ROBINSON & COLE LIP

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts

January 24, 2014

Via Federal Express

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Request of Cellco Partnership d/b/a Verizon Wireless for an Order to Approve the Shared Use of an Existing Tower at 90 Industrial Park Road, Middletown, Connecticut

Dear Ms. Bachman:

Pursuant to Connecticut General Statutes ("C.G.S.") §16-50aa, as amended, Cellco Partnership d/b/a Verizon Wireless ("Cellco") hereby requests an order from the Connecticut Siting Council ("Council") to approve the shared use, by Cellco, of an existing telecommunications tower, owned by Crown Castle ("Crown"), at 90 Industrial Park Road in Middletown, Connecticut. Cellco requests that the Council find that the proposed shared use of the Crown tower satisfies the criteria of C.G.S § 16-50aa and issue an order approving the proposed shared use. A copy of this letter is being sent to Middletown's Mayor Daniel Drew and Philip Armetta, the owner of the property where the tower is located.

Law Offices

BOSTON

PROVIDENCE

HARTFORD

NEW LONDON

STAMFORD

WHITE PLAINS

NEW YORK CITY

ALBANY

SARASOTA

www.rc.com

Background

The existing Crown facility consists of a 185-foot monopole tower located within a fenced compound. The tower is currently being shared by T-Mobile, AT&T and Metro PCS. Equipment associated with the existing carriers' antennas is located near the base of the tower.

12705987-v1

ROBINSON & COLE IIIP

Melanie A. Bachman January 24, 2014 Page 2

Cellco is licensed by the Federal Communications Commission ("FCC") to provide wireless services throughout the State of Connecticut. Cellco and Crown have agreed to the proposed shared use of the 90 Industrial Park Road tower pursuant to mutually acceptable terms and conditions, and Crown has authorized Cellco to apply for all necessary permits and approvals that may be required to share the existing tower. (*See* Owner's authorization letter included in <u>Attachment 1</u>).

Cellco proposes to install a total of twelve (12) antennas at the 155-foot level on the tower. Equipment associated with Cellco's antennas and a propane-fueled back-up generator will be located inside a 12' x 24' shelter installed near the base of the tower within the existing fenced compound. Included in <u>Attachment 2</u> are Cellco's Project Plans showing the location of all site improvements.

- C.G.S. § 16-50aa(c)(1) provides that, upon written request for approval of a proposed shared use, "if the council finds that the proposed shared use of the facility is technically, legally, environmentally and economically feasible and meets public safety concerns, the council shall issue an order approving such shared use." Cellco respectfully submits that the shared use of the tower satisfies these criteria.
- **A.** <u>Technical Feasibility</u>. The existing tower, with certain modifications, would be capable of supporting Cellco's antennas. The proposed shared use of this tower is, therefore, technically feasible. A Structural Modification Report is included in <u>Attachment 3</u>.
- **B.** <u>Legal Feasibility.</u> Under C.G.S. § 16-50aa, the Council has been authorized to issue orders approving the shared use of an existing tower such as the Crown tower in Middletown. This authority complements the Council's priorexisting authority under C.G.S. § 16-50p to issue orders approving the construction of new towers that are subject to the Council's jurisdiction. In addition, § 16-50x(a) directs the Council to "give such consideration to other state laws and municipal regulations as it shall deem appropriate" in ruling on requests for the shared use of existing tower facilities. Under the statutory authority vested in the Council, an order by the Council approving the requested shared use would permit the Applicant to obtain a building permit for the proposed installations.
- C. <u>Environmental Feasibility</u>. The proposed shared use of the Crown tower would have a minimal environmental effect, for the following reasons:

ROBINSON & COLEUR

Melanie A. Bachman January 24, 2014 Page 3

- 1. The proposed installation of twelve (12) antennas at the 155foot level on the existing 185-foot tower would have an
 insignificant incremental visual impact on the area around the
 existing tower. Cellco's shelter would be located within the
 limits of the existing fenced facility compound. Cellco's
 shared use of this tower would therefore, not cause any
 significant change or alteration in the physical or
 environmental characteristics of the site.
- 2. Noise associated with the equipment shelter's air conditioning ("A/C") units was evaluated for compliance with State and/or local noise standards. According to the Noise Compliance Study included in Attachment 4 ("Study"), noise from the shelter's A/C units will not exceed State and/or local noise limits. Noise associated with Cellco's emergency back-up generator is exempt from State and local noise limits.
- Operation of Cellco's antennas at this site would not exceed the RF emissions standards adopted by the Federal Communications Commission ("FCC"). Included in Attachment 5 of the filing is a cumulative RF Emissions calculation (General Power Density table) which demonstrates that following the installation of Cellco's antennas, the facility will continue to operate well within the FCC limits.
- 4. Under ordinary operating conditions, the proposed installation would not require the use of any water or sanitary facilities and would not generate air emissions or discharges to water bodies or sanitary facilities. After construction is complete the proposed installation would not generate any increased traffic to the Crown facility other than periodic (monthly) maintenance visits to the cell site.

The proposed use of this 90 Industrial Park Road facility would, therefore, have a minimal environmental effect, and is environmentally feasible.

D. <u>Economic Feasibility</u>. As previously mentioned, Crown and Cellco have entered into a lease for the shared use of the existing tower on mutually

ROBINSON & COLEUP

Melanie A. Bachman January 24, 2014 Page 4

agreeable terms. The proposed tower sharing is, therefore, economically feasible. (See Attachment 1).

E. <u>Public Safety Concerns</u>. As discussed above, the tower, with certain modifications, is structurally capable of supporting Cellco's full array of twelve (12) antennas and related equipment and all existing antennas and equipment on the tower today. Cellco is not aware of any public safety concerns relative to the proposed sharing of the existing Crown tower. In fact, the provision of new and improved wireless service through shared use of the existing tower is expected to enhance the safety and welfare of area residents and members of the general public traveling through Middletown.

Conclusion

For the reasons discussed above, the proposed shared use of the existing Crown tower at 90 Industrial Park Road satisfies the criteria stated in C.G.S. § 16-50aa and advances the General Assembly's and the Council's goal of preventing the unnecessary proliferation of towers in Connecticut. The Applicant, therefore, respectfully requests that the Council issue an order approving the proposed shared use of the Crown tower.

Thank you for your consideration of this matter.

Very truly yours,

Kenneth C. Baldwin

Enclosures Copy to:

Daniel Drew, Mayor Philip Armetta Sandy M. Carter

ATTACHMENT 1

3530 Toringdon Way Suite 300 Charlotte, NC 28277 Tel: 704-405-6523 Fax: 724-416-6153

December 16, 2013

RE: Crown Castle Letter of Authorization (LOA)

Crown Castle, does hereby authorize **Verizon Wireless** ("**Verizon**") and its authorized contractors/agents to act as "Applicant" in the processing of all applications, permits, research and other related activities associated with the processing, planning, design review, permitting, entitlement and construction of additional equipment, antennas and site improvements for the Crown Castle existing wireless communications facility described as follows:

Customer Site Name:

Middletown NW CT ID Number:

90 Industrial Park Road Middletown, CT 06457

Site Address:

Middletown, CT 06457

Crown Castle Site 1D Number:

Crown Castle Site Name:

Middleton_1

This authorization is fully contingent upon **Verizon's** authorized contractors/agents' compliance with the following conditions:

- 1. Crown Castle must review the application prior to submittal. Crown Castle must be provided all applications, narratives, drawings and attachments at least 72 hours in advance of their submittal to the locality. Use of email and electronic attachments is encouraged. A Crown Castle Zoning Subject Matter Expert (SME) will review and provide written comment to the customer within 48 hours of receipt of a complete set of application materials. If Crown Castle indicates that changes are required, submissions shall be altered in accordance with Crown Castle comments prior to submission to the locality. Verification of corrections should also be accomplished via emails and attachments.
- 2. In no event may **Verizon** encourage, suggest, participate in, or permit the imposition of any restrictions or additional obligations whatsoever on the tower site or Crown Castle's current or future use or ability to license space at the tower site as part of or in exchange for obtaining any approval, permit, exception or variance.
- 3. A copy of the final permit and/or a written summary of the zoning/entitlement decision rendered by the locality and any/all conditions placed on that decision shall be communicated in detail to Crown Castle well within the appeal period provided by the locality (typically 10-15 days).
- 4. All conditions of approval pertinent to the construction of the proposed project must be included in the construction drawings for the project. The conditions of approval pertinent to the construction of the project shall be copied verbatim from the zoning permit approval language, and shall be present in the drawings prior to submission for building permits and contractor bidding. Crown Castle shall verify the inclusion of appropriate conditions of approval in the construction drawing redline process.
- 5. Crown Castle will provide a <u>Notice To Proceed (NTP) to construction</u> to the customer upon receipt of the final approved zoning permit and the approved Building Permit.

By Crown Castle:

Signature:

Printed Name:

Sarah Brown

Title:

Real Estate Specialist

Date:

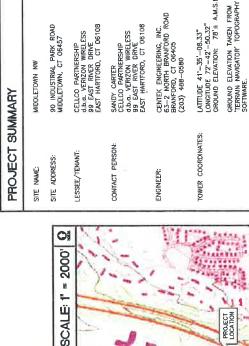
December 16, 2013

ATTACHMENT 2

Cellco Partnership

ОЕЗСЫЬДОИ

ED FOR CSC - CLIENT


WIRELESS COMMUNICATIONS FACILITY d.b.a. Verizon wireless

\$1\03\14 DATE κε*λ*.

d.b.a **verizon** wireless

Cellco Partnership

90 INDUSTRIAL PARK ROAD MIDDLETOWN, CT 06457 MIDDLETOWN NW

0.1 mi 0.5 mi 0.2 mi

1. Head east on E River Dr toward Darlin St.
2. Turn right onto Darlin St.
4. Merga ento CT-2 W
6. Turn left onto Columbus Bivd
6. Turn left onto Columbus Bivd
7. Keep right of the fork, follow signs for I-91 S/New Hoven and Riche exit 2 for CT-372 toward Conwell/Berlin
8. Toke exit 2 for CT-372 toward Conwell/Berlin
9. Merge onto Industrial Park Ro. Destination will be on the left

90 INDUSTRIAL PARK ROAD MIDDLETOWN, CONNECTICUT

99 EAST RIVER DRIVE EAST HARTFORD, CONNECTICUT

FROM

SITE DIRECTIONS

<u></u>		Ž	<u> </u>	<mark> 교</mark> 을 의	-
SCALE: 1" = 2000" Q		製造			RD E
SCALE: 1			PROJECT	15	Streld S MANER RI
MAP	Th	iumps		Salme	Fal
VICINITY MAP	0		2		aan 0

MIDDLETOWN, CT 06457

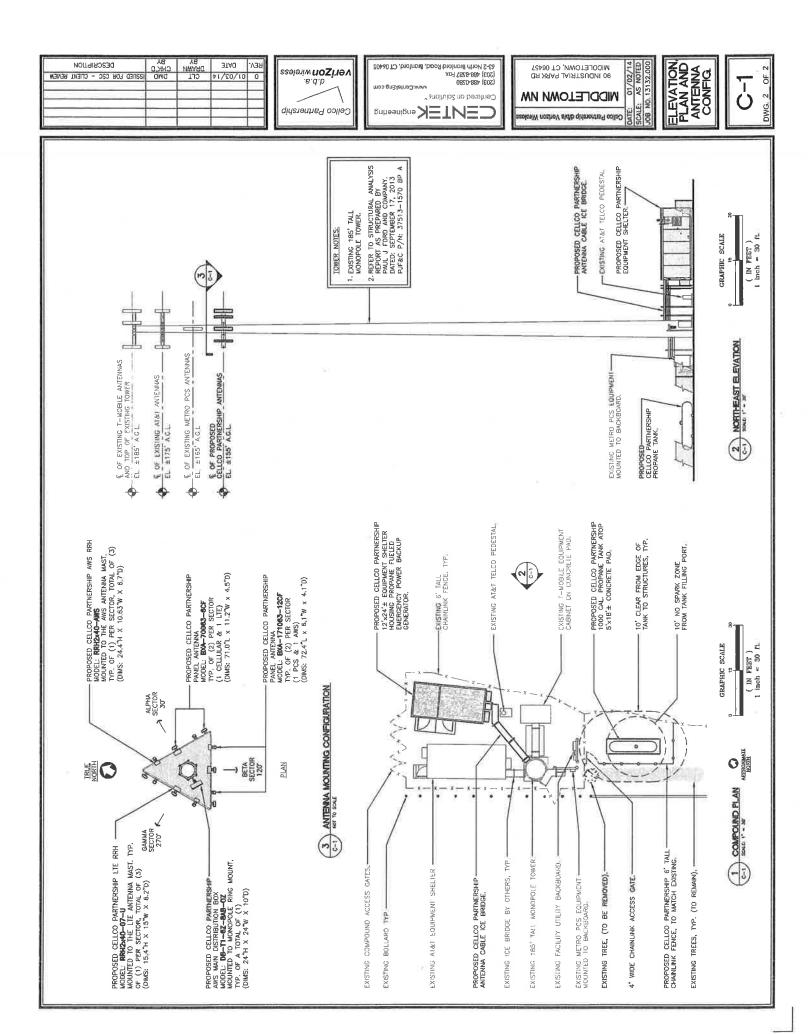
MIDDLETOWN NW

	PROJECT SUMMARY	MARY
	SITE NAME:	MIDDLETOWN NW
0	SITE ADDRESS:	90 INDUSTRIAL PARK ROAD MIDDLETOWN, CT 06457
	LESSEE/TENANT:	CELLCO PARTNERSHIP d.b.g. VERIZON WRELESS 99 EAST RIVER DRIVE EAST HARTFORD, CT 06108
-	CONTACT PERSON:	SANDY CARTER CELLCO PARTNERSHIP d.b.o. VERZON WIRELESS 99 EAST RIVER DRIVE EAST HARFFORD, CT 06108
VIII	ENGINEER:	CENTEK ENGINEERING, INC. 632 NORTH BRANFORD ROAD BRANFORD, CT 06405 (203) 488-0580
744	TOWER COORDINATES:	LATTUDE 41'-35'-08.33" LONGTUDE 72'-42'-50.32" GROUND ELEVATION: 78'± A.M.S.L.
11		GROUND ELEVATION TAKEN FROM

REV.	0	0	
		E	
DESCRIPTION	TILE SHEET	ELEVATION, PLAN AND ANTENNA CONFIG.	
SHT.	1-1	5	

HET NDEX

I


HEIGHTS	
AND	
LOCATIONS	
ANTENNA	
PROPOSED	

GENERAL NOTES

PROVIDED BY CELLCO PARTNERSHIP.

- THE PROPOSED SCOPE OF WORK GENERALLY INCLUDES THE INSTALLATION OF A 12 X-24" PREFABRICATED WIRELESS EQUIPMENT SHELTER ON A CONCRETE FOUNDATION LOCATED WITHIN THE EXISTING WIRELESS COMMUNICATIONS FENCED COMPOUND AREA. PROJECT SCOPE
- A 1000 GAL PROPANE TANK ATOP CONCRETE PAD AT GRADE WILL INSTALLED ADJACENT TO THE EXISTING FENCED COMPOUND AREA.
- A TOTAL OF TWELVE (12) DIRECTIONAL PANEL ANTENNAS ARE TO BE MOUNTED AT A CENTERLINE ELEVATION OF ±155' ON THE EXISTING 185' TALL MONOPOLE TOWER.
- ELECTRIC AND TELCO UTILITIES SHALL BE ROUTED UNDERGROUND TO THE PROPOSED EQUIPMENT SHELTER FROM AN EXISTING UTILITY BACKBOARD LOCATED WITHIN TO THE FENCED COMPOUND.

16:	VILLAMEN		1.34
1.3			
	PROJECT	15	Id SEER RED
2 2	1	1	alls alls
Tiru	n n	THE STATE OF THE S	2,000
	. S.	188	000')
0		1 500	

ATTACHMENT 3

Date: September 17, 2013

Steve Tuttle Crown Castle 8 Parkmeadow Drive Pittsford, NY 14534

Paul J Ford and Company 250 E. Broad Street, Suite 600 Columbus, OH 43215 614.221.6679

Subject:

Structural Modification Report

Carrier Designation:

Verizon Wireless Co-Locate

Carrier Site Number:

Carrier Site Name:

119681

Middletown NW CT

Crown Castle Designation:

Crown Castle BU Number:

Crown Castle Site Name:

825983 MIDDLETOWN_1 236900

Crown Castle JDE Job Number: **Crown Castle Work Order Number:**

649747

Crown Castle Application Number:

188916 Rev. 6

Engineering Firm Designation:

Paul J Ford and Company Project Number: 37513-1570 BP A

Site Data:

90 Industrial Park Road, Middletown, Middlesex County, CT

Latitude 41° 35' 8.124", Longitude -72° 42' 49.867"

185 Foot - Monopole Tower

Dear Steve Tuttle.

Paul J Ford and Company is pleased to submit this "Structural Modification Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 577622, in accordance with application 188916, revision 6.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC4.7: Modified Structure w/ Existing + Reserved + Proposed Equipment Note: See Table I and Table II for the proposed and existing/reserved loading, respectively.

Sufficient Capacity

The structural analysis was performed for this tower in accordance with the requirements the 2005 Connecticut State Building Code of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 85 mph with no ice, 37.6 mph with 0.75 inch ice thickness and 50 mph under service loads.

All modifications and equipment proposed in this report shall be installed in accordance with the attached drawings and referenced drawings, dated 8/14/12, for the determined available structural capacity to be effective.

We at Paul J Ford and Company appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully submitted by

Woolley, E.I. Structural Designer

tnxTower Report - version 6.1,3.1

SFP 1 9 2013

Date: September 17, 2013

Steve Tuttle Crown Castle 8 Parkmeadow Drive Pittsford, NY 14534

Paul J Ford and Company 250 E. Broad Street, Suite 600 Columbus, OH 43215 614.221.6679

Subject:

Structural Modification Report

Carrier Designation:

Verizon Wireless Co-Locate

Carrier Site Number:

119681

Carrier Site Name:

Middletown NW CT

Crown Castle Designation:

Crown Castle BU Number: Crown Castle Site Name:

MIDDLETOWN_1

Crown Castle JDE Job Number: **Crown Castle Work Order Number:**

236900 649747

825983

Crown Castle Application Number:

188916 Rev. 6

Engineering Firm Designation:

Paul J Ford and Company Project Number: 37513-1570 BP A

Site Data:

90 Industrial Park Road, Middletown, Middlesex County, CT

Latitude 41° 35' 8.124", Longitude -72° 42' 49.867"

185 Foot - Monopole Tower

Dear Steve Tuttle.

Paul J Ford and Company is pleased to submit this "Structural Modification Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 577622, in accordance with application 188916, revision 6.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC4.7: Modified Structure w/ Existing + Reserved + Proposed Equipment Note: See Table I and Table II for the proposed and existing/reserved loading, respectively. **Sufficient Capacity**

The structural analysis was performed for this tower in accordance with the requirements the 2005 Connecticut State Building Code of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 85 mph with no ice, 37.6 mph with 0.75 inch ice thickness and 50 mph under service loads.

All modifications and equipment proposed in this report shall be installed in accordance with the attached drawings and referenced drawings, dated 8/14/12, for the determined available structural capacity to be effective.

We at Paul J Ford and Company appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully submitted by:

John J. Woolley, E.I. Structural Designer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable Information
Table 2 - Existing and Reserved Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 – Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity
4.1) Recommendations

5) APPENDIX A

TNX Tower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 185 ft Monopole tower designed by FRED A. NUDD CORPORATION in May of 1998. The tower was originally designed for a wind speed of 85 mph per TIA/EIA-222-E.

2) ANALYSIS CRITERIA

The structural analysis was performed for this tower in accordance with the requirements the 2005 Connecticut State Building Code of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 85 mph with no ice, 37.6 mph with 0.75 inch ice thickness and 50 mph under service loads.

Table 1 - Proposed Antenna and Cable Information

Mounting Level (ft)			Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note	
		3	alcatel lucent	RRH2X40-07-U			
		3	alcatel lucent	RRH2X40-AWS			
455.0	155.0	6	antel	BXA-171063-12CF-EDIN-2 w/ Mount Pipe	2	1-5/8	, e.
155.0		6	antel	BXA-70063-6CF-EDIN-2 w/ Mount Pipe			
		1	rfs celwave	DB-T1-6Z-8AB-0Z			
		1	tower mounts	Platform Mount [LP 301-1]			

Table 2 - Existing and Reserved Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Antennas Manufacturer		Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note	
185.0		3	andrew	ETW190VS12UB				
		1	andrew	HP2-102				
	405.0	9	ericsson	AIR 21 w/ Mount Pipe	04	21 1-5/8 1 3/8 2 3/4	4	
	185.0	3	ericsson	AIR 33 w/ Mount Pipe	21		1	
		1	raycap	DC6-48-60-18-8F				
		1	tower mounts	Sector Mount [SM 802-3]				
		6	communication components inc.	DTMABP7819VG12A			2	
		6	ericsson	RRUS-11				
		3	kmw communications	AM-X-CD-16-65-00T-RET w/ Mount Pipe				
175.0	175.0	6 powerwave LGP13519 technologies						
		1	raycap	DC6-48-60-18-8F				
		6 powerwave 7770.00 w/ Mount Pipe 12	12	1-1/4	1			
		1	tower mounts	Sector Mount [SM 802-3]				
165.0	165.0	3	kathrein	742 213 w/ Mount Pipe	6	1 5/0	1	
165.0	0.601	1	tower mounts	Pipe Mount [PM 601-3]	0	1-5/8	1	

Notes: 1)

Existing Equipment

2) Reserved Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source	
4-GEOTECHNICAL REPORTS	Clarence Welti, 3/27/1998	3473514	CCISITES	
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	Nudd, 98-5980, 5/1/1998	3880469	CCISITES	
4-TOWER MANUFACTURER DRAWINGS	Nudd, 98-5980, 5/1/1998	3473517	CCISITES	
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	All-Points Tech, CT107572, 4/26/2005	3879955	CCISITES	
4-TOWER PROPOSED REINFORCEMENT DESIGN/DRAWINGS/DATA	PJF, 37513-1570 BP, 8/14/2013	3954032	CCISITES	

3.1) Analysis Method

tnxTower (version 6.1.3.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were built in accordance with the manufacturer's specifications.
- The tower and structures have been maintained in accordance with the manufacturer's specification.
- 3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 4) The Nudd manufacturer's drawings specify an anchor rod that does not exist. From experience with Nudd monopoles, the anchors are likely A36 standard anchors and have been assumed as such.
- 5) Monopole will be reinforced in conformance with the referenced modification drawings dated 8/14/2013.
- 6) Monopole will be reinforced in conformance with the attached proposed modification drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J Ford and Company should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fai
L1	185 - 180	Pole	TP18x18x0.1875	1	-2.141	361.254	23.1	Pass
L2	180 - 153	Pole	TP26.8088x18x0.25	2	-8.232	718.182	97.1	Pass
L3	153 - 151.833	Pole	TP27.1894x26.8088x0.3625	3	-8.404	1051.792	70.2	Pass
L4	151.833 - 151	Pole	TP27.4613x27.1894x0.5246	4	-8.564	1527.325	50.6	Pass
L5	151 - 130	Pole	TP34.3125x27.4613x0.3802	5	-11.187	1328.220	90.2	Pass
L6	130 - 120.667	Pole	TP36.844x31.9209x0.4447	6	-14.795	1750.722	89.0	Pass
L7	120.667 - 115	Pole	TP38.6875x36.844x0.4776	7	-16.132	1934.076	87.1	Pass
L8	115 - 114	Pole	TP39.0125x38.6875x0.5402	8	-16.400	2248.011	76.1	Pass
L9	114 - 95	Pole	TP45.1875x39.0125x0.4463	9	-19.551	2065.883	95.3	Pass
L10	95 - 91	Pole	TP45.8125x42.3448x0.5294	10	-23.739	2592.778	85.1	Pass
L11	91 - 90	Pole	TP46.1391x45.8125x0.465	11	-24.015	2297.212	96.6	Pass
L12	90 - 61.5	Pole	TP55.4461x46.1391x0.5299	12	-33.586	3147.320	87.3	Pass
L13	61.5 - 58	Pole	TP56.5891x55.4461x0.5263	13	-34.868	3165.902	88.88	Pass
L14	58 - 40	Pole	TP61.6875x56.5891x0.5788	14	-42.368	3628.093	87.4	Pass
L15	40 - 33	Pole	TP63.9583x61.6875x0.5704	15	-45.418	3910.529	84.2	Pass
L16	33 - 28	Pole	TP65.5804x63.9583x0.595	16	-47.742	4047.974	83.5	Pass
L17	28 - 0	Pole	TP73.8125x65.5804x0.5758	17	-61.294	4154.028	93.8	Pass
							Summary	
						Pole (L2)	97.1	Pass
						Rating =	97.1	Pass

Table 5 - Tower Component Stresses vs. Capacity

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	72.2	Pass
1	Base Plate	0	52.0	Pass
1	Base Foundation	0	87.1	Pass

Structure Rating (max from all components) =	97.1%
--	-------

Notes:

4.1) Recommendations

-Install the proposed modification as per the referenced PJF drawings, dated 8/14/12 (CCISITES Doc # 3954032) -Install modification per the attached drawings.

See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

APPENDIX A TNXTOWER OUTPUT

Tower Input Data

There is a pole section.

This tower is designed using the TIA/EIA-222-F standard.

The following design criteria apply:

- 1) Tower is located in Middlesex County, Connecticut.
- 2) Basic wind speed of 85 mph.
- 3) Nominal ice thickness of 0.7500 in.
- 4) Ice density of 56.000 pcf.
- 5) A wind speed of 38 mph is used in combination with ice.
- 6) Temperature drop of 50.000 °F.
- 7) Deflections calculated using a wind speed of 50 mph.
- 8) A non-linear (P-delta) analysis was used.
- 9) Pressures are calculated at each section.
- 10) Stress ratio used in pole design is 1.333.
- 11) Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
Use Code Stress Ratios
Use Code Safety Factors - Guys
Escalate Ice
Always Use Max Kz

Escalate Ice
Always Use Max Kz
Use Special Wind Profile
Include Bolts In Member Capacity
Leg Bolts Are At Top Of Section
Secondary Horizontal Braces Leg
Use Diamond Inner Bracing (4 Sided)
Add IBC .6D+W Combination

Distribute Leg Loads As Uniform
Assume Legs Pinned

- Assume Legs Pinned

 √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
 Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
 √ Has Asimuth Dish Coefficients
- √ Use Azimuth Dish Coefficients
 √ Project Wind Area of Appurt.
- ✓ Autocalc Torque Arm Areas
 SR Members Have Cut Ends
 Sort Capacity Reports By Component
 Triangulate Diamond Inner Bracing
 Use TIA-222-G Tension Splice
 Capacity Exemption

Treat Feedline Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

- √ Consider Feedline Torque Include Angle Block Shear Check Poles

 Poles

 Output

 Description:

 Poles

 Output

 Description:

 Description:
- √ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

Tapered Pole Section Geometry

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
L1	185.000- 180.000	5.000	0.000	12	18.0000	18.0000	0.1875	0.7500	A36M-42 (42 ksi)
L2	180.000- 153.000	27.000	0.000	12	18.0000	26.8088	0.2500	1.0000	À36M-42 (42 ksi)
L3	153.000- 151.833	1.167	0.000	12	26.8088	27.1894	0.3625	1.4499	Reinf 42.00 ksi (42 ksi)
L4	151.833- 151.000	0.833	0.000	12	27.1894	27.4613	0.5246	2.0983	Reinf 41.97 ksi (42 ksi)
L5	151.000- 130.000	21.000	5.000	12	27.4613	34.3125	0.3802	1.5206	Reinf 42.00 ksi (42 ksi)
L6	130.000- 120.667	14.333	0.000	12	31.9209	36.8440	0.4447	1.7787	Reinf 42.00 ksi (42 ksi)
L7	120.667- 115.000	5.667	0.000	12	36.8440	38.6875	0.4776	1.9105	Reinf 41.15 ksi (41 ksi)
L8	115.000- 114.000	1.000	0.000	12	38.6875	39.0125	0.5402	2.1608	Reinf 42.00 ksi (42 ksi)
L9	114.000- 95.000	19.000	6.000	12	39.0125	45.1875	0.4463	1.7854	Reinf 42.00 ksi (42 ksi)
L10	95.000-91.000	10.000	0.000	12	42.3448	45.8125	0.5293	2.1174	Reinf 42.00 ksi

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
									(42 ksi)
L11	91.000-90.000	1.000	0.000	12	45.8125	46.1391	0.4650	1.8600	Reinf 42.00 ksi (42 ksi)
L12	90.000-61.500	28.500	0.000	12	46.1391	55.4461	0.5299	2.1194	Reinf 42.00 ksi (42 ksi)
L13	61.500-58.000	3.500	0.000	12	55,4461	56.5891	0.5263	2.1054	Reinf 41.66 ksi (42 ksi)
L14	58.000-40.000	18.000	0.000	12	56.5891	61.6875	0.5788	2.3152	Reinf 39.83 ksi (40 ksi)
L15	40.000-33.000	7.000	0.000	12	61.6875	63.9583	0.5704	2.2814	Reinf 42.00 ksi (42 ksi)
L16	33.000-28.000	5.000	0.000	12	63.9583	65.5804	0.5950	2.3800	Reinf 40.65 ksi (41 ksi)
L17	28.000-0.000	28.000		12	65.5804	73.8125	0.5758	2.3032	Reinf 38.25 ksi (38 ksi)

				Taper	ed Po	le Prop	erties			
Castian	Ti- Di-	A	,			1/0		"/0		#
Section	Tip Dia. in	Area in²	l in⁴	r in	C in	I/C in³	J in⁴	It/Q in²	w in	w/t
L1	18.6350	10.7543	435.5296	6.3769	9.3240	46.7106	882.5011	5.2929	4.3215	23.048
	18.6350	10.7543	435.5296	6.3769	9.3240	46.7106	882.5011	5.2929	4.3215	23.048
L2	18.6350	14.2888	574.6149	6.3545	9.3240	61.6275	1164.3256	7.0325	4.1540	16.616
	27.7545	21.3798	1924.8847	9.5080	13.8869	138.6112	3900.3383	10.5225	6.5147	26.059
L3	27.7545	30.8669	2755.5460	9.4678	13.8869	198.4273	5583.4833	15.1917	6.2133	17.142
	28.1485	31.3111	2876.2480	9.6040	14.0841	204.2195	5828.0583	15.4104	6.3153	17.423
L4	28.1485	45.0408	4087.6060	9.5460	14.0841	290.2283	8282.5980	22.1677	5.8809	11.211
	28.4300	45.5000	4213.9101	9.6433	14.2249	296.2342	8538.5243	22.3937	5.9537	11.35
L5	28.4300	33.1504	3103.1778	9.6950	14.2249	218.1507	6287.8796	16.3156	6.3408	16.679
	35.5229	41.5371	6104.4940	12.1478	17.7739	343.4532	12369.359	20.4433	8.1769	21.509
L6	34.8249	45.0689	5699.3931	11.2685	16.5350	344.6858	11548.515 6	22.1815	7.3631	16.559
	38.1438	52.1180	8813.7607	13.0310	19.0852	461.8110	17859.068 6	25.6509	8.6825	19.526
L7	38.1438	55.9304	9441.3633	13.0192	19.0852	494.6952	19130.761 8	27.5272	8.5942	17.993
	40.0522	58.7656	10951.159 4	13.6791	20.0401	546.4616	22190.017	28.9226	9.0882	19.028
L8	40.0522	66.3563	12325.243 7	13.6567	20.0401	615.0283	24974.285 2	32.6586	8.9205	16.513
	40.3887	66.9216	12642.953 9	13.7731	20.2085	625.6263	25618.052 3	32.9368	9.0076	16.674
L9	40.3887	55.4279	10522.691 2	13.8067	20.2085	520.7068	21321.825	27.2799	9.2592	20.745
	46.7815	64.3027	16429.689 3	16.0173	23.4071	701.9098	33291.004 8	31.6478	10.9141	24.452
L10	45.9926	71.2747	15907.259 8	14.9699	21.9346	725.2127	32232.421 1	35.0793	9.9298	18.758
	47.4286	77.1854	20202.012 2	16.2114	23.7309	851.2966	40934.753 7	37.9883	10.8591	20.514
L11	47.4286	67.8974	17821.562 2	16.2344	23.7309	750.9863	36111.316 7	33.4170	11.0316	23.724
	47.7667	68.3863	18209.355 5	16.3513	23.9000	761.8967	36897.091 0	33.6577	11.1191	23.913
L12	47.7667	77.8146	20661.051 0	16.3281	23.9000	864.4779	41864.890 9	38.2980	10.9453	20.657
	57.4020	93.6935	36065.930 7	19.6600	28.7211		73079.353 5	46.1131	13.4396	25.365
L13	57.4020	93.0788	35833.881 5	19.6613	28.7211		72609.158 9	45.8106	13.4490	25.552
	58.5853	95.0159	38118.051 5	20.0705	29.3131		77237.506 6	46.7639	13.7553	26.134
L14	58.5853	104.3883	41799.694 8	20.0517	29.3131	1425.9716	84697.514 0	51.3768	13.6147	23.522

