

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

April 28, 2022

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application 230 Guinea Road, Monroe, CT 06468 Latitude: 41.342222 Longitude: -73.276388 Site #: 841294 Crown Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 230 Guinea Road, Monroe, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 MHz 5G antennas and six (6) RRUs, at the 165-foot level of the existing 243foot self-support tower, one (1) Fiber cable will also be installed. Dish Wireless LLC equipment cabinets will be placed within a 7' x 5' lease area within the existing fenced compound. Included are plans by Kimley Horn, dated December 20, 2021, Exhibit C. Also included is a structural analysis prepared by Paul J. Ford, dated August 31, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was approved by the Connecticut Siting Council. Docket No. 114 on January 16, 1990. Please see attached.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Ken Kellogg, First Selectman and Rick Shultz, Town Planner for the Town of Monroe, as well as the tower owner (Crown Castle) and property owner (Town of Monroe.).

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modification will not result in an increase in the height of the existing structure. The top of the existing tower is 243-feet and the Dish Wireless LLC antennas will be located at a centerline height of 165-feet.

2. The proposed modifications will not result in an increase of the site boundary as depicted on the attached site plan.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.

4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. The combined site operations will result in a total power density of 3.54% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully submits that the shared use of this facility satisfies these criteria.

A. Technical Feasibility. The existing tower has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.

B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this tower in Monroe. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.

C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 165-foot level of the existing 243-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.

D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.

E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Monroe.

Sincerely,

Deníse Sabo

Denise Sabo Mobile: 203-435-3640 Fax: 413-521-0558 Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments

Cc: Ken Kellogg, First Selectman & Property Owner Town Hall 7 Fan Hill Road Monroe, Connecticut 06468

> Rick Shultz, Town Planner Town Hall 7 Fan Hill Road Monroe, Connecticut 06468

Crown Castle - Tower Owner

Exhibit A

Original Facility Approval

DOCKET NO. 114 - An application	;	Connecticut
of SNET Cellular, Inc., for a Certificate of Environmental	:	Siting
Compatibility and Public Need for a cellular telephone tower	:	Council
and associated equipment in the Town of Monroe, Connecticut.	:	January 16, 1990

DECISION AND ORDER

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council finds that the effects associated with the construction, operation, and maintenance of a cellular telephone facility at the proposed Monroe site, including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not significant either alone or cumulatively with other effects, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by Section 16-50k of the General Statutes of Connecticut (CGS), be issued to SNET Cellular, Inc. (SNET), for the construction, operation, and maintenance of a cellular telecommunications tower, associated equipment, and building at the proposed site in Monroe, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. All SNET cellular antennas shall extend no higher than 252 feet above ground level (AGL). If the Town of Monroe and SNET reach an agreement to place the Town of Monroe's antennas for public radio station WMNR on the tower, then the tower shall be no higher than 260 feet AGL for the attachment of such town antennas; otherwise the tower shall be no higher than 240 feet AGL. Prior to the raising of the tower from 240 feet AGL to 260 feet AGL, notice of such sharing and raising of the tower shall be provided to the Council.
- 2. The facility shall be constructed in accordance with the State of Connecticut Basic Building Code.
- 3. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of State Agencies. The D&M plan shall include detailed plans for site preparation including a profile and cross-section of the proposed access road, placement of the proposed tower and equipment building within the leased parcel, and erosion and sedimentation control.

Docket 114 Decision and Order Page 2

- 4. The Certificate Holder shall comply with any future radio frequency (RF) standard, promulgated by State or federal regulatory agencies. Upon the establishment of any new governmental RF standards, the facility granted in this Decision and Order shall be brought into compliance with such standards.
- 5. The Certificate Holder or its successor shall provide the Council a recalculated report of power density if and when additional channels over the proposed 45 channels, higher wattage over the proposed 100 watts per channel, or other circumstances in operation cause a change in power density above the levels originally calculated in the application.
- The Certificate Holder or its successor shall permit public or private entities to share space on the proposed Monroe tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 7. If this facility does not initially provide, or permanently ceases to provide cellular service following completion of construction, this Decision and Order shall be void, and the tower and all associated equipment in this application shall be dismantled and removed or reapplication for any new use shall be made to the Council before any such new use is made.
- 8. Unless otherwise approved by the Council, this Decision and Order shall be void if all construction authorized herein is not completed within three years of the issuance of this Decision and Order, or within three years after the completion of any appeal from this Decision and Order.

Pursuant to Section 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below. A notice of issuance shall be published in the Bridgeport Post and the Monroe Courier.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with section 16-50j-17 of the Regulations of State Agencies.

Docket 114 Decision & Order Page 3 The parties or intervenors to this proceeding are: SNET Cellular, Inc. (Applicant) 227 Church Street New Haven, CT 06506 (Its Representative) Peter J. Tyrrell SNET Cellular, Inc. Room 1021 227 Church Street New Haven, CT 06506 (Intervenor) Metro Mobile CTS of Fairfield County, Inc. (Its Representatives) Micheal W. Riley Vice-President North East Region Metro Mobile CTS, Inc. 110 East 59th Street New York, New York 10022 Philip Mayberry, General Manager David S. Malko Metro Mobile CTS of Fairfield County, Inc. 50 Rockland Road South Norwalk, Connecticut 06854 (Party) Paul M. Hancock, General Partner Housatonic Cable Vision Company 2 East Street P.O. Box 1540 New Milford, Connecticut 06766 (Its Representative) Howard L. Slater, Esq. Bryne, Slater, Sandler, Shulman, & Rouse, P.C. 330 Main Street P.O. Box 3216 Hartford, Connecticut 06103 Attn: Jennifer Young Gaudet, Esq. 3945E-8-10

CERTIFICATION

The undersigned members of the Connecticut Siting Council hereby certify that they have heard this case in Docket 114 or read the record thereof, and that we voted as follows:

Dated at New Britain, Connecticut the 16 day of January, 1990.

Council Members

Vote Cast

Gloria Dibble Pond Chairperson

Commissioner Peter Boucher Designee: Robert A. Pulito

Commissioner Leslie Carothers Designee: Brian Emerick

Mortimer A. Gelston

Daniel P. Lynch, Jr.

Paulann H. Sheets

William H. Smith

Colin C. Tait

Absent

3995E-2

Yes

Yes

Yes

Yes

Yes

.....

Absent

Absent

Absent

Exhibit B

Property Card

230 GUINEA RD

Location	230 GUINEA RD	Map/Lot	081/ 008/ 00/ /
Acct#	08100800	Owner	MONROE TOWN OF (OPEN SPACE)
Assessment	\$16,400	Appraisal	\$23,400
PID	11950	Building Count	1
Survey	1814 C	Affordable	

Current Value

Appraisal			
Valuation Year	Improvements	Land	Total
2019	\$0	\$23,400	\$23,400
Assessment			
Valuation Year	Improvements	Land	Total
2019	\$0	\$16,400	\$16,400

Owner of Record

Owner	MONROE TOWN OF (OPEN SPACE)	Sale Price	\$0
Co-Owner		Certificate	1
Address	7 FAN HILL RD	Book & Page	297/ 119
	MONROE, CT 06468-1800	Sale Date	10/30/1985
		Instrument	

Ownership History

	Owners	hip History			
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date
MONROE TOWN OF (OPEN SPACE)	\$0	1	297/ 119		10/30/1985

Building Information

Building 1 : Section 1

Year Built:

Living Area:

Building Attributes

0

Field	Description
Style	Vacant Land
Model	
Stories:	
Occupancy	
Exterior Wall 1	
Exterior Wall 2	
Roof Structure:	
Roof Cover	
Interior Wall 1	
Interior Wall 2	
Interior FIr 1	
Interior FIr 2	
Heat Fuel	
Heat Type:	
АС Туре:	
Total Bedrooms:	
Total Bthrms:	
Total Half Baths:	
Total Xtra Fixtrs:	
Total Rooms:	
Bath Style:	
Kitchen Style:	
Fireplaces	
Wdstv Flues	
Basement Gar.	
Attic	
Basement	
In Law Apt	

Building Photo

(http://images.vgsi.com/photos/MonroeCTPhotos//default.jpg)

Building Layout

(http://images.vgsi.com/photos/MonroeCTPhotos//Sketches/11950_11950.j

Building Sub-Areas (sq ft)

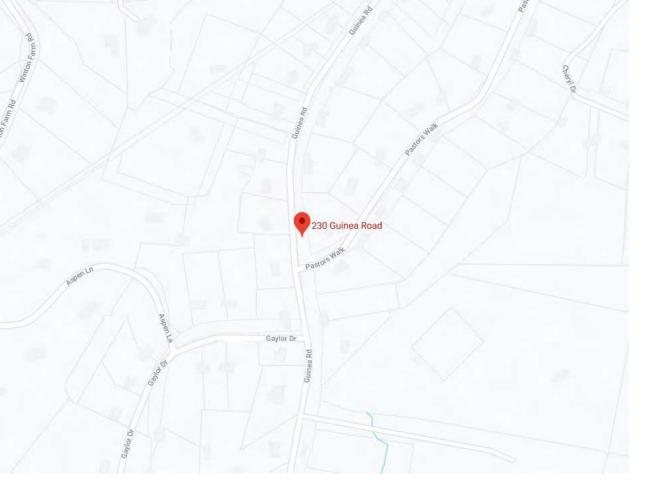
Legend

No Data for Building Sub-Areas

Extra Features

Extra Features <u>Lege</u>		Legend	
No Data for Extra Features			
and Land Use		Land Line Valuation	
Land USC			
	000	0 : (1) 0.00	
	903	Size (Acres) 3.02	
Use Code Description	903 Municipal	Size (Acres) 3.02 Appraised Value \$23,400	

Outbuildings


Outbuildings	Legend
No Data for Outbuildings	

Valuation History

Appraisal			
Valuation Year	Improvements	Land	Total
2019	\$0	\$23,400	\$23,400
2019	\$0	\$23,400	\$23,400
2018	\$0	\$24,200	\$24,200

Assessment			
Valuation Year	Improvements	Land	Total
2019	\$0	\$16,400	\$16,400
2019	\$0	\$16,400	\$16,400
2018	\$0	\$16,900	\$16,900

(c) 2020 Vision Government Solutions, Inc. All rights reserved.

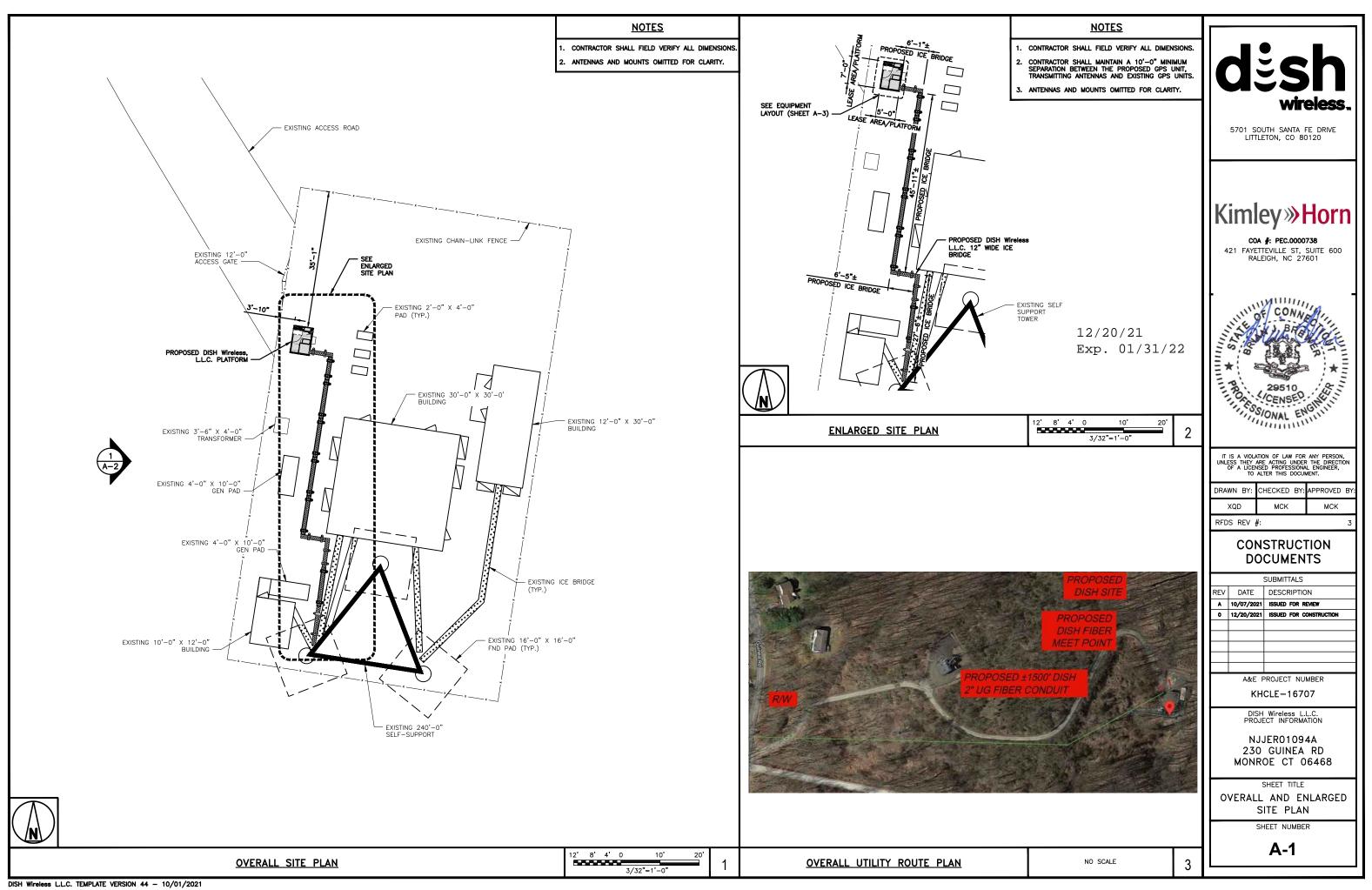


Exhibit C

Construction Drawings

		SITE INF	ORMATION
dish		PROPERTY OWNER: ADDRESS:	VERIZON WIRELESS PO BOX 2549 ADDISON, TX 75001
		TOWER TYPE:	SELF SUPPORT
		CROWN CASTLE SITE ID): 841294
	SCOPE OF WORK	CROWN CASTLE APP NUMBER: COUNTY:	548869 FAIRFIELD
wireless	THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIVALENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING: TOWER SCOPE OF WORK:	LATITUDE (NAD 83):	41° 20′ 30.68″ N 41.341856° N
	 INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR) INSTALL (3) PROPOSED SECTOR FRAMES 	LONGITUDE (NAD 83):	73 16 28.28 W 73.274522 W
DISH Wireless L.L.C. SITE ID:	 INSTALL PROPOSED JUMPERS INSTALL (6) PROPOSED RRU[®] (2 PER SECTOR) INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP) 	ZONING JURISDICTION:	CONNECTICUT SITTING COUNCIL
NJJER01094A	INSTALL (1) PROPOSED HYBRID CABLE GROUND SCOPE OF WORK:	ZONING DISTRICT:	RF2
	INSTALL (1) PROPOSED METAL PLATFORM INSTALL (1) PROPOSED ICE BRIDGE INSTALL (1) PROPOSED PPC CABINET	PARCEL NUMBER: OCCUPANCY GROUP:	080 013 00 U
DISH Wireless L.L.C. SITE ADDRESS:	INSTALL (1) PROPOSED EQUIPMENT CABINET INSTALL (1) PROPOSED POWER CONDUIT INSTALL (1) PROPOSED TELCO CONDUIT	CONSTRUCTION TYPE:	U II-В
230 GUINEA RD	INSTALL (1) PROPOSED TELCO-FIBER BOX INSTALL (1) PROPOSED GPS UNIT INSTALL (1) PROPOSED SAFETY SWITCH (IF REQUIRED)	POWER COMPANY:	CONNECTICUT LIGHT &
MONROE CT 06468	INSTALL (1) PROPOSED FIBER NID (IF REQUIRED) INSTALL (1) PROPOSED METER SOCKET	TELEPHONE COMPANY:	POWER CO ATT
CONNECTICUT CODE OF COMPLIANCE	SITE PHOTO		DIRECTI
ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES			3 ADP BLVD, ROSELAND, N
CODE TYPE CODE BUILDING 2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS		TAKE EXIT 46 FROM C	OM LIVINGSTON AVE E. TAKE GARDEN STATE PKWY, I—2: T—15 N OUR DESTINATION IN MONROE
MECHANICAL 2018 CT STATE BUILDING CODE/2015 INC W/ CT AMENDMENTS ELECTRICAL 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS		X TAKE CI-S9 N TO T	OUR DESTINATION IN MONROE
SHEET INDEX			VICINITY
SHEET NO. SHEET TITLE			2 martine martine
T-1 TITLE SHEET		r -	Winton Fatter Rd
A-1 OVERALL AND ENLARGED SITE PLAN		ç	Morpheus Crystal Inc
A-2 ELEVATION, ANTENNA LAYOUT AND SCHEDULE A-3 EQUIPMENT PLATFORM AND H-FRAME DETAILS			Sheen East
A-4 EQUIPMENT DETAILS A-5 EQUIPMENT DETAILS		1.0	7
A-6 EQUIPMENT DETAILS	10/05/2020 12:23	Beach Tr	Pet Perimeters
E-1 ELECTRICAL/FIBER ROUTE PLAN AND NOTES E-2 ELECTRICAL DETAILS	A TANK A CANAL ADDRESS		- AND
E-3 ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE	UNDERGROUND SERVICE ALERT CBYD 811	5	Canton
G-1 GROUNDING PLANS AND NOTES G-2 GROUNDING DETAILS 0.7 GROUNDING DETAILS	UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455		SITE LOCATION
G-3 GROUNDING DETAILS RF-1 RF CABLE COLOR CODE	WWW.CBYD.COM CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION		Bulhes
GN-1 LEGEND AND ABBREVIATIONS			84
CN-2 GENERAL NOTES CN-3 GENERAL NOTES			5
GN-4 GENERAL NOTES	THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.	Branket Mada	Guine
		Rodeo	R. Sammelite-
	11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED contractor shall verify all plans, existing dimensions, and conditions on		Hermid
	THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.	NO SCALE	at to

PROJECT DIRECTORY]
APPLICANT: DISH WIRELESS, LLC. 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120	dish
TOWER OWNER: CROWN CASTLE 2000 CORPORATE DRIVE CANONSBURG, PA 15317 (877) 486-9377	5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120
SITE DESIGNER: KIMLEY-HORN & ASSOCIATES 3875 EMBASSY PKWY, SUITE 280 AKRON, OH 44333 (216) 505-7771 COA #: PEC.0000738	
SITE ACQUISITION: VICTOR NUNEZ (917) 563-3682 CONSTRUCTION MANAGER: JOSEPH DIPIAZZA	Con #: PEC.0000738 421 FAYETTEVILLE ST, SUITE 600 RALEIGH, NC 27601
JOSEPH.DIPIAZZA@DISH.COM	NALLIGH, NG 27001
RF ENGINEER: MURUGABIRAN JAYAPAL MURUGABIRAN.JAYAPAL@DISH.COM	UNIT OF CONNER
12/20/21 Exp. 01/31/22	I S A A A A A A A A A A A A A A A A A A
-	*
IONS	29510 0
NJ 07068: 287 E AND CT-15 N TO JEFFERSON ST IN FAIRFIELD.	SSIONAL ENGLIT
	THUMAN CONTRACT
	IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.
′ MAP	DRAWN BY: CHECKED BY: APPROVED BY:
Guinera S	RFDS REV #: 3
New York Contract of the Second	CONSTRUCTION DOCUMENTS
Cherror Toy	SUBMITTALS REV DATE DESCRIPTION
Patien Dr. Wilton Dr.	A 10/07/2021 ISSUED FOR REVIEW 0 12/20/2021 ISSUED FOR CONSTRUCTION
Paster Paster	
	A&E PROJECT NUMBER KHCLE-16707
Faitmount Dy	DISH Wireless L.L.C. PROJECT INFORMATION
a MacDaddy's Mac & Chees	NJJER01094A 230 GUINEA RD MONROE CT 06468
Sal's Family F	SHEET TITLE TITLE SHEET
The Next Street	SHEET NUMBER
¥ Aubuchon Hardware 🖄	T-1

Date: August 31, 2021

Paul J. Ford and Company 250 E. Broad St., Ste 600 Columbus, OH 43215 614-221-6679

Subject:	Structural Analysis Report		
Carrier Designation:	<i>DISH Network</i> Co-Locate Site Number: Site Name:	NJJER01094A CT-CCI-T-841294	
Crown Castle Designation:	BU Number: Site Name: JDE Job Number: Work Order Number: Order Number:	841294 MONROE-GUINEA ROAD 640186 1964282 548869 Rev. 0	
Engineering Firm Designation:	Paul J. Ford and Company Proje	ct Number: 37521-1067.001.8700	
Site Data:	230 GUINEA ROAD, MONROE, Fairfield County, CT Latitude <i>41° 20' 30.68"</i> , Longitude <i>-73° 16' 28.28"</i> 242.917 Foot - Self Support Tower		

Paul J. Ford and Company is pleased to submit this "**Structural Analysis Report**" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Proposed Equipment Configuration

Sufficient Capacity

This analysis utilizes an ultimate 3-second gust wind speed of 120 mph as required by the 2018 Connecticut State Building Code and Appendix N. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Respectfully submitted by:

Christina Hedges, PE

Project Manager Al chedges@pauljford.com

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) Table 5 – Tower Component Stresses vs. Capacity 4.1) Recommendations

4.1) Recommendatio

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 242.917 ft Self Support tower designed by Rohn in 1990.

The modifications designed by GPD (Job #: 2009268.80 Rev. A, dated 10/20/2009), have been considered in this analysis. The modifications consist of replacing the diagonal members from 20.3' to 40.7'.

The modifications designed by GPD (Project #: 2014777.841294.04, dated 9/22/2014) were considered in the analysis. They consist of replacing the bent top girts at 242.9', replacing the diagonals from 121.8'-162.2', and replacing the diagonal bolts from 101.6'-121.8' and 162'-182.4'.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	II
Wind Speed:	120 mph
Exposure Category:	В
Topographic Factor:	1
Ice Thickness:	1.5 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Elevation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		1	fujitsu	TA08025-B604		Ì
		1	fujitsu	TA08025-B605		
165.0	165.0	3	jma wireless	MX08FRO665-21 w/ Mount Pipe	1	1 3/4
		1	mounts	Commscope_MTC3975083_Sector_(3)		
		1	raycap	RDIDC-9181-PF-48		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	r Antenna Model		Feed Line Size (in)				
	240.0	1	tower mounts	Side Arm Mount [SO 303-3]						
240.0	240.0		decibel	DB806-XC	1	1/2				
	238.0	1	kathrein	FMO						
		3	cci antennas	DMP65R-BU6D w/ Mount Pipe						
						3	cci antennas	HPA-65R-BUU-H6 w/ Mount Pipe		
		3	cci antennas	OPA65R-BU6D w/ Mount Pipe						
		3	ericsson	RADIO 4449 B5/B12	12	1 5/8				
236.0	236.0	3	ericsson	RRUS 32 B2	4	3/4				
			3	ericsson	RRUS 4478 B14	1	3/8			
		3	powerwave tech	7770.00 w/ Mount Pipe						
		6	powerwave tech	LGP13519	1					
		2	raycap	DC6-48-60-18-8F						
		1	tower mounts	Sector Mount [SM 201-3]]					

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	alcatel lucent	B66A RRH4X45		
		3	alcatel lucent	RRH2X60-700		
	218.0 3	3	andrew	HBXX-6517DS-A2M w/ Mount Pipe		1 5/8
215.0		3	andrew LNX-8514DS-A1M w/ Mount Pipe		19	
		6	commscope JAHH-65B-R3B w/ Mount Pipe			
215.0		1	tower mounts	Sector Mount [SM 503-3]		
	212.0	2	rfs celwave	DB-T1-6Z-8AB-0Z		
201.0	207.0	2	kathrein	OG-4	2	1 1/4
201.0 201.0		2	tower mounts Side Arm Mount [SO 3		2	1 1/4
188.0 1 andrew D		DB589-A		4/0		
186.0 186.0 184.0		1	tower mounts	s Side Arm Mount [SO 301-1]		1/2 7/8
		1	andrew	DB589-A	2	110
12.0	12.0	1	scala	TY-840	1	1/2

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
4-TOWER MANUFACTURER DRAWINGS	Rohn, C010166, 2/20/21	4841385	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	GPD, 2015777.841294.06, 6/11/15	4468667	CCISITES
4-GEOTECHNICAL REPORTS	GPD, 2015777.841294.07, 6/17/15	4468666	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	GPD, 2009268.80, 10/20/09	4601540	CCISITES
4-POST-MODIFICATION INSPECTION	GPD, 2009591.00, 1/13/10	4601541	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	GPD, 2014777.841294.01, 9/22/14	5306639	CCISITES
4-POST-MODIFICATION INSPECTION	GPD, 2015777.841294.05, 6/17/15	5750961	CCISITES

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Section No <u>.</u>		Component Type		Critical Element	Р (К)	SF*P_allow (K)	% Capacity	Pass / Fail
T1	244.917 - 224.792	Leg	Pipe 2.875" x 0.203" (2.5 STD)	1	-13.39	66.58	20.1	Pass
T2	224.792 204.625	Leg	Pipe 3.5" x 0.300" (3 EH)	37	-37.89	115.74	32.7	Pass
Т3	204.625 - 184.438	Leg	Pipe 4" x 0.318" (3.5 EH)	69	-61.67	131.32	47.0	Pass
T4	184.438 164.229	Leg	Pipe 4.5" x 0.337" (4 EH)	90	-87.84	167.14	52.6	Pass
T5	164.229 - 144.021	Leg	Pipe 5.563" x 0.375" (5 EH)	111	-115.19	250.61	46.0	Pass
T6	144.021 - 123.813	Leg	Pipe 5.563" x 0.375" (5 EH)	132	-139.72	209.91	66.6	Pass
T7	123.813 - 103.604	Leg	Pipe 6.625" x 0.432" (6 EH)	147	-166.39	317.44	52.4	Pass
Т8	103.604 - 83.3333	Leg	Pipe 6.625" x 0.432" (6 EH)	162	-193.50	317.01	61.0	Pass
Т9	83.3333 - 63	Leg	Pipe 6.625" x 0.432" (6 EH)	177	-220.90	316.57	69.8	Pass
T10	63 - 42.6667	Leg	Pipe 8.625" x 0.375" (8 EHS)	192	-252.56	404.12	62.5	Pass
T11	42.6667 - 22.3334	Leg	Pipe 8.625" x 0.375" (8 EHS)	207	-260.78	406.05	64.2	Pass
T12	22.3334 - 2	Leg	Pipe 8.75" x 0.500" (8 EH)	240	-284.77	541.51	52.6	Pass
T1	244.917 - 224.792	Diagonal	L 1.75 x 1.75 x 3/16	11	-2.64	11.77	22.5	Pass
T2	224.792 - 204.625	Diagonal	L 1.75 x 1.75 x 3/16	44	-3.41	6.64	51.3	Pass
Т3	204.625 - 184.438	Diagonal	L 2.5 x 2.5 x 3/16	71	-4.30	12.21	35.2	Pass
T4	184.438 164.229	Diagonal	L 2.5 x 2.5 x 1/4	92	-5.01	12.04	41.6	Pass
T5	164.229 - 144.021	Diagonal	L 2.5 x 2.5 x 5/16	113	-5.54	11.51	48.1	Pass
Т6	144.021 - 123.813	Diagonal	L 3 x 3 x 5/16	134	-6.60	13.72	48.1	Pass
Τ7	123.813 - 103.604	Diagonal	L 3.5 x 3.5 x 1/4	149	-7.19	15.14	47.5	Pass
Т8	103.604 83.3333	Diagonal	L 3.5 x 3.5 x 1/4	164	-7.77	12.76	60.9	Pass
Т9	83.3333 - 63	Diagonal	L 4 x 4 x 5/16	179	-8.55	19.99	42.8	Pass
T10	63 - 42.6667	Diagonal	L 4 x 4 x 5/16	196	-12.07	18.32	65.9	Pass
T11	42.6667 - 22.3334	Diagonal	Pipe 3.5" x 0.216" (3 STD)	212	-14.93	33.77	44.2	Pass
T12	22.3334 - 2	Diagonal	Pipe 3.5" x 0.216" (3 STD)	245	-13.83	31.82	43.5	Pass
T11	42.6667 -	Horizontal	Pipe 2.875" x 0.203" (2.5 STD)	208	-8.21	16.78	48.9	Pass

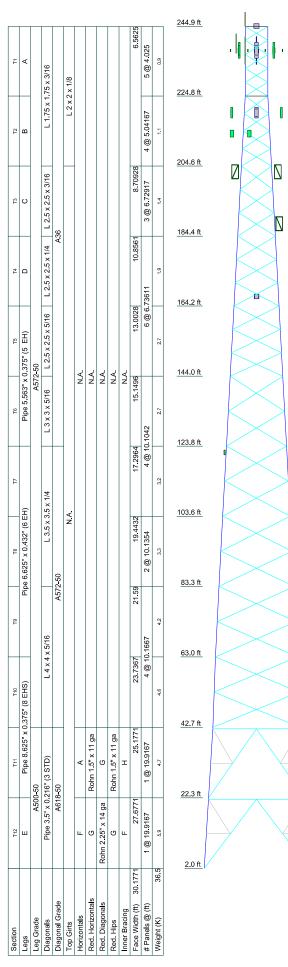
Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	Р (К)	SF*P_allow (K)	% Capacity	Pass / Fail
	22.3334							
T12	22.3334 - 2	Horizontal	Pipe 3.5" x 0.216" (3 STD)	241	-7.98	27.27	29.2	Pass
T1	244.917 - 224.792	Top Girt	L 2 x 2 x 1/8	5	-0.03	4.27	0.7	Pass
T2	224.792 - 204.625	Top Girt	L 2 x 2 x 1/8	42	-0.66	4.35	15.1	Pass
T11	42.6667 - 22.3334	Redund Horz 1 Bracing	Rohn 1.5" x 11 ga	226	-4.56	5.81	78.5	Pass
T12	22.3334 - 2	Redund Horz 1 Bracing	Pipe 1.9" x 0.145" (1.5 STD)	253	-4.96	11.84	41.9	Pass
T11	42.6667 - 22.3334	Redund Diag 1 Bracing	Pipe 1.9" x 0.145" (1.5 STD)	221	-4.15	4.41	94.1	Pass
T12	22.3334 - 2	Redund Diag 1 Bracing	Rohn 2.25" x 14 ga	254	-4.22	4.42	95.4	Pass
T11	42.6667 - 22.3334	Redund Hip 1 Bracing	Rohn 1.5" x 11 ga	233	-0.03	5.17	0.5	Pass
T12	22.3334 - 2	Redund Hip 1 Bracing	Pipe 1.9" x 0.145" (1.5 STD)	266	-0.02	10.62	0.2	Pass
T11	42.6667 - 22.3334	Redund Hip Diagonal 1 Bracing	Pipe 2.875" x 0.203" (2.5 STD)	234	-0.08	11.11	0.7	Pass
T12	22.3334 - 2	Redund Hip Diagonal 1 Bracing	Pipe 2.875" x 0.203" (2.5 STD)	267	-0.08	9.99	0.8	Pass
T11	42.6667 - 22.3334	Inner Bracing	Pipe 2.375" x 0.154" (2 STD)	235	-0.01	6.89	0.5	Pass
T12	22.3334 - 2	Inner Bracing	Pipe 3.5" x 0.216" (3 STD)	268	-0.02	25.86	0.4	Pass
							Summary	
						Leg (T9)	69.8	Pass
						Diagonal (T10)	65.9	Pass
						Horizontal (T11)	48.9	Pass
						Top Girt (T2)	15.1	Pass
						Redund Horz 1 Bracing (T11)	78.5	Pass
						Redund Diag 1 Bracing (T12)	95.4	Pass
						Redund Hip 1 Bracing (T11)	0.5	Pass
						Redund Hip Diagonal 1 Bracing (T12)	0.8	Pass
						Inner Bracing (T11)	0.5	Pass
						Bolt Checks	67.6	Pass
						RATING =	95.4	Pass

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	42.1	Pass
1	Base Foundation (Structure)	0	44.6	Pass
1	Base Foundation (Soil Interaction)	0	58.9	Pass

Structure Rating (max from all components) =	95.4%
--	-------

Notes:


1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

SYMBOL LIST					
MARK	SIZE	MARK	SIZE		
А	Pipe 2.875" x 0.203" (2.5 STD)	E	Pipe 8.75" x 0.500" (8 EH)		
В	Pipe 3.5" x 0.300" (3 EH)	F	Pipe 3.5" x 0.216" (3 STD)		
С	Pipe 4" x 0.318" (3.5 EH)	G	Pipe 1.9" x 0.145" (1.5 STD)		
D	Pipe 4.5" x 0.337" (4 EH)	н	Pipe 2.375" x 0.154" (2 STD)		
D	, , ,	н	, , ,		

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi	A500-50	50 ksi	62 ksi
A36	36 ksi	58 ksi	A618-50	50 ksi	70 ksi

TOWER DESIGN NOTES

1. Tower is located in Fairfield County, Connecticut.

2. Tower designed for Exposure B to the TIA-222-H Standard. 3.

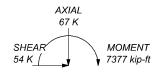
Tower designed for a 120 mph basic wind in accordance with the TIA-222-H Standard.

4. Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.

Deflections are based upon a 60 mph wind.
 Tower Risk Category II.
 Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 95.4%

ALL REACTIONS ARE FACTORED

 \triangle


MAX. CORNER REACTIONS AT BASE: DOWN: 305 K SHEAR: 34 K

> UPLIFT: -251 K SHEAR: 29 K

AXIAL 161 K

TORQUE 16 kip-ft 50 mph WIND - 1.5000 in ICE

TORQUE 57 kip-ft REACTIONS - 120 mph WIND

Paul J. Ford and Company 250 E. Broad St., Ste 600 Columbus, OH 43215 Phone: 614-221-6679 FAX:

y	^{Job:} 244' SST Monroe (CT MONROE-GUINEA	ROAD
	Project: BU841294 (PJF3752)	1-1067)	
	^{Client:} Crown Castle, Inc	^{Drawn by:} Chrissy Hedges	App'd:
			Scale: NTS
	Path:	-	Dwg No. E-1

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 244.92 ft above the ground line. The base of the tower is set at an elevation of 2.00 ft above the ground line. The face width of the tower is 6.56 ft at the top and 30.18 ft at the base. This tower is designed using the TIA-222-H standard. The following design criteria apply: Tower is located in Fairfield County, Connecticut. Tower base elevation above sea level: 583.00 ft. ٠ Basic wind speed of 120 mph. • **Risk Category II.** • Exposure Category B. Simplified Topographic Factor Procedure for wind speed-up calculations is used. . Topographic Category: 1. • Crest Height: 0.00 ft. • Nominal ice thickness of 1.5000 in. • Ice thickness is considered to increase with height. Ice density of 56 pcf. • A wind speed of 50 mph is used in combination with ice. • Temperature drop of 50 °F. Deflections calculated using a wind speed of 60 mph. •

- Pressures are calculated at each section. •
- Stress ratio used in tower member design is 1. •
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.
- Maximum demand-capacity ratio is: 1.05 •
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not • considered.

Options

Consider Moments - Legs **Consider Moments - Horizontals** Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios

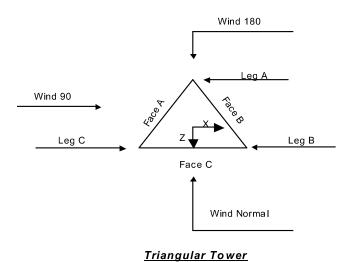
Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned

- ✓ Assume Rigid Index Plate Use Clear Spans For Wind Area $\sqrt{}$
- Use Clear Spans For KL/r
- Retension Guys To Initial Tension Bypass Mast Stability Checks
- $\sqrt{}$
- Use Azimuth Dish Coefficients $\sqrt{}$ Project Wind Area of Appurt.


Autocalc Torque Arm Areas

Add IBC .6D+W Combination

- Sort Capacity Reports By Component Triangulate Diamond Inner Bracing
- Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules

- Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation
- Consider Feed Line Torque
- Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption Poles
 - Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tower Section Geometry

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	
	ft			ft		ft
T1	244.92-224.79			6.56	1	20.13
T2	224.79-204.63			6.56	1	20.17
Т3	204.63-184.44			8.71	1	20.19
T4	184.44-164.23			10.86	1	20.21
T5	164.23-144.02			13.00	1	20.21
T6	144.02-123.81			15.15	1	20.21
Τ7	123.81-103.60			17.30	1	20.21
T8	103.60-83.33			19.44	1	20.27
Т9	83.33-63.00			21.59	1	20.33
T10	63.00-42.67			23.74	1	20.33
T11	42.67-22.33		K034	25.18	1	20.33
T12	22.33-2.00		L075	27.68	1	20.33

Tower Section Geometry (cont'd)

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Type	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T1	244.92-224.79	4.03	X Brace	No	No	0.0000	0.0000
T2	224.79-204.63	5.04	X Brace	No	No	0.0000	0.0000
Т3	204.63-184.44	6.73	X Brace	No	No	0.0000	0.0000
T4	184.44-164.23	6.74	X Brace	No	No	0.0000	0.0000
T5	164.23-144.02	6.74	X Brace	No	No	0.0000	0.0000
T6	144.02-123.81	10.10	X Brace	No	No	0.0000	0.0000
T7	123.81-103.60	10.10	X Brace	No	No	0.0000	0.0000
T8	103.60-83.33	10.14	X Brace	No	No	0.0000	0.0000
Т9	83.33-63.00	10.17	X Brace	No	No	0.0000	0.0000
T10	63.00-42.67	10.17	X Brace	No	No	0.0000	0.0000
T11	42.67-22.33	19.92	K1 Down	No	Yes	5.0000	0.0000

tnxTower Report - version 8.1.1.0

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Туре	K Brace End	Horizontals	Offset	Offset
	ft	ft		Panels		in	in
T12	22.33-2.00	19.92	K1 Down	No	Yes	5.0000	0.0000

Tower Section Geometry (cont'd)

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation ft	Туре	Size	Grade	Туре	Size	Grade
T1 244.92-	Pipe	Pipe 2.875" x 0.203" (2.5	A572-50	Equal Angle	L 1.75 x 1.75 x 3/16	A36
224.79		STD)	(50 ksi)			(36 ksi)
T2 224.79-	Pipe	Pipe 3.5" x 0.300" (3 EH)	A572-50	Equal Angle	L 1 75 x 1 75 x 3/16	A36
204.63		, ,	(50 ksi)			(36 ksi)
T3 204.63-	Pipe	Pipe 4" x 0.318" (3.5 EH)	A572-50	Equal Angle	L 2.5 x 2.5 x 3/16	A36
184.44		, ,	(50 ksi)			(36 ksi)
T4 184.44-	Pipe	Pipe 4.5" x 0.337" (4 EH)	A572-50	Equal Angle	L 2.5 x 2.5 x 1/4	A36
164.23	-		(50 ksi)			(36 ksi)
T5 164.23-	Pipe	Pipe 5.563" x 0.375" (5 EH)	A572-50	Equal Angle	L 2.5 x 2.5 x 5/16	A36
144.02			(50 ksi)			(36 ksi)
T6 144.02-	Pipe	Pipe 5.563" x 0.375" (5 EH)	A572-50	Equal Angle	L 3 x 3 x 5/16	A36
123.81			(50 ksi)			(36 ksi)
T7 123.81-	Pipe	Pipe 6.625" x 0.432" (6 EH)	A572-50	Equal Angle	L 3.5 x 3.5 x 1/4	A572-50
103.60			(50 ksi)			(50 ksi)
T8 103.60-	Pipe	Pipe 6.625" x 0.432" (6 EH)	A572-50	Equal Angle	L 3.5 x 3.5 x 1/4	A572-50
83.33			(50 ksi)			(50 ksi)
T9 83.33-63.00	Pipe	Pipe 6.625" x 0.432" (6 EH)	A572-50	Equal Angle	L 4 x 4 x 5/16	A572-50
			(50 ksi)			(50 ksi)
T10 63.00-	Pipe	Pipe 8.625" x 0.375" (8	A572-50	Equal Angle	L 4 x 4 x 5/16	A572-50
42.67		EHS)	(50 ksi)			(50 ksi)
T11 42.67-	Pipe	Pipe 8.625" x 0.375" (8	A500-50	Pipe	Pipe 3.5" x 0.216" (3 STD)	A618-50
22.33		EHS)	(50 ksi)			(50 ksi)
T12 22.33-2.00	Pipe	Pipe 8.75" x 0.500" (8 EH)	A500-50	Pipe	Pipe 3.5" x 0.216" (3 STD)	A618-50
			(50 ksi)			(50 ksi)

Tower Section Geometry (cont'd)

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 244.92- 224.79	Equal Angle	L 2 x 2 x 1/8	A36 (36 ksi)	Flat Bar		A36 (36 ksi)
T2 224 79	Equal Angle	L 2 x 2 x 1/8	(30 KSI) A36	Equal Angle		(30 KSI) A36
204.63			(36 ksi)			(36 ksi)

	Tower Section Geometry (cont'd)							
Tower Elevation	No. of Mid	Mid Girt Type	Mid Girt Size	Mid Girt Grade	Horizontal Type	Horizontal Size	Horizontal Grade	
ft	Girts							
T11 42.67-	None	Pipe		A618-50	Pipe	Pipe 2.875" x 0.203"	A618-50	
22.33				(50 ksi)		(2.5 STD)	(50 ksi)	
T12 22.33-2.00	None	Pipe		A618-50	Pipe	Pipe 3.5" x 0.216" (3	A618-50	
				(50 ksi)		STD)	(50 ksi)	

	Tower Section Geometry (cont'd)								
Tower Elevation	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade			
ft									
T11 42.67-	Pipe		A618-50	Pipe	Pipe 2.375" x 0.154" (2	A618-50			
22.33			(50 ksi)		STD)	(50 ksi)			
T12 22 33 2.00	Pipe		À618-50	Pipe	Pipe 3.5" x 0.216" (3	À618-50			
			(50 ksi)	•	· STD)	(50 ksi)			

Tower Section Geometry (cont'd)

Tower Elevation ft	Redundant Bracing Grade		Redundant Type	Redundant Size	K Factor
T11 42.67-	A618-50	Horizontal (1)	Pipe	Rohn 1.5" x 11 ga	1
22.33	(50 ksi)	Diagonal (1)	Pipe	Pipe 1.9" x 0.145" (1.5	1
	· · ·	Hip (1)	Pipe	STD)	1
		Hip Diagonal (1)	Pipe	Rohn 1.5" x 11 ga Pipe 2.875" x 0.203" (2.5 STD)	1
T12 22.33-	A618-50	Horizontal (1)	Pipe	Pipe 1.9" x 0.145" (1.5	1
2.00	(50 ksi)	Diagonal (1)	Pipe	STD)	1
		Hip (1)	Pipe	Rohn 2.25" x 14 ga	1
		Hip Diagonal (1)	Pipe	Pipe 1.9" x 0.145" (1.5 STD) Pipe 2.875" x 0.203" (2.5 STD)	1

Tower	Gusset	Gusset	Gusset Grade.	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A _f	Factor	-	Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				Ar		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft ²	in					in	in	in
T1 244 92-	0.00	0.1875	A36	1.03	1	1	36.0000	36.0000	36.0000
224.79			(36 ksi)						
T2 224 79-	0.00	0.1875	A36	1.03	1	1	36.0000	36.0000	36.0000
204.63			(36 ksi)						
T3 204.63-	0.00	0.1875	A36	1.03	1	1	36.0000	36.0000	36.0000
184.44			(36 ksi)						
T4 184 44-	0.00	0.2500	A36	1.03	1	1	36.0000	36.0000	36.0000
164.23			(36 ksi)						
T5 164 23-	0.00	0.3125	A36	1.03	1	1	36.0000	36.0000	36.0000
144.02			(36 ksi)						
T6 144.02-	0.00	0.3125	A36	1.03	1	1	36.0000	36.0000	36.0000
123.81			(36 ksi)						
T7 123.81-	0.00	0.2500	A36	1.03	1	1	36.0000	36.0000	36.0000
103.60			(36 ksi)						
T8 103.60-	0.00	0.3125	A36	1.03	1	1	36.0000	36.0000	36.0000
83.33			(36 ksi)						
T9 83.33-	0.00	0.3125	A36	1.03	1	1	36.0000	36.0000	36.0000
63.00			(36 ksi)						
T10 63.00-	0.00	0.3125	A36	1.03	1	1	36.0000	36.0000	36.0000
42.67			(36 ksi)						
T11 42.67-	0.00	0.3750	A36	1	1.03	1.1	36.0000	36.0000	36.0000
22.33			(36 ksi)						
T12 22.33-	0.00	0.3750	A36	1	1.03	1.1	36.0000	36.0000	36.0000
2.00			(36 ksi)						

			Towe	r Secti	on Geo	ometry	(cont'a	1)		
						K Fa	ctors ¹			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Angles	Rounds		x	x	X	X	X	X	X
ft				Y	Y	Y	Y	Y	Y	Y
T1 244.92-	Yes	Yes	1	1	1	1	1	1	1	1
224.79				1	1	1	1	1	1	1
T2 224 79-	Yes	Yes	1	1	1	1	1	1	1	1
204.63				1	1	1	1	1	1	1
T3 204.63-	Yes	Yes	1	1	1	1	1	1	1	1
184.44				1	1	1	1	1	1	1
T4 184.44-	Yes	Yes	1	1	1	1	1	1	1	1
164.23				1	1	1	1	1	1	1
T5 164.23-	Yes	Yes	1	1	1	1	1	1	1	1
144.02				1	1	1	1	1	1	1
T6 144.02-	Yes	Yes	1	1	1	1	1	1	1	1
123.81				1	1	1	1	1	1	1
T7 123.81-	Yes	Yes	1	1	1	1	1	1	1	1
103.60				1	1	1	1	1	1	1
T8 103.60-	Yes	Yes	1	1	1	1	1	1	1	1
83.33				1	1	1	1	1	1	1
T9 83.33-	Yes	Yes	1	1	1	1	1	1	1	1
63.00				1	1	1	1	1	1	1
T10 63.00-	Yes	Yes	1	1	1	1	1	1	1	1
42.67				1	1	1	1	1	1	1
T11 42.67-	No	No	1	1	1	1	1	1	1	1
22.33				1	1	1	1	1	1	1
T12 22.33-	No	No	1	1	1	1	1	1	1	1
2.00				1	1	1	1	1	1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-ofplane direction applied to the overall length.

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg		Diago	onal	Top G	Girt	Botton	n Girt	Mid	Girt	Long Ho	rizontal	Short Ho	orizontal
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 244 92- 224 79	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T2 224 79- 204 63	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T3 204.63- 184.44	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T4 184 44- 164 23	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 164.23- 144.02	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 144.02- 123.81	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 123.81- 103.60	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 103.60- 83.33	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 83.33- 63.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T10 63.00- 42.67	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Elevation ft	Leg		Diago	nal	Top Gi	irt	Bottom	n Girt	Mid C	Girt	Long Hor	izontal	Short Ho	rizontal
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T11 42.67- 22.33	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1
T12 22.33- 2.00	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1	0.0000	1

Tower Elevation ft	Redund Horizoi		Redun Diago		Redundar Diagoi		Redunda Horizo		Redur Vert		Redund	ant Hip	Redunda Diago	
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 244.92- 224.79	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T2 224.79- 204.63	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T3 204.63- 184.44	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T4 184.44- 164.23	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 164.23- 144.02	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 144.02- 123.81	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 123.81- 103.60	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 103.60- 83.33	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 83.33- 63.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T10 63.00- 42.67	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T11 42.67- 22.33	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T12 22.33- 2.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Section Geometry (cont'd)

Tower	Leg	Leg		Diagor	nal	Top G	irt	Bottom	Girt	Mid G	irt	Long Horiz	zontal		
Elevation	Connection													Horizor	ntal
ft	Туре														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T1 244.92-	Flange	0.7500	4	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0
224.79		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T2 224.79-	Flange	0.8750	4	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0
204.63		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T3 204.63-	Flange	0.8750	4	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
184.44		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T4 184.44-	Flange	1.0000	4	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
164.23	-	A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T5 164.23-	Flange	1.0000	4	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
144.02	-	A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T6 144.02-	Flange	1.0000	6	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
123.81	•	A325N		A325X		A325N		A325N		A325N		A325N		A325N	
T7 123.81-	Flange	1.0000	6	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
103.60	0	A325N		A325X		A325N		A325N		A325N		A325N		A325N	

Tower Elevation	Leg Connection	Leg		Diagor	nal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori.	zontal	Shor Horizor	-
ft	Туре														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T8 103.60-	Flange	1.0000	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
83.33		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T9 83.33-	Flange	1.0000	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
63.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T10 63.00-	Flange	1.0000	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
42.67		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T11 42.67-	Flange	1.0000	8	0.7500	3	0.0000	0	0.0000	0	0.0000	0	0.7500	2	0.6250	1
22.33		A325X		A325X		A325X		A325X		A325X		A325X		A325X	
T12 22.33-	Flange	1.0000	0	0.7500	3	0.0000	0	0.0000	0	0.0000	0	0.7500	2	0.6250	1
2.00	-	A325X		A325X		A325X		A325X		A325X		A325X		A325X	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or Leg	Allow Shield	Exclude From Torque Calculation	Componen t Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacin g in	Width or Diameter in	Perimete r in	Weight plf
1/4" x 2" Climb Ladder Rail	А	No	No	Af (CaAa)	202.00 - 10.00	9.0000	0.5	2	1	0.2500 12.000 0	0.2500		4.00
Safety Line 3/8	А	No	No	Ar (CaAa)	202.00 - 10.00	9.0000	0.5	1	1	0.3750	0.3750		0.22
5/8" ladder rung (18" long 12" oc)	A	No	No	Ar (CaAa)	202.00 - 10.00	9.0000	0.5	1	1	0.6250	0.6250		1.56
3/4" lighting conduit (1/2" EMT)	A	No	No	Ar (CaAa)	242.00 - 10.00	0.0000	0.48	1	1	0.7060	0.7060		0.30
1.5" flat Cable Ladder Rail	A	No	No	Af (CaAa)	238.00 - 10.00	0.0000	-0.4	2	2	24.000 0 1.5000	1.5000		1.80
LDF7-50A(1- 5/8)	А	No	No	Ar (CaAa)	238.00 - 10.00	0.0000	-0.4	12	4	0.2700	1.9800		0.82
FB-L98B- 034- XXX(3/8)	A	No	No	Ar (CaAa)	238.00 - 10.00	0.0000	-0.35	1	1	0.3937	0.3937		0.06
WR- VG86ST- BRD (3/4")	А	No	No	Ar (CaAa)	238.00 - 10.00	0.0000	-0.35	4	1	0.7950	0.7740		0.88
AVA5-50(7/8)	А	No	No	Ar (CaAa)	188.00 - 10.00	0.0000	-0.44	2	1	1.0000	1.1020		0.30
LDF4- 50A(1/2'')	А	No	No	Ar (CaAa)	- 188.00 10.00	0.0000	-0.44	2	2	0.6300	0.6300		0.15
LDF4- 50A(1/2'') *	A	No	No	Ar (CaAa)	242.00 - 188.00	0.0000	-0.44	1	1	0.6300	0.6300		0.15
LDF6-50A(1- 1/4) **	В	No	No	Ar (CaAa)	203.00 - 10.00	0.0000	0.49	2	2	1.0000	1.5500		0.60
1.5" flat Cable Ladder Rail	С	No	No	Af (CaAa)	217.00 - 10.00	0.0000	-0.4	2	2	30.000 0 1.5000	1.5000		1.80
AVA7-50 (1- 5/8 LOW DENSI. FOAM)	С	No	No	Ar (CaAa)	217.00 - 10.00	0.0000	-0.4	16	10	0.2700 0.5000	1.9800		0.72
HB158-1- 08U8-S8F18 (1-5/8")	A	No	No	Ar (CaAa)	217.00 - 10.00	2.0000	-0.45	3	3	0.2700 0.5000	1.9800		1.70
LDF4- 50A(1/2'')	В	No	No	Ar (CaAa)	14.00 - 10.00	0.0000	0.45	1	1	0.6300	0.6300		0.15

tnxTower Report - version 8.1.1.0

Description	Face or Leg	Allow Shield		Componen t Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row		Width or Diameter in	Perimete r in	Weight plf
*** CU12PSM6P 4XXX(1-3/4)	В	No	No	Ar (CaAa)	167.00 - 10.00	0.0000	-0.45	1	1	1.7500	1.7500		2 <u>.</u> 72

			Disc	rete Tov	wer Loa	ds			
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
Strobe Light	A	From Leg	0.00 0.00 0.00	0.0000	245.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.08 1.68 1.87 2.27	1.08 1.68 1.87 2.27	0.05 0.08 0.10 0.17
5/8" x 4' Lightning Rod	С	From Leg	0.00 0.00 2.00	0.0000	245.00	No Ice 1/2" Ice 1" Ice	0.25 0.66 0.97 1.49	0.25 0.66 0.97 1.49	0.01 0.01 0.02 0.03
Obstruction light	С	From Leg	0.50 0.00 0.00	0.0000	122.00	2" Ice No Ice 1/2" Ice 1" Ice	0.50 0.83 0.96 1.26	0.50 0.83 0.96 1.26	0.01 0.02 0.03 0.06
Obstruction light	С	From Leg	0.50 0.00 0.00	0.0000	122.00	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	0.50 0.83 0.96 1.26	0.50 0.83 0.96 1.26	0.01 0.02 0.03 0.06
Obstruction light	С	From Leg	0.50 0.00 0.00	0.0000	122.00	2 ICe No Ice 1/2" Ice 1" Ice 2" Ice	0.50 0.83 0.96 1.26	0.50 0.83 0.96 1.26	0.01 0.02 0.03 0.06
* Side Arm Mount [SO 303- 3]	В	None		0.0000	242.00	No Ice 1/2" Ice 1" Ice 2" Ice	7.67 11.04 14.57 22.36	7.67 11.04 14.57 22.36	0.34 0.48 0.65 1.14
DB806-XC	С	From Leg	3.00 0.00 -2.00	0.0000	242.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.14 1.68 2.03 2.75	1.14 1.68 2.03 2.75	0.02 0.03 0.04 0.08
FMO *	С	From Leg	3.00 0.00 -2.00	0.0000	242.00	No Ice 1/2" Ice 1" Ice 2" Ice	8.40 8.81 9.24 10.10	8.40 8.81 9.24 10.10	0.01 0.18 0.36 0.75
DPA65R-BU6D w/ Mount Pipe	A	From Leg	2.00 0.00 0.00	0.0000	238.00	No Ice 1/2" Ice 1" Ice 2" Ice	12.25 13.00 13.76 15.34	6.05 6.71 7.39 8.79	0.09 0.18 0.27 0.51
DPA65R-BU6D w/ Mount Pipe	В	From Leg	2.00 0.00 0.00	0.0000	238.00	No Ice 1/2" Ice 1" Ice	12.25 13.00 13.76 15.34	6.05 6.71 7.39 8.79	0.09 0.18 0.27 0.51

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert		~		6 /2	n 2	
			ft ft	0	ft		ft²	ft²	K
			ft			2" [ce			
OPA65R-BU6D w/ Mount	С	From Leg	2.00	0.0000	238.00	No Ice	12.25	6.05	0.09
Pipe			0.00			1/2"	13.00	6.71	0.18
			0.00			ce	13.76	7.39	0.27
						1" Ice	15.34	8.79	0.51
7770.00 (14) 5			0.00	0.0000	000.00	2" Ice		4.05	0.00
7770.00 w/ Mount Pipe	А	From Leg	2.00	0.0000	238.00	No Ice	5.75	4.25	0.06
			0.00 0.00			1/2" Ice	6.18 6.61	5.01 5.71	0.10
			0.00			1" Ice	7.49	7.16	0.16 0.29
						2" Ice	1.45	7.10	0.23
7770.00 w/ Mount Pipe	в	From Leg	2.00	0.0000	238.00	No Ice	5.75	4.25	0.06
	2	110111 209	0.00	010000	200100	1/2"	6.18	5.01	0.10
			0.00			lce	6.61	5.71	0.16
						1" Ice	7.49	7.16	0.29
						2" Ice			
7770.00 w/ Mount Pipe	С	From Leg	2.00	0.0000	238.00	No Ice	5.75	4.25	0.06
			0.00			1/2"	6.18	5.01	0.10
			0.00			ce	6.61	5.71	0.16
						1" Ice	7.49	7.16	0.29
						2" Ice			
DMP65R-BU6D w/ Mount	А	From Leg	2.00	0.0000	238.00	No Ice	11.96	5.97	0.11
Pipe			0.00			1/2"	12.70	6.63	0.20
			0.00			lce	13.46	7.30	0.30
						1" Ice 2" Ice	15.02	8.69	0.53
DMP65R-BU6D w/ Mount	в	From Leg	2.00	0.0000	238.00	Z Ice No Ice	11.96	5.97	0.11
Pipe	D	FIOIII Leg	0.00	0.0000	230.00	1/2"	12.70	6.63	0.11
Fipe			0.00			lce	13.46	7.30	0.20
			0.00			1" Ice	15.02	8.69	0.53
						2" Ice	10.02	0.00	0.00
DMP65R-BU6D w/ Mount	С	From Leg	2.00	0.0000	238.00	No Ice	11.96	5.97	0.11
Pipe			0.00			1/2"	12.70	6.63	0.20
			0.00			ce	13.46	7.30	0.30
						1" Ice	15.02	8.69	0.53
						2" Ice			
HPA-65R-BUU-H6 w/	А	From Leg	2.00	0.0000	238.00	No Ice	9.22	6.25	0.07
Mount Pipe			0.00			1/2"	9.98	6.96	0.14
			0.00			Ice 1" Ice	10.76 12.36	7.70 9.22	0.22 0.42
						2" Ice	12.30	9.22	0.42
HPA-65R-BUU-H6 w/	С	From Leg	2.00	0.0000	238.00	No Ice	9.22	6.25	0.07
Mount Pipe	U	TTOIL Leg	0.00	0.0000	230.00	1/2"	9.98	6.96	0.14
Mediteripe			0.00			lce	10.76	7.70	0.22
						1" Ice	12.36	9.22	0.42
						2" Ice			
HPA-65R-BUU-H6 w/	в	From Leg	2.00	0.0000	238.00	No Ice	9.22	6.25	0.07
Mount Pipe			0.00			1/2"	9.98	6.96	0.14
			0.00			Ice	10.76	7.70	0.22
						1" Ice	12.36	9.22	0.42
	•	F	0.00	0.0000	000.00	2" Ice	0.00	0.40	0.04
(2) LGP13519	А	From Leg	2.00	0.0000	238.00	No Ice	0.29	0.18	0.01
			0.00 0.00			1/2" Ice	0.36 0.44	0.24 0.31	0.01 0.01
			0.00			1" Ice	0.62	0.31	0.01
						2" Ice	0.02	0.77	0.02
(2) LGP13519	в	From Leg	2.00	0.0000	238.00	No Ice	0.29	0.18	0.01
(_, :00:0	-		0.00			1/2"	0.36	0.24	0.01
			0.00			lce	0.44	0.31	0.01
			-			1" Ice	0.62	0.47	0.02
						2" Ice			
(2) LGP13519	С	From Leg	2.00	0.0000	238.00	No Ice	0.29	0.18	0.01
		-	0.00			1/2"	0.36	0.24	0.01
			0.00			Ice 1" Ice	0.44 0.62	0.31 0.47	0.01 0.02

242.917 Ft Self Support Tower Structural Analysis Project Number 37521-1067.001.8700, Order 548869, Revision 0

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	o	ft		ft²	ft²	К
			<i>n</i>			2" Ice			
RRUS 32 B2	А	From Leg	2.00	0.0000	238.00	No Ice	2.74	1.67	0.05
			0.00			1/2"	2.96	1.86	0.07
			0.00			ce	3.19	2.05	0.10
						1" Ice	3.68	2.46	0.16
						2" Ice			
RRUS 32 B2	В	From Leg	2.00	0.0000	238.00	No Ice	2.74	1.67	0.05
			0.00			1/2''	2.96	1.86	0.07
			0.00			Ice	3.19	2.05	0.10
						1" Ice	3.68	2.46	0.16
	~	F	0.00	0.0000	000.00	2" Ice	0.74	4.07	0.05
RRUS 32 B2	С	From Leg	2.00	0.0000	238.00	No Ice	2.74	1.67	0.05
			0.00 0.00			1/2" Ice	2.96 3.19	1.86 2.05	0.07 0.10
			0.00			1" Ice	3.68	2.05	0.10
						2" Ice	5.00	2.40	0.10
RRUS 4478 B14	А	From Leg	2.00	0.0000	238.00	No Ice	2.02	1.25	0.06
	~	TIONTLEG	0.00	0.0000	200.00	1/2"	2.20	1.40	0.00
			0.00			ce	2.39	1.55	0.00
			0.00			1" Ice	2.78	1.89	0.15
						2" Ice			
RRUS 4478 B14	В	From Leg	2.00	0.0000	238.00	No Ice	2.02	1.25	0.06
		5	0.00			1/2"	2.20	1.40	0.08
			0.00			ce	2.39	1.55	0.10
						1" Ice	2.78	1.89	0.15
						2" Ice			
RRUS 4478 B14	С	From Leg	2.00	0.0000	238.00	No Ice	2.02	1.25	0.06
			0.00			1/2"	2.20	1.40	0.08
			0.00			ce	2.39	1.55	0.10
						1" Ice	2.78	1.89	0.15
						2" Ice			
RADIO 4449 B5/B12	А	From Leg	2.00	0.0000	238.00	No Ice	1.64	1.30	0.07
			0.00			1/2"	1.80	1.45	0.09
			0.00			Ice	1.97	1.60	0.11
						1" Ice 2" Ice	2.33	1.92	0.16
RADIO 4449 B5/B12	В	From Leg	2.00	0.0000	238.00	No Ice	1.64	1.30	0.07
RADIO 4449 B3/B12	Б	FIOIDLeg	0.00	0.0000	230.00	1/2"	1.80	1.45	0.07
			0.00			ce	1.97	1.60	0.03
			0.00			1" Ice	2.33	1.92	0.16
						2" Ice	2.00	1.02	0.10
RADIO 4449 B5/B12	С	From Leg	2.00	0.0000	238.00	No Ice	1.64	1.30	0.07
	-		0.00			1/2"	1.80	1.45	0.09
			0.00			ce	1.97	1.60	0.11
						1" Ice	2.33	1.92	0.16
						2" Ice			
DC6-48-60-18-8F	А	From Leg	2.00	0.0000	238.00	No Ice	1.21	1.21	0.03
			0.00			1/2"	1.89	1.89	0.05
			0.00			ce	2.11	2.11	0.08
						1" Ice	2.57	2.57	0.14
	-					2" Ice			
DC6-48-60-18-8F	С	From Leg	2.00	0.0000	238.00	No Ice	1.21	1.21	0.03
			0.00			1/2"	1.89	1.89	0.05
			0.00			lce	2.11	2.11	0.08
						1" Ice 2" Ice	2.57	2.57	0.14
Sector Mount [SM 201-3]	в	None		0.0000	238.00	2" Ice No Ice	24.76	24.76	1.08
000101 WOULL [OIVI 201-3]	D	none		0.0000	230.00	1/2"	24.76 33.89	24.76 33.89	1.08
						I/2	33.89 43.00	33.89 43.00	2.10
						1" Ice	43.00 61.44	43.00 61.44	3.64
						2" Ice	01.44	01.44	0.04
8' x 2" Mount Pipe	А	From Leg	0.00	0.0000	238.00	No Ice	1.90	1.90	0.03
e X2 mount ipo		. Tom Log	0.00	0.0000	200.00	1/2"	2.73	2.73	0.03
			0.00			ce	3.40	3.40	0.06

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			Vert ft ft ft	o	ft		ft²	ft²	К
8' x 2" Mount Pipe	С	From Leg	0.00	0.0000	238.00	2" Ice No Ice 1/2"	1.90 2.73	1.90 2.73	0.03 0.04
*			0.00			Ice 1" Ice 2" Ice	3.40 4.40	3.40 4.40	0.06 0.12
Sector Mount [SM 503-3]	В	None		0.0000	217.00	No Ice 1/2''	30.43 43.02	30.43 43.02	1.69 2.30
						Ice 1" Ice 2" Ice	55.43 79.89	55.43 79.89	3.10 5.27
(2) JAHH-65B-R3B w/	А	From Leg	4.00	0.0000	217.00	No Ice	5.50	4.38	0.10
Mount Pipe			0.00			1/2"	5.97	4.84	0.17
			3.00				6.45	5.30	0.25
						1" Ice 2" Ice	7.44	6.26	0.46
(2) JAHH-65B-R3B w/	в	From Leg	4.00	0.0000	217.00	No Ice	5.50	4.38	0.10
Mount Pipe		5	0.00			1/2"	5.97	4.84	0.17
			3.00			ce	6.45	5.30	0.25
						1" Ice 2" Ice	7.44	6.26	0.46
(2) JAHH-65B-R3B w/	С	From Leg	4.00	0.0000	217.00	No Ice	5.50	4.38	0.10
Mount Pipe			0.00			1/2"	5.97	4.84	0.17
			3.00			Ice 1" Ice 2" Ice	6.45 7.44	5.30 6.26	0.25 0.46
LNX-8514DS-A1M w/	А	From Leg	4.00	0.0000	217.00	No Ice	5.56	4.47	0.08
Mount Pipe			0.00			1/2"	6.07	4.97	0.17
			3.00			Ice 1" Ice	6.59 7.65	5.47 6.52	0.26 0.49
LNX-8514DS-A1M w/	в	From Leg	4.00	0.0000	217.00	2" Ice No Ice	5.56	4.47	0.08
Mount Pipe	Б	FIOII Leg	0.00	0.0000	217.00	1/2"	6.07	4.47	0.08
Mount ipo			3.00			ce	6.59	5.47	0.26
						1" Ice 2" Ice	7.65	6.52	0.49
LNX-8514DS-A1M w/	С	From Leg	4.00	0.0000	217.00	No Ice	5.56	4.47	0.08
Mount Pipe			0.00			1/2"	6.07	4.97	0.17
			3.00			lce	6.59	5.47	0.26
	•	En la ca	4.00	0.0000	047.00	1" Ice 2" Ice	7.65	6.52	0.49
HBXX-6517DS-A2M w/ Mount Pipe	A	From Leg	4.00 0.00	0.0000	217.00	No Ice 1/2"	7.97 8.73	5.99 6.72	0.08 0.14
Mountripe			3.00			lce	9.51	7.47	0.21
						1" Ice 2" Ice	11.11	9.02	0.40
HBXX-6517DS-A2M w/	В	From Leg	4.00	0.0000	217.00	No Ice	7.97	5.99	0.08
Mount Pipe			0.00			1/2"	8.73	6.72	0.14
			3.00			Ice 1" Ice 2" Ice	9.51 11.11	7.47 9.02	0.21 0.40
HBXX-6517DS-A2M w/	С	From Leg	4.00	0.0000	217.00	∠ ice No ice	7.97	5.99	0.08
Mount Pipe	0		0.00	0.0000	211.00	1/2"	8.73	6.72	0.14
			3.00			ce	9.51	7.47	0.21
						1" Ice 2" Ice	11.11	9.02	0.40
B66A RRH4X45	А	From Leg	4.00	0.0000	217.00	No Ice	2.58	1.63	0.07
			0.00			1/2"	2.79	1.81	0.09
			3.00			Ice 1" Ice 2" Ice	3.01 3.48	2.00 2.40	0.11 0.17
B66A RRH4X45	в	From Leg	4.00	0.0000	217.00	Z ^a lce No Ice	2.58	1.63	0.07
	D	Lion Ley	0.00	0.0000	211.00	1/2"	2.30	1.81	0.09
			3.00			lce	3.01	2.00	0.11

