Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

June 26, 2023

Via Electronic Mail

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 67 Fairchild Road, Middletown, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an existing wireless telecommunications facility at the above-referenced property address (the "Property"). The Cellco facility consists of antennas at a height of 110 feet on the existing tower and related equipment on the ground, near the base of the tower. The original 120-foot tower was approved by the Siting Council (the "Council") in November of 2006 (Docket No. 316).¹ Cellco's shared use of the tower was approved by the Siting Council in May of 2008 (EM-VER-083-080404). A copy of the Docket No. 316 Decision and Order and Cellco's approval are included in <u>Attachment 1</u>.

Cellco now intends to modify its facility by removing all six (6) of its existing antennas and installing six (6) new antennas on the tower. Cellco also intends to remove six (6) remote radio heads ("RRH") and install six (6) new RRH behind its antennas. A set of project plans showing Cellco's proposed facility modifications and the new antenna and RRH specifications are included in <u>Attachment 2</u>.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance

¹ AT&T received Council approval to extend the tower to 130 feet in August of 2011 (Docket No. 316A).

Boston | Hartford | New York | Providence | Stamford | Albany | Los Angeles | Miami | New London | rc.com

Robinson+Cole

Melanie A. Bachman, Esq. June 26, 2023 Page 2

with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Middletown's Chief Elected Official and Land Use Officer.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. Cellco's new antennas will be installed at the same height on the tower.

2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The installation of Cellco's new antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. Included in <u>Attachment 3</u> is a Calculated Radio Frequency Emissions Report demonstrating that the proposed modified facility will comply with the FCC safety standards. The modified facility will be capable of providing Cellco's 5G wireless service.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. According to the attached Structural Analysis ("SA") and Mount Analysis ("MA"), the existing tower, tower foundation and antenna mounts can support Cellco's proposed modifications. Copies of the SA and MA are included in <u>Attachment 4</u>.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 6</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Robinson+Cole

Melanie A. Bachman, Esq. June 26, 2023 Page 3

Sincerely,

Kunie MM

Kenneth C. Baldwin

Enclosures

Copy to:

Benjamin Florsheim, Middletown Mayor Marek Kozikowski, Director of Land Use Stephen and Barbara Borrelli, Property Owners Aleksey Tyurin, Verizon Wireless

ATTACHMENT 1

DOCKET NO. 316 – Optasite, Inc. application for a Certificate } of Environmental Compatibility and Public Need for the construction, maintenance and operation of a telecommunications } facility at 50 Fairchild Road in Middletown, Connecticut.

Connecticut

Siting

Council

}

November 14, 2006

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a telecommunications facility including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application and therefore directs that a Certificate of Environmental Compatibility and Pubic Need, as provided by General Statutes § 16-50k, be issued to Optasite, Inc. for the construction, maintenance and operation of a wireless telecommunications facility to be located at 50 Fairchild Road in Middletown, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be designed as a monopole and shall be constructed no taller than 120 feet above ground level to provide telecommunications services to both public and private entities.
- 2. All telecommunications antennas providing cellular and/or PCS service shall be flushmounted to the tower.
- 3. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be served on the City of Middletown and all parties and intervenors, as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction and shall include:
 - a) a final site plan(s) of site development to include specifications for the tower, tower foundation, tower color, antenna mountings, equipment building, access road, utility line, and landscaping; and
 - b) construction plans for site clearing, water drainage, and erosion and sedimentation control consistent with the <u>2002 Connecticut Guidelines for Soil Erosion and</u> Sediment Control, as amended.

Docket 316: Middletown Decision and Order Page 2

- 4. The Certificate Holder shall, prior to the commencement of operation, provide the Council worst-case modeling of electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of electromagnetic radio frequency power density is submitted to the Council in the event other carriers locate at this facility or if circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.
- 5. Upon the establishment of any new state or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 6. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 7. The Certificate Holder shall provide reasonable space on the tower for no compensation for any City of Middletown public safety services (police, fire and medical services), provided such use can be accommodated and is compatible with the structural integrity of the tower.
- 8. If the facility authorized herein is not fully constructed and providing wireless services within eighteen months from the date of the mailing of the Council's Findings of Fact, Opinion, and Decision and Order (collectively called "Final Decision"), this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made. The time between the filing and resolution of any appeals of the Council's Final Decision shall not be counted in calculating this deadline.
- 9. If the facility ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
- 10. The Certificate Holder shall remove any nonfunctioning antenna, and associated antenna mounting equipment, within 60 days of the date the antenna ceased to function.
- 11. Any request for extension of the time periods referred to in Conditions 8, 9, and 10 shall be filed with the Council not later than sixty days prior to the expiration date of this Certificate and shall be served on all parties and intervenors and the City of Middletown, as listed in the service list. Any proposed modifications to this Decision and Order shall likewise be so served.

Docket 316: Middletown Decision and Order Page 3

12. In accordance with Section 16-50j-77 of the Regulations of Connecticut State Agencies, the Certificate Holder shall provide the Council with written notice two weeks prior to the commencement of construction activities. In addition, the Certificate Holder shall provide the Council with written notice of the completion of site construction and the commencement of site operation.

Pursuant to General Statutes § 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in the <u>Middletown Press</u>.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

2

Docket 316: Middletown Decision and Order Page 4

The parties and intervenors in this proceeding are:

	Status Holder	Representative
Status Granted	(name, address & phone number)	(name, address & phone number)
Applicant	Optasite, Inc.	Lucia Chiocchio, Esq. Cuddy & Feder, LLP 90 Maple Avenue White Plains, NY 10601 (914) 761-1300 (914) 761-5372/6405 fax <u>IChiocchio@cuddyfeder.com</u> Jennifer Young Gaudet 345 Taylor Street Talcottville, CT 06066
Intervenor (approved 06/2706)	Nextel Communications of the Mid-Atlantic, Inc.	Thomas J. Regan, Esq. Brown Rudnick Berlack Israels LLP 185 Asylum Street, CityPlace I Hartford, CT 06103-3402 (860) 509-6522 (860) 509-6501 <u>tregan@brownrudnick.com</u> <u>mkozlik@brownrudnick.com</u>
Intervenor (granted 07/27/06	Barbara Melia 379 Bow Lane Middletown, CT 06457 (860) 346-4334 bardebdave@yahoo.com	-
Intervenor (granted 07/27/06)	Debora Bagley and Michael Bagley 393 Bow Lane Middletown, CT 06457 (860) 346-5373	
Intervenor (granted 07/27/06)	Earle Roberts 785 Bow Lane Middletown, CT 06457 (860) 346-0068 (860) 344-9327 eroberts4675@sbcglobal.net	

May 7, 2008

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597

RE: **EM-VER-083-080404** – Cellco Partnership d/b/a Verizon Wireless notice of intent to modify an existing telecommunications facility located at 50 Fairchild Road, Middletown, Connecticut.

Dear Attorney Baldwin:

The Connecticut Siting Council (Council) hereby acknowledges your notice to modify this existing telecommunications facility, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies.

The proposed modifications are to be implemented as specified here and in your notice dated April 4, 2008, including the placement of all necessary equipment and shelters within the tower compound. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to an existing facility site that would not increase tower height, extend the boundaries of the tower site, increase noise levels at the tower site boundary by six decibels, and increase the total radio frequencies electromagnetic radiation power density measured at the tower site boundary to or above the standard adopted by the State Department of Environmental Protection pursuant to General Statutes § 22a-162. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Please be advised that the validity of this action shall expire one year from the date of this letter. Any additional change to this facility will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

Thank you for your attention and cooperation.

Very truly yours,

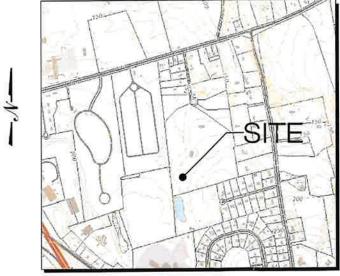
S. Derek Phelps Executive Director

SDP/MP

c: Honorable Sebastian N. Giuliano, Mayor, City of Middletown William Warner, AICP Director, City of Middletown Optasite Towers LLC

ATTACHMENT 2

verizon WIRELESS COMMUNICATIONS FACILITY


SOUTH FARMS CT **67 FAIRCHILD ROAD MIDDLETOWN, CT 06457**

DRAWING INDEX

- T-1 TITLE SHEET
- C-1 COMPOUND PLAN, TOWER ELEVATION, EQUIP. PLANS, **ELEVATIONS & NOTES**
- B-1 RF BILL OF MATERIALS, EQUIPMENT **SPECIFICATIONS & DETAILS**
- N-1 NOTES & SPECIFICATIONS

SITE DIRECTIONS

- START: 20 ALEXANDER DRIVE WALLINGFORD, CONNECTICUT 06492
- END: 67 FAIRCHILD ROAD **MIDDLETOWN, CT 06457**
- HEAD SOUTH TOWARDS ALEXANDER DRIVE
- TURN RIGHT TURN RIGHT TOWARDS ALEXANDER DRIVE
- TURN RIGHT TOWARDS ALEXANDER DRIVE
- TURN RIGHT ONTO ALEXANDER DRIVE
- TURN RIGHT ONTO BARNES INDUSTRIAL PARK, TURN RIGHT ONTO CT-68 E
- CONTINUE STRAIGHT TO STAY ON CT-68 E.
- TUBNILEET ONTO CT-17 N/MAIN STREET
- 10 TURN RIGHT ONTO RANDOLPH ROAD
- TURN LEFT ONTO LEE STREET
- 12. TURN RIGHT ONTO SAND HILL ROAD
- 13. TURN LEFT ONTO TRYON STREET
- 14 TURN RIGHT ONTO BOW LANE
- 15. TURN RIGHT ONTO FAIRCHILD ROAD

LOCATION MAP

SITE INFORMATION

VZ SITE NAME: SOUTH FARMS CT VZ PROJ FUZE I.D .: 16235710 VZ LOCATION CODE: 20212261289 VZ PROJECT CODE: 535834 LOCATION: 67 FAIRCHILD ROAD MIDDLETOWN, CT 06457

371 FT

0,1 MI 72 FT

167 FT

0.3 MI

0.1 MI

1.6 MI

5.3 MI

4.0 MI

1.6 MI

0.2 MI

0.1 MI

0.6 MI

0 5 MI

0.1 MI

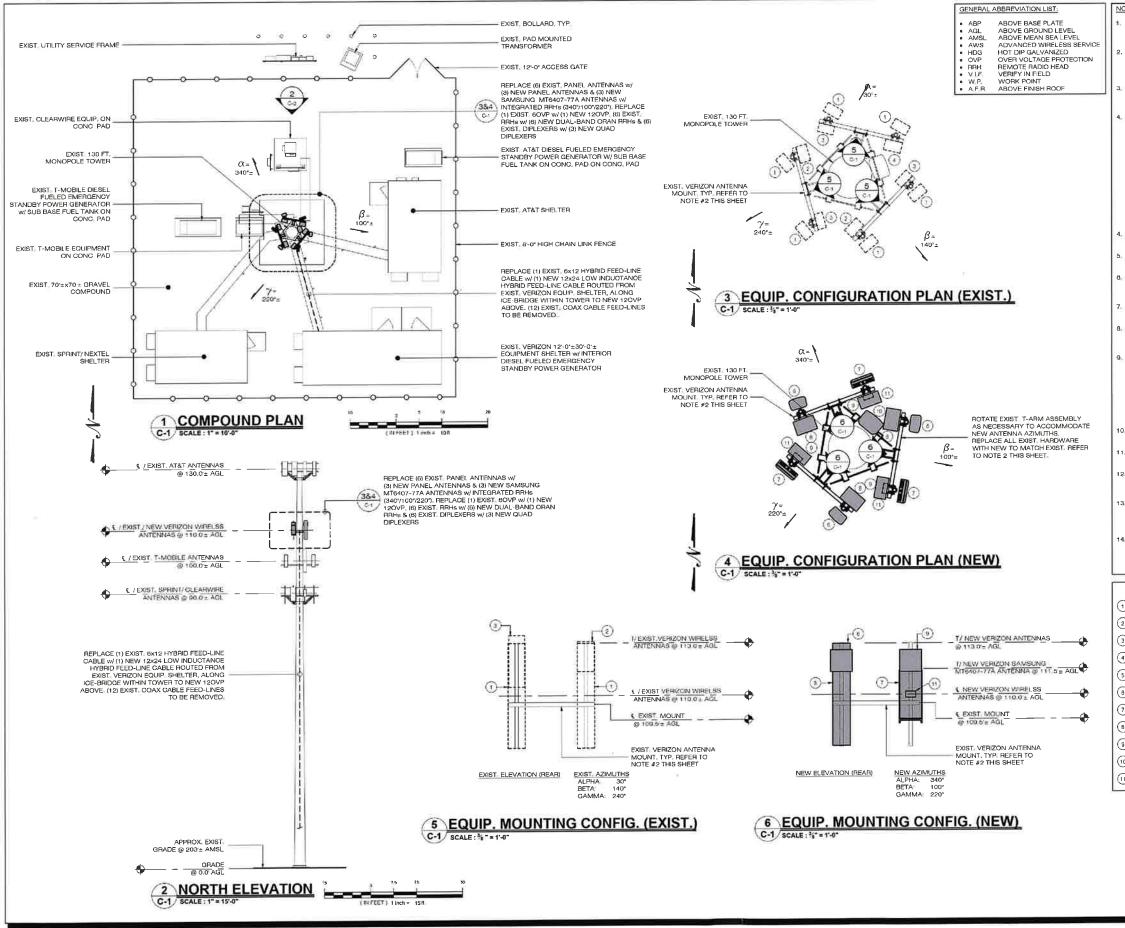
- PROJECT SCOPE: REFER TO NOTES ON DRAWING C-1 FOR SCOPE OF WORK MAP/BLOCK/LOT: 42/0121
- ZONING DISTRICT: R-30 (RESIDENTIAL)
- LATITUDE: 41° 32' 42.6984" N (41.545194° N)

LONGITUDE: 72° 37' 13.4004" W (72.620389° W)

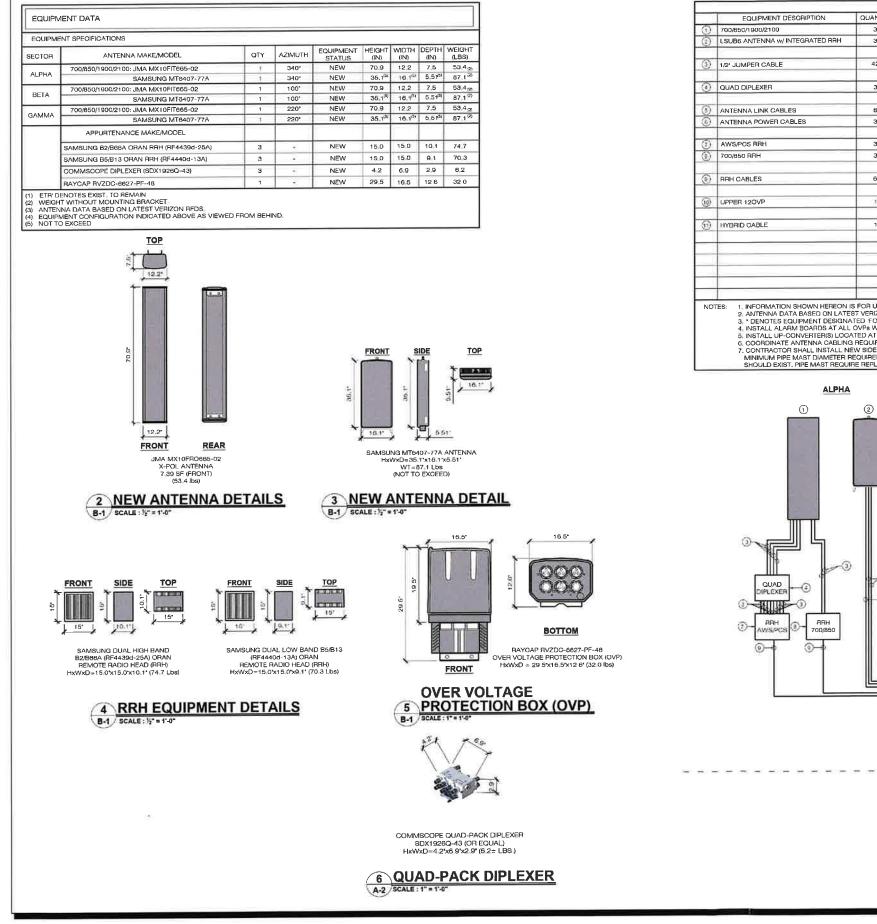
GROUND ELEVATION: 203'± AMSL

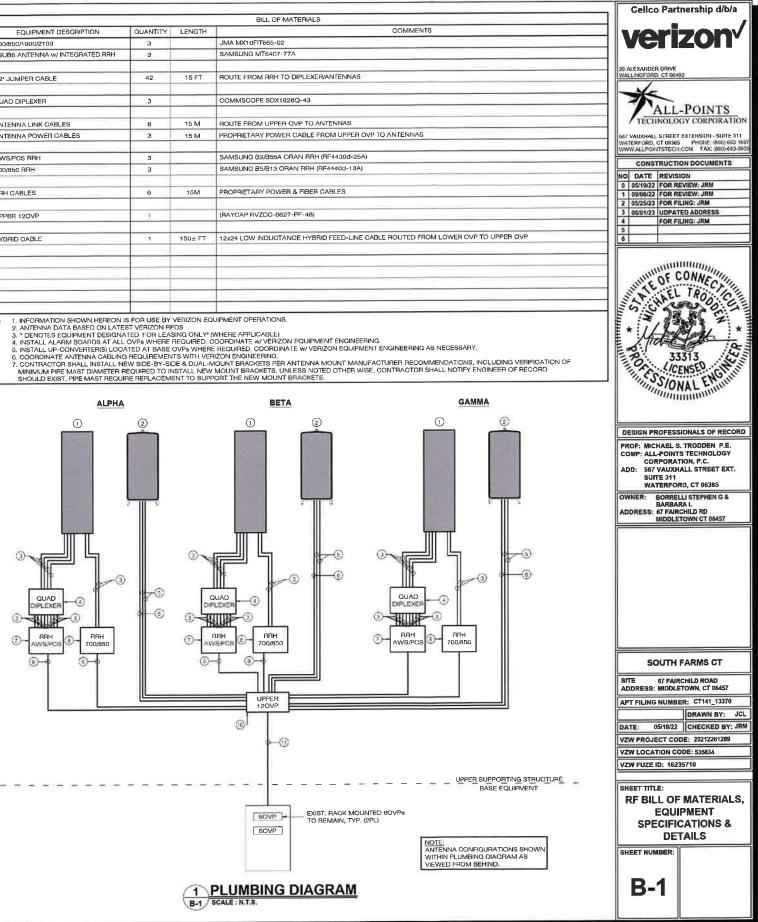
PROPERTY OWNER: BORRELLI STEPHEN G & BARBARA L 67 FAIRCHILD BD

MIDDLETOWN CT 06457


APPLICANT: CELLCO PARTNERSHIP d/b/a VEBIZON WIRELESS 20 ALEXANDER DRIVE WALLINGFORD, CT 06492

LEGAL/REGULATORY COUNSEL: ROBINSON & COLE, LLP KENNETH C BALDWIN, ESQ. 280 TRUMBULL STREET HARTFORD, CT 06103


> ENGINEER CONTACT: ALL-POINTS TECHNOLOGY CORPORATION, P.C. 567 VAUXHALL STREET EXTENSION - SUITE 311 WATERFORD, CT 06385 (860) 663-1697



SITE COORDINATES AND GROUND ELEVATION OBTAINED FROM VERIZON RFDS & GOOGLE EARTH.

NOTES:	Cellco Partnership d/b/a
 REFER TO TOWER STRUOTURAL ANALYSIS REPORT BY TOWER ENGINEERING SOLUTIONS, DATED 12/07/22, AVAILABLE UNDER SEPARATE COVER. 	verizon [,]
2. REFER TO MOUNT ANALYSIS REPORT PREPARED BY MASER CONSULTING, CONNECTICUT, PROJECT #21777971 MARKED REV2, DATED 05/23/22 AVAILABLE UNDER SEPARATE COVER	20 ALEXANDER DRIVE WALLINGFORD, CT 06492
3. BASE MAPPING OBTAINED FROM FIELD MEASUREMENTS CONDUCTED BY ALL-POINTS TECHNOLOGY CORPORATION, P.C. ON 04/29/22	ALL-POINTS
4. PROJECT SCOPE INCLUDES THE FOLLOWING:	TECHNOLOGY CORPORATION
MT6407-77A ANTENNAS w/ INTEGRATED RRHs REPLACEMENT OF (6) EXIST. RRHs w/ (6) NEW DUAL-BAND ORAN RRHs PERLACEMENT OF (1) EXIST. BOVP w/ (1) NEW 120VP	Servershow Street Extension - Suite 311 WATEMFORD, CT 05385 PHONE: (860):053 1007 WWYALL20011151ECH.COM FAX: (860):463-9935 CONSTRUCTION DOCUMENTS NO 0 05/19/22 FOR REVIEW: JRM 1 0910922; FOR REVIEW: JRM 2 05/25/23 FOR FILING: JRM 3 0601/23 UDPATED ADDRESS 4 FOR FILING: JRM
4. ALL EXPOSED STEEL AND HARDWARE TO BE HOT DIP GALV	5
(HDG) PAINT TO MATCH EXIST (WHERE APPLICABLE) 5. CAP & WEATHERPROOF ALL UN-USED CABLE ENTRY PORTS	
(WHERE APPLICABLE). 8. MOUNT & GROUND ALL NEW EQUIPMENT IN ACCORDANCE	UNITE OF CONNEC
WITH NEC (NFPA-70), NESC AND MANUFACTURERS SPECIFICATION 7. SECURE ALL NEW ANTENNA CABLES PER MANUFACTURER	S CHAEL TRODICE
RECOMMENDATIONS: 8. BOND NEW ANTENNA MOUNTING PIPES TO ANTENNA	* if faller *
SECTOR GROUND BAR w/ # 2 AWG, BCW, (WHERE APPLICABLE)	8 33313
CONTINUE OF STALE INTELLET OF DUCE OF OUT A DUAL MOUNT BRACKETS PER ANTENNA MOUNT MANUFACTURER RECOMMENDATIONS, INCLUDING VERIFICATION OF INIMIMUM PIET MAST DUAMETER RECUIRED TO INSTALL NEW MOUNT BRACKETS, UNLESS NOTED OTHER WISE, CONTRACTOR SHALL NOTIFY ENGINEER OF RECORD SHOULD EXIST, PIPE MASTS RECUIRE REPLACEMENT TO SUPPORT THE NEW MOUNT BRACKETS,	B 33313 CCENSED ON THE
10. ANTENNA CONFIGURATIONS SHOWN HEREIN ARE REAR ELEVATIONS (UNLESS NOTED OTHERWISE).	DESIGN PROFESSIONALS OF RECORD PROF: MICHAEL S. TRODDEN P.E.
11. ANTENNA SPACING DIMENSIONS ARE TO THE CENTER OF THE EXIST, ANTENNA AND PROP, ANTENNA FACE	COMP: ALL-POINTS TECHNOLOGY CORPORATION, P.C. ADD: 567 VAUXHALL STREET EXT.
12. REFER TO THE FINAL RFDS PROVIDED BY VERIZON FOR THE LATEST INFORMATION REGARDING EQUIPMENT MODELS, REQUIRED CABLING & DOWN-TILT INFORMATION	SUITE 311 WATERFORD, CT 06385 OWNER: BORRELLI STEPHEN G &
13. PAINT ALL LSUB6 ANTENNAS TO MATCH EXISTING STRUCTURE (WHERE APPLICABLE). COORDINATE W/LSUB6 MANUPACTURER INSTALLATION MANUAL REQUIREMENTS, VERIZON CONSTRUCTION MANAGER & OWNER.	BARBARA L ADDRESS: 67 FAIRCHILD RD MIDDLETOWN CT 06457
14. PAINT ALL NEW NON SAMSUNG MT6407-77A ANTENNAS & APPURTENANCES TO MATCH EXIST. STRUCTURE (WHERE APPLICABLE) COORDINATE W/ VERIZON CONSTRUCTION MANAGER & BUILDING OWNER.	
SCOPE OF WORK (ALL) SECTORS	
EXIST_ANTENNA (TO BE REPLACED) MODEL: ANDREW SBNHH-1D85B	
EXIST. RHH (TO BE REPLACED) MODEL: NOKIA B13 4x30 RRH	
EXIST. RHH (TO BE REPLACED) MODEL: NOKIA B4 2x60-4R RRH	
EXIST. OVP MOUNTED TO TOWER (TO BE REPLACED) MODEL: RFS RRFDC-3315-PF-48	SOUTH FARMS CT
EXIST. DIPLEXER (TO BE REPLACED) MODEL: COMMSCOPE CBC78-DF	SITE 67 FAIRCHILD ROAD
NEW ANTENNA	ADDRESS: MIDDLETOWN, CT 06457
NEW ANTENNA	APT FILING NUMBER: CT141_13370
MODEL: SAMSUNG MT6407-77A W/INTEGRATED RRH	DATE: 05/19/22 CHECKED BY: JRM
MODEL: SAMSUNG B2/B66A RRH (RF4439d-25A)	VZW PROJECT CODE: 20212261289
MODEL: SAMSUNG B5-B13 RRH (RF4440d-13A)	VZW LOCATION CODE: 535834
(10) NEW 120VP (MOUNTED TO TOWER) MODEL: RAYCAP RVZD-6627-PF-48	VZW FUZE ID: 16235710
11 NEW DIPLEXER MODEL: COMMSCOPE SDX1926Q-43	SHEET TITLE:
L	COMPOUND PLAN,
	TOWER ELEVATION,
	EQUIP. PLANS,
	ELEVATIONS & NOTES
	SHEET NUMBER:
	C-1

MANAGER AND GEASE ACL ACTIVITED IN AFFECTED AREAS UNIT. NOTIFED BY THE CONSTRUCTION TO RESULE OPERATIONS EXIST ELECTRICAL AND NECHANICLE FATURES (PMIO) (VFRAD AND DE OURVERT OBSTRUCTIVATIVE WORK SHALL DE ERDOVED AND DR BELOCATED AS DIRECTED BY THE CONSTRUCTION MANAGER ISSUED AND THE WORK BALEFACTURES AND THE DECODERATION OF THE MARKE BALEFACTURE AND THE DECODERATION OF THE MARKE BALEFACTURE AND THE L CABLES AND ANTENNAS TO THE MANUFACTURERS AND OWNER BOINGATIONS LUCETIONS LL CROUNDING ELECTRODES PRESENT AT EACH SERVICE LOGATION HULL BE BONDED TOSETHER TO FORM THE GROUNDING ELECTRODE 1977 TO FA CADLES DIRL. BE FORN DELECTION COANING CABLES AS GOVERNING CODES, DESIGN STANDARDS 2021 INTERNATIONAL BUILDING CODE (IPC) AS AMENDED BY THE 2022 CONNECTICUT STATE BUILDING CODE 4002 7-16 TA-2224H (TOWER) ROUKED BY THE INSTALLATION OF A SEPARATE CROUNDING • 78 DIALETER FOR GABLE LENGTHS UP TO 100 FT TO DOUGTON FOR CAUGE LEWITH- UP TO 100 FT
 TO 200 FT
 TO DOUGTON FOR CAUGE LEWITH- CONDUCTION CONTRACT TO TO TO THE TAY 100 FT
 OF SMITHAUMANING TO THE AND THE TO TO THE TAY 100 FT
 TO 200 FT
 TO THE AND THE AND CONTRACT LEWITH TO TO THE THAN 100 FT
 TO 200 FT
 TO THE AND THE AND CONTRACT LEWITH THAN 100 FT
 TO 200 FT
 ROUNDED BY THE INSTRUCTION OF A DEPARTURE OF A DEPARTURE OF A DEPARTURE OF A DEPARTURE AND BRANCH CONTROL OF A DEPARTURE OF A Do STEEL TIONS SHALL NOUDE THE SENERAL SPECIFICATION 01 GENERAL ABBREVIATIONS USED IN THESE SPEC ROATIONS INCLUDE THE THESE SPECIFICA HEREIN CHORNA WHE DIF CIFERENT CONSTRUCTION OF THE THAT ARE CONNECTED TO CONSTRUCT OF CONSTRUCTION OF THE THAT ARE CONNECTED TO CONSTRUCT OF CONSTRUCTION OF CONSTRUCT OF CONSTRUCT AND CONSTRUCT OF CONSTRUCTION OF CONSTRUCT OF CONSTRUCT CONSTRUCTION OF CONSTRUCTION OF CONSTRUCT OF CONSTRUCT CONSTRUCT OF CONSTRUCTION OF CONSTRUCT OF CONSTRUCTOR HERDIN WIDE TURNES JETHI AND SHIDS TURNS JETHI ADD SHID ERC ADTH AS ON GRATING ARTHUR GRATHING ARTHUR ADD ADD ADD ADD ADD ADD ADD Indextend, gui-heit Bound with a Micro and a Deputition of the Micro and a Deputition of the Micro and American WITH HELP DIVERTIAL VERIEN ENACT LEVATH AND DRECTON OF TRAVE IN ELD PROTOCOLOGICAL STRUCTON PROVIDE CHILIFICATION THAT WELTERS TO BE USED AN WORK ARE LICENSED AND HAVE SATISFACTORLY PAGED AND OUAL FICATON TEST UNCERTIFIE PROVIDEND OF APPENDIX DI VARDI 4 AND INO THE AWS CODE PROVIDENTS IN SULDING CONSTRUCTON HER SHULL BE RUPICHER AND AND ANTICID WITHOUT SPLICES (AD.) AND SOCIETION VELICITIA I SULLIFIC DONARTILICTO. ALL BULLION CONNECTION TO YOUR TO BE CONTRECTOR STRUCTURAL BEAMING POINTS AND THE ISOCIETION DO NEWTON S STRUCTURAL BEAMING POINTS AND THE ISOCIETION FARE TO BE VARIES INFELDI BUILD TO BE APART AND TO BE TO BE DESIGN AND CONSTITUCTION OF STRUCTURAL STEEL CHALL CONTON FAMILIATION AND FRACTION OF STRUCTURAL STEEL CHALL CONTONED ON THE AND FRACTION OF STRUCTURAL STEEL CHALL CONTONED ON THE AND FRACTION OF STRUCTURAL STEEL CHALL CONTONED ON THE AND FRACTION OF STRUCTURAL STEEL CHALL CONTONED ON THE AND FRACTION OF STRUCTURAL STEEL CHALL CONTONED ON THE AND FRACTION OF STRUCTURAL STEEL CHALL CONTONED ON THE AND FRACTION OF STRUCTURAL STEEL CHALL CONTONED ON THE AND FRACTION OF STRUCTURAL STEEL CHALL CONTONED ON THE AND FRACTION OF STRUCTURAL STEEL CHALL CONTONED ON THE AND FRACTION OF STRUCTURAL STEEL CHALL CONTONED ON THE AND FRACTION OF STRUCTURAL STEELS AND OF CONTONED ON THE AND FRACTION OF STRUCTURAL STEELS AND OF CONTONED ON THE AND FRACTION OF STRUCTURAL STEELS AND OF CONTONED ON THE AND FRACTION OF STRUCTURAL STRUCTURAL STEELS STRUCTURAL STRUCTURAL STEELS AND OF STRUCTURAL STRUCTURAL STEELS CONTONED ON THE AND FRACTION OF STRUCTURAL ST 27 CABLE TRAY THESE SPECIFICATIONS SHALL INCLUDE THE SERVERAL SPECIFICATIONS HETREN VERBLE TRAY SHALL BE MADE OF EITHER OCRADBION RESISTANT METAL DRIWITH A COREDIENT RESISTANT AN SH OABLE TRAY CHALL BE OF LADDER TRAY TYPE WITH FLAT COVET OLAMFEDT O BEE RAILD NUCLUE THERE GENERAL SPECIFICATIONS THE ENGINEER IS NOT RESPONSIBLE FOR NOR A GUARANTOR OF THE NOTALLING CONTRACTORY NORK IN COLOUR OF ANY SITE CONFORMENT SUPERVISION OF ANY WORK AND SAFETY EN ON OF ADDUCT ALE WORK PROFESSION HER LADOW SHALL BE LEVEL TO BIT ALL DANLES PLACED WHER THINKS ADDIMINAN TRATEGO THE LACED! THAT'S SHALL BE NEW A CLASS TO A SHIP MAD, STRES. SULT THE VALUE HERE N TO AN CR EQUAL ITEM THAT EQUAL ITEM ALL RE FRE-APPROVED BY THE CRUCTRUCTION MANAGER BEFORE FACTORE TELE DEVICE THE REPORTED AN ADDRESS WITH FACTORERS OPEC FICATIONS 22. , BOLTS, HICHORS AND MISCELLANEOUS HARDWARE EXPOSED TO ATHER SHALL BE GALVAN ZEO IN ACCORDANCE WITH ASTN ASS IS CONTING HOT-DIPLON, RON AND STEEL HARDWARE (VIGENCE DIVILUE DI LAVA VED NA ACCIDELA ASSOCIATE 2014 CONTRACIONAL DE DIVILAVA VED NA ACCIDELA ASSOCIATE INVESSE DI LA VALIERI DI LA VED DI LA VALIDA VED DI LA VALIDA DI LA VALIERI DI LA VALIERI DI LA VALIDA VED DI LA VALIDA Ella CALLO DI LA VALIERI DI LA VALIDA VALIDA VILLA VALIDA Ella CALLO DI LA VALIERI DI LA VALIDA VALIDA VALIDA SALE VALIDA VALIERI DI LA VALIDA VALIDA VALIDA VALIDA SALE VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA DI LA VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA DI LA VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA DI VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA DI VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA DI VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA DI VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA DI VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA DI VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA DI VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA DI VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA DI VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA DI VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA VALIDA DI VALIDA DI VALIDA VAL LUCAL CODES AND STANDARDS TO ENGURE SAFE AND ADEQUATE ALL YORK GRAFT BELL BEN TITTELT ACCORDANCE WITH ALL APPLICABLE EXTENDED ALL LEN TITTELT ACCORDANCE WITH ALL APPLICABLE TO ALL APPLICABLE ADVIS ALL ADVIS AND ALL BE ACCORD TO ALL APPLICABLE ADVIS ALL ADVIS AND ALL ADVIS ACCORD TO THE ALL APPLICABLE ADVIS ALL ADVIS AND ALL ADVIS AT COMMUNICATION ALL ADVIS ALL ADVIS AND ALL ADVIS AND ALL APPLICABLE ALL ADVIS ALL ADVIS AND ALL ADVIS AND ALL APPLICABLE ALL ADVIS ALL ADVIS AND ALL ADVIS AND ALL APPLICABLE ALL ADVIS ALL ADVIS AND ALL ADVIS AND ALL ADVIS AND ALL ADVIS ALL ADVIS AND ALL ADVIS AND ALL ADVIS AND ALL ADVIS ALL ADVIS AND ALL ADVIS ALL ADVIS ALL ADVIS ALL ADVIS AND ALL ADVIS AND ALL ADVIS ALL ADVIS ADVIS ALL ADVIS ALL ADVIS AND ALL ADVIS AND ALL ADVIS ALL ADVIS ADVIS ALL ADVIS AND ALL ADVIS AND ALL ADVIS AND ALL ADVIS AND ADVIS ALL ADVIS AND ADVIS ALL ADVIS AND ALL ADVIS AND ALL ADVIS AND ALL ADVIS AND ADVIS ALL ADVIS AND ALL ADVIS AND ALL ADVIS AND ALL ADVIS ADVIS ADVIS AND ALL ADVIS AND ALL ADVIS AND ALL ADVIS AND ALL ADVIS AND ADVIS AND ALL ADVIS AND ALL ADVIS AND ALL ADVIS AND ALL ADVIS AND ADVIS AND ALL ADVIS AND ALL ADVIS AND ALL ADVIS AND ALL ADVIS AND ADVIS AND ALL ADVIS AND ALL ADVIS AND ALL ADVIS AND ALL ADVIS AND ADVIS AND ADVIS AND ALL ADVIS AND ALL ADVIS AND ALL ADVIS AND ADVIS AND ADVIS AND ALL ADVIS AND ALL ADVIS AND ALL ADVIS AND ADVIS AND ADVIS AND ALL ADVIS AND ALL ADVIS AND AND ADVIS ADVIS AND AND ADVIS AND ADVIS AND ADVIS AND ADVIS ADVIS AND AND ADVIS ADVIS ADVIS AND ADVIS ADVIS ADVIS AND ADVIS ADVIS AND ADVIS IDUCTORS MIN #2 AWG SOUD BARE THINED COPPER (SETC) FOR ALL IN GROUND CONSUCTORS BOOMA NUTAL ALL PROPORTID CONDUCTORS IN THE SAME HONORITAL IN MALE IN A DOWNLOW DEPENDING AND A REAL THE TOWNLOW AND ELECTRONIC AND A DIRECT TAKES AS MUCH AS POCIDLE AND ELECTRONICS AND A DIRECT TAKES AS MUCH AS POCIDLE DATRACTOR SHALL VERIEV ALL SKISTING CONDITIONS INSTALLATION O SQUIPMENT IN THE FIELD PRIOR TO BID FASHIOATION AND Выб тыпоскан ком натъща раде да тима и как на нарадните доржки мища сък наза на тима и как на чима къд колчарство за коритарат илтя сило нита колчарската издана за нарадната илтя сило нита разпъртите издана съ нарадната и со нарадната и разпъртите съ съ нарадната издана съ нарадната на сочнартале, съ на тада симатезската нита-съ 2 Luca PARTIA LOMING ENECTION ALL STEEL BLEVETS SHALL BE INSTALLED PLUME AND LEVEL ант и в со токо сък в селото сък за констранција на со исота на тик на со токо сък воја селото сък за констранција на со исота на тик на селото со прогоди на селото сък за констрана, от селото сък на селото сък за констрана, селото сък за констраната селото сък за констраната на сък за констраната на селото сък за констраната на селото сък за констраната на селото сък за селото сък за констраната на селото сък за констраната на селото сък за селото сък за констраната на селото сък за констраната на сък за селото сък за констраната на сък за констраната на сък за селото сък за констраната на сък за констраната на селото сък за селото сък за констраната на сък за констраната на сък за селото сък за констраната на сък за констраната на сък за селото сък за констраната на сък за констраната на сък за селото сък за констраната на сък за констраната на сък за селото сък за констраната на сък за констраната на сък за селото сък за констра AND NO BEND LONIGER THAN A 90 DEGREE ARC ALL SENDS SHALL SE HORZONITAL, OR DOWNWARD TOWARDS EARTH L. DONZENTAL, OR DOWNARD TOWARDS FAITH
 L. DONZENTAR, OR DOWNARD TOWARDS FAITH
 L. DONZENTARS, WHITE SUPERIOR DIAL IS CONTROL WITH A NOVA METALLIC CONCULT WALKS AT ROTA DOCUMENTS CONTINUED TO THATLY USE THE STEETS WANNED AND DATA FOR ALL TRAVIT DEPLICIONE. POLISE OUTAGES WORK SCHOOLSE DETAILTOI OF WANNES REQUERY WORK TO MUSE AND THAT ACCESS MODE AND DULAWARES REQUERY WORK TO MUSE TO USE ALL MARKESS AND ALL AND ALL AND ALL AND ALL AND ALL MORE WATTER A VARIANCES REQUERY AND ALL AND ALL AND ACCESS AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL CONTRACTOR ALL AND ALL AND ALL AND ALL AND ALL AND ARECINA THINK OF BARSS OR CONFRONTS OF STE AFOLIATION ARECINA THINK OF BARSS OR CONFRONTS OF STE AFOLIATION HADS INTO CREATE ENGINEERED CONSTITUTION AND IN THE SAME PAIN OF READS OF STURNING SOLDNERS AND ANOTHER AND CR HADRIEL, OF SALLARY, CONDUCTION A SHARED SHOLL CONDUCTOR DIRONS AT BEAM ENDS FOR 10 K PS (MIN DESERVICIONNECTIONS AT BEAM ELVERICON OLIVIA MANA ALL LINDUCTION CONTECTIONS OF MALE BE COMPLETED WATH COURSE NATIO OF A LOOK WALKER COMPACIÓN CALONIZATION VITTA ALS CODE FOR PROCEDURES ESPELIANOS AND CLAUTION VITTA ALS CODE FOR PROCEDURES DELLE COLLECTIONES AND OHALL COMPONITO ALCONDUCTION VIENTE FLICTENTE DE LESSA DE LONGENTION D'ALCONDUCTION D'ALE ECOLUCIÓN DE DE TINELES AND MELDING MALESCONTENTES DE LOS DE ALCONDUCTION O ALCONDUCTION D'ALE ECOLUCIÓN DE DE TINELES AND ALCONTENTO ALCONDUCTION D'ALE ECOLUCIÓN DE DE TINELES AND ALCONTENTO ALCONDUCTION D'ALESCONTENTES DE LOS DE ALCONDUCTION O ALCONDUCTION D'ALESCONTENTES DE LOS DE ALCONDUCTION O ALCONDUCTION D'ALESCONTENTES DE LOS DE ALCONTENTO ALCONDUCTION D'ALESCONTENTES DE LOS DE ALCONDUCTION D'ALCONDUCTION D'ALESCONTENTES DE LOS DE ALCONDUCTION D'ALCONDUCTION D'ALESCONTENTES DE LOS DE ALCONDUCTION D'ALCONDUCTION D'ALESCONTENTES DE LOS DE ALCONTENTOS DE LOS DE LOS DE LOS DE ALCONDUCTION D'ALCONTENTOS DE LOS DE ALCONDUCTION DE LOS DE ALCONDUCTION D'ALCONTES DE LOS DE LOS DE DELLE DO ALVANDES DE ALCONTES DE LOS DE LOS DE DELLE DO ALVANDES DE LOS DE ALCONTES DE LOS DE LOS DE DELLE DO ALVANDES DE LOS DE LOS DE LOS DE DELLES DE LOS DE LOS DE LOS DE LOS DE LOS DE DELLES DE LOS DE LOS DE LOS DE LOS DE LOS DE DELLES DE LOS DE LOS DE LOS DE LOS DE LOS DE DELLES DE LOS DE LOS DE LOS DE LOS DE LOS DE DELLES DE LOS DE LOS DE LOS DE LOS DE LOS DE DELLES DE LOS DE LOS DE LOS DE LOS DE LOS DE DELLES DE LOS DE LOS DE LOS DE LOS DE LOS DE DELLES DE LOS DE LOS DE LOS DE LOS DE LOS DE LOS DE DELLES DE LOS DE LO INVESTIGATION CHORAGE CHORAGE PARTY OF AF-ASHAES PROG TO ALL BELOW, GRADE WORK AND ANY GURPTOE WORK ALL REDUX, GRADE WORK AND ANY GURPTOE WORK AND ANY REDUX DESCRIPTION OF ANY GURPTOE WORK AND ANY REDUX DESCRIPTION OF ANY GURPTOE WORK AND ANY REDUX DESCRIPTION OF ANY GURPTOE AND ANY GURPTOE WORK WATCH OR SEE SECTION OF AND ANY GURPTOE WATCH STORED ANY ANY GURPTOE DOR ENDOUT AND OTHER SECTION OF ANY GURPTOE ANY GURPTOE TO ANY GURPTOE LEXING WATCH ON ANY GURPTOE ANY GURPTOE LEXING ANY GURPTOE ANY GURPTOE ANY GURPTOE LEXING ANY GUR REPORT OF SOURCE OF STOLED AND ADDRESS AND WITH 20 FEET OF NOTALLED MINARUM 15 INCHES FROM FOUNDATIONS FOOTINGS AND SIMILAR AND BUNCH STALL BLINKERCHUTS HANNER REDARD BONTER COMPETING THEM OF ALL BATCH DECOUNDS AND STALL BONCHUTS COME THE COST WITS STALL BECOME STALL BOTT STALL BATCH DECOUNDS BONTERS AND STALL BE STALL BOTT BOTTERS AND STALL BE STALL BOTTERS BONTERS AND STALL BOTTERS BONTERS BON ALL 4NO AND GAS WELDING D-ALL SE DOVE BY A UCDIVED AND GERTP ED WELDER N/ ACCORDINCE WITH ANK SEAL ALL REATHATCAR AND REALE RETAXEN MADDING AND REF. WITH DOW CORVENS THE SUCCER BUILDING SEALANT OF SOUND ГОИВОНТОК ИНТЕРИИ: ВТЕХРОГОЕХЕЛИ БОШУЛСИТ СООЧЕФО ИХ СОИМОН АЛТА: ОСУУРОИХО ИСТИНЕ ОР БЛИЦИЯ ВНАЦ. ВЕ ВОХОБО ТО А SHALLE ПО АТ ИКО РАНЕЗИИТА И ИСТИНО ОГОЛИ ОТ ТО А SHALLE ПО АТ ПО НИК РАТИНЕТИК И ИСТИНИКА ВНАЦ. ПО АТИК СОИКСАТОСК ПИК ИТОК НЕВО СОИМСКОТО ВИТСЯ: НО ОСТИК СОИКСАТОСК И ИК ИТОК НЕВО СОИМСКОТО ВИТСЯ: НО ОСТИК СОИКСАТОСК 26 ELECTRICAL 6 ELECTRICAL EREIN CALCULATION INNUL ALL LEX THE GRAVAL DESCRIPTION EREIN 1. SULTEX SHALL BE UNRUL MODIVITIVE THEM, THINKS, OR SHALL SHALL ON CONCULTING SHALL BE SOLT CRAVIN SEN WHY UN CONSULTING NORTH VERTILE SOLT CRAVIN SEN WHY UN CONSULTING NORTH VERTILE CONFR. TELEDIDATE OWNERS EXAMPLES MONTO ANY WORK DATE ILLEDIDANG OR OPERATIONS PROTTO ANY WORK DATE OF THE ILLEDIDATE OF THE STATE OF THE ANY WORK DATE OF THE ILLEDIDATE OF THE STATE OF THE ANY WORK DATE OF THE ILLEDIDATE OF THE STATE OF THE OFFICE OF THE ANY WORK ALLER TO DEVIS ANY ER STATES CONDITION INCLUDED ANY CONT STATES OF THE OWNER ON ENVIRONMENT ANY CONT STATES OF THE OWNER ON THE OWNER THAT ANY CONT STATES OF THE OWNER ON THE OWNER THAT ANY CONT STATES OF THE OWNER ON THE OWNER THAT ANY CONT STATES OF THE OWNER OWNER ON THE OWNER THAT ANY CONT STATES OF THE OWNER OWNER OWNER THAT ANY CONT STATES OF THE OWNER OWNER OWNER THAT ANY CONT STATES OF THE OWNER OWNER OWNER THAT ANY CONT STATES OF THE OWNER OWNER OWNER THAT ANY CONT STATES OF THE OWNER OWNER OWNER THAT ANY CONT STATES OF THE OWNER OWNER OWNER THAT ANY CONT STATES OF THE OWNER OWNER OWNER THAT ANY CONT STATES OF THE OWNER OWNER OWNER THAT ANY CONT STATES OF THE OWNER OWNER OWNER THAT ANY CONT STATES OF THE OWNER OWNER OWNER THAT ANY CONT STATES OF THE OWNER OWNER OWNER THAT ANY CONT STATES OF THE OWNER OWNER OWNER THAT ANY CONT STATES OF THE OWNER OWNER OWNER THAT ANY CONT STATES OF THE OWNER OWNER OWNER OWNER STATES OF THE OWNER OWNER OWNER OWNER STATES OF THE OWNER OWNER STATES OWNER OWNER OWNER STATES OWNER OWNER OWNER STATES OWNER OWNER STATES OWNER OWNER STATES OWNER STATES OWNER OWNER STATES OWNER STA WUGH VALH EACH CONDUCTOR INSTALLED DIRECTIONALLY AWAY ON EACH OTHER AND RARAULEL TO THE IN-GROUND CONDUCTOR THIND THE CONNECTIONS EXCH TOWERLES SHULL BE BONDED TO TO FINAL SHOLE LESAED
 TOWERS, ON MOUSPOLES, SHALL HAVE 2 DONED ON DIPOCITE
 SOES · TEDER DRUIT CONDUCTORS SHALL BE BIT-FR COPPER OR SECE SECE TO TOWER BASE, NOT TO VERTICAL TOWER STRUCTURE AWAY FROM TOWER MOUNTING HEROWARE SIGN BOND CHALL HAVE A CORRECPONDING CROUND ROD ON THE DAG An ACC RECEARCY AND A RECEARCH AND A PERMANENTLY LAREL OR TAG ALL CONDUCTORS WITH THEIR CROUT DESIGNATION AT ALL TERMINATION ENDS SPLUCES AND YOBUL AD PASSITHROUGH IN ALL ENGLOSURES EVA-BOND SHULL HATE & CORRECTOR/DVID GROWN TO END
 AND
 AND VOBSE AD PAGE-THOUGH IN ALL EVICIDARIES LOCATES ADDRESS AND ADDRESS AD ISTALL INFRACTOR SHALL PROVIDE ALL OUT ING AND PATCHIKE PS SOURED FOR THE INDIVIDE ALL OUT ING AND PATCHIKE PS SOURED FOR THE INDIVIDE ALL OUT ON WORK AND PATCHIKE ON ATTENDE OF THE INDIVIDE ATTENDED ON THE INSTALLES OF ALL YES INTERNAL SHALL ON THE PROVIDE OF ALL YES AND INTERNAL SHALL ON THE PROVIDE OF ALL YES AND INTERNAL SHALL ON THE PROVIDE OF ALL YES AND INTERNAL SHALL ON THE INSTALL OF ALL YES AND INTERNAL SHALL ON THE INSTALL OF ALL YES AND INTERNAL SHALL ON THE INSTALL OF ALL YES AND INTERNAL SHALL ON THE INSTALL OF ALL YES AND INTERNAL SHALL ON THE INSTALL OF ALL YES AND INTERNAL SHALL ON THE INSTALL OF ALL YES AND INTERNAL SHALL ON THE INSTALL OF ALL YES AND INTERNAL SHALL ON THE INSTALL OF ALL YES AND INTERNAL SHALL ON THE INSTALL OF ALL YES AND INTERNAL SHALL ON THE INSTALL OF ALL YES AND INTERNAL SHALL ON THE INSTALL OF ALL YES AND INTERNAL SHALL ON THE INSTALL OF ALL YES AND INTERNAL SHALL ON THE INSTALL OF ALL YES AND INTERNAL OF ALL YES INTERNAL SHALL ON THE INSTALL OF ALL YES AND INTERNAL OF ALL YES INTERNAL SHALL ON THE INSTALL OF ALL YES AND INTERNAL OF ALL YES AND INTERNAL OF ALL YES INTERNAL SHALL ON THE INSTALL OF ALL YES AND INTERNAL OF ALL YES AND INTERNAL OF ALL YES INTERNAL OF ALL YES AND INTERNAL OF ALL YES WERNEL 1041 LOUPLASS AND CONNECTORS ONLY MADE UP WRENEL 1041 ECONDUCTURES ECONDUCTURES CONDUCTURES THE CONCERNMENT OF VIBRATING OR ADJUSTABLE POLICING AND ADDITION OF ADJUSTABLE POLICING AND ADDITION OF ADJUSTABLE POLICING ADJUSTABLE L CARACTER STREAM ERACT BE REACTED FROM THE UTIL PROVED WAY CREATED TO BE SUPPORT EVENT CONTRACTOR CALLS EASYN JOLE FOR THE PROTECTION OF HOY CONTRACTOR CALLS EASYN JOLE FOR THE PROTECTION OF HOY CONTRACTOR CALLS OF RECTING YORK HOUSDAY BOTTECTOR OF THE STE JULI SENDETHIES YOU ALL COLUMNS AND YORK IS SARRENS, SAFETY GUARDS, SOCIAGE, AND SECURITY AS REQUARD. Rigg POLY41/N, CHLORIDE (PVC) SCHEDULE 40 CR SCHEDULE 80
 MAY BE UVED FOR SERVICES, EXTERICIR, BELOW GRADE, AND WET LOCATIONS THRALLY CALLED THE MAIG ARGUND DO NOT ROND BOUTTAIN TOTHE MAID AGOLLO SOND ALL EQUIPMENT TOGETHEM TO A BINGLEMONT ON NIERCE COLIMENTER NO GROUND (SOND THE SOND THE SOND TO TO THE EXTERNAL EQUIPMENT RIVE GROUND ALL EQUIPMENT RIVE GROUND RECORD CONTRACTOR SALL BE REPORTED FOR THER REPORTING HER PRAYER REPORTED TESTING CHARACTERIS AND ALL MALLAMMER OF SAME RECORD FOR COMPLETIVIOT AND LEGAL OCCUMULTO THE FIRST RECORD FOR COMPLETIVIOT AND LEGAL LOCATIONS - SHALL NOT BE USED IN CONCRETE CLASS (109 EXPOSED NITHIN A BULLING OF THALKTURE - VIETA, CLIC O (SBE 3/C) - CONCRALED NISTRU, ANONG ONLY - CONCRALED NISTRU, ANONG ONLY - VIETA A DUCT WITH SUBCEMENT COMPLIANTED METAL, ANDRE - VIETA A DUCT WITH SUBCEMENT COMPLIANTED METAL, ANDRE - VIETA A DUCT WITH SUBCEMENT COMPLIANTED METAL, ANDRE LL CONTRACTORS SHALL PROVIDE ALL VECESSARY TOOLS FRITURES CONDED, MATERIALO JOD AND SERVICIPAE, REQUIRED FOR THE XEQUIRON OF THER WORK «Колонска»
 BACH CONTRACTOR BRAIL GURPANTER ALL MATERIA RATO WORKING, DO YIEW TO BE PRES OF CHECK AND AND AND AND WORKING, DO YIEW TO BE PRES OF CHECK AND AND AND AND THE WASP AND EXCINENT AUTHAN ADDITIVITY INSCRIPTION OF CONSUMPTION TO A CONSUMPTION OF ACCORSUMPTION OF A CONSUMPTION OF A CO WALL AND ENGINEER SCHEDUNG UNRECHT CONTENT CONTROLOGY (MACHINER IN THE ENAMES UNRECHT CONTENT CONTROLOGY (MACHINER IN THE ENAMES UNRECHT CONTENT CONTROLOGY (MACHINER IN THE NY DEVIATION MODIFICATION ADDITION OR CHANGE IN DEGION 4-LL NOT BE MADE WITHOUT WRITTEN APPROVAL OF THE OWNER CR SXTEND RADIALS PERPENDIQULAR FROM RINGS IN AS STRAIGHT UNE AS POSSIBLE AWAY FROM OTHER RING CROUND'S RADIALS SONDS, AND SIMUAR A COMMON PRACTICE IS TO PLACE 1 RADIALS FROM THE TOMER PAG TO THE 4 CORNERS OF THE AVAILABLE AFEA EQUIPMENT ENCLOSURED ETC: CHALL BE SUITABLE FOR THE FALLED ENVIRONMENT ARMINUM NEIVA 3R FOR ALL EXTERIOR AULATIONS NUTLY INFLACENTING OF THE AVAILABLE AFEA VINIMAN BOND ALL COMPOUND CONDUCTIVE FIENDER COFFICER STAND GATE DOUTD TO THE LEDCO INFERMALLY, RUSTALLIA INDIPING THAT FOLLOWS THE FENCE LINE BONDAUS ALL POSTAIN VISION HERK THE CONTINUED IN SHILL PURKEN AND NOTHER ALL TRANSMISSION CHEESE JURGER, CONSERVER, SEQUENCISTRATE, AND NOT CONSTRUCTION OF ALL PURKENSISTANCE STRUCTURE SUBJECT OF DEVICES AND DEVICES THE SECOND OF ANY SUBJECT OF DEVICES OF ALL PURKENSISTANCE OF ADVISED MICH TO DEVICES OF ALL PURKENSISTANCE AND STRUCTURES MICH TO DEVICE THE SECOND AND THE ALL OF MICH TO DEVICES OF ADVISED AND THE ALL OF MICH TO DEVICES OF ADVISED AND THE ALL OF MICH TO DEVICES OF ADVISED AND THE ALL OF MICH TO DEVICES OF ADVISED AND THE ALL OF MICH TO DEVICES OF ADVISED AND THE ALL OF MICH TO DEVICES OF ADVISED AND THE ALL OF MICH TO DEVICES OF ADVISED AND THE ALL OF MICH TO DEVICES OF ADVISED AND THE ALL OF MICH TO DEVICES OF ADVISED AND THE ALL OF MICH TO DEVICES OF ADVISED AND THE ADVISED AND THE ADVISED MICH TO DEVICE ADVISED AND THE ADVISED AND THE ADVISED MICH TO DEVICE ADVISED AND THE ADVISED AND THE ADVISED MICH TO DEVICE ADVISED AND THE ADVISED AND THE ADVISED AND THE ADVISED MICH TO DEVICE ADVISED AND THE ADVISED AND THE ADVISED MICH TO DEVICE ADVISED AND THE ADVISED AND THE ADVISED AND THE ADVISED MICH TO DEVICE ADVISED AND THE ADVISED AND THE ADVISED AND THE ADVISED AND THE ADVISED MICH TO DEVICE ADVISED AND THE ADVISED ADVISED AND THE ADVISED HE CONTRACTORS HOURS OF WORK SHALL BE FEADORDANCE WITH DOAL CODES AND GRONNICES AND BE APPROVED BY THE CONTRACT CONTRACTOR OF A CONTRACT OF A DENTEDATOR INDICATORS AND A DEVELOPMENT OF A DEVELOPMENT THE METALLATION THE TRANSMERSON LAST EVETTINE BALL, BE FOR ALL TEMPORARY WORK REQUIRED OR SPECIFIED AD A PART OF THE WORK SHALL MEET ALL OF THE SAME REQUIREMENTS AS PERMANENT VIEW TESTED FOR REWER INSTRUCTION AND DAXADE WITE VIEWNAS CONNECTED CONTRACTOR VIEW OBTAIN AND VIE LATES STING PROCEDURES FROM OWHER OR MANUFACTURER PRIOR TO INSTALLATIONS, BARLL WET ALL APPLICABLE CODE FROM ANTENT AND STALL BE COMINE TELL APPLICABLE CODE FROM ANTENT BEEN SERVED BIDDING Intermangabiles shall be in duely color occess at the Intermast Both sides of Ecurpment shelter wall and under Cables at the Ecurpment BEEN SERVED ANY DUSTING UTUTY, SERVICE, STRUCTURE, EQUIPAUSUF, CRIFTURE CRISTRUCTURE THE WORK SHALL BE REVICIED AND OR FELOCATED AS DIRECTED BY THE DOWN FUNCTION MANAGEM 26 GROUNDING THESE SPECIFICATIONS SHULL NO. LOST HAT GROUPING, SPECIFICATION CONTRACTOR SHALL FURNISH AND ILISTALL ALL CONNECTORS OCATED CABLE MOUNTING AND GROUNDING HARDWARE MALL GROUND ALL SYSTEMS AND EQUIPMENT IN ADCOMDANCE WITH BEST INDUSTRY PRACTICE THE REQUIREMENTS OF THE NEPA TO NATIONAL ELECTRICAL CODE (NEC), AND ALL OTHER APPLICABLE CODES AND IF ASSESTOD ID ENCOUNTERED DURING WORK EXECUTION CONTRACTOR CHALL IMMETRATES NOTIFY THE CONSTRUCTION

DESIGN BASIS

NWAV™ X-Pol Ten-Port Antenna

X-Pol Ten-Port 6 ft, 65° Form in Tighter with Smart Bias Ts, 698-4200 MHz:

2 ports 698-894 MHz, 4 ports 1695-2180 MHz, and 4 ports 3400-4200 MHz

- Excellent passive intermodulation (PIM) performance reduces harmful interference.
- Fully integrated (iRETs) with independent RET control for low band and mid band
- FET configured with internal RET for high band & ease of future network optimization.
- SON-Ready array spacing supports beamforming capabilities
- Suitable for 3G, 4G, and 5G interface technologies
- Integrated Smart Bias-Ts reduce leasing costs
- Optimized form factor for reduced wind loading

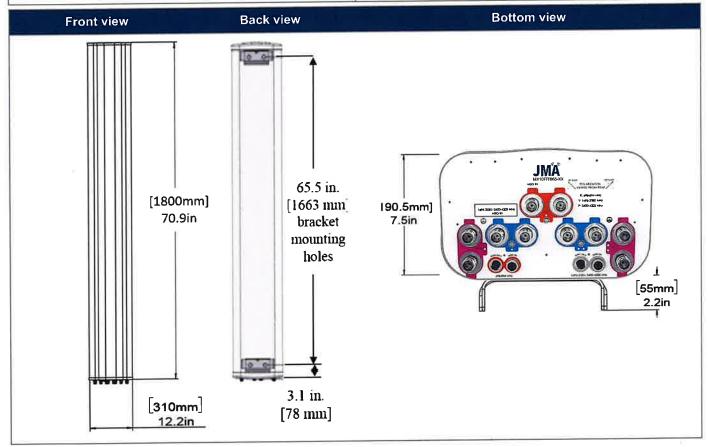
Electrical specification (minimum/maximum)	Ports 1, 2		Ports 3, 4, 5, 6		
Frequency bands, MHz	698-798	824-894	1695-1880	1850-1990	1920-2180
Polarization	±45° ±45°				
Average gain over all tilts, dBi	14.4 14.8		17.8	18.1	18.2
Horizontal beamwidth (HBW), degrees ¹	66.0	61.0	63.0	63.0	58.0
Front-to-back ratio, co-polar power @180°± 30°, dB	>22	>22.0	>25.0	>25.0	>25.0
X-Pol discrimination (CPR) at boresight, dB	>17.0	>15.6	>23	>18	>18
Vertical beamwidth (VBW), degrees ¹	13.5	12.0	6.0	5.5	5.4
Electrical downtilt (EDT) range, degrees	2-14		0-9		
First upper side lobe (USLS) suppression, dB ¹	≤-17.0 ≤-16.0 ≤-17.0 ≤-16.0 ≤		≤-16.0		
Cross-polar isolation, port-to-port, dB ¹	25	25	25	25	25
Max VSWR / return loss, dB	1.5:1/-14.0 1.5:1/-14.0				
Max passive intermodulation (PIM), 2x20W carrier, dBc	-153		-153		
Max input power per any port, watts	300		250		
Total composite power all ports (1-10), watts	1500				

¹ Typical value over frequency and tilt

NWAV™ X-Pol Ten-Port Antenna

Electrical specification (minimum/maximum)	Ports 7, 8, 9, 10				
Frequency bands, MHz	3400-3550	3550-3700	3700-3950	3950-4200	
Polarization		± 45°			
Average gain over all tilts, dBi	13.6	13.8	14.0	14.2	
Horizontal beamwidth (HBW), degrees	65	62	60	58	
Front-to-back ratio, co-polar power @180°± 30°, dB	>23	>23	>23	>22	
Vertical beamwidth (VBW), degrees ¹	20	19.6	19.3	18.5	
Electrical downtilt (EDT) range, degrees	2-12 orderable in 1 deg increments			ts	
First upper side lobe (USLS) suppression, dB ¹	≤-15 ≤-15 ≤-15 ≤-15			≤-15	
Cross-polar isolation, port-to-port, dB ¹	25	25	25	25	
Max VSWR / return loss, dB	1.5:1/-14.0				
Max input power per any port, watts	150				
Total composite power all ports (1-10), watts	1500				

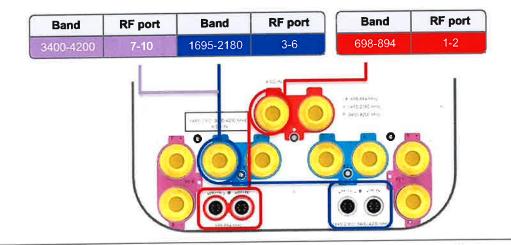
¹ Typical value over frequency and tilt


* For ports 7-10, the electrical downtilt is FET configured with internal RET, where the required electrical downtilt is defined at the time of order per the ordering information below.

Ordering information	والتناطية الألفان ولأراب وأرابها ويهتهم وعجرت والقاعيهم
Antenna model	Description
	6F X- Pol 10 Port FIT 65º 2-14º/ 0-9º/ 2-12º, 4.3-10 & SBTs
MX10FIT665-xx (xx represents the FET in one degree increments for 3.4-4.2 GHz)	xx=02 thru 12 for each 1 degree tilt 3.4-4.2 GHz Examples MX10FIT665-02 – 2deg, MX10FIT665-09 – 9deg, MX10FIT665-12- 12deg
Optional accessories	
AISG cables	M/F cables for AISG connections
PCU-1000 RET controller	Stand-alone controller for RET control and configurations
91900314-02	Dual Mount Bracket (see 91900314 bracket document for details)

NWAV™ X-Pol Ten-Port Antenna

Mechanical specifications	
Dimensions height/width/depth, inches (mm)	70.9/ 12.2/ 7.5 (1800/ 309.9/ 190.5)
Shipping dimensions length/width/height, inches (mm)	76/ 20/ 14.5 (1930/ 508/ 368)
No. of RF input ports, connector type, and location	10 x 4.3-10 female, bottom
RF connector torque	96 lbf in (10.85 N·m or 8 lbf ft)
Net antenna weight, Ib (kg)	53.4 (24.3)
Shipping weight, lb (kg)	97.5 (44.3)
Antenna mounting and downtilt kit included with antenna	91900318
Net weight of the mounting and downtilt kit, Ib (kg)	20.3 (9.2)
Range of mechanical up/down tilt	-2° to 12°
Rated wind survival speed, mph (km/h)	150 (241)
Frontal and lateral, and rear wind loading @ 150 km/h, lbf (N)	66.9 (297.6), 60.0 (266.9)
Equivalent flat plate @ 100 mph and Cd=2, sq ft	1.49
EPA frontal and lateral, ft ² , (m ²)	3.0 (0.28), 3.6 (0.33)



NWAV™ X-Pol Ten-Port Antenna

Remote electrical tilt (RET 1000) information	
RET location	Integrated into antenna
RET interface connector type	8-pin AISG connector per IEC 60130-9 or RF port bias-t
RET connector torque	Min 0.5 N⋅m to max 1.0 N⋅m (hand pressure & finger tight)
RET interface connector quantity	2 pairs of AISG male/female connectors and 2 RF port bias-ts
RET interface connector location	Bottom of the antenna
Total no. of internal RETs 698-894 MHz	1
Total no. of internal RETs 1695-2180 MHz	1
Total no. of internal RETs 3400-4200 MHz	1
RET input operating voltage, vdc	10-30
RET max power consumption, idle state, W	≤2.0
RET max power consumption, normal operating conditions, W	≤ 13.0
RET communication protocol	AISG 2.0 / 3GPP

RET and RF connector topology

Each RET device can be controlled either via the designated external AISG connector or RF smart bias-t port as shown below:

Note: The RET Device for 3400-4200 MHz is connected via the 1695-2180 Port 3 Bias T port or 1695-2180/3400-4200 MHz AISG ports.

1-2			
		698–894	
3-4	180 (B1)		(B2)
5-6		180	
7-8			2180
9-10	2-2		1695-2
	5-6 7-8	5-6 7-8	5-6 8 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7

©2022 JMA Wireless. All rights reserved. This document contains proprietary information. All products, company names, brands, and logos are trademarks™ or registered® trademarks of their respective holders. All specifications are subject to change without notice. +1 315.431.7100 customerservice@jmawireless.com

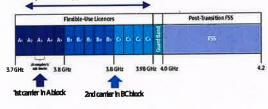
SAMSUNG

SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..

Model Code: MT6407-77A

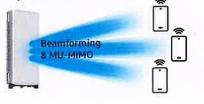

Points of Differentiation

Wide Bandwidth

With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

C-Band spectrum supported by Massive MIMO Radio

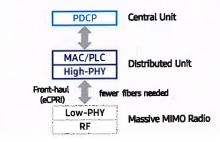


Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.

This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.



Technical Specifications

Item	Specification
Tech	NR
Band	n77
Frequency Band	3700 - 3980 MHz
EIRP	78.5dBm (53.0 dBm+25.5 dBi)
IBW/OBW	280 MHz / 200 MHz
Installation	Pole/Wall
Size/ Weight	16.06 x 35.06 x 5.51 inch (50.86L)/ 79.4 lbs

Future Proof Product

Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethemet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment.

SAMSUNG

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

SAMSUNG

AWS/PCS MACRO RADIO DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This AWS/PCS 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

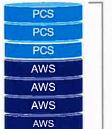
Model	Code

RF4439d-25A

Youtube www.youtube.com/samsung5g

Points of Differentiation

Continuous Migration


Samsung's AWS/PCS macro radio can support each incumbent CPRI interface as well as advanced eCPRI interfaces. This feature provides installable options for both legacy LTE networks and added NR networks.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). Supporting many carriers is essential for using all frequencies that the operator has available.

The new AWS/PCS dual-band radio can support up to 3 carriers in the PCS (1.9GHz) band and 4 carriers in the AWS (2.1GHz) band, respectively.

Supports up to 7 carriers

O-RAN Compliant

A standardized O-RAN radio can help in implementing costeffective networks, which are capable of sending more data without compromising additional investments.

Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Brand New Features in a Compact Size

Samsung's AWS/PCS macro radio offers several features, such as dual connectivity for baseband for both CDU and vDU, O-RAN capability, more carriers and an enlarged PCS spectrum, combined into an incumbent radio volume of 36.8L

Same as an

incumbent radio volume

 2 FH connectivity
 O-RAN capability
 More carriers and spectrum

Technical Specifications

Item	Specification
Tech	LTE/NR
Brand	B25(PCS), B66(AWS)
Frequency Band	DL: 1930 – 1995MHz, UL: 1850 – 1915MHz DL: 2110 – 2200MHz, UL: 1710 – 1780MHz
RF Power	(B25) 4 × 40W or 2 × 60W (B66) 4 × 60W or 2 × 80W
IBW/OBW	(B25) 65MHz / 30MHz (B66) DL 90MHz, UL 70MHz / 60MHz
Installation	Pole, Wall
Size/ Weight	14.96 x 14.96 x 10.04inch (36.8L) / 74.7lb

SAMSUNG

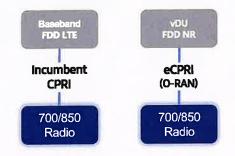
Model Code

700/850MHZ MACRO RADIO DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This 700/850MHz 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

RF4440d-13A

0	91111	5	
C			
			15
U	₩ },		



Youtube www.youtube.com/samsung5g

Points of Differentiation

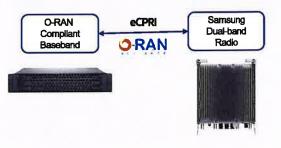
Continuous Migration

Samsung's 700/850MHz macro radio can support each incumbent CPRI interface as well as an advanced eCPRI interface. This feature provides installable options for both legacy LTE networks and added NR networks.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). The ability to support many carriers is essential for using all frequencies that the operator has available.

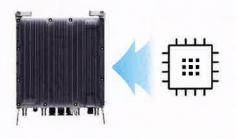
The new 700/850MHz dual-band radio can support up to 2 carriers in the B13 (700MHz) band and 3 carriers in the B5 (850MHz) band, respectively.


Technical Specifications

Item	Specification
Tech	LTE / NR
Brand	B13(700MHz), B5(850MHz)
Frequency Band	DL: 746 – 756MHz, UL: 777 – 787MHz DL: 869 – 894MHz, UL: 824 – 849MHz
RF Power	(B13) 4 × 40W or 2 × 60W (B5) 4 × 40W or 2 × 60W
IBW/OBW	(B13) 10MHz / 10MHz (B5) 25MHz / 25MHz
Installation	Pole, Wall
Size/ Weight	14.96 x 14.96 x 9.05inch (33.2L) / 70.33 lb

O-RAN Compliant

A standardized O-RAN radio can help when implementing cost-effective networks because it is capable of sending more data without compromising additional investments.


Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Secured Integrity

Access to sensitive data is allowed only to authorized software.

The Samsung radio's CPU can protect root of trust, which is credential information to verify SW integrity, and secure storage provides access control to sensitive data by using dedicated hardware (TPM).

ATTACHMENT 3

C Squared Systems, LLC 65 Dartmouth Drive Auburn, NH 03032 (603) 644-2800 support@csquaredsystems.com

Calculated Radio Frequency Emissions Report

South Farms CT

50 Fairchild Road, Middletown, CT 06457

June 22, 2023

Table of Contents

1.	Introduction	, 1
2.	FCC Guidelines for Evaluating RF Radiation Exposure Limits	. 1
3.	RF Exposure Prediction Methods	.2
4.	Antenna Inventory	. 3
	Calculation Results	
6.	Conclusion	.6
	Statement of Certification	
At	tachment A: References	.7
	tachment B: FCC Limits for Maximum Permissible Exposure (MPE)	
At	tachment C: Verizon Antenna Model Data Sheets and Electrical Patterns	10

List of Figures

Figure 1: Graph of General Population % MPE vs. Distance	4
Figure 2: Graph of FCC Limits for Maximum Permissible Exposure (MPE)	9

List of Tables

Table 1: Proposed Antenna Inventory	
Table 2: Maximum Percent of General Population Exposure Values 5	
Table 3: FCC Limits for Maximum Permissible Exposure 8	

1. Introduction

The purpose of this report is to investigate compliance with applicable FCC regulations for the proposed modification of Verizon's antenna arrays to be mounted at 110' AGL on an existing monopole located at 50 Fairchild Road in Middletown, CT. The coordinates of the monopole tower are 41° 32' 42.04" N, 72° 37' 14.76" W.