Section	Tip Dia. in	Area in²	I in⁴	r in	C in	I/C in³	J in⁴	It/Q in²	w in	w/t
	63.8636	113.8905	54284.954 6	21.8769	31.9541	1698.8403	109996.03 54	56.0534	14.9811	25.883
L15	63.8636	112.2433	53514.632 8	21.8799	31.9541	1674.7332	108435.15 47	55.2427	15.0037	26.306
	66.2145	116.4137	59704.079 2	22,6929	33.1304	1802.0927	120976.65 10	57.2953	15.6123	27.373
L16	66.2145	121.3998	62212.816 1	22.6841	33.1304	1877.8158	126060.03 21	59.7493	15.5462	26.128
	67.8938	124.5075	67113.899 5	23.2648	33.9706	1975.6450	135990.95 60	61.2788	15.9809	26.858
L17	67.8938	120.5234	65004.728 9	23.2716	33.9706	1913.5570	131717.20 44	59.3179	16.0324	27.844
	76.4163	135,7864	92960.785 2	26.2187	38.2349	2431.3087	188363.75 38	66.8299	18.2386	31.675

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Stitch Bolt Spacing Horizontals
ft	ft ²	in				in	in
L1 185.000-			11 .//	1	1		
180.000							
L2 180.000-			1	1	1		
153.000							
L3 153.000-			1	1	1		
151.833							
L4 151.833-			1	1	1		
151.000							
L5 151.000-			1	1	1		
130.000							
L6 130.000-			1	1	1		
120.667							
L7 120.667-			1	1	1		
115.000							
L8 115,000-			1	1	1		
114.000							
L9 114.000-			1	1	1		
95.000							
L10 95.000-			1	1	1		
91.000							
L11 91.000-			1	1	1		
90.000							
L12 90.000-			1	1	1		
61.500							
L13 61.500-			1	1	1		
58.000							
L14 58.000-			1	1	1		
40.000							
L15 40.000-			1	1	1		
33.000							
L16 33.000-			1	1	1		
28.000							
L17 28.000-			1	1	1		
0.000							

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Component Type	Placement	Total Number		C_AA_A	Weight
	Leg		37	ft			ft²/ft	klf
LDF7-50A(1-5/8")	С	No	CaAa (Out Of	185.000 - 0.000	1	No Ice	0.198	0.001
			Face)			1/2" Ice	0.298	0.002
			,			1" Ice	0.398	0.004
LDF7-50A(1-5/8")	С	No	CaAa (Out Of	185.000 - 0.000	5	No Ice	0.000	0.001
, ,			Face)			1/2" Ice	0.000	0.002
			,			1" Ice	0.000	0.004

Description	Face or	Allow Shield	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		.,,,,	ft			ft²/ft	kIf
LDF7-50A(1-5/8")	С	No	Inside Pole	185.000 - 0.000	15	No Ice	0.000	0.001
						1/2" Ice	0.000	0.001
						1" Ice	0.000	0.001
LDF6-50A(1-1/4")	С	No	Inside Pole	175.000 - 0.000	12	No Ice	0.000	0.001
, ,						1/2" Ice	0.000	0.001
						1" Ice	0.000	0.001
FB-L98-002-XXX(3/8)	С	No	Inside Pole	175.000 - 0.000	1	No Ice	0.000	0.000
, ,						1/2" Ice	0.000	0.000
						1" Ice	0.000	0.000
WR-VG86ST-BRD(С	No	Inside Pole	175.000 - 0.000	2	No Ice	0.000	0.001
3/4)	_				_	1/2" Ice	0.000	0.001
/						1" Ice	0.000	0.001
LDF7-50A(1-5/8")	С	No	Inside Pole	165.000 - 0.000	6	No Ice	0.000	0.001
251 / 00/ (1 0/0)	•		11101001 010	100.000 0.000	J	1/2" Ice	0.000	0.001
						1" Ice	0.000	0.001
HB158-1-08U8-S8J18(С	No	Inside Pole	155.000 - 0.000	2	No Ice	0.000	0.001
1-5/8)	Ŭ	140	morac i oro	100.000 0.000	_	1/2" Ice	0.000	0.001
1-0/0/						1" Ice	0.000	0.001
Aero MP3-04	С	No	CaAa (Out Of	53.330 - 38.330	1	No Ice	0.269	0.001
ACIO IVII 0-04	O	140	Face)	30.000 - 30.000	10	1/2" Ice	0.380	0.000
			i ace)			1" Ice	0.491	0.000
Aero MP3-05	С	No	CaAa (Out Of	123.330 - 88.330	1	No Ice	0.348	0.000
ACIO MICS-03	C	NO	Face)	123.330 - 00.330	100	1/2" Ice	0.400	0.000
			race)			1" Ice	0.400	0.000
Aero MP3-04	С	No	CaAa (Out Of	153.750 - 123.330	1	No Ice	0.057	0.000
ACIO MICS-04	C	NU	Face)	155.750 - 125.550	4	1/2" Ice	0.289	0.000
			race)			1/2 ice 1" lce		
A NADO 00	_	N1-	0-4-70-405	07.000 0.000	19417		0.491	0.000
Aero MP3-08	С	No	CaAa (Out Of	37,000 - 0.000	1	No Ice	0.467	0.000
			Face)			1/2" Ice	0.578	0.000
4 1400.00	_		0 4 (0 10)	00.050 07.000	1997	1" Ice	0.689	0.000
Aero MP3-06	С	No	CaAa (Out Of	93.250 - 37.000	1	No Ice	0.434	0.000
			Face)			1/2" lce	0.545	0.000
	_				. 20	1" Ice	0.657	0.000
Aero MP3-04	С	No	CaAa (Out Of	98.250 - 93.250	4	No Ice	0.269	0.000
			Face)			1/2" Ice	0.380	0.000
	_				09211	1" Ice	0.491	0.000
Aero MP3-03	С	No	CaAa (Out Of	132.500 - 112.500	1	No Ice	0.262	0.000
			Face)			1/2" Ice	0.374	0.000
						1" Ice	0.485	0.000
Aero MP3-03	С	No	CaAa (Out Of	154.500 - 149.500	1	No Ice	0.262	0.000
			Face)			1/2" Ice	0.374	0.000
						1" Ice	0.485	0.000

Feed Line/Linear Appurtenances Section Areas

Tower Sectio	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft		ft ²	ft^2	ft ²	ft ²	K
L1	185.000-180.000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	0.990	0.086
L2	180.000-153.000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	5.941	0.731
L3	153.000-151.833	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	0.851	0.040
L4	151.833-151.000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	0.608	0.028
L5	151.000-130.000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	10.857	0.712
L6	130.000-120.667	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	7.018	0.316

Tower Sectio	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft		ft ²	ft ²	ft ²	ft ²	K
L7	120.667-115.000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	4.580	0.192
L8	115.000-114,000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	0.808	0.034
L9	114,000-95,000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	11.638	0.644
L10	95.000-91.000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	3.631	0.136
L11	91.000-90.000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	0.980	0.034
L12	90.000-61.500	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	18.602	0.966
L13	61.500-58.000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	2.213	0.119
L14	58.000-40.000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	14.968	0.610
L15	40.000-33.000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	5.005	0.237
L16	33.000-28.000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	3.323	0.170
L17	28.000-0.000	Α	0.000	0.000	0.000	0.000	0.000
		B C	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	18.611	0.949

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	
n	ft	Leg	in	ft ²	ft²	ft ²	ft ²	K
L1	185.000-180.000	Α	0.750	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	1.740	0.163
L2	180.000-153.000	Α	0.750	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	10.366	1.148
L3	153.000-151.833	Α	0.750	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	1.415	0.058
L4	151.833-151.000	Α	0.750	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	1.011	0.041
L5	151.000-130.000	Α	0.750	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	18.174	1.037
L6	130.000-120.667	Α	0.750	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	11.566	0.461
L7	120.667-115.000	Α	0.750	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	7.398	0.280
L8	115.000-114.000	Α	0.750	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	1.305	0.049
L9	114.000-95.000	Α	0.750	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	18.710	0.938

Tower	Tower	Face	Ice	A _R	A_F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	
n	ft	Leg	in	ft ²	ft ²	ft ²	ft ²	K
L10	95.000-91.000	Α	0.750	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	5.620	0.197
L11	91.000-90.000	Α	0.750	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	1.477	0.049
L12	90.000-61.500	Α	0.750	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	27.929	1.407
L13	61.500-58.000	Α	0.750	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	3.322	0.173
L14	58.000-40.000	Α	0.750	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	22.890	0.889
L15	40.000-33.000	Α	0.750	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0,000	0.000	0.000
		С		0.000	0.000	0.000	7.500	0.346
L16	33.000-28.000	Α	0.750	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		C		0.000	0.000	0.000	4.907	0.247
L17	28.000-0.000	Α	0.750	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	27.477	1.382

=	4 I	ina	Can	tor	٥f	Droc	sure
-ee		ıne '	ceni	cer .	OT .	Pres	SUITE

Section	Elevation	CP_X	CPz	CP _X	CPz
				lce	Ice
	ft	in	in	in	in
L1	185.000-180.000	-0.2272	0.1312	-0.3437	0.1984
L2	180.000-153.000	-0.2605	0.1504	-0.3988	0.2302
L3	153.000-151.833	-0.7156	0.4132	-0.9880	0.5704
L4	151.833-151.000	-0.7177	0.4144	-0.9924	0.5730
L5	151.000-130.000	-0.5605	0.3236	-0.8136	0.4697
L6	130.000-120.667	-0.7785	0.4494	-1.1000	0.6351
L7	120.667-115.000	-0.8354	0.4823	-1.1659	0.6731
L8	115.000-114.000	-0.8402	0.4851	-1.1762	0.6791
L9	114.000-95.000	-0.6790	0.3920	-0.9740	0.5623
L10	95.000-91.000	-0.9506	0.5488	-1.2978	0.7493
L11	91.000-90.000	-1.0139	0.5853	-1.3532	0.7813
L12	90,000-61.500	-0.7326	0.4230	-1.0067	0.5812
L13	61.500-58.000	-0.7234	0.4177	-1.0022	0.5786
L14	58.000-40.000	-0.9267	0.5351	-1.2908	0.7452
L15	40.000-33.000	-0.8163	0.4713	-1.1315	0.6533
L16	33.000-28.000	-0.7688	0.4438	-1.0579	0.6108
L17	28.000-0.000	-0.7748	0.4473	-1.0708	0.6182

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustmen	Placement		C _A A _A Front	C _A A _A Side	Weigh
	Leg	, , , , ,	Lateral Vert ft ft ft	t °	ft		ft ²	ft ²	κ

(3) AIR 21 w/ Mount Pipe	Α	From Leg	4.000 0.000 0.000	0.000	185.000	No Ice 1/2" Ice	6.738 7.246 7.753	5.668 6.491 7.261	0.111 0.168 0.231

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	((0)	ft		ft²	ft ²	К
(3) AIR 21 w/ Mount Pipe	В	From Leg	4.000 0.000 0.000	0.000	185.000	1" Ice No Ice 1/2" Ice	6.738 7.246 7.753	5.668 6.491 7.261	0.111 0.168 0.231
(3) AIR 21 w/ Mount Pipe	С	From Leg	4.000 0,000 0.000	0.000	185.000	1" Ice No Ice 1/2" Ice	6.738 7.246 7.753	5.668 6.491 7.261	0.111 0.168 0.231
AIR 33 w/ Mount Pipe	Α	From Leg	4.000 0.000 0.000	0.000	185.000	1" Ice No Ice 1/2" Ice	6.458 6.934 7.416	5.742 6.489 7.229	0.127 0.183 0.245
AIR 33 w/ Mount Pipe	В	From Leg	4.000 0.000 0.000	0.000	185.000	1" Ice No Ice 1/2" Ice	6.458 6.934 7.416	5.742 6.489 7.229	0.127 0.183 0.245
AIR 33 w/ Mount Pipe	С	From Leg	4.000 0.000 0.000	0.000	185.000	1" Ice No Ice 1/2" Ice 1" Ice	6.458 6.934 7.416	5.742 6.489 7.229	0.127 0.183 0.245
ETW190VS12UB	Α	From Leg	4.000 0.000 0.000	0.000	185.000	No Ice 1/2" Ice 1" Ice	0.664 0.778 0.901	0.367 0.461 0.564	0.015 0.020 0.026
ETW190VS12UB	В	From Leg	4.000 0.000 0.000	0.000	185.000	No Ice 1/2" Ice 1" Ice	0.664 0.778 0.901	0.367 0.461 0.564	0.015 0.020 0.026
ETW190VS12UB	С	From Leg	4.000 0.000 0.000	0.000	185.000	No Ice 1/2" Ice 1" Ice	0.664 0.778 0.901	0.367 0.461 0.564	0.015 0.020 0.026
DC6-48-60-18-8F	Α	From Leg	4.000 0.000 0.000	0.000	185.000	No Ice 1/2" Ice 1" Ice	2.567 2.798 3.038	2.567 2.798 3.038	0.019 0.041 0.067
Sector Mount [SM 802-3]	С	None		0.000	185.000	No Ice 1/2" Ice 1" Ice	24.410 31.390 38.370	24.410 31.390 38.370	0.930 1.362 1.794
(2) 7770.00 w/ Mount Pipe	Α	From Leg	4.000 0.000 0.000	10.000	175.000	No Ice 1/2" Ice 1" Ice	6.119 6.626 7.128	4.254 5.014 5.711	0.055 0.103 0.157
(2) 7770.00 w/ Mount Pipe	В	From Leg	4.000 0.000 0.000	10.000	175.000	No Ice 1/2" Ice 1" Ice	6.119 6.626 7.128	4.254 5.014 5.711	0.055 0.103 0.157
(2) 7770.00 w/ Mount Pipe	С	From Leg	4.000 0.000 0.000	10.000	175.000	No Ice 1/2" Ice 1" Ice	6.119 6.626 7.128	4.254 5.014 5.711	0.055 0.103 0.157
AM-X-CD-16-65-00T-RET w/ Mount Pipe	Α	From Leg	4.000 0.000 0.000	23.000	175.000	No Ice 1/2" Ice 1" Ice	8.498 9.149 9.767	6.304 7.479 8.368	0.074 0.139 0.212
AM-X-CD-16-65-00T-RET w/ Mount Pipe	В	From Leg	4.000 0.000 0.000	22.000	175.000	No Ice 1/2" Ice 1" Ice	8.498 9.149 9.767	6.304 7.479 8.368	0.074 0.139 0.212
AM-X-CD-16-65-00T-RET w/ Mount Pipe	С	From Leg	4.000 0.000 0.000	14.000	175.000	No Ice 1/2" Ice	8.498 9.149 9.767	6.304 7.479 8.368	0.074 0.139 0.212

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C_AA_A Front	C _A A _A Side	Weight
			Vert ft ft	100	ft		ft²	ft ²	κ
			ft						
(2) DDUC 11	٨	Erom Log	4.000	23.000	175.000	1" Ice	3.249	4 272	0.040
(2) RRUS-11	Α	From Leg	0.000	23.000	175.000	No Ice 1/2"	3.491	1.373 1.551	0.048 0.068
			0.000			Ice 1" Ice	3.741	1.738	0.092
(2) RRUS-11	В	From Leg	4.000	22.000	175.000	No Ice	3.249	1.373	0.048
		-	0.000 0.000			1/2" : Ice	3.491 3.741	1.551 1.738	0.068 0.092
(0) PPUS 44	0		4.000	44,000	475.000	1" Ice	2.240	4 272	0.040
(2) RRUS-11	С	From Leg	4.000 0.000	14.000	175.000	No Ice 1/2"	3.249 3.491	1.373 1.551	0.048 0.068
			0.000			Ice 1" Ice	3.741	1.738	0.092
(2) LGP13519	Α	From Leg	4.000	23.000	175.000	No Ice	0.338	0.207	0.005
. ,			0.000			1/2"	0.422	0.280	0.008
			0.000			Ice 1" Ice	0.515	0.362	0.012
(2) LGP13519	В	From Leg	4.000	22.000	175.000	No Ice	0.338	0.207	0.005
			0.000			1/2" Ice 1" Ice	0.422 0.515	0.280 0.362	0.008 0.012
(2) LGP13519	С	From Leg	4.000	14.000	175.000	No Ice	0.338	0.207	0.005
(-,			0.000			1/2"	0.422	0.280	0.008
			0.000			Ice 1" Ice	0.515	0.362	0.012
(2) DTMABP7819VG12A	Α	From Leg	4.000	23.000	175.000	No Ice	1,139	0.391	0.019
			0.000			1/2" Ice 1" Ice	1.284 1.437	0.488 0.595	0.026 0.036
(2) DTMABP7819VG12A	В	From Leg	4.000	22.000	175.000	No Ice	1.139	0.391	0.019
(-,			0.000 0.000			1/2" Ice	1.284 1.437	0.488 0.595	0.026 0.036
(2) DTMARD7040\/C42A	_	F 1	4.000	14.000	175.000	1" Ice	4 420	0.204	0.040
(2) DTMABP7819VG12A	С	From Leg	4.000 0.000	14.000	175.000	No Ice 1/2"	1.139 1.284	0.391 0.488	0.019 0.026
			0.000			Ice 1" Ice	1.437	0.595	0.036
DC6-48-60-18-8F	В	From Leg	4.000	22.000	175.000	No Ice	2.567	2.567	0.019
			0.000 0.000			1/2" Ice 1" Ice	2.798 3.038	2.798 3.038	0.041 0.067
Sector Mount [SM 802-3]	С	None		0.000	175.000	No Ice	24.410	24.410	0.930
Scotor Mount (SW 552 5)	Ü	740110		0.000	170.000	1/2" lce	31.390 38.370	31.390 38.370	1.362 1.794
****						1" Ice			
		F 1	4.000	20.000	405.000	No. Inc.	E 070	4.000	0.040
742 213 w/ Mount Pipe	Α	From Leg	4.000 0.000	30.000	165.000	No Ice 1/2"	5.373	4.620 6.000	0.049
			0.000			Ice 1" Ice	5.950 6.501	6.982	0.094 0.146
742 213 w/ Mount Pipe	В	From Leg	4.000	30.000	165.000	No Ice	5.373	4.620	0.049
			0.000 0.000			1/2" Ice	5.950 6.501	6.000 6.982	0.094 0.146
7/10 012 mil Manust Disc	_	Erom I	4.000	30,000	165 000	1" Ice	E 272	4.600	0.040
742 213 w/ Mount Pipe	С	From Leg	4.000 0.000	30.000	165.000	No Ice 1/2"	5.373 5.950	4.620 6.000	0.049 0.094
			0.000			Ice 1" Ice	6.501	6.982	0.146
Pipe Mount [PM 601-3]	С	None		0.000	165.000	No Ice	4.390	4.390	0.195
						1/2" Ice	5.480 6.570	5.480 6.570	0.237 0.280
***						1" Ice			
2) BXA-70063-6CF-EDIN-	Α	From Leg	4.000	0.000	155.000	No Ice	7.969	5.801	0.042
2 w/ Mount Pipe	^	-roll Leg	0.000	0.000	100.000	1/2"	8.609	6.953	0.042

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	٥	ft		ft²	ft²	К
			0.000			Ice 1" Ice	9.216	7.819	0.171
(2) BXA-70063-6CF-EDIN-	В	From Leg	4.000	0.000	155.000	No Ice	7.969	5.801	0.042
2 w/ Mount Pipe	_		0.000			1/2"	8.609	6.953	0.103
·			0.000			Ice 1" Ice	9.216	7.819	0.171
(2) BXA-70063-6CF-EDIN-	С	From Leg	4.000	0.000	155.000	No Ice	7.969	5.801	0.042
2 w/ Mount Pipe		_	0.000			1/2"	8.609	6.953	0.103
			0.000			Ice 1" Ice	9.216	7.819	0.171
(2) BXA-171063-12CF-	Α	From Leg	4.000	0.000	155.000	No Ice	5.029	5.289	0.041
EDIN-2 w/ Mount Pipe		_	0.000			1/2"	5.583	6.459	0.087
		~	0.000			lce 1" lce	6.103	7.348	0.140
(2) BXA-171063-12CF-	В	From Leg	4.000	0.000	155.000	No Ice	5.029	5.289	0.041
EDIN-2 w/ Mount Pipe			0.000			1/2"	5.583	6.459	0.087
			0.000			Ice	6.103	7.348	0.140
(2) BXA-171063-12CF-	С	From Leg	4.000	0.000	155.000	1" Ice No Ice	5.029	5.289	0.041
EDIN-2 w/ Mount Pipe	C	1 Tom Leg	0.000	0.000	155.000	1/2"	5.583	6.459	0.041
EBITE W MOUNT IPO			0.000			Ice	6.103	7.348	0.140
						1" Ice			
RRH2X40-AWS	Α	From Leg	4.000	0.000	155.000	No Ice	2.603	2.023	0.042
			0.000 0.000			1/2" Ice	2.840 3.085	2.244 2.474	0.062 0.084
			0.000			1" Ice	0.000	2.474	0.004
RRH2X40-AWS	В	From Leg	4.000	0.000	155.000	No Ice	2.603	2.023	0.042
			0.000			1/2"	2.840	2.244	0.062
			0.000			lce 1" lce	3.085	2.474	0.084
RRH2X40-AWS	С	From Leg	4.000	0.000	155.000	No Ice	2.603	2.023	0.042
			0.000			1/2"	2.840	2.244	0.062
			0.000			lce 1" lce	3.085	2.474	0.084
RRH2X40-07-U	Α	From Leg	4.000	0.000	155.000	No Ice	2.246	1.228	0.050
			0.000			1/2"	2.447	1.385	0.067
			0.000			lce 1" lce	2.657	1.551	0.086
RRH2X40-07-U	В	From Leg	4.000	0.000	155.000	No Ice	2.246	1.228	0.050
			0.000	0.000		1/2"	2.447	1.385	0.067
			0.000			lce 1" lce	2.657	1.551	0.086
RRH2X40-07-U	С	From Leg	4.000	0.000	155.000	No Ice	2.246	1.228	0.050
			0.000			1/2"	2.447	1.385	0.067
			0.000			lce 1" lce	2.657	1.551	0.086
DB-T1-6Z-8AB-0Z	С	From Leg	4.000	0.000	155.000	No Ice	5.600	2.333	0.044
			0.000			1/2"	5.915	2.558	0.080
			0.000	21		lce 1" lce	6.240	2.791	0.120
Platform Mount [LP 301-1]	С	None		0.000	155.000	No Ice	30.100	30.100	1.589
						1/2"	40.800	40.800	2.029
						lce 1" lce	51.500	51.500	2.470
***						1 100			

Dishes

Description	Face	Dish	Offset	Offsets:	Azimuth	3 dB	Elevation	Outside		Aperture	Weight
	or Leg	Туре	Туре	Horz Lateral Vert	Adjustment	Beam Width		Diameter		Area	
				ft	0	0	ft	ft		ft ²	K
HP2-102	Α	Paraboloid	From	1.000	0.000		185.000	2.000	No Ice	3.140	0.025
		w/Shroud (HP)	Leg	0.000					1/2" Ice	3.410	0.040
				0.000					1" Ice	3.680	0.060

Tower Pressures - No Ice

 $G_H = 1.690$

Section	Z	Kz	q_z	A _G	F	AF	A _R	A _{leg}	Leg	C_AA_A	$C_A A_A$
Elevation	_	11/2	Yz	ΛG	a	\ \tag{F}	74	∩leg	%	In	Out
Lievation					C				/0	Face	Face
ft	ft		ksf	ft ²	e	ft ²	ft ²	ft ²		ft ²	ft ²
L1 185.000-	182.500	1.63	0.030	7.500	Ă	0.000	7.500	7.500	100.00	0.000	0.000
180.000	102.000	1.00	0.000	1.000	В	0.000	7,500	7.000	100.00	0.000	0.000
					c	0.000	7.500		100.00	0.000	0.990
L2 180.000-	165.615	1.586	0.029	50.410	Ă	0.000	50.410	50.410	100.00	0.000	0.000
153.000	100.010		0.020	001110	В	0.000	50.410	000	100.00	0.000	0.000
100,000					Īċ	0.000	50.410		100.00	0.000	5.941
L3 153.000-	152.415	1.548	0.029	2.625	Ã	0.000	2.625	2.625	100.00	0.000	0.000
151.833					В	0.000	2.625		100.00	0.000	0.000
1011000		U I			Īč	0.000	2.625		100.00	0.000	0.851
L4 151.833-	151.416	1.545	0.029	1.898	Ā	0.000	1.898	1.898	100.00	0.000	0.000
151.000					В	0.000	1.898		100.00	0.000	0.000
					Ιċ	0.000	1.898	ľ	100.00	0.000	0.608
L5 151.000-	140.112	1.512	0.028	54.052	À	0.000	54.052	54.052	100.00	0.000	0.000
130.000					В	0.000	54.052		100.00	0.000	0.000
					C	0.000	54.052		100.00	0.000	10.857
L6 130.000-	125.263	1.464	0.027	27.410	A	0.000	27,410	27.410	100.00	0.000	0.000
120.667		0	0.00		В	0.000	27.410		100.00	0.000	0.000
		ľ			С	0.000	27.410		100.00	0.000	7.018
L7 120.667-	117.810	1.438	0.027	17.834	Α	0.000	17.834	17.834	100.00	0.000	0.000
115.000					В	0.000	17.834		100.00	0.000	0.000
		1			C	0.000	17.834		100.00	0.000	4.580
L8 115.000-	114.499	1.427	0.026	3.237	Α	0.000	3.237	3.237	100.00	0.000	0.000
114.000					В	0.000	3.237		100.00	0.000	0.000
					С	0.000	3.237	0	100.00	0.000	0.808
L9 114.000-	104.268	1.389	0.026	66.658	Α	0.000	66.658	66.658	100.00	0.000	0.000
95.000					В	0.000	66.658		100.00	0.000	0.000
					C	0.000	66.658		100.00	0.000	11.638
L10 95.000-	92.990	1.344	0.025	15.040	Α	0.000	15.040	15.040	100.00	0.000	0.000
91.000					В	0.000	15.040		100.00	0.000	0.000
					C	0.000	15.040		100.00	0.000	3.631
L11 91.000-	90.499	1.334	0.025	3.831	Α.	0.000	3.831	3.831	100.00	0.000	0.000
90.000					В	0.000	3.831		100.00	0.000	0.000
					C	0.000	3.831		100.00	0.000	0.980
L12 90.000-	75.315	1.266	0.023	120.63	A	0.000	120.632	120.632	100.00	0.000	0.000
61.500				2	В	0.000	120.632		100.00	0.000	0.000
	50 -44			40.000	Ç	0.000	120.632	40.000	100.00	0.000	18.602
L13 61.500-	59.744	1.185	0.022	16.338	Ä	0.000	16.338	16.338	100.00	0.000	0.000
58.000					В	0.000	16.338		100.00	0.000	0.000
1 144 50 000	40.074	1 110	اممما	00 707	Č	0.000	16.338	00 707	100.00	0.000	2.213
L14 58.000-	48.871	1.119	0.021	88.707	A B	0.000	88.707	88.707	100.00	0.000	0.000 0.000
40.000					C	0.000	88.707 88.707		100.00	0.000	14.968
L15 40.000-	36.479	1.029	0.019	36.647	Ä	0.000	36.647	36.647	100.00 100.00	0.000 0.000	0.000
33.000	30.479	1.029	0.019	30.047	B	0.000	36.647	30.047	100.00	0.000	0.000
33.000					C	0.000	36.647		100.00	0.000	5.005
L16 33.000-	30.490	1	0.018	26.987	Ä	0.000	26.987	26.987	100.00	0.000	0.000
28.000	30.430	'	0.010	20.507	lв	0.000	26.987	20.507	100.00	0.000	0.000
20.000					C	0.000	26.987		100.00	0.000	3.323
L17 28.000-	13.724	1	0.018	162.62	Ă	0.000	162.625	162.625	100.00	0.000	0.000
0.000	10.724	, i	0.010	5	lв	0.000	162.625	102.020	100.00	0.000	0.000
0.550				ا	lő	0.000	162.625		100.00	0.000	18.611
					0	0.000	102.020		100.00	0.000	10.011

Tower Pressure - With Ice

 $G_H = 1.690$

Section	z	Kz	q_z	tz	A_G	F	A_F	AR	Aleg	Leg	$C_A A_A$	$C_A A_A$
Elevation	~	1.72	92		, 10	a	7.7	, ,,	, neg	%	In	Out
						С				, ,	Face	Face
ft	ft		ksf	in	ft ²	е	ft ²	ft ²	ft ²		ft ²	ft ²
L1 185.000-	182.500	1.63	0.006	0.7500	8.125	Α	0.000	8.125	8.125	100.00	0.000	0.000
180.000			1,12			В	0.000	8.125	1	100.00		0.000
						С	0.000	8.125		100.00	0.000	1.740
L2 180.000-	165.615	1.586	0.006	0.7500	53.785	Α	0.000	53.785	53.785	100.00		0.000
153.000						В	0.000	53.785		100.00	0.000	0.000
						С	0.000	53.785		100.00	0.000	10.366
L3 153.000-	152.415	1.548	0.006	0.7500	2.771	Α	0.000	2.771	2.771	100.00		0.000
151.833						В	0.000	2.771		100.00	0.000	0.000
						C	0.000	2.771		100.00	0.000	1.415
L4 151.833-	151,416	1.545	0.006	0.7500	2.002	Α	0.000	2.002	2.002	100.00	0.000	0.000
151.000						В	0.000	2.002		100.00	0.000	0.000
1						C	0.000	2.002		100.00	0.000	1.011
L5 151.000-	140.112	1.512	0.005	0.7500	56,677	Α	0.000	56.677	56.677	100.00	0.000	0.000
130.000						В	0.000	56.677		100.00	0.000	0.000
						C	0.000	56.677		100.00	0.000	18.174
L6 130.000-	125.263	1.464	0.005	0.7500	28.576		0.000	28.576	28.576	100.00	0.000	0.000
120.667						В	0.000	28.576		100.00	0.000	0.000
17.400.007	447.040		0.005	0.7500	40.540	Ç	0.000	28.576		100.00	0.000	11.566
L7 120.667-	117.810	1.438	0.005	0.7500	18.542	A	0.000	18.542	18.542	100.00	0.000	0.000
115.000						В	0.000	18.542		100.00	0.000	0.000
1	444400	4 407		0.7500	0.000	Ċ	0.000	18.542	0.000	100.00	0.000	7.398
L8 115.000-	114.499	1.427	0.005	0.7500	3.362	A	0.000	3.362	3.362	100.00	0.000	0.000
114.000						В	0.000	3.362		100.00	0.000	0.000
10444000	404000	4 000	0.005	0.7500	00.000	C	0.000	3.362		100.00	0.000	1.305
L9 114.000-	104.268	1.389	0.005	0.7500	69.033		0.000	69.033	69.033	100.00	0.000	0.000
95.000						В	0.000	69.033		100.00	0.000	0.000
140.05.000	00.000	4 244	0.005	0.7500	45.540	C	0.000	69.033	45 540	100.00	0.000	18.710
L10 95.000-	92.990	1.344	0.005	0.7500	15.540	A	0.000	15.540	15.540	100.00	0.000	0.000
91.000						B	0.000 0.000	15.540 15.540		100.00	0.000	0.000 5.620
L11 91.000-	90.499	1.334	0.005	0.7500	3.956		0.000	3.956	3.956	100.00	0.000	
90,000	90.499	1.554	0.005	0.7500	3.900	B	0.000	3.956	3,936	100.00 100.00	0.000	0.000 0.000
90.000						C	0.000	3.956		100.00	0.000	1.477
L12 90.000-	75.315	1.266	0.005	0.7500	124.195		0.000	124.195	124.195	100.00	0.000	0.000
61.500	7 3.3 13	1.200	0.003	0.7500	127.190	B	0.000	124.195	124.133	100.00	0.000	0.000
01.550						C	0.000	124.195		100.00	0.000	27.929
L13 61.500-	59.744	1.185	0.004	0.7500	16.776	Ă	0.000	16.776	16.776	100.00	0.000	0.000
58.000	00.7 44		5.554	0.7000	, , , , , ,	В	0.000	16.776	10.770	100.00	0.000	0.000
00.500						c	0.000	16.776		100.00	0.000	3.322
L14 58.000-	48.871	1.119	0.004	0.7500	90.957	Ă	0.000	90.957	90.957	100.00	0.000	0.000
40.000		,	5.50 T	5 550	551007	В	0.000	90.957	55,557	100.00	0.000	0.000
1 .5.500						č	0.000	90.957		100.00	0.000	22.890
L15 40.000-	36.479	1.029	0.004	0.7500	37.522	Ă	0.000	37.522	37.522	100.00	0.000	0.000
33.000	230					В	0.000	37.522	5.1022	100.00	0.000	0.000
1						c	0.000	37.522		100.00	0.000	7.500
L16 33.000-	30.490	1	0.004	0.7500	27.612		0.000	27.612	27.612	100.00	0.000	0.000
28.000	- 5	i il				В	0.000	27.612		100.00	0.000	0.000
						c	0.000	27.612		100.00		4.907
L17 28.000-	13.724	1	0.004	0.7500	166.125	Ā	0.000	166.125	166.125	100.00		0.000
0.000		i il				В	0.000	166.125		100.00	0.000	0.000
						c	0.000	166.125		100.00		27.477

