

10 INDUSTRIAL AVE, SUITE 3 MAHWAH NJ 07430

PHONE:201.684.0055FAX:201.684.0066

June 6, 2017

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Notice of Exempt Modification 1201 Boston Post Road, Milford, CT 06460 Latitude- 41.23656000 Longitude- -73.03394400

Dear Ms. Bachman,

T-Mobile currently maintains (7) existing antennas at the 45' and 41' level above the existing 25' rooftop located at 1201 Boston Post Road in Milford, CT. The property is owned by Connecticut Post Limited Partnership. T-Mobile now intends to replace (4) existing antennas with (5) new 700/1900/2100 MHz antennas. The new antennas will be installed at the same height level as existing. T-Mobile also intends to add (8) DC cables.

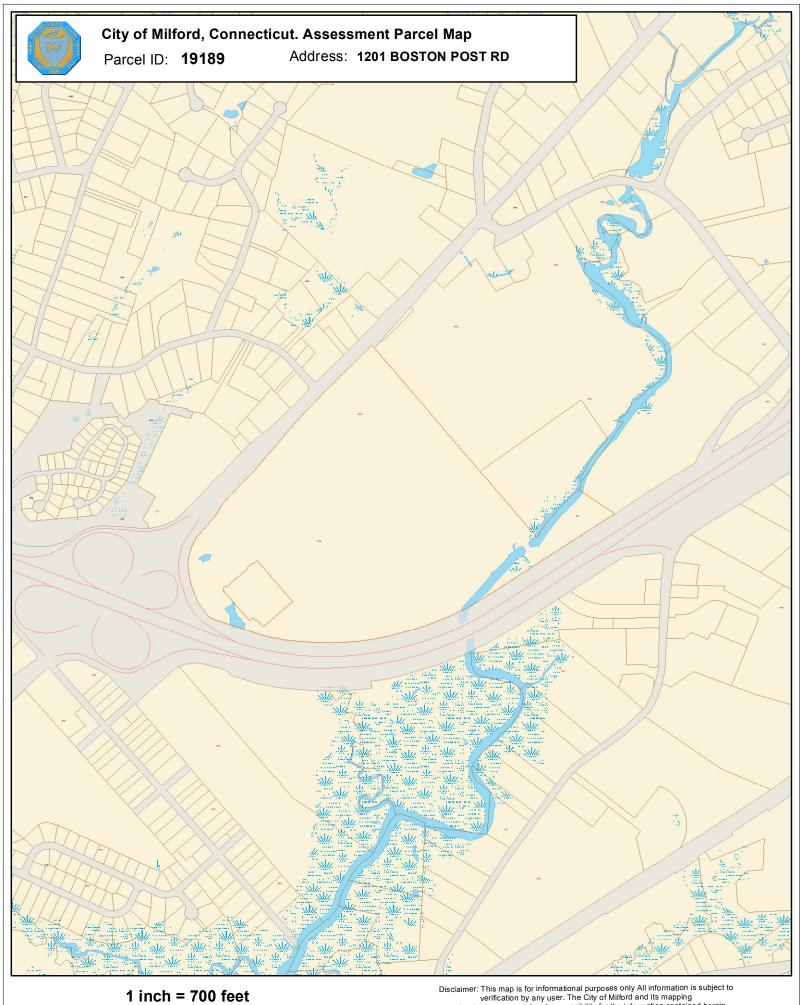
This facility was approved by the Council on September 1, 2016 in Petition No. 1245. This modification complies with the listed conditions of the approval, and would not be violated by this modification.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. 16-50j-72(b)(2). In accordance with R.C.S.A. 16-50j-73, a copy of this letter is being sent to Benjamin G. Blake, Mayor of the City of Milford, as well as the property owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-72(b)(2).

- 1. The proposed modification will not result in an increase in the height of the existing structure
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

- 5. The proposed modification will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.


For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitute an exempt modification under R.C.S.A. 16-50j-72(b)(2).

Sincerely,

Kyle Richers

Kyle Richers Transcend Wireless 10 Industrial Ave., Suite 3 Mahwah, New Jersey 07430 908-447-4716 krichers@transcendwireless.com

cc: Benjamin G. Blake- as elected official Connecticut Post Limited Partnership- as property owner Stephen H. Harris- as zoning official

Disclaimer: This map is for informational purposes only All information is subject to verification by any user. The City of Milford and its mapping contractors assume no legal responsibility for the information contained herein.

Map Produced: July 2016

1201 BOSTON POST RD

Location	1201 BOSTON POST RD	Mblu	89/ 812/ 40A/ACT /
Acct#	024362	Owner	CONNECTICUT POST LTD PARTNERSH
Assessment	\$236,250	Appraisal	\$337,500
PID	109963	Building Count	1

Current Value

Appraisal						
Valuation Year Improvements Land Total						
2016	\$337,50	\$0	\$337,500			
Assessment						
Valuation Year Improvements Land Total						
2016	\$236,25	\$0	\$236,250			

Owner of Record

Owner	CONNECTICUT POST LTD PARTNERSH	Sale Price	\$0
Other	C/O MARVIN F POER & COMPANY	Certificate	
Address	3520 PIEDMONT RD NE STE 410	Book & Page	01044/0160
	ATLANTA, GA 30305	Sale Date	12/07/1979

Ownership History

Ownership History					
Owner Sale Price Certificate Book & Page Sale Date					
CONNECTICUT POST LTD PARTNERSH	\$0		01044/0160	12/07/1979	

Building Information

Building 1 : Section 1

Year Built:	
Living Area:	0
Replacement Cost:	\$0
Building Percent	
Good:	
Replacement Cost	
Less Depreciation:	\$0
	Building Attributes

Field	Description

Style	Outbuildings
Model	
Grade:	
Stories:	
Occupancy	
Exterior Wall 1	
Exterior Wall 2	
Roof Structure:	
Roof Cover	
Interior Wall 1	
Interior Wall 2	
Interior Flr 1	
Interior Flr 2	
Heat Fuel	
Heat Type:	
АС Туре:	
Total Bedrooms:	
Total Bthrms:	
Total Half Baths:	
Total Xtra Fixtrs:	
Total Rooms:	
Bath Description:	
Kitchen Descrip:	
Int Condition:	
Solar Panels	
House Generator	

Building Photo

(http://images.vgsi.com/photos/MilfordCTPhotos//default.jpg)

Building Layout

Building Layout

Building Sub-Areas (sq ft)	<u>Legend</u>
No Data for Building Sub-Areas	

Extra Features

Legend

Land

Land Use		Land Line Valuation	
Use Code	434V	Size (Acres)	0
Description	CELL TOWER MDL-00	Frontage	
Zone	SCD	Depth	
Neighborhood		Assessed Value	\$0
Alt Land Appr	No	Appraised Value	\$0
Category			

Outpullaings

	Outbuildings <u>Legend</u>					
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
CEL1	CEL TWR SITE			1 UNITS	\$337,500	1

Valuation History

Appraisal					
Valuation Year Improvements Land Total					
2013	\$337,500	\$0	\$337,500		
2012	\$337,500	\$0	\$337,500		

Assessment					
Valuation Year	Improvements	Land	Total		
2013	\$236,250	\$0	\$236,250		
2012	\$236,250	\$0	\$236,250		

(c) 2016 Vision Government Solutions, Inc. All rights reserved.

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CT11002A

Milford / I-95 / 1 1201 Boston Post Road (CT Post Mall – Kitchen Etc) Milford, CT 06460

May 25, 2017

EBI Project Number: 6217002216

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of				
FCC general public	44.51 %			
allowable limit:				

May 25, 2017

T-Mobile USA Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, CT 06002

Emissions Analysis for Site: CT11002A – Milford / I-95 / 1

EBI Consulting was directed to analyze the proposed T-Mobile facility located at **1201 Boston Post Road (CT Post, Milford, CT**, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications facility that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limit for the 700 MHz Band is approximately 467 μ W/cm², and the general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over this or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at **1201 Boston Post Road (CT Post Mall – Kitchen Etc), Milford, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the building. For this report the sample point is the top of a 6-foot person standing at the base of the building.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 GSM channels (PCS Band 1900 MHz) were considered for Sectors A, B &C of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 2 UMTS channels (PCS Band 1900 MHz) were considered for Sectors A, B &C of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 3) 2 UMTS channels (AWS Band 2100 MHz) were considered for Sectors A, B &C of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 4) 2 LTE channels (PCS Band 1900 MHz) were considered for all 4 sectors of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 5) 2 LTE channels (AWS Band 2100 MHz) were considered for all 4 sectors of the proposed installation. These Channels have a transmit power of 60 Watts per Channel
- 6) 1 LTE channel (700 MHz Band) was considered for all 4 sectors of the proposed installation. This channel has a transmit power of 30 Watts.

- 7) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 8) For the following calculations the sample point was the top of a 6-foot person standing at the base of the building. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 9) The antennas used in this modeling are the Ericsson AIR21 B4A/B12P-8, Ericsson AIR32 B66A/B2A, and the Commscope LNX-6515DS-A1M for transmission in the 700 MHz, 1900 MHz (PCS) and 2100 MHz (AWS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction
- 10) The antenna mounting height centerlines of the proposed antennas are **43 feet** above ground level (AGL) for sectors A, B & C and **41 feet** above ground level (AGL) for sector D.
- 11) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 12) All calculations were done with respect to uncontrolled / general public threshold limits.

T-Mobile Site Inventory and Power Data

Sector:	А	Sector:	В	Sector:	С	Sector:	D
Antenna #:	1						
Make / Model:	Ericsson AIR21 B4A/B12P-8	Make / Model:	Ericsson AIR21 B4A/B12P-8	Make / Model:	Ericsson AIR21 B4A/B12P-8	Make / Model:	Ericsson AIR32 B66A/B2A
Gain:	15.9 / 13.6 dBd	Gain:	15.9 / 13.6 dBd	Gain:	15.9 / 13.6 dBd	Gain:	15.9 dBd
Height (AGL):	43						
Frequency Bands	2100 MHz (AWS) / 700 MHz	Frequency Bands	2100 MHz (AWS) / 700 MHz	Frequency Bands	2100 MHz (AWS) / 700 MHz	Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS)
Channel Count	4						
Total TX Power(W):	120	Total TX Power(W):	120	Total TX Power(W):	120	Total TX Power(W):	240
ERP (W):	3,708.79	ERP (W):	3,708.79	ERP (W):	3,708.79	ERP (W):	9,337.08
Antenna A1 MPE%	13.86	Antenna B1 MP E%	13.86	Antenna C1 MPE %	13.86	Antenna D1 MPE %	24.52
Antenna #:	2						
Make / Model:	Ericsson AIR32 B66A/B2A	Make / Model:	Ericsson AIR32 B66A/B2A	Make / Model:	Ericsson AIR32 B66A/B2A	Make / Model:	Commscope LNX- 6515DS-A1M
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	14.6 dBd
Height (AGL):	43						
Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS)	Frequency Bands	700 MHz
Channel Count	6	Channel Count	6	Channel Count	6	Channel Count	1
Total TX Power(W):	300	Total TX Power(W):	300	Total TX Power(W):	300	Total TX Power(W):	30
ERP (W):	11,671.35	ERP (W):	11,671.35	ERP (W):	11,671.35	ERP (W):	865.21
Antenna A2 MPE%	30.65	Antenna B2 MPE%	30.65	Antenna C2 MPE %	30.65	Antenna D2 MPE %	4.87

Site Composite MPE%					
Carrier MPE%					
T-Mobile (Per Sector Max)	44.51 %				
No Additional Carriers	NA				
Site Total MPE %:	44.51 %				

T-Mobile Sector A Total:	44.51 %
T-Mobile Sector B Total:	44.51 %
T-Mobile Sector C Total:	44.51 %
T-Mobile Sector D Total:	29.38 %
Site Total:	44.51 %

T-Mobile _Max Values per sector (Sectors A, B & C)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
T-Mobile AWS - 2100 MHz UMTS	2	1,167.14	43	61.30	AWS - 2100 MHz	1000	6.13%
T-Mobile 700 MHz LTE	2	687.26	43	36.10	700 MHz	467	7.73%
T-Mobile AWS - 2100 MHz LTE	2	2,334.27	43	122.60	AWS - 2100 MHz	1000	12.26%
T-Mobile PCS - 1900 MHz LTE	2	2,334.27	43	122.60	PCS - 1900 MHz	1000	12.26%
T-Mobile PCS - 1900 MHz GSM	2	1,167.14	43	61.30	PCS - 1900 MHz	1000	6.13%
						Total:	44.51%

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (%)
Sector A:	44.51 %
Sector B:	44.51 %
Sector C:	44.51 %
Sector D:	29.38 %
T-Mobile Per Sector Maximum:	44.51 %
Site Total:	44.51 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **44.51%** of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Centered on Solutions[™]

Structural Analysis Report

Antenna Pipe Masts

Proposed T-Mobile Antenna Upgrade

T-Mobile Site Ref: CT11002A

1201 Boston Post Road Milford, CT

CENTEK Project No. 17012.23

Date: May 17, 2017

Prepared for:

T-Mobile USA 35 Griffin Road Bloomfield, CT 06002

Summe or SIONAL E

Table of Contents

SECTION 1 - REPORT

- INTRODUCTION
- ANTENNA AND APPURTENANCE SUMMARY
- PRIMARY ASSUMPTIONS USED IN THE ANALYSIS
- ANALYSIS
- STRUCTURE LOADING
- RESULTS
- CONCLUSION

SECTION 2 - CONDITIONS & SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM

SECTION 3 – CALCULATIONS

- WIND LOADING
- SOUTH ANTENNA MAST ANALYSIS
- EAST ANTENNA MAST ANALYSIS
- DELTA SECTOR ANTENNA MAST ANALYSIS

SECTION 4 – REFERENCE MATERIAL

- RF DATA SHEET
- ANTENNA CUT SHEETS

<u>Introduction</u>

The purpose of this report is to summarize the results of the non-linear, $P-\Delta$ structural analysis of the antenna upgrade proposed by T-Mobile on the existing roof mounted antenna masts located in Milford, Connecticut.

The host structure is a roof mounted steel equipment platform with two (2) existing antenna pipe masts along with façade mounted pipe masts at the Delta sector.

<u>Antenna and Appurtenance Summary</u>

The existing, proposed and future loads considered in this analysis consist of the following:

- <u>T-Mobile (Existing to Relocate Alpha, Beta & Gamma Sectors):</u> <u>Antennas:</u> Three (3) AIR21 B4A/B12P (8-ft) panel antennas and three (3) Ericsson RRUS-11 B12 remote radio units to be relocated to one (1) proposed pipe mast attached to the equipment platform steel dunnage frame with a RAD center elevation of +/- 41.5-ft AGL.
- <u>T-Mobile (Existing to Remove Alpha, Beta & Gamma Sectors):</u> <u>Antennas:</u> Three (3) Ericsson KRC118023 (AIR21) panel antennas and three (3) TMAs mounted on one (1) pipe mast attached to the equipment platform steel dunnage frame with a RAD center elevation of +/- 43.2-ft AGL.
- <u>T-Mobile (Proposed Alpha, Beta & Gamma Sectors):</u> <u>Antennas:</u> Three (3) Ericsson KRD901146 (AIR32) panel antennas mounted on one (1) pipe mast attached to the equipment platform steel dunnage frame with a RAD center elevation of +/- 43.2-ft AGL.
- <u>T-Mobile (Existing to Remain Delta Sector):</u> <u>Antennas:</u> One (1) Ericsson RRUS-11 B12 remote radio unit mounted to the building façade with a RAD center elevation of +/- 41-ft AGL.
- <u>T-Mobile (Existing to Remove Delta Sector):</u> <u>Antennas:</u> One (1) Ericsson AIR21 panel antenna mounted to the building façade with a RAD center elevation of +/- 41-ft AGL.
- <u>T-Mobile (Proposed Delta Sector):</u> <u>Antennas:</u> One (1) Andrew LNX-6515DS panel antenna mounted on an existing pipe mast and one (1) Ericsson KRD901146 (AIR32) panel antenna mounted on a proposed pipe mast to the building façade with a RAD center elevation of +/- 41-ft AGL.

Primary Assumptions Used in the Analysis

- The tower structure's theoretical capacity not including any assessment of the condition of the tower.
- The tower carries the horizontal and vertical loads due to the weight of antennas, ice load and wind.
- Tower is properly installed and maintained.
- Tower is in plumb condition.
- Tower loading for antennas and mounts as listed in this report.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All welds are fabricated with ER-70S-6 electrodes.
- All members are assumed to be as specified in the original tower design documents or reinforcement drawings.
- All members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.
- All member protective coatings are in good condition.
- All tower members were properly designed, detailed, fabricated, installed and have been properly maintained since erection.
- Any deviation from the analyzed antenna loading will require a new analysis for verification of structural adequacy.
- All coax cables to be installed as indicated in this report.

<u>Analysis</u>

The existing antenna support mounts were analyzed using a comprehensive computer program titled Risa3D. The program analyzes the antenna mounts, considering the worst case loading condition. The antenna support mounts were considered to be loaded by concentric forces along the pipe masts, and the model assumes that the members are subjected to bending, axial, and shear forces.

<u>Structure Loading</u>

Loading was determined per the requirements of the 2012 International Building Code as modified by the 2016 CT State Building Code and ASCE 7-10 "Minimum Design Loads for Buildings and Other Structures".

Wind Speed: Meriden; v = 125 mph (Risk Cat 2) [Appendix N of the 2016 CSBC]

<u>Results</u>

Antenna mast stresses were calculated utilizing the structural analysis software Risa-3D.

Component	Stress Ratio (percentage of capacity)	Result
South Antenna Mast	53.3%	PASS
Connection	52.0%	PASS
East Antenna Mast	86.4%	PASS
Connection	32.5%	PASS
Delta Antenna Mast	6.8%	PASS
Connection	15.0%	PASS

• Calculated stresses were found to be within allowable limits.

<u>Conclusion</u>

This analysis shows that the subject tower **<u>is adequate</u>** to support the proposed modified antenna configuration.

The analysis is based, in part, on the information provided to this office by T-Mobile. If the existing conditions are different than the information in this report, Centek Engineering, Inc. must be contacted for resolution of any potential issues.

Please feel free to call with any questions or comments.

