

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

August 9, 2022

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application

49 Cook Drive, Montville, CT 06382

Latitude: 41.475061 Longitude: -72.104170 Site #: BOBOS00073B_ DISH

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 49 Cook Drive, Montville, Connecticut.

Dish Wireless LLC proposes to install six (6) 600/1900 MHz 5G antennas and twelve (12) RRUs, at the 162-foot level of the existing 171-foot self-support tower, two (2) Fiber cables will also be installed. Dish Wireless LLC equipment cabinets will be placed within a 7' x 5' lease area within the fenced compound. Included are plans by Infinigy, dated July 14, 2022, Exhibit C. Also included is a structural analysis prepared by Infinigy, dated March 25, 2022, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was originally approved by the Town of Montville sometime prior to 1980, and efforts to retrieve a copy of the original permit were unsuccessful. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Mayor Ronald McDaniel and Liz Burdick, Town Planner for the Town of Montville, as well as the tower owner (Wireless Solutions) and property owner (KT Enterprises LLC).

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

- 1. The proposed modification will not result in an increase in the height of the existing structure. The top of the existing tower is 171-feet and the Dish Wireless LLC antennas will be located at a center line height of 162-feet.
- 2. The proposed modifications will not result in an increase of the site boundary as depicted on the attached site plan.

- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.
- 4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. The combined site operations will result in a total power density of 3.33% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully submits that the shared use of this facility satisfies these criteria.

- A. Technical Feasibility. The existing tower has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.
- B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this tower in Montville. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.
- C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 162-foot level of the existing 171-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
- D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.
- E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Montville.

Sincerely,

Denise Sabo

Denise Sabo

Mobile: 203-435-3640 Fax: 413-521-0558

Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments

Cc: Mayor Ronald McDaniel Town of Montville 310 Norwich-New London Turnpike Uncasville, CT 06382

Liz Burdick - Town Planner Town of Montville 310 Norwich-New London Turnpike Uncasville, CT 06382

KT Enterprises LLC – Property Owner PO Box 374 Uncasville, CT 06382

Wireless Solutions - Tower Owner

Exhibit A

Original Facility Approval

Victoria Masse <victoria@northeastsitesolutions.com>

Fwd: 49 Cook Drive, Uncasville, CT

1 message

Chuck Regulbuto <chuck@northeastsitesolutions.com>

Fri, Jul 8, 2022 at 11:29 AM

To: Victoria Masse <victoria@northeastsitesolutions.com>

Cc: Jason Berry <jberry@northeastsitesolutions.com>, Mark Roberts <mark.roberts@qcdevelopment.net>

for Dish CTBOBOS00073B

----- Forwarded message ------

From: Meredith Badalucca <mbadalucca@montville-ct.org>

Date: Fri, Jul 8, 2022, 11:07 AM

Subject: 49 Cook Drive, Uncasville, CT

To: chuck@northeastsitesolutions.com <chuck@northeastsitesolutions.com>

Good Morning,

It was a pleasure speaking with you this morning regarding the tower at 49 Cook Drive. Unfortunately, we do not have a copy of the original permit in our files. The only permits we have copies of are from 1980 for an addition and 2011 for a replacement.

Should you have any further questions, please feel free to contact me.

Respectfully,

Meredith Badalucca

Zoning & Wetlands Officer

Town of Montville

310 Norwich New London Tpke

Uncasville, CT 06382

860-848-6779

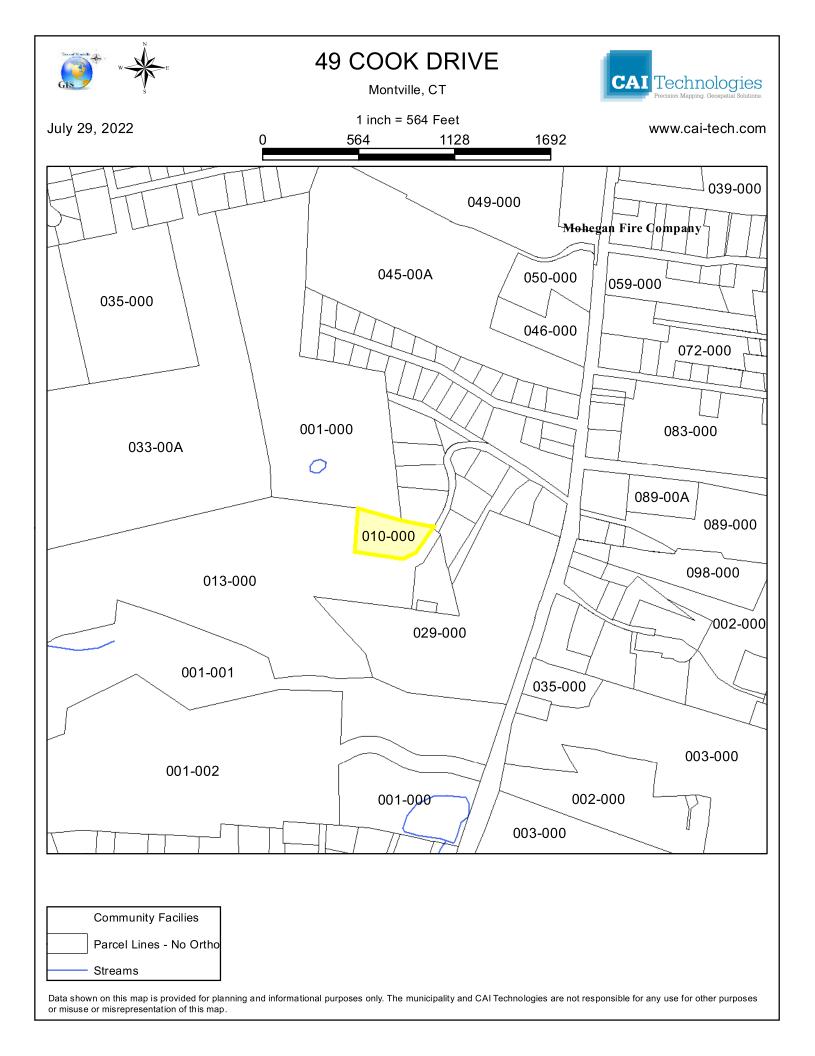
Exhibit B

Property Card

Parcel Information

Location:	49 COOK DR	Property Use:	Public Utility	Primary Use:	Utility Building
Unique ID:	S0556700	Map Block Lot:	099-010-000	Acres:	2.04
		Zone:	R20	Volume / Page:	0558/0320
		Sale Date:	02/11/2011	Sale Price:	\$250,000

Value Information


	Appraised Value	Assessed Value
Land	89700	62790
Buildings	53900	37730
Detached Outbuildings	271700	190190
Total	415300	290710

Owner's Information

Owner's Data	
KT TOWER ENTERPRISES LLC	
PO BOX 374	
UNCASVILLE, CT 063820374	

Building 1					
Category:	Commercial	Siding:	Pre-Cast Concrete	Total Rooms:	0
Stories:	1.00	Fuel:	Oil	Beds/Units:	0
GLA:	784	Heating:	Hot Air No Duct	Baths:	0
Year Built:	1970	Fireplace:	0		
Class:	Masonry	Cooling Percent:	None	Half Baths:	0
Use:	Utility Building	Floors:	Concrete	Basement Garage:	0
Construction Style:	Utility Building	Roof Material:	Asphalt	Finished Basement:	0

Exhibit C

Construction Drawings

dESh wireless.

DISH WIRELESS, LLC. SITE ID:

BOBOS00073B

DISH WIRELESS, LLC. SITE ADDRESS:

49 COOK DRIVE MONTVILLE, CT 06382

CONNECTICUT CODE COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:

2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS

	SHEET INDEX
SHEET NO.	SHEET TITLE
T-1	TITLE SHEET
A-1	OVERALL AND ENLARGED SITE PLAN
.,,	Overview and enterious one roun
A-2	ELEVATION AND ANTENNA LAYOUTS
A-2.1	ANTENNA AND RADIO SCHEDULE
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS
A-4	EQUIPMENT DETAILS
A-5	EQUIPMENT DETAILS
A-6	EQUIPMENT DETAILS
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES
E-2	ELECTRICAL DETAILS
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE
G-1	GROUNDING PLANS AND NOTES
G-2	GROUNDING DETAILS
G-3	GROUNDING DETAILS
RF-1	RF CABLE COLOR CODE
GN-1	LEGEND AND ABBREVIATIONS
GN-2	GENERAL NOTES
GN-3	GENERAL NOTES
GN-4	GENERAL NOTES

SCOPE OF WORK

THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIVALENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:

- TOWER SCOPE OF WORK:

 INSTALL (6) PROPOSED PANEL ANTENNAS (2 PER SECTOR)

 INSTALL (1) PROPOSED ANTENNA SECTOR FRAMES (1 PER SECTOR)
- INSTALL PROPOSED JUMPERS
 INSTALL (12) PROPOSED RRUS (2 PER SECTOR)
- INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP) INSTALL (1) PROPOSED HYBRID CABLE

- INSTALL (1) PROPOSED METAL PLATFORM
 INSTALL (1) PROPOSED ICE BRIDGE
- INSTALL (1) PROPOSED PPC CARINET
- INSTALL (1) PROPOSED EQUIPMENT CABINET
- PROPOSED POWER CONDUIT
- INSTALL (1) PROPOSED TELCO CONDUIT
- INSTALL (1) PROPOSED TELCO-FIBER BOX
- INSTALL (1 PROPOSED GPS LINIT
- INSTALL (1) PROPOSED SAFETY SWITCH (IF REQUIRED)
- INSTALL (1) PROPOSED CIENA BOX (IF REQUIRED) INSTALL (1) PROPOSED METER SOCKET

SITE PHOTO

UNDERGROUND SERVICE ALERT CBYD 811 UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455 WWW.CBYD.COM

CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.

11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

PARCEL NUMBER: 099-010-000 OCCUPANCY GROUP: CONSTRUCTION TYPE: POWER COMPANY: EVERSOURCE

PROJECT DIRECTORY

DISH WIRELESS, LLC.

5701 SOUTH SANTA FE DRIVE

LITTLETON, CO 80120

TOWER OWNER: KT TOWER ENTERPRISES LLC

PO BOX 374 UNCASVILLE, CT 06382-0374

SITE DESIGNER: INFINIGY

2500 W. HIGGINS RD. STE. 500 HOFFMAN ESTATES, IL 60169 (847) 648-4068

SITE ACQUISITION: DAVID GOODFELLOW DAVID.GOODFELLOW@DISH.COM

CONSTRUCTION MANAGER: JAVIER SOTO

(303) 706-4617

DIPESH PARIKH RF ENGINEER:

DIPESH PARIKHODISH COM

DIRECTIONS

DIRECTIONS FROM TWEED NEW HAVEN AIRPORT:

SITE INFORMATION

KT TOWER ENTERPRISES LLC

PO BOX 374 UNCASVILLE, CT 06382-0374

NEW LONDON

LATITUDE (NAD 83): 41° 28' 30.21" N

LONGITUDE (NAD 83): 72° 06' 14.95" W

SELF SUPPORT TOWER

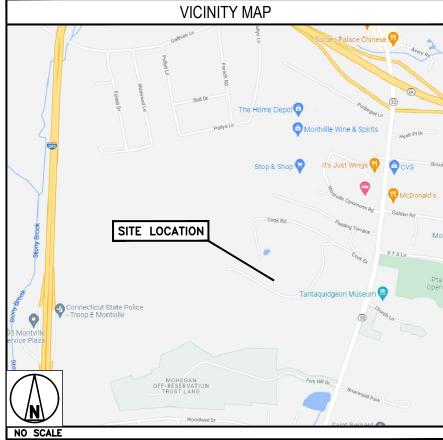
PROPERTY OWNER:

TOWER CO SITE ID:

TOWER APP NUMBER:

ZONING JURISDICTION: TBD

TELEPHONE COMPANY: FRONTIER


ZONING DISTRICT:

ADDRESS:

TOWER TYPE:

COUNTY:

HEAD NORTHWEST ON CHESTER AIRPORT TOWARD CT-145 / WINTHROP RD, TURN RIGHT ONTO CT-145 / WINTHROP RD, TURN RIGHT ONTO CT-148 / W MAIN ST, TAKE THE RAMP ON THE RIGHT FOR CT-9 SOUTH AND HEAD TOWARD OLD SAYBROOK, TAKE THE RAMP ON THE LETT FOR I-95 NORTH / US-1 NORTH AND HEAD TOWARD NEW LONDON / PROVIDENCE, KEEP LETT TO GET ONTO I-395 N / GOVERNOR JOHN DAVIS LODGE TPKE N, AT EXIT 9, HEAD RIGHT ON THE RAMP FOR CT-2A EAST TOWARD LEDYARD / PRESTON, AT EXIT 5, HEAD RIGHT ON THE RAMP FOR CT-32 TOWARD NEW LONDON / UNCASVILLE, TURN RIGHT ONTO CT-32 / NORWICH NEW LONDON TPKE TOWARD NEW LONDON / UNCASVILLE, TURN RIGHT ONTO COOK DR, KEEP LEFT TO STAY ON COOK DR, ROAD NAME CHANGES TO COOK RD, UNPAVED ROAD, PRIVATE ROAD, ARRIVE AT 57 COOK DRIVE, MONTVILLE, CT 06382



5701 SOUTH SANTA FF DRIVE LITTLETON, CO 80120

FROM ZERO TO INFINIGY

2300 W. HIGGINS RD. SUITE 300 | HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4068 | FAX: 518-690-0793 WWW.INFINIGY.COM

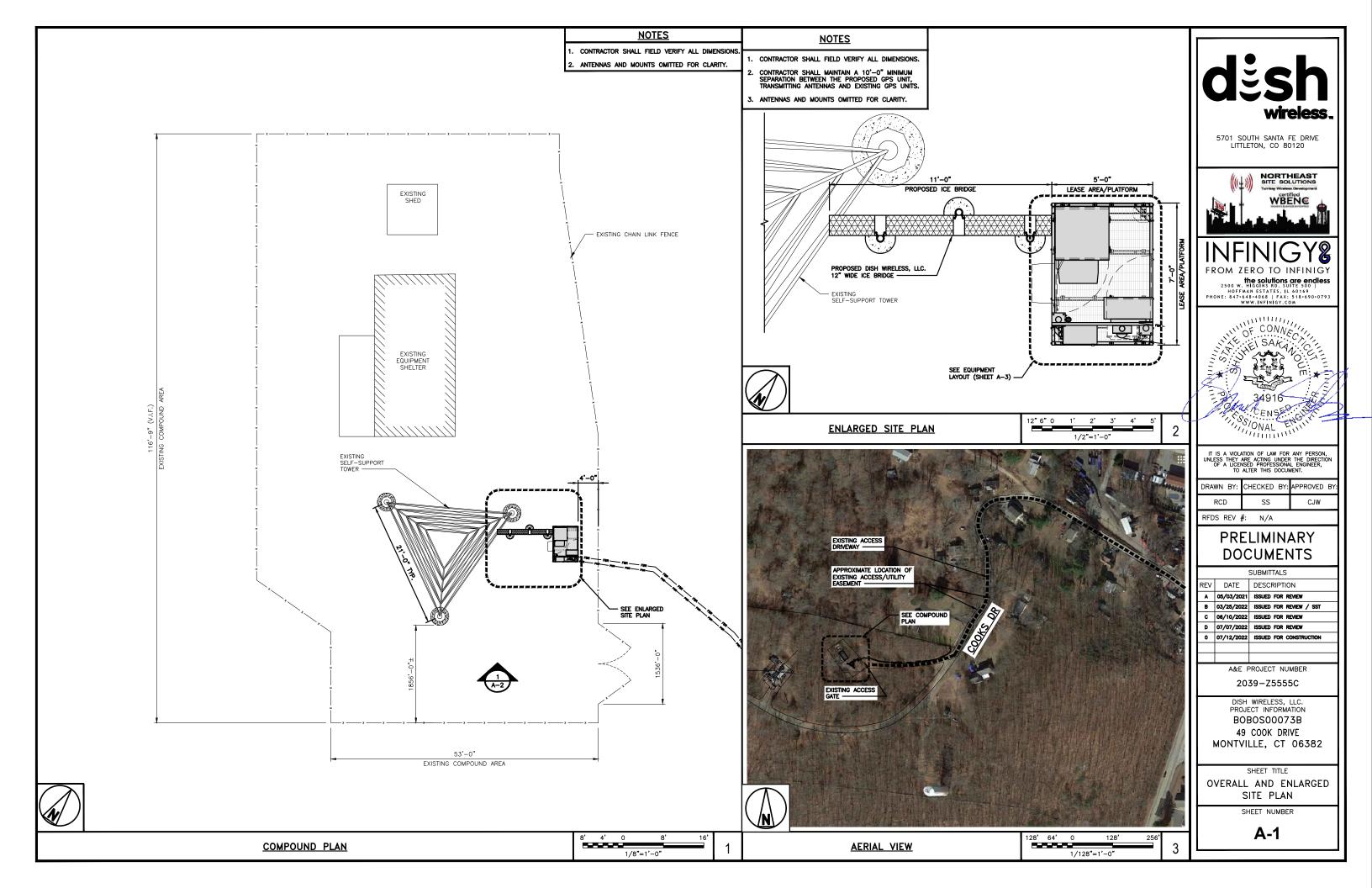
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

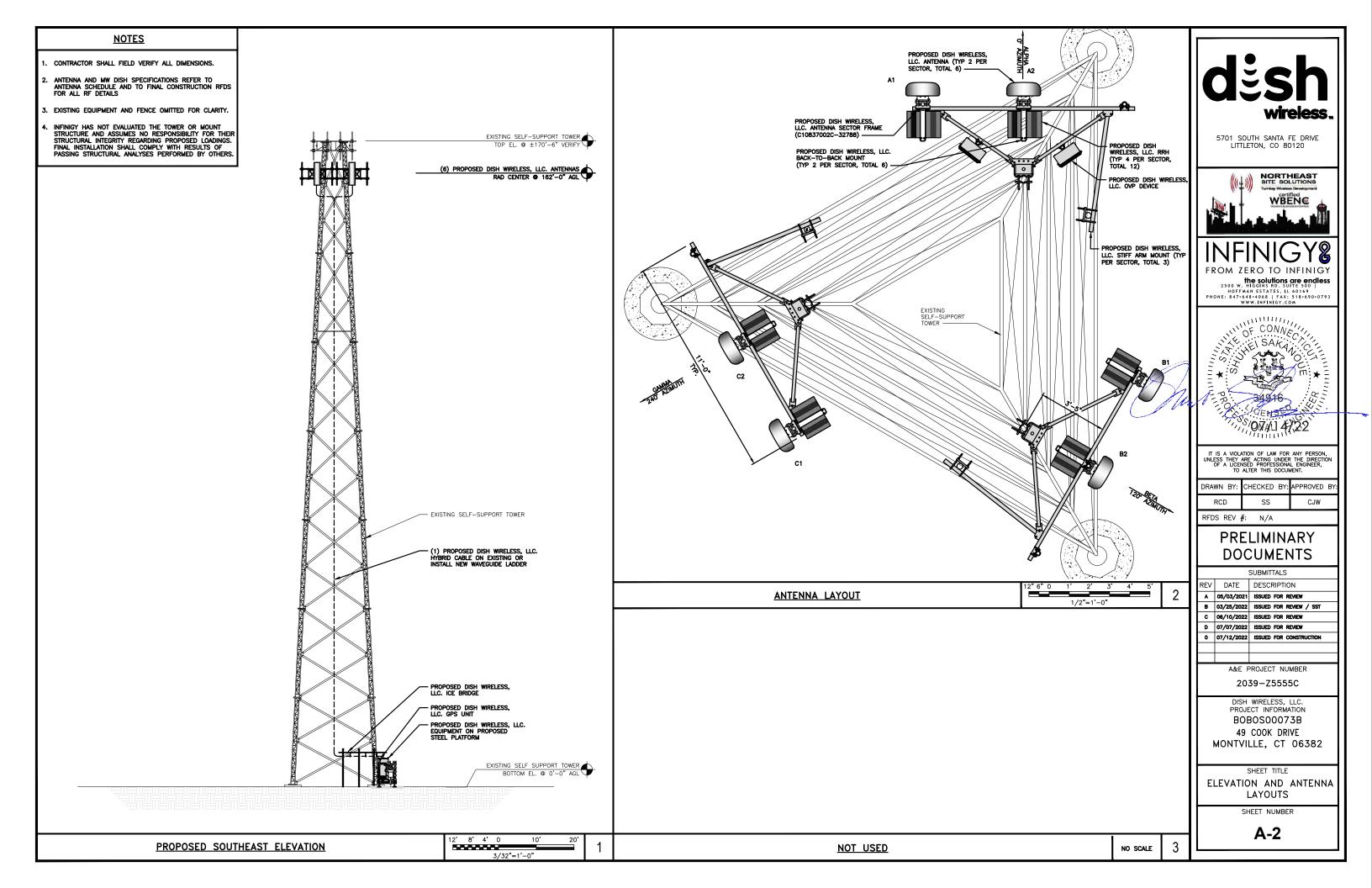
DRAWN BY: CHECKED BY: APPROVED BY

RFDS REV #: N/A **PRELIMINARY DOCUMENTS**

SUBMITTALS				
REV	DATE	DESCRIPTION		
A	05/03/2021	ISSUED FOR REVIEW		
В	03/25/2022	ISSUED FOR REVIEW / SST		
C	06/10/2022	ISSUED FOR REVIEW		
D	07/07/2022	ISSUED FOR REVIEW		
0	07/12/2022	ISSUED FOR CONSTRUCTION		

A&E PROJECT NUMBER


2039-Z5555C


PROJECT INFORMATION BOBOSO0073B 49 COOK DRIVE MONTVILLE, CT 06382

> SHEET TITLE TITLE SHEET

SHEET NUMBER

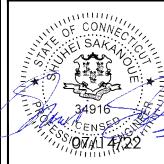
T-1

		ANTENNA						TRANSMISSION CABLE
SECTOR	POSITION	EXISTING OR PROPOSED	MANUFACTURER — MODEL NUMBER	TECHNOLOGY	SIZE (HxW)	AZMUITH	RAD CENTER	FEED LINE TYPE AND LENGTH
ALPHA	A1	PROPOSED	JMA MX08FR0665-21	5G	72.0" × 20.0"	0.	162'-0"	
ALFIIA	A2	PROPOSED	JMA MX08FR0665-21	5G	72.0" X 20.0"	0°	162'-0"	
BETA	B1	PROPOSED	JMA MX08FR0665-21	5G	72.0" X 20.0"	120°	162'-0"	(1) HIGH-CAPACITY HYBRID CABLE
DEIA	B2	PROPOSED	JMA MX08FR0665-21	5G	72.0" X 20.0"	120°	162'-0"	(200' LONG)
CAMMA	C1	PROPOSED	JMA MX08FR0665-21	5G	72.0" X 20.0"	240°	162'-0"	
GAMMA	C2	PROPOSED	JMA MX08FR0665-21	5G	72.0" X 20.0"	240°	162'-0"	

- 1. CONTRACTOR TO REFER TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS.
- 2. ANTENNA OR RRH MODELS MAY CHANGE DUE TO EQUIPMENT AVAILABILITY. ALL EQUIPMENT CHANGES MUST BE APPROVED AND REMAIN IN COMPLIANCE WITH THE PROPOSED DESIGN AND STRUCTURAL ANALYSES.

		RRH	
SECTOR	POSITION	MANUFACTURER — MODEL NUMBER	TECHNOLOGY
ALPHA	A1	(2) FUJITSU - TA08025-B604	5G
ALFIIA	A1	(2) FUJITSU - TA08025-B605	5G
BETA	B1	(2) FUJITSU - TA08025-B604	5G
DEIA	B1	(2) FUJITSU - TA08025-B605	5G
GAMMA	C1	(2) FUJITSU - TA08025-B604	5G
	C1	(2) FUJITSU - TA08025-B605	5G

- 1. CONTRACTOR TO REFER TO FINAL CONSTRUCTION RFDS FOR ALL RF
- 2. ANTENNA AND RRH MODELS MAY CHANGE DUE TO EQUIPMENT AVAILABILITY. ALL EQUIPMENT CHANGES MUST BE APPROVED AND REMAIN IN COMPLIANCE WITH THE PROPOSED DESIGN AND STRUCTURAL ANALYSES.



5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

FROM ZERO TO INFINIGY

the solutions are endless
2500 w. HIGGINS RD. SUITE 500 |
HOFFAMN ESTATES, IL 60169
PHONE: 847-648-4086 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	В
RCI)	SS		CJW	

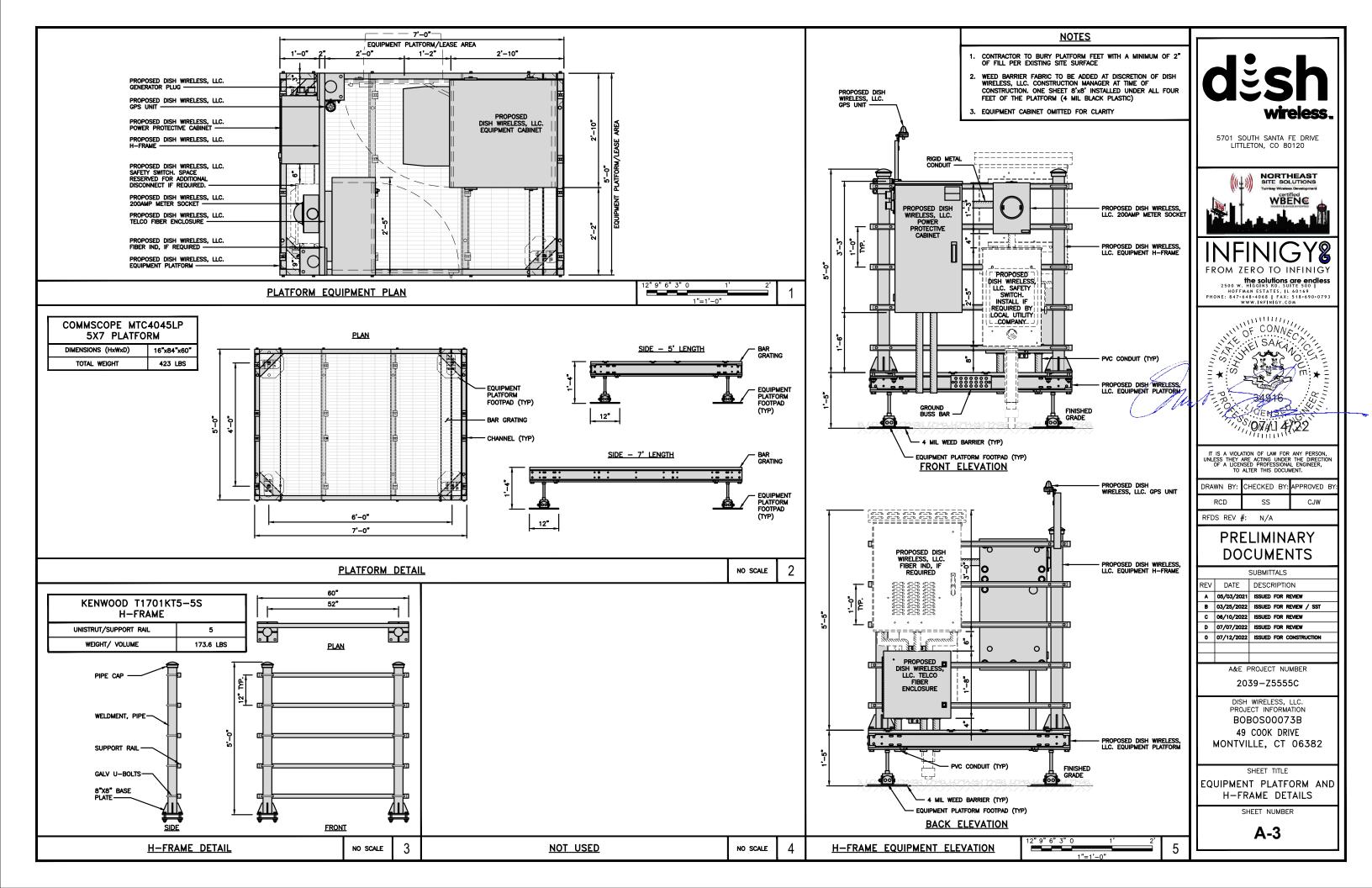
RFDS REV #: N/A

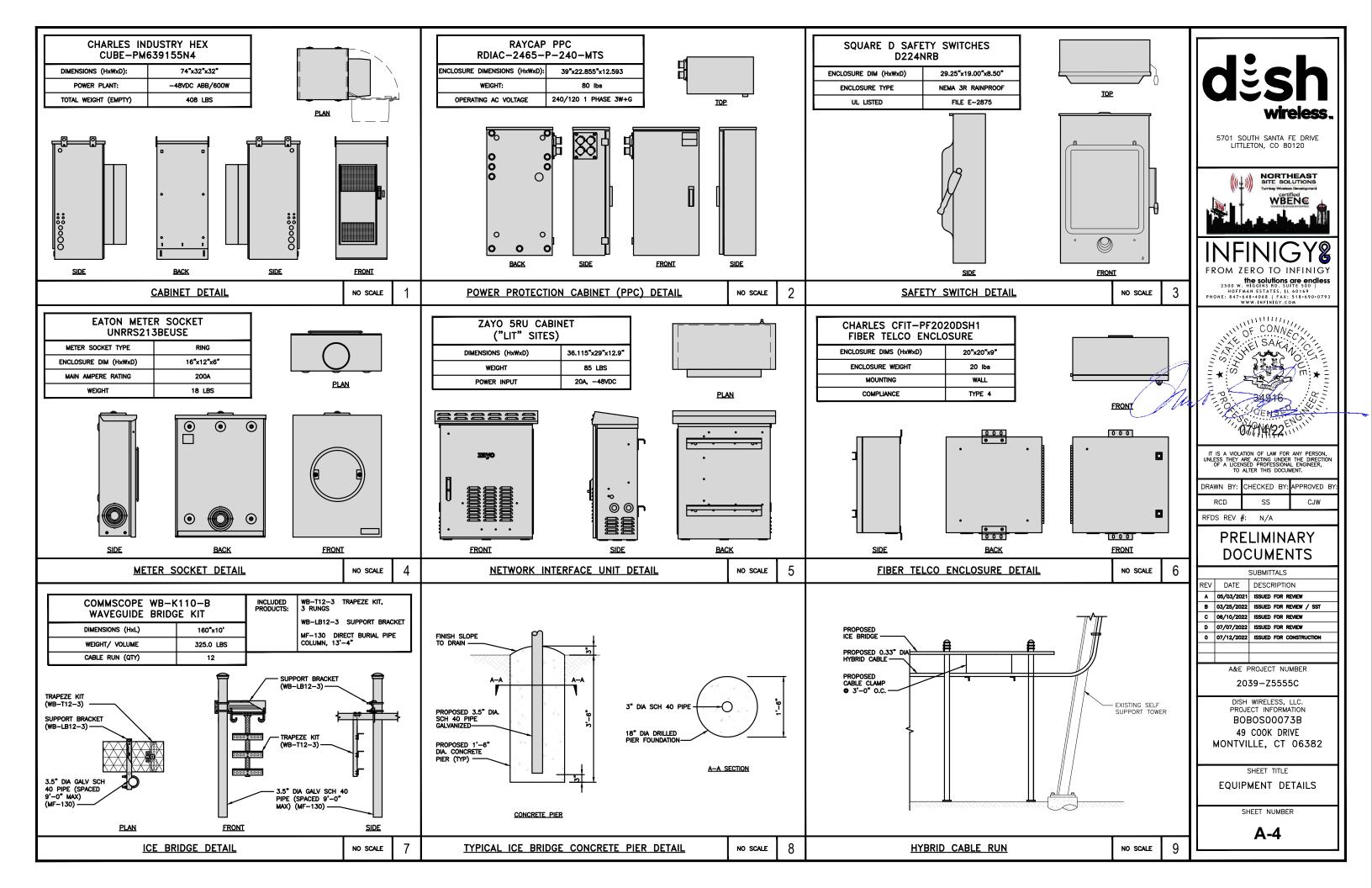
PRELIMINARY DOCUMENTS

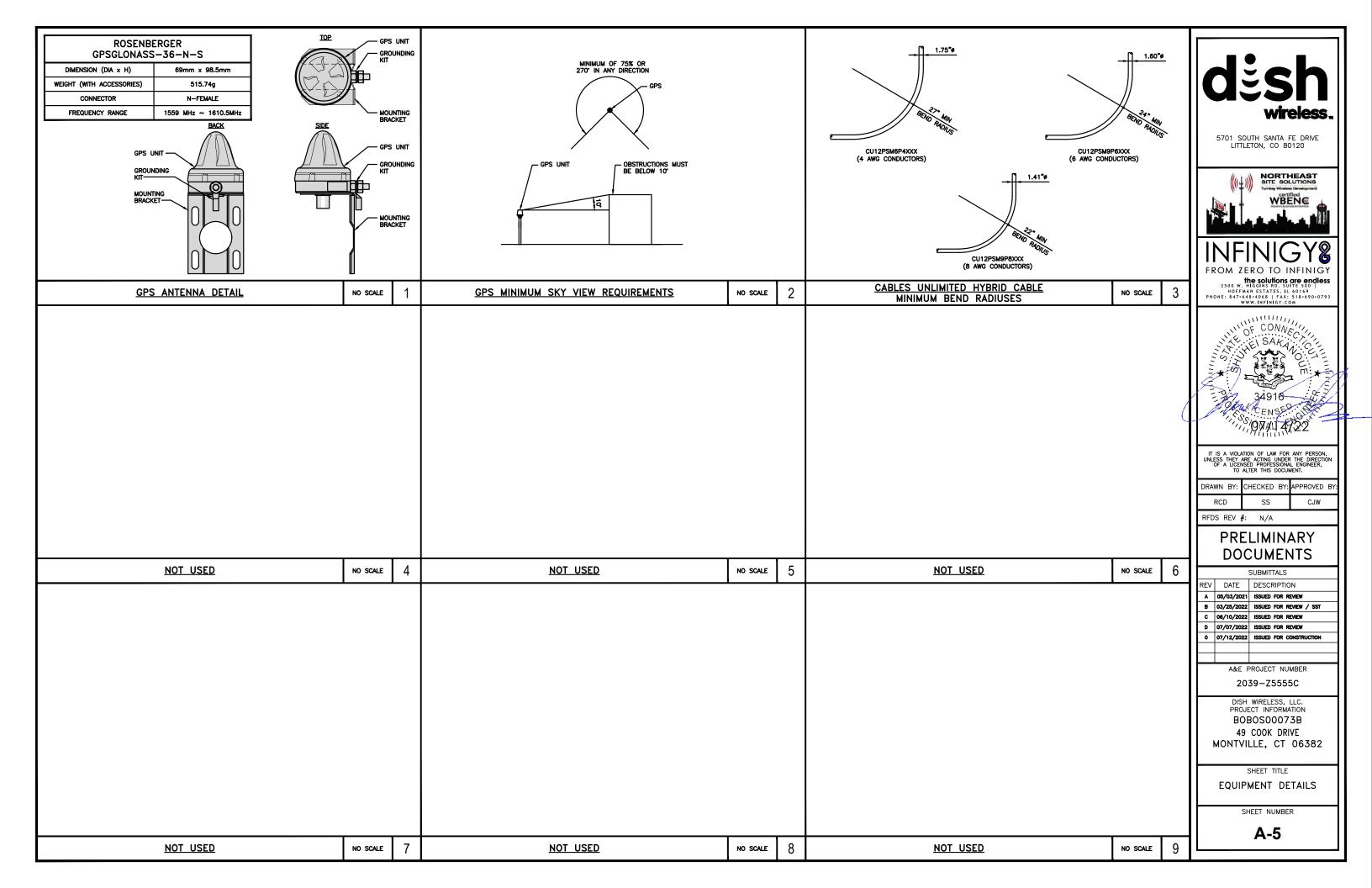
		SUBMITTALS					
	REV	DATE	DESCRIPTION				
	A	05/03/2021	ISSUED FOR REVIEW				
	В	03/25/2022	ISSUED FOR REVIEW / SST				
	C	06/10/2022	ISSUED FOR REVIEW				
	٥	07/07/2022	ISSUED FOR REVIEW				
	٥	07/12/2022	ISSUED FOR CONSTRUCTION				
H							

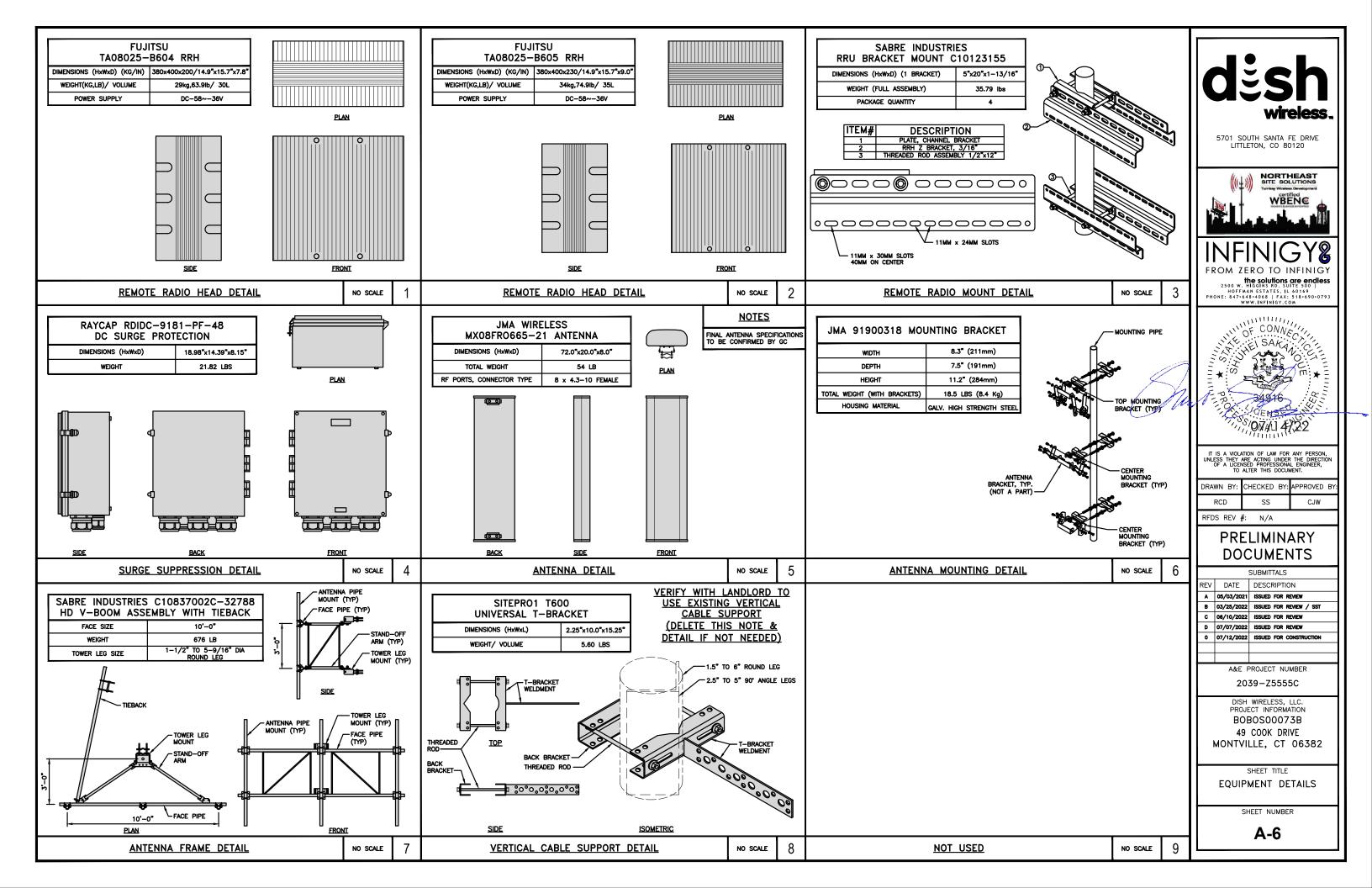
A&E PROJECT NUMBER

2039-Z5555C


DISH WIRELESS, LLC. PROJECT INFORMATION BOBOS00073B 49 COOK DRIVE MONTVILLE, CT 06382


SHEET TITLE ANTENNA AND RADIO


SCHEDULE


SHEET NUMBER

A-2.1

- CONTRACTOR SHALL FIELD VERIFY ALL PROPOSED UNDERGROUND UTILITY CONDUIT ROUTE.
- ANTENNAS AND MOUNTS OMITTED FOR CLARITY.

DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING $\pm 24V$ and $\pm 48V$ conductors. RED MARKINGS SHALL IDENTIFY $\pm 24V$ and blue markings shall identify $\pm 48V$.

- CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
- 2. ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS.
- 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
- 4. CONDUIT ROUGH—IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS. VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
- 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
- 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
- 7. CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
- 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
- INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250.
 THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL
 DISCONNECT SWITCHES, AND EQUIPMENT CABINETS.
- 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.
- 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT.
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS.
- 13. FIBER ROUTE IS PRELIMINARY, FINAL FIBER ROUTE TO BE DETERMINED ONCE UCR (UTILITY COORDINATION REPORT) HAS BEEN FINALIZED.

ELECTRICAL NOTES

NO SCALE

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

FROM ZERO TO INFINIGY the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4086 | FAX: 518-690-0793
WWW.INFINIGY.COM

OF CONNECTION OF SAKANOCIA

LIGENSED. 07/11/4/22

NORTHEAST SITE SOLUTIONS

WBENG

DRAWN BY: CHECKED BY: APPROVED BY CJW

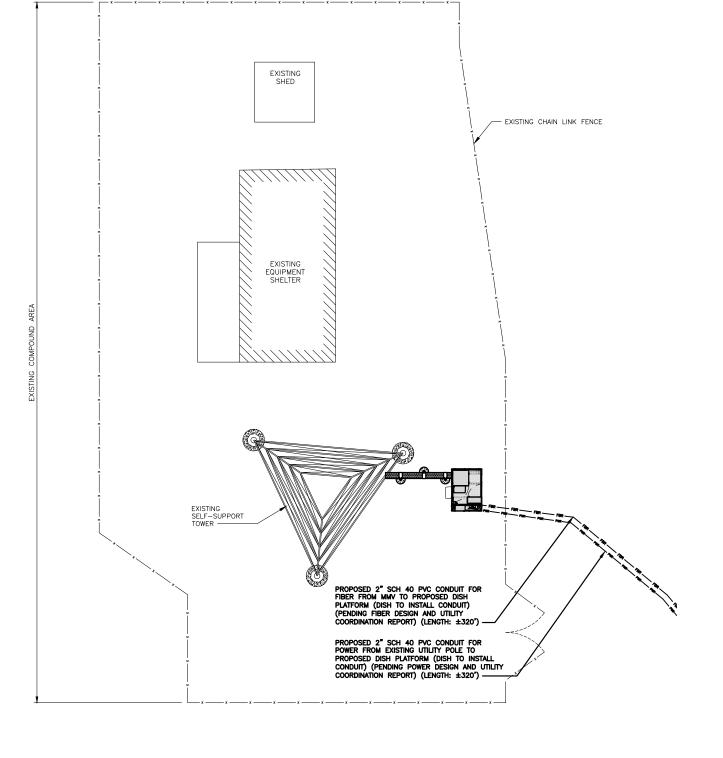
RFDS REV #: N/A

PRELIMINARY DOCUMENTS

ı			SUBMITTALS
	REV	DATE	DESCRIPTION
	A	05/03/2021	ISSUED FOR REVIEW
	В	03/25/2022	ISSUED FOR REVIEW / SST
	С	06/10/2022	ISSUED FOR REVIEW
	D	07/07/2022	ISSUED FOR REVIEW
	0	07/12/2022	ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER

2039-Z5555C


DISH WIRELESS, LLC. PROJECT INFORMATION BOBOSO0073B 49 COOK DRIVE MONTVILLE, CT 06382

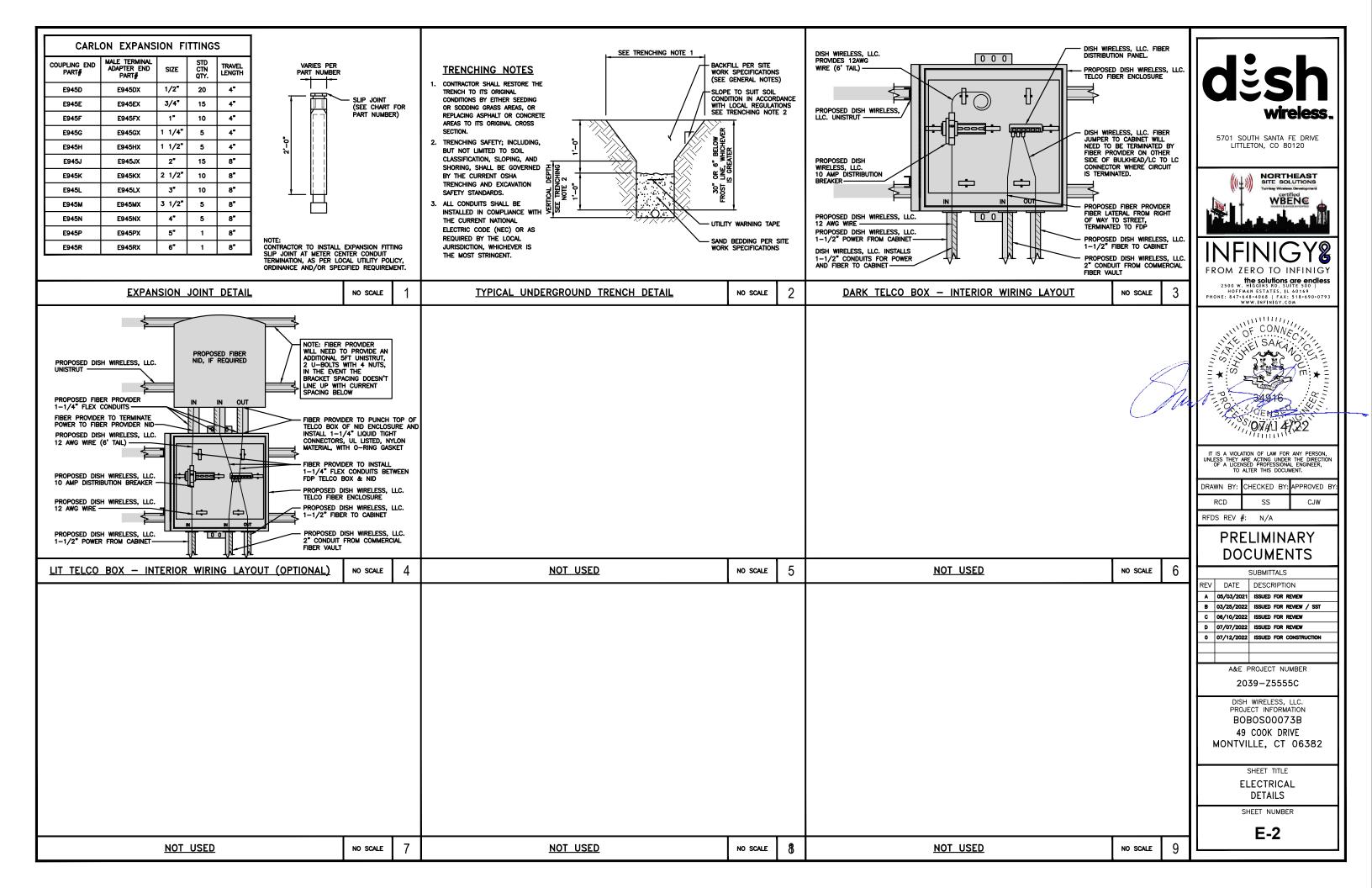
SHEET TITLE

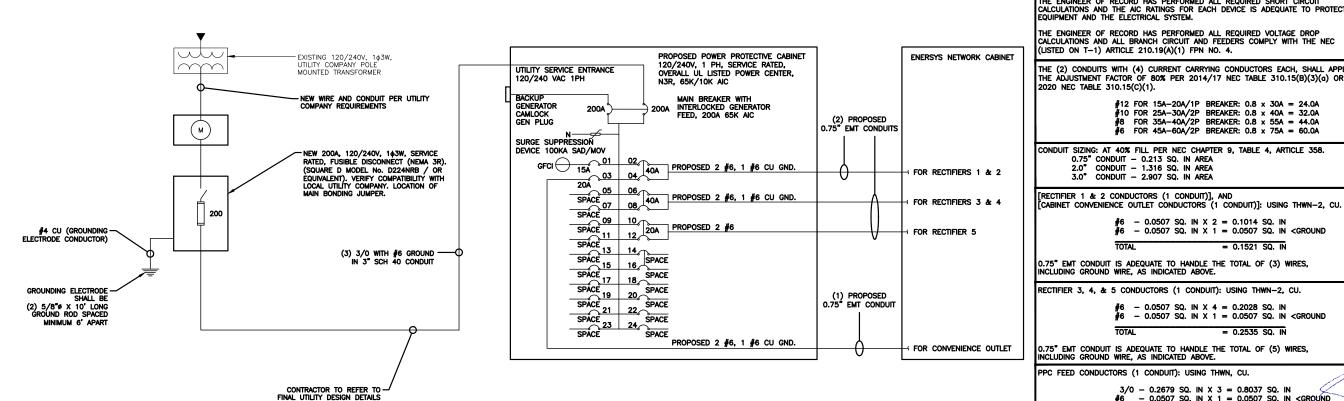
ELECTRICAL/FIBER ROUTE PLAN AND NOTES

SHEET NUMBER

E-1

EXISTING COMPOUND AREA


1/8"=1'-0"


OVERALL UTILITY ROUTE PLAN

256

1/128"=1'-0"

UTILITY ROUTE PLAN

THE ENGINEER OF RECORD HAS PERFORMED ALL REQUIRED SHORT CIRCUIT CALCULATIONS AND THE AIC RATINGS FOR EACH DEVICE IS ADEQUATE TO PROTECT THE EQUIPMENT AND THE ELECTRICAL SYSTEM.

