Transcend Wireless

January 15, 2021
Members of the Siting Council
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051
RE: Notice of Exempt Modification
1201 Boston Post Road, Milford, CT 06460
Latitude: 41.23656000
Longitude: -73.03394400
T-Mobile Site\#: CT11002A - Anchor

Dear Ms. Bachman:
T-Mobile currently maintains eight (8) antennas at the 43 -foot and 41 -foot level of the existing 25 -foot rooftop at 1201 Boston Post Road, Milford, CT. The building is owned by Connecticut Post Limited Partnership. T-
Mobile now intends to remove the existing antennas and replace with eight (8) new 600/700/1900/2100/2500 MHz antennas. The new antennas will be installed at the same 43 -foot and 41 -foot level of the tower.

Planned Modifications:

Tower:

Remove
(18) 1-5/8" Coax
(4) 3×6 1-5/8" Hybrid Cables

Remove and Replace:

(3) AIR 21 antennas for (3) RFS APXVAA4L24_43-U-NA20 600/700/1900/2100 MHz antennas
(4) AIR 32 antennas for (4) AIR 6449 B41 2500 MHz antennas
(1) LNX 6515DS-A1M for (1) RFS APXVAA4L24_43-U-NA20 600/700/1900/2100 MHz antennas
(4) Ericsson RRUS11B12 for (4) Ericsson Radio 4449 RRU

Install New:

(8) Ericsson Radio 4415 B66 RRU
(4) Radio 4424 B25 RRU
(4) Commscope SDX1926Q-43
(6) 6x12 1-5/8" Hybrid

Ground:

Install New: 6160 Cabinet and B160 Battery Cabinet

This facility was most recently approved by the Siting Council in Petition No. 1363 on April 26, 2019. This proposed modification complies with the conditions of that approval.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies§ 16-SOj-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.SA. § 16-SOj-73, a copy of this letter is being sent to Mayor -Benjamin Blake, Elected Official, and David Sulkis, City Planner for the City of Milford, as well as the owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S;A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under
R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Kyle Richers

Transcend Wireless
Cell: 908-447-4716
Email: krichers@transcendwireless.com

Attachments
cc: Benjamin Blake- Mayor - City of Milford
David Sulkis- City Planner - City of Milford
Connecticut Post Limited Partnership - Owner

View/Print Label

1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialogue box that appears. Note: If your browser does not support this function, select Print from the File menu to print the label.
2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.
3. GETTING YOUR SHIPMENT TO UPS

Customers with a scheduled Pickup

- Your driver will pickup your shipment(s) as usual.

Customers without a scheduled Pickup

- Schedule a Pickup on ups.com to have a UPS driver pickup all of your packages.
- Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples ${ }^{\circledR}$ or Authorized Shipping Outlet near you. To find the location nearest you, please visit the 'Locations' Quick link at ups.com.

UPS Access Point ${ }^{\mathrm{TM}}$	UPS Access Point $^{\mathrm{TM}}$	UPS Access Point ${ }^{\mathrm{TM}}$
MICHAELS STORE \# 7773	THE UPS STORE	THE UPS STORE
75 INTERSTATE SHOP CTR	115 FRANKLIN TPKE	120 E MAIN ST
RAMSEY NJ 07446-1130	MAHWAH NJ 07430-1325	RAMSEY NJ 07446-1925

FOLD HERE

View/Print Label

1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialogue box that appears. Note: If your browser does not support this function, select Print from the File menu to print the label.
2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.
3. GETTING YOUR SHIPMENT TO UPS

Customers with a scheduled Pickup

- Your driver will pickup your shipment(s) as usual.

Customers without a scheduled Pickup

- Schedule a Pickup on ups.com to have a UPS driver pickup all of your packages.
- Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples ${ }^{\circledR}$ or Authorized Shipping Outlet near you. To find the location nearest you, please visit the 'Locations' Quick link at ups.com.

UPS Access Point ${ }^{\mathrm{TM}}$	UPS Access Point $^{\mathrm{TM}}$	UPS Access Point ${ }^{\mathrm{TM}}$
MICHAELS STORE \# 7773	THE UPS STORE	THE UPS STORE
75 INTERSTATE SHOP CTR	115 FRANKLIN TPKE	120 E MAIN ST
RAMSEY NJ 07446-1130	MAHWAH NJ 07430-1325	RAMSEY NJ 07446-1925

FOLD HERE

View/Print Label

1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialogue box that appears. Note: If your browser does not support this function, select Print from the File menu to print the label.
2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.
3. GETTING YOUR SHIPMENT TO UPS

Customers with a scheduled Pickup

- Your driver will pickup your shipment(s) as usual.

Customers without a scheduled Pickup

- Schedule a Pickup on ups.com to have a UPS driver pickup all of your packages.
- Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples ${ }^{\circledR}$ or Authorized Shipping Outlet near you. To find the location nearest you, please visit the 'Locations' Quick link at ups.com.

UPS Access Point ${ }^{\mathrm{TM}}$	UPS Access Point ${ }^{\mathrm{TM}}$	UPS Access Point ${ }^{\mathrm{TM}}$
MICHAELS STORE \# 7773	THE UPS STORE	THE UPS STORE
75 INTERSTATE SHOP CTR	115 FRANKLIN TPKE	120 E MAIN ST
RAMSEY NJ 07446-1130	MAHWAH NJ 07430-1325	RAMSEY NJ 07446-1925

FOLD HERE

City of Milford, CT
Property Listing Report

Heating Fuel		(*Industrial / Commercial Details)	
Heating Type			
AC Type			
Bedrooms	0	Building Use	Vacant
Full Bathrooms	0	Building Condition	
Half Bathrooms	0	Sprinkler \%	NA
Extra Fixtures	0	Heat / AC	NA
Total Rooms	0	Frame Type	NA
Bath Style	NA	Baths / Plumbing	NA
	NA	Ceiling / Wall	NA
Kitchen Style	NA	Rooms / Prtns	NA
Fin Bsmt Area		Wall Height	NA
Fin Bsmt Quality		First Floor Use	NA
Bsmt Gar		Foundation	NA
Fireplaces			
		Report Created On	11/20/2020

Property Information

Property Location	1201 BOSTON POST RD
Owner	CONNECTICUT POST LTD PARTNERSH
Co-Owner	C/O MARVIN F POER \& COMPANY
Mailing Address	3520 PIEDMONT RD NE STE 410 ATLANTA Land Use Land Class Zoning Code Census Tract

Neighborhood	
Acreage	0
Utilities	All Public,Public Sewer
Lot Setting/Desc	UNKNOWN \quad UNKNOWN
Book / Page	$01044 / 0160$
Fire District	2

Primary Construction Details

Year Built	0
Building Desc.	CELL TOWER
Building Style	UNKNOWN
Building Grade	
Stories	
Occupancy	NA
Exterior Walls	
Exterior Walls 2	
Roof Style	
Roof Cover	NA
Interior Walls	
Interior Walls 2	
Interior Floors 1	
Interior Floors 2	

City of Milford, CT
Property Listing Report
Map Block Lot 089812 40A Bldg \# 1 Sec \# 1 PID 109963 Account
Account
024362

Valuation Summary		$($ Assessed value $=70 \%$ of Appraised Value)		Sub Areas		
Item	Appr	ised	Assessed	Subarea Type	Gross Area (sq ft)	Living Area (sq ft)
Buildings	0		0			
Extras	0		0			
Improvements						
Outbuildings	337500		236250			
Land	0		0			
Total	337500		236250			
Outbuilding and Extra Features						
Type		Description				
CEL TWR SITE		1 UNITS				
				Total Area	0	0

Sales History

Owner of Record	Book/Page	Sale Date	Sale Price
CONNECTICUT POST LTD PARTNERSH	$01044 / 0160$	$1979-12-07$	0

STATEOF CONNECTICUT

CONNECTICUT SITING COUNCIL
Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
www.ct.gov/csc

CERTIFIED MAIL
 RETURN RECEIPT REQUESTED

April 26, 2019
Jesse A. Langer, Esq. Updike, Kelly \& Spellacy, P.C.
8 Frontage Road
East Haven, CT 06512
RE: PETITION NO. 1363 - T-Mobile Northeast, LLC petition for a declaratory ruling, pursuant to Connecticut General Statutes $\$ 4-176$ and $\$ 16-50 \mathrm{k}$, for the proposed modification of an existing rooftop wireless telecommunications facility and associated equipment located at the Connecticut Post Mall, 1201 Boston Post Road, Milford, Connecticut.

Dear Attorney Langer:
At a public meeting held on April 25, 2019, the Connecticut Siting Council (Council) considered and ruled that the above-referenced proposal would not have a substantial adverse environmental effect, and pursuant to Connecticut General Statutes $\S 16-50 \mathrm{k}$, would not require a Certificate of Environmental Compatibility and Public Need with the following conditions:

1. Approval of any minor project changes be delegated to Council staff;
2. Install a Radio Frequency Notice sign and a Radio Frequency Guidelines sign at the roof top access point in accordance with the recommendation contained within the radio frequency emission analysis report prepared by EBI Consulting, dated December 24, 2018;
3. Unless otherwise approved by the Council, if the facility authorized herein is not fully constructed within three years from the date of the mailing of the Council's decision, this decision shall be void, and the facility owner/operator shall dismantle the facility and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made. The time between the filing and resolution of any appeals of the Council's decision shall not be counted in calculating this deadline. Authority to monitor and modify this schedulc, as nccessary, is delcgated to the Executive Director. The facility owner/operator shall provide written notice to the Executive Director of any schedule changes as soon as is practicable;
4. Any request for extension of the time period to fully construct the facility shall be filed with the Council not later than 60 days prior to the expiration date of this decision and shall be served on all parties and intervenors, if applicable, and the City of Milford;
5. Within 45 days after completion of construction, the Council shall be notified in writing that construction has been completed;
6. Any nonfunctioning antenna and associated antenna mounting equipment on this facility owned and operated by the Petitioner shall be removed within 60 days of the date the antenna ceased to function;
7. The facility owner/operator shall remit timely payments associated with annual assessments and invoices submitted by the Council for expenses attributable to the facility under Conn. Gen. Stat. $\S 16-$ 50 v ;
8. If the facility ceases to provide wireless services for a period of one year the Petitioner shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council within 90 days from the one year period of cessation of service. The Petitioner may submit a written request to the Council for an extension of the 90 day period not later than 60 days prior to the expiration of the 90 day period; and
9. This Declaratory Ruling may be transferred or partially transferred, provided both the facility owner/operator/transferor and the transferee are current with payments to the Council for their respective annual assessments and invoices under Conn. Gen. Stat. $\$ 16-50 \mathrm{v}$. The Council shall be notified of such sale and/or transfer and of any change in contact information for the individual or representative responsible for management and operations of the facility within 30 days of the sale and/or transfer. Both the facility owner/operator/transferor and the transferee shall provide the Council with a written agreement as to the entity responsible for any quarterly assessment charges under Conn. Gen. Stat. $§ 16-50 \mathrm{v}(\mathrm{b})(2)$ that may be associated with this facility.

This decision is under the exclusive jurisdiction of the Council and is not applicable to any other modification or construction. All work is to be implemented as specified in the petition dated March 12, 2019 and additional information received on April 12, 2019.

Enclosed for your information is a copy of the staff report on this project.

Executive Director
$\mathrm{MAB} / \mathrm{RDM} / \mathrm{lm}$
Enclosure: Staff Report dated April 25, 2019
c: The Honorable Benjamin G. Blake, Mayor, City of Milford
David Sulkis, City Planner, City of Milford
Connecticut Post Limited Partnership, property owner

STATEOF CONNECTICUT
connecticut siting council

Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
www.ct.gov/csc
Pctition No. 1363
T-Mobile Northeast, LLC
1201 Boston Post Road, Milford
Rooftop Wireless Telecommunications Facility

Staff Report
 April 25, 2019

On March 19, 2019, the Connecticut Siting Council (Council) received a petition from T-Mobile Northeast LLC (T-Mobile) for a declaratory ruling, pursuant to Connecticut General Statutes $\$ 4-176$ and $\$ 16-50 \mathrm{k}$, for the proposed modification of an existing rooftop wireless telecommunications facility at the Connecticut Post Mall, 1201 Boston Post Road, Milford. The modified facility would improve TMobile's wireless service to the surrounding area.

The Council submitted interrogatories to T-Mobile on April 3, 2019. T-Mobile submitted responses on April 12, 2019.

The mall is located on a 75 -acre parcel in a Shopping Center Design District near Interstate 95 and Route 1. T-Mobile currently maintains four antenna sectors on the roof of the mall, approved by the Council on September 1, 2016 (Petition 1245). Three sectors (alpha, beta and gamma) consist of two roof masts that extend to a height of 45 feet above ground level (agl). Three panel antennas are flushmounted on each mast. The two masts, and associated radio equipment, are mounted on a roof frame located in the northeast portion of the roof. The fourth sector (delta) consists of two antennas mounted on pipe masts attached to a parapet in the central section of the roof. The antennas do not extend above the parapet.

The mall roof consists of various sections and heights. The portion of the roof with the two existing masts extends to a height of 25.6 feet agl, including the parapet. The delta sector is mounted on a different portion of the building, on a roof parapet at a centerline height of 41 feet agl.

T-Mobile proposes to modify its existing installation, as follows;
a) Replace one existing roof mast with a new 30 -foot tall roof mast and base frame. The new mast would extend to a height of approximately 54 feet agl.
b) Relocate three antennas from the old mast to the new roof mast, mounted at a centerline height of 43 feet agl.
c) Install three new antennas on the new mast at a centerline height of 50 feet agl.
d) Modify the delta sector on the parapet by replacing one antenna with two new panel antennas.

No modifications are proposed for the second roof mast or for the existing radio equipment located on the roof frame. A new cable would be installed along an existing roof-top cable run to connect the delta sector to the roof frame.

A Professional Engineer duly licensed in the State of Connecticut has certified that the existing roof and parapet wall are adequate to support the proposed loading.

The proposed project will occur within and on the existing building and no ground disturbance is necessary. Access to the facility would continue to be through the existing building.

Although the existing roof mast is being replaced by a taller roof mast (approximately 10 feet), visibility of the mast and antennas would be minimal and generally confined to interior mall roads and parking lots. All antennas would be flush-mounted on the mast. The pipe mast would be painted a noncontrasting color. The delta sector parapet wall installation would have limited visibility due to its isolated location and its attachment to the side of the building.

The installation would not be a hazard to air navigation and no registration to the Federal Aviation Administration is required.

The highest calculated power density level for T-Mobile's proposed antennas would be 10.1 percent of the applicable public exposure limit established by the Federal Communications Commission at ground level with a -10 dB off-beam adjustment. To provide notice to rooftop workers, the radio-frequency report recommends the installation of a Radio Frequency Notice sign and a Radio Frequency Guidelines sign at the roof top access point.

T-Mobile anticipates construction to occur in the summer of 2019. T-Mobile would coordinate with the property owner to ensure that construction does not disrupt normal business operations. Necessary crane work would occur either overnight or in the early morning.

Notice was provided to the City of Milford, the property owner, and abutting property owners on or about March 12, 2019. No comments have been received to date.

T-Mobile contends that this proposed project would not have a substantial adverse environmental impact.

If approved, staff recommends the following conditions:

1. Approval of any minor project changes be delegated to Council staff; and
2. Install a Radio Frequency Notice sign and a Radio Frequency Guidelines sign at the roof top access point in accordance with the recommendation contained within the radio frequency emission analysis report prepared by EBI Consulting, dated December 24, 2018.

Project Location

(no scale)

Photo-simulation

(parking lot east side of mall)

Simulation

T-MOBLL RF CONFGURATON
4Sec-67D5A5998C_1xAIR+1QO+1OP

GENERAL NOTES	
ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUDING THE TIA/EIA-222 REVISION " G " "STRUCTURAL STANDAROS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES.". 2017 cONNECTICUT FRRE SAFETY COOE, NATIONAL ELECTRICAL COOE ANO LOCAL COOES. \qquad THEE GENERAL CONSTRUCTON. PLUMBING, ELECRICCL ANO HVAC. PERMTS SHALL EE PAID FOR BY THE RESECTVE SUBCONTRACTORS. \square NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALI OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTR SHEL CONTRACIOR SHAL FURNISH AN AS-BUILT SET OF DRAWINGS TO LOCATION OF EQUIPMENT, AND WORK SUPPLIED BY OTHERS THAT IS LOCATION OF EQUIPMENT, AND WORK SUPPLED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DEERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDTIONS AND WORK OF THE SUBCONTRACTORS. 8. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE AND TO ENSURE SAFETY OF THE EXISTING STRUCTURES AND IS COMPONENT PAR SAEETY OF THE EXISTING STRUCTURES ANE AN COMENONEN PARTS DURING COSTUCTINN THIS INCUUES THE ADDTON OF WHAEER SHORING, BRACING, UNDERPINNNG, ETC. THAT MAY BE NECESSARY. DRAWINGS INDICAIE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULO BE INDICAED TO BE SUBSANARD TO ANY ORINANCES, LAWS, CODES, RULES, OR REGULTTONS BEARING ON THE WORK, 	 Nutice

ANTENNA SCHEDULE								
Secoro		NTEMM		Nileme	Naw	Eprevo		
				\%	15			Ex2m miocauc
12	mporse	ERessod. Mrameal	3, 3.12888880	13				
\%	Propseio			${ }^{13}$	${ }_{100}$			
	maposis	Eerscor. .netaser		4	10			
a	Mrowsio		\$9.920.0.8.50	4				
	momose			3	${ }^{30}$			
$\frac{1}{0}$		\|Eassen.	Pa, ma86860	4	${ }_{20}^{20}$			remeeocme
	mapess							

Centered on Solutions" ${ }^{\text {"' }}$

StructuralAnalysis Report

Antenna Frames \& Equipment Platform

ProposedT-Mobile Equipment Upgrade-Anchor

Site Ref: CT11002A

1201 Boston Post Road
Milford, $C T$

CENTEK Project No. 20143.03

Date: October 21, 2020
Rev 2: November 16, 2020

Prepared for:
T-Mobile USA
35 Griffin Road
Bloomfield, CT 06002

Table of Contents

SECTION 1 - REPORT

- INTRODUCTION
- PRIMARY ASSUMPTIONS USED IN THE ANALYSIS
- ANTENNA AND EQUIPMENT INSTALLATION SUMMARY
- ANALYSIS
- DESIGN LOADING
- RESULTS
- CONCLUSION

SECTION 2 - CONDITIONS \& SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM

SECTION 3 - CALCULATIONS

- WIND LOAD CALCULATION
- RISA3D OUTPUT REPORT-EAST ANTENNA MAST
- RISA3D OUTPUT REPORT-SOUTH ANTENNA MAST
- RISA3D OUTPUT REPORT- DELTA SECTOR
- RISA3D OUTPUT REPORT- EQUIPMENT PLATFORM

SECTION 4 - REFERENCE MATERIAL

- RF DATA SHEET

Introduction

The purpose of this structural analysis report (SAR) is to summarize the results, of the impacted structural components, by the modified equipment upgrade proposed by T-Mobile on the existing host rooftop located in Milford, CT.

