

4545 East River Road, Suite 320 West Henrietta, NY 14586

March 26th, 2020

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification for Verizon Crown Castle Site ID#: 876342 111 School House Rd., Milford, CT 06460 Lat: 41° 12' 45.4"/ Long: 73° 05' 05.5"

Dear Ms. Bachman:

Verizon currently maintains nine (9) total antennas at the 105'-foot mount on the existing 140-foot monopole tower located at 111 School House Road in Milford. The tower is owned by Crown Castle and the property is owned by Milford Enterprises LLC. Verizon now intends to add three (3) antennas to the existing configuration.

Tower modifications:

- Add three (3) new CBRS antennas
- Remove twelve (12) RRUs
- Add nine (9) new RRUs
- Add three (3) diplexers

Ground modifications:

- None

The City of Milford Planning and Zoning board approved this facility on May 6th, 1997. This approval was given without conditions.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.S.C.A. § 16-50j-73, a copy of this letter is being sent to Ben Blake, Mayor of the City of Milford, as well as Stephen Harris, Zoning Enforcement Officer for the City of Milford. A copy of this letter will also be sent to the property owner, Milford Enterprises LLC.

Additionally:

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, Verizon respectfully submits that the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. 16-50j-72(b)(2). Please send approval/rejection letter to my attention at the address listed below.

Sincerely,

Richard Zajac Network Real Estate Specialist 4545 East River Road, Suite 320 Rochester, NY 14586 585-445-5896 richard.zajac@crowncastle.com

cc:

City of Milford Attn: Benjamin Blake - Mayor 110 River St Milford, CT 06460 203-783-3201

City of Milford Attn: Stephen H. Harris – Zoning Enforcement Officer 70 West River St Milford, CT 06460 203-783-3245

Milford Enterprises LLC Attn: Vipul Mehta 1207 E Main Street Stamford, CT 06702 Good morning Mayor Blake,

Please see the attached application to the Connecticut Siting Council regarding antenna work on the existing cell tower located at 111 Schoolhouse Road in Milford.

Should you have any questions/comments/concerns regarding this application, please do not hesitate to contact me.

Thank you, **RICH ZAJAC** Network Real Estate Specialist T: (585) 445-5896 M: (607) 346-7212 F: (724) 416-4461 **CROWN CASTLE** 4545 East River Road, Suite 320 West Henrietta, NY 14586 Good morning Mr. Harris,

Please see the attached application to the Connecticut Siting Council regarding antenna work on the existing cell tower located at 111 Schoolhouse Road in Milford.

Should you have any questions/comments/concerns regarding this application, please do not hesitate to contact me.

Thank you, **RICH ZAJAC** Network Real Estate Specialist T: (585) 445-5896 M: (607) 346-7212 F: (724) 416-4461 **CROWN CASTLE** 4545 East River Road, Suite 320 West Henrietta, NY 14586

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

Exhibit A

Original Facility Approval

			and the second		
AT BE A			DATE FI	ED 5/15	197
			RECEIP	1 20'	1
					200
10 218/					100
			Çonnectic	ut	
	APPLIC	ATION FOR ZO	ONING PERMIT		
INSTRUCTIONS: Fill out this application showing the proposed	application in ball point pen. I or existing lot and building dir	A scaled plot plan in dupli mensions and the location o	cate, based on a certified surve If all buildings in relation to the	iyor's plot plan must be a street lines, side lot linea	submitted with this and rear lot lines
ADDRESS OF PROPER	RTY_///. 5	checklere	1d.	zo	NE G.T.
MAP 33 BLOCK	335 PARCEL	5 LOT NO	ADDRESS MAP NO.	LOT SIZE	
WIDTH OF STREET RIC	GHT OF WAY LESS T			RNER LOT? YES	_ NO /
IS ANY PORTION OF T		32.00.45 (E.A. Met 7	The second s	NO CAM	YES NO
	A A STATE A STATE	,			
	TE WELL* SEW	ER** V SEPTIC***	ENGINEERING OFF S	STREET PERMIT #	
OWNER Telach	Pro. LP.		PHONE	1 \$ 877-	8000
OWNER		11 20		1 1	
ADDRESS OF OWNER	III Scheel	House Id.	.1.1, 14e.e	2 01	
	STREE			STATE	27 COD
PRESENT USE OF PRO	and the second	Metel	CITY	-	
PRESENT USE OF PRO	OPERTY	Mrtel			PAID
PROPOSED CONSTRU	OPERTY		DN ALTERAT		
PROPOSED CONSTRU SIZE/USE OF PROPOS	OPERTY				PAIR
PROPOSED CONSTRU	OPERTY		DN ALTERAT		epair
PROPOSED CONSTRU SIZE/USE OF PROPOS	OPERTY		DN ALTERAT		pair
PROPOSED CONSTRU SIZE/USE OF PROPOS	OPERTY		ING SPACES	non Ri a.S LOT COVERAG	picle
PROPOSED CONSTRU SIZE/USE OF PROPOS	DPERTY JCTION NEW ED CONSTRUCTION / /ieg HEIGHT ///0'	$M_r + \epsilon /$ X_r ADDITION $M_r - 14c' = Te /$	ING SPACES	nonR nS	pale% BE%
PROPOSED CONSTRU SIZE/USE OF PROPOS	DPERTY JCTION NEW ED CONSTRUCTION HEIGHT _/40' :: ZBA _2/ 11/97.	Mrtel ADDITION REQUIRED PARK CASPR	UNG SPACES	ION RU	picle BE% r/ <u>May 6, 197</u>
PROPOSED CONSTRU SIZE/USE OF PROPOS (Letlande Repairs NO. OF STORIES DATE OF APPROVALS	OPERTY	Mr. He / ADDITION MADDITION MADDITION ME ME Me	ING SPACES ING SPACES SITE PLAN /// ay 6 HISTORIC DIST behalf of and with full authority	LOT COVERAG	pic/e SE% May 6/177 ATENESS perty and that I an
PROPOSED CONSTRU SIZE/USE OF PROPOS (Action of PROPOS (Action of Propose) (Action of Propose) NO. OF STORIES DATE OF APPROVALS EXEMPTION ISSUED CERTIFICATION: (WARNING aware of the Zoning Regulations	OPERTY JCTION NEW ED CONSTRUCTION HEIGHT _/40 ' SUBDIV. NAU G) I hereby certify that I am pertiment in this case and the THE OCCUPANCY	M- fe / ADDITION MADDITION MADDITION ME ME ME AND USE OF LAND AND	DN ALTERAT	IDON RU	pic/e SE% May 6, / 77 ATENESS perty and that I an
PROPOSED CONSTRU SIZE/USE OF PROPOS (Let and E Key min NO. OF STORIES DATE OF APPROVALS EXEMPTION ISSUED CERTIFICATION: (WARNING aware of the Zoning Regulations AS SUBMITTED.	OPERTY JCTION NEW ED CONSTRUCTION HEIGHT _/40 ' SUBDIV. NAU G) I hereby certify that I am pertiment in this case and the THE OCCUPANCY	M- + e / ADDITION MADDITION MADDITION MADDITION ME ME ME ME ME AND USE OF LAND AND INCE OF A CERTIFICATE	ALTERAT	IDON RI S LOT COVERAC 	BE% T / <u>May 6 / 77</u> ATENESS perty and that I am ALID FOR PLANS
PROPOSED CONSTRU SIZE/USE OF PROPOS (Action of PROPOS (Action of Propose) (Action of Propose) NO. OF STORIES DATE OF APPROVALS EXEMPTION ISSUED CERTIFICATION: (WARNING aware of the Zoning Regulations	OPERTY JCTION NEW ED CONSTRUCTION HEIGHT _/40 ' SUBDIV. NAU G) I hereby certify that I am pertiment in this case and the THE OCCUPANCY	M- + e / ADDITION MADDITION MADDITION MADDITION ME ME ME ME ME AND USE OF LAND AND INCE OF A CERTIFICATE	ALTERAT	IDON RI S LOT COVERAC 	BE% T / <u>May 6 / 77</u> ATENESS perty and that I am ALID FOR PLANS
PROPOSED CONSTRU SIZE/USE OF PROPOS (Let and E Key min NO. OF STORIES DATE OF APPROVALS EXEMPTION ISSUED CERTIFICATION: (WARNING aware of the Zoning Regulations AS SUBMITTED.	OPERTY JCTION NEW ED CONSTRUCTION HEIGHT _/40 ' SUBDIV. NAU G) I hereby certify that I am pertiment in this case and the THE OCCUPANCY	M- + e / ADDITION M- 14/C' Ter ADDITION ME ME AND USE OF LAND AND INCE OF A CERTIFICATE APPLICAN	ALTERAT	IDON RI S LOT COVERAC 	BE% T / <u>May 6 / 77</u> ATENESS perty and that I am ALID FOR PLANS
PROPOSED CONSTRU SIZE/USE OF PROPOS (Let and E Key min NO. OF STORIES DATE OF APPROVALS EXEMPTION ISSUED CERTIFICATION: (WARNING aware of the Zoning Regulations AS SUBMITTED.	OPERTY JCTION NEW ED CONSTRUCTION HEIGHT _/40 ' SUBDIV. NAU G) I hereby certify that I am pertiment in this case and the THE OCCUPANCY	M- 4 c / ADDITION ADDITI	ALTERAT	IDON RI RI RI RI RI RI RI _	BE% T / <u>May 6 / 77</u> ATENESS werty and that I am SELID FOR PLANS C SPRINT /
PROPOSED CONSTRU SIZE/USE OF PROPOS (Let and E Key min NO. OF STORIES DATE OF APPROVALS EXEMPTION ISSUED CERTIFICATION: (WARNING aware of the Zoning Regulations AS SUBMITTED.	OPERTY JCTION NEW ED CONSTRUCTION HEIGHT _/40 ' SUBDIV. NAU G) I hereby certify that I am pertiment in this case and the THE OCCUPANCY	M- 4 c / ADDITION ADDITI	ALTERAT	IDON RI RI RI RI RI RI RI _	BE% T / <u>May 6 / 77</u> ATENESS werty and that I am SELID FOR PLANS C SPRINT /
PROPOSED CONSTRU SIZE/USE OF PROPOS (Let and I from a NO. OF STORIES DATE OF APPROVALS EXEMPTION ISSUED CERTIFICATION: (WARNING aware of the Zoning Regulations AS SUBMITTED. APPROVED BY: Zoning Of	OPERTY JCTION NEW ED CONSTRUCTION HEIGHT _/40 ' SUBDIV. NAU G) I hereby certify that I am pertiment in this case and the THE OCCUPANCY	M- 4 c / ADDITION ADDITI	ALTERAT	IDON RI RI RI RI RI RI RI _	BE% T / <u>May 6 / 77</u> ATENESS werty and that I am SELID FOR PLANS C SPRINT /
PROPOSED CONSTRU SIZE/USE OF PROPOS (Let and I from a NO. OF STORIES DATE OF APPROVALS EXEMPTION ISSUED CERTIFICATION: (WARNING aware of the Zoning Regulations AS SUBMITTED. APPROVED BY: Zoning Of	OPERTY JCTION NEW ED CONSTRUCTION HEIGHT _/40 ' SUBDIV. NAU G) I hereby certify that I am pertiment in this case and the THE OCCUPANCY	M- + e / ADDITION MADDITION MADDITION MEADDITION CASPRAND MEAND USE OF LAND AND INCE OF A CERTIFICATE APPLICAN N S ADDISE OF LAND AND S ADDISE OF LAND AND S ADDISE OF LAND AND S ADDISE OF A CERTIFICATE APPLICAN N C C C C C C C C C C C C C C C C C	ALTERAT	IDON RI RI RI RI RI RET COVERAC RET COVERAC 	SE% SE% They f, 177 ATENESS Servy and that I arr ALID FOR PLANS SPRINT 1 SP ZIPA12
PROPOSED CONSTRU SIZE/USE OF PROPOS [Action of PROPOS [Action of Proposed NO. OF STORIES DATE OF APPROVALS EXEMPTION ISSUED CERTIFICATION: (WARNING aware of the Zoning Regulations AS SUBMITTED. APPROVED BY: Zoning Of DATE ISSUED	OPERTY JCTION NEW ED CONSTRUCTION I Ing - HEIGHT /40' : ZBA 2/1/97 SUBDIV. NAU G) I hereby certify that I am pertinent in this case and th THE OCCUPANCY PRIOR TO THE ISSUA	M- + e / ADDITION ADDITI	ALTERAT	LOT COVERAGE LOT COVERAGE INTERCIAL PERMIT CERT.OF APPROPRI PROVAL SHALL BE VA ES BITED INCK AGENT FUN (Please Pfinit) MUNITRIPL RUM Street STATE CT 294-5609	Pic/e SE% Mic_f_/77 ATENESS perty and that I am NUD FOR PLANS SPRINT / SP ZIP
PROPOSED CONSTRU SIZE/USE OF PROPOS [Action of PROPOS [Action of Proposed NO. OF STORIES DATE OF APPROVALS EXEMPTION ISSUED CERTIFICATION: (WARNING aware of the Zoning Regulations AS SUBMITTED. APPROVED BY: Zoning Of DATE ISSUED	OPERTY JCTION NEW ED CONSTRUCTION I I eg - HEIGHT _/40' : ZBA _2/ 11/97: SUBDIV. NAJ G) I hereby certify that I am pertinent in this case and th THE OCCUPANCY PRIOR TO THE ISSUA (15/97) from State Health Dept. for	M- fe / ADDITION MADDITION MADDITION MEAND USE OF LAND AND INCE OF A CERTIFICATE APPLICAN N S ADD USE OF LAND AND INCE OF A CERTIFICATE APPLICAN N C C T OF apartments, subdivision	ALTERAT	IDON RI RI RI RI RI RI RES BITED RI RI Street STATE RI 	Picke
PROPOSED CONSTRU SIZE/USE OF PROPOS [Action of PROPOS [Action of Proposed NO. OF STORIES DATE OF APPROVALS EXEMPTION ISSUED CERTIFICATION: (WARNING aware of the Zoning Regulations AS SUBMITTED. APPROVED BY: Zoning Of DATE ISSUED	OPERTY JCTION NEW ED CONSTRUCTION I I ecc HEIGHT //0' : ZBA 2/11/97: SUBDIV. NAJ G) I hereby certify that I am pertiment in this case and th THE OCCUPANCY PRIOR TO THE ISSUA // from State Health Dept. fo ** Permits for a	M- fe / ADDITION MADDITION MADDITION MEADDITION CASPRAME	ALTERAT	IDON RI RI RI RI RI RI RES BITED RI RI Street STATE RI 	Pic/e BE% Micy 6, 197 ATENESS perty and that 1 am NUD FOR PLANS SPRINT P SP ZIP ZIP QLA9_L
PROPOSED CONSTRU SIZE/USE OF PROPOS [Action of PROPOS [Action of Proposed NO. OF STORIES DATE OF APPROVALS EXEMPTION ISSUED CERTIFICATION: (WARNING aware of the Zoning Regulations AS SUBMITTED. APPROVED BY: Zoning Of DATE ISSUED	OPERTY JCTION NEW ED CONSTRUCTION I I ecc HEIGHT //0' : ZBA 2/11/97: SUBDIV. NAJ G) I hereby certify that I am pertiment in this case and th THE OCCUPANCY PRIOR TO THE ISSUA // from State Health Dept. fo ** Permits for a	M- fe / ADDITION MADDITION MADDITION MEADDITION CASPRAME	ALTERAT CING SPACES	IDN RI RI RI 	Pic/e BE% Micy 6, 197 ATENESS perty and that 1 am NUD FOR PLANS SPRINT P SP ZIP ZIP QLA9_L

SENT BY HURWITZ & SAGARI	N ; 6-16-97 ; 15:	18 ; HURWITZ & SAGARIN-	203 294 5647;# 2/
C8 1		CAM RE TIRED IS	
MEL	ILFORD PLANNING	& ZONING BOARD	
	PETITION FOR S	PECIAL PERMIT	
I (WE)	we pas	1.4 ·	
HEREBY PETITION FOR A			
SPECIAL PERMIT		TO A SPECIAL PERMIT	<u>.</u>
TO ESTABLISH OR	CONSTRUCT Telecom	munications Monopole	
	and the second	(DESCRIPTION)	
ON THE FOLLOWING PRO			
ADDRESS OF PROPERTY	111 School Bouse Ro	sewer SI	PTIC
ASSESSOR'S MAP _33_ E	OCK 325 PARCEL	S ZONE GL ACRE	5 2.216
ASSESSOR'S MAP _11_ B			1
APPLICANT'S NAME	print PCS	PHONE # (203)	04_5584
APPLICANT'S MAILING A	DDRESS 9SBarnesrin	fustrial Road, Wallingfor	d, CT
The second s			and the second se
PROPERTY OWNER'S NAM	E TELAHC Prop., L.	PHONE # c/o (20	<u>13) 877-8000</u>
PROPERTY OWNER'S SIGN	ATTIRE (MM	upon	
	0		
PROPERTY OWNER'S MAI	LING ADDRESS 111	School House Road, Milfor	
IF APPEARING BY ATTOR	NEY OR AGENT:	1 A A	
I. ATTENUE		1. Sec	· ·
NAME Barris Beach	WILCOX, ILP		
SIGNATURE		PHONE # (203) 877-800	·
	`		
MAILING ADDRESS 147			Contraction of the second
HAS ANY PREVIOUS PETT	TION FOR A SPECIAL	PERMIT BEEN FILED FOR	THIS PROPERTY?
ANS ALL INLIGOUTEL			
YES X NO_		•	
IF YES, GIVE DECISION:	APPROVED _x	DENIED DATE 11	6/85
APPLICANT			
NOTTE: COMPLES OF TIMES APPLE	CATION WELL NOT BE AC	HICKNED.	
	- imme		4
FEE - SEE SCHEDULE OF ZONIN RECEIVED OF	DATE	A REAL PROPERTY AND A REAL	
AND AND DAY	AMOUNT	RECEIPT NO.	
RECEIVED BY			
RECEIVED OF RECEIVED OF DATE APPLICATION FILED PLANNING & ZONING BOARD A	DATE APPLICATION C	APPROVED DENIED	
RECEIVED BY DATE APPLICATION FILED PLANNING & ZONING BOARD A REVISED 6/93	DATE APPLICATION C CTION: DATE	APPROVED DENIED	

PROCEDURE FOLLOWING APPROVAL BY PLANNING & ZONING BOARD

SITE PLAN REVIEW

Following approval by the Planning & Zoning Board, it is necessary to obtain a zoning permit at the Planning & Zoning Office. Plans for this permit will be the Board approved plans on file in our office unless the Board has stipulated revisions to be made. Please call the reviewing officer for this application at 783-3245 to make arrangements for the issuance of a zoning permit. The fee for a zoning permit following Board approval is \$22.00. The zoning permit, associated plans and other exhibits must then be taken to the Building Inspector for the issuance of a building permit.

SPECIAL PERMIT/SPECIAL EXCEPTION

Following approval by the Planning & Zoning Board, it is necessary to obtain a zoning permit at the Planning & Zoning Office. Plans for this permit will be the Board approved plans on file in our office unless the Board has stipulated revisions to be made. Please call the reviewing officer for this application at 783-3245 to make arrangements for the issuance of a zoning permit. The fee for a zoning permit following Board approval is \$22.00. The zoning permit, associated plans and other exhibits must then be taken to the Building Inspector for the issuance of a building permit.

Prior to the issuance of a zoning permit, a certificate, which is being held at the office must be filed on the land records in the City Clerk's Office for which a fee of \$10.00 is required. You must present your receipt from the City Clerk's Office at the Planning & Zoning Office to be recorded in your file.

PZSP12/95

Exhibit B

Property Card

111 SCHOOLHOUSE RD #CELL

Location	111 SCHOOLHOUSE RD #CELL	Mblu	33/ 335/ 5/A /
Acct#	023043	Owner	MILFORD ENTERPRISES LLC
Assessment	\$245,000	Appraisal	\$350,000
PID	100242	Building Count	1

Current Value

Appraisal					
Valuation Year Improvements Land Total					
2016	\$350,000	\$0	\$350,000		
	Assessment				
Valuation Year	Improvements	Land	Total		
2016	\$245,000	\$0	\$245,000		

Owner of Record

Owner	MILFORD ENTERPRISES LLC	Sale Price	\$3,675,000
Other	C/O VIPUL MEHTA	Certificate	
Address	1207 E MAIN STREET	Book & Page	03622/0230
	STAMFORD, CT 06702	Sale Date	03/27/2015
		Instrument	18

Ownership History

Ownership History						
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date	
MILFORD ENTERPRISES LLC	\$3,675,000		03622/0230	18	03/27/2015	
CSMC 2007 C5 FFI HOTEL PORTFOLIO LLC	\$6,930,207		03602/0294	22	10/06/2014	
MILFORD FFI LLC	\$4,800,000		03168/0407	00	05/10/2007	
OLY REALTY ONE LLC	\$3,800,000		02396/0375		02/28/2000	
TELAHC PROPERTIES L P	\$0		02040/0184		03/11/1994	

Building Information

Building 1 : Section 1

Year Built: Living Area: Replacement Cost: Building Percent Good: **Replacement Cost** ciati n

\$0

Building Attributes				
Field	Description			
Style	Outbuildings			
<i>l</i> odel				
irade:				
tories:				
Occupancy				
exterior Wall 1				
exterior Wall 2				
Roof Structure:				
oof Cover				
nterior Wall 1				
nterior Wall 2				
nterior Flr 1				
nterior Flr 2				
leat Fuel				
łeat Type:				
С Туре:				
otal Bedrooms:				
otal Bthrms:				
otal Half Baths:				
ota l Xtra Fixtrs:				
otal Rooms:				
ath Description:				
itchen Descrip:				
um Kitchens				
ndtn				
srfld 103				
t Condition:				
olar Panels				
ouse Generator				
srfld 107				
lum Park				
replaces				
srfld 108				
srfld 101				
lsrfld 102				
Jsrfld 100				

Building Layout

Building Layout

(http://images.vgsi.com/photos/MilfordCTPhotos//Sketches/100242_10024

Building Sub-Areas (sq ft)

Legend

No Data for Building Sub-Areas

Usr f ld 300	
Usrfld 301	

Extra Features

Extra Features	<u>Legend</u>
No Data for Extra Features	

Land

Land Use		Land Line Valuation	
Use Code	434∨	Size (Acres) 0	
Description	CELL TOWER MDL-00	Frontage	
Zone		Depth	
Neighborhood	С	Assessed Value \$0	
Alt Land Appr	No	Appraised Value \$0	
Category			

Outbuildings

	Outbuildings Leger					
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
CEL1	CEL TWR SITE			1.00 UNITS	\$350,000	1

Valuation History

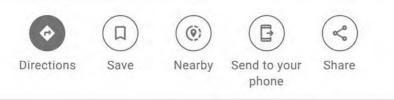
Appraisal						
Valuation Year	Improvements	Land	Total			
2018	\$350,000	\$0	\$350,000			
2017	\$350,000	\$0	\$350,000			
2016	\$350,000	\$0	\$350,000			

	Assessment										
Valuation Year	Improvements	Land	Total								
2018	\$245,000	\$0	\$245,000								
2017	\$245,000	\$0	\$245,000								
2016	\$245,000	\$0	\$245,000								

Google Maps

111 Schoolhouse Rd

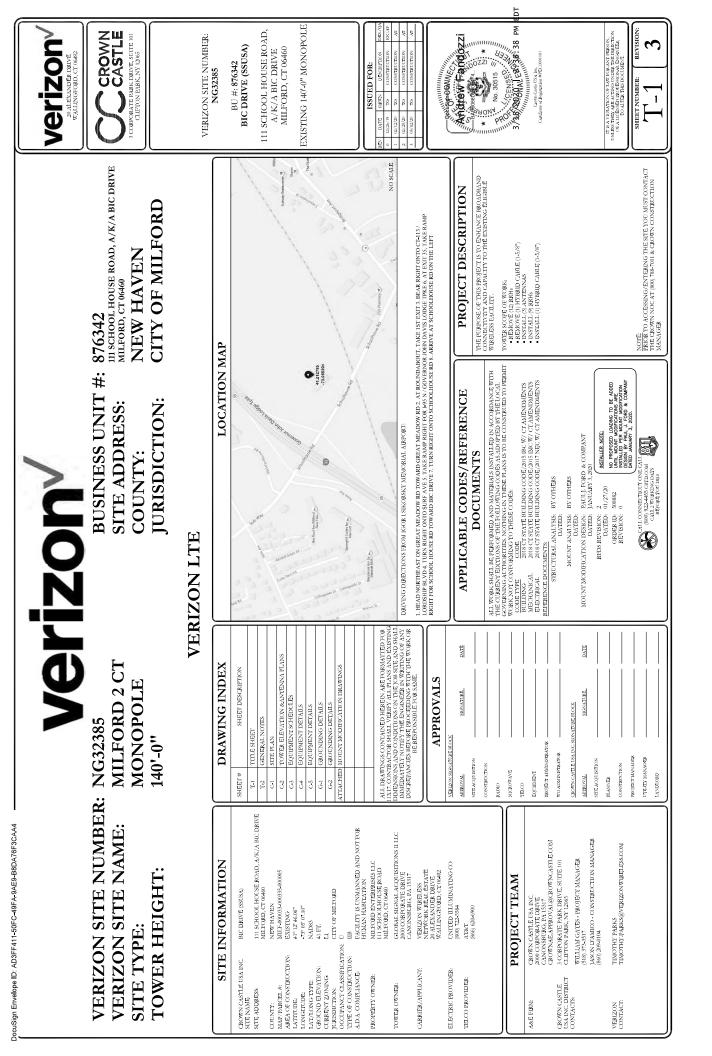
Crown Castle - tower location



Imagery ©2020 Maxar Technologies, New York GIS, USDA Farm Service Agency, Map data ©2020 500 ft 📖

111 Schoolhouse Rd

Milford, CT 06460


At this location

Fairfield Inn Milford 4.3 ★★★★★ (20) 2-star hotel

Exhibit C

Construction Drawings

DocuSign Envelope ID: AD3FF411-50FC-49FA-9AE9-B8DA76F3CAA4

GENERAL NOTES

ELECTRICAL INSTALLATION NOTES

CROWN CASTLE USA INC. SITE ACTIVITY REQUIREMENTS

- People TD In Start of Construction, Australian and August Au

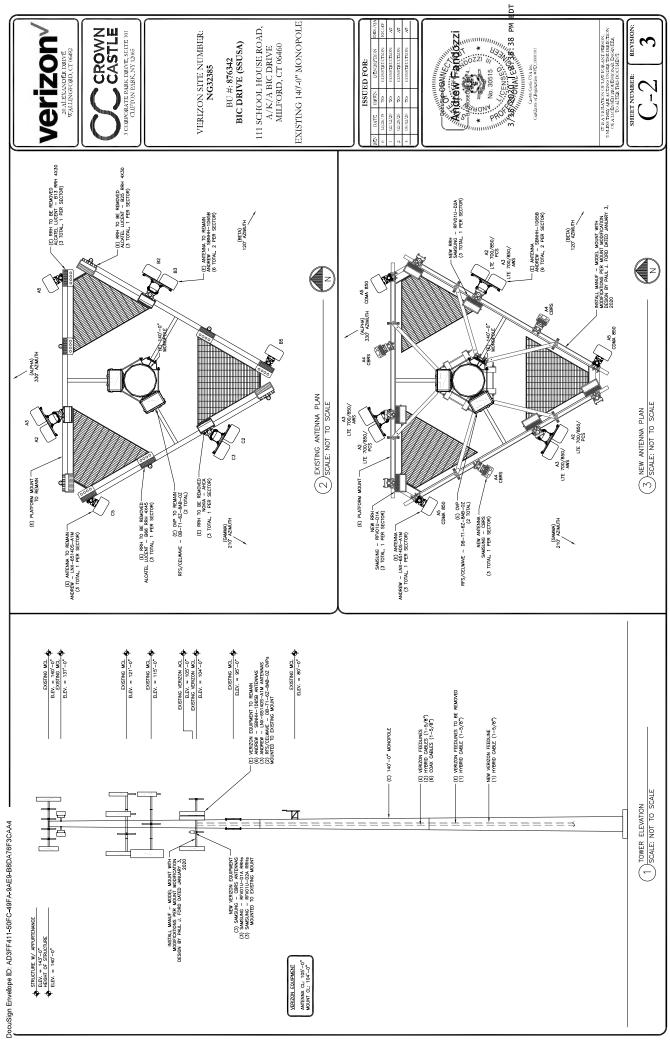
- - Ë
 - 5
- 5
- 4
- 15. 17.
 - ej.
- 6
 - 20.
 - CONTRACTOR CABLES AND RETURNED TO CONTRACTOR FROM SITE OI NO FILL OR I OR ICE SHALL 21.
 - 22.

GREENFIELD GROUNDING NOTES:

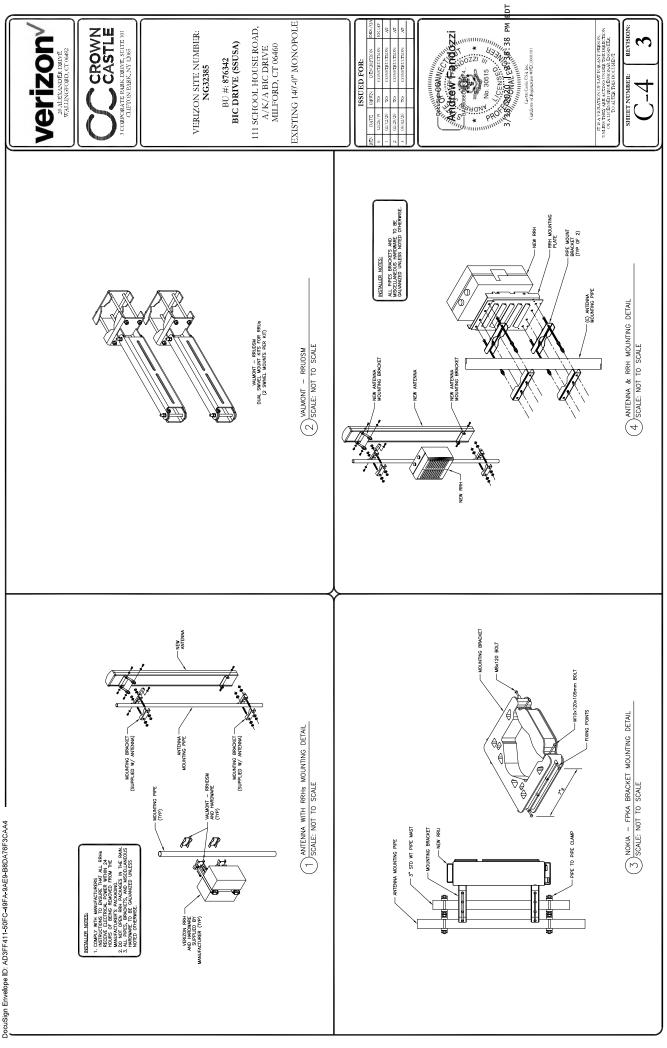
- ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RODA), LIGHTING PROTECTION AND AC POMER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRODE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE INC.

M

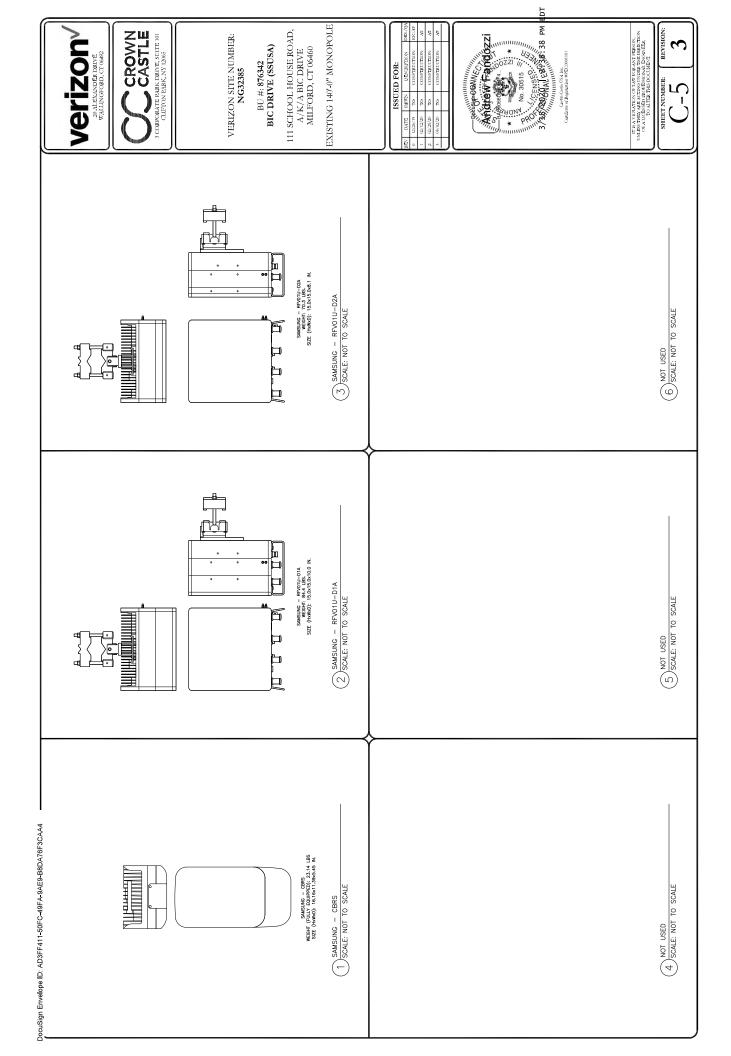
3

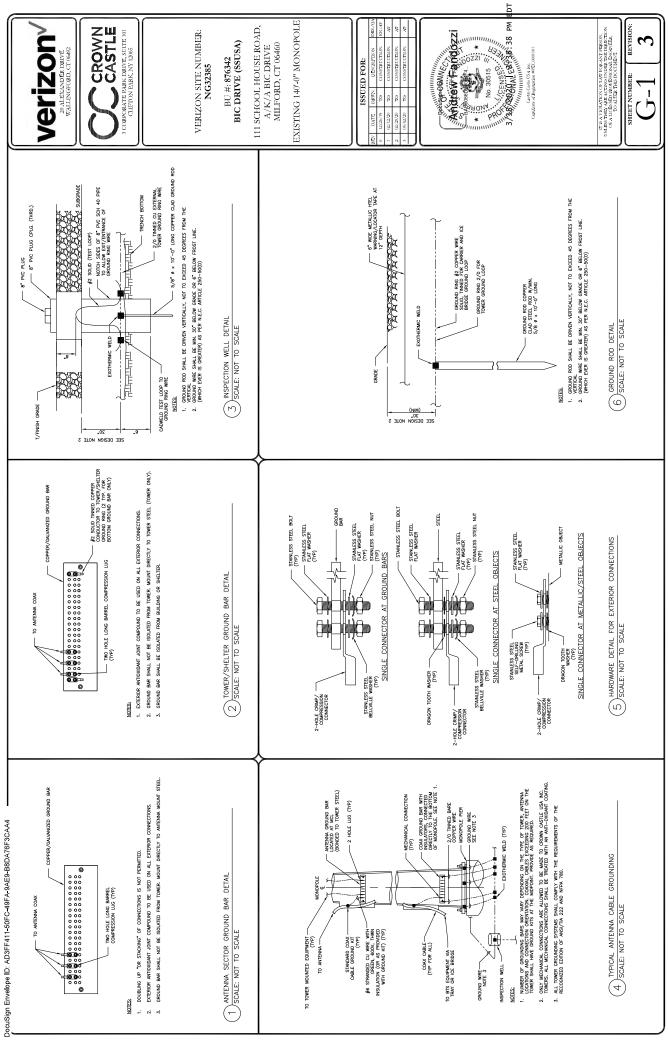

J

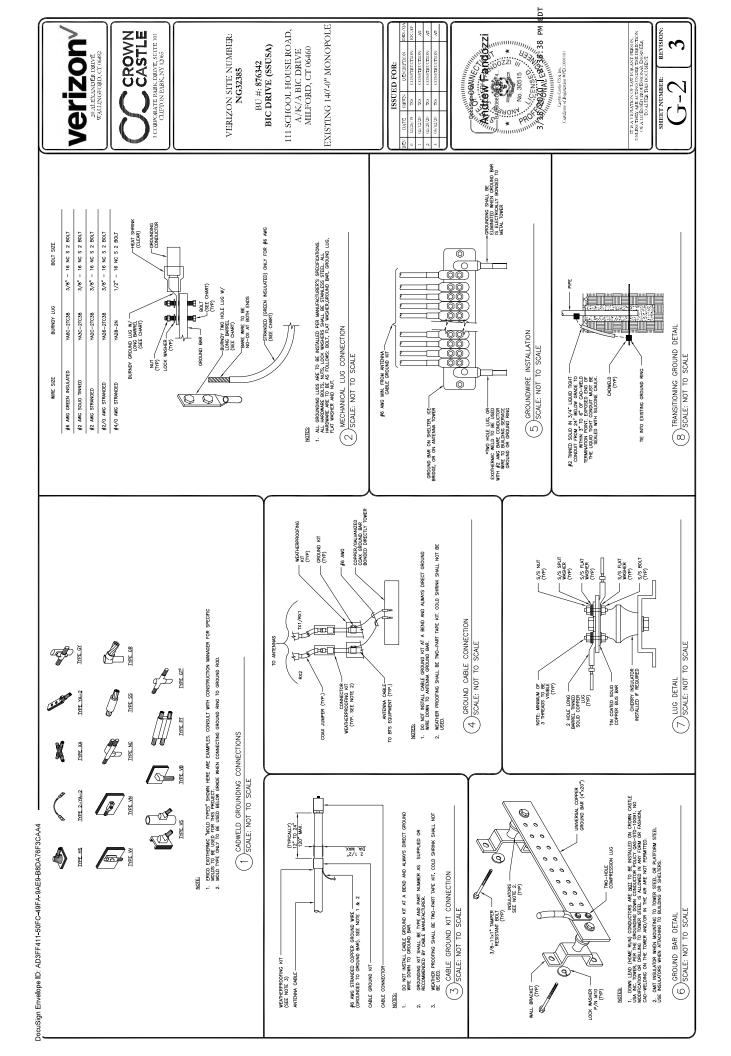
- ŵ


 - 8 2860112111400180

- 20.
- 21.
- EXISTING 140'-0" MONOPOLE CROWN 111 SCHOOL HOUSE ROAD, Andrew Fandozzi VERIZON SITE NUMBER: E PARK DRIVE, SUITE 101 VERSING AND PERSON, UNLESS THEIZ MACANOR ONDER THE DIRECTED OF A LICENSED PROFESSIONAL ENCANEER, OF A LICENSED PROFESSIONAL ENCANEER. 3/240/20030ALE80.38:38 verizon BU #: 876342 BIC DRIVE (SSUSA) MILFORD, CT 06460 A/K/A BIC DRIVE JUFTON PARK, NY 12065 ISSUED FOR: NG32385 Crown Castle USA Inc. Certificate of Registration #PEC 2020 Sign O BMNE HEET NUMBER C 1 F PROF H. ELEDRAL WORK SALL & FERRADED IN ACCORNOL WITH THE PROJECT SECTIONAL, KEE, AND AL, PAPLOBEL CORRENT RATE, ROUGH CORRECT SALL NELL CONTROL OF ALL CONTROL OF COMMUNICATION, ALARM OR SIGNAL LINES, CABLES, OR CONDUIT AND TRAFFIC LOOPS PURPLE RECLAIMED WATER, IRRIGATION, AND SLURRY LINES Electric power lines, cables, conduit, and lighting cables gas, oil, steam, petroleum, or gaseous materials APWA UNIFORM COLOR CODE: TEMPORARY SURVEY MARKINGS SEWERS AND DRAIN LINES WHITE PROPOSED EXCAVATION BLUE POTABLE WATER RED GREEN YELLOW OLIVITY CONTRACTOR MAD PARES STATA MAD PARES STATA MAD PARES STATA MAD PARES STATA MAD PARES ORANCE OR PURPLE CONDUCTOR COLOR CODE ARTENAR ACTENAR EXSERTING FACUET NUTERFACE FRAME GENERATOR CLOBAL POSTICANICS SYSTEM CLOBAL FORTICANICS CLOBAL POSTICANICS ACTION DURA MICRAMAL ELECTRIC CODE MATIONAL ELECTRIC CODE MATIONAL ELECTRIC CODE PROPOSED (+) (-) AND (2) TERMINA 277/480V, 3Ø C PHASE NEUTRAL * SEE NEC 210.5(C)(1) * POLARITY MARKED AT DC VOLTAGE POS ABBREVIATIONS: 120/240V, 10 120/208V, 30 SYSTEM A HILL COMPARENT Tor the TAPPENS of CONSTRUCTION DAMME, THE FOLLOWING SHALL APPLY. TORE PARENS: THE CONTINUE OF THE FOLLOWING DEFINITIONS SHALL APPLY. CONTRIDUCTION OF THE PARENCE PARA DEPARTMENT OF A DATA DEFINITION OF THE PARENCE PARA DEFINITION OF THE PARENCE PARA DEPARTMENT OF THE PARENCE PA M. CROSERTE PORCEMANLIER, NACCOMMONE ANT THE ALE ALL ON CATAR ALL 236. NETH ATRA, ACTA ALLES, MALLE ALLE ALLES, MALLE ALLES, MALLE ALLES, MALLE ALLES, MALLES AND DETROPHENDER ALLES TRANSPORTER ALLES ALLE Tronkerge and the server of the server to wert the server to wert the server to wert the server and the contractore sout, interest were servered and the server and the ser CONCRETE, FOUNDATIONS, AND REINFORCING STEEL: e. P. H. SERCE EURPAGE AN NOT EXISTALED AS SHOW ON THESE DAMMES, THE CONTRACTOR DATERNAL: TRANSLATION STATUE SHIELD SHIEL IN STATUE TO ADMINISTIC EXORMARCE WITH A PRIVOUSE THE CONSTRUMENT REPRESENT ON INSTALED SHIEL IN STATUE OF ADMINISTIC PROPAGATE AND ADMINISTIC PROPAGATE AND THE AND ADMINISTIC PROPAGATE AND THE ADMINI IDEG TO PROCESS-IDE OR SAUL CAMBER PROPERTING THE ALL WITTEN MOTE THE TOWN STORMS THE SERVICE OF A PROPENDER PROPE TO ACCESSAULTERING THE SET YOU WANT CHARTER TOWN SCIENCE AND STORE THAN THE ACCESSAULTERING THAT THE ADDRESS AND STORE THAT AND ACCESSAULTERING THAT AND ACCESSAULTERING THAT THE ADDRESS AND ACCESSAULTERING TOWN AND ACCESSAULTERING THAT ACCESSTORED AND ACCESSAULTERING TOWN AND ACCESSAULTERING TOWN AND ACCESSTORED AND ACCESSAULTERING TOWN AND ACCESSAULTERING TOWN ACCESSTORED AND ACCESSAULTERING TOWN AND ACCESSAULTERING ACCESSTORED AND ACCESSAULTERING TOWN AND ACCESSAULTERING ACCESSTORED AND ACCESSAULTERING TOWN AND ACCESSAULTERING ACCESSTORED AND ACCESSAULTERING TOWARD ACCESSAULTERING ACCESSTORED ACCESSAULTERING TOWARD ACCESSAULTERING ACCESSAULTERING ACCESSTORED AND ACCESSAULTERING TOWARD ACCESSAULTERING ACCESSAULTERING ACCESSTORED ACCESSAULTERING TOWARD ACCESSAULTERING ACCESSAULTERING ACCESSAULTERING ACCESSTORED ACCESSAULTERING TOWARD ACCESSAULTERING ACCESSAULTERING ACCESSAULTERING ACCESSTORED ACCESSAULTERING ACCESSAULT The short start is the preference of the stress free start start start starts stored and start at the start start






VETIZON	WALLINGFORD, CT 06492				3 CORPORATE PARK DRIVE, SUITE 101 CLIFTON PARK, NY 12065					VENLON STIENUNDEN: NG32385		BU #: 876342 BIC DRIVE (SEIISA)		111 SCHOOL HOUSE ROAD,	A/K/A BIC DRIVE	MILFORD, CT 06460	EXISTING 140'-0" MONOPOLE	ISSUED FOR: INV DATE DAWN DECOM		CONSTRUCTION			A A A A A A A A A A A A A A A A A A A		× ozzi	A No. 30515 5.	D. M. O. S. CENSEY . K. S.	A MA OC : 02: 28 TAMAN ES / C	Crown Castle USA Inc.	CALUZING OF REGRESSION #FELL.0001101					TO BAY AND ATTUON OF LAW KAYANY PRESON, UNLESS THERVARE ACTING UNDER THE DIRECTION OF A LICENSED REOVERSIONAL ENGINEER,	
CABLE SCHEDULE	STATUS CABLE TYPE SZE LENGTH QTY	EXISTING COAX 1-5/8 154-0*± 6	EXISTING HYBRID 1-5/8" 154-0"± 2	TOTAL CABLE OTY: 8							(1) HTBRID $(1-5/8)$ (6) COAX $(1-5/8)$ (7)			(1) HYBRID (1-5/8)			B C C C C C C C C C C C C C C C C C C C	000		Connoc Con			(RASE LEVEL DETAIL						CABLE SCHEDULE	STATUS OVBLE TYPE SZE LENGTH QTY	COAV 1=6/8" 0*1	HYBRID 1-5/8 154'-0"±	HYBRID 1-5/8" 154'-0"±	TOTAL CABLE OTH: 8	
	TOWER EQUIPMENT QTY/MODEL	1	(1) B66 RRH 4X45	(1) AHCA	(1) DB-T1-6Z-8AB-0Z	(1) B13 RRH 4X30 (1) B25 RRH 4X30		(1) B66 KKH 4X45	(1) AHLA	(1) B13 RRH 4X30 (1) R25 BRH 4X30		ı	(1) B66 RRH 4X45	(1) AHCA	(1) DB-T1-6Z-8AB-0Z (1) R13 R8H 4Y30	(1) B25 RRH 4X30	CHEDULE			TOWER EQUIPMENT QTY/MODEL		(1) RFV01U-D1A	(1) RFV01U-D2A	(1) DB-T1-6Z-8AB-0Z	1	1	(1) RFV01U-D1A	(1) RFV01U-D2A	1	ı	1	(1) PEW111-D14	(1) RFV01U-D2A	(1) DB-T1-6Z-8AB-0Z	1	DULE
	TOWER EQUIPMENT MANUFACTURER	I	ALCATEL LUCENT	NOKIA	RAYCAP	ALCATEL LUCENT		ALCATEL LUCENT	NUKA	ALCATEL LUCENT		T	ALCATEL LUCENT	NOKIA	RAYCAP	ALCATEL LUCENT	T) SCALE: NOT TO SCALE			TOWER EQUIPMENT MANUFACTURER	1	SAMSUNG	SAMSUNG	RAYCAP	I	I	SAMSUNG	SAMSUNG	ı	I	,	JINI ISHVS	SAMSUNG	RAYCAP	I	2) FINAL EQUIPMENT SCHEDULE
ANTENNA/RRH SCHEDULE	ANTENNA MANUFACIDRER ANTENNA MODEL CENTERNA AZMUTH MECHANICAL ELECTRICAL		SBNHH-1D65B 105'-0"	ANDREW SBNHH-1065B 105'-0" 330'	1	ANDREW LNX-651405-A1M 105'-0" 330'		SBNHH-1065B 105-0 120 -	105-0-	,		1	SBNHH-1D65B 105'-0"	+	· · · · · · · · · · · · · · · · · · ·	ANDREW LNX-6514DS-A1M 105'-0" 210'	()		ANTENNA/RRH SCHEDULE	ANTENNA MANUJAZUNBER ANTENNA MODEL CENTERIAE AZIMUTH MECHANICAL ELECTRICAL CENTERIAE AZIMUTH DOWNTHIZS DOMINILIZ	1		SBNHH-1065B 105'-0" 330'	CBRS 105'-0"	ANDREW LNX-651405-A1M 105'-0" 330'		ANDREW SBNHH-10658 105'-0" 120'	SBNHH-1065B	CBRS 105'-0"	ANDREW LNX-6514DS-A1M 105'-0" 120' -			SBNHH-1065B 105'-0" 210' -	CBRS 105'-0"	LNX-6514DS-A1M 105'-0*	
	SECTOR STATUS	A1 –		A3 EXISTING	A4	A5 EXISTING		B2 EXISTING		B5 EXISTING				C3 EXISTING	_	C5 EXISTING				SECTOR STATUS	A1 -				A5 EXISTING		B2 EXISTING	Ű		B5 EXISTING	1	CO EVISTING				

Domisica Eaucland ID: AD3EE411 EAEC 40EA 0AE0

Exhibit D

Structural Analysis Report

Date: January 14, 2020

Denice Nicholson Paul J. Ford and Company Crown Castle 250 E. Broad St., Ste 600 3 Corporate Dr Columbus, OH 43215 Clifton Park, NY 12065 614-221-6679 Subject: **Structural Analysis Report** Carrier Designation: Verizon Wireless Co-Locate Carrier Site Number: NG32385 Carrier Site Name: **MILFORD 2 CT** Crown Castle Designation: Crown Castle BU Number: 876342 Crown Castle Site Name: **BIC DRIVE (SSUSA)** Crown Castle JDE Job Number: 595589 Crown Castle Work Order Number: 1813005 **Crown Castle Order Number:** 508882 Rev. 0 Engineering Firm Designation: Paul J. Ford and Company Project Number: 37520-0091.001.7805 Site Data: 111 School House Road, a/k/a Bic Drive, MILFORD, New Haven County, CT Latitude 41° 12' 46.06", Longitude -73° 5' 7.1" 140 Foot - Monopole Tower

Dear Denice Nicholson,

Paul J. Ford and Company is pleased to submit this **"Structural Analysis Report"** to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity - 81.9%

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code and Appendix N. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Respectfully submitted by:

Robert C. Kozak Jr., P.E Project Engineer rkozak@pauljford.com

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) Table 5 – Tower Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 140 ft Monopole tower designed by SUMMIT in October of 1999.

The tower has been modified per reinforcement drawings prepared by Paul J Ford, in December of 2009. Reinforcement consist of shaft reinforcement and base plate stiffeners.

The tower has been modified per reinforcement drawings prepared by Paul J Ford, in October of 2015. Reinforcement consist of shaft reinforcement and anchor rods.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	II
Wind Speed:	125 mph
Exposure Category:	С
Topographic Factor:	1
Ice Thickness:	1.5 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)		
		3	andrew	LNX-6514DS-VTM w/ Mount Pipe				
		3	commscope	CBC78T-DS-43-2X				
		6	commscope	SBNHH-1D65B w/ Mount Pipe				
		2 rfs celwave DB-T1	DB-T1-6Z-8AB-0Z					
104.0	104.0	3	samsung telecommunications	20W CBRS	8	1-5/8		
104.0				3	samsung telecommunications	CBRS w/ Mount Pipe	0	
		3	samsung telecommunications	RFV01U-D1A				
		3	samsung telecommunications	RFV01U-D2A				
		1	tower mounts	Platform Mount [LP 1201- 1_KCKR-HR-1]				

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	alcatel lucent	TD-RRH8X20-25		
		9	rfs celwave	ACU-A20-N		
140.0	140.0	3	rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe	1 3	1-5/8 1-1/4
		3	rfs celwave	APXVTM14-C-120 w/ Mount Pipe	1	1/2
		1	tower mounts	Platform Mount [LP 1201-1]		

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	3 alcatel lucent TME-1900MHz RRH (65MHz) w/ Mount Pipe			
137.0	137.0	3	alcatel lucent	TME-800MHZ RRH		
137.0	137.0		alcatel lucent	TME-800MHz 2x50W RRH W/FILTER w/ Mount Pipe		
		1	tower mounts	Side Arm Mount [SO 103-3]		
		3	cci antennas	HPA-65R-BUU-H6 w/ Mount Pipe		
		2	commscope	WCS-IMFT-AMT-43		
		3	ericsson	RRUS 11		
		3	ericsson	RRUS 32		
		3	ericsson	RRUS12/RRUS A2	4.0	4 5 40
	123.0	3	kaelus	DBC0061F1V51-2	12 2	1-5/8 3/4
121.0	120.0	3	powerwave technologies	7770.00 w/ Mount Pipe	2	7/16 3/8
		6	powerwave technologies	LGP21401	2	2" Conduit
			quintel technology	QS66512-6 w/ Mount Pipe		
		1	raycap	DC6-48-60-18-8C		
		1 raycap DC6-48-60-18-8F		DC6-48-60-18-8F		
	121.0	1	tower mounts	Platform Mount [LP 1201- 1_HR-1]		
		3	andrew	ETW200VS12UB		
		3	ericsson	AIR 32 B2A/B66AA w/ Mount Pipe		
	116.0	3	ericsson	RADIO 4449 B12/B71	5	1-5/8
115.0		3	remec	S20070A1	2	1-3/8
			rfs celwave	APXVAARR24_43-U-NA20 w/ Mount Pipe	11	1-1/4
115.0		1 tower mounts		Platform Mount [LP 1201- 1_KCKR-HR-1]		
95.0	95.0	1	tower mounts	Pipe Mount [PM 601-3]	6	1-5/8
80.0	82.0	1	kathrein	OG-860/1920/GPS-A	1	1/2
00.0	80.0	1	tower mounts	Side Arm Mount [SO 901-1]		1/2

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
4-GEOTECHNICAL REPORTS	FDH, 08-12040E G1, 12/05/2008	1531894	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	PJF, 29299-549, 09/29/1999	1631615	CCISITES
4-TOWER MANUFACTURER DRAWINGS	PJF, 29299-549, 10/29/1999	1630877	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	PJF, 41709-0132, 12/2/2009	2547673	CCISITES
4-POST-MODIFICATION INSPECTION	PJF, 41709-0132, 12/04/2009	2547672	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	PJF, 37515-2876.001.7700 R1, 10/20/2015	6173982	CCISITES
4-POST-MODIFICATION INSPECTION	TEP, 25566, 04/21/2016	6234048	CCISITES

3.1) Analysis Method

tnxTower (version 8.0.5.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

tnxTower was used to determine the loads on the modified structure. Additional calculations were performed to determine the stresses in the pole and in the reinforcing elements. These calculations are presented in Appendix C.

3.2) Assumptions

- 1) Tower and structures have been built and maintained in accordance with the manufacturer's specifications.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 3) Monopole was modified in conformance with the referenced modification drawings.
- 4) Base plate grout was not installed at the time of the analysis and has not been considered.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fail
140 - 135	Pole	TP17.015x16x0.25	Pole	6.3%	Pass
135 - 130	Pole	TP18.03x17.015x0.25	Pole	12.5%	Pass
130 - 125	Pole	TP19.045x18.03x0.25	Pole	17.7%	Pass
125 - 120	Pole	TP20.061x19.045x0.25	Pole	25.6%	Pass
120 - 115	Pole	TP21.076x20.061x0.25	Pole	36.4%	Pass
115 - 110	Pole	TP22.091x21.076x0.25	Pole	51.1%	Pass
110 - 105	Pole	TP23.106x22.091x0.25	Pole	63.3%	Pass

Table 4 - Section Capacity (Summary)

Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fail
105 - 104	Pole	TP23.309x23.106x0.25	Pole	65.5%	Pass
104 - 103.75	Pole + Reinf.	TP23.36x23.309x0.4625	Reinf. 9 Tension Rupture	60.8%	Pass
103.75 - 98.75	Pole + Reinf.	TP24.375x23.36x0.45	Reinf. 9 Tension Rupture	73.9%	Pass
98.75 - 98.5	Pole + Reinf.	TP24.426x24.375x0.45	Reinf. 9 Tension Rupture	74.5%	Pass
98.5 - 98.25	Pole + Reinf.	TP24.476x24.426x0.725	Reinf. 9 Tension Rupture	48.1%	Pass
98.25 - 97	Pole + Reinf.	TP24.73x24.476x0.725	Reinf. 9 Tension Rupture	50.1%	Pass
97 - 96.75	Pole + Reinf.	TP24.781x24.73x0.5125	Reinf. 5 Tension Rupture	59.6%	Pass
96.75 - 91.75	Pole + Reinf.	TP26.456x24.781x0.5	Reinf. 5 Tension Rupture	68.4%	Pass
91.75 - 88.17	Pole + Reinf.	TP26.023x25.296x0.5625	Reinf. 5 Tension Rupture	67.8%	Pass
88.17 - 87.92	Pole + Reinf.	TP26.074x26.023x0.7625	Reinf. 5 Tension Rupture	53.0%	Pass
87.92 - 82.92	Pole + Reinf.	TP27.089x26.074x0.7375	Reinf. 5 Tension Rupture	58.5%	Pass
82.92 - 77.92	Pole + Reinf.	TP28.104x27.089x0.725	Reinf. 5 Tension Rupture	63.5%	Pass
77.92 - 72.92	Pole + Reinf.	TP29.12x28.104x0.7125	Reinf. 5 Tension Rupture	68.2%	Pass
72.92 - 68.08	Pole + Reinf.	TP30.102x29.12x0.6875	Reinf. 5 Tension Rupture	72.3%	Pass
68.08 - 67.83	Pole + Reinf.	TP30.153x30.102x0.8125	Reinf. 7 Tension Rupture	61.8%	Pass
67.83 - 62.83	Pole + Reinf.	TP31.168x30.153x0.7875	Reinf. 7 Tension Rupture	65.5%	Pass
62.83 - 57.83	Pole + Reinf.	TP32.184x31.168x0.7625	Reinf. 7 Tension Rupture	69.0%	Pass
57.83 - 52.83	Pole + Reinf.	TP33.199x32.184x0.75	Reinf. 7 Tension Rupture	72.3%	Pass
52.83 - 51.5	Pole + Reinf.	TP34.332x33.199x0.75	Reinf. 7 Tension Rupture	73.2%	Pass
51.5 - 46.5	Pole + Reinf.	TP33.859x32.844x0.8	Reinf. 7 Tension Rupture	72.4%	Pass
46.5 - 41.5	Pole + Reinf.	TP34.874x33.859x0.8	Reinf. 7 Tension Rupture	75.0%	Pass
41.5 - 37.75	Pole + Reinf.	TP35.636x34.874x0.775	Reinf. 7 Tension Rupture	76.9%	Pass
37.75 - 37.5	Pole + Reinf.	TP35.686x35.636x0.8	Reinf. 2 Tension Rupture	75.3%	Pass
37.5 - 32.5	Pole + Reinf.	TP36.702x35.686x0.775	Reinf. 2 Tension Rupture	77.4%	Pass
32.5 - 32.25	Pole + Reinf.	TP36.752x36.702x0.825	Reinf. 2 Tension Rupture	73.5%	Pass
32.25 - 27.25	Pole + Reinf.	TP37,767x36,752x0,8125	Reinf. 2 Tension Rupture	75.5%	Pass
27.25 - 23.5	Pole + Reinf.	TP38.529x37.767x0.8	Reinf. 2 Tension Rupture	76.9%	Pass
23.5 - 23.25	Pole + Reinf.	TP38.58x38.529x0.9	Reinf. 2 Tension Rupture	72.3%	Pass
23.25 - 20.75	Pole + Reinf.	TP39.087x38.58x0.9	Reinf. 2 Tension Rupture	73.1%	Pass
20.75 - 20.5	Pole + Reinf.	TP39.138x39.087x0.85	Reinf. 2 Tension Rupture	74.1%	Pass
20.5 - 15.5	Pole + Reinf.	TP40.153x39.138x0.825	Reinf. 2 Tension Rupture	75.8%	Pass
15.5 - 10.5	Pole + Reinf.	TP41.168x40.153x0.825	Reinf, 2 Tension Rupture	77.3%	Pass
10.5 - 5.5	Pole + Reinf.	TP42.183x41.168x0.8	Reinf. 2 Tension Rupture	78.8%	Pass
5.5 - 3	Pole + Reinf.	TP42.691x42.183x0.8	Reinf. 2 Tension Rupture	79.5%	Pass
3 - 2.75	Pole + Reinf.	TP42.742x42.691x0.95	Reinf. 10 Connection	79.9%	Pass
2.75 - 1.75	Pole + Reinf.	TP42.945x42.742x0.95	Reinf. 10 Compression	80.2%	Pass
1.75 - 1.5	Pole + Reinf.	TP42.995x42.945x1.125	Reinf. 10 Compression	69.8%	Pass
1.5 - 0	Pole + Reinf.	TP43.3x42.995x1.1	Reinf. 10 Connection	70.2%	Pass
		11 10.0472.00041.1		Summary	1 435
			Pole	65.5%	Pass
			Reinforcement	80.2%	Pass
			Overall	80.2%	Pass

Table 5 - Tower Component Stresses vs. Capacity – LC7

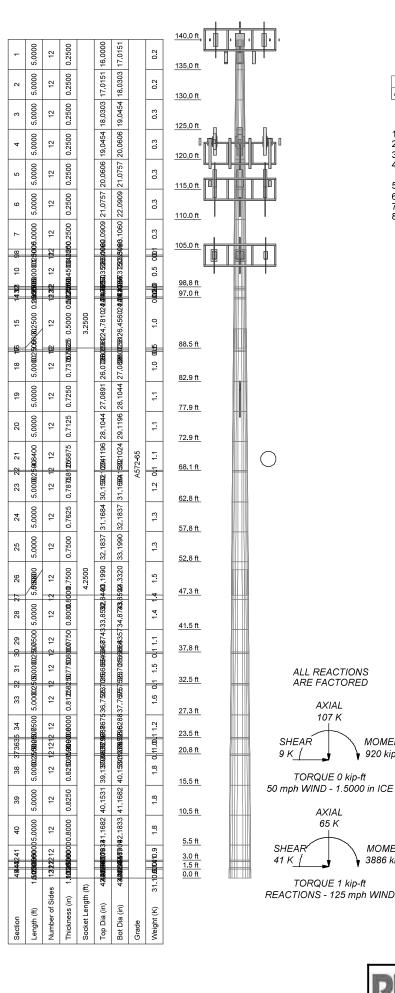
Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	81.9	Pass
1	Base Plate	0	61.2	Pass
1	Base Foundation Soil Interaction	0	52.2	Pass
1	Base Foundation Structural Steel	0	52.0	Pass

Structure Rating (max from all components) =	81.9%

Notes:

• All structural ratings are per TIA-222-H Section 15.5.