THE ENGINEER OF RECORD HAS PERFORMED ALL REQUIRED VOLTAGE DROP CALCULATIONS AND ALL BRANCH CIRCUIT AND FEEDERS COMPLY WITH THE NEC (LISTED ON T-1) ARTICLE 210.19(A)(1) FPN NO. 4.

THE (2) CONDUITS WITH (4) CURRENT CARRYING CONDUCTORS EACH, SHALL APPLY THE ADJUSTMENT FACTOR OF 80% PER 2014/17 NEC TABLE 310.15(B)(3)(a) OR

#12 FOR 15A-20A/1P BREAKER: 0.8 x 30A = 24.0A #10 FOR 25A-30A/2P BREAKER: 0.8 x 40A = 32.0A FOR 35A-40A/2P BREAKER: 0.8 x 55A = 44.0A #8 FOR 35A-40A/2P BREAKER: 0.8 x 55A = 44.0A #6 FOR 45A-60A/2P BREAKER: 0.8 x 75A = 60.0A

CONDUIT SIZING: AT 40% FILL PER NEC CHAPTER 9, TABLE 4, ARTICLE 358. 0.75" CONDUIT - 0.213 SQ. IN AREA 2.0" CONDUIT - 1.316 SQ. IN AREA

3.0" CONDUIT - 2.907 SQ. IN AREA

#6 - 0.0507 SQ, IN X 2 = 0.1014 SQ, IN #6 - 0.0507 SQ. IN X 1 = 0.0507 SQ. IN <GROUND

0.75" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (3) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

RECTIFIER 3, 4, & 5 CONDUCTORS (1 CONDUIT): USING THWN-2, CU.

#6 - 0.0507 SQ. IN X 4 = 0.2028 SQ. IN #6 - 0.0507 SQ. IN X 1 = 0.0507 SQ. IN <GROUND TOTAL = 0.2535 SQ. IN

 $0.75^{\prime\prime}$ EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (5) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC FEED CONDUCTORS (1 CONDUIT): USING THWN, CU.

3/0 - 0.2679 SQ. IN X 3 = 0.8037 SQ. IN #6 - 0.0507 SQ. IN X 1 = 0.0507 SQ. IN <GROUND

3.0" SCH 40 PVC CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (4) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC ONE-LINE DIAGRAM

NO SCALE

97.05/97.11 47.22 IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

5701 SOUTH SANTA FE DRIVE

LITTLETON, CO 80120

FROM ZERO TO INFINIGY

OF CONVECTION OF SAKAN COMMENTAL SAKAN COMMENT

the solutions are endless 2500 W. HIGGINS RD. SUITE 500 | 2500 W. HIGGINS RD. SUITE 500 | HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4068 | FAX: 518-690-0793 WWW.INFINIGY.COM

NORTHEAST SITE SOLUTIONS

WBENG

DRAWN BY: CHECKED BY: APPROVED BY CJW

> RFDS REV #: N/A

PRELIMINARY DOCUMENTS

	SUBMITTALS					
REV	DATE	DESCRIPTION				
A	05/03/2021	ISSUED FOR REVIEW				
В	03/25/2022	ISSUED FOR REVIEW / SST				
С	06/10/2022	ISSUED FOR REVIEW				
D	07/07/2022	ISSUED FOR REVIEW				
0	07/12/2022	ISSUED FOR CONSTRUCTION				

A&E PROJECT NUMBER

2039-Z5555C

DISH WIRELESS, LLC. PROJECT INFORMATION BOBOSO0073B 49 COOK DRIVE MONTVILLE, CT 06382

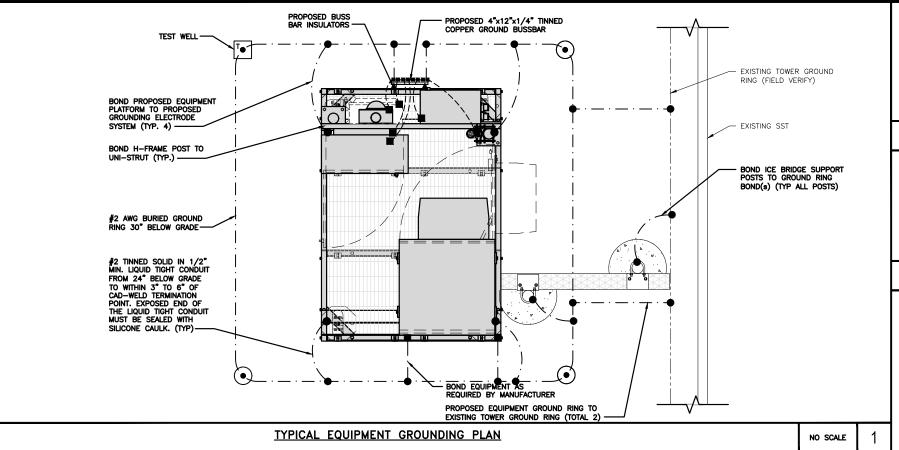
SHEET TITLE

ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE

SHEET NUMBER

E-3

	PR	OPOS	ED E	NE	RS	S	PAN	IEL S	SC	HEDU	JLE	
LOAD SERVED	(WA	AMPS TTS)	TRIP	СКТ #	Р	HASE	CH #	T TRIF	,	(WA	AMPS TTS)	LOAD SERVED
PPC GFCI OUTLET	180	L2	15A	 	Ы	ΑÞ	\ 2	+	_	L1 3840	L2	ABB/GE INFINITY
ENERSYS GFCI OUTLET		180	20A	3		В	ব্	#UA	١.		3840	RECTÍFIERS 1 & 2
-SPACE-			-	5	얽		뭐			3840	3840	ABB/GE INFINITY RECTIFIER 3 & 4
-SPACE-				9	K	Ā	<u> 1</u> 10	204		1920		ABB/GE INFINITY
-SPACE-				11	떩		\mathcal{H}_{i}^{p}	-	`		1920	RÉCTIFIER 5
-SPACE- -SPACE-					ద		\} ;		_			-SPACE-
-SPACE-				17	云		ਹੈ।					-SPACE-
-SPACE-				19	ζ		7 2					-SPACE-
-SPACE-				21	\Box		거2					-SPACE-
-SPACE-				23	<u> </u>	ΒŁ	<u> 겨2</u>	<u> </u>			oxdot	-SPACE-
VOLTAGE AMPS	180	180								9500	9500	
200A MCB, 1¢, 24 SPA	CE, 120,	/240V	L1			L2						
MB RATING: 65,000 AIC			9680			9680		DLTAGE	AM	PS		
			81		<u> </u>	81		MPS	_			
				8				AX AMP				
				10	02			AX 125				


PANEL SCHEDULE

NO SCALE

2

NOT USED

NO SCALE

EXOTHERMIC CONNECTION

■ MECHANICAL CONNECTION

TEST GROUND ROD WITH

---- #2 AWG STRANDED & INSULATED

- - #2 AWG SOLID COPPER TINNED

GROUND BUS BAR GROUND ROD

GROUNDING LEGEND

- 1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.
- CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM. GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH WIRELESS, LLC. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS.
- 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED.

GROUNDING KEY NOTES

- (A) EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW GRADE, OR 6 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM THE EXTERIOR WALL OR FOOTING.
- B TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS, AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN BROWNER FOR THE FORMAL PROPERTY. AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS.
- © INTERIOR GROUND RING: #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTOR EXTENDED AROUND THE PERIMETER OF THE EQUIPMENT AREA. ALL NON-TELECOMMUNICATIONS RELATED METALLIC OBJECTS FOUND WITHIN A SITE SHALL BE GROUNDED TO THE INTERIOR GROUND RING WITH #6 AWG STRANDED GREEN
- BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS SHALL BE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE CORNERS OF THE ♛

GROUND ROD: UL LISTED COPPER CLAD STEEL. MINIMUM 1/2" DIAMETER BY EIGHT FEET LONG. GROUND RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. GROUND RODS SHALL BE DRIVEN TO THE DEPTH OF GROUND RING CONDUCTOR.

- F CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GREEN INSULATED COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUCTORS.
- G HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH.
- (H) EXTERIOR CABLE ENTRY PORT GROUND BARS; LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING, BOND TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTORS WITH AN EXOTHERMIC WELD AND INSPECTION SLEEVE.
- J TELCO GROUND BAR: BOND TO BOTH CELL REFERENCE GROUND BAR OR EXTERIOR GROUND RING.
- K FRAME BONDING: THE BONDING POINT FOR TELECOM EQUIPMENT FRAMES SHALL BE THE GROUND BUS THAT IS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEWORK.
- INTERIOR UNIT BONDS: METAL FRAMES, CABINETS AND INDIVIDUAL METALLIC UNITS LOCATED WITH THE AREA OF THE INTERIOR GROUND RING REQUIRE A #6 AWG STRANDED GREEN INSULATED COPPER BOND TO THE
- M FENCE AND GATE GROUNDING: METAL FENCES WITHIN 7 FEET OF THE EXTERIOR GROUND RING OR OBJECTS BONDED TO THE EXTERIOR GROUND RING SHALL BE BONDED TO THE GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEEDING 25 FEET. BONDS SHALL BE MADE AT EACH
- $\underbrace{\text{N}}_{\text{EXTERIOR UNIT BONDS:}} \text{ METALLIC OBJECTS, EXTERNAL TO OR MOUNTED TO THE BUILDING, SHALL BE BONDED TO THE EXTERIOR GROUND RING. USING <math>\#2$ TINNED SOLID COPPER WIRE
- P ICE BRIDGE SUPPORTS: EACH ICE BRIDGE LEG SHALL BE BONDED TO THE GROUND RING WITH #2 AWG BARE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRIDGE LEG AND BURIED
- DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEMENTS AND INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICE CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPPED WITH A MASTER DC SYSTEM RETURN GROUND CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED TO THE CELL SITE DEFERENCE CRUIND BAR
- (R) TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICALLY BONDED TO PROPOSED ANTENNA MOUNT COLLAR. REFER TO DISH WIRELESS, LLC. GROUNDING NOTES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

FROM ZERO TO INFINIGY

the solutions are endless 2500 W. HIGGINS RD. SUITE 500 | 2300 W. HIGGINS RD. SUITE 300 | HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4068 | FAX: 518-690-0793 WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:	
RCD		SS		CJW		

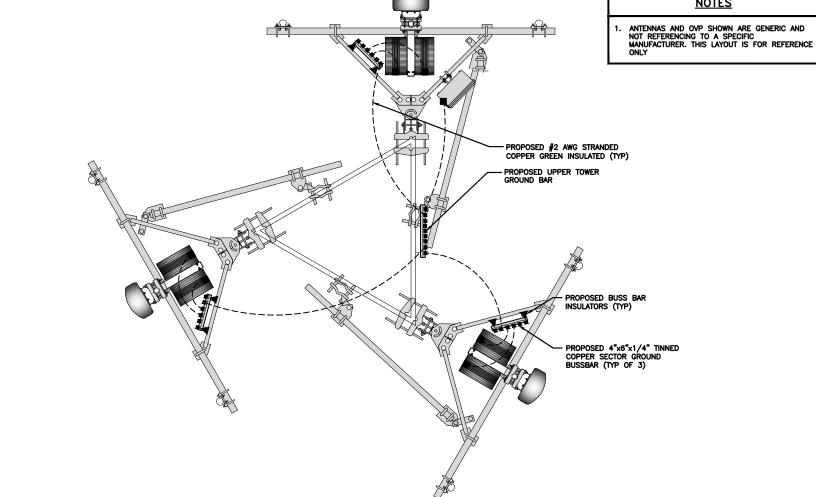
RFDS REV #: N/A

PRELIMINARY DOCUMENTS

		SUBMITTALS
REV	DATE	DESCRIPTION
Α	05/03/2021	ISSUED FOR REVIEW
В	03/25/2022	ISSUED FOR REVIEW / SST
C	06/10/2022	ISSUED FOR REVIEW
٥	07/07/2022	ISSUED FOR REVIEW
0	07/12/2022	ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER

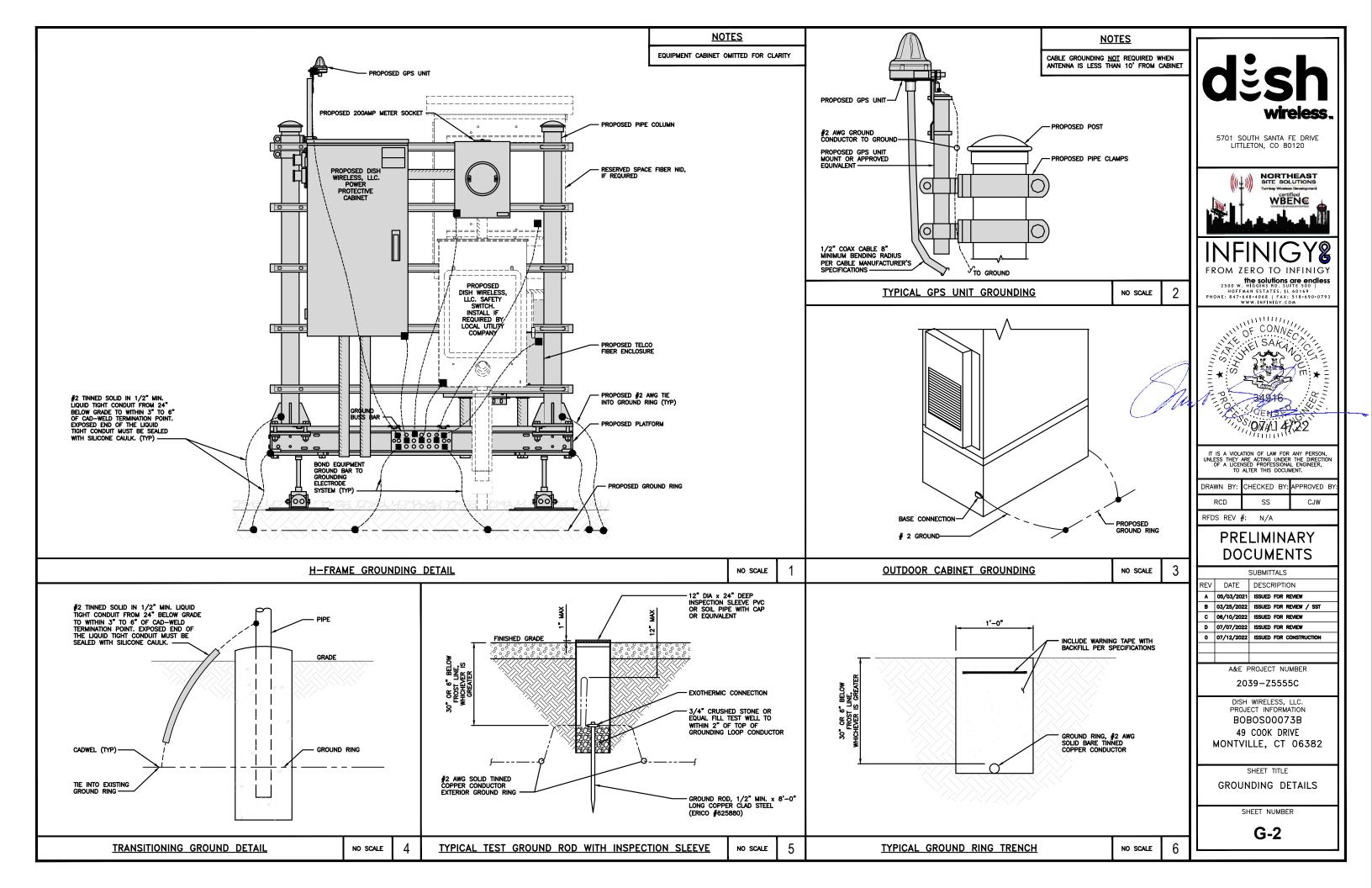
2039-Z5555C

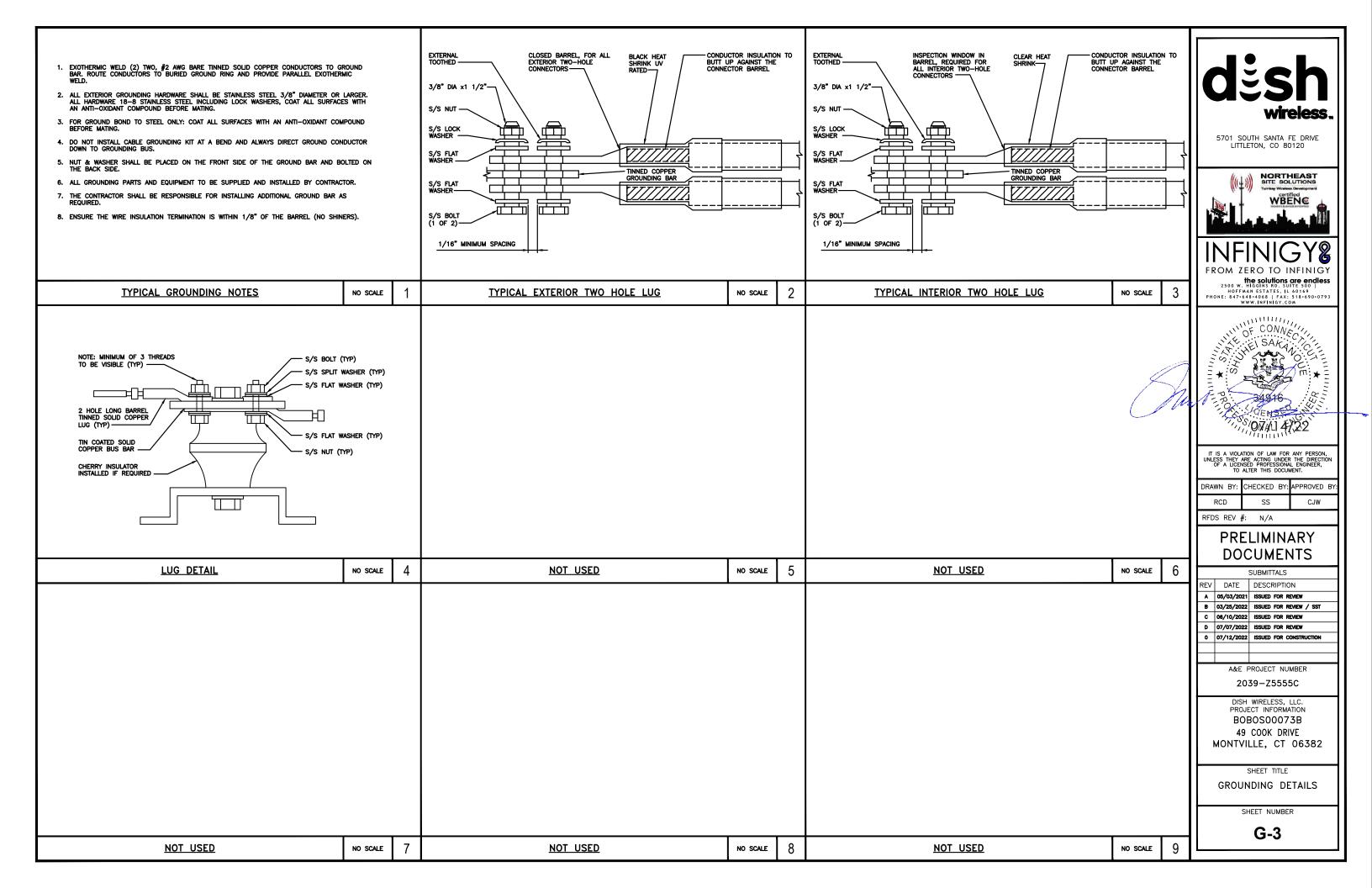

DISH WIRELESS, LLC. PROJECT INFORMATION BOBOSO0073B 49 COOK DRIVE MONTVILLE, CT 06382

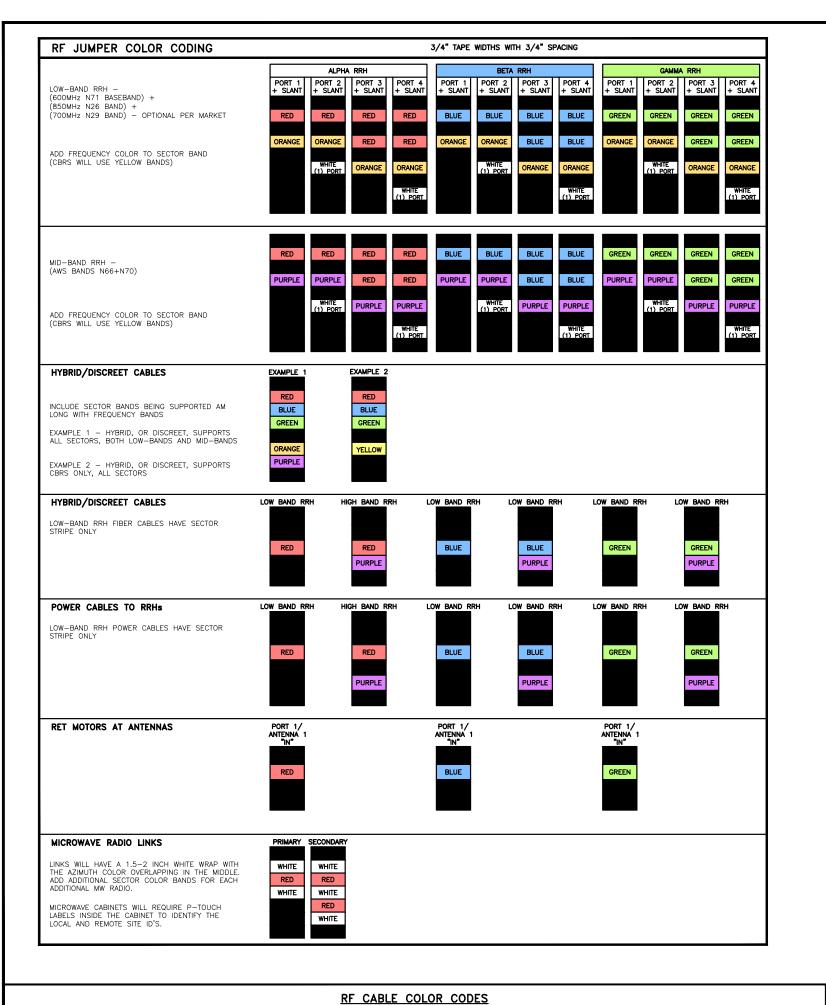
SHEET TITLE

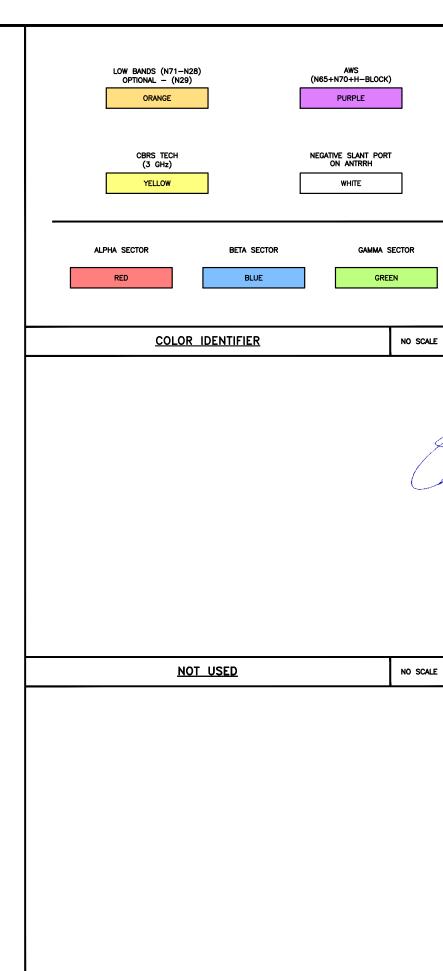
GROUNDING PLANS AND NOTES

SHEET NUMBER


G-1




NO SCALE


GROUNDING KEY NOTES

NO SCALE

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

FROM ZERO TO INFINIGY

the solutions are endless
2500 w. HIGGINS RD. SUITE 500 |
HOFFAM RESTATES, IL 60169
PHONE: 847-648-4086 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
RCD		SS		CJW	

RFDS REV #: N/A

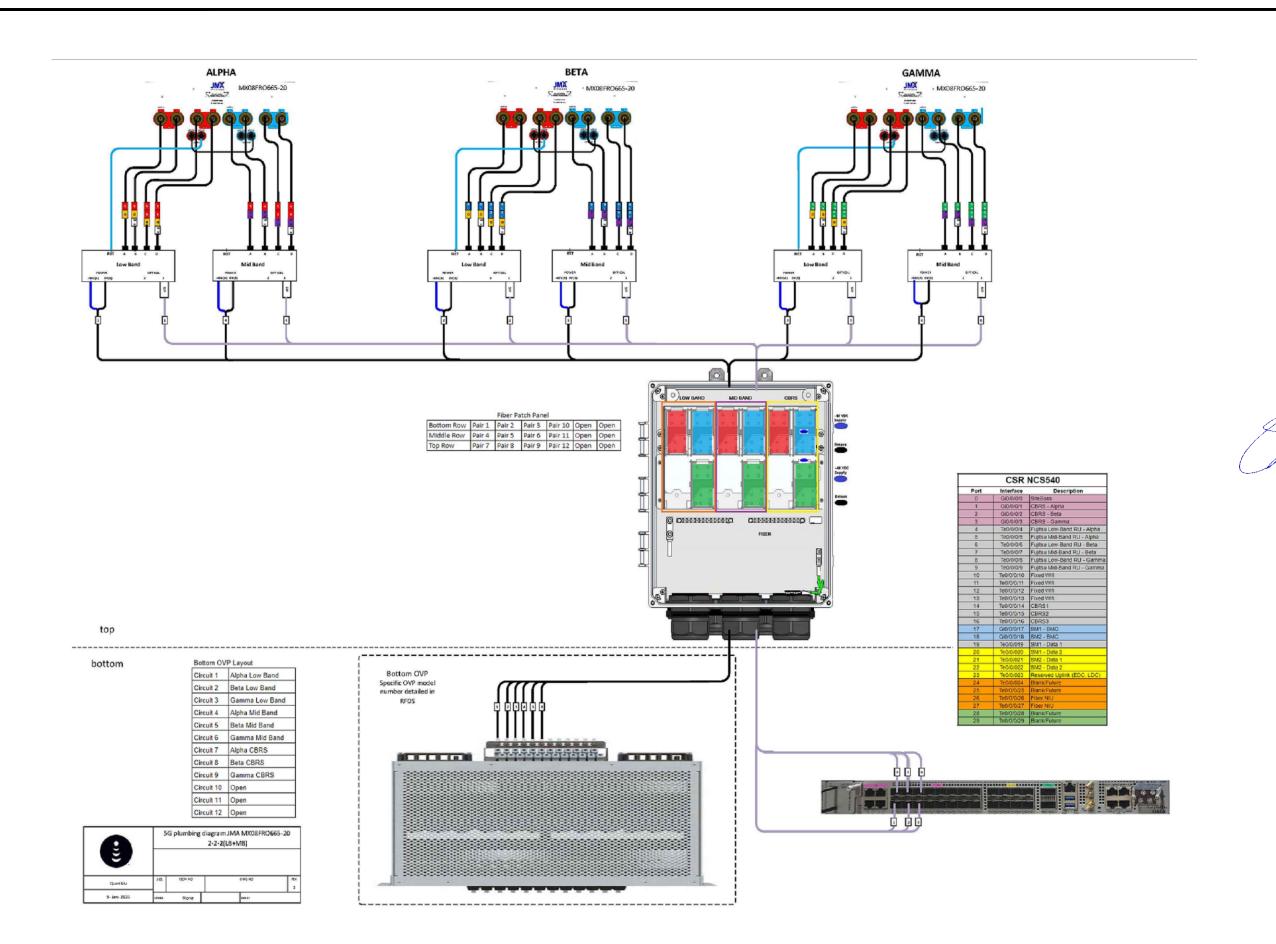
PRELIMINARY DOCUMENTS

			SUBMITTALS
7	REV	DATE	DESCRIPTION
	A	05/03/2021	ISSUED FOR REVIEW
	В	03/25/2022	ISSUED FOR REVIEW / SST
	С	06/10/2022	ISSUED FOR REVIEW
	D	07/07/2022	ISSUED FOR REVIEW
	0	07/12/2022	ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER

2039-Z5555C

DISH WIRELESS, LLC. PROJECT INFORMATION BOBOSO0073B 49 COOK DRIVE MONTVILLE, CT 06382


SHEET TITLE CABLE COLOR CODE

SHEET NUMBER

RF-1

NOT USED

NO SCALE

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

INFINIGY&

FROM ZERO TO INFINIGY

the solutions are enaless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WW.HINTOY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	В
RCD		SS		CJW	

RFDS REV #: N/A

PRELIMINARY DOCUMENTS

		SUBMITTALS
REV	DATE	DESCRIPTION
A	05/03/2021	ISSUED FOR REVIEW
В	03/25/2022	ISSUED FOR REVIEW / SST
С	06/10/2022	ISSUED FOR REVIEW
D	07/07/2022	ISSUED FOR REVIEW
0	07/12/2022	ISSUED FOR CONSTRUCTION

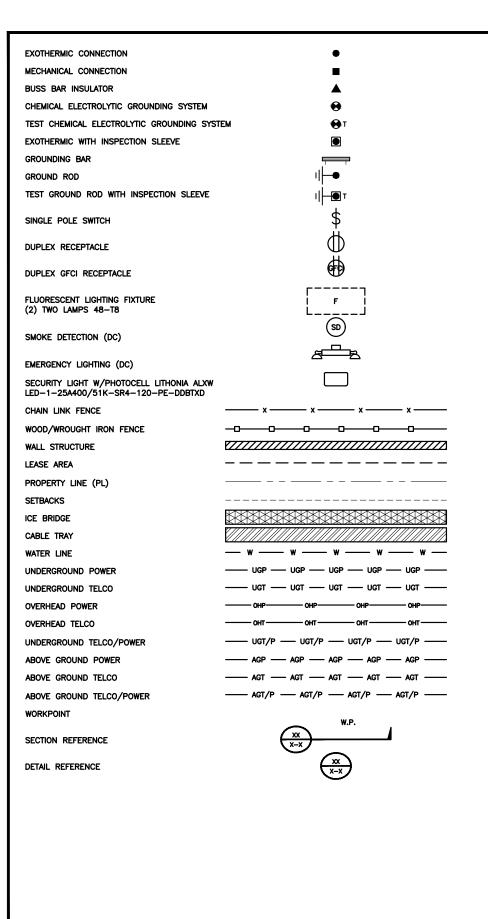
A&E PROJECT NUMBER

2039-Z5555C

DISH WIRELESS, LLC.
PROJECT INFORMATION
BOBOSO0073B
49 COOK DRIVE
MONTVILLE, CT 06382

SHEET TITLE

RF PLUMBING DIAGRAM


SHEET NUMBER

RF-2

PLUMBING DIAGRAM

NO SCALE

111

	ANGUAR ROLT	IN I	MOLL
AB ABV	ANCHOR BOLT ABOVE	IN INT	INCH INTERIOR
AC AC	ALTERNATING CURRENT		
ADDL	ADDITIONAL	LB(S)	POUND(S)
AFF	ABOVE FINISHED FLOOR	LF	LINEAR FEET
AFG	ABOVE FINISHED FLOOR ABOVE FINISHED GRADE	LTE	LONG TERM EVOLUTION
AGL	ABOVE FINISHED GRADE ABOVE GROUND LEVEL	MAS	MASONRY
		MAX	MAXIMUM
AIC	AMPERAGE INTERRUPTION CAPACITY	МВ	MACHINE BOLT
ALUM	ALUMINUM	MECH	MECHANICAL
ALT	ALTERNATE	MFR	MANUFACTURER
ANT	ANTENNA	MGB	MASTER GROUND BAR
APPROX	APPROXIMATE	MIN	MINIMUM
ARCH	ARCHITECTURAL	MISC	MISCELLANEOUS
ATS	AUTOMATIC TRANSFER SWITCH	MTL	METAL
AWG	AMERICAN WIRE GAUGE	MTS	MANUAL TRANSFER SWITCH
BATT	BATTERY	MW	MICROWAVE
BLDG	BUILDING	NEC	NATIONAL ELECTRIC CODE
BLK	BLOCK	NM	NEWTON METERS
BLKG	BLOCKING	NO.	NUMBER
BM	BEAM	#	NUMBER
BTC	BARE TINNED COPPER CONDUCTOR	NTS	NOT TO SCALE
BOF	BOTTOM OF FOOTING	oc	ON-CENTER
CAB	CABINET	OSHA	OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION
CANT	CANTILEVERED	OPNG	OPENING
CHG	CHARGING		
CLG	CEILING	P/C	PRECAST CONCRETE
CLR	CLEAR	PCS	PERSONAL COMMUNICATION SERVICES
COL	COLUMN	PCU	PRIMARY CONTROL UNIT
COMM	COMMON	PRC	PRIMARY RADIO CABINET
CONC	CONCRETE	PP	POLARIZING PRESERVING
CONSTR	CONSTRUCTION	PSF	POUNDS PER SQUARE FOOT
DBL	DOUBLE	PSI	POUNDS PER SQUARE INCH
		PT	PRESSURE TREATED
DC	DIRECT CURRENT	PWR	POWER CABINET
DEPT	DEPARTMENT	QTY	QUANTITY
DF	DOUGLAS FIR	RAD	RADIUS
DIA	DIAMETER	RECT	RECTIFIER
DIAG	DIAGONAL	REF	REFERENCE
DIM	DIMENSION	REINF	REINFORCEMENT
DWG	DRAWING	REQ'D	REQUIRED
DWL	DOWEL	RET	REMOTE ELECTRIC TILT
EA	EACH	RF	RADIO FREQUENCY
EC	ELECTRICAL CONDUCTOR	RMC	RIGID METALLIC CONDUIT
EL.	ELEVATION	RRH	REMOTE RADIO HEAD
ELEC	ELECTRICAL	RRU	REMOTE RADIO UNIT
EMT	ELECTRICAL METALLIC TUBING	RWY	RACEWAY
ENG	ENGINEER	SCH	SCHEDULE
EQ	EQUAL		
EXP	EXPANSION	SHT	SHEET
EXT	EXTERIOR	SIAD	SMART INTEGRATED ACCESS DEVICE
EW	EACH WAY	SIM	SIMILAR
FAB	FABRICATION	SPEC	SPECIFICATION
FF	FINISH FLOOR	SQ	SQUARE
FG	FINISH GRADE	SS	STAINLESS STEEL
FIF	FACILITY INTERFACE FRAME	STD	STANDARD
FIN	FINISH(ED)	STL	STEEL
FLR	FLOOR	TEMP	TEMPORARY
		THK	THICKNESS
FDN	FOUNDATION		
FDN FOC	FOUNDATION FACE OF CONCRETE	TMA	TOWER MOUNTED AMPLIFIER
FOC	FACE OF CONCRETE	TN	TOE NAIL
FOC FOM	FACE OF CONCRETE FACE OF MASONRY	TN TOA	TOE NAIL TOP OF ANTENNA
FOC FOM FOS	FACE OF CONCRETE FACE OF MASONRY FACE OF STUD	TN	TOE NAIL
FOC FOM FOS FOW	FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL	TN TOA	TOE NAIL TOP OF ANTENNA
FOC FOM FOS FOW FS	FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE	TN TOA TOC	TOE NAIL TOP OF ANTENNA TOP OF CURB
FOC FOM FOS FOW FS	FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT	TN TOA TOC TOF	TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION
FOC FOM FOS FOW FS FT FTG	FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING	TN TOA TOC TOF TOP	TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF PLATE (PARAPET)
FOC FOM FOS FOW FS FT FTG GA	FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE	TN TOA TOC TOF TOP TOS	TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL
FOC FOM FOS FOW FS FT FTG GA GEN	FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR	TN TOA TOC TOF TOP TOS TOW	TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF WALL
FOC FOM FOS FOW FS FT FTG GA GEN GFCI	FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER	TN TOA TOC TOF TOP TOS TOW TVSS	TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION
FOC FOM FOS FOW FS FT FTG GA GEN GFCI GLB	FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM	TN TOA TOC TOF TOP TOS TOW TVSS TYP UG	TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND
FOC FOM FOS FOW FS FT FTG GA GEN GFCI GLB GLV	FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED	TN TOA TOC TOF TOP TOS TOW TVSS TYP	TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY
FOC FOM FOS FOW FS FT FTG GA GEN GFCI GLB GLV GPS	FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM	TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UL UNO	TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE
FOC FOM FOS FOW FS FT FTG GA GEN GFCI GLB GLV GPS GND	FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND	TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UL UNO UMTS	TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM
FOC FOM FOS FOW FS FT FTG GA GEN GFCI GLB GLV GPS GND GSM	FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE	TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UL UNO UMTS UPS	TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FUNDATION TOP OF FUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT)
FOC FOM FOS FOW FS FT FTG GA GEN GFCI GLU GPS GND GSM HDG	FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND	TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UL UNO UMTS UPS VIF	TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD
FOC FOM FOS FOW FS FT FTG GA GEN GFCI GLB GLV GPS GND GSM	FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE	TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UL UNO UMTS UPS VIF W	TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD WIDE
FOC FOM FOS FOW FS FT FTG GA GEN GFCI GLU GPS GND GSM HDG	FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED	TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UL UNO UMTS UPS VIF W	TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD WIDE WITH
FOC FOM FOS FOW FS FT FTG GA GEN GFCI GLB GLV GPS GND GSM HDG HDR	FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED HEADER	TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UL UNO UMTS UPS VIF W W/	TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD WIDE WITH WOOD
FOC FOM FOS FOW FS FT FTG GA GEN GFCI GLB GLV GPS GND GSM HDG HDR	FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED HEADER HANGER	TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UL UNO UMTS UPS VIF W	TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD WIDE WITH
FOC FOM FOS FOW FS FT GA GEN GFCI GLB GLV GPS GND GSM HDG HDR HGR HVAC	FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOTI FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GROUND GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED HEADER HANGER HEAT/VENTILATION/AIR CONDITIONING	TN TOA TOC TOF TOP TOS TOW TVSS TYP UG UL UNO UMTS UPS VIF W W/	TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD WIDE WITH WOOD

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

FROM ZERO TO INFINIGY

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED BY:
RCD	SS	CJW

RFDS REV #: N/A

PRELIMINARY DOCUMENTS

		SUBMITTALS
REV	DATE	DESCRIPTION
A	05/03/2021	ISSUED FOR REVIEW
В	03/25/2022	ISSUED FOR REVIEW / SST
С	06/10/2022	ISSUED FOR REVIEW
D	07/07/2022	ISSUED FOR REVIEW
٥	07/12/2022	ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER

2039-Z5555C

PROJECT INFORMATION BOBOSO0073B 49 COOK DRIVE MONTVILLE, CT 06382

> SHEET TITLE LEGEND AND **ABBREVIATIONS**

> > SHEET NUMBER

GN-1

LEGEND

ABBREVIATIONS

SITE ACTIVITY REQUIREMENTS:

- 1. NOTICE TO PROCEED NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH WIRELESS, LLC, AND TOWER OWNER NOC & THE DISH WIRELESS, LLC, AND TOWER CONSTRUCTION MANAGER.
- 2. "LOOK UP" DISH WIRELESS, LLC. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH WIRELESS, LLC. AND DISH WIRELESS, LLC. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

- 3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
- 4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REQUILATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELESS, LLC. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA—322 (LATEST EDITION).
- 5. ALL SITE WORK TO COMPLY WITH DISH WIRELESS, LLC. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH WIRELESS, LLC. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
- 6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH WIRELESS, LLC. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.
- 11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
- 12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIRELESS, LLC. AND TOWER OWNER, AND/OR LOCAL UTILITIES.
- 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
- 15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
- 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.
- 18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION, TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.
- 22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH WIRELESS, LLC.

TOWER OWNER:TOWER OWNER

- 2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
- 3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.
- 4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.
- 5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.
- 6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION
- 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.
- 12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH WIRELESS, LLC. AND TOWER OWNER
- 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.



5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

INFINIGY FROM ZERO TO INFINIGY

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4088 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

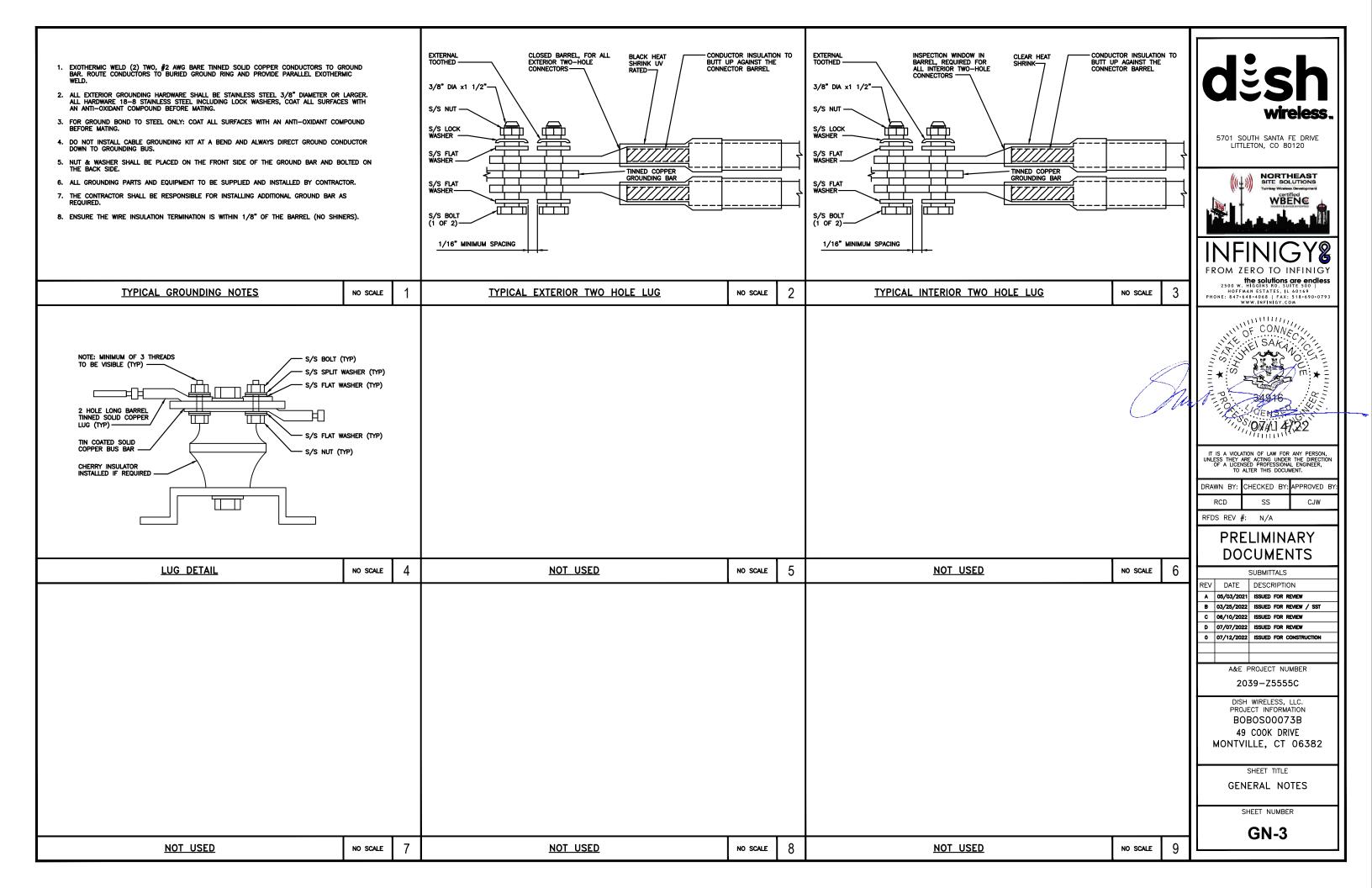
DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
RCE)	SS		CJW	

RFDS REV #: N/A

PRELIMINARY DOCUMENTS

A&E PROJECT NUMBER

2039-Z5555C


DISH WIRELESS, LLC.
PROJECT INFORMATION
BOBOSO0073B
49 COOK DRIVE
MONTVILLE, CT 06382

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GN-2

GROUNDING NOTES:

- 1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 2. THE CONTRACTOR SHALL PERFORM IEEE FALL—OF—POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
- 4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
- 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
- 8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.
- 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
- 13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.
- 15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.
- 19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
- 21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/O COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

INFINIGY |

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4088 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

1	DRAWN	BY:	CHECKED	BY:	APPROVED	BY	
	RCD		SS		CJW		

RFDS REV #: N/A

PRELIMINARY DOCUMENTS

	SUBMITTALS					
REV	REV DATE DESCRIPTION					
A	05/03/2021	ISSUED FOR REVIEW				
В	03/25/2022	ISSUED FOR REVIEW / SST				
С	06/10/2022	ISSUED FOR REVIEW				
D	07/07/2022	ISSUED FOR REVIEW				
0	07/12/2022	ISSUED FOR CONSTRUCTION				

A&E PROJECT NUMBER

2039-Z5555C

DISH WIRELESS, LLC.
PROJECT INFORMATION
BOBOSO0073B
49 COOK DRIVE
MONTVILLE, CT 06382

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

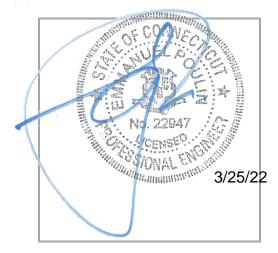
GENERAL NOT

ON

GN-4

Exhibit D

Structural Analysis Report


INFINIGY &

TOWER STRUCTURAL ANALYSIS REPORT

March 25, 2022

DISH Wireless Site Name	Montville, CT
DISH Wireless Site Number	BOBOS00073B
NSS Site Name	Montville, CT
Infinigy Job Number	1197-F0001-B
Client	NSS
Carrier	DISH Wireless
	49 Cook Drive
	Montville, CT 06353
Site Location	New London County
	41°28'30.21" N NAD83
	72°06'14.95" W NAD83
Structure Type	Valmont Self-Support Tower
Structure Height	170.5 FT
Structural Usage Ratio	58.0%
Overall Result	Pass

The enclosed structural analysis has been performed in accordance with the 2015 IBC / 2018 Connecticut Building Code based on an ultimate 3-second gust wind speed of 125 mph. The evaluation criteria and applicable standards are presented in the next section of this report.

Emmanuel Poulin, P.E. structural@infinigy.com

CT P.E. License Number: 22947

CONTENTS

- 1. Introduction
- 2. Design / Analysis Parameters
- 3. Proposed Loading Configuration
- 4. Other Considered Loading
- 5. Supporting Documentation
- 6. Results
- 7. Recommendations
- 8. Assumptions
- 9. Liability Waiver and Limitations
- 10. Calculations

1. INTRODUCTION

Infinigy performed a structural analysis on the Existing Valmont Self-Support Tower. All referenced supporting documents have been obtained from the client and are assumed to be accurate and applicable to this site. The structure was analyzed using tnxTower version 8.1.1.0 analysis software.

2. DESIGN/ANALYSIS PARAMETERS

Wind Speed	125 mph (3-Second Gust, V _{ult})
Wind Speed w/ ice	50 mph (3-Second Gust) w/ 1" Ice Loading Considered
Adopted Code	2015 IBC / 2018 Connecticut Building Code
Standard(s)	TIA-222-H
Risk Category	
Exposure Category	C
Topographic Factor	1
Seismic Site Class	D – Stiff Soil (Assumed)
Seismic Spectral Response	$S_s = 0.195 \text{ g} / S_1 = 0.054 \text{ g}$
Service Load Wind Speed	60 mph
Ground Elevation (HMSL)	363.0 ft

3. PROPOSED LOADING CONFIGURATION

Mount Center (ft)	RAD Center (ft)	Qty.	Appurtenance	Mount Type	Coax & Lines	Carrier
		6	JMA Wireless MX08FRO665-21			
		6	Fujitsu TA08025-B605	(2) Contar	(O) Hubrid	DICH
162.0 162	162.0	162.0 6	Fujitsu TA08025-B604	(3) Sector Frames	(2) Hybrid Cable	DISH Wireless
		2	Raycap RDIDC-3045-PF-48	Tramoo	Odbio	***************************************
			DC Surge Protectors			

EXISTING LOADING CONFIGURATION

Mount Center (ft)	RAD Center (ft)	Qty.	Appurtenance	Mount Type	Coax & Lines	Carrier
145.0	145.0	1	6' Omni	(1) Stand Off	(1) Coax	
82.0	82.0	1	4' Dish	(1) Pipe	(1) EW	Unknown*
80.0	80.0	1	6' Grid Dish	(1) Pipe	(1) EW	

^{*} Antenna configuration assumed based on Infinigy site visit on February 08, 2022.

4. SUPPORTING DOCUMENTATION

Construction Drawings	Infinigy, BOBOS00073B, dated March, 2022
Site Visit	Infinigy, February 08, 2022
DISH Wireless Proposed	DISH Wireless RFDS, Site ID: BOBOS0073B Rev. 1,
Loading	dated March 17, 2022
Tower & Foundation	Valmont Structures, Eng. File # A-146154, Drawing # 236900,
Design Drawings & Calculations	dated April 13, 2011

5. RESULTS

RATING =	58.0	Pass
Bolt Checks	36.9	Pass
Top Girt (T4)	8.4	Pass
Diagonal (T3)	36.9	Pass
Leg (T1)	58.0	Pass

Reaction Data	Analysis Reactions	Design Reactions	Ratio	Result*
Axial per leg (kip)	182.5	647.0	28.2%	Pass
Shear per leg (kip)	20.9	106.0	19.7%	Pass
Uplift per leg (kip)	141.1	582.0	24.2%	Pass
Moment (kip-ft)	3131.1	11869.0	26.4%	Pass

^{*} Tower base reactions of analysis are acceptable when compared to original design reactions.

