Michael Gentile, Site Acquisition
c/o New Cingular Wireless, PCS LLC (AT\&T)
Centerline Communications, LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767
Mobile: (508) 844-9813
MGentile@clinellc.com

February 12, 2017
Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Notice of Exempt Modification // Site Number: CT1142 290 Preston Avenue, Middletown, CT 06457 (Name: Middletown SW) N 41.5573531 // W -072.7432769

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT\&T") currently maintains nine (9) antennas at the 150 -foot level of the existing 150-foot monopole tower at 290 Preston Avenue, Middletown, CT. The tower is owned by New Cingular Wireless PCS, LLC ("AT\&T"). The property is owned by Brenda \& Ernie Trumpold. AT\&T now intends to install three (3) remote radio heads in the existing shelter as well as three (3) remote radio heads on the 150 ' level of the existing tower.

The current proposal involves radio work only (; no antennas will be added. Prior conditions do not pertain.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16$50 \mathrm{j}-72(\mathrm{~b})(2)$. In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Daniel Drew, Mayor for the Town of Middletown, as well as the property owner, Brenda \& Ernie Trumpold and the tower owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

Attached to accommodate this filing are construction drawings dated November 14, 2016 by Centek Engineering, a structural analysis dated February 1, 2017 by GPD Engineering and an Emissions Analysis Report dated January 30, 2017 by Centerline Communications.

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by GPD Engineering, dated February 1, 2017.

For the foregoing reasons, AT\&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

[^0]
Attachments

cc: Daniel Drew, Mayor, Town of Middletown - as elected official New Cingular Wireless PCS, LLC - as tower owner Brenda \& Ernie Trumpold, individuals - as property owner

Radio Frequency Emissions Analysis Report

AT\&T Existing Facility
Site ID: CT1142

Middletown SW
290 Preston Ave
Middletown, CT 6457

January 30, 2017
Centerline Communications Project Number: 950006-027

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{1 0 . 1 4} \%$

January 30, 2017
AT\&T Mobility - New England
Attn: John Benedetto, RF Manager
550 Cochituate Road
Suite 550-13\&14
Framingham, MA 06040

Emissions Analysis for Site: CT1142 - Middletown SW

Centerline Communications, LLC ("Centerline") was directed to analyze the proposed AT\&T facility located at $\mathbf{2 9 0}$ Preston Ave, Middletown, CT, for the purpose of determining whether the emissions from the Proposed AT\&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The general population exposure limits for the 700 and 850 MHz Bands are approximately $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$ and $567 \mu \mathrm{~W} / \mathrm{cm}^{2}$ respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were performed for the proposed AT\&T Wireless antenna facility located at $\mathbf{2 9 0}$ Preston Ave, Middletown, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT\&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 -foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in Table 1:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
UMTS	850 MHz	2	30
UMTS	$1900 \mathrm{MHz}(\mathrm{PCS})$	2	30
LTE	700 MHz	2	60
LTE	$1900 \mathrm{MHz}($ PCS $)$	2	60
GSM	850 MHz	2	30
GSM	$1900 \mathrm{MHz}($ PCS $)$	2	30

Table 1: Channel Data Table

The following antennas listed in Table 2 were used in the modeling for transmission in the $700 \mathrm{MHz}, 850$ MHz and 1900 MHz (PCS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

Sector	Antenna Number	Antenna Make / Model	Antenna Centerline (ft)
A	1	Powerwave 7770	150
A	2	CCI HPA-65R-BUU-H6	150
A	3	Powerwave 7770	150
B	1	Powerwave 7770	150
B	2	Commscope SBNHH-1D65C	150
B	3	Powerwave 7770	150
C	1	Powerwave 7770	150
C	2	Commscope SBNHH-1D65A	150
C	3	Powerwave 7770	150

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

RESULTS

Per the calculations completed for the proposed AT\&T configurations Table 3 shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

Antenna ID	Antenna Make / Model	Frequency Bands	Antenna Gain (dBd)	Channel Count	Total TX Power (W)	ERP (W)	MPE \%
Antenna A1	Powerwave 7770	$\begin{gathered} 850 \mathrm{MHz} \text { / } \\ 1900 \mathrm{MHz} \text { (PCS) } \\ \hline \end{gathered}$	11.4 / 13.4	4	120	2,140.89	0.48
Antenna A2	HPA-65R-BUU-H6	$\begin{gathered} 700 \mathrm{MHz} \text { / } \\ 1900 \mathrm{MHz} \text { (PCS) } \\ \hline \end{gathered}$	11.95 / 14.75	4	240	5,462.56	1.32
Antenna A3	Powerwave 7770	$\begin{gathered} 850 \mathrm{MHz} \text { / } \\ 1900 \mathrm{MHz} \text { (PCS) } \\ \hline \end{gathered}$	11.4 / 13.4	4	120	2,140.89	0.48
Sector A Composite MPE\%							2.28
$\begin{gathered} \text { Antenna } \\ \text { B1 } \\ \hline \end{gathered}$	Powerwave 7770	$\begin{gathered} 850 \mathrm{MHz} \text { / } \\ 1900 \mathrm{MHz} \text { (PCS) } \end{gathered}$	11.4 / 13.4	4	120	2,140.89	0.48
$\begin{gathered} \text { Antenna } \\ \text { B2 } \end{gathered}$	Commscope SBNHH-1D65C	$\begin{gathered} 700 \mathrm{MHz} \text { I } \\ 1900 \mathrm{MHz} \text { (PCS) } \end{gathered}$	13.55 / 15.05	4	240	6,556.25	1.67
Antenna B3	Powerwave 7770	$\begin{gathered} 850 \mathrm{MHz} \text { / } \\ 1900 \mathrm{MHz} \text { (PCS) } \\ \hline \end{gathered}$	11.4 / 13.4	4	120	2,140.89	0.48
Sector B Composite MPE\%							2.64
$\begin{gathered} \text { Antenna } \\ \text { C1 } \\ \hline \end{gathered}$	Powerwave 7770	$\begin{gathered} 850 \mathrm{MHz} \text { / } \\ 1900 \mathrm{MHz} \text { (PCS) } \\ \hline \end{gathered}$	11.4 / 13.4	4	120	2,140.89	0.48
Antenna C2	Commscope SBNHH-1D65A	$\begin{gathered} 700 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) } \end{gathered}$	10.85 / 14.55	4	240	4,880.65	1.13
$\begin{gathered} \text { Antenna } \\ \text { C3 } \\ \hline \end{gathered}$	Powerwave 7770	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) } \end{gathered}$	11.4 / 13.4	4	120	2,140.89	0.48
Sector C Composite MPE\%							2.10

Table 3: AT\&T Emissions Levels

The Following table (table 4) shows all additional carriers on site and their MPE\% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum AT\&T MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, the sector with the largest calculated MPE\% is Sector B. Table 5 below shows a summary for each AT\&T Sector as well as the composite MPE value for the site.

Site Composite MPE \%	
Carrier	MPE \%
AT\&T - Max Sector Value	$\mathbf{2 . 6 4} \%$
MetroPCS	1.72 \%
Sprint	0.53%
Nextel	0.46%
Verizon Wireless	3.84%
T-Mobile	0.95%
Site Total MPE \%:	$\mathbf{1 0 . 1 4 \%}$

Table 4: All Carrier MPE Contributions

AT\&T Sector A Total:	2.28%
AT\&T Sector B Total:	2.64%
AT\&T Sector C Total:	2.10%
Site Total:	

Table 5: Site MPE Summary

Per FCC OET 65, carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. Table 6 below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated AT\&T sector(s). For this site, the sector with the largest calculated MPE\% is Sector B.

AT\&T _ Frequency Band / Technology (Sector B)	\# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Frequency (MHz)	Allowable MPE ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Calculated \% MPE
AT\&T 850 MHz UMTS	2	414.12	150	1.44	850 MHz	567	0.25\%
AT\&T 1900 MHz (PCS) UMTS	2	656.33	150	2.28	1900 MHz (PCS)	1000	0.23\%
AT\&T 700 MHz LTE	2	1,358.79	150	4.71	700 MHz	467	1.01\%
AT\&T 1900 MHz (PCS) LTE	2	1,919.34	150	6.66	1900 MHz (PCS)	1000	0.67\%
AT\&T 850 MHz GSM	2	414.12	150	1.44	850 MHz	567	0.25\%
AT\&T 1900 MHz (PCS) GSM	2	656.33	150	2.28	1900 MHz (PCS)	1000	0.23\%
						Total:	2.64\%

Table 6: AT\&T Maximum Sector MPE Power Values

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the AT\&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

AT\&T Sector	Power Density Value (\%)
Sector A:	2.28%
Sector B:	2.64%
Sector C:	2.10%
AT\&T Maximum Total (per sector):	2.64%
Site Total:	10.14%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{1 0 . 1 4} \%$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director
Centerline Communications, LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767

Empire Telecommunications
1150 1st Avenue, Suite 600
King of Prussia, PA 19406
(508) 844-9813

GPD Engineering and Architecture Professional Corporation
Christopher J. Scheks
520 South Main Street, Suite 2531
Akron, OH 44311
(614) 588-8973
cscheks@gpdgroup.com
GPD\# 2017701.95
February 1, 2017

RIGOROUS STRUCTURAL ANALYSIS REPORT

AT\&T DESIGNATION:

ANALYSIS CRITERIA:

Site USID: 14635
Site FA:
Site Name:
Client Site \#:

Codes:
10035088 CT1142

MIDDLETOWN SW

TIA-222-G, 2012 IBC \& 2016 CSBC
130-mph Ultimate 3 second gust with 0 " ice 101-mph Nominal 3 second gust with 0 " ice 50-mph Nominal 3 second gust with $3 / 4^{\prime \prime}$ ice

290 Preston Avenue, Middletown, CT 06457, Middlesex County Latitude $41^{\circ} 33^{\prime} \mathbf{2 6 . 4 7 1 " N}$, Longitude $72^{\circ} 44^{\prime} 35.797$ "W Market: NEW ENGLAND 148' Modified PennSummit Monopole

Mr. Michael Gentile,
GPD is pleased to submit this Rigorous Structural Analysis Report to determine the structural integrity of the aforementioned tower. The purpose of the analysis is to determine the suitability of the tower with the existing and proposed loading configuration detailed in the analysis report.