The T-Mobile antennas are mounted on antenna masts attached to the equipment platform (Alpha/Beta/Gamma) and on the exterior of a penthouse (Delta Sector). The T-Mobile equipment cabinets are mounted on a steel dunnage platform on the roof of the building.

The antenna mounts structure geometry and member size information were obtained from previous CDs/structural report and a site visit performed by Centek personnel on October 6, 2020.

The existing roof framing consists of steel beams/joist and columns. The existing equipment platform bears directly over the host building bearing walls at (3) locations and steel columns at (3) locations.

Primary Assumptions Used in the Analysis

- The host structure's theoretical capacity not including any assessment of the condition of the host structure.
- The existing elevated steel platform carries the horizontal and vertical loads due to the weight of equipment, and wind and transfers into host structure.
- Proposed reinforcement and support steel will be properly installed and maintained.
- Structure is in plumb condition.
- Loading for equipment and enclosure as listed in this report.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All welds are fabricated with ER-70S-6 electrodes.
- All members are assumed to be as observed during roof framing mapping.
- All members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.
- All member protective coatings are in good condition.

Antenna and Equipment Summary

Location	Appurtenance / Equipment	Rad Center Elevation (AGL)	Mount Type
Alpha Sector	(1) Ericsson-AIR32 Antonna (1) Ericsson AIR21 Antenna (1) Ericsson AIR6449 Antenna (1) RFS APXVAA4L24_43-U-NA20 (1) Ericsson RRUS11 B12 (1) Ericsson 4449 RRU (2) Ericsson 4415 RRU (1) Ericsson 4424 RRU (1) Commscope SDX1926Q-43 Diplexer	43-ft	Antenna Masts Attached to Steel Dunnage
Beta Sector	(1) Ericsson AIR32 Antenna (1) Ericsson AIR21 Antenna (1) Ericsson AIR6449 Antenna (1) RFS APXVAA4L24_43-U-NA20 (1) Eriosson RRUS11 B12 (1) Ericsson 4449 RRU (2) Ericsson 4415 RRU (1) Ericsson 4424 RRU (1) Commscope SDX1926Q-43 Diplexer	43-ft	Antenna Masts Attached to Steel Dunnage
Gamma Sector	(1) Ericsson AIR32 Antenna (1) Ericsson-AIR21 Antenna (1) Ericsson AIR6449 Antenna (1) RFS APXVAA4L24_43-U-NA20 (1) Ericsson RRUS11 B12 (1) Ericsson 4449 RRU (2) Ericsson 4415 RRU (1) Ericsson 4424 RRU (1) Commscope SDX1926Q-43 Diplexer	43-ft	Antenna Masts Attached to Steel Dunnage
Delta Sector	(1) Ericsson-AIR32 Antenna (1) Andrew LNX6515DS Antenna (1) Ericsson AIR6449 Antenna (1) RFS APXVAA4L24_43-U-NA20 (1) Ericsson RRUS11 B12 (1) Ericsson 4449 RRU (2) Ericsson 4415 RRU (1) Ericsson 4424 RRU (1) Commscope SDX1926Q-43 Diplexer	41-ft	Antenna Masts Attached to Building Façade

Equipment Platform	(1) Nortel Cabinet	1200 lbs	-	Steel dunnage platform on building roof
	(1) Ericsson 3106	2600 lbs	-	
	(1) Ericsson 6102	860 lbs .	-	
	(1) BBU Battery Cabinet	860 lbs .	-	
	(1) AAV Cabinet	65 lbs.	-	
	(1) Ericsson B160	1883 lbs.	-	
	(1) Ericsson 6160	1200 lbs .	-	

Equipment - Indicates equipment to be installed.
Equipment - Indicates equipment to be removed.

Analysis

The antenna frames and equipment platform were analyzed using a comprehensive computer program titled Risa3D. The program analyzes the equipment platform and antenna mounts considering the worst case code prescribed loading condition. The structures were considered to be loaded by concentric forces, and the model assumes that the members are subjected to bending, axial, and shear forces.

Design Loading

Loading was determined per the requirements of the 2015 International Building Code amended by the 2018 CSBC and ASCE 7-10 "Minimum Design Loads for Buildings and Other Structures".

Wind Speed:	$\mathrm{V}_{\text {ult }}=125 \mathrm{mph}$	Appendix N of the 2018 CT State Building Code
Risk Category:	II	2015 IBC; Table 1604.05
Exposure Category:	Surface Roughness C	ASCE 7-10; Section 26.7.2
Ground Snow Load	30 psf	Appendix N of the 2018 CT State Building Code
Dead Load	Equipment and framing self- weight	Identified within SAR design calculations
Live Load	20 psf	ASCE 7-10; Table 4-1 "Roofs - All Other Construction"

Rev 2 ~ November 16, 2020

Reference Standards

2015 International Building Code:

1. $\mathrm{ACI} 318-14$, Building Code Requirements for Structural Concrete.
2. ACI 530-13, Building Code Requirements for Masonry Structures.
3. AISC 360-10, Specification for Structural Steel Buildings
4. AWS D1.1-00, Structural Welding Code - Steel.
5. AF\&PA-12, Span Tables for Joists and Rafters.
6. ANSI/AWC NDS-2015, National Design Specifications (NDS) for Wood Construction - with 2012 Supplement.

Results

Member stresses and design reactions were calculated utilizing the structural analysis software RISA 3D.

The following table provides a summary of structural components impacted by the proposed upgrade along with associated member percent capacity and PASS/FAIL result:

Location	Component	Capacity (\%)	Result
	HSS5.563X0.258 Vertical Member	78%	PASS
	L4X4X3/8 Bracing Member	30%	PASS
	Pipe 2.5 STD. Antenna Mast	15%	PASS
East Antenna Mast	Pipe 4.0X Antenna Mast	87%	PASS
	L5X5X5/16 Bracing Member	8%	PASS
Delta Sector	Pipe 2.5 STD. Antenna Mast	28%	PASS
	W12X26 Platform Member	W8X13 Platform Member	51%
	HSS7.00X0.188 Platform Post	30%	PASS

Conclusion

This analysis shows that the subject antenna mounts and equipment platform have sufficient capacity to support the proposed modified antenna configuration.
The analysis is based, in part, on the information provided to this office by T-Mobile. If the existing conditions are different than the information in this report, Centek Engineering, Inc. must be contacted for resolution of any potential issues.
Please feel free to call with any questions or comments.

Respectfully Submitted by:

Timothy J. Lynn, PE Structural Engineer

Prepared by:

Luke Amiot
Engineer

Standard Conditions for Furnishingof Professional Engineering Serviceson Existing structures

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil conditions, the antenna and feed line loading on the structure and its components, or other relevant information.
- Information from the field and/or drawings in the possession of Centek Engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to Centek Engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an uncorroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to meet any other codes or requirements unless explicitly agreed in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement. In the absence of information to the contrary, all work will be performed in accordance with the latest revision of ANSI/ASCE10 \& ANSI/EIA-222
- All services performed, results obtained, and recommendations made are in accordance with generally accepted engineering principles and practices. Centek Engineering, Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

Design Wind Load on Other Structures:

Wind Speed $=$
Risk Category $=$
Exposure Category $=$
Height Above Grade $=$
Structure Type $=$
Structure Height $=$
Horizontal Dimension of Structure $=$

Terrain Exposure Constants:
Nominal Height of the Atmospheric Boundary Layer =

3-Sec Gust Speed Power Law Exponent =

Integral Length Scale Factor =

Integral Length Scale Power Law Exponent=

> Turbulence Intensity Factor =

Exposure Constant $=$

Exposure Coefficient $=$

(Based on IBC 2015, CSBC 2018 and ASCE 7-10)

$\mathrm{V}:=125$	mph	(User Input)	(CSBCAppendix-N)
$\mathrm{BC}:=\mathrm{II}$		(User Input)	(IBC Table 1604.5)
Exp := C		(User Input)	
$\mathrm{Z}:=43$	ft	(User Input)	
Structuretyp	Square_Chimney	(User Input)	
Height := 8	ft	(User Input)	
Width := 2	ft	(User Input)	

$z g:=\left\lvert\, \begin{aligned} & 1200 \text { if } \operatorname{Exp}=\mathrm{B}=900 \\ & 900 \text { if } \operatorname{Exp}=\mathrm{C} \\ & 700 \text { if } \operatorname{Exp}=\mathrm{D}\end{aligned}\right.$
(Table 26.9-1)
(Table 26.9-1)
(Table 26.9-1)
(Table 26.9-1)
(Table 26.9-1)
(Table 26.9-1)
(Table 29.3-1)

二 $=N T$ ¢ C engineering	Subject:	Wind Load on Equipment per ASCE 7-10
	Location:	Milford, CT
	Rev. 2: 11/16/20	Prepared by: T.J.L; Checked by: C.F.C. Job No. 20143.03

Topographic Factor =	$\mathrm{K}_{\mathrm{zt}}:=1$	(Eq. 26.8-2)
Wind Directionality Factor =	$\mathrm{K}_{\mathrm{d}}=0.9$	(Table 26.6-1)
Velocity Pressure $=$	$\mathrm{q}_{\mathrm{z}}:=0.00256 \cdot \mathrm{~K}_{\mathrm{z}} \cdot \mathrm{K}_{\mathrm{zt}} \cdot \mathrm{K}_{\mathrm{d}} \cdot \mathrm{V}^{2}=38.15$	(Eq. 29.3-1)
PeakFactor for Background Response $=$	$g_{Q}:=3.4$	(Sec 26.9.4)
Peak Factor for Wind Response $=$	$g_{v}:=3.4$	(Sec 26.9.4)
Equivalent Height of Structure =	$z:=\left\lvert\, \begin{aligned} & z_{\min } \text { if } z_{\text {min }}>0.6 \cdot \text { Height }=15 \\ & \text { 0.6. Height otherwise }\end{aligned}\right.$	(Sec 26.9.4)
Intensity of Turbul ence $=$	$\mathrm{I}_{\mathrm{z}}:=\mathrm{c} \cdot\left(\frac{33}{\mathrm{z}}\right)^{\left(\frac{1}{6}\right)}=0.228$	(Eq. 26.9-7)
Integral Length Scale of Turbulence $=$	$L_{Z}:=1 \cdot\left(\frac{z}{33}\right)^{E}=427.057$	(Eq. 26.9-9)
Background Response Factor =	$Q:=\sqrt{\frac{1}{1+0.63\left(\frac{\text { Width }+ \text { Height }}{L_{z}}\right)^{0.63}}}=0.972$	(Eq. 26.9-8)
Gust Response Factor =	$\mathrm{G}:=0.925 \cdot\left[\frac{\left(1+1.7 \cdot g_{Q} \cdot \mathrm{I}_{z} \cdot \mathrm{Q}\right)}{1+1.7 \cdot g_{V} \cdot \mathrm{I}_{\mathrm{z}}}\right]=0.91$	(Eq. 26.9-6)
Force Coefficient=	$\mathrm{C}_{\mathrm{f}}=1.35$	(Fig 29.5-1-29.5-3)
Wind Force $=$	$F:=\mathrm{q}_{\mathrm{z}} \cdot \mathrm{G} \cdot \mathrm{C}_{\mathrm{f}}=47 \quad$ psf	

二NJT C ¢ engineering	Subject:	Wind Load on Equipment per ASCE 7-10
	Location:	Milford, CT
	Rev. 2: 11/16/20	Prepared by: T.J.L; Checked by: C.F.C. Job No. 20143.03

Development of Wind \& Ice Load on Antennas

Antenna Data:

Antenna Model $=$
Antenna Shape $=$
Antema Height =
Antenna Width $=$
Antenna Thickness =

Antenna Weight =

Number of Antennas =

Wind Load (Front)

SurfaceArea for One Antenna =

Antenna Projected Surface Area $=$

Total Antenna Wind Force=

Wind Load (Side)

SurfaceArea for One Antenna =

Antenna Projected Surface Area =

Total Artenna Wind Force=

Gravity Load (without ice)

Ericsson AR32
Flat

$\mathrm{L}_{\mathrm{ant}}:=56.6$	in	(User Input)
$\mathrm{W}_{\mathrm{ant}}:=12.9$	in	(User Input)
$\mathrm{T}_{\text {ant }}:=8.7$	in	(User Input)
$W T_{\text {ant }}:=133$	lbs	(User Input)
$\mathrm{N}_{\mathrm{ant}}:=1$		(User Input)

二NT三Kengineering	Subject:	Wind Load on Equipment per ASCE 7-10
	Location:	Milford, CT
	Rev. 2: 11/16/20	Prepared by: T.J.L; Checked by: C.F.C. Job No. 20143.03

Development of Wind \& Ice Load on Antennas

Antenna Data:

Antenna Model $=$	RFSAPXVAA4L24_43		
Antenna Shape $=$	Flat	in	(User Input)
Anterna Height $=$	$\mathrm{L}_{\mathrm{ant}}:=95.9$	in Input)	
Antenna Width $=$	$\mathrm{W}_{\mathrm{ant}}:=24$	in	(User Input)
Antenna Thickness $=$	$\mathrm{T}_{\mathrm{ant}}:=8.5$	in	(User Input)
Antenna Weight $=$	$\mathrm{WT}_{\mathrm{ant}}:=169$	lbs	(User Input)
mber of Antennas $=$	$\mathrm{N}_{\mathrm{ant}}:=1$		(User Input)

Wind Load (Front)

SurfaceArea for One Antenna =

Antenna Projected Surface Area $=$

Total ArtennaWind Force=

Wind Load (Side)

SurfaceArea for One Antenna =

Antenna Projected Surface Area =

Total AntennaWind Force=
$S A_{\text {ant }}:=\frac{L_{\text {ant }} \cdot W_{\text {ant }}}{144}=16$
sf
$\mathrm{A}_{\text {ant }}:=\mathrm{SA}_{\text {ant }} \cdot \mathrm{N}_{\text {ant }}=16$
$F_{\text {ant }}:=F \cdot A_{\text {ant }}=749$
$\mathrm{SA}_{\text {ant }}:=\frac{\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{T}_{\mathrm{ant}}}{144}=5.7$
sf
$\mathrm{A}_{\mathrm{ant}}:=\mathrm{SA}_{\mathrm{ant}} \cdot \mathrm{N}_{\mathrm{ant}}=5.7$
sf
$F_{\text {ant }}:=F \cdot A_{\text {ant }}=265$
lbs
$\mathrm{WT}_{\text {ant }} \cdot \mathrm{N}_{\text {ant }}=169$
lbs

C=NT $=\mathrm{K}$ engineering		Subject:	Wind Load on Equipment per ASCE 7-10
		Location:	Milford, CT
		Rev. 2: 11/16/20	Prepared by: T.J.L; Checked by: C.F.C. Job No. 20143.03

Development of Wind \& Ice Load on Antennas

Antenna Model $=$
Antenna Shape $=$
Antema Height $=$
Antenna Width $=$
Antenna Thickness =
Antenna Weight $=$
Number of Antennas $=$

Ericsson AR6449

Flat

$\mathrm{L}_{\text {ant }}:=33.1$	in	(User Input)
$\mathrm{W}_{\text {ant }}:=20.6$	in	(User Input)
$\mathrm{T}_{\text {ant }}:=8.6$	in	(User Input)
$W T_{\text {ant }}:=104$	lbs	(User Input)
$N_{\text {ant }}:=1$		(User Input)

Wind Load (Front)

SurfaceArea for One Antenna =

Antenna Projected Surface Area =

Total ArtennaWind Force=

Wind Load (Side)

SurfaceArea for One Antenna =

Antenna Projected Surface Area =

Total Anten na Wind Force=

Gravity Load (without ice)

$\mathrm{SA}_{\text {ant }}:=\frac{\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{W}_{\text {ant }}}{144}=4.7$
$\mathrm{A}_{\text {ant }}:=\mathrm{SA}_{\text {ant }} \cdot \mathrm{N}_{\text {ant }}=4.7$
$\mathrm{F}_{\text {ant }}:=\mathrm{F} \cdot \mathrm{A}_{\mathrm{ant}}=222$
$\mathrm{SA}_{\mathrm{ant}}:=\frac{\mathrm{L}_{\mathrm{ant}}{ }^{\top} \mathrm{T}_{\mathrm{ant}}}{144}=2$
$\mathrm{A}_{\text {ant }}:=\mathrm{SA}_{\text {ant }} \cdot \mathrm{N}_{\text {ant }}=2$
$F_{\text {ant }}:=F \cdot A_{\text {ant }}=93$
$W T_{\text {ant }} \cdot N_{\text {ant }}=104$

C $=N T$ TK engineering		Subject:	Wind Load on Equipment per ASCE 7-10
		Location:	Milford, CT
		Rev. 2: 11/16/20	Prepared by: T.J.L; Checked by: C.F.C. Job No. 20143.03

Development of Wind \& Ice Load on RRHs

RRUS Data:

RRUS Model $=$	Ericsson $4449 \mathrm{B71B12}$		
RRUS Shape $=$	Flat		(User Input)
RRUS Height $=$	$\mathrm{L}_{\mathrm{RRH}}:=14.9 \quad$ in	(User Input)	
RRUS Width $=$	$\mathrm{W}_{\mathrm{RRH}}:=13.2$ in	(User Input)	
RRUS Thickness $=$	$\mathrm{T}_{\mathrm{RRH}}:=10.4$	in	(User Input)
RRUSWeight $=$	$\mathrm{WT}_{\mathrm{RRH}}:=74$	Ibs	(User Input)
Number of RRUS's $=$	$\mathrm{N}_{\mathrm{RRH}}:=1$		(User Input)

Wind Load (Front)

SurfaceArea for One RRH =

RRH Projected SurfaceArea $=$

Total RRH W ind Force $=$

Wind Load (Side)

Surface Area for One RRH =

RRH Projected SurfaceArea =

Total RRH Wind Force =

Gravity Load (without ice)
Weight ofAll RRHs=
$S A_{R R H}:=\frac{L_{R R H} \cdot W_{R R H}}{144}=1.4$
$A_{R R H}:=S_{R R H} \cdot N_{R R H}=1.4$
$F_{R R H}:=F \cdot A_{R R H}=64$
$S A_{R R H}:=\frac{L_{R R H} \cdot \top_{R R H}}{144}=1.1$
$\mathrm{A}_{\mathrm{RRH}}:=\mathrm{SA}_{\mathrm{RRH}} \cdot \mathrm{N}_{\mathrm{RRH}}=1.1$
$F_{R R H}:=F \cdot A_{R R H}=50$
$W T_{R R H} \cdot N_{R R H}=74$
lbs
sf
sf lbs
sf
sf
lbs

C $=N T$ TK engineering		Subject:	Wind Load on Equipment per ASCE 7-10
		Location:	Milford, CT
		Rev. 2: 11/16/20	Prepared by: T.J.L; Checked by: C.F.C. Job No. 20143.03

Development of Wind \& Ice Load on RRHs

RRUS Data:

RRUS Model $=$	Ericsson 4415		
RRUS Shape $=$	Flat		(User Input)
RRUS Height $=$	$\mathrm{L}_{\mathrm{RRH}}:=16.5$	in	(User Input)
RRUS Width $=$	$\mathrm{W}_{\mathrm{RRH}}:=13.4$	in	(User Input)
RRUS Thickness $=$	$\mathrm{T}_{\mathrm{RRH}}:=5.9$	in	(User Input)
RRUS Weight $=$	$\mathrm{WT}_{\mathrm{RRH}}:=46$	lbs	(User Input)
number of RRUS's $=$	$\mathrm{N}_{\mathrm{RRH}}:=1$		(User Input)