Structural Components	Capacity	Pass/Fail
Legs	58.0%	Pass
Diagonals	36.9%	Pass
Horizontals	8.4%	Pass
Tower Bolts	36.9%	Pass
Anchor Bolts	19.8%	Pass
Foundation Reaction Comparison	28.2%	Pass
STRUCTURE RATING =	58.0%	Pass

5.1 DEFLECTION, TWIST, AND SWAY

Antenna Elevation (ft)	Deflection (in)	Sway (°)	Twist (°)
162.0	1.034	0.057	0.001
82.0	0.256	0.027	0.001

^{*}Per ANSI/TIA-222-H Section 2.8.2 maximum serviceability structural deflection limit is 3% of structure height.

6. RECOMMENDATIONS

Infinigy recommends installing DISH Wireless's proposed equipment loading configuration on the mounts located on this structure. The installation shall be performed in accordance with the construction documents issued for this site.

If you have any questions, require additional information, or believe the actual conditions differ from those detailed in this report, please contact us immediately.

James M. Connor III, PE Engineering Manager | **INFINIGY**

^{*}Per ANSI/TIA-222-H Section 2.8.2 maximum serviceability structural twist and sway limit is 4 degrees.

^{*}Per ANSI/TIA-222-H Section 2.8.3 deflection, Twist, and sway values were calculated using a basic 3-second gust wind speed of 60 mph.

^{*}It is the responsibility of the client to ensure their proposed and/or existing equipment will meet ANSI/TIA-222-H Annex D or other appropriate microwave signal degradation limits based on the provided values above.

7. ASSUMPTIONS

The structure, its foundation system and related structures were built and maintained in accordance with the manufacturer's specifications and instructions.

The structure condition is essentially as erected and does not have corrosion, damages or defects that would affect its structural integrity. The structure is plumb and all members and their connections are sound and can fully develop their structural capacities.

The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in the loading configuration tables.

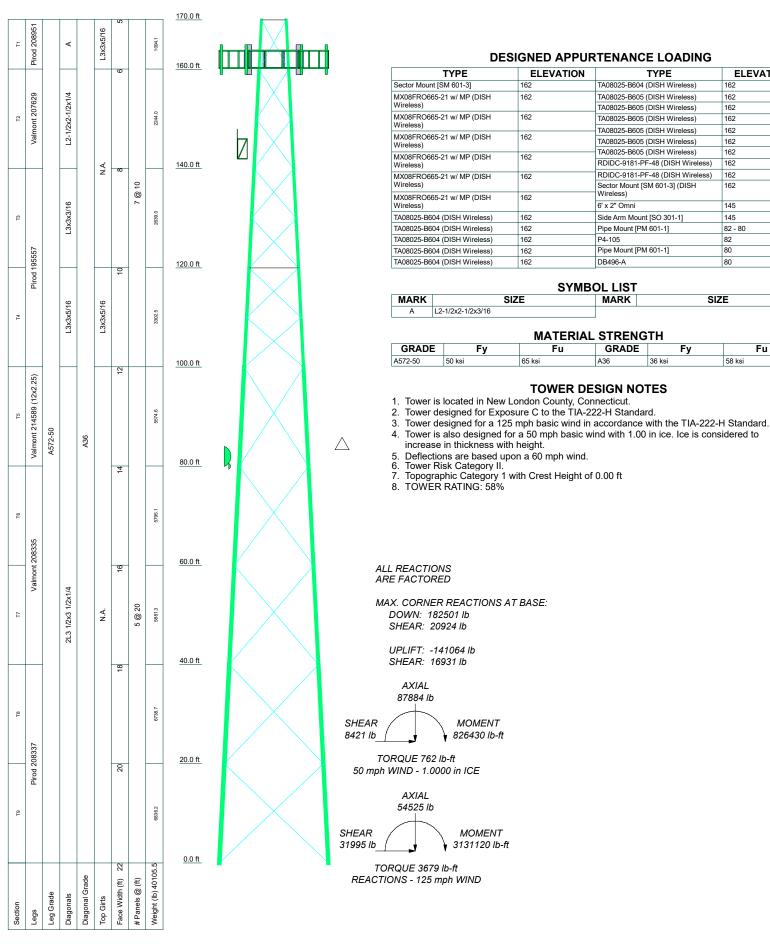
Some of the antennas and mounts used in the structure model are similar in size and weight to the actual appurtenances mounted on the structure.

Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate ASTM A36

HSS (Rectangular)
HSS (Circular)
ASTM A500-B GR 46
ASTM A500-B GR 42
Pipe
ASTM A53-B GR 35

Connection Bolts ASTM A325 U-Bolts ASTM A307


All bolted connections are pretensioned in accordance with Table 8.2 of the RCSC 2014 Standard.

8. LIABILITY WAIVER AND LIMITATIONS

Our structural calculations are completed assuming all information provided to Infinigy is accurate and applicable to this site. For the purposes of calculations, we assume an overall structure condition as erected and all members and connections to be free of corrosion and/or structural defects. The structure owner and/or contractor shall verify the structure's condition prior to installation of any proposed equipment. If actual conditions differ from those described in this report, Infinigy Engineering should be notified immediately to assess the impact on the results of this report.

Our evaluation is completed using industry standard methods and procedures. The structural results, conclusions and recommendations contained in this report are proprietary and should not be used by others as their own. Infinigy is not responsible for decisions made by others that are or are not based on the stated assumptions and conclusions in this report.

This report is an evaluation of the tower structure only and does not reflect adequacy of any existing antenna mounts, mount connections, or cable mounting attachments. The analysis of these elements is outside the scope of this analysis and are assumed to be adequate for the purposes of this report and are assumed to have been installed per their manufacturer requirements. This document is not for construction purposes.

INFINIGY8	Infinigy Engineering	Job: BOBOS00073B		
	1517 Old Apex Road	Project: 1197-F0001-B		
FROM ZERO TO INFINIGY the solutions are endless	Cary, NC 27513	Client: NSS	Drawn by: JMC	App'd:
The Solutions Are Endless		Code: TIA-222-H	Date: 03/25/22	Scale: NTS
	FAX:	Path: L:\Telecom/DISHINSS\CT - Private sites\BOBOS000738	#Structural/2022.03.25 - SA\Analysis/trux\BOBOS00073B SST	Dwg No. E-1

ELEVATION

162

162

162

162

162

162

162

162

145

145

82

80

80

58 ksi

Fu

SIZE

82 - 80

TYPE TA08025-B604 (DISH Wireless)

TA08025-B605 (DISH Wireless)

Sector Mount [SM 601-3] (DISH

Side Arm Mount [SO 301-1]

Pipe Mount [PM 601-1]

Pipe Mount [PM 601-1]

Wireless)

6' x 2" Omni

P4-105

DB496-A

MARK

GRADE

A36

RDIDC-9181-PF-48 (DISH Wireless)

RDIDC-9181-PF-48 (DISH Wireless)

Infinigy Engineering

1517 Old Apex Road Cary, NC 27513 Phone: 518-690-0790 FAX:

Job		Page
	BOBOS00073B	1 of 30
Project		Date
	1197-F0001-B	17:37:27 03/25/22
Client	NSS	Designed by JMC

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 170.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 5.00 ft at the top and 22.00 ft at the base.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower is located in New London County, Connecticut.

Tower base elevation above sea level: 363.00 ft.

Basic wind speed of 125 mph.

Risk Category II.

Exposure Category C.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1. Crest Height: 0.00 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

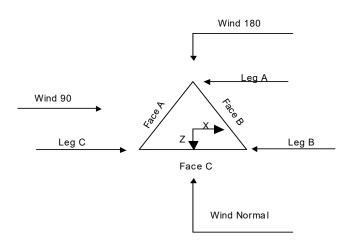
Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- √ Use Code Safety Factors Guys Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile
- √ Include Bolts In Member Capacity Leg Bolts Are At Top Of Section
- √ Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)
 SR Members Have Cut Ends
 SR Members Are Concentric


- Distribute Leg Loads As Uniform Assume Legs Pinned
- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination
- √ Sort Capacity Reports By Component
- √ Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

- Use ASCE 10 X-Brace Ly Rules
- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- √ SR Leg Bolts Resist Compression
- √ All Leg Panels Have Same Allowable Offset Girt At Foundation Consider Feed Line Torque
- ✓ Include Angle Block Shear Check
 Use TIA-222-H Bracing Resist. Exemption
 Use TIA-222-H Tension Splice Exemption
 Poles
- ✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Infinigy Engineering 1517 Old Apex Road

Cary, NC 27513 Phone: 518-690-0790 FAX:

Job		Page
	BOBOS00073B	2 of 30
Project		Date
	1197-F0001-B	17:37:27 03/25/22
Client	NSS	Designed by JMC

Triangular Tower

		Tov	ver Section Ge	eometry			
Tower	Tower	Assembly	Description	Section	Number	Section	_

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	
	ft			ft		ft
T1	170.00-160.00			5.00	1	10.00
T2	160.00-140.00			6.00	1	20.00
T3	140.00-120.00			8.00	1	20.00
T4	120.00-100.00			10.00	1	20.00
T5	100.00-80.00			12.00	1	20.00
T6	80.00-60.00			14.00	1	20.00
T7	60.00-40.00			16.00	1	20.00
T8	40.00-20.00			18.00	1	20.00
T9	20.00-0.00			20.00	1	20.00

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Gir
Section	Elevation	Spacing	Туре	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T1	170.00-160.00	10.00	X Brace	No	No	0.0000	0.0000
T2	160.00-140.00	10.00	X Brace	No	No	0.0000	0.0000
T3	140.00-120.00	10.00	X Brace	No	No	0.0000	0.0000
T4	120.00-100.00	10.00	X Brace	No	No	0.0000	0.0000
T5	100.00-80.00	20.00	X Brace	No	No	0.0000	0.0000
T6	80.00-60.00	20.00	X Brace	No	No	0.0000	0.0000

Infinigy Engineering 1517 Old Apex Road Cary, NC 27513 Phone: 518-690-0790 FAX:

Job		Page
	BOBOS00073B	3 of 30
Project		Date
	1197-F0001-B	17:37:27 03/25/22
Client	NSS	Designed by JMC

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Туре	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T7	60.00-40.00	20.00	X Brace	No	No	0.0000	0.0000
T8	40.00-20.00	20.00	X Brace	No	No	0.0000	0.0000
T9	20.00-0.00	20.00	X Brace	No	No	0.0000	0.0000

Tower Section Geometry (cont'd)

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation	Type	Size	Grade	Туре	Size	Grade
ft						
T1 170.00-160.00	Truss Leg	Pirod 208951	A572-50	Equal Angle	L2-1/2x2-1/2x3/16	A36
	_		(50 ksi)			(36 ksi)
T2 160.00-140.00	Truss Leg	Valmont 207629	A572-50	Equal Angle	L2-1/2x2-1/2x1/4	A36
			(50 ksi)			(36 ksi)
T3 140.00-120.00	Truss Leg	Pirod 195557	A572-50	Equal Angle	L3x3x3/16	A36
			(50 ksi)			(36 ksi)
T4 120.00-100.00	Truss Leg	Pirod 195557	A572-50	Equal Angle	L3x3x5/16	A36
			(50 ksi)			(36 ksi)
T5 100.00-80.00	Truss Leg	Valmont 214589 (12x2.25)	A572-50	Double Equal	2L3 1/2x3 1/2x1/4	A36
			(50 ksi)	Angle		(36 ksi)
T6 80.00-60.00	Truss Leg	Valmont 208335	A572-50	Double Equal	2L3 1/2x3 1/2x1/4	A36
			(50 ksi)	Angle		(36 ksi)
T7 60.00-40.00	Truss Leg	Valmont 208335	A572-50	Double Equal	2L3 1/2x3 1/2x1/4	A36
			(50 ksi)	Angle		(36 ksi)
T8 40.00-20.00	Truss Leg	Pirod 208337	A572-50	Double Equal	2L3 1/2x3 1/2x1/4	A36
			(50 ksi)	Angle		(36 ksi)
T9 20.00-0.00	Truss Leg	Pirod 208337	A572-50	Double Equal	2L3 1/2x3 1/2x1/4	A36
			(50 ksi)	Angle		(36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 170.00-160.00	Equal Angle	L3x3x5/16	A36	Equal Angle		A36
			(36 ksi)			(36 ksi)
T4 120.00-100.00	Equal Angle	L3x3x5/16	A36	Equal Angle		A36
			(36 ksi)			(36 ksi)

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A_f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft^2	in					in	in	in
T1	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
170.00-160.00			(36 ksi)						

Infinigy Engineering 1517 Old Apex Road Cary, NC 27513 Phone: 518-690-0790

FAX:

Job		Page
	BOBOS00073B	4 of 30
Project		Date
	1197-F0001-B	17:37:27 03/25/22
Client	NSS	Designed by JMC

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft^2	in					in	in	in
T2	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
160.00-140.00			(36 ksi)						
T3	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
140.00-120.00			(36 ksi)						
T4	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
120.00-100.00			(36 ksi)						
T5	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
100.00-80.00			(36 ksi)						
T6 80.00-60.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T7 60.00-40.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T8 40.00-20.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T9 20.00-0.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						

Tower Section Geometry (cont'd)

						K Fa	ctors ¹			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Angles	Rounds		X	X°	X	X	X	X	X
ft				Y	Y	Y	Y	Y	Y	Y
T1	Yes	Yes	1	1	1	1	1	1	1	1
170.00-160.00				1	1	1	1	1	1	1
T2	Yes	Yes	1	1	1	1	1	1	1	1
160.00-140.00				1	1	1	1	1	1	1
Т3	Yes	Yes	1	1	1	1	1	1	1	1
140.00-120.00				1	1	1	1	1	1	1
T4	Yes	Yes	1	1	1	1	1	1	1	1
120.00-100.00				1	1	1	1	1	1	1
T5	Yes	Yes	1	1	1	1	1	1	1	1
100.00-80.00				1	1	1	1	1	1	1
T6	Yes	Yes	1	1	1	1	1	1	1	1
80.00-60.00				1	1	1	1	1	1	1
T7	Yes	Yes	1	1	1	1	1	1	1	1
60.00-40.00				1	1	1	1	1	1	1
T8	Yes	Yes	1	1	1	1	1	1	1	1
40.00-20.00				1	1	1	1	1	1	1
T9 20.00-0.00	Yes	Yes	1	1	1	1	1	1	1	1
				1	1	1	1	1	1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

	Truss-Leg K Factors	
Truss-Legs Used As Leg Members		Truss-Legs Used As Inner Members

Infinigy Engineering
1517 Old Apex Road

Cary, NC 27513 Phone: 518-690-0790 FAX:

Job		Page
	BOBOS00073B	5 of 30
Project		Date
	1197-F0001-B	17:37:27 03/25/22
Client	NSS	Designed by JMC

Tower Elevation	Leg Panels	X Brace	Z Brace	Leg Panels	X Brace	Z Brace
ft	1 uneis	Diagonals	Diagonals	1 uneis	Diagonals	Diagonals
T1	1	0.5	0.85	1	0.5	0.85
170.00-160.00						
T2	1	0.5	0.85	1	0.5	0.85
160.00-140.00						
T3	1	0.5	0.85	1	0.5	0.85
140.00-120.00						
T4	1	0.5	0.85	1	0.5	0.85
120.00-100.00						
T5	1	0.5	0.85	1	0.5	0.85
100.00-80.00						
T6	1	0.5	0.85	1	0.5	0.85
80.00-60.00						
T7	1	0.5	0.85	1	0.5	0.85
60.00-40.00						
T8	1	0.5	0.85	1	0.5	0.85
40.00-20.00						
T9 20.00-0.00	1	0.5	0.85	1	0.5	0.85

Tower Elevation	Leg		Diago	nal	Top G	irt	Botton	Bottom Girt		Girt	Long Horizontal		Short Horizontal	
ft	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	\overline{U}
	Deduct	U	Deduct	U	Deduct	\boldsymbol{c}	Width	U	Width	U	Width	U	Width	U
			1				Deduct		Deduct		Deduct		Deduct	
	ın		in		ın									
							ın		in		in		in	
T1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
170.00-160.00														
T2	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
160.00-140.00														
T3	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
140.00-120.00														
T4	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
120.00-100.00														
T5	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
100.00-80.00														
T6 80.00-60.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 60.00-40.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 40.00-20.00		1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 20.00-0.00		1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Elevation ft	Reduna Horizoi		Reduna Diago		Redundant Sub-Diagonal		Redundant Sub-Horizontal		Redundant Vertical		Redundant Hip		Redundant Hip Diagonal	
	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	\overline{U}
	Deduct		Deduct		Deduct		Width		Width		Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
							in		in		in		in	
T1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
170.00-160.00														
T2	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
160.00-140.00														
T3	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
140.00-120.00														

Infinigy Engineering 1517 Old Apex Road Cary, NC 27513 Phone: 518-690-0790 FAX:

Job		Page
	BOBOS00073B	6 of 30
Project		Date
	1197-F0001-B	17:37:27 03/25/22
Client		Designed by
	NSS	JMC

Tower		Redundant Redundant		Redundant				Redundant Vertical		Redundant Hip		Redundant Hip		
Elevation	Horizoi	ntal	Diago	nal	Sub-Diag	gonal	Sub-Horizontal						Diagonal	
ft														
	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U
	Deduct		Deduct		Deduct		Width		Width		Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
							in		in		in		in	
T4	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
120.00-100.00														
T5	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
100.00-80.00														
T6 80.00-60.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 60.00-40.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 40.00-20.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 20.00-0.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Section Geometry (cont'd)

Tower Elevation	Leg Connection	Leg		Diago	nal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hort	izontal
ft	Туре														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T1	Flange	1.0000	6	1.0000	1	1.0000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0
170.00-160.00	_	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T2	Flange	1.0000	6	1.0000	1	0.0000	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
160.00-140.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T3	Flange	1.0000	6	1.0000	1	0.0000	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
140.00-120.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T4	Flange	1.0000	6	1.0000	1	1.0000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0
120.00-100.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T5	Flange	1.0000	12	0.8750	1	0.0000	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
100.00-80.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T6 80.00-60.00	Flange	1.0000	12	0.8750	1	0.0000	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T7 60.00-40.00	Flange	1.0000	12	0.8750	1	0.0000	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T8 40.00-20.00	Flange	1.0000	12	0.8750	1	0.0000	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T9 20.00-0.00	Flange	1.0000	0	0.8750	1	0.0000	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number	Number Per Row	Clear Spacing	Width or Diameter	Perimeter	Weight
	Leg		Torque Calculation	71	ft			in	in	in	plf
CUI11283248MM(1 -7/8) (DISH Wireless) ****	С	No	Yes	Ar (CaAa)	162.00 - 0.00	2	2	1.8200	1.8200		2.12
LDF5-50A (7/8 FOAM)	C	No	Yes	Ar (CaAa)	145.00 - 0.00	1	1	1.0900	1.0900		0.33
LDF5-50A (7/8	C	No	Yes	Ar (CaAa)	82.00 - 0.00	1	1	1.0900	1.0900		0.33

tnx T	ower

Infinigy Engineering 1517 Old Apex Road Cary, NC 27513 Phone: 518-690-0790

FAX:

Job		Page
	BOBOS00073B	7 of 30
Project		Date
	1197-F0001-B	17:37:27 03/25/22
Client	NSS	Designed by JMC

Description	Face or Leg	Allow Shield	Exclude From Torque Calculation	Component Type	Placement ft	Total Number	Number Per Row	Clear Spacing in		Perimeter in	Weight plf
FOAM) LDF5-50A (7/8 FOAM)	С	No	Yes	Ar (CaAa)	80.00 - 0.00	1	1	1.0900	1.0900		0.33

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	C_AA_A	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft²	ft²	ft ²	lb
T1	170.00-160.00	A	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.728	0.000	8.48
T2	160.00-140.00	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	7.825	0.000	86.45
T3	140.00-120.00	A	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	9.460	0.000	91.40
T4	120.00-100.00	A	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	9.460	0.000	91.40
T5	100.00-80.00	A	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	9.678	0.000	92.06
T6	80.00-60.00	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	13.820	0.000	104.60
T7	60.00-40.00	A	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	13.820	0.000	104.60
T8	40.00-20.00	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	13.820	0.000	104.60
T9	20.00-0.00	A	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	13.820	0.000	104.60

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	C_AA_A	C_AA_A	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft ²	ft ²	ft²	ft ²	lb
T1	170.00-160.00	A	1.175	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	2.213	0.000	26.86
T2	160.00-140.00	A	1.163	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	23.764	0.000	284.45
T3	140.00-120.00	A	1.147	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	28.712	0.000	333.47
T4	120.00-100.00	A	1.128	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	28.507	0.000	328.94

Infinigy Engineering 1517 Old Apex Road Cary, NC 27513 Phone: 518-690-0790 FAX:

Job	Page
BOBOS00073B	8 of 30
Project	Date
1197-F0001-B	17:37:27 03/25/22
Client NSS	Designed by JMC

Tower	Tower	Face	Ice	A_R	A_F	C_AA_A	C_AA_A	Weight
Section	Elevation	or	Thickness			In Face	Out Face	Ü
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	lb
T5	100.00-80.00	A	1.106	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	28.927	0.000	330.22
T6	80.00-60.00	A	1.078	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	40.956	0.000	444.62
T7	60.00-40.00	A	1.042	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	40.288	0.000	430.77
T8	40.00-20.00	A	0.991	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	39.315	0.000	411.06
T9	20.00-0.00	A	0.887	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	31.569	0.000	350.66

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
T1	1	CUI11283248MM(1-7/8)	160.00 -	0.6000	0.6000
			162.00		
T2	1	CUI11283248MM(1-7/8)	140.00 -	0.6000	0.6000
			160.00		
T2	3	LDF5-50A (7/8 FOAM)		0.6000	0.6000
			145.00		
T3	1	CUI11283248MM(1-7/8)		0.6000	0.6000
			140.00		
Т3	3	LDF5-50A (7/8 FOAM)		0.6000	0.6000
			140.00		
T4	1	CUI11283248MM(1-7/8)	100.00 -	0.6000	0.6000
	_		120.00		
T4	3	LDF5-50A (7/8 FOAM)		0.6000	0.6000
m.s		CT T 1 2 2 2 2 4 2 7 2 4 4 7 (2)	120.00	0.6000	0.6000
T5	1	CUI11283248MM(1-7/8)		0.6000	0.6000
T5	3	LDF5-50A (7/8 FOAM)		0.6000	0.6000
T5	4	LDF5-50A (7/8 FOAM)		0.6000	0.6000
T6	1	CUI11283248MM(1-7/8)		0.6000	0.6000
T6	3	LDF5-50A (7/8 FOAM)		0.6000	0.6000
T6	4	LDF5-50A (7/8 FOAM)		0.6000	0.6000
T6 T7	5	LDF5-50A (7/8 FOAM)		0.6000	0.6000
T7	1 3	CUI11283248MM(1-7/8)		0.6000 0.6000	0.6000 0.6000
T7	3	LDF5-50A (7/8 FOAM) LDF5-50A (7/8 FOAM)		0.6000	0.6000
T7	5	LDF5-50A (7/8 FOAM) LDF5-50A (7/8 FOAM)		0.6000	0.6000
T8	J 1	CUI11283248MM(1-7/8)		0.6000	0.6000
T8	3	LDF5-50A (7/8 FOAM)		0.6000	0.6000
T8	4	LDF5-50A (7/8 FOAM) LDF5-50A (7/8 FOAM)		0.6000	0.6000
T8	5	LDF5-50A (7/8 FOAM) LDF5-50A (7/8 FOAM)		0.6000	0.6000
T9	1	CUI11283248MM(1-7/8)		0.6000	0.6000
T9	3	LDF5-50A (7/8 FOAM)		0.6000	0.6000
T9	4	LDF5-50A (7/8 FOAM) LDF5-50A (7/8 FOAM)		0.6000	0.6000
T9	5	LDF5-50A (7/8 FOAM)		0.6000	0.6000

Infinigy Engineering 1517 Old Apex Road

Cary, NC 27513 Phone: 518-690-0790 FAX:

Job		Page
	BOBOS00073B	9 of 30
Project		Date
	1197-F0001-B	17:37:27 03/25/22
Client	NSS	Designed by JMC

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
	Ö		Vert						
			ft ft	0	ft		ft ²	ft ²	lb
G + M + FGM (01.21		3.7	ft	0.000	1.62.00	NT T	20.25	20.25	1.422.07
Sector Mount [SM 601-3]	C	None		0.000	162.00	No Ice 1/2" Ice	29.25 36.23	29.25 36.23	1422.90 1954.53
						1" Ice	43.21	43.21	2486.16
****						1 100	13.21	73.21	2400.10
MX08FRO665-21 w/ MP	Α	From Leg	4.00	0.000	162.00	No Ice	12.87	7.61	90.05
(DISH Wireless)		C	5.00			1/2" Ice	13.47	8.80	183.09
			0.00			1" Ice	14.03	9.70	284.73
MX08FRO665-21 w/ MP	В	From Leg	4.00	0.000	162.00	No Ice	12.87	7.61	90.05
(DISH Wireless)			5.00			1/2" Ice	13.47	8.80	183.09
			0.00			1" Ice	14.03	9.70	284.73
MX08FRO665-21 w/ MP	C	From Leg	4.00	0.000	162.00	No Ice	12.87	7.61	90.05
(DISH Wireless)			5.00			1/2" Ice	13.47	8.80	183.09
			0.00			1" Ice	14.03	9.70	284.73
MX08FRO665-21 w/ MP	Α	From Leg	4.00	0.000	162.00	No Ice	12.87	7.61	90.05
(DISH Wireless)			-5.00			1/2" Ice	13.47	8.80	183.09
	_		0.00			1" Ice	14.03	9.70	284.73
MX08FRO665-21 w/ MP	В	From Leg	4.00	0.000	162.00	No Ice	12.87	7.61	90.05
(DISH Wireless)			-5.00			1/2" Ice	13.47	8.80	183.09
	_		0.00			1" Ice	14.03	9.70	284.73
MX08FRO665-21 w/ MP	C	From Leg	4.00	0.000	162.00	No Ice	12.87	7.61	90.05
(DISH Wireless)			-5.00			1/2" Ice	13.47	8.80	183.09
T100005 D004		ъ т	0.00	0.000	1.62.00	1" Ice	14.03	9.70	284.73
TA08025-B604	A	From Leg	3.00	0.000	162.00	No Ice	1.96	1.03	63.93
(DISH Wireless)			5.00			1/2" Ice	2.14	1.17	80.68
TA09025 DC04	D	F I	0.00	0.000	162.00	1" Ice	2.32	1.31	100.13
TA08025-B604 (DISH Wireless)	В	From Leg	3.00 5.00	0.000	162.00	No Ice 1/2" Ice	1.96 2.14	1.03 1.17	63.93 80.68
(DISIT WHEless)			0.00			1" Ice	2.14	1.17	100.13
TA08025-B604	C	From Leg	3.00	0.000	162.00	No Ice	1.96	1.03	63.93
(DISH Wireless)	C	rioiii Leg	5.00	0.000	102.00	1/2" Ice	2.14	1.17	80.68
(DISIT WITCLESS)			0.00			1" Ice	2.32	1.31	100.13
TA08025-B604	Α	From Leg	3.00	0.000	162.00	No Ice	1.96	1.03	63.93
(DISH Wireless)	А	1 Ioni Leg	-5.00	0.000	102.00	1/2" Ice	2.14	1.17	80.68
(BISIT WHELESS)			0.00			1" Ice	2.32	1.31	100.13
TA08025-B604	В	From Leg	3.00	0.000	162.00	No Ice	1.96	1.03	63.93
(DISH Wireless)	2	Trom 20g	-5.00	0.000	102.00	1/2" Ice	2.14	1.17	80.68
,			0.00			1" Ice	2.32	1.31	100.13
TA08025-B604	C	From Leg	3.00	0.000	162.00	No Ice	1.96	1.03	63.93
(DISH Wireless)		C	-5.00			1/2" Ice	2.14	1.17	80.68
,			0.00			1" Ice	2.32	1.31	100.13
TA08025-B605	A	From Leg	3.00	0.000	162.00	No Ice	1.96	1.19	74.95
(DISH Wireless)			5.00			1/2" Ice	2.14	1.33	92.92
•			0.00			1" Ice	2.32	1.48	113.67
TA08025-B605	В	From Leg	3.00	0.000	162.00	No Ice	1.96	1.19	74.95
(DISH Wireless)			5.00			1/2" Ice	2.14	1.33	92.92
			0.00			1" Ice	2.32	1.48	113.67
TA08025-B605	C	From Leg	3.00	0.000	162.00	No Ice	1.96	1.19	74.95
(DISH Wireless)			5.00			1/2" Ice	2.14	1.33	92.92
			0.00			1" Ice	2.32	1.48	113.67
TA08025-B605	A	From Leg	3.00	0.000	162.00	No Ice	1.96	1.19	74.95

Infinigy Engineering 1517 Old Apex Road

Cary, NC 27513 Phone: 518-690-0790 FAX:

Job		Page
	BOBOS00073B	10 of 30
Project		Date
	1197-F0001-B	17:37:27 03/25/22
Client	NSS	Designed by JMC

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft	٥	ft		ft²	ft^2	lb
(DISH Wireless)			ft -5.00			1/2" Ice	2.14	1.33	92.92
(DISTI WITCHESS)			0.00			1" Ice	2.32	1.48	113.67
TA08025-B605	В	From Leg	3.00	0.000	162.00	No Ice	1.96	1.19	74.95
(DISH Wireless)	В	Trom Leg	-5.00	0.000	102.00	1/2" Ice	2.14	1.33	92.92
(=====)			0.00			1" Ice	2.32	1.48	113.67
TA08025-B605	C	From Leg	3.00	0.000	162.00	No Ice	1.96	1.19	74.95
(DISH Wireless)		8	-5.00			1/2" Ice	2.14	1.33	92.92
,			0.00			1" Ice	2.32	1.48	113.67
RDIDC-9181-PF-48	A	From Leg	3.00	0.000	162.00	No Ice	2.56	1.52	21.85
(DISH Wireless)		Č	5.00			1/2" Ice	2.76	1.69	44.28
,			2.00			1" Ice	2.97	1.86	69.81
RDIDC-9181-PF-48	A	From Leg	3.00	0.000	162.00	No Ice	2.56	1.52	21.85
(DISH Wireless)		Č	-5.00			1/2" Ice	2.76	1.69	44.28
,			-2.00			1" Ice	2.97	1.86	69.81
Sector Mount [SM 601-3]	C	None		0.000	162.00	No Ice	29.25	29.25	1422.90
(DISH Wireless)						1/2" Ice	36.23	36.23	1954.53
,						1" Ice	43.21	43.21	2486.16

6' x 2" Omni	C	From Leg	3.00	0.000	145.00	No Ice	1.20	1.20	15.00
		C	0.00			1/2" Ice	1.80	1.80	24.39
			0.00			1" Ice	2.17	2.17	37.81
Side Arm Mount [SO 301-1]	C	From Leg	3.00	0.000	145.00	No Ice	0.46	0.91	23.00
,		C	0.00			1/2" Ice	0.65	1.30	32.54
			0.00			1" Ice	0.84	1.69	42.08

Pipe Mount [PM 601-1]	C	From Leg	2.00	0.000	80.00 - 82.00	No Ice	1.32	1.32	65.00
		S	0.00			1/2" Ice	1.58	1.58	77.47
			0.00			1" Ice	1.84	1.84	89.94

Pipe Mount [PM 601-1]	C	From Leg	2.00	0.000	80.00	No Ice	1.32	1.32	65.00
			0.00			1/2" Ice	1.58	1.58	77.47
			0.00			1" Ice	1.84	1.84	89.94

					Dis	shes					
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	0	ft	ft		ft^2	lb
P4-105	С	Paraboloid w/o Radome	From Leg	2.00 0.00 0.00	0.000		82.00	4.00	No Ice 1/2" Ice 1" Ice	12.57 13.09 13.61	104.00 171.19 238.38

DB496-A	С	Grid	From Leg	2.00 0.00 0.00	0.000		80.00	1.13	No Ice 1/2" Ice 1" Ice	1.30 1.15 0.00	9.00 14.88 20.77

Infinigy Engineering 1517 Old Apex Road Cary, NC 27513 Phone: 518-690-0790 FAX:

Job		Page
	BOBOS00073B	11 of 30
Project		Date
	1197-F0001-B	17:37:27 03/25/22
Client	NSS	Designed by JMC

Truss-Leg	Properties
-----------	------------

Section	Area	Area	Self	Ice	Equiv.	Equiv.	Leg
Designation		Ice	Weight	Weight	Diameter	Diameter	Area
						Ice	
	in^2	in^2	lb	lb	in	in	in^2
Pirod 208951	1034.5809	2909.6152	527.74	329.72	7.1846	20.2057	3.6816
Valmont 207629	2291.7722	5808.8649	549.19	524.78	7.9575	20.1697	5.3014
Pirod 195557	2422.4677	5869.1059	678.81	633.68	8.4113	20.3788	7.2158
Pirod 195557	2422.4677	5855.5898	678.81	618.04	8.4113	20.3319	7.2158
Valmont 214589	2823.4402	5983.6496	1307.17	706.31	9.8036	20.7766	11.9282
(12x2.25)							
Valmont 208335	2824.1561	6036.1324	1354.24	566.78	9.8061	20.9588	14.7262
Valmont 208335	2824.1561	6010.7581	1354.24	539.53	9.8061	20.8707	14.7262
Pirod 208337	3051.4496	6045.8309	1608.85	519.36	10.5953	20.9925	17.8187
Pirod 208337	3051.4496	5972.5247	1608.85	445.82	10.5953	20.7379	17.8187

Tower Pressures - No Ice

 $G_H = 0.850$

Section	Z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	C_AA_A	C_AA_A
Elevation			_		а			_	%	In	Out
					С					Face	Face
ft	ft		psf	ft^2	е	ft ²	ft²	ft ²		ft²	ft^2
T1	165.00	1.406	47	66.055	Α	4.893	11.994	11.994	71.02	0.000	0.000
170.00-160.00					В	4.893	11.994		71.02	0.000	0.000
					C	4.893	11.994		71.02	0.728	0.000
T2	150.00	1.378	46	162.528	Α	8.723	26.569	26.569	75.28	0.000	0.000
160.00-140.00					В	8.723	26.569		75.28	0.000	0.000
					C	8.723	26.569		75.28	7.825	0.000
T3	130.00	1.337	45	202.945	Α	11.964	28.085	28.085	70.13	0.000	0.000
140.00-120.00					В	11.964	28.085		70.13	0.000	0.000
					C	11.964	28.085		70.13	9.460	0.000
T4	110.00	1.291	43	242.945	Α	15.770	28.085	28.085	64.04	0.000	0.000
120.00-100.00					В	15.770	28.085		64.04	0.000	0.000
					C	15.770	28.085		64.04	9.460	0.000
T5	90.00	1.238	42	283.780	Α	12.849	32.733	32.733	71.81	0.000	0.000
100.00-80.00					В	12.849	32.733		71.81	0.000	0.000
					C	12.849	32.733		71.81	9.678	0.000
T6 80.00-60.00	70.00	1.174	39	324.197	Α	13.615	32.741	32.741	70.63	0.000	0.000
					В	13.615	32.741		70.63	0.000	0.000
					C	13.615	32.741		70.63	13.820	0.000
T7 60.00-40.00	50.00	1.094	37	364.197	Α	14.415	32.741	32.741	69.43	0.000	0.000
					В	14.415	32.741		69.43	0.000	0.000
					C	14.415	32.741		69.43	13.820	0.000
T8 40.00-20.00	30.00	0.982	33	404.614	Α	15.249	35.377	35.377	69.88	0.000	0.000
					В	15.249	35.377		69.88	0.000	0.000
					C	15.249	35.377		69.88	13.820	0.000
T9 20.00-0.00	10.00	0.85	29	444.614	Α	16.115	35.377	35.377	68.70	0.000	0.000
					В	16.115	35.377		68.70	0.000	0.000
					C	16.115	35.377		68.70	13.820	0.000

Tower Pressure - With Ice

Infinigy Engineering 1517 Old Apex Road Cary, NC 27513 Phone: 518-690-0790 FAX:

Job		Page
	BOBOS00073B	12 of 30
Project		Date
	1197-F0001-B	17:37:27 03/25/22
Client	NCC	Designed by
	NSS	JMC

Section	Z	K_Z	q_z	t_Z	A_G	F	A_F	A_R	A_{leg}	Leg	C_AA_A	$C_A A_A$
Elevation			-			a			_	%	In	Out
						c					Face	Face
ft	ft		psf	in	ft^2	e	ft^2	ft^2	ft^2		ft^2	ft^2
T1	165.00	1.406	8	1.1746	68.016	Α	4.893	38.174	33.732	78.33	0.000	0.000
170.00-160.00						В	4.893	38.174		78.33	0.000	0.000
						C	4.893	38.174		78.33	2.213	0.000
T2	150.00	1.378	7	1.1635	166.411	A	8.723	75.463	67.344	79.99	0.000	0.000
160.00-140.00						В	8.723	75.463		79.99	0.000	0.000
						C	8.723	75.463		79.99	23.764	0.000
T3	130.00	1.337	7	1.1469	206.773	Α	11.964	77.191	68.043	76.32	0.000	0.000
140.00-120.00						В	11.964	77.191		76.32	0.000	0.000
						C	11.964	77.191		76.32	28.712	0.000
T4	110.00	1.291	7	1.1279	246.710	Α	15.770	79.744	67.886	71.07	0.000	0.000
120.00-100.00						В	15.770	79.744		71.07	0.000	0.000
						C	15.770	79.744		71.07	28.507	0.000
T5 100.00-80.00	90.00	1.238	7	1.1055	287.469	Α	12.849	77.488	69.371	76.79	0.000	0.000
						В	12.849	77.488		76.79	0.000	0.000
						C	12.849	77.488		76.79	28.927	0.000
T6 80.00-60.00	70.00	1.174	6	1.0781	327.795	Α	13.615	78.367	69.979	76.08	0.000	0.000
						В	13.615	78.367		76.08	0.000	0.000
						C	13.615	78.367		76.08	40.956	0.000
T7 60.00-40.00	50.00	1.094	6	1.0424	367.676	Α	14.415	78.271	69.685	75.18	0.000	0.000
						В	14.415	78.271		75.18	0.000	0.000
						C	14.415	78.271		75.18	40.288	0.000
T8 40.00-20.00	30.00	0.982	5	0.9905	407.920	Α	15.249	78.722	70.091	74.59	0.000	0.000
						В	15.249	78.722		74.59	0.000	0.000
						C	15.249	78.722		74.59	39.315	0.000
T9 20.00-0.00	10.00	0.85	5	0.8875	447.576	Α	16.115	77.414	69.242	74.03	0.000	0.000
		_				В	16.115	77.414		74.03	0.000	0.000
						C	16.115	77.414		74.03	31.569	0.000

Tower Pressure - Service

 $G_H = 0.850$

Section	Z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft^2	е	ft ²	ft^2	ft^2		ft ²	ft ²
T1	165.00	1.406	11	66.055	Α	4.893	11.994	11.994	71.02	0.000	0.000
170.00-160.00					В	4.893	11.994		71.02	0.000	0.000
					C	4.893	11.994		71.02	0.728	0.000
T2	150.00	1.378	11	162.528	Α	8.723	26.569	26.569	75.28	0.000	0.000
160.00-140.00					В	8.723	26.569		75.28	0.000	0.000
					C	8.723	26.569		75.28	7.825	0.000
T3	130.00	1.337	10	202.945	Α	11.964	28.085	28.085	70.13	0.000	0.000
140.00-120.00					В	11.964	28.085		70.13	0.000	0.000
					C	11.964	28.085		70.13	9.460	0.000
T4	110.00	1.291	10	242.945	Α	15.770	28.085	28.085	64.04	0.000	0.000
120.00-100.00					В	15.770	28.085		64.04	0.000	0.000
					C	15.770	28.085		64.04	9.460	0.000
T5	90.00	1.238	10	283.780	Α	12.849	32.733	32.733	71.81	0.000	0.000
100.00-80.00					В	12.849	32.733		71.81	0.000	0.000
					C	12.849	32.733		71.81	9.678	0.000
T6 80.00-60.00	70.00	1.174	9	324.197	Α	13.615	32.741	32.741	70.63	0.000	0.000
					В	13.615	32.741		70.63	0.000	0.000
					C	13.615	32.741		70.63	13.820	0.000

4	7
THY I	<i>'ower</i>

Infinigy Engineering 1517 Old Apex Road Cary, NC 27513 Phone: 518-690-0790 FAX:

Job		Page
	BOBOS00073B	13 of 30
Project		Date
	1197-F0001-B	17:37:27 03/25/22
Client	NCC	Designed by
	NSS	JMC

Section	Z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	C_AA_A	C_AA_A
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
T7 60.00-40.00	50.00	1.094	8	364.197	A	14.415	32.741	32.741	69.43	0.000	0.000
					В	14.415	32.741		69.43	0.000	0.000
					C	14.415	32.741		69.43	13.820	0.000
T8 40.00-20.00	30.00	0.982	8	404.614	Α	15.249	35.377	35.377	69.88	0.000	0.000
					В	15.249	35.377		69.88	0.000	0.000
					C	15.249	35.377		69.88	13.820	0.000
T9 20.00-0.00	10.00	0.85	7	444.614	Α	16.115	35.377	35.377	68.70	0.000	0.000
					В	16.115	35.377		68.70	0.000	0.000
					C	16.115	35.377		68.70	13.820	0.000

Tower Forces - No Ice - Wind Normal To Face

Elevation Weight Weight C	Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
fit lb lb e v v pfit jf2 lb pff T1 8.48 1094.10 A 0.256 2.421 47 1 1 11.927 1175.58 117.56 C 172 86.45 2243.95 A 0.217 2.54 46 1 1 24.071 2588.16 129.41 C 160.00-140.00 B 0.217 2.54 46 1 1 24.071 2588.16 129.41 C 160.00-140.00 C 0.217 2.54 1 1 24.071 2588.16 129.41 C 140.00-120.00 B 0.197 2.605 45 1 1 28.085 3007.50 150.38 C 140.00-120.00 B B 0.197 2.605 1 1 28.085 3007.50 150.38 C 120.00-100.00 B 0.181 2.662 43 1 1 31.816 </td <td>Elevation</td> <td>Weight</td> <td>Weight</td> <td>а</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Face</td>	Elevation	Weight	Weight	а									Face
T1 8.48 1094.10 A 0.256 2.421 47 1 1 11.927 1175.58 117.56 C				С			psf						
T70.00-160.00	,			e									
T	T1	8.48	1094.10	Α		2.421	47	1	1		1175.58	117.56	C
T2	170.00-160.00			В	0.256	2.421		1	1	11.927			
160.00-140.00				C		2.421		1	1				
T3 91.40 2639.00 A 0.197 2.605 45 1 1 28.085 3007.50 150.38 C 140.00-120.00 B 0.197 2.605 1 1 1 28.085 C 1 1 1 28.085 C 1 1 28.08		86.45	2243.95	Α			46	1	1		2588.16	129.41	C
T3 91.40 2639.00 A 0.197 2.605 45 1 1 28.085 3007.50 150.38 C 140.00-120.00 B 0.197 2.605 1 1 28.085 2.6085 C 0.197 2.605 C 0.197 2.605 1 1 28.085 C 0.197 2.605 C 0.181 2.662 C 0.181 2.733 C 0.181 2.662 C 0.181 2.733 C 0.181 2.662 C 0.181 2.733	160.00-140.00					2.54		1	1				
140.00-120.00				C				1	1				
T4 91.40 3302.54 A 0.181 2.662 43 1 1 31.816 3328.79 166.44 C 120.00-100.00 B 0.181 2.662 1 1 1 31.816 31.816 C 0.181 2.662 1 1 1 31.816 31.816 C 0.181 2.662 1 1 1 31.816 T 31.816 T 31.816 T 5 92.06 5574.62 A 0.161 2.733 42 1 1 31.465 T 3240.93 162.05 C 100.00-80.00 B 0.161 2.733 1 1 31.465 T 1 3	T3	91.40	2639.00	Α	0.197	2.605	45	1	1	28.085	3007.50	150.38	С
T4 91.40 3302.54 A 0.181 2.662 43 1 1 31.816 3328.79 166.44 C 120.00-100.00 C 0.181 2.662 1 1 1 31.816 3240.93 162.05 C T5 92.06 5574.62 A 0.161 2.733 42 1 1 31.465 3240.93 162.05 C 100.00-80.00 B 0.161 2.733 1 1 31.465 3240.93 162.05 C T6 104.60 5795.14 A 0.143 2.797 39 1 1 32.175 3291.87 164.59 C 80.00-60.00 B 0.143 2.797 1 1 32.175 3291.87 164.59 C 60.00-40.00 B 0.129 2.848 37 1 1 32.939 3185.80 159.29 C 40.00-20.00 B 0.125 2.865 3	140.00-120.00			В	0.197	2.605		1	1	28.085			
120.00-100.00				C	0.197	2.605		1	1	28.085			
T5 92.06 5574.62 A 0.161 2.733 42 1 1 31.816 3240.93 162.05 C 100.00-80.00 B 0.161 2.733 1 1 1 31.465		91.40	3302.54	Α	0.181	2.662	43	1	1		3328.79	166.44	C
T5 92.06 5574.62 A 0.161 2.733 42 1 1 31.465 3240.93 162.05 C 100.00-80.00 B 0.161 2.733 1 1 31.465 T6 104.60 5795.14 A 0.143 2.797 39 1 1 32.175 3291.87 164.59 C 80.00-60.00 B 0.143 2.797 1 1 32.175 T7 104.60 5881.30 A 0.129 2.848 37 1 1 32.939 3185.80 159.29 C 60.00-40.00 B 0.129 2.848 1 1 32.939 T8 104.60 6738.67 A 0.125 2.865 33 1 1 35.253 T9 20.00-0.00 104.60 6836.21 A 0.116 2.901 29 1 1 36.101 Sum Weight: 788.19 40105.54 C 0.116 2.901 1 1 36.101 Sum Weight: 788.19 40105.54 C 0.116 2.901 0 T 0 T 0	120.00-100.00			В	0.181	2.662		1	1	31.816			
100.00-80.00				C	0.181	2.662		1	1	31.816			
T6	T5	92.06	5574.62	Α	0.161	2.733	42	1	1	31.465	3240.93	162.05	C
T6	100.00-80.00			В	0.161	2.733		1	1	31.465			
80.00-60.00 B				C	0.161	2.733		1	1	31.465			
T7 104.60 5881.30 A 0.129 2.848 37 1 1 32.939 3185.80 159.29 C 60.00-40.00 B 0.129 2.848 1 1 1 32.939 T8 104.60 6738.67 A 0.125 2.865 33 1 1 35.253 3062.17 153.11 C 40.00-20.00 B 0.125 2.865 1 1 35.253 T9 20.00-0.00 104.60 6836.21 A 0.116 2.901 29 1 1 36.101 2740.34 137.02 C Sum Weight: 788.19 40105.54 C 0.116 2.901 1 1 36.101 Sum Weight: 788.19 40105.54 C 0.116 2.901 1 1 36.101 C OTM 2140010.6 25621.14	T6	104.60	5795.14	Α	0.143	2.797	39	1	1	32.175	3291.87	164.59	C
T7	80.00-60.00			В	0.143	2.797		1	1	32.175			
60.00-40.00 B 0.129 2.848 1 1 32.939 3062.17 153.11 C 78 104.60 6738.67 A 0.125 2.865 33 1 1 32.939 3062.17 153.11 C 40.00-20.00 B 0.125 2.865 1 1 35.253 3062.17 153.11 C T9 20.00-0.00 104.60 6836.21 A 0.116 2.901 29 1 1 36.101 2740.34 137.02 C Sum Weight: 788.19 40105.54 C 0.116 2.901 1 1 36.101 25621.14 C				C	0.143	2.797		1	1	32.175			
T8	T7	104.60	5881.30	Α	0.129	2.848	37	1	1	32.939	3185.80	159.29	C
T8 104.60 6738.67 A 0.125 2.865 33 1 1 35.253 3062.17 153.11 C 40.00-20.00 B 0.125 2.865 1 1 35.253 35.253 C 0.125 2.865 1 1 35.253 T 20.00-0.00 104.60 6836.21 A 0.116 2.901 29 1 1 36.101 2740.34 137.02 C B 0.116 2.901 1 1 36.101 C 0.116 2.901 T 1 36.101 C 0.116 2.901 T T T T T T T T T	60.00-40.00			В	0.129	2.848		1	1	32.939			
40.00-20.00 104.60 6836.21 A 0.125 2.865 1 1 35.253 35.253 1 137.02 C T9 20.00-0.00 104.60 6836.21 A 0.116 2.901 29 1 1 36.101 2740.34 137.02 C Sum Weight: 788.19 40105.54 0.116 2.901 1 1 36.101 36.101 0TM 2140010.6 25621.14 0TM 25621.14 0TM 25621.14 0TM				C	0.129	2.848		1	1	32.939			
T9 20.00-0.00	T8	104.60	6738.67	Α	0.125	2.865	33	1	1	35.253	3062.17	153.11	C
T9 20.00-0.00	40.00-20.00			В	0.125	2.865		1	1	35.253			
Sum Weight: 788.19 40105.54 B 0.116 2.901 1 1 36.101 1 36.101 0TM 2140010.6 25621.14				C	0.125	2.865		1	1	35.253			
Sum Weight: 788.19 40105.54 C 0.116 2.901 1 1 36.101 OTM 2140010.6 25621.14	T9 20.00-0.00	104.60	6836.21	Α	0.116	2.901	29	1	1	36.101	2740.34	137.02	C
Sum Weight: 788.19 40105.54 OTM 2140010.6 25621.14				В	0.116	2.901		1	1	36.101			
Sum Weight: 788.19 40105.54 OTM 2140010.6 25621.14				C	0.116	2.901		1	1	36.101			
	Sum Weight:	788.19	40105.54						OTM		25621.14		
		-								2 lb-ft			