Tower Pressure - Service

Section	Z	Kz	q _z	A _G	F	A_F	A _R	A _{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation	_	7.2	72	1.0	a	1.7	,,	· nag	%	În	Out
Eloration,					C		1)		,,	Face	Face
ft	ft		ksf	ft ²	e	ft ²	ft²	ft ²		ft ²	ft ²
L1 185.000-	182.500	1.63	0.010	7.500	A	0.000	7.500	7.500	100.00	0.000	0.000
180.000	102.500	1.00	0.010	7.000	В	0.000	7.500	7.000	100.00	0.000	0.000
100.000					c	0.000	7.500		100.00	0.000	0.990
L2 180.000-	165.615	1.586	0.010	50.410	Ă	0.000	50.410	50.410	100.00	0.000	0.000
153.000	105.015	1.500	0.010	30.410	B	0.000	50.410	30.410	100.00	0.000	0.000
155.000					č	0.000	50.410		100.00	0.000	5.941
L3 153.000-	152,415	1.548	0.010	2.625	Ă	0.000	2.625	2.625	100.00	0.000	0.000
151.833	132,413	1,040	0.010	2.020	В	0.000	2.625	2.020	100.00	0.000	0.000
101,000,					č	0.000	2.625		100.00	0.000	0.851
L4 151.833-	151.416	1.545	0.010	1.898	Ă	0.000	1.898	1.898	100.00	0.000	0.000
151.000	131.410	1.040	0.010	1.000	В	0.000	1.898	1.000	100.00	0.000	0.000
101.000					č	0.000	1.898		100.00	0.000	0.608
L5 151.000-	140.112	1.512	0.010	54.052	Ă	0.000	54.052	54.052	100.00	0.000	0.000
130.000	110,112	1.012	0.010	01.002	В	0.000	54.052	0 1.002	100.00	0.000	0.000
100.000					Č	0.000	54.052		100.00	0.000	10.857
L6 130.000-	125.263	1.464	0.009	27,410	Ă	0.000	27.410	27.410	100.00	0.000	0.000
120.667	.20,200		0,000		В	0.000	27,410	2	100.00	0.000	0.000
120.001					c	0.000	27.410		100.00	0.000	7.018
L7 120.667-	117.810	1.438	0.009	17.834	Ā	0.000	17.834	17.834	100.00	0.000	0.000
115.000					В	0.000	17.834		100.00	0.000	0.000
					С	0.000	17.834		100.00	0.000	4.580
L8 115.000-	114.499	1.427	0.009	3.237	A	0.000	3.237	3.237	100.00	0.000	0.000
114.000					В	0.000	3.237		100.00	0.000	0.000
.01					С	0.000	3.237		100.00	0.000	0.808
L9 114.000-	104.268	1.389	0.009	66.658	Α	0.000	66.658	66.658	100.00	0.000	0.000
95.000					В	0.000	66.658		100.00	0.000	0.000
					С	0.000	66.658		100.00	0.000	11,638
L10 95.000-	92.990	1.344	0.009	15.040	Α	0.000	15.040	15.040	100.00	0.000	0.000
91.000					В	0.000	15.040		100.00	0.000	0.000
N 1					C	0.000	15.040		100.00	0.000	3.631
L11 91.000-	90.499	1.334	0.009	3.831	Α	0.000	3.831	3.831	100.00	0.000	0.000
90.000	(I				В	0.000	3.831		100.00	0.000	0.000
					С	0.000	3.831		100.00	0.000	0.980
L12 90.000-	75.315	1.266	0.008	120.63	Α	0.000	120.632	120.632	100.00	0.000	0.000
61.500				2	В	0.000	120.632		100.00	0.000	0.000
I	50 - 11			40.555	Ç	0.000	120.632	46.005	100.00	0.000	18,602
L13 61.500-	59.744	1.185	0.008	16.338	A	0.000	16.338	16.338	100.00	0.000	0.000
58.000					B	0.000	16.338		100.00	0.000	0.000
14450000	40.071	4 4 4 5	0 00-	00 70-	Ç	0.000	16.338	00.303	100.00	0.000	2.213
L14 58.000-	48.871	1.119	0.007	88.707	A	0.000	88.707	88.707	100.00	0.000	0.000
40.000					В	0.000	88.707		100.00	0.000	0.000
1 145 40 000	00.470	4 000	ا ممما	00.04-	Ċ	0.000	88.707	00.047	100.00	0.000	14.968
L15 40.000-	36.479	1.029	0.007	36.647	A	0.000	36.647	36.647	100.00	0.000	0.000
33.000					В	0.000	36.647		100.00	0.000	0.000
146 22 000	20, 400		اممما	20.007	Ç	0.000	36.647	26.007	100.00	0.000	5.005
L16 33.000-	30.490	1	0.006	26.987	A	0.000	26.987	26.987	100.00	0.000	0.000
28.000					В	0.000	26.987	. 0	100.00	0.000	0.000 3.323
1 17 20 000	12 704	1	امموا	162.62	Č	0.000	26.987 162.625	162.625	100.00 100.00	0.000 0.000	0.000
L17 28.000- 0.000	13.724		0.006	162.62	А В	0.000	162.625	102.025	100.00	0.000	0.000
0.000				5	C	0.000	162.625		100.00	0.000	18.611
		_			U	0.000	102,023		100.00	0.000	10.011

Load Combinations

Comb. No.		Description
1	Dead Only	
2	Dead+Wind 0 deg - No Ice	
3	Dead+Wind 30 deg - No Ice	
4	Dead+Wind 60 deg - No Ice	
5	Dead+Wind 90 deg - No Ice	
6	Dead+Wind 120 deg - No Ice	
7	Dead+Wind 150 deg - No Ice	
8	Dead+Wind 180 deg - No Ice	
9	Dead+Wind 210 deg - No Ice	

Comb.		Description
No		
10	Dead+Wind 240 deg - No Ice	
11	Dead+Wind 270 deg - No Ice	
12	Dead+Wind 300 deg - No Ice	
13	Dead+Wind 330 deg - No Ice	
14	Dead+lce+Temp	
15	Dead+Wind 0 deg+lce+Temp	
16	Dead+Wind 30 deg+lce+Temp	
17	Dead+Wind 60 deg+lce+Temp	
18	Dead+Wind 90 deg+lce+Temp	
19	Dead+Wind 120 deg+lce+Temp	
20	Dead+Wind 150 deg+lce+Temp	
21	Dead+Wind 180 deg+lce+Temp	
22	Dead+Wind 210 deg+lce+Temp	
23	Dead+Wind 240 deg+lce+Temp	
24	Dead+Wind 270 deg+lce+Temp	
25	Dead+Wind 300 deg+lce+Temp	
26	Dead+Wind 330 deg+lce+Temp	
27	Dead+Wind 0 deg - Service	
28	Dead+Wind 30 deg - Service	
29	Dead+Wind 60 deg - Service	
30	Dead+Wind 90 deg - Service	
31	Dead+Wind 120 deg - Service	
32	Dead+Wind 150 deg - Service	
33	Dead+Wind 180 deg - Service	
34	Dead+Wind 210 deg - Service	
35	Dead+Wind 240 deg - Service	
36	Dead+Wind 270 deg - Service	
37	Dead+Wind 300 deg - Service	
38	Dead+Wind 330 deg - Service	

Maximum Member Forces

Sectio	Elevation	Component	Condition	Gov.	Force	Major Axis	Minor Axis
n	ft	Type		Load		Moment	Moment
No.				Comb.	K	kip-ft	kip-ft
L1	185 - 180	Pole	Max Tension	14	0.000	-0.000	0.000
			Max. Compression	14	-4.621	0.069	0.307
			Max. Mx	11	-2.149	28.890	0.142
			Max. My	2	-2.141	0.010	29.314
			Max. Vy	11	-6.007	28.890	0.142
			Max. Vx	8	6.110	0.019	-29.264
			Max. Torque	11			-0.838
L2	180 - 153	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	14	-16.581	0.752	-0.348
			Max. Mx	11	-8.255	366.769	-0.929
			Max. My	8	-8.244	1.630	-370.540
			Max. Vy	11	-21.092	366.769	-0.929
			Max. Vx	8	21.152	1.630	-370.540
			Max. Torque	12			-0.930
L3	153 - 151.833	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	14	-16.792	0.777	-0.362
			Max. Mx	11	-8.427	391.479	-1.057
			Max. My	8	-8.416	1.783	-395.317
			Max. Vy	11	-21.267	391.479	-1.057
			Max. Vx	8	21.326	1.783	-395.317
			Max. Torque	5			0.486
L4	151.833 - 151	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	14	-16.984	0.795	-0.372
			Max. Mx	11	-8.587	409.257	-1.148
			Max. My	8	-8.577	1.893	-413.142
			Max. Vy	11	-21.397	409.257	-1.148
			Max. Vx	8	21.456	1.893	-413.142
			Max. Torque	5			0.480
L5	151 - 130	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	14	-20.216	1.156	-0.581

Sectio	Elevation	Component	Condition	Gov.	Force	Major Axis	Minor Axi
n	ft	Type		Load	14	Moment	Moment
No.				Comb.	K	kip-ft	kip-ft
			Max. Mx	11	-11.206	770.155	-2.918
			Max. My	8	-11.198 -23.773	3.997	-774.955
			Max. Vy Max. Vx	11 8	23.832	770.155 3.997	-2.918
			Max. Vx Max. Torque	5	23.032	3.997	-774.955 0.475
L6	130 -	Pole	Max Tension	1	0.000	0.000	0.475
	120.667	. 5.5		•	0.000	0.000	0.000
			Max. Compression	14	-24.460	1.508	-0.785
			Max. Mx	11	-14.812	1128.819	-4.512
			Max. My	8	-14.805	5.894	-1134.43
			Max. Vy	11	-26.283	1128.819	-4.512
			Max. Vx	8 4	26.343	5.894	-1134.43
L7	120.667 -	Pole	Max. Torque Max Tension	1	0.000	0.000	0.409 0.000
Li	115	Fole	Wax Telision	'	0.000	0.000	0.000
			Max. Compression	14	-26.050	1.664	-0.875
			Max. Mx	11	-16.148	1280.685	-5.145
			Max. My	8	-16.141	6.648	-1286.62
			Max. Vy	11	-27.324	1280.685	-5.145
			Max. Vx	8	27.384	6.648	-1286.62
			Max. Torque	3			0.424
L8	115 - 114	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	14	-26.363	1.693	-0.891
			Max. Mx	11	-16.416	1308.103	-5.257
			Max. My	8	-16.409	6.782	-1314.09
			Max. Vy Max. Vx	11 8	-27.512	1308.103	-5.257
			Max. Vx Max. Torque	3	27.572	6.782	-1314.09
L9	114 - 95	Pole	Max Tension	3 1	0.000	0.000	0.432
LJ	114 - 55	role	Max. Compression	14	-30.103	2.092	-1.122
			Max. Mx	11	-19.564	1680.587	-6.716
			Max. My	8	-19.559	8.521	-1687.31
			Max. Vy	11	-29.829	1680.587	-6.716
			Max. Vx	8	29.888	8.521	-1687.31
			Max. Torque	8		0.02	-0.508
L10	95 - 91	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	14	-34.832	2.408	-1.305
			Max. Mx	11	-23.752	1989.059	-7.841
			Max. My	8	-23.747	9.863	-1996.34
			Max. Vy	11	-31.860	1989.059	-7.841
			Max. Vx	8	31.919	9.863	-1996.34
			Max. Torque	8			-0.636
L11	91 - 90	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	14	-35.157	2.441	-1.324
			Max. Mx	11	-24.027	2021.018	-7.954
			Max. My	8	-24.022	9.997	-2028.36
			Max. Vy	11	-32.062	2021.018	-7.954
			Max. Vx	8 8	32.121	9.997	-2028.36 -0.654
L12	90 - 61.5	Pole	Max. Torque Max Tension	1	0.000	0.000	
LIZ	90 - 61.5	rule	Max. Compression	14	-46.261	3.498	0.000 -1.935
			Max. Mx	11	-33.595	3011.509	-11.178
			Max. My	8	-33.591	13.851	-3020.43
			Max. Vy	11	-37.600	3011.509	-11.178
			Max. Vx	8	37.659	13.851	-3020.43
			Max. Torque	8		, , , , ,	-0.998
L13	61.5 - 58	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	14	-47.740	3.641	-2.018
			Max. Mx	11	-34.876	3144.289	-11.575
			Max. My	8	-34.873	14.326	-3153.40
			Max. Vy	11	-38.280	3144.289	-11.575
			Max. Vx	8	38.339	14.326	-3153.40
			Max. Torque	8			-1.040
L14	58 - 40	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	14	-56.326	4.419	-2.468
				4.4	40 070	200E 400	40.040
			Max. Mx	11	-42.373	3865.196	
			Max. My	8	-42.371	16.771	-3875.28
							-13.616 -3875.28 -13.616 -3875.28

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Force K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
			Max. Torque	7			-1.338
L15	40 - 33	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	14	-59.813	4.741	-2.653
			Max. Mx	11	-45.422	4162.775	-14.410
			Max. My	8	-45.420	17.723	-4173.239
			Max. Vy	11	-43.166	4162.775	-14.410
			Max. Vx	8	43.225	17.723	-4173.239
			Max. Torque	7			-1.446
L16	33 - 28	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	14	-62.459	4.977	-2.790
			Max. Mx	11	-47.746	4380.891	-14.977
			Max. My	8	-47.744	18.404	-4391.62
			Max. Vy	11	-44.084	4380.891	-14,977
			Max. Vx	8	44.142	18.404	-4391.622
			Max. Torque	7			-1.518
L17	28 - 0	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	14	-77.905	6.404	-3.615
			Max. Mx	11	-61.294	5689.552	-18.144
			Max. My	8	-61.294	22.212	-5701.75
			Max. Vý	11	-49.475	5689.552	-18.144
			Max. Vx	8	49.532	22.212	-5701.75
			Max. Torque	7			-1.951

Maximum Reactions

Condition Max. Vert Max. H _x	Gov. Load Comb. 14	Vertical K 77.905	Horizontal, X K	Horizontal, 2 K
	Comb. 14			
	14	77 905	0.000	
		77 905	0.000	
Max. H _x		17.500	-0.000	0.000
	11	61.304	49.462	-0.105
Max. H _z	2	61.304	-0.123	49.480
Max. M _x	2	5692.467	-0.123	49.480
Max. M _z	5	5686.268	-49.462	0.140
Max. Torsion	13	1.931	24.605	42.806
Min. Vert	8	61.304	0.123	-49.519
Min. H _x	5	61.304	-49.462	0.140
Min. Hz	8	61.304	0.123	-49.519
Min. M _x	8	-5701.751	0.123	-49.519
Min. Mz	11	-5689.552	49.462	-0.105
Min. Torsion	7	-1.951	-24.615	-42.847
	Max. M _z Max. Torsion Min. Vert Min. H _x Min. H _z Min. M _x Min. M _x	Max. M _z 5 Max. Torsion 13 Min. Vert 8 Min. H _x 5 Min. H _z 8 Min. M _x 8 Min. M _x 11	Max. M _z 5 5686.268 Max. Torsion 13 1.931 Min. Vert 8 61.304 Min. H _z 5 61.304 Min. H _z 8 61.304 Min. M _x 8 -5701.751 Min. M _z 11 -5689.552	Max. Mz 5 5686.268 -49.462 Max. Torsion 13 1.931 24.605 Min. Vert 8 61.304 0,123 Min. Hz 5 61.304 -49.462 Min. Hz 8 61.304 0.123 Min. Mz 8 -5701.751 0.123 Min. Mz 11 -5689.552 49.462

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M ₂	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	61.304	-0.000	0.000	0.888	1.611	0.000
Dead+Wind 0 deg - No Ice	61.304	0.123	-49.480	-5692.467	-18.926	-1.857
Dead+Wind 30 deg - No Ice	61.304	24.818	-42.929	-4943.003	-2856.337	-1.287
Dead+Wind 60 deg - No Ice	61.304	42.885	-24.882	-2870.166	-4932.008	-0.408
Dead+Wind 90 deg - No Ice	61.304	49.462	-0.140	-22.994	-5686.268	0.576
Dead+Wind 120 deg - No Ice	61.304	42.751	24.706	2843.508	-4909.339	1.506
Dead+Wind 150 deg - No Ice	61.304	24.615	42.847	4932.007	-2822.508	1.951
Dead+Wind 180 deg - No Ice	61.304	-0.123	49.519	5701.751	22.212	1.858
Dead+Wind 210 deg - No Ice	61.304	-24.828	42.970	4952.529	2861.397	1.267
Dead+Wind 240 deg - No Ice	61.304	-42.873	24.919	2879,111	4933,146	0.351
Dead+Wind 270 deg - No Ice	61.304	-49.462	0.105	18,144	5689.552	-0.576
Dead+Wind 300 deg - No Ice	61.304	-42.762	-24.669	-2834.562	4914.770	-1.451
Dead+Wind 330 deg - No Ice	61.304	-24.605	-42.806	-4922.480	2824.018	-1.931
Dead+Ice+Temp	77.905	0.000	-0.000	3.615	6.404	0.000
Dead+Wind 0	77.905	0.024	-11.207	-1336.776	2.527	-0.566

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M ₂	Torque
o o mondatori	K	K	K	kip-ft	kip-ft	kip-ft
deg+lce+Temp						
Dead+Wind 30	77.905	5.618	-9.720	-1159.755	-665.620	-0.373
deg+lce+Temp						
Dead+Wind 60	77.905	9.710	-5.632	-671.451	-1154.550	-0.088
deg+lce+Temp						
Dead+Wind 90	77.905	11.203	-0.028	-1.107	-1332.639	0.220
deg+lce+Temp						
Dead+Wind 120	77.905	9.684	5.598	673.425	-1149.980	0.491
deg+lce+Temp						
Dead+Wind 150	77.905	5.578	9.705	1164.856	-658.936	0.613
deg+lce+Temp						
Dead+Wind 180	77.905	-0.024	11.216	1345.912	10.707	0.567
deg+lce+Temp						
Dead+Wind 210	77.905	-5.620	9.729	1168.945	679.254	0.369
deg+lce+Temp						
Dead+Wind 240	77.905	-9.708	5.640	680.508	1167.303	0.070
deg+lce+Temp						
Dead+Wind 270	77.905	-11.203	0.020	7.073	1345.873	-0.22
dea+lce+Temp						*
Dead+Wind 300	77.905	-9.686	-5.590	-664.367	1163.694	-0.47
dea+lce+Temp		0.000	0.000	00001	11001001	0
Dead+Wind 330	77.905	-5.576	-9.696	-1155.666	671.771	-0.60
dea+lce+Temp	77.000	0.010	0.000	1100.000	071.771	0.00
Dead+Wind 0 deg - Service	61.304	0.043	-17.121	-1970.289	-5.477	-0.64
Dead+Wind 30 deg - Service	61.304	8.587	-14.854	-1710.723	-987.813	-0.44
Dead+Wind 60 deg - Service	61.304	14.838	-8.609	-993.087	-1706.428	-0.14
Dead+Wind 90 deg - Service	61.304	17.115	-0.049	-7.370	-1967.651	0.19
Dead+Wind 90 deg - Service Dead+Wind 120 deg -	61.304	14.792	8.549	985.034	-1698.564	0.19
Service	01.304	14.792	0.049	900.034	-1090.004	0.52
Dead+Wind 150 deg -	61.304	8.517	14.825	1708.090	076 004	0.67
•	01.304	0.017	14.023	1700.090	-976.094	0.67
Service	61,304	-0.043	17.135	4074.004	0.700	0.04
Dead+Wind 180 deg -	61.304	-0.043	17.135	1974.694	8.768	0.64
Service	04.004	0.500	44000	4745.044	204 722	
Dead+Wind 210 deg -	61.304	-8.590	14.868	1715.211	991.722	0.44
Service						
Dead+Wind 240 deg -	61.304	-14.834	8.622	997.370	1708.977	0.12
Service						
Dead+Wind 270 deg -	61.304	-17.115	0.036	6.875	1970.942	-0.19
Service						
Dead+Wind 300 deg -	61.304	-14.796	-8.536	-980.751	1702.598	-0.50
Service						
Dead+Wind 330 deg -	61.304	-8.514	-14.811	-1703.602	978.768	-0.66
Service						

Solution Summary

	Sun	n of Applied Force	es :		Sum of Reactio	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.000	-61.304	0.000	0.000	61.304	-0.000	0.000%
2	0.123	-61.304	-49.485	-0.123	61.304	49.480	0.007%
3	24.818	-61.304	-42.929	-24.818	61.304	42.929	0.000%
4	42.885	-61.304	-24.882	-42.885	61.304	24.882	0.000%
5	49.468	-61.304	-0.140	-49.462	61.304	0.140	0.007%
6	42.751	-61.304	24.706	-42.751	61.304	-24.706	0.000%
7	24.615	-61.304	42.847	-24.615	61.304	-42.847	0.000%
8	-0.123	-61.304	49.525	0.123	61.304	-49.519	0.007%
9	-24.828	-61.304	42.970	24.828	61.304	-42.970	0.000%
10	-42.874	-61.304	24.919	42.873	61.304	-24.919	0.000%
11	-49.468	-61.304	0.105	49.462	61.304	-0.105	0.007%
12	-42.762	-61.304	-24.669	42.762	61.304	24.669	0.000%
13	-24.605	-61.304	-42.806	24.605	61.304	42.806	0.000%
14	0.000	-77.905	0.000	-0.000	77.905	0.000	0.000%
15	0.024	-77.905	-11.207	-0.024	77.905	11.207	0.000%
16	5.618	-77.905	-9.720	-5.618	77.905	9.720	0.000%
17	9.710	-77.905	-5.632	-9.710	77.905	5.632	0.000%
16	5.618	-77.905	-9.720	-5.618	77.905	9.720	

	Sun	n of Applied Force	es .		Sum of Reactio	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Erro
Comb.	K	K	K	K	K	K	
18	11.203	-77.905	-0.028	-11.203	77.905	0.028	0.000%
19	9.684	-77.905	5.598	-9.684	77.905	-5.598	0.000%
20	5.578	-77.905	9.705	-5.578	77.905	-9.705	0.000%
21	-0.024	-77.905	11.216	0.024	77.905	-11.216	0.000%
22	-5.620	-77.905	9.729	5.620	77.905	-9.729	0.000%
23	-9.708	-77.905	5.640	9.708	77.905	-5.640	0.000%
24	-11.203	-77.905	0.020	11.203	77.905	-0.020	0.0009
25	-9.686	-77.905	-5.590	9.686	77.905	5.590	0.000%
26	- 5.576	-77.905	-9.696	5.576	77.905	9.696	0.000%
27	0.043	-61.304	-17.123	-0.043	61.304	17.121	0.003%
28	8.588	-61.304	-14.854	-8.587	61.304	14.854	0.001%
29	14.839	-61.304	-8.610	-14.838	61.304	8.609	0.0019
30	17.117	-61.304	-0.049	-17.115	61.304	0.049	0.003%
31	14.793	-61.304	8.549	-14.792	61.304	-8.549	0.0019
32	8.517	-61.304	14.826	-8.517	61.304	-14.825	0.0019
33	-0.043	-61.304	17.137	0.043	61.304	-17.135	0.003%
34	-8.591	-61.304	14.869	8.590	61.304	-14.868	0.001%
35	-14.835	-61.304	8.623	14.834	61.304	-8.622	0.001%
36	-17.117	-61.304	0.036	17.115	61.304	-0.036	0.003%
37	- 14.797	-61.304	-8.536	14.796	61.304	8.536	0.001%
38	-8,514	-61.304	-14.812	8,514	61.304	14.811	0.001%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	6	0.00000001	0.00000001
2	Yes	13	0.00008729	0.00009331
3	Yes	17	0.0000001	0.00012425
4	Yes	17	0.00000001	0.00012633
5	Yes	13	0.00008731	0.00009756
6	Yes	17	0.00000001	0.00012376
7	Yes	17	0.0000001	0.00012205
8	Yes	13	0.00008728	0.00013013
9	Yes	17	0.0000001	0.00012721
10	Yes	17	0.00000001	0.00012555
11	Yes	13	0.00008730	0.00008694
12	Yes	17	0.00000001	0.00012245
13	Yes	17	0.00000001	0.00012375
14	Yes	6	0.00000001	0.00001947
15	Yes	16	0.00000001	0.00007452
16	Yes	16	0.00000001	0.00007922
17	Yes	16	0.00000001	0.00007920
18	Yes	16	0.00000001	0.00007419
19	Yes	16	0.00000001	0.00007899
20	Yes	16	0.00000001	0.00007920
21	Yes	16	0.00000001	0.00007506
22	Yes	16	0.00000001	0.00008040
23	Yes	16	0.00000001	0.00008026
24	Yes	16	0.00000001	0.00007497
25	Yes	16	0.00000001	0.00007934
26	Yes	16	0.00000001	0.00007929
27	Yes	13	0.00009074	0.00004029
28	Yes	14	0.00000001	0.00008362
29	Yes	14	0.00000001	0.00008779
30	Yes	13	0.00009072	0.00003926
31	Yes	14	0.00000001	0.00008554
32	Yes	14	0.0000001	0.00008203
33	Yes	13	0.00009074	0.00004136
34	Yes	14	0.00000001	0.00008946
35	Yes	14	0.0000001	0.00008553
36	Yes	13	0.00009072	0.00003914
37	Yes	14	0.00000001	0.00008318
38	Yes	14	0.0000001	0.00008644

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz,	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.		
L1	185 - 180	30.130	34	1.777	0.004
L2	180 - 153	28.275	34	1.761	0.003
L3	153 - 151.833	19.164	34	1.398	0.001
L4	151.833 - 151	18.824	34	1.383	0.001
L5	151 - 130	18.584	34	1.375	0.001
L6	135 - 120.667	14.351	34	1.148	0.000
L7	120.667 - 115	11.110	34	0.992	0.000
L8	115 - 114	9.972	34	0.925	0.000
L9	114 - 95	9.780	34	0.915	0.000
L10	101 - 91	7.503	34	0.759	0.000
L11	91 - 90	5.978	34	0.687	0.000
L12	90 - 61.5	5.835	34	0.676	0.000
L13	61.5 - 58	2.586	34	0.420	0.000
L14	58 - 40	2.288	34	0.391	0.000
L15	40 - 33	1.063	34	0.260	0.000
L16	33 - 28	0.718	34	0.211	0.000
L17	28 - 0	0.514	34	0.178	0.000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
ft		Load Comb.	in		(6)	Curvature ft
185.000	HP2-102	34	30.130	1.777	0.004	9785
175.000	(2) 7770.00 w/ Mount Pipe	34	26.451	1.722	0.002	6337
165.000	742 213 w/ Mount Pipe	34	22.957	1.588	0.001	4058
155.000	(2) BXA-70063-6CF-EDIN-2 w/	34	19.759	1.428	0.001	3180
	Mount Pipe					

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	•	o
L1	185 - 180	86.824	9	5.125	0.012
L2	180 - 153	81.486	9	5.078	0.008
L3	153 - 151.833	55.259	9	4.031	0.002
L4	151.833 - 151	54.281	9	3.987	0.002
L5	151 - 130	53.588	999999999999999	3.964	0.002
L6	135 - 120.667	41.393	9	3.312	0.001
L7	120.667 - 115	32.050	9	2.861	0.001
L8	115 - 114	28.771	9	2.669	0.001
L9	114 - 95	28.215	9	2.640	0.001
L10	101 - 91	21.650	9	2.190	0.001
L11	91 - 90	17.250	9	1.982	0.001
L12	90 - 61.5	16.839	9	1.950	0.001
L13	61.5 - 58	7.463	9	1.212	0.001
L14	58 - 40	6.605	9	1.128	0.000
L15	40 - 33	3.069	9	0.751	0.000
L16	33 - 28	2.072	9	0.609	0.000
L17	28 - 0	1.484	9	0.514	0.000

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in		•	ft
185.000	HP2-102	9	86.824	5.125	0.012	3461
175.000	(2) 7770.00 w/ Mount Pipe	9	76.235	4.965	0.006	2232
165.000	742 213 w/ Mount Pipe	9	66.179	4.578	0.003	1424
155.000	(2) BXA-70063-6CF-EDIN-2 w/	9	56.971	4.117	0.002	1116
	Mount Pipe					

Compression Checks

Pole Design Data

Section	Elevation	Size	L	Lu	KI/r	Fa	Α	Actual	Allow.	Ratio
No.								P	P_a	P
	ft		ft	ft		ksi	in ²	K	K	P _a
L1	185 - 180 (1)	TP18x18x0.1875	5.000	0.000	0.0	25.200	10.7543	-2.141	271.008	0.008
L2	180 - 153 (2)	TP26.8088x18x0.25	27.000	0.000	0.0	25.200	21.3798	-8.232	538.771	0.015
L3	153 - 151.833 (3)	TP27.1894x26.8088x0.362 5	1.167	0.000	0.0	25.200	31.3111	-8.404	789.041	0.011
L4	151,833 - 151 (4)	TP27.4613x27.1894x0.524	0.833	0.000	0.0	25.182	45.5000	-8.564	1145.780	0.007
L5	151 - 130 (5)	TP34.3125x27.4613x0.380	21.000	0.000	0.0	25.200	39.5403	-11.187	996.414	0.011
L6	130 - 120.667 (6)	TP36.844x31.9209x0.4447	14.333	0.000	0.0	25.200	52.1180	-14.795	1313.370	0.011
L7	120.667 - 115 (7)	TP38.6875x36.844x0.4776	5.667	0.000	0.0	24,690	58.7656	-16.132	1450.920	0.011
L8	115 - 114 (8)	TP39.0125x38.6875x0.540	1.000	0.000	0.0	25.200	66.9216	-16.400	1686.430	0.010
L9	114 - 95 (9)	TP45.1875x39.0125x0.446	19.000	0.000	0.0	25.200	61.5001	-19.551	1549.800	0.013
L10	95 - 91 (10)	TP45.8125x42.3448x0.529	10.000	0.000	0.0	25.200	77.1854	-23.739	1945.070	0.012
L11	91 - 90 (11)	TP46.1391x45.8125x0.465	1.000	0.000	0.0	25.200	68.3863	-24.015	1723,340	0.014
L12	90 - 61.5 (12)	TP55.4461x46.1391x0,529	28.500	0.000	0.0	25.200	93.6935	-33.586	2361.080	0.014
L13	61.5 - 58 (13)	TP56.5891x55.4461x0.526	3.500	0.000	0.0	24.996	95.0159	-34.868	2375.020	0.015
L14	58 - 40 (14)	TP61.6875x56.5891x0.578	18.000	0.000	0.0	23.898	113.890 0	-42.368	2721.750	0.016
L15	40 - 33 (15)	TP63.9583x61.6875x0.570	7.000	0.000	0.0	25.200	116.414	-45.418	2933.630	0.015
L16	33 - 28 (16)	TP65.5804x63.9583x0.595	5.000	0.000	0.0	24.390	124.508 0	-47.742	3036.740	0.016
L17	28 - 0 (17)	TP73.8125x65.5804x0.575	28.000	0.000	0.0	22.950	135.786 0	-61.294	3116.300	0.020