Verizon is proposing the following:

1) Install six (6) multi-band antennas, two (2) per sector to support its commercial LTE network.

This report considers the planned antenna configuration for Verizon¹ and the existing antennas for $AT\&T^2$ and T-Mobile³ to derive the resulting % MPE of its proposed installation.

2. FCC Guidelines for Evaluating RF Radiation Exposure Limits

In 1985, the FCC established rules to regulate radio frequency (RF) exposure from FCC licensed antenna facilities. In 1996, the FCC updated these rules, which were further amended in August 1997 by OET Bulletin 65 Edition 97-01. These new rules include Maximum Permissible Exposure (MPE) limits for transmitters operating between 300 kHz and 100 GHz. The FCC MPE limits are based upon those recommended by the National Council on Radiation Protection and Measurements (NCRP), developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI).

The FCC general population/uncontrolled limits set the maximum exposure to which most people may be subjected. General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Public exposure to radio frequencies is regulated and enforced in units of milliwatts per square centimeter (mW/cm²). The general population exposure limits for the various frequency ranges are defined in the attached "FCC Limits for Maximum Permissible Exposure (MPE)" in Attachment C of this report.

Higher exposure limits are permitted under the occupational/controlled exposure category, but only for persons who are exposed as a consequence of their employment and who have been made fully aware of the potential for exposure, and they must be able to exercise control over their exposure. General population/uncontrolled limits are five times more stringent than the levels that are acceptable for occupational, or radio frequency trained individuals. Attachment C contains excerpts from OET Bulletin 65 and defines the Maximum Exposure Limit.

Finally, it should be noted that the MPE limits adopted by the FCC for both general population/uncontrolled exposure and for occupational/controlled exposure incorporate a substantial margin of safety and have been established to be well below levels generally accepted as having the potential to cause adverse health effects.

¹ As referenced to Verizon's Radio Frequency Design Sheet updated 8/22/2022.

² As referenced to Connecticut Siting Council, notice of intent to modify – 50 Fairchild Road, Middletown CT, Dated 8/19/2015

³ As referenced to Radio Frequency Emissions Analysis Report by Fox Hill Telecom, dated 6/3/2022

3. RF Exposure Prediction Methods

The emission field calculation results displayed in the following figures were generated using the following formula as outlined in FCC bulletin OET 65:

Power Density =
$$\left(\frac{\text{GRF}^2 \times 1.64 \times \text{ERP}}{4\pi \times R^2}\right)$$
 X Off Beam Loss

Where:

EIRP = Effective Isotropic Radiated Power

R = Radial Distance =
$$\sqrt{(H^2 + V^2)}$$

H = Horizontal Distance from antenna in meters

V = Vertical Distance from radiation center of antenna in meters

Off Beam Loss is determined by the selected antenna patterns

Ground reflection factor (GRF) of 1.6

These calculations assume that the antennas are operating at 100 percent capacity, that all antenna channels are transmitting simultaneously, and that the radio transmitters are operating at full power. Obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. The calculations assume even terrain in the area of study and do not take into account actual terrain elevations which could attenuate the signal. As a result, the predicted signal levels reported below are much higher than the actual signal levels will be from the final installations.

4. Antenna Inventory

Table 1 below outlines Verizon's proposed antenna configuration for the site. The associated data sheets and antenna patterns for these specific antenna models are included in Attachments C.

Operator	Sector / Call Sign	TX Freq (MHz)	Power at Antenna (Watts)	Ant Gain (dBi)	Power EIRP (Watts)	Antenna Model	Beam Width	Mech. Tilt	Length (ft)	Antenna Centerline Height (ft)
		700	120	14.4	3156		66.0			
		850	120	14.8	3624	MX10FIT665-xx	61,0	0	5.9	110
	Alpha / 340°	1900	160	18.1	10330	WA10111005-XX	63.0	Ŭ	5.7	110
	540	2100	240	18.2	15857		58.0			
		3700	200	25.5	70963	MT6407-77A		0	2.92	110
		700	120	14.2	3156		66.0			
		850	120	14.8	3624	MX10FIT665-xx	61.0	0	5.9	110
Verizon	Beta / 100°	1900	160	18.1	10330	WIX10111003-XX	63.0	0	5.7	110
	100	2100	240	18.2	15857		58.0			
		3700	200	25.5	70963	MT6407-77A		0	2.92	110
		700	120	14.2	3156		66.0			
		850	120	14.8	3624	MX10FIT665-xx	61.0	0	5.9	110
	Gamma / 220°	1900	160	18.1	10330	WLATOF11005-XX	63.0	Ű	5.9	110
	220	2100	240	18.2	15857		58.0			
		3700	200	25.5	70963	MT6407-77A	×	0	2.92	110

 Table 1: Proposed Antenna Inventory4 5

⁴ Antenna heights are in reference to Verizon's Radio Frequency Design Sheet updated 8/22/2022.

⁵ Transmit power assumes 0 dB of cable loss.

5. Calculation Results

The calculated power density results are shown in Figure 1 below. For completeness, the calculations for this analysis range from 0 feet horizontal distance (directly below the antennas) to a value of 3,000 feet horizontal distance from the site. In addition to the other worst-case scenario considerations that were previously mentioned, the power density calculations to each horizontal distance point away from the antennas was completed using a local maximum off beam antenna gain (within ± 5 degrees of the true mathematical angle) to incorporate a realistic worst-case scenario.

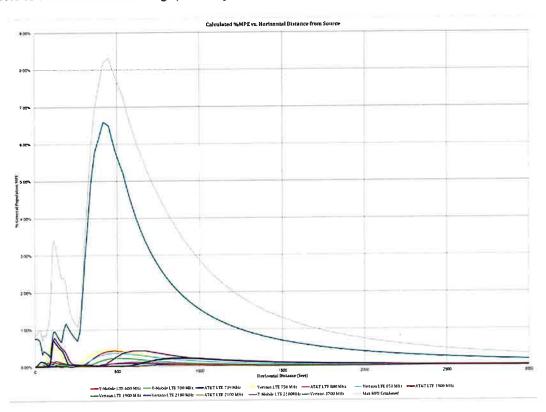


Figure 1: Graph of General Population % MPE vs. Distance

The highest percent of MPE (8.31% of the General Population limit) is calculated to occur at a horizontal distance of 450 feet from antennas. Please note that the percent of MPE calculations close to the site take into account off beam loss, which is determined from the vertical pattern of the antennas used. Therefore, RF power density levels may increase as the distance from the site increases. At distances of approximately 1500 feet and beyond, one would now be in the main beam of the antenna pattern and off beam loss is no longer considered. Beyond this point, RF levels become calculated solely on distance from the site and the percent of MPE decreases significantly as distance from the site increases.

Table 2 below lists percent of MPE values as well as the associated parameters that were included in the calculations. The highest percent of MPE value was calculated to occur at a horizontal distance of 450 feet from the site (reference Figure 1).

As stated in Section 3, all calculations assume that the antennas are operating at 100 percent capacity, that all antenna channels are transmitting simultaneously, and that the radio transmitters are operating at full power. Obstructions (trees, buildings etc.) that would normally attenuate the signal are not taken into account. In addition, a six foot height offset was considered in this analysis to account for average human height. As a result, the predicted signal levels are significantly higher than the actual signal levels will be from the final configuration. The results presented in Figure 1 and Table 2 assume level ground elevation from the base of the tower out to the horizontal distances calculated.

Carrier	Number of Transmitters	Power out of Base Station Per Transmitter (Watts)	Antenna Height (Feet)	Distance to the Base of Antennas (Feet)	Power Density (mW/cm ²)	Limit (mW/cm²)	% MPE
AT&T LTE 1900 MHz	1	80.0	130.0	450	0.000122	1.000	0.01%
AT&T LTE 2100 MHz	1	80.0	130.0	450	0.000118	1.000	0.01%
AT&T LTE 739 MHz	1	60.0	130.0	450	0.000377	0.493	0.08%
AT&T LTE 880 MHz	1	80.0	130.0	450	0.000420	0.587	0.07%
T-Mobile LTE 2100MHz	1	160.0	100.0	450	0.001402	1.000	0.14%
T-Mobile LTE 600 MHz	1	80.0	100.0	450	0.001692	0.400	0.42%
T-Mobile LTE 700 MHz	1	40.0	100.0	450	0.001003	0.467	0.21%
Verizon 3700 MHz	1	200.0	110.0	450	0.064903	1.000	6.49%
Verizon LTE 1900 MHz	1	160.0	110.0	450	0.000172	1.000	0.02%
Verizon LTE 2100 MHz	1	160.0	110.0	450	0.000306	1.000	0.03%
Verizon LTE 750 MHz	1	120.0	110.0	450	0.002345	0.500	0.47%
Verizon LTE 850 MHz	1	120.0	110.0	450	0.001995	0.567	0.35%
						Total	8.31%

 Table 2: Maximum Percent of General Population Exposure Values

6. Conclusion

The above analysis verifies that RF exposure levels from the site with Verizon's proposed antenna configuration will be well below the maximum permissible levels as outlined by the FCC in the OET Bulletin 65 Ed. 97-01. Using the conservative calculation methods and parameters detailed above, the maximum cumulative percent of MPE in consideration of all transmitters is calculated to be 8.31% of the FCC limit (General Population/Uncontrolled). This maximum cumulative percent of MPE value is calculated to occur 450 feet away from the site.

7. Statement of Certification

I certify to the best of my knowledge that the statements in this report are true and accurate. The calculations follow guidelines set forth in ANSI/IEEE Std. C95.3, ANSI/IEEE Std. C95.1 and FCC OET Bulletin 65 Edition 97-01.

Report Prepared By:

Ram Acharya RF Engineer 1 C Squared Systems, LLC <u>June 22, 2023</u> Date

Marth of Form

Reviewed/Approved By:

Martin Lavin Senior RF Engineer C Squared Systems, LLC June 22, 2023 Date

1

Attachment A: References

OET Bulletin 65 - Edition 97-01 - August 1997 Federal Communications Commission Office of Engineering & Technology

IEEE C95.1-2005, IEEE Standard Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz IEEE-SA Standards Board

IEEE C95.3-2002 (R2008), IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, 100 kHz-300 GHz IEEE-SA Standards Board

Verizon's Radio Frequency Design Sheet updated 10/21/2022

AT&T's filing, Connecticut Siting Council Notice of Exempt Modification - Antenna Add - 50 Fairchild Road (aka 1 Service Road) Middletown, CT, dated 9/23/2022

As referenced to Dish Wireless LLC's filing, Connecticut Siting Council Tower Share Application - 50 Fairchild Road, Middletown, CT, dated 11/19/2021

T-Mobile's filing, Connecticut Siting Council Notice of Exempt Modification - 50 Fairchild Road, Middletown, CT, dated 10/1/2020

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minut
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	$(900/f^2)^*$	6
30-300	61.4	0.163	1.0	6
300-1500	-	<u> –</u>	f/300	6
1500-100,000	-	-	5	6
	ral Population/U	Incontrolled Expo		, , , , , , , , , , , , , , , , , , ,
	ral Population/U	Uncontrolled Expo	osure ⁷	
nits for Gener		_	Power Density (S)	Averaging Time
nits for Gener	Electric Field	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ \mathbf{E} ^2$, $ \mathbf{H} ^2$ or S (minute
nits for Gener Frequency Range	Electric Field Strength (E)	Magnetic Field Strength (E)	Power Density (S) (mW/cm ²) (100)*	Averaging Time
nits for Gener Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ \mathbf{E} ^2$, $ \mathbf{H} ^2$ or S (minute
nits for Gener Frequency Range (MHz) 0.3-1.34	Electric Field Strength (E) (V/m) 614	Magnetic Field Strength (E) (A/m) 1.63	Power Density (S) (mW/cm ²) (100)*	Averaging Time $ E ^2$, $ H ^2$ or S (minute 30)
Frequency Range (MHz) 0.3-1.34 1.34-30	Electric Field Strength (E) (V/m) 614 824/f	Magnetic Field Strength (E) (A/m) 1.63 2.19/f	Power Density (S) (mW/cm ²) (100)* (180/f ²)*	Averaging Time $ E ^2$, $ H ^2$ or S (minute 30 30

Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)

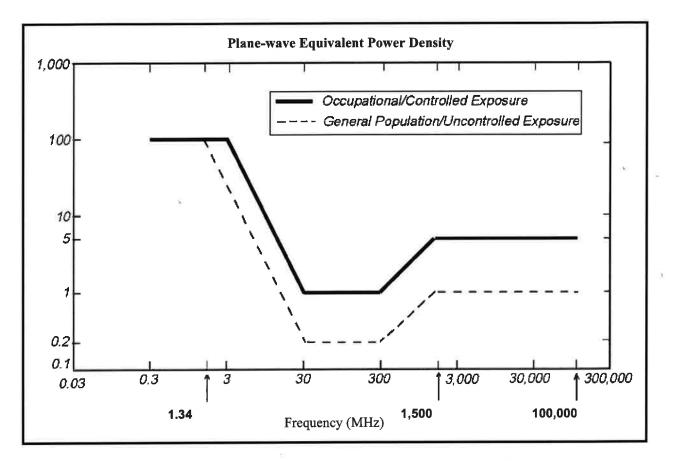
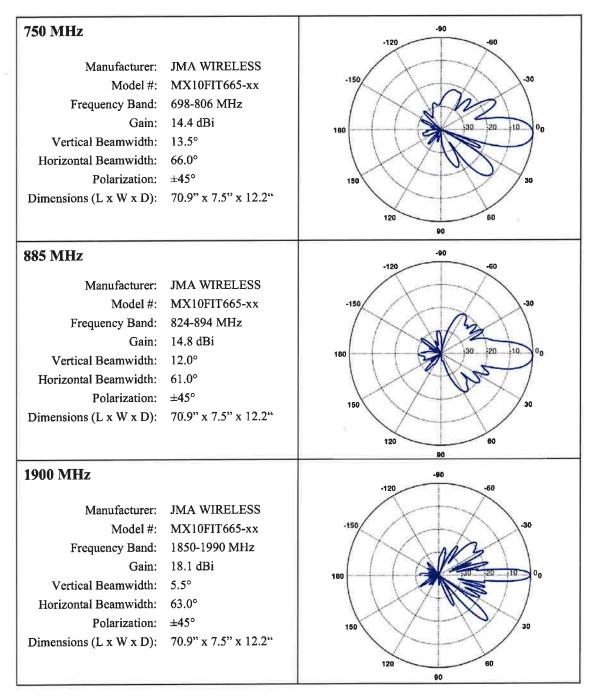
f = frequency in MHz * Plane-wave equivalent power density

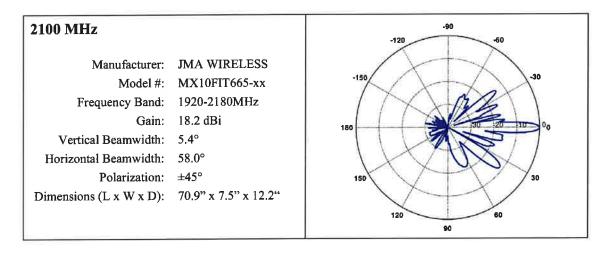
Table 3: FCC Limits for Maximum Permissible Exposure

7

⁶ Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

⁷ General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.


Figure 2: Graph of FCC Limits for Maximum Permissible Exposure (MPE)

Attachment C: Verizon Antenna Model Data Sheets and Electrical Patterns

ATTACHMENT 4

Tower Engineering Solutions

Phone (972) 483-0607, Fax (972) 975-9615 1320 Greenway Drive, Suite 600, Irving, Texas 75038

Post-Mod Structural Analysis Report

Existing 130 ft Rohn Monopole Customer Name: SBA Communications Corp Customer Site Number: CT13064-A Customer Site Name: Middletown 2, CT Carrier Name: Verizon (App#: 198008-2) Carrier Site ID / Name: 1535834 / SOUTH FARMS CT Site Location: 67 Fairchild Road Middletown, Connecticut Middlesex County Latitude: 41.545011 Longitude: -72.620766

Analysis Result: Max Structural Usage: 89.7% [Pass] Max Foundation Usage: 97.0% [Pass] Report Prepared By : Changzhi Zang

December 7, 2022

Tower Engineering Solutions Phone (972) 483-0607, Fax (972) 975-9615 1320 Greenway Drive, Suite 600, Irving, Texas 75038

Post-Mod Structural Analysis Report

Existing 130 ft Rohn Monopole Customer Name: SBA Communications Corp Customer Site Number: CT13064-A Customer Site Name: Middletown 2, CT Carrier Name: Verizon (App#: 198008-2) Carrier Site ID / Name: 1535834 / SOUTH FARMS CT Site Location: 67 Fairchild Road Middletown, Connecticut Middlesex County Latitude: 41.545011 Longitude: -72.620766

> <u>Analysis Result:</u> Max Structural Usage: 89.7% [Pass] Max Foundation Usage: 97.0% [Pass] Report Prepared By : Changzhi Zang

Introduction

The purpose of this report is to summarize the analysis results on the 130 ft Rohn Monopole to support the proposed antennas and transmission lines in addition to those currently installed. Any existing modification listed under Sources of Information was assumed completed and was included in this analysis.

The proposed modification by **TES** listed under Sources of Information was considered completed and was included in this analysis.

Tower Drawings	Rohn Parent File # 57886EH, Eng. File # 060-3494, Dwg. # A060995, dated 12/15/2006
Foundation Drawing	Rohn Parent File # 57886EH, Eng. File # 060-3494, Dwg. # A060998, dated 12/15/2006
Geotechnical Report	Gemini Geotechnical Associates Project # 06161CT, dated 11/30/2006
Mount Analysis	TMO MA by TES Project #130391, dated 06/28/2022
•	VZW MA by Maser Consulting Connecticut Project #21777971A, dated 04/21/022
Existing Modification	FDH Project # 11-01248E S1, dated 09/21/2011;
	FDH Project # 12-08192E S2, dated 11/14/2012;
	FDH Project # 15BVXK1400, dated 08/06/2015;
	TES Job # 18134, dated 11/05/2015;
	TES Job # 56931, dated 08/24/2018;
	TES Job # 92080, dated 04/20/2020;
	TES Job # 121134, dated 02/14/2022
Proposed Modification	TES Job # 134991

Sources of Information

Analysis Criteria

The comprehensive analysis was performed in accordance with the requirements and stipulations of the TIA-222-H. In accordance with this standard, the structure was analyzed using **TESPoles**, a proprietary analysis software. The program considers the structure as an elastic 3-D model with second-order effects and temperature effects incorporated in the analysis. The analysis was performed using multiple wind directions.

Wind Speed Used in the Analysis: Wind Speed with Ice: Service Load Wind Speed: Standard/Codes: Exposure Category: Risk Category: Topographic Category:	120.0 mph (3-Sec. Gust) (Ultimate wind speed) 50 mph (3-Sec. Gust) with 1" radial ice concurrent 60 mph + 0" Radial ice TIA-222-H / 2021 IBC / 2022 Connecticut State Building Code C II 1
Crest Height:	0 ft
Seismic Parameters:	$S_S = 0.211, S_1 = 0.056$

This structural analysis is based upon the tower being classified as a Structure Class II; however, if a different classification is required subsequent to the date hereof, the tower classification will be changed to meet such requirement and a new structural analysis will be run.

Existing Antennas, Mounts and Transmission Lines

The table below summarizes the antennas, mounts and transmission lines that were considered in the analysis as existing on the tower.

ltems	Elevation (ft)	Qty.	Antenna Descriptions	Mount Type & Qty.	Transmission Lines	Owner
1	132.0	3	Ericsson AIR6419 - Panel			
2		3	Cci DMP65R-BU6DA - Panel	Platform w/ Hand Rail	*(=) = "	
3		3	Quintel QD6616-7 - Panel	(Commscope MTC3607R) +	*(5) 2″ Conduits	
4		6	Ericsson - RRUS 32 - RRU	Platform Reinforcement Kit	(Housing	
5		3	Ericsson - RRUS 4478 B14 - RRU	(SitePro1 PRK-FMA),	(6) 1.496"	
6	130.0	3	Ericsson - RRUS 8843 B2 B66A - RRU	(6) P2.5" X-STR Pipe Masts,	Fiber & (8) 0.645" DC	AT&T
7		3	Ericsson - 4449 B5/B12 - RRU	(6) Channel Reinforcement		
8		3	Ericsson - RRUS E2 B29 - RRU	Angles L2x2x1/4 (3) Pipe Mast	cables)	
9		2	Raycap - DC6-48-60-18-8F - OVP	(6) Steel Tube Stand off	(1) 1/2"	
10		2 Raycap - DC6-48-60-0-8C-EV - OVP		(3) Horizontal Pipes		
11	128.0	3	Ericcson AIR6449 - Panel	(s) nonzontar npes		
12		3	JMA Wireless MX08FRO665-21 - Panel			
13	120.0	3	Fujitsu TA08025-B605 - RRU	Platform w/ Handrails		Dish
14	120.0	3	Fujitsu TA08025-B604 - RRU	Commscope MC-PK8-DSH	(1) 1.6" Hybrid	Wireless
15		1	Raycap RDIDC-9181-PF-48 - OVP			
÷	111.0	3	Andrew - CBC721-DF - Panel			
×		6	Andrew - SBNHH-1D65B - Panel]		
2		3	Alcatel - RRH2X60-1900A-4R	1	(12) 1 5/8" (2) 1 5/8"	
ŝ	110.0	3	Alcatel - B13 RRH4X30-4R	(3) T-Arms		Verizon
		3	Alcatel - B4 RRH2X60-4R		Hybrid	
•		2	RFS - DB-T1-6Z-8AB-0Z	1		
	109.0	3	Andrew - CBC721-DF - Panel			
22		3	Ericsson AIR21 B2A B4P - Panel	(3) T-Arms		
23		3	Ericsson AIR21 B4A B2P - Panel	(Site Pro P/N RMV12-3xx)		
24	100.0	3	Kathrein 782 11056	Modifed w/	(6) 1 5/8"	T-Mobile
25		3	RFS APXVAALL24_43-U-NA20 - Panel	Support rails	(3) 1.9" Fiber	
26		3	Ericsson 4480 B71 + B85 - RRUs	[(3) P1374+(3) SP1-SKF4]		
27		3	Nokia - AAHC - MIMO - Panel			C
28		3	Commscope - NNVV-65B-R4 - Panel	Platform w/ Handrails	(3) 1-1/4" Fiber	
29	90.0	3	ALU - 1900 Mhz - RRU	(Site Pro F3P-10W	(1) 1.689" Fiber	Sprint
30		6	ALU - 800 Mhz - RRU	w/HRK10)	(2) 1/2" Fiber	Nextel
31		2	Andrew - VHLP2-11 - Dish			

*Inside (5) 2" Conduits

Proposed Carrier's Final Configuration of Antennas, Mounts and Transmission Lines

Information pertaining to the proposed carrier's final configuration of antennas and transmission lines was provided by SBA Communications Corp. The proposed antennas and lines are listed below.

ltems	Elevation (ft)	Qty.	Antenna Descriptions	Mount Type & Qty.	Transmission Lines	Owner
16	111.0	3	COMMSCOPE SDX1926Q-43			
17		3	JMA MX10FIT665-02 - Panel			
18		3	SAMSUNG MT6407-77A - Panel		(12) 1 5/8"	
19	110.0	3	SAMSUNG B2/B66ARRH-ORAN RF4439D-25A - RRU	(3) T-Arms	(12) 1 5/8" (1) 1 5/8" Hybrid	Verizon
20		3	SAMSUNG B5/B13RRH-ORAN RF 4440d-13A - RRU		Tybha	
21		1	RFS RVZDC-6627-PF-48 - OVP		·	

See the attached coax layout for the line placement considered in the analysis,

Analysis Results

The results of the structural analysis, performed for the wind and ice loading and antenna equipment as defined above, are summarized as the following:

	Pole shafts	Anchor Bolts	Base Plate
Max. Usage:	89.7%	60.0%	48.0%
Pass/Fail	Pass	Pass	Pass

Foundations

	Moment (Kip-Ft)	Shear (Kips)	Axial (Kips)
Analysis Reactions	3300.3	33.0	41.3

The foundation has been investigated using the supplied documents and soils report and was found adequate. Therefore, no modification to the foundation will be required.

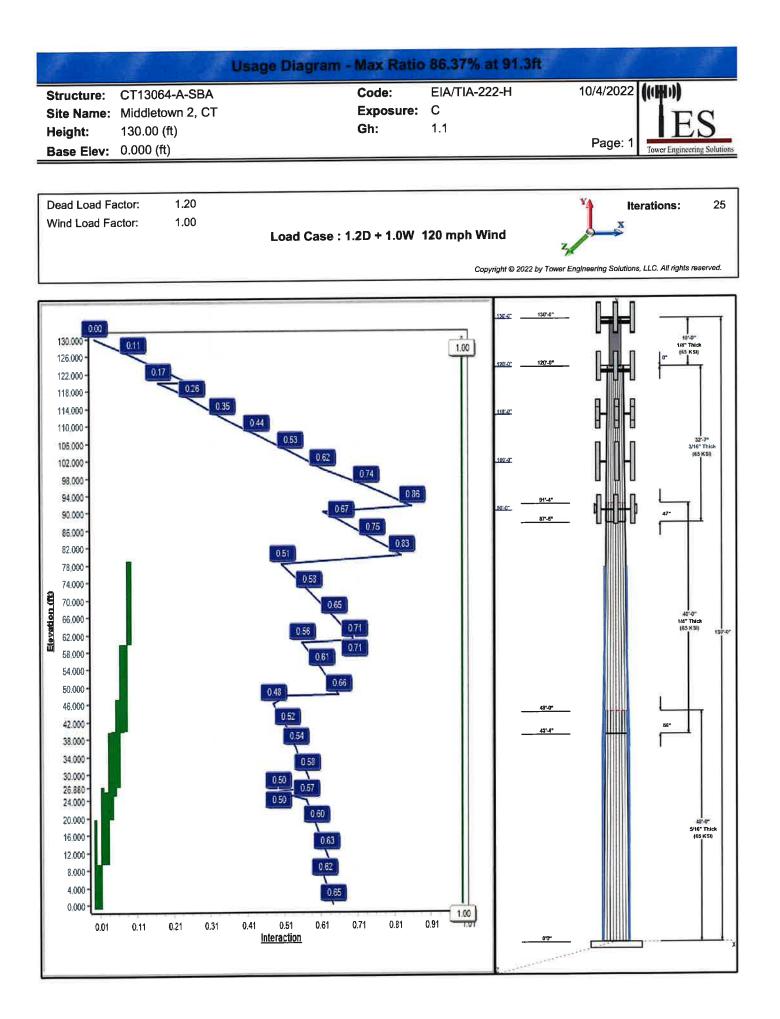
Operational Condition (Rigidity):

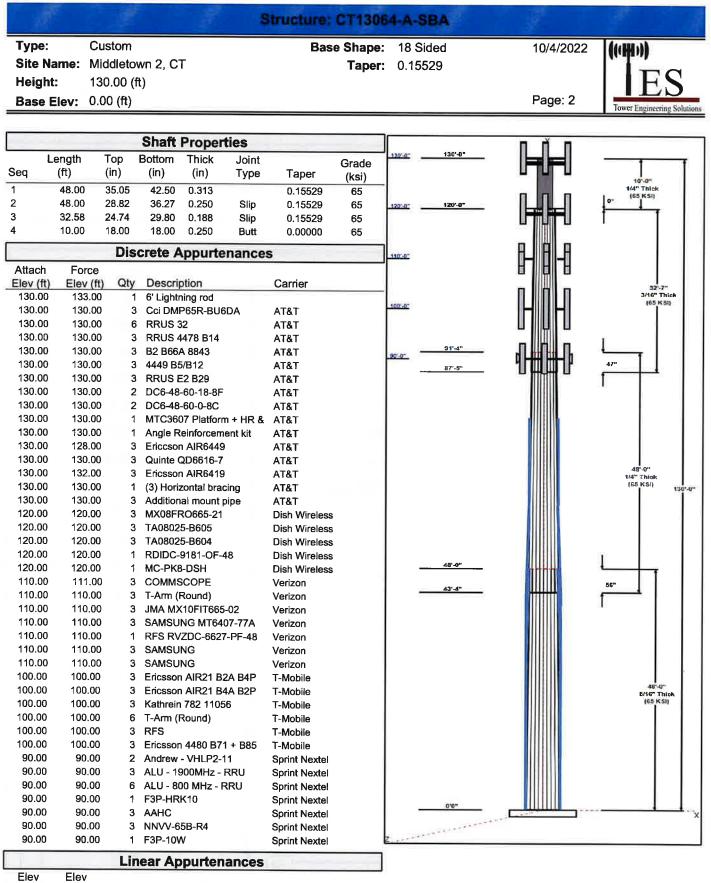
Operational characteristics of the tower are found to be within the limits prescribed by TIA-222 for the installed antennas. The maximum twist/sway at the elevation of the proposed equipment is 1.3334 degrees under the operational wind speed as specified in the Analysis Criteria.

Conclusions

Based on the analysis results, the structure and its foundation will be adequate to safely support the existing and proposed equipment and meet the minimum requirements per the TIA-222-H Standard after the following proposed modification is successfully completed.

- Proposed modification design drawing by **TES** Job # 134991


Pre-Mod Installation Determination


We have also checked this tower to determine if the proposed Verizon equipment loading can be installed prior to the completion of the required modifications. We ran a reduced wind loading case as required by TIA-322 considering a construction period of no more than 6 months.

The tower and foundations passed, so the Carrier can proceed and install their proposed loading prior to the mods completion. Please be aware that this approval is being provided and is based on the method outlined in TIA-322. This approval is not a blanket approval and there is still a risk that the tower will experience a wind event that cannot be predicted by TIA-322 or our Engineers. In the event of an unforeseen wind event, Tower Engineering Solutions will not be liable nor responsible for damage to the tower or the Carriers equipment. Additionally, the tower cannot go beyond the 6 month construction period without the modifications being completed. If the modifications cannot be completed within 6 months from the completed installation of the Carrier's proposed equipment, TES must be notified immediately for further review.

Standard Conditions

- 1. This analysis was performed based on the information supplied to **(TES) Tower Engineering Solutions, LLC.** Verification of the information provided was not included in the Scope of Work for **TES**. The accuracy of the analysis is dependent on the accuracy of the information provided.
- 2. The structural analysis was performance based upon the evidence available at the time of this report. All information provided by the client is considered to be accurate.
- 3. The analyses will be performed based on the codes as specified by the client or based on the best knowledge of the engineering staff of **TES**. In the absence of information to the contrary, all work will be performed in accordance with the latest relevant revision of ANSI/TIA-222. If wind speed and/or ice loads are different from the minimum values recommended by the EIA/TIA-222 standard or other codes, **TES** should be notified in writing and the applicable minimum values provided by the client.
- 4. The configuration of the existing mounts, antennas, coax and other appurtenances were supplied by the customer for the current structural analysis. **TES** has not visited the tower site to verify the adequacy of the information provided. If there is any discrepancy found in the report regarding the existing conditions, **TES** should be notified immediately to evaluate the effect of the discrepancy on the analysis results.
- 5. The client will assume responsibility for rework associated with the differences in initially provided information, including tower and foundation information, existing and/or proposed equipment and transmission lines.
- 6. If a feasibility analysis was performed, final acceptance of changed conditions shall be based upon a rigorous structural analysis.



 From (ft)
 To (ft)
 Placement
 Description
 Carrier

 0.00
 130.00
 Inside
 0.645" DC Cables
 AT&T

Type:	Cus	stom			Base Shape:	18 Sided	10/4/2022	(((HI)))
Site Na	me: Mid	dletown 2	2, CT		Тарег:	0.00000		Ing
Height	: 130	.00 (ft)						IES
Base E		D (ft)					Page: 3	Tower Engineering Solu
Dase L	iev. 0.0							Tonici Linguisting see
				ATOT				
0.00	130.00	Inside	1.496" Hybrid	AT&T AT&T				
0.00	130.00	Inside	1/2" Coax 2" Conduit	AT&T				
0.00	130.00	Inside	2" Conduit 2" Conduit	AT&T				
0.00	130.00	Outside	3/4" DC	AT&T				
0.00	130.00	Inside			Vireless			
0.00	120.00	Inside	1.6" Hybrid	Verizo				
0.00	110.00	Inside	1 5/8" Coax	Verizo				
0.00	110.00	Inside	1 5/8" Hybrid 1 5/8" Coax	T-Mot				
0.00	100.00	Inside	1.9" Fiber	T-Mot				
0.00	100.00	Inside	1.9 Fiber 1-1/4" Fiber		Nextel			
0.00	90.00	Inside			Nextel			
0.00	90.00	Inside	1.689" Hybrid		Nextel			
0.00	90.00	Inside	1/2" Fiber		INEXLEI			
0.00	81.00	Outside	1" Reinforcing pla					
23.33	63.33	Outside	1" Reinforcing pla					
30.50	50.50	Outside Outside	1" Reinforcing pla 1" Reinforcing pla					
0.00	30.50							
			Anchor Bolts		with respective			
	ecification	Gra s (ks		nt				
	5" F1554 10			///				
14 1.	5 F1554 10							
_			Base Plate	_	1.1.1			
Thicknes	s Spec	fications	Grade					
(in)	•	(in)	(ksi) G	eometry				
		51.8	50.0	Round				
1.5000			-					
			Reactions					
			Reactions	Shear	Axial			
1.5000	e				Axial (Kips)			
1.5000 .oad Cas	se W 120 mph	Wind	Momen					
1.5000 .oad Cas 1.2D + 1.0			Momen (FT-Kips) (Kips)	(Kips)			
1.5000 .oad Cas .2D + 1.0 .9D + 1.0	W 120 mph	Wind	Momen (FT-Kips 3303.5 3264.6) (Kips) 33.0	(Kips) 41.3			
1.5000 .oad Cas .2D + 1.0).9D + 1.0 .2D + 1.0	W 120 mph W 120 mph	Wind	Momen (FT-Kips 3303.5 3264.6) (Kips) 33.0 33.0	(Kips) 41.3 31.0			
1.5000 	W 120 mph W 120 mph Di + 1.0Wi {	Wind	Momen (FT-Kips 3303.5 3264.6 d 860.3) (Kips) 33.0 33.0 8.6	(Kips) 41.3 31.0 57.8			

			Sh	aft Properties	s (1		
Structure:	CT13064-A-SBA			Code:	TIA-222-H	10/4/2022	Access 1
Site Name:	Middletown 2, C	г		Exposure:	С		de ula ab
Height:	130.00 (ft)			Crest Height:	0.00		FC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		
Gh:	1.1	Topography:	1	Struct Class:	II	Page: 5	Tower Engineering Solution

Sec. No.	Shape	Length (ft)	Thick (in)	Fy (ksi)	Joint Type	Overlap (in)	Weight (lb)	
1	18	48.000	0.3125	65		0.00	6,231	
2	18	48.000	0.2500	65	Slip	56.00	4,185	
3	18	32.583	0.1875	65	Slip	47.00	1,787	
4	R	10.000	0.2500	65	Flange	0.00	474	
					Total Sha	aft Weight:	12,677	

Bottom							-	Тор						
Sec. No.	Dia (in)	Elev (ft)	Area (sqin)	lx (in^4)	W/t Ratio	D/t Ratio	Dia (in)	Elev (ft)	Area (sqin)	lx (in^4)	W/t Ratio	D/t Ratio	Taper	
1	42.50	0.00	41.84	9409.05	22.57	136.00	35.05	48.00	34.45	5250.98	18.36	112.1	0.155292	
2	36.27	43.33	28.58	4685.33	24.17	145.08	28.82	91.33	22.67	2337.03	18.91	115.2	0.155292	
3	29.80	87.42	17.62	1952.39	26.61	158.93	24.74	120.00	14.61	1112.84	21.86	131.9	0.155292	
4	18.00	120.0	13.94	549.45	0.00	72.00	18.00	130.00	13. 9 4	549.45	0.00	72.00	0.000000	

Additional Steel

Elev	Elev						- Intermediate Co	onnectors	Termina	tion Conne	ctors -	
From (ft)	To (ft)	Qty	Description	Fy (ksi)	Fu (ksi)	Offset (in)	Description	Spacing (in)	Description	Spacing (in)	Lower Qty	Upper Qty
0.00	20.50	4	PLT 6"x1" (1.25" Hole)	65	80	0.00	AJM20&sleeve	16.00	AJM20&sleeve	3.00	8	8
0.00	10.25	4	PLT 5.5"x1 1/4"(1.25"hol	65	80	0.00	AJM20&sleeve	18.00	AJM20&sleeve	3.00	9	9
10.25	27.88	2	LNP LP6X100-G-20CC	65	80	0.00	5/8" Hollo Bolt	24.00	5/8" Hollo Bolt	3.00		
10.25	26.88	2	LNP LP6X100-G-20CT	65	80	0.00	5/8" Hollo Bolt	24.00	5/8" Hollo Bolt	3.00		9
20.50	40.50	4	PLT 6"x1" (1.25" Hole)	65	80	0.00	AJM20&sleeve	16.00	AJM20&sleeve	3.00	8	8
25.96	40.71	2	LNP LP6X100-G-20CT	65	80	0.00	5/8" Hollo Bolt	24.00	5/8" Hollo Bolt	3.00		10
27.88	48.12	2	LNP LP6X100-G-20TT	65	80	0.00	5/8" Hollo Bolt	24.00	5/8" Hollo Bolt	3.00	10	10
40.50	60.75	4	PLT 6"x1" (1.25" Hole)	65	80	0.00	AJM20&sleeve	16.00	AJM20&sleeve	3.00	8	8
40.71	60.71	2	LNP LP6X100-G-20TT	65	80	0.00	5/8" Hollo Bolt	24.00	5/8" Hollo Bolt	3.00	10	10
60.75	78.25	4	PLT 6"x1" (1.25" Hole)	65	80	0.00	AJM20&sleeve	16.00	AJM20&sleeve	3.00	8	10

			ΥĽ,	oad Summary			
Structure:	CT13064-A-SBA			Code:	TIA-222-H	10/4/2022	4
Site Name:	Middletown 2, CT	-		Exposure:	С		(((Hi)))
Height:	130.00 (ft)			Crest Height:	0.00		TC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		IES
Gh:	1.1	Topography:	1	Struct Class:	Ш	Page: 6	Tower Engineering Solution

Discrete Appurtenances

					No Ice		_	Ice			
No.	Elev (ft)	Description	Qty	Weight (Ib)	CaAa (sf)	CaAa Factor	Weight (lb)	CaAa (sf)	CaAa Factor	Hor. Ecc. (ft)	Vert Ecc (ft)
1	130.00	6' Lightning rod	1	6.50	0.38	1.00	30.36	1.095	1.00	0.00	3.00
2	130.00	Cci DMP65R-BU6DA	3	63.30	12.71	0.72	261.24	13.690	0.74	0.00	0.00
3	130.00	RRUS 32	6	77.00	1.65	0.50	147.65	2.029	0.50	0.00	0.00
4	130.00	RRUS 4478 B14	3	59.40	1.65	0.50	86.65	1.991	0.50	0.00	0.00
5	130.00	B2 B66A 8843	3	70.00	1.64	0.50	100.22	1.979	0.50	0.00	0.00
6	130.00	4449 B5/B12	3	71.00	1. 97	0.50	106.08	2.330	0.50	0.00	0.00
7	130.00	RRUS E2 B29	3	59.40	3.15	0.50	101.91	3.612	0.50	0.00	0.00
8	130.00	DC6-48-60-18-8F	2	31.80	0.92	1.00	72.43	1.208	1.00	0.00	0.00
9	130.00	DC6-48-60-0-8C	2	16.00	4.78	1.00	97.32	5.361	1.00	0.00	0.00
10	130.00	MTC3607 Platform + HR & Kicker	1	2246.00	51.70	1.00	3791.62	76.842	1.00	0.00	0.00
11	130.00	Angle Reinforcement kit	1	250.00	5.80	1.00	444.98	9.525	1.00	0.00	0.00
12	130.00	Ericcson AIR6449	3	88.00	4.13	0.85	172.75	4.681	0.85	0.00	-2.00
13	130.00	Quinte QD6616-7	3	59.10	13.58	0.75	330.24	14.826	0.77	0.00	0.00
14	130.00	Ericsson AIR6419	3	66.10	3.80	0.76	129.33	4.323	0.76	0.00	2.00
15	130.00	(3) Horizontal bracing Pipes	1	137.25	5.94	1.00	225.40	10.841	1.00	0.00	0.00
16		Additional mount pipe	3	17.00	1.75	0.75	39.42	4.360	0.75	0.00	0.00
17		MX08FRO665-21	3	64.50	12.49	0.74	254.14	13.445	0.74	0.00	0.00
18	120.00	TA08025-B605	3	75.00	1.96	0.50	109.10	2.326	0.50	0.00	0.00
19	120.00	TA08025-B604	3	63.90	1.96	0.50	96.91	2.326	0.50	0.00	0.00
20		RDIDC-9181-OF-48	1	21.90	2.01	1.00	56.62	2.381	1.00	0.00	0.00
21		MC-PK8-DSH	1	1727.00	37.59	1.00	2827.39	68.384	1.00	0.00	0.00
22		COMMSCOPE SDX1926Q-43	3	6.60	0.40	0.50	16.51	0.583	0.50	0.00	1.00
23		T-Arm (Round)	3	350.00	8.00	0.75	507.91	12.512	0.50	0.00	0.00
24		JMA MX10FIT665-02	3	53.40	8.09	0.84	235.28	9.824	0.86	0.00	0.00
25		SAMSUNG MT6407-77A	3	87.10	4.69	0.70	158.72	9.824 5.295	0.80		
26		RFS RVZDC-6627-PF-48	1	32.00	4.09	0.70				0.00	0.00
27		SAMSUNG B2/B66ARRH-BR049	3	74.70	4.00	0.50	105.63	4.591	0.50	0.00	0.00
28		SAMSUNG B5/B13RRH-BR04C	3	74.70			120.05	2.229	0.50	0.00	0.00
29		Ericsson AIR21 B2A B4P	3		1.87	0.50	115.68	2.229	0.50	0.00	0.00
29 30		Ericsson AIR21 B4A B2P		91.50	6.09	0.80	192.18	6.775	0.83	0.00	0.00
30 31		Kathrein 782 11056	3	90.40	6.09	0.80	191.08	6.775	0.83	0.00	0.00
32			3	1.80	0.13	0.50	3.39	0.317	0.50	0.00	0.00
32 33		T-Arm (Round)	6	350.00	8.00	0.75	506.41	12.469	0.75	0.00	0.00
33 34		RFS APXVAALL24_43-U-NA20	3	122.80	20.24	0.73	384.41	21.440	0.73	0.00	0.00
		Ericsson 4480 B71 + B85	3	93.00	2.85	0.74	139.05	3.282	0.74	0.00	0.00
35		Andrew - VHLP2-11	2	27.00	4.68	1.00	88.99	5.487	1.00	0.00	0.00
36		ALU - 1900MHz - RRU	3	44.00	3.80	0.50	113.15	4.681	0.50	0.00	0.00
37		ALU - 800 MHz - RRU	6	53.00	2.49	0.50	99.85	3.215	0.50	0.00	0.00
38		F3P-HRK10	1	391.00	7.12	1.00	650.36	10.26 9	1.00	0.00	0.00
39	90.00		3	104.00	4.20	0.75	180.35	4.713	0.75	0.00	0.00
40		NNVV-65B-R4	3	77.40	12.27	0.74	258.29	13.192	0.74	0.00	0.00
41	90.00	F3P-10W	1_	2122.00	51.77	1.00	3435.73	92.978	1.00	0.00	0.00

Linear Appurtenances

 (ft)	(ft)	Description	Width	Exposed	
Elev.	Elev.		Exposed		
Bottom	Тор				

Discrete Appurtenances

						No Ice			Ice			
No.	Elev (ft)		Description	Qty	Weight (Ib)	CaAa (sf)	CaAa Factor	Weight (Ib)	CaAa (sf)	CaAa Factor	Hor. Ecc. (ft)	Vert Ecc (ft)
0.00		130.00	(8) 0.645" DC Cables		0	0.00	Inside					
0.00	1	130.00	(6) 1.496" Hybrid		C	0.00	Inside					
0.00)	130.00	(1) 1/2" Coax		C	0.00	Inside					
0.00)	130.00	(2) 2" Conduit		C	0.00	Inside					
0.00)	130.00	(3) 2" Conduit		2	2.00	Dutside	21				
0.00)	130.00	(8) 3/4" DC		C	0.00	Inside					
0.00)	120.00	(1) 1.6" Hybrid		C	0.00	Inside					
0.00)	110.00	(12) 1 5/8" Coax		(0.00	Inside					
0.00)	110.00	(1) 1 5/8" Hybrid		(0.00	Inside					
0.00)	100.00	(6) 1 5/8" Coax		(0.00	Inside					
0.00)	100.00	(3) 1.9" Fiber		(0.00	Inside					
0.00)	90.00	(3) 1-1/4" Fiber		(0.00	Inside					
0.00)	90.00	(1) 1.689" Hybrid		(00.0	Inside					
0.00)	90.00	(2) 1/2" Fiber		(00.0	Inside					
0.00)	81.00	(4) 1" Reinforcing plate		1	1.00	Outside					
23.33	3	63.33	(2) 1" Reinforcing plate		().00 (Outside					
30.50)	50.50	(2) 1" Reinforcing plate		().00	Dutside					
0.00		30.50	(4) 1" Reinforcing plate		(0.00	Outside		_			

÷.

			Shaft S	Section Prope	erties		
Structure:	CT13064-A-SBA			Code:	TIA-222-H	10/4/2022	
Site Name:	Middletown 2, CT			Exposure:	С	(((BH)))	
Height:	130.00 (ft)			Crest Height:	0.00		C
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		0
Gh:	1.1	Topography:	1	Struct Class:	11	Page: 8	ing Solut

			Flat								A	ditional	Reinforci	ng
Elev (ft)	Description	Thick (in)	Dia (in)	Area (in^2)	lx (in^4)	W/t Ratio	D/t Ratio	Fy (ksi)	Fb (ksi)	Weight (Ib)	Area (in^2)	lxp (in^4)	lyp (in^4)	Weight (Ib)
0.00	RB1 RB2	0.3125	42.500	41.843	9409.0	22.57	136.00	65	75	0.0	51.50		10484.2	(10)
2.00		0.3125	42.189	41.535	9202.8	22.39	135.01	65	75	283.7		13974.5		350.5
4.00		0.3125	41.879	41.227	8999.5	22.22	134.01	65	75	281.6		13775.8		350.5
6.00		0.3125	41.568	40.919	8799.3	22.04	133.02	65	75	279.5		13578.5		350.5
8.00		0.3125	41.258	40.611	8602.1	21.87	132.02	65	76	277.4		13382.6	9900.3	350.5
10.00		0.3125	40.947	40.303	8407.8	21.69	131.03	65	76	275.3		13188.2	9756.9	350.5
10.25	RT2 RB3 RB4	0.3125	40.908	40.264	8383.7	21.67	130.91	65	76	34.3		12328.5	8895.1	40.8
12.00		0.3125	40.636	39.995	8216.5	21.52	130.04	65	76	239.0		12170.0	8781.1	285.8
14.00		0.3125	40.326	39.687	8028.1	21.34	129.04	65	76	271.1		11990.2		326.7
16.00		0.3125	40.015	39.379	7842.6	21.17	128.05	65	77	269.0		11811.7		326.7
18.00		0.3125	39.705	39.071	7660.0	20.99	127.06	65	77	266.9	48.00		8395.9	326.7
20.00		0.3125	39.394	38.763	7480.2	20.82	126.06	65	77	264.9	48.00		8269.5	326.7
20.50	RT1 RB5	0.3125	39.317	38.686	7435.7	20.77	125.81	65	77	65.9	48.00	11415.1	8238.0	81.7
22.00		0.3125	39.084	38.455	7303.3	20.64	125.07	65	77	196.9	48.00	11284.4	8144.0	245.0
24.00		0.3125	38.773	38.147	7129.2	20.47	124.07	65	77	260.7	48.00	11111.3	8019.4	326.7
25.96	RB6	0.3125	38.469	37.845	6961.3	20.30	123.10	65	78	253.4	60.00	13155.0	9930.1	400.2
26.00		0.3125	38.462	37.839	6957.9	20.29	123.08	65	78	5.2	60.00	13150.9	9927.0	8.2
26.88	RT4	0.3125	38.326	37.703	6883.3	20.21	122.64	65	78	113.1	48.00	11135.8	7021.5	143.7
27.88	RT3 RB7	0.3125	38.170	37.549	6799.3	20.13	122.15	65	78	128.0	48.00	11048.1	6966.6	163.3
28.00		0.3125	38.152	37.531	6789.3	20.12	122.09	65	78	15.3		11037.6	6960.0	19.6
30.00		0.3125	37.841	37.222	6623.5	19.94	121.09	65	78	254.4		10863.5	6850.9	326.7
32.00		0.3125	37.531	36.914	6460.4	19.77	120.10	65	78	252.3		10690.8	6742.6	326.7
34.00		0.3125	37.220	36.606	6300.0	19.59	119.10	65	78	250.2		10519.6	6635.2	326.7
36.00		0.3125	36.909	36.298	6142.3	19.42	118.11	65	79	248.1		10349.7	6528.7	326.7
38.00		0.3125	36.599	35.990	5987.2	19.24	117.12	65	79	246.0		10181.2	6423.0	326.7
40.00		0.3125	36.288	35.682	5834.8	19.06	116.12	65	79	243.9		10014.1	6318.3	326.7
40.50	RT5 RB8	0.3125	36.211	35.605	5797.1	19.02	115.87	65	79	60.6	48.00	9972.5	6292.2	81.7
40.71	RT6 RB9	0.3125	36.178	35.573	5781.3	19.00	115.77	65	79	25.4	48.00	9955.1	6281.3	34.3
42.00		0.3125	35.978	35.374	5685.0	18.89	115.13	65	79	155.7	48.00	9848.4	6214.4	210.7
43.33	Bot - Section 2	0.3125	35.771	35.169	5586.6	18.77	114.47	65	79	160.0	48.00	9738.7	6145.6	217.8
44.00		0.3125	35.667	35.066	5537.8	18.71	114.13	65	79	144.4	48.00	9948.2	6277.0	108.9
46.00		0.3125	35.357	34.758	5393.1	18.54	113.14	65	80	430.7	48.00	9783.1	6173.4	326.7
48.00	Top - Section 1	0.2500	35.546	28.006	4408.2	23.66	142.18	65	74	426.9	48.00	9619.3	6070.8	326.7
48.12	RT7	0.2500	35.527	27.992	4401.2	23.65	1 42.11	65	74	11.4	36.00	7227.7	4495.6	14.7
50.00		0.2500	35.235	27.760	4292.8	23.44	140.94	65	74	178.3	36.00	7112.8	4424.8	230.3
52.00		0.2500	34.925	27.513	4179.5	23.22	139.70	65	74	188.1	36.00	6991.5	4350.1	245.0
54.00		0.2500	34.614	27.267	4068.2	23.00	138.46	65	74	186.4	36.00	6871.3	4276.1	245.0
56.00		0.2500	34.304	27.021	3958.9	22.78	137.21	65	75	184.7	36.00	6752.1	4202.8	245.0
58.00		0.2500	33.993	26.774	3851.6	22.56	135.97	65	75	183.1	36.00	6634.0	4130.0	245.0
60.00		0.2500	33.682	26.528	3746.2	22.35	134.73	65	75	181.4	36.00	6517.0	4058.0	245.0
60.71	RT9	0.2500	33.572	26.440	3709.3	22.27	134.29	65	75	64.0	24.00	4800.1	2406.1	58.0
60.75	RT8 RB10	0.2500	33.566	26.435	3707.2	22.26	134.26	65	75	3.6	24.00	4798.4	2405.3	3.3
62.00		0.2500	33.372	26.281	3642.8	22.13	133.49	65	75	112.1	24.00	4745.0	2378.7	102.1
64.00		0.2500	33.061	26.035	3541.2	21.91	132.25	65	76	178.0	24.00	4660.2		163.3
66.00		0.2500	32.751	25.788	3441.6	21.69	131.00	65	76	176.3	24.00	4576.2		163.3
68.00		0.2500	32.440	25.542	3343.9	21.47	129.76	65	76	174.7	24.00	4493.0	2253.3	163.3
70.00		0.2500	32.130	25.296	3248.0	21.25	128.52	65	76	173.0	24.00	4410.5		163.3
72.00		0.2500	31.819	25.049	3154.0	21.03	127.28	65	77	171.3	24.00	4328.8	2171.7	163.3
74.00		0.2500	31.508	24.803	3061.9	20.81	126.03	65	77	169.6	24.00	4247.9	2131.4	163.3
76.00		0.2500	31.198	24.556	2971.5	20.59	124.79	65	77	168.0	24.00	4167.7		163.3
				-									2001.0	

Increment Length: 2

2	(ft)	

			Flat								Ad	ditional	Reinforci	ng
Elev (ft)	Description	Thick (in)	Flat Dia (in)	Area (in^2)	lx (in^4)	W/t Ratio	D/t Ratio	Fy (ksi)	Fb (ksi)	Weight (Ib)	Area (in^2)	lxp (in^4)	lyp (in^4)	Weight (Ib)
78.00		0.2500	30.887	24.310	2882.9	20.37	123.55	65	77	166.3	24.00	4088.4	2052.1	163.3
78.25	RT10	0.2500	30.848	24.279	2872.0	20.35	123.39	65	77	20.7	24.00	4078.5	2047.2	20.4
80.00		0.2500	30.577	24.063	2796.1	20.16	122.31	65	78	143.9				
82.00		0.2500	30.266	23.817	2711.1	19.94	121.06	65	78	162.9				
84.00		0.2500	29.955	23.570	2627.8	1 9.72	119.82	65	78	161.2				
86.00		0.2500	29.645	23.324	2546.3	1 9.50	1 18.58	65	78	159.6				
87.42	Bot - Section 3	0.2500	29.425	23.149	2489.5	19.34	117.70	65	79	112.0				
88.00		0.2500	29.334	23.078	2466.4	19.28	117.34	65	79	80.8				
90.00		0.2500	29.024	22.831	2388.2	19.06	116.09	65	79	275.2				
91.33	Top - Section 2	0.1875	29.192	17.260	1834.5	26.04	155.69	65	71	181.8				
92.00		0.1875	29.088	17.199	1815.0	25.94	155.14	65	71	39.1				
94.00		0.1875	28.778	17.014	1757.1	25.65	153.48	65	71	116.4				
96.00		0.1875	28.467	16.829	1700.4	25.36	151.82	65	72	115.2				
98.00		0.1875	28.156	16.644	1645.0	25.07	150.17	65	72	113.9				
00.00		0.1875	27.846	16.460	1590.8	24.78	148.51	65	72	112.6				
02.00		0.1875	27.535	16.275	1537.8	24.48	146.85	65	73	111.4				
04.00		0.1875	27.225	16.090	1486.0	24.19	145.20	65	73	110.1				
06.00		0.1875	26.914	15.905	1435.4	23.90	143.54	65	73	108.9				
08.00		0.1875	26.603	15.720	1385.9	23.61	141.89	65	74	107.6				
10.00		0.1875	26.293	15.535	1337.6	23.32	140.23	65	74	106.4				
12.00		0.1875	25.982	15.351	1290.5	23.02	138.57	65	74	105.1				
14.00		0.1875	25.672	15.166	1244.4	22.73	136.92	65	75	103.8				
16.00		0.1875	25.361	14.981	1199.5	22.44	135.26	65	75	102.6				
18.00		0.1875	25.051	14.796	1155.6	22.15	133.60	65	75	101.3				
20.00	Top - Section 3	0.1875	24.740	14.611	1112.8	21.86	131.95	65	76	100.1				
20.00	Bot - Section 4	0.2500	18.000	13.941	549.4	16.39	98.96	65	59					
22.00		0.2500	18.000	13.941	549.4	0.00	72.00	65	59	94.9				
24.00		0.2500	18.000	13.941	549.4	0.00	72.00	65	59	94.9				
126.00		0.2500	18.000	13.941	549.4	0.00	72.00	65	59	94.9				
128.00		0.2500	18.000	13.941	549.4	0.00	72.00	65	59	94.9				
130.00		0.2500	18.000	13.941	549.4	0.00	72.00	65	59	94.9			_	
							Tot	al Wei	ght	12677.2				11001.2

418-6		1				W	ind Lo	ading	- Sha	aft 🦉						
Struct		T13064-A					Co	de:	T	TIA-222-H			10/4/202	22		
Site Na	ame: M	iddletowr	ר 2, C	Γ			Ex	posur	e: (2				(())))	
Height	t: 1:	30.00 (ft)					Cre	est He	ight: C	00.(TO	Č.
Base E	Elev: 0.	.000 (ft)					Sit	e Clas	s: D) - Stiff So	il				ES)
Gh:	1.	1		Торо	graphy	: 1	Str	uct Cl	ass: I	I			Page: 1	0 Tower	Engineering Sol	lution
Load	Case: 1	.2D + 1.0)W 12	0 mph	Wind							Y	1	Iteratio	ons	25
	Dead	Load Fac	tor	1.20									X			
	Wind	Load Fac	tor	1.00								2				
Elev					qz	qzGh	с		ice Thick	Tributary	Aa	CfAa	Wind Force X	Dead Load Ice	Tot Dead Load	
(ft)	Descri	ption	Kzt	Kz	(psf)	(psf)	(mph-ft)	Cf	(in)	(ft)	(sf)	(sf)	(Ib)	(lb)	(lb)	
0.00 R 2.00	B1 RB2		1.00 1.00		29.565 29.565	32.52	396.52	0.730	0.000	0.00	0.000	0.00	0.0	0.0	0.0	
2.00 4.00			1.00		29.565	32.52 32.52	393.62 390.72		0.000 0.000	2.00 2.00	7.166 7.114	5.23 5.19	170.1 168.9	0.0 0.0	340.5 337.9	
6.00			1.00		29.565	32.52	387.82	0.730	0.000	2.00	7.061	5.19	166.9	0.0	335.4	
8.00			1.00		29.565	32.52	384.93	0.730	0.000	2.00	7.009	5.12	166.4	0.0	332.9	
10.00			1.00		29.565	32.52	382.03	0.730	0.000	2.00	6.956	5.08	165.1	0.0	330.4	
10.25 R 12.00	T2 RB3 RI		1.00 1.00		29.565	32.52	381.67	0.730 0.730	0.000	0.25	0.866	0.63	20.6	0.0	41.1	
14.00			1.00		29.565 29.565	32.52 32.52	379.13 376.23	0.730	0.000 0.000	1.75 2.00	6.038 6.851	4.41 5.00	143.3 162.6	0.0 0.0	286.8 325.4	
16.00			1.00		29.930	32.92	375.63	0.730	0.000	2.00	6.798	4.96	162.6	0.0	325.4 322.9	
18.00			1.00		30.681	33.75	377.37	0.730	0.000	2.00	6.746	4.92	166.2	0.0	320.3	
20.00			1.00	0.90	31.369	34.51	378.59	0.730	0.000	2.00	6.693	4.89	168.6	0.0	317.8	
20.50 R	T1 RB5		1.00		31.533	34.69	378.83	0.730	0.000	0.50	1.665	1.22	42.2	0.0	79.1	
22.00			1.00		32.005	35.21	379.39	0.730	0.000	1.50	4.976	3.63	127.9	0.0	236.2	
24.00 25.96 R	B6		1.00 1.00		32.597 33.140	35.86 36.45	379.84 379.99	0.730 0.730	0.000 0.000	2.00 1.96	6.588	4.81 4.68	172.4	0.0	312.8	
26.00			1.00		33.140	36.47	379.99	0.730	0.000	0.04	6.405 0.130	4.00 0.10	170.5 3.5	0.0 0.0	304.1 6.2	
26.88 R	T4		1.00		33.384	36.72	379.97	0.730	0.000	0.88	2.859	2.09	76.6	0.0	135.7	
27.88 R	T3 RB7		1.00	0.97	33.642	37.01	379.88	0.730	0.000	1.00	3.237	2.36	87.4	0.0	153.6	
28.00			1.00		33.672	37.04	379.87	0.730	0.000	0.12	0.387	0.28	10.5	0.0	18.4	
30.00			1.00		34.165	37.58	379.52	0.730	0.000	2.00	6.430	4.69	176.4	0.0	305.2	
32.00 34.00			1.00 1.00		34.632 35.077	38.10 38.58	378.98 378.25	0.730	0.000	2.00	6.378	4.66	177.4	0.0	302.7	
36.00			1.00		35.502		376.25		0.000 0.000	2.00	6.325 6.273	4.62 4.58	178.2 178.8	0.0 0.0	300.2 297.7	
38.00			1.00		35.908	39.50	376.31		0.000	2.00	6.220	4.54	179.4	0.0	297.7	
40.00			1.00		36.298	39.93	375.14		0.000	2.00	6.168	4.50	179.8	0.0	292.7	
40.50 R			1.00		36.393	40.03	374.83	0.730	0.000	0.50	1.534	1.12	44.8	0.0	72.8	
40.71 R	T6 RB9		1.00		36.433	40.08	374.69		0.000	0.21	0.643	0.47	18.8	0.0	30.5	
42.00	t. Seation		1.00		36.673	40.34	373.84		0.000	1.29	3.938	2.87	116.0	0.0	186.9	
43.33 B0 44.00	ot - Section		1.00 1.00		36.915 37.034	40.61 40.74	372.92 372.44		0.000 0.000	1.33	4.048	2.95	120.0	0.0	192.0	
46.00			1.00		37.382	41.12	372.44		0.000	0.67 2.00	2.043 6.095	1.49 4.45	60.8 182.9	0.0 0.0	173.3 516.9	
	p - Sectior		1.00		37.718	41.49	369.32		0.000	2.00	6.042	4.41	183.0	0.0	510.9	
48.12 R	17		1.00		37.738	41.51	374.49		0.000	0.12	0.361	0.26	10.9	0.0	13.7	
50.00			1.00		38.044	41.85	372.91		0.000	1.88	5.629	4.11	171. 9	0.0	214.0	
52.00			1.00		38.359	42.20	371.15		0.000	2.00	5.937	4.33	182.9	0.0	225.7	
54.00 56.00			1.00 1.00		38.665 38.962	42.53	369.32 367.41		0.000	2.00	5.884	4.30	182.7	0.0	223.7	
58.00			1.00		38.962 39.251	42.86 43.18	367.41 365.43		0.000 0.000	2.00 2.00	5.832 5.779	4.26 4.22	182.5 182.2	0.0 0.0	221.7 219.7	
60.00			1.00		39.532	43.49		0.730	0.000	2.00	5.727	4.22 4.18	182.2	0.0	219.7 217.6	
60.71 R	Т9		1.00		39.630	43.59	362.64		0.000	0.71	2.020	1.47	64.3	0.0	76.8	
60.75 R	T8 RB10		1.00	1.14	39.636	43.60	362.60		0.000	0.04	0.114	0.08	3.6	0.0	4.3	
62.00			1.00		39.806	43.79	361.28		0.000	1.25	3.540	2.58	113.2	0.0	134.5	
64.00			1.00		40.073	44.08	359.11		0.000	2.00	5.622	4.10	180.9	0.0	213.6	
66.00 68.00			1.00		40.334	44.37	356.89		0.000	2.00	5.569	4.07	180.4	0.0	211.6	
70.00			1.00 1.00		40.588 40.836	44.65 44.92	354.62 352.30		0.000 0.000	2.00 2.00	5.516	4.03	179.8 179.2	0.0	209.6	
				1.17	-10.030	44.9Z	JJ2.3U	0.130	0.000	∠.00	5.464	3.99	179.2	0.0	207.6	

1				T	Wi	nd Loa	ading	- Shaf				a la companya da companya d		
Structure:	CT13064-A	-SBA				Co	de:	TL	A-222-H			10/4/2022	A	
	Middletown	2. CT				Ex	posure	: с					((明)	
	130.00 (ft)	_,				Сг	est Heid	ght: 0.0	00				1-	
•	. ,							-	- Stiff Soi					ES
Base Elev:	0.000 (ft)						e Class		- Sun Soi			_	Tower Fr	gincering Solution
Gh:	1.1	Т	opogr	aphy:	1	Str	uct Cla	iss: II				Page: 11	10wet El	igneering solute
72.00		1.00	1.18 4	1.079	45.19	349.93	0.730	0.000	2.00	5.411	3.95	178.5	0.0	205.6
74.00		1.00	1.19 4	1.317	45.45	347.52	0.730	0.000	2.00	5.359	3.91	177.8	0.0	203.6
76.00		1.00	1.19 4	1.550	45.70	345.06	0.730	0.000	2.00	5.306	3.87	177.0	0.0	201.5
78.00		1.00	1.20 4	1.777	45.96	342.56	0.730	0.000	2.00	5.254	3.84	176.2	0.0	199.5
78.25 RT10		1.00	1.20 4	1.806	45.99	342.24	0.730	0.000	0.25	0.653	0.48	21.9	0.0	24.8
80.00		1.00	1.21 4	2.001	46.20	340.02	0.730	0.000	1.75	4.548	3.32	153.4	0.0	172.7
82.00		1.00	1.21 4	2.220	46.44	337.44	0.730	0.000	2.00	5.148	3.76	174.5	0.0	195.5
84.00		1.00	1.22 4	2.434	46.68	334.83	0.730	0.000	2.00	5.096	3.72	173.6	0.0	193.5
86.00		1.00	1.23 4	2.645	46.91	332.18	0.730	0.000	2.00	5.043	3.68	172.7	0.0	191.5
87.42 Bot - Sect	ion 3	1.00	1.23 4	2.792	47.07	330.28	0.730	0.000	1.42	3.541	2.58	121.7	0.0	134.4
88.00		1.00	1.23 4	2.852	47.14	329.49	0.730	0.000	0.58	1.469	1.07	50.5	0.0	97.0
90.00 Appurtena	ance(s)	1.00	1.24 4	3.055	47.36	326.78	0.730	0.000	2.00	5.002	3.65	172.9	0.0	330.2
91.33 Top - Sec		1.00	1.24 4	3.189	47.51	324.95	0.730	0.000	1.33	3.305	2.41	114.6	0.0	218.2
92.00		1.00	1.24 4	3.255	47.58	328.26	0.730	0.000	0.67	1.644	1.20	57.1	0.0	46.9
94.00		1.00	1.25 4	3.451	47.80	325.49	0.730	0.000	2.00	4.897	3.57	170.8	0.0	139.7
96.00	Ŀ	1.00	1.25 4		48.01	322.69	0.730	0.000	2.00	4.844	3.54	169.8	0.0	138.2
98.00		1.00	1.26 4		48.22	319.87	0.730	0.000	2.00	4.791	3.50	168.7	0.0	136.7
100.00 Appurtena		1.00	1.27 4		48.42	317.01	0.730	0.000	2.00	4.739	3.46	167.5	0.0	135.2
102.00		1.00	1.27 4	4.205	48.63	314.13	0.730	0.000	2.00	4.686	3.42	166.3	0.0	133.7
104.00		1.00	1.28 4		48.82	311.22	0.730	0.000	2.00	4.634	3.38	165.2	0.0	132.2
106.00		1.00	1.28 4		49.02	308.29	0.730	0.000	2.00	4.581	3.34	163.9	0.0	130.6
108.00		1.00	1.29 4		49.21	305.33	0.730	0.000	2.00	4.529	3.31	162.7	0.0	129.1
110.00 Appurtena		1.00	1.29 4		49.40	302.35	0.730	0.000	2.00	4.476	3.27	161.4	0.0	127.6
112.00	· · ·	1.00	1.30 4		49.59	299.35	0.730	0.000	2.00	4.423	3.23	160.1	0.0	126.1
114.00		1.00	1.30 4		49.78	296.32	0.730	0.000	2.00	4.371	3.19	158.8	0.0	124.6
116.00		1.00	1.31 4		49.96	293.27	0.730	0.000	2.00	4.318	3.15	157.5	0.0	123.1
118.00		1.00	1.31 4		50.14	290.20	0.730	0.000	2.00	4.266	3.11	156.1	0.0	121.6
120.00 Top - Sec		1.00	1.32 4		50.32	287.11	0.730	0.000	2.00	4.213	3.08	154.8	0.0	120.1
120.00 10p - 3ec 122.00		1.00	1.32 4		50.49		0.620 *	0.000	2.00	3.000	1.86	93.9	0.0	113.9
122.00		1.00	1.32 4		50.67	206.43	0.620 *	0.000	2.00	3.000	1.86	94.2	0.0	113.9
124.00		1.00	1.33 4		50.84		0.620 *	0.000	2.00	3.000	1.86	94.6	0.0	113.9
128.00		1.00	1.33 4		51.01	207.12	0.620 *	0.000	2.00	3.000	1.86	94.9	0.0	113.9
		1.00	1.33 4		51.01		0.620 *	0.000	2.00	3.000	1.86	95.2	0.0	113.9
130.00 Appurtena	Linear Load Ra		1.04 4	10.021	01.17	207.40		Totals:	130.00	2.2.2		10,825.2		15,212.6

