July 9, 2014

David Martin and
Members of the Siting Council
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

RE: Notice of Exempt Modification
 1428 Monroe Turnpike
 Monroe, CT 06468
 Sprint Site \#: NV2.5_CT23XC314
 N $41^{\circ} 22^{\prime} 35.27^{\prime \prime}$
 W 73 ${ }^{\circ} 11^{\prime} 11.56^{\prime \prime}$

Dear Mr. Martin and Members of the Siting Council:

On behalf of Sprint Spectrum, SBA Communications is submitting an exempt modification application to the Connecticut Siting council for modification of existing equipment at a tower facility located at 1428 Monroe Turnpike, Monroe, CT.

The 1428 Monroe Turnpike facility consists of a 159^{\prime} MONOPOLE Tower owned and operated by SBA Infrastructure, LLC. In order to accommodate technological changes and enhance system performance in the State of Connecticut, Sprint Spectrum plans to modify the equipment configurations at many of its existing cell sites. Please accept this letter and attachments as notification, pursuant to R.C.S.A. Section 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j72(b)(2). In compliance with R.C.S.A. Section 16-50j-73, a copy of this letter and attachments is being sent to the chief elected official of the municipality in which the affected cell site is located.

As part of Sprint's Network Vision modification project, Sprint desires to upgrade their equipment to meet the new standards of 4G technology. The new equipment will allow customers to download files and browse the internet at a high rate of speed while also allowing their phones to be compatible with the latest 4G technology.

Attached is a summary of the planned modifications, including power density calculations reflecting the change in Sprint's operations at the site along with the required fee of $\$ 625$.

The changes to the facility do not constitute modifications as defined in Connecticut General Statutes ("C.G.S.") Section 16-50i(d) because the general physical characteristics of the facility will not be
significantly changed or altered. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for in R.C.S.A. Section 16-50j-72(b)(2).

1. The overall height of the structure will be unaffected.
2. The proposed changes will not extend the site boundaries. There will be no effect on the site compound other than the new equipment cabinets.
3. The proposed changes will not increase the noise level at the existing facility by six decibels or more.
4. The changes in radio frequency power density will not increase the calculated "worst case" power density for the combined operations at the site to a level at or above the applicable standard for uncontrolled environments as calculated for a mixed frequency site.

For the foregoing reasons, SBA Communications on behalf of Sprint Spectrum, respectfully submits that he proposed changes at the referenced site constitute exempt modifications under R.C.S.A. Section 16-50j-72(b)(2).

Please feel free to call me at (508) 251-0720 $\times 3804$ with any questions you may have concerning this matter.

Thank you,

Kri Pelletier
SBA Communications Corporation
33 Boston Post Road West Suite 320
Marlborough, MA 01752
508-251-0720 x $3804+\mathrm{T}$
$508-251-1755+F$
203-446-7700 + C
kpelletier@sbasite.com

SBA

Sprint Spectrum

Equipment Modification

1428 Monroe Turnpike, Monroe, CT 06468

Site number CT23XC314

Tower Owner:
SBA Infrastructure, LL.C
Equipment Configuration:
MONOPOLE Tower

Cúrrent and/or approved:

- (3) RFS APXVSPP18-C-A20
- (3) Alcatel Lucent 1900 MHz RRHs
- (3) Alcatel Lucent 800 MHz RRHs
- (3) Alcatel Lucent 800 MHz Filters
- (4) RFS ACU-A20-N
- (3) $1-1 / 4^{\prime \prime}$ Fiber

Planned Modifications:

- (3) RFS APXVTM14-C-I20
- (3) RFS APXVSPP18-C-A20
- (3) Alcatel Lucent 1900 MHz RRHs
- (3) Alcatel Lucent 800 MHz RRHs
- (3) Alcatel Lucent 800 MHz Filters
- (4) RFS ACU-A20-N
- (3) TD-RRH8×20-25
- (4) $1-1 / 4^{\prime \prime}$ Fiber

Structural Information:

The attached structural analysis demonstrates that the tower and foundation will have adequate structural capacity to accommodate the proposed modifications.

Power Density:

The anticipated Maximum Composite contributions from the Sprint facility are 10.653% of the allowable FCC established general public limit. The anticipated composite MPE value for this site assuming all carriers present is 61.043% of the allowable FCC established general public limit sampled at the ground level.

Site Composite MPE \%	
Carrier	MPE \%
Sprint	10.653%
AT\&T	7.360%
T-Mobile	4.580%
Verizon Wireless	35.120%
Town of Monroe	3.330%
Total Site MPE \%	61.043%

Mr. John M. Kimball
523 Pepper Street
Monroe, CT 06468

RE: Telecommunications Facility @ 1428 Monroe Turnpike, Monroe, CT 06468
Dear Mr. Kimball,
In order to accommodate technological changes and enhance system performance in the State of Connecticut, Sprint Spectrum will be changing its equipment configuration at certain cell sites.

As required by Regulations of Connecticut State Agencies (R.C.S.A.) Section 16-50j-73, the Connecticut Siting Council has been notified of the changes and will review Sprint's proposal. Please accept this letter as notification under Section 16-50j-73 of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2).

The accompanying letter to the Siting Council fully describes Sprint's proposal for the referenced cell site. However, if you have any questions or require any further information on our plans or the Siting Council's procedures, please call me at (508) 251-0720 x 3804.