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C₄A₄ Side	Weight
			Vert ft ft	o	ft		ft²	ft²	К
			ft			1" [ce	3.48	2.40	0.17
						2" Ice	0.40	2.40	0.17
B66A RRH4X45	С	From Leg	4.00	0.0000	217.00	No Ice	2.58	1.63	0.07
			0.00			1/2"	2.79	1.81	0.09
			3.00			Ice	3.01	2.00	0.11
						1" Ice 2" Ice	3.48	2.40	0.17
RRH2x60-700	А	From Leg	4.00	0.0000	217.00	No Ice	3.50	1.82	0.06
		0	0.00			1/2"	3.76	2.05	0.08
			3.00			ce	4.03	2.29	0.11
						1" Ice	4.58	2.79	0.17
RRH2X60-700	в	From Log	4.00	0.0000	217.00	2" Ice No Ice	3.50	1.82	0.06
	D	From Leg	4.00 0.00	0.0000	217.00	1/2"	3.50	2.05	0.08
			3.00			lce	4.03	2.29	0.00
						1" Ice	4.58	2.79	0.17
						2" ce			
RRH2X60-700	С	From Leg	4.00	0.0000	217.00	No Ice	3.50	1.82	0.06
			0.00			1/2"	3.76	2.05	0.08
			3.00			Ice 1" Ice	4.03 4.58	2.29 2.79	0 <u>.</u> 11 0.17
						2" Ice	4.50	2.15	0.17
(2) DB-T1-6Z-8AB-0Z	С	From Leg	1.00	0.0000	217.00	No Ice	4.80	2.00	0.04
. ,		U	0.00			1/2"	5.07	2.19	0.08
			-3.00			ce	5.35	2.39	0.12
						1" Ice 2" Ice	5.93	2.81	0.21
side Arm Mount [SO 306-	в	From Leg	2.00	0.0000	203.00	No Ice	0.41	2.26	0.04
1]	2	1 tom Log	0.00	010000	200100	1/2"	0.81	3.83	0.06
-			0.00			ce	1.23	5.48	0.09
						1" Ice	2.08	9.37	0.19
	0		0.00	0.0000	000.00	2" Ice	0.44	0.00	0.04
Side Arm Mount [SO 306-	С	From Leg	2.00 0.00	0.0000	203.00	No Ice 1/2"	0.41 0.81	2.26 3.83	0.04 0.06
1]			0.00			l/2	1.23	5.48	0.08
			0.00			1" Ice	2.08	9.37	0.19
						2" Ice			
OG-4	В	From Leg	4.00	0.0000	203.00	No Ice	4.31	4.31	0.02
			0.00			1/2"	7.14	7.14	0.06
			6.00			Ice 1" Ice	7.86	7.86	0.11
						2" Ice	9.34	9.34	0.23
OG-4	С	From Leg	4.00	0.0000	203.00	No ce	4.31	4.31	0.02
	-	5	0.00			1/2"	7.14	7.14	0.06
			6.00			ce	7.86	7.86	0.11
						1" Ice 2" Ice	9.34	9.34	0.23
* Side Arm Mount [SO 301-	в	From Leg	1.50	0.0000	188.00	No Ice	0.46	0.91	0.02
1]	5		0.00	0.0000		1/2"	0.65	1.30	0.02
			0.00			Ice	0.87	1.71	0.05
						1" Ice	1.41	2.62	0.09
	_					2" Ice			
DB589-A	В	From Leg	3.00	0.0000	188.00	No Ice 1/2"	2.76	2.76	0.01
			0.00 2.00			1/2" Ice	4.17 5.59	4.17 5.59	0.03 0.06
			2.00			1" Ice	8.49	8.49	0.00
DB589-A	в	From Leg	3.00	0.0000	188.00	2" Ice No Ice	2.76	2.76	0.01
5000-A		i ioni Ley	0.00	0.0000	100.00	1/2"	4.17	4.17	0.03
			-2.00			ce	5.59	5.59	0.06
						1" Ice	8.49	8.49	0.15
						2" Ice			

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustmen	Placement		C _A A _A Front	C _A A _A Side	Weight
	Leg		Lateral Vert	ť					
			ft		ft		ft²	ft^2	к
			ft ft	٥					
MX08FRO665-21 w/	Α	From Leg	4.00	0.0000	167.00	No Ice	8.01	4.23	0.11
Mount Pipe			0.00			1/2"	8.52	4.69	0.19
			0.00			ce	9.04	5.16	0.29
						1" Ice 2" Ice	10.11	6.12	0.52
MX08FRO665-21 w/	В	From Leg	4.00	0.0000	167.00	No Ice	8.01	4.23	0.11
Mount Pipe		-	0.00			1/2"	8.52	4.69	0.19
			0.00			ce	9.04	5.16	0.29
						1" Ice 2" Ice	10.11	6.12	0.52
MX08FRO665-21 w/	С	From Leg	4.00	0.0000	167.00	No Ice	8.01	4.23	0.11
Mount Pipe		-	0.00			1/2"	8.52	4.69	0.19
			0.00			ce	9.04	5.16	0.29
						1" Ice 2" Ice	10.11	6.12	0.52
TA08025-B604	А	From Leg	4.00	0.0000	167.00	No Ice	1.96	0.98	0.06
		-	0.00			1/2"	2.14	1.11	0.08
			0.00			ce	2.32	1.25	0.10
						1" Ice 2" Ice	2.71	1.55	0.15
TA08025-B605	А	From Leg	4.00	0.0000	167.00	No Ice	1.96	1.13	0.08
			0.00			1/2"	2.14	1.27	0.09
			0.00			ce	2.32	1.41	0.11
						1" Ice 2" Ice	2.71	1.72	0.16
RDIDC-9181-PF-48	Α	From Leg	4.00	0.0000	167.00	No Ice	2.01	1.17	0.02
			0.00			1/2"	2.19	1.31	0.04
			0.00			ce	2.37	1.46	0.06
						1" Ice 2" Ice	2.76	1.78	0.11
Commscope_MTC397508	А	None		0.0000	167.00	No Ice	23.85	23.85	1.26
3_Sector_(3)						1/2"	34.12	34.12	1.80
(ce	44.39	44.39	2.35
						1" Ice 2" Ice	64.93	64.93	3.43

TY-840	в	From Face	1.00	0.0000	14.00	No Ice	0.25	0.25	0.00
	-		0.00			1/2"	0.45	0.45	0.00
			0.00			Ice	0.65	0.65	0.00
						1" Ice	1.05	1.05	0.01
****						2" Ice			

Load Combinations

Comb.		Description
No.		
1	Dead Only	
2	1.2 Dead+1.0 Wind 0 deg - No Ice	
3	0.9 Dead+1.0 Wind 0 deg - No Ice	
4	1.2 Dead+1.0 Wind 30 deg - No Ice	
5	0.9 Dead+1.0 Wind 30 deg - No Ice	
6	1.2 Dead+1.0 Wind 60 deg - No Ice	
7	0.9 Dead+1.0 Wind 60 deg - No Ice	
8	1.2 Dead+1.0 Wind 90 deg - No Ice	
9	0.9 Dead+1.0 Wind 90 deg - No Ice	
10	1.2 Dead+1.0 Wind 120 deg - No Ice	
11	0.9 Dead+1.0 Wind 120 deg - No Ice	
12	1.2 Dead+1.0 Wind 150 deg - No Ice	
13	0.9 Dead+1.0 Wind 150 deg - No Ice	
14	1.2 Dead+1.0 Wind 180 deg - No Ice	
15	0.9 Dead+1.0 Wind 180 deg - No Ice	

tnxTower Report - version 8.1.1.0

Comb.	Description
No.	
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	ĸ	K	K
		Comb.			
Leg C	Max. Vert	18	283.96	27.41	-15.17
	Max. H _x	18	283.96	27.41	-15.17
	Max. H _z	5	-204.10	-19.83	12.65
	Min. Vert	7	-227.49	-22.77	12.49
	Min. H _x	7	-227.49	-22.77	12.49
	Min. H _z	18	283.96	27.41	-15.17
Leg B	Max. Vert	10	281.86	-27.61	-14.67
-	Max. H _x	23	-228.02	23.00	12.04
	Max. H _z	25	-213.74	20.69	13.29
	Min. Vert	23	-228.02	23.00	12.04
	Min. H _x	10	281.86	-27.61	-14.67
	Min. H _z	12	252.21	-23.69	-15.00
Leg A	Max. Vert	2	305.50	0.20	34.18
-	Max. H _x	21	16.13	2.64	1.44
	Max. H _z	2	305.50	0.20	34.18
	Min. Vert	15	-251.27	-0.23	-28.86
	Min. H _x	8	22.73	-2.67	2.02
	Min. H _z	15	-251.27	-0.23	-28.86

Maximum Tower Deflections - Service Wind

242.917 Ft Self Support Tower Structural Analysis Project Number 37521-1067.001.8700, Order 548869, Revision 0

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	o
T1	244.917 -	5.696	39	0.2167	0.0410
	224.792				
T2	224,792 -	4.779	39	0.2091	0.0370
	204.625				
Т3	204.625 -	3.905	39	0.1916	0.0306
	184.438				
T4	184.438 -	3.120	39	0.1682	0.0251
	164.229				
T5	164.229 -	2.438	39	0.1439	0.0209
	144.021				
T6	144.021 -	1.848	39	0.1238	0.0175
	123,813				
Τ7	123.813 -	1.352	39	0.1016	0.0149
	103.604				
Т8	103.604 -	0.934	39	0.0845	0.0122
	83.3333				
Т9	83.3333 - 63	0.595	39	0.0664	0.0103
T10	63 - 42.6667	0.329	39	0.0475	0.0084
T11	42.6667 -	0.133	39	0.0303	0.0063
	22.3334				
T12	22,3334 - 2	0.037	39	0.0129	0.0029

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	o	o	ft
245.00	Strobe Light	39	5.696	0.2167	0.0410	386221
242.00	Side Arm Mount [SO 303-3]	39	5.562	0.2159	0.0405	386221
238.00	OPA65R-BU6D w/ Mount Pipe	39	5.379	0.2148	0.0398	279195
217.00	Sector Mount [SM 503-3]	39	4.433	0.2035	0.0347	69622
203.00	Side Arm Mount [SO 306-1]	39	3.838	0.1899	0.0301	48038
188.00	Side Arm Mount SO 301-1	39	3,251	0,1726	0.0260	44076
167.00	MX08FRO665-21 w/ Mount Pipe	39	2.526	0.1470	0.0214	55430
122.00	Obstruction light	39	1.311	0.0998	0.0147	65910
14.00	TY-840	39	0.018	0.0071	0.0016	143709

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	o	o
T1	244.917	21.580	3	0.8242	0.1554
	224.792				
T2	224,792 -	18.088	3	0.7957	0.1402
	204.625				
Т3	204.625 -	14.766	3	0.7285	0.1160
	184.438				
T4	184.438 -	11.785	3	0.6384	0.0950
	164.229				
Т5	164.229 -	9.200	3	0.5452	0.0790
	144.021				
Т6	144.021 -	6.966	3	0.4686	0.0660
	123.813				
Т7	123.813 -	5.089	3	0.3839	0.0564
	103.604				
T8	103.604 -	3.513	3	0.3193	0.0462
	83.3333				
Т9	83.3333 - 63	2.230	3	0.2507	0.0389
T10	63 - 42.6667	1.231	3	0.1794	0.0315
T11	42.6667 -	0.493	2	0.1143	0.0238

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	0
T12	22.3334 22.3334 - 2	0.134	2	0.0486	0.0109

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	o	o	ft
245.00	Strobe Light	3	21.580	0.8242	0.1554	109240
242.00	Side Arm Mount [SO 303-3]	3	21.070	0.8213	0.1536	109240
238.00	OPA65R-BU6D w/ Mount Pipe	3	20.371	0.8171	0.1509	78969
217.00	Sector Mount [SM 503-3]	3	16.773	0.7742	0.1314	19137
203.00	Side Arm Mount [SO 306-1]	3	14.511	0.7218	0.1141	12970
188.00	Side Arm Mount SO 301-1	3	12.281	0.6552	0.0983	11790
167.00	MX08FRO665-21 w/ Mount Pipe	3	9.533	0.5569	0.0810	14485
122.00	Obstruction light	3	4.935	0.3773	0.0555	17290
14.00	TY-840	2	0.065	0.0268	0.0061	38143

Bolt Design Data

Section	Elevation	Component	Bolt	Bolt Size	Number	Maximum	Allowable	Ratio	Allowable	Criteria
No.		Туре	Grade		Of	Load	Load	Load	Ratio	
	ft			in	Bolts	per Bolt	per Bolt	Allowable	-	
						ĸ	ĸ			
T1	244.917	Leg	A325N	0.7500	4	2.53	30.10	0.084	1.05	Bolt Tension
		Diagonal	A325N	0.5000	1	2.54	6.20	0.410	1.05	Gusset Bearing
		Top Girt	A325N	0.5000	1	0.03	4.13	0.008	1.05	Member Bearing
T2	224.792	Leg	A325N	0.8750	4	7.62	41.56	0.183	1.05	Bolt Tension
		Diagonal	A325N	0.5000	1	3.60	6.20	0.581	1.05	Member Bearing
		Top Girt	A325N	0.5000	1	0.66	4.13	0.159	1.05	Member Bearing
Т3	204.625	Leg	A325N	0.8750	4	13.11	41.56	0.315	1.05	Bolt Tension
		Diagonal	A325N	0.5000	1	4.24	6.20	0.683	1.05	Member Bearing
Τ4	184.438	Leg	A325N	1.0000	4	18.67	54.52	0.343	1.05	Bolt Tension
		Diagonal	A325X	0.5000	1	4.83	8.27	0.584	1.05	Member Bearing
T5	164.229	Leg	A325N	1.0000	4	24.41	54.52	0.448	1.05	Bolt Tension
		Diagonal	A325X	0.5000	1	5.54	10.33	0.537	1.05	Gusset Bearing
T6	144.021	Leg	A325N	1.0000	6	19.78	54.52	0.363	1.05	Bolt Tension
		Diagonal	A325X	0.6250	1	6.49	13.05	0.497	1.05	Gusset Bearing
T 7	123.813	Leg	A325N	1.0000	6	23.52	54.52	0.431	1.05	Bolt Tension
		Diagonal	A325X	0.6250	1	6.97	10.44	0.667	1.05	Gusset Bearing
T8	103.604	Leg	A325N	1.0000	6	27.21	54.52	0.499	1.05	Bolt Tension
		Diagonal	A325N	0.7500	1	7.67	15.77	0.486	1.05	Member Bearing
Т9	83.3333	Leg	A325N	1.0000	8	23.17	54.52	0.425	1.05	Bolt Tension
		Diagonal	A325N	0.7500	1	8.32	15.77	0.528	1.05	Member Bearing
T10	63	Leg	A325N	1.0000	8	26.43	54.52	0.485	1.05	Bolt Tension
		Diagonal	A325N	0.7500	1	11.19	15.77	0.710	1.05	Gusset Bearing
T11	42.6667	Leg	A325X	1.0000	8	27.07	54.52	0.497	1.05	Bolt Tension
		Diagonal	A325X	0.7500	3	4.98	24.85	0.200	1.05	Bolt Shear
		Horizontal	A325X	0.7500	2	4.10	24.85	0.165	1.05	Bolt Shear
T12	22.3334	Diagonal	A325X	0.7500	3	4.61	24.85	0.185	1.05	Bolt Shear
		Horizontal	A325X	0.7500	2	3.99	24.85	0.160	1.05	Bolt Shear

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in²	к	ĸ	ϕP_n
T1	244.917 - 224.792	Pipe 2.875" x 0.203" (2.5 STD)	20.13	4.02	51.0 K=1.00	1.7040	-13.39	63.41	0.211 ¹
Т2	224.792 - 204.625	Pipe 3.5" x 0.300" (3 EH)	20.20	5.05	53.3 K=1.00	3.0159	-37.89	110.22	0.344 ¹
Т3	204.625 - 184.438	Pipe 4" x 0.318" (3.5 EH)	20.23	6.74	61.9 K=1.00	3.6784	-61.67	125.07	0.493 ¹
Τ4	184.438 - 164.229	Pipe 4.5" x 0.337" (4 EH)	20.25	6.75	54.8 K=1.00	4.4074	-87.84	159.18	0.552 ¹
T5	164.229 - 144.021	Pipe 5.563" x 0.375" (5 EH)	20.25	6.75	44.0 K=1.00	6.1120	-115.19	238.68	0.483 ¹
Т6	144.021 - 123.813	Pipe 5.563" x 0.375" (5 EH)	20.25	10.12	66.1 K=1.00	6.1120	-139.72	199.91	0.699 ¹
Τ7	123.813 - 103.604	Pipe 6.625" x 0.432" (6 EH)	20.25	10.12	55.3 K=1.00	8.4049	-166.39	302.33	0.550 ¹
Т8	103.604 - 83.3333	Pipe 6.625" x 0.432" (6 EH)	20.31	10.15	55.5 K=1.00	8.4049	-193.50	301.91	0.641 ¹
Т9	83.3333 - 63	Pipe 6.625" x 0.432" (6 EH)	20.37	10.19	55.7 K=1.00	8.4049	-220.90	301.49	0.733 ¹
T10	63 - 42.6667	Pipe 8.625" x 0.375" (8 EHS)	20.35	10.18	41.8 K=1.00	9.7193	-252.56	384.87	0.656 ¹
T11	42.6667 - 22.3334	Pipe 8.625" x 0.375" (8 EHS)	20.38	9.98	41.0 K=1.00	9.7193	-260.78	386.71	0.674 ¹
T12	22.3334 - 2	Pipe 8.75" x 0.500" (8 EH)	20.38	9.98	41.0 K=1.00	12.959 1	-284.77	515.72	0.552

¹ P_u / ϕP_n controls

		Diagonal	Desig	in Dat	ta (Co	mpres	sion)		
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φPn	Ratio Pu
	ft		ft	ft		in²	ĸ	ĸ	ϕP_n
T1	244.917 - 224.792	L 1.75 x 1.75 x 3/16	7.70	3.60	125.9 K=1.00	0.6211	-2.64	11.21	0.236 ¹
T2	224.792 - 204.625	L 1.75 x 1.75 x 3/16	9.83	4.80	167.7 K=1.00	0.6211	-3.41	6.32	0.539 ¹
Т3	204.625 - 184.438	L 2.5 x 2.5 x 3/16	12.47	6.15	149.0 K=1.00	0.9020	-4.30	11.63	0.370 ¹
T4	184.438 - 164.229	L 2.5 x 2.5 x 1/4	14.33	7.05	172.3 K=1.00	1.1900	-5.01	11.47	0.436 ¹
T5	164.229 - 144.021	L 2.5 x 2.5 x 5/16	16.25	7.95	195.2 K=1.00	1.4600	-5.54	10.97	0.505 ¹
Т6	144.021 - 123.813	L 3 x 3 x 5/16	19.57	9.69	197.5 K=1.00	1.7800	-6.60	13.06	0.505 ¹
Τ7	123.813 - 103.604	L 3.5 x 3.5 x 1/4	21.44	10.59	183.1 K=1.00	1.6900	-7.19	14.42	0.499 ¹
Т8	103.604 - 83.3333	L 3.5 x 3.5 x 1/4	23.37	11.54	199.5 K=1.00	1.6900	-7.77	12.15	0.639 ¹
Т9	83.3333 - 63	L 4 x 4 x 5/16	25.33	12.52	190.0 K=1.00	2.4000	-8.55	19.03	0.449 ¹
T10	63 - 42.6667	L 4 x 4 x 5/16	26.82	13.08	198.4 K=1.00	2.4000	-12.07	17.44	0.692 ¹
T11	42.6667 - 22.3334	Pipe 3.5" x 0.216" (3 STD)	24.26	12.13	125.1 K=1.00	2.2285	-14.93	32.16	0.464 ¹

Section No.	Elevation	Size	L	Lu	Kl/r	А	P_u	φ P n	Ratio Pu
	ft		ft	ft		in²	к	К	φP _n
T12	22.3334 - 2	Pipe 3.5" x 0.216" (3 STD)	25.00	12.50	128.9 K=1.00	2.2285	-13.83	30.30	0.456 ¹

¹ P_u / ϕP_n controls

Horizontal Design Data (Compression)

Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φPn	Ratio Pu
	ft		ft	ft		in²	K	K	ϕP_n
T11	42.6667 - 22.3334	Pipe 2.875" x 0.203" (2.5 STD)	25.23	12.25	155.2 K=1.00	1.7040	-8.21	15.98	0.514 ¹
T12	22.3334 - 2	Pipe 3.5" x 0.216" (3 STD)	27.73	13.50	139.2 K=1.00	2.2285	-7.98	25.97	0.307 ¹

¹ P_u / ϕP_n controls

Top Girt Design Data (Compression)

Section	Elevation	Size	L	Lu	Kl/r	Α	P_u	ΦP_n	Ratio
No.								'	P_u
	ft		ft	ft		in²	к	κ	ϕP_n
T1	244.917 -	L 2 x 2 x 1/8	6.56	6.11	184.6	0.4844	-0.03	4.07	0.007 1
	224.792				K=1.00				
T2	224.792 -	L 2 x 2 x 1/8	6.56	6.06	183.0	0.4844	-0.66	4.14	0.159 ¹
	204.625				K=1.00				

¹ P_u / ϕP_n controls

Redundant Horizontal (1) Design Data (Compression) Section Elevation Size L Lu Kl/r Α P_u ϕP_n Ratio No. P_u in² ft ft ft κ κ ϕP_n T11 42.6667 -Rohn 1.5" x 11 ga 6.31 5.95 145.7 0.5202 -4.56 5.53 0.825 1 22.3334 K=1.00 T12 22.3334 - 2 Pipe 1.9" x 0.145" (1.5 6.93 6.57 126.6 0.7995 -4.96 11.27 0.440¹ STD) K=1.00

¹ P_u / ϕP_n controls

Redundant Diagonal (1) Design Data (Compression)

Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φPn	Ratio Pu
	ft		ft	ft		in²	К	K	ϕP_n
T11	42.6667 - 22.3334	Pipe 1.9" x 0.145" (1.5 STD)	11.48	10.75	207.3 K=1.00	0.7995	-4.15	4.20	0.988 ¹
T12	22.3334 - 2	Rohn 2.25" x 14 ga	11.80	11.12	174.0	0.5651	-4.22	4.21	1.002 ¹

Section No.	Elevation	Size	L	Lu	Kl/r	Α	P_u	φPn	Ratio P.,
	ft		ft	ft		in²	К	К	$\frac{1}{\Phi P_n}$
					K=1.00				· · · · ·

¹ P_u / ϕP_n controls

Redundant Hip (1) Design Data (Compression)										
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φP _n	Ratio Pu	
	ft		ft	ft		in²	K	ĸ	ϕP_n	
T11	42.6667 - 22.3334	Rohn 1.5" x 11 ga	6.31	6.31	154.5 K=1.00	0.5202	-0.03	4.92	0.005 1	
T12	22.3334 - 2	Pipe 1.9" x 0.145" (1.5 STD)	6.93	6.93	133.6 K=1.00	0.7995	-0.02	10.12	0.002 ¹	

¹ P_u / ϕP_n controls

Redundant Hip Diagonal (1) Design Data (Compression)

Section No.	Elevation	Size	L	Lu	Kl/r	А	P_u	φ P _n	Ratio Pu
	ft		ft	ft		in²	К	К	φP _n
T11	42.6667 - 22.3334	Pipe 2.875" x 0.203" (2.5 STD)	15.06	15.06	190.7 K=1.00	1.7040	-0.08	10.58	0.008 ¹
T12	22.3334 - 2	Pipe 2.875" x Ó.203" (2.5 STD)	15.88	15.88	201.2 K=1.00	1.7040	-0.08	9.51	0.008 ¹

¹ P_u / ϕP_n controls

Inner Bracing Design Data (Compression)

Section No.	Elevation	Size	L	Lu	Kl/r	А	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in ²	K	к	ϕP_n
T11	42.6667 - 22.3334	Pipe 2.375" x 0.154" (2 STD)	12.61	12.61	192.3 K=1.00	1.0745	-0.01	6.56	0.002 1
T12	22.3334 - 2	Pipe 3.5" x 0.216" (3 STD)	13.86	13.86	143.0 K=1.00	2.2285	-0.02	24.63	0.001 ¹

¹ P_u / ϕP_n controls

Tension Checks

Leg Design Data (Tension)										
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φ P n	Ratio Pu	
	ft		ft	ft		in²	K	K	ϕP_n	
T1	244.917 -	Pipe 2.875" x 0.203" (2.5	20.13	4.02	51.0	1.7040	10.11	76.68	0.132 ¹	

tnxTower Report - version 8.1.1.0

242.917 Ft Self Support Tower Structural Analysis Project Number 37521-1067.001.8700, Order 548869, Revision 0

Section No.	Elevation	Size	Ĺ	Lu	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	ĸ	ĸ	ϕP_n
	224.792	STD)							
T2	224.792 - 204.625	Pipe 3.5" x 0.300" (3 EH)	20.20	5.05	53.3	3.0159	30.48	135.72	0.225 ¹
Т3	204.625 - 184.438	Pipe 4" x 0.318" (3.5 EH)	20.23	6.74	61.9	3.6784	52.42	165.53	0.317 ¹
T4	184.438 - 164.229	Pipe 4.5" x 0.337" (4 EH)	20.25	6.75	54.8	4.4074	74.70	198.34	0.377 ¹
T5	164.229 - 144.021	Pipe 5.563" x 0.375" (5 EH)	20.25	6.75	44.0	6.1120	97.65	275.04	0.355 ¹
T6	144.021 - 123.813	Pipe 5.563" x 0.375" (5 EH)	20.25	10.12	66.1	6.1120	118.65	275.04	0.431 ¹
Τ7	123.813 - 103.604	Pipe 6.625" x 0.432" (6 EH)	20.25	10.12	55.3	8.4049	141.09	378.22	0.373 ¹
Т8	103.604 - 83.3333	Pipe 6.625" x 0.432" (6 EH)	20.31	10.15	55.5	8.4049	163.27	378.22	0.432
Т9	83.3333 - 63	Pipe 6.625" x 0.432" (6 EH)	20.37	10.19	55.7	8.4049	185.40	378.22	0.490
T10	63 - 42.6667	Pipe 8.625" x 0.375" (8 EHS)	20.35	10.18	41.8	9.7193	211.41	437.37	0.483
T11	42.6667 - 22.3334	Pipe 8.625" x 0.375" (8 EHS)	20.38	0.42	1.7	9.7193	219.96	437.37	0.503
T12	22.3334 - 2	Pipe 8.75" x 0.500" (8 EH)	20.38	0.42	1.7	12.959 1	237.17	583.16	0.407

¹ P_u / ϕP_n controls

		Diagoı	nal De	sign [Data (Tensio	on)		
Section No.	Elevation	Size	L	Lu	Kl/r	Α	Pu	φ P n	Ratio Pu
	ft		ft	ft		in²	κ	ĸ	ϕP_n
T1	244.917 - 224.792	L 1.75 x 1.75 x 3/16	7.70	3.60	82.9	0.3779	2.54	16.44	0.155 ¹
Т2	224.792 - 204.625	L 1.75 x 1.75 x 3/16	9.38	4.57	104.5	0.3779	3.60	16.44	0.219 ¹
Т3	204.625 - 184.438	L 2.5 x 2.5 x 3/16	12.47	6.15	96.4	0.5886	4.24	25.60	0.165 ¹
T4	184.438 - 164.229	L 2.5 x 2.5 x 1/4	14.33	7.05	111.6	0.7753	4.83	33.73	0.143 ¹
Τ5	164.229 - 144.021	L 2.5 x 2.5 x 5/16	16.25	7.95	127.2	0.9485	5.54	41.26	0.134 ¹
Т6	144.021 - 123.813	L 3 x 3 x 5/16	19.57	9.69	127.9	1.1592	6.49	50.43	0.129 ¹
Τ7	123.813 103.604	L 3.5 x 3.5 x 1/4	21.44	10.59	117.9	1.1269	6.97	49.02	0.142 ¹
Т8	103.604 - 83.3333	L 3.5 x 3.5 x 1/4	23.37	11.54	128.5	1.1034	7.52	53.79	0.140 ¹
Т9	83.3333 - 63	L 4 x 4 x 5/16	25.33	12.52	122.5	1.5949	8.32	69.38	0.120 ¹
T10	63 - 42.6667	L 4 x 4 x 5/16	26.15	12.75	124.7	1.5949	11.19	69.38	0.161 ¹
T11	42.6667 - 22.3334	Pipe 3.5" x 0.216" (3 STD)	24.26	12.13	125.1	2.2285	13.14	100.28	0.131 ¹
T12	22.3334 - 2	Pipe 3.5" x 0.216" (3 STD)	25.00	12.50	128.9	2.2285	12.27	100.28	0.122 ¹

¹ P_u / ϕP_n controls

Horizontal Design Data (Tension)

Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in²	K	K	φP _n
T11	42.6667 - 22.3334	Pipe 2.875" x 0.203" (2.5 STD)	25.23	12.25	155.2	1.7040	7.44	76.68	0.097 ¹
T12	22.3334 - 2	Pipe 3.5" x 0.216" (3 STD)	27.73	13.50	139.2	2.2285	7.39	100.28	0.074 ¹

¹ P_u / ϕP_n controls

Top Girt Design Data (Tension)

Section No.	Elevation	Size	L	Lu	Kl/r	А	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in²	К	К	φ <i>P</i> _n
T1	244.917 - 224.792	L 2 x 2 x 1/8	6.56	6.11	121.2	0.3047	0.03	13.25	0.002 ¹
T2	224.792 - 204.625	L 2 x 2 x 1/8	6.56	6.06	120.2	0.3047	0.66	13.25	0.050 ¹

¹ P_u / ϕP_n controls

	Redundant Horizontal (1) Design Data (Tension)								
Section No.	Elevation	Size	L	Lu	Kl/r	Α	Pu	φPn	Ratio Pu
	ft		ft	ft		in²	к	К	ϕP_n
T11	42.6667 - 22.3334	Rohn 1.5" x 11 ga	6.31	5.95	145.7	0.5202	4.56	23.41	0.195 ¹
T12	22.3334 - 2	Pipe 1.9" x 0.145" (1.5 STD)	6.93	6.57	126.6	0.7995	4.96	35.98	0.138 ¹

¹ P_u / ϕP_n controls

Redundant Diagonal (1) Design Data (Tension) Elevation Size L Lu Kl/r P_u Section Α ϕP_n Ratio No. P_u ft ft in² κ ft κ φPn 0.115¹ 42.6667 -Pipe 1.9" x 0.145" (1.5 0.7995 T11 11.48 10.75 207.3 4.15 35.98 22.3334 STD) 22.3334 - 2 Rohn 2.25" x 14 ga 0.166¹ T12 11.80 11.12 174.0 0.5651 4.22 25.43

¹ P_u / ϕP_n controls

Redundant Hip (1) Design Data (Tension)									
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φ P n	Ratio P _u
	ft		ft	ft		in²	ĸ	ĸ	ϕP_n
T11	42.6667 - 22.3334	Rohn 1.5" x 11 ga	6.31	6.31	154.5	0.5202	0.01	23.41	0.001 1
T12	22.3334 - 2	Pipe 1.9" x 0.145" (1.5	6.93	6.93	133.6	0.7995	0.01	35.98	0.000 ¹

tnxTower Report - version 8.1.1.0

Section No.	Elevation	Size	L	Lu	Kl/r	Α	P_u	φPn	Ratio Pu
	ft		ft	ft		in²	К	К	φ <i>P</i> _n
		STD)							

