M23	Z	187	187	0	%100
39	M24	X	.27	.27	0	%100
40	M24	Z	156	156	Ö	%100
41	M25	X	.439	.439	0	%100
42	M25	Z	253	253	0	%100
43	M26	X	.432	.432	0	%100
44	M26	Z	25	25	0	%100
45	M27	X	.238	.238	0	%100
46	M27	Z	137	137	0	%100
47	M28	X	.432	.432	0	%100
48	M28	Z	-,25	25	0	%100
49	M29	X	.216	.216	0	%100
50	M29	Z	125	-,125	0	%100
51	M30	X	.439	.439	0	%100
52	M30	Z	253	253	0	%100
53	M31	X	.432	.432	0	%100
54	M31	Z	25	25	0	%100
55	M32	X	.432	.432	0	%100
56	M32	Z	25	25	0	%100
57	M33	X	.324	.324	0	%100
58	M33	Z	187	-,187	0	%100
59	M34	X	.324	.324	0	%100
60	M34	Z	187	-,187	0	%100
61	M35	X	.27	.27	0	%100
62	M35	Z	156	156	0	%100
63	M36	X	.439	.439	0	%100
64	M36	Z	253	253	0	%100
65	MP4A	X	.437	.437	0	%100
66	MP4A	Z	252	252	0	%100
67	MP3A	X	.437	.437	0	%100
68	МРЗА	Z	252	252	0	%100
69	MP1A	X	.437	.437	0	%100
70	MP1A	Z	252	252	0	%100
71	M46	X	.311	.311	0	%100
72	M46	Z	18	18	0	%100
73	MP2A	X	.437	.437	0	%100
74	MP2A	Z	252	252	0	%100
75	M50	X	.437	.437	0	%100
76	M50	Z	252	252	0	%100

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksfl	Start Location(f	End Location[ft.
11	M5	X	.054	.054	0	%100
2	M5	Z	0	0	Ů,	%100
3	M6	X	.054	.054	0	%100
4	M6	Z	0	0	0	%100
5	M7	X	0	Ö	0	%100
6	M7	Z	0	Ö	O O	%100
7	M8	X	.054	.054	Ö	%100
8	M8	Z	0	0	0	%100
9	M9	X	.054	.054	Ö	%100
10	M9	Z	0	0	O	%100
11	M10	X	0	0	0	%100 %100
12	M10	Z	0	0	0	%100
13	M11	X	.257	.257	0	%100
14	M11	Z	0	0	Ö	%100
15	M12	X	.257	.257	0	%100
16	M12	Z	0	0	0	%100
17	M13	X	.257	.257	0	%100 %100