1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.


4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

tnxTower Report - version 8.0.5.0

MATERIAL STRENGTH							
GRADE	Fy	Fu	GRADE	Fy	Fu		
A572-65	65 ksi	80 ksi					

TOWER DESIGN NOTES

- Tower is located in New Haven County, Connecticut. Tower designed for Exposure C to the TIA-222-H Standard. 1.
- 2.
- Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard. 3. 4 Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to

increase in thickness with height. 5.

Deflections are based upon a 60 mph wind.

6. Tower Risk Category II. 7

Topographic Category 1 with Crest Height of 0.0000 ft 8. TIA-222-H Annex S

MOMENT

MOMENT

3886 kip-ft

920 kip-ft

ALL REACTIONS

ARE FACTORED

AXIAL

107 K

TORQUE 0 kip-ft

AXIAL

65 K

TORQUE 1 kip-ft

,	^{Job:} 140-Ft Mond	pole / Bic Drive ((SSUSA)
	Project: PJF# 37520-	0091 / BU# 876342	
		^{Drawn by:} Robert Kozak	
	^{Code:} TIA-222-H		^{Scale:} NTS
	Path:	ale estimation and a second state of the secon	Dwg No. E-1

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- 1) Tower is located in New Haven County, Connecticut.
- 2) Tower base elevation above sea level: 44.0000 ft.
- 3) Basic wind speed of 125 mph.
- 4) Risk Category II.
- 5) Exposure Category C.
- 6) Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- 7) Topographic Category: 1.
- 8) Crest Height: 0.0000 ft.
- 9) Nominal ice thickness of 1 5000 in.
- 10) Ice thickness is considered to increase with height.
- 11) Ice density of 56.00 pcf.
- 12) A wind speed of 50 mph is used in combination with ice.
- 13) Temperature drop of 50 °F.
- 14) Deflections calculated using a wind speed of 60 mph.
- 15) TIA-222-H Annex S.
- 16) A non-linear (P-delta) analysis was used.
- 17) Pressures are calculated at each section.
- 18) Stress ratio used in pole design is 1.05.
- 19) Tower analysis based on target reliabilities in accordance with Annex S.
- 20) Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.
- 21) Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

١	Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity	 Distribute Leg Loads As Uniform Assume Legs Pinned ✓ Assume Rigid Index Plate ✓ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension ✓ Bypass Mast Stability Checks ✓ Use Azimuth Dish Coefficients ✓ Project Wind Area of Appurt. Autocalc Torque Arm Areas 	Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice	
	Leg Bolts Are At Top Of Section	Add IBC .6D+W Combination	Exemption Poles	
	Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric	Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs	✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments	

- Ignore KL/ry For 60 Deg. Angle Legs
- ✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation #	Section Length	Splice Length	Number of Sides	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
L1	140.0000- 135.0000	5.0000	0.00		16.0000	17.0151	0.2500	1.0000	A572 - 65 (65 ksi)

tnxTower Report - version 8.0.5.0

	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grad
L2	135.0000-	5.0000	0.00	12	17.0151	18.0303	0.2500	1.0000	A572 - 65
1.2	130.0000	5 0000	0.00	10	40.0000	10.0454	0.0500	1 0000	(65 ksi)
L3	130.0000- 125.0000	5.0000	0.00	12	18.0303	19.0454	0.2500	1.0000	A572 - 65 (65 ksi)
L4	125.0000	5.0000	0.00	12	19,0454	20.0606	0.2500	1.0000	(65 KSI) A572-65
64	120.0000	5.0000	0.00	12	10.0404	20.0000	0.2000	1.0000	(65 ksi)
L5	120.0000-	5.0000	0.00	12	20.0606	21.0757	0.2500	1.0000	A572-65
	115.0000								(65 ksi)
L6	115.0000-	5.0000	0.00	12	21.0757	22.0909	0.2500	1.0000	À572-65
	110.0000								(65 ksi)
L7	110.0000-	5.0000	0.00	12	22.0909	23.1060	0.2500	1.0000	A572-65
	105.0000					~~ ~~~~			(65 ksi)
L8	105.0000-	1.0000	0.00	12	23.1060	23.3090	0.2500	1.0000	A572-65
L9	104.0000	0.2500	0.00	12	22 2000	22 2500	0.4625	1.8500	(65 ksi)
L9	104.0000- 103.7500	0.2500	0.00	12	23.3090	23.3598	0.4625	1.6500	A572-65 (65 ksi)
L10	103.7500-	5.0000	0.00	12	23.3598	24.3750	0.4500	1.8000	A572-65
210	98,7500	0.0000	0.00	12	20.0000	24.07.00	0.4000	1.0000	(65 ksi)
L11	98.7500-	0.2500	0.00	12	24.3750	24.4257	0.4500	1.8000	A572-65
	98.5000								(65 ksi)
L12	98.5000-	0.2500	0.00	12	24.4257	24.4765	0.7250	2.9000	À572-65
	98.2500								(65 ksi)
L13	98.2500-	1.2500	0.00	12	24.4765	24.7303	0.7250	2.9000	A572-6
	97.0000								(65 ksi)
L14	97.0000-	0.2500	0.00	12	24.7303	24.7810	0.5125	2.0500	A572-65
145	96.7500	0.0500	2.05	10	24 7040	00 4500	0 5000	2 0000	(65 ksi)
L15	96.7500-	8.2500	3.25	12	24.7810	26.4560	0.5000	2.0000	A572-65
L16	88.5000 88.5000-	3.5800	0.00	12	25.2962	26.0231	0.5625	2.2500	(65 ksi) A572 - 65
LIU	88.1700	5.5600	0.00	12	23.2902	20.0231	0.5025	2.2300	(65 ksi)
L17	88.1700-	0.2500	0.00	12	26.0231	26.0738	0.7625	3.0500	A572-65
	87.9200								(65 ksi)
L18	87.9200-	5.0000	0.00	12	26.0738	27.0891	0.7375	2.9500	A572-65
	82.9200								(65 ksi)
L19	82.9200-	5.0000	0.00	12	27.0891	28.1044	0.7250	2.9000	A572-65
	77.9200								(65 ksi)
L20	77.9200-	5.0000	0.00	12	28.1044	29.1196	0.7125	2.8500	A572-65
	72.9200			40			0.0075	0 7500	(65 ksi)
L21	72.9200-	4.8400	0.00	12	29.1196	30.1024	0.6875	2.7500	A572-65
L22	68.0800 68.0800-	0.2500	0.00	12	30.1024	30.1532	0.8125	3.2500	(65 ksi) A572 - 65
LZZ	67.8300	0.2500	0.00	12	30.1024	30.1552	0.0125	5.2500	(65 ksi)
L23	67.8300-	5,0000	0.00	12	30.1532	31.1684	0.7875	3.1500	A572-65
LLO	62.8300	0.0000	0.00	12	00.1002	01.1004	0.1010	0.1000	(65 ksi)
L24	62.8300-	5.0000	0.00	12	31.1684	32.1837	0.7625	3.0500	A572-65
	57.8300								(65 ksi)
L25	57.8300-	5.0000	0.00	12	32.1837	33.1990	0.7500	3.0000	À572-65
	52.8300								(65 ksi)
L26	52.8300-	5.5800	4.25	12	33.1990	34.3320	0.7500	3.0000	A572-65
	47.2500								(65 ksi)
L27	47.2500-	5.0000	0.00	12	32.8440	33.8592	0.8000	3.2000	A572-65
1.00	46.5000	E 0000	0.00	40	22 0500	24 0740	0.0000	2 2022	(65 ksi)
L28	46.5000-	5.0000	0.00	12	33.8592	34.8743	0.8000	3.2000	A572-65
L29	41.5000 41.5000-	3.7500	0.00	12	34.8743	35.6357	0.7750	3.1000	(65 ksi) A572 - 65
LZJ	37.7500	5.7500	0.00	12	34.0743	00.0007	0.7750	5.1000	(65 ksi)
L30	37.7500-	0.2500	0.00	12	35.6357	35.6864	0.8000	3.2000	A572-65
	37.5000	0.2000	0.00		00.0007	00.0004	0.0000	0.2000	(65 ksi)
L31	37.5000-	5.0000	0.00	12	35.6864	36.7016	0.7750	3.1000	A572-65
	32.5000			•=					(65 ksi)
L32	32.5000-	0.2500	0.00	12	36.7016	36.7523	0.8250	3.3000	À572-65
	32.2500								(65 ksi)
L33	32.2500-	5.0000	0.00	12	36.7523	37.7675	0.8125	3.2500	A572-65
	27.2500								(65 ksi)
L34	27.2500-	3.7500	0.00	12	37.7675	38.5288	0.8000	3.2000	A572-65
1.05	23.5000	0.0500	0.00	40	00 5000	00 5700	0.0000	0.0000	(65 ksi)
1.76	23.5000-	0.2500	0.00	12	38.5288	38.5796	0.9000	3.6000	A572-65
L35	23.2500								(65 ksi)

140 Ft Monopole Tower Structural Analysis Project Number 37520-0091.001.7805, Order 508882, Revision 0

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
	20.7500								(65 ksi)
L37	20.7500-	0.2500	0.00	12	39.0872	39.1379	0.8500	3.4000	A572-65
	20.5000								(65 ksi)
L38	20.5000-	5.0000	0.00	12	39.1379	40.1531	0.8250	3.3000	A572-65
	15.5000								(65 ksi)
L39	15.5000-	5.0000	0.00	12	40.1531	41.1682	0.8250	3.3000	A572 - 65
	10.5000								(65 ksi)
L40	10.5000-	5.0000	0.00	12	41.1682	42.1833	0.8000	3.2000	A572 - 65
	5.5000								(65 ksi)
L41	5.5000-3.0000	2.5000	0.00	12	42.1833	42.6909	0.8000	3.2000	A572 - 65
									(65 ksi)
L42	3.0000-2.7500	0.2500	0.00	12	42.6909	42.7417	0.9500	3.8000	A572 - 65
									(65 ksi)
L43	2.7500-1.7500	1.0000	0.00	12	42.7417	42.9447	0.9500	3.8000	A572 - 65
									(65 ksi)
L44	1.7500-1.5000	0.2500	0.00	12	42.9447	42.9955	1.1250	4.5000	A572 - 65
									(65 ksi)
L45	1.5000-0.0000	1.5000		12	42.9955	43.3000	1.1000	4.4000	A572 - 65
									(65 ksi)

Tapered Pole Properties												
Section	Tip Dia.	Area	1	r	С	I/C	J	lt/Q	W	w/t		
	in	in ²	in ⁴	in	in	in ³	in ⁴	in ²	in			
L1	16.4762	12.6788	401.4426	5.6385	8.2880	48.4366	813.4316	6.2401	3.6180	14 <u>.</u> 472		
	17.5272	13.4959	484.1767	6.0019	8.8138	54.9336	981.0732	6.6423	3.8901	15.56		
L2	17 <u>.</u> 5272	13.4959	484.1767	6.0019	8.8138	54.9336	981.0732	6.6423	3.8901	15.56		
	18.5781	14.3131	577.5618	6.3653	9.3397	61.8395	1170.2967	7.0445	4.1621	16.648		
L3	18.5781	14.3131	577.5618	6.3653	9.3397	61.8395	1170.2967	7.0445	4.1621	16.648		
	19.6291	15.1303	682.2430	6.7288	9.8655	69.1542	1382.4094	7.4467	4.4342	17.737		
L4	19.6291	15.1303	682.2430	6.7288	9.8655	69.1542	1382.4094	7.4467	4.4342	17.737		
	20.6801	15.9475	798.8654	7.0922	10.3914	76.8777	1618.7178	7.8489	4.7062	18.825		
L5	20.6801	15.9475	798.8654	7.0922	10.3914	76.8777	1618.7178	7.8489	4.7062	18.825		
	21.7310	16.7647	928.0736	7.4556	10.9172	85.0100	1880.5287	8.2511	4,9783	19.913		
L6	21.7310	16.7647	928.0736	7.4556	10.9172	85.0100	1880.5287	8.2511	4.9783	19.913		
	22.7820	17.5819	1070.5128	7.8190	11.4431	93.5512	2169.1492	8.6533	5.2504	21.001		
L7	22.7820	17.5819	1070.5128	7.8190	11.4431	93.5512	2169.1492	8.6533	5.2504	21.001		
	23.8329	18.3991	1226.8278	8.1825	11.9689	102.5011	2485.8857	9.0555	5.5224	22.09		
L8	23.8329	18.3991	1226.8278	8.1825	11.9689	102.5011	2485.8857	9.0555	5.5224	22.09		
	24.0431	18.5625	1259,8128	8.2551	12.0741	104.3402	2552,7222	9.1359	5.5768	22.307		
L9	23,9682	34,0242	2266.8114	8,1791	12.0741	187.7418	4593.1744	16 7457	5.0073	10.827		
	24.0207	34.0998	2281 9531	8 1972	12 1004	188 5853	4623 8557	16,7829	5.0209	10.856		
L10	24.0251	33.1963	2223.9170	8.2017	12.1004	183.7890	4506.2587	16.3382	5.0544	11.232		
210	25.0761	34.6673	2532.8385	8.5651	12.6262	200.6014	5132 2176	17.0622	5.3265	11.837		
L11	25.0761	34.6673	2532.8385	8.5651	12.6262	200.6014	5132.2176	17.0622	5.3265	11.837		
L	25.1286	34.7408	2548.9934	8.5833	12.6525	201.4614	5164 9517	17.0984	5.3401	11.867		
L12	25.0316	55.3293	3967.0150	8.4849	12.6525	313 5356	8038.2479	27.2314	4.6031	6.349		
	25.0841	55.4478	3992.5567	8.5030	12.6788	314.9000	8090.0023	27.2897	4.6167	6.368		
L13	25.0841	55.4478	3992.5567	8.5030	12.6788	314.9000	8090.0023	27.2897	4.6167	6.368		
LIJ	25.3469	56.0403	4121.9113	8.5939	12.8103	321.7661	8352.1097	27.5813	4.6847	6.462		
L14	25.4219	39.9653	2991.8318	8.6700	12.8103	233.5495	6062.2624	19.6697	5.2542	10.252		
L14	25.4219	40.0491	3010.6830	8.6881	12.8366	233.5495	6100.4600	19.7110	5.2678	10.232		
145		39.0924				234.5396	5960.8696					
L15	25.4788		2941.7927	8.6926	12.8366			19.2401	5.3013	10.603		
140	27.2129	41.7892	3593.5618	9.2922	13.7042	262.2232	7281.5305	20.5674	5.7502	11.5		
L16	26.6733	44.7988	3498.0760	8.8546	13.1034	266.9592	7088.0504	22.0486	5.2719	9.372		
1 4 7	26.7427	46.1155	3815.6579	9.1149	13.4800	283.0616	7731.5574	22.6966	5.4667	9.719		
L17	26.6721	62.0210	5051.4008	9.0433	13.4800	374.7342	10235.507 6	30.5249	4.9307	6.466		
	26.7247	62.1457	5081.9155	9.0615	13.5063	376.2639	10297.338 7	30.5862	4.9443	6.484		
L18	26.7335	60.1675	4929.8743	9.0704	13.5063	365.0068	9989.2618	29.6126	5.0113	6.795		
	27,7845	62.5785	5546.5810	9.4339	14.0322	395.2764	11238.876	30,7992	5.2834	7.164		
1.10							8					
L19	27.7890	61.5470	5460.3342	9.4384	14.0322	389.1300	11064.117 4	30.2916	5.3169	7.334		
	28.8400	63.9171	6115.7591	9.8018	14.5581	420.0942	12392.186	31.4581	5.5890	7.709		

140 Ft Monopole Tower Structural Analysis Project Number 37520-0091.001.7805, Order 508882, Revision 0

Section	Tip Dia. in	Area in²	l in⁴	r in	C in	I/C in³	J in⁴	lt/Q in²	w in	w/t
L20	28.8444	62.8438	6018.5507	9.8063	14.5581	413.4169	0 12195.215	30.9298	5.6225	7.891
	29.8955	65.1731	6712.8832	10.1698	15.0840	445.0342	5 13602.121 2	32.0762	5.8946	8.273
L21	29.9043	62.9416	6494 <u>.</u> 4598	10.1787	15.0840	430.5537	13159.536	30.9780	5.9616	8.671
	30.9218	65.1173	7191.4619	10.5305	15.5930	461.1966	3 14571.851	32.0487	6.2249	9.054
L22	30.8777	76.6297	8391.1096	10.4858	15.5930	538.1314	17002.662	37.7148	5.8899	7.249
	30.9302	76.7625	8434.8145	10.5040	15.6193	540.0236	17091.221	37.7802	5.9036	7.266
L23	30.9391	74.4640	8196.1971	10.5129	15.6193	524.7465	16607.717	36.6489	5.9706	7.582
	31.9901	77.0385	9076.0308	10.8764	16.1453	562.1486	4 18390.499	37.9160	6.2426	7.927
L24	31.9990	74.6542	8809.6150	10.8853	16.1453	545.6474	17850.668	36.7425	6.3096	8.275
	33.0500	77.1469	9721.8764	11.2488	16.6712	583.1554	4 19699.157	37.9694	6.5817	8.632
L25	33.0544	75.9124	9573.9184	11.2533	16.6712	574.2803	3 19399.354	37.3618	6.6152	8.82
	34.1055	78.3643	10531.874	11.6167	17.1971	612.4228	3 21340.432	38.5685	6.8873	9.183
L26	34.1055	78.3643	4 10531.874	11.6167	17.1971	612.4228	9 21340.432	38.5685	6.8873	9.183
	35.2785	81.1005	4 1167 <u>4</u> .082	12.0224	17.7840	656.4383	9 23654.856	39.9152	7.1910	9.588
L27	34.6137	82.5454	5 10818.649	11.4718	17.0132	635.8972	21921.516	40.6263	6.6582	8.323
	34.7714	85.1604	1 11879.758	11.8352	17.5390	677.3319	2 24071.611	41.9134	6.9303	8.663
L28	34.7714	85.1604	4 11879.758	11.8352	17.5390	677.3319	24071.611	41.9134	6.9303	8.663
	35.8223	87.7754	4 13008.076	12.1986	18.0649	720.0749	2 26357.890	43.2004	7.2023	9.003
L29	35.8312	85.0948	9 12629.331	12.2076	18.0649	699.1091	25590.450	41.8811	7.2693	9.38
	36.6194	86.9948	8 1349 <u>4.</u> 311	12.4801	18.4593	731.0314	3 2734 <u>3</u> .132	42.8162	7.4734	9.643
L30	36.6106	89.7367	0 13899.664	12.4712	18.4593	752.9907	5 28164.488	44.1657	7.4064	9.258
	36.6631	89.8674	3 13960.510	12.4893	18.4856	755.2113	28287.778	44.2300	7.4200	9.275
L31	36.6719	87.1215	0 13553.339	12.4983	18.4856	733.1849	2 27462.740	42.8785	7.4870	9.661
	37.7229	89.6548	8 14770.350	12.8617	19.0114	776.9202	9 29928.733	44.1253	7.7590	10.012
L32	37.7052	95.3061	2 15657.719	12.8438	19.0114	823.5958	9 31726.785	46.9068	7.6250	9.242
	37.7578	95.4409	8 15724.269	12.8620	19.0377	825.9541	3 31861.634	46.9731	7.6386	9.259
L33	37.7622	94.0276	9 15502.193	12.8665	19.0377	814.2889	0 31411.645	46.2775	7.6721	9.443
	38.8131	96.6834	0 16853.253	13.2299	19.5635	861.4620	8 34149.260	47.5846	7.9442	9.777
L34	38.8176	95.2282	5 16610.817	13.2344	19.5635	849.0697	8 33658.018	46.8684	7.9777	9.972
	39.6058	97.1895	1 17658.415	13.5069	19.9579	884.7818	9 35780.736	47.8337	8.1817	10.227
L35	39.5705	109.0483	0 19708.173	13.4711	19.9579	987.4857	1 39934.102	53.6703	7.9137	8.793
	39.6230	109.1954	3 19788.034 ~	13.4893	19.9842	990.1827	2 40095.923	53.7427	7.9273	8.808
L36	39.6230	109.1954	7 19788.034	13.4893	19.9842	990.1827	2 40095.923	53.7427	7.9273	8.808
	40.1485	110.6664	7 20598.532	13.6710	20.2471	1017.3548	2 41738.211	54.4666	8.0634	8.959
L37	40.1662	104.6551	3 19530.685	13.6889	20.2471	964.6142	0 39574.464	51.5081	8.1974	9.644

140 Ft Monopole Tower Structural Analysis Project Number 37520-0091.001.7805, Order 508882, Revision 0

Section	Tip Dia.	Area	1	r	С	I/C	J	lt/Q	W	w/t
	in	in ²	in ⁴	in	in	in³	in⁴	in²	in	
	40.2187	104.7940	9 19608.565 8	13.7071	20.2734	967.2047	7 39732.270 6	51.5764	8.2110	9.66
L38	40.2275	101.7783	19069.148 1	13.7160	20.2734	940.5976	38639.263 9	50.0922	8.2780	10.034
	41.2785	104.4750	20625.439 4	14.0794	20.7993	991.6418	41792.732 0	51.4194	8.5500	10.364
L39	41.2785	104.4750	20625.439 4	14.0794	20.7993	991.6418	41792.732 0	51.4194	8.5500	10.364
	42.3294	107.1717	22264.183 2	14.4429	21.3251	1044.0352	45113 <u>.</u> 271 4	52.7467	8.8221	10.693
L40	42.3382	103.9885	21629.671 9	14.4518	21.3251	1014.2810	43827.579 3	51.1800	8.8891	11.111
	43.3892	106.6035	23302.822 2	14.8152	21.8510	1066.4433	47217.835 4	52.4670	9.1611	11.451
L41	43.3892	106.6035	23302.822	14.8152	21.8510	1066.4433	47217.835 4	52.4670	9.1611	11.451
	43.9147	107.9110	24170.816 3	14.9969	22.1139	1093.0150	48976.626 8	53.1105	9.2972	11.621
L42	43.8618	127.6855	28395.615 8	14.9432	22.1139	1284.0622	57537.216 0	62.8429	8.8952	9.363
	43.9143	127.8407	28499.329 1	14.9614	22.1402	1287.2218	57747.367 3	62.9193	8.9088	9.378
L43	43.9143	127.8407	28499.329 1	14.9614	22.1402	1287.2218	57747.367 3	62.9193	8.9088	9.378
	44.1245	128.4618	28916.709 8	15.0341	22.2454	1299.8988	58593.093 8	63.2250	8.9632	9.435
L44	44.0628	151.4919	33817.156 2	14.9715	22.2454	1520.1896	68522.726 7	74.5597	8.4942	7.55
	44.1153	151.6757	33940.438 4	14.9896	22.2716	1523.9303	68772.529 9	74.6502	8.5078	7.562
L45	44.1241	148.3937	33245.686 4	14.9986	22.2716	1492.7359	67364.773 9	73.0349	8.5748	7.795
	44.4394	149 <u>.</u> 4724	- 33975.969 6	15.1076	22.4294	1514.7962	68844.525 8	73.5658	8.6564	7.869

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset GradeAdjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing	Double Angle Stitch Bolt Spacing	Double Angle Stitch Bolt Spacing
						Diagonals	Horizontals	Redundants
ft	ft²	in				in	in	in
L1 140.0000-			1	1	1			
135.0000								
L2 135.0000-			1	1	1			
130.0000								
L3 130.0000-			1	1	1			
125.0000								
L4 125.0000-			1	1	1			
120.0000								
L5 120.0000-			1	1	1			
115.0000								
L6 115.0000-			1	1	1			
110.0000								
L7 110.0000-			1	1	1			
105.0000			4	4	4			
L8 105.0000-			1	1	1			
104.0000 L9 104.0000-			1	1	0.942021			
103.7500			I	I I	0.942021			
L10			1	1	0.950174			
103.7500-			Ι	1	0.950174			
98,7500								
L11 98 7500			1	1	0.949339			
98.5000			I		0.3433333			
L12 98 5000-			1	1	0.901676			
98.2500			1	,	0.001070			
L13 98 2500			1	1	0.895789			
97.0000					0.0007.00			
L14 97 0000-			1	1	0.916918			
2.1.07.00000				,				

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Factor Ar	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft²	in				in	in	in
96.7500 L15 96.7500-			1	1	0.921726			
88.5000				1	0.521720			
L16 88.5000-			1	1	0.929093			
88.1700 L17 88.1700-			1	1	0.980317			
87.9200								
L18 87 9200- 82 9200			1	1	0.989862			
L19 82 9200			1	1	0.985114			
77.9200			4	4	0.084.800			
L20 77.9200- 72.9200			1	1	0.981806			
L21 72.9200-			1	1	0.997834			
68.0800 L22 68.0800-			1	1	0.957491			
67.8300				1				
L23 67.8300-			1	1	0.967322			
62.8300 L24 62.8300-			1	1	0.979205			
57.8300								
L25 57 8300- 52 8300			1	1	0.97703			
L26 52.8300-			1	1	0.972405			
47.2500			4	4	0.085051			
L27 47 2500- 46 5000			1	1	0.985251			
L28 46.5000-			1	1	0.969863			
41.5000 L29 41.5000-			1	1	0.989134			
37.7500								
L30 37 7500- 37 5000			1	1	0.978813			
L31 37 5000			1	1	0.994807			
32.5000			4		4 00000			
L32 32 5000- 32 2500			1	1	1.00203			
L33 32.2500-			1	1	1.00183			
27.2500 L34 27.2500-			1	1	1.00607			
23.5000				1	1.00007			
L35 23.5000-			1	1	1.05137			
23.2500 L36 23.2500-			1	1	1.04294			
20.7500								
L37 20 7500- 20 5000			1	1	1.00335			
L38 20 5000-			1	1	1.01814			
15.5000			4	4	1 00200			
L39 15.5000- 10.5000			1	1	1.00396			
L40 10.5000-			1	1	1.02081			
5.5000 L41 5.5000-			1	1	1.01412			
3.0000				1	1.01412			
L42 3.0000-			1	1	0.878537			
2.7500 L43 2.7500-			1	1	0.876198			
1.7500								
L44 1 7500- 1 5000			1	1	0.802715			
L45 1.5000-			1	1	0.817007			
0.0000								

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From	Componen t	Placement	Total Number	Number Per Row	Start/En d	Width or Diamete	Perimete r	Weight
		Torque	Туре	ft	, vannoer	, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Position	r	'	klf
		Calculation						in	in	
WR-VG86ST-BRD(3/4)	С	No		121.0000 -	2	2	-0.317	0.7950		0.00
			(CaAa)	0.0000			-0.283			
FB-L98B-002-	С	No	Surface Ar	121.0000 -	1	1	-0.325	0.3937		0.00
75000(3/8)			(CaAa)	0.0000			-0.325			
HCS 6X12 6AWG(1-	В	No		115.0000 -	2	2	-0.125	1.3800		0.00
3/8)	_		(CaAa)	0.0000	_	_	-0.083			
HJ7-50A(1-5/8)	В	No		115.0000 -	5	5	-0.033	1.9800		0.00
***			(CaAa)	0.0000			0.158			
CR 50 1873(1-5/8)	С	No	Surface Ar	95.0000 -	6	6	0.117	1.9800		0.00
CR 50 1675(1-5/6)	C	No	(CaAa)	0.0000	0	0	0.333	1.9000		0.00
MP3-08 (L)	А	No	Surface Af		1	1	-0.250	7.9300	21.4600	0.00
			(CaAa)	0.0000	•		-0.250	1.0000	21,4000	0.00
MP3-08 (L)	В	No	Surface Af		1	1	-0.250	7,9300	21.4600	0.00
Mil 0 00 (L)	2	110	(CaAa)	0.0000		•	-0.250		21,1000	0.00
MP3-08 (L)	С	No	Surface Af		1	1	-0.250	7.9300	21.4600	0.00
	-		(CaAa)	16.7500			-0.250			
MP3-06 (W)	С	No	Surface Af		1	1	0.000	6.8900	19.0000	0.00
()			(CaAa)	0.0000			0.000			
MP3-06 (L)	С	No	Surface Af	26.7500 -	1	1	-0.500	6.8900	19.0000	0.00
			(CaAa)	0.0000			-0.500			
MP3-06 (L)	А	No	Surface Af	71.7500 -	1	1	-0.250	6.8900	19.0000	0.00
			(CaAa)	41.7500			-0.250			
MP3-06 (L)	С	No	Surface Af	71.7500 -	1	1	-0.250	6.8900	19.0000	0.00
			(CaAa)	41.7500			-0.250			
MP3-06 (L)	В	No	Surface Af	71.7500 -	1	1	-0.250	6.8900	19.0000	0.00
			(CaAa)	41.7500			-0.250			
MP3-05 (L)	А	No		100.7500 -	1	1	-0.250	5.3300	14.8400	0.00
	_		(CaAa)	71.7500			-0.250			
MP3-05 (L)	С	No		100.7500 -	1	1	-0.250	5.3300	14.8400	0.00
	_		(CaAa)	71.7500			-0.250			
MP3-05 (L)	В	No		100.7500 -	1	1	-0.250	5.3300	14.8400	0.00
	-	N.,	(CaAa)	71.7500	4	4	-0.250	0 5000	45 5000	0.00
CCI-065125 (L)	В	No	Surface Af	0.0000	1	1	-0.500 -0.500	6.5000	15.5000	0.00
CCI-065125 (L)	С	No	(CaAa) Surface Af		1	1	0.250	6.5000	15.5000	0.00
001-003123 (L)	C	NO	(CaAa)	0.0000	1	1	0.250	0.5000	13.3000	0.00
CCI-065125 (L)	в	No	Surface Af		1	1	0.250	6,5000	15,5000	0.00
001 000 120 (E)	D	110	(CaAa)	0.0000	•		0.250	0.0000	10.0000	0.00
CCI-060100 (L)	в	No	Surface Af		1	1	-0.500	6.0000	14.0000	0.00
	_		(CaAa)	35.5000	•	•	-0.500	010000		0100
CCI-060100 (L)	С	No	Surface Af		1	1	0.250	6.0000	14.0000	0.00
(-)			(CaAa)	35.5000			0.250			
CCI-060100 (L)	В	No	Surface Af	90.6700 -	1	1	0.250	6.0000	14.0000	0.00
、 /			(CaAa)	35.5000			0.250			
CCI-045100 (L)	А	No	Surface Af	105.5000 -	1	1	0.250	4.5000	11.0000	0.00
. ,			(CaAa)	95.5000			0.250			
CCI-045100 (L)	С	No	Surface Af	105.5000 -	1	1	0.250	4.5000	11.0000	0.00
			(CaAa)	95.5000			0.250			
CCI-045100 (L)	В	No		105.5000 -	1	1	0.250	4.5000	11.0000	0.00
			(CaAa)	95.5000			0.250			

Feed Line/Linear Appurtenances - Entered As Area

Description	Face	Allow Shield	Exclude From	Componen t	Placement	Total Number		$C_A A_A$	Weight
	or Leg	Shield	Torque Calculatior	Type	ft	Number		ft²/ft	klf
LDF4-50A(1/2)	С	No	No	Inside Pole	140.0000 - 0.0000	1	No Ice 1/2" Ice 1" Ice 2" Ice	0.0000 0.0000 0.0000 0.0000	0.00 0.00 0.00 0.00

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation	Type	ft			ft²/ft	klf
LDF7-50A(1-5/8)	С	No	No	Inside Pole	140.0000 -	1	No Ice	0.0000	0.00
					0.0000		1/2" Ice	0.0000	0.00
							1" Ice	0.0000	0.00
							2" Ice	0.0000	0.00
-B114-1-0813U4-	С	No	No	Inside Pole	140.0000 -	3	No Ice	0.0000	0.00
M5J(1-1/4)					0.0000		1/2" Ice	0.0000	0.00
							1" Ice	0.0000	0.00
***							2" Ice	0.0000	0.00
LDF7-50A(1-5/8)	С	No	No	Inside Pole	121.0000 -	12	No Ice	0.0000	0.00
, ,					0.0000		1/2" Ice	0.0000	0.00
							1" Ice	0.0000	0.00
							2" Ice	0.0000	0.00
FB-L98B-002-	С	No	No	Inside Pole	121.0000 -	1	No Ice	0.0000	0.00
75000(3/8)	~				0.0000	•	1/2" Ice	0.0000	0.00
10000(0/0)					010000		1" Ice	0.0000	0.00
							2" Ice	0.0000	0.00
WR-VG122ST-	С	No	No	Inside Pole	121.0000 -	2	No Ice	0.0000	0.00
BRDA(7/16)	0	110	110	inside i die	0.0000	2	1/2" Ice	0.0000	0.00
DIADA(IIIO)					0.0000		1" Ice	0.0000	0.00
							2" Ice	0.0000	0.00
2 1/2" (Nominal)	С	No	No	Inside Pole	121.0000 -	2	No Ice	0.0000	0.00
Conduit	C	NU	NU		0.0000	2	1/2" [ce	0.0000	0.01
Conduit					0.0000		1" Ice	0.0000	0.01
							2" Ice	0.0000	0.01
***								0.0000	0.01
LDF6-50A(1-1/4)	С	No	No	Inside Pole	115.0000 -	11	No Ice	0.0000	0.00
					0.0000		1/2" Ice	0.0000	0.00
							1" Ice	0.0000	0.00
***							2" Ice	0.0000	0.00
LDF7-50A(1-5/8)	С	No	No	Inside Pole	104.0000 -	6	No Ice	0.0000	0.00
					0.0000		1/2" Ice	0.0000	0.00
							1" Ice	0.0000	0.00
							2" Ice	0.0000	0.00
HB158-1-08U8-	С	No	No	Inside Pole	104.0000 -	2	No Ice	0.0000	0.00
S8J18(1-5/8)					0.0000		1/2" Ice	0.0000	0.00
							1" Ice	0.0000	0.00
							2" Ice	0.0000	0.00

LDF4-50A(1/2)	С	No	No	Inside Pole	80.0000 -	1	No Ice	0.0000	0.00
					0.0000		1/2" Ice	0.0000	0.00
							1" Ice	0.0000	0.00
							2" Ice	0.0000	0.00

Feed Line/Linear Appurtenances Section Areas

Tower Sectio	Tower Elevation	Face	A_R	A _F	$C_A A_A$ In Face	$C_A A_A$ Out Face	Weight
n	ft		ft²	ft²	ft ²	ft ²	к
L1	140.0000-	А	0.000	0.000	0.000	0.000	0.00
	135.0000	В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.02
L2	135.0000-	А	0.000	0.000	0.000	0.000	0.00
	130.0000	В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.02
L3	130.0000-	А	0.000	0.000	0.000	0.000	0.00
	125.0000	В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.02
L4	125.0000-	А	0.000	0.000	0.000	0.000	0.00
	120.0000	В	0.000	0.000	0.000	0.000	0.00

Tower	Tower	Face	A _R	A _F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation #		ft²	ft²	In Face ft²	Out Face ft ²	к
n	ft	С	0.000	0.000	0.198	0.000	0.05
L5	120.0000-	A	0.000	0.000	0.198	0.000	0.05
25	115.0000	В	0.000	0.000	0.000	0.000	0.00
	110.0000	č	0.000	0.000	0.992	0.000	0.16
L6	115.0000-	Ă	0.000	0.000	0.000	0.000	0.00
20	110.0000	В	0.000	0.000	6.330	0.000	0.04
	110.0000	č	0.000	0.000	0.992	0.000	0.19
L7	110.0000-	Ă	0.000	0.000	0.375	0.000	0.00
	105.0000	В	0.000	0.000	6.705	0.000	0.04
		ē	0.000	0.000	1.367	0.000	0.19
L8	105.0000-	Ă	0.000	0.000	0.750	0.000	0.00
	104.0000	В	0.000	0.000	2.016	0.000	0.01
		c	0.000	0.000	0.948	0.000	0.04
L9	104.0000-	A	0.000	0.000	0.188	0.000	0.00
	103.7500	В	0.000	0.000	0.504	0.000	0.00
		Ē	0.000	0.000	0.237	0.000	0.01
L10	103.7500-	Ă	0.000	0.000	5.527	0.000	0.00
2.0	98.7500	В	0.000	0.000	11.857	0.000	0.04
		č	0.000	0.000	6.519	0.000	0.23
L11	98.7500-98.5000	Ă	0.000	0.000	0.410	0.000	0.00
		В	0.000	0.000	0.726	0.000	0.00
		č	0.000	0.000	0.459	0.000	0.00
L12	98.5000-98.2500	Ă	0.000	0.000	0.410	0.000	0.00
	23.0000-00.2000	В	0.000	0.000	0.726	0.000	0.00
		C	0.000	0.000	0.459	0.000	0.00
L13	98.2500-97.0000	Ă	0.000	0.000	2.048	0.000	0.00
210	33.2300 07.0000	В	0.000	0.000	3.630	0.000	0.00
		č	0.000	0.000	2.296	0.000	0.06
L14	97.0000-96.7500	Ă	0.000	0.000	0.410	0.000	0.00
L 17	57.0000-50.7500	В	0.000	0.000	0.726	0.000	0.00
		C	0.000	0.000	0.459	0.000	0.00
L15	96.7500-88.5000	A	0.000	0.000	8.266	0.000	0.00
LIJ	30.7300-00.3000	В	0.000	0.000	23.051	0.000	0.07
		C	0.000	0.000		0.000	0.07
1 1 6	00 5000 00 1700				19.795		
L16	88.5000-88.1700	A	0.000	0.000	0.293	0.000	0.00
		B C	0.000	0.000	1.371	0.000	0.00
147	00 4700 07 0000		0.000	0.000	1.081	0.000	0.02
L17	88.1700-87.9200	A	0.000	0.000	0.222	0.000	0.00
		В	0.000	0.000	1.039	0.000	0.00
140	07 0000 00 0000	С	0.000	0.000	0.819	0.000	0.01
L18	87.9200-82.9200	A	0.000	0.000	4.442	0.000	0.00
		В	0.000	0.000	20.772	0.000	0.04
140	00 0000 77 0000	С	0.000	0.000	16.374	0.000	0.25
L19	82.9200-77.9200	A	0.000	0.000	4.442	0.000	0.00
		В	0.000	0.000	20.772	0.000	0.04
1.00	77 0000 70 0000	C	0.000	0.000	16.374	0.000	0.25
L20	77.9200-72.9200	A	0.000	0.000	4.442	0.000	0.00
		B	0.000	0.000	20.772	0.000	0.04
1.04	70,000,00,000,000	C	0.000	0.000	16.374	0.000	0.25
L21	72.9200-68.0800	A	0.000	0.000	5.254	0.000	0.00
		В	0.000	0.000	21.061	0.000	0.04
1.00	CO 0000 07 0000	С	0.000	0.000	16.804	0.000	0.25
L22	68.0800-67.8300	A	0.000	0.000	0.287	0.000	0.00
		В	0.000	0.000	1.104	0.000	0.00
1.00	07 0000 00 000	С	0.000	0.000	0.884	0.000	0.01
L23	67.8300-62.8300	A	0.000	0.000	5.742	0.000	0.00
		В	0.000	0.000	22.072	0.000	0.04
1.0.1		С	0.000	0.000	17.674	0.000	0.25
L24	62.8300-57.8300	A	0.000	0.000	5.742	0.000	0.00
		В	0.000	0.000	22.072	0.000	0.04
		С	0.000	0.000	17.674	0.000	0.25
L25	57.8300-52.8300	A	0.000	0.000	5.742	0.000	0.00
		В	0.000	0.000	22.072	0.000	0.04
		С	0.000	0.000	17.674	0.000	0.25
L26	52.8300-47.2500	А	0.000	0.000	6.408	0.000	0.00
		В	0.000	0.000	24.632	0.000	0.05
		С	0.000	0.000	19.724	0.000	0.28
107	47 2500 46 5000	А	0.000	0.000	0.861	0.000	0.00
L27	47 2300-40 3000						

Tower Sectio	Tower Elevation	Face	A_R	A _F	C _A A _A In Face	$C_A A_A$ Out Face	Weight
n	ft		ft²	ft²	ft ²	ft ²	к
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	С	0.000	0.000	2.651	0.000	0.04
L28	46.5000-41.5000	Ă	0.000	0.000	5.785	0.000	0.00
LZO	40.0000 41.0000	В	0.000	0.000	22,115	0.000	0.04
		č	0.000	0.000	17.717	0.000	0.25
L29	41.5000-37.7500	Ă	0.000	0.000	4.956	0.000	0.00
LZJ	41,0000-07,7000	В	0.000	0.000	17.204	0.000	0.03
		č	0.000	0.000	13.905	0.000	0.19
L30	37.7500-37.5000	Ă	0.000	0.000	0.330	0.000	0.00
L30	37.7500-37.5000	В	0.000	0.000	1.147	0.000	0.00
		C		0.000		0.000	0.00
1.24	37,5000-32,5000		0.000		0.927		
L31	37.5000-32.5000	A	0.000	0.000	6.608	0.000	0.00
		В	0.000	0.000	23.438	0.000	0.04
1.00		С	0.000	0.000	18.790	0.000	0.25
L32	32.5000-32.2500	A	0.000	0.000	0.330	0.000	0.00
		В	0.000	0.000	1.189	0.000	0.00
		С	0.000	0.000	0.948	0.000	0.01
L33	32 2500 27 2500	А	0.000	0.000	6.608	0.000	0.00
		В	0.000	0.000	23.772	0.000	0.04
		С	0.000	0.000	18.957	0.000	0.25
L34	27.2500-23.5000	Α	0.000	0.000	4.956	0.000	0.00
		В	0.000	0.000	17.829	0.000	0.03
		С	0.000	0.000	21.682	0.000	0.19
L35	23.5000-23.2500	Α	0.000	0.000	0.330	0.000	0.00
		В	0.000	0.000	1.189	0.000	0.00
		С	0.000	0.000	1.522	0.000	0.01
L36	23 2500 20 7500	А	0.000	0.000	3.304	0.000	0.00
		В	0.000	0.000	11.886	0.000	0.02
		ċ	0.000	0.000	15,220	0.000	0.13
L37	20.7500-20.5000	Ā	0.000	0.000	0.330	0.000	0.00
		В	0.000	0.000	1.189	0.000	0.00
		č	0.000	0.000	1.522	0.000	0.01
L38	20.5000-15.5000	Ă	0.000	0.000	6.608	0.000	0.00
200	20.0000 10.0000	В	0.000	0.000	23.772	0.000	0.04
		č	0.000	0.000	28.788	0.000	0.25
L39	15.5000-10.5000	Ă	0.000	0.000	6.608	0.000	0.00
LUU	10.0000-10.0000	В	0.000	0.000	23.772	0.000	0.04
		č	0.000	0.000	23.832	0.000	0.25
L40	10.5000-5.5000	Ă	0.000	0.000	6.608	0.000	0.20
L40	10.0000-0.0000	В	0.000	0.000	23.772	0.000	0.04
		C	0.000	0.000	23.832	0.000	0.04
L41	5.5000-3.0000	A	0.000	0.000		0.000	0.25
L4 I	5.5000-5.0000	B			3.304		
			0.000	0.000	11.886	0.000	0.02
1.40	0 0000 0 7500	C	0.000	0.000	11.916	0.000	0.13
L42	3.0000-2.7500	A	0.000	0.000	0.330	0.000	0.00
		В	0.000	0.000	1.189	0.000	0.00
		С	0.000	0.000	1.192	0.000	0.01
L43	2.7500-1.7500	А	0.000	0.000	1.322	0.000	0.00
		В	0.000	0.000	4.754	0.000	0.01
		С	0.000	0.000	4.766	0.000	0.05
L44	1.7500-1.5000	А	0.000	0.000	0.330	0.000	0.00
		В	0.000	0.000	1.189	0.000	0.00
		С	0.000	0.000	1.192	0.000	0.01
L45	1.5000-0.0000	А	0.000	0.000	1.983	0.000	0.00
		В	0.000	0.000	7.132	0.000	0.01
		С	0.000	0.000	7.150	0.000	0.08

# Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Sectio	Tower Elevation	Face or	lce Thickness	$A_R$	A _F	C _A A _A In Face	$C_A A_A$ Out Face	Weight
n	ft	Leg	in	ft²	ft²	ft²	ft²	ĸ
L1	140.0000-	Α	1.471	0.000	0.000	0.000	0.000	0.00
	135.0000	В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.02
L2	135.0000-	А	1.465	0.000	0.000	0.000	0.000	0.00
	130.0000	В		0.000	0.000	0.000	0.000	0.00

Tower Sectio	Tower Elevation	Face or	lce Thickness	A _R	A _F	C _A A _A In Face	$C_A A_A$ Out Face	Weigh
n	ft	Leg	in	ft²	ft²	ft ²	ft ²	K
		C		0.000	0.000	0.000	0.000	0.02
L3	130.0000-	Ă	1.459	0.000	0.000	0.000	0.000	0.00
LU	125.0000	В	1.100	0.000	0.000	0.000	0.000	0.00
	125.0000	C		0.000	0.000	0.000	0.000	0.02
L4	125,0000-	A	1.454	0.000	0.000	0.000	0.000	0.02
L4	120.0000		1.454	0.000		0.000	0.000	0.00
	120.0000	В			0.000	0.000	0.000	
	400.0000	С	4 4 4 9	0.000	0.000	0.892	0.000	0.06
L5	120.0000-	A	1.448	0.000	0.000	0.000	0.000	0.00
	115.0000	В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	4.448	0.000	0.20
L6	115.0000-	A B	1.441	0.000	0.000	0.000	0.000	0.00
	110.0000	в		0.000	0.000	11.516	0.000	0.16
		С		0.000	0.000	4.434	0.000	0.23
L7	110.0000-	Α	1.435	0.000	0.000	0.456	0.000	0.00
	105.0000	В		0.000	0.000	11.956	0.000	0.16
		С		0.000	0.000	4.875	0.000	0.24
L8	105.0000-	Ā	1.431	0.000	0.000	0.912	0.000	0.01
20	104.0000	В	1.101	0.000	0.000	3.210	0.000	0.04
	10-10000	C		0.000	0.000	1.794	0.000	0.04
10	104 0000	~	1 420			0.228	0.000	
L9	104.0000-	A	1.430	0.000	0.000	0.220		0.00
	103.7500	В		0.000	0.000	0.802	0.000	0.01
	100	С		0.000	0.000	0.448	0.000	0.02
L10	103.7500-	A	1.426	0.000	0.000	6.905	0.000	0.07
	98.7500	В		0.000	0.000	18.384	0.000	0.22
		С		0.000	0.000	11.305	0.000	0.34
L11	98.7500-98.5000	Α	1.423	0.000	0.000	0.521	0.000	0.01
		В		0.000	0.000	1.094	0.000	0.01
		С		0.000	0.000	0.741	0.000	0.02
L12	98.5000-98.2500	Α	1.422	0.000	0.000	0.521	0.000	0.01
		В		0.000	0.000	1.094	0.000	0.01
		č		0.000	0.000	0.741	0.000	0.02
L13	98.2500-97.0000	Ă	1.421	0.000	0.000	2.605	0.000	0.02
LIJ	30.2300-37.0000	B	1.421				0.000	
				0.000	0.000	5.471		0.06
		С		0.000	0.000	3.702	0.000	0.09
L14	97.0000-96.7500	А	1.420	0.000	0.000	0.521	0.000	0.01
		В		0.000	0.000	1.094	0.000	0.01
		С		0.000	0.000	0.740	0.000	0.02
L15	96.7500-88.5000	Α	1.414	0.000	0.000	10.799	0.000	0.10
		В		0.000	0.000	35.253	0.000	0.40
		С		0.000	0.000	32.744	0.000	0.72
L16	88.5000-88.1700	Ā	1,407	0.000	0.000	0.386	0.000	0.00
		В		0.000	0.000	1.988	0.000	0.02
		č		0.000	0.000	1.705	0.000	0.03
L17	88.1700-87.9200	Ă	1.406	0.000	0.000	0.292	0.000	0.00
	00.1700-07.9200		1.400					
		В		0.000	0.000	1.504	0.000	0.02
1.40	07 0000 00 000	C	4 100	0.000	0.000	1.290	0.000	0.02
L18	87.9200-82.9200	A	1.402	0.000	0.000	5.844	0.000	0.05
		В		0.000	0.000	30.066	0.000	0.31
		С		0.000	0.000	25.769	0.000	0.49
L19	82,9200-77,9200	Α	1.394	0.000	0.000	5.835	0.000	0.05
		В		0.000	0.000	30.020	0.000	0.31
		С		0.000	0.000	25.723	0.000	0.49
L20	77.9200-72.9200	A	1.385	0.000	0.000	5.827	0.000	0.05
		В	·	0.000	0.000	29.971	0.000	0.31
		č		0.000	0.000	25.674	0.000	0.49
L21	72,9200-68,0800	Ă	1.376	0.000	0.000	6.585	0.000	0.06
'		В		0.000	0.000	29.916	0.000	0.00
		C		0.000	0.000	25.757	0.000	0.31
L22	68 0800 67 9300		1 274					
LZZ	68.0800-67.8300	A	1.371	0.000	0.000	0.356	0.000	0.00
		В		0.000	0.000	1.560	0.000	0.02
		c		0.000	0.000	1.345	0.000	0.02
L23	67.8300-62.8300	Α	1.365	0.000	0.000	7.107	0.000	0.06
		В		0.000	0.000	31.162	0.000	0.32
		С		0.000	0.000	26.865	0.000	0.49
L24	62.8300-57.8300	Α	1.354	0.000	0.000	7.096	0.000	0.06
			-	0.000	0.000	31.103	0.000	0.31
		В		0.000				
LL-1		B C						
		С	1 343	0.000	0.000	26.806	0.000	0.49
L25	57.8300-52.8300		1.343					

Tower	Tower	Face	Ice	A _R	A _F	C _A A _A	$C_A A_A$	Weight
Sectio n	Elevation ft	or Leg	Thickness in	ft²	ft²	In Face ft²	Out Face ft²	ĸ
	п	C Leg		0.000	0.000	26.742	0.000	0.49
L26	52.8300-47.2500		1.329	0.000	0.000	7.891	0.000	0.07
		A B		0.000	0.000	34,556	0.000	0.34
		С		0.000	0.000	29,761	0.000	0.54
L27	47.2500-46.5000	Α	1.321	0.000	0.000	1.061	0.000	0.01
		В		0.000	0.000	4.645	0.000	0.05
		С		0.000	0.000	4.000	0.000	0.07
L28	46.5000-41.5000	A	1.312	0.000	0.000	7.097	0.000	0.06
		B C		0.000 0.000	0.000	30.914	0.000 0.000	0.30 0.48
L29	41,5000-37,7500	A	1.299	0.000	0.000 0.000	26.618 5.930	0.000	0.48
L23	41.5000-57.7500	B	1.233	0.000	0.000	23.747	0.000	0.23
		č		0.000	0.000	20.524	0.000	0.36
L30	37 7500 37 5000	Ă	1.292	0.000	0.000	0.395	0.000	0.00
		В		0.000	0.000	1.581	0.000	0.02
		С		0.000	0.000	1.366	0.000	0.02
L31	37.5000-32.5000	А	1.282	0.000	0.000	7.891	0.000	0.07
		В		0.000	0.000	32.074	0.000	0.31
1.00		c	4 070	0.000	0.000	27.528	0.000	0.49
L32	32.5000-32.2500	A	1.273	0.000	0.000	0.394	0.000	0.00
		B C		0.000 0.000	0.000 0.000	1.618 1.382	0.000 0.000	0.02 0.02
L33	32.2500-27.2500	A	1.262	0.000	0.000	7.870	0.000	0.02
LUU	52.2500-27.2500	В	1.202	0.000	0.000	32.294	0.000	0.31
		č		0.000	0.000	27.581	0.000	0.48
L34	27.2500-23.5000	Ā	1.242	0.000	0.000	5.888	0.000	0.05
		В		0.000	0.000	24.138	0.000	0.23
		С		0.000	0.000	29.682	0.000	0.43
L35	23.5000-23.2500	Α	1.232	0.000	0.000	0.392	0.000	0.00
		В		0.000	0.000	1.606	0.000	0.01
1.00	22 2502 20 7502	Ç	4 00 4	0.000	0.000	2.068	0.000	0.03
L36	23.2500-20.7500	A B	1.224	0.000 0.000	0.000 0.000	3.916 16.044	0.000 0.000	0.03 0.15
		C		0.000	0.000	20.653	0.000	0.29
L37	20.7500-20.5000	Ă	1.216	0.000	0.000	0.391	0.000	0.00
		В		0.000	0.000	1.602	0.000	0.01
		С		0.000	0.000	2.062	0.000	0.03
L38	20.5000-15.5000	Α	1.200	0.000	0.000	7.808	0.000	0.06
		В		0.000	0.000	31.954	0.000	0.29
		С		0.000	0.000	39.171	0.000	0.56
L39	15.5000-10.5000	A	1.161	0.000	0.000	7.770	0.000	0.06
		B C		0.000	0.000	31.742	0.000	0.28
L40	10.5000-5.5000	A	1.106	0.000 0.000	0.000 0.000	33.065 7.715	0.000 0.000	0.51 0.06
L40	10.5000-5.5000	B	1.106	0.000	0.000	31.439	0.000	0.08
		c		0.000	0.000	32.707	0.000	0.49
L41	5,5000-3,0000	Ă	1.039	0.000	0.000	3.823	0.000	0.03
		В		0.000	0.000	15.533	0.000	0.13
		С		0.000	0.000	16.133	0.000	0.24
L42	3.0000-2.7500	Α	0.999	0.000	0.000	0.380	0.000	0.00
		В		0.000	0.000	1.542	0.000	0.01
		С		0.000	0.000	1.600	0.000	0.02
L43	2.7500-1.7500	A	0.975	0.000	0.000	1.517	0.000	0.01
		В		0.000	0.000	6.143	0.000	0.05
1 4 4	1 7500 4 5000	C	0.044	0.000	0.000	6.370	0.000	0.09
L44	1.7500-1.5000	A	0.944	0.000 0.000	0.000	0.378	0.000	0.00 0.01
		B C		0.000	0.000 0.000	1.527 1.582	0.000 0.000	0.01
L45	1.5000-0.0000	A	0.873	0.000	0.000	2.244	0.000	0.02
L70	1.0000-0.0000	В	0.070	0.000	0.000	9.047	0.000	0.06
		č		0.000	0.000	9.357	0.000	0.13
				2.200	2.200	2.307	2.200	0.10

-

		Feed	l Line Ce	nter of P	ressure
Oration	<b>E</b> leventiere	0.0			
Section	Elevation	$CP_X$	CPz	CP _X Ice	CP _z Ice
	ft	in	in	in	in
L1	140.0000-	0.0000	0.0000	0.0000	0.0000
	135.0000	010000	010000	010000	010000
L2	135.0000-	0.0000	0.0000	0.0000	0.0000
	130.0000				
L3	130.0000-	0.0000	0.0000	0.0000	0.0000
	125.0000				
L4	125.0000-	0.1495	0.2013	0.4302	0.5688
	120.0000				
L5	120.0000-	0.6701	0.9028	1.5128	2.0005
1.0	115.0000	4 4704	4 4057	4 04 05	0.0500
L6	115.0000-	4.4731	-1.4957	4.0125	-0.6586
L7	110.0000 110.0000-	4.2606	-1.4235	3.9813	-0.6532
Lï	105.0000	4.2000	-1.4235	3.9013	-0.0552
L8	105.0000-	2,7226	-0.9092	3.0696	-0.5035
LU	104.0000	2.7220	-0.0002	0.0000	-0.0000
L9	104.0000-	2.7349	-0.9133	3.0834	-0.5058
20	103.7500	211 0 10	010100	01000	
L10	103 7500-98 7500	2.1736	-0.7256	2.7389	-0.4493
L11	98.7500-98.5000	1.7891	-0.5970	2.3408	-0.3841
L12	98.5000-98.2500	1.7934	-0.5984	2.3460	-0.3849
L13	98.2500-97.0000	1.8009	-0.6009	2.3571	-0.3868
L14	97.0000-96.7500	1.8069	-0.6028	2.3670	-0.3884
L15	96.7500-88.5000	0.8842	0.7100	1.4369	0.8770
L16	88.5000-88.1700	-0.2023	0.9418	0.4361	1.0775
L17	88.1700-87.9200	-0.2030	0.9439	0.4354	1.0796
L18	87.9200-82.9200	-0.2076	0.9577	0.4404	1.0973
L19	82.9200-77.9200	-0.2164	0.9838	0.4496	1.1309
L20	77.9200-72.9200	-0.2250	1.0094	0.4584	1.1640
L21	72.9200-68.0800	-0.2212	0.9807	0.4508	1.1554
L22	68.0800-67.8300	-0.2217	0.9772	0.4501	1.1590
L23	67.8300-62.8300	-0.2258	0.9895	0.4541	1.1752
L24	62.8300-57.8300	-0.2336	1.0128	0.4613	1.2057
L25	57.8300-52.8300	-0.2412	1.0357	0.4681	1.2358
L26	52.8300-47.2500	-0.2492	1.0596	0.4747	1.2672
L27 L28	47.2500-46.5000	-0.2494	1.0602	0.4749	1.2678 1.2821
L20 L29	46.5000-41.5000	-0.2531	1.0707	0.4749 0.4662	1.2720
L29 L30	41.5000-37.7500 37.7500-37.5000	-0.2494 -0.2522	1.0474 1.0559	0.4679	1.2831
L31	37.5000-32.5000	-0.3110	1.0612	0.4262	1.2915
L32	32.5000-32.2500	-0.3512	1.0685	0.3986	1.3017
L33	32.2500-27.2500	-0.3559	1.0795	0.3989	1.3157
L34	27.2500-23.5000	1.3450	1.7947	1.7996	1.9221
L35	23.5000-23.2500	1.5744	1.8975	1.9970	2.0143
L36	23,2500-20,7500	1.5823	1.9070	2.0065	2.0250
L37	20.7500-20.5000	1.5900	1.9162	2.0157	2.0355
L38	20.5000-15.5000	1.2546	1.7085	1.7400	1.8636
L39	15.5000-10.5000	0.1111	0.9893	0.8012	1.2672
L40	10.5000-5.5000	0.1111	1.0056	0.7962	1.2845
L41	5.5000-3.0000	0.1111	1.0178	0.7821	1.2939
L42	3.0000-2.7500	0.1112	1.0225	0.7713	1.2955
L43	2.7500-1.7500	0.1112	1.0245	0.7639	1.2953
L44	1.7500-1.5000	0.1112	1.0269	0.7540	1.2945
L45	1.5000-0.0000	0.1112	1.0296	0.7290	1.2891