Thank you,

SBA Communications Company
33 Boston Post Road West, Suite 320
Marlborough, MA 01752
508-251-0720 x $3804+T$
508-251-1755 + F
203-446-7700 + C
kpelletier@sbasite.com

July 9, 2014

Mr. Steve Vavrek
First Selectman
Town of Monroe
Monroe Town Hall
7 Fan Hill Road
Monroe, CT 06468

RE: Telecommunications Facility @ 1428 Monroe Turnpike, Monroe, CT 06468

Dear Mr. Vavrek,

In order to accommodate technological changes and enhance system performance in the State of Connecticut, Sprint Spectrum will be changing its equipment configuration at certain cell sites.

As required by Regulations of Connecticut State Agencies (R.C.S.A.) Section 16-50j-73, the Connecticut Siting Council has been notified of the changes and will review Sprint's proposal. Please accept this letter as notification under Section 16-50j-73 of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2).

The accompanying letter to the Siting Council fully describes Sprint's proposal for the referenced cell site. However, if you have any questions or require any further information on our plans or the Siting Council's procedures, please call me at (508) 251-0720 x 3804.

SBA Communications Company
33 Boston Post Road West, Suite 320
Marlborough, MA 01752
508-251-0720 x $3804+\mathrm{T}$
$508-251-1755+F$
203-446-7700 + C
kpelletier@sbasite.com

FDH Engineering, Inc., 6521 Meridien Drive Raleigh, NC 27616, Ph. 919.755.1012

Structural Analysis for SBA Network Services, Inc.

159' Monopole Tower

SBA Site Name: Monroe Turnpike
 SBA Site ID: CT13055-A-02
 Sprint Site ID: CT23XC314

FDH Project Number 1467DV1400
Analysis Results

Tower Components	99.8%	Sufficient
Foundation	49.9%	Sufficient

Prepared By:

Reviewed By:

Dennis D. Abel, PE
Director - Structural Engineering CT PE License No. 23247

FDH Engineering, Inc. 6521 Meridian Drive Raleigh, NC 27616 (919) 755-1012
info@fdh-inc.com

06-25-2014

June 25, 2014

TABLE OF CONTENTS

\qquadConclusions3
Recommendations 3
APPURTENANCE LISTING 4
RESULTS 5
GENERAL COMMENTS 6
LIMITATIONS 6
APPENDIX 7

EXECUTIVE SUMMARY

At the request of SBA Network Services, Inc., FDH Engineering, Inc. performed a structural analysis of the monopole located in Monroe, CT to determine whether the tower is structurally adequate to support both the existing and proposed loads pursuant to the Structural Standards for Steel Antenna Towers and Antenna Supporting Structures, TIA/EIA-222-F and the 2005 Connecticut State Building Code (CSBC). Information pertaining to the existing/proposed antenna loading, foundation dimensions, current tower geometry, soil parameters, and member sizes was obtained from:

- Sabre Communications Corporation (Job No. 04-05018) Stamped Permit Drawings dated August 18, 2003
- Clarence Welti Associates, Inc. (Tower CT54XC771) Geotechnical Study dated April 25, 2003
- FDH, Inc. (Job No. 08-07120T) TIA Inspection Report dated August 22, 2008
- FDH Engineering, Inc. (Project No. 14252L1400) Modification Drawings for a 159' Monopole dated March 28, 2014
- FDH Engineering, Inc. (Project No. 1467DV1400) Modification Drawings for a 159' Monopole dated June 25, 2014
- SBA Network Services, Inc.

The basic design wind speed per the TIAEEIA-222-F standards and the 2005 CSBC is 85 mph without ice and 38 mph with $3 / 4$ " radial ice. Ice is considered to increase in thickness with height.

Conclusions

With the existing and proposed antennas from Sprint in place at 151 ft and 50 ft , the tower meets the requirements of the TIA/EIA-222-F standards and the 2005 CSBC provided the Recommendations listed below are satisfied. Furthermore, provided the foundation was constructed per the original design drawings (see Sabre Job No. 04-05018), and given the existing soil parameters (see Clarence Welti Associates, Inc. Tower CT54XC771), the foundation should have the necessary capacity to support the existing and proposed loading. For a more detailed description of the analysis of the tower, see the Results section of this report.

Our structural analysis has been performed assuming all information provided to FDH Engineering, Inc. is accurate (i.e., the steel data, tower layout, existing antenna loading, and proposed antenna loading) and that the tower has been properly erected and maintained per the original design drawings.

Recommendations

To ensure the requirements of the TIA/EIA-222-F standards and the 2005 CSBC are met with the existing and proposed loading in place, we have the following recommendations:

1. The proposed coax should be installed inside the pole's shaft.
2. RRU/RRH Stipulation: The proposed equipment may be installed in any configuration determined by the client.
3. The modifications outlined in FDH Engineering, Inc. (Project No. 14252L1400) Modification Drawings for a 159' Monopole dated March 28, 2014 must be correctly installed for this analysis to be valid.
4. The modifications outlined in FDH Engineering, Inc. (Project No. 1467DV1400) Modification Drawings for a 159' Monopole dated June 25, 2014 must be correctly installed for this analysis to be valid.

APPURTENANCE LISTING

The proposed and existing antennas with their corresponding cables/coax lines are shown in Table 1. If the actual layout determined in the field deviates from the layout, FDH Engineering, Inc. should be contacted to perform a revised analysis.

Table 1 - Appurtenance Loading

Existing Loading:

Antenna Elevation (fit)	Description	Coax and Lines 1	Carrier	Mount Elevation (ft)	Mount Type

1. Feedlines installed inside the pole's shaft unless otherwise noted.
2. Town has (2) $7 / 8$ " coax installed outside the pole's shaft in a single row to 110 ft and 80 ft .
3. Sprint has (1) $1 / 2^{\prime \prime}$ coax installed outside the pole's shaft to 47 ft .