Wind Load (Front)

Wind Load (Front)
SurfaceArea for One RRH $=$
RRH Projected SurfaceArea $=$
Total RRH Wind Force $=$
Wind Load (Side)
SurfaceArea for One RRH $=$
RRH Projected SurfaceArea $=$
Total RRH Wind Force $=$

Gravity Load (without ice)

Weight ofAll RRHs=
$S A_{R R H}:=\frac{L_{R R H} \cdot W_{R R H}}{144}=1.5$
$A_{R R H}:=S_{R R H} \cdot N_{R R H}=1.5$
$F_{\text {RRH }}:=F \cdot A_{R R H}=72$
$S_{R R H}:=\frac{\mathrm{L}_{\mathrm{RRH}} \cdot \mathrm{T}_{\mathrm{RRH}}}{144}=0.7$
$A_{R R H}:=S_{R R H} \cdot N_{R R H}=0.7$
$F_{\text {RRH }}:=F \cdot A_{R R H}=32$
$W T_{R R H} \cdot N_{\text {RRH }}=46$
lbs

二NT=Kengineering	Subject:	Wind Load on Equipment per ASCE 7-10
	Location:	Milford, CT
	Rev. 2: 11/16/20	Prepared by: T.J.L; Checked by: C.F.C. Job No. 20143.03

Development of Wind \& Ice Load on RRHs

S Data:				
RRUS Model =	Ericsson 4424			
RRUS Shape $=$	Flat		(User	
RRUS Height=	$L_{\text {RRH }}:=17.1$	in	(User	
RRUS Width $=$	$\mathrm{W}_{\text {RRH }}:=14.4$		(Use	
RRUS Thickness =	$\mathrm{T}_{\text {RRH }}:=11.3$		(Use	
RRUSWeight=	$\mathrm{WT}_{\text {RRH }}:=86$		(Us	
Number of RRUS's=	$\mathrm{N}_{\text {RRH }}:=1$		(User	
Wind Load (Front)				
SurfaceArea for One RRH =	$\mathrm{SA}_{R R H}:=\frac{L_{R F}}{}$	W_{RR}		sf
RRH Projected Surface Area $=$	$\mathrm{A}_{\text {RRH }}:=\mathrm{SA}_{\text {R }}$			sf
Total RRH W ind Force $=$	$\mathrm{F}_{\text {RRH }}:=\mathrm{F} \cdot \mathrm{A}_{\text {RR }}$	80		lbs
Wind Load (Side)				
RRH Projected Surface Area $=$	$\mathrm{A}_{R R H}:=\mathrm{SA}_{R R H} \cdot \mathrm{~N}_{\text {RRH }}=1.3$ sf			
Total RRH W ind Force $=$	$F_{\text {RRH }}:=F \cdot A_{R R H}=63$			
Gravity Load (without ice)				
Weight of All RRHs=	$W T_{\text {RRH }} \cdot \mathrm{N}_{\text {RRH }}=86$ lbs			

$=N T=$	engineering	Subject:	Wind Load on Equipment per ASCE 7-10
Centered on Solutions 63-2 North Branford Poxad Branford, CT 06405	 F:(203) 488-8587	Location:	Milford, CT
		Rev. 2: 11/16/20	Prepared by: T.J.L; Checked by: C.F.C. Job No. 20143.03

Development of Wind \& Ice Load on Equipment

Equipment Model $=$
Equipment Shape $=$
Equipment Height $=$
Equipment Width $=$
Equipment Thickness =
Equipment Weight $=$
Number of Bearing Points $=$

Wind Load (Front)

Surface Area for One Equipment =

Total Equipment Wind Force (Vert) $=$

Total Equipment Wind Force (Horz) =

Wind Load (Side)

Surface Area for One Equipment $=$

Total Equipment Wind Force (Vert) =

Total Equipment Wind Force (Horz) =

Gravity Load (without ice)

Weight ofAll Equipment=

Ericsson RBS 6102
Flat

$\mathrm{L}_{\mathrm{Eq}}:=57.1$	in	(User Input)
$\mathrm{W}_{\mathrm{Eq}}:=51.2$	in	(User Input)
$\mathrm{T}_{\mathrm{Eq}}:=27.6$	in	(User Input)
$\mathrm{WT}_{\mathrm{Eq}}:=860$	lbs	(User Input)
$\mathrm{N}_{\mathrm{BP}}:=4$		(User Input)

$$
\begin{equation*}
\mathrm{SA}_{\mathrm{Eq}}:=\frac{\mathrm{L}_{\mathrm{Eq}} \cdot \mathrm{~W}_{\mathrm{Eq}}}{144}=20.3 \tag{sf}
\end{equation*}
$$

lbs

$$
\mathrm{SA}_{\mathrm{Eq}}:=\frac{\mathrm{L}_{\mathrm{Eq}} \cdot \mathrm{~T}_{\mathrm{Eq}}}{144}=10.9
$$

$$
\mathrm{F}_{\mathrm{Eq}}:=\frac{\left[\mathrm{F} \cdot \mathrm{SA}_{\mathrm{Eq}} \cdot \frac{\left(\frac{\mathrm{~L}_{\mathrm{Eq}}}{12}\right)}{2}\right]}{\left(\frac{\mathrm{W}_{\mathrm{Eq}}}{12}\right) \cdot \frac{\mathrm{N}_{\mathrm{BP}}}{2}}=143
$$

lbs

$$
\mathrm{F}_{\mathrm{Eq}}:=\frac{\left(\mathrm{F} \cdot \mathrm{SA}_{\mathrm{Eq}}\right)}{\left(\mathrm{N}_{\mathrm{BP}}\right)}=128
$$

$$
\frac{\mathrm{WT}_{\mathrm{Eq}}}{\mathrm{~N}_{\mathrm{BP}}}=215
$$

二NT三Kengineering	Subject:	Wind Load on Equipment per ASCE 7-10
	Location:	Milford, CT
	Rev. 2: 11/16/20	Prepared by: T.J.L; Checked by: C.F.C. Job No. 20143.03

Development of Wind \& Ice Load on Equipment

Equipment Model =
Equipment Shape $=$
Equipment Height $=$
Equipment Width =
Equipment Thickness=
EquipmentWeight =
Number of Bearing Points =

Wind Load (Front)

Surface Area for One Equipment =

Total Equipment Wind Force (Vert) =

Total Equipment Wind Force $($ Horz $)=$

Wind Load (Side)

SurfaceArea for One Equipment $=$

Total Equipment Wind Force (Vert) =

Total Equipment Wind Force (Horz) =

Gravity Load (without ice)
Weight ofAll Equipment $=$

Ericsson B160 Battery Cabinet
Flat
$L_{E q}:=63$
$\mathrm{W}_{\mathrm{Eq}}:=26$
$\mathrm{T}_{\mathrm{Eq}}:=26$ in (User Input)
$W_{\text {Eq }}:=1883$
$\mathrm{N}_{\mathrm{BP}}:=4$
(User Input)
(User Input)
(User Input)
(User Input)
(User Input)

$$
\mathrm{SA}_{E q}:=\frac{\mathrm{L}_{\mathrm{Eq}} \cdot \mathrm{~W}_{\mathrm{Eq}}}{144}=11.4
$$

$$
\mathrm{F}_{\mathrm{Eq}}:=\frac{\left[\mathrm{F} \cdot \mathrm{SA}_{\mathrm{Eq}} \cdot \frac{\left(\frac{\mathrm{~L}_{\mathrm{Eq}}}{12}\right)}{2}\right]}{\left(\frac{\mathrm{T}_{\mathrm{Eq}}}{12}\right) \cdot \frac{\mathrm{N}_{\mathrm{BP}}}{2}}=323
$$

$$
\mathrm{F}_{\mathrm{Eq}}:=\frac{\left(\mathrm{F} \cdot \mathrm{SA}_{\mathrm{Eq}}\right)}{\left(\mathrm{N}_{\mathrm{BP}}\right)}=133
$$

$$
\mathrm{SA}_{\mathrm{Eq}}:=\frac{\mathrm{L}_{\mathrm{Eq}} \cdot \mathrm{~T}_{\mathrm{Eq}}}{144}=11.4
$$

$$
\mathrm{F}_{\mathrm{Eq}}:=\frac{\left[\mathrm{F} \cdot \mathrm{SA}_{\mathrm{Eq}} \cdot \frac{\left(\frac{\mathrm{~L}_{\mathrm{Eq}}}{12}\right)}{2}\right]}{\left(\frac{\mathrm{W}_{\mathrm{Eq}}}{12}\right) \cdot \frac{\mathrm{N}_{\mathrm{BP}}}{2}}=323
$$

$$
\mathrm{F}_{\mathrm{Eq}}:=\frac{\left(\mathrm{F} \cdot \mathrm{SA}_{\mathrm{Eq}}\right)}{\left(\mathrm{N}_{\mathrm{BP}}\right)}=133
$$

lbs

$$
\frac{\mathrm{WT}_{\mathrm{Eq}}}{\mathrm{~N}_{\mathrm{BP}}}=471
$$

二NT $=\mathrm{K}$ engineering	Subject:	Wind Load on Equipment per ASCE 7-10
	Location:	Milford, CT
Branford, CTO6405 F:(203)48388887	Rev. 2: 11/16/20	Prepared by: T.J.L; Checked by: C.F.C. Job No. 20143.03

Development of Wind \& Ice Load on Equipment

Equipment Model $=$
Equipment Shape $=$
Equipment Height $=$
Equipment Width $=$
Equipment Thickness $=$
EquipmentWeight $=$
Number of Bearing Points $=$

Wind Load (Front)

SurfaceArea for One Equipment =

Total Equipment Wind Force (Vert) $=$

Total Equipment Wind Force (Horz) =

Wind Load (Side)

Surface Area for One Equipment =

Total Equipment Wind Force (Vert) $=$

Total Equipment Wind Force (Horz) =

Gravity Load (without ice)

WeightofAll Equipment=

Ericsson 6160
Flat
$\mathrm{L}_{\mathrm{Eq}}:=63$
in
$W_{\text {Eq }}:=26$
$\mathrm{T}_{\mathrm{Eq}}:=26$
in lbs
$\mathrm{N}_{\mathrm{BP}}:=4$
(User Input)
(User Input)
(User Input)
(User Input)
(User Input)
(User Input)
$S A_{E q}:=\frac{L_{E q} \cdot W_{E q}}{144}=11.4$

$$
\mathrm{F}_{\mathrm{Eq}}:=\frac{\left[\mathrm{F} \cdot \mathrm{SA}_{\mathrm{Eq}} \cdot \frac{\left(\frac{\mathrm{~L}_{\mathrm{Eq}}}{12}\right)}{2}\right]}{\left(\frac{\mathrm{T}_{\mathrm{Eq}}}{12}\right) \cdot \frac{\mathrm{N}_{\mathrm{BP}}}{2}}=323
$$

$$
F_{E q}:=\frac{\left(\mathrm{F} \cdot \mathrm{SA}_{\mathrm{Eq}}\right)}{\left(\mathrm{N}_{\mathrm{BP}}\right)}=133
$$

lbs

$$
\mathrm{SA}_{\mathrm{Eq}}:=\frac{\mathrm{L}_{\mathrm{Eq}} \cdot \mathrm{~T}_{\mathrm{Eq}}}{144}=11.4
$$

sf

$$
\mathrm{F}_{\mathrm{Eq}}:=\frac{\left[\mathrm{F} \cdot \mathrm{SA}_{\mathrm{Eq}} \cdot \frac{\left(\frac{\mathrm{~L}_{\mathrm{Eq}}}{12}\right)}{2}\right]}{\left(\frac{\mathrm{W}_{\mathrm{Eq}}}{12}\right) \cdot \frac{\mathrm{N}_{\mathrm{BP}}}{2}}=323
$$

lbs

$$
\mathrm{F}_{\mathrm{Eq}}:=\frac{\left(\mathrm{F} \cdot \mathrm{SA}_{\mathrm{Eq}}\right)}{\left(\mathrm{N}_{\mathrm{BP}}\right)}=133
$$

lbs

$$
\frac{W T_{E q}}{N_{B P}}=300
$$

Structural Analysis - Antenna Frames \& Equipment Platform
T-Mobile Equipment Upgrade - CT11002A-Anchor
Milford, CT
Rev 2 ~ November 16, 2020

Antenna Sectors/Platform

Centek Engineering	CT11002A - Antenna Mount (South)	SK-2
LAA		Oct 21, 2020
20143.03		Antenna Mount.r3d

Member Code Checks Displayed (Enveloped) Envelope Only Solution

Centek Engineering		
LAA	CT11002A - Antenna Mount (South)	Nov 16, 2020 at 2:19 PM
20143.03	Unity Check	Antenna Mount.r3d

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (ft/sec^2)	32.2
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver
Hot Rolled Steel Code	AISC 14th(360-10): ASD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 14th(360-10): ASD
Cold Formed Steel Code	AISI S100-10: ASD
Wood Code	AWC NDS-12: ASD
Wood Temperature	$<~ 100 F$
Concrete Code	ACI 318-11
Masonry Code	ACI 530-11: ASD
Aluminum Code	AA ADM1-10: ASD - Building
Stainless Steel Code	AISC 14th(360-10): ASD
Adjust Stiffness?	Yes(Iterative)

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min \% Steel for Column	1
Max \% Steel for Column	8

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
R X	3
R Z	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	I or II
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	4
Cd X	4
Rho Z	1
Rho X	1
Footing Overturning Safety Factor	1
Optimize for OTM/Sliding	No
Check Concrete Bearing	No
Footing Concrete Weight (k/ft^3)	150.001
Footing Concrete f'c (ksi)	4
Footing Concrete Ec (ksi)	3644
Lambda	1
Footing Steel fy (ksi)	60
Minimum Steel	0.0018
Maximum Steel	0.0075
Footing Top Bar	$\# 3$
Footing Top Bar Cover (in)	2
Footing Bottom Bar	$\# 3$
Footing Bottom Bar Cover (in)	3.5
Pedestal Bar	$\# 3$
Pedestal Bar Cover (in)	1.5
Pedestal Ties	

Hot Rolled Steel Properties

Label		E [ksi]	G [ksi]	Nu	Therm (Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr. 36	29000	11154	. 3	. 65	. 49	36	1.5	58	1.2
2	A572 Gr. 50	29000	11154	. 3	. 65	49	50	1.1	58	1.2
3	A992	29000	11154	. 3	. 65	. 49	50	1.1	58	1.2
4	A500 Gr. 42	29000	11154	. 3	. 65	. 49	42	1.3	58	1.1
5	A500 Gr. 46	29000	11154	. 3	. 65	. 49	46	1.2	58	1.1
6	A53 Grade B	29000	11154	3	. 65	. 49	35	1.5	58	1.2

Hot Rolled Steel Section Sets

Label		Shape	Type	Design List	Material	Design Rul.	A [in2]	lyy [in4]Izz [in4]		J [in4]
1	Pipe Mast	HSS5.563X0.258	Beam	Pipe	A53 Grade B	Typical	4.01	14.2	14.2	28.5
2	Brace	L4X4X6	Beam	Pipe	A36 Gr. 36	Typical	2.86	4.32	4.32	141
3	Antenna Mast	PIPE_2.5	Beam	Pipe	A53 Grade B	Typical	1.61	1.45	1.45	2.89

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp to	Lcomp bot[...L	L-torq...	Kyy	Kzz	Cb	Functi...
1	M1	Pipe Mast	18.67			Lbyy						Lateral
2	M2	Brace	11.747			Lbyy						Lateral
3	M3	Brace	11.797			Lbyy						Lateral
4	M4	Brace	11.747			Lbyy						Lateral
5	M7	Antenna Mast	10			Lbyy						Lateral
6	M10	Antenna Mast	10			Lbyy						Lateral
7	M13	Antenna Mast	10			Lbyy						Lateral

Member Primary Data

	Label	1 Joint	J Joint	K Joint	Rotate(d...	Section/Shape	Type	Design List	Material	Design Rul.
1	M1	N1	N3			Pipe Mast	Beam	Pipe	A53 Gra...	Typical
2	M2	N2	N4			Brace	Beam	Pipe	A36 Gr. 36	Typical
3	M3	N2	N6			Brace	Beam	Pipe	A36 Gr. 36	Typical
4	M4	N2	N5			Brace	Beam	Pipe	A36 Gr. 36	Typical
5	M5	N9	N7			RIGID	None	None	RIGID	Typical
6	M6	N10	N8			RIGID	None	None	RIGID	Typical
7	M7	N12	N11			Antenna Mast	Beam	Pipe	A53 Gra...	Typical
8	M8	N15	N7			RIGID	None	None	RIGID	Typical
9	M9	N16	N8			RIGID	None	None	RIGID	Typical
10	M10	N18	N17			Antenna Mast	Beam	Pipe	A53 Gra...	Typical
11	M11	N21	N7			RIGID	None	None	RIGID	Typical
12	M12	N22	N8			RIGID	None	None	RIGID	Typical
13	M13	N24	N23			Antenna Mast	Beam	Pipe	A53 Gra...	Typical

Joint Coordinates and Temperatures

| Label | $\mathrm{X}[\mathrm{ft}]$ | | $\mathrm{Y}[\mathrm{ft}]$ | $\mathrm{Z}[\mathrm{ft}]$ | Temp [F] | Detach From Dia... |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | N 1 | 0 | 0 | 0 | 0 | |
| 2 | N 2 | 0 | 8.67 | 0 | 0 | |
| 3 | N 3 | 0 | 18.67 | 0 | 0 | |
| 4 | N 4 | 2 | 0 | 7.67 | 0 | |
| 5 | N 5 | 2 | 0 | -7.67 | 0 | |
| 6 | N 6 | 8 | 0 | 0 | 0 | |
| 7 | N 7 | 0 | 18.17 | 0 | 0 | |
| 8 | N 8 | 0 | 14.17 | 0 | 0 | |
| 9 | N 9 | 0 | 18.17 | 1.25 | 0 | |
| 10 | N 10 | 0 | 14.17 | 1.25 | 0 | |
| 11 | N 11 | 0 | 24 | 1.25 | 0 | |
| 12 | N 12 | 0 | 14 | 1.25 | 0 | |
| 13 | N 15 | 1.082532 | 18.17 | -.625 | 0 | |
| 14 | N 16 | 14.17 | -.625 | 0 | | |

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Dia...
15	N17	1.082532	24	-. 625	0	
16	N18	1.082532	14	-. 625	0	
17	N21	-1.082532	18.17	-. 625	0	
18	N22	-1.082532	14.17	-. 625	0	
19	N23	-1.082532	24	-. 625	0	
20	N24	-1.082532	14	-. 625	0	

Joint Boundary Conditions

Member Point Loads (BLC 2 : Weight of Equipment)