#### **Feed Line Center of Pressure**

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Tower	Feed Line	Description	Feed Line	Ka	K _a
Section	Record No.		Segment Elev.	No Îce	lce
L4	13	WR-VG86ST-BRD(3/4)	120.00 - 121.00	1.0000	1.0000
L4	14	FB-L98B-002-75000(3/8)	120.00 - 121.00	1.0000	1.0000
L5	13	WR-VG86ST-BRD(3/4)	115.00 - 120.00	1.0000	1.0000
L5	14	FB-L98B-002-75000(3/8)	115.00 - 120.00	1.0000	1.0000
L6	13	WR-VG86ST-BRD(3/4)	110.00 - 115.00	1.0000	1.0000
L6	14	FB-L98B-002-75000(3/8)	110.00 - 115.00	1.0000	1.0000
L6	21	HCS 6X12 6AWG(1-3/8)	110.00 - 115.00	1.0000	1.0000
L6	22	HJ7-50A(1-5/8)	110.00 - 115.00	1.0000	1.0000
L7	13	WR-VG86ST-BRD(3/4)	105.00 - 110.00	1.0000	1.0000
L7	14	FB-L98B-002-75000(3/8)	105.00 - 110.00	1.0000	1.0000
L7	21	HCS 6X12 6AWG(1-3/8)	105.00 - 110.00	1.0000	1.0000
L7	22	HJ7-50A(1-5/8)	105.00 - 110.00	1.0000	1.0000
L7	59	CCI-045100 (L)	105.00 - 105.50	1.0000	1.0000
L7	60	CCI-045100 (L)	105.00 - 105.50	1.0000	1.0000
L7	61	CCI-045100 (L)	105.00 - 105.50	1.0000	1.0000
L8	13	WR-VG86ST-BRD(3/4)	104.00 - 105.00	1.0000	1.0000
L8	14	FB-L98B-002-75000(3/8)	104.00 - 105.00	1.0000	1.0000
L8	21	HCS 6X12 6AWG(1-3/8)	104.00 - 105.00	1.0000	1.0000
L8	22	HJ7-50A(1-5/8)	104.00 - 105.00	1.0000	1.0000
L8	59	CCI-045100 (L)	104.00 - 105.00	1.0000	1.0000
L8	60	CCI-045100 (L)	104.00 - 105.00	1.0000	1.0000
L8	61	CCI-045100 (L)	104.00 - 105.00	1.0000	1.0000
L9	13	WR-VG86ST-BRD(3/4)	103.75 - 104.00	1.0000	1.0000
L9	14	FB-L98B-002-75000(3/8)	103.75 - 104.00	1.0000	1.0000
L9	21	HCS 6X12 6AWG(1-3/8)	103.75 - 104.00	1.0000	1.0000
L9	22	HJ7-50A(1-5/8)	104.00 103.75 - 104.00	1.0000	1.0000
L9	59	CCI-045100 (L)	104.00 103.75 - 104.00	1.0000	1.0000
L9	60	CCI-045100 (L)	104.00 103.75 - 104.00	1.0000	1.0000
L9	61	CCI-045100 (L)	104.00 103.75 - 104.00	1.0000	1.0000
L10	13	WR-VG86ST-BRD(3/4)	98.75 - 103.75	1.0000	1.0000
L10	14	FB-L98B-002-75000(3/8)	98.75 103.75	1.0000	1.0000
L10	21	HCS 6X12 6AWG(1-3/8)	98.75 103.75	1.0000	1.0000
L10	22	HJ7-50A(1-5/8)	98.75 103.75	1.0000	1.0000

## Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment	K _a No Ice	K _a Ice
L10	50	MP3-05 (L)	<i>Elev.</i> 98.75 -	1.0000	1.0000
L10	50	MP3-05 (L)	100.75 98.75 -	1.0000	1.0000
L10	52	MP3-05 (L)	100.75 98.75 -	1.0000	1.0000
L10	59	CCI-045100 (L)	100.75 98.75 -	1.0000	1.0000
L10	60	CCI-045100 (L)	103.75 98.75 -	1.0000	1.0000
L10	61	CCI-045100 (L)	103.75 98.75 -	1.0000	1.0000
L11	13	WR-VG86ST-BRD(3/4)	103.75 98.50 -	1.0000	1.0000
L11	14	FB-L98B-002-75000(3/8)	98.75 98.50 - 98.75	1.0000	1.0000
L11	21	HCS 6X12 6AWG(1-3/8)	98.50 - 98.75	1.0000	1.0000
L11	22	HJ7-50A(1-5/8)	98.50 - 98.75	1.0000	1.0000
L11	50	MP3-05 (L)	98.50 - 98.75	1.0000	1.0000
L11	51	MP3-05 (L)	98.50 - 98.75	1.0000	1.0000
L11	52	MP3-05 (L)	98.50 - 98.75	1.0000	1.0000
L11	59	CCI-045100 (L)	98.50 - 98.75	1.0000	1.0000
L11	60	CCI-045100 (L)	98.50 - 98.75	1.0000	1.0000
L11	61	CCI-045100 (L)	98.50 - 98.75	1.0000	1.0000
L12	13	WR-VG86ST-BRD(3/4)	98.25 - 98.50	1.0000	1.0000
L12	14	FB-L98B-002-75000(3/8)	98.25 - 98.50	1.0000	1.0000
L12	21	HCS 6X12 6AWG(1-3/8)	98.25 - 98.50	1.0000	1.0000
L12	22	HJ7-50A(1-5/8)	98.25 - 98.50	1.0000	1.0000
L12	50	MP3-05 (L)	98.25 - 98.50	1.0000	1.0000
L12	51	MP3-05 (L)	98.25 - 98.50	1.0000	1.0000
L12		MP3-05 (L)	98.25 - 98.50	1.0000	1.0000 1.0000
L12 L12	59 60	CCI-045100 (L) CCI-045100 (L)	98.25 - 98.50 98.25 -	1.0000 1.0000	1.0000
L12	61	CCI-045100 (L)	98.25 - 98.50 98.25 -	1.0000	1.0000
L12	13	WR-VG86ST-BRD(3/4)	98.25 - 98.50 97.00 -	1.0000	1.0000
L13	14	FB-L98B-002-75000(3/8)	98.25 97.00 -	1.0000	1.0000
L13	21	HCS 6X12 6AWG(1-3/8)	98.25 97.00 -	1.0000	1.0000
L13	22	HJ7-50A(1-5/8)	98.25 97.00 -	1.0000	1.0000
L13	50	MP3-05 (L)	98.25 97.00 -	1.0000	1.0000
L13	51	MP3-05 (L)	98.25 97.00 -	1.0000	1.0000
L13	52	MP3-05 (L)	98.25 97.00 -	1.0000	1.0000
L13	59	CCI-045100 (L)	98.25 97.00 -	1.0000	1.0000
L13	60	CCI-045100 (L)	98.25 97.00 -	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L13	61	CCI-045100 (L)	98.25 97.00 -	1.0000	1.0000
L14	13	WR-VG86ST-BRD(3/4)	98.25 96.75 -	1.0000	1.0000
L14	14	FB-L98B-002-75000(3/8)	97.00 96.75 -	1.0000	1.0000
L14	21	HCS 6X12 6AWG(1-3/8)	97.00 96.75 -	1.0000	1.0000
L14	22	HJ7-50A(1-5/8)	97.00 96.75 -	1.0000	1.0000
L14	50	MP3-05 (L)	97.00 96.75 -	1.0000	1.0000
L14	51	MP3-05 (L)	97.00 96.75 - 97.00	1.0000	1.0000
L14	52	MP3-05 (L)	97.00 96.75 - 97.00	1.0000	1.0000
L14	59	CCI-045100 (L)	97.00 96.75 - 97.00	1.0000	1.0000
L14	60	CCI-045100 (L)	96.75 - 97.00	1.0000	1.0000
L14	61	CCI-045100 (L)	97.00 96.75 - 97.00	1.0000	1.0000
L15	13	WR-VG86ST-BRD(3/4)	88.50 - 96.75	1.0000	1.0000
L15	14	FB-L98B-002-75000(3/8)	88.50 - 96.75	1.0000	1.0000
L15	21	HCS 6X12 6AWG(1-3/8)	88.50 - 96.75	1.0000	1.0000
L15	22	HJ7-50A(1-5/8)	88.50 - 96.75	1.0000	1.0000
L15	31	CR 50 1873(1 <b>-</b> 5/8)	88.50 - 95.00	1.0000	1.0000
L15	50	MP3-05 (L)	88.50 - 96.75	1.0000	1.0000
L15	51	MP3-05 (L)	88.50 - 96.75	1.0000	1.0000
L15	52	MP3-05 (L)	88.50 - 96.75	1.0000	1.0000
L15	56	CCI-060100 (L)	88.50 - 90.67	1.0000	1.0000
L15	57	CCI-060100 (L)	88.50 - 90.67	1.0000	1.0000
L15	58	CCI-060100 (L)	88.50 - 90.67	1.0000	1.0000
L15	59	CCI-045100 (L)	95.50 - 96.75	1.0000	1.0000
L15	60	CCI-045100 (L)	95.50 - 96.75	1.0000	1.0000
L15	61	CCI-045100 (L)	95.50 - 96.75	1.0000	1.0000
L17	13	WR-VG86ST-BRD(3/4)	87.92 - 88.17	1.0000	1.0000
L17	14	FB-L98B-002-75000(3/8)	87.92 - 88.17	1.0000	1.0000
L17	21	HCS 6X12 6AWG(1-3/8)	87.92 - 88.17	1.0000	1.0000
L17	22	HJ7-50A(1-5/8)	87.92 - 88.17	1.0000	1.0000
L17	31	CR 50 1873(1-5/8)	87.92 - 88.17	1.0000	1.0000
L17	50	MP3-05 (L)	87.92 - 88.17	1.0000	1.0000
L17	51	MP3-05 (L)	87.92 - 88.17	1.0000	1.0000
L17	52	MP3-05 (L)	87.92 - 88.17	1.0000	1.0000
L17	56	CCI-060100 (L)	87.92 - 88.17	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L17	57	CCI-060100 (L)	87.92 -	1.0000	1.0000
L17	58	CCI-060100 (L)	88.17 87.92 - 88.17	1.0000	1.0000
L18	13	WR-VG86ST-BRD(3/4)	82.92 -	1.0000	1.0000
L18	14	FB-L98B-002-75000(3/8)	87.92 82.92 - 87.92	1.0000	1.0000
L18	21	HCS 6X12 6AWG(1-3/8)	82.92 87.92	1.0000	1.0000
L18	22	HJ7-50A(1-5/8)	82.92 - 87.92	1.0000	1.0000
L18	31	CR 50 1873(1-5/8)	82.92 - 87.92	1.0000	1.0000
L18	50	MP3-05 (L)	82.92 - 87.92	1.0000	1.0000
L18	51	MP3-05 (L)	82.92 - 87.92	1.0000	1.0000
L18	52	MP3-05 (L)	82.92 - 87.92	1.0000	1.0000
L18	56	CCI-060100 (L)	82.92 - 87.92	1.0000	1.0000
L18	57	CCI-060100 (L)	82.92 - 87.92	1.0000	1.0000
L18	58	CCI-060100 (L)	82.92 - 87.92	1.0000	1.0000
L19	13	WR-VG86ST-BRD(3/4)	77.92 - 82.92	1.0000	1.0000
L19	14	FB-L98B-002-75000(3/8)	77.92 - 82.92	1.0000	1.0000
L19	21	HCS 6X12 6AWG(1-3/8)	77.92 - 82.92	1.0000	1.0000
L19	22	HJ7-50A(1-5/8)	77.92 - 82.92	1.0000	1.0000
L19	31	CR 50 1873(1-5/8)	77.92 - 82.92	1.0000	1.0000
L19	50	MP3-05 (L)	77.92 - 82.92	1.0000	1.0000
L19	51	MP3-05 (L)	77.92 - 82.92	1.0000	1.0000
L19	52	MP3-05 (L)	77.92 - 82.92	1.0000	1.0000
L19	56	CCI-060100 (L)	77.92 - 82.92	1.0000	1.0000
L19	57	CCI-060100 (L)	77.92 - 82.92 77.02	1.0000	1.0000
L19 L20	58 13	CCI-060100 (L) WR-VG86ST-BRD(3/4)	77.92 - 82.92 72.02	1.0000 1.0000	1.0000 1.0000
L20	13	FB-L98B-002-75000(3/8)	72.92 - 77.92 72.92 -	1.0000	1.0000
L20	21	HCS 6X12 6AWG(1-3/8)	72.92 - 77.92 72.92 -	1.0000	1.0000
L20	21	HJ7-50A(1-5/8)	72.92 77.92 72.92	1.0000	1.0000
L20	31	CR 50 1873(1-5/8)	72.92 77.92 72.92 -	1.0000	1.0000
L20	50	MP3-05 (L)	77.92 77.92 72.92 -	1.0000	1.0000
L20	51	MP3-05 (L)	77.92 72.92 -	1.0000	1.0000
L20	52	MP3-05 (L)	77.92 72.92 -	1.0000	1.0000
L20	56	CCI-060100 (L)	77.92 72.92 -	1.0000	1.0000
L20	57	CCI-060100 (L)	77.92 72.92 -	1.0000	1.0000
L20	58	CCI-060100 (L)	77.92 72.92 -	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L21	13	WR-VG86ST-BRD(3/4)	77.92 68.08 -	1.0000	1.0000
L21	14	FB-L98B-002-75000(3/8)	72.92 68.08 -	1.0000	1.0000
L21	21	HCS 6X12 6AWG(1 <b>-</b> 3/8)	72.92 68.08 -	1.0000	1.0000
L21	22	HJ7-50A(1-5/8)	72.92 68.08 -	1.0000	1.0000
L21	31	CR 50 1873(1-5/8)	72.92 68.08 - 72.92	1.0000	1.0000
L21	47	MP3-06 (L)	68.08 - 71.75	1.0000	1.0000
L21	48	MP3-06 (L)	68.08 - 71.75	1.0000	1.0000
L21	49	MP3-06 (L)	68.08 - 71.75	1.0000	1.0000
L21	50	MP3-05 (L)	71.75 - 72.92	1.0000	1.0000
L21	51	MP3-05 (L)	71.75 - 72.92	1.0000	1.0000
L21	52	MP3 <b>-</b> 05 (L)	71.75 - 72.92	1.0000	1.0000
L21	56	CCI-060100 (L)	68.08 - 72.92	1.0000	1.0000
L21	57	CCI-060100 (L)	68.08 - 72.92	1.0000	1.0000
L21	58	CCI-060100 (L)	68.08 - 72.92	1.0000	1.0000
L22	13	WR-VG86ST-BRD(3/4)	67.83 - 68.08	1.0000	1.0000
L22	14	FB-L98B-002-75000(3/8)	67.83 - 68.08	1.0000	1.0000
L22	21	HCS 6X12 6AWG(1-3/8)	67.83 - 68.08	1.0000	1.0000
L22	22	HJ7-50A(1-5/8)	67.83 - 68.08	1.0000	1.0000
L22	31	CR 50 1873(1-5/8)	67.83 - 68.08	1.0000	1.0000
L22	47	MP3-06 (L)	67.83 - 68.08	1.0000	1.0000
L22	48	MP3-06 (L)	67.83 - 68.08	1.0000	1.0000
L22	49	MP3-06 (L)	67.83 - 68.08	1.0000	1.0000
L22	56	CCI-060100 (L)	67.83 - 68.08	1.0000	1.0000
L22	57	CCI-060100 (L)	67.83 - 68.08	1.0000	1.0000
L22	58	CCI-060100 (L)	67.83 - 68.08	1.0000	1.0000
L23	13	WR-VG86ST-BRD(3/4)	62.83 - 67.83	1.0000	1.0000
L23	14	FB-L98B-002-75000(3/8)	62.83 - 67.83	1.0000	1.0000
L23	21	HCS 6X12 6AWG(1-3/8)	62.83 - 67.83	1.0000	1.0000
L23	22	HJ7-50A(1-5/8)	62.83 - 67.83	1.0000	1.0000
L23	31	CR 50 1873(1-5/8)	62.83 - 67.83	1.0000	1.0000
L23	47	MP3-06 (L)	62.83 - 67.83	1.0000	1.0000
L23	48	MP3-06 (L)	62.83 - 67.83	1.0000	1.0000
L23	49	MP3-06 (L)	62.83 - 67.83	1.0000	1.0000
L23	56	CCI-060100 (L)	62.83 - 67.83	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment	K _a No Ice	K _a Ice
L23	57	CCI-060100 (L)	<u>Elev.</u> 62.83 -	1.0000	1.0000
L23	58	CCI-060100 (L)	67.83 62.83 - 67.83	1.0000	1.0000
L24	13	WR-VG86ST-BRD(3/4)	57.83 <b>-</b>	1.0000	1.0000
L24	14	FB-L98B-002-75000(3/8)	62.83 57.83 - 62.83	1.0000	1.0000
L24	21	HCS 6X12 6AWG(1-3/8)	57.83 - 62.83	1.0000	1.0000
L24	22	HJ7-50A(1-5/8)	57.83 - 62.83	1.0000	1.0000
L24	31	CR 50 1873(1-5/8)	57.83 - 62.83	1.0000	1.0000
L24	47	MP3-06 (L)	57.83 - 62.83	1.0000	1.0000
L24	48	MP3-06 (L)	57.83 - 62.83	1.0000	1.0000
L24	49	MP3-06 (L)	57.83 - 62.83	1.0000	1.0000
L24	56	CCI-060100 (L)	57.83 - 62.83	1.0000	1.0000
L24	57	CCI-060100 (L)	57.83 - 62.83	1.0000	1.0000
L24	58	CCI-060100 (L)	57.83 - 62.83	1.0000	1.0000
L25	13	WR-VG86ST-BRD(3/4)	52.83 - 57.83	1.0000	1.0000
L25	14	FB-L98B-002-75000(3/8)	52.83 - 57.83	1.0000	1.0000
L25	21	HCS 6X12 6AWG(1-3/8)	52.83 - 57.83	1.0000	1.0000
L25	22	HJ7-50A(1-5/8)	52.83 - 57.83	1.0000	1.0000
L25	31	CR 50 1873(1-5/8)	52.83 - 57.83	1.0000	1.0000
L25	47	MP3-06 (L)	52.83 - 57.83	1.0000	1.0000
L25	48	MP3-06 (L)	52.83 - 57.83	1.0000	1.0000
L25	49	MP3-06 (L)	52.83 - 57.83	1.0000	1.0000
L25	56	CCI-060100 (L)	52.83 - 57.83	1.0000	1.0000
L25	57	CCI-060100 (L)	52.83 - 57.83	1.0000	1.0000
L25	58	CCI-060100 (L)	52.83 - 57.83	1.0000	1.0000
L26	13	WR-VG86ST-BRD(3/4)	47.25 - 52.83	1.0000	1.0000
L26	14	FB-L98B-002-75000(3/8)	47.25 - 52.83	1.0000	1.0000
L26	21	HCS 6X12 6AWG(1-3/8)	47.25 - 52.83	1.0000	1.0000
L26	22	HJ7-50A(1-5/8)	47.25 - 52.83	1.0000	1.0000
L26	31	CR 50 1873(1-5/8)	47.25 - 52.83	1.0000	1.0000
L26	47	MP3-06 (L)	47.25 - 52.83	1.0000	1.0000
L26	48	MP3-06 (L)	47.25 - 52.83	1.0000	1.0000
L26	49	MP3-06 (L)	47.25 - 52.83	1.0000	1.0000
L26	56	CCI-060100 (L)	47.25 - 52.83	1.0000	1.0000
L26	57	CCI-060100 (L)	47.25 - 52.83	1.0000	1.0000
L26	58	CCI-060100 (L)		1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L28	13	WR-VG86ST-BRD(3/4)	52.83 41.50 -	1.0000	1.0000
L28	14	FB-L98B-002-75000(3/8)	46.50 41.50 -	1.0000	1.0000
L28	21	HCS 6X12 6AWG(1-3/8)	46.50 41.50 -	1.0000	1.0000
L28	22	HJ7-50A(1-5/8)	46.50 41.50 -	1.0000	1.0000
L28	31	CR 50 1873(1 <b>-</b> 5/8)	46.50 41.50 -	1.0000	1.0000
L28	42	MP3-08 (L)	46.50 41.50 -	1.0000	1.0000
L28	43	MP3-08 (L)	41.75 41.50 -	1.0000	1.0000
L28	44	MP3-08 (L)	41.75 41.50 - 41.75	1.0000	1.0000
L28	47	MP3-06 (L)	41.75 41.75 46.50	1.0000	1.0000
L28	48	MP3-06 (L)	41.75 - 46.50	1.0000	1.0000
L28	49	MP3-06 (L)	41.75 - 46.50	1.0000	1.0000
L28	56	CCI-060100 (L)	41.50 - 46.50	1.0000	1.0000
L28	57	CCI-060100 (L)	41.50 - 46.50	1.0000	1.0000
L28	58	CCI-060100 (L)	41.50 - 46.50	1.0000	1.0000
L29	13	WR-VG86ST-BRD(3/4)	37.75 - 41.50	1.0000	1.0000
L29	14	FB-L98B-002-75000(3/8)	37.75 <b>-</b> 41.50	1.0000	1.0000
L29	21	HCS 6X12 6AWG(1-3/8)	37.75 - 41.50	1.0000	1.0000
L29	22	HJ7-50A(1-5/8)	37.75 - 41.50	1.0000	1.0000
L29	31	CR 50 1873(1-5/8)	37.75 - 41.50	1.0000	1.0000
L29	42	MP3-08 (L)	37.75 - 41.50	1.0000	1.0000
L29	43	MP3-08 (L)	37.75 - 41.50	1.0000	1.0000
L29	44	MP3-08 (L)	37.75 - 41.50	1.0000	1.0000
L29	56	CCI-060100 (L)	37.75 - 41.50	1.0000	1.0000
L29	57	CCI-060100 (L)	37.75 - 41.50	1.0000	1.0000
L29	58	CCI-060100 (L)	37.75 - 41.50	1.0000	1.0000
L30	13	WR-VG86ST-BRD(3/4)	37.50 - 37.75	1.0000	1.0000
L30	14	FB-L98B-002-75000(3/8)	37.50 - 37.75	1.0000	1.0000
L30	21	HCS 6X12 6AWG(1-3/8)	37.50 - 37.75	1.0000	1.0000
L30	22	HJ7-50A(1-5/8)	37.50 - 37.75	1.0000	1.0000
L30	31	CR 50 1873(1-5/8)	37.50 - 37.75	1.0000	1.0000
L30	42	MP3-08 (L)	37.50 - 37.75	1.0000	1.0000
L30	43	MP3-08 (L)	37.50 - 37.75	1.0000	1.0000
L30	44	MP3-08 (L)	37.50 - 37.75	1.0000	1.0000
L30	56	CCI-060100 (L)	37.50 - 37.75	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment	K _a No Ice	K _a Ice
L30	57	CCI-060100 (L)	<u>Elev.</u> 37.50 -	1.0000	1.0000
L30	58	CCI-060100 (L)	37.75 37.50 - 37.75	1.0000	1.0000
L31	13	WR-VG86ST-BRD(3/4)	32.50 -	1.0000	1.0000
L31	14	FB-L98B-002-75000(3/8)	37.50 32.50 -	1.0000	1.0000
L31	21	HCS 6X12 6AWG(1-3/8)	37.50 32.50 - 37.50	1.0000	1.0000
L31	22	HJ7-50A(1-5/8)	32.50 - 37.50	1.0000	1.0000
L31	31	CR 50 1873(1 <b>-</b> 5/8)	32.50 - 37.50	1.0000	1.0000
L31	42	MP3-08 (L)	32.50 - 37.50	1.0000	1.0000
L31	43	MP3-08 (L)	32.50 - 37.50	1.0000	1.0000
L31	44	MP3-08 (L)	32.50 - 37.50	1.0000	1.0000
L31	53	CCI-065125 (L)	32.50 - 35.50	1.0000	1.0000
L31	54	CCI-065125 (L)	32.50 - 35.50	1.0000	1.0000
L31	55	CCI-065125 (L)	32.50 - 35.50	1.0000	1.0000
L31	56	CCI-060100 (L)	35.50 - 37.50	1.0000	1.0000
L31	57	CCI-060100 (L)	35.50 - 37.50	1.0000	1.0000
L31	58	CCI-060100 (L)	35.50 - 37.50	1.0000	1.0000
L32	13	WR-VG86ST-BRD(3/4)	32.25 - 32.50	1.0000	1.0000
L32	14	FB-L98B-002-75000(3/8)	32.25 - 32.50	1.0000	1.0000
L32	21	HCS 6X12 6AWG(1-3/8)	32.25 - 32.50	1.0000	1.0000
L32	22	HJ7-50A(1-5/8)	32.25 - 32.50	1.0000	1.0000
L32	31	CR 50 1873(1-5/8)	32.25 - 32.50	1.0000	1.0000
L32	42	MP3-08 (L)	32.25 - 32.50	1.0000	1.0000
L32	43	MP3-08 (L)	32.25 - 32.50	1.0000	1.0000
L32	44	MP3-08 (L)	32.25 - 32.50	1.0000	1.0000
L32	53	CCI-065125 (L)	32.25 - 32.50	1.0000	1.0000
L32	54	CCI-065125 (L)	32.25 - 32.50	1.0000	1.0000
L32	55	CCI-065125 (L)	32.25 - 32.50	1.0000	1.0000
L33	13	WR-VG86ST-BRD(3/4)	27.25 - 32.25	1.0000	1.0000
L33	14	FB-L98B-002-75000(3/8)	27.25 - 32.25	1.0000	1.0000
L33	21	HCS 6X12 6AWG(1-3/8)	27.25 - 32.25	1.0000	1.0000
L33	22	HJ7-50A(1-5/8)	27_25 - 32_25	1.0000	1.0000
L33	31	CR 50 1873(1-5/8)	27.25 - 32.25	1.0000	1.0000
L33	42	MP3-08 (L)	27.25 - 32.25	1.0000	1.0000
L33	43	MP3-08 (L)	27.25 - 32.25	1.0000	1.0000
L33	44	MP3-08 (L)	27.25 -	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L33	53	CCI-065125 (L)	32.25 27.25 -	1.0000	1.0000
L33	54	CCI-065125 (L)	32.25 27.25 -	1.0000	1.0000
L33	55	CCI-065125 (L)	32.25 27.25 -	1.0000	1.0000
L34	13	WR-VG86ST-BRD(3/4)	32.25 23.50 -	1.0000	1.0000
L34	14	FB-L98B-002-75000(3/8)	27.25 23.50 -	1.0000	1.0000
L34	21	HCS 6X12 6AWG(1-3/8)	27.25 23.50 -	1.0000	1.0000
L34	22	HJ7-50A(1-5/8)	27.25 23.50 -	1.0000	1.0000
L34	31	CR 50 1873(1-5/8)	27.25 23.50 -	1.0000	1.0000
L34	42	MP3-08 (L)	27.25 23.50 - 27.25	1.0000	1.0000
L34	43	MP3-08 (L)	27.25 23.50 - 27.25	1.0000	1.0000
L34	44	MP3-08 (L)	27.25 23.50 - 27.25	1.0000	1.0000
L34	45	MP3-06 (W)	27.25 23.50 - 26.75	1.0000	1.0000
L34	46	MP3-06 (L)	23.50 - 26.75	1.0000	1.0000
L34	53	CCI-065125 (L)	23.50 - 27.25	1.0000	1.0000
L34	54	CCI-065125 (L)	27.25 23.50 - 27.25	1.0000	1.0000
L34	55	CCI-065125 (L)	27.23 23.50 - 27.25	1.0000	1.0000
L35	13	WR-VG86ST-BRD(3/4)	23.25 - 23.50	1.0000	1.0000
L35	14	FB-L98B-002-75000(3/8)	23.25 - 23.50	1.0000	1.0000
L35	21	HCS 6X12 6AWG(1-3/8)	23.25 - 23.50	1.0000	1.0000
L35	22	HJ7-50A(1-5/8)	23.25 - 23.50	1.0000	1.0000
L35	31	CR 50 1873(1-5/8)	23.25 - 23.50	1.0000	1.0000
L35	42	MP3-08 (L)	23.25 - 23.50	1.0000	1.0000
L35	43	MP3-08 (L)	23.25 - 23.50	1.0000	1.0000
L35	44	MP3-08 (L)	23.25 - 23.50	1.0000	1.0000
L35	45	MP3-06 (W)	23.25 - 23.50	1.0000	1.0000
L35	46	MP3-06 (L)	23.25 - 23.50 23.50	1.0000	1.0000
L35	53	CCI-065125 (L)	23.25 - 23.50	1.0000	1.0000
L35	54	CCI-065125 (L)	23.25 -	1.0000	1.0000
L35	55	CCI-065125 (L)	23.50 - 23.25 23.50	1.0000	1.0000
L36	13	WR-VG86ST-BRD(3/4)	23.50 20.75 - 23.25	1.0000	1.0000
L36	14	FB-L98B-002-75000(3/8)	20.75 - 23.25	1.0000	1.0000
L36	21	HCS 6X12 6AWG(1-3/8)	23.25 20.75 - 23.25	1.0000	1.0000
L36	22	HJ7-50A(1-5/8)	20.75 - 23.25	1.0000	1.0000
L36	31	CR 50 1873(1-5/8)	20.75 - 23.25	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L36	42	MP3-08 (L)	20.75 -	1.0000	1.0000
L36	43	MP3-08 (L)	23.25 20.75 - 23.25	1.0000	1.0000
L36	44	MP3-08 (L)	20.75 - 23.25	1.0000	1.0000
L36	45	MP3-06 (W)	23.25 20.75 - 23.25	1.0000	1.0000
L36	46	MP3-06 (L)	20.75 - 23.25	1.0000	1.0000
L36	53	CCI-065125 (L)	20.75 - 23.25	1.0000	1.0000
L36	54	CCI-065125 (L)	20.75 - 23.25	1.0000	1.0000
L36	55	CCI-065125 (L)	20.75 - 23.25	1.0000	1.0000
L37	13	WR-VG86ST-BRD(3/4)	20.50 - 20.75	1.0000	1.0000
L37	14	FB-L98B-002-75000(3/8)	20.50 - 20.75	1.0000	1.0000
L37	21	HCS 6X12 6AWG(1-3/8)	20.50 - 20.75	1.0000	1.0000
L37	22	HJ7-50A(1-5/8)	20.50 - 20.75	1.0000	1.0000
L37	31	CR 50 1873(1-5/8)	20.50 - 20.75	1.0000	1.0000
L37	42	MP3-08 (L)	20.50 - 20.75	1.0000	1.0000
L37	43	MP3-08 (L)	20.50 - 20.75	1.0000	1.0000
L37	44	MP3-08 (L)	20.50 - 20.75	1.0000	1.0000
L37	45	MP3-06 (W)	20.50 - 20.75	1.0000	1.0000
L37	46	MP3-06 (L)	20.50 - 20.75	1.0000	1.0000
L37	53	CCI-065125 (L)	20.50 - 20.75	1.0000	1.0000
L37	54	CCI-065125 (L)	20.50 - 20.75	1.0000	1.0000
L37	55	CCI-065125 (L)	20.50 - 20.75	1.0000	1.0000
L38	13	WR-VG86ST-BRD(3/4)	15.50 - 20.50	1.0000	1.0000
L38	14	FB-L98B-002-75000(3/8)	15.50 - 20.50	1.0000	1.0000
L38	21	HCS 6X12 6AWG(1-3/8)	15.50 - 20.50	1.0000	1.0000
L38	22	HJ7-50A(1-5/8)	15.50 - 20.50	1.0000	1.0000
L38	31	CR 50 1873(1-5/8)	15.50 - 20.50	1.0000	1.0000
L38	42	MP3-08 (L)	15.50 - 20.50	1.0000	1.0000
L38	43	MP3-08 (L)	15.50 - 20.50	1.0000	1.0000
L38	44	MP3-08 (L)	16.75 - 20.50	1.0000	1.0000
L38	45	MP3-06 (W)	15.50 - 20.50	1.0000	1.0000
L38	46	MP3-06 (L)	15.50 - 20.50	1.0000	1.0000
L38	53	CCI-065125 (L)	15.50 - 20.50	1.0000	1.0000
L38	54	CCI-065125 (L)	15.50 - 20.50	1.0000	1.0000
L38	55	CCI-065125 (L)	15.50 - 20.50	1.0000	1.0000
L39	13	WR-VG86ST-BRD(3/4)		1.0000	1.0000

Tower	Feed Line	Description	Feed Line	Ka	K _a
Section	Record No.	,	Segment	No Îce	lce
			Elev.		
L39	14	FB-L98B-002-75000(3/8)	15.50 10.50 -	1.0000	1.0000
L35	14	T D-L30D-002-73000(3/0)	15.50	1.0000	1.0000
L39	21	HCS 6X12 6AWG(1-3/8)	10.50 -	1.0000	1.0000
			15.50		
L39	22	HJ7-50A(1-5/8)	10.50 -	1.0000	1.0000
L39	31	CR 50 1873(1-5/8)	15.50 10.50 -	1.0000	1.0000
200	01		15.50	1.0000	1.0000
L39	42	MP3-08 (L)	10.50 -	1.0000	1.0000
1.00	40		15.50	4 0000	4 0000
L39	43	MP3-08 (L)	10.50 - 15.50	1.0000	1.0000
L39	45	MP3-06 (W)	10.50 -	1.0000	1.0000
			15.50		
L39	46	MP3-06 (L)	10.50 -	1.0000	1.0000
L39	53	CCI-065125 (L)	15.50 10.50 -	1.0000	1.0000
L39	55	CCI-005125 (L)	15.50	1.0000	1.0000
L39	54	CCI-065125 (L)	10.50 -	1.0000	1.0000
			15.50		
L39	55	CCI-065125 (L)	10.50 -	1.0000	1.0000
L40	13	WR-VG86ST-BRD(3/4)	15.50 5.50 - 10.50	1.0000	1.0000
L40 L40	13	FB-L98B-002-75000(3/8)	5.50 - 10.50	1.0000	1.0000
L40	21	HCS 6X12 6AWG(1-3/8)	5.50 - 10.50	1.0000	1.0000
L40	22	HJ7-50A(1-5/8)	5.50 - 10.50	1.0000	1.0000
L40	31	CR 50 1873(1-5/8)	5.50 - 10.50	1.0000	1.0000
L40	42	MP3-08 (L)	5.50 - 10.50	1.0000	1.0000
L40 L40	43 45	MP3-08 (L) MP3-06 (W)	5.50 - 10.50 5.50 - 10.50	1.0000 1.0000	1.0000 1.0000
L40 L40	46	MP3-06 (L)	5.50 - 10.50	1.0000	1.0000
L40	53	CCI-065125 (L)	5.50 - 10.50	1.0000	1.0000
L40	54	CCI-065125 (L)	5.50 - 10.50	1.0000	1.0000
L40	55	CCI-065125 (L)	5.50 - 10.50	1.0000	1.0000
L41 L41	13 14	WR-VG86ST-BRD(3/4) FB-L98B-002-75000(3/8)	3.00 - 5.50 3.00 - 5.50	1.0000 1.0000	1.0000 1.0000
L41	21	HCS 6X12 6AWG(1-3/8)	3.00 - 5.50	1.0000	1.0000
L41	22	HJ7-50A(1-5/8)	3.00 - 5.50	1.0000	1.0000
L41	31	CR 50 1873(1-5/8)	3.00 - 5.50	1.0000	1.0000
L41	42	MP3-08 (L)	3.00 - 5.50	1.0000	1.0000
L41 L41	43 45	MP3-08 (L) MP3-06 (W)	3.00 - 5.50 3.00 - 5.50	1.0000 1.0000	1.0000 1.0000
L41	46	MP3-06 (L)	3.00 - 5.50	1.0000	1.0000
L41	53	CCI-065125 (L)	3.00 - 5.50	1.0000	1.0000
L41	54	CCI-065125 (L)	3.00 - 5.50	1.0000	1.0000
L41	55	CCI-065125 (L)	3.00 - 5.50	1.0000	1.0000
L42 L42	13 14	WR-VG86ST-BRD(3/4) FB-L98B-002-75000(3/8)	2.75 - 3.00 2.75 - 3.00	1.0000 1.0000	1.0000 1.0000
L42 L42	21	HCS 6X12 6AWG(1-3/8)	2.75 - 3.00	1.0000	1.0000
L42	22	HJ7-50A(1-5/8)	2.75 - 3.00	1.0000	1.0000
L42	31	CR 50 1873(1-5/8)	2.75 - 3.00	1.0000	1.0000
L42	42	MP3-08 (L)	2.75 - 3.00	1.0000	1.0000
L42	43 45	MP3-08 (L) MP3-06 (W)	2.75 - 3.00	1.0000	1.0000
L42 L42	45 46	MP3-06 (VV) MP3-06 (L)	2.75 - 3.00 2.75 - 3.00	1.0000 1.0000	1.0000 1.0000
L42	53	CCI-065125 (L)	2.75 - 3.00	1.0000	1.0000
L42	54	CCI-065125 (L)	2.75 - 3.00	1.0000	1.0000
L42	55	CCI-065125 (L)	2.75 - 3.00	1.0000	1.0000
L43	13	WR-VG86ST-BRD(3/4)	1.75 - 2.75	1.0000	1.0000
L43 L43	14 21	FB-L98B-002-75000(3/8) HCS 6X12 6AWG(1-3/8)	1 75 - 2 75 1 75 - 2 75	1.0000 1.0000	1.0000 1.0000
L43 L43	22	HJ7-50A(1-5/8)	1.75 - 2.75	1.0000	1.0000
L43	31	CR 50 1873(1-5/8)	1.75 - 2.75	1.0000	1.0000
L43	42	MP3-08 (L)	1.75 - 2.75	1.0000	1.0000
L43	43	MP3-08 (L)	1.75 - 2.75	1.0000	1.0000
L43 L43	45 46	MP3-06 (W) MP3-06 (L)	1.75 - 2.75 1.75 - 2.75	1.0000 1.0000	1.0000 1.0000
L43		CCI-065125 (L)		1.0000	
			•1		

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment	No Ice	lce
			Elev.		
L43	54	CCI-065125 (L)	1.75 - 2.75	1.0000	1.0000
L43	55	CCI-065125 (L)	1.75 - 2.75	1.0000	1.0000
L44	13	WR-VG86ST-BRD(3/4)	1.50 - 1.75	1.0000	1.0000
L44	14	FB-L98B-002-75000(3/8)	1.50 - 1.75	1.0000	1.0000
L44	21	HCS 6X12 6AWG(1-3/8)	1.50 - 1.75	1.0000	1.0000
L44	22	HJ7-50A(1-5/8)	1.50 - 1.75	1.0000	1.0000
L44	31	CR 50 1873(1-5/8)	1.50 - 1.75	1.0000	1.0000
L44	42	MP3-08 (L)	1.50 - 1.75	1.0000	1.0000
L44	43	MP3-08 (L)	1.50 - 1.75	1.0000	1.0000
L44	45	MP3-06 (W)	1.50 - 1.75	1.0000	1.0000
L44	46	MP3-06 (L)	1.50 - 1.75	1.0000	1.0000
L44	53	CCI-065125 (L)	1.50 - 1.75	1.0000	1.0000
L44	54	CCI-065125 (L)	1.50 - 1.75	1.0000	1.0000
L44	55	CCI-065125 (L)	1.50 - 1.75	1.0000	1.0000
L45	13	WR-VG86ST-BRD(3/4)	0.00 - 1.50	1.0000	1.0000
L45	14	FB-L98B-002-75000(3/8)	0.00 - 1.50		
L45	21	HCS 6X12 6AWG(1-3/8)	0.00 - 1.50	1.0000	1.0000
L45	22	HJ7-50A(1-5/8)	0.00 - 1.50	1.0000	1.0000
L45	31	CR 50 1873(1-5/8)	0.00 - 1.50	1.0000	1.0000
L45	42	MP3-08 (L)	0.00 - 1.50	1.0000	1.0000
L45	43	MP3-08 (L)	0.00 - 1.50	1.0000	1.0000
L45	45	MP3-06 (W)	0.00 - 1.50	1.0000	1.0000
L45	46	MP3-06 (L)	0.00 - 1.50	1.0000	1.0000
L45	53	CCI-065125 (L)	0.00 - 1.50	1.0000	1.0000
L45	54	CCI-065125 (L)	0.00 - 1.50	1.0000	1.0000
L45	55	CCI-065125 (L)	0.00 - 1.50	1.0000	1.0000

Discrete	e Tower Loads	

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
APXVSPP18-C-A20 w/ Mount Pipe	A	From Leg	4.0000 0.00 0.00	0.00	140.0000	No Ice 1/2" Ice 1" Ice 2" Ice	4.6000 5.0500 5.5000 6.4400	4.0100 4.4500 4.8900 5.8200	0.10 0.16 0.23 0.42
APXVSPP18-C-A20 w/ Mount Pipe	В	From Leg	4.0000 0.00 0.00	0.00	140.0000	No Ice 1/2" Ice 1" Ice 2" Ice	4.6000 5.0500 5.5000 6.4400	4.0100 4.4500 4.8900 5.8200	0.10 0.16 0.23 0.42
APXVSPP18-C-A20 w/ Mount Pipe	С	From Leg	4.0000 0.00 0.00	0.00	140.0000	No Ice 1/2" Ice 1" Ice 2" Ice	4.6000 5.0500 5.5000 6.4400	4.0100 4.4500 4.8900 5.8200	0.10 0.16 0.23 0.42
APXVTM14-C-120 w/ Mount Pipe	A	From Leg	4.0000 0.00 0.00	0.00	140.0000	No Ice 1/2" Ice 1" Ice 2" Ice	4.0900 4.4800 4.8800 5.7100	2.8600 3.2300 3.6100 4.4000	0.08 0.13 0.19 0.33
APXVTM14-C-120 w/ Mount Pipe	В	From Leg	4.0000 0.00 0.00	0.00	140.0000	No Ice 1/2" Ice 1" Ice 2" Ice	4.0900 4.4800 4.8800 5.7100	2.8600 3.2300 3.6100 4.4000	0.08 0.13 0.19 0.33
APXVTM14-C-120 w/ Mount Pipe	С	From Leg	4.0000 0.00 0.00	0.00	140.0000	No Ice 1/2" Ice 1" Ice	4.0900 4.4800 4.8800 5.7100	2.8600 3.2300 3.6100 4.4000	0.08 0.13 0.19 0.33

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
(3) ACU-A20-N	A	From Leg	4.0000 0.00 0.00	0.00	140.0000	2" Ice No Ice 1/2" Ice	0.0667 0.1037 0.1481	0.1167 0.1620 0.2148	0.00 0.00 0.00
			0100			1" Ice 2" Ice	0.2593	0.3426	0.01
(3) ACU-A20-N	В	From Leg	4.0000 0.00	0.00	140.0000	No Ice 1/2"	0.0667 0.1037	0.1167 0.1620	0.00 0.00
			0.00			lce 1" lce 2" lce	0.1481 0.2593	0.2148 0.3426	0.00 0.01
(3) ACU-A20-N	С	From Leg	4.0000 0.00	0.00	140.0000	No Ice 1/2"	0.0667 0.1037	0.1167 0.1620	0.00 0.00
			0.00			Ice 1" Ice 2" Ice	0.1481 0.2593	0.2148 0.3426	0.00 0.01
TD-RRH8X20-25	A	From Leg	4.0000 0.00 0.00	0.00	140.0000	No Ice 1/2" Ice	4.0455 4.2975 4.5570	1.5345 1.7142 1.9008	0.07 0.10 0.13
	_					1" Ice 2" Ice	5.0981	2.2951	0.20
TD-RRH8X20-25	В	From Leg	4.0000 0.00	0.00	140.0000	No Ice 1/2"	4.0455 4.2975	1.5345 1.7142	0.07 0.10
			0.00			Ice 1" Ice 2" Ice	4.5570 5.0981	1.9008 2.2951	0.13 0.20
TD-RRH8X20-25	С	From Leg	4.0000 0.00	0.00	140.0000	No Ice 1/2"	4.0455 4.2975	1.5345 1.7142	0.07 0.10
			0.00			Ice 1" Ice 2" Ice	4.5570 5.0981	1.9008 2.2951	0.13 0.20
(2) 2.375" OD x 6' Mount Pipe	A	From Leg	4.0000 0.00 0.00	0.00	140.0000	No Ice 1/2" Ice 1" Ice	1.4250 1.9250 2.2939 3.0596	1.4250 1.9250 2.2939 3.0596	0.03 0.04 0.05 0.09
(2) 2.375" OD x 6' Mount Pipe	В	From Leg	4.0000	0.00	140.0000	2" Ice No Ice 1/2"	1.4250 1.9250	1.4250 1.9250	0.03 0.04
	_		0.00			Ice 1" Ice 2" Ice	2.2939 3.0596	2.2939 3.0596	0.05 0.09
(2) 2.375" OD x 6' Mount Pipe	С	From Leg	4.0000 0.00 0.00	0.00	140.0000	No Ice 1/2" Ice 1" Ice	1.4250 1.9250 2.2939 3.0596	1.4250 1.9250 2.2939 3.0596	0.03 0.04 0.05 0.09
Platform Mount [LP 1201- 1]	С	None		0.00	140.0000	2" Ice No Ice 1/2" Ice 1" Ice	18.3800 22.1100 25.8700 33.4700	18.3800 22.1100 25.8700 33.4700	2.10 2.65 3.26 4.66
*** TME-1900MHz RRH	А	From Leg	2.0000	0.00	137.0000	2" Ice No Ice	2.3125	2.3750	0.06
(65MHz) w/ Mount Pipe	~	I IOIII Leg	0.00 0.00 0.00	0.00	137.0000	1/2" Ice 1" Ice	2.5168 2.7284 3.1740	2.5809 2.7943 3.2431	0.08 0.11 0.18
TME-1900MHz RRH (65MHz) w/ Mount Pipe	В	From Leg	2.0000 0.00 0.00	0.00	137.0000	2" Ice No Ice 1/2" Ice	2.3125 2.5168 2.7284	2.3750 2.5809 2.7943	0.06 0.08 0.11
TME-1900MHz RRH	С	From Leg	2.0000	0.00	137.0000	1" Ice 2" Ice No Ice	3.1740 2.3125	3.2431 2.3750	0.18
(65MHz) w/ Mount Pipe			0.00 0.00			1/2'' Ice	2.5168 2.7284	2.5809 2.7943	0.08 0.11

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft ft	0	ft		ft²	ft²	К
						1" Ice 2" Ice	3.1740	3.2431	0.18
TME-800MHZ RRH	А	From Leg	2.0000	0.00	137.0000	No Ice	2.1342	1.7730	0.05
	~	Troin Log	0.00	0.00	107.0000	1/2"	2.3195	1.9461	0.07
			0.00			Ice	2,5123	2,1267	0.10
						1" Ice 2" Ice	2.9201	2.5100	0.16
TME-800MHZ RRH	В	From Leg	2.0000	0.00	137.0000	No Ice	2.1342	1.7730	0.05
			0.00			1/2"	2.3195	1.9461	0.07
			0.00				2.5123	2.1267	0.10
	•	<b>F</b>	0.0000	0.00	407 0000	1" Ice 2" Ice	2.9201	2.5100	0.16
TME-800MHZ RRH	С	From Leg	2.0000 0.00	0.00	137.0000	No Ice 1/2"	2.1342 2.3195	1.7730 1.9461	0.05 0.07
			0.00			Ice	2.5195	2.1267	0.07
			0.00			1" Ice	2.9201	2.5100	0.16
						2" Ice	210201	210100	0110
ME-800MHz 2x50W RRH	А	From Leg	2.0000	0.00	137.0000	No Ice	3.1073	3.3567	0.09
W/FILTER w/ Mount Pipe			0.00			1/2"	3.6568	4.0337	0.12
			0.00			ce	4.1173	4 <u>.</u> 5871	0.17
						1" Ice 2" Ice	5.0809	5.7439	0.27
ME-800MHz 2x50W RRH	в	From Leg	2.0000	0.00	137.0000	No Ice	3.1073	3.3567	0.09
W/FILTER w/ Mount Pipe			0.00			1/2"	3.6568	4.0337	0.12
			0.00			ce	4.1173	4.5871	0.17
						1" Ice 2" Ice	5.0809	5.7439	0.27
ME-800MHz 2x50W RRH	С	From Leg	2,0000	0.00	137.0000	No Ice	3.1073	3.3567	0.09
W/FILTER w/ Mount Pipe		0	0.00			1/2"	3.6568	4.0337	0.12
			0.00			Ice 1" Ice	4.1173 5.0809	4.5871 5.7439	0.17 0.27
						2" Ice	0.0000	011 100	•
Side Arm Mount [SO 103-	С	None		0.00	137.0000	No Ice	7.6400	7.6400	0.23
3]						1/2"	8.8000	8.8000	0.36
						Ice	10.1600	10.1600	0.52
						1" Ice 2" Ice	13.3600	13.3600	0.94
***									
7770.00 w/ Mount Pipe	А	From Leg	4.0000	0.00	121.0000	No Ice	5.7460	4.2543	0.06
			0.00			1/2"	6.1791 6.6067	5.0137	0.10
			2.00			Ice 1" Ice	6.6067 7.4880	5.7109 7.1553	0.16 0.29
						2" Ice	7.4000	7.1555	0.23
7770.00 w/ Mount Pipe	в	From Leg	4.0000	0.00	121.0000	No Ice	5.7460	4.2543	0.06
•		0	0.00			1/2"	6.1791	5.0137	0.10
			2.00			Ice	6.6067	5.7109	0.16
						1" Ice	7.4880	7.1553	0.29
7770 00 14/ Maunt Dina	~	From Lan	4 0000	0.00	121.0000	2" Ice	5 7460	1 2512	0.00
7770.00 w/ Mount Pipe	С	From Leg	4.0000 0.00	0.00	121.0000	No Ice 1/2"	5.7460 6.1791	4.2543 5.0137	0.06 0.10
			2.00			Ice	6.6067	5.0137	0.10
			2.00			1" Ice	7.4880	7.1553	0.29
						2" Ice			
HPA-65R-BUU-H6 w/	А	From Leg	4.0000	0.00	121.0000	No Ice	9.2200	6.2500	0.07
Mount Pipe			0.00			1/2"	9.9800	6.9600	0.14
			2.00			Ice	10.7600	7.7000	0.22
						1" Ice 2" Ice	12.3600	9.2200	0.42
HPA-65R-BUU-H6 w/	в	From Leg	4,0000	0.00	121.0000	No Ice	9.2200	6,2500	0.07
	U	. Tom Ley	0.00	0.00	121,0000	1/2"	9.9800	6.9600	0.07
Mount Pipe									
Mount Pipe			2.00			ce	10.7600	7.7000	0.22
Mount Pipe			2.00			1" Ice	10.7600 12.3600	7.7000 9.2200	0.22 0.42
Mount Pipe			2.00				12.3600	9.2200	0.42
Mount Pipe HPA-65R-BUU-H6 w/ Mount Pipe	С	From Leg	2.00 4.0000 0.00	0.00	121.0000	1" Ice			

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft ft	۰	ft		ft²	ft²	К
			2.00			Ice 1" Ice	10.7600 12.3600	7.7000 9.2200	0.22 0.42
QS66512-6 w/ Mount Pipe	Α	From Leg	4.0000 0.00	0.00	121.0000	2" Ice No Ice 1/2"	4.0400 4.4200	4.1800 4.5700	0.14 0.21
			2.00			lce 1" lce	4.8200 5.6300	4.9700 5.7900	0.29 0.48
QS66512-6 w/ Mount Pipe	В	From Leg	4.0000 0.00	0.00	121.0000	2" Ice No Ice 1/2"	4.0400 4.4200	4.1800 4.5700	0.14 0.21
			2.00			Ice 1" Ice 2" Ice	4.4200 4.8200 5.6300	4.9700 4.9700 5.7900	0.29 0.48
QS66512-6 w/ Mount Pipe	С	From Leg	4.0000 0.00	0.00	121.0000	No Ice 1/2"	4.0400 4.4200	4.1800 4.5700	0.14 0.21
			2.00			Ice 1" Ice 2" Ice	4.8200 5.6300	4.9700 5.7900	0.29 0.48
(2) LGP21401	А	From Leg	4.0000 0.00	0.00	121.0000	No Ice 1/2"	1.1040 1.2388	0.3471 0.4422	0.01 0.02
			2.00			Ice 1" Ice 2" Ice	1.3810 1.6877	0.5444 0.7696	0.03 0.05
(2) LGP21401	В	From Leg	4.0000 0.00	0.00	121.0000	No Ice 1/2"	1.1040 1.2388	0.3471 0.4422	0.01 0.02
			2.00			lce 1" lce 2" lce	1.3810 1.6877	0.5444 0.7696	0.03 0.05
(2) LGP21401	С	From Leg	4.0000 0.00 2.00	0.00	121.0000	No Ice 1/2" Ice	1.1040 1.2388 1.3810	0.3471 0.4422 0.5444	0.01 0.02 0.03
	_					1" Ice 2" Ice	1.6877	0.7696	0.05
DC6-48-60-18-8F	В	From Leg	4.0000 0.00 2.00	0.00	121.0000	No Ice 1/2" Ice	1.2117 1.8924 2.1051	1.2117 1.8924 2.1051	0.03 0.05 0.08
						1" Ice 2" Ice	2.5703	2.5703	0.14
RRUS12/RRUS A2	A	From Leg	4.0000 0.00	0.00	121.0000	No Ice 1/2"	3.1435 3.3632 2.5004	1.8351 2.0121 2.1965	0.07 0.10
			2.00			lce 1" lce 2" lce	3.5904 4.0669	2.5875	0.13 0.20
RRUS12/RRUS A2	В	From Leg	4.0000 0.00 2.00	0.00	121.0000	No Ice 1/2" Ice	3.1435 3.3632 3.5904	1.8351 2.0121 2.1965	0.07 0.10 0.13
			2.00			1" Ice 2" Ice	4.0669	2.5875	0.20
RRUS12/RRUS A2	С	From Leg	4.0000 0.00	0.00	121.0000	No Ice 1/2"	3.1435 3.3632	1.8351 2.0121	0.07 0.10
			2.00			Ice 1" Ice 2" Ice	3.5904 4.0669	2.1965 2.5875	0.13 0.20
RRUS 11	A	From Leg	4.0000 0.00 2.00	0.00	121.0000	No Ice 1/2" Ice	2.7908 2.9984 3.2134	1.1923 1.3395 1.4957	0.05 0.07 0.10
	-	<b>_</b> .		•		1" Ice 2" Ice	3.6656	1.8390	0.15
RRUS 11	В	From Leg	4.0000 0.00 2.00	0.00	121.0000	No Ice 1/2" Ice	2.7908 2.9984 3.2134	1.1923 1.3395 1.4957	0.05 0.07 0.10
			2.00			1" Ice 2" Ice	3.6656	1.8390	0.10
RRUS 11	С	From Leg	4.0000 0.00	0.00	121.0000	No Ice 1/2"	2.7908 2.9984	1.1923 1.3395	0.05 0.07

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft ft	۰	ft		ft²	ft²	К
			2.00			Ice 1" Ice 2" Ice	3.2134 3.6656	1.4957 1.8390	0.10 0.15
RRUS 32	A	From Leg	4.0000 0.00 2.00	0.00	121.0000	No Ice 1/2'' Ice	2.8571 3.0830 3.3163	1.7766 1.9677 2.1658	0.06 0.08 0.10
RRUS 32	в	From Leg	4.0000	0.00	121.0000	1" Ice 2" Ice No Ice	3.8052 2.8571	2.5829 1.7766	0.16 0.06
			0.00 2.00			1/2" Ice 1" Ice	3.0830 3.3163 3.8052	1.9677 2.1658 2.5829	0.08 0.10 0.16
RRUS 32	С	From Leg	4.0000 0.00 2.00	0.00	121.0000	2" Ice No Ice 1/2" Ice	2.8571 3.0830 3.3163	1.7766 1.9677 2.1658	0.06 0.08 0.10
DBC0061F1V51-2	А	From Leg	4.0000	0.00	121.0000	1" Ice 2" Ice No Ice	3.8052 0.2133	2.5829 0.4133	0.16 0.01
	,,	l lon Log	0.00 2.00	0.00	121.0000	1/2" Ice 1" Ice 2" Ice	0.2793 0.3526 0.5215	0.4959 0.5859 0.7881	0.02 0.02 0.04
DBC0061F1V51-2	В	From Leg	4.0000 0.00 2.00	0.00	121.0000	No Ice 1/2'' Ice	0.2133 0.2793 0.3526	0.4133 0.4959 0.5859	0.01 0.02 0.02
DBC0061F1V51-2	С	From Leg	4.0000	0.00	121.0000	1" Ice 2" Ice No Ice	0.5215 0.2133	0.7881 0.4133	0.04 0.01
			0.00 2.00			1/2" Ice 1" Ice 2" Ice	0.2793 0.3526 0.5215	0.4959 0.5859 0.7881	0.02 0.02 0.04
DC6-48-60-18-8C	С	From Leg	4.0000 0.00 2.00	0.00	121.0000	No Ice 1/2" Ice 1" Ice	2.7366 2.9630 3.1964 3.6842	2.7366 2.9630 3.1964 3.6842	0.03 0.05 0.08 0.15
WCS-IMFT-AMT-43	A	From Leg	4.0000 0.00 2.00	0.00	121.0000	2" Ice No Ice 1/2" Ice 1" Ice	0.3848 0.4651 0.5529 0.7507	0.2498 0.3190 0.3957 0.5712	0.01 0.01 0.02 0.03
WCS-IMFT-AMT-43	С	From Leg	4.0000 0.00 2.00	0.00	121.0000	2" Ice No Ice 1/2" Ice	0.3848 0.4651 0.5529	0.2498 0.3190 0.3957	0.01 0.01 0.02
Platform Mount [LP 1201- 1_HR-1]	С	None		0.00	121.0000	1" Ice 2" Ice No Ice 1/2" Ice	0.7507 26.3900 31.4000 36.2000	0.5712 26.3900 31.4000 36.2000	0.03 2.36 3.06 3.86
(4)		Nama		0.00	101 0000	1" Ice 2" Ice	45.4000	45.4000	5.76
(4) L 4 x 4 x 1/4 x 5' Mount Angle (Horiz)	A	None		0.00	121.0000	No Ice 1/2" Ice 1" Ice 2" Ice	2.7778 3.1457 3.5210 4.2938	0.2217 0.7859 1.3624 2.3980	0.02 0.03 0.04 0.08
4) L 4 x 4 x 1/4 x 5' Mount Angle (Horiz)	В	None		0.00	121.0000	No Ice 1/2" Ice 1" Ice	2.7778 3.1457 3.5210 4.2938	0.2217 0.7859 1.3624 2.3980	0.02 0.03 0.04 0.08
(4) L 4 x 4 x 1/4 x 5' Mount Angle (Horiz)	С	None		0.00	121.0000	2" Ice No Ice 1/2"	2.7778 3.1457	0.2217 0.7859	0.02 0.03

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
						Ice 1" Ice 2" Ice	3.5210 4.2938	1.3624 2.3980	0.04 0.08
3' x 2" Sch 40 Pipe Mount	A	None		0.00	121.0000	No Ice 1/2" Ice	0.5826 0.7701 0.9669	0.5826 0.7701 0.9669	0.01 0.02 0.02
						1" Ice 2" Ice	1.3881	1.3881	0.02
3' x 2" Sch 40 Pipe Mount	В	None		0.00	121.0000	No Ice 1/2" Ice 1" Ice	0.5826 0.7701 0.9669 1.3881	0.5826 0.7701 0.9669 1.3881	0.01 0.02 0.02 0.05
3' x 2" Sch 40 Pipe Mount	С	None		0.00	121.0000	2" Ice No Ice 1/2" Ice	0.5826 0.7701 0.9669	0.5826 0.7701 0.9669	0.01 0.02 0.02
						1" Ice 2" Ice	1.3881	1.3881	0.05
2.375" OD x 10' Mount Pipe	A	From Leg	4.0000 0.00 0.00	0.00	121.0000	No Ice 1/2" Ice 1" Ice	2.3750 3.4031 4.4479 5.9106	2.3750 3.4031 4.4479 5.9106	0.03 0.04 0.07 0.14
2.375" OD x 10' Mount Pipe	В	From Leg	4.0000	0.00	121.0000	2" Ice No Ice 1/2"	2.3750 3.4031	2.3750 3.4031	0.03 0.04
	_		0.00			Ice 1" Ice 2" Ice	4.4479 5.9106	4.4479 5.9106	0.07 0.14
2.375" OD x 10' Mount Pipe	С	From Leg	4.0000 0.00 0.00	0.00	121.0000	No Ice 1/2" Ice 1" Ice	2.3750 3.4031 4.4479 5.9106	2.3750 3.4031 4.4479 5.9106	0.03 0.04 0.07 0.14
***						2" Ice			
AIR 32 B2A/B66AA w/ Mount Pipe	A	From Leg	4.0000 0.00 1.00	0.00	115.0000	No Ice 1/2" Ice 1" Ice 2" Ice	6.7474 7.2017 7.6475 8.5651	6.0700 6.8671 7.5828 9.0629	0.15 0.21 0.28 0.44
AIR 32 B2A/B66AA w/ Mount Pipe	В	From Leg	4.0000 0.00 1.00	0.00	115.0000	No Ice 1/2" Ice 1" Ice	6.7474 7.2017 7.6475 8.5651	6.0700 6.8671 7.5828 9.0629	0.15 0.21 0.28 0.44
AIR 32 B2A/B66AA w/ Mount Pipe	С	From Leg	4.0000 0.00 1.00	0.00	115.0000	2" Ice No Ice 1/2" Ice 1" Ice	6.7474 7.2017 7.6475 8.5651	6.0700 6.8671 7.5828 9.0629	0.15 0.21 0.28 0.44
APXVAARR24_43-U-NA20 w/ Mount Pipe	A	From Leg	4.0000 0.00 1.00	0.00	115.0000	2" Ice No Ice 1/2" Ice 1" Ice	14.6900 15.4600 16.2300 17.8200	6.8700 7.5500 8.2500 9.6700	0.19 0.31 0.46 0.79
APXVAARR24_43-U-NA20 w/ Mount Pipe	В	From Leg	4.0000 0.00 1.00	0.00	115.0000	2" Ice No Ice 1/2" Ice 1" Ice	14.6900 15.4600 16.2300 17.8200	6.8700 7.5500 8.2500 9.6700	0.19 0.31 0.46 0.79
APXVAARR24_43-U-NA20 w/ Mount Pipe	С	From Leg	4.0000 0.00 1.00	0.00	115.0000	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	14.6900 15.4600 16.2300 17.8200	6.8700 7.5500 8.2500 9.6700	0.19 0.31 0.46 0.79