				Di	scret	e App	urten	ance	Forces					
Str	ucture:	CT13064-A-SBA				Co	de:	1	ГIA-222-ŀ	1	10/4	/2022		
Sit	e Name:	Middletown 2, CT				Ex	posure	e: (5				((明))	
He	ight:	130.00 (ft)				Cr	est Hei	i aht: (0.00				1 m	n
Ba	se Elev:	0.000 (ft)					te Clas	-	D - Stiff S	oil				S
Gh				graphy	: 1					011	Bay	ge: 12	Tower Engine	ering Solutions
		1.1	TOPO;	grapiny		31		ass. 1			raų			
Lo		: 1.2D + 1.0W 120	•	Wind							YA		rations	25
			1.20								-	×		
	Wir	nd Load Factor	1.00								2			
No.	Elev (ft)	Description	Qty	qz (psf)	qzGh (psf)	Orient Factor x Ka	Ka	Total CaAa (sf)	Dead Load (Ib)	Horiz Ecc (ft)	Vert Ecc (ft)	Wind FX (Ib)	Mom Y (Ib-ft)	Mom Z (Ib-ft)
1		C6-48-60-18-8F	2	46.521	51.173	0.75	0.75	1.38	76.32	0.000	0.000	70.62	0.00	0.00
2		Lightning rod	1	46.745	51.419	1.00	1.00	0.38	7.80	0.000	3.000	19.54	0.00	58.62
3	130.00 Cc	i DMP65R-BU6DA	3	46.521	51.173	0.54	0.75	20.62	227.88	0.000	0.000	1055.12	0.00	0.00
4	130.00 RF		6	46.521	51.173	0.38	0.75	3.71	554.40	0.000	0.000	189.98	0.00	0.00
5		RUS 4478 B14	3	46.521	51.173	0.38	0.75	1.86	213.84	0.000	0.000	94.99	0.00	0.00
6 7	130.00 B2 130.00 44	2 B66A 8843	3 3	46.521 46.521	51.173 51.173	0.38 0.38	0.75 0.75	1.84 2.22	252.00 255.60	0.000	0.000	94.41	0.00	0.00
8		RUS E2 B29	3	46.521	51.173	0.38	0.75	2.22 3.54	255.60	0.000 0.000	0.000 0.000	113.41 181.34	0.00 0.00	0.00 0.00
9		ditional mount pipe	3	46.521	51.173	0.56	0.75	2.95	61.20	0.000	0.000	151.12	0.00	0.00
10	130.00 Qu	uinte QD6616-7	3	46.521	51.173	0.56	0.75	22.92	212.76	0.000	0.000	1172.69	0.00	0.00
11	130.00 (3)	Horizontal bracing	1	46.521	51.173	0.75	0.75	4.45	164.70	0.000	0.000	227.88	0.00	0.00
12		icsson AIR6419	3	46.670	51.337	0.57	0.75	6.50	237.96	0.000	2.000	333.59	0.00	667.18
13		C6-48-60-0-8C	2	46.521	51.173	0.75	0.75	7.17	38.40	0.000	0.000	366.91	0.00	0.00
14 15		iccson AIR6449 gle Reinforcement kit	3 1	46.369 46.521	51.006 51.173	0.64 1.00	0.75 1.00	7.90 5.80	316.80	0.000	-2.000	402.88	0.00	-805.75
16		C3607 Platform + HR &	1	46.521	51.173	1.00	1.00	5.80 51.70	300.00 2695.20	0.000 0.000	0.000 0.000	296.80 2645.63	0.00 0.00	0.00 0.00
17		C-PK8-DSH	1	45.743	50.318	1.00	1.00	37.59	2033.20	0.000	0.000	1891.44	0.00	0.00
18	120.00 RD	DIDC-9181-OF-48	1	45.743	50.318	0.75	0.75	1.51	26.28	0.000	0.000	75.85	0.00	0.00
19	120.00 TA	08025-B604	3	45.743	50.318	0.38	0.75	2.21	230.04	0.000	0.000	110.95	0.00	0.00
20		08025-B605	3	45.743	50.318	0.38	0.75	2.21	270.00	0.000	0.000	110.95	0.00	0.00
21		K08FRO665-21	3	45.743	50.318	0.55	0.75	20.80	232.20	0.000	0.000	1046.40	0.00	0.00
22 23	110.00 SA	SUNG SUNG S RVZDC-6627-PF-48	3 1	44.913 44.913	49.404	0.40	0.80	2.24	268.92	0.000	0.000	110.86	0.00	0.00
23 24		MSUNG MT6407-77A	3	44.913	49.404 49.404	0.40 0.56	0.80 0.80	1.62 7.88	38.40 313.56	0.000 0.000	0.000 0.000	80.23 389.27	0.00 0.00	0.00 0.00
25		IA MX10FIT665-02	3		49.404	0.67	0.80	16.27	192.24	0.000	0.000	803.84	0.00	0.00
26		Arm (Round)	3		49.404	0.56	0.75	13.50	1260.00	0.000	0.000	666.96	0.00	0.00
27	110.00 CC	MMSCOPE	3	44.999	49.499	0.40	0.80	0.48	23.76	0.000	1.000	23.76	0.00	23.76
28	110.00 SA		3		49.404	0.40	0.80	2.24	253.19	0.000	0.000	110.86	0.00	0.00
29		threin 782 11056	3		48.423	0.40	0.80	0.16	6.48	0.000	0.000	7.55	0.00	0.00
30 31		csson AIR21 B2A B4P	3 3		48.423 48.423	0.64 0.64	0.80	11.69	329.40 325.44	0.000	0.000	566.20	0.00	0.00
32		Arm (Round)	6		48.423	0.64	0.80 0.75	11.69 27.00	325.44 2520.00	0.000 0.000	0.000 0.000	566.20 1307.42	0.00 0.00	0.00 0.00
33	100.00 RF	. ,	3		48.423	0.58	0.80	35.46	442.08	0.000	0.000	1717.10	0.00	0.00
34	100.00 Eri	csson 4480 B71 + B85	3		48.423	0.59	0.80	5.06	334.80	0.000	0.000	245.10	0.00	0.00
35	90.00 F3		1	43.055		1.00	1.00	51.77	2546.40	0.000	0.000	2451.86	0.00	0.00
36		VV-65B-R4	3	43.055		0.55	0.75	20.43	278.64	0.000	0.000	967.56	0.00	0.00
37	90.00 AA		3	43.055		0.56	0.75	7.09	374.40	0.000	0.000	335.67	0.00	0.00
38 39	90.00 F3	P-HRK10 U - 800 MHz - RRU	1 6	43.055		1.00	1.00	7.12	469.20	0.000	0.000	337.21	0.00	0.00
39 40		U - 1900MHz - RRU	6 3	43.055 43.055		0.38 0.38	0.75 0.75	5.60 4.27	381.60 158.40	0.000 0.000	0.000 0.000	265.34 202.47	0.00	0.00
41		drew - VHLP2-11	2	43.055		0.38	0.75	7.02	64.80	0.000	0.000	332.47	0.00 0.00	0.00
							Totals		19,241.33	0.000		2,140.42	0.00	0.00

1		То	tal App	lied Force St	ummary		t se
Structure:	CT13064-A-SBA			Code:	TIA-222-H	10/4/2022	
Site Name:	Middletown 2, C1	Г		Exposure:	С		l danka shb
Height:	130.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		
Gh:	1.1	Topography:	1	Struct Class:	II	Page: 13	Tower Engineering Solution
Lood Case	• 1 2D + 1 0W 12	20 mph Wind				×A	terations 25

Jan Star

3

Load Case: 1.2D + 1.0W 120 mph Wind Dead Load Factor 1.20

Wind Load Factor 1.00

Elev	Description	Lateral FX (-) (Ib)	Axial FY (-) (Ib)	Torsion MY (Ib-ft)	Moment MZ (Ib-ft)	
(ft)	Description		0.00	0.00	0.00	
0.00		0.00		0.00	0.00	
2.00		170.13	460.06	0.00	0.00	
4.00		168.88	457.54 455.03	0.00	0.00	
6.00		167.64 166.39	452.51	0.00	0.00	
8.00		165.14	450.00	0.00	0.00	
10.00		20.55	56.07	0.00	0.00	
10.25 12.00		143.34	391.41	0.00	0.00	
12.00		162.64	444.96	0.00	0.00	
16.00		163.39	442.45	0.00	0.00	
18.00		166.20	439.93	0.00	0.00	
20.00		168.60	437.42	0.00	0.00	
20.50		42.16	108.96	0.00	0.00	
20.00		127.87	325.94	0.00	0.00	
24.00		172.45	432.39	0.00	0.00	
25.96		170.46	421.30	0.00	0.00	
25.90 26.00		3.47	8.57	0.00	0.00	
26.88		76.64	188.35	0.00	0.00	
27.88		87.43	213.44	0.00	0.00	
28.00		10.48	25.57	0.00	0.00	
30.00		176.41	424.84	0.00	0.00	
32.00		177.37	422.32	0.00	0.00	
34.00		178.16	419.81	0.00	0.00	
36.00		178.82	417.29	0.00	0.00	
38.00		179.35	414.78	0.00	0.00	
40.00		179.77	412.26	0.00	0.00	
40.50		44.82	102.67	0.00	0.00	
40.71		18.82	43.08	0.00	0.00	
42.00		115.97	264.00	0.00	0.00	
43.33		1 19.98	271.76	0.00	0.00	
44.00		60.76	213.16	0.00	0.00	
46.00		182.94	636.45	0.00	0.00	
48.00		183.00	631.92	0.00	0.00	
48.12		10. 9 4	20.90	0.00	0.00	
50.00		171.95	326.41	0.00	0.00	
52.00		182.87	345.30	0.00	0.00	
54.00		182.70	343.28	0.00	0.00	
56.00		182.46	341.27	0.00	0.00	
58.00		182.15	339.26	0.00	0.00	
60.00		181.79	337.25	0.00	0.00	
60.71		64.29	119.24	0.00	0.00	
60.75		3.62	6.71	0.00	0.00	
62.00		113.16	209.29	0.00	0.00	
64.00		180.89	333.22	0.00	0.00	
66.00		180.37	331.21	0.00	0.00	
68.00		179.79	329.20	0.00	0.00	
70.00		179.17	327.18	0.00	0.00	

			Total A	pplied Fo	orce Summ	nary		
Structure	: CT13064-	A-SBA		Code:	TIA	-222-H	10/4/2022	
Site Name	e: Middletow	'n 2, CT		Expos	ure: C			(((H)))
Height:	130.00 (ft)			-	Height: 0.0	n		
Base Elev				Site C	•	Stiff Soil		HN
	• • •	_				500 500	_	
Gh:	1.1	Тор	ography: 1	Struct	Class: II		Page: 14	Tower Engineering Solution
72.00		178.50	325.17	0.00	0.00			
74.00		177.79	323.16	0.00	0.00			
76.00		177.04	321.15	0.00	0.00			
78.00		176.24	319.13	0.00	0.00			
78.25		21.92	39.75	0.00	0.00			
80.00		153.39	277.37	0.00	0.00			
82.00		174.54	315.11	0.00	0.00			
84.00		173.64	313.10	0.00	0.00			
86.00		172.70	311.08	0.00	0.00			
87.42		121.66	219.13	0.00	0.00			
88.00		50.54	131.85	0.00	0.00			
90.00 (1	9) attachments	5065.49	4723.22	0.00	0.00			
91.33		114.63	291.20	0.00	0.00			
92.00		57.10	83.42	0.00	0.00			
94.00		170.85	249.26	0.00	0.00			
96.00		169.76	247.75	0.00	0.00			
98.00		168.65	246.24	0.00	0.00			
00.00 (2	1) attachments	4577.08	4202.93	0.00	0.00			
02.00		166.35	220.33	0.00	0.00			
04.00		165.15	218.82	0.00	0.00			
06.00		163.94	217.31	0.00	0.00			
08.00		162.69	215.80	0.00	0.00			
10.00 (1	9) attachments	2347.21	2564.36	0.00	23.76			
12.00		160.14	180.19	0.00	0.00			
14.00		158.83	178.68	0.00	0.00			
16.00		157.49	177.17	0.00	0.00			
18.00		156.14	175.66	0.00	0.00			
20.00 (1	1) attachments	3390.35	3005.07	0.00	0.00			
22.00		93.92	163.55	0.00	0.00			
24.00		94.24	163.55	0.00	0.00			
26.00		94.56	163.55	0.00	0.00			
28.00		94.87	163.55	0.00	0.00			
30.00 (4	1) attachments	7512.09	5992.25	0.00	-79.95			
	Totals:	32,965.66	41,335.83	0.00	-56.20			

	Line	ar Appur	tena	nce Seg	ment F	orces	(Fact	ored)			
Structure: CT13064-	A-SBA			Code		TIA-222	2-H		10/4/2022	2 Ac	
				Expo		С				((明))	
	-			-						1 1	DC
Height: 130.00 (ft)					Height:						- ~
Base Elev: 0.000 (ft)				Site C	lass:	D - Stiff	Soil				10
Gh: 1.1	Тог	ography:	1	Struc	t Class:	- E			Page: 15	Tower Eng	ineering Solutio
		ograpny									
Load Case: 1.2D + 1.								Y	x	Iteration	s 25
Dead Load Fa	ctor 1.2	0									
Wind Load Fa	ctor 1.0	0						3			
Top Elev (ft) Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (Ib)
2.00 2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.070	0.000	29.565	0.00	11.59
2.00 1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.070	0.000	29.565	0.00	0.00
2.00 1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.070	0.000	29.565	0.00	0.00
4.00 2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.070	0.000	29.565	0.00	11.59
4.00 1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.070	0.000	29.565	0.00	0.00
4.00 1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.070	0.000	29.565	0.00	0.00
6.00 2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.071	0.000	29.565	0.00	11.59
6.00 1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.071	0.000	29.565	0.00	0.00
6.00 1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.071	0.000	29.565	0.00	0.00
8.00 2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.071	0.000	29.565	0.00	11.59
8.00 1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.071	0.000	29.565	0.00	0.00
8.00 1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.071	0.000	29.565	0.00	0.00
10.00 2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.072	0.000	29.565	0.00	11.59
10.00 1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.072	0.000	29.565	0.00	0.00
10.00 1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.072	0.000	29.565	0.00	0.00
10.25 2" Conduit	Yes	0.25	0.000	2.00	0.04	0.00	0.072	0.000	29.565	0.00	1.45
10.25 1" Reinforcing plate	Yes	0.25	0.000	1.00	0.02	0.00	0.072	0.000	29.565	0.00	0.00
10.25 1" Reinforcing plate	Yes	0.25	0.000	0.00	0.00	0.00	0.072	0.000	29.565	0.00	0.00
12.00 2" Conduit	Yes	1.75	0.000	2.00	0.29	0.00	0.072	0.000	29.565	0.00	10.14
12.00 1" Reinforcing plate	Yes	1.75	0.000	1.00	0.15	0.00	0.072	0.000	29.565	0.00	0.00
12.00 1" Reinforcing plate	Yes	1.75	0.000	0.00	0.00	0.00	0.072	0.000	29.565	0.00	0.00
14.00 2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.073	0.000	29.565	0.00	11.59
14.00 1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.073	0.000	29.565	0.00	0.00
14.00 1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.073	0.000	29.565	0.00	0.00
16.00 2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.074	0.000	29.930	0.00	11.59
16.00 1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.074	0.000	29.930	0.00	0.00
16.00 1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.074	0.000	29.930	0.00	0.00
18.00 2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.074	0.000	30.681	0.00	11.59
40.00 All Deinfereing plate	Vac	2.00	0.000	1.00	0.17	0.00	0 074	0.000	30.681	0.00	0.00

18.00	2" Conduit	res	2.00	0.000	2.00	0.00	0.00	0.011	0.000	001001		
18.00		Yes	2.00	0.000	1.00	0.17	0.00	0.074	0.000	30.681	0.00	0.00
18.00	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.074	0.000	30.681	0.00	0.00
20.00	• • • • •	Yes	2.00	0.000	2.00	0.33	0.00	0.075	0.000	31.369	0.00	11.59
20.00	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.075	0.000	31.369	0.00	0.00
20.00	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.075	0.000	31.369	0.00	0.00
20.50	•	Yes	0.50	0.000	2.00	0.08	0.00	0.075	0.000	31.533	0.00	2.90
20.50	1" Reinforcing plate	Yes	0.50	0.000	1.00	0.04	0.00	0.075	0.000	31.533	0.00	0.00
20.50	1" Reinforcing plate	Yes	0.50	0.000	0.00	0.00	0.00	0.075	0.000	31.533	0.00	0.00
22.00	2" Conduit	Yes	1.50	0.000	2.00	0.25	0.00	0.075	0.000	32.005	0.00	8.69
22.00	1" Reinforcing plate	Yes	1.50	0.000	1.00	0.13	0.00	0.075	0.000	32.005	0.00	0.00
22.00	•	Yes	1.50	0.000	0.00	0.00	0.00	0.075	0.000	32.005	0.00	0.00
24.00	•	Yes	2.00	0.000	2.00	0.33	0.00	0.076	0.000	32.597	0.00	11.59
24.00		Yes	2.00	0.000	1.00	0.17	0.00	0.076	0.000	32.597	0.00	0.00
24.00	1" Reinforcing plate	Yes	0.67	0.000	0.00	0.00	0.00	0.076	0.000	32.597	0.00	0.00
24.00	•••	Yes	2.00	0.000	0.00	0.00	0.00	0.076	0.000	32.597	0.00	0.00
25.96	•	Yes	1.96	0.000	2.00	0.33	0.00	0.076	0.000	33.140	0.00	11.36
25.96		Yes	1.96	0.000	1.00	0.16	0.00	0.076	0.000	33.140	0.00	0.00
25.96	1" Reinforcing plate	Yes	1.96	0.000	0.00	0.00	0.00	0.076	0.000	33.140	0.00	-0.00
25.96	• ·	Yes	1.96	0.000	0.00	0.00	0.00	0.076	0.000	33.140	0.00	0.00
20.00	i i tonner sing plate											

		Line	ar Appu	rtena	nce Seg	ment F	orces	(Fact	ored)			A.
Structure	: CT13064-				Code		TIA-22			10/4/2022	2	
Site Name	e: Middletow	n 2, CT			Expo	sure:	С				[((明))	
Height:	130.00 (ft)				Crest	Height:	0.00				1 1 1	
-	. ,					•		f O - 11				
Base Elev	. ,	_				class:	D - Stif	1 2011				
Gh:	1.1	Тор	ography	: 1	Struc	t Class:	 			Page: 10	6	ineering Solut
Load Cas	se: 1.2D + 1.0	0W 120 mp	oh Wind						X	1	Iteration	is 2
D	ead Load Fa	ctor 1.2	0							x		
W	/ind Load Fa	ctor 1.0	0						3			
Тор					Exposed				Cf			Dead
Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Width (in)	Area (sqft)	CaAa (sqft)	Ra	Adjust Factor	qz (psf)	FX (Ib)	Load (Ib)
26.00 2" Co	onduit	Yes	0.04	0.000	2.00	0.01	0.00	0.077	0.000	33.151	0.00	0.23
26.00 1" Re	einforcing plate	Yes	0.04	0.000	1.00	0.00	0.00	0.077	0.000	33.151	0.00	0.00
	einforcing plate	Yes	0.04	0.000	0.00	0.00	0.00	0.077	0.000	33.151	0.00	0.00
	einforcing plate	Yes	0.04	0.000	0.00	0.00	0.00	0.077	0.000	33.151	0.00	0.00
26.88 2" Co		Yes	0.88	0.000	2.00	0.15	0.00	0.077	0.000	33.384	0.00	5.10
	einforcing plate	Yes	0.88	0.000	1.00	0.07	0.00	0.077	0.000	33.384	0.00	0.00
	einforcing plate	Yes	0.88	0.000	0.00	0.00	0.00	0.077	0.000	33.384	0.00	0.00
	einforcing plate	Yes	0.88	0.000	0.00	0.00	0.00	0.077	0.000	33.384	0.00	0.00
27.88 2" Co 27.88 1" Re	einforcing plate	Yes	1.00	0.000	2.00	0.17	0.00	0.077	0.000	33.642	0.00	5.80
	emorcing plate	Yes Yes	1.00 1.00	0.000 0.000	1.00 0.00	0.08	0.00	0.077	0.000	33.642	0.00	0.00
	einforcing plate	Yes	1.00	0.000	0.00	0.00 0.00	0.00 0.00	0.077 0.077	0.000 0.000	33.642 33.642	0.00 0.00	0.00 0.00
28.00 2" Co		Yes	0.12	0.000	2.00	0.02	0.00	0.077	0.000	33.672	0.00	0.00
	einforcing plate	Yes	0.12	0.000	1.00	0.01	0.00	0.077	0.000	33.672	0.00	0.00
	einforcing plate	Yes	0.12	0.000	0.00	0.00	0.00	0.077	0.000	33.672	0.00	0.00
28.00 1" Re	einforcing plate	Yes	0.12	0.000	0.00	0.00	0.00	0.077	0.000	33.672	0.00	0.00
0.00 2" Co		Yes	2.00	0.000	2.00	0.33	0.00	0.078	0.000	34.165	0.00	11.59
80.00 1" Re	inforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.078	0.000	34.165	0.00	0.00
80.00 1" Re	einforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.078	0.000	34.165	0.00	0.00
	inforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.078	0.000	34.165	0.00	0.00
2.00 2" Co		Yes	2.00	0.000	2.00	0.33	0.00	0.078	0.000	34.632	0.00	11.59
	inforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.078	0.000	34.632	0.00	0.00
	inforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.078	0.000	34.632	0.00	0.00
	inforcing plate	Yes	1.50	0.000	0.00	0.00	0.00	0.078	0.000	34.632	0.00	0.00
4.00 2" Co		Yes Yes	0.50 2.00	0.000	0.00 2.00	0.00	0.00	0.078	0.000	34.632	0.00	0.00
	inforcing plate	Yes	2.00	0.000 0.000	2.00	0.33 0.17	0.00 0.00	0.079 0.079	0.000 0.000	35.077 35.077	0.00	11.59
	inforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.079	0.000	35.077	0.00 0.00	0.00 0.00
	inforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.079	0.000	35.077	0.00	0.00
6.00 2" Co	nduit	Yes	2.00	0.000	2.00	0.33	0.00	0.080	0.000	35.502	0.00	11.59
	inforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.080	0.000	35.502	0.00	0.00
	inforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.080	0.000	35.502	0.00	0.00
6.00 1" Re	inforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.080	0.000	35.502	0.00	0.00
8.00 2" Co		Yes	2.00	0.000	2.00	0.33	0.00	0.080	0.000	35.908	0.00	11.59
	inforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.080	0.000	35.908	0.00	0.00
	inforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.080	0.000	35.908	0.00	0.00
	inforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.080	0.000	35.908	0.00	0.00
0.00 2" Co		Yes	2.00	0.000	2.00	0.33	0.00	0.081	0.000	36.298	0.00	11.59
	inforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.081	0.000	36.298	0.00	0.00
	inforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.081	0.000	36.298	0.00	0.00
10.00 1" Re 10.50 2" Co	inforcing plate	Yes Yes	2.00 0.50	0.000	0.00	0.00	0.00	0.081	0.000	36.298	0.00	0.00
10.00 Z CO	induit inforcing plate	Yes	0.50	0.000	2.00	0.08	0.00	0.082	0.000	36.393	0.00	2.90

1.00

0.00

0.00

2.00

1.00

0.04

0.00

0.00

0.04

0.02

0.00

0.00

0.00

0.00

0.00

0.082

0.082

0.082

0.082

0.082

0.000

0.000

0.000

0.000

0.000

36.393

36.393

36.393

36.433

36.433

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.22

0.00

40.50 1" Reinforcing plate

40.50 1" Reinforcing plate

40.50 1" Reinforcing plate

40.71 1" Reinforcing plate

40.71 2" Conduit

Yes

Yes

Yes

Yes

Yes

0.50

0.50

0.50

0.21

0.21

0.000

0.000

0.000

0.000

0.000

	1	Linea	ar Appur	tenar	ice Seg	ment F	orces	(Facto	ored)		7	
Struct	ure: CT13064-A	A-SBA			Code:		TIA-222	2-H		10/4/2022	A	
Site Na		1 2, CT			Expos	sure:	С				((冊))	
Height					Crest	Height:	0.00					TC
Base E	()				Site C	lass:	D - Stiff	f Soil				<u>LO</u>
	1.1	Ton	ography:	1		t Class:	П			Page: 17	Tower Eng	ineering Solutions
Gh:	1.1	100	ography.	_		01055.						
Load	Case: 1.2D + 1.0 Dead Load Fac Wind Load Fac	ctor 1.20	ט						2	×	Iteration	i s 25
Тор					Exposed				Cf			Dead
Elev		Wind	Length		Width	Area	CaAa		Adjust	qz	FX	Load
(ft)	Description	Exposed	(ft)	Ca	(in)	(sqft)	(sqft)	Ra	Factor	(psf)	(lb)	(Ib)
40.71	1" Reinforcing plate	Yes	0.21	0.000	0.00	0.00	0.00	0.082	0.000	36.433	0.00	0.00
	1" Reinforcing plate	Yes	0.21	0.000	0.00	0.00	0.00	0.082	0.000 0.000	36.433 36.673	0.00 0.00	0.00 7.48
	2" Conduit	Yes	1.29	0.000	2.00	0.21	0.00 0.00	0.082 0.082	0.000	36.673	0.00	0.00
	1" Reinforcing plate	Yes	1.29 1.29	0.000 0.000	1.00 0.00	0.11 0.00	0.00	0.082	0.000	36.673	0.00	0.00
	1" Reinforcing plate 1" Reinforcing plate	Yes Yes	1.29	0.000	0.00	0.00	0.00	0.082	0.000	36.673	0.00	0.00
	2" Conduit	Yes	1.33	0.000	2.00	0.22	0.00	0.082	0.000	36.915	0.00	7.73
	1" Reinforcing plate	Yes	1.33	0.000	1.00	0.11	0.00	0.082	0.000	36.915	0.00	0.00
	1" Reinforcing plate	Yes	1.33	0.000	0.00	0.00	0.00	0.082	0.000	36.915	0.00	0.00
	1" Reinforcing plate	Yes	1.33	0.000	0.00	0.00	0.00	0.082	0.000	36.915	0.00	0.00
44.00	2" Conduit	Yes	0.67	0.000	2.00	0.11	0.00	0.083	0.000	37.034	0.00	3.86
44.00	1" Reinforcing plate	Yes	0.67	0.000	1.00	0.06	0.00	0.083	0.000	37.034	0.00	0.00
44.00	1" Reinforcing plate	Yes	0.67	0.000	0.00	0.00	0.00	0.083	0.000	37.034	0.00	0.00 0.00
	1" Reinforcing plate	Yes	0.67	0.000	0.00	0.00	0.00	0.083	0.000	37.034 37.382	0.00 0.00	11.59
	2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.083 0.083	0.000 0.000	37.382	0.00	0.00
	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17 0.00	0.00 0.00	0.083	0.000	37.382	0.00	0.00
	1" Reinforcing plate	Yes	2.00	0.000 0.000	0.00 0.00	0.00	0.00	0.083	0.000	37.382	0.00	0.00
	1" Reinforcing plate	Yes	2.00 2.00	0.000	2.00	0.00	0.00	0.084	0.000	37.718	0.00	11.59
	2" Conduit	Yes Yes	2.00	0.000	1.00	0.00	0.00	0.084	0.000	37.718	0.00	0.00
	1" Reinforcing plate 1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.084	0.000	37.718	0.00	0.00
	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.084	0.000	37.718	0.00	0.00
	2" Conduit	Yes	0.12	0.000	2.00	0.02	0.00	0.083	0.000	37.738	0.00	0.70
	1" Reinforcing plate	Yes	0.12	0.000	1.00	0.01	0.00	0.083	0.000	37.738	0.00	0.00
	1" Reinforcing plate	Yes	0.12	0.000	0.00	0.00	0.00	0.083	0.000	37.738	0.00	0.00
	1" Reinforcing plate	Yes	0.12	0.000	0.00	0.00	0.00	0.083	0.000	37.738	0.00	0.00
50.00	2" Conduit	Yes	1.88	0.000	2.00	0.31	0.00	0.084	0.000	38.044	0.00	10.90
	1" Reinforcing plate	Yes	1.88	0.000	1.00	0.16	0.00	0.084	0.000	38.044	0.00	0.00 0.00
	1" Reinforcing plate	Yes	1.88	0.000	0.00	0.00	0.00	0.084	0.000 0.000	38.044 38.044	0.00 0.00	0.00
	1" Reinforcing plate	Yes	1.88	0.000 0.000	0.00 2.00	0.00 0.33	0.00 0.00	0.084 0.084	0.000	38.359	0.00	11.59
	2" Conduit	Yes	2.00		2.00	0.33	0.00	0.084	0.000	38.359	0.00	0.00
	1" Reinforcing plate	Yes	2.00 2.00	0.000 0.000	0.00	0.00	0.00	0.084	0.000	38.359	0.00	0.00
	1" Reinforcing plate 1" Reinforcing plate	Yes Yes	0.50	0.000	0.00	0.00	0.00	0.084	0.000	38.359	0.00	0.00
	2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.085	0.000	38.665	0.00	11.59
	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.085	0.000	38.665	0.00	0.00
	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.085	0.000	38.665	0.00	0.00
	2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.086	0.000	38.962	0.00	11.59
	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.086	0.000	38.962	0.00	0.00
	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.086	0.000	38.962	0.00	0.00
58.00	2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.087	0.000	39.251	0.00	11.59
58.00	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.087	0.000	39.251	0.00 0.00	0.00 0.00
	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.087	0.000 0.000	39.251 39.532	0.00	11.59
	2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00 0.00	0.087 0.087	0.000	39.532 39.532	0.00	0.00
	1" Reinforcing plate	Yes	2.00	0.000	1.00 0.00	0.17 0.00	0.00	0.087	0.000	39.532	0.00	0.00
	1" Reinforcing plate	Yes	2.00 0.71	0.000 0.000	2.00	0.00	0.00	0.087	0.000	39.630	0.00	4.12
60.71	2" Conduit	Yes	0.7 1 vriaht © 2022									

	Line	ar Appu	rtena	nce Seg	ment F	orces	(Fact	ored)			
Structure: CT13064	I-A-SBA			Code	:	TIA-22	2 - H		10/4/202	2	
Site Name: Middletov	wn 2, CT			Expo	sure:	С				((明))	
Height: 130.00 (1	t)			Crest	Height:	0.00				1 1	CO
Base Elev: 0.000 (ft)	1			Site C	Class:	D - Stif	f Soil				ED
Gh: 1.1	Тог	ography:	1	Struc	t Class:				Page: 1	Tower Eng	ineering Solu
Load Case: 1.2D + 1 Dead Load F	1.0W 120 mp actor 1.2	oh Wind						Y		Iteration	IS
Wind Load F	actor 1.0							3			
Top Elev (ft) Description	Wind Exposed	Length (ft)	Са	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (Ib)
60.71 1" Reinforcing plate	Yes	0.71	0.000	1.00	0.06	0.00	0.088	0.000	39.630	0.00	0.00
60.71 1" Reinforcing plate	Yes	0.71	0.000	0.00	0.00	0.00	0.088	0.000	39.630	0.00	0.00
60.75 2" Conduit 60.75 1" Reinforcing plate	Yes Yes	0.04 0.04	0.000 0.000	2.00	0.01	0.00	0.088	0.000	39.636	0.00	0.23
60.75 1" Reinforcing plate	Yes	0.04	0.000	1.00 0.00	0.00 0.00	0.00 0.00	0.088 0.088	0.000 0.000	39.636 39.636	0.00 0.00	0.00
62.00 2" Conduit	Yes	1.25	0.000	2.00	0.00	0.00	0.088	0.000	39.636 39.806	0.00	0.00
62.00 1" Reinforcing plate	Yes	1.25	0.000	1.00	0.10	0.00	0.088	0.000	39.806	0.00	0.00
62.00 1" Reinforcing plate	Yes	1.25	0.000	0.00	0.00	0.00	0.088	0.000	39.806	0.00	0.00
64.00 2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.089	0.000	40.073	0.00	11.59
64.00 1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.089	0.000	40.073	0.00	0.00
64.00 1" Reinforcing plate 66.00 2" Conduit	Yes Yes	1.33 2.00	0.000 0.000	0.00 2.00	0.00 0.33	0.00 0.00	0.089 0.090	0.000	40.073	0.00	0.00
66.00 1" Reinforcing plate	Yes	2.00	0.000	1.00	0.33	0.00	0.090	0.000 0.000	40.334 40.334	0.00 0.00	11.59 0.00
68.00 2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.091	0.000	40.588	0.00	11.59
68.00 1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.091	0.000	40.588	0.00	0.00
70.00 2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.092	0.000	40.836	0.00	11.59
70.00 1" Reinforcing plate 72.00 2" Conduit	Yes Yes	2.00 2.00	0.000	1.00	0.17	0.00	0.092	0.000	40.836	0.00	0.00
72.00 1" Reinforcing plate	Yes	2.00	0.000 0.000	2.00 1.00	0.33 0.17	0.00 0.00	0.092 0.092	0.000 0.000	41.079 41.079	0.00 0.00	11.59 0.00
74.00 2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.092	0.000	41.317	0.00	11.59
74.00 1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.093	0.000	41.317	0.00	0.00
76.00 2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.094	0.000	41.550	0.00	11.59
76.00 1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.094	0.000	41.550	0.00	0.00
78.00 2" Conduit 78.00 1" Reinforcing plate	Yes	2.00	0.000	2.00	0.33	0.00	0.095	0.000	41.777	0.00	11.59
78.25 2" Conduit	Yes Yes	2.00 0.25	0.000 0.000	1.00 2.00	0.17	0.00	0.095	0.000	41.777	0.00	0.00
78.25 1" Reinforcing plate	Yes	0.25	0.000	2.00	0.04 0.02	0.00 0.00	0.096 0.096	0.000 0.000	41.806 41.806	0.00 0.00	1.45 0.00
80.00 2" Conduit	Yes	1.75	0.000	2.00	0.29	0.00	0.096	0.000	42.001	0.00	10.14
80.00 1" Reinforcing plate	Yes	1.75	0.000	1.00	0.15	0.00	0.096	0.000	42.001	0.00	0.00
82.00 2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.081	0.000	42.220	0.00	11.59
B2.00 1" Reinforcing plate B4.00 2" Conduit	Yes Yes	1.00 2.00	0.000 0.000	1.00 2.00	0.08	0.00	0.081	0.000	42.220	0.00	0.00
B6.00 2" Conduit	Yes	2.00	0.000	2.00	0.33 0.33	0.00 0.00	0.065 0.066	0.000 0.000	42.434 42.645	0.00 0.00	11.59 11.59
87.42 2" Conduit	Yes	1.42	0.000	2.00	0.24	0.00	0.067	0.000	42.792	0.00	8.21
88.00 2" Conduit	Yes	0.58	0.000	2.00	0.10	0.00	0.067	0.000	42.852	0.00	3.38
90.00 2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.068	0.000	43.055	0.00	11.59
91.33 2" Conduit	Yes	1.33	0.000	2.00	0.22	0.00	0.068	0.000	43.189	0.00	7.73
92.00 2" Conduit 94.00 2" Conduit	Yes Yes	0.67	0.000	2.00	0.11	0.00	0.068	0.000	43.255	0.00	3.86
94.00 2 Conduit 96.00 2" Conduit	Yes	2.00 2.00	0.000 0.000	2.00 2.00	0.33 0.33	0.00 0.00	0.068 0.069	0.000 0.000	43.451 43.644	0.00	11.59
98.00 2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.069	0.000	43.644 43.834	0.00 0.00	11.59 11.59
00.00 2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.070	0.000	44.021	0.00	11.59
02.00 2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.071	0.000	44.205	0.00	11.59
04.00 2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.072	0.000	44.386	0.00	11.59
06.00 2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.073	0.000	44.564	0.00	11.59
08.00 2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.074	0.000	44.740	0.00	11.59

Copyright $\textcircled{\sc s}$ 2022 by Tower Engineering Solutions, LLC. All rights reserved.

0.33

2.00

110.00 2" Conduit

Yes

2.00

0.000

0.00

0.074

0.000

44.913

0.00

11.59

		Line	ar Appu	rtenar	nce Seg	ment F	orces	(Facto	ored)					
Structure	: CT13064-A	A-SBA			Code		TIA-222	2-H		10/4/2022	44.000.58			
Site Nam	e: Middletowr	12. CT			Expo	sure:	С				((冊))			
Height:	130.00 (ft)	,			-	Height:	0.00					70		
-	.,				Site C	•	D - Stiff	Soil				20		
Base Elev	v: 0.000 (ft)							301		D 40	Tower Eng	ineering Solutions		
Gh:	1.1	Тор	ography:	1	Struc	t Class:	II			Page: 19				
									×	x	Iteration	s 25		
Luau Case. 1.2D + 1.0W 120 mph Wild														
Top Elev		Wind	Length		Exposed Width				Cf	-	FX	Dead		
(ft)	Description	Exposed	(ft)	Ca	(in)	Area (sqft)	CaAa (sqft)	Ra	Adjust Factor	qz (psf)	(lb)	Load (Ib)		
(π) 112.00 2" C		Exposed Yes	-	Ca 0.000				Ra 0.075				(Ib) 11.59		
	onduit	_	(ft)	_	(in)	(sqft)	(sqft)	0.075 0.076	Factor 0.000 0.000	(psf) 45.084 45.252	(Ib) 0.00 0.00	(Ib) 11.59 11.59		
112.00 2" C	onduit onduit	Yes	(ft) 2.00	0.000	(in) 2.00 2.00 2.00	(sqft) 0.33 0.33 0.33	(sqft) 0.00 0.00 0.00	0.075 0.076 0.077	Factor 0.000 0.000 0.000	(psf) 45.084 45.252 45.418	(lb) 0.00 0.00 0.00	(Ib) 11.59 11.59 11.59		
112.00 2" C 114.00 2" C	onduit onduit onduit	Yes Yes Yes Yes	(ft) 2.00 2.00 2.00 2.00	0.000 0.000 0.000 0.000	(in) 2.00 2.00 2.00 2.00	(sqft) 0.33 0.33 0.33 0.33	(sqft) 0.00 0.00 0.00 0.00	0.075 0.076 0.077 0.078	Factor 0.000 0.000 0.000 0.000	(psf) 45.084 45.252 45.418 45.582	(lb) 0.00 0.00 0.00 0.00	(Ib) 11.59 11.59 11.59 11.59		
112.00 2" C 114.00 2" C 116.00 2" C 118.00 2" C 120.00 2" C	onduit onduit onduit onduit onduit	Yes Yes Yes Yes Yes	(ft) 2.00 2.00 2.00 2.00 2.00 2.00	0.000 0.000 0.000 0.000 0.000	(in) 2.00 2.00 2.00 2.00 2.00 2.00	(sqft) 0.33 0.33 0.33 0.33 0.33	(sqft) 0.00 0.00 0.00 0.00 0.00	0.075 0.076 0.077 0.078 0.079	Factor 0.000 0.000 0.000 0.000 0.000	(psf) 45.084 45.252 45.418 45.582 45.743	(lb) 0.00 0.00 0.00 0.00 0.00	(Ib) 11.59 11.59 11.59 11.59 11.59		
112.00 2" C 114.00 2" C 116.00 2" C 118.00 2" C 120.00 2" C 122.00 2" C	onduit onduit onduit onduit onduit onduit	Yes Yes Yes Yes Yes Yes	(ft) 2.00 2.00 2.00 2.00 2.00 2.00 2.00	0.000 0.000 0.000 0.000 0.000 0.000	(in) 2.00 2.00 2.00 2.00 2.00 2.00 2.00	(sqft) 0.33 0.33 0.33 0.33 0.33 0.33 0.33	(sqft) 0.00 0.00 0.00 0.00 0.00 0.00	0.075 0.076 0.077 0.078 0.079 0.111	Factor 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.033	(psf) 45.084 45.252 45.418 45.582 45.743 45.903	(lb) 0.00 0.00 0.00 0.00 0.00 0.00	(Ib) 11.59 11.59 11.59 11.59 11.59 11.59 11.59		
112.00 2" C 114.00 2" C 116.00 2" C 118.00 2" C 120.00 2" C 122.00 2" C 124.00 2" C	onduit onduit onduit onduit onduit onduit onduit	Yes Yes Yes Yes Yes Yes Yes	(ft) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	0.000 0.000 0.000 0.000 0.000 0.000 0.000	(in) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	(sqft) 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.3	(sqft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.075 0.076 0.077 0.078 0.079 0.111 0.111	Factor 0.000 0.000 0.000 0.000 1.033 1.033	(psf) 45.084 45.252 45.418 45.582 45.743 45.903 46.060	(lb) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	(Ib) 11.59 11.59 11.59 11.59 11.59 11.59 11.59 11.59		
112.00 2" C 114.00 2" C 116.00 2" C 118.00 2" C 120.00 2" C 122.00 2" C 124.00 2" C 126.00 2" C	onduit onduit onduit onduit onduit onduit onduit onduit	Yes Yes Yes Yes Yes Yes Yes Yes	(ft) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	(in) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	(sqft) 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.3	(sqft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.075 0.076 0.077 0.078 0.079 0.111 0.111	Factor 0.000 0.000 0.000 0.000 1.033 1.033 1.033	(psf) 45.084 45.252 45.418 45.582 45.743 45.903	(lb) 0.00 0.00 0.00 0.00 0.00 0.00	(Ib) 11.59 11.59 11.59 11.59 11.59 11.59 11.59		
112.00 2" C 114.00 2" C 116.00 2" C 118.00 2" C 120.00 2" C 122.00 2" C 124.00 2" C	onduit onduit onduit onduit onduit onduit onduit onduit onduit	Yes Yes Yes Yes Yes Yes Yes	(ft) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	0.000 0.000 0.000 0.000 0.000 0.000 0.000	(in) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	(sqft) 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.3	(sqft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.075 0.076 0.077 0.078 0.079 0.111 0.111	Factor 0.000 0.000 0.000 0.000 1.033 1.033	(psf) 45.084 45.252 45.418 45.582 45.743 45.903 46.060 46.216	(lb) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(Ib) 11.59 11.59 11.59 11.59 11.59 11.59 11.59 11.59 11.59		

f.				J.		Calc	ulated For	ces				3		Ŧ
Heigt	Name:		• •	, CT	ography	1	Code: Exposure: Crest Heigh Site Class:	C nt: 0.0 D -	A-222-H)0 - Stiff Soi	i			Tower Enginee	Solutions
		1.1			pography:	1	Struct Clas	5: 11			Pa	ige: 20		
Load	Dea	d Loac	- 1.0W I Facto I Facto		0					Z)	ite S	erations	25
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation Sway (deg)	Rotation Twist (deg)	Stress Ratio
0.00	-41.31	-33.00	0.00	-3303.5	0.00	3303.52	2818.94	734.35	2570.40	2448.04	0.00	0.000	0.000	0.647
2.00	-40.79	-32.90	0.00	-3237.5	0.00	3237.52	2805.89	728.94	2532.69	2418.63	0.02	-0.094	0.000	0.639
4.00 6.00	-40.28 -39.78	-32.79 -32.69	0.00 0.00	-3171.7	0.00	3171.73	2792.73	723.54	2495.26	2389.30	0.08	-0.187	0.000	0.631
8.00	-39.78	-32.59	0.00	-3106.1 -3040.7	0.00 0.00	3106.15 3040.78	2779.45 2766.06	718.13 712.72	2458.11 2421.24	2360.04 2330.86	0.18 0.32	-0.280 -0.373	0.000 0.000	0.623 0.615
10.00	-38.79	-32.45	0.00	-2975.6	0.00	2975.62	2752.56	707.32	2384.65	2301.75	0.32	-0.373	0.000	0.607
10.25	-38.71	-32.46	0.00	-2967.5	0.00	2967.50	2750.86	706.64	2380.10	2298.12	0.52	-0.477	0.000	0.635
12.00	-38.27	-32.37	0.00	-2910.7	0.00	2910.70	2738.94	701.91	2348.34	2272.72	0.71	-0.562	0.000	0.628
1 4.00 16.00	-37.77 -37.28	-32.27 -32.16	0.00 0.00	-2845.9	0.00	2845.96	2725.20	696.50	2312.30	2243.77	0.96	-0.658	0.000	0.619
18.00	-37.28	-32.10	0.00	-2781.4 -2717.1	0.00 0.00	2781.42 2717.10	2711.35 2697.39	691.10 685.69	2276.54 2241.07	2214.91 2186.13	1.26 1.60	-0.754 -0.850	0.000 0.000	0.610 0.601
20.00	-36.32	-31.91	0.00	-2653.0	0.00	2653.00	2683.32	680.29	2205.87	2157.44	1.00	-0.850	0.000	0.592
20.50	-36.19	-31.90	0.00	-2637.0	0.00	2637.04	2679.78	678.93	2197.11	2150.28	2.07	-0.969	0.000	0.590
22.00	-35.82	-31.82	0.00	-2589.1	0.00	2589.19	2669.12	674.88	2170.95	2128.84	2.39	-1.040	0.000	0.583
24.00	-35.34	-31.69	0.00	-2525.5	0.00	2525.56	2654.82	669.47	2136.30	2100.34	2.84	-1.134	0.000	0.574
25.96 26.00	-34.89	-31.54	0.00	-2463.4	0.00	2463.43	2640.69	664.18	2102.62	2072.49	3.33	-1.226	0.000	0.496
26.88	-34.87 -34.66	-31.55 -31.50	0.00 0.00	-2462.1 -2434.4	0.00 0.00	2462.17 2434.41	2640.40 2634.02	664.07 661.69	2101.94 2086.91	2071.92 2059.45	3.34 3.57	-1.227	0.000	0.496
27.88	-34.44	-31.42	0.00	-2402.9	0.00	2402.91	2626.74	658.99	2069.89	2059.45	3.57	-1.264 -1.313	0.000 0.000	0.591 0.586
28.00	-34.38	-31.44	0.00	-2399.1	0.00	2399.14	2625.87	658.66	2067.85	2043.61	3.87	-1.319	0.000	0.585
30.00	-33.91	-31.31	0.00	-2336.2	0.00	2336.26	2611.22	653.25	2034.05	2015.39	4.45	-1.416	0.000	0.575
32.00	-33.44	-31.18	0.00	-2273.6	0.00	2273.64	2596.46	647.85	2000.52	1987.27	5.06	-1.513	0.000	0.565
34.00	-32.97	-31.05	0.00	-2211.2	0.00	2211.27	2581.58	642.44	1967.27	1959.26	5.72	-1.610	0.000	0.555
36.00 38.00	-32.51	-30.91 -30.77	0.00 0.00	-2149.1 -2087.3	0.00 0.00	2149.18	2566.59	637.04	1934.30	1931.36	6.41	-1.705	0.000	0.545
40.00	-31.61		0.00	-2025.8	0.00	2087.36 2025.82	2551.48 2536.26	631.63 626.22	1901.61 1869.20	1903.56 1875.87	7.14 7.92	-1.800 -1.894	0.000 0.000	0.534 0.524
40.50	-31.50	-30.57	0.00	-2010.5	0.00	2010.52	2532.44	624.87	1861.14	1868.96	8.12	-1.917	0.000	0.524
40.71	-31.44	-30.57	0.00	-2004.1	0.00	2004.10	2530.83	624.30	1857.76	1866.07	8.20	-1.927	0.000	0.520
42.00	-31.15	-30.48	0.00	-1964.6	0.00	1964.67	2520.93	620.82	1837.06	1848.29	8.73	-1.987	0.000	0.513
43.33	-30.86	-30.37	0.00	-1924.0	0.00	1924.03	2510.64	617.21	1815.79	1829.97	9.30	-2.049	0.000	0.506
44.00 46.00	-30.61 -29.94	-30.34 -30.18	0.00 0.00	-1903.7 -1843.1	0.00 0.00	1903.78 1843.11	2505.48	615.41	1805.20	1820.83	9.58	-2.080	0.000	0.495
48.00	-29.29	-29.99	0.00	-1782.7	0.00	1782.75	2489.92 1854.44	610.00 491.51	1773.63 1439.37	1793.48 1347 80	10. 47 11. 40	-2.169 -2.258	0.000 0.000	0.484 0.522
48.12	-29.24	-30.01	0.00	-1779.1	0.00	1779.15	1853.85	491.25	1437.86	1346.66	11.46	-2.264	0.000	0.663
50.00	-28.86	-29.88	0.00	-1722.7	0.00	1722.73	1844.56	487,19	1414.16	1328.74	12.37	-2.369	0.000	0.648
52.00	-28.47	-29.74	0.00	-1662.9	0.00	1662.97	1834.56	482.86	1389.16	1309.72	13.39	-2.479	0.000	0.631
54.00	-28.08	-29.59	0.00	-1603.5	0.00	1603.50	1824.45	478.54	1364.38	1290.76	14.45	-2.588	0.000	0.615
56.00 58.00	-27.69 -27.31	-29.45 -29.30	0.00 0.00	-1544.3 -1485.4	0.00 0.00	1544.31 1485.42	1814.23 1803.89	474.21	1339.83 1315 50	1271.84	15.56	-2.695	0.000	0.598
60.00	-27.31	-29.30		-1465.4 -1426.8	0.00	1485.42	1803.89	469.89 465.56	1315.50 1291.40	1252.97 1234.16	16.71 17.90	-2.800 -2.904	0.000 0.000	0.581 0.564
60.7 1	-26.82	-29.07		-1406.1	0.00	1406.15	1789.70	464.03	1291.40	1227.50	18.34	-2.904 -2.940	0.000	0.564
60.75	-26.79	-29.09		-1404.9	0.00	1404.98	1789.49	463.94	1282.42	1227.12	18.36	-2.943	0.000	0.705
62.00	-26.54	-29.01		-1368.6	0.00	1368.62	1782.87	461.24		1215. 41	19.14	-3.023	0.000	0.692
64.00	-26.15	-28.87		-1310.6	0.00	1310.60		456.91	1243.86	1196.72	20.44	-3.150	0.000	0.671
66.00	-25.77	-28.73	0.00		0.00	1252.87	1761.39	452.59	1220.42	1178.08	21.78	-3.274	0.000	0.649
	25 20						4750 10	440 00						
68.00 70.00	-25.39 -25.02	-28.58 -28.43		-1195.4 -1138.2	0.00 0.00	1195.41 1138.25		448.26 443.94	1197.21 1174.22	1159.51	23.18 24.63	-3.395 -3.513	0.000 0.000	0.627 0.604

						Calcu	lated Fo	rces						ſ
Struc	ture:	CT1306	64-A-S	BA		(Code:	TIA	-222-H		10/4	/2022	(awa)	
Site N	lame:	Middlet	own 2,	СТ			Exposure:	С					((甲))	
Heigh		130.00				(Crest Heig	ht: 0.0	D				E	C
-		0.000 (1	• •				Site Class:		Stiff Soil				\mathbf{L}	5
Base	Elev:			-			Struct Clas		0		Day	ge: 21	Tower Engineer	ing Solutions
Gh:		1.1		тор	ography:	1 9								
74.00	-24.28	-28.13	0.00	-1024.8	0.00	1024.82	1717.07	435.29	1128.90	1104.20	27.67	-3.741	0.000	0.558
76.00	-23.92	-27.98	0.00	-968.56	0.00	968.56	1705.70	430.96	1106.58	1085.91	29.26	-3.850	0.000	0.534
78.00	-23.59	-27.81	0.00	- 9 12.60	0.00	912.60	1694.22	426.64	1084.48	1067.69	30.89	-3.956	0.000	0.510
78.25	-23.52	-27.80	0.00	-905.65	0.00	905.65	1692.78	426.10	1081.74	1065.41	31.10	-3.969	0.000	0.507
78.25	-23.52	-27.80	0.00	-905.65	0.00	905.65	1692.78	426.10	1081.74	1065.41	31.10	-3.969	0.000	0.507
80.00	-23.19	-27.68	0.00	-856.99	0.00	856.99	1682.63	422.31	1062.61	1049.54	32.57	-4.058	0.000	0.835
82.00	-22.81	-27.55	0.00	-801.63	0.00	801.63	1670.92	417.99	1040.95	1031.48	34.30	-4.227	0.000	0.795 0.754
84.00	-22.44	-27.42	0.00	-746.52	0.00	746.52	1659.09	413.66	1019.52	1013.49	36.11	-4.389	0.000	0.754
86.00	-22.08	-27.27	0.00	-691.68	0.00	691.68	1647.16	409.34	998.31	995.59	37.98	-4.545	0.000	0.682
87.42	-21.83	-27.16	0.00	-653.05	0.00	653.05	1638.63	406.27	983.43	982.97	39.35	-4.651	0.000	0.662
88.00	-21.66	-27.14	0.00	-637.21	0.00	637.21	1635.10	405.01	977.33	977.78	39.92	-4.694	0.000	0.669
90.00	-17.33	-21.73	0.00	-582.93	0.00	582.93	1622.94	400.69	956.57	960.05	41.91	-4.835	0.000 0.000	0.821
91.33	-17.03	-21.61	0.00	-553.96	0.00	553.96	1099.39	302.92	728.96	657.00	43.27	-4.925	0.000	0.864
92.00	-16.91	-21.58	0.00	-539.55	0.00	539.55	1097.24	301.84	723.77	653.36	43.97	-4.970	0.000	0.840
94.00	-16.62	-21.43	0.00	-496.40	0.00	496.40	1090.71	298.60	708.30	642.45	46.08	-5.132	0.000	0.793
96.00	-16.33	-21.28	0.00	-453.54	0.00	453.54	1084.06	295.35	692.99	631.55	48.26	-5.286 -5.431	0.000	0.682
98.00	-16.05	-21.13	0.00	-410.97	0.00	410.97	1077.30	292.11	677.85	620.68	50.51	-5.565	0.000	0.619
100.00	-12.27	-16.20	0.00	-368.71	0.00	368.71	1070.43	288.87	662.88	609.82	52.81	-5.692	0.000	0.576
102.00	-12.03	-16.04	0.00	-336.31	0.00	336.31	1063.44	285.62	648.08 633.44	598.99 588,19	55.16 57.57	-5.810	0.000	0.532
104.00	-11.80		0.00	-304.23	0.00	304.23	1056.34	282.38	633.44 618.97	500.19 577.41	60.03	-5.920	0.000	0.486
106.00	-11.57		0.00	-272.48	0.00	272.48	1049.12	279.13	604.67	566.67	62.52	-6.022	0.000	0.439
108.00	-11.35		0.00	-241.06	0.00	241.06	1041.79	275.89 272.65	590.53	555.96	65.06	-6.115	0.000	0.389
110.00	-9.02	-12.96	0.00	-209.94	0.00	209.94	1034.34	269.40	590.53 576.57	555.90 545.28	67.64	-6.199	0.000	0.348
112.00	-8.85	-12.79	0.00	-184.03	0.00	184.03	1026.79		576.57	534.64	70.25	-6.274	0.000	0.307
114.00	-8.67	-12.62	0.00	-158.45	0.00	158.45	1019.11 1011.32	266.16 262.92	562.77 549.13	534.04 524.04	70.25	-6.341	0.000	0.265
116.00	-8.50	-12.46	0.00	-133.21	0.00	133.21			549.13 535.67	524.04 513.49	75.55	-6.398	0.000	0.221
118.00	-8.33	-12.29	0.00	-108.30	0.00	108.30	1003.42	259.67 256.43	535.67	502.97	78.24	-6.445	0.000	0.173
120.00	-5.72	-8.59	0.00	-83.72	0.00	83.72	995.40 735.22	256.43	522.37 14507.7	335.79	78.24	-6.445	0.000	0.258
120.00	-5.72	-8.59	0.00	-83.72	0.00	83.72			14507.7	335.79	76.24 80.94	-6.445	0.000	0.207
122.00	-5.56	-8.48	0.00	-66.54	0.00	66.54	735.22	244.66	14507.7	335.79	83.66	-6.544	0.000	0.156
124.00	-5.40	-8.37	0.00	-49.58	0.00	49.58	735.22 735.22	244.66 244.66	14507.7	335.79	86.41	-6.544 -6.587	0.000	0.106
126.00	-5.24	-8.26	0.00	-32.83	0.00	32.83	735.22	244.66 244.66	14507.7	335.79	89.17	-6.612	0.000	0.057
128.00	-5.09	-8.15	0.00	-16.31	0.00	16.31		244.66 244.66	14507.7	335.79	91.94	-6.621	0.000	0.001
130.00	0.00	-7.51	0.00	0.00	0.00	0.00	735.22	244.00	14007.7	333.19	51.94	-0.021	0.000	0.001

	đ.					W	ind Lo	ading	- Sha	ift 🧃				1		
Struct	ture:	CT13064	4-A-SBA				Co	de:	Т	TIA-222-H			10/4/20	22		
Site N	lame:	Middleto	wn 2, CT	-			Ex	posur	e: (2				((·W)))	
Heigh	it:	130.00 (ft)				Cre	est He	ight: C	00.00					TC	
Base	Elev:	0.000 (ft)				Sit	e Clas	s: [) - Stiff So	il				ED	1
Gh:		1.1		Торо	graphy	r: 1	Str	uct Cl	ass: I	I			Page:	22 Tower	Engincering Solu	utions
Load		0.9D + 1			Wind							¥	x	Iteratio	ons	25
		d Load F d Load F		0.90 1.00								3	Å			
Elev (ft)	Des	cription	Kzt	Kz	qz (psf)	qzGh (psf)	C (mph-ft)	Cf	lce Thick (in)	Tributary (ft)	Aa (sf)	CfAa (sf)	Wind Force X (lb)	Dead Load Ice (Ib)	Tot Dead Load (Ib)	
0.00 F	RB1 RB2	2	1.00	0.85	29.565	32.52	396.52	0.730	0.000	0.00	0.000	0.00	0.0	0.0	0.0	
2.00			1.00		29.565	32.52	393.62	0.730	0.000	2.00	7.166	5.23	170.1	0.0	255.3	
4.00			1.00		29.565	32.52	390.72		0.000	2.00	7.114	5.19	168.9	0.0	253.5	
6.00 8.00			1.00 1.00		29.565 29.565	32.52 32.52	387.82 384.93	0.730 0.730	0.000 0.000	2.00 2.00	7.061 7.009	5.15 5.12	167.6 166.4	0.0	251.6	
10.00			1.00		29.565	32.52	382.03	0.730	0.000	2.00	6.956	5.08	165.1	0.0 0.0	249.7 247.8	
	RT2 RB3	RB4	1.00		29.565	32.52	381.67	0.730	0.000	0.25	0.866	0.63	20.6	0.0	30.8	
12.00			1.00	0.85	29.565	32.52	379.13	0.730	0.000	1.75	6.038	4.41	143.3	0.0	215.1	
14.00			1.00		29.565	32.52	376.23	0.730	0.000	2.00	6.851	5.00	162.6	0.0	244.0	
16.00			1.00		29.930	32.92	375.63	0.730	0.000	2.00	6.798	4.96	163.4	0.0	242.1	
18.00 20.00			1.00 1.00		30.681	33.75	377.37	0.730 0.730	0.000	2.00	6.746	4.92	166.2	0.0	240.3	
	RT1 RB5		1.00		31.369 31.533	34.51 34.69	378.59 378.83	0.730	0.000 0.000	2.00 0.50	6.693 1.665	4.89 1.22	168.6 42.2	0.0 0.0	238.4 59.3	
22.00			1.00		32.005	35.21	379.39	0.730	0.000	1.50	4.976	3.63	42.2	0.0	177.2	
24.00			1.00		32.597	35.86	379.84	0.730	0.000	2.00	6.588	4.81	172.4	0.0	234.6	
25.96 F	RB6		1.00	0.95	33.140	36.45	379.99	0.730	0.000	1.96	6.405	4.68	170.5	0.0	228.1	
26.00			1.00	0.95	33.151	36.47	379.99	0.730	0.000	0.04	0.130	0.10	3.5	0.0	4.6	
26.88 F			1.00		33.384	36.72	379.97	0.730	0.000	0.88	2.859	2.09	76.6	0.0	101.8	
	RT3 RB7		1.00		33.642	37.01	379.88	0.730	0.000	1.00	3.237	2.36	87.4	0.0	115.2	
28.00 30.00			1.00 1.00		33.672 34.165	37.04 37.58	379.87 379.52	0.730 0.730	0.000 0.000	0.12 2.00	0.387 6.430	0.28 4.69	10.5	0.0	13.8	
32.00			1.00		34.632	38.10	378.98	0.730	0.000	2.00	6.378	4.69	176.4 177.4	0.0 0.0	228.9 227.0	
34.00			1.00		35.077	38.58	378.25	0.730	0.000	2.00	6.325	4.62	178.2	0.0	225.2	
36.00			1.00	1.02	35.502	39.05	377.35	0.730	0.000	2.00		4.58	178.8	0.0	223.3	
38.00			1.00		35.908	39.50	376.31		0.000	2.00	6.220	4.54	179.4	0.0	221.4	
40.00			1.00		36.298	39.93	375.14		0.000	2.00	6.168	4.50	179.8	0.0	219.5	
40.50 R			1.00		36.393	40.03	374.83		0.000	0.50	1.534	1.12	44.8	0.0	54.6	
40.71 R 42.00	RT6 RB9		1.00 1.00		36.433 36.673	40.08 40.34	374.69 373.84		0.000	0.21	0.643	0.47	18.8	0.0	22.9	
	ot - Sect	ion 2	1.00		36.915	40.34 40.61	373.84 372.92		0.000 0.000	1.29 1.33	3.938 4.048	2.87 2.95	116.0 120.0	0.0 0.0	140.1 144.0	
44.00			1.00		37.034	40.74	372.92		0.000	0.67	4.046 2.043	2.95 1.49	60.8	0.0	130.0	
46.00			1.00		37.382	41.12	370.92		0.000	2.00	6.095	4.45	182.9	0.0	387.6	
	op - Sec	tion 1	1.00			41.49	369.32	0.730	0.000	2.00	6.042	4.41	183.0	0.0	384.2	
48.12 R	777		1.00		37.738	41.51	374.49		0.000	0.12	0.361	0.26	10.9	0.0	10.3	
50.00			1.00		38.044	41.85	372.91		0.000	1.88	5.629	4.11	171.9	0.0	160.5	
52.00 54.00			1.00 1.00		38.359	42.20	371.15		0.000	2.00	5.937	4.33	182.9	0.0	169.3	
54.00 56.00			1.00		38.665 38.962	42.53 42.86	369.32 367.41		0.000 0.000	2.00 2.00	5.884 5.832	4.30 4.26	182.7 182.5	0.0	167.8 166.3	
58.00			1.00		39.251	43.18	365.43		0.000	2.00	5.779	4.20 4.22	182.5	0.0 0.0	166.3	
60.00			1.00		39.532	43.49	363.38		0.000	2.00	5.727	4.18	181.8	0.0	163.2	
60.71 R			1.00		39.630	43.59	362.64		0.000	0.71	2.020	1.47	64.3	0.0	57.6	
60.75 R	RT8 RB1	0	1.00		39.636	43.60	362.60		0.000	0.04	0.114	0.08	3.6	0.0	3.2	
62.00			1.00		39.806	43.79	361.28		0.000	1.25	3.540	2.58	113.2	0.0	100.9	
64.00			1.00		40.073	44.08	359.11		0.000	2.00	5.622	4.10	180.9	0.0	160.2	
66.00			1.00		40.334	44.37	356.89		0.000	2.00	5.569	4.07	180.4	0.0	158.7	
68.00			1.00		40.588	44.65	354.62	0.730	0.000	2.00	5.516	4.03	179.8	0.0	157.2	
70.00			1.00	4 4 7	40.836	44.00	352.30	0 720	0.000	0.00	5.464	3.99	179.2	0.0	155.7	

			Wi	nd Loadin	g - Sha	lt				1914	1
Structure:	CT13064-A-SB	A		Code:	TI	A-222-H			10/4/2022	A	**
Site Name:	Middletown 2, C	т		Exposu	re: C					(()開)	"
	130.00 (ft)			Crest H	eiaht: 0.	00					
•	· · ·				•						ES
Base Elev:	0.000 (ft)			Site Cla		- Stiff Soi	11			Touror E	ngineering Solut
Gh:	1.1	Topograp	hy: 1	Struct C	lass: II				Page: 23	lower E	ingineering solut
72.00	1.00	1.18 41.0	79 45.19	349.93 0.730	0.000	2.00	5.411	3.95	178.5	0.0	154.2
74.00	1.00	1.19 41.3	17 45.45	347.52 0.730	0.000	2.00	5.359	3.91	177.8	0.0	152.7
76.00	1.00	1.19 41.5	50 45.70	345.06 0.730		2.00	5.306	3.87	177.0	0.0	151.2
78.00	1.00	1.20 41.7	77 45.96	342.56 0.730	0.000	2.00	5.254	3.84	176.2	0.0	149.7
78.25 RT10	1.00	1.20 41.8	06 45.99	342.24 0.730		0.25	0.653	0.48	21.9	0.0	18.6
80.00	1.00	1.21 42.0	01 46.20	340.02 0.730	0.000	1.75	4.548	3.32	153.4	0.0	129.5
82.00	1.00	1.21 42.2	20 46.44	337.44 0.730	0.000	2.00	5.148	3.76	174.5	0.0	146.6
84.00	1.00	1.22 42.4	34 46.68	334.83 0.730	0.000	2.00	5.096	3.72	173.6	0.0	145.1
86.00	1.00	1.23 42.6	45 46.91	332.18 0.730	0.000	2.00	5.043	3.68	172.7	0.0	143.6
87.42 Bot - Secti	ion 3 1.00	1.23 42.7	92 47.07	330.28 0.730	0.000	1.42	3.541	2.58	121.7	0.0	100.8
88.00	1.00	1.23 42.8	52 47.14	329.49 0.730	0.000	0.58	1.469	1.07	50.5	0.0	72.7
90.00 Appurtena	ince(s) 1.00	1.24 43.0	55 47.36	326.78 0.730	0.000	2.00	5.002	3.65	172.9	0.0	247.6
91.33 Top - Sect		1.24 43.1	89 47.51	324.95 0.730	0.000	1.33	3.305	2.41	114.6	0.0	163.6
92.00	1.00	1.24 43.2		328.26 0.730	0.000	0.67	1.644	1.20	57.1	0.0	35.2
94.00	1.00	1.25 43.4		325,49 0.730	0.000	2.00	4.897	3.57	170.8	0.0	104.8
96.00	1.00	1.25 43.6		322.69 0.73	0.000	2.00	4.844	3.54	169.8	0.0	103.6
98.00	1.00	1.26 43.8		319.87 0.73		2.00	4.791	3.50	168.7	0.0	102.5
00.00 Appurtena		1.27 44.0		317.01 0.73	0.000	2.00	4.739	3.46	167.5	0.0	101.4
02.00 Appulteria	1.00	1.27 44.2		314.13 0.73		2.00	4.686	3.42	166.3	0.0	100.2
04.00	1.00	1.28 44.3		311,22 0.73		2.00	4.634	3.38	165.2	0.0	99.1
	1.00	1.28 44.5		308.29 0.73		2.00	4.581	3.34	163.9	0.0	98.0
06.00	1.00	1.29 44.7		305,33 0.73		2.00	4.529	3.31	162.7	0.0	96.9
08.00		1.29 44.9		302,35 0.73		2.00	4.476	3.27	161.4	0.0	95.7
110.00 Appurtena	ince(s) 1.00	1.30 45.0		299.35 0.73		2.00	4.423	3.23	160.1	0.0	94.6
112.00	1.00	1.30 45.2		296.32 0.73		2.00	4.371	3.19	158.8	0.0	93.5
14.00	1.00	1.30 45.2		293.27 0.73		2.00	4.318	3.15	157.5	0.0	92.3
116.00	1.00	1.31 45.4		290.20 0.73		2.00	4.266	3.11	156.1	0.0	91.2
18.00		1.31 45.5		287.11 0.73		2.00	4.213	3.08	154.8	0.0	90.1
20.00 Top - Sec		1.32 45.7		206.08 0.620		2.00	3.000	1.86	93.9	0.0	85.4
22.00	1.00			206.43 0.620		2.00	3.000	1.86	94.2	0.0	85.4
124.00	1.00	1.32 46.0		206.43 0.620		2.00	3.000	1.86	94.6	0.0	85.4
26.00	1.00	1.33 46.2		208.78 0.020		2.00	3.000	1.86	94.9	0.0	85.4
28.00	1.00	1.33 46.3		207.12 0.620		2.00	3.000	1.86	94.9 95.2	0.0	85.4
130.00 Appurtena	ance(s) 1.00 Linear Load Ra Effe	1.34 46.5	21 51.17	207.40 0.020	0.000	2.00	3.000	1.00		0.0 -	00.4

1		1 1		D	scret	e App	urten	ance	Forces					2ª
St	ructure:	CT13064-A-SBA				Co	de:	1	FIA-222-F	1	10/4	/2022		
Sit	te Name:	Middletown 2, CT				Ex	posure	ə: (2				((甲))	
He	eight:	130.00 (ft)				Cr	est Hei	ight: C	0.00				1-	n
	se Elev:	ζ,					e Clas	-	D - Stiff S	oil			IH	S
		. ,	T								_		Tower Engine	ering Solutions
Gh	l: 	1.1	горо	graphy	: 1	St	ruct Cl	ass: I			Pa	ge: 24	rower Engine	ening solutions
Lo		e: 0.9D + 1.0W 120	•	Wind							YA		rations	25
			0.90 1.00								2	×		
	Elev	Description	•	qz	qzGh	Orient Factor		Total CaAa	Dead Load	Horiz Ecc	Vert Ecc	Wind FX	Mom Y	Mom Z
No.	(ft)	Description	Qty	(psf)	(psf)	x Ka	Ka	(sf)	(Ib)	(ft)	(ft)	(Ib)	(lb-ft)	(lb-ft)
1 2		C6-48-60-18-8F Lightning rod	2 1	46.521 46.745	51.173 51.419	0.75 1.00	0.75	1.38	57.24	0.000	0.000	70.62		0.00
3		ci DMP65R-BU6DA	3	46.521	51.173	0.54	1.00 0.75	0.38 20.62	5.85 170.91	0.000 0.000	3.000 0.000	19.54 1055.12	0.00 0.00	58.62 0.00
4	130.00 R		6	46.521	51,173	0.38	0.75	3.71	415.80	0.000	0.000	189.98	0.00	0.00
5	130.00 R	RUS 4478 B14	3	46.521	51.173	0.38	0.75	1.86	160.38	0.000	0.000	94.99	0.00	0.00
6	130.00 B	2 B66A 8843	3	46.521	51.173	0.38	0.75	1.84	189.00	0.000	0.000	94.41	0.00	0.00
7		449 B5/B12	3	46.521	51.173	0.38	0.75	2.22	191.70	0.000	0.000	113.41	0.00	0.00
8		RUS E2 B29	3	46.521	51.173	0.38	0.75	3.54	160.38	0.000	0.000	181.34	0.00	0.00
9		dditional mount pipe	3	46.521	51.173	0.56	0.75	2.95	45.90	0.000	0.000	151.12	0.00	0.00
10 11		uinte QD6616-7 9) Horizontal bracing	3	46.521	51.173	0.56	0.75	22.92	159.57	0.000	0.000	1172.69	0.00	0.00
12	•	ricsson AIR6419	1 3	46.521	51.173 51.337	0.75 0.57	0.75 0.75	4.45 6.50	123.53 178.47	0.000 0.000	0.000	227.88	0.00	0.00
13		C6-48-60-0-8C	2	46.521	51.173	0.57	0.75	0.50 7.17	28.80	0.000	2.000 0.000	333.59 366.91	0.00 0.00	667.18 0.00
14		riccson AIR6449	3		51.006	0.64	0.75	7.90	237.60	0.000	-2.000	402.88	0.00	-805.75
15	130.00 A	ngle Reinforcement kit	1	46.521	51.173	1.00	1.00	5.80	225.00	0.000	0.000	296.80	0.00	0.00
16	130.00 M	TC3607 Platform + HR &	1	46.521	51.173	1.00	1.00	51.70	2021.40	0.000	0.000	2645.63	0.00	0.00
17		IC-PK8-DSH	1	45.743		1.00	1.00	37.59	1554.30	0.000	0.000	1891.44	0.00	0.00
18		DIDC-9181-OF-48	1	45.743		0.75	0.75	1.51	19.71	0.000	0.000	75.85	0.00	0.00
19		A08025-B604	3	45.743		0.38	0.75	2.21	172.53	0.000	0.000	110.95	0.00	0.00
20 21		A08025-B605 X08FRO665-21	3 3	45.743	50.318	0.38	0.75	2.21	202.50	0.000	0.000	110.95	0.00	0.00
22	110.00 S		3	44.913		0.55 0.40	0.75 0.80	20.80 2.24	174.15 201.69	0.000 0.000	0.000 0.000	1046.40 110.86	0.00 0.00	0.00 0.00
23		FS RVZDC-6627-PF-48	1	44.913		0.40	0.80	1.62	28.80	0.000	0.000	80.23	0.00	0.00
24	110.00 S	AMSUNG MT6407-77A	3	44.913		0.56	0.80	7.88	235.17	0.000	0.000	389.27	0.00	0.00
25	110.00 JI	MA MX10FIT665-02	3	44.913	49.404	0.67	0.80	16.27	144.18	0.000	0.000	803.84	0.00	0.00
26		Arm (Round)	з	44.913		0.56	0.75	13.50	945.00	0.000	0.000	666.96	0.00	0.00
27		OMMSCOPE	3	44.999		0.40	0.80	0.48	17.82	0.000	1.000	23.76	0.00	23.76
28	110.00 S		3	44.913		0.40	0.80	2.24	189.89	0.000	0.000	110.86	0.00	0.00
29 30		athrein 782 11056 ricsson AIR21 B2A B4P	3	44.021		0.40	0.80	0.16	4.86	0.000	0.000	7.55	0.00	0.00
30 31		ricsson AIR21 B2A B4P	3 3	44.021 44.021		0.64 0.64	0.80 0.80	11.69 11.69	247.05 244.08	0.000 0.000	0.000	566.20	0.00	0.00
32		Arm (Round)	6	44.021		0.56	0.80	27.00	244.08 1890.00	0.000	0.000 0.000	566.20 1307.42	0.00 0.00	0.00 0.00
33	100.00 R	· · ·	3	44.021		0.58	0.80	35.46	331.56	0.000	0.000	1717.10	0.00	0.00
34	100.00 E	ricsson 4480 B71 + B85	3	44.021		0.59	0.80	5.06	251.10	0.000	0.000	245.10	0.00	0.00
35	90.00 F	3P-10W	1	43.055		1.00	1.00	51.77	1909.80	0.000	0.000	2451.86	0.00	0.00
36		NVV-65B-R4	3	43.055		0.55	0.75	20.43	208.98	0.000	0.000	967.56	0.00	0.00
37	90.00 A		3	43.055		0.56	0.75	7.09	280.80	0.000	0.000	335.67	0.00	0.00
38		3P-HRK10	1	43.055		1.00	1.00	7.12	351.90	0.000	0.000	337.21	0.00	0.00
39 40		LU - 800 MHz - RRU LU - 1900MHz - RRU	6	43.055		0.38	0.75	5.60	286.20	0.000	0.000	265.34	0.00	0.00
40 41		ndrew - VHLP2-11	3 2	43.055 43.055		0.38 0.75	0.75 0.75	4.27 7.02	118.80 48.60	0.000 0.000	0.000	202.47 332.47	0.00 0.00	0.00
	A			-ru.uuu	-11.301	0.10	0.70	1.02	40.DU	0.000	ALCHR!	33/.4/	11111	0.00

		Tot	tal App	lied Force Si	ummary		
Structure:	CT13064-A-SBA			Code:	TIA-222-H	10/4/2022	4400.55
Site Name:	Middletown 2, C1	Г		Exposure:	С		der Hannh
Height:	130.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		
Gh:	1.1	Topography:	1	Struct Class:	11	Page: 25	Tower Engineering Solutions
	: 0.9D + 1.0W 12					۲ ×	terations 25
	d Load Factor	0.90				z	
vvin	d Load Factor	1.00				10	