Member Label	Direction		Magnitude[k,k-ft]	Location[ft,\%]
1	M 1	Y	-.222	11
2	M 7	Y	-.169	$\% 50$
3	M 10	Y	-.169	$\% 50$
4	M 13	Y	-.169	$\% 50$
5	M 1	Y	-.258	6
6	M 1	Y	-.138	4

Member Point Loads (BLC 3 : Wind X-Direction)

Member Label		Direction		Magnitude[k,k-ft]
1	M1	X	.192	Location $[f t, \%]$
2	M7	X	.265	$\% 50$
3	M10	X	.265	$\% 50$
4	M13	X	.749	$\% 50$
5	M1	X	.24	6
6	M1	X	.96	4

Member Point Loads (BLC 4 : Wind Z-Direction)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,\%]
1	M1	Z	. 192	11
2	M7	Z	749	\%50
3	M10	Z	. 265	\%50
4	M13	Z	265	\%50
5	M1	Z	. 24	6
6	M1	Z	. 216	4

Member Distributed Loads (BLC 3 : Wind X-Direction)

	Member Label	Direction	Start Magnitude[k/ft, ...	End Magnitude[k/ft,F.	Start Location[ft,\%]	End Location[ft,\%]
1	M1	X	. 023	. 023	0	16

Member Distributed Loads (BLC 4 : Wind Z-Direction)

	Member Label	Direction	Start Magnitude[k/ft,.	End Magnitude[k/ft,F..	Start Location[ft,\%]	End Location[ft,\%]
1	M1	Z	. 023	. 023	0	16

Basic Load Cases

Load Combinations

	Description	Solve	P...	B..	a..	BLC	Fact.	BLC	Fa...	BLC		BLC	Fa..	B...	Fa...	B...	Fa..	B...	Fa...	B...F	Fa... B	B... Fa	a..
1	IBC 16-8	Yes	Y	DL	1																		
2	IBC 16-9	Yes	Y	DL	1	LL	1	LLS	1														
3	IBC 16-10 (a)	Yes	Y	DL	1	RLL	1																
4	IBC 16-10 (b)	Yes	Y	DL	1	SL	1	SLN	1														
5	IBC 16-10 (c)	Yes	Y	DL	1	RL	1																
6	IBC 16-11 (a)	Yes	Y	DL	1	LL	. 75	LLS	. 75	RLL	. 75												
7	IBC 16-11 (b)	Yes	Y	DL	1	LL	. 75	LLS	. 75	SL	. 75	SLN	. 75										
8	IBC 16-11 (c)	Yes	Y	DL	1	LL	. 75	LLS	. 75	RL	. 75												
9	IBC 16-12 (a) (a)	Yes	Y	DL	1	WLX	. 6																
10	IBC 16-12 (a) (b)	Yes	Y	DL	1	WLZ	. 6																
11	IBC 16-12 (a) (c)	Yes	Y	DL	1	WLX	-. 6																
12	IBC 16-12 (a) (d)	Yes	Y	DL	1	WLZ	-. 6																
13	IBC 16-13 (a) (a)	Yes	Y	DL	1	WLX	. 45	LL	. 75	LLS	. 75	RLL	75										
14	IBC 16-13 (a) (b)	Yes	Y	DL	1	WLZ	45	LL	. 75	LLS	. 75	RLL	75										
15	IBC 16-13 (a) (c)	Yes	Y	DL	1	WLX	-. 45	LL	. 75	LLS	75	RLL	75										
16	IBC 16-13 (a) (d)	Yes	Y	DL	1	WLZ	-. 45	LL	. 75	LLS	75	RLL	75										
17	IBC 16-13 (b) (a)	Yes	Y	DL	1	WLX	. 45	LL	. 75	LLS	75	SL	. 75	S.	75								
18	IBC 16-13 (b) (b)	Yes	Y	DL	1	WLZ	. 45	LL	. 75	LLS	75	SL	. 75	S.	75								
19	IBC 16-13 (b) (c)	Yes	Y	DL	1	WLX	-. 45	LL	. 75	LLS	75	SL	. 75	S..	75								
20	IBC 16-13 (b) (d)	Yes	Y	DL	1	WLZ	-. 45	LL	. 75	LLS	75	SL	75	S.	75								
21	IBC 16-13 (c) (a)	Yes	Y	DL	1	WLX	. 45	LL	. 75	LLS	. 75	RL	. 75										
22	IBC 16-13 (c) (b)	Yes	Y	DL	1	WLZ	. 45	LL	. 75	LLS	. 75	RL	. 75										
23	IBC 16-13 (c) (c)	Yes	Y	DL	1	WLX	-. 45	LL	. 75	LLS	. 75	RL	. 75										
24	IBC 16-13 (c) (d)	Yes	Y	DL	1	WLZ	-. 45	LL	. 75	LLS	. 75	RL	. 75										
25	IBC 16-15 (a)	Yes	Y	DL	. 6	WLX	. 6																
26	IBC 16-15 (b)	Yes	Y	DL	. 6	WLZ	6																
27	IBC 16-15 (c)	Yes	Y	DL	. 6	WLX	-. 6																
28	IBC 16-15 (d)	Yes	Y	DL	. 6	WLZ	-. 6																

Envelope Joint Reactions

Joint			X [k]	LC Y [k]		LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft] LC	
1	N1	max	. 612	9	4.123	11	. 85	10	0	28	. 182	25	0	28
2		min	-. 611	11	-1.898	25	-. 855	12	0	1	-. 181	27	0	1
3	N4	max	. 258	28	1.539	10	. 99	28	0	28	0	28	0	28
4		min	-. 342	10	-1.084	28	-1.311	10	0	1	0	1	0	1
5	N6	max	2.505	11	2.556	25	0	12	0	28	0	28	0	28

Envelope Joint Reactions (Continued)

Joint			$\mathrm{X}[\mathrm{k}]$ LC		Y [k]	LC $\mathrm{Z}[\mathrm{k}]$		LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
6		min	-2.326	25	-2.657	11	0	10	0	1	0	1	0	1
7	N5	max	. 257	26	1.542	12	1.313	12	0	28	0	28	0	28
8		min	-. 343	12	-1.082	26	-. 987	26	0	1	0	1	0	1
9	Totals:	max	1.823	11	1.888	12	1.377	28						
10		min	-1.823	9	1.133	25	-1.377	26						

Envelope Joint Displacements

Joint			X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC Y Rotatio... LC Z Rotatio... LC				
1	N1	max	0	28	0	28	0	28	$4.885 \mathrm{e}-03$	12	0	28	3.867e-03	9
2		min	0	1	0	1	0	1	-4.857e-03	10	0	1	-3.819e-03	11
3	N2	max	. 013	25	. 002	25	. 006	10	$1.061 \mathrm{e}-02$	10	7.1e-04	27	9.824e-03	11
4		min	-. 016	11	-. 004	11	-. 006	12	-1.066e-02	12	-7.154e-04	9	-9.813e-03	9
5	N3	max	2.596	9	. 002	25	2.68	10	$2.579 \mathrm{e}-02$	10	$1.356 \mathrm{e}-03$	27	2.502e-02	11
6		min	-2.598	11	-. 005	11	-2.696	12	-2.595e-02	12	-1.366e-03	9	-2.505e-02	9
7	N4	max	0	28	0	28	0	28	$3.23 \mathrm{e}-04$	27	3.957e-03	25	$3.765 \mathrm{e}-03$	11
8		min	0	1	0	1	0	1	-2.064e-03	9	-4.674e-03	11	-4.078e-03	9
9	N5	max	0	28	0	28	0	28	$2.023 \mathrm{e}-03$	9	$4.722 \mathrm{e}-03$	27	5.294e-03	11
10		min	0	1	0	1	0	1	-6.332e-04	27	-5.463e-03	9	-4.128e-03	25
11	N6	max	0	28	0	28	0	28	$4.56 \mathrm{e}-03$	26	$4.954 \mathrm{e}-03$	28	1.117e-03	11
12		min	0	1	0	1	0	1	-5.376e-03	12	-5.669e-03	10	5.269e-04	25
13	N7	max	2.446	9	. 002	25	2.525	10	$2.579 \mathrm{e}-02$	10	1.356e-03	27	2.502e-02	11
14		min	-2.448	11	-. 005	11	-2.54	12	-2.595e-02	12	-1.366e-03	9	-2.505e-02	9
15	N8	max	1.228	9	. 002	25	1.271	10	$2.569 \mathrm{e}-02$	10	1.16e-03	27	2.492e-02	11
16		min	-1.231	11	-. 005	11	-1.279	12	-2.585e-02	12	-1.169e-03	9	-2.495e-02	9
17	N9	max	2.426	9	. 387	12	2.525	10	$2.579 \mathrm{e}-02$	10	1.356e-03	27	2.502e-02	11
18		min	-2.427	11	-. 389	10	-2.54	12	-2.595e-02	12	-1.366e-03	9	-2.505e-02	9
19	N10	max	1.21	9	. 386	12	1.271	10	$2.569 \mathrm{e}-02$	10	1.16e-03	27	2.492e-02	11
20		min	-1.213	11	-. 387	10	-1.279	12	-2.585e-02	12	-1.169e-03	9	-2.495e-02	9
21	N11	max	4.208	9	. 387	12	4.388	10	$2.677 \mathrm{e}-02$	10	1.356e-03	27	$2.555 \mathrm{e}-02$	11
22		min	-4.207	11	-. 389	10	-4.415	12	-2.693e-02	12	-1.366e-03	9	-2.559e-02	9
23	N12	max	1.159	9	. 386	12	1.219	10	$2.569 \mathrm{e}-02$	10	1.16e-03	27	2.492e-02	11
24		min	-1.163	11	-. 387	10	-1.226	12	-2.585e-02	12	-1.169e-03	9	-2.495e-02	9
25	N15	max	2.456	9	. 32	11	2.525	10	$2.579 \mathrm{e}-02$	10	$1.356 \mathrm{e}-03$	27	$2.502 \mathrm{e}-02$	11
26		min	-2.458	11	-. 324	9	-2.54	12	-2.595e-02	12	-1.366e-03	9	-2.505e-02	9
27	N16	max	1.237	9	. 319	11	1.271	10	$2.569 \mathrm{e}-02$	10	1.16e-03	27	2.492e-02	11
28		min	-1.24	11	-. 323	9	-1.279	12	-2.585e-02	12	-1.169e-03	9	-2.495e-02	9
29	N17	max	4.239	9	. 32	11	4.36	10	2.633e-02	10	$1.356 \mathrm{e}-03$	27	$2.555 \mathrm{e}-02$	11
30		min	-4.238	11	-. 324	9	-4.386	12	-2.65e-02	12	-1.366e-03	9	-2.559e-02	9
31	N18	max	1.186	9	. 319	11	1.219	10	$2.569 \mathrm{e}-02$	10	1.16e-03	27	2.492e-02	11
32		min	-1.189	11	-. 323	9	-1.226	12	-2.585e-02	12	-1.169e-03	9	-2.495e-02	9
33	N21	max	2.456	9	. 327	9	2.525	10	$2.579 \mathrm{e}-02$	10	$1.356 \mathrm{e}-03$	27	$2.502 \mathrm{e}-02$	11
34		min	-2.458	11	-. 33	11	-2.54	12	-2.595e-02	12	-1.366e-03	9	-2.505e-02	9
35	N22	max	1.237	9	. 326	9	1.271	10	$2.569 \mathrm{e}-02$	10	1.16e-03	27	$2.492 \mathrm{e}-02$	11
36		min	-1.24	11	-. 328	11	-1.279	12	-2.585e-02	12	-1.169e-03	9	-2.495e-02	9
37	N23	max	4.268	9	. 327	9	4.36	10	$2.633 \mathrm{e}-02$	10	1.356e-03	27	2.598e-02	11
38		min	-4.267	11	-. 33	11	-4.386	12	-2.65e-02	12	-1.366e-03	9	-2.602e-02	9
39	N24	max	1.186	9	. 326	9	1.219	10	$2.569 \mathrm{e}-02$	10	1.16e-03	27	2.492e-02	11
40		min	-1.189	11	-. 328	11	-1.226	12	-2.585e-02	12	-1.169e-03	9	-2.495e-02	9

Member		Shape	$\begin{gathered} \text { Code Check } \\ \hline .778 \end{gathered}$	Lo... LC		She...Lo	Pnc/...Pnt/o...Mnyy...Mnzz...Cb Eqn				
1	M1	HSS5.563X0.2..		8....	11	. 075 8....	940.68484 .0421	11.876	11.876	1.4...	H1-.
2	M2	L4X4X6	. 195	6....	10	. $00211 .$.	y...13.12861.653	2.926	5.327	1.1.	H2-1
3	M3	L4X4X6	. 304	6....	9	.0020	y ...13.01761.653	2.926	5.321	1.1..	H2-1
4	M4	L4X4X6	. 196	6.	12	. $00211 .$.	y ...13.12861.653	2.926	5.327	1.1.	H2-1
5	M7	PIPE_2.5	. 154	4....	12	. $0454 . .$.	...14.88633.743	2.393	2.393	1.68	H1-.
6	M10	PIPE 2.5	. 100	. 208	9	. $0164 \ldots$...14.88633.743	2.393	2.393	3.3	H1-.
7	M13	PIPE_2.5	. 154	4....	9	. $0454 \ldots$	914.88633 .743	2.393	2.393	4.11	H1-...

二NT三Kengineering	Subject:	Antenna Mast Bolts and Baseplate
	Location:	Milford, CT
Csanford, CToc-tos R:[203)488-8887	Rev. 0: 10/22/20	Prepared by: T.J.L. Checked by: C.F.C. Job No. 20143.03

Mast Connection to Frame:

Design Reactions:

Axial $=$

Shear $=$

Moment $=$

Bolt Data:
UseASTMA325

Number of Bolts =
Distance Between Bolts x-dir
Distance Between Bolts x-dir=
Bolt Ultimate Strength $=$
Bolt Yield Strength =
Bolt Modulus=

Diameter of Flange Bolts=

Threads per Inch =

Base Plate Data:
Base Plate Steel $=$
Allowable Yield Stress $=$
Base Plate Width $=$
Base Plate Length =
Base Plate Thickness =
Pole Diameter $=$

Base Plate Data:

Weld Grade	E70XX	(User Input)
WeldYield Stress $=$	$\mathrm{F}_{\mathrm{yw}}:=70 \cdot \mathrm{ksi}$	(User Input)
Weld Size $=$	$\mathrm{sw}:=0.25 \cdot \mathrm{in}$	(User Input)

二NJT C ¢ engineering	Subject:	Antenna Mast Bolts and Baseplate
	Location:	Milford, CT
	Rev. 0: 10/22/20	Prepared by: T.J.L. Checked by: C.F.C. Job No. 20143.03

Bolt Analysis:

GrossArea of Bolt=	$\mathrm{A}_{\mathrm{g}}:=\frac{\pi}{4} \cdot \mathrm{D}^{2}=0.307 \cdot \mathrm{in}^{2}$
Tensile Force Horizontal $=$	$\mathrm{T}_{\mathrm{x}}:=\frac{\text { Moment }}{\mathrm{S}_{\mathrm{x}} \cdot \frac{\mathrm{~N}}{2}}-\frac{\text { Axial }}{\mathrm{N}}=0.5 \cdot \mathrm{kips}$
Tensile Force Horizontal $=$	$\mathrm{T}_{\mathrm{y}}:=\frac{\text { Moment }}{\mathrm{S}_{\mathrm{y}} \cdot \frac{\mathrm{~N}}{2}}-\frac{\text { Axial }}{\mathrm{N}}=0.5 \cdot \mathrm{kips}$
Spacing Diagonal $=$	$S_{d}:=\sqrt{S_{x}{ }^{2}+S_{y}{ }^{2}}=9.7 \cdot$ in
Tensile Force Diagonal $=$	$\mathrm{T}_{\mathrm{D}}:=\frac{\text { Moment }}{\mathrm{S}_{\mathrm{d}}}-\frac{\text { Axial }}{\mathrm{N}}=0.5 \cdot \mathrm{kips}$
Maximum Tensile Force $=$	$\mathrm{T}_{\text {Max }}:=\max \left(\mathrm{T}_{\mathrm{x}}, \mathrm{T}_{\mathrm{y}}, \mathrm{T}_{\mathrm{D}}\right)=0.5 \cdot \mathrm{kips}$
Allowable Tensile Force =	$\mathrm{T}_{\mathrm{ALL}}:=\frac{\left(0.75 \cdot \mathrm{~F}_{\mathrm{u}} \cdot \mathrm{~A}_{\mathrm{g}}\right)}{2}=13.8 \cdot \mathrm{kips}$
Bolt \% of Capacity =	$\frac{\mathrm{T}_{\mathrm{Max}}}{\mathrm{~T}_{\mathrm{ALL}}}=3 . \%$
Condition1 =	Condition1: $=$ if $\left(\frac{T_{\text {Max }}}{T_{\text {ALL }}} \leq 1.00\right.$, "OK" , "Overstressed" $)$
	Condition1 = "OK"

二 $=\mathrm{NT}$ 二人 K engineering	Subject：	Antenna Mast Bolts and Baseplate
	Location：	Milford，CT
Branford，CTO6405 $\quad \mathrm{F}(203$（488．8887	Rev．0：10／22／20	Prepared by：T．J．L．Checked by：C．F．C． Job No． 20143.03

Base Plate Check：

Allowable Bending Stress＝	$F_{b}:=\frac{F_{y}}{1.67}=21.557 \cdot \mathrm{ksi}$
MomentArm＝	$K:=\frac{\left(S_{x}-D_{p}\right)}{2}=1.69 \cdot \mathrm{in}$
Moment in Base Plate $=$	$\mathrm{M}:=\mathrm{K} \cdot \mathrm{T}_{\mathrm{x}}{ }^{2}=1.6 \cdot \mathrm{kps} \cdot \mathrm{in}$
Section Modulus＝	$\mathrm{S}_{\mathrm{Z}}:=\frac{1}{4} \cdot \mathrm{PI}_{\mathrm{L}} \cdot \mathrm{PI}_{\mathrm{t}}{ }^{2}=0.41 \cdot \mathrm{in}^{3}$
Bending Stress＝	$f_{b}:=\frac{M}{S_{Z}}=3.95 \cdot \mathrm{ksi}$
	Condition2：＝if（ $\mathrm{f}_{\mathrm{b}}<\mathrm{F}_{\mathrm{b}}$ ，＂OK＂，＂Overstressed＂$)$
	Condition2＝＂OK＂

Base Plate to Mast Weld Check：

> WeldArea $=$
> Weld Moment of Inertia $=$
> Section Modulus of Weld=
> Weld Stress=
> $F_{w}:=0.3 \cdot F_{y w}=21 \cdot \mathrm{ksi}$
> $\mathrm{A}_{\mathrm{w}}:=\frac{\pi}{4} \cdot\left[\left(\mathrm{D}_{\mathrm{p}}+2 \mathrm{sw} \cdot 0.707\right)^{2}-\mathrm{D}_{\mathrm{p}}^{2}\right]=3.22 \cdot \mathrm{in}^{2}$
> $\mathrm{I}_{\mathrm{w}}:=\frac{\pi}{64} \cdot\left[\left(\mathrm{D}_{\mathrm{p}}+2 \mathrm{sw} \cdot 0.707\right)^{4}-\mathrm{D}_{\mathrm{p}}^{4}\right]=13.57 \cdot \mathrm{in}^{4}$
> $\mathrm{c}:=\frac{\mathrm{D}_{\mathrm{p}}}{2}+\mathrm{sw} \cdot 0.707=2.99 \cdot \mathrm{in}$
> $S_{w}:=\frac{\mathrm{I}_{\mathrm{w}}}{\mathrm{c}}=4.54 \cdot \mathrm{in}^{3}$
> $f_{w}:=\frac{\text { Moment }}{S_{w}}+\frac{\text { Shear }}{A_{w}}=0.28 \cdot \mathrm{ksi}$
> Condition3 := if $\left(\mathrm{f}_{\mathrm{w}}<\mathrm{F}_{\mathrm{w}}\right.$, "OK" , "Overstressed" $)$
> Condition3 = "OK"