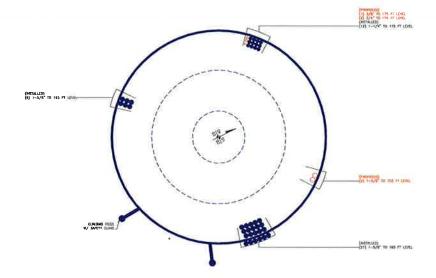
Pole Bending Design Data

Section No.	Elevation ft	Size	Actual M _x kip-ft	Actual f _{bx} ksi	Allow. F _{bx} ksi	Ratio f _{bx}	Actual M _y kip-ft	Actual f _{by} ksi	Allow. F _{by} ksi	Ratio f _{by} F _{by}
L2	180 - 153 (2)	TP26.8088x18x0.25	371.23 8	32.139	25.200	1.275	0.000	0.000	25.200	0.000
L3	153 - 151.833 (3)	TP27.1894x26.8088x0.36 25	396.14 2	23.277	25.200	0.924	0.000	0.000	25.200	0.000
L4	151.833 - 151 (4)	TP27.4613x27.1894x0.52 46	414.05 9	16.773	25.182	0.666	0.000	0.000	25.182	0.000
L5	151 - 130 (5)	TP34.3125x27.4613x0.38 02	777.62 5	30.000	25.200	1.190	0.000	0.000	25.200	0.000
L6	130 - 120.667	TP36.844x31.9209x0.444	1138.7	29.589	25.200	1.174	0.000	0.000	25.200	0.000

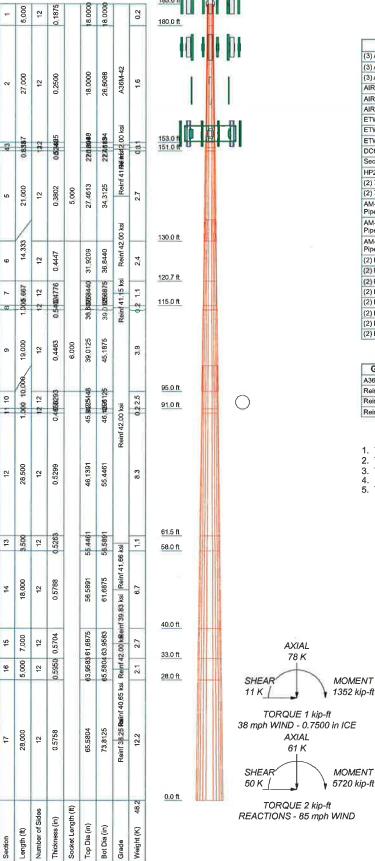
ft		M_{x}	f_{bx}	$Allow_{-}$ F_{bx}	Ratio _f _{bx}	Actual M _y	Actual f _{by}	Allow. F _{by}	Ratio f _{by}
		kip-ft	ksi	ksi	F_{bx}	kip-ft	ksi	ksi	F _{by}
(6)	7	00							
0.667 - 115	TP38.6875x36.844x0.477	1291.5	28.361	24.690	1.149	0.000	0.000	24.690	0.000
(7)	6	17							
5 - 114 (8)	TP39.0125x38.6875x0.54	1319.1	25.302	25.200	1.004	0.000	0.000	25.200	0.000
14 - 95 (9)			31.671	25.200	1.257	0.000	0.000	25.200	0.000
5 - 91 (10)			28.248	25.200	1.121	0.000	0.000	25.200	0.000
4 00 (44)			00.000	05.000	4.070	0.000	0.000	0= 000	
1 - 90 (11)	1P46.1391X45.8125XU.46		32.069	25.200	1.273	0.000	0.000	25,200	0.000
- 61 5 /12\	TP55 //61v/6 1301v0 52		28 968	25 200	1 150	0.000	0.000	25 200	0.000
01.5 (12)			20.300	25.200	1.150	0.000	0.000	25.200	0.000
.5 - 58 (13)			29.205	24.996	1.168	0.000	0.000	24.996	0.000
					,,,,,,	0,000	0.000		0.000
8 - 40 (14)		3888.7	27.468	23.898	1.149	0.000	0.000	23.898	0.000
` ,	88	00							
0 - 33 (15)	TP63.9583x61.6875x0.57	4187.4	27.884	25.200	1.107	0.000	0.000	25.200	0.000
, ,	04	50							
3 - 28 (16)	TP65.5804x63.9583x0.59	4406.4	26.764	24.390	1.097	0.000	0.000	24.390	0.000
	5	00							
28 - 0 (17)	TP73.8125x65.5804x0.57	5719.7 17	28.230	22.950	1.230	0.000	0.000	22.950	0.000
1 1 5	(7) 5 - 114 (8) 14 - 95 (9) 5 - 91 (10) 1 - 90 (11) - 61.5 (12) 5 - 58 (13) 3 - 40 (14) 0 - 33 (15) 3 - 28 (16)	(7) 6 5 - 114 (8) TP39.0125x38.6875x0.54 02 14 - 95 (9) TP45.1875x39.0125x0.44 63 5 - 91 (10) TP45.8125x42.3448x0.52 94 1 - 90 (11) TP46.1391x45.8125x0.46 5 - 61.5 (12) TP55.4461x46.1391x0.52 99 5 - 58 (13) TP56.5891x55.4461x0.52 63 3 - 40 (14) TP61.6875x56.5891x0.57 88 1 - 33 (15) TP63.9583x61.6875x0.57 04 TP65.5804x63.9583x0.59 5	(7) 6 17 5 - 114 (8) TP39.0125x38.6875x0.54 08 (4 - 95 (9) TP45.1875x39.0125x0.44 1693.7 63 83 5 - 91 (10) TP45.8125x42.3448x0.52 2003.9 94 50 1 - 90 (11) TP46.1391x45.8125x0.46 2036.0 5 - 61.5 (12) TP55.4461x46.1391x0.52 3031.3 99 92 5 - 58 (13) TP56.5891x55.4461x0.52 3164.7 63 8 - 40 (14) TP61.6875x56.5891x0.57 3888.7 00 9 3 3 (15) TP63.9583x61.6875x0.57 4187.4 04 50 8 - 28 (16) TP65.5804x63.9583x0.59 4066.4 5 00 8 - 0 (17) TP73.8125x65.5804x0.57 5719.7	(7) 6 17 5 - 114 (8) TP39.0125x38.6875x0.54 1319.1 25.302 02 08 14 - 95 (9) TP45.1875x39.0125x0.44 1693.7 31.671 63 83 5 - 91 (10) TP45.8125x42.3448x0.52 2003.9 28.248 94 50 1 - 90 (11) TP46.1391x45.8125x0.46 2036.0 32.069 5 75 - 61.5 (12) TP55.4461x46.1391x0.52 3031.3 28.968 99 92 5 - 58 (13) TP56.5891x55.4461x0.52 3164.7 29.205 63 8- 40 (14) TP61.6875x56.5891x0.57 3888.7 27.468 88 00 0 - 33 (15) TP63.9583x61.6875x0.57 4187.4 27.884 04 50 8 - 28 (16) TP65.5804x63.9583x0.59 4406.4 26.764 5 00 8 - 0 (17) TP73.8125x65.5804x0.57 5719.7 28.230	(7) 6 17 5 - 114 (8) TP39.0125x38.6875x0.54 1319.1 25.302 25.200 02 08 14 - 95 (9) TP45.1875x39.0125x0.44 1693.7 31.671 25.200 63 83 5 - 91 (10) TP45.8125x42.3448x0.52 2003.9 28.248 25.200 94 50 1 - 90 (11) TP46.1391x45.8125x0.46 2036.0 32.069 25.200 5 75 - 61.5 (12) TP55.4461x46.1391x0.52 3031.3 28.968 25.200 99 92 5 - 58 (13) TP56.5891x55.4461x0.52 3164.7 29.205 24.996 63 58 3 - 40 (14) TP61.6875x56.5891x0.57 3888.7 27.468 23.898 80 - 33 (15) TP63.9583x61.6875x0.57 4187.4 27.884 25.200 94 50 50 63 50 63 50 60 63 60 60 60 60 60 60 60 60 60 60 60 60 60	(7) 6 17 5 - 114 (8) TP39.0125x38.6875x0.54 1319.1 25.302 25.200 1.004 02 08 14 - 95 (9) TP45.1875x39.0125x0.44 1693.7 31.671 25.200 1.257 63 83 5 - 91 (10) TP45.8125x42.3448x0.52 2003.9 28.248 25.200 1.121 94 50 1 - 90 (11) TP46.1391x45.8125x0.46 2036.0 32.069 25.200 1.273 5 - 61.5 (12) TP55.4461x46.1391x0.52 3031.3 28.968 25.200 1.150 99 92 5 - 58 (13) TP56.5891x55.4461x0.52 3164.7 29.205 24.996 1.168 63 63 63 - 40 (14) TP61.6875x56.5891x0.57 3888.7 27.468 23.898 1.149 88 00 0 - 33 (15) TP63.9583x61.6875x0.57 4187.4 27.884 25.200 1.107 04 50 8 - 28 (16) TP65.5804x63.9583x0.59 4406.4 26.764 24.390 1.097 5 00 8 - 0 (17) TP73.8125x65.5804x0.57 5719.7 28.230 22.950 1.230	(7) 6 17 5 - 114 (8) TP39.0125x38.6875x0.54 1319.1 25.302 25.200 1.004 0.000 02 08 14 - 95 (9) TP45.1875x39.0125x0.44 1693.7 31.671 25.200 1.257 0.000 63 83 5 - 91 (10) TP45.8125x42.3448x0.52 2003.9 28.248 25.200 1.121 0.000 94 50 1 - 90 (11) TP46.1391x45.8125x0.46 2036.0 32.069 25.200 1.273 0.000 5 75 - 61.5 (12) TP55.4461x46.1391x0.52 3031.3 28.968 25.200 1.150 0.000 99 92 5 - 58 (13) TP56.5891x55.4461x0.52 3164.7 29.205 24.996 1.168 0.000 63 5 80 00 3 - 40 (14) TP61.6875x56.5891x0.57 3888.7 27.468 23.898 1.149 0.000 80 - 33 (15) TP63.9583x61.6875x0.57 4187.4 27.884 25.200 1.107 0.000 04 50 04 50 04 50 04 50 04 50 04 50 04 50 04 50 04 50 04 50 04 50 04 50 04 50 04 50 04 50 00 08 - 0 (17) TP73.8125x65.5804x0.57 5719.7 28.230 22.950 1.230 0.000	(7) 6 17 17 17 17 18 125x01 17 17 18 125x01 17 18 125x01 17 17 18 125x01 17 18 125x01 17 18 18 18 18 18 18 18 18 18 18 18 18 18	(7) 6 17 17 5 - 114 (8) TP39.0125x38.6875x0.54 1319.1 25.302 25.200 1.004 0.000 0.000 25.200 08 14 - 95 (9) TP45.1875x39.0125x0.44 1693.7 31.671 25.200 1.257 0.000 0.000 25.200 63 83 5 - 91 (10) TP45.8125x42.3448x0.52 2003.9 28.248 25.200 1.121 0.000 0.000 25.200 94 50 1 - 90 (11) TP46.1391x45.8125x0.46 2036.0 32.069 25.200 1.273 0.000 0.000 25.200 5 75 1 - 61.5 (12) TP55.4461x46.1391x0.52 3031.3 28.968 25.200 1.150 0.000 0.000 25.200 99 92 1 - 90 (11) TP66.5891x55.4461x0.52 3164.7 29.205 24.996 1.168 0.000 0.000 24.996 63 58 0.0 32.069 25.200 1.273 0.000 0.000 24.996 63 63 63 63 63 63 63 63 63 63 63 63 63

Pole Shear Design Data

Section No.	Elevation	Size	Actual V	Actual f _v	Allow. F _v	Ratio f _v	Actual T	Actual f _{vt}	Allow. F _{vt}	Ratio f _{vt}
	ft		K	ksi	ksi	Fv	kip-ft	ksi	ksi	$\frac{-F_{vt}}{F_{vt}}$
L1	185 - 180 (1)	TP18x18x0.1875	6.070	0.564	16.800	0.068	800.0	0.001	16.800	0.000
L2	180 - 153 (2)	TP26.8088x18x0.25	21.260	0.994	16.800	0.120	0.209	0.009	16.800	0.001
L3	153 - 151.833 (3)	TP27.1894x26.8088x0.36 25	21.436	0.685	16.800	0.083	0.215	0.006	16.800	0.000
L4	151.833 - 151 (4)	TP27.4613x27.1894x0.52 46	21.572	0.474	16.788	0.057	0.219	0.004	16.788	0.000
L5	151 - 130 (5)	TP34.3125x27.4613x0.38	23.944	0.606	16.800	0.073	0.281	0.005	16.800	0.000
L6	130 - 120.667 (6)	TP36.844x31.9209x0.444	26.455	0.508	16.800	0.061	0.363	0.004	16.800	0.000
L7	120.667 - 115 (7)	TP38.6875x36.844x0.477	27.496	0.468	16.460	0.058	0.404	0.004	16.460	0.000
L8	115 - 114 (8)	TP39.0125x38.6875x0.54	27.685	0.414	16.800	0.050	0.412	0.004	16.800	0.000
L9	114 - 95 (9)	TP45.1875x39.0125x0.44 63	29.999	0.488	16.800	0.059	0.487	0.004	16.800	0.000
L10	95 - 91 (10)	TP45.8125x42.3448x0.52	32.030	0.415	16.800	0.050	0.562	0.004	16.800	0.000
L11	91 - 90 (11)	TP46.1391x45.8125x0.46	32.232	0.471	16.800	0.057	0.572	0.004	16.800	0.000
L12	90 - 61.5 (12)	TP55.4461x46.1391x0.52	37.768	0.403	16.800	0.049	0.770	0.003	16.800	0.000
L13	61.5 - 58 (13)	TP56.5891x55.4461x0.52	38.447	0.405	16.664	0.049	0.795	0.003	16.664	0.000
L14	58 - 40 (14)	TP61.6875x56.5891x0.57	42.029	0.369	15.932	0.047	0.960	0.003	15.932	0.000
L15	40 - 33 (15)	TP63.9583x61.6875x0.57	43.330	0.372	16.800	0.045	1.014	0.003	16.800	0.000
L16	33 - 28 (16)	TP65.5804x63.9583x0.59	44.248	0.355	16.260	0.044	1.050	0.003	16.260	0.000
L17	28 - 0 (17)	TP73.8125x65.5804x0.57 58	49.640	0.366	15.300	0.049	1.267	0.003	15.300	0.000


Pole Interaction Design Data

Criteria	Allow. Stress	Comb. Stress	Ratio f _{vt}	Ratio f _v	Ratio f _{by}	Ratio f _{bx}	Ratio P	Elevation	Section No.
	Ratio	Ratio	F _{vt}	F_{ν}	F_{by}	F _{bx}	Pa	ft	
H1-3+VT (1,333	0.308	0.000	0,068	0.000	0.299	800.0	185 - 180 (1)	L1
H1-3+VT ⁽	1.333	1,294	0.001	0.120	0.000	1.275	0.015	180 - 153 (2)	L2
H1-3+VT (1.333	0.936	0.000	0.083	0.000	0.924	0.011	153 - 151.833 (3)	L3
H1-3+VT	1.333	0.674	0.000	0.057	0.000	0.666	0.007	151.833 - 151 (4)	L4
H1-3+VT [[]	1.333	1.203	0.000	0.073	0.000	1.190	0.011	151 - 130 (5)	L5
H1-3+VT ⁽	1.333	1.186	0.000	0.061	0.000	1.174	0.011	130 - 120.667 (6)	L6
H1-3+VT [[]	1.333	1.161	0.000	0.058	0.000	1.149	0.011	120.667 - 115 (7)	L7
H1-3+VT	1.333	1.014	0.000	0.050	0.000	1.004	0.010	115 - 114 (8)	L8
H1-3+VT	1.333	1.270	0.000	0.059	0.000	1.257	0.013	114 - 95 (9)	L9
H1-3+VT	1,333	1.134	0.000	0.050	0.000	1.121	0.012	95 - 91 (10)	L10
H1-3+VT	1.333	1.287	0.000	0.057	0.000	1.273	0.014	91 - 90 (11)	L11
H1-3+VT	1,333	1.164	0.000	0.049	0.000	1.150	0.014	90 - 61.5 (12)	L12
H1-3+VT (1.333	1.184	0.000	0.049	0.000	1.168	0.015	61.5 - 58 (13)	L13
H1-3+VT (1.333	1.166	0.000	0.047	0.000	1.149	0.016	58 - 40 (14)	L14
H1-3+VT (1.333	1.122	0.000	0.045	0.000	1.107	0.015	40 - 33 (15)	L15
H1-3+VT ⁽	1.333	1.114	0.000	0.044	0.000	1.097	0.016	33 - 28 (16)	L16
H1-3+VT (1.333	1.250	0.000	0.049	0.000	1.230	0.020	28 - 0 (17)	L17


Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	SF*P _{ellow} K	% Capacity	Pass Fail
L1	185 - 180	Pole	TP18x18x0.1875	1	-2.141	361.254	23.1	Pass
L2	180 - 153	Pole	TP26.8088x18x0.25	2	-8.232	718.182	97.1	Pass
L3	153 - 151.833	Pole	TP27.1894x26.8088x0.3625	3	-8.404	1051.792	70.2	Pass
L4	151.833 - 151	Pole	TP27.4613x27.1894x0.5246	4	-8.564	1527.325	50.6	Pass
L5	151 - 130	Pole	TP34.3125x27.4613x0.3802	5	-11.187	1328.220	90.2	Pass
L6	130 - 120.667	Pole	TP36.844x31.9209x0.4447	6	-14.795	1750.722	89.0	Pass
L7	120.667 - 115	Pole	TP38.6875x36.844x0.4776	7	-16.132	1934.076	87.1	Pass
L8	115 - 114	Pole	TP39.0125x38.6875x0.5402	8	-16.400	2248.011	76.1	Pass
L9	114 - 95	Pole	TP45.1875x39.0125x0.4463	9	-19.551	2065.883	95.3	Pass
L10	95 - 91	Pole	TP45.8125x42.3448x0.5294	10	-23.739	2592.778	85.1	Pass
L11	91 - 90	Pole	TP46.1391x45.8125x0.465	11	-24.015	2297.212	96.6	Pass
L12	90 - 61.5	Pole	TP55.4461x46.1391x0.5299	12	-33.586	3147.320	87.3	Pass
L13	61.5 - 58	Pole	TP56.5891x55.4461x0.5263	13	-34.868	3165.902	88.8	Pass
L14	58 - 40	Pole	TP61.6875x56.5891x0.5788	14	-42.368	3628.093	87.4	Pass
L15	40 - 33	Pole	TP63.9583x61.6875x0.5704	15	-45.418	3910.529	84.2	Pass
L16	33 - 28	Pole	TP65.5804x63.9583x0.595	16	-47.742	4047.974	83.5	Pass
L17	28 - 0	Pole	TP73.8125x65.5804x0.5758	17	-61.294	4154.028	93.8	Pass
							Summary	
						Pole (L2)	97.1	Pass
						RATING =	97.1	Pass

APPENDIX B BASE LEVEL DRAWING

APPENDIX C ADDITIONAL CALCULATIONS

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION	
(3) AIR 21 w/ Mount Pipe	185	(2) DTMABP7819VG12A	175	
(3) AIR 21 w/ Mount Pipe	185	DC6-48-60-18-8F	175	
(3) AIR 21 w/ Mount Pipe	185	Sector Mount [SM 802-3]	175	
AIR 33 w/ Mount Pipe	185	(2) 7770,00 w/ Mount Pipe	175	
AIR 33 w/ Mount Pipe	185	742 213 w/ Mount Pipe	165	
AIR 33 w/ Mount Pipe	185	742 213 w/ Mount Pipe	165	
ETW190V\$12UB	185	Pipe Mount [PM 601-3]	165	
ETW190V\$12UB	185	742 213 w/ Mount Pipe	165	
ETW190V\$12UB	185	(2) BXA-70063-6CF-EDIN-2 w/ Mount	155	
DC6-48-60-18-8F	185	Pipe		
Sector Mount [SM 802-3]	185	(2) BXA-70063-6CF-EDIN-2 w/ Mount	155	
HP2-102	185	Pipe		
(2) 7770 00 w/ Mount Pipe	175	(2) BXA-171063-12CF-EDIN-2 w/ Mount Pipe	155	
(2) 7770 00 w/ Mount Pipe	175	(2) BXA-171063-12CF-EDIN-2 w/	155	
AM-X-CD-16-65-00T-RET w/ Mount Pipe	175	Mount Pipe		
AM-X-CD-16-65-00T-RET w/ Mount Pipe	175	(2) BXA-171063-12CF-EDIN-2 w/ Mount Pipe	155	
AM-X-CD-16-65-00T-RET w/ Mount	175	RRH2X40-AWS	155	
Pipe	1/5	RRH2X40-AWS	155	
(2) RRUS-11	175	RRH2X40-AWS	155	
(2) RRUS-11	175	RRH2X40-07-U	155	
(2) RRUS-11	175	RRH2X40-07-U	155	
(2) LGP13519	175	RRH2X40-07-U	155	
(2) LGP13519	175	DB-T1-6Z-8AB-0Z	155	
(2) LGP13519	175	Platform Mount [LP 301-1]	155	
(2) DTMABP7819VG12A	175	(2) BXA-70063-6CF-EDIN-2 w/ Mount	155	
(2) DTMABP7819VG12A	175	Pipe		


MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A36M-42	42 ksi	60 ksi	Reinf 41,66 ksi	42 ksi	53 ksi
Reinf 42.00 ksi	42 ksi	53 ksi	Reinf 39,83 ksi	40 ksi	50 ksi
Reini 41.97 ksi	42 ksi	53 ksi	Reinf 40,65 ksi	41 ksi	51 ksi
Reinf 41.15 ksi	41 ksi	52 ksi	Reinf 38,25 ksi	38 ksi	48 ksi

TOWER DESIGN NOTES

- Tower is located in Middlesex County, Connecticut.
 Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F Standard.
- 3. Tower is also designed for a 38 mph basic wind with 0.75 in ice.
- Deflections are based upon a 50 mph wind.
 TOWER RATING: 97.1%

lob: 185' Monopol	le / Middletown_1	
Project: PJF 37513-15	70 / BU 825983	
Client: CCI	Drawn by: John J Woolley	App'd:
Code: TIA/EIA-222-F	Date: 09/19/13	Scale: NTS
Path:		Dwg No. E-1

- Date: 9/19/2013

PJF Project: 37513-1570 BP A Client Ref. # 825983 Site Name: Middletown_1 Description: Micropile Owner: CCI

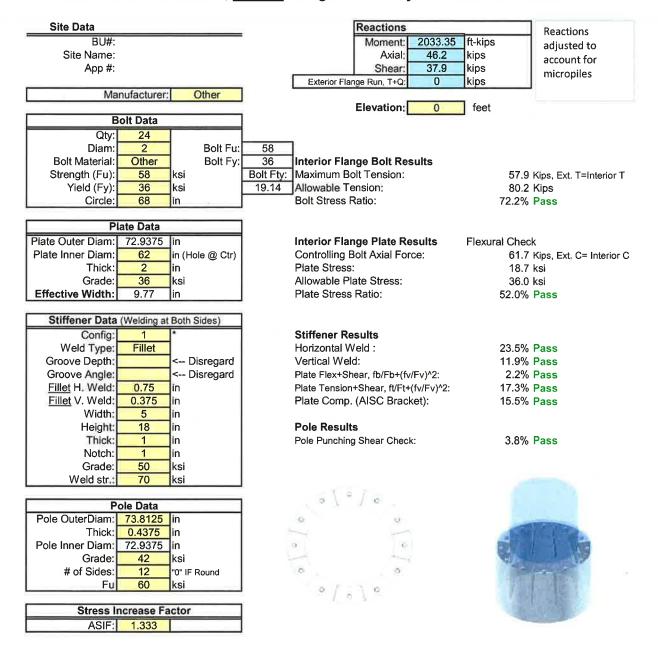
Engineer: JJW

v4.2 - Effective 4-3-13

Micropile Analysis

5720 k-ft 61.0 kips 50.0 kips 30 Axial = Shear = Item Qly =

TIA Ref. 1,3333 ASIF = Max Ralio = 100,0% Location = η = Threads =


Micropile N/A N/A for BP, Rev. G Sect. 4.9.9 for FP, Rev. G

Soft Clay / Silty Clay (Lean) for Micropile

** For Post Installed Anchors: Check anchors for embedment, epoxy/grout bond, and capacity based on proof load. **

ltem	Nominal Anchor Dia, In	Description	Fy, ksi	Fu, ksl	Location, degrees	Anchor Circle, in	Area Override, In ²	Area, in ²	Max Net Compressio n, kips	Max Net Tension, kips	Load for Capacity Calc, klps	Capacity Override, klps	Capacity, kips	Capacity Ratio	Required Bond Length, f
1		A36	36	58	0,0	68,00	0.00	3.14	57.80	53.94	53.94	0,00	80.17	67.3%	
2	2,000	A36	36	58	15.0	68.00	0.00	3.14	59.19	55,34	55.34	0.00	80,17	69.0%	
3	2.000	A36	36	58	30.0	68.00	0,00	3,14	60.55	56.69	56,69	0.00	80.17	70.7%	
4	2,000	A36	36	58	45.0	68,00	0.00	3.14	61.48	57.63	57.63	0.00	80,17	71.9%	2
5	2,000	A36	36	58	60.0	68.00	0.00	3.14	61.73	57.88	57.88	0.00	80.17	72.2%	
6	2,000	A36	36	58	75.0	68.00	0.00	3.14	61.18	57.33	57.33	0,00	80,17	71,5%	
.7.	2,000	A36	36	58	90.0	68.00	0.00	3.14	59.91	56.06	56.06	0.00	80.17	69.9%	
8	2,000	A36	36	58	105.0	68,00	0.00	3.14	58_17	54.32	54.32	0.00	80.17	67.7%	
9	2,000	A36:	38	58	120,0	68.00	0.00	3.14	56.33	52.48	52 48	0,00	80.17	65.5%	
10	2.000	A36	36	58	135,0	68,00	0.00	3.14	54.85	51.00	51.00	0,00	80.17	63,6%	
11	2.000	A36	36	58	150.0	68.00	0.00	3.14	54.12	50.27	50.27	0.00	80.17	62.7%	
12	2,000	A36	36	58	165,0	68,00	0.00	3.14	54.35	50.49	50.49	0.00	80.17	63,0%	
13	2,000	A36	36	58	180.0	68.00	0.00	3.14	55.43	51.58	51.58	0.00	80.17	64.3%	
14	2,000	A36	38	58	195.0	68.00	0.00	3.14	57.05	53.19	53.19	0.00	80.17	66.3%	
15	2,000	A36	36	58	210.0	68.00	0.00	3.14	58.75	54.90	54.90	0.00	80.17	68.5%	
16	2.000	A36	36	58	225.0	68,00	0.00	3.14	60.13	56.28	56.28	0.00	80.17	70.2%	
17	2,000	A36	36	58	240.0	68.00	0.00	3.14	60.89	57.04	57.04	0.00	80.17	71.1%	_
18	2,000	A36	38	58	255.0	68,00	0.00	3.14	60.90	57.05	57.05	0.00	80.17	71.2%	
19	2,000	A36	36	58	270.0	68.00	0.00	3.14	60.21	56.36	56.36	0.00	80.17	70.3%	
20	2,000	A36	36	58	285.0	68,00	0.00	3.14	59 05	55 20	55,20	0.00	80.17	68.8%	
21	2,000	A36	36	58	300.0	68.00	0.00	3.14	57.77	53.92	53.92	0.00	80.17	67.3%	
22	2,000	A36	36	58	315.0	68,00	0.00	3.14	56.77	52 92	52.92	0.00	80.17	66.0%	
23	2.000	A36	36	56	330.0	68.00	0.00	3.14	56.38	52.53	52.53	0.00	80.17	65.5%	
24	2.000	A36	36	58	345.0	68.00	0.00	3.14	56.76	52.91	52.91	0.00	80.17	66.0%	
25	0.000	Other			45.0	169,81	4.02	4.02	191.46	186.53	191.46	219.90	219.90	87.1%	55.00
26	0,000	Other			165.0	169,81	4.02	4.02	172.28	167.35	172.28	219,90	219.90	78.3%	55.00
27	0.000	Other			285.0	169.81	4.02	4.02	184.12	179.19	184.12	219.90	219.90	83.7%	55.00
28	0,000	Other			105.0	169,81	4.02	4.02	182.99	178.06	182 99	219.90	219.90	83.2%	55.00
29	0.000	Other			210.0	169,81	4.02	4.02	185.75	180.83	185 75	219.90	219.90	84.5%	55.00
30		Other			335.0	169.81	4.02	4.02	174.37	169.45	174.37	219.90	219.90	79.3%	55.00

Stiffened or Unstiffened, Interior Flange Plate - Any Bolt Material TIA Rev F

^{* 0 =} none, 1 = every bolt, 2 = every 2 bolts, 3 = 2 per bolt

^{**} Note: for complete joint penetration groove welds the groove depth must be exactly 1/2 the stiffener thickness for calculation purposes

Page 1

i i		0.25 ft											
33.3 ft-k	;	Pier Projection = 0.25 ft			4		IJ	G.() 	= 4	jde	De	E
Overturning Moment = 2033.3 ft-k		\ \	^ >	J	◆ =	+7.5 ft round pier	(64)#8 vert	#4 ties	Ŋ	37.9 k	<u></u>	√(35)#8 ea way	
(_				1					_		
	Comp Load = 46.2 kips		Horizontal Load = 37.9 k	•	. <u>=</u> ₁ ↓6	> weights		Conc = 332.6 k	10 Mater = 0 k	r ts	əţe	→	-
		, ' 	Horizontal load at top of pier = 37.9 (kips)	Overturning moment at top of pier= 2033.3 (ft-kips)		Design criteria:	Safety factor against overturning = 1.5		Soil Properties:	Soil density = 120 (pcf)	Allowable soil bearing = 3 (ksf)	Depth to water table = 16 (ft)	

Soil Properties:

Soil density =
$$\frac{120}{8}$$
 (pcf)
Allowable soil bearing = $\frac{3}{8}$ (ksf)
Depth to water table = $\frac{16}{16}$ (ft)

Footing Depth = 10.5 ft

Top and Bottom 35) #8 ea way

E

O

Dimensions:

Concrete:

1293 psf (net)

901.55k

Ecc = 2.269 ft

25 ft x 25 ft

(ksi)	(ksi)	
4	09	1.3
Concrete strength =	Rebar strength =	ultimate load factor =

Reinforcing Steel:

Lad ad	3 inches	#8 bar	35 (ea directi	
	minimum cover over rebar =	size of pad rebar =	quantity of pad rebar =	

Reinforcing Steel:

Pier	#8 bar	64	#4 bar	3 inches
	size of vert rebar in pier=	vertical rebar quantity =	size of pier ties =	minimum cover over rebar =

Total volume of concrete = 82.1 cu yd

	Summary of analysis results	nalysis results
tion)	tion) Maximum Net Soil Bearing = 1.293 ksf	Ult Bending Shear Capacity = 126 psi
	Allowable Net Soil Bearing = 3 ksf	Ult Bending Shear Stress = 19 psi
	Soil Bearing Stress Ratio = 0.43 Okay	Bending Shear Stress Ratio = 0.15 Okay
	Ftg Overturning Resistance = 11269 ft-kips	Pad Bending Moment Capacity= 3818 ft-k
	Overturning Moment = 2046 ft-kips	Pad Bending Moment = 864 ft-k
	Required Overturning Safety Factor = 1.5	Bending Moment Stress Ratio = 0.23 OK
	Overturning Safety Factor = 5.508	
	Ratio = 0.27 Okay	

MONOPOLE REINFORCEMENT AND RETROFIT PROJECT

BU NUMBER; SITE NAME

BU #825983; MIDDLETOWN 1

APP: 188916 REV. 6; WO: 649747

SITE ADDRESS

90 INDUSTRIAL PARK ROAD MIDDLETOWN, CT 06457 MIDDLESEX COUNTY

PROJECT NOTES

- 1. DETAILED FIELD INFORMATION REGARDING INTERFERENCES AND/OR EXISTING FIELD CONDITIONS MAY BE AVAILABLE ON CROWN'S CCISITES AND FROM CONTRACTOR'S PRE-MOD MAPPING. IT IS THE CONTRACTOR'S RESPONSIBILITY TO FIELD VERIFY EXISTING CONDITIONS AND DIMENSIONS AND COORDINATE WITH THE AVAILABLE SOURCES OF INFORMATION ABOVE AND WITH THE PROJECT PLANS BEFORE PROCEEDING WITH THE WORK. CONTRACTOR SHALL IMMEDIATELY REPORT ANY AND ALL DISCREPANCIES TO PAUL J. FORD AND COMPANY AND CROWN CASTLE FIELD PERSONNEL BEFORE PROCEEDING WITH THE WORK.
- ALL STRUCTURAL BOLTS SHALL BE INSTALLED AND TIGHTENED TO THE PRETENSIONED CONDITION ACCORDING TO THE REQUIREMENTS OF THE AISC 'SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS', DEC. 31, 2009.
- ALL STRUCTURAL BOLTS SHALL BE FIELD INSPECTED ACCORDING TO THE REQUIREMENTS
 OF THE AISC 'SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS',
 DEC. 31, 2009.
- 4. (A.) <u>DTI'S REQUIRED:</u> ALL AJAX BOLTS SHALL BE INSTALLED USING DIRECT TENSION INDICATORS (DTI'S) AND HARDENED WASHERS. ALL AJAX M20 BOLTS WITH SHEAR SLEEVES SHALL BE PRETENSIONED AND TIGHTENED UNTIL THE DIRECT TENSION INDICATOR (DTI) WASHERS SHOW THAT THE PROPER BOLT TENSION HAS BEEN REACHED. SEE NOTES AND DETAILS ON SHEET S-3 FOR REQUIREMENTS ON THE USE OF DIRECT TENSION INDICATOR (DTI) WASHERS WITH THE AJAX M20 BOLTS.
 - (B.) EFFECTIVE 5/30/2012: UNTIL FURTHER NOTICE, CROWN CASTLE WILL ACCEPT AJAX BOLTS TIGHTENED USING AISC "TURN-OF-NUT" METHOD. INSTALLERS SHALL FOLLOW CROWN GUIDELINES FOR AISC "TURN-OF-NUT" METHOD AND ALSO PROVIDE COMPLETE INSPECTION DOCUMENTATION IN THE PMI. PRIOR TO STARTING WORK, CONTRACTOR SHALL CONSULT WITH CROWN ENGINEERING TO DETERMINE WHETHER THIS POLICY IS STILL IN PLACE.
 - (C.) REQUIREMENT EFFECTIVE 04/20/2013, PER CROWN CASTLE DIRECTIVE: ANY AND ALL STRUCTURAL BOLTS THAT ARE TIGHTENED TO THE PRETENSIONED CONDITION USING THE AISC "TURN-OF-NUT" TENSIONING PROCEDURE (NON-TENSION CONTROLLED [NON-TC] BOLTS AND/OR BOLTS WITHOUT DTI'S INSTALLED) SHALL BE INSPECTED ONSITE BY AN INDEPENDENT THIRD-PARTY BOLT INSPECTOR, AS APPROVED BY CROWN. THIS INSPECTION IS REQUIRED TO BE AN ONSITE FIELD INSPECTION. THE THIRD-PARTY BOLT INSPECTOR SHALL FOLLOW THE PUBLISHED CROWN CASTLE INSPECTION PROCEDURE "MINON-TC BOLT INSPECTION", DATED APRIL 2013. THE THIRD-PARTY BOLT INSPECTOR SHALL PREPARE A FULLY DOCUMENTED BOLT INSPECTION REPORT, AS SPECIFIED BY CROWN, AND SHALL SUBMIT A COPY OF THE BOLT INSPECTION REPORT TO THE MI INSPECTOR, THE EOR, AND TO CROWN CASTLE.