Respectfully Submitted by:

Timothy J. Lynn, PE Structural Engineer

REPORT

<u>Standard Conditions for Furnishing of</u> <u>Professional Engineering Services on</u> <u>Existing Structures</u>

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil
 conditions, the antenna and feed line loading on the structure and its components, or
 other relevant information.
- Information from the field and/or drawings in the possession of Centek Engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to Centek Engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an uncorroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to meet any other codes or requirements unless explicitly agreed in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement. In the absence of information to the contrary, all work will be performed in accordance with the latest revision of ANSI/ASCE10 & ANSI/EIA-222
- All services performed, results obtained, and recommendations made are in accordance with generally accepted engineering principles and practices. Centek Engineering, Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

<u>GENERAL DESCRIPTION OF STRUCTURAL</u> <u>ANALYSIS PROGRAM</u>

tnxTower, is an integrated structural analysis and design software package for Designed specifically for the telecommunications industry, tnxTower, formerly ERITower, automates much of the tower analysis and design required by the TIA/EIA 222 Standard.

tnxTower Features:

- tnxTower can analyze and design 3- and 4-sided guyed towers, 3- and 4-sided selfsupporting towers and either round or tapered ground mounted poles with or without guys.
- The program analyzes towers using the TIA-222-G (2005) standard or any of the previous TIA/EIA standards back to RS-222 (1959). Steel design is checked using the AISC ASD 9th Edition or the AISC LRFD specifications.
- Linear and non-linear (P-delta) analyses can be used in determining displacements and forces in the structure. Wind pressures and forces are automatically calculated.
- Extensive graphics plots include material take-off, shear-moment, leg compression, displacement, twist, feed line, guy anchor and stress plots.
- tnxTower contains unique features such as True Cable behavior, hog rod take-up, foundation stiffness and much more.

	oject:			Wind Loa	d on Equipmer	nt per ASCE 7-10
Centered on Solutions www.centekena.com Loc 63-2 North Branford Road P: (203) 488-0580 Loc Branford, CT 06405 F: (203) 488-8587 Loc	cation:			Milford, C	т	
	v. 0: 5/16/17			Prepared Job No. 1		cked by: C.F.C.
Design Wind Load on Other Structu	res: (E	Based on IBC 20	12, CSBC 2	2016 and ASC	CE 7-10)	
Wind Spe	ed = V	√ := 125	mph		(User Input)	(CSBC AppendixN)
Risk Categ	gory = E	BC := II			(User Input)	(IBC Table 1604.5)
Exposure Catego	ory = E	Exp := C			(User Input)	
Height Abov e Gra	de = Z	Z := 42	ft		(User Input)	
Structure Ty	/pe = 5	Structuretype := \$	Square_Chi	mney	(User Input)	
Structure Hei	ght = H	Height := 6	ft		(User Input)	
Horizontal Dimension of Structure	e = V	Width := 1	ft		(User Input)	
<u>Terrain Exposure Consta</u>	ints:					
Nominal Height of the Atmospheric Boundary Layer =	7	zg := 1200 if I 900 if E 700 if E	xp = C	900		(Table 26.9-1)
3-Sec Gust Speed Power Law Exponen	t = 0	x := 7 if Exp = 9.5 if Exp 11.5 if Exp	= B = 9 o = C	9.5		(Table 26.9-1)
Integral Length Scale Facto	r = I	:= 320 if Exp 500 if Exp 650 if Exp	o = B = 50 o = C	00		(Table 26.9-1)
Integral Length Scale Power Law Exponent	= E	$E := \begin{bmatrix} \frac{1}{3} & \text{if Exp} \end{bmatrix}$	= B = 0.2	2		(Table 26.9-1)
		$\frac{1}{5}$ if Exp $\frac{1}{8}$ if Exp				
Turbulence Intensity Facto	or = C	8 0.3 if Exp 0.2 if Exp 0.15 if Exp).2		(Table 26.9-1)
Exposure Const		Z _{min} := 30 if 15 if 7 if E				(Table 26.9-1)
Exposure Coefficie	nt = k	$K_{z} := 2.01 \left(\frac{z}{zg}\right)$ $2.01 \left(\frac{15}{zg}\right)$	$\begin{pmatrix} \frac{2}{\alpha} \\ \frac{2}{\alpha} \end{pmatrix}$ if 1 $\begin{pmatrix} \frac{2}{\alpha} \\ \frac{2}{\alpha} \end{pmatrix}$ if Z	5 ≤ Z ≤ zg : < 15	= 1.05	(Table 29.3-1)

	Subject:		Wind Load on Equip	nent per ASCE 7-10
Centered on Solutions www.centekena.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	Location:		Milford, CT Prepared by: T.J.L; C	hecked by: C.F.C.
	Rev. 0: 5/16/17		Job No. 17012.23	
Topograp	hic Factor =	K _{zt} := 1		(Eq. 26.8-2)
Wind Directiona	lity Factor =	$K_{d} = 0.9$		(Table 26.6-1)
Velocit	y Pressure =	$q_{z} \coloneqq 0.00256 \cdot K_{z} \cdot K_{zt} \cdot K_{d} \cdot V$	/ ² = 37.96	(Eq. 29.3-1)
Peak Factor for Background	Response =	g _Q := 3.4		(Sec 26.9.4)
Peak Factor for Wind	Response =	g _v ≔ 3.4		(Sec 26.9.4)
Equivalent Height of	Structure =	z := Z _{min} if Z _{min} > 0.6 0.6 Height otherwis	i-Height = 15 e	(Sec 26.9.4)
Intensity of T	urbulence =	$I_{z} := c \cdot \left(\frac{33}{z}\right)^{\left(\frac{1}{6}\right)} = 0.228$		(Eq. 26.9-7)
Integral Length Scale of Turb	pulence =	$L_{Z} := I \cdot \left(\frac{z}{33}\right)^{E} = 427.057$		(Eq. 26.9-9)
Background Respon	nse Factor =	$Q := \sqrt{\frac{1}{1 + 0.63 \left(\frac{\text{Width} + L_z}{\text{L}_z}\right)}}$	$\frac{1}{1} = 0.977$	(Eq. 26.9-8)
Gust Resp	onse Factor =	$G := 0.925 \cdot \left[\frac{\left(1 + 1.7 \cdot g_Q \cdot I_z\right)}{1 + 1.7 \cdot g_V \cdot I_z} \right]$	$\begin{bmatrix} z \cdot \mathbf{Q} \\ \mathbf{I}_z \end{bmatrix} = 0.913$	(Eq. 26.9-6)
Force	Coefficient =	C _f = 1.383		(Fig 29.5-1 - 29.5-3)
	Wind Force =	$F := q_{Z} \cdot G \cdot C_{f} = 48$	psf	

Subject:

Location:

Rev. 0: 5/16/17

Wind Load on Equipment per ASCE 7-10

Milford, CT

Prepared by: T.J.L; Checked by: C.F.C. Job No. 17012.23

Development of Wind & Ice Load on Antennas

Antenna Data:			
Antenna Model =	Ericsson AIR21 B4	A/B12P 8F	
Antenna Shape =	Flat		(User Input)
Anten na Height =	L _{ant} := 96	in	(User Input)
Antenna Width =	W _{ant} := 12.1	in	(User Input)
Antenna Thickness =	T _{ant} := 8.7	in	(User Input)
Antenna Weight =	WT _{ant} := 148	lbs	(User Input)
Number of Antennas =	N _{ant} := 1		(User Input)

Wind Load (Front)

$SA_{ant} := \frac{L_{ant} W_{ant}}{144} = 8.1$	sf
$F_{ant} = F \cdot A_{ant} = 387$	lbs
$SA_{ant} \coloneqq \frac{L_{ant}T_{ant}}{144} = 5.8$	sf
$A_{ant} := SA_{ant} N_{ant} = 5.8$	sf
F _{ant} := F·A _{ant} = 278	lbs
WT _{ant} ·N _{ant} = 148	lbs
	$A_{ant} := SA_{ant} \cdot N_{ant} = 8.1$ $F_{ant} := F \cdot A_{ant} = 387$ $SA_{ant} := \frac{L_{ant} \cdot T_{ant}}{144} = 5.8$ $A_{ant} := SA_{ant} \cdot N_{ant} = 5.8$ $F_{ant} := F \cdot A_{ant} = 278$

Wind on Other Stuctures (IBC 2012 ASCE 7-

Subject:

Location:

Antenna Data

Rev. 0: 5/16/17

Wind Load on Equipment per ASCE 7-10

Milford, CT

Prepared by: T.J.L; Checked by: C.F.C. Job No. 17012.23

Development of Wind & Ice Load on Antennas

Antenna Data.			
Antenna Model =	Ericssson A IR32		
Antenna Shape =	Flat		(User Input)
Anten na Height =	L _{ant} := 56.6	in	(User Input)
Antenna Width =	W _{ant} := 12.9	in	(User Input)
Antenna Thickness =	T _{ant} := 8.7	in	(User Input)
Antenna Weight =	WT _{ant} := 132	lbs	(User Input)
Number of Antennas =	N _{ant} := 1		(User Input)

Wind Load (Front)

Surface Area for One Antenna =	$SA_{ant} := \frac{L_{ant} \cdot W_{ant}}{144} = 5.1$	sf
Antenna Projected Surface Area =	$A_{ant} := SA_{ant} \cdot N_{ant} = 5.1$	sf
Total Anterna Wind Force =	$F_{ant} := F \cdot A_{ant} = 243$	lbs
Wind Load (Side)		
Surface Area for One Antenna =	$SA_{ant} := \frac{L_{ant} T_{ant}}{144} = 3.4$	sf
Antenna Projected Surface Area =	$A_{ant} := SA_{ant} \cdot N_{ant} = 3.4$	sf
Total Anterna Wind Force =	$F_{ant} := F \cdot A_{ant} = 164$	lbs
Gravity Load (without ice)		
Weight of All Antennas =	WT _{ant} ·N _{ant} = 132	lbs

Wind on Other Stuctures (IBC 2012 ASCE 7-

Subject:

Location:

Rev. 0: 5/16/17

Wind Load on Equipment per ASCE 7-10

Milford, CT

Prepared by: T.J.L; Checked by: C.F.C. Job No. 17012.23

sf

lbs

sf

sf

lbs

lbs

Development of Wind & Ice Load on Antennas

Antenna Data:			
Antenna Model =	Andrew LNX6515D	S	
Antenna Shape =	Flat		(User Input)
Antenna Height =	L _{ant} := 96.4	in	(User Input)
Antenna Width =	W _{ant} := 11.9	in	(User Input)
Antenna Thickness =	T _{ant} := 7.1	in	(User Input)
Antenna Weight =	WT _{ant} := 50	lbs	(User Input)
Number of Antennas =	N _{ant} := 1		(User Input)

Wind Load (Front)

Surface Area for One Antenna = Si	ant := $\frac{L_{ant} W_{ant}}{144} = 8$	sf
-----------------------------------	--	----

 $A_{ant} := SA_{ant} \cdot N_{ant} = 8$

 $F_{ant} := F \cdot A_{ant} = 382$

 $A_{ant} := SA_{ant} \cdot N_{ant} = 4.8$

 $F_{ant} := F \cdot A_{ant} = 228$

 $WT_{ant} \cdot N_{ant} = 50$

Antenna Projected Surface A rea =

Total Antenna Wind Force =

Wind Load (Side)

$SA_{ant} := \frac{L_{ant} T_{ant}}{144} = 4.8$	
---	--

Antenna Projected Surface A rea =

Surface Area for One Antenna =

Total Anterna Wind Force =

Gravity Load (without ice)

Weight of All Antennas =

Wind on Other Stuctures (IBC 2012 ASCE 7-

Subject:

Location:

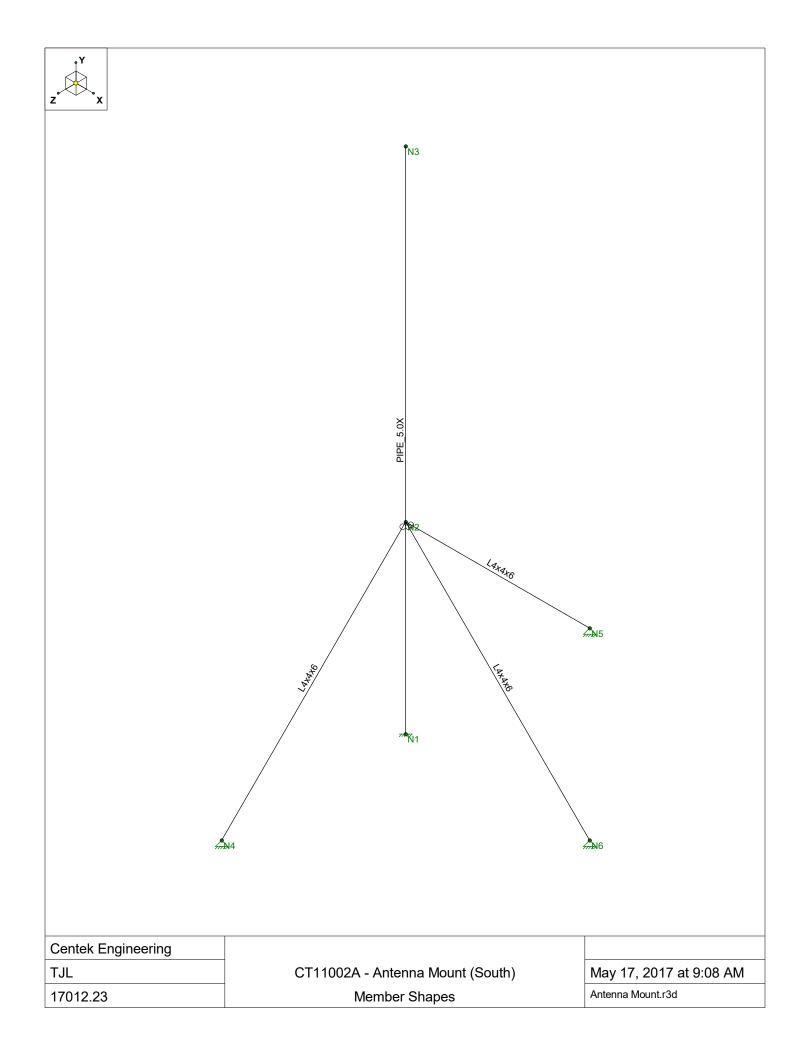
Development of Wind & Ice Load on RRHs

Rev. 0: 5/16/17

Wind Load on Equipment per ASCE 7-10

Milford, CT

Prepared by: T.J.L; Checked by: C.F.C. Job No. 17012.23


lbs

<u>RRH Data:</u>				
RRH Model =	Ericsson RRUS-1	1		
RRH Shape =	Flat		(User Input)	
RRH Height =	L _{RRH} ≔ 17.8	in	(User Input)	
RRH Width =	W _{RRH} := 17.3	in	(User Input)	
RRH Thickness =	T _{RRH} ≔ 7.2	in	(User Input)	
RRH Weight =	WT _{RRH} ≔ 50	lbs	(User Input)	
Number of RRHs =	N _{RRH} := 1		(User Input)	
Wind Load (Front)				
Surface Area for One RRH =	SA _{RRH} ≔ ^L RRH	I ^{·W} RRH 144 =	2.1	sf
RRH Projected Surface Area =	A _{RRH} := SA _{RRH}	I ^{·N} RRH = 2	2.1	sf
Total RRH Wind Force =	F _{RRH} := F·A _{RR}	<mark> </mark> = 103		lbs
Wind Load (Side)				
Surface Area for One RRH =	SA _{RRH} ≔ ^L RRH 1	$\frac{1}{44}^{T}$ RRH = 0	0.9	sf
RRH Projected Surface Area =	A _{RRH} ≔ SA _{RRH}	I ^{·N} RRH ^{= (}).9	sf
Total RRH Wind Force =	F _{RRH} := F·A _{RR}	<mark>H = 43</mark>		lbs
Gravity Load (without ice)				

Weight of All RRHs =

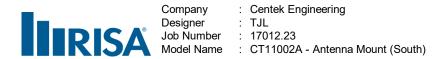
 $WT_{RRH} \cdot N_{RRH} = 50$

<u>South Antenna Mast</u>

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (ft/sec^2)	32.2
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 14th(360-10): ASD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 14th(360-10): ASD
Cold Formed Steel Code	AISI S100-10: ASD
Wood Code	AWC NDS-12: ASD
Wood Temperature	< 100F
Concrete Code	ACI 318-11
Masonry Code	ACI 530-11: ASD
Aluminum Code	AA ADM1-10: ASD - Building


Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
RX	3
RZ	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	l or ll
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	4
Cd X	4
Rho Z	1
Rho X	1
Footing Overturning Safety Factor	1
Optimize for OTM/Sliding	No
Check Concrete Bearing	No
Footing Concrete Weight (k/ft^3)	150.001
Footing Concrete f'c (ksi)	4
Footing Concrete Ec (ksi)	3644
Lambda	1
Footing Steel fy (ksi)	60
Minimum Steel	0.0018
Maximum Steel	0.0075
Footing Top Bar	#3
Footing Top Bar Cover (in)	2
Footing Bottom Bar	#3
Footing Bottom Bar Cover (in)	3.5
Pedestal Bar	#3
Pedestal Bar Cover (in)	1.5
Pedestal Ties	#3

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E	.Density[k/ft	. Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	58	1.2
3	A992	29000	11154	.3	.65	.49	50	1.1	58	1.2
4	A500 Gr.42	29000	11154	.3	.65	.49	42	1.3	58	1.1
5	A500 Gr.46	29000	11154	.3	.65	.49	46	1.2	58	1.1
6	A53 Grade B	29000	11154	.3	.65	.49	35	1.5	58	1.2

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design Rules	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Pipe Mast	PIPE_5.0X	Beam	Pipe	A53 Grade B	Typical	5.73	19.5	19.5	39
2	Brace	L4x4x6	Beam	Pipe	A36 Gr.36	Typical	2.86	4.32	4.32	.141

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft]	Lcomp bot[ft]	L-torqu	Куу	Kzz	Cb	Function
1	M1	Pipe Mast	24			Lbyy						Lateral
2	M2	Brace	12.261			Lbyy						Lateral
3	M3	Brace	12.261			Lbyy						Lateral
4	M4	Brace	12.261			Lbyy						Lateral

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N1	N3			Pipe Mast	Beam	Pipe	A53 Grade.	Typical
2	M2	N2	N4			Brace	Beam	Pipe	A36 Gr.36	Typical
3	M3	N2	N6			Brace	Beam	Pipe	A36 Gr.36	Typical
4	M4	N2	N5			Brace	Beam	Pipe	A36 Gr.36	Typical

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
1	N1	0	0	0	0	
2	N2	0	8.67	0	0	
3	N3	0	24	0	0	
4	N4	0	0	8.67	0	
5	N5	0	0	-8.67	0	
6	N6	8.67	0	0	0	

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N4	Reaction	Reaction	Reaction			
3	N6	Reaction	Reaction	Reaction			
4	N5	Reaction	Reaction	Reaction			

Member Point Loads (BLC 2 : Weight of Equipment)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M1	Y	444	20
2	M1	Y	15	14

Member Point Loads (BLC 3 : Wind X-Direction)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M1	Х	1.052	20
2	M1	Х	.249	14

Member Point Loads (BLC 4 : Wind Z-Direction)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M1	Z	1.052	20
2	M1	Z	.249	14

Member Distributed Loads (BLC 3 : Wind X-Direction)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.023	.023	0	16

