JULIE D. KOHLER

PLEASE REPLY TO: Bridgeport WRITER'S DIRECT DIAL: (203) 337-4157 E-Mail Address: jkohler@cohenandwolf.com

November 18, 2014

Attorney Melanie Bachman
Acting Executive Director Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

Re: Notice of Exempt Modification
 AT\&T Towers/T-Mobile co-location
 Site ID CT11056J
 290 Preston Avenue, Middletown CT

Dear Attorney Bachman:
This office represents T-Mobile Northeast LLC ("T-Mobile") and has been retained to file exempt modification filings with the Connecticut Siting Council on its behalf.

In this case, AT\&T Towers owns the existing monopole telecommunications tower and related facility at 290 Preston Avenue, Middletown Connecticut (longitude -72.7429/ latitude 41.5573). T-Mobile intends to add three (3) antennas and related equipment at this existing telecommunications facility in Middletown ("Middletown Facility"). Please accept this letter as notification, pursuant to R.C.S.A. § 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to the Mayor, Daniel T. Drew, and the property owners Ernest and Brenda Trumpold.

The existing Middletown Facility consists of a 148 foot tall monopole structure. TMobile plans to add three (3) antennas and three (3) RRUs (remote radio units) on pipe mounts at a centerline of 140 feet. T-Mobile will also use implement a spare fiber run along the length of the tower. See the plans revised to November 7, 2014 attached hereto as Exhibit A. The existing Facility is structurally capable of supporting T-Mobile's proposed modifications, as indicated in the structural analysis dated October 13, 2014 and stamped November 6, 2014 attached hereto as Exhibit B.

The planned modifications to the Middletown Facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

November 18, 2014
Site ID CT11056J
Page 2

1. The proposed modification will not increase the height of the tower. T-Mobile's proposed antennas will be installed at the 140 foot level of the 148 foot monopole tower. The enclosed tower drawing confirms that the proposed modification will not increase the height of the tower.
2. T-Mobile does not proposed to alter the existing compound, and therefore will not require an extension of the site boundaries.
3. The proposed modification to the Facility will not increase the noise levels at the existing facility by six decibels or more.
4. The operation of the proposed antennas will not increase the total radio frequency (RF) power density, measured at the base of the tower, to a level at or above the applicable standard. According to a Radio Frequency Emissions Analysis Report prepared by EBI dated November 14, 2014 T-Mobile's operations would add 6.72% of the FCC Standard. Therefore, the calculated "worst case" power density for the planned combined operation at the site including all of the proposed antennas would be 64.40% of the FCC Standard as calculated for a mixed frequency site as evidenced by the engineering exhibit attached hereto as Exhibit C.

For the foregoing reasons, T-Mobile respectfully submits that the proposed antennas and equipment at the Middletown Facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Upon acknowledgement by the Council of this proposed exempt modification, T-Mobile shall commence construction approximately sixty days from the date of the Council's notice of acknowledgement.

Sincerely,
hi

Juke D. Kohler, Esq.
cc: City of Middletown, Mayor Daniel T. Drew
AT\&T Towers
Ernest and Brenda Trumpold
Sheldon Freincle, NSS

Ping Jiang

AT\&T Towers
2300 Northlake Center Drive Suite 405
Tucker, GA 30084
770-708-6100
Monday, October 13, 2014

AT\&T DESIGNATION:

ANALYSIS CRITERIA:

AT\&T DESIGNATION:	Site ID:
	Site FA:
	Site Name:
	AT\&T Project:
	BV Project:
	Codes:

Black \& Veatch Corp.
10950 Grandview Drive
Overland Park, KS 66210
(913) 458-7245

JiangP@bv.com

STRUCTURAL ANALYSIS

148' Monopole
14635
10035088
MIDDLETOWN SW
T-Mobile Modification 9/5/2014
176850 (14635TMOCT-S)
TIAEIA-222-F $\quad 85 \mathrm{mph}$ Fastest-Mile
IBC 2003
Connecticut State Building Code 2005
SITE DATA: 290 Preston Avenue, Middletown, CT ,06457, Middlesex County
Latitude 41.557353, Longitude -72.743277
Market: MA/RI/NT/NH/ME/CT
148' Monopole

Black \& Veatch Corp. is pleased to submit this Structural Analysis Report to determine the structural integrity of the aforementioned tower. The purpose of the analysis is to determine the suitability of the tower with the existing and proposed loading configuration detailed in the analysis report.

Analysis Results

Tower Stress Level with Proposed Equipment:	94.50%	Pass
Connection Stress Level with Proposed Equipment:	90.50%	Pass
Foundation Ratio with Proposed Equipment:	98.10%	Pass

We at Black \& Veatch Corp. appreciate the opportunity of providing our continuing professional services to you. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully Submitted by: Black \& Veatch Corp.
Analysis Prepared by:
Analysis Reviewed by:
Brennan J. Sedlacek, E.I.T.
Chris A. Krafft, P.E.

Black \& Veatch Corp.
10950 Grandview Drive
Overland Park, KS 66210
B\&V: 176850 (14635TMOCT-S)

Assumptions, Disclaimers, and Notes

1. This analysis was performed under the assumption that all information provided to Black \& Veatch is current and correct. This is to include site data, existing/proposed appurtenance loading, tower/foundation details, and geotechnical data. If this information is not current and correct, this report should be considered obsolete and further analysis will be required.
2. This analysis assumes that the tower structural components and mounts, including all steel sections and attachment hardware, are in good working order and in their original state, free of rust or other forms of corrosion. Furthermore, it is assumed that the tower and the tower foundation have been properly maintained and monitored since the time of construction. This report should be considered obsolete and further analysis will be required if the tower and/or foundation does not meet all of the above specifications.
3. This analysis assumes that all existing and/or proposed equipment mounts on the tower will have adequate capacity to support the existing and proposed equipment loading.
4. Capacity of the structural members is based on theoretical values as shown in the attached TAS form.
5. When applicable, this structural analysis is only valid if the proposed coax cables are stacked as shown in the attached feedline sketch.
6. Although there is grout present between the tower's foundation and base plate, the effect of grout has not been considered in this analysis. This is due to the difficult installation circumstances associated with relatively large base plates with narrow flanges used for the pole structures. This also matches industry standards/practice and TIA recommendations.

 5.250 4.750 $\quad 4.000$ 69.8 \# DESIGNED APPURTENANCE LOADING

thxTOWer	Job	Page	
	Project	Client	17635 Middleton SW

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Description \& $$
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
$$ \& Allow Shield \& Component Type \& Placement
ft \& Total Number \& \& $C_{A} A_{A}$

$f t^{2} / f t$ \& Weight
plf

\hline \multirow[t]{5}{*}{LDF7-50A(1-5/8") (T-Mobile - Existing)} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{No} \& \multirow[t]{5}{*}{Inside Pole} \& \multirow[t]{5}{*}{140.000-5.000} \& \multirow[t]{5}{*}{18} \& No Ice \& 0.000 \& 0.820

\hline \& \& \& \& \& \& 1/2" Ice \& 0.000 \& 0.820

\hline \& \& \& \& \& \& 1 " Ice \& 0.000 \& 0.820

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 0.000 \& 0.820

\hline \& \& \& \& \& \& $4^{\prime \prime}$ Ice \& 0.000 \& 0.820

\hline \multirow[t]{5}{*}{3/8" RET cable (T-Mobile - Existing)} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{No} \& \multirow[t]{5}{*}{Inside Pole} \& \multirow[t]{5}{*}{140.000-5.000} \& \multirow[t]{5}{*}{1} \& No Ice \& 0.000 \& 0.067