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
(2) S20070A1	A	From Leg	4.0000	0.00	115.0000	No Ice	0.6560	0.3257	0.01
			0.00			1/2"	0.7636	0.4114	0.01
			1.00			ce	0.8786	0.5041	0.02
						1" Ice	1.1308	0.7105	0.04
						2" Ice			
S20070A1	в	From Leg	4.0000	0.00	115.0000	No Ice	0.6560	0.3257	0.01
	-		0.00			1/2"	0.7636	0.4114	0.01
			1.00			Ice	0.8786	0.5041	0.02
						1" Ice	1.1308	0.7105	0.04
						2" Ice			
ETW200VS12UB	А	From Leg	4.0000	0.00	115,0000	No Ice	0.4043	0.1628	0.01
		0	0.00			1/2"	0.4857	0.2187	0.01
			1.00			ce	0.5746	0.2820	0.02
						1" Ice	0.7746	0.4309	0.03
						2" Ice			
ETW200VS12UB	В	From Leg	4.0000	0.00	115.0000	No Ice	0.4043	0.1628	0.01
		-	0.00			1/2"	0.4857	0.2187	0.01
			1.00			ce	0.5746	0.2820	0.02
						1" Ice	0.7746	0.4309	0.03
						2" Ice			
ETW200VS12UB	С	From Leg	4.0000	0.00	115.0000	No Ice	0.4043	0.1628	0.01
			0.00			1/2"	0.4857	0.2187	0.01
			1.00			ce	0.5746	0.2820	0.02
						1" Ice	0.7746	0.4309	0.03
						2" Ice			
RADIO 4449 B12/B71	А	From Leg	4.0000	0.00	115.0000	No Ice	1.6500	1.1625	0.07
			0.00			1/2"	1.8104	1.3012	0.09
			1.00			ce	1.9781	1.4473	0.11
						1" Ice	2.3359	1.7618	0.16
						2" Ice			
RADIO 4449 B12/B71	В	From Leg	4.0000	0.00	115.0000	No Ice	1.6500	1.1625	0.07
			0.00			1/2"	1.8104	1.3012	0.09
			1.00			Ice	1.9781	1.4473	0.11
						1" Ice	2.3359	1.7618	0.16
	-					2" Ice			
RADIO 4449 B12/B71	С	From Leg	4.0000	0.00	115.0000	No Ice	1.6500	1.1625	0.07
			0.00			1/2"	1.8104	1.3012	0.09
			1.00			Ice	1.9781	1.4473	0.11
						1" Ice	2.3359	1.7618	0.16
Distance May at [LD 1201	~	Nana		0.00	115 0000	2" Ice	27 6100	27 6100	2.62
Platform Mount [LP 1201-	С	None		0.00	115.0000	No Ice	37.6100	37.6100	2.63 3.48
1_KCKR-HR-1]						1/2"	45.6200 53.5900	45.6200 53.5900	3.40 4.46
						Ice 1" Ice	69.6500	69.6500	4.40 6.85
						2" Ice	09.0000	09.0000	0.00
2.375" OD x 9' Mount Pipe	А	From Leg	4.0000	0.00	115.0000	No Ice	2.1375	2,1375	0.03
2.373 OD X 9 Mount Pipe	~	I IOIII Leg	0.00	0.00	115.0000	1/2"	3.0656	3.0656	0.03
			0.00			lce	4.0104	4.0104	0.04
			0.00			1" Ice	5.1312	5.1312	0.13
						2" Ice	5.1512	5.1512	0.15
2.375" OD x 9' Mount Pipe	в	From Leg	4.0000	0.00	115.0000	No Ice	2.1375	2.1375	0.03
	5	Lion Ley	0.00	0.00	110.0000	1/2"	3.0656	3.0656	0.03
			0.00			lce	4.0104	4.0104	0.06
			0.00			1" Ice	5.1312	5.1312	0.13
						2" Ice	· · · · <b>-</b>		
2.375" OD x 9' Mount Pipe	С	From Leg	4.0000	0.00	115.0000	No Ice	2.1375	2.1375	0.03
· · · · · · · · · · · · · · · ·		3	0.00			1/2"	3.0656	3.0656	0.04
			0.00			Ice	4.0104	4.0104	0.06
						1" Ice	5,1312	5,1312	0.13
						2" Ice			
***									
	•	From Leg	4.0000	0.00	104.0000	No Ice	4.0900	3.3000	0.06
LNX-6514DS-VTM w/	Α	FIOILEg	4.0000	0.00	104.0000				
LNX-6514DS-VTM w/ Mount Pipe	А	FIOILEG	0.00	0.00	104.0000	1/2"	4.4900	3.6800	0.13
	А	FIOIIILeg		0.00	104.0000				

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Description	Type Horz Adjı Lateral	imuth Placement ustmen t	$C_A A_A \qquad C_A A_A$ Front Side	Weigh
LNX-6514DS-VTM w/ Mount Pipe         B         From Leg (0.00 0.00         4.0000 0.00         No Lec (0.00 0.00         4.4900 (0.00 1'Ee         3.3000 4.4900         3.3000 (0.00           LNX-6514DS-VTM w/ Mount Pipe         C         From Leg (0.00         4.0000 0.00         0.00         104.0000         No Lec (0.00         4.9900 (0.00         3.3000           (2) SBNHH-1D65B w/ Mount Pipe         A         From Leg (0.00         4.0000         0.00         104.0000         No Lec (0.00         4.9900         3.3000           (2) SBNHH-1D65B w/ Mount Pipe         A         From Leg (0.00         4.0000         0.00         104.0000         No Lec (0.00         4.9900         3.3000           (2) SBNHH-1D65B w/ Mount Pipe         B         From Leg (0.00         4.0000         0.00         104.0000         No Lec (0.00         4.9900         3.3000           (2) SBNHH-1D65B w/ Mount Pipe         B         From Leg (0.00         4.0000         0.00         104.0000         No Lec (0.00         4.9900         3.3000           (2) SBNHH-1D65B w/ Mount Pipe         C         From Leg (0.00         4.0000         0.00         104.0000         No Lec (0.00         4.9900         3.3000           (2) SBNHH-1D65B w/ Mount Pipe         C         From Leg (0.00         4.0000         0.00 <th></th> <th>ft</th> <th>0</th> <th>ft² ft²</th> <th>К</th>		ft	0	ft ² ft ²	К
Mount Pipe         0.00         1/2"         4.4900         3.6800           LNX-6514DS-VTM w/ Mount Pipe         C         From Leg         4.0000         0.00         104.0000         No Ice         4.9900         3.3000           11'Ice         5.7100         4.8700         3.2000         11''Ice         4.4900         3.6800           2'Ice         4.9900         0.00         0.00         104.0000         No Ice         4.9900         3.3000           2'Ice         5.7100         4.8700         2''Ice         4.8700         3.6800           2(2) SBNHH-1065B w/ Mount Pipe         A         From Leg         4.0000         0.00         104.0000         No Ice         4.9900         3.3000           2(2) SBNHH-1065B w/ Mount Pipe         B         From Leg         4.0000         0.00         104.0000         No Ice         4.9900         3.3000           1''Ice         5.7200         4.8700         2''Ice         4.4900         3.3000           0.00         0.00         0.00         104.0000         No Ice         4.9900         3.3000           1''Ice         5.7200         4.8700         2''Ice         5.7200         4.8700           1''Ice         5.7200         4.9		From Log 4 0000 (		4 0000 2 2000	0.06
LNX-6514DS-VTM w/ Mount Pipe LNX-5514DS-VTM w/ MOUNT Pipe LNX-55140 LNX-55140 LNX-5514DS-VTM w/ MOUNT Pipe LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 LNX-55140 L		5			0.06
LNX-6514DS-VTM w/ Mount Pipe         C         From Leg         4.0000         0.00         104.0000         No Ice         4.9900         3.3000           (2) SBNHH-1D65B w/ Mount Pipe         A         From Leg         4.0000         0.00         104.0000         No Ice         4.9900         3.6800           (2) SBNHH-1D65B w/ Mount Pipe         A         From Leg         4.0000         0.00         104.0000         No Ice         4.9900         3.6800           (2) SBNHH-1D65B w/ Mount Pipe         B         From Leg         4.0000         0.00         104.0000         No Ice         4.9900         3.3000           (2) SBNHH-1D65B w/ Mount Pipe         B         From Leg         4.0000         0.00         104.0000         No Ice         4.9900         3.3000           (2) SBNHH-1D65B w/ Mount Pipe         C         From Leg         4.0000         0.00         104.0000         No Ice         4.9900         3.6800           (2) SBNHH-1D65B w/ Mount Pipe         C         From Leg         4.0000         0.00         104.0000         No Ice         4.9900         3.6800           (2) SBNH-1D65B w/ Mount Pipe         C         From Leg         4.0000         0.00         104.0000         No Ice         3.9001           (2) SEC </td <td>Mount Pipe</td> <td></td> <td></td> <td></td> <td>0.13</td>	Mount Pipe				0.13
LNX-6514DS-VTM w/ Mount Pipe C From Leg 4.0000 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.00			0.20 0.38
LNX-6514DS-VTM w/ Mount Pipe         C         From Leg         4.0000 0.00         0.00         104.0000 1c         No lee         4.0900 4.0900         3.3000 1c           (2) SBNHH-1D65B w/ Mount Pipe         A         From Leg         4.0000 0.00         0.00         104.0000         No lee         4.0900 4.0900         3.3000           (2) SBNHH-1D65B w/ Mount Pipe         A         From Leg         4.0000 0.00         0.00         104.0000         No lee         4.0900 4.0700         3.3000           (2) SBNHH-1D65B w/ Mount Pipe         B         From Leg         4.0000 0.00         0.00         104.0000         No lee         4.0900 4.0700         3.3000           (2) SBNHH-1D65B w/ Mount Pipe         C         From Leg         4.0000 0.00         0.00         104.0000         No lee         4.0900 4.0700         3.3000           (2) SBNHH-1D65B w/ Mount Pipe         C         From Leg         4.0000 0.00         0.00         104.0000         No lee         4.8900 4.0700         4.8700           (2) SBNH-1D65B w/ Mount Pipe         C         From Leg         4.0000 0.00         0.00         104.0000         No lee         4.8900 4.0700         4.8700           DB-T1-6Z-8AB-0Z         A         From Leg         4.0000 0.00         0.00         104.0000				5.7100 4.8700	0.50
Mount Pipe         0.00 0.00         1/2" bit for the second bit fo	NY_6514DS_\/TM w/	From Leg 4,0000 (		4 0900 3 3000	0.06
(2) SBNHH-1D65B w/ Mount Pipe         A         From Leg         4.0000 0.00         0.00         104.0000         No ice         4.0900 2" ice         3.3000 1/2"           (2) SBNHH-1D65B w/ Mount Pipe         B         From Leg         4.0000 0.00         0.00         104.0000         No ice         4.0900 4.8700         3.3000           (2) SBNHH-1D65B w/ Mount Pipe         B         From Leg         4.0000 0.00         0.00         104.0000         No ice         4.0900 4.8700         3.3000           (2) SBNHH-1D65B w/ Mount Pipe         B         From Leg         4.0000 0.00         0.00         104.0000         No ice         4.0900         3.3000           (2) SBNHH-1D65B w/ Mount Pipe         C         From Leg         4.0000         0.00         104.0000         No ice         4.8700         3.2000           (2) SBNH-1D65B w/ Mount Pipe         C         From Leg         4.0000         0.00         104.0000         No ice         4.8000         2.0000           DB-T1-6Z-8AB-0Z         A         From Leg         4.0000         0.00         104.0000         No ice         4.8000         2.0000           0.00         1/2"         5.0744         2.1926         2.8148         2.3926         1"ice         5.3259         2.8148 <td></td> <td></td> <td></td> <td></td> <td>0.00</td>					0.00
(2) SBNHH-1D65B w/ Mount Pipe         A         From Leg         4.0000 0.00         0.00         104.0000 10         No loc         4.9000 No loc         3.3000 4.0700           (2) SBNHH-1D65B w/ Mount Pipe         B         From Leg         4.0000 0.00         0.00         104.0000 10         No loc         4.9000 2" loc         3.3000           (2) SBNHH-1D65B w/ Mount Pipe         B         From Leg         4.0000 0.00         0.00         104.0000         No loc         4.9000 4.8700         3.3000           (2) SBNHH-1D65B w/ Mount Pipe         C         From Leg         4.0000 0.00         0.00         104.0000         No loc         4.9000 4.8700         3.3000           (2) SBNH-1D65B w/ Mount Pipe         C         From Leg         4.0000 0.00         0.00         104.0000         No loc         4.8700         3.3000           (2) SBNH-1D65B w/ Mount Pipe         C         From Leg         4.0000         0.00         104.0000         No loc         4.8700         3.3000           (2) SBNH-1D65B w/ Mount Pipe         C         From Leg         4.0000         0.00         104.0000         No loc         4.8700         3.3000           (2) SEN 4.32         From Leg         4.0000         0.00         104.0000         No loc         4.8700 <td< td=""><td>Mount i pe</td><td></td><td></td><td></td><td>0.20</td></td<>	Mount i pe				0.20
(2) SBNHH-1D65B w/ Mount Pipe         A         From Leg         4.0000         0.00         104.0000         No loce         4.0000         3.3000           (2) SBNHH-1D65B w/ Mount Pipe         B         From Leg         4.0000         0.00         104.0000         No loce         4.0900         3.3000           (2) SBNHH-1D65B w/ Mount Pipe         B         From Leg         4.0000         0.00         104.0000         No loce         4.0900         3.3000           (2) SBNHH-1D65B w/ Mount Pipe         B         From Leg         4.0000         0.00         104.0000         No loce         4.0900         3.6800           (2) SBNHH-1D65B w/ Mount Pipe         C         From Leg         4.0000         0.00         104.0000         No loce         4.0900         3.6800           (2) SBNHH-1D65B w/ Mount Pipe         C         From Leg         4.0000         0.00         104.0000         No loce         4.8900         4.0700           (2) SBNH-1D55B w/ Mount Pipe         A         From Leg         4.0000         0.00         104.0000         No loce         4.8000         2.0000           DB-T1-6Z-8AB-0Z         A         From Leg         4.0000         0.00         104.0000         No loce         4.8000         2.1026		0.00			0.38
(2)         SBNHH-1065B w/ Mount Pipe         A         From Leg         4,0000 0,00         0.00         104,0000 1/2"         No lce         4,0000 4,8000         3,3000 1/2"         4,0000 4,8700           (2)         SBNHH-1065B w/ Mount Pipe         B         From Leg         4,0000         0.00         104,0000         No lce         4,0900         3,3000           (2)         SBNHH-1065B w/ Mount Pipe         B         From Leg         4,0000         0.00         104,0000         No lce         4,0900         3,3000           (2)         SBNHH-1065B w/ Mount Pipe         C         From Leg         4,0000         0.00         104,0000         No lce         4,0900         3,3000           (2)         SBNHH-1065B w/ Mount Pipe         C         From Leg         4,0000         0.00         104,0000         No lce         4,0800         3,3000           1/2"         4,4900         3,3000         1/2"         4,4900         3,3000         1/2"         1/2"         4,4900         3,8000           0.00         0.00         104,0000         No lce         4,4900         3,3000         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         <				5.7100 4.0700	0.50
Mount Pipe         0.00         1/2"         4.4000         3.6800           (2) SBNHH-1D65B w/ Mount Pipe         B         From Leg         4.0000         0.00         104.0000         No Ice         4.9900         3.3000           (2) SBNHH-1D65B w/ Mount Pipe         B         From Leg         4.0000         0.00         104.0000         No Ice         4.9900         3.3000           (2) SBNHH-1D65B w/ Mount Pipe         C         From Leg         4.0000         0.00         104.0000         No Ice         4.9900         3.3000           (2) SBNHH-1D65B w/ Mount Pipe         C         From Leg         4.0000         0.00         104.0000         No Ice         4.9900         3.3000           DB-T1-62-8AB-0Z         A         From Leg         4.0000         0.00         104.0000         No Ice         4.8000         2.0000           DB-T1-62-8AB-0Z         C         From Leg         4.0000         0.00         104.0000         No Ice         4.8000         2.0000           0.00         .000         .000         .000         .000         1/2"         5.7740         2.1926           0.00         .000         .000         .000         .000         .000         1/2"         0.2000 <tr< td=""><td>2) SBNHH-1D65B w/</td><td>From Leg 4 0000 (</td><td></td><td>4 0900 3 3000</td><td>0.07</td></tr<>	2) SBNHH-1D65B w/	From Leg 4 0000 (		4 0900 3 3000	0.07
(2) SBNHH-1D65B w/ Mount Pipe         B         From Leg         4,0000         0.00         104.0000         No Ice         4,8900         3,3000           (2) SBNHH-1D65B w/ Mount Pipe         B         From Leg         4,0000         0.00         104.0000         No Ice         4,9900         3,6800           (2) SBNHH-1D65B w/ Mount Pipe         C         From Leg         4,0000         0.00         104.0000         No Ice         4,9900         3,6800           (2) SBNHH-1D65B w/ Mount Pipe         C         From Leg         4,0000         0.00         104.0000         No Ice         4,9900         3,6800           (2) SBNHH-1D65B w/ Mount Pipe         C         From Leg         4,0000         0.00         104.0000         No Ice         4,8900         3,6800           (2) SBNHH-1D65B w/ Mount Pipe         A         From Leg         4,0000         0.00         104.0000         No Ice         4,8900         3,6800           (2) SBNHH-1D65B w/ Mount Pipe         A         From Leg         4,0000         0.00         104.0000         No Ice         4,8900         3,2000           (2) SBNHH-1D65B w/ Mount Pipe         A         From Leg         4,0000         0.00         104.0000         No Ice         2,1926           (2) Str		0			0.13
(2) SBNHH-1D65B w/ Mount Pipe         B         From Leg         4,0000         0.00         104,0000         No ice         4,0900         3,3000           (2) SBNHH-1D65B w/ Mount Pipe         C         From Leg         4,0000         0.00         104,0000         No ice         4,0900         3,3000           (2) SBNHH-1D65B w/ Mount Pipe         C         From Leg         4,0000         0.00         104,0000         No ice         4,0900         3,3000           (2) SBNHH-1D65B w/ Mount Pipe         C         From Leg         4,0000         0.00         104,0000         No ice         4,0900         3,3000           (2) SBN-HI-1D65B w/ Mount Pipe         C         From Leg         4,0000         0.00         104,0000         No ice         4,0900         3,3000           DB-T1-6Z-8AB-0Z         A         From Leg         4,0000         0.00         104,0000         No ice         4,8000         2,1926           DB-T1-6Z-8AB-0Z         C         From Leg         4,0000         0.00         104,0000         No ice         3,800         1/2"         6,4720         2,1926           DB-T1-6Z-8AB-0Z         C         From Leg         4,0000         0.00         104,0000         No ice         0,3860         0,5120	Modifier ipe				0.20
(2) SBNHH-1D65B w/ Mount Pipe         B         From Leg         4,000         0.00         104,000         No loce         4,0900         3,6800           (2) SBNHH-1D65B w/ Mount Pipe         C         From Leg         4,0000         0.00         104,0000         No loce         4,0900         3,6800           (2) SBNHH-1D65B w/ Mount Pipe         C         From Leg         4,0000         0.00         104,0000         No loce         4,0900         3,6800           (2) SBNHH-1D65B w/ Mount Pipe         C         From Leg         4,0000         0.00         104,0000         No loce         4,0900         3,6800           (2) SBNHH-1D65B w/ Mount Pipe         C         From Leg         4,0000         0.00         104,0000         No loce         4,8000         2,0000           0.00         0.00         104,0000         No loce         4,8000         2,0000         11/2"         6,3431         2,3326           0.00         0.00         104,0000         No loce         4,8000         2,0000         12"         6,4456         0,604           0.00         0.00         104,0000         No loce         0,3680         0,5120           DB-T1-6Z-8AB-0Z         C         From Leg         4,0000         0,00		0.00			0.39
(2)         SBNHH-1D65B w/ Mount Pipe         B         From Leg         4,0000 0.00         0.00 0.00         104.0000 1/2"         No Leg         4,0900 4,4900         3,3000 4,8700           (2)         SBNHH-1D65B w/ Mount Pipe         C         From Leg         4,0000 0.00         0.00         104.0000         No Leg         4,8900         4,6700           (2)         SBNH-1D65B w/ Mount Pipe         C         From Leg         4,0000         0.00         104.0000         No Leg         4,9900         3,6800           (2)         SBNH-1D65B w/ Mount Pipe         C         From Leg         4,0000         0.00         104.0000         No Leg         4,0900         3,6800           (2)         SBNH-1-16Z-8AB-0Z         A         From Leg         4,0000         0.00         104.0000         No Leg         4,8000         2,0000           0.00         0.00         104.0000         No Leg         4,8000         2,000         1/2"         5,0704         2,1926           DB-T1-6Z-8AB-0Z         C         From Leg         4,0000         0.00         104.0000         No Leg         3,680         0,5120           0.00         0.00         104.0000         No Leg         0,3680         0,5120         1"Ice         0,52				0.1200 1.0100	0.00
Mount Pipe         0.00         1/2"         4.4900         3.6800         4.7700           (2) SBNHH-1D65B w/ Mount Pipe         C         From Leg         4.0000         0.00         104.0000         No Ice         4.9900         3.3000           (2) SBNHH-1D65B w/ Mount Pipe         C         From Leg         4.0000         0.00         104.0000         No Ice         4.9900         3.3000           DB-T1-6Z-8AB-0Z         A         From Leg         4.0000         0.00         104.0000         No Ice         4.8000         2.0000           DB-T1-6Z-8AB-0Z         A         From Leg         4.0000         0.00         104.0000         No Ice         4.8000         2.0000           DB-T1-6Z-8AB-0Z         C         From Leg         4.0000         0.00         104.0000         No Ice         4.8000         2.0000           0.00         0.00         104.0000         No Ice         4.8000         2.0000         1/2"         6.7074         2.1926           DB-T1-6Z-8AB-0Z         C         From Leg         4.0000         0.00         104.0000         No Ice         4.8000         2.0000           0.00         0.00         104.0000         No Ice         0.5120         1/2"         0.4456	2) SBNHH-1D65B w/	From Leg 4 0000 (		4 0900 3 3000	0.07
(2) SBNHH-1D65B w/ Mount Pipe         C         From Leg         4.0000         0.00         104.000         Noice         4.8900         3.3000           DB-T1-6Z-3AB-0Z         A         From Leg         4.0000         0.00         104.0000         Noice         4.8000         3.000           DB-T1-6Z-3AB-0Z         A         From Leg         4.0000         0.00         104.0000         Noice         4.8000         2.0000           DB-T1-6Z-3AB-0Z         A         From Leg         4.0000         0.00         104.0000         Noice         4.8000         2.0000           DB-T1-6Z-3AB-0Z         C         From Leg         4.0000         0.00         104.0000         Noice         4.8000         2.0000           DB-T1-6Z-3AB-0Z         C         From Leg         4.0000         0.00         104.0000         Noice         4.8000         2.0000           DB-T1-6Z-3AB-0Z         C         From Leg         4.0000         0.00         104.0000         Noice         4.8001         2.0000           0.00         0.00         104.0000         Noice         4.8001         2.0000         1/2"         5.4761         2.3926           CBC78T-DS-43-2X         A         From Leg         4.0000 <td< td=""><td></td><td></td><td></td><td></td><td>0.13</td></td<>					0.13
(2) SBNHH-1D65B w/ Mount Pipe         C         From Leg         4,0000         0.00         104,0000         No Ice         4,0900         3,3000           DB-T1-6Z-8AB-0Z         A         From Leg         4,0000         0.00         104,0000         No Ice         4,8900         4,0700           DB-T1-6Z-8AB-0Z         A         From Leg         4,0000         0.00         104,0000         No Ice         4,8000         2,0000           DB-T1-6Z-8AB-0Z         A         From Leg         4,0000         0.00         104,0000         No Ice         4,8000         2,0000           0.00         0.00         104,0000         No Ice         4,8000         2,0000         1/2"         5,074         2,1926           DB-T1-6Z-8AB-0Z         C         From Leg         4,0000         0.00         104,0000         No Ice         4,8000         2,0000           0.00         1/2"         5,074         2,1926         1/2"         5,0744         2,1926           0.00         0.00         104,0000         No Ice         3,8800         6,5120           0.00         0.00         104,0000         No Ice         0,3680         0,5120           0.00         0.00         0.00         0.00 </td <td>mount i po</td> <td></td> <td></td> <td></td> <td>0.20</td>	mount i po				0.20
(2) SBNHH-1D65B w/ Mount Pipe         C         From Leg         4.000         0.00         104.0000         102         4.0000         3.3000           DB-T1-6Z-8AB-0Z         A         From Leg         4.0000         0.00         104.0000         No Lec         4.8900         3.6800           DB-T1-6Z-8AB-0Z         A         From Leg         4.0000         0.00         104.0000         No Lec         4.8000         2.0000           DB-T1-6Z-8AB-0Z         C         From Leg         4.0000         0.00         104.0000         No Lec         4.8000         2.0000           DB-T1-6Z-8AB-0Z         C         From Leg         4.0000         0.00         104.0000         No Lec         4.8000         2.0000           DB-T1-6Z-8AB-0Z         C         From Leg         4.0000         0.00         104.0000         No Lec         4.8000         2.0000           0.00         0.00         104.0000         No Lec         8.0000         2.0000         1/2"         5.0744         2.1926           CBC78T-DS-43-2X         A         From Leg         4.0000         0.00         104.0000         No Lec         0.3680         0.5120           0.00         0.00         0.00         104.0000         NoL					0.39
(2) SBNHH-1D65B w/ Mount Pipe         C         From Leg         4.0000         0.00         104.0000         No Ice         4.0900         3.3000           DB-T1-6Z-8AB-0Z         A         From Leg         4.0000         0.00         104.0000         No Ice         4.6900         3.6800           DB-T1-6Z-8AB-0Z         A         From Leg         4.0000         0.00         104.0000         No Ice         4.6800         2.0000           DB-T1-6Z-8AB-0Z         C         From Leg         4.0000         0.00         104.0000         No Ice         4.6000         2.0000           DB-T1-6Z-8AB-0Z         C         From Leg         4.0000         0.00         104.0000         No Ice         4.6000         2.0000           0.00         0.00         104.0000         No Ice         4.6000         2.0000         102.000         102.000         102.000         102.000         102.000         102.000         102.000         102.000         102.000         102.000         102.000         102.000         102.000         102.000         102.000         102.000         102.000         102.000         102.000         102.000         102.000         102.000         102.000         102.000         102.000         102.000         102.000					0100
Mount Pipe         0.00 0.00         1/2" ke         4.4900 4.8900 2" lce         3.6800 4.0700 1" lce           DB-T1-6Z-BAB-0Z         A         From Leg         4.0000 0.00         0.00         104.0000         No lce         4.8000 2" lce         2.0000 1/2"         5.0704         2.1926 2.926 1" lce           DB-T1-6Z-8AB-0Z         A         From Leg         4.0000 0.00         0.00         104.0000         No lce         4.8000 4.8000         2.0000           DB-T1-6Z-8AB-0Z         C         From Leg         4.0000 0.00         0.00         104.0000         No lce         4.8000 5.9259         2.0000           DB-T1-6Z-8AB-0Z         C         From Leg         4.0000 0.00         0.00         104.0000         No lce         0.800         2.0000           DB-T1-6Z-8AB-0Z         C         From Leg         4.0000         0.00         104.0000         No lce         0.6046           1" lce         5.3481         2.3926         1" lce         5.3481         2.3926           1" lce         0.00         104.0000         No lce         0.5120         0.5120           CBC78T-DS-43-2X         A         From Leg         4.0000         0.00         104.0000         No lce         0.5120           CBC78T-DS-43-2X <td>2) SBNHH-1D65B w/</td> <td>From Leg 4.0000 (</td> <td></td> <td>4,0900 3,3000</td> <td>0.07</td>	2) SBNHH-1D65B w/	From Leg 4.0000 (		4,0900 3,3000	0.07
DB-T1-6Z-8AB-0Z         A         From Leg         4.0000         0.00         104.0000         102" ice         5.7200         4.8700           DB-T1-6Z-8AB-0Z         A         From Leg         4.0000         0.00         104.0000         102" ice         5.0704         2.1926           DB-T1-6Z-8AB-0Z         C         From Leg         4.0000         0.00         104.0000         No ice         4.8000         2.0000           DB-T1-6Z-8AB-0Z         C         From Leg         4.0000         0.00         104.0000         No ice         4.8000         2.0000           DB-T1-6Z-8AB-0Z         C         From Leg         4.0000         0.00         104.0000         No ice         3.8800         2.1926           DB-T1-6Z-8AB-0Z         C         From Leg         4.0000         0.00         104.0000         No ice         3.680         2.1926           DB-T1-6Z-8AB-0Z         A         From Leg         4.0000         0.00         104.0000         No ice         3.680         0.5120           1/2"         0.405         0.000         104.0000         No ice         0.3680         0.5120           1/2"         0.4456         0.6046         0.7046         0.7228         0.9268					0.13
DB-T1-6Z-8AB-0Z         A         From Leg         4,0000         0.00         104,0000         No loce         4,8000         2.0000           0.00         0.00         102"         5,0704         2.1926           0.00         0.00         104,0000         No loce         4,8000         2.0000           1/2"         5,0704         2.1926         1"loce         5,3481         2.3926           1"loce         5,9259         2.8148         2"loce         2"loce         5.0704         2.1926           DB-T1-6Z-8AB-0Z         C         From Leg         4,0000         0.00         104,0000         No loce         4.8000         2.0000           0.00         0.00         104,0000         No loce         4.8000         2.0000         1/2"         5.0744         2.1926           CBC78T-DS-43-2X         A         From Leg         4,0000         0.00         104,0000         No loce         0.3680         0.5120           0.00         0.00         104,0000         No loce         0.3680         0.5120           0.00         0.00         104,0000         No loce         0.3680         0.5120           0.00         0.00         104,0000         No loce         0.3					0.20
DB-T1-6Z-8AB-0Z         A         From Leg         4.0000         0.00         104.0000         No Ice         4.3000         2.1926           0.00         0.00         0.00         104.0000         No Ice         5.3781         2.3926           1" Ice         5.3481         2.3926         1" Ice         5.9259         2.8148           2" Ice					0.39
DB-T1-6Z-8AB-0Z         A         From Leg         4.0000         0.00         104.0000         No Ice         4.8000         2.0000           0.00         0.00         0.00         1/2"         5.0704         2.1926           1" Ice         5.3481         2.3926         1" Ice         5.3481         2.3926           1" Ice         5.0704         2.1926         1" Ice         5.3481         2.3926           0.00         0.00         104.0000         No Ice         4.8000         2.0000           0.00         0.00         104.0000         No Ice         4.8000         2.0000           0.00         0.00         104.0000         No Ice         4.3800         2.0000           0.00         1/2"         5.4361         2.3926         1" Ice         5.3481         2.3926           1"Ice         5.3481         2.3926         1" Ice         5.3481         2.3926         1" Ice         0.5306         0.5120           0.00         0.00         104.0000         No Ice         0.3680         0.5120           0.00         0.00         104.0000         No Ice         0.3680         0.5120           0.00         0.00         104.0000         No Ice <td></td> <td></td> <td></td> <td></td> <td></td>					
DB-T1-6Z-8AB-0Z         C         From Leg         4.0000         0.00         104.0000         No lce         4.8000         2.0000           0.00         104.0000         No lce         4.8000         2.0000         1/2"         5.0704         2.1926           0.00         0.00         104.0000         No lce         4.8000         2.0000         1/2"         5.0704         2.1926           0.00         0.00         104.0000         No lce         5.9259         2.8148         2" lce         1" lce         5.9259         2.8148         2" lce         1" lce         5.9259         2.8148         2" lce         1" lce         0.4456         0.6046         1" lce         0.7228         0.9268         2" lce         1" lce         0.7228         0.9268         2" lce         1" lce         0.7228         0.9268         2" lce         1'''         0.4456         0.6046         1'''         1ee         0.7228         0.9268         2" lce         1'''         0.4456         0.6046         1''''         1ee         0.7228         0.9268         2" lce         1ee         0.7228         0.9268         2" lce         1'''''         0.6046         1'''''''' lce         1.633         1''''''''''''''''''''''''''''''''''''	DB-T1-6Z-8AB-0Z	From Leg 4.0000 (		4,8000 2,0000	0.04
DB-T1-6Z-8AB-0Z         C         From Leg         4.0000         0.00         104.0000         No loc         4.8000         2.8148           DB-T1-6Z-8AB-0Z         C         From Leg         4.0000         0.00         104.0000         No loc         4.8000         2.0000           0.00         0.00         0.00         104.0000         No loc         4.8000         2.0000           1/2"         5.0704         2.1926         1/2"         5.0704         2.1926           0.00         0.00         0.00         104.0000         No loc         4.3926           1" loc         5.3481         2.3926         1" loc         5.3481         2.3926           CBC78T-DS-43-2X         A         From Leg         4.0000         0.00         104.0000         No loc         0.3680         0.5120           0.00         104.0000         No loc         0.3680         0.5120         1" loc         0.7228         0.9268           2" loc         2" loc         1" loc         0.7228         0.9268         2" loc         1" loc         0.6046         1" loc         0.6046         1" loc         0.6046         1" loc         0.6046         1" loc         0.7228         0.9268         2" loc					0.08
DB-T1-6Z-8AB-0Z         C         From Leg         4.0000         0.00         104.0000         No ice         4.8000         2.1926           0.00         0.00         0.00         1/2"         5.0704         2.1926           ice         5.3481         2.3926         1" ice         5.9259         2.8148           CBC78T-DS-43-2X         A         From Leg         4.0000         0.00         104.0000         No ice         0.3680         0.5120           0.00         0.00         0.00         104.0000         No ice         0.3680         0.5120           CBC78T-DS-43-2X         A         From Leg         4.0000         0.00         104.0000         No ice         0.3680         0.5120           CBC78T-DS-43-2X         B         From Leg         4.0000         0.00         104.0000         No ice         0.3680         0.5120           0.00         0.00         104.0000         No ice         0.3680         0.5120           0.10         0.00         0.00         104.0000         No ice         0.3680         0.5120           0.00         0.00         0.00         104.0000         No ice         0.3680         0.5120           0.000         0.00			Ice		0.12
DB-T1-6Z-8AB-0Z         C         From Leg         4.0000         0.00         104.0000         No ice         4.8000         2.1926           0.00         0.00         0.00         1/2"         5.0704         2.1926           ice         5.3481         2.3926         1" ice         5.9259         2.8148           CBC78T-DS-43-2X         A         From Leg         4.0000         0.00         104.0000         No ice         0.3680         0.5120           0.00         0.00         0.00         104.0000         No ice         0.3680         0.5120           CBC78T-DS-43-2X         A         From Leg         4.0000         0.00         104.0000         No ice         0.3680         0.5120           CBC78T-DS-43-2X         B         From Leg         4.0000         0.00         104.0000         No ice         0.3680         0.5120           0.00         0.00         104.0000         No ice         0.3680         0.5120           0.10         0.00         104.0000         No ice         0.3680         0.5120           0.12"         0.4456         0.6046         ice         0.5306         0.7046           1" ice         0.5306         0.7046         i" ice </td <td></td> <td></td> <td></td> <td></td> <td>0.21</td>					0.21
CBC78T-DS-43-2X A From Leg 4.0000 0.00 104.0000 No Ice 0.3680 0.5120 0.00 1/2" 0.4456 0.6046 0.00 1/2" 0.4456 0.6046 1" Ice 0.5306 0.7046 1" Ice 0.5306 0.7046 1" Ice 0.5306 0.7046 1" Ice 0.3680 0.5120 0.00 104.0000 No Ice 0.3680 0.5120 1" Ice 0.5306 0.7046 1" Ice 0.5306 0.7046 1" Ice 0.3680 0.5120 0.00 104.0000 No Ice 1.7135 1.1683 0.00 Ice 2.1662 1.7226 1" Ice 2.6643 2.3506 2" Ice					
CBC78T-DS-43-2X       A       From Leg       4.0000       0.00       104.0000       No Ice       0.3680       0.5120         0.00       0.00       104.0000       No Ice       0.3680       0.5120         0.00       1/2"       0.4456       0.6046         0.00       1/2"       0.4456       0.6046         0.00       1/2"       0.4456       0.6046         0.00       1/2"       0.4456       0.6046         0.00       1/2"       0.4456       0.6046         0.100       102       0.3680       0.5120         2" Ice       1/2"       0.4456       0.6046         0.00       1/2"       0.4456       0.6046         0.00       1/2"       0.4456       0.6046         0.00       1/2"       0.4456       0.6046         0.00       1/2"       0.4456       0.6046         0.00       1/2"       0.228       0.9268         2" Ice       2" Ice       2" Ice       2" Ice         CBC78T-DS-43-2X       C       From Leg       4.0000       0.00       104.0000       No Ice       1.7135       1.1683         0.00       0.00       104.0000       No Ice	DB-T1-6Z-8AB-0Z	From Leg 4.0000 0	).00 104.0000 No Ice	4.8000 2.0000	0.04
CBC78T-DS-43-2X         A         From Leg         4.0000         0.00         104.0000         No Ice         0.3680         0.5120           0.00         0.00         1/2"         0.4456         0.6046           0.00         112"         0.4456         0.6046           1" Ice         0.7228         0.9268           2" Ice         2" Ice         2" Ice           CBC78T-DS-43-2X         B         From Leg         4.0000         0.00         104.0000         No Ice         0.3680         0.5120           0.00         1/2"         0.4456         0.6046           1" Ice         0.7228         0.9268           2" Ice         2" Ice         2" Ice           CBC78T-DS-43-2X         C         From Leg         4.0000         0.00         104.0000         No Ice         1.7135         1.1683           0.00         0.00         104.0000         No Ice         1.71		0.00	1/2"	5.0704 2.1926	0.08
CBC78T-DS-43-2X         A         From Leg         4,0000         0,00         104,0000         No Ice         0,3680         0.5120           0.00         1/2"         0.4456         0.6046         0.60         1/2"         0.4456         0.6046           0.00         0.00         104.0000         No Ice         0.7228         0.9268           CBC78T-DS-43-2X         B         From Leg         4.0000         0.00         104.0000         No Ice         0.3680         0.5120           0.00         0.00         0.00         104.0000         No Ice         0.3680         0.5120           0.00         0.00         0.00         104.0000         No Ice         0.3680         0.5120           CBC78T-DS-43-2X         C         From Leg         4.0000         0.00         104.0000         No Ice         0.3680         0.5120           0.00         0.00         104.0000         No Ice         0.3680         0.5120         1/2"         0.4456         0.6046           1" Ice         0.7228         0.9268         2" Ice         1/2"         0.4456         0.6046           0.00         0.00         104.0000         No Ice         1.7135         1.1683		0.00		5.3481 2.3926	0.12
CBC78T-DS-43-2X         A         From Leg         4,0000         0.00         104.0000         No Ice         0.3680         0.5120           0.00         0.00         0.00         104.0000         No Ice         0.3680         0.6046           11 Ice         0.7228         0.9268         2" Ice         2" Ice         2" Ice           CBC78T-DS-43-2X         B         From Leg         4.0000         0.00         104.0000         No Ice         0.3680         0.5120           0.00         0.00         104.0000         No Ice         0.3680         0.5120         104.000         1/2"         0.4456         0.6046           0.00         104.0000         No Ice         0.3680         0.5120         112"         0.4456         0.6046         11" Ice         0.7228         0.9268         2" Ice         0.00         104.0000         No Ice         0.3680         0.5120         112"         0.4456         0.6046         1" Ice         0.7228         0.9268         2" Ice         0.00         104.0000         No Ice         1.7135         1.1683         1.62         1.726         1.726         1.7276         1.728         0.9268         2" Ice         1" Ice         2.6643         2.3506         2" Ice				5.9259 2.8148	0.21
0.00       1/2"       0.4456       0.6046         0.00       1" lce       0.7228       0.9268         CBC78T-DS-43-2X       B       From Leg       4.0000       0.00       104.0000       No lce       0.3680       0.5120         0.00       0.00       1/2"       0.4456       0.6046       0.7028       0.9268         0.00       0.00       104.0000       No lce       0.3680       0.5120         0.00       1/2"       0.4456       0.6046         0.00       1/2"       0.4456       0.6046         0.00       1/2"       0.4456       0.6046         0.00       1/2"       0.4456       0.6046         0.00       1/2"       0.4456       0.6046         0.00       104.0000       No lce       0.3680       0.5120         0.00       0.00       104.0000       No lce       0.3680       0.5120         0.00       1/2"       0.4456       0.6046       0.00       1/2"       0.9268         2" lce       1       0.00       104.0000       No lce       1.7135       1.1683         0.00       1/2"       1.9342       1.4373       0.00       1/2"       1.9342					
CBC78T-DS-43-2X       B       From Leg       4.0000       0.00       104.0000       No loce       0.3680       0.5120         CBC78T-DS-43-2X       B       From Leg       4.0000       0.00       104.0000       No loce       0.3680       0.5120         CBC78T-DS-43-2X       C       From Leg       4.0000       0.00       104.0000       No loce       0.3680       0.5120         CBC78T-DS-43-2X       C       From Leg       4.0000       0.00       104.0000       No loce       0.3680       0.5120         CBC78T-DS-43-2X       C       From Leg       4.0000       0.00       104.0000       No loce       0.3680       0.5120         CBC78T-DS-43-2X       C       From Leg       4.0000       0.00       104.0000       No loce       0.3680       0.5120         CBC78T-DS-43-2X       C       From Leg       4.0000       0.00       104.0000       No loce       0.3680       0.5120         CBRS w/ Mount Pipe       A       From Leg       4.0000       0.00       104.0000       No loce       1.7235       1.1683         CBRS w/ Mount Pipe       B       From Leg       4.0000       0.00       104.0000       No loce       1.7135       1.1683	CBC78T-DS-43-2X				0.02
CBC78T-DS-43-2X         B         From Leg         4.0000         0.00         104.0000         No Ice         0.3680         0.5120           CBC78T-DS-43-2X         B         From Leg         4.0000         0.00         104.0000         No Ice         0.3680         0.5120           CBC78T-DS-43-2X         C         From Leg         4.0000         0.00         104.0000         No Ice         0.3680         0.5120           CBC78T-DS-43-2X         C         From Leg         4.0000         0.00         104.0000         No Ice         0.3680         0.5120           CBC78T-DS-43-2X         C         From Leg         4.0000         0.00         104.0000         No Ice         0.3680         0.5120           CBRS w/ Mount Pipe         A         From Leg         4.0000         0.00         104.0000         No Ice         1.7135         1.1683           CBRS w/ Mount Pipe         B         From Leg         4.0000         0.00         104.0000         No Ice         1.7226           1" Ice         2.6643         2.3506         2" Ice         1.4373         1.1683         2.3506           CBRS w/ Mount Pipe         B         From Leg         4.0000         0.00         104.0000         No Ice					0.03
CBC78T-DS-43-2X         B         From Leg         4.0000         0.00         104.0000         No Ice         0.3680         0.5120           0.00         1/2"         0.4456         0.6046         Ice         0.5306         0.7046           1/2"         0.4456         0.6046         Ice         0.7228         0.9268           CBC78T-DS-43-2X         C         From Leg         4.0000         0.00         104.0000         No Ice         0.3680         0.5120           CBC78T-DS-43-2X         C         From Leg         4.0000         0.00         104.0000         No Ice         0.3680         0.5120           CBC78T-DS-43-2X         C         From Leg         4.0000         0.00         104.0000         No Ice         0.3680         0.5120           0.00         1/2"         0.4456         0.6046         Ice         0.306         1/2"         0.4456         0.6046           0.00         1/2"         0.4456         0.6046         Ice         0.7228         0.9268           2" Ice         Ice         2.1662         1.7135         1.1683           0.00         0.00         104.0000         No Ice         1.7135         1.1683           0.00         <		0.00			0.04
CBC78T-DS-43-2X         B         From Leg         4.0000         0.00         104.0000         No Ice         0.3680         0.5120           0.00         0.00         0.00         1/2"         0.4456         0.6046           1" Ice         0.5306         0.7046           1" Ice         0.7228         0.9268           2" Ice         0.00         104.0000         No Ice         0.3680         0.5120           CBC78T-DS-43-2X         C         From Leg         4.0000         0.00         104.0000         No Ice         0.3680         0.5120           0.00         0.00         104.0000         No Ice         0.3680         0.5120         1/2"         0.4456         0.6046           0.00         1/2"         0.4456         0.6046         1" Ice         0.7228         0.9268         2" Ice         2.6643         2.3506         1.4373         0.00         104.0000         No Ice         1.7135         1.1683           0.00         0.00         104.0000         No Ice         1.7135         1.1683           0.00         0.00         104.0000         No Ice         1.7135				0.7228 0.9268	0.06
CBC78T-DS-43-2X       C       From Leg       4.0000       0.00       104.0000       No lce       0.7228       0.9268         CBC78T-DS-43-2X       C       From Leg       4.0000       0.00       104.0000       No lce       0.3680       0.5120         0.00       0.00       0.00       104.0000       No lce       0.3680       0.6046         1/2"       0.4456       0.6046       lce       0.3680       0.5120         0.00       0.00       104.0000       No lce       0.3680       0.7046         1" lce       0.7228       0.9268       2" lce       0.7228       0.9268         CBRS w/ Mount Pipe       A       From Leg       4.0000       0.00       104.0000       No lce       1.7135       1.1683         0.00       0.00       104.0000       No lce       1.7135       1.1683       1.726         CBRS w/ Mount Pipe       B       From Leg       4.0000       0.00       104.0000       No lce       1.7135       1.1683         0.00       0.00       104.0000       No lce       1.7135       1.1683         0.00       0.00       104.0000       No lce       1.7135       1.1683         0.00       0.00					
CBC78T-DS-43-2X         C         From Leg         4.0000         0.00         104.0000         No Ice         0.3680         0.5120         0.9268         2" loe         2" loe         0.004         1/2"         0.4456         0.6046         0.0046         1" loe         0.5306         0.5120         0.01         1/2"         0.4456         0.6046         0.0046         1" loe         0.6046         0.0046         1" loe         0.7046         1" loe         0.6046         0.0046         1" loe         0.7046         1" loe         0.6046         0.0046         1" loe         0.6046         0.0046         1" loe         0.6046         0.0046         1" loe         0.6046         0.0046         1" loe         0.7046         1" loe         1.1683         2" loe         2" loe </td <td>CBC78T-DS-43-2X</td> <td></td> <td></td> <td></td> <td>0.02</td>	CBC78T-DS-43-2X				0.02
CBC78T-DS-43-2X C From Leg 4.0000 0.00 104.0000 No Ice 0.3680 0.5120 0.00 0.00 0.00 1/2" 0.4456 0.6046 Ice 0.5306 0.7046 I'' Ice 0.7228 0.9268 2" Ice CBRS w/ Mount Pipe A From Leg 4.0000 0.00 104.0000 No Ice 1.7135 1.1683 0.00 1/2" 1.9342 1.4373 Ice 2.1662 1.7226 1" Ice 2.6643 2.3506 2" Ice CBRS w/ Mount Pipe B From Leg 4.0000 0.00 104.0000 No Ice 1.7135 1.1683 0.00 1/2" 1.9342 1.4373 Ice 2.1662 1.7226 1" Ice 2.6643 2.3506 2" Ice CBRS w/ Mount Pipe C From Leg 4.0000 0.00 104.0000 No Ice 1.7135 1.1683 0.00 CBRS w/ Mount Pipe C From Leg 4.0000 0.00 104.0000 No Ice 1.7135 1.1683 0.00 1/2" 1.9342 1.4373 Ice 2.1662 1.7226 1" Ice 2.6643 2.3506 2" Ice CBRS w/ Mount Pipe C From Leg 4.0000 0.00 104.0000 No Ice 1.7135 1.1683 1/2" 1.9342 1.4373					0.03
CBC78T-DS-43-2X         C         From Leg         4.0000 0.00         0.00         104.0000         No Ice         0.3680         0.5120           0.00         0.00         1/2"         0.4456         0.6046         Ice         0.5306         0.7046           1" Ice         0.7228         0.9268         2" Ice         2" Ice         2" Ice           CBRS w/ Mount Pipe         A         From Leg         4.0000         0.00         104.0000         No Ice         1.7135         1.1683           0.00         0.00         0.00         104.0000         No Ice         1.7226         1.7226           1" Ice         2.6643         2.3506         2" Ice         2" Ice         2" Ice         11" Ice         2.6643         2.3506           2" Ice         0.00         0.00         104.0000         No Ice         1.7135         1.1683           0.00         0.00         0.00         104.0000         No Ice         1.7135         1.1683           0.00         0.00         104.0000         No Ice         1.7135         1.1683           0.00         0.00         104.0000         No Ice         1.7135         1.1683           1" Ice         2.6643         2.3506		0.00			0.04
CBC78T-DS-43-2X         C         From Leg         4.0000         0.00         104.0000         No Ice         0.3680         0.5120           0.00         0.00         1/2"         0.4456         0.6046         Ice         0.5306         0.7046           1" Ice         0.5306         0.7046         1" Ice         0.7228         0.9268           2" Ice         2" Ice         0.00         104.0000         No Ice         1.7135         1.1683           CBRS w/ Mount Pipe         A         From Leg         4.0000         0.00         104.0000         No Ice         1.7135         1.1683           CBRS w/ Mount Pipe         B         From Leg         4.0000         0.00         104.0000         No Ice         1.7135         1.1683           0.00         0.00         104.0000         No Ice         1.71				0.7228 0.9268	0.06
CBRS w/ Mount Pipe       A       From Leg       4.0000       0.00       1/2"       0.4456       0.6046         1" Ice       0.5306       0.7046       1" Ice       0.5306       0.7046         2" Ice       2" Ice       2" Ice       0.00       1/2"       1.9342       1.4373         0.00       0.00       104.0000       No Ice       1.7135       1.1683         0.00       1/2"       1.9342       1.4373         0.00       1/2"       1.9342       1.4373         0.00       104.0000       No Ice       1.7135       1.1683         2" Ice       2" Ice       2" Ice       2" Ice       1.12"       1.9342       1.4373         CBRS w/ Mount Pipe       B       From Leg       4.0000       0.00       104.0000       No Ice       1.7135       1.1683         0.00       1/2"       1.9342       1.4373       1.4373       1.226       1" Ice       2.6643       2.3506         2" Ice       1/2"       1.9342       1.4373       1.226       1" Ice       2.6643       2.3506         2" Ice       1/2"       1.9342       1.4373       1.237       1.2662       1.7226         CBRS w/ Mount Pipe       C <td></td> <td>From Long ( 0000 (</td> <td></td> <td>0.2000 0.5120</td> <td>0.00</td>		From Long ( 0000 (		0.2000 0.5120	0.00
Ice         0.5306         0.7046           1" Ice         0.7228         0.9268           2" Ice         2" Ice         2" Ice           CBRS w/ Mount Pipe         A         From Leg         4.0000         0.00         104.0000         No Ice         1.7135         1.1683           0.00         0.00         1/2"         1.9342         1.4373         1/2         1.26643         2.3506           2" Ice         1" Ice         2.6643         2.3506         2" Ice         1" Ice         2.6643         2.3506           CBRS w/ Mount Pipe         B         From Leg         4.0000         0.00         104.0000         No Ice         1.7135         1.1683           0.00         1/2"         1.9342         1.4373           0.00         104.0000         No Ice         1.7135         1.1683           0.00         1/2"         1	CBC/81-DS-43-2X				0.02
CBRS w/ Mount Pipe         A         From Leg         4.0000         0.00         104.0000         No Ice         1.7135         1.1683         1/2"         1.9342         1.4373         Ice         2.1662         1.7226         1" Ice         2.6643         2.3506         2" Ice         2" Ice         2" Ice         2" Ice         2" Ice         2.3506         2" Ice         2" Ice         2" Ice         2" Ice         2" Ice         2.3506         2" Ice         2" Ice         2.3506         2" Ice         2.3506         2" Ice         2.1662         1.7135         1.1683         3.3506         2" Ice         3.3506         2" Ice         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3506         3.3					0.03 0.04
CBRS w/ Mount Pipe         A         From Leg         4.0000         0.00         104.0000         No Ice         1.7135         1.1683           0.00         0.00         1/2"         1.9342         1.4373         Ice         2.1662         1.7226           1" Ice         2.6643         2.3506         2" Ice         2" Ice         2" Ice         1.1683           CBRS w/ Mount Pipe         B         From Leg         4.0000         0.00         104.0000         No Ice         1.7135         1.1683           0.00         104.0000         No Ice         1.7135         1.1683         1.7226           1" Ice         2.6643         2.3506         2" Ice         1.2"         1.9342         1.4373           0.00         0.00         104.0000         No Ice         1.7135         1.1683           Ice         2.1662         1.7226         1.7226         1" Ice         2.6643         2.3506           2" Ice         1         1.683         2.3506         2" Ice         1         1.683           CBRS w/ Mount Pipe         C         From Leg         4.0000         0.00         104.0000         No Ice         1.7135         1.1683           0.00         0.00		0.00			
CBRS w/ Mount Pipe         A         From Leg         4.0000         0.00         104.0000         No Ice         1.7135         1.1683           0.00         0.00         1/2"         1.9342         1.4373         Ice         2.1662         1.7226           1" Ice         2.6643         2.3506         2" Ice         2" Ice         2" Ice         1.1683           CBRS w/ Mount Pipe         B         From Leg         4.0000         0.00         104.0000         No Ice         1.7135         1.1683           0.00         0.00         0.00         104.0000         No Ice         1.7135         1.1683           CBRS w/ Mount Pipe         B         From Leg         4.0000         0.00         104.0000         No Ice         1.7135         1.1683           0.00         1/2"         1.9342         1.4373         1.623         1.7226         1" Ice         2.6643         2.3506           2" Ice         1" Ice         2.6643         2.3506         2" Ice         1" Ice         2.6643         2.3506           2" Ice         1         1.683         1.683         1.683         1.683         1.683           0.00         0.00         104.0000         No Ice         1.7135<				0.7228 0.9288	0.06
0.00       1/2"       1.9342       1.4373         0.00       lce       2.1662       1.7226         1" lce       2.6643       2.3506         2" lce       2"         CBRS w/ Mount Pipe       B       From Leg       4.0000       0.00       104.0000       No lce       1.7135       1.1683         0.00       1/2"       1.9342       1.4373       1.4373       1.683         0.00       104.0000       No lce       1.7135       1.1683         0.00       1/2"       1.9342       1.4373         0.00       1/2"       1.9342       1.4373         0.00       1/2"       1.9342       1.4373         0.00       104.0000       No lce       1.7135         2" lce       2"       1.1683         2" lce       2"       2.3506         2" lce       2"       2"         CBRS w/ Mount Pipe       C       From Leg       4.0000       0.00       104.0000       No lce       1.7135       1.1683         0.00       1/2"       1.9342       1.4373	BRS w/ Mount Dino	From Leg 4 0000		17135 1 1600	0.03
0.00         Ice         2.1662         1.7226           1" Ice         2.6643         2.3506           2" Ice         2" Ice           CBRS w/ Mount Pipe         B         From Leg         4.0000         0.00         104.0000         No Ice         1.7135         1.1683           0.00         1/2"         1.9342         1.4373         1.000         Ice         2.1662         1.7226           1" Ice         2.6643         2.3506         1" Ice         2.6643         2.3506           0.00         1/2"         1.9342         1.4373         1.683           0.00         104.0000         No Ice         1.7135         1.1683           2" Ice         2" Ice         1" Ice         2.6643         2.3506           2" Ice         2" Ice         1" Ice         1.6633         2.3506           2" Ice         1         1.683         1.1683         1.1683           0.00         104.0000         No Ice         1.7135         1.1683           0.00         1/2"         1.9342         1.4373	Jorto w Mount Fipe	5			0.03
1" Ice         2.6643         2.3506           2" Ice         2" Ice         2" Ice         2" Ice           CBRS w/ Mount Pipe         B         From Leg         4.0000         0.00         104.0000         No Ice         1.7135         1.1683           0.00         0.00         1/2"         1.9342         1.4373         1/226           1" Ice         2.1662         1.7226         1'' Ice         2.6643         2.3506           2" Ice         2" Ice         2" Ice         2" Ice         1'' Ice         2.6643         2.3506           CBRS w/ Mount Pipe         C         From Leg         4.0000         0.00         104.0000         No Ice         1.7135         1.1683           0.00         0.00         104.0000         No Ice         1.7135         1.1683					0.03
CBRS w/ Mount Pipe         B         From Leg         4.0000         0.00         104.0000         No Ice         1.7135         1.1683           0.00         0.00         1/2"         1.9342         1.4373         1.062         1.7226         1.7226           0.00         Ice         2.1662         1.7226         1"Ice         2.6643         2.3506           2" Ice         2" Ice         2" Ice         1.1683         1.1683         1.1683           CBRS w/ Mount Pipe         C         From Leg         4.0000         0.00         104.0000         No Ice         1.7135         1.1683           0.00         0.00         104.0000         No Ice         1.7135         1.1683		0.00			0.13
CBRS w/ Mount Pipe         B         From Leg         4.0000         0.00         104.0000         No Ice         1.7135         1.1683           0.00         0.00         1/2"         1.9342         1.4373           0.00         Ice         2.1662         1.7226           1" Ice         2.6643         2.3506           2" Ice         2" Ice           CBRS w/ Mount Pipe         C         From Leg         4.0000         0.00         104.0000         No Ice         1.7135         1.1683           0.00         0.00         104.0000         No Ice         1.7135         1.1683				2.00-0 2.0000	0.15
0.00         1/2"         1.9342         1.4373           0.00         Ice         2.1662         1.7226           1" Ice         2.6643         2.3506           2" Ice         2" Ice           CBRS w/ Mount Pipe         C         From Leg         4.0000         0.00         104.0000         No Ice         1.7135         1.1683           0.00         1/2"         1.9342         1.4373	CBRS w/ Mount Pine	From Leg 4 0000		1 7135 1 1683	0.03
0.00 Ice 2.1662 1.7226 1" Ice 2.6643 2.3506 2" Ice CBRS w/ Mount Pipe C From Leg 4.0000 0.00 104.0000 No Ice 1.7135 1.1683 0.00 1/2" 1.9342 1.4373		8			0.05
1" Ice 2.6643 2.3506 2" Ice CBRS w/ Mount Pipe C From Leg 4.0000 0.00 104.0000 No Ice 1.7135 1.1683 0.00 1/2" 1.9342 1.4373					0.07
2" Ice CBRS w/ Mount Pipe C From Leg 4.0000 0.00 104.0000 No Ice 1.7135 1.1683 0.00 1/2" 1.9342 1.4373		0.00			0.13
CBRS w/ Mount Pipe         C         From Leg         4.0000         0.00         104.0000         No Ice         1.7135         1.1683           0.00         1/2"         1.9342         1.4373					5.10
0.00 1/2" 1.9342 1.4373	CBRS w/ Mount Pipe	From Leg 4.0000		1.7135 1.1683	0.03
					0.05
		0.00	lce	2.1662 1.7226	0.07
1" Ice 2.6643 2.3506					0.13