Member Distributed Loads (BLC 4 : Wind Z-Direction)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Z	.023	.023	0	16

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Self Weight	DL		-1						
2	Weight of Equipment	DL					2			
3	Wind X-Direction	WLX					2	1		
4	Wind Z-Direction	WLZ					2	1		

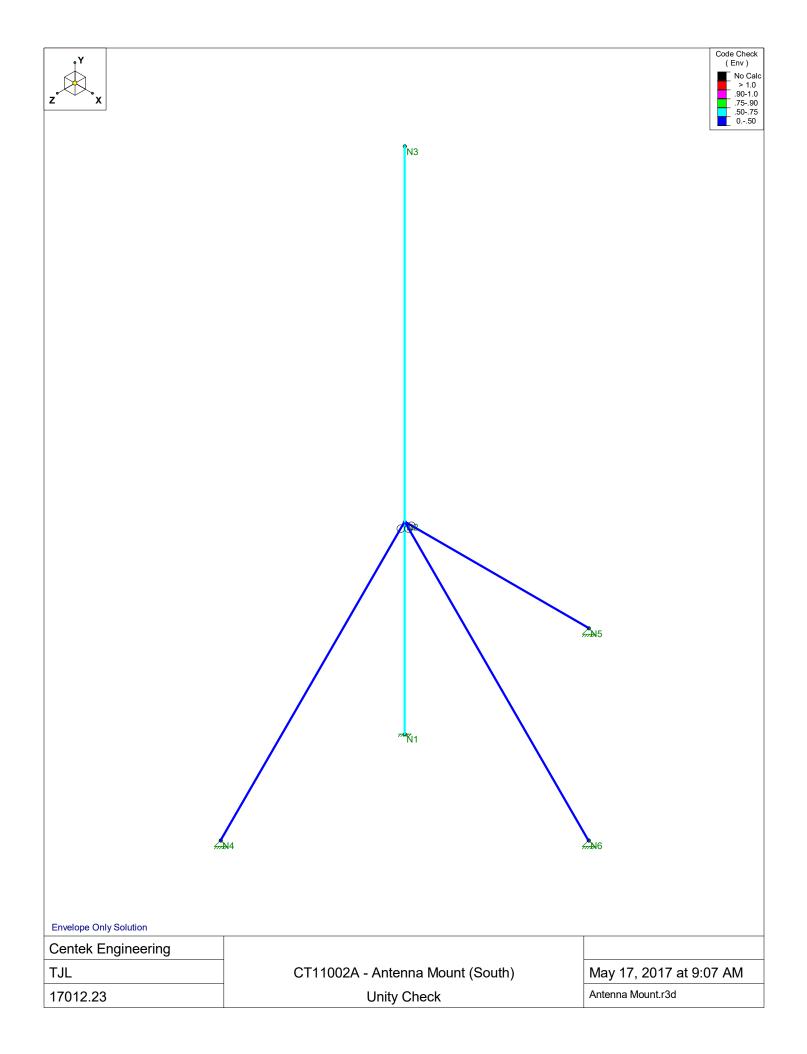
Load Combinations

	Description	So	P	S	BLC	ac	.BLC	Fac	.BLC	Fac	BLC	Fac	BLC	Fac	.BLC	Fac	BLC	Fac	.BLC	Fac	.BLC	Fac	BLC	Fac
1	IBC 16-8	Yes	Υ		DL	1																		
2	IBC 16-9	Yes			DL	1	LL	1	LLS	1														
3	IBC 16-10 (a)	Yes	Υ		DL	1	RLL																	
4	IBC 16-10 (b)	Yes			DL	1	SL	1	SLN	1														
5	IBC 16-10 (c)	Yes	Υ		DL	1	RL	1																
6	IBC 16-11 (a)	Yes	Υ		DL	1	LL	.75	LLS	.75	RLL	.75												
7	IBC 16-11 (b)	Yes	Υ		DL	1	LL	.75	LLS	.75	SL	.75	SLN	.75										
8	IBC 16-11 (c)	Yes	Υ		DL	1	LL	.75	LLS	.75	RL	.75												
9	IBC 16-12 (a) (a)	Yes	Υ		DL	1	W	.6																
10	IBC 16-12 (a) (b)	Yes	Υ		DL	1	W	.6																
11	IBC 16-12 (a) (c)	Yes	Υ		DL	1	W	6																
12	IBC 16-12 (a) (d)				DL	1	W	6																
13	IBC 16-13 (a) (a)				DL	1	W	.45	LL	.75	LLS	.75	RLL	.75										
14	IBC 16-13 (a) (b)	Yes	Υ		DL	1	W	.45	LL	.75	LLS	.75	RLL	.75										
15	IBC 16-13 (a) (c)	Yes	Υ		DL	1	W	45	LL	.75	LLS	.75	RLL	.75										
16	IBC 16-13 (a) (d)	Yes	Υ		DL	1	W	45	LL	.75	LLS	.75	RLL	.75										
17	IBC 16-13 (b) (a)	Yes	Υ		DL	1	W	.45	LL	.75	LLS	.75	SL	.75	SLN	.75								
18	IBC 16-13 (b) (b)				DL	1	W	.45	LL	.75	LLS	.75	SL	.75	SLN	.75								
19	IBC 16-13 (b) (c)	Yes	Υ		DL	1	W	45	LL	.75	LLS	.75	SL	.75	SLN	.75								
20	IBC 16-13 (b) (d)				DL	1	W	45	LL	.75	LLS	.75	SL	.75	SLN	.75								
21	IBC 16-13 (c) (a)	Yes	Υ		DL	1	W	.45	LL	.75	LLS	.75	RL	.75										
22	IBC 16-13 (c) (b)	Yes	Υ		DL	1	W	.45	LL	.75	LLS	.75	RL	.75										
23	IBC 16-13 (c) (c)				DL	1	W					.75												
24	IBC 16-13 (c) (d)				DL	1						.75												
25	IBC 16-15 (a)	Yes			DL	.6	W	.6																
26		Yes	Υ		DL	.6	W	.6																
27	IBC 16-15 (c)	Yes	Υ		DL	.6	W	6																

Load Combinations (Continued)

Descript	tion SoP S	BLC FacBLC Fac	BLC FacBLC F	acBLC FacBLC Fac	acBLC FacBLC	FacBLC FacBLC Fac
28 IBC 16-1	5 (d) Yes Y	DL .6 W6	6			

Envelope Joint Reactions


	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N1	max	1.377	9	2.697	11	1.385	10	4.02	10	0	26	3.945	11
2		min	-1.377	11	-1.185	25	-1.385	12	-4.02	12	0	28	-3.959	9
3	N4	max	0	12	1.403	10	1.096	28	0	1	0	1	0	1
4		min	0	11	-1.06	28	-1.344	10	0	1	0	1	0	1
5	N6	max	2.378	11	2.439	9	0	10	0	1	0	1	0	1
6		min	-2.379	9	-2.329	27	0	12	0	1	0	1	0	1
7	N5	max	0	10	1.403	12	1.344	12	0	1	0	1	0	1
8		min	0	11	-1.06	26	-1.096	26	0	1	0	1	0	1
9	Totals:	max	1.001	11	1.42	15	1.001	28						
10		min	-1.001	9	.852	25	-1.001	10						

Envelope Joint Displacements

	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [.LC	Y Rotation [. LC	Z Rotation [. LC
1	N1	max	0	11	Ô	25	Ö	12	0	12	0	28	0	9
2		min	0	9	0	11	0	10	0	10	0	26	0	11
3	N2	max	.011	25	0	25	.005	10	5.946e-03	10	0	28	6.052e-03	11
4		min	013	11	002	11	005	12	-5.946e-03	12	0	26	-6.033e-03	9
5	N3	max	3.124	9	0	25	3.102	10	2.025e-02	10	0	28	2.036e-02	11
6		min	-3.129	11	003	11	-3.102	12	-2.025e-02	12	0	26	-2.034e-02	9
7	N4	max	0	11	0	28	0	10	-6.867e-04	26	2.636e-03	25	2.756e-03	27
8		min	0	12	0	10	0	28	-1.212e-03	12	-3.466e-03	11	-3.571e-03	9
9	N5	max	0	11	0	26	0	26	1.212e-03	10	2.638e-03	27	3.587e-03	11
10		min	0	10	0	12	0	12	6.867e-04	28	-3.463e-03	9	-2.746e-03	25
11	N6	max	0	9	0	27	0	12	2.672e-03	26	2.621e-03	28	1.254e-03	11
12		min	0	11	0	9	0	10	-3.499e-03	12	-3.448e-03	10	6.503e-04	25

Envelope AISC 14th(360-10): ASD Steel Code Checks

	Member	Shape	Code Check	Loc[ft]	ILC	Shear	Loc[ft]	Dir	LC	Pnc/om	.Pnt/om	Mnyy/o	.Mnzz/o	Cb	Eqn
1	M1	PIPE_5.0X	.533	8.5	11	.042	8.5		10	35.337	120.09	16.592	16.592	1ł	-11-1b
2	M2	L4x4x6	.206	6.386	10	.002	0	у	14	12.05	61.653	2.926	5.261	1]	H2-1
3	M3	L4x4x6	.328	6.386	9	.002	0	у	15	12.05	61.653	2.926	5.261	1]	H2-1
4	M4	L4x4x6	.206	6.386	12	.002	0	у	16	12.05	61.653	2.926	5.261	1]	H2-1

CENTER	engineering	Subject:		Antenna Mast Bolts and Baseplate
Centered on Solutions ⁻ 63-2 North Branford Road Branford, CT 06405	P: (203) 488-0580 F: (203) 488-8587	Location:		Milford, CT
		Rev. 0: 5/17/17		Prepared by: T.J.L. Checked by: C.F.C. Job No. 17012.23
Mast	Connection to E	Sottom Bracket:		
		Design Reactions:		
		Axial =	Axial := -1.2 kips	(User Input)
		Shear =	Shear := 1.4 kips	(User Input)
		Moment =	Moment := 4 kips ft	(User Input)
		Bolt Data:		
		Use ASTM A325		
		Number of Bolts =	N := 4	(User Input)
	Distance I	Between Bolts x-dir=	S _X ≔ 9·in	(User Input)
	Distance I	Between Bolts x-dir=	S _y ≔ 3.5 in	(User Input)
	Bolt	Ultimate Strength =	F _u ≔ 120 ksi	(User Input)
	I	3olt Yield Strength =	F _y ≔ 92·ksi	(User Input)
		Bolt Modulus =	E := 29000 ksi	(User Input)
	Diame	er of Flange Bolts =	D := 0.625 · in	(User Input)
		Threads per Inch =	n:= 11	(User Input)
		Base Plate Data:		
		Base Plate Steel =	A36	(User Input)
	Alle	owable Yield Stress =	F _y ≔ 36⋅ksi	(User Input)
		Base Plate Width =	Pl _w ≔ 12·in	(User Input)
		Base Plate Length =	PI _L := 6.5⋅in	(User Input)
	Ва	ase Plate Thickness =	PI _t := 0.75 in	(User Input)
		Pole Diameter =	D _p := 5.625⋅in	(User Input)
		Base Plate Data:		
		Weld Grade	E70XX	(User Input)
		Weld Yield Stress =	F _{yw} := 70⋅ksi	(User Input)
		Weld Size =	sw := 0.3125 in	(User Input)

Subject:

Location:

Rev. 0: 5/17/17

Antenna Mast Bolts and Baseplate

Milford, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 17012.23

Bolt Analysis:

Gross Area of Bolt =	$A_g := \frac{\pi}{4} \cdot D^2 = 0.307 \cdot in^2$
Tensile Force Horizontal =	$T_{x} := \frac{Moment}{S_{x} \cdot \frac{N}{2}} - \frac{Axial}{N} = 3 \cdot kips$
Tensile Force Horizontal =	$T_y := \frac{Moment}{S_y \cdot \frac{N}{2}} - \frac{Axial}{N} = 7.2 \cdot kips$
Spacing Diagonal =	$S_{d} := \sqrt{S_{x}^{2} + S_{y}^{2}} = 9.7 \cdot in$
Tensile Force Diagonal =	$T_D := \frac{Moment}{S_d} - \frac{Axial}{N} = 5.3 \cdot kips$
Maximum Tensile Force =	$T_{Max} \coloneqq max \big(T_x, T_y, T_D\big) = 7.2 \cdot kips$
Allowable Tensile Force =	$T_{ALL} := \frac{\left(0.75 \cdot F_u \cdot A_g\right)}{2} = 13.8 \cdot kips$
Bolt % of Capacity =	$\frac{T_{Max}}{T_{ALL}} = 52.\%$
Condition1 =	$Condition1 := if \left(\frac{T_{Max}}{T_{ALL}} \le 1.00, "OK", "Overstressed" \right)$
	Condition1 = "OK"

Subject:

Location:

Rev. 0: 5/17/17

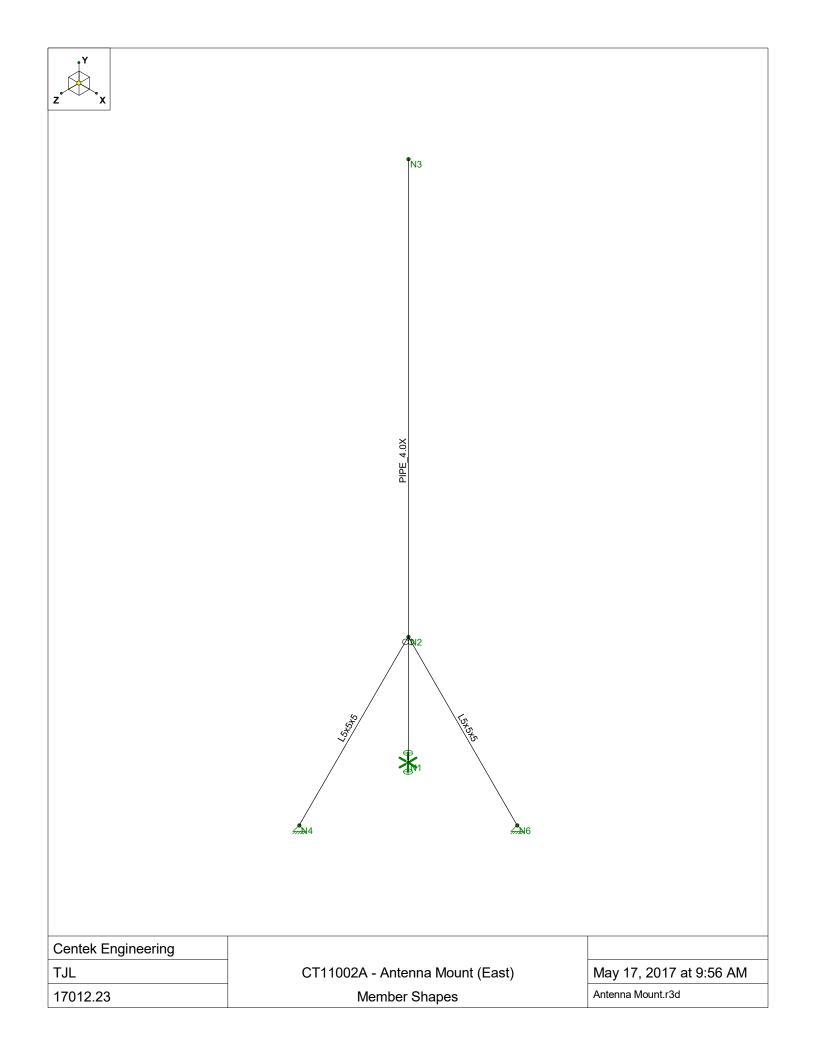
Antenna Mast Bolts and Baseplate

Milford, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 17012.23

Base Plate Check:

Buse I fate Officert.	
Allowable Bending Stress =	$F_{b} := \frac{F_{y}}{1.67} = 21.557 \cdot ksi$
Moment Arm =	$K := \frac{\left(S_{X} - D_{p}\right)}{2} = 1.69 \text{-in}$
Moment in Base Plate =	$M := K \cdot T_{X} \cdot 2 = 10.01 \cdot kips \cdot in$
Section Modulus =	$S_{Z} := \frac{1}{4} \cdot PI_{L} \cdot PI_{t}^{2} = 0.91 \cdot in^{3}$
Bending Stress =	$f_b := \frac{M}{S_Z} = 10.95 \cdot ksi$
	$Condition2 := if (f_b < F_b, "OK", "Overstressed")$
	Condition2 = "OK"


Base Plate to Mast Weld Check:

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Allowable Weld Stress =	$F_{W} := 0.3 \cdot F_{yW} = 21 \cdot ksi$
$c := \frac{D_p}{2} + sw \cdot 0.707 = 3.03 \cdot in$ Section Modulus of Weld = $S_w := \frac{I_w}{c} = 5.72 \cdot in^3$ Weld Stress = $f_w := \frac{Moment}{S_w} + \frac{Shear}{A_w} = 8.73 \cdot ksi$	Weld Area =	$A_{w} := \frac{\pi}{4} \cdot \left[\left(D_{p} + 2sw \cdot 0.707 \right)^{2} - D_{p}^{2} \right] = 4.06 \cdot in^{2}$
Section Modulus of Weld = $S_W := \frac{I_W}{c} = 5.72 \cdot in^3$ Weld Stress = $f_W := \frac{Moment}{S_W} + \frac{Shear}{A_W} = 8.73 \cdot ksi$	Weld Moment of Inertia =	$I_{w} := \frac{\pi}{64} \cdot \left[\left(D_{p} + 2sw \cdot 0.707 \right)^{4} - D_{p}^{4} \right] = 17.36 \cdot in^{4}$
Weld Stress = $f_W := \frac{Moment}{S_W} + \frac{Shear}{A_W} = 8.73 \text{ ksi}$		$c := \frac{D_p}{2} + sw \cdot 0.707 = 3.03 \cdot in$
°₩ ''₩	Section Modulus of Weld =	$S_w \coloneqq \frac{I_w}{c} = 5.72 \cdot in^3$
$Condition3 := if(f_{W} < F_{W}, "OK", "Overstressed")$	Weld Stress =	$f_{W} := \frac{Moment}{S_{W}} + \frac{Shear}{A_{W}} = 8.73 \cdot ksi$
		$Condition3 := if \! \left(f_W^{} < F_W^{}, "OK", "Overstressed" \right)$
Condition3 = "OK"		Condition3 = "OK"

Bolts and Baseplate.xmcd.xmcd

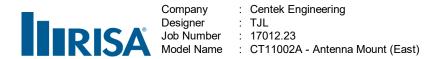
CENTEK Engineering, Inc. Structural Analysis – Structural Analysis T-Mobile Site Ref. ~ CT11002A Milford, CT May 17, 2017