PROJECT CONTACTS:

MONOPOLE OWNER:

CROWN CASTLE

8 PARKMEADOW DRIVE, PITTSFORD, NY 14534 CONTACT: STEVE TUTTLE

PH: (585) 899-3445

STRUCTURAL ENGINEER OF RECORD (EOR):

PAUL J. FORD AND COMPANY 250 EAST BROAD STREET, SUITE 600 COLUMBUS, OHIO 43215-3708

CONTACT: JOHN WOOLLEY AT JWOOLLEY@PJFWEB.COM

PHONE: 614-221-6679

DESIGN STANDARD

THIS REINFORCEMENT DESIGN IS BASED UPON THE REQUIREMENTS OF THE TIA/EIA-222-F-4996 STRUCTURAL STANDARD FOR ANTENNA SUPPORTING STRUCTURES AND ANTENNAS, USING A DESIGN BASIC WIND SPEED OF 85 MPH (FASTEST MILE) WITH NO ICE, 38 MPH WITH 3/4 INCH ICE AND 50 MPH SERVICE LOADS.

REFER TO THE POLE DESIGN AND ANTENNA LOADING DOCUMENTED IN THE PJF STRUCTURAL ANALYSIS FOR THIS SITE (PJF#37513-1570 BP A), DATED 9-17-2013.

THIS PROJECT INCLUDES THE FOLLOWING REINFORCING ELEMENTS:

SHAFT REINFORCING

SHEET INDEX				
SHEET NUMBER	DESCRIPTION			
T-1	TITLE SHEET			
S-1	GENERAL NOTES			
S-2	GENERAL NOTES			
S-3	AJAX BOLT DETAIL			
S-4	MONOPOLE PROFILE			
\$-5	BASE PLATE DETAILS			
S-6	MI CHECKLIST			

PPROVED 8

CROWN CASTLE PROJECT: BU #825983; MIDDLETOWN, 1; MIDDLETOWN, CT MONOPOLE RETROFIT PROJECT MASTER NOTES DOCUMENT (REV. 2, 1/22/2009)

CROWN CASTLE PROJECT. BU #825893: MIDDLETOWN 1; MIDDLETOWN, CT
MONOPOLE RETROFIT PROJECT MASTER NOTES DOCUMENT (REV. 2, 1/2/2/2009)

A. GENERAL NOTES

1. IT STRULE IT HE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY ALL EXISTING CONDITIONS AND DIMENSIONS PRIOR TO FABRICATION AND CONSTRUCTION. THESE DRAWINGS WERE PREPARED FROM INFORMATION AND DOCUMENTS PROVIDED TO PAUL. J. FORD & COMPANY OF ROCKING CASTLE. THIS INFORMATION AND DOCUMENTS PROVIDED TO PAUL. J. FORD & COMPANY FOR ACCURACY AND THEREFORE DISCRPANCES BETWEEN THESE DRAWINGS. AND ACTUAL STEE CONDITIONS SHOULD HAVE AND THEREFORE DISCRPANCES BETWEEN THESE DRAWINGS. AND ACTUAL STEE CONDITIONS SHOULD THE ACTUAL VERTIFIED STEE CONDITIONS SHALL BE IMMEDIATELY BROUGHT TO THE ATTENTION OF GROWN CASTLE AND PAUL J. FORD & COMPANY SO THAT ANY CHANGES AND/OR ADJUSTMENTS. IF NECESSARY, CAN BE MADE TO THE DESIGN AND DRAWINGS.

2. THE EXISTING UNRENPORCED MONOPOLE STRUCTURE DOES NOT HAVE THE STRUCTURAL CAPACITY TO CARRY ALL OF THE ANTENNA AND PLATFORM LOADS SHOWN THESE DRAWINGS AT THE REQUIRED MINIMAN TIMEPA-222-P BASIS WIND SPEEDS. DO NOT NIXALL ANY ADDITIONAL OR NEW ANTENNA AND INSTALLED. ONDO UNTIL THE MONOPOLE REINFORCING SYSTEM IS COMPLETED AND SUCCESSFULLY INSTALLED. ONDO UNTIL THE MONOPOLE REINFORCING SYSTEM IS COMPLETED. AND SUCCESSFULLY INSTALLED. ONDO UNTIL THE MONOPOLE REINFORCING SYSTEM IS COMPLETED. THE INSTALLATION OF THE RESPONSIBILITY AND SUCCESSFULLY INSTALLED. ONDO UNTIL THE MONOPOLE REINFORCING SYSTEM IS COMPLETED. THE INSTALLATION OF THE RESPONSIBILITY AND SUCCESSFULLY INSTALLATION OF THE RESPONSIBILITY OF THE ADDITION OF THE PROJECT AND ADDITIONAL OR THE WAITENNA AND SUCCESSFULLY INSTALLATION OF THE PROJECT AND ADDITIONAL OR SECRETION OF THE PROJECT AND ADDITIONAL OR PROVIDED ON THE PROJECT OR THE ADDITION OF THE PROJECT AND ADDITIONAL OR PROVIDED ON THE PROJECT OR THE ADDITION OF THE PROJECT

B. (SECTION NOT USED)

C. SPECIAL INSPECTION AND TESTING
ALL WORK SHALL BE SUBJECT TO REVIEW AND OBSERVATION BY THE OWNER'S REPRESENTATIVE AND
THE OWNER'S AUTHORIZED INDEPENDENT INSPECTION AND TESTING AGENCY. REFER TO CROWN
CASTLE DOCUMENT ENG-SOW-1006 FOR SPECIFICATION.
ANY SUPPORT SERVICES PERFORMED BY THE ENGINEER DURING CONSTRUCTION SHALL BE
DISTINGUISHED FROM CONTINUOUS AND DETAILED INSPECTION SERVICES WHICH ARE FURNISHED BY
OTHERS. THESE SUPPORT SERVICES PERFORMED BY THE ENGINEER ARE PERFORMED SOLELY FOR
THE PURPOSS OF A ASSISTING IN QUALITY CONTROL AND IN ACHIEVING CONPORMANCE WITH CONTRACT
DOCUMENTS. THEY DO NOT GUARANTEE CONTRACTOR'S PERFORMANCE AND SHALL NOT BE
CONSTRUED AS SUPPERVISION OF CONSTRUCTION.
OBSERVED DISCREPANCIES BETWEEN THE WORK AND THE CONTRACT DOCUMENTS SHALL BE
CORRECTED BY THE CONTRACTOR AT NO ADDITIONAL COST.
AN INDEPENDENT QUALIFIED INSPECTION/TESTING AGENCY SHALL BE SELECTED, RETAINED AND PAID
FOR BY THE OWNER FOR THE SOLE PURPOSS OF INSPECTING, TESTING, DOCUMENTING, AND
APPROVINGS ALL WELDING AND FIELD WORK PERFORMED BY THE CONTRACTOR.
(A.) A CEASS TO ANY PLACE WHERE WORK IS BEING DONE SHALL BE PERMITTED AT ALL TIMES.
(B.) THE INSPECTION AGENCY SHALL SO SCHEDULE THIS WORK AS TO CAUSE A MINIMUM OF
INTERRUPTION TO, AND COORDINATE WITH WORK IN PROCRESS. IT IS THE
CONTRACTOR'S RESPONSIBILITY TO COORDINATE THE WORK SCHEDULE WITH THE TESTING
AGENCY. THE CONTRACTOR SHALL ALLOW FOR ADEQUATE THE AND ACCESS FOR THE
TESTING AGENCY TO PERFORM THEIR DUTIES.

THE INSPECTION AND TESTING AGENCY SHALL ALLOW FOR ADEQUATE THE ME AND ACCESS FOR THE
TESTING AGENCY TO PERFORM THEIR DUTIES.

THE INSPECTION AND TESTING AGENCY SHALL BE LIVE THE FESTING AGENCY SHALL SHALL BE RESPONSIBLE TO PERFORM THE FOLLOWING
SERVICES FOR THE OWNER. THE TESTING AGENCY SHALL BE THE TESTING AGENCY SHALL SHALL BE RESPONSIBLE TO PERFORM THE FOLLOWING
SERVICES FOR THE OWNER. THE TESTING AGENCY SHALL BE THE TESTING AGENCY SHOULE WITH THE TESTING AGENCY SHALL BE RESPONSIBLE FOR PROPRIATE FOR
AND COMBROUNCE WITH THE CONTRACTOR SHALL BE THE TESTING AG

CAND COMMESSURATE WITH THE SCOPE AND TYPE OF INSPECTION WORK TO BE PERFORMED.

GENERAL:

(T) PERFORM CONTINUOUS ON-SITE OBSERVATION, INSPECTION, VERIFICATION, AND TESTING
DURING THE TIME THE CONTRACTOR IS WORKING ON-SITE, AGENCY SHALL NOTIFY OWNER
MADDIATELY WHEN FEILED PROBLEMS OR DISCREPANCIES OCCUR.

FOUNDATIONS, CONCRETE, AND SOIL PREPARATION—INOT REQUIRED)

STRUCTURAL STEEL

(T) CHECK THE STEEL ON THE JOB WITH THE PLANS.

(2) CHECK MILL CERTIFICATIONS.

(3) CHECK GRADE OF STEEL MEMBERS, AND BOLTS FOR CONFORMANCE WITH DRAWINGS.

(4) INSPECT STEEL MEMBERS FOR DISTORTION, EXCESSIVE RUST, FLAWS AND BURNED HOLES,

(5) CALL FOR LABORATORY TEST REPORTS WHEN IN DOMESTIONAL TOLERANCES,

(7) CHECK FOR SUFFACE FINISH SPECIFIED, GALVANIZED.

(8) CHECK FOR SUFFACE FINISH SPECIFIED, GALVANIZED.

(9) CHECK BOLT TIGHTENING ACCORDING TO AISC TURN OF THE NUT METHOD.

(8). CHECK BOLT TIGHTENING ACCORDING TO AISC TURN OF THE NUT* METHOD.
WELDING:
(1). VERTILY FIELD WELDING PROCEDURES, WELDERS, AND WELDING OPERATORS, NOT DEEMED PREDUALHED IN ACCORDANCE WITH AWS D.1.
(2). INSPECT FIELD WELDED CONINECTIONS IN ACCORDANCE WITH THE REQUIREMENTS SPECIFIED AND IN ACCORDANCE WITH AWS D.1.
(3). APPROVE FIELD WELDING SEQUENCE.
(A). A PROGRAM OF THE APPROVED SEQUENCES SHALL BE SUBMITTED TO THE OWNER BEFORE WELDING BEBINS, NO CHANGE IN APPROVED SEQUENCES MAY BE MADE WITHOUT PERMISSION FROM THE OWNER,
(4). INSPECT WELDED CONNECTIONS AS FOLLOWS AND IN ACCORDANCE WITH AWS D.1.1:
(A). INSPECT WELDING EQUIPMENT FOR CAPACITY, MAINTENANCE AND WORKING CONDITIONS.
(B). VERIFY SPECIFIED ELECTRODES AND HANDLING AND STORAGE OF ELECTRODES FOR CONFORMANCE TO SPECIFICATIONS.

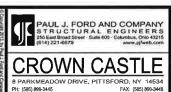
INCLED FINALIZATION AND MELECULAR AND LEMENT OF COMMISSION OF WELDS MEETS THE REQUIREMENTS OF AWS D.1.1. SPOT TEST AT LEAST ONE FILLET WELD OF EACH MEMBER USING MAGNETIC PARTICLE OR DVE PENETRANT.

PECT FOR SIZE, SPACING, TYPE AND LOCATION AS PER APPROVED PLANS.

INSPECT FOR SIZE, SPACING, TYPE AND LOCATION AS PER APPROVED PLANS, VERIFY THAT THE BASE METAL CONFORMS TO THE DRAWINGS. REVIEW THE REPORTS BY TESTING LABS. CHECK TO SEE THAT WELLDS ARE CLEAN AND FREE FROM SLAG, INSPECT RUST PROTECTION OF WELLDS AS DER SPECIFICATIONS. CHECK THAT DEFECTIVE WELLDS ARE CLEARLY MARKED AND HAVE BEEN ADEQUATELY CHECK THAT DEFECTIVE WELLDS ARE CLEARLY MARKED AND HAVE BEEN ADEQUATELY

PECIAL INSPECTION OF EXISTING SHAFT-TO-FLANGE WELD CONNECTIONS - (NOT REQUIRED) G. REPORTS:
(1.) COMPILE AND PERIODICALLY SUBMIT DAILY INSPECTION REPORTS TO THE OWNER.

(1.) COMPILE AND PERIODICALLY SUBMIT DAILY INSPECTION REPORTS TO THE OWNER.


THE INSPECTION PLAN OUTLINED HEREIN IS INTENDED AS A DESCRIPTION OF GENERAL AND SPECIFIC ITEMS OF CONCERN. IT IS NOT INTENDED TO BE ALL INCLUSIVE. IT DOES NOT LIMIT THE TESTING AND INSPECTION AGENCY TO THE ITEMS LISTED. ADDITIONAL TESTING, INSPECTION, AND CHECKING MAY BE REQUIRED AND SHOULD BE ANTICIPATED. THE TESTING AGENCY SHALL USE THEIR PROFESSIONAL JUDGMENT AND KNOWLEDGE OF THE JOB SITE CONDITIONS AND THE CONTRACTOR'S PERFORMANCE TO DECIDE WHAT OTHER FEWS REQUIRE ADDITIONAL ATTENTION. THE TESTING AGENCY'S JUDGMENT MUST PREVAIL ON ITEMS NOT SPECIFICALLY COVERED. ANY DISCREPANCIES AND PROBLEMS SHALL BE BROUGHT IMMEDIATELY TO THE OWNERS ATTENTION. RESOLUTIONS ARE NOT TO SE MADE WITHOUT THE OWNERS REVIEW AND SPECIFIC WRITTEN CONSENT. THE OWNER RESSERVES THE RIGHT TO TETERMINE WHAT IS AN ACCEPTABLE RESOLUTION OF DISCREPANCIES AND PROBLEMS.

AFTER FACH INSPECTION, THE TESTING AGENCY WILL PREPARE A WRITTEN ACCEPTANCE OR REJECTION WHICH WILL BE GIVEN TO THE CONTRACTOR AND FILED AS DAILY REPORTS TO THE OWNER. THIS WRITTEN ACTION WILL GIVE THE CONTRACTOR AND FILED AS DAILY REPORTS TO THE OWNER. THIS WRITTEN ACTION WILL GIVE THE CONTRACTOR AND FILED FURTHER OF DESCRIPTION. FOR YOUR RESTRUCTURE OF THE STANDARD CONSTRUCTION, ANDIOR LODGING OF STRUCTURAL ITEMS.

RESPONSIBILITY: THE TESTING AGENCY WOLDING OF STRUCTURAL TIEMS.

RESPONSIBILITY: THE TESTING AGENCY WOLDING OF STRUCTURAL TIEMS.

STATUTORY OBLIGATIONS. THE CONTRACTOR HAS THE SOLE RESPONSIBILITY FOR ANY DEVIATIONS FROM THE OFFICIAL CONTRACT DOCUMENTS. THE TESTING AGENCY WILL NOT REPLACE THE CONTRACTORS QUALITY CONTROL PERSONNEL.

ISSUE DATE OF

PERMIT: 9-17-2013

STRUCTURAL STEEL
STRUCTURAL STEEL MATERIALS, FABRICATION, DETAILING, AND WORKMANSHIP SHALL CONFORM
TO THE LATEST EDITION OF THE FOLLOWING REFERENCE STANDARDS:
BY THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC):
[A.] SPECIFICATION FOR THE DESIGN, FABRICATION AND EXECTION OF STRUCTURAL STEEL

CONTROL OF STRUCTURAL STEEL

**TSPECIFICATION FOR THE CONTROL JOINTS USING ASTM A325 OR A490 BOLTS, AS APPROVED BY THE RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS OF THE

В.

APPROVED BY THE RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS OF THE ENGINEERING FOUNDATION.

(C.) "CODE OF STANDARD PRACTICE FOR STEEL BUILDINGS AND BRIDGES" (PARAGRAPH 4.2.1 SPECIFICALLY EXCLUDED).

BY THE AMERICAN WELDING SOCIETY (AWS):

(A.) "STANDARD PRACTICE FOR STEEL D.1.1."

(B.) "SYMBOLS FOR WELDING AND NON-DESTRUCTIVE TESTING"

ANY MATERIAL OR WORKMANSHIP WHICH IS OSBERVED TO BE DEFECTIVE OR INCONSISTENT WITH THE CONTRACT DOCUMENTS SHALL BE CORRECTED, MODIFIED, OR REPLACED AT THE CONTRACT DOCUMENTS SHALL BE CORRECTED, MODIFIED, OR REPLACED AT THE CONTRACT DOCUMENTS SHALL BE CORRECTED, MODIFIED, OR REPLACED AT THE CONTRACT DOCUMENTS SHALL BE CORRECTED, MODIFIED, OR REPLACED AT THE SALE VES.

ACCORDING TO THE REQUIREMENTS OF THE AISC "TURN OF THE NUT" METHOD, TIGHTEN BOLTS 1/3

TURN PAST THE SNUG TIGHT CONDITION AS DEFINED BY AISC.

WELDING SOCIETY, AWS D.1.1, ALL WELD ELECTRODES SHALL BE E80XX UNLESS NOTED OTHERWISE ON THE DRAWINGS.

ALL WELDED CONNECTIONS SHALL BE MADE BY WELDERS CERTIFIED BY AWS. CONTRACTOR SHALL SUBMIT WELDERS' CERTIFICATION AND QUALIFICATION DOCUMENTATION TO THE OWNER'S TESTING AGENCY FOR REVIEW AND APPROVAL PRIOR TO CONSTRUCTION.

STRUCTURAL STEEL PLATES SHALL CONFORM TO ASTIN AST'S GRADE 65 (FY = 65 KSI INI.) UNLESS NOTED OTHERWISE ON THE DRAWINGS.

SURFACES OF EXISTING STEEL SHALL BE PREPARED AS REQUIRED FOR FIELD WELDING PER AWS. SEE SECTION I NOTES REGARDING TOUCH-UP OF GALVANIZED SURFACES DAMAGED DURING TRANSPORTATION OR REFECTION AND ASSEMBLY AS WELL AS FIELD WELDING.

UNLESS OTHERWISE NOTED, ALL STEEL MEMBERS SHALL BE HOT-DIP GALVANIZED, AFTER ABROCATION IN ACCORDANCE WITH A THAN ALZ. SEES SECTION J. FOR PUTTHER NOTES AND FOR EXCEPTIONS (IF ANY).

ALL WELDS STALL BE MALL BE WELL BE WELL BE STING AGENCY, OTHER STORES AND FOR EXCEPTIONS (IF ANY).

5.

6.

8.

9.

LINLESS OTHERWISE NOTED, ALL STEEL MEMBERS SHALL BE HOT-DIP GALVANIZED, AF LEY FABRICATION, IN ACCORDANCE WITH ASTM A123. SEE SECTION J FOR FURTHER NOTES AND FOR EXCEPTIONS (IF ANY).

ALL WELDS SHALL BE VISUALLY INSPECTED BY THE OWNER'S APPROVED TESTING AGENCY, OTHER TESTS MAY ALSO BE PERFORMED ON THE WELDS BY THE TESTING AGENCY IN ORDER FOR THEM TO PERFORM THEIR DUTIES FOR THIS PROJECT. THE CONTRACTOR SHALL COPERATE WITH THE TESTING AGENCY IN THEIR TESTING EFFORTS.

NO WELDING SHALL BE DONE TO THE EISTING STRUCTURE WITHOUT THE PRIOR APPROVAL AND SUPERVISION OF THE TESTING AGENCY. FIELD CUTTING OF STEEL:

LY PRIOR TO ANY FIELD CUTTING, THE CONTRACTOR SHALL WARK THE CUT OUTLINES ON THE STEEL AND THE INSPECTION/TESTING AGENCY SHALL VERIFY PROPOSED LAYOUT, LOCATION, AND DIMENSIONS.

ANY REQUIRED CUTS IN THE STEEL SHALL BE CAREFULLY CUT BY MECHANICAL METHODS SUCH AS DRILLING, SAW CUTTING, AND GRINDING, THE CONTRACTOR IS RESPONSIBLE TO PREVENT ANY DAMAGE TO THE COAX CABLES, AND/OR OTHER EQUIPMENT AND/OR THE STRUCTURE, DURING THE STRUCTURE, RESULTING FROM THE CONTRACTOR'S ACTIVITIES SHALL BE REPAIRED AT THE CONTRACTOR'S EXPENSE. THE INSPECTION/TESTING AGENCY SHALL CLOSELY AND CONTRACTOR'S EXPENSE. THE INSPECTION/TESTING AGENCY SHALL CLOSELY AND CONTRACTOR'S EXPENSE. THE INSPECTION/TESTING AGENCY SHALL CLOSELY AND CONTRACTOR'S SHALL BE GROUND SMOOTH AND DE-BURRED. CUT EDGES THAT ARE TO BE FIELD WELDED SHALL BE PREPAIRED FOR FIELD WELLOW PER AND SHOWN ON THE DRAWINGS. ALL CUT EDGES SHALL BE GROUND SMOOTH AND DE-BURRED. CUT EDGES THAT ARE TO BE FIELD WELDED SHALL BE PREPAIRED FOR FIELD WELLOW PER AND SIT AND AS SHOWN ON THE DRAWINGS. IN MAY BE NECESSARY TO DRILL STARTER FIGLES AS REQUIRED TO MAKE THE DRAWINGS. IT MAY BE NECESSARY TO DRILL STARTER FIGLES AS REQUIRED TO MAKE THE CUTS.

BASE PLATE GROUT - (NOT REQUIRED)

FOUNDATION WORK - (NOT REQUIRED)

CAST-IN-PLACE CONCRETE - (NOT REQUIRED) G.

EPOXY GROUTED REINFORCING ANCHOR RODS - (NOT REQUIRED)

TOUCH UP OF CALVANIZING
THE CONTRACTOR SHALL TOUCH UP ANY ANDIOR ALL AREAS OF GALVANIZING ON THE EXISTING
STRUCTURE OR NEW COMPONENTS THAT ARE DAMAGED OR ABRADED DURING CONSTRUCTION,
GALVANIZED SURFACES DAMAGED DURING TRANSPORTATION OR ERECTION AND ASSEMBLY AS
WELL AS ANY AND ALL ABRASIONS, CUTS, FIELD DRILLING, AND ALL FIELD WELDING SHALL BE
TOUCHED UP WITH TWO (2) COATS OF ZRC GRAND ZINC-RICH COLD GALVANIZING COMPOUND, FILM
THICKNESS PER COAT SHALL BE: WET 3.0 MILS; BBY 1.5 MILS. APPLY PER ZRC (MANUFACTURER)
RECOMMENDED PROCEDURES. CONTACT ZRC AT 1-800-31-3275 FOR PRODUCT INFORMATION.
CONTRACTOR SHALL CLEAN AND PREPARE ALL FIELD WELDS ON GALVANIZED AND PRIME PAINTED
SURFACES FOR TOUCH-UP COATING IN ACCORDANCE WITH AWS D.1. THE OWNER'S TESTING
AGENCY SHALL VERIFY THE PREPARED SURFACE PRIOR TO APPLICATION OF THE TOUCH-UP
COATING.
THE OWNER'S TESTING AGENCY SHALL TEST AND VERIFY THE COATING THICKNESS AFTER THE
CONTRACTOR HAS APPLIED THE ZRC COLD GALVANIZING COMPOUND AND IT HAS SUFFICIENTLY
DRIED. AREAS FOUND TO BE INADEQUATELY COATED, SHALL BE RE-COATED BY THE CONTRACTOR
AND RE-TESTING AGENCY.

HOT DIP GALVANIZING
HOT DIP GALVANIZING
HOT-DIP GALVANIZING
HOT-DI

PERPETUAL INSPECTION AND MAINTENANCE BY THE OWNER

ARTHER THE CONTRACTOR HAS SUCCESSFULLY COMPLETED THE INSTALLATION OF THE MONOPOLE

REINFORCING SYSTEM AND THE WORK HAS BEEN ACCEPTED BY THE OWNER, THE OWNER WILL DE

RESPONSIBLE FOR THE LONG TERM AND PERPETUAL INSPECTION AND MAINTENANCE OF THE POLE

AND REINFORCING SYSTEM.

THE MONOPOLE REINFORCING SYSTEM INDICATED IN THESE DOCUMENTS USES REINFORCING

COMPONENTS THAT INVOLVE FIELD WELDING STEEL MEMBERS TO THE EXISTING GALVANIZED STEEL

POLE STRUCTURE. THESE FIELD WELDING STEEL MEMBERS TO THE EXISTING GALVANIZED STEEL

POLE STRUCTURE. THESE FIELD WELDING STEEL MEMBERS TO THE EXISTING GALVANIZED STEEL

POLE STRUCTURE. THESE FIELD WELDING STEEL MEMBERS TO THE EXISTING GALVANIZED STEEL

POLE STRUCTURE. THESE FIELD WELDING STEEL MEMBERS TO THE EXISTING GALVANIZED STEEL

AND DETERIORATION IF THEY ARE NOT PROPERLY MAINTAINED AND COVERED WITH CORROSION

PREVENTIVE COATING SUCH AS THE ZRG CALVANIZING COMPOUND SPECIFIED PREVIOUSLY. THE

STRUCTURAL LOAD CARRYING CAPACITY OF THE REINFORCED POLE SYSTEM IS DEPENDENT UPON

THE INSTALLED SIZE AND QUALITY, MAINTAINED SOUND CONDITION AND STRENGTH OF THESE FIELD

WELDED CONNECTIONS. ANY CORROSION OF, DAMAGE TO, FATGUE, FRACTURE, ANDIOR

DETERIORATION OF THESE WELDS ANDIOR THE CONNECTED COMPONENTS WILL RESULT IN THE

LOSS OF STRUCTURAL LOAD CARRYING CAPACITY AND MAY LEAD TO FAILURE OF THE

STRUCTURAL SYSTEM. THEREFORE, IT IS INFERANTE HAT THE OWNER REGULARLY INSPECTS,

MAINTAINS, AND REPAIRS AS NECESSARY, ALL OF THESE WELDS, CONNECTIONS, AND

COMPONENTS FOR THE LIFE OF THE STRUCTURE.

THE OWNER SHALL REFER TO TIMEIR. 222-F-1996, SECTION 14 AND ANNEX E FOR RECOMMENDATIONS

FOR MAINTENANCE AND INSPECTION. THE REQUENCY OF THE INSPECTION AND MAINTENANCE

INTERVALS IS TO BE DETERMINED BY THE OWNER BASED UPON ACTUAL SITE AND ENVIRONMENTAL

CONDITIONS, AND LIFE FOR E OWNER PROCUMENT OF THE INSPECTION AND MAINTENANCE

HIS PROCUMENT OF THE SELFER OF THE STRUCTURAL SYSTEM BE PERFORMED

WELDER OWNER SHALL REFER TO TIMEIR BY THE OWNER BASED U

PAUL J. FORD AND COMPANY STRUCTURAL ENGINEERS 250 Emil Brand Savet - Sulte 600 - Columbus, Otto 43215 (014) 221-6679 **CROWN CASTLE**

BU #825983; MIDDLETOWN 1 MIDDLETOWN, CT

MONOPOLE REINFORCEMENT AND RETROFIT PROJECT

37513-15704 B,M,S

CHECKED BY

J.J.W.

ISSUE DATE OF PERMIT: 9-17-2013

PROVED B DATE: 9-17-2013

NOTES:

- 1. ALL STRUCTURAL BOLTS SHALL BE INSTALLED AND TIGHTENED TO THE PRETENSIONED CONDITION ACCORDING TO THE REQUIREMENTS OF THE AISC 'SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS', DEC. 31, 2009.
- 2. ALL STRUCTURAL BOLTS SHALL BE INSPECTED ACCORDING TO THE REQUIREMENTS OF THE AISC 'SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS', DEC. 31, 2009.
- 3. ALL AJAX M20 BOLTS WITH SHEAR SLEEVES SHALL BE PRETENSIONED AND TIGHTENED UNTIL THE DIRECT TENSION INDICATOR (DTI) WASHERS SHOW THAT THE PROPER BOLT TENSION HAS BEEN REACHED. SEE NOTES AND DETAIL BELOW FOR THE USE OF DIRECT TENSION INDICATOR (DTI) WASHERS WITH THE AJAX M20 BOLTS.
- 4. ALL AJAX BOLTS SHALL BE INSTALLED USING DIRECT TENSION INDICATORS (DTI'S) AND HARDENED WASHERS. DTI'S SHALL BE THE SQUIRTER® STYLE, MADE TO ASTM F959 LATEST REVISION; AND HARDENED WASHERS SHALL CONFORM TO ASTM F436 AND HAVE A HARDNESS OF RC 38 OR HIGHER.

NOTES FOR AJAX M20 'ONE-SIDE' BOLTS WITH DIRECT TENSION INDICATORS (DTI'S):

DTI'S REQUIRED: DTI'S SHALL BE "SELF-INDICATING" SQUIRTER® STYLE DTI'S MADE WITH SILICONE EMBEDDED IN THEM, INSPECTED BY MEANS OF THE VISUAL EJECTION OF SILICONE AS THE DTI PROTRUSIONS COMPRESS, SQUIRTER® DTI'S SHALL BE CALIBRATED PER MANUFACTURER'S INSTRUCTIONS PRIOR TO USE.