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f	%100
18	M13	Z	0	0	0	%100 %100
19	M14	X	.257	.257	0	%100
20	M14	Z	0	0		%100 %100
21	M15	X	.638	.638	0	%100
22	M15	Z	0	0	0	
23	M16	X	.336	.336	0	%100
24	M16	Z	0	0	0	%100
25	M17	X	.638	.638	0	%100
26	M17	Z	0	0	0	%100
27	M18	X	.319	.319	0	%100
28	M18	Z	0	0	0	%100
29	M19	X	.638	.638	0	%100
30	M19	Z	0	0	0	%100
	M20	X	.638	.638	0	%100
31	M20	Ž	0	0	0	%100
32	M21	X	.638	.638	0	%100
33		Ž	0	0	0	%100
34	M21	X	.374	.374	0	%100
35	M22	Z	.574	Ó	0	%100
36	M22		.374	.374	0	%100
37	M23	X	.374	0	0	%100
38	M23	Z		.312	0	%100
39	M24	X	.312	0	0	%100
40	M24	Z	0	.638	0	%100
41	M25	X	.638	.036	0	%100
42	M25	Z	0	.638	0	%100
43	M26	X	.638		0	%100
44	M26	Z	0	0	0	%100
45	M27	X	.336	.336	0	%100
46	M27	Z	0	0	0	%100
47	M28	X	.638	.638		%100
48	M28	Z	0	0	0	%100
49	M29	X	.319	.319	0	
50	M29	Z	0	0	0	%100
51	M30	X	.638	.638	0	%100
52	M30	Z	0	0	0	%100
53	M31	X	.638	.638	0	%100
54	M31	Z	0	0	0	%100
55	M32	X	.638	.638	0	%100
56	M32	Z	0	0	0	%100
57	M33	X	.374	.374	0	%100
		Z	0	0	0	%100
58	M33	X	.374	.374	0	%100
59	M34		0	0	0	%100
60	M34	Z	.312	.312	0	%100
61	M35	X	,312	0	0	%100
62	M35			.638	0	%100
63	M36	X	.638	0	0	%100
64	M36	Z	0	.505	Ö	%100
65	MP4A	X	.505	.505	Ö	%100
66	MP4A	Z	0	.505	0	%100
67	MP3A	X	.505	.505	Ö	%100
68	MP3A	Z	0		0	%100
69	MP1A	X	.505	.505	0	%100
70	MP1A	Z	0	0		%100
71	M46	X	.688	.688	0	
72	M46	Z	0	0	0	%100
73	MP2A	X	.505	.505	0	%100
74	MP2A	Z	0	0	0	%100
75	M50	X	.505	.505	0	%100
76	M50	Z	0	0	0	%100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f.	.End Location[ft
1	<u>M5</u>	X	.086	.086	0	%100
2	M5	Z	.05	.05	0	%100
3	M6	X	.007	.007	0	%100
4	M6	Z	.004	.004	0	%100
5	M7	X	.132	.132	0	%100
6	M7	Z	.076	.076	0	%100
7	M8	X	.086	.086	0	%100
8	M8	Z	.05	.05	0	%100
9	M9	X	.007	.007		
10	M9	Z	.004	.007	0	%100
11	M10	X	.132		0	%100
12	M10	Ž		.132	0	%100
13	M11		.076	.076	0	%100
		X	.41	.41	0	%100
14	M11	Z	.237	.237	0	%100
15	M12	X	.031	.031	0	%100
16	M12	Z	.018	.018	0	%100
17	M13	X	.41	.41	0	%100
18	M13	Z	.237	.237	0	%100
19	M14	X	.031	.031	0	%100
20	M14	Z	.018	.018	0	%100 %100
21	M15	X	.432	.432	0	%100 %100
22	M15	Z	.25	.25		
23	M16	X	.238		0	%100
24	M16	Z	.137	.238	0	%100
25	M17	X		.137	0	%100
26	M17	ż	.432	.432	0	%100
			.25	.25	0	%100
27	M18	<u>X</u>	.216	.216	0	%100
28	M18	Z	.125	.125	0	%100
29	M19	X	.439	.439	0	%100
30	M19	Z	.253	.253	0	%100
31	M20	X	.432	.432	0	%100
32	M20	Z	.25	.25	0	%100
33	M21	X	.432	.432	0	%100
34	M21	Z	.25	.25	0	%100
35	M22	X	.324	.324	0	%100 %100
36	M22	Z	.187	.187	0	%100 %100
37	M23	X	.324	.324	0	
38	M23	Z	.187			%100
39	M24	X	.27	.187	0	%100
40	M24	Z		.27	0	%100
41	M25	X	.156	.156	0	%100
42			.439	.439	0	%100
	M25	Z	.253	.253	0	%100
43	M26	X	.432	.432	0	%100
44	M26	Z	.25	.25	0	%100
45	M27	X	.342	.342	0	%100
46	M27	Z	.198	.198	0	%100
47	M28	X	.432	.432	0	%100
48	M28	Z	.25	.25	0	%100
49	M29	X	.336	.336	0	%100 %100
50	M29	Z	.194	.194	0	%100 %100
51	M30	X	.439	.439	0	0/ 100
52	M30	Z	.253	.253		%100
53	M31	X	.432		0	%100
54	M31	Ž	.432	.432	0	%100
55	M32		.25	.25	0	%100
		X	.432	.432	0	%100
56	M32	Z	.25	.25	0	%100
57	M33	X	.324	.324	0	%100
58	M33	Z	.187	.187	0	%100
59	M34	X	.324	.324	Ö	%100
60	M34	Z	.187	.187	Ö	%100
61	M35	X	.27	.27	0	%100 %100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft.F.ksfl	End Magnitude(lb/ft,F,ksf)	Start Location[f.	End Location(ft
00 1		I 7	.156	.156	0	%100
62	M35	\ \times \	.439	.439	0	%100
63	M36	X		.253	0	%100
64	M36		.253	.437	0	%100
65	MP4A	X	.437		0	%100
66	MP4A	Z	.252	.252	0	%100
67	MP3A	X	.437	.437	0	
68	MP3A	Z	.252	.252	0	%100
69	MP1A	X	.437	.437	0	%100
70	MP1A	7	.252	.252	0	%100
	M46	X	.606	.606	0	%100
71	- Colombia	7	.35	.35	0	%100
72	M46		.437	.437	0	%100
73	MP2A	X		.252	0	%100
74	MP2A	Z	.252		0	%100
75	M50	X	.437	.437	0	%100
76	M50	Z	.252	.252		/6100

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f.	End Location
1	M5	X	.049	.049	0	%100
2	M5	Z	.085	.085	0	%100
3	M6	X	.003	.003	0	%100
	M6	Z	.006	.006	0	%100
5	M7	X	.229	.229	0	%100
	M7	Ž	.397	.397	0	%100
6 7	M8	X	.049	.049	0	%100
8	M8	Z	.085	.085	0	%100
9	M9	X	.003	.003	0	%100
10	M9	Z	.006	.006	0	%100
	M10	X	.229	.229	0	%100
11	M10	Z	.397	.397	0	%100
12	M11	X	.234	.234	0	%100
	M11	Ž	.406	.406	0	%100
14	M12	X	.016	.016	0	%100
15	M12	Ž	.027	.027	0	%100
16		X	.234	.234	0	%100
17	M13 M13	Ž	.406	.406	0	%100
18		X	.016	.016	0	%100
19	M14	Ż	.027	.027	0	%100
20	M14	X	.111	.111	0	%100
21	M15	Z	.193	.193	0	%100
22	M15	X	.137	.137	0	%100
23	M16	Z	.237	.237	0	%100
24	M16	X	.111	.111	0	%100
25	M17	Z	.193	.193	0	%100
26	M17		.124	.124	0	%100
27	M18	Z	.215	.215	0	%100
28	M18		.122	.122	0	%100
29	M19	X	.211	.211	0	%100
30	M19	Z	.111	.111	0	%100
31	M20	X		.193	0	%100
32	M20	Z	. <u>193</u> .111	.111	0	%100
33	M21	X		.193	0	%100
34	M21	Z	.193	.187	0	%100
35	M22	X	.187	.324	0	%100
36	M22	Z	.324	.187	0	%100
37	M23	X	.187	.324	0	%100
38	M23	Z	.324	.156	0	%100
39	M24	X	.156	.136	0	%100
40	M24	Z	.27	.122	0	%100
41	M25	X	.122	.211	0	%100
42 43	M25 M26	Z	.211 .111	.111	0	%100