East Antenna Mast

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (ft/sec^2)	32.2
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 14th(360-10): ASD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 14th(360-10): ASD
Cold Formed Steel Code	AISI S100-10: ASD
Wood Code	AWC NDS-12: ASD
Wood Temperature	< 100F
Concrete Code	ACI 318-11
Masonry Code	ACI 530-11: ASD
Aluminum Code	AA ADM1-10: ASD - Building


Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
TZ (sec)	Not Entered
RX	3
RZ	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	l or ll
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	4
Cd X	4
Rho Z	1
Rho X	1
Footing Overturning Safety Factor	1
Optimize for OTM/Sliding	No
Check Concrete Bearing	No
Footing Concrete Weight (k/ft^3)	150.001
Footing Concrete f'c (ksi)	4
Footing Concrete Ec (ksi)	3644
Lambda	1
Footing Steel fy (ksi)	60
Minimum Steel	0.0018
Maximum Steel	0.0075
Footing Top Bar	#3
Footing Top Bar Cover (in)	2
Footing Bottom Bar	#3
Footing Bottom Bar Cover (in)	3.5
Pedestal Bar	#3
Pedestal Bar Cover (in)	1.5
Pedestal Ties	#3
	<i>"</i> `

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E	.Density[k/ft	. Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	58	1.2
3	A992	29000	11154	.3	.65	.49	50	1.1	58	1.2
4	A500 Gr.42	29000	11154	.3	.65	.49	42	1.3	58	1.1
5	A500 Gr.46	29000	11154	.3	.65	.49	46	1.2	58	1.1
6	A53 Grade B	29000	11154	.3	.65	.49	35	1.5	58	1.2

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design Rules	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Pipe Mast	PIPE_4.0X	Beam	Pipe	A53 Grade B	Typical	4.14	9.12	9.12	18.2
2	Brace	L5x5x5	Beam	Pipe	A36 Gr.36	Typical	3.07	7.44	7.44	.108

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft]	Lcomp bot[ft]	L-torqu	Куу	Kzz	Cb	Function
1	M1	Pipe Mast	24			Lbyy						Lateral
2	M2	Brace	7.071			Lbyy						Lateral
3	M3	Brace	7.071			Lbyy						Lateral

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N1	N3			Pipe Mast	Beam	Pipe	A53 Grade.	Typical
2	M2	N2	N4			Brace	Beam	Pipe	A36 Gr.36	Typical
3	M3	N2	N6			Brace	Beam	Pipe	A36 Gr.36	Typical

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
1	N1	0	0	0	0	
2	N2	0	5	0	0	
3	N3	0	24	0	0	
4	N4	0	0	5	0	
5	N6	5	0	0	0	

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N1	Reaction	Reaction	Reaction		Reaction	
2	N4	Reaction	Reaction	Reaction			
3	N6	Reaction	Reaction	Reaction			

Member Point Loads (BLC 2 : Weight of Equipment)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M1	Y	396	21

Member Point Loads (BLC 3 : Wind X-Direction)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M1	Х	.65	21

Member Point Loads (BLC 4 : Wind Z-Direction)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M1	Z	.65	21

Member Distributed Loads (BLC 3 : Wind X-Direction)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	.018	.018	0	18

Member Distributed Loads (BLC 4 : Wind Z-Direction)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Z	.018	.018	0	18

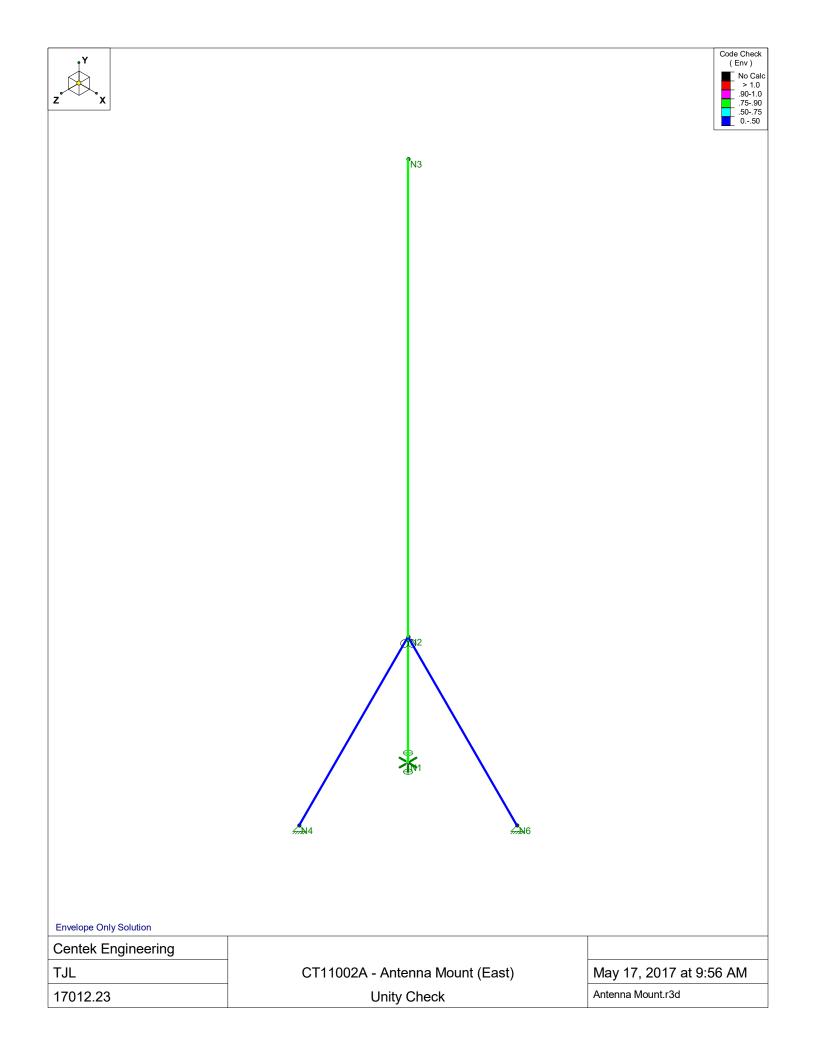
Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Self Weight	DL		-1						
2	Weight of Equipment	DL					1			
3	Wind X-Direction	WLX					1	1		
4	Wind Z-Direction	WLZ					1	1		

Load Combinations

	Description	So	P	S	BLC F	ac	BLC	Fac	BLC	Fac.	BLC	Fac	BLC	Fac										
1	IBC 16-8	Yes	Υ		DL	1																		
2	IBC 16-9	Yes	Υ		DL	1	LL	1	LLS	1														
3	IBC 16-10 (a)	Yes	Υ		DL	1	RLL	1																
4	IBC 16-10 (b)	Yes	Υ		DL	1	SL	1	SLN	1														
5	IBC 16-10 (c)	Yes	Υ		DL	1	RL	1																
6	IBC 16-11 (a)	Yes	Υ		DL	1	LL	.75	LLS	.75	RLL	.75												
7	IBC 16-11 (b)	Yes	Υ		DL	1	LL	.75	LLS	.75	SL	.75	SLN	.75										
8	IBC 16-11 (c)	Yes	Υ		DL	1	LL	.75	LLS	.75	RL	.75												
9	IBC 16-12 (a) (a)	Yes	Υ		DL	1	W	.6																
10	IBC 16-12 (a) (b)				DL	1	W	.6																
11	IBC 16-12 (a) (c)	Yes	Υ		DL	1	W	6																
12	IBC 16-12 (a) (d)				DL	1	W	6																
13	IBC 16-13 (a) (a)				DL	1	W	.45	LL	.75	LLS	.75	RLL	.75										
14	IBC 16-13 (a) (b)				DL	1	W	.45	LL	.75	LLS	.75	RLL	.75										
15	IBC 16-13 (a) (c)				DL	1	W	45	LL	.75	LLS	.75	RLL	.75										
16	IBC 16-13 (a) (d)				DL	1	W	45	LL	.75	LLS	.75	RLL	.75										
17	IBC 16-13 (b) (a)				DL	1	W	.45	LL	.75	LLS	.75	SL	.75	SLN	.75								
18	IBC 16-13 (b) (b)				DL	1	W	.45	LL															
19	IBC 16-13 (b) (c)				DL	1	W					.75												
20	IBC 16-13 (b) (d)				DL	1	W	45	LL	.75	LLS	.75	SL	.75	SLN	.75								
21	IBC 16-13 (c) (a)				DL	1	W		LL					.75										
22	IBC 16-13 (c) (b)				DL	1	W							.75										
23	IBC 16-13 (c) (c)				DL	1	W	45	LL			.75		.75										
24	IBC 16-13 (c) (d)				DL	1		45						.75										
25		Yes				.6	W																	
26		Yes					W																	
27	IBC 16-15 (c)	Yes	Υ		DL	.6	W	6																
28		Yes	Υ		DL	.6	W																	

Envelope Joint Reactions


	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N1	max	1.478	9	2.87	11	1.478	10	0	1	0	10	0	1
2		min	-1.478	11	-1.547	25	-1.478	12	0	1	0	12	0	1
3	N4	max	0	12	2.1	10	2.063	12	0	1	0	1	0	1
4		min	0	1	-2.025	12	-2.062	10	0	1	0	1	0	1
5	N6	max	2.063	11	2.1	9	0	11	0	1	0	1	0	1
6		min	-2.062	9	-2.025	11	0	1	0	1	0	1	0	1
7	Totals:	max	.584	11	.882	15	.584	12						
8		min	584	9	.529	25	584	10						

Envelope Joint Displacements

	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [LC.	Y Rotation [LC	Z Rotation [. LC
1	N1	max	0	11	0	25	0	12	4.057e-03	12	0	12	4.073e-03	9
2		min	0	9	0	11	0	10	-4.073e-03	10	0	10	-4.057e-03	11
3	N2	max	.006	25	0	25	.006	26	8.654e-03	10	0	12	8.669e-03	11
4		min	007	11	002	11	007	12	-8.669e-03	12	0	10	-8.654e-03	9
5	N3	max	8.429	9	0	25	8.429	10	4.773e-02	10	0	12	4.774e-02	11
6		min	-8.433	11	003	11	-8.433	12	-4.774e-02	12	0	10	-4.773e-02	9
7	N4	max	0	1	0	12	0	10	-2.802e-05	26	4.22e-03	9	4.331e-03	11
8		min	0	12	0	10	0	12	-2.116e-04	12	-4.338e-03	11	-4.434e-03	9
9	N6	max	0	9	0	11	0	1	4.315e-03	10	4.219e-03	12	2.116e-04	11
10		min	0	11	0	9	0	11	-4.449e-03	12	-4.338e-03	10	2.802e-05	25

Envelope AISC 14th(360-10): ASD Steel Code Checks

	Member	Shape	Code Check	Loc[ft]	LC	Shear	Loc[ft]	DirL	C	Pnc/om	Pnt/om	Mnyy/o	Mnzz/o	Cb Eqn
1	M1	PIPE_4.0X	.864	5	11	.059	5	9	9	16.527	86.766	9.658	9.658	1 H1-1b
2	M2	L5x5x5	.081	3.609	10	.001	7.071	y 1	0	42.404	66.18	4.247	7.866	1 H2-1
3	M3	L5x5x5	.081	3.609	9	.001	7.071	y 1	1	42.404	66.18	4.247	7.866	1 H2-1

CENTER	engineering	Subject:		Antenna Mast Bolts and Baseplate
Centered on Solutions= 63-2 North Branford Road Branford, CT 06405	P: (203) 488-0580 F: (203) 488-8587	Location:		Milford, CT
		Rev. 0: 5/17/17		Prepared by: T.J.L. Checked by: C.F.C. Job No. 17012.23
Mast	Connection to E	Bottom Bracket:		
		Design Reactions:		
		Axial =	Axial := -1.6·kips	(User Input)
		Shear =	Shear := 1.5·kips	(User Input)
		Moment =	Moment := 0⋅kips⋅fl	t (User Input)
		Bolt Data:		
		Use ASTM A325		
		Number of Bolts =	N := 4	(User Input)
	Distance E	Between Bolts x-dir=	S _X := 8.5∙in	(User Input)
	Distance E	3etween Bolts x-dir=	S _y := 4 in	(User Input)
	Bolt	Ultimate Strength =	F _u := 120⋅ksi	(User Input)
	E	3olt Yield Strength =	F _y ≔ 92·ksi	(User Input)
		Bolt Modulus =	E := 29000·ksi	(User Input)
	Diame	ter of Flange Bolts =	D := 0.5·in	(User Input)
		Threads per Inch =	n:= 13	(User Input)
		Base Plate Data:		
		Base Plate Steel =	A36	(User Input)
	Alle	owable Yield Stress =	F _y := 36⋅ksi	(User Input)
		Base Plate Width =	Pl _w ≔ 10.5·in	(User Input)
		Base Plate Length =	Pl _L := 6.5⋅in	(User Input)
	Ba	ase Plate Thickness =	$Pl_{t} \coloneqq 0.375 \cdot in$	(User Input)
		Pole Diameter =	D _p := 4.5∙in	(User Input)
		Base Plate Data:		
		Weld Grade	E70XX	(User Input)
		Weld Yield Stress =	F _{yw} := 70⋅ksi	(User Input)
		Weld Size =	sw := 0.1875 in	(User Input)

Subject:

Location:

Rev. 0: 5/17/17

Antenna Mast Bolts and Baseplate

Milford, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 17012.23

Bolt Analysis:

Gross Area of Bolt =	$A_g := \frac{\pi}{4} \cdot D^2 = 0.196 \cdot in^2$
Tensile Force Horizontal =	$T_{x} := \frac{Moment}{S_{x} \cdot \frac{N}{2}} - \frac{Axial}{N} = 0.4 \cdot kips$
Tensile Force Horizontal =	$T_y := \frac{Moment}{S_y \cdot \frac{N}{2}} - \frac{Axial}{N} = 0.4 \cdot kips$
Spacing Diagonal =	$S_d := \sqrt{S_x^2 + S_y^2} = 9.4 \cdot in$
Tensile Force Diagonal =	$T_D := \frac{Moment}{S_d} - \frac{Axial}{N} = 0.4 \cdot kips$
Maximum Tensile Force =	$T_{Max} := max(T_x, T_y, T_D) = 0.4 \cdot kips$
Allowable Tensile Force =	$T_{ALL} := \frac{\left(0.75 \cdot F_{U} \cdot A_{g}\right)}{2} = 8.8 \cdot kips$
Bolt % of Capacity =	$\frac{T_{Max}}{T_{ALL}} = 5.\%$
Condition1 =	$Condition1 := if \left(\frac{T_{Max}}{T_{ALL}} \le 1.00, "OK", "Overstressed" \right)$
	Condition1 = "OK"

Subject:

Location:

Allowable

Rev. 0: 5/17/17

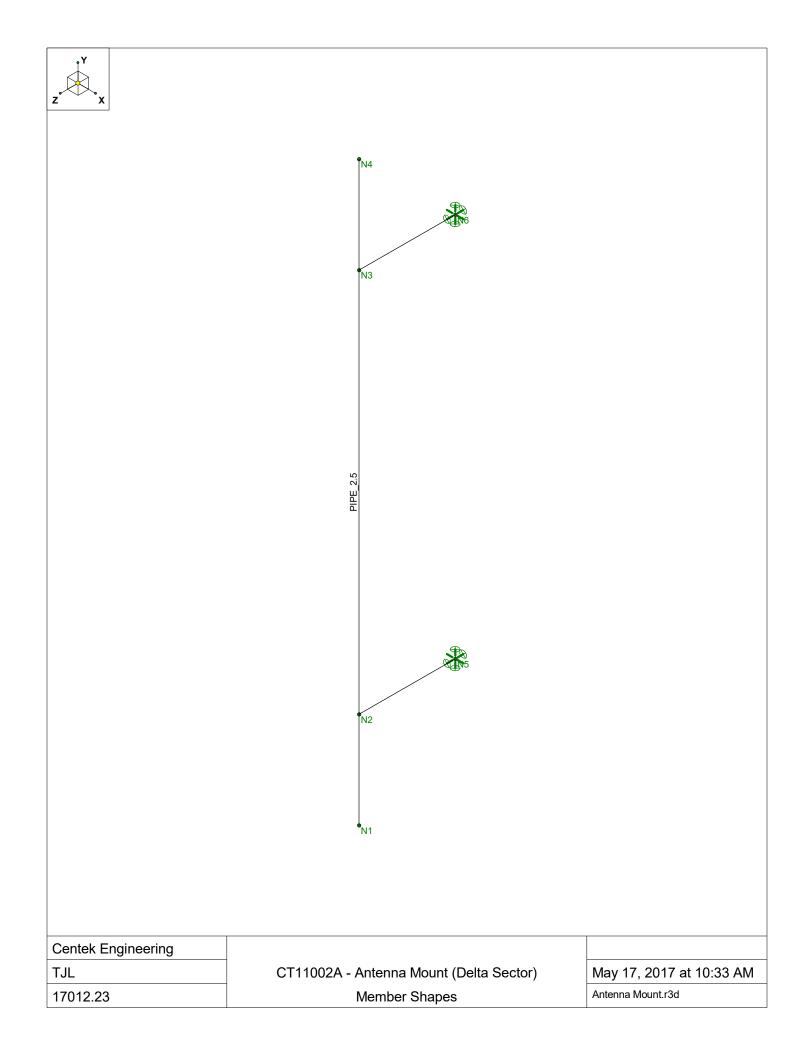
Antenna Mast Bolts and Baseplate

Milford, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 17012.23

Base Plate Check:

$F_{b} := \frac{F_{y}}{1.67} = 21.557 \text{ ksi}$
$K \coloneqq \frac{\left(S_{X}^{-} D_{p}\right)}{2} = 2 \cdot in$
$M := K \cdot T_{X} \cdot 2 = 1.6 \cdot kips \cdot in$
$S_{Z} := \frac{1}{4} \cdot PI_{L} \cdot PI_{t}^{2} = 0.23 \cdot in^{3}$
$f_b := \frac{M}{S_Z} = 7 \cdot ksi$
$Condition 2 := if \! \left(f_b < F_b, "OK" \;, "Overstressed" \right)$
Condition2 = "OK"


Base Plate to Mast Weld Check:

Allowable Weld Stress =	$F_{W} := 0.3 \cdot F_{yW} = 21 \cdot ksi$
Weld Area =	$A_{w} := \frac{\pi}{4} \cdot \left[\left(D_{p} + 2sw \cdot 0.707 \right)^{2} - D_{p}^{2} \right] = 1.93 \cdot in^{2}$
Weld Moment of Inertia =	$I_{w} := \frac{\pi}{64} \cdot \left[\left(D_{p} + 2sw \cdot 0.707 \right)^{4} - D_{p}^{4} \right] = 5.18 \cdot in^{4}$
	$c := \frac{D_p}{2} + sw \cdot 0.707 = 2.38 \cdot in$
Section Modulus of Weld =	$S_{W} := \frac{I_{W}}{c} = 2.17 \cdot in^{3}$
Weld Stress =	$f_W := \frac{Moment}{S_W} + \frac{Shear}{A_W} = 0.78 \cdot ksi$
	$Condition3 := if \Bigl(f_W < F_W , "OK" , "Overstressed" \Bigr)$
	Condition3 = "OK"