THE DIRECT TENSION INDICATOR (DTI) WASHERS SHALL BE THE "SQUIRTER® STYLE" AS MANUFACTURED BY:

APPLIED BOLTING TECHNOLOGY PRODUCTS, INC. 1413 ROCKINGHAM ROAD BELLOWS FALLS, VERMONT, USA 05101

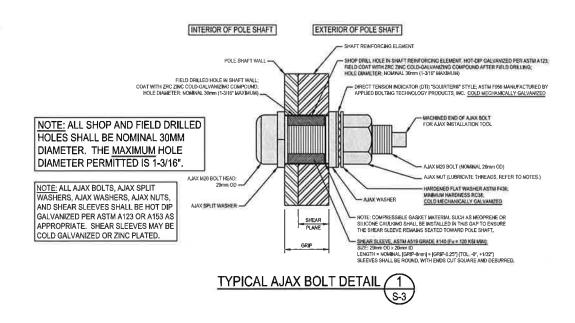
PHONE 1-800-552-1999

WEBSITE: WWW.APPLIEDBOLTING.COM

DISTRIBUTORS OF SQUIRTER® DTI'S:

HTTP://WWW.APPLIEDBOLTING.COM/APPLIED-BOLTING-DISTRIBUTORS.HTML

DTI: USE DIRECT TENSION INDICATOR (DTI) WASHERS COMPATIBLE WITH 20 MM (M20) NOMINAL A325 BOLTS FOR THE AJAX M20 BOLTS. DTI'S SHALL NOT BE HOT-DIP GALVANIZED. DTI'S SHALL BE MECHANICALLY GALVANIZED (MG) BY THE COLD MECHANICAL PROCESS ONLY AS PROVIDED BY THE DTI MANUFACTURER.


HARDENED WASHERS REQUIRED: USE A HARDENED WASHER FOR A 20 MM (M20) NOMINAL BOLT BETWEEN THE TOP OF THE DIRECT TENSION INDICATOR (DTI) WASHER AND THE NUT OF THE AJAX M20 BOLTS. HARDENED WASHERS SHALL CONFORM TO ASTM F436 AND HAVE A MINIMUM HARDNESS OF RC 38 OR HIGHER. THE HARDENED WASHERS SHALL BE MECHANICALLY GALVANIZED BY THE COLD MECHANICAL PROCESS. ALTERNATIVELY, CORRECTLY MADE HOT DIP GALVANIZED HARDENED FLAT WASHERS HAVING A MINIMUM HARDNESS OF RC 38 CAN BE USED; CONTRACTOR SHALL PROVIDE DOCUMENTATION OF WASHER SPECIFICATION AND HARDNESS.

NUT LUBRICATION REQUIRED: PROPERLY LUBRICATE THE THREADS OF THE NUT OF THE AJAX BOLT SO THAT IT CAN BE PROPERLY TIGHTENED WITHOUT GALLING AND/OR LOCKING UP ON THE BOLT THREADS. CONTRACTOR SHALL FOLLOW DTI MANUFACTURER INSTRUCTIONS FOR PROPER LUBRICATION AND TIGHTENING.

NOTE: COMPLETELY COMPRESSED DTI'S SHOWING NO VISIBLE REMAINING GAP ARE ACCEPTABLE. DTI WASHERS SHALL BE PLACED DIRECTLY AGAINST THE OUTER AJAX WASHER WITH THE DTI BUMPS FACING AWAY FROM THE AJAX WASHER. PLACE A HARDENED WASHER BETWEEN THE DTI AND THE AJAX NUT. THE DTI BUMPS SHALL BEAR AGAINST THE UNDERSIDE OF A HARDENED FLAT WASHER, NEVER DIRECTLY AGAINST THE NUT.

CONTRACTOR SHALL FOLLOW DTI MANUFACTURER'S INSTRUCTIONS FOR INSTALLATION, LUBRICATION, TIGHTENING AND INSPECTION.

INSPECTION REQUIRED: ALL AJAX BOLTS SHALL BE INSPECTED ACCORDING TO THE REQUIREMENTS OF THE AISC 'SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS, DEC. 31, 2009, BY A QUALIFIED BOLT INSPECTOR. DURING INSTALLATION, THE BOLT INSPECTOR SHALL VERIFY AND DOCUMENT: THE SHOP-DRILLED AND FIELD-DRILLED HOLE SIZES; THE INSTALLATION OF THE AJAX BOLT ASSEMBLY, INCLUDING THE SHEAR SLEEVE PLACEMENT AND NUT LUBRICATION; AND THE CONTRACTOR'S TENSIONING PROCEDURE. IN ADDITION, ALL AJAX BOLTS AND DTI'S SHALL BE VISUALLY INSPECTED ACCORDING TO THE DTI MANUFACTURER'S INSTRUCTIONS. THE BOLT INSPECTED ACCORDING TO THE DTI MANUFACTURER'S INSTRUCTIONS. THE BOLT INSPECTED ACCORDING THE CONDITION OF THE DTI'S.

8 PARKMEADOW DRIVE, PITTSFORD, NY 14534

PH: (585) 899-3445

MIDDLETOWN, CT
MONOPOLE REINFORCEMENT AND RETROFIT PROJECT

BU #825983; MIDDLETOWN 1

PROJECT No: 37513-1570A DRAWN BY: B.M.S. CHECKED BY: J.J.W.

ISSUE DATE OF PERMIT: 9-17-2013

PROVED BY: DATE: 9-17-2013

	POLE SPECIFICATIONS
POLE SHAPE TYPE	12-SIDED POLYGON
TAPER:	0.325000 RAFT
SHAFT STEEL:	ASTM ASEM-42
BASE PL STEEL:	ASTM AXI
ANCHOR RODS:	ASTM A36

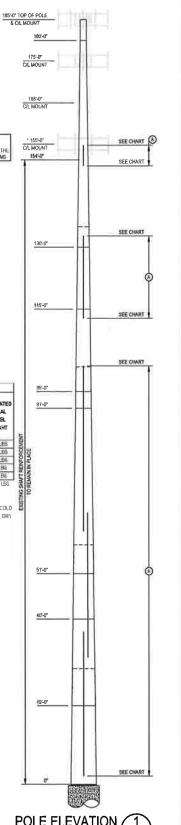
SHAFT	SECTION LENGTH (FT)	PLATE THICKNESS	LAP SPLICE	DIAMETER ACROSS FLATS (IN)		
SECTION	(11)	10.15	(44)	@ 102	© BOTTOM	
- 1	5 000	0,1875		18 000	18,000	
2	50.00	0,2500	60.00	18,000	34,313	
3	20.00	0,2500	60,00	32,181	38,688	
4	20 00	0,3125	72.00	38,688	45,188	
5	10.00	0,3125	72.00	42 613	45.813	
6	40.00	0,0750		45,813	58,875	
7	18,00	0,3750	64,00	55 839	61,688	
8	21,00	0,4375	3400.00	61,688	68,500	
	28.00	0,4375	108.00	64.705	73,813	

CONTRACTOR SHALL PROVIDE ASTIM A38 SHIM PLATES BELOW SLP JOINTS, THE SHIM PLATES SHALL BE PLACED BETWEEN THE NEW SHAFT REINFORCEMENT AND THE EXISTING FOLE SHAFT FROM THE SLP JOINT TO THE NEW SHAFT REPROCREMENT SHULCE PLATE LOCATION AND A EXTRA LOKING "SPLICE SHAM" SHALL BE PLATE LOCATION. BETWEEN THE MEM LIPPER AND LOWER SHAFT REINFORCEMENT PLATES AT THE SHAFT REINFORCEMENT SHALE BY DESIRED THE MEM LIPPER AND LOWER SHAFT REINFORCEMENT PLATES AT THE SHAFT REINFORCEMENT. SPLICE PLATE LOCATION.

MODIFICATIONS:

(A) INSTALL NEW SHAFT REINFORCING, SEE CHART,

NEW AEROSOLUTIONS MP3 REINFORCING ELEVATION FLAT# ELEVENT MP308 247 10 3747 3,6,94.11 247 TO 57-47 3. 5. 5. 5. 11 M/200 2497 TO 56427 4. 5. 5. 12 M/200 5657 TO 56427 4. 5. 5. 12 M/200 5657 TO 56427 4. 5. 5. 12 M/200 11247 TO 12447 3. 7. 5. 11 M/200 14546 TO 12447 3. 7. 5. 11 M/200 24 M/200 TO 12447 3. 7. 5. 11 M/200 14546 TO 12447 3. 7. 5. 11 M/200 25 EEPEYS (SENTAS) GR 4140, MIN GUIZO MISS, CONTROL TO SUPPLIES FOR MATERIAL (PLATE & BOLTS) AND INSTALLATION PROCEDURES.


				NEW CCI FL	AT PLATE (8	5 KSI) REINFOR	RONG SCHED	JLE			
BOTTOM ELEVATION	TOP ELEVATION	FLAT # / DEGREE SEPARATION	ELEMENT	ELEMENT LENGTH	ELEMENT	APPROXIMATE AJAX BOLTS PER ELEMENT	APPROXIMATE TOTAL AJAX BOLT QUANTITY	TERMINATION BOLTS (BOTTOM)	TERMINATION BOLTS (TOP)	MAXIMUM INTERMEDIATE BOLT SPACING	ESTIMATED TOTAL STEEL WEIGHT
2.0"	37 -0"	3,6.9811	5-1/4" x 8-1/2"	35'-0"	-4	: 51	204	16	17	17"	5082188
37.9	15.5	4,8612	1".x4"	35 - 0"	3	42	120	7	9	W	2144165
51.2	1011-31	3,7811	1"x5"	40'-0"	3	- 44	132	9.	9	167	2450 LBS
117-9	122 - F	3,76.11	34,×4,	20 - 0"	- 1	22	10	5	- 6	16"	6121.85
1/3 -9"	154 - 9	3,7411	24°×4°	5.0	- 2	it	33	38	- 3	1651	15) LBS
	•						44.0				10.424 LBS

- 1) AUX BOLTS ARE TO BE 20mm DUMETER WITH CORRESPONDING 25mm DAMETER SLEEVE WITH MATCHING STEEL GRADE
 2) ALL STEEL SHALL BE HOT-DIP GALVANZED AFTER FABRICATION IN ACCORDANCE WITH ASTMA123. ALTERNATIVELY, ALL NEW STIFF BIER PLATE STEEL RENFORCING MAY BE COLD
- GALVARZED AS FOLLOAS: APPLY A MY INMUMOF TWO COATS OF ZRC-BRAND ZING-RICH COLD GALVANIZING COMPOUND. FILM THICKNESS PER COAT SHALL BE WET 3.0 MILS, DRY 1.5 MILS. APPLY PER ZRIC (MANUFACT WRIET), RECOMMENDED PROCEDURES. CONTACT ZRC AT 1-800-831-3275 FOR PRODUCT INFORMATION.

 3) YAL REINFORCING SHALL BE ASTIMATED AS 6.5.

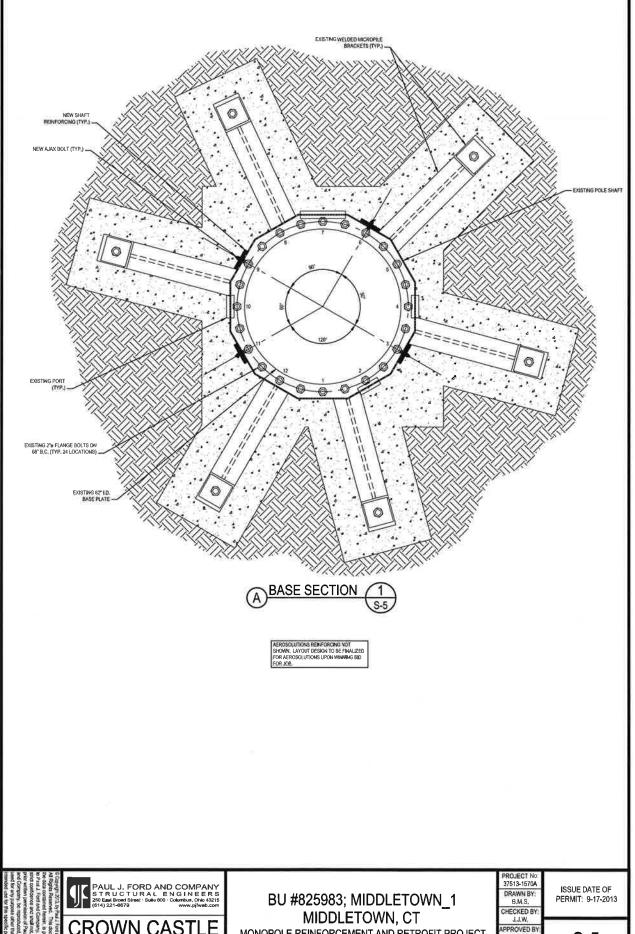
 4.1 WALLOS ARE ASSUMED BROXOR GREATER. TERMINATION WELDS SHALL BE 38" FILLET WELDS.

- 5) HOLES FOR AJAX BOLTS AND SHEAR SLEEVES ARE 30 mm UNLESS NOTED OTHER WISE
- 6) ALL SHIMS SHALL BE AST M A 36

POLE ELEVATION

PAUL J. FORD AND COMPANY STRUCTURAL ENGINEERS 250 East Broad Street | Sudie 600 | Columbus; Otho 43215 www.pi/web.com

CROWN CASTLE


BU #825983; MIDDLETOWN_1 MIDDLETOWN, CT

PROJECT No 37513-1570A DRAWN BY: B.M.S. CHECKED BY PPROVED BY

ISSUE DATE OF PERMIT: 9-17-2013

S-4 DATE

MONOPOLE REINFORCEMENT AND RETROFIT PROJECT

CROWN CASTLE

8 PARKMEADOW DRIVE, PITTSFORD, NY 14534
PH: (895) 899-3445
FAX: (895) 899-3445

MONOPOLE REINFORCEMENT AND RETROFIT PROJECT

DATE: 9-17-2013

MODIFICATION INSPECTION NOTES:

GENERAL.

THE MODERCATION INSPECTION (M) IS A VISUAL INSPECTION OF TOWER MODERCATIONS AND A REVIEW OF CONSTRUCTION INSPECTIONS AND OTHER REPORTS TO ENSURE THE INSTALLATION WAS CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS, AMALY THE MODERCATION PROVIDED BY THE ENGRED REPORT (PEOTOR).

THE M IS TO CONFIRM INSTALLATION CONFIGURATION AND WORKMANISHP ONLY AND IS NOT A REVIEW OF THE MODIFICATION DESIGN ITSEET, NOR DOES THE MINESPECTOR TAKE OWNERSHIP OF THE MODIFICATION DESIGN. OWNERSHIP OF THE STRUCTURAL MODIFICATION DESIGNE PERCURVENS AND WITEGETY RESIDES WITH THE EGR AT ALL THE TERMS.

ALL MIS SHALL BE CONDUCTED BY A CROWN ENGINEERING VENDOR (AEV) OR ENGINEERING SERVICE VENDOR (AESV) THAT IS APPROVED TO PERFORM ELEVATED WORK FOR CROWN. SEE ENGIBL-10173 LIST OF APPROVED MI VENDORS.

TO ENSURE THAT THE REQUIREMENTS OF THE MILARE MET, IT IS VITAL THAT THE GENERAL CONTRACTOR (GC) AND THE MI INSPECTOR BEGIN COMMANIZATION AND COORDINATION AS SOONAS A POTA SECRED. IT IS EXPECTED THAT EACH PARTY WILL BE PROJECTIVE IN REACHING OUT TO THE OTHER PARTY. IF CONTACT IN PERIOAD THIN IS NOT INCOMIN, CONTINCT YOUR CROWN POINT OF CONTACT (POC).

REFER TO ENG-SOW-10007 MODIFICATION INSPECTION SOW FOR FURTHER DETAILS AND REQUIREMENTS

MINSPECTOR
THE MINSPECTOR IS REQUIRED TO CONTACT THE GC AS SOON AS RECEIVING A PO FOR THE MITO, AT A MINIMUM.

- REVIEW THE REQUIREMENTS OF THE MI CHECKLIST
 WORK WITH THE GC TO DEVELOP A SCHEDULE TO CONDUCT ON SITE INSPECTIONS, INCLUDING FOUNDATION INSPECTIONS

GENERAL CONTRACTOR
PROCES REQUIRED TO CONTACT THE MI INSPECTOR AS SOON AS RECEIVING A PO-FOR THE MODIFICATION INSTALLATION OR TURNIVEY PROCESS TO A UNMINIMAL MARINAM.

- REVIEW THE REQUIREMENTS OF THE MICHECKLIST.
 WORK WITH THE MISSECTOR TO DEVICE A SCHEDULE TO CONDUCT ON SITE INSPECTIONS, INCLUDING FOUNDATION INSPECTIONS.
 BETTER INDEXISMO DALLINSECTION AND TESTING REQUIREMENTS.

HE GC SHALL PERFORM AND RECORD THE TEST AND INSPECTION RESULTS IN ACCORDANCE WITH THE REQUIREMENTS OF THE MI

RECOMMENDATIONS
THE FOLLOWING RECOMMENDATIONS AND SUGGESTIONS ARE OFFERED TO ENHANCE THE EFFICIENCY AND EFFECTIVENESS OF DELIVERING

- IT IS SUGGESTED THAT THE CO PROVIDE A MINIMAM OF 5 BUSINESS DAYS NOTICE, PREFERABLE 10, TO THE MI INSPECTOR AS TO WHEN THE SITE WILL BE BRADY FOR THE MIT OR ECONOLICIES.

 THE CO AND IN REPECTOR CORONINE CLOSES IT HOROUGHOUT THE BRITISE PROJECT.

 WHEN POSSIBLE, IT IS PREFERRED TO HAVE THE CO. AND MIT RESPECTOR ON SITE SMALLTANEOUSLY FOR ANY GUY WIRE TENSIONING OR BET-IRINGHOUSE OPERATIONS.

 IT MAY BE REPEREIGN. TO INSTALL ALL TOWER MODIFICATIONS PRICE TO CONDUCTING THE FOLIDATION INSPECTIONS TO ALLOW FOLIADATION AND MITISEPETORS TO AUGUST THE CO. AND MIT REPECTOR. THE CONTINUE OF THE MIT OF A WILL AND THE MIT

CANCELATION OR DELAYS IN SCHEOLED WE
IF THE CO AND MINSPECTOR AGREE TO A DATE ON WHICH THE MI WILL BE CONDUCTED, AND EITHER PARTY CANCELS OR DELAYS, CROWN
SHALL NOT BE REPOSHIBLE FOR ANY OSOTS, FERS, LOSS OF DEPOSITS AND/OR OTHER PENALTIES RELATED TO THE CANCELATION OR
DELAY MOLRIFRED BY EITHER PARTY FOR ANY TIME (F.G. TRAVEL AND LOCKING, COSTS OF KEEPING FOLD/MENDT ON SITE, ETC.) IF CROWN
CONTRACTS DEPOCITY FOR A THEOR PARTY ME EXPERTED THE DELAY/CANCELLATION IS CAUSED BY
MEATHER OR OTHER CONDITIONS THAT MAY COMPROMISE THE SAFETY OF THE PARTYES INVOLVED.

CORRECTION OF FAILING MES.
FTHE MODIFICATION INSTALLATION WOULD FAIL THE MI (FAILED ME), THE GC SHALL WORK WITH CROWN TO COORDINATE A REMEDIATION.

- CORRECT FALING ISSUES TO COMPLY WITH THE SPECIFICATIONS CONTAINED IN THE ORIGINAL CONTRACT DOCUMENTS AND
 COORDINATE A SUPPLEMENT IN
 OR, WITH CROWNS APPROVAL, THE GC MAY WORK WITH THE ECR TO RE ANALYZE THE MODIFICATION REINFORCEMENT USING THE
 AS BULT CONDITION

IN VERPICATION INSPECTIONS
CROWN RESERVES THE RIGHT TO CONDUCT A MILVERFICATION INSPECTION TO VERFY THE ACCURACY AND COMPLETENESS OF PREVIOUSLY COMPLETED MILKSPECTION(S) ON TOWER MODIFICATION PROJECTS.

VERIFICATION INSPECTION MAY BE CONDUCTED BY AN INDEPENDENT AEVIAESY FIRM AFTER A MODIFICATION PROJECT IS COMPLETED, AS MARKED BY THE DATE OF AN ACCEPTED "PASSING MIL" OR "PASS AS NOTED MIL" REPORT FOR THE ORIGINAL PROJECT.

PHOTOGRAPHS BETWEEN THE GC AND THE MI INSPECTOR THE FOLLOWING PHOTOGRAPHS, AT A MINIMUM, ARE TO BE TAKEN AND INCLUDED IN THE MI

- PRE-CONSTRUCTION GENERAL SITE CONDITION
 PHOTOGRAPHS DURING THE REINFORCEMENT IMCOFFICATION CONSTRUCTION/FRECTION AND INSPECTION
 NAW MATERIALS
- RAW MATERIALS
 RAW HATERIALS
 REPORTION FOR THE ALL CRITICAL DETAILS
 FOUNDATION MODIFICATIONS
 WELD PREPARATION
 BOLT INSTALLATION AND TORQUE
 FINAL INSTALLED CONDITION
 SURFACE COATING REPAIR

- FINAL INSTALLED CONDITION
 SURFACE COATING REPAIR
 POST CONSTRUCTION PHOTOGRAPHS
 FINAL INFIELD CONDITION
- PHOTOS OF ELEVATED MODIFICATIONS TAKEN FROM THE GROUND SHALL RE CONSIDERED INADEQUATE

THIS IS NOT A COMPLETE LIST OF REQUIRED PHOTOS, PLEASE REFER TO ENG-SOW-10007

ONSTRUCTION/INSTALLATION INSPECTIONS AND	MI CHECKLIST			
TESTING REQUIRED (COMPLETED BY EOR)	REPORT ITEM			
	PRE-CONSTRUCTION			
X	MI CHECKLIST DRAWINGS			
X	EOR APPROVED SHOP DRAWINGS			
NA NA	FABRICATION INSPECTION			
NA	FABRICATOR CERTIFIED WELD INSPECTION			
X	MATERIAL TEST REPORT (MTR)			
NA .	FABRICATOR NDE INSPECTION			
NA,	NDE REPORT OF MONOPOLE BASE PLATE (AS REQUIRED)			
X	PACKING SLIPS			
v	CONSTRUCTION DISPECTIONS			
Х	CONSTRUCTION INSPECTIONS			
NA NA	FOUNDATION INSPECTIONS			
NA .	CONCRETE COMP, STRENGTH AND SLUMP TESTS			
NA.	POST INSTALLED MICROPILE VERIFICATION			
NA	BASE PLATE GROUT VERIFICATION			
X	CONTRACTOR'S CERTIFIED WELD INSPECTION			
NA NA	EARTHWORK: LIFT AND DENSITY			
. X.	ON SITE COLD GALVANIZING VERIFICATION			
NA NA	GUY WIRE TENSION REPORT			
X	GC AS-BUILT DOCUMENTS			
X	THIRD PARTY ONSITE INSPECTION OF BOLT PRETENSION PER CROWN REQUIREMENTS			
x	INSPECTION OF AJAX BOLTS AND DTI'S PER REQUIREMENTS ON SHEET S-3			
DITIONAL TESTING AND INSPECTIONS:				
	POST-CONSTRUCTION			
X	MI INSPECTOR REDLINE OR RECORD DRAWING(S)			
X	THIRD PARTY ONSITE BOLT INSPECTION REPORT			
NA .	POST INSTALLED MICROPILE PULL-OUT TESTING			
	PHOTOGRAPHS			

MICHECKLIST

NOTE: X DENOTES A DOCUMENT NEEDED FOR THE PM REPORT. NA DENOTES A DOCUMENT THAT IS NOT REQUIRED FOR THE PM REPORT.

PAUL J. FORD AND COMPANY STRUCTURAL ENGINEERS 250 Eash Broad Street - Suite 800 - Columbus, Onto 43215 www.pi/web.com **CROWN CASTLE**

FAX: (585) 899-3448

BU #825983; MIDDLETOWN_1 MIDDLETOWN, CT

37513-15704

J.J.W.

ISSUE DATE OF PERMIT: 9-17-2013

PROVED BY

MONOPOLE REINFORCEMENT AND RETROFIT PROJECT

BU NUMBER; SITE NAME

BU #825983; MIDDLETOWN 1

APP: 188916 REV. 6: WO: 649747

SITE ADDRESS

90 INDUSTRIAL PARK ROAD MIDDLETOWN, CT 06457 MIDDLESEX COUNTY

PROJECT NOTES

- DETAILED FIELD INFORMATION REGARDING INTERFERENCES AND/OR EXISTING FIELD CONDITIONS MAY BE AVAILABLE ON CROWN'S CCISITES AND FROM CONTRACTOR'S PRE-MOD MAPPING. IT IS THE CONTRACTOR'S RESPONSIBILITY TO FIELD VERIFY ALL EXISTING CONDITIONS AND DIMENSIONS AND COORDINATE WITH THE AVAILABLE SOURCES OF INFORMATION ABOVE AND WITH THE PROJECT PLANS BEFORE PROCEEDING WITH THE WORK. CONTRACTOR SHALL IMMEDIATELY REPORT ANY AND ALL DISCREPANCIES TO PAUL J. FORD AND COMPANY AND CROWN CASTLE FIELD PERSONNEL BEFORE PROCEEDING WITH THE WORK.
- ALL STRUCTURAL BOLTS SHALL BE INSTALLED AND TIGHTENED TO THE PRETENSIONED CONDITION ACCORDING TO THE REQUIREMENTS OF THE AISC 'SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS', DEC. 31, 2009.
- ALL STRUCTURAL BOLTS SHALL BE FIELD INSPECTED ACCORDING TO THE REQUIREMENTS OF THE AISC 'SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS', DEC. 31, 2009.
- (A.) DTI'S REQUIRED: ALL AJAX BOLTS SHALL BE INSTALLED USING DIRECT TENSION INDICATORS (DTI'S) AND HARDENED WASHERS. ALL AJAX M20 BOLTS WITH SHEAR SLEEVES SHALL BE PRETENSIONED AND TIGHTENED UNTIL THE DIRECT TENSION INDICATOR (DTI) WASHERS SHOW THAT THE PROPER BOLT TENSION HAS BEEN REACHED. SEE NOTES AND DETAILS ON SHEET S-3 FOR REQUIREMENTS ON THE USE OF DIRECT TENSION INDICATOR (DTI) WASHERS WITH THE AJAX M20 BOLTS.
- EFFECTIVE 5/30/2012: UNTIL FURTHER NOTICE, CROWN CASTLE WILL ACCEPT AJAX BOLTS TIGHTENED USING AISC "TURN-OF-NUT" METHOD. INSTALLERS SHALL FOLLOW CROWN GUIDELINES FOR AISC "TURN-OF-NUT" METHOD AND ALSO PROVIDE COMPLETE INSPECTION DOCUMENTATION IN THE PMI. PRIOR TO STARTING WORK, CONTRACTOR SHALL CONSULT WITH CROWN ENGINEERING TO DETERMINE WHETHER THIS POLICY IS
- (C.) REQUIREMENT EFFECTIVE 04/20/2013, PER CROWN CASTLE DIRECTIVE: ANY AND ALL STRUCTURAL BOLTS THAT ARE TIGHTENED TO THE PRETENSIONED CONDITION USING THE AISC "TURN-OF-NUT" TENSIONING PROCEDURE (NON-TENSION CONTROLLED [NON-TC]
 BOLTS AND/OR BOLTS WITHOUT DTI'S INSTALLED) SHALL BE INSPECTED ONSITE BY AN
 INDEPENDENT THIRD-PARTY BOLT INSPECTOR, AS APPROVED BY CROWN. THIS
 INSPECTION IS REQUIRED TO BE AN ONSITE FIELD INSPECTION. THE THIRD-PARTY BOLT
 INSPECTOR SHALL FOLLOW THE PUBLISHED CROWN CASTLE INSPECTION PROCEDURE "MI NON-TC BOLT INSPECTION", DATED APRIL 2013. THE THIRD-PARTY BOLT INSPECTOR SHALL PREPARE A FULLY DOCUMENTED BOLT INSPECTION REPORT, AS SPECIFIED BY CROWN, AND SHALL SUBMIT A COPY OF THE BOLT INSPECTION REPORT TO THE MI INSPECTOR, THE EOR, AND TO CROWN CASTLE.

PROJECT CONTACTS:

MONOPOLE OWNER:

8 PARKMEADOW DRIVE, PITTSFORD, NY 14534

CONTACT: STEVE TUTTLE

PH: (585) 899-3445

STRUCTURAL ENGINEER OF RECORD (EOR):

PAUL J. FORD AND COMPANY 250 EAST BROAD STREET, SUITE 600

COLUMBUS, OHIO 43215-3708

CONTACT: JOHN WOOLLEY AT JWOOLLEY@PJFWEB.COM

PHONE: 614-221-6679

DESIGN STANDARD

THIS REINFORCEMENT DESIGN IS BASED UPON THE REQUIREMENTS OF THE TIA/EIA-222-F-1996 STRUCTURAL STANDARD FOR ANTENNA SUPPORTING STRUCTURES AND ANTENNAS, USING A DESIGN BASIC WIND SPEED OF 85 MPH (FASTEST MILE) WITH NO ICE, 38 MPH WITH 3/4 INCH ICE AND 50 MPH SERVICE LOADS,

REFER TO THE POLE DESIGN AND ANTENNA LOADING DOCUMENTED IN THE PJF STRUCTURAL ANALYSIS FOR THIS SITE (PJF#37513-1570 BP A), DATED 9-17-2013.

THIS PROJECT INCLUDES THE FOLLOWING REINFORCING ELEMENTS:

SHAFT REINFORCING

SHEET INDEX				
SHEET NUMBER	DESCRIPTION			
T-1	TITLE SHEET			
S-1	GENERAL NOTES			
S-2	GENERAL NOTES			
S-3	AJAX BOLT DETAIL			
S-4	MONOPOLE PROFILE			
S-5	BASE PLATE DETAILS			
S-6	MI CHECKLIST			

SEP 1 9 2013

PAUL J. FORD AND COMPANY STRUCTURAL ENGINEERS 250 Earl Broad Street - Sulin 600 - Columbus, Otto 42216 (614) 221-6679

CROWN CASTLE

BU #825983; MIDDLETOWN 1 MIDDLETOWN, CT MONOPOLE REINFORCEMENT AND RETROFIT PROJECT

DRAWN BY: BMS. CHECKED BY

J.J.W.

PROVED B

BKK

ISSUE DATE OF PERMIT: 9-17-2013

T-1

CROWN CASTLE PROJECT: BU #825983; MIDDLETOWN, 1; MIDDLETOWN, CT MONOPOLE RETROFIT PROJECT MASTER NOTES DOCUMENT (REV. 2, 1/22/2009)

A. GENERAL NOTES
IT STALL BETTIET RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY ALL EXISTING CONDITIONS AND DIMENSIONS PRIGHT OF FABRICATION AND CONSTRUCTION. THESE DRAWINGS WERE PERPERSE FROM INFORMATION AND DOCUMENTS PROVIDED TO PAUL. J. FORD & COMPANY BY CROWN CASTLE. THIS INFORMATION PROVIDED HAS NOT BEEN FIELD VERIFIED BY PAUL. J. FORD & COMPANY FOR ACCURACY AND THEREFORE DISCREPANCIES BYTHEMEN THESE DRAWINGS AND FOULD STANDED HE ANY DISCREPANCIES AND/OR CHANGES BETWEEN THE INFORMATION CONTAINED IN THESE DRAWINGS AND THE ACTUAL VERIFIED SITE CONDITIONS SHALL BE IMMEDIATELY BROUGHT TO THE ATTENTION OF CROWN CASTLE AND PAUL. J. FORD & COMPANY SO THAT ANY CHANGES AND/OR ADJUSTMENTS, IF NECESSARY, CAN BE MADE TO THE DESIGN AND DRAWINGS.
THE EXISTING UNREINFORCED MONOPOLE STRUCTURE DOES NOT HAVE THE STRUCTURAL CAPACITY TO CARRY ALL OF THE ANTENNA AND PLATFORM LOADS STROWN ON THESE DRAWINGS AT THE REQUIRED MINIMUM TAKELA-222-F BASIC WIND SPEEDS. DO NOT INSTALL ANY ADDITIONAL OR NEW ANTENNA AND PLATFORM LOADS SING SYSTEM IS COMPLETELY AND SUCCESSFULLY INSTALLED.

PACT FORM LOADS ON IT. THE MONOPOLE REINFORCING SYSTEM IS COMMETELY AND SUCCESSFULLY INSTALLED.

IF MATERIALS, OLAMITTIES, STREMENTS OR SIZES INDICATED BY THE DRAWINGS OR SPECIFICATIONS ARE NOT IN AGREEMENT WITH THESE NOTES, THE BETTER QUALITY ANDOR GREATER QUANTITY.

SISTEM HAS INSTALLED, SPECIFICATION ON THE BETTER QUALITY AND OR GREATER QUANTITY.