Centek Engineering	CT11002A - Antenna Mount (East)	SK-1			
LAA		Oct 21, 2020			
20143.03					Antenna Mount.r3d

Member Code Checks Displayed (Enveloped) Envelope Only Solution		
Centek Engineering		CT11002A - Antenna Mount (East)
LAA		SK-2
20143.03		Oct 21, 2020
		Antenna Mount.r3d

	Label	X [ft]	Y [ft]	Z [ft]	Temp [deg F]	Detach From Dia...
1	N1	0	0	0		
2	N2	0	5	0		
3	N3	0	24	0		
4	N4	0	0	5		
5	N6	5	0	0		

Hot Rolled Steel Properties

Label		E [ksi]	G [ksi]	Nu	Therm. C	Density [k.	Yield [Ry	Fu [k	Rt
1	A36 Gr. 36	29000	11154	0.3	0.65	0.49	36	1.5	58	1.2
2	A572 Gr. 50	29000	11154	0.3	0.65	0.49	50	1.1	58	1.2
3	A992	29000	11154	0.3	0.65	0.49	50	1.1	58	1.2
4	A500 Gr. 42	29000	11154	0.3	0.65	0.49	42	1.3	58	1.1
5	A500 Gr. 46	29000	11154	0.3	0.65	0.49	46	1.2	58	1.1
6	A53 Grad...	29000	11154	0.3	0.65	0.49	35	1.5	58	1.2

Hot Rolled Member Properties

	Label	Shape	Length [ft]	Lb y-y [ft]	Lb z-z [ft]	Lcomp t...	Lcomp...	L-Torqu...	K y-y	K z-z	Cb	Function
1	M1	Pipe Mast	24			Lbyy						Lateral
2	M2	Brace	7.071			Lbyy						Lateral
3	M3	Brace	7.071			Lbyy						Lateral

Member PoInt Loads (BLC 2 : WeIght of Equipment)

	Member Label	Direction	Magnitude [k , k-ft]	Location [(ft, \%)]	Inactive [(k, k-ft), (in, ...
1	M1	Y	-0.312	21	Active

Member Point Loads (BLC 3 : Wind X-Direction)

Member Label									Direction	Magnitude $[\mathrm{k}, \mathrm{k}-\mathrm{ft}]$		Location $[\mathrm{ft}, \%)]$	Inactive $[(\mathrm{k}, \mathrm{k}$ - ft$),(\mathrm{in}, \ldots$
1	M 1	X	0.666	21	Active								

Member Point Loads (BLC 4 : Wind Z-Direction)

	Member Label	Direction	Magnitude [k, k-ft]	Location [(ft, \%)]	Inactive [(k, k-ft), (in, ...
1	M1	Z	0.666	21	Active

Member Distributed Loads (BLC 3 : Wind X-Direction)

	Member Label	Direction	Start Magnitud.	End Magnitude.	Start Location [End Location [(.	Inactive [(k, k-f
1	M1	X	0.018	0.018	0	18	Active

Member Distributed Loads (BLC 4 : Wind Z-Direction)

Basic Load Cases

	BLC Desc..	Category	X Gravity	Y Gravity	Z Gravity	Nodal	Point	Distributed	Area(Me...	Surface(P...
1	Self Weight	DL		-1						
2	Weight of...	DL					1			
3	Wind X-Di...	WLX					1	1		
4	Wind Z-Di...	WLZ					1	1		

Load Combinations

Load Combinations (Continued)

5	IB...	Yes	Y	DL	1	RL	1															BLC	
6	IB...	Yes	Y	DL	1	LL	0.75	LLS	0.75	RLL	0.75												
7	IB.	Yes	Y	DL	1	LL	0.75	LLS	0.75	SL	0.75	SLN	0.75										
8	IB.	Yes	Y	DL	1	LL	0.75	LLS	0.75	RL	0.75												
9	IB...	Yes	Y	DL	1	WLX	0.6																
10	IB...	Yes	Y	DL	1	WLZ	0.6																
11	IB...	Yes	Y	DL	1	WLX	-0.6																
12	IB.	Yes	Y	DL	1	WLZ	-0.6																
13	IB.	Yes	Y	DL	1	WLX	0.45	LL	0.75	LLS	0.75	RLL	0.75										
14	IB...	Yes	Y	DL	1	WLZ	0.45	LL	0.75	LLS	0.75	RLL	0.75										
15	IB...	Yes	Y	DL	1	WLX	-0.45	LL	0.75	LLS	0.75	RLL	0.75										
16	IB.	Yes	Y	DL	1	WLZ	-0.45	LL	0.75	LLS	0.75	RLL	0.75										
17	IB...	Yes	Y	DL	1	WLX	0.45	LL	0.75	LLS	0.75	SL	0.75	SLN	0.75								
18	IB...	Yes	Y	DL	1	WLZ	0.45	LL	0.75	LLS	0.75	SL	0.75	SLN	0.75								
19	IB...	Yes	Y	DL	1	WLX	-0.45	LL	0.75	LLS	0.75	SL	0.75	SLN	0.75								
20	IB.	Yes	Y	DL	1	WLZ	-0.45	LL	0.75	LLS	0.75	SL	0.75	SLN	0.75								
21	IB...	Yes	Y	DL	1	WLX	0.45	LL	0.75	LLS	0.75	RL	0.75										
22	IB.	Yes	Y	DL	1	WLZ	0.45	LL	0.75	LLS	0.75	RL	0.75										
23	IB.	Yes	Y	DL	1	WLX	-0.45	LL	0.75	LLS	0.75	RL	0.75										
24	IB...	Yes	Y	DL	1	WLZ	-0.45	LL	0.75	LLS	0.75	RL	0.75										
25	IB.	Yes	Y	DL	0.6	WLX	0.6																
26	IB...	Yes	Y	DL	0.6	WLZ	0.6																
27	IB...	Yes	Y	DL	0.6	WLX	-0.6																
28	IB...	Yes	Y	DL	0.6	WLZ	-0.6																

Node Reactions

Node...			X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N1	max	1.5	9	2.818	12	1.5	10	0	28	0	11	0	28
2		min	-1.501	11	-1.633	25	-1.501	12	0	1	0	9	0	1
3	N4	max	0	12	2.131	10	2.095	12	0	28	0	28	0	28
4		min	0	1	-2.057	12	-2.094	10	0	1	0	1	0	1
5	N6	max	2.095	11	2.131	9	0	11	0	28	0	28	0	28
6		min	-2.094	9	-2.057	11	0	1	0	1	0	1	0	1
7	Totals:	max	0.594	27	0.798	23	0.594	12						
8		min	-0.594	9	0.479	26	-0.594	10						

Asd360

Member Shape Code... Loc [ft] LC Shear... Loc [ft] Dir LC Pnc/o... Pnt/o... Mnyy/...Mnzz/... Cb Eqn

	寺			Loc [ft]	LC	ar...	Loc [ft]	Dir	LC	Prolo		Mn			Eqn
1	M1	PIPE.	0.874	5	12	0.060	5		10	16.527	86.766	9.658	9.658	1.418	H1-1b
2	M2	L5X5X5	0.082	3.609	10	0.001	7.071	y	22	42.425	66.18	4.247	7.872	1.136	H2-1
3	M3	L5X5X5	0.082	3.609	9	0.001	7.071	y	9	42.425	66.18	4.247	7.872	1.136	H2-1

二NT三Kengineering	Subject:	Antenna Mast Bolts and Baseplate
	Location:	Milford, CT
Branford, C OOC405 E:(203)48388887	Rev. 0: 10/22/20	Prepared by: T.J.L. Checked by: C.F.C. Job No. 20143.03

Mast Connection to Frame:

Design Reactions:

Axial $=$

Shear $=$

Moment $=$

Bolt Data:

UseASTMA325

Number of Bolts =
Distance Between Bolts x-dir
Distance Between Bolts x-dir=
Bolt Ultimate Strength $=$
Bolt Yield Strength =
Bolt Modulus=

Diameter of Flange Bolts=

Threads per Inch =

Base Plate Data:
Base Plate Steel $=$
Allowable Yield Stress $=$
Base Plate Width $=$
Base Plate Length $=$
Base Plate Thickness =
Pole Diameter =

Base Plate Data:

Weld Grade	E70XX	(User Input)
WeldYield Stress $=$	$\mathrm{F}_{\mathrm{yw}}:=70 \cdot \mathrm{ksi}$	(User Input)
Weld Size $=$	$\mathrm{sw}:=0.1875 \cdot \mathrm{in}$	(User Input)

二二NT $=\mathrm{K}$ engineering	Subject:	Antenna Mast Bolts and Baseplate
 F. (203) 488 -8c9?	Location:	Milford, CT
Emiordicteas	Rev. 0: 10/22/20	Prepared by: T.J.L. Checked by: C.F.C. Job No. 20143.03

Bolt Analysis:

GrossArea of Bolt=	$\mathrm{A}_{\mathrm{g}}:=\frac{\pi}{4} \cdot \mathrm{D}^{2}=0.196 \cdot \mathrm{in}^{2}$
Tensile Force Horizontal $=$	$\mathrm{T}_{\mathrm{x}}:=\frac{\text { Moment }}{\mathrm{S}_{\mathrm{x} \cdot \frac{\mathrm{~N}}{2}}^{\mathrm{N}}-\frac{\text { Axial }}{\mathrm{N}}=0.4 \cdot \mathrm{kips} .}$
Tensile Force Horizontal $=$	$\mathrm{T}_{\mathrm{y}}:=\frac{\text { Moment }}{\mathrm{S}_{\mathrm{y}} \cdot \frac{\mathrm{~N}}{2}}-\frac{\text { Axial }}{\mathrm{N}}=0.4 \cdot \mathrm{kips}$
Spacing Diagonal $=$	$S_{d}:=\sqrt{S_{x}{ }^{2}+S_{y}{ }^{2}}=9.4 \cdot \mathrm{in}$
Tensile Force Diagonal $=$	$T_{D}:=\frac{\text { Moment }}{S_{d}}-\frac{\text { Axial }}{N}=0.4 \cdot \mathrm{kips}$
Maximum Tensile Force $=$	$\mathrm{T}_{\text {Max }}:=\max \left(\mathrm{T}_{\mathrm{x}}, \mathrm{T}_{\mathrm{y}}, \mathrm{T}_{\mathrm{D}}\right)=0.4 \cdot \mathrm{kips}$
Allowable Tensile Force =	$\mathrm{T}_{\mathrm{ALL}}:=\frac{\left(0.75 \cdot \mathrm{~F}_{\mathrm{u}} \cdot \mathrm{~A}_{\mathrm{g}}\right)}{2}=8.8 \cdot \mathrm{kips}$
Bolt \% of Capacity =	$\frac{\mathrm{T}_{\mathrm{Max}}}{\mathrm{~T}_{\mathrm{ALL}}}=5 . \%$
Condition1 =	$\text { Condition1 := if }\left(\frac{T_{\text {Max }}}{T_{\text {ALL }}} \leq 1.00, \text { "OK" , "Overstressed" }\right)$
	Condition1 = "OK"

二 $=\mathrm{NT}$ 二人 K engineering	Subject：	Antenna Mast Bolts and Baseplate
	Location：	Milford，CT
Branford，CTO6405 $\quad \mathrm{F}(203$（488．8887	Rev．0：10／22／20	Prepared by：T．J．L．Checked by：C．F．C． Job No． 20143.03

Base Plate Check：

Allowable Bending Stress＝	$F_{b}:=\frac{F_{y}}{1.67}=21.557 \cdot \mathrm{ksi}$
MomentArm＝	$K:=\frac{\left(S_{x}-D_{p}\right)}{2}=2 \cdot \mathrm{in}$
Moment in Base Plate $=$	$\mathrm{M}:=\mathrm{K} \cdot \mathrm{T}_{\mathrm{x}} \cdot 2=1.6 \cdot \mathrm{kips} \cdot \mathrm{in}$
Section Modulus＝	$\mathrm{S}_{\mathrm{Z}}:=\frac{1}{4} \cdot \mathrm{PI}_{\mathrm{L}} \cdot \mathrm{PI}_{\mathrm{t}}^{2}=0.23 \cdot \mathrm{in}^{3}$
Bending Stress＝	$f_{b}:=\frac{M}{S_{Z}}=7 \cdot \mathrm{ksi}$
	Condition2：$=\mathrm{if}\left(\mathrm{f}_{\mathrm{b}}<\mathrm{F}_{\mathrm{b}}\right.$, ＂OK＂，＂Overstressed＂$)$
	Condition2＝＂OK＂

Base Plate to Mast Weld Check：

$$
\begin{array}{cl}
\text { Allowable Weld Stress }= & \mathrm{F}_{\mathrm{w}}:=0.3 \cdot \mathrm{~F}_{\mathrm{yw}}=21 \cdot \mathrm{ksi} \\
\qquad \text { Weld Area }= & \mathrm{A}_{\mathrm{w}}:=\frac{\pi}{4} \cdot\left[\left(\mathrm{D}_{\mathrm{p}}+2 \mathrm{sw} \cdot 0.707\right)^{2}-\mathrm{D}_{\mathrm{p}}^{2}\right]=1.93 \cdot \mathrm{in}^{2} \\
\text { Weld Moment of Inertia }= & \mathrm{I}_{\mathrm{w}}:=\frac{\pi}{64} \cdot\left[\left(\mathrm{D}_{\mathrm{p}}+2 \mathrm{sw} \cdot 0.707\right)^{4}-\mathrm{D}_{\mathrm{p}}^{4}\right]=5.18 \cdot \mathrm{in}^{4} \\
& \mathrm{c}:=\frac{\mathrm{D}_{\mathrm{p}}}{2}+\mathrm{sw} \cdot 0.707=2.38 \cdot \mathrm{in} \\
\text { Section Mbdulus ofWeld }= & \mathrm{S}_{\mathrm{w}}:=\frac{\mathrm{I}_{\mathrm{w}}}{\mathrm{c}}=2.17 \cdot \mathrm{in}^{3} \\
\text { Weld Stress }= & \mathrm{f}_{\mathrm{w}}:=\frac{\text { Moment }}{\mathrm{S}_{\mathrm{w}}}+\frac{\mathrm{Shear}^{A_{w}}=0.78 \cdot \mathrm{ksi}}{} \\
& \text { Condition3 }:=\mathrm{if}\left(\mathrm{f}_{\mathrm{w}}<\mathrm{F}_{\mathrm{w}}, " O K ", ~ " O v e r s t r e s s e d "\right) \\
\text { Condition3 }=\text { "OK" }
\end{array}
$$

Member Code Checks Displayed (Enveloped) Envelope Only Solution

Centek Engineering		
LAA	CT11002A - Antenna Mount (Delta Sector)	Nov 16, 2020 at 2:20 PM
20143.03		Antenna Mount-DELTA.r3d

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (ft/sec^2)	32.2
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver
Hot Rolled Steel Code	AISC 14th(360-10): ASD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 14th(360-10): ASD
Cold Formed Steel Code	AISI S100-10: ASD
Wood Code	AWC NDS-12: ASD
Wood Temperature	$<100 F$
Concrete Code	ACI 318-11
Masonry Code	ACI 530-11: ASD
Aluminum Code	AA ADM1-10: ASD - Building
Stainless Steel Code	AISC 14th(360-10): ASD
Adjust Stiffness?	Yes(Iterative)

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min \% Steel for Column	1
Max \% Steel for Column	8

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
R X	3
R Z	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	I or II
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	4
Cd X	4
Rho Z	1
Rho X	1
Footing Overturning Safety Factor	1
Optimize for OTM/Sliding	No
Check Concrete Bearing	No
Footing Concrete Weight (k/ft^3)	150.001
Footing Concrete f'c (ksi)	4
Footing Concrete Ec (ksi)	3644
Lambda	1
Footing Steel fy (ksi)	60
Minimum Steel	0.0018
Maximum Steel	0.0075
Footing Top Bar	$\# 3$
Footing Top Bar Cover (in)	2
Footing Bottom Bar	$\# 3$
Footing Bottom Bar Cover (in)	3.5
Pedestal Bar	$\# 3$
Pedestal Bar Cover (in)	1.5
Pedestal Ties	

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (1...	Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr. 36	29000	11154	. 3	. 65	. 49	36	1.5	58	1.2
2	A572 Gr. 50	29000	11154	. 3	. 65	49	50	1.1	58	1.2
3	A992	29000	11154	. 3	. 65	. 49	50	1.1	58	1.2
4	A500 Gr. 42	29000	11154	. 3	. 65	. 49	42	1.3	58	1.1
5	A500 Gr. 46	29000	11154	. 3	. 65	. 49	46	1.2	58	1.1
6	A53 Grade B	29000	11154	. 3	. 65	49	35	1.5	58	1.2

Hot Rolled Steel Section Sets

Label		Shape	Type	Design List	Material	Design Rul...A [in2] lyy [in4] zz [in4] J [in4]				
1	Pipe Mast	PIPE_2.5	Beam	Pipe	A53 Grade B	Typical	1.61	1.45	1.45	2.89

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[.	.Lcomp bot[..	L-torq...	Kyy	Kzz	Cb	Functi.
1	M1	Pipe Mast	10			Lbyy						Lateral

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(d..	Section/Shape	Type	Design List	Material	Design Rul.
1	M1	N1	N4			Pipe Mast	Beam	Pipe	A53 Gra...	Typical
2	M2	N3	N6			RIGID	None	None	RIGID	Typical
3	M3	N2	N5			RIGID	None	None	RIGID	Typical

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	$\mathrm{Z}[\mathrm{ft}]$	Temp [F]	Detach From Dia...
1	N1	0	-4	0	0	
2	N2	0	1	0	0	
3	N3	0	5	0	0	
4	N4	0	6	0	0	
5	N5	0	1	-1	0	
6	N6	0	5	-1	0	

Joint Boundary Conditions

Joint Labe		X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N5	Reaction	Reaction	Reaction		Reaction	Reaction
2	N6	Reaction	Reaction	Reaction		Reaction	Reaction

Member Point Loads (BLC 2 : Weight of Equipment)

Member Label	Direction		Magnitude[k,k-ft]	Location[ft,\%]
1	M 1	Y	-.169	7
2	M 1	Y	-.074	3
3	M 1	Y	-.086	3
4	M 1	Y	-.092	1

Member Point Loads (BLC 3 : Wind X-Direction)