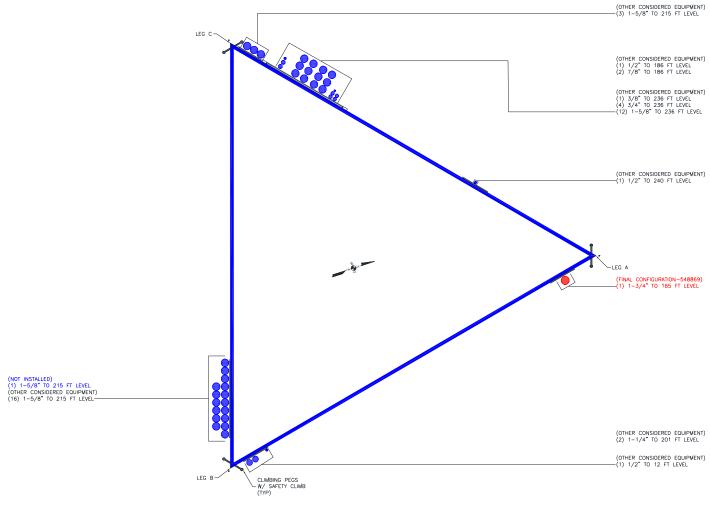
¹ P_u / ϕP_n controls

	Redundant Hip Diagonal (1) Design Data (Tension)								
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φP _n	Ratio Pu
	ft		ft	ft		in²	К	ĸ	φP _n
T11	42.6667 - 22.3334	Pipe 2.875" x 0.203" (2.5 STD)	15.06	15.06	190.7	1.7040	0.07	76.68	0.001 1
T12	22.3334 - 2	Pipe 2.875" x 0.203" (2.5 STD)	15.88	15.88	201.2	1.7040	0.07	76.68	0.001 ¹

¹ P_u / ϕP_n controls

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
T1	244.917 -	Leg	Pipe 2.875" x 0.203" (2.5	1	-13.39	66.58	20.1	Pass
	224.792		STD)					
T2	224.792 -	Leg	Pipe 3.5" x 0.300" (3 EH)	37	-37.89	115.74	32.7	Pass
	204.625							
Т3	204.625 -	Leg	Pipe 4" x 0.318" (3.5 EH)	69	-61.67	131.32	47.0	Pass
	184.438	-	,					
T4	184.438 -	Leg	Pipe 4.5" x 0.337" (4 EH)	90	-87.84	167.14	52.6	Pass
	164.229	0						
T5	164.229 -	Leg	Pipe 5.563" x 0.375" (5 EH)	111	-115.19	250.61	46.0	Pass
	144.021	0	, , ,					
T 6	144.021 -	Leg	Pipe 5.563" x 0.375" (5 EH)	132	-139.72	209.91	66.6	Pass
	123.813	5						
T 7	123,813 -	Leg	Pipe 6.625" x 0.432" (6 EH)	147	-166.39	317 <u>.</u> 44	52.4	Pass
	103,604	5				••••		
T8	103.604	Leg	Pipe 6.625" x 0.432" (6 EH)	162	-193.50	317.01	61.0	Pass
10	83,3333	209		102	100100	011101	0110	1 400
Т9	83,3333 - 63	Leg	Pipe 6.625" x 0.432" (6 EH)	177	-220.90	316.57	69.8	Pass
T10	63 - 42.6667	Leg	Pipe 8.625" x 0.375" (8 EHS)	192	-252.56	404.12	62.5	Pass
T11	42.6667 -	Leg	Pipe 8.625" x 0.375" (8 EHS)	207	260.78	406.05	64.2	Pass
	22.3334	LUG	1 ipe 0.020 x 0.070 (0 E110)	201	200.70	400.00	04.2	1 433
T12	22.3334 - 2	Leg	Pipe 8.75" x 0.500" (8 EH)	240	-284 77	541.51	52.6	Pass
T1	244,917 -	Diagonal	L 1.75 x 1.75 x 3/16	11	-2.64	11.77	22.5	Pass
	224.792	Diagonal	E 1.75 X 1.75 X 3/10		-2.04	11.77	22.0	1 435
T2	224.792	Diagonal	L 1.75 x 1.75 x 3/16	44	-3.41	6.64	51.3	Pass
12	204.625	Diagonal	E 1.75 X 1.75 X 3/10		-0.41	0.04	51.5	1 035
Т3	204.625 -	Diagonal	L 2.5 x 2.5 x 3/16	71	-4.30	12.21	35.2	Pass
15	184,438	Diagonal	L 2.5 X 2.5 X 5/10	/ 1	-4.50	12.21	55.2	r ass
T4	184,438 -	Diagonal	L 2.5 x 2.5 x 1/4	92	-5.01	12.04	41.6	Pass
14	164,229	Diagonal	L 2.5 X 2.5 X 1/4	92	-5.01	12.04	41.0	Fd55
Т5	164.229	Diagonal	L 2.5 x 2.5 x 5/16	113	-5.54	11.51	48.1	Pass
15		Diagonal	L 2.5 X 2.5 X 5/16	113	-5.54	11.51	48.1	Pass
TO	144.021	Disease	1.2	104	0.00	40.70	40.4	Deee
Т6	144.021 -	Diagonal	L 3 x 3 x 5/16	134	-6.60	13.72	48.1	Pass
T 7	123.813	D'		1.10	7.40	45.44	47.5	
T 7	123.813 -	Diagonal	L 3.5 x 3.5 x 1/4	149	-7.19	15.14	47.5	Pass
Ŧo	103.604			101		10 70		-
T8	103.604 -	Diagonal	L 3.5 x 3.5 x 1/4	164	-7.77	12.76	60.9	Pass
	83.3333					10.05		_
Т9	83.3333 - 63	Diagonal	L 4 x 4 x 5/16	179	-8.55	19.99	42.8	Pass
T10	63 - 42.6667	Diagonal	L 4 x 4 x 5/16	196	-12.07	18.32	65.9	Pass
T11	42.6667 -	Diagonal	Pipe 3.5" x 0.216" (3 STD)	212	-14.93	33.77	44.2	Pass


tnxTower Report - version 8.1.1.0

242.917 Ft Self Support Tower Structural Analysis Project Number 37521-1067.001.8700, Order 548869, Revision 0

Section	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
No.	22.3334	.,,,,,,					2 4 4 4 4 4 4	
T12	22.3334 22.3334 - 2	Diagonal	Pipe 3.5" x 0.216" (3 STD)	045	-13.83	31.82	43.5	Deee
		0		245				Pass
T11	42.6667 - 22.3334	Horizontal	Pipe 2.875" x 0.203" (2.5 STD)	208	-8.21	16.78	48.9	Pase
T12	22.3334 - 2	Horizontal	Pipe 3.5" x 0.216" (3 STD)	241	-7.98	27.27	29.2	Pase
T1	244.917 - 224.792	Top Girt	L 2 x 2 x 1/8	5	-0.03	4.27	0.7	Pase
Т2	224.792 - 204.625	Top Girt	L 2 x 2 x 1/8	42	-0.66	4.35	15.1	Pas
T11	42.6667 - 22.3334	Redund Horz 1 Bracing	Rohn 1.5" x 11 ga	226	-4.56	5.81	78.5	Pas
T12	22.3334 - 2	Redund Horz 1 Bracing	Pipe 1.9" x 0.145" (1.5 STD)	253	-4.96	11.84	41.9	Pas
T11	42.6667 -	Redund Diag 1	Pipe 1.9" x 0.145" (1.5 STD)	221	-4.15	4.41	94.1	Pas
T12	22.3334 22.3334 - 2	Bracing Redund Diag 1	Rohn 2.25" x 14 ga	254	-4.22	4.42	95.4	Pas
T11	42.6667 - 22.3334	Bracing Redund Hip 1	Rohn 1.5" x 11 ga	233	-0.03	5.17	0.5	Pas
T12	22.3334 22.3334 - 2	Bracing Redund Hip 1 Bracing	Pipe 1.9" x 0.145" (1.5 STD)	266	-0.02	10.62	0.2	Pas
T11	42.6667 - 22.3334	Redund Hip Diagonal 1 Bracing	Pipe 2.875" x 0.203" (2.5 STD)	234	-0.08	11.11	0.7	Pas
T12	22.3334 22.3334 - 2	Redund Hip Diagonal 1 Bracing	Pipe 2.875" x 0.203" (2.5 STD)	267	-0.08	9.99	0.8	Pas
T11	42.6667 - 22.3334	Inner Bracing	Pipe 2.375" x 0.154" (2 STD)	235	-0.01	6.89	0.5	Pas
T12	22.3334 - 2	Inner Bracing	Pipe 3.5" x 0.216" (3 STD)	268	-0.02	25.86	0.4 Summary	Pas
						Leg (T9)	69.8	Pas
						Diagonal	65.9	Pas
						(T10) Horizontal	48.9	Pas
						(T11) Top Girt (T2)	15.1	Pas
						Redund Horz 1 Bracing	78.5	Pas
						(T11) Redund Diag 1 Bracing	95.4	Pas
						(T12) Redund Hip 1	0.5	Pas
						Bracing (T11) Redund Hip	0.8	Pas
						Diagonal 1 Bracing (T12) Inner Bracing	0.5	Pas
						(T11) Bolt Checks	67.6	Pas
						RATING =	95.4	Pas

APPENDIX B

BASE LEVEL DRAWING

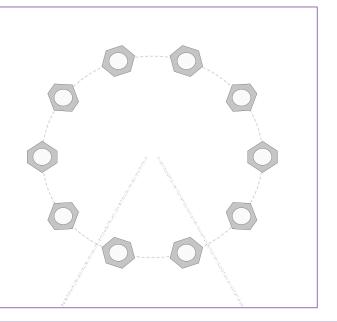
BUSINESS UNIT: 841294 TOWER ID:C_BASELEVEL

APPENDIX C

ADDITIONAL CALCULATIONS

Self Support Anchor Rod Capacity

Site Info	
BU #	841294
Site Name	Monroe Guinea Road
Order #	548869 Rev 0


Analysis Considerations							
TIA-222 Revision	Н						
Grout Considered:	Yes						
l _{ar} (in)	0.75						

Applied Loads								
	Comp.	Uplift						
Axial Force (kips)	305.50	251.27						
Shear Force (kips) 34.18 28.86								
*TIA-222-H Section 15.5 Applied								

Considered Eccentricity	
Leg Mod Eccentricity (in)	0.000
Anchor Rod N.A Shift (in)	0.000
Total Eccentricity (in)	0.000

*Anchor Rod Eccentricity Applied

Connection Properties Analysis Results Anchor Rod Data Anchor Rod Summary (units of kips, kip-in) (10) 1" ø bolts (A354-BC N; Fy=109 ksi, Fu=125 ksi) Pu_t = 25.13 φPn_t = 56.81 Stress Rating l_{ar} (in): 0.75 Vu = 2.89 φVn = 36.82 42.1% Mu = n/a φMn = n/a Pass

Analysis Date: 8/31/2021

L	
ο	
Ŧ	
<u>a</u>	
2	
F	
ະ	
шĭ	
τ	
Ð	
ñ	
-	
õ	
<u>e</u>	
Ē	
Y	

CCROWN

≥

Check Limitation Apply TIA-222-H Section 15.5:

N/A

Additional Longitudinal Rebar

D

> Override Critical Depth: Go to Soi

> > 446.15

4.6% Uplift

Input Effective Depths (else Actual): Shear Design Options Check Shear along Depth of Pier: Utilize Shear-Friction Methodology:

Uplift 11 46 27 32 284 50

Compression 11.46 23.31 333.55 5.4%

Soil Lateral Check C D_{v=0} (ft from TOC) Soil Safety Factor Max Moment (kip-ft)

Analysis Results

	BU # : 841294	Site Name: Monroe-Guinea Rd	Order Number: 548869, Rev 0	TIA-222 Revison: H	Tower Type: Self Support
--	---------------	-----------------------------	-----------------------------	--------------------	--------------------------

Report File:

Appli	Applied Loads	
	Comp.	Uplift
Moment (kip-ft)		
Axial Force (kips)	305	251
Shear Force (kips)	34	29
Materia	Material Properties	
-	•	

Material Properties	3 ksi	60 ksi	40 ksi	
Material	Concrete Strength, fc:	Rebar Strength, Fy:	Tie Yield Strength, Fyt:	

Pier Design Data	20 ft	2 ft	Pier Section 1	From 2' above grade to 20' below grade	3.5 ft	12	6	5.5 in	3	18 in
Pier D	Depth	Ext. Above Grade	Pier	From 2' above gr	Pier Diameter	Rebar Quantity	Rebar Size	Clear Cover to Ties	Tie Size	Tie Spacing

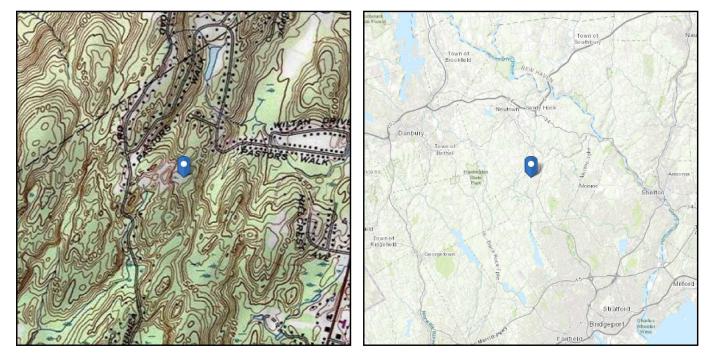
	Rating*	5.4%	
	Soil Vertical Check	Compression	
	Skin Friction (kips)	669.22	
	End Bearing (kips)	432.95	
	Weight of Concrete (kips)	38.10	
	Total Capacity (kips)	1102.17	
_	Axial (kips)	343.10	
Rebar & Pier Options	Rating*	29.6%	
	Reinforced Concrete Flexure	Compression	
Embedded Pole Inputs	Critical Depth (ft from TOC)	11.76	
Belled Pier Inputs	Critical Moment (kip-ft)	333.02	
	Critical Moment Capacity	1028.55	
	Rating*	30.8%	
	Reinforced Concrete Shear	Compression	

28.57 474.72 251.00 50.4% Uplift 10.66 281.19 614.67 43.6% Uplift

near Compression Uplift	am TOC) 16.73 16.73	ear (kip) 63.30 53.99	Capacity 206.22 97.90	Rating* 29.2% 52.5%	Rating* 52.5%	Rating* 50.4%	H Section 15.5	
Reinforced Concrete Shear	Critical Depth (ft from TOC)	Critical Shear (kip)	Critical Shear Capacity		Structural Foundation Rating*	Soil Interaction Rating*	*Rating per TIA-222-H Section 15.5	

			Soil Type	Cohesionless	Cohesionless	Cohesionless	Cohesive							
				Cohe	Cohe	Cohe	Cot							
			Jlt. Gross Bearing SPT Blow Capacity Count (ksf)											
			Ult. Gross Bearing Capacity (ksf)	1			60							
			Ultimate Skin Friction Uplift Override (ksf)	00.0	0.40	0.40	4.00							
			Ultimate Skin Friction Comp Override (ksf)		09'0	09'0	00'9							
ofile										Calculated Calculated Ultimate Skin Ultimate Skin Ultimate Skin Friction Comp Friction Comp Friction Uplift Override (ksf) (ksf) (ksf)	0.000	0000	0000	4.500
		Calculated Ultimate Skin Friction Comp (ksf)	0000	000.0	000.0	4.500								
Soil Profile # of Layers 4			Angle of Friction (degrees)	0	34	34								
			Cohesion (ksf)				10							
			Y _{concrete} (pcf)	150	150	150	150							
			Y _{soil} (pcf)	120	120	120	150							
			Thickness (ft)	1.75	1.75	3.5	13							
	A/A		Bottom (ft)	1.75	3.5	7	20							
	Groundwater Depth		Top (ft)	0	1.75	3.5	7							
	Groundwa		Layer	-	2	e	4							

Version 5.0.3


No Address at This

Location

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

Elevation: 583.08 ft (NAVD 88) Latitude: 41.341856 Longitude: -73.274522

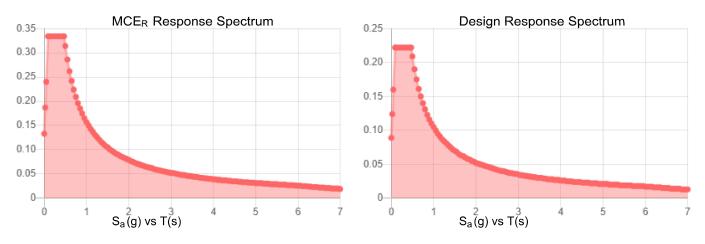
Wind

Results:

Wind Speed:	120 Vmph
10-year MRI	76 Vmph
25-year MRI	86 Vmph
50-year MRI	91 Vmph
100-year MRI	98 Vmph

Date &ocessed:

AGE ELGE 17202 Fig. 26.5-1A and Figs. CC-1–CC-4, and Section 26.5.2, incorporating errata of March 12, 2014


Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class: Results:	D - Stiff Soil			
S _S :	0.209	S _{DS} :	0.222	
S ₁ :	0.065	S _{D1} :	0.105	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA :	0.113	
S _{MS} :	0.334	PGA M:	0.177	
S _{M1} :	0.157	F _{PGA} :	1.575	
		e :	1	

Seismic Design Category B

Data Accessed: Date Source:

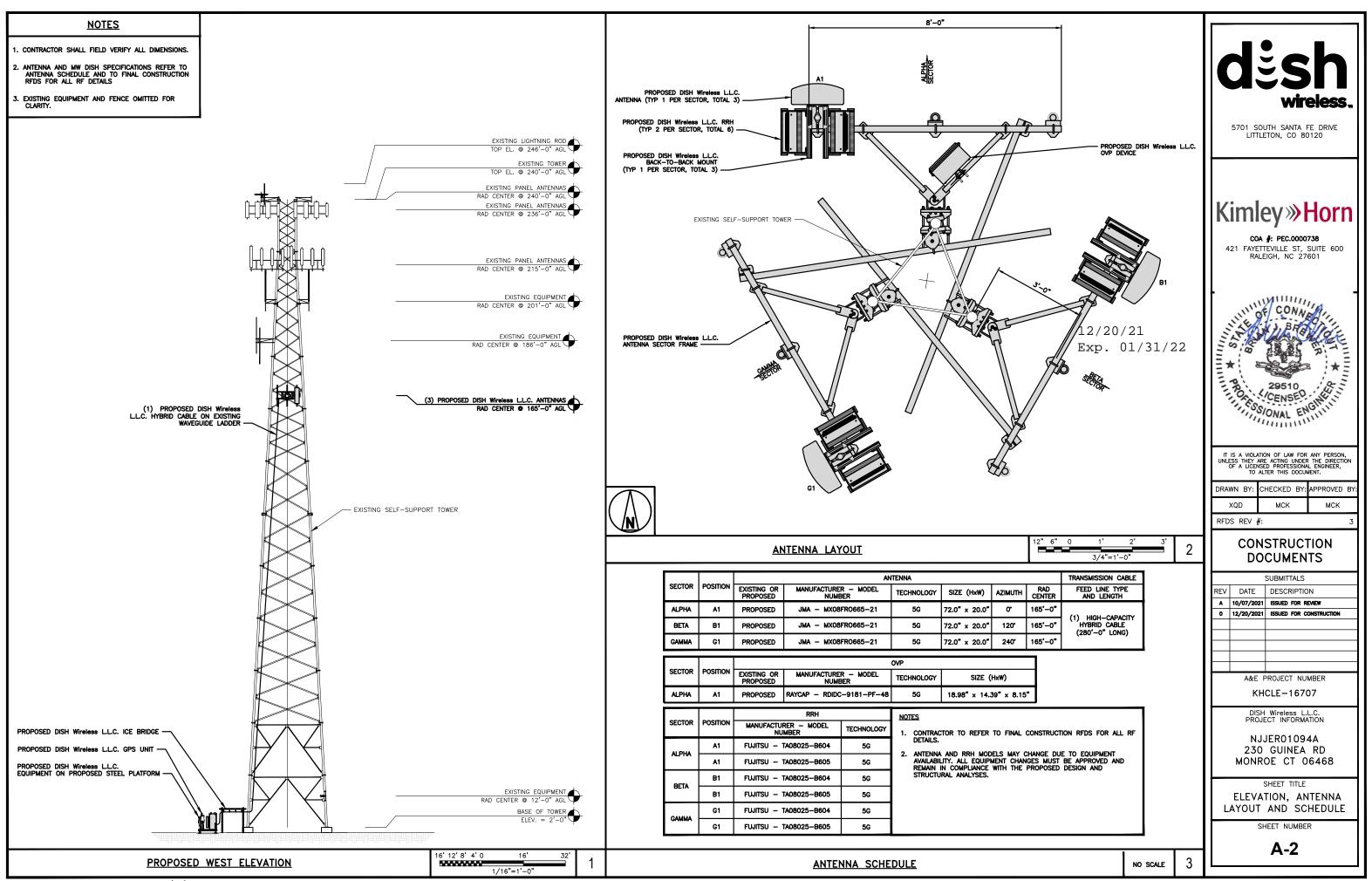
Tue Aug 31 2021

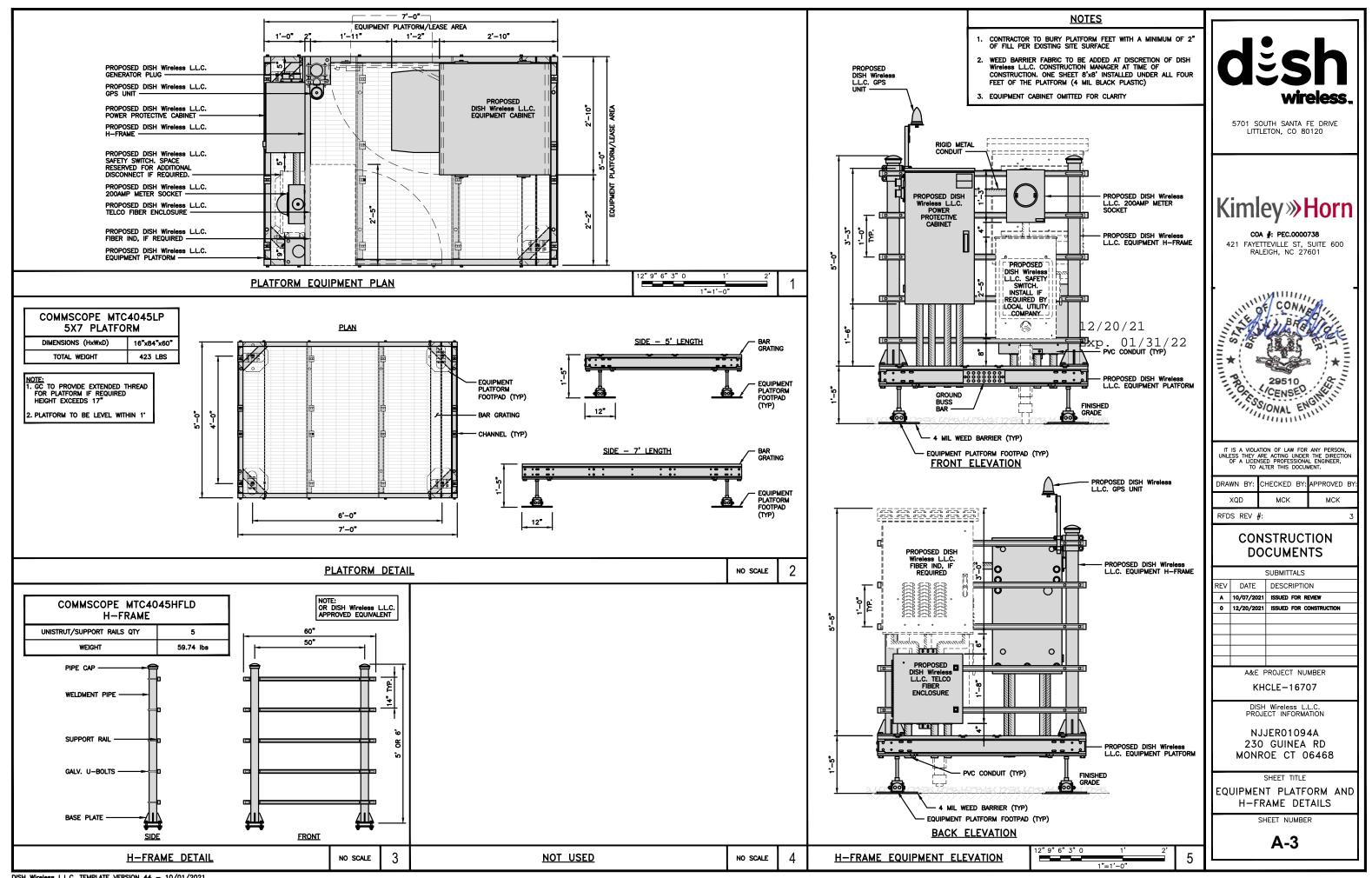
USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

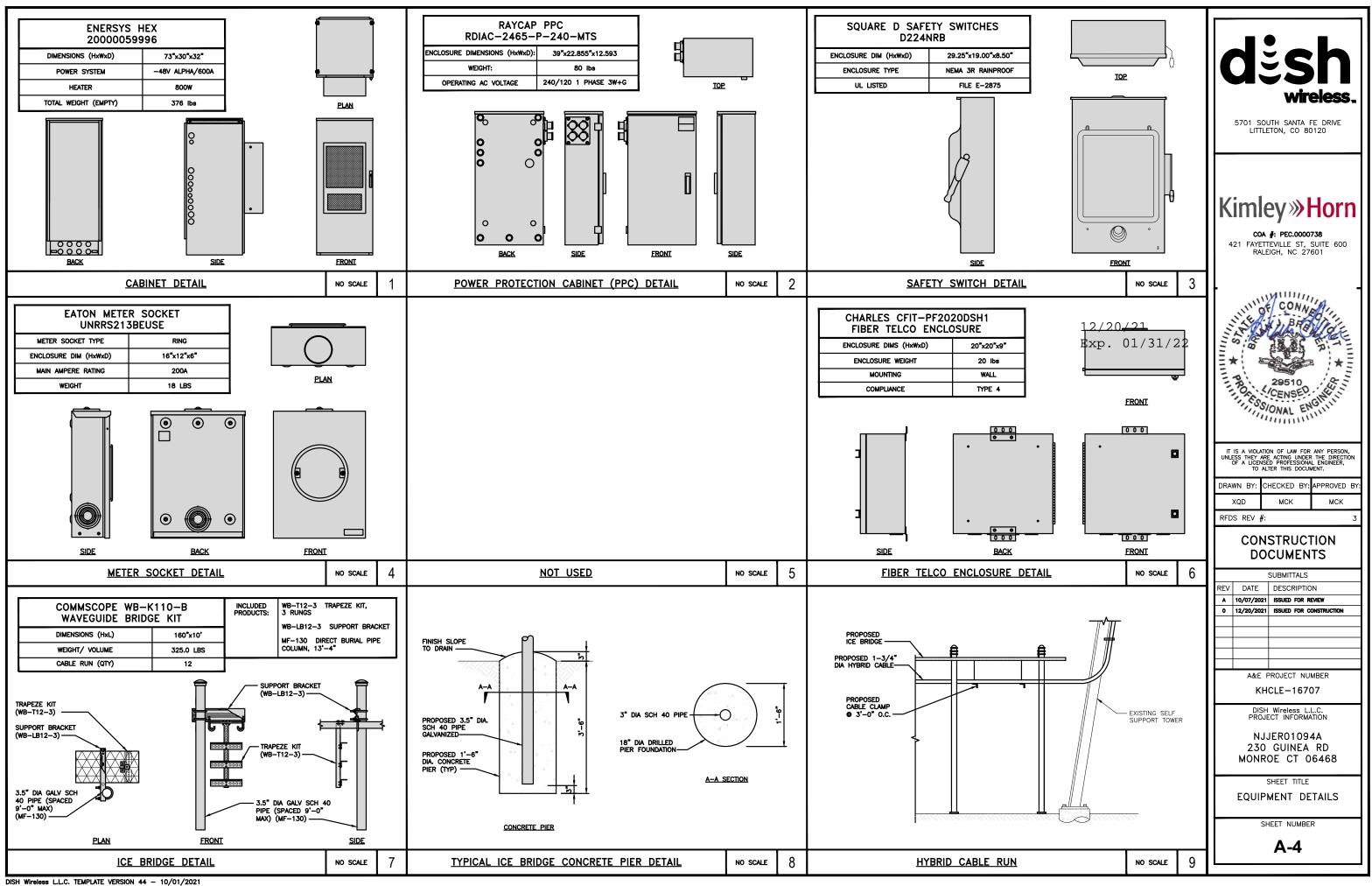
Ice

Results:

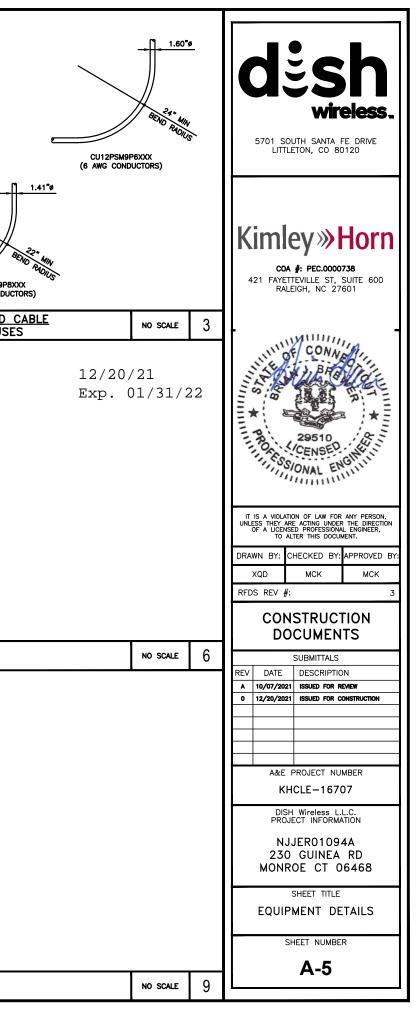
Ice Thickness:	0.75 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Tue Aug 31 2021