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location(f	End Locationift.
44	M26	Z	.193	.193	0	%100
45	M27	X	.197	.197	0	%100
46	M27	Z	.341	.341	0	%100
47	M28	X	.111	.111	0	%100
48	M28	Z	.193	.193	0	%100
49	M29	X	.193	.193	0	%100
50	M29	Z	.334	.334	Ö	%100
51	M30	X	.122	.122	0	%100
52	M30	Z	.211	.211	Ö	%100
53	M31	X	.111	.111	0	%100
54	M31	Z	.193	.193	0	%100
55	M32	X	.111	.111	0	%100
56	M32	Z	.193	.193	0	%100
57	M33	X	.187	.187	0	%100
58	M33	Z	.324	.324	Ö	%100
59	M34	X	.187	.187	0	%100 %100
60	M34	Z	.324	.324	0	%100 %100
61	M35	X	.156	.156	0	%100
62	M35	Z	.27	.27	Ö	%100
63	M36	X	.122	.122	0	%100
64	M36	Z	.211	.211	0	%100
65	MP4A	X	.252	.252	0	%100 %100
66	MP4A	Z	.437	.437	0	%100 %100
67	MP3A	X	.252	.252	0	%100 %100
68	MP3A	Z	.437	.437	0	%100
69	MP1A	X	.252	.252	0	%100 %100
70	MP1A	Z	.437	.437	0	%100
71	M46	X	.192	.192	0	%100
72	M46	Z	.333	.333	Ö	%100
73	MP2A	X	.252	.252	0	%100 %100
74	MP2A	Z	.437	.437	0	%100
75	M50	X	.252	.252	0	%100
76	M50	Z	.437	.437	0	%100 %100

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location(f	End Location[ft
1	M5	X	0	0	0	%100
2	M5	Z	.052	.052	0	%100
3	M6	X	0	0	0	%100
4	M6	Z	.052	.052	0	%100
5	M7	X	0	0	0	%100
6	M7	Z	.611	.611	0	%100
7	M8	X	0	0	0	%100
8	M8	Z	.052	.052	Ö	%100
9	M9	X	0	0	0	%100
10	M9	Z	.052	.052	0	%100
11	M10	X	0	0	0	%100
12	M10	Z	.611	.611	Ö	%100
13	M11	X	0	0	0	%100
14	M11	Z	.248	.248	0	%100
15	M12	X	0	0	0	%100
16	M12	Z	.248	.248	0	%100
17	M13	X	0	0	0	%100
18	M13	Z	.248	.248	0	%100
19	M14	X	0	0	0	%100
20	M14	Z	.248	.248	0	%100
21	M15	X	0	0	0	%100
22	M15	Z	.084	.084	0	%100
23	M16	X	0	0	0	%100
24	M16	Z	.333	.333	0	%100
25	M17	X	0	0	0	%100

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg)) (Continued)

Me	ember Label	Direction	Start Magnitudo(lb/ff.F.ksfl	End MagnitudeIlb/ft,F,ksfl	Start Location[f	%100
26	M17	Z	.084	.084	0	%100
27	M18	X	0	.316	0	%100
28	M18	Z	.316		0	%100
29	M19	X	0	0	0	%100
30	M19	Z	.113	.113	0	%100
31	M20	X	0	0	0	%100
32	M20	Z	.084	.084	0	%100
33	M21	X	0	0	0	%100
34	M21	Z	.084	.084	0	%100
35	M22	X	0	0		%100
36	M22	Z	.374	.374	0	%100
37	M23	X	0	0	0	%100
38	M23	Z	.374	.374		%100
39	M24	X	0	0	0	%100
40	M24	Z	.312	.312	0	%100 %100
41	M25	X	0	0	0	%100 %100
42	M25	Z	.113	.113	0	%100
43	M26	X	0	0	0	%100
44	M26	Z	.084	.084	0	%100
45	M27	X	0	0	0	
46	M27	Z	.333	.333	0	%100
47	M28	X	0	0	0	%100
48	M28	Z	.084	.084	0	%100
49	M29	X	0	0	0	%100
50	M29	Z	.316	.316	0	%100
51	M30	X	0	0	0	%100
52	M30	Z	.113	.113	0	%100
53	M31	X	0	0	0	%100
54	M31	Z	.084	.084	0	%100
55	M32	X	0	0	0	%100
56	M32	Z	.084	.084	0	%100
57	M33	X	0	0	0	%100
58	M33	Z	.374	.374	0	%100
59	M34	X	0	0	0	%100
60	M34	Z	.374	.374	0	%100
61	M35	X	0	0	0	%100
62	M35	Z	.312	.312	0	%100
63	M36	X	0	0	0	%100
64	M36	Z	.113	.113	0	%100
65	MP4A	X	0	0	0	%100
66	MP4A	Z	.505	.505	0	%100
67	мрза	X	0	0	0	%100
68	MP3A	Z	.505	.505	0	%100
69	MP1A	X	0	0	0	%100
70	MP1A	Z	.505	.505	0	%100
71	M46	X	0	0	0	%100
72	M46	Z	.056	.056	0	%100
73	MP2A	X	0	0	0	%100
74	MP2A	Z	.505	.505	0	%100
75	M50	X	0	0	0	%100
76	M50	Z	.505	.505	0	%100

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f.	.End Location[ft.
		T	003	003	0	%100
1_	M5	 		.006	0	%100
2	M5		.006		0	%100
3	M6	X	049	049	0	%100
4	M6	Z	.085	.085	0	
5	M7	X	229	229	0	%100
		7	.397	.397	0	%100
6	M7			003	0	%100
_7	M8	X	003	000		