Analysis Results

Tower Stress Level with Proposed Equipment:	64.2%	Pass
Foundation Ratio with Proposed Equipment:	53.5%	Pass

We at GPD appreciate the opportunity of providing our continuing professional services to you and Empire Telecommunications. If you have any questions or need further assistance on this or any other projects please do not hesitate to call.

Respectfully submitted,

Christopher J. Scheks, P.E.
Connecticut \#: 0030026

SUMMARY \& RESULTS

The purpose of this analysis was to verify whether the existing modified structure is capable of carrying the proposed loading configuration as specified by AT\&T Mobility to Empire Telecommunications. This report was commissioned by Mr. Michael Gentile of Centerline Communication.

This analysis has been performed in accordance with the 2016 Connecticut State Building Code based upon an ultimate 3 -second gust wind speed of 130 mph converted to a nominal 3 -second gust wind speed of 101 mph per Section 1609.3 and Appendix N as required for use in the TIA-222-G Standard per Exception \#5 of Section 1609.1.1. Exposure Category B with a maximum topographic factor, Kzt, of 1.0 and Risk Category II were used in this analysis.

Modifications designed by B + T Group (Project \#: 84934.003, dated 2/8/2013) have been considered in this analysis.
TOWER SUMMARY AND RESULTS

Member	Capacity	Results
Monopole	64.2%	Pass
Anchor Rods	55.7%	Pass
Base Plate	46.7%	Pass
Foundation	53.5%	Pass

ANALYSIS METHOD

tnx Tower (Version 7.0.7.0), a commercially available software program, was used to create a three-dimensional model of the tower and calculate primary member stresses for various dead, live, wind, and ice load cases. Selected output from the analysis is included in Appendix B. The following table details the information provided to complete this structural analysis. This analysis is solely based on this information and is being completed without the benefit of a detailed site visit.

DOCUMENTS PROVIDED

Document	Remarks	Source
RF Data Sheet	RFDS Name: CT1142 V1.0, updated 9/1/2016	Empire
Tower Design	PJF Job \#: 29201-0230, dated 2/26/01	Siterra
Foundation Design	PJF Job \#: 29201-0230, dated 2/26/01	Siterra
Geotechnical Report	Not Provided	N/A
Previous Structural Analysis	B + T Project \#: 103655.001 .01, dated 12/29/2015	Siterra
Modification Drawings	B + T Project \#: 84934.003, dated 2/8/2013	Empire
Post Modification Report	Centek Project \#: 12033.034, dated 8/2/2013	Empire

ASSUMPTIONS

This structural analysis is based on the theoretical capacity of the members and is not a condition assessment of the tower. This analysis is from information supplied, and therefore, its results are based on and are as accurate as that supplied data. GPD has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural analysis.

1. The tower member sizes and shapes are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated in the materials section.
2. The appurtenance configuration is as supplied, determined from available photos, and/or as modeled in the analysis. It is assumed to be complete and accurate. All antennas, mounts, coax and waveguides are assumed to be properly installed and supported as per manufacturer requirements.
3. All mounts, if applicable, are considered adequate to support the loading. No actual analysis of the mount(s) is performed. This analysis is limited to analyzing the tower only.
4. The soil parameters are as per data supplied or as assumed and stated in the calculations.
5. Foundations are properly designed and constructed to resist the original design loads indicated in the documents provided.
6. The tower and structures have been properly maintained in accordance with TIA Standards and/or with manufacturer's specifications.
7. All welds and connections are assumed to develop at least the member capacity unless determined otherwise and explicitly stated in this report.
8. All prior structural modifications, if applicable, are assumed to be as per data supplied/available and to have been properly installed.
9. Loading interpreted from photos is accurate to $\pm 5^{\prime} \mathrm{AGL}$, antenna size accurate to $\pm 3.3 \mathrm{sf}$, and coax equal to the number of existing antennas without reserve.
10. All existing loading has been modeled based on the Previous Structural Analysis by B + T Group (Project \#: 103655.001.01, dated 12/29/2015), site photos, and the provided RF Data Sheet and is assumed to be accurate.
11. AT\&T's proposed loading has been modeled to reflect the final loading configuration found in the RF Data Sheet and is assumed to be accurate.

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and GPD should be allowed to review any new information to determine its effect on the structural integrity of the tower.

DISCLAIMER OF WARRANTIES

GPD has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD in connection with this Rigorous Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

This analysis is limited to the designated maximum wind and seismic conditions per the governing tower standards and code. Wind forces resulting in tower vibrations near the structure's resonant frequencies were not considered in this analysis and are outside the scope of this analysis. Lateral loading from any dynamic response was not evaluated under a time-domain based fatigue analysis.

GPD does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the capability of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the code specified amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

Towers are designed to carry gravity, wind, and ice loads. All members, legs, diagonals, struts, and redundant members provide structural stability to the tower with little redundancy. Absence or removal of a member can trigger catastrophic failure unless a substitute is provided before any removal. Legs carry axial loads and derive their strength from shorter unbraced lengths by the presence of redundant members and their connection to the diagonals with bolts or welds. If the bolts or welds are removed without providing any substitute to the frame, the leg is subjected to a higher unbraced length that immediately reduces its load carrying capacity. If a diagonal is also removed in addition to the connection, the unbraced length of the leg is greatly increased, jeopardizing its load carrying capacity. Failure of one leg can result in a tower collapse because there is no redundancy. Redundant members and diagonals are critical to the stability of the tower.

GPD makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD pursuant to this report will be limited to the total fee received for preparation of this report.

APPENDIX A

Tower Analysis Summary Form

Tower Analysis Summary Form

Site Name	MIDDLETOWN SW
Site Number	14635
FA Number	10035088
Date of Analysis	2112017
Company Performing Analysis	GPD

Tower Info	Description	Date
Tower Type (G, SST, MP)	MP	
Tower Height (top of steel AGL)	$148{ }^{\prime}$	
Tower Manufacturer	PennSummit	
Tower Model	n/a	
Tower Design	PJF Job \#\#: 29201-0230	2/26/2001
Foundation Design	PJF Job \#: 29201-0230	2126/2001
Geotech Report	Dr. Clarence Welti, P.E.	7/25/2000
Tower Mapping	n/a	
Previous Structural Analysis	B+T Project \#: 103655.001.01	12/29/2015
Modification Drawings	B+T Project \#: 84934.003	28/2013
Post Modification Report	Centek Project \#: 12033.034	8/2/2013

$$
\begin{aligned}
& \text { Modifications designed by } \mathrm{B+} \mathrm{~T} \text { Group (Project \#: 84934.003, dated } \\
& 2181213 \text {) have been considered in this analysis. }
\end{aligned}
$$

Antenna								Mount			Transmission Line			
Antenna Owner	$\begin{gathered} \text { Mount } \\ \text { Height (tt) } \end{gathered}$	$\begin{aligned} & \text { Antenna } \\ & \mathrm{CLL}(\mathrm{tr}) \end{aligned}$	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Type	Quantity	Mod	Size	Attachment Int. / Ext.
AT\&T Mobilily	148	150	6	Panel	Powerwave	${ }^{7770.00}$	$40 / 2001320$	1	Unknown	${ }^{12}$ ' LP Platform	12	LDF7-50A	${ }^{1-5 / 88^{\prime \prime}}$	External
AT\&T Mobility	148	150	1	Panel	CCI	HPA-65R-BUU-H	40			on the same moun	2	DC Power	$718{ }^{\prime \prime}$	Internal
AT\&T Mobility	148	150	1	Panel	Andrew	SBNHH-1D65C	200			on the same mount	1	Fiber	$318{ }^{\prime \prime}$	Internal
ATET Mobility	148	150	1	Panel	Andrew	SBNHH-1D65A	320			same moun				
ATET Mobility	148	150	3	RRU	Ericsson	RRUS-11				on the same mount				
AT\&T Mobility	148	150	3	RRU	Ericsson	RRUS A2 Module				on the same mount				
AT\&T Mobility	148	149	12	TMA	Powerwave	LGP21401				on the same mount				
AT\&T Mobility	148	148	3	RRU	Ericsson	RRUS-11				on the same mount				
AT\&T Mobility	148	148	1	Squid	Raycap	DC6-48-60-18-8F				on the same mount				
T-Mobile	140	140	6	Panel	Ericsson	AIR21	Assumed	1	Unknown		18	Unknown	${ }^{1-5 / 8^{\prime \prime}}$	
T-Mobile	140	140	2	Panel	RFS	APX16DWV-16DWV-S-E-ACU	Assumed			on the same mount	1	Hybrid	${ }^{1-51818^{\prime \prime}}$	Internal
T-Mobile	140	140	3	TMA	Andrew	Onebase Twin Dual Duplex TMA				on the same mount				
Sprint	130	130	3	Panel	Powerwave	APXVSPP18-C-A20	Assumed	1	Unknown	12' LP Platiorm	3	Hybrid	1-1/4"	Interna
Sprint	130	130	3	RRH	Alcatel Lucent	1900 RRH				on the same mount				
Sprint	130	130	3	RRH	Alcatel Lucent	800 RRH				on the same mount				
Verizon	110	111	1	Panel	Andrew	LNX-6514DS-T4M	Assumed	1	Unknown	$13^{\text {' LP P Platiorm }}$	12	Unknown	1-5/8"	Internal
Verizon	110	111	2	Panel	Antel	BXA-70063-6CF	Assumed	1	Unknown	Collar Mount	1	Hybrid	$1-5 / 8^{\prime \prime}$	Internal
Verizon	110	111	6	Diplexer	RFS	FD9R6004/2C-3				on the same mounts				
Verizon	110	110	3	Panel	Andrew	HBX-6517DS-VTM	Assumed			on the same mounts				
Verizon	110	110	3	Panel	Andrew	LNX-6513DS-VTM	Assumed			on the same mounts				
Verizon	110	110	3	Panel	Andrew	HBX-6516DS-VTM	Assumed			on the same mounts				
Verizon	110	110	3	RRH	Alcatel Lucent	RRH $2 \times 40 \mathrm{AWS}$				on the same mounts				
Verizon	110	110	1	Surge	RFS	DB-T1-6z-8AB00Z				on the same mounts				
Metro PCS	90	90	3	Panel	Kathrein	742-213	Assumed	3	Unknown	Pipe Mounts	6	Unknown	1-5/8"	External
Metro PCS	55	55	1	GPS	Unknown	GPS Unit		1	Unknown	1' Standoff	1	Unknown	$318{ }^{\prime \prime}$	External
Unknown	50	50	1	GPS	Unknown	GPS Unit		1	Unknown	1' Standoff	1	Unknown	112"	External

