

Michael Gentile, Site Acquisition c/o New Cingular Wireless, PCS LLC (AT&T) Centerline Communications, LLC 95 Ryan Drive, Suite 1 Raynham, MA 02767 Mobile: (508) 844-9813 <u>MGentile@clinellc.com</u>

February 12, 2017

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification // Site Number: CT1142 290 Preston Avenue, Middletown, CT 06457 (Name: Middletown SW) N 41.5573531 // W -072.7432769

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT&T") currently maintains nine (9) antennas at the 150-foot level of the existing 150-foot monopole tower at 290 Preston Avenue, Middletown, CT. The tower is owned by New Cingular Wireless PCS, LLC ("AT&T"). The property is owned by Brenda & Ernie Trumpold. AT&T now intends to install three (3) remote radio heads in the existing shelter as well as three (3) remote radio heads on the 150' level of the existing tower.

The current proposal involves radio work only (; no antennas will be added. Prior conditions do not pertain.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Daniel Drew, Mayor for the Town of Middletown, as well as the property owner, Brenda & Ernie Trumpold and the tower owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

Attached to accommodate this filing are construction drawings dated November 14, 2016 by Centek Engineering, a structural analysis dated February 1, 2017 by GPD Engineering and an Emissions Analysis Report dated January 30, 2017 by Centerline Communications.

1. The proposed modifications will not result in an increase in the height of the existing structure.

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by GPD Engineering, dated February 1, 2017.

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

miton

Michael Gentile, Site Acquisition c/o New Cingular Wireless, PCS LLC (AT&T) Centerline Communications, LLC 95 Ryan Drive, Suite 1 Raynham, MA 02767 Mobile: (508) 844-9813 <u>MGentile@centerlincommunications.com</u>

Attachments

cc: Daniel Drew, Mayor, Town of Middletown - as elected official New Cingular Wireless PCS, LLC - as tower owner Brenda & Ernie Trumpold, individuals - as property owner

Radio Frequency Emissions Analysis Report

AT&T Existing Facility

Site ID: CT1142

Middletown SW 290 Preston Ave Middletown, CT 6457

January 30, 2017

Centerline Communications Project Number: 950006-027

Site Compliance Summary			
Compliance Status:	COMPLIANT		
Site total MPE% of FCC general population allowable limit:	10.14 %		

January 30, 2017

AT&T Mobility – New England Attn: John Benedetto, RF Manager 550 Cochituate Road Suite 550 – 13&14 Framingham, MA 06040

Emissions Analysis for Site: CT1142 – Middletown SW

Centerline Communications, LLC ("Centerline") was directed to analyze the proposed AT&T facility located at **290 Preston Ave, Middletown, CT**, for the purpose of determining whether the emissions from the Proposed AT&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 700 and 850 MHz Bands are approximately 467 μ W/cm² and 567 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over this or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were performed for the proposed AT&T Wireless antenna facility located at **290 Preston Ave, Middletown, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in *Table 1*:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
UMTS	850 MHz	2	30
UMTS	1900 MHz (PCS)	2	30
LTE	700 MHz	2	60
LTE	1900 MHz (PCS)	2	60
GSM	850 MHz	2	30
GSM	1900 MHz (PCS)	2	30

Table 1: Channel Data Table

The following antennas listed in *Table 2* were used in the modeling for transmission in the 700 MHz, 850 MHz and 1900 MHz (PCS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

			Antenna
	Antenna		Centerline
Sector	Number	Antenna Make / Model	(ft)
А	1	Powerwave 7770	150
А	2	CCI HPA-65R-BUU-H6	150
А	3	Powerwave 7770	150
В	1	Powerwave 7770	150
В	2	Commscope SBNHH-1D65C	150
В	3	Powerwave 7770	150
С	1	Powerwave 7770	150
С	2	Commscope SBNHH-1D65A	150
С	3	Powerwave 7770	150

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

RESULTS

Per the calculations completed for the proposed AT&T configurations *Table 3* shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

			Antenna Gain		Total TX		
Antenna	Antenna Make /		(dBd)	Channel	Power		
ID	Model	Frequency Bands		Count	(W)	ERP (W)	MPE %
Antenna		850 MHz /					
A1	Powerwave 7770	1900 MHz (PCS)	11.4 / 13.4	4	120	2,140.89	0.48
Antenna	CCI	700 MHz /					
A2	HPA-65R-BUU-H6	1900 MHz (PCS)	11.95 / 14.75	4	240	5,462.56	1.32
Antenna		850 MHz /					
A3	Powerwave 7770	1900 MHz (PCS)	11.4 / 13.4	4	120	2,140.89	0.48
					Sector A Con	nposite MPE%	2.28
Antenna		850 MHz /					
B1	Powerwave 7770	1900 MHz (PCS)	11.4 / 13.4	4	120	2,140.89	0.48
Antenna	Commscope	700 MHz /					
B2	SBNHH-1D65C	1900 MHz (PCS)	13.55 / 15.05	4	240	6,556.25	1.67
Antenna		850 MHz /					
B3	Powerwave 7770	1900 MHz (PCS)	11.4 / 13.4	4	120	2,140.89	0.48
					Sector B Con	nposite MPE%	2.64
Antenna		850 MHz /					
C1	Powerwave 7770	1900 MHz (PCS)	11.4 / 13.4	4	120	2,140.89	0.48
Antenna	Commscope	700 MHz /					
C2	SBNHH-1D65A	1900 MHz (PCS)	10.85 / 14.55	4	240	4,880.65	1.13
Antenna		850 MHz /					
C3	Powerwave 7770	1900 MHz (PCS)	11.4 / 13.4	4	120	2,140.89	0.48
					Sector C Con	nposite MPE%	2.10

Table 3: AT&T Emissions Levels

The Following table (*table 4*) shows all additional carriers on site and their MPE% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum AT&T MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, the sector with the largest calculated MPE% is Sector B. *Table 5* below shows a summary for each AT&T Sector as well as the composite MPE value for the site.

Site Composite MPE%			
Carrier	MPE%		
AT&T – Max Sector Value	2.64 %		
MetroPCS	1.72 %		
Sprint	0.53 %		
Nextel	0.46 %		
Verizon Wireless	3.84 %		
T-Mobile	0.95 %		
Site Total MPE %:	10.14 %		

Table 4: All Carrier MPE Contributions

AT&T Sector A Total:	2.28 %
AT&T Sector B Total:	2.64 %
AT&T Sector C Total:	2.10 %
Site Total:	10.14 %

Table 5: Site MPE Summary

Per FCC OET 65, carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. *Table 6* below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated AT&T sector(s). For this site, the sector with the largest calculated MPE% is Sector B.

AT&T _ Frequency Band / Technology (Sector B)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
AT&T 850 MHz UMTS	2	414.12	150	1.44	850 MHz	567	0.25%
AT&T 1900 MHz (PCS) UMTS	2	656.33	150	2.28	1900 MHz (PCS)	1000	0.23%
AT&T 700 MHz LTE	2	1,358.79	150	4.71	700 MHz	467	1.01%
AT&T 1900 MHz (PCS) LTE	2	1,919.34	150	6.66	1900 MHz (PCS)	1000	0.67%
AT&T 850 MHz GSM	2	414.12	150	1.44	850 MHz	567	0.25%
AT&T 1900 MHz (PCS) GSM	2	656.33	150	2.28	1900 MHz (PCS)	1000	0.23%
						Total:	2.64%

Table 6: AT&T Maximum Sector MPE Power Values

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the AT&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

AT&T Sector	Power Density Value (%)
Sector A:	2.28 %
Sector B:	2.64 %
Sector C:	2.10 %
AT&T Maximum Total	2 64 %
(per sector):	2.04 %
Site Total:	10.14 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **10.14** % of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan RF Engineering Director Centerline Communications, LLC 95 Ryan Drive, Suite 1 Raynham, MA 02767

Empire Telecommunications 1150 1st Avenue, Suite 600 King of Prussia, PA 19406 (508) 844-9813

Christopher J. Scheks 520 South Main Street, Suite 2531 Akron, OH 44311 (614) 588-8973 cscheks@gpdgroup.com

GPD# 2017701.95

February 1, 2017

RIGOROUS STRUCTURAL ANALYSIS REPORT

AT&T DESIGNATION:	Site USID: Site FA: Site Name: Client Site #:	14635 10035088 MIDDLETOWN SW CT1142
ANALYSIS CRITERIA:	Codes:	TIA-222-G, 2012 IBC & 2016 CSBC 130-mph Ultimate 3 second gust with 0" ice 101-mph Nominal 3 second gust with 0" ice 50-mph Nominal 3 second gust with 3/4" ice
SITE DATA:		290 Preston Avenue, Middletown, CT 06457, Middlesex County Latitude 41° 33' 26.471"N, Longitude 72° 44' 35.797"W Market: NEW ENGLAND 148' Modified PennSummit Monopole

Mr. Michael Gentile,

GPD is pleased to submit this Rigorous Structural Analysis Report to determine the structural integrity of the aforementioned tower. The purpose of the analysis is to determine the suitability of the tower with the existing and proposed loading configuration detailed in the analysis report.

Analysis Results

Tower Stress Level with Proposed Equipment:	64.2%	Pass
Foundation Ratio with Proposed Equipment:	53.5%	Pass

We at GPD appreciate the opportunity of providing our continuing professional services to you and Empire Telecommunications. If you have any questions or need further assistance on this or any other projects please do not hesitate to call.

Respectfully submitted,

Contraction of the second Christopher J. Scheks, P.E. Connecticut #: 0030026

SUMMARY & RESULTS

The purpose of this analysis was to verify whether the existing modified structure is capable of carrying the proposed loading configuration as specified by AT&T Mobility to Empire Telecommunications. This report was commissioned by Mr. Michael Gentile of Centerline Communication.

This analysis has been performed in accordance with the 2016 Connecticut State Building Code based upon an ultimate 3-second gust wind speed of 130 mph converted to a nominal 3-second gust wind speed of 101 mph per Section 1609.3 and Appendix N as required for use in the TIA-222-G Standard per Exception #5 of Section 1609.1.1. Exposure Category B with a maximum topographic factor, Kzt, of 1.0 and Risk Category II were used in this analysis.

Modifications designed by B + T Group (Project #: 84934.003, dated 2/8/2013) have been considered in this analysis.

Member	Capacity	Results
Monopole	64.2%	Pass
Anchor Rods	55.7%	Pass
Base Plate	46.7%	Pass
Foundation	53.5%	Pass

TOWER SUMMARY AND RESULTS

ANALYSIS METHOD

tnxTower (Version 7.0.7.0), a commercially available software program, was used to create a three-dimensional model of the tower and calculate primary member stresses for various dead, live, wind, and ice load cases. Selected output from the analysis is included in Appendix B. The following table details the information provided to complete this structural analysis. This analysis is solely based on this information and is being completed without the benefit of a detailed site visit.

DOCUMENTS PROVIDED

Document	Remarks	Source
RF Data Sheet	RFDS Name: CT1142 V1.0, updated 9/1/2016	Empire
Tower Design	PJF Job #: 29201-0230, dated 2/26/01	Siterra
Foundation Design	PJF Job #: 29201-0230, dated 2/26/01	Siterra
Geotechnical Report	Not Provided	N/A
Previous Structural Analysis	B+T Project #: 103655.001.01, dated 12/29/2015	Siterra
Modification Drawings	B+T Project #: 84934.003, dated 2/8/2013	Empire
Post Modification Report	Centek Project #: 12033.034, dated 8/2/2013	Empire

ASSUMPTIONS

This structural analysis is based on the theoretical capacity of the members and is not a condition assessment of the tower. This analysis is from information supplied, and therefore, its results are based on and are as accurate as that supplied data. GPD has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural analysis.