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weigh
			Vert ft ft	٥	ft		ft²	ft²	К
			ft						
						2" Ice			
20W CBRS	А	From Leg	4.0000	0.00	104.0000	No Ice	0.8571	0.4203	0.02
			0.00			1/2"	0.9752	0.5105	0.03
			0.00			ce	1.1008	0.6082	0.03
						1" Ice	1.3741	0.8327	0.06
	_					2" Ice			
20W CBRS	В	From Leg	4.0000	0.00	104.0000	No Ice	0.8571	0.4203	0.02
			0.00			1/2"	0.9752	0.5105	0.03
			0.00			Ice	1.1008	0.6082	0.03
						1" Ice	1.3741	0.8327	0.06
	~					2" Ice			
20W CBRS	С	From Leg	4.0000	0.00	104.0000	No Ice	0.8571	0.4203	0.02
			0.00			1/2"	0.9752	0.5105	0.03
			0.00			Ice	1.1008	0.6082	0.03
						1" Ice	1.3741	0.8327	0.06
			4 0000		404.0000	2" Ice	4 0750	4 9495	0.07
RFV01U-D2A	Α	From Leg	4.0000	0.00	104.0000	No Ice	1.8750	1.0125	0.07
			0.00			1/2"	2.0454	1.1445	0.09
			0.00				2.2231	1.2840	0.11
						1" Ice 2" Ice	2.6009	1.5851	0.15
	-	<b>F</b>	4 0000	0.00	404 0000		4 0750	4 0405	0.07
RFV01U-D2A	В	From Leg	4.0000	0.00	104.0000	No Ice	1.8750	1.0125 1.1445	0.07
			0.00			1/2"	2.0454		0.09
			0.00			Ice	2.2231 2.6009	1.2840	0.11
						1" Ice 2" Ice	2.6009	1.5851	0.15
RFV01U-D2A	С	From Leg	4.0000	0.00	104.0000	No Ice	1.8750	1.0125	0.07
REVUIU-DZA	C	FIOIDLeg	0.00	0.00	104.0000	1/2"	2.0454	1.1445	
			0.00			lce	2.0454	1.2840	0.09 0.11
			0.00			1" Ice	2.6009	1.5851	0.15
						2" Ice	2.0009	1.5651	0.15
RFV01U-D1A	А	From Leg	4.0000	0.00	104.0000	No Ice	1.8750	1.2500	0.08
	~	1 Ioni Log	0.00	0.00	104.0000	1/2"	2.0454	1.3926	0.10
			0.00			Ice	2.2231	1.5426	0.12
			0.00			1" Ice	2.6009	1.8648	0.18
						2" Ice	2.0000	1.0010	0.10
RFV01U-D1A	в	From Leg	4.0000	0.00	104.0000	No Ice	1.8750	1.2500	0.08
	-	1.1000 209	0.00	0100		1/2"	2.0454	1.3926	0.10
			0.00			Ice	2,2231	1.5426	0.12
			0.00			1" Ice	2.6009	1.8648	0.18
						2" Ice			
RFV01U-D1A	С	From Leg	4.0000	0.00	104.0000	No Ice	1.8750	1.2500	0.08
	-		0.00			1/2"	2.0454	1.3926	0.10
			0.00			Ice	2,2231	1.5426	0.12
						1" Ice	2.6009	1.8648	0.18
						2" Ice			
Platform Mount [LP 1201-	С	None		0.00	104.0000	No Ice	37.6100	37.6100	2.63
1_KCKR-HR-1]						1/2"	45.6200	45.6200	3.48
						Ice	53.5900	53.5900	4.46
						1" Ice	69.6500	69.6500	6.85
						2" Ice			
.375" OD x 6' Mount Pipe	А	From Leg	4.0000	0.00	104.0000	No Ice	1.4250	1.4250	0.03
			0.00			1/2"	1.9250	1.9250	0.04
			0.00			ce	2.2939	2.2939	0.05
						1" Ice	3.0596	3.0596	0.09
	_	_				2" Ice			
.375" OD x 6' Mount Pipe	В	From Leg	4.0000	0.00	104.0000	No Ice	1.4250	1.4250	0.03
			0.00			1/2"	1.9250	1.9250	0.04
			0.00			Ice	2.2939	2.2939	0.05
						1" Ice	3.0596	3.0596	0.09
	6	- ·	4 0000	0.00	404 0000	2" Ice	4 4050	4 4050	
.375" OD x 6' Mount Pipe	С	From Leg	4.0000	0.00	104.0000	No Ice	1.4250	1.4250	0.03
			0.00			1/2"	1.9250	1.9250	0.04
			0.00			ce	2.2939	2.2939	0.05
						1" Ice	3.0596	3.0596	0.09

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft	o	ft		ft²	ft²	К
*****						2" Ice			
Pipe Mount [PM 601-3]	С	None		0.00	95.0000	No Ice 1/2" Ice 1" Ice 2" Ice	3.1700 3.7900 4.4200 5.7600	3.1700 3.7900 4.4200 5.7600	0.20 0.23 0.28 0.40
*** 2.375" OD x 6' Mount Pipe	A	From Leg	4.0000 0.00 0.00	0.00	80.0000	No Ice 1/2" Ice 1" Ice 2" Ice	1.4250 1.9250 2.2939 3.0596	1.4250 1.9250 2.2939 3.0596	0.03 0.04 0.05 0.09
OG-860/1920/GPS-A	A	From Leg	4.0000 0.00 2.00	0.00	80.0000	No Ice 1/2" Ice 1" Ice 2" Ice	0.3077 0.3952 0.4897 0.6997	0.3667 0.4572 0.5548 0.7708	0.00 0.01 0.01 0.02
Side Arm Mount [SO 901- 1]	A	None		0.00	80.0000	2 ICe No Ice 1/2" Ice 1" Ice 2" Ice	0.3300 0.4600 0.6200 1.0100	0.6200 0.7800 0.9700 1.4300	0.11 0.11 0.12 0.15

### **Tower Pressures - No Ice**

 $G_{H} = 1.100$ 

Section	Z	Kz	qz	A _G	F	A _F	A _R	$A_{leg}$	Leg	$C_A A_A$	$C_A A_A$
Elevation					а			-	%	In	Out
					С					Face	Face
ft	ft		ksf	ft²	е	ft²	ft²	ft²		ft²	ft²
L1 140.0000-	137.4744	1.353	0.05	7.084	Α	0.000	7.084	7.084	100.00	0.000	0.000
135.0000					В	0.000	7.084		100.00	0.000	0.000
					С	0.000	7.084		100.00	0.000	0.000
L2 135.0000-	132.4759	1.343	0.05	7.522	Α	0.000	7.522	7.522	100.00	0.000	0.000
130.0000					В	0.000	7.522		100.00	0.000	0.000
					С	0.000	7.522		100.00	0.000	0.000
L3 130.0000-	127.4772	1.332	0.05	7.960	Α	0.000	7.960	7.960	100.00	0.000	0.000
125.0000					В	0.000	7.960		100.00	0.000	0.000
					С	0.000	7.960		100.00	0.000	0.000
L4 125.0000-	122.4784	1.321	0.05	8.398	A	0.000	8.398	8.398	100.00	0.000	0.000
120.0000					В	0.000	8.398		100.00	0.000	0.000
					С	0.000	8.398		100.00	0.198	0.000
L5 120.0000-	117.4794	1.309	0.05	8.836	A	0.000	8.836	8.836	100.00	0.000	0.000
115.0000					В	0.000	8.836		100.00	0.000	0.000
					С	0.000	8.836		100.00	0.992	0.000
L6 115.0000-	112.4804	1.297	0.05	9.274	A	0.000	9.274	9.274	100.00	0.000	0.000
110.0000					В	0.000	9.274		100.00	6.330	0.000
					С	0.000	9.274		100.00	0.992	0.000
L7 110.0000-	107.4813	1.285	0.05	9.711	A	0.000	9.711	9.711	100.00	0.375	0.000
105.0000					В	0.000	9.711		100.00	6.705	0.000
					С	0.000	9.711		100.00	1.367	0.000
L8 105.0000-	104.4993	1.277	0.05	1.995	A	0.000	1.995	1.995	100.00	0.750	0.000
104.0000					В	0.000	1.995		100.00	2.016	0.000
					С	0.000	1.995		100.00	0.948	0.000
L9 104.0000-	103.8750	1.276	0.05	0.500	A	0.000	0.500	0.500	100.00	0.188	0.000
103.7500					В	0.000	0.500		100.00	0.504	0.000
					C	0.000	0.500		100.00	0.237	0.000

Section Elevation	Z	Kz	qz	A _G	F a	A _F	A _R	$A_{leg}$	Leg %	C _A A _A In	$C_A A_A$ Out
ft	ft		ksf	ft²	c e	ft²	ft²	ft²		Face ft²	Face ft ²
L10	101.2323	1.269	0.05	10.229	Ă	0.000	10.229	10.229	100.00	5.527	0.000
103.7500-					В	0.000	10.229		100.00	11.857	0.000
98.7500	00.0050	4 000	0.05	0.500	C	0.000	10.229	0.500	100.00	6.519	0.000
L11 98.7500- 98.5000	98.6250	1.262	0.05	0.523	A B	0.000 0.000	0.523 0.523	0.523	100.00 100.00	0.410 0.726	0.000 0.000
98.5000					Ċ	0.000	0.523		100.00	0.720	0.000
L12 98.5000-	98.3750	1.261	0.05	0.522	Ă	0.000	0.522	0.522	100.00	0.410	0.000
98.2500					В	0.000	0.522		100.00	0.726	0.000
					C	0.000	0.522		100.00	0.459	0.000
L13 98.2500-	97.6239	1.259	0.05	2.627	A B	0.000 0.000	2.627	2.627	100.00 100.00	2.048 3.630	0.000 0.000
97.0000					Ċ	0.000	2.627 2.627		100.00	2.296	0.000
L14 97.0000-	96.8750	1.257	0.05	0.530	Ă	0.000	0.530	0.530	100.00	0.410	0.000
96.7500					В	0.000	0.530		100.00	0.726	0.000
					C	0.000	0.530		100.00	0.459	0.000
L15 96.7500-	92.5800	1.245	0.04	18.113		0.000 0.000	18.113 18.113	18.113	100.00 100.00	8.266 23.051	0.000 0.000
88.5000					B C	0.000	18,113		100.00	19.795	0.000
L16 88.5000-	88.3349	1.233	0.04	0.734	Ă	0.000	0.734	0.734	100.00	0.293	0.000
88.1700					В	0.000	0.734		100.00	1.371	0.000
					С	0.000	0.734		100.00	1.081	0.000
L17 88.1700-	88.0450	1.232	0.04	0.556	A	0.000	0.556	0.556	100.00	0.222	0.000
87.9200					B C	0.000	0.556 0.556		100.00 100.00	1.039 0.819	0.000 0.000
L18 87,9200-	85,4041	1,224	0.04	11.358	Ă	0.000	11.358	11.358	100.00	4.442	0.000
82.9200	00.1011		0.01	11,000	B	0.000	11.358	11.000	100.00	20 772	0.000
					С	0.000	11.358		100.00	16.374	0.000
L19 82.9200-	80.4047	1.209	0.04	11.798	A	0.000	11.798	11.798	100.00	4.442	0.000
77.9200					B	0.000	11.798		100.00	20.772	0.000
L20 77,9200-	75.4052	1.193	0.04	12.237	C A	0.000 0.000	11.798 12.237	12.237	100.00 100.00	16.374 4.442	0.000 0.000
72,9200	10.4002	1.100	0.04	12.207	В	0.000	12,237	12.207	100.00	20,772	0.000
					С	0.000	12.237		100.00	16.374	0.000
L21 72.9200-	70.4866	1.176	0.04	12.267	A	0.000	12.267	12.267	100.00	5.254	0.000
68.0800					B	0.000	12.267		100.00	21.061	0.000
L22 68.0800-	67.9550	1.167	0.04	0.644	C A	0.000 0.000	12.267 0.644	0.644	100.00 100.00	16.804 0.287	0.000 0.000
67,8300	07.3330	1.107	0.04	0.044	B	0.000	0.644	0.044	100.00	1,104	0.000
					Ē	0.000	0.644		100.00	0.884	0.000
L23 67.8300-	65.3162	1.157	0.04	13.110	A	0.000	13.110	13.110	100.00	5.742	0.000
62.8300					B	0.000	13.110		100.00	22.072	0.000
L24 62.8300-	60.3166	1.138	0.04	13.552	C A	0.000 0.000	13.110 13.552	13.552	100.00 100.00	17.674 5.742	0.000 0.000
57.8300	00.5100	1.150	0.04	13.332	B	0.000	13.552	13.332	100.00	22.072	0.000
0110000					Ē	0.000	13.552		100.00	17.674	0.000
L25 57.8300-	55.3171	1.117	0.04	13.992	A	0.000	13.992	13.992	100.00	5.742	0.000
52.8300					B	0.000	13.992		100.00	22.072	0.000
L26 52,8300-	50.0244	1.094	0.04	16,132	C A	0.000 0.000	13.992 16.132	16,132	100.00 100.00	17.674 6.408	0.000 0.000
47.2500	50.0244	1.034	0.04	10,152	B	0.000	16.132	10,152	100.00	24.632	0.000
					l č	0.000	16.132		100.00	19.724	0.000
L27 47.2500-	46.8747	1.079	0.04	2.168	Α	0.000	2.168	2.168	100.00	0.861	0.000
46.5000					B	0.000	2.168		100.00	3.311	0.000
L28 46.5000-	43.9877	1.065	0.04	14.707	C A	0.000 0.000	2.168 14.707	14,707	100.00 100.00	2.651 5.785	0.000 0.000
41.5000	43.90//	1.005	0.04	14.707	B	0.000	14.707	14./0/	100.00	5.785 22.115	0.000
41.0000					Ċ	0.000	14.707		100.00	17.717	0.000
L29 41.5000-	39.6183	1.041	0.04	11.320	A	0.000	11.320	11.320	100.00	4.956	0.000
37.7500					B	0.000	11.320		100.00	17.204	0.000
1 30 37 7500	37 6760	1 02	0.04	0 763	C	0.000	11.320	0 762	100.00	13.905	0.000
L30 37 7500- 37 5000	37.6250	1.03	0.04	0.763	A B	0.000 0.000	0.763 0.763	0.763	100.00 100.00	0.330 1.147	0.000 0.000
07.0000					Ċ	0.000	0.763		100.00	0.927	0.000
L31 37.5000-	34.9883	1.015	0.04	15.499	A	0.000	15.499	15.499	100.00	6.608	0.000
32.5000					B	0.000	15.499		100.00	23.438	0.000
122 22 5000	20 2750	0.000		0 700	C	0.000	15.499	0.700	100.00	18.790	0.000
L32 32.5000- 32.2500	32.3750	0.998	0.04	0.786	A B	0.000 0.000	0.786 0.786	0.786	100.00 100.00	0.330 1.189	0.000 0.000
JZ.2000		I I	I		0	0.000	0.700	I	100.00	1.109	0.000

Section Elevation	Z	Kz	qz	A _G	F a	A _F	$A_R$	A _{leg}	Leg %	C _A A _A In	$C_A A_A$ Out
					С					Face	Face
ft	ft		ksf	ft²	е	ft²	ft²	ft ²		ft²	ft²
					С	0.000	0.786		100.00	0.948	0.000
L33 32.2500-	29.7386	0.98	0.04	15.953	Α	0.000	15.953	15.953	100.00	6.608	0.000
27.2500					в	0.000	15.953		100.00	23.772	0.000
					С	0.000	15.953		100.00	18.957	0.000
L34 27.2500-	25.3688	0.948	0.03	12.254	Α	0.000	12.254	12.254	100.00	4.956	0.000
23.5000					В	0.000	12.254		100.00	17.829	0.000
					С	0.000	12.254		100.00	21.682	0.000
L35 23.5000-	23.3750	0.932	0.03	0.825	Α	0.000	0.825	0.825	100.00	0.330	0.000
23.2500					В	0.000	0.825		100.00	1.189	0.000
					С	0.000	0.825		100.00	1.522	0.000
L36 23.2500-	21.9973	0.92	0.03	8.310	A	0.000	8.310	8.310	100.00	3.304	0.000
20.7500					В	0.000	8.310		100.00	11.886	0.000
				0.007	Ċ	0.000	8.310		100.00	15.220	0.000
L37 20.7500-	20.6250	0.908	0.03	0.837	A	0.000	0.837	0.837	100.00	0.330	0.000
20.5000					B	0.000	0.837		100.00	1.189	0.000
1 22 22 5000	47 0000	0.000	0.00	10.000	C	0.000	0.837	40.000	100.00	1.522	0.000
L38 20.5000- 15.5000	17.9893	0.882	0.03	16.980	A B	0.000	16.980 16.980	16 <u>.</u> 980	100.00 100.00	6.608 23.772	0.000 0.000
15.5000					Б С	0.000	16.980		100.00	28.788	0.000
L39 15.5000-	12.9896	0.85	0.03	17.418	A	0.000	17.418	17.418	100.00	20.700 6.608	0.000
10.5000	12.9090	0.05	0.03	17.410	B	0.000	17.418	17.410	100.00	23.772	0.000
10.5000					Ċ	0.000	17.418		100.00	23.832	0.000
L40 10.5000-	7.9899	0.85	0.03	17.860	Ă	0.000	17.860	17.860	100.00	6.608	0.000
5.5000	1.3033	0.00	0.05	17.000	B	0.000	17.860	17.000	100.00	23,772	0.000
5.5000					č	0.000	17.860		100.00	23.832	0.000
L41 5.5000-	4.2475	0.85	0.03	9.094	Ă	0.000	9.094	9.094	100.00	3.304	0.000
3.0000		0100	0100	01001	В	0.000	9.094	01001	100.00	11.886	0.000
0.0000					ē	0.000	9.094		100.00	11.916	0.000
L42 3.0000-	2.8750	0.85	0.03	0.914	Ā	0.000	0.914	0.914	100.00	0.330	0.000
2,7500					В	0.000	0.914		100.00	1,189	0.000
					Ċ	0.000	0.914		100.00	1.192	0.000
L43 2,7500-	2,2496	0.85	0.03	3.668	Ā	0.000	3.668	3.668	100.00	1.322	0.000
1,7500					в	0.000	3.668		100.00	4.754	0.000
					С	0.000	3.668		100.00	4.766	0.000
L44 1.7500-	1.6250	0.85	0.03	0.919	A	0.000	0.919	0.919	100.00	0.330	0.000
1.5000					в	0.000	0.919		100.00	1.189	0.000
					С	0.000	0.919		100.00	1.192	0.000
L45 1.5000-	0.7491	0.85	0.03	5.535	А	0.000	5.535	5.535	100.00	1.983	0.000
0.0000					в	0.000	5.535		100.00	7.132	0.000
					С	0.000	5.535		100.00	7.150	0.000

### **Tower Pressure - With Ice**

#### $G_{H} = 1.100$

Section Elevation	Z	Kz	qz	tz	A _G	F a	A _F	A _R	A _{leg}	Leg %	C _A A _A In	$C_A A_A$ Out
						c				, -	Face	Face
ft	ft		ksf	in	ft²	e	ft²	ft²	ft²		ft ²	ft ²
L1 140.0000-	137.4744	1.353	0.01	1.4706	8.310	Α	0.000	8.310	8.310	100.00	0.000	0.000
135.0000						В	0.000	8.310		100.00	0.000	0.000
						С	0.000	8.310		100.00	0.000	0.000
L2 135.0000-	132.4759	1.343	0.01	1.4651	8.743	Α	0.000	8.743	8.743	100.00	0.000	0.000
130.0000						в	0.000	8.743		100.00	0.000	0.000
						С	0.000	8.743		100.00	0.000	0.000
L3 130.0000-	127.4772	1.332	0.01	1.4595	9.176	Α	0.000	9.176	9.176	100.00	0.000	0.000
125.0000						в	0.000	9.176		100.00	0.000	0.000
						С	0.000	9.176		100.00	0.000	0.000
L4 125.0000-	122.4784	1.321	0.01	1.4537	9.609	Α	0.000	9.609	9.609	100.00	0.000	0.000
120.0000						в	0.000	9.609		100.00	0.000	0.000
						С	0.000	9.609		100.00	0.892	0.000
L5 120.0000-	117.4794	1.309	0.01	1.4476	10.042	Α	0.000	10.042	10.042	100.00	0.000	0.000
115.0000						В	0.000	10.042		100.00	0.000	0.000
						С	0.000	10.042		100.00	4.448	0.000
L6 115.0000-	112.4804	1.297	0.01	1.4413	10.475	А	0.000	10.475	10.475	100.00	0.000	0.000

Section Elevation	Z	Kz	qz	tz	A _G	F a	A _F	A _R	A _{leg}	Leg %	C _A A _A In	$C_A A_A$ Out
ft	ft		ksf	in	ft²	с е	ft²	ft²	ft²		Face ft²	Face ft²
110.0000						В	0.000	10.475		100.00	11.516	0.000
171100000	107.4813	1 205	0.01	1 1210	10.907	C	0.000	10.475	10.007	100.00	4.434	0.000
L7 110.0000- 105.0000	107.4613	1.285	0.01	1.4348	10.907	A B	0.000 0.000	10.907 10.907	10.907	100.00 100.00	0.456 11.956	0.000 0.000
100.0000						č	0.000	10.907		100.00	4.875	0.000
L8 105.0000-	104.4993	1.277	0.01	1.4308	2.233	Α	0.000	2.233	2.233	100.00	0.912	0.000
104.0000						В	0.000	2.233		100.00	3.210	0.000
L9 104.0000-	103.8750	1.276	0.01	1.4299	0.559	C A	0.000 0.000	2.233 0.559	0.559	100.00 100.00	1.794 0.228	0.000 0.000
103,7500	103.07.50	1.270	0.01	1.4233	0.000	B	0.000	0.559	0.000	100.00	0.802	0.000
						С	0.000	0.559		100.00	0.448	0.000
L10 103.7500-	101.2323	1.269	0.01	1.4262	11 <u>.</u> 418	A	0.000	11.418	11.418	100.00	6.905	0.000
98.7500						B C	0.000 0.000	11.418 11.418		100.00 100.00	18.384	0.000 0.000
L11 98.7500-	98.6250	1.262	0.01	1.4225	0.582	Ă	0.000	0.582	0.582	100.00	11.305 0.521	0.000
98.5000						В	0.000	0.582		100.00	1.094	0.000
						С	0.000	0.582		100.00	0.741	0.000
L12 98.5000-	98.3750	1.261	0.01	1.4222	0.581	A	0.000	0.581	0.581	100.00	0.521	0.000
98.2500						B C	0.000 0.000	0.581 0.581		100.00 100.00	1.094 0.741	0.000 0.000
L13 98.2500-	97.6239	1.259	0.01	1.4211	2.923	Ă	0.000	2.923	2.923	100.00	2.605	0.000
97.0000						в	0.000	2.923		100.00	5.471	0.000
		1 957		4 4000		С	0.000	2.923		100.00	3.702	0.000
L14 97.0000- 96.7500	96.8750	1.257	0.01	1.4200	0.589	A B	0.000 0.000	0.589 0.589	0.589	100.00 100.00	0.521 1.094	0.000 0.000
30.7300						č	0.000	0.589		100.00	0.740	0.000
L15 96.7500-	92.5800	1.245	0.01	1.4135	20.056	Ā	0.000	20.056	20.056	100.00	10.799	0.000
88.5000						В	0.000	20.056		100.00	35.253	0.000
L16 88.5000-	88.3349	1.233	0.01	1.4069	0.812	C	0.000 0.000	20.056 0.812	0.812	100.00 100.00	32.744 0.386	0.000 0.000
88.1700	66.3349	1.233	0.01	1.4009	0.012	A B	0.000	0.812	0.012	100.00	1.988	0.000
						č	0.000	0.812		100.00	1,705	0.000
L17 88.1700-	88.0450	1.232	0.01	1.4065	0.615	A	0.000	0.615	0.615	100.00	0.292	0.000
87.9200						B C	0.000 0.000	0.615 0.615		100.00 100.00	1.504 1.290	0.000 0.000
L18 87.9200-	85.4041	1.224	0.01	1.4022	12.526	A	0.000	12.526	12.526	100.00	5.844	0.000
82.9200						В	0.000	12.526		100.00	30.066	0.000
						С	0.000	12.526		100.00	25.769	0.000
L19 82.9200- 77.9200	80.4047	1.209	0.01	1.3938	12.959	A B	0.000 0.000	12.959 12.959	12.959	100.00 100.00	5.835 30.020	0.000 0.000
11.9200						C	0.000	12.959		100.00	25.723	0.000
L20 77.9200-	75.4052	1.193	0.01	1.3848	13.392	Ā	0.000	13.392	13.392	100.00	5.827	0.000
72.9200						В	0.000	13.392		100.00	29.971	0.000
L21 72.9200-	70.4866	1.176	0.01	1.3755	13.376	C A	0.000 0.000	13.392 13.376	13.376	100.00 100.00	25.674 6.585	0.000 0.000
68.0800	70.4000	1.170	0.01	1.57.55	13.570	B	0.000	13.376	15.570	100.00	29.916	0.000
						С	0.000	13.376		100.00	25.757	0.000
L22 68.0800-	67.9550	1.167	0.01	1.3705	0.701	A	0.000	0.701	0.701	100.00	0.356	0.000
67.8300						B C	0.000 0.000	0.701 0.701		100.00 100.00	1.560 1.345	0.000 0.000
L23 67.8300-	65.3162	1.157	0.01	1.3651	14.248	Ă	0.000	14.248	14.248	100.00	7.107	0.000
62.8300						в	0.000	14.248		100.00	31.162	0.000
	00.0400	1 100	0.04	4 05 40	44.000	C	0.000	14.248	44.000	100.00	26.865	0.000
L24 62.8300- 57.8300	60.3166	1.138	0.01	1.3543	14.680	A B	0.000 0.000	14.680 14.680	14.680	100.00 100.00	7.096 31.103	0.000 0.000
37.0000						č	0.000	14.680		100.00	26.806	0.000
L25 57.8300-	55.3171	1.117	0.01	1.3426	15.110	А	0.000	15.110	15.110	100.00	7.084	0.000
52.8300						B	0.000	15.110		100.00	31.038	0.000
L26 52.8300-	50.0244	1.094	0.01	1.3292	17.368	C A	0.000 0.000	15.110 17.368	17.368	100.00 100.00	26.742 7.891	0.000 0.000
47.2500	55.5274		0.01			B	0.000	17.368	11.000	100.00	34.556	0.000
						С	0.000	17.368		100.00	29.761	0.000
L27 47.2500-	46.8747	1.079	0.01	1.3205	2.334	A	0.000	2.334	2.334	100.00	1.061	0.000
46.5000						B C	0.000 0.000	2.334 2.334		100.00 100.00	4.645 4.000	0.000 0.000
L28 46.5000-	43.9877	1.065	0.01	1.3122	15.801	Ă	0.000	15.801	15.801	100.00	7.097	0.000
41.5000						В	0.000	15.801		100.00	30.914	0.000
<b>I</b>	I			ļ		С	0.000	15.801	I	100.00	26.618	0.000

Section	z	Kz	qz	tz	A _G	F	A _F	A _R	A _{lea}	Leg	$C_A A_A$	$C_A A_A$
Elevation	_	- <u>-</u>	.72	-2		а	,		log	%	În	Out
						С					Face	Face
ft	ft		ksf	in	ft²	е	ft²	ft²	ft²		ft²	ft²
L29 41.5000-	39.6183	1.041	0.01	1.2985	12.132	А	0.000	12.132	12.132	100.00	5.930	0.000
37.7500						В	0.000	12.132		100.00	23.747	0.000
						С	0.000	12.132		100.00	20.524	0.000
L30 37.7500-	37.6250	1.03	0.01	1.2918	0.817	Α	0.000	0.817	0.817	100.00	0.395	0.000
37.5000						В	0.000	0.817		100.00	1.581	0.000
		4.045	0.04	4 0005	40.500	С	0.000	0.817	40.500	100.00	1.366	0.000
L31 37 5000- 32 5000	34.9883	1.015	0.01	1.2825	16.568	A B	0.000	16.568	16.568	100.00	7.891	0.000 0.000
32.5000						Б С	0.000	16.568 16.568		100.00 100.00	32.074 27.528	0.000
L32 32,5000-	32,3750	0.998	0.01	1,2726	0.839	A	0.000	0.839	0.839	100.00	0.394	0.000
32,2500	32.3730	0.330	0.01	1.2720	0.000	B	0.000	0.839	0.009	100.00	1.618	0.000
32.2300						č	0.000	0.839		100.00	1,382	0.000
L33 32.2500-	29.7386	0.98	0.01	1.2618	17.005	Ă	0.000	17.005	17.005	100.00	7.870	0.000
27.2500						В	0.000	17.005		100.00	32.294	0.000
						С	0.000	17.005		100.00	27.581	0.000
L34 27.2500-	25.3688	0.948	0.01	1.2419	13.030	А	0.000	13.030	13.030	100.00	5.888	0.000
23.5000						В	0.000	13.030		100.00	24.138	0.000
						С	0.000	13.030		100.00	29.682	0.000
L35 23.5000-	23.3750	0.932	0.01	1.2318	0.876	А	0.000	0.876	0.876	100.00	0.392	0.000
23.2500						В	0.000	0.876		100.00	1.606	0.000
				4 99 49		Ċ	0.000	0.876		100.00	2.068	0.000
L36 23.2500-	21.9973	0.92	0.01	1.2243	8.820	A	0.000	8.820	8.820	100.00	3.916	0.000
20.7500						B C	0.000 0.000	8.820 8.820		100.00 100.00	16.044 20.653	0.000 0.000
L37 20,7500-	20,6250	0.908	0.01	1,2165	0.888	A	0.000	0.888	0.888	100.00	20.653	0.000
20,5000	20.0250	0.900	0.01	1,2105	0.000	В	0.000	0.888	0.000	100.00	1.602	0.000
20.0000						č	0.000	0.888		100.00	2.062	0.000
L38 20.5000-	17.9893	0.882	0.01	1.1999	17.980	Ă	0.000	17.980	17.980	100.00	7.808	0.000
15,5000		0.000				В	0.000	17,980		100.00	31,954	0.000
						С	0.000	17.980		100.00	39.171	0.000
L39 15.5000-	12.9896	0.85	0.00	1.1615	18.386	А	0.000	18.386	18.386	100.00	7.770	0.000
10.5000						В	0.000	18.386		100.00	31.742	0.000
						С	0.000	18.386		100.00	33.065	0.000
L40 10.5000-	7.9899	0.85	0.00	1.1064	18.782	А	0.000	18.782	18.782	100.00	7.715	0.000
5.5000						В	0.000	18.782		100.00	31.439	0.000
	4 0 4 7 -		0.00	1 0007	0 - 0-7	C	0.000	18.782	0 507	100.00	32.707	0.000
L41 5.5000- 3.0000	4.2475	0.85	0.00	1.0387	9.527	A B	0.000	9.527 9.527	9.527	100.00 100.00	3.823 15.533	0.000 0.000
3.0000						С В	0.000	9.527 9.527		100.00	15.533	0.000
L42 3,0000-	2,8750	0.85	0.00	0.9989	0.956	A	0.000	9.527 0.956	0.956	100.00	0.380	0.000
2.7500	2.07.50	0.00	0.00	0.3303	0.330	В	0.000	0.956	0.950	100.00	1.542	0.000
2.1000						č	0.000	0.956		100.00	1.600	0.000
L43 2.7500-	2.2496	0.85	0.00	0.9747	3.831	Ă	0.000	3.831	3.831	100.00	1.517	0.000
1.7500			5.00			В	0.000	3.831		100.00	6.143	0.000
						С	0.000	3.831		100.00	6.370	0.000
L44 1.7500-	1.6250	0.85	0.00	0.9435	0.958	А	0.000	0.958	0.958	100.00	0.378	0.000
1.5000						В	0.000	0.958		100.00	1.527	0.000
						С	0.000	0.958		100.00	1.582	0.000
L45 1.5000-	0.7491	0.85	0.00	0.8732	5.754	A	0.000	5.754	5.754	100.00	2.244	0.000
0.0000						В	0.000	5.754		100.00	9.047	0.000
						С	0.000	5.754		100.00	9.357	0.000

### **Tower Pressure - Service**

#### $G_H = 1.100$

Section Elevation	Z	Kz	qz	A _G	F a c	A _F	A _R	A _{leg}	Leg %	C _A A _A In Face	C _A A _A Out Face
ft	ft		ksf	ft²	е	ft²	ft²	ft²		ft²	ft²
L1 140.0000-	137.4744	1.353	0.01	7.084	Α	0.000	7.084	7.084	100.00	0.000	0.000
135.0000					В	0.000	7.084		100.00	0.000	0.000
I					C	0.000	7.084		100.00	0.000	0.000

Section Elevation	Z	Kz	qz	A _G	F a	A _F	A _R	A _{leg}	Leg %	C _A A _A In	$C_A A_A$ Out
ft	ft		ksf	ft²	c e	ft²	ft²	ft²		Face ft²	Face ft²
L2 135.0000-	132.4759	1.343	0.01	7.522	Ā	0.000	7.522	7.522	100.00	0.000	0.000
130.0000					B	0.000	7.522		100.00	0.000	0.000
L3 130.0000-	107 4770	1,332	0.01	7.960	C	0.000	7.522 7.960	7,960	100.00 100.00	0.000 0.000	0.000 0.000
125.0000	127.4772	1.332	0.01	7.960	A B	0.000	7.960	7.960	100.00	0.000	0.000
123.0000						0.000	7.960		100.00	0.000	0.000
L4 125.0000-	122.4784	1.321	0.01	8.398	A	0.000	8.398	8.398	100.00	0.000	0.000
120.0000					В	0.000	8.398		100.00	0.000	0.000
1 5 400 0000	447 4704	1 200	0.01	0.000		0.000	8.398	0.000	100.00	0.198	0.000
L5 120.0000- 115.0000	117.4794	1.309	0.01	8.836	A B	0.000	8.836 8.836	8.836	100.00 100.00	0.000 0.000	0.000 0.000
110.0000					l č	0.000	8.836		100.00	0.992	0.000
L6 115.0000-	112.4804	1.297	0.01	9.274	A	0.000	9.274	9.274	100.00	0.000	0.000
110.0000					В	0.000	9.274		100.00	6.330	0.000
17440.0000	407 4040	4 005	0.01	9.711	C	0.000	9.274	0 744	100.00	0.992	0.000 0.000
L7 110.0000- 105.0000	107.4813	1.285	0.01	9.711	A B	0.000	9.711 9.711	9.711	100.00 100.00	0.375 6.705	0.000
100.0000					l č	0.000	9.711		100.00	1.367	0.000
L8 105.0000-	104.4993	1.277	0.01	1.995	Ā	0.000	1.995	1.995	100.00	0.750	0.000
104.0000					В	0.000	1.995		100.00	2.016	0.000
104040000	400.0750	4.070	0.01	0 500	C	0.000	1.995	0.500	100.00	0.948	0.000
L9 104.0000- 103.7500	103.8750	1.276	0.01	0.500	A B	0.000	0.500 0.500	0.500	100.00 100.00	0.188 0.504	0.000 0.000
100.7000					Ιč	0.000	0.500		100.00	0.237	0.000
L10	101.2323	1.269	0.01	10.229	Ā	0.000	10.229	10.229	100.00	5.527	0.000
103.7500-					В	0.000	10.229		100.00	11.857	0.000
98.7500	00.0050	4 000	0.01	0.500	C	0.000	10.229	0.500	100.00	6.519	0.000
L11 98.7500- 98.5000	98.6250	1.262	0.01	0.523	A B	0.000	0.523 0.523	0.523	100.00 100.00	0.410 0.726	0.000 0.000
30.3000					Ιč	0.000	0.523		100.00	0.459	0.000
L12 98.5000-	98.3750	1.261	0.01	0.522	Ā	0.000	0.522	0.522	100.00	0.410	0.000
98.2500					В	0.000	0.522		100.00	0.726	0.000
L13 98.2500-	97.6239	1.259	0.01	2.627	C	0.000	0.522 2.627	2.627	100.00 100.00	0.459	0.000 0.000
97.0000	97.0239	1.259	0.01	2.027	A B	0.000	2.627	2.027	100.00	2.048 3.630	0.000
07.0000					l c	0.000	2.627		100.00	2.296	0.000
L14 97.0000-	96.8750	1.257	0.01	0.530	A	0.000	0.530	0.530	100.00	0.410	0.000
96.7500					B	0.000	0.530		100.00	0.726	0.000
L15 96.7500-	92.5800	1.245	0.01	18 <u>.</u> 113	C A	0.000	0.530 18.113	18.113	100.00 100.00	0.459 8.266	0.000 0.000
88.5000	92,0000	1.240	0.01	10.113	B	0.000	18.113	10,113	100.00	23.051	0.000
					Ē	0.000	18,113		100.00	19,795	0.000
L16 88.5000-	88.3349	1.233	0.01	0.734	A	0.000	0.734	0.734	100.00	0.293	0.000
88.1700					B	0.000	0.734		100.00	1.371	0.000
L17 88.1700-	88.0450	1.232	0.01	0.556	C A	0.000	0.734 0.556	0.556	100.00 100.00	1.081 0.222	0.000 0.000
87.9200	00.0400	1.202	0.01	0.000	B	0.000	0.556	0.000	100.00	1.039	0.000
					Ē	0.000	0.556		100.00	0.819	0.000
L18 87.9200-	85.4041	1.224	0.01	11.358	A	0.000	11.358	11.358	100.00	4.442	0.000
82.9200					B C	0.000	11.358		100.00	20.772	0.000
L19 82.9200-	80.4047	1.209	0.01	11.798		0.000	11.358 11.798	11.798	100.00 100.00	16.374 4.442	0.000 0.000
77.9200	00.7077	1.200	0.01	1.1.755	B	0.000	11.798	11100	100.00	20.772	0.000
					c	0.000	11.798		100.00	16.374	0.000
L20 77.9200-	75.4052	1.193	0.01	12.237	A	0.000	12.237	12.237	100.00	4.442	0.000
72.9200					B C	0.000 0.000	12.237 12.237		100.00 100.00	20.772 16.374	0.000 0.000
L21 72.9200-	70.4866	1.176	0.01	12.267	A	0.000	12.237	12.267	100.00	5.254	0.000
68.0800			5.51		B	0.000	12.267	. 2. 201	100.00	21.061	0.000
					С	0.000	12.267		100.00	16.804	0.000
L22 68.0800-	67.9550	1.167	0.01	0.644	A	0.000	0.644	0.644	100.00	0.287	0.000
67.8300					B C	0.000	0.644 0.644		100.00 100.00	1.104	0.000 0.000
L23 67.8300-	65.3162	1.157	0.01	13.110	A	0.000	13.110	13.110	100.00	0.884 5.742	0.000
62.8300			0.01		B	0.000	13.110	101110	100.00	22.072	0.000
					C	0.000	13.110		100.00	17.674	0.000
L24 62.8300-	60.3166	1.138	0.01	13.552	A	0.000	13.552	13.552	100.00	5.742	0.000
57.8300					B	0.000	13.552	I I	100.00	22.072	0.000

Section Elevation	Z	Kz	qz	A _G	F a	A _F	A _R	A _{leg}	Leg %	C _A A _A In	$C_A A_A$ Out
ft	ft		ksf	ft²	c e	ft²	ft²	ft²		Face ft²	Face ft²
					С	0.000	13.552		100.00	17.674	0.000
L25 57.8300-	55.3171	1.117	0.01	13.992	A	0.000	13.992	13,992	100.00	5,742	0.000
52.8300					В	0.000	13.992		100.00	22.072	0.000
					Ē	0.000	13,992		100.00	17,674	0.000
L26 52.8300-	50.0244	1.094	0.01	16.132	Ă	0.000	16.132	16.132	100.00	6.408	0.000
47.2500	00.0211	1.001	0.01	10.102	B	0.000	16.132	10.102	100.00	24.632	0.000
47.2000					l c	0.000	16.132		100.00	19.724	0.000
L27 47.2500-	46.8747	1.079	0.01	2,168	Ă	0.000	2.168	2,168	100.00	0.861	0.000
46.5000	40.0747	1.070	0.01	2.100	B	0.000	2.168	2.100	100.00	3.311	0.000
+0.0000					l č	0.000	2.168		100.00	2.651	0.000
L28 46.5000-	43.9877	1.065	0.01	14.707	Ă	0.000	14.707	14.707	100.00	5.785	0.000
41.5000	40.0077	1.000	0.01	14.707	B	0.000	14.707	14.707	100.00	22.115	0.000
41.0000					l c	0.000	14.707		100.00	17.717	0.000
L29 41.5000-	39.6183	1.041	0.01	11.320	Ā	0.000	11.320	11.320	100.00	4.956	0.000
37.7500	39.0103	1.041	0.01	11.520	B	0.000	11.320	11.520	100.00	17.204	0.000
57.7500					Ċ	0.000	11.320		100.00	13.905	0.000
L30 37,7500-	37.6250	1.03	0.01	0,763	Ă	0.000	0.763	0.763	100.00	0.330	0.000
37.5000	57.0250	1.00	0.01	0.705	B	0.000	0.763	0.703	100.00	1.147	0.000
37.5000					Ċ	0.000	0.763		100.00	0.927	0.000
L31 37.5000-	34.9883	1.015	0.01	15.499	Ā	0.000	15.499	15.499	100.00	6.608	0.000
32.5000	54.9005	1.015	0.01	15.499	B	0.000	15.499	15.499	100.00	23.438	0.000
52.5000					Ċ		15.499			23.438	0.000
1 22 22 5000	22 2750	0.000	0.01	0 700		0.000		0.796	100.00		0.000
L32 32.5000-	32.3750	0.998	0.01	0.786	A B	0.000	0.786	0.786	100.00	0.330	
32.2500						0.000	0.786		100.00	1.189	0.000
1 00 00 0500	00 7000	0.00	0.04	45.050	C	0.000	0.786	45.050	100.00	0.948	0.000
L33 32.2500-	29.7386	0.98	0.01	15.953	A	0.000	15.953	15.953	100.00	6.608	0.000
27.2500					B	0.000	15.953		100.00	23.772	0.000
104070500	05 0000	0.040	0.04	40.054	Ċ	0.000	15.953	40.054	100.00	18.957	0.000
L34 27.2500-	25.3688	0.948	0.01	12.254	A	0.000	12.254	12.254	100.00	4.956	0.000
23.5000					B	0.000	12.254		100.00	17.829	0.000
1 05 00 5000	00 0750			0.005	C	0.000	12.254	0.005	100.00	21.682	0.000
L35 23.5000-	23.3750	0.932	0.01	0.825	A	0.000	0.825	0.825	100.00	0.330	0.000
23.2500					B	0.000	0.825		100.00	1.189	0.000
	04 0070	0.00	0.04	0.040	C	0.000	0.825	0.040	100.00	1.522	0.000
L36 23.2500-	21.9973	0.92	0.01	8.310	A	0.000	8.310	8.310	100.00	3.304	0.000
20.7500					B	0.000	8.310		100.00	11.886	0.000
				o oo <del>-</del>	C C	0.000	8.310	0.007	100.00	15.220	0.000
L37 20.7500-	20.6250	0.908	0.01	0.837	A	0.000	0.837	0.837	100.00	0.330	0.000
20.5000					B	0.000	0.837		100.00	1.189	0.000
1 00 00 5000	47.0000	0.000	0.04	40.000	C	0.000	0.837	40.000	100.00	1.522	0.000
L38 20.5000-	17.9893	0.882	0.01	16.980	A	0.000	16.980	16.980	100.00	6.608	0.000
15.5000					B	0.000	16.980		100.00	23.772	0.000
1 20 45 5000	10,0000		0.04	47 440	C C	0.000	16.980	47 440	100.00	28.788	0.000
L39 15.5000-	12.9896	0.85	0.01	17.418	A	0.000	17.418	17.418	100.00	6.608	0.000
10.5000					B	0.000	17.418		100.00	23.772	0.000
1 40 40 5000	7 0000		0.04	17 000	C	0.000	17.418	17.000	100.00	23.832	0.000
L40 10.5000-	7.9899	0.85	0.01	17.860	A	0.000	17.860	17.860	100.00	6.608	0.000
5.5000					B	0.000	17.860		100.00	23.772	0.000
1 44 5 5000	4 0 475	0.05	0.04	0.004	C	0.000	17.860	0.001	100.00	23.832	0.000
L41 5.5000-	4.2475	0.85	0.01	9.094	A	0.000	9.094	9.094	100.00	3.304	0.000
3.0000					B	0.000	9.094		100.00	11.886	0.000
	0 0756	0.00			C	0.000	9.094		100.00	11.916	0.000
L42 3.0000-	2.8750	0.85	0.01	0.914	A	0.000	0.914	0.914	100.00	0.330	0.000
2.7500					B	0.000	0.914		100.00	1.189	0.000
1 42 0 7500	0.0400	0.05	0.04	2 000	C	0.000	0.914	0.000	100.00	1.192	0.000
L43 2.7500-	2.2496	0.85	0.01	3.668	A	0.000	3.668	3.668	100.00	1.322	0.000
1.7500					B	0.000	3.668		100.00	4.754	0.000
	4 0050	0.05			Ċ	0.000	3.668		100.00	4.766	0.000
L44 1.7500-	1.6250	0.85	0.01	0.919	A	0.000	0.919	0.919	100.00	0.330	0.000
1.5000					B	0.000	0.919		100.00	1.189	0.000
1	<b>a - i a</b> i				C	0.000	0.919		100.00	1.192	0.000
L45 1.5000-	0.7491	0.85	0.01	5.535	A	0.000	5.535	5.535	100.00	1.983	0.000
0.0000					В	0.000	5.535		100.00	7.132	0.000
					С	0.000	5.535		100.00	7.150	0.000

#### Description Comb. No. Dead Only 1 1.2 Dead+1.0 Wind 0 deg - No Ice 2 0.9 Dead+1.0 Wind 0 deg - No Ice 3 4 1.2 Dead+1.0 Wind 30 deg - No Ice 0.9 Dead+1.0 Wind 30 deg - No Ice 5 1.2 Dead+1.0 Wind 60 deg - No Ice 6 7 0.9 Dead+1.0 Wind 60 deg - No Ice 1.2 Dead+1.0 Wind 90 deg - No Ice 8 9 0.9 Dead+1.0 Wind 90 deg - No Ice 1.2 Dead+1.0 Wind 120 deg - No Ice 10 11 0.9 Dead+1.0 Wind 120 deg - No Ice 1.2 Dead+1.0 Wind 150 deg - No Ice 0.9 Dead+1.0 Wind 150 deg - No Ice 12 13 1.2 Dead+1.0 Wind 180 deg - No Ice 14 0.9 Dead+1.0 Wind 180 deg - No Ice 15 1.2 Dead+1.0 Wind 210 deg - No Ice 0.9 Dead+1.0 Wind 210 deg - No Ice 16 17 18 1.2 Dead+1.0 Wind 240 deg - No Ice 0.9 Dead+1.0 Wind 240 deg - No Ice 19 1.2 Dead+1.0 Wind 270 deg - No Ice 0.9 Dead+1.0 Wind 270 deg - No Ice 20 21 22 1.2 Dead+1.0 Wind 300 deg - No Ice 0.9 Dead+1.0 Wind 300 deg - No Ice 23 24 1.2 Dead+1.0 Wind 330 deg - No Ice 0.9 Dead+1.0 Wind 330 deg - No Ice 25 26 1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp 27 28 1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp 29 1 2 Dead+1 0 Wind 60 deg+1 0 Ice+1 0 Temp 30 1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp 31 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp 32 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp 33 34 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp 35 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp 36 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp 37 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 38 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp Dead+Wind 0 deg - Service 39 40 Dead+Wind 30 deg - Service Dead+Wind 60 deg - Service 41 42 Dead+Wind 90 deg - Service 43 Dead+Wind 120 deg - Service Dead+Wind 150 deg - Service 44 Dead+Wind 180 deg - Service 45 46 Dead+Wind 210 deg - Service Dead+Wind 240 deg - Service Dead+Wind 270 deg - Service 47 48 49 Dead+Wind 300 deg - Service Dead+Wind 330 deg - Service 50

#### Load Combinations

	Maximum Member Forces								
Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft		
L1	140 - 135	Pole	Max Tension	48	0.00	-0.00	0.00		
			Max. Compression	26	-10.03	-0.00	-0.00		
			Max. Mx	20	-4.34	20.82	-0.00		
			Max. My	2	-4.34	-0.00	20.82		
			Max. Vy	20	-5.25	20.82	-0.00		
			Max. Vx	2	-5.25	-0.00	20.82		
			Max. Torque	12			0.00		
L2	135 - 130	Pole	Max Tension	1	0.00	0.00	0.00		

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	ĸ	kip-ft	kip-ft
			Max. Compression	26	-10.52	-0.00	-0.00
			Max. Mx	20	-4.62	48.08	-0.01
			Max. My	2	-4.62	-0.00	48.07
			Max. Vy	20	-5.66	48.08	-0.01
			Max. Vx	2	-5.66	-0.00	48.07
			Max. Torque	12			0.00
L3	130 - 125	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-11.03	-0.00	-0.00
			Max. Mx	20	-4.91	77.41	-0.01
			Max. My	2	-4.91	-0.00	77.40
			Max. Vy	20	-6.08	77.41	-0.01
			Max. Vx	2	-6.08	-0.00	77.40
			Max. Torque	12			0.00
L4	125 <b>-</b> 120	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-22.85	0.14	-0.51
			Max. Mx	20	-9.56	123 19	-0.13
				14	-9.57	0.04	-123.29
			Max. My				
			Max. Vy	20	-14.00	123.19	-0.13
			Max. Vx	2	-14.00	-0.00	122.99
			Max. Torque	22			0.49
L5	120 - 115	Pole	Max Tension	1	0.00	0.00	0.00
_0			Max. Compression	26	-23.62	0.14	-0.55
			•	20	-10.10	194.25	-0.15
			Max. Mx				
			Max. My	14	-10.10	0.06	-194.36
			Max. Vy	20	-14.44	194.25	-0.15
			Max. Vx	2	-14.44	-0.01	194.05
			Max. Torque	22			0.49
L6	115 - 110	Pole	Max Tension	1	0.00	0.00	0.00
LU	110 - 110				-34.62	-0.12	-0.30
			Max. Compression	26			
			Max. Mx	8	-15.09	-295.52	-0.03
			Max. My	14	-15.08	-0.03	-295.72
			Max. Vy	20	-20.01	295.49	-0.07
			Max. Vx	2	-20.03	-0.07	295.57
			Max Torque	22			0.49
L7	110 - 105	Pole	•	1	0.00	0.00	
	110 - 105	Fole	Max Tension			0.00	0.00
			Max. Compression	26	-35.65	-0.27	-0.27
			Max. Mx	8	-15.84	-396.56	-0.02
			Max. My	14	-15.83	-0.08	-396.81
			Max, Vy	20	-20.42	396.45	-0.04
			Max. Vx	2	-20.44	-0.10	396.70
			Max. Torque	10	20.11	0.10	-0.37
1.0	105 104	Dela			0.00	0.00	
L8	105 - 104	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-35.89	-0.30	-0.26
			Max. Mx	8	-15.99	-417.03	-0.02
			Max. My	14	-15.99	-0.09	-417.28
			Max. Vy	8	20.53	-417.03	-0.02
			Max. Vx	2	-20.53	-0.11	417.17
			Max. Torque	10	20.00	0.11	-0.37
10	101 102 75	Dala	•		0.00	0.00	
L9	104 - 103.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-46.69	0.42	0.16
			Max. Mx	20	-20.52	423.41	0.06
			Max. My	2	-20.52	0.06	423.62
			Max. Vy	8	25.31	-423.15	0.10
			Max. Vx	2	25.35	0.06	423.62
				2	-20.00	0.00	
1.40	400 75	<b>.</b> .	Max. Torque	2	0.00	0.00	0.62
L10	103.75 - 98.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-48.26	0.27	0.20
			Max. Mx	8	-21.56	-551.27	0.36
			Max. My	2	-21.56	-0.23	551.85
			-		25.95		
			Max. Vy	8		-551.27	0.36
			Max. Vx	2	-25.96	-0.23	551.85
			Max. Torque	2			0.62
L11	98.75 - 98.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-48.34	0.26	0.20
			Max. Oompression Max. Mx		-21.63	-557.76	0.37
				8			
			Max. My	2	-21.63	-0.24	558.35
			Max. Vy	8	25.98	-557.76	0.37
			Max. Vx	2	-25.99	-0.24	558.35

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	ĸ	kip-ft	kip-ft
			Max. Torque	2			0.62
L12	98.5 - 98.25	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-48.44	0.25	0.21
			Max. Mx	8	-21.70	-564.26	0.39
			Max. My	2	-21.70	-0.26	564.85
			Max. Vy	8	26.02	-564.26	0.39
			Max. Vx	2	-26.02	-0.26	564.85
			Max. Torque	2		0.20	0.62
L13	98,25 - 97	Pole	Max Tension	1	0.00	0.00	0.00
LIU	00.20 07		Max. Compression	26	-48.95	0.21	0.22
			Max. Max. Mx	8	-22.03	-596.90	0.45
			Max. My	2	-22.03	-0.33	597.47
					26.20		
			Max. Vy	8		-596.90	0.45
			Max. Vx	2	-26.20	-0.33	597.47
	~~ ~~ ~~		Max. Torque	2			0.62
L14	97 - 96.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-49.04	0.21	0.22
			Max. Mx	8	-22.10	-603.45	0.47
			Max. My	2	-22.10	-0.34	604.02
			Max. Vy	8	26.24	-603.45	0.47
			Max. Vx	2	-26.23	-0.34	604.02
			Max. Torque	2			0.62
L15	96.75 - 88.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-51.20	0.03	0.16
			Max Mx	8	-23.49	-736 75	0.70
			Max, My	2	-23.49	-0.63	737.23
			Max. Vy	8	27.04	-736.75	0.70
			Max. Vx	2	-27.04		737.23
					-27.03	-0.63	
1.40	00 5 00 47	D.L.	Max. Torque	2		0.00	0.62
L16	88.5 - 88.17	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-53.23	-0.10	0.11
			Max. Mx	8	-24.89	-834.52	0.87
			Max. My	2	-24.89	-0.84	834.91
			Max. Vy	20	-27.59	833.96	-0.66
			Max. Vx	2	-27.56	-0.84	834.91
			Max. Torque	2			0.62
L17	88.17 - 87.92	Pole	Max Tension	1	0.00	0.00	0.00
	07.92		Max Companyagian	26	E2 2E	0.11	0.11
			Max. Compression	26	-53.35	-0.11	0.11
			Max. Mx	8	-24.98	-841.42	0.88
			Max. My	2	-24.98	-0.85	841.80
			Max. Vy	20	-27.64	840.86	-0.68
			Max. Vx	2	-27.60	-0.85	841.80
			Max. Torque	2			0.62
L18	87.92 -	Pole	Max Tension	1	0.00	0.00	0.00
	82.92		Max. Compression	26	-55.76	0.24	0.02
				26		-0.34	0.03
			Max. Mx	8	-26.63	-981.24	1.11
			Max. My	2	-26.63	-1.15	981.48
			Max. Vy	20	-28.37	980.74	-0.93
			Max. Vx	2	-28.31	-1.15	981.48
			Max. Torque	2			0.62
L19	82.92 -	Pole	Max Tension	1	0.00	0.00	0.00
	77.92		Max. Compression	26	-58.43	-0.57	0.42
			Max. Mx	8	-28.48	-1124.85	1.51
			Max. My	2	-28.48	-1.44	1125 13
			Max. Vy	20	-29.23	1124.60	-1.01
			Max. Vx	20	-29.12	-1.44	1125 13
			Max. VX Max. Torque		-23.12	- 1.44	0.69
			wax. rorque	4	0.00	0.00	
L20	77.92 -	Pole	Max Tension	1	0.00	0.00	0.00
L20	77.92 - 72.92	Pole					
L20		Pole	Max. Compression	26	-60.88	-0.82	0.34
L20		Pole	Max. Compression Max. Mx	26 20	-60.88 -30.20	-0.82 1272.46	0.34 -1.26
L20		Pole	Max. Compression	26	-60.88	-0.82	0.34 -1.26 1272.38
L20		Pole	Max. Compression Max. Mx	26 20	-60.88 -30.20	-0.82 1272.46	0.34 -1.26
L20		Pole	Max. Compression Max. Mx Max. My	26 20 2	-60.88 -30.20 -30.21	-0.82 1272.46 -1.74	0.34 -1.26 1272.38
L20		Pole	Max. Compression Max. Mx Max. My Max. Vy	26 20 2 20	-60.88 -30.20 -30.21 -29.97	-0.82 1272.46 -1.74 1272.46	0.34 -1.26 1272.38 -1.26

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Type	Condition	Load	Axiai	Moment	Moment
No.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Comb.	ĸ	kip-ft	kip-ft
	68.08						
			Max. Compression	26	-63.31	-1.05	0.26
			Max. Mx	20	-31.90	1419.11	-1.51
			Max. My	2	-31.91	-2.03	1418.23
			Max. Vy	20	-30.69	1419.11	-1.51
			Max. Vx	2	-30.49	-2.03	1418.23
L22	68.08 -	Pole	Max. Torque Max Tension	4 1	0.00	0.00	0.69 0.00
LZZ	67.83	Pole	Max rension	I	0.00	0.00	0.00
	07.00		Max. Compression	26	-63.44	-1.07	0.25
			Max. Mx	20	-32.01	1426.78	-1.52
			Max. My	2	-32.03	-2.04	1425.85
			Max. Vy	20	-30.74	1426.78	-1.52
			Max. Vx	2	-30.53	-2.04	1425.85
			Max. Torque	4			0.69
L23	67.83 -	Pole	Max Tension	1	0.00	0.00	0.00
	62.83				<u> </u>		o /=
			Max. Compression	26	-66.15	-1.32	0.17
			Max. Mx	20	-33.94	1582.20	-1.77
			Max. My	2	-33.96	-2.34	1580.19
			Max. Vy Max. Vx	20	-31.50	1582.20	_1.77 1580.19
			Max. VX Max. Torque	2 4	-31.25	-2.34	0.69
L24	62.83 -	Pole	Max. Torque Max Tension	4	0.00	0.00	0.09
L24	57.83	r ole		I	0.00	0.00	0.00
	07.00		Max. Compression	26	-68.87	-1.58	0.08
			Max. Mx	20	-35.91	1741.45	-2.03
			Max. My	2	-35.93	-2.65	1738.12
			Max. Vy	20	-32.26	1741.45	-2.03
			Max. Vx	2	-31.96	-2.65	1738.12
			Max. Torque	4			0.69
L25	57.83 <del>-</del>	Pole	Max Tension	1	0.00	0.00	0.00
	52.83						
			Max. Compression	26	-71.62	-1.85	-0.00
			Max. Mx	20	-37.91	1904.47	-2.28
			Max. My	2	-37.94	-2.95	1899.58
			Max. Vy	20	-33.01	1904.47	-2.28
			Max. Vx	2	-32.66	-2.95	1899.58
L26	ED 02	Pole	Max. Torque Max Tension	4 1	0.00	0.00	0.69
L20	52.83 - 47.25	Pole		I	0.00	0.00	0.00
	47.25		Max. Compression	26	-72.36	-1.92	-0.03
			Max. Compression Max. Mx	20	-38.45	1948 46	-2.35
			Max. My	2	-38.47	-3.03	1943.11
			Max. Vy	20	-33.21	1948.46	-2.35
			Max. Vx	2	-32.85	-3.03	1943.11
			Max. Torque	4			0.69
L27	47.25 - 46.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-76.85	-2.19	-0.12
			Max. Mx	20	-41.90	2116.56	-2.60
			Max. My	2	-41.93	-3.34	2109.36
			Max. Vy	20	-34.07	2116.56	-2.60
			Max. Vx	2	-33.67	-3.34	2109.36
			Max. Torque	4			0.69
L28	46.5 - 41.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-79.76	-2.46	-0.21
			Max. Mx	20	-44.09	2288.56	-2.86
			Max. My	2	-44.11 -34.79	-3.64 2288.56	2279.26 -2.86
			Max. Vy Max. Vy	20			
			Max. Vx Max. Torque	2 4	-34.34	-3.64	2279.26 0.69
L29	41.5 - 37.75	Pole	Max. Torque Max Tension	4	0.00	0.00	0.09
LLJ	-1.0-01.10		Max Tension Max. Compression	26	-81.98	-2.67	-0.27
			Max. Compression Max. Mx	20	-45.75	2419.88	-3.05
			Max. My	20	-45.77	-3.88	2408.86
			Max. Vy	20	-35.33	2419.88	-3.05
			Max. Vx	2	-34.84	-3.88	2408.86
			Max. Torque	4			0.69
L30	37.75 - 37.5	Pole	Max Tension	1	0.00	0.00	0.00