Member Label		Direction	Magnitude[k,k-ft]	
1	M 1	X	.265	Location[ft,\%]
2	M 1	X	.064	3
3	M 1	X	.08	3
4	M 1	X	.144	1

Member Point Loads (BLC 4 : Wind Z-Direction)

Member Point Loads (BLC 4 : Wind Z-Direction) (Continued)

Member Label	Direction	Magnitude[k,k-ft]	Location[ft,\%]	
1	M 1	Z	.749	7
2	M 1	Z	.05	3
3	M 1	Z	.063	3
4	M 1	Z	.064	1

Member Distributed Loads (BLC 3 : Wind X-Direction)

	Member Label	Direction	Start Magnitude[k/ft, ...	End Magnitude[k/ft,F.	Start Location[ft,\%]	End Location[ft,\%]
1	M1	X	012	012	0	0

Basic Load Cases

BLC Description		Category	X Gra...Y Gra...Z Gra... Joint				Point	Distrib..Area(... Surfa...		
1	Self Weight	DL		-1						
2	Weight of Equipment	DL					4			
3	Wind X-Direction	WLX					4	1		
4	Wind Z-Direction	WLZ					4			

Load Combinations

	Description	Solve	P...	B.	Fa.	BLC	Fact..	BLC	Fa.	BLC	Fa..	BLC	Fa...	B.	Fa...	B... Fa...	B...	Fa... B...	. Fa..	B.	
1	IBC 16-8	Yes	Y	DL	1																
2	IBC 16-9	Yes	Y	DL	1	LL	1	LLS	1												
3	IBC 16-10 (a)	Yes	Y	DL	1	RLL	1														
4	IBC 16-10 (b)	Yes	Y	DL	1	SL	1	SLN	1												
5	IBC 16-10 (c)	Yes	Y	DL	1	RL	1														
6	IBC 16-11 (a)	Yes	Y	DL	1	LL	. 75	LLS	. 75	RLL	. 75										
7	IBC 16-11 (b)	Yes	Y	DL	1	LL	. 75	LLS	. 75	SL	. 75	SLN	. 75								
8	IBC 16-11 (c)	Yes	Y	DL	1	LL	. 75	LLS	. 75	RL	. 75										
9	IBC 16-12 (a) (a)	Yes	Y	DL	1	WLX	. 6														
10	IBC 16-12 (a) (b)	Yes	Y	DL	1	WLZ	6														
11	IBC 16-12 (a) (c)	Yes	Y	DL	1	WLX	-. 6														
12	IBC 16-12 (a) (d)	Yes	Y	DL	1	WLZ	-. 6														
13	IBC 16-13 (a) (a)	Yes	Y	DL	1	WLX	. 45	LL	. 75	LLS	75	RLL	. 75								
14	IBC 16-13 (a) (b)	Yes	Y	DL	1	WLZ	. 45	LL	. 75	LLS	. 75	RLL	. 75								
15	IBC 16-13 (a) (c)	Yes	Y	DL	1	WLX	-. 45	LL	. 75	LLS	. 75	RLL	. 75								
16	IBC 16-13 (a) (d)	Yes	Y	DL	1	WLZ	-. 45	LL	. 75	LLS	. 75	RLL	. 75								
17	IBC 16-13 (b) (a)	Yes	Y	DL	1	WLX	. 45	LL	. 75	LLS	. 75	SL	. 75	S.	. 75						
18	IBC 16-13 (b) (b)	Yes	Y	DL	1	WLZ	. 45	LL	. 75	LLS	. 75	SL	. 75	S.	. 75						
19	IBC 16-13 (b) (c)	Yes	Y	DL	1	WLX	-. 45	LL	. 75	LLS	. 75	SL	. 75	S...	. 75						
20	IBC 16-13 (b) (d)	Yes	Y	DL	1	WLZ	-. 45	LL	. 75	LLS	. 75	SL	. 75	S...	75						
21	IBC 16-13 (c) (a)	Yes	Y	DL	1	WLX	. 45	LL	. 75	LLS	75	RL	. 75								
22	IBC 16-13 (c) (b)	Yes	Y	DL	1	WLZ	45	LL	. 75	LLS	. 75	RL	. 75								
23	IBC 16-13 (c) (c)	Yes	Y	DL	1	WLX	-. 45	LL	. 75	LLS	. 75	RL	. 75								
24	IBC 16-13 (c) (d)	Yes	Y	DL	1	WLZ	-. 45	LL	. 75	LLS	. 75	RL	. 75								
25	IBC 16-15 (a)	Yes	Y	DL	. 6	WLX	. 6														
26	IBC 16-15 (b)	Yes	Y	DL	. 6	WLZ	. 6														
27	IBC 16-15 (c)	Yes	Y	DL	. 6	WLX	-. 6														
28	IBC 16-15 (d)	Yes	Y	DL	. 6	WLZ	-. 6														

Envelope Joint Reactions

Joint			X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N5	max	. 303	27	. 319	12	. 522	12	0	28	. 303	27	. 517	
2		min	-. 303	9	. 063	26	-. 332	26	0	1	-. 303	9	-. 517	25
3	N6	max	. 101	27	. 317	10	. 081	28	0	28	. 101	27	. 085	27
4		min	-. 101	9	. 062	28	-. 272	10	0	1	-. 101	9	-. 085	9
5	Totals:	max	. 404	27	. 476	24	. 556	28						
6		min	-. 404	9	. 285	25	-. 556	10						

Envelope Joint Displacements

Joint			X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC Y Rotatio... LC Z Rotatio... LC				
1	N1	max	. 197	25	0	26	. 088	26	$2.976 \mathrm{e}-03$	12	0	28	$4.317 \mathrm{e}-03$	25
2		min	-. 197	27	-. 014	12	-. 154	12	-1.88e-03	26	0	1	-4.317e-03	27
3	N2	max	0	28	0	26	0	28	$1.112 \mathrm{e}-03$	12	0	28	0	28
4		min	0	1	-. 013	12	0	1	$4.67 \mathrm{e}-06$	26	0	1	0	1
5	N3	max	0	28	0	26	0	28	$1.106 \mathrm{e}-03$	12	0	28	0	28
6		min	0	1	-. 013	12	0	1	-1.265e-05	26	0	1	0	1
7	N4	max	0	25	0	26	. 013	12	1.106e-03	12	0	28	5.137e-06	27
8		min	0	11	-. 013	12	0	26	-1.265e-05	26	0	1	-5.137e-06	9
9	N5	max	0	28	0	28	0	28	$1.112 \mathrm{e}-03$	12	0	28	0	28
10		min	0	1	0	1	0	1	$4.67 \mathrm{e}-06$	26	0	1	0	1
11	N6	max	0	28	0	28	0	28	$1.106 \mathrm{e}-03$	12	0	28	0	28
12		min	0	1	0	1	0	1	-1.265e-05	26	0	1	0	1

Envelope AISC 14th(360-10): ASD Steel Code Checks

Member		Shape	Code Check	Lo...	LC	She...Lo..		Pnc/... Pnt/o...Mnyy...Mnzz...Cb Eqn		
1	M1	PIPE_2.5	. 276	5	11	. 041	5	...14.88633.743 2.393\|	2.393	1.6...H1-...

s.

Envelope Ony Solution		
Centek Engineering		
LAA	CT11002A Platform	
20143.03	Member Framing	Oct 22, 2020 at 9:50 AM

Member Code Checks Displayed (Envelop Envelope Only Solution		
Centek Engineering		
LAA	CT11002A Platform	Oct 22, 2020 at 9:49 AM
20143.03	Unity Check	CT11002A_AMA_Rev0.r3d

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (ft/sec^2)	32.2
Wall Mesh Size (in)	24
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver
Hot Rolled Steel Code	AISC 14th(360-10): ASD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 14th(360-10): ASD
Cold Formed Steel Code	AISI S100-12: ASD
Wood Code	AWC NDS-15: ASD
Wood Temperature	$<~ 100 F$
Concrete Code	ACI 318-14
Masonry Code	ACI 530-13: ASD
Aluminum Code	AA ADM1-15: ASD - Building
Stainless Steel Code	AISC 14th(360-10): ASD
Adjust Stiffness?	Yes(Iterative)

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min \% Steel for Column	1
Max \% Steel for Column	8

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	Yes
Ct X	. 02
Ct Z	. 02
T X (sec)	Not Entered
T Z (sec)	Not Entered
R X	3
R Z	3
Ct Exp. X	. 75
Ct Exp. Z	. 75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	I or II
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	4
Cd X	4
Rho Z	1
Rho X	1
Footing Overturning Safety Factor	1
Optimize for OTM/Sliding	No
Check Concrete Bearing	No
Footing Concrete Weight (k/ft^3)	. 145
Footing Concrete f'c (ksi)	4
Footing Concrete Ec (ksi)	3644
Lambda	1
Footing Steel fy (ksi)	60
Minimum Steel	0.0018
Maximum Steel	0.0075
Footing Top Bar	\#6
Footing Top Bar Cover (in)	1.5
Footing Bottom Bar	\#6
Footing Bottom Bar Cover (in)	3
Pedestal Bar	\#6
Pedestal Bar Cover (in)	1.5
Pedestal Ties	\#4

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (1.	Density $\left[\mathrm{k} / \mathrm{ft}^{\wedge} 3\right]$	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	. 3	. 65	. 49	50	1.1	65	1.1
2	A36 Gr. 36	29000	11154	. 3	. 65	. 49	36	1.5	58	1.2
3	A572 Gr. 50	29000	11154	. 3	. 65	49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	. 3	. 65	. 527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	. 3	. 65	. 527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	. 3	. 65	. 49	35	1.6	60	1.2
7	A1085	29000	11154	. 3	. 65	. 49	50	1.4	65	1.3

Hot Rolled Steel Section Sets

Label		Shape	Type	Design List	Material	Design Rul...A [in2] lyy [in4] Izz [in4] J [in4]				
1	(E)W12X35	W12X35	Beam	Wide Flange	A36 Gr. 36	Typical	10.3	24.5	285	741
2	(E) HSS 4X4X1/4	HSS4X4X4	Column	SquareTube	A500 Gr.B	Typical	3.37	7.8	7.8	12.8
3	(E)W 12X35 A992	W12X35	Beam	Wide Flange	A992	Typical	10.3	24.5	285	741
4	(E) Vertical Pipe_2.5	PIPE 2.5	Column	Wide Flange	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
5	(E) L4X4X1/4	L4X4X4	VBrace	Single Angle	A36 Gr. 36	Typical	1.93	3	3	044
6	(E) Horizontal_Pipe_..	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	. 627	. 627	1.25
7	(E)L3X3X3/16	L3X3X3	VBrace	Single Angle	A36 Gr. 36	Typical	1.09	. 948	. 948	014
8	(E) Antenna Mast Pip.	PIPE 2.0	Column	Pipe	A53 Gr.B	Typical	1.02	. 627	. 627	1.25
9	(P)Antenna Mast Pip...	PIPE_2.0	Column	Pipe	A53 Gr.B	Typical	1.02	. 627	. 627	1.25
10	(P) Horizontal_Pipe_...	PIPE 2.5	Column	Pipe	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
11	(P)L3X3X1/4	L3X3X4	HBrace	Single Angle	A36 Gr. 36	Typical	1.44	1.23	1.23	. 031
12	(P)L4X4X1/4	L4X4X4	Beam	Single Angle	A36 Gr. 36	Typical	1.93	3	3	044

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[..	Lcomp bot[..	L-torq..	Kyy	Kzz	Cb	Functi...
1	M1	W12X26	19			Lbyy						Lateral
2	M2	W12X26	19			Lbyy						Lateral
3	M3	W12X26	19			Lbyy						Lateral
4	M4	W12X26	30			Segment						Lateral
5	M5	W12X26	30			Segment						Lateral
6	M6	W12X26	30			Lbyy						Lateral
7	M7	W12X26	30			Lbyy						Lateral
8	M8	C6X8.2	8			Lbyy						Lateral
9	M9	C6X8.2	8			Lbyy						Lateral
10	M10	C6X8.2	8			Lbyy						Lateral
11	M11	C6X8.2	8			Lbyy						Lateral
12	M12	L3.5X3.5X4	12.042			Lbyy						Lateral
13	M13	L3.5X3.5X4	12.042			Lbyy						Lateral
14	M14	L3.5X3.5X4	12.042			Lbyy						Lateral
15	M15	L3.5X3.5X4	12.042			Lbyy						Lateral
16	M16	HSS7.000X0.188	2			Lbyy						Lateral
17	M17	HSS7.000X0.188	2			Lbyy						Lateral
18	M18	HSS7.000X0.188	2			Lbyy						Lateral
19	M19	W8X13	8			Lbyy						Lateral
20	M20	W8X13	8			Lbyy						Lateral
21	M21	W8X13	8			Lbyy						Lateral
22	M22	W8X13	8			Lbyy						Lateral
23	M23	W8X13	8			Lbyy						Lateral
24	M24	W8X13	8			Lbyy						Lateral
25	M25	W8X13	3.33			Lbyy						Lateral
26	M26	W8X13	3.33			Lbyy						Lateral

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(d...	Section/Shape	Type	Design List	Material	Design Rul..
1	M1	N5	N12			W12X26	Beam	Wide Flange	A36 Gr. 36	Typical
2	M2	N6	N9			W12X26	Beam	Wide Flange	A36 Gr. 36	Typical
3	M3	N1	N8			W12X26	Beam	Wide Flange	A36 Gr. 36	Typical
4	M4	N4	N3			W12X26	Beam	Wide Flange	A36 Gr. 36	Typical

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(d...	Section/Shape	Type	Design List	Material	Design Rul..
5	M5	N11	N10			W12X26	Beam	Wide Flange A	A36 Gr. 36	Typical
6	M6	N10	N7			W12X26	Beam	Wide Flange	A36 Gr. 36	Typical
7	M7	N3	N2			W12X26	Beam	Wide Flange A	A36 Gr. 36	Typical
8	M8	N21	N20			C6X8.2	Beam	Channel	A36 Gr. 36	Typical
9	M9	N18	N19			C6X8.2	Beam	Channel	A36 Gr. 36	Typical
10	M10	N17	N15			C6X8.2	Beam	Channel	A36 Gr. 36	Typical
11	M11	N13	N14			C6X8.2	Beam	Channel	A36 Gr. 36	Typical
12	M12	N11	N20			L3.5X3.5X4	Beam	Single Angle	A36 Gr. 36	Typical
13	M13	N10	N19			L3.5X3.5X4	Beam	Single Angle	A36 Gr. 36	Typical
14	M14	N10	N15			L3.5X3.5X4	Beam	Single Angle	A36 Gr. 36	Typical
15	M15	N7	N14			L3.5X3.5X4	Beam	Single Angle	A36 Gr. 36	Typical
16	M16	N24	N12			HSS7.000X0.188	Beam	HSS Pipe	A36 Gr. 36	Typical
17	M17	N23	N9			HSS7.000X0.188	Beam	HSS Pipe	A36 Gr. 36	Typical
18	M18	N22	N8			HSS7.000X0.188	Beam	HSS Pipe	A36 Gr. 36	Typical
19	M19	N25	N26			W8X13	Beam	Wide Flange	A36 Gr. 36	Typical
20	M20	N27	N28			W8X13	Beam	Wide Flange A	A36 Gr. 36	Typical
21	M21	N30	N29			W8X13	Beam	Wide Flange A	A36 Gr. 36	Typical
22	M22	N32	N31			W8X13	Beam	Wide Flange A	A36 Gr. 36	Typical
23	M23	N34	N33			W8X13	Beam	Wide Flange A	A36 Gr. 36	Typical
24	M24	N36	N35			W8X13	Beam	Wide Flange A	A36 Gr. 36	Typical
25	M25	N39	N40			W8X13	Beam	Wide Flange A	A36 Gr. 36	Typical
26	M26	N37	N38			W8X13	Beam	Wide Flange	A36 Gr. 36	Typical

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Dia...
1	N1	0	0	0	0	
2	N2	5	0	0	0	
3	N3	5	0	30	0	
4	N4	5	0	60	0	
5	N5	0	0	60	0	
6	N6	0	0	30	0	
7	N7	13	0	0	0	
8	N8	19	0	0	0	
9	N9	19	0	30	0	
10	N10	13	0	30	0	
11	N11	13	0	60	0	
12	N12	19	0	60	0	
13	N13	13	0	9	0	
14	N14	5	0	9	0	
15	N15	5	0	21	0	
16	N17	13	0	21	0	
17	N18	13	0	39	0	
18	N19	5	0	39	0	
19	N20	5	0	51	0	
20	N21	13	0	51	0	
21	N22	19	-2	0	0	
22	N23	19	-2	30	0	
23	N24	19	-2	60	0	
24	N25	13	0	54	0	
25	N26	5	0	54	0	

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Dia...
26	N27	13	0	50.67	0	
27	N28	5	0	50.67	0	
28	N29	13	0	50.003	0	
29	N30	5	0	50.003	0	
30	N31	13	0	46.253	0	
31	N32	5	0	46.253	0	
32	N33	13	0	42.503	0	
33	N34	5	0	42.503	0	
34	N35	13	0	38.753	0	
35	N36	5	0	38.753	0	
36	N37	11.667	0	54	0	
37	N38	11.667	0	50.67	0	
38	N39	6.333	0	54	0	
39	N40	6.333	0	50.67	0	

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N6	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N5	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
4	N22	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
5	N23	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
6	N24	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Member Point Loads (BLC 5 : Weight of Equipment)

Member Label	Direction Magnitude[k,k-ft]		Location[ft,\%]	
1	M 22	Y	-.215	.5
2	M 22	Y	-.215	3
3	M 21	Y	-.215	3
4	M 21	Y	-.215	.5
5	M 24	Y	-.3	1
6	M 23	Y	-.3	1
7	M 24	Y	-.3	3
8	M 23	Y	-.3	3
9	M 23	Y	-.471	4
10	M	Y	-.064	18
11	M 24	Y	-.471	4
12	M 23	Y	-.471	6
13	M 24	Y	-.471	6

Member Point Loads (BLC 6 : Wind X-Direction (46psf))

Member Label		Direction		Magnitude[k,k-ft]
1	M21	X	.238	.238
2	M22	X	.238	.5
3	M22	X	.238	3
4	M21	X	-.492	3
5	M21	Y	-.492	3
6	M22	Y	3	

Member Point Loads (BLC 6 : Wind X-Direction (46psf)) (Continued)

Member Labe		Directio	Magnitude[k,k-ft]	Location[ft,\%]
7	M21	Y	. 492	. 5
8	M22	Y	. 492	5
9	M23	X	. 133	3
10	M23	X	. 133	1
11	M24	X	. 133	1
12	M24	X	. 133	3
13	M23	Y	-. 323	3
14	M24	Y	-. 323	3
15	M23	Y	. 323	1
16	M24	Y	. 323	1
17	M23	X	. 133	6
18	M24	X	. 133	6
19	M23	X	. 133	4
20	M24	X	. 133	4
21	M23	Y	. 323	4
22	M24	Y	. 323	4
23	M23	Y	-. 323	6
24	M24	Y	-. 323	6

Member Point Loads (BLC 7 : Wind Z-Direction (46psf))