- 1. The tower member sizes and shapes are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated in the materials section.
- 2. The appurtenance configuration is as supplied, determined from available photos, and/or as modeled in the analysis. It is assumed to be complete and accurate. All antennas, mounts, coax and waveguides are assumed to be properly installed and supported as per manufacturer requirements.
- 3. All mounts, if applicable, are considered adequate to support the loading. No actual analysis of the mount(s) is performed. This analysis is limited to analyzing the tower only.
- 4. The soil parameters are as per data supplied or as assumed and stated in the calculations.
- 5. Foundations are properly designed and constructed to resist the original design loads indicated in the documents provided.
- 6. The tower and structures have been properly maintained in accordance with TIA Standards and/or with manufacturer's specifications.
- 7. All welds and connections are assumed to develop at least the member capacity unless determined otherwise and explicitly stated in this report.
- 8. All prior structural modifications, if applicable, are assumed to be as per data supplied/available and to have been properly installed.
- 9. Loading interpreted from photos is accurate to $\pm 5'$ AGL, antenna size accurate to ± 3.3 sf, and coax equal to the number of existing antennas without reserve.
- 10. All existing loading has been modeled based on the Previous Structural Analysis by B+T Group (Project #: 103655.001.01, dated 12/29/2015), site photos, and the provided RF Data Sheet and is assumed to be accurate.
- 11. AT&T's proposed loading has been modeled to reflect the final loading configuration found in the RF Data Sheet and is assumed to be accurate.

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and GPD should be allowed to review any new information to determine its effect on the structural integrity of the tower.

DISCLAIMER OF WARRANTIES

GPD has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD in connection with this Rigorous Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

This analysis is limited to the designated maximum wind and seismic conditions per the governing tower standards and code. Wind forces resulting in tower vibrations near the structure's resonant frequencies were not considered in this analysis and are outside the scope of this analysis. Lateral loading from any dynamic response was not evaluated under a time-domain based fatigue analysis.

GPD does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the capability of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the code specified amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

Towers are designed to carry gravity, wind, and ice loads. All members, legs, diagonals, struts, and redundant members provide structural stability to the tower with little redundancy. Absence or removal of a member can trigger catastrophic failure unless a substitute is provided before any removal. Legs carry axial loads and derive their strength from shorter unbraced lengths by the presence of redundant members and their connection to the diagonals with bolts or welds. If the bolts or welds are removed without providing any substitute to the frame, the leg is subjected to a higher unbraced length that immediately reduces its load carrying capacity. If a diagonal is also removed in addition to the connection, the unbraced length of the leg is greatly increased, jeopardizing its load carrying capacity. Failure of one leg can result in a tower collapse because there is no redundancy. Redundant members and diagonals are critical to the stability of the tower.

GPD makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD pursuant to this report will be limited to the total fee received for preparation of this report.

APPENDIX A

Tower Analysis Summary Form

Tower Analysis Summary Form

General Info

Site Name	MIDDLETOWN SW
Site Number	14635
FA Number	10035088
Date of Analysis	2/1/2017
Company Performing Analysis	GPD

65

55

75

Tower Info	Description	Date
Tower Type (G, SST, MP)	MP	
Tower Height (top of steel AGL)	148'	
Tower Manufacturer	PennSummit	
Tower Model	n/a	
Tower Design	PJF Job #: 29201-0230	2/26/2001
Foundation Design	PJF Job #: 29201-0230	2/26/2001
Geotech Report	Dr. Clarence Welti, P.E.	7/25/2000
Tower Mapping	n/a	
Previous Structural Analysis	B+T Project #: 103655.001.01	12/29/2015
Modification Drawings	B+T Project #: 84934.003	2/8/2013
Post Modification Report	Centek Project #: 12033.034	8/2/2013

The information contained in this summary report is not to be used independently from the PE stamped tower analysis.

Design Parameters Design Code Used TIA-222-G, 2012 IBC & 2016 CSBC Location of Tower (County, State) Middlesex, CT Nominal Wind Speed (mph) 101 (3 second gust) Ice Thickness (in) 0.75 Structure Classification (I, II, III) Ш Exposure Category (B, C, D) Topographic Category (1 to 5)

Modifications designed by B+T Group (Project #: 84934.003, dated 2/8/2013) have been considered in this analysis.

в

Analysis Results (% Maximum Usage)

Existing/Reserved + Futu	ire + Proposed Condition
Tower (%)	64.2%
Tower Base (%)	55.7%
Foundation (%)	53.5%
Foundation Adequate?	YES

Existing / Reserved Loading

Steel Yield Strength (ksi)

Pole

Base Plate

Anchor Rods

				Antenna					M	ount	Transmission Line			
Antenna Owner	Mount Height (ft)	Antenna CL (ft)	Quantity	Туре	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Туре	Quantity	Model	Size	Attachment Int. / Ext.
AT&T Mobility	148	150	6	Panel	Powerwave	7770.00	40/200/320	1	Unknown	12' LP Platform	12	LDF7-50A	1-5/8"	External
AT&T Mobility	148	150	1	Panel	CCI	HPA-65R-BUU-H6	40			on the same mount	2	DC Power	7/8"	Internal
AT&T Mobility	148	150	1	Panel	Andrew	SBNHH-1D65C	200			on the same mount	1	Fiber	3/8"	Internal
AT&T Mobility	148	150	1	Panel	Andrew	SBNHH-1D65A	320			on the same mount				
AT&T Mobility	148	150	3	RRU	Ericsson	RRUS-11				on the same mount				
AT&T Mobility	148	150	3	RRU	Ericsson	RRUS A2 Module				on the same mount				
AT&T Mobility	148	149	12	TMA	Powerwave	LGP21401				on the same mount				
AT&T Mobility	148	148	3	RRU	Ericsson	RRUS-11				on the same mount				
AT&T Mobility	148	148	1	Squid	Raycap	DC6-48-60-18-8F				on the same mount				
T-Mobile	140	140	6	Panel	Ericsson	AIR21	Assumed	1	Unknown	12' LP Platform	18	Unknown	1-5/8"	Internal
T-Mobile	140	140	2	Panel	RFS	APX16DWV-16DWV-S-E-ACU	Assumed			on the same mount	1	Hybrid	1-5/8"	Internal
T-Mobile	140	140	3	TMA	Andrew	Onebase Twin Dual Duplex TMA				on the same mount				
Sprint	130	130	3	Panel	Powerwave	APXVSPP18-C-A20	Assumed	1	Unknown	12' I P Platform	3	Hybrid	1-1/4"	Internal
Sprint	130	130	3	RRH	Alcatel Lucent	1900 RRH	/100411104		0	on the same mount	Ŭ.			intornal
Sprint	130	130	3	RRH	Alcatel Lucent	800 RRH				on the same mount				
Verizon	110	111	1	Panel	Andrew	LNX-6514DS-T4M	Assumed	1	Unknown	13' LP Platform	12	Unknown	1-5/8"	Internal
Verizon	110	111	2	Panel	Antel	BXA-70063-6CF	Assumed	1	Unknown	Collar Mount	1	Hybrid	1-5/8"	Internal
Verizon	110	111	6	Diplexer	RFS	FD9R6004/2C-3				on the same mounts				
Verizon	110	110	3	Panel	Andrew	HBX-6517DS-VTM	Assumed			on the same mounts				
Verizon	110	110	3	Panel	Andrew	LNX-6513DS-VTM	Assumed			on the same mounts				
Verizon	110	110	3	Panel	Andrew	HBX-6516DS-VTM	Assumed			on the same mounts				
Verizon	110	110	3	RRH	Alcatel Lucent	RRH 2x40AWS				on the same mounts				
Verizon	110	110	1	Surge	RFS	DB-T1-6Z-8AB00Z		_		on the same mounts				
Metro PCS	90	90	3	Panel	Kathrein	742-213	Assumed	3	Unknown	Pipe Mounts	6	Unknown	1-5/8"	External
Metro PCS	55	55	1	GPS	Unknown	GPS Unit		1	Unknown	1' Standoff	1	Unknown	3/8"	External
			1				-	Ľ			-			
Unknown	50	50	1	GPS	Unknown	GPS Unit		1	Unknown	1' Standoff	1	Unknown	1/2"	External

Note: (3) RRUS-11 RRUs and (3) RRUS-A2 modules at 150' shall be removed prior to the installation of the proposed configuration and have not been considered in this analysis. All other existing/reserved equipment shall be reused.

Proposed Loading

Antenna									Mount			Transmission Line			
Antenna Owner	Mount Height (ft)	Antenna CL (ft)	Quantity	Туре	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Туре	Quantity	Model	Size	Attachment Int. / Ext.	
AT&T Mobility	148	150	3	RRU	Ericsson	RRUS-32 B2				on the existing mount					

Note: The proposed equipment shall be installed in addition to the remaining existing/reserved loading at the same elevation.

Future Loading

Antenna								Mount				Transmission Line		
Antenna Owner	Mount Height (ft)	Antenna CL (ft)	Quantity	Туре	Manufacturer	Model	Azimuth	Quantity Manufacturer Type		Quantity	Model	Size	Attachment Int. / Ext.	

APPENDIX B

tnxTower Output File

tnxTower

146	635 - MIE	DLET	OWN	SW

Date

GPD Group

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Empire Telecommunications

2017701.95

Designed by MShumway

14:00:04 01/31/17

1 of 5

Tower Input Data

There is a pole section.

This tower is designed using the TIA-222-G standard. The following design criteria apply: Tower is located in Middlesex County, Connecticut. Basic wind speed of 101 mph. Structure Class II. Exposure Category B. Topographic Category 1. Crest Height 0.00 ft. Nominal ice thickness of 0.7500 in. Ice thickness is considered to increase with height. Ice density of 56 pcf. A wind speed of 50 mph is used in combination with ice. Temperature drop of 50 °F. Deflections calculated using a wind speed of 60 mph. A non-linear (P-delta) analysis was used. Pressures are calculated at each section. Stress ratio used in pole design is 1.

Job

Project

Client

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Component	Placement	Total	Number	Start/End	Width or	Perimeter	Weight
		Туре		Number	Per Row	Position	Diameter		
			ft				in	in	plf
Climbing Pegs	А	Surface Ar	148.00 - 8.00	1	1	0.000	0.1500		0.31
		(CaAa)				0.000			
LDF7-50A (1-5/8 FOAM)	В	Surface Ar	148.00 - 8.00	12	6	0.400	1.9800		0.82
(ATT)		(CaAa)				0.500			
LDF7-50A (1-5/8 FOAM)	В	Surface Ar	90.00 - 8.00	6	6	0.000	1.9800		0.82
(Metro PCS)		(CaAa)				0.100			
LDF2-50A (3/8 FOAM)	С	Surface Ar	55.00 - 8.00	1	1	0.100	0.4400		0.08
(Metro PCS)		(CaAa)				0.100			
LDF4-50A (1/2 FOAM)	С	Surface Ar	50.00 - 8.00	1	1	0.000	0.6300		0.15
		(CaAa)				0.000			

Feed Line/Linear Appurtenances - Entered As Area

Description	Face	Allow	Component	Placement	Total		$C_A A_A$	Weight
	or	Shield	Type		Number			
	Leg			ft			ft²/ft	plf
Safety Line (3/8")	А	No	CaAa (Out Of	148.00 - 8.00	1	No Ice	0.04	0.22
			Face)			1/2" Ice	0.14	0.75
						1" Ice	0.24	1.28
7/8" DC Power Cable	e A	No	Inside Pole	148.00 - 8.00	2	No Ice	0.00	0.60
(ATT)						1/2" Ice	0.00	0.60
						1" Ice	0.00	0.60
3/8" Fiber Cable	А	No	Inside Pole	148.00 - 8.00	1	No Ice	0.00	0.10
(ATT)						1/2" Ice	0.00	0.10
						1" Ice	0.00	0.10
LDF7-50A (1-5/8	В	No	Inside Pole	140.00 - 8.00	18	No Ice	0.00	0.82
FOAM)						1/2" Ice	0.00	0.82
(TMO)						1" Ice	0.00	0.82

Project

Client

14635 - MIDDLETOWN SW

GPD Group 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Empire Telecommunications