SISTEM HAS INSTALLED SHOWN ON THE STALLED FOR THE MONOPOLE AND A STALLED FOR THE INSTALLATION OF THE REINFORCING LEPARS SYSTEM HAS BEEN PROPERLY OR AND STALLED FOR THE INSTALLATION OF THE CONTROL OF THE MONOPOLE AND ITS COMPONENT PARTS DURING FIELD MODIFICATIONS. THIS INCLUDES, BUT IS NOT LIMITED TO, THE ADDITION OF WHATEVER TEMPORARY BRACING, GUYS OR TIE DOWNS THAT MAY BE NECESSARY, SUCH MATERIALS HALL BE REINFORDED AND AND A STALLED FOR THE CONTRACTOR AFTER THE COMPLETION OF THE PROJECT IN PROFERRY OF THE CONTRACTOR AFTER THE COMPLETION OF THE PROJECT OF THE CONTRACTOR SHALL FOLLOW ALL CROWN CASTLE CUTTING, WELDING FIRE PREVENTION AND SAFETY QUIDELINES. PRIOR TO CONSTRUCTION. THE CONTRACTOR SHALL BOTH ON THE CONTRACTOR SHALL FOLLOW ALL CROWN CASTLE CUTTING WELDING FIRE PREVENTION AND SAFETY QUIDELINES. PRIOR TO CONSTRUCTION. THE CONTRACTOR SHALL DISTRIBUTION AND SAFETY PROJECT CONTRACTOR SHALL FOLLOW ALL CROWN CASTLE CUTTING WELDING FIRE PREVENTION AND SAFETY PROJECT CONTRACTOR SHALL BOTH OF THE MONOPOLY OF THE CUTTING WELDING STALL DISTRIBUTION AND SAFETY PROJECT CONTRACTOR SHALL POLICY PLAN PROJECT.

"ALL CUTTING AND WELDING ACTIVITIES SHALL BE CONDUCTED IN ACCORDANCE WITH CROWN CASTLE PROJECT CONTRACTOR SHALL POLICY PLAN PROJECT."

THE STRUCTURE OF THE PROJECT."

"ALL CUTTING AND WELDING ACTIVITIES SHALL BE CONDUCTED IN ACCREDANCE WITH CROWN CASTLE POLICY CUTTING AND WELDING PLAY (DOCE FENG PLAY 10015) ON AN ONGOING BASIS THROUGHOUT THE ENTIRE LIFE OF THE PROJECT."

THE STRUCTURAL CONTRACT DOCUMENTS OD NOT INDICATE THE METHOD OR MEANS OF CONSTRUCTION, THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTOR SHALL SUPERVISE BY THE OWNER AND/OR THE ENGINEER SHALL NOT INCLUDE INSPECTIONS OF THE PROTECTIVE MEASURES OR THE CONSTRUCTION SHALL BE DISTINGUISHED FROM CONTINUOUS AND DETAILED INSPECTION OS PUT HE PROTECTIVE MEASURES OR THE CONSTRUCTION SHALL BE DISTINGUISHED FROM CONTINUOUS AND DETAILED INSPECTION SET PROFESS WHICH ARE FURNISHED BY THE INSPECTION SET ON THE PURPOSES OF ASSISTING IN QUALITY CONTRACTORS SWHICH ARE FURNISHED BY THE INSPECTION SET OF THE PURPOSE OF ASSISTING IN QUALITY CONTRACTORS SWHICH ARE FURNISHED BY THE INSPECTION STRUCTOR SPECIFICATION. THE PURPOSE OF ASSISTING IN QUALITY CONTRACTORS PERFORMANCE AND SHALL NOT BE CONSTRUCTED STRUCTURE. AND SHALL NOT BE CONSTRUCTED STRUCTURE OF ASSISTING IN QUALITY CONTRACTORS PERFORMANCE AND SHALL NOT BE CONSTRUCTED.

AND SUPERVISHED AND SEPERVISHON OF CONSTRUCTION AND OF GOOD QUALITY. FIRE FROM FAULTS AND ADDITIONAL SHAPE OF A SHALL SHAPE AND ADDITIONAL SHAPE OF A SHALL SHAPE AND ADDITIONAL SHAPE OF A SHALL SHAPE AND ADDITIONAL SHAPE AND ADDITIONAL SHAPE OF A SHAPE AND ADDITIONAL SHAPE THE CONTRACTOR HAS SUCCESSFULLY COMPLETED THE INSTALLATION OF ALL OF THE REQUIRED STRUCTURAL REINFORCING SYSTEM COMPONENTS.

B. (SECTION NOT USED)

C. SPECIAL INSPECTION AND TESTING

ALL WORK SHALL BE SUBJECT TO REVIEW AND OBSERVATION BY THE OWNER'S REPRESENTATIVE AND
THE OWNER'S ALL ME SUBJECT TO REVIEW AND OBSERVATION BY THE OWNER'S REPRESENTATIVE AND
THE OWNER'S ALL MESSUBJECT TO REVIEW AND SECTION AND TESTING AGENCY. REFER TO CROWN
CASHINGUIS CONTROLLING AND SECTION OF THE CONSTRUCTION SHALL BE
SUBTINGUISHED FROM CONTINUOUS BY THE ENGINEER OF DURING CONSTRUCTION SHALL BE
OSTINGUISHED FROM CONTINUOUS AND DETAILED HYSPECTION SERVICES WHICH ARE FURNISHED BY
OTHERS, THESS SUPPORT SERVICES PERFORMED BY THE ENGINEER ARE PERFORMED SOLELY FOR
THE PURPOSE OF ASSISTING IN OUALITY CONTROL AND IN ACHINING ONFORMANCE WITH CONTRACT
DOCUMENTS. THEY DO NOT GUARANTEE CONTRACTOR'S PERFORMANCE AND SHALL NOT BE
CONSTRUCED AS SUPPERVISION OF CONSTRUCTION.
OBSERVED DISCREPANCIES BETWEEN THE WORK AND THE CONTRACT DOCUMENTS SHALL BE
CORRECTED BY THE CONTRACTOR AT AN ADDITIONAL COST

AN INDEPENDENT QUALIFIED INSPECTIONTESTING AGENCY SHALL BE SELECTED. RETAINED AND PAID
FOR BY THE OWNER FOR THE SOLDE PURPOSE OF INSPECTING, TESTING DOCUMENTING, AND
APPROVING ALL WELDING AND FIELD WORK PERFORMED BY THE CONTRACTOR.
(A.) ACCESS TO ANY PLACE WHERE WORK IS BEIND DONE SHALL BE PERMITTED AT ALL TIMES.
(B.) THE INSPECTION AGENCY SHALL SO SCHEDULE THIS WORK AS TO CAUSE A MINIMUM OF
INTERRUPTION TO, AND COORDINATE WITH, THE WORK IN PROGRESS. IT IS THE
CONTRACTOR'S RESPONSIBILITY TO COORDINATE THE WORK SCHEDULE WITH THE TESTING
AGENCY, THE CONTRACTOR SHALL ALLOW FOR ADEQUARE THE AND ACCESS FOR THE
TESTING AGENCY TO PERFORM THEIR DUTIES.

THE INSPECTION AND TESTING AGENCY SHALL BE SPONSIBLE TO PERFORM THE FOLLOWING
SERVICES FOR THE OWNER. THE TESTING AGENCY SHALL INJURE CERTIFIED WITH THE TESTING
ACCORDANCE WITH THE CONSTRUCTION DRAWNES. THE TESTING AGENCY SHALL BRIDGE CONTRACTORS SHALL HAVE THE TRAINING, CREDENTIALS, AND EXPERIENCE APPROPRIATE FOR
AND COMMENSURATE WITH THE SCOPE OF AND TYPE OF INSPECTION WORK TO BE PERFORMED.

A. GENERAL:

THE INSPECTIONS SHALL HAVE THE TRAINING, CREDENTIA

AND COMMENSURATE WITH THE SCOPE AND TYPE OF INSPECTION WORK TO BE PERFORMED.

A. GENERAL ROBINST CONTINUOUS ON-SITE OBSERVATION, INSPECTION, VERIFICATION, AND TESTING (T). PERFORM CONTINUOUS ON-SITE, AGENCY SHALL NOTIFY OWNER IMMEDIATELY WHEN FIELD PROBLEMS OR DISCREPANCIES OCCUR.

B. FOUNDATIONS, CONDETE AND SOL, PERPARATION, INOT REQUIRED)

C. CONCRETE TESTING PER ACT. INOT REQUIRED)

STRICTURAL STEEL.

(2). CHECK THE STEEL ON THE JOB WITH THE PLANS.

(3). CHECK MILL CERTIFICATIONS.

(4). INSPECT STEEL MEMBERS FOR DISTORTION, SECSIVE RUST, FLAWS AND BURNED HOLES.

(5). CALL FOR LABORATORY TEST REPORTS WHEN IN DOUBT.

(6). CHECK STEEL MEMBERS FOR DISTORTION, SECSIVE RUST, FLAWS AND BURNED HOLES.

(7). CHECK THE MEMBERS FOR DISTORTION, SECSIVE RUST, FLAWS AND BURNED HOLES.

(8). CHECK STEEL MEMBERS FOR DISTORTION, SECSIVE RUST, FLAWS AND BURNED HOLES.

(9). CHECK FOR SURFACE FINISH SPECIFIED, GALVANIZED.

(9). CHECK BOLT TIGHTENING ACCORDING TO AISC TURN OF THE NUT METHOD.

E. WELDING:

(8.) CHECK BOLL TIGHTENING AUCUNCING TO AND TOWN OF THE MOVED THE CONTROL OF THE MOVED THE

OWNER.

(4.) INSPECT WELDED CONNECTIONS AS FOLLOWS AND IN ACCORDANCE WITH AWS D.1.

(A.) INSPECT WELDED CONNECTIONS AS FOLLOWS AND IN ACCORDANCE WITH AWS D.1.

(A.) INSPECT PREDICTIONS END THAN THE AMBLED AS TO A STORAGE OF ELECTRODES FOR CONFORMANCE TO SPECIFICATIONS.

(C.) INSPECT PREHEATING AND INTERPASS TEMPERATURES FOR CONFORMANCE WITH AWS D.1.

(D.) VISUALLY INSPECT ALL WELDS AND VERIFY THAT QUALITY OF WELDS MEETS THE REQUIREMENTS OF AWS D.1.

(E.) SPOT TEST AT LEAST ONE FILLET WELD OF EACH MEMBER USING MAGNETIC PARTICLE OR DYE PENETRANT.

(F.) MSPECT FOR SUZE. SPACING. TYPE AND LOCATION AS DEPARTMENT OF ACCOUNT.

DVE PENETRANT.

MISPECT FOR SIZE, SPACING, TYPE AND LOCATION AS PER APPROVED PLANS,
VERIFY THAT THE BASE METAL CONFORMS TO THE DRAWINGS.
REVIEW THE REPORTS BY TESTING LABS.
CHECK TO SEE THAT WELDS ARE CLEAN AND FREE FROM SLAG.
INSPECT RUST PROTECTION OF WELDS AS PER SPECIFICATIONS.
CHECK THAT DEFECTIVE WELDS ARE CLEARLY MARKED AND HAVE BEEN ADEQUATELY
DEPOLIPED.

F. SPECIAL INSPECTION OF EXISTING SHAFT-TO-FLANGE WELD CONNECTIONS - (NOT REQUIRED)
G. REPORTS:
(1) COMPILE AND PERIODICALLY SUBMIT DAILY INSPECTION REPORTS TO THE OWNER.

(1.) CUMPILE AND PERIODICALLY SUBMIT DAILY INSPECTION REPORTS TO THE OWNER.

8. THE INSPECTION PLAN OUTLINED HEREIN IS INTENDED AS A DESCRIPTION OF GENERAL AND SPECIFIC ITEMS OF CONCERN. IT'S NOT INTENDED TO BE ALL-INCLUSIVE. IT DOES NOT LIMIT THE TESTING AND INSPECTION AGENCY TO THE ITEMS LISTED. ADDITIONAL TESTING, INSPECTION, AND CHECKING MAY BE REQUIRED AND SHOULD BE ANTICIPATED. THE TESTING AGENCY SHALL USE THEIR PROFESSIONAL LUDGMENT AND KNOWLEDGE OF THE JOB SITE CONDITIONS AND THE CONTRACTOR'S PERFORMANCE TO DECIDE WHAT OTHER TIEMS REQUIRE ADDITIONAL ATTENTION. THE TESTING AGENCY SHOWMENT MUST PREVAIL ON ITEMS NOT SPECIFICALLY COVERED. ANY DISCREPANCIES AND PROBLEMS SHALL BE SROUGHT IMMEDIATELY TO THE OWNER'S ATTENTION. RESOLUTIONS ARE NOT TO BE MADE WITHOUT THE OWNER'S REVIEW AND SPECIFIC WRITTEN CONSENT. THE OWNER RESERVES THE RIGHT TO DETERMINE WHAT IS AN ACCEPTABLE RESOLUTION OF DISCREPANCIES AND PROBLEMS.

7. AFTER EACH INSPECTION, THE TESTING AGENCY WILL PREPARE A WRITTEN ACCEPTANCE OR REJECTION WHICH WILL BE GIVEN TO THE CONTRACTOR A UST OF ITEMS TO BE CORRECTED, PRIOR TO CONTINUING CONSTRUCTION, AND OR STRUCTURAL ITEMS.

8. RESPONSIBILITY: THE TESTING AGENCY DOES NOT RELIEVE THE CONTRACTOR'S CONTRACTUAL OR STATUTORY OBLIGATIONS. THE CONTRACTOR AND STRUCTURAL ITEMS.

8. RESPONSIBILITY: THE TESTING AGENCY DOES NOT RELIEVE THE CONTRACTOR'S CONTRACTUAL OR STATUTORY OBLIGATIONS. THE CONTRACTOR THE SOLE RESPONSIBILITY FOR ANY DEVIATIONS FROM THE OPFICIAL CONTRACT DOCUMENTS. THE SOLE RESPONSIBILITY FOR ANY DEVIATIONS FROM THE OPFICIAL CONTRACT DOCUMENTS. THE TESTING AGENCY WILL NOT REPLACE THE CONTRACTOR'S QUALITY CONTRACT DOCUMENTS. THE TESTING AGENCY WILL NOT REPLACE THE CONTRACTOR'S QUALITY CONTRACT DOCUMENTS. THE TESTING AGENCY WILL NOT REPLACE THE CONTRACTOR'S CONTRACT

SEP 1 9 2013

PAUL J. FORD AND COMPANY STRUCTURAL ENGINEERS 250 East Brued Street - Sulle 500 · Columbus, Ohio 4321-679 CROWN CASTLE 8 PARKMEADOW DRIVE, PITTSFORD, NY 14534

BU #825983; MIDDLETOWN_1 MIDDLETOWN, CT

MONOPOLE REINFORCEMENT AND RETROFIT PROJECT

37513-1570A DRAWN BY BMS CHECKED BY

J.J.W.

PPROVED BY

BKK

ISSUE DATE OF PERMIT: 9-17-2013

- STRUCTURAL STEEL
 STRUCTURAL STEEL MATERIALS, FABRICATION, DETAILING, AND WORKMANSHIP SHALL CONFORM
 TO THE LATEST EDITION OF THE FOLLOWING REFERENCE STANDARDS:
 BY THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION (ASICS):
 (A) SPECIFICATION FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL
- 2

- TSITUCTURAL STEEL MATERIALS, FABRICATION, DETAILING, AND WORKMANSHIP SHALL CONFORM TO THE HASTE EDITION OF THE FOLLOWING REFERENCE STANDARDS.

 BY THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION (ASIG):

 (A) "SPECIFICATION FOR THE DESIGN, FABRICATION AND EXECTION OF STRUCTURAL STEEL FOR BUILDINGS."

 (B) "SPECIFICATION FOR STRUCTURAL JOINTS USING ASTM A325 OR A490 BOLTS," AS APPROVED BY THE RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS OF THE ENGINEERING FOUNDATION.

 (C) "CODE OF STANDARD PRACTICE FOR STEEL BUILDINGS AND BRIDGES" (PARAGRAPH 4.2.1 SPECIFICALLY EXCLUPED).

 BY THE AMERICAN WELDING SOCIETY (AWS):

 (A) "STRUCTURAL WELDING SOCIETY (AWS):

 (B) "SYMBOLS FOR WELDING AND NON-DESTRUCTIVE TESTING"

 ANY MATERIAL OR WORKMANSHIP WHICH IS OBSERVED TO BE DEFECTIVE OR INCONSISTENT WITH THE CONTRACT DOCUMENTS SHALL BE CORRECTED, MODIFIED, OR REPLACED AT THE CONTRACT OCCUMENTS SHALL BE CORRECTED, MODIFIED, OR REPLACED AT THE CONTRACT OCCUMENTS SHALL BE CORRECTED, MODIFIED, OR REPLACED AT THE CONTRACT OR SHALL STRUCTURAL BOLTS, INCLUDING THE AIAX MOD BOLTS WITH SHEAR SLEEVES, ACCORDING TO THE REQUIREMENTS OF THE AISC "TURN OF THE NUT" METHOD, TICHTEN BOLTS 1/3 TURN PAST THE SAUG TICHT CONDITION AS DEFINED BY AISC,

 WELDED CONNECTIONS SHALL CONFORM TO THE LISTS TREVISED CODE OF THE AMERICAN WELDING SOCIETY, AWS D1.1. ALL WELD ELECTRODES SHALL BE EBOXX UNLESS NOTEO OTHERWISE ON THE DRAWINGS.

 ALL WELDED CONNECTIONS SHALL BE MADE BY WELDERS CERTIFIED BY AWS, CONTRACTOR SHALL SUBMIT WELDERS' CERTIFICATION AND OPPROVAL PRIOR TO CONSTRUCTION.

 STRUCTURAL STEEL PHALES SHALL CONFORM TO ASTM A572 CRADE 65 (FY = 65 KSI MIN.) UNLESS NOTEO OTHERWISE ON THE DRAWINGS.

 SUFFACES OF EXISTINGS STEEL SHALL BE PREPARED AS REQUIRED FOR FIELD WELDING PER AWS. SEE SECTION I NOTES REGARDING TOWNORS. THE METHOD SUCH AND SUPERVISION OF THE DRAWINGS.

 SURFACES OF EXISTS THE STEEL SHALL BE CR
- BASE PLATE GROUT (NOT REQUIRED)
- FOUNDATION WORK (NOT REQUIRED)

- CAST-IN-PLACE CONCRETE (NOT REQUIRED)
- EPOXY GROUTED REINFORCING ANCHOR RODS (NOT REQUIRED)

- TOUCH UP OF GALVANIZING
 THE CONTRACTOR STALL TOUCH UP ANY AND/OR ALL AREAS OF GALVANIZING ON THE EXISTING
 STRUCTURE OR NEW COMPONENTS THAT ARE DAMAGED OR ABRADED DURING CONSTRUCTION.
 GALVANIZED SURFACES DAMAGED DURING TRANSPORTATION OR ERECTION AND ASSEMBLY AS SWELL AS ANY AND ALL ABRASIONS, CUTS, FIELD DRILLING, AND ALL FIELD WELDING SHALL BE
 TOUCHED UP WITH TWO (2) COATS OF ZRC-BRAND ZINC-RICH COLD GALVANIZING COMPOUND. FIL
 HICKINESS PER COAT SHALL BE: WET JO MILS; DRY 1-5 MILS. APPLY PER ZRC (MANUFACTURER)
 RECOMMENDED PROCEDURES. CONTACT ZRC AT 1-800-931-3276 FOR PRODUCT INFORMATION.
 CONTRACTOR SHALL CLEAN AND PREPARE ALL FIELD WELDS ON GALVANIZED AND PRIME PAINTED
 SUBFACES FOR TOUCH-UP COATING IN ACCORDANCE WITH AWS D.1. THE OWNERS TESTING
 AGENLY SHALL UP DEITY THE PREPARE PS INGER ACCEPTION TO APPLICATION OF THE FOLICHLIP
- AGENCY SHALL VERIFY THE PREPARED SURFACE PRIOR TO APPLICATION OF THE TOUCH-UP
- CVALIND.
 THE OWNER'S TESTING AGENCY SHALL TEST AND VERIFY THE COATING THICKNESS AFTER THE CONTRACTOR HAS APPLIED THE ZRC COLD GALVANIZING COMPOUND AND IT HAS SUFFICIENTLY DRIED. AREAS FOUND TO BE INADEQUIATELY COATED, SHALL BE RE-COATED BY THE CONTRACTOR AND RE-TESTED BY THE TESTING AGENCY.

HOT DIP GALVANIZING
HOT DIP GALVANIZING
HOT DIP GALVANIZAL LL STRUCTURAL STEEL MEMBERS AND ALL STEEL ACCESSORIES, BOLTS,
WASHERS, ETC. PER ASTM A123 OR PER ASTM A153, AS APPROPRIATE.
PROPERLY PREPARE STEEL ITEMS FOR GALVANIZING.
DRILL OR PUNCH WEEP AND/OR DRAINAGE HOLES AS REQUIRED.
ALL GALVANIZING SHALL BE DONE AFTER FABRICATION IS COMPLETED AND PRIOR TO FIELD

PERFETUAL INSPECTION AND MAINTENANCE BY THE OWNER
ATTER THE CONTROLOGY RAS SUCCESSFULLY COMPLETED THE INSTALLATION OF THE MONOPOLE
REINFORCING SYSTEM AND THE WORK HAS BEEN ACCEPTED BY THE OWNER, THE OWNER WILL BE
RESPONSIBLE FOR THE LONG TERM AND PERPETUAL INSPECTION AND MAINTENANCE OF THE POLE
AND REINFORCING SYSTEM THE POLE
AND REINFORCING SYSTEM INDICATED IN THESE DOCUMENTS USES REINFORCING
COMPONENTS THAT INVOLVE FIELD WELDING STEEL MEMBERS TO THE EXISTING GALVANIZED STEEL
POLE STRUCTURE. THESE FIELD WELDING STEEL MEMBERS TO THE EXISTING GALVANIZED STEEL
POLE STRUCTURE. THESE FIELD WELDING STEEL MEMBERS TO THE EXISTING GALVANIZED STEEL
POLE STRUCTURE. THESE FIELD WELDING STEEL MEMBERS TO THE EXISTING GALVANIZED STEEL
POLE STRUCTURE. THESE FIELD WELDING STEEL MEMBERS TO THE EXISTING GALVANIZED STEEL
POLE STRUCTURE. THESE FIELD WELDING STEEL MEMBERS TO THE CONTROLOUSLY. THE
STRUCTURAL LOAD CARRYING CAPACITY OF THE REINFORCED POLE SYSTEM IS DEPENDENT UPON
THE INSTALLED SIZE AND QUALITY, MAINTAINED SOUND CONDITION AND STRENGTH OF THESE FIELD
WELDED CONNECTIONS. ANY CORROSION OF, DAMAGE TO, FATIGUE, FRACTURE, ANDIOR
DETERIORATION OF THESE WELDS AND/OR THE CONNECTED COMPONENTS WILL RESULT IN THE
LOSS OF STRUCTURAL LOAD CARRYING CAPACITY AND MAY LEAD TO FAILURE OF THE
STRUCTURAL SYSTEM. THEREFORE, IT IS IMPERATIVE THAT THE OWNER REQULARLY INSPECTS,
MAINTAINS, AND REPAIRS AS NECESSARY, ALL OF THESE WELDS, CONNECTIONS, AND
COMPONENTS FOR THE LIFE OF THE STRUCTURE.
THE OWNER SHALL REFER TO TIAGEL-2222-F-1996, SECTION 14 AND ANNEX E FOR RECOMMENDATIONS
FOR MAINTENANCE AND INSPECTION. THE FREQUENCY OF THE INSPECTION AND MAINTENANCE
INTERVALS IS TO BE DETERMINED BY THE OWNER BASED UPON ACTUAL SITE AND ENVIRONMENTAL
CONDITIONS, PAUL J. FORD SCOPIALY RECOMMENDED THAT THE OWNER ERE THAT OR DENVIRONMENTAL
CONDITIONS, PAUL J. FORD SCOPIALY RECOMMENDED THAT THE SUFFICE AND THOROUGH
INSPECTION OF THE ENTIRE REINFORCED MONOPOLE STRUCTURAL SYSTEM BE PERFORMED
VEARLY ANDORA AS PRECUENTLY AS CONDITIONS WARRANTAL. ACCORDING TO TIAT

SEP 1 9 2013

PAUL J. FORD AND COMPANY STRUCTURAL ENGINEERS 250 Eest Broad Sarsel - Sulta 600 - Columbias, Okio 43215 www.pk/web.com

CROWN CASTLE 8 PARKMEADOW DRIVE, PITTSFORD, NY 14534 BU #825983; MIDDLETOWN_1 MIDDLETOWN, CT

MONOPOLE REINFORCEMENT AND RETROFIT PROJECT

DRAWN BY

CHECKED BY

PPROVED B BKK

ISSUE DATE OF

PERMIT: 9-17-2013

AJAX BOLT NOTE SHEET: REV. 1.4, 5-20-2013

NOTES: 1. ALL STRUCTURAL BOLTS SHALL BE INSTALLED AND TIGHTENED TO THE PRETENSIONED CONDITION ACCORDING TO THE REQUIREMENTS OF THE AISC SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS', DEC. 31, 2009.

- 2. ALL STRUCTURAL BOLTS SHALL BE INSPECTED ACCORDING TO THE REQUIREMENTS OF THE AISC 'SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS', DEC. 31, 2009.
- 3. ALL AJAX M20 BOLTS WITH SHEAR SLEEVES SHALL BE PRETENSIONED AND TIGHTENED UNTIL THE DIRECT TENSION INDICATOR (DTI) WASHERS SHOW THAT THE PROPER BOLT TENSION HAS BEEN REACHED. SEE NOTES AND DETAIL BELOW FOR THE USE OF DIRECT TENSION INDICATOR (DTI) WASHERS WITH THE AJAX M20 BOLTS.
- 4. ALL AJAX BOLTS SHALL BE INSTALLED USING DIRECT TENSION INDICATORS (DTI'S) AND HARDENED WASHERS. DTI'S SHALL BE THE SQUIRTER® STYLE, MADE TO ASTM F959 LATEST REVISION; AND HARDENED WASHERS SHALL CONFORM TO ASTM F436 AND HAVE A HARDNESS OF RC 38 OR HIGHER.

NOTES FOR AJAX M20 'ONE-SIDE' BOLTS WITH DIRECT TENSION INDICATORS (DTI'S):

DTI'S REQUIRED: DTI'S SHALL BE "SELF-INDICATING" SQUIRTER® STYLE DTI'S MADE WITH SILICONE EMBEDDED IN THEM, INSPECTED BY MEANS OF THE VISUAL EJECTION OF SILICONE AS THE DTI PROTRUSIONS COMPRESS. SQUIRTER® DTI'S SHALL BE CALIBRATED PER MANUFACTURER'S INSTRUCTIONS PRIOR TO USE.

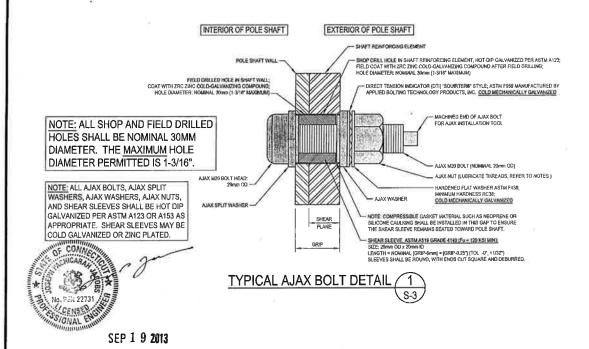
THE DIRECT TENSION INDICATOR (DTI) WASHERS SHALL BE THE "SQUIRTER® STYLE" AS MANUFACTURED BY:

APPLIED BOLTING TECHNOLOGY PRODUCTS, INC. 1413 ROCKINGHAM ROAD BELLOWS FALLS, VERMONT, USA 05101 PHONE 1-800-552-1999 WEBSITE: WWW.APPLIEDBOLTING.COM

DISTRIBUTORS OF SQUIRTER® DTI'S:

HTTP://WWW.APPLIEDBOLTING.COM/APPL/ED-BOLTING-DISTRIBUTORS.HTML

DTI: USE DIRECT TENSION INDICATOR (DTI) WASHERS COMPATIBLE WITH 20 MM (M20) NOMINAL A325 BOLTS FOR THE AJAX M20 BOLTS, DTI'S SHALL MOT BE HOT-DIP GALVANIZED.
DTI'S SHALL BE MECHANICALLY GALVANIZED (MG) BY THE COLD MECHANICAL PROCESS ONLY AS PROVIDED BY THE DTI MANUFACTURER.


HARDENED WASHERS REQUIRED: USE A HARDENED WASHER FOR A 20 MM (M20) NOMINAL BOLT BETWEEN THE TOP OF THE DIRECT TENSION INDICATOR (DTI) WASHER AND THE NUT OF THE AJAX M20 BOLTS. HARDENED WASHERS SHALL CONFORM TO ASTM F436 AND HAVE A MINIMUM HARDNESS OF RC 38 OR HIGHER. THE HARDENED WASHERS SHALL BE MECHANICALLY GALVANIZED BY THE COLD MECHANICAL PROCESS. ALTERNATIVELY, CORRECTLY MADE HOT DIP GALVANIZED HARDENED FLAT WASHERS HAVING A MINIMUM HARDNESS OF RC 38 CAN BE USED; CONTRACTOR SHALL PROVIDE DOCUMENTATION OF WASHER SPECIFICATION AND HARDNESS.

NUT LUBRICATION REQUIRED: PROPERLY LUBRICATE THE THREADS OF THE NUT OF THE AJAX BOLT SO THAT IT CAN BE PROPERLY TIGHTENED WITHOUT GALLING AND/OR LOCKING UP ON THE BOLT THREADS, CONTRACTOR SHALL FOLLOW DTI MANUFACTURER INSTRUCTIONS FOR PROPER LUBRICATION AND TIGHTENING.

NOTE: COMPLETELY COMPRESSED DTI'S SHOWING NO VISIBLE REMAINING GAP ARE ACCEPTABLE. DTI WASHERS SHALL BE PLACED DIRECTLY AGAINST THE OUTER AJAX WASHER WITH THE DTI BUMPS FACING AWAY FROM THE AJAX WASHER. PLACE A HARDENED WASHER BETWEEN THE DTI AND THE AJAX NUT. THE DTI BUMPS SHALL BEAR AGAINST THE UNDERSIDE OF A HARDENED FLAT WASHER, NEVER DIRECTLY AGAINST THE NUT.

CONTRACTOR SHALL FOLLOW DTI MANUFACTURER'S INSTRUCTIONS FOR INSTALLATION, LUBRICATION, TIGHTENING AND INSPECTION.

INSPECTION REQUIRED: ALL AJAX BOLTS SHALL BE INSPECTED ACCORDING TO THE REQUIREMENTS OF THE AISC 'SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS, DEC. 31, 2009, BY A QUALIFIED BOLT INSPECTOR. DURING INSTALLATION, THE BOLT INSPECTOR SHALL VERIFY AND DOCUMENT: THE SHOP-DRILLED AND FIELD-DRILLED HOLE SIZES; THE INSTALLATION OF THE AJAX BOLT ASSEMBLY, INCLUDING THE SHEAR SLEEVE PLACEMENT AND NUT LUBRICATION; AND THE CONTRACTOR'S TSUSIONING PROCEDURE. IN ADDITION, ALL AJAX BOLTS AND DTI'S SHALL BE VISUALLY INSPECTED ACCORDING TO THE DTI MANUFACTURER'S INSTRUCTIONS. THE BOLT INSPECTOR SHALL PROVIDE COMPLETE PHOTO DOCUMENTATION OF ALL BOLTS AFTER TIGHTENING CLEARLY SHOWING THE CONDITION OF THE DTI'S.

of Coppydd S70, by Paul J. Sert and Conways, Alf Bighis Reverwed, "This document and the datas contained branch, is proprietary to Paul J. Frest and Coopprays, insued in strict configence and shall not, without fire poor written permission of Paul J. Frest and Company, has reproduced, copied or and Company, has reposted project.

BU #825983; MIDDLETOWN_1 MIDDLETOWN, CT PROJECT No: 37513-1570A DRAWN BY: B.M.S. CHECKED BY: J.J.W.