Member Label		Directio	Magnitude[k,k-ft]	Location[ft,\%]
1	M21	Z	. 128	. 5
2	M22	Z	. 128	. 5
3	M21	Z	. 128	3
4	M22	Z	. 128	3
5	M22	Y	. 143	3
6	M22	Y	. 143	. 5
7	M21	Y	-. 143	. 5
8	M21	Y	-. 143	3
9	M23	Z	. 133	1
10	M24	Z	. 133	1
11	M24	Z	. 133	3
12	M23	Z	. 133	3
13	M23	Y	-. 323	3
14	M23	Y	-. 323	1
15	M24	Y	. 323	1
16	M24	Y	. 323	3
17	M23	Z	. 133	6
18	M24	Z	. 133	6
19	M23	Z	. 133	4
20	M24	Z	. 133	4
21	M23	Y	-. 323	4
22	M23	Y	-. 323	6
23	M24	Y	. 323	6
24	M24	Y	. 323	4

Member Distributed Loads (BLC 2 : Grating \& Railing (9psf))

Member Label			Direction	Start Magnitude[k/ft,...						End Magnitude[k/ft,F... Start Location[ft,\%]	End Location[ft,\%]
1	M	Y	-.015	-.015	10	21					
2	M 24	Y	-.015	-.015	0	$\% 100$					

Member Distributed Loads (BLC 8 : BLC 2 Transient Area Loads)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft, \%]	End Location[ft, \%]
1	M9	Y	-. 017	-. 017	0	1.6
2	M9	Y	-. 017	-. 017	1.6	3.2
3	M9	Y	-. 017	-. 017	3.2	4.8
4	M9	Y	-. 017	-. 017	4.8	6.4
5	M9	Y	-. 017	-. 018	6.4	8
6	M13	Y	$4.458 \mathrm{e}-5$	-. 0001338	10.837	11.44
7	M13	Y	-. 0001338	-. 0004904	11.44	12.042
8	M20	Y	-. 003	-. 003	$2.845 \mathrm{e}-14$	8
9	M21	Y	-. 018	-. 021	0	1.6
10	M21	Y	-. 021	-. 022	1.6	3.2
11	M21	Y	-. 022	-. 021	3.2	4.8
12	M21	Y	-. 021	-. 021	4.8	6.4
13	M21	Y	-. 021	-. 022	6.4	8
14	M22	Y	-. 043	-. 032	0	1.6
15	M22	Y	-. 032	-. 034	1.6	3.2
16	M22	Y	-. 034	-. 031	3.2	4.8
17	M22	Y	-. 031	-. 03	4.8	6.4
18	M22	Y	-. 03	-. 05	6.4	8
19	M23	Y	-. 028	-. 031	0	1.6
20	M23	Y	-. 031	-. 03	1.6	3.2
21	M23	Y	-. 03	-. 031	3.2	4.8
22	M23	Y	-. 031	-. 032	4.8	6.4
23	M23	Y	-. 032	-. 029	6.4	8
24	M24	Y	-. 001	-. 001	0	1.6
25	M24	Y	-. 001	-. 001	1.6	3.2
26	M24	Y	-. 001	-. 001	3.2	4.8
27	M24	Y	-. 001	-. 001	4.8	6.4
28	M24	Y	-. 001	-. 001	6.4	8

Member Distributed Loads (BLC 9 : BLC 3 Transient Area Loads)

	Member Label	Direction	Start Magnitude[k/ft,..	End Magnitude[k/ft,F...	Start Location[ft, \%]	End Location[ft,\%]
1	M9	Y	-. 04	-. 037	0	1.6
2	M9	Y	-. 037	-. 038	1.6	3.2
3	M9	Y	-. 038	-. 038	3.2	4.8
4	M9	Y	-. 038	-. 038	4.8	6.4
5	M9	Y	-. 038	-. 038	6.4	8
6	M13	Y	9.898e-5	-. 0002969	10.837	11.44
7	M13	Y	-. 0002969	-. 001	11.44	12.042
8	M20	Y	-. 007	-. 007	$2.856 \mathrm{e}-14$	8
9	M21	Y	-. 048	-. 047	0	1.6
10	M21	Y	-. 047	-. 046	1.6	3.2
11	M21	Y	-. 046	-. 048	3.2	4.8
12	M21	Y	-. 048	-. 047	4.8	6.4
13	M21	Y	-. 047	-. 039	6.4	8
14	M22	Y	-. 111	-. 068	0	1.6
15	M22	Y	-. 068	-. 07	1.6	3.2
16	M22	Y	-. 07	-. 076	3.2	4.8
17	M22	Y	-. 076	-. 07	4.8	6.4
18	M22	Y	-. 07	-. 095	6.4	8
19	M23	Y	-. 062	-. 07	0	1.6
20	M23	Y	-. 07	-. 069	1.6	3.2

Member Distributed Loads (BLC 9 : BLC 3 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[k/ft, ...	End Magnitude[k/ft,F..	Start Location[ft, \%]	End Location[ft,\%]
21	M23	Y	-. 069	-. 071	3.2	4.8
22	M23	Y	-. 071	-. 07	4.8	6.4
23	M23	Y	-. 07	-. 057	6.4	8
24	M24	Y	-. 002	-. 002	0	1.6
25	M24	Y	-. 002	-. 002	1.6	3.2
26	M24	Y	-. 002	-. 002	3.2	4.8
27	M24	Y	-. 002	-. 002	4.8	6.4
28	M24	Y	-. 002	-. 002	6.4	8

Member Distributed Loads (BLC 10 : BLC 4 Transient Area Loads)

	Member Label	Direction	Start Magnitude[k/ft,.	End Magnitude[k/ft,F	Start Location[ft, \%]	End Location[ft, \%]
1	M9	Y	-. 056	-. 056	0	1.6
2	M9	Y	-. 056	-. 056	1.6	3.2
3	M9	Y	-. 056	-. 055	3.2	4.8
4	M9	Y	-. 055	-. 057	4.8	6.4
5	M9	Y	-. 057	-. 06	6.4	8
6	M13	Y	. 0001486	-. 0004458	10.837	11.44
7	M13	Y	-. 0004458	-. 002	11.44	12.042
8	M20	Y	-. 01	-. 01	$2.845 \mathrm{e}-14$	8
9	M21	Y	-. 059	-. 07	0	1.6
10	M21	Y	-. 07	-. 072	1.6	3.2
11	M21	Y	-. 072	-. 068	3.2	4.8
12	M21	Y	-. 068	-. 07	4.8	6.4
13	M21	Y	-. 07	-. 073	6.4	8
14	M22	Y	-. 144	-. 106	0	1.6
15	M22	Y	-. 106	-. 113	1.6	3.2
16	M22	Y	-. 113	-. 104	3.2	4.8
17	M22	Y	-. 104	-. 101	4.8	6.4
18	M22	Y	-. 101	-. 165	6.4	8
19	M23	Y	-. 094	-. 103	0	1.6
20	M23	Y	-. 103	-. 102	1.6	3.2
21	M23	Y	-. 102	-. 103	3.2	4.8
22	M23	Y	-. 103	-. 106	4.8	6.4
23	M23	Y	-. 106	-. 098	6.4	8
24	M24	Y	-. 004	-. 004	0	1.6
25	M24	Y	-. 004	-. 004	1.6	3.2
26	M24	Y	-. 004	-. 004	3.2	4.8
27	M24	Y	-. 004	-. 004	4.8	6.4
28	M24	Y	-. 004	-. 004	6.4	8

Basic Load Cases

BLC Description		Category	X Gra...Y Gra... Z Gra... Joint				Distrib..Area(... Surfa...		
1	Self Weight	DL	-1						
2	Grating \& Railing (9psf)	DL					2	1	
3	Live Load (20 psf)	LL						1	
4	Snow Load (30 psf)	SL						1	
5	Weight of Equipment	DL				13			
6	Wind X-Direction (46psf)	WLX				24			
7	Wind Z-Direction (46psf)	WLZ				24			
8	BLC 2 Transient Area Loads	None					28		

Basic Load Cases (Continued)

BLC Description		Category	X Gra...Y Gra...Z Gra... Joint				Point Distrib..Area(... Surfa..			
9	BLC 3 Transient Area Loads	None						28		
10	BLC 4 Transient Area Loads	None						28		

Load Combinations

	Description	Solve	P.	B.	Fa.	BLC	Fact..	BLC	Fa.	BLC	Fa.	BLC		B...	Fa...	B...	Fa... ${ }^{\text {B }}$	B... Fa..	B... F	Fa... B.	... Fa.
1	Deflection 3	Yes	Y	DL	1	LL	1														
2	IBC 16-8	Yes	Y	DL	1																
3	IBC 16-9	Yes	Y	DL	1	LL	1	LLS	1												
4	IBC 16-10 (b)	Yes	Y	DL	1	SL	1	SLN	1												
5	IBC 16-11 (b)	Yes	Y	DL	1	LL	. 75	LLS	. 75	SL	. 75	SLN	. 75								
6	IBC 16-12 (a) (a)	Yes	Y	DL	1	WLX	. 6														
7	IBC 16-12 (a) (b)	Yes	Y	DL	1	WLZ	. 6														
8	IBC 16-12 (a) (c)	Yes	Y	DL	1	WLX	-. 6														
9	IBC 16-12 (a) (d)	Yes	Y	DL	1	WLZ	-. 6														
10	IBC 16-13 (a) (a)	Yes	Y	DL	1	WLX	. 45	LL	. 75	LLS	. 75										
11	IBC 16-13 (a) (b)	Yes	Y	DL	1	WLZ	. 45	LL	. 75	LLS	. 75										
12	IBC 16-13 (a) (c)	Yes	Y	DL	1	WLX	-. 45	LL	. 75	LLS	75										
13	IBC 16-13 (a) (d)	Yes	Y	DL	1	WLZ	-. 45	LL	. 75	LLS	. 75										
14	IBC 16-13 (b) (a)	Yes	Y	DL	1	WLX	. 45	LL	. 75	LLS	. 75	SL	. 75	S...	. 75						
15	IBC 16-13 (b) (b)	Yes	Y	DL	1	WLZ	. 45	LL	. 75	LLS	. 75	SL	. 75	S...	. 75						
16	IBC 16-13 (b) (c)	Yes	Y	DL	1	WLX	-. 45	LL	. 75	LLS	. 75	SL	. 75	S...	. 75						
17	IBC 16-13 (b) (d)	Yes	Y	DL	1	WLZ	-. 45	LL	. 75	LLS	. 75	SL	. 75	S...	. 75						
18	IBC 16-15 (a)	Yes	Y	DL	. 6	WLX	. 6														
19	IBC 16-15 (b)	Yes	Y	DL	. 6	WLZ	. 6														
20	IBC 16-15 (c)	Yes	Y	DL	. 6	WLX	-. 6														
21	IBC 16-15 (d)	Yes	Y	DL	. 6	WLZ	-. 6														

Envelope Joint Reactions

Joint			X [k] LC		Y [k]	LC Z [k]		LC	MX [k-ft] LC		MY [k-ft]	LC	MZ [k-ft]	LC 17
1	N6	max	3.563	16	4.7	16	. 226	9	0	21	. 813	7	19.07	
2		min	. 942	18	1.995	18	-. 225	19	0	15	-. 815	9	8.195	19
3	N1	max	. 599	9	. 855	9	. 222	9	0	21	. 797	7	3.369	9
4		min	. 339	19	. 513	19	-. 221	7	0	7	-. 799	9	2.02	19
5	N5	max	2.755	16	3.696	16	. 227	9	0	17	. 818	7	14.899	15
6		min	. 616	18	1.424	18	-. 227	19	0	19	-. 819	9	5.768	21
7	N22	max	-. 348	21	. 581	7	. 091	21	. 181	21	. 331	9	. 191	7
8		min	-. 587	7	. 348	21	-. 092	7	-. 183	7	-. 333	7	. 109	21
9	N23	max	-1.257	20	2.881	14	. 09	21	. 18	21	. 333	9	1.137	14
10		min	-3.329	14	1.17	20	-. 091	19	-. 182	19	-. 335	7	. 316	20
11	N24	max	-. 853	20	2.238	14	. 091	21	. 181	21	. 333	9	. 88	14
12		min	-2.572	14	. 808	20	-. 091	7	-. 182	19	-. 335	7	. 203	20
13	Totals:	max	1.21	20	14.663	17	. 946	21						
14		min	-1.21	6	6.653	18	-. 946	7						

Envelope Joint Displacements

1	N1	max	0	21	0	21	0	21	0	21	0	21	0	21
2		min	0	1	0	1	0	1	0	1	0	1	0	1
3	N2	max	0	19	-. 006	19	. 023	7	$1.743 \mathrm{e}-05$	7	4.369e-04	9	-1.221e-04	19
4		min	0	9	-. 011	9	-. 023	9	-1.124e-05	21	-4.374e-04	7	-2.038e-04	9
5	N3	max	0	18	-. 026	19	. 024	7	$2.478 \mathrm{e}-05$	15	4.43e-04	9	-4.882e-04	19
6		min	-. 001	16	-. 061	17	-. 024	9	-8.351e-06	21	-4.435e-04	7	-1.135e-03	17
7	N4	max	0	18	-. 018	21	. 024	7	$4.914 \mathrm{e}-06$	19	4.448e-04	9	-3.4e-04	21
8		min	0	16	-. 048	15	-. 024	9	-3.061e-05	17	-4.454e-04	7	-8.803e-04	15
9	N5	max	0	21	0	21	0	21	0	21	0	21	0	21
10		min	0	1	0	1	0	1	0	1	0	1	0	1
11	N6	max	0	21	0	21	0	21	0	21	0	21	0	21
12		min	0	1	0	1	0	1	0	1	0	1	0	1
13	N7	max	0	19	-. 01	19	. 027	7	$4.532 \mathrm{e}-05$	7	3.202e-04	7	1.303e-04	17
14		min	0	9	-. 017	9	-. 027	9	-2.922e-05	21	-3.201e-04	9	$7.813 \mathrm{e}-05$	19
15	N8	max	0	19	0	21	0	7	$5.237 \mathrm{e}-05$	7	1.975e-04	7	$2.273 \mathrm{e}-04$	-
16		min	0	9	0	7	0	21	-5.183e-05	21	-1.963e-04	9	1.359e-04	19
17	N9	max	-. 001	18	0	20	0	19	$5.193 \mathrm{e}-05$	19	1.986e-04	7	1.254e-03	14
18		min	-. 004	16	0	14	0	21	-5.15e-05	21	-1.975-04	9	5.383e-04	20
19	N10	max	0	18	-. 041	20	. 027	7	$6.442 \mathrm{e}-05$	15	3.252e-04	7	$7.3 \mathrm{e}-04$	17
20		min	-. 003	16	-. 097	14	-. 027	9	-2.171e-05	21	-3.25e-04	9	3.14e-04	19
21	N11	max	0	18	-. 029	20	. 027	7	$1.278 \mathrm{e}-05$	19	3.267e-04	7	5.68e-04	15
22		min	-. 002	16	-. 075	14	-. 027	9	-7.959e-05	17	-3.264e-04	9	2.196e-04	21
23	N12	max	-. 001	18	0	20	0	19	$5.185 \mathrm{e}-05$	19	1.989e-04	7	9.679e-04	14
24		min	-. 003	16	0	14	0	21	-5.188e-05	21	-1.979e-04	9	3.722e-04	20
25	N13	max	. 003	21	-. 075	20	. 027	7	$7.812 \mathrm{e}-04$	14	1.285e-05	19	3.102e-04	17
26		min	-. 004	7	-. 133	14	-. 027	9	$4.217 \mathrm{e}-04$	20	-2.267e-05	9	1.489e-04	19
27	N14	max	. 003	21	-. 073	19	. 023	7	$7.57 \mathrm{e}-04$	17	1.113e-05	19	-1.933e-04	19
28		min	-. 004	7	-. 127	17	-. 023	9	$4.248 \mathrm{e}-04$	19	-2.602e-05	9	-4.06e-04	17
29	N15	max	. 002	19	-. 081	19	. 024	7	-3.099e-04	21	1.686e-05	7	-3.32e-04	19
30		min	-. 006	9	-. 147	17	-. 024	9	-5.226e-04	7	-1.57e-05	21	-7.631e-04	17
31	N17	max	. 002	19	-. 087	20	. 027	7	-2.402e-04	18	$1.25 \mathrm{e}-05$	19	5.501e-04	17
32		min	-. 006	9	-. 165	14	-. 027	9	-4.127e-04	8	-2.228e-05	9	2.432e-04	19
33	N18	max	. 008	18	-. 285	20	. 027	7	$5.035 \mathrm{e}-03$	14	3.343e-04	6	6.764e-04	17
34		min	-. 012	8	-. 913	14	-. 027	9	$1.456 \mathrm{e}-03$	20	-3.332e-04	20	2.925-04	19
35	N19	max	. 008	18	-. 311	18	. 024	7	$5.48 \mathrm{e}-03$	16	3.133e-04	18	-3.043e-04	20
36		min	-. 011	8	-. 941	16	-. 024	9	$1.726 \mathrm{e}-03$	18	-3.163e-04	8	-7.4e-04	14
37	N20	max	. 004	18	-. 297	18	. 024	7	-1.811e-03	18	3.438e-04	8	-2.467e-04	20
38		min	-. 006	8	-. 914	16	-. 024	9	-5.648e-03	16	-3.37e-04	18	-6.412e-04	14
39	N21	max	. 004	18	-. 266	20	. 027	7	-1.576e-03	20	3.247e-04	8	$6.115 \mathrm{e}-04$	15
40		min	-. 006	8	-. 876	14	-. 027	9	-5.263e-03	14	-3.165e-04	18	2.548e-04	21
41	N22	max	0	21	0	21	0	21	0	21	0	21	0	21
42		min	0	1	0	1	0	1	0	1	0	1	0	1
43	N23	max	0	21	0	21	0	21	0	21	0	21	0	21
44		min	0	1	0	1	0	1	0	1	0	1	0	1
45	N24	max	0	21	0	21	0	21	0	21	0	21	0	21
46		min	0	1	0	1	0	1	0	1	0	1	0	1
47	N25	max	. 002	19	-. 199	20	. 027	7	-2.067e-03	20	7.579e-05	8	5.97e-04	15
48		min	-. 004	9	-. 651	14	-. 027	9	-6.978e-03	14	-7.356e-05	18	2.43e-04	21
49	N26	max	. 002	19	-. 219	18	. 024	7	-2.412e-03	18	6.742e-05	8	-2.807e-04	20
50		min	-. 004	9	-. 671	16	-. 024	9	-7.542e-03	16	-5.869e-05	18	-7.187e-04	14
51	N27	max	. 005	18	-. 272	20	. 027	7	-1.512e-03	20	3.605e-04	8	6.131e-04	15
52		min	-. 008	8	-. 897	14	-. 027	9	-5.036e-03	14	-3.52e-04	18	2.56e-04	21

Envelope Joint Displacements (Continued)