Elev (ft)	Description	Lateral FX (-) (Ib)	Axial FY (-) (Ib)	Torsion MY (Ib-ft)	Moment MZ (Ib-ft)		
0.00		0.00	0.00	0.00	0.00		
2.00		170.13	345.04	0.00	0.00		
4.00		168.88	343.16	0.00	0.00		
6.00		167.64	341.27	0.00	0.00		
8.00		166.39	339.38	0.00	0.00		
10.00		165.14	337.50	0.00	0.00		
10.25		20.55	42.05	0.00	0.00		
12.00		143.34	293.56	0.00	0.00		
14.00		162.64	333.72	0.00	0.00		
16.00		163.39	331.84	0.00	0.00		
18.00		166.20	329.95	0.00	0.00		
20.00		168.60	328.06	0.00	0.00		
20.50		42.16	81.72	0.00	0.00		
22.00		127.87	244.46	0.00	0.00		
24.00		172.45	324.29	0.00	0.00		
25.96		170.46	315.97	0.00	0.00		
26.00		3.47	6.43	0.00	0.00		
26.88		76.64	141.26	0.00	0.00		
27.88		87.43	160.08	0.00	0.00		
28.00		10.48	19.18	0.00	0.00		
30.00		176.41	318.63	0.00	0.00		
32.00		177.37	316.74	0.00	0.00		
34.00		178.16	314.86	0.00	0.00		
36.00		178.82	312.97	0.00	0.00		
38.00		179.35	311.08	0.00	0.00		
40.00		179.77	309.19	0.00	0.00		
40.50		44.82	77.00	0.00	0.00		
40.71		18.82	32.31	0.00	0.00		
42.00		115.97	198.00	0.00	0.00		
43.33		119.98	203.82	0.00	0.00		
44.00		60.76	159.87	0.00	0.00		
46.00		182.94	477.34	0.00	0.00		
48.00		183.00	473.94	0.00	0.00		
48.12		10.94	15.67	0.00	0.00		
50.00		171.95	244.81	0.00	0.00		
52.00		182.87	258.97	0.00	0.00		
54.00		182.70	257.46	0.00	0.00		
56.00		182.46	255.95	0.00	0.00		
58.00		182.15	254.44	0.00	0.00		
60.00		181.79	252.93	0.00	0.00		
60.71		64.29	89.43	0.00	0.00		
60.75		3.62	5.03	0.00	0.00		
62.00		113.16	156.96	0.00	0.00		
64.00		180.89	249.92	0.00	0.00		
66.00		180.37	248.41	0.00	0.00		
68.00		179.79	246.90	0.00	0.00		
70.00		179.17	245.39	0.00	0.00		

			Total A	pplied Fo	orce Summ	nary		
Structure				Code:	TIA-	222-H	10/4/2022	4
Site Nam	e: Middletow	/n 2, CT		Expos	ure: C			(((甲)))
Height:	130.00 (ft)		Crest	Height: 0.00)		
Base Ele	•	/		Site C	•	, Stiff Soil		HS
Gh:	• •	T	1 4			5011 5011		
	1.1	100	ography: 1	Struct	Class: II		Page: 26	Tower Engineering Solut
72.00		178.50	243.88	0.00	0.00			
74.00		177.79	242.37	0.00	0.00			
76.00		177.04	240.86	0.00	0.00			
78.00		176.24	239.35	0.00	0.00			
78.25		21.92	29.81	0.00	0.00			
80.00		153.39	208.03	0.00	0.00			
82.00		174.54	236.33	0.00	0.00			
84.00		173.64	234.82	0.00	0.00			
86.00		172.70	233.31	0.00	0.00			
87.42		121.66	164.35	0.00	0.00			
88.00		50.54	98.89	0.00	0.00			
90.00 (19) attachments	5065.49	3542.41	0.00	0.00			
91.33		114.63	218.40	0.00	0.00			
92.00		57.10	62.57	0.00	0.00			
94.00		170.85	186.95	0.00	0.00			
96.00		169.76	185.82	0.00	0.00			
98.00		168.65	184.68	0.00	0.00			
00.00 (2	21) attachments	4577.08	3152.20	0.00	0.00			
02.00		166.35	165.25	0.00	0.00			
04.00		165.15	164.11	0.00	0.00			
06.00		163.94	162.98	0.00	0.00			
08.00		162.69	161.85	0.00	0.00			
10.00 (*	19) attachments	2347.21	1923.27	0.00	23.76			
12.00		160.14	135.14	0.00	0.00			
14.00		158.83	134.01	0.00	0.00			
16.00		157.49	132.88	0.00	0.00			
18.00		156.14	131.75	0.00	0.00			
20.00 (*	11) attachments	3390.35	2253.80	0.00	0.00			
22.00		93.92	122.67	0.00	0.00			
24.00		94.24	122.67	0.00	0.00			
26.00		94.56	122.67	0.00	0.00			
28.00		94.87	122.67	0.00	0.00			
	41) attachments	7512.09	4494.19	0.00	-79.95			
(Totals:	32,965.66	31,001.87	0.00	-56.20			

		Line	ar Appu	rtena	nce Seg	ment F	orces	(Fact	ored)	S.		
Struc	ture: CT13064-/	A-SBA			Code		TIA-222	2-H		10/4/2022	2 A	
Site N		n 2. CT			Expo	sure:	С				[((明))]	
					-	Height:	0.00				111	DC
Heigh	. ,					-	D - Stiff					10
Base	Elev: 0.000 (ft)				Site C			2011			Tower Eng	ineering Solutions
Gh:	1.1	Тор	ography:	1	Struc	t Class:	11			Page: 27	7 Tower Eng	incering octations
Load	Case: 0.9D + 1.0 Dead Load Fac Wind Load Fac	ctor 0.9	0						×.	x	Iteration	s 25
Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (Ib)
2.00	2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.070	0.000	29.565	0.00	8.69
	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.070	0.000	29.565	0.00	0.00
2.00	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.070	0.000	29.565	0.00	0.00
4.00	2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.070	0.000	29.565	0.00	8.69
4.00	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.070	0.000	29.565	0.00	0.00
4.00	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.070	0.000	29.565	0.00	0.00
6.00	2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.071	0.000	29.565	0.00	8.69
6.00	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.071	0.000	29.565	0.00	0.00
6.00	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.071	0.000	29.565	0.00	0.00
8.00	2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.071	0.000	29.565	0.00	8.69
8.00	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.071	0.000	29.565	0.00	0.00
8.00	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.071	0.000	29.565	0.00	0.00
10.00	2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.072	0.000	29.565	0.00	8.69
10.00	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.072	0.000	29.565	0.00	0.00
10.00	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.072	0.000	29.565	0.00	0.00 1.09
10.25	2" Conduit	Yes	0.25	0.000	2.00	0.04	0.00	0.072	0.000	29.565	0.00	
10.25	1" Reinforcing plate	Yes	0.25	0.000	1.00	0.02	0.00	0.072	0.000	29.565	0.00	0.00
	1" Reinforcing plate	Yes	0.25	0.000	0.00	0.00	0.00	0.072	0.000	29.565	0.00	0.00
12.00	2" Conduit	Yes	1.75	0.000	2.00	0.29	0.00	0.072	0.000	29.565	0.00	7.61
12.00	Ç I	Yes	1.75	0.000	1.00	0.15	0.00	0.072	0.000	29.565	0.00	0.00 0.00
	1" Reinforcing plate	Yes	1.75	0.000	0.00	0.00	0.00	0.072	0.000	29.565	0.00	0.00 8.69
	2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.073	0.000	29.565	0.00	8.69 0.00
	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.073	0.000	29.565	0.00	0.00
14.00	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.073	0.000	29.565	0.00	0.00 8.69
16.00	2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.074	0.000	29.930	0.00	0.09

	÷.							0.074	0.000	00.004	0.00	0.00
18.00	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.074	0.000	30.681	0.00	0.00
20.00	2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.075	0.000	31.369	0.00	8.69
20.00	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.075	0.000	31.369	0.00	0.00
20.00	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.075	0.000	31.369	0.00	0.00
20.50	2" Conduit	Yes	0.50	0.000	2.00	0.08	0.00	0.075	0.000	31.533	0.00	2.17
20.50	1" Reinforcing plate	Yes	0.50	0.000	1.00	0.04	0.00	0.075	0.000	31.533	0.00	0.00
20.50	1" Reinforcing plate	Yes	0.50	0.000	0.00	0.00	0.00	0.075	0.000	31.533	0.00	0.00
22.00	2" Conduit	Yes	1.50	0.000	2.00	0.25	0.00	0.075	0.000	32.005	0.00	6.52
22.00	1" Reinforcing plate	Yes	1.50	0.000	1.00	0.13	0.00	0.075	0.000	32.005	0.00	0.00
22.00	1" Reinforcing plate	Yes	1.50	0.000	0.00	0.00	0.00	0.075	0.000	32.005	0.00	0.00
24.00	2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.076	0.000	32.597	0.00	8.69
24.00	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.076	0.000	32.597	0.00	0.00
24.00	1" Reinforcing plate	Yes	0.67	0.000	0.00	0.00	0.00	0.076	0.000	32.597	0.00	0.00
24.00	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.076	0.000	32.597	0.00	0.00
25.96	• ·	Yes	1.96	0.000	2.00	0.33	0.00	0.076	0.000	33.140	0.00	8.52
25.96		Yes	1.96	0.000	1.00	0.16	0.00	0.076	0.000	33.140	0.00	0.00
25.96	•••	Yes	1.96	0.000	0.00	0.00	0.00	0.076	0.000	33.140	0.00	0.00
25.96	1" Reinforcing plate	Yes	1.96	0.000	0.00	0.00	0.00	0.076	0.000	33.140	0.00	0.00
	51											

2.00

2.00

2.00

2.00

Yes

Yes

Yes

Yes

16.00 1" Reinforcing plate

16.00 1" Reinforcing plate

18.00 1" Reinforcing plate

18.00 2" Conduit

0.000

0.000

0.000

0.000

1.00

0.00

2.00

1.00

0.00

0.00

0.00

0.00

0.17

0.00

0.33

0.17

0.074

0.074

0.074

0.074

0.000

0.000

0.000

0.000

0.000

29.930

29.930

30.681

30.681

30.681

0.00

0.00

8.69

0.00

0.00

0.00

0.00

0.00

0.00

0.00

	Line	ar Appu	rtena	nce Seg	ment F	orces	(Fact	ored)			
Structure: CT13064-	-A-SBA			Code	:	TIA-22	2-H		10/4/2022	2	
Site Name: Middletow	vn 2. CT			Expo	sure:	C				(((昭))	
Height: 130.00 (ft				-	Height:						
-	/				-		(0 - 11				HN
	_	_			Class:	D - Stif	T SOII			Tauras Eng	ineering Solution
Gh: 1.1		ography:	1	Struc	t Class:				Page: 28	B Tower Eng	gineering solutions
Load Case: 0.9D + 1.	.0W 120 mp	oh Wind						3	1	Iteration	i s 25
Dead Load Fa	ictor 0.9	0							x		
Wind Load Fa								2			
					_			P			
Top Elev (ft) Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (Ib)	Dead Load (Ib)
26.00 2" Conduit	Yes	0.04	0.000	2.00	0.01	0.00	0.077	0.000	33.151	0.00	0.17
26.00 1" Reinforcing plate	Yes	0.04	0.000	1.00	0.00	0.00	0.077	0.000	33.151	0.00	0.00
26.00 1" Reinforcing plate	Yes	0.04	0.000	0.00	0.00	0.00	0.077	0.000	33.151	0.00	0.00
26.00 1" Reinforcing plate 26.88 2" Conduit	Yes Yes	0.04	0.000	0.00	0.00	0.00	0.077	0.000	33.151	0.00	0.00
26.88 1" Reinforcing plate	Yes	0.88 0.88	0.000 0.000	2.00 1.00	0.15 0.07	0.00 0.00	0.077 0.077	0.000 0.000	33.384 33.384	0.00 0.00	3.83 0.00
26.88 1" Reinforcing plate	Yes	0.88	0.000	0.00	0.07	0.00	0.077	0.000	33.384	0.00	0.00
26.88 1" Reinforcing plate	Yes	0.88	0.000	0.00	0.00	0.00	0.077	0.000	33.384	0.00	0.00
27.88 2" Conduit	Yes	1.00	0.000	2.00	0.17	0.00	0.077	0.000	33.642	0.00	4.35
27.88 1" Reinforcing plate	Yes	1.00	0.000	1.00	0.08	0.00	0.077	0.000	33.642	0.00	0.00
27.88 1" Reinforcing plate	Yes	1.00	0.000	0.00	0.00	0.00	0.077	0.000	33.642	0.00	0.00
27.88 1" Reinforcing plate	Yes	1.00	0.000	0.00	0.00	0.00	0.077	0.000	33.642	0.00	0.00
28.00 2" Conduit 28.00 1" Reinforcing plate	Yes Yes	0.12 0.12	0.000	2.00 1.00	0.02	0.00	0.077	0.000	33.672	0.00	0.52
28.00 1" Reinforcing plate	Yes	0.12	0.000	0.00	0.01 0.00	0.00 0.00	0.077 0.077	0.000 0.000	33.672 33.672	0.00 0.00	0.00 0.00
28.00 1" Reinforcing plate	Yes	0.12	0.000	0.00	0.00	0.00	0.077	0.000	33.672	0.00	0.00
30.00 2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.078	0.000	34.165	0.00	8.69
30.00 1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.078	0.000	34.165	0.00	0.00
30.00 1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.078	0.000	34.165	0.00	0.00
30.00 1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.078	0.000	34.165	0.00	0.00
32.00 2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.078	0.000	34.632	0.00	8.69
32.00 1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.078	0.000	34.632	0.00	0.00
32.00 1" Reinforcing plate 32.00 1" Reinforcing plate	Yes Yes	2.00 1.50	0.000 0.000	0.00 0.00	0.00	0.00	0.078	0.000	34.632	0.00	0.00
32.00 1" Reinforcing plate	Yes	0.50	0.000	0.00	0.00 0.00	0.00 0.00	0.078 0.078	0.000 0.000	34.632 34.632	0.00 0.00	0.00 0.00
34.00 2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.079	0.000	35.077	0.00	8.69
34.00 1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.079	0.000	35.077	0.00	0.00
34.00 1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.079	0.000	35.077	0.00	0.00
34.00 1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.079	0.000	35.077	0.00	0.00
36.00 2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.080	0.000	35.502	0.00	8.69
36.00 1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.080	0.000	35.502	0.00	0.00
36.00 1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.080	0.000	35.502	0.00	0.00
36.00 1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.080	0.000	35.502	0.00	0.00
38.00 2" Conduit 38.00 1" Reinforcing plate	Yes Yes	2.00 2.00	0.000	2.00	0.33	0.00	0.080	0.000	35.908	0.00	8.69
38.00 1" Reinforcing plate	Yes	2.00	0.000 0.000	1.00 0.00	0.17 0.00	0.00 0.00	0.080 0.080	0.000 0.000	35.908 35.908	0.00	0.00
38.00 1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.080	0.000	35.908 35.908	0.00 0.00	0.00 0.00
40.00 2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.080	0.000	36.298	0.00	8.69
40.00 1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.081	0.000	36.298	0.00	0.00
40.00 1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.081	0.000	36 209	0.00	0.00

0.00

0.00

2.00

1.00

0.00

0.00

2.00

1.00

0.00

0.00

0.08

0.04

0.00

0.00

0.04

0.02

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.081

0.081

0.082

0.082

0.082

0.082

0.082

0.082

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

36.298

36.298

36.393

36.393

36.393

36.393

36.433

36.433

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

2.17

0.00

0.00

0.00

0.91

0.00

2.00

2.00

0.50

0.50

0.50

0.50

0.21

0.21

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

40.00 1" Reinforcing plate

40.00 1" Reinforcing plate

40.50 1" Reinforcing plate

40.50 1" Reinforcing plate

40.50 1" Reinforcing plate

40.71 1" Reinforcing plate

40.50 2" Conduit

40.71 2" Conduit

-			Land State State		1.10.10	ment F		1	41041			
Structu	ure: CT13064-A	-SBA			Code		TIA-222	2-H		10/4/2022	(((H)))	
Site Na	ame: Middletown	2, CT			Expos	sure:	С				de de alle al	
Height	:: 130.00 (ft)				Crest	Height:	0.00				111	20
Base E					Site C	lass:	D - Stiff	Soil				<u>LO</u>
Gh:	1.1	Тор	ography:	1	Struc	t Class:	П			Page: 29	Tower Eng	incering Solution
		_	- 3									
Load	Case: 0.9D + 1.0 Dead Load Fac Wind Load Fac	tor 0.90	D						2	×	Iteration	s 25
Тор					Exposed				Cf			Dead
Elev		Wind	Length	C -	Width	Area	CaAa (sqft)	Ra	Adjust Factor	qz (psf)	FX (Ib)	Load (Ib)
(ft)	Description	Exposed	(ft)	Ca	(in)	(sqft)			_			
	1" Reinforcing plate	Yes	0.21	0.000	0.00	0.00	0.00	0.082	0.000	36.433 36.433	0.00 0.00	0.00 0.00
	1" Reinforcing plate	Yes	0.21 1.29	0.000 0.000	0.00 2.00	0.00 0.21	0.00 0.00	0.082 0.082	0.000 0.000	36.673	0.00	5.61
	2" Conduit 1" Reinforcing plate	Yes Yes	1.29	0.000	1.00	0.21	0.00	0.082	0.000	36.673	0.00	0.00
	" Reinforcing plate	Yes	1.29	0.000	0.00	0.00	0.00	0.082	0.000	36.673	0.00	0.00
	" Reinforcing plate	Yes	1.29	0.000	0.00	0.00	0.00	0.082	0.000	36.673	0.00	0.00
	2" Conduit	Yes	1.33	0.000	2.00	0.22	0.00	0.082	0.000	36.915	0.00	5.80
43.33 1	1" Reinforcing plate	Yes	1.33	0.000	1.00	0.11	0.00	0.082	0.000	36.915	0.00	0.00
	1" Reinforcing plate	Yes	1.33	0.000	0.00	0.00	0.00	0.082	0.000	36.915	0.00 0.00	0.00 0.00
	1" Reinforcing plate	Yes	1.33	0.000	0.00	0.00 0.11	0.00	0.082 0.083	0.000 0.000	36.915 37.034	0.00	2.90
	2" Conduit	Yes	0.67 0.67	0.000 0.000	2.00 1.00	0.06	0.00	0.083	0.000	37.034	0.00	0.00
	1" Reinforcing plate	Yes Yes	0.67	0.000	0.00	0.00	0.00	0.083	0.000	37.034	0.00	0.00
	1" Reinforcing plate 1" Reinforcing plate	Yes	0.67	0.000	0.00	0.00	0.00	0.083	0.000	37.034	0.00	0.00
	2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.083	0.000	37.382	0.00	8.69
	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.083	0.000	37.382	0.00	0.00
	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.083	0.000	37.382	0.00	0.00
46.00 1	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.083	0.000	37.382	0.00	0.00
48.00 2	2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.084	0.000	37.718	0.00	8.69
	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.084	0.000	37.718 37.718	0.00 0.00	0.00 0.00
	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00 0.00	0.084 0.084	0.000 0.000	37.718	0.00	0.00
	1" Reinforcing plate	Yes	2.00 0.12	0.000 0.000	0.00 2.00	0.00 0.02	0.00	0.083	0.000	37.738	0.00	0.52
	2" Conduit	Yes Yes	0.12	0.000	1.00	0.02	0.00	0.083	0.000	37.738	0.00	0.00
	1" Reinforcing plate 1" Reinforcing plate	Yes	0.12	0.000	0.00	0.00	0.00	0.083	0.000	37.738	0.00	0.00
	1" Reinforcing plate	Yes	0.12	0.000	0.00	0.00	0.00	0.083	0.000	37.738	0.00	0.00
	2" Conduit	Yes	1.88	0.000	2.00	0.31	0.00	0.084	0.000	38.044	0.00	8.17
	1" Reinforcing plate	Yes	1.88	0.000	1.00	0.16	0.00	0.084	0.000	38.044	0.00	0.00
	1" Reinforcing plate	Yes	1.88	0.000	0.00	0.00	0.00	0.084	0.000	38.044	0.00	0.00
	1" Reinforcing plate	Yes	1.88	0.000	0.00	0.00	0.00	0.084	0.000	38.044	0.00	0.00
	2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.084	0.000	38.359 38.359	0.00 0.00	8.69 0.00
	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17 0.00	0.00 0.00	0.084 0.084	0.000 0.000	38.359	0.00	0.00
	1" Reinforcing plate	Yes	2.00 0.50	0.000 0.000	0.00 0.00	0.00	0.00	0.084	0.000	38.359	0.00	0.00
	1" Reinforcing plate 2" Conduit	Yes Yes	2.00	0.000	2.00	0.33	0.00	0.085	0.000	38.665	0.00	8.69
	2 Conduit 1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.085	0.000	38.665	0.00	0.00
	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.085	0.000	38.665	0.00	0.00
	2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.086	0.000	38.962	0.00	8.69
	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.086	0.000	38.962	0.00	0.00
	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.086	0.000	38.962	0.00	0.00
58.00 2	2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.087	0.000	39.251	0.00	8.69
	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.087	0.000	39.251	0.00	0.00
	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.087	0.000	39.251 39.532	0.00	0.00 8.69
	2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.087	0.000	39.532	0.00	
			0.00	0.000	4 00		0.00	0 007			11 (10)	0.00
60.00 ⁻	1" Reinforcing plate 1" Reinforcing plate	Yes Yes	2.00 2.00	0.000 0.000	1.00 0.00	0.17 0.00	0.00 0.00	0.087 0.087	0.000 0.000	39.532 39.532	0.00 0.00	0.00 0.00

			ar Appu	. certai			C. S. M. Contract	-	oren		1	
Structu					Code		TIA-22	2-H		10/4/2022	2 ((円))	
Site Na		n 2, CT			Ехро		С				1 de la mai	
Height	: 130.00 (ft)				Crest	Height:	0.00				1 11	
Base E	lev: 0.000 (ft)				Site (Class:	D - Stif	f Soil				
Gh:	1.1	Тор	ography	: 1	Struc	t Class:	łł.			Page: 30	D Tower Eng	ineering Soluti
Load (Case: 0.9D + 1.0)W 120 mp	oh Wind						¥,	•	Iteration	i s 2
	Dead Load Fac								D	x		
	Wind Load Fac	ctor 1.0	0						3			
Тор					Exposed				Cf			Dead
Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Width (in)	Area (sqft)	CaAa (sqft)	Ra	Adjust Factor	qz (psf)	F X (lb)	Load (lb)
	"Reinforcing plate	Yes	0.71	0.000	1.00	0.06	0.00	0.088	0.000	39.630	0.00	0.00
60.71 1 60.75 2	" Reinforcing plate	Yes	0.71	0.000	0.00	0.00	0.00	0.088	0.000	39.630	0.00	0.00
	" Conduit " Reinforcing plate	Yes Yes	0.04 0.04	0.000 0.000	2.00 1.00	0.01	0.00	0.088	0.000	39.636	0.00	0.17
	" Reinforcing plate	Yes	0.04	0.000	0.00	0.00 0.00	0.00 0.00	0.088 0.088	0.000 0.000	39.636 39.636	0.00 0.00	0.00 0.00
	" Conduit	Yes	1.25	0.000	2.00	0.00	0.00	0.088	0.000	39.806	0.00	5.43
62.00 1	" Reinforcing plate	Yes	1.25	0.000	1.00	0.10	0.00	0.088	0.000	39.806	0.00	0.00
62.00 1	" Reinforcing plate	Yes	1.25	0.000	0.00	0.00	0.00	0.088	0.000	39.806	0.00	0.00
	" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.089	0.000	40.073	0.00	8.69
	"Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.089	0.000	40.073	0.00	0.00
	" Reinforcing plate " Conduit	Yes Yes	1.33 2.00	0.000 0.000	0.00 2.00	0.00	0.00	0.089	0.000	40.073	0.00	0.00
	" Reinforcing plate	Yes	2.00	0.000	2.00	0.33	0.00 0.00	0.090 0.090	0.000 0.000	40.334 40.334	0.00 0.00	8.69 0.00
	" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.090	0.000	40.588	0.00	8.69
68.00 1	" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.091	0.000	40.588	0.00	0.00
	" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.092	0.000	40.836	0.00	8.69
	"Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.092	0.000	40.836	0.00	0.00
	' Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.092	0.000	41.079	0.00	8.69
	' Reinforcing plate ' Conduit	Yes Yes	2.00 2.00	0.000	1.00	0.17	0.00	0.092	0.000	41.079	0.00	0.00
	' Reinforcing plate	Yes	2.00	0.000 0.000	2.00 1.00	0.33 0.17	0.00 0.00	0.093 0.093	0.000 0.000	41.317 41.317	0.00 0.00	8.69 0.00
	' Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.093	0.000	41.550	0.00	8.69
76.00 1	' Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.094	0.000	41.550	0.00	0.00
78.00 2	' Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.095	0.000	41.777	0.00	8.69
	'Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.095	0.000	41.777	0.00	0.00
	' Conduit	Yes	0.25	0.000	2.00	0.04	0.00	0.096	0.000	41.806	0.00	1.09
	' Reinforcing plate ' Conduit	Yes Yes	0.25 1.75	0.000	1.00	0.02	0.00	0.096	0.000	41.806	0.00	0.00
	' Reinforcing plate	Yes	1.75	0.000 0.000	2.00 1.00	0.29 0.15	0.00 0.00	0.096 0.096	0.000 0.000	42.001 42.001	0.00 0.00	7.61
	Conduit	Yes	2.00	0.000	2.00	0.13	0.00	0.098	0.000	42.001	0.00	0.00 8.69
82.00 1	'Reinforcing plate	Yes	1.00	0.000	1.00	0.08	0.00	0.081	0.000	42.220	0.00	0.00
	' Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.065	0.000	42.434	0.00	8.69
	Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.066	0.000	42.645	0.00	8.69
	' Conduit	Yes	1.42	0.000	2.00	0.24	0.00	0.067	0.000	42.792	0.00	6.16
	' Conduit ' Conduit	Yes	0.58	0.000	2.00	0.10	0.00	0.067	0.000	42.852	0.00	2.54
	Conduit	Yes Yes	2.00 1.33	0.000 0.000	2.00 2.00	0.33 0.22	0.00 0.00	0.068 0.068	0.000 0.000	43.055 43.189	0.00 0.00	8.69 5.80
	' Conduit	Yes	0.67	0.000	2.00	0.22	0.00	0.068	0.000	43.189	0.00	5.80 2.90
	' Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.068	0.000	43.451	0.00	2.90
	' Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.069	0.000	43.644	0.00	8.69
	Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.070	0.000	43.834	0.00	8.69
	' Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.070	0.000	44.021	0.00	8.69
	Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.071	0.000	44.205	0.00	8.69
04.00 2	Conduit	Yes	2.00	0.000	2 00	0.33	0.00	0.072	0.000	44 386	0.00	8 69

0.33

0.33

0.33

0.33

0.00

0.00

0.00

0.00

0.072

0.073

0.074

0.074

0.000

0.000

0.000

0.000

44.386

44.564

44.740

44.913

0.00

0.00

0.00

0.00

8.69

8.69

8.69

8.69

2.00

2.00

2.00

2.00

104.00 2" Conduit

106.00 2" Conduit

108.00 2" Conduit

110.00 2" Conduit

Yes

Yes

Yes

Yes

2.00

2.00

2.00

2.00

0.000

0.000

0.000

0.000

		Line	ar Appu	tena	nce Seg	ment F	orces	(Facto	ored)	J.		
Structu	Jre: CT13064-	A-SBA			Code		TIA-222	2-H		10/4/2022	44,000,51	
Site Na	me: Middletow	n 2. CT			Expo	sure:	С				[((呣))	
Height	: 130.00 (ft)				Crest	Height:	0.00					
Base E					Site C	-	D - Stiff	Soil				
		Ter		4		t Class:		•••		Page: 31	Tower Eng	incering Solutions
Gh:	1.1	10	ography:	l	Struc	l Cidss.	11			rage. J		
Тор	Case: 0.9D + 1. Dead Load Fa Wind Load Fa	ctor 0.9 ctor 1.0	0		Exposed		CaAa		Cf Adjust	×	Iteration F X	Dead Load
Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Width (in)	Area (sqft)	(sqft)	Ra	Factor	qz (psf)	(Ib)	(Ib)
112.00 2	" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.075	0.000	45.084	0.00	8.69
114.00 2		Yes	2.00	0.000	2.00	0.33	0.00	0.076	0.000	45.252	0.00	8.69
116.00 2	" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.077	0.000	45.418	0.00	8.69
118.00 2	" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.078	0.000	45.582	0.00	8.69
120.00 2		Yes	2.00	0.000	2.00	0.33	0.00	0.079	0.000	45.743	0.00	8.69
122.00 2	" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.111	1.033	45.903	0.00	8.69
124.00 2	" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.111	1.033	46.060	0.00	8.69
126.00 2	" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.111	1.033	46.216	0.00	8.69
128.00 2	" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.111	1.033	46.369	0.00	8.69
					2.00	0.33	0.00	0.111	1.033	46.521	0.00	8.69

Totals:

0.0

565.1

Structure: CT13064-ASEA Code: TIA-222-H 10/4/2027 Site Name: Middletown 2, CT Exposure: C C CrestHeight: 0.00 Site Site Name: Middletown 2, CT Exposure: C CrestHeight: 0.00 Site Class: D - Stiff Soil Junce Name: Junce Nam: Junce Name: Junce Name: <th>1</th> <th></th> <th><i>a</i></th> <th></th> <th>1</th> <th></th> <th>Calc</th> <th>ulated Fo</th> <th>rces</th> <th></th> <th></th> <th></th> <th>J.</th> <th></th> <th></th>	1		<i>a</i>		1		Calc	ulated Fo	rces				J.		
Chine Crypergraphy F Outlot Class: (n) Page. 32 Load Case: 0.9D + 1.0W 120 mph Wind Second	Site N Heigh Base	Name: ht:	Middle 130.00 0.000	etown 2 0 (ft)				Exposure: Crest Heig	C ht: 0.0	0	1	10/-	4/2022	E	S
Dard Load Factor 0.90 Wind Load Factor 1.00 Seg (1) Pu (kps) Vir (kps) Vir (kps) Vir (kps) Vir (kps) Nu (kps) Retains (kps) Retains (kps)<	Gh:		1.1		То	pography:	1	Struct Class	ss: II			Pa	ge: 32	Tower Enginee	ring Solutions
Elev FY (-) FX (-) MY (-) MX Moment Yn Tn Nn Deflect Sway Twist Strass 0.00 30.97 32.99 0.00 3284.63 2818.44 73.35 2870.40 244.80 0.00 0.000 0.6830 0.00 30.87 2.267 0.00 3198.6 0.00 3198.6 280.58 2818.84 73.84 2526 298.80 0.00 0.000 0.6830 0.00 3.97 2.263 0.00 3067.4 0.00 3067.4 2770.45 772.2 2421.2 250.0 0.01 0.000 0.587 10.00 2.803 3.236 0.00 2.807.4 0.00 2.807.4 2.775.2 248.43 2.217.0 0.00 0.869 10.00 2.863 3.227.7 0.00 2.807.8 0.00 2.877.4 2.864.3 2.216.0 0.00 0.869 10.00 2.877.4 0.00 2.807.7 0.865.0 2.210		Dea	d Load	d Facto	r 0.9	0					2	Ì		erations	25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Elev	FY (-)	FX (-)	MY (-)	MZ	MX	Moment	Pn		Τn	•		Sway		
2.00 30.58 32.67 0.00 3198.65 280.580 728.44 502.28 2418.55 0.02 0.092 0.000 0.822 4.00 30.61 32.65 0.00 3067.4 0.00 3067.42 2779.45 718.13 2465.11 280.00 0.18 0.277 0.00 6.824 0.00 28.37 0.00 2837.1 0.00 287.15 2755.66 717.32 244.85 120.17 0.468 0.000 6.857 10.00 28.28 32.37 0.00 2872.4 0.00 2872.4 2755.06 701.91 214.84 277.17 0.55 0.000 6.851 14.00 28.24 32.15 0.00 274.86 0.00 274.86 0.01 274.50 686.10 211.07 218.51 1.88 0.823 0.000 6.853 20.00 27.1 31.73 0.00 2854.52 2867.39 885.69 224.107 218.51 1.88 0.020 0.000				_											
4.00 -30.16 -32.75 0.00 -312.91 279.73 723.44 248.45.26 238.30 0.05 -0.185 0.000 0.627 6.00 -28.40 -32.51 0.00 -3007.4 0.00 3007.12 2779.45 718.13 2456.11 2360.00 0.181 0.000 0.666 0.00 -28.03 -32.37 0.00 -2807.1 0.00 2297.16 2752.56 707.32 238.46.5 230.77 0.40 0.400 0.000 0.657 12.00 -28.62 -32.37 0.00 -287.4 0.00 2877.42 2738.94 701.91 234.34.34 277.27 0.70 -0.555 0.000 0.600 666.05 231.30 224.77 0.85 -0.650 0.000 0.600 656.05 236.73 676.54 224.77 1.85 -0.355 0.000 0.567 20.00 257.27 250.67 217.14 1.95 0.392.0 0.000 559 0.000 550 20.00 0.567 217.14 1.55 286.32 606.10 217.14 1.55 286.42 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
6.00 28.78 32.51 0.00 3067.42 2779.45 718.13 24.86.11 280.04 0.18 0.277 0.000 0.814 8.00 224.0 32.51 0.00 -2807.1 0.00 2907.15 2752.56 707.32 2348.45 2301.75 0.49 0.460 0.000 0.857 10.02 282.67 22.27 0.00 -2872.4 0.00 2872.4 2750.86 701.91 234.34 227.72 0.70 0.555 0.000 0.686 14.00 282.4 32.15 0.00 -2872.4 0.00 2745.6 0.00 2745.6 0.00 2745.7 0.00 0.611 2776.44 1.14 -0.744 0.00 0.600 0.581 0.000 274.7 -31.75 0.00 2879.55 2897.39 680.56 221.01 215.74 1.95 -0.332 0.000 0.583 0.000 271.1 -31.75 0.00 2898.8 0.00 2599.27 269.12 74.843.24 221.91 1.214 0.014.24 0.010 556 0.000															
8.00 -28.40 -32.51 0.00 -3002.16 2765.06 712.72 2421.42 323.36 0.31 0.366 0.000 0.889 10.00 -28.62 -32.37 0.00 -289.71 0.00 297.15 275.26 707.32 2384.65 2301.75 0.49 -0.460 0.000 0.859 12.00 -28.62 -32.27 0.00 -2872.4 0.00 2877.42 275.56 676.50 2243.17 0.76 -0.55 0.000 0.669 16.00 -27.47 -31.90 0.00 2877.42 271.13 661.10 2276.41 1.24 -0.744 0.000 0.609 16.00 -27.47 -31.90 0.00 2879.55 2679.76 678.33 2107.14 1.55 0.839 0.000 0.581 20.00 -27.15 -31.75 0.00 2451.7 0.00 2452.7 268.92 2205.87 2107.14 1.95 0.932 0.000 0.581 21.00 -25.52 -31.00 0.00 -248.00 0.264.22 69.48 2107.14 1															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															
10.25 28.96 -32.37 0.00 -289.00 2750.86 706.64 -389.10 228.12 0.51 -0.471 0.000 0.625 12.00 -28.62 -32.27 0.00 -2872.4 0.00 2872.42 2738.94 701.91 2348.34 2272.72 0.00 -0.656 0.000 0.609 16.00 -27.47 -31.00 0.00 -2875.7 0.00 2875.82 224.107 218.61 1.58 0.889 0.000 0.689 20.00 -27.15 0.00 -2875.7 0.00 2855.2 2863.22 602.9 220.537 217.11 1105. 0.899 0.000 0.589 20.00 -27.12 -31.75 0.00 -2552.27 2669.12 674.88 2170.19 2128.64 2.36 -1.026 0.000 0.589 22.00 -28.72 -31.50 0.00 -248.00 0.00 2264.22 674.88 2170.19 2128.64 2.36 -1.026 0.000 0.681 22.00 -28.01 -31.35 0.00 -248.00 0.284.12															
12.00 -28.2 -22.7 0.00 -2872.4 0.00 2872.42 278.84 701.91 2343.32 2277.7 0.70 -0.555 0.000 0.669 16.00 -27.85 -32.33 0.00 -2743.6 0.00 2678.65 2276.54 2214.91 1.24 -0.744 0.000 0.660 18.00 -27.47 -31.90 0.00 -2671.5 0.00 2675.5 2667.39 685.66 2216.07 2186.13 1.28 -0.392 0.000 0.583 20.00 -27.01 -31.36 0.00 -269.83 0.00 2589.87 2679.78 678.93 2170.14 1250.28 2.06 -0.96 0.000 0.573 24.00 -26.35 -31.50 0.00 -2489.0 0.00 2486.00 266.42 674.80 210.94 210.91.42 3.30 -1.211 0.000 0.488 25.00 -31.35 0.00 -2386.4 264.00 664.07 210.194 2071.22 3.30	10.25	-28.96	-32.37	0.00	-2929.0										
	12.00	-28.62	-32.27	0.00	-2872.4	0.00	2872.42	2738.94	701.91	2348.34	2272.72				
	14.00	-28.24	-32.15	0.00	-2807.8	0.00	2807.89		696.50	2312.30	2243.77	0.95	-0.650		
2000 -27.12 -31.75 0.00 -2815.75 2883.32 680.29 205.87 2157.44 1.95 -0.932 0.000 0.583 20.50 -27.11 -31.73 0.00 -2899.8 0.00 2598.47 26797.7 678.93 2171.11 2150.28 2.05 -0.956 0.000 0.580 24.00 -26.52 -31.64 0.00 -2489.0 0.00 2489.0 2664.12 674.88 2170.92 3.03 -1.211 0.000 0.584 25.66 -26.01 -31.35 0.00 -2428.0 0.264.00 664.07 210.19 207.12 3.03 -1.211 0.000 0.488 26.86 -31.21 0.00 -2386.4 0.00 238.33 2625.47 658.99 2069.89 2054.53 3.79 -1.295 0.00 5.76 27.81 -52.65 -31.08 0.00 -2363.3 0.00 2363.3 2625.87 656.69 2067.53 4.39 -1.397 0.000	16.00	-27.85	-32.03	0.00	-2743.6	0.00	2743.60	2711.35	691.10	2276.54	2214.91	1.24	-0.744	0.000	0.600
20.50 -27.01 -31.73 0.00 -2599.8 0.00 2599.87 2679.78 678.93 2197.11 2150.28 2.05 -0.966 0.000 0.573 22.00 -26.72 -31.44 0.00 -2552.2 0.00 22482.00 2664.82 664.18 2100.34 2.81 -1.119 0.000 0.684 25.60 -31.35 0.00 -2482.0 0.264.82 664.18 210.242 2072.49 3.29 -1.209 0.000 0.488 26.00 -26.00 -31.35 0.00 -2482.0 2640.40 664.07 210.262 2072.49 3.30 -1.211 0.000 0.488 26.00 -25.66 -31.21 0.00 -2367.1 0.00 2367.12 265.74 658.99 2043.61 3.52 -1.247 0.000 0.557 30.00 -25.25 -31.08 0.00 -230.9 0.00 230.93 2611.22 653.26 2034.05 2015.39 4.39 -1.387 0.000 0.565 32.00 -24.62 -30.74 0.30.4 0.00				0.00	-2679.5	0.00	2679.55	2697.39	685.69	2241.07	2186.13	1.58	-0.839	0.000	0.591
22.00 -26.72 -31.64 0.00 -2552.2 0.00 2552.27 2669.12 674.88 2170.95 218.84 2.36 -1.025 0.000 0.573 24.00 -26.35 -31.35 0.00 -2429.0 0.00 2427.25 2640.69 664.18 2102.52 0.02 42.0 0.000 0.488 25.00 -31.35 0.00 -2427.0 0.00 2427.25 2640.69 664.18 2102.54 3.32 -1.247 0.000 0.488 25.00 -31.35 0.00 -2384.1 0.00 2367.1 0.00 2367.12 0262.74 658.69 2045.30 37.9 -1.295 0.000 0.575 30.00 -25.66 -31.21 0.00 -2363.7 0.00 2303.3 2611.22 653.25 2045.30 37.97 -1.295 0.000 0.555 30.00 -248.8 -30.94 0.00 -2176.8 0.00 2367.41 193.36 6.33 -1.687 0.00 0.555 34.00 -2176.8 0.00 21551.48 631.63 19								2683.32	680.29	2205.87	2157.44	1.95	-0.932	0.000	0.583
24.00 -26.35 -31.50 0.00 -2489.0 0.00 2489.00 2654.82 669.47 2136.30 2100.34 2.81 -1.119 0.000 0.654 25.00 -26.01 -31.35 0.00 -2427.2 0.000 2427.02 2640.40 664.17 2101.26 2071.42 3.30 -1.211 0.000 0.488 26.80 -26.00 -31.35 0.00 -2428.00 2364.40 664.07 2101.26 2071.42 3.30 -1.217 0.000 0.488 27.88 -31.29 0.00 -2367.1 0.00 2367.12 2667.47 658.69 2043.05 2015.39 4.39 -1.397 0.000 0.555 30.00 -225.5 -31.08 0.00 -230.79 0.00 2238.77 2586.46 647.85 200.052 6.44 -1.587 0.000 0.555 34.00 -24.52 -30.79 0.00 -2176.8 0.00 2238.78 642.41 1967.27 1959.26 6.44 -1.587 0.000 0.545 36.00 -23.41 -30.48														0.000	0.580
25.96 -26.01 -31.35 0.00 -2427.2 0.00 2427.25 2640.68 664.18 2102.22 2072.49 3.29 -1.219 0.000 0.488 26.00 -31.35 0.00 -2426.0 0.00 2242.00 2640.40 664.07 2019.49 2073.49 3.29 -1.211 0.000 0.06 26.88 -25.83 -31.29 0.00 -2363.1 0.00 2367.12 2626.74 658.89 2069.89 2045.30 3.79 -1.295 0.000 0.565 20.00 -25.61 -31.22 0.00 -230.99 0.00 2309.93 2611.22 2653.25 2054.05 2054.81 3.82 -1.587 0.000 0.555 30.00 -24.52 -30.79 0.00 -2175.3 0.00 2176.89 2581.58 642.44 1967.27 1959.26 5.64 -1.587 0.000 0.555 30.00 -23.81 -30.49 0.00 -2175.3 0.00 2176.89 2582.65 626.22 1875.87 7.81 -1.867 0.00 0.00 0.555															
26.00 -31.35 0.00 -2426.0 2840.40 664.07 2101.94 2071.92 3.30 -1.211 0.000 0.648 26.88 -25.83 -31.29 0.00 -2367.1 0.00 2367.1 2000 2367.4 658.9 2069.95 2059.45 3.52 -1.247 0.000 0.576 28.00 -25.61 -31.22 0.00 -2363.3 0.00 2363.38 2625.87 668.66 2067.85 2043.61 3.82 -1.301 0.000 0.555 30.00 -25.25 -31.08 0.00 -2308.9 2000 2238.77 2556.46 647.85 2001.52 1.987 4.99 -1.943 0.000 0.555 30.00 -24.17 -30.44 0.00 -2176.8 0.00 2256.58 637.04 1934.30 1931.36 63.3 -1.867 0.00 0.555 30.00 -23.17 30.00 -1977.8 0.00 1977.67 2566.26 262.22 1869.20 187.87															
26.88 -25.83 -31.29 0.00 -2398.4 0.00 2398.41 2634.02 661.69 2066.91 2059.45 3.52 -1.247 0.000 0.576 27.88 -25.66 -31.22 0.00 -2367.11 0.00 2367.12 2626.74 658.66 2066.91 2325 3.30 0.00 0.576 30.00 -25.25 -31.08 0.00 -230.9 0.00 2300.93 2611.22 653.25 2034.05 2015.39 4.39 -1.397 0.000 0.555 34.00 -24.8 30.94 0.00 -2716.8 0.00 2176.89 2581.56 637.04 1934.30 1931.36 6.33 -1.681 0.000 0.555 36.00 -24.17 -30.64 0.00 -2054.0 0.00 2934.4 2563.26 626.22 1866.07 8.08 -1.980 0.00 0.525 38.00 -23.9 30.29 0.00 -1977.8 0.00 1977.87 2532.44 624.87															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															
32.00 -24.88 -30.94 0.00 -2238.7 0.00 2238.77 2596.46 647.85 2000.52 1987.27 4.99 -1.433 0.000 0.555 34.00 -24.52 -30.79 0.00 -2176.8 0.00 2176.89 2581.58 637.04 1934.30 1931.36 6.33 -1.681 0.000 0.535 36.00 -23.41 -30.49 0.00 -2054.0 0.00 2054.02 2561.48 631.63 1901.61 1903.56 7.81 -1.867 0.000 0.551 40.00 -23.48 -30.33 0.00 1993.04 2536.26 626.22 1869.20 1875.87 7.81 -1.867 0.000 0.514 40.70 -23.42 -30.28 0.00 -1977.5 0.00 1971.61 2530.83 624.87 1861.07 8.09 -1.909 0.000 0.514 41.01 -23.12 -30.18 0.00 -1822.4 0.00 1875.76 1886.07 8.09 -1.909 0.000 0.504 43.33 -22.29 0.00 -1892.4															
34.00 -24.52 -30.79 0.00 -2176.8 0.00 2176.89 2581.58 642.44 1967.27 1959.26 5.64 -1.587 0.000 0.535 36.00 -23.81 -30.49 0.00 -2175.3 0.00 2054.02 2551.48 631.63 1901.61 1903.56 7.05 -1.775 0.000 0.525 40.00 -23.48 -30.33 0.00 -1977.8 0.00 1977.87 2532.44 624.62 1865.27 1866.07 8.09 -1.900 0.000 0.511 40.71 -23.34 -30.28 0.00 -1977.8 0.00 1971.51 2530.26 626.22 1859.20 1866.07 8.09 -1.900 0.000 0.511 42.00 -23.24 -30.18 0.00 -1872.1 0.00 1872.16 2510.64 617.21 1875.87 1861.43 103.3 -2.138 0.00 0.504 43.33 -22.19 -30.03 0.00 -1872.1 0.00 1872.16 2505.48 615.41 1805.20 1820.87 9.46 -2.050 0.000<															
36.00 -24.17 -30.64 0.00 -2115.3 0.00 2115.31 2566.59 637.04 1934.30 1931.36 6.33 -1.681 0.000 0.535 38.00 -23.81 -30.49 0.00 -2054.0 0.00 1993.04 2566.26 626.22 1869.20 1875.87 7.81 -1.867 0.000 0.514 40.50 -23.38 -30.29 0.00 1997.87 2532.44 624.27 1861.14 188e.86 8.01 -1.890 0.000 0.511 40.50 -23.12 -30.18 0.00 -1971.5 0.00 1971.45 2530.83 624.30 1857.76 1866.07 8.09 -1.900 0.000 0.514 43.33 -22.12 -30.18 0.00 -1892.2 0.00 1892.21 2510.64 617.21 1815.79 1820.97 9.17 -2.020 0.000 0.486 46.00 -22.19 -29.86 0.00 -1722.3 0.00 1752.37 1854.44 491.51 1439.76 1142.5 -2.234 0.000 0.650 50.00 <td>34.00</td> <td>-24.52</td> <td>-30.79</td> <td>0.00</td> <td>-2176.8</td> <td></td>	34.00	-24.52	-30.79	0.00	-2176.8										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	36.00	-24.17	-30.64	0.00	-2115.3	0.00	2115.31	2566.59	637.04	1934.30	1931.36	6.33			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	38.00	-23.81	-30.49	0.00	-2054.0	0.00	2054.02	2551.48	631.63	1901.61	1903.56	7.05	-1.775	0.000	0.525
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				0.00	-1993.0	0.00	1993.04	2536.26	626.22		1875.87	7.81	-1.867	0.000	0.514
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				0.00	-1977.8	0.00	1977.87	2532.44	624.87	1861.14	1868.96	8.01	-1.890	0.000	0.511
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												8.09	-1.900	0.000	
44.00 -22.71 -30.03 0.00 -1872.1 0.00 1872.16 2505.48 615.41 1805.20 1820.83 9.46 -2.050 0.000 0.486 46.00 -22.19 -29.86 0.00 -1812.1 0.00 1812.10 2489.92 610.00 1773.63 1793.48 10.33 -2.138 0.000 0.475 48.00 -21.70 -29.68 0.00 -1752.3 0.00 1722.37 1854.44 491.51 1439.37 1347.80 11.25 -2.226 0.000 0.650 50.00 -21.36 -29.55 0.00 -1692.9 0.00 1692.99 1844.56 487.19 1414.16 1328.74 12.20 -2.334 0.000 0.655 52.00 -21.06 -29.39 0.00 -1633.8 0.00 1575.10 1824.45 478.54 1364.38 1290.76 14.25 -2.549 0.000 0.652 54.00 -20.75 -29.24 0.00 -1575.10 1824.45 478.54 1364.38 1290.76 14.25 -2.42 0.000 0.652															
46.00 -22.19 -29.86 0.00 -1812.1 0.00 1812.10 2489.92 610.00 1773.63 1793.48 10.33 -2.138 0.000 0.475 48.00 -21.70 -29.68 0.00 -1752.3 0.00 1752.37 1854.44 491.51 1439.37 1347.80 11.25 -2.226 0.000 0.512 48.12 -21.66 -29.69 0.00 -1748.8 0.00 1748.80 1853.85 491.25 1437.86 1346.66 11.30 -2.231 0.000 0.650 50.00 -21.36 -29.55 0.00 -1632.9 0.00 1692.99 1844.56 487.19 1414.16 1328.74 12.20 -2.334 0.000 0.655 52.00 -21.06 -29.98 0.00 -1575.1 0.00 1575.10 1824.45 478.54 1364.38 1290.76 14.25 -2.549 0.000 0.662 56.00 -20.45 -29.08 0.00 -1516.6 0.00 1516.62 1814.23 474.21 1339.83 1271.84 15.34 -2.654															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															
48.12 -21.66 -29.69 0.00 -1748.8 0.00 1748.80 1853.85 491.25 1437.86 1346.66 11.30 -2.231 0.000 0.655 50.00 -21.36 -29.55 0.00 -1692.9 0.00 1692.99 1844.56 487.19 1414.16 1328.74 12.20 -2.334 0.000 0.653 52.00 -21.06 -29.39 0.00 -1633.8 0.00 1633.89 1834.56 482.86 1389.16 1309.72 13.20 -2.442 0.000 0.619 54.00 -20.75 -29.24 0.00 -1575.1 0.00 1575.10 1824.45 478.54 1364.38 1290.76 14.25 -2.549 0.000 0.602 56.00 -20.45 -29.08 0.00 -1516.6 0.00 1458.46 1803.89 469.89 1315.50 1252.97 16.47 -2.758 0.000 0.569 60.00 -19.88 -28.75 0.00 -1400.6 0.00 140.61 1793.44 465.56 1291.40 1234.16 17.65 -2.860 0															
50.00 -21.36 -29.55 0.00 -1692.9 0.00 1692.99 1844.56 487.19 1414.16 1328.74 12.20 -2.334 0.000 0.635 52.00 -21.06 -29.39 0.00 -1633.8 0.00 1633.89 1834.56 482.86 1389.16 1309.72 13.20 -2.442 0.000 0.619 54.00 -20.75 -29.24 0.00 -1575.1 0.00 1575.10 1824.45 478.54 1364.38 1290.76 14.25 -2.549 0.000 0.602 56.00 -20.45 -29.08 0.00 -1516.6 0.00 1575.10 1824.45 478.54 1364.38 1290.76 14.25 -2.654 0.000 0.586 58.00 -20.16 -28.93 0.00 -1458.4 0.00 1458.46 1803.89 469.89 1315.50 1252.97 16.47 -2.758 0.000 0.552 60.71 -19.78 -28.69 0.00 -1380.1 0.00 1380.19 1789.49 463.94 1282.90 1227.50 18.08 -2.896															
52.00 -21.06 -29.39 0.00 -1633.8 0.00 1633.89 1834.56 482.86 1389.16 1309.72 13.20 -2.442 0.000 0.619 54.00 -20.75 -29.24 0.00 -1575.1 0.00 1575.10 1824.45 478.54 1364.38 1290.76 14.25 -2.549 0.000 0.602 56.00 -20.45 -29.08 0.00 -1516.6 0.00 1516.62 1814.23 474.21 1339.83 1271.84 15.34 -2.654 0.000 0.586 58.00 -20.16 -28.93 0.00 -1458.4 0.00 1458.46 1803.89 469.89 1315.50 1252.97 16.47 -2.758 0.000 0.569 60.00 -19.88 -28.75 0.00 -1400.6 0.00 1400.61 1793.44 465.56 1291.40 1234.16 17.65 -2.860 0.000 0.552 60.75 -19.76 -28.70 0.00 -1379.0 0.00 1379.05 1789.49 463.94 1282.42 1227.12 18.10 -2.898															
54.00-20.75-29.240.00-1575.10.001575.101824.45478.541364.381290.7614.25-2.5490.0000.60256.00-20.45-29.080.00-1516.60.001516.621814.23474.211339.831271.8415.34-2.6540.0000.58658.00-20.16-28.930.00-1458.40.001458.461803.89469.891315.501252.9716.47-2.7580.0000.56960.00-19.88-28.750.00-1400.60.001400.611793.44465.561291.401234.1617.65-2.8600.0000.55260.71-19.78-28.690.00-1380.10.001380.191789.70464.031282.901227.5018.08-2.8960.0000.69160.75-19.76-28.700.00-1379.00.001379.051789.49463.941282.421227.1218.10-2.8980.0000.69962.00-19.55-28.620.00-1343.10.001343.171782.87461.241267.521215.4118.87-2.9770.0000.67764.00-19.25-28.460.00-1285.90.001285.931772.19456.911243.861196.7220.15-3.1010.0000.66666.00-18.66-28.160.00-1172.30.001172.391750.48448.261197.211159.5122.85-3.															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															
58.00 -20.16 -28.93 0.00 -1458.4 0.00 1458.46 1803.89 469.89 1315.50 1252.97 16.47 -2.758 0.000 0.569 60.00 -19.88 -28.75 0.00 -1400.6 0.00 1400.61 1793.44 465.56 1291.40 1234.16 17.65 -2.860 0.000 0.552 60.71 -19.78 -28.69 0.00 -1380.1 0.00 1380.19 1789.70 464.03 1282.90 1227.50 18.08 -2.896 0.000 0.691 60.75 -19.76 -28.70 0.00 -1379.0 0.00 1379.05 1789.49 463.94 1282.42 1227.12 18.10 -2.898 0.000 0.6990 62.00 -19.55 -28.62 0.00 -1343.1 0.00 1343.17 1782.87 461.24 1267.52 1215.41 18.87 -2.977 0.000 0.677 64.00 -19.25 -28.46 0.00 -1285.9 0.00 1285.93 1772.19 456.91 1243.86 1196.72 20.15 -3.101 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>															
60.00-19.88-28.750.00-1400.60.001400.611793.44465.561291.401234.1617.65-2.8600.0000.55260.71-19.78-28.690.00-1380.10.001380.191789.70464.031282.901227.5018.08-2.8960.0000.69160.75-19.76-28.700.00-1379.00.001379.051789.49463.941282.421227.1218.10-2.8980.0000.69062.00-19.55-28.620.00-1343.10.001343.171782.87461.241267.521215.4118.87-2.9770.0000.67764.00-19.25-28.460.00-1285.90.001285.931772.19456.911243.861196.7220.15-3.1010.0000.65666.00-18.96-28.310.00-1172.30.001172.391750.48448.261197.211159.5122.85-3.3420.0000.61370.00-18.37-28.000.00-1116.00.001116.081739.46443.941174.221141.0124.27-3.4580.0000.590		-20.16													
60.71-19.78-28.690.00-1380.10.001380.191789.70464.031282.901227.5018.08-2.8960.0000.69160.75-19.76-28.700.00-1379.00.001379.051789.49463.941282.421227.1218.10-2.8980.0000.69062.00-19.55-28.620.00-1343.10.001343.171782.87461.241267.521215.4118.87-2.9770.0000.67764.00-19.25-28.460.00-1285.90.001285.931772.19456.911243.861196.7220.15-3.1010.0000.65666.00-18.96-28.310.00-1229.00.001229.011761.39452.591220.421178.0821.47-3.2230.0000.63468.00-18.66-28.160.00-1172.30.001172.391750.48448.261197.211159.5122.85-3.3420.0000.61370.00-18.37-28.000.00-1116.00.001116.081739.46443.941174.221141.0124.27-3.4580.0000.590		-19.88	-28.75	0.00	-1400.6	0.00									
		-19.78	-28.69	0.00	-1380.1	0.00	1380.19	1789.70							
64.00 -19.25 -28.46 0.00 -1285.9 0.00 1285.93 1772.19 456.91 1243.86 1196.72 20.15 -3.101 0.000 0.656 66.00 -18.96 -28.31 0.00 -1229.0 0.00 1229.01 1761.39 452.59 1220.42 1178.08 21.47 -3.223 0.000 0.634 68.00 -18.66 -28.16 0.00 -1172.3 0.00 1172.39 1750.48 448.26 1197.21 1159.51 22.85 -3.342 0.000 0.613 70.00 -18.37 -28.00 0.00 -1116.0 0.00 1116.08 1739.46 443.94 1174.22 1141.01 24.27 -3.458 0.000 0.590						0.00	1379.05	1789.49	463.94	1282.42	1227.12	18.10	-2.898	0.000	
66.00-18.96-28.310.00-1229.00.001229.011761.39452.591220.421178.0821.47-3.2230.0000.63468.00-18.66-28.160.00-1172.30.001172.391750.48448.261197.211159.5122.85-3.3420.0000.61370.00-18.37-28.000.00-1116.00.001116.081739.46443.941174.221141.0124.27-3.4580.0000.590								1782.87	461.24	1267.52	1215.41	18.87	-2.977	0.000	0.677
68.00 -18.66 -28.16 0.00 -1172.3 0.00 1172.39 1750.48 448.26 1197.21 1159.51 22.85 -3.342 0.000 0.613 70.00 -18.37 -28.00 0.00 -1116.0 0.00 1116.08 1739.46 443.94 1174.22 1141.01 24.27 -3.458 0.000 0.590									456.91	1243.86	1196.72	20.15	-3.101	0.000	0.656
70.00 -18.37 -28.00 0.00 -1116.0 0.00 1116.08 1739.46 443.94 1174.22 1141.01 24.27 -3.458 0.000 0.590														0.000	
72.00 -16.09 -27.84 0.00 -1060.0 0.00 1060.08 1728.32 439.61 1151.45 1122.57 25.74 -3.571 0.000 0.568															
	72.00	-18.09	-27.84	0.00	-1060.0	0.00	1060.08	1728.32	439.61	1151.45	1122.57	25.74	-3.571	0.000	0.568

	r.		E.			Calcu	lated Fo	rces	£		ġ.		1.	
Struc	ture:	CT130	64-A-S	BA		(Code:	TIA	-222 - H		10/4	/2022	44.000.bb	
Site N	lame:	Middlet	own 2	, CT		E	Exposure:	С					(((卅)))	
Heigh		130.00				(Crest Heig	ht: 0.0	0			I	E	C
-		0.000 (• /				Site Class:		Stiff Soil			I		3
	Elev:	•		-							Dev	ge: 33	Tower Engineer	ing Solutions
Gh:		1.1		Тор	ography:	1 5	Struct Clas	55: 11			Faį	ye. 33		
74.00	-17.80	-27.68	0.00	-1004.4	0.00	1004.40	1717.07	435.29	1128.90	1104.20	27.26	-3.681	0.000	0.545
76.00	-17.52	-27.52	0.00	-949.04	0.00	949.04	1705.70	430.96	1106.58	1085.91	28.83	-3.788	0.000	0.521
78.00	-17.27	-27.35	0.00	-893.99	0.00	893.99	1694.22	426.64	1084.48	1067.69	30.44	-3.891	0.000	0.498
78.25	-17.22	-27.34	0.00	-887.16	0.00	887.16	1692.78	426.10	1081.74	1065.41	30.64	-3.904	0.000	0.495
78.25	-17.22	-27.34	0.00	-887.16	0.00	887.16	1692.78	426.10	1081.74	1065.41	30.64	-3.904	0.000	0.495
80.00	-16. 9 6	-27.21	0.00	-839.32	0.00	839.32	1682.63	422.31	1062.61	1049.54	32.09	-3.992	0.000	0.814
82.00	-16.66	-27.07	0.00	-784.90	0.00	784.90	1670.92	417.9 9	1040.95	1031.48	33.79	-4.157	0.000	0.775
84.00	-16.36	-26.92	0.00	-730.77	0.00	730.77	1659.09	413.66	1019.52	1013.49	35.57	-4.316	0.000	0.735
86.00	-16.08	-26.77	0.00	-676.93	0.00	676.93	1647.16	409.34	998.31	995.59	37.41	-4.468	0.000	0.694
87.42	-15.90	-26.65	0.00	-639.01	0.00	639.01	1638.63	406.27	983.43	982.97	38.75	-4,572	0.000	0.664
88.00	-15.76	-26.62	0.00	-623.47	0.00	623.47	1635.10	405.01	977.33	977.78	39.31	-4.614	0.000	0.652
90.00	-12.60	-21.30	0.00	-570.23	0.00	570.23	1622.94	400.69	956.57	960.05	41.27	-4.752	0.000	0.605
91.33	-12.37	-21.19	0.00	-541.83	0.00	541.83	1099.39	302.92	728.96	657.00	42.61	-4.840	0.000	0.841
92.00	-12.27	-21.15	0.00	-527.70	0.00	527.70	1097.24	301.84	723.77	653.36	43.29	-4.884	0.000	0.824
94.00	-12.05	-20.99	0.00	-485.41	0.00	485.41	1090.71	298.60	708.30	642.45	45.37	-5.043	0.000	0.772
96.00	-11.82	-20.84	0.00	-443.43	0.00	443.43	1084.06	295.35	692.99	631.55	47.51	-5.193	0.000	0.718
98.00	-11.61	-20.68	0.00	-401.75	0.00	401.75	1077.30	292.11	677.85	620.68	49.72	-5.335	0.000	0.663
100.00	-8.86	-15.85	0.00	-360.39	0.00	360.39	1070.43	288.87	662.88	609.82	51.98	-5.466	0.000	0.602
102.00	-8.68	-15.68	0.00	-328.70	0.00	328.70	1063.44	285.62	648.08	598.99	54.29	-5.590	0.000	0.560
104.00	-8.51	-15.52	0.00	-297.34	0.00	297.34	1056.34	282.38	633.44	588.19	56.66	-5.705	0.000	0.517
106.00	-8.33	-15.35	0.00	-266.30	0.00	266.30	1049.12	279.13	618.97	577.41	59.07	-5.813	0.000	0.472
108.00	-8.16	-15.19	0.00	-235.59	0.00	235.59	1041.79	275.89	604.67	566.67	61.52	-5.913	0.000	0.427
110.00	-6.47	-12.66	0.00	-205.19	0.00	205.19	1034.34	272.65	590.53	555.96	64.01	-6.003	0.000	0.377
112.00	-6.34	-12.50	0.00	-179.86	0.00	179.86	1026.79	269.40	576.57	545.28	66.54	-6.085	0.000	0.338
114.00	-6.21	-12.34	0.00	-154.86	0.00	154.86	1019.11	266.16	562.77	534.64	69.10	-6.159	0.000	0.298
116.00	-6.08	-12.17	0.00	-130.19	0.00	130.19	1011.32	262.92	549.13	524.04	71.69	-6.224	0.000	0.257
118.00	-5.96	-12.01	0.00	-105.85	0.00	105.85	1003.42	259.67	535.67	513.49	74.31	-6.280	0.000	0.214
120.00	-4.08	-8.39	0.00	-81.83	0.00	81.83	995.40	256.43	522.37	502.97	76.95	-6.326	0.000	0.168
120.00	-4.08	-8.39	0.00	-81.83	0.00	81.83	735.22	244.66	14507.7	335.79	76.95	-6.326	0.000	0.250
122.00	-3.96	-8.29	0.00	-65.05	0.00	65.05	735.22	244.66	14507.7	335.79	79.60	-6.364	0.000	0.200
124.00	-3.84	-8.18	0.00	-48.47	0.00	48.47	735.22	244.66	14507.7	335.79	82.27	-6.423	0.000	0.151
126.00	-3.73	-8.08	0.00	-32.10	0.00	32.10	735.22	244.66	14507.7	335.79	84.97	-6.464	0.000	0.102
128.00	-3.62	-7.97	0.00	-15.94	0.00	15.94	735.22	244.66	14507.7	335.79	87.68	-6.489	0.000	0.053
130.00	0.00	-7.51	0.00	0.00	0.00	0.00	735.22	244.66	14507.7	335.79	90.39	-6.497	0.000	0.001

	Ŧ	- F		1	W	ind Loa	ading	- Sha	ft			1		Ø. 1
Struct		3064-A-SBA				Co	de:	T	TA-222-H			10/4/202	22	
Site Na	ame: Midd	letown 2, C1				Ex	posur	e: ()				(()明	""
Height	: 130.0	DO (ft)				Cre	est He	ight: C	0.00					EC
Base E	Elev: 0.000	D (ft)				Sit	e Clas	s: D) - Stiff So	il				ES
Gh:	1.1		Торос	graphy	r: 1	Str	uct Cl	ass: I				Page: 3	34 Tower	Engincering Solutio
Load () + 1.0Di + 1) mph \	Wind						Y	x	Iteratio	ons 24
	Dead Loa Wind Loa		1.20 1.00								3	A		
Elev (ft)	Descriptio	on Kzt	Kz	qz (psf)	qzGh (psf)	C (mph-ft)	Cf	lce Thick (in)	Tributary (ft)	Aa (sf)	CfAa (sf)	Wind Force X (lb)	Dead Load Ice (Ib)	Tot Dead Load (Ib)
0.00 R	B1 RB2	1.00	0.85	5.133	5.65	0.00	1.200	0.000	0.00	0.000	0.00	0.0	0.0	0.0
2.00		1.00	0.85	5.133	5.65	0.00	1.200	0.756	2.00	7.418	8.90	50.3	80.5	420.9
4.00		1.00	0.85	5.133	5.65	0.00	1.200	0.810	2.00	7.384	8.86	50.0	85.7	423.7
6.00 8.00		1.00 1.00	0.85 0.85	5.133 5.133	5.65 5.65	0.00 0.00	1.200 1.200	0.843 0.868	2.00 2.00	7.342 7.298	8.81 8.76	49.7	88.7 90.7	424.1 423.6
10.00		1.00	0.85	5.133	5.65	0.00	1.200	0.887	2.00	7.298	8.70	49.4 49.1	90.7 92.1	423.6 422.5
	T2 RB3 RB4	1.00	0.85	5.133	5.65	0.00	1.200	0.890	0.25	0.903	1.08	6.1	11.5	52.7
12.00		1.00	0.85	5.133	5.65	0.00	1.200	0.904	1.75	6.301	7.56	42.7	81.5	368.2
14.00		1.00	0.85	5.133	5.65	0.00	1.200	0.918	2.00	7.157	8.59	48.5	93.9	419.3
16.00		1.00	0.86	5.196	5.72	0.00	1.200	0.930	2.00	7.108	8.53	48.8	94.5	417.3
18.00 20.00		1.00	0.88	5.327	5.86	0.00	1.200 1.200	0.941	2.00	7.060	8.47	49.6	94.9	415.2
20.00 20.50 R	T1 885	1.00 1.00	0.90 0.91	5.446 5.474	5.99 6.02	0.00 0.00	1.200	0.951 0.954	2.00 0.50	7.010 1.745	8.41 2.09	50.4 12.6	95.2 23.8	413.0 102.9
22.00		1.00	0.92	5.556	6.11	0.00	1.200	0.960	1.50	5.216	6.26	38.3	71.5	307.8
24.00		1.00	0.94	5.659	6.23	0.00	1.200	0.969	2.00	6.911	8.29	51.6	95.5	408.3
25.96 R	B6	1.00	0.95	5.753	6.33	0.00	1.200	0.976	1.96	6.724	8.07	51.1	93.6	397.7
26.00		1.00	0.95	5.755	6.33	0.00	1.200	0.976	0.04	0.137	0.16	1.0	1.9	8.1
26.88 R		1.00	0.96	5.796	6.38	0.00	1.200	0.980	0.88	3.003	3.60	23.0	42.0	177.7
27.88 R	T3 RB7	1.00	0.97	5.841	6.42	0.00	1.200	0.983	1.00	3.400	4.08	26.2	47.7	201.4
28.00		1.00	0.97	5.846	6.43	0.00	1.200	0.984	0.12	0.407	0.49	3.1	5.7	24.1
30.00 32.00		1.00 1.00	0.98 1.00	5.931 6.013	6.52 6.61	0.00 0.00	1.200 1.200	0.991 0.997	2.00	6.761	8.11	52.9	95.4	400.6
34.00		1.00	1.00	6.090	6.70	0.00	1.200	1.003	2.00 2.00	6.710 6.660	8.05 7.99	53.3 53.5	95.3 95.1	398.0 395.3
36.00		1.00	1.01	6.163	6.78	0.00	1.200	1.003	2.00		7.93	53.5 53.8	95.1 94.9	392.6
38.00		1.00		6.234	6.86		1.200	1.014	2.00	6.558	7.87	54.0	94.6	389.8
40.00		1.00	1.04	6.302	6.93	0.00	1.200	1.019	2.00	6.507	7.81	54.1	94.3	387.0
40.50 R		1.00	1.05	6.318	6.95	0.00	1.200	1.021	0.50	1.619	1.94	13.5	23.6	96.3
40.71 R	T6 RB9	1.00	1.05	6.325	6.96		1.200	1.021	0.21	0.679	0.81	5.7	9.9	40.4
42.00		1.00	1.05	6.367	7.00	0.00	1.200	1.024	1.29	4.158	4.99	34.9	60.6	247.5
43.33 Bo 44.00	ot - Section 2	1.00	1.06	6.409	7.05	0.00	1.200 1.200	1.028	1.33	4.276	5.13	36.2	62.5	254.6
44.00 46.00		1.00 1.00	1.06 1.07	6.429 6.490	7.07 7.14	0.00	1.200 1.200	1.029 1.034	0.67 2.00	2.158 6.439	2.59 7.73	18.3 55.2	31.6 94.6	204.9 611.4
	p - Section 1	1.00	1.07	6.548	7.14	0.00	1.200	1.034	2.00	6.388	7.67	55.2 55.2	94.8 94.2	606.5
48.12 R		1.00	1.08	6.552	7.21	0.00	1.200	1.038		0.382	0.46	3.3	5.7	19.4
50.00		1.00	1.09	6.605	7.27		1.200	1.042	1.88	5.955	7.15	51.9	88.2	302.2
52.00		1.00	1.10	6.660	7.33	0.00	1.200	1.047	2.00	6.286	7.54	55.3	93.4	319.1
54.00		1.00	1.11		7.38	0.00	1.200	1.050	2.00	6.234	7.48	55.2	92.9	316.6
56.00		1.00		6.764	7.44	0.00		1.054	2.00	6.183	7.42	55.2	92.5	314.1
58.00 60.00		1.00	1.13	6.814	7.50	0.00	1.200	1.058	2.00	6.132	7.36	55.2	92.0	311.6
60.71 R	Т9	1.00 1.00	1.14 1.14	6.863 6.880	7.55 7.57	0.00 0.00	1.200 1.200	1.062 1.063	2.00 0.71	6.081 2.146	7.30 2.58	55.1 19.5	91.5 32.4	309.1 109.2
60.75 R		1.00	1.14	6.881	7.57		1.200	1.063	0.71	2.140 0.121	2.58 0.14	19.5	32.4 1.8	6.1
62.00		1.00	1.14	6.911	7.60	0.00	1.200	1.065	1.25	3.762	4.51	34.3	56.9	191.4
64.00		1.00	1.15		7.65	0.00	1.200	1.068	2.00	5.978	7.17	54.9	90.4	304.1
66.00		1.00		7.002	7.70		1.200	1.072	2.00	5.926	7.11	54.8	89.9	301.5
68.00		1.00	1.17	7.047	7.75	0.00	1.200 1.200	1.075	2.00	5.875	7.05	54.6	89.3	298.9