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Ax Moment
No.				Comb.	К	kip-ft	kip-ft
			Max. Compression	26	-82.13	-2.69	-0.28
			Max. Mx	20	-45.88	2428.71	-3.06
			Max, My	2	-45,90	-3.89	2417.57
			Max. Vy	20	-35.37	2428 71	3.06
			Max, Vx	2	-34,86	-3.89	2417.57
			Max. Torque	4			0.69
L31	37.5 - 32.5	Pole	Max Tension	1	0.00	0.00	0.00
201	0110 0210		Max. Compression	26	-85.14	-2.97	0.37
			Max. Mx	20	-48.15	2607.04	3.32
			Max. My	2	-48.17	-4.20	2593.37
			Max, Vy	20	-36.05	2607.04	-3.32
			Max. Vx	2	-35.51	-4.20	2593.37
			Max. Torque	4	-00.01	-4.20	0.69
L32	32.5 - 32.25	Pole	Max. Tension	1	0.00	0.00	0.00
LJZ	32.0 - 32.20	Fole		26			
			Max. Compression	20	-85.30	-2.98	-0.37 -3.33
			Max. Mx		-48.29	2616.05	
			Max. My	2	-48.31	-4.21	2602.24
			Max. Vy	20	-36.10	2616.05	-3.33
			Max. Vx	2	-35.54	-4.21	2602.24
			Max. Torque	4			0.69
L33	32.25 - 27.25	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-88.47	-3.28	-0.46
			Max. Mx	20	-50,71	2797.97	-3.58
			Max. My	2	-50.73	-4.52	2781.39
			Max. Vy	20	-36.76	2797.97	-3.58
			Max. Vx	2	-36.17	-4.52	2781.39
			Max. Torque	4			0.69
L34	27.25 - 23.5	Pole	Max Tension	1	0.00	0.00	0.00
204	21.20 20.0		Max. Compression	26	-90.93	-3.56	-0.66
			Max. Max. Mx	20	-52.56	2936.66	-3.77
			Max. My	20	-52.58	-4.76	2917 89
			Max, Vy	20	-37.28	2936.66	-3.77
			Max. Vx	20	-36.69	-4 76	2917.89
			Max. Torque	4	-30.03	-4.70	0.69
L35	23.5 - 23.25	Pole	Max. Tension	1	0.00	0.00	0.00
L33	23.3 23.23	FUIC	Max. Compression	26	-91.11	-3.58	-0.67
			Max. Compression Max. Mx	20	-52.72	2945.98	-3.78
				20	-52.72	-4 77	2927.06
			Max. My	20	-37.32	2945.98	-3.78
			Max. Vy				
			Max. Vx	2	-36.71	-4.77	2927.06
	00.05		Max. Torque	4			0.69
L36	23.25 - 20.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-92.94	-3.77	-0.82
			Max. Mx	20	-54.11	3039.60	-3.91
			Max. My	2	-54.13	-4.93	3019.21
			Max. Vy	20	-37.67	3039.60	-3.91
			Max. Vx	2	-37.06	-4.93	3019.21
			Max. Torque	4			0.69
L37	20.75 - 20.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-93.11	-3.79	-0.83
			Max. Mx	20	-54.26	3049.01	-3.92
			Max. My	2	-54.27	-4.94	3028.47
			Max. Vy	20	-37.70	3049.01	-3.92
			Max. Vx	2	-37.09	-4.94	3028.47
			Max Torque	4			0.69
L38	20.5 - 15.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-96.54	-4.16	-1.09
			Max. Max	20	-56.89	3238.88	-4.18
			Max. My	2	-56.90	-5.25	3215 38
			Max. Wy Max. Vy	20	-38.33	3238.88	-4.18
			Max. Vy Max. Vx	20	-37.72	-5.25	3215.38
				2 4	-31.12	-5.25	
130	15 5 10 F	Pole	Max. Torque		0.00	0.00	0.69
L39	15.5 - 10.5	Pole	Max Tension	1	0.00		0.00
			Max. Compression	26	-99.92	-4.50	-1.26
			Max. Mx	20	-59.55	3431.76	-4.43
			Max. My	2	-59.56	-5.57	3405.27
			Max. Vy	20	-38.90	3431.76	-4.43

140 Ft Monopole Tower Structural Analysis Project Number 37520-0091.001.7805, Order 508882, Revision 0

n         ft         Type         Load Comb.         K           No.         Max. Vx         2         -38.29           L40         10.5 - 5.5         Pole         Max. Torque         4           L40         10.5 - 5.5         Pole         Max. Torque         4           Max. Compression         26         -103.28         Max. Mx         20         -62.25           Max. My         2         -62.25         Max. My         2         -62.25           Max. Vy         20         -39.47         Max. Vy         20         -39.47           L41         5.5 - 3         Pole         Max Tension         1         0.00           Max. Compression         26         -104.95         Max. Mx         20         -63.61           Max. My         2         -63.61         Max. My         2         -63.61           Max. My         2         -63.61         Max. Wy         2         -39.76           Max. Vy         20         -39.76         Max. Vx         2         -39.14           L42         3 - 2.75         Pole         Max Tension         1         0.00           Max, Compression         26         -105.12         -105.1	Moment kip-ft -5.57 0.00 -4.83 3627.48 -5.88 3627.48 -5.88 0.00 -4.99 3726.40 -6.03	<i>Moment</i> <i>kip-ft</i> 3405.27 0.69 0.00 -1.43 -4.68 3597.99 -4.68 3597.99 0.69 0.00
Max. Vx         2         -38.29           L40         10.5 - 5.5         Pole         Max. Torque         4           Max. Torque         4         0.00         Max. Torque         4           Max. Compression         26         -103.28         Max. Mx         20         -62.25           Max. My         2         -62.25         Max. Vy         20         -39.47           Max. Vy         20         -39.47         Max. Vy         20         -39.47           Max. Vy         20         -39.47         Max. Vy         2         -38.85           Max. Torque         4         4         0.00         Max. Torque         4           L41         5.5 - 3         Pole         Max Tension         1         0.00           Max. Compression         26         -104.95         Max. My         2         -63.61           Max. My         2         -63.61         Max. My         2         -63.61           Max. Vy         20         -39.76         Max. Vy         20         -39.76           Max. Vy         20         -39.76         Max. Vy         2         -39.14           Max. Torque         4         4         4	-5.57 0.00 -4.83 3627.48 -5.88 3627.48 -5.88 3627.48 -5.88 0.00 -4.99 3726.40 -6.03	3405.27 0.69 0.00 -1.43 -4.68 3597.99 -4.68 3597.99 0.69 0.00
L40         10.5 - 5.5         Pole         Max. Torque         4           L40         10.5 - 5.5         Pole         Max Tension         1         0.00           Max. Compression         26         -103.28         Max. Mx         20         -62.25           Max. My         2         -62.25         Max. Wy         20         -39.47           Max. Vy         20         -39.47         Max. Vx         2         -38.85           Max. Torque         4         -         -         -         -           L41         5.5 - 3         Pole         Max Tension         1         0.00           Max. Compression         26         -104.95         Max. Mx         20         -63.61           Max. My         2         -63.61         Max. My         2         -63.61           Max. Vy         20         -39.76         Max. Vx         2         -39.14           L42         3 - 2.75         Pole         Max Tension         1         0.00	0.00 -4.83 3627.48 -5.88 3627.48 -5.88 0.00 -4.99 3726.40 -6.03	0.69 0.00 -1.43 -4.68 3597.99 -4.68 3597.99 0.69 0.00
L40         10.5 - 5.5         Pole         Max Tension         1         0.00           Max. Compression         26         -103.28         Max. Mx         20         -62.25           Max. My         2         -62.25         Max. Wy         20         -39.47           Max. Vy         20         -39.47         Max. Vx         2         -38.85           Max. Torque         4         -         -104.95         Max. Compression         26         -104.95           L41         5.5 - 3         Pole         Max Torque         4         -104.95           Max. Mx         20         -63.61         Max. My         2         -63.61           Max. My         2         -63.61         Max. Vy         20         -39.76           Max. Vx         2         -39.14         Max. Torque         4         -39.14           L42         3 - 2.75         Pole         Max Tension         1         0.00	-4.83 3627.48 -5.88 3627.48 -5.88 0.00 -4.99 3726.40 -6.03	0.00 -1.43 -4.68 3597.99 -4.68 3597.99 0.69 0.00
Max. Compression         26         -103.28           Max. Mx         20         -62.25           Max. My         2         -62.25           Max. Wy         20         -39.47           Max. Vx         2         -38.85           Max. Torque         4         -000           L41         5.5 - 3         Pole         Max Tension         1         0.00           Max. Compression         26         -104.95         Max. Mx         20         -63.61           Max. My         2         -63.61         Max. My         2         -63.61           Max. Vy         20         -39.76         Max. Vy         20         -39.76           Max. Torque         4         -104.95         -104.95         -104.95           Max. My         2         -63.61         Max. My         2         -63.61           Max. Vy         20         -39.76         Max. Vx         2         -39.14           Max. Torque         4         -104.95         -104.95         -104.95         -104.95           Max. My         2         -63.61         Max.Vx         2         -39.76           Max. Torque         4         -104.95         -10	-4.83 3627.48 -5.88 3627.48 -5.88 0.00 -4.99 3726.40 -6.03	-1.43 -4.68 3597.99 -4.68 3597.99 0.69 0.00
Max. Mx         20         -62.25           Max. My         2         -62.25           Max. Wy         20         -39.47           Max. Vx         2         -38.85           Max. Torque         4	3627.48 -5.88 3627.48 -5.88 0.00 -4.99 3726.40 -6.03	-4.68 3597.99 -4.68 3597.99 0.69 0.00
Max. My         2         -62.25           Max. Vy         20         -39.47           Max. Vx         2         -38.85           Max. Torque         4         4           L41         5.5 - 3         Pole         Max. Torque         4           Max. Compression         1         0.00         0.00           Max. Mx         20         -63.61           Max. My         2         -63.61           Max. Vy         20         -39.76           Max. Torque         4         4           L42         3 - 2.75         Pole         Max Tension         1         0.00	-5.88 3627.48 -5.88 0.00 -4.99 3726.40 -6.03	3597.99 -4.68 3597.99 0.69 0.00
Max. Vý         20         -39.47           Max. Vx         2         -38.85           Max. Torque         4           L41         5.5 - 3         Pole         Max Tension         1         0.00           Max. Compression         26         -104.95         Max. Mx         20         -63.61           Max. My         2         -63.61         Max. Vy         20         -39.76           Max. Vy         20         -39.76         Max. Vx         2         -39.14           L42         3 - 2.75         Pole         Max Tension         1         0.00	3627.48 -5.88 0.00 -4.99 3726.40 -6.03	-4.68 3597.99 0.69 0.00
Max. Vx         2         -38.85           Max. Torque         4           L41         5.5 - 3         Pole         Max Tension         1         0.00           Max. Compression         26         -104.95         Max. Mx         20         -63.61           Max. My         2         -63.61         Max. Vy         20         -39.76           Max. Vy         20         -39.76         Max. Vx         2         -39.14           L42         3 - 2.75         Pole         Max Tension         1         0.00	-5.88 0.00 -4.99 3726.40 -6.03	3597.99 0.69 0.00
L41         5.5 - 3         Pole         Max. Torque         4           L41         5.5 - 3         Pole         Max Tension         1         0.00           Max. Compression         26         -104.95         Max. Mx         20         -63.61           Max. My         2         -63.61         Max. Vy         20         -39.76           Max. Vy         20         -39.76         Max. Vx         2         -39.14           Max. Torque         4         Max Tension         1         0.00	0.00 -4.99 3726.40 -6.03	0.69 0.00
L41 5.5 - 3 Pole Max Tension 1 0.00 Max. Compression 26 -104.95 Max. Mx 20 -63.61 Max. My 2 -63.61 Max. Vy 20 -39.76 Max. Vx 2 -39.14 Max. Torque 4 L42 3 - 2.75 Pole Max Tension 1 0.00	-4.99 3726.40 -6.03	0.00
Max. Compression         26         -104.95           Max. Mx         20         -63.61           Max. My         2         -63.61           Max. My         2         -63.61           Max. Vy         20         -39.76           Max. Vx         2         -39.14           Max. Torque         4           L42         3 - 2.75         Pole         Max Tension         1         0.00	-4.99 3726.40 -6.03	
Max. Mx         20         -63.61           Max. My         2         -63.61           Max. My         2         -63.61           Max. Wy         20         -39.76           Max. Vy         20         -39.76           Max. Vx         2         -39.14           Max. Torque         4           L42         3 - 2.75         Pole         Max Tension         1         0.00	3726.40 -6.03	
Max, My         2         -63,61           Max. Vy         20         -39.76           Max. Vx         2         -39.14           Max. Torque         4           L42         3 - 2.75         Pole         Max Tension         1         0.00	-6.03	-1.52
Max. Vy         20         -39.76           Max. Vx         2         -39.14           Max. Torque         4           L42         3 - 2.75         Pole         Max Tension         1         0.00		-4.81
Max. Vx         2         -39.14           Max. Torque         4           L42         3 - 2.75         Pole         Max Tension         1         0.00		3695.41
Max. Vx         2         -39.14           Max. Torque         4           L42         3 - 2.75         Pole         Max Tension         1         0.00	3726.40	-4.81
Max. Torque         4           L42         3 - 2.75         Pole         Max Tension         1         0.00	-6.03	3695.41
		0.69
Max Compression 26 105.12	0.00	0.00
Max, Compression 26 -105,12	-5.00	-1.52
Max, Mx 20 -63,77	3736.33	-4.82
Max. My 2 -63.77	-6.05	3705.19
Max. Vy 20 -39.77	3736.33	-4.82
Max. Vx 2 -39.15	-6.05	3705.19
Max. Torque 4		0.69
L43 2.75 1.75 Pole Max Tension 1 0.00	0.00	0.00
Max. Compression 26 -105.80	-5.06	-1.56
Max, Mx 20 -64,31	3776.13	-4.87
Max. My 2 -64.31	-6.11	3744.39
Max. Vy 20 -39.90	3776.13	-4.87
Max. Vx 2 -39.28	-6.11	3744.39
Max. Torque 4		0.69
L44 1.75 - 1.5 Pole Max Tension 1 0.00	0.00	0.00
Max. Compression 26 -105.97	-5.08	-1.56
Max. Mx 20 -64.47	3786.10	-4.88
Max. My 2 -64.47	-6.13	3754 20
Max. Vy 20 -39.92	3786.10	-4.88
Max. Vx 2 -39.30	-6.13	3754.20
Max. Torque 4	0110	0.69
L45 1.5 - 0 Pole Max Tension 1 0.00	0.00	0.00
Max Compression 26 -107.02	-5.16	-1.60
Max. Max. 20 -65.34	3846.08	-4.96
Max. My 2 -65.34	-6.22	3813.28
Max. Vy 20 -40.13	3846.08	4.96
Max. Vy 20 -39.51	-6.22	3813.28
Max. Torque 4	J. L L	0.69

# **Maximum Reactions**

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Pole	Max. Vert	26	107.02	-0.00	-0.00
	Max. H _x	21	49.02	40.10	-0.05
	Max. H _z	3	49.02	-0.05	39.48
	Max. M _x	2	3813.28	-0.05	39.48
	Max. M _z	8	3811.43	-39.24	0.05
	Max. Torsion	4	0.69	-20.09	34.82
	Min. Vert	21	49.02	40.10	-0.05
	Min. H _x	8	65.36	-39.24	0.05
	Min. H _z	15	49.02	0.05	-39.22
	Min. M _x	14	-3809.01	0.05	-39.22
	Min. M _z	20	-3846.08	40.10	-0.05
	Min. Torsion	16	-0.68	20.02	-34.70

Tower	Mast	Reaction	Summary
-------	------	----------	---------

Load	Vertical	Shear _x	Shearz	Overturning	Overturning	Torque
Combination	к	К	к	Moment, M _x kip-ft	Moment, M _z kip-ft	kip-ft
Dead Only 1.2 Dead+1.0 Wind 0 deg -	54.46 65.36	0.00 0.05	-0.00 -39.48	0.02 -3813.28	-1.03 -6.22	0.00 -0.62
No Ice 0.9 Dead+1.0 Wind 0 deg -	49.02	0.05	-39.48	-3765.62	-5.83	-0.61
No Ice 1.2 Dead+1.0 Wind 30 deg - No Ice	65.36	20.09	-34.82	-3342.26	-1929.40	-0.69
0.9 Dead+1.0 Wind 30 deg - No Ice	49.02	20.09	-34.82	-3300.61	-1905.04	-0.68
1.2 Dead+1.0 Wind 60 deg - No Ice	65.36	34.09	-19.75	-1910.00	-3296.99	-0.57
0.9 Dead+1.0 Wind 60 deg - No Ice	49.02	34.09	-19.75	-1886.10	-3255.40	-0.57
1.2 Dead+1.0 Wind 90 deg - No Ice	65.36	39.24	-0.05	-4.92	-3811.43	-0.30
0.9 Dead+1.0 Wind 90 deg - No Ice	49.02	39.24	-0.05	-4.86	-3763.32	-0.30
1.2 Dead+1.0 Wind 120 deg - No Ice	65.36	34.84	20.13	1942.34	-3362.80	0.17
0.9 Dead+1.0 Wind 120 deg - No Ice	49.02	34.84	20.13	1918.17	-3320.66	0.17
1.2 Dead+1.0 Wind 150 deg - No Ice	65.36	20.04	34.82	3346.93	-1926.38	0.38
0.9 Dead+1.0 Wind 150 deg - No Ice	49.02	20.04	34.82	3305.20	-1902.05	0.38
1.2 Dead+1.0 Wind 180 deg - No Ice	65.36	-0.05	39.22	3809.01	3.65	0.61
0.9 Dead+1.0 Wind 180 deg - No Ice	49.02	-0.05	39.22	3761.36	3.92	0.61
1.2 Dead+1.0 Wind 210 deg - No Ice	65.36	-20.02	34.70	3340.83	1925.98	0.68
0.9 Dead+1.0 Wind 210 deg - No Ice	49.02	-20.02	34.70	3299.15	1902.27	0.68
1.2 Dead+1.0 Wind 240 deg - No Ice	65.36	-34.72	20.11	1927.90	3325.35	0.57
0.9 Dead+1.0 Wind 240 deg - No Ice	49.02	-34.72	20.11	1903.86	3284.20	0.57
1.2 Dead+1.0 Wind 270 deg - No Ice	65.36	-40.10	0.05	4.96	3846.08	0.31
0.9 Dead+1.0 Wind 270 deg - No Ice	49.02	-40.10	0.05	4.89	3798.59	0.30
1.2 Dead+1.0 Wind 300 deg - No Ice	65.36	-35.07	-20.26	-1944.46	3363.97	-0.17
0.9 Dead+1.0 Wind 300 deg - No Ice	49.02	-35.07	-20.26	-1920.30	3322.48	-0.16
1.2 Dead+1.0 Wind 330 deg - No Ice	65.36	-20.12	-34.97	-3349.50	1925.31	-0.38
0.9 Dead+1.0 Wind 330 deg - No Ice	49.02	-20.12	-34.97	-3307.76	1901.63	-0.38
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0	107.02 107.02	0.00 0.01	0.00 -8.28	1.60 -886.25	-5.16 -6.44	0.00 -0.12
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 30	107.02	4.20	-7.28	-774.52	<b>-</b> 453.37	-0.15
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 60	107.02	7.15	<b>-4</b> .14	-442.93	-773.29	-0.14
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 90	107.02	8.23	-0.01	0.78	-892.37	-0.10
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 120	107.02	7.44	4.30	459.07	-797.25	0.00
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150	107.02	4.18	7.26	776.73	-451.70	0.05
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 180	107.02	-0.01	8.23	888.84	-4.67	0.12
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	107.02	-4.18	7.25	777.08	441.82	0.15

#### 140 Ft Monopole Tower Structural Analysis Project Number 37520-0091.001.7805, Order 508882, Revision 0

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M ₇	Torque
	К	к	K	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 240	107.02	-7.26	4.20	449.45	767.72	. 0.14
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	107.02	-8.38	0.01	2.55	888.54	0.10
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	107.02	-7.47	-4.32	-456.10	786.77	-0.00
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	107.02	-4.19	-7.28	-773.49	440.65	-0.05
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	54.46	0.01	-8.57	-821.58	-2.12	-0.13
Dead+Wind 30 deg - Service	54.46	4.36	-7.56	-720.19	-416.54	-0.15
Dead+Wind 60 deg - Service	54.46	7.40	-4.29	-411.54	-711.20	-0.12
Dead+Wind 90 deg - Service	54.46	8.51	-0.01	-1.05	-821.97	-0.07
Dead+Wind 120 deg -	54.46	7.56	4.37	418.56	-725.43	0.04
Service						
Dead+Wind 150 deg -	54.46	4.35	7.55	721.22	-415.89	0.08
Service						
Dead+Wind 180 deg -	54.46	-0.03	8.51	820.68	0.02	0.13
Service						
Dead+Wind 210 deg -	54.46	-4.34	7.53	719.90	414.23	0.15
Service						
Dead+Wind 240 deg -	54.46	-7.53	4.36	415.44	715.76	0.12
Service						
Dead+Wind 270 deg -	54.46	-8.70	0.01	1.08	827.95	0.07
Service						
Dead+Wind 300 deg -	54.46	-7.61	-4.40	-419.00	724.11	-0.04
Service						
Dead+Wind 330 deg -	54.46	-4.37	-7.59	-721.75	414.09	-0.08
Service						

# **Solution Summary**

	Sur	n of Applied Force	s		Sum of Reaction	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-54.46	0.00	-0.00	54.46	0.00	0.000%
2	0.05	-65.36	-39.48	-0.05	65.36	39.48	0.002%
3	0.05	-49.02	-39.48	-0.05	49.02	39.48	0.001%
4	20.09	-65.36	-34.82	-20.09	65.36	34.82	0.000%
5	20.09	-49.02	-34.82	-20.09	49.02	34.82	0.000%
6	34.09	-65.36	-19.75	-34.09	65.36	19.75	0.000%
7	34.09	-49.02	-19.75	-34.09	49.02	19.75	0.000%
8	39.24	-65.36	-0.05	-39.24	65.36	0.05	0.002%
9	39.24	-49.02	-0.05	-39.24	49.02	0.05	0.003%
10	34.84	-65.36	20.13	-34.84	65.36	-20.13	0.000%
11	34.84	-49.02	20.13	-34.84	49.02	-20.13	0.000%
12	20.04	-65.36	34.82	-20.04	65.36	-34.82	0.000%
13	20.04	-49.02	34.82	-20.04	49.02	-34.82	0.000%
14	-0.05	-65.36	39.22	0.05	65.36	-39.22	0.002%
15	-0.05	-49.02	39.22	0.05	49.02	-39.22	0.001%
16	-20.02	-65.36	34.70	20.02	65.36	-34.70	0.000%
17	-20.02	-49.02	34.70	20.02	49.02	-34.70	0.000%
18	-34.72	-65.36	20.11	34.72	65.36	-20.11	0.000%
19	-34.72	-49.02	20.11	34.72	49.02	-20.11	0.000%
20	-40.10	-65.36	0.05	40.10	65.36	-0.05	0.004%
21	-40.10	-49.02	0.05	40.10	49.02	-0.05	0.003%
22	-35.07	-65.36	-20.26	35.07	65.36	20.26	0.000%
23	-35.07	-49.02	-20.26	35.07	49.02	20.26	0.000%
24	-20.12	-65.36	-34.97	20.12	65.36	34.97	0.000%
25	-20.12	-49.02	-34.97	20.12	49.02	34.97	0.000%
26	0.00	-107.02	0.00	-0.00	107.02	-0.00	0.000%
27	0.01	<del>-</del> 107.02	-8.28	-0.01	107.02	8.28	0.000%
28	4.20	<del>-</del> 107.02	-7.28	-4.20	107.02	7.28	0.000%
29	7.15	-107.02	-4.14	-7.15	107.02	4.14	0.000%
30	8.23	-107.02	-0.01	-8.23	107.02	0.01	0.000%
31	7.44	-107.02	4.30	-7.44	107.02	-4.30	0.000%
32	4.18	-107.02	7.26	-4.18	107.02	-7.26	0.000%

140 Ft Monopole Tower Structural Analysis	
Project Number 37520-0091.001.7805, Order 508882, Revision 0	

	Sui	Sum of Applied Forces			Sum of Reactions			
Load	PX	PY	PZ	PX	PY	PZ	% Error	
Comb.	K	K	K	K	K	K		
33	-0.01	-107.02	8.23	0.01	107.02	-8.23	0.000%	
34	-4.18	-107.02	7.25	4.18	107.02	-7.25	0.000%	
35	-7.26	-107.02	4.20	7.26	107.02	-4.20	0.000%	
36	-8.38	-107.02	0.01	8.38	107.02	-0.01	0.000%	
37	-7.47	-107.02	-4.32	7.47	107.02	4.32	0.000%	
38	-4.19	-107.02	-7.28	4.19	107.02	7.28	0.000%	
39	0.01	-54.46	-8.57	-0.01	54.46	8.57	0.002%	
40	4.36	-54.46	-7.56	-4.36	54.46	7.56	0.000%	
41	7.40	-54.46	-4.29	-7.40	54.46	4.29	0.000%	
42	8.51	-54.46	-0.01	-8.51	54.46	0.01	0.002%	
43	7.56	-54.46	4.37	-7.56	54.46	-4.37	0.000%	
44	4.35	-54.46	7.56	-4.35	54.46	-7.55	0.000%	
45	-0.01	-54.46	8.51	0.03	54.46	-8.51	0.036%	
46	-4.34	-54.46	7.53	4.34	54.46	-7.53	0.000%	
47	-7.53	-54.46	4.36	7.53	54.46	-4.36	0.000%	
48	-8.70	-54.46	0.01	8.70	54.46	-0.01	0.002%	
49	-7.61	-54.46	-4.40	7.61	54.46	4.40	0.000%	
50	-4.37	-54.46	-7.59	4.37	54.46	7.59	0.000%	

		Non-Line	ear Converge	ence Results
Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	6	0.0000001	0.0000001
2	Yes	17	0.00002485	0.00010820
3	Yes	17	0.0000001	0.00007797
4	Yes	23	0.0000001	0.00007283
5	Yes	22	0.0000001	0.00011025
6	Yes	23	0.0000001	0.00007284
7	Yes	22	0.0000001	0.00011054
8	Yes	17	0.00002485	0.00009004
9	Yes	16	0.00003488	0.00012595
10	Yes	23	0.0000001	0.00007413
11	Yes	22	0.00000001	0.00011218
12	Yes	23	0.0000001	0.00007309
13	Yes	22	0.0000001	0.00011066
14	Yes	17	0.00002485	0.00014705
15	Yes	17	0.00000001	0.00010951
16	Yes	23	0.0000001	0.00007399
17	Yes	22	0.00000001	0.00011211
18	Yes	23	0.00000001	0.00007254
19	Yes	22	0.00000001	0.00010991
20	Yes	16	0.00005359	0.00014161
21	Yes	16	0.00003486	0.00008641
22	Yes	23	0.00000001	0.00007369
23	Yes	23	0.00000001	0.00011147
23	Yes	23	0.00000001	0.00007389
24	Yes	23	0.00000001	0.00011192
26	Yes	6	0.00000001	0.00000001
20	Yes	20	0.00000001	0.00010585
28	Yes	20	0.00000001	0.00013003
20	Yes	20	0.00000001	0.00012941
29 30	Yes	20	0.00000001	0.00012941
31	Yes	20	0.0000001	0.00013254
32	Yes	20	0.0000001	0.00012993
33	Yes	20	0.0000001	0.00010597
34	Yes	20	0.0000001	0.00012939
35	Yes	20	0.0000001	0.00012875
36	Yes	20	0.0000001	0.00010579
37	Yes	20	0.0000001	0.00013124
38	Yes	20	0.0000001	0.00012884
39	Yes	15	0.00009274	0.00006659
40	Yes	17	0.0000001	0.00010245
41	Yes	17	0.0000001	0.00010558
42	Yes	15	0.00009274	0.00006289
43	Yes	17	0.0000001	0.00010715

140 Ft Monopole Tower Structural Analysis Project Number 37520-0091.001.7805, Order 508882, Revision 0 January 14, 2020 CCI BU No 876342 Page 58

44 45 46 47 48 49 50	Yes Yes Yes Yes Yes Yes	17 15 17 17 15 17	0.00000001 0.00009275 0.00000001 0.00000001 0.00009270 0.00000001	0.00010332 0.00012592 0.00010792 0.00010201 0.00006271 0.00010490
50	Yes	17	0.00000001	0.00010725

# Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load	0	
	ft	in	Comb.		٥
L1	140 - 135	21.28	43	1.42	0.00
L2	135 - 130	19.79	43	1.42	0.00
L3	130 - 125	18.32	43	1.40	0.00
L4	125 - 120	16.87	43	1.37	0.00
L5	120 - 115	15.46	43	1.33	0.00
L6	115 <b>-</b> 110	14.10	43	1.27	0.00
L7	110 <b>-</b> 105	12.80	43	1.20	0.00
L8	105 <b>-</b> 104	11.60	43	1.10	0.00
L9	104 - 103.75	11.37	43	1.08	0.00
L10	103.75 - 98.75	11.31	43	1.08	0.00
L11	98.75 <b>-</b> 98.5	10.21	43	1.02	0.00
L12	98.5 - 98.25	10.16	43	1.02	0.00
L13	98.25 <b>-</b> 97	10.11	43	1.01	0.00
L14	97 - 96.75	9.84	43	1.00	0.00
L15	96.75 - 88.5	9.79	43	1.00	0.00
L16	91.75 - 88.17	8.78	43	0.93	0.00
L17	88.17 - 87.92	8.09	43	0.91	0.00
L18	87.92 - 82.92	8.04	43	0.91	0.00
L19	82.92 - 77.92	7.12	43	0.85	0.00
L20	77.92 - 72.92	6.26	43	0.80	0.00
L21	72.92 - 68.08	5.45	43	0.74	0.00
L22	68.08 - 67.83	4.73	43	0.68	0.00
L23	67.83 - 62.83	4.70	43	0.68	0.00
L24	62.83 - 57.83	4.02	43	0.62	0.00
L25	57.83 - 52.83	3.39	43	0.57	0.00
L26	52.83 - 47.25	2.82	43	0.51	0.00
L27	51.5 - 46.5	2.68	43	0.50	0.00
L28	46.5 - 41.5	2.17	43	0.47	0.00
L29	41.5 - 37.75	1.71	43	0.41	0.00
L30	37.75 - 37.5	1.41	43	0.37	0.00
L31	37.5 - 32.5	1.39	43	0.37	0.00
L32	32.5 - 32.25	1.03	43	0.31	0.00
L33	32.25 - 27.25	1.01	43	0.31	0.00
L34	27.25 - 23.5	0.72	43	0.26	0.00
L35	23.5 - 23.25	0.53	43	0.22	0.00
L36	23.25 - 20.75	0.52	43	0.22	0.00
L37	20.75 - 20.5	0.41	43	0.19	0.00
L38	20.5 - 15.5	0.40	43	0.19	0.00
L39	15.5 - 10.5	0.22	43	0.14	0.00
L40	10.5 - 5.5	0.10	43	0.09	0.00
L41	5.5 - 3	0.02	43	0.05	0.00
L42	3 - 2.75	0.01	43	0.02	0.00
L43	2.75 - 1.75	0.01	43	0.02	0.00
L44	1.75 - 1.5	0.00	43	0.01	0.00
L45	1.5 - 0	0.00	43	0.01	0.00

	Critical Deflections	and R	adius of C	Curvatur	e - Servio	e Wind
Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	٥	۰	ft
140.0000	APXVSPP18-C-A20 w/ Mount Pipe	43	21.28	1.42	0.00	22178

tnxTower Report - version 8.0.5.0

#### 140 Ft Monopole Tower Structural Analysis Project Number 37520-0091.001.7805, Order 508882, Revision 0

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	•	٥	ft
137.0000	TME-1900MHz RRH (65MHz) w/ Mount Pipe	43	20.38	1.42	0.00	22178
121.0000	7770.00 w/ Mount Pipe	43	15.74	1.34	0.00	6501
115.0000	AIR 32 B2A/B66AA w/ Mount Pipe	43	14.10	1.27	0.00	4385
104.0000	LNX-6514DS-VTM w/ Mount Pipe	43	11.37	1.08	0.00	3643
95.0000	Pipe Mount [PM 601-3]	43	9.43	0.98	0.00	4862
80.0000	2 375" OD x 6' Mount Pipe	43	6.61	0.82	0.00	5123

# **Maximum Tower Deflections - Design Wind**

0	<b>-------------</b>		0	<b>T</b> :14	Terist
Section	Elevation	Horz.	Gov.	Tilt	Twist
No.	<b>r</b> i	Deflection	Load	۰	0
	ft	in	Comb.		
L1	140 - 135	98.70	10	6.61	0.00
L2	135 - 130	91.81	10	6.59	0.00
L3	130 - 125	84.98	10	6.49	0.00
L4	125 - 120	78.28	10	6.35	0.00
L5	120 - 115	71.74	10	6.17	0.00
L6	115 - 110	65.43	10	5.91	0.00
L7	110 - 105	59.43	10	5.56	0.00
L8	105 - 104	53.84	10	5.13	0.00
L9	104 - 103.75	52.78	10	5.04	0.00
L10	103.75 - 98.75	52.52	10	5.03	0.00
L11	98.75 - 98.5	47.41	10	4.74	0.00
L12	98.5 - 98.25	47.16	10	4.72	0.00
L13	98.25 <b>-</b> 97	46.92	10	4.71	0.00
L14	97 - 96.75	45.69	10	4.66	0.00
L15	96.75 - 88.5	45.45	10	4.65	0.00
L16	91.75 - 88.17	40.75	10	4.34	0.00
L17	88.17 - 87.92	37.54	10	4.22	0.00
L18	87.92 - 82.92	37.32	10	4.21	0.00
L19	82.92 - 77.92	33.05	10	3.96	0.00
L20	77.92 - 72.92	29.04	10	3.70	0.00
L21	72.92 - 68.08	25.31	10	3.43	0.00
L22	68.08 - 67.83	21.97	10	3.16	0.00
L23	67.83 - 62.83	21.80	10	3.15	0.00
L24	62.83 - 57.83	18.64	10	2.90	0.00
L25	57.83 - 52.83	15.73	10	2.65	0.00
L26	52.83 - 47.25	13.10	10	2.39	0.00
L27	51.5 - 46.5	12.45	10	2.32	0.00
L28	46.5 - 41.5	10.09	10	2.17	0.00
L29	41.5 - 37.75	7.95	10	1.92	0.00
L30	37.75 - 37.5	6.52	10	1.72	0.00
L31	37.5 - 32.5	6.43	10	1.71	0.00
L32	32.5 - 32.25	4.78	22	1.45	0.00
L33	32.25 <b>-</b> 27.25	4.70	22	1.44	0.00
L34	27.25 <b>-</b> 23.5	3.32	22	1.20	0.00
L35	23.5 - 23.25	2.45	22	1.02	0.00
L36	23.25 <b>-</b> 20.75	2.40	22	1.01	0.00
L37	20.75 - 20.5	1.90	22	0.90	0.00
L38	20.5 - 15.5	1.85	22	0.89	0.00
L39	15.5 - 10.5	1.03	22	0.66	0.00
L40	10.5 - 5.5	0.46	22	0.44	0.00
L41	5.5 - 3	0.11	22	0.21	0.00
L42	3 - 2.75	0.03	22	0.10	0.00
L43	2.75 - 1.75	0.03	22	0.09	0.00
L44	1.75 - 1.5	0.01	22	0.06	0.00
L45	1.5 - 0	0.01	22	0.05	0.00

## Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	•	0	ft
140.0000	APXVSPP18-C-A20 w/ Mount Pipe	10	98.70	6.61	0.00	4864
137.0000	TME-1900MHz RRH (65MHz) w/ Mount Pipe	10	94.56	6.60	0.00	4864
121.0000	7770.00 w/ Mount Pipe	10	73.03	6.21	0.00	1428
115.0000	AIR 32 B2A/B66AA w/ Mount Pipe	10	65.43	5.91	0.00	962
104.0000	LNX-6514DS-VTM w/ Mount Pipe	10	52.78	5.04	0.00	795
95.0000	Pipe Mount [PM 601-3]	10	43.77	4.53	0.00	1060
80.0000	2 375" OD x 6' Mount Pipe	10	30.68	3.81	0.00	1112

### **Compression Checks**

			Pole	Desig	n Da	ta		
Section	Elevation	Size	L	Lu	Kl/r	A	Pu	
No.	ft		ft	ft		in²	к	
L1	140 - 135 (1)	TP17.0151x16x0.25	5.0000	0.0000	0.0	13.495	-4.34	
L2	135 <b>-</b> 130 (2)	TP18.0303x17.0151x0.25	5.0000	0.0000	0.0	9 14.313 1	-4.61	
L3	130 <b>-</b> 125 (3)	TP19.0454x18.0303x0.25	5.0000	0.0000	0.0	15.130 3	-4.91	
L4	125 <b>-</b> 120 (4)	TP20.0606x19.0454x0.25	5.0000	0.0000	0.0	15.947	-9.56	
L5	120 <b>-</b> 115 (5)	TP21.0757x20.0606x0.25	5.0000	0.0000	0.0	5 16.764 7	-10.10	
L6	115 - 110 (6)	TP22.0909x21.0757x0.25	5.0000	0.0000	0.0	, 17.581 9	-15.07	
L7	110 <b>-</b> 105 (7)	TP23.106x22.0909x0.25	5.0000	0.0000	0.0	18.399 1	-15.81	
L8	105 <b>-</b> 104 (8)	TP23.309x23.106x0.25	1.0000	0.0000	0.0	18.562 5	-15.97	
L9	104 - 103.75 (9)	TP23.3598x23.309x0.462 5	0.2500	0.0000	0.0	34.099 8	-20.49	
L10	103.75 - 98.75 (10)	TP24.375x23.3598x0.45	5.0000	0.0000	0.0	34.667 3	-21.54	
L11	98.75 - 98.5 (11)	TP24.4257x24.375x0.45	0.2500	0.0000	0.0	34.740 8	-21.60	
L12	98.5 - 98.25 (12)	TP24.4765x24.4257x0.72 5	0.2500	0.0000	0.0	55.447 8	-21.67	
L13	98.25 - 97 (13)	TP24.7303x24.4765x0.72 5	1.2500	0.0000	0.0	56.040 3	-22.01	
L14	97 - 96.75 (14)	TP24.781x24.7303x0.512 5	0.2500	0.0000	0.0	40 <u>.</u> 049 1	-22.07	
L15	96.75 - 88.5 (15)	TP26.456x24.781x0.5	8.2500	0.0000	0.0	40.726 8	-23.47	
L16	88.5 - 88.17 (16)	TP26.0231x25.2962x0.56 25	3.5800	0.0000	0.0	46.115 5	-24.87	
L17	88.17 - 87.92 (17)	TP26.0738x26.0231x0.76 25	0.2500	0.0000	0.0	62.145 7	-24.95	
L18	87.92 - 82.92 (18)	TP27.0891x26.0738x0.73 75	5.0000	0.0000	0.0	62.578 5	-26.60	
L19	82.92 - 77.92 (19)	TP28.1044x27.0891x0.72 5	5.0000	0.0000	0.0	63.917 1	-28.45	
L20	77.92 - 72.92 (20)	TP29.1196x28.1044x0.71 25	5.0000	0.0000	0.0	65.173 1	-30.18	
L21	(20) 72.92 - 68.08 (21)	TP30.1024x29.1196x0.68 75	4.8400	0.0000	0.0	65.117 3	-31.88	

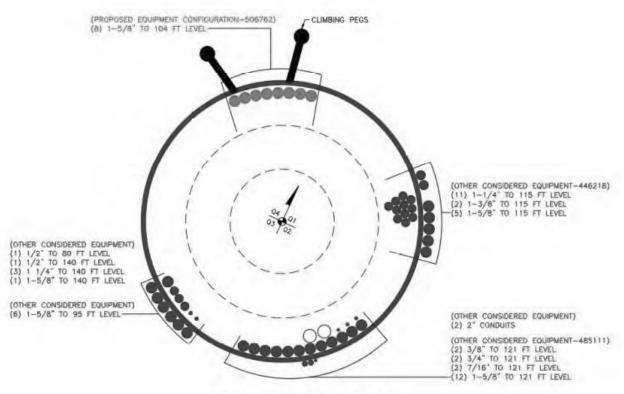
#### 140 Ft Monopole Tower Structural Analysis Project Number 37520-0091.001.7805, Order 508882, Revision 0

Section No.	Elevation	Size	L	$L_u$	Kl/r	А	$P_u$
	ft		ft	ft		in²	К
L22	68.08 - 67.83 (22)	TP30.1532x30.1024x0.81 25	0.2500	0.0000	0.0	76.762 5	-31.99
L23	67.83 - 62.83 (23)	TP31.1684x30.1532x0.78 75	5.0000	0.0000	0.0	77.038 5	-33.92
L24	62.83 - 57.83 (24)	TP32.1837x31.1684x0.76 25	5.0000	0.0000	0.0	77.146 9	-35.86
L25	57.83 - 52.83 (25)	TP33.199x32.1837x0.75	5.0000	0.0000	0.0	78.364 3	-37.87
L26	52.83 - 47.25 (26)	TP34.332x33.199x0.75	5.5800	0.0000	0.0	79.016 4	-38.41
L27	47.25 - 46.5 (27)	TP33.8592x32.844x0.8	5.0000	0.0000	0.0	85.160 4	-41.87
L28	46.5 - 41.5 (28)	TP34.8743x33.8592x0.8	5.0000	0.0000	0.0	87.775 4	-44.06
L29	41.5 - 37.75 (29)	TP35.6357x34.8743x0.77 5	3.7500	0.0000	0.0	86.994 8	-45.72
L30	37.75 - 37.5 (30)	TP35.6864x35.6357x0.8	0.2500	0.0000	0.0	89.867 4	-45.85
L31	37.5 - 32.5 (31)	TP36.7016x35.6864x0.77 5	5.0000	0.0000	0.0	89.654 8	-48.13
L32	32.5 - 32.25 (32)	TP36.7523x36.7016x0.82 5	0.2500	0.0000	0.0	95.440 9	-48.27
L33	32.25 - 27.25 (33)	TP37.7675x36.7523x0.81 25	5.0000	0.0000	0.0	96.683 4	-50.70
L34	27.25 - 23.5 (34)	TP38.5288x37.7675x0.8	3.7500	0.0000	0.0	97.189 5	-52.55
L35	23.5 - 23.25 (35)	TP38.5796x38.5288x0.9	0.2500	0.0000	0.0	109.19 50	-52.70
L36	23.25 - 20.75 (36)	TP39.0872x38.5796x0.9	2.5000	0.0000	0.0	110.66 60	-54.10
L37	20.75 - 20.5 (37)	TP39.1379x39.0872x0.85	0.2500	0.0000	0.0	104.79 40	-54.25
L38	20.5 - 15.5 (38)	TP40.1531x39.1379x0.82 5	5.0000	0.0000	0.0	104.47 50	-56.88
L39	15.5 - 10.5 (39)	TP41.1682x40.1531x0.82 5	5.0000	0.0000	0.0	107.17 20	-59.55
L40	10.5 - 5.5 (40)	TP42.1833x41.1682x0.8	5.0000	0.0000	0.0	106.60 30	-62.25
L41	5.5 - 3 (41)	TP42.6909x42.1833x0.8	2.5000	0.0000	0.0	107.91 10	-63.61
L42	3 - 2.75 (42)	TP42.7417x42.6909x0.95	0.2500	0.0000	0.0	127.84 10	-63.76
L43	2.75 - 1.75 (43)	TP42.9447x42.7417x0.95	1.0000	0.0000	0.0	128.46 20	-64.31
L44	1.75 - 1.5 (44)	TP42.9955x42.9447x1.12 5	0.2500	0.0000	0.0	151.67 60	-64.47
L45	1.5 - 0 (45)	TP43.3x42.9955x1.1	1.5000	0.0000	0.0	149.47 20	-65.34

# Pole Bending Design Data

Section No.	Elevation	Size	M _{ux}	M _{uy}
	ft		kip-ft	kip-ft
L1	140 - 135 (1)	TP17.0151x16x0.25	20.83	0.00
L2	135 - 130 (2)	TP18.0303x17.0151x0.25	48.11	0.00
L3	130 - 125 (3)	TP19.0454x18.0303x0.25	77.45	0.00
L4	125 - 120 (4)	TP20.0606x19.0454x0.25	123.35	0.00
L5	120 <b>-</b> 115 (5)	TP21.0757x20.0606x0.25	194.46	0.00
L6	115 <b>-</b> 110 (6)	TP22.0909x21.0757x0.25	295.98	0.00
L7	110 <b>-</b> 105 (7)	TP23.106x22.0909x0.25	397.51	0.00
L8	105 <b>-</b> 104 (8)	TP23.309x23.106x0.25	418.09	0.00
L9	104 - 103.75	TP23.3598x23.309x0.462	424.49	0.00
	(9)	5		
L10	103.75 -	TP24.375x23.3598x0.45	553.23	0.00

No. $kp-ft$ $kp-ft$ $kp-ft$ $kp-ft$ 11         98.75 - 98.5         TP24.4257x24.375x0.45         559.75         0.00           (12)         98.5 - 98.25         TP24.4765x24.4257x0.72         566.28         0.00           (13)         98.25 - 97         TP24.7303x24.4765x0.72         599.07         0.00           (14)         97 - 96.75         TP24.7303x24.4765x0.72         599.07         0.00           (14)         97 - 96.75         TP24.781x24.7303x0.512         605.65         0.00           (15)         96.75 - 88.5         TP26.0738x26.0231x0.76         844.76         0.00           (16)         25         17         88.17         TP26.0738x26.0231x0.76         844.76         0.00           (17)         81.7         P27.0891x26.07380.73         985.41         0.00         (17)         25           L18         87.92 - 82.92         TP21.1968x28.1044x0.71         1278.90         0.00         (20)         25           L20         77.92         TP28.1044x0.71         1278.90         0.00         (21)         75           L21         7.2.92         TP39.11684x30.1532x0.78         1590.25         0.00         (23)         75	Section	Elevation	Size	M _{ux}	M _{uy}
$\begin{array}{c} 98.75(10) \\ \mbox{L1} 98.75-98.5 TP24.4257x24.375x0.45 559.75 0.00 \\ (11) \\ \mbox{L1} 98.5-98.25 TP24.4765x24.4257x0.72 566.28 0.00 \\ (12) 51.5 TP24.7303x24.4765x0.72 599.07 0.00 \\ (13) 51.5 96.75-88.5 TP24.781x24.7303x0.512 605.65 0.00 \\ (14) 55.581.7 TP26.0231x25.2962x0.56 837.83 0.00 \\ (16) 25 \\ \mbox{L1} 88.792-82.92 TP27.0991x25.0262x1x0.76 844.76 0.00 \\ (17) 25 \\ \mbox{L1} 88.792-82.92 TP27.0991x25.0738x26.0231x0.76 844.76 0.00 \\ (18) 25 \\ \mbox{L1} 98.292-77.92 TP28.1044x27.0891x0.72 1130.23 0.00 \\ (18) 25 \\ \mbox{L2} 7.92-72.92 TP29.1196x28.1044x0.71 1278.90 0.00 \\ (20) 25 \\ \mbox{L2} 7.92-72.92 TP29.1196x28.1044x0.71 1278.90 0.00 \\ (21) 75 \\ \mbox{L2} 60.86 77.83 TP30.1024x29.1196x0.68 1426.33 0.00 \\ (21) 75 \\ \mbox{L2} 60.86 76.78 TP31.1684x30.1532x0.78 1590.25 0.00 \\ (23) 25 \\ \mbox{L2} 67.83-82.83 TP31.1684x30.1532x0.78 1590.25 0.00 \\ (24) 25 \\ \mbox{L2} 66.86 -77.83 TP32.1837x31.1684x0.76 1751.53 0.00 \\ (24) 25 \\ \mbox{L2} 66.8-67.83 TP32.1837x31.1684x0.76 1751.53 0.00 \\ (24) 25 \\ \mbox{L2} 66.5-41.5 TP34.332x33.199x0.75 1963.23 0.00 \\ (26) \\ \mbox{L2} 66.5-41.5 TP34.6557x34.8743x0.77 2443.57 0.00 \\ (26) \\ \mbox{L2} 47.25-46.5 TP35.6357x34.8743x0.77 2443.57 0.00 \\ (26) \\ \mbox{L2} 41.5-37.75 TP35.63657x34.8743x0.77 2443.57 0.00 \\ (26) \\ \mbox{L3} 32.25-37.25 TP35.6357x34.8743x0.77 2443.57 0.00 \\ (23) 37.75-37.5 TP35.6364x35.6357x0.8 2452.54 0.00 \\ (33) 32.5-72.55 TP35.6528x37.7675x0.8 2967.57 0.00 \\ (34) \\ \mbox{L3} 32.5-72.55 TP35.635734.8743x3.8592x0.8 2309.99 0.00 \\ (28) \\ \mbox{L3} 32.25-72.55 TP35.7528x36.7016x0.82 2642.78 0.00 \\ (33) \\ \mbox{L3} 32.25-72.55 TP36.7523x6.7523x0.81 2827.21 0.00 \\ (34) \\ \mbox{L3} 23.25-72.55 TP36.7523x6.7765x0.8 2967.57 0.00 \\ (34) \\ \mbox{L3} 23.25-72.55 TP36.7523x6.7765x0.8 2967.57 0.00 \\ (35) \\ \mbox{L3} 23.25-72.55 TP36.7523x6.7765x0.8 2967.57 0.00 \\ (36) \\ \mbox{L3} 2.5-75.4(4) TP42.6399x42.1833x0.8 3664.68 0.00 \\ (36) \\ \mbox{L4} 1.5-3.5(44) TP42.6399x42.1833x0.8 3664.68 0.00 \\ (36) \\ \mbox{L4} 1.5-5-1.5(44) TP42.9955x42.9447x1.12 3824.93 0.00 \\ (4$	No.	ft		kip-ft	kip-ft
	L11	98.75 - 98.5	TP24.4257x24.375x0.45	559.75	0.00
	L12	98.5 - 98.25	_	566.28	0.00
	L13	98.25 - 97	TP24.7303x24.4765x0.72	599.07	0.00
	L14	97 - 96.75	-	605.65	0.00
	L15	96.75 - 88.5	TP26.456x24.781x0.5	739.57	0.00
	L16	88.5 - 88.17		837.83	0.00
$      \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	L17	88.17 - 87.92		844.76	0.00
	L18			985.41	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L19			1130.23	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L20			1278.90	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(21)	75	1426.33	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(22)	25		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(23)	75		0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L24			1751.53	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L25	(25)	TP33.199x32.1837x0.75	1918.28	0.00
$\begin{array}{c} (27) \\ L28 & 46.5 - 41.5 \\ (28) \\ (29) \\ (29) \\ (29) \\ (30) \\ L31 & 37.5 - 37.5 \\ (30) \\ L31 & 37.5 - 32.5 \\ (31) \\ (31) \\ (31) \\ (32) \\ L32 & 32.5 - 32.25 \\ (31) \\ (32) \\ L33 & 32.25 - 27.25 \\ L33 & 32.25 - 27.25 \\ L33 & 32.25 - 27.25 \\ L34 & 27.25 - 23.5 \\ L34 & 27.25 - 23.5 \\ L34 & 27.25 - 23.5 \\ L35 & 23.5 - 52.25 \\ L34 & 27.25 - 23.5 \\ L35 & 23.5 - 52.25 \\ L36 & 23.25 - 27.5 \\ L37 & 20.75 - 20.5 \\ L38 & 5 \\ L36 & 23.25 - 20.75 \\ L37 & 20.75 - 20.5 \\ L38 & 20.5 - 15.5 \\ L39 & 15.5 - 10.5 \\ L39 & 15.5 - 10.5 \\ L40 & 10.5 - 5.5 \\ L40 & 10.5 - $		(26)			0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L27		TP33.8592x32.844x0.8	2134.78	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(28)		2309.99	0.00
		(29)	5		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L30		TP35.6864x35.6357x0.8	2452.54	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L31			2633.63	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			TP36.7523x36.7016x0.82 5	2642.78	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(33)	25		0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L34	(34)	TP38.5288x37.7675x0.8	2967.57	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(35)			
		(36)			
		(37)			
(39)         5           L40         10.5 - 5.5 (40)         TP42.1833x41.1682x0.8         3664.68         0.00           L41         5.5 - 3 (41)         TP42.6909x42.1833x0.8         3764.63         0.00           L42         3 - 2.75 (42)         TP42.7417x42.6909x0.95         3774.66         0.00           L43         2.75 - 1.75         TP42.9447x42.7417x0.95         3814.86         0.00           (43)         L44         1.75 - 1.5 (44)         TP42.9955x42.9447x1.12         3824.93         0.00		(38)	5		
L41         5.5 - 3 (41)         TP42.6909x42.1833x0.8         3764.63         0.00           L42         3 - 2.75 (42)         TP42.7417x42.6909x0.95         3774.66         0.00           L43         2.75 - 1.75         TP42.9447x42.7417x0.95         3814.86         0.00           (43)         1.75 - 1.5 (44)         TP42.9955x42.9447x1.12         3824.93         0.00		(39)	5	3466.88	
L42 3 - 2.75 (42) TP42.7417x42.6909x0.95 3774.66 0.00 L43 2.75 - 1.75 TP42.9447x42.7417x0.95 3814.86 0.00 (43) L44 1.75 - 1.5 (44) TP42.9955x42.9447x1.12 3824.93 0.00					
L43 2.75 - 1.75 TP42.9447x42.7417x0.95 3814.86 0.00 (43) L44 1.75 - 1.5 (44) TP42.9955x42.9447x1.12 3824.93 0.00					
(43) L44 1.75 - 1.5 (44) TP42.9955x42.9447x1.12 3824.93  0.00					
<b>r</b>		(43)			
5 L45 1.5 - 0 (45) TP43.3x42.9955x1.1 3885.52 0.00	L45	1.5 - 0 (45)	5 TP43.3x42.9955x1.1	3885.52	0.00


# Pole Shear Design Data

Section	Elevation	Size	Actual	Actual
No.	ft		V _u K	T _u kip-ft
L1	140 - 135 (1)	TP17.0151x16x0.25	5.25	0.00
L2	135 - 130 (2)	TP18.0303x17.0151x0.25	5.66	0.00
L3	130 - 125 (3)	TP19.0454x18.0303x0.25	6.08	0.00
L4	125 - 120 (4)	TP20.0606x19.0454x0.25	14.00	0.08
L5	120 - 115 (5)	TP21.0757x20.0606x0.25	14.45	0.08
L6	115 - 110 (6)	TP22.0909x21.0757x0.25	20.09	0.36
LO L7		TP23.106x22.0909x0.25		
	110 - 105 (7)		20.55	0.36
L8	105 - 104 (8)	TP23.309x23.106x0.25	20.64	0.36
L9	104 - 103.75	TP23.3598x23.309x0.462	25.44	0.57
1.10	(9) 103.75 -	5	26.09	0.57
L10		TP24.375x23.3598x0.45	26.08	0.57
	98.75 (10)	TD04 4057-04 075-0 45	00.40	0.57
L11	98.75 - 98.5	TP24.4257x24.375x0.45	26.12	0.57
	(11)			·
L12	98.5 - 98.25	TP24.4765x24.4257x0.72	26.16	0.57
	(12)	5		
L13	98.25 - 97	TP24.7303x24.4765x0.72	26.33	0.57
	(13)	5		
L14	97 - 96.75	TP24.781x24.7303x0.512	26.37	0.57
	(14)	5		
L15	96.75 - 88.5	TP26.456x24.781x0.5	27.19	0.57
	(15)			
L16	88.5 - 88.17	TP26.0231x25.2962x0.56	27.73	0.57
	(16)	25		
L17	88.17 - 87.92	TP26.0738x26.0231x0.76	27.78	0.57
	(17)	25	2.110	0101
L18	87.92 - 82.92	TP27.0891x26.0738x0.73	28.53	0.57
LIU	(18)	75	20.00	0.57
L19	82.92 - 77.92	73 TP28.1044x27.0891x0.72	20.20	0.30
LIS			29.39	0.38
1.20	(19)	5	20.42	0.20
L20	77.92 - 72.92	TP29.1196x28.1044x0.71	30.13	0.38
	(20)	25	~~ ~~	
L21	72.92 - 68.08	TP30.1024x29.1196x0.68	30.85	0.38
	(21)	75		
L22	68.08 - 67.83	TP30.1532x30.1024x0.81	30.88	0.38
	(22)	25		
L23	67.83 - 62.83	TP31.1684x30.1532x0.78	31.65	0.38
	(23)	75		
L24	62.83 - 57.83	TP32.1837x31.1684x0.76	33.01	0.17
	(24)	25		
L25	57.83 - 52.83	TP33.199x32.1837x0.75	33.71	0.17
	(25)			
L26	52.83 - 47.25	TP34.332x33.199x0.75	33.90	0.17
	(26)			
L27	47 25 - 46 5	TP33.8592x32.844x0.8	34.71	0.17
	(27)			
L28	46.5 - 41.5	TP34.8743x33.8592x0.8	35.38	0.17
	(28)			
L29	41.5 - 37.75	TP35.6357x34.8743x0.77	35.88	0.17
220	(29)	5	00.00	0111
L30	37.75 - 37.5	TP35.6864x35.6357x0.8	35.89	0.17
200	(30)	11 00.0004200.000720.0	00.00	0.17
L31	37.5 - 32.5	TP36.7016x35.6864x0.77	36.55	0.17
LUT	(31)	5	30.33	0.17
122		TP36.7523x36.7016x0.82	26 56	0.17
L32	32.5 - 32.25		36.56	0.17
1.00	(32)	5	07.04	0.47
L33	32.25 - 27.25	TP37.7675x36.7523x0.81	37.21	0.17
	(33)	25		o / <del>-</del>
L34	27.25 - 23.5	TP38.5288x37.7675x0.8	37.67	0.17
	(34)			• <i>i</i> –
L35	23.5 - 23.25	TP38.5796x38.5288x0.9	37.68	0.17
	(35)			
L36	23.25 - 20.75	TP39.0872x38.5796x0.9	38.00	0.17
	(36)			
L37	20.75 <del>-</del> 20.5	TP39.1379x39.0872x0.85	38.01	0.17
	(37)			

Section No.	Elevation	Size	Actual V _u	Actual T _u
1.0.	ft		ĸ	kip-ft
L38	20.5 - 15.5 (38)	TP40.1531x39.1379x0.82 5	38.59	0.17
L39	15.5 - 10.5 (39)	TP41.1682x40.1531x0.82 5	39.32	0.17
L40	10.5 - 5 5 (40)	TP42.1833x41.1682x0.8	39.88	0.17
L41	5.5 - 3 (41)	TP42.6909x42.1833x0.8	40.16	0.17
L42	3 - 2.75 (42)	TP42.7417x42.6909x0.95	40.17	0.17
L43	2.75 - 1.75 (43)	TP42.9447x42.7417x0.95	40.30	0.17
L44	1.75 - 1.5 (44)	TP42.9955x42.9447x1.12 5	40.32	0.17
L45	1.5 - 0 (45)	TP43.3x42.9955x1.1	40.53	0.17

#### **APPENDIX B**

#### BASE LEVEL DRAWING



BUSINESS UNIT 876342 TOWER ID C_BASELEVEL

#### **APPENDIX C**

#### ADDITIONAL CALCULATIONS



# Site BU: 876342 Work Order: 508882 Rev 0



Geometry	
Pole	

00	ole Height Above		Lap Splice Length			<b>Bottom Diameter</b>			
	Base (ft)	Section Length (ft)	(ft)	Number of Sides	Top Diameter (in)	(in)	Wall Thickness (in)	Bend Radius (in)	Pole Material
	140	51.5	3.25	12	16	26.456	0.25	Auto	A572-65
	91.75	44.5	4.25	12	25.30	34.332	0.3125	Auto	A572-65
	51.5	51.5	0	12	32.84	43.3	0.375	Auto	A572-65

# **Reinforcement Configuration**

12						0	0	0		0				
11		0		0	0								С	
10												С		
6						0	0	0	0	0				
∞	0										U			
7			0	0	0							c		
9	0											с		
5						0	0	0	0	0	U			
4														
3		0		0	0							С		
2													c	
1									0					
Number	2	2	1	3	3	3	3	3	3	3	2	4	2	
Model	MP3-06 (1.1875")	MP3-06 (1.1875")	MP3-08 (1.1875")	MP3-06 (1.1875")	MP3-05 (1.1875")	I-065125; (1) (1.1875)	CCI-AFP-060100	CCI-AFP-060100	CCI-SFP-045100	FP 1.25 x 7.25_1	FP 1 x 6.75_1	FP 1 x 4.5_1	FP 1 x 5.75_1	
Type	channel	channel	channel	channel	channel	plate	plate	plate	plate	plate	plate	plate	plate	
Top Effective Elevation (ft)	23.5	37.75	37.75	68.08	98.5	32.5	68.08	88.17	104	3	1.75	1.75	1.75	
Bottom Effective Elevation (ft)	1.75	1.75	20.75	37.75	68.08	3	32.5	68.08	97	0	0	0	0	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14

# **Reinforcement Details**

					Bottom	Top				
				Pole Face to	Termination	Termination				Reinforcement
	B (in)	H (in)	Gross Area (in ² )	Centroid (in)	Length (in)	Length (in)	L _u (in)	Net Area (in ² )	Bolt Hole Size (in)	Material
1	6.89	2.61	8.47	6:03	41.000	41.000	24.000	7.670	1.1875	A572-65
2	6.89	2.61	8.47	0.93	41.000	41.000	24.000	7.670	1.1875	A572-65
3	7.93	2.8	10.32	0.95	47.000	44.000	24.000	9.370	1.1875	A572-65
4	6.89	2.61	8.47	0.93	41.000	41.000	24.000	7.670	1.1875	A572-65
5	5.33	2.09	5.65	0.79	29.000	29.000	18.000	5.025	1.1875	A572-65
9	6.5	1.25	8.125	0.625	n/a	36.000	19.000	6.563	1.1875	A572-65
7	9	1	9	0.5	30.000	30.000	16.000	4.750	1.1875	A572-65
8	9	1	9	0.5	30.000	30.000	16.000	4.750	1.1875	A572-65
9	4.5	1	4.5	0.5	18.000	18.000	20.000	3.250	1.1875	A572-65
10	1.25	7.25	9.0625	3.625	n/a	n/a	0.000	9.063	0.0000	A572-65
11	1	6.75	6.75	3.375	n/a	n/a	0.000	6.750	00000	A572-65
12	1	4.5	4.5	2.25	n/a	n/a	0.000	4.500	0.0000	A572-65
13	1	5.75	5.75	2.875	n/a	n/a	0.000	5.750	0.0000	A572-65