Note: (3) RRUS-11 RRUS and (3) RRUS-A2 modules at 150^{\prime} shall be removed prior to the installation of the proposed configuration and have not been considered in this analysis. All other existing/reserved equipment shall be reused

Antenna								Mount			Transmission Line			
Antenna Owner	$\begin{array}{\|c\|} \hline \text { Mount } \\ \text { Height (tr) } \end{array}$	$\begin{aligned} & \text { Antenna } \\ & \text { CL } \end{aligned}$	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Type	Quantity	Model	Size	Attachment Int. / Ext.
AT\&T Mobility	148	150	3	RRU	Ericsson	RRUS-32 B2				on the existing mount				

.

Antenna								Mount			Transmission Line			
Antenna Owner	$\begin{gathered} \text { Mount } \\ \text { Height (t) } \end{gathered}$	$\begin{aligned} & \text { Antenna } \\ & \mathrm{CL}(\mathrm{tr}) \end{aligned}$	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Type	Quantity	Model	Size	Attachment Int. / Ext.

APPENDIX B

tnxTower Output File

tnxTower	Job 14635-MIDDLETOWN SW		$\text { Page } 1 \text { of } 5$
GPD Group 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Project	2017701.95	Date 14:00:04 01/31/17
	Client	Empire Telecommunications	Designed by MShumway

Tower Input Data

There is a pole section.
This tower is designed using the TIA-222-G standard.
The following design criteria apply:
Tower is located in Middlesex County, Connecticut.
Basic wind speed of 101 mph .
Structure Class II.
Exposure Category B.
Topographic Category 1.
Crest Height 0.00 ft .
Nominal ice thickness of 0.7500 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 50 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Feed Line/Linear Appurtenances - Entered As Round Or Flat

$\left.\begin{array}{ccccccccc}\hline \text { Description } & \text { Sector } & \begin{array}{c}\text { Component } \\ \text { Type }\end{array} & \text { Placement } & \begin{array}{c}\text { Total } \\ \text { Number }\end{array} & \begin{array}{c}\text { Number } \\ \text { Per Row }\end{array} & \begin{array}{c}\text { Start/End } \\ \text { Position }\end{array} & \begin{array}{c}\text { Width or } \\ \text { Diameter } \\ \text { in }\end{array} & \text { Perimeter }\end{array} \begin{array}{c}\text { Weight } \\ \text { in }\end{array}\right]$

Feed Line/Linear Appurtenances - Entered As Area

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Component Type	Placement ft	Total Number		$C_{A} A_{A}$ $f t^{2} / f t$	Weight plf
Safety Line (3/8")	A	No	$\begin{aligned} & \text { CaAa (Out Of } \\ & \text { Face) } \end{aligned}$	148.00-8.00	1	No Ice	0.04	0.22
						1/2" Ice	0.14	0.75
						1" Ice	0.24	1.28
7/8" DC Power Cable (ATT)	A	No	Inside Pole	148.00-8.00	2	No Ice	0.00	0.60
						1/2" Ice	0.00	0.60
						1 " Ice	0.00	0.60
3/8" Fiber Cable (ATT)	A	No	Inside Pole	148.00-8.00	1	No Ice	0.00	0.10
						1/2" Ice	0.00	0.10
						$1{ }^{\text {" Ice }}$	0.00	0.10
LDF7-50A (1-5/8	B	No	Inside Pole	140.00-8.00	18	No Ice	0.00	0.82
FOAM)						1/2" Ice	0.00	0.82
(TMO)						1 1' Ice	0.00	0.82

tnxTower	14635 - MIDDLETOWN SW		$\begin{aligned} & \text { Page } \quad 2 \text { of } 5 \end{aligned}$
GPD Group 520 South Main Street Suite 2531	Project	2017701.95	$\begin{aligned} & \text { Date } \\ & \text { 14:00:04 01/31/17 } \end{aligned}$
Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Client	Empire Telecommunications	Designed by MShumway

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Component Type	Placement ft	Total Number		$C_{A} A_{A}$ $f t^{2} / f t$	Weight plf
1-5/8" Fiber Cable (TMO)	B	No	Inside Pole	140.00-8.00	1	No Ice	0.00	0.82
						1/2" Ice	0.00	0.82
						1 " Ice	0.00	0.82
1-1/4" Hybrid Cable (Sprint)	B	No	Inside Pole	124.00-8.00	3	No Ice	0.00	1.00
						1/2" Ice	0.00	1.00
						1 " Ice	0.00	1.00
LDF7-50A (1-5/8	C	No	Inside Pole	110.00-8.00	12	No Ice	0.00	0.82
FOAM)						1/2" Ice	0.00	0.82
(VZW)						1 " Ice	0.00	0.82
1-5/8" Fiber Cable	C	No	Inside Pole	110.00-8.00	1	No Ice	0.00	0.82
(VZW)						1/2" Ice	0.00	0.82
						1 " Ice	0.00	0.82

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
○
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

$l b$

\hline \multirow[t]{3}{*}{Lightning Rod 8'x3/4"} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 0.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{148.00} \& No Ice \& 0.60 \& 0.60 \& 12.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.41 \& 1.41 \& 18.19

\hline \& \& \& 4.00 \& \& \& 1 " Ice \& 2.25 \& 2.25 \& 29.49

\hline \multirow[t]{3}{*}{Platform Mount [LP 1201-1]} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{148.00} \& No Ice \& 23.10 \& 23.10 \& 2100.00

\hline \& \& \& \& \& \& 1/2" Ice \& 26.80 \& 26.80 \& 2500.00

\hline \& \& \& \& \& \& 1" Ice \& 30.50 \& 30.50 \& 2900.00

\hline \multirow[t]{3}{*}{(2) 7770.00 w/Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{148.00} \& No Ice \& 5.51 \& 4.10 \& 61.54

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.87 \& 4.73 \& 108.55

\hline \& \& \& 2.00 \& \& \& $1{ }^{1}$ Ice \& 6.23 \& 5.37 \& 162.39

\hline \multirow[t]{3}{*}{(2) 7770.00 w/Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{40.0000} \& \multirow[t]{3}{*}{148.00} \& No Ice \& 5.51 \& 4.10 \& 61.54

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.87 \& 4.73 \& 108.55

\hline \& \& \& 2.00 \& \& \& 1 " Ice \& 6.23 \& 5.37 \& 162.39

\hline \multirow[t]{3}{*}{(2) 7770.00 w/Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{40.0000} \& \multirow[t]{3}{*}{148.00} \& No Ice \& 5.51 \& 4.10 \& 61.54

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.87 \& 4.73 \& 108.55

\hline \& \& \& 2.00 \& \& \& $1{ }^{1}$ Ice \& 6.23 \& 5.37 \& 162.39

\hline \multirow[t]{3}{*}{HPA-65R-BUU-H6} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{148.00} \& No Ice \& 9.66 \& 6.45 \& 51.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 10.13 \& 6.91 \& 113.99

\hline \& \& \& 2.00 \& \& \& 1 " Ice \& 10.61 \& 7.38 \& 183.38

\hline \multirow[t]{3}{*}{SBNHH-1D65C w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{40.0000} \& \multirow[t]{3}{*}{148.00} \& No Ice \& 11.35 \& 8.28 \& 61.16

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 11.97 \& 9.07 \& 135.10

\hline \& \& \& 2.00 \& \& \& $1{ }^{1}$ Ice \& 12.59 \& 9.87 \& 217.80

\hline \multirow[t]{3}{*}{SBNHH-1D65A w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{40.0000} \& \multirow[t]{3}{*}{148.00} \& No Ice \& 6.10 \& 5.19 \& 61.30

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.54 \& 5.96 \& 115.03

\hline \& \& \& 2.00 \& \& \& $1{ }^{1}$ Ice \& 6.97 \& 6.66 \& 175.35

\hline \multirow[t]{3}{*}{RRUS 32 B2} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{148.00} \& No Ice \& 2.73 \& 1.67 \& 52.90

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.95 \& 1.86 \& 73.96

\hline \& \& \& 2.00 \& \& \& 1 " Ice \& 3.18 \& 2.05 \& 98.21

\hline \multirow[t]{3}{*}{RRUS 32 B2} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{40.0000} \& \multirow[t]{3}{*}{148.00} \& No Ice \& 2.73 \& 1.67 \& 52.90