Joint			X [in]	LC		$\begin{aligned} & \mathrm{LC} \\ & \hline 18 \\ & \hline \end{aligned}$	Z [in]	LC	X Rotation [rad]	$\begin{array}{\|c\|c\|} \hline \text { LC Y Rotatio... } \\ \hline 18 & 3.841 \mathrm{e}-04 \\ \hline \end{array}$		LC Z Rotatio... LC		
53	N28	max	. 005	18	-. 304		. 024	7	-1.732e-03			8	$-2.483 \mathrm{e}-04$	20
54		min	-. 008	8	-. 936	16	-. 024	9	-5.396e-03	16	-3.766e-04	18	-6.439e-04	14
55	N29	max	. 008	18	-. 284	20	. 027	7	-1.376e-03	20	4.099e-04	8	6.164e-04	15
56		min	-. 011	8	-. 936	14	-. 027	9	-4.554e-03	14	-4.008e-04	18	2.586e-04	21
57	N30	max	. 008	18	-. 317	18	. 024	7	-1.566e-03	18	4.274e-04	8	-2.515e-04	20
58		min	-. 011	8	-. 978	16	-. 024	9	-4.863e-03	16	-4.186e-04	18	-6.494e-04	4
59	N31	max	. 025	18	-. 327	20	. 027	7	-5.015e-04	20	2.272e-04	8	6.351e-04	14
60		min	-. 028	8	-1.075	14	-. 027	9	-1.459e-03	14	-2.16e-04	18	$2.725 \mathrm{e}-04$	20
61	N32	max	. 025	18	-. 365	18	. 024	7	-5.102e-04	18	2.245-04	8	-2.695e-04	20
62		min	-. 028	8	-1.125	16	-. 024	9	-1.472e-03	16	-2.135e-04	18	-6.803e-04	14
63	N33	max	023	18	-. 328	20	. 027	7	2.e-03	14	2.717e-04	6	$6.555 \mathrm{e}-04$	17
64		min	-. 027	8	-1.064	14	-. 027	9	$5.163 \mathrm{e}-04$	20	-2.649e-04	20	2.841e-04	19
65	N34	max	. 023	18	-. 362	18	. 024	7	$2.253 \mathrm{e}-03$	16	2.831e-04	6	-2.875e-04	20
66		min	-. 027	8	-1.108	16	-. 024	9	$6.695 \mathrm{e}-04$	18	-2.75e-04	20	-7.112e-04	14
67	N35	max	. 007	18	-. 281	20	. 027	7	$5.228 \mathrm{e}-03$	14	3.142e-04	6	6.778e-04	17
68		min	-. 011	8	-. 897	14	-. 027	9	$1.517 \mathrm{e}-03$	20	-3.133e-04	20	2.931e-0	19
69	N36	max	. 007	18	-. 305	18	. 024	7	$5.686 \mathrm{e}-03$	16	2.906e-04	18	-3.096e-04	20
70		min	-. 01	8	-. 924	16	-. 024	9	$1.795 \mathrm{e}-03$	18	-2.95e-04	8	-7.507e-04	14
71	N37	max	. 002	19	-. 216	20	. 027	7	-2.022e-03	20	8.58e-05	8	1.206e-03	8
72		min	-. 004	9	-. 646	14	-. 027	9	-6.154e-03	14	-8.364e-05	18	-6.243e-04	18
73	N38	max	. 005	18	-. 297	20	. 027	7	-2.017e-03	20	7.981e-05	8	1.762e-03	8
74		min	-. 008	8	-. 891	14	-. 027	9	-6.146e-03	14	-7.768e-05	18	-8.488e-04	18
75	N39	max	. 002	19	-. 23	18	. 024	7	-2.217e-03	18	8.15e-05	8	1.107e-03	8
76		min	-. 004		-. 659	16	-. 024	9	-6.474e-03	16	-7.924e-05	18	-6.837e-04	18
77	N40	max	. 005	18	-. 318	18	. 024	7	-2.212e-03	18	8.133e-05	8	1.646e-03	8
78		min	-. 008	8	-. 917	16	-. 024	9	-6.465e-03	16	-7.909e-05	18	-9.181e-0	18

Envelope AISC 14th(360-10): ASD Steel Code Checks

Member Shape			Code Check	Lo..	LC	She...L			Pnc/.	Pnt/o.	Mnyy	Mnzz.	Cb Eqn
1	M4	W12X26	. 512	17.5	16	. 081	30	y	. 20.064	164.91	14.677	66.826	1.06 H1-.
2	M5	W12X26	. 480	17.5	14	. 075	30	y	. 20.064	164.91	14.677	66.826	1.0... H1-.
3	M17	HSS7.000X0.1..	. 397	2	14	. 153	0		. 79.989	80.407	14.569	14.569	1.9... H 1 -
4	M2	W12X26	. 359	0	17	. 116	0	y	. 50.022	164.91	14.677	66.826	2.1... $\mathrm{H} 1-$
5	M16	HSS7.000X0.1..	. 306	2	14	. 122	0		. 79.989	80.407	14.569	14.569	1.9.. H1-.
6	M23	W8X13	. 299	4	15	. 069	0	y	. 41.835	82.778	3.862	18.648	$1.16 \mathrm{H} 1-.$.
7	M1	W12X26	. 290	0	15	. 092	0	y	. 50.022	164.91	14.677	66.826	2.1... $\mathrm{H} 1-$
8	M24	W8X13	. 274	4	9	. 052	0	y 9	41.835	82.778	3.862	18.797	1.1... H1-.
9	M13	L3.5X3.5X4	. 263	6....	6	. 009	12.	y ...	5.793	36.647	1.607	2.389	1.1.. $\mathrm{H} 2-1$
10	M12	L3.5X3.5X4	. 230	6....	6	. 009	0	y \ldots	5.793	36.647	1.607	2.389	1.1.. $\mathrm{H} 2-1$
11	M7	W12X26	. 154	14.	9	. 012	0	y	. 20.064	164.91	14.677	23.834	1.1... $\mathrm{H} 1-$
12	M22	W8X13	. 139	3	17	. 046	0	y	. 41.835	82.778	3.862	18.645	$1.16 \mathrm{H} 1-$
13	M6	W12X26	. 138	14..	9	. 011	30	y	. 20.064	164.91	14.677	23.922	1.1... $\mathrm{H} 1-.$.
14	M21	W8X13	. 113	3	15	. 035	0	y	. 41.835	82.778	3.862	18.984	1.1.. $\mathrm{H} 1-$
15	M3	W12X26	. 111	0	9	. 021	0	y 9	50.022	164.91	14.677	66.826	2.1... $\mathrm{H} 1-$
16	M9	C6X8.2	. 108	4	16	. 028	8	y	. 11.205	51.521	1.402	7.402	1.1... H1-.
17	M14	L3.5X3.5X4	. 085	6....	9	. 005	12.	y	5.793	36.647	1.607	2.389	1.1.. $\mathrm{H} 2-1$
18	M15	L3.5X3.5X4	. 083	6....	7	. 004	12.	y	5.793	36.647	1.607	2.389	1.1.. $\mathrm{H} 2-1$
19	M18	HSS7.000X0.1..	. 071	2	7	. 049	0		79.989	80.407	14.569	14.569	1.9... $\mathrm{H} 1-.$.
20	M26	W8X13	. 038	3.33	8	. 008	1....	z 8	73.547	82.778	3.862	20.479	1.1.. $\mathrm{H} 1-.$.
21	M25	W8X13	. 037	3.33	8	. 008	1....	z 8	73.547	82.778	3.862	20.47	.11

Envelope AISC 14th(360-10): ASD Steel Code Checks (Continued)

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility
Site ID: CTII002A
Milford / I-95 /I
1201 Boston Post Road (CT Post Mall - KitchenEtc)
Milford, Connecticut 06460
January I3, 2021

EBI Project Number: 62200059 I I

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{2 0 . 9 3 \%}$

environmental | engineering | due diligence
January I3, 202 I
T-Mobile
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, Connecticut 06002

Emissions Analysis for Site: CTII002A - Milford / I-95 /I

EBI Consulting was directed to analyze the proposed T-Mobile facility located at $\mathbf{I 2 0 1}$ Boston Post Road (CT Post Mall - KitchenEtc) in Milford, Connecticut for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-Ol and ANSI/IEEE Std C95.I. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR I.I307(b)(I) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately $400 \mu \mathrm{~W} / \mathrm{cm}^{2}$ and $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$, respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and II GHz frequency bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.
environmental | engineering | due diligence

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at I20I Boston Post Road (CT Post Mall - KitchenEtc) in Milford, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. A conservative roof attenuation factor of 10 dB , in which a radiofrequency signal is reduced by a factor of 10 due to intervening roof building materials $[1]$, was also used. It is assumed, for purposes of this analysis, that the roof building material is comprised of a poured concrete and steel underlayment with a rubber fabric roof membrane. For this report, the sample point is the top of a 6 -foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 2 LTE channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 W atts per Channel.
2) I NR channel (600 MHz Band) was considered for each sector of the proposed installation. This Channel has a transmit power of 80 Watts.
3) 2 LTE channels (700 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.

[^0]environmental | engineering | due diligence
4) 4 GSM channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 W atts per Channel.
5) 2 LTE channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
6) 2 UMTS channels (AWS Band - 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
7) 2 LTE channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
8) I LTE channel (BRS Band - 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of I20 Watts.
9) I NR channel (BRS Band - 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of I20 Watts.
10) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
11) For the following calculations, the sample point was the top of a 6 -foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
12) A conservative roof attenuation factor of 10 dB , in which a radiofrequency signal is reduced by a factor of IO due to intervening roof building materials, was also used. It is assumed, for purposes of this analysis, that the roof building material is comprised of a poured concrete and steel underlayment with a rubber fabric roof membrane.
13) The antennas used in this modeling are the RFS APXVAA4L24_43-U-NA20 for the 600 MHz / $600 \mathrm{MHz} / 700 \mathrm{MHz} / 1900 \mathrm{MHz} / 1900 \mathrm{MHz} / 2100 \mathrm{MHz} / 2100 \mathrm{MHz}$ channel(s), the Ericsson AIR 6449 for the $2500 \mathrm{MHz} / 2500 \mathrm{MHz}$ channel(s) in Sector A, the RFS APXVAA4L24_43-U-NA20 for the $600 \mathrm{MHz} / 600 \mathrm{MHz} / 700 \mathrm{MHz} / 1900 \mathrm{MHz} / 1900 \mathrm{MHz} / 2100 \mathrm{MHz} / 2100$
environmental | engineering | due diligence
MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 2500 MHz channel(s) in Sector B, the RFS APXVAA4L24_43-U-NA20 for the $600 \mathrm{MHz} / 600 \mathrm{MHz} / 700 \mathrm{MHz} / 1900 \mathrm{MHz}$ / $1900 \mathrm{MHz} / 2100 \mathrm{MHz} / 2100 \mathrm{MHz}$ channel(s), the Ericsson AIR 6449 for the 2500 MHz / 2500 MHz channel(s) in Sector C, the Ericsson AIR 6449 for the $2500 \mathrm{MHz} / 2500 \mathrm{MHz}$ channel(s), the RFS APXVAA4L24_43-U-NA20 for the $600 \mathrm{MHz} / 600 \mathrm{MHz} / 700 \mathrm{MHz} / 1900$ $\mathrm{MHz} / 1900 \mathrm{MHz} / 2100 \mathrm{MHz} / 2100 \mathrm{MHz}$ channel(s) in Sector D. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
14) The antenna mounting height centerline of the proposed antennas is 43 and 4 I feet above ground level (AGL).
15) Emissions from additional carriers were not included because emissions data for the site location are not available.
16) All calculations were done with respect to uncontrolled / general population threshold limits.

EBI Consulting
environmental | engineering | due diligence

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C	Sector:	D
Antenna \#:	I						
Make / Model:	$\begin{gathered} \text { RFS } \\ \text { APXVAA4L24_43- } \\ \text { U-NA20 } \end{gathered}$	Make / Model:	$\begin{gathered} \text { RFS } \\ \text { APXVAA4L24_43- } \\ \text { U-NA20 } \end{gathered}$	Make / Model:	$\begin{gathered} \text { RFS } \\ \text { APXVAA4L24_43- } \\ \text { U-NA20 } \end{gathered}$	Make / Model:	Ericsson AIR 6449
Frequency Bands:	$\begin{gathered} 600 \mathrm{MHz} / 600 \mathrm{MHz} \\ \text { / } 700 \mathrm{MHz} / 1900 \\ \mathrm{MHz} / \mathrm{I} 900 \mathrm{MHz} / \\ 2100 \mathrm{MHz} / 2100 \\ \mathrm{MHz} \end{gathered}$	Frequency Bands:	$600 \mathrm{MHz} / 600 \mathrm{MHz}$ $/ 700 \mathrm{MHz} / 1900$ $\mathrm{MHz} / 1900 \mathrm{MHz} /$ $2100 \mathrm{MHz} / 2100$ MHz	Frequency Bands:	$600 \mathrm{MHz} / 600 \mathrm{MHz}$ $/ 700 \mathrm{MHz} / 1900$ $\mathrm{MHz} / \mathrm{I} 900 \mathrm{MHz} /$ $2100 \mathrm{MHz} / 2100$ MHz	Frequency Bands:	$\begin{gathered} 2500 \mathrm{MHz} / 2500 \\ \mathrm{MHz} \end{gathered}$
Gain:	$15.7 \mathrm{dBd} / 15.7 \mathrm{dBd} /$ $16 \mathrm{dBd} / 18.6 \mathrm{dBd} /$ $18.6 \mathrm{dBd} / 19.8 \mathrm{dBd} /$ 19.8 dBd	Gain:	$15.7 \mathrm{dBd} / 15.7 \mathrm{dBd} /$ $16 \mathrm{dBd} / 18.6 \mathrm{dBd} /$ $18.6 \mathrm{dBd} / 19.8 \mathrm{dBd} /$ 19.8 dBd	Gain:	$15.7 \mathrm{dBd} / 15.7 \mathrm{dBd} /$ $16 \mathrm{dBd} / 18.6 \mathrm{dBd} /$ $18.6 \mathrm{dBd} / 19.8 \mathrm{dBd} /$ 19.8 dBd	Gain:	22.05 dBd22.05 dBd
Height (AGL):	43 feet	Height (AGL):	43 feet	Height (AGL):	43 feet	Height (AGL):	41 feet
Channel Count:	15	Channel Count:	15	Channel Count:	15	Channel Count:	2
Total TX Power (W):	620 Watts	Total TX Power (W):	620 Watts	Total TX Power (W):	620 Watts	Total TX Power (W):	240 Watts
ERP (W):	5,033.68	ERP (W):	5,033.68	ERP (W):	5,033.68	ERP (W):	3,038.86
Antenna AI MPE \%:	13.12\%	Antenna BI MPE \%:	13.12\%	Antenna CI MPE \%:	13.12\%	Antenna DI MPE \%:	6.50\%
Antenna \#:	2						
Make / Model:	Ericsson AIR 6449	Make / Model:	Ericsson AIR 6449	Make / Model:	Ericsson AIR 6449	Make / Model:	RFS APXVAA4L24_43-U- NA20
Frequency Bands:	$\begin{gathered} 2500 \mathrm{MHz} / 2500 \\ \mathrm{MHz} \end{gathered}$	Frequency Bands:	$\begin{gathered} 2500 \mathrm{MHz} / 2500 \\ \mathrm{MHz} \end{gathered}$	Frequency Bands:	$\begin{gathered} 2500 \mathrm{MHz} / 2500 \\ \mathrm{MHz} \end{gathered}$	Frequency Bands:	$600 \mathrm{MHz} / 600 \mathrm{MHz}$ $/ 700 \mathrm{MHz} / 1900$ $\mathrm{MHz} / 1900 \mathrm{MHz} /$ $2100 \mathrm{MHz} / 2100$ MHz
Gain:	$\begin{gathered} 22.05 \mathrm{dBd} / 22.05 \\ \mathrm{dBd} \end{gathered}$	Gain:	$\begin{gathered} 22.05 \mathrm{dBd} / 22.05 \\ \mathrm{dBd} \end{gathered}$	Gain:	$\begin{gathered} 22.05 \mathrm{dBd} / 22.05 \\ \mathrm{dBd} \end{gathered}$	Gain:	$\mathrm{I5.7} \mathrm{dBdI5.7} \mathrm{dBdI6}$ dBdI8.6 dBdI8.6 dBdI 9.8 dBdI 9.8 dBd
Height (AGL):	43 feet	Height (AGL):	43 feet	Height (AGL):	43 feet	Height (AGL):	41 feet
Channel Count:	2	Channel Count:	2	Channel Count:	2	Channel Count:	15
Total TX Power (W):	240 Watts	Total TX Power (W):	240 Watts	Total TX Power (W):	240 Watts	Total TX Power (W):	620 Watts
ERP (W):	3,038.86	ERP (W):	3,038.86	ERP (W):	3,038.86	ERP (W):	$\begin{gathered} 5033.6843522305 I 7 \\ \text { I } \end{gathered}$
Antenna A2 MPE \%:	5.91\%	Antenna B2 MPE \%:	5.91\%	Antenna C2 MPE \%:	5.91\%	Antenna D2 MPE \%:	14.43\%

environmental | engineering | due diligence

Site Composite MPE \%	
Carrier	MPE \%
T-Mobile (Max at Sector D):	20.93%
no additional carriers	N/A
Site Total MPE \% :	20.93%

T-Mobile MPE \% Per Sector	
T-Mobile Sector A Total:	19.03%
T-Mobile Sector B Total:	19.03%
T-Mobile Sector C Total:	19.03%
T-Mobile Sector D Total:	20.93%
Site Total MPE \% :	

T-Mobile Maximum MPE Power Values (Sector D)

T-Mobile Frequency Band / Technology (Sector D)	Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Frequency (MHz)	Allowable MPE ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Calculated \% MPE
T-Mobile 2500 MHz LTE	I	1519.43	41.0	32.50	2500 MHz LTE	1000	3.25\%
T-Mobile 2500 MHz NR	I	1519.43	41.0	32.50	2500 MHz NR	1000	3.25\%
T-Mobile 600 MHz LTE	2	182.86	41.0	7.82	600 MHz LTE	400	1.96\%
T-Mobile 600 MHz NR	I	487.63	41.0	10.43	600 MHz NR	400	2.61\%
T-Mobile 700 MHz LTE	2	189.29	41.0	8.10	700 MHz LTE	467	1.73\%
T-Mobile 1900 MHz GSM	4	255.34	41.0	21.84	1900 MHz GSM	1000	2.18\%
T-Mobile 1900 MHz LTE	2	510.68	41.0	21.84	1900 MHz LTE	1000	2.18\%
T-Mobile 2100 MHz UMTS	2	293.17	41.0	12.54	2100 MHz UMTS	1000	1.25\%
T-Mobile 2100 MHz LTE	2	586.34	41.0	25.08	2100 MHz LTE	1000	2.51\%
						Total:	20.93\%

- NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.
environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (\%)
Sector A:	19.03%
Sector B:	19.03%
Sector C:	19.03%
Sector D:	20.93%
T-Mobile Maximum MPE \% (Sector D):	20.93%
Site Total:	
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{2 0 . 9 3 \%}$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were within the allowable 100% threshold standard per the federal government.

[^0]: ${ }^{[1]}$ Based upon wireless signal roof attenuation factors for similar materials cited in Jackman, Swartz, Burton, Head, "CWDP Certified Wireless Design Professional Official Study Guide," Wiley Publishers, 2011, Table 6-3.