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]		.End Location[ft.
8	M8	Z	.006	.006	0	%100
9	M9	X	049	049	0	%100
10	M9	Z	.085	.085	0	%100
11	M10	X	229	229	0	%100
12	M10	Z	.397	.397	0	%100 %100
13	M11	X	016	016	0	
14	M11	Z	.027	.027	0	%100
15	M12	X	234			%100
16	M12	Ž	.406	234	0	%100
17	M13	X		.406	0	%100
18	M13		016	016	0	%100
19	M14	Z	.027	.027	0	%100
20		X	234	234	0	%100
	M14	Z	.406	.406	0	%100
21	M15	X	111	111	0	%100
22	M15	Z	.193	.193	0	%100
23	M16	X	197	197	0	%100
24	M16	Z	.341	.341	0	%100
25	M17	X	111	111	0	%100
26	M17	Z	.193	.193	0	%100
27	M18	X	193	193	0	%100
28	M18	Z	.334	.334	0	%100
29	M19	X	122	122	Ö	%100
30	M19	Z	.211	.211	0	%100
31	M20	X	111	111	0	%100
32	M20	Z	.193	.193	0	%100
33	M21	X	111	-,111	0	%100
34	M21	Z	.193	.193	0	%100
35	M22	X	187	-,187	0	
36	M22	Z	.324	.324		%100
37	M23	X	187		0	%100
38	M23	Z	.324	187	0	%100
39	M24	X		.324	0	%100
40	M24	Ž	156 .27	156	0	%100
41	M25			.27	0	%100
42	M25	Z	122	122	0	%100
43	M26	X	.211	.211	0	%100
44			111	111	0	%100
45	M26	Z	.193	.193	0	%100
	M27	X	-,137	137	0	%100
46	M27	Z	.237	.237	0	%100
47	M28	<u>X</u>	111	111	0	%100
48	M28	Z	.193	.193	0	%100
49	M29	X	124	124	0	%100
50	M29	Z	.215	.215	0	%100
51	M30	X	122	122	0	%100
52	M30	Z	.211	.211	0	%100
53	M31	X	111	111	0	%100
54	M31	Z	.193	.193	0	%100
55	M32	X	111	111	0	%100
56	M32	Z	.193	.193	0	%100 %100
57	M33	X	187	187	0	%100 %100
58	M33	Z	.324	.324	0	%100
59	M34	X	187	187	0	%100 %100
60	M34	Z	.324	.324	0	%100 %100
61	M35	X	156	156	0	
62	M35	Z	.27		0	%100
63	M36	X	122	.27	0	%100
64	M36	Z		122	0	%100
65	MP4A	X	.211	.211	0	%100
66	MP4A		252	252	0	%100
67		Z	.437	.437	0	%100
68	MP3A	X	252	252	0	%100
00	MP3A	Z	.437	.437	0	%100

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft_F.ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f.	End Locationift.
60	MP1A	T X T	252	252	0	%100
69	MP1A	7	.437	.437	0	%100
70	M46	+ 	022	022	0	%100
1		+ 2 +	.038	.038	0	%100
72	M46	 	252	252	0	%100
73	MP2A	 	.437	.437	0	%100
74	MP2A			252	0	%100
75	M50	 	252	.437	0	%100
76	M50		.437	.431		70.00

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f	End Location
1	M5	X	007	007	0	%100
2	M5	Z	.004	.004	0	%100
3	M6	X	086	086	0	%100
4	M6	Z	.05	.05	0	%100
5	M7	X	132	132	0	%100
6	M7	Z	.076	.076	0	%100
7	M8	X	007	007	0	%100
8	M8	Z	.004	.004	0	%100
9	M9	X	086	086	0	%100
0	M9	Z	.05	.05	0	%100
1	M10	X	132	132	0	%100
2	M10	Z	.076	.076	0	%100
3	M11	X	031	031	0	%100
4	M11	Z	.018	.018	0	%100
5	M12	X	41	41	0	%100
6	M12	Ž	.237	.237	0	%100
7	M13	X	031	031	0	%100
8	M13	Z	.018	.018	0	%100
9	M14	X	41	41	0	%100
20	M14	Z	.237	.237	0	%100
21	M15	X	432	432	0	%100
2	M15	Z	.25	.25	0	%100
3	M16	X	342	342	0	%100
4	M16	Ž	.198	.198	0	%100
25	M17	X	432	432	0	%100
26	M17	Z	.25	.25	0	%100
7	M18	X	336	336	0	%100
28	M18	Z	.194	.194	0	%100
29	M19	X	439	439	0	%100
30	M19	Z	.253	.253	0	%100
31	M20	X	432	432	0	%100
32	M20	Z	.25	.25	0	%100
33	M21	X	432	432	0	%100
	M21	Ž	.25	.25	0	%100
34	M22	X	324	324	0	%100
35	M22	Z	.187	.187	0	%100
36		X	324	324	0	%100
37	M23	Ž	.187	.187	0	%100
88	M23 M24	X	27	27	0	%100
39		Z	.156	.156	0	%100
10	M24	X	439	439	0	%100
11	M25		.253	.253	0	%100
12	M25	X	432	432	0	%100
13	M26		.25	.25	0	%100
14	M26	Z	238	238	0	%100
15	M27	X	.137	.137	0	%100
46	M27	Z	432	432	0	%100
47	M28	X	.25	.25	0	%100
48	M28	Z	.25 216	216	0	%100
49	M29 M29	Z	.125	.125	0	%100

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start LocationIf	End Location[ft.
51	M30	X	439	439	0	%100
52	M30	Z	.253	.253	0	%100
53	M31	X	-,432	432	0	%100
54	M31	Z	.25	.25	0	%100
55	M32	X	432	432	0	%100
56	M32	Z	.25	.25	0	%100
57	M33	X	324	324	0	%100
58	M33	Z	.187	.187	0	%100
59	M34	X	324	324	Ö	%100
60	M34	Z	.187	.187	0	%100
61	M35	X	27	27	0	%100
62	M35	Z	.156	.156	0	%100
63	M36	X	439	439	0	%100
64	M36	Z	.253	.253	0	%100
65	MP4A	X	437	437	0	%100
66	MP4A	Z	.252	.252	0	%100
67	MP3A	X	437	437	0	%100
68	MP3A	Z	.252	.252	0	%100
69	MP1A	X	437	437	0	%100
70	MP1A	Z	.252	.252	0	%100
71	M46	X	311	311	0	%100
72	M46	Z	.18	.18	0	%100
73	MP2A	X	437	437	0	%100
74	MP2A	Z	.252	.252	0	%100
75	M50	X	437	437	0	%100
76	M50	Z	.252	.252	0	%100