2017701.95

Designed by MShumway

14:00:04 01/31/17

Description	Face	Allow Shield	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg	Smeta	Туре	ft	rumber		ft²/ft	plf
1-5/8" Fiber Cable	В	No	Inside Pole	140.00 - 8.00	1	No Ice	0.00	0.82
(TMO)						1/2" Ice	0.00	0.82
						1" Ice	0.00	0.82
1-1/4" Hybrid Cable	В	No	Inside Pole	124.00 - 8.00	3	No Ice	0.00	1.00
(Sprint)						1/2" Ice	0.00	1.00
· • ·						1" Ice	0.00	1.00
LDF7-50A (1-5/8	С	No	Inside Pole	110.00 - 8.00	12	No Ice	0.00	0.82
FOAM)						1/2" Ice	0.00	0.82
(VZW)						1" Ice	0.00	0.82
1-5/8" Fiber Cable	С	No	Inside Pole	110.00 - 8.00	1	No Ice	0.00	0.82
(VZW)						1/2" Ice	0.00	0.82
						1" Ice	0.00	0.82

Discrete Tower Loads

Description	Face	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	Leg	Type	Lateral Vert	najustnieni			17014	Shite	
			ft	0	ft		ft^2	ft^2	lb
Lightning Rod 8'x3/4"	С	From Leg	0.00	0.0000	148.00	No Ice	0.60	0.60	12.00
			0.00			1/2" Ice	1.41	1.41	18.19
			4.00			1" Ice	2.25	2.25	29.49
Platform Mount [LP 1201-1]	С	None		0.0000	148.00	No Ice	23.10	23.10	2100.00
						1/2" Ice	26.80	26.80	2500.00
						1" Ice	30.50	30.50	2900.00
(2) 7770.00 w/Mount Pipe	Α	From Leg	3.00	0.0000	148.00	No Ice	5.51	4.10	61.54
			0.00			1/2" Ice	5.87	4.73	108.55
	_		2.00			1" Ice	6.23	5.37	162.39
(2) 7770.00 w/Mount Pipe	В	From Leg	3.00	40.0000	148.00	No Ice	5.51	4.10	61.54
			0.00			1/2" Ice	5.87	4.73	108.55
			2.00			1" Ice	6.23	5.37	162.39
(2) 7770.00 w/Mount Pipe	С	From Leg	3.00	40.0000	148.00	No Ice	5.51	4.10	61.54
			0.00			1/2" Ice	5.87	4.73	108.55
			2.00	0.0000	1 10 00	1" Ice	6.23	5.37	162.39
HPA-65R-BUU-H6	Α	From Leg	3.00	0.0000	148.00	No Ice	9.66	6.45	51.00
			0.00			1/2" Ice	10.13	6.91	113.99
			2.00	10.0000	1 10 00	I" Ice	10.61	7.38	183.38
SBNHH-1D65C w/ Mount	В	From Leg	3.00	40.0000	148.00	No Ice	11.35	8.28	61.16
Pipe			0.00			$1/2^{n}$ Ice	11.97	9.07	135.10
	C	г т	2.00	10,0000	1 40 00	1 [°] Ice	12.59	9.87	217.80
SBNHH-1D65A W/ Mount	C	From Leg	3.00	40.0000	148.00	No Ice	6.10	5.19	61.30
Ріре			0.00			$1/2^{-1}$ Ice	6.54	5.96	115.03
DDUG 22 D2		Eners I en	2.00	0.0000	149.00	I lee	6.97	0.00	1/5.35
RRUS 52 B2	А	From Leg	3.00	0.0000	148.00	1/2" L	2.75	1.07	52.90
			0.00			1/2 Ice	2.95	1.80	/3.90
DDUG 22 D2	р	Enom Lag	2.00	40,0000	149.00	I ICE	5.16	2.03	96.21 52.00
RRUS 52 B2	В	From Leg	5.00	40.0000	148.00	INO ICE	2.73	1.0/	52.90
			0.00			1/2 ICe	2.95	1.60	/3.90
DDUS 22 D2	C	From Log	2.00	40,0000	148.00	I ICE	5.16 2.72	2.03	98.21 52.00
KKUS 52 B2	C	FIOIII Leg	3.00	40.0000	146.00	1/2" Loo	2.75	1.07	72.90
			2.00			1/2 ICe	2.95	2.05	73.90
(4) I CD21401	٨	From Log	2.00	0.0000	148.00	No Ice	5.16	2.03	96.21
(4) LOF21401	А	FIOIII Leg	3.00	0.0000	146.00	1/2" Ice	1.10	0.21	21.26
			1.00			1/2 ICC	1.24	0.27	30.32
(4) I GP21401	B	From Leg	3.00	40,0000	148.00	No Ice	1.50	0.33	14 10
(+) LOI 21+01	Б	1 Ionn Log	0.00	+0.0000	140.00	1/2" Ice	1.10	0.21	21.26
			1.00			1" Ice	1.38	0.35	30.32

tnxTower

Project

Client

14635 - MIDDLETOWN SW

Page 3 of 5

2017701.95

Date 14:00:04 01/31/17

GPD Group 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Empire Telecommunications

Designed by MShumway

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Lateral						
			Vert ft	0	ft		ft^2	ft ²	lh
(4) LGP21401	C	From Leg	3.00	40,0000	148.00	No Ice	1.10	0.21	14 10
(4) EGI 21401	C	Tiom Leg	0.00	40.0000	140.00	1/2" Ice	1.24	0.21	21.26
			1.00			1" Ice	1.38	0.35	30.32
RRUS-11	А	From Leg	3.00	0.0000	148.00	No Ice	2.78	1.19	47.62
			0.00			1/2" Ice	2.99	1.33	68.42
			0.00			1" Ice	3.21	1.49	92.25
RRUS-11	В	From Leg	3.00	40.0000	148.00	No Ice	2.78	1.19	47.62
			0.00			1/2" Ice	2.99	1.33	68.42
			0.00			1" Ice	3.21	1.49	92.25
RRUS-11	С	From Leg	3.00	40.0000	148.00	No Ice	2.78	1.19	47.62
			0.00			1/2" Ice	2.99	1.33	68.42
			0.00			1" Ice	3.21	1.49	92.25
DC6-48-60-18-8F Surge	А	From Leg	3.00	0.0000	148.00	No Ice	0.92	0.92	18.90
Suppression Unit		υ	0.00			1/2" Ice	1.46	1.46	36.62
11			0.00			1" Ice	1.64	1.64	56.82
Platform Mount [LP 1201-1]	С	None		0.0000	140.00	No Ice	23.10	23.10	2100.00
						1/2" Ice	26.80	26.80	2500.00
						1" Ice	30.50	30.50	2900.00
(2) AIR 21 w/ Mount Pipe	А	From Leg	3.00	0.0000	140.00	No Ice	6.37	5.78	112.90
L L		U	0.00			1/2" Ice	6.85	6.63	170.69
			0.00			1" Ice	7.30	7.35	235.28
(2) AIR 21 w/ Mount Pipe	В	From Leg	3.00	0.0000	140.00	No Ice	6.37	5.78	112.90
			0.00			1/2" Ice	6.85	6.63	170.69
			0.00			1" Ice	7.30	7.35	235.28
(2) AIR 21 w/ Mount Pipe	С	From Leg	3.00	0.0000	140.00	No Ice	6.37	5.78	112.90
			0.00			1/2" Ice	6.85	6.63	170.69
			0.00			1" Ice	7.30	7.35	235.28
APX16DWV-16DWV-S-E-A	А	From Leg	3.00	0.0000	140.00	No Ice	6.22	3.19	57.85
CU w/ Mount Pipe			0.00			1/2" Ice	6.61	3.82	102.47
			0.00			1" Ice	7.01	4.46	153.24
APX16DWV-16DWV-S-E-A	В	From Leg	3.00	0.0000	140.00	No Ice	6.22	3.19	57.85
CU w/ Mount Pipe			0.00			1/2" Ice	6.61	3.82	102.47
			0.00			1" Ice	7.01	4.46	153.24
APX16DWV-16DWV-S-E-A	С	From Leg	3.00	0.0000	140.00	No Ice	6.22	3.19	57.85
CU w/ Mount Pipe			0.00			1/2" Ice	6.61	3.82	102.47
			0.00			1" Ice	7.01	4.46	153.24
Onebase Twin Dual Duplex	Α	From Leg	3.00	0.0000	140.00	No Ice	0.58	0.26	11.00
TMA			0.00			1/2" Ice	0.67	0.34	15.83
			0.00			1" Ice	0.78	0.42	22.16
Onebase Twin Dual Duplex	В	From Leg	3.00	0.0000	140.00	No Ice	0.58	0.26	11.00
TMA			0.00			1/2" Ice	0.67	0.34	15.83
			0.00			1" Ice	0.78	0.42	22.16
Onebase Twin Dual Duplex	С	From Leg	3.00	0.0000	140.00	No Ice	0.58	0.26	11.00
TMA			0.00			1/2" Ice	0.67	0.34	15.83
			0.00			1" Ice	0.78	0.42	22.16
Platform Mount [LP 1201-1]	С	None		0.0000	130.00	No Ice	23.10	23.10	2100.00
						1/2" Ice	26.80	26.80	2500.00
						1" Ice	30.50	30.50	2900.00
APXVSPP18-C-A20 w/	Α	From Leg	3.00	0.0000	130.00	No Ice	8.02	6.71	78.90
Mount Pipe			0.00			1/2" Ice	8.48	7.66	144.31
	_	_	0.00			1" Ice	8.94	8.49	217.47
APXVSPP18-C-A20 w/	В	From Leg	3.00	0.0000	130.00	No Ice	8.02	6.71	78.90
Mount Pipe			0.00			1/2" Ice	8.48	7.66	144.31
			0.00			1" Ice	8.94	8.49	217.47
APXVSPP18-C-A20 w/	С	From Leg	3.00	0.0000	130.00	No Ice	8.02	6.71	78.90
Mount Pipe			0.00			1/2" Ice	8.48	7.66	144.31
		_	0.00			1" Ice	8.94	8.49	217.47
1900MHz RRH	А	From Leg	3.00	0.0000	130.00	No Ice	2.49	3.26	44.00
			0.00			1/2" Ice	2.70	3.48	75.27