Proposed Carrier Final Configuration:

Antenna Elevation (ft)	Description	Coax and Lines	Carrier	Mount Elevation (ft)	Mount Type
151	(3) RFS APXVTM14-C-I20 (3) RFS APXVSPP18-C-A20 (3) Alcatel Lucent 1900 MHz RRHs (3) Alcatel Lucent 800 MHz RRHs (3) Alcatel Lucent 800 MHz Filters (4) RFS ACU-A20-N (3) TD-RRH8×20-25	(4) 1-1/4" Fiber	Sprint	149	(1) 12.5' Low Profile Platform

RESULTS

The following yield strength of steel for individual members was used for analysis:
Table 2 - Material Strength

Member Type	Yield Strength
Tower Shaft Sections	65 ksi
Base Plate	60 ksi
Anchor Bolts	75 ksi

Table 3 displays the summary of the ratio (as a percentage) of force in the member to their capacities. Values greater than 100% indicate locations where the maximum force in the member exceeds its capacity. Note: Capacities up to 100% are considered acceptable. Table 4 displays the maximum foundation reactions.

If the assumptions outlined in this report differ from actual field conditions, FDH Engineering, Inc. should be contacted to perform a revised analysis. Furthermore, as no information pertaining to the allowable twist and sway requirements for the existing or proposed appurtenances was provided, deflection and rotation were not taken into consideration when performing this analysis.

See the Appendix for detailed modeling information
Table 3 - Summary of Working Percentage of Structural Components

Section No.	Elevation ft	Component Type	Size	\% Capacity*	Pass Fail
L1	159-149	Pole	TP14.93x12x0.1875	37.1	Pass
L2	149-119.5	Pole	TP29.64x13.969x0.3125	98.6	Pass
	119.5-97.5	Modified Pole	$\begin{gathered} \text { TP29.64x13.969x0.3125 } \\ \text { w/ Flat Plate } \end{gathered}$	99.6	Pass
L3	97.5-47.75	Modified Pole	$\begin{gathered} \text { TP43.6x27.9166x0.375 } \\ \text { W/ Flat Plate } \end{gathered}$	94.4	Pass
L4	47.75-15	Modified Pole	TP56.84×41.189×0.375	93.1	Pass
	15-0	Pole	TP56.84x41.189x0.375	99.8	Pass
---	0	Anchor Bolt Modifications	(3) 2.25 " \varnothing on 71 " BC	86.0	Pass
		Anchor Bolts	(14) 2.25 " \varnothing on 64" BC	87.1	Pass
		Base Plate	PL 70" $\varnothing \times 2.25$ " Thk.	63.8	Pass

*Capacities include a $1 / 3$ allowable stress increase for wind per TIA/EIA-222-F standards.

Table 4 - Maximum Base Reactions

Base Reactions	Current Analysis* (TIA/EIA-222-F)	Original Design (TIA/EIA-222-F)
Axial	41 k	41 k
Shear	34 k	31 k
Moment	$3,897 \mathrm{k}-\mathrm{ft}$	$3,665 \mathrm{k}-\mathrm{ft}$

[^0]
GENERAL COMMENTS

This engineering analysis is based upon the theoretical capacity of the structure. It is not a condition assessment of the tower and its foundation. It is the responsibility of SBA Network Services, Inc. to verify that the tower modeled and analyzed is the correct structure (with accurate antenna loading information) modeled. If there are substantial modifications to be made or the assumptions made in this analysis are not accurate, FDH Engineering, Inc. should be notified immediately to perform a revised analysis.

LIMITATIONS

All opinions and conclusions are considered accurate to a reasonable degree of engineering certainty based upon the evidence available at the time of this report. All opinions and conclusions are subject to revision based upon receipt of new or additional/updated information. All services are provided exercising a level of care and diligence equivalent to the standard and care of our profession. No other warranty or guarantee, expressed or implied, is offered. Our services are confidential in nature and we will not release this report to any other party without the client's consent. The use of this engineering work is limited to the express purpose for which it was commissioned and it may not be reused, copied, or distributed for any other purpose without the written consent of FDH Engineering, Inc.

APPENDIX

Figure 1 - Feed Line Layout

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Lightning Rod	159	Empty Mount Pipe	149
7770.00 w/Mount Pipe	159	Empty Mount Pipe	149
7770.00 w/Mount Pipe	159	Empty Mount Pipe	149
7770.00 w/Mount Pipe	159	(1) 12.5' Low Profile Platform	149
P65-16-XLH-RR w/Mount Pipe	159	(4) FR65-17-04DP w/Mount Pipe	140
P65-16-XLH-RR w/Mount Pipe	159	(4) FR65-17-04DP w/Mount Pipe	140
P65-16-XLH-RR w/Mount Pipe	159	(4) FR65-17-04DP w/Mount Pipe	140
(2) LGP21401 TMA	159	(2) S20057A1	140
(2) LGP21401 TMA	159	(2) S20057A1	140
(2) LGP21401 TMA	159	(2) S20057A1	140
(2) RRUS-11	159	(1) 12.5' Low Profile Platform	140
(2) RRUS-11	159	742213 w/ Mount Pipe	130
(2) RRUS-11	159	742213 w/ Mount Pipe	130
DC6-48-60-18-8F	159	742213 w/ Mount Pipe	130
(1) 12.5' Low Profile Platform	159	BXA-70063/6CF w/ Mount Pipe	130
DB404-B	159	BXA-70063/6CF w/ Mount Pipe	130
APXVSPP18-C-A20 w/Mount Pipe	149	BXA-70063/6CF w/ Mount Pipe	130
APXVSPP18-C-A20 w/Mount Pipe	149	BXA-171063-12BF w/ Mount Pipe	130
APXVSPP18-C-A20 w/Mount Pipe	149	BXA-171063-12BF w/ Mount Pipe	130
APXVTM14-C-I20 w/ Mount Pipe	149	BXA-171063-12BF w/ Mount Pipe	130
APXVTM14-C-I20 w/ Mount Pipe	149	(2) LPA-80063/6CF w/ Mount Pipe	130
APXVTM14-C-I20 w/ Mount Pipe	149	(2) LPA-80063/6CF w/ Mount Pipe	130
1900 MHz RRH	149	(2) LPA-80063/6CF w/ Mount Pipe	130
1900 MHz RRH	149	(2) FD9R6004/2C-3L Diplexer	130
1900 MHz RRH	149	(2) FD9R6004/2C-3L Diplexer	130
800 MHz RRH	149	(2) FD9R6004/2C-3L Diplexer	130
800 MHz RRH	149	RRH2X40-AWS	130
800 MHz RRH	149	RRH2X40-AWS	130
800 MHz Filter	149	RRH2X40-AWS	130
800 MHz Filter	149	DB-T1-6Z-8AB-0Z	130
800 MHz Filter	149	(1) 12.5' Low Profile Platform	130
ACU-A20-N RET	149	SCL329-HL Omni	110
ACU-A20-N RET	149	(1) 4' Standoff	110
(2) ACU-A20-N RET	149	SCL329-HL Omni	80
TD-RRH8x20-25	149	(1) 4' Standoff	80
TD-RRH8x20-25	149	Decibel 26DB GPS	47
TD-RRH8x20-25	149	(1) 4' Standoff	47