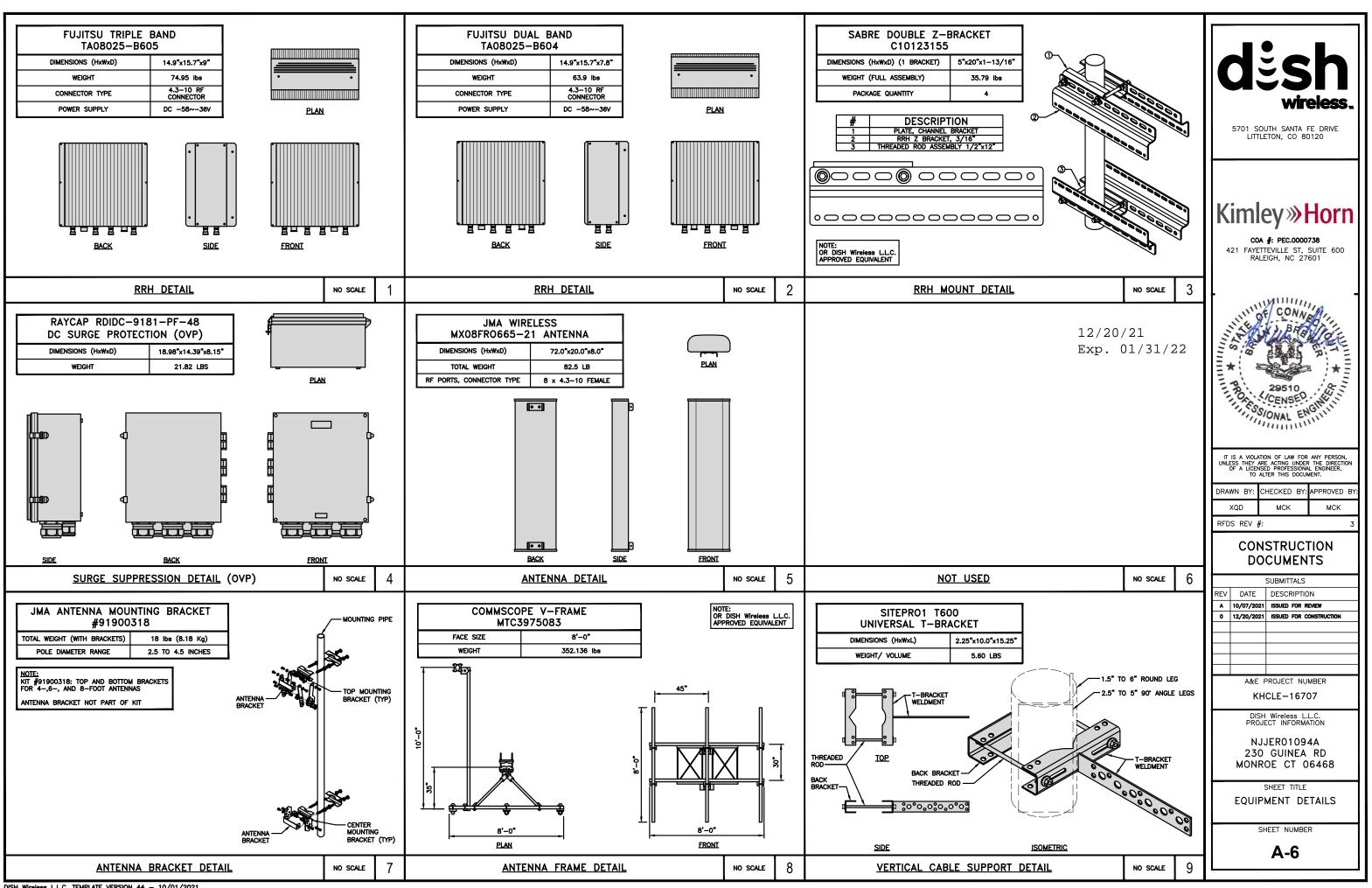

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

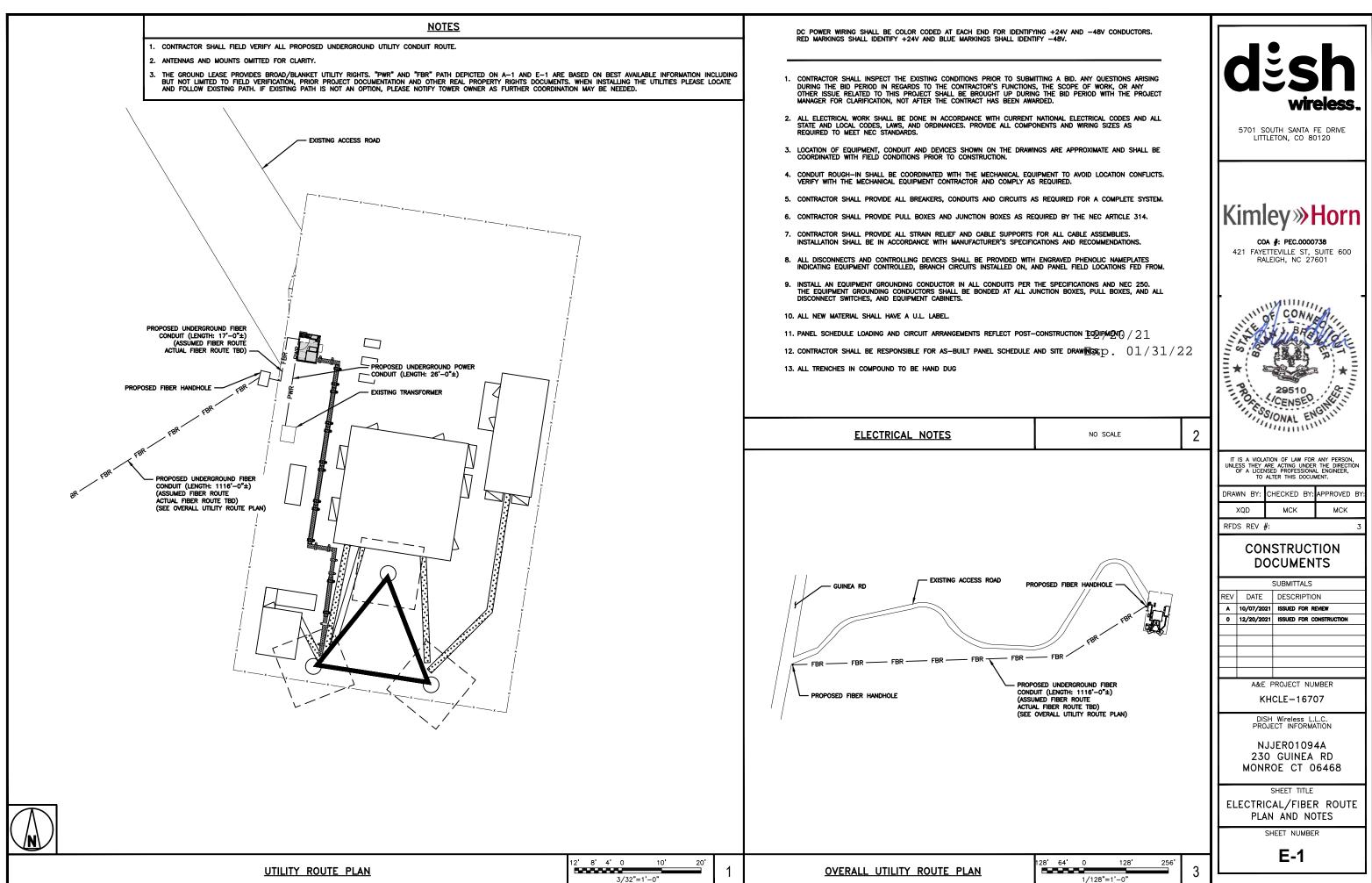

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

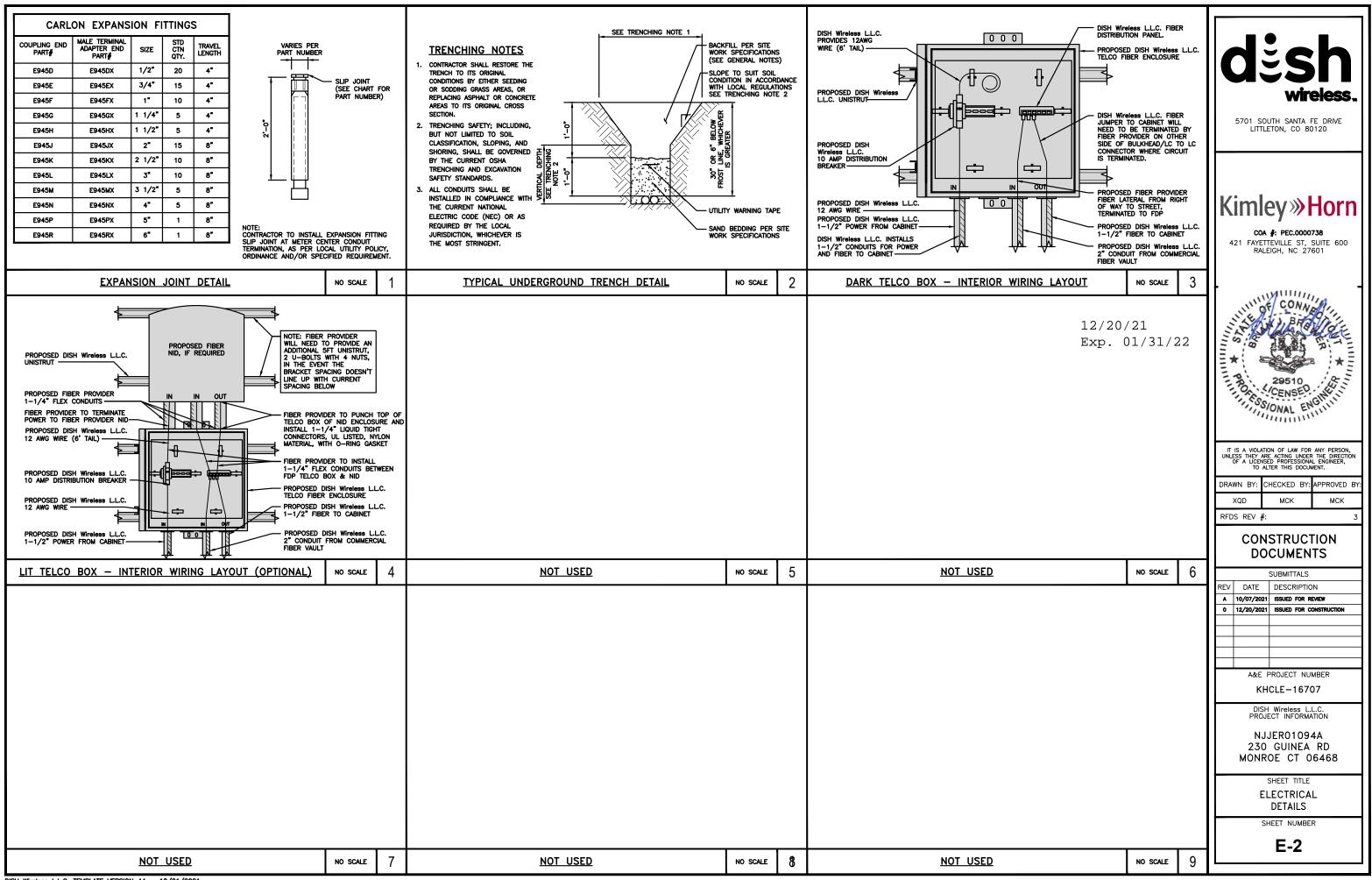

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

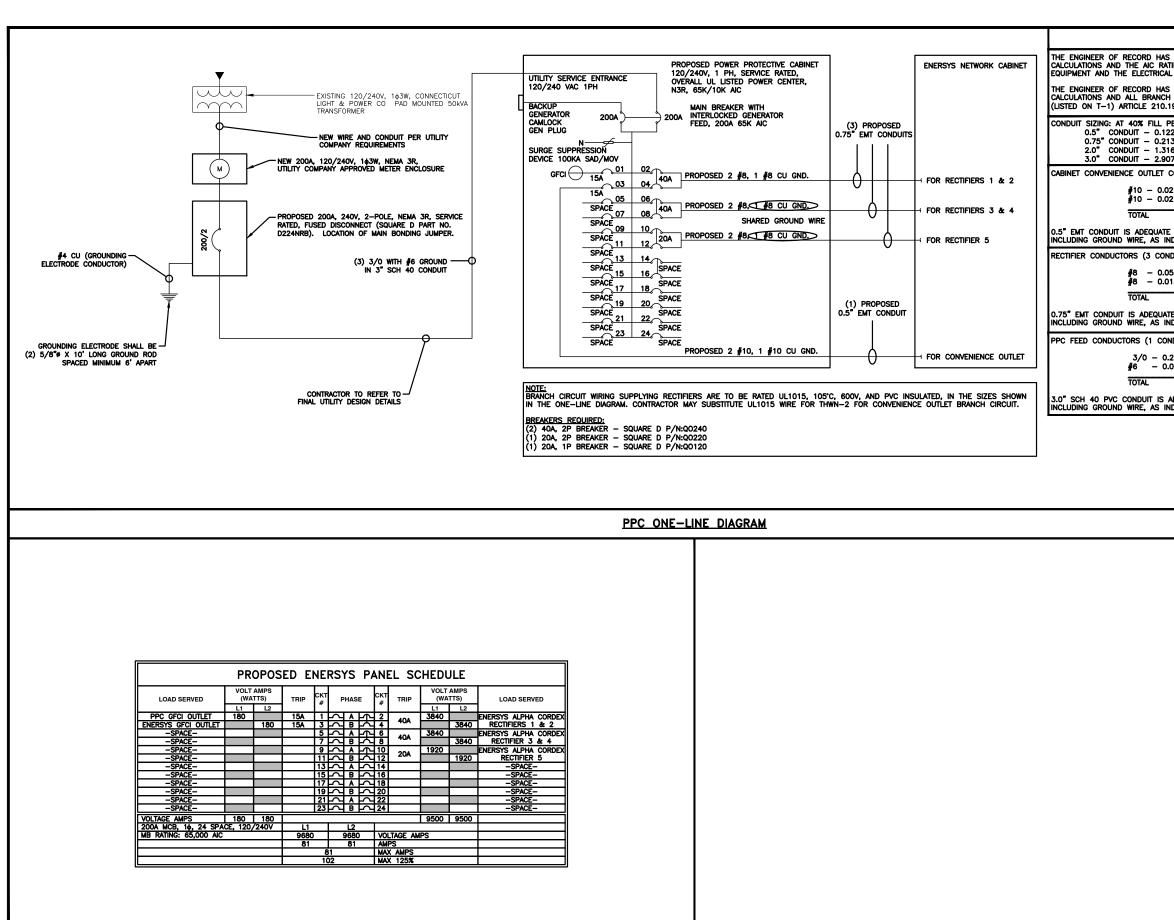
ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

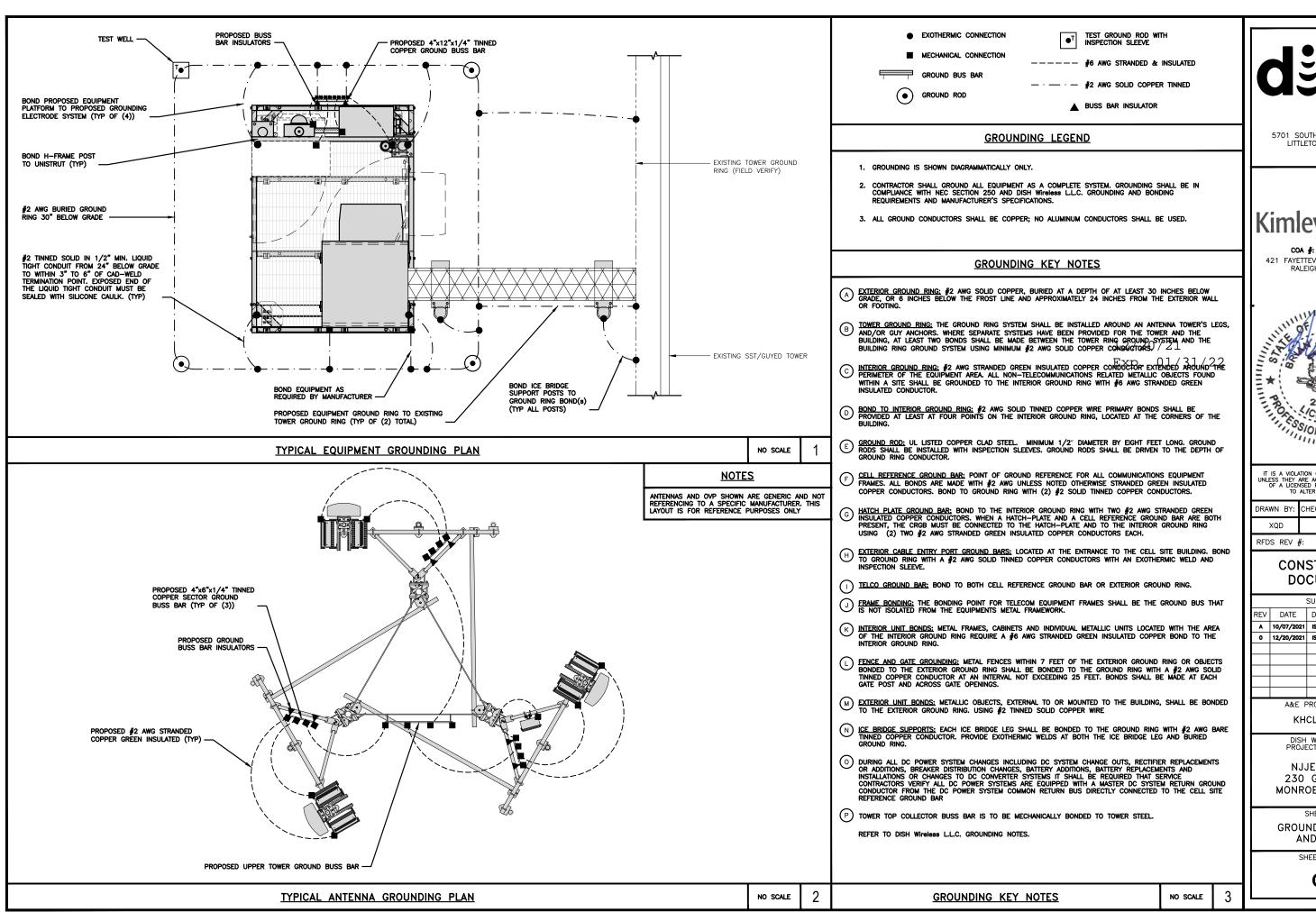

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.





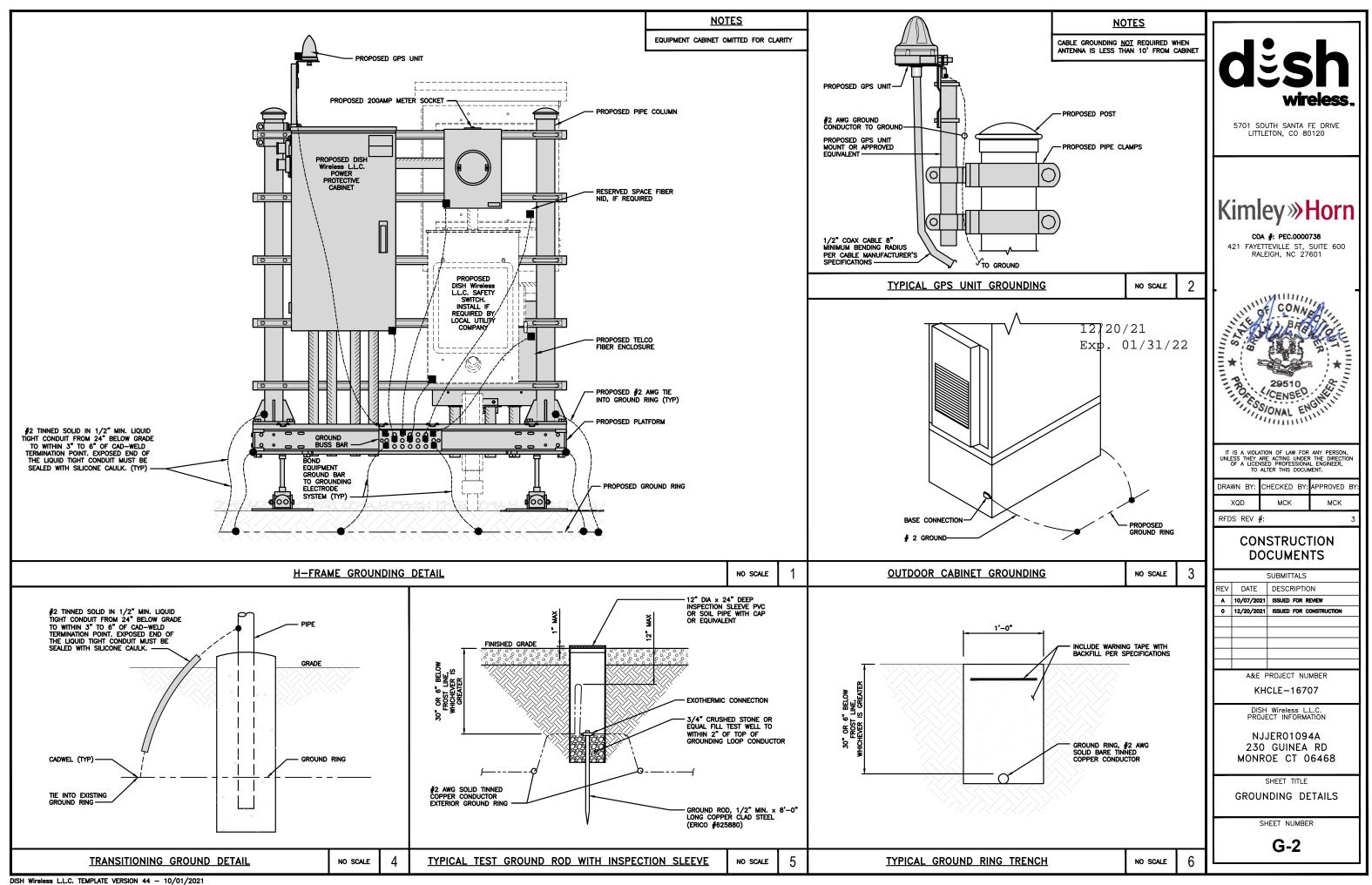



PCTEL GPSGL-TMG-SPI-40NCB DIMENSIONS (DIAxH) MM/INCH 81x184mm 3.2*x7.25" WEIGHT W/ACCESSORIES 075 lbs CONNECTOR N-FEMALE FREQUENCY RANGE 1590 ± 30MHz			MINIMUM OF 75% OR 270° IN ANY DIRECTION GPS GPS UNIT BE BELOW 10° GPS UNIT GPS UNIT			CU12PSM6P4XXX (4 AWG CONDUCTORS)
<u>GPS_DETAIL</u>	NO SCALE	1	<u>GPS MINIMUM SKY VIEW REQUIREMENTS</u>	NO SCALE	2	CABLES UNLIMITED HYBRID MINIMUM BEND RADIUSE
NOT USED	NO SCALE	4	<u>NOT_USED</u>	NO SCALE	5	NOT USED
NOT USED	NO SCALE	7	NOT USED	NO SCALE	8	NOT USED
DISH Wireless L.L.C. TEMPLATE VERSION 44 - 10/01/2021		1			Ľ	



PANEL SCHEDULE

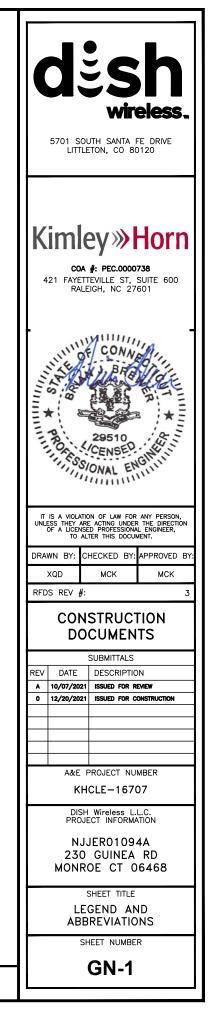
<u>NOT USED</u>


<u>NOTES</u>			
AS PERFORMED ALL REQUIRED SHO ATINGS FOR EACH DEVICE IS ADEC AL SYSTEM.	ORT CIRCUIT QUATE TO PROT	ect the	
S PERFORMED ALL REQUIRED VOL CH CIRCUIT AND FEEDERS COMPLY 0.19(A)(1) FPN NO. 4.	TAGE DROP WITH THE NEC	;	džsh
PER NEC CHAPTER 9, TABLE 4, . 122 SQ. IN AREA 213 SQ. IN AREA 516 SQ. IN AREA 52 SQ. IN AREA	ARTICLE 358.		wireless.
007 SQ. IN AREA CONDUCTORS (1 CONDUIT): USIN	IG THWN-2. CU		5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120
0211 SQ. IN X 2 = 0.0422 SQ.	IN		
0211 SQ. IN X 1 = 0.0211 SQ. $= 0.0633 SQ.$			
TE TO HANDLE THE TOTAL OF (3) INDICATED ABOVE.	WIRES,		
NDUITS): USING UL1015, CU.			Kimley Horn
0552 SQ. IN X 2 = 0.1103 SQ. 0131 SQ. IN X 1 = 0.0131 SQ.			-
= 0.1234 SQ.			COA #: PEC.0000738 421 FAYETTEVILLE ST, SUITE 600
ATE TO HANDLE THE TOTAL OF (3 INDICATED ABOVE.			RALEIGH, NC 27601
ONDUIT): USING THWN, CU.			
0.2679 SQ. IN X 3 = 0.8037 SQ 0.0507 SQ. IN X 1 = 0.0507 SQ			CONNER
= 0.8544 SQ	. IN		New Bring
ADEQUATE TO HANDLE THE TOTAL	LOF (4) WIRES	s,	S.S. A. A. S. A. S. S.
INDICATED ABOVE. Exp. (1/31/2	??	E SIG SITE
			*
			29510 18:
			CENSED
			29510 QUELLESSIONAL ENGLIS
			auture.
	NO SCALE	1	IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER,
			TO ALTER THIS DOCUMENT.
			DRAWN BY: CHECKED BY: APPROVED BY:
			XQD MCK MCK RFDS REV #: 3
			CONSTRUCTION DOCUMENTS
			SUBMITTALS
			REV DATE DESCRIPTION A 10/07/2021 ISSUED FOR REVIEW
			A 10/07/2021 ISSUED FOR REVIEW 0 12/20/2021 ISSUED FOR CONSTRUCTION
			A&E PROJECT NUMBER
			KHCLE-16707
			DISH Wireless L.L.C. PROJECT INFORMATION
			NJJER01094A
			230 GUINEA RD MONROE CT 06468
			SHEET TITLE
			ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE
			SHEET NUMBER
			E-3
	NO SCALE	3	

		I					
	dësh wireless.						
	5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120						
	LITTLETON, CO 80120						
	COA #: PEC.0000738 421 FAYETTEVILLE ST, SUITE 600 RALEIGH, NC 27601						
	* 29510 CENSED						
	IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.						
	DRAWN BY: CHECKED BY: APPROVED BY:	Í					
	XQD MCK MCK	Í					
	RFDS REV #: 3						
	CONSTRUCTION DOCUMENTS						
	SUBMITTALS REV DATE DESCRIPTION	Í					
	REV DATE DESCRIPTION A 10/07/2021 ISSUED FOR REVIEW	Ĩ					
	0 12/20/2021 ISSUED FOR CONSTRUCTION						
		Ĩ					
	A&E PROJECT NUMBER	Ĩ					
	KHCLE-16707	Ĩ					
	DISH Wireless L.L.C. PROJECT INFORMATION						
	NJJER01094A 230 GUINEA RD MONROE CT 06468						
	SHEET TITLE GROUNDING PLANS AND NOTES						
	SHEET NUMBER						
-	G-1						

S NO SCALE

G-1



TYPICAL 0502000000 MOTES e row 1 TYPICAL EXTERIOR TWO HOLE LUG is row 2 TYPICAL INTERIOR TWO HOLE LUG is row 3 INCLUSED INCLUSED <t< th=""><th> EXOTHERMIC WELD (2) TWO, #2 AWG BARE TINNED SOLID COPPER CONDUCTORS TO GRI BAR. ROUTE CONDUCTORS TO BURIED GROUND RING AND PROVIDE PARALLEL EXOTHERM WELD. ALL EXTERIOR GROUNDING HARDWARE SHALL BE STAINLESS STEEL 3/8" DIAMETER OR L ALL HARDWARE 18-8 STAINLESS STEEL INCLUDING LOCK WASHERS, COAT ALL SURFACES AN ANTI-OXIDANT COMPOUND BEFORE MATING. FOR GROUND BOND TO STEEL ONLY: COAT ALL SURFACES WITH AN ANTI-OXIDANT COMP BEFORE MATING. DO NOT INSTALL CABLE GROUNDING KIT AT A BEND AND ALWAYS DIRECT GROUND COND DOWN TO GROUNDING BUS. NUT & WASHER SHALL BE PLACED ON THE FRONT SIDE OF THE GROUND BAR AND BOI THE BACK SIDE. ALL GROUNDING PARTS AND EQUIPMENT TO BE SUPPLIED AND INSTALLED BY CONTRACT THE CONTRACTOR SHALL BE RESPONSIBLE FOR INSTALLING ADDITIONAL GROUND BAR AS REQUIRED. ENSURE THE WIRE INSULATION TERMINATION IS WITHIN 1/8" OF THE BARREL (NO SHINE </th><th>ARGER. S WITH POUND DUCTOR LTED ON FOR.</th><th></th><th>TOOTHED EXTERIOR TWO-HOLE SHRINK UV BUTT U CONNECTORS RATED CONNECTORS</th><th>CTOR INSULATIO P AGAINST THE TOR BARREL</th><th></th><th>TOOTHED BARREL, REQUIRED FOR SHRINK BUTT U ALL INTERIOR TWO-HOLE CONNECTORS 3/8" DIA x1 1/2" S/S NUT S/S NUT S/S LOCK WASHER S/S FLAT WASHER S/S FLAT WASHER S/S FLAT</th><th>CTOR INSULATION P AGAINST THE TOR BARREL</th><th></th><th>display big big big big big big big big big big </th></t<>	 EXOTHERMIC WELD (2) TWO, #2 AWG BARE TINNED SOLID COPPER CONDUCTORS TO GRI BAR. ROUTE CONDUCTORS TO BURIED GROUND RING AND PROVIDE PARALLEL EXOTHERM WELD. ALL EXTERIOR GROUNDING HARDWARE SHALL BE STAINLESS STEEL 3/8" DIAMETER OR L ALL HARDWARE 18-8 STAINLESS STEEL INCLUDING LOCK WASHERS, COAT ALL SURFACES AN ANTI-OXIDANT COMPOUND BEFORE MATING. FOR GROUND BOND TO STEEL ONLY: COAT ALL SURFACES WITH AN ANTI-OXIDANT COMP BEFORE MATING. DO NOT INSTALL CABLE GROUNDING KIT AT A BEND AND ALWAYS DIRECT GROUND COND DOWN TO GROUNDING BUS. NUT & WASHER SHALL BE PLACED ON THE FRONT SIDE OF THE GROUND BAR AND BOI THE BACK SIDE. ALL GROUNDING PARTS AND EQUIPMENT TO BE SUPPLIED AND INSTALLED BY CONTRACT THE CONTRACTOR SHALL BE RESPONSIBLE FOR INSTALLING ADDITIONAL GROUND BAR AS REQUIRED. ENSURE THE WIRE INSULATION TERMINATION IS WITHIN 1/8" OF THE BARREL (NO SHINE 	ARGER. S WITH POUND DUCTOR LTED ON FOR.		TOOTHED EXTERIOR TWO-HOLE SHRINK UV BUTT U CONNECTORS RATED CONNECTORS	CTOR INSULATIO P AGAINST THE TOR BARREL		TOOTHED BARREL, REQUIRED FOR SHRINK BUTT U ALL INTERIOR TWO-HOLE CONNECTORS 3/8" DIA x1 1/2" S/S NUT S/S NUT S/S LOCK WASHER S/S FLAT WASHER S/S FLAT WASHER S/S FLAT	CTOR INSULATION P AGAINST THE TOR BARREL		display big big big big big big big big big big
USD_ UNABLE OF 3 FERSOR SS SEX PORT SS SEX BEED (PR) SS SEX PORT SS SEX DECTION SS SEX PORT SS SEX DECTION SS SEX PORT LUG_DETAIL NOT_USED NOT_USED LUG_DETAIL NOT_USED SS SEX PORT NOT_USED	TYPICAL GROUNDING NOTES	NO SCALE	1	TYPICAL EXTERIOR TWO HOLE LUG	NO SCALE	2	TYPICAL INTERIOR TWO HOLE LUG	NO SCALE	3	
LUG DETAIL No sour 4 NOT USED No sour 5 NOT USED No sour 6	NOTE: MINIMUM OF 3 THREADS TO BE VISIBLE (TYP) 2 HOLE LONG BARREL TINNED SOLID COPPER LUG (TYP) TIN COATED SOLID COPPER BUS BAR S/S FLAT WA S/S FLAT WA S/S FLAT WA S/S FLAT WA	YP) IASHER (TYP) ASHER (TYP) ASHER (TYP)			NO SCALE	2	12/20/	21		IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED BY: XQD MCK MCK RFDS REV #: 3 CONSTRUCTION
Image: Provide State St	LUG_DETAIL	NO SCALE	4	NOT_USED	NO SCALE	5	NOT_USED	NO SCALE	6	
										A 10/07/2021 ISSUED FOR REVIEW 0 12/20/2021 ISSUED FOR CONSTRUCTION 1 1 1 A&E PROJECT NUMBER KHCLE-16707 DISH Wireless L.L.C. PROJECT INFORMATION NJJER01094A 230 GUINEA RD MONROE CT SHEET TITLE GROUNDING DETAILS SHEET NUMBER SHEET NUMBER
	NOT USED	NO SCALE	7	<u>NOT_USED</u>	NO SCALE	8	<u>NOT_USED</u>	NO SCALE	9	G-3

	HYBRID/DISCREET CABLES		3/4" TAPE WIDTHS WITH 3/4" SPACING		OPTIONAL - ORANGE
	(600 MHz N71 BASEBAND) + (850 MHz N26 BAND) + (700 MHz N29 BAND) - OPTIONAL PER MARKET ADD FREQUENCY COLOR TO SECTOR BAND	PORT 1 PORT 2 PORT 3 PORT 4 + SLANT - SLANT + SLANT - SLANT RED RED RED RED ORANGE ORANGE RED RED	Image: Port 1 born 2 born 3 minimized by the stant in the stant i	2 PORT 3 PORT 4 + SLANT SLANT N GREEN GREEN SE GREEN GREEN	(3 GHz)
	(AWS BANDS N66+N70)	RED RED RED RED	BLUE BLUE BLUE BLUE GREEN GREE	N GREEN GREEN	
	(CBRS WILL USE YELLOW BANDS)			RT PURPLE PURPLE	<u>COLOR IDEN</u>
ALL SECONS, BOIH LOW-AMOS AND SHOULD STORES, DO HILLOW-AMOS AND EXAMELS 3 - WERE ADD SERVET, SUPPORTS COMMENT TO REAL COMMENT COMMENT STORES. COMMENT STO	INCLUDE SECTOR BANDS BEING SUPPORTED ALONG WITH FREQUENCY BANDS.	EXAMPLE 1 EXAMPLE 2	COAX#1 COAX #2		
FIBER JUMPERS TO RRHs LOW BAND RRH MID BAND RRH LOW BAND RRH MID BAND RRH	ALL SECTORS, BOTH LOW-BANDS AND MID-BANDS. EXAMPLE 2 – HYBRID, OR DISCREET, SUPPORTS CBRS ONLY, ALL SECTORS. EXAMPLE 3 – MAIN COAX WITH GROUND	BLUE BLUE GREEN GREEN			
DRWNCE PURPLE ORNACE PURPLE ORNACE PURPLE NOWER CABLES TO RH+ LOW BAND RH+ MID BAND RH+ LOW BAND RH+ MID BAND RH+ <th>FIBER JUMPERS TO RRHS</th> <th>LOW BAND RRH MID BAND RRH</th> <th></th> <th></th> <th></th>	FIBER JUMPERS TO RRHS	LOW BAND RRH MID BAND RRH			
STRIPE ONLY RED RED BLUE BLUE GREEN GREEN RET MOTORS AT ANTENNAS ANTENNA 1 ANTENNA 1 ANTENNA 1 ANTENNA 1 ANTENNA 1 ANTENNA 1 ANTENNA 1 ANTENNA 1 RET MOTORS AT ANTENNAS ANTENNA 1 ANTENNA 1 ANTENNA 1 ANTENNA 1 ANTENNA 1 ANTENNA 1 ANTENNA 1 ANTENNA 1 RET MOTORS AT ANTENNAS ANTENNA 1 ANTENNA 1 ANTENNA 1 ANTENNA 1 ANTENNA 1 ANTENNA 1 ANTENNA 1 ANTENNA 1 RET CONTROL IS HANDLED BY THE MID-BAND ANTENNA N N N N N SEPARATE RET CABLES ARE USED WHEN ANTENNA FORTS REVOLGE INPUTS FOR BOTH LOW AND MD BANDS. N N N N N NURRE VALUE RED RED PURPLE ORANGE PURPLE ORANGE VINT HE ANDS FORWARD AZIMUTH OF 0-120 DEGREES FORWARD AZIMUTH OF 120-240 DEGREES FORWARD AZIMUTH OF 240-359 DEGREES FORWARD AZIMUTH OF 240-359 DEGREES PRIMARY SECONDARY PRIMARY SECONDARY PRIMARY SECONDARY PRIMARY SECONDARY PRIMARY SECONDARY WHITE WHITE WHITE WHITE WHITE WHITE MICROWAVE RADIO LINKS PRIMARY SECONDARY PRIMARY SECONDARY PRIMARY SECONDARY WHITE WHITE WHITE WHITE WHITE MICROWAVE CABLES VILL REQUIRE P-TOUCH LOCAL AND RENO		ORANGE PURPLE	ORANGE PURPLE ORANGE	PURPLE	
MID BAND LOW BAND MID BAND LOW BAND MID BAND LOW BAND RET CONTROL IS HANDLED BY THE MID-BAND RRH WHEN ONE SET OF RET PORTS EXIST ON ANTENNA. IN IN <td></td> <td></td> <td></td> <td></td> <td><u>NOT U</u></td>					<u>NOT U</u>
PRIMARY SECONDARY PRIMARY SECONDARY PRIMARY SECONDARY LINKS WILL HAVE A 1.5-2 INCH WHITE WRAP WHITE WRAP WHITE WRAP WHITE WHITE WITH THE AZIMUTH COLOR OVERLAPPING IN THE ADD ADDITIONAL SECTOR COLOR BANDS FOR EACH ADDITIONAL MW RADIO. WHITE WHITE WHITE MICROWAVE CABLES WILL REQUIRE P-TOUCH LABELS INSIDE THE CABINET TO IDENTIFY THE LABELS INSIDE THE CABINET TO IDENTIFY THE WHITE WHITE WHITE MICROWAVE CABLES WILL REQUIRE P-TOUCH LADDEL SINSIDE THE CABINET TO IDENTIFY THE WHITE WHITE WHITE	RET CONTROL IS HANDLED BY THE MID-BAND RRH WHEN ONE SET OF RET PORTS EXIST ON ANTENNA. SEPARATE RET CABLES ARE USED WHEN ANTENNA PORTS PROVIDE INPUTS FOR BOTH	NID BAND LOW BAND	MID BAND LOW BAND MID BAND LOW	NND	
	LINKS WILL HAVE A 1.5-2 INCH WHITE WRAP WITH THE AZIMUTH COLOR OVERLAPPING IN THE MIDDLE. ADD ADDITIONAL SECTOR COLOR BANDS FOR EACH ADDITIONAL MW RADIO. MICROWAVE CABLES WILL REQUIRE P-TOUCH LABELS INSIDE THE CABINET TO IDENTIFY THE	PRIMARY SECONDARY WHITE WHITE RED RED WHITE RED RED RED RED	PRIMARY SECONDARY PRIMARY SECOND WHITE WHITE WHITE WHITE BLUE GREEN GREEN WHITE WHITE WHITE BLUE GREEN GREEN GREEN GREEN GREEN	ARY E N E	