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.95 \& 1.86 \& 73.96

\hline \& \& \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.18 \& 2.05 \& 98.21

\hline \multirow[t]{3}{*}{RRUS 32 B2} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{40.0000} \& \multirow[t]{3}{*}{148.00} \& No Ice \& 2.73 \& 1.67 \& 52.90

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.95 \& 1.86 \& 73.96

\hline \& \& \& 2.00 \& \& \& 1 " Ice \& 3.18 \& 2.05 \& 98.21

\hline \multirow[t]{3}{*}{(4) LGP21401} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{148.00} \& No Ice \& 1.10 \& 0.21 \& 14.10

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.24 \& 0.27 \& 21.26

\hline \& \& \& 1.00 \& \& \& 1 " Ice \& 1.38 \& 0.35 \& 30.32

\hline \multirow[t]{3}{*}{(4) LGP21401} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{40.0000} \& \multirow[t]{3}{*}{148.00} \& No Ice \& 1.10 \& 0.21 \& 14.10

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.24 \& 0.27 \& 21.26

\hline \& \& \& 1.00 \& \& \& 1 ' Ice \& 1.38 \& 0.35 \& 30.32

\hline
\end{tabular}

tnxTower	14635 - MIDDLETOWN SW		$\text { Page } 3 \text { of } 5$
GPD Group 520 South Main Street Suite 2531	Project	2017701.95	Date 14:00:04 01/31/17
Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Client	Empire Telecommunications	Designed by MShumway

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

ft \& \& \begin{tabular}{l}
$C_{A} A_{A}$

Front

$f t^{2}$

 \&

$C_{A} A_{A}$

Side

$f t^{2}$
\end{tabular} \& Weight

\hline \multirow[t]{3}{*}{(4) LGP21401} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{40.0000} \& \multirow[t]{3}{*}{148.00} \& No Ice \& 1.10 \& 0.21 \& 14.10

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.24 \& 0.27 \& 21.26

\hline \& \& \& 1.00 \& \& \& 1 " Ice \& 1.38 \& 0.35 \& 30.32

\hline \multirow[t]{3}{*}{RRUS-11} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{148.00} \& No Ice \& 2.78 \& 1.19 \& 47.62

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.99 \& 1.33 \& 68.42

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 3.21 \& 1.49 \& 92.25

\hline \multirow[t]{3}{*}{RRUS-11} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{40.0000} \& \multirow[t]{3}{*}{148.00} \& No Ice \& 2.78 \& 1.19 \& 47.62

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.99 \& 1.33 \& 68.42

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 3.21 \& 1.49 \& 92.25

\hline \multirow[t]{3}{*}{RRUS-11} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{40.0000} \& \multirow[t]{3}{*}{148.00} \& No Ice \& 2.78 \& 1.19 \& 47.62

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.99 \& 1.33 \& 68.42

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 3.21 \& 1.49 \& 92.25

\hline \multirow[t]{3}{*}{DC6-48-60-18-8F Surge Suppression Unit} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{148.00} \& No Ice \& 0.92 \& 0.92 \& 18.90

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.46 \& 1.46 \& 36.62

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 1.64 \& 1.64 \& 56.82

\hline \multirow[t]{3}{*}{Platform Mount [LP 1201-1]} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{140.00} \& No Ice \& 23.10 \& 23.10 \& 2100.00

\hline \& \& \& \& \& \& 1/2" Ice \& 26.80 \& 26.80 \& 2500.00

\hline \& \& \& \& \& \& 1 " Ice \& 30.50 \& 30.50 \& 2900.00

\hline \multirow[t]{3}{*}{(2) AIR 21 w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{140.00} \& No Ice \& 6.37 \& 5.78 \& 112.90

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.85 \& 6.63 \& 170.69

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.30 \& 7.35 \& 235.28

\hline \multirow[t]{3}{*}{(2) AIR 21 w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{140.00} \& No Ice \& 6.37 \& 5.78 \& 112.90

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.85 \& 6.63 \& 170.69

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 7.30 \& 7.35 \& 235.28

\hline \multirow[t]{3}{*}{(2) AIR 21 w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{140.00} \& No Ice \& 6.37 \& 5.78 \& 112.90

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.85 \& 6.63 \& 170.69

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 7.30 \& 7.35 \& 235.28

\hline \multirow[t]{3}{*}{APX16DWV-16DWV-S-E-A CU w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{140.00} \& No Ice \& 6.22 \& 3.19 \& 57.85

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.61 \& 3.82 \& 102.47

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 7.01 \& 4.46 \& 153.24

\hline \multirow[t]{3}{*}{APX16DWV-16DWV-S-E-A CU w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{140.00} \& No Ice \& 6.22 \& 3.19 \& 57.85

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.61 \& 3.82 \& 102.47

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 7.01 \& 4.46 \& 153.24

\hline \multirow[t]{3}{*}{APX16DWV-16DWV-S-E-A CU w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{140.00} \& No Ice \& 6.22 \& 3.19 \& 57.85

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.61 \& 3.82 \& 102.47

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 7.01 \& 4.46 \& 153.24

\hline \multirow[t]{3}{*}{Onebase Twin Dual Duplex TMA} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{140.00} \& No Ice \& 0.58 \& 0.26 \& 11.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.67 \& 0.34 \& 15.83

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 0.78 \& 0.42 \& 22.16

\hline \multirow[t]{3}{*}{Onebase Twin Dual Duplex TMA} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{140.00} \& No Ice \& 0.58 \& 0.26 \& 11.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.67 \& 0.34 \& 15.83

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 0.78 \& 0.42 \& 22.16

\hline \multirow[t]{3}{*}{Onebase Twin Dual Duplex TMA} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{140.00} \& No Ice \& 0.58 \& 0.26 \& 11.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.67 \& 0.34 \& 15.83

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 0.78 \& 0.42 \& 22.16

\hline \multirow[t]{3}{*}{Platform Mount [LP 1201-1]} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{130.00} \& No Ice \& 23.10 \& 23.10 \& 2100.00

\hline \& \& \& \& \& \& 1/2" Ice \& 26.80 \& 26.80 \& 2500.00

\hline \& \& \& \& \& \& 1" Ice \& 30.50 \& 30.50 \& 2900.00

\hline \multirow[t]{3}{*}{APXVSPP18-C-A20 w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{130.00} \& No Ice \& 8.02 \& 6.71 \& 78.90

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.48 \& 7.66 \& 144.31

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 8.94 \& 8.49 \& 217.47

\hline \multirow[t]{3}{*}{APXVSPP18-C-A20 w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{130.00} \& No Ice \& 8.02 \& 6.71 \& 78.90

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.48 \& 7.66 \& 144.31

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 8.94 \& 8.49 \& 217.47

\hline \multirow[t]{3}{*}{APXVSPP18-C-A20 w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{130.00} \& No Ice \& 8.02 \& 6.71 \& 78.90

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.48 \& 7.66 \& 144.31

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 8.94 \& 8.49 \& 217.47

\hline \multirow[t]{2}{*}{1900MHz RRH} \& \multirow[t]{2}{*}{A} \& \multirow[t]{2}{*}{From Leg} \& 3.00 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{130.00} \& No Ice \& 2.49 \& 3.26 \& 44.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.70 \& 3.48 \& 75.27

\hline
\end{tabular}

tnxTower GPD Group 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Job	14635 - MIDDLETOWN SW	Page 4 of 5
	Project	2017701.95	$\begin{aligned} & \text { Date } \\ & \text { 14:00:04 01/31/17 } \end{aligned}$
	Client	Empire Telecommunications	Designed by MShumway

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

ft \& \& \begin{tabular}{l}
$C_{A} A_{A}$ Front

$f t^{2}$

 \&

$C_{A} A_{A}$ Side

$f t^{2}$
\end{tabular} \& Weight

\hline \multirow{4}{*}{1900MHz RRH} \& \multirow{3}{*}{B} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{130.00} \& 1" Ice \& 2.91 \& 3.72 \& 110.18

\hline \& \& \& 3.00 \& \& \& No Ice \& 2.49 \& 3.26 \& 44.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.70 \& 3.48 \& 75.27

\hline \& \multirow{3}{*}{C} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{130.00} \& 1" Ice \& 2.91 \& 3.72 \& 110.18

\hline \multirow[t]{3}{*}{1900MHz RRH} \& \& \& 3.00 \& \& \& No Ice \& 2.49 \& 3.26 \& 44.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.70 \& 3.48 \& 75.27

\hline \& \multirow{3}{*}{A} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{130.00} \& 1" Ice \& 2.91 \& 3.72 \& 110.18

\hline \multirow[t]{3}{*}{800MHZ RRH} \& \& \& 3.00 \& \& \& No Ice \& 2.13 \& 1.77 \& 53.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.32 \& 1.95 \& 74.19

\hline \& \multirow{3}{*}{B} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{130.00} \& 1" Ice \& 2.51 \& 2.13 \& 98.39

\hline \multirow[t]{3}{*}{800MHZ RRH} \& \& \& 3.00 \& \& \& No Ice \& 2.13 \& 1.77 \& 53.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.32 \& 1.95 \& 74.19

\hline \& \multirow{3}{*}{C} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{130.00} \& 1" Ice \& 2.51 \& 2.13 \& 98.39

\hline \multirow[t]{3}{*}{800MHZ RRH} \& \& \& 3.00 \& \& \& No Ice \& 2.13 \& 1.77 \& 53.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.32 \& 1.95 \& 74.19

\hline \& \multirow{3}{*}{C} \& \multirow{3}{*}{None} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{110.00} \& 1" Ice \& 2.51 \& 2.13 \& 98.39

\hline \multirow[t]{3}{*}{Platform Mount [LP 1201-1]} \& \& \& \& \& \& No Ice \& 23.10 \& 23.10 \& 2100.00