MATERIAL STRENGTH

MATERIAL STRENGTH					
GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

1. Tower is located in Fairfield County, Connecticut.
2. Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F Standard.
3. Tower is also designed for a 38 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
4. Deflections are based upon a 50 mph wind.

	H Engineering, Inc.	${ }^{\text {Pob: }}$ Monroe Turnpike, CT13055-A-02		
	6521 Meridien Drive, Suite 107	Project: 1467DV1400		
Tov	Raleigh, NC 27616	Client: SBA Network Services, Inc.	Drawn by: Andrew Reynolds	
	Phone: 9197551012	Code: TIA/EIA-222-F	Date: 06/25/14	Scale: NTS
	FAX: 9197551031	Path:		Dwg No. E-1

FDH Engineering, Inc.

Raleigh, NC 27616
FAX 9197551031

(Bearing and Stability Checks) Tool for TIA Rev F or G - Application (MP, SST with unitbase)

FDH

Anchor Rod Design

Code (F or G):		F
Anchor Bolts (Yes or No)	Yes	Pull Down Down
P (from RISA)	41	kips
V (from RISA)	34	kips
M (from RISA)	3897	ft-kips

Existing Rods			
y	32	in	
No. Bolts	14		
BC	64	in	
I	28528.64	in ${ }^{4}$	
Bolt Grade	A615-75	Pull Down	
Thread Form	Non-Upset	-	
d (in)	2.25	Pull Down	
Ag	3.98	in 2	
Ae	3.25	in 2	
Fy	75	$\mathrm{ksi}^{\|r\|}$	
Fu	100	ksi	
Itot	34658.2863	in	
T	169.434	kips	
V	2.000	kips	

New Rods		
y new	35.5	in
No. Bolts new	3	
BC new	71	in
Inew	6,130	in 4
Bolt Grade	A193 B7	Pull Down
Thread Form	Non-Upset	Pull Down
d new (in)	2.25	Pull Down
Ag new	3.98	in 2
Ae new	3.25	in 2
Fy new	105	ksi
Fu new	125	ksi

From
CAD

Req'd Embedment Length for New Rods			
f'c, caisson's concrete strength	4000	psi	
fy, rebar yield strength	60000	psi	
d_{b}, diameter of vertical rebar	1.128	in	
vertical rebar cage BC \varnothing	75.875	in	
vertical rebar top cover distance	6	in	
T, Ultimate Hilti Bond Resistance	1.8	ksi	

Note For New Anchor Rods:
Williams Bars (Upset)
A722 (Fy $=127.7 \mathrm{ksi}$, Fu $=150 \mathrm{ksi})$
A $015-75$ (Fy 75 ksi Fu

A615-75 (Fy=75 ksi, Fu=100 ksi)

I_{d} (vertical rebar dev. Length)	32.103	in
I_{dH} (Hilti dev. length)	76.630	in
$\mathrm{G} / 1.5$	1.625	in

Total Embed. Length of New Bolts	$\mathbf{7 6 . 6 3}$	in
	6.39	ft

Bearing Strength Check of Anchor Rod Pipe Sleeve		
New Anchor Rod Diameter	2.25	in
Selected Pipe Sleeve Area	7.64	in 2
Selected Pipe Sleeve Fy	42	ksi
Rn / Ω (Rev F) or øRn (Rev G)	385.06	k
\% Capacity (Analysis)	$\mathbf{4 8 . 8 8 \%}$	OK
\% Capacity (Design)	$\mathbf{5 6 . 8 5 \%}$	OK

Equivalent BC		
No. Existing Rebar		
Existing Rebar BC		in
Area rebar		in^{2}
Irebar	0	in 4
Itot	6,130	in^{4}
Equivalent Area	$\mathbf{6 4 . 9 8 0}$	in^{2}
Equivalent BC	in	
Total Area	$\mathbf{1 1 . 9 4}$	in^{2}