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F.ksf]	End Magnitude[lb/ft,F,ksf]	Start Location(f	.End Location(ft.
1	M5	X	054	054	0	%100
2	M5	Z	0	- 0	0	%100
3	M6	X	054	054	0	%100
4	M6	Z	0	0	0	%100
5	M7	X	0	0	0	%100
6	M7	Z	0	0	0	%100
7	M8	X	054	054	0	%100
8	M8	Z	0	0	0	%100
9	M9	X	054	054	0	%100
10	M9	Z	0	0	0	%100
11	M10	X	0	0	0	%100
12	M10	Z	0	Ö	0	%100
13	M11	X	257	257	0	%100
14	M11	Z	0	0	0	%100
15	M12	X	257	257	0	%100
16	M12	Z	0	0	0	%100
17	M13	X	257	257	0	%100
18	M13	Z	0	0	0	%100
19	M14	X	257	257	O O	%100
20	M14	Z	0	0	0	%100
21	M15	X	638	638	0	%100
22	M15	Z	0	0	0	%100
23	M16	X	336	-,336	0	%100
24	M16	Z	0	0	0	%100
25	M17	X	638	638	0	%100
26	M17	Z	0	0	0	%100
27	M18	X	319	319	0	%100
28	M18	Z	0	0	0	%100
29	M19	X	638	638	0	%100
30	M19	Z	0	0	0	%100
31	M20	X	638	638	0	%100
32	M20	Z	0	0	0	%100

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg)) (Continued)

Me	ember Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f.	%100
33	M21	X	638	638	0	%100
34	M21	Z	0	0		%100
35	M22	X	374	374	0	%100
36	M22	Z	0	0		%100 %100
37	M23	X	374	374	0	%100
38	M23	Z	0	0	0	%100 %100
39	M24	X	312	312		%100
40	M24	Z	0	0	0	%100
41	M25	X	638	638	0	%100
42	M25	Z	0	0		%100
43	M26	X	638	638	0	%100
44	M26	Z	0	0	0	%100 %100
45	M27	X	336	336	0	%100
46	M27	Z	0	0	0	%100 %100
47	M28	X	638	638	0	
48	M28	Z	0	0	0	%100 %100
49	M29	X	319	319	0	%100
50	M29	Z	0	0	0	%100 %100
51	M30	X	638	638	0	%100
52	M30	Z	0	0	0	
53	M31	X	638	638	0	%100
54	M31	Z	0	0	0	%100
55	M32	X	638	638	0	%100
56	M32	Z	0	0	0	%100
57	M33	X	374	374	0	%100
58	M33	Z	0	0	0	%100
59	M34	X	374	374	0	%100
60	M34	Z	0	0	0	%100
61	M35	X	312	312	0	%100
62	M35	Z	0	0	0	%100
63	M36	X	638	638	0	%100
64	M36	Z	0	0	0	%100
65	MP4A	X	505	505	0	%100
66	MP4A	Z	0	0	0	%100
67	MP3A	X	505	505	0	%100
68	MP3A	Z	0	0	0	%100
69	MP1A	X	505	505	0	%100
70	MP1A	Z	0	0	0	%100
71	M46	X	688	688	0	%100
72	M46	Z	0	0	0	%100
73	MP2A	X	505	505	0	%100
74	MP2A	Z	0	0	0	%100
75	M50	X	505	505	0	%100
76	M50	Z	0	0	0	%100

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft.F.ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f.	
4 1		V	086	086	0	%100
1	M5	Z	05	05	0	%100
2	M5		007	007	0	%100
3	<u>M6</u>	X	004	004	0	%100
4	<u>M6</u>	Z		132	0	%100
5	M7	X	132	076	0	%100
6	M7	Z	076		0	%100
7	M8	X	086	086	0	%100
8	M8	Z	05	05		%100
9	M9	X	007	007	0	
10	M9	Z	004	004	0	%100
11	M10	X	132	132	0	%100
12	M10	7	076	076	0	%100
13	M11	X	41	41	0	%100
14	M11_	Z	237	237	0	%100