Bolts and Baseplate.xmcd.xmcd

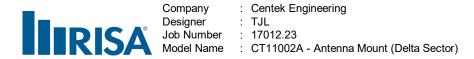
CENTEK Engineering, Inc. Structural Analysis – Structural Analysis T-Mobile Site Ref. ~ CT11002A Milford, CT May 17, 2017

Delta Sector Antenna Mast

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (ft/sec^2)	32.2
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 14th(360-10): ASD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 14th(360-10): ASD
Cold Formed Steel Code	AISI S100-10: ASD
Wood Code	AWC NDS-12: ASD
Wood Temperature	< 100F
Concrete Code	ACI 318-11
Masonry Code	ACI 530-11: ASD
Aluminum Code	AA ADM1-10: ASD - Building


Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
RX	3
RZ	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	l or ll
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	4
Cd X	4
Rho Z	1
Rho X	1
Footing Overturning Safety Factor	1
Optimize for OTM/Sliding	No
Check Concrete Bearing	No
Footing Concrete Weight (k/ft^3)	150.001
Footing Concrete f'c (ksi)	4
Footing Concrete Ec (ksi)	3644
Lambda	1
Footing Steel fy (ksi)	60
Minimum Steel	0.0018
Maximum Steel	0.0075
Footing Top Bar	#3
Footing Top Bar Cover (in)	2
Footing Bottom Bar	#3
Footing Bottom Bar Cover (in)	3.5
Pedestal Bar	#3
Pedestal Bar Cover (in)	1.5
Pedestal Ties	#3

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E	Density[k/ft	. Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	58	1.2
3	A992	29000	11154	.3	.65	.49	50	1.1	58	1.2
4	A500 Gr.42	29000	11154	.3	.65	.49	42	1.3	58	1.1
5	A500 Gr.46	29000	11154	.3	.65	.49	46	1.2	58	1.1
6	A53 Grade B	29000	11154	.3	.65	.49	35	1.5	58	1.2

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design Rules	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Pipe Mast	PIPE_2.5	Beam	Pipe	A53 Grade B	Typical	1.61	1.45	1.45	2.89

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft] Lcomp bot[ft]	L-torqu	Куу	Kzz	Cb	Function
1	M1	Pipe Mast	6			Lbyy					Lateral

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N1	N4			Pipe Mast	Beam	Pipe	A53 Grade	Typical
2	M2	N3	N6			RIGID	None	None	RIGID	Typical
3	M3	N2	N5			RIGID	None	None	RIGID	Typical

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
1	N1	0	0	0	0	
2	N2	0	1	0	0	
3	N3	0	5	0	0	
4	N4	0	6	0	0	
5	N5	0	1	-1	0	
6	N6	0	5	-1	0	

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N5	Reaction	Reaction	Reaction		Reaction	Reaction
2	N6	Reaction	Reaction	Reaction		Reaction	Reaction

Member Point Loads (BLC 2 : Weight of Equipment)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M1	Y	132	%50

Member Point Loads (BLC 3 : Wind X-Direction)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M1	Х	.164	%50

Member Point Loads (BLC 4 : Wind Z-Direction)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M1	Z	.243	%50

Member Distributed Loads (BLC 3 : Wind X-Direction)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.012	.012	0	0

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Self Weight	DL		-1						
2	Weight of Equipment	DL					1			
3	Wind X-Direction	WLX					1	1		
4	Wind Z-Direction	WLZ					1			

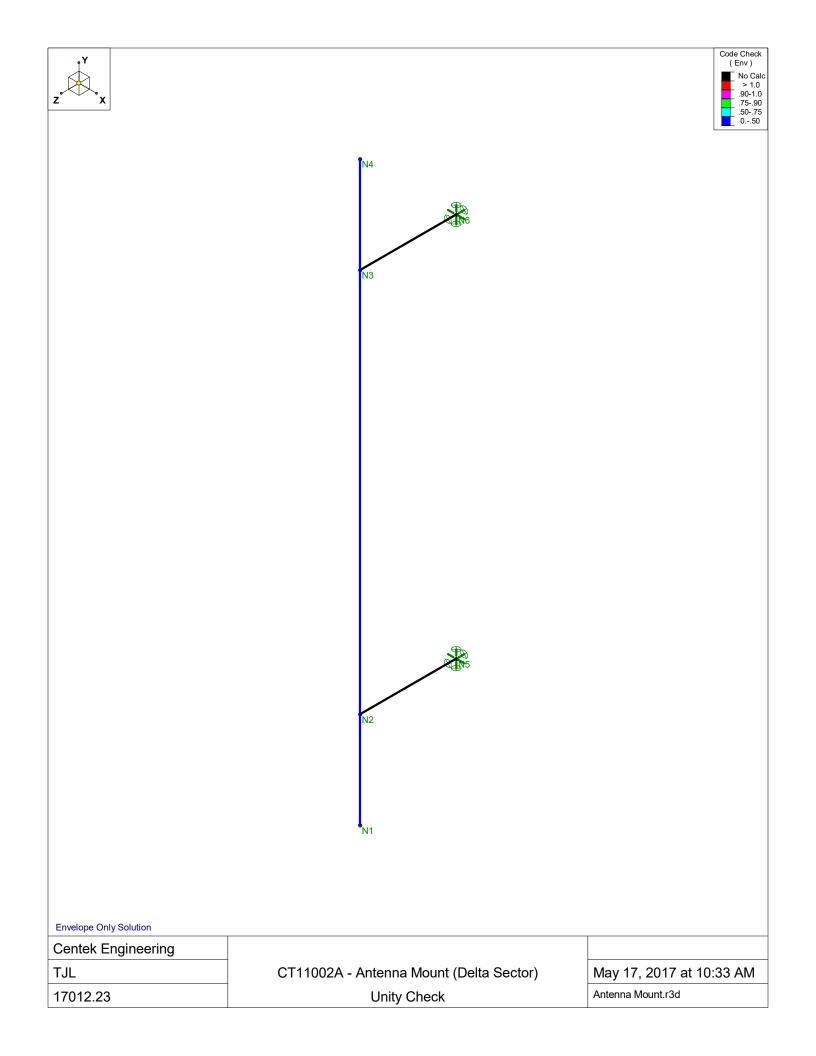
Load Combinations

	Description	So	P	S	BLCI	ac	.BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	.BLC	Fac	BLC	Fac	.BLC	Fac	.BLC	Fac	BLC	Fac
1	IBC 16-8	Yes	Υ		DL	1																		
2	IBC 16-9	Yes	Υ		DL	1	LL	1	LLS	1														
3	IBC 16-10 (a)	Yes	Υ		DL	1	RLL	1																
4	IBC 16-10 (b)	Yes	Υ		DL	1	SL	1	SLN	1														
5	IBC 16-10 (c)	Yes	Υ		DL	1	RL	1																
6	IBC 16-11 (a)	Yes	Υ		DL	1	LL	.75	LLS	.75	RLL	.75												
7	IBC 16-11 (b)	Yes	Υ		DL	1	LL			.75			SLN	.75										
8	IBC 16-11 (c)	Yes	Υ		DL	1	LL	.75	LLS	.75	RL	.75												
9	IBC 16-12 (a) (a)	Yes	Υ		DL	1	W	.6																
10	IBC 16-12 (a) (b)	Yes	Υ		DL	1	W	.6																
11	IBC 16-12 (a) (c)	Yes	Υ		DL	1	W	6																
12	IBC 16-12 (a) (d)	Yes	Υ		DL	1	W	6																
13	IBC 16-13 (a) (a)	Yes	Υ		DL	1	W	.45	LL	.75	LLS	.75	RLL	.75										
14	IBC 16-13 (a) (b)				DL	1	W	.45	LL			.75												
15	IBC 16-13 (a) (c)	Yes	Υ		DL	1	W	45	LL	.75	LLS	.75	RLL	.75										
16	IBC 16-13 (a) (d)	Yes	Υ		DL	1	W	45	LL	.75	LLS	.75	RLL	.75										
17	IBC 16-13 (b) (a)	Yes	Υ		DL	1	W	.45	LL	.75	LLS	.75	SL	.75	SLN	.75								
18	IBC 16-13 (b) (b)				DL	1	W	.45	LL	.75	LLS	.75	SL	.75	SLN	.75								
19	IBC 16-13 (b) (c)	Yes	Υ		DL	1	W	45	LL	.75	LLS	.75	SL	.75	SLN	.75								
20	IBC 16-13 (b) (d)	Yes	Υ		DL	1	W	45	LL	.75	LLS	.75	SL	.75	SLN	.75								
21	IBC 16-13 (c) (a)	Yes	Υ		DL	1	W	.45	LL	.75	LLS	.75	RL	.75										
22	IBC 16-13 (c) (b)				DL	1	W	.45	LL	.75	LLS	.75	RL	.75										
23	IBC 16-13 (c) (c)	Yes	Υ		DL	1	W	45	LL	.75	LLS	.75	RL	.75										
24	IBC 16-13 (c) (d)	Yes	Y		DL	1		45	LL	.75	LLS	.75	RL	.75										
25	IBC 16-15 (a)	Yes	Y		DL	.6	W	.6																
26		Yes	Y		DL	.6	W	.6																
27	IBC 16-15 (c)	Yes	Υ		DL	.6	W	6																
28	IBC 16-15 (d)	Yes	Y		DL	.6	W	6																

Envelope Joint Reactions

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N5	max	.071	27	.155	12	.114	12	0	1	.071	11	.055	9
2		min	071	25	023	26	048	26	0	1	071	9	055	11
3	N6	max	.071	11	.155	10	.048	28	0	1	.071	27	.055	27
4		min	071	9	023	28	114	10	0	1	071	25	055	25

Envelope Joint Reactions (Continued)


	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
5	Totals:	max	.142	11	.165	1	.146	12						
6		min	142	9	.099	28	146	10						

Envelope Joint Displacements

	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [L	Y Rotation [. LC	Z Rotation [. LC
1	N1	max	0	25	002	28	002	28	2.433e-04 1	0 0	9	5.137e-06	25
2		min	0	27	003	10	003	10	1.399e-04 2	3 0	11	-5.137e-06	27
3	N2	max	0	9	002	28	0	26	2.433e-04 1	0 0	9	0	11
4		min	0	11	003	10	0	12	1.399e-04 2	3 0	11	0	9
5	N3	max	0	25	002	26	0	10	2.435e-04 1	2 0	25	0	25
6		min	0	27	003	12	0	28	1.398e-04 2	6 0	27	0	27
7	N4	max	0	9	002	26	.003	12	2.435e-04 1	2 0	25	5.137e-06	11
8		min	0	11	003	12	.002	26	1.398e-04 2	6 0	27	-5.137e-06	9
9	N5	max	0	25	0	26	0	26	2.433e-04 1	0 0	9	0	11
10		min	0	27	0	12	0	12	1.399e-04 2	3 0	11	0	9
11	N6	max	0	9	0	28	0	10	2.435e-04 1	2 0	25	0	25
12		min	0	11	0	10	0	28	1.398e-04 2	<u> </u>	27	0	27

Envelope AISC 14th(360-10): ASD Steel Code Checks

	Member	Shape	Code Check	Loc[f	t]LC	Shear	Loc[ft]	DirL	CPnc/om	Pnt/om .	.Mnyy/o	.Mnzz/o	.Cb Eqn
1	M1	PIPE_2.5	.068	1	12	.011	1	1	2 25.132	2 33.743	2.393	2.393	1 H1-1b

Subject:

Antenna Mast Bolts and Baseplate

Location:

Rev. 0: 5/17/17

Milford, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 17012.23

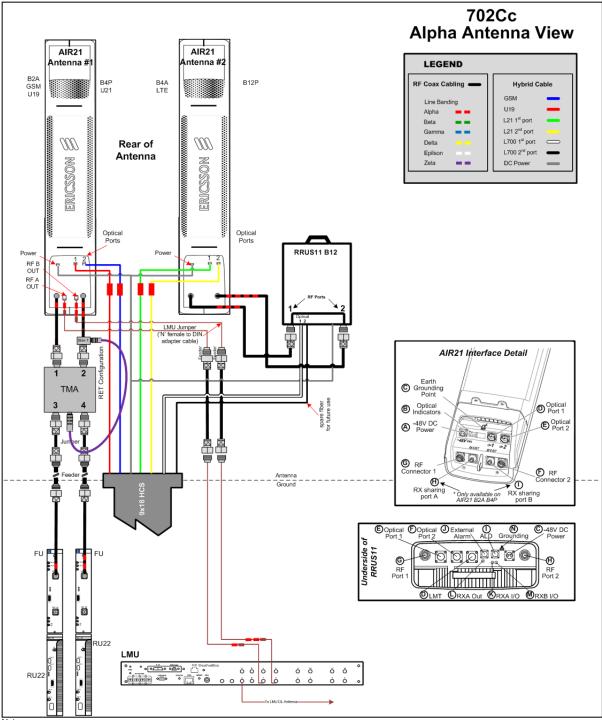
Mast Connection to Bottom Bracket:

Design Reactions:

Axial =	Vertical := .155 kips	(User Input)
Shear X =	Shear _x := .071⋅kips	(User Input)
Shear Z =	Shear _z ≔ .114⋅kips	(User Input)
Moment X =	Moment _X := 0⋅kips⋅ft	(User Input)
Moment Y =	Moment _y := .071⋅kips⋅ft	(User Input)
Moment Z =	Moment _z := .055·kips·ft	(User Input)

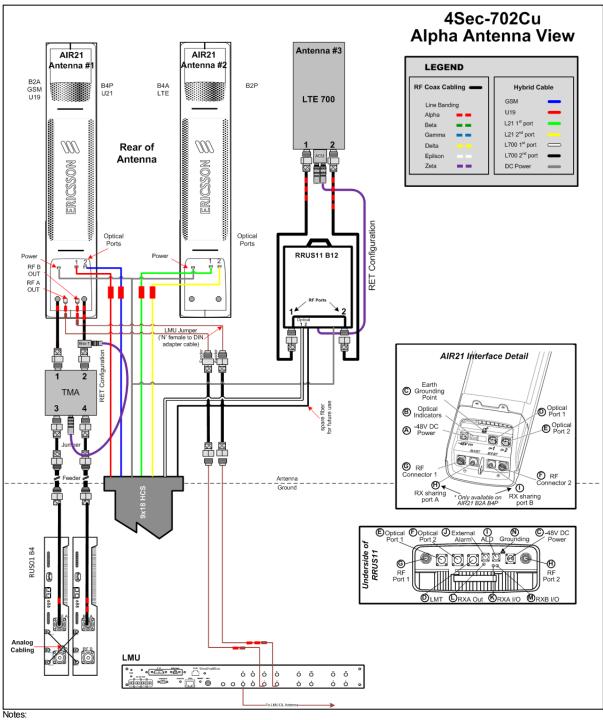
Bolt Data:

5/8" Threaded Rod w/ Hilty HY70 Adhesive

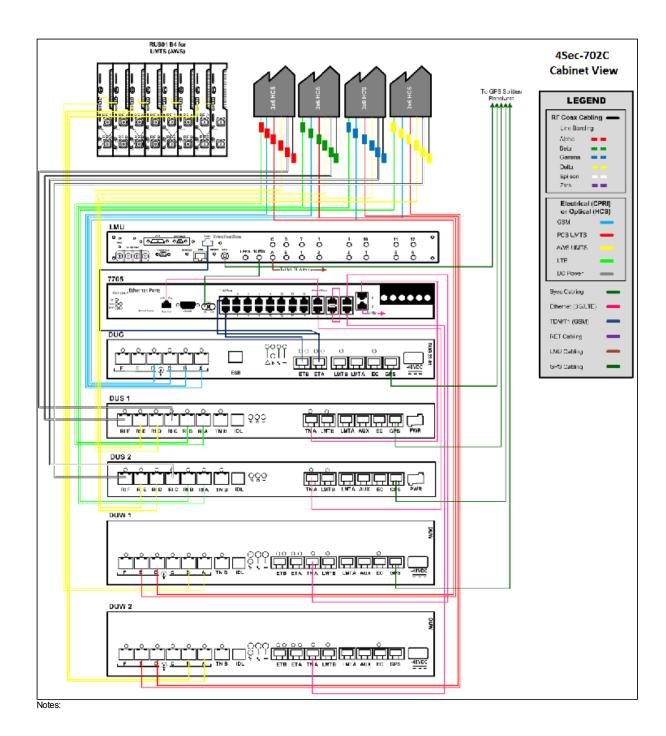

Number of Bolts =	N := 2	(User Input)
Distance Between Bolts x-dir=	S _X ≔ 12·in	(User Input)
Diameter of Flange Bolts =	D := 0.625·in	(User Input)
Allowable Tensile Force =	T _{ALL} := 2840·lb	
Allowable Shear Force =	$V_{ALL} := 2615 \cdot lb$	
Load Reduction Factor Tension =	T _{LRF} := 0.72	
Load Reduction Factor Shear =	V _{LRF} := 0.72	

Bolt Analysis:

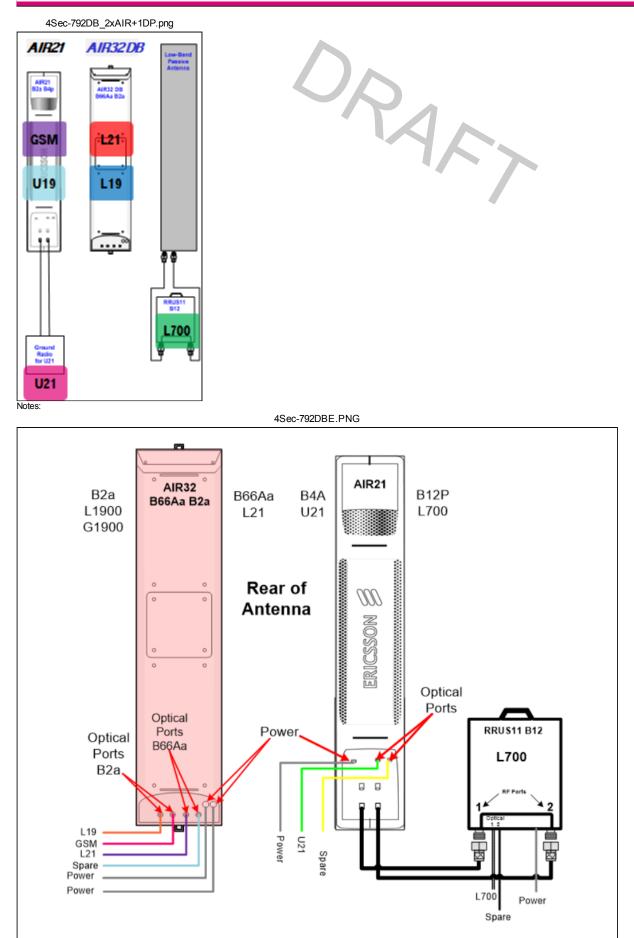
Max Tension Force =	$T_{Max} := \frac{Shear_z}{N} + \frac{Moment_y}{S_x} = 128lb$
Max Shear Force =	$V_{Max} := \frac{Shear_x + Vertical}{N} + \frac{Moment_z}{S_x} = 168lb$
Bolt % of Capacity =	$\frac{T_{Max}}{T_{ALL} \cdot T_{LRF}} + \frac{V_{Max}}{V_{ALL} \cdot V_{LRF}} = 15.\%$
Condition1 =	$\text{Condition1} \coloneqq \text{if} \left(\frac{T_{Max}}{T_{ALL} \cdot T_{LRF}} + \frac{V_{Max}}{V_{ALL} \cdot V_{LRF}} \le 1.00, "OK", "Overstressed" \right)$