\hline \& \& \& \& \& \& 1/2" Ice \& 26.80 \& 26.80 \& 2500.00

\hline \& \multirow{3}{*}{A} \& \multirow{3}{*}{From Leg} \& \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{110.00} \& $1{ }^{\prime \prime}$ Ice \& 30.50 \& 30.50 \& 2900.00

\hline \multirow[t]{3}{*}{LNX-6514DS-T4M w/ Mount Pipe} \& \& \& 3.00 \& \& \& No Ice \& 8.32 \& 7.00 \& 58.15

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.88 \& 8.19 \& $$
126.70
$$

\hline \& \multirow{3}{*}{B} \& \multirow{3}{*}{From Leg} \& 1.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{110.00} \& 1 " Ice \& 9.40 \& 9.08 \& 203.21

\hline \multirow[t]{3}{*}{BXA-70063-6CF w/ Mount Pipe} \& \& \& 3.00 \& \& \& No Ice \& 7.57 \& 5.49 \& 45.95

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.02 \& 6.23 \& 104.10

\hline \& \multirow{3}{*}{C} \& \multirow{3}{*}{From Leg} \& 1.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{110.00} \& 1 ' Ice \& 8.47 \& 6.99 \& 170.26

\hline \multirow[t]{3}{*}{BXA-70063-6CF w/ Mount Pipe} \& \& \& 3.00 \& \& \& No Ice \& 7.57 \& 5.49 \& 45.95

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.02 \& 6.23 \& 104.10

\hline \& \multirow{3}{*}{A} \& \multirow{3}{*}{From Leg} \& 1.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{110.00} \& $1{ }^{\prime \prime}$ Ice \& 8.47 \& 6.99 \& 170.26

\hline \multirow[t]{3}{*}{(2) FD9R6004/2C-3L} \& \& \& 3.00 \& \& \& No Ice \& 0.31 \& 0.08 \& 3.10

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.39 \& 0.12 \& 5.40

\hline \& \multirow{3}{*}{B} \& \multirow{3}{*}{From Leg} \& 1.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{110.00} \& 1 " Ice \& 0.47 \& 0.17 \& 8.79

\hline \multirow[t]{3}{*}{(2) FD9R6004/2C-3L} \& \& \& 3.00 \& \& \& No Ice \& 0.31 \& 0.08 \& 3.10

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.39 \& 0.12 \& 5.40

\hline \& \multirow{3}{*}{C} \& \multirow{3}{*}{From Leg} \& 1.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{110.00} \& 1" Ice \& 0.47 \& 0.17 \& 8.79

\hline \multirow[t]{3}{*}{(2) FD9R6004/2C-3L} \& \& \& 3.00 \& \& \& No Ice \& 0.31 \& 0.08 \& 3.10

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.39 \& 0.12 \& 5.40

\hline \& \multirow{3}{*}{A} \& \multirow{3}{*}{From Leg} \& 1.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{110.00} \& 1 " Ice \& 0.47 \& 0.17 \& 8.79

\hline \multirow[t]{3}{*}{HBX-6517DS-VTM w/ Mount Pipe} \& \& \& 3.00 \& \& \& No Ice \& 5.30 \& 4.73 \& 40.60

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.77 \& 5.68 \& 84.00

\hline \& \multirow{3}{*}{B} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{110.00} \& 1 " Ice \& 6.25 \& 6.50 \& 134.78

\hline \multirow[t]{3}{*}{HBX-6517DS-VTM w/ Mount Pipe} \& \& \& 3.00 \& \& \& No Ice \& 5.30 \& 4.73 \& 40.60

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.77 \& 5.68 \& 84.00

\hline \& \multirow{3}{*}{C} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{110.00} \& 1" Ice \& 6.25 \& 6.50 \& 134.78

\hline \multirow[t]{3}{*}{HBX-6517DS-VTM w/ Mount Pipe} \& \& \& 3.00 \& \& \& No Ice \& 5.30 \& 4.73 \& 40.60

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.77 \& 5.68 \& 84.00

\hline \& \multirow{3}{*}{A} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{110.00} \& 1" Ice \& 6.25 \& 6.50 \& 134.78

\hline \multirow[t]{3}{*}{LNX-6513DS-VTM w/ Mount Pipe} \& \& \& 3.00 \& \& \& No Ice \& 5.95 \& 5.03 \& 48.65

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.34 \& 5.69 \& 100.77

\hline \& \multirow{3}{*}{B} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{110.00} \& 1 " Ice \& 6.74 \& 6.35 \& 159.34

\hline \multirow[t]{3}{*}{LNX-6513DS-VTM w/ Mount Pipe} \& \& \& 3.00 \& \& \& No Ice \& 5.95 \& 5.03 \& 48.65

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.34 \& 5.69 \& 100.77

\hline \& \multirow{4}{*}{C} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{110.00} \& 1 " Ice \& 6.74 \& 6.35 \& 159.34

\hline \multirow[t]{3}{*}{LNX-6513DS-VTM w/ Mount Pipe} \& \& \& 3.00 \& \& \& No Ice \& 5.95 \& 5.03 \& 48.65

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.34 \& 5.69 \& 100.77

\hline \& \& \multirow{4}{*}{From Leg} \& 0.00 \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{110.00} \& 1 " Ice \& 6.74 \& 6.35 \& 159.34

\hline \multirow[t]{3}{*}{HBX-6516DS-VTM w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \& 3.00 \& \& \& No Ice \& 3.53 \& 3.17 \& 28.15

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.91 \& 3.80 \& 60.65

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 4.28 \& 4.43 \& 98.79

\hline HBX-6516DS-VTM w/ \& B \& From Leg \& 3.00 \& 0.0000 \& 110.00 \& No Ice \& 3.53 \& 3.17 \& 28.15

\hline
\end{tabular}

tnXTOWPr	Job	Page	
	14635-MIDDLETOWN SW	Project	Client
	Empire Telecommunications	Date	

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral Vert \(f t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
。
\end{tabular} \& Placement

ft \& \& \begin{tabular}{l}
$C_{A} A_{A}$ Front

$f t^{2}$

 \&

$C_{A} A_{A}$ Side

$f t^{2}$
\end{tabular} \& Weight

\hline \multirow[t]{2}{*}{Mount Pipe} \& \multirow{4}{*}{C} \& \multirow{4}{*}{From Leg} \& 0.00 \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{110.00} \& 1/2" Ice \& 3.91 \& 3.80 \& 60.65

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 4.28 \& 4.43 \& 98.79

\hline \multirow[t]{3}{*}{HBX-6516DS-VTM w/ Mount Pipe} \& \& \& 3.00 \& \& \& No Ice \& 3.53 \& 3.17 \& 28.15

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.91 \& 3.80 \& 60.65

\hline \& \multirow{3}{*}{A} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{110.00} \& 1 " Ice \& 4.28 \& 4.43 \& 98.79

\hline \multirow[t]{3}{*}{RRH2x40-AWS} \& \& \& 3.00 \& \& \& No Ice \& 2.16 \& 1.42 \& 43.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.36 \& 1.59 \& 60.40

\hline \& \multirow{3}{*}{B} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{110.00} \& 1 1' Ice \& 2.57 \& 1.77 \& 80.69

\hline \multirow[t]{3}{*}{RRH2x40-AWS} \& \& \& 3.00 \& \& \& No Ice \& 2.16 \& 1.42 \& 43.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.36 \& 1.59 \& 60.40

\hline \& \multirow{3}{*}{C} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{110.00} \& 1 " Ice \& 2.57 \& 1.77 \& 80.69

\hline \multirow[t]{3}{*}{RRH2x40-AWS} \& \& \& 3.00 \& \& \& No Ice \& 2.16 \& 1.42 \& 43.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.36 \& 1.59 \& 60.40

\hline \& \multirow{3}{*}{A} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{110.00} \& 1" Ice \& 2.57 \& 1.77 \& 80.69

\hline \multirow[t]{3}{*}{DB-T1-6Z-8AB-0Z} \& \& \& 3.00 \& \& \& No Ice \& 4.80 \& 2.00 \& 50.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.07 \& 2.19 \& 86.13

\hline \& \multirow{3}{*}{A} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{90.00} \& 1 " Ice \& 5.35 \& 2.39 \& 126.22

\hline \multirow[t]{3}{*}{742-213 w/Mount Pipe} \& \& \& 3.00 \& \& \& No Ice \& 5.42 \& 4.63 \& 47.55

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.95 \& 6.02 \& 91.91

\hline \& \multirow{3}{*}{B} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{90.00} \& 1 " Ice \& 6.47 \& 6.93 \& 144.02

\hline \multirow[t]{3}{*}{742-213 w/Mount Pipe} \& \& \& 3.00 \& \& \& No Ice \& 5.42 \& 4.63 \& 47.55

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.95 \& 6.02 \& 91.91

\hline \& \multirow{3}{*}{C} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{90.00} \& 1 ' Ice \& 6.47 \& 6.93 \& 144.02

\hline \multirow[t]{3}{*}{742-213 w/Mount Pipe} \& \& \& 3.00 \& \& \& No Ice \& 5.42 \& 4.63 \& 47.55

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.95 \& 6.02 \& 91.91

\hline \& \multirow{3}{*}{A} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{55.00} \& 1 ' Ice \& 6.47 \& 6.93 \& 144.02

\hline \multirow[t]{3}{*}{GPS} \& \& \& 1.00 \& \& \& No Ice \& 0.12 \& 0.12 \& 0.87

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.21 \& 0.21 \& 3.85

\hline \& \multirow{4}{*}{A} \& \multirow{4}{*}{From Leg} \& 0.00 \& \multirow{4}{*}{0.0000} \& \multirow{3}{*}{55.00} \& 1" Ice \& 0.28 \& 0.28 \& 7.85