\hline \& \& \& \& \& \& 1/2" Ice \& 0.000 \& 0.067

\hline \& \& \& \& \& \& 1 " Ice \& 0.000 \& 0.067

\hline \& \& \& \& \& \& 2" Ice \& 0.000 \& 0.067

\hline \& \& \& \& \& \& $4^{\prime \prime}$ Ice \& 0.000 \& 0.067

\hline \multicolumn{9}{|l|}{*****}

\hline \multirow[t]{5}{*}{| LDF6-50A(1-1/4") |
| :--- |
| (Sprint - Existing) |} \& \multirow[t]{5}{*}{A} \& \multirow[t]{6}{*}{No} \& \multirow[t]{6}{*}{Inside Pole} \& \multirow[t]{6}{*}{124.000-5.000} \& \multirow[t]{5}{*}{3} \& No Ice \& 0.000 \& 0.660

\hline \& \& \& \& \& \& 1/2" Ice \& 0.000 \& 0.660

\hline \& \& \& \& \& \& 1" Ice \& 0.000 \& 0.660

\hline \& \& \& \& \& \& 2"Ice \& 0.000 \& 0.660

\hline \& \& \& \& \& \& 4"Ice \& 0.000 \& 0.660

\hline ***** \& \& \& \& \& \& \& \&

\hline \multirow[t]{5}{*}{| LDF7-50A(1-5/8") |
| :--- |
| (Verizon-Existing) |} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{No} \& \multirow[t]{5}{*}{Inside Pole} \& \multirow[t]{5}{*}{110.000-5.000} \& \multirow[t]{5}{*}{13} \& No Ice \& 0.000 \& 0.820

\hline \& \& \& \& \& \& 1/2" Ice \& 0.000 \& 0.820

\hline \& \& \& \& \& \& 1 " Ice \& 0.000 \& 0.820

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 0.000 \& 0.820

\hline \& \& \& \& \& \& 4 " Ice \& 0.000 \& 0.820

\hline ***** \& \& \& \& \& \& \& \&

\hline \multirow[t]{5}{*}{$$
\begin{gathered}
\text { LDF7-50A(1-5/8") } \\
\text { (Metro PCS - Existing) }
\end{gathered}
$$} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{No} \& \multirow[t]{5}{*}{\[

$$
\begin{aligned}
& \text { CaAa (Out Of } \\
& \text { Face) }
\end{aligned}
$$
\]} \& \multirow[t]{5}{*}{$90.000-5.000$} \& \multirow[t]{5}{*}{1} \& No Ice \& 0.198 \& 0.820

\hline \& \& \& \& \& \& 1/2" Ice \& 0.298 \& 2.335

\hline \& \& \& \& \& \& $1^{\prime \prime}$ Ice \& 0.398 \& 4.461

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 0.598 \& 10.545

\hline \& \& \& \& \& \& 4 " Ice \& 0.998 \& 30.044

\hline \multirow[t]{5}{*}{$$
\begin{gathered}
\text { LDF7-50A(1-5/8") } \\
\text { (Metro PCS - Existing) }
\end{gathered}
$$} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{No} \& \multirow[t]{5}{*}{\[

$$
\begin{aligned}
& \mathrm{CaAa} \text { (Out Of } \\
& \text { Face) }
\end{aligned}
$$
\]} \& \multirow[t]{5}{*}{90.000-5.000} \& \multirow[t]{5}{*}{5} \& No Ice \& 0.000 \& 0.820

\hline \& \& \& \& \& \& 1/2" Ice \& 0.000 \& 2.335

\hline \& \& \& \& \& \& 1"Ice \& 0.000 \& 4.461

\hline \& \& \& \& \& \& 2"Ice \& 0.000 \& 10.545

\hline \& \& \& \& \& \& 4" Ice \& 0.000 \& 30.044

\hline ***** \& \& \& \& \& \& \& \&

\hline \multirow[t]{5}{*}{FLC38-50J (3/8 FOAM) (Metro PCS - Existing)} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{No} \& \multirow[t]{5}{*}{CaAa (Out Of Face)} \& \multirow[t]{5}{*}{55.000-5.000} \& \multirow[t]{5}{*}{1} \& No Ice \& 0.000 \& 0.080

\hline \& \& \& \& \& \& $$
1 / 2^{1} \text { Ice }
$$ \& 0.000 \& 0.654

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.000 \& 1.839

\hline \& \& \& \& \& \& 2" Ice \& 0.000 \& 6.042

\hline \& \& \& \& \& \& 4" Ice \& 0.000 \& 21.778

\hline ***** \& \& \& \& \& \& \& \&

\hline \multirow[t]{5}{*}{| LDF4-50A(1/2") |
| :--- |
| (Unknown-Existing) |} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{No} \& \multirow[t]{5}{*}{CaAa (Out Of Face)} \& \multirow[t]{5}{*}{50.000-5.000} \& \multirow[t]{5}{*}{1} \& \& 0.000 \& 0.150

\hline \& \& \& \& \& \& $$
1 / 2^{\prime \prime} \text { Ice }
$$ \& 0.000 \& 0.840

\hline \& \& \& \& \& \& 1" Ice \& 0.000 \& 2.141

\hline \& \& \& \& \& \& 2" Ice \& 0.000 \& 6.576

\hline \& \& \& \& \& \& 4" Ice \& 0.000 \& 22.776

\hline ***** \& \& \& \& \& \& \& \&

\hline \multirow[t]{5}{*}{Aero Channel MP308 (reinforcement)} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{No} \& \multirow[t]{5}{*}{CaAa (Out Of Face)} \& \multirow[t]{5}{*}{30.500-0.000} \& \multirow[t]{5}{*}{1} \& No Ice \& 0.467 \& 0.000

\hline \& \& \& \& \& \& $1 / 2^{\prime \prime}$ Ice \& 0.578 \& 0.000

\hline \& \& \& \& \& \& 1 " Ice \& 0.689 \& 0.000

\hline \& \& \& \& \& \& 2" Ice \& 0.911 \& 0.000

\hline \& \& \& \& \& \& 4" Ice \& 1.356 \& 0.000

\hline \multirow[t]{5}{*}{Aero Channel MP308 (reinforcement)} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{No} \& \multirow[t]{5}{*}{$$
\begin{gathered}
\mathrm{CaAa} \text { (Out Of } \\
\text { Face) }
\end{gathered}
$$} \& \multirow[t]{5}{*}{30.500-0.000} \& \multirow[t]{5}{*}{1} \& No Ice \& 0.467 \& 0.000

\hline \& \& \& \& \& \& $1 / 2^{\prime \prime}$ Ice \& 0.578 \& 0.000

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.689 \& 0.000

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 0.911 \& 0.000

\hline \& \& \& \& \& \& 4"Ice \& 1.356 \& 0.000

\hline \multirow[t]{5}{*}{Aero Channel MP308 (reinforcement)} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{No} \& \multirow[t]{5}{*}{CaAa (Out Of Face)} \& \multirow[t]{5}{*}{30.500-0.000} \& \multirow[t]{5}{*}{1} \& No Ice \& 0.467 \& 0.000

\hline \& \& \& \& \& \& $1 / 2^{\prime \prime}$ Ice \& 0.578 \& 0.000

\hline \& \& \& \& \& \& 1" Ice \& 0.689 \& 0.000

\hline \& \& \& \& \& \& 2"Ice \& 0.911 \& 0.000

\hline \& \& \& \& \& \& 4" Ice \& 1.356 \& 0.000

\hline
\end{tabular}

tnxTower Black \& Veatch Corp. 10950 Grandview Drive	Job	14635 Middleton SW	$\text { Page } 4 \text { of } 12$
	Project	176850 (14635TMOCT-S)	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:09:07 10/13/14 } \end{array}$
Overland Park, KS 66210 Phone: (913) 458-7245 FAX: (913) 458-8136	Client	AT\&T	Designed by Brennan J. Sedlacek, E.IT

tnxTower	Job		Page
		14635 Middleton SW	6 of 12
Black \& Veatch Corp. 10950 Grandview Drive	Project	176850 (14635TMOCT-S)	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:09:07 10/13/14 } \\ \hline \end{array}$
Overland Park, KS 66210 Phone: (913) 458-7245 FAX: (913) 458-8136	Client	AT\&T	Designed by Brennan J. Sedlacek, E.I.T