AWS (N66+N70+H-BLOCK) PURPLE NEGATIVE SLANT PORT ON ANT/RRH WHITE		display big big big big big big big big big big
OR GAMMA SECTOR	2	COA #: PEC.0000738 421 FAYETTEVILLE ST, SUITE 600 RALEIGH, NC 27601
12/20/21 Exp. 01/31/2	2	A CONNECTION AND A CONN
		IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED BY: XQD MCK MCK RFDS REV #: 3 CONSTRUCTION
	3	DOCUMENTS
		REV DATE DESCRIPTION A 10/07/2021 ISSUED FOR REMEW 0 12/20/2021 ISSUED FOR CONSTRUCTION Image: Construction in the second se
	4	

AB ANCHOR BOLT IN INCH EXOTHERMIC CONNECTION INT INTERIOR ABV ABOVE MECHANICAL CONNECTION AC ALTERNATING CURRENT LB(S) POUND(S) ADDL ADDITIONAL BUSS BAR INSULATOR LF LINEAR FEET ABOVE FINISHED FLOOR AFF LTE LONG TERM EVOLUTION CHEMICAL ELECTROLYTIC GROUNDING SYSTEM • AFG ABOVE FINISHED GRADE MAS MASONRY TEST CHEMICAL ELECTROLYTIC GROUNDING SYSTEM €T AGL ABOVE GROUND LEVEL MAX MAXIMUM AMPERAGE INTERRUPTION CAPACITY EXOTHERMIC WITH INSPECTION SLEEVE AIC MB MACHINE BOLT ALUM ALUMINUM MECH MECHANICAL GROUNDING BAR **____** ALT ALTERNATE MFR MANUFACTURER GROUND ROD ANT ANTENNA MGB MASTER GROUND BAR APPROX APPROXIMATE TEST GROUND ROD WITH INSPECTION SLEEVE IL BIT MIN MINIMUM ARCH ARCHITECTURAL MISC MISCELLANEOUS SINGLE POLE SWITCH \$ ATS AUTOMATIC TRANSFER SWITCH MTL METAL AMERICAN WIRE GAUGE AWG MTS MANUAL TRANSFER SWITCH DUPLEX RECEPTACLE BATT BATTERY MICROWAVE MW BLDG BUILDING NEC NATIONAL ELECTRIC CODE **•** DUPLEX GFCI RECEPTACLE BLK BLOCK NM NEWTON METERS BLKG BLOCKING NUMBER NO. BM FLUORESCENT LIGHTING FIXTURE (2) TWO LAMPS 48-T8 BEAM NUMBER # BTC BARE TINNED COPPER CONDUCTOR NTS NOT TO SCALE SD BOF BOTTOM OF FOOTING SMOKE DETECTION (DC) oc ON-CENTER CAB CABINET OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION OSHA CANT CANTILEVERED EMERGENCY LIGHTING (DC) OPNG OPENING CHG CHARGING P/C PRECAST CONCRETE CLG CEILING SECURITY LIGHT W/PHOTOCELL LITHONIA ALXW PCS PERSONAL COMMUNICATION SERVICES CLR CLEAR LED-1-25A400/51K-SR4-120-PE-DDBTXD PCU PRIMARY CONTROL UNIT COL COLUMN PRC PRIMARY RADIO CABINET CHAIN LINK FENCE — x —— x —— x — COMM COMMON PP POLARIZING PRESERVING WOOD/WROUGHT IRON FENCE -0----0----0----0----0--CONC CONCRETE -0-PSF POUNDS PER SQUARE FOOT CONSTR CONSTRUCTION WALL STRUCTURE POUNDS PER SQUARE INCH PSI DOUBLE DBL PT PRESSURE TREATED LEASE AREA _____ DC DIRECT CURRENT PWR POWER CABINET PROPERTY LINE (PL) ____ DEPT DEPARTMENT QTY QUANTITY DF DOUGLAS FIR ------SETBACKS RAD RADIUS DIAMETER DIA RECT RECTIFIER ICE BRIDGE DIAG DIAGONAL REF REFERENCE CABLE TRAY DIM DIMENSION REINF REINFORCEMENT DWG DRAWING WATER LINE — w — REQ'D REQUIRED DWL DOWEL REMOTE ELECTRIC TILT UNDERGROUND POWER — UGP — UGP — UGP — UGP — UGP — RET EA EACH RF RADIO FREQUENCY UNDERGROUND TELCO – UGT —– UGT —– UGT —– UGT —– UGT —– EC ELECTRICAL CONDUCTOR RIGID METALLIC CONDUIT RMC EL. ELEVATION OVERHEAD POWER — онр— — ОНР-RRH REMOTE RADIO HEAD ELEC ELECTRICAL RRU REMOTE RADIO UNIT OVERHEAD TELCO — онт — — онт — - OHT -— онт — EMT ELECTRICAL METALLIC TUBING RWY RACEWAY ENG ENGINEER UNDERGROUND TELCO/POWER UGT/P ---- UGT/P ----- UGT/P -----SCH SCHEDULE EQ EQUAL ABOVE GROUND POWER AGP - AGP - AGP - AGP - AGP - AGP -SHT SHEET EXP EXPANSION SIAD SMART INTEGRATED ACCESS DEVICE ABOVE GROUND TELCO ---- AGT ---- AGT ----- AGT -----AGT EXT EXTERIOR SIM SIMILAR EW EACH WAY ABOVE GROUND TELCO/POWER - AGT/P ---- AGT/P ----- AGT/P -----SPEC SPECIFICATION FAB FABRICATION WORKPOINT W.P. SQ SQUARE FINISH FLOOR FF STAINLESS STEEL SS $\begin{pmatrix} xx \\ x-x \end{pmatrix}$ FG FINISH GRADE SECTION REFERENCE STD STANDARD FIF FACILITY INTERFACE FRAME STL STEEL FIN FINISH(ED) TEMP TEMPORARY FLR FLOOR THICKNESS THK FOUNDATION FDN DETAIL REFERENCE TMA TOWER MOUNTED AMPLIFIER FOC FACE OF CONCRETE TN TOE NAIL FOM FACE OF MASONRY TOP OF ANTENNA TOA FOS FACE OF STUD TOC TOP OF CURB FOW FACE OF WALL TOF TOP OF FOUNDATION FS FINISH SURFACE TOP TOP OF PLATE (PARAPET) FT FOOT TOS TOP OF STEEL FTG FOOTING TOW TOP OF WALL GA GAUGE TVSS TRANSIENT VOLTAGE SURGE SUPPRESSION GEN GENERATOR TYP TYPICAL GFCI GROUND FAULT CIRCUIT INTERRUPTER UG UNDERGROUND GLB GLUE LAMINATED BEAM UNDERWRITERS LABORATORY UL GLV GALVANIZED UNO UNLESS NOTED OTHERWISE GPS GLOBAL POSITIONING SYSTEM UMTS UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM GND GROUND UPS UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) GSM GLOBAL SYSTEM FOR MOBILE VIF VERIFIED IN FIELD HDG HOT DIPPED GALVANIZED WIDE w HDR HEADER HGR W/ WITH HANGER WOOD WD HVAC HEAT/VENTILATION/AIR CONDITIONING WP WEATHERPROOF HT HEIGHT WT WEIGH1 INTERIOR GROUND RING IGR **LEGEND ABBREVIATIONS**

12/20/21 Exp. 01/31/22

SITE ACTIVITY REQUIREMENTS:

1. NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTION MANAGER.

2. "LOOK UP" - DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH Wireless L.L.C. AND DISH Wireless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.

4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELESS L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).

5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."

6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.

10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.

11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.

12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.

13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIRELSS LL.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.

14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.

15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.

16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.

17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.

18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.

19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.

20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER: TOWER OWNER

2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.

3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.

4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.

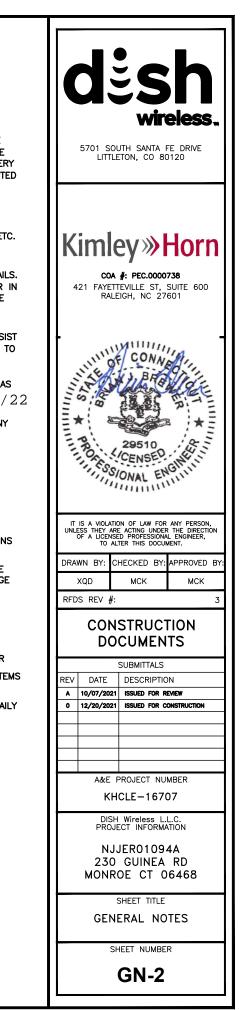
5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE ANOTHER AS 200N AS POSSIBLE. Exp. 01/31/22

6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.


10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.

12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER

13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE.

UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.

ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE, NO 3. MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°F AT TIME OF PLACEMENT.

CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES, AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.

ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON 6. DRAWINGS:

- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- · CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2*

A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.

CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.

- WIRING. RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC 3.
- ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.

ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.

ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.

EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.

ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).

7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.

TIE WRAPS ARE NOT ALLOWED.

ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.

POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW. THWN. THWN-2, XHHW, XHHW-2, THW. THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND 13 BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75" C (90" C IF AVAILABLE).

RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.

ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR 15 EXPOSED INDOOR LOCATIONS.

ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL). CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE Kimley »Horn COA #: PEC.0000738 421 FAYETTEVILLE ST, SUITE 600 MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE. RALEIGH, NC 27601 EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET CONAL OF CONNED METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR 12/20/21NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWESTERSEYSION) AND BE RATED THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND 29510 CENSED THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE SSIONAL EN THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.". ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED. IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTIO OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED BY XOD MCK MCK RFDS REV # CONSTRUCTION DOCUMENTS SUBMITTALS RFV DATE DESCRIPTION A 10/07/2021 ISSUED FOR REVIEW 0 12/20/2021 ISSUED FOR CONSTRUCTION A&E PROJECT NUMBER KHCLE-16707 DISH Wireless L.L.C. PROJECT INFORMATION NJJER01094A 230 GUINEA RD MONROE CT 06468 SHEET TITLE GENERAL NOTES SHEET NUMBER GN-3

16. 17 GRADE PVC CONDUIT. 18. OCCURS OR FLEXIBILITY IS NEEDED. 19. SCREW FITTINGS ARE NOT ACCEPTABLE. 20. NEC. 21 (WIREMOLD SPECMATE WIREWAY). 22. 23. DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED 24. STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS. 25. EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS. 26. NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS. 27 TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS. 28 WITH 29. 30.

GROUNDING NOTES:

BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS 5. WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED. 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.

ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL

10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.

11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.

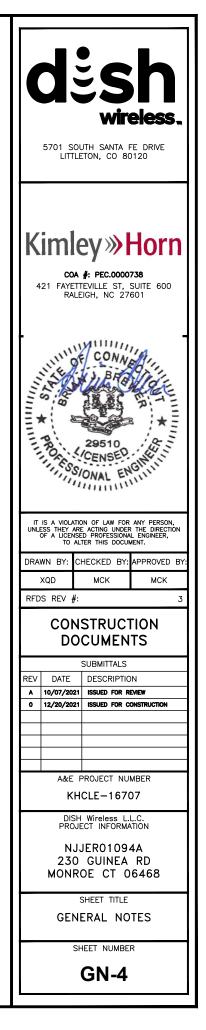
12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.

13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.

14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.

15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.

16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.


17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.

18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.

19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.

20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).

21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/0 COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

12/20/21 Exp. 01/31/22

Exhibit D

Structural Analysis Report

Exhibit E

Mount Analysis

Date: March 14, 2022

Trylon 1825 W. Walnut Hill Lane. Suite 302 Irving, TX 75038 214-930-1730 Subject: **Mount Analysis Report** Carrier Designation: **Dish Network Equipment Change-Out** Carrier Site Number: NJJER01094A Carrier Site Name: CT-CCI-T-841294 **BU Number:** Crown Castle Designation: 841294 Site Name: Monroe-Guinea Road JDE Job Number: 640186 Order Number: 548869 Rev. 2 Engineering Firm Designation: Trylon Report Designation: 204654 Site Data: 230 Guinea Road, Monroe, County Fairfield, CT, 06468 Latitude 41°20'30.68" Longitude -73°16'28.28" Structure Information: **Tower Height & Type:** 244.9 ft Self Support Mount Elevation: 165.0 ft Mount Width & Type: 8.0 ft Sector Frame

Trylon is pleased to submit this "**Mount Analysis Report**" to determine the structural integrity of Dish Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Sufficient* Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis has been performed in accordance with the 2018 Connecticut State Building Code based upon an ultimate 3second gust wind speed of 125 mph. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Adrian Marin

Respectfully Submitted by: Cliff Abernathy, P.E.

8.0 ft Sector Frame Mount Analysis Order 548869, Revision 2 March 14, 2022 CCI BU No 841294 Page 2

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity Table 4 - Tieback End Reactions 4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B Software Input Calculations

7) APPENDIX C Software Analysis Output

8) APPENDIX D Additional Calculations

9) APPENDIX E

Supplemental Drawings

8.0 ft Sector Frame Mount Analysis Order 548869, Revision 2 March 14, 2022 CCI BU No 841294 Page 3

1) INTRODUCTION

This is a proposed 3 sector 8.0 ft Sector Frame, designed by Commscope.

2) ANALYSIS CRITERIA

Building Code:	2015 IBC
TIA-222 Revision:	TIA-222-H
Risk Category:	II
Ultimate Wind Speed:	125 mph
Exposure Category:	В
Topographic Factor at Base:	1.00
Topographic Factor at Mount:	1.00
Ice Thickness:	1.50 in
Wind Speed with Ice:	50 mph
Seismic S _s :	0.215
Seismic S₁:	0.065
Live Loading Wind Speed:	30 mph
Man Live Load at Mid/End-Points:	250 lb
Man Live Load at Mount Pipes:	500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
		3	JMA Wireless	MX08FRO665-21	8.0 ft Sector Frame
165.0	165.0	3	Fujitsu	TA08025-B604	Commscope
105.0	105.0	3	Fujitsu	TA08025-B605	MTC39750831
		1	Raycap	RDIDC-9181-PF-48	MIC3973003]

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Crown Application	Dish Network Application	548869, Rev. 2	CCI Sites
Structural Analysis Report	Paul J. Ford and Company	10010124	CCI Sites
Mount Manufacturer Drawings	Commscope	MTC3975083	Trylon

3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a threedimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed, using Microsoft Excel, by Trylon was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate	ASTM A36 (GR 36)
HSS (Rectangular)	ASTM A500 (GR B-46)
Pipe	ASTM A53 (GR 35)
Connection Bolts	ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Trylon should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
	Mount Pipe(s)	MP7		10.4	Pass
] [Horizontal(s)	H1		16.3	Pass
] [Standoff(s)	M2		28.0	Pass
1, 2, 3	Bracing(s)	M29	165.0	40.8	Pass
]	Vertical(s)	M24		51.4	Pass
] [Tieback(s)	M71		11.1	Pass
	Mount Connection(s)	-		25.9	Pass

	Structure Rating (max from all components) =	51.4%
Notes:		
1)	See additional documentation in "Appendix C - Software Analysis Output" for calculations supp consumed.	orting the % capacity
2)	See additional documentation in "Appendix D – Additional Calculations" for detailed mount con	nection calculations.

3) Rating per TIA-222-H, Section 15.5

Table 4 - Tieback Connection Data Table

Tower Connection Node No.	Existing / Proposed	Resultant End Reaction (Ib)	Connected Member Type	Connected Member Size	Member Compressive Capacity (Ib) ³	Notes
N94A	Proposed	598.8	Leg	Pipe 4.5" x 0.337" (4 EH)	7,959.0	1

Notes:

1) Tieback connection point is within 25% of either end of the connected tower member

2) Tieback connection point is NOT within 25% of either end of the connected tower member

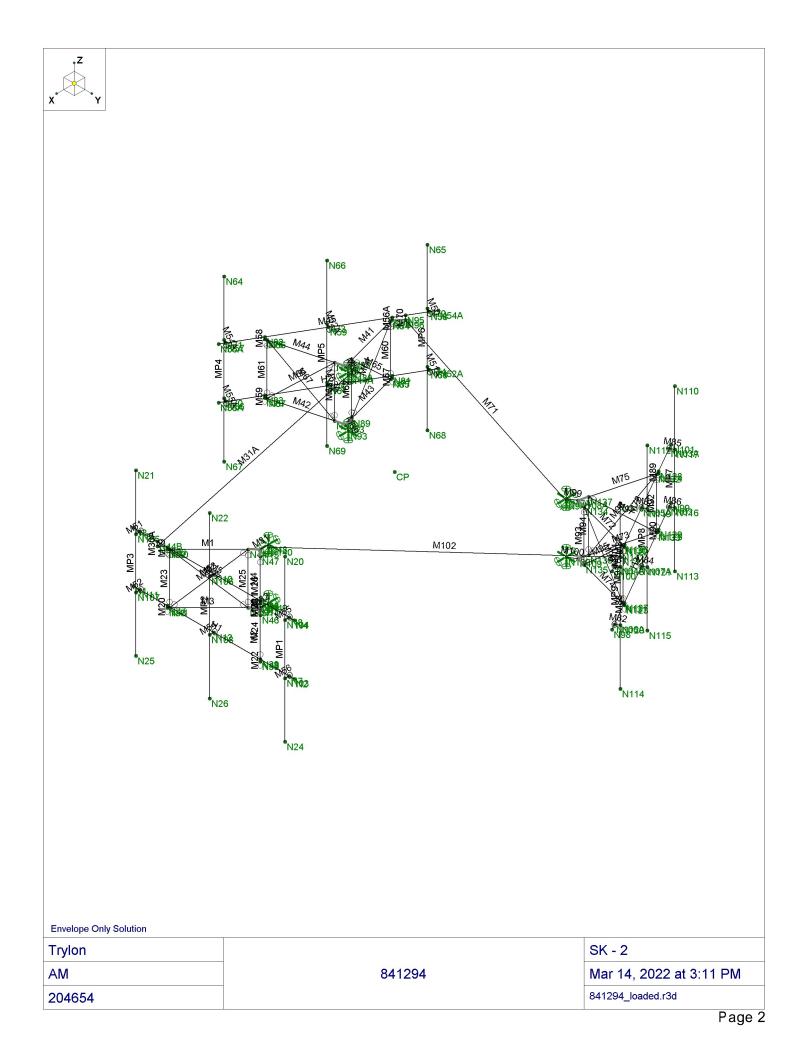
3) Reduced member compressive capacity according to CED-STD-10294 *Standard for Installation of Mounts and Appurtenances*

4.1) Recommendations

The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed.

- 1. Commscope, MTC3975083.
- 2. In order to install the tieback on the tower leg a new 2.375" O.D, sch.40, 14-ft long pipe will be needed on each sector. Tieback connection point needs to be within 25% ends of the tower leg.

No structural modifications are required at this time, provided that the above-listed changes are implemented.


8.0 ft Sector Frame Mount Analysis Order 548869, Revision 2 March 14, 2022 CCI BU No 841294 Page 6

APPENDIX A

WIRE FRAME AND RENDERED MODELS

ENG-FRM-10208, Rev. D

Envelope Only Solution Trylon AM 841294 SK - 1 Mar 14, 2022 at 3:11 PM		and the second s
	Trylon	
204654 841294 loaded.r3d	AM 204654	Mar 14, 2022 at 3:11 PM 841294_loaded.r3d

8.0 ft Sector Frame Mount Analysis Order 548869, Revision 2 March 14, 2022 CCI BU No 841294 Page 7

APPENDIX B

SOFTWARE INPUT CALCULATIONS

ENG-FRM-10208, Rev. D

No Address at This

Location

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

Elevation: 583.08 ft (NAVD 88) Latitude: 41.341856 Longitude: -73.274522

lce

Res	ults	

Gust Speed Data Source:	50 mph Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Mon Mar 14 2022

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

TIA LOAD CALCULATOR 2.2

PROJECT	DATA
Job Code:	204654
Carrier Site ID:	NJJER01094A
Carrier Site Name:	CT-CCI-T-841294

CODES AND STANDARDS					
Building Code: 2015 IBC					
Local Building Code:	Connecticut State Building				
Design Standard:	TIA-222-H				

STRUCTURE DETAILS					
Mount Type: Sector Frame -					
Mount Elevation:	165.0	ft.			
Number of Sectors:	3				
Structure Type:	Self Support Tower				
Structure Height:	244.9	ft.			

ANALYSIS CRITERIA				
Structure Risk Category:	II			
Exposure Category:	В			
Site Class:	D - Default			
Ground Elevation:	583.08	ft.		

WIND PARAM	IETERS	
Design Wind Speed:	125	mph
Wind Escalation Factor (K _s):	1.00	
Velocity Coefficient (Kz):	1.14	
Directionality Factor (K _d):	0.95	
Gust Effect Factor (Gh):	1.00	
Shielding Factor (K _a):	0.90	
Velocity Pressure (q _z):	42.42	psf
Ground Elevation Factor (K _e):	0.98	

ICE PARAMETERS			
Design Ice Wind Speed:	50	mph	
Design Ice Thickness (t _i):	1.50	in	
Importance Factor (I _i):	1.00	-	
Ice Velocity Pressure (q _{zi}):	6.99	psf	
Mount Ice Thickness (t _{iz}):	1.76	in	

WIND STRUCTURE CALCULATIONS				
Flat Member Pressure: 76.36 ps				
Round Member Pressure:	45.82	psf		
Ice Wind Pressure:	7.55	psf		

TOPOGRAPHIC DATA				
Topographic Category:	1.00			
Topographic Feature:	N/A			
Crest Point Elevation:	0.00	ft.		
Base Point Elevation:	0.00	ft.		
Crest to Mid-Height (L/2):	0.00	ft.		
Distance from Crest (x):	0.00	ft.		
Base Topo Factor (K _{zt}):	1.00			
Mount Topo Factor (K _{zt}):	1.00			

SEISMIC PARAMETERS				
Importance Factor (I _e):	1.00			
Short Period Accel .(S _s):	0.215	g		
1 Second Accel (S ₁):	0.065	g		
Short Period Des. (S _{DS}):	0.23	g		
1 Second Des. (S _{D1}):	0.10	g		
Short Period Coeff. (F _a):	1.60			
1 Second Coeff. (F_v):	2.40			
Response Coefficient (Cs):	0.11			
Amplification Factor (A _S):	1.20			

LOAD COMBINATIONS [LRFD]

#	Description
1	1.4DL
2	1.2DL + 1WL 0 AZI
3	1.2DL + 1WL 30 AZI
4	1.2DL + 1WL 45 AZI
5	1.2DL + 1WL 60 AZI
6	1.2DL + 1WL 90 AZI
7	1.2DL + 1WL 120 AZI
8	1.2DL + 1WL 135 AZI
9	1.2DL + 1WL 150 AZI
10	1.2DL + 1WL 180 AZI
11	1.2DL + 1WL 210 AZI
12	1.2DL + 1WL 225 AZI
13	1.2DL + 1WL 240 AZI
14	1.2DL + 1WL 270 AZI
15	1.2DL + 1WL 300 AZI
16	1.2DL + 1WL 315 AZI
17	1.2DL + 1WL 330 AZI
18	0.9DL + 1WL 0 AZI
19	0.9DL + 1WL 30 AZI
20	0.9DL + 1WL 45 AZI
21	0.9DL + 1WL 60 AZI
22	0.9DL + 1WL 90 AZI
23	0.9DL + 1WL 120 AZI
24	0.9DL + 1WL 135 AZI
25	0.9DL + 1WL 150 AZI
26	0.9DL + 1WL 180 AZI
27	0.9DL + 1WL 210 AZI
28	0.9DL + 1WL 225 AZI
29	0.9DL + 1WL 240 AZI
30	0.9DL + 1WL 270 AZI
31	0.9DL + 1WL 300 AZI
32	0.9DL + 1WL 315 AZI
33	0.9DL + 1WL 330 AZI
34	1.2DL + 1DLi + 1WLi 0 AZI
35	1.2DL + 1DLi + 1WLi 30 AZI
36	1.2DL + 1DLi + 1WLi 45 AZI
37	1.2DL + 1DLi + 1WLi 60 AZI
38	1.2DL + 1DLi + 1WLi 90 AZI
39	1.2DL + 1DLi + 1WLi 120 AZI
40	1.2DL + 1DLi + 1WLi 135 AZI
41	1.2DL + 1DLi + 1WLi 150 AZI

#	Description
42	1.2DL + 1DLi + 1WLi 180 AZI
43	1.2DL + 1DLi + 1WLi 210 AZI
44	1.2DL + 1DLi + 1WLi 225 AZI
45	1.2DL + 1DLi + 1WLi 240 AZI
46	1.2DL + 1DLi + 1WLi 270 AZI
47	1.2DL + 1DLi + 1WLi 300 AZI
48	1.2DL + 1DLi + 1WLi 315 AZI
49	1.2DL + 1DLi + 1WLi 330 AZI
50	(1.2+0.2Sds) + 1.0E 0 AZI
51	(1.2+0.2Sds) + 1.0E 30 AZI
52	(1.2+0.2Sds) + 1.0E 45 AZI
53	(1.2+0.2Sds) + 1.0E 60 AZI
54	(1.2+0.2Sds) + 1.0E 90 AZI
55	(1.2+0.2Sds) + 1.0E 120 AZI
56	(1.2+0.2Sds) + 1.0E 135 AZI
57	(1.2+0.2Sds) + 1.0E 150 AZI
58	(1.2+0.2Sds) + 1.0E 180 AZI
59	(1.2+0.2Sds) + 1.0E 210 AZI
60	(1.2+0.2Sds) + 1.0E 225 AZI
61	(1.2+0.2Sds) + 1.0E 240 AZI
62	(1.2+0.2Sds) + 1.0E 270 AZI
63	(1.2+0.2Sds) + 1.0E 300 AZI
64	(1.2+0.2Sds) + 1.0E 315 AZI
65	(1.2+0.2Sds) + 1.0E 330 AZI
66	(0.9-0.2Sds) + 1.0E 0 AZI
67	(0.9-0.2Sds) + 1.0E 30 AZI
68	(0.9-0.2Sds) + 1.0E 45 AZI
69 70	(0.9-0.2Sds) + 1.0E 60 AZI (0.9-0.2Sds) + 1.0E 90 AZI
70	(0.9-0.2Sds) + 1.0E 90 AZI (0.9-0.2Sds) + 1.0E 120 AZI
72	(0.9-0.2Sds) + 1.0E 120 AZI (0.9-0.2Sds) + 1.0E 135 AZI
73	(0.9-0.2Sds) + 1.0E 153 AZI (0.9-0.2Sds) + 1.0E 150 AZI
74	(0.9-0.2Sds) + 1.0E 180 AZI
75	(0.9-0.2Sds) + 1.0E 100 AZI
76	(0.9-0.2Sds) + 1.0E 225 AZI
77	(0.9-0.2Sds) + 1.0E 240 AZI
78	(0.9-0.2Sds) + 1.0E 270 AZI
79	(0.9-0.2Sds) + 1.0E 300 AZI
80	(0.9-0.2Sds) + 1.0E 315 AZI
81	(0.9-0.2Sds) + 1.0E 330 AZI
82-88	1.2D + 1.5 Lv1

#	Description	#	Description
89	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP1	121	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3
90	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP1	122	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3
91	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP1	123	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3
92	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP1	124	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3
93	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP1	125	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3
94	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP1	126	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3
95	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP1	127	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3
96	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP1	128	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3
97	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP1	129	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3
98	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP1	130	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3
99	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP1	131	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3
100	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP1	132	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3
101	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP1	133	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3
102	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1	134	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3
103	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1	135	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3
104	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP1	136	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP3
105	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2	137	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP4
106	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2	138	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP4
107	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2	139	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP4
108	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2	140	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP4
109	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2	141	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP4
110	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2	142	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP4
111	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2	143	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP4
112	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2	144	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP4
113	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP2	145	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP4
114	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2	146	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP4
115	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2	147	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP4
116	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2	148	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP4
117	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2	149	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP4
118	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2	150	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP4
119	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2	151	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP4
120	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2	152	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP4

*This page shows an example of maintenance loads for (4) pipes, the number of mount pipe LCs may vary per site

EQUIPMENT LOADING

Appurtenance Name	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
MX08FRO665-21	3	165	No Ice	8.01	3.21	82.50
			w/ Ice	9.62	4.62	290.16
TA08025-B605	3	165	No Ice	1.96	1.13	75.00
			w/ Ice	2.40	1.48	76.10
TA08025-B604	3	165	No Ice	1.96	0.98	63.90
			w/ Ice	2.40	1.32	71.45
RDIDC-9181-PF-48	1	165	No Ice	2.01	1.17	21.85
			w/ Ice	2.45	1.53	75.01
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

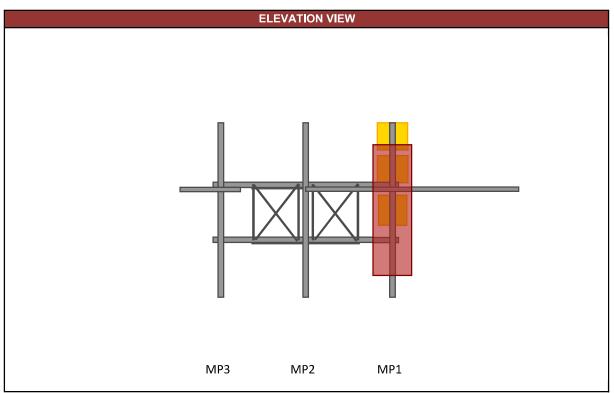
EQUIPMENT LOADING [CONT.]