tnxTower

Project

Client

14635 - MIDDLETOWN SW

Page

Date

4 of 5

14:00:04 01/31/17

GPD Group 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

2017701.95

Designed by MShumway

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg	51	Lateral	.,					
			Vert						
			ft	0	ft		ft^2	ft^2	lb
			0.00	0.0000	120.00	1" Ice	2.91	3.72	110.18
1900MHz RRH	В	From Leg	3.00	0.0000	130.00	No Ice	2.49	3.26	44.00
			0.00			1/2" Ice	2.70	3.48	75.27
	C	Б Т	0.00	0.0000	120.00	1° Ice	2.91	3.72	110.18
1900MHZ KKH	C	From Leg	3.00	0.0000	130.00	No Ice	2.49	3.26	44.00
			0.00			1/2" Ice	2.70	3.48	/5.2/
900MUZ DDU		E	0.00	0.0000	120.00	I Ice	2.91	3.72	52.00
800MHZ KKH	А	From Leg	3.00	0.0000	130.00	1/2" Lee	2.13	1.//	55.00
			0.00			1/2 ICe	2.52	1.95	74.19
800MHZ DDH	R	From Lag	3.00	0.0000	130.00	No Ice	2.31	2.13	53.00
800MHZ KKH	Б	FIOIII Leg	3.00	0.0000	130.00	1/2" Loo	2.13	1.//	74.10
			0.00			1/2 ICC	2.52	2.13	08 30
800MHZ RRH	C	From Leg	3.00	0.0000	130.00	No Ice	2.51	1 77	53.00
	C	110111 Leg	0.00	0.0000	150.00	1/2" Ice	2.13	1.77	74 19
			0.00			1" Ice	2.52	2.13	98 39
Platform Mount [LP 1201-1]	C	None	0.00	0.0000	110.00	No Ice	23.10	23.10	2100.00
	C	None		0.0000	110.00	1/2" Ice	26.80	26.80	2500.00
						1" Ice	30.50	30.50	2900.00
LNX-6514DS-T4M w/	А	From Leg	3.00	0.0000	110.00	No Ice	8 32	7.00	58.15
Mount Pipe	21	110m Leg	0.00	0.0000	110.00	1/2" Ice	8.88	8.19	126.70
iniouni ripo			1.00			1" Ice	9.40	9.08	203.21
BXA-70063-6CF w/ Mount	В	From Leg	3.00	0.0000	110.00	No Ice	7.57	5 49	45.95
Pipe	2	110m Log	0.00	010000	110100	1/2" Ice	8.02	6.23	104.10
			1.00			1" Ice	8.47	6.99	170.26
BXA-70063-6CF w/ Mount	С	From Leg	3.00	0.0000	110.00	No Ice	7.57	5.49	45.95
Pipe			0.00			1/2" Ice	8.02	6.23	104.10
I ·			1.00			1" Ice	8.47	6.99	170.26
(2) FD9R6004/2C-3L	А	From Leg	3.00	0.0000	110.00	No Ice	0.31	0.08	3.10
		U	0.00			1/2" Ice	0.39	0.12	5.40
			1.00			1" Ice	0.47	0.17	8.79
(2) FD9R6004/2C-3L	В	From Leg	3.00	0.0000	110.00	No Ice	0.31	0.08	3.10
		U	0.00			1/2" Ice	0.39	0.12	5.40
			1.00			1" Ice	0.47	0.17	8.79
(2) FD9R6004/2C-3L	С	From Leg	3.00	0.0000	110.00	No Ice	0.31	0.08	3.10
			0.00			1/2" Ice	0.39	0.12	5.40
			1.00			1" Ice	0.47	0.17	8.79
HBX-6517DS-VTM w/	Α	From Leg	3.00	0.0000	110.00	No Ice	5.30	4.73	40.60
Mount Pipe			0.00			1/2" Ice	5.77	5.68	84.00
			0.00			1" Ice	6.25	6.50	134.78
HBX-6517DS-VTM w/	В	From Leg	3.00	0.0000	110.00	No Ice	5.30	4.73	40.60
Mount Pipe			0.00			1/2" Ice	5.77	5.68	84.00
			0.00			1" Ice	6.25	6.50	134.78
HBX-6517DS-VTM w/	С	From Leg	3.00	0.0000	110.00	No Ice	5.30	4.73	40.60
Mount Pipe			0.00			1/2" Ice	5.77	5.68	84.00
			0.00			1" Ice	6.25	6.50	134.78
LNX-6513DS-VTM w/	А	From Leg	3.00	0.0000	110.00	No Ice	5.95	5.03	48.65
Mount Pipe			0.00			1/2" Ice	6.34	5.69	100.77
			0.00			1" Ice	6.74	6.35	159.34
LNX-6513DS-VTM w/	В	From Leg	3.00	0.0000	110.00	No Ice	5.95	5.03	48.65
Mount Pipe			0.00			1/2" Ice	6.34	5.69	100.77
			0.00			1" Ice	6.74	6.35	159.34
LNX-6513DS-VTM w/	С	From Leg	3.00	0.0000	110.00	No Ice	5.95	5.03	48.65
Mount Pipe			0.00			1/2" Ice	6.34	5.69	100.77
			0.00			1" Ice	6.74	6.35	159.34
HBX-6516DS-VTM w/	А	From Leg	3.00	0.0000	110.00	No Ice	3.53	3.17	28.15
Mount Pipe			0.00			1/2" Ice	3.91	3.80	60.65
		_	0.00			1" Ice	4.28	4.43	98.79
HBX-6516DS-VTM w/	В	From Leg	3.00	0.0000	110.00	No Ice	3.53	3.17	28.15

tnxTower

Project

Client

14635 - MIDDLETOWN SW

Page

Date

5 of 5

14:00:04 01/31/17

GPD Group 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Empire	Telecomm	unications

2017701.95

Designed by MShumway

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Lateral	-					
			Vert						
			ft	0	ft		ft^2	ft^2	lb
Mount Pipe			0.00			1/2" Ice	3.91	3.80	60.65
			0.00			1" Ice	4.28	4.43	98.79
HBX-6516DS-VTM w/	С	From Leg	3.00	0.0000	110.00	No Ice	3.53	3.17	28.15
Mount Pipe			0.00			1/2" Ice	3.91	3.80	60.65
			0.00			1" Ice	4.28	4.43	98.79
RRH2x40-AWS	Α	From Leg	3.00	0.0000	110.00	No Ice	2.16	1.42	43.00
			0.00			1/2" Ice	2.36	1.59	60.40
	_		0.00			1" Ice	2.57	1.77	80.69
RRH2x40-AWS	В	From Leg	3.00	0.0000	110.00	No Ice	2.16	1.42	43.00
			0.00			1/2" Ice	2.36	1.59	60.40
	~		0.00			1" Ice	2.57	1.77	80.69
RRH2x40-AWS	С	From Leg	3.00	0.0000	110.00	No Ice	2.16	1.42	43.00
			0.00			1/2" Ice	2.36	1.59	60.40
			0.00	0.0000	110.00	1" Ice	2.57	1.77	80.69
DB-T1-6Z-8AB-0Z	Α	From Leg	3.00	0.0000	110.00	No Ice	4.80	2.00	50.00
			0.00			1/2" Ice	5.07	2.19	86.13
			0.00			1" Ice	5.35	2.39	126.22
742-213 w/Mount Pipe	A	From Leg	3.00	0.0000	90.00	No Ice	5.42	4.63	47.55
			0.00			1/2" Ice	5.95	6.02	91.91
	_		0.00			1" Ice	6.47	6.93	144.02
742-213 w/Mount Pipe	В	From Leg	3.00	0.0000	90.00	No Ice	5.42	4.63	47.55
			0.00			1/2" Ice	5.95	6.02	91.91
	~		0.00			1" Ice	6.47	6.93	144.02
742-213 w/Mount Pipe	С	From Leg	3.00	0.0000	90.00	No Ice	5.42	4.63	47.55
			0.00			1/2" Ice	5.95	6.02	91.91
656			0.00	0.0000		I" Ice	6.47	6.93	144.02
GPS	A	From Leg	1.00	0.0000	55.00	No Ice	0.12	0.12	0.87
			0.00			1/2" Ice	0.21	0.21	3.85
			0.00	0.0000	55.00	I" Ice	0.28	0.28	7.85
MTS 12" Antenna Standoff	A	From Leg	0.50	0.0000	55.00	No Ice	2.82	2.20	40.00
			0.00			$1/2^{-1}$ Ice	4.07	3.16	61.95
CDC			0.00	0.0000	50.00	1 [°] Ice	5.32	4.12	83.90
GPS	A	From Leg	1.00	0.0000	50.00	No Ice	0.12	0.12	0.87
			0.00			1/2" Ice	0.21	0.21	3.85
MTC 101 Antonno St. 1 CC		F	0.00	0.0000	50.00	I" Ice	0.28	0.28	7.85
MIS 12" Antenna Standoff	А	From Leg	0.50	0.0000	50.00	NO ICE	2.82	2.20	40.00
			0.00			1/2" Ice	4.07	3.16	61.95
			0.00			1" Ice	5.32	4.12	83.90

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
148.00	Lightning Rod 8'x3/4"	40	14.535	0.8987	0.0034	49158
140.00	Platform Mount [LP 1201-1]	40	13.034	0.8913	0.0028	32223
130.00	Platform Mount [LP 1201-1]	40	11.193	0.8628	0.0022	14218
110.00	Platform Mount [LP 1201-1]	40	7.801	0.7536	0.0014	8069
90.00	742-213 w/Mount Pipe	40	5.046	0.5537	0.0007	6597
55.00	GPS	40	1.830	0.3205	0.0003	8639
50.00	GPS	40	1.512	0.2869	0.0002	8501

Site BU: ______ Work Order: _____

Pole Geometry

	Pole Height Above		Lap Splice Length			Bottom Diameter			
	Base (ft)	Section Length (ft)	(ft)	Number of Sides	Top Diameter (in)	(in)	Wall Thickness (in)	Bend Radius (in)	Pole Material
1	148	37	4	18	24	30.661	0.25	1	A607-65
2	115	40	4.75	18	29.44	36.643	0.25	1	A607-65
3	79.75	40	5.25	18	35.29	42.489	0.3125	1.25	A607-65
4	45	45	0	18	40.92	49.02	0.375	1.5	A607-65

Reinforcement Configuration

	Bottom Effective Elevation (ft)	Top Effective Elevation (ft)	Туре	Model	Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	0	18.083	channel	MP3-05 (1.1875")	2					1		1											
2	18.083	30.5	channel	MP3-08 (1.1875")	1						1												
3	0	30.5	channel	MP3-08 (1.1875")	3						1						1						1
4	30.5	60.5	channel	MP3-06 (1.1875")	3						1						1						1
5	60.5	90.5	channel	MP3-05 (1.1875")	3						1						1						1
6	90.5	99.33	channel	MP3-03 (1.1875")	3						1						1						1
7																							
8																							
9																							
10																							

Reinforcement Details

					Bottom	Тор				
				Pole Face to	Termination	Termination				Reinforcement
	B (in)	H (in)	Gross Area (in ²)	Centroid (in)	Length (in)	Length (in)	L _u (in)	Net Area (in ²)	Bolt Hole Size (in)	Material
1	5.33	2.09	5.65	0.79	29.000	29.000	18.000	5.025	1.1875	A572-65
2	7.93	2.8	10.32	0.95	47.000	47.000	24.000	9.370	1.1875	A572-65
3	7.93	2.8	10.32	0.95	47.000	47.000	24.000	9.370	1.1875	A572-65
4	6.89	2.61	8.47	0.93	41.000	41.000	24.000	7.670	1.1875	A572-65
5	5.33	2.09	5.65	0.79	29.000	29.000	18.000	5.025	1.1875	A572-65
6	4.06	1.57	2.92	0.59	14.000	14.000	18.000	2.545	1.1875	A572-65

TNX Geometry Input

Increment (ft): 5

			Lap Splice Length			Bottom Diameter		Tapered Pole	Weight
	Section Height (ft)	Section Length (ft)	(ft)	Number of Sides	Top Diameter (in)	(in)	Wall Thickness (in)	Grade	Multiplier
1	148 - 143	5		18	24.000	24.900	0.25	A607-65	1.000
2	143 - 138	5		18	24.900	25.800	0.25	A607-65	1.000
3	138 - 133	5		18	25.800	26.700	0.25	A607-65	1.000
4	133 - 128	5		18	26.700	27.601	0.25	A607-65	1.000
5	128 - 123	5		18	27.601	28.501	0.25	A607-65	1.000
6	123 - 118	5		18	28.501	29.401	0.25	A607-65	1.000
7	118 - 115	7	4	18	29.401	30.661	0.25	A607-65	1.000
8	115 - 110	5		18	29.441	30.341	0.25	A607-65	1.000
9	110 - 105	5		18	30.341	31.241	0.25	A607-65	1.000
10	105 - 100	5		18	31.241	32.142	0.25	A607-65	1.000
11	100 - 99.33	0.67		18	32.142	32.262	0.25	A607-65	1.000
12	99.33 - 99.08	0.25		18	32.262	32.307	0.25	A607-65	1.000
13	99.08 - 94.08	5		18	32.307	33.208	0.25	A607-65	1.000
14	94.08 - 90.5	3.58		18	33.208	33.852	0.25	A607-65	1.000
15	90.5 - 90.25	0.25		18	33.852	33.897	0.43125	A607-65	0.953
16	90.25 - 85.25	5		18	33.897	34.797	0.425	A607-65	0.957
17	85.25 - 80.25	5		18	34.797	35.698	0.425	A607-65	0.947
18	80.25 - 79.75	5.25	4.75	18	35.698	36.643	0.425	A607-65	0.946
19	79.75 - 74.75	5		18	35.288	36.188	0.4875	A607-65	0.951
20	74.75 - 69.75	5		18	36.188	37.088	0.475	A607-65	0.968
21	69.75 - 64.75	5		18	37.088	37.988	0.475	A607-65	0.960
22	64.75 - 60.5	4.25		18	37.988	38.753	0.46875	A607-65	0.967
23	60.5 - 60.25	0.25		18	38.753	38.798	0.55	A607-65	0.952
24	60.25 - 55.25	5		18	38.798	39.699	0.55	A607-65	0.943
25	55.25 - 50.25	5		18	39.699	40.599	0.5375	A607-65	0.956
26	50.25 - 45.25	5		18	40.599	41.499	0.5375	A607-65	0.948
27	45.25 - 45	5.5	5.25	18	41.499	42.489	0.5375	A607-65	0.948
28	45 - 38.75	6.25		18	40.919	42.044	0.6	A607-65	0.950
29	38.75 - 33.75	5		18	42.044	42.944	0.5875	A607-65	0.963
30	33.75 - 30.5	3.25		18	42.944	43.529	0.5875	A607-65	0.959
31	30.5 - 30.25	0.25		18	43.529	43.574	0.6625	A607-65	1.027
32	30.25 - 25.25	5		18	43.574	44.474	0.6625	A607-65	1.018
33	25.25 - 20.25	5		18	44.474	45.374	0.65	A607-65	1.028
34	20.25 - 18.083	2.167		18	45.374	45.765	0.65	A607-65	1.024
35	18.083 - 17.833	0.25		18	45.765	45.810	0.6625	A607-65	1.015
36	17.833 - 12.833	5		18	45.810	46.710	0.65	A607-65	1.025
37	12.833 - 7.833	5		18	46.710	47.610	0.65	A607-65	1.017
38	7.833 - 2.833	5		18	47.610	48.510	0.6375	A607-65	1.028
39	2.833 - 0	2.833		18	48.510	49.020	0.6375	A607-65	1.023