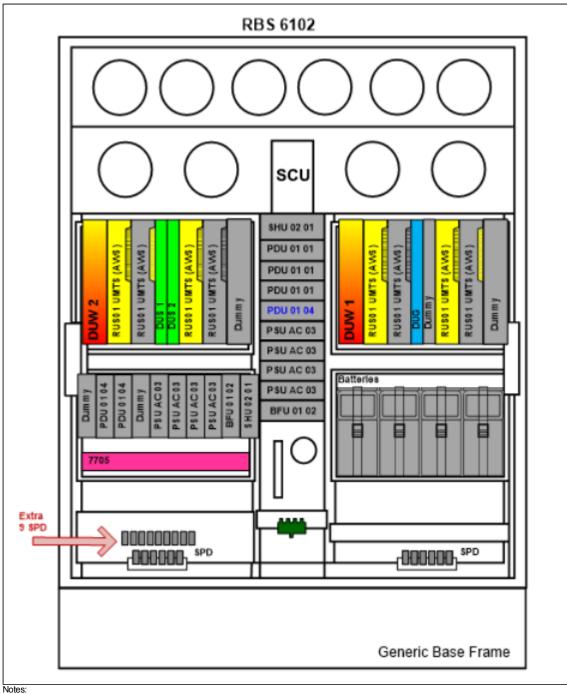

Condition1 = "OK"

	&L Template: -792DBE_2AIR		CT110	02A_1.1_Capacity-L1900
		Section 1 - Site Informa	ition	
Site ID: CT11002A Status: Draft Version: 1.1 Project Type: Capacity-L1900 Approved: Not Approved Approved By: Not Approved Last Modified: 3/10/2017 10:56 Last Modified By: GSM1900\S0		Site Name: Milford / I-95 /1 Site Class: Roof Top Mount Site Type: Building Solution Type: Plan Year: Market: CONNECTICUT Vendor: Ericsson Landlord: <undefined></undefined>	Latitude: 41.2365600 Longitude: -73.03394 Address: 1201 Bostor City, State: Milford, CT Region: NORTHEAST	400 Post Road (CT Post Mall - Kitchen Etc)
RAN Template: 4Sec-792DBE H	łybrid	AL Template:	4Sec-792DBE_2AIR	
Sector Count: 4	Antenna Count: 8	Coax Line Count: 6	TMA Count: 0	RRU Count: 4
		Section 2 - Existing Templat	e Images	
		AL_702Cc.png		

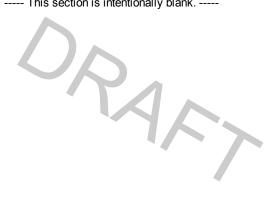


Notes:


AL_4Sec-702Cu.png


RAN_4Sec-702C.png

Section 3 - Proposed Template Images



Section 4 - Siteplan Images

----- This section is intentionally blank. -----

CT11002A_1.1_Capacity-L1900

Section 5 - RAN Equipment

	Existing RAN Equipment				
	Template: 4Sec-70	2C			
Enclosure	1	2			
Enclosure Type	(RBS 6102)	(Tower Top Mount)			
Baseband	DUS41 (x2) DUW30 DUW30 L2100 U2100 U1900 G1900 L700				
Hybrid Cable System		(Ericsson 9x18 HCS *Select Length*) (Ericsson 6x12 HCS *Select AWG & Length*)			
Multiplexer	XMU				
Radio	RU22 (x6) U2100 U1900	RRUS11 B12 (x4) 			

Proposed RAN Equipment				
	Template: 4Sec-792DBE	Hybrid		
Enclosure	1	2		
Enclosure Type	(RBS 6102)	(Ancillary Equipment)		
Baseband	DUG20 DUW30 DUW30 (G1900) U2100) (U1900 (DARK))			
Hybrid Cable System		Ericsson 3x6 HCS *Select Length* (x4) Ericsson 6x12 HCS *Select Length & AWG* (x2)		
Multiplexer	XMU			
Radio	RUS01 B4 (x6) (U2100 (DARK))			

RAN Scope of Work:

Prep work: Shutdown U19, Conver AWS-UMTS RBB to RBB12 using only one B4 radio per sector.

Section 6 - A&L Equipment

Existing Template: 4Sec-702Cu_1DP_2xAir Proposed Template: 4Sec-792DBE_2AIR

Sector 1 (Existing) view from behind					
Coverage Type	A - Outdoor Macro		1		
Antenna	1			2	
Antenna Model	Ericsson - AIR21 KRC118023-1_B2A_B4	P (Quad)	Ericsson - AIR21 B4A/B12P 8ft (Quad)		
Azimuth	75		75		
M. Tilt	0		0		
Height	43		43		
Ports	P1	P2	P3	P4	
Active Tech.	U1900 G1900	U2100	L2100	L700	
Dark Tech.					
Restricted Tech.					
Decomm. Tech.					
E. Tilt	2	2	2	2	
Cables	Fiber Jumper Fiber Jumper	7/8" Coax - 48 ft. 7/8" Coax - 48 ft.	Fiber Jumper Fiber Jumper	Fiber Jumper Fiber Jumper	
TMAs		Generic Style 1B - Twin AWS			
Diplexers / Combiners					
Radio					
Sector Equipment					
Unconnected Equipment:					
Scope of Work:					

Sector 1 (Proposed) view from behind								
Coverage Type	A - Outdoor Macro							
Antenna	1	I		:	2			
Antenna Model	Ericsson - AIR21 B4A/B12P 6ft (Quad)		Ericsson - AIR32 K	RD901146-1_B66A_I	B2A (Octa)			
Azimuth	75		75					
M. Tilt	0		0					
Height	43		43					
Ports	P1	P2	P3	P4	P5	P6		
Active Tech.	U2100	L700	L2100	L2100	L1900 G1900	L1900		
Dark Tech.								
Restricted Tech.								
Decomm. Tech.								
E. Tilt	2	2	2	2	2	2		
Cables		Generic Feeder Coax Generic Feeder Coax						
TMAs								
Diplexers / Combiners								
Radio		RRUS11 B12						
Sector Equipment	ent contraction of the second se							
Unconnected Equipment:								
Scope of Work:								

Sector 2 (Existing) view from behind							
Coverage Type	A - Outdoor Macro						
Antenna		1		2			
Antenna Model	Ericsson - AIR21 KRC118023-1_B2A_B	4P (Quad)	Ericsson - AIR21 B4A/B12P 8ft (Quad)				
Azimuth	190		190				
M. Tilt	0		0				
Height	43		43				
Ports	P1	P2	P3	P4			
Active Tech.	U1900 G1900	U2100	L2100	L700			
Dark Tech.							
Restricted Tech.							
Decomm. Tech.							
E. Tilt	2	2	2	2			
Cables	Fiber Jumper Fiber Jumper	7/8" Coax - 48 ft. 7/8" Coax - 48 ft.	Fiber Jumper Fiber Jumper	Fiber Jumper Fiber Jumper			
TMAs		Generic Style 1B - Twin AWS					
Diplexers / Combiners							
Radio							
Sector Equipment	uipment contraction contractio						
Unconnected Equipment:							
Scope of Work:							

	Sector 2 (Proposed) view from behind							
Coverage Type	A - Outdoor Macro							
Antenna		1		2				
Antenna Model	Ericsson - AIR21 B4A/B12P 6ft (Quad)		Ericsson - AIR32 K	RD901146-1_B66A_I	32A (Octa)			
Azimuth	190		190					
M. Tilt	0		0					
Height	43		43					
Ports	P1	P2	P3	P4	P5	P6		
Active Tech.	U2100	L700	L2100	L2100	L1900 G1900	L1900		
Dark Tech.								
Restricted Tech.								
Decomm. Tech.								
E. Tilt	2	2	2	2	2	2		
Cables		Generic Feeder Coax Generic Feeder Coax						
TMAs								
Diplexers / Combiners								
Radio		RRUS11 B12						
Sector Equipment	Sector Equipment							
Unconnected Equipment:								
Scope of Work:								

CT11002A_1.1_Capacity-L1900

Sector 3 (Existing) view from behind							
Coverage Type	A - Outdoor Macro	A - Outdoor Macro					
Antenna	1		2	2			
Antenna Model	Ericsson - AIR21 KRC118023-1_B2A_B4	P (Quad)	Ericsson - AIR21 B4A/B12P 8ft (Quad)				
Azimuth	320		320				
M. Tilt	0		0				
Height	43		(43)				
Ports	P1	P2	P3	P4			
Active Tech.	U1900 G1900	U2100	L2100	L700			
Dark Tech.							
Restricted Tech.							
Decomm. Tech.							
E. Tilt	2	2	2	2			
Cables	Fiber Jumper Fiber Jumper	7/8" Coax - 48 ft. 7/8" Coax - 48 ft.	Fiber Jumper Fiber Jumper	Fiber Jumper Fiber Jumper			
TMAs		Generic Style 1B - Twin AWS					
Diplexers / Combiners							
Radio							
Sector Equipment							
Unconnected Equipment:							
Scope of Work:							

CT11002A_1.1_Capacity-L1900

	Sector 3 (Proposed) view from behind						
Coverage Type	A - Outdoor Macro						
Antenna		1	2				
Antenna Model	Ericsson - AIR21 B4A/B12P 6ft (Quad)		Ericsson - AIR32 K	RD901146-1_B66A_E	32A (Octa)		
Azimuth	320		320				
M. Tilt	0		0				
Height	43		43				
Ports	P2	P1	P6	P5	P4	P3	
Active Tech.	L700	U2100	L1900	L1900 G1900	L2100	L2100	
Dark Tech.							
Restricted Tech.							
Decomm. Tech.							
E. Tilt	2	2	2	2	2	2	
Cables	Generic Feeder Coax						
	Generic Feeder Coax						
TMAs							
Diplexers / Combiners							
Radio	RRUS11 B12						
Sector Equipment	ient in the second s						
Unconnected Equipment:							
Scope of Work:							
)	

RAN Template:	A&L Ten
4Sec-792DBE Hybrid	4Sec-792D

Sector 4 (Existing) view from behind					
Coverage Type	A - Outdoor Macro				
Antenna					
Antenna Model	Ericsson - AIR21 B4A/B12P 8ft (Quad)				
Azimuth	250				
M. Tilt	0				
Height	(41)				
Ports	P1	P2			
Active Tech.	L2100	L700			
Dark Tech.					
Restricted Tech.					
Decomm. Tech.					
E. Tilt	2	2			
Cables	Fiber Jumper Fiber Jumper	Fiber Jumper Fiber Jumper			
TMAs					
Diplexers / Combiners					
Radio					
Sector Equipment	uipment				
Unconnected Equipment:					
Scope of Work:					

Sector 4 (Proposed) view from behind						
Coverage Type	(A - Outdoor Macro)					
Antenna			1		2	
Antenna Model	Ericsson - AIR32 K	RD901146-1_B66A_	B2A (Octa)		(Andrew - LNX-6515DS-A1M (Dual))	
Azimuth	250				(250)	
M. Tilt	0				0	
Height	41				41	
Ports	P1	P2	P3	P4	P5	
Active Tech.	L2100	L2100	L1900	L1900	L700	
Dark Tech.						
Restricted Tech.						
Decomm. Tech.						
E. Tilt	2	2	2	2	2	
Cables	Fiber Jumper	Fiber Jumper	Fiber Jumper	Fiber Jumper	Fiber Jumper	
TMAs						
Diplexers / Combiners						
Radio					RRUS11 B12	
Sector Equipment	r Equipment					
Unconnected Equipment:						
Scope of Work:						

AIR-32 B4A/B2P & B2A/B66AA

ERICSSON ANTENNA INTEGRATED RADIO AIR-32

Radio		
	Single Band (B4a/B2p)	Dual Band (B2a/B66Aa)
Band 2 (1850-1910 / 1930-1990 MHz)	Passive frequency band	Active frequency band
Band 4 (1710-1755 / 2110-2155 MHz)	Active frequency band	Subset of Band 66A (AWS 1+3)
Band 66A (1710-1780 / 2110-2180 MHz)	N/A	Active frequency band
PA Output Power	4 x 30W	2 x (4 x 30) W
Downlink EIRP in bore-sight direction for	4 x 62.5 dBmi	4 x 62.5 dBmi
each active band		
Instantaneous bandwidth	45 MHz (W, L)	B2: 40 MHz (W, L)
		B2: 20 MHz (G)
		B66A: 70 MHz (W, L)
Capacity (single standard per unit)	6 GSM	6 GSM (B2 only)
	6 WCDMA	6 WCDMA per Active frequency band
	2 x 20 MHz LTE	2 x 20 MHz LTE per band
Multi-RAT capability	WCDMA and LTE on both	WCDMA and GSM on both PAs (B2 only)
	PAs	WCDMA and LTE on both PAs (B2 and B4)
		GSM and LTE (B2 only)

Interfaces		
Optical CPRI	2 x 10 Gbps	2 x 10 Gbps per Active frequency band
DC Power	-48 VDC 3-wire or 2-wire	-48 VDC 3-wire or 2-wire (separate input for
		both radios)
AC power (Optional)	PSU-AC 08	PSU-AC 08
Passive antenna	4 RF connectors (7/16	N/A
	female)	
Environmental		
Operating Temperature Range	-40 to +55 °C	-40 to +55 °C
Solar Radiation	≤ 1,120 W/m²	≤ 1,120 W/m²
Relative Humidity	5 to 100%	5 to 100%
Absolute Humidity	0.26 to 40 g/m ³	0.26 to 40 g/m ³
Maximum temperature change	1.0°C/min	1.0°C/min
Antenna		
Electrical Tilt	2º - 12º (B4)	2º - 12º (B66A)
	2º - 12º (B2)	2º - 12º (B2)
Bore-sight antenna gain	18 dBi (B4)	18 dBi (B66A)
	17.5 dBi (B2)	17.5 dBi (B2)
Nominal beam-width, azimuth	65° (B4)	65° (B66A)
	63º (B2)	63° (B2)
Nominal beam-width, elevation	6º (B4)	6º (B66A)
	6º (B2)	6º (B2)
Mechanical		
Weight	48 Kg (105.8 lbs)	60 Kg (132.2 lbs)
Dimensions (H x W x D)	1439 x 327 x 220 mm	1439 x 327 x 220 mm
	(56.6" x 12.9" x 8.7")	(56.6" x 12.9" x 8.7")
Wind load at 42 m/s (150 km/h)		
Front / Lateral / Rear	640N / 300N / 660N	640N / 300N / 660N

Product Specifications

LNX-6515DS-VTM | LNX-6515DS-A1M

Single Band Antenna, 698-896 MHz, 65° horizontal beamwidth, RET compatible

- Excellent choice to maximize both coverage and capacity in suburban and rural applications
- Fully compatible with Andrew remote electrical tilt system for greater OpEx savings
- Exceptional horizontal pattern roll-off and strong front-to-back ratio
- Extended bandwidth allows one antenna to serve multiple frequency allocations
- Great solution to maximize network coverage and capacity
- The RF connectors are designed for IP67 rating and the radome for IP56 rating

Electrical Specifications

Frequency Band, MHz	698-806	806-896
Gain, dBi	16.7	17.6
Beamwidth, Horizontal, degrees	65	64
Beamwidth, Vertical, degrees	9.7	8.6
Beam Tilt, degrees	0-8	0-8
JSLS (First Lobe), dB	17	17
Front-to-Back Ratio at 180°, dB	32	27
CPR at Boresight, dB	24	27
CPR at Sector, dB	15	13
Isolation, dB	30	30
/SWR Return Loss, dB	1.4 15.6	1.4 15.6
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153
Input Power per Port, maximum, watts	400	400
Polarization	±45°	±45°
Impedance	50 ohm	50 ohm

Electrical Specifications, BASTA*

Frequency Band, MHz	698-806	806-896
Gain by all Beam Tilts, average, dBi	16.6	16.9
Gain by all Beam Tilts Tolerance, dB	±0.4	±0.3
	0 ° 16.6	0° 17.0
Gain by Beam Tilt, average, dBi	4 ° 16.6	4° 17.0
	8° 16.4	8° 16.8
Beamwidth, Horizontal Tolerance, degrees	±1	±0.9
Beamwidth, Vertical Tolerance, degrees	±0.6	±0.4
USLS, beampeak to 20° above beampeak, dB	18	18
Front-to-Back Total Power at 180° ± 30°, dB	25	23
CPR at Boresight, dB	24	27
CPR at Sector, dB	15	13

* CommScope® supports NGMN recommendations on Base Station Antenna Standards (BASTA). To learn more about the benefits of BASTA, download the whitepaper Time to Raise the Bar on BSAs.