				Wir	d Lo	ading	- Shaf	1	1				S.
Structure: C	CT13064-A-SBA				Co	de:	TI	A-222-H			10/4/2022	A	
Site Name: N	/iddletown 2, Cl	г			Ex	posure	: C					((明)	"
	30.00 (ft)					est Hei		00					
•							•						ES
Base Elev: 0	0.000 (ft)					e Class		- Stiff Soi	1				
Gh: 1	.1	Тород	raphy:	1	Str	uct Cla	ass: II				Page: 35	lower E	ingincering Solut
72.00	1.00	1.18	7.132	7.84	0.00	1.200	1.081	2.00	5.772	6.93	54.3	88.2	293.8
74.00	1.00	1.19	7.173	7.89	0.00	1.200	1.084	2.00	5.720	6.86	54.2	87.6	291.2
76.00	1.00	1.19	7.213	7.93	0.00	1.200	1.087	2.00	5.668	6.80	54.0	87.0	288.6
78.00	1.00	1.20	7.253	7.98	0.00	1.200	1.090	2.00	5.617	6.74	53.8	86.4	286.0
78.25 RT10	1.00	1.20	7.258	7.98	0.00	1.200	1.090	0.25	0.698	0.84	6.7	10.8	35.6
80.00	1.00	1.21	7.292	8.02	0.00	1.200	1.093	1.75	4.867	5.84	46.8	75.1	247.8
82.00	1.00	1.21	7.330	8.06	0.00	1.200	1.095	2.00	5.514	6.62	53.3	85.2	280.7
84.00	1.00	1.22	7.367	8.10	0.00	1.200	1.098	2.00	5.462	6.55	53.1	84.5	278.0
86.00	1.00	1.23	7.404	8.14	0.00	1.200	1.101	2.00	5.410	6.49	52.9	83.9	275.4
87.42 Bot - Sectio	n 3 1.00	1.23	7.429	8.17	0.00	1.200	1.102	1.42	3.801	4.56	37.3	59.1	193.5
88.00	1.00	1.23	7.440	8.18	0.00	1.200	1.103	0.58	1.576	1.89	15.5	24.6	121.5
90.00 Appurtenan	ice(s) 1.00	1.24	7.475	8.22	0.00	1.200	1.106	2.00	5.370	6.44	53.0	83.6	413.8
91.33 Top - Sectio	.,	1.24	7.498	8.25	0.00	1.200	1.107	1.33	3.551	4.26	35.1	55.5	273.6
92.00	1.00	1.24	7.510	8.26	0.00	1.200	1.108	0.67	1.76 7	2.12	17.5	27.7	74.6
94.00	1.00	1.25	7.544	8.30	0.00	1.200	1.110	2.00	5.267	6.32	52.4	82.3	222.0
96.00	1.00	1.25	7.577	8.33	0.00	1.200	1.113	2.00	5.215	6.26	52.2	81.6	219.8
98.00	1.00	1.26	7.610	8.37	0.00	1.200	1.115	2.00	5.163	6.20	51.9	80.9	217.6
00.00 Appurtenan		1.27	7.642	8.41	0.00	1.200	1.117	2.00	5.111	6.13	51.6	80.2	215.4
02.00	1.00	1.27	7.674	8.44	0.00	1.200	1.119	2.00	5.059	6.07	51.3	79.5	213.2
04.00	1.00	1.28	7.706	8.48	0.00	1.200	1.122	2.00	5.008	6.01	50.9	78.8	211.0
06.00	1.00	1.28	7.737	8.51	0.00	1.200	1.124	2.00	4.956	5.95	50.6	78.1	208.8
08.00	1.00	1.29	7.767	8.54	0.00	1.200	1.126	2.00	4.904	5.88	50.3	77.4	206.6
10.00 Appurtenan		1.29	7.797	8.58	0.00	1.200	1.128	2.00	4.852	5.82	49.9	76.7	204.3
12.00	1.00	1.30	7.827	8.61	0.00	1.200	1.130	2.00	4.800	5.76	49.6	76.0	202.1
14.00	1.00	1.30	7.856	8.64	0.00	1.200	1.132	2.00	4.748	5.70	49.2	75.2	199.8
16.00	1.00	1.31	7.885	8.67	0.00	1.200	1.134	2.00	4.696	5.64	48.9	74.5	197.6
18.00	1.00	1.31	7.913	8.70	0.00	1.200	1.136	2.00	4.644	5.57	48.5	73.8	195.3
20.00 Top - Sectio		1.32	7.942	8.74	0.00	1.200	1.138	2.00	4.592	5.51	48.1	73.0	193.1
22.00	1.00	1.32	7.969	8.77		1.240 *	1.140	2.00	3.380	4.19	36.7	53.3	167.1
24.00	1.00	1.32	7.997	8.80		1.240 *	1.142	2.00	3.381	4.19	36.9	53.4	167.2
26.00	1.00	1.33	8.024	8.83		1.240 *	1.143	2.00	3.381	4.19	37.0	53.5	167.3
28.00	1.00	1.33	8.050	8.86		1,240 *	1,145	2.00	3.382	4.19	37.1	53.6	167.4
30.00 Appurtenan		1.33	8.077	8.88		1.240 *	1.147	2.00	3.382	4.19	37.3	53.7	167.5
	inear Load Ra Effect		0.011	0.00	0.00		Totals:	130.00		1	3,325.0	-	20,750.5

re: CT13064-A-SBA ne: Middletown 2, CT 130.00 (ft) ev: 0.000 (ft) 1.1 ase: 1.2D + 1.0Di + 1. Dead Load Factor Wind Load Factor Wind Load Factor 0 DC6-48-60-18-8F 0 6' Lightning rod 0 Cci DMP65R-BU6DA 0 RRUS 32 0 RRUS 4478 B14	Торо	qz (psf)		Ex Cro Sit Str	e Clas	e: C ight: C).00) - Stiff S			je: 36	wer Engineer	ring Solutions
130.00 (ft) ev: 0.000 (ft) 1.1 ase: 1.2D + 1.0Di + 1. Dead Load Factor Wind Load Factor Wind Load Factor 0 DC6-48-60-18-8F 0 6' Lightning rod 0 Cci DMP65R-BU6DA 0 RRUS 32	Topog .0Wi 50 1.20 1.00 Qty 2 1) mph \ qz (psf)	Vind	Cro Sit Str	est He e Clas	ight: 0 s: D).00) - Stiff S	oil		je: 36	Dever Engined	
ev: 0.000 (ft) 1.1 ase: 1.2D + 1.0Di + 1. Dead Load Factor Wind Load Factor Wind Load Factor 0 DC6-48-60-18-8F 0 6' Lightning rod 0 Cci DMP65R-BU6DA 0 RRUS 32	.0Wi 50 1.20 1.00 <u>Qty</u> 2 1) mph \ qz (psf)	Vind	Cro Sit Str	est He e Clas	ight: 0 s: D) - Stiff S	oil		lter		
ev: 0.000 (ft) 1.1 ase: 1.2D + 1.0Di + 1. Dead Load Factor Wind Load Factor Wind Load Factor 0 DC6-48-60-18-8F 0 6' Lightning rod 0 Cci DMP65R-BU6DA 0 RRUS 32	.0Wi 50 1.20 1.00 <u>Qty</u> 2 1) mph \ qz (psf)	Vind	Sit Str	e Clas	s: [) - Stiff S	oil		lter		
1.1 ase: 1.2D + 1.0Di + 1. Dead Load Factor Wind Load Factor Wind Load Factor 0 DC6-48-60-18-8F 0 6' Lightning rod 0 Cci DMP65R-BU6DA 0 RRUS 32	.0Wi 50 1.20 1.00 <u>Qty</u> 2 1) mph \ qz (psf)	Vind	Str						lter		
ase: 1.2D + 1.0Di + 1. Dead Load Factor Wind Load Factor Description 0 DC6-48-60-18-8F 0 6' Lightning rod 0 Cci DMP65R-BU6DA 0 RRUS 32	.0Wi 50 1.20 1.00 <u>Qty</u> 2 1) mph \ qz (psf)	Vind			ass: I				lter		
Dead Load Factor Wind Load Factor Description 0 DC6-48-60-18-8F 0 6' Lightning rod 0 Cci DMP65R-BU6DA 0 RRUS 32	1.20 1.00 Qty 2 1	qz (psf)		0					¥		ations	24
Description 0 DC6-48-60-18-8F 0 C/2 0 RUS 0 RUS 0 C/2 0	1.00 Qty 2 1	(psf)	qzGh	0.1						X		
Description 0 DC6-48-60-18-8F 0 6' Lightning rod 0 Cci DMP65R-BU6DA 0 RRUS 32	Qty 2 1	(psf)	qzGh	0.1					1			
0 DC6-48-60-18-8F 0 6' Lightning rod 0 Cci DMP65R-BU6DA 0 RRUS 32	2 1	(psf)	qzGh	0					24			
0 DC6-48-60-18-8F 0 6' Lightning rod 0 Cci DMP65R-BU6DA 0 RRUS 32	2 1	_	(psf)	Orient Factor x Ka	Ka	Total CaAa (sf)	Dead Load (Ib)	Horiz Ecc (ft)	Vert Ecc (ft)	Wind FX (Ib)	Mom Y (lb-ft)	Mom Z (Ib-ft)
0 6' Lightning rod 0 Cci DMP65R-BU6DA 0 RRUS 32	1	8.077	8.884	0.75	0.75	1.81	122.18	0.000	0.000	16.10	0.00	0.00
0 Cci DMP65R-BU6DA 0 RRUS 32		8.115	8.927	1.00	1.00	1.09	26.36	0.000	3.000	9.77	0.00	29.32
		8.077	8.884	0.56	0.75	22.82	619.80	0.000	0.000	202.77	0.00	0.00
0 RRUS 4478 B14	6	8.077	8.884	0.38	0.75	4.56	923.11	0.000	0.000	40.55	0.00	0.00
	3	8.077	8.884	0.38	0.75	2.24	267.39	0.000	0.000	19.90	0.00	0.00
0 B2 B66A 8843	3	8.077	8.884	0.38	0.75	2.23	308.76	0.000	0.000	19.78	0.00	0.00
0 4449 B5/B12 0 RRUS E2 B29	3 3	8.077	8.884	0.38	0.75	2.62	320.04	0.000	0.000	23.28	0.00	0.00
0 Additional mount pipe	3	8.077 8.077	8.884 8.884	0.38 0.56	0.75 0.75	4.06 7.36	288.28 -9.53	0.000	0.000	36.11	0.00	0.00
0 Quinte QD6616-7	3	8.077	8.884	0.50	0.75	25.55	-9.53 713.57	0.000 0.000	0.000 0.000	65.37 227.01	0.00 0.00	0.00 0.00
0 (3) Horizontal bracing	1	8.077	8.884	0.75	0.75	8.13	210.10	0.000	0.000	72.23	0.00	0.00
0 Ericsson AIR6419	3	8.103	8.913	0.57	0.75	7.39	359.54	0.000	2.000	65.89	0.00	131.77
0 DC6-48-60-0-8C	2	8.077	8.884	0.75	0.75	8.04	141.44	0.000	0.000	71.44	0.00	0.00
0 Ericcson AIR6449	3	8.050	8.855	0.64	0.75	8. 9 5	571.04	0.000	-2.000	79.27	0.00	-158.55
0 Angle Reinforcement kit	1	8.077	8.884	1.00	1.00	9.53	744.98	0.000	0.000	84.62	0.00	0.00
0 MTC3607 Platform + HR &		8.077	8.884	1.00	1.00	76.84	3236.82	0.000	0.000	682.68	0.00	0.00
0 MC-PK8-DSH 0 RDIDC-9181-OF-48	1 1	7.942	8.736	1.00	1.00	68.38	2799.79	0.000	0.000	597.39	0.00	0.00
0 TA08025-B604	3	7.942 7.942	8.736 8.736	0.75 0.38	0.75 0.75	1.79 2.62	48.30 292.76	0.000 0.000	0.000 0.000	15.60 22.86	0.00 0.00	0.00 0.00
0 TA08025-B605	3	7.942	8.736	0.38	0.75	2.62	334.50	0.000	0.000	22.80	0.00	0.00
0 MX08FRO665-21	3	7.942	8.736	0.55	0.75	22.39	599.51	0.000	0.000	195.56	0.00	0.00
0 SAMSUNG	3	7.797	8.577	0.40	0.80	2.67	404.97	0.000	0.000	22.94	0.00	0.00
0 RFS RVZDC-6627-PF-48	1	7.797	8.577	0.40	0.80	1.84	86.83	0.000	0.000	15.75	0.00	0.00
0 SAMSUNG MT6407-77A	3	7.797	8.577	0.56	0.80	8.90	528.43	0.000	0.000	76.31	0.00	0.00
0 JMA MX10FIT665-02	3	7.797	8.577	0.69	0.80	20.21	642.17	0.000	0.000	173.31	0.00	0.00
0 T-Arm (Round)	3	7.797	8.577	0.56	0.75	21.11	1523.74	0.000	0.000	181.09	0.00	0.00
0 COMMSCOPE 0 SAMSUNG	3 3	7.812 7.797	8.593 8.577	0.40	0.80	0.70 2.67	53.49	0.000	1.000	6.01	0.00	6.01
0 Kathrein 782 11056	3	7.642	8.407	0.40 0.40	0.80 0.80	2.07 0.38	389.24 4.64	0.000 0.000	0.000 0.000	22.94 3.20	0.00 0.00	0.00 0.00
D Ericsson AIR21 B2A B4P	3	7.642	8.407	0.66	0.80	13.50	631.45	0.000	0.000	3.20 113.46	0.00	0.00
D Ericsson AIR21 B4A B2P	3	7.642	8.407	0.66	0.80	13.50	627.49	0.000	0.000	113.46	0.00	0.00
0 T-Arm (Round)	6	7.642	8.407	0.56	0.75	42.08	3038.49	0.000	0.000	353.78	0.00	0.00
D RFS	3	7.642	8.407	0.58	0.80	37.56	1226.90	0.000	0.000	315.79	0.00	0.00
5 Ericcoro 4400 074 + 005	3	7.642	8.407	0.59	0.80	5.83	421.95	0.000	0.000	49.00	0.00	0.00
				1.00	1.00	92.98	3260.13	0.000	0.000	764.50	0.00	0.00
0 F3P-10W												0.00
0 F3P-10W 0 NNVV-65B-R4												0.00 0.00
) F3P-10W) NNVV-65B-R4) AAHC		7.475	8.222									0.00
0 F3P-10W 0 NNVV-65B-R4		7.475	8.222	0.38	0.75	5.27	272.26	0.000	0.000	43.30	0.00	0.00
) F3P-10W) NNVV-65B-R4) AAHC) F3P-HRK10	3	7.475	8.222	0.75	0.75	8.23	132.78	0.000	0.000	67.68	0.00	0.00
0	T-Arm (Round) RFS Ericsson 4480 B71 + B85 F3P-10W NNVV-65B-R4 AAHC F3P-HRK10	T-Arm (Round) 6 RFS 3 Ericsson 4480 B71 + B85 3 F3P-10W 1 NNVV-65B-R4 3 AAHC 3 F3P-HRK10 1 ALU - 800 MHz - RRU 6	T-Arm (Round) 6 7.642 RFS 3 7.642 Ericsson 4480 B71 + B85 3 7.642 F3P-10W 1 7.475 NNVV-65B-R4 3 7.475 AAHC 3 7.475 F3P-HRK10 1 7.475 ALU - 800 MHz - RRU 6 7.475 ALU - 1900MHz - RRU 3 7.475	T-Arm (Round) 6 7.642 8.407 RFS 3 7.642 8.407 Ericsson 4480 B71 + B85 3 7.642 8.407 F3P-10W 1 7.475 8.222 NNVV-65B-R4 3 7.475 8.222 AAHC 3 7.475 8.222 F3P-HRK10 1 7.475 8.222 ALU - 800 MHz - RRU 6 7.475 8.222 ALU - 1900MHz - RRU 3 7.475 8.222	T-Arm (Round) 6 7.642 8.407 0.56 RFS 3 7.642 8.407 0.58 Ericsson 4480 B71 + B85 3 7.642 8.407 0.59 F3P-10W 1 7.475 8.222 1.00 NNVV-65B-R4 3 7.475 8.222 0.55 AAHC 3 7.475 8.222 0.56 F3P-HRK10 1 7.475 8.222 0.56 ALU - 800 MHz - RRU 6 7.475 8.222 0.38 ALU - 1900MHz - RRU 3 7.475 8.222 0.38	T-Arm (Round) 6 7.642 8.407 0.56 0.75 RFS 3 7.642 8.407 0.58 0.80 Ericsson 4480 B71 + B85 3 7.642 8.407 0.59 0.80 F3P-10W 1 7.475 8.222 1.00 1.00 NNVV-65B-R4 3 7.475 8.222 0.55 0.75 AAHC 3 7.475 8.222 0.56 0.75 F3P-HRK10 1 7.475 8.222 0.56 0.75 ALU - 800 MHz - RRU 6 7.475 8.222 0.38 0.75 ALU - 1900MHz - RRU 3 7.475 8.222 0.38 0.75	T-Arm (Round) 6 7.642 8.407 0.56 0.75 42.08 RFS 3 7.642 8.407 0.58 0.80 37.56 Ericsson 4480 B71 + B85 3 7.642 8.407 0.59 0.80 5.83 F3P-10W 1 7.475 8.222 1.00 1.00 92.98 NNVV-65B-R4 3 7.475 8.222 0.55 0.75 21.97 AAHC 3 7.475 8.222 1.00 10.01 10.27 ALU - 800 MHz - RRU 6 7.475 8.222 0.38 0.75 7.23 ALU - 1900MHz - RRU 3 7.475 8.222 0.38 0.75 5.27	T-Arm (Round) 6 7.642 8.407 0.56 0.75 42.08 3038.49 RFS 3 7.642 8.407 0.58 0.80 37.56 1226.90 Ericsson 4480 B71 + B85 3 7.642 8.407 0.59 0.80 5.83 421.95 F3P-10W 1 7.475 8.222 1.00 1.00 92.98 3260.13 NNVV-65B-R4 3 7.475 8.222 0.55 0.75 21.97 623.92 AAHC 3 7.475 8.222 1.00 1.00 10.27 647.56 ALC 3 7.475 8.222 0.56 0.75 7.95 603.44 F3P-HRK10 1 7.475 8.222 0.36 0.75 7.23 536.11 ALU - 800 MHz - RRU 6 7.475 8.222 0.38 0.75 7.23 536.11 ALU - 1900MHz - RRU 3 7.475 8.222 0.38 0.75 5.27 272.26 <td>T-Arm (Round) 6 7.642 8.407 0.56 0.75 42.08 3038.49 0.000 RFS 3 7.642 8.407 0.58 0.80 37.56 1226.90 0.000 Ericsson 4480 B71 + B85 3 7.642 8.407 0.59 0.80 5.83 42.195 0.000 F3P-10W 1 7.475 8.222 1.00 1.00 92.98 3260.13 0.000 NNVV-65B-R4 3 7.475 8.222 0.55 0.75 21.97 623.92 0.000 AHC 3 7.475 8.222 0.56 0.75 7.95 603.44 0.000 F3P-HRK10 1 7.475 8.222 1.00 1.00 10.27 647.56 0.000 ALU - 800 MHz - RRU 6 7.475 8.222 0.38 0.75 7.23 536.11 0.000 ALU - 1900MHz - RRU 3 7.475 8.222 0.38 0.75 5.27 272.26 0.000 Andrew - VHLP2-11 2 7.475 8.222 0.75 0.75</td> <td>T-Arm (Round) 6 7.642 8.407 0.56 0.75 42.08 3038.49 0.000 0.000 RFS 3 7.642 8.407 0.58 0.80 37.56 1226.90 0.000 0.000 Ericsson 4480 B71 + B85 3 7.642 8.407 0.59 0.80 37.56 1226.90 0.000 0.000 F3P-10W 1 7.475 8.222 1.00 1.00 92.98 3260.13 0.000 0.000 NNVV-65B-R4 3 7.475 8.222 0.55 0.75 21.97 623.92 0.000 0.000 AHC 3 7.475 8.222 0.56 0.75 7.95 603.44 0.000 0.000 F3P-HRK10 1 7.475 8.222 0.38 0.75 7.23 536.11 0.000 0.000 ALU - 800 MHz - RRU 6 7.475 8.222 0.38 0.75 5.27 272.26 0.000 0.000 ALU - 1900MHz - RRU 3 7.475 8.222 0.75 0.75 8.23 132.78 <t< td=""><td>T-Arm (Round) 6 7.642 8.407 0.56 0.75 42.08 3038.49 0.000 0.000 353.78 RFS 3 7.642 8.407 0.58 0.80 37.56 1226.90 0.000 0.000 315.79 Ericsson 4480 B71 + B85 3 7.642 8.407 0.59 0.80 5.83 421.95 0.000 0.000 49.00 F3P-10W 1 7.475 8.222 1.00 1.00 92.98 3260.13 0.000 0.000 180.61 AAHC 3 7.475 8.222 0.55 0.75 21.97 623.92 0.000 0.000 65.40 F3P-HRK10 1 7.475 8.222 0.56 0.75 7.95 603.44 0.000 0.000 65.40 F3P-HRK10 1 7.475 8.222 0.38 0.75 7.23 536.11 0.000 0.000 59.47 ALU - 800 MHz - RRU 6 7.475 8.222 0.38 0.75 5.27 272.26 0.000 0.000 43.30 ALU -</td><td>T-Arm (Round) 6 7.642 8.407 0.56 0.75 42.08 3038.49 0.000 0.000 353.78 0.00 RFS 3 7.642 8.407 0.56 0.75 42.08 3038.49 0.000 0.000 353.78 0.00 Ericsson 4480 B71 + B85 3 7.642 8.407 0.59 0.80 37.56 1226.90 0.000 0.000 315.79 0.00 Ericsson 4480 B71 + B85 3 7.642 8.407 0.59 0.80 5.83 421.95 0.000 0.000 49.00 0.00 F3P-10W 1 7.475 8.222 1.00 1.00 92.98 3260.13 0.000 0.000 180.61 0.00 NNVV-65B-R4 3 7.475 8.222 0.55 0.75 21.97 623.92 0.000 0.000 180.61 0.00 AAHC 3 7.475 8.222 0.56 0.75 7.95 603.44 0.000 0.000 84.43 0.00 F3P-HRK10 1 7.475 8.222 0.38</td></t<></td>	T-Arm (Round) 6 7.642 8.407 0.56 0.75 42.08 3038.49 0.000 RFS 3 7.642 8.407 0.58 0.80 37.56 1226.90 0.000 Ericsson 4480 B71 + B85 3 7.642 8.407 0.59 0.80 5.83 42.195 0.000 F3P-10W 1 7.475 8.222 1.00 1.00 92.98 3260.13 0.000 NNVV-65B-R4 3 7.475 8.222 0.55 0.75 21.97 623.92 0.000 AHC 3 7.475 8.222 0.56 0.75 7.95 603.44 0.000 F3P-HRK10 1 7.475 8.222 1.00 1.00 10.27 647.56 0.000 ALU - 800 MHz - RRU 6 7.475 8.222 0.38 0.75 7.23 536.11 0.000 ALU - 1900MHz - RRU 3 7.475 8.222 0.38 0.75 5.27 272.26 0.000 Andrew - VHLP2-11 2 7.475 8.222 0.75 0.75	T-Arm (Round) 6 7.642 8.407 0.56 0.75 42.08 3038.49 0.000 0.000 RFS 3 7.642 8.407 0.58 0.80 37.56 1226.90 0.000 0.000 Ericsson 4480 B71 + B85 3 7.642 8.407 0.59 0.80 37.56 1226.90 0.000 0.000 F3P-10W 1 7.475 8.222 1.00 1.00 92.98 3260.13 0.000 0.000 NNVV-65B-R4 3 7.475 8.222 0.55 0.75 21.97 623.92 0.000 0.000 AHC 3 7.475 8.222 0.56 0.75 7.95 603.44 0.000 0.000 F3P-HRK10 1 7.475 8.222 0.38 0.75 7.23 536.11 0.000 0.000 ALU - 800 MHz - RRU 6 7.475 8.222 0.38 0.75 5.27 272.26 0.000 0.000 ALU - 1900MHz - RRU 3 7.475 8.222 0.75 0.75 8.23 132.78 <t< td=""><td>T-Arm (Round) 6 7.642 8.407 0.56 0.75 42.08 3038.49 0.000 0.000 353.78 RFS 3 7.642 8.407 0.58 0.80 37.56 1226.90 0.000 0.000 315.79 Ericsson 4480 B71 + B85 3 7.642 8.407 0.59 0.80 5.83 421.95 0.000 0.000 49.00 F3P-10W 1 7.475 8.222 1.00 1.00 92.98 3260.13 0.000 0.000 180.61 AAHC 3 7.475 8.222 0.55 0.75 21.97 623.92 0.000 0.000 65.40 F3P-HRK10 1 7.475 8.222 0.56 0.75 7.95 603.44 0.000 0.000 65.40 F3P-HRK10 1 7.475 8.222 0.38 0.75 7.23 536.11 0.000 0.000 59.47 ALU - 800 MHz - RRU 6 7.475 8.222 0.38 0.75 5.27 272.26 0.000 0.000 43.30 ALU -</td><td>T-Arm (Round) 6 7.642 8.407 0.56 0.75 42.08 3038.49 0.000 0.000 353.78 0.00 RFS 3 7.642 8.407 0.56 0.75 42.08 3038.49 0.000 0.000 353.78 0.00 Ericsson 4480 B71 + B85 3 7.642 8.407 0.59 0.80 37.56 1226.90 0.000 0.000 315.79 0.00 Ericsson 4480 B71 + B85 3 7.642 8.407 0.59 0.80 5.83 421.95 0.000 0.000 49.00 0.00 F3P-10W 1 7.475 8.222 1.00 1.00 92.98 3260.13 0.000 0.000 180.61 0.00 NNVV-65B-R4 3 7.475 8.222 0.55 0.75 21.97 623.92 0.000 0.000 180.61 0.00 AAHC 3 7.475 8.222 0.56 0.75 7.95 603.44 0.000 0.000 84.43 0.00 F3P-HRK10 1 7.475 8.222 0.38</td></t<>	T-Arm (Round) 6 7.642 8.407 0.56 0.75 42.08 3038.49 0.000 0.000 353.78 RFS 3 7.642 8.407 0.58 0.80 37.56 1226.90 0.000 0.000 315.79 Ericsson 4480 B71 + B85 3 7.642 8.407 0.59 0.80 5.83 421.95 0.000 0.000 49.00 F3P-10W 1 7.475 8.222 1.00 1.00 92.98 3260.13 0.000 0.000 180.61 AAHC 3 7.475 8.222 0.55 0.75 21.97 623.92 0.000 0.000 65.40 F3P-HRK10 1 7.475 8.222 0.56 0.75 7.95 603.44 0.000 0.000 65.40 F3P-HRK10 1 7.475 8.222 0.38 0.75 7.23 536.11 0.000 0.000 59.47 ALU - 800 MHz - RRU 6 7.475 8.222 0.38 0.75 5.27 272.26 0.000 0.000 43.30 ALU -	T-Arm (Round) 6 7.642 8.407 0.56 0.75 42.08 3038.49 0.000 0.000 353.78 0.00 RFS 3 7.642 8.407 0.56 0.75 42.08 3038.49 0.000 0.000 353.78 0.00 Ericsson 4480 B71 + B85 3 7.642 8.407 0.59 0.80 37.56 1226.90 0.000 0.000 315.79 0.00 Ericsson 4480 B71 + B85 3 7.642 8.407 0.59 0.80 5.83 421.95 0.000 0.000 49.00 0.00 F3P-10W 1 7.475 8.222 1.00 1.00 92.98 3260.13 0.000 0.000 180.61 0.00 NNVV-65B-R4 3 7.475 8.222 0.55 0.75 21.97 623.92 0.000 0.000 180.61 0.00 AAHC 3 7.475 8.222 0.56 0.75 7.95 603.44 0.000 0.000 84.43 0.00 F3P-HRK10 1 7.475 8.222 0.38

			rai whh	lied Force Su		10/4/2022	
Structure:	CT13064-A-SBA	L.		Code:	TIA-222-H	10/4/2022	(((H)))
Site Name:	Middletown 2, C	Г		Exposure:	С		dealership
Height:	130.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		
Gh:	1.1	Topography:	1	Struct Class:		Page: 37	Tower Engineering Solution
Lood Coso	: 1.2D + 1.0Di + 1	1 0Wi 50 mph W	/ind			×4	terations 24

x

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind

Dead Load Factor 1.20 1.00 Wind Load Factor

Elev		Lateral FX (-)	Axial FY (-)	Torsion MY	Moment MZ	
(ft) Des	cription	(Ib)	(Ib)	(lb-ft)	(lb-ft)	
0.00		0.00	0.00	0.00	0.00	
2.00		50.26	564.52	0.00	0.00	
4.00		50.03	569.06	0.00	0.00	
6.00		49.75	570.65	0.00	0.00	
8.00		49.45	570.95	0.00	0.00	
10.00		49.13	570.52	0.00	0.00	
10.25		6.12	71.17	0.00	0.00	
12.00		42.69	498.27	0.00	0.00	
14.00		48.49	568.36	0.00	0.00	
16.00		48.76	566.85	0.00	0.00	
18.00		49.64	565.15	0.00	0.00	
20.00		50.40	563.28	0.00	0.00	
20.50		12.61	140.46	0.00	0.00	
22.00		38.25	420.73	0.00	0.00	
24.00		51.63	561.07	0.00	0.00	
25.96		51.07	551.44	0.00	0.00	
26.00		1.04	11.23	0.00	0.00	
26.88		22.97	246.84	0.00	0.00	
27.88		26.22	279.98	0.00	0.00	
28.00		3.14	33.56	0.00	0.00	
30.00		52.93	558.15	0.00	0.00	
32.00		53.26	553.21	0.00	0.00	
34.00		53.53	549.90	0.00	0.00	
36.00		53.77	547.41	0.00	0.00	
38.00		53.97	544.87	0.00	0.00	
40.00		54.13	542.28	0.00	0.00	
40.00		13.50	135.17	0.00	0.00	
		5.67	56.72	0.00	0.00	
40.71		34.95	347.79	0.00	0.00	
42.00		36.17	358.31	0.00	0.00	
43.33		18.31	256.84	0.00	0.00	
44.00		55.16	767.33	0.00	0.00	
46.00			762.60	0.00	0.00	
48.00		55.22	28.74	0.00	0.00	
48.12		3.30		0.00	0.00	
50.00		51.92	449.04		0.00	
52.00		55.26	470.79	0.00	0.00	
54.00		55.24	466.90	0.00		
56.00		55.21	464.56	0.00	0.00	
58.00		55.16	462.19	0.00	0.00	
60.00		55.09	459.80	0.00	0.00	
60.71		19.49	162.70	0.00	0.00	
60.75		1.10	9.16	0.00	0.00	
62.00		34.32	285.64	0.00	0.00	
64.00		54.90	452.82	0.00	0.00	
66.00		54.78	446.06	0.00	0.00	
68.00		54.64	443.58	0.00	0.00	
70.00		54.50	441.09	0.00	0.00	

Site Name: M Height: 1 Base Elev: 1 Gh: 1 72.00 1 74.00 76.00 78.00 78.25 80.00 82.00 84.00 86.00 87.42 88.00	CT13064-A Middletown 130.00 (ft) 0.000 (ft) 1.1	2, CT	ography: 1 438.58 436.06 433.53	Site Cla	u re: C leight: 0.00	222-H Stiff Soil	10/4/2022 Page: 38	
Height: 1 Base Elev: 0 Gh: 1 72.00 1 74.00 1 76.00 1 78.00 1 78.00 2 80.00 2 84.00 8 87.42 88.00	130.00 (ft) 0.000 (ft)	Top 54.33 54.16 53.97 53.78	438.58 436.06 433.53	Crest H Site Cla Struct	leight: 0.00 ass: D-S Class: II		Page: 38	ES
Base Elev: C Gh: 1 72.00 74.00 76.00 78.00 78.00 78.25 80.00 82.00 84.00 86.00 87.42 88.00	0.000 (ft)	54.33 54.16 53.97 53.78	438.58 436.06 433.53	Crest H Site Cla Struct	leight: 0.00 ass: D-S Class: II		Page: 38	Tower Engineering Solution
Base Elev: 0 Gh: 1 72.00 74.00 76.00 78.00 78.25 80.00 82.00 84.00 86.00 87.42 88.00	0.000 (ft)	54.33 54.16 53.97 53.78	438.58 436.06 433.53	Site Cla Struct	ass: D-S Class: II		Page: 38	Tower Engineering Solution
Gh: 1 72.00 74.00 74.00 76.00 78.00 78.25 80.00 82.00 84.00 86.00 87.42 88.00	• •	54.33 54.16 53.97 53.78	438.58 436.06 433.53	Struct	Class: II		Page: 38	Tower Engineering Solution
72.00 74.00 76.00 78.00 78.25 80.00 82.00 84.00 86.00 87.42 88.00	1.1	54.33 54.16 53.97 53.78	438.58 436.06 433.53	0.00			Page: 38	Tower Engineering Solutio
74.00 76.00 78.00 78.25 80.00 82.00 84.00 86.00 87.42 88.00		54.16 53.97 53.78	436.06 433.53		0.00			
76.00 78.00 78.25 80.00 82.00 84.00 86.00 87.42 88.00		53.97 53.78	433.53	0.00				
78.00 78.25 80.00 82.00 84.00 86.00 87.42 88.00		53.78			0.00			
78.25 80.00 82.00 84.00 86.00 87.42 88.00				0.00	0.00			
80.00 82.00 84.00 86.00 87.42 88.00		6 69	430.98	0.00	0.00			
82.00 84.00 86.00 87.42 88.00			53.72	0.00	0.00			
84.00 86.00 87.42 88.00		46.84	374.76	0.00	0.00			
86.00 87.42 88.00		53.35	420.65	0.00	0.00			
87.42 88.00		53.11	412.84	0.00	0.00			
88.00		52.87	410.22	0.00	0.00			
		37.27	289.05	0.00	0.00			
00.00 (40)		15.48	160.89	0.00	0.00			
90.00 (19) at	ttachments	1318.36	6624.90	0.00	0.00			
91.33		35.15	356.88	0.00	0.00			
92.00		17.52	116.19	0.00	0.00			
94.00		52.44	346.94	0.00	0.00			
96.00		52.16	344.78	0.00	0.00			
98.00		51.86	342.62	0.00	0.00			
00.00 (21) at	ttachments	1000.25	6291.38	0.00	0.00			
02.00		51.25	315.39	0.00	0.00			
04.00		50.94	313.20	0.00	0.00			
06.00		50.61	311.02	0.00	0.00			
08.00		50.28	308.82	0.00	0.00			
10.00 (19) at	ttachments	548.28	3935.50	0.00	6.01			
12.00		49.59	271.82	0.00	0.00			
14.00		49.24	269.61	0.00	0.00			
16.00		48.88	267.40	0.00	0.00			
18.00		48.51	265.17	0.00	0.00			
	ttachments	902.39	4337.80	0.00	0.00			
22.00		36.74	232.67	0.00	0.00			
24.00		36.87	232.79	0.00	0.00			
26.00		37.00	232.90	0.00	0.00			
28.00		37.13	233.02	0.00	0.00			
	tachments	1754.04	9077.04	0.00	2.54			
(1)40			0017.04	0.00	Z.04			

×		Line	ar Appu	rtenar	nce Seg	ment F	orces	(Fact	ored)	l X		
	ture: CT13064-/				Code		TIA-22	2-H		10/4/2022	2 (((H)))	1
	Name: Middletowr	n 2, CT			Expo		С				T T -	- ~
Heigl	ht: 130.00 (ft)					Height:						-15
Base	Elev: 0.000 (ft)				Site C	Class:	D - Stif	f Soil				
Gh:	1.1	Тој	ography:	1	Struc	t Class:				Page: 3	B lower Eng	incering Solutions
Load	I Case: 1.2D + 1.0)Di + 1.0Wi	i 50 mph V	Vind					N.		Iteration	s 24
	Dead Load Fac	ctor 1.2	0						1	s S		
	Wind Load Fac	tor 1.0	0						2			
Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (Ib)	Dead Load (Ib)
	2" Conduit	Yes	2.00	0.000	2.00	0.59	0.00	0.070	0.000	5.133	0.00	22.04
	2" Conduit 1" Reinforcing plate	Yes	2.00	0.000	1.00	0.42	0.00	0.070	0.000	5.133	0.00	6.76
	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.070	0.000	5.133	0.00	6.76
4.00	2" Conduit	Yes	2.00	0.000	2.00	0.60	0.00	0.070	0.000	5.133	0.00	22.75
	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.44	0.00	0.070	0.000	5.133 5.133	0.00 0.00	7.31 7.31
	1" Reinforcing plate	Yes	2.00	0.000 0.000	0.00 2.00	0.00 0.61	0.00 0.00	0.070 0.071	0.000 0.000	5.133	0.00	23.20
	2" Conduit 1" Reinforcing plate	Yes Yes	2.00 2.00	0.000	2.00	0.45	0.00	0.071	0.000	5.133	0.00	7.65
	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.071	0.000	5.133	0.00	7.65
	2" Conduit	Yes	2.00	0.000	2.00	0.62	0.00	0.071	0.000	5,133	0.00	23.54
8.00	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.46	0.00	0.071	0.000	5.133	0.00	7.91
	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.071	0.000	5.133	0.00	7.91 23.80
	2" Conduit	Yes	2.00	0.000	2.00 1.00	0.63 0.46	0.00 0.00	0.072 0.072	0.000 0.000	5.133 5.133	0.00 0.00	23.80 8.11
	1" Reinforcing plate	Yes Yes	2.00 2.00	0.000 0.000	0.00	0.40	0.00	0.072	0.000	5.133	0.00	8.11
	1" Reinforcing plate 2" Conduit	Yes	0.25	0.000	2.00	0.08	0.00	0.072	0.000	5.133	0.00	2.98
	1" Reinforcing plate	Yes	0.25	0.000	1.00	0.06	0.00	0.072	0.000	5.133	0.00	1.02
	1" Reinforcing plate	Yes	0.25	0.000	0.00	0.00	0.00	0.072	0.000	5.133	0.00	1.02
12.00	2" Conduit	Yes	1.75	0.000	2.00	0.56	0.00	0.072	0.000	5.133	0.00	21.02
	1" Reinforcing plate	Yes	1.75	0.000	1.00	0.41	0.00 0.00	0.072 0.072	0.000 0.000	5.133 5.133	0.00 0.00	7.25 7.25
	1" Reinforcing plate	Yes Yes	1.75 2.00	0.000 0.000	0.00 2.00	0.00 0.64	0.00	0.072	0.000	5.133	0.00	24.22
	2" Conduit 1" Reinforcing plate	Yes	2.00	0.000	2.00	0.04	0.00	0.073	0.000	5.133	0.00	8.44
	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.073	0.000	5.133	0.00	8.44
	2" Conduit	Yes	2.00	0.000	2.00	0.64	0.00	0.074	0.000	5.196	0.00	24.39
16.00	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.48	0.00	0.074	0.000	5.196	0.00	8.57
	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.074	0.000	5.196	0.00 0.00	8.57 24.54
	2" Conduit	Yes	2.00	0.000 0.000	2.00 1.00	0.65 0.48	0.00 0.00	0.074 0.074	0.000 0.000	5.327 5.327	0.00	8.69
	1" Reinforcing plate 1" Reinforcing plate	Yes Yes	2.00 2.00	0.000	0.00	0.40	0.00	0.074	0.000	5.327	0.00	8.69
	2" Conduit	Yes	2.00	0.000	2.00	0.65	0.00	0.075	0.000	5.446	0.00	24.68
	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.48	0.00	0.075	0.000	5.446	0.00	8.80
20.00	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.075	0.000	5.446	0.00	8.80
	2" Conduit	Yes	0.50	0.000	2.00	0.16	0.00	0.075	0.000	5.474	0.00	6.18 2.21
	1" Reinforcing plate	Yes	0.50	0.000	1.00	0.12 0.00	0.00 0.00	0.075 0.075	0.000 0.000	5.474 5.474	0.00 0.00	2.21 2.21
	1" Reinforcing plate	Yes Yes	0.50 1.50	0.000 0.000	0.00 2.00	0.00	0.00	0.075	0.000	5.556	0.00	18.61
	2" Conduit 1" Reinforcing plate	Yes	1.50	0.000	1.00	0.43	0.00	0.075	0.000	5.556	0.00	6.67
	1" Reinforcing plate	Yes	1.50	0.000	0.00	0.00	0.00	0.075	0.000	5.556	0.00	6.67
	2" Conduit	Yes	2.00	0.000	2.00	0.66	0.00	0.076	0.000	5.659	0.00	24.93
	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.49	0.00	0.076	0.000	5.659	0.00	8.99
	1" Reinforcing plate	Yes	0.67	0.000	0.00	0.00	0.00	0.076	0.000	5,659	0.00	1.89
	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.076	0.000 0.000	5.659 5.753	0.00 0.00	8.99 24.54
	2" Conduit	Yes	1.96	0.000	2.00 1.00	0.65 0.48	0.00 0.00	0.076 0.076	0.000	5.753 5.753	0.00	8.89
25.96	1" Reinforcing plate	Yes	1.96	0.000	1.00	0.46	0.00	0.076	0.000	5 753	0.00	5.59

0.00

0.00

0.00

0.00

0.076

0.076

0.000

0.000

5.753

5.753

5.59

8.89

0.00

0.00

0.00

0.00

0.000

0.000

1.96

1.96

Yes

Yes

25.96 1" Reinforcing plate

25.96 1" Reinforcing plate

		inear Appur	tenand	e Segment F	orces (Factored)	
Structure:	CT13064-A-SBA			Code:	TIA-222-H	H 10/4/20	022
Site Name:	Middletown 2, C	Г		Exposure:	С		((culto))
Height:	130.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff S	oil	LO
Gh:	1.1	Topography:	1	Struct Class:	П	Page:	Tower Engineering Solutions
Load Case:	: 1.2D + 1.0Di + 1	.0Wi 50 mph Wi	nd			YA	Iterations 24
Dea	d Load Factor	1.20				x x	
Win	d Load Factor	1.00				2	

Top Elev (ft) Description	Wind Exposed	Length (ft)	Са	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (Ib)	Dead Load (Ib)
26.00 2" Conduit	Yes	0.04	0.000	2.00	0.01	0.00	0.077	0.000	5.755	0.00	0.5
26.00 1" Reinforcing plate	Yes	0.04	0.000	1.00	0.01	0.00	0.077	0.000	5.755	0.00	0.1
26.00 1" Reinforcing plate	Yes	0.04	0.000	0.00	0.00	0.00	0.077	0.000	5.755	0.00	0.1
26.00 1" Reinforcing plate	Yes	0.04	0.000	0.00	0.00	0.00	0.077	0.000	5.755	0.00	0.1
26.88 2" Conduit	Yes	0.88	0.000	2.00	0.29	0.00	0.077	0.000	5.796	0.00	11.0
26.88 1" Reinforcing plate	Yes	0.88	0.000	1.00	0.22	0.00	0.077	0.000	5.796	0.00	4.0
26.88 1" Reinforcing plate	Yes	0.88	0.000	0.00	0.00	0.00	0.077	0.000	5.796	0.00	2.5
26.88 1" Reinforcing plate	Yes	0.88	0.000	0.00	0.00	0.00	0.077	0.000	5.796	0.00	4.0
27.88 2" Conduit	Yes	1.00	0.000	2.00	0.33	0.00	0.077	0.000	5.841	0.00	12.5
27.88 1" Reinforcing plate	Yes	1.00	0.000	1.00	0.25	0.00	0.077	0.000	5.841	0.00	4.5
27.88 1" Reinforcing plate	Yes	1.00	0.000	0.00	0.00	0.00	0.077	0.000	5.841	0.00	2.8
27.88 1" Reinforcing plate	Yes	1.00	0.000	0.00	0.00	0.00	0.077	0.000	5.841	0.00	4.5
28.00 2" Conduit	Yes	0.12	0.000	2.00	0.04	0.00	0.077	0.000	5.846	0.00	1.5
28.00 1" Reinforcing plate	Yes	0.12	0.000	1.00	0.03	0.00	0.077	0.000	5.846	0.00	0.5
28.00 1" Reinforcing plate	Yes	0.12	0.000	0.00	0.00	0.00	0.077	0.000	5.846	0.00	0.3
28.00 1" Reinforcing plate	Yes	0.12	0.000	0.00	0.00	0.00	0.077	0.000	5.846	0.00	0.5
30.00 2" Conduit	Yes	2.00	0.000	2.00	0.66	0.00	0.078	0.000	5.931	0.00	25.2
30.00 1" Reinforcing plate	Yes	2.00	0.000	1.00	0.50	0.00	0.078	0.000	5.931	0.00	9.2
30.00 1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.078	0.000	5.931	0.00	5.8
30.00 1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.078	0.000	5.931	0.00	9.2
32.00 2" Conduit	Yes	2.00	0.000	2.00	0.67	0.00	0.078	0.000	6.013	0.00	25.3
32.00 1" Reinforcing plate	Yes	2.00	0.000	1.00	0.50	0.00	0.078	0.000	6.013	0.00	9.3
32.00 1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.078	0.000	6.013	0.00	5.8
32.00 1" Reinforcing plate	Yes	1.50	0.000	0.00	0.00	0.00	0.078	0.000	6.013	0.00	4.4
32.00 1" Reinforcing plate	Yes	0.50	0.000	0.00	0.00	0.00	0.078	0.000	6.013	0.00	2.3
34.00 2" Conduit	Yes	2.00	0.000	2.00	0.67	0.00	0.078	0.000	6.090	0.00	25.4
34.00 1" Reinforcing plate	Yes	2.00	0.000	1.00	0.50	0.00	0.079	0.000	6.090		
34.00 1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.079	0.000	6.090	0.00	9.3
34.00 1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.079			0.00	5.9
36.00 2" Conduit	Yes	2.00	0.000					0.000	6.090	0.00	5.9
36.00 1" Reinforcing plate	Yes	2.00		2.00	0.67	0.00	0.080	0.000	6.163	0.00	25.5
36.00 1" Reinforcing plate	Yes	2.00	0.000	1.00	0.50	0.00	0.080	0.000	6.163	0.00	9.4
36.00 1" Reinforcing plate			0.000	0.00	0.00	0.00	0.080	0.000	6.163	0.00	5.9
38.00 2" Conduit	Yes	2.00	0.000	0.00	0.00	0.00	0.080	0.000	6.163	0.00	5.9
	Yes	2.00	0.000	2.00	0.67	0.00	0.080	0.000	6.234	0.00	25.5
38.00 1" Reinforcing plate	Yes	2.00	0.000	1.00	0.50	0.00	0.080	0.000	6.234	0.00	9.4
38.00 1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.080	0.000	6.234	0.00	6.0
38.00 1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.080	0.000	6.234	0.00	6.0
40.00 2" Conduit	Yes	2.00	0.000	2.00	0.67	0.00	0.081	0.000	6.302	0.00	25.6
10.00 1" Reinforcing plate	Yes	2.00	0.000	1.00	0.51	0.00	0.081	0.000	6.302	0.00	9.5
10.00 1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.081	0.000	6.302	0.00	6.0
40.00 1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.081	0.000	6.302	0.00	6.0
40.50 2" Conduit	Yes	0.50	0.000	2.00	0.17	0.00	0.082	0.000	6.318	0.00	6.42
40.50 1" Reinforcing plate	Yes	0.50	0.000	1.00	0.13	0.00	0.082	0.000	6.318	0.00	2.3
10.50 1" Reinforcing plate	Yes	0.50	0.000	0.00	0.00	0.00	0.082	0.000	6.318	0.00	1.5
40.50 1" Reinforcing plate	Yes	0.50	0.000	0.00	0.00	0.00	0.082	0.000	6.318	0.00	1.5
40.71 2" Conduit	Yes	0.21	0.000	2.00	0.07	0.00	0.082	0.000	6.325	0.00	2.70
10.71 1" Reinforcing plate	Yes	0.21	0.000	1.00	0.05	0.00	0.082	0.000	6.325	0.00	1.00

Copyright @ 2022 by Tower Engineering Solutions, LLC. All rights reserved.

		Line	ar Appu	rtenar	nce Seg	ment F	27.1 S. 10. S	1.24				
Struc	ture: CT13064-A	A-SBA			Code		TIA-222	2-H		10/4/2022	((H))	
Site N	lame: Middletowr	1 2, CT			Expo		С					
leigh	nt: 130.00 (ft)				Crest	Height:	0.00					P F
Base	Elev: 0.000 (ft)				Site C	Class:	D - Stiff	Soil				10
Gh:	1.1	Тог	ography:	1	Struc	t Class:	11			Page: 4	Tower Eng	ineering Solu
Load	Case: 1.2D + 1.0 Dead Load Fac Wind Load Fac	tor 1.2	0	Vind					2	x	Iteration	s á
Fop Elev		Wind	Length	<u> </u>	Exposed Width	Area	CaAa	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (Ib)
(ft)	Description	Exposed	(ft)	Ca	(in)	(sqft)	(sqft)	_				
	1" Reinforcing plate	Yes	0.21	0.000	0.00	0.00	0.00	0.082	0.000 0.000	6.325 6.325	0.00 0.00	0.64 0.64
	1" Reinforcing plate	Yes	0.21	0.000 0.000	0.00 2.00	0.00 0.44	0.00 0.00	0.082 0.082	0.000	6.325 6.367	0.00	16.59
	2" Conduit 1" Reinforcing plate	Yes Yes	1.29 1.29	0.000	2.00	0.44	0.00	0.082	0.000	6.367	0.00	6.20
	1" Reinforcing plate	Yes	1.29	0.000	0.00	0.00	0.00	0.082	0.000	6.367	0.00	3.92
	1" Reinforcing plate	Yes	1.29	0.000	0.00	0.00	0.00	0.082	0.000	6.367	0.00	3.92
	2" Conduit	Yes	1.33	0.000	2.00	0.45	0.00 0.00	0.082 0.082	0.000 0.000	6.409 6.409	0.00 0.00	17.18 6.43
	1" Reinforcing plate	Yes Yes	1.33 1.33	0.000 0.000	1.00 0.00	0.34 0.00	0.00	0.082	0.000	6.409	0.00	4.0
	1" Reinforcing plate 1" Reinforcing plate	Yes	1.33	0.000	0.00	0.00	0.00	0.082	0.000	6.409	0.00	4.0
	2" Conduit	Yes	0.67	0.000	2.00	0.23	0.00	0.083	0.000	6.429	0.00	8.60
	1" Reinforcing plate	Yes	0.67	0.000	1.00	0.17	0.00	0.083	0.000	6.429	0.00	3.22
4.00	1" Reinforcing plate	Yes	0.67	0.000	0.00	0.00	0.00	0.083	0.000	6.429	0.00	2.04 2.04
	1" Reinforcing plate	Yes	0.67	0.000 0.000	0.00 2.00	0.00 0.68	0.00 0.00	0.083 0.083	0.000 0.000	6.429 6.490	0.00 0.00	25.8
	2" Conduit 1" Reinforcing plate	Yes Yes	2.00 2.00	0.000	2.00	0.68	0.00	0.083	0.000	6.490	0.00	9.7
	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.083	0.000	6.490	0.00	6.10
	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.083	0.000	6.490	0.00	6.16
48.00	2" Conduit	Yes	2.00	0.000	2.00	0.68	0.00	0.084	0.000	6.548	0.00	25.92
48.00	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.51	0.00	0.084	0.000	6.548 6.548	0.00 0.00	9.76 6.20
	1" Reinforcing plate	Yes	2.00	0.000 0.000	0.00 0.00	0.00 0.00	0.00 0.00	0.084 0.084	0.000 0.000	6.548 6.548	0.00	6.20
	1" Reinforcing plate 2" Conduit	Yes Yes	2.00 0.12	0.000	2.00	0.00	0.00	0.083	0.000	6.552	0.00	1.50
	1" Reinforcing plate	Yes	0.12	0.000	1.00	0.03	0.00	0.083	0.000	6.552	0.00	0.59
	1" Reinforcing plate	Yes	0.12	0.000	0.00	0.00	0.00	0.083	0.000	6.552	0.00	0.3
48.12	1" Reinforcing plate	Yes	0.12	0.000	0.00	0.00	0.00	0.083	0.000	6.552	0.00	0.3
	2" Conduit	Yes	1.88	0.000	2.00	0.64	0.00	0.084 0.084	0.000 0.000	6.605 6.605	0.00 0.00	24.42 9.22
	1" Reinforcing plate	Yes Yes	1.88 1.88	0.000 0.000	1.00 0.00	0.48 0.00	0.00 0.00	0.084	0.000	6.605	0.00	5.8
	1" Reinforcing plate 1" Reinforcing plate	Yes	1.88	0.000	0.00	0.00	0.00	0.084	0.000	6.605	0.00	5.8
	2" Conduit	Yes	2.00	0.000	2.00	0.68	0.00	0.084	0.000	6.660	0.00	26.0
52.00	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.52	0.00	0.084	0.000	6.660	0.00	9.8
	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.084	0.000 0.000	6.660 6.660	0.00 0.00	6.2 1.5
	1" Reinforcing plate	Yes	0.50 2.00	0.000 0.000	0.00 2.00	0.00 0.68	0.00 0.00	0.084 0.085	0.000	6.713	0.00	26.1
54.00 54.00	2" Conduit 1" Reinforcing plate	Yes Yes	2.00	0.000	2.00	0.52	0.00	0.085	0.000	6.713	0.00	9.9
	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.085	0.000	6.713	0.00	6.3
	2" Conduit	Yes	2.00	0.000	2.00	0.68	0.00	0.086	0.000	6.764	0.00	26.1
	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.52	0.00	0.086	0.000	6.764 6.764	0.00	9.9 6.3
	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00 0.00	0.086 0.087	0.000 0.000	6.764 6.814	0.00 0.00	26.20
	2" Conduit	Yes Yes	2.00 2.00	0.000 0.000	2.00 1.00	0.69 0.52	0.00	0.087	0.000	6.814	0.00	9.9
	1" Reinforcing plate 1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.087	0.000	6.814	0.00	6.3
	2" Conduit	Yes	2.00	0.000	2.00	0,69	0.00	0.087	0.000	6.863	0.00	26.2
	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.52	0.00	0.087	0.000	6.863	0.00 0.00	10.03 6.3
00.00		Yes	2.00		0.00	0.00	0.00	0.087	0.000	6.863		

Copyright © 2022 by Tower Engineering Solutions, LLC. All rights reserved.

01	071005		ar Appı			1.00	A SHALL SHA	1 ALM			- N	
Struct					Code	:	TIA-22	2-H		10/4/2022	2 ((W))	No.
Site N		-			Expo	sure:	С				de un ob	
leigh	t: 130.00 (ft)				Crest	: Height:	0.00				1 1 1	
Base	Elev: 0.000 (ft)				Site C	Class:	D - Stif	f Soil				
Gh:	1.1	То	pography	: 1	Struc	t Class:	П			Page: 42	2 Tower Eng	incering Solu
Load	Case: 1.2D + 1.0	0Di + 1 0W	i 50 mph \	Wind					¥	4	Iteration	S
	Dead Load Fa									x	iteration	3
	Wind Load Fac	ctor 1.0	0						3			
ор					Exposed				Cf			Dead
Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Width (in)	Area (sqft)	CaAa (sqft)	Ra	Adjust Factor	qz (psf)	FX (lb)	Load (Ib)
60.71 [·]	1" Reinforcing plate	Yes	0.71	0.000	1.00	0.18	0.00	0.088	0.000	6.880	0.00	3.56
	1" Reinforcing plate	Yes	0.71	0.000	0.00	0.00	0.00	0.088	0.000	6.880	0.00	2.27
	2" Conduit	Yes	0.04	0.000	2.00	0.01	0.00	0.088	0.000	6.881	0.00	0.53
	1" Reinforcing plate 1" Reinforcing plate	Yes Yes	0.04	0.000	1.00	0.01	0.00	0.088	0.000	6.881	0.00	0.20
	2" Conduit	Yes	0.04 1.25	0.000 0.000	0.00 2.00	0.00	0.00 0.00	0.088	0.000	6.881	0.00	0.13
	1" Reinforcing plate	Yes	1.25	0.000	1.00	0.43 0.33	0.00	0.088 0.088	0.000 0.000	6.911 6.911	0.00 0.00	16.44 6.29
	1" Reinforcing plate	Yes	1.25	0.000	0.00	0.00	0.00	0.088	0.000	6.911	0.00	4.01
	2" Conduit	Yes	2.00	0.000	2.00	0.69	0.00	0.089	0.000	6.957	0.00	26.36
4.00 ⁻	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.52	0.00	0.089	0.000	6.957	0.00	10.1
4.00 °	1" Reinforcing plate	Yes	1.33	0.000	0.00	0.00	0.00	0.089	0.000	6.957	0.00	4.29
	2" Conduit	Yes	2.00	0.000	2.00	0.69	0.00	0.090	0.000	7.002	0.00	26.40
	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.52	0.00	0.090	0.000	7.002	0.00	10.14
	2" Conduit	Yes	2.00	0.000	2.00	0.69	0.00	0.091	0.000	7.047	0.00	26.45
	" Reinforcing plate	Yes	2.00	0.000	1.00	0.52	0.00	0.091	0.000	7.047	0.00	10.18
	2" Conduit	Yes	2.00	0.000	2.00	0.69	0.00	0.092	0.000	7.090	0.00	26.50
	1" Reinforcing plate 2" Conduit	Yes	2.00	0.000	1.00	0.53	0.00	0.092	0.000	7.090	0.00	10.22
	" Reinforcing plate	Yes Yes	2.00 2.00	0.000	2.00	0.69	0.00	0.092	0.000	7.132	0.00	26.54
	2" Conduit	Yes	2.00	0.000 0.000	1.00 2.00	0.53 0.69	0.00 0.00	0.092 0.093	0.000 0.000	7.132 7.173	0.00	10.25
	"Reinforcing plate	Yes	2.00	0.000	1.00	0.53	0.00	0.093	0.000	7.173	0.00 0.00	26.59 10.28
	2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.093	0.000	7.213	0.00	26.63
	" Reinforcing plate	Yes	2.00	0.000	1.00	0.53	0.00	0.094	0.000	7.213	0.00	10.32
	2" Conduit	Yes	2.00	0.000	2.00	0.70	0.00	0.095	0.000	7.253	0.00	26.67
	" Reinforcing plate	Yes	2.00	0.000	1.00	0.53	0.00	0.095	0.000	7.253	0.00	10.35
	2" Conduit	Yes	0.25	0.000	2.00	0.09	0.00	0.096	0.000	7.258	0.00	3.33
	" Reinforcing plate	Yes	0.25	0.000	1.00	0.07	0.00	0.096	0.000	7.258	0.00	1.29
	2" Conduit	Yes	1.75	0.000	2.00	0.61	0.00	0.096	0.000	7.292	0.00	23.37
	1" Reinforcing plate 2" Conduit	Yes	1.75	0.000	1.00	0.46	0.00	0.096	0.000	7.292	0.00	9.09
	" Conduit "Reinforcing plate	Yes Yes	2.00 1.00	0.000	2.00	0.70	0.00	0.081	0.000	7.330	0.00	26.75
	" Conduit	Yes	2.00	0.000 0.000	1.00 2.00	0.27 0.70	0.00 0.00	0.081 0.065	0.000	7.330	0.00	5.21
	2" Conduit	Yes	2.00	0.000	2.00	0.70	0.00	0.065	0.000 0.000	7.367 7.404	0.00 0.00	26.79 26.83
	2" Conduit	Yes	1.42	0.000	2.00	0.50	0.00	0.067	0.000	7.404	0.00	20.63
	2" Conduit	Yes	0.58	0.000	2.00	0.20	0.00	0.067	0.000	7.440	0.00	7.84
	2" Conduit	Yes	2.00	0.000	2.00	0.70	0.00	0.068	0.000	7.475	0.00	26.90
	2" Conduit	Yes	1.33	0.000	2.00	0.47	0.00	0.068	0.000	7.498	0.00	17.95
	" Conduit	Yes	0.67	0.000	2.00	0.23	0.00	0.068	0.000	7.510	0.00	8.98
	" Conduit	Yes	2.00	0.000	2.00	0.70	0.00	0.068	0.000	7.544	0.00	26.97
	" Conduit	Yes	2.00	0.000	2.00	0.70	0.00	0.069	0.000	7.577	0.00	27.01
	Conduit	Yes	2.00	0.000	2.00	0.70	0.00	0.070	0.000	7.610	0.00	27.04
	" Conduit	Yes	2.00	0.000	2.00	0.71	0.00	0.070	0.000	7.642	0.00	27.07
c.00 2	" Conduit	Yes	2.00	0.000	2.00	0.71	0.00	0.071	0.000	7 674	0.00	27.11

2.00

2.00

2.00

2.00

2.00

0.71

0.71

0.71

0.71

0.71

0.00

0.00

0.00

0.00

0.00

0.071

0.072

0.073

0.074

0.074

0.000

0.000

0.000

0.000

0.000

7.674

7.706

7.737

7.767

7.797

0.00

0.00

0.00

0.00

0.00

27.11

27.14

27.17

27.20

27.23

2.00

2.00

2.00

2.00

2.00

0.000

0.000

0.000

0.000

0.000

Yes

Yes

Yes

Yes

Yes

104.00 2" Conduit

106.00 2" Conduit

108.00 2" Conduit

110.00 2" Conduit

Structur Site Nar Height: Base El	me: Middletow	A-SBA	ar Appu	CC. I II.	100 003			1.00					
Site Nar Height:	me: Middletow										10/4/2022		
Height:					Expos	sure:	С				(()甲)		
-						Height:					111		
Raco El						-	D - Stiff	Coil				ED.	
Dase Li	lev: 0.000 (ft)				Site C			501			Tower Eng	incering Solution	
Gh:	1.1	Τομ	oography:	1	Struc	t Class:	11			Page: 43	Tower Eng	, meeting bolunoi	
Top Elev	Dead Load Fa Wind Load Fa			Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (Ib)	Dead Load (Ib)	
(ft)					. ,	0.71	0.00	0.075	0.000	7.827	0.00	27.26	
	Conduit	Yes Yes	2.00 2.00	0.000	2.00 2.00	0.71	0.00	0.075	0.000	7.856	0.00	27.29	
	' Conduit ' Conduit	Yes	2.00	0.000	2.00	0.71	0.00	0.077	0.000	7.885	0.00	27.32	
	Conduit	Yes	2.00	0.000	2.00	0.71	0.00	0.078	0.000	7.913	0.00	27.35	
	Conduit	Yes	2.00	0.000	2.00	0.71	0.00	0.079	0.000	7.942	0.00	27.38	
	Conduit	Yes	2.00	0.000	2.00	0.71	0.00	0.111	1.033	7.969	0.00	27.41	
	' Conduit	Yes	2.00	0.000	2.00	0.71	0.00	0.111	1.033	7.997	0.00	27.43	
=	Conduit	Yes	2.00	0.000	2.00	0.71	0.00	0.111	1.033	8.024	0.00	27.46	
28.00 2"	' Conduit	Yes	2.00	0.000	2.00	0.72	0.00	0.111	1.033	8.050	0.00	27.49	
30.00 2"	Conduit	Yes	2.00	0.000	2.00	0.72	0.00	0.111	1.033	8.077	0.00	27.51	

Totals:

0.0 2,383.2

				3		Calc	ulated Fo	rces	J.		1			
	:ture: Name:		064-A-S etown 2			_	Code: Exposure:	TIA C	A-222-H		10/	4/2022	((明))	
Heigl		130.00	• •				Crest Heig						F	S
	Elev:	0.000	(π)	Te			Site Class:		Stiff Soi	l	_		Tower Enginee	D ring Solutio
Gh:		1.1		10	pography	/: 1	Struct Clas	s:			Pa	age: 44	Tower Enginee	
Load	Dea	d Load	⊦ 1.0Di I Facto I Facto	o r 1.2		Vind				2)	ite *	erations	2
Seg Elev	Pu FY (-)	Vu FX (-)	Tu MY (-)	Mu MZ	Mu MX	Resultant Moment	phi Pn	phi Vn	phi Tn	phi Mn	Total Deflect	Rotation Sway	Rotation Twist	Stress
(ft)	(kips)	(kips)	(ft-kips)		(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	(deg)	Ratio
0.00 2.00	-57.83 -57.27	-8.62 -8.59	0.00 0.00	-860.34 -843.10	0.00	860.34	2818.94	734.35	2570.40	2448.04	0.00	0.000	0.000	0.176
2.00 4.00	-57.27	-8.59	0.00	-843.10	0.00 0.00	843.10 825.91	2805.89 2792.73	728.94 723.54	2532.69 2495.26	2418.63 2389.30	0.01 0.02	-0.024 -0.049	0.000 0.000	0.173
6.00	-56.12	-8.54	0.00	-808.77	0.00	808.77	2779.45	718.13	2458.11	2360.04	0.02	-0.049	0.000	0.16
8.00	-55.55	-8.51	0.00	-791.69	0.00	791.69	2766.06	712.72		2330.86	0.08	-0.097	0.000	0.16
10.00 10.25	-54.97 -54.90	-8.48 -8.48	0.00 0.00	-774.67 -772.55	0.00 0.00	774.67	2752.56	707.32	2384.65	2301.75	0.13	-0.121	0.000	0.16
12.00	-54.90	-0.40 -8.46	0.00	-772.55	0.00	772.55 757.70	2750.86 2738.94	706.64 701.91	2380.10 2348.34	2298.12 2272.72	0.13 0.18	-0.124 -0.146	0.000 0.000	0.172 0.170
14.00	-53.83	-8.43	0.00	-740.78	0.00	740.78	2725.20	696.50	2312.30	2243.77	0.15	-0.140	0.000	0.16
16.00	-53.26	-8.41	0.00	-723.91	0.00	723.91	2711.35	691.10	2276.54	2214.91	0.33	-0.196	0.000	0.16
18.00	-52.69	-8.38	0.00	-707.10	0.00	707.10	2697.39	685.69	2241.07	2186.13	0.42	-0.221	0.000	0.16
20.00 20.50	-52.12 -51.98	-8.34 -8.34	0.00 0.00	-690.34 -686.17	0.00 0.00	690.34	2683.32	680.29	2205.87	2157.44	0.51	-0.246	0.000	0.16
20.00	-51.56	-8.32	0.00	-673.66	0.00	686.17 673.66	2679.78 2669.12	678.93 674.88	2197.11 2170.95	2150.28 2128.84	0.54 0.62	-0.252 -0.271	0.000 0.000	0.160
24.00	-50.99	-8.28	0.00	-657.03	0.00	657.03	2654.82	669.47	2136.30	2100.34	0.74	-0.295	0.000	0.150
25.96	-50.44	-8.24	0.00	-640.79	0.00	640.79	2640.69	664.18	2102.62	2072.49	0.87	-0.319	0.000	0.135
26.00 26.88	-50.43 -50.18	-8.24	0.00	-640.47	0.00	640.47	2640.40	664.07	2101.94	2071.92	0.87	-0.319	0.000	0.13
20.00 27.88	-50.18 -49.90	-8.23 -8.21	0.00 0.00	-633.21 -624.98	0.00 0.00	633.21 624.98	2634.02 2626.74	661.69 658.99	2086.91 2069.89	2059.45 2045.30	0.93 1.00	-0.329 -0.342	0.000 0.000	0.160
28.00	-49.86	-8.22	0.00	-624.00	0.00	624.00	2625.87	658.66	2003.85	2043.61	1.00	-0.342	0.000	0.15
30.00	-49.30	-8.18	0.00	-607.56	0.00	607.56	2611.22	653.25	2034.05	2015.39	1.16	-0.369	0.000	0.156
32.00	-48.74	-8.15	0.00	-591.20	0.00	591.20	2596.46	647.85	2000.52	1987.27	1.32	-0.394	0.000	0.153
34.00	-48.19	-8.11 -8.07	0.00	-574.91	0.00	574.91	2581.58	642.44	1967.27	1959.26	1.49	-0.419	0.000	0.151
36.00 38.00	-47.64 -47.09	-8.07	0.00 0.00	-558.69 -542.55	0.00 0.00	558.69 542.55	2566.59 2551.48	637.04 631.63	1934.30 1901.61	1931.36 1903.56	1.67 1.86	-0.444	0.000	0.148
40.00	-46.55	-7.99	0.00	-526.48	0.00	526.48	2536.26	626.22	1869.20	1875.87	2.06	-0.468 -0.493	0.000	0.145
40.50	-46.41	-7.98	0.00	-522.49	0.00	522.49	2532.44	624.87	1861.14	1868.96	2.11	-0.499	0.000	0.141
40.71	-46.36	-7.98	0.00	-520.81	0.00	520.81	2530.83	624.30	1857.76	1866.07	2.14	-0.501	0.000	0.141
42.00	-46.01	-7.95	0.00	-510.52	0.00	510.52	2520.93		1837.06	1848.29	2.27	-0.517	0.000	0.139
43.33 44.00	-45.65 -45.39	-7.92 -7.91	0.00 0.00	-499.92 -494.64	0.00 0.00	499.92 494.64	2510.64 2505.48	617.21 615.41	1815.79 1805.20	1829.97 1820.83	2.42	-0.533	0.000	0.137
46.00	-44.62	-7.87	0.00	-478.81	0.00	478.81	2303.48	610.00	1773.63	1793.48	2.49 2.73	-0.541 -0.564	0.000 0.000	0.135 0.132
48.00	-43.85	-7.82	0.00	-463.07	0.00	463.07	1854.44	491.51	1439.37	1347.80	2.97	-0.587	0.000	0.141
48.12	-43.82	-7.82	0.00	-462.13	0.00	462.13	1853.85	491.25	1437.86	1346.66	2.98	-0.589	0.000	0.180
50.00	-43.37	-7.79	0.00	-447.42	0.00	447.42	1844.56	487.19	1414.16	1328.74	3.22	-0.616	0.000	0.176
52.00 54.00	-42.90 -42.43	-7.75 -7.71	0.00 0.00	-431.85 -416.35	0.00 0.00	431.85 416.35	1834.56 1824.45	482.86 478.54	1389.16 1364.38	1309.72 1290.76	3.48	-0.645 -0.673	0.000	0.172
56.00	-41.96	-7.67	0.00	-400.93	0.00	410.35	1824.45	478.54 474.21	1364.38	1290.76	3.76 4.05	-0.673 -0.701	0.000 0.000	0.167 0.163
58.00	-41.49	-7.63	0.00	-385.60	0.00	385.60	1803.89	469.89	1315.50	1252.97	4.35	-0.728	0.000	0.158
60.00	-41.03	-7.58	0.00	-370.34	0.00	370.34	1793.44	465.56	1 291.40	1234.16	4.66	-0.755	0.000	0.154
60.71	-40.87	-7.56	0.00	-364.96	0.00	364.96	1789.70	464.03	1282.90	1227.50	4.77	-0.765	0.000	0.192
60.75 62.00	-40.86 -40.57	-7.57 -7.55	0.00 0.00	-364.66 -355.20	0.00 0.00	364.66 355.20	1789.49 1782 87	463.94	1282.42	1227.12	4.78	-0.765	0.000	0.192
64.00	-40.57	-7.55	0.00	-355.20 -340.10	0.00	355.20 340.10	1782.87 1772.19	461.24 456.91	1267.52 1243.86	1215.41 1196.72	4.98 5.32	-0.786 -0.819	0.000 0.000	0.189 0.183
66.00	-39.67	-7.47	0.00	-325.08	0.00	325.08	1761.39	452.59	1220.42	1178.08	5.67	-0.851	0.000	0.183
58.00	-39.22	-7.43	0.00	-310.14	0.00	310.14	1750.48	448.26	1197.21	1159.51	6.03	-0.883	0.000	0.171
70.00	-38.77	-7.39	0.00	-295.28	0.00	295.28	1739.46	443.94	1174.22		6.41	-0.913	0.000	0.165
72.00	-38.33	-7.35	0.00	-280.50	0.00	280.50	1728.32	130 61	1151 45	1122 57	6 80	-0.943	0.000	0 150