\hline \multirow[t]{3}{*}{MTS 12" Antenna Standoff} \& \& \& 0.50 \& \& \& No Ice \& 2.82 \& 2.20 \& 40.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.07 \& 3.16 \& 61.95

\hline \& \& \& 0.00 \& \& \multirow{3}{*}{50.00} \& 1 ' Ice \& 5.32 \& 4.12 \& 83.90

\hline \multirow[t]{3}{*}{GPS} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \& No Ice \& 0.12 \& 0.12 \& 0.87

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.21 \& 0.21 \& 3.85

\hline \& \& \& 0.00 \& \& \multirow{4}{*}{50.00} \& 1 " Ice \& 0.28 \& 0.28 \& 7.85

\hline \multirow[t]{3}{*}{MTS 12" Antenna Standoff} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 0.50 \& \multirow[t]{3}{*}{0.0000} \& \& No Ice \& 2.82 \& 2.20 \& 40.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.07 \& 3.16 \& 61.95

\hline \& \& \& 0.00 \& \& \& 1 I' Ice \& 5.32 \& 4.12 \& 83.90

\hline
\end{tabular}

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
$f t$		Comb.	in	\circ	\circ	\circ
148.00	Lightning Rod 8'x3/4"	40	14.535	0.8987	0.0034	49158
140.00	Platform Mount [LP 1201-1]	40	13.034	0.8913	0.0028	32223
130.00	Platform Mount [LP 1201-1]	40	11.193	0.8628	0.0022	14218
110.00	Platform Mount [LP 1201-1]	40	7.801	0.7536	0.0014	8069
90.00	742-213 w/Mount Pipe	40	5.046	0.5537	0.0007	6597
55.00	GPS	40	1.830	0.3205	0.0003	8639
50.00	GPS	40	1.512	0.2869	0.0002	8501

Pole Geometry			Site BU: Work Order:					CROWN CASTLE Copyright © 2016 Crown Castle				
	Pole Height Above Base (ft)	Section Length (ft)				Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)	Wall Thickness (in)	Bend Radius (in)	Pole Material
1	148	37	4	18	24	30.661	0.25	1	A607-65			
2	115	40	4.75	18	29.44	36.643	0.25	1	A607-65			
3	79.75	40	5.25	18	35.29	42.489	0.3125	1.25	A607-65			
4	45	45	0	18	40.92	49.02	0.375	1.5	A607-65			

Reinforcement Configuration

	Bottom Effective Elevation (ft)	Top Effective Elevation (ft)	Type	Model	Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	0	18.083	channel	MP3-05 (1.1875")	2					1		1											
2	18.083	30.5	channel	MP3-08 (1.1875")	1						1												
3	0	30.5	channel	MP3-08 (1.1875")	3						1						1						1
4	30.5	60.5	channel	MP3-06 (1.1875")	3						1						1						1
5	60.5	90.5	channel	MP3-05 (1.1875")	3						1						1						1
6	90.5	99.33	channel	MP3-03 (1.1875")	3						1						1						1
7																							
8																							
9																							
10																							

Reinforcement Details

	B (in)	H (in)	Gross Area (in ${ }^{2}$)	Pole Face to Centroid (in)	Bottom Termination Length (in)	Top Termination Length (in)	L_{u} (in)	Net Area (in ${ }^{2}$)	Bolt Hole Size (in)	Reinforcement Material
1	5.33	2.09	5.65	0.79	29.000	29.000	18.000	5.025	1.1875	A572-65
2	7.93	2.8	10.32	0.95	47.000	47.000	24.000	9.370	1.1875	A572-65
3	7.93	2.8	10.32	0.95	47.000	47.000	24.000	9.370	1.1875	A572-65
4	6.89	2.61	8.47	0.93	41.000	41.000	24.000	7.670	1.1875	A572-65
5	5.33	2.09	5.65	0.79	29.000	29.000	18.000	5.025	1.1875	A572-65
6	4.06	1.57	2.92	0.59	14.000	14.000	18.000	2.545	1.1875	A572-65

TNX Geometry Input

Increment (ft): 5

	Section	Height (ft)	Section Length (ft)	Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)	Wall Thickness (in)	Tapered Pole Grade	Weight Multiplier
1	148	- 143	5		18	24.000	24.900	0.25	A607-65	1.000
2	143	- 138	5		18	24.900	25.800	0.25	A607-65	1.000
3	138	- 133	5		18	25.800	26.700	0.25	A607-65	1.000
4	133	- 128	5		18	26.700	27.601	0.25	A607-65	1.000
5	128	- 123	5		18	27.601	28.501	0.25	A607-65	1.000
6	123	- 118	5		18	28.501	29.401	0.25	A607-65	1.000
7	118	- 115	7	4	18	29.401	30.661	0.25	A607-65	1.000
8	115	- 110	5		18	29.441	30.341	0.25	A607-65	1.000
9	110	- 105	5		18	30.341	31.241	0.25	A607-65	1.000
10	105	- 100	5		18	31.241	32.142	0.25	A607-65	1.000
11	100	- 99.33	0.67		18	32.142	32.262	0.25	A607-65	1.000
12	99.33	- 99.08	0.25		18	32.262	32.307	0.25	A607-65	1.000
13	99.08	- 94.08	5		18	32.307	33.208	0.25	A607-65	1.000
14	94.08	- 90.5	3.58		18	33.208	33.852	0.25	A607-65	1.000
15	90.5	- 90.25	0.25		18	33.852	33.897	0.43125	A607-65	0.953
16	90.25	- 85.25	5		18	33.897	34.797	0.425	A607-65	0.957
17	85.25	- 80.25	5		18	34.797	35.698	0.425	A607-65	0.947
18	80.25	- 79.75	5.25	4.75	18	35.698	36.643	0.425	A607-65	0.946
19	79.75	- 74.75	5		18	35.288	36.188	0.4875	A607-65	0.951
20	74.75	- 69.75	5		18	36.188	37.088	0.475	A607-65	0.968
21	69.75	- 64.75	5		18	37.088	37.988	0.475	A607-65	0.960
22	64.75	- 60.5	4.25		18	37.988	38.753	0.46875	A607-65	0.967
23	60.5	- 60.25	0.25		18	38.753	38.798	0.55	A607-65	0.952
24	60.25	- 55.25	5		18	38.798	39.699	0.55	A607-65	0.943
25	55.25	- 50.25	5		18	39.699	40.599	0.5375	A607-65	0.956
26	50.25	- 45.25	5		18	40.599	41.499	0.5375	A607-65	0.948
27	45.25	- 45	5.5	5.25	18	41.499	42.489	0.5375	A607-65	0.948
28	45	- 38.75	6.25		18	40.919	42.044	0.6	A607-65	0.950
29	38.75	- 33.75	5		18	42.044	42.944	0.5875	A607-65	0.963
30	33.75	- 30.5	3.25		18	42.944	43.529	0.5875	A607-65	0.959
31	30.5	- 30.25	0.25		18	43.529	43.574	0.6625	A607-65	1.027
32	30.25	- 25.25	5		18	43.574	44.474	0.6625	A607-65	1.018
33	25.25	- 20.25	5		18	44.474	45.374	0.65	A607-65	1.028
34	20.25	- 18.083	2.167		18	45.374	45.765	0.65	A607-65	1.024
35	18.083	- 17.833	0.25		18	45.765	45.810	0.6625	A607-65	1.015
36	17.833	- 12.833	5		18	45.810	46.710	0.65	A607-65	1.025
37	12.833	- 7.833	5		18	46.710	47.610	0.65	A607-65	1.017
38	7.833	- 2.833	5		18	47.610	48.510	0.6375	A607-65	1.028
39	2.833	- 0	2.833		18	48.510	49.020	0.6375	A607-65	1.023

TNX Section Forces

Increment (ft):			5	TNX Output		
	Section		(ft)	$\begin{aligned} & P_{u} \\ & (K) \end{aligned}$	$\begin{gathered} \mathrm{M}_{\mathrm{ux}} \\ \text { (kip-ft) } \end{gathered}$	$\begin{aligned} & V_{u} \\ & (K) \end{aligned}$
1	148	-	143	3.8403	31.444	5.2583
2	143	-	138	7.6656	65.387	8.9658
3	138	-	133	8.233	111.22	9.3484
4	133	-	128	11.733	165.26	12.704
5	128	-	123	12.345	229.91	13.166
6	123	-	118	12.993	296.87	13.624
7	118	-	115	13.393	338.14	13.893
8	115	-	110	14.44	408.85	14.387
9	110	-	105	18.331	501.98	18.637
10	105	-	100	19.138	596.16	19.05
11	100	-	99.33	19.251	608.94	19.102
12	99.33	-	99.08	19.296	613.72	19.121
13	99.08	-	94.08	20.127	710.3	19.525
14	94.08	-	90.5	20.739	780.66	19.805
15	90.5	-	90.25	20.808	785.61	19.82
16	90.25	-	85.25	22.152	888.86	20.9
17	85.25	-	80.25	23.382	994.44	21.329
18	80.25	-	79.75	23.511	1005.1	21.368
19	79.75	-	74.75	25.748	1113.2	21.869
20	74.75	-	69.75	27.148	1223.6	22.285
21	69.75	-	64.75	28.575	1336.1	22.685
22	64.75		60.5	29.806	1433.2	23.015
23	60.5		60.25	29.894	1438.9	23.028
24	60.25		55.25	31.519	1555.1	23.426
25	55.25		50.25	33.218	1673.7	23.906
26	50.25		45.25	34.941	1794.7	24.367
27	45.25	-	45	35.031	1800.8	24.377
28	45	-	38.75	38.737	1954.9	24.905
29	38.75		33.75	40.614	2080.2	25.226
30	33.75	-	30.5	41.848	2162.5	25.425
31	30.5	-	30.25	41.966	2168.9	25.43
32	30.25	-	25.25	44.192	2296.9	25.748
33	25.25	-	20.25	46.447	2426.4	26.05
34	20.25	-	18.083	47.434	2482.9	26.181
35	18.083	-	17.833	47.555	2489.5	26.186
36	17.833	-	12.833	49.86	2621.2	26.49
37	12.833	-	7.833	52.184	2754.4	26.775
38	7.833		2.833	54.265	2888.8	27.048
39	2.833	-	0	55.5	2965.6	27.2