Appurtenance Name	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
	-		w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

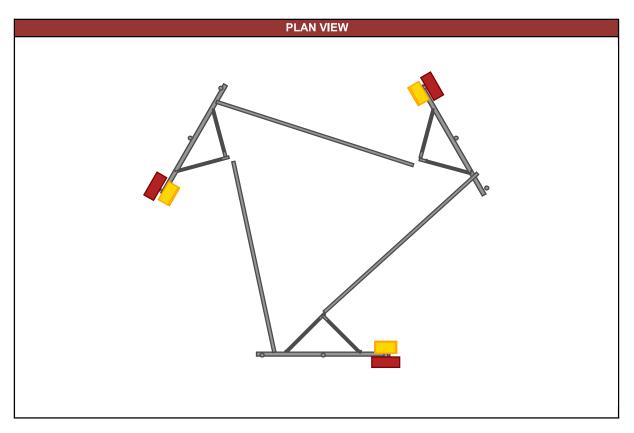
EQUIPMENT WIND CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	K _{zt}	Kz	K _d	t _d	q _z [psf]	q _{zi} [psf]
MX08FRO665-21	3	165	1.00	1.14	0.95	1.76	42.42	6.79
TA08025-B605	3	165	1.00	1.14	0.95	1.76	42.42	6.79
TA08025-B604	3	165	1.00	1.14	0.95	1.76	42.42	6.79
RDIDC-9181-PF-48	1	165	1.00	1.14	0.95	1.76	42.42	6.79

EQUIPMENT LATERAL WIND FORCE CALCULATIONS


Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
MX08FRO665-21	3	No Ice	305.84	168.38	260.02	122.56	260.02	168.38
		w/ Ice	58.78	35.88	51.14	28.24	51.14	35.88
TA08025-B605	3	No Ice	74.97	51.09	67.01	43.13	67.01	51.09
		w/ Ice	14.64	10.44	13.24	9.04	13.24	10.44
TA08025-B604	3	No Ice	74.97	46.84	65.59	37.46	65.59	46.84
		w/ Ice	14.64	9.70	12.99	8.05	12.99	9.70
RDIDC-9181-PF-48	1	No Ice	76 <u>.</u> 82	52.66	68.76	44.60	68.76	52.66
		w/ Ice	14.97	10.77	13.57	9.36	13.57	10.77
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice	_					
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		w/ice		1	1	1	l	

EQUIPMENT LATERAL WIND FORCE CALCULATIONS [CONT.]


Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
		No Ice						
		w/ Ice						
		No Ice						
	-	w/ Ice						
		No Ice						
	-	w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						

EQUIPMENT SEISMIC FORCE CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	Weight [lbs]	F _ρ [lbs]
MX08FRO665-21	3	165	82.5	11.35
TA08025-B605	3	165	75	10.32
TA08025-B604	3	165	63.9	8.79
RDIDC-9181-PF-48	1	165	21.85	3.01
-				
-				

*Elevation View Shows Alpha Sector Only

Equipment Name	Total Quantity	Antenna Centerline	Mount Pipe Positions	Equipment Azimuths
MX08FRO665-21	3	165	MP1/MP4/MP7	0/120/240
TA08025-B605	3	165	MP1/MP4/MP7	0/120/240
TA08025-B604	3	165	MP1/MP4/MP7	0/120/240
RDIDC-9181-PF-48	1	165	MP1	0

8.0 ft Sector Frame Mount Analysis Order 548869, Revision 2 March 14, 2022 CCI BU No 841294 Page 8

APPENDIX C

SOFTWARE ANALYSIS OUTPUT

ENG-FRM-10208, Rev. D

Mar 14, 2022 3:13 PM Checked By: CA

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include W arping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P - Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (in/sec ^2)	386.4
Wall Mesh Size (in)	24
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Z
Global Member Orientation Plane	XY
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 15th(360-16): LRFD
Adjust Stiffness?	Yes(Iterative)
R ISAC onnection Code	AISC 15th(360-16): LRFD
Cold Formed Steel Code	AISI S100-16: LRFD
Wood Code	None
Wood Temperature	< 100F
Concrete Code	None
Masonry Code	None
Aluminum Code	None - Building
Stainless Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	No
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (in)	NotEntered
Add Base W eight?	Yes
CtX	.02
CtZ	.02
T X (sec)	NotEntered
TZ (sec)	Not Entered
RX	3
R Z	3
CtExp. X	.75
CtExp.Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	lorll
Drift Cat	Other
OmZ	1
Om X	1
CdZ	1
CdX	1
R ho Z	1
R ho X	1

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E.	.Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.4	65	1.3
8	A500 Gr. C - 46	29000	11154	.3	.65	.49	46	1.3	62	1.4
9	A529 G r. 50	29000	11154	.3	.65	.49	50	1.3	65	1.4

Cold Formed Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5F)	Density[k/ft^3]	Yield[ksi]	Fu[ksi]
1	A653 S S G r33	29500	11346	.3	.65	.49	33	45
2	A653 S S G r50/1	29500	11346	.3	.65	.49	50	65

Hot Rolled Steel Section Sets

	Label	Shape	Type Des igr	n Material	Design	. A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	PIPE 2.5	PIPE 2.5	Beam Non	e A500 Gr. C - 46	Typical	1.61	1.45	1.45	2.89
2	PIPE 1.5	PIPE 1.5	Beam Non	e A500 Gr. C - 46	Typical	.749	.293	.293	.586
3	PIPE 2.0	PIPE 2.0	Beam Non	e A500 Gr. C - 46	Typical	1.02	.627	.627	1.25
4	SR 5/8	SR 5/8	Beam Non	e A529 G r. 50	Typical	.307	.007	.007	.015
5	PIPE_3.0	PIPE_3.0	Beam Non	e A500 Gr. C - 46	Typical	2.07	2.85	2.85	5.69

Hot Rolled Steel Section Sets (Continued)

	Label	Shape	Type Design	Material	Design A [in2]	lyy [in4] lz	zz [in4] J [in4]
6	SR 1/2"	SR 1/2"	Beam None	A529 Gr. 50	Typical .196	.003	.003 .006

Cold Formed Steel Section Sets

	Label	Shape	Туре	Design List	Materia	Design Rules	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	CF1A	8C U1.25X 057	Beam	None	A653 SS Gr33	Typical	.581	.057	4.41	.00063

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N13						
2	N 14						
3	N48	Reaction	Reaction	Reaction	Reaction		Reaction
4	N49	Reaction	Reaction	Reaction	Reaction		Reaction
5	N44A	Reaction	Reaction	Reaction			
6	N47A	Reaction	Reaction	Reaction	Reaction		Reaction
7	N48A	Reaction	Reaction	Reaction	Reaction		Reaction
8	N62						
9	N63						
10	N93	Reaction	Reaction	Reaction	Reaction		Reaction
11	N 94	Reaction	Reaction	Reaction			
12	N 108A						
13	N109						
14	N139	Reaction	Reaction	Reaction	Reaction		Reaction
15	N140	Reaction	Reaction	Reaction			

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z G ravity	Joint	Point	Distributed	Area (Me	Surface(P
1	Self Weight	DL			-1		13			
2	Structure Wind X	WLX						93		
3	Structure Wind Y	WLY						93		
4	Wind Load 0 AZI	WLX					26			
5	Wind Load 30 AZI	None					26			
6	Wind Load 45 AZI	None					26			
7	Wind Load 60 AZI	None					26			
8	Wind Load 90 AZI	WLY					26			
9	Wind Load 120 AZI	None					26			
10	Wind Load 135 AZI	None					26			
11	Wind Load 150 AZI	None					26			
12	Ice Weight	OL1					13	93		
13	Ice Structure Wind X	OL2						93		
14	Ice Structure Wind Y	OL3						93		
15	Ice Wind Load 0 AZI	OL2					26			
16	Ice Wind Load 30 AZI	None					26			
17	Ice Wind Load 45 AZI	None					26			
18	Ice Wind Load 60 AZI	None					26			
19	Ice Wind Load 90 AZI	OL3					26			
20	Ice Wind Load 120 AZ I	None					26			
21	Ice Wind Load 135 AZ I	None					26			

Basic Load Cases (Continued)

_	BLC Description	Category	X Gravity	Y Gravity	Z G ravity	Joint	Point	Distributed A	rea (Me	Surface(P
22	Ice Wind Load 150 AZ I	None					26			
23	Seismic Load X	ELX	138				13			
24	Seismic Load Y	ELY		138			13			
25	Live Load 1 (Lv)	None					1			
26	Live Load 2 (Lv)	None					1			
27	Live Load 3 (Lv)	None					1			
28	Live Load 4 (Lv)	None					1			
29	Live Load 5 (Lv)	None					1			
30	Live Load 6 (Lv)	None					1			
31	Live Load 7 (Lv)	None					1			
32	Live Load 8 (Lv)	None					1			
33	Live Load 9 (Lv)	None					1			
34	Maintenance Load 1 (None					1			
35	Maintenance Load 2 (None					1			
36	Maintenance Load 3 (None					1			
37	Maintenance Load 4 (None					1			
38	Maintenance Load 5 (None					1			
39	Maintenance Load 6 (None					1			
40	Maintenance Load 7 (None					1			
41	Maintenance Load 8 (None					1			
42	Maintenance Load 9 (None					1			

Load Combinations

	Des cription	Sol.	PD	SR	BLC	Fact	.BLC	Fact	BLC	Fact	BLC	Fact	.BLC	Fact.	BLC	Fact								
1	1.4DL	Yes	Υ		DL	1.4																		
2	1.2DL + 1	Yes	Υ		DL	1.2	2	1	3		4	1												
3	1.2DL + 1	Yes	Υ		DL	1.2	2	.866	3	.5	5	1												
4	1.2DL + 1	Yes	Υ		DL	1.2	2	.707	3	.707	6	1												
5	1.2DL + 1	. Yes	Υ		DL	1.2	2	.5	3	.866	7	1												
6	1.2DL + 1	. Yes	Υ		DL	1.2	2		3	1	8	1												
7	1.2DL + 1				DL	1.2	2	5	3	.866	9	1												
8	1.2DL + 1	. Yes	Y		DL	1.2	2	707	3	.707	10	1												
9	1.2DL + 1	. Yes	Y		DL	1.2	2	866	3	.5	11	1												
10	1.2DL + 1				DL	1.2	2	-1	3		4	-1												
11	1.2DL + 1		· ·		DL	1.2	2	866	3	5	5	-1												
	1.2DL + 1				DL	1.2	2	707	<u> </u>	707	6	-1												
10	1.2DL + 1				DL	1.2	2	5	3	866	7	-1												
	1.2DL + 1				DL	1.2	2		3	-1	8	-1												
	1.2DL + 1				DL	1.2	2	.5	3	866	9	-1												
	1.2DL + 1				DL	1.2	2	.707	3	707	10	-1												
	1.2DL + 1		<u> </u>		DL	1.2	2	.866	3	5	11	-1												
10	0.9DL + 1				DL	.9	2	1	3		4	1												
	0.9DL + 1				DL	.9	2	.866		.5	5	1												
	0.9DL + 1				DL	.9	2	.707	3	.707		1												
	0.9DL + 1				DL	.9	2	.5	3	.866		1												
	0.9DL + 1				DL	.9	2		3	1	8	1												
20	0.9DL + 1				DL	.9	2	5	3	.866		1												
	0.9DL + 1				DL	.9	2	707	3	.707	10	1												
	0.9DL + 1				DL	.9	2	866	3	.5	11	1												
26	0.9DL + 1	Yes	Y		DL	.9	2	-1	3		4	-1												

Mar 14, 2022 3:13 PM Checked By: CA

Load Combinations (Continued)

	Decemination Cal	DD	<u>е п</u>		Feet	DIC	Faat	піс	Feet		Feet	DI C	Feet		Faat	DIC	Faat		Faat	DLC	Feet	DLC	Faat
27	Description Sol 0.9DL + 1 Yes		SR				866					BLU	Fact	BLU	Fact	BLC	Fact	BLC	Fact	BLU	Fact	BLU	Fact
	0.9DL + 1 Yes			DL	.9	2	707		5 707	5 6	-1 -1												
28	0.9DL + 1 Yes	-		DL	.9	2		-	866														
29	0.9DL + 1 Yes			DL	.9	2	5			7	-1												
		-		DL	.9	2	-	3	-1	8	-1												
• ••	0.9DL + 1 Yes			DL	.9	2	.5		866	9	-1												
	0.9DL + 1 Yes	-		DL	.9	2			707	10	-1												
33	0.9DL + 1 Yes			DL	.9	2			5	11	-1												
	1.2DL + 1 Yes	-		DL	1.2	OL1		13	1	14		15	1										
35				DL	1.2	OL1			.866		.5	16	1										
36				DL		OL1				14	.707	17	1										
37	1.2DL + 1 Ye	5 Y		DL	1.2	OL1	1	13	.5	14	.866	18	1										
38	1.2DL + 1 Yes	s Y		DL	1.2	OL1	1	13		14	1	19	1										
39	1.2DL + 1 Yes	s Y		DL	1.2	OL1	1	13	5	14	.866	20	1										
40	1.2DL + 1 Yes	s Y		DL	1.2	OL1	1	13	707	14	.707	21	1										
41	1.2DL + 1 Yes	s Y		DL	1.2	OL1	1	13	866	14	.5	22	1										
42	1.2DL + 1 Yes	s Y		DL		OL1		13	-1	14		15	-1										
43	1.2DL + 1 Yes	_		DL		OL1			866		5	16	-1										
44	1.2DL + 1 Yes			DL		OL1					707	17	-1										
45	1.2DL + 1 Yes	_		DL		OL1		13	5		866		-1										
	1.2DL + 1 Yes			DL		OL1		13		14	-1	19	-1										
-	1.2DL + 1 Yes			DL		OL1		13	.5		866		-1										
	1.2DL + 1 Yes			DL		OL1					707	21	-1										
49				DL		OL1			.866		5	22	-1										
50		· ·			1.246			24	.000	14	5	22	-1										
51	(1.2+0.2S Ye	-					.866		.5														
							.707																
52	(1.2+0.2S Yes																						
53					1.246				.866														
54					1.246			24	1														
					1.246				.866														
	(1.2+0.2S Yes								.707														
57									.5														
58	(1.2+0.2S Ye				1.246			24															
59	(1.2+0.2S Ye					-			5														
60	(1.2+0.2S Ye								707														
61	(1.2+0.2S Ye	· ·			1.246				866														
62	(1.2+0.2S Ye				1.246			24	-1														
63	(1.2+0.2S Ye				1.246				866														
	(1.2+0.2S Ye						.707																
	(1.2+0.2S Ye			DL	1.246	23	.866	24	5														
66	(0.9-0.2SdYe	s Y			.854			24															
67	(0.9-0.2SdYe	s Y					.866		.5														
	(0.9-0.2SdYe						.707																
	(0.9-0.2SdYe				.854				.866														
	(0.9-0.2SdYe				.854			24															
71							5																
	(0.9-0.2SdYe						707																
	(0.9-0.2SdYe						866																
	(0.9-0.2SdYe						-1	24	.0														
	(0.9-0.2SdYe						866		- 5														
	(0.9-0.2SdYe						707																
	(0.9-0.2SdYe						5																
	(0.9-0.23dYe								000														
					.854			24	-1														

Load Combinations (Continued)

Lout																						
	Description Sol					Fact			BLC	Fact	BLC	Fact	BLC	Fact	BLC	Fact	BLC	Fact	BLC	Fact	BLC	Fact
79	(0.9-0.2SdYes	Υ		.854		.5		866														
80	(0.9-0.2SdYes	Y	DL	.854	23	.707	24	707														
81	(0.9-0.2SdYes	Y	DL	.854	23	.866	24	5														
82			DL	1.2		1.5																
	1.2DL + 1 Yes	Ŷ	DL	1.2	26																	
		Y	DL	1.2	27	1.5																
• •	1.2DL + 1 Yes	Y	_																			
		-	DL	1.2	28	1.5																
	1.2DL + 1 Yes	Y	DL		29																	
	1.2DL + 1 Yes	Y	DL		30	1.5																
	1.2DL + 1 Yes	Y	DL		31	1.5																
	1.2DL + 1 Yes	Y	DL	1.2	32	1.5																
		Y	DL	1.2	33	1.5																
91	1.2DL + 1Yes	Y	DL	1.2	34	1.5	2	.058	3		4	.058										
92	1.2DL + 1Yes	Y	DL	1.2	34	1.5	2	.05	3	.029	5	.058										
93	1.2DL + 1Yes	Y	DL	1.2	34	1.5	2	.041	3	.041	6	.058										
94	1.2DL + 1Yes	Y	DL		34	1.5	2	.029		.05	7	.058										
	1.2DL + 1Yes	Ý	DL	1.2	34	1.5	2		3	.058		.058										
	1.2DL + 1 Yes	Y	DL		34	1.5	2	029	3	.05	9	.058										
	1.2DL + 1Yes	Y	DL	1.2	34	1.5	2	041	3	.041		.058										
		· ·	DL		34	1.5	2	05	3	.029		.058										
		Y			34	1.5	2	058	3	.029	4	058										
			_	1.2						0.20		058										
		Y	DL	1.2	34	1.5	2	05	-	029	-											
	1.2DL + 1Yes	Y	DL	1.2	34	1.5	2	041	3	041	-	058										
		Y	DL		34	1.5	2	029	3	05	7	058										
	1.2DL + 1Yes	Y	DL		34	1.5	2		3	058	<u> </u>	058										
	1.2DL + 1Yes	Υ	DL		34	1.5	2	.029		05	_	058										
	1.2DL + 1Yes	Υ	DL		34	1.5	2	.041		041		058										
106	1.2DL + 1Yes	Y	DL	1.2	34	1.5	2	.05	3	029	11	058										
107	1.2DL + 1Yes	Y	DL	1.2	35	1.5	2	.058	3		4	.058										
108	1.2DL + 1Yes	Y	DL	1.2	35	1.5	2	.05	3	.029	5	.058										
109	1.2DL + 1, Yes	Y	DL	1.2	35	1.5	2	.041	3	.041		.058										
110	1.2DL + 1, Yes	Y	DL		35	1.5	2	.029		.05	7	.058										
	1.2DL + 1Yes	Ý	DL	1.2	35	1.5	2		3	.058	-	.058										
	1.2DL + 1 Yes	Y	DL	1.2	35	1.5	2	029		.05	9	.058										
	1.2DL + 1Yes	Y		1.2	35	1.5		041	3	.041	-	.058										
	1.2DL + 1Yes	Y	_	1.2			2		3													
	1.2DL + 1Yes				35	1.5		05 058		.029		.058 058										
			DL		35	1.5	2		•	0.00	4											
	1.2DL + 1Yes			1.2			2	05	3	029	-	058										
	1.2DL + 1Yes		DL		35	1.5	2	041	-	041	-	058										
	1.2DL + 1Yes			1.2	35		2	029		05		058										
	1.2DL + 1Yes		DL		35	1.5	2		3	058	-	058										
		Y	DL	1.2	35	1.5	2	.029		05	-	058										
	1.2DL + 1Yes	Υ	DL	1.2	35	1.5	2	.041	3	041		058										
122	1.2DL + 1Yes	Y	DL		35	1.5	2	.05	3	029	11	058										
123	1.2DL + 1Yes	Y	DL		36	1.5	2	.058			4	.058										
		Y		1.2		1.5	2	.05	3	.029		.058										
		Ý	DL		36		2	.041		.041		.058										
				1.2	36		2	.029		.05		.058										
	1.2DL + 1Yes				36		2	.020	3	.058		.058										
	1.2DL + 1Yes						2	029														
				1.2	36					.05		.058										
	1.2DL + 1Yes			1.2		1.5	2	041	3			.058										
130	1.2DL + 1Yes	Y		1.2	36	1.5	2	05	3	029	11	.058										
		4704								0 4 4 4					_							

Mar 14, 2022 3:13 PM Checked By: CA

Load Combinations (Continued)

Description SolPD.SRBLC FactBLC Fact.
132 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 05 3 029 5 058
133 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 041 3 058
134 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 029 3 05 7 058
134 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 029 3 05 7 058
135 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 3 058 8 058
136 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 .029 3 05 9 058 <
137 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 .041 3 041 10 058 <td< td=""></td<>
138 1.2DL + 1 Yes Y DL 1.2 36 1.5 2 .05 3 029 11 058
139 1.2DL + 1 Yes Y DL 1.2 37 1.5 2 .058 3 4 .058
140 1.2DL + 1 Yes Y DL 1.2 37 1.5 2 .05 3 .029 5 .058
141 1.2DL + 1 Yes Y DL 1.2 37 1.5 2 .041 3 .041 6 .058 </td
142 1.2DL + 1 Yes Y DL 1.2 37 1.5 2 .029 3 .05 7 .058
142 1.2DL + 1 Yes Y DL 1.2 37 1.5 2 .029 3 .05 7 .058
143 1.2DL + 1 Yes Y DL 1.2 37 1.5 2 3 .058 8 .058
144 1.2DL + 1 Yes Y DL 1.2 37 1.5 2 029 3 .05 9 .058 145 1.2DL + 1 Yes Y DL 1.2 37 1.5 2 041 3 .041 10 .058
145 1.2DL + 1 Yes Y DL 1.2 37 1.5 2 041 3 .041 10 .058
140 1.20L T 1 185 Y DL 1.2 37 1.5 205 3 .029 11 .058
147 1.2DL + 1Yes Y DL 1.2 37 1.5 2058 3 4058
148 1.2DL + 1 Yes Y DL 1.2 37 1.5 2 05 3 029 5 058
149 1.2DL + 1 Yes Y DL 1.2 37 1.5 2041 3041 6058
150 1.2DL + 1 Yes Y DL 1.2 37 1.5 2029 305 7058
151 1.2DL + 1 Yes Y DL 1.2 37 1.5 2 3058 8058
152 1.2DL + 1 Yes Y DL 1.2 37 1.5 2 .029 305 9058
153 1.2DL + 1Yes Y DL 1.2 37 1.5 2 .041 3041 10058
154 1.2DL + 1 Yes Y DL 1.2 37 1.5 2 .05 3 -029 11 -058
156 1.2DL + 1Yes Y DL 1.2 38 1.5 2 .05 3 .029 5 .058
157 1.2DL + 1 Yes Y DL 1.2 38 1.5 2 .041 3 .041 6 .058
158 1.2DL + 1 Yes Y DL 1.2 38 1.5 2 .029 3 .05 7 .058
159 1.2DL + 1 Yes Y DL 1.2 38 1.5 2 3 0.58 8 0.58 0.58
160 1.2DL + 1 Yes Y DL 1.2 38 1.5 2029 3 .05 9 .058
161 1.2DL + 1 Yes Y DL 1.2 38 1.5 2041 3 .041 10 .058
162 1.2DL + 1 Yes Y DL 1.2 38 1.5 205 3 .029 11 .058
162 1.2DL 1.2 1.2 1.6 2 1.66 1.020 11.000 163 1.2DL 1.1 Yes Y DL 1.2 38 1.5 2 058 3 4 058
165 1.2DL + 1 Yes Y DL 1.2 38 1.5 2041 3041 6058
166 1.2DL + 1 Yes Y DL 1.2 38 1.5 2029 305 7058
167 1.2DL + 1 Yes Y DL 1.2 38 1.5 2 3 058 8 058
168 1.2DL + 1 Yes Y DL 1.2 38 1.5 2 .029 305 9058
169 1.2DL + 1 Yes Y DL 1.2 38 1.5 2 .041 3041 10058
170 1.2DL + 1 Yes Y DL 1.2 38 1.5 2 .05 3029 11058
171 1.2DL + 1 Yes Y DL 1.2 39 1.5 2 .058 3 4 .058
172 1.2DL + 1 Yes Y DL 1.2 39 1.5 2 .05 3 .029 5 .058
173 1.2DL + 1 Yes Y DL 1.2 39 1.5 2 .041 3 .041 6 .058
174 1.2DL + 1 Yes Y DL 1.2 39 1.5 2 .029 3 .05 7 .058
175 1.2DL + 1Yes Y DL 1.2 39 1.5 2 3 .058 8 .058
176 1.2DL + 1 Yes Y DL 1.2 39 1.5 2029 3 .05 9 .058
177 1.2DL + 1 Yes Y DL 1.2 39 1.5 2041 3 .041 10 .058
178 1.2DL + 1 Yes Y DL 1.2 39 1.5 205 3 .029 11 .058
179 1.2DL + 1 Yes Y DL 1.2 39 1.5 2058 3 4058
180 1.2DL + 1 Yes Y DL 1.2 39 1.5 205 3029 5058
181 1.2DL + 1 Yes Y DL 1.2 39 1.5 2 041 3 058
182 1.2DL + 1 Yes Y DL 1.2 39 1.5 2029 305 7058

Mar 14, 2022 3:13 PM Checked By: CA

Load Combinations (Continued)

Description SolPDSR.	BLC Eact B		BLC	Eact BL	^ Eact	BLC	Fact	BLC Eact	BLC	Fact	BLC	Fact	BLC	Fact	BLC	Fact
183 1.2DL + 1Yes Y		9 1.5	2				058			F au				r au		act
184 1.2DL + 1Yes Y		9 1.5	2	1 1	_	9	058									
185 1.2DL + 1Yes Y		9 1.5	2	.041 3		10	058									
186 1.2DL + 1Yes Y		9 1.5	2	.05 3	_	11	058									
187 1.2DL + 1Yes Y		0 1.5	2	.058 3		4	.058									
188 1.2DL + 1 Yes Y		0 1.5	2	.05 3		-	.058									
189 1.2DL + 1Yes Y		0 1.5	2	.03 3		6	.058									
190 1.2DL + 1Yes Y		0 1.5	2	.029 3		7	.058									
191 1.2DL + 1Yes Y		0 1.5	2	.029 3			.058									
191 1.2DL + 1Yes Y		0 1.5	2	029 3	_	9	.058									
193 1.2DL + 1Yes Y		0 1.5	2	041 3			.058									
194 1.2DL + 1Yes Y		0 1.5	2				.058									
195 1.2DL + 1Yes Y		0 1.5	2			4	058									
196 1.2DL + 1Yes Y	DL 1.2 4		2			5	058									
197 1.2DL + 1Yes Y		0 1.5	2	041 3		6	058									
198 1.2DL + 1Yes Y		0 1.5	2	029 3		7	058									
199 1.2DL + 1Yes Y		0 1.5	2	023 3		7 8	058									
200 1.2DL + 1Yes Y		0 1.5	2	.029 3		9	058									
200 1.2DL + 1Yes Y		0 1.5	2	.029 3		9 10	058									
201 1.2DL + 1Yes Y		0 1.5	2	.041 3		11	058									
202 1.2DL + 1Yes Y		1 1.5	2		_	4	.058									
203 1.2DL + 1Yes Y	DL 1.2 4		2	.05 3			.058									
205 1.2DL + 1Yes Y		1 1.5	2	.03 3			.058									
206 1.2DL + 1Yes Y		1 1.5	2	.041 3		7	.058									
207 1.2DL + 1 Yes Y		1 1.5	2	.029 3			.058									
208 1.2DL + 1Yes Y		1 1.5	2	029 3	_	9	.058									
209 1.2DL + 1Yes Y		1 1.5	2	023 3		10	.058									
210 1.2DL + 1Yes Y		1 1.5	2	05 3			.058									
210 1.2DL + 1Yes Y		1 1.5	2	058 3	_	4	058									
212 1.2DL + 1Yes Y		1 1.5	2	05 3	_	5	058									
213 1.2DL + 1Yes Y		1 1.5	2	041 3		6	058									
213 1.2DL + 1Yes Y		1 1.5	2	029 3	_	7	058									
215 1.2DL + 1Yes Y		1 1.5	2	3	-	8	058									
216 1.2DL + 1Yes Y		1 1.5	2	.029 3		9	058									
217 1.2DL + 1Yes Y		1 1.5	2	.029 3		10	058									
218 1.2DL + 1Yes Y		1 1.5	2	.05 3	-	11	058									
219 1.2DL + 1Yes Y		2 1.5	2			4	.058									
220 1.2DL + 1Yes Y	DL 1.2 4		2				.058									
221 1.2DL + 1Yes Y	DL 1.2 4		2				.058									
222 1.2DL + 1, Yes Y	DL 1.2 4		2			7	.058									
223 1.2DL + 1Yes Y	DL 1.2 4		2	.029 3	_		.058									
223 1.2DL + 1Yes Y	DL 1.2 4		2	029 3		9	.058									
225 1.2DL + 1Yes Y		2 1.5	2	041 3			.058									
226 1.2DL + 1, Yes Y	DL 1.2 4		2				.058									
227 1.2DL + 1Yes Y	DL 1.2 4		2			4	058									
228 1.2DL + 1Yes Y	DL 1.2 4		2				058									
229 1.2DL + 1 Yes Y	DL 1.2 4		2		023	6	058									
230 1.2DL + 1, Yes Y	DL 1.2 4		2		05	7	058									
231 1.2DL + 1Yes Y	DL 1.2 4		2	020 3		8	058									
232 1.2DL + 1, Yes Y	DL 1.2 4		2	.029 3		9	058									
233 1.2DL + 1, Yes Y		2 1.5	2	.029 3		-	058									
234 1.2DL + 1Yes Y	DL 1.2 4		2		029		058									

RISA-3D Version 17.0.4 [C:\...\..\..\..\..\MA_03.14.2022\01.RISA\841294_loaded.r3d]

	Company Designer Job Number Model Name	:	Trylon AM 204654 841294
A NEMETSCHEK COMPANY	Model Nume	•	041204

Envelope Joint Reactions

	Joint		X [b]	LC	Y [b]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N48	max	684.829	18	607.485	94	944.51	42	561.006	138	0	234	262.489	96
2		min	-2277.698	41	-1320.031	134	231.434	67	-235.068	98	0	1	-544.664	136
3	N 49	max	2101.204	34	1309.476	127	881.134	34	28.129	36	0	234	571.063	129
4		min	164.769	26	-595.198	103	224.168	75	-27.065	13	0	1	-287.267	32
5	N44A	max	611.976	25	163.934	24	81.216	48	0	234	0	234	0	234
6		min	-614.972	33	-164.54	32	18.39	71	0	1	0	1	0	1
7	N47A	max	2095.346	233	851.926	22	1116.722	199	801.264	199	0	234	250.775	198
8		min	-139.225	24	-1414.972	199	156.605	22	47.601	22	0	1	-666.822	222
9	N48A	max	1442.124	140	1836.551	36	1389.547	40	-258.747	19	0	234	377 <u>.</u> 45	139
10		min	-706.684	27	-532.678	29	362.061	66	-1043.947	42	0	1	-537.013	179
11	N 93	max	522.418	171	-185.843	22	612.994	154	21.37	175	0	234	565.742	171
12		min	-1415.726	147	-1701.893	183	55.438	179	-264.788	167	0	1	-370.097	147
13	N 94	max	130.27	11	540.015	11	81.153	42	0	234	0	234	0	234
14		min	-129.119	19	-536.025	19	18.396	66	0	1	0	1	0	1
15	N139	max	-137.285	187	1372.904	191	930.59	49	496.827	49	0	234	687.114	230
16		min	-2074.019	227	-72.937	30	200.902	30	78.556	199	0	1	-268.269	21
17	N 140	max	396.2	6	398.38	30	81.131	37	0	234	0	234	0	234
18		min	-394.625	30	-399.924	6	18.397	77	0	1	0	1	0	1
19	Totals:	max	2711.034	2	2565.421	6	5513.395	35						
20		min	-2711.031	26	-2565.421	14	1386.268	74						

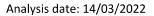
Envelope A ISC 15th (360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc .	ShearCheck	Locphi*Pphi*Pphi*Mphi*MEqn
1	M24	SR 5/8	.540	1742	.014	30 17 1728 13815 134.4 134.4 1 H1-1a
2	M92	SR 5/8	.538	26	.014	0 5 1728 13815 134.4 134.4 1 H1-1a
3	M94	SR 5/8	.523	24	.001	30 3 1728 13815 134.4 134.4 1 H1-1a
4	M61	SR 5/8	.445	28	.013	30 9 1728 13815 134.4 134.4 1 H1-1a
5	M29	SR 1/2"	.429	2236	.016	0 49 344.5883573.632 73.632 1 H1-1a
6	M60	SR 5/8	.401	24	.014	30 17 1728 13815 134.4 134.4 1 H1-1a
7	M97	SR 1/2"	.400	2238	.007	0 6 344.5883573.632 73.632 1 H1-1a
8	M62	SR 5/8	.399	26	.001	30 2 1728 13815 134.4 134.4 1 H1-1a
9	M23	SR 5/8	.395	2698	.015	30 9 1728 13815 134.4 134.4 1 H1-1a
10	M26	SR 5/8	.388	1742	.001	30 17 1728 13815 134.4 134.4 1 H1-1a
11	M25	SR 5/8	.361	1742	.001	30 9 1728 13815 134.4 134.4 1 H1-1a
12	M96	SR 1/2"	.344	24	.012	0 43 344.5883573.632 73.632 1 H1-1a
13	M66	SR 1/2"	.342	2234	.008	0 42 344.5883573.632 73.632 1 H1-1a
14	M91	SR 5/8	.326	30	.014	0 13 1728 13815 134.4 134.4 1 H1-1a
15	M73	PIPE_1.5	.294	34	.096	.725 237723100814521452 1 H1-1b
16	M2	PIPE_1.5	.294	3449	.165	.725 34 237723100814521452 1 H1-1b
17	M75	PIPE_1.5	.283	34	.101	34
18	M1	PIPE_1.5	.273	3442	.148	34 97 237723100814521452 1 H1-1b
19	M3	PIPE_1.5	.268	3448	.124	.725 9223772310081452145214521
20	M4	PIPE_1.5	.266	3442	.209	34 1452 1452 1452 1452 1452
21	M65	SR 1/2"	.250	22	.007	0 11 344.5883573.632 73.632 1 H1-1a
22	M28	SR 1/2"	.249	22	.013	44 38 344.5883573.632 73.632 1 H1-1a
23	M43	PIPE_1.5	.222	34	.076	34
24	M41	PIPE_1.5	.215	34	.071	34 23772310081452 1452 1 H1-1b
25	H1	PIPE_2.5	.172	76	.057	76 4525566654 4726.5 4726.5 H1-1b
26	M42	PIPE_1.5	.171	1.0	.103	.725 23772. 31008. 1452 1452 H1-1b