Tower Forces - No Ice - Wind 60 To Face

Infinigy Engineering 1517 Old Apex Road Cary, NC 27513 Phone: 518-690-0790 FAX:

Job		Page
	BOBOS00073B	14 of 30
Project		Date
	1197-F0001-B	17:37:27 03/25/22
Client	NSS	Designed by JMC

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	e						ft^2	lb	plf	
T1	8.48	1094.10	Α	0.256	2.421	47	0.8	1	10.948	1080.55	108.06	С
170.00-160.00			В	0.256	2.421		0.8	1	10.948			
			C	0.256	2.421		0.8	1	10.948			
T2	86.45	2243.95	Α	0.217	2.54	46	0.8	1	22.327	2413.97	120.70	С
160.00-140.00			В	0.217	2.54		0.8	1	22.327			
			C	0.217	2.54		0.8	1	22.327			
T3	91.40	2639.00	Α	0.197	2.605	45	0.8	1	25.692	2769.71	138.49	С
140.00-120.00			В	0.197	2.605		0.8	1	25.692			
			C	0.197	2.605		0.8	1	25.692			
T4	91.40	3302.54	Α	0.181	2.662	43	0.8	1	28.662	3019.53	150.98	С
120.00-100.00			В	0.181	2.662		0.8	1	28.662			
			C	0.181	2.662		0.8	1	28.662			
T5	92.06	5574.62	Α	0.161	2.733	42	0.8	1	28.895	2992.98	149.65	C
100.00-80.00			В	0.161	2.733		0.8	1	28.895			
			C	0.161	2.733		0.8	1	28.895			
T6	104.60	5795.14	Α	0.143	2.797	39	0.8	1	29.452	3036.77	151.84	C
80.00-60.00			В	0.143	2.797		0.8	1	29.452			
			C	0.143	2.797		0.8	1	29.452			
T7	104.60	5881.30	Α	0.129	2.848	37	0.8	1	30.056	2929.61	146.48	C
60.00-40.00			В	0.129	2.848		0.8	1	30.056			
			C	0.129	2.848		0.8	1	30.056			
T8	104.60	6738.67	Α	0.125	2.865	33	0.8	1	32.204	2817.36	140.87	С
40.00-20.00			В	0.125	2.865		0.8	1	32.204			
			C	0.125	2.865		0.8	1	32.204			
T9 20.00-0.00	104.60	6836.21	Α	0.116	2.901	29	0.8	1	32.878	2513.64	125.68	C
			В	0.116	2.901		0.8	1	32.878			
			C	0.116	2.901		0.8	1	32.878			
Sum Weight:	788.19	40105.54						OTM	1970676.8	23574.11		
									9 lb-ft			

Tower Forces - No Ice - Wind 90 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
T1	8.48	1094.10	Α	0.256	2.421	47	0.85	1	11.193	1104.31	110.43	C
170.00-160.00			В	0.256	2.421		0.85	1	11.193			
			C	0.256	2.421		0.85	1	11.193			
T2	86.45	2243.95	Α	0.217	2.54	46	0.85	1	22.763	2457.52	122.88	C
160.00-140.00			В	0.217	2.54		0.85	1	22.763			
			C	0.217	2.54		0.85	1	22.763			
T3	91.40	2639.00	Α	0.197	2.605	45	0.85	1	26.291	2829.16	141.46	C
140.00-120.00			В	0.197	2.605		0.85	1	26.291			
			C	0.197	2.605		0.85	1	26.291			
T4	91.40	3302.54	Α	0.181	2.662	43	0.85	1	29.450	3096.84	154.84	C
120.00-100.00			В	0.181	2.662		0.85	1	29.450			
			C	0.181	2.662		0.85	1	29.450			
T5	92.06	5574.62	Α	0.161	2.733	42	0.85	1	29.537	3054.96	152.75	C
100.00-80.00			В	0.161	2.733		0.85	1	29.537			
			C	0.161	2.733		0.85	1	29.537			
T6	104.60	5795.14	Α	0.143	2.797	39	0.85	1	30.133	3100.55	155.03	C
80.00-60.00			В	0.143	2.797		0.85	1	30.133			
			C	0.143	2.797		0.85	1	30.133			

Infinigy Engineering 1517 Old Apex Road Cary, NC 27513 Phone: 518-690-0790 FAX:

Job		Page
	BOBOS00073B	15 of 30
Project		Date
	1197-F0001-B	17:37:27 03/25/22
Client	NSS	Designed by JMC

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	lb	lb	е						ft^2	lb	plf	
T7	104.60	5881.30	Α	0.129	2.848	37	0.85	1	30.777	2993.66	149.68	C
60.00-40.00			В	0.129	2.848		0.85	1	30.777			
			C	0.129	2.848		0.85	1	30.777			
T8	104.60	6738.67	Α	0.125	2.865	33	0.85	1	32.966	2878.56	143.93	C
40.00-20.00			В	0.125	2.865		0.85	1	32.966			
			C	0.125	2.865		0.85	1	32.966			
T9 20.00-0.00	104.60	6836.21	Α	0.116	2.901	29	0.85	1	33.683	2570.31	128.52	C
			В	0.116	2.901		0.85	1	33.683			
			C	0.116	2.901		0.85	1	33.683			
Sum Weight:	788.19	40105.54						OTM	2013010.3	24085.87		
_									2 lb-ft			

Tower Forces - With Ice - Wind Normal To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
	_	_	С			psf						
ft	lb	lb	e						ft^2	lb	plf	
T1	26.86	2169.13	Α	0.633	1.787	8	1	1	34.105	399.70	39.97	C
170.00-160.00			В	0.633	1.787		1	1	34.105			
			C	0.633	1.787		1	1	34.105			
T2	284.45	4800.13	Α	0.506	1.892	7	1	1	60.656	811.78	40.59	C
160.00-140.00			В	0.506	1.892		1	1	60.656			
			C	0.506	1.892		1	1	60.656			
T3	333.47	5763.20	Α	0.431	2.006	7	1	1	62.160	866.10	43.30	C
140.00-120.00			В	0.431	2.006		1	1	62.160			
			C	0.431	2.006		1	1	62.160			
T4	328.94	6702.63	Α	0.387	2.09	7	1	1	66.070	914.53	45.73	C
120.00-100.00			В	0.387	2.09		1	1	66.070			
			C	0.387	2.09		1	1	66.070			
T5	330.22	9264.41	Α	0.314	2.259	7	1	1	59.612	858.70	42.94	C
100.00-80.00			В	0.314	2.259		1	1	59.612			
			C	0.314	2.259		1	1	59.612			
T6	444.62	9094.76	Α	0.281	2.349	6	1	1	60.097	888.00	44.40	C
80.00-60.00			В	0.281	2.349		1	1	60.097			
			C	0.281	2.349		1	1	60.097			
T7	430.77	9116.09	Α	0.252	2.431	6	1	1	60.244	851.77	42.59	C
60.00-40.00			В	0.252	2.431		1	1	60.244			
			C	0.252	2.431		1	1	60.244			
T8	411.06	9900.19	Α	0.23	2.498	5	1	1	60.943	788.09	39.40	C
40.00-20.00			В	0.23	2.498		1	1	60.943			
			C	0.23	2.498		1	1	60.943			
T9 20.00-0.00	350.66	9664.21	Α	0.209	2.566	5	1	1	60.713	677.88	33.89	C
			В	0.209	2.566		1	1	60.713			
			С	0.209	2.566		1	1	60.713			
Sum Weight:	2941.06	66474.76						OTM	613361.12	7056.54		
									lb-ft			

Tower Forces - With Ice - Wind 60 To Face

Infinigy Engineering 1517 Old Apex Road Cary, NC 27513 Phone: 518-690-0790 FAX:

Job		Page
	BOBOS00073B	16 of 30
Project		Date
	1197-F0001-B	17:37:27 03/25/22
Client	NSS	Designed by
	1100	JMC

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a			_						Face
	_	_	c			psf						
ft	lb	lb	e						ft^2	lb	plf	
T1	26.86	2169.13	Α	0.633	1.787	8	0.8	1	33.126	388.48	38.85	C
170.00-160.00			В	0.633	1.787		0.8	1	33.126			
			C	0.633	1.787		0.8	1	33.126			
T2	284.45	4800.13	Α	0.506	1.892	7	0.8	1	58.911	791.01	39.55	C
160.00-140.00			В	0.506	1.892		0.8	1	58.911			
			C	0.506	1.892		0.8	1	58.911			
T3	333.47	5763.20	Α	0.431	2.006	7	0.8	1	59.767	836.80	41.84	C
140.00-120.00			В	0.431	2.006		0.8	1	59.767			
			C	0.431	2.006		0.8	1	59.767			
T4	328.94	6702.63	Α	0.387	2.09	7	0.8	1	62.916	875.68	43.78	C
120.00-100.00			В	0.387	2.09		0.8	1	62.916			
			C	0.387	2.09		0.8	1	62.916			
T5	330.22	9264.41	Α	0.314	2.259	7	0.8	1	57.042	825.91	41.30	C
100.00-80.00			В	0.314	2.259		0.8	1	57.042			
			C	0.314	2.259		0.8	1	57.042			
T6	444.62	9094.76	Α	0.281	2.349	6	0.8	1	57.374	853.73	42.69	C
80.00-60.00			В	0.281	2.349		0.8	1	57.374			
			C	0.281	2.349		0.8	1	57.374			
T7	430.77	9116.09	Α	0.252	2.431	6	0.8	1	57.361	816.78	40.84	C
60.00-40.00			В	0.252	2.431		0.8	1	57.361			
			C	0.252	2.431		0.8	1	57.361			
T8	411.06	9900.19	Α	0.23	2.498	5	0.8	1	57.894	753.94	37.70	C
40.00-20.00			В	0.23	2.498		0.8	1	57.894			
			C	0.23	2.498		0.8	1	57.894			
T9 20.00-0.00	350.66	9664.21	Α	0.209	2.566	5	0.8	1	57.490	645.79	32.29	C
			В	0.209	2.566		0.8	1	57.490			
			C	0.209	2.566		0.8	1	57.490			
Sum Weight:	2941.06	66474.76						OTM	591868.11	6788.13		
_									lb-ft			

Tower Forces - With Ice - Wind 90 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	e						ft^2	lb	plf	
T1	26.86	2169.13	Α	0.633	1.787	8	0.85	1	33.371	391.28	39.13	C
170.00-160.00			В	0.633	1.787		0.85	1	33.371			
			C	0.633	1.787		0.85	1	33.371			
T2	284.45	4800.13	Α	0.506	1.892	7	0.85	1	59.348	796.20	39.81	C
160.00-140.00			В	0.506	1.892		0.85	1	59.348			
			C	0.506	1.892		0.85	1	59.348			
T3	333.47	5763.20	Α	0.431	2.006	7	0.85	1	60.365	844.13	42.21	C
140.00-120.00			В	0.431	2.006		0.85	1	60.365			
			C	0.431	2.006		0.85	1	60.365			
T4	328.94	6702.63	Α	0.387	2.09	7	0.85	1	63.705	885.39	44.27	C
120.00-100.00			В	0.387	2.09		0.85	1	63.705			
			C	0.387	2.09		0.85	1	63.705			
T5	330.22	9264.41	Α	0.314	2.259	7	0.85	1	57.684	834.11	41.71	C
100.00-80.00			В	0.314	2.259		0.85	1	57.684			
			C	0.314	2.259		0.85	1	57.684			
T6	444.62	9094.76	Α	0.281	2.349	6	0.85	1	58.055	862.30	43.11	C
80.00-60.00			В	0.281	2.349		0.85	1	58.055			

Infinigy Engineering 1517 Old Apex Road Cary, NC 27513 Phone: 518-690-0790 FAX:

Job		Page
	BOBOS00073B	17 of 30
Project		Date
	1197-F0001-B	17:37:27 03/25/22
Client	NSS	Designed by JMC

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
			C	0.281	2.349		0.85	1	58.055			
T7	430.77	9116.09	Α	0.252	2.431	6	0.85	1	58.082	825.53	41.28	C
60.00-40.00			В	0.252	2.431		0.85	1	58.082			
			C	0.252	2.431		0.85	1	58.082			
T8	411.06	9900.19	Α	0.23	2.498	5	0.85	1	58.656	762.48	38.12	C
40.00-20.00			В	0.23	2.498		0.85	1	58.656			
			C	0.23	2.498		0.85	1	58.656			
T9 20.00-0.00	350.66	9664.21	Α	0.209	2.566	5	0.85	1	58.296	653.81	32.69	C
			В	0.209	2.566		0.85	1	58.296			
			C	0.209	2.566		0.85	1	58.296			
Sum Weight:	2941.06	66474.76						OTM	597241.36	6855.23		
									lb-ft			

Tower Forces - Service - Wind Normal To Face

Section Elevation	Add Weight	Self Weight	F a	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl. Face
Lievation	weighi	weight	c			psf						ruce
ft	lb	lb	e			psj			ft ²	lb	plf	
<i>Ji</i> T1	8.48	1094.10	A	0.256	2.421	11	1	1	11.927	270.85	27.09	С
170.00-160.00	0.10	107 1.10	В	0.256	2.421	11	1	1	11.927	270.03	27.07	
170.00 100.00			C	0.256	2.421		1	1	11.927			
T2	86.45	2243.95	A	0.217	2.54	11	1	1	24.071	596.31	29.82	С
160.00-140.00			В	0.217	2.54		1	1	24.071	-, -, -		_
			С	0.217	2.54		1	1	24.071			
Т3	91.40	2639.00	Α	0.197	2.605	10	1	1	28.085	692.93	34.65	C
140.00-120.00			В	0.197	2.605		1	1	28.085			
			C	0.197	2.605		1	1	28.085			
T4	91.40	3302.54	Α	0.181	2.662	10	1	1	31.816	766.95	38.35	C
120.00-100.00			В	0.181	2.662		1	1	31.816			
			C	0.181	2.662		1	1	31.816			
T5	92.06	5574.62	Α	0.161	2.733	10	1	1	31.465	746.71	37.34	C
100.00-80.00			В	0.161	2.733		1	1	31.465			
			C	0.161	2.733		1	1	31.465			
T6	104.60	5795.14	Α	0.143	2.797	9	1	1	32.175	758.45	37.92	C
80.00-60.00			В	0.143	2.797		1	1	32.175			
			C	0.143	2.797		1	1	32.175			
T7	104.60	5881.30	Α	0.129	2.848	8	1	1	32.939	734.01	36.70	C
60.00-40.00			В	0.129	2.848		1	1	32.939			
			C	0.129	2.848		1	1	32.939			
T8	104.60	6738.67	Α	0.125	2.865	8	1	1	35.253	705.52	35.28	C
40.00-20.00			В	0.125	2.865		1	1	35.253			
			C	0.125	2.865		1	1	35.253			
T9 20.00-0.00	104.60	6836.21	Α	0.116	2.901	7	1	1	36.101	631.37	31.57	C
			В	0.116	2.901		1	1	36.101			
			C	0.116	2.901		1	1	36.101			
Sum Weight:	788.19	40105.54						OTM	493058.45	5903.11		
									lb-ft			

Infinigy Engineering 1517 Old Apex Road Cary, NC 27513 Phone: 518-690-0790 FAX:

Job		Page
	BOBOS00073B	18 of 30
Project		Date
	1197-F0001-B	17:37:27 03/25/22
Client		Designed by
	NSS	JMC

Tower Forces - Service - Wind 60 To Face

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a			1						Face
	Ü	- C	c			psf						
ft	lb	lb	e						ft^2	lb	plf	
T1	8.48	1094.10	Α	0.256	2.421	11	0.8	1	10.948	248.96	24.90	С
170.00-160.00			В	0.256	2.421		0.8	1	10.948			
			C	0.256	2.421		0.8	1	10.948			
T2	86.45	2243.95	Α	0.217	2.54	11	0.8	1	22.327	556.18	27.81	C
160.00-140.00			В	0.217	2.54		0.8	1	22.327			
			C	0.217	2.54		0.8	1	22.327			
T3	91.40	2639.00	Α	0.197	2.605	10	0.8	1	25.692	638.14	31.91	C
140.00-120.00			В	0.197	2.605		0.8	1	25.692			
			C	0.197	2.605		0.8	1	25.692			
T4	91.40	3302.54	Α	0.181	2.662	10	0.8	1	28.662	695.70	34.78	C
120.00-100.00			В	0.181	2.662		0.8	1	28.662			
			C	0.181	2.662		0.8	1	28.662			
T5	92.06	5574.62	Α	0.161	2.733	10	0.8	1	28.895	689.58	34.48	C
100.00-80.00			В	0.161	2.733		0.8	1	28.895			
			C	0.161	2.733		0.8	1	28.895			
T6	104.60	5795.14	Α	0.143	2.797	9	0.8	1	29.452	699.67	34.98	C
80.00-60.00			В	0.143	2.797		0.8	1	29.452			
			C	0.143	2.797		0.8	1	29.452			
T7	104.60	5881.30	Α	0.129	2.848	8	0.8	1	30.056	674.98	33.75	C
60.00-40.00			В	0.129	2.848		0.8	1	30.056			
			C	0.129	2.848		0.8	1	30.056			
T8	104.60	6738.67	Α	0.125	2.865	8	0.8	1	32.204	649.12	32.46	C
40.00-20.00			В	0.125	2.865		0.8	1	32.204			
			C	0.125	2.865		0.8	1	32.204			
T9 20.00-0.00	104.60	6836.21	Α	0.116	2.901	7	0.8	1	32.878	579.14	28.96	C
			В	0.116	2.901		0.8	1	32.878			
			C	0.116	2.901		0.8	1	32.878			
Sum Weight:	788.19	40105.54						OTM	454043.96	5431.48		
									lb-ft			

Tower Forces - Service - Wind 90 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a			_						Face
			c			psf						
ft	lb	lb	e						ft^2	lb	plf	
T1	8.48	1094.10	Α	0.256	2.421	11	0.85	1	11.193	254.43	25.44	C
170.00-160.00			В	0.256	2.421		0.85	1	11.193			
			C	0.256	2.421		0.85	1	11.193			
T2	86.45	2243.95	Α	0.217	2.54	11	0.85	1	22.763	566.21	28.31	C
160.00-140.00			В	0.217	2.54		0.85	1	22.763			
			C	0.217	2.54		0.85	1	22.763			
T3	91.40	2639.00	Α	0.197	2.605	10	0.85	1	26.291	651.84	32.59	C
140.00-120.00			В	0.197	2.605		0.85	1	26.291			
			C	0.197	2.605		0.85	1	26.291			
T4	91.40	3302.54	Α	0.181	2.662	10	0.85	1	29.450	713.51	35.68	C
120.00-100.00			В	0.181	2.662		0.85	1	29.450			
			C	0.181	2.662		0.85	1	29.450			
T5	92.06	5574.62	Α	0.161	2.733	10	0.85	1	29.537	703.86	35.19	C
100.00-80.00			В	0.161	2.733		0.85	1	29.537			
			C	0.161	2.733		0.85	1	29.537			

Infinigy Engineering
1517 Old Apex Road

Cary, NC 27513 Phone: 518-690-0790 FAX:

Job		Page
	BOBOS00073B	19 of 30
Project		Date
	1197-F0001-B	17:37:27 03/25/22
Client	NSS	Designed by JMC

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С			psf						
ft	lb	lb	е						ft^2	lb	plf	
T6	104.60	5795.14	Α	0.143	2.797	9	0.85	1	30.133	714.37	35.72	C
80.00-60.00			В	0.143	2.797		0.85	1	30.133			
			C	0.143	2.797		0.85	1	30.133			
T7	104.60	5881.30	Α	0.129	2.848	8	0.85	1	30.777	689.74	34.49	C
60.00-40.00			В	0.129	2.848		0.85	1	30.777			
			C	0.129	2.848		0.85	1	30.777			
T8	104.60	6738.67	Α	0.125	2.865	8	0.85	1	32.966	663.22	33.16	C
40.00-20.00			В	0.125	2.865		0.85	1	32.966			
			C	0.125	2.865		0.85	1	32.966			
T9 20.00-0.00	104.60	6836.21	Α	0.116	2.901	7	0.85	1	33.683	592.20	29.61	C
			В	0.116	2.901		0.85	1	33.683			
			C	0.116	2.901		0.85	1	33.683			
Sum Weight:	788.19	40105.54						OTM	463797.58	5549.38		
									lb-ft			

Force Totals

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Z	Moments, M_x	Moments, M_z	
	lb	lb	lb	lb-ft	lb-ft	lb-ft
Leg Weight	28259.04					
Bracing Weight	11846.50					
Total Member Self-Weight	40105.54			1079.03	2349.47	
Total Weight	45437.81			1079.03	2349.47	
Wind 0 deg - No Ice		563.77	-31990.02	-3124622.75	-43394.59	-2341.50
Wind 90 deg - No Ice		30499.14	-343.85	-26634.76	-2992795.05	-116.61
Wind 180 deg - No Ice		-69.29	29765.26	2942872.39	7543.55	3672.12
Member Ice	26369.22					
Total Weight Ice	78796.17			1596.45	4531.41	
Wind 0 deg - Ice		103.90	-8420.22	-823824.97	-3818.56	-513.41
Wind 90 deg - Ice		8225.87	-63.02	-3406.91	-804009.66	4.52
Wind 180 deg - Ice		-11.15	8118.46	802794.41	5288.08	759.21
Total Weight	45437.81			1079.03	2349.47	
Wind 0 deg - Service		129.89	-7370.50	-719082.66	-8189.97	-539.48
Wind 90 deg - Service		7027.00	-79.22	-5306.23	-687731.83	-26.87
Wind 180 deg - Service		-15.96	6857.92	678868.22	3546.18	846.06

Load Combinations

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 90 deg - No Ice
5	0.9 Dead+1.0 Wind 90 deg - No Ice
6	1.2 Dead+1.0 Wind 180 deg - No Ice
7	0.9 Dead+1.0 Wind 180 deg - No Ice
8	1.2 Dead+1.0 Ice+1.0 Temp

Infinigy Engineering 1517 Old Apex Road

1517 Old Apex Road Cary, NC 27513 Phone: 518-690-0790 FAX:

Job		Page
	BOBOS00073B	20 of 30
Project		Date
	1197-F0001-B	17:37:27 03/25/22
Client	NSS	Designed by JMC

Comb.	Description
No.	
9	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
10	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
11	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
12	Dead+Wind 0 deg - Service
13	Dead+Wind 90 deg - Service
14	Dead+Wind 180 deg - Service

Maximum Member Forces

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Туре		Load	**	Moment	Moment
				Comb.	<u>lb</u>	lb-ft	lb-ft
T1	170 - 160	Leg	Max Tension	6	717.56	0.00	0.00
			Max. Compression	9	-4173.87	345.61	-0.43
			Max. Mx	6	-1233.00	1948.59	2.42
			Max. My	4	-2059.80	-50.28	-3112.09
			Max. Vy	6	1936.56	-1876.72	2.42
			Max. Vx	4	-1734.67	-50.28	311.22
		Diagonal	Max Tension	7	1076.75	0.00	0.00
			Max. Compression	2	-1206.11	0.00	0.00
			Max. Mx	11	-269.57	24.81	-4.83
			Max. My	10	123.09	23.64	5.62
			Max. Vy	11	19.64	24.81	-4.83
			Max. Vx	10	-1.86	0.00	0.00
		Top Girt	Max Tension	6	13.21	0.00	0.00
			Max. Compression	11	-4.44	0.00	0.00
			Max. Mx	8	1.17	-46.99	0.00
			Max. My	11	3.41	0.00	1.36
			Max. Vy	8	37.59	0.00	0.00
			Max. Vx	11	-1.09	0.00	0.00
T2 160 - 140	Leg	Max Tension	7	17919.01	-284.44	-15.80	
		Max. Compression	2	-23452.52	1446.18	15.86	
			Max. Mx	6	5614.48	-1876.72	2.42
			Max. My	4	-2725.03	-117.45	1685.33
			Max. Vy	3	311.30	1809.58	-1.92
			Max. Vx	4	-280.53	-117.45	1685.33
		Diagonal	Max Tension	7	4054.90	0.00	0.00
			Max. Compression	2	-4256.39	0.00	0.00
			Max. Mx	11	860.56	38.94	-6.67
			Max. My	2	-4230.16	5.31	-9.93
			Max. Vy	11	28.94	38.94	-6.67
			Max. Vx	11	-2.27	0.00	0.00
T3	140 - 120	Leg	Max Tension	7	36866.08	-1038.99	1.55
		Č	Max. Compression	2	-44737.08	2569.86	19.98
			Max. Mx	2	-44737.08	2569.86	19.98
			Max. My	4	-3585.25	-160.78	1806.76
			Max. Vy	2	-329.16	2569.86	19.98
			Max. Vx	4	-272.12	-160.78	1806.76
		Diagonal	Max Tension	4	3747.27	0.00	0.00
		J	Max. Compression	2	-3946.01	0.00	0.00
			Max. Mx	10	831.94	56.82	8.82
			Max. My	11	773.09	56.80	-8.91
			Max. Vy	10	37.85	56.82	8.82
			Max. Vx	11	2.50	0.00	0.00
T4	120 - 100	Leg	Max Tension	7	55447.21	-1325.62	13.83
	120 100	205	Max. Compression	2	-67080.48	2445.00	153.62
			Max. Mx	2	-54458.78	2569.86	19.98
			Max. My	4	-5574.15	-69.96	2588.43
			Max. Vy	2	284.44	2569.86	19.98
			man. vy	2	201.77	2507.00	17.70

Infinigy Engineering 1517 Old Apex Road Cary, NC 27513 Phone: 518-690-0790 FAX:

Job		Page
	BOBOS00073B	21 of 30
Project		Date
	1197-F0001-B	17:37:27 03/25/22
Client	NSS	Designed by JMC

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
110.	Je	1)// 0		Comb.	lb	lb-ft	lb-ft
			Max. Vx	4	-262.69	-69.96	2588.43
		Diagonal	Max Tension	2	4151.99	0.00	0.00
			Max. Compression	2	-4574.70	0.00	0.00
			Max. Mx	11	828.55	91.99	-11.82
			Max. My	11	-977.54	72.68	-13.42
			Max. Vy	11	55.58	91.99	-11.82
			Max. Vx	11	3.39	0.00	0.00
		Top Girt	Max Tension	6	1426.70	0.00	0.00
			Max. Compression	3	-1119.59	0.00	0.00
			Max. Mx	8	349.26	-183.29	0.00
			Max. My	11	189.76	0.00	5.29
			Max. Vy	8	73.32	0.00	0.00
T-5	100 00	τ	Max. Vx	11	-2.12	0.00	0.00
T5	100 - 80	Leg	Max Tension	7	67128.21	-2462.89	-57.32
			Max. Compression	2	-81106.65	2894.44	37.40
			Max. Mx	6	64324.65	-2954.91	-49.07
			Max. My	4	-6931.76	-29.31	3018.92
			Max. Vy Max. Vx	4 4	596.52	-2748.38	-1484.60
		Diagonal		5	-551.42	-29.31	3018.92
		Diagonal	Max Tension	2	6306.27 -7196.50	0.00	0.00
			Max. Compression Max. Mx	11		0.00	0.00
			Max. My	11	1705.24 -1391.30	-276.59 -251.50	-48.90 52.85
			Max. Vy	11	-108.19	-276.59	-48.90
			Max. Vx	11	8.75	0.00	0.00
T6	80 - 60	Leg	Max Tension	7	85116.44	-2917.35	-48.89
10	80 - 00	Leg	Max. Compression	2	-105607.92	2545.31	93.34
			Max. Mx	6	81533.32	-3008.87	-14.96
			Max. My	4	-10162.23	-351.98	3388.00
			Max. Vy	6	-390.11	-2954.91	-49.07
			Max. Vx	4	-352.17	-351.98	3388.00
		Diagonal	Max Tension	4	7261.65	0.00	0.00
		Diagonar	Max. Compression	4	-7125.77	0.00	0.00
			Max. Mx	11	964.32	-345.18	57.59
			Max. My	11	964.32	-345.18	57.72
			Max. Vy	11	-123.65	-345.18	57.59
			Max. Vx	9	-9.08	0.00	0.00
T7	60 - 40	Leg	Max Tension	7	101149.31	-2930.12	-12.62
		C	Max. Compression	2	-126533.65	3491.86	-51.47
			Max. Mx	11	7866.07	-4670.50	4.19
			Max. My	4	-10952.49	-351.98	3388.00
			Max. Vy	11	453.71	-4670.50	4.19
			Max. Vx	4	411.73	-351.98	3388.00
		Diagonal	Max Tension	5	7177.63	0.00	0.00
			Max. Compression	2	-7949.20	0.00	0.00
			Max. Mx	11	2394.32	-359.13	-58.78
			Max. My	9	2041.90	-354.14	-59.68
			Max. Vy	11	-134.04	-359.13	-58.78
			Max. Vx	11	9.14	0.00	0.00
T8	40 - 20	Leg	Max Tension	7	118451.68	-3048.15	3.93
			Max. Compression	2	-150783.98	2569.32	93.37
			Max. Mx	9	-58789.54	4804.06	6.97
			Max. My	4	-16128.54	-598.81	5570.46
			Max. Vy	11	-542.35	-4670.50	4.19
			Max. Vx	4	-512.23	-598.81	5570.46
		Diagonal	Max Tension	4	7533.60	0.00	0.00
			Max. Compression	4	-7430.66	0.00	0.00
			Max. Mx	11	176.21	-463.60	67.50
			Max. My	11	-2931.10	-371.81	72.12
			Max. Vy	11	-149.23	-463.60	67.50
			Max. Vx	11	9.92	0.00	0.00

Infinigy Engineering 1517 Old Apex Road Cary, NC 27513 Phone: 518-690-0790 FAX:

Job		Page
	BOBOS00073B	22 of 30
Project		Date
	1197-F0001-B	17:37:27 03/25/22
Client	NSS	Designed by JMC

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
110.	Je	1)p0		Comb.	lb	lb-ft	lb-ft
T9	20 - 0	Leg	Max Tension	7	133103.45	-3403.75	-16.82
			Max. Compression	2	-170816.21	0.00	0.04
			Max. Mx	9	-68595.37	4804.06	6.97
			Max. My	4	-16739.48	-598.81	5570.46
		Max. Vy	6	-497.94	-3555.40	-18.37	
			Max. Vx	4	549.56	-598.81	5570.46
		Diagonal	Max Tension	5	7775.31	0.00	0.00
		· ·	Max. Compression	2	-8776.68	0.00	0.00
			Max. Mx	10	3320.75	-424.36	-67.57
			Max. My	9	2797.42	-422.79	-68.15
			Max. Vy	10	-150.86	-424.36	-67.57
			Max. Vx	9	-9.41	0.00	0.00

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	lb	lb	lb
		Comb.			
Leg C	Max. Vert	6	95936.32	8382.06	-6711.51
_	Max. H _x	6	95936.32	8382.06	-6711.51
	Max. H _z	5	-123328.01	-13407.94	6717.20
	Min. Vert	5	-123328.01	-13407.94	6717.20
	Min. H _x	5	-123328.01	-13407.94	6717.20
	Min. Hz	6	95936.32	8382.06	-6711.51
Leg B	Max. Vert	4	153775.79	-15591.07	-7913.40
	Max. H _x	3	-66512.77	6337.43	5557.04
	Max. H _z	3	-66512.77	6337.43	5557.04
	Min. Vert	3	-66512.77	6337.43	5557.04
	Min. H _x	4	153775.79	-15591.07	-7913.40
	Min. H _z	4	153775.79	-15591.07	-7913.40
Leg A	Max. Vert	2	182500.68	-114.28	20924.13
	Max. H _x	7	-141063.52	101.66	-16930.49
	Max. H _z	2	182500.68	-114.28	20924.13
	Min. Vert	7	-141063.52	101.66	-16930.49
	Min. H _x	5	15036.50	-1837.96	1345.10
	Min. H _z	7	-141063.52	101.66	-16930.49

Tower Mast Reaction Summary

Load	Vertical	$Shear_x$	$Shear_z$	Overturning	Overturning	Torque
Combination				Moment, M_x	Moment, M_z	
	lb	lb	lb	lb-ft	lb-ft	lb-ft
Dead Only	45437.81	-0.00	0.00	1078.80	2349.04	0.00
1.2 Dead+1.0 Wind 0 deg - No	54525.00	563.33	-31989.88	-3130824.68	-42976.05	-2344.52
Ice						
0.9 Dead+1.0 Wind 0 deg - No	40894.03	563.77	-31990.02	-3129540.47	-43670.55	-2344.67
Ice						
1.2 Dead+1.0 Wind 90 deg - No Ice	54525.37	30499.14	-343.85	-26458.04	-2998490.17	-118.32
0.9 Dead+1.0 Wind 90 deg - No	40894.03	30499.14	-343.85	-26771.91	-2997649.09	-115.32
Ice						
1.2 Dead+1.0 Wind 180 deg - No Ice	54525.37	-69.29	29765.26	2949188.80	8031.31	3679.20

Infinigy Engineering
1517 Old Apex Road
Cary, NC 27513

Cary, NC 27513 Phone: 518-690-0790 FAX:

Job	Page
BOBOS00073B	23 of 30
Project	Date
1197-F0001-B	17:37:27 03/25/22
Client NSS	Designed by JMC

Load	Vertical	Shear _x	Shear _z	Overturning	Overturning	Torque
Combination				Moment, M_x	Moment, M_z	
	lb	lb	lb	lb-ft	lb-ft	lb-ft
0.9 Dead+1.0 Wind 180 deg -	40894.03	-69.29	29765.26	2947333.03	7321.65	3677.53
No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	87883.73	0.00	-0.00	1813.01	5004.48	0.04
1.2 Dead+1.0 Wind 0 deg+1.0	87883.73	103.90	-8420.22	-826423.53	-3343.95	-516.21
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90 deg+1.0	87883.73	8225.87	-63.02	-3197.31	-806282.76	4.69
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	87883.73	-11.15	8118.46	805766.39	5784.76	762.15
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	45437.81	129.89	-7370.50	-720322.42	-8197.32	-540.59
Dead+Wind 90 deg - Service	45437.81	7027.00	-79.22	-5309.90	-688921.27	-29.81
Dead+Wind 180 deg - Service	45437.81	-15.96	6857.92	679987.18	3553.15	847.37

Solution Summary

	Sui	n of Applied Forces	S		Sum of Reaction	ıs	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	lb	lb	lb	lb	lb	lb	
1	0.00	-45437.81	-0.00	0.00	45437.81	-0.00	0.000%
2	563.77	-54525.37	-31990.02	-563.33	54525.00	31989.88	0.001%
3	563.77	-40894.03	-31990.02	-563.77	40894.03	31990.02	0.000%
4	30499.14	-54525.37	-343.85	-30499.14	54525.37	343.85	0.000%
5	30499.14	-40894.03	-343.85	-30499.14	40894.03	343.85	0.000%
6	-69.29	-54525.37	29765.26	69.29	54525.37	-29765.26	0.000%
7	-69.29	-40894.03	29765.26	69.29	40894.03	-29765.26	0.000%
8	0.00	-87883.73	-0.00	-0.00	87883.73	0.00	0.000%
9	103.90	-87883.73	-8420.22	-103.90	87883.73	8420.22	0.000%
10	8225.87	-87883.73	-63.02	-8225.87	87883.73	63.02	0.000%
11	-11.15	-87883.73	8118.46	11.15	87883.73	-8118.46	0.000%
12	129.89	-45437.81	-7370.50	-129.89	45437.81	7370.50	0.000%
13	7027.00	-45437.81	-79.22	-7027.00	45437.81	79.22	0.000%
14	-15.96	-45437.81	6857.92	15.96	45437.81	-6857.92	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00000001
3	Yes	4	0.00000001	0.00000001
4	Yes	4	0.00000001	0.00000001
5	Yes	4	0.00000001	0.00000001
6	Yes	4	0.00000001	0.00000001
7	Yes	4	0.00000001	0.00000001
8	Yes	4	0.00000001	0.00000001
9	Yes	4	0.00000001	0.00000001
10	Yes	4	0.00000001	0.00000001
11	Yes	4	0.00000001	0.00000001
12	Yes	4	0.00000001	0.00000001
13	Yes	4	0.00000001	0.00000001
14	Yes	4	0.00000001	0.00000001

tnx7	ower

Infinigy Engineering 1517 Old Apex Road Cary, NC 27513 Phone: 518-690-0790

FAX:

Maximum	Tower Deflections	Sarvica	Wind
waxiiiiuiii	Tower Deflections	- Service	vviiiu

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	170 - 160	1.131	12	0.057	0.002
T2	160 - 140	1.010	12	0.057	0.001
T3	140 - 120	0.763	12	0.052	0.001
T4	120 - 100	0.549	12	0.044	0.001
T5	100 - 80	0.376	12	0.033	0.001
T6	80 - 60	0.244	12	0.026	0.001
T7	60 - 40	0.141	12	0.019	0.001
T8	40 - 20	0.067	12	0.012	0.000
Т9	20 - 0	0.019	12	0.006	0.000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
162.00	Sector Mount [SM 601-3]	12	1.034	0.057	0.001	266866
145.00	6' x 2" Omni	12	0.824	0.054	0.001	185029
82.00	P4-105	12	0.256	0.027	0.001	176479
81.00	Pipe Mount [PM 601-1]	12	0.250	0.026	0.001	180572
80.00	DB496-A	12	0.244	0.026	0.001	183389

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	170 - 160	4.912	2	0.248	0.007
T2	160 - 140	4.387	2	0.248	0.006
T3	140 - 120	3.318	2	0.226	0.006
T4	120 - 100	2.384	2	0.191	0.004
T5	100 - 80	1.634	2	0.144	0.004
T6	80 - 60	1.059	2	0.113	0.004
T7	60 - 40	0.613	2	0.084	0.002
T8	40 - 20	0.292	2	0.054	0.001
T9	20 - 0	0.081	2	0.027	0.001

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
162.00	Sector Mount [SM 601-3]	2	4.493	0.249	0.006	62315
145.00	6' x 2" Omni	2	3.579	0.233	0.006	42870
82.00	P4-105	2	1.111	0.115	0.004	40589

Infinigy Engineering 1517 Old Apex Road Cary, NC 27513 Phone: 518-690-0790 FAX:

Job		Page
	BOBOS00073B	25 of 30
Project		Date
	1197-F0001-B	17:37:27 03/25/22
Client	NSS	Designed by JMC

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	٥	0	ft
81.00	Pipe Mount [PM 601-1]	2	1.085	0.114	0.004	41523
80.00	DB496-A	2	1.059	0.113	0.004	42164

— 14		
	INCHAR	112+2
DOLL	Design	ııjala
	- 00.91	. – 4.44

Section No.	Elevation ft	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt lb	Allowable Load per Bolt lb	Ratio Load Allowable	Allowable Ratio	Criteria
T1	170	Leg	A325N	1.0000	6	231.88	54517.00	0.004	1	Bolt Tension
		Diagonal	A325N	1.0000	1	1076.75	9144.14	0.118	1	Member Block Shear
		Top Girt	A325N	1.0000	1	13.21	16939.50	0.001	1	Member Block Shear
T2	160	Leg	A325N	1.0000	6	2986.50	54517.00	0.055	1	Bolt Tension
		Diagonal	A325N	1.0000	1	4054.90	12192.20	0.333	1	Member Block Shear
Т3	140	Leg	A325N	1.0000	6	6144.35	54517.00	0.113	1	Bolt Tension
		Diagonal	A325N	1.0000	1	3747.27	10163.70	0.369	1	Member Block Shear
T4	120	Leg	A325N	1.0000	6	9241.20	54517.00	0.170	1	Bolt Tension
		Diagonal	A325N	1.0000	1	4151.99	16939.50	0.245	1	Member Block Shear
		Top Girt	A325N	1.0000	1	1426.70	16939.50	0.084	1	Member Block Shear
T5	100	Leg	A325N	1.0000	12	5594.02	54517.00	0.103	1	Bolt Tension
		Diagonal	A325N	0.8750	1	6306.27	29580.00	0.213	1	Member Bearing
T6	80	Leg	A325N	1.0000	12	7093.04	54517.00	0.130	1	Bolt Tension
		Diagonal	A325N	0.8750	1	7261.65	29580.00	0.245	1	Member Bearing
T7	60	Leg	A325N	1.0000	12	8429.11	54517.00	0.155	1	Bolt Tension
		Diagonal	A325N	0.8750	1	7177.63	29580.00	0.243	1	Member Bearing
Т8	40	Leg	A325N	1.0000	12	9870.97	54517.00	0.181	1	Bolt Tension
		Diagonal	A325N	0.8750	1	7533.60	29580.00	0.255	1	Member Bearing
Т9	20	Diagonal	A325N	0.8750	1	7775.31	29580.00	0.263	1	Member Bearing

Compression Checks

Leg Design Data (Compression)

Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
No.									P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n

Infinigy Engineering 1517 Old Apex Road Cary, NC 27513 Phone: 518-690-0790 FAX:

Job		Page
	BOBOS00073B	26 of 30
Projec	ct D)ate
	1197-F0001-B	17:37:27 03/25/22
Client	NSS	Designed by JMC

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T1	170 - 160	Pirod 208951	10.02	10.02	45.0 K=1.00	3.6816	-4173.87	142870.00	0.029 1
T2	160 - 140	Valmont 207629	20.03	10.02	37.5 K=1.00	5.3014	-23452.50	215254.00	0.109 1
Т3	140 - 120	Pirod 195557	20.03	10.02	32.1 K=1.00	7.2158	-44737.10	301087.00	0.149 ¹
T4	120 - 100	Pirod 195557	20.03	10.02	32.1 K=1.00	7.2158	-67080.50	301087.00	0.223 1
T5	100 - 80	Valmont 214589 (12x2.25)	20.03	20.03	48.8 K=1.00	11.9282	-81106.60	451148.00	0.180 1
Т6	80 - 60	Valmont 208335	20.03	20.03	48.7 K=1.00	14.7262	-105608.00	557267.00	0.190 ¹
T7	60 - 40	Valmont 208335	20.03	20.03	48.7 K=1.00	14.7262	-126534.00	557267.00	0.227 1
Т8	40 - 20	Pirod 208337	20.03	20.03	48.6 K=1.00	17.8187	-150784.00	674685.00	0.223 1
Т9	20 - 0	Pirod 208337	20.03	20.03	48.6 K=1.00	17.8187	-170816.00	674685.00	0.253 1

¹ P_u / ϕP_n controls

Truss-Leg Diagonal Data

Section	Elevation	Diagonal Size	L_d	Kl/r	ϕP_n	A	V_u	ϕV_n	Stress
No.	ft		ft		lb	in ²	lb	lb	Ratio
T1	170 - 160	0.5	1.48	120.4	165670.00	0.1963	1936.56	3338.01	0.580
									~
T2	160 - 140	0.5	1.46	119.3	238565.00	0.1963	311.31	3381.46	0.092
									~
T3	140 - 120	0.5	1.45	118.3	324713.00	0.1963	329.17	3563.86	0.092
									~
T4	120 - 100	0.5	1.45	118.3	324713.00	0.1963	290.07	3563.86	0.081
	120 100	0.0		110.0	521,15.00	0.1702	2,0.0,	2202.00	<i>-</i>
T5	100 - 80	0.5	1.38	112.2	536771.00	0.1963	649.89	3804.69	0.171
13	100 - 00	0.5	1.56	112.2	330771.00	0.1703	047.07	3004.07	0.171
Т6	80 - 60	0.5	1.36	111.2	662680.00	0.1963	416.49	3849.52	
10	80 - 60	0.3	1.30	111.2	002080.00	0.1903	410.49	3049.32	0.108
TD.7	60 40	0.5	1.26	111.0	((2(00.00	0.1062	452.71	2040.52	0.110
T7	60 - 40	0.5	1.36	111.2	662680.00	0.1963	453.71	3849.52	0.118
T8	40 - 20	0.625	1.35	88.2	801842.00	0.3068	542.35	7659.42	0.071
T9	20 - 0	0.625	1.35	88.2	801842.00	0.3068	592.63	7659.42	0.077
									~

Diagonal Design Data (Compression)

Infinigy Engineering 1517 Old Apex Road Cary, NC 27513 Phone: 518-690-0790 FAX:

Job		Page
	BOBOS00073B	27 of 30
Project		Date
	1197-F0001-B	17:37:27 03/25/22
Client	NSS	Designed by JMC

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T1	170 - 160	L2-1/2x2-1/2x3/16	11.42	5.02	121.8 K=1.00	0.9023	-1206.11	17325.30	0.070 1
T2	160 - 140	L2-1/2x2-1/2x1/4	11.93	5.42	132.6 K=1.00	1.1900	-4256.39	19379.20	0.220 1
Т3	140 - 120	L3x3x3/16	13.80	6.37	128.2 K=1.00	1.0900	-3946.01	18973.80	0.208 1
T4	120 - 100	L3x3x5/16	14.50	6.77	137.9 K=1.00	1.7800	-4574.70	26799.10	0.171 1
T5	100 - 80	2L3 1/2x3 1/2x1/4	23.86	11.78	129.7 K=1.00	3.3800	-7196.50	57517.30	0.125 1
T6	80 - 60	2L3 1/2x3 1/2x1/4	25.01	12.35	136.0 K=1.00	3.3800	-7125.77	52307.80	0.136 1
T7	60 - 40	2L3 1/2x3 1/2x1/4	26.26	12.98	142.9 K=1.00	3.3800	-7949.20	47397.70	0.168 1
Т8	40 - 20	2L3 1/2x3 1/2x1/4	27.59	13.65	150.2 K=1.00	3.3800	-7430.66	42867.70	0.173 1
Т9	20 - 0	2L3 1/2x3 1/2x1/4	29.01	14.35	158.0 K=1.00	3.3800	-8776.68	38750.20	0.226 1

¹ P_u / ϕP_n controls

	Top Girt Design Data (Compression)								
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in^2	lb	lb	ϕP_n
T1	170 - 160	L3x3x5/16	5.00	3.67	97.4 K=1.30	1.7800	-4.44	44983.60	0.000 1
T4	120 - 100	L3x3x5/16	10.00	8.67	176.6 K=1.00	1.7800	-1163.32	16341.10	0.071 1

¹ P_u / ϕP_n controls

Tension Checks

		L	eg Des	sign D	ata (Tensio	on)		
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T1	170 - 160	Pirod 208951	10.02	10.02	45.0	3.6816	717.57	165670.00	0.004 1
T2	160 - 140	Valmont 207629	20.03	10.02	37.5	5.3014	17919.00	238565.00	0.075 1
T3	140 - 120	Pirod 195557	20.03	10.02	32.1	7.2158	36866.10	324713.00	0.114^{-1}

Infinigy Engineering
1517 Old Apex Road

Cary, NC 27513 Phone: 518-690-0790 FAX:

Job		Page
	BOBOS00073B	28 of 30
Project		Date
	1197-F0001-B	17:37:27 03/25/22
Client	NSS	Designed by JMC

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
1101	ft		ft	ft		in^2	lb	lb	$\frac{1}{\phi P_n}$
									~
T4	120 - 100	Pirod 195557	20.03	10.02	32.1	7.2158	55447.20	324713.00	0.171 1
T5	100 - 80	Valmont 214589 (12x2.25)	20.03	20.03	48.8	11.9282	67128.20	536771.00	0.125 1
Т6	80 - 60	Valmont 208335	20.03	20.03	48.7	14.7262	85116.40	662680.00	0.128 1
T7	60 - 40	Valmont 208335	20.03	20.03	48.7	14.7262	101149.00	662680.00	0.153 ¹
Т8	40 - 20	Pirod 208337	20.03	20.03	48.6	17.8187	118452.00	801842.00	0.148 ¹
Т9	20 - 0	Pirod 208337	20.03	20.03	48.6	17.8187	133103.00	801842.00	0.166 ¹