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location(f	End Location[ft.
15	M12	X	031	031	0	%100
16	M12	Z	018	018	0	%100
17	M13	X	41	41	Ů Ö	%100
18	M13	Z	237	237	Ö	%100
19	M14	X	031	031	0	%100
20	M14	Z	018	018	0	%100
21	M15	X	432	432	0	%100
22	M15	Z	25	25	0	%100
23	M16	X	238	238		
24	M16	Z	137	137	0	%100 %100
25	M17	X	432			
26	M17	Z		432	0	%100
27	M18	X	25	25	0	%100
28	M18	Z	216	216	0	%100
29			125	125	0	%100
	M19	X	439	439	0	%100
30	M19	Z	253	253	0	%100
31	M20	X	432	432	0	%100
32	M20	Z	25	25	0	%100
33	M21	X	432	432	0	%100
34	M21	Z	25	25	0	%100
35	M22	X	324	324	0	%100
36	M22	Z	187	187	0	%100
37	M23	X	324	324	0	%100
38	M23	Z	187	187	0	%100
39	M24	X	27	27	0	%100
40	M24	Z	156	156	0	%100
41	M25	X	439	439	0	%100
42	M25	Z	253	253	Ö	%100
43	M26	X	432	432	0	%100
44	M26	Z	25	25	0	%100
45	M27	X	342	342	0	%100
46	M27	Ž	198	198	0	%100
47	M28	X	432	432	0	%100
48	M28	Z	25	452	0	%100
49	M29	X	336	336		
50	M29	Z	194	336 194	0	%100
51	M30	X	439			%100
52	M30	Ž	253	439	0	%100
53	M31	X		253	0	%100
54	M31	Z	432	432	0	%100
55	M32	X	25	25	0	%100
56	M32		432	432	0	%100
		Z	25	25	0	%100
57	M33	X	324	324	0	%100
58	M33	Z	187	187	0	%100
59	M34	X	324	324	0	%100
60	M34	Z	187	187	0	%100
61	M35	X	27	27	0	%100
62	M35	Z	156	156	0	%100
63	M36	X	439	439	0	%100
64	M36	Z	253	253	0	%100
65	MP4A	X	437	437	0	%100
66	MP4A	Z	252	252	0	%100
67	MP3A	X	437	437	0	%100
68	MP3A	Z	252	252	0	%100
69	MP1A	X	437	437	0	%100
70	MP1A	Z	252	252	0	%100
71	M46	X	606	606	0	%100
72	M46	Z	35	35	0	%100
73	MP2A	X	437	437	0	%100
74	MP2A	Z	252	252	0	%100 %100
74						

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg)) (Continued)

Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	Fnd Magnitude[lb/ft,F,ksf]	Start Location[f.	.End Location[ft
76 M50	7	252	252	0	%100

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg))

N	nember Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[f.	End Location
1	M5	X	049	049	0	%100 %100
2	M5	Z	085	085	0	%100 %100
3	M6	X	003	003	0	%100
4	M6	Z	006	006	0	%100 %100
5	M7	X	229	229	0	%100
6	M7	Z	397	397	0	%100
7	M8	X	049	049	0	%100 %100
8	M8	Z	085	085	0	%100 %100
9	M9	X	003	003	0	%100
0	M9	Z	006	006	0	%100 %100
11	M10	X	229	229	0	%100
2	M10	Z	397	397		%100 %100
13	M11	X	234	234	0	%100 %100
4	M11	Z	406	406	0	%100 %100
5	M12	X	-,016	016	0	%100 %100
16	M12	Z	027	027		%100 %100
7	M13	X	234	234	0	%100 %100
8	M13	Z	406	406	0	%100
9	M14	X	016	016	0	%100 %100
20	M14	Z	027	027	0	%100 %100
21	M15	X	111	-,111	0	%100 %100
2	M15	Z	193	193	0	%100 %100
23	M16	X	137	137		%100
24	M16	Z	237	237	0	%100 %100
25	M17	X	111	<u>111</u>	0	%100 %100
6	M17	Z	193	193	0	%100 %100
7	M18	X	124	124	0	%100
28	M18	Z	215	215	0	%100 %100
29	M19	X	122	-,122	0	%100
30	M19	Z	211	211	0	%100
31	M20	X	111	111	0	%100
32	M20	Z	193	193		%100
33	M21	X	111	111	0	%100
34	M21	Z	193	193	0	%100
35	M22	X	187	187	0	%100
36	M22	Z	324	324	0	%100 %100
37	M23	X	187	187	0	%100
38	M23	Z	324	324	0	%100
39	M24	X	156	156	0	%100
10	M24	Z	27	27	0	%100
11	M25	X	122	122	0	%100
2	M25	Z	211	211	0	%100
13	M26	X	111	111	0	%100
14	M26	Z	-,193	193	0	%100
15	M27	X	197	197	0	%100
16	M27	Z	341	341	0	%100
17	M28	X	111	111	0	%100
18	M28	Z	193	-,193 103	0	%100
19	M29	X	193	193	0	%100
50	M29	Z	334	334	0	%100
51	M30	X	122	122	0	%100
52	M30	Z	211	211	0	%100 %100
53	M31	X	111	111	0	%100
54	M31	Z	193	193	0	%100
55	M32	X	111	-:111	0	%100
56	M32	Z	193	193	0	%100
57	M33	X	187	187		70100

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F.ksf]	Start Location[f.	End Location(ft
58	M33	Z	324	324	0	%100
59	M34	X	187	187	0	%100
60	M34	Z	324	324	0	%100
61	M35	X	156	156	0	%100
62	M35	Z	27	27	Ů,	%100
63	M36	X	122	122	Ō	%100
64	M36	Z	211	211	Ō	%100
65	MP4A	X	252	252	0	%100
66	MP4A	Z	437	437	0	%100
67	MP3A	X	252	252	0	%100
68	MP3A	Z	437	437	Ö	%100
69	MP1A	X	252	252	0	%100
70	MP1A	Z	437	437	0	%100
71	M46	X	192	-,192	0	%100
72	M46	Z	333	333	0	%100
73	MP2A	X	252	252	0	%100
74	MP2A	Z	437	437	Ö	%100
75	M50	X	-,252	252	0	%100
76	M50	Z	437	437	0	%100

Member Area Loads

Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitudelksfl
		No D	ata to Print			

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N4	max	778.487	10	1139.91	21	433.512	2	113	74	Ö	75	.119	30
2		min	-1445.34	28	350.902	66	-2658,607	20	368	15	0	1	053	50
3	N65	max	1436.997	34	962.191	15	2634.76	14	098	75	0	75	.113	29
4		min	-632.022	4	301.68	72	-253.487	8	313	19	0	1	052	50
5	N75	max	458.309	3	58.179	16	1680.002	11	0	75	0	75	0	75
6		min	-465.995	9	23.081	73	-1691.295	3	0	1	0	1	0	1
7	Totals:	max	1206.522	10	2154.43	22	1615.636	1						1
8	Silver	min	-1206.52	4	677.002	67	-1615.644	7						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