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert $f t$ $f t$ $f t$	Azimuth Adjustment	Placement $f t$		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight
(AT\&T - Existing)						$\begin{gathered} 1 / 2^{\prime \prime} \text { Ice } \\ 1^{\prime \prime} \text { Ice } \\ 2^{\text {" Ice }} \\ 4^{\prime \prime} \text { Ice } \end{gathered}$	$\begin{aligned} & 26.800 \\ & 30.500 \\ & 37.900 \\ & 52.700 \end{aligned}$	$\begin{aligned} & 26.800 \\ & 30.500 \\ & 37.900 \\ & 52.700 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 2.90 \\ & 3.70 \\ & 5.30 \end{aligned}$
ERICSSON AIR 21 B2A B4P w/ Mount Pipe (T-Mobile - Existing)	A	From Leg	$\begin{aligned} & 4.000 \\ & 6.000 \\ & 0.000 \end{aligned}$	0.000	140.000	No Ice $1 / 2^{\text {" }}$ Ice 1" Ice 2" Ice 4" Ice	$\begin{gathered} 6.825 \\ 7.347 \\ 7.863 \\ 8.926 \\ 11.175 \end{gathered}$	$\begin{gathered} 5.642 \\ 6.480 \\ 7.257 \\ 8.864 \\ 12.293 \end{gathered}$	$\begin{aligned} & 0.11 \\ & 0.17 \\ & 0.23 \\ & 0.38 \\ & 0.81 \end{aligned}$
ERICSSON AIR 21 B2A B4P w/ Mount Pipe (T-Mobile - Existing)	A	From Leg	$\begin{gathered} 4.000 \\ -6.000 \\ 0.000 \end{gathered}$	0.000	140.000	No Ice $1 / 2^{\prime \prime}$ Ice 1" Ice 2" Ice 4" Ice	$\begin{gathered} 6.825 \\ 7.347 \\ 7.863 \\ 8.926 \\ 11.175 \end{gathered}$	$\begin{gathered} 5.642 \\ 6.480 \\ 7.257 \\ 8.864 \\ 12.293 \end{gathered}$	$\begin{aligned} & 0.11 \\ & 0.17 \\ & 0.23 \\ & 0.38 \\ & 0.81 \end{aligned}$
ERICSSON AIR 21 B2A B4P w/ Mount Pipe (T-Mobile - Existing)	B	From Leg	$\begin{aligned} & 4.000 \\ & 6.000 \\ & 0.000 \end{aligned}$	0.000	140.000	No Ice $1 / 2^{11}$ Ice 1" Ice 2" Ice 4" Ice	$\begin{gathered} 6.825 \\ 7.347 \\ 7.863 \\ 8.926 \\ 11.175 \end{gathered}$	$\begin{array}{r} 5.642 \\ 6.480 \\ 7.257 \\ 8.864 \\ 12.293 \end{array}$	$\begin{aligned} & 0.11 \\ & 0.17 \\ & 0.23 \\ & 0.38 \\ & 0.81 \end{aligned}$
$\begin{aligned} & \text { ERICSSON AIR } 21 \text { B2A } \\ & \text { B4P w/ Mount Pipe } \\ & \text { (T-Mobile - Existing) } \end{aligned}$	B	From Leg	$\begin{gathered} 4.000 \\ -6.000 \\ 0.000 \end{gathered}$	0.000	140.000	No Ice $1 / 2^{\text {" }}$ Ice 1" Ice 2" Ice 4" Ice	$\begin{gathered} 6.825 \\ 7.347 \\ 7.863 \\ 8.926 \\ 11.175 \end{gathered}$	$\begin{gathered} 5.642 \\ 6.480 \\ 7.257 \\ 8.864 \\ 12.293 \end{gathered}$	$\begin{aligned} & 0.11 \\ & 0.17 \\ & 0.23 \\ & 0.38 \\ & 0.81 \end{aligned}$
ERICSSON AIR 21 B2A B4P w/ Mount Pipe (T-Mobile - Existing)	C	From Leg	$\begin{aligned} & 4.000 \\ & 6.000 \\ & 0.000 \end{aligned}$	0.000	140.000	No Ice 1/2" Ice 1" Ice 2^{11} Ice 4" Ice	$\begin{gathered} 6.825 \\ 7.347 \\ 7.863 \\ 8.926 \\ 11.175 \end{gathered}$	$\begin{gathered} 5.642 \\ 6.480 \\ 7.257 \\ 8.864 \\ 12.293 \end{gathered}$	$\begin{aligned} & 0.11 \\ & 0.17 \\ & 0.23 \\ & 0.38 \\ & 0.81 \end{aligned}$
ERICSSON AIR 21 B2A B4P w/ Mount Pipe (T-Mobile - Existing)	C	From Leg	$\begin{gathered} 4.000 \\ -6.000 \\ 0.000 \end{gathered}$	0.000	140.000	No Ice $1 / 2^{\text {" }}$ Ice 1" Ice $2^{\prime \prime}$ Ice 4" Ice	$\begin{gathered} 6.825 \\ 7.347 \\ 7.863 \\ 8.926 \\ 11.175 \end{gathered}$	$\begin{gathered} 5.642 \\ 6.480 \\ 7.257 \\ 8.864 \\ 12.293 \end{gathered}$	$\begin{aligned} & 0.11 \\ & 0.17 \\ & 0.23 \\ & 0.38 \\ & 0.81 \end{aligned}$
SBNHH-1D65C w/ Mount Pipe (T-Mobile - Proposed)	A	From Leg	$\begin{gathered} 4.000 \\ -1.500 \\ 0.000 \end{gathered}$	40.000	140.000	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 11.626 \\ & 12.346 \\ & 13.074 \\ & 14.543 \\ & 17.807 \end{aligned}$	$\begin{gathered} 9.793 \\ 11.311 \\ 12.854 \\ 15.192 \\ 20.047 \end{gathered}$	$\begin{aligned} & 0.08 \\ & 0.17 \\ & 0.27 \\ & 0.50 \\ & 1.15 \end{aligned}$
SBNHH-1D65C w/ Mount Pipe (T-Mobile - Proposed)	B	From Leg	$\begin{gathered} 4.000 \\ -1.500 \\ 0.000 \end{gathered}$	85.000	140.000	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 11.626 \\ & 12.346 \\ & 13.074 \\ & 14.543 \\ & 17.807 \end{aligned}$	$\begin{gathered} 9.793 \\ 11.311 \\ 12.854 \\ 15.192 \\ 20.047 \end{gathered}$	$\begin{aligned} & 0.08 \\ & 0.17 \\ & 0.27 \\ & 0.50 \\ & 1.15 \end{aligned}$
SBNHH-1D65C w/ Mount Pipe (T-Mobile - Proposed)	C	From Leg	$\begin{gathered} 4.000 \\ -1.500 \\ 0.000 \end{gathered}$	40.000	140.000	No Ice $1 / 2^{\text {" }}$ Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 11.626 \\ & 12.346 \\ & 13.074 \\ & 14.543 \\ & 17.807 \end{aligned}$	$\begin{gathered} 9.793 \\ 11.311 \\ 12.854 \\ 15.192 \\ 20.047 \end{gathered}$	$\begin{aligned} & 0.08 \\ & 0.17 \\ & 0.27 \\ & 0.50 \\ & 1.15 \end{aligned}$
T-19-A-V : TMA (T-Mobile - Existing)	A	From Leg	$\begin{gathered} 4.000 \\ -1.500 \\ 0.000 \end{gathered}$	0.000	140.000	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 0.664 \\ & 0.778 \\ & 0.901 \\ & 1.172 \\ & 1.817 \end{aligned}$	$\begin{aligned} & 0.367 \\ & 0.461 \\ & 0.564 \\ & 0.796 \\ & 1.364 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.02 \\ & 0.03 \\ & 0.04 \\ & 0.11 \end{aligned}$
T-19-A-V : TMA (T-Mobile - Existing)	B	From Leg	$\begin{gathered} 4.000 \\ -1.500 \end{gathered}$	0.000	140.000	No Ice $1 / 2^{\text {" }}$ Ice	$\begin{aligned} & 0.664 \\ & 0.778 \end{aligned}$	$\begin{aligned} & 0.367 \\ & 0.461 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$