General Specifications

Sector
Single band
DualPol®
698 – 896 MHz

©2016 CommScope, Inc. All rights reserved. All trademarks identified by ® or ™ are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: August 3, 2016

Product Specifications

LNX-6515DS-VTM | LNX-6515DS-A1M

Performance Note

Outdoor usage

Mechanical Specifications

Color	Light gray
Lightning Protection	dc Ground
Radiator Material	Aluminum
Radome Material	Fiberglass, UV resistant
RF Connector Interface	7-16 DIN Female
RF Connector Location	Bottom
RF Connector Quantity, total	2
Wind Loading, frontal	878.0 N @ 150 km/h 197.4 lbf @ 150 km/h
Wind Loading, lateral	273.0 N @ 150 km/h 61.4 lbf @ 150 km/h
Wind Loading, rear	1033.0 N @ 150 km/h 232.2 lbf @ 150 km/h
Wind Speed, maximum	241 km/h 150 mph

Dimensions

Depth	180.5 mm 7.1 in
Length	2453.0 mm 96.6 in
Width	301.0 mm 11.9 in
Net Weight, without mounting kit	19.8 kg 43.7 lb

Remote Electrical Tilt (RET) Information

Model with Factory Installed AISG 2.0 Actuator LNX-6515DS-A1M

Packed Dimensions

Depth	295.0 mm 11.6 in
Length	2718.0 mm 107.0 in
Width	392.0 mm 15.4 in
Shipping Weight	36.9 kg 81.4 lb

Regulatory Compliance/Certifications

AgencyClassificationRoHS 2011/65/EUCompliant by ExemptionChina RoHS SJ/T 11364-2006Above Maximum Concentration Value (MCV)ISO 9001:2008Designed, manufactured and/or distributed under this quality management system

Included Products

DB380-3 — Pipe Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Used for wide panel antennas. Includes

RRUS 11

Frequency (AT&T)

- ✓ Band 12 (Lower 700 MHz)
- ✓ Band 4 (AWS, 17/2100 MHz) 2Q2011

RF Characteristics

- ✓ Output power: 2x30 Watts
- ✓ 2x2 MIMO Capable
- ✓ IBW of 20 MHz
- ✓ Rx Sens.: Better than -105 dBm (5 MHz)

RET/TMA Support

- ✓ AISG 2.0 Compatible
- ✓ Via RET Port and Centre Conductor
- ✓ Cascading
- ✓ 30 VDC Bias

Environmental

- ✓ Self Convection
- ✓ Temperature -40 to 131 F

Power

- ✓ Input voltage: -48 VDC or AC (exemption)
- ✓ Fuse size: 13 32 A
 - Recommended: 25 A
- ✓ Power Consumption:
 - Typical 200 Watts
 - Max 310 Watts
 - Excl. RET and TMA load

RRUS 11 Mechanics

Wall and pole mounting brackets

- Reused from RRUW and RRU22
- Vertical Mount Only

Clearing distances:

- Above >= 16 in.
- Below >= 12 in.
- Side >= 0 mm

DC connector

- Bayonet
- Screw terminals in connector plug
- Supported outer cable diameter: 6-18 mm

CPRI connector

- LCD with proprietary cover
- Separate cover available from 1Q2011

Size & Weight

- Band 4: 44 lbs
- Band 12: 50 lbs
- 17.8" x 17.3" x 7.2" incl. sun shield

© 2010 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Intellectual Property.

ERICSSON 3

- Mobile-WIRELESS COMMUNICATIONS FACILITY MILFORD / I-95 /1 SITE ID: CT11002A - L1900 1201 BOSTON POST ROAD MILFORD, CT 06460

GENERAL NOTES

1.	ALL WORK SHALL BE IN ACCORDANCE WITH THE 2012 INTERNATIONAL BUILDING
	CODE AS MODIFIED BY THE 2016 CONNECTICUT SUPPLEMENT, INCLUDING THE
	TIA/EIA-222 REVISION "G" "STRUCTURAL STANDARDS FOR STEEL ANTENNA
	TOWERS AND SUPPORTING STRUCTURES." 2016 CONNECTICUT FIRE SAFETY
	CODE, NATIONAL ELECTRICAL CODE AND LOCAL CODES.

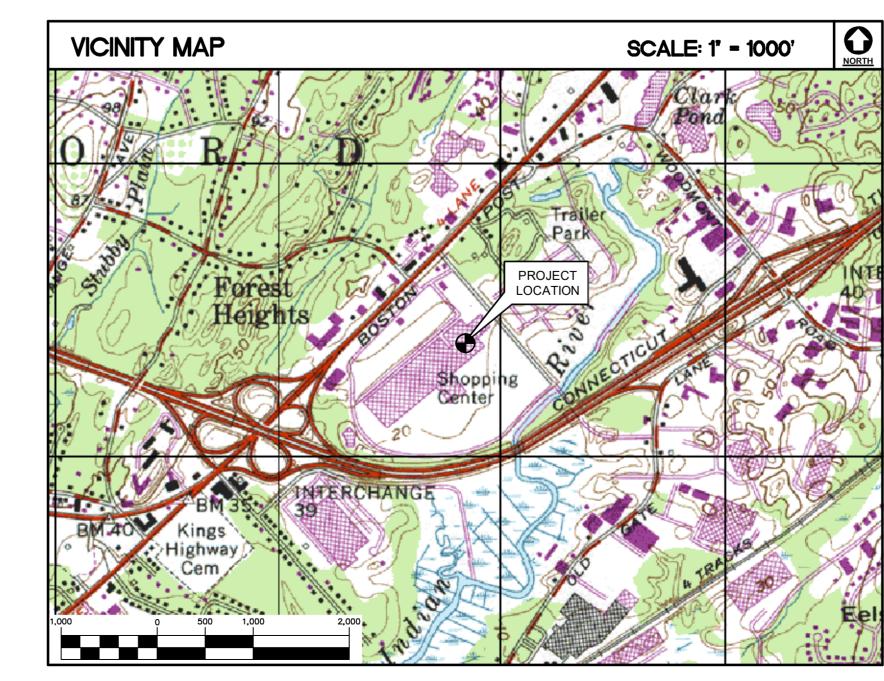
2. CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.

- 3. CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- 4. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- 5. CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- 6. CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- 7. LOCATION OF EQUIPMENT, AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- 8. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
- 9. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 10. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.

- 11. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MFR.'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 12. ANY AND ALL ERRORS. DISCREPANCIES, AND 'MISSED" ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE T-MOBILE CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- 13. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 14. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 15. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- 16. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUIT AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- 17. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 18. THE CONTRACTOR SHALL CONTACT "CALL BEFORE YOU DIG" AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 19. CONTRACTOR SHALL COMPLY WITH OWNERS ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.

SITE DIRECTIONS

FROM: 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002


HEAD NORTH ON GRIFFIN ROAD S. TOWARD HARTMAN RD.

- TAKE THE 2ND RIGHT ONTO DAY HILL RD. MERGE ONTO I-91 S TOWARD HARTFORD
- 4. KEEP RIGHT TOWARD NY CITY
- 5. MERGE ONTO 1-95 S TOWARD NY CITY/NY CITY
- 6. MERGE ONTO BOSTON POST RD/US-1 N via EXIT 39B 7. 1201 BOSTON POST ROAD IS ON THE RIGHT

TO: 1201 BOSTON POST ROAD MILFORD, CT 06460 0.21 M 3.64 MI 45.80 MI 0.08 MI. 8.50 MI.

0.29 MI

0.00 M

T-MOBILE RF CONFIGURATION

4Sec-792DBE_2AIR

PROJECT SUMMARY

- THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING:
- A. REMOVE AND REPLACE (4) EXISTING AIR 21 KRC118023-1_B2A_B4P FOR (4) NEW KRD AIR 32 ANTENNAS
- B. REMOVE EXISTING BREAKER AND REPLACE WITH PROPOSED 100A BREAKER. C. INSTALL (8) PROPOSED DC CONDUCTOR CABLES FROM
- EQUIPMENT TO ANTENNA SECTOR LOCATIONS.
- D. INSTALL (1) NEW AIR 32 ANTENNA ON A NEW PIPE MAST. (DELTA SECTOR)

PROJECT INFORMATION

SITE NAME:	MILFORD / 1-95 /1
SITE ID:	CT11002A – L1900
SITE ADDRESS:	1201 BOSTON POST ROAD MILFORD, CT 06460
APPLICANT:	T–MOBILE NORTHEAST, LLC 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002
CONTACT PERSON:	BRIAN PAUL (PROJECT MANAGER) (860) 550–5971 TRANSCEND WIRELESS, LLC
ENGINEER:	CENTEK ENGINEERING, INC. 63–2 NORTH BRANFORD RD. BRANFORD, CT 06405
PROJECT COORDINATES:	LATITUDE: 41°-14'-11.60" N LONGITUDE: 73°-02'-02.59" W GROUND ELEVATION: 22'± AMSL
	SITE COORDINATES AND GROUND ELEVATION REFERENCED FROM GOOGLE EARTH.

SHEET	INDEX	
SHT. NO.	DESCRIPTION	REV.
T-1	TITLE SHEET	0
N-1	DESIGN BASIS AND SITE NOTES	0
C-1	SITE LOCATION PLAN	0
C-2	PARTIAL ROOF PLAN, ELEVATION & ANTENNA MOUNTING CONFIG.	0
C-3	TYPICAL DETAILS	0
S–1	ANTENNA MAST DETAILS	0

Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure

DESIGN BASIS:

GOVERNING CODE: 2012 INTERNATIONAL BUILDING (IBC) AS MODIFIED BY THE 2016 CT STATE BUILDING CODE AND AMENDMENTS.

- 1. DESIGN CRITERIA:
- RISK CATEGORY: II (BASED ON IBC TABLE 1604.5) •
- ULTIMATE DESIGN WIND SPEED (OTHER STRUCTURE): 125 MPH (Vult) (EXPOSURE ٠ C/IMPORTANCE FACTOR 1.0 BASED ON ASCE 7-10) PER 2012 INTERNATIONAL BUILDING CODE (IBC) AS MODIFIED BY THE 2016 CONNECTICUT STATE BUILDING CODE.
- SEISMIC LOAD (DOES NOT CONTROL): PER ASCE 7-10 MINIMUM DESIGN LOADS FOR ٠ BUILDING AND OTHER STRUCTURES.

GENERAL NOTES:

- 1. ALL CONSTRUCTION SHALL BE IN COMPLIANCE WITH THE GOVERNING BUILDING CODE.
- 2. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK. THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 3. BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH INVESTIGATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE AND SUBSURFACE) AT OR CONTIGUOUS TO THE SITE WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK.
- 4. DIMENSIONS AND DETAILS SHALL BE CHECKED AGAINST EXISTING FIELD CONDITIONS.
- THE CONTRACTOR SHALL VERIFY AND COORDINATE THE SIZE AND LOCATION OF ALL OPENINGS, SLEEVES AND ANCHOR BOLTS AS REQUIRED BY ALL TRADES.
- 6. ALL DIMENSIONS, ELEVATIONS, AND OTHER REFERENCES TO EXISTING STRUCTURES, SURFACE, AND SUBSURFACE CONDITIONS ARE APPROXIMATE. NO GUARANTEE IS MADE FOR THE ACCURACY OR COMPLETENESS OF THE INFORMATION SHOWN. THE CONTRACTOR SHALL VERIFY AND COORDINATE ALL DIMENSIONS, ELEVATIONS, ANGLES WITH EXISTING CONDITIONS AND WITH ARCHITECTURAL AND SITE DRAWINGS BEFORE PROCEEDING WITH ANY WORK.
- 7. AS THE WORK PROGRESSES, THE CONTRACTOR SHALL NOTIFY THE OWNER OF ANY CONDITIONS WHICH ARE IN CONFLICT OR OTHERWISE NOT CONSISTENT WITH THE CONSTRUCTION DOCUMENTS AND SHALL NOT PROCEED WITH SUCH WORK UNTIL THE CONFLICT IS SATISFACTORILY RESOLVED.
- 8. THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE SAFETY CODES AND REGULATIONS DURING ALL PHASES OF CONSTRUCTION. THE CONTRACTOR IS SOLELY RESPONSIBLE FOR PROVIDING AND MAINTAINING ADEQUATE SHORING, BRACING, AND BARRICADES AS MAY BE REQUIRED FOR THE PROTECTION OF EXISTING PROPERTY, CONSTRUCTION WORKERS, AND FOR PUBLIC SAFETY.
- 9. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY. MAINTAIN EXISTING SITE OPERATIONS, COORDINATE WORK WITH NORTHEAST UTILITIES
- 10. THE STRUCTURE IS DESIGNED TO BE SELF-SUPPORTING AND STABLE AFTER FOUNDATION REMEDIATION WORK IS COMPLETE. IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO DETERMINE ERECTION PROCEDURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE STRUCTURE AND ITS COMPONENT PARTS DURING ERECTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, TEMPORARY BRACING, GUYS OR TIEDOWNS, WHICH MIGHT BE NECESSARY.
- 11. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 12. SHOP DRAWINGS, CONCRETE MIX DESIGNS, TEST REPORTS, AND OTHER SUBMITTALS PERTAINING TO STRUCTURAL WORK SHALL BE FORWARDED TO THE OWNER FOR REVIEW BEFORE FABRICATION AND/OR INSTALLATION IS MADE. SHOP DRAWINGS SHALL INCLUDE ERECTION DRAWINGS AND COMPLETE DETAILS OF CONNECTIONS AS WELL AS MANUFACTURER'S SPECIFICATION DATA WHERE APPROPRIATE. SHOP DRAWINGS SHALL BE CHECKED BY THE CONTRACTOR AND BEAR THE CHECKER'S INITIALS BEFORE BEING SUBMITTED FOR REVIEW.
- 13. NO DRILLING WELDING OR TAPING ON EVERSOURCE OWNED EQUIPMENT.
- 14. REFER TO DRAWING T1 FOR ADDITIONAL NOTES AND REQUIREMENTS.

STRUCTURAL STEEL

- (FY = 46 KSI)(FY = 42 KSI)
- CONNECTION BOLTS---ASTM A325-N
- U-BOLTS---ASTM A36 WELDING ELECTRODE --- ASTM E 70XX
- 2. ELEVATIONS AND DETAILS.

- DELIVERY TO SITE.
- DISTORTIONS OR DEFECTS.
- ACCORDANCE WITH ASTM 780.
- HARDWARE".
- REVIEW.

- PERFORMED BY AN INDEPENDENT TESTING LABORATORY.
- ENGINEER WITHIN TEN (10) WORKING DAYS OF THE DATE OF INSPECTION.

1. ALL STRUCTURAL STEEL IS DESIGNED BY ALLOWABLE STRESS DESIGN (ASD)

A. STRUCTURAL STEEL (W SHAPES) -- ASTM A992 (FY = 50 KSI) B. STRUCTURAL STEEL (OTHER SHAPES) --- ASTM A36 (FY = 36 KSI) C. STRUCTURAL HSS (RECTANGULAR SHAPES) --- ASTM A500 GRADE B,

D. STRUCTURAL HSS (ROUND SHAPES)---ASTM A500 GRADE B,

PIPE---ASTM A53 (FY = 35 KSI)

ANCHOR RODS---ASTM F 1554

CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE ENGINEER FOR REVIEW. SHOP DRAWINGS SHALL INCLUDE THE FOLLOWING: SECTION PROFILES, SIZES, CONNECTION ATTACHMENTS, REINFORCING, ANCHORAGE, SIZE AND TYPE OF FASTENERS AND ACCESSORIES. INCLUDE ERECTION DRAWINGS,

3. STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH THE LATEST PROVISIONS OF AISC MANUAL OF STEEL CONSTRUCTION.

4. PROVIDE ALL PLATES, CLIP ANGLES, CLOSURE PIECES, STRAP ANCHORS, MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE THE STRUCTURE. 5. FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST PRACTICAL SECTIONS FOR

6. INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, AND FREE FROM

7. AFTER ERECTION OF STRUCTURES, TOUCHUP ALL WELDS, ABRASIONS AND NON-GALVANIZED SURFACES WITH A 95% ORGANIC ZINC RICH PAINT IN

8. ALL STEEL MATERIAL (EXPOSED TO WEATHER) SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT DIPPED GALVANIZED) COATINGS" ON IRONS AND STEEL PRODUCTS.

9. ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL

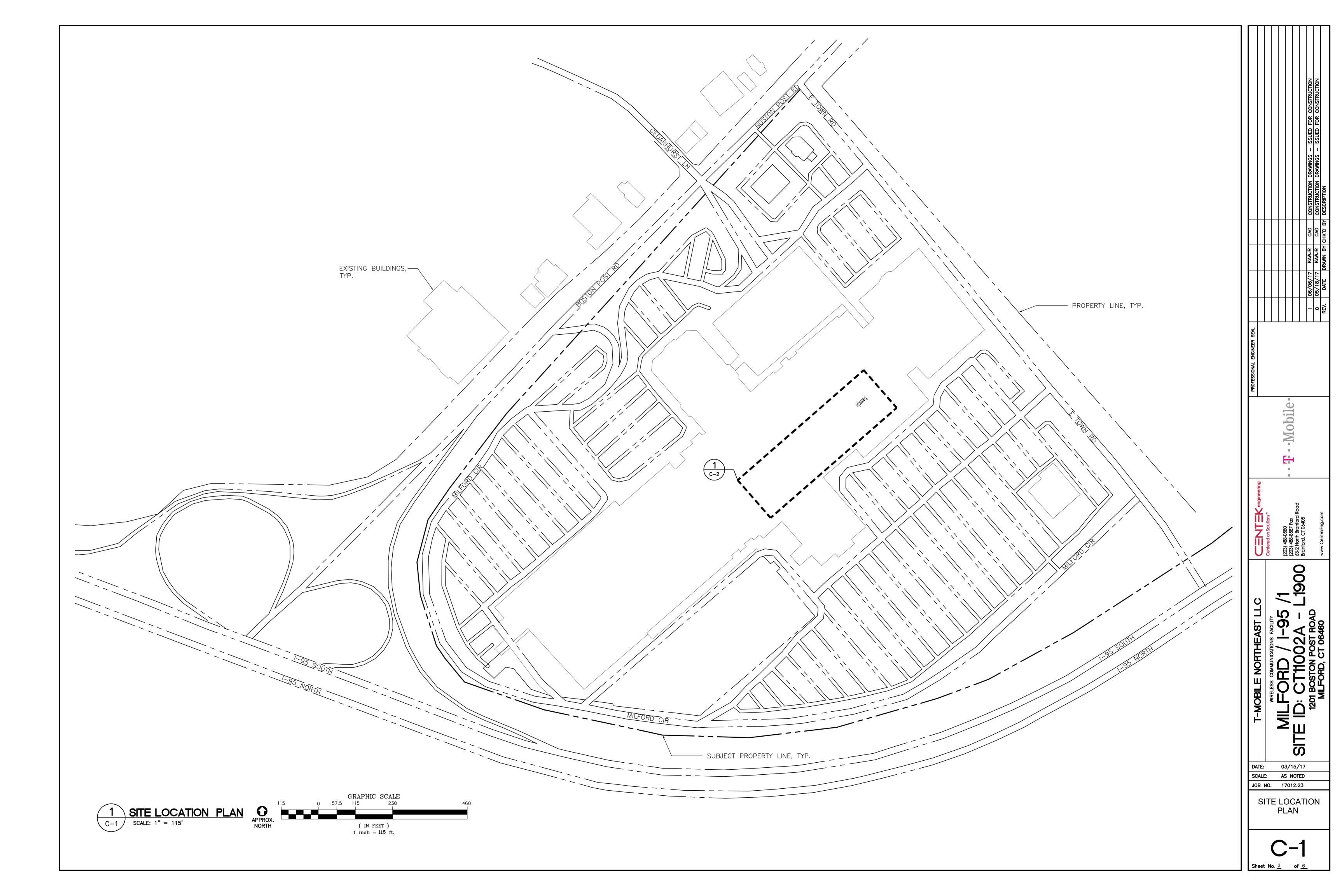
10. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER

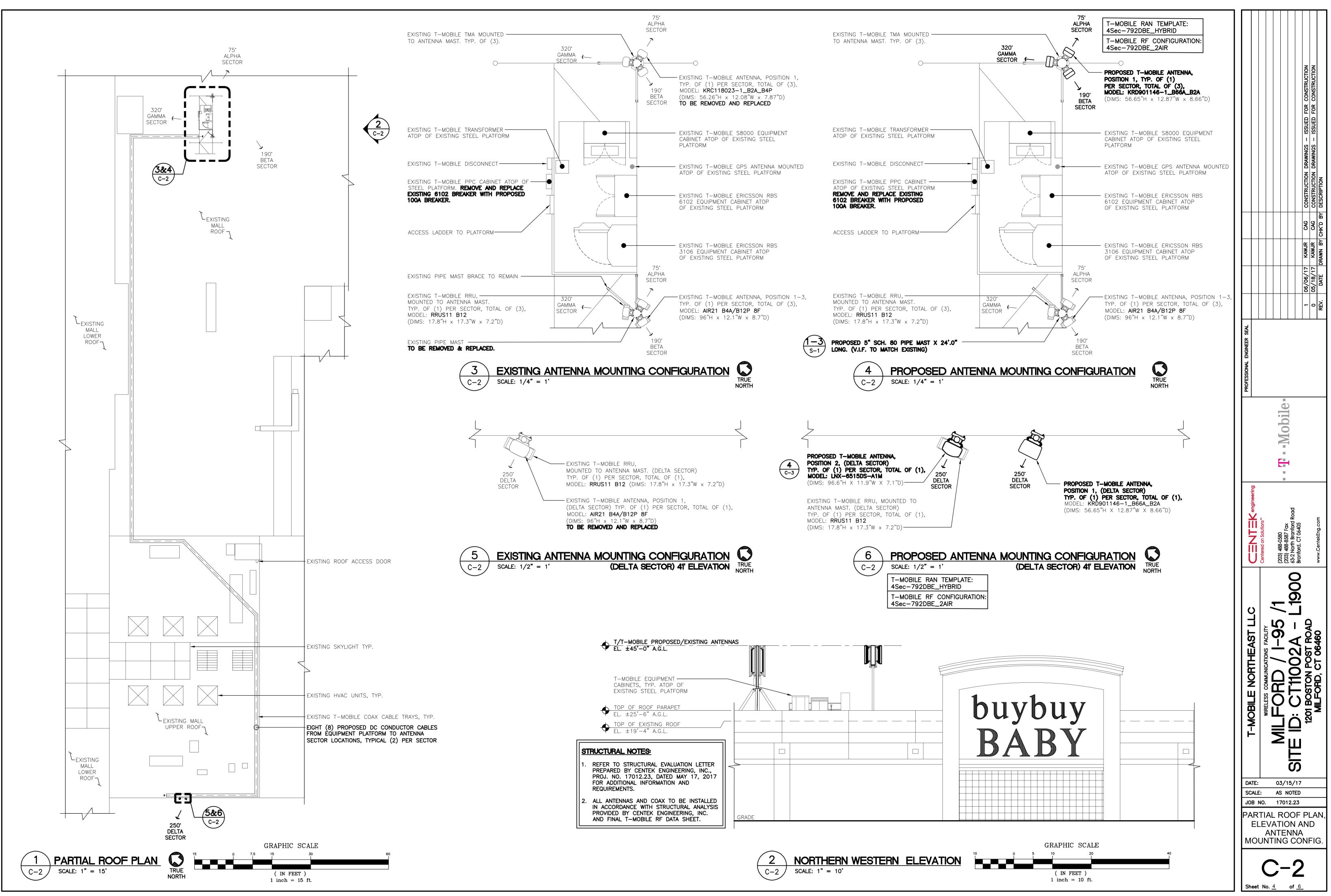
11. CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF 1/4 INCHES.

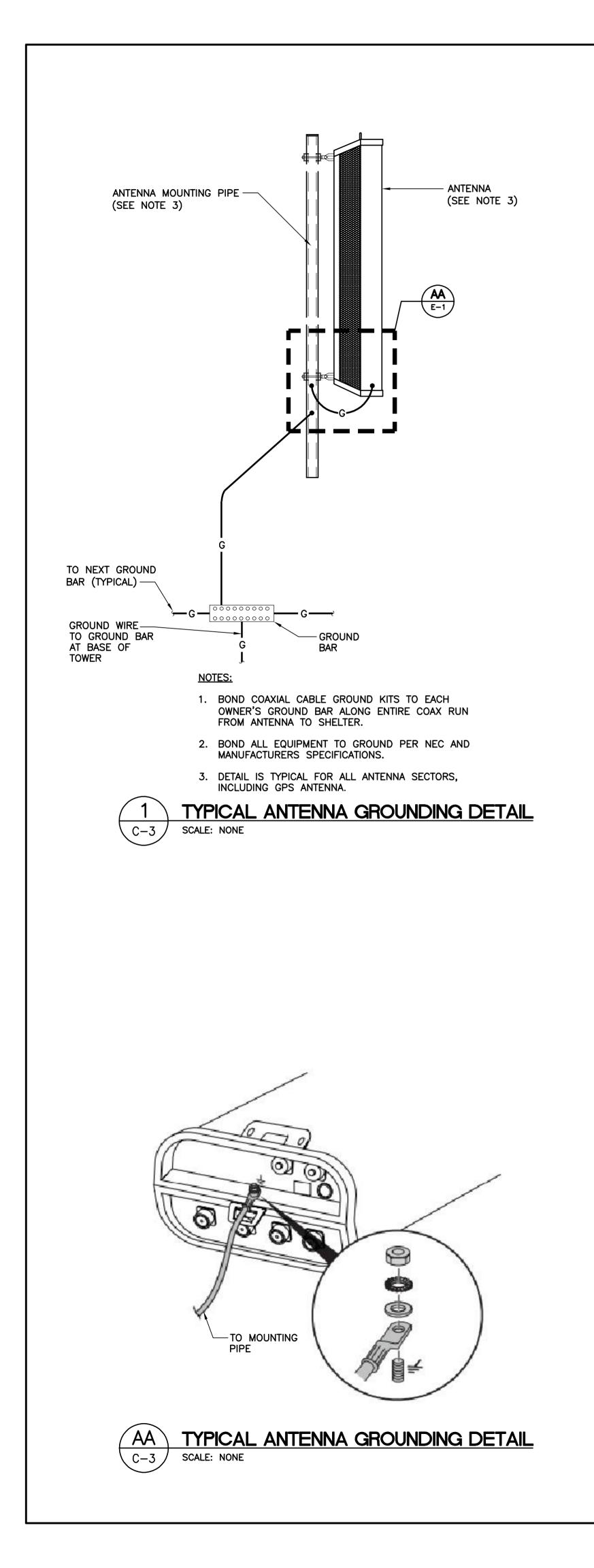
12. STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325. ALL BOLTS SHALL BE 3/4" DIAMETER MINIMUM AND SHALL HAVE A MINIMUM OF TWO BOLTS, UNLESS OTHERWISE ON THE DRAWINGS.

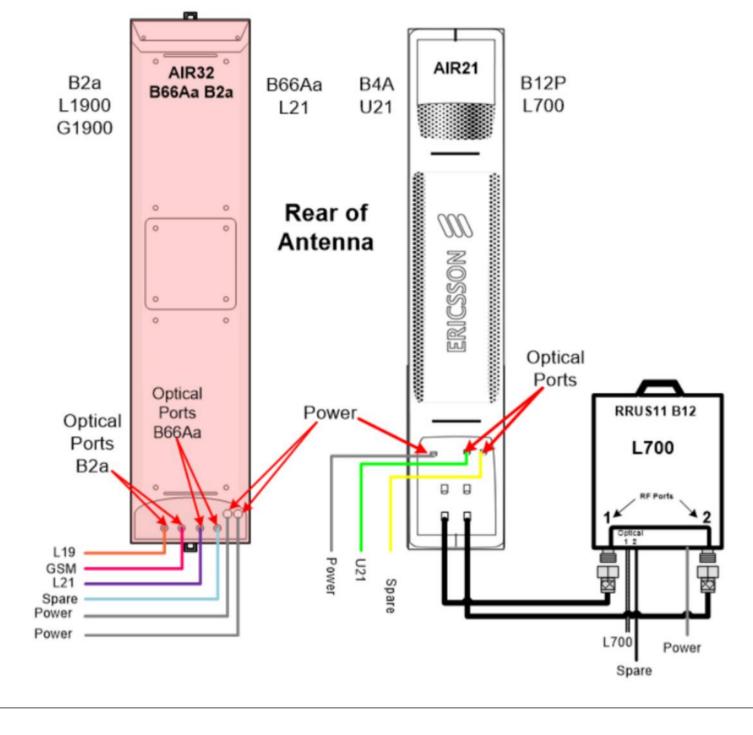
13. LOCK WASHER ARE NOT PERMITTED FOR A325 STEEL ASSEMBLIES.

14. SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BOLTED. 15. MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION.

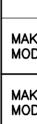

16. FABRICATE BEAMS WITH MILL CAMBER UP.

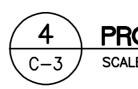

17. LEVEL AND PLUMB INDIVIDUAL MEMBERS OF THE STRUCTURE TO AN ACCURACY OF 1:500, BUT NOT TO EXCEED 1/4" IN THE FULL HEIGHT OF THE COLUMN.

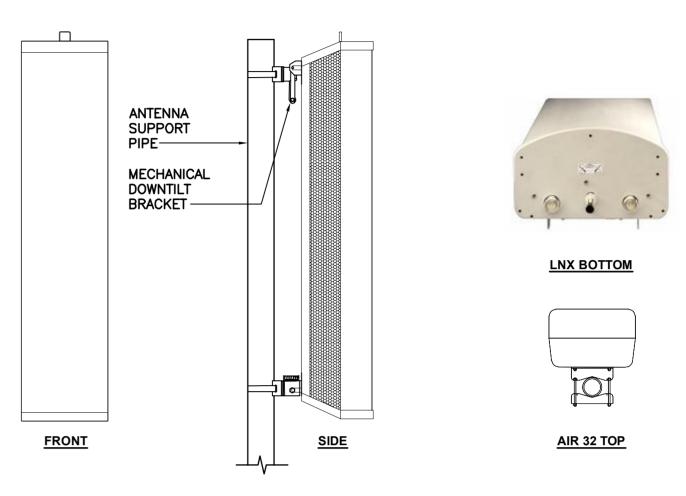

18. COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK. 19. INSPECTION AND TESTING OF ALL WELDING AND HIGH STRENGTH BOLTING SHALL BE

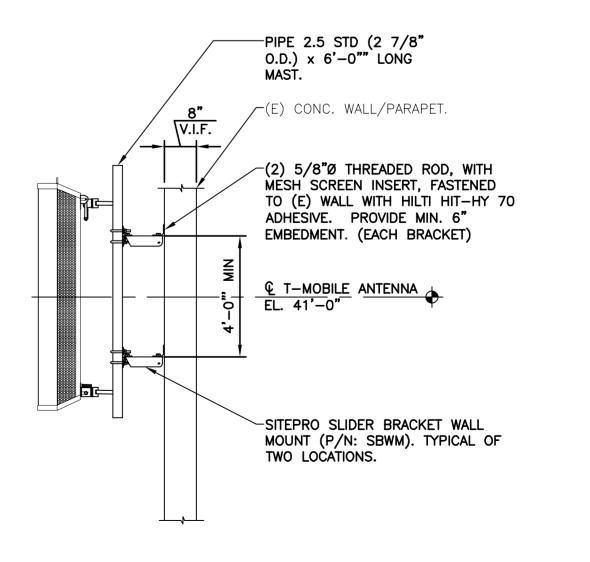

20. FOUR COPIES OF ALL INSPECTION TEST REPORTS SHALL BE SUBMITTED TO THE

	s			PROFESSIONAL ENGINEER SEAL					
C AN	ATE: CALE OB	T-MOBILE NORTHEAST LLC	CINATIC engineering						
10	Ξ:		Centered on Solutions ²						
	•	R S							
	AS		203) 488 0580						
Ē	5 N		200) 400-000 203) 488-8587 Fox						
	15/ 10T		63-2 North Branford Road						
	′17 ED		Branford, CT 06405						
SI					1 06/	06/06/17 KA	KAWJR CAG	CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION	
					0 05/	05/18/17 KA	KAWJR CAG	CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION	
5			www.CentekEng.com	1	REV. D	DATE DRAWN BY		CHK'D BY DESCRIPTION	

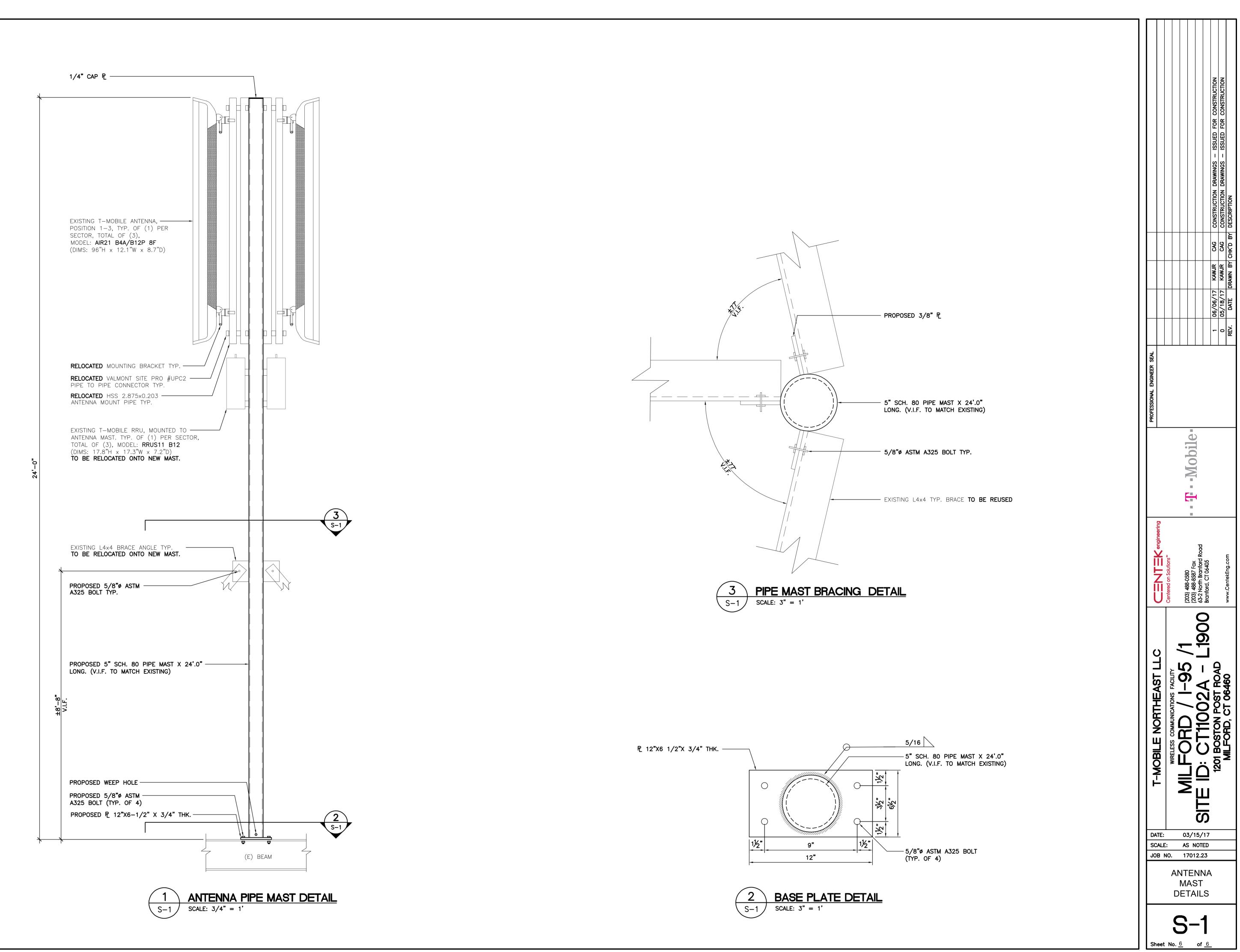








ALPHA/E	BETA/GAMMA/DELTA ANTENNA	
EQUIPMENT	DIMENSIONS	WEIGHT
AKE: ERICSSON ODEL: KRD901146-1_B66A_B2A	56.65"L x 12.87"W x 8.66"D	132.2 LBS.
AKE: ANDREW ODEL: LNX-6515DS-A1M	96.6″L x 11.9″W x 7.1″D	43.7 LBS.



3 PROPOSED ANTENNA DETAIL C-3 SCALE: NONE

T-MOBILE NOTHEAST LLC T-MOBILE NOTHEAST LLC T-MOBILE NOTHEAST LLC Immediate Rectain Markets communications Facility Immediate Rectain Markets communications Facility Immediate Rectain Markets communications Facility Immediate Rectain Markets Science Immediate Rectain Markets Communications Facility Immediate Rectain Markets Communications Facility Immediate Rectain Markets Communications Facility Immediate Rectain Markets Communications Facility Immediate Rectain Markets Facility Immediate Rectain Markets Facility Immediate Rectain Markets Facility Immediate Rectain Markets Facility Immediate Rectain Markets Facility Immediate Rectain Markets Facility Immediate Rectain Packets Facility Immediate Rectain Packets Facility Immediate Rectain Packets Facility Immediate Rectain Packets Facility Immediate Rectain Packets Facility Immediate Rectain Packets Facility Immediate Rectain Packets Facility Immediate Rectain Packets Facility Immediate Rectain Packets Facility Immediate Rectain Packets Facility Immediate Rectain Packets Facility Immediate Rectain Packets Facility Immediate Rectain Packets Facility Immediate Rectain Packets Facility Immediate Rectain Packets Packet							
				PROFESSIONAL ENGINEER SEAL			
Celeded on Solutions Facility MIRELESS COMMUNICATIONS FACILITY MIRELESS COMMUNICATIONS FACILITY MILEORD / 1–95 /1 2031 488.6580 2033 488.6580 2034 488		TE:					
C	(Centered on Solutions**				
Image: Signet state Image: Signe state Image: Signe state <th>T</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	T						
Image: State Stat	YF		(2013) 488 0580				
Image: Signation of the stant of the st	2]((200) 400-000 (203) 488-8587 Fox				
T D D	CA		63-2 North Branford Road				
1 06/06/17 KaWJR CAG 0 05/18/17 KAWJR CAG www.CentekEng.com REV. DATE DRAWN BY CHK*D BY	۱L		Branford, CT 06405				
Date Date Date Drawn BY CHK*D BY					1 06/06/17	CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION	
www.CentekEng.com BY REV. DATE DRAWN BY						CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRUCTION	
			www.CentekEng.com		DATE	DESCRIPTION	