CCIpole - version 3.0

Analysis Date: 1/31/2017

TNX Section Forces

Inc	crement (f	t):	5		TI	NX Outp	ut
					Pu	M _{ux}	Vu
	Section	Hei	ight (ft)	(К)	(kip-ft)	(К)
1	148	-	143		3.8403	31.444	5.2583
2	143	-	138		7.6656	65.387	8.9658
3	138	-	133		8.233	111.22	9.3484
4	133	-	128		11.733	165.26	12.704
5	128	-	123		12.345	229.91	13.166
6	123	-	118		12.993	296.87	13.624
7	118	-	115		13.393	338.14	13.893
8	115	-	110		14.44	408.85	14.387
9	110	-	105		18.331	501.98	18.637
10	105	-	100		19.138	596.16	19.05
11	100	-	99.33		19.251	608.94	19.102
12	99.33	-	99.08		19.296	613.72	19.121
13	99.08	-	94.08	5	20.127	710.3	19.525
14	94.08	-	90.5		20.739	780.66	19.805
15	90.5	-	90.25		20.808	785.61	19.82
16	90.25	-	85.25		22.152	888.86	20.9
17	85.25	-	80.25		23.382	994.44	21.329
18	80.25	-	79.75		23.511	1005.1	21.368
19	79.75	-	74.75		25.748	1113.2	21.869
20	74.75	-	69.75		27.148	1223.6	22.285
21	69.75	-	64.75		28.575	1336.1	22.685
22	64.75	-	60.5		29.806	1433.2	23.015
23	60.5	-	60.25		29.894	1438.9	23.028
24	60.25	-	55.25		31.519	1555.1	23.426
25	55.25	-	50.25		33.218	1673.7	23.906
26	50.25	-	45.25		34.941	1794.7	24.367
27	45.25	-	45		35.031	1800.8	24.377
28	45	-	38.75		38.737	1954.9	24.905
29	38.75	-	33.75		40.614	2080.2	25.226
30	33.75	-	30.5		41.848	2162.5	25.425
31	30.5	-	30.25		41.966	2168.9	25.43
32	30.25	-	25.25		44.192	2296.9	25.748
33	25.25	-	20.25		46.447	2426.4	26.05
34	20.25	-	18.08	3	47.434	2482.9	26.181
35	18.083	-	17.83	3	47.555	2489.5	26.186
36	17.833	-	12.83	3	49.86	2621.2	26.49
37	12.833	-	7.833		52.184	2754.4	26.775
38	7.833	-	2.833		54.265	2888.8	27.048
39	2.833	-	0		55.5	2965.6	27.2

Analysis Results

Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fail
148 - 143	Pole	TP24.9x24x0.25	Pole	4.5%	Pass
143 - 138	Pole	TP25.8x24.9x0.25	Pole	8.8%	Pass
138 - 133	Pole	TP26.7x25.8x0.25	Pole	13.9%	Pass
133 - 128	Pole	TP27.601x26.7x0.25	Pole	19.5%	Pass
128 - 123	Pole	TP28.501x27.601x0.25	Pole	25.4%	Pass
123 - 118	Pole	TP29.401x28.501x0.25	Pole	30.9%	Pass
118 - 115	Pole	TP30.661x29.401x0.25	Pole	34.0%	Pass
115 - 110	Pole	TP30.341x29.441x0.25	Pole	40.2%	Pass
110 - 105	Pole	TP31.241x30.341x0.25	Pole	47.0%	Pass
105 - 100	Pole	TP32.142x31.241x0.25	Pole	53.1%	Pass
100 - 99.33	Pole	TP32.262x32.142x0.25	Pole	53.9%	Pass
99.33 - 99.08	Pole	TP32.307x32.262x0.25	Pole	54.2%	Pass
99.08 - 94.08	Pole	TP33.208x32.307x0.25	Pole	59.8%	Pass
94.08 - 90.5	Pole	TP33.852x33.208x0.25	Pole	63.6%	Pass
90.5 - 90.25	Pole + Reinf.	TP33.897x33.852x0.4313	Reinf. 5 Tension Rupture	50.5%	Pass
90.25 - 85.25	Pole + Reinf.	TP34.797x33.897x0.425	Reinf. 5 Tension Rupture	54.7%	Pass
85.25 - 80.25	Pole + Reinf.	TP35.698x34.797x0.425	Reinf. 5 Tension Rupture	58.7%	Pass
80.25 - 79.75	Pole + Reinf.	TP36.643x35.698x0.425	Reinf. 5 Tension Rupture	59.1%	Pass
79.75 - 74.75	Pole + Reinf.	TP36.188x35.288x0.4875	Reinf. 5 Tension Rupture	56.0%	Pass
74.75 - 69.75	Pole + Reinf.	TP37.088x36.188x0.475	Reinf. 5 Tension Rupture	59.0%	Pass
69.75 - 64.75	Pole + Reinf.	TP37.988x37.088x0.475	Reinf. 5 Tension Rupture	61.9%	Pass
64.75 - 60.5	Pole + Reinf.	TP38.753x37.988x0.4688	Reinf. 5 Tension Rupture	64.2%	Pass
60.5 - 60.25	Pole + Reinf.	TP38.798x38.753x0.55	Reinf. 4 Tension Rupture	54.0%	Pass
60.25 - 55.25	Pole + Reinf.	TP39.699x38.798x0.55	Reinf. 4 Tension Rupture	56.3%	Pass
55.25 - 50.25	Pole + Reinf.	TP40.599x39.699x0.5375	Reinf. 4 Tension Rupture	58.5%	Pass
50.25 - 45.25	Pole + Reinf.	TP41.499x40.599x0.5375	Reinf. 4 Tension Rupture	60.5%	Pass
45.25 - 45	Pole + Reinf.	TP42.489x41.499x0.5375	Reinf. 4 Tension Rupture	60.6%	Pass
45 - 38.75	Pole + Reinf.	TP42.044x40.919x0.6	Reinf. 4 Tension Rupture	57.8%	Pass
38.75 - 33.75	Pole + Reinf.	TP42.944x42.044x0.5875	Reinf. 4 Tension Rupture	59.4%	Pass
33.75 - 30.5	Pole + Reinf.	TP43.529x42.944x0.5875	Reinf. 4 Tension Rupture	60.4%	Pass
30.5 - 30.25	Pole + Reinf.	TP43.574x43.529x0.6625	Reinf. 3 Tension Rupture	55.8%	Pass
30.25 - 25.25	Pole + Reinf.	TP44.474x43.574x0.6625	Reinf. 3 Tension Rupture	57.1%	Pass
25.25 - 20.25	Pole + Reinf.	TP45.374x44.474x0.65	Reinf. 3 Tension Rupture	58.4%	Pass
20.25 - 18.08	Pole + Reinf.	TP45.765x45.374x0.65	Reinf. 3 Tension Rupture	59.0%	Pass
18.08 - 17.83	Pole + Reinf.	TP45.81x45.765x0.6625	Reinf. 3 Tension Rupture	57.8%	Pass
17.83 - 12.83	Pole + Reinf.	TP46.71x45.81x0.65	Reinf. 3 Tension Rupture	58.9%	Pass
12.83 - 7.83	Pole + Reinf.	TP47.61x46.71x0.65	Reinf. 3 Tension Rupture	60.0%	Pass
7.83 - 2.83	Pole + Reinf.	TP48.51x47.61x0.6375	Reinf. 3 Tension Rupture	61.1%	Pass
2.83 - 0	Pole + Reinf.	TP49.02x48.51x0.6375	Reinf. 3 Tension Rupture	61.7%	Pass
				Summary	
	ļ		Pole	63.6%	Pass
				64.2%	Pass
			Overall	04.2%	rass

Additional Calculations

Section	Mom	ent of Inertia	a (in ⁴)		Area (in ²)				% C a	pacity			
Elevation (ft)	Pole	Reinf.	Total	Pole	Reinf.	Total	Pole	R1	R2	R3	R4	R5	R6
148 - 143	1501	n/a	1501	19.56	n/a	19.56	4.5%						
143 - 138	1672	n/a	1672	20.27	n/a	20.27	8.8%						
138 - 133	1855	n/a	1855	20.99	n/a	20.99	13.9%						
133 - 128	2050	n/a	2050	21.70	n/a	21.70	19.5%						
128 - 123	2260	n/a	2260	22.42	n/a	22.42	25.4%						
123 - 118	2482	n/a	2482	23.13	n/a	23.13	30.9%						
118 - 115	2623	n/a	2623	23.56	n/a	23.56	34.0%						
115 - 110	2731	n/a	2731	23.88	n/a	23.88	40.2%						
110 - 105	2983	n/a	2983	24.59	n/a	24.59	47.0%						
105 - 100	3251	n/a	3251	25.31	n/a	25.31	53.1%						
100 - 99.33	3288	n/a	3288	25.40	n/a	25.40	53.9%						
99.33 - 99.08	3301	n/a	3301	25.44	n/a	25.44	54.2%						
99.08 - 94.08	3588	n/a	3588	26.15	n/a	26.15	59.8%						
94.08 - 90.5	3802	n/a	3802	26.66	n/a	26.66	63.6%						
90.5 - 90.25	3817	2678	6495	26.70	16.95	43.65	37.1%					50.5%	
90.25 - 85.25	4132	2815	6947	27.41	16.95	44.36	40.6%					54.7%	
85.25 - 80.25	4464	2955	7419	28.13	16.95	45.08	44.0%					58.7%	
80.25 - 79.75	4498	2969	7467	28.20	16.95	45.15	44.4%					59.1%	
79.75 - 74.75	5784	3033	8817	35.58	16.95	52.53	39.1%					56.0%	
74.75 - 69.75	6230	3179	9409	36.48	16.95	53.43	41.6%					59.0%	
69.75 - 64.75	6699	3328	10027	37.37	16.95	54.32	43.9%					61.9%	
64.75 - 60.5	7116	3458	10573	38.13	16.95	55.08	45.9%					64.2%	
60.5 - 60.25	7141	5276	12417	38.17	25.41	63.58	39.3%				54.0%		
60.25 - 55.25	7654	5511	13165	39.06	25.41	64.47	41.3%				56.3%		
55.25 - 50.25	8190	5752	13942	39.96	25.41	65.37	43.3%				58.5%		
50.25 - 45.25	8752	5997	14749	40.85	25.41	66.26	45.2%				60.5%		
45.25 - 45	8781	6009	14790	40.89	25.41	66.30	45.3%				60.6%		
45 - 38.75	10876	6148	17024	49.59	25.41	75.00	40.9%				57.8%		
38.75 - 33.75	11596	6402	17998	50.67	25.41	76.08	42.3%				59.4%		
33.75 - 30.5	12081	6569	18650	51.36	25.41	76.77	43.2%				60.4%		
30.5 - 30.25	12177	8902	21080	51.42	41.28	92.70	40.6%		40.3%	55.6%			
30.25 - 25.25	12953	9255	22208	52.49	41.28	93.77	41.9%		41.4%	57.0%			
25.25 - 20.25	13761	9615	23376	53.56	41.28	94.84	43.2%		42.5%	58.3%			
20.25 - 18.08	14121	9773	23894	54.02	41.28	95.30	43.7%		43.0%	58.9%			
18.08 - 17.83	14165	10288	24453	54.08	42.26	96.34	42.9%	46.0%		57.8%			
17.83 - 12.83	15022	10680	25702	55.15	42.26	97.41	44.1%	47.1%		58.9%			
12.83 - 7.83	15913	11079	26992	56.22	42.26	98.48	45.3%	48.1%		60.0%			
7.83 - 2.83	16838	11486	28324	57.29	42.26	99.55	46.4%	49.1%		61.1%			
2.83 - 0	17378	11719	29097	57.90	42.26	100.16	47.0%	49.6%		61.7%			

Note: Section capacity checked in 5 degree increments.