1728.32

439.61 1151.45 1122.57

6.80

-0.943

0.000

0.159

280.50

72.00 -38.33

-7.35

0.00 -280.50

0.00

	Ŧ	r" D	1			Calcu	lated Fo	rces	8				al la	
Struc	ture:	CT1306	64-A-S	BA		C	Code:	TIA	-222-H		10/4	/2022	(4.000.A)	
Site N		Middlet	own 2.	СТ		E	Exposure:	С					(((Hp)))	
Heigh		130.00				C	Crest Heig	ht: 0.00)				E	C
-		0.000 (1					Site Class:		Stiff Soil				IL	5
Base	Flex:	·	it)	_							Do	ge: 45	Tower Engineer	ing Solutions
Gh:		1.1		Тор	ography:	1 \$	Struct Clas	55: II						
74.00	-37.89	-7.31	0.00	-265.80	0.00	265.80	1717.07	435.29	1128.90	1104.20	7.20	-0.972	0.000	0.153
76.00	-37.46	-7.26	0.00	-251.19	0.00	251.19	1705.70	430.96	1106.58	1085.91	7.61	-1.001	0.000	0.147
78.00	-37.03	-7.21	0.00	-236.66	0.00	236.66	1694.22	426.64	1084.48	1067.69	8.04	-1.028	0.000	0.141
78.25	-36.97	-7.21	0.00	-234.86	0.00	234.86	1692.78	426.10	1081.74	1065.41	8.09	-1.031	0.000	0.140 0.140
78.25	-36.97	-7.21	0.00	-234.86	0.00	234.86	1692.78	426.10	1081.74	1065.41	8.09	-1.031	0.000 0.000	0.140
80.00	-36.59	-7.18	0.00	-222.24	0.00	222.24	1682.63	422.31	1062.61	1049.54	8.47	-1.054	0.000	0.234
82.00	-36.17	-7.15	0.00	-207.88	0.00	207.88	1670.92	417.99	1040.95	1031.48	8.92	-1.098 -1.140	0.000	0.223
84.00	-35.75	-7.11	0.00	-193.59	0.00	193.59	1659.09	413.66	1019.52	1013.49 995.59	9.39 9.88	-1.140	0.000	0.213
86.00	-35.34	-7.07	0.00	-179.37	0.00	179.37	1647.16	409.34	998.31 983.43	995.59 982.97	9.66 10.24	-1.208	0.000	0.202
87.42	-35.05	-7.04	0.00	-169.35	0.00	169.35	1638.63	406.27 405.01	963.43 977.33	962.97 977.78	10.24	-1.208	0.000	0.191
88.00	-34.88	-7.03	0.00	-165.25	0.00	165.25	1635.10		977.33 956.57	960.05	10.38	-1.256	0.000	0.175
90.00	-28.29	-5.59	0.00	-151.18	0.00	151.18	1622.94	400.69	956.57 728.96	960.05 657.00	11.26	-1.279	0.000	0.244
91.33	-27.93	-5.55	0.00	-143.73	0.00	143.73	1099.39 1097.24	302.92 301.84	728.96	653.36	11.44	-1.279	0.000	0.240
92.00	-27.81	-5.55	0.00	-140.02	0.00	140.02	1097.24	298.60	708.30	642.45	11.99	-1.333	0.000	0.226
94.00	-27.46	-5.51	0.00	-128.93	0.00	128.93	1090.71	296.00	692.99	631.55	12.55	-1.373	0.000	0.212
96.00	-27.11	-5.46	0.00	-117.92	0.00	117.92	1084.06	295.35 292.11	677.85	620.68	13.14	-1.411	0.000	0.198
98.00	-26.77	-5.42	0.00	-106.99	0.00	106.99	1077.30	288.87	662.88	609.82	13.74	-1.446	0.000	0.177
100.00	-20.50	-4.28	0.00	-96.15	0.00	96.15 87.60	1070.43	285.62	648.08	598.99	14.35	-1.479	0.000	0.165
102.00	-20.19	-4.23	0.00	-87.60	0.00 0.00	79.14	1056.34	282.38	633.44	588.19	14.98	-1.510	0.000	0.154
104.00	-19.87	-4.18	0.00	-79.14 -70.78	0.00	79.14	1049.12	279.13	618.97	577.41	15.61	-1.538	0.000	0.141
106.00	-19.56	-4.13	0.00		0.00	62.52	1041.79	275.89	604.67	566.67	16.27	-1.565	0.000	0.129
108.00	-19.25	-4.08	0.00 0.00	-62.52 -54.36	0.00	54.36	1041.79	272.65	590.53	555.96	16.93	-1.589	0.000	0.113
110.00	-15.33 -15.06	-3.43 -3.38	0.00	-54.50 -47.50	0.00	47.50	1026.79	269.40	576.57	545.28	17.60	-1.610	0.000	0.102
112.00	-15.00	-3.36	0.00	-47.50	0.00	40.74	1019.11	266.16	562.77	534.64	18.28	-1.630	0.000	0.091
114.00	-14.79	-3.33	0.00	-34.09	0.00	34.09	1011.32	262.92	549.13	524.04	18.96	-1.647	0.000	0.080
116.00		-3.27	0.00	-27.55	0.00	27.55	1003.42	259.67	535.67	513.49	19.66	-1.662	0.000	0.068
118.00	-14.26 -9.95	-3.22 -2.19	0.00	-27.55	0.00	21.11	995.40	256.43	522.37	502.97	20.35	-1.674	0.000	0.052
120.00 120.00	-9.95 -9.95	-2.19	0.00	-21.11	0.00	21.11	735.22	244.66	14507.7	335.79	20.35	-1.674	0.000	0.076
120.00	-9.95 -9.72		0.00	-16.72	0.00	16.72	735.22	244.66	14507.7	335.79	21.06	-1.683	0.000	0.063
122.00	-9.72 -9.48	-2.13	0.00	-12.41	0.00	12.41	735.22	244.66	14507.7	335.79	21.77	-1.698	0.000	0.050
124.00	-9.40		0.00	-8.19	0.00	8.19	735.22	244.66	14507.7	335.79	22.48	-1.709	0.000	0.037
128.00	-9.23		0.00	-4.05	0.00	4.05	735.22	244.66	14507.7	335.79	23.20	-1.715	0.000	0.024
128.00	-9.02	-2.03	0.00	0.00	0.00	0.00	735.22	244.66	14507.7	335.79	23.92	-1.717	0.000	0.000
100.00	0.00	1.10	0.00	0.00										

		1		Seismic Se	gment F	orces	Facto	red)		1	
Struc	ture:	CT13064-A-SBA	1		Code:		TIA-222	2-H	10/4/202	2	
Site N	Name:	Middletown 2, C	т		Exposi	Jre:	С			(((押)))	
Heigh	nt:	130.00 (ft)			Crest H	leight:	0.00			E	C
Base	Elev:	0.000 (ft)			Site Cla	ass:	D - Stiff	Soil			2
Gh:		1.1	Торо	ography: 1	Struct	Class:	11		Page: 4	6 Tower Engineeri	ing Solutions
Load	I Case:	: 1.2D + 1.0Ev +	1.0Eh						¥	Iterations	21
G	ust Re	sponse Factor	1.10				Sds	0.23	× ×	Ss	0.21
	Dea	d Load Factor	1.20	Seismic Load	actor	1.00	Sd1	0.09	3	S1	0.06
	Win	d Load Factor	0.00	Structure Freq	uency (f1)	0.24	SA	0.02	Seismic Importan	ice Factor	1.00
Top Elev				Wz		Vertical	Latera	al			
(ft)		Description		(lb)	Hz (Ib)	Ev (lb)	Fs (Ib)			F	R: 1.50
0.00	RB1 R	B2		0.00	0.00	0.00	0.0				
2.00 4.00				403.31 401.22	1.00 3.00	18.15 18.06	0.0 0.0				
6.00				399.12	5.00	17.97	0.0				
8.00				397.03	7.00	17.87	0.0				
10.00 10.25		B3 RB4		394.93	9.00	17.78	0.0				
12.00	NIZ N	D3 KD4		49.22 343.61	10.13 11.13	2.22 15.47	0.0 0.0				
14.00				390.74	13.00	17.59	0.0				
16.00				388.64	15.00	17.49	0.0	2			
18.00				386.54	17.00	17.40	0.0				
20.00 20.50	RT1 R	B5		384.45 95.78	19.00 20.25	17.31 4.31	0.0 0.0				
22.00		50		286.57	20.25	12.90	0.0				
24.00				380.25	23.00	17.12	0.0				
25.96	RB6			370.62	24.98	16.68	0.0	4			
26.00 26.88	RT4			7.54	25.98	0.34	0.0				
20.88	RT3 RI	B7		165.73 187.83	26.44 27.38	7.46 8.45	0.0 0.0				
28.00				22.50	27.94	1.01	0.0				
30.00				373.96	29.00	16.83	0.0				
32.00				371.87	31.00	16.74	0.0				
34.00 36.00				369.77 367.68	33.00 35.00	16.64 16.55	0.0	-			
38.00				365.58	37.00	16.46	0.0 0.0				
40.00				363.48	39.00	16.36	0.1				
40.50	RT5 RI			90.54	40.25	4.08	0.0				
40.71 42.00	RT6 R	89		37.99 232.85	40.61	1.71	0.0				
43.33	Bot - Se	ection 2		232.85	41.36 42.67	10.48 10.79	0.0 0.0				
44.00				184.27	43.67	8.29	0.0				
46.00	T . F	1 ¹ 4		550.31	45.00	24.77	0.3				
48.00 48.12	Top - So RT7	ection 1		546.53	47.00	24.60	0.3				
40.12 50.00	INT <i>I</i>			18.61 290.75	48.06 49.06	0.84 13.09	0.0 0.1				
52.00				307.68	51.00	13.85	0.1				
54.00				306.00	53.00	13.77	0.1	3			
56.00 58.00				304.33	55.00	13.70	0.1				
58.00 60.00				302.65 300.97	57.00 59.00	13.62 13.55	0.1 0.1				
60.71	RT9			106.44	60.36	4.79	0.0				
60.75	RT8 RE	310		5.99	60.73	0.27	0.0				
62.00				186.86	61.38	8.41	0.0				
64.00 66.00				297.62 295.94	63.00 65.00	13.40	0.1				
68.00				295.94 294.26	65.00 67.00	13.32 13.25	0.1 0.2				
							0.2	-			

1		đ I	Seis	mic Se	gment	Forces	(Factored)	
Struct	ture:	CT13064-A-SBA			Code	:	TIA-222-H	10/4/2022
Site N		Middletown 2, CT			Expo	sure:	С	(((卅)))
Heigh		130.00 (ft)			-	Height:	0.00	
-					Site C	-	D - Stiff Soil	
Base	Elev:	0.000 (ft)			-			Tower Engineering Solutions
Gh:		1.1	Topograph	y: 1		t Class:		Page: 47
70.00				292.59	69.00	13.17	0.21	
72.00				290.91	71.00	13.09	0.22	
74.00				289.23	73.00	13.02	0.23	
76.00				287.55	75.00	12.94	0.23	
78.00				285.88	77.00	12.87	0.24	
78.25	RT10			35.62	78.13	1.60	0.00	
80.00				248.58	79.13	11.19	0.20	
82.00				282.52	81.00	12.72	0.26	
84.00				280.85	83.00	12.64	0.27	
86.00				279.17	85.00	12.57	0.28	
87.42	Bot - Se	ection 3		196.73	86.71	8.86	0.15	
88.00				115.69	87.71	5.21	0.05	
90.00		enance(s)		3955.9	89.00	178.07	62.57	
91.33	Top - S	ection 2		254.84	90.67	11.47	0.27	
92.00				75.61	91.67	3.40	0.02	
94.00				225.98	93.00	10.17	0.22	
96.00				224.72	95.00	10.12	0.23	
98.00				223.46	97.00	10.06	0.24	
100.00	Appurte	enance(s)		3520.7	99.00	158.48	61.32	
102.00				198.05	101.00	8.91	0.20	
104.00				196.79	103.00	8.86	0.21	
106.00				195.54	105.00	8.80	0.21	
108.00				194.28	107.00	8.75	0.22	
110.00	Appurte	enance(s)		2151.4	109.00	96.84	27.76	
112.00				159.17	111.00	7.16	0.16 0.16	
114.00				157.91	113.00	7.11 7.05	0.16	
116.00				156.65	115.00	7.05 6.99	0.16	
118.00		11 D		155.40	117.00	6.99 113.13	45.15	
120.00	I op - S	ection 3		2513.2	119.00 121.00	6.51	45.15 0.15	
122.00				144.58		6.51	0.15	
124.00				144.58	123.00			
126.00				144.58	125.00	6.51 6.51	0.16	
128.00		(1)		144.58	127.00	6.51 225.15	0.17	
130.00	Appurte	enance(s)	-	5001.8	129.00		210.14	Tetel 188:ed. 00.005.7
			Totals:	35,593.5		1,602.2	415.4	Total Wind: 32,965.7

Struc	turo	CT120	64-A-S	RA		THE DESIGNATION	lated F		-222-H		10/4/000	T	
	lame:		town 2,				Sode: Exposure		∖- ∠∠∠-⊓		10/4/2022	(((H)))	
Heigh		130.00					Crest Hei		0			IT.	
_	Elev:	0.000	•••				Site Class	-	· Stiff Soil	1			S
Gh:	Elév:	1.1	(11)	Тол	ograph				· 3011 301		Decey 4	Tower Enginee	ring Solut
		1.1		10	ography	/: 1 9	Struct Cla				Page: 4		
Load	Case:	1.2D	+ 1.0Ev	+ 1.0Eh	ı						YA	Iterations	2
Gu	ust Res	sponse	Factor	r 1.10	0			\$	Sds 0.2	:3	A A	Ss	0.2
	Dea	d Load	Factor	r 1.20) Seism	ic Load Fac	tor	1.00	3d1 0.0	9 3		S1	0.0
	Win	d Load	Factor	r 0.00) Struct	ure Frequen	cy (f1)	0.24	SA 0.0	2 Seis	mic Importar	ce Factor	1.0
Seg	Pu	Vu	Tu	Mu	Mu	Resultant	phi	phi	phi	phi	Total Rotati	on Rotation	
Elev (ft)	FY (-) (kips)	FX (-) (kips)	MY (-) (ft-kips)	MZ (ft-kips)	MX (ft-kips)	Moment (ft-kips)	Pn (kine)	Vn (kinc)	Tn (ft-kips)	Mn (ft-kine)	Deflect Swa	211	Stres
0.00	-42.94	-0.41	0.00	-50.70	0.00	50.70	(kips) 2818.94	(kips) 734.35	2570.40	(ft-kips) 2448.04	(in) (deg 0.00) (deg) 0.00	0.0
2.00	-42.46	-0.42	0.00	-49.87	0.00	49.87	2805.89	728.94	2532.69	2418.63	0.00	0.00	0.0
4.00	-41.98	-0.42	0.00	-49.04	0.00	49.04	2792.73	723.54		2389.30	0.00	0.00	0.0
6.00 8.00	-41.51 -41.04	-0.42 -0.42	0.00 0.00	-48.21 -47.37	0.00 0.00	48.21 47.37	2779.45 2766.06	718.13 712.72		2360.04 2330.86	0.00 0.00	0.00 -0.01	0.0 0.0
10.00	-40.57	-0.42	0.00	-46.54	0.00	46.54	2752.56	707.32		2301.75	0.00	-0.01	0.0
10.25	-40.51	-0.42	0.00	-46.43	0.00	46.43	2750.86	706.64		2298.12	0.01	-0.01	0.0
12.00	-40.11	-0.42	0.00	-45.70	0.00	45.70	2738.94	701.91	2348.34	2272.72	0.01	-0.01	0.0
14.00 16.00	-39.65 -39.19	-0.42 -0.42	0.00 0.00	-44.86 -44.01	0.00 0.00	44.86	2725.20	696.50		2243.77	0.01	-0.01	0.0
18.00	-38.73	-0.42	0.00	-44.01 -43.17	0.00	44.01 43.17	2711.35 2697.39	691.10 685.69	2276.54 2241.07	2214.91 2186.13	0.02 0.02	-0.01 -0.01	0.0 0.0
20.00	-38.27	-0.42	0.00	-42.32	0.00	42.32	2683.32	680.29		2157.44	0.02	-0.01	0.0
20.50	-38.16	-0.42	0.00	-42.11	0.00	42.11	2679.78	678.93	2197.11	2150.28	0.03	-0.02	0.0
22.00	-37.82	-0.42	0.00	-41.47	0.00	41.47	2669.12	674.88		2128.84	0.04	-0.02	0.0
24.00 25.96	-37.37 -36.93	-0.43 -0.43	0.00 0.00	-40.62 -39.79	0.00 0.00	40.62	2654.82	669.47		2100.34	0.04	-0.02	0.0
26.00	-36.93	-0.43	0.00	-39.79	0.00	39.79 39.77	2640.69 2640.40	664.18 664.07		2072.49 2071.92	0.05 0.05	-0.02 -0.02	0.0 0.0
26.88	-36.73	-0.43	0.00	-39.40	0.00	39.40	2634.02	661.69	2086.91	2059.45	0.06	-0.02	0.0
27.88	-36.51	-0.43	0.00	-38.97	0.00	38.97	2626.74	658.99	2069.89	2045.30	0.06	-0.02	0.0
28.00	-36.48	-0.43	0.00	-38.92	0.00	38.92	2625.87	658.66	2067.85	2043.61	0.06	-0.02	0.0
30.00 32.00	-36.04 -35.60	-0.43 -0.43	0.00 0.00	-38.07 -37.21	0.00 0.00	38.07 37.21	2611.22 2596.46	653.25 647.85	2034.05 2000.52	2015.39 1987.27	0.07 0.08	-0.02 -0.02	0.0 0.0
34.00	-35.16	-0.43	0.00	-36.35	0.00	36.35	2581.58		1967.27		0.09	-0.02	0.0
36.00	-34.73	-0.43	0.00	-35.49	0.00	35.49	2566.59		1934.30	1931.36	0.10	-0.03	0.0
38.00	-34.30	-0.43	0.00	-34.63	0.00	34.63	2551.48	631.63		1903.56	0.11	-0.03	0.0
40.00	-33.87	-0.43	0.00	-33.77	0.00	33.77	2536.26	626.22		1875.87	0.12	-0.03	0.0
40.50 40.71	-33.76 -33.72	-0.43 -0.43	0.00 0.00	-33.55 -33.46	0.00 0.00	33.55 33.46	2532.44 2530.83	624.87 624.30		1868.96 1866.07	0.13 0.13	-0.03 -0.03	0.0 0.0
42.00	-33.44	-0.43	0.00	-32.91	0.00	32.91	2520.93	620.82		1848.29	0.14	-0.03	0.0
43.33	-33.16	-0.43	0.00	-32.33	0.00	32.33	2510.64	617.21	1815.79	1829.97	0.15	-0.03	0.0
44.00	-32.94	-0.43	0.00	-32.04	0.00	32.04	2505.48	615.41	1805.20	1820.83	0.15	-0.03	0.0
46.00 48.00	-32.28 -31.62	-0.43 -0.43	0.00 0.00	-31.18 -30.31	0.00 0.00	31.18 30.31	2489.92 1854.44	610.00 491.51	1773.63 1439.37	1793.48 1347.80	0.17 0.18	-0.03	0.0
48.12	-31.62	-0.43	0.00	-30.31	0.00	30.31	1853.85	491.51	1439.37	1347.80	0.18	-0.04 -0.04	0.0 0.0
50.00	-31.26	-0.43	0.00	-29.45	0.00	29.45	1844.56	487.19		1328.74	0.20	-0.04	0.0
52.00	-30.90	-0.43	0.00	-28.58	0.00	28.58	1834.56	482.86	1389.16	1309.72	0.21	-0.04	0.0
54.00	-30.54	-0.44	0.00	-27.71	0.00	27.71	1824.45	478.54	1364.38	1290.76	0.23	-0.04	0.0
56.00 58.00	-30.19 -29.84	-0.44 -0.44	0.00 0.00	-26.84 -25.97	0.00 0.00	26.84 25.97	1814.23 1803.89	474.21 469.89	1339.83 1315.50	1271.84 1252.97	0.25 0.27	-0.04 -0.05	0.0 0.0
50.00 50.00	-29.49	-0.44	0.00	-25.97	0.00	25.97	1793.44	469.69	1291.40	1252.97	0.27	-0.05	0.0
60.71	-29.36	-0.44	0.00	-24.79	0.00	24.79	1789.70	464.03	1282.90	1227.50	0.29	-0.05	0.0
60.75	-29.35	-0.44	0.00	-24.77	0.00	24.77	1789.49	463.94		1227.12	0.29	-0.05	0.0
62.00	-29.14	-0.44	0.00	-24.22	0.00	24.22	1782.87	461.24	1267.52	1215.41	0.31	-0.05	0.0
64.00 66.00	-28.79 -28.45	-0.44 -0.44	0.00 0.00	-23.35 -22.47	0.00 0.00	23.35 22.47	1772.19 1761.39	456.91 452.59	1243.86 1220.42	1196.72 1178.08	0.33 0.35	-0.05 -0.05	0.0
68.00	-28.10	-0.44	0.00	-22.47 -21.59	0.00	22.47	1750.48	452.59 448.26		1178.08	0.35	-0.05 -0.06	0.0 0.0

	F.,	The second	Ŧ.		e l	Calc	ulated Fo	rces	1	- P			
Struc	ture:	CT1306	64-A-S	BA			Code:	TIA	-222-H		10/4/2022	4400.00	
Site N		Middlet					Exposure:	С				(((甲)))	
		130.00		•••			Crest Heig	ht: 0.0	n				C
Heigh			• •				-		, Stiff Soil				
Base	Elev:	0.000 (ft)				Site Class:		Sun Soli			Tower Engineer	ing Solutions
Gh:		1.1		Тор	ography:	1	Struct Clas	s:			Page: 49	Tower Enginee	
72.00	-27.42	-0.44	0.00	-19.84	0.00	19.84	1728.32	439.61	1151.45	1122.57	0.42	-0.06	0.019
74.00	-27.09	-0.44	0.00	-18.96	0.00	18.96	1717.07	435.29	1128.90	1104.20	0.45	-0.06	0.018
76.00	-26.75	-0.44	0.00	-18.07	0.00	18.07	1705.70	430.96	1106.58	1085.91	0.47	-0.06	0.018
78.00	-26.42	-0.44	0.00	-17.19	0.00	17.19	1694.22	426.64	1084.48	1067.69	0.50	-0.07	0.017
78.25	-26.38	-0.44	0.00	-17.08	0.00	17.08	1692.78	426.10	1081.74	1065.41	0.51	-0.07	0.017
78.25	-26.38	-0.44	0.00	-17.08	0.00	17.08	1692.78	426.10	1081.74	1065.41	0.51	-0.07	0.017
80.00	-26.09	-0.44	0.00	-16.31	0.00	16.31	1682.63	422.31	1062.61	1049.54	0.53	-0.07	0.031
82.00	-25.76	-0.44	0.00	-15.43	0.00	15.43	1670.92	417.99	1040.95	1031.48	0.56	-0.07	0.030
84.00	-25.44	-0.44	0.00	-14.54	0.00	14.54	1659.09	413.66	1019.52	1013.49	0.59	-0.07	0.030
86.00	-25.11	-0.44	0.00	-13.65	0.00	13.65	1647.16	409.34	998.31	995.59	0.62	-0.08	0.029
87.42	-24.89	-0.44	0.00	-13.02	0.00	13.02	1638.63	406.27	983.43	982.97	0.65	-0.08	0.028
88.00	-24.75	-0.44	0.00	-12.77	0.00	12.77	1635.10	405.01	977.33	977.78	0.66	-0.08	0.028
90.00	-19.85	-0.38	0.00	-11.88	0.00	11.88	1622.94	400.69	956.57	960.05	0.69	-0.08	0.025
91.33	-19.55	-0.38	0.00	-11.37	0.00	11.37	1099.39	302.92	728.96	657.00	0.71	-0.09	0.035
92.00	-19.46	-0.38	0.00	-11.12	0.00	11.12		301.84	723.77	653.36	0.73	-0.09	0.035
94.00	-19.20	-0.38	0.00	-10.37	0.00	10.37	1090.71	298.60	708.30	642.45	0.76	-0.09	0.034
96.00	-18.94	-0.38	0.00	-9.62	0.00	9.62	1084.06	295.35	692.99	631.55	0.80	-0.09	0.033
98.00	-18.69	-0.38	0.00	-8.86	0.00	8.86	1077.30	292.11	677.85	620.68	0.84	-0.10	0.032
100.00	-14.32	-0.31	0.00	-8.11	0.00	8.11	1070.43	288.87	662.88	609.82	0.88	-0.10	0.027
102.00	-14.09	-0.31	0.00	-7.49	0.00	7.49	1063.44	285.62	648.08	598.99	0.92	-0.10	0.026
104.00	-13.87	-0.31	0.00	-6.87	0.00	6.87	1056.34	282.38	633.44	588.19	0.97	-0.10	0.025
106.00	-13.64	-0.31	0.00	-6.25	0.00	6.25	1049.12	279.13	618.97	577.41	1.01	-0.11	0.024
108.00	-13.42	-0.31	0.00	-5.63	0.00	5.63	1041.79	275.89	604.67	566.67	1.06	-0.11	0.023
110.00	-10.76	-0.28	0.00	-5.01	0.00	5.01	1034.34	272.65	590.53	555.96	1.10	-0.11	0.019
112.00	-10.57	-0.28	0.00	-4.46	0.00	4.46	1026.79	269.40	576.57	545.28	1.15	-0.11	0.018
114.00	-10.38	-0.28	0.00	-3.90	0.00	3.90	1019.11	266.16	562.77	534.64	1.20	-0.12	0.017
116.00	-10.20	-0.28	0.00	-3.35	0.00	3.35	1011.32	262.92	549.13	524.04	1.25	-0.12	0.016
118.00	-10.02	-0.28	0.00	-2.80	0.00	2.80	1003.42	259.67	535.67	513.49	1.30	-0.12	0.015
120.00	-6.90	-0.23	0.00	-2.24	0.00	2.24	995.40	256.43	522.37	502.97	1.35	-0.12	0.011
120.00	-6.90	-0.23	0.00	-2.24	0.00	2.24	735.22	244.66	14507.7	335.79	1.35	-0.12	0.016
122.00	-6.73	-0.22	0.00	-1.79	0.00	1.79	735.22	244.66	14507.7	335.79	1.40	-0.12	0.014
124.00	-6.56	-0.22	0.00	-1.34	0.00	1.34	735.22	244.66	14507.7	335.79	1.45	-0.12	0.013
126.00	-6.39	-0.22	0.00	-0.90	0.00	0.90	735.22	244.66	14507.7	335.79	1.50	-0.12	0.011
128.00	-6.22	-0.22	0.00	-0.45	0.00	0.45	735.22	244.66	14507.7	335.79	1.55	-0.12	0.010
130.00	0.00	-0.21	0.00	0.00	0.00	0.00	735.22	244.66	14507.7	335.79	1.60	-0.12	0.000

				Seismic Se	gment F	orces (Facto	red)			
Struc		CT13064-A-SBA			Code:		TIA-222	2-H	10/4/202	2	
	lame:	Middletown 2, C	Г		Expos	ure:	С			_ (((卅)))	
Heigl		130.00 (ft)				Height:	0.00			F	C
	Elev:	0.000 (ft)			Site Cl	ass:	D - Stiff	Soil			2
Gh:		1.1	Торс	ography: 1	Struct	Class:			Page: 5	O Tower Engineeri	ng Solutions
Load	Case:	0.9D + 1.0Ev +	1.0Eh						×4	Iterations	21
G	ust Re	sponse Factor	1.10				Sds	0.23	× ×	Ss	0.21
		d Load Factor		Seismic Load F		1.00	Sd1	0.09	3	S1	0.06
	Win	d Load Factor	0.00	Structure Freq			SA	0.02	Seismic Importar	nce Factor	1.00
Top Elev				Wz	Hz	Vertical Ev	Latera Fs	al			
(ft)		Description		(Ib)	(Ib)	(lb)	(Ib)			F	R: 1.50
0.00	RB1 R	B2		0.00	0.00	0.00	0.0				
2.00 4.00				373.42 371.32	1.00 3.00	16.81 16.71	0.0 0.0				
6.00				369.22	5.00	16.62	0.0				
8.00				367.13	7.00	16.53	0.0				
10.00 10.25				365.03	9.00	16.43	0.0				
12.00	RIZ RI	B3 RB4		45.48 317.45	10.13 11.13	2.05 14.29	0.0 0.0				
14.00				360.84	13.00	16.24	0.0				
16.00				358.74	15.00	16.15	0.0				
18.00 20.00				356.64 354.55	17.00 19.00	16.05 15.96	0.0				
20.50	RT1 R	B5		88.31	20.25	3.98	0.0 0.0				
22.00				264.14	21.25	11.89	0.0				
24.00 25.96	RB6			350.35	23.00	15.77	0.0				
25.96	RD0			341.31 6.94	24.98 25.98	15.36 0.31	0.0 0.0				
26.88	RT4			152.57	26.44	6.87	0.0				
27.88	RT3 RI	B7		172.88	27.38	7.78	0.0				
28.00 30.00				20.71 344.07	27.94 29.00	0.93 15.49	0.0 0.0				
32.00				341.97	31.00	15.39	0.0				
34.00				339.87	33.00	15.30	0.0				
36.00 38.00				337.78	35.00	15.20	0.0				
40.00				335.68 333.58	37.00 39.00	15.11 15.02	0.0 0.0				
40.50	RT5 RE			83.07	40.25	3.74	0.0				
40.71	RT6 RE	89		34.85	40.61	1.57	0.0				
42.00 43.33	Bot - Se	ection 2		213.57 219.83	41.36 42.67	9.61 9.90	0.0 0.0				
44.00				174.31	43.67	7.85	0.0				
46.00	_			520.41	45.00	23.43	0.2				
48.00 48.12	Top - Se RT7	ection 1		516.64 16.81	47.00 48.06	23.26	0.3				
50.00	IXI7			262.64	48.00	0.76 11.82	0.0 0.0				
52.00				277.78	51.00	12.50	0.1				
54.00 56.00				276.10	53.00	12.43	0.1				
58.00 58.00				274.43 272.75	55.00 57.00	12.35 12.28	0.1 0.1				
60.00				271.07	59.00	12.20	0.1				
60.71	RT9	240		95.83	60.36	4.31	0.0	2			
60.75 62.00	RT8 RE	510		5.39 168.18	60.73 61.38	0.24 7.57	0.0				
64.00				267.72	63.00	7.57 12.05	0.0 0.1				
66.00				266.04	65.00	11.98	0.1				
68.00				264.36	67.00	11.90	0.1	6			

		1	Seis	mic Seg	gment F	orces	(Factored)	
Structu	ire: CT	13064-A-SBA			Code:		TIA-222-H	10/4/2022	(
Site Na		Idletown 2, CT			Expos	ure:	С		((叫))
					-	Height:			
Height).00 (ft)				-			HS
Base E	lev: 0.0	00 (ft)			Site C	lass:	D - Stiff Soi		Torus Faulasating Solutions
Gh:	1.1		Topography	/: 1	Struct	Class:	II	Page: 51	Tower Engineering Solutions
70.00				262.69	69.00	11.82	0.17		
72.00				261.01	71.00	11.75	0.18		
74.00				259.33	73.00	11.67	0.18		
76.00				257.65	75.00	11.60	0.19		
78.00				255.98	77.00	11.52	0.20		
78.25	RT10			31.88	78.13	1.43	0.00		
80.00				222.42	79.13	10.01	0.16		
82.00				252.62	81.00	11.37	0.21		
84.00				250.95	83.00	11.30	0.22		
86.00				249.27	85.00	11.22	0.23		
87.42 E	Bot - Section	n 3		175.55	86.71	7.90	0.12		
88.00				106.97	87.71	4.81	0.05		
90.00	Appurtenand	ce(s)		3926.0	89.00	176.72	62.45		
	Top - Sectio	in 2		236.58	90.67	10.65	0.24		
92.00	,			66.48	91.67	2.99	0.02		
94.00				198.59	93.00	8.94	0.17		
96.00				197.33	95.00	8.88	0.18		
98.00				196.07	97.00	8.83	0.19		
	Appurtenan	ce(s)		3493.3	99.00	157.25	61.18		
102.00				176.39	101.00	7.94	0.16		
104.00				175.13	103.00	7.88	0.17		
106.00				173.87	105.00	7.83	0.17		
108.00				172.61	107.00	7.77	0.17		
	Appurtenan	ce(s)		2129.7	109.00	95.87	27.57		
112.00		• *		145.65	111.00	6.56	0.13		
114.00				144.39	113.00	6.50	0.14		
116.00				143.14	115.00	6.44	0.14		
118.00				141.88	117.00	6.39	0.14		
	Top - Sectio	on 3		2499.7	119.00	112.52	45.26		
122.00		-		132.15	121.00	5.95	0.13		
124.00				132.15	123.00	5.95	0.14		
124.00				132.15	125.00	5.95	0.14		
128.00				132.15	127.00	5.95	0.14		
	Appurtenan	ce(s)		4989.4	129.00	224.59	211.91		
,00.00			Totals:	33,873.0		1,524.7	415.4	Total Wind:	32,965.7

Struc	ture:	CT130	64-A-SE	BA			Code:	TI/	4-222-	H	10/	4/2022	a	
Site N	Name:	Middle	town 2,	СТ			Exposure	: C					(((明)))	
Heigh		130.00					Crest Hei		00				In	a
-		0.000	• •				Site Class	-	- Stiff S	Soil				S
Gh:		1.1	()	Top	ography:		Struct Cla		- Our v	501	D .		Tower Engineer	ring Solution
UII.		1.1		Торс	graphy.	1					Pa	age: 52		
Load	Case:	0.9D -	+ 1.0Ev	+ 1.0Eh							YA	lt	erations	2
G	ust Res	ponse	Factor	1.10				ę	Sds	0.23		X	Ss	0.2
	Dead	l Load	Factor	0.90	Seismio	c Load Fac	tor	1.00		0.09	3	~	S1	0.06
	Wind	l Load	Factor			re Frequer		0.24			ismic Imp	ortance		1.00
Seg	Pu	Vu	Tu	Mu	Mu	Resultant	phi	phi	phi		Total		Rotation	
Elev	FY (-)	FX (-)	MY (-)	MZ	MX	Moment	Pn	Vn	Tn		Deflect	Sway	Twist	Stress
(ft)	(kips)				t-kips)	(ft-kips)	(kips)	(kips)	(ft-kip		s) (in)	(deg)	(deg)	Ratio
0.00	-32.53	-0.41	0.00	-50.13	0.00	50,13	2818.94	734.35				0.00	0.00	0.015
2.00 4.00	-32.16 -31.80	-0.42 -0.42	0.00	-49.30	0.00	49.30	2805.89	728.94				0.00	0.00	0.015
4.00 6.00	-31.45	-0.42 -0.42	0.00 0.00	-48.47 -47.64	0.00 0.00	48.47	2792.73	723.54				0.00	0.00	0.015
8.00	-31.09	-0.42	0.00	-47.64 -46.81	0.00	47.64	2779.45	718.13				0.00	0.00	0.014
10.00	-30.74	-0.42	0.00	-40.81	0.00	46.81 45.97	2766.06 2752.56	712.72				0.00	-0.01	0.014
10.25	-30.69	-0.42	0.00	-45.87	0.00	45.97	2752.56	707.32 706.64			-	0.01	-0.01	0.014
12.00	-30.39	-0.42	0.00	-45.14	0.00	45.14	2738.94	708.84	2360.			0.01 0.01	-0.01	0.01
14.00	-30.04	-0.42	0.00	-44.30	0.00	44.30	2725.20	696.50				0.01	-0.01 -0.01	0.015 0.014
16.00	-29.69	-0.42	0.00	-43.46	0.00	43.46	2711.35	691.10				0.01	-0.01	0.014
18.00	-29.34	-0.42	0.00	-42.62	0.00	42.62	2697.39	685.69	2241.			0.02	-0.01	0.014
20.00	-29.00	-0.42	0.00	-41.78	0.00	41.78	2683.32	680.29	2205.			0.02	-0.01	0.014
20.50	-28.91	-0.42	0.00	-41.57	0.00	41.57	2679.78	678.93	2197.			0.03	-0.01	0.014
22.00	-28.66	-0.42	0.00	-40.93	0.00	40.93	2669.12	674.88	2170.			0.04	-0.02	0.014
24.00	-28.31	-0.42	0.00	-40.09	0.00	40.09	2654.82	669.47	2136.			0.04	-0.02	0.014
25.96	-27.98	-0.42	0.00	-39.26	0.00	39.26	2640.69	664.18	2102.	62 2072.4	9	0.05	-0.02	0.012
26.00	-27.98	-0.42	0.00	-39.24	0.00	39.24	2640.40	664.07	2101.	94 2071.9	2	0.05	-0.02	0.012
26.88	-27.83	-0.42	0.00	-38.87	0.00	38.87	2634.02	661.69	2086.	91 2059.4	5	0.06	-0.02	0.014
27.88	-27.66	-0.42	0.00	-38.45	0.00	38.45	2626.74	658.99	2069.	89 2045.3	0	0.06	-0.02	0.014
28.00	-27.64	-0.42	0.00	-38.40	0.00	38.40	2625.87	658.66	2067.	85 2043.6	i 1	0.06	-0.02	0.014
30.00	-27.31	-0.42	0.00	-37.55	0.00	37.55	2611.22	653.25	2034.	05 2015.3	9	0.07	-0.02	0.014
32.00	-26.97	-0.43	0.00	-36.70	0.00	36.70	2596.46	647.85	2000.		7	0.08	-0.02	0.014
34.00	-26.64	-0.43	0.00	-35.85	0.00	35.85	2581.58	642.44	1967.:			0.09	-0.03	0.013
36.00	-26.32	-0.43	0.00	-35.00	0.00	35.00	2566.59	637.04	1934.:			0.10	-0.03	0.013
38.00	-25.99	-0.43	0.00	-34.14	0.00	34.14	2551.48	631.63	1901.0			0.11	-0.03	0.013
40.00 40.50	-25.67	-0.43	0.00	-33.29	0.00	33.29	2536.26	626.22	1869.3			0.12	-0.03	0.013
40.50 40.71	-25.59 -25.55	-0.43 -0.43	0.00 0.00	-33.08 -32.99	0.00 0.00	33.08	2532.44	624.87				0.13	-0.03	0.013
42.00	-25.35 -25.34	-0.43	0.00	-32.99 -32.44	0.00	32.99 32.44	2530.83	624.30	1857.			0.13	-0.03	0.013
43.33	-25.13	-0.43	0.00	-32.44 -31.87	0.00	32.44 31.87	2520.93 2510.64	620.82 617.21	1837.0			0.14	-0.03	0.013
44.00	-24.96	-0.43	0.00	-31.57	0.00	31.58	2510.64	615.41	1815.			0.14 0.15	-0.03	0.012
46.00	-24.46	-0.43	0.00	-30.73	0.00	30.73	2305.48	610.00		53 1793.4		0.15	-0.03 -0.03	0.012 0.012
48.00	-23.96	-0.43	0.00	-29.87	0.00	29.87	1854.44	491.51	1439.3			0.18	-0.03	0.012
48.12	-23.95	-0.43	0.00	-29.82	0.00	29.82	1853.85	491.25	1437.8			0.18	-0.04	0.013
50.00	-23.69	-0.43	0.00	-29.01	0.00	29.01	1844.56	487.19	1414.			0.19	-0.04	0.017
52.00	-23.42	-0.43	0.00	-28.16	0.00	28.16	1834.56	482.86	1389.1			0.21	-0.04	0.016
54.00	-23.15	-0.43	0.00	-27.30	0.00	27.30	1824.45	478.54	1364.3			0.23	-0.04	0.016
56.00	-22.88	-0.43	0.00	-26.44	0.00	26.44	1814.23	474.21	1339.8			0.24	-0.04	0.015
58.00	-22.61	-0.43	0.00	-25.58	0.00	25.58	1803.89	469.89	1315.			0.26	-0.05	0.015
60.00	-22.35	-0.43	0.00	-24.72	0.00	24.72	1793.44	465.56	1291.4			0.28	-0.05	0.015
50.71	-22.26	-0.43	0.00	-24.41	0.00	24.41	1789.70	464.03	1282.9			0.29	-0.05	0.019
50.75	-22.25	-0.43	0.00	-24.40	0.00	24.40	1789.49		1282.4	12 1227.1		0.29	-0.05	0.019
52.00	-22.09	-0.43	0.00	-23.86	0.00	23.86	1 782.87	461.24	1267.8	52 1215.4		0.30	-0.05	0.018
64.00	-21.82	-0.43	0.00	-22.99	0.00	22.99	1772.19	456.91	1243.8	36 1196.7		0.32	-0.05	0.018
56.00	-21.56	-0.43		-22.13	0.00	22.13	1761.39	452.59	1220.4	1178.0	8	0.35	-0.05	0.018
58.00	-21.30	-0.43		-21.27	0.00	21.27	1750.48	448.26			1	0.37	-0.06	0.017
70.00	-21.05	-0.43	0.00	-20.40	0.00	20.40	1739.46	443.94				0.39	-0.06	0.017

			1		£.	Calc	ulated Fo	rces	Ĵ				
Struc	ture:	CT1306	64-A-S	BA			Code:	TIA	-222-H		10/4/2022	4	
Site N		Middlet					Exposure:	С				(((甲)))	
		130.00		•			Crest Heig	ht: 0.0	n			ID	C
Heigh			• •				-		stiff Soil				S
Base	Elev:	0.000 (1	ft)				Site Class:		Sun Son			Tower Engineer	ring Solutions
Gh:		1.1		Тор	ography:	1	Struct Clas	ss:			Page: 53	Tower Engineer	
72.00	-20.79	-0.43	0.00	-19.53	0.00	19.53		439.61	1151.45	1122.57	0.42	-0.06	0.016
74.00	-20.54	-0.43	0.00	-18.67	0.00	18.67		435.29	1128.90	1104.20	0.44	-0.06	0.016
76.00	-20.29	-0.43	0.00	-17.80	0.00	17.80		430.96	1106.58	1085.91	0.47	-0.06	0.016
78.00	-20.03	-0.43	0.00	-16.93	0.00	16.93		426.64	1084.48	1067.69	0.50	-0.07	0.015
78.25	-20.00	-0.43	0.00	-16.82	0.00	16.82		426.10	1081.74	1065.41	0.50	-0.07	0.015
78.25	-20.00	-0.43	0.00	-16.82	0.00	16.82		426.10	1081.74	1065.41	0.50	-0.07	0.015
80.00	-19.79	-0.43	0.00	-16.06	0.00	16.06		422.31	1062.61	1049.54	0.52	-0.07	0.027
82.00	-19.54	-0.44	0.00	-15.19	0.00	15.19		417.99	1040.95	1031.48	0.55	-0.07	0.026
84.00	-19.29	-0.44	0.00	-14.32	0.00	14.32		413.66	1019.52	1013.49	0.58	-0.07	0.026
86.00	-19.05	-0.44	0.00	-13.45	0.00	13.45		409.34	998.31	995.59	0.61	-0.08	0.025
87.42	-18.87	-0.44	0.00	-12.83	0.00	12.83		406.27	983.43	982.97	0.64	-0.08	0.025
88.00	-18.77	-0.44	0.00	-12.58	0.00	12.58		405.01	977.33	977.78	0.65	-0.08	0.024
90.00	-15.05	-0.37	0.00	-11.71	0.00	11.71		400.69	956.57	960.05	0.68	-0.08	0.021
91.33	-14.82	-0.37	0.00	-11.21	0.00	11.21		302.92	728.96	657.00	0.70	-0.08	0.031
92.00	-14.76	-0.37	0.00	-10.97	0.00	10.97		301.84	723.77	653.36	0.72	-0.09	0.030
94.00	-14.56	-0.37	0.00	-10.23	0.00	10.23		298.60	708.30	642.45	0.75	-0.09	0.029
96.00	-14.37	-0.37	0.00	-9.49	0.00	9.49		295.35	692.99	631.55	0.79	-0.09	0.028
98.00	-14.17	-0.37	0.00	-8.75	0.00	8.75		292.11	677.85	620.68	0.83	-0.09	0.027
100.00	-10.86	-0.30	0.00	-8.01	0.00	8.01		288.87	662.88	609.82	0.87	-0.10	0.023
102.00	-10.69	-0.30	0.00	-7.40	0.00	7.40		285.62	648.08	598.99	0.91	-0.10	0.022
104.00	-10.52	-0.30	0.00	-6.79	0.00	6.79		282.38	633.44	588.19	0.95	-0.10	0.021
106.00	-10.35	-0.30	0.00	-6.18	0.00	6.18		279.13	618.97	577.41	1.00	-0.11	0.021
108.00	-10.18	-0.30	0.00	-5.57	0.00	5.57		275.89	604.67	566.67	1.04	-0.11	0.020
110.00	-8.16	-0.27	0.00	-4.96	0.00	4.96		272.65	590.53	555.96	1.09	-0.11	0.017
112.00	-8.02	-0.27	0.00	-4.41	0.00	4.41		269.40	576.57	545.28	1.14	-0.11	0.016
114.00	-7.88	-0.27	0.00	-3.86	0.00	3.86		266.16	562.77	534.64	1.18	-0.11	0.015
116.00	-7.74	-0.27	0.00	-3.32	0.00	3.32		262.92	549.13	524.04	1.23	-0.12	0.014
118.00	-7.60	-0.27	0.00	-2.77	0.00	2.77		259.67	535.67	513.49	1.28	-0.12	0.013
120.00	-5.23	-0.22	0.00	-2.23	0.00	2.23		256.43	522.37	502.97	1.33	-0.12	0.010
120.00	-5.23	-0.22	0.00	-2.23	0.00	2.23		244.66	14507.7	335.79	1.33	-0.12	0.014
122.00	-5.10	-0.22	0.00	-1.78	0.00	1.78		244.66	14507.7	335.79	1.38	-0.12	0.012
124.00	-4.98	-0.22	0.00	-1.33	0.00	1.33		244.66	14507.7	335.79	1.43	-0.12	0.011
126.00	-4.85	-0.22	0.00	-0.89	0.00	0.89		244.66	1 4507.7	335.79	1.48	-0.12	0.009
128.00	-4.72	-0.22	0.00	-0.44	0.00	0.44		244.66	14507.7	335.79	1.53	-0.12	0.008
130.00	0.00	-0.21	0.00	0.00	0.00	0.00) 735.22	244.66	14507.7	335.79	1.58	-0.12	0.000

1 - A 19		1			W	ind Lo	ading	- Sha	ift					
	CT13064						de:		ГІА-222 - Н			10/4/20	22	
Site Name:	Middleto		Γ			Ex	posur	e: (2				(04	
Height:	130.00 (1	ft)				Сг	est He	ight: C	0.00					EC
Base Elev:	0.000 (ft)				Sit	e Clas	s: [D - Stiff So	il				ES
Gh:	1.1		Τορο	graphy	: 1	Sti	uct Cl	ass: I	!			Page:	54 Tower	Engineering Solution
Load Case:	1.0D + 1	1.0W 60	mph W	ind							Y	4	Iteratio	ons 2
Dead	d Load F	actor	1.00								5	x		
Wine	d Load F	actor	1.00								3			
Elev (ft) Dese	cription	Kzt	Kz	qz (psf)	qzGh (psf)	C (mph-ft)	Cf	lce Thick (in)	Tributary (ft)	Aa (sf)	CfAa (sf)	Wind Force X (Ib)	Dead Load Ice (Ib)	Tot Dead Load (Ib)
0.00 RB1 RB2		1.00	0.85	6.613	7.27	198.26	0.730	0.000	0.00	0.000	0.00	0.0	0.0	0.0
2.00		1.00	0.85	6.613	7.27	196.81	0.730	0.000	2.00	7.166	5.23	38.1	0.0	283.7
4.00 6.00		1.00	0.85	6.613	7.27	195.36	0.730	0.000	2.00	7.114	5.19	37.8	0.0	281.6
8.00 8.00		1.00 1.00	0.85 0.85	6.613 6.613	7.27 7.27	193.91 192.46	0.730 0.730	0.000 0.000	2.00 2.00	7.061 7.009	5.15 5.12	37.5 37.2	0.0 0.0	279.5 277.4
10.00		1.00	0.85	6.613	7.27	192.40	0.730	0.000	2.00	6.956	5.08	37.2	0.0	277.4
10.25 RT2 RB3	RB4	1.00	0.85	6.613	7.27	190.83	0.730	0.000	0.25	0.866	0.63	4.6	0.0	34.3
12.00		1.00	0.85	6.613	7.27	189.57	0.730	0.000	1.75	6.038	4.41	32.1	0.0	239.0
14.00		1.00	0.85	6.613	7.27	188.12	0.730	0.000	2.00	6.851	5.00	36.4	0.0	271.1
16.00 18.00		1.00	0.86	6.695	7.36	187.82		0.000	2.00	6.798	4.96	36.5	0.0	269.0
20.00		1.00 1.00	0.88 0.90	6.863 7.017	7.55 7.72	188.68 189.30	0.730 0.730	0.000 0.000	2.00 2.00	6.746 6.693	4.92	37.2 37.7	0.0	266.9
20.50 RT1 RB5		1.00	0.90	7.053	7.76	189.30	0.730	0.000	2.00	0.093	4.89 1.22	37.7 9.4	0.0 0.0	264.9 65.9
22.00		1.00	0.92	7.159	7.87	189.70	0.730	0.000	1.50	4.976	3.63	28.6	0.0	196.9
24.00		1.00	0. 9 4	7.291	8.02	189.92	0.730	0.000	2.00	6.588	4.81	38.6	0.0	260.7
25.96 RB6		1.00	0.95	7.413	8.15	189.99	0.730	0.000	1.96	6.405	4.68	38.1	0.0	253.4
26.00		1.00	0.95	7.415	8.16	189.99	0.730	0.000	0.04	0.130	0.10	0.8	0.0	5.2
26.88 RT4 27.88 RT3 RB7		1.00 1.00	0.96 0.97	7.467 7.525	8.21	189.98	0.730 0.730	0.000	0.88	2.859	2.09	17.1	0.0	113.1
28.00		1.00	0.97	7.525	8.28 8.29	189.94 189.94	0.730	0.000 0.000	1.00 0.12	3.237 0.387	2.36 0.28	19.6 2.3	0.0 0.0	128.0 15.3
30.00		1.00	0.98	7.642	8.41	189.76	0.730	0.000	2.00	6.430	4.69	2.5 39.5	0.0	254.4
32.00		1.00	1.00	7.747	8.52	189.49	0.730	0.000	2.00	6.378	4.66	39.7	0.0	252.3
34.00		1.00	1.01	7.846	8.63	189.12	0.730	0.000	2.00	6.325	4.62	39.9	0.0	250.2
36.00		1.00	1.02	7.941	8.74	188.68	0.730	0.000	2.00	6.273	4.58	40.0	0.0	248.1
38.00 40.00		1.00	1.03	8.032	8.84	188.16		0.000	2.00	6.220	4.54	40.1	0.0	246.0
40.00 40.50 RT5 RB8		1.00 1.00	1.04 1.05	8.119 8.141	8.93	187.57 187.41		0.000	2.00	6.168	4.50	40.2	0.0	243.9
40.71 RT6 RB9		1.00	1.05	8.141	8.95 8.96	187.35	0.730	0.000 0.000	0.50 0.21	1.534 0.643	1.12 0.47	10.0 4.2	0.0 0.0	60.6 25.4
42.00		1.00	1.05	8.203	9.02	186.92		0.000	1.29	3.938	2.87	25.9	0.0	155.7
43.33 Bot - Secti	ion 2	1.00	1.06	8.257	9.08	186.46		0.000	1.33	4.048	2.95	26.8	0.0	160.0
44.00		1.00	1.06	8.284	9.11	186.22		0.000	0.67	2.043	1.49	13.6	0.0	144.4
46.00		1.00	1.07	8.362	9.20	185.46		0.000	2.00	6.095	4.45	40.9	0.0	430.7
48.00 Top - Sect 48.12 RT7	ion 1	1.00	1.08	8.437	9.28	184.66		0.000	2.00	6.042	4.41	40.9	0.0	426.9
50.00		1.00 1.00	1.08 1.09	8.441 8.510	9.29 9.36	187.24 186.46		0.000 0.000	0.12 1.88	0.361 5.629	0.26 4.11	2.4 38.5	0.0	11.4
52.00		1.00	1.10	8.580	9.44	185.58		0.000	2.00	5.937	4.11	36.5 40.9	0.0 0.0	178.3 188.1
54.00		1.00	1.11	8.649	9.51	184.66	0.730	0.000	2.00	5.884	4.30	40.9	0.0	186.4
56.00		1.00	1.12	8.715	9.59	183.70	0.730	0.000	2.00	5.832	4.26	40.8	0.0	184.7
58.00		1.00	1.13	8.780	9.66	182.71		0.000	2.00	5.779	4.22	40.7	0.0	183.1
60.00		1.00	1.14	8.843	9.73	181.69		0.000	2.00	5.727	4.18	40.7	0.0	181.4
60.71 RT9 60.75 RT8 RB10	h	1.00	1.14	8.865	9.75	181.32		0.000	0.71	2.020	1.47	14.4	0.0	64.0
62.00	J	1.00 1.00	1.14 1.14	8.866 8.904	9.75 9.79	181.30 180.64		0.000 0.000	0.04	0.114 3.540	0.08	0.8 25.3	0.0	3.6
64.00		1.00	1.14	8.964	9.86	179.56		0.000	1.25 2.00	3.540 5.622	2.58 4.10	25.3 40.5	0.0 0.0	112.1 178.0
66.00		1.00	1.16	9.022	9.92	178.45		0.000	2.00	5.569	4.07	40.3	0.0	176.3
68.00		1.00		9.079	9.99	177.31		0.000	2.00	5.516	4.03	40.2	0.0	174.7
70.00		1.00	1.17	9.134	10.05	176.15	0.730	0.000	2.00	5.464	3.99	40.1	0.0	173.0

	1 3	1	2.	Wi	nd Loa	ding	- Shaf	t					
Structure:	CT13064-A-SBA				Co	de:	TI	A-222-H			10/4/2022	A	
Site Name:	Middletown 2, C1	Γ			Ex	osure	: C					(()押)	"
	130.00 (ft)				Сге	est Heid	ght: 0.	00					
	、 ,					e Class	_	- Stiff Soi	i				ED
	0.000 (ft)							- 0011 001			D 55	Tower E	ngincering Solutio
Gh:	1.1	Торо	graphy	: 1	Str	uct Cla	ISS: II				Page: 55		
72.00	1.00	1.18	9,189	10.11	174.97	0.730	0.000	2.00	5.411	3.95	39.9	0.0	171.3
74.00	1.00	1.19	9.242	10.17	173.76	0.730	0.000	2.00	5.359	3.91	39.8	0.0	169.6
76.00	1.00	1.19	9.294	10.22	172.53	0.730	0.000	2.00	5.306	3.87	39.6	0.0	168.0
78.00	1.00	1.20	9.345	10.28	171.28	0.730	0.000	2.00	5.254	3.84	39.4	0.0	166.3
78.25 RT10	1.00	1.20	9.351	10.29	171.12	0.730	0.000	0.25	0.653	0.48	4.9	0.0	20.7
80.00	1.00	1.21	9.395	10.33	170.01	0.730	0.000	1.75	4.548	3.32	34.3	0.0	143.9
82.00	1.00	1.21	9.444	10.39	168.72	0.730	0.000	2.00	5.148	3.76	39.0	0.0	162.9
84.00	1.00	1.22	9.492	10.44	167.41	0.730	0.000	2.00	5.096	3.72	38.8	0.0	161.2
86.00	1.00	1.23	9.539	10.49	166.09	0.730	0.000	2.00	5.043	3.68	38.6	0.0	159.6
87.42 Bot - Sect	ion 3 1.00	1.23	9.572	10.53	165.14	0.730	0.000	1.42	3.541	2.58	27.2	0.0	112.0
88.00	1.00	1.23	9.585	10.54	164.75	0.730	0.000	0.58	1.469	1.07	11.3	0.0	80.8
90.00 Appurtena	ance(s) 1.00	1.24	9.631	10.59	163.39	0.730	0.000	2.00	5.002	3.65	38.7	0.0	275.2
91.33 Top - Sec		1.24	9.661	10.63	162.47	0.730	0.000	1.33	3.305	2.41	25.6	0.0	181.8
92.00	1.00	1.24	9.675	10.64	164.13	0.730	0.000	0.67	1.644	1.20	12.8	0.0	39.1
94.00	1.00	1.25	9.719	10.69	162.75	0.730	0.000	2.00	4.897	3.57	38.2	0.0	116.4
96.00	1.00	1.25	9.762	10.74	161.35	0.730	0.000	2.00	4.844	3.54	38.0	0.0	115.2
98.00	1.00	1.26		10.79	159.93	0.730	0.000	2.00	4.791	3.50	37.7	0.0	113.9
100.00 Appurtena		1.27		10.83	158.51	0.730	0.000	2.00	4.739	3.46	37.5	0.0	112.6
102.00	1.00	1.27		10.88	157.06	0.730	0.000	2.00	4.686	3.42	37.2	0.0	111.4
104.00	1.00	1.28		10.92	155.61	0.730	0.000	2.00	4.634	3.38	36.9	0.0	110.1
106.00	1.00	1.28		10.97	154.14	0.730	0.000	2.00	4.581	3.34	36.7	0.0	108.9
108.00	1.00		10.008	11.01	152.67	0.730	0.000	2.00	4.529	3.31	36.4	0.0	107.6
110.00 Appurtena			10.046	11.05	151.18	0.730	0.000	2.00	4.476	3.27	36.1	0.0	106.4
112.00	1.00		10.085	11.09	149.67	0.730	0.000	2.00	4.423	3.23	35.8	0.0	105.1
114.00	1.00		10.122	11.13	148,16	0.730	0.000	2.00	4.371	3.19	35.5	0.0	103.8
116.00	1.00	1.31		11.18	146.64	0.730	0.000	2.00	4.318	3.15	35.2	0.0	102.6
118.00	1.00		10.196	11.22	145.10	0.730	0.000	2.00	4.266	3.11	34.9	0.0	101.3
120.00 Top - Sec			10.232	11.26	143.56	0.730	0.000	2.00	4.213	3.08	34.6	0.0	100.1
120.00 10p - 3ec 122.00	1.00		10.268	11.29		0.620 *	0.000	2.00	3.000	1.86	21.0	0.0	94.9
122.00 124.00	1.00		10.303	11.33		0.620 *	0.000	2.00	3.000	1.86	21.1	0.0	94.9
124.00	1.00		10.338	11.37		0.620 *	0.000	2.00	3.000	1.86	21.2	0.0	94.9
	1.00		10.372	11.41		0.620 *	0.000	2.00	3.000	1.86	21.2	0.0	94.9
128.00			10.406	11.45		0.620 *	0.000	2.00	3.000	1.86	21.3	0.0	94.9
130.00 Appurtena	Linear Load Ra Effect		10.400	11.40	100.10		Totals:	130.00		3	2,421.4	.0	12,677.2

	J.		j.	D	scret	e App	urten	ance	Forces		1		i.	1
St	ructure	: CT13064-A-SBA				Co	ode:		TIA-222-ŀ	1	10/4	/2022		
Sit	te Name	e: Middletown 2, CT				Ex	posure	e: (С				((冊)))	
He	ight:	130.00 (ft)				Cr	est Hei	ght: (0.00				1	D
Ba	se Elev	/: 0.000 (ft)					te Clas	•	D - Stiff S	nil				5
Gh			Topo	graphy	1		ruct Cla			on	Dec		lower Engine	ering Solutions
			Торо	graphy		30		ass.	 		raų	ge: 56		
Lo		se: 1.0D + 1.0W 60 n ead Load Factor	nph W 1.00	/ind							Y	lte:	rations	23
			1.00								2			
No.	Elev (ft)	Description	Qty	qz (psf)	qzGh (psf)	Orient Factor x Ka	Ka	Total CaAa (sf)	Dead Load (Ib)	Horiz Ecc (ft)	Vert Ecc (ft)	Wind FX (lb)	Mom Y (lb-ft)	Mom Z (Ib-ft)
1		DC6-48-60-18-8F	2	10.406	11.447	0.75	0.75	1.38	63.60	0.000	0.000	15.80	0.00	0.00
2		6' Lightning rod	1	10.456	11.502	1.00	1.00	0.38	6.50	0.000	3.000	4.37	0.00	13.11
3		Cci DMP65R-BU6DA	3	10.406	11.447	0.54	0.75	20.62	189.90	0.000	0.000	236.01	0.00	0.00
4 5		RRUS 32	6	10.406	11.447	0.38	0.75	3.71	462.00	0.000	0.000	42.50	0.00	0.00
5 6		RRUS 4478 B14 B2 B66A 8843	3 3	10.406 10.406	11. 447 11.447	0.38 0.38	0.75 0.75	1.86 1.84	178.20	0.000	0.000	21.25	0.00	0.00
7		4449 B5/B12	3	10.406	11.447	0.38	0.75	2.22	210.00 213.00	0.000 0.000	0.000 0.000	21.12 25.37	0.00 0.00	0.00 0.00
8		RRUS E2 B29	3	10.406	11.447	0.38	0.75	3.54	178.20	0.000	0.000	40.56	0.00	0.00
9		Additional mount pipe	3	10.406	11.447	0.56	0.75	2.95	51.00	0.000	0.000	33.80	0.00	0.00
10		Quinte QD6616-7	3	10.406	11.447	0.56	0.75	22.92	177.30	0.000	0.000	262.31	0.00	0.00
11		(3) Horizontal bracing	1	10.406	11.447	0.75	0.75	4.45	137.25	0.000	0.000	50.97	0.00	0.00
12		Ericsson AIR6419	3	10.439	11.483	0.57	0.75	6.50	198.30	0.000	2.000	74.62	0.00	149.24
13		DC6-48-60-0-8C	2	10.406	11.447	0.75	0.75	7.17	32.00	0.000	0.000	82.07	0.00	0.00
14 15		Ericcson AIR6449 Angle Reinforcement kit	3 1	10.372 10.406	11.409	0.64	0.75	7.90	264.00	0.000	-2.000	90.12	0.00	-180.23
16		MTC3607 Platform + HR &		10.406	11.447 11.447	1.00 1.00	1.00 1.00	5.80 51.70	250.00 2246.00	0.000 0.000	0.000 0.000	66.39 591.79	0.00	0.00
17		MC-PK8-DSH	1		11.255	1.00	1.00	37.59	1727.00	0.000	0.000	423.09	0.00 0.00	0.00 0.00
18		RDIDC-9181-OF-48	1	10.232	11.255	0.75	0.75	1.51	21.90	0.000	0.000	16.97	0.00	0.00
19	120.00	TA08025-B604	3	10.232	11.255	0.38	0.75	2.21	191.70	0.000	0.000	24.82	0.00	0.00
20	120.00	TA08025-B605	3	10.232	11.255	0.38	0.75	2.21	225.00	0.000	0.000	24.82	0.00	0.00
21		MX08FRO665-21	3		11.255	0.55	0.75	20.80	193.50	0.000	0.000	234.06	0.00	0.00
22		SAMSUNG	3	10.046	11.051	0.40	0.80	2.24	224.10	0.000	0.000	24.80	0.00	0.00
23 24		RFS RVZDC-6627-PF-48	1	10.046	11.051	0.40	0.80	1.62	32.00	0.000	0.000	17.95	0.00	0.00
24 25		SAMSUNG MT6407-77A JMA MX10FIT665-02	3 3	10.046 10.046		0.56	0.80	7.88	261.30	0.000	0.000	87.07	0.00	0.00
26		T-Arm (Round)	3	10.046		0.67 0.56	0.80 0.75	16.27 13.50	160.20 1050.00	0.000 0.000	0.000 0.000	179.81 149.19	0.00 0.00	0.00 0.00
27		COMMSCOPE	3	10.065		0.30	0.80	0.48	19.80	0.000	1.000	5.31	0.00	5.31
28		SAMSUNG	3	10.046		0.40	0.80	2.24	210.99	0.000	0.000	24.80	0.00	0.00
29	100.00	Kathrein 782 11056	3		10.831	0.40	0.80	0.16	5.40	0.000	0.000	1.69	0.00	0.00
30		Ericsson AIR21 B2A B4P	3	9.847	10.831	0.64	0.80	11.69	274.50	0.000	0.000	126.65	0.00	0.00
31		Ericsson AIR21 B4A B2P	3		10.831	0.64	0.80	11.69	271.20	0.000	0.000	126.65	0.00	0.00
32		T-Arm (Round)	6		10.831	0.56	0.75	27.00	2100.00	0.000	0.000	292.45	0.00	0.00
33 34	100.00	RFS Ericsson 4480 B71 + B85	3		10.831	0.58	0.80	35.46	368.40	0.000	0.000	384.09	0.00	0.00
34 35		Encsson 4480 B71 + B85 F3P-10W	3 1		10.831 10.594	0.59 1.00	0.80 1.00	5.06	279.00	0.000	0.000	54.82	0.00	0.00
36		NNVV-65B-R4	3		10.594	0.55	0.75	51.77 20.43	2122.00 232.20	0.000 0.000	0.000 0.000	548.44 216.43	0.00 0.00	0.00
37	90.00		3		10.594	0.55	0.75	7.09	312.00	0.000	0.000	216.43 75.08	0.00	0.00 0.00
38		F3P-HRK10	1		10.594	1.00	1.00	7.12	391.00	0.000	0.000	75.43	0.00	0.00
39	90.00	ALU - 800 MHz - RRU	6		10.594	0.38	0.75	5.60	318.00	0.000	0.000	59.35	0.00	0.00
40		ALU - 1900MHz - RRU	3		10.5 94	0.38	0.75	4.27	132.00	0.000	0.000	45.29	0.00	0.00
41	90.00	Andrew - VHLP2-11	2	9.631	10.594	0.75	0.75	7.02	54.00	0.000	0.000	74.37	0.00	0.00
							Totals:		16,034.44			4,952.46		

		To	tal App	lied Force Si	ummary	e e e e e e e e e e e e e e e e e e e	
Structure:	CT13064-A-SBA			Code:	TIA-222-H	10/4/2022	A
Site Name:	Middletown 2, C	Т		Exposure:	С		derstann
Height:	130.00 (ft)			Crest Height:	0.00		I EC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		
Gh:	1.1	Topography:	1	Struct Class:	II	Page: 57	Tower Engineering Solution
	• 1 0D + 1 0W 60	moh Wind				×4	terations 23

×

2

Load Case: 1.0D + 1.0W 60 mph Wind

Dead Load Factor1.00Wind Load Factor1.00

Elev (ft)	Description	Lateral FX (-) (lb)	Axial FY (-) (Ib)	Torsion MY (Ib-ft)	Moment MZ (Ib-ft)		
0.00		0.00	0.00	0.00	0.00		
2.00		38.06	383.38	0.00	0.00		
4.00		37.78	381.29	0.00	0.00		
6.00		37.50	379.19	0.00	0.00		
8.00		37.22	377.09	0.00	0.00		
10.00		36.94	375.00	0.00	0.00		
10.25		4.60	46.73	0.00	0.00		
12.00		32.06	326.17	0.00	0.00		
14.00		36.38	370.80	0.00	0.00		
16.00		36.55	368.71	0.00	0.00		
18.00		37.18	366.61	0.00	0.00		
20.00		37.71	364.51	0.00	0.00		
20.50		9.43	90.80	0.00	0.00		
22.00		28.60	271.62	0.00	0.00		
24.00		38.57	360.32	0.00	0.00		
25.96		38.13	351.08	0.00	0.00		
26.00		0.78	7.14	0.00	0.00		
26.88		17.14	156.95	0.00	0.00		
27.88		19.56	177.87	0.00	0.00		
28.00		2.34	21.31	0.00	0.00		
30.00		39.46	354.03	0.00	0.00		
32.00		39.67	351.94	0.00	0.00		
34.00		39.85	349.84	0.00	0.00		
36.00		40.00	347.74	0.00	0.00		
38.00		40.12	345.65	0.00	0.00		
40.00		40.21	343.55	0.00	0.00		
40.50		10.03	85.56	0.00	0.00		
40.71		4.21	35.90	0.00	0.00		
42.00		25.94	220.00	0.00	0.00		
43.33		26.84	226.47	0.00	0.00		
44.00		13.59	177.63	0.00	0.00		
46.00		40.92	530.38	0.00	0.00		
48.00		40.93	526.60	0.00	0.00		
48.12		2.45	1 7.41	0.00	0.00		
50.00		38.46	272.01	0.00	0.00		
52.00		40.91	287.75	0.00	0.00		
54.00		40.87	286.07	0.00	0.00		
56.00		40.81	284.39	0.00	0.00		
58.00		40.74	282.72	0.00	0.00		
60.00		40.66	281.04	0.00	0.00		
60.71		14.38	99.37	0.00	0.00		
60.75		0.81	5.59	0.00	0.00		
62.00		25.31	174.40	0.00	0.00		
64.00		40.46	277.68	0.00	0.00		
66.00		40.35	276.01	0.00	0.00		
68.00		40.22	274.33	0.00	0.00		
70.00		40.08	272.65	0.00	0.00		

			Total 4	Applied Fo	orce Summary	
Struct	ure: CT13	064-A-SBA		Code:	TIA-222-H	10/4/2022
Site Na	ame: Middl	etown 2, CT		Expos	ure: C	((«₩»))
Height				-	Height: 0.00	
Base E		• •		Site Cl	•	
		• •				
Gh:	1.1	IC	pography: 1	Struct	Class: II	Page: 58 Tower Engineering Soluti
72.00		39.93	270.98	0.00	0.00	
74.00		39.77	269.30	0.00	0.00	
76.00		39.60	267.62	0.00	0.00	
78.00		39.42	265.94	0.00	0.00	
78.25		4.90	33.13	0.00	0.00	
80.00		34.31	231.14	0.00	0.00	
82.00		39.04	262.59	0.00	0.00	
84.00		38.84	260.91	0.00	0.00	
86.00		38.63	259.24	0.00	0.00	
87.42		27.21	182.61	0.00	0.00	
88.00		11.30	109.87	0.00	0.00	
90.00	(19) attachm	ents 1133.07	3936.02	0.00	0.00	
91.33		25.64	242.67	0.00	0.00	
92.00		12.77	69.52	0.00	0.00	
94.00		38.22	207.72	0.00	0.00	
96.00		37.97	206.46	0.00	0.00	
98.00		37.72	205.20	0.00	0.00	
00.00	(21) attachm	ents 1023.82	3502.45	0.00	0.00	
02.00		37.21	183.61	0.00	0.00	
04.00		36.94	182.35	0.00	0.00	
06.00		36.67	181.09	0.00	0.00	
08.00		36.39	179.83	0.00	0.00	
10.00	(19) attachm	ents 525.03	2136.97	0.00	5.31	
12.00		35.82	150.16	0.00	0.00	
14.00		35.53	148.90	0.00	0.00	
116.00		35.23	147.64	0.00	0.00	
18.00		34.93	146.38	0.00	0.00	
20.00	(11) attachm		2504.23	0.00	0.00	
22.00		21.01	136.30	0.00	0.00	
24.00		21.08	136.30	0.00	0.00	
26.00		21.15	136.30	0.00	0.00	
28.00		21.22	136.30	0.00	0.00	
30.00	(41) attachm	ents 1680.34	4993.55	0.00	-17.88	
	Total	s: 7,373.90	34,446.52	0.00	-12.57	

		Line	ar Appur	tenar	nce Seg	ment F	orces	(Fact	ored)			
Heigh	Name: Middletowi	n 2, CT	oography:	1	Site C	sure: Height:	D - Stif			10/4/2022 Page: 59		ES incering Solutions
Load	I Case: 1.0D + 1.0 Dead Load Fac Wind Load Fac	ctor 1.0	0						2	x	Iteration	s 23
Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (Ib)	Dead Load (Ib)
2.00 2.00	2" Conduit 1" Reinforcing plate 1" Reinforcing plate 2" Conduit	Yes Yes Yes Yes	2.00 2.00 2.00 2.00	0.000 0.000 0.000 0.000	2.00 1.00 0.00 2.00	0.33 0.17 0.00 0.33	0.00 0.00 0.00 0.00	0.070 0.070 0.070 0.070	0.000 0.000 0.000 0.000	6.613 6.613 6.613 6.613	0.00 0.00 0.00 0.00	9.66 0.00 0.00 9.66
4.00 4.00 6.00		Yes Yes Yes Yes Yes	2.00 2.00 2.00 2.00 2.00	0.000 0.000 0.000 0.000	1.00 0.00 2.00 1.00	0.17 0.00 0.33 0.17	0.00 0.00 0.00 0.00	0.070 0.070 0.071 0.071	0.000 0.000 0.000 0.000	6.613 6.613 6.613 6.613	0.00 0.00 0.00 0.00	0.00 0.00 9.66 0.00
8.00	1" Reinforcing plate 2" Conduit 1" Reinforcing plate	Yes Yes Yes Yes Yes	2.00 2.00 2.00 2.00 2.00	0.000 0.000 0.000 0.000	0.00 2.00 1.00 0.00	0.00 0.33 0.17 0.00	0.00 0.00 0.00 0.00	0.071 0.071 0.071 0.071	0.000 0.000 0.000 0.000	6.613 6.613 6.613 6.613	0.00 0.00 0.00 0.00	0.00 9.66 0.00 0.00
10.00 10.00 10.00	2" Conduit 1" Reinforcing plate 1" Reinforcing plate	Yes Yes Yes Yes Yes	2.00 2.00 2.00 2.00 0.25	0.000 0.000 0.000 0.000	2.00 1.00 0.00 2.00	0.33 0.17 0.00 0.04	0.00 0.00 0.00 0.00	0.072 0.072 0.072 0.072	0.000 0.000 0.000 0.000	6.613 6.613 6.613 6.613	0.00 0.00 0.00 0.00	9.66 0.00 0.00 1.21
10.25 10.25 12.00	2" Conduit 1" Reinforcing plate 1" Reinforcing plate 2" Conduit	Yes Yes Yes Yes Yes	0.25 0.25 0.25 1.75 1.75	0.000 0.000 0.000 0.000	1.00 0.00 2.00 1.00	0.02 0.00 0.29 0.15	0.00 0.00 0.00 0.00	0.072 0.072 0.072 0.072 0.072	0.000 0.000 0.000 0.000	6.613 6.613 6.613 6.613 6.613	0.00 0.00 0.00 0.00	0.00 0.00 8.45 0.00
12.00 14.00 14.00	1" Reinforcing plate	Yes Yes Yes	1.75 2.00 2.00 2.00	0.000 0.000 0.000 0.000 0.000	0.00 2.00 1.00 0.00	0.00 0.33 0.17 0.00	0.00 0.00 0.00 0.00 0.00	0.072 0.073 0.073 0.073	0.000 0.000 0.000 0.000	6.613 6.613 6.613 6.613	0.00 0.00 0.00 0.00	0.00 9.66 0.00 0.00
16.00 16.00 16.00	1" Reinforcing plate 2" Conduit 1" Reinforcing plate 1" Reinforcing plate	Yes Yes Yes Yes	2.00 2.00 2.00	0.000 0.000 0.000	2.00 1.00 0.00	0.33 0.17 0.00 0.33	0.00 0.00 0.00 0.00 0.00	0.074 0.074 0.074 0.074	0.000 0.000 0.000 0.000	6.695 6.695 6.695 6.863	0.00 0.00 0.00 0.00	9.66 0.00 0.00 9.66
18.00 18.00 20.00	2" Conduit 1" Reinforcing plate 1" Reinforcing plate 2" Conduit	Yes Yes Yes Yes	2.00 2.00 2.00 2.00	0.000 0.000 0.000 0.000	2.00 1.00 0.00 2.00	0.17 0.00 0.33	0.00 0.00 0.00	0.074 0.074 0.075	0.000 0.000 0.000 0.000 0.000	6.863 6.863 7.017 7.017	0.00 0.00 0.00 0.00	0.00 0.00 9.66 0.00
20.00 20.50 20.50	1" Reinforcing plate 1" Reinforcing plate 2" Conduit 1" Reinforcing plate	Yes Yes Yes Yes	2.00 2.00 0.50 0.50	0.000 0.000 0.000 0.000	1.00 0.00 2.00 1.00	0.17 0.00 0.08 0.04	0.00 0.00 0.00 0.00	0.075 0.075 0.075 0.075	0.000 0.000 0.000	7.017 7.053 7.053	0.00 0.00 0.00	0.00 2.42 0.00
22.00	1" Reinforcing plate 2" Conduit 1" Reinforcing plate 1" Reinforcing plate	Yes Yes Yes Yes	0.50 1.50 1.50 1.50	0.000 0.000 0.000 0.000	0.00 2.00 1.00 0.00	0.00 0.25 0.13 0.00	0.00 0.00 0.00 0.00	0.075 0.075 0.075 0.075	0.000 0.000 0.000 0.000	7.053 7.159 7.159 7.159	0.00 0.00 0.00 0.00	0.00 7.25 0.00 0.00
24.00 24.00	2" Conduit 1" Reinforcing plate 1" Reinforcing plate 1" Reinforcing plate	Yes Yes Yes Yes	2.00 2.00 0.67 2.00	0.000 0.000 0.000 0.000	2.00 1.00 0.00 0.00	0.33 0.17 0.00 0.00	0.00 0.00 0.00 0.00	0.076 0.076 0.076 0.076	0.000 0.000 0.000 0.000	7.291 7.291 7.291 7.291	0.00 0.00 0.00 0.00	9.66 0.00 0.00 0.00
25.96 25.96	2" Conduit 1" Reinforcing plate 1" Reinforcing plate 1" Reinforcing plate	Yes Yes Yes Yes	1.96 1.96 1.96 1.96	0.000 0.000 0.000 0.000	2.00 1.00 0.00 0.00	0.33 0.16 0.00 0.00	0.00 0.00 0.00 0.00	0.076 0.076 0.076 0.076	0.000 0.000 0.000 0.000	7.413 7.413 7.413 7.413 7.413	0.00 0.00 0.00 0.00	9.47 0.00 0.00 0.00

04. 1	AT4000										-	
Struct					Code		TIA-22	2-H		10/4/2022	2 ((明))	
Site Na		•			Ехро		C				44. mar //	
leight						Height:						FC
Base E	()					Class:	D - Stif	f Soil				
Gh:	1.1	Τοι	ography:	1	Struc	t Class:				Page: 6	D Tower Eng	ineering Solu
Load	Case: 1.0D + 1.0 Dead Load Fac Wind Load Fac	ctor 1.0	0						2	x	Iteration	IS
Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (Ib)
	2" Conduit	Yes	0.04	0.000	2.00	0.01	0.00	0.077	0.000	7.415	0.00	0.19
	" Reinforcing plate	Yes	0.04	0.000	1.00	0.00	0.00	0.077	0.000	7.415	0.00	0.00
	" Reinforcing plate " Reinforcing plate	Yes Yes	0.04 0.04	0.000 0.000	0.00 0.00	0.00 0.00	0.00 0.00	0.077 0.077	0.000	7.415	0.00	0.00
	" Conduit	Yes	0.04	0.000	2.00	0.00	0.00	0.077	0.000 0.000	7.415 7.467	0.00 0.00	0.00 4.25
	" Reinforcing plate	Yes	0.88	0.000	1.00	0.07	0.00	0.077	0.000	7.467	0.00	0.00
	" Reinforcing plate	Yes	0.88	0.000	0.00	0.00	0.00	0.077	0.000	7.467	0.00	0.00
	" Reinforcing plate " Conduit	Yes Yes	0.88 1.00	0.000 0.000	0.00 2.00	0.00	0.00	0.077	0.000	7.467	0.00	0.00
	" Reinforcing plate	Yes	1.00	0.000	2.00 1.00	0.17 0.08	0.00 0.00	0.077 0.077	0.000 0.000	7.525 7.525	0.00 0.00	4.83 0.00
	" Reinforcing plate	Yes	1.00	0.000	0.00	0.00	0.00	0.077	0.000	7.525	0.00	0.00
	" Reinforcing plate	Yes	1.00	0.000	0.00	0.00	0.00	0.077	0.000	7.525	0.00	0.00
	" Conduit	Yes	0.12	0.000	2.00	0.02	0.00	0.077	0.000	7.532	0.00	0.58
	" Reinforcing plate " Reinforcing plate	Yes Yes	0.12 0.12	0.000 0.000	1.00 0.00	0.01 0.00	0.00 0.00	0.077 0.077	0.000	7.532	0.00	0.00
	" Reinforcing plate	Yes	0.12	0.000	0.00	0.00	0.00	0.077	0.000 0.000	7.532 7.532	0.00 0.00	0.00 0.00
	" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.078	0.000	7.642	0.00	9.66
	" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.078	0.000	7.642	0.00	0.00
	" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.078	0.000	7.642	0.00	0.00
	" Reinforcing plate	Yes Yes	2.00 2.00	0.000 0.000	0.00 2.00	0.00 0.33	0.00 0.00	0.078 0.078	0.000 0.000	7.642 7.747	0.00 0.00	0.00
	"Reinforcing plate	Yes	2.00	0.000	1.00	0.33	0.00	0.078	0.000	7.747	0.00	9.66 0.00
2.00 1	" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.078	0.000	7.747	0.00	0.00
	" Reinforcing plate	Yes	1.50	0.000	0.00	0.00	0.00	0.078	0.000	7.747	0.00	0.00
	" Reinforcing plate	Yes	0.50	0.000	0.00	0.00	0.00	0.078	0.000	7.747	0.00	0.00
	" Reinforcing plate	Yes Yes	2.00 2.00	0.000 0.000	2.00 1.00	0.33 0.17	0.00 0.00	0.079 0.079	0.000 0.000	7.846 7.846	0.00	9.66
	"Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.079	0.000	7.846 7.846	0.00 0.00	0.00
4.00 1	"Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.079	0.000	7.846	0.00	0.00
	" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.080	0.000	7.941	0.00	9.66
	" Reinforcing plate " Reinforcing plate	Yes Yes	2.00 2.00	0.000 0.000	1.00 0.00	0.17	0.00	0.080	0.000	7.941	0.00	0.00
	" Reinforcing plate	Yes	2.00	0.000	0.00	0.00 0.00	0.00 0.00	0.080 0.080	0.000 0.000	7.941 7.941	0.00 0.00	0.00 0.00
	" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.080	0.000	8.032	0.00	9.66
	"Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.080	0.000	8.032	0.00	0.00
	" Reinforcing plate " Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.080	0.000	8.032	0.00	0.00
	" Reinforcing plate " Conduit	Yes Yes	2.00 2.00	0.000 0.000	0.00 2.00	0.00 0.33	0.00 0.00	0.080 0.081	0.000 0.000	8.032 8.119	0.00	0.00
	" Reinforcing plate	Yes	2.00	0.000	1.00	0.33	0.00	0.081	0.000	8.119	0.00 0.00	9.66 0.00
	" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.081	0.000	8.119	0.00	0.00
	" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.081	0.000	8.119	0.00	0.00
	" Conduit " Reinforcing plate	Yes	0.50	0.000	2.00	0.08	0.00	0.082	0.000	8.141	0.00	2.42
	"Reinforcing plate	Yes Yes	0.50 0.50	0.000 0.000	1.00 0.00	0.04 0.00	0.00 0.00	0.082 0.082	0.000 0.000	8.141 8.141	0.00 0.00	0.00 0.00
	"Reinforcing plate	Yes	0.50	0.000	0.00	0.00	0.00	0.082	0.000	8.141 8.141	0.00	0.00
	" Conduit	Yes	0.21	0.000	2.00	0.04	0.00	0.082	0.000	8.149	0.00	1.01
	" Reinforcing plate	Yes	0.21	0.000	1.00	0.02	0.00	0.082	0.000	8.149	0.00	0.