PPROVED B

BKK DATE: 9-17-2013 ISSUE DATE OF PERMIT: 9-17-2013

MONOPOLE REINFORCEMENT AND RETROFIT PROJECT

La Transition Control	POLE SPECIFICATIONS
POLE SHAFE TYPE:	12-SIDED POLYCION
TAPER:	0.325000 NVFT
SHAFT STEEL:	ASTM A30M-42
BASE PL STEEL:	ASTM ASE
ANCHOR ROOS	ASTM A36

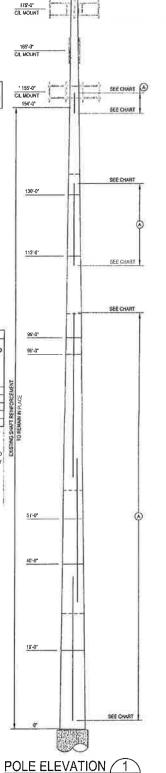
SHAFT	SECTION LENGTH (FT)	PLATE THICKNESS (IN)	LAP SPLICE	DIAMETER ACROSS FLATS (IN)		
SCOTION	V 17	3656	100	@ TOP	@ BOTTOM	
1	5,000	0.1875		18.000	18 000	
2	50.00	0.2500	60.00	18,000	34.313	
3	20.00	0 2500	60.00	32,181	38 688	
4	20.00	0.3125	72.00	36.688	45,188	
5	10.00	0 3125	72.00	42.613	45.813	
6	40.00	0.3750	84.00	45.813	58.876	
7	18.00	0.3750	84,00	55,839	81,588	
8:	21.00	0.4375	106.00	61.688	68,500	
9	28.00	0.4375	100,00	64,705	73,813	

CONTRACTOR SHALL PROVIDE ASTM ASS SHIM PLATES BELOW SUP JOINTS. THE SHIM PLATES SHALL BE PLACED BETWEEN THE NEW SHAFT REMPORCEMENT AND THE EXISTING POLE SHAFT FROM THE SUP JOINT TO THE NEW SHAFT REMPORCEMENT SPLICE PLATE LOCATION AND A EXTRA LONG "SPLICE SHIM" SHALL BE PLACED BETWEEN THE NEW UPPER AND LOWER SHAFT REMPORCEMENT PLATES AT THE SHAFT REMPORCEMENT SPLICE PLATE LOCATION.

MODIFICATIONS:

(A) INSTALL NEW SHAFT REINFORCING, SEE CHART.

VFORCING	}
FLAT#	REINFORCING ELEMENT
2,4,9511	MP308
4,8412	MP306
3,74.11	MP30E
4,8612	MP304
3,7811	NIP303
3,7411	MP303
	PLAT 8 2,6,9511 4,8612 3,7611 4,8612 3,7611


NEW CCI FLAT PLATE (65 KSI) REINFORCING SCHEDULE FLAT#/ PROXIMATE TERMINATIO MAXIMUM FLEMENT ELEMENT TOTAL AJAX TERMINATION TOTAL INTERMEDIATE BOLT SPACING DEGREE ELEMENT AJAX BOLTS BOLTS ELEVATION QUANTITY 3,8,9411 4,8412 3,7411 3,7411 2144 LBS 2450 LBS 132 G17 LBS. 34'x4' 149 - 3" 154'-9" 3,7411 34, 1 4, 5.0 153 LBS.

NOTES

TY AUX BOLTS ARE TO BE 2011 DUMETER WITH CORRESPONDING 2911 DUMETER SLEENE WITH MAIL CHING STEEL GRADE.

2) ALL STEEL SHALL BE HOT-OP GALWRICED AT ER PASSICATION IN ACCORDING WITH ASTA A122. ALTERNATIVELY, ALL NEW ST FFENER PLATE STEEL RENFORCING MAY BE COLD GALWRICED & FOLLOWS APELY ALMINIM OF TWO COATS OF 28G BRIND ZNG. RICH COLD GALWRICHIG COMPOUND. FLAT THICKNESS PER COAT SHALL BE: WET 3.0 MLS; DRY 1.5 MLS. APPLY PER ZING (MANUFACTURER) RECOMMENDED PROCEDURES. CONTACT 2RC AT 1.400.831.3275 FOR PRODUCT INFORMATION.

13 MALE PROFITE (MANUFACTURED) RECOMMENDED PROCEDURES. CONTACT ZAC ST 13 VAL RENO ROCKIO SPUALL BE AST MA AND GR. 44 4) VALDS ARE ASSUMED EMOCK OF GREATER. TERMINATION WELDS SMALL BE 39" FALLET WELDS. 5) PALE SHOWN SHALL BE AST MA ASS. 5

8 CAL MOUNT 180'-0"

SEP 1 9 2013

PAUL J. FORD AND COMPANY STRUCTURAL ENGINEERS 250 East Broad Private - Suite 600 - Courtous, Ohio 43215 (014) 221-6678

CROWN CASTLE

BU #825983; MIDDLETOWN_1 MIDDLETOWN, CT MONOPOLE REINFORCEMENT AND RETROFIT PROJECT

37513-1570A ISSUE DATE OF DRAWN BY: B M S. PERMIT: 9-17-2013 CHECKED BY J.J.W. PPROVED B S-4 BKK

ODIFICATION INSPECTION NOTES:

GENERAL.
THE MODIFICATION RESPECTION (MI) IS A VISUAL INSPECTION OF TOWER MODIFICATIONS AND A REVISIV OF CONSTRUCTION RESPECTIONS AND OTHER REPORTS TO ENSURE THE INSTALLATION WAS CONSTRUCTED BY ACCORDANCE WITH THE CONTRACT DOCUMENTS, INJURY THE MODIFICATION BRAWARD, AS DESCRICED BY THE ENGINEER OF RECORD SCORP.

THE MISTOLOHERM INSTALLATION COMPOURATION AND WORKMANSHIP ONLY AND IS NOT A REVIEW OF THE MODIFICATION DESIGN TSALL, NOR DOES THE MINISPECTION TAKE OWNERSHIP OF THE MODIFICATION DESIGN, OWNERSHIP OF THE STRUCTURAL MODIFICATION DESIGN EFFECTIVENESS AND INTEGRITY RESIDES WITH THE DEPLAT ALL TIMES.

ALL MIS SHALL BE CONDUCTED BY A CROWN ENGINEERING VENDOR (AEV) OR ENGINEERING SERVICE VENDOR (AESV) THAT IS APPROVED TO PERFORM ELEVATED WORK FOR CROWN. SEE ENG-BUL-10173 LIST OF APPROVED MI VENDORS...

TO ENSURE THAT THE REQUIREMENTS OF THE MILARE MET, IT IS WITAL THAT THE GENERAL CONTRACTOR (GC) AND THE MILMSPECTOR BEGIN COMMUNICATING AND COOGNINATING AS SOON AS A POIS RECEIVED, IT IS EXPECTED THAT EACH PARTY WILL BE PROACTIVE IN REACHING OUT TO THE OTHER PARTY, IF CONTRACT INFORMATION IN SOME MOVING YOUR CONTINUE YOUR CONTROL PROOF OF CONTRACT POIG.

REFER TO ENG-SOW-10007 : MODIFICATION INSPECTION SOW FOR FURTHER DETAILS AND REQUIREMENTS.

MEMSPECTOR THE MEMSPECTOR IS REQUIRED TO CONTACT THE GC AS SOON AS RECEIVING A POFOR THE METO, AT A MINIMUM.

- REVIEW THE REQUIREMENTS OF THE MICHECKLIST
 WORK WITH THE GCTO DEVELOP A SCHEDULE TO CONDUCT ON-SITE INSPECTIONS, INCLUDING FOUNDATION INSPECTIONS

THE MINISPECTOR IS RESPONSIBLE FOR COLLECTING ALL GENERAL CONTRACTOR (GC) INSPECTION AND TEST REPORTS, REVIEWING THE DOCUMENTS FOR ADMERIENCE TO THE CONTRACT DOCUMENTS, CONDUCTING THE IMPRED INSPECTIONS, AND SUBMITTING THE MIREPORT TO CROWN.

GENERAL CONTRACTOR
THE GG IS REQUIRED TO CONTACT THE MINISPECTOR AS SOON AS RECEIVING A PO FOR THE MODIFICATION INSTALLATION OR TURNINEY PROJECT TO, AT A MAINMALE.

- REVIEW THE REQUIREMENTS OF THE MICHEGRIST
 WORK WITH THE MINISPECTION TO DEVILED A SCHEDULE TO COMDUCT ON-SITE INSPECTIONS, INCLUDING FOUNDATION INSPECTIONS
 BETTER INDEPENTAND ALL MISPECTION AND TESTING REQUIREMENTS

THE GC SHALL PERFORM AND RECORD THE TEST AND INSPECTION RESULTS IN ACCORDANCE WITH THE REQUIREMENTS OF THE MI CHECKLUST AN DEIG-SOW-10007.

RECONNENDATIONS
THE FOLLOWING RECONNENDATIONS AND SUGGESTIONS ARE OFFERED TO ENHANCE THE EFFICIENCY AND EFFECTIVENESS OF DELIVERING

- If is suggested that the GC provide a manman of 5 business days notice, preferable 10, to the MI respector as to when
 the site will be ready for the MI to be computed.
 The GC AND MI INSPECTOR COMMATE CLOSELY INFOUGHOUT THE ENTIRE PROJECT.
 WHEN POSSIBLE, IT BY PREFERRED TO HAVE THE GC AND MI INSPECTOR ON-SITE SUMULTANEOUSLY FOR ANY GLY WIRE TENSIONING OR
 RECTEMBLORISM OFFERATIONS.
- RE-TEISHONING OPERATIONS
 I "I MAY BE BERFICHAL TO HISTALL ALL TOWER MODIFICATIONS PRIOR TO CONDUCTING THE FOUNDATION INSPECTIONS TO ALLOW FOUNDATION AND IN INSPECTIONS, TO COMMENCE WITH ONE STEE VIST.
 WHEN POSSIBLE, IT IS PRIFERENED TO HAVE THE GO OWN DIM INSPECTOR ON-SITE DURING THE MIT TO HAVE ANY DEFICIENCES CORRECTED DURINGS THE NITUL MI, THEREFORE, THE GO WAY CHOOSE TO COORMATE THE MICHAELLY TO ENSURE ALL CONSTRUCTION FOUNDATES. THE THE RITUL MI, THE DISPOSAL THE WENT THE MICHAEL STEEL AND CONSTRUCTION FOUNDATION.

CANCELLATION OR DELAYS IN SCHEDULED IN

IF THE GC AND MI UNSPECTOR AGREE TO A DATE ON WHICH THE MI WILL BE CONDUCTED, AND EITHER PARTY CANCELS OR DELAYS, CROWN
SHALL NOT BE REPONSIBLE FOR ANY COSTS, FEES, LOSS OF DEPOSITS ANDOR OTHER PENALTES RELATED TO THE CANCELLATION OR
DELAY INCURRED BY EITHER PARTY FOR ANY TIME (E.G. TRAVEL AND LODGING, COSTS OF KEEPING EQUIPMENT ON SITE, ETC.) IF CROWN
CONTRACTS DIRECTLY FOR A THROUGH ANY ME, CASCELLORS MAY BE MADE IN THE SENTENT THE DELAY/CANCELLATION IS CAUSED BY
WEATHER OR OTHER CONDITIONS THAT MAY COMPROMISE THE SAFETY OF THE PARTIES INVOLVED,

CORRECTION OF FALING MES.
IF THE MODIFICATION INSTALLATION WOULD FAIL THE MU ("FARED MIT), THE GC SHALL WORK WITH CROWN TO COORDINATE A REMEMBATION.

- CORRECT FAILING ISSUES TO COMPLY WITH THE SPECIFICATIONS CONTAINED IN THE ORIGINAL CONTRACT DOCUMENTS AND COORDINATE. A SUPPLIBIENT MIL.
 OR WITH CONVINS APPROVAL, THE GC MAY WORK WITH THE EOR TO RE-ANALYZE THE MODIFICATION/REINFORCEMENT USING THE AS-BUILT CONDITION

IN VERFICATION INSPECTIONS.

CROWN RESERVES THE RIGHT TO CONDUCT A MI VERIFICATION INSPECTION TO VERBY THE ACCURACY AND COMPLETENESS OF PREVIOUS I. COMPLETEN.

VERIFICATION INSPECTION MAY BE CONDUCTED BY AN INDEPENDENT ASVIAESV FIRM AFTER A MODIFICATION PROJECT IS COMPLETED, AS MARKED BY THE DATE OF AN ACCEPTED <u>"PASSING M"</u> OR "<u>PASS AS NOTED M</u>" REPORT FOR THE ORIGINAL PROJECT.

PHOTOGRAPHS
BETWEEN THE BC AND THE MI INSPECTOR THE FOLLOWING PHOTOGRAPHS, AT A JANSBASH, ARE TO BE TAKEN AND INCLUDED IN THE MI REPORT!

- PRE-CONSTRUCTION GENERAL SITE CONDITION
 PHOTOGRAPHS DURING THE RENFORCEMENT MODIFICATION CONSTRUCTION/ERECTION AND INSPECTION
- PHOTOGRAPHS DURING THE REINFORCE
 RAW MATERIALS
 PHOTOS OF ALL CRITICAL DETIALS
 FOUNDATION MODIFICATIONS
 WELD PREPARATION
 BOLT INSTALLED CONDITION
 SURFACE COATING REPAR
 POST CONSTRUCTION OF DOOR OF PARAL INFELD CONDITION
 SURFACE COATING REPAR
 FINAL INFELD CONDITION

PHOTOS OF ELEVATED MODIFICATIONS YAKEN FROM THE GROUND SHALL BE CONSIDERED INADEQUATE.

THIS IS NOT A COMPLETE LIST OF REQUIRED PHOTOS, PLEASE REFER TO ENG-SOW-10007

ONSTRUCTION/INSTALLATION INSPECTIONS AND TESTING REQUIRED (COMPLETED BY EOR)	REPORT ITEM
TEO/ITO NEGOTIAN (COM ELITED E. 20.9	PRE-CONSTRUCTION
x	
	MI CHECKLIST DRAWINGS
X	(FOR APPROVED SHOP DRAWINGS
NA .	FABRICATION INSPECTION
NA	FABRICATOR CERTIFIED WELD INSPECTION
X	MATERIAL TEST REPORT (MTR)
NA	FABRICATOR NOE INSPECTION
NA	NDE REPORT OF MONOPOLE BASE PLATE (AS REQUIRED)
×	PACKING SLIPS
OTTIONAL TESTING AND INSPECTIONS:	4
	CONSTRUCTION
X	CONSTRUCTION INSPECTIONS
NA .	FOUNDATION INSPECTIONS
NA .	CONCRETE COMP, STRENGTH AND SLUMP TESTS
NA NA	POST INSTALLED MICROPILE VERIFICATION
NA	BASE PLATE GROUT VERIFICATION
x	CONTRACTOR'S CERTIFIED WELD INSPECTION
NA NA	EARTHWORK: LIFT AND DENSITY
x	ON SITE COLD GALVANIZING VERIFICATION
NA	GUY WIRE TEXBION REPORT
x	GC AS-BUILT DOCUMENTS
х	THIRD PARTY ONBITE INSPECTION OF BOLT PRETENSION PER CROWN REQUIREMENTS
X	INSPECTION OF AJAX BOLTS AND DT/S PER REQUIREMENTS ON SHEET S.3
HTIONAL TESTING AND INSPECTIONS:	
	POST-CONSTRUCTION
X	MU INSPECTOR REDLINE OR RECORD DRAWING(S)
x	THIRD PARTY ONSITE BOLT INSPECTION REPORT
NA NA	
	POST INSTALLED MICROPILE PULL-OUT TESTING
X	PHOTOGRAPHS

NOTE: X DENOTES A DOCUMENT NEEDED FOR THE PHILREPORT NA DENOTES A DOCUMENT THAT IS NOT REQUIRED FOR THE PHILREPORT

SEP 1 9 2013

PAUL J. FORD AND COMPANY STRUCTURAL ENGINEERS 250 Easl Braid Street - Suite 500 ° Columbus, Ohio 4315 www.jilyleb com CROWN CASTLE

BU #825983; MIDDLETOWN 1 MIDDLETOWN, CT

37513-1570A DRAWN BY BMS CHECKED BY JJW

APPROVED BY

BKK

DATE:

ISSUE DATE OF PERMIT: 9-17-2013

ATTACHMENT 4

January 17, 2014

Doug Drost Project Engineer, Wireless Centek Engineering, Inc. 63-2 North Branford Road Branford, Ct. 06405

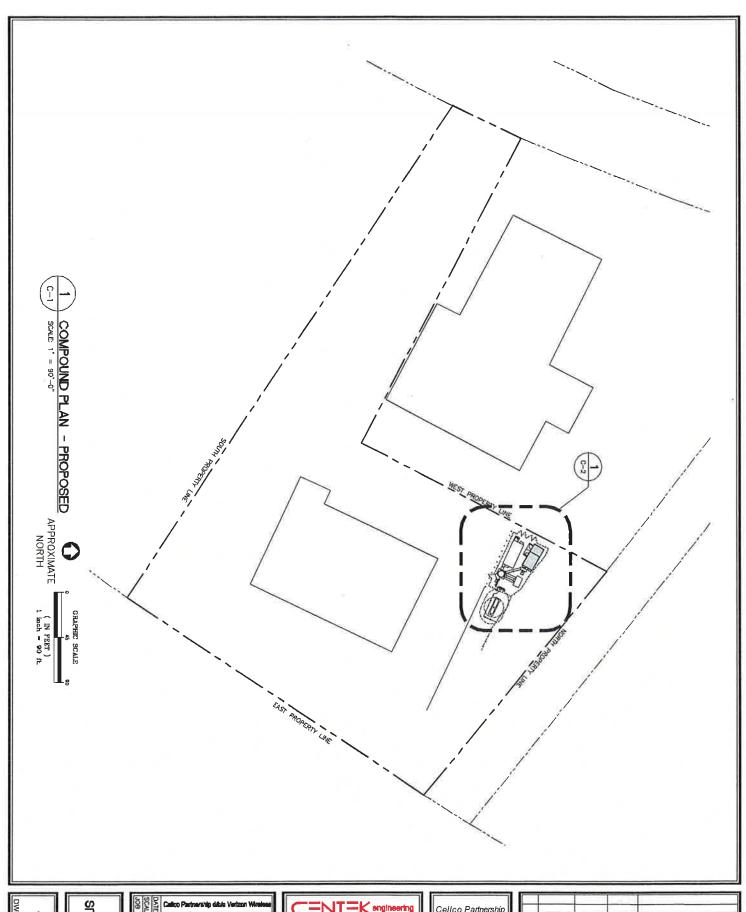
Subject: Middletown NW - CSC Noise Compliance Study

Dear Mr. Drost:

The noise levels for the V1 and V2 wall mounted HVAC units were calculated while they were operating separately. Typically only one of the two air-conditioner units operates at any one time. The noise level was then projected to each property line. The resultant noise level was compared to the State of Ct. Noise Regulation. The Regulation allows a noise level of 55 dBA (daytime) and 45 dBA (nighttime) when measured at a Residential Receptor's property line. I found that the V1 and V2 units meet the conditions for compliance as set forth in the Regulation at all property lines.

Allan Smardin HMB Acoustics LLC

PROJECT INFORMATION:	Centek Job #: 13132.000
Applicant:	Cellco Partnership d.b.a. Verizon Wireless
Applicant Site ID:	Middletown NW
Site Owner:	T-Mobile
Site Address:	90 Industrial Park Road, Middletowm, CT
Subject Zoning District: IT - Interstate Trade Zone	
Abutting Zoning District(s):	IT - Interstate Trade Zone(All Abutters)


ID	Nation Emitted	Maka/Madal	P	rop. Line	e. Dist. (FT)
ID	Noise Emitter	Make/Model	North	South	East	West
V-1	Wall Mounted HVAC	Bard / W61A1-105EPXXXJ	65	310	244	34
V-2	Wall Mounted HVAC	Bard / W61A1-105EPXXXJ	59	317	245	36

EX	ISTING	CO	LOCATOR	RS:		laioji I				
\boxtimes	АТ&Т	\boxtimes	Metro PCS		Other:					
	Sprint	\boxtimes	T Mobile		Other:					
	Nextel		None		Other:			 		

ID	Nietos Emitton	Maka/Madal	Pı	rop. Line	. Dist. (FT)
ID	Noise Emitter	Make/Model	North	South	East	West
A-1	Wall Mounted HVAC	Marvair, ComPac	82	295	264	14
A-2	Wall Mountd HVAC	Marvair, ComPac	79	295	234	43

EXIST	TING COLOCATOR EQU	IPMENT OWNER:				
TD.	N . E	Malas/Madal	Pi	rop. Line	e. Dist. (FT)
ID	Noise Emitter	Make/Model		South		West

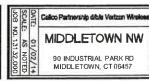
EXIS	STING COLOCATOR	EQUIPMENT OWNER:					
ID	Noise Emitter	Make/Mod	ما	Pr	op. Line	. Dist. (l	FT)
ID	Noise Emitter	IVIARE/IVIOU	lei	North	South	East	West
FXIS	TING COLOCATOR	R EQUIPMENT OWNER:					
	This collocation	EQUITIDATIONADIA		D,	op. Line	Diet (EL.)
ID	Noise Emitter	Make/Mod	lel	North	South	East	West
	TING GOLOGUTOR	FOURTH OWNER					
EXIS	TING COLOCATOR	EQUIPMENT OWNER:		n Laga			
ID	Noise Emitter	Make/Mod	lel		cop. Line		7
				North	South	East	West

				**************************************	17-17-1	Y. J. W.	W NEWS
CON	CLUSION:			= 1			y Vi
	Daytime Regulation:	55dBA	Nighttime Reg	ulation:	45 dBA		
	Compliance:	☐ Yes ☐ No	Comi	pliance:	⊠ Yes	□ No	
RACIO	S OF FINDINGS:	M 100 [] 140	Cuinj	риансе.	Z 103		
		BA; $V-2 = 45 \text{ dBA}$; $A-1 = 48$	8 dBA; A-2 = 39 dBA	A			
	''''	BA; $V-2 = 32 \text{ dBA}$; $A-1 = 37$					
East p	roperty line: $V-1 = 39 \text{ d}$	BA; $V-2 = 39 \text{ dBA}$; $A-1 = 30$	dBA; $A-2 = 39 dBA$	Α			
West	property line: $V-1 = 44 d$	BA; $V-2 = 44 \text{ dBA}$; $A-1 = 56$	dBA; $A-2 = 54 dBA$	1			
The di	DA levels telso into accoun	nt the accustical shielding affect	t provided by other				
	ires on the property.	nt the acoustical shielding effec	t provided by other				
sauca	ares on the property.						
The ex	cisting and Metro PCS and	d T-Moble equipment is inaudil	ole at a distance of 20	feet.			
					04.44.51		
Prepa	red By: Alan Smardin,	HMB ACOUSTICS LLC		Date:	01/16/1	4	

C-1

Cellco Partnership	ı
\	ı
d.b.a.	i
verizon wireless	ı

0	01/16/14	DMD	CFC	NOISE EMMITER INFORMATION
REV.	DATE	DRAWN	CHK'D	DESCRIPTION



NOISE EMMITTER INFORMATION

- WALL MOUNTED HVAC UNIT, MAKE: BARD, MODEL: W61A1-A05EPXXXJ
 WALL MOUNTED HVAC UNIT. MAKE: BARD. MODEL: W61A1-A05EPXXXJ
- (H) WALL MOUNTED HVAC UNIT, MAKE: BARD, MODEL: W61A1-AGSEPXXXJ
- WALL MOUNTED HVAC UNIT, MAKE: MARVAIR, COMPAC, MODEL: UNKNOWN
 WALL MOUNTED HVAC UNIT, MAKE: MARVAIR, COMPAC, MODEL: UNKNOWN

C-2

١	Cellco Partnership
١	
l	d.b.a. verizon wireless
ı	Verizon wireless

0	01/18/14	DIAD	CFC	NOISE EMMITER INFORMATION
₹EV.	DATE	DRAWN	CHK'D BY	DESCRIPTION

ATTACHMENT 5

Site Name: Middletown NW CALC. MAX. MAX. Tower Height: Verizon @ 155' # OF CHAN. WATTS ERP HEIGHT POWER PERC. EXP. MAX. T-Mobile GSIM CARIER # OF CHAN. WATTS ERP HEIGHT DOWER PERC. EXP. MAX. T-Mobile UNTS 2 639 185 0.0134 2100 1.34% **MetroPCS CDMA 3 727 165 0.0288 2135 1.0000 2.88% **AT&T UMTS 3 727 165 0.0138 880 0.5867 2.26% *AT&T UMTS 2 875 175 0.0205 1900 1.0000 2.05% *AT&T UMTS 3 1 2 875 175 0.0247 1900 1.57% *AT&T UMTS 4 5.25 175 0.0247 1900 1.0000 2.77% *AT&T UT 4 5.25 175 0.0247 1900 1.0000 2.74% Verizon 4 5.2		General	Power	Density					
R # OF CHAN. WATTS ERP HEIGHT POWER FREQ. FREQ. FRACTION POWER FREQ. FREQ. FRACTION POWER PERMISS. FRACTION POWER PERMISS. FRACTION POWER AMAC. EXP. MAPE MAX. MAX. MAX. MAY.	te Name: Middletown NW								
R # OF CHAN. WATTS ERP HEIGHT PIGHT CALC. DENS FREQ. EXP. PERMISS. PERTON PERMISS. PRACTION R # OF CHAN. WATTS ERP HEIGHT DENS FREQ. EXP. PERPO. MAX. R R 113 185 0.0035 1945 1.0000 1.34% R 2 639 185 0.0134 2100 1.34% 1.34% R 3 727 165 0.0288 2135 1.0000 2.88% R 1 1200 165 0.0158 2135 1.0000 2.88% R 2 565 175 0.0133 880 0.5867 2.26% R 1 283 175 0.0205 1900 1.000 2.47% R 4 525 175 0.0154 734 0.4893 3.15% R 1 1828 155 0.0244 1900 1.000 2.74% R 1 1828 155<	ower Height: Verizon @ 155'								
CARRIER # OF CHAN. WATTS ERP HEIGHT DENS FREQ. EXP. MPE 8 113 185 0.0095 1945 1.0000 0.95% 2 639 185 0.0134 2100 1.34% 3 727 165 0.0288 2135 1.0000 1.34% 1 1 1 1200 165 0.0158 2135 1.0000 1.88% 2 565 175 0.0133 880 0.5867 2.26% 2 875 175 0.0205 1900 1.0000 2.05% 4 525 175 0.0247 1900 1.000 2.47% 11 500 439 155 0.0247 1900 1.0700 2.74% 2 8 1 5 0.0247 1900 1.000 2.47% 4 5 1 1 1838 155 0.0274 1900 10.21% <t< td=""><td></td><td></td><td></td><td></td><td>CALC. POWER</td><td></td><td>MAX. PERMISS.</td><td></td><td></td></t<>					CALC. POWER		MAX. PERMISS.		
8 113 185 0.0095 1945 1.0000 0.95% 2 639 185 0.0134 2100 1.0000 1.34% 3 727 165 0.0288 2135 1.0000 2.88% 1 1200 165 0.0158 2130 1.0000 2.88% 2 565 175 0.0138 880 0.5867 2.26% 2 875 175 0.0205 1900 1.0000 2.05% 4 525 175 0.0247 1900 1.0000 2.47% 4 525 175 0.0247 1900 1.0000 2.47% 1 1313 175 0.0247 1900 1.0000 2.47% 4 525 175 0.0823 1970 1.0000 2.74% 1 1313 155 0.0547 1900 1.0000 2.74% 1 1 1828 155 0.0547 1900	CARRIER	# OF CHAN.	WATTS ERP	HEIGHT	DENS	FREQ.	EXP.		Total
2 639 185 0.0134 2100 1.34% 3 727 165 0.0288 2135 1.0000 2.88% 1 1200 165 0.0158 2135 1.0000 1.58% 2 565 175 0.0133 880 0.5867 2.26% 1 2 875 175 0.0205 1900 1.0000 2.05% 4 525 175 0.0247 1900 1.0000 2.47% 4 525 175 0.0247 1900 1.0000 2.47% 1 1313 175 0.0154 734 0.4893 3.15% 1 1313 175 0.0154 734 0.4893 3.15% 1 1313 155 0.0591 869 0.5790 10.010 1 1828 155 0.0134 698 0.4650 2.89% 1 1898 155 0.0134 698 0.4650	Mobile GSM	∞	113	185	0.0095	1945	1.0000	%56.0	
3 727 165 0.0288 2135 1.0000 2.88% 1 1200 165 0.0158 2130 1.0000 1.58% 2 565 175 0.0133 880 0.5867 2.26% 2 875 175 0.0205 1900 1.0000 2.05% 4 525 175 0.0247 1900 1.0000 2.47% 4 525 175 0.0154 734 0.4893 3.15% 1 1313 175 0.0154 734 0.4893 3.15% 4 525 175 0.0147 734 0.4893 3.15% 1 1313 175 0.0154 734 0.4893 3.15% 4 525 175 0.0247 1.000 2.74% 5 439 439 155 0.0591 869 0.5790 1.021% 5 1 1 1898 155 0.0134	Mobile UMTS	2	639	185	0.0134	2100	1.0000	1.34%	
* Source: Siting Council 1 1200 165 0.0158 2130 1.0000 1.58% 2 565 175 0.0133 880 0.5867 2.26% 2 875 175 0.0205 1900 1.0000 2.05% 1 283 175 0.0247 1900 1.0000 2.05% 4 525 175 0.0247 1900 1.0000 2.47% 1 11 500 155 0.0154 734 0.4893 3.15% 4 525 175 0.0154 734 0.4893 3.15% 4 526 175 0.0154 734 0.4893 3.15% 4 500 439 155 0.0524 1.0000 2.74% 5 1 1 1828 155 0.0134 698 0.4650 2.89%	MetroPCS CDMA	E	727	165	0.0288	2135	1.0000	2.88%	
* Source: Siting Council 2 565 175 0.0133 880 0.5867 2.26% 2 875 175 0.0205 1900 1.0000 2.05% 1 1 283 175 0.0247 1900 1.0000 2.47% 4 525 175 0.0154 734 0.4893 3.15% 1 11 500 155 0.0154 734 0.4893 3.15% 4 525 175 0.0154 734 0.4893 3.15% 1 11 500 155 0.0621 869 0.5790 10.21% 439 155 0.0574 2145 1.0000 2.74% 1 *Source: Siting Council 1 898 155 0.0134 698 0.4650 2.89%	MetroPCS LTE	1	1200	165	0.0158	2130	1.0000	1.58%	
* Source: Siting Council 2 875 175 0.0205 1900 1.0000 2.05% 1 1 283 175 0.0033 880 0.5867 0.57% 4 525 175 0.0247 1900 1.0000 2.47% 1 11 1313 175 0.0154 734 0.4893 3.15% 4 500 439 155 0.0823 1970 1.0000 8.23% 1 1 1828 155 0.0591 869 0.5790 10.21% *Source: Siting Council 1 898 155 0.0134 698 0.4650 2.89%	AT&T UMTS	2	565	175	0.0133	880	0.5867	7.26%	
* Source: Siting Council 1 283 175 0.0033 880 0.5867 0.57% 4 525 175 0.0247 1900 1.0000 2.47% 1 1313 175 0.0154 734 0.4893 3.15% 11 500 155 0.0823 1970 1.0000 8.23% 9 439 155 0.0591 869 0.5790 10.21% 1 1828 155 0.0274 2145 1.0000 2.74% *Source: Siting Council 1 898 155 0.0134 698 0.4650 2.89%	AT&T UMTS	2	875	175	0.0205	1900	1.0000	2.05%	
* Source: Siting Council 4 525 175 0.0247 1900 1.0000 2.47% 1 1 1313 175 0.0154 734 0.4893 3.15% 11 500 155 0.0154 734 0.4893 3.15% 439 439 155 0.0591 869 0.5790 10.21% 1 1 1828 155 0.0134 698 0.4650 2.89% * Source: Siting Council * Source: Siting Council * Source: Siting Council * Source * Source * Source * Source	AT&T GSM	П	283	175	0.0033	880	0.5867	0.57%	
* Source: Siting Council 1 1313 175 0.0154 734 0.4893 3.15% 11 500 155 0.0823 1970 1.0000 8.23% 9 439 155 0.0591 869 0.5790 10.21% 1 1828 155 0.0274 2145 1.0000 2.74% * Source: Siting Council * Source: Siting Council 1 898 155 0.0134 698 0.4650 2.89%	AT&T GSM	4	525	175	0.0247	1900	1.0000	2.47%	
* Source: Siting Council 11 500 155 0.0823 1970 1.0000 8.23% 439 439 155 0.0591 869 0.5790 10.21% 1 1828 155 0.0274 2145 1.0000 2.74% * Source: Siting Council * Source: Siting Council 0.0450 2.89%	AT&T LTE	1	1313	175	0.0154	734	0.4893	3.15%	
*Source: Siting Council 9 439 155 0.0591 869 0.5790 10.21% * Source: Siting Council * Source 1	erizon	11	200	155	0.0823	1970	1.0000	8.23%	
* Source: Siting Council 1 1828 155 0.0274 2145 1.0000 2.74% 1 898 155 0.0134 698 0.4650 2.89% * Source: Siting Council * Source: Siting Council * Source: Siting Council * Source: Siting Council	erizon	တ	439	155	0.0591	869	0.5790	10.21%	
* Source: Siting Council ** Source: Siting C	erizon	1	1828	155	0.0274	2145	1.0000	2.74%	
	erizon	-	868	155	0.0134	869	0.4650	2.89%	
	* Source: Siting Council								41.3%