Analysis Results

Elevation (ft)	Component Type	Size	Critical Element	\% Capacity	Pass / Fail
148-143	Pole	TP24.9x24x0.25	Pole	4.5\%	Pass
143-138	Pole	TP25.8×24.9x0.25	Pole	8.8\%	Pass
138-133	Pole	TP26.7x25.8x0.25	Pole	13.9\%	Pass
133-128	Pole	TP27.601x26.7x0.25	Pole	19.5\%	Pass
128-123	Pole	TP28.501×27.601×0.25	Pole	25.4\%	Pass
123-118	Pole	TP29.401x28.501x0.25	Pole	30.9\%	Pass
118-115	Pole	TP30.661x29.401x0.25	Pole	34.0\%	Pass
115-110	Pole	TP30.341x29.441×0.25	Pole	40.2\%	Pass
110-105	Pole	TP31.241×30.341×0.25	Pole	47.0\%	Pass
105-100	Pole	TP32.142x31.241×0.25	Pole	53.1\%	Pass
100-99.33	Pole	TP32.262x32.142×0.25	Pole	53.9\%	Pass
99.33-99.08	Pole	TP32.307x32.262x0.25	Pole	54.2\%	Pass
99.08-94.08	Pole	TP33.208x32.307x0.25	Pole	59.8\%	Pass
94.08-90.5	Pole	TP33.852x33.208x0.25	Pole	63.6\%	Pass
90.5-90.25	Pole + Reinf.	TP33.897x33.852x0.4313	Reinf. 5 Tension Rupture	50.5\%	Pass
90.25-85.25	Pole + Reinf.	TP34.797x33.897x0.425	Reinf. 5 Tension Rupture	54.7\%	Pass
85.25-80.25	Pole + Reinf.	TP35.698x34.797x0.425	Reinf. 5 Tension Rupture	58.7\%	Pass
80.25-79.75	Pole + Reinf.	TP36.643x35.698x0.425	Reinf. 5 Tension Rupture	59.1\%	Pass
79.75-74.75	Pole + Reinf.	TP36.188x35.288x0.4875	Reinf. 5 Tension Rupture	56.0\%	Pass
74.75-69.75	Pole + Reinf.	TP37.088x36.188x0.475	Reinf. 5 Tension Rupture	59.0\%	Pass
69.75-64.75	Pole + Reinf.	TP37.988×37.088×0.475	Reinf. 5 Tension Rupture	61.9\%	Pass
64.75-60.5	Pole + Reinf.	TP38.753x37.988x0.4688	Reinf. 5 Tension Rupture	64.2\%	Pass
60.5-60.25	Pole + Reinf.	TP38.798x38.753x0.55	Reinf. 4 Tension Rupture	54.0\%	Pass
60.25-55.25	Pole + Reinf.	TP39.699x38.798x0.55	Reinf. 4 Tension Rupture	56.3\%	Pass
55.25-50.25	Pole + Reinf.	TP40.599x39.699x0.5375	Reinf. 4 Tension Rupture	58.5\%	Pass
50.25-45.25	Pole + Reinf.	TP41.499x40.599x0.5375	Reinf. 4 Tension Rupture	60.5\%	Pass
45.25-45	Pole + Reinf.	TP42.489x41.499x0.5375	Reinf. 4 Tension Rupture	60.6\%	Pass
45-38.75	Pole + Reinf.	TP42.044×40.919x0.6	Reinf. 4 Tension Rupture	57.8\%	Pass
38.75-33.75	Pole + Reinf.	TP42.944×42.044x0.5875	Reinf. 4 Tension Rupture	59.4\%	Pass
33.75-30.5	Pole + Reinf.	TP43.529x42.944x0.5875	Reinf. 4 Tension Rupture	60.4\%	Pass
30.5-30.25	Pole + Reinf.	TP43.574×43.529x0.6625	Reinf. 3 Tension Rupture	55.8\%	Pass
30.25-25.25	Pole + Reinf.	TP44.474×43.574x0.6625	Reinf. 3 Tension Rupture	57.1\%	Pass
25.25-20.25	Pole + Reinf.	TP45.374x44.474x0.65	Reinf. 3 Tension Rupture	58.4\%	Pass
20.25-18.08	Pole + Reinf.	TP45.765×45.374x0.65	Reinf. 3 Tension Rupture	59.0\%	Pass
18.08-17.83	Pole + Reinf.	TP45.81×45.765x0.6625	Reinf. 3 Tension Rupture	57.8\%	Pass
17.83-12.83	Pole + Reinf.	TP46.71x45.81x0.65	Reinf. 3 Tension Rupture	58.9\%	Pass
12.83-7.83	Pole + Reinf.	TP47.61×46.71x0.65	Reinf. 3 Tension Rupture	60.0\%	Pass
7.83-2.83	Pole + Reinf.	TP48.51x47.61x0.6375	Reinf. 3 Tension Rupture	61.1\%	Pass
2.83-0	Pole + Reinf.	TP49.02x48.51x0.6375	Reinf. 3 Tension Rupture	61.7\%	Pass
				Summary	
			Pole	63.6\%	Pass
			Reinforcement	64.2\%	Pass
			Overall	64.2\%	Pass

Additional Calculations

	Moment of Inertia (in ${ }^{4}$)			Area (in ${ }^{2}$)			\% Capacity						
	Pole	Reinf.	Total	Pole	Reinf.	Total	Pole	R1	R2	R3	R4	R5	R6
148-143	1501	n/a	1501	19.56	n/a	19.56	4.5\%						
143-138	1672	n/a	1672	20.27	n/a	20.27	8.8\%						
138-133	1855	n/a	1855	20.99	n/a	20.99	13.9\%						
133-128	2050	n/a	2050	21.70	n/a	21.70	19.5\%						
128-123	2260	n/a	2260	22.42	n/a	22.42	25.4\%						
123-118	2482	n/a	2482	23.13	n/a	23.13	30.9\%						
118-115	2623	n/a	2623	23.56	n/a	23.56	34.0\%						
115-110	2731	n/a	2731	23.88	n/a	23.88	40.2\%						
110-105	2983	n/a	2983	24.59	n/a	24.59	47.0\%						
105-100	3251	n/a	3251	25.31	n/a	25.31	53.1\%						
100-99.33	3288	n/a	3288	25.40	n/a	25.40	53.9\%						
99.33-99.08	3301	n/a	3301	25.44	n/a	25.44	54.2\%						
99.08-94.08	3588	n/a	3588	26.15	n/a	26.15	59.8\%						
94.08-90.5	3802	n/a	3802	26.66	n/a	26.66	63.6\%						
90.5-90.25	3817	2678	6495	26.70	16.95	43.65	37.1\%					50.5\%	
90.25-85.25	4132	2815	6947	27.41	16.95	44.36	40.6\%					54.7\%	
85.25-80.25	4464	2955	7419	28.13	16.95	45.08	44.0\%					58.7\%	
80.25-79.75	4498	2969	7467	28.20	16.95	45.15	44.4\%					59.1\%	
79.75-74.75	5784	3033	8817	35.58	16.95	52.53	39.1\%					56.0\%	
74.75-69.75	6230	3179	9409	36.48	16.95	53.43	41.6\%					59.0\%	
69.75-64.75	6699	3328	10027	37.37	16.95	54.32	43.9\%					61.9\%	
64.75-60.5	7116	3458	10573	38.13	16.95	55.08	45.9\%					64.2\%	
60.5-60.25	7141	5276	12417	38.17	25.41	63.58	39.3\%				54.0\%		
60.25-55.25	7654	5511	13165	39.06	25.41	64.47	41.3\%				56.3\%		
55.25-50.25	8190	5752	13942	39.96	25.41	65.37	43.3\%				58.5\%		
50.25-45.25	8752	5997	14749	40.85	25.41	66.26	45.2\%				60.5\%		
45.25-45	8781	6009	14790	40.89	25.41	66.30	45.3\%				60.6\%		
45-38.75	10876	6148	17024	49.59	25.41	75.00	40.9\%				57.8\%		
38.75-33.75	11596	6402	17998	50.67	25.41	76.08	42.3\%				59.4\%		
33.75-30.5	12081	6569	18650	51.36	25.41	76.77	43.2\%				60.4\%		
30.5-30.25	12177	8902	21080	51.42	41.28	92.70	40.6\%		40.3\%	55.6\%			
30.25-25.25	12953	9255	22208	52.49	41.28	93.77	41.9\%		41.4\%	57.0\%			
25.25-20.25	13761	9615	23376	53.56	41.28	94.84	43.2\%		42.5\%	58.3\%			
20.25-18.08	14121	9773	23894	54.02	41.28	95.30	43.7\%		43.0\%	58.9\%			
18.08-17.83	14165	10288	24453	54.08	42.26	96.34	42.9\%	46.0\%		57.8\%			
17.83-12.83	15022	10680	25702	55.15	42.26	97.41	44.1\%	47.1\%		58.9\%			
12.83-7.83	15913	11079	26992	56.22	42.26	98.48	45.3\%	48.1\%		60.0\%			
7.83-2.83	16838	11486	28324	57.29	42.26	99.55	46.4\%	49.1\%		61.1\%			
2.83-0	17378	11719	29097	57.90	42.26	100.16	47.0\%	49.6\%		61.7\%			