Interaction Equation Checks (Rev. G: Section 4.9.9)			(works for Rev F also)
Detail Type (hover for detail)	d	Pull Down	
η	0.5		
$\mathrm{l}_{\text {ar }}$, for Detail Type d only	2.25	in	(top of concrete to bottom of leveling nut)
\emptyset Rnt	194.5	kips	
$ø$ Rnv	119.4	kips	
$ø \mathrm{Rnm}$	94.922	kip-in	
Mu	2.925	kip-in	
$(\mathrm{Pu}+\mathrm{Vu} / \mathrm{y}) / \varnothing \mathrm{Rnt}<1$?	0.892	OK	
$(\mathrm{Vu} / ø \mathrm{Rnv})^{2}+$ $((\mathrm{Pu} / \varnothing \mathrm{Rnt})+(\mathrm{Mu} / \varnothing \mathrm{Rnm}))^{2}$	0.814	OK	(only applicable for Detail Type d)

(assuming new bolts are reinforcement)
$I_{d}=\left[\left(f y^{*} \Psi_{t} \Psi_{e} \lambda\right) /\left(20^{*} \sqrt{f^{\prime} c}\right)\right]^{*} d_{b} \quad$ PER ACI 12.2.2
$I_{d H}=\left(\varnothing T n^{*} F S\right) /\left(T^{*} p i^{*} d_{\text {new }}\right)$
See Worksheet "New (Design Procedure)"

Stiffened or Unstiffened, Ungrouted, Circular Base Plate - Any Rod Material TIA Rev F

Site Data		
Project No.		
Site Name: Monroe Turnpike Site ID:		
Pole Manufacturer:		Other
Anchor Rod Data		
Qty:Diam:Rod Material:Strength (Fu):Yield (Fy):Bolt Circle:	14	
	2.25	in
	A615-J	
	100	ksi
	75	ksi
	64	in

Plate Data		
Diam:	70	in
Thick:	2.25	in
Grade:	60	ksi
Single-Rod B-eff:	12.89	in

Stiffener Data (Welding at both sides)		
Config:	0	in **
Weld Type:		
Groove Depth:		
Groove Angle:		degrees
Fillet H. Weld:		<-- Disregard
Fillet V. Weld:		in
Width:		in
Height:		in
Thick:		in
Notch:		in
Grade:		ksi
Weld str.:		ksi

Reactions		
Moment:	3216	ft-kips
Axial	41	kips
Shear:	34	kips

If No stiffeners, Criteria:	AISC ASD $<-$ Only Applcable to Unstiffened Cases

Anchor Rod Results		Rigid
Maximum Rod Tension:	169.4 Kips	Service, ASD
Allowable Tension:	195.0 Kips	Fty*ASIF
Anchor Rod Stress Ratio:	86.9\% Pass	
Base Plate Results	Flexural Check	Rigid
Base Plate Stress:	38.3 ksi	Service ASD
Allowable Plate Stress:	60.0 ksi	0.75*Fy*ASIF
Base Plate Stress Ratio:	63.8\% Pass	$\begin{gathered} \hline \text { Y.L. Length: } \\ 29.41 \\ \hline \end{gathered}$

Stiffener Results

Horizontal Weld : n/a
Vertical Weld: $\quad \mathrm{n} / \mathrm{a}$
Plate Flex+Shear, fb/Fb+(fv/Fv) ${ }^{\wedge} 2: \quad \mathrm{n} / \mathrm{a}$
Plate Tension+Shear, $\mathrm{ft} / \mathrm{Ft}+(\mathrm{fv} / \mathrm{Fv})^{\wedge} 2: \quad \mathrm{n} / \mathrm{a}$
Plate Comp. (AISC Bracket): n/a
Pole Results
Pole Punching Shear Check: n/a

Pole Data		
Diam:	56.84	in
Thick:	0.375	in
Grade:	65	ksi
\# of Sides:	18	"0" IF Round
Fu	80	ksi
Reinf. Fillet Weld	0	"0" if None

Stress Increase Factor		
ASIF: 1.333		

[^1]FDH Engineering, Inc., 6521 Meridien Dr. Raleigh, NC, 27616, Ph. 919.755.1012, Fax 919.755.1031

Eccentric Weld Check

Site Name:	
Job No. :	
Elevation:	

Code	G	F or G

Legend
Input
Output
Notes

Pu	325	k

Eccentric Weld Properties		
Weld Size	9	No. of $1 / 16$ ths (whole number)
$\mathrm{L}_{\text {weld }}$	18	in
e_{x}	7.08	in
a	0.393333	use in Table 8-4, pg 8-66 AISC
C	2.688667	From Table 8-4, pg. 8-66 AISC
C 1	1.03	70 ksi weld $=1,80 \mathrm{ksi}=1.03$

Check Eccentric Weld		
Pu	325.00	k
$\Phi \mathrm{Rn}$	336.47	k
\%Capacity	96.59%	Pass

environmental | engineering | due diligence

RADIO FREQUENCY FCC REGULATORY COMPLIANCE MAXIMUM PERMISSIBLE EXPOSURE (MPE) ASSESSMENT

Sprint Existing Facility

Site ID: CT23XC314
Sisters of Holy Name / C.A.T.
1428 Monroe Turnpike
Monroe, CT 06468
May 20, 2014

EBI Project Number: 62143081

May 20, 2014

Sprint
Attn: RF Engineering Manager
1 International Boulevard, Suite 800
Mahwah, NJ 07495
Re: Radio Frequency Maximum Permissible Exposure (MPE) Assessment for Site:
CT23XC314 - Sisters of Holy Name / C.A.T.
Site Total: $\mathbf{6 1 . 0 4 3 \%}$ - MPE \% in full compliance
EBI Consulting was directed to analyze the proposed upgrades to the existing Sprint facility located at 1428 Monroe Turnpike, Monroe, CT, for the purpose of determining whether the radio frequency (RF) exposure levels from the proposed Sprint equipment upgrades on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm} 2$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(b)(1)$ - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The general population exposure limit for the cellular band (850 MHz Band) is approximately $567 \mu \mathrm{~W} / \mathrm{cm}^{2}$, and the general population exposure limit for the 1900 MHz and 2500 MHz bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed upgrades to the existing Sprint Wireless antenna facility located at 1428 Monroe Turnpike, Monroe, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65 . All calculations were performed assuming the main lobe of the antenna was focused at the base of the tower to present a worst case scenario. Actual values seen from this site will be dramatically less than those shown in this report. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all emissions were calculated using the following assumptions:

1) 3 channels in the 1900 MHz Band were considered for each sector of the proposed installation.
2) 1 channel in the 800 MHz Band was considered for each sector of the proposed installation
3) 2 channels in the 2500 MHz Band were considered for each sector of the proposed installation.
4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
5) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications was used in this direction.
environmental | engineering | due diligence
6) The antennas used in this modeling are the RFS APXVSPP18-C-A20 and the RFS APXVTMM-C-120. This is based on feedback from the carrier with regards to anticipated antenna selection. The RFS APXVSPP18-C-A20 has a 15.9 dBd gain value at its main lobe at 1900 MHz and 13.4 dBd at its main lobe for 850 MHz . The RFS APXVTMM-C-120 has a 15.9 dBd gain value at its main lobe at 2500 MHz . All calculations were performed assuming the main lobe of the antenna was focused at the base of the tower to present a worst case scenario
7) The antenna mounting height centerline for the proposed antennas is $\mathbf{1 5 1}$ feet above ground level (AGL).
8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculation were done with respect to uncontrolled / general public threshold limits

Site Composite MPE \%	
Carrier	MPE \%
Sprint	10.653%
AT\&T	7.360%
T-Mobile	4.580%
Verizon Wireless	35.120%
Town of Monroe	3.330%
Total Site MPE \%	$\mathbf{6 1 . 0 4 3 \%}$

environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were well within the allowable limits for general public Maximum Permissible Exposure (MPE) to radio frequency energy.

The anticipated Maximum Composite contributions from the Sprint facility are $\mathbf{1 0 . 6 5 3 \%}$ ($\mathbf{3 . 5 5 1 \%}$ from each sector) of the allowable FCC established general public limit considering all three sectors simultaneously sampled at the ground level.

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{6 1 . 0 4 3} \%$ of the allowable FCC established general public limit sampled at 6 feet above ground level. This total composite site value is based upon MPE values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

EBI Consulting
21 B Street
Burlington, MA 01803


```
THE MODIFICATIONS DEPICTED ON THESE DRAWINGS ARE BASED ON
    M
    COMPLETED BY FDH ENGINEERING, INC., PROJECT NO. 1462FZ1400
    THIS REPORT WAS BASED ON A SPECIFIC ANTENNA AND COAX
    THIS INFORMATION MUST BE REVIEWED BY FDH ENGINEERING, INC.
```

PREPARED BY:		
enginetring		
PREPARED For:		
SBA		
DRAWN BY: AEV		
CHECKED BY: AWR		
ENG APPVD: DDA		
PROJECT No: 14670V1400		
SUBMITTALS		
OATE $08 / 25 / 14$	DESCRPPTON	Rev
	Construution	0
THE INFORMATION CONTAINED IN THIS SET OF DOCUMENTS IS PROPRIETARY BYNATURE. REPRODUCTION OR CAUSING TO NATURE. REPRODUCTION OR CAUSING PART OF THESE DRAWINGS WITHOUT THE PERMISSION OFIS PROHIBITED.		
SITE NAME: MONROE TURNPIKE		
$\begin{aligned} & \text { SITE NUMBER: } \\ & \text { CT13055-A-02 } \end{aligned}$		
SITE ADDRESS: 1428 MONROE TURNPIKE MONROE, CT 06468		
Sheet tite		
title sheet		
SHEET NUMBER		

POST CONSTRUCTION INSPECTION NOTES:

PCI CHECKLIST	
CONSTRUCTION/INSTALLATION INSPECTIONS AND TESTING REQUIRED	REPORT ITEM
PRE-CONSTRUCTION	
X	pCI CHECKLIST dRawing
N/A	EOR APPROVED SHOP DRAWINGS
N/A	FABRICATION INSPECTION
X	FABRICATOR CERTIFIED WELD Inspection
X	MATERIAL TEST REPORT (MTR)
N/A	FABRICATOR NDE INSPECTION
N/A	nde report of monopole base plate (as required)
X	PACKING SLIPS
Additional testing and inspections:	
CONSTRUCTION	
X	construction inspections
N/A	FOUNDATION INSPECTIONS
N/A	CONCRETE COMP. STRENGTH AND SLUMP TESTS
X	post installed anchor rod verification
N/A	BASE PLATE GROUT VERFICATION
X	COntaactor's CERTIFIED WELD Inspection
N/A	EARTHWORK: LIT AND DENSITY
X	on site cold galvanizing verfication
N/A	GUY WIRE TENSION REPORT
X	GC AS-bult documents
Adoditional testing and inspectons:	
POST-CONSTRUCTION	
X	PCI InSPECTOR REDLINE OR RECORD DRAWing(S)
X	post installed anchor rod pull-out testing
X	PHOTOGRAPHS
ADDITIONAL TESTING AND INSPE	Toons:

GENERAL

 RECORD (EOR).
2. THE PCI IS TO CONNRM MSTALAGTON CONFIGURAION AND WorkMansHIP ONY AND IS
 Mopirf
TMMES.
3. ALL PCr's SHAL RE CONOUCTED SB A PCII ISSEETOR THAT IS APPROVED TO
4. to ensure that the regurements of the pci are met, it is vital that the