		Line	ar Appur	tenar	nce Seg	ment F	orces	(Fact	ored)		3	
Struct Site N Height	ame: Middletowr				Code: Expos Crest		TIA-222 C 0.00	2-H		10/4/2022	² (((₩)))	25
Base I					Site C	lass:	D - Stiff	Soil				10
Gh:	1.1	Тор	ography:	1	Struc	t Class:	П			Page: 6	1 Tower Eng	ineering Solutions
_	Case: 1.0D + 1.0 Dead Load Fac Wind Load Fac)W 60 mph ctor 1.0	Wind 0						2	×	Iteration	s 23
Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (Ib)
40.71	1" Reinforcing plate	Yes	0.21	0.000	0.00	0.00	0.00	0.082	0.000	8.149	0.00	0.00
40.71	1" Reinforcing plate	Yes	0.21	0.000	0.00	0.00	0.00	0.082	0.000	8.149	0.00	0.00 6.23
	2" Conduit	Yes	1.29	0.000	2.00	0.21	0.00	0.082 0.082	0.000 0.000	8.203 8.203	0.00 0.00	0.00
	1" Reinforcing plate	Yes	1.29 1.29	0.000	1.00 0.00	0.11 0.00	0.00 0.00	0.082	0.000	8.203	0.00	0.00
	1" Reinforcing plate 1" Reinforcing plate	Yes Yes	1.29	0.000	0.00	0.00	0.00	0.082	0.000	8.203	0.00	0.00
	2" Conduit	Yes	1.33	0.000	2.00	0.22	0.00	0.082	0.000	8.257	0.00	6.44
	1" Reinforcing plate	Yes	1.33	0.000	1.00	0.11	0.00	0.082	0.000	8.257	0.00	0.00
	1" Reinforcing plate	Yes	1.33	0.000	0.00	0.00	0.00	0.082	0.000	8.257	0.00	0.00
	1" Reinforcing plate	Yes	1.33	0.000	0.00	0.00	0.00	0.082	0.000	8.257 8.284	0.00 0.00	0.00 3.22
	2" Conduit	Yes	0.67	0.000	2.00 1.00	0.11 0.06	0.00 0.00	0.083 0.083	0.000 0.000	6.204 8.284	0.00	0.00
	1" Reinforcing plate	Yes Yes	0.67 0.67	0.000	0.00	0.00	0.00	0.083	0.000	8.284	0.00	0.00
	1" Reinforcing plate 1" Reinforcing plate	Yes	0.67	0.000	0.00	0.00	0.00	0.083	0.000	8.284	0.00	0.00
	2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.083	0.000	8.362	0.00	9.66
	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.083	0.000	8.362	0.00	0.00
46.00	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.083	0.000	8.362	0.00	0.00
	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.083	0.000	8.362 8.437	0.00 0.00	0.00 9.66
	2" Conduit	Yes	2.00	0.000	2.00	0.33 0.17	0.00 0.00	0.084 0.084	0.000 0.000	8.437 8.437	0.00	9.00 0.00
	1" Reinforcing plate	Yes	2.00 2.00	0.000	1.00 0.00	0.17	0.00	0.084	0.000	8.437	0.00	0.00
	1" Reinforcing plate 1" Reinforcing plate	Yes Yes	2.00	0.000	0.00	0.00	0.00	0.084	0.000	8.437	0.00	0.00
	2" Conduit	Yes	0.12	0.000	2.00	0.02	0.00	0.083	0.000	8.441	0.00	0.58
	1" Reinforcing plate	Yes	0.12	0.000	1.00	0.01	0.00	0.083	0.000	8.441	0.00	0.00
	1" Reinforcing plate	Yes	0.12	0.000	0.00	0.00	0.00	0.083	0.000	8.441	0.00	0.00
48.12	1" Reinforcing plate	Yes	0.12	0.000	0.00	0.00	0.00	0.083	0.000	8.441	0.00	0.00 9.08
	2" Conduit	Yes	1.88	0.000	2.00	0.31	0.00	0.084	0.000	8.510 8.510	0.00 0.00	9.08 0.00
	1" Reinforcing plate	Yes	1.88	0.000	1.00	0.16 0.00	0.00 0.00	0.084 0.084	0.000 0.000	8.510	0.00	0.00
	1" Reinforcing plate	Yes Yes	1.88 1.88	0.000 0.000	0.00 0.00	0.00	0.00	0.084	0.000	8.510	0.00	0.00
	1" Reinforcing plate 2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.084	0.000	8.580	0.00	9.66
	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.084	0.000	8.580	0.00	0.00
	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.084	0.000	8.580	0.00	0.00
	1" Reinforcing plate	Yes	0.50	0.000	0.00	0.00	0.00	0.084	0.000	8.580	0.00	0.00
	2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.085	0.000	8.649 8.649	0.00 0.00	9.66 0.00
	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17 0.00	0.00 0.00	0.085 0.085	0.000 0.000	8.649 8.649	0.00	0.00
	1" Reinforcing plate	Yes Yes	2.00 2.00	0.000 0.000	0.00 2.00	0.00	0.00	0.085	0.000	8.715	0.00	9.66
	2" Conduit 1" Reinforcing plate	Yes Yes	2.00	0.000	1.00	0.33	0.00	0.086	0.000	8.715	0.00	0.00
	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.086	0.000	8.715	0.00	0.00
	2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.087	0.000	8.780	0.00	9.66
	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.087	0.000	8.780	0.00	0.00
	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.087	0.000	8.780	0.00	0.00
60.00	2" Conduit	Yes	2.00	0.000	2.00	0.33	0.00	0.087	0.000	8.843	0.00	9.66 0.00
	1" Reinforcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.087	0.000 0.000	8.843 8.843	0.00 0.00	0.00
60.00	1" Reinforcing plate	Yes	2.00	0.000	0.00	0.00	0.00	0.087	0.000	0.040	0.00	0.00

Copyright © 2022 by Tower Engineering Solutions, LLC. All rights reserved.

0.00

0.12

0.00

2.00

2.00

0.71

Yes

Yes

60.00 1" Reinforcing plate

60.71 2" Conduit

0.000

0.000

0.00

0.088

0.000

8.865

0.00

3.43

Į.		Line	ar Appu	Irtenai	nce Seg	ment F	orces	(Fact	ored)			
Structure: Site Name: Height: Base Elev:	CT13064- Middletow 130.00 (ft) 0.000 (ft)	n 2, CT								10/4/2022	2 (((H)))	ES
Gh:	0.000 (it) 1.1	Тог	ography	: 1		lass: t Class:	D - Stif	T SOII		Page: 62	Tower Eng	ineering Solutio
											2	
	: 1.0D + 1.0 ad Load Fa								X		Iteration	i s 23
Wii	nd Load Fa	ctor 1.0	0						2			
Top Elev (ft) De	escription	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (Ib)
60.71 1" Rein	forcing plate	Yes	0.71	0.000	1.00	0.06	0.00	0.088	0.000	8.865	0.00	0.00
	forcing plate	Yes	0.71	0.000	0.00	0.00	0.00	0.088	0.000	8.865	0.00	0.00
60.75 2" Cond		Yes	0.04	0.000	2.00	0.01	0.00	0.088	0.000	8.866	0.00	0.19
60.75 1" Rein 60.75 1" Rein		Yes Yes	0.04 0.04	0.000 0.000	1.00 0.00	0.00 0.00	0.00	0.088	0.000	8.866	0.00	0.00
62.00 2" Cond		Yes	1.25	0.000	2.00	0.00	0.00 0.00	0.088 0.088	0.000 0.000	8.866 8.904	0.00 0.00	0.00 6.04
52.00 1" Rein	forcing plate	Yes	1.25	0.000	1.00	0.10	0.00	0.088	0.000	8.904	0.00	0.04
52.00 1" Rein		Yes	1.25	0.000	0.00	0.00	0.00	0.088	0.000	8.904	0.00	0.00
64.00 2" Cond		Yes	2.00	0.000	2.00	0.33	0.00	0.089	0.000	8.964	0.00	9.66
64.00 1" Rein		Yes	2.00	0.000	1.00	0.17	0.00	0.089	0.000	8.964	0.00	0.00
64.00 1" Rein 6.00 2" Cond		Yes Yes	1.33 2.00	0.000 0.000	0.00 2.00	0.00	0.00	0.089	0.000	8.964	0.00	0.00
	forcing plate	Yes	2.00	0.000	2.00	0.33 0.17	0.00 0.00	0.090 0.090	0.000 0.000	9.022 9.022	0.00 0.00	9.66
68.00 2" Cond		Yes	2.00	0.000	2.00	0.33	0.00	0.090	0.000	9.022	0.00	0.00 9.66
68.00 1" Rein	forcing plate	Yes	2.00	0.000	1.00	0.17	0.00	0.091	0.000	9.079	0.00	0.00
70.00 2" Cond		Yes	2.00	0.000	2.00	0.33	0.00	0.092	0.000	9.134	0.00	9.66
'0.00 1" Reini	• •	Yes	2.00	0.000	1.00	0.17	0.00	0.092	0.000	9.134	0.00	0.00
2.00 2" Cond 2.00 1" Reint	forcing plate	Yes Yes	2.00 2.00	0.000	2.00	0.33	0.00	0.092	0.000	9.189	0.00	9.66
4.00 2" Cond		Yes	2.00	0.000 0.000	1.00 2.00	0.17 0.33	0.00 0.00	0.092 0.093	0.000 0.000	9.189	0.00	0.00
	forcing plate	Yes	2.00	0.000	1.00	0.33	0.00	0.093	0.000	9.242 9.242	0.00 0.00	9.66 0.00
6.00 2" Conc		Yes	2.00	0.000	2.00	0.33	0.00	0.094	0.000	9.294	0.00	9.66
6.00 1" Reint		Yes	2.00	0.000	1.00	0.17	0.00	0.094	0.000	9.294	0.00	0.00
8.00 2" Cond		Yes	2.00	0.000	2.00	0.33	0.00	0.095	0.000	9.345	0.00	9.66
'8.00 1" Reint '8.25 2" Conc	÷ ·	Yes	2.00	0.000	1.00	0.17	0.00	0.095	0.000	9.345	0.00	0.00
8.25 2 Cond 8.25 1" Reinf		Yes Yes	0.25 0.25	0.000 0.000	2.00 1.00	0.04	0.00	0.096	0.000	9.351	0.00	1.21
0.00 2" Cond		Yes	1.75	0.000	2.00	0.02 0.29	0.00 0.00	0.096 0.096	0.000 0.000	9.351 9.395	0.00 0.00	0.00
0.00 1" Reinf		Yes	1.75	0.000	1.00	0.15	0.00	0.096	0.000	9.395	0.00	8.45 0.00
32.00 2" Cond		Yes	2.00	0.000	2.00	0.33	0.00	0.081	0.000	9.444	0.00	9.66
2.00 1" Rein	•••	Yes	1.00	0.000	1.00	0.08	0.00	0.081	0.000	9.444	0.00	0.00
4.00 2" Cond 6.00 2" Cond		Yes	2.00	0.000	2.00	0.33	0.00	0.065	0.000	9.492	0.00	9.66
7.42 2" Cond		Yes Yes	2.00 1.42	0.000 0.000	2.00 2.00	0.33 0.24	0.00 0.00	0.066 0.067	0.000	9.539	0.00	9.66
8.00 2" Cond		Yes	0.58	0.000	2.00	0.24 0.10	0.00	0.067	0.000 0.000	9.572 9.585	0.00 0.00	6.84 2.82
0.00 2" Cond		Yes	2.00	0.000	2.00	0.33	0.00	0.068	0.000	9.631	0.00	2.62 9.66
1.33 2" Cond		Yes	1.33	0.000	2.00	0.22	0.00	0.068	0.000	9.661	0.00	6.44
2.00 2" Cond		Yes	0.67	0.000	2.00	0.11	0.00	0.068	0.000	9.675	0.00	3.22
04.00 2" Cond		Yes	2.00	0.000	2.00	0.33	0.00	0.068	0.000	9.719	0.00	9.66
96.00 2" Cond 98.00 2" Cond		Yes Yes	2.00 2.00	0.000	2.00	0.33	0.00	0.069	0.000	9.762	0.00	9.66
0.00 2 Cond		Yes	2.00	0.000 0.000	2.00 2.00	0.33 0.33	0.00 0.00	0.070 0.070	0.000 0.000	9.805 9.847	0.00	9.66
2.00 2" Cond		Yes	2.00	0.000	2.00	0.33	0.00	0.070	0.000	9.847 9.888	0.00 0.00	9.66 9.66
4.00 2" Cond		Yes	2.00	0.000	2.00	0.00	0.00	0.071	0.000	9.000	0.00	9.00

Copyright © 2022 by Tower Engineering Solutions, LLC. All rights reserved.

0.33

0.33

0.33

0.33

2.00

2.00

2.00

2.00

104.00 2" Conduit

106.00 2" Conduit

108.00 2" Conduit

110.00 2" Conduit

Yes

Yes

Yes

Yes

2.00

2.00

2.00

2.00

0.000

0.000

0.000

0.000

0.00

0.00

0.00

0.00

0.072

0.073

0.074

0.074

0.000

0.000

0.000

0.000

9.928

9.968

10.008

10.046

0.00

0.00

0.00

0.00

9.66

9.66

9.66

9.66

36

		Line	ar Appu	rtenar	nce Seg	ment F	orces	(Fact	ored)			
Structur	e: CT13064-A	-SBA			Code		TIA-222	2-H		10/4/2022	44.000.0	
Site Nan	ne: Middletown	2. CT			Expo	sure:	С					0
Height:	130.00 (ft)	_,			Crest	Height:	0.00				1 1	
-					Site C	-	D - Stiff	Soil				ES -
Base Ele		_						501		D 00	Tower Eng	incering Solutions
Gh:	1.1	Тор	ography:	1	Struc	t Class:				Page: 63	5	
	ase: 1.0D + 1.0 Dead Load Fac Wind Load Fac	tor 1.0	0						2	x	Iteration	i s 23
Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (ib)
Elev (ft)	Description		-	Ca 0.000	Width			Ra 0.075	Adjust			Load
Elev (ft) 112.00 2" (Exposed	(ft)		Width (in)	(sqft)	(sqft)		Adjust Factor	(psf)	(Ib)	Load (Ib) 9.66 9.66
Elev (ft) 112.00 2" (114.00 2" (Conduit	Exposed Yes	(ft) 2.00	0.000	Width (in) 2.00	(sqft) 0.33	(sqft) 0.00	0.075 0.076 0.077	Adjust Factor 0.000 0.000 0.000	(psf) 10.085 10.122 10.159	(lb) 0.00 0.00 0.00	Load (Ib) 9.66 9.66 9.66
Elev (ft) 112.00 2" (114.00 2" (116.00 2" (Conduit Conduit	Exposed Yes Yes	(ft) 2.00 2.00	0.000	Width (in) 2.00 2.00 2.00 2.00	(sqft) 0.33 0.33 0.33 0.33	(sqft) 0.00 0.00 0.00 0.00	0.075 0.076 0.077 0.078	Adjust Factor 0.000 0.000 0.000 0.000	(psf) 10.085 10.122 10.159 10.196	(lb) 0.00 0.00 0.00 0.00	Load (Ib) 9.66 9.66 9.66 9.66
Elev (ft) 112.00 2" (114.00 2" (116.00 2" (118.00 2" (Conduit Conduit Conduit	Exposed Yes Yes Yes Yes Yes	(ft) 2.00 2.00 2.00 2.00 2.00 2.00	0.000 0.000 0.000 0.000 0.000	Width (in) 2.00 2.00 2.00 2.00 2.00 2.00	(sqft) 0.33 0.33 0.33 0.33 0.33	(sqft) 0.00 0.00 0.00 0.00 0.00	0.075 0.076 0.077 0.078 0.079	Adjust Factor 0.000 0.000 0.000 0.000 0.000	(psf) 10.085 10.122 10.159 10.196 10.232	(lb) 0.00 0.00 0.00 0.00 0.00	Load (Ib) 9.66 9.66 9.66 9.66 9.66
Elev (ft) 112.00 2" (114.00 2" (116.00 2" (118.00 2" (120.00 2" (122.00 2" (Conduit Conduit Conduit Conduit Conduit Conduit	Exposed Yes Yes Yes Yes Yes Yes	(Ħ) 2.00 2.00 2.00 2.00 2.00 2.00 2.00	0.000 0.000 0.000 0.000 0.000 0.000	Width (in) 2.00 2.00 2.00 2.00 2.00 2.00 2.00	(sqft) 0.33 0.33 0.33 0.33 0.33 0.33 0.33	(sqft) 0.00 0.00 0.00 0.00 0.00 0.00	0.075 0.076 0.077 0.078 0.079 0.111	Adjust Factor 0.000 0.000 0.000 0.000 0.000 1.033	(psf) 10.085 10.122 10.159 10.196 10.232 10.268	(Ib) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Load (ib) 9.66 9.66 9.66 9.66 9.66 9.66
Elev (ft) 112.00 2" (114.00 2" (116.00 2" (118.00 2" (120.00 2" (122.00 2" (124.00 2" (Conduit Conduit Conduit Conduit Conduit Conduit Conduit	Exposed Yes Yes Yes Yes Yes Yes Yes	(ft) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	0.000 0.000 0.000 0.000 0.000 0.000 0.000	Width (in) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	(sqft) 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.3	(sqft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.075 0.076 0.077 0.078 0.079 0.111 0.111	Adjust Factor 0.000 0.000 0.000 0.000 1.033 1.033	(psf) 10.085 10.122 10.159 10.196 10.232 10.268 10.303	(lb) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Load (ib) 9.66 9.66 9.66 9.66 9.66 9.66 9.66
Elev (ft) 112.00 2" (114.00 2" (116.00 2" (118.00 2" (120.00 2" (122.00 2" (124.00 2" (126.00 2" (Conduit Conduit Conduit Conduit Conduit Conduit Conduit Conduit	Exposed Yes Yes Yes Yes Yes Yes Yes Yes	(ft) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Width (in) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	(sqft) 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.3	(sqft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.075 0.076 0.077 0.078 0.079 0.111 0.111	Adjust Factor 0.000 0.000 0.000 0.000 1.033 1.033 1.033	(psf) 10.085 10.122 10.159 10.196 10.232 10.268 10.303 10.338	(lb) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Load (ib) 9.66 9.66 9.66 9.66 9.66 9.66 9.66 9.6
Elev (ft) 112.00 2" (114.00 2" (116.00 2" (118.00 2" (120.00 2" (122.00 2" (124.00 2" (126.00 2" (128.00 2" (Conduit Conduit Conduit Conduit Conduit Conduit Conduit	Exposed Yes Yes Yes Yes Yes Yes Yes	(ft) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	0.000 0.000 0.000 0.000 0.000 0.000 0.000	Width (in) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	(sqft) 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.3	(sqft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.075 0.076 0.077 0.078 0.079 0.111 0.111	Adjust Factor 0.000 0.000 0.000 0.000 1.033 1.033	(psf) 10.085 10.122 10.159 10.196 10.232 10.268 10.303	(lb) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Load (ib) 9.66 9.66 9.66 9.66 9.66 9.66 9.66

Structure: C11304A-SEBA Code: TVA-222-H 10/4/2021 Site Name: Middletown 2, CT Exposure: C Creat Height: 0.00 Creat Height: Creat Height: Creat Height: Creat Height: 0.00 Creat Height: Creat				Ţ		-	Calc	ulated Fo	rces					Ţ	
Height: 130.00 (ft) Creat Height: 0.00 Site Class: D. Stiff Soil Gh: 1.1 Topography: 1 Struct Class: II Page: 6I Image: 6I Load Case: 1.00 Min Resultant phi	Struc	ture:	CT130)64-A-S	SBA			Code:	TIA	-222-H		10/4	4/2022	Lann Ab	
Base Elev: 0.000 (ft) Site Class: D - Stiff Soil Proge: 4 Concentration Load Case: 1.00 Topography: 1 Struct Class:: II Page: 4 Concentration 23 Base Elev: 0.00 Topography: 1 Struct Class:: II Page: 4 Concentration 23 Seg PY (-) Vu Mu Mu Mu Nu	Site N	Name:	Middle	town 2	, СТ			Exposure:	С					በጫካ	
Gh: 1.1 Topography: 1 Struct Class: Page: 61 Torrespecting statute Load Case: 1.00 Image: 61	Heigh	ht:	130.00) (ft)				Crest Heig	ht: 0.0	0				E	C
Image: International and the probability of the	Base	Elev:	0.000	(ft)				Site Class	: D-	Stiff Soi	1				5
Dead Load Factor 1.00 Sign of Lines Dead Load Factor 1.00 Sign of Lines Phi Phi </td <td>Gh:</td> <td></td> <td>1.1</td> <td></td> <td>То</td> <td>pography:</td> <td>1</td> <td>Struct Clas</td> <td>ss: II</td> <td></td> <td></td> <td>Pa</td> <td>ge: 64</td> <td>Tower Engineer</td> <td>ring Solutions</td>	Gh:		1.1		То	pography:	1	Struct Clas	ss: II			Pa	ge: 64	Tower Engineer	ring Solutions
Dead Load Factor 1.00 Sign of Lines Dead Load Factor 1.00 Sign of Lines Phi Phi </th <th></th> <th>Wa</th> <th></th> <th></th> <th></th>												Wa			
Desk Gust Factor 1.00 Seg Pu Vu Tu Mu Mu Resultant (Pt/) Phi (Vs)	Load											1		erations	23
Seg Pu Vu Tu Mu Mu Resultant phi phi <th></th> <th>-</th> <th>-</th> <th></th> <th></th>												-	-		
Eliev FY () FX () MY () MX Moment Pn Yn Tn Mn Deflect Sway Twist Strass 0.00 -34.45 -7.38 0.00 -734.10 0.00 7734.10 281.84 723.82 252.04 244.84 0.00 0.000 0.146 0.00 -33.86 -7.33 0.00 -719.34 0.00 774.84 2805.89 278.94 232.64 236.80 0.00 -0.042 0.000 0.148 0.00 -32.91 -7.27 0.00 -669.34 0.000 669.39 277.94 242.12 221.01 0.110 0.000 0.138 10.00 -32.44 -7.22 0.00 -669.34 0.000 669.03 277.91 224.124 230.10 1.014 0.000 0.148 12.00 -32.16 -7.22 0.000 661.75 278.94 70.11 248.91 0.241 0.000 0.134 12.00 -7.45 0.00 <th></th> <th>win</th> <th></th> <th>I Facto</th> <th>r 1.0</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>2</th> <th>*</th> <th></th> <th></th> <th></th>		win		I Facto	r 1.0						2	*			
(H) (H) <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>-</th> <th>•</th> <th></th> <th>Rotation</th> <th>Rotation</th> <th></th>									-	-	•		Rotation	Rotation	
0.00 - 34.46 - 7.38 0.00 - 779.41 0 0.00 - 778.41 0 278.19 774.58 2 2776.40 244.64 0 0.00 - 0.002 0 0.000 0 146 4 0.00 - 33.68 - 7.33 0.00 - 779.44 0.00 - 770.64 2 280.26 248.63 0.00 - 0.021 0 0.000 0 146 4 0.00 - 33.68 - 7.33 0.00 - 704.64 0.00 - 770.64 2 292.73 723.64 248.52 248.50 0.02 - 0.042 0.000 0 144 0.00 - 33.68 - 7.72 0 0.00 - 669.99 0.00 6 669.89 2776.46 718.13 2463.11 2260.01 0.04 -0.062 0.000 0.142 0.000 - 32.54 - 7.24 0.00 - 669.59 0.00 6 669.84 2752.56 707.32 284.65 230.15 0.11 -0.103 0.000 0.146 1.25 -32.49 - 7.25 0.00 -665.93 0.00 6 668.13 2750.66 710.72 248.42 24 233.86 0.07 -0.083 0.000 0.146 1.25 -32.49 - 7.25 0.00 -664.35 0.00 6 661.84 2752.56 707.32 284.66 230.17 0 -10.16 0.000 0.145 1.20 0.23.54 - 7.25 0.00 -664.35 0.00 6 661.84 2752.56 707.32 284.64 224.7 0.11 -0.103 0.000 0.141 1.600 -31.62 - 7.12 0.00 -663.16 0.00 6 63.16 0 2725.20 665.0 2213.27 0.11 -0.125 0.000 0.141 1.600 -31.42 -7.17 0.00 -663.16 0.00 661.42 1275.26 681.92 2205.87 2157.44 214.91 0.28 0.18 0.000 0.137 2.200 -30.88 -7.11 0.00 -663.16 0.00 663.15 2275.27 681.92 2175.24 244.91 0.228 0.167 0.000 0.137 2.200 -30.38 -7.11 0.00 -665.31 0.00 657.45 2861.2 674.88 2170.95 2128.44 0.44 -0.210 0.000 0.134 0.250 -7.11 0.00 -668.51 0.00 574.65 2864.98 686.92 2216.72 167.40 0.44 0.215 0.000 0.134 0.250 -7.20 0.00 -560.47 0.00 584.67 2163 2497.91 2150.28 0.46 0.53 0.221 0.000 0.133 1.7.99 0.00 -574.65 0.200 574.65 2864.06 664.7 2101.92 0.120 -0.22 0.020 0.131 2.569 -7.00 0.00 -560.47 0.00 580.87 2854.26 686.92 2015.20 0.120 0.140 0.53 0.221 0.000 0.134 0.53 0.221 0.000 0.134 0.53 0.221 0.000 0.134 0.53 0.221 0.000 0.134 0.53 0.221 0.000 0.134 0.53 0.221 0.000 0.133 0.00 2.884 2.47 0.429 2.47 2.41 230.38 0.00 0.131 2.569 -7.00 0.00 -560.47 0.00 583.15 0.00 574.55 2864.6 664.97 2101.94 201.92 0.74 -0.272 0.000 0.113 0.53 0.220 0.00 0.131 0.53 0.220 0.00 0.131 0.53 0.220 0.00 0.131 0.53 0.220 0.00 0.131 0.53 0.220 0.00 0.131 0.53 0.220 0.00 0.131 0.53 0.220 0.00 0.131 0.53 0.200 0.153 0.00 0.533.15 0.00 533.15 0.00 533.1				•••									1.000		
200 34.06 -7.53 0.00 -719.34 2005.89 728.34 252.26 241.85 0.00 0.021 0.000 0.144 6.00 -33.29 -7.30 0.00 -794.64 0.000 675.39 0.00 675.39 2766.06 712.72 242.142 230.08 0.07 -0.063 0.000 0.144 8.00 -32.24 -7.24 0.00 660.49 0.00 660.44 2775.26 707.32 234.65 220.175 0.11 -0.106 0.000 0.143 10.00 -32.49 -7.22 0.00 646.39 0.00 651.57 717.32 248.45 220.175 0.1146 0.000 0.143 14.00 -31.75 -7.22 0.00 647.39 0.00 631.90 2752.0 666.50 231.20 224.77 0.164 0.000 0.137 20.00 -30.58 -7.11 0.00 583.87 0.00 583.7 268.7 175.44 0.44 0.270															
4.00 -33.68 -7.33 0.00 -684.94 0.00 689.89 277.47 77.25.45 2465.26 2580.04 0.00 0.144 8.00 -32.91 -7.27 0.00 -685.93 0.00 675.39 2766.06 716.12 248.11 250.04 0.00 0.140 10.00 -32.24 -7.24 0.00 645.83 0.00 646.83 2756.86 710.732 238.46 230.17 0.111 -0.108 0.000 0.143 12.00 -32.16 -7.22 0.00 645.33 0.00 646.35 2738.94 71.91 234.83 227.27 0.16 -0.125 0.000 0.114 16.00 -31.45 -7.15 0.00 631.80 0.00 631.80 0.00 631.81 0.287.27 0.16 -0.125 0.000 0.131 20.00 -33.14 0.00 633.8 0.00 658.31 0.00 658.47 0.283.2 60.20 20.214 0.214 0.225 <td></td> <td></td> <td>-7.35</td> <td></td>			-7.35												
8.00 -32.91 -7.27 0.00 -675.38 0.276.38 2765.08 712.72 2421.24 2430.88 0.07 -0.083 0.000 0.138 10.00 -32.44 -7.27 0.00 -660.84 0.00 660.84 2752.56 707.32 2384.55 2301.75 0.11 -0.106 0.000 0.145 12.00 -32.16 -7.22 0.00 -661.85 0.00 664.33 2738.94 701.91 2384.36 2243.77 0.21 -0.146 0.000 0.141 16.00 -31.42 -7.17 0.00 617.50 0.00 661.50 2711.35 691.10 2276.47 214.91 0.28 -0.168 0.000 0.137 20.00 -30.88 -7.11 0.00 688.87 0.00 588.87 2683.12 2679.48 2719.11 210.24 40.44 -0.212 0.000 0.133 20.00 -30.88 -7.08 0.00 -546.63 2660.92 2076.48 210.24	4.00	-33.68	-7.33	0.00	-704.64	0.00	704.64	2792.73	723.54	2495.26	2389.30	0.02			
$ 1000 32.44 .7.24 0.00 660.84 0.00 660.84 2752.66 .773 .2384.65 .2394.65 .2391.75 0.11 -0.106 0.000 0.148 \\ 10.25 .32.49 .7.25 0.00 .640.33 0.00 659.03 .2750.86 706.64 .2380.10 .2291.75 0.11 -0.106 0.000 0.143 \\ 14.00 .31.79 .7.20 0.00 .641.80 0.00 641.90 .2752.20 .666.5 .2312.30 .2291.75 0.11 -0.126 0.000 0.143 \\ 14.00 .31.42 .7.17 0.00 .631.80 0.00 .617.50 .2711.35 .691.10 .2291.64 .2243.77 0.21 -0.146 0.000 0.139 \\ 16.00 .31.42 .7.17 .0.0 .638.87 0.00 .688.7 .2683.23 .2692.64 .2241.97 0.21 .0.146 0.000 0.139 \\ 16.00 .31.6 .7.16 .0.0 .658.81 0.00 .663.16 .2687.38 .686.89 .2241.07 .216.13 .0.35 -0.168 0.000 .0.139 \\ 12.00 .30.59 .7.11 .0.0 .588.87 0.00 .586.87 .2683.2 .205.87 .216.3.3 .0.35 -0.168 0.000 .0.139 \\ 22.00 .30.59 .7.11 .0.0 .560.47 .0.00 .560.47 .2664.82 .2669.49 .210.84 0.46 .0.215 0.000 .0.131 \\ 25.69 .22.95 .7.68 0.00 .560.47 .0.00 .560.47 .2664.82 .2669.47 .2168.30 .210.28 0.46 .0.225 .0.000 .0.131 \\ 25.69 .22.80 .7.13 .0.00 .560.47 .0.00 .560.47 .2664.82 .2669.4 .210.84 .0.65 .0.226 .0.000 .0.131 \\ 25.68 .22.49 .7.3 .0.00 .560.47 .0.00 .560.47 .2654.82 .266.94 .210.84 .0.74 .0.273 .0.000 .0.131 \\ 25.68 .22.49 .7.3 .0.00 .533.15 .0.00 .533.15 .262.57 .658.69 .2069.49 .004.56 .0.26 .0.26 .0.00 .0.133 \\ 26.00 .22.59 .7.3 .0.00 .533.15 .0.00 .533.15 .262.57 .658.69 .2074.6 .204.85 .0.86 .0.293 .0.000 .0.133 \\ 26.00 .27.8 .68.8 .690 .0.0 .456.41 .0.00 .466.41 .203.8 .0.86 .0.293 .0.00 .0.133 \\ 26.00 .27.8 .68.8 .0.00 .456.8 .0.00 .456.8 .209.4 .0.00 .133 \\ 26.00 .27.8 .68.8 .0.00 .456.8 .0.00 .456.8 .209.4 .0.00 .133 \\ 26.00 .27.4 .68.8 .0.00 .456.4 .0.00 .456.8 .0.00 $	6.00	-33.29	-7.30	0.00	-689.99	0.00	689.99	2779.45	718.13	2458.11	2360.04	0.04	-0.062	0.000	0.142
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8.00		-7.27	0.00	-675.39	0.00	675.39	2766.06	712.72	2421.24	2330.86	0.07	-0.083	0.000	0.140
18.00 -31.05 -7.15 0.00 -603.16 0.00 603.16 2697.39 685.69 2241.07 2186.13 0.35 -0.189 0.000 0.137 20.00 -30.68 -7.11 0.00 -588.87 0.00 568.31 2567.36 679.32 197.11 2162.8 0.44 0.210 0.000 0.135 20.00 -30.31 -7.09 0.00 -574.65 0.00 574.65 2567.36 679.32 197.11 2162.8 0.61 0.215 0.000 0.133 24.00 -29.59 -7.03 0.00 -546.63 0.00 560.47 2664.22 666.47 210.262 207.49 0.74 -0.272 0.000 0.113 25.00 -7.03 0.00 -546.63 0.00 546.63 2640.26 664.07 2101.94 0.719 0.774 0.272 0.000 0.113 26.00 -29.26 -7.00 0.00 -533.15 $0.261.74$ 656.99 2068.91 2054.5 0.79 0.281 0.000 0.133 28.00 -29.28 -7.00 0.00 -533.15 $0.262.174$ 658.29 2045.51 0.99 -0.281 0.000 0.133 28.00 -29.28 -7.00 0.00 -533.15 $0.262.74$ 658.29 2045.50 0.85 -2.292 0.000 0.133 28.00 -28.28 -6.97 0.00 -548.37 563.66 2067.85 2045.50 0.0															
20.00 -30.68 -7.11 0.00 588.87 0.00 588.87 2683.32 680.29 220.587 2157.44 0.44 -0.210 0.000 0.135 20.00 -30.59 -7.11 0.00 -585.31 0.00 568.51 2669.12 674.88 2170.95 212.84 0.53 0.231 0.200 0.133 24.00 -29.59 -7.06 0.00 -560.47 0.00 566.37 0.248 217.95 212.84 0.53 0.221 0.01 4.0272 0.00 0.131 25.66 -29.56 -7.03 0.00 -564.35 0.00 564.63 2626.74 656.99 2069.89 2045.45 0.85 -0.221 0.00 0.133 26.00 -22.52 -7.00 0.00 -533.15 0.00 553.31 0.00 518.31 2625.7 656.69 2069.89 204.85 0.86 -0.229 0.00 0.133 28.00 -28.25 -5.94 0.00 -548.31 <td></td>															
20.50 -30.59 -7.11 0.00 585.31 2679.78 678.93 2197.11 2150.28 0.46 -0.215 0.000 0.134 22.00 -30.31 -7.09 0.00 574.65 0.00 574.85 2266.12 674.88 1071.95 2128.84 0.63 -0.227 0.000 0.131 25.00 -27.03 0.00 546.35 0.00 546.45 2660.47 210.282 2072.49 0.74 -0.272 0.000 0.113 25.00 -29.59 -7.03 0.00 546.35 0.00 546.35 260.01 261.94 2077.49 0.74 -0.272 0.000 0.113 26.00 -29.23 -7.00 0.00 533.15 0.00 533.15 2625.87 658.69 2043.61 0.86 -0.292 0.000 0.133 30.00 -28.88 -6.97 0.00 504.37 2585.46 684.24 1967.27 1.12 -0.336 0.000 0.126 34.00<															
22.00 -30.31 -7.09 0.00 -574.65 0.00 574.65 2669.12 674.88 2170.95 2128.44 0.53 -0.211 0.000 0.133 24.00 -29.95 -7.06 0.00 -560.47 0.00 560.47 2640.69 664.78 2102.30 2100.34 0.63 -0.227 0.000 0.113 25.06 -29.59 -7.03 0.00 546.35 0.00 546.35 2640.69 664.18 2102.45 0.74 -0.273 0.000 0.113 26.80 -29.24 -7.01 0.00 540.35 0.00 533.15 0.00 532.31 2626.74 658.69 2045.50 0.85 -0.292 0.000 0.133 30.00 -28.88 -6.87 0.00 518.31 0.00 518.31 2611.22 653.25 2034.05 2015.39 0.99 -0.314 0.000 0.129 34.00 -27.47 -6.84 0.00 462.43 2565.59 651.22 1987.27 1.12 -0.335 0.000 0.122 34.00 -27.47 <td></td>															
24.00 -29.95 -7.06 0.00 -660.47 0.00 560.47 2654.82 669.47 2136.30 210.34 0.63 -0.252 0.000 0.131 25.96 -7.03 0.00 -546.63 0.00 546.63 2640.69 664.17 2101.62 2072.49 0.74 0.272 0.000 0.113 26.88 -29.23 -7.01 0.00 -533.15 0.00 533.15 2662.74 658.69 2045.30 0.85 -0.292 0.000 0.133 30.00 -28.88 -6.97 0.00 -533.15 0.00 533.11 2611.22 653.65 2045.81 0.86 -0.292 0.000 0.133 30.00 -28.88 -6.97 0.00 -518.31 0.00 518.31 2611.22 653.65 2034.05 2187.7 112 -0.336 0.000 0.129 34.00 -27.12 -6.88 0.00 476.68 2565.59 637.04 1934.30 1831.7 1.42 -0.337 0.000 0.122 36.00 -77.47 -6.84 0.00															
25.96 25.96 7.03 0.00 546.63 0.00 546.63 264.06 664.18 2102.62 2072.49 0.74 -0.272 0.000 0.113 26.00 -29.59 -7.03 0.00 -540.35 0.000 540.17 2634.02 2101.94 2071.92 0.74 -0.273 0.000 0.134 27.88 -29.26 -7.00 0.00 -533.15 0.00 532.31 2652.67 658.66 2067.85 2043.61 0.86 -0.292 0.000 0.133 30.00 -28.88 -6.97 0.00 -518.31 0.00 518.31 2611.25 653.25 2043.61 0.86 -0.293 0.000 0.133 30.00 -28.88 -6.97 0.00 -504.37 2000 476.78 1953.40 1951.36 1.42 -0.376 0.000 0.126 36.00 -27.47 -6.84 0.00 442.93 251.48 631.43 1931.36 1.59 -0.400 0.000 0	24.00	-29.95	-7.06	0.00	-560.47	0.00									
26.88 -29.43 -7.01 0.00 -540.17 2634.02 661.69 2066.91 2059.45 0.79 -0.281 0.000 0.134 27.88 -29.26 -7.00 0.00 -533.15 0.2628.7 658.66 2045.30 0.85 -0.293 0.000 0.133 30.00 -28.88 -6.97 0.00 -513.31 0.00 518.31 2611.22 653.25 2034.05 2015.39 0.99 -0.314 0.000 0.133 30.00 -28.88 -6.97 0.00 -518.31 0.00 518.31 2611.22 653.25 2034.05 2197.27 1.12 -0.336 0.000 0.129 34.00 -27.82 -6.88 0.00 476.68 2566.59 637.04 1934.30 1931.36 1.42 -0.378 0.000 0.122 40.00 -27.47 -6.80 0.00 -445.44 2532.44 624.87 1861.14 1868.96 1.80 -0.420 0.000 0.112	25.96	-29.60	-7.03	0.00	-546.63	0.00	546.63	2640.69	664.18	2102.62	2072.49	0.74			
27.88 -29.26 -7.00 0.00 -533.15 0.00 533.15 2625.74 658.99 2045.30 0.85 -0.292 0.000 0.133 28.00 -29.23 -7.00 0.00 -532.31 0.00 512.31 2625.87 658.65 2043.65 10.59 0.99 -0.314 0.000 0.131 30.00 -28.52 -6.94 0.00 -543.37 0.00 504.37 2596.46 647.85 200.52 1987.27 1.12 -0.336 0.000 0.129 34.00 -28.72 -6.84 0.00 -466.8 0.00 476.82 2551.48 631.63 1901.61 1903.56 1.59 -0.400 0.000 0.122 36.00 -27.47 -6.84 0.00 4462.93 2551.48 631.63 1901.61 1903.56 1.59 -0.400 0.000 0.122 40.00 -27.13 -6.81 0.00 -445.84 0.00 444.41 2530.62 624.20 1867.76 1866.07 1.82 -0.428 0.000 0.118 40.0171 -27	26.00	-29.59	-7.03	0.00	-546.35	0.00	546.35		664.07	2101.94	2071.92	0.74	-0.273	0.000	0.113
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							540.17		661.69	2086.91	2059.45	0.7 9	-0.281	0.000	0.134
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															
40.71 -27.00 -6.80 0.00 -444.41 0.00 444.41 2530.83 624.30 1857.76 1866.07 1.82 -0.428 0.000 0.118 42.00 -26.78 -6.78 0.00 -435.65 0.00 435.65 2520.93 620.82 1837.06 1848.29 1.94 -0.441 0.000 0.117 43.33 -26.56 -6.75 0.00 -426.61 0.00 422.11 205.48 615.41 1805.20 1820.83 2.13 -0.462 0.000 0.113 46.00 -25.84 -6.71 0.00 -395.21 0.00 395.21 1854.44 491.51 143.93 1347.80 2.53 -0.501 0.000 0.118 48.12 -25.30 -6.67 0.00 -395.21 0.00 395.21 1854.44 491.51 143.93 1347.80 2.53 -0.501 0.000 0.118 48.12 -25.30 -6.67 0.00 -386.80 0.00 381.88 1844.56 487.19 1414.16 1328.74 2.75 -0.526 0.000															
42.00 -26.78 -6.78 0.00 -435.65 0.00 435.65 2520.93 620.82 1837.06 1848.29 1.94 -0.441 0.000 0.117 43.33 -26.56 -6.75 0.00 -426.61 0.00 426.61 2510.64 617.21 1815.79 1829.97 2.06 -0.455 0.000 0.113 46.00 -26.38 -6.71 0.00 -422.11 0.00 422.11 2505.48 615.01 1820.83 2.13 -0.462 0.000 0.113 46.00 -25.32 -6.67 0.00 -395.21 0.00 395.21 1854.44 491.51 1439.37 1347.80 2.53 -0.501 0.000 0.118 48.12 -25.30 -6.67 0.00 -394.41 0.00 381.88 1844.56 487.19 141.416 1328.74 2.75 -0.526 0.000 0.141 50.00 -24.73 -6.60 0.00 -355.39 0.00 355.39 1824.45 478.54 1364.38 1290.76 3.21 -0.574 0.000 0.142	40.71	-27.00	-6.80	0.00											
44.00-26.38-6.740.00-422.110.00422.112505.48615.411805.201820.832.13-0.4620.0000.11346.00-25.84-6.710.00-408.630.00408.632489.92610.001773.631793.482.33-0.4810.0000.11048.00-25.32-6.670.00-395.210.00395.211854.44491.511439.371347.802.53-0.5010.0000.11848.12-25.30-6.670.00-394.410.00394.411853.85491.251437.861346.662.54-0.5020.0000.115150.00-26.02-6.640.00-381.880.00381.881844.56487.191414.161328.742.75-0.5260.0000.14452.00-24.73-6.600.00-368.600.00368.601834.56482.861389.161309.722.97-0.5500.0000.14456.00-24.16-6.570.00-342.250.00342.251814.23474.211339.831271.843.45-0.5980.0000.13260.00-23.87-6.500.00-311.581789.70463.941282.421227.504.07-0.6520.0000.12860.71-23.49-6.450.00-311.580.00311.581789.70464.031282.901227.504.07-0.6520.0000.16160.75			-6.78	0.00		0.00	435.65	2520.93	620.82	1837.06	1848.29	1.94	-0.441	0.000	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												2.06	-0.455	0.000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															
48.12 -25.30 -6.67 0.00 -394.41 0.00 394.41 1853.85 491.25 1437.86 1346.66 2.54 -0.502 0.000 0.151 50.00 -25.02 -6.64 0.00 -381.88 0.00 381.88 1844.56 487.19 1414.16 1328.74 2.75 -0.526 0.000 0.147 52.00 -24.73 -6.60 0.00 -368.60 0.00 368.60 1834.56 482.86 1389.16 1309.72 2.97 -0.550 0.000 0.144 54.00 -24.45 -6.57 0.00 -342.25 0.00 342.25 1814.23 474.21 1339.83 1271.84 3.45 -0.598 0.000 0.132 56.00 -23.87 -6.50 0.00 -329.17 0.00 329.17 1803.89 469.89 1315.50 1252.97 3.71 -0.621 0.000 0.132 60.00 -23.59 -6.47 0.00 -311.58 0.00 311.58 1789.70 464.03 1282.90 1227.50 4.07 -0.652 0.000 <															
50.00 -25.02 -6.64 0.00 -381.88 0.00 381.88 1844.56 487.19 1414.16 1328.74 2.75 -0.526 0.000 0.147 52.00 -24.73 -6.60 0.00 -368.60 0.00 368.60 1834.56 482.86 1389.16 1309.72 2.97 -0.550 0.000 0.144 54.00 -24.45 -6.57 0.00 -355.39 0.00 355.39 1824.45 478.54 1364.38 1290.76 3.21 -0.574 0.000 0.140 56.00 -24.16 -6.54 0.00 -342.25 0.00 342.25 1814.23 474.21 1339.83 1271.84 3.45 -0.598 0.000 0.136 58.00 -23.87 -6.50 0.00 -316.17 0.00 316.17 1793.44 465.56 1291.40 1234.16 3.97 -0.644 0.000 0.128 60.71 -23.49 -6.46 0.00 -311.58 0.00 311.58 1789.70 464.03 1282.90 1227.50 4.07 -0.652 0.000 <															
52.00-24.73-6.600.00-368.600.00368.601834.56482.861389.161309.722.97-0.5500.0000.14454.00-24.45-6.570.00-355.390.00355.391824.45478.541364.381290.763.21-0.5740.0000.14056.00-24.16-6.540.00-342.250.00342.251814.23474.211339.831271.843.45-0.5980.0000.13658.00-23.87-6.500.00-329.170.00329.171803.89469.891315.501252.973.71-0.6210.0000.13260.00-23.59-6.470.00-316.170.00316.171793.44465.561291.401234.163.97-0.6440.0000.12860.71-23.49-6.460.00-311.320.00311.321789.49463.941282.421227.504.07-0.6520.0000.16160.75-23.49-6.460.00-311.320.00311.321789.49463.941282.421227.124.08-0.6530.0000.15864.00-23.03-6.400.00-290.370.00290.371772.19456.911243.861196.724.54-0.6990.0000.15366.00-22.75-6.370.00-277.570.00277.571761.39452.591220.421178.084.84-0.7260.0000															
54.00-24.45-6.570.00-355.390.00355.391824.45478.541364.381290.763.21-0.5740.0000.14056.00-24.16-6.540.00-342.250.00342.251814.23474.211339.831271.843.45-0.5980.0000.13658.00-23.87-6.500.00-329.170.00329.171803.89469.891315.501252.973.71-0.6210.0000.13260.00-23.59-6.470.00-316.170.00316.171793.44465.561291.401234.163.97-0.6440.0000.12860.71-23.49-6.450.00-311.580.00311.581789.70464.031282.901227.504.07-0.6520.0000.16160.75-23.34-6.460.00-303.250.00303.251782.87461.241267.521215.414.25-0.6710.0000.15864.00-23.03-6.400.00-290.370.00290.371772.19456.911243.861196.724.54-0.6990.0000.15366.00-22.75-6.370.00-277.570.00277.571761.39452.591220.421178.084.84-0.7260.0000.14868.00-22.47-6.300.00-252.140.00252.141739.46443.941174.221141.015.47-0.7790.0000															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															
58.00-23.87-6.500.00-329.170.00329.171803.89469.891315.501252.973.71-0.6210.0000.13260.00-23.59-6.470.00-316.170.00316.171793.44465.561291.401234.163.97-0.6440.0000.12860.71-23.49-6.450.00-311.580.00311.581789.70464.031282.901227.504.07-0.6520.0000.16160.75-23.49-6.460.00-311.320.00311.321789.49463.941282.421227.124.08-0.6530.0000.16162.00-23.31-6.440.00-303.250.00303.251782.87461.241267.521215.414.25-0.6710.0000.15864.00-23.03-6.400.00-290.370.00290.371772.19456.911243.861196.724.54-0.6990.0000.15366.00-22.75-6.370.00-277.570.00277.571761.39452.591220.421178.084.84-0.7260.0000.14868.00-22.47-6.340.00-264.820.00264.821750.48448.261197.211159.515.15-0.7530.0000.14370.00-22.20-6.300.00-252.140.00252.141739.46443.941174.221141.015.47-0.7790.0000															
60.00-23.59-6.470.00-316.170.00316.171793.44465.561291.401234.163.97-0.6440.0000.12860.71-23.49-6.450.00-311.580.00311.581789.70464.031282.901227.504.07-0.6520.0000.16160.75-23.49-6.460.00-311.320.00311.321789.49463.941282.421227.124.08-0.6530.0000.16162.00-23.31-6.440.00-303.250.00303.251782.87461.241267.521215.414.25-0.6710.0000.15864.00-23.03-6.400.00-290.370.00290.371772.19456.911243.861196.724.54-0.6990.0000.15366.00-22.75-6.370.00-277.570.00277.571761.39452.591220.421178.084.84-0.7260.0000.14868.00-22.47-6.340.00-264.820.00264.821750.48448.261197.211159.515.15-0.7530.0000.14370.00-22.20-6.300.00-252.140.00252.141739.46443.941174.221141.015.47-0.7790.0000.138															
60.71-23.49-6.450.00-311.580.00311.581789.70464.031282.901227.504.07-0.6520.0000.16160.75-23.49-6.460.00-311.320.00311.321789.49463.941282.421227.124.08-0.6530.0000.16162.00-23.31-6.440.00-303.250.00303.251782.87461.241267.521215.414.25-0.6710.0000.15864.00-23.03-6.400.00-290.370.00290.371772.19456.911243.861196.724.54-0.6990.0000.15366.00-22.75-6.370.00-277.570.00277.571761.39452.591220.421178.084.84-0.7260.0000.14868.00-22.47-6.340.00-264.820.00264.821750.48448.261197.211159.515.15-0.7530.0000.14370.00-22.20-6.300.00-252.140.00252.141739.46443.941174.221141.015.47-0.7790.0000.138															
60.75-23.49-6.460.00-311.320.00311.321789.49463.941282.421227.124.08-0.6530.0000.16162.00-23.31-6.440.00-303.250.00303.251782.87461.241267.521215.414.25-0.6710.0000.15864.00-23.03-6.400.00-290.370.00290.371772.19456.911243.861196.724.54-0.6990.0000.15366.00-22.75-6.370.00-277.570.00277.571761.39452.591220.421178.084.84-0.7260.0000.14868.00-22.47-6.340.00-264.820.00264.821750.48448.261197.211159.515.15-0.7530.0000.14370.00-22.20-6.300.00-252.140.00252.141739.46443.941174.221141.015.47-0.7790.0000.138	60.71	-23.49	-6.45	0.00											
64.00-23.03-6.400.00-290.370.00290.371772.19456.911243.861196.724.54-0.6990.0000.15366.00-22.75-6.370.00-277.570.00277.571761.39452.591220.421178.084.84-0.7260.0000.14868.00-22.47-6.340.00-264.820.00264.821750.48448.261197.211159.515.15-0.7530.0000.14370.00-22.20-6.300.00-252.140.00252.141739.46443.941174.221141.015.47-0.7790.0000.138			-6.46	0.00	-311.32	0.00	311.32	1789.49							
66.00-22.75-6.370.00-277.570.00277.571761.39452.591220.421178.084.84-0.7260.0000.14868.00-22.47-6.340.00-264.820.00264.821750.48448.261197.211159.515.15-0.7530.0000.14370.00-22.20-6.300.00-252.140.00252.141739.46443.941174.221141.015.47-0.7790.0000.138			-6.44	0.00	-303.25	0.00	303.25	1782.87	461.24	1267.52	1215.41	4.25	-0.671	0.000	
68.00 -22.47 -6.34 0.00 -264.82 0.00 264.82 1750.48 448.26 1197.21 1159.51 5.15 -0.753 0.000 0.143 70.00 -22.20 -6.30 0.00 -252.14 0.00 252.14 1739.46 443.94 1174.22 1141.01 5.47 -0.779 0.000 0.138									456.91		1196.72	4.54	-0.699	0.000	
70.00 -22.20 -6.30 0.00 -252.14 0.00 252.14 1739.46 443.94 1174.22 1141.01 5.47 -0.779 0.000 0.138															
- 12.00 -21.02 -0.27 0.00 -2.00,04 0.00 -2.00,04 0.100 -2.00,04 0.120,02 439,07 7157,45 7122,57 5.80 -0.805 0.000 0.133															
Convright © 2022 by Tower Engineering Solutions 11 C All rights reserved	12.00	-21.92	-0.27	0.00								5.80	-0.805	0.000	0.133

Copyright © 2022 by Tower Engineering Solutions, LLC. All rights reserved.

					×.	Calcu	lated Fo	rces			1		1 3	
Struc	ture:	CT1306	64-A-S	BA		(Code:	TIA	-222-H		10/4	/2022	(
	lame:	Middlet				E	Exposure:	С					(((叫)))	
Heigh		130.00					Crest Heig	ht: 0.0	0				IT	C
-			• •				Site Class:		- Stiff Soil					3
Base	Elev:	0.000 (1	π)						Sun 300		_		Tower Engineer	ing Solutions
Gh:		1.1		Тор	ography:	1 5	Struct Clas	ss:			Pag	ge: 65		
74.00	-21.65	-6.24	0.00	-226.99	0.00	226.99	1717.07	435.29	1128.90	1104.20	6.14	-0.830	0.000	0.128
76.00	-21.38	-6.20	0.00	-214.52	0.00	214.52	1705.70	430.96	1106.58	1085.91	6.49	-0.854	0.000	0.122
78.00	-21.12	-6.16	0.00	-202.12	0.00	202.12	1694.22	426.64	1084.48	1067.69	6.86	-0.877	0.000	0.117
78.25	-21.08	-6.16	0.00	-200.58	0.00	200.58	1692.78	426.10	1081.74	1065.41	6.90	-0.880	0.000	0.116
78.25	-21.08	-6.16	0.00	-200.58	0.00	200.58	1692.78	426.10	1081.74	1065.41	6.90	-0.880	0.000	0.116
80.00	-20.85	-6.14	0.00	-189.79	0.00	1 89.79	1682.63	422.31	1062.61	1049.54	7.23	-0.900	0.000	0.193
82.00	-20.58	-6.10	0.00	-177.52	0.00	177.52	1670.92	417.99	1040.95	1031.48	7.62	-0.937	0.000	0.185
84.00	-20.32	-6.07	0.00	-165.31	0.00	165.31	1659.09	413.66	1019.52	1013.49	8.02	-0.973	0.000	0.176
86.00	-20.06	-6.04	0.00	-153.17	0.00	153.17	1647.16	409.34	998.31	995.59	8.43	-1.008	0.000	0.166
87.42	-19.87	-6.02	0.00	-144.61	0.00	144.61	1638.63	406.27	983.43	982.97	8.73	-1.031	0.000	0.159
88.00	-19.76	-6.01	0.00	-141.10	0.00	141.10	1635.10	405.01	977.33	977.78	8.86	-1.041	0.000	0.157
90.00	-15.85	-4.81	0.00	-129.08	0.00	129.08	1622.94	400.69	956.57	960.05	9.30	-1.072	0.000	0.144
91.33	-15.60	-4.79	0.00	-122.66	0.00	122.66	1099.39	302.92	728.96	657.00	9.61	-1.092	0.000	0.201
92.00	-15.53	-4.78	0.00	-119.47	0.00	119.47	1097.24	301.84	723.77	653.36	9.76	-1.102	0.000	0.197
94.00	-15.32	-4.75	0.00	-109.91	0.00	109.91	1090.71	298.60	708.30	642.45	10.23	-1.138	0.000	0.185
96.00	-15.11	-4.71	0.00	-100.42	0.00	100.42	1084.06	295.35	692.99	631.55	10.71	-1.172	0.000	0.173
98.00	-14.91	-4.68	0.00	-91.00	0.00	91.00	1077.30	292.11	677.85	620.68	11.21	-1.204	0.000	0.161
100.00	-11.42	-3.59	0.00	-81.65	0.00	81.65	1070.43	288.87	662.88	609.82	11.72	-1.234	0.000	0.145
102.00	-11.24	-3.55	0.00	-74.47	0.00	74.47	1063.44	285.62	648.08	598.99	12.25	-1.262	0.000	0.135
104.00	-11.06	-3.51	0.00	-67.38	0.00	67.38	1056.34	282.38	633.44	588.19	12.78	-1.288	0.000	0.125
106.00	-10.88	-3.48	0.00	-60.35	0.00	60.35	1049.12	279.13	618.97	577.41	13.32	-1.312	0.000	0.115
108.00	-10.70	-3.44	0.00	-53.39	0.00	53.39	1041.79	275.89	604.67	566.67	13.88	-1.335	0.000	0.105
110.00	-8.57	-2.87	0.00	-46.51	0.00	46.51	1034.34	272.65	590.53	555.96	14.44	-1.355	0.000	0.092 0.083
112.00	-8.42	-2.83	0.00	-40.77	0.00	40.77	1026.79	269.40	576.57	545.28	15.02	-1.374	0.000	
114.00	-8.27	-2.80	0.00	-35.10	0.00	35.10	1019.11	266.16	562.77	534.64	15.59	-1.391	0.000	0.074
1 16.00	-8.12	-2.76	0.00	-29.51	0.00	29.51	1011.32	262.92	549.13	524.04	16.18	-1.405	0.000	0.064
118.00	-7.98	-2.72	0.00	-24.00	0.00	24.00	1003.42	259.67	535.67	513.49	16.77	-1.418	0.000	0.055
120.00	-5.49	-1.90	0.00	-18.55	0.00	18.55	995.40	256.43	522.37	502.97	17.37	-1.429	0.000	0.042
120.00	-5.49	-1.90	0.00	-18.55	0.00	18.55	735.22	244.66	14507.7	335.79	17.37	-1.429	0.000	0.063
122.00	-5.36	-1.88	0.00	-14.75	0.00	14.75	735.22	244.66	14507.7	335.79	17.97	-1.437	0.000	0.051
124.00	-5.22	-1.86	0.00	-10.99	0.00	10.99	735.22	244.66	14507.7	335.79	18.57	-1.450	0.000	0.040
126.00	-5.08	-1.83	0.00	-7.28	0.00	7.28	735.22	244.66	14507.7	335.79	19.18	-1.460	0.000	0.029
128.00	-4.95	-1.81	0.00	-3.62	0.00	3.62	735.22	244.66	14507.7	335.79	19.80	-1.466	0.000	0.018
130.00	0.00	-1.68	0.00	0.00	0.00	0.00	735.22	244.66	14507.7	335.79	20.41	-1.467	0.000	0.000

£.			Final A	nalysis Sum	mary	
Structure:	CT13064-A-SBA			Code:	TIA-222-H	10/4/2022
Site Name:	Middletown 2, CT	-		Exposure:	С	((+H+ >))
Height:	130.00 (ft)			Crest Height:	0.00	
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil	IES
Gh:	1.1	Topography:	1	Struct Class:	H	Page: 66 Tower Engineering Solution

Reactions

Load Case	Shear FX (kips)	Shear FZ (kips)	Axial FY (kips)	Moment MX (ft-kips)	Moment MY (ft-kips)	Moment MZ (ft-kips)
1.2D + 1.0W 120 mph Wind	33.0	0.00	41.31	0.00	0.00	3303.52
0.9D + 1.0W 120 mph Wind	33.0	0.00	30.97	0.00	0.00	3264.63
1.2D + 1.0Di + 1.0Wi 50 mph Wind	8.6	0.00	57.83	0.00	0.00	860.34
1.2D + 1.0Ev + 1.0Eh	0.4	0.00	42.94	0.00	0.00	50.70
0.9D + 1.0Ev + 1.0Eh	0.4	0.00	32.53	0.00	0.00	50.13
1.0D + 1.0W 60 mph Wind	7.4	0.00	34.45	0.00	0.00	734.10

Max Stresses

Load Case	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	r phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Elev (ft)	Stress Ratio
1.2D + 1.0W 120 mph Wind	-17.03	-21.61	0.00	-553.96	0.00	-553.96	1099.39	302.92	728.96	657.00	91.33	0.864
0.9D + 1.0W 120 mph Wind	-12.37	-21.19	0.00	-541.83	0.00	-541.83	1099.39	302.92	728.96	657.00	91.33	0.841
1.2D + 1.0Di + 1.0Wi 50 mph Wind	-27.93	-5.55	0.00	-143.73	0.00	-143.73	1099.39	302.92	728.96	657.00	91.33	0.244
1.2D + 1.0Ev + 1.0Eh	-19.55	-0.38	0.00	-11.37	0.00	-11.37	1099.39	302.92	728.96	657.00	91.33	0.035
0.9D + 1.0Ev + 1.0Eh	-14.82	-0.37	0.00	-11.21	0.00	-11.21	1099.39	302.92	728.96	657.00	91.33	0.031
1.0D + 1.0W 60 mph Wind	-15.60	-4.79	0.00	-122.66	0.00	-122.66	1099.39	302.92	728.96	657.00	91.33	0.201

Additional Steel Summary

Auun	ional c	steel Summary															
				ermedia onnecto		Lo	wer Te	rminat	lion	Up	per Te	rminat	tion	r	Max Me	mber	
Elev	Elev				phi		phi			-	phi			_	phi	phi	
From	То		VQ/I	Vu	Vn	MQ/I	Vn	Num	Num	MQ/I	Vn	Num	Num	Pu	Pn	Tn	
(ft)	(ft)	Member	(lb/in)	(kips)	(kips)	(kips)	(kips)	Reqd	Actual	(kips)	(kips)	Reqd	Actual	(kips)	(kips)	(kips)	Ratio
0.0	20.5	(4) PLT-6"x1" (1.25" Hole)	236.5	3.78	37.1	244.6	33.4	8	8	234.6	33.4		8	249.11	326.3 2	281.25	0.886
0.0	10.3	(4) PLT-5.5"x1 1/4"(1.25"hol	244.0	4.39	37.1	281.9	33.4	9	9	267.6	33.4	9	9	281.94	379.1 3	314.06	0.898
10.3	27.9	(2) LNP-LP6X100-G-20CC	-241.4	-5.79	25.3	249.1	25.3	10	0	216.0	25.3			249.11	297.8 2	288.75	0.863
10.3	26.9	(2) LNP-LP6X100-G-20CT	227.3	5.46	25.3	234. 9	25.3	10	0	195.3	22.7	9	9	234.92	297.8 2	288.75	0.814
20.5	40.5	(4) PLT-6"x1" (1.25" Hole)	267.7	4.28	37.1	234.6	33.4		8	211.2	33.4		8	235.21	326.3 2	281.25	0.836
26.0	40.7	(2) LNP-LP6X100-G-20CT	-280.6	-6.73	25.3	189.1	25.3	8	0	220.7	22.7		10	245.97	297.8 2	288.75	0.852
27.9	48.1	(2) LNP-LP6X100-G-20TT	271.1	6.51	25.3	216.0	22.7		10	192.8	22.7	9	10	216.01	297.8 2	288.75	0.748
40.5	60.8	(4) PLT-6"x1" (1.25" Hole)	-425.7	-6.81	37.1	211.2	33.4		8	246.8	33.4		8	246.91	326.3 2	281.25	0.878
40.7	60.7	(2) LNP-LP6X100-G-20TT	-352.4	-8.46	25.3	220.7	22.7		10	204.5	22.7	9	10	238.39	297.8 2	288.75	0.826
60.8	78.3	(4) PLT-6"x1" (1.25" Hole)	-463.0	-7.41	37.1	246.8	33.4		8	181.0	33.4	6	10	246.78	326.3 2	281.25	0.877

1.		В	ase Plate Summ	ary	
Structure:	CT13064-A-SB		Code:	TIA-222-H	10/4/2022
Site Name:	Middletown 2, CT		Exposure:	С	destant
Height:	130.00 (ft)		Crest Height:	0.00	EC
Base Elev:	0.000 (ft)		Site Class:	D - Stiff Soil	ILS
Gh:	1.1	Topography: 1	Struct Class:	П	Page: 67 Tower Engineering Solutions

Reactions	6	Base Pla	ite	Anchor E	Bolts
Original Desi	ign	Yield (ksi):	50.00	Bolt Circle:	47.25
Moment (kip-ft):	1864.44	Width (in):	51.75	Number Bolts:	14.00
Axial (kip):	38.20	Style:	Round	Bolt Type:	1.5" F1554 105
Shear (kip):	20.10	Polygon Sides:	0.00	Bolt Diameter (in):	1.50
Analysis (1.2D +	1.0W)	Clip Length (in):	0.00	Yield (ksi):	105.00
Moment (kip-ft):	3303.52	Effective Len (in):	17.08	Ultimate (ksi):	125.00
Axial (kip):	41.31	Moment (kip-in):	207.48	Arrangement:	Radial
	33.00	Allow Stress (ksi):	67.50	Cluster Dist (in):	0.00
Shear (kip):	33.00	Applied Stress (ksi):	32.40	Start Angle (deg):	0.00
		Stress Ratio:	0.48	Compres	sion —
				Force (kip):	85.13
				Allowable (kip):	167.00
				Ratio:	0.51
				Tensio	n
				Force (kip):	79.23
				Allowable (kip):	132.19
				Ratio:	0.60

(((H)))		Monor	pole M	at Foundation	Design	1.000	-	ite
		Customer Name;	Verizon	No. of Concession, Name			11/29 TIA-2	_
FC		Site Name:	Venzon		TIA Standard			30
		Site Number:	CT13064-	A-SBA	Engineer Nan			ang
Tower Engineering Solution	18	Engr. Number:	134991		Engineer Log		0.2	ang
Foundation Info Obtained from:		Drawings/Calculations						
Structure Type:		Monopole			Ľ	-		- D:
Analysis or Design?		Analysis		0.50				0.00
Base Reactions (Factored):				X	R.	11	- V	
Axial Load (Kips):	41.3	Shear Force (Kips):	33.0			× 13	/ ·	5
Uplift Force (Kips):	0.0	Moment (Kips-ft):	3300.3	99.0		26		6
	0.0	moment (https://j.	100.5	55.0		26		6
oundation Geometries:				6,0		//26		6
		Mods required -Yes/No ?	No			/// 26	#	6
Diameter of Pier (ft.):	9.0	Depth of Base BG (ft.):	6.0	0 0		6/10	=	\wedge
Pier Height A. G. (ft.):	0.50	Thickness of Pad (ft):	2.50			to -		2.5
ength of Pad (ft.):	20	Width of Pad (ft.):	20		0-0-0-	0 0		<u>v</u>
				<	20.0		*	
Final Length of pad (ft)	20.0	Final width of pad (ft):	20.0	\uparrow				0.0
								17
Naterial Properties and Reabr Info	:					9.0		
Concrete Strength (psi):	4000	Steel Elastic Modulus:	29000	ksi	10 mg			
'ertical bar yield (ksi)	60	Tie steel yield (ksi):	60		6 3			20.0
/ertical Rebar Size #:	9	Tie / Stirrup Size #:	5	20.0	6. 1			W
ty. of Vertical Rebars:	26	Tie Spacing (in):	6.0					
ad Rebar Yield (Ksi):	60	Pad Steel Rebar Size (#):	6	26 #	9			1
Concrete Cover (in.):	3	Unit Weight of Concrete:	150.0	pcf				1
ebar at the bottom of the concrete	e pad:						1	0.0
(ty. of Rebar in Pad (L):	26	Qty. of Rebar in Pad (W):	26	0.0		_	\Leftrightarrow	0.0
ebar at the top of the concrete pac	d:			<	20.0	L		
(ty. of Rebar in Pad (L):	26	Qty. of Rebar in Pad (W):	26					
oil Design Parameters:								
oil Unit Weight (pcf):	130.0	Soil Buoyant Weight:	50.0	Pcf				
Vater Table B.G.S. (ft):	99.0	Unit Weight of Water:	62.4	pcf Angle from Top of Pa	id:	30		
Iltimate Bearing Pressure (psf):	16000	Ultimate Skin Friction:	0	Psf Angle from Bottm of	Pad:	25		
onsider Friction for O.T.M. (Y/N):	No	Consider Friction for beari		No Angle from Bottm of		25		
onsider soil hor, resist, for OTM :	Yes	Reduction factor on the m	aximum soil	bearing pressure: 1.00				
oundation Analysis and Design:	Uplift St	rength Reduction Factor:	0.75	Compression Strength Redu	tion Factor	0.75		
Total Dry Soil Volume (cu. Ft.):			1177.34	Total Dry Soil Weight (Kips):		153.05		
Total Buoyant Soil Volume (cu. F	it.):		0.00	Total Buoyant Soil Weight (Kips):	(ips):	0.00		
Total Effective Soil Weight (Kips			153.05	Weight from the Concrete B		0.00		
Total Dry Concrete Volume (cu.			1254.47	Total Dry Concrete Weight (Kips):	188.17		
Total Buoyant Concrete Volume			0.00	Total Buoyant Concrete Wei		0.00		
Total Effective Concrete Weight	(Kips):		188.17	Total Vertical Load on Base (Kips):	382.52	Load/	
heck Soil Capacities:							Capacity Ratio	
alculated Maxium Net Soil Pressure	e under ti	he base (psf):	5856	< Allowable Factored S	oil Bearing (psf):	12000	0.49	OK
Allowable Foundation Overturning R			3484.0	> Design Factored Mor	nont (kips-ft):	3379	0.97	ок
actor of Safety Against Overturning	g (O. R. M	oment/Design Moment):	1.03	OK!				
							_	
		TES Engr. Number:	134991	Page 2/2	Date:	11/29/202	2	

Check the capacities of Reinforceing Concrete: itrength reduction factor (Flexure and axial tension):	0.90	Streng	gth reduction factor (Shear):	0.75		
trength reduction factor (Axial compresion):	0.65	Wind	Load Factor on Concrete Design:	1.00	Load/ Capacity	
(1) Concrete Pier:					Ratio	
Vertical Steel Rebar Area (sq. in./each):	1.00		Tie / Stirrup Area (sq. in./each):	0.31		
Calculated Moment Capacity (Mn,Kips-Ft):	5889.6	>	Design Factored Moment (Mu, Kips-F	3432.3	0.58	OK!
Calculated Shear Capacity (Kips):	1404.8	>	Design Factored Shear (Kips):	33.0	0.02	OK!
Calculated Tension Capacity (Tn, Kips):	1404.0	>	Design Factored Tension (Tu Kips):	0.0	0.00	OK!
Calculated Compression Capacity (Pn, Kips):	16150.5	>	Design Factored Axial Load (Pu Kips):	41.3	0.00	OK!
Moment & Axial Strength Combination:	0.58	OK!	Check Tie Spacing (Design/Required):		0.5	OK!
Pier Reinforcement Ratio:	0.003		Reinforcement Ratio is too small			
(2).Concrete Pad:						
One-Way Design Shear Capacity (L-Direction, Kips):	606.2	>	One-Way Factored Shear (L-D. Kips):	203.5	0.34	OK!
One-Way Design Shear Capacity (W-Direction, Kips):	606.2	>	One-Way Factored Shear (W-D., Kips)	203.5	0.34	OK!
One-Way Design Shear Capacity (Corner-Corner. Kips):	450.0	>	One-Way Factored Shear (C-C, Kips):	204.2	0.45	OK!
Lower Steel Pad Reinforcement Ratio (L-Direct.):	0.0018	OK!	Lower Steel Pad Reinf. Ratio (W-Direc	0.0018		
Lower Steel Pad Moment Capacity (L-Direction. Kips-ft):	1349.0	>	Moment at Bottom (L-Dir. K-Ft):	725.7	0.54	OK!
Lower Steel Pad Moment Capacity (W-Direction. Kips-ft):	1349.0	>	Moment at Bottom (W-Dir. K-Ft):	725.7	0.54	OK!
Lower Steel Pad Moment Capacity (Corner-Corner,K-ft):	1893.5	>	Moment at Bottom (C-C Dir. K-Ft):	1026.3	0.54	OK!
Upper Steel Pad Reinforcement Ratio (L-Direct.):	0.0018	OK!	Upper Steel Reinf. Ratio (W-Dir.):	0.0018		
Upper Steel Pad Moment Capacity (L-Direc. Kips-ft):	1349.0	>	Moment at the top (L-Dir K-Ft):	292.2	0.22	OK!
Upper Steel Pad Moment Capacity (W-Direc. Kips-ft):	1349.0	>	Moment at the top (W-Dir K-Ft):	292.2	0.22	OK!
Upper Steel Pad Moment Capacity (Corner-Corner. K-ft):	1893.5	>	Moment at the top (C-C Dir. K-Ft):	288.7	0.15	OK!
(3).Check Punching Shear Capacity due to Moment in the Pier:						
Moment transferred by punching shear:	1320.1	k-ft.	Max. factored shear stress v _{u_CD} :		1.2	Psi
Max. factored shear stress v _{u_AB} :	7.3	Psi	Factored shear Strength ϕv_n :		189.7	
Max. factored shear stress v _u :	7.3	Psi	Check Usage of Punching Shear Cap	acity:	0.04	OK!
4) Check Bending Capacity of the Pad Within the Effective Slab Width:					46.5	C
Overturning moment to be transferred by flexure:	990.1	k-ft.	Effective Width for resisting OT momen		16.5	π.
Calculated number of Rebar in Effective width:	22		Actual number of Rebar in Effective wie		22	010
Steel Pad Moment Capacity (L-Direc. Kips-ft):	1141.0	k-ft.	Check Usage of the Flexure Capacit	y:	0.87	OK!