tnxTower	Job		Page
		14635 Middleton SW	8 of 12
Black \& Veatch Corp. 10950 Grandview Drive	Project	176850 (14635TMOCT-S)	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:09:07 10/13/14 } \end{array}$
$\begin{gathered} \text { Overland Park, KS } 66210 \\ \text { Phone: (913) 458-7245 } \\ \text { FAX: (913) 458-8136 } \end{gathered}$	Client	AT\&T	Designed by Brennan J. Sediacek, E.I.T.

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert $f t$ $f t$ $f t$	Azimuth Adjustment -	Placement		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight
1900 MHz RRH (Sprint - Existing)	A	From Leg		0.000	124.000	$2^{\text {" I Ice }}$	11.031	10.844	0.41
						4" Ice	13.679	14.851	0.91
			4.000			No Ice	2.907	3.801	0.04
			0.000			1/2" Ice	3.145	4.065	0.07
						$1{ }^{\prime \prime}$ Ice	3.383	4.329	0.11
				0.000	124.000	2" Ice	3.859	4.857	0.17
	B	From Leg				4" Ice	4.811	5.913	0.29
1900 MHz RRH (Sprint - Existing)			4.000			No Ice	2.907	3.801	0.04
			0.000			1/2" Ice	3.145	4.065	0.07
			1.000			$1{ }^{\prime \prime}$ Ice	3.383	4.329	0.11
	C	From Leg		0.000	124.000	$2^{\prime \prime}$ Ice	3.859	4.857	0.17
						4" Ice	4.811	5.913	0.29
1900 MHz RRH (Sprint - Existing)			4.000			No Ice	2.907	3.801	0.04
			0.000			$1 / 2^{\prime \prime}$ Ice	3.145	4.065	0.07
			1.000			1 Ice	3.383	4.329	0.11
	A	From Leg		0.000	124.000	$2^{\prime \prime}$ Ice	3.859	4.857	0.17
800 MHz RRH (Sprint - Existing)						4" Ice	4.811	5.913	0.29
			4.000			No Ice	2.490	2.068	0.05
			0.000			$1 / 2^{\prime \prime}$ Ice	2.706	2.271	0.07
			1.000			$1^{\prime \prime}$ Ice	2.922	2.474	0.10
	B	From Leg		0.000	124.000	$2^{\prime \prime}$ Ice	3.354	2.880	0.14
800 MHz RRH (Sprint - Existing)						$4^{\prime \prime}$ Ice	4.218	3.692	0.22
			4.000			No Ice	2.490	2.068	0.05
			0.000			$1 / 2$ I' Ice	2.706	2.271	0.07
			1.000			$1^{\prime \prime}$ Ice	2.922	2.474	0.10
	C	From Leg		0.000	124.000	$2^{\prime \prime}$ Ice	3.354	2.880	0.14
800 MHz RRH (Sprint - Existing)						4 " Ice	4.218	3.692	0.22
			4.000			No Ice	2.490	2.068	0.05
			0.000			$1 / 2^{\prime \prime}$ Ice	2.706	2.271	0.07
			1.000			$1^{\prime \prime}$ Ice	2.922	2.474	0.10
	A	From Leg		0.000	124.000	$2^{\prime \prime}$ Ice	3.354	2.880	0.14
6' x 2" Mount Pipe (Sprint-Existing)						$4^{\prime \prime}$ Ice	4.218	3.692	0.22
			4.000			No Ice	1.425	1.425	0.02
			6.500			$1 / 2^{\prime \prime}$ Ice	1.925	1.925	0.03
			0.000			1 I' Ice	2.294	2.294	0.05
	A	From Leg		0.000	124.000	2 " Ice	3.060	3.060	0.09
$6^{\prime} \times 2^{\prime \prime}$ Mount Pipe (Sprint - Existing)						4 " Ice	4.702	4.702	0.23
			4.000			No Ice	1.425	1.425	0.02
			-6.500			1/2" Ice	1.925	1.925	0.03
			0.000			1 I' Ice	2.294	2.294	0.05
	B	From Leg		0.000	124.000	2" Ice	3.060	3.060	0.09
$6^{\prime} \times 2^{\prime \prime}$ Mount Pipe (Sprint - Existing)						4 " Ice	4.702	4.702	0.23
			4.000			No Ice	1.425	1.425	0.02
			6.500			1/2" Ice	1.925	1.925	0.03
			0.000			1 I' Ice	2.294	2.294	0.05
	B	From Leg		0.000	124.000	2 " Ice	3.060	3.060	0.09
$6^{\prime} \times 2^{\prime \prime}$ Mount Pipe (Sprint - Existing)						4 Ice	4.702	4.702	0.23
			4.000			No Ice	1.425	1.425	0.02
			-6.500			1/2" Ice	1.925	1.925	0.03
			0.000			1 " Ice	2.294	2.294	0.05
	C	From Leg		0.000	124.000	2" Ice	3.060	3.060	0.09
$6^{\prime} \times 2^{\prime \prime}$ Mount Pipe (Sprint - Existing)						4" Ice	4.702	4.702	0.23
			4.000			No Ice	1.425	1.425	0.02
			6.500			1/2" Ice	1.925	1.925	0.03
			0.000			$1 "$ Ice	2.294	2.294	0.05
						$2^{\prime \prime}$ Ice	3.060	3.060	0.09
						4 " Ice	4.702	4.702	0.23

tnxTower Black \& Veatch Corp. 10950 Grandview Drive Overland Park, KS 66210 Phone: (913) 458-7245 FAX: (913) 458-8136	Job	14635 Middleton SW	$\begin{aligned} & \text { Page } \\ & 10 \text { of } 12 \end{aligned}$
	Project	176850 (14635TMOCT-S)	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:09:07 10/13/14 } \end{array}$
	Client	AT\&T	Designed by Brennan J. Sedlacek, E.I.T.