5. REFER TO CCR-O1: CONTRACTOR Closeout Reguirement for further detals

PCI INSPECTOR

1. THE PCI INSPECTOR IS REQURED TO CONTACT THE OC AS SOON AS REEEVNG A Po

2. THE PCI ISSEETOR IS RESPNONSLE FOR COLLECTNG ALL GENERAL CONTRACTOR (CC)

COI REORT TO FOH.
Colitac

CORRECTION OF FAILING PCI'S

1. IF THE MODFICATON ISTALLATION WOULD FAL THE PCI (FALED PCCI), THE EC - CORRECT FALING ISSUES TO COMPLY WITH THE SPECIFCCATIONS CONTANED IN THE

REQUIRED PHOTOS

- PRE-constructon general ste conotion
- PHOTOGSAPS DURING THE REINFORCEMENT MODIFICATION CONSTRUCTION/ERECTION $\stackrel{A N}{A N D}$
$\because:$ Phoorin ofll CRTICAL Detals
:. Founoarion Molifich

- POST SORFACE COATING REPAIR

2. PHotos of elevated modifications taken from the ground shall be
[^2]
SBA ()

MONROE TURNPIK
ste number:
CT13055-A-02
SITE ADDRESS: MONROE CT 06468

POST CONSTRUCTION
INSPECTION NOTES

GENERAL NOTES:

2. THE Contractor shall Re responill for verication or

 3. INCORECTIY FABRICATED, DAMAGED, OTHERMSE MISFITING, OR

 CONTRACTOR QUALIICATION NOTES:

 "STTUCTURAL STANDAROS FOR STEEL
CONTRACTOR IS RESPONSIBLE FOR ALL CONSTRUCTION MEANS AND

4. ALL Construction to be in accordance wit The TA-1019-A JOB SITE SAFETY \& NOTES,

STEEL:
 SPECFICATIONS
*ALL FLLT PATE STEEL SHALL LE ASTM A572-65 (Fy=65KSI)
*ALL THEEADED ROD SHALL BE ASTM A193-B7 (Fy=105KS)
*AL PIPE STEEL SHALL BE ASTM A500 GR. B (Fy=42KSI) UNLESS
OTHERWISE SPECIFIED.
2. ALL CONNECTIONS OF STRUCTURAL STEEL MEMBERS SHALL BE

 "SPECIICATION FOR STRUCTVPAL Jolits USIMG ASTM AZ25 OR

AL STEEL, AAER FARBICATON, SHALL BE HOT DIPPED GALVANIZED

 PER ASTM A 780 .
5. ALL SHop AND FELD welo ing shall ge done gr welors STANDARO UUALFICCATON PROCEDURE" TO PERFORM THE TTPE O

6. STRUCTUUAL STEEL MAA NOT BE TORCCH CUT FOR R

MISC. Notes:

1. ALL MODFICCATIONS ARE ASSUMED TO BE MADE ON AN EMPTY
 TRRASMISSION LNESESMMODF
THROUGH AL AREAS SHOWN.
2. CONTRACTOR FIELD VERIFY ALL DIMENSIONS PRIOR TO
CONSTRUCTION.

FABRICATION NOTES:

1. ALL DIMENIONS ARE RRELIMARY UTIL FELD VERFED BY
2. new stel menerrs must have singie druled holes. sioted

SUBSTTTUTES ANDIOR EQUALS

COLD GALVANIZATION/SURFACE PREPARATION NOTES:

1. CONTRACTOR TO USE ZINGA OR ZRC COLD GALVANIZATION
COMPOUNDS OR APPROVED EQUIVALENT.
2. PREPARE RUSTED/CORRODED SURFACE FOR TREATMEN
ACCORDING TO MANUFACTURE'S RECOMMENDATIONS.
3. CONTRACTOR TO APPLY (2) COATS OF COLD GALVANIZATION COMPOUND PER MANUFACTURER'S RECOMMENDATION. DRYNG
AND CURING TIMES MUST BE UTIIZED PER MANUFACTURER'S RECOMMENDATION.
APPLY ALL COATNGS BY BRUSH IN CALM WIND CONDITIONS
THE USE OF AEROSOL IS NOT PERMITED.
IF THE TOWER IS PAINTED, BRUSH PAINT ALL TREATED AREAS
TO MATH TOWR AFTER COLD GALVANIZATON COMPOUND IS
NEW FLAT PLATE REINFORCEMENT NOTES:
CONTRACTOR TO FIELD VERIFY PROPOSED LOCATION OF FLA
PLATE TO ENSURE THAT PROPER SPACING CAN BE MET.
4. CONTRACTOR TO REPLACE AND/OR RELOCATE ANY CLIMBING
PESS
PLATE HAT INTEREERE WTTH THE INSTALATION OF FLAT 3. ALL AJAX CONNECTIONS TO USE HIGH TENIIE SLEEVE
PROVIDED BY MANUFACTURER. AJAX BOLT ALSEMBLY TO

5. ALL SHEAR SLEEVES To be hot dipped galvanized prior
6. PRIOR TO FLAT PLATE INSTALLATION, SLIP JOINTS MUST BE
TIGHENED WTH A MINMUM JACKING FRCE OF 6000 LBS.
7. NEW FLAT PLATES TO BE INSTALLED ON THE CENTER OF
PROPOSED SIDE UNLESS OTHERWSE NOTED.
 CONSTRUCTION NOTES:

MANAGER PRIOR TO RROCEEDIN. MODIFCATION OR FABRICATION.