¹ P_u / ϕP_n controls

Truss-Leg D	iagonal	Data
-------------	---------	------

ft 170 - 160 160 - 140	0.5	1.48	120.4	<u>lb</u>	in ²	lb	lb	Ratio
160 - 140				165670.00	0.1963	1936.56	3338.01	0.580
	0.5	1.46	119.3	238565.00	0.1963	311.31	3381.46	0.092
140 - 120	0.5	1.45	118.3	324713.00	0.1963	329.17	3563.86	0.092
120 - 100	0.5	1.45	118.3	324713.00	0.1963	290.07	3563.86	0.081
100 - 80	0.5	1.38	112.2	536771.00	0.1963	649.89	3804.69	0.171
80 - 60	0.5	1.36	111.2	662680.00	0.1963	416.49	3849.52	0.108
60 - 40	0.5	1.36	111.2	662680.00	0.1963	453.71	3849.52	0.118
40 - 20	0.625	1.35	88.2	801842.00	0.3068	542.35	7659.42	0.071
20 - 0	0.625	1.35	88.2	801842.00	0.3068	592.63	7659.42	0.077
	120 - 100 100 - 80 80 - 60 60 - 40 40 - 20	120 - 100 0.5 100 - 80 0.5 80 - 60 0.5 60 - 40 0.5 40 - 20 0.625	120 - 100 0.5 1.45 100 - 80 0.5 1.38 80 - 60 0.5 1.36 60 - 40 0.5 1.36 40 - 20 0.625 1.35	120 - 100 0.5 1.45 118.3 100 - 80 0.5 1.38 112.2 80 - 60 0.5 1.36 111.2 60 - 40 0.5 1.36 111.2 40 - 20 0.625 1.35 88.2	120 - 100 0.5 1.45 118.3 324713.00 100 - 80 0.5 1.38 112.2 536771.00 80 - 60 0.5 1.36 111.2 662680.00 60 - 40 0.5 1.36 111.2 662680.00 40 - 20 0.625 1.35 88.2 801842.00	120 - 100 0.5 1.45 118.3 324713.00 0.1963 100 - 80 0.5 1.38 112.2 536771.00 0.1963 80 - 60 0.5 1.36 111.2 662680.00 0.1963 60 - 40 0.5 1.36 111.2 662680.00 0.1963 40 - 20 0.625 1.35 88.2 801842.00 0.3068	120 - 100 0.5 1.45 118.3 324713.00 0.1963 290.07 100 - 80 0.5 1.38 112.2 536771.00 0.1963 649.89 80 - 60 0.5 1.36 111.2 662680.00 0.1963 416.49 60 - 40 0.5 1.36 111.2 662680.00 0.1963 453.71 40 - 20 0.625 1.35 88.2 801842.00 0.3068 542.35	120 - 100 0.5 1.45 118.3 324713.00 0.1963 290.07 3563.86 100 - 80 0.5 1.38 112.2 536771.00 0.1963 649.89 3804.69 80 - 60 0.5 1.36 111.2 662680.00 0.1963 416.49 3849.52 60 - 40 0.5 1.36 111.2 662680.00 0.1963 453.71 3849.52 40 - 20 0.625 1.35 88.2 801842.00 0.3068 542.35 7659.42

Diagonal Design Data (Tension)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T1	170 - 160	L2-1/2x2-1/2x3/16	11.42	5.02	80.0	0.5186	1076.75	22557.10	0.048 1
									✓
T2	160 - 140	L2-1/2x2-1/2x1/4	11.93	5.42	87.2	0.6816	4054.90	29648.00	0.137^{-1}

Infinigy Engineering 1517 Old Apex Road

Cary, NC 27513 Phone: 518-690-0790 FAX:

Job		Page		
	BOBOS00073B	29 of 30		
Project		Date		
	1197-F0001-B	17:37:27 03/25/22		
Client	NSS	Designed by JMC		

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n
									~
T3	140 - 120	L3x3x3/16	13.13	6.06	79.5	0.6593	3747.27	28679.40	0.131 1
									~
T4	120 - 100	L3x3x5/16	15.24	7.12	94.9	1.0713	4151.99	46602.80	0.089 1
									· /
T5	100 - 80	2L3 1/2x3 1/2x1/4	23.86	11.78	131.4	2.1600	6306.27	93960.00	0.067 1
Т6	80 - 60	2L3 1/2x3 1/2x1/4	25.01	12.25	137.7	2.1600	70(1.65	02060.00	0.077.1
10	80 - 60	2L3 1/2X3 1/2X1/4	23.01	12.35	13/./	2.1600	7261.65	93960.00	0.077 1
Т7	60 - 40	2L3 1/2x3 1/2x1/4	26.26	12.98	144.5	2.1600	7177.63	93960.00	0.076 1
1,	00 10	EES IVERS IVERIVI	20.20	12.70	111.5	2.1000	7177.03	75700.00	0.070
Т8	40 - 20	2L3 1/2x3 1/2x1/4	27.59	13.65	151.9	2.1600	7533.60	93960.00	0.080^{-1}
									~
Т9	20 - 0	2L3 1/2x3 1/2x1/4	29.01	14.35	159.7	2.1600	7775.31	93960.00	0.083^{-1}
									~

¹ P_u / ϕP_n controls

	Top Girt Design Data (Tension)								
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	ΦP_n
T1	170 - 160	L3x3x5/16	5.00	3.67	52.1	1.0713	13.21	46602.80	0.000 1
T4	120 - 100	L3x3x5/16	10.00	8.67	117.1	1.0713	1426.70	46602.80	0.031 1

¹ P_u / ϕP_n controls

Section Capacity Table

Section	Elevation ft	Component Type	Size	Critical Element	P lb	øP _{allow} lb	% Capacity	Pass Fail
No.			D: 1200051				1 ,	
T1	170 - 160	Leg	Pirod 208951	3	-4173.87	142870.00	58.0	Pass
T2	160 - 140	Leg	Valmont 207629	15	-23452.50	215254.00	10.9	Pass
T3	140 - 120	Leg	Pirod 195557	30	-44737.10	301087.00	14.9	Pass
T4	120 - 100	Leg	Pirod 195557	45	-67080.50	301087.00	22.3	Pass
T5	100 - 80	Leg	Valmont 214589 (12x2.25)	63	-81106.60	451148.00	18.0	Pass
T6	80 - 60	Leg	Valmont 208335	72	-105608.00	557267.00	19.0	Pass
T7	60 - 40	Leg	Valmont 208335	81	-126534.00	557267.00	22.7	Pass
T8	40 - 20	Leg	Pirod 208337	90	-150784.00	674685.00	22.3	Pass
Т9	20 - 0	Leg	Pirod 208337	99	-170816.00	674685.00	25.3	Pass
T1	170 - 160	Diagonal	L2-1/2x2-1/2x3/16	11	-1206.11	17325.30	7.0	Pass
		•					11.8 (b)	
T2	160 - 140	Diagonal	L2-1/2x2-1/2x1/4	25	-4256.39	19379.20	22.0	Pass
		J					33.3 (b)	
T3	140 - 120	Diagonal	L3x3x3/16	35	-3946.01	18973.80	20.8	Pass

Infinigy Engineering 1517 Old Apex Road

1517 Old Apex Road Cary, NC 27513 Phone: 518-690-0790 FAX:

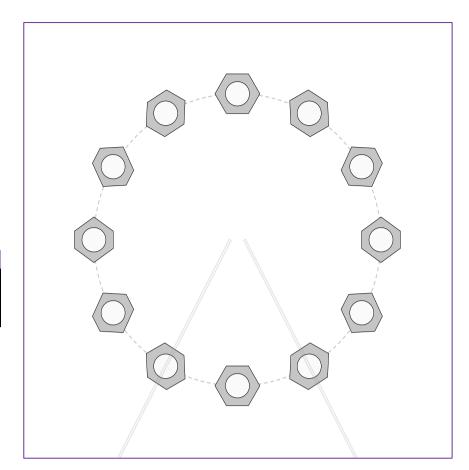
Job		Page		
BOBOS00	073B	30 of 30		
Project		Date		
1197-F00	001-B	17:37:27 03/25/22		
Client		Designed by		
NSS	i	JMC		

Section	Elevation	Component	Size	Critical Element	P lb	ø P_{allow} lb	%	Pass Fail
No.	ft	Туре		Liemeni	10	ıv —	Capacity	ran
TD 4	120 100	D: 1	X2.2.5/16	70	4574.70	26700.10	36.9 (b)	ъ
T4	120 - 100	Diagonal	L3x3x5/16	59	-4574.70	26799.10	17.1	Pass
T5	100 - 80	Diagonal	2L3 1/2x3 1/2x1/4	67	-7196.50	57517.30	24.5 (b) 12.5	Pass
							21.3 (b)	_
Т6	80 - 60	Diagonal	2L3 1/2x3 1/2x1/4	74	-7125.77	52307.80	13.6 24.5 (b)	Pass
T7	60 - 40	Diagonal	2L3 1/2x3 1/2x1/4	86	-7949.20	47397.70	16.8	Pass
TO	40 20	D: 1	21 2 1/2 2 1/2 1/4	02	7.120.66	12077.70	24.3 (b)	D
Т8	40 - 20	Diagonal	2L3 1/2x3 1/2x1/4	92	-7430.66	42867.70	17.3 25.5 (b)	Pass
Т9	20 - 0	Diagonal	2L3 1/2x3 1/2x1/4	104	-8776.68	38750.20	22.6	Pass
17	20 0	Diagonai	ZES 1/2XS 1/2X1/4	104	0770.00	30730.20	26.3 (b)	1 433
T1	170 - 160	Top Girt	L3x3x5/16	4	13.21	46602.80	0.2	Pass
T4	120 - 100	Top Girt	L3x3x5/16	47	-1163.32	16341.10	7.1	Pass
		ī					8.4 (b)	
							Summary	
						Leg (T1)	58.0	Pass
						Diagonal	36.9	Pass
						(T3)		
						Top Girt	8.4	Pass
						(T4)		
						Bolt Checks	36.9	Pass
						RATING =	58.0	Pass

 $Program\ Version\ 8.1.1.0\ -\ 6/3/2021\ File: L:/ Telecom/DISH/NSS/CT\ -\ Private\ sites/BOBOS00073B/Structural/2022.03.25\ -\ SA/Analysis/tnx/BOBOS00073B_SST.eri$

Self Support Anchor Rod Capacity

Site Info		
	BU#	BOBOS00073B
	Site Name	Montville, CT
	Order#	1197-F0001-B


Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	No
I _{ar} (in)	1

Applied Loads		
	Comp.	Uplift
Axial Force (kips)	182.50	141.06
Shear Force (kips)	20.92	16.93

^{*}TIA-222-H Section 15.5 Applied

Considered Eccentricity	
Leg Mod Eccentricity (in)	0.000
Anchor Rod N.A Shift (in)	0.000
Total Eccentricity (in)	0.000

^{*}Anchor Rod Eccentricity Applied

Connection Properties	Ar	Analysis Results		
Anchor Rod Data	Anchor Rod Summary		(units of kips, kip-in)	
(12) 1" ø bolts (F1554-105 N; Fy=105 ksi, Fu=125 ksi)	Pu_c = 15.21	φPn_c = 74.22	Stress Rating	
I _{ar} (in): 1	Vu = 1.74	φVn = 33.4	19.8%	
	Mu = n/a	фМn = n/a	Pass	

Version 4.1.2 Analysis Date: 3/25/2022

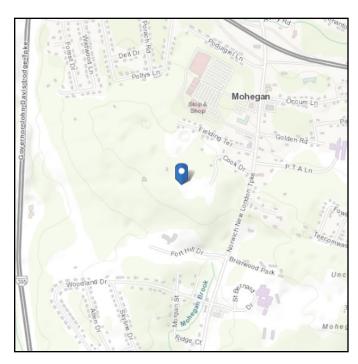
Address:

No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-16

Risk Category: ||


Soil Class: D - Default (see

Section 11.4.3)

Elevation: 363 ft (NAVD 88)

Latitude: 41.474986

Longitude: -72.10505

Wind

Results:

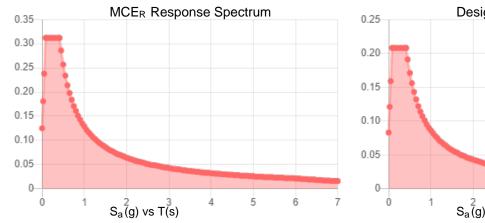
Wind Speed 125 Vmph
10-year MRI 75 Vmph
25-year MRI 85 Vmph
50-year MRI 97 Vmph
100-year MRI 102 Vmph

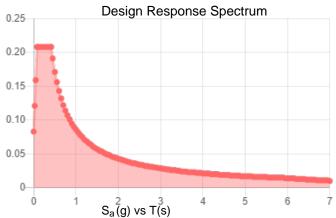
Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2

Date Accessed: Thu Mar 17 2022

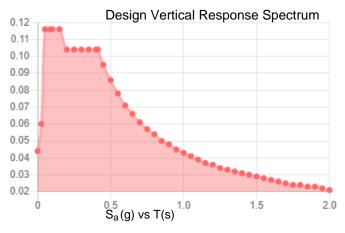
Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.


Seismic


Site Soil Class: D - Default (see Section 11.4.3)

Results:


S _s :	0.195	S _{D1} :	0.086
S ₁ :	0.054	T_L :	6
F _a :	1.6	PGA:	0.107
F _v :	2.4	PGA _M :	0.17
S _{MS} :	0.312	F _{PGA} :	1.585
S _{M1} :	0.129	l _e :	1
S _{DS} :	0.208	C_v :	0.7

Seismic Design Category B

Data Accessed: Thu Mar 17 2022

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness: 1.00 in.

Concurrent Temperature: 15 F

Gust Speed 50 mph

Data Source: Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed: Thu Mar 17 2022

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

INFINIGY &

MOUNT ANALYSIS REPORT

September 21, 2021

Dish Wireless Site Name	BOBOS00073B
Dish Wireless Site Number	BOBOS00073B
Infinigy Job Number	1197-F0001-B
Client	NSS/DISH
Carrier	Dish Wireless
	57 Cook Drive
	Montville, CT 06353
Site Location	New London County
	41.475003 N NAD83
	72.105052 W NAD83
Mount Type	8.0 ft Sector Frames
Mount Elevation	162.0 ft AGL
Structural Usage Ratio	45.2%
Overall Result	Pass

The enclosed mount structural analysis has been performed in accordance with the 2018 Connecticut State Building Code (2015 IBC) based on an ultimate 3-second gust wind speed of 125 mph. The evaluation criteria and applicable codes are presented in the next section of this report.

CONTENTS

- 1. Introduction
- 2. Design/Analysis Parameters
- 3. Proposed Loading Configuration
- 4. Supporting Documentation
- 5. Results
- 6. Recommendations
- 7. Assumptions
- 8. Liability Waiver and Limitations
- 9. Calculations

1. INTRODUCTION

Infinigy performed a structural analysis on the Dish Wireless proposed telecommunication equipment supporting Sector Frames mounted to the existing structure located at the aforementioned address. All referenced supporting documents have been obtained from the client and are assumed to be accurate and applicable to this site. The mount was analyzed using Risa-3D version 17.0.4 analysis software.

2. DESIGN/ANALYSIS PARAMETERS

Wind Speed	125 mph (3-Second Gust)
Wind Speed w/ ice	50 mph (3-Second Gust) w/ 1.0" ice
Code / Standard	TIA-222-H
Adopted Code	2018 Connecticut State Building Code (2015 IBC)
Risk Category	
Exposure Category	С
Topographic Category	1
Seismic Spectral Response	$S_s = 0.195 \text{ g} / S_1 = 0.054 \text{ g}$
Live Load Wind Speed	60 mph
Man Live Load at Mid/End Points	250 lbs
Man Live Load at Mount Pipes	500 lbs

3. PROPOSED LOADING CONFIGURATION - 162.0 ft. AGL Sector Frames

Antenna Centerline (ft)	Qty.	Appurtenance Manufacturers	Appurtenance Models
	6	JMA WIRELESS	MX08FRO665-21
162.0	6	FUJITSU	TA08025-B605
102.0	6	FUJITSU	TA08025-B604
	2	RAYCAP	RDIDC-9181-PF-48

4. SUPPORTING DOCUMENTATION

Proposed Loading	Dish Wireless Site #BOBOS00073B, Rev 1, dated March 17, 2022
Mount Manufacturer Drawings	CommScope Document # MTC3975083, dated March 17, 2021
Preliminary Construction Drawing	Infinigy, A&E Project # 2039-Z5555C Rev B, dated March, 2022

5. RESULTS

Components	Capacity	Pass/Fail
Mount Pipes	34.2%	Pass
Horizontals	20.7%	Pass
Standoffs	45.2%	Pass
Connections	7.7%	Pass
MOUNT RATING =	45.2%	Pass

Notes:

6. RECOMMENDATIONS

Infinigy recommends installing Dish Wireless's proposed equipment loading configuration on the mount at 162.0 ft. The installation shall be performed in accordance with the construction documents issued for this site.

Binita Yadav Project Engineer I | **INFINIGY**

^{1.} See additional documentation in Appendix for calculations supporting the capacity consumed and detailed mount connection calculations.

7. ASSUMPTIONS

The antenna mounting system was properly fabricated, installed and maintained in accordance with its original design and manufacturer's specifications.

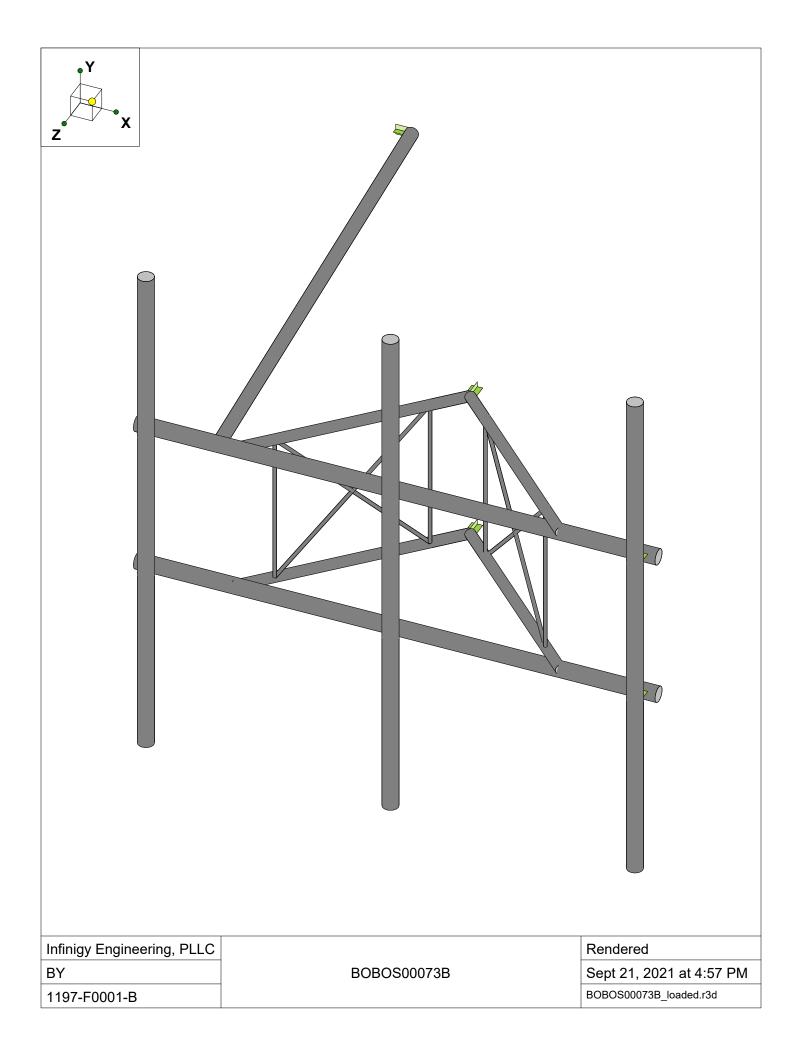
The configuration of antennas, mounts, and other appurtenances are as specified in the proposed loading configuration table.

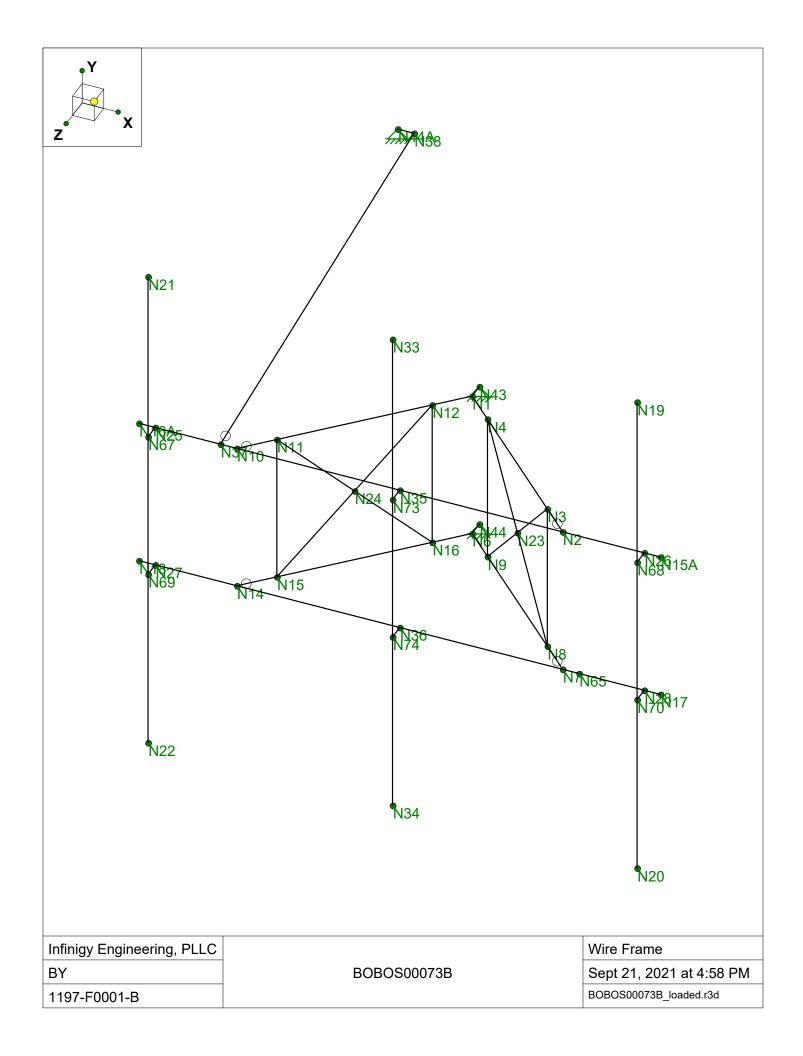
All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.

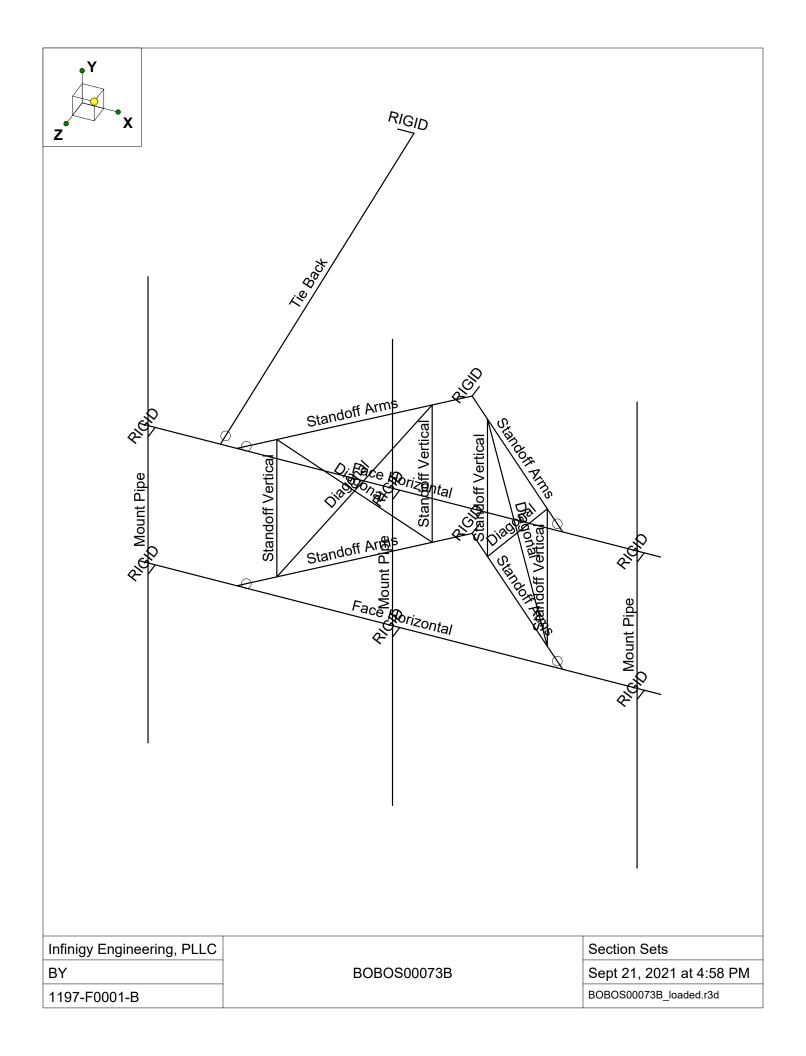
The analysis will require revisions if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.

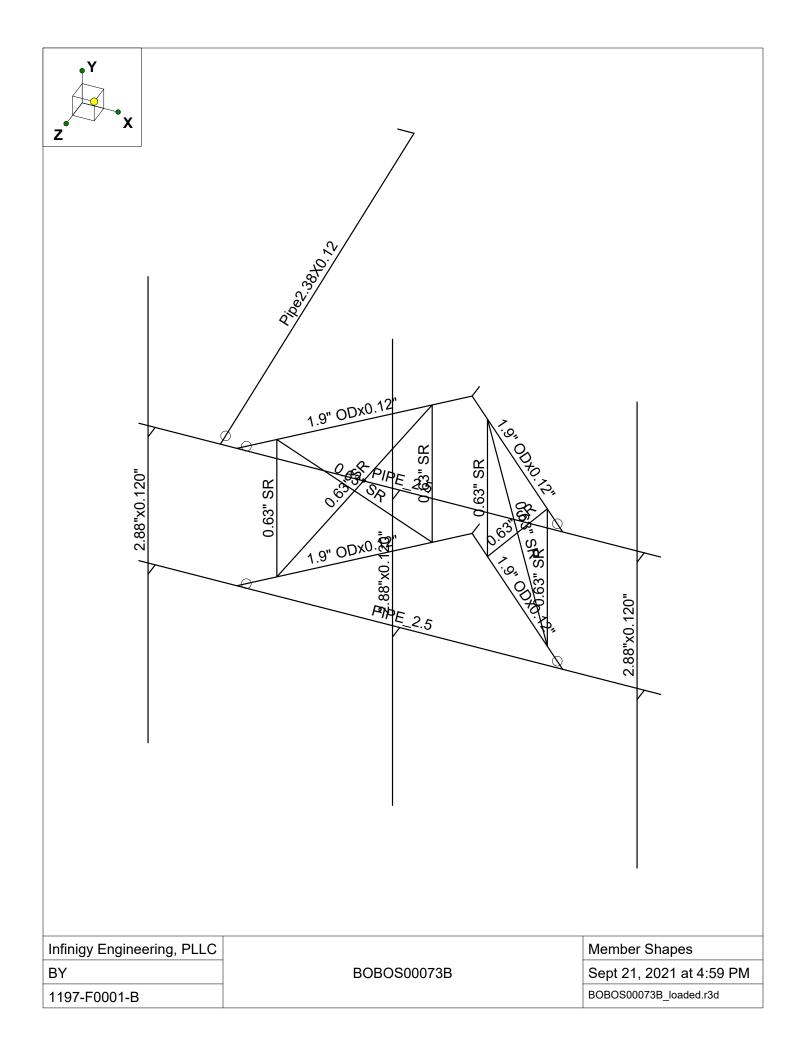
Steel grades have been assumed as follows, unless noted otherwise:

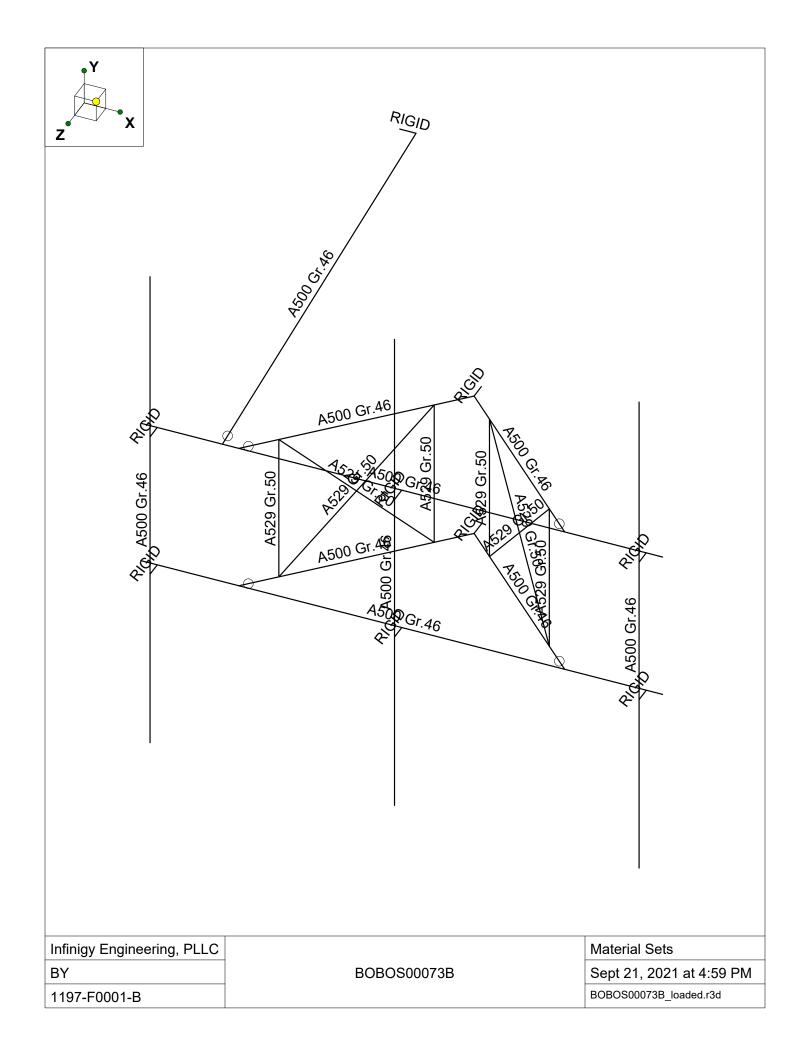
Channel, Plate, Built-up Angle ASTM A1011 36 KSI Solid Round ASTM A529 Gr 50 Structural Angle ASTM A529 Gr. 50 HSS (Rectangular) **ASTM A500-B GR 46 ASTM A500-B GR 42** HSS (Circular) Pipe ASTM A500 Gr 46 **Connection Bolts** ASTM A449 **U-Bolts** ASTM A307

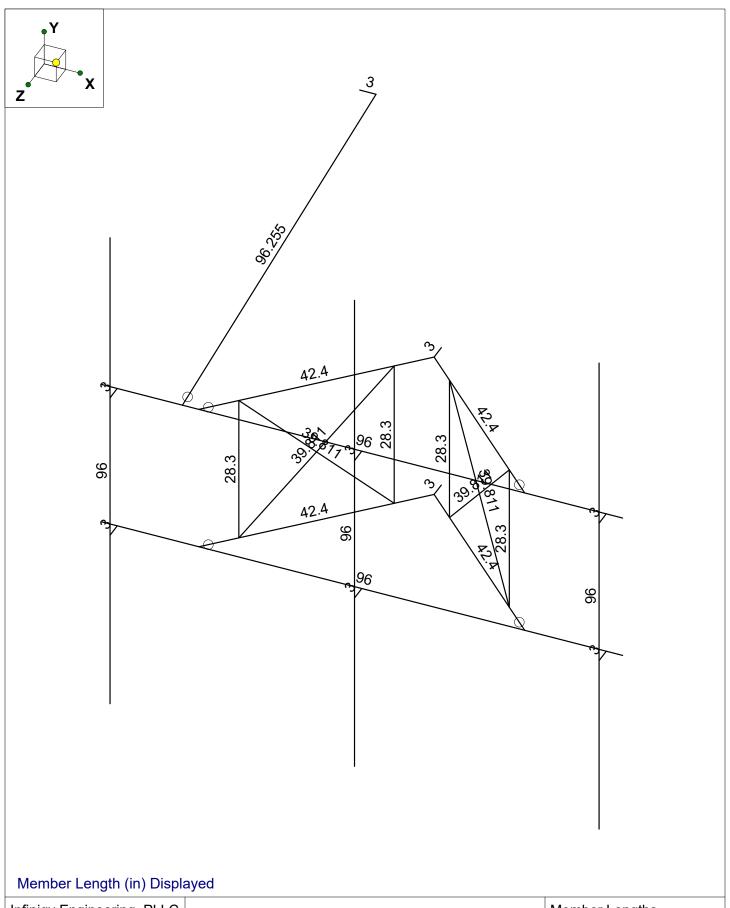

All bolted connections are pretensioned in accordance with Table 8.2 of the RCSC 2014 Standard

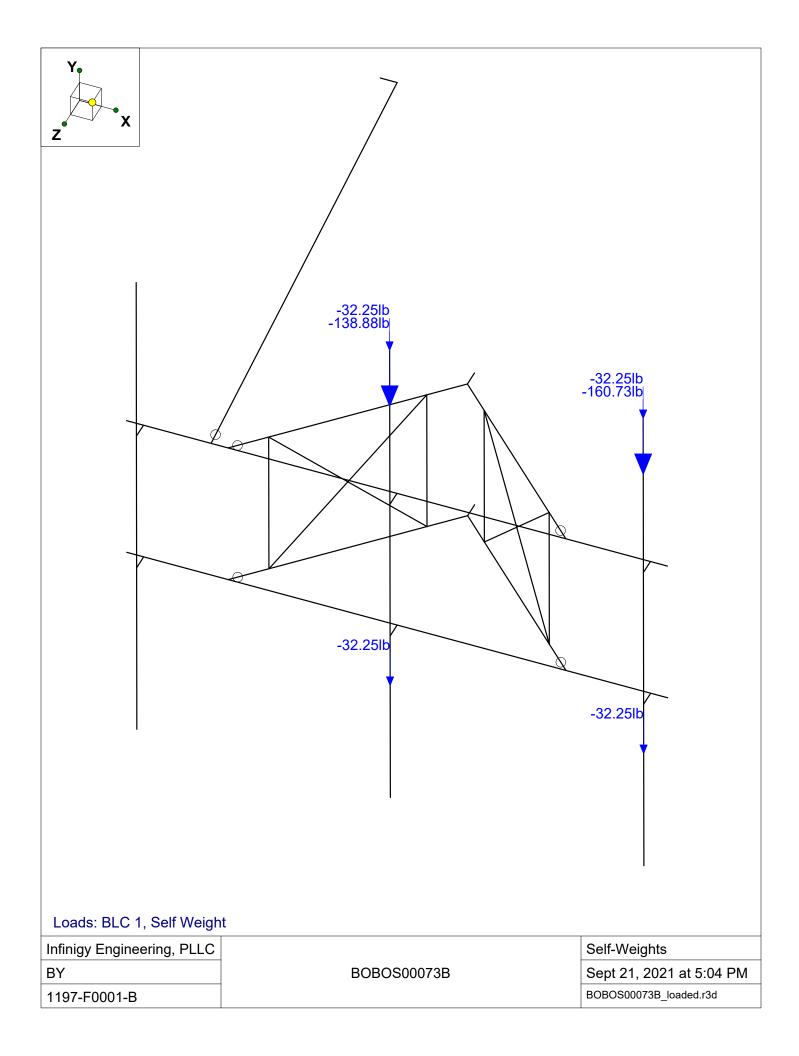

8. LIABILITY WAIVER AND LIMITATIONS

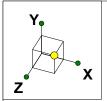

Our structural calculations are completed assuming all information provided to Infinigy is accurate and applicable to this site. For the purposes of calculations, we assume an overall structure condition as erected and all members and connections to be free of corrosion and/or structural defects. The structure owner and/or contractor shall verify the structure's condition prior to installation of any proposed equipment. If actual conditions differ from those described in this report, Infinigy should be notified immediately to assess the impact on the results of this report.

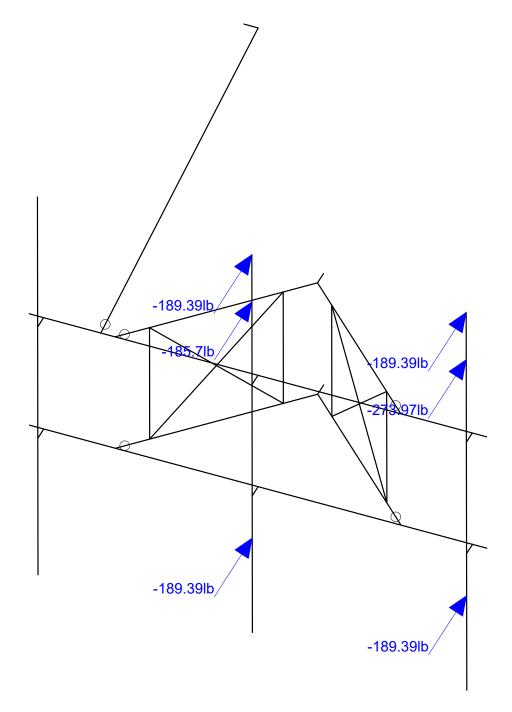

Our evaluation is completed using industry standard methods and procedures. The structural results, conclusions and recommendations contained in this report are proprietary and should not be used by others as their own. Infinigy is not responsible for decisions made by others that are or are not based on the stated assumptions and conclusions in this report.


This report is an evaluation of the mount structure only and does not determine the adequacy of the supporting structure, other carrier mounts or cable mounting attachments. The analysis of these elements is outside the scope of this analysis, are assumed to be adequate for the purpose of this report and to have been installed per their manufacturer requirements. This document is not for construction purposes.

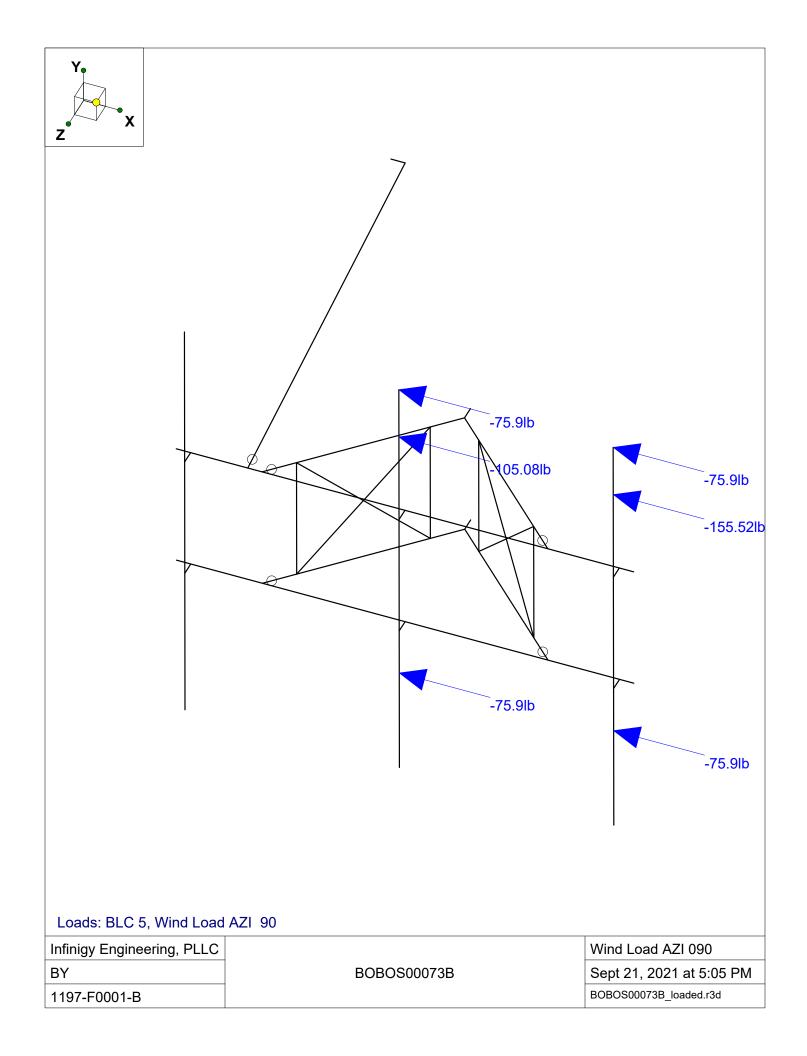


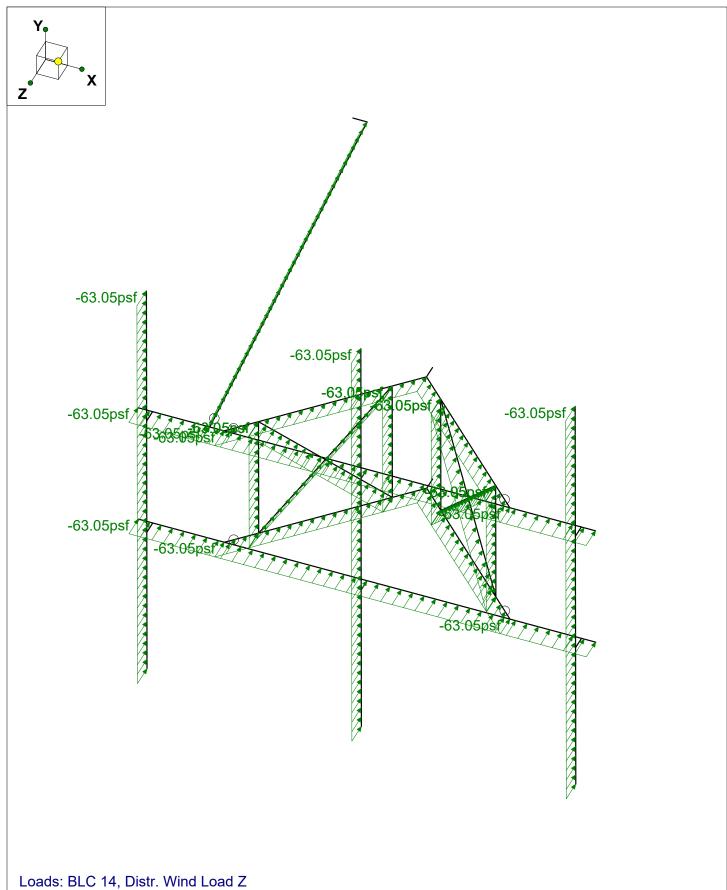


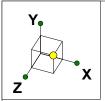


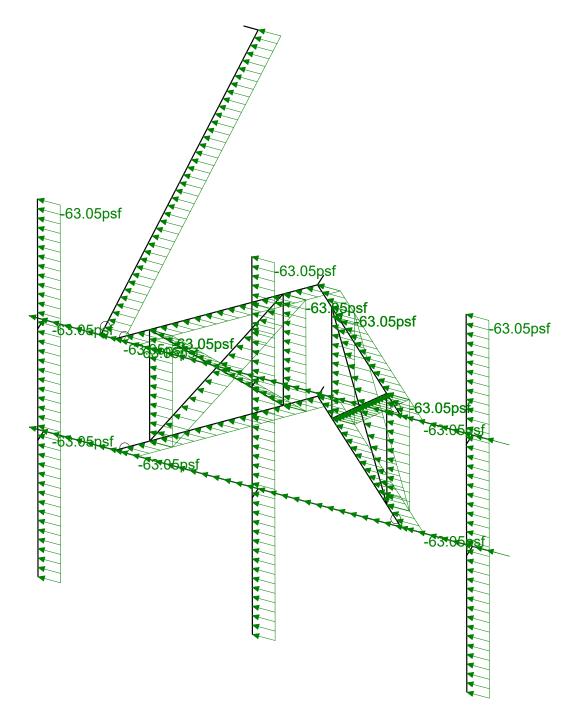


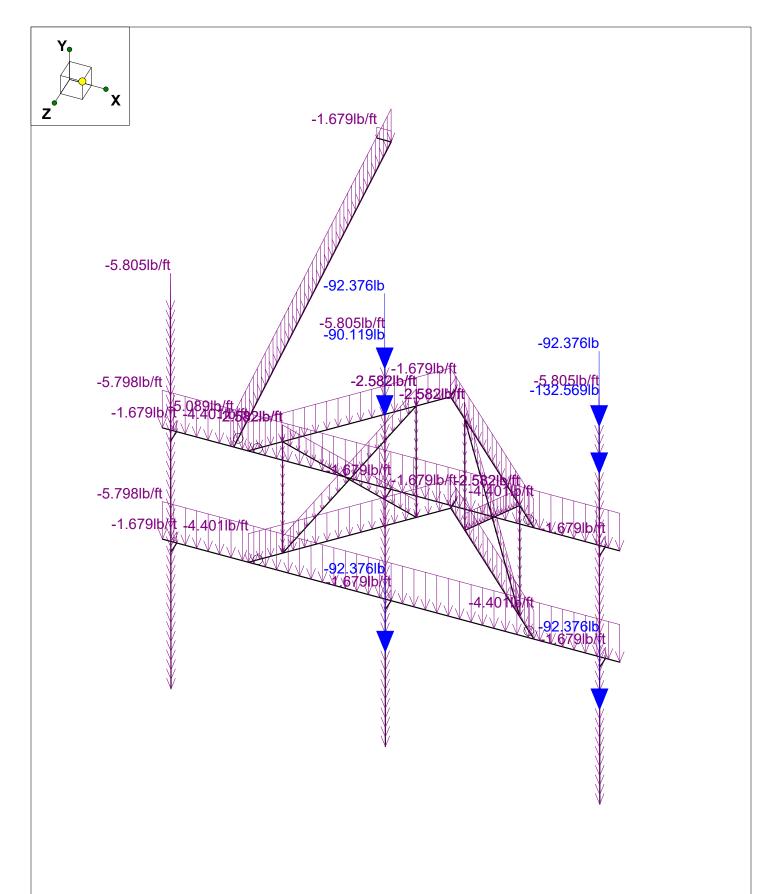
Infinigy Engineering, PLLC		Member Lengths
BY	BOBOS00073B	Sept 21, 2021 at 5:00 PM
1197-F0001-B		BOBOS00073B_loaded.r3d

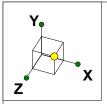


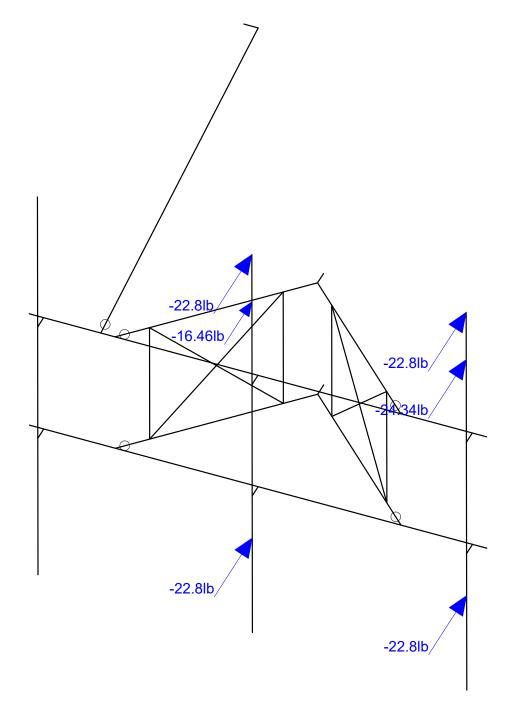



Loads: BLC 2, Wind Load AZI 0

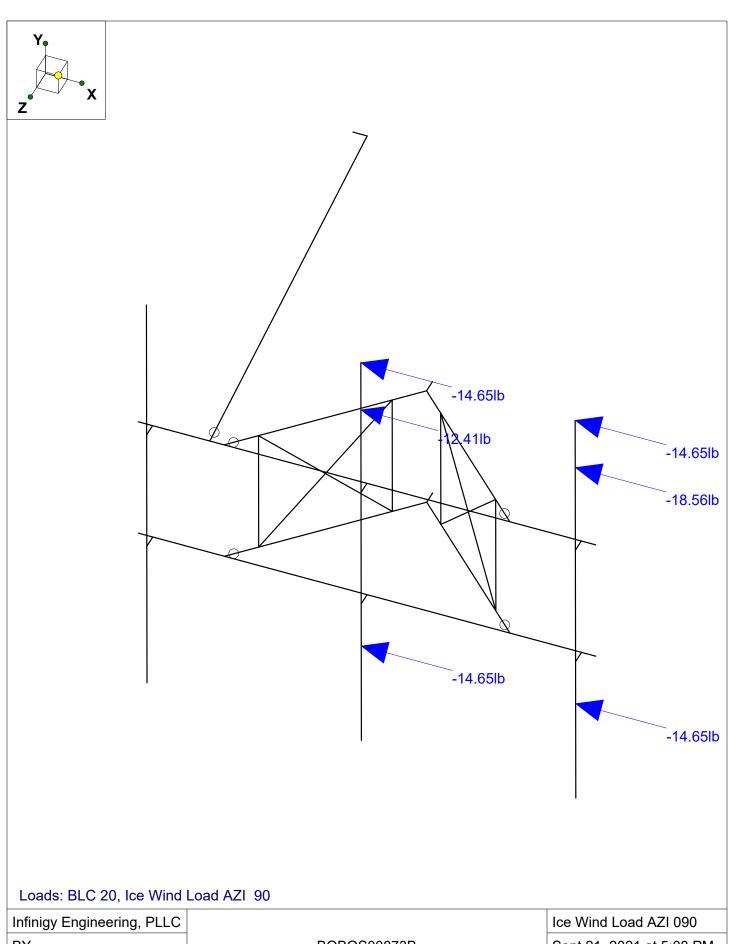

Infinigy Engineering, PLLC		Wind Load AZI 000
BY	BOBOS00073B	Sept 21, 2021 at 5:05 PM
1197-F0001-B		BOBOS00073B_loaded.r3d


Infinigy Engineering, PLLC		Distr. Wind Load AZI 000
BY	BOBOS00073B	Sept 21, 2021 at 5:06 PM
1197-F0001-B		BOBOS00073B_loaded.r3d