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert $f t$ $f t$ $f t$	Azimuth Adjustment	Placement		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight
Mount Pipe (Verizon - Existing)			6.500			1/2" Ice	7.051	5.926	0.11
			0.000			1" Ice	7.557	6.670	0.17
						2" Ice	8.601	8.239	0.31
						4" Ice	10.811	11.590	0.71
LNX-6513DS-VTM w/ Mount Pipe (Verizon - Existing)	B	From Leg	4.000	30.000	110.000	No Ice	6.542	5.161	0.05
			6.500			$1 / 2^{\prime \prime}$ Ice	7.051	5.926	0.11
			0.000			1" Ice	7.557	6.670	0.17
						2" Ice	8.601	8.239	0.31
						4" Ice	10.811	11.590	0.71
LNX-6513DS-VTM w/ Mount Pipe (Verizon - Existing)	C	From Leg	4.000	30.000	110.000	No Ice	6.542	5.161	0.05
			6.500			1/2" Ice	7.051	5.926	0.11
			0.000			$1{ }^{\prime \prime}$ Ice	7.557	6.670	0.17
						2" Ice	8.601	8.239	0.31
						4" Ice	10.811	11.590	0.71
HBX-6516DS-VTM w/ Mount Pipe (Verizon - Existing)	A	From Leg	4.000	30.000	110.000	No Ice	3.598	3.241	0.03
			-6.500			$1 / 2^{\prime \prime}$ Ice	3.998	3.914	0.06
			0.000			1 I' Ice	4.435	4.564	0.10
						2"Ice	5.368	5.914	0.20
						4" Ice	7.361	8.877	0.50
HBX-6516DS-VTM w/ Mount Pipe (Verizon - Existing)	B	From Leg	4.000	30.000	110.000	No Ice	3.598	3.241	0.03
			-6.500			$1 / 2^{\prime \prime}$ Ice	3.998	3.914	0.06
			0.000			1" Ice	4.435	4.564	0.10
						$2^{\prime \prime}$ Ice	5.368	5.914	0.20
						4" Ice	7.361	8.877	0.50
$\begin{gathered} \text { HBX-6516DS-VTM w/ } \\ \text { Mount Pipe } \\ \text { (Verizon - Existing) } \end{gathered}$	C	From Leg	4.000	30.000	110.000	No Ice	3.598	3.241	0.03
			-6.500			$1 / 2^{\prime \prime}$ Ice	3.998	3.914	0.06
			0.000			1 " Ice	4.435	4.564	0.10
						$2^{\prime \prime}$ Ice	5.368	5.914	0.20
						4" Ice	7.361	8.877	0.50
RRH2X40-AWS (Verizon - Existing)	A	From Leg	4.000	0.000	110.000	No Ice	2.522	1.589	0.04
			0.000			$1 / 2^{\text {" }}$ Ice	2.753	1.795	0.06
			0.000			1 " Ice	2.993	2.010	0.08
						$2^{\prime \prime}$ Ice	3.499	2.465	0.13
						4 " Ice	4.615	3.479	0.28
RRH2X40-AWS (Verizon - Existing)	B	From Leg	4.000	0.000	110.000	No Ice	2.522	1.589	0.04
			0.000			$1 / 2^{\prime \prime}$ Ice	2.753	1.795	0.06
			0.000			1 " Ice	2.993	2.010	0.08
						2" Ice	3.499	2.465	0.13
						4" Ice	4.615	3.479	0.28
RRH2X40-AWS (Verizon - Existing)	C	From Leg	4.000	0.000	110.000	No Ice	2.522	1.589	0.04
			0.000			1/2" Ice	2.753	1.795	0.06
			0.000			1" Ice	2.993	2.010	0.08
						2" Ice	3.499	2.465	0.13
						$4^{\prime \prime}$ Ice	4.615	3.479	0.28
$\begin{aligned} & \text { DB-T1-6Z-8AB-0Z : } \\ & \text { Distribution Box } \\ & \text { (Verizon - Existing) } \end{aligned}$	C	From Leg	1.000	0.000	110.000	No Ice	5.600	2.333	0.04
			0.000			1/2" Ice	5.915	2.558	0.08
			0.000			1 " Ice	6.240	2.791	0.12
						2" Ice	6.914	3.284	0.21
						4" Ice	8.365	4.373	0.45
Side Arm Mount [SO 104-1] (Verizon - Existing)	A	None		0.000	110.000	No Ice	1.510	0.670	0.10
						1/2" Ice	1.820	0.930	0.14
						1 Ice	2.130	1.190	0.18
						2" Ice	2.750	1.710	0.26
						4 " Ice	3.990	2.750	0.42
Platform Mount [LP 1201-1] (Verizon - Existing)	A	None		0.000	110.000	No Ice	23.100	23.100	2.10
						1/2" Ice	26.800	26.800	2.50
						1 " Ice	30.500	30.500	2.90

tnxTower	Job		Page
		14635 Middleton SW	12 of 12
Black \& Veatch Corp. 10950 Grandview Drive	Project	176850 (14635TMOCT-S)	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:09:07 10/13/14 } \end{array}$
Overland Park, KS 66210 Phone: (913) 458-7245 FAX: (913) 458-8136	Client	AT\&T	Designed by Brennan J. Sedlacek, E.I.T

Section No.	Elevation ft	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$\begin{gathered} S F^{*} P_{\text {allow }} \\ K \end{gathered}$	$\%$ Capacity	Pass Fail
L4	133-128	Pole	TP27.601×26.7×0.25	4	-7.33	129.12	39.9	Pass
L5	128-123	Pole	TP28.501×27.601x0.25	5	-10.28	142.29	50.4	Pass
L6	123-118	Pole	TP29.401x28.501×0.25	6	-10.85	156.33	59.8	Pass
L7	118-111	Pole	TP30.661×29.401×0.25	7	-11.20	165.18	65.0	Pass
L8	111-110	Pole	TP30.341x29.441x0.25	8	-12.10	171.96	75.8	Pass
L9	110-105	Pole	TP31.241x30.341x0.25	9	-15.33	187.86	87.7	Pass
L10	105-100	Pole	TP32.142x31.241x0.25	10	-16.06	204.71	97.0	Pass
L11	100-99.3333	Pole	TP32.262×32.142×0.25	11	-16.16	207.03	98.1	Pass
L12	$\begin{gathered} 99.3333- \\ 99.0833 \end{gathered}$	Pole	TP32.307x32.262×0.344	12	-16.21	283.36	72.3	Pass
L13	$\begin{gathered} 99.0833- \\ 94.0833 \end{gathered}$	Pole	TP33.207x32.307x0.344	13	-17.07	307.99	78.4	Pass
L14	94.0833-90.5	Pole	TP33.852x33.207x0.344	14	-17.70	326.49	82.4	Pass
L15	90.5-90.25	Pole	TP33.897x33.852x0.431	15	-17.77	408.04	66.4	Pass
L16	90.25-85.25	Pole	TP34.797x33.897x0.425	16	-19.03	435.69	71.9	Pass
L17	85.25-80.25	Pole	TP35.698x34.797x0.425	17	-20.09	470.83	76.0	Pass
L18	80.25-75	Pole	TP36.643x35.698x0.425	18	-20.21	474.45	76.4	Pass
L19	75-74.75	Pole	TP36.188×35.288x0.488	19	-22.09	559.95	72.5	Pass
L20	74.75-69.75	Pole	TP37.088x36.188x0.475	20	-23.30	588.52	77.5	Pass
L21	69.75-64.75	Pole	TP37.988×37.088×0.475	21	-24.54	633.00	80.5	Pass
L22	64.75-60.5	Pole	TP38.753x37.988x0.469	22	-25.61	664.01	83.9	Pass
L23	60.5-60.25	Pole	TP38.798x38.753x0.55	23	-25.70	776.89	72.0	Pass
L24	60.25-55.25	Pole	TP39.699x38.798x0.55	24	-27.10	833.04	74.3	Pass
L25	55.25-50.25	Pole	TP40.599x39.699x0.538	25	-28.56	872.39	78.0	Pass
L26	50.25-45.25	Pole	TP41.499x40.599x0.538	26	-30.05	932.52	80.0	Pass
L27	45.25-39.75	Pole	TP42.489x41.499x0.538	27	-30.14	935.60	80.1	Pass
L28	39.75-38.75	Pole	TP42.044x40.919x0.6	28	-33.26	1078.19	76.6	Pass
L29	38.75-33.75	Pole	TP42.944x 42.044×0.588	29	-34.90	1127.02	79.7	Pass
L30	33.75-30.5	Pole	TP43.529x42.944x0.588	30	-35.97	1174.37	80.6	Pass
L31	30.5-30.25	Pole	TP43.574x43.529x0.638	31	-36.07	1273.87	74.6	Pass
L32	30.25-25.25	Pole	TP44.474x 43.574×0.625	32	-37.81	1330.24	77.3	Pass
L33	25.25-20.25	Pole	TP45.374x 44.474×0.625	33	-39.59	1413.85	78.4	Pass
L34	20.25-15.25	Pole	TP46.275x45.374x0.613	34	-41.39	1472.09	81.1	Pass
L35	15.25-10.25	Pole	TP47.175x46.275x0.613	35	-43.22	1560.86	82.1	Pass
L36	10.25-5.25	Pole	TP48.075x47.175x0.613	36	-45.07	1653.16	83.0	Pass
L37	5.25-0.25	Pole	TP48.975x48.075×0.6	37	-46.71	1714.64	85.6	Pass
L38	0.25-0	Pole	TP49.02x48.975 0.6	38	-46.81	1719.44	85.6	Pass
						Pole (L11) RATING $=$	$\begin{gathered} \text { Summary } \\ 98.1 \\ \mathbf{9 8 . 1} \end{gathered}$	Pass Pass