Page 1

# **TNX Geometry Input**

Inc	rement (ft): 5		Lap Splice Length			Bottom Diameter		Tapered Pole	Weight
	Section Height (ft)	Section Length (ft)	(ft)	Number of Sides	Top Diameter (in)	(in)	Wall Thickness (in)	Grade	Multiplier
1	140 - 135	5		12	16.000	17.015	0.25	A572-65	1.000
2	135 - 130	5		12	17.015	18.030	0.25	A572-65	1.000
3	130 - 125	5		12	18.030	19.045	0.25	A572-65	1.000
4	125 - 120	5		12	19.045	20.061	0.25	A572-65	1.000
5	120 - 115	5		12	20.061	21.076	0.25	A572-65	1.000
6	115 - 110	5		12	21.076	22.091	0.25	A572-65	1.000
7	110 - 105	5		12	22.091	23.106	0.25	A572-65	1.000
8	105 - 104	1		12	23.106	23.309	0.25	A572-65	1.000
9	104 - 103.75	0.25		12	23.309	23.360	0.4625	A572-65	0.942
10	103.75 - 98.75	5		12	23.360	24.375	0.45	A572-65	0.950
11	98.75 - 98.5	0.25		12	24.375	24.426	0.45	A572-65	0.949
12	98.5 - 98.25	0.25		12	24.426	24.476	0.725	A572-65	0.902
13	98.25 - 97	1.25		12	24.476	24.730	0.725	A572-65	0.896
14	97 - 96.75	0.25		12	24.730	24.781	0.5125	A572-65	0.917
15	96.75 - 91.75	8.25	3.25	12	24.781	26.456	0.5	A572-65	0.922
16	91.75 - 88.17	3.58		12	25.296	26.023	0.5625	A572-65	0.929
17	88.17 - 87.92	0.25		12	26.023	26.074	0.7625	A572-65	0.980
18	87.92 - 82.92	5		12	26.074	27.089	0.7375	A572-65	0.990
19	82.92 - 77.92	5		12	27.089	28.104	0.725	A572-65	0.985
20	77.92 - 72.92	5		12	28.104	29.120	0.7125	A572-65	0.982
21	72.92 - 68.08	4.84		12	29.120	30.102	0.6875	A572-65	0.998
22	68.08 - 67.83	0.25		12	30.102	30.153	0.8125	A572-65	0.957
23	67.83 - 62.83	5		12	30.153	31.168	0.7875	A572-65	0.967
24	62.83 - 57.83	5		12	31.168	32.184	0.7625	A572-65	0.979
25	57.83 - 52.83	5		12	32.184	33.199	0.75	A572-65	0.977
26	52.83 - 51.5	5.58	4.25	12	33.199	34.332	0.75	A572-65	0.972
27	51.5 - 46.5	5		12	32.844	33.859	0.8	A572-65	0.985
28	46.5 - 41.5	5		12	33.859	34.874	0.8	A572-65	0.970
29	41.5 - 37.75	3.75		12	34.874	35.636	0.775	A572-65	0.989
30	37.75 - 37.5	0.25		12	35.636	35.686	0.8	A572-65	0.979
31	37.5 - 32.5	5		12	35.686	36.702	0.775	A572-65	0.995
32	32.5 - 32.25	0.25		12	36.702	36.752	0.825	A572-65	1.002
33	32.25 - 27.25	5		12	36.752	37.767	0.8125	A572-65	1.002
34	27.25 - 23.5	3.75		12	37.767	38.529	0.8	A572-65	1.006
35	23.5 - 23.25	0.25		12	38.529	38.580	0.9	A572-65	1.051
36	23.25 - 20.75	2.5		12	38.580	39.087	0.9	A572-65	1.043
37	20.75 - 20.5	0.25		12	39.087	39.138	0.85	A572-65	1.003
38	20.5 - 15.5	5		12	39.138	40.153	0.825	A572-65	1.018
39	15.5 - 10.5	5		12	40.153	41.168	0.825	A572-65	1.004
40	10.5 - 5.5	5		12	41.168	42.183	0.8	A572-65	1.021
41	5.5 - 3	2.5		12	42.183	42.691	0.8	A572-65	1.014
42	3 - 2.75	0.25		12	42.691	42.742	0.95	A572-65	0.879
43	2.75 - 1.75	1		12	42.742	42.945	0.95	A572-65	0.876
44	1.75 - 1.5	0.25		12	42.945	42.995	1.125	A572-65	0.803
45	1.5 - 0	1.5		12	42.995	43.300	1.1	A572-65	0.817

-

# **TNX Section Forces**

Incr	ement (fi	t):	5		Т	NX Outpu	ıt
						M _{ux} (kip-	Vu
	Section	Hei	ight (ft)	Pu	(К)	ft)	(K)
1	140	-	135	1	4.34	20.83	5.25
2	135	-	130		4.61	48.11	5.66
3	130	-	125		4.91	77.45	6.08
4	125	-	120		9.56	123.35	14.00
5	120	-	115		10.10	194.46	14.45
6	115	-	110		15.07	295.97	20.09
7	110	-	105		15.81	397.51	20.55
8	105	-	104		15.97	418.09	20.64
9	104	-	103.75		20.49	424.49	25.44
10	103.75	-	98.75		21.54	553.23	26.08
11	98.75	-	98.5		21.60	559.75	26.12
12	98.5	-	98.25		21.67	566.28	26.16
13	98.25	-	97		22.01	599.07	26.33
14	97	-	96.75		22.07	605.65	26.37
15	96.75	-	91.75		23.47	739.57	27.19
16	91.75	-	88.17		24.87	837.83	27.73
17	88.17	-	87.92		24.95	844.76	27.78
18	87.92	-	82.92		26.60	985.41	28.53
19	82.92	-	77.92		28.45	1130.23	29.39
20	77.92	-	72.92		30.18	1278.90	30.13
21	72.92	-	68.08		31.88	1426.33	30.85
22	68.08	-	67.83		31.99	1434.04	30.88
23	67.83	-	62.83		33.92	1590.25	31.65
24	62.83	-	57.83		35.86	1751.52	33.01
25	57.83	-	52.83		37.87	1918.28	33.71
26	52.83	-	51.5		38.41	1963.23	33.90
27	51.5	-	46.5		41.87	2134.78	34.71
28	46.5	-	41.5		44.06	2309.99	35.38
29	41.5	-	37.75		45 <b>.72</b>	2443.57	35.88
30	37.75	-	37.5		45.85	2452.54	35.89
31	37.5	-	32.5		48.13	2633.64	36.55
32	32.5	-	32.25		48.27	2642.77	36.56
33	32.25	-	27.25		50.70	2827.21	37.21
34	27.25	-	23.5		52.55	2967.57	37.67
35	23.5	-	23.25		52.70	2976.99	37.68
36	23.25	-	20.75		54.10	3071.59	38.00
37	20.75	-	20.5		54.25	3081.10	38.01
38	20.5	-	15.5		56.88	3272.61	38.59
39	15.5	-	10.5		59.55	3466.89	39.32
40	10.5	-	5.5		62.25	3664.68	39.88
41	5.5	-	3		63.61	3764.62	40.16
42	3	-	2.75		63.76	3774.65	40.17
43	2.75	-	1.75		64.31	3814.86	40.30
44	1.75	-	1.5		64.47	3824.93	40.32
45	1.5	-	0		65.34	3885.52	40.53

# **Analysis Results**

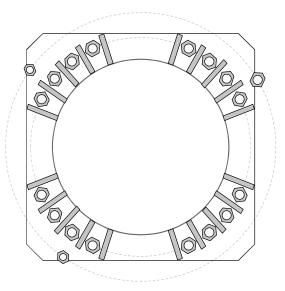
Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fai
140 - 135	Pole	TP17.015x16x0.25	Pole	6.3%	Pass
135 - 130	Pole	TP18.03x17.015x0.25	Pole	12.5%	Pass
130 - 125	Pole	TP19.045x18.03x0.25	Pole	17.7%	Pass
125 - 120	Pole	TP20.061x19.045x0.25	Pole	25.6%	Pass
120 - 115	Pole	TP21.076x20.061x0.25	Pole	36.4%	Pass
115 - 110	Pole	TP22.091x21.076x0.25	Pole	51.1%	Pass
110 - 105	Pole	TP23.106x22.091x0.25	Pole	63.3%	Pass
105 <b>-</b> 104	Pole	TP23.309x23.106x0.25	Pole	65.5%	Pass
104 - 103.75	Pole + Reinf.	TP23.36x23.309x0.4625	Reinf. 9 Tension Rupture	60.8%	Pass
103.75 - 98.75	Pole + Reinf.	TP24.375x23.36x0.45	Reinf. 9 Tension Rupture	73.9%	Pass
98.75 - 98.5	Pole + Reinf.	TP24.426x24.375x0.45	Reinf. 9 Tension Rupture	74.5%	Pass
98.5 - 98.25	Pole + Reinf.	TP24.476x24.426x0.725	Reinf. 9 Tension Rupture	48.1%	Pass
98.25 <b>-</b> 97	Pole + Reinf.	TP24.73x24.476x0.725	Reinf. 9 Tension Rupture	50.1%	Pass
97 - 96.75	Pole + Reinf.	TP24.781x24.73x0.5125	Reinf. 5 Tension Rupture	59.6%	Pass
96.75 - 91.75	Pole + Reinf.	TP26.456x24.781x0.5	Reinf. 5 Tension Rupture	68.4%	Pass
91.75 - 88.17	Pole + Reinf.	TP26.023x25.296x0.5625	Reinf. 5 Tension Rupture	67.8%	Pass
88.17 - 87.92	Pole + Reinf.	TP26.074x26.023x0.7625	Reinf. 5 Tension Rupture	53.0%	Pass
87.92 - 82.92	Pole + Reinf.	TP27.089x26.074x0.7375	Reinf. 5 Tension Rupture	58.5%	Pass
82.92 - 77.92	Pole + Reinf.	TP28.104x27.089x0.725	Reinf. 5 Tension Rupture	63.5%	Pass
77.92 - 72.92	Pole + Reinf.	TP29.12x28.104x0.7125	Reinf. 5 Tension Rupture	68.2%	Pass
72.92 - 68.08	Pole + Reinf.	TP30.102x29.12x0.6875	Reinf. 5 Tension Rupture	72.3%	Pass
68.08 - 67.83	Pole + Reinf.	TP30.153x30.102x0.8125	Reinf. 7 Tension Rupture	61.8%	Pass
67.83 - 62.83	Pole + Reinf	TP31.168x30.153x0.7875	Reinf. 7 Tension Rupture	65.5%	Pass
62.83 - 57.83	Pole + Reinf	TP32.184x31.168x0.7625	Reinf. 7 Tension Rupture	69.0%	Pass
57.83 - 52.83	Pole + Reinf.	TP33.199x32.184x0.75	Reinf. 7 Tension Rupture	72.3%	Pass
52.83 - 51.5	Pole + Reinf.	TP34.332x33.199x0.75	Reinf. 7 Tension Rupture	73.2%	Pass
51.5 - 46.5	Pole + Reinf	TP33.859x32.844x0.8	Reinf. 7 Tension Rupture	72.4%	Pass
46.5 - 41.5	Pole + Reinf.	TP34.874x33.859x0.8	Reinf. 7 Tension Rupture	75.0%	Pass
41.5 - 37.75	Pole + Reinf.	TP35.636x34.874x0.775	Reinf. 7 Tension Rupture	76.9%	Pass
37.75 - 37.5	Pole + Reinf.	TP35.686x35.636x0.8	Reinf. 2 Tension Rupture	75.3%	Pass
37.5 - 32.5	Pole + Reinf.	TP36.702x35.686x0.775	Reinf. 2 Tension Rupture	77.4%	Pass
32.5 - 32.25	Pole + Reinf.	TP36.752x36.702x0.825	Reinf. 2 Tension Rupture	73.5%	Pass
32.25 - 27.25	Pole + Reinf.	TP37.767x36.752x0.8125	Reinf. 2 Tension Rupture	75.5%	Pass
27.25 - 23.5	Pole + Reinf.	TP38.529x37.767x0.8	Reinf. 2 Tension Rupture	76.9%	Pass
23.5 - 23.25	Pole + Reinf.	TP38.58x38.529x0.9	Reinf. 2 Tension Rupture	72.3%	Pass
23.25 - 20.75	Pole + Reinf.	TP39.087x38.58x0.9	Reinf. 2 Tension Rupture	72.3%	Pass
20.75 - 20.5	Pole + Reinf.	TP39.138x39.087x0.85	Reinf. 2 Tension Rupture	74.1%	Pass
20.75 - 20.5	Pole + Reinf.	TP40.153x39.138x0.825	Reinf. 2 Tension Rupture	74.1%	Pass
15.5 - 10.5	Pole + Reinf.	TP40.155x39.156x0.625	Reinf. 2 Tension Rupture	77.3%	Pass
10.5 - 5.5	Pole + Reinf.	TP42.183x41.168x0.8	Reinf. 2 Tension Rupture	78.8%	Pass
5.5 - 3	Pole + Reinf.				
3 - 2.75	Pole + Reinf.	TP42.691x42.183x0.8 TP42.742x42.691x0.95	Reinf. 2 Tension Rupture	79.5%	Pass Pass
	Pole + Reinf.		Reinf. 10 Connection		
2.75 - 1.75		TP42.945x42.742x0.95	Reinf. 10 Compression	80.2%	Pass
1.75 - 1.5	Pole + Reinf.	TP42.995x42.945x1.125	Reinf. 10 Compression	69.8%	Pass
1.5 - 0	Pole + Reinf.	TP43.3x42.995x1.1	Reinf. 10 Connection	70.2%	Pass
	+		Pole	Summary 65.5%	Pass
	++		Reinforcement	80.2%	Pass
			Overall	80.2%	Pass

# **Additional Calculations**

Section	Mom	ent of Inertia	a (in ⁴ )		Area (in ² )							%	6 Capaci	ty*						
Elevation (ft)	Pole	Reinf.	Total	Pole	Reinf.	Total	Pole	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13
140 - 135	485	n/a	485	13.48	n/a	13.48	6.3%													
135 - 130	578	n/a	578	14.29	n/a	14.29	12.5%													
130 - 125	683	n/a	683	15.11	n/a	15.11	17.7%													
125 - 120	800	n/a	800	15.92	n/a	15.92	25.6%													
120 - 115	929	n/a	929	16.74	n/a	16.74	36.4%													
115 - 110	1072	n/a	1072	17.56	n/a	17.56	51.1%													
110 - 105	1228	n/a	1228	18.37	n/a	18.37	63.3%													
105 - 104	1262	n/a	1262	18.54	n/a	18.54	65.5%													
104 - 103.75	1270	1013	2283	18.58	13.50	32.08	36.0%									60.8%				
103.75 - 98.75	1445	1099	2543	19.39	13.50	32.89	44.4%									73.9%				-
98.75 - 98.5	1454	1103	2557	19.43	13.50	32.93	44.9%									74.5%				
98.5 - 98.25	1463	2557	4020	19.47	30.45	49.92	29.0%					41.2%				48.1%				
98.25 - 97	1509	2607	4116	19.68	30.45	50.13	30.3%					43.0%				50.1%				
97 - 96.75	1519	1483	3002	19.72	16.95	36.67	42.1%					59.6%								
96.75 - 91.75	1715	1599	3314	20.54	16.95	37.49	49.1%					68.4%								
91.75 - 88.17	2186	1625	3811	25.83	16.95	42.78	45.3%					67.8%								
88.17 - 87.92	2209	2860	5069	25.89	34.95	60.84	37.1%					53.0%			51.6%					
87.92 - 82.92	2481	3142	5622	26.91	34.95	61.86	40.5%					58.5%			57.0%					_
82.92 - 77.92	2774	3367	6141	27.93	34.95	62.88	44.6%					63.5%			62.1%					
77.92 - 72.92	3088	3601	6689	28.95	34.95	63.90	48.5%					68.2%			66.7%					
72.92 - 68.08	3415	3835	7249	29.93	34.95	64.88	52.2%					72.3%			70.9%					-
68.08 - 67.83	3429	4990	8419	29.98	43.41	73.39	45.1%				61.5%			61.8%						
67.83 - 62.83	3791	5311	9102	31.00	43.41	74.41	48.3%				65.1%			65.5%						
62.83 - 57.83	4177	5643	9819	32.02	43.41	75.43	51.5%				68.4%			69.0%						
57.83 - 52.83	4588	5984	10572	33.04	43.41	76.45	54.7%				71.7%			72.3%						-
52.83 - 51.5	4702	6077	10779	33.32	43.41	76.73	55.5%				72.5%			73.2%						
51.5 - 46.5	5809	6214	12023	40.37	43.41	83.78	51.3%				71.2%			72.4%						-
46.5 - 41.5	6353	6572	12925	41.60	43.41	85.01	53.7%				73.7%			75.0%		_				-
41.5 - 37.75	6782	6848	13630	42.52	43.41	85.93	55.4%				75.4%			76.9%						
37.75 - 37.5	6825	7049	13874	42.58	45.26	87.84	55.3%		75.3%	70.8%	10.470			75.0%						-
37.5 - 32.5	7430	7436	14865	43.80	45.26	89.06	57.6%		77.4%	69.3%				77.3%						
32.5 - 32.25	7473	8369	15842	43.86	51.64	95.50	54.7%		73.5%	65.2%			71.3%	11.070						-
32.25 - 27.25	8115	8814	16929	45.09	51.64	96.72	56.8%		75.5%	67.1%			73.4%							
27.25 - 23.5	8620	9156	17776	46.00	51.64	97.64	58.4%		76.9%	68.4%			74.8%			_				
23.5 - 23.25	8862	11326	20188	46.07	68.58	114.64	54.9%	54.2%	72.3%	49.0%			66.9%							-
23.25 - 20.75	9217	11613	20831	46.68	68.58	115.25	55.9%	54.9%	73.1%	49.7%			67.8%							
20.75 - 20.5	9096	10562	19658	46.74	58.26	104.99	57.9%	66.0%	74.1%	40.170			72.3%							-
20.5 - 15.5	9826	11092	20918	40.74	58.26	104.33	59.8%	67.6%	75.8%				74.0%							-
15.5 - 10.5	10595	11636	20318	49.19	58.20	107.44	61.8%	69.0%	77.3%				75.6%							-
10.5 - 5.5	10393	12193	23595	50.41	58.26	107.44	63.7%	70.4%	78.8%				75.6%							-
5.5 - 3	11403	12195	23393	51.02	58.26	109.28	64.6%	71.1%	79.5%				77.9%							_
3 - 2.75	11821	12476	28591	51.02	61.07	112.15	54.6%	66.2%	79.5%				11.9%			_	79.9%			-
2.75 - 1.75	11809	16926	28591	51.08	61.07	112.15	54.6%	66.5%	74.5%								80.2%			
2.75 - 1.75	11979	21750	33823	51.33	70.19	112.40	54.9% 47.9%	00.5%	14.1%									58.0%	61 /0/	66
													_				69.8%		61.4%	_
1.5 - 0 ote: Section capacity	12333	22020	34353	51.76	70.19	121.95	48.4%										70.2%	58.3%	61.7%	67

Rating per TIA-222-H Section 15.5

#### **Monopole Base Plate Connection**


#### CC CROWN CASTLE

Site Info								
BU #	876342							
Site Name	BIC DRIVE							
Order #	508882 Rev 0							

Analysis Considerations						
TIA-222 Revision	Н					
Grout Considered:	No					
l _{ar} (in)	2.25					

Applied Loads	
Moment (kip-ft)	3885.52
Axial Force (kips)	65.34
Shear Force (kips)	40.53
*TIA 222 U.Castiers 15 5 Am	lind

*TIA-222-H Section 15.5 Applied



#### **Connection Properties**

#### Anchor Rod Data

GROUP 1: (16) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 54" BC Anchor Spacing: 6 in

GROUP 2: (3) 2-1/4" ø bolts (A193 Gr. B7 N; Fy=105 ksi, Fu=125 ksi) on 66.3" BC pos. (deg): 30, 145, 235

#### Base Plate Data

56" OD x 3" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

#### Stiffener Data

(20) 18"H x 7.75"W x 1.25"T, Notch: 0.75" plate: Fy= 65 ksi ; weld: Fy= 70 ksi horiz. weld: 0.49" groove, 45° dbl bevel, 0.5" fillet vert. weld: 0.3125" fillet

#### Pole Data

43.3" x 0.375" 12-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

#### Analysis Results

Anchor Rod Summary		(units of kips, kip-in)
GROUP 1:		
Pu_c = 191.41	φPn_c = 243.75	Stress Rating
Vu = 2.53	φVn = 73.13	74.9%
Mu = n/a	φMn = n/a	Pass
GROUP 2:		
Pu_c = 211.89	φPn_c = 246.34	Stress Rating
Vu = 0	φVn = 102.31	81.9%
Mu = 0	φMn = 132.46	Pass
Base Plate Summary		
Max Stress (ksi):	4.12	(Shear)
Allowable Stress (ksi):	29.25	
Stress Rating:	13.4%	Pass
Stiffener Summary		
Horizontal Weld:	56.7%	Pass
Vertical Weld:	61.2%	Pass
Plate Flexure+Shear:	8.7%	Pass
Plate Tension+Shear:	25.4%	Pass
Plate Compression:	32.6%	Pass
Pole Summary		
Punching Shear:	16.4%	Pass

# Pier and Pad Foundation

	876342
Site Name:	
App. Number:	508882 Rev 0

TIA-222 Revision: Tower Type:

Н Monopole



Top & Bot. Pad Rein. Different?:	
Block Foundation?:	

Superstructure Analysis Reactions						
Compression, P _{comp} :	65.34	kips				
Base Shear, Vu_comp:	40.53	kips				
Moment, <b>M</b> u:	3885.52	ft-kips				
Tower Height, H:	140	ft				
BP Dist. Above Fdn, <b>bp_{dist}</b> :	3	in				

Foundation Analysis Checks								
	Capacity	Demand	Rating*	Check				
Lateral (Sliding) (kips)	455.90	40.53	8.5%	Pass				
Bearing Pressure (ksf)	15.00	3.40	22 <u>.</u> 7%	Pass				
Overturning (kip*ft)	8273 <u>.</u> 31	4321.22	52 <u>.</u> 2%	Pass				
Pier Flexure (Comp.) (kip*ft)	7603.98	4148.97	52 <u>.</u> 0%	Pass				
Pier Compression (kip)	23390.64	122 <u>.</u> 67	0.5%	Pass				
Pad Flexure (kip*ft)	6671.79	1452.39	20.7%	Pass				
Pad Shear - 1-way (kips)	951.31	214.83	21.5%	Pass				
Pad Shear - 2-way (Comp) (ksi)	0.164	0.026	15.0%	Pass				
Flexural 2-way (Comp) (kip*ft)	11089.05	2489.38	21.4%	Pass				

*Rating per TIA-222-H Section 15.5

Soil Rating*:	52.2%
Structural Rating*:	52.0%

Pier Properties					
Pier Shape:	Square				
Pier Diameter, <b>dpier</b> :	7	ft			
Ext. Above Grade, E:	0.5	ft			
Pier Rebar Size, <b>Sc</b> :	11				
Pier Rebar Quantity, <b>mc</b> :	32				
Pier Tie/Spiral Size, St:	5				
Pier Tie/Spiral Quantity, mt:					
Pier Reinforcement Type:	Tie				
Pier Clear Cover, <b>cc</b> _{pier} :	3	in			

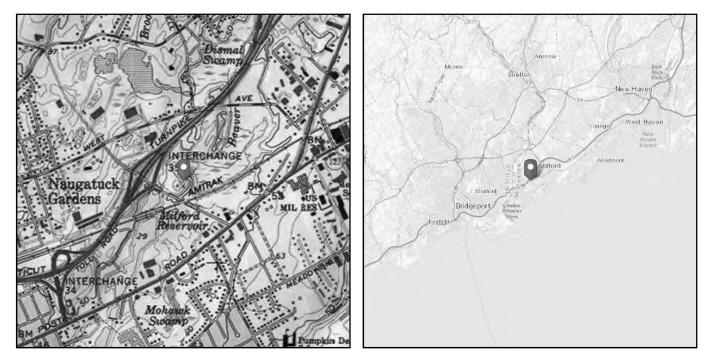
Pad Properties				
Depth, D:	10	ft		
Pad Width, <b>W</b> :	22.5	ft		
Pad Thickness, <b>T</b> :	4	ft		
Pad Rebar Size (Bottom), <b>Sp</b> :	11			
Pad Rebar Quantity (Bottom), <b>mp</b> :	23			
Pad Clear Cover, <b>cc_{pad}:</b>	3	in		

Material Properties			
Rebar Grade, <b>Fy</b> :	60	ksi	
Concrete Compressive Strength, F'c:	3	ksi	
Dry Concrete Density, δ <b>c</b> :	150	pcf	

Soil Properties				
Total Soil Unit Weight, $m{\gamma}$ :	130	pcf		
Ultimate Gross Bearing, Qult:	20.000	ksf		
Cohesion, <b>Cu</b> :		ksf		
Friction Angle, $oldsymbol{arphi}$ :	32	degrees		
SPT Blow Count, <b>N_{blows}:</b>	22			
Base Friction, $\mu$ :				
Neglected Depth, N:	3.50	ft		
Foundation Bearing on Rock?	No			
Groundwater Depth, <b>gw</b> :	n/a	ft		

<---Toggle between Gross and Net




# ASCE 7 Hazards Report

Address: No Address at This Location Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

 Elevation:
 40.17 ft (NAVD 88)

 Latitude:
 41.212794

 Longitude:
 -73.085306



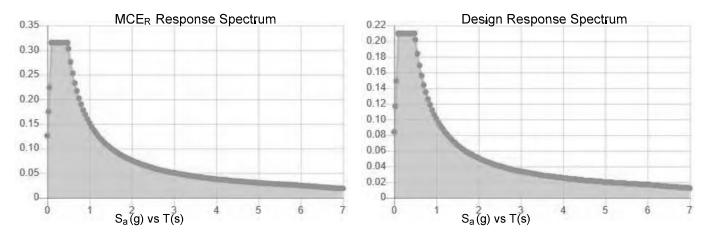
## Wind

#### **Results:**

Wind Speed:	124 Vmph
10-year MRI	77 Vmph
25-year MRI	87 Vmph
50-year MRI	94 Vmph
100-year MRI	100 Vmph
Data Source:	ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, incorporating errata of March 12, 2014
Date Accessed:	Fri Dec 06 2019

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.


Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.



#### Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _S :	0.197	S _{DS} :	0.21	
<b>S</b> ₁ :	0.063	<b>S</b> _{D1} :	0.101	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA :	0.105	
S _{MS} :	0.315	PGA M :	0.167	
S _{M1} :	0.152	F _{PGA} :	1.59	
		e :	1	

#### Seismic Design Category B



Data Accessed: Date Source:

#### Fri Dec 06 2019

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.



#### lce

#### **Results:**

Ice Thickness:	0.75 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Fri Dec 06 2019

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

# Exhibit E

**Mount Analysis** 

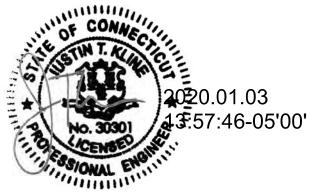


Date: January 3, 2019

Darcy Tarr Crown Castle 3530 Toringdon Way Charlotte, NC 28277	Paul J Ford and Company 250 E. Broad Street, Suite 600 Columbus, OH 43215 614.221.6679			
Subject:	Mount Modification Report			
Carrier Designation:	<i>Verizon Wireless</i> Equipment Ch Carrier Site Number: Carrier Site Name:	ange-out	NG32385 MILFORD 2 CT	
Crown Castle Designation:	Crown Castle BU Number: Crown Castle Site Name: Crown Castle JDE Job Number: Crown Castle Purchase Order N Crown Castle Order Number:		876342 Bic Drive (SSUSA) 595589 1485343 508882 Rev. 0	
Engineering Firm Designation:	Paul J Ford and Company Proje	ect Number:	A37519-1158.004.7191	
Site Data: 111 School House Road, A/K/A Bic Drive, Milford, New Haven County, CT 06460 Latitude 41.212794°, Longitude -73.085306°				
Structure Information:	Tower Height & Type: Mount Elevation: Mount Type:	140 Foot N 104 Foot 14 Foot Pla		
Doar Daroy Tarr				

Dear Darcy Tarr,

*Paul J Ford and Company* is pleased to submit this "Mount Modification Report" to determine the structural integrity of the Verizon Wireless antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point is not part of this document.


The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

14' Platform 60.2% SUFFICIENT* *The mount has sufficient capacity once the modifications, as described in Section 4.1 Recommendations of this report, are completed.

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code and Appendix N. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Respectfully submit ed by:

Gowtham Penumatsa Structural Designer gpenumatsa@pauliford.com



#### TABLE OF CONTENTS

#### 1) INTRODUCTION

#### 2) ANALYSIS CRITERIA Table 1 - Proposed Equipment Configuration

#### 3) ANALYSIS PROCEDURE

Table 2 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

#### . .

4) ANALYSIS RESULTS Table 3 - Mount Component Capacity 4.1) Recommendations

#### **5) STANDARD CONDITIONS**

#### 6) APPENDIX A WIRE FRAME AND RENDERED MODELS

- 7) APPENDIX B SOFTWARE INPUT CALCULATIONS
- 8) APPENDIX C SOFTWARE ANALYSIS OUTPUT
- 9) APPENDIX D SUPPLEMENTAL MODIFICATION INFORMATION

#### 10) APPENDIX E

MANUFACTURER DRAWINGS (FOR REFERENCE ONLY)

#### 11) APPENDIX F

POST MODIFICATION INSPECTION (PMI) REQUIREMENTS FOR DESKTOP REVIEW

#### 1) INTRODUCTION

The existing mount under consideration is a 14' Platform mount identified as a Valmont TMF 14' LP PLATFORM based on photos.

#### 2) ANALYSIS CRITERIA

TIA-222 Revision:	T <b>I</b> A-222-H
Risk Category:	II
Ultimate Wind Speed:	125 mph
Exposure Category:	С
Topographic Factor at Base:	1.00
Topographic Factor at Mount:	1.00
Ice Thickness:	1.5 in
Wind Speed with Ice:	50 mph
Live Loading Wind Speed:	30 mph
Maintenance Load at Mid/End-Points:	250 lb
Maintenance Load at Mount Pipes:	500 lb

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
		3	ANDREW	LNX-6514DS-VTM	
		6	COMMSCOPE	SBNHH-1D65B	
		3	COMMSCOPE	BSAMNT-SBS-1-2	
		3	SAMSUNG TELE.	CBRS	Click or tap here to
104	104	3	COMMSCOPE	CBC78T-DS-43-2X	enter text. 14' Platform
		3	SAMSUNG TELE.	20W CBRS	
		3	SAMSUNG TELE.	RFV01U-D1A	
1		3	SAMSUNG TELE.	RFV01U-D2A	
		2	RFS CELWAVE	DB-T1-6Z-8AB-0Z	Tower Mounted

#### 3) ANALYSIS PROCEDURE

#### Table 2 - Documents Provided

Document	Remarks	Reference	Source
Mount Manufacturer Drawings	TMF 14' LP PLATFORM Dated: 10/27/2009	_	Valmont
Photos	Dated: 8/5/2019	-	CCISites
Order	ID: 508882 Rev. 0 Dated: 11/25/2019	_	CCISites
Construction Drawings	Dated: 12/26/2019	-	Crown Castle
Radio Frequency Data Sheet	Dated: 11/4/2019	-	Crown Castle

#### 3.1) Analysis Method

RISA-3D (version 17.0.3), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision C). In addition, this analysis is in accordance with Verizon's NSTD-446 *Antenna Mount Analysis and Modification Process (dated 03/29/19)*.

#### 3.2) Assumptions

- 1) The analysis of the existing tower or the effect of the mount attachment to the tower is not within the current scope of work.
- 2) The antenna mounting system was properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications and all bolts are tightened as specified by the manufacturer and AISC requirements.
- 3) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1.
- 4) All member connections have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report. All U-Bolt connections have been properly tightened. This analysis will be required to be revised if the existing conditions in the field differ from those shown in the above referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Steel grades are as follows, unless noted otherwise:

a) Channel, Solid Round, Angle, Plate, Unistrut	ASTM A36 (GR 36)
b) Pipe	ASTM A53 (GR 35)
c) HSS (Rectangular)	ASTM 500 (GR B-46)
d) HSS (Round)	ASTM 500 (GR B-42)
e) Threaded Rods	ASTM F1554 (GR 36)
f) Connection Bolts	ASTM A325
g) U-Bolts	SAE J429 (GR 2)
Dranged equipment is to be installed in the leasting	ma ana aifiad in Annandiu A

- 6) Proposed equipment is to be installed in the locations specified in Appendix A. Any changes to the proposed equipment locations will render this report invalid.
- 7) Mount has been modeled based on the photographs and/or the TIA inspection referenced in Table 2, indicating a match to the Valmont TMF 14' LP PLATFORM. Member information and dimensions not provided have been assumed to match those specified in the manufacturer drawings referenced in Table 2. No guarantee can be made as to the accuracy of these assumptions without a complete mount mapping.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J Ford and Company should be notified to determine the effect on the structural integrity of the mount.

#### 4) ANALYSIS RESULTS

Table 3-	Mount	Component	t Capacity

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Face Horizontals		50.6	Pass
1	Support Rails		50.5	Pass
1	Grating Support Members		30.7	Pass
1	Standoff Members	104	22.9	Pass
1	Kick-Brace	104	12.9	Pass
1	Corner Plates		60.2	Pass
1	Mount Pipes		33.3	Pass
1	Mount to Tower Connection		41.1	Pass

Mount Rating (max from all components) =	60.2%	
------------------------------------------	-------	--

Notes:

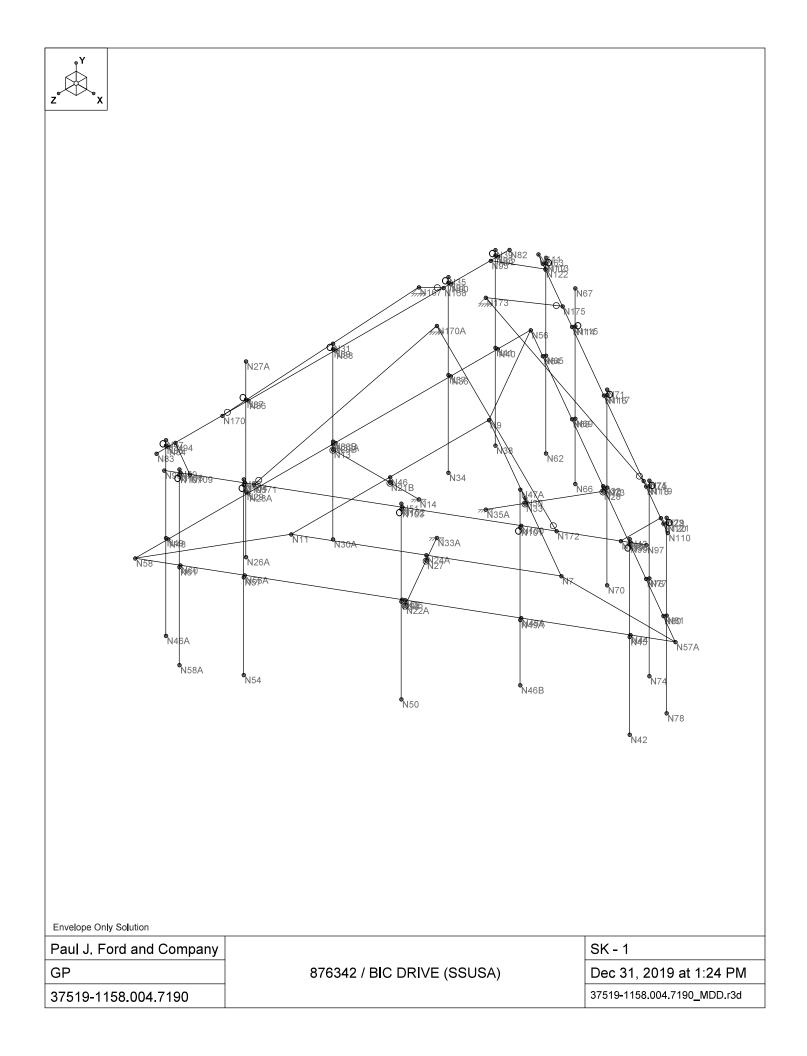
1) See additional documentation in "Appendix C – Software Analysis Output" for calculations supporting the % capacity consumed.

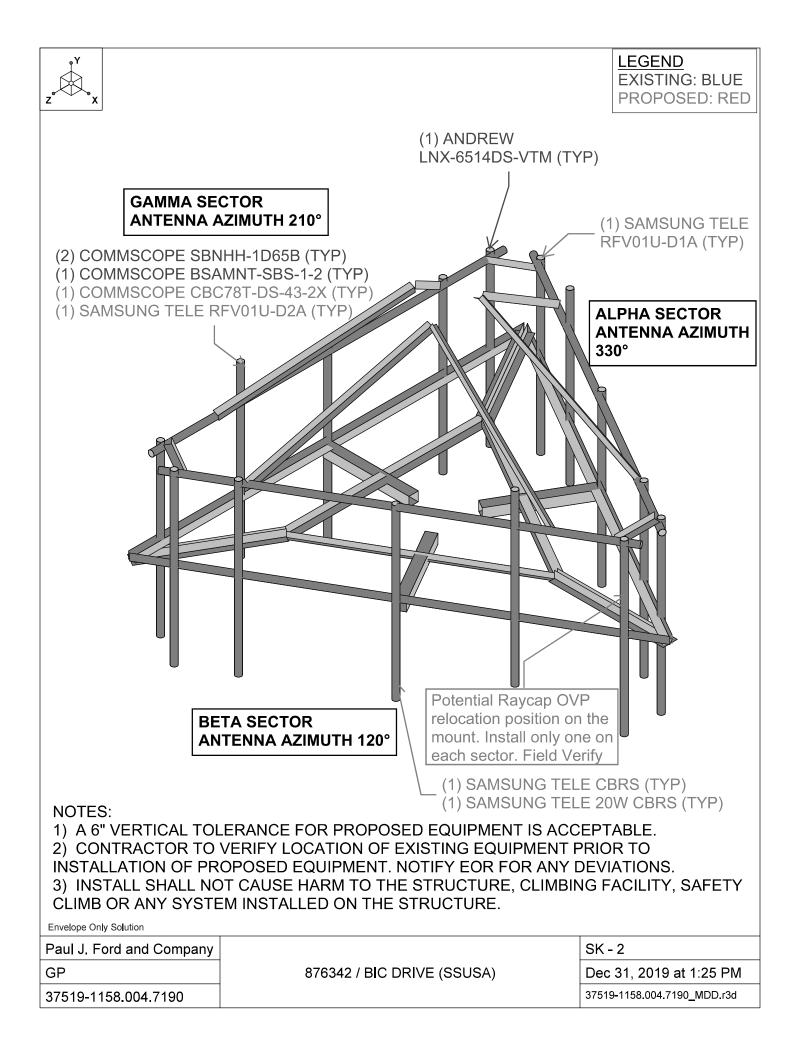
#### 4.1) Recommendations

The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the structural modifications listed below must be completed.

- Install SitePro1 HRK12 support rail kit or EOR approved equivalent as indicated in "Appendix D Supplemental Modification Information" and in conformance with the attached manufacturer drawings.
- Install SitePro1 PRK-SFS-L Platform Reinforcement Kit or EOR approved equivalent to the new support rails as indicated in "Appendix D Supplemental Modification Information" and in conformance with the attached manufacturer drawings.

Connection from the mount to the tower and local stresses on the tower are sufficient.


#### VERIZON MOUNT RATING = M 650R(450)-5(6)


### STANDARD CONDITIONS FOR FURNISHING OF PROFESSIONAL ENGINEERING SERVICES ON EXISTING MOUNTS BY PAUL J. FORD AND COMPANY

- 1) It is the responsibility of the client to ensure that the information provided to Paul J. Ford and Company is accurate and complete. Paul J. Ford and Company will rely on the accuracy and completeness of such information in performing or furnishing services under this project.
- 2) If the existing conditions are not as represented on the referenced drawings and/or documents, Paul J. Ford and Company should be contacted immediately to evaluate the significance of the deviation.
- 3) The mount has been analyzed according to the minimum design loads recommended by the Reference Standard. If additional design loads are required, Paul J. Ford and Company should be made aware of this prior to the start of the project.
- 4) The standard of care for all Professional Engineering Services performed or furnished by Paul J. Ford and Company under this project will be the skill and care used by members of the Consultant's profession practicing under similar circumstances at the same time and in the same locality.
- 5) All Services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Paul J. Ford and Company is not responsible for the conclusions, opinions and/or recommendations made by others based on the information supplied herein.

### APPENDIX A

### WIRE FRAME AND RENDERED MODELS





# APPENDIX B

### SOFTWARE INPUT CALCULATION

J. FORD	PANY	olumbus, OH 43215	ww.pouliford.com
AUL	COM	te 600 - Co	W 619
	20	E Broad St, S	ne 614.221.6
•	7	250	Phor

Project # <u>37519-1158.004.7190</u> By <u>37519-1158.004.7190</u> Analysis <u>30</u> degrees

Page 1 of 1 Date: 12/31/19

v2.1, Effective 11/15/19

Preview 20 EPA method Projected Area File , Client.r3d Mount Loading per TIA-222-H

(Section 2.6.6.2.1) (Section 16.6) (Section 2.6.8) (Section 16.6) (Annex S - Wind Force) (Section 2.6.11.6) (Table 2-4) (Table 2-4) (Section 2.6.5.2) Velocity Pressure Coefficients  $\begin{array}{c} Z_{2} = & = & \underbrace{900}_{K_{min}} \uparrow \uparrow \\ C_{4} = & \underbrace{9.50}_{K_{min}} \uparrow \\ K_{min} = & \underbrace{0.50}_{K_{min}} \uparrow \\ K_{min} = & \underbrace{0.25}_{K_{min}} \uparrow \\ K_{min} = & \underbrace{0.05}_{K_{min}} \uparrow \\ C_{4} = & \underbrace{1.00}_{K_{min}} \uparrow \\ C_{6} = & \underbrace{1.00}_{K_{min}} \downarrow \\ C_{6} = & \underbrace$  
 Load
 Label
 Node #

 Ln
 250 lbs
 N/58
 8

 Ln
 250 lbs
 N/56
 7

 Ln
 250 lbs
 N/56
 10

 Ln
 250 lbs
 N/56
 17

 Ln
 250 lbs
 N/56
 10
 Risk Category = II Exposure Category = C Topogory = 244.06 ft Structure Base Height (2, = 444.06 ft Crest Height (H) = ft 
 Load
 Label
 Node #.

 L_{n1}
 500 lbs
 N40
 40

 L_{n2}
 500 lbs
 N32A
 32

 L_{n3}
 500 lbs
 N32A
 28

 L_{n3}
 500 lbs
 N28A
 28

 L_{n4}
 500 lbs
 N48A
 28
 Maintenance Point Loads Topography Analysis Scope= <u>Client</u> structure Type = <u>Nount</u> Mount Type = <u>3 Sectors</u> Mount Centerline (2) = <u>104</u> ft CLP / Coordinate = <u>0</u> fn Ultimate Wind Speed = <u>125</u> mph Lee Wind Speed = <u>30</u> mph Lee Wind Speed = <u>41NA</u> mph COP Wind Speed = <u>30</u> mph Structure & Wind Speed

psf (43.57 after Ka applec)

0.9 48.41 7.76

 $\begin{array}{c} K_a \\ (q_z) \ (G_n) \ (K_{es}) = \\ (q_{zz}) \ (G_n) \ (K_{es}) = \end{array}$ 

Wind Pressure

(Table 2-3) (Annex S - Ice) (Section 2.6.10) (Section 2.6.10) (Section 2.6.10) (Bar Grating Height) (Grating Ice Weight)

ber = _= _ber

Ļ

Ice Loading

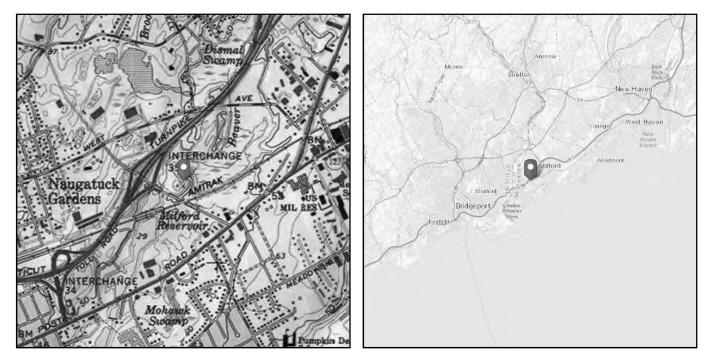
1.00 7.76 1.12 1.68 1.00

ج ج ^ج ^ی ^ی ² ² ²

Antennas

Transverse Wind Force per Antenna (Ibs)	108.498	108.498	108.498	108.498	108.498	108.498	108.498	108.498	108.498	0.363	0.363	0.363	32.531	32.531	32.531	22.310	22.310	22.310	18.315	18.315	18.315	54.467	54,467	54.467	44.118	44,118	44,118
Normal Wind Force per Antenna   (Ibs)	181,266	181.266	181.266	181.266	181,266	181.266	181,266	181.266	181.266	0.363	0.363	0.363	66.835	66.835	66.835	16.035	16.035	16.035	37.346	37.346	37.346	81.700	81.700	81.700	81.700	81.700	81.700
Override Bottom Antenna Mounting Location (in)																											
Override Top Antenna Mounting Location (in)																											
Antenna Bottom Mount Location from Mount Pipe Bottom (in)	2,65	2.65	2.65	2,55	2,55	2,55	2,55	2,55	2.55	35,50	35,50	35.50	30,92	30,92	30,92	35,80	35,80	35,80	44.95	44.95	44.95	43.50	43.50	43.50	31.50	31.50	31.50
Antenna Top Mount Location from Mount Pipe Bottom (in)	69.35	69.35	69.35	69.45	69.45	69.45	69.45	69.45	69.45	36.50	36.50	36.50	41.08	41.08	41.08	36.20	36.20	36.20	51.05	51.05	51.05	52,50	52,50	52,50	40.50	40.50	40.50
Antenna C/L (ft)	104	104	104	105	105	105	105	105	105	105	105	105	104	104	104	105	105	105	105	105	105	105	105	105	105	105	105
Min Antenna C/L (ff)	103.779	103,779	103,779	104.788	104.788	104.788	104.788	104,788	104.788	102.042	102.042	102.042	101.423	101.423	101.423	102.017	102.017	102.017	101.254	101.254	101.254	101.375	101.375	101.375	102.375	102.375	102.375
Max Antenna C/L (ft)	104.221	104.221	104.221	105.213	105.213	105.213	105.213	105,213	105.213	107.958	107.958	107.958	106.577	106.577	106.577	107.983	107.983	107.983	106.746	106.746	106.746	106.625	106.625	106.625	107.625	107.625	107.625
Override Spacing (in)																											
Top/Bottom Mounting Point Spacing	66.70	66.70	66.70	66.90	66.90	66.90	66.90	66.90	66.90	1.00	1.00	1.00	10.16	10.16	10.16	0.40	0.40	0.40	6.10	6.10	6.10	00.6	00'6	00.6	00'6	00.6	00.6
Use tnxTower C _s A _a (CFD)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Orientation	Norma	Norma	Norma	Norma	Normal	Norma	Norma	Norma	Normal	Norma	Norma	Normal	Norma	Norma	Norma	Norma	Norma	Norma	Norma	Norma	Norma	Norma	Norma	Norma	Norma	Norma	Norma
Quantity	1	1	1	1	+	1	1	-	+	-	1	1	-	+	1	1	1	1	1	1	1	1	1	1	1	1	1
Position	5	5	5	2	2	2	2	2	2	2	2	2	3	3	3	2	2	2	3	3	3	1	1	1	2	2	2
Sector / Face	A	в	c	A	A	в	в	U	U	A	в	c	A	в	J	A	в	С	A	в	С	A	в	С	A	В	С
Weight (Ibs)	38.8	38.8	38.8	40.6	40.6	40.6	40.6	40.6	40.6	40	40	40	23.14	23.14	23.14	20.7	20.7	20.7	18.64	18,64	18.64	84,4	84,4	84,4	70.3	70.3	70.3
Flat or Round	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat
Depth (in)	7.1	7.1	7.1	7,1	7.1	7.1	7.1	7.1	7.1	-	-	1	5.45	5.45	5.45	9.6	9.6	9'6	4.1	4,1	4.1	10	10	10	8.1	8,1	8,1
) Width (in)	11_9	11_9	11_9	11_9	11_9	11_9	11_9	11_9	11_9	-	-	1	11.39	11.39	11.39	6"9	6"9	6"9	8.5	<b>9</b> "2	8.5	15	15	15	15	15	15
Height (in)	72.7	72.7	72.7	72.9	72.9	72.9	72.9	72.9	72.9	-	1	1	16.16	16.16	16.16	6.4	6.4	6.4	12.1	12.1	12.1	15	15	15	15	15	15
Antenna	LNX-6514DS-VTM_CCI CFD	LNX-6514DS-VTM_CCI CFD	LNX-6514DS-VTM_CCI CFD	SBNHH-1D65B_CCI CFD	BSAMNT-SBS-1-2 (MOUNT BRACKET)	BSAMNT-SBS-1-2 (MOUNT BRACKET)	BSAMNT-SBS-1-2 (MOUNT BRACKET)	CBRS	CBRS		CBC78T-DS-43-2X	CBC78T-DS-43-2X	CBC78T-DS-43-2X	20W CBRS	20W CBRS	20W CBRS	RFV01U-D1A	RFV01U-D1A	RFV01U-D1A	RFV01U-D2A	RFV01U-D2A	RFV01U-D2A					
Manufacturer	ANDREW	ANDREW	ANDREW	COMMSCOPE	COMMSCOPE	COMMSCOPE	SAMSUNG TELECOMMUNICATIONS	SAMSUNG TELECOMMUNICATIONS	SAMSUNG TELECOMMUNICATIONS	COMMSCOPE	COMMSCOPE	COMMSCOPE	SAMSUNG TELECOMMUNICATIONS	SAMSUKG TELECOMMUNICATIONS	SAMSUNG TELECOMMUNICATIONS												
Status	-	-	-	-	-	-	-	-	-	-	-	-	۵.	۵.	۵.	٩.	4	Ч	Ч	Ч	٩.	٩.	٩.	٩.	٩.	٩	٩.
ltem	-	2	e	4	с,	9	2	60	<b>б</b>	10	1	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27




### ASCE 7 Hazards Report

Address: No Address at This Location Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

 Elevation:
 40.17 ft (NAVD 88)

 Latitude:
 41.212794

 Longitude:
 -73.085306



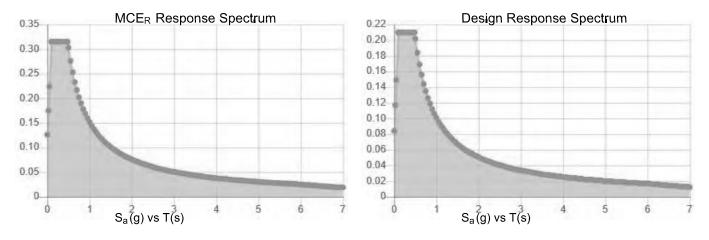
### Wind

#### **Results:**

Wind Speed:	124 Vmph $<$ — Jurisdiction requires 125 mph wind speed
10-year MRI	77 Vmph
25-year MRI	87 Vmph
50-year MRI	94 Vmph
100-year MRI	100 Vmph
Data Source:	ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, incorporating errata of March 12, 2014
Date Accessed:	Fri Dec 06 2019

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.


Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.



#### Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.197	S _{DS} :	0.21	
S ₁ :	0.063	S _{D1} :	0.101	
F _a :	1.6	Τ _L :	6	
$F_v$ :	2.4	PGA :	0.105	
S _{MS} :	0.315	PGA M :	0.167	
S _{M1} :	0.152	F _{PGA} :	1.59	
		e :	1	

#### Seismic Design Category B



Data Accessed: Date Source:

#### Fri Dec 06 2019

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.