CCIpole - version 3.0

Analysis Date: 1/31/2017

APPENDIX C

Tower Elevation Drawing

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Lightning Rod 8'x3/4"	148	APXVSPP18-C-A20 w/ Mount Pipe	130
Platform Mount [LP 1201-1]	148	1900MHz RRH	130
(2) 7770.00 w/Mount Pipe	148	1900MHz RRH	130
(2) 7770.00 w/Mount Pipe	148	1900MHz RRH	130
(2) 7770.00 w/Mount Pipe	148	800MHZ RRH	130
HPA-65R-BUU-H6	148	800MHZ RRH	130
SBNHH-1D65C w/ Mount Pipe	148	800MHZ RRH	130
SBNHH-1D65A w/ Mount Pipe	148	Platform Mount [LP 1201-1]	110
RRUS 32 B2	148	LNX-6514DS-T4M w/ Mount Pipe	110
RRUS 32 B2	148	BXA-70063-6CF w/ Mount Pipe	110
RRUS 32 B2	148	BXA-70063-6CF w/ Mount Pipe	110
(4) LGP21401	148	(2) FD9R6004/2C-3L	110
(4) LGP21401	148	(2) FD9R6004/2C-3L	110
(4) LGP21401	148	(2) FD9R6004/2C-3L	110
RRUS-11	148	HBX-6517DS-VTM w/ Mount Pipe	110
RRUS-11	148	HBX-6517DS-VTM w/ Mount Pipe	110
RRUS-11	148	HBX-6517DS-VTM w/ Mount Pipe	110
DC6-48-60-18-8F Surge Suppression	148	LNX-6513DS-VTM w/ Mount Pipe	110
Unit		LNX-6513DS-VTM w/ Mount Pipe	110
Platform Mount [LP 1201-1]	140	LNX-6513DS-VTM w/ Mount Pipe	110
(2) AIR 21 w/ Mount Pipe	140	HBX-6516DS-VTM w/ Mount Pipe	110
(2) AIR 21 w/ Mount Pipe	140	HBX-6516DS-VTM w/ Mount Pipe	110
(2) AIR 21 w/ Mount Pipe	140	HBX-6516DS-VTM w/ Mount Pipe	110
APX16DWV-16DWV-S-E-ACU w/	140	RRH2x40-AWS	110
	4.40	RRH2x40-AWS	110
APX16DWV-16DWV-S-E-ACU W/ Mount Pipe	140	RRH2x40-AWS	110
APX16DW//_16DW//_S-E-ACU.w/	140	DB-T1-6Z-8AB-0Z	110
Mount Pipe	140	742-213 w/Mount Pipe	90
Onebase Twin Dual Duplex TMA	140	742-213 w/Mount Pipe	90
Onebase Twin Dual Duplex TMA	140	742-213 w/Mount Pipe	90
Onebase Twin Dual Duplex TMA	140	GPS	55
Platform Mount [LP 1201-1]	130	MTS 12" Antenna Standoff	55
APXVSPP18-C-A20 w/ Mount Pipe	130	GPS	50
APXVSPP18-C-A20 w/ Mount Pipe	130	MTS 12" Antenna Standoff	50

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A607-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

1. Tower is located in Middlesex County, Connecticut.

Tower designed for Exposure B to the TIA-222-G Standard. 2.

Tower designed for a 101 mph basic wind in accordance with the TIA-222-G Standard.

4 Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.

5. Deflections are based upon a 60 mph wind.

6. Tower Structure Class II.

7. Topographic Category 1 with Crest Height of 0.00 ft

ALL REACTIONS ARE FACTORED

TORQUE 1627 lb-ft REACTIONS - 101 mph WIND

Feed Line Distribution Chart 0' - 148'

Flat _____ App In Face _____ App Out Face _____ Truss Leg

Scale: NTS

Dwg No. E-7

Elevation (ft)

Round

APPENDIX D

Base Plate and Anchor Rod Analysis

Anchor Rod Interaction, TIA-222-G 14635 - MIDDLETOWN SW 2017701.95

tnx Reactions					
2965.65	k*ft				
55.46	k				
27.19	k				
Existing Anchor Rods					
16					
56	in				
2.25	in				
6	in				
Square					
55	in				
	actions 2965.65 55.46 27.19 Achor Rods 16 56 2.25 6 Square 55				

Pole					
Pole Diameter =	49.02	in			
Number of Sides =	18				
Thickness =	0.375	in			

First Added Anchor Rods					
Number of Rods =	3				
Rod Circle =	64.50	in			
Rod Diameter =	1.75	in			
Anchor Rod Grade =	A772				

Rod Number	Initial Angle
1	74
2	197
3	315

First Added Anchor Rods					
Max Rod Compression =	96.37	k			
φRnt =	228.00	k			
Anchor Rod Capacity =	42.27%	ОК			

Reactions in Existing Rods					
Overturning Moment=	2588.20	k*ft			
Axial Force =	55.46	k			
Shear Force =	27.19	k			
Centroid Offset =	0.05	in			

Second Added Anchor Rods

Anchor Rod and Base Plate Stresses, TIA-222-G-1 14635 - MIDDLETOWN SW 2017701.95

OK

ULD UKOU			
Overturning Moment* =	2588.20	k*ft	
Axial Force =	55.46	k	
Shear Force =	27.19	k	Acceptable Stress Ratio = 105.0%
Centroid Offset =	0.05	in	
*Above reactions have been adjus	ted due to con	siderati	tion of modifications. See attached hand
calculations for dete	ermination of a	ncnor i	rod forces in the analysis.
Anchor Rods		-	Base Plate
Pole Diameter =	49.02	in	Plate Strength (Fy) = 55 ksi
Number of Rods =	16		$\phi = 0.9$
φ =	0.8		Plate Thickness = 3 in
Rod Ultimate Strength (F_u) =	100	ksi	Plate Width = 55 in
Base Plate Detail Type* =	d		Est. Dist. b/w ea. Rod = <u>6</u> in
Rod Circle =	56	in	w _{calc} = 47.72 in
Rod Diameter =	2.25	in	w _{max} = 28.76 in
Net Tensile Area =	3.25	in ²	w =28.76 in
Max Tension on Rod =	134.53	kips	$Z = 64.71 \text{ in}^3$
Max Compression on Rod =	141.46	kips	M _u = 1496.00 k-ir
P _u =	141.46	kips	φM _n = 3203.34 k-ir
V _u =	1.70	kips	Base Plate Capacity = 46.7% OF
η =	0.50		
$P_u + V_u / \eta =$	144.86	kips	
φR _{nt} =	260.00	kips	
Anchor Rod Capacity =	55.7%	OK	(Section 4.9.9, TIA-222-G-1)

*This analysis assumes the clear distance from the top of the concrete to the bottom of the leveling nut is less than the diameter of the anchor rod. Notify GPD Group immediately if existing field conditions do not meet this assumption.

GPD Unstiffened Square Base Plate Stress (Rev G) - V1.04

APPENDIX E

Foundation Analysis

Mat Foundation Analysis 14635 - MIDDLETOWN SW 2017701.95

I

General Info				
Foundation Criteria	GPD			
TIA Code	TIA-222-G			
Soil Code	AASHTO 2012			
Concrete Code	ACI 318-11			
Seismic Design Category	В			
Tower Height	148 ft			
Bearing On	Rock			
Foundation Type	Monopole Pad			
Pier Type	Round			
Reinforcing Known	Yes			
Max Bearing Capacity	105%			
Max Overturning Capacity	105%			
Max Overturning Capacity	105%			

Tower Reactions				
Moment, M	2965.646 k-ft			
Axial, P	55.464 k			
Shear, V	27.188 k			

Pad & Pier Geometry						
Pier Diameter, ø	7 ft					
Pad Length, L [y]	22 ft					
Pad Width, W [x]	22 ft					
Pad Thickness, t	3 ft					
Depth, D	8 ft					
Height Above Grade, HG	0.5 ft					
Tower Centroid, X	11 ft					
Tower Centroid, Y	11 ft					
Tower Eccentricity	0.0000 ft					

Pad & Pier R	einforcing						
Rebar Fy	60 ksi						
Concrete F'c	3 ksi						
Pier Reinforcing Clear Cover	3 in						
Shear Rebar Type	Tie						
Shear Rebar Size	# 5						
Pad Reinforcing Clear Cover	3 in						
Reinforced Top & Bottom?	Yes						
Pad Reinforcing Size	# 11						
Pad Quantity Per Layer	22						
Pier Rebar Size	# 11						
Pier Quantity of Rebar	28						

Soil Properties							
Soil Type	Granular						
Soil Unit Weight	100 pcf						
Angle of Friction, ø	30						
Base Friction Coeff. Provided in Geo?	No						
Bearing Type	Gross						
Ultimate Bearing	12 ksf						
Water Table Depth	7 ft						
Frost Depth	3.5 ft						

GPD Mat Foundation Analysis - V3.1

Bearing Su	Eccentricity	Load Case		
Qxmax (ksf)	2.76	OK, <= 105%	L/4.8	1.2D+1.6W
Qymax (ksf)	2.76	OK, <= 105%	W/4.8	1.2D+1.6W
Qmax @ 45° (ksf) 3.5		OK, <= 105%	W/6.8	1.2D+1.6W
Q(all) Gross (ksf) 9.00				
Controlling Capacity	39.1%	Pass		

Overturning	Load Case		
Ovtx	53.5%	ОК	0.9D+1.6W
Ovty	53.5%	OK	0.9D+1.6W
Ovtxy	37.2%	OK	0.9D+1.6W
Controlling Capacity	53.5%	Pass	

Slid	Load Case		
Sliding	ОК	Pass	0.9D+1.6W

Reinforceme	Load Case		
Moment in Pad	18.8%	ОК	0.9D+1.6W
Shear in Pad	22.9%	ОК	0.9D+1.6W
Compression on Pier	0.5%	ОК	1.2D+1.6W
Moment on Pier	46.0%	ОК	1.2D+1.6W
As Min Met?	Yes		
Controlling Capacity	46.0%	Pass]

GENERAL NOTES

- 1. ALL WORK SHALL BE IN ACCORDANCE WITH THE 2012 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2016 CONNECTICUT STATE BUILDING CODE, INCLUDING THE TIA-222 REVISION "G" STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES, 2016 CONNECTICUT FIRE SAFETY CODE AND, NATIONAL ELECTRICAL CODE AND LOCAL CODES.
- 2. THE COMPOUND, TOWER, PRIMARY GROUND RING, ELECTRICAL SERVICE TO THE METER BANK AND TELEPHONE SERVICE TO THE DEMARCATION POINT ARE PROVIDED BY SITE OWNER. AS BUILT FIELD CONDITIONS REGARDING THESE ITEMS SHALL BE CONFIRMED BY THE CONTRACTOR. SHOULD ANY FIELD CONDITIONS PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL NOT PROCEED WITH ANY AFFECTED WORK.
- 3. CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
- 4. CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- 5. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- 6. CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- 7. CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- 8. LOCATION OF EQUIPMENT, AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- 9. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. 21. CONTRACTOR SHALL COMPLY WITH OWNERS ENVIRONMENTAL ENGINEER ON THAT MAY BE NECESSARY. MAINTAIN EXISTING BUILDING'S/PROPERTY'S OPERATIONS, COORDINATE WORK WITH BUILDING/PROPERTY OWNER.