**Reinforced Tower Stresses are as follows:

Pole Section	Pole Stress	Plate Stress	Governing Stress
L 1	59.1%	-	59.1%
L 2	91.4%	94.5%	94.5%
L 3	80.3%	93.8%	93.8%
L 4	82.4%	94.2%	94.2%

Program Version 6.1.4.1-3/21/2014 File:C:/Users/SED77779/Desktop/Projects/14635TMOCT-S.176850/structural/14635TMOCT-S Structural Analysis.eri

TNX Geometry Input

	Section Height (ft)			Section Length (ft)	Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)	Wall Thickness (in)	Tapered Pole Grade	Weight Multiplier
1	148	-	143	5		18	24.000	24.900	0.25	A607-65	1.000
2	143	-	138	5		18	24.900	25.800	0.25	A607-65	1.000
3	138	-	133	5		18	25.800	26.700	0.25	A607-65	1.000
4	133	-	128	5		18	26.700	27.601	0.25	A607-65	1.000
5	128	-	123	5		18	27.601	28.501	0.25	A607-65	1.000
6	123	-	118	5		18	28.501	29.401	0.25	A607-65	1.000
7	118	-	115	7	4	18	29.401	30.661	0.25	A607-65	1.000
8	115	-	110	5		18	29.441	30.341	0.25	A607-65	1.000
9	110	-	105	5		18	30.341	31.241	0.25	A607-65	1.000
10	105	-	100	5		18	31.241	32.142	0.25	A607-65	1.000
11	100	-	99.3333	0.6667		18	32.142	32.262	0.25	A607-65	1.000
12	99,3333	-	99.0833	0.25		18	32.262	32.307	0.34375	A607-65	0.981
13	99.0833	-	94.0833	5		18	32.307	33.207	0.34375	A607-65	0.974
14	94.0833	-	90.5	3.5833		18	33.207	33.852	0.34375	A607-65	0.969
15	90.5	-	90.25	0.25		18	33.852	33.897	0.43125	A607-65	0.953
16	90.25	-	85.25	5		18	33.897	34.797	0.425	A607-65	0.957
17	85.25	-	80.25	5		18	34.797	35.698	0.425	A607-65	0.947
18	80.25	-	79.75	5.25	4.75	18	35.698	36.643	0.425	A607-65	0.946
19	79.75	-	74.75	5		18	35.288	36.188	0.4875	A607-65	0.951
20	74.75	-	69.75	5		18	36.188	37.088	0.475	A607-65	0.968
21	69.75	-	64.75	5		18	37.088	37.988	0.475	A607-65	0.960
22	64.75	-	60.5	4.25		18	37.988	38.753	0.46875	A607-65	0.967
23	60.5	-	60.25	0.25		18	38.753	38.798	0.55	A607-65	0.952
24	60.25	-	55.25	5		18	38.798	39.699	0.55	A607-65	0.943
25	55.25	-	50.25	5		18	39.699	40.599	0.5375	A607-65	0.956
26	50.25	-	45.25	5		18 +	40.599	41.499	0.5375	A607-65	0.948
27	45.25	-		5.5	5.25	18	41.499	42.489	0.5375	A607-65	0.948
28	45	-	38.75	6.25		18	40.919	42.044	0.6	A607-65	0.950
29	38.75	-	33.75	5		18	42.044	42.944	0.5875	A607-65	0.963
30	33.75	-	30.5	3.25		18	42.944	43.529	0.5875	A607-65	0.959
31	30.5	-	30.25	0.25		18	43.529	43.574	0.6375	A607-65	0.948
32	30.25	-	25.25	5		18	43.574	44.474	0.625	A607-65	0.959
33	25.25	-	20.25	5		18	44.474	45.374	0.625	A607-65	0.952
34	20.25	-	15.25	5		18	45.374	46.275	0.6125	A607-65	0.964
35	15.25	-	10.25	5		18	46.275	47.175	0.6125	A607-65	0.957
36	10.25	-	5.25	5		18	47.175	48.075	0.6125	A607-65	0.951
37	5.25	-	0.25	5		18	48.075	48.975	0.6	A607-65	0.964
38	0.25	-	0	0.25		18	48.975	49.020	0.6	A607-65	0.964

Analysis Results

Elevation (ft)	Component Type	Size	Critical Element	\% Capacity	Pass / Fail
148-143	Pole	TP24.9x24x0.25	Pole	8.0\%	Pass
143-138	Pole	TP25.8×24.9x0.25	Pole	16.1\%	Pass
138-133	Pole	TP26.7×25.8×0.25	Pole	26.0\%	Pass
133-128	Pole	TP27.601×26.7×0.25	Pole	34.8\%	Pass
128-123	Pole	TP28.501×27.601×0.25	Pole	43.9\%	Pass
123-118	Pole	TP29.401×28.501×0.25	Pole	53.7\%	Pass
118-115	Pole	TP30.661×29.401x0.25	Pole	59.1\%	Pass
115-110	Pole	TP30.341x29.441×0.25	Pole	69.7\%	Pass
110-105	Pole	TP31.241×30.341x0.25	Pole	80.6\%	Pass
105-100	Pole	TP32.142×31.241×0.25	Pole	90.2\%	Pass
100-99.33	Pole	TP32.262×32.142x0.25	Pole	91.4\%	Pass
99.33-99.08	Pole + Reinf.	TP32.307x32.262x0.3438	Reinf. 4 Tension Rupture	80.8\%	Pass
99.08-94.08	Pole + Reinf	TP33.207×32.307×0.3438	Reinf. 4 Tension Rupture	89.0\%	Pass
94.08-90.5	Pole + Reinf	TP33.852×33.207×0.3438	Reinf. 4 Tension Rupture	94.5\%	Pass
90.5-90.25	Pole + Reinf.	TP33.897x33.852x0.4313	Reinf. 3 Tension Rupture	73.3\%	Pass
90.25-85.25	Pole + Reinf	TP34.797×33.897×0.425	Reinf. 3 Tension Rupture	79.4\%	Pass
85.25-80.25	Pole + Reinf.	TP35.698×34.797×0.425	Reinf. 3 Tension Rupture	85.0\%	Pass
80.25-79.75	Pole + Reinf.	TP36.643×35.698×0.425	Reinf. 3 Tension Rupture	85.9\%	Pass
79.75-74.75	Pole + Reinf.	TP36.188×35.288×0.4875	Reinf. 3 Tension Rupture	81.2\%	Pass
74.75-69.75	Pole + Reinf.	.TP37.088×36.188×0.475	Reinf. 3 Tension Rupture	85.7\%	Pass
69.75-64.75	Pole + Reinf.	TP37.988×37.088×0.475	Reinf. 3 Tension Rupture	90.3\%	Pass
64.75-60.5	Pole + Reinf	TP38.753×37.988×0.4688	Reinf. 3 Tension Rupture	93.4\%	Pass
60.5-60.25	Pole + Reinf.	TP38.798×38.753×0.55	Reinf. 2 Tension Rupture	77.7\%	Pass
60.25-55.25	Pole + Reinf.	TP39.699x38.798×0.55	Reinf. 2 Tension Rupture	82.0\%	Pass
55.25-50.25	Pole + Reinf.	TP40.599×39.699x0.5375	Reinf. 2 Tension Rupture	85.6\%	Pass
50.25-45.25	Pole + Reinf.	TP41.499×40.599×0.5375	Reinf. 2 Tension Rupture	88.8\%	Pass
45.25-45	Pole + Reinf.	TP42.489x41.499x0.5375	Reinf. 2 Tension Rupture	89.0\%	Pass
45-38.75	Pole + Reinf.	TP42.044×40.919x0.6	Reinf. 2 Tension Rupture	85.1\%	Pass
38.75-33.75	Pole + Reinf.	TP42.944×42.044×0.5875	Reinf. 2 Tension Rupture	87.6\%	Pass
$33.75-30.5$	Pole + Reinf.	TP43.529×42.944×0.5875	Reinf. 2 Tension Rupture	89.1\%	Pass
30.5-30.25	Pole + Reinf.	TP43.574×43.529×0.6375	Reinf. 1 Tension Rupture	82.4\%	Pass
30.25-25.25	Pole + Reinf.	TP44.474×43.574×0.625	Reinf. 1 Tension Rupture	84.6\%	Pass
25.25-20.25	Pole + Reinf.	TP45.374×44.474×0.625	Reinf. 1 Tension Rupture	86.7\%	Pass
20.25-15.25	Pole + Reinf.	TP46.275×45.374×0.6125	Reinf. 1 Tension Rupture	88.7\%	Pass
15.25-10.25	Pole + Reinf	TP47.175×46.275×0.6125	Reinf. 1 Tension Rupture	90.6\%	Pass
10.25-5.25	Pole + Reinf.	TP48.075×47.175x0.6125	Reinf. 1 Tension Rupture	91.0\%	Pass
5.25-0.25	Pole + Reinf.	TP48.975 48.075×0.6	Reinf. 1 Tension Rupture	94.2\%	Pass
0.25-0	Pole + Reinf.	TP49.02×48.975×0.6	Reinf. 1 Tension Rupture	94.2\%	Pass
				Summary	
			Pole	91.4\%	Pass
			Reinforcement	94.5\%	Pass
			Overall	94.5\%	Pass