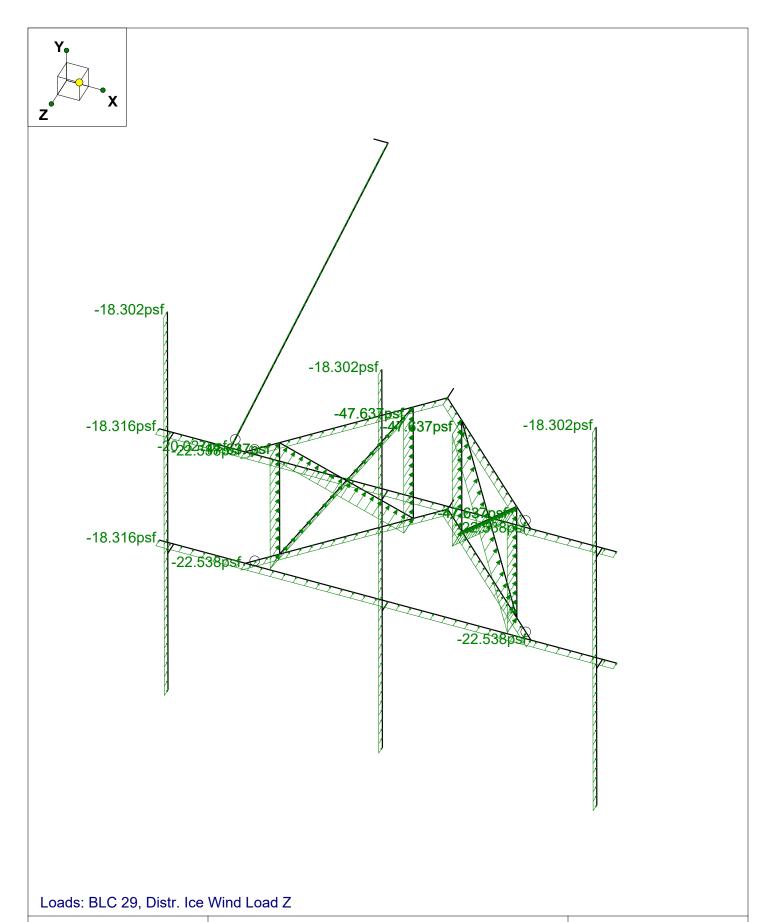

Loads: BLC 15, Distr. Wind Load X


Infinigy Engineering, PLLC		Distr. Wind Load AZI 090	
BY	BOBOS00073B	Sept 21, 2021 at 5:07 PM	
1197-F0001-B		BOBOS00073B_loaded.r3d	

Loads: BLC 16, Ice Weight


Infinigy Engineering, PLLC		Ice Weight
BY	BOBOS00073B	Sept 21, 2021 at 5:07 PM
1197-F0001-B		BOBOS00073B_loaded.r3d

Loads: BLC 17, Ice Wind Load AZI 0


Infinigy Engineering, PLLC		Ice Wind Load AZI 000
BY	BOBOS00073B	Sept 21, 2021 at 5:08 PM
1197-F0001-B		BOBOS00073B_loaded.r3d

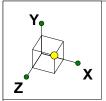
 Infinigy Engineering, PLLC
 Ice Wind Load AZI 090

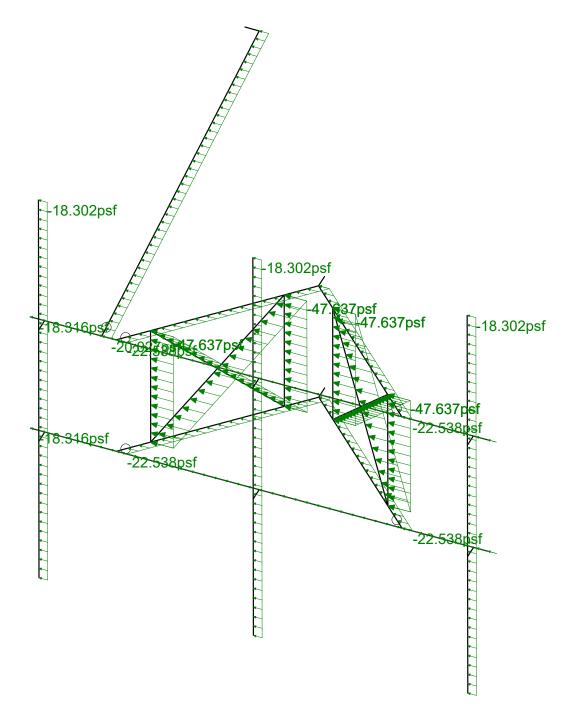
 BY
 BOBOS00073B
 Sept 21, 2021 at 5:08 PM

 1197-F0001-B
 BOBOS00073B_loaded.r3d

Infinigy Engineering, PLLC

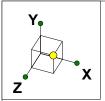
BY

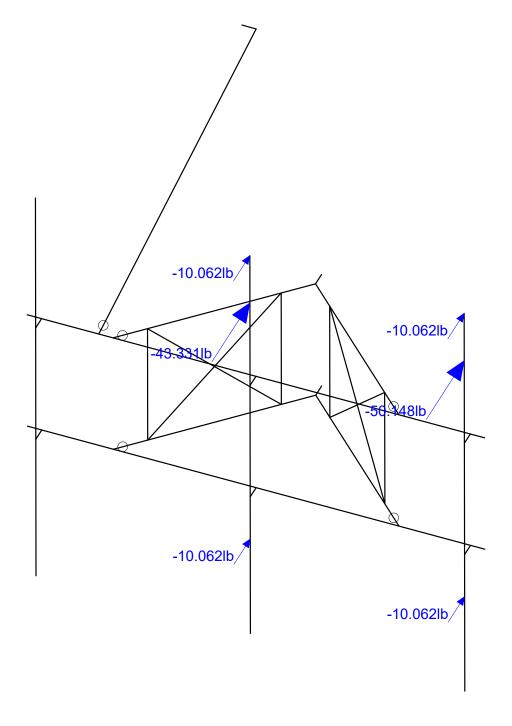

BOBOS00073B


BOBOS00073B_loaded.r3d

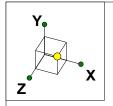
Distr.Ice Wind Load AZI 000

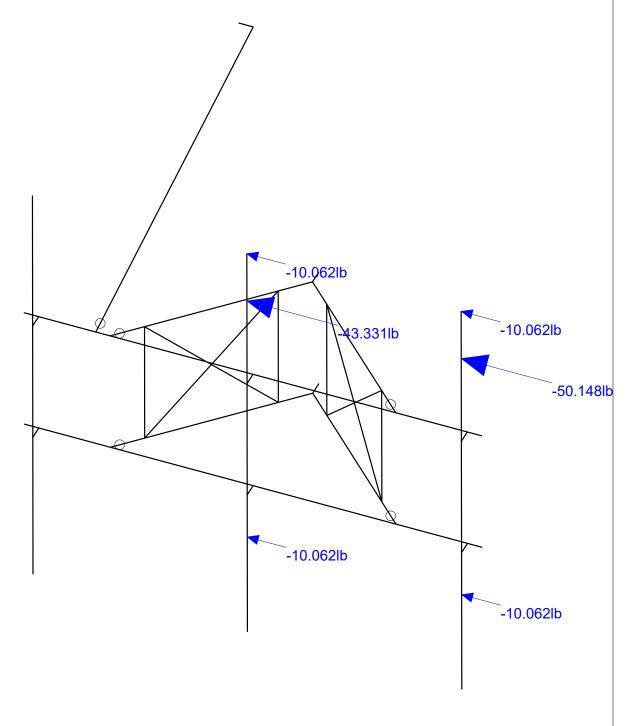
Sept 21, 2021 at 5:09 PM


BOBOS00073B_loaded.r3d

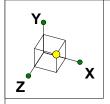


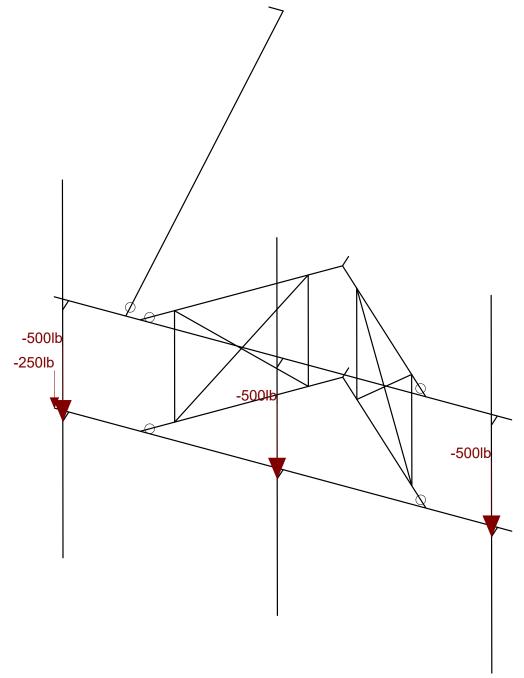
Loads: BLC 30, Distr. Ice Wind Load X


Infinigy Engineering, PLLC		Distr.Ice Wind Load AZI 090
BY	BOBOS00073B	Sept 21, 2021 at 5:09 PM
1197-F0001-B		BOBOS00073B_loaded.r3d

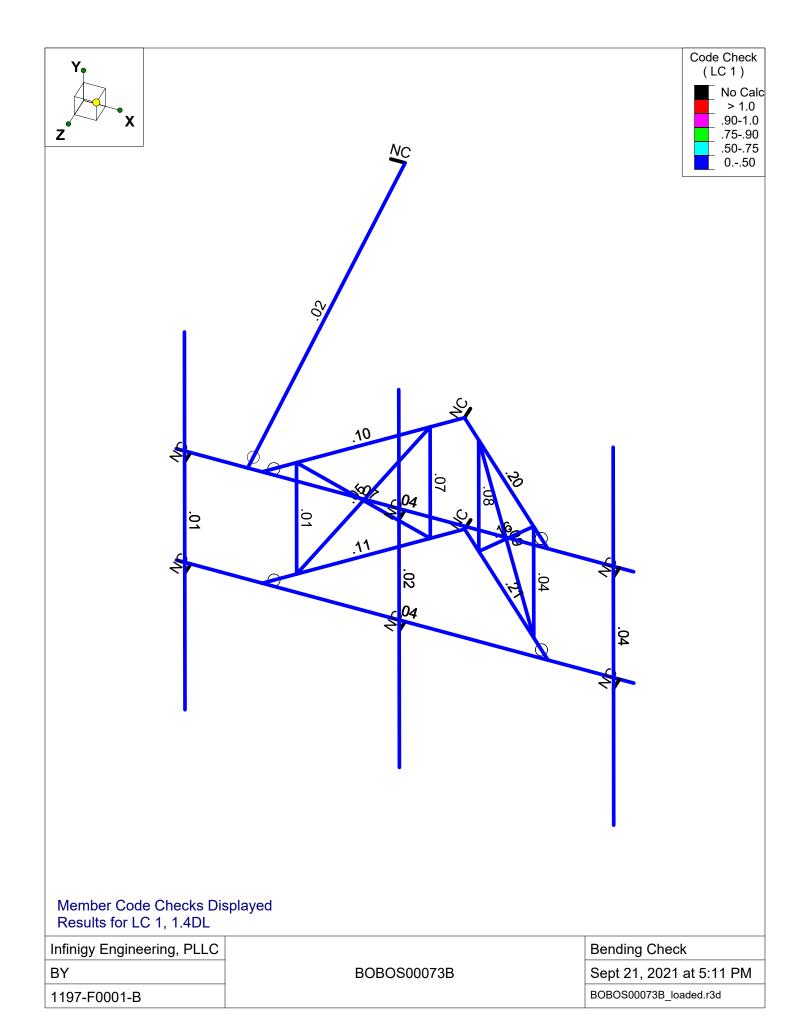


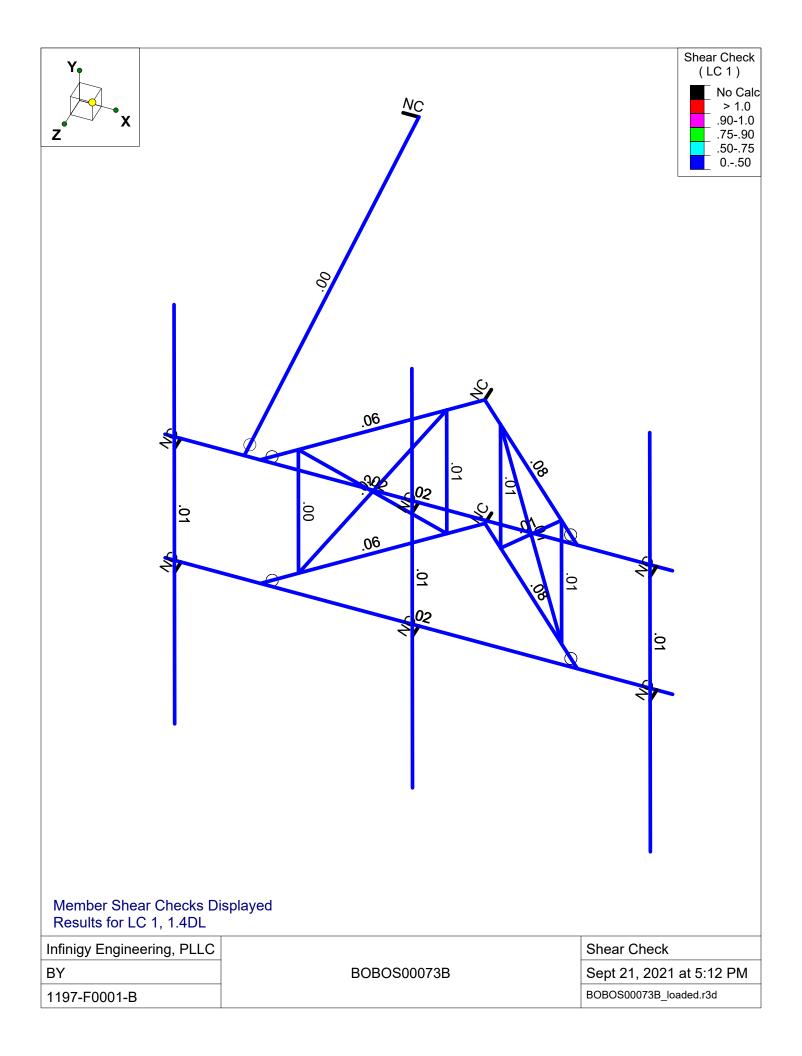
Loads: BLC 31, Seismic Load Z


Infinigy Engineering, PLLC		Seismic Load AZI 000
BY	BOBOS00073B	Sept 21, 2021 at 5:10 PM
1197-F0001-B		BOBOS00073B_loaded.r3d



Loads: BLC 32, Seismic Load X


Infinigy Engineering, PLLC		Seismic Load AZI 090
BY	BOBOS00073B	Sept 21, 2021 at 5:10 PM
1197-F0001-B		BOBOS00073B_loaded.r3d



Loads: LL - Live Load

Infinigy Engineering, PLLC		Non-Concurrent Live Loads
BY	BOBOS00073B	Sept 21, 2021 at 5:11 PM
1197-F0001-B		BOBOS00073B_loaded.r3d

Program Inputs

PROJECT INFORMATION					
Client:	ATC				
Carrier:	Dish Wireless				
Engineer:	Binita Yadav				

SITE INFORMATION						
Risk Category:	П					
Exposure Category:	: C					
Topo Factor Procedure:	: Method 1, Category 1					
Site Class:	D - Stiff Soil (Assume					
Ground Elevation:	: 362.00 ft *Rev H					

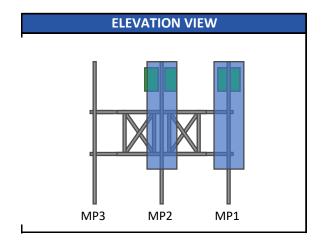
MOUNT INFORMATION					
Mount Type:	Sector	Frame			
Num Sectors:	3				
Centerline AGL:	162.00	ft			
Tower Height AGL:	160.00	ft			

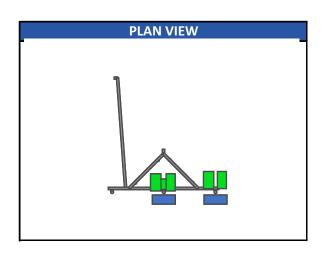
TOPOGRAPHIC DATA					
Topo Feature:	Topo Feature: N/A				
Slope Distance:	N/A	ft			
Crest Distance:	N/A	ft			
Crest Height:	N/A	ft			

FACTORS						
Directionality Fact. (K_d) :	0.950					
Ground Ele. Factor (K _e):	0.987	*Rev H Only				
Rooftop Speed-Up (K _s):	1.000	*Rev H Only				
Topographic Factor (K _{zt}):	1.000					
Gust Effect Factor (G _h):	1.000					

CODE STANDARDS						
Building Code:						
TIA Standard:	TIA-222-H					
ASCE Standard:	ASCE 7-16					

WIND AND ICE DATA							
Ultimate Wind (V _{ult}):	125	mph					
Design Wind (V):	N/A	mph					
Ice Wind (V _{ice}):	50	mph					
Base Ice Thickness (t _i):	1	in					
Flat Pressure:	105.083	psf					
Round Pressure:	63.050	psf					
Ice Wind Pressure:	10.088	psf					


SEISMIC	CDATA	
Short-Period Accel. (S _s):	0.195	g
1-Second Accel. (S ₁):	0.054	g
Short-Period Design (S _{DS}):	0.208	
1-Second Design (S _{D1}):	0.086	
Short-Period Coeff. (F _a):	1.600	
1-Second Coeff. (F _v):	2.400	
Amplification Factor (A _s):	3.000	
Response Mod. Coeff. (R):	2.000	



Infinigy Load Calculator V2.1.7

BOBOS00073B_BOBOS00073B 9/21/2021

Program Inputs

Infinigy Load Calculator V2.1.7

APPURTENANCE INFORMATION											
Appurtenance Name	Elevation	Qty.	K _a	q _z (psf)	EPA _N (ft ²)	EPA _T (ft ²)	Wind F _z (lbs)	Wind F _x (lbs)	Weight (lbs)	Seismic F (lbs)	Member (α sector)
JMA WIRELESS MX08FRO665-20	162.0	3	0.90	52.54	8.01	3.21	378.77	151.79	64.50	20.12	MP1
FUJITSU TA08025-B605	162.0	3	0.90	52.54	1.96	1.19	92.85	56.23	74.95	23.38	MP1
FUJITSU TA08025-B604	162.0	3	0.90	52.54	1.96	1.03	92.85	48.85	63.93	19.95	MP1
RAYCAP RDIDC-9181-PF-48	162.0	3	0.90	52.54	1.87	1.07	88.27	50.44	21.85	6.82	MP1
JMA WIRELESS MX08FRO665-20	162.0	3	0.90	52.54	8.01	3.21	378.77	151.79	64.50	20.12	MP2
FUJITSU TA08025-B605	162.0	3	0.90	52.54	1.96	1.19	92.85	56.23	74.95	23.38	MP2
FUJITSU TA08025-B604	162.0	3	0.90	52.54	1.96	1.03	92.85	48.85	63.93	19.95	MP2

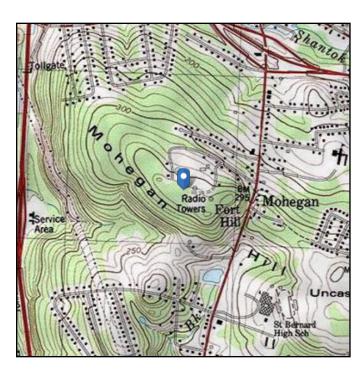
BOBOS00073B_BOBOS00073B 9/21/2021

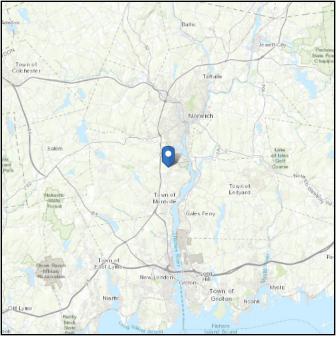
Address:

No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-16


Risk Category: ^Ⅱ


Soil Class: D - Default (see

Section 11.4.3)

Elevation: 362.17 ft (NAVD 88)

Latitude: 41.475003 **Longitude:** -72.105052

Wind

Results:

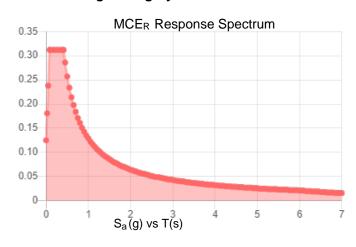
Wind Speed: 125 Vmph
10-year MRI 75 Vmph
25-year MRI 85 Vmph
50-year MRI 97 Vmph
100-year MRI 102 Vmph

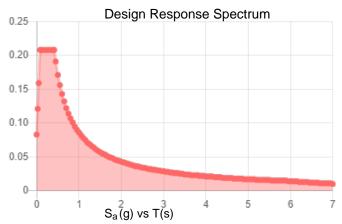
Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2

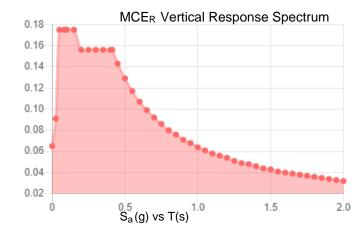
Date Accessed: Tue Sep 21 2021

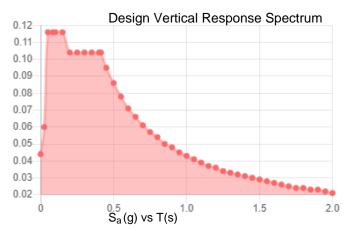
Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.


Seismic


Site Soil Class: D - Default (see Section 11.4.3)


Results:


S _s :	0.195	S _{D1} :	0.086
S_1 :	0.054	T _L :	6
F _a :	1.6	PGA:	0.107
F_{ν} :	2.4	PGA _M :	0.17
S _{MS} :	0.312	F _{PGA} :	1.585
S _{M1} :	0.129	l _e :	1
S _{DS} :	0.208	C _v :	0.7

Seismic Design Category B

Data Accessed: Tue Sep 21 2021

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in

accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness: 1.00 in.

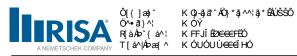
Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed: Tue Sep 21 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.


Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Tue Sep 21 2021

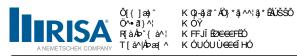
A Ya VYf Df]a Ufmi8 UfU

	Šæè^	OÁR[ãjc	RÁR[ã]c	SÁR[ã]c	Ü[ææ^ @^* E)Ù^&ca[}Ðù@æ}^	V^]^	Ö^∙ãt}ÆŠãc	Tæe^∖lãe¢	Ö^• ã} ÁÜ* ^•
F	ÙΗ	ÞG	ÞF			Ùœa)å[~—ÁOE{•	Ó^æ{	Úą ^	OÉ €€ÁÕ¦ÈÈÎ	V^]ã&æ ;
G	ÙI	ÞÏ	ρĹ			Ùœ)å[~ÁŒ{•	Ó^æ{	Úą^	ŒÍ €€ÁÕ¦ÈÌ Î	V^]
Н	VÜÎ	ÞH	ρĴ			Ùœa)å[~-ÁK^¦œ3&æ	Þ[}^	Þ[}^	OÉ GJÁÕ¦Ě €	V^]a8ae
	VÜÍ	ÞI	Þ			Ùoæ)å[~-ÁK^¦da&æ	Þ[}^	Þ[}^	OÉ GJÁÕ¦Ě €	
ĺ	∨ÜÌ	ÞI	Έ			Öãæ≛[}æ⊨	Þ[}^	Þ[}^	OÉ GJÁÕ¦Ě €	
Î	VÜÏ	ÞH	ÞJ			Öãæ≛[}æ⊨	Þ[}^	Þ[}^	OÉ GJÁÕ¦Ě €	V^]ã&æ ;
Ϊ	ÙF	ÞF€	ÞΕ			Ùœ)å[~ÁŒ{•	Ó^æ{	Úą ^	CÉ €€ÁÕ¦È Î	V^]ã&æ
Ì	ÙG	ÞFI	É			Ùœ)å[~ÁŒ{•	Ó^æ{	Úą^	ŒÍ €€ÁÕ¦ÈÌ Î	V^]
J	VÜF	ÞFF	ÞFÍ			Ùœa)å[~-ÁK^¦œ3&æ	Þ[}^	Þ[}^	OÉ GJÁÕ¦Ě €	V^]a8ae
F€	VÜG	ÞFG	ÞĤ			Ùœ);å[~-ÁK^¦œ&æ	Þ[}^	Þ[}^	OÉ GJÁÕ¦Ě €	
FF	VÜH	ÞFG	ÞÁ			Öãæ≛[}æ	Þ[}^	Þ[}^	OÉ GJÁÕ¦Ě €	
FG	VÜI	ÞFF	ÞĤ			Öãæ≛[}æ⊨	Þ[}^	Þ[}^	OÉ GJÁÕ¦Ě €	V^]
FH	PF	ÞFÎŒ	ÞFÍŒ			Øæ&∧ÁP[¦ã[}œ¢		Úą^	ŒÍ €€ÁÕ¦ÈÌ Î	V^]
FI	PG	ÞFÌ	ÞΕ̈́			Øæ&∿ÁP[¦ã[}œ¢	Ó^æ{	Úą^	ŒÍ €€ÁÕ¦ÈÌ Î	V^]
FÍ	T ÚH	ÞŒ	Þ				Ô[`{ }	Úą^	ŒÍ €€ÁÕ¦ÈÌ Î	V^]
FÎ	T ÚF	ÞFJ	ÞŒ				(} `[]Ô	Úą^	ŒÍ €€ÁÕ¦ÈÌ Î	V^]
FΪ	ΤÚG	ÞН	ÞН			T[*} œÂÚa] ^	Ô[[}	Úą ^	ŒÍ €€ÁÕ¦ÈÌ Î	V^]
FÌ	VF	ÞHÏ	ÞΉ			Val\ÁÓæ&l	Þ[}^	Þ[}^	ŒÍ €€ÁÕ¦ÈÌ Î	V^]
FJ	TGJ	ÞĞ	ÞÎÏ			ÜÕÖÜ	Þ[}^	Þ[}^	ÜÕÖÖ	V^]
G€	TH€	ÞĞ	ÞÎJ			ÜÕÖÜ	Þ[}^	Þ[}^	ÜÕÖÖ	V^]
GF	THH	ÞH	ÞÏH			ÜÕÖÖ	Þ[}^	Þ[}^	ÜÕÖÖ	V^]
Œ	ΤHI	ÞĤ	۱Ïط			ÜÕÖÜ	Þ[}^	Þ[}^	ÜÕÖÖ	V^]ä&æ ;
GH	ΤHÍ	ÞĜ	ÞÎÌ			ÜÕÖÜ	Þ[}^	Þ[}^	ÜÕÖÖ	V^]
G	ΤHÎ	ÞĠ	ÞÏ€			ÜÕÖÖ	Þ[}^	Þ[}^	ÜÕÖÖ	V^]
GÍ	ΤĠ	ÞН	Þ			ÜÕÖÜ	Þ[}^	Þ[}^	ÜÕÖÖ	V^]
GÎ GÏ	ΤĠ	ÞII	Ĺ			ÜÕÖÖ	Þ[}^	Þ[}^	ÜÕÖÖ	V^]
GÏ	ΤĞΪ	ÞIIŒ	ÞĤ			ÜÕÖÖ	Þ[}^	Þ[}^	ÜÕÖÖ	V^] 28æ

<chFc``YX'GhYY`8 Yg][b'DUfUa YhYfg</pre>

	Šænà^	Ù@a}^ Š	^}*c@ ž ajá	Šà^^Žajá	Šà∷Žājá	Š&[{]Áq[]Ž4;á	iŠ&[{]Áa[cŽa)á	ŠËq¦~~ÈÈ	È S^^	S::	Ôà	Ø" } &c#[}
F	ÙΗ	Ùœ)å[~ÁŒŒ	ΙŒĖ									Šæe^læ
G	ÙI	Ùœ≱å[~ÁŒŒ	ΙŒÌ			Šà^^						Šæe^\a
Н	∨ÜÎ	Ùœjå[~ÁK^Ħ	ĠĦ			Šà^^			Ēί	Ēί		Šæe^\a\
1	VÜÍ	Ùœ)å[~ÁK^⊞	ĠĦ			Šà^^			ÊÍ Èí	Ēί		Šæe^\a
ĺ	VI VÜÎ VÜÎ VÜÎ	Öãæ≛[}æ; H				Šà^^			Ė	Ě		Šæe^\a
Î	VÜÏ	Öãæ≛[}æ; H	IJ₿FF			Šà^^			Ě	Ě		Šæe^\a
Ϊ	ÙF	Ùœ)å[~ÁŒŒ	ΙŒΪ			Šà^^						Šæe^\a
Ì	ÙG VÜF	Ùœ)å[~ÁŒ⊞	i Œİ GÌĒH			Šà^^						Šæe^\a
J	VÜF	Ùœ)å[~ÁK^⊞	ĠĦ			Šà^^			Ēί	ĒÍ		Šæe^\a
F€	VÜG	Ùœ)å[~ÁK^⊞	ĠĦ			Šà^^			Ēί	Ēί		Šæe^læ
FF	VÜH	Öãæ≛[}æ; H	IJ₿FF			Šà^^			ĖÍ	Ě		Šæe^læ
FG	VÜI	Öãe**[}æ; H	IJ₿FF			Šà^^			Ě	Ě		Šæe^\a
FH	PF	Øæ&∧ÁP[¦ã[⊞È	JÎ			Šà^^						Šæe^\a
FI	PG	Øæ&∧ÁP[¦ã[⊞	JÎ			Šà^^						Šæe^\a
FÍ	ΤÚΗ	T[~} dÁÚaj^	JÎ			Šà^^						Šæe^\a
FÎ	TÚF	T[*} dÁÚa]^	JÎ			\$\frac{\fin}}}}}}{\frac}\frac{						Šæe^\a
FΪ	TÚG	T[*} dÁÚa]^	JÎ			Šà^^						Šæe^\a
FÌ	VF	VaNÁÓæ&\ .	JÎÈGÍ			Šà^^						Šæe^læ

A Ya VYf 5 Xj UbWYX 8 UHU


	Šænà^	QÄÜ^ /æe^	RÁÜ^ ^æe^	OÁJ⊶•^cŽajá	RÁU⊶^cŽ∄á	VĐÔÁU} ^	Ú@•ã&æ	Ö^- ÁÜæd⊞CB; æf•ã Á⊞	Qlæ&cãç^	Ù^ãa{ã&ÈÈ
F	ÙΗ	Ó^}ÚŒ					ΫΛ∙	Ö^æĭ c		Þ[}^
G	ÙΙ	Ó^} ÚŒ					Ϋ́Λ∙	Ö^æi c		Þ[}^
Н	∨ÜÎ						Ÿ^•	EEÁÞOEÁEE		Þ[}^
1	VÜÎ VÜÍ						Ϋ́^•	EEÁÞOEÁEE		Þ[}^
ĺ	∨üì						Ϋ́Λ∙	EEÁÞOEÁEE		Þ[}^
Î	VÜÏ						Ϋ́Λ∙	HEÁÞ OEÁHE		Þ[}^
Ϊ	ÙF	Ó^} ÚŒ					Ÿ^•	Ö^æĕ c		Þ[}^
ì	ÙG	Ó^} ÚŒ					Ϋ́Λ∙	Ö^æĭ c		Þ[}^
J	VÜF						Ÿ^•	EEÁÞOEÁEE		Þ[}^
F€	VÜG						Ϋ́Λ∙	EEÁÞOEÁEE		Þ[}^
FF	VÜH						Ϋ́Λ∙	EEÁÞOEÁEE		Þ[}^
FG	VÜI						ΫΛ∙	EEÁÞOEÁEE		Þ[}^
FH	PF						Ÿ^•			Þ[}^
FI	PG						Ϋ́Λ∙			Þ[}^
FÍ	ΤÚΗ						Ϋ́Λ∙	EEÁÞOEÁEE		Þ[}^
FÎ	T ÚF						ŸΛ•	EEÁÞOEÁEE		Þ[}^
FΪ	T ÚG						Ÿ^•	EEÁÞOEÁEE		Þ[}^
FÌ	VF	Ó^}ÚŒ					ΫΛ∙	EEÁÞOEÁEE		Þ[}^
FJ	TGJ						Ÿ^•	EEÁÞOEÁEE		Þ[}^
G€	TH€						Ϋ́Λ∙	EEÁÞOEÁEE		Þ[}^
Œ	THH						Ϋ́Λ∙	EEÁÞOEÁEE		Þ[}^
GG	TH						ΫΛ∙	EEÁÞOEÁEE		Þ[}^
GH	ΤHÍ						ΫΛ∙	EEÁÞOEÁEE		Þ[}^
G	ΤHÎ						ΫΛ∙	EEÁÞOEÁEE		Þ[}^
GÍ	ΤGÍ						ΫΛ∙	EEÁÞOEÁEE		Þ[}^
GÎ GÏ	ΤĠ						Ϋ́Λ∙	EEÁÞOEÁEE		Þ[}^
GÏ	ΤĠΪ						Ϋ́Λ•	EEÁÞOEÁEE		Þ[}^

A Unyf]U HU_YcZZ

	Tæe^∖lãæ¢	Ùã^	Ú ∄ &^•	Š^}*c@Ž∄á	Y ^at @ažŠÓá
F	Õ^} ^¦æ				
G	ÜÕÖÜ		J	Ğ	€
Н	V[œ#ÁÕ^}^¦æ#		J	Ğ	€
1					
ĺ	P[ơÁÜ[^åÁÛơ^^				
Î	OÉ €€ÁÕ¦ÈÌÎ	FÈIÄÁUÖ¢€ÈFGÄ		FÎJÊ	HŒĞ
Ϊ	OÉ €€ÁÕ¦ÈÌÎ	ÚQÚÒ´ GĚ	G	FJG	ìï∄íî
ì	OÉ €€ÁÕ¦ÈÌÎ	GÈÌÄ¢€ÈG€Ä	Н	GÌ	HHŒI
J	ŒÍÆÃÕ¦ÌÌÎ	Úaj^GÉHÌÝ€ÉFG	F	JÎ ÈH	G -t GÍÍ
F€	OÉGJÁÕ¦Ě€	€Ē HÄÁÛÜ		GÏŒÌ	GÈEG
FF	V[œ∳ÁPÜÁÛ¢^^		FÌ	F€FÌÈH	GÍGŒÌĴÎ

<chFc``YX'GhYY''GYWfjcb'GYlg</pre>

	Šæà^	Ù@ ≱ ^	V^]^	Ö^∙ãt}ÆŠãc	Tæe^∖ãæ¢	Ö^• ã} ÁÜ* ^•	OEÆŽjGá	Q^Ããjlá	Q:Æãjlá	RÁŽajlá
F	Øæ&∧ÁP[¦ã[⊞≟	00000	Ó^æ	Úą^	OÉEÆÄÕ¦ÈÌÎ	V^]	FÈF	FÈÍ	FÈÍ	GÈJ
G	Ùœ)å[~ÁŒ{•	FE) ÄUÖ¢ CE G	Ó^æ	Úą^	OÉ €€ÁÕ¦ÈÎ	V^]	ÊΪF	ΕĠΪ	ĚĠΪ	ĚΗ
Н	Öãæ≛[}æ;	€Ē HÄÂÙÜ	Þ[}^		OÉGJÁÕ¦Ě€		ÈHFG	È€EÌ	È€ÈÌ	È€FÍ
1	T[*} cÁÚa] ^	OEÈÌÄ¢€ÈFG€Ä	Ô[{ }	Úą^	OÉ €€ÁÕ¦ÈÌÎ	V^]	FÈ€l	HLÉ	ÐJH	FÈÌÍ

<chFc``YX'GhYY`GYWfjcb'GYhg'ff'cbhjbi YXŁ</pre>

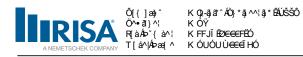
	Šænà^	Ù@A}^	V^]^	Ö^∙ãt}Æõãec		Ö^• ã} ÁÜ* ^•	OEÁŽAjGá	Q^Ããjlá	Q:Æãjlá	RÁŽajlá
ĺ	VãNÁÓæ&N	Úaj^GÈÀ Ý€ÈÈÈ	Þ[}^	Þ[}^	ŒÍ €€ÁÕ¦ÈÌ Î	V^]	ÈÍG	Ělĺ	Ělĺ	FÈ€JF
Î	Ò}åÁÛ″]][¦dÌ	ÉHĚÄ¢€ÈFG€	Þ[}^	þ[}^	ŒÍÆÃÕ¦ÈÌÎ	V^]	FÈĠÏI	FÈ Œ	FÈG	HÊH
Ï	Ùœ)å[~ÁK^¦È	Ë €Ē HÄÂÙÜ	Þ[}^	þ[}^	OÉ GJÁÕ¦Ě €	V^1a8ael	ÈHFG	Ì€€Ì	Ì€€Ì	È€FÍ

6 Ug]W@:UX'7 UgYg

	ÓŠÔÁÖ^∙&¦ā[æ[}	Ôæz^*[¦^	ÝÁŐ¦æçãcî	ŸÁŐ¦æçãcî	ZÁŐ¦æçãcî	R[ā]c	Ú[ã]c	Öãidãa ĭc^å OE^æQT^EÈÙ ĭ¦æa&^QÈÈ
F	Ù^ -ÁY ^ a* @c	ÖŠ		Ë			J	
G	YājåÁŠ[æåÁOEZQÁK€	Y ŠZ					FÌ	
Н	YājåÁŠ[æåÁOEZOÁÁH€	Þ[}^					FÌ	
1	YājåÁŠ[æåÁOEZOÁÁ΀	Þ[}^					FÌ	
ĺ	YājåÁŠ[æåÁOEZQÁÚJ€	Y ŠÝ					FÌ	
Î	YājåÁŠ[æåÁOEZOÁÁFG€	Þ[}^					FÌ	
Ϊ	YājåÁŠjæåÁOEZOÁÁFÍ€	Þ[}^					FÌ	
ì	YājåÁŠ[æåÁOEZOÁÁFÌ€	Þ[}^					FÌ	
J	YājåÁŠ[æåÁOEZOÁKGF€	Þ[}^					FÌ	
F€	YājåÁĞ[æåÁOEZOÁÁGI€	Þ[}^					FÌ	
FF	YājåÁĞ[æåÁOEZOÁÁĞI€	Þ[}^					Έ	
FG	YājåÁŠ[æåÁOEZOÁÁH€€	Þ[}^					Έ	
FH	YājåÁĞ[æåÁOEZOÁÁHH€	Þ[}^					FÌ	
FI	Öãrd ÉÁY ãj å ÁŠ[æå ÁZ	Y ŠZ						Ğ
FÍ	Öãrd ÉAY aj å ÁŠjaná ÁÝ	Y ŠÝ						GÏ
FÎ	Q 4∧Á√ ^ã @c	UŠF					7	GÜ
FΪ	O&v^ÁYajåÁS[æåÁOEZOÁK€	UŠG					Έ	
FÌ	O&vÁYajáÁŠ[æåÁOEZOÁÁH€	Þ[}^					FÌ	
FJ	O&∧ÁYajåÁŠ[æåÁDEZÓÁÁ)€	Þ[}^					FÌ	
G€	O&∧ÁYajåÁS[æåÁOEZOÁÚ)€	UŠH					FÌ	
GF	O&^ÁYājåÁŠ[æåÁDEZOÁNFG€	Þ[}^					FÌ	
GG	O&∧ÁYājåÁŠ[æåÁDEZOÁÁFÍ€	Þ[}^					FÌ	
GH	O&∧ÁYājåÁŠ[æåÁOEZOÁÁFÌ€	Þ[}^					FÌ	
G	O&vÁYa}åÁŠ[æåÁOEZOÁNGF€	Þ[}^					FÌ	
GÍ	O&NÁYājåÁŠ[æåÁDEZOÁÁGI€	Þ[}^					FÌ	
Ĝ	O&^ÁYā}åÁŠ[æåÁOEZOÁÁGÏ€	Þ[}^					FÌ	
ĞÏ	O&NÁYā}åÁŠ[æåÁDEZOÁÁH€€	Þ[}^					FÌ	
GÌ	O&NÁY jãåÁŠ[æåÁÐEZOÁÁHH€	Þ[}^					FÌ	
GJ	Öãrd ÉÄOSA^ÁY ãjå ÁŠ[æåÁZ	UŠG						Ğ
H€	Öãrd ÉÁOSA^ÁY ãjå ÁŠ [æåÁÝ	UŠH						GÏ
HF	Ù^ãr{ã&ÃS[æåÁZ	ÒŠZ			⊞FG		J	
HG	Ù^ãr{ 38,485 [æå.4Ý	ÒŠÝ	⊞FG				J	
HH	Ù^¦çã&^ÆŠãç^ÆŠ[æå•	ŠŠ				F		
H	Tænig o^}ænj &^Ánšij æniáÆr	ŠŠ				F		
HÍ	Tænig o^}ænj &^ Áðj æniá ÁG	ŠŠ ŠŠ ŠŠ				F		
HÎ	Tæājo^}æ)&^ÁŠ[æåÁH	ŠŠ				F		

@UX'7ca V]bUh]cbg

	Ö^•&¦ājcāj}	ÙË	ÚЩ	ÙÈ	ÓÈ	Øæ£À	ΪĎΪΪ	Øæ&È	ΉÖΉ	Ø 38 È	ĦŎĦ	ÈØæÀ	ΪĎΪΪ	Øæ£È	ΪĎΪΪ	Øæ&À	ΪĎΪΪ	Øæ£È	ΪĎΪΪ	Øæ&À	ΉĞ	Øæ£È	ΪĎΪΪ	Øæ E
F	FÈ ÖŠ	Ÿ^•	Ϋ		F	FÈ																		
G	FÉGÖŠÁÉÁFYŠÁOEZÓÁ€	Ÿ^•	Ϋ		F	FÈG	G	F	FI	F	FÍ													
Н	FÈGÖŠÁÉÁFYŠÁOÐZÓÁH€	Ϋ́^•	Ϋ		F	FÈG	Н	F	FI	Èîî	FÍ	Ě												
1	FÈGÖŠÁÉÁFYŠÁOEZQÂÍ€	Ÿ^•	Ϋ		F	FÈG	Τ	F	FI	Ě	FÍ	Èîî												


@cUX'7caV]bUhjcbg'f/7cbhjbiYXŁ

<u> </u>	k / ca vjburjeby i/ ci	OI JIC		ΛL	_																			
	Ö^•&¦ā;cā;}	ÙË	ÚÈ	ÙĚĆ	Ë	Øæ&À	ΉÖ	Ø28E	ĦŎĦ	Ø28È	ĦŎĦ	Øæ8	TĎ TÈ	Ø28H	ΪĎΪΪ	Øæ&À	ΪĎΪΪ	Øæ£Ĥ	ĎÜ	Ø28È	ĦĎĦ	Øæ8Ì	Ě	Øæ&H
ĺ	FŘEGÖŠÆÉÆFÝŠÁDEZŒÁJ€	Ÿ^•	Ϋ		F	FÈG	ĺ	F	FI		FÍ	F												
Î	V 11 V 77 7 V 7	ŸΛ•		_	_	FEG	_	F	FI	Η̈́	FÍ	ÈÎÎ												
Ť	FÉGÖSÁÉÁFY ŠÁOZZÓÁFÍ€	ÿΛ•	Ÿ			FÈG		F	_	Ħîî	-	Ě											\neg	
	FÉGÖSÁÉÁFY ŠÁOZ CÁFÌ€	-	Ÿ	_		FEG		F	FI	Ë	FÍ													
J	FÉGÖSÁÉÁFY ŠÁOZ CÁCF€	1	Ÿ	_	-	FEG	_	F		Ħîî	-	Η̈́											-	
				-	_		_	_	+			<u>ш</u> Ш î î												
F€	FÉGÖSÁÉÁFY SÁOZ CÁCI €				-	FEG			FI	Ħ	FÍ													
FF	FEGÖSÆFY SAOZ ØĞ €	-	Y	-	_	FEG	_	_	FI		Fļ	Ē											\rightarrow	
FG	1	Ϋ́^•	Υ	-	-	FĘ	_		FI	Ė	Γĺ	ĤÎ											ш	
FH	\ " \ " \ " \ \ \ \ \ \ \ \ \ \ \ \ \ \	Y^•	Υ		E.	FĖG	FH	F	FI	ĒΪΪ	FĮ	Ħ											ш	
FI	€ÈIÖŠÄÉÄFYŠÄOZZÓÆ	Ÿ^•	Ϋ		F	À	G	F	FI	F	Fĺ													
FÍ	€ÈIÖŠÁÉÁFYŠÁDEZÓÁH€	Ÿ^•	Ϋ		F	È	Н	F	FI	Èîî	FÍ	ľĚ												
FÎ	€ÈIÖŠÁÉÁFYŠÁQEZQÁÌ€	Ÿ^•	Ϋ		F	À	1	F	FI	Ě	FÍ	ÈÎÎ												
FΪ		Ÿ^•	Ϋ		F	È	ĺ	F	FI		FÍ	F											П	
FÌ	\ " \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ŸΛ•		_	F	È	Î	F	FI	Η̈́	FÍ	ÈÎÎ												
FJ	€ÐÖŠÆÆFY ŠÆÆFÉ	-	Ÿ	_	F	Ď	i	F		Ħîî		Ě											\neg	
G€	€BÖSÁÉÁFY ŠÁOZ CÁFÌ €		Ÿ	_	F	È	ì	F	FI	Ë	FÍ	<u> </u>												
GE	€BÖSÁÉÁFY ŠÁOZCÁCF€		Ÿ			È	-	F	FI	# î î		Η̈́												
					F		J		+			Ш Hiii												
GG	€BÖSÆFY SÆÆG G	-	Ŷ	_	F	À	F€		FI	Ħ	FÍ													
GH	€ÐÖSÁÉÁFY ŠÁOZ QÁĞ €	-	Y	_	E	Ď	FF	_	FI		Εį	Ë											\perp	
G	€ÐÖŠÆÆFY ŠÆÆZØH€€	-	Ÿ	_	F	È	FG	_	FI	Ė	Fĺ	ĤÎ												
Gİ	€ÐÖŠÁÉÁFY ŠÁOZZÓÁH€	Ϋ́^•	Ÿ		F	À	FH	F	FI	ĤÎÎ	Fĺ	Ħ												
GÎ	F É GÖÁÉÁFÉEÖ ã	Ÿ^•	Ϋ		F	FÈG	FÎ	F																
ĞÏ	FÉGÖÁÉÁFÉGÖÁÁFÉGY ÁKOZÓÆ	Ÿ^•	Ϋ		F	FÈG	FÎ	F	FΪ	F	GJ	F	H€										П	
GÌ	FEGÖÆÆFEGÆÆFEY ÆKOZÓME	Ÿ^•	Ϋ		F	FÈG	FÎ	F	FÌ	F	GJ	ÈÎÎ	H€	Ě										
GJ	FÈSÖÆÆFEGÆÆFEY ÆÆØZØÅ€	ÿΛ•	Ÿ		_	FÈG		F	FJ		GJ	_	_	ÈÎÎ									\neg	
H€	FÈCÖÆÆÆECÖÆÆFÈEY ÆOZÓN€	-	Ÿ	-	-	FEG		_	G€	_	GJ	_	H€	F										
	FECOÁÉÁFECOÁÉFECY ÁKOZÓFGE		Ÿ	_	$\overline{}$	FEG		F	Œ			Η̈́	H€										-	
HG	FÈGÖÆÆFÈGÖÆÆFÈGY ÆØZØÆF €	-	Ÿ	_	_	_	-		_	_		Ħîî	_	Ě										
	FEGÖÆÆFEGÆFEY ÆGZØFT			_	_	FEG	_	F	Œ				_	ш										
			Y	-	_	FEG	_	F	GH	_	GJ	_	-										\vdash	
H	FÈSÖÆÆÆEÖÆÆFÈEY ÁNZÓÆF€		Υ			FÈ		F	G	F		## Î Î											\blacksquare	
Hİ	FÉGÖÆÆFEGÖÆÆFEY ÆNDZÆÆ	-	Ÿ	-	-	FĖG		F	G	F	GJ	Ħ	H€										ш	
HĨ	FÈSÖÆÆFEÖÆÆFEY ÆNZÓÆ €	-	Ÿ		F	FÉG	FΪ	F	GÏ	F	GJ		H€											
ΗÏ	FÉGÖÆÆFEGÖÆFEEY ÆOZØH€€	Ÿ^•	Ϋ		F	FÈG	FÎ	F	GÏ	F	GJ	ľĚ	H€	ËÎÎÎ										
HÌ	FEGÖLÉÁFEGÖLÉFEY ÁLOZOÁHE	Ÿ^•	Ϋ		F	FÈG	FÎ	F	GÌ	F	GJ	ÈÎÎ	H€	Η̈́										
HJ	ÇFÊSÆÆÆÊÐÙå•DÖŠÆÆFE€ÒÆÆ	Ϋ́^•	Ϋ		F	FÌŒÌ	HF	F	HG														\Box	
	ŒÊÆÆŒÛå•DÖŠÆÆÆŒÒÆ	Ϋ́^•		_	$\overline{}$				_															
	ŒÊÆÆŒÛå•DÖŠÆÆÆEÒÆ	_	Ÿ	_	-	FÌŒ			HC	ÈÎÎ													\neg	
	Ç EZÊZÊZÊÛÅ• DÖŞÆÆFEÇÂQEÎ		Ÿ	-		FÈGÈ		-		F														
	(FİEÁÉÁEÍGÜÅ • DÖSÆÁFIEÓÁOEÍÍ		Ÿ					Η̈́	_															
	GEÉÆÆÐÚª DÖSÆÆÆEÓÆ			-	_				_	_														
11	CFÉTÁÉ ÁSTEDÚA • DÖSÁÉ ÁFTE Ó ÁOTHT		Ϋ́					⊞ÏÏ																
11	3		Y					Ë															\rightarrow	
1]	(FÉÁÉÁÉE) Úª DÖSÁÉÁFÉE ÓÁOHH		Ÿ	_	$\overline{}$			⊞ Ï Ï	_															
ΙŢ	ÇFÊSÆÆÆÊÛå•DÖŠÆÆFE€ÒÆÆ		Ÿ			FEGE		Ħ	_	ĤÎ													Ш	
ΤÌ	(FÉRÉAETE) DÖSKÉ ÁFTE Ó ÁQTÍT		Ϋ			FÌŒ				Ë														
IJ	ŒŒÆÆŒŒÙå•DÖŠÆÆÆŒÒÆŒ	Ϋ́^•	Ϋ	LT	ΕĪ	FÌŒ	HF	Ě	HG	ĦÎÎ		L		7									L T	
Í€	ÇFÎÇÂÉÁŒÎĞÛå•DÖĞÁÉÁFÌŒÒÁQĦÌÌ	Ÿ^•	Ϋ		F	FÌŒ	HF	ÈÎÎ	HG	ΙЩ̈́														
ĺF	ŒÈÆŒÛå•ŒŠÆÆÆŒÒÆÆ	Ÿ^•	Ÿ			Èíì			HG	_													\neg	
	ŒÈJƌ٪•DÖŠÆÆÆÈÒÆ	-	Ÿ					ÈÎÎ																
	ŒÈJÆÆÐÙå•DÖŠÆÆFŒÓÆŒ		Ÿ			273		~		ÈÎÎ														
	ŒĒJÆÆĒDŮª•DÖŠÆÆFĒČÁOZĒ		<u> </u>	_	_	ÈÍÌ	HF	<u> </u>																
11	3			-			HF	¥	_	F														
İİ	ŒÈÆŒÙå•DÖŠÆÆÆŒÒÆŒ			_	_	<u>Říì</u>	HF	_	1	ĦΪΪ													\perp	
11	ÇEÈJÁËÁEÈÐÙå•DÖŠÆÆÆFÈEÒÁOZÈ	¥^ •	Ÿ		F	ΗII	HF	ĤÎ	HG	Œ														
		, my		,,,,,,,,					=		_					. ,			$\overline{}$				_	