- 10. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 11. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- 12. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MFR.'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 13. ANY AND ALL ERRORS. DISCREPANCIES, AND 'MISSED' ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE AT&T CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- 14. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 15. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 16. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- 17. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUIT AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- 18. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTORS FOR ANY CONDITION PER THE MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 20. THE CONTRACTOR SHALL CONTACT "CALL BEFORE YOU DIG" AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED PRIOR TO ANY EXCAVATION WORK. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES THE CONTRACTOR.

WIRELESS COMMUNICATIONS FACILITY CT1142 - LTE BWE MIDDLETOWN SW 290 PRESTON AVE MIDDLETOWN, CT 06457

SITE DIRECTIONS

19. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE

INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY

FROM: 500 ENTERPRISE ROCKY HILL, CO	DRIVE NNECTICUT	TO:	290 PRESTON AVE MIDDLETOWN, CONI	NEC
HEAD NORTHEAST ON ENTER TURN LEFT ONTO CAPITAL B TURN LEFT ONTO WEST ST TURN LEFT TO MERGE ONTO TAKE EXIT 20 TURN LEFT ONTO MIDDLE ST TAKE FIRST RIGHT ONTO CO TURN LEFT ONTO PRESTON	PRISE DR TOWARD CAPITAL BLVD LVD I—91 S TOWARD NEW HAVEN JNTRY CLUB RD AVE. DESTINATION IS ON THE LEFT			0.3 0.2 0.3 0.2 0.2 0.2 0.1 1.00 0.6
ICINITY MAP		SCAL	E: 1" = 1000)'
Hubbard Unicey Quary	PROJECT	Highla	nd	

ENGINEER SEAL		0 11/14/16 JTD CAG CONSTRUCTION DOCUMENTS - ISSUED FOR CONSTRUCTION REV. DATE DRAWN BY CHK'D BY DESCRIPTION
CENTEK engineering	Centered on Solutions" (203) 488-0580 (203) 488-8587 Fax (203) 488-8587 Fax (203) 488-8587 Fax	Branford, CT 06405 Branford, CT 06405 Www.CentekEng.com
AT&T MOBILITY	MIDDLETOWN SW	290 PRESTON AVE MIDDLETOWN, CT 06457
DATE SCAL JOB	: 11/11/ E: AS NOT NO. 16071. TITLE SHE	(16 ED 58 EET

PROJECT SUMMARY

- 1. THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING:
- A. REMOVE AND REPLACE (3) EXISTING RRUS-11+A2'S FOR PROPOSED RRUS-32 B2'S, TYP OF (3) TOTAL ON EXISTING PIPE MAST.

PROJECT INFORMATION

AT&T SITE NUMBER:	CT1142
AT&T SITE NAME:	MIDDLETOWN SW
SITE ADDRESS:	290 PRESTON AVE MIDDLETOWN, CT 06457
LESSEE/APPLICANT:	AT&T MOBILITY 500 ENTERPRISE DRIVE, SUITE 3A ROCKY HILL, CT 06067
ENGINEER:	CENTEK ENGINEERING, INC. 63—2 NORTH BRANFORD RD. BRANFORD, CT 06405
PROJECT COORDINATES:	LATITUDE: 41°-33'-26.47116" N LONGITUDE: 72°-44'-35.79684" W GROUND ELEVATION: ±408' AMSL
	GROUND ELEVATION REFERENCED FROM GOOGLE EARTH. COORDINATES REFERENCEI FROM RFDS DOCUMENTS.

SHEET INDEX							
SHT. NO.	DESCRIPTION	REV.					
T-1	TITLE SHEET	0					
N-1	NOTES AND SPECIFICATIONS	0					
C-1	PLANS AND ELEVATION	0					
C-2	LTE BWE EQUIPMENT DETAILS	0					
E-1	TYPICAL ELECTRICAL DETAILS AND NOTES	0					

NOTES AND SPECIFICATIONS

DESIGN BASIS:

GOVERNING CODE: 2012 INTERNATIONAL BUILDING (IBC) AS MODIFIED BY THE 2016 CT STATE BUILDING CODE AND AMENDMENTS.

- 1. DESIGN CRITERIA:
- WIND LOAD: PER TIA 222 G (ANTENNA MOUNTS): 100–120 MPH (3 SECOND GUST)
- RISK CATEGORY: II (BASED ON IBC TABLE 1604.5) •
- NOMINAL DESIGN SPEED (OTHER STRUCTURE): 101 MPH (Vasd) (EXPOSURE • B/IMPORTANCE FACTOR 1.0 BASED ON ASCE 7-10) PER 2012 INTERNATIONAL BUILDING CODE (IBC) AS MODIFIED BY THE 2016 CONNECTICUT STATE BUILDING CODE.
- SEISMIC LOAD (DOES NOT CONTROL): PER ASCE 7-10 MINIMUM DESIGN LOADS FOR • BUILDING AND OTHER STRUCTURES.

GENERAL NOTES:

- 1. ALL CONSTRUCTION SHALL BE IN COMPLIANCE WITH THE GOVERNING BUILDING CODE.
- 2. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 3. BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH INVESTIGATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE AND SUBSURFACE) AT OR CONTIGUOUS TO THE SITE WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK.
- 4. DIMENSIONS AND DETAILS SHALL BE CHECKED AGAINST EXISTING FIELD CONDITIONS.
- 5. THE CONTRACTOR SHALL VERIFY AND COORDINATE THE SIZE AND LOCATION OF ALL OPENINGS, SLEEVES AND ANCHOR BOLTS AS REQUIRED BY ALL TRADES.
- 6. ALL DIMENSIONS, ELEVATIONS, AND OTHER REFERENCES TO EXISTING STRUCTURES, SURFACE, AND SUBSURFACE CONDITIONS ARE APPROXIMATE. NO GUARANTEE IS MADE FOR THE ACCURACY OR COMPLETENESS OF THE INFORMATION SHOWN. THE CONTRACTOR SHALL VERIFY AND COORDINATE ALL DIMENSIONS, ELEVATIONS, ANGLES WITH EXISTING CONDITIONS AND WITH ARCHITECTURAL AND SITE DRAWINGS BEFORE PROCEEDING WITH ANY WORK.
- 7. AS THE WORK PROGRESSES, THE CONTRACTOR SHALL NOTIFY THE OWNER OF ANY CONDITIONS WHICH ARE IN CONFLICT OR OTHERWISE NOT CONSISTENT WITH THE CONSTRUCTION DOCUMENTS AND SHALL NOT PROCEED WITH SUCH WORK UNTIL THE CONFLICT IS SATISFACTORILY RESOLVED.
- THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE SAFETY CODES AND REGULATIONS 8 DURING ALL PHASES OF CONSTRUCTION. THE CONTRACTOR IS SOLELY RESPONSIBLE FOR PROVIDING AND MAINTAINING ADEQUATE SHORING, BRACING, AND BARRICADES AS MAY BE REQUIRED FOR THE PROTECTION OF EXISTING PROPERTY, CONSTRUCTION WORKERS, AND FOR PUBLIC SAFETY.
- THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND 9. SEQUENCE. AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY. MAINTAIN EXISTING SITE OPERATIONS, COORDINATE WORK WITH NORTHEAST UTILITIES
- 10. THE STRUCTURE IS DESIGNED TO BE SELF-SUPPORTING AND STABLE AFTER FOUNDATION REMEDIATION WORK IS COMPLETE. IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO DETERMINE ERECTION PROCEDURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE STRUCTURE AND ITS COMPONENT PARTS DURING ERECTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, TEMPORARY BRACING, GUYS OR TIEDOWNS, WHICH MIGHT BE NECESSARY.
- 11. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 12. SHOP DRAWINGS, CONCRETE MIX DESIGNS, TEST REPORTS, AND OTHER SUBMITTALS PERTAINING TO STRUCTURAL WORK SHALL BE FORWARDED TO THE OWNER FOR REVIEW BEFORE FABRICATION AND/OR INSTALLATION IS MADE. SHOP DRAWINGS SHALL INCLUDE ERECTION DRAWINGS AND COMPLETE DETAILS OF CONNECTIONS AS WELL AS MANUFACTURER'S SPECIFICATION DATA WHERE APPROPRIATE. SHOP DRAWINGS SHALL BE CHECKED BY THE CONTRACTOR AND BEAR THE CHECKER'S INITIALS BEFORE BEING SUBMITTED FOR REVIEW.
- 13. NO DRILLING WELDING OR TAPING ON CL&P OWNED EQUIPMENT.
- 14. REFER TO DRAWING T1 FOR ADDITIONAL NOTES AND REQUIREMENTS.

STRUCTURAL STEEL

- (FY = 46 KSI)
- (FY = 42 KSI)PIPE---ASTM A53 (FY = 35 KSI)CONNECTION BOLTS---ASTM A325-N G. U-BOLTS---ASTM A36
- I. WELDING ELECTRODE---ASTM E 70XX
- ELEVATIONS AND DETAILS.
- 4. PROVIDE ALL PLATES, CLIP ANGLES, CLOSURE PIECES, STRAP ANCHORS, MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE THE STRUCTURE. 5. FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST PRACTICAL SECTIONS FOR
- DELIVERY TO SITE.
- 6. INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, AND FREE FROM DISTORTIONS OR DEFECTS.
- 7. AFTER ERECTION OF STRUCTURES, TOUCHUP ALL WELDS, ABRASIONS AND NON-GALVANIZED SURFACES WITH A 95% ORGANIC ZINC RICH PAINT IN ACCORDANCE WITH ASTM 780.
- 8. ALL STEEL MATERIAL (EXPOSED TO WEATHER) SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT DIPPED GALVANIZED) COATINGS" ON IRONS AND STEEL PRODUCTS.
- 9. ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE".
- 10. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW.
- 11. CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF 1/4 INCHES. 12. STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325. ALL BOLTS SHALL BE 3/4" DIAMETER MINIMUM AND SHALL HAVE A MINIMUM OF TWO BOLTS, UNLESS OTHERWISE ON THE DRAWINGS.
- 13. LOCK WASHER ARE NOT PERMITTED FOR A325 STEEL ASSEMBLIES.
- 15. MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION. 16. FABRICATE BEAMS WITH MILL CAMBER UP.
- 17. LEVEL AND PLUMB INDIVIDUAL MEMBERS OF THE STRUCTURE TO AN ACCURACY OF 1:500, BUT NOT TO EXCEED 1/4" IN THE FULL HEIGHT OF THE COLUMN.
- 18. COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK.
- 19. INSPECTION AND TESTING OF ALL WELDING AND HIGH STRENGTH BOLTING SHALL BE PERFORMED BY AN INDEPENDENT TESTING LABORATORY.
- 20. FOUR COPIES OF ALL INSPECTION TEST REPORTS SHALL BE SUBMITTED TO THE ENGINEER WITHIN TEN (10) WORKING DAYS OF THE DATE OF INSPECTION.