(Bearing and Stability Checks) Tool for TIA Rev F or G - Application (MP, SST with unitbase)

Site Data
BU\#:
Site Name: Middletown SW
App \#:

Enter Load Factors Below:		
For P (DL)	1.2	<--- Enter Factor
For P,V, and M (WL)	1.35	<---- Enter Factor

Pad \& Pier Data		
Base PL Dist. Above Pier:	3	in
Pier Dist. Above Grade:	6	in
Pad Bearing Depth, D:	8	ft
Pad Thickness, T:	3	ft
Pad Width=Length, L:	22	ft
Pier Cross Section Shape:	Round	<--Pull Down
Enter Pier Diameter:	7	ft
Concrete Density:	150.0	pcf
Pier Cross Section Area:	38.48	$\mathrm{ft}^{\wedge} 2$
Pier Height:	5.50	ft
Soil (above pad) Height:	5.00	ft

Soil Parameters		
Unit Weight, $\mathrm{y}:$	125.0	pcf
	12.00	ksf
Ultimate Bearing Capacity, qn:	10.75	
Strength Reduct. factor, $\phi:$	0.75	
Angle of Friction, $\Phi:$	34.0	degrees
Undrained Shear Strength, $\mathrm{Cu}:$	0.00	ksf
Allowable Bearing: $\phi^{*} \mathrm{qn}:$	9.00	ksf
Passive Pres. Coeff., Kp	3.54	

Forces/Moments due to Wind and Lateral Soil		
Minimum of (φ^{*} Ultimate Pad Passive Force, Vu):	51.2	kips ft ft-kips ft-kips ft-kips
Pad Force Location Above D:	1.38	
ϕ (Passive Pressure Moment):	70.85	
Factored O.T. M(WL), "1.6W":	5764.7	
Factored OT (MW-Msoil), M1	5693.84	

Resistance due to Foundation Gravity		
Soil Wedge Projection grade, a:	3.37	ft
Sum of Soil Wedges Wt:	51.81	kips
Soil Wedges ecc, K1:	9.01	ft
Ftg+Soil above Pad wt:	528.0	kips
Unfactored (Total ftg-soil Wt):	579.80	kips
1.2D. No Soil Wedges.	689.76	kips
0.9D. With Soil Wedges	563.95	kips

Resistance due to Cohesion (Vertical)		
$\phi^{*}\left(1 / 2^{*} \mathrm{Cu}\right)($ Total Vert. Planes)	0.00	kips
Cohesion Force Eccentricity, K2	0.00	ft

Monopole Base Reaction Forces		
TIA Revision:	F	<--Pull Down
Unfactored DL Axial, PD:	46.806	kips
Unfactored WL Axial, PW:	0	kips
Unfactored WL Shear, V:	37.905	kips
Unfactored WL Moment, M:	3938.478	ft -kips

Load Factor	Shaft Factored Loads		
1.20	$1.2 \mathrm{D}+1.6 \mathrm{~W}$, Pu:	56.1672	
0.90	kips		
1.35	Vu:	51.17175	
	Mu:	5316.945	

1.2D+1.6W Load Combination, Bearing Results:

(No Soil Wedges) [Reaction+Conc+Soil]	689.76	P1="1.2D $+1.6 \mathrm{~W} "$ (Kips)
Factored "1.6W" Overturning Moment (MW-Msoil), M1	5693.84	ft-kips

Orthogonal Direction:

ecc1 $=\mathrm{M} 1 / \mathrm{P} 1=$	8.25	ft
Orthogonal qu	$=5.71$	ksf
qu $/ \phi^{*}$ qn Ratio $=$	63.45%	Pass

Diagonal Direction:

$$
\begin{array}{rccl}
\text { ecc2 }=(0.707 \mathrm{M} 1) / \mathrm{P} 1 & = & 5.84 & \mathrm{ft} \\
\text { Diagonal qu } & =6.47 & \mathrm{ksf} \\
\text { qu } / \phi^{*} \text { qn Ratio } & = & 71.85 \% & \text { Pass }
\end{array}
$$

Run <-- Press Upon Completing All Input

0.9D+1.6W Load Combination, Bearing Results:

(w/ Soil Wedges) [Reaction+Conc+Soil]	563.95	$\mathrm{P} 2=" 0.9 \mathrm{D}+1.6 \mathrm{W"}$			
(Kips)			$	$	Factored "1.6W" Overturning
:---:					
Moment (MW-Msoil)-0.9(M of Wedge + M of Cohesion), M2					
5273.86					
ft-kips					

Orthogonal ecc3 $=\mathrm{M} 2 / \mathrm{P} 2$	$=$	9.35
ft		
Ortho Non Bearing Length, NBL $=$	18.70	ft

Orthogonal qu= 7.78 ksf
Diagonal qu= 7.32 ksf
Max Reaction Moment (ft-kips) so that qu $=\varphi^{*} \mathrm{qn}=100 \%$ Capacity Rating

Actual M:	3938.48		
M Orthogonal:	4041.09	$\mathbf{9 7 . 4 6 \%}$	Pass
M Diagonal:	4041.09	$\mathbf{9 7 . 4 6 \%}$	Pass

Dimensional Solutions Mat3D		Version	$\mathbf{6 . 0 . 0}$	
Foundation Name	Middletown SW		Date	10/13/2014
Designed By:	Black \& Veatch Corp.	Engineer		B. Sedlacek
Cilename:				