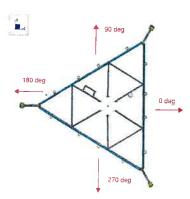
	Member	Shape	Code Check	L	LC	Shear Check	Locf	Dir	LC	phi*Pn	phi*Pnt	phi*Mn	phi*Mn	Ch	Ean
1	M5	PL3/8X3.3	.414	0	20	.106	.25	v	30		41006	.32	2.883	-	
2	M6	PL3/8X3.3	.544	0	30	.105	0	v	32	39381	41006	.32	2.883	-	H1-1b
3	M7	PIPE 2.5	.133	5	44	.037	10.9		19	12795	72450	5.138	_	2	H1-1b
4	M8	PL3/8X3.3	.361	0	14	.098	0	v	31	39381	41006	.32		-	H1-1b
5	M9	PL3/8X3.3	.502	0	25	.113	0	v	26	39381	41006	.32	2.883	-	H1-1b
6	M10	PIPE 2.5	.134	5	37	.059	11.1		25	12795	72450	5.138		-	H1-1b
7	M11	PIPE 2.0	.137		21	.071	5.381		9	25094	45900	2.674	01.100	2	H1-1b
8	M12	PIPE 2.0	.173		30	.062	0		33	25094	45900	2.674		-	H1-1b
9	M13	PIPE 2.0	.140		15	.072	5.381		3	25094	45900	2.674		_	H1-1b
10	M14	PIPE 2.0	.194		25	.065	5.381		33	25094	45900	2.674		-	H1-1b
11	M15	PL3/8X3	.096	,.	25	.135	0	v	30	36078	36450	.284		-	H1-1b
12	M16	HSS1.500	.088	2	25	.009	4.117			6372.8	12701	.485	.485	-	H1-1b
13	M17	PL3/8X3	.067		19	.081	.125	v	36	36078	36450	.284	2.279	-	H1-1b
14	M18	HSS1.500	.074	1	25	.008	0		8	_	12701	.485		_	H1-1b
15	M19	PL3/8x3.5	.237	.5	26	.081	0	v	25	23018	31201.2	.138		-	H1-1b
16	M20	PL3/8X3	.038		15	.050	.125	v		36078	36450	.284	2.279	-	H1-1b
17	M21	PL3/8X3	.080	0	15	.094	0	v	30	36078	36450	.284	2.279	1	H1-1b
18	M22	HSS1.500	.362	0	29	.034	3.333			8082.0	12701	485	.485	1	H1-1b
19	M23	HSS1.500	.399	3	25	.026	0			8082.0	12701	.485		-	H1-1b
20	M24	PIPE 2.0	.191	0	25	.012	2.583		_	40942	45900	2.674	2.674	-	H1-1b

Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)

	Member	Shape	Code Check	L	LC	Shear Check		Dir	-				phi*MnCb Eqn
21	M25	PL3/8x3.5	.058	0	33	.015	.5	V	33	23018	31201.2		2.273 1 H1-1b
22	M26	PL3/8X3	.074	6974	18	.072	0	У	50	36078	36450	.284	2.210
23	M27	HSS1.500	.081	2	16	.013	0		5_	6372.8	12701	.485	.485 1 H1-1b
24	M28	PL3/8X3	.056	223	42	.043	0	У	50	36078	36450	.284	2.279 1 H1-1b
25	M29	HSS1,500.	.052	1	24	.019	0		5	7014.8	12701	.485	.485 1 H1-1t
26	M30	PL3/8x3.5	.883	.5	3	.073	0	V	4	23018	31201.2	1	2.273 1 H1-1b
27	M31	PL3/8X3	.020	0	50	.047	.125	V	30	36078	36450	.284	2.279 1 H1-1b
28	M32	PL3/8X3	.066	0	24	.059	.125	V	15	36078	36450	.284	2.279 1 H1-1
29	M33	HSS1.500	.256	0	17	.025	3.333		31	8082.0	12701	.485	.485 1 H1-1b
	M34	HSS1.500	.268	3	15	.016	0		16	8082.0	12701	.485	.485 2 H1-1b
30	M35	PIPE 2.0	.589	1	3	.068	0		9	40942	45900	2.674	2.674 1 H1-1b
31	M36	PL3/8x3.5	.897	0	3	.078	5	v	5	23018	31201.2	.138	2,273 1 H1-1b
32		PIPE 2.0	.134	11	50	.026	4.563		38	20866	32130	1.872	1.872 1 H1-1
33	MP4A		.128	4	24	.087	4.625		4	20866	32130	1.872	1.872 1 H1-1
34	MP3A	-		1	30	.034	1		6	20866	32130	1.872	1.872 1. H1-1
35	MP1A	PIPE 2.0	.258	o	9	.003	7.653		23	47657	65205	5.749	5.749 1 H1-1b
36	M46	PIPE 3.0	.037	-		.033	1.917		29	14916	32130	1.872	1.872 2 H1-1
37	MP2A	PIPE 2.0	.174	1	42		5.5		32	20866	32130	1.872	1.872 1 H1-1
38	M50	PIPE 2.0	.053	1	41	.016	0.0		JZ	120000	JZ 130	1.012	1.012

VzW SMART Tool[©] Vendor

Client:	Verizon Wireless	Date:	11/27/2023
Site Name:	Uncasville CT		
MDG #:	5000243394		
Fuze ID #:	16272079	Page:	1


Yes

Version 1.01

I. Mount-to-Tower Connection Check

Custom Orientation F	Required
----------------------	----------

Nodes	Orientation
(labeled per Risa)	(per graphic of typical platform)
N4	0
N65	0
The state of the state of	
The same of the sa	