Ù^]oÁGFÉÁG€GF IKIFÁÚT Ô@&&^åÁÓ^K ′′′′

@cUX'7caV]bUhjcbg'f/7cbhjbiYXŁ

<u> </u>	, 0,	k / ca vjburjeby i rek																				
											ĦŎĦ	ÈØæ&À	ĎÜ	Øæ&HIĎH	ÈØæ HHÖ H	ÈØæ&À	Ď	Øæ&À	ĎÈ	Øæ&È	ĎÈ	2 68 €
ĺ	Ï	ÇEÈJÁÉZÁETEÐÚÅ•EØŠÁEÁFÉÆÐÁOEZÍÐ	Ÿ^•	Ϋ	F	ĚÍÌ	HF	Ë	HG													
ĺ	Ì	ŒÙÆŒÙŮª•ŒŠÆÆÆŒÒÆŒ	Ϋ́^•	Ϋ	F	Èíì	HF	ĤÎÎ	HG	Ħ												
ĺ	J	ŒĖJÆÆEČŪå•DÖŠÆÆÆEČÁOZÈĚ	Ÿ^•	Ϋ	F	ΒÍÌ	HF	ΞĔ	HG	Ħîî												
Î	€	ŒĖJÁĖ́ĖĖŠŪå•DÖŠǼÁFÈEÒÁOEZĖĖ	Ÿ^•	Ϋ	F	Èíì	HF		HG	Ë												
_	_	ŒÈJÁŒŒĴŮå•DŐŠÁÉÁFÈŒŎÁOZÌÌ	Ÿ∧•	Ÿ	F			Ř	_	Ħîî												
		Ç€ÈJÁËÆÉGÙå•DÖŠÆÆÆÈGÓÁOZÈ			F			ÈÎÎ	_													
_		FEEÖŠÆÆÆÆÆÆÆÆÛY ŠÆÊ		Ÿ	Ė			ÈCH	_	_	FÍ		НН	FĚ								
î	<u> </u>	FREOŠÁEÁFIEŠŠÁEÁFREDY ŠÁÇIE		Ÿ	F		_	EGH	_	$\overline{}$	_	ÈFÍ	_									
Î	-	FREOSÁEÁFIE SSÁEÁFREÚY SÁÓ H	_	Ÿ	F		+ + + + + + + + + + + + + + + + + + + +	ÈΟΗ	_	ĖFÍ	_	_										
_	•	FEEÖŠÆÆFEŠŠÆÆFEÐY ŠÁÇE			-	-	l.	· ·	_	шті	-	· ·	_	· ·								
Î	-	FREOSÆÆFE SSÆÆFEÐ Ý SAÐ EF	$\overline{}$		F	_	1	EGH	_	m- -cí	-	EGH		_							-	
Î	•			Y	F	_	I.					Ė										
Î		FRECOŠÁEÁFIĽŠŠÁEÁFREÚY ŠÁÇÍ		Ŷ	F		H.					ĖFÍ									_	
		FREÖŠÆÆFBEY ŠÁÇBE		Y	F	_		_	_	EG-				FŒ								
-	_	FÈEÖŠÆÁFĚŠŠÆÁFÈEÙY ŠÁÇÊ		Y	F	_	J	ÉθΗ	-			#FFÍ										
-		FÈEÖŠÆÆFĒŠŠÆÆÆÈŪY ŠÆÇĒ		Ÿ	F			ÉΘΗ	-	ŒFFÍ	-											
Ϊ	_	FÉEÖŠÆÁFĚŠŠÆÁFÉEÙY ŠÁÇÊ		Ϋ	F	F	FF	ĖΘΗ	FI	ļ.,,	Γĺ	⊞ŒH	HH	FE								
Ï	Н	FÈEÖŠÆÆÆĚŠŠÆÆÆÈEÙYŠÆÇĒ		Ϋ	F		FG	ÈCH	FI	ŒFÍ	ΙFÍ	ËG	HH	FĚ								
Ϊ	1	FÈEÖŠÆÆÆBĚŠŠÆÆÆÈEÙYŠÆÇĒ	₹^•	Ϋ	F	F	FH	ĚΗ	FI	ÈG	ΙFÍ	ŒFFÍ	HH	FĚ								
Ϊ	ĺ	FĚGÖŠÆÆÆĚŠŠ	Ÿ^•	Ϋ	F	FÈ	HH	FĚ														
Ϊ	Î	FÈSÖŠÆÆFĚŠTË ÚFÆÆDÈ	ΫΛ∙	Ϋ	F	FÈ	Н	FĚ	G	ÈÉÍÌ	FI	ÈÉÌ	FÍ									
ï	Ï	FÈCOSÁÉÁFÉ ŠT ÉT ÚFÁÉÁFÚEE	Ÿ^•	Ϋ	F	FŘ	Н	FĚ	Н	ÈÉÍÌ	FI	Ì€Í	FÍ	È€GJ								\neg
İ	ì	FRESÖSÁÉÁFE ŠT ÉT ÚFÁÉÁFÚBE	ΫΛ∙	Ÿ	F	_	Н	FĚ	_	ÈÉÌ		ÈEGJ										
		FRESÖSÁÉÁFÉLŠT ÉT ÚFÁÉÁFÚBÉ		Ÿ	F			FĚ	_	ÈÉIÌ				È								
_		FÉGÖSÁÉÁFÉ ŠT ÉT ÚFÁÉÁFÚÉÉ		Ÿ	F	_	_	FĚ	_	ÈÉÌ	-	ËEGJ										
_	_	FÉGÖSÁÉÁFÉ ŠT ÉT ÚFÁÉÁFÚÉÉ		Ÿ	F		_	FĚ	i	ÈÉIÌ		⊞€Í	_	ÈEGJ								
		FÉGÖSÆÆÆÆĚŠT ÉT ÚFÆÆÆÙÈÈ		Ÿ	F	_	_	FĚ	+			EEÍÌ										
		FÈSOSÆÆFĚŠT É ÚFÆÆDÈ			-	_			+			ΕΕ		iřcol							-	
-		FÈSOSÆÆÆĚŠT ÉT ÚFÆÆÛÈÈ		Ÿ	F	_		FĚ	<u> </u>		-											
ļ	÷			Ŷ	F	_	_	FÉ	_		FI	ŒŒGJ	_	*** ()								
į	÷	FÈGÖŠÆÆFĚŠT ÉT ÚFÆÆVÈÈ		Ÿ	F	_	_	FĖ	_	BE I	-	<u> </u>		EE I								
į		FÈSOSÁÉÁFÉ ŠT ÉT ÚFÁÉÁFÚÉÉ		Ŷ	F		_	FĖ	_		_	ÈEGJ	_									
į	•	FÈSOSÁÉÁFÉŠT ÉT ÚFÁÉÁFÚÉÉ		Ÿ	F	_	-	ΓĖ	_		_			ŒŒGJ								
į	•	FÉGÖSÁÉÁFÉ ŠT ÉT ÚGÁÉÁFÚÉÉ		Ÿ	F	_		ΓĖ		BEET	FI	Bei		,								
Ì		FÉGÖSÁÉÁFÉ ŠTÉTÚGÁÉÁFÚEÉ		Ϋ	F	FÈ	H	FĚ	H	EE ì	FI	ÈÉÍ	FĹ	ŒGJ								
J	l€	FÉGÖSÁÉÁFÉ ŠTÉTÚGÁÉÁFÚEÉ	Ÿ^•	Ϋ	F	FÈ	ΗÍ	FĚ	1	EE Ì	FI	ÈEGJ	Fĺ	ÈÉÍ								
J	IF	FÉGÖSÁÉÁFÉ ŠTÉTÚGÁÉÁFÚÉÉ	Ÿ^•	Ϋ	F	FÈ	ΗÍ	ΓĚ	ĺ	ÈEÍÌ	FI		Fĺ	Be ì∣								
J	IG	FÉGÖSÁÉÁFÉ ŠT ÉT ÚGÁÉÁFÚEÉ	Ÿ ^•	Ϋ	F	FÈ	ΗÍ	FĚ	Î	ÈÉIÌ	FI	⊞EGJ	FÍ	È€Í								
J	ΙH	FÈGÖŠÁÉÁFÉ ŠT ÉT ÚGÁÉÁFÚEE	Ÿ^•	Ϋ	F	FÈ	ΗÍ	FĚ	ΙÏ	ÈÉÍÌ	FI	⊞€Í	FÍ	È€GJ								
J	II	FÈGÖSÁÉÁFÉ ŠT ÉT ÚGÁÉÁFÚEÉ	Ÿ^•	Ϋ	F	FÈ	Ηí	FĚ	ì	ÈÉIÌ	FI	Œ€íì	FÍ									
_		FÈSÖŠÆÁFĚŠT ÉT ÚGÆÁFÙEE	ÿΛ•	Ÿ	F		-	FĚ	_	ÈÉIÌ		⊞€Í		ËEGJ								
_		FREGÖSÁEÁFIL ŠT ÉT ÚGÁEÁFÚIÈÈ	Ϋ۸۰	Ÿ	F	_		FĚ	_		FI	ŒGJ	_									
_	_	FÉGÖSÁÉÁFÉ ŠT ÉT ÚGÁÉÁFÚ ÉÉ		Ÿ	F	_		FĚ	_	V / V	_			Œ(ì								
_	<u> </u>	FÉGÖSÁÉÁFÉ ŠT ÉT ÚGÁÉÁFÚÉÉ		Ÿ	F	_		FĚ	_		_	ÈŒGJ	-									
		FÉGÖSÁÉÁFÉ ŠT ÉT ÚGÁÉÁFÚEÉ		Ÿ	F	_	,	FĚ	_	ÈÉÍÌ	_	· · ·	-	⊞€GJ								
		FEGÖSÆÆFEŠT ET ÚHÆÆFÙEE		Ÿ		_	_	ΓĒ	_	· / ·	_	E i										
		FÈSOSÆÆFĚŠT É ÚHÆÆÛÈ		-	F	_	_	_	_	~ ~ ~	_	ÈÉÍ	_	ÈCI								
	_			Υ	F		H		Н	12台)	FI		FI	E€GJ iờcí								
		FREGÖSÆÆFEĞST ET ÚHÆÆFÙÆ		Ÿ	F	_	_	FĚ	Ļ	ÈÉ Ì	FI	È€GJ									-	
		FÈGÖŠÆÆFĚŠT ËT ÚHÆÆVÙÈÈ		Y	F		H	FĚ	l î	ÈÉ Ì	FI	****	FÍ	ÈÉ Ì								
		FÈSÖŠÆÆFĚŠT Ë ÚHÆÆDÈ		Y	F			ΕĒ				ŒŒGJ		Œ								
		FÈGÖŠÆÆFĚŠT ËT ÚHÆÆFÙÈÈ		Ÿ	F			ΓĖ				Œ		ÆGJ								
_	_	FÈSÖŠÆÆFĚŠTË ÚHÆÆFÙÈÈ		Ŷ	F	_		ΓĖ	_	BEÉ Ì		Œ€ÍÌ										
F:		FÈSOSÁÉÁFÉ ŠT ÉT ÚHÁÉÁFÚÉÉ		Ϋ	F	_	ΗÎ	FĚ	<u> </u>	ÈÉÍÌ		⊞€Í										
F	€Ì	FÈSÖŠÆÆFĚŠTË ÚHÆÆDÈ	Ÿ^•	Ϋ	F	FÈ	ΗÎ	FĚ	F€	È€ÍÌ	FI	⊞€GJ	FÍ	iiiiii 🖳								
=			~×				$\overline{}$				=		_	, ,	,		↽	_				三

@UX'7ca V]bUh]cbg'f7cbh]bi YXŁ

Ö^• &¦aj aai}	Ù誰Ú誰Ù誰	ĖÓĖĖØ®EĖĎĖĖ	ØæHHĎHÈØæHHĎH	ËØ&HĎŒØ&HĎH	Ø&HĎHÈØ&H	
F€J FÉSÖŠÆÆFÉŠTË ÚHÆÆDÈ	Ÿ^• Ÿ	F FÈGHÎ	FĚ FF 🖼 Ì FI	FÍ⊞ŒÍÌ		
FF€ FÈSÖŠÆÆFĚŠT ËT ÚHÆÆFÙÈÈ	Ÿ^• Ÿ	F FÈGHÎ	FĚ FG € Ì FI	EGU FÍ EE		

>c]bhi6 ci bXUf mi7 cbX]hjcbg

	R[ãjoÁŠænà^	ÝÁŽÐajá	ŸÆXEAjá	ZÃX Đã∖á	ÝÁÜ[dÈŽËdEDæåá	ŸÁÜ[dĚŽËdĐæåá	ZÁÜ[dÈŽËeĐæåá
F	ÞF						
G	þÎ						
Н	ÞĤ						
I	ÞIH	Ü^æ&aãi}	Ü^æ \$ æ [}	Ü^æ & æ (ā] }			
ĺ	ÞH	Ü^æ % æ [}	Ü^æ \$ æ [}	Ü^æ & æ (ā]}			
Î	ÞIIŒ	Ü^æ \$ æ [}	Ü^æ \$a [}	Ü^æ \$a {}}			

9bj YcdY'>c]bhFYUMjcbg

	R[ã]c	ÝÆjáá	ŠÔ	ŸÆjaá	ŠÔ	ZÆŢàá	ŠÔ	T Ý ÁŽjàË cá	ŠÔ	ΤΫΑξα̈́àËcá	ŠÔ	TZÁŽàËcá	ŠÔ
F	ЫH	{æ¢ÌHGHĚÏG	ΪÌ	JFFĚ€Ì	Ġ	G€ÏJĒÌII	ď	€	FF€	€	FF€	€	FF€
G		{ a} ËîÎFĚHU	JÎ	GHHÈ FI	Œ	EHIÎ GEGÎÎ	Ϊ	€	F	€	F	€	F
Н	ÞH	{æ¢ FÎFGÈFÎ	JF	ÌÏ€ÈÍ	Н	ŒFJÊÌ F	ĞÏ	€	FF€	€	FF€	€	FF€
1		{āj ĒindĒii	ÌÍ	GG ÈÍ	FI	ÍÌÍĚÏI	FJ	€	F	€	F	€	F
Ì	ÞIIŒ	{æ¢ FÏIÈĖÏG	Î	HIËJI	ΗÏ	FHÍ GÈGCH	Ϊ	€	FF€	€	FF€	€	FF€
Î		{ aj liti teth	FG	JÈŒ	Íί	ËFHÏÈ€JI	ď	€	F	€	F	€	F
Ϊ	V[œ ; K	{æ¢ FFÍÌÈCHÍ	FΪ	FÌ€ÎÎI	H€	FJJ FÈ HÌ	FI						
ì		{ a} EFFÍÌÈGHÍ	FF	ÍÌIÈ€Î	ĺΗ	ËJJFÈH	G€						_

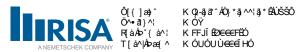
>c]bh'@UXg'UbX'9 bZcf WYX'8]gd'UWYa Ybhg'f6 @' '' '. 'GYf j]WY'@j Y'@UXgL

	R[ã]oÁŠæà^	ŠÉÖÉT	Öã^&cã[}	Tæ*}ãã å^ŽQà Ēa ĒdDĒAQā ĒæåDĒAQà Ē•âĒEÈ
F	ЬFÌ	Š	Ÿ	ËÄ€

>c]bh'@UXg'UbX'9 bZcf WYX'8]gd'UWYa Ybhg'f6 @' " (`.`A U]bhYbUbWY'@UX'%L

	R[ā]oÁŠæà∧∣	ŠÉÖÉT	Öã^&cã}	Tæt}ãc å^ŽDà Êa Ëo DÁQA Êæå DÁQà E•âÈÈ
F	bî.l	Š	Ÿ	Ĥ∉

>c]bh'@UXg'UbX'9 bZcf WYX'8]gd'UWYa Ybhg'f6 @' ') . 'A UjbhYbUbWY'@UX'&L


	R[ā]oÁŠænà∧	ŠÉÖÉT	Öã^&cã[}	Tæt}ãc å^ŽQà Épà EcODÁQà ÉpaåDAŽQà E•âEE
F	ÞÏ€	Š	Ϋ	Ű€

>c]bh'@UXg'UbX'9 bZcf WYX'8]gd`UWYa Ybhg'f6 @' ' * : 'A U]bhYbUbWY'@UX'' Ł

	R[ā]oÁŠænà∧	ŠÉÖÉT	Öã^&cã}	Tæt}ãã å^ŽDà Ēa ĒdDÁQĀ ĒæåDÁQÀ E•âÈÈÈ
F	ьїт	Š	Ÿ	Η̈́€

A Ya VYf 'Dc]bh'@cUXg'f6 @7 '%. 'GY'ZK YJ[\HL

	T^{ à^¦Æsæà^	Öã^&cã}	Tæ*}ããå^ŽàÉàËeá	Š[∧ā[}Žā]ÉĀá
F	T ÚF	Ÿ	ËHGÈĞ	€
G	T ÚF	Ÿ	II l a i G	ΪG
Н	T ÚF	Ÿ	ËIÈÍ	FG

A Ya VYf 'Dc]bh'@cUXg'f6 @ '%. 'GY'ZK Y][\ HL'ff' cbh]bi YXL

	T^{à^¦ÆŠæà^	Öã^&cã[}	Tæ*}ãã å^ŽjàËjàË-cá	Š[∧ā[}Žā]ÉĀá
	T ÚF	Ϋ	Ë HÈJH	FG
ĺ	T ÚF	Ÿ	ËGFÌÌ Í	FG
Î	T ÚG	Ÿ	II- G Ì G	€
Ϊ	T ÚG	Ÿ	ËHGÈĞ	ΪG
ì	T ÚG	Ÿ	ËIÈÍ	FG
J	TÚG	Ÿ	ËHÈH	FG

A Ya VYf 'Dc]bh'@cUXg'f6 @7 '&.' K]bX'@cUX'5 N="\$Ł

	T^{ à^¦ÆSæà^	Öã^&cã}	Tæ*}ããå^ŽjàЁpäé	Š[&aea[]}Ž5]EÃá
F	TÜF	Ý	€	€
G	T ÚF	Z	ËÌJÈU	€
Н	TÚF	Ý	€	ΪG
1	T ÚF	Z	ËÌJÈU	ΪG
ĺ	T ÚF	Ý	€	FG
Î	T ÚF	Z	ËŒÍ	FG
Ϊ	T ÚF	Ý	€	FG
ì	T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF	Z	ËŒÍ	FG
J	TUF	Ý	€	FG
F€	T ÚF	Z	ÊÌÈGÏ	FG
FF	T ÚG	Ý	€	€
FG	TÚG	Z	ËÈJÈU	€
FH	T ÚG	Ý	€	ΪG
FI	T ÚG T ÚG	Z	ËÌJÈU	ΪG
FÍ	T ÚG	Ý	€	FG
FÎ	TÚG	Z	ËŒÎÍ	FG
FΪ	T ÚG	Ý	€	FG
FÌ	T ÚG	Z	ËŒÎÍ	FG

A Ya VYf 'Dc]bh'@cUXg'f6 @ '' : 'K]bX'@cUX'5 N="' \$Ł

	T^{ à^¦ÁĞæà^	Öã^&cã}	Tæ*}ããå^ŽàÉpàË-cá	Š[&aea[]}Ž5JĒĀá
F	T ÚF	Ý	ĤŧŤF	€
G	T ÚF	Z	ËHEI ÊŒF	€
Н	T ÚF	Ý	Ë∉ĔF	ΪG
	T ÚF	Z	ËHUÈI	ΪG
ĺ	T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF	Ý	ËFÈÍ	FG
Î	T ÚF	Z	Ë ŒÌ	FG
Ϊ	T ÚF	Ý	Ë⊕G	FG
ì	T ÚF	Z	道(祖) 道(金)G 道(祖)	FG
J	T ÚF	Ý	ËUÈF	FG
F€	T ÚF	Z	ĒÌĖĠ	FG
FF	T ÚG	Ý	Ëŧ€ĬF	€
FG	T ÚG	Z	ËHLÈI	€
FH	T ÚG T ÚG	Ý	ÊŒĬF	ΪG
FI	T ÚG	Z	ËHIÈI	ΪG
FÍ	T ÚG	Ý	ËFÈÍ	FG
FÎ	T ÚG	Z	Ë ŒÌ	FG
FΪ	T ÚG	Ý	Ë €ÌG Ē €ÌÌ	FG
FÌ	T ÚG	Z	Ë∰Ì	FG

A Ya VYf 'Dc]bh'@cUXg'f6 @r'('.'K]bX'@cUX'5 N="*\$Ł

A Ya VYf 'Dc]bh'@cUXg'f6 @r'('.'K]bX'@cUX'5 N="*\$L'f7 cbhjbi YXL

	T^{ à^¦ÆSæà^	Öã^&cã}	Tæ*}ããå^ŽàЁàË-cá	Š[&ænā[}Žā]ÉĀá
F	T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF	Ý	Ü€H ÉŒH	€
G	T ÚF	Z	Ë ŒH	€
Н	T ÚF	Ý	Ü€H	ΪG
	T ÚF	Z	ЀH ŒŒH ŒÎĒH	ΪG
ĺ	T ÚF	Ý	Щ́І́ЁН	FG
Î	T ÚF	Z	Ë-GË J Ë FË H	FG
Ϊ	T ÚF	Ý	Ĕ FÈ H	FG
Ì	T ÚF	Z	ESIÈIG É FÈ Ï	FG
J	T ÚF	Ý	Ĕ FÈ Ï	FG
F€	T ÚF	Z	ËGÈÍ	FG
FF	TÚG	Ý	Ü Œ H	€
FG	T ÚG	Z	Ĕ ŒH	€
FH	T ÚG T ÚG	Ý	Ü€H	ΪG
FI	TÚG	Z	Ë ŒH	ΪG
FÍ	T ÚG T ÚG T ÚG	Ý	ЀH ŒŒH ŒÎĒH	FG
FÎ	ΤÚG	Z	l EHGEÎJ	FG
FΪ	ΤÚG	Ý	Ĕ FÈ H	FG
FÌ	TÚG	Z	ËGIÈIG	FG

A Ya VYf 'Dc]bh'@cUXg'f6 @ ') ∴ K]bX'@cUX'5 N='-\$Ł

	T^{ à^!ASaaà^	Öã^&cã}	Tæt\ærå∧ŽàĤàËæá	Š[&ænā]}ŽājĒÃá
F	T ÚF	Ý	Tæt}ãcå^ŽàÉpäeá ĒÍÍÈJ	€
G	T ÚF	Z	€	€
Н	T ÚF T ÚF	Ý	ËÍÈ	ΪG
1	T ÚF	Z	€	ΪG
ĺ	T ÚF	Ý	ΕΕ΄ Î ÈΘΗ	FG
Î	T ÚF	Z	€	FG
Ϊ	T ÚF	Ý	ËÌÈÍ	FG
ì	T ÚF	Z	€	FG
J	T ÚF T ÚF	Ý	É€ÌI	FG
F€	T ÚF	Z	€	FG
FF	T ÚG	Ý	ËÍÈ	€
FG	T ÚG	Z	€	€
FH	T ÚG	Ý	ËÍÈ	ΪG
FL	T ÚG	Z	€	ΪG
FÍ	T ÚG	Ý	ËÎÊΟΗ	FG
FÎ	T ÚG	Z	€	FG
FΪ	T ÚG	Ý	ËÌÈÍ	FG
FÌ	T ÚG	Z	€	FG

A Ya VYf 'Dc]bh'@cUXg'f6 @' '* . 'K]bX'@cUX'5 N='%&\$Ł

	T^{ à^¦ÆŠæà^	Öã^&cã}	Tæ≛}ããå^ŽjàÉpáá	Š[&andai}žājĒĀá
F	T ÚF	Ý	Ü€Ĥ	€
G	TÚF	Z	ÚŒH	€
Н	T ÚF	Ý	Ë Œ H	ΪG
1	T ÚF	Z	Í ŒH	ΪG
ĺ	T ÚF	Ý	ĔÎΒ̈́Η	FG
Î	T ÚF	Z	HŒĴ J	FG
Ϊ	T ÚF	Ý	É FÈ H	FG
Ì	T ÚF	Z	GJĖG	FG
J	T ÚF	Ý	É FÈ Ï	FG

A Ya VYf 'Dc]bh'@cUXg'f6 @' '* . 'K]bX'@cUX'5 N="%\$\$£ff7 cbh]bi YXŁ

	T^{ à^¦Æseà^	Öã^&cã}}	Tæ*}ããå^ŽàɇàË-cá	Š[&andai}žājĒÃá
F€	T ÚF	Z	GĖÍ	FG
FF	T ÚG	Ý	Ü€H	€
FG	T ÚG	Z	Í ŒH	€
FH	T ÚG	Ý	Ü€H	ΪG
FI	T ÚG	Z	Í ŒH	ΪG
FÍ	T ÚG	Ý	ĔÎĤ	FG
FÎ	T ÚG	Z	HŒÎ J	FG
FΪ	T ÚG	Ý	Ĕ FÈ H	FG
FÌ	T ÚG	Z	GIÈIG	FG

A Ya VYf 'Dc]bh'@cUXg 'f6 @ '+ : 'K]bX' @cUX'5 N="%) \$Ł

	T^{a^¦ÁŠæaà^	Öã^&cã}	Tæ*}ãćå^ŽjàÉpàË-cá	Š[&aea[]}Ž5JĒĀá
F	T ÚF	Ý	ÊŒĬF	€
G	T ÚF	Z	FHIÈI Ë∉ĭF	€
Н	T ÚF	Ý	Ë∉ĔF	ΪG
1	T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF	Z	FHIÈI	ΪG
ĺ	T ÚF	Ý	ËFÈÍ	FG
Î	T ÚF	Z	ΪŒÌÌ ËŒĴG ΪŒĨÌ	FG
Ϊ	T ÚF	Ý	Ë⊕G	FG
Ì	T ÚF	Z	ï∰ì	FG
J	T ÚF	Ý	ËUÈF	FG
F€	T ÚF	Z	îìÈĠ	FG
FF	T ÚG	Ý	ÎÌĠ Ê Ğ F	€
FG	TÚG	Z	FHJÈI	€
FH	T ÚG	Ý	Ë∉ĬF	ΪG
FI	TÚG	Z	F₩ĖΙ	ΪG
FÍ	T ÚG	Ý	ËFÈÍ	FG
FÎ	T ÚG	Z	ÏŒÌÌ	FG
FΪ	T ÚG	Ý	Ë €ĴG Ï €ÎÌ	FG
FÌ	TÚG	Z	ï∰Ì	FG

A Ya VYf 'Dc]bh'@cUXg'f6 @' , . 'K]bX'@cUX'5 N="% \$Ł

	T^{à^¦ÁŠæà^	Öã^&cã}	Tæ*}ããå^ŽjàËjaÉjeá	Š[∧ā]}ŽājĒĀá
F	T ÚF	Ý	€ FÌJÈU	€
G	T ÚF	Z	FÌ JÈU	€
Н	T ÚF	Ý	€	ΪG
	T ÚF	Z	FÌJĖ̇̀́́́J	ΪG
ĺ	T ÚF T ÚF	Ý	€	FG
Î	T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF	Z	JŒÌÍ	FG
Ï	T ÚF	Ý	€	FG
Ì	T ÚF	Z	JŒĬÍ	FG
J	T ÚF	Ý	€ ÌÌÈÏ	FG
F€	T ÚF	Z	ììÈĠ	FG
FF	TUG	Ý	€	€
FG	T ÚG	Z	FÌJĖ̇́́́J	€
FH	T ÚG	Ý	€	ΪG
FI	T ÚG	Z	FÌJĖ̇̀IJ	ΪG
FÍ	T ÚG	Ý	€	FG
FÎ	T ÚG	Z	JŒÌÍ	FG
FΪ	T ÚG	Ý	€ JŒĬÍ	FG
FÌ	TÚG	Z	1Œ[FG

A Ya VYf 'Dc]bh'@UXg'f6 @ '- : 'K]bX'@UX'5 N='&%\$Ł

	T^{ à^¦ÆSæà^	Öã^&cã}	Tæ*}ããå^ŽjàÉpàË-cá	Š[&aea[]}Ž5]EÃá
F	T ÚF	Ý	Ì∰F	€
G	T ÚF T ÚF	Z	F₩ĖΙ	€
Н	T ÚF	Ý	Ì∉ĽF	ΪG
	T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF	Z	FHIÈI	ΪG
ĺ	T ÚF	Ý	l Fill (FG
Î	T ÚF	Z	ÏŒÌÌ	FG
Ϊ	T ÚF	Ý	l €iG ï €iì	FG
ì	T ÚF	Z	ï∰ì	FG
J	T ÚF	Ý	HJÈF	FG
F€	T ÚF	Z	ÎÌÈĠ	FG
FF	T ÚG	Ý	Ì∉ĬF	€
FG	T ÚG	Z	FHIÈI	€
FH	T ÚG	Ý	Ì∰F	ΪG
FI	TÚG	Z	F₩ĖΙ	ΪG
FÍ	T ÚG T ÚG	Ý	l Fill Í	FG
FÎ	T ÚG	Z	ÏŒÌÌ	FG
FΪ	T ÚG	Ý	I €ÈG	FG
FÌ	T ÚG	Z	ï∰ì	FG

A Ya VYf Dc]bh'@cUXg'f6 @' %\$'. 'K]bX'@cUX'5 N='&(\$\£

	T^{ à^!ÁŠæà^	Öã^&dã}	Tæ*}ãã å^ŽàËaäa	Š[&andai}žājĒĀá
F	T ÚF T ÚF	Ý	J ∉Ì H	€
G	T ÚF	Z	Í ŒH	€
Н	T ÚF	Ý	J ∉Ù	ΪG
	T ÚF	Z	Í ŒH	ΪG
ĺ	T ÚF	Ý	ÍÎËH	FG
Î	T ÚF	Z	HŒĴ J	FG
Ϊ	T ÚF T ÚF	Ý	ÍÈH	FG
ì	T ÚF	Z	GIÈG	FG
J	TÚF	Ý	ÍĦÏ	FG
F€	T ÚF	Z	GÈÍ	FG
FF	T ÚG	Ý	J €Ì H	€
FG	T ÚG	Z	Í ŒH	€
FH	T ÚG	Ý	J ∉Ì H	ΪG
FI	TÚG	Z	Í ŒH	ΪG
FÍ	T ÚG	Ý	ÍÎËH	FG
FÎ	T ÚG	Z	HŒÎ J	FG
FΪ	T ÚG	Ý	ÍFÈH	FG
FÌ	T ÚG	Z	GIÈG	FG

A Ya VYf 'Dc]bh'@cUXg 'f6 @' '%% 'K]bX' @ UX '5 N='&+\$Ł

	T^{à^¦ÁĞæà^	Öã^&cã}	Tæ≛}ããå^ŽjàÉpáá	Š[&andai}žājĒĀá
F	T ÚF	Ý	ÏÍÈ	€
G	T ÚF	Z	€	€
Н	T ÚF	Ý	ΪĺÈ	ΪG
1	T ÚF	Z	€	ΪG
ĺ	T ÚF	Ý	ÍÌÈH	FG
Î	T ÚF	Z	€	FG
Ϊ	T ÚF	Ý	ΙÌËÍ	FG
Ì	T ÚF	Z	€	FG
J	T ÚF	Ý	Í€ÌI	FG

A Ya VYf 'Dc]bh'@:UXg 'f6 @' '%%. 'K]bX'@:UX'5 N='8+\$L'f7 cbl']bi YXL

	T^{à^¦ÁŠæà^	Öã^&cã}	Tæ*}ãc°å^Žjà∯àË-cá	Š[&andai]ŽājĒĀá
F€	T ÚF	Z	€	FG
FF	T ÚG	Ý	ΪÍÈ	€
FG	T ÚG	Z	€	€
FH	T ÚG	Ý	ΪÍÈ	ΪG
FI	T ÚG	Z	€	ΪG
FÍ	T ÚG	Ý	ÍÎÈH	FG
FÎ	TÚG	Z	€	FG
FΪ	T ÚG	Ý	ΙÌΒ̈́Í	FG
FÌ	T ÚG	Z	€	FG

A Ya VYf 'Dc]bh'@cUXg 'f6 @ '%&. 'K]bX' @cUX'5 N='' \$\$Ł

	T^{à^ļÁŠæà^	Öã^&cã}	Tæ*}ãc°å^ŽjàÊaë-cá	Š[&aea[]}Ž5]ÉÃá
F	T ÚF	Ý	J €Ì H	€
G	T ÚF	Z	Ĕ ŒH	€
Н	TÚF	Ý	J€ÌH	ΪG
	T ÚF	Z	ÉGÈH ÍÌÈH ËHGÈJ	ΪG
ĺ	T ÚF T ÚF T ÚF T ÚF T ÚF	Ý	ĺÎĤH	FG
Î	T ÚF	Z	<u>ii</u> HQ <u>ii</u> J	FG
Ϊ	T ÚF	Ý	ÍFÈH	FG
ì	T ÚF	Z	ËGIÈG	FG
J	TÜF	Ý	Í FÌÏ Ï	FG
F€	TÚF	Z	ËGÈÍ	FG
FF	T ÚG	Ý	J ∉Ì H	€
FG	TÚG	Z	J€ÌH	€
FH	T ÚG	Ý	J €Ì I	ΪG
FI	T ÚG	Z	Ĕ ŒH	ΪG
FÍ	T ÚG	Ý	ÍÎËH	FG
FÎ	T ÚG	Z	ËHQË J	FG
FΪ	T ÚG	Ý	ÍFÈH	FG
FÌ	TÚG	Z	ËGIÈG	FG

A Ya VYf 'Dc]bh'@cUXg'f6 @7 '% '. K]bX'@cUX'5 N=" '\$Ł

	T^{ à^¦ÁĞæà^	Öã^&dã}	Tæt}ããå^ŽàĒàË-cá	Š[&ænaj[}ŽājĒĀá
F	TÚF	Ý	Ì∰F	€
G	T ÚF	Z	ËHIÈI	€
Н	T ÚF	Ý	Ì∰F	ΪG
1	TÚF	Z	ËHIÈI	ΪĠ
ĺ	T ÚF	Ý	I FË Í	FG
Î	T ÚF	Z	Ë ŒÎ	FG
Ϊ	T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF	Ý	I €ÈIG Ë €ÈÌ	FG
ì	T ÚF	Z	Ëëtì	FG
J	T ÚF	Ý	HJĖF	FG
F€	T ÚF	Z	ĒÌĒ	FG
FF	T ÚG	Ý	Ì∰F	€
FG	T ÚG	Z	ËHIÈI	€
FH	TÚG	Ý	Ì∉ĽF	ΪG
FI	T ÚG	Z	ËHIÈI	ΪG
FÍ	T ÚG T ÚG T ÚG	Ý	ΙĦΪÍ	FG
FÎ	T ÚG	Z	Ë ŒÌ	FG
FΪ	T ÚG	Ý	I €ÈG	FG
FÌ	T ÚG	Z	E e diì	FG

A Ya VYf 'Dc]bhi@cUXg 'f6 @7 '%' . '±W'K Y][\ HŁ

	T^{à^¦ÁSamà^	Öã^&cã}	Tæt"}ãc"å^ŽjàÉjàË-cá	Š[&andai]}ŽājĒĀá
F	T ÚF	Ÿ	Ë Œ Î	€
G	T ÚF	Ÿ	ËJŒĤÎ	ΪG
Н	T ÚF	Ÿ	ËÎĚÍI	FG
1	T ÚF	Ÿ	ËHĚÎÍ	FG
ĺ	T ÚF	Ÿ	ËĠĖÍ	FG
Î	T ÚG	Ϋ	ËJŒĤÎ	€
Ϊ	T ÚG	Ϋ	ËJŒĤÏÎ	ΪG
ì	T ÚG	Ÿ	ËÎĚÍI	FG
J	T ÚG	Ϋ	ËHĚÎÍ	FG

A Ya VYf Dc]bh'@cUXg f6 @ '%+'. '±NY'K]bX' @cUX'5 N= '\$Ł

	T^{ à^!ÁSaaà^	Öã^&cã}	Tær³}ãc°å^ŽjàÊjäË-cá	Š[&andaj}ŽājEÃá
F	TÚF	Ý	€	€
G	TÚF	Z	ËŒÌ	€
Н	T ÚF	Ý	€	ΪG
1	T ÚF	Z	ËŒÌ	ΪG
ĺ	T ÚF T ÚF	Ý	€	FG
Î	T ÚF	Z	ĤĤ	FG
Ï	T ÚF	Ý	€	FG
Ì	T ÚF	Z	Ë ËH	FG
J	TÚF	Ý	€	FG
F€	T ÚF	Z	ĒÈÌ	FG
FF	TÚG	Ý	€	€
FG	TÚG	Z	ËŒÌ	€
FH	T ÚG	Ý	€	ΪG
FI	T ÚG	Z	ËŒÌ	ΪG
FÍ	T ÚG	Ý	€	FG
FÎ	T ÚG	Z	ËÈEH	FG
FΪ	T ÚG	Ý	€	FG
FÌ	TÚG	Z	ËÈ	FG

A Ya VYf 'Dc]bh'@cUXg 'f6 @ '% . `±W'K]bX '@cUX '5 N=' '\$Ł

	T^{a^¦ÆŠæà^	Öã^&cã[}	Tæ#}ããå^ŽjàĒjàË-cá	Š[&anda[}ŽājÉÃá
F	T ÚF	Ý	Ë⊕À	€
G	T ÚF T ÚF	Z	ËÏ ÈÌ	€
Н	T ÚF	Ý	ËÐÌ	ΪG
	T ÚF	Z	Ë j Èj	ΪG
ĺ	T ÚF	Ý	Ë l È Ì	FG
Î	T ÚF	Z	ÉÉG Ü Ül	FG
Ϊ	T ÚF T ÚF T ÚF T ÚF T ÚF	Ý	<u>Ë-IÈ </u>	FG
Ì	T ÚF	Z	ËË ËË	FG
J	T ÚF	Ý	ËHË G	FG
F€	T ÚF	Z	ÊÈÍ	FG
FF	TŮG	Ý	Ë÷€ÈÌ	€
FG	T ÚG	Z	Ėjėj	€
FH	T ÚG	Ý	ËÐÌ	ΪG
FI	T ÚG	Z	Ë Ë ÈÌ	ΪG
FÍ	T ÚG	Ý	ËË Ë Ë G	FG
FÎ	T ÚG	Z	ËËG	FG
FΪ	T ÚG	Ý	ËË	FG
FÌ	TÚG	Z	ÊÊ	FG

A Ya VYf 'Dc]bh'@cUXg'f6 @7 '% '. '₩YK]bX'@cUX'5 N='* \$L

	T^{a^!ÁŠæaà^	Öã^&cã}	Tæ*}ããå^ŽjàĒjàĒcá	Š[&aea[a]}ŽājEĀá
F	T ÚF T ÚF	Ý	ËIÈÍ	€
G	T ÚF	Z	ÊÈ	€
Н	T ÚF	Ý	ËIÈÍ	ΪG
1	T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF	Z	ĖĖ	ΪG
ĺ	T ÚF	Ý	ËËG ËË	FG
Î	T ÚF	Z	Ë l Ë G	FG
Ϊ	T ÚF	Ý	<u> Ĕ</u>	FG
Ì	T ÚF	Z	ËÆ	FG
J	T ÚF	Ý	ĔĔ	FG
F€	T ÚF	Z	ËHËJ	FG
FF	T ÚG	Ý	ËIÈÍ	€
FG	ΤŲ́G	Z	ËÈ	€
FH	T ÚG	Ý	ËIÈÍ	ΪG
FI	T ÚG	Z	ĖĖ	ΪG
Fĺ	T ÚG	Ý	ÉĠG	FG
FÎ	T ÚG T ÚG	Z	ËHÈ G É Ë	FG
FΪ	T ÚG	Ý	ĔĚ	FG
FÌ	TÚG	Z	ËE	FG

A Ya VYf 'Dc]bh'@cUXg'f6 @' '&\$'. '±W'K]bX'@cUX'5 N='-\$Ł

	T^{ à^!ÁŠæà^	Öã^&cã}	Tæri}ãoc å^_Žjà-Ējà-Ē-cá	Š[&ænā]}ŽājĒÃá
F	T ÚF	Ý	ËIËÍ	€
G	T ÚF	Z	€	€
Н	T ÚF T ÚF	Ý	ËIËÍ	ΪG
1	T ÚF	Z	€	ΪG
ĺ	T ÚF	Ý	ĒÈ	FG
Î	T ÚF	Z	€	FG
Ï	T ÚF	Ý	É ÈEH	FG
ì	T ÚF	Z	€ ÊÈ	FG
J	T ÚF T ÚF	Ý	ËÈ	FG
F€	T ÚF	Z	€	FG
FF	T ÚG	Ý	ËIËÍ	€
FG	T ÚG	Z	€	€
FH	T ÚG	Ý	ËIËÍ	ΪG
FL	T ÚG	Z	(ΪG
FÍ	T ÚG	Ý	E ÈÌ	FG
FÎ	T ÚG	Z	€	FG
FΪ	T ÚG	Ý	ÉÈH	FG
FÌ	T ÚG	Z	€	FG

A Ya VYf 'Dc]bh'@cUXg'f6 @7 '&% '¥W'K]bX' @cUX'5 N='%&\$Ł

	T^{à^¦ÁĞæà^	Öã^&cã}	Tæ*}ããå^ŽjàĒjaÉeá	Š[&andai}žājĒÃá
F	T ÚF	Ý	ËIÈÍ	€
G	TÚF	Z	ÌÈ	€
Н	T ÚF	Ý	ËIÈÍ	ΪG
- 1	T ÚF	Z	ÌÈI	ΪG
ĺ	T ÚF	Ý	ÉĠG	FG
Î	T ÚF	Z	HÈG	FG
Ϊ	T ÚF	Ý	ĔĔ	FG
Ì	T ÚF	Z	HEU	FG
J	T ÚF	Ý	ĔĔ	FG

A Ya VYf 'Dc]bh'@:UXg'f6 @' '&% '±W'K]bX' @UX'5 N=' '%&\$Ł'f7 cbh]bi YXŁ

	T^{à^¦ÁŠæàn∕	Öã^&cã}}	Tæ*}ããå^ŽàɇàË-cá	Š[∧ā]}ŽājĒÃá
F€	T ÚF	Z	HÈGJ	FG
FF	T ÚG	Ý	ËIÈÍ	€
FG	T ÚG	Z	ÌÈ	€
FH	T ÚG	Ý	ËIÈÍ	ΪG
FI	T ÚG	Z	ÌÈI	ΪG
FÍ	T ÚG	Ý	Ë₿G	FG
FÎ	T ÚG	Z	HÈG	FG
FΪ	T ÚG	Ý	ĔĔ	FG
FÌ	T ÚG	Z	HĒJ	FG

A Ya VYf 'Dc]bh'@cUXg'f6 @7 '&&'. '±W'K]bX' @cUX'5 N='%) \$Ł

	T^{a^¦ÁŠæaà^	Öã^&cã}	Tæ*}ããå^ŽjàЁpäá	Š[&aea[a]}Ž5]ĒĀá
F	T ÚF	Ý	ËEEÀ	€
G	T ÚF	Z	FÎDÎ ÊŒÎ	€
Н	T ÚF	Ý	ËF€ÈÌ	ΪG
1	T ÚF	Z	FÏ ÈÌ	ΪG
ĺ	T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF	Ý	ËĖÌ	FG
Î	T ÚF	Z	ÎËG	FG
Ϊ	T ÚF	Ý	ËËI	FG
Ì	T ÚF	Z	ÎĒÍ	FG
J	T ÚF	Ý	ËHËG	FG
F€	T ÚF	Z	ÎÈÍ	FG
FF	T ÚG	Ý	ËF€ÌĤ	€
FG	TÚG	Z	FÏ ÈÌÌ 萨 (Hì	€
FH	T ÚG	Ý	ËŧŧÌ	ΪG
FI	TÚG	Z	FÏ ÈÌ	ΪG
FÍ	T ÚG	Ý	Ë l È Ì	FG
FÎ	TÚG	Z	ÎËG	FG
FΪ	T ÚG	Ý	ËIÈI	FG
FÌ	TÚG	Z	ÎÈÍ	FG

A Ya VYf 'Dc]bh'@cUXg 'f6 @ '&' . '₩'K]bX '@cUX '5 N='% \$Ł

	T^{ à^¦ÆSæà^	Öã^&cã}	Tæ*}ããå^ŽjàËjaÉjeá	Š[&andai}ŽājĒÃá
F	T ÚF	Ý	€	€
G	T ÚF	Z	GG∄	€
Н	T ÚF	Ý	€	ΪG
	T ÚF	Z	GG <u>ä</u>	ΪG
ĺ	T ÚF T ÚF	Ý	€	FG
Î	T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF	Z	ÌÈH	FG
Ï	T ÚF	Ý	€	FG
Ì	T ÚF	Z	ÌÈH	FG
J	T ÚF	Ý	€ ÏÈÌ	FG
F€	T ÚF	Z	ÏÈÌ	FG
FF	T UG	Ý	€	€
FG	T ÚG	Z	GG <u>H</u>	€
FH	T ÚG	Ý	€	ΪG
FI	T ÚG	Z	GG <u>H</u>	ΪG
FÍ	T ÚG	Ý	€	FG
FÎ	T ÚG	Z	ÌÈH	FG
FΪ	T ÚG	Ý	€	FG
FÌ	TÚG	Z	ÌÈH	FG

	T^{a^!ÁŠæaà^	Öã^&cã}	Tæ*}ããå^ŽjàĒjàĒcá	
F	T ÚF T ÚF	Ý	F€Ì	€
G	T ÚF	Z	FÏ ÈÌ	€
Н	T ÚF	Ý	F∰Ì	ΪG
1	T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF	Z	FÏ ÈÌ	ΪG
ĺ	T ÚF	Ý	HÈÌ	FG
Î	T ÚF	Z	ÎĒG HÈI	FG
Ϊ	T ÚF	Ý	HÈI	FG
Ì	T ÚF	Z	ÎĒÍ	FG
J	T ÚF	Ý	HĖG	FG
F€	T ÚF	Z	ÎÈÍ	FG
FF	T ÚG	Ý	F ∰ Ì	€
FG	T ÚG	Z	FÏ ÈÌ	€
FH	T ÚG	Ý	F ∰ Ì	ΪG
FI	T ÚG	Z	FÏ ÈÌ	ΪG
Fĺ	T ÚG	Ý	HÈÌ	FG
FÎ	T ÚG T ÚG	Z	ÎĒG HÈI ÎĒÍ	FG
FΪ	T ÚG	Ý	HÈI	FG
FÌ	TÚG	Z	ÎĒÍ	FG

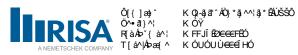
A Ya VYf Dc]bh'@cUXg f6 @ '&) . `₩YK]bX @UX 5 N= &(\$Ł

	T^{ à^¦ÁŠæàn	Öã^&cã}	Tæ*}ãc°å^ŽjàÉpaciá	Š[&aea[]}ŽājĒĀá
F	TÚF	Ý	FIÈÍ	€
G	T ÚF	Z	ÌÈI	€
Н	T ÚF T ÚF	Ý	FIÈÍ	ΪG
1	T ÚF	Z	ìÈI	ΪG
ĺ	T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF	Ý	ÍÐĠ	FG
Î	T ÚF	Z	HÈ G	FG
Ϊ	T ÚF	Ý	ÍĚ	FG
ì	T ÚF	Z	HÈU	FG
J	T ÚF	Ý	ÍĚ	FG
F€	T ÚF	Z	HÈJ	FG
FF	TUG	Ý	FIÈÍ	€
FG	T ÚG	Z	ÌÈI	€
FH	T ÚG	Ý	FIÈÍ	ΪG
FL	T ÚG	Z	<u>Ì</u> ÈI	ΪG
Fĺ	T ÚG	Ý	ÍÐG	FG
FÎ	T ÚG	Z	HÈ G	FG
FΪ	T ÚG	Ý	ÍË	FG
FÌ	T ÚG	Z	HÈJ	FG