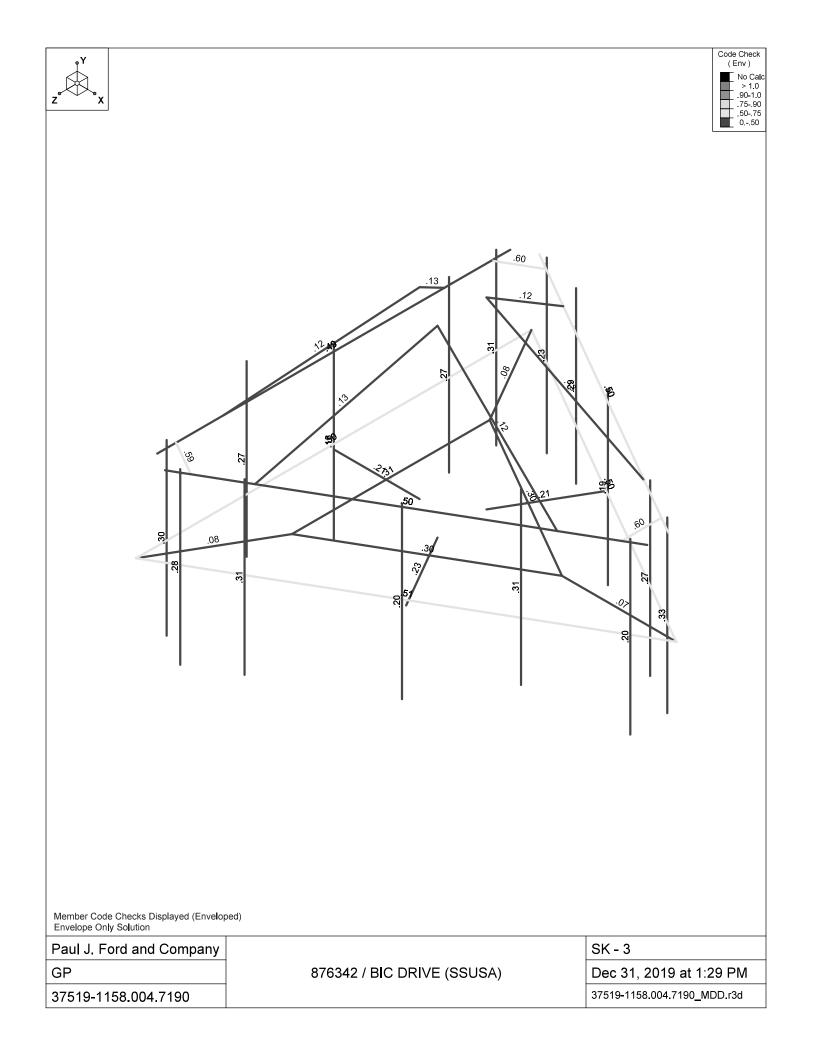
#### lce

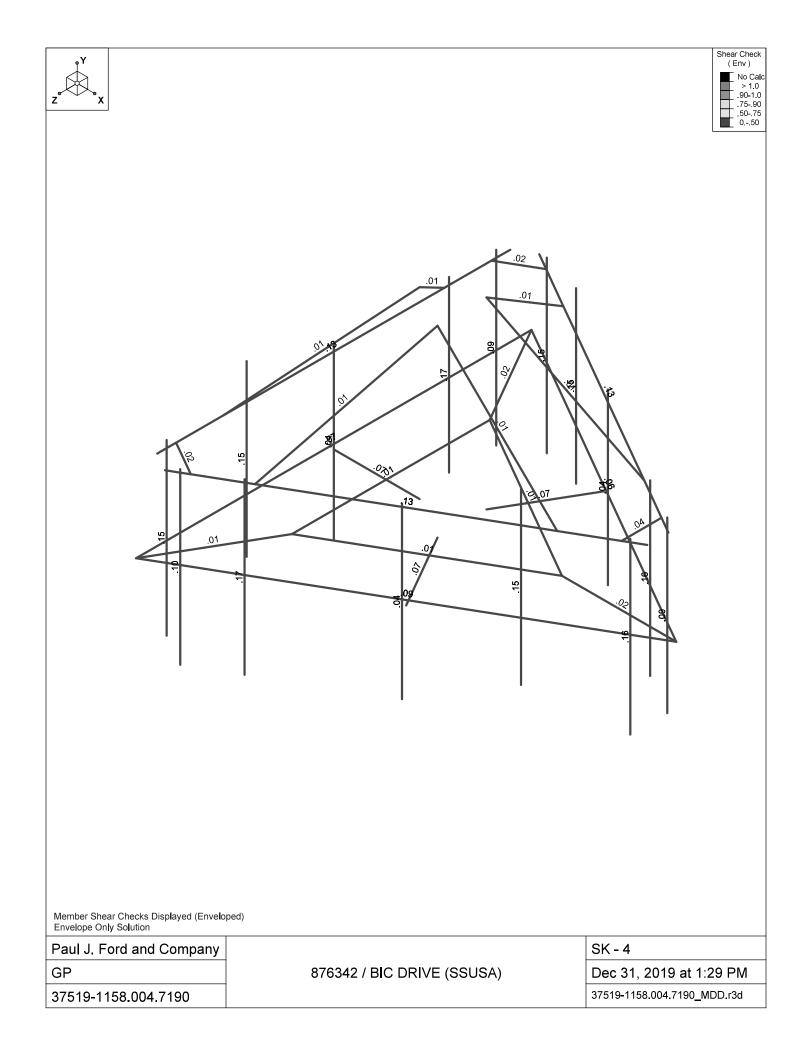
#### **Results:**

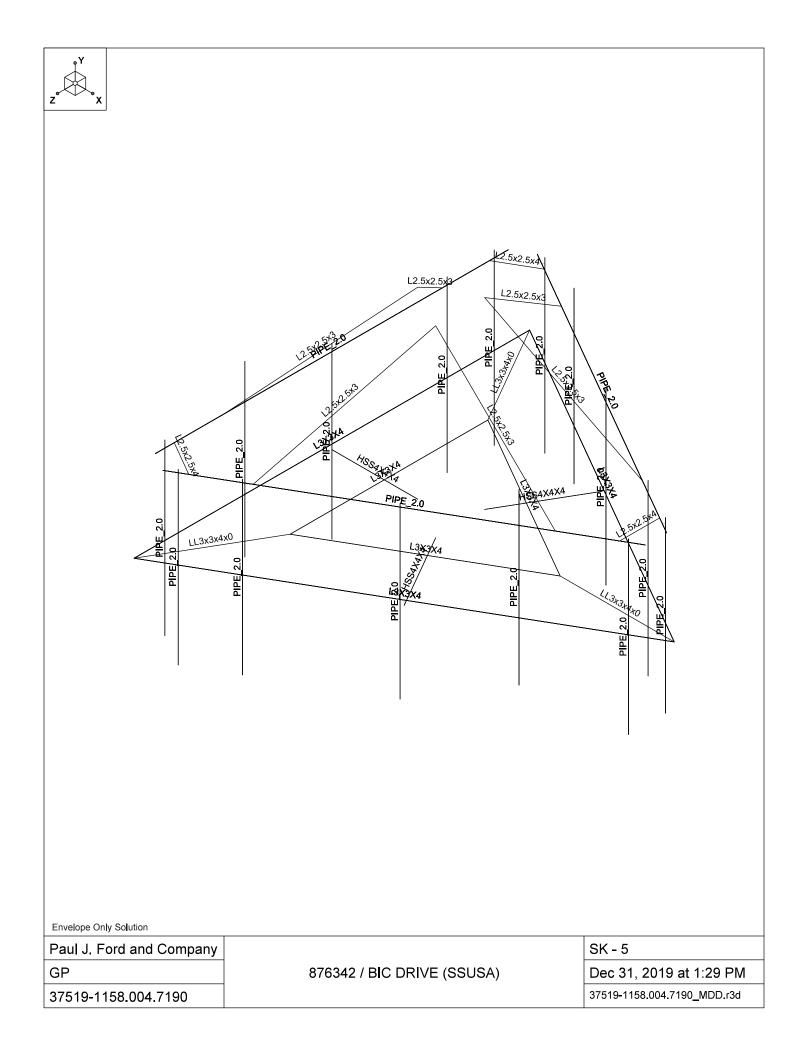
Ice Thickness:	0.75 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Fri Dec 06 2019

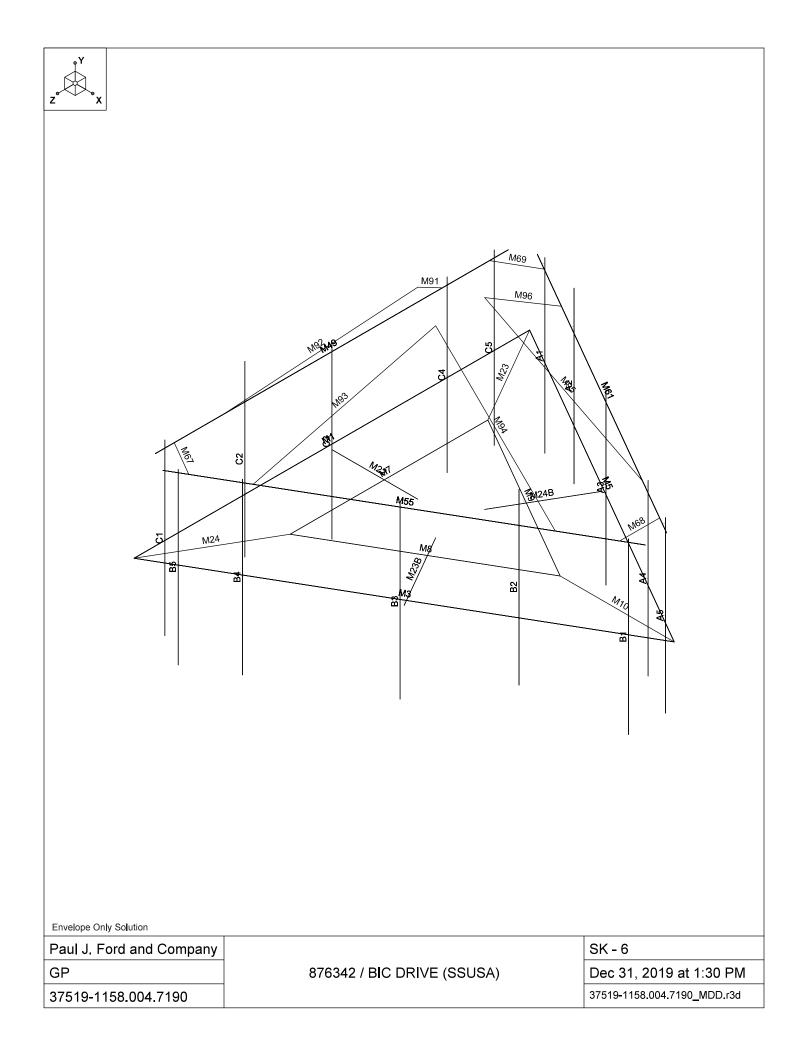
Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

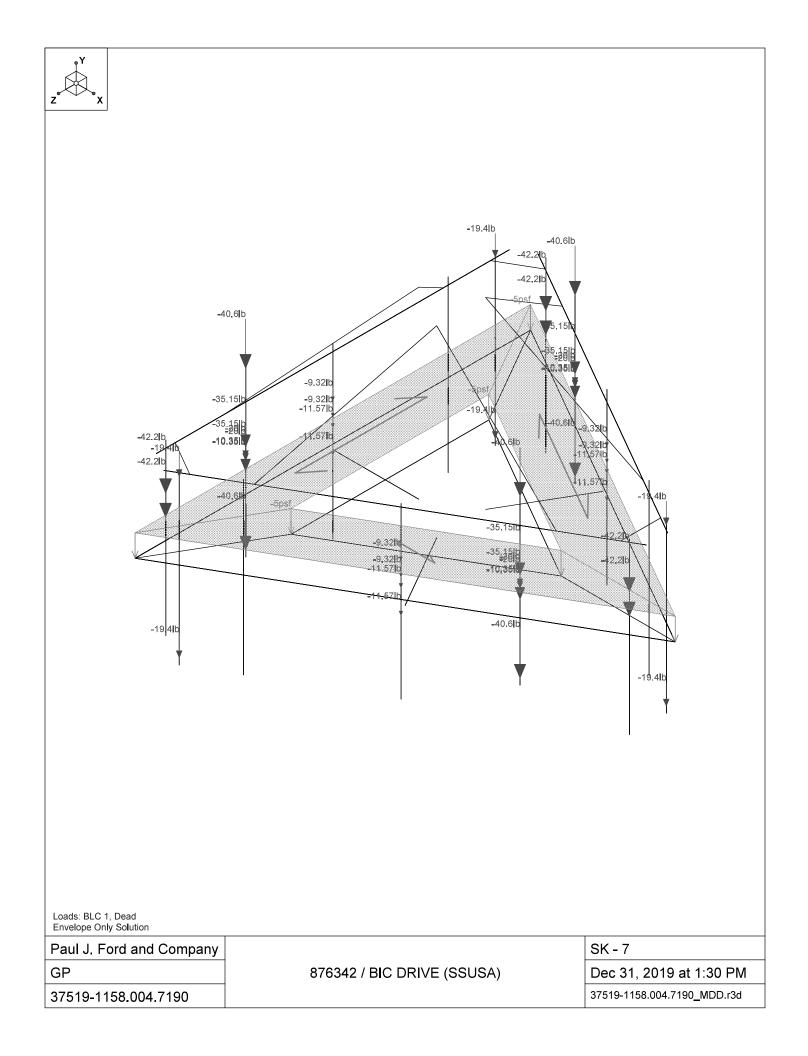
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

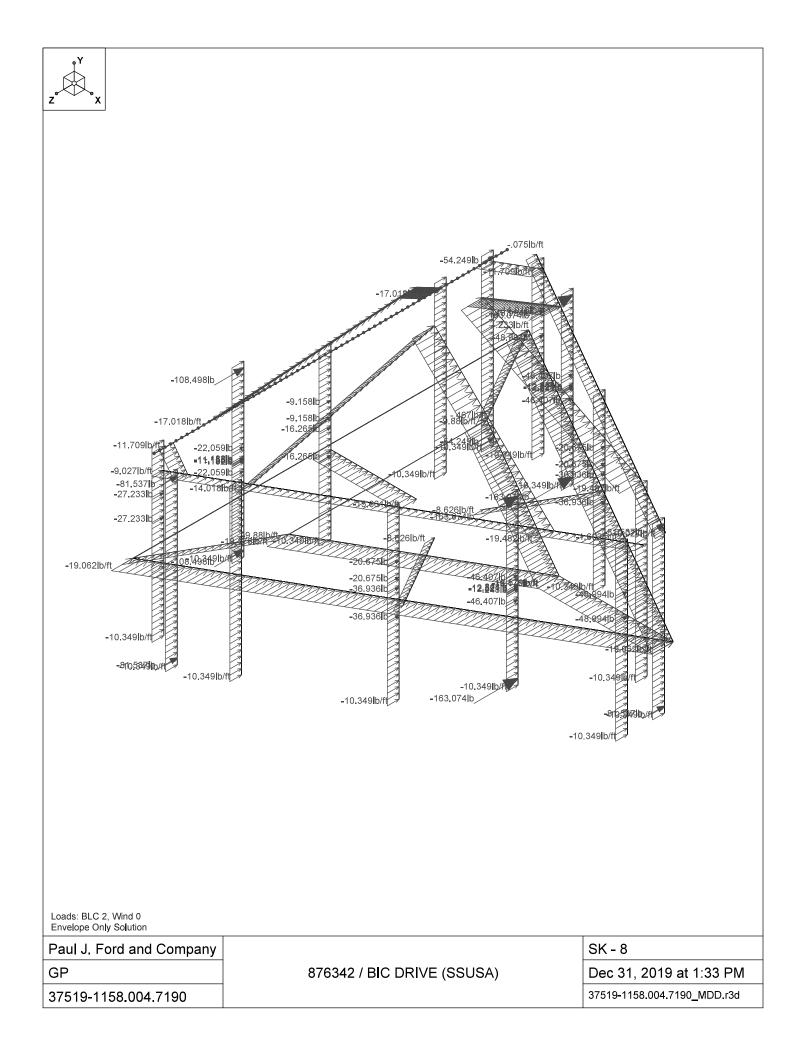

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

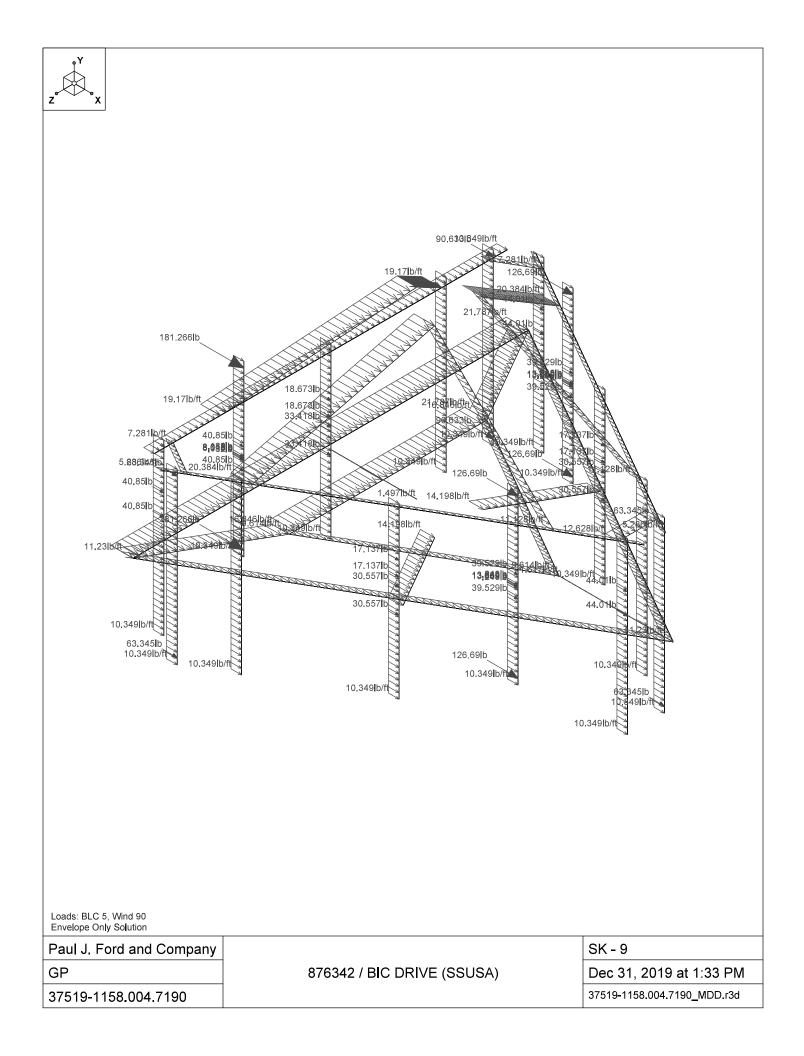

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.


In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.


# APPENDIX C


### SOFTWARE ANALYSIS OUTPUT
















Company:Paul J. Ford and CompanyDesigner:GPJob Number:37519-1158.004.7190Model Name:876342 / BIC DRIVE (SSUSA)

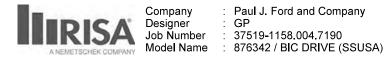
Dec 31, 2019 2:33 PM Checked By:____

#### (Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (in/sec^2)	386.4
Wall Mesh Size (in)	24
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver
Hot Rolled Steel Code	AISC 15th(360-16): LRFD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	None
Cold Formed Steel Code	None
Wood Code	None
Wood Temperature	< 100F
Concrete Code	None
Masonry Code	None
Aluminum Code	None - Building
Stainless Steel Code	None
Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8



#### (Global) Model Settings, Continued


Seismic Code	ASCE 7-10
Seismic Base Elevation (in)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
TZ (sec)	Not Entered
RX	3
RZ	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	l or ll
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	4
Cd X	4
Rho Z	1
Rho X	1

#### Hot Rolled Steel Properties

	Labe	E [ksi]	G [ksi]	Nu	Therm (/1E	.Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
3	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.42	29000	11154	.3	.65	.49	42	1.4	58	1.3
5	A500 Gr.46	29000	11154	.3	.65	.49	46	1.4	58	1.3
6	A53 Gr. B (35 ksi)	29000	11154	.3	.65	.49	35	1.5	60	1.2

#### Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate	Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N56	N58		270	L3X3X4	None	None	A36 Gr.36	Typical
2	M3	N58	N57A		270	L3X3X4	None	None	A36 Gr.36	Typical
3	M5	N57A	N56		270	L3X3X4	None	None	A36 Gr.36	Typical
4	M7	N9	N11		90	L3X3X4	None	None	A36 Gr.36	Typical
5	M8	N11	N7		90	L3X3X4	None	None	A36 Gr.36	Typical
6	M9	N7	N9		90	L3X3X4	None	None	A36 Gr.36	Typical
7	M10	N7	N57A		180	LL3x3x4x0	None	None	A36 Gr.36	Typical
8	M23	N9	N56		180	LL3x3x4x0	None	None	A36 Gr.36	Typical
9	M24	N11	N58		180	LL3x3x4x0	None	None	A36 Gr.36	Typical
10	M14	N13	N20B			RIGID	None	None	RIGID	Typical
11	M15	N21B	N46			RIGID	None	None	RIGID	Typical
12	M17	N22A	N26			RIGID	None	None	RIGID	Typical
13	M18	N27	N24A			RIGID	None	None	RIGID	Typical
14	M20	N28	N32			RIGID	None	None	RIGID	Typical
15	M21	N33	N30			RIGID	None	None	RIGID	Typical
16	C1	N46A	N47			PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
17	M32	N48	N49			RIGID	None	None	RIGID	Typical
18	M22	N14	N13			HSS4X4X4	None	None	A500 Gr.46	Typical
19	M23B	N33A	N22A			HSS4X4X4	None	None	A500 Gr.46	Typical
20	M24B	N35A	N28			HSS4X4X4	None	None	A500 Gr.46	Typical



#### Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint Rotate	Section/Shape	Туре	Design List	Material	Design Rules
21	C2	N26A	N27A		PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
22	M22A	N28A	N29		RIGID	None	None	RIGID	Typical
23	C3	N30A	N31		PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
24	M24A	N32A	N33B		RIGID	None	None	RIGID	Typical
25	C4	N34	N35		PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
26	M26	N36	N37		RIGID	None	None	RIGID	Typical
27	C5	N38	N39		PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
28	M28	N40	N41		RIGID	None	None	RIGID	Typical
29	B1	N42	N43		PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
30	M30	N44	N45		RIGID	None	None	RIGID	Typical
31	B2	N46B	N47A		PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
32	M32A	N48A	N49A		RIGID	None	None	RIGID	Typical
33	B3	N50	N51		PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
34	M34	N52	N53		RIGID	None	None	RIGID	Typical
35	B4	N54	N55		PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
36	M36	N56A	N57		RIGID	None	None	RIGID	Typical
37	B5	N58A	N59		PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
38	M38	N60	N61		RIGID	None	None	RIGID	Typical
39	A1	N62	N63		PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
40	M40	N64	N65		RIGID	None	None	RIGID	Typical
41	A2	N66	N67		PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
42	M42	N68	N69		RIGID	None	None	RIGID	Typical
43	A3	N70	N71		PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
44	M44	N72	N73		RIGID	None	None	RIGID	Typical
45	A4	N74	N75		PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
46	M46	N76	N77		RIGID	None	None	RIGID	Typical
47	A5	N78	N79		PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
48	M48	N80	N81		RIGID	None	None	RIGID	Typical
49	M49	N82	N83	270	PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
50	M50	N84	N85	1.0	RIGID	None	None	RIGID	Typical
51	M51	N86	N87		RIGID	None	None	RIGID	Typical
52	M52	N88	N89		RIGID	None	None	RIGID	Typical
53	M53	N90	N91		RIGID	None	None	RIGID	Typical
54	M54	N92	N93		RIGID	None	None	RIGID	Typical
55	M55	N96	N97	270	PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
56	M56	N98	N99	1.0	RIGID	None	None	RIGID	Typical
57	M57	N100	N101		RIGID	None	None	RIGID	Typical
58	M58	N102	N103		RIGID	None	None	RIGID	Typical
59	M59	N104	N105		RIGID	None	None	RIGID	Typical
60	M60	N106	N107		RIGID	None	None	RIGID	Typical
61	M61	N110		270	PIPE 2.0	None	None	A53 Gr. B (35 ksi)	Typical
62	M62	N112			RIGID	None	None	RIGID	Typical
63	M63	N114			RIGID	None	None	RIGID	Typical
64	M64	N116			RIGID	None	None	RIGID	Typical
65	M65	N118			RIGID	None	None	RIGID	Typical
66	M66	N120			RIGID	None	None	RIGID	Typical
67	M67	N94	N109		L2.5x2.5x4	None	None	A36 Gr.36	Typical
68	M68	N108	N123		L2.5x2.5x4	None	None	A36 Gr.36	Typical
69	M69	N122	N95		L2.5x2.5x4	None	None	A36 Gr.36	Typical
70	M91		N167		L2.5x2.5x3	None	None	A36 Gr.36	Typical
71	M92	N170	N167		L2.5x2.5x3	None	None	A36 Gr.36	Typical
72	M93	N171	N170A		L2.5x2.5x3	None	None	A36 Gr.36	Typical
73	M94	N172	N170A		L2.5x2.5x3	None	None	A36 Gr.36	Typical
74	M95		N173		L2.5x2.5x3	None	None	A36 Gr.36	Typical
75	M96		N173		L2.5x2.5x3	None	None	A36 Gr.36	Typical
				· · · · · ·					

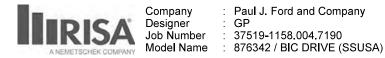


Company:Paul J. Ford and CompanyDesigner:GPJob Number:37519-1158.004.7190Model Name:876342 / BIC DRIVE (SSUSA)

#### Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only		I Defl Rat	Analysis	. Inactive	Seismic
1	<u>M1</u>						Yes	** NA **			None
2	<u>M3</u>						Yes	** NA **			None
3	<u>M5</u>						Yes	** NA **			None
4	M7						Yes	** NA **			None
5	<u>M8</u>						Yes	** NA **			None
6	M9						Yes	** NA **			None
7	M10						Yes	** NA **			None
8	M23						Yes	** NA **			None
9	M24						Yes	** NA **			None
10	M14		BenPIN				Yes	** NA **			None
11	M15		BenPIN				Yes	** NA **			None
12	M17		BenPIN				Yes	** NA **			None
13	M18		BenPIN				Yes	** NA **			None
14	M20		BenPIN				Yes	** NA **			None
15	M21		BenPIN				Yes	** NA **			None
16	C1						Yes	** NA **			None
17	M32						Yes	** NA **			None
18	M22						Yes	** NA **			None
19	M23B						Yes	** NA **			None
								** NA **			
20	<u>M24B</u> C2						Yes				None
21							Yes	** NA **			None
22	<u>M22A</u>						Yes	** NA **			None
23	<u>C3</u>						Yes	** NA **			None
24	M24A						Yes	** NA **			None
25	C4						Yes	** NA **			None
26	M26						Yes	** NA **			None
27	C5						Yes	** NA **			None
28	M28						Yes	** NA **			None
29	B1						Yes	** NA **			None
30	M30						Yes	** NA **			None
31	B2						Yes	** NA **			None
32	M32A						Yes	** NA **			None
33	B3						Yes	** NA **			None
34	M34						Yes	** NA **			None
35	B4						Yes	** NA **			None
36	M36						Yes	** NA **			None
37	B5						Yes	** NA **			None
38	M38						Yes	** NA **			None
39	A1						Yes	** NA **			None
40	M40						Yes	** NA **			None
41	A2						Yes	** NA **			None
41	M42						Yes	** NA **			None
42	A3						Yes	** NA **			None
43	A3 M44						Yes	** NA **			None
								** NA **			
45	A4						Yes				None
46	M46						Yes	** NA **			None
47	<u>A5</u>						Yes	** NA **			None
48	M48						Yes	** NA **			None
49	M49	0.001/01					Yes	** NA **			None
50	M50	OOOXOX					Yes	** NA **			None
51	M51	000X0X					Yes	** NA **			None
52	M52	OOOXOX					Yes	** NA **			None
53	M53	OOOXOX					Yes	** NA **			None
54	M54	OOOXOX					Yes	** NA **			None
55	M55						Yes	** NA **			None
56	M56	OOOXOX					Yes	** NA **			None
					0.00.000						Page 4

RISA-3D Version 17.0.3 [G:\...\...\...\Risa 3D\37519-1158.004.7190_MDD.r3d]




#### Member Advanced Data (Continued)

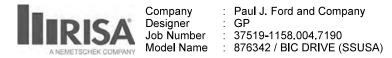
	Label	I Release	J Release	Offset[in]	J Offset[in]	T/C Only	Physica	Defl RatAnalysis	. Inactive	Seismic
57	M57	OOOXOX					Ýes	** NA **		None
58	M58	OOOXOX					Yes	** NA **		None
59	M59	OOOXOX					Yes	** NA **		None
60	M60	OOOXOX					Yes	** NA **		None
61	M61						Yes	** NA **		None
62	M62	OOOXOX					Yes	** NA **		None
63	M63	OOOXOX					Yes	** NA **		None
64	M64	OOOXOX					Yes	** NA **		None
65	M65	OOOXOX					Yes	** NA **		None
66	M66	OOOXOX					Yes	** NA **		None
67	M67						Yes	** NA **		None
68	M68						Yes	** NA **		None
69	M69						Yes	** NA **		None
70	M91	BenPIN					Yes	** NA **		None
71	M92	BenPIN					Yes	** NA **		None
72	M93	BenPIN					Yes	** NA **		None
73	M94	BenPIN					Yes	** NA **		None
74	M95	BenPIN					Yes	** NA **		None
75	M96	BenPIN					Yes	** NA **		None

#### Hot Rolled Steel Design Parameters

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[	.Lcomp bot[	.L-torg	Kyy	Kzz	Cb	Functi
1	M1	L3X3X4	168			Lbyy		-				Lateral
2	M3	L3X3X4	168			Lbyy						Lateral
3	M5	L3X3X4	168			Lbyy						Lateral
4	M7	L3X3X4	84			Lbyy						Lateral
5	M8	L3X3X4	84			Lbyy						Lateral
6	M9	L3X3X4	84			Lbyy						Lateral
7	M10	LL3x3x4x0	48.497			Lbyy						Lateral
8	M23	LL3x3x4x0	48.497			Lbyy						Lateral
9	M24	LL3x3x4x0	48.497			Lbyy						Lateral
10	C1	PIPE 2.0	72			Lbyy						Lateral
11	M22	HSS4X4X4	36.497									Lateral
12	M23B	HSS4X4X4	36.497									Lateral
13	M24B	HSS4X4X4	36.497									Lateral
14	C2	PIPE_2.0				Lbyy						Lateral
15	C3	PIPE 2.0	72			Lbyy						Lateral
16	C4	PIPE 2.0	72			Lbyy						Lateral
17	C5	PIPE 2.0	72			Lbyy						Lateral
18	B1	PIPE_2.0	72			Lbyy						Lateral
19	B2	PIPE 2.0	72			Lbyy						Lateral
20	B3	PIPE_2.0	72			Lbyy						Lateral
21	B4	PIPE 2.0	72			Lbyy						Lateral
22	B5	PIPE_2.0	72			Lbyy						Lateral
23	A1	PIPE 2.0	72			Lbyy						Lateral
24	A2	PIPE 2.0	72			Lbyy						Lateral
25	A3	PIPE 2.0	72			Lbyy						Lateral
26	A4	PIPE_2.0	72			Lbyy						Lateral
27	A5	PIPE 2.0	72			Lbyy						Lateral
28	M49	PIPE_2.0	150			Lbyy						Lateral
29	M55	PIPE 2.0	150			Lbyy						Lateral
30	M61	PIPE_2.0	150			Lbyy						Lateral
31	M67	L2.5x2.5x4	17									Lateral
32	M68	L2.5x2.5x4	17									Lateral
33	M69	L2.5x2.5x4	17									Lateral



#### Hot Rolled Steel Design Parameters (Continued)


	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[	.Lcomp bot[	.L-torg	Kyy	Kzz	Cb	Functi
34	M91	L2.5x2.5x3	72.836									Lateral
35	M92	L2.5x2.5x3	72.836									Lateral
36	M93	L2.5x2.5x3	72.836									Lateral
37	M94	L2.5x2.5x3	72.836									Lateral
38	M95	L2.5x2.5x3	72.836									Lateral
39	M96	L2.5x2.5x3	72.836									Lateral

#### **Basic Load Cases**

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	Area(M	Surface
1	Dead	None		-1.1	_		48		3	
2	Wind 0	None					96	78		
3	Wind 30	None					96	78		
4	Wind 60	None					96	78		
5	Wind 90	None					96	78		
6	Wind 120	None					96	78		
7	Wind 150	None					96	78		
8	Ice Load	None					48	39	3	
9	Ice 0	None					96	78		
10	Ice 30	None					96	78		
11	Ice 60	None					96	78		
12	Ice 90	None					96	78		
13	lce 120	None					96	78		
14	Ice 150	None					96	78		
15	Lm1	None				1				
16	Lm2	None				1				
17	Lm3	None				1				
18	Lm4	None				1				
19	Lv1	None				1				
20	Lv2	None				1				
21	Lv3	None				1				
22	Lv4	None				1				
23	BLC 1 Transient Area Loads	None						26		
24	BLC 8 Transient Area Loads	None						26		

#### Load Combinations

	Description	SoF	>	S	BLC	Fac	BLC	Fac	BLC	Fac.	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac.	BLC	Fac	BLC	Fac
1	1.4 D	Yes	Υ		1	1.4																		
2	1.2 D + 1.0 Wo @ 0				1	1.2	2	1																
3	1.2 D + 1.0 Wo @ 30				1	1.2	3	1																
4	1.2 D + 1.0 Wo @ 60				1	1.2	4	1																
5	1.2 D + 1.0 Wo @ 90				1	1.2	5	1																
	1.2 D + 1.0 Wo @ 1				1	1.2	6	1																
	1.2 D + 1.0 Wo @ 1				1	1.2	7	1																
	1.2 D + 1.0 Wo @ 1				1	1.2	2	-1																
	1.2 D + 1.0 Wo @ 2				1	1.2	3	-1																
	1.2 D + 1.0 Wo @ 2				1	1.2	4	-1																
11	1.2 D + 1.0 Wo @ 2	. Yes	Υ		1	1.2	5	-1																
12	1.2 D + 1.0 Wo @ 3	. Yes	Υ		1	1.2	6	-1																
13	1.2 D + 1.0 Wo @ 3	. Yes	Υ		1	1.2	7	-1																
14	1.2 D + 1.0 Di + 1.0	Yes	Υ		1	1.2	8	1	9	1														
15	1.2 D + 1.0 Di + 1.0	Yes	Υ		1	1.2	8	1	10	1														
	1.2 D + 1.0 Di + 1.0				1	1.2	8	1	11	1														
17	1.2 D + 1.0 Di + 1.0	Yes	Y		1	1.2	8	1	12	1														
18	1.2 D + 1.0 Di + 1.0	Yes	Y		1	1.2	8	1	13	1														

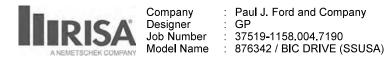


#### Load Combinations (Continued)

	Description	So	Р	s	BI C	Fac	BI C	Fac	BI C	Fac	BI C	Fac	BI C	Fac	BI C	Fac	BI C	Fac	BI C	Fac	BI C	Fac	BI C	Fac
19	1.2 D + 1.0 Di + 1.0 .				1	1.2	8	1	14			1 00		1 00		00				00		1 00		1 00
	1.2 D + 1.0 Di + 1.0 .	Yes	Y		1	1.2	8	1	9	-1														
21	1.2 D + 1.0 Di + 1.0 .	Yes	Ý		1	1.2	8	1	10	-1														
	1.2 D + 1.0 Di + 1.0 .	Yes	Ý		1	1.2	8	1	11	-1														
23	1.2 D + 1.0 Di + 1.0 .	Yes	Ý		1	1.2	8	1	12	-1														
	1.2 D + 1.0 Di + 1.0 .	Yes			1	1.2	8	1	13	-1														
	1.2 D + 1.0 Di + 1.0 .	Yes	Ý		1	1.2	8	1	14	-1														
	1.2 D + 1.5 Lm1 + 1.	Yes			1	1.2		1.5		.058														
	1.2 D + 1.5 Lm1 + 1.				1	1.2	15	1.5		.058														
	1.2 D + 1.5 Lm1 + 1.	Yes	Ý		1	1.2	15	1.5		.058														
	1.2 D + 1.5 Lm1 + 1.	_		1	1	1.2		1.5		.058														
	1.2 D + 1.5 Lm1 + 1.	_	Ý		1	1.2		1.5		.058														
	1.2 D + 1.5 Lm1 + 1.	-	-	1	1	1.2		1.5		.058														
<u> </u>	1.2 D + 1.5 Lm1 + 1.				1	1.2	15	1.5		.058														
	1.2 D + 1.5 Lm1 + 1.			-	1	1.2	15	1.5		.058														
	1.2 D + 1.5 Lm1 + 1.	_			1	1.2		1.5		.058														
	1.2 D + 1.5 Lm1 + 1.	_	Ý	1	1	1.2		1.5		.058														
	1.2 D + 1.5 Lm1 + 1.	_	Ý		1	1.2				.058														
	1.2 D + 1.5 Lm1 + 1.				1	1.2	15	1.5		.058														
	1.2 D + 1.5 Lm2 + 1.				1	1.2		1.5		.058														
	1.2 D + 1.5 Lm2 + 1.	Yes	Ý		1	1.2		1.5		.058														
40	1.2 D + 1.5 Lm2 + 1.	Yes	Y		1	1.2		1.5		.058														
41	1.2 D + 1.5 Lm2 + 1.	Yes	Ý		1	1.2		1.5		.058														
42	1.2 D + 1.5 Lm2 + 1.	Yes	Υ		1	1.2		1.5		.058														
43	1.2 D + 1.5 Lm2 + 1.	Yes	Υ		1	1.2		1.5		.058														
44	1.2 D + 1.5 Lm2 + 1.	Yes	Y		1	1.2		1.5		.058														
45	1.2 D + 1.5 Lm2 + 1.	Yes	Υ		1	1.2		1.5		.058														
46	1.2 D + 1.5 Lm2 + 1.	Yes	Υ		1	1.2	16	1.5	4	.058														
47	1.2 D + 1.5 Lm2 + 1.	Yes	Υ		1	1.2	16	1.5	5	.058														
48	1.2 D + 1.5 Lm2 + 1.	Yes	Υ		1	1.2	16	1.5	6	.058														
49	1.2 D + 1.5 Lm2 + 1.	Yes	Υ		1	1.2	16	1.5	7	.058														
50	1.2 D + 1.5 Lm3 + 1.	Yes	Υ		1	1.2	17	1.5	2	.058														
51	1.2 D + 1.5 Lm3 + 1.	Yes	Υ		1	1.2	17	1.5	3	.058														
52	1.2 D + 1.5 Lm3 + 1.	Yes	Υ		1	1.2	17	1.5	4	.058														
53	1.2 D + 1.5 Lm3 + 1.	Yes	Υ		1	1.2	17	1.5	5	.058														
54	1.2 D + 1.5 Lm3 + 1.	Yes	Υ		1	1.2	17	1.5	6	.058														
55	1.2 D + 1.5 Lm3 + 1.	Yes	Υ		1	1.2	17	1.5	7	.058														
56	1.2 D + 1.5 Lm3 + 1.	Yes	Υ		1	1.2	17	1.5	2	.058														
57	1.2 D + 1.5 Lm3 + 1.	Yes	Υ		1	1.2	17	1.5	3	.058														
	1.2 D + 1.5 Lm3 + 1.	_			1	1.2	17	1.5	4	.058														
	1.2 D + 1.5 Lm3 + 1.					1.2																		
00	1.2 D + 1.5 Lm3 + 1.					1.2				.058	-													
	1.2 D + 1.5 Lm3 + 1.				1	1.2				.058														
	1.2 D + 1.5 Lm4 + 1.				1	1.2				.058														
	1.2 D + 1.5 Lm4 + 1.				1	1.2		1.5		.058														
	1.2 D + 1.5 Lm4 + 1.				1	1.2			_	.058	_													
	1.2 D + 1.5 Lm4 + 1.				1	1.2			5	.058														
	1.2 D + 1.5 Lm4 + 1.				1	1.2				.058														
	1.2 D + 1.5 Lm4 + 1.				1	1.2		1.5		.058														
	1.2 D + 1.5 Lm4 + 1.				1	1.2		1.5		058														
	1.2 D + 1.5 Lm4 + 1.				1	1.2				058	_													
	1.2 D + 1.5 Lm4 + 1.					1.2																		
	1.2 D + 1.5 Lm4 + 1.		· ·		1	1.2			<u> </u>	058														
	1.2 D + 1.5 Lm4 + 1.	_			1	1.2				058														
	1.2 D + 1.5 Lm4 + 1.				1	1.2		1.5		058														
	1.2 D + 1.5 Lv1					1.2																		
75	1.2 D + 1.5 Lv2	Yes	ΙY		1	1.2	20	1.5																
	A_3D Version 17 (	0.2	ſ	· · · ·	1	1 1	1 1	Dia	- 20	1275	10	1450	00	1 710	00		1.2	11					De	aue .



### Load Combinations (Continued)


	Description	So	.P	S	BLC	Fac	BLC	Fac.	BLC	Fac														
76	1.2 D + 1.5 Lv3	Yes	Υ		1	1.2	21	1.5																
77	1.2 D + 1.5 Lv4	Yes	Υ		1	1.2	22	1.5																
78	1.0 D	Yes	Υ		1	1																		

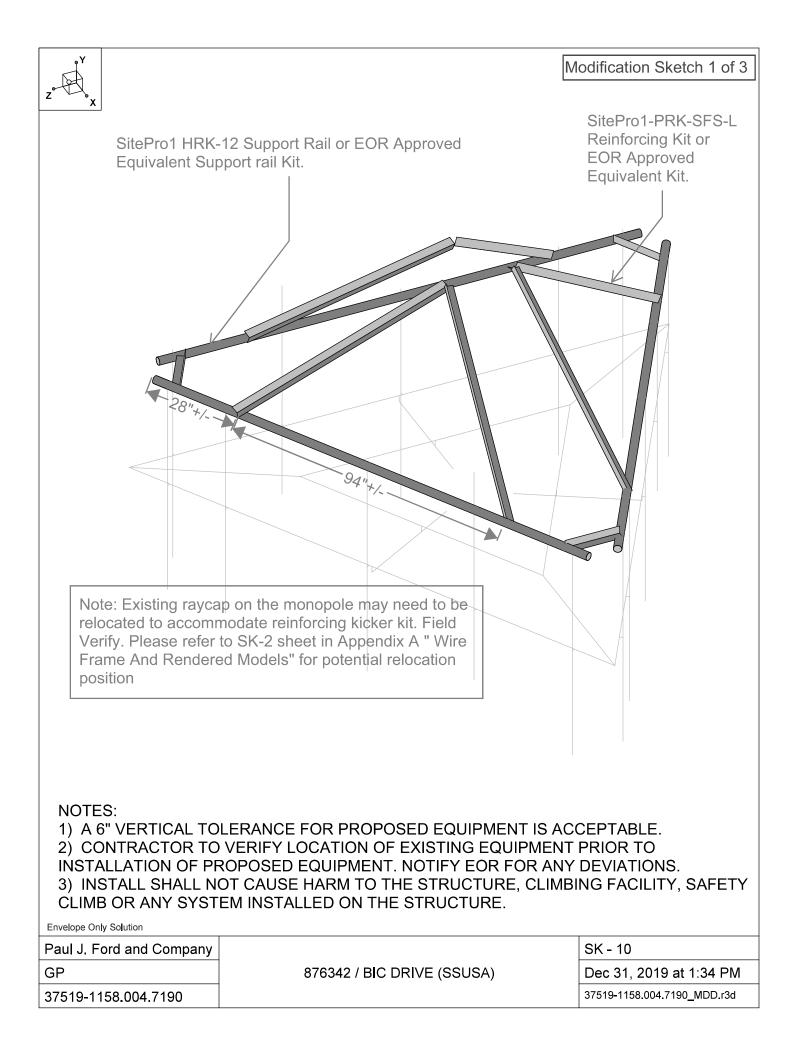
#### **Envelope Joint Reactions**

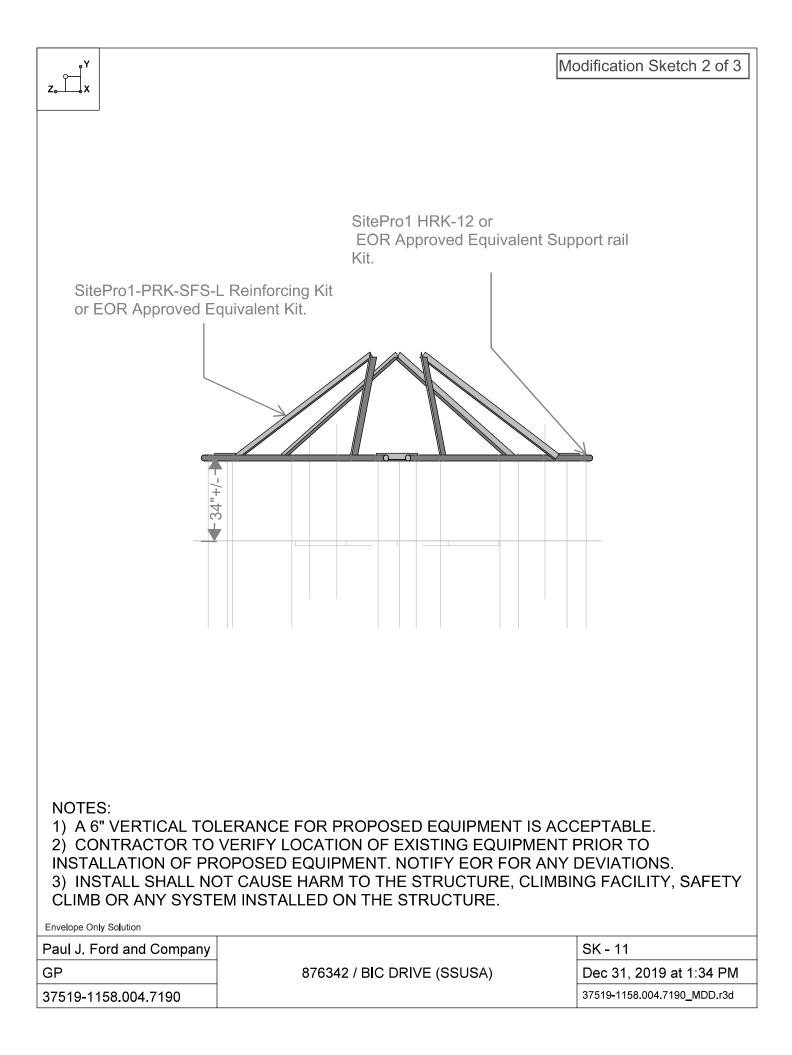
	Joint		X [ <b>l</b> b]	LC	Y [ <b>l</b> b]	LC	Z [ <b>İ</b> b]	LC	MX [k-in]	LC	MY [k-in]	LC	MZ [k-in]	LC
1	N14 r	nax	624.528	11	1290 777	17	1734.865	3	3.395	3	16.952	4	1.006	11
2	1	min	-928.414	5	.535	11	-1707.716	9	-3.341	9	-16.55	10	-35.344	17
3	N33A r	max	1749.635	11	1418.208	25	1355.215	2	176	7	17.11	12	19.679	14
4	1	min	-1550.302	5	41.852	7	-1130.504	8	-33.87	25	-16.394	6	989	8
5	N35A r	max	1685.968	11	1267.928	21	1115.268	2	30.224	21	17.156	8	18.024	20
6	1	min	-1597.24	5	-6.819	3	-1404.371	8	986	3	-16.35	2	-1.915	2
7	N167 r	max	1627.92	23	1933.149	23	354.491	33	0	78	0	78	0	78
8	1	min	-94.117	5	50.394	5	-375.979	69	0	1	0	1	0	1
9	N170A r	max	69.254	12	1930.815	19	78.356	13	0	78	0	78	0	78
10	1	min	-932.25	18	49.55	13	-1343.231	19	0	1	0	1	0	1
11	N173 r	max	60.951	10	1930.28	15	1485.188	15	0	78	0	78	0	78
12	1	min	-683.124	16	49.598	9	-81.716	9	0	1	0	1	0	1
13	Totals: r	max	5155.335	11	8881.867	23	5009.767	2						
14	1	min	-5155.495	5	2663.681	78	-5009.74	8						

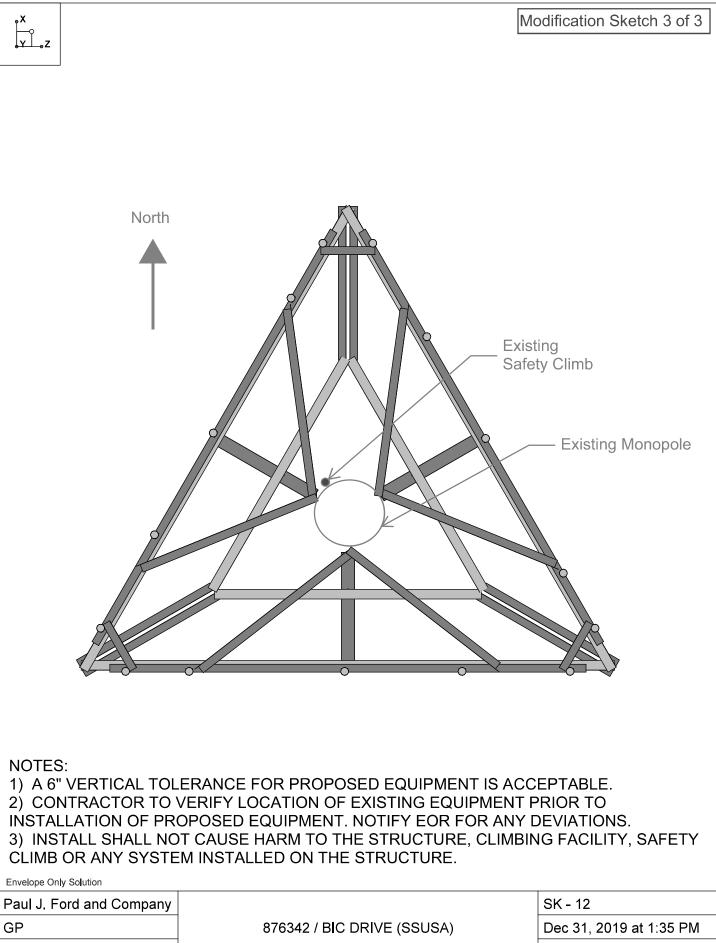
#### Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc	LC	Shear Check	Loc[in]	Lphi*Pnphi*Pnphi*Mphi*M Eqn
1	M68	L2.5x2.5x4	.602	17	25	.018	17	y 14 3611138556 13.363 30.449 1H2-1
2	M69	L2.5x2.5x4	.598	17	21	.017	17	y 22 3611138556 13.363 30.449 1H2-1
3	M67	L2.5x2.5x4	.588	17	17	.040	17	y 66 3611138556 13.363 30.449 1H2-1
4	M3	L3X3X4	.506	84	7	.066	33.25	z 14 3944 46656 20.258 28.459 1H2-1
5	M61	PIPE_2.0	.505	121	. 14	.132	26.562	15 6295 32130 22.459 22.459 2H1-1a
6	M1	L3X3X4	.505	84	11	.090	14	z 33 3944 46656 20.258 28.562 1H2-1
7	M5	L3X3X4	.501	84	3	.065	33.25	z 22 3944 46656 20.258 28.58 1. H2-1
8	M55	PIPE_2.0	.496	121	18	.131	26.562	19 6295 32130 22.459 22.459 2H1-1a
9	M49	PIPE_2.0	.488	121	22	.130	26.563	23 6295 32130 22.459 22.459 2H1-1a
10	B5	PIPE_2.0	.332	36	65	.093	36	18 2086632130 22.459 22.459 1H1-1b
11	C2	PIPE_2.0	.319	24	63	.148	24	16 2086632130 22.459 22.459 1H1-1b
12	C4	PIPE_2.0	.318	36	37	.167	36	18 2086632130 22.459 22.459 1H1-1b
13	A1	PIPE_2.0	.309	36	35	.152	36	17 2086632130 22.459 22.459 1H1-1b
14	C5	PIPE_2.0	.308	36	21	.093	36	22 2086632130 22.459 22.459 1H1-1b
15	M7	L3X3X4	.306	42	16	.013	42	z 20 1577846656 20.258 38.535 1H2-1
16	M9	L3X3X4	.299	42	20	.013	42	z 19 1577846656 20.258 38.474 1H2-1
17	M8	L3X3X4	.299	42	24	.014	42	z 16 15778 46656 20.258 38.713 1H2-1
18	A2	PIPE_2.0	.290	24	19	.149	24	20 20866. 32130 22.459 22.459 2. H1-1b
19	A5	PIPE_2.0	.289	36	25	.088	36	14 2086632130 22.459 22.459 1H1-1b
20	B2	PIPE_2.0	.277	24	12	.149	24	24 2086632130 22.459 22.459 1H1-1b
21	B4	PIPE_2.0	.267	36	63	.165	36	14 2086632130 22.459 22.459 1H1-1b
22	A4	PIPE_2.0	.247	36	24	.161	36	22 2086632130 22.459 22.459 1H1-1b
23	M23B	HSS4X4	.229	0	24	.067	0	z 11 13421139518 194.166 194.166 1H1-1b
24	C1	PIPE_2.0	.212	36	73	.148	36	25 2086632130 22.459 22.459 2H1-1b
25	M24B	HSS4X4	.209	0	20	.067	0	z 7 13421139518 194.166 194.166 1H1-1b
26	M22	HSS4X4	.208	0	16	.066	0	z 3 13421139518 194.166 194.166 1H1-1b
27	C3	PIPE_2.0	.204	36	57	.039	36	57 2086632130 22.459 22.459 1H1-1b
28	B1	PIPE_2.0	.196	36	21	.155	36	21 2086632130 22.459 22.459 1H1-1b
29	A3	PIPE_2.0	.186	36	7	.037	36	10 2086632130 22.459 22.459 1H1-1b
30	B3	PIPE_2.0	.184	36	11	.037	36	2 2086632130 22.459 22.459 1H1-1b
31	M91	L2.5x2.5x3	.129	34	10	.008	72.836	z 108913.9129192.4 10.471 18.529 1. H2-1




#### Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)


	Member	Shape	Code Check	Loc	LC	Shear Check	Loc[in]		Lphi*Pn.	phi*Pn.	phi*M	phi*M	<u>Eqn</u>
32	M93	L2.5x2.5x3	.129	34	6	.008	72.836	Z	6 8913.91	29192 <u>.</u> 4	10.471	18.529	1H2-1
33	M95	L2.5x2.5x3	.128	34	2	.008	72.836	Z	2 8913.91	29192 <u>.</u> 4	10.471	18.529	1H2-1
34	M96	L2.5x2.5x3	.122	72	16	.012	72.836	z	3 8913.91	29192.4	10.471	18.203	1. H2-1
35	M94	L2.5x2.5x3	.121	72	20	.012	72.836	z	7 8913.91	29192.4	10.471	18.202	1. H2-1
36	M92	L2.5x2.5x3	.120	72	24	.012	72.836	Z	118913.91	29192.4	10.471	18.202	1H2-1
37	M23	LL3x3x4x0	.082	48	3	.018	48.497	y	2276243.9	93312	77.76	52.263	1H1-1b
38	M24	LL3x3x4x0	.076	48	11	.016	0	y e	65 <mark>76243.</mark> 9	93312	77.76	52.263	1H1-1b
39	M10	LL3x3x4x0	.072	48	7	.014	0	y	2576243.9	93312	77.76	52.263	1. H1-1b

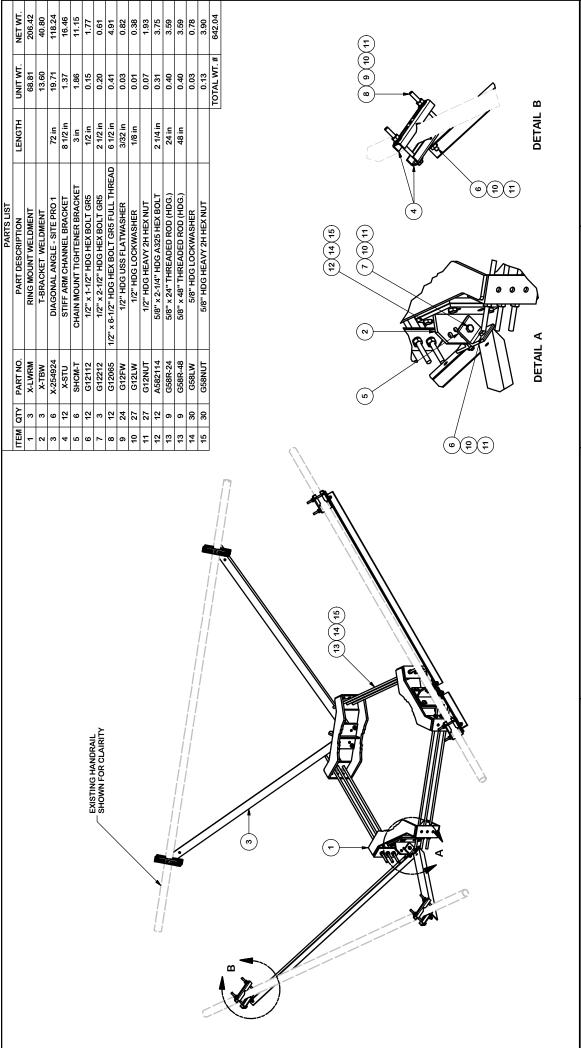

04.7190								S	Square	4 in	4 i	0.1875	0.296 kips	0.241 kips	1.67 kips	1.72 kips	1.392	41.09%
Project # <u>37519-1158.004.7190</u> By <u>GP</u> Date: 12/31/19								WELD CHECKS	Standoff Member Type	Width =	Depth (only for square members) =	Assumed Weld Size =	Total Forces in X direction =	Total Forces in Y direction =	Total Forces in Z direction =	Resultant =	<pre>D*Fw (Kip/in)/16" weld =</pre>	Capacity used
250 E Broad St, Ste 600 • Columbus, OH 43215	Phone 614.221.6679 www.pauljford.com MOUNT TO TOWER CONNECTION CHECKS	REACTIONS	Px= 1.735 Kip	Py= 1.291 Kip	(Axial)Pz= <b>0.928</b> Kip	Mx= <b>35.34</b> Kip-in	My= 16.952 Kip-in	(Torque)Mz= <b>3.395</b> Kip-in										

# APPENDIX D

### SUPPLEMENTAL MODIFICATION INFORMATION

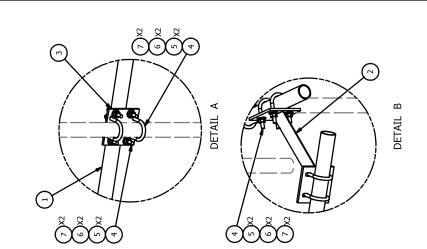


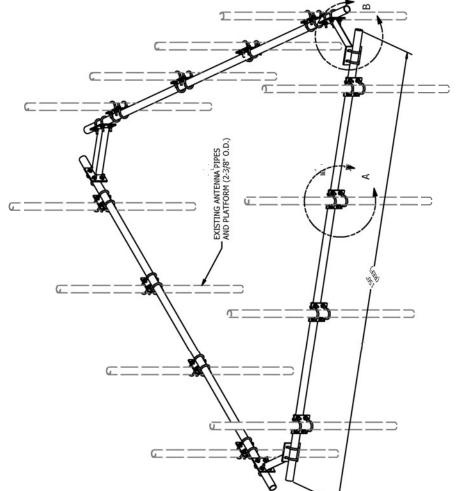





37519-1158.004	.7190
----------------	-------

37519-1158.004.7190_MDD.r3d


## APPENDIX E


# MANUFACTURER DRAWINGS (FOR REFERENCE ONLY)



CA	P 1 (	AGE OF	3
Final Street     Locations: Locations:       Findineering     Locations: Atlanta, GA       Findineering     Atlanta, GA       Support team:     Locations: CA       A value of the street of the stre	PART NO. DRK-SFS-I	DWG. NO.	PRK-SFS-L
ENT KIT (LONG)	ENG. APPROVAL 3RD PARTY	CHECKED BY	BMC 9/8/2017
RIPTION HANDRAIL REINFORCEMENT KIT (LONG)	D NO. DRAWN BY ENG. APPROVAL SP1 CSL3 2/23/2017 3RD PARTY	CLASS SUB DRAWING USAGE	SHOP
DESCRIPTION	CPD NO. DRAWN BY SP1 CSL3	CLASS SUB	81 02
TOLERANCE NOTES TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS OUT EDGES (± 0.030°) DRILLED AND GAS CUT HOLES (± 0.030°) - NO CONING OF HOLES LASE CUT EDGES AND HOLES (± 0.01°) - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE	ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")	-	THE DATA AND TECHNOLIES CONTINUED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF VALMONT INDUSTRIES IS STRICTLY PROHIBITED.
		SP1 BC 10/25/2017	
		SP1 BC	
		A CHANGED MAX. DIA. FOR HANDRAIL CONNECTION	

			PARTS LIST			
ITEM	QTY	PART NO.	PART DESCRIPTION	LENGTH	UNIT WT.	NET WT.
1	3	P2150	2-3/8" OD X 150" SCH 40 GALVANIZED PIPE	150 in	48.06	144.17
2	З	X-AHCP	ANGLE HANDRAIL CORNER PLATE		12.92	38.76
٣	12	SCX1	CROSSOVER PLATE 2-3/8" X 2-3/8"		3.71	44.50
4	120	G12FW	1/2" HDG USS FLATWASHER		0.03	4.08
5	60	X-UB1212	1/2" X 2-1/2" X 4-1/2" X 2" U-BOLT (HDG.)		0.73	43.90
9	120	G12LW	1/2" HDG LOCKWASHER		0.01	1.67
7	120	G12NUT	1/2" HDG HEAVY 2H HEX NUT		0.07	8.58
					TOTAL WT. #	261.72





	P 1 (	AG DF	е 1	
Aralmont Variantia Continues Analysis Continues Analysis Continues	PART NO. HRK12		HRK12	
- KIT FACE	ENG. APPROVAL			BMC 7/14/2014
IPTION HANDRAIL KIT FOR 12-6" FACE	DRAWN BY KC8 5/30/2012			81 01 CUSTOMER
DESCRIPTION	CPD NO.	0 00V IU		81
TOLERANCE NOTES           TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE:           TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE:           SAWED, SHEARED AND GAS OUT FORGER (# 0.000)           DIRILED AND GAS OUT HOLES (# 0.000) - NO CONING OF HOLES           LASER FOUT FORGER AND HOLES (# 0.000) - NO CONING OF HOLES           REMISE AND HOLES (# 0.000) - NO CONING OF HOLES	ALL OTHER MACHINING (# 0.030") ALL OTHER MACHINING (# 0.030") ALL OTHER ASSEMBLY (# 0.060")	-1	THE DATA AND TECHNIQUES CONFAMED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT	INDURING AND UNRUPERED A TRANS SECRET. ANT USE OK UPOLUGURE WITHOUT THE UNREAM UP
		7/10/2014	DATE	
		CEK	CPD BY	
			CPD	REVISION HISTORY

### **APPENDIX F**

### POST MODIFICATION INSPECTION (PMI) REQUIREMENTS FOR DESKTOP REVIEW

#### Post Modification Inspection (PMI) Report Requirements Documents & Photos Required from Contractor

<u>**Purpose**</u> – to provide PJF the proper documentation in order to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the modification was completed in accordance with the modification drawings.
- Contractor shall relay any data that can impact the performance of the mount or the mount modification, this includes safety issues.

#### **Base Requirements:**

- Provide "as built drawings" showing contractor's name, preparer's signature, and date. Any deviations from the drawing (proposed modification) must be shown.
- Notation that all hardware was properly installed, and the existing hardware was inspected for any issues.
- Verification that loading is as communicated in the modification drawings. NOTE if loading is different than what is conveyed in the modification drawing contact PJF immediately.
- Each photo should be time and date stamped.
- Photos should be high resolution and submitted in a Zip File and should be organized in the file structure as depicted in Schedule A attached.
- Any special photos outside of the standard requirements will be indicated on the drawings.
- Contractor shall ensure that the safety climb wire rope is supported and not adversely impacted by the install of the modification components. This may involve the install of wire rope guides, or other items to protect the wire rope.
- The photos in the file structure should be uploaded to pjfmount@pauljford.com as depicted on the drawings.

#### Photo Requirements:

- Base and "During Installation Photos"
  - Base pictures include
    - Photo of Gate Signs showing the tower owner, site name, and number.
    - Photo of carrier shelter showing the carrier site name and number if available.
    - Photos of the galvanizing compound and/or paint used (if applicable), clearly showing the label and name.
  - "During Installation" Photos if provided must be placed only in this folder
- Photos taken at ground level
  - Overall tower structure before and after installation of the modifications
  - Photos of the appropriate mount before and after installation of the modifications; if the mounts are at different rad elevations, pictures must be provided for all elevations that the modifications were installed.
- Photos taken at Mount Elevation
  - Photos showing each individual sector before and after installation of modifications. Each entire sector must be in one photo to show in the inter-connection of members.
  - Close-up photos of each installed modification per the modification drawings; pictures should also include connection hardware (U-bolts, bolts, nuts, all-threaded rods, etc.)
  - Photos showing the measurements of the installed modification member sizes (i.e. lengths, widths, depths, diameters, thicknesses).
  - Photos showing the elevation or distances of the installed modifications from the appropriate reference locations shown in the modification drawings.

- Photos showing the installed modifications onto the tower with tape drop measurements (if applicable) (i.e. ring/collar mounts, tie-backs, V-bracing kits, etc.); if the existing mount elevations needs to be changed according to the modification drawings, a tape drop measurement shall be provided before the elevation change.
- Photos showing the safety climb wire rope above and below the mount prior to modification.
- Photos showing the safety climb wire rope above and below the mount post modification.

#### Antenna and equipment placement and Geometry Certification:

- The contractor must certify that the antenna and equipment placement and geometry is in accordance with the antenna placement diagrams as included in this mount analysis.
  - The contractor certifies per photos that the equipment on the mount is as depicted on the antenna placement diagrams as included in this mount analysis.
  - □ The contractor notes that the equipment on the mount is not in accordance with the antenna placement diagrams and has accordingly marked up the diagrams or provided a diagram outlining the differences.

#### Material Certification:

- Materials utilized must be as per specification on the drawings or the equivalent as validated by PJF.
  - Submission of specifications / invoices certifying / PJF approval of an "equivalent" must be submitted to the noted email box by the PMI contractor.
- The contractor must certify that the materials meet these specifications by one of the methods below.

The Material utilized was as specified on the PJF Mount Modification Drawings

The Material utilized was an "equivalent" and included as part of the PMI are the PJF certification, invoices, or specifications validating accepted status

Certifying Individual: Company

Name

Signature

#### Schedule A – Photo & Document File Structure

- VzW Site Number / Name
  - Base & "During Installation" Photos
  - Pre-Installation Photos
    - Alpha
    - Beta
    - Gamma
    - Ground Level
    - Tape Drop
  - Post-Installation Photos
    - Alpha
    - Beta
    - Gamma
    - Ground Level
    - Tape Drop
  - o Material Certification Submission of this document including executed certification on Page 2
  - o Specific Required Additional Photos
  - o Required Additional Photos

Special Instructions / Validation as required from the MA or any other information the contractor deems necessary to share that was identified:

Issue:	
Response:	

# Exhibit F

**Power Density/RF Emissions Report** 

#### Site Name: Milford 2 CT Cumulative Power Density

Operator	Operating Frequency	Number of Trans.	ERP Per Trans.	Total ERP	Distance to Target	Calculated Power Density	Maximum Permissible Exposure*	Fraction of MPE
	(MHz)		(watts)	(watts)	(feet)	(mW/cm^2)	(mW/cm^2)	(%)
VZW 700	746	4	713	2853.36	105	0.0931	0.497333333	18.71%
VZW Cellular	869	1	672	671.92	105	0.0219	0.579333333	3.78%
VZW Cellular	880	4	420	1680.56	105	0.0548	0.586666667	9.34%
VZW PCS	1970	4	1630	6518.68	105	0.2126	1.0	21.26%
VZW AWS	2145	4	1608	6432.2	105	0.2098	1.0	20.98%
VZW CBRS	3550	4	6	23.76	106	0.0008	1.0	0.08%
<b>Total Perce</b>	ntage of M	laximum	Permissi	ble Expo	sure			74.16%

*Guidelines adopted by the FCC on August 1, 1996, 47 CFR Section 1.13101 based on NCRP Report 86, 1986 and generally on ANSI/IEEE C95.1-1992

MHz = Megahertz

mW/cm² = milliwatts per square centimeter ERP = Effective Radiated Power

Absolute worst case maximum values used, including the following assumptions:

1. closest accessible point is distance from antenna to base of pole;

2. continuous transmission from all available channels at full power for indefinite time period; and,

3. all RF energy is assumed to be directed solely to the base of the pole.