DETAIL REPORT
 UNFACTORED (ALLOWABLE) LOAD COMBINATIONS

pier					
Load Comb	Axial (kips)	Shear X (kips)	Mom Z (kip ft)	Shear Z (kips)	Mom X (kip ft)
1 - Dead	46.81	0.00	0.00	0.00	0.00
2-Dead + Wind	46.81	37.91	3938.48	0.00	0.00
FACTORED (ULTIMATE) LOAD COMBINATIONS					
pier					
Load Comb	Axial (kips)	Shear X (kips)	Mom Z (kip ft)	Shear Z (kips)	Mom X (kip ft)
1-1.4Dead	65.53	0.00	0.00	0.00	0.00
2-1.2Dead + 1.6Wind	56.17	60.65	6301.57	0.00	0.00
3-0.9Dead + 1.6Wind	42.13	60.65	6301.57	0.00	0.00

FOOTING DESIGN INFORMATION

$X \operatorname{Dim}(\mathrm{ft})$	22.00
$Z \operatorname{Dim}(\mathrm{ft})$	22.00
Thickness (ft)	3.00

Top Steel

Governing Combination	No of Bars	$\begin{gathered} \text { Bar } \\ \text { Size } \end{gathered}$	Bar Spac (in)	Area Prov $(\mathrm{sq} \mathrm{in} / \mathrm{tt})$	$\begin{array}{r} \text { Area } \\ \text { Req } \\ (\mathrm{sq} \mathrm{in} / \mathrm{ft}) \end{array}$	Moment (kip ft/ft)	Direction
2. 1.2Dead + 1.6Wind	22	11	12	1.56	0.35	-38.38	X
3. $0.9 \mathrm{Dead}+1.6 \mathrm{Wind}$	22	11	12	1.56	0	0	Z
				$\mathrm{SR}=$	22.4		
				$\mathrm{SR}=$	0		
	Bottom Steel						
Governing	No of	Bar	Bar	Area	Area	Moment	Direction
Combination	Bars	Size	Spac	Prov	Req		
			(in)	(sq in/ft)	(sq in/ft)	(kip ft/ft)	
3. 0.9Dead + 1.6Wind	22	11	12	1.56	1.5	208.15	X
1. 1.4Dead	22	11	12	1.56	0.39	7.09	Z
				SR=	96.2		
				SR=	25		

Dimensional Solutions Mat3D	Viddletown SW	Version	6.0 .0	Date
Foundation Name	Black \& Veatch Corp.	Engineer		Time
Designed By:			B. Sedlacek	Checker
Filename:				

DETAIL REPORT

PIER ULTIMATE LOAD CAPACITIES

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CT11056J
ATT Middletown
290 Preston Avenue
Middletown, CT 06457
November 14, 2014
EBI Project Number: 62146124

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general public allowable limit:	64.40%

November 14, 2014

T-Mobile USA
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 06002

Emissions Analysis for Site: CT11056J - ATT Middletown

EBI Consulting was directed to analyze the proposed T-Mobile facility located at 290 Preston Avenue, Middletown, CT, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(b)(1)-(b)(3)$, to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limit for the 700 MHz Band is $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$, and the general population exposure limit for the PCS and AWS bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 290 Preston Avenue, Middletown, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 2 GSM channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel
2) 2 UMTS channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
3) 2 LTE channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
4) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 W atts.
5) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
6) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
7) The antennas used in this modeling are the Ericsson AIR21 B4A/B2P for 1900 MHz (PCS) and 2100 MHz (AWS) channels and the Commscope LNX-6515DS-VTM for 700 MHz channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The Ericsson AIR21 B4A/B2P has a maximum gain of $\mathbf{1 5 . 9} \mathbf{~ d B d}$ at its main lobe. The Commscope LNX-6515DS-VTM has a maximum gain of $\mathbf{1 4 . 6} \mathbf{d B d}$ at its main lobe. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
8) The antenna mounting height centerline of the proposed antennas is $\mathbf{1 4 0}$ feet above ground level (AGL).
9) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

EBI Consulting

environmental | engineering | due diligence

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	1	Antenna \#:	1	Antenna \#:	1
Make / Model:	$\begin{gathered} \text { Ericsson ALR21 } \\ \text { B4A/B2P } \\ \hline \end{gathered}$	Make / Model:	$\begin{gathered} \text { Ericsson ATR21 } \\ \text { B4A/B2P } \end{gathered}$	Make / Model:	Ericsson AIR21 B4A/B2P
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	140	Height (AGL) :	140	Height (AGL):	140
Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz}(\mathrm{AWS}) \\ & \hline \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\text { PCS }) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$
Channel Count	2	Channel Count	2	\# PCS Channels:	2
Total TX Power:	120	Total TX Power:	120	\# AWS Channels:	120
ERP (W):	1,906.06	ERP (W):	1,906.06	ERP (W):	1,906.06
Antenna A1 MPE\%	0.93	Antenna B1 MPE\%	0.93	Antenna Cl MPE\%	0.93
Antenna \#:	2	Antenna \#:	2	Antenna \#:	2
Make / Model:	$\begin{gathered} \text { Ericsson AIR21 } \\ \text { B4A/B2P } \\ \hline \end{gathered}$	Make / Model:	$\begin{gathered} \text { Ericsson A/R21 } \\ \text { B4A/B2P } \end{gathered}$	Make / Model:	$\begin{gathered} \text { Ericsson AlR21 } \\ \text { B4A/B2P } \\ \hline \end{gathered}$
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	140	Height (AGL):	140	Height (AGL):	140
Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$
Channel Count	4	Channel Count	4	Channel Count	4
Total TX Power:	120	Total TX Power:	120	Total TX Power:	120
ERP (W):	1,906.06	ERP (W):	1,906.06	ERP (W):	1,906.06
Antenna A2 MPE\%	0.93	Antenna B2 MPE\%	0.93	Antenna C2 MPE\%	0.93
Antenna \#:	3	Antenna \#:	3	Antenna \#:	3
Make / Model:	Commscope LNX-6515DS-VTM	Make / Model:	Commscope LNX-6515DS-VTM	Make / Model:	Commscope LNX- 6515DS-VTM
Gain:	14.6 dBd	Gain:	14.6 dBd	Gain:	14.6 dBd
Height (AGL):	140	Height (AGL)	140	Height (AGL):	140
Frequency Bands	700 Mhz	Frequency Bands	700 Mhz	Frequency Bands	700 Mhz
Channel Count	1	Channel Count	1	Channel Count	1
Total TX Power:	30	Total TX Power.	30	Total TX Power:	30
ERP (W):	445.37	ERP (W):	445.37	ERP (W):	445.37
Antenna A3 MPE\%	0.37	Antenna B3 MPE\%	0.37	Antenna C3 MPE\%	0.37
	Site Composite MPE\%			T-Mobile Sector 1 Total:	: $\quad 2.24 \%$
	Carrier	MPE\%		T-Mobile Sector 2 T	: $\quad 2.24 \%$
	T-Mobile	6.72		T-Mobile Sector 3 T	: 2.24%
	Sprint	4.77 \%		Site Total:	: 64.40%

environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (\%)
Sector 1:	2.24%
Sector 2:	2.24%
Sector 3:	2.24%
T-Mobile Total:	6.72%
Site Total:	64.40%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{6 4 . 4 0 \%}$ of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

EBI Consulting

21 B Street
Burlington, MA 01803

\％Oガゅ9	：！u！ ग！qnd｜eגəuәs วว」〕0 \％ヨ dW leqot əu！
LNVITdWOO	：smie7s aэue！ןduos
Aemuns ajue！lduoj zu！	

EBI Project Number： 62146124 ヤLOZ＂ヤL JəquəəイON

TO NON－IONIZING EMISSIONS
LyOd ヨy SIS人 $7 \forall N \forall$ SNOISSIWヨ 1 NONヨOOヨコヨ OIG
8u！ 1 ｜nsuo 183 行