	Company		Trylon
	Designer		AM
IIRISA	JobNumber	:	204654
A NEMETSCHEK COMPANY	Model Name	:	841294

Envelope A ISC 15th (360-16): LRFD Steel Code Checks (Continued)

	Member	Shape	Code Check	Loc <u>.</u>	ShearCheck	Loc . phi*Pphi*Pphi*Mphi*MEqn
27	H2	PIPE 2.5	.168	76	.056	76 4525566654 4726.5 4726.5 H1-1b
28	H3	PIPE 2.5	.167	76	.056	76 4525566654 4726.5 4726.5 H1-1b
29	M5	PIPE 2.5	.161	76	.067	20 17 4525566654 4726.5 4726.5 H1-1b
30	M76	PIPE_2.5	.157	76	.065	20 6 4525566654 4726.5 4726.5 H1-1b
31	M45	PIPE_2.5	.157	76	.063	20 11 4525566654 4726.5 4726.5 H1-1b
32	M74	PIPE_1.5	.128	1.0	.088	34 42 23772310081452 1452 H1-1b
33	M44	PIPE 1.5	.123	1.0	.182	34 23772310081452 1452 H1-1b
34	M71	PIPE 2.0	.117	7434	.007	0 42 6384 42228 2459 2459 H1-1b
35	M31A	PIPE 2.0	.116	7439	.007	148 46 6384 42228 2459 2459 H1-1b
36	M102	PIPE 2.0	.116	7445	.007	148 44 6384 42228 2459 2459 H1-1b
37	MP4	PIPE_2.5	.110	33 5	.029	33 6 3348766654 4726.5 4726.5 1 H1-1b
38	MP7	PIPE_2.5	.110	33 15	.028	33 16 3348766654 4726.5 4726.5 H1-1b
39	MP1	PIPE_2.5	.109	33 10	.025	33 11 3348766654 4726.5 4726.5 H1-1b
40	M72	PIPE_1.5	.092	1.0	.145	34
41	M93	SR 5/8	.080	3034	.001	30 11 1728 13815 134.4 134.4 1 H1-1.
42	M63	SR 5/8	.065	30	.001	30 10 1728 13815 134.4 134.4 1 H1-1.
43	MP2	PIPE_2.5	.012	63	.037	33 17 3348766654 4726.5 4726.5 H1-1.
44	MP3	PIPE_2.5	.012	63	.038	33 17 3348766654 4726.5 4726.5 H1-1.
45	MP6	PIPE_2.5	.012	63	.034	33 11 33487
46	MP9	PIPE_2.5	.012	63	.036	33 6 3348766654 4726.5 4726.5 H1-1.
47	MP8	PIPE_2.5	.012	63	.035	33 5 3348766654 4726.5 4726.5 1 H1-1.
48	MP5	PIPE_2.5	.012	63	.033	33 10 3348766654 4726.5 4726.5 H1-1.
49	M95	SR 1/2"	.009	0	.010	0 42 344.5883573.632 73.632 1 H1-1.
50	M64	SR 1/2"	.003	0	.002	0 6 344.5883573.632 73.632 1 H1-1.
51	M27	SR 1/2"	.000	0	.007	44
52	M30	SR 1/2"	.000	0	.000	0 344.5 8835 73.632 73.632 1 H1-1a
53	M67	SR 1/2"	.000	0	.000	0 344.5 8835 73.632 73.632 1 H1-1a
54	M98	SR 1/2"	.000	0	.000	0344.5883573.632 73.632 1 H1-1a

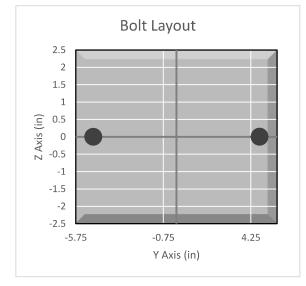

Envelope AISIS 100-16: LRFD Cold Formed Steel Code Checks

Member Shape Code...Loc[in] LC Shear..Loc[in] Dir LC phi*Pn[lb]phi*Tn[lb]phi*Mny...phi*Mnz...phi*V...phi*V... Cb Eqn No Data to Print... 8.0 ft Sector Frame Mount Analysis Order 548869, Revision 2 March 14, 2022 CCI BU No 841294 Page 9

APPENDIX D

ADDITIONAL CALCULATIONS

ENG-FRM-10208, Rev. D



BOLT TOOL 1.5.2

Project Data		
Job Code:	204654	
Carrier Site ID:	NJJER01094A	
Carrier Site Name:	CT-CCI-T-841294	

Code		
Design Standard:	TIA-222-H	
Slip Check:	Yes	
Pretension Standard:	TIA-222-H	

Bolt Properties			
Connection Type:	Threaded Rod		
Diameter:	0.625 in		
Grade:	AE J429 Gr		
Yield Strength (Fy):	57 ksi		
Ultimate Strength (Fu):	74 ksi		
Number of Bolts:	2		
Threads Included:	Yes		
Double Shear:	No		
Connection Pipe Size:	9.5	in	

Connection Description

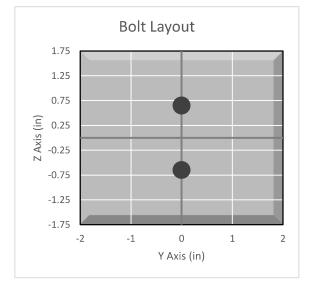
Standoff to Tower

Bolt Check*		
Tensile Capacity (φT _n):	12543.1	lbs
Shear Capacity (φV _n):	8513.6	lbs
Tension Force (T _u):	0.0	lbs
Shear Force (V _u):	1459.0	lbs
Tension Usage:	0.0%	
Shear Usage:	16.3%	
Interaction:	16.3%	Pass
Controlling Member:	M68	
Controlling LC:	178	

*Rating per TIA-222-H Section 15.5

Slip Check*		
Sliding Capacity (ϕR_{ns}):	6547.2	lbs
Torsion Capacity (φR _{nr}):	2591.6	lb-ft
Sliding Force (V _{us}):	597.5	lbs
Torsional Force (T _{ur}):	666.4	lb-ft
Sliding Usage:	8.7%	
Torsion Usage:	24.5%	
Interaction:	26.0%	Pass
Controlling Member:	M99	
Controlling LC:	220	

*Rating per TIA-222-H Section 15.5



BOLT TOOL 1.5.2

Project Data		
Job Code:	204654	
Carrier Site ID:	NJJER01094A	
Carrier Site Name:	CT-CCI-T-841294	

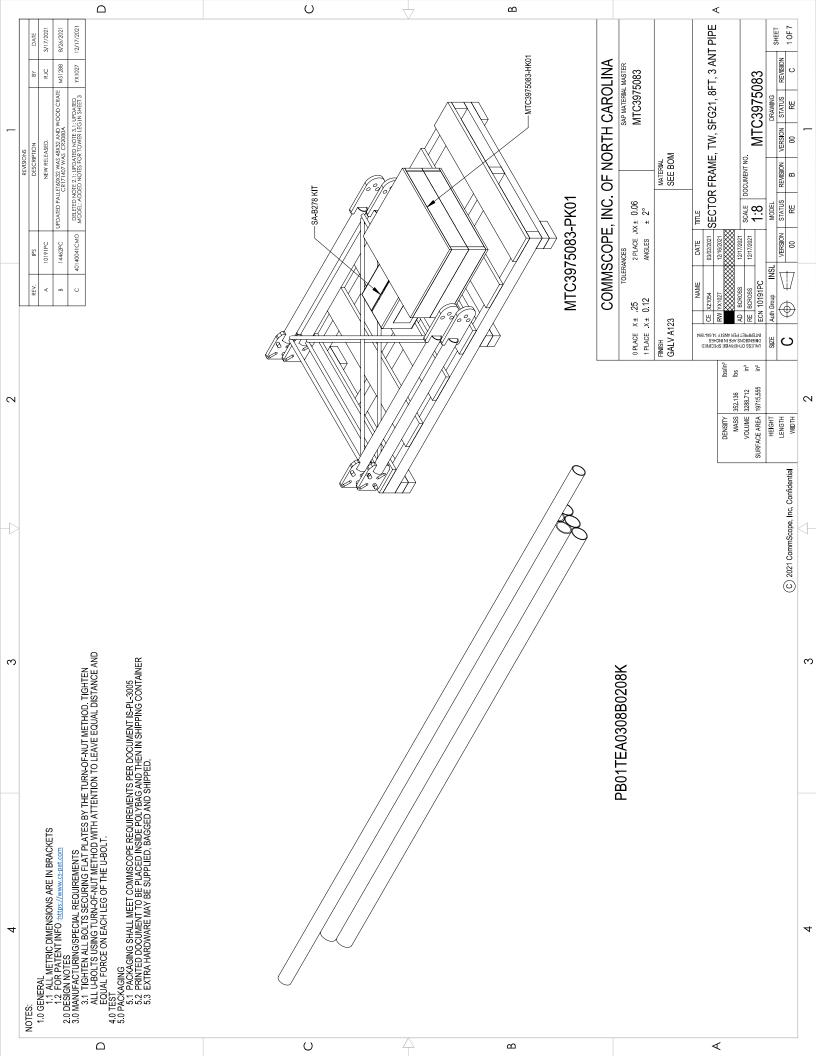
Code		
Design Standard:	TIA-222-H	
Slip Check:	No	
Pretension Standard:	AISC	

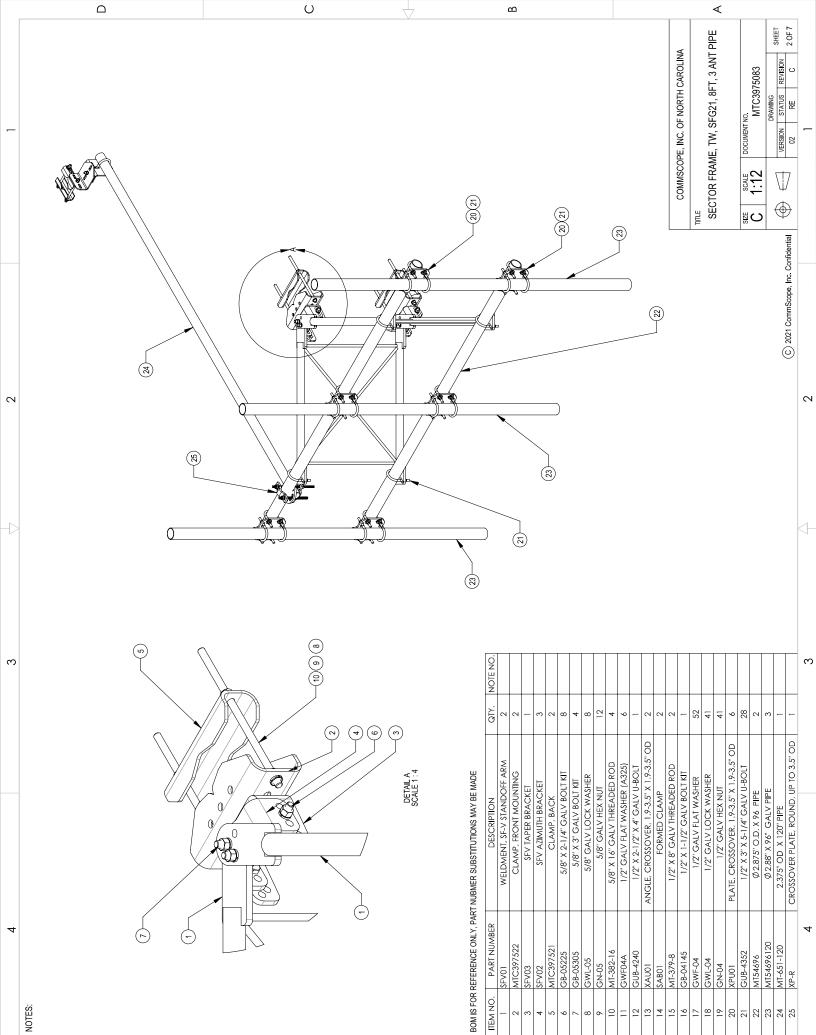
Bolt Properties			
Connection Type:	Bolt		
Diameter:	0.625 in		
Grade:	A325		
Yield Strength (Fy):	92	ksi	
Ultimate Strength (Fu):	120	ksi	
Number of Bolts:	2		
Threads Included:	Yes		
Double Shear:	Yes		
Connection Pipe Size:	9.5	in	

Connection Description

Standoff to Tower

Bolt Check*		
Tensile Capacity (φT _n):	20340.1	lbs
Shear Capacity (φV _n):	13805.8	lbs
Tension Force (T _u):	5531.0	lbs
Shear Force (V _u):	(V _u): 490.5 Ibs	
Tension Usage:	on Usage: 25.9%	
Shear Usage:	3.4%	
Interaction:	25.9%	Pass
Controlling Member:	M31	
Controlling LC:	138	

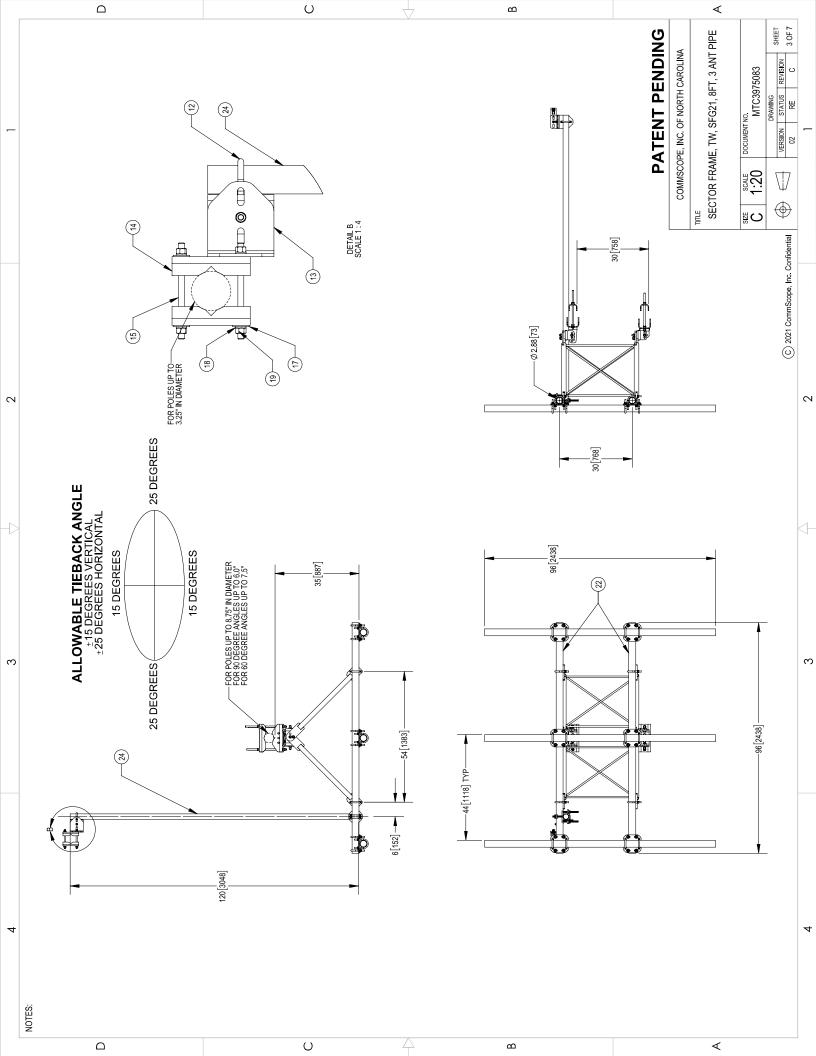

*Rating per TIA-222-H Section 15.5

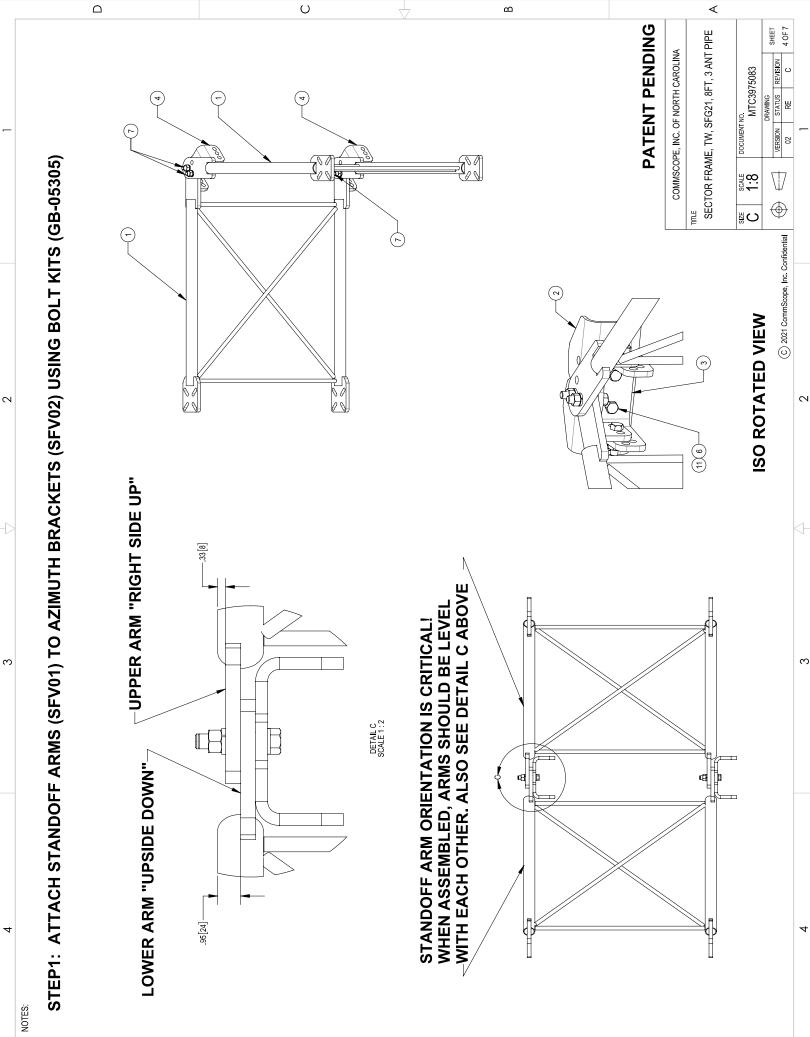

8.0 ft Sector Frame Mount Analysis Order 548869, Revision 2 March 14, 2022 CCI BU No 841294 Page 10

APPENDIX E

SUPPLEMENTAL DRAWINGS

ENG-FRM-10208, Rev. D

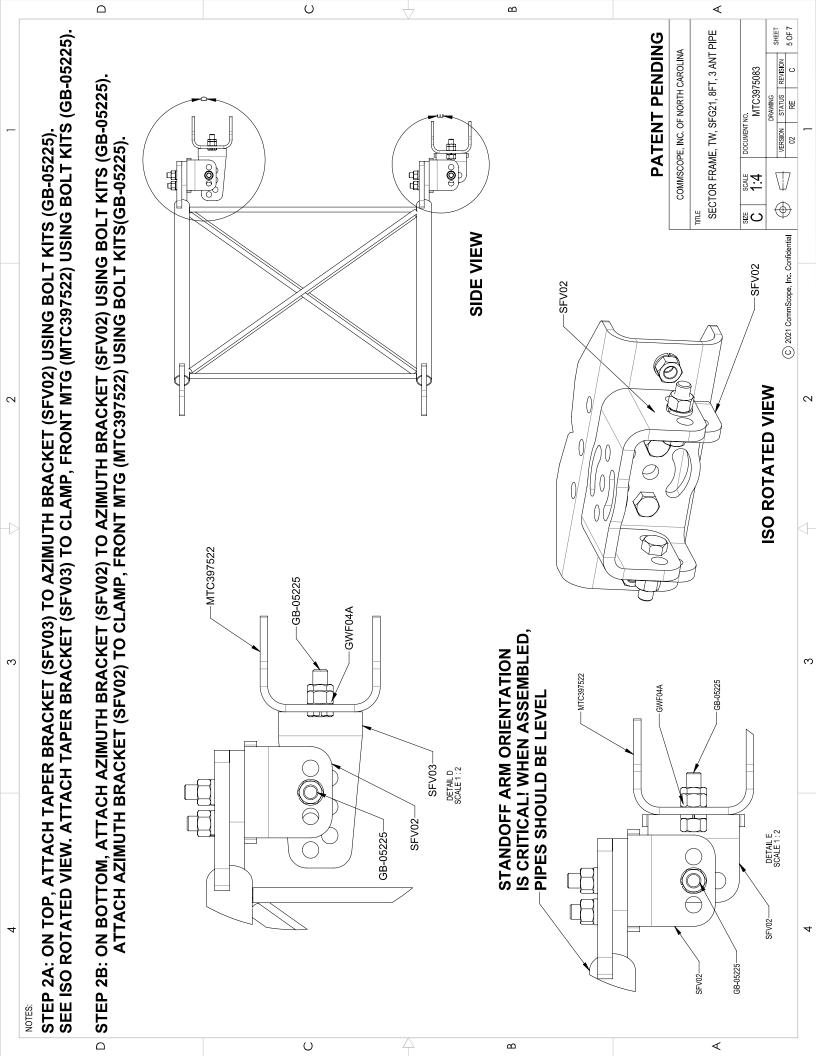


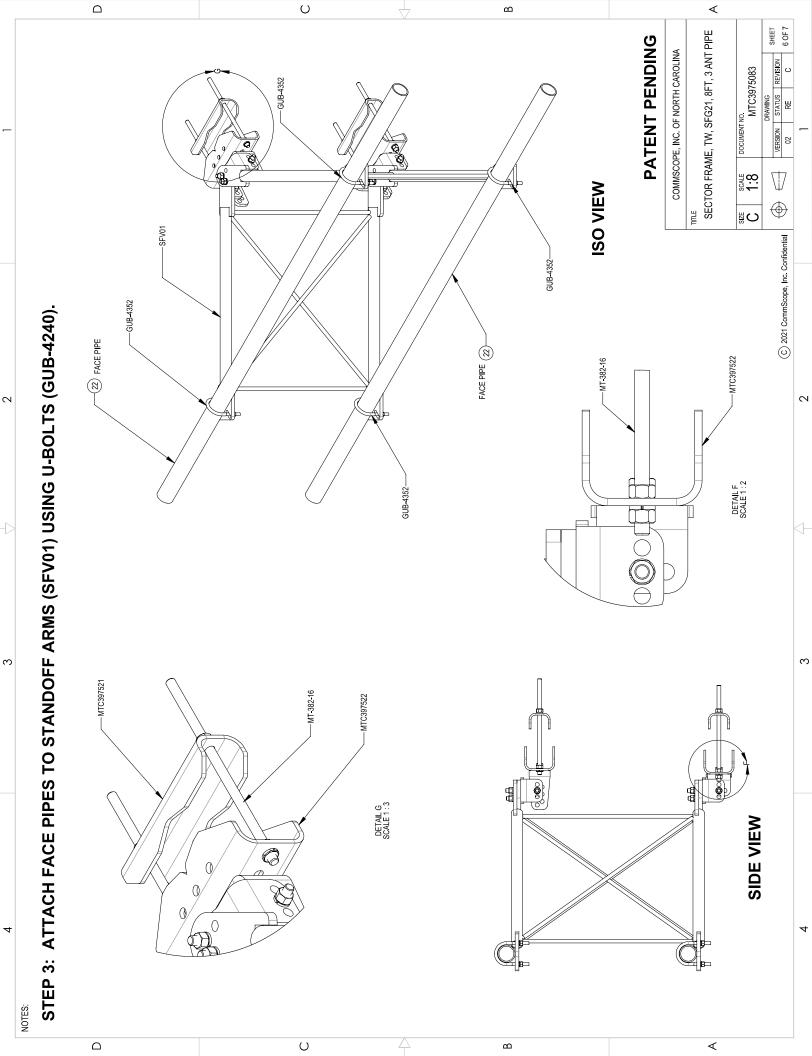

U

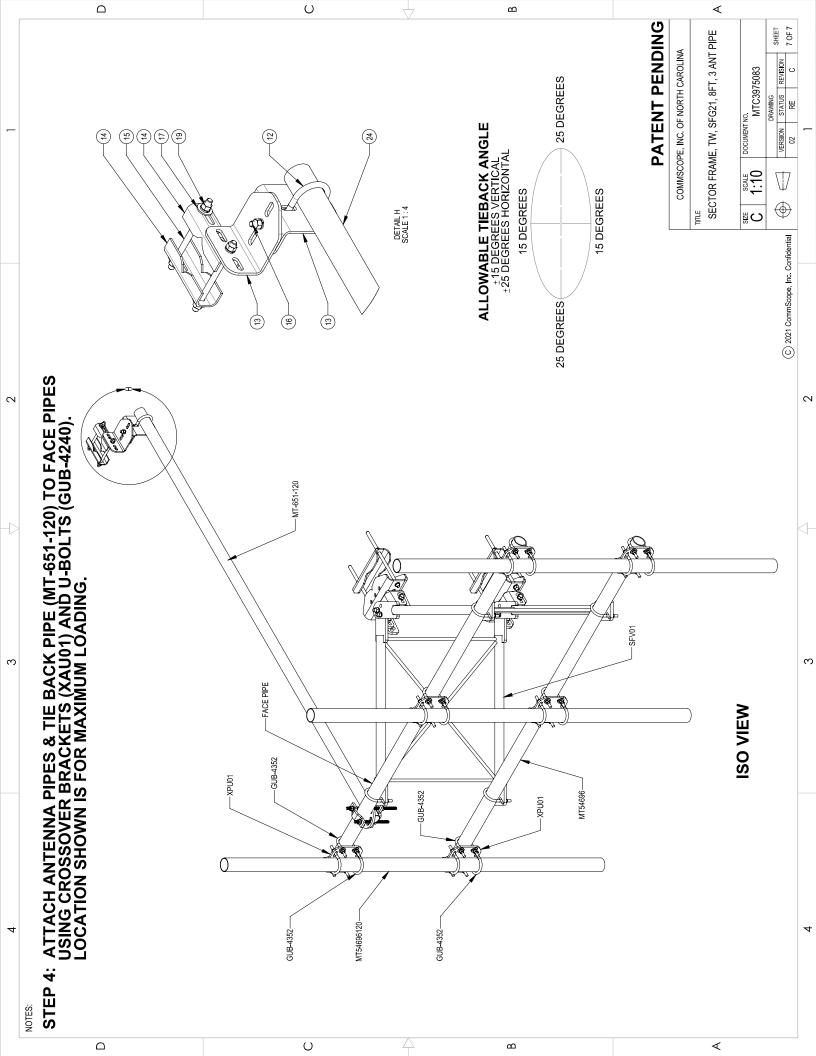
1

В

∢




υ


Δ

മ

∢

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: NJJER01094A

841294 230 Guinea Road Monroe, Connecticut 06468

April 27, 2022

EBI Project Number: 6222002989

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE% of FCC general population allowable limit:	3.54%

environmental | engineering | due diligence

April 27, 2022

Attn: Dish Wireless

Emissions Analysis for Site: NJJER01094A - 841294

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **230 Guinea Road** in **Monroe, Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 230 Guinea Road in Monroe, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) 4 n66 channels (AWS Band 2190 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 5) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative

estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 6) The antennas used in this modeling are the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector A, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector B, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antenna mounting height centerline of the proposed antennas is 165 feet above ground level (AGL).
- 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 9) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	А	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21
Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz	Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz	Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz
Gain:	.45 dBd / 5.75 dBd / 6.75 dBd	Gain:	.45 dBd / 5.75 dBd / 6.75 dBd	Gain:	.45 dBd / 5.75 dBd / 6.75 dBd
Height (AGL):	165 feet	Height (AGL):	165 feet	Height (AGL):	165 feet
Channel Count:	12	Channel Count:	12	Channel Count:	12
Total TX Power (W):	440.00 Watts	Total TX Power (W):	440.00 Watts	Total TX Power (W):	440.00 Watts
ERP (VV):	2,529.88	ERP (W):	2,529.88	ERP (VV):	2,529.88
Antenna AI MPE %:	0.46%	Antenna BI MPE %:	0.46%	Antenna CI MPE %:	0.46%

environmental | engineering | due diligence

Site Composite MPE %		
Carrier	MPE %	
Dish Wireless (Max at Sector A):	0.46%	
PageNet	0.2%	
RAW Mobile Data	0.01%	
Nextel	0.25%	
CL&P	0.09%	
Verizon	I.24%	
AT&T	I.2 9 %	
Site Total MPE % :	3.54%	

Dish Wireless MPE % Per Sector					
Dish Wireless Sector A Total:	0.46%				
Dish Wireless Sector B Total:	0.46%				
Dish Wireless Sector C Total:	0.46%				
Site Total MPE % :	3.54%				

Dish Wireless Maximum MPE Power Values (Sector A)							
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
Dish Wireless 600 MHz n71	4	112.10	165.0	0.64	600 MHz n71	400	0.16%
Dish Wireless 1900 MHz n70	4	245.22	165.0	1.39	1900 MHz n70	1000	0.14%
Dish Wireless 2190 MHz n66	4	275.14	165.0	1.57	2190 MHz n66	1000	0.16%
						Total:	0.46%

• NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)			
Sector A:	0.46%			
Sector B:	0.46%			
Sector C:	0.46%			
Dish Wireless				
Maximum MPE %	0.46%			
(Sector A):				
Site Total:	3.54%			
Site Compliance Status:	COMPLIANT			

The anticipated composite MPE value for this site assuming all carriers present is **3.54%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

1200 MacArthur Blvd, Suite 200 Mahwah, NJ 07430

Phone: (862) 226-6914 www.crowncastle.com

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

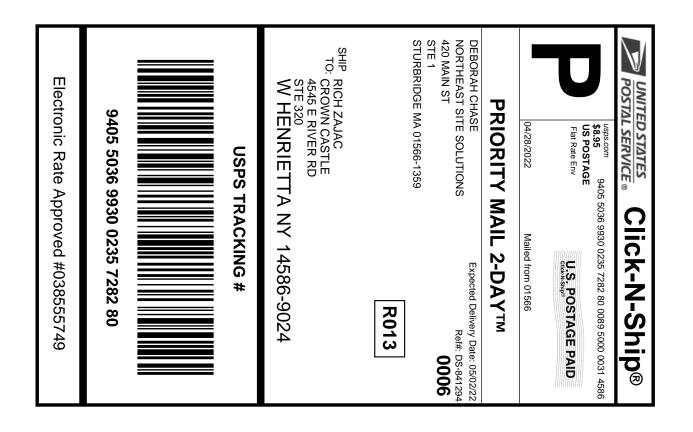
Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Tower Share Application Crown Castle telecommunications site at: 88 MAIN STREET, MONROE, CT 06468

T-MOBILE USA TOWER LLC ("Crown Castle") hereby authorizes DISH NETWORK, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name: Customer Site ID: Site Address:

826053/Monroe-1/Rt 25 NJJER01091A/CT-CCI-T-826053 88 Main Street, Monroe, CT 06468


Crown Castle

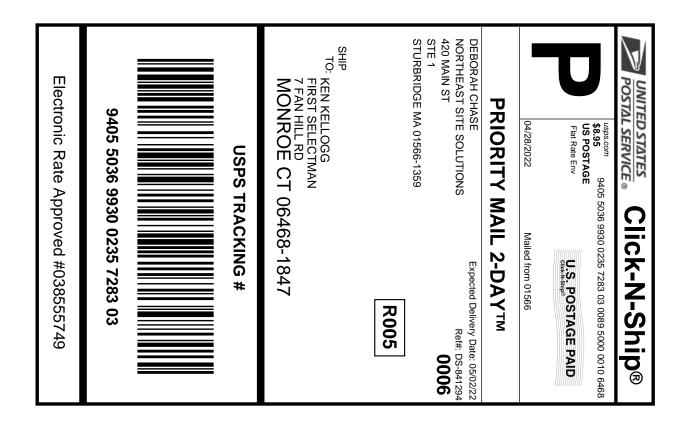
Date: 04/28/2022 By:

Robin Cannizzaro Real Estate Specialist

Exhibit H

Recipient Mailings

Cut on dotted line.

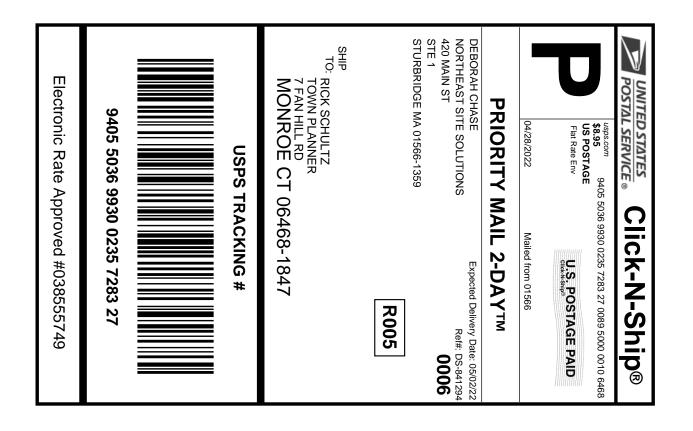

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

UNITED STATES POSTAL SERVICE Thank you for shipping with the United States Postal Service! Check the status of your shipment on the USPS Tracking® page at usps.com

Cut on dotted line.


Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

UNITED STATES POSTAL SERVICE Thank you for shipping with the United States Postal Service! Check the status of your shipment on the USPS Tracking® page at usps.com

Cut on dotted line.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

UNITED STATES POSTAL SERVICE Thank you for shipping with the United States Postal Service! Check the status of your shipment on the USPS Tracking® page at usps.com