Tower Connection Bolt Checks

Bolt Orientation

Bolt Quantity per Reaction:

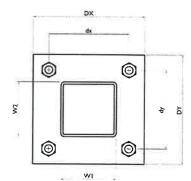
 d_x (in) (Delta X of typ. bolt config. sketch): d_y (in) (Delta Y of typ. bolt config. sketch): Bolt Type:

Bolt Diameter (in):

Required Tensile Strength / bolt (kips):

Required Shear Strength / bolt (kips):

Tensile Capacity / bolt (kips): Shear Capacity / bolt (kips):

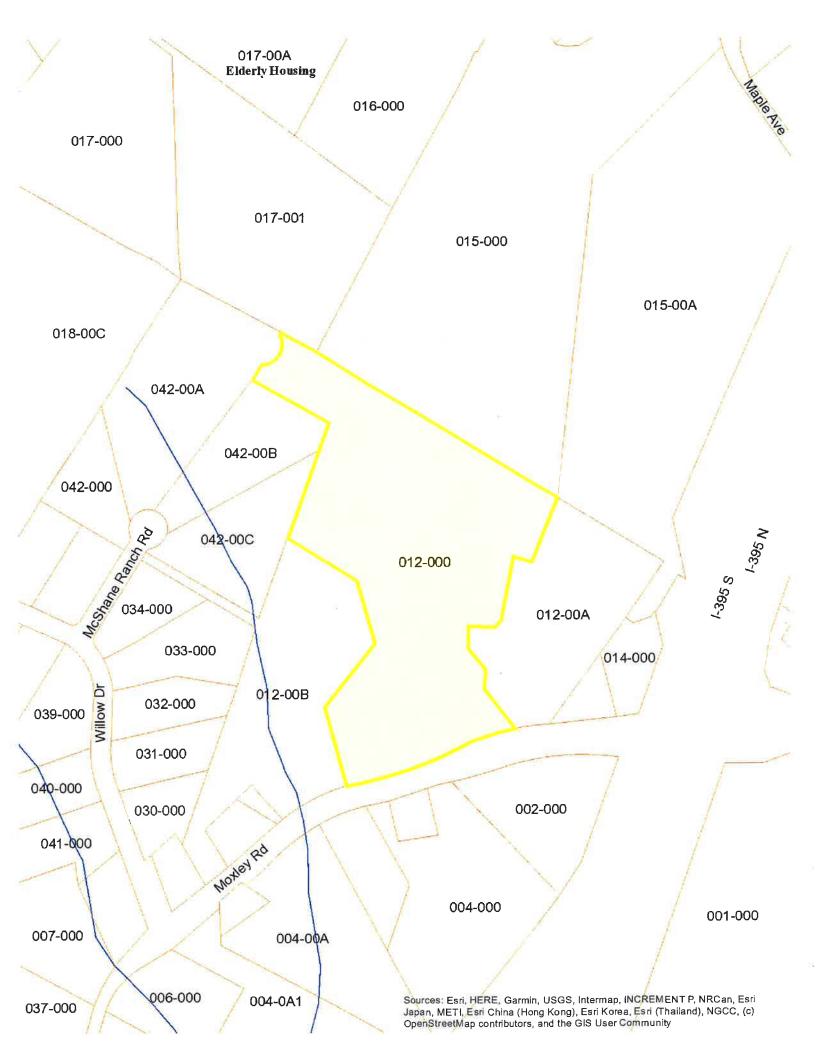

Bolt Overall Utilization:

Tower Connection Baseplate Checks

Ye	25	

4
3
2
A36
0.5
2.0
0.3
6.4
3.8
31.9%
No

Parallel


VzWSMART Tool® Vendor

Client:	Verizon Wireless	Date: 11/27/2023
Sito Namo:	Ungasville CT	
PSLC #:	5000243394	
Fuze ID #:	16272079	Page: 2
1 000 10 111		Version 1.01

Tower Connection Wei	IO CI	riecks
----------------------	-------	--------

No

ATTACHMENT 5

Property Card: 71 MOXLEY RD Town of Montville, CT

		, control of the con	Farcei information			
Location:	71 MOXLEY RD	Property Use:	Use Assessment	Primary Use:	Residential	
Unique ID:	W0061700	Map Block Lot:	017-012-000	Acres:	14.34	
		Zone:	,R40	Volume / Page:	0151/1005	
		Sale Date:	03/23/1983	Sale Price:	0\$	
	Value Infe	nformation		Own	Owner's Information	

	Value Information	5	
	Appraised Value	Assessed Value	
Land	35850	6730	
Buildings	0	0	
Detached Outbuildings	207290	145100	
Total	243140	151830	

Page 1 of 1

ATTACHMENT 6

Verizon/Uncasville

Certificate of Mailing — Firm

Name and Address of Sender	TOTAL NO. of Pieces Listed by Sender	TOTAL NO. of Pieces Received at Post Office™	Affix Stamp Here Postmark with Date	of Receipt.	2011	SERT
Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	Postmaster, per (name of receiving	3	neo	post ^M /08/2024 POSTAGE	\$003.19º	8 2024 3PS
USPS® Tracking Number	(Name, Street, C	Address ity, State and ZIP Code™)	Postage	Fee	041L12203997	Parcel Airlift
Firm-specific Identifier	Leonard Bunnell Sr.					
1.	Town of Montville		1			
	310 Norwich – New	London Turnpike]			
	Uncasville, CT 063	32				
	Meredith Badalucca	Assistant Planner				
2.	Town of Montville					
	310 Norwich – New	London Turnpike	1			
	Uncasville, CT 063	82				
	Ernest and Walter W	Vainwright				
3.	149 Great Neck Roa					
	Waterford, CT 0638		1			
	Wateriord, CT 0030					
 4.						

5.						
6.						