A Ya VYf 'Dc]bh'@cUXg'f6 @' '&*'. '\\W'K]bX'@cUX'5 N='&+\$Ł

	T^{à^¦ÁĞæà^	Öã^&cã}	Tæ*}ããå^ŽjàĒjaÉeá	Š[&andai}žājĒÃá
F	T ÚF	Ý	FI∄Í	€
G	T ÚF	Z	€	€
Н	T ÚF	Ý	FI∄Í	ΪG
- 1	T ÚF	Z	€	ΪG
ĺ	T ÚF	Ý	ÎÈÌ	FG
Î	T ÚF	Z	€	FG
Ϊ	T ÚF	Ý	ÎÈH	FG
Ì	T ÚF	Z	€	FG
J	T ÚF	Ý	îÈí	FG

A Ya VYf 'Dc]bh'@:UXg'f6 @' '&*' . '±W'K]bX' @UX'5 N=' &+\$Ł'f7 cbh]bi YXŁ


	T^{ à^¦ÁŠæà^	Öã^&cã}	Tæ*}ãc°å^ŽjàĒjàË-cá	Š[&aea[}Žā]EÃá
F€	T ÚF	Z	€	FG
FF	T ÚG	Ý	FI∄Í	€
FG	T ÚG	Z	€	€
FH	T ÚG	Ý	FI∄Í	ΪG
FI	T ÚG	Z	€	ΪG
FÍ	T ÚG	Ý	ÎÈÌ	FG
FÎ	T ÚG	Z	€	FG
FΪ	T ÚG	Ý	ÎÈEH	FG
FÌ	TÚG	Z	€	FG

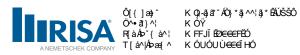
A Ya VYf 'Dc]bh'@cUXg'f6 @7 '&+'. '±W'K]bX' @cUX'5 N=" \$\$Ł

	T^{a^¦ÁŠæaà^	Öã^&cã}	Tæ*}ãćå^ŽjàÉpàË-cá	Š[&aea[]}Ž5JĒĀá
F	T ÚF	Ý	FIÈÍ	€
G	T ÚF	Z	ÊÈ	€
Н	T ÚF	Ý	FIÈÍ	ΪG
1	T ÚF T ÚF T ÚF	Z	ĖĖ	ΪG
ĺ	T ÚF T ÚF T ÚF T ÚF T ÚF	Ý	ÍÈG	FG
Î	T ÚF	Z	ËHÈG	FG
Ϊ	T ÚF	Ý	ÍË	FG
Ì	T ÚF	Z	ËË	FG
J	TÜF	Ý	ĺË	FG
F€	T ÚF	Z	ËÆ	FG
FF	T ÚG	Ý	FIÈÍ	€
FG	TÚG	Z	ÊÈ	€
FH	TÚG	Ý	FIÈÍ	ΪG
FI	TÚG	Z	ĖĖ	ΪG
FÍ	T ÚG	Ý	ÍÀG	FG
FÎ	T ÚG	Z	ËHÈG	FG
FΪ	T ÚG	Ý	ĺĖ	FG
FÌ	T ÚG	Z	Ú ∃H ËJ	FG

A Ya VYf 'Dc]bh'@cUXg 'f6 @ '&, . `₩YK]bX '@cUX '5 N='' '\$Ł

	T^{ à^¦ÁŠæà^	Öā^&cā[}	Tæ*}ããå^ŽjàËjaÉjeá	Š[&andai}ŽājĒÃá
F	T ÚF T ÚF T ÚF	Ý	F ŒÌ	€
G	T ÚF	Z	Ë i Èì	€
Н	T ÚF	Ý	F €Ì Ì	ΪG
	T ÚF	Z	ËÏ ÈÌ	ΪG
ĺ	T ÚF T ÚF	Ý	HÈÌ	FG
Î	T ÚF T ÚF T ÚF T ÚF T ÚF T ÚF	Z	ËËG	FG
Ï	T ÚF	Ý	HÈI	FG
Ì	T ÚF	Z	ÊÊÍ	FG
J	T ÚF	Ý	HËG	FG
F€	T ÚF	Z	HĒG ĒÈÍ F€ÌÌ	FG
FF	T UG	Ý	F ŒÌ	€
FG	TÚG	Z	Ë i bì	€
FH	T ÚG	Ý	F €Ì Ì	ΪG
FI	T ÚG	Z	ËÏ ÈÌ	ΪĠ
FÍ	T ÚG	Ý	HÈÌ ĒĒG	FG
FÎ	T ÚG	Z	ËËG	FG
FΪ	T ÚG	Ý	HÈI	FG
FÌ	TÚG	Z	ÊÊ	FG

A Ya VYf 'Dc]bh'@:UXg'f6 @' " % 'GY]ga]W@:UX'NL


	T^{à^¦ÁĞæàò^	Öã^&cã}	Tæ*}aã å^ŽjàÉpàË-cá	Š[∧ā[}ŽājĒĀá
F	T ÚF	Z	EF€EEÎG	€
G	T ÚF	Z	ËF€ÈÉÎĞ	ΪG
Н	T ÚF	Z	ËG I Î Î I	FG
1	T ÚF	Z	ËJĖJ Î	FG
ĺ	T ÚF	Z	ËÈFÏ	FG
Î	TÚG	Z	Ë F€ÌÉ Î G	€
Ϊ	T ÚG	Z	Ë F€È ÉÎ G	ΪG
ì	T ÚG	Z	ËG I Î Î I	FG
J	T ÚG	Z	ËJÈJI Î	FG

A Ya VYf 'Dc]bh'@:UXg'f6 @' ' &'. 'GY]ga]W@:UX'LŁ

	T^{ à^¦ÁŠæà^	Öã^&cã}	Tæ*}ããå^ŽjàÉpáá	Š[&andai}žājĒĀá
F	T ÚF	Ý	ÉF€ÈÉÎG	€
G	T ÚF	Ý	Ë F€ÌÉ Î G	ΪG
Н	T ÚF	Ý	ËG I [] I	FG
	T ÚF	Ý	ËJÈI Î	FG
ĺ	T ÚF	Ý	ËÈFÏ	FG
Î	T ÚG	Ý	Ë F €Ì ÉÎ G	€
Ϊ	T ÚG	Ý	Ë F€Ì €ÎG	ΪG
ì	T ÚG	Ý	Ë J-È-Ì I	FG
J	T ÚG	Ý	ËJĖI Î	FG

A Ya VYf 8 jglf jVi hYX @ UXg f6 @ "% : 8 jglf "K jbX @ UX NL

F ÙH ÙZ IÎ HE IÎ HE <th></th> <th>T^{à^¦ÁŠæà^ </th> <th>Öã^&cã}</th> <th>ÙcæboÁTæ*}ããå^ŽjàÐdÊØÊj∙~á</th> <th>Ò}åÁTæ≛}ããå^ŽàÐa£2££</th> <th>Ùæ¢oÁš[&æa[a]}Ž[a]Ĥ</th> <th>BÖ}åÆ (8æ aã[}Ža)EEE</th>		T^{à^¦ÁŠæà^	Öã^&cã}	ÙcæboÁTæ*}ããå^ŽjàÐdÊØÊj∙~á	Ò}åÁTæ≛}ããå^ŽàÐa£2££	Ùæ¢oÁš[&æa[a]}Ž[a]Ĥ	BÖ}åÆ (8æ aã[}Ža)EEE
H VÜÎ ÙZ ÎÎ HEÎ ÎÎ HEÎ € Â FEE I VÜÎ ÛZ ÎÎ HEÎ ÎÎ HEÎ € Â FEE Î VÜÎ ÛZ ÎÎ HEÎ ÎÎ HEÎ € Â FEE Î VÜÎ ÛZ ÎÎ HEÎ ÎÎ HEÎ € Â FEE Î ÛG ÛZ ÎÎ HEÎ ÎÎ HEÎ € Â FEE Î ÛĞ ÛZ ÎÎ HEÎ ÎÎ HEÎ € Â FEE Î ÛĞ ÛZ ÎÎ HEÎ ÎÎ HEÎ € Â FEE Î ÛĞ ÛZ ÎÎ HEÎ ÎÎ HEÎ € Â FEE J VÜF ÛZ ÎÎ HEÎ ÎÎ HEÎ € Â FEE J VÜH ÛZ ÎÎ HEÎ ÎÎ HEÎ € Â FEE FF VÜH ÛZ ÎÎ HEÎ ÎÎ HEÎ € Â FEE FF VÜH ÛZ ÎÎ HEÎ ÎÎ HEÎ ÎÎ HEÎ € Â FEE FH PF ÛZ ÎÎ HEÎ ÎÎ HEÎ ÎÎ HEÎ ÎÎ HEÎ	F	ÙΗ	ÙΖ	É HE€	ËÎHÈ€Í	€	à F€€
H VÜÎ ÙZ ÎÎ HEÎ ÎÎ HEÎ € Â FEE I VÜÎ ÛZ ÎÎ HEÎ ÎÎ HEÎ € Â FEE Î VÜÎ ÛZ ÎÎ HEÎ ÎÎ HEÎ € Â FEE Î VÜÎ ÛZ ÎÎ HEÎ ÎÎ HEÎ € Â FEE Î ÛG ÛZ ÎÎ HEÎ ÎÎ HEÎ € Â FEE Î ÛĞ ÛZ ÎÎ HEÎ ÎÎ HEÎ € Â FEE Î ÛĞ ÛZ ÎÎ HEÎ ÎÎ HEÎ € Â FEE Î ÛĞ ÛZ ÎÎ HEÎ ÎÎ HEÎ € Â FEE J VÜF ÛZ ÎÎ HEÎ ÎÎ HEÎ € Â FEE J VÜH ÛZ ÎÎ HEÎ ÎÎ HEÎ € Â FEE FF VÜH ÛZ ÎÎ HEÎ ÎÎ HEÎ € Â FEE FF VÜH ÛZ ÎÎ HEÎ ÎÎ HEÎ ÎÎ HEÎ € Â FEE FH PF ÛZ ÎÎ HEÎ ÎÎ HEÎ ÎÎ HEÎ ÎÎ HEÎ	G	ÙI	ÙΖ	EÉ HÈE	ËĤE€Í	€	à F€€
I VÜÍ ÙZ Î HE	Н	VÜÎ	ÙΖ	É HÉ	ËHE€Í	€	à F€€
Î			ÙΖ		ËHE€Í	€	à F€€
Î	ĺ	VÜÌ	ÙZ	É HE	ËÎHÈ€Í	€	à F€€
Ï ÙF ÙZ Î HE Î HE<	Î	VÜÏ	ÙZ	EÎ HÈE	ËÎHÈ€Í	€	à F€€
J VÜF ÙZ $\hat{\mathbf{H}}$ Hèé $\hat{\mathbf{H}}$ Hèé $\hat{\mathbf{H}}$ Hèé \in Å Fee F€ VÜG ÙZ $\hat{\mathbf{H}}$ Hèé $\hat{\mathbf{H}}$ Hèé \in Å Fee FF VÜH ÙZ $\hat{\mathbf{H}}$ Hèé $\hat{\mathbf{H}}$ Hèé \in Å Fee FG VÜI ÙZ $\hat{\mathbf{H}}$ Hèé $\hat{\mathbf{H}}$ Hèé \in Å Fee FH PF ÙZ $\hat{\mathbf{H}}$ Hèé $\hat{\mathbf{H}}$ Hèé \in Å Fee FI PG ÙZ $\hat{\mathbf{H}}$ Hèé $\hat{\mathbf{H}}$ Hèé \in Å Fee FÍ TÚH ÙZ $\hat{\mathbf{H}}$ Hèé $\hat{\mathbf{H}}$ Hèé \in Å Fee FÎ TÚG ÙZ $\hat{\mathbf{H}}$ Hèé $\hat{\mathbf{H}}$ Hèé \in Å Fee FÎ TÚG ÙZ $\hat{\mathbf{H}}$ Hèé $\hat{\mathbf{H}}$ Hèé \in Å Fee FÎ TG ÙZ $\hat{\mathbf{H}}$ Hèé $\hat{\mathbf{H}}$ Hèé \in Å Fee FÎ TG UZ $\hat{\mathbf{H}}$ Hèé $\hat{\mathbf{H}}$ Hèé \in Å Fee FÎ TG UZ $\hat{\mathbf{H}}$ Hèé $\hat{\mathbf{H}}$ Hèé \in Å Fee FÎ TG UZ \in Å Fee \in Å Fee	Ï	ÙF	ÙΖ	EÎ HÈÉ	ËÎHÈ€Í	€	à F€€
J VÜF ÙZ $\hat{\mathbf{H}}$ Hèé $\hat{\mathbf{H}}$ Hèé $\hat{\mathbf{H}}$ Hèé \in Å Fee F€ VÜG ÙZ $\hat{\mathbf{H}}$ Hèé $\hat{\mathbf{H}}$ Hèé \in Å Fee FF VÜH ÙZ $\hat{\mathbf{H}}$ Hèé $\hat{\mathbf{H}}$ Hèé \in Å Fee FG VÜI ÙZ $\hat{\mathbf{H}}$ Hèé $\hat{\mathbf{H}}$ Hèé \in Å Fee FH PF ÙZ $\hat{\mathbf{H}}$ Hèé $\hat{\mathbf{H}}$ Hèé \in Å Fee FI PG ÙZ $\hat{\mathbf{H}}$ Hèé $\hat{\mathbf{H}}$ Hèé \in Å Fee FÍ TÚH ÙZ $\hat{\mathbf{H}}$ Hèé $\hat{\mathbf{H}}$ Hèé \in Å Fee FÎ TÚG ÙZ $\hat{\mathbf{H}}$ Hèé $\hat{\mathbf{H}}$ Hèé \in Å Fee FÎ TÚG ÙZ $\hat{\mathbf{H}}$ Hèé $\hat{\mathbf{H}}$ Hèé \in Å Fee FÎ TG ÙZ $\hat{\mathbf{H}}$ Hèé $\hat{\mathbf{H}}$ Hèé \in Å Fee FÎ TG UZ $\hat{\mathbf{H}}$ Hèé $\hat{\mathbf{H}}$ Hèé \in Å Fee FÎ TG UZ $\hat{\mathbf{H}}$ Hèé $\hat{\mathbf{H}}$ Hèé \in Å Fee FÎ TG UZ \in Å Fee \in Å Fee	ì	ÙG	ÙΖ	I HE€	ËHE€	€	à F€€
FG VÜI ÙZ $\hat{\mathbf{H}}$ Hèé <td>J</td> <td>VÜF</td> <td>ÙΖ</td> <td>É HÉ</td> <td>ËHE€Í</td> <td>€</td> <td>à F€€</td>	J	VÜF	ÙΖ	É HÉ	ËHE€Í	€	à F€€
FG VÜI ÙZ $\hat{\mathbf{H}}$ Hèé <td>F€</td> <td>VÜG</td> <td>ÙΖ</td> <td>É HÈ</td> <td>ËÎHÈ€Í</td> <td>€</td> <td>à F€€</td>	F€	VÜG	ÙΖ	É HÈ	ËÎHÈ€Í	€	à F€€
FG VÜI ÙZ $\hat{\mathbf{H}}$ Hèé <td>FF</td> <td>VÜH</td> <td>ÙΖ</td> <td>EÎ HÈEÍ</td> <td>ËHÈ€Í</td> <td>€</td> <td>à F€€</td>	FF	VÜH	ÙΖ	EÎ HÈEÍ	ËHÈ€Í	€	à F€€
FH PF ÙZ ÎÎ HE ÎÎ HE </td <td>FG</td> <td></td> <td>ÙZ</td> <td>E HE</td> <td>ËĤE€Í</td> <td>€</td> <td>à F€€</td>	FG		ÙZ	E HE	ËĤE€Í	€	à F€€
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FH	PF	ÙΖ	ii H€€	ËHE€Í	€	à F€€
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FI			EÎ HÈ€Í	ËHE€Í	€	à F€€
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		T ÚH	ÙΖ	É HÉ	ËÎHÈ€Í	€	à F€€
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		T ÚF	ÙΖ	EÎ HÈE	ËÎHÈ€Í	€	à F€€
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FΪ	TÚG	ÙΖ	É HE	ËÎHÈ€Í	€	à F€€
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FÌ		ÙΖ	É HÈ	ËĤE€Í	€	à F€€
GF THH $\dot{U}Z$ \in \in \tilde{A} $F \in G$ G $T HI$ $\dot{U}IZ$ \in \in \tilde{A} $F \in G$	FJ	TGJ	ÙΖ	€	€	€	à F€€
GF THH $\dot{U}Z$ \in \in \tilde{A} $F \in G$ G $T HI$ $\dot{U}IZ$ \in \in \tilde{A} $F \in G$		TH€		€	€	€	à F€€
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GF	THH	ÙΖ	€	€	€	à F€€
GH THÍ ÙZ € € ÃF€€	GG	TH	ÙΖ	€	€	€	à F€€
	GH		ÙΖ	€	€	€	à F€€
G 11	G	ΤHÎ	ÙΖ	€	€	€	à F€€
GÍ TGÍ ÙZ € € ÃF€€	GÍ	ΤĠ		€	€	€	à F€€
	GÎ	ΤĠ	ÙZ	€	€	€	à F€€

A Ya VYf 8]glf]Vi hYX @ UXg f6 @ "% '. 8]glf "K]bX @ UX NL f7 c bh]bi YXL

	T^{à^¦ÆŠæmè^	Öã^&cã[}	ÙœdoÁTæt}ããå^ŽàÐdÊŽĤj•~á	Ò}åÁTæ≛}ãčå^ŽjàÐd£ŽHệ•~á	Ùcælo Áč[&ænā[}Žā] ÊÈ	BD)}åÆ (8ænaã[}Žā)EEE
GÏ	ΤĞ	ÙΖ	€	€	€	à F€€

A Ya VYf'8]ghf]Vi hYX'@:UXg'f6 @7 %) . 8]ghf"K]bX'@:UX'LŁ

	T^{à^¦ÁŠasà^	Öã^&cã}}	ÙcæboÁTæ*}ããå^ŽjàÐdÊØÉj∙~á	Ò}åÁTæ≛}ãc`å^ŽjàÐc£ÔÉĴÊ•~á	ÙœdoÁŠ[&æeā[}ŽājÊÉ	16D) åÆ (8æ 62) Ž ā 18⊞E
F	ÙΗ	ÙÝ	EÎHE€É	ĤHE€	€	à F€€
G	ÙI	ÙÝ	EÎ HÈEÍ	ËHE	€	à F€€
Н	∨ÜÎ	ÙÝ	ËHÈ€Í	ËĤE€Í	€	à F€€
1	VÜÍ	ÙÝ	Ë HÈ	ËĤE€	€ €	à F€€
ĺ	∨ÜÌ	ÙÝ	ËHÈ€Í	ËĤE€	€	à F€€
Î	VÜÏ	ÙÝ	ËHÈ€Í	ËHE€	€	à F€€
Ϊ	ÙF	ÙÝ	l H€€Í	ËHE€	€	à F€€
ì	ÙG	ÙÝ	ËHE€	ËÎHÈ€Í	€	à F€€
J	VÜF	ÙÝ	Ë HE	ËÎHÈ€Í	€	à F€€
F€	VÜG	ÙÝ	ËHÈ€Í	ËĤE€	€	à F€€
FF	VÜH	ÙÝ	ËHE€	Ë HÈ€Í	€ € €	à F€€
FG	VÜI	ÙÝ	ËHE€	ËHE€Í		à F€€
FH	PF	ÙÝ	ËHÈ€Í	ËĤE€Í	€ €	à F€€
FI	PG	ÙÝ	ËHÈ€Í	ËHÈÉ	€	à F€€
FÍ	T ÚH	ÙÝ	ËHÈ€Í	ËHÈ€Í	€	à F€€
FÎ	T ÚF	ÙÝ	Ē HĒ	Ë HE	€	à F€€
FΪ	T ÚG	ÙÝ	ËHÈ€Í	Ë HE	€	à F€€
FÌ	VF	ÙÝ	Ë HE	Ë HE	€	à F€€
FJ	TGJ	ÙÝ	€	€	€ €	à F€€
G€	TH€	ÙÝ	€	€	€	à F€€
GF	THH	ÙÝ	€	€	€	à F€€
GG	TH	ÙÝ	€	€	€ €	à F€€
GH	THÍ	ÙÝ	€	€	€	à F€€
G	ΤΗÎ	ÙÝ	€	€	€	à F€€
GÍ	ΤĠ	ÙÝ	€	€	€	à F€€
Ĝ	ΤĠ	ÙÝ	€	€ €	€	à F€€
ĞÏ	ΤĠΪ	ÙÝ	€	€	€	à F€€

A Ya VYf 8]gHi]Vi hYX @ UXg H6 @ '% : \=WK Y][\ HŁ

	T^{à^¦ÆSasà^	Öã^&cã}}	ÙcækoÁTæ*}ãã;å^ŽjàÐdÊØÊ;•~á	Ò}åÁTæ≛}ãc°å^ŽàÐa£2££•~á	Ùœdo ÁŠ[&ænā[}Žā] ÊÈ	BÖ}åÆ (8æ 621)Ž1, EEE
F	ÙH	Ÿ	ËÈ€F	ËÈ€	€	à F€€
G	ÙΙ	Ϋ	ËÈ€	ËÈ€	€	à F€€
Н	VÜÎ	Ϋ	ËŒĴĬG	ËŒLÌG	€	à F€€
1	VÜÍ	Ϋ	ËĐĚÌG	ËŒLÌG	€	à F€€
ĺ	VI VÜÎ VÜÎ VÜÎ	Ϋ	ËĐĚÌG	ËŒLÌG	€	à F€€
Î		Ϋ	ËĐĚÌG	ËŒLÌG	€	à F€€
Ϊ	ÙF	Ϋ	ËÈ€F	ËÈ€	€	à F€€
Ì	ÙG	Ϋ	ËÈ€F	ËÈ€	€	à F€€
J	VÜF	Ϋ	ËŒĴĬG	ËŒLÌG	€	à F€€
F€	ÙG VÜF VÜG	Ϋ	ËŒĴĠ	ËQË Ì G	€	à F€€
FF	VÜH	Ϋ	ËŒĴĬG	ËŒLÎG	€	à F€€
FG	VÜI	Ϋ	ËŒĴĬG	ËŒLÌG	€	à F€€
FH	PF	Ÿ	Ε̈́Ε̈́JÌ	Η̈́ĒJÌ	€	à F€€
FI	PG	Ϋ	ĔĔJÌ	Ħ Ħ JÌ	€	à F€€
FÍ	T ÚH	Ϋ	ËĖ€	ËÈ€	€	à F€€
FÎ	T ÚF	Ϋ	ËÈ€	ËÈ€	€	à F€€
FΪ	T ÚG	Ÿ	ËÈ€	ËÈ€	€	à F€€

A Ya VYf 8]glf]Vi hYX @ UXg f6 @ 7 % ∵ ≟W K Y][\ hŁf7 c bh]bi YXŁ

	T^{à^¦ÁŠæà^	Öã^&cã}}	ÙœaboÁTæt*}ããå^ŽjàÐdÊØÊj∙~á	Ò}åÁTæ≛}ããå^ŽàÐdÊÆÉ •~á	ÙœdoÁŠ[&ænā[}Žā]Ĥ	1Ö)åÆ (8ænaã[}Ža)1Ö⊞
FÌ	VF	Ÿ	ÉÉÈÌJ	É È J	€	à F€€
FJ	TGI	Ÿ	ËËJ	ËËJ	€	à F€€
G€	TH€	Ϋ	ËËJ	ËËJ	€	à F€€
Œ	THH	Ϋ	ËËJ	ËËJ	€	à F€€
GG	ΤHI	Ϋ	ËËIJ	ËËJ	€	à F€€
GH	ΤHÍ	Ϋ	ËĒJ	ËËÏJ	€	à F€€
G	ΤHÎ	Ϋ	ËËÏJ	ËËJ	€	à F€€
ď	ΤĠ	Ÿ	ËËJ	ËFĒÏJ	€	à F€€
Ĝ	ΤĠ	Ϋ	ËËIJ	ËËJ	€	à F€€
GÏ	ΤĠΪ	Ÿ	ËËJ	ËËJ	€	à F€€

A Ya VYf'8]glfjVi hYX'@:UXg'f6 @7'&:'.'8]glf"=WY'K]bX'@:UX'NL

	T^{à^¦ÁŠæà^	Öã^&cã}}	ÙœadoÁTæt*}ãã å^ŽjàÐdÊ2NÊ,•~á	Ò}åÁTæ≛}ãčå^ŽjàÐdÊØ∯•~á	ÙœdoÁŠ[&æna[]}ŽājĒĒ	 BÖ}åÆ (&æ aa[}}Ža)ÉEÈ
F	ÙΗ	ÙΖ	ËGGË HÌ	ĖĠŒĬ HÌ	€	à F€€
G	ÙI	ÙΖ	ËGGË HÌ	ËGGË HÌ	€	à F€€
Н	VÜÎ	ÙΖ	ËÏËHÏ	ËΪĒΉ	€ €	à F€€
1	VÜĺ	ÙΖ	ËÏËHÏ	ËÏËHÏ	€	à F€€
ĺ	VÜÌ	ÙΖ	ËÏËHÏ	ËÏËHÏ	€	à F€€
Î	VÜÏ	ÙΖ	ËÏËHÏ	ËÏËHÏ	€	à F€€
Ϊ	ÙF	ÙΖ	ËGGË HÌ	ËGGË HÌ	€	à F€€
ì	ÙG	ÙΖ	ËGGË HÌ	ËGGË HÌ	€ €	à F€€
J	VÜF	ÙΖ	ËÏËHÏ	ËÏËHÏ	€	à F€€
F€	VÜG	ÙΖ	ËÏËHÏ	ËΪĒΉ		à F€€
FF	VÜH	ÙΖ	ËÏĤÏ	ËΪĒΉ	€	à F€€
FG	VÜI	ÙΖ	ËÏĒHÏ	ËΪĒΉ	€	à F€€
FH	PF	ÙΖ	ËÌÈFÎ	ËÌÈFÎ	€	à F€€
FI	PG	ÙΖ	ËÌÈFÎ	ËÈÈFÎ	€	à F€€
FÍ	T ÚH	ÙΖ	ËFÌÈH€G	ËFÌÈH€G	€	à F€€
FÎ	T ÚF	ÙΖ	ËFÌÈH€G	ËFÌÈH€G	€	à F€€
FΪ	T ÚG	ÙΖ	ËFÌÈH€G	ËFÌÈH€G	€	à F€€
FÌ	VF	ÙΖ	<u>ËGE</u> EGÏ	ËGETEGÏ	€	à F€€
FJ	TGJ	ÙΖ	€	€	€ €	à F€€
G€	TH€	ÙΖ	€	€	€	à F€€
GF	THH	ÙΖ	€	€	€	à F€€
GG	TH	ÙΖ	€	€	€	à F€€
GH	THÍ	ÙΖ	€	€	€	à F€€
G	ΤHÎ	ÙΖ	€	€	€	à F€€
GÍ	ΤĠ	ÙΖ	€	€	€	à F€€
Ĝ	ΤĠ	ÙΖ	€	€	€	à F€€
GÏ	ΤĠ	ÙΖ	€	€	€	à F€€

A Ya VYf'8]glf]Vi hYX'@:UXg'f6@7"\$'.'8]glf"=WYK]bX'@:UX'LŁ

	T^{à^¦ÆŠæà^	Öã^&cã}}	ÙœadoÁTæt}ããå^ŽàÐdÊØÊj•-á	Ò}åÁTæ≛}ãcčå^ŽإàÐc££2ɇ•~á	Ù ca ‡o ÁŠ[& a ea[i] } Žāj 🛱	1Ö)åÆ (8æna¶)Ža,1ÉEE
F	ÙΗ	ÙÝ	ÉGGĚHÌ	ÉGGÉ HÌ	€	à F€€
G	ÙΙ	ÙÝ	ËGGËHÌ	ËGGË HÌ	€	à F€€
Н	∨ÜÎ	ÙÝ	ËÏËHÏ	ËÏËHÏ	€	à F€€
1	VÜÍ	ÙÝ	ËÏËHÏ	ËÏËHÏ	€	à F€€
Ì	VÜÌ	ÙÝ	ËÏËHÏ	ËÏËHÏ	€	à F€€
Î	VÜÏ	ÙÝ	ËÏËHÏ	ËÏËHÏ	€	à F€€
Ϊ	ÙF	ÙÝ	ËGGË HÌ	ËGGË HÌ	€	à F€€
ì	ÙG	ÙÝ	ËGGËHÌ	ËGGËHÌ	€	à F€€

A Ya VYf 8]ghf]Vi hYX @ UXg f6 @ " \$. 8]ghf "=\WK]bX @ UX L Ltf7 cbhjbi YXL

	T^{a^¦ÆSæà^	Öã^&cã[}	ÙcæboÁTæ*}ããå^ŽjàÐd£ŽÆj•~á	Ò}åÁTæ≛}ãčå^ŽàÐc££21∯•~á	Ùcælo/KŠ[&æna[] ŽājĒ	BĎ}åÆ (8ææã(}ža)EEÈ
J	VÜF	ÙÝ	ËÏËHÏ	ËÏËHÏ	€	à F€€
F€	VÜG	ÙÝ	ËÏĒHÏ	ËÏËHÏ	€	à F€€
FF	VÜH	ÙÝ	ËÏËHÏ	ËÏËHÏ	€	à F€€
FG	VÜI	ÙÝ	ËÏËHÏ	ËÏËHÏ	€	à F€€
FH	PF	ÙÝ	ËÌÈFÎ	ËÌÈFÎ	€	à F€€
FI	PG	ÙÝ	ËÌĖFÎ	ËÌÈFÎ	€	à F€€
FÍ	T ÚH	ÙÝ	ËFÌÈH€G	ËFÌÈH€G	€	à F€€
FÎ	T ÚF	ÙÝ	ËFÌÈH€G	ËFÌÈH€G	€	à F€€
FΪ	T ÚG	ÙÝ	ËFÌÈH€G	ËFÌÈH€G	€	à F€€
FÌ	VF	ÙÝ	ËĐEÈCÏ	ËGETEGÏ	€	à F€€
FJ	TGJ	ÙÝ ÙÝ ÙÝ	€	€	€	à F€€
G€	TH€	ÙÝ	€	€	€	à F€€
GF	THH	ÙÝ	€	€	€	à F€€
GG	TH	ÙÝ	€	€	€	à F€€
GH	ΤHÍ	ÙÝ	€	€	€ €	à F€€
GI	ΤHÎ	ÙÝ	€	€		à F€€
GÍ	ΤĠ	ÙÝ	€	€	€	à F€€
Ĝ	T G T G	ÙÝ	€	€	€	à F€€
GÏ	ΤĠΪ	ÙÝ	€	€	€	à F€€

A Ya VYf'5 f YU @cUXg'

R[ā]oÁCE	R[ã]oÁÓ	R[ā]oÁÔ	R[ãjoÁÖ	Öã^&cã[}	Öãrdãa ĭcã[}	Tæ*}ãc°å^Žj∙~á
		Þ[ÁÖæca	æÁt[ÁÚ¦ā]óÁEE			

9bj YcdY5=G7 '%) h fl * \$!% L '@F: 8 'GhYY '7cXY7\ YWg

	T^{ à^¦	Ù@a}^ Ô	[å^ÁÔ@^&\	Š[&Žajá	ŠÔ	Ù@ælÆ	⊞Š[&އjá	Öã	ŠÔ]@HÚ}&ÁHH @HÚ}oÁTàa	áj@aET}ÁËÁÈ	BÈ@aET}ÁËÆT	₩ Ôà	Ò~}
F	VÜÏ	€Î HÄÛÜ	ÈÍG	HJÈFF	JJ	ÈEH€	FJÈJ€Í		ÌÍ	II€JÈÈÌ∏ €GÏĒĠ	FIÏÈGJÍ	FIÏÈGIÍ	ŒĞÏ Í	PF⊞æ
G	ÙΙ	FÈÄUÈ	ÈΙΗ	HÍ ÈHH	Jĺ	ÈΓ	ΙŒÌ		JI	Œ NŒ G Ï Ï ŊĒ	FHFIÈÍ	FHFIÈÍ	FÈ Ĝ	PFËà
Н	ÙΗ	FÈ)ÄÜÜÜ	ÈGÍ	HÍ ÈHH	JÍ	ÈίΙ	ΙŒÌ		ĞÏ	ŒI 11JE∰GI I I JĘ	FHFIÈÍ	FHFIÈÍ	FÈ G	PFËrà
1	VÜI	€Î HÄÛÜ	ÈΉΗ	HJÈFF	ΪÎ	È€HÌ	FJÈJ€Í		H€	II€JÈEÌÌFI€GÏĒÌGÍ	FIÏÈGJÍ	FIÏÈGJÍ	ŒĠ J	
ĺ	TÚF	GÊÌÄ¢€ÈÈ	ÈHIG	HH	Ì	ŒIJ	HH		Ì	GGIJHÈHÈÈ [H€ÍÎ	HFÍÎĒÍ	HFÍÎĖĖ́Í	HÈÍÎ	PFËà
Î	ÙG	FÈ ÄUÈÈ	ÈHÌ	HÍ ÈHH	ÌG	ÈΗ	ΙŒÌ		ÌG	Œ NŒŒŒŒĠ!!JĒ	FHFIÈÍ	FHFIÈÍ	FÈHF	PFËà
Ϊ	ÙF	FÈ)ÄÜÜÜ	ÈHGÌ	HÍ ÈHH	ÌΕ	ÈΉ	ΙŒÌ		ΪÎ	ŒI 11JE∰G <u>III ÎJ</u> Ē	FHFIÈÍ	FHFIÈÍ	FÈ HG	PFËFà
Ì	TÚG	GÉÌÄø€ÈÈÈ	ÈGIG	HH	Ì	È≣Î	HH		Ì	GGIJHÈHÈÈ [H€ÍÎ	HFÍÎĖĖ́Í	HFÍÎĖĖ́Í	HĚFÏ	PFËrà
J	VF	Ú¶^Œ ÌÌ È	ÈFF	JÎÈĞÍ	Ï	È€F€	JÎ ÈĞÍ		Î	HG j B ⊞HÍ GÍ GĒ	GFFIÈÌÍ	GFFIÈÌÍ	FÈHÎ	PFËFà
F€	PF	ÚÓQÓ'Œ	ÈG€Ï	ΪΪ	Ì	ŒIJ	FÌ		FH	HIÌÏÈHÈ ÎÎÎÍI	ΙΪĠÎĖĚ	ΙΪĠÎĖĚ	FŧĒ G	PFËà
FF	VÜÌ	€Î HÄÛÜ	ÈΪΙ	€	JÍ	È€H€	FJÈJ€Í		ÌF	GGILĚHIFI€GÏĖŠGÍ	FIÏÈGJÍ	FIÏÈGJÍ	ŒĞÏ I	PFËFà
FG	VÜÍ	€Î HÄÛÜ	ÈÎF	€	НН	È€H	Ġℍ		JÌ	ÍFÎGÈHÍFI€GÏÈÌGÍ	FIÏÈGIÍ	FIÏÈGJÍ	ŒGIÌ	PFËrà
FH	VÜG	€Î HÄÛÜ	ÈΠÎ	€	HG	È€HÎ	Ġℍ		JÌ	ÍFÎGÈHÍFI€GÏÈÌGÍ	FIÏÈGJÍ	FIÏÈGJÍ	ŒĠÏ G	PFËFà
FI	VÜH	€Î HÄÛÜ	ÈΕΙΕ	€	ÌF	È€HÏ	FJÈJ€Í		HÎ	GGIJĚHIFI€GÏĒĞ	FIÏÈGJÍ	FIÏÈGJÍ	ŒGJH	
FÍ	PG	Ú Q Ó′⊞	È€l	ΙÌ	F€	ÈÉÍ€	ΪÌ		JÍ	HIÌÏÈHÈ ÎÎÎÍI	ΙΪĠÎĚ	ΙΪĠĨĚ	FË Ì F	PFËFà
FÎ	ΤÚΗ	GÈÌÄø€ÈÈ	È€JJ	HH	ÌG	ÈEGG	HH		ÌF	GGIJHÈHÈÈ [H€ÍÎ	HFÍÎĖÍ	HFÍÎĖĖÍ	l Ě FF	PFËà
FΪ	VÜÎ	€Î HÄÛÜ	ÈÈÌÎ	€	JI	È€FÏ	€		JÎ	ÍFÎGÈHÍFI€GÏÈÌGÍ	FIÏÈGJÍ	FIÏÈGJÍ	ŒÎ	PFËFà
FÌ	VÜF	€Î HÄÛÜ	ÈΕÎΙ	€	ÌF	ÈEFÍ	€		JÌ	ÍFÎGÈÈHÍFI€GÏÈÌGÍ	FIÏÈGIÍ	FIÏÈGIÍ	ŒĠÎ Ï	PFËà

Bolt Calculation Tool, V1.5.1

Doit Calculation 1001, VIIII						
PROJECT DATA						
Site Name:	BOBOS00073B					
Site Number:	BOBOS00073B					
Connection Description:	Sector Frame to Tower Leg					

MAXIMUM BOLT LOADS						
Bolt Tension:	1881.13	lbs				
Bolt Shear:	912.82	lbs				

WORST CASE BOLT LOADS ¹						
Bolt Tension:	1881.13	lbs				
Bolt Shear:	206.52	lbs				

BOLT PROPERTIES						
Bolt Type:	Threaded Rod	-				
Bolt Diameter:	0.625	in				
Bolt Grade:	A449	-				
# of Threaded Rods:	2	-				
Threads Excluded?	No	-				

¹ Worst case bolt loads correspond to Load combination #7 on member M25 in RISA-3D, which causes the maximum demand on the bolts.

Member Information I nodes of M25, M26

BOLT CHECK		
Tensile Strength	20340.15	
Shear Strength	13805.83	
Max Tensile Usage	9.2%	
Max Shear Usage	6.6%	
Interaction Check (Worst Case)	0.01	≤1.05
Result	Pass	

Bolt Calculation Tool, V1.5.1

2016 Galicalia (1001) 121012						
PROJECT DATA						
Site Name:	BOBOS00073B					
Site Number:	BOBOS00073B					
Connection Description:	Tieback to Tower Leg					

MAXIMUM BOLT LOADS					
Bolt Tension:	88.11	lbs			
Bolt Shear: 677.89 lbs					

WORST CASE BOLT LOADS ¹				
Bolt Tension:	83.65	lbs		
Bolt Shear:	677.89	lbs		

BOLT PROPERTIES				
Bolt Type:	Threaded Rod	-		
Bolt Diameter:	0.5	in		
Bolt Grade:	A449	-		
# of Threaded Rods:	2	-		
Threads Excluded?	No	-		

¹ Worst case bolt loads correspond to Load combination #13 on member M27 in RISA-3D, which causes the maximum demand on the bolts.

Member Information I nodes of M27

BOLT CHECK					
Tensile Strength	12770.86				
Shear Strength	8835.73				
Max Tensile Usage	0.7%				
Max Shear Usage	7.7%				
Interaction Check (Worst Case)	0.01	≤1.05			
Result	Pass				

Exhibit F

Power Density/RF Emissions Report

Radio Frequency Emissions Analysis Report

Site ID: BOBOS00073B

Montville CT 49 Cook Drive Montville, CT 06382

August 9, 2022

Fox Hill Telecom Project Number: 221536

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of FCC general population allowable limit:	3.33 %			

August 9, 2022

Dish Wireless 5701 South Santa Fe Drive Littleton, CO 80120

Emissions Analysis for Site: BOBOS00073B – Montville CT

Fox Hill Telecom, Inc ("Fox Hill") was directed to analyze the proposed radio installation for Dish Wireless, LLC (Dish) facility located at **49 Cook Drive, Montville, CT**, for the purpose of determining whether the emissions from the Proposed Dish radio and antenna installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu W/cm^2$). The general population exposure limits for the 600 MHz & 700 MHz bands are approximately 400 $\mu W/cm^2$ and 467 $\mu W/cm^2$ respectively. The general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS / AWS-4) bands is 1000 $\mu W/cm^2$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were performed for the proposed radio system installation for **Dish** on the subject site located at **49 Cook Drive, Montville, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since **Dish** is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves. There is an additional tower on the property immediately adjacent to the subject tower. Contributions from this tower are included in the composite emissions total for the property.

For each sector the following channel counts, frequency bands and power levels were utilized as shown in *Table 1*:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
5G	n71 (600 MHz)	4	61.5
5G	n70 (AWS-4 / 1995-2020)	4	40
5G	n66 (AWS-4 / 2180-2200)	4	40

Table 1: Channel Data Table

The following antennas listed in *Table 2* were used in the modeling for transmission in the 600 MHz (n71) frequency band, and the 2100 MHz (AWS 4) frequency bands at 1995-2020 MHz (n70) and 2180-2200 MHz (n66). This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

			Antenna
	Antenna		Centerline
Sector	Number	Antenna Make / Model	(ft)
A	1	JMA MX08FRO665-21	162
A	2	JMA MX08FRO665-21	162
В	1	JMA MX08FRO665-21	162
В	2	JMA MX08FRO665-21	162
C	1	JMA MX08FRO665-21	162
С	2	JMA MX08FRO665-21	162

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

RESULTS

Per the calculations completed for the proposed **Dish** configurations *Table 3* shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

					Total TX		
Antenna	Antenna Make /		Antenna Gain	Channel	Power		
ID	Model	Frequency Bands	(dBd)	Count	(W)	ERP (W)	MPE %
		n71 (600 MHz)/					
Antenna	JMA	n70 (AWS-4 / 1995-2020) /	11.45 / 16.15 /				
A1	MX08FRO665-21	n66 (AWS-4 / 2180-2200)	16.65	12	566	17,426.72	3.33
Antenna	JMA						
A2	MX08FRO665-21	Dormant	N/A	N/A	N/A	N/A	N/A
				Sec	tor A Comp	osite MPE%	3.33
		n71 (600 MHz)/					
Antenna	JMA	n70 (AWS-4 / 1995-2020) /	11.45 / 16.15 /				
B1	MX08FRO665-21	n66 (AWS-4 / 2180-2200)	16.65	12	566	17,426.72	3.33
Antenna	JMA						
B2	MX08FRO665-21	Dormant	N/A	N/A	N/A	N/A	N/A
				Sec	ctor B Comp	osite MPE%	3.33
		n71 (600 MHz) / n70					
Antenna	JMA	(AWS-4 / 1995-2020) / n66	11.45 / 16.15 /				
C1	MX08FRO665-21	(AWS-4 / 2180-2200)	16.65	12	566	17,426.72	3.33
Antenna	JMA						
C2	MX08FRO665-21	Dormant	N/A	N/A	N/A	N/A	N/A
Sector C Composite MPE%						3.33	

Table 3: Dish Emissions Levels

The Following table (*Table 4*) shows all additional carriers on site and their MPE% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum **Dish** MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. *Table 5* below shows a summary for each **Dish** Sector as well as the composite MPE value for the site.

Site Composite MPE%				
Carrier MPE%				
Dish – Max Per Sector Value	3.33 %			
No Additional Carriers on This Tower	NA			
Site Total MPE %:	3.33 %			

Table 4: All Carrier MPE Contributions

Dish Sector A Total:	3.33 %
Dish Sector B Total:	3.33 %
Dish Sector C Total:	3.33 %
Site Total:	3.33 %

Table 5: Site MPE Summary

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. *Table* 6 below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated **Dish** sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

Dish _ Frequency Band / Technology Max Power Values (Per Sector)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
Dish n71 (600 MHz) 5G	4	858.77	162	5.07	n71 (600 MHz)	400	1.27%
					n70 (AWS-4 / 1995-		
Dish n70 (AWS-4 / 1995-2020) 5G	4	1,648.39	162	9.74	2020)	1000	0.97%
					n66 (AWS-4 / 2180-		
Dish n66 (AWS-4 / 2180-2200) 5G	4	1,849.52	162	10.93	2200)	1000	1.09%
						Total:	3.33%

Table 6: Dish Maximum Sector MPE Power Values

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Sector	Power Density Value (%)
Sector A:	3.33 %
Sector B:	3.33 %
Sector C:	3.33 %
Dish Maximum Total	2 22 0/
(per sector):	3.33 %
Site Total:	3.33 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **3.33** % of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions. There is an additional tower on the property immediately adjacent to the subject tower. Contributions from this tower are included in the composite emissions total for the property

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan Principal RF Engineer

Fox Hill Telecom, Inc Holden, MA 01520 (978)660-3998

Exhibit G

Letter of Authorization

PO Box 374

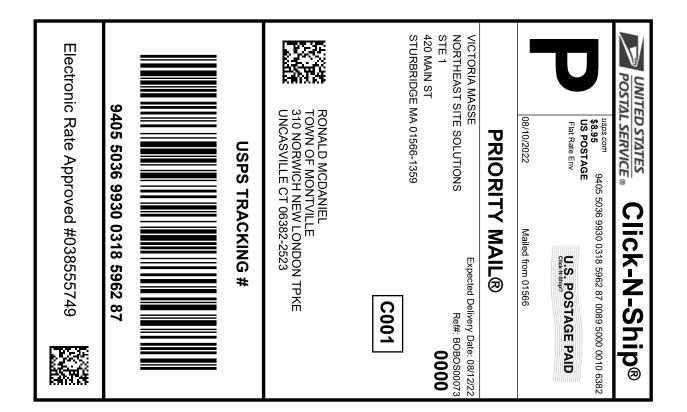
Uncasville, CT 06382

LETTER OF AUTHORIZATION

I, Wireless Solutions, LLC, the owner representative for the telecommunications tower located at 72 Boggy Hole Rd., Old Lyme, Connecticut 06371 (the "Property"), hereby authorize DISH Wireless L.L.C., through its designated agent, Northeast Site Solutions, LLC to apply for all necessary municipal, state, federal and other permits necessary to accommodate the installation of Dish antennas and ancillary equipment on the subject tower and base station equipment at the Property.

Sincerely,

Wireless Solutions, LLC


Ken Thomas

Its, Owner

-

Exhibit H

Recipient Mailings

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0318 5962 87

569442064 08/10/2022 08/10/2022 Trans. #: Print Date: 08/12/2022 Delivery Date:

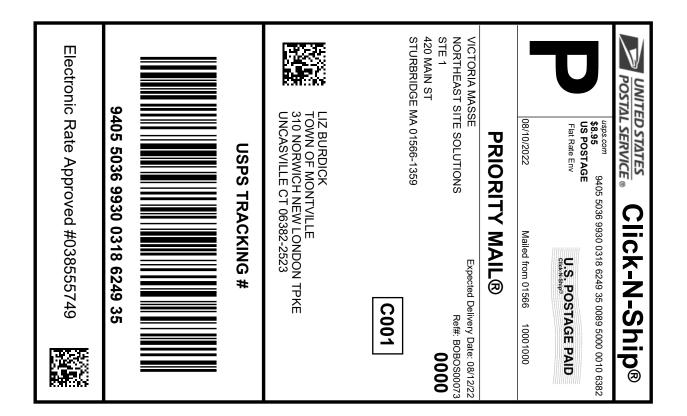
Priority Mail® Postage: Total:

\$8.95 \$8.95

From: VICTORIA MASSE

Ref#: BOBOS00073 NORTHEAST SITE SOLUTIONS

STE 1


420 MAIN ST

STURBRIDGE MA 01566-1359

RONALD MCDANIEL

TOWN OF MONTVILLE

310 NORWICH NEW LONDON TPKE UNCASVILLE CT 06382-2523

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0318 6249 35

569445275 08/10/2022 08/10/2022 Trans. #: Print Date: 08/12/2022 Delivery Date:

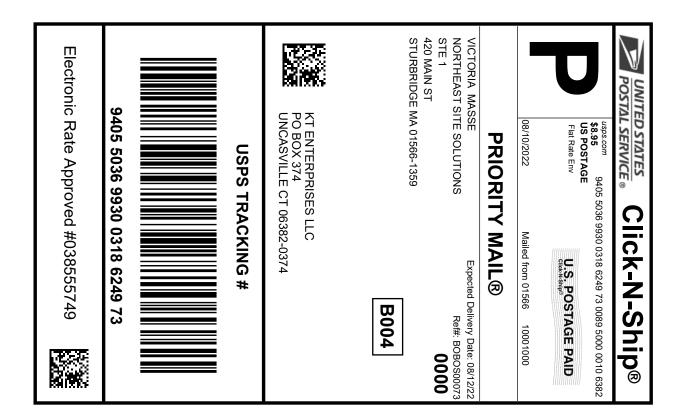
Priority Mail® Postage: Total:

\$8.95 \$8.95

From: VICTORIA MASSE

Ref#: BOBOS00073 NORTHEAST SITE SOLUTIONS

STE 1


420 MAIN ST

STURBRIDGE MA 01566-1359

LIZ BURDICK

TOWN OF MONTVILLE

310 NORWICH NEW LONDON TPKE UNCASVILLE CT 06382-2523

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0318 6249 73

569445275 08/10/2022 08/10/2022 Trans. #: Print Date: 08/12/2022 Delivery Date:

Priority Mail® Postage: Total:

\$8.95 \$8.95

Ref#: BOBOS00073

From: VICTORIA MASSE

NORTHEAST SITE SOLUTIONS

STE 1

420 MAIN ST

STURBRIDGE MA 01566-1359

KT ENTERPRISES LLC

PO BOX 374

UNCASVILLE CT 06382-0374

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0318 6250 17

569445275 08/10/2022 08/10/2022 Trans. #: Print Date: 08/12/2022 Delivery Date:

Priority Mail® Postage: Total:

\$8.95 \$8.95

Ref#: BOBOS00073

From: VICTORIA MASSE

NORTHEAST SITE SOLUTIONS

STE 1

420 MAIN ST

STURBRIDGE MA 01566-1359

KEN THOMAS

WIRELESS SOLUTIONS, LLC

PO BOX 284

OLD LYME CT 06371-0284