[^1]
APPENDIX C

Tower Elevation Drawing

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Lightning Rod 8'x3/4"	148	APXVSPP18-C-A20 w/ Mount Pipe	130
Platform Mount [LP 1201-1]	148	1900MHz RRH	130
(2) $7770.00 \mathrm{w} / \mathrm{Mount}$ Pipe	148	1900MHz RRH	130
(2) $7770.00 \mathrm{w} /$ Mount Pipe	148	1900MHz RRH	130
(2) $7770.00 \mathrm{w} /$ Mount Pipe	148	800MHZ RRH	130
HPA-65R-BUU-H6	148	800MHZ RRH	130
SBNHH-1D65C w/ Mount Pipe	148	800MHZ RRH	130
SBNHH-1D65A w/ Mount Pipe	148	Platform Mount [LP 1201-1]	110
RRUS 32 B2	148	LNX-6514DS-T4M w/ Mount Pipe	110
RRUS 32 B2	148	BXA-70063-6CF w/ Mount Pipe	110
RRUS 32 B2	148	BXA-70063-6CF w/ Mount Pipe	110
(4) LGP21401	148	(2) FD9R6004/2C-3L	110
(4) LGP21401	148	(2) FD9R6004/2C-3L	110
(4) LGP21401	148	(2) FD9R6004/2C-3L	110
RRUS-11	148	HBX-6517DS-VTM w/ Mount Pipe	110
RRUS-11	148	HBX-6517DS-VTM w/ Mount Pipe	110
RRUS-11	148	HBX-6517DS-VTM w/ Mount Pipe	110
DC6-48-60-18-8F Surge Suppression	148	LNX-6513DS-VTM w/ Mount Pipe	110
		LNX-6513DS-VTM w/ Mount Pipe	110
Platform Mount [LP 1201-1]	140	LNX-6513DS-VTM w/ Mount Pipe	110
(2) AIR 21 w/ Mount Pipe	140	HBX-6516DS-VTM w/ Mount Pipe	110
(2) AIR 21 w/ Mount Pipe	140	HBX-6516DS-VTM w/ Mount Pipe	110
(2) AIR 21 w/ Mount Pipe	140	HBX-6516DS-VTM w/ Mount Pipe	110
APX16DWV-16DWV-S-E-ACU w/ Mount Pipe	140	RRH2x40-AWS	110
		RRH2x40-AWS	110
APX16DWV-16DWV-S-E-ACU W/ Mount Pipe	140	RRH2×40-AWS	110
APX16DWV-16DWV-S-E-ACU w/	140	DB-T1-6Z-8AB-0Z	110
Mount Pipe		742-213 w/Mount Pipe	90
Onebase Twin Dual Duplex TMA	140	742-213 w/Mount Pipe	90
Onebase Twin Dual Duplex TMA	140	742-213 w/Mount Pipe	90
Onebase Twin Dual Duplex TMA	140	GPS	55
Platform Mount [LP 1201-1]	130	MTS 12" Antenna Standoff	55
APXVSPP18-C-A20 w/ Mount Pipe	130	GPS	50
APXVSPP18-C-A20 w/ Mount Pipe	130	MTS 12" Antenna Standoff	50

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A607-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

1. Tower is located in Middlesex County, Connecticut.
2. Tower designed for Exposure B to the TIA-222-G Standard.
3. Tower designed for a 101 mph basic wind in accordance with the TIA-222-G Standard
4. Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
5. Deflections are based upon a 60 mph wind.
6. Tower Structure Class II.
7. Topographic Category 1 with Crest Height of 0.00 ft

ALL REACTIONS
ARE FACTORED

TORQUE $656 \mathrm{lb}-\mathrm{ft}$ 50 mph WIND - 0.7500 in ICE

AXIAL
55464 lb

TORQUE 1627 lb-ft
REACTIONS - 101 mph WIND

\qquad
\qquad Truss Leg

APPENDIX D

Base Plate and Anchor Rod Analysis

Anchor Rod Interaction, TIA-222-G
14635 - MIDDLETOWN SW
2017701.95

tnx Reactions		
Overturning Moment $=$	2965.65	$\mathrm{k}^{*} \mathrm{ft}$
Axial Force $=$	55.46	k
Shear Force $=$	27.19	k

Existing Anchor Rods	
Number of Rods =	16
Rod Circle $=$	56 in
Rod Diameter =	2.25 in
Est. Dist. b/w ea. Rod $=$	6 in
Plate Type =	Square
Plate Width $=$	55 in

Pole	
Pole Diameter $=$	49.02
	in
Number of Sides	18
Thickness $=$	0.375
	in

First Added Anchor Rods	
Number of Rods =	3
Rod Circle $=$	64.50 in
Rod Diameter $=$	1.75 in
Anchor Rod Grade =	A772

Second Added Anchor Rods	
Number of Rods =	
Rod Circle $=$	in
Rod Diameter $=$	in
Anchor Rod Grade =	

Rod Number	Initial Angle
1	74
2	197
3	315

First Added Anchor Rods		
Max Rod Compression $=$	96.37	k
\$Rnt $=$	228.00	k
Anchor Rod Capacity $=$		

Reactions in Existing Rods	
Overturning Moment=	2588.20 k*ft
Axial Force $=$	55.46 k
Shear Force $=$	27.19 k
Centroid Offset $=$	0.05 in

GPD GROUP

Overturning Moment* $=$ Axial Force = Shear Force = Centroid Offset $=$	$2588.20 \mathrm{k}^{*} \mathrm{ft}$
	55.46 k
	27.19 k
	0.05 in

*Above reactions have been adjusted due to consideration of modifications. See attached hand calculations for determination of anchor rod forces in the analysis.

*This analysis assumes the clear distance from the top of the concrete to the bottom of the leveling nut is less than the diameter of the anchor rod. Notify GPD Group immediately if existing field conditions do not meet this assumption.

APPENDIX E

Foundation Analysis

Mat Foundation Analysis 14635 - MIDDLETOWN SW 2017701.95

General Info	
Foundation Criteria	GPD
TIA Code	TIA-222-G
Soil Code	AASHTO 2012
Concrete Code	ACI 318-11
Seismic Design Category	B
Tower Height	148 ft
Bearing On	Rock
Foundation Type	Monopole Pad
Pier Type	Round
Reinforcing Known	Yes
Max Bearing Capacity	105%
Max Overturning Capacity	105%

Tower Reactions	
Moment, M	$2965.646 \mathrm{k}-\mathrm{ft}$
Axial, P	55.464 k
Shear, V	27.188 k

Pad \& Pier Geometry	
Pier Diameter, \varnothing	7 ft
Pad Length, $\mathrm{L}[\mathrm{y}]$	22 ft
Pad Width, $\mathrm{W}[\mathrm{x}]$	22 ft
Pad Thickness, t	3 ft
Depth, D	8 ft
Height Above Grade, HG	0.5 ft
Tower Centroid, X	11 ft
Tower Centroid, Y	11 ft
Tower Eccentricity	0.0000 ft

Pad \& Pier Reinforcing	
Rebar Fy	60 ksi
Concrete F'c	3 ksi
Pier Reinforcing Clear Cover	3 in
Shear Rebar Type	Tie
Shear Rebar Size	$\# 5$
Pad Reinforcing Clear Cover	3 in
Reinforced Top \& Bottom?	Yes
Pad Reinforcing Size	$\# 11$
Pad Quantity Per Layer	22
Pier Rebar Size	$\# 11$
Pier Quantity of Rebar	28

Soil Properties	
Soil Type	Granular
Soil Unit Weight	100 pcf
Angle of Friction, \varnothing	30
Base Friction Coeff. Provided in Geo?	No
Bearing Type	Gross
Ultimate Bearing	12 ksf
Water Table Depth	7 ft
Frost Depth	3.5 ft

TES AND SPECIFICATIONS

ESIGN BASIS

WIND LOAQ: PER TAA 2226 (ANEENNA WOUNTS: To0-120 MPH (3 SECOND GUST)

NMM D.

general notes:

bovernng buloong coos.

Conticuous to the sit whic mar affer performance ano cost of the wor

. no drulimg welong or tapmg ov clep ovmed eaurment

StRuctural steel

 5. AT AN SH SHo Assember fabicatons in the lareest practical sectons for

13. Lock washer are not permited for azz2 stel assewules.

14- Shop comnections shall be weloed or hich strencth boutea

PAINT NOTE

Panting scheole

contal cables

Exammatoon ano preparation:

 Coll

1. coaxal cables: remove ill oll oust, orease. ort, and other foregn
cleane

aplcation
Apely Prouvets in Accoboance wit manufacturer's nstructions

EACH COAT TO UNFORM FMSHH.

2. Sand metal lohtry eetween coats to achleve reaureo fmshr
3. Macum clean surace fre of loose partles. Use tack cloth uvs
4. Aloo applee coat to dory beope nett coat Is appleg.
comperieo work:

ELECTRICAL NOTES

commect all ney equiment to exsting tecco as reaured er manufacturer
Mandan all clegarances required by nec and equiment manufacturur.

In Mivili

 FOR SUMMSSON TO THE OW
16. DRamM

18. هrounnc sist wil

 1. TESTNG procegure meluong the make and moeel of test

- craphical descripton of testing methoo actialy mpeemeneo.
 Report/ANALlss

b. conrracto To prove A MMNu of one (1) wek notice to owner ano

[^0]: Michael Gentile, Site Acquisition
 c/o New Cingular Wireless, PCS LLC (AT\&T)
 Centerline Communications, LLC
 95 Ryan Drive, Suite 1
 Raynham, MA 02767
 Mobile: (508) 844-9813
 MGentile@centerlincommunications.com

[^1]: Note: Section capacity checked in 5 degree increments.