WELDING NOTES:

 CONTRACTOR SHALL COMPLL WITH AWS D1.1 FOR
PROCEDORES, APPEARANCE ANO UUALITT OF WELDS

 PROCEDRES". CONTRACTOR SHALL SUBMIT CERTIFICATION
OF WELORSS TO THE ENGINEER PRIOR TO COMMENCEMENT
OF THE WORK.
3. CONTRACTOR RESPONSIBLE FOR TEMPORARY HEAT
SHILLING AS REQURED DURING WELDNG.
4. CONTRACTOR RESPONSIBLE FOR YIEWING EXISTING TOWER
FOR LOOSE AND FLAMMABLE MATERAL PRIOR TO WELING ALL WELDS TO BE VISULLLY INSPECTED BY A CERTIFED
WELD INSPECTOR PER AWS DI.1.

PRETENSION BOLTS
ALL DIRECT TENSION INDICATOR (DTI) WASHERS SHALL BE THE
 APPLIED BOLTING TECHNOLOGY PRODUCTS
1413 ROCKINGHM ROAD
BELLOWS FALLSA, VERMONT 05101, USA PHONE: $1-800-552-1999$
WEBSTE: WWW.APLLEOBOLTNG.com
2. USE DIRECT TENSION INDICATOR (OTI WASHERS COMPATBLE WITH 3/4" NOMNAL A325 BOLTS FOR THE AJAX M2O BOLTS. DTI'S
SHALL NOT BE HOT-DIP GALVANIED. DTI'S SHALL BE

3. USE HARDENED WASHER FOR A $3 / /^{* "}$ NOMNAL BOLT BETWEEN THE TOP OF DIRECT TENSION INDIAATOR (DTH) WASHER AND THE NUT

4. CONTRACTOR SHALL FOLLOW DTI MANUFACTURES'S INSTRUCTION FOR
INSTALLATION, LUBRICATION, TIGHTENING AND INSPECTION.
 FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS', DEC. 32 ,
2009, BY A QUALIED BOLT INSPETTOR. DURNG INTALATION, THE

 AJAX BOLT ASSEMBLY, INCLUDING THE SHEAR SLEEVE PLACEMEN
AND NUT LEBRCCTON AD CONTACTR'S TENISNING
PROCEDURE. IN ADDTION, ALL AJAC BOLTS AND DTI'S SHALL BE
 DOUMENT OF ALL BOLTS AFERER
HE CONDTION OF THE DTIS.
SURFACE PREPARATION:
PREPARE SURFACE TO BE WELDED BY REMOVING PANT OR
GALVANIZATON TO BARE METAL USING POWER WRE BRUSHING ACCORDANCE WITH SSPC-SP11, (STEEL STRUCTURES PANTING COUNCLL.) FOLLOWING POEER WIRE BRUSHING CONTRACTOR SHALL
POLISH MEIAL SURFACE WTH HIGH SPEED GRINER WTH 400+ POLISH METAL SURF
GRIT SANDPAPER.
2. AFTER NEW STEEL INSTALLATION CONTRACTOR TO BRUSH PANT (2)
COATS OF ZRC OR ZINGA COLD GALVANZATION COMPOUND PER MANUFACTUER'S SPECIFICCTIONS

AJAX BOLT ASSEMBLY

 PERRIISSION OO.
IS RROHBITED.

MONROE TURNPIKE

STE NUMBER:

CT13055-A-02
SITE ADDRESS: 28 MONROE TURNPIK

SHEET TTLL
general notes I

PULLOUT TESTING OF POST INSTALLED ANCHOR RODS:

EPOXT AAEETS SHOULD RE ALLOWED TO CURE ACCOROING To
2. Contractor shall ensure That constuucton does not co

3. Soz of post nstalled anchor pood shall ee tested or a
4. THE TARGET TENSION FOR THS Pull test is 190k.
5. MANTAN COMPLETE LOAD-DISPLACMENT RECOROS THROGGOUT THE TEST, LOAD THE ANC
6. STATC LLAD TEST SHAALL BE PERFORMED PER ASTM E488-96
6. STAIT LOLDA TEST SHIN.
7. IEA AISPLCEEENT REATER THAN 0.010 R REMNS ATER THE

 To FAll THE TESS!.
8. THHI MFFRMATION SHALL BE DOCUMENTED AND INCLUDED IN
9. Contact foh eng inernco, nc. If ANY of the anchors fall
10. ALL Haromare Assembly and manufacturers instructons
 TO EE EROUGHT MMED.
ENGNER ANO OWER.
11. ANY Contractor nstalling adiesine anchorng systens SHAL BE TRNED, N PRSRON BY A MAUFACTURERS

 Occurred
TRANME.
EPOXYMLITINOTES:

-
2. AL HARDAARE ASSEMLY AND MANUACCTURER'S INSTPUCTONS
 BE
BRER
OWR

TRANSFER STIFFENER NOTES

 2. ATter sitf fier instalaton contractor to brush paint (2) coats of cold callvination pant
(1) coat of col galvanlation spay
3. Contractor to verir locaion of eniry pootholes

MATERIAL LIST (MK-5)		
PART. NO.	QTY.	DESCRIPTION
P-1	3	P4×0.675 (4.500"O.D.) ANCHOR ROD SLEEVE
P-2	3	TRANSFER PLATE

[^0]: *Foundation determined to be adequate per independent analysis.

[^1]: * 0 = none, 1 = every bolt, 2 = every 2 bolts, 3 = 2 per bolt
 ** Note: for complete joint penetration groove welds the groove depth must be exactly $1 / 2$ the stiffener thickness for calculation purposes

[^2]: NOTE: X DENOTES A DOCUMENT NEEDED FOR THE PCI REPORT
 A AENOTES A DOCUIET THAT IS NOT REOURED FOR THE PCI REPORT