1. ALL STRUCTURAL STEEL IS DESIGNED BY ALLOWABLE STRESS DESIGN (ASD) A. STRUCTURAL STEEL (W SHAPES)--ASTM A992 (FY = 50 KSI)

B. STRUCTURAL STEEL (OTHER SHAPES) -- ASTM A36 (FY = 36 KSI) C. STRUCTURAL HSS (RECTANGULAR SHAPES) -- ASTM A500 GRADE B,

D. STRUCTURAL HSS (ROUND SHAPES)---ASTM A500 GRADE B,

H. ANCHOR RODS---ASTM F 1554

2. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE ENGINEER FOR REVIEW. SHOP DRAWINGS SHALL INCLUDE THE FOLLOWING: SECTION PROFILES, SIZES, CONNECTION ATTACHMENTS, REINFORCING, ANCHORAGE, SIZE AND TYPE OF FASTENERS AND ACCESSORIES. INCLUDE ERECTION DRAWINGS,

3. STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH THE LATEST PROVISIONS OF AISC MANUAL OF STEEL CONSTRUCTION.

14. SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BOLTED.

PAINT NOTES

- PAINTING SCHEDULE:
- 1. ANTENNA PANELS:
 - A. SHERWIN WILLIAMS POLANE-B B. COLOR TO BE MATCHED WITH EXISTING TOWER STRUCTURE.
- 2. COAXIAL CABLES:
 - A. ONE COAT OF DTM BONDING PRIMER (2-5 MILS. DRY FINISH) B. TWO COATS OF DTM ACRYLIC PRIMER/FINISH (2.5-5 MILS. DRY FINISH) C. COLOR TO BE FIELD MATCHED WITH EXISTING STRUCTURE.
- EXAMINATION AND PREPARATION:
- 1. DO NOT APPLY PAINT IN SNOW, RAIN, FOG OR MIST OR WHEN RELATIVE HUMIDITY EXCEEDS 85%. DO NOT APPLY PAINT TO DAMP OR WET SURFACES.
- 2. VERIFY THAT SUBSTRATE CONDITIONS ARE READY TO RECEIVE WORK. EXAMINE SURFACE SCHEDULED TO BE FINISHED PRIOR TO COMMENCEMENT OF WORK. REPORT ANY CONDITION THAT MAY POTENTIALLY AFFECT PROPER APPLICATION.
- 3. TEST SHOP APPLIED PRIMER FOR COMPATIBILITY WITH SUBSEQUENT COVER MATERIALS.
- 4. PERFORM PREPARATION AND CLEANING PROCEDURE IN STRICT ACCORDANCE WITH COATING MANUFACTURER'S INSTRUCTIONS FOR EACH SUBSTRATE CONDITION.
- 5. CORRECT DEFECTS AND CLEAN SURFACES WHICH AFFECT WORK OF THIS SECTION. REMOVE EXISTING COATINGS THAT EXHIBIT LOOSE SURFACE DEFECTS.
- 6. IMPERVIOUS SURFACE: REMOVE MILDEW BY SCRUBBING WITH SOLUTION OF TRI-SODIUM PHOSPHATE AND BLEACH. RINSE WITH CLEAN WATER AND ALLOW SURFACE TO DRY.
- 7. ALUMINUM SURFACE SCHEDULED FOR PAINT FINISH: REMOVE SURFACE CONTAMINATION BY STEAM OR HIGH-PRESSURE WATER. REMOVE OXIDATION WITH ACID ETCH AND SOLVENT WASHING. APPLY ETCHING PRIMER IMMEDIATELY FOLLOWING CLEANING.
- 8. FERROUS METALS: CLEAN UNGALVANIZED FERROUS METAL SURFACES THAT HAVE NOT BEEN SHOP COATED; REMOVE OIL, GREASE, DIRT, LOOSE MILL SCALE, AND OTHER FOREIGN SUBSTANCES. USE SOLVENT OR MECHANICAL CLEANING METHODS THAT COMPLY WITH THE STEEL STRUCTURES PAINTING COUNCIL'S (SSPC) RECOMMENDATIONS. TOUCH UP BARE AREAS AND SHOP APPLIED PRIME COATS THAT HAVE BEEN DAMAGED. WIRE BRUSH, CLEAN WITH SOLVENTS RECOMMENDED BY PAINT MANUFACTURER, AND TOUCH UP WITH THE SAME PRIMER AS THE SHOP COAT.
- 9. GALVANIZED SURFACES: CLEAN GALVANIZED SURFACES WITH NON-PETROLEUM-BASED SOLVENTS SO SURFACE IS FREE OF OIL AND SURFACE CONTAMINANTS. REMOVE PRETREATMENT FROM GALVANIZED SHEET METAL FABRICATED FROM COIL STOCK BY MECHANICAL METHODS.
- 10. ANTENNA PANELS: REMOVE ALL OIL, DUST, GREASE, DIRT, AND OTHER FOREIGN MATERIAL TO ENSURE ADEQUATE ADHESION. PANELS MUST BE WIPED WITH METHYL ETHYL KETONE (MEK).
- 11. COAXIAL CABLES: REMOVE ALL OIL, DUST, GREASE. DIRT, AND OTHER FOREIGN MATERIAL TO ENSURE ADEQUATE ADHESION.

CLEANING:

- 1. COLLECT WASTE MATERIAL, WHICH MAY CONSTITUTE A FIRE HAZARD, PLACE IN CLOSED METAL CONTAINERS AND REMOVE DAILY FROM SITE. APPLICATION:
- 1. APPLY PRODUCTS IN ACCORDANCE WITH MANUFACTURER'S INSTRUCTIONS.
- 2. DO NOT APPLY FINISHES TO SURFACES THAT ARE NOT DRY.
- 3. APPLY EACH COAT TO UNIFORM FINISH.
- 4. APPLY EACH COAT OF PAINT SLIGHTLY DARKER THAN PRECEDING COAT UNLESS OTHERWISE APPROVED.
- 5. SAND METAL LIGHTLY BETWEEN COATS TO ACHIEVE REQUIRED FINISH.
- 6. VACUUM CLEAN SURFACES FREE OF LOOSE PARTICLES. USE TACK CLOTH JUST PRIOR TO APPLYING NEXT COAT.
- 7. ALLOW APPLIED COAT TO DRY BEFORE NEXT COAT IS APPLIED.

COMPLETED WORK:

- 1. SAMPLES: PREPARE 24" X 24" SAMPLE AREA FOR REVIEW.
- 2. MATCH APPROVED SAMPLES FOR COLOR, TEXTURE AND COVERAGE, REMOVE REFINISH OR REPAINT WORK NOT IN COMPLIANCE WITH SPECIFIED REQUIREMENTS.

								0 11/14/16 JTD CAG CONSTRUCTION DOCUMENTS - ISSUED FOR CONSTRUCTION	REV. DATE DRAWN BY CHK'D BY DESCRIPTION
PROFESSIONAL ENGINEER SEAL							Been and a second secon		
		Centered on Solutions ²⁴	1703) 488-0580	(203) 488-8587 Fox	63-2 North Branford Road	Branford, CT 06405			www.CentekEng.com
AT & AD BILLTY		WIRELESS COMMUNICATIONS FACILITY					200 PRECTON AVE	AUDOL FTOUND OF 06157	
DA SC JC	TE: XALI	E: NO. PE(1 AS 1 (FE	1/ 5 1 50 ⁻¹ 50	11, NO ⁻ 71. 5 A	/10 TEC 58	6) D		
Sh	eet	No		_	of	5			

	– EXISTING EQUIPMENT SHELTER (BY OTHERS)	ICTION DOCUMENTS - ISSUED FOR CONSTRUCTION
		JTD CAG CONSTRU DRAWN BY CHK'D BY DESCRIPT
×	- EXISTING ±150' TALL MONOPOLE TOWER	/14/16 DATE
	— EXISTING EQUIPMENT PAD (BY OTHERS)	EAL REV.
	— EXISTING EQUIPMENT SHELTER (BY OTHERS)	BROFESSIONAL ENGINER S PROFESSIONAL ENGINE Profession Brovession B
GRAPHIC SCALE 5 15 30	60	telecom
(IN FEET) 1 inch = 15 ft.	— EXISTING AC PANEL	Centered on Solutions ^{**} Centered on Solutions ^{**} Centered on Solutions ^{**} (203) 488-0580 (203) 488-050 (203) 488-050 (203) 488-050 (203) 488-050 (203) 488-050 (203) 488-050 (203) 488-050 (203) 488-050 (203) 487-050 (203) 47-050 (203) 47-050 (203) 47-050 (203) 47-050 (203) 47-050 (203) 47-050 (203) 47-050 (203) 47-050 (203) 47-050 (203)
	— EXISTING LTE RACK	In the second se
•	— EXISTING TELCO CABINET	
	- EXISTING AT&T UMTS RRUS, TYP. OF (3) TOTAL ON EXISTING LTE RACK	KT MC Ess commun DLETOW
	— EXISTING FIF RACK	
	— EXISTING AT&T NOKIA GSM CABINET	
	— EXISTING AT&T UMTS CABINET	DATE: 11/11/16 SCALE: AS NOTED
		JOB NO. 16071.58 PLANS AND ELEVATION
		C-1

Sheet No. 3 of 5

- 1. TINNED COPPER GROUND BAR, 1/4"x 4"x 20", NEWTON INSTRUMENT CO. HOLE CENTERS TO MATCH NEMA DOUBLE LUG .
- 2. INSULATORS, NEWTON INSTRUMENT CAT. NO. 2. 3061-4.
- 3. 3. 5/8" LOCK WASHERS, NEWTON INSTRUMENT CO. CAT. NO. 3015-8.
- 4. WALL MOUNTING BRACKET, NEWTON INSTRUMENT CO. 4. CAT NO. A-6056.
- 5. STAINLESS STEEL SECURITY SCREWS.

INCLUDING GPS ANTENNA. TYPICAL ANTENNA GROUNDING DETAIL NOT TO SCALE

- MANUFACTURERS SPECIFICATIONS. 3. DETAIL IS TYPICAL FOR ALL ANTENNA SECTORS,
- 2. BOND ALL EQUIPMENT TO GROUND PER NEC AND

- VERIFY SPACE AND TYPE OF EXISTING CONDITIONS IN WHICH WORK WILL BE DONE, PRIOR TO SUBMITTAL OF BID. 17. ALL NON-CURRENT CARRYING PARTS OF THE ELECTRICAL AND TELEPHONE CONDUIT SYSTEMS SHALL BE MECHANICALLY AND ELECTRICALLY CONNECTED TO PROVIDE AN
- 18. GROUNDING SYSTEM WILL BE IN ACCORDANCE WITH THE LATEST ACCEPTABLE EDITION OF THE NATIONAL ELECTRICAL CODE AND REQUIREMENTS PER LOCAL INSPECTOR
- 19. EACH EQUIPMENT GROUND CONDUCTOR SHALL BE SIZED IN ACCORDANCE WITH THE N.E.C. ARTICLE 250-122. (MIN. #12 AWG).
- 20. CONTRACTOR SHALL PROVIDE A CELLULAR GROUNDING SYSTEM WITH THE MAXIMUM AC RESISTANCE TO GROUND OF 5 OHM BETWEEN ANY POINT ON THE GROUNDING SYSTEM AS MEASURED BY 3-POINT GROUNDING TEST. (REFER TO SECTION 16960).

TESTS BY INDEPENDENT ELECTRICAL TESTING FIRM

- A. CONTRACTOR SHALL RETAIN THE SERVICES OF A LOCAL INDEPENDENT ELECTRICAL TESTING FIRM (WITH MINIMUM 5 YEARS COMMERCIAL EXPERIENCE IN THE ELECTRICAL TESTING INDUSTRY) AS SPECIFIED BY OWNER TO PERFORM:
 - TEST 1: RESISTANCE TO GROUND TEST ON THE CELLULAR GROUNDING SYSTEM.
 - 1. TESTING PROCEDURE INCLUDING THE MAKE AND MODEL OF TEST EQUIPMENT.
 - 2. CERTIFICATION OF TESTING EQUIPMENT CALIBRATION WITHIN SIX (6) MONTHS OF DATE OF TESTING. INCLUDE CERTIFICATION LAB ADDRESS AND
 - 3. GRAPHICAL DESCRIPTION OF TESTING METHOD ACTUALLY IMPLEMENTED.
- B. TESTING SHALL BE PERFORMED IN THE PRESENCE AND TO THE SATISFACTION OF OWNERS CONSTRUCTION REPRESENTATIVE. TESTING DATA SHALL BE INITIALED AND DATED BY THE CONSTRUCTION AND INCLUDED WITH THE WRITTEN REPORT/ANALYSIS.
- C. THE CONTRACTOR SHALL FORWARD SIX (6) COPIES OF THE INDEPENDENT ELECTRICAL TESTING FIRM REPORT/ANALYSIS TO ENGINEER A MINIMUM OF TEN (10) WORKING DAYS PRIOR TO THE JOB TURNOVER.
- D. CONTRACTOR TO PROVIDE A MINIMUM OF ONE (1) WEEK NOTICE TO OWNER AND