Colliers Engineering & Design 1055 Washington Boulevard Stamford, CT 06901 203.324.0800 peter.albano@collierseng.com

Antenna Mount Analysis Report and PMI Requirements

Mount ReAnalysis-VZW

SMART Tool Project #: 10202210 Colliers Engineering & Design Project #: 21777971 (Rev 2)

May 23, 2023

Site Information

Site ID: Site Name: Carrier Name: Address: 5000185987-VZW / SOUTH FARMS CT SOUTH FARMS CT Verizon Wireless 67 Fairchild Rd. Middletown, Connecticut 06457 Middlesex County 41.54501111° -72.62076667°

Latitude: Longitude:

Structure Information

Tower Type: Mount Type: 130-Ft Monopole 4.00-Ft T-Arm

FUZE ID # 16235710

Analysis Results

T-Arm: 30.1% Pass*

*Antennas and equipment to be installed in compliance with PMI Requirements of this mount analysis.

<u>***Contractor PMI Requirements:</u> Included at the end of this MA report Available & Submitted via portal at https://pmi.vzwsmart.com

For additional questions and support, please reach out to: pmisupport@colliersengineering.com

Report Prepared By: Carol Luengas

Executive Summary:

The objective of this report is to determine the capacity of the antenna support mount at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards. Any modification listed under Sources of Information was assumed completed and was included in this analysis.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

Sources of Information:

Document Type	Remarks
Radio Frequency Data Sheet (RFDS)	Verizon RFDS, Site ID: 675042, dated August 22, 2022
Desktop Mount Mapping Report	Colliers Engineering & Design, LLC, Project #: 21777971
	dated May 17, 2021

Analysis Criteria:

Codes and Standards:	ANSI/TIA-222-H	
	2022 Connecticut State Building Code (CSBC),	Effective October 1, 2022
Wind Parameters:	Basic Wind Speed (Ultimate 3-sec. Gust), VULT:	120 mph
	Ice Wind Speed (3-sec. Gust):	50 mph
		1.00 in
		II
		С
		1
	Topographic Feature Considered:	N/A
	Topographic Method:	N/A
	Ground Elevation Factor, Ke:	0.993
Seismic Parameters:	Ss:	0.211 g
	S1:	0.056 g
Maintenance Parameters:	Wind Speed (3-sec. Gust):	30 mph
		•
	Maintenance Load, Lm:	500 lbs.
Analysis Software:	RISA-3D (V17)	
Maintenance Parameters:	Ground Elevation Factor, K _e : S _S : S ₁ : Wind Speed (3-sec. Gust): Maintenance Load, Lv: Maintenance Load, Lm:	1.00 in II C 1 N/A N/A 0.993 0.211 g 0.056 g 30 mph 250 lbs.

Final Loading Configuration:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status	
		3	Commscope	SDX1926Q-43		
	3	3	Samsung	MT6407-77A		
		3	JMA Wireless	MX10FIT665-xx	Added	
109.50	110.00	3	Samsung	RF4439d-25A	Audeu	
			3	Samsung	RF4440d-13A	
	1	Raycap	RVZDC-6627-PF-48*			

The following equipment has been considered for the analysis of the mount:

* Equipment to be flush mounted directly to the Monopole. They are not mounted on the mounts and are not included in this mount analysis.

It is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required unless replacing an existing OVP.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

Standard Conditions:

- All engineering services are performed on the basis that the information provided to Colliers Engineering & Design and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation. Any deviation from the loading locations specified in this report shall be communicated to Colliers Engineering & Design to verify deviation will not adversely impact the analysis.
- 2. Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

- 3. For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped in accordance with the NSTD-446 Standard, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- 4. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.

- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Colliers Engineering & Design is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.
- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

 Channel, Solid Round, Angle, Plate ASTM 	/I A36 (Gr. 36)
 HSS (Rectangular) ASTM 	/ 500 (Gr. B-46)
• Pipe ASTN	/ A53 (Gr. B-35)
 Threaded Rod F155 	4 (Gr. 36)
o Bolts ASTM	/ À325

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Colliers Engineering & Design.

Analysis Results:

Component	Utilization %	Pass/Fail
Antenna Pipe	20.4 %	Pass
Standoff Arm	8.3 %	Pass
Face Horizontal	30.1 %	Pass
Mount Connection	20.0 %	Pass

%
%

The mount has been found structurally adequate for all steel and external connection capacities. Serviceability in accordance with TIA-222-H Section 4.9.11.3 has not been considered

Mount Steel (EPA)a per ANSI/TIA-222-H Section 2.6.11.2:

lce	Mount Pipes Excluded		Mount Pipe	s Included
Thickness (In)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)
0	1.5	0.3	4.9	3.7
0.5	2.0	0.3	6.9	5.2
1	2.5	0.4	8.8	6.7

Notes:

- (EPA)a values listed above may be used in the absence of more precise information

- (EPA)a values in the table above include 1 sector(s).

- Ka factors included in (EPA)a calculations

Requirements:

The existing mounts are **SUFFICIENT** for the final loading configuration shown in attachment 2 and do not require modifications. Additional requirements are noted below.

Contractor shall install proposed OVP on the existing collar mount.

Contractor shall record all dimensions and member sizes requested in the Mount Geometry Verification Requirements section of the Mount Analysis report. Contact EOR if these documents are not available to the general contractor.

Contractor shall inspect climbing facilities and safety climb, if present, and ensure they are in good condition. Contractor shall install safety climb wire rope guides in locations where wire rope is rubbing against the mount or mount-to-tower connection steel. Wire brush clean any observed corrosion and protect with two (2) coats of cold galvanization (Zinga or Zinc Kote). Contractor shall provide photos of wire rope guide installation as part of PMI documents. Contact EOR if additional guidance is required.

Mounts shall be rotated in order to achieve the proposed azimuths of 340/100/220.

If required, ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other. Separate review fees will apply.

Attachments:

- 1. Contractor Required Post Installation Inspection (PMI) Report Deliverables
- 2. Antenna Placement Diagrams
- 3. Mount Photos
- 4. Desktop Mount Mapping Report (for reference only)
- 5. Analysis Calculations

Mount Desktop – Post Modification Inspection (PMI) Report Requirements

Documents & Photos Required from Contractor – Passing Mount Analysis

Passing Mount Analysis requires a PMI due to a modification in loading. Electronic pdf version of this can be downloaded at <u>https://pmi.vzwsmart.com</u>. For additional questions and support, please reach out to pmisupport@colliersengineering.com

MDG #: 5000185987 SMART Project #: 10202210 Fuze Project ID: 16235710

<u>Purpose</u> – to provide SMART Tool structural vendor the proper documentation in order to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the installation was completed in accordance with this Passing Mount Analysis.
- Contractor shall relay any data that can impact the performance of the mount, this includes safety issues.

Base Requirements:

- If installation will cause damage to the structure, the climbing facility, or safety climb if present or any installed system, SMART Tool vendor to be notified prior to install. Any special photos outside of the standard requirements will be indicated on the drawings.
- Provide "as built mount drawings" showing contractor's name, contact information, preparer's signature, and date. Any deviations from the drawings (Proposed modification) shall be shown.
 NOTE: If loading is different than what is conveyed in the passing mount analysis (MA) contact the SMART Tool vendor immediately.
- Each photo should be time and date stamped
- Photos should be high resolution.
- Contractor shall ensure that the safety climb wire rope is supported and not adversely impacted by the install of the modification components. This may involve the install of wire rope guides, or other items to protect the wire rope. If there is conflict, contact the SMART Tool engineer for recommendations.
- The PMI can be accessed at the following portal: https://pmi.vzwsmart.com

Photo Requirements:

- Photos taken at ground level
 - Photo of Gate Signs showing the tower owner, site name, and number.
 - Overall tower structure after installation.
 - Photos of the mount after installation; if the mounts are at different rad elevations, pictures must be provided for all elevations that equipment was installed.
- <u>Photos taken at Mount Elevation</u>
 - Photos showing the safety climb wire rope above and below the mount prior to installation.
 - o Photos showing the climbing facility and safety climb if present.
 - Photos showing each individual sector after installation. Each entire sector shall be in one photo to show the interconnection of members.

- These photos shall also certify that the placement and geometry of the equipment on the mount is as depicted in the antenna placement diagram in this form.
- Photos that show the model number of each antenna and piece of equipment installed per sector.

Antenna & equipment placement and Geometry Confirmation:

 The contractor shall certify that the antenna & equipment placement and geometry is in accordance with the sketch and table as included in the mount analysis and noted below.

□ The contractor certifies that the photos support and the equipment on the mount is as depicted on the sketch and table included in this form and with the mount analysis provided.

OR

□ The contractor notes that the equipment on the mount is not in accordance with the sketch and has noted the differences below and provided photo documentation of any alterations.

<u>Special Instructions / Validation as required from the MA or any other information the contractor</u> deems necessary to share that was identified:

Issue:

Contractor shall install proposed OVP on the existing collar mount.

Contractor shall record all dimensions and member sizes requested in the Mount Geometry Verification Requirements section of the Mount Analysis report. Contact EOR if these documents are not available to the general contractor.

Contractor shall inspect climbing facilities and safety climb, if present, and ensure they are in good condition. Contractor shall install safety climb wire rope guides in locations where wire rope is rubbing against the mount or mount-to-tower connection steel. Wire brush clean any observed corrosion and protect with two (2) coats of cold galvanization (Zinga or Zinc Kote). Contractor shall provide photos of wire rope guide installation as part of PMI documents. Contact EOR if additional guidance is required.

Mounts shall be rotated in order to achieve the proposed azimuths of 340/100/220.

Response:

Special Instruction Confirmation:

□ The contractor has read and acknowledges the above special instructions.

□ All hardware listed in the Special Instructions above (if applicable) has been properly installed, and the existing hardware was inspected.

□ The material utilized was as specified in the SMART Tool engineering vendor Special Instructions above (if applicable) and included in the material certification folder is a packing list or invoice for these materials.

OR

□ The material utilized was approved by a SMART Tool engineering vendor as an "equivalent" and this approval is included as part of the contractor submission.

Comments:

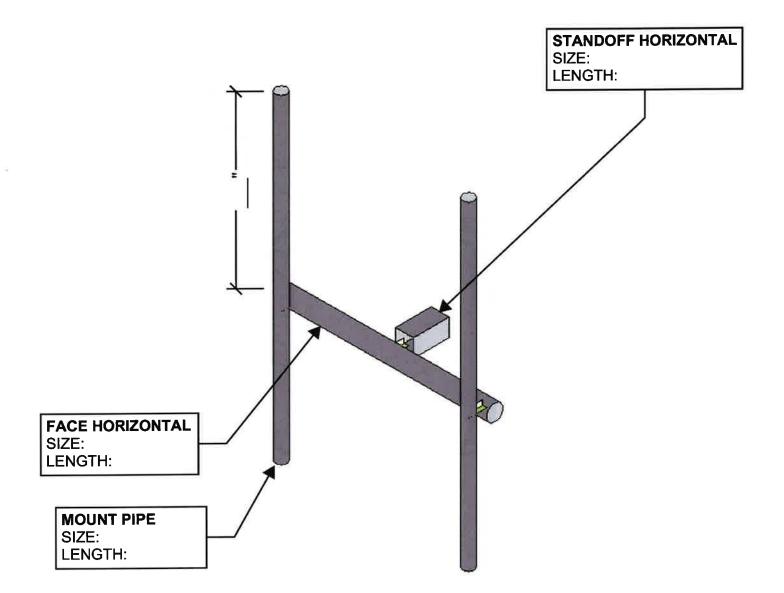
Contractor certifies that the climbing facility / safety climb was not damaged prior to starting work:

🗆 Yes 🛛 🗆 No

Contractor certifies no new damage created during the current installation:

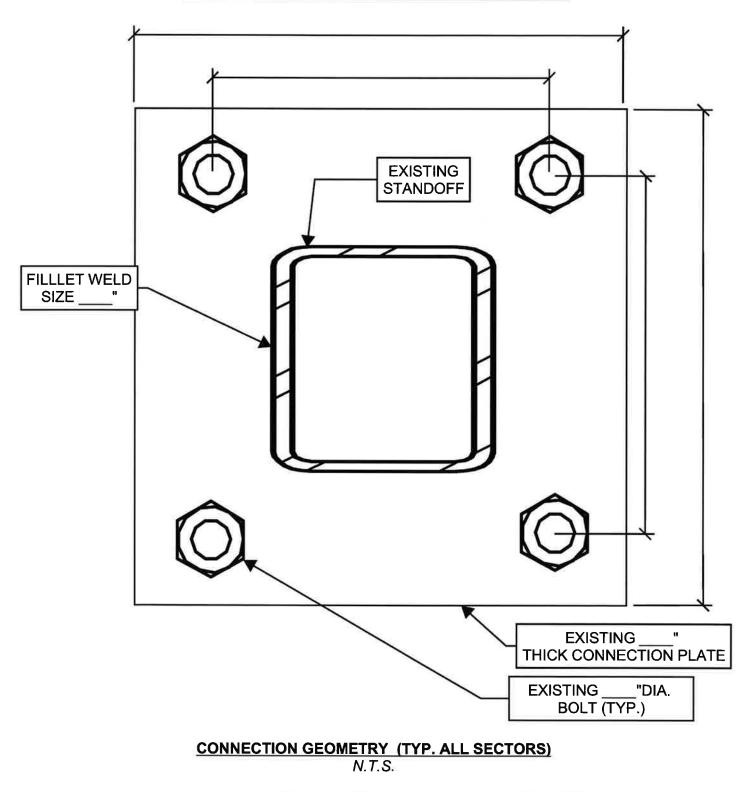
🗆 Yes	🗆 No
-------	------

Contractor to certify the condition of the safety climb and verify no damage when leaving the site:


□ Safety Climb in Good Condition

□ Safety Climb Damaged

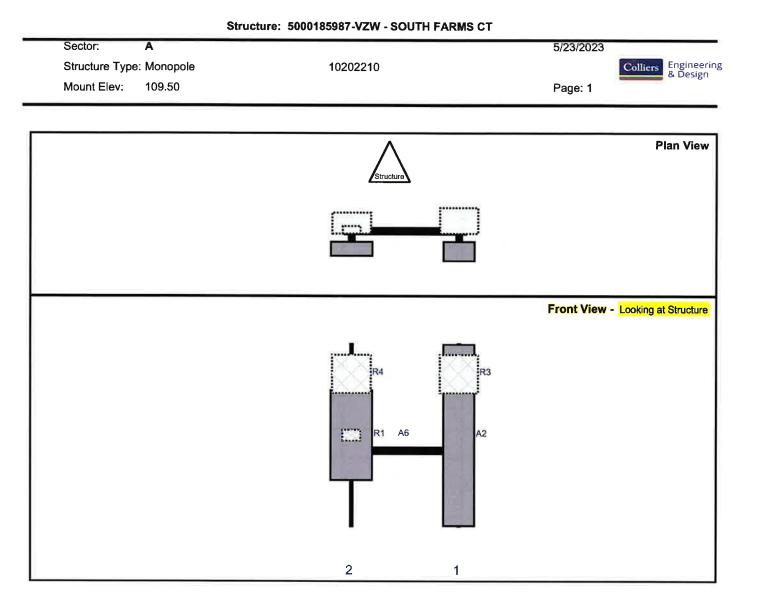
Certifying Individual:


Company:	
Employee Name: Contact Phone:	
Contact Phone:	
Email:	
Date:	

MOUNT GEOMETRY VERIFICATION

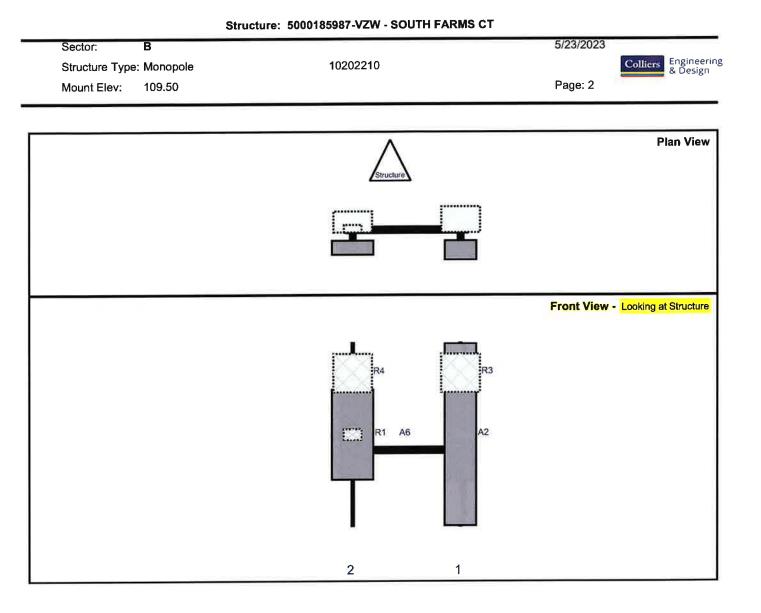
MOUNT ISOMETRIC VIEW N.T.S

CONTRACTOR SHALL MEASURE ALL DIMENSIONS AND MEMBER SIZES REQUESTED ON THIS SKETCH. RECORD VIA PHOTOS AND MARKUPS ON THIS PAGE, PROVIDE PHOTOS AND MARKED-UP SKETCH TO THE EOR FOR EVALUATION.

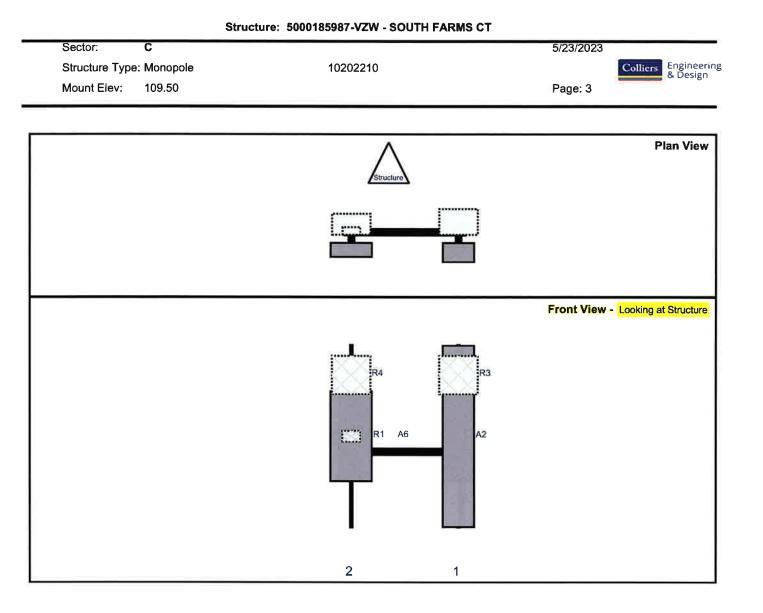

MOUNT GEOMETRY VERIFICATION

CONTRACTOR SHALL MEASURE ALL DIMENSIONS AND MEMBER SIZES REQUESTED ON THIS SKETCH. RECORD VIA PHOTOS AND MARKUPS ON THIS PAGE. PROVIDE PHOTOS AND MARKED-UP SKETCH TO THE EOR FOR EVALUATION.

MOUNT GEOMETRY VERIFICATION


STANDARD PIPE DIMENSIONS					
		THICKNESS (IN.)			
PIPE SIZE	O.D. (IN.)	STD	XSTR	XXSTR	
P1 1/2	1.900	0.145	0.200	0.400	
P2	2.375	0.154	0.218	0.436	
P2 1/2	2.875	0.203	0.276	0.552	
P3	3.500	0.216	0.300	0.600	
P3 1/2	4.000	0.226	0.318	0.636	
P4	4.500	0.237	0.337	0.674	
P4 1/2	5.000	0.247	0.355	0.710	
P5	5.563	0.258	0.375	0.750	
P6	6.625	0.280	0.432	0.864	

CONTRACTOR SHALL USE MEMBER SIZES AND DETAILS TO FACILITATE GEOMETRY VERIFICATION. CONTACT EOR FOR ADDITIONAL CLARIFICATION IF NEEDED


		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Fm L.	#	Pos V	Pos	Fm T.	H Off	Status	Validation
A2	MX10FIT665-xx	70.9	12.2	45	1	а	Front	36	0	Added	
R3	RF4439d-25A	15	15	45 <mark></mark>	1	а	Behind	12	0	Added	
R1	MT6407-77A	35.1	16.1	3	2	а	Front	36	0	Added	3.11
R4	RF4440d-13A	15	15	3	2	а	Behind	12	0	Added	
A6	SDX1926Q-43	4.2	6.9	3	2	а	Behind	36	0	Added	

Copyright 2019 by Tower Engineering Solutions, LLC. All Rights Reserved

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A2	MX10FIT665-xx	70.9	12.2	45	1	а	Front	36	0	Added	
R3	RF4439d-25A	15	15	45	1	а	Behind	12	0	Added	
R1	MT6407-77A	35.1	16.1	3	2	а	Front	36	0	Added	
R4	RF4440d-13A	15	15	3	2	а	Behind	12	0	Added	
A6	SDX1926Q-43	4.2	6.9	3	2	а	Behind	36	0	Added	

Copyright 2019 by Tower Engineering Solutions, LLC. All Rights Reserved

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	$Fm \; L_{\rm S}$	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A2	MX10FIT665-xx	70.9	12.2	45	1	а	Front	36	0	Added	
R3	RF4439d-25A	15	15	45	1	а	Behind	12	0	Added	
R1	MT6407-77A	35.1	16.1	3	2	а	Front	36	0	Added	
R4	RF4440d-13A	15	15	3	2	а	Behind	12	0	Added	
A6	SDX1926Q-43	4.2	6.9	3	2	а	Behind	36	0	Added	

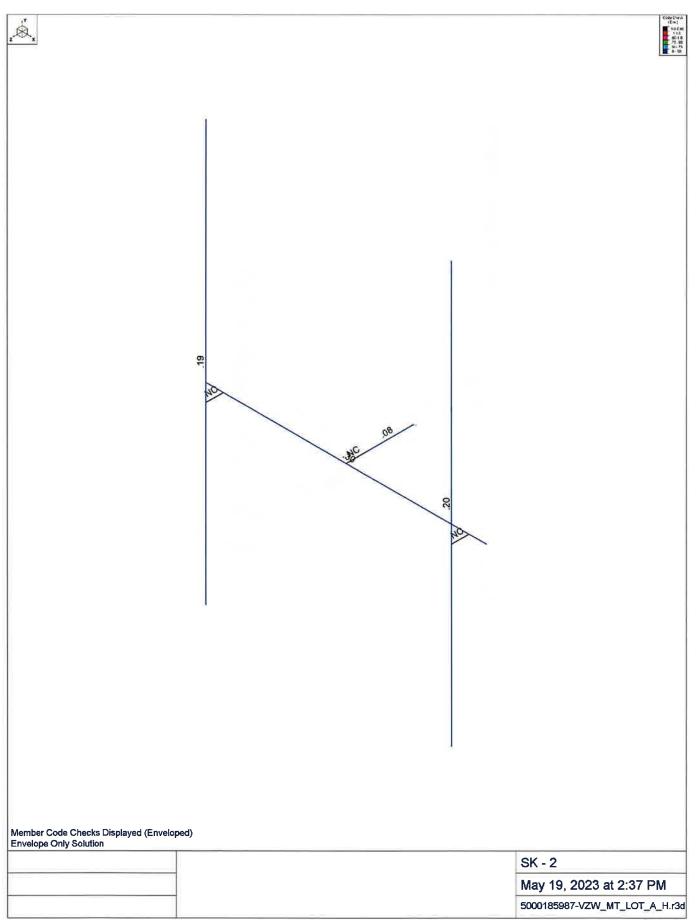
Copyright 2019 by Tower Engineering Solutions, LLC, All Rights Reserved

Colliers	Enginee & Desig
	0

Desktop Mount Mapping Form

iers	Engineering	Site Name:	South Farms CT	Towar Type:	Monopole	
hailde	& Design	Site ID:	535834	Tower Owner:		
		FUZE Project ID:		Tower Height (FL):	130	100
		Customer:	Verizon Wireless	Mount Elevation (Ft.):	110	
		Colliers Project No.	21777971	Date:	5/17/2021	

The information contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for, Reproduction, transmission, publication, modification or disclosure by any method is prohibited except by express written permission of Colliers Engineering & Design.


Document Type	Provided? (Yes/No)	Source Name	Project No.	Dated	Comments/Remarks
Previous Mount Mapping	No				
Previous Mapping Photos	No				
Previous Mount Analysis	No				
Previous Mount Modifications	No				
Previous Structural Analysis	No				
Construction Drawings	Yes	On Air Engineering	Not Provided	1/15/2014	
Closeout Package	No				
Closeout Photos	Yes	Unknown	Not Provided	4/27/2016	
Handover Package	No				
New Build 445 Documentation	No				
Other	No				
Previous PMI	No				

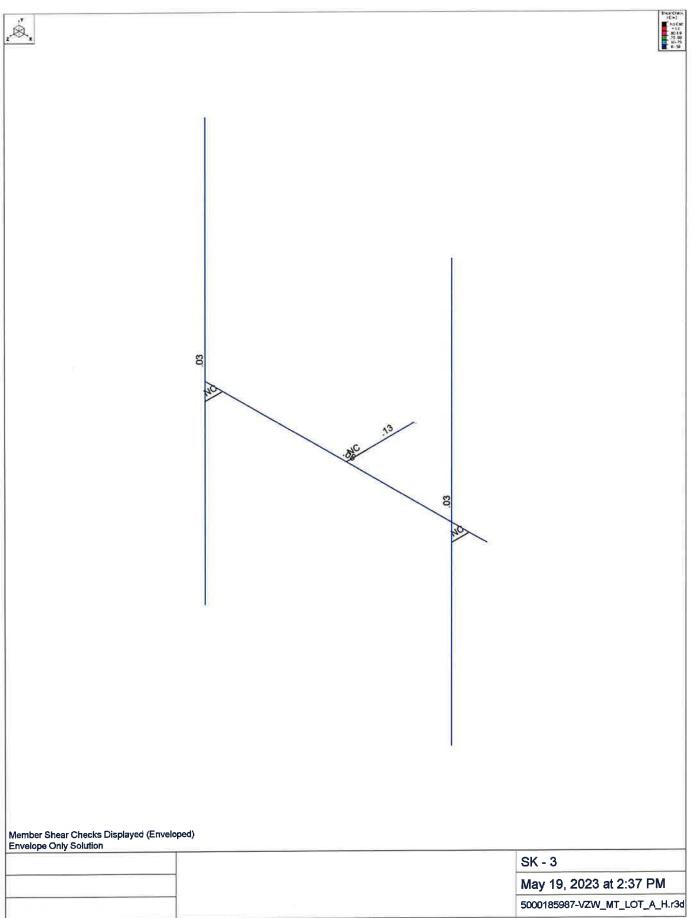

The desktop mount mapping is based on the engineering review of the available size documents in RUZE, as listed above, in place of a full mount mapping. It is assumed that the information provided in the documents listed above, provide an accurate representation of the existing mount. EOR reserves the right and will typically require additional clarification and verification as will be included in the PMI requirements. During the Post Modification Inspection (PM) process, the EOR on site will be required to comfinations, and validations as posed by the EOR. The engineering review for this desktop mount mapping was performed in accordance to the AMSI/TIA-222-H requirements and Verizon's NSTD446 standard.

Photo taken from: Closeout Package

Envelope Only Solution SK - 1
May 19, 2023 at 2:37 PM

Company Designer Job Number Model Name		May 19, 2023 2:37 PM Checked By:
---	--	--

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Antenna D	None					21			
2	Antenna Di	None					21			
3	Antenna Wo (0 Deg)	None					21			
4	Antenna Wo (30 Deg)	None					21			
5	Antenna Wo (60 Deg)	None	· · · · ·				21			
6	Antenna Wo (90 Deg)	None					21			
7	Antenna Wo (120 Deg)	None					21			
8	Antenna Wo (150 Deg)	None	1				21			
9	Antenna Wo (180 Deg)	None					21			
10	Antenna Wo (210 Deg)	None					21			1
11	Antenna Wo (240 Deg)	None					21			
12	Antenna Wo (270 Deg)	None					21			
13	Antenna Wo (300 Deg)	None					21			10000
14	Antenna Wo (330 Deg)	None					21			
15	Antenna Wi (0 Deg)	None					21			
16	Antenna Wi (30 Deg)	None	11				21			
17	Antenna Wi (60 Deg)	None					21			
18	Antenna Wi (90 Deg)	None					21			
19	Antenna Wi (120 Deg)	None					21			
20	Antenna Wi (150 Deg)	None					21		_	1
21	Antenna Wi (180 Deg)	None					21			
22	Antenna Wi (210 Deg)	None					21			
23	Antenna Wi (240 Deg)	None					21			
24	Antenna Wi (270 Deg)	None					21			
25	Antenna Wi (300 Deg)	None					21			
26	Antenna Wi (330 Deg)	None					21	-	-	
27	Antenna Wm (0 Deg)	None					21			
28	Antenna Wm (30 Deg)	None					21			1 1
29	Antenna Wm (60 Deg)	None					21			
30	Antenna Wm (90 Deg)	None					21			
31	Antenna Wm (120 Deg)	None					21			
32	Antenna Wm (150 Deg)	None					21			
33	Antenna Wm (180 Deg)	None					21			
34	Antenna Wm (210 Deg)	None					21			1
35	Antenna Wm (240 Deg)	None					21			
36	Antenna Wm (270 Deg)	None					21			
37	Antenna Wm (300 Deg)	None					21			
38	Antenna Wm (330 Deg)	None					21			
39	Structure D	None		-1						
40	Structure Di	None						4		
41	Structure Wo (0 Deg)	None						8		
42	Structure Wo (30 Deg)	None						8		
	Structure Wo (60 Deg)	None						8		
	Structure Wo (90 Deg)	None						8		
	Structure Wo (120 D	None						8		
	Structure Wo (150 D	Коле						8		
47	Structure Wo (180 D	None						8		
48	Structure Wo (210 D	None						8		
49	Structure Wo (240 D	None						8		
50	Structure Wo (270 D	None					P	8		
51	Structure Wo (300 D	None						8		
52	Structure Wo (330 D	None						8		
53	Structure Wi (0 Deg)	None						8		
		110110					_			1

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\...\Rev 2\RISA\5000185987-VZW_MT_LOT_A_H.r3d] Page 4

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
54	Structure Wi (30 Deg)	None						8		
55	Structure Wi (60 Deg)	None						8		
56	Structure Wi (90 Deg)	None					×	8		
57	Structure Wi (120 De	None						8		
58	Structure Wi (150 De	None						8		
59	Structure Wi (180 De	None						8		
60	Structure Wi (210 De	None						8		
61	Structure Wi (240 De	None						8		
62	Structure Wi (270 De	None						8		
63	Structure Wi (300 De	None						8		
64	Structure Wi (330 De	None	_					8		
65	Structure Wm (0 Deg)	None						8		
66	Structure Wm (30 De	None						8		
67	Structure Wm (60 De	None						8		
68	Structure Wm (90 De.	None					1 T 101.	8		
69	Structure Wm (120 D	None				_		8		
70	Structure Wm (150 D	None						8		
71	Structure Wm (180 D	None						8		
72	Structure Wm (210 D.,	None			S			8		
73	Structure Wm (240 D	None						8		
74	Structure Wm (270 D	None						8		
75	Structure Wm (300 D	None						8		
76	Structure Wm (330 D	None						8		
77	Lm1	None					1			
78	Lm2	None	- A				1			
79	Lv1	None					1			
80	Lv2	None	121	1. ST			1	1	_	
81	Antenna Ev	None					21			
82	Antenna Eh (0 Deg)	None					14			
83	Antenna Eh (90 Deg)	None					14			
84	Structure Ev	ELY		045						
85	Structure Eh (0 Deg)	ELZ			113					
86	Structure Eh (90 Deg)	ELX	.113				· · · · · · · · · · · · · · · · · · ·	Y		

Load Combinations

	Description	S	PDelta	S	B	Fa	B	Fa	B	Fa	. B	Fa	B	Fa	B	Fa	B	Fa	В	Fa	В	Fa	B	Fa
1	1.2D+1.0Wo (0 Deg)	Yes	Y		1	1.2		-	-	1	41					_					_	-	_	
2	1.2D+1.0Wo (30 Deg)	Yes	Y		1	1.2	39	1.2	4	1	42	1			_					_				
3	1.2D+1.0Wo (60 Deg)	Yes	Y		1	1.2	39	1.2	5	1	43	1												
4	1.2D+1.0Wo (90 Deg)	Yes	Y		1	1.2	39	1.2	6	1	44	1												
5	1.2D+1.0Wo (120 Deg)	Yes	Y		1	1.2	39	1.2	7	1	45	1												
6	1.2D+1.0Wo (150 Deg)	Yes	Y	-	1	1.2	39	1.2	8	1	46	1												
7	1.2D+1.0Wo (180 Deg)	Yes	Y		1	1.2	39	1.2	9	1	47	1		_						_				
8	1.2D+1.0Wo (210 Deg)	Yes	Y		1	1.2	39	1.2	10	1	48	1		10										
9	1.2D+1.0Wo (240 Deg)	Yes	Y		1	1.2	39	1.2	11	1	49	1												
10	1.2D+1.0Wo (270 Deg)	Yes	Y		1	1.2	39	1.2	12	1	50	1			1		1							
11	1.2D+1.0Wo (300 Deg)	Yes	Y		1	1.2	39	1.2	13	1	51	1												
12	1.2D+1.0Wo (330 Deg)	Yes	Y		1	1.2	39	1.2	14	1	52	1												
13	1.2D + 1.0Di + 1.0Wi (0	Yes	Y		1	1.2	39	1.2	2	1	40	1	15	1	53	1								
14	1.2D + 1.0Di + 1.0Wi (3	Yes	Y		1	1.2	39	1.2	2	1	40	1	16	1	54	1								
15	1.2D + 1.0Di + 1.0Wi (6	Yes	Y		1	1.2	39	1.2	2	1	40	1	17	1	55	1							_	
16	1.2D + 1.0Di + 1.0Wi (9	Yes	Y		1	1.2	39	1.2	2	1	40	1	18	1	56	1			1					
17	1.2D + 1.0Di + 1.0Wi (1	Yes	Y		1	1.2	39	1.2	2	1	40	1	19	1	57	1								
18	1.2D + 1.0Di + 1.0Wi (1	Yes	Y		1	1.2	39	1.2	2	1	40	1	20	1	58	1								
19	1.2D + 1.0Di + 1.0Wi (1	Yes	Y		1	1.2	39	1.2	2	1	40	1	21	1	59	1	_				1			

May 19, 2023 2:37 PM Checked By:____

Load Combinations (Continued)

	Description S	PDelta			Fa	B	Fa	B	E	•	B	Fa	B	Fa	B	Ea	B	Fa	в	Fa	B	Fa	B	Ea
20	1.2D + 1.0Di + 1.0Wi (2Yes		0				9 1.				40		22		60		D	ra	D	ra	D	ra	<u> </u>	Fa
-	1.2D + 1.0Di + 1.0Wi (2Yes			1	_	_	3 1.		_				23		61						-		-	
	1.2D + 1.0Di + 1.0Wi (2Yes			1			3 1.				40		24		62									
	1.2D + 1.0Di + 1.0Wi (3Yes		1				9 1.			_	40		25		63		-		1	-	1	-	-	
	1.2D + 1.0Di + 1.0Wi (3 Yes	-		1			9 1.			_	40		26		64								199	
	1.2D + 1.5Lm1 + 1.0W Yes			1			9 1.	_		_		1	65		0.1		1		-					_
	1.2D + 1.5Lm1 + 1.0W Yes			-	_		9 1.	_	_	_	_	1	66		í î									
	1.2D + 1.5Lm1 + 1.0W Yes						3 1.		_			1	67					-	-				-	
	1.2D + 1.5Lm1 + 1.0W Yes						3 1.				_	1	68						-					
	1.2D + 1.5Lm1 + 1.0W Yes						3 1.	_				1	69	_	-			-	-		-			
	1.2D + 1.5Lm1 + 1.0W Yes				_		3 1.					1	70						1-1	1			1.5	1000
	1.2D + 1.5Lm1 + 1.0W Yes						3 1.					1	71						1	-		1	-	
-	1.2D + 1.5Lm1 + 1.0W Yes						3 1.		_			1	72		0.1									
	1.2D + 1.5Lm1 + 1.0W Yes				_		9 1.						73				<u> </u>		-		-			
	1.2D + 1.5Lm1 + 1.0W Yes			(L. 200	1000		3 1.		_		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	74								1-			
	1.2D + 1.5Lm1 + 1.0W Yes						9 1.					1	75		-	-		-			-			_
	1.2D + 1.5Lm1 + 1.0W Yes						3 1.		_			1	76								1			
	1.2D + 1.5Lm2 + 1.0W Yes			_		_	9 1.					1	65						1		1	1		
	1.2D + 1.5Lm2 + 1.0W Yes	-		_			9 1.	_	_	_	_	1	66						1					
	1.2D + 1.5Lm2 + 1.0W Yes						1					1	67								1	-		
	1.2D + 1.5Lm2 + 1.0W Yes						1.	_			_	1	68		1	2					10			
	1.2D + 1.5Lm2 + 1.0W Yes						9 1.		_	_		1	69						1					
	1.2D + 1.5Lm2 + 1.0W Yes) 1.	_	_			1	70			1								
43	1.2D + 1.5Lm2 + 1.0W Yes	Ŷ			_	_) 1.	_		_	_	1	71	1										
	1.2D + 1.5Lm2 + 1.0W Yes						3 1.					1	72											
45	1.2D + 1.5Lm2 + 1.0W Yes) 1.					1	73		-				1					
46	1.2D + 1.5Lm2 + 1.0W Yes	Ý			_	_	3 1.	_		_			74			1					101			
47	1.2D + 1.5Lm2 + 1.0W Yes	Ŷ) 1.	_					75											
48	1.2D + 1.5Lm2 + 1.0W Yes				-		3 1.			_			76											
49	1.2D + 1.5Lv1 Yes	Y					3 1.					1							1					
50	1.2D + 1.5Lv2 Yes) 1.																	
51	1.4D Yes			-			3 1.		1															
	1.2D + 1.0Ev + 1.0Eh (0. Yes			_	-				1	1	E	1	82	1	83		ELZ	1	E					
53	1.2D + 1.0Ev + 1.0Eh (3. Yes	Y		10.00	100 C 100		3 1.						82				ELZ	.866	E	.5				
54	1.2D + 1.0Ev + 1.0Eh (6. Yes	Y					3 1.				E	1								.866				
55	1.2D + 1.0Ev + 1.0Eh (9. Yes	Y) 1.				E	1	82			1			E					
56	1.2D + 1.0Ev + 1.0Eh (1. Yes	Y					3 1.			1	E	1	82	5					E	.866				
	1.2D + 1.0Ev + 1.0Eh (1. Yes) 1.				E	1				.5								
58	1.2D + 1.0Ev + 1.0Eh (1. Yes	Y					3 1.			1	E	1		-1				-1						
59	1.2D + 1.0Ev + 1.0Eh (2. Yes	Y					3 1.						82	866	83	5								
60	1.2D + 1.0Ev + 1.0Eh (2. Yes	Y					9 1.						82	5	83	866	ELZ	5	E	866	1			
	1.2D + 1.0Ev + 1.0Eh (2. Yes			1	1.1	2 39	3 1.	2 8	1	1	E	1	82			-1			E					
	1.2D + 1.0Ev + 1.0Eh (3. Yes			1																866	1			
63	1.2D + 1.0Ev + 1.0Eh (3. Yes	Y		1																5				
64	0.9D - 1.0Ev + 1.0Eh (0 Yes	Y		1									82					-	E					
	0.9D - 1.0Ev + 1.0Eh (3Yes	Y		1	.9	39	9.9	8	1.	-1	E	-1	82	.866	83	.5								
	0.9D - 1.0Ev + 1.0Eh (6 Yes	Y		1											83	.866	ELZ	.5		.866				
	0.9D - 1.0Ev + 1.0Eh (9 Yes	Y		1	.9	39	9.9	8	1 -	-1	E	-1	82		83	1	ELZ		E	1				
	0.9D - 1.0Ev + 1.0Eh (1 Yes			1	.9	39	9.9	8	1.	-1	E	-1	82	5	83	.866	ELZ	5	E	.866	ľ			
	0.9D - 1.0Ev + 1.0Eh (1 Yes			1	.9	39	9.9	8	1.	-1	E	-1	82	866	83	.5	ELZ	866	5E	.5				
	0.9D - 1.0Ev + 1.0Eh (1 Yes			1	.9	39	9.9	8	1.	-1	E	-1	82	-1	83	-	ELZ	-1	E					
	0.9D - 1.0Ev + 1.0Eh (2Yes			1																5				
	0.9D - 1.0Ev + 1.0Eh (2 Yes			1	.9	39	9.9	8	1 .	-1	E	-1	82	5	83	866	ELZ	5	E	868				
	0.9D - 1.0Ev + 1.0Eh (2 Yes			1	.9								82			-1			E	· · · ·				
	0.9D - 1.0Ev + 1.0Eh (3Yes			1	.9															866	1			
75	0.9D - 1.0Ev + 1.0Eh (3 Yes	Y		1	.9	39	9.9	8	1.	-1	E	-1	82	.866	83	5	ELZ	.866	E	5				
				1.1.1.1.1.1.1.1	112244			-												1.000				

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\Rev 2\RISA\5000185987-VZW_MT_LOT_A_H.r3d] Page 6

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
1	N1	Ó	0	1.239583	Ó	
2	N2	0	0	1.90625	0	
3	N5	0	0	2.197917	0	
4	N6	2	0	2.197917	0	
5	N7	-2	0	2.197917	0	
6	N11	1.75	0	2.197917	0	
7	N12	1.75	0	2.447917	0	
8	N13	1.75	3.5	2.447917	0	
9	N14	1.75	-2.5	2.447917	0	
10	N15	-1.75	0	2.197917	0	
11	N16	-1.75	0	2.447917	0	
12	N17	-1.75	3.5	2.447917	0	
13	N18	-1.75	-2.5	2.447917	0	

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	Antenna Pipe	PIPE 2.0	Column	Pipe	A53 Gr. B	Typical	1.02	.627	.627	1.25
2	Standoff Arm	HSS4X4X4	Beam	Tube	A500 Gr.46	Typical	3.37	7.8	7.8	12.8
3	Standoff Pipe	PIPE 3.0	Column	Pipe	A53 Gr. B	Typical	2.07	2.85	2.85	5.69
4	Horizontal	PIPE 3.0	Column	Pipe	A53 Gr. B	Typical	2.07	2.85	2.85	5.69

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1	Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
3	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.42	29000	11154	.3	.65	.49	42	1.4	58	1.3
5	A500 Gr.46	29000	11154	.3	.65	.49	46	1.4	58	1.3
6	A53 Gr. B	29000	11154	.3	.65	.49	35	1.5	60	1.2
7	A500 Gr 50	29000	11154	.3	.65	.49	50	1.5	58	1.2

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N1	N2			Standoff Arm	Beam	Tube	A500 Gr.46	Typical
2	M4	N7	N6			Horizontal	Column	Pipe	A53 Gr. B	Typical
3	MP1A	N13	N14			Antenna Pipe	Column	Pipe	A53 Gr. B	Typical
4	M8	N11	N12			RIGID	None	None	RIGID	Typical
5	MP2A	N17	N18			Antenna Pipe	Column	Pipe	A53 Gr. B	Typical
6	M10	N15	N16			RIGID	None	None	RIGID	Typical
7	M10A	N2	N5			RIGID	None	None	RIGID	Typical

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat	Analysis	Inactive	Seismic
1	M1						Yes	Default			None
2	M4					1000	Yes	** NA **			None
3	MP1A						Yes	** NA **			None
4	M8						Yes	** NA **			None
5	MP2A						Yes	** NA **			None
6	M10						Yes	** NA **		Sec. and	None
7	M10A						Yes	** NA **			None

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\Rev 2\RISA\5000185987-VZW_MT_LOT_A_H.r3d] Page 7

Member Point Loads (BLC 1 : Antenna D)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Y	-6.6	3
2	MP1A	Mv	.002	3
3	MP1A	Mz	0	3
4	MP2A	Y	-43.55	2
5	MP2A	My	022	2
6	MP2A	Mz	0	2
7	MP2A	Y	-43.55	4
8	MP2A	My	022	4
9	MP2A	Mz	0	4
10	MP1A	Y	-36.85	1.5
11	MP1A	My	018	1.5
12	MP1A	Mz	0	1.5
13	MP1A	Y	-36.85	4.5
14	MP1A	My	018	4.5
15	MP1A	Mz	0	4.5
16	MP1A	Y	-84.4	1
17	MP1A	My	.042	1
18	MP1A	Mz	0	1
19	MP2A	Y	-70.3	1
20	MP2A	My	.035	
21	MP2A	Mz	0	1

Member Point Loads (BLC 2 : Antenna Di)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Y	-6.48	3
2	MP1A	Mv	.002	3
3	MP1A	Mz	0	3
4	MP2A	Y	-34.72	2
5	MP2A	Mv	017	2
6	MP2A	Mz	0	2
7	MP2A	Y	-34.72	4
8	MP2A	My	017	4
9	MP2A	Mz	0	4
10	MP1A	Y	-60.366	1.5
11	MP1A	My	03	1.5
12	MP1A	Mz	0	1.5
13	MP1A	Y	-60.366	4.5
14	MP1A	My	03	4.5
15	MP1A	Mz	0	4.5
16	MP1A	Y	-43.757	1
17	MP1A	My	.022	1
18	MP1A	Mz	0	1
19	MP2A	Y	-39.344	1
20	MP2A	My	.02	
21	MP2A	Mz	0	1

Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	3
2	MP1A	Z	-9.699	3
3	MP1A	Mx	0	3
4	MP2A	X	0	2
5	MP2A	Z	-79.21	2
6	MP2A	Mx	0	2
7	MP2A	X	0	4

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\Rev 2\RISA\5000185987-VZW_MT_LOT_A_H.r3d] Page 8

Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
8	MP2A	Z	-79.21	4
9	MP2A	Mx	0	4
10	MP1A	X	0	1.5
11	MP1A	Z	-60.822	1.5
12	MP1A	Mx	0	1.5
13	MP1A	X	0	4.5
14	MP1A	Z	-60.822	4.5
15	MP1A	Mx	0	4.5
16	MP1A	X	0	1
17	MP1A	Z	-62.64	1
18	MP1A	Mx	0	1
19	MP2A	X	0	1
20	MP2A	Z	-62.64	1
21	MP2A	Mx	0	11

Member Point Loads (BLC 4 : Antenna Wo (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	4.15	3
2	MP1A	Z	-7.188	3
3	MP1A	Mx	.001	3
4	MP2A	X	33.114	2
5	MP2A	Z	-57.354	2
6	MP2A	Mx	017	2
7	MP2A	X	33.114	4
8	MP2A	Z	-57.354	4
9	MP2A	Mx	017	4
10	MP1A	X	29.628	1.5
11	MP1A	Z	-51.317	1.5
12	MP1A	Mx	015	1.5
13	MP1A	X	29.628	4.5
14	MP1A	Z	-51.317	4.5
15	MP1A	Mx	015	4.5
16	MP1A	X	28.744	1
17	MP1A	Z	-49.786	1
18	MP1A	Mx	.014	1
19	MP2A	X	27.784	1
20	MP2A	Z	-48.123	1
21	MP2A	Mx	.014	1

Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	4.764	3
2	MP1A	Z	-2.751	3
3	MP1A	Mx	.001	3
4	MP2A	X	34.868	2
5	MP2A	Z	-20.131	2
6	MP2A	Mx	017	2
7	MP2A	X	34.868	4
8	MP2A	Z	-20.131	4
9	MP2A	Mx	017	4
10	MP1A	X	48.605	1.5
11	MP1A	Z	-28.062	1.5
12	MP1A	Mx	024	1.5
13	MP1A	X	48.605	4.5
14	MP1A	Z	-28.062	4.5
15	MP1A	Mx	024	4.5

Member Point Loads (BLC 5 : Antenna Wo (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
16	MP1A	X	40.861	1
17	MP1A	Z	-23.591	1
18	MP1A	Mx	.02	1
19	MP2A	X	35.874	1
20	MP2A	Z	-20.712	1
21	MP2A	Mx	.018	1

Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	4.102	3
2	MP1A	Z	0	3
3	MP1A	Mx	.001	3
4	MP2A	X	27.279	2
5	MP2A	Z	0	2
6	MP2A	Mx	014	2
7	MP2A	X	27.279	4
8	MP2A	Z	0	4
9	MP2A	Mx	014	4
10	MP1A	X	54.558	1.5
11	MP1A	Z	0	1.5
12	MP1A	Mx	027	1.5
13	MP1A	X	54.558	4.5
14	MP1A	Z	0	4.5
15	MP1A	Mx	027	4.5
16	MP1A	X	42.03	1
17	MP1A	Z	0	1
18	MP1A	Mx	.021	1
19	MP2A	X	34.351	1
20	MP2A	Z	0	1
21	MP2A	Mx	.017	1

Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	4.764	3
2	MP1A	Z	2.751	3
3	MP1A	Mx	.001	3
4	MP2A	X	34.868	2
5	MP2A	Z	20.131	2
6	MP2A	Mx	017	2
7	MP2A	X	34.868	4
8	MP2A	Z	20.131	4
9	MP2A	Mx	017	4
10	MP1A	X	48,605	1.5
11	MP1A	Z	28.062	1.5
12	MP1A	Mx	024	1.5
13	MP1A	X	48.605	4.5
14	MP1A	Z	28.062	4.5
15	MP1A	Mx	024	4.5
16	MP1A	X	40.861	1
17	MP1A	Z	23.591	1
18	MP1A	Mx	.02	1
19	MP2A	X	35.874	1
20	MP2A	Z	20.712	1
21	MP2A	Mx	.018	1

May 19, 2023 2:37 PM Checked By:____

Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
1	MP1A	X	4.15	3
2	MP1A	Z	7.188	3
3	MP1A	Mx	.001	3
4	MP2A	X	33.114	2
5	MP2A	Z	57.354	2
6	MP2A	Mx	017	2
7	MP2A	X	33.114	4
8	MP2A	Z	57.354	4
9	MP2A	Mx	017	4
10	MP1A	X	29.628	1.5
11	MP1A	Z	51.317	1.5
12	MP1A	Mx	015	1.5
13	MP1A	X	29.628	4.5
14	MP1A	Z	51.317	4.5
15	MP1A	Mx	015	4.5
16	MP1A	X	28.744	1
17	MP1A	Z	49.786	1
18	MP1A	Mx	.014	- 1
19	MP2A	X	27.784	1
20	MP2A	Z	48.123	1
21	MP2A	Mx	.014	1

Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	3
2	MP1A	Z	9.699	3
3	MP1A	Mx	0	3
4	MP2A	X	0	2
5	MP2A	Z	79.21	2
6	MP2A	Mx	0	2
7	MP2A	X	0	4
8	MP2A	Z	79.21	4
9	MP2A	Mx	0	4
10	MP1A	X	0	1.5
11	MP1A	Z	60.822	1.5
12	MP1A	Mx	0	1.5
13	MP1A	X	0	4.5
14	MP1A	Z	60.822	4.5
15	MP1A	Mx	0	4.5
16	MP1A	X	0	1
17	MP1A	Z	62.64	11
18	MP1A	Mx	0	1
19	MP2A	X	0	1
20	MP2A	Z	62.64	1
21	MP2A	Mx	0	1

Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-4.15	3
2	MP1A	Z	7.188	3
3	MP1A	Mx	001	3
4	MP2A	X	-33.114	2
5	MP2A	Z	57.354	2
6	MP2A	Mx	.017	2
7	MP2A	X	-33.114	4
8	MP2A	Z	57.354	4

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\...\Rev 2\RISA\5000185987-VZW_MT_LOT_A_H.r3d] Page 11

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
9	MP2A	Mx	.017	4
10	MP1A	X	-29.628	1.5
11	MP1A	Z	51.317	1.5
12	MP1A	Mx	.015	1.5
13	MP1A	X	-29.628	4.5
14	MP1A	Z	51.317	4.5
15	MP1A	Mx	.015	4.5
16	MP1A	X	-28.744	1
17	MP1A	Z	49.786	1
18	MP1A	Mx	014	1
19	MP2A	X	-27.784	1
20	MP2A	Z	48.123	1
21	MP2A	Mx	014	1

Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-4.764	3
2	MP1A	Z	2.751	3
3	MP1A	Mx	001	3
4	MP2A	X	-34.868	2
5	MP2A	Z	20.131	2
6	MP2A	Mx	.017	2
7	MP2A	X	-34.868	4
8	MP2A	Z	20.131	4
9	MP2A	Mx	.017	4
10	MP1A	X	-48.605	1.5
11	MP1A	Z	28.062	1.5
12	MP1A	Mx	.024	1.5
13	MP1A	X	-48.605	4.5
14	MP1A	Z	28.062	4.5
15	MP1A	Mx	.024	4.5
16	MP1A	X	-40.861	1
17	MP1A	Z	23.591	1
18	MP1A	Mx	02	1
19	MP2A	X	-35.874	1
20	MP2A	Z	20.712	1
21	MP2A	Mx	018	1

Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-4.102	3
2	MP1A	Z	0	3
3	MP1A	Mx	001	3
4	MP2A	X	-27.279	2
5	MP2A	Z	0	2
6	MP2A	Mx	.014	2
7	MP2A	X	-27.279	4
8	MP2A	Z	0	4
9	MP2A	Mx	.014	4
10	MP1A	X	-54.558	1.5
11	MP1A	Z	0	1.5
12	MP1A	Mx	.027	1.5
13	MP1A	X	-54.558	4.5
14	MP1A	Z	0	4.5
15	MP1A	Mx	.027	4.5
16	MP1A	X	-42.03	1

IRISA	Company Designer Job Number Model Name	20 40 40 40 40 40 40 40 40 40 40 40 40 40	May 19, 2023 2:37 PM Checked By:
A MEMOTECHER COMPANY	wodel Name	ŝ.	

Member Point Loads (BLC 12 : Antenna Wo (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
17	MP1A	Z	0	1
18	MP1A	Mx	021	1
19	MP2A	X	-34.351	1
20	MP2A	Z	0	1
21	MP2A	Mx	017	1

Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
1	MP1A	X	-4.764	3
2	MP1A	Z	-2.751	3
3	MP1A	Mx	001	3
4	MP2A	X	-34.868	2
5	MP2A	Z	-20.131	2
6	MP2A	Mx	.017	2
7	MP2A	X	-34.868	4
8	MP2A	Z	-20.131	4
9	MP2A	Mx	.017	4
10	MP1A	X	-48.605	1.5
11	MP1A	Z	-28.062	1.5
12	MP1A	Mx	.024	1.5
13	MP1A	X	-48.605	4.5
14	MP1A	Z	-28.062	4.5
15	MP1A	Mx	.024	4.5
16	MP1A	X	-40.861	
17	MP1A	Z	-23.591	1
18	MP1A	Mx	02	1
19	MP2A	X	-35.874	1
20	MP2A	Z	-20.712	1
21	MP2A	Mx	018	11

Member Point Loads (BLC 14 : Antenna Wo (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-4.15	3
2	MP1A	Z	-7.188	3
3	MP1A	Mx	001	3
4	MP2A	X	-33.114	2
5	MP2A	Z	-57.354	2
6	MP2A	Mx	.017	2
7	MP2A	X	-33.114	4
8	MP2A	Z	-57.354	4
9	MP2A	Mx	.017	4
10	MP1A	X	-29.628	1.5
11	MP1A	Z	-51.317	1.5
12	MP1A	Mx	.015	1.5
13	MP1A	X	-29.628	4.5
14	MP1A	Z	-51.317	4.5
15	MP1A	Mx	.015	4.5
16	MP1A	X	-28.744	1
17	MP1A	Z	-49.786	1
18	MP1A	Mx	014	1
19	MP2A	X	-27.784	11
20	MP2A	Z	-48.123	1
21	MP2A	Mx	014	1

Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

 Member Label
 Direction
 Magnitude[lb.k-ft]
 Location[ft.%]

 RISA-3D Version 17.0.4
 [\...\...\...\...\...\...\...\Rev 2\RISA\5000185987-VZW_MT_LOT_A_H.r3d]
 Page 13

Member Point Loads (BLC 15 : Antenna Wi (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	3
2	MP1A	Z	-2.722	3
3	MP1A	Mx	0	3
4	MP2A	X	0	2
5	MP2A	Z	-18.577	2
6	MP2A	Mx	0	2
7	MP2A	X	0	4
8	MP2A	Z	-18.577	4
9	MP2A	Mx	0	4
10	MP1A	X	0	1.5
11	MP1A	Z	-31.236	1.5
12	MP1A	Mx	0	1.5
13	MP1A	X	0	4.5
14	MP1A	Z	-31.236	4.5
15	MP1A	Mx	0	4.5
16	MP1A	X	0	1
17	MP1A	Z	-15.637	1
18	MP1A	Mx	0	1
19	MP2A	X	0	1
20	MP2A	Z	-15.637	1
21	MP2A	Mx	0	1

Member Point Loads (BLC 16 : Antenna Wi (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	1.2	3
2	MP1A	Z	-2.078	3
3	MP1A	Mx	.0003	3
4	MP2A	X	7.954	2
5	MP2A	Z	-13.776	2
6	MP2A	Mx	004	2
7	MP2A	X	7.954	4
8	MP2A	Z	-13.776	4
9	MP2A	Mx	004	4
10	MP1A	X	14.457	1.5
11	MP1A	Z	-25.04	1.5
12	MP1A	Mx	007	1.5
13	MP1A	X	14.457	4.5
14	MP1A	Z	-25.04	4.5
15	MP1A	Mx	007	4.5
16	MP1A	X	7.222	1
17	MP1A	Z	-12.509	1
18	MP1A	Mx	.004	1
19	MP2A	X	6.996	1
20	MP2A	Z	-12.117	1
21	MP2A	Mx	.003	1

Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	1.519	3
2	MP1A	Z	877	3
3	MP1A	Mx	.00038	3
4	MP2A	X	9.152	2
5	MP2A	Z	-5.284	2
6	MP2A	Mx	005	2
7	MP2A	X	9.152	4
8	MP2A	Z	-5.284	4

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\...\Rev 2\RISA\5000185987-VZW_MT_LOT_A_H.r3d] Page 14

Member Point Loads (BLC 17 : Antenna Wi (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
9	MP2A	Mx	005	4
10	MP1A	X	21.017	1.5
11	MP1A	Z	-12.134	1.5
12	MP1A	Mx	011	1.5
13	MP1A	X	21.017	4.5
14	MP1A	Z	-12.134	4.5
15	MP1A	Mx	011	4.5
16	MP1A	X	10.444	1
17	MP1A	Z	-6.03	1
18	MP1A	Mx	.005	1
19	MP2A	X	9.267	1
20	MP2A	Z	-5.35	1
21	MP2A	Mx	.005	1

Member Point Loads (BLC 18 : Antenna Wi (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	1.432	3
2	MP1A	Z	0	3
3	MP1A	Mx	.000358	3
4	MP2A	X	7.898	2
5	MP2A	Z	0	2
6	MP2A	Mx	004	2
7	MP2A	X	7.898	4
8	MP2A	Z	0	4
9	MP2A	Mx	004	4
10	MP1A	X	21.947	1.5
11	MP1A	Z	0	1.5
12	MP1A	Mx	011	1.5
13	MP1A	X	21.947	4.5
14	MP1A	Z	0	4.5
15	MP1A	Mx	011	4.5
16	MP1A	X	10.867	1
17	MP1A	Z	0	1
18	MP1A	Mx	.005	1
19	MP2A	X	9.055	
20	MP2A	Z	0	1
21	MP2A	Mx	.005	1

Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	1.519	3
2	MP1A	Z	.877	3
3	MP1A	Mx	.00038	3
4	MP2A	X	9.152	2
5	MP2A	Z	5.284	2
6	MP2A	Mx	005	2
7	MP2A	X	9.152	4
8	MP2A	Z	5.284	4
9	MP2A	Mx	005	4
10	MP1A	X	21.017	1.5
11	MP1A	Z	12.134	1.5
12	MP1A	Mx	011	1.5
13	MP1A	X	21.017	4.5
14	MP1A	Z	12.134	4.5
15	MP1A	Mx	011	4.5
16	MP1A	X	10.444	1

Member Point Loads (BLC 19 : Antenna Wi (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
17	MP1A	Z	6.03	1
18	MP1A	Mx	.005	1
19	MP2A	X	9.267	1
20	MP2A	Z	5.35	1
21	MP2A	Mx	.005	1

Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	1.2	3
2	MP1A	Z	2.078	3
3	MP1A	Mx	.0003	3
4	MP2A	X	7.954	2
5	MP2A	Z	13.776	2
6	MP2A	Mx	004	2
7	MP2A	X	7.954	4
8	MP2A	Z	13.776	4
9	MP2A	Mx	004	4
10	MP1A	X	14.457	1.5
11	MP1A	Z	25.04	1.5
12	MP1A	Mx	007	1.5
13	MP1A	X	14,457	4.5
14	MP1A	Z	25.04	4.5
15	MP1A	Mx	007	4.5
16	MP1A	X	7.222	1
17	MP1A	Z	12.509	1
18	MP1A	Mx	.004	1
19	MP2A	X	6.996	1
20	MP2A	Z	12.117	1
21	MP2A	Mx	.003	1

Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	3
2	MP1A	Z	2.722	3
3	MP1A	Mx	0	3
4	MP2A	X	0	2
5	MP2A	Z	18.577	2
6	MP2A	Mx	0	2
7	MP2A	X	0	4
8	MP2A	Z	18.577	4
9	MP2A	Mx	0	4
10	MP1A	X	0	1.5
11	MP1A	Z	31.236	1.5
12	MP1A	Mx	0	1.5
13	MP1A	X	0	4.5
14	MP1A	Z	31.236	4.5
15	MP1A	Mx	0	4.5
16	MP1A	X	0	1
17	MP1A	Z	15.637	1
18	MP1A	Mx	0	1
19	MP2A	X	0	1
20	MP2A	Z	15.637	1
21	MP2A	Mx	0	1

Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

 Member Label
 Direction
 Magnitude[lb,k-ft]
 Location[ft,%]

 RISA-3D Version 17.0.4
 [\...\...\...\...\...\...\...\...\...\Rev 2\RISA\5000185987-VZW_MT_LOT_A_H.r3d]
 Page 16

Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-1.2	3
2	MP1A	Z	2.078	3
3	MP1A	Mx	0003	3
4	MP2A	X	-7.954	2
5	MP2A	Z	13.776	2
6	MP2A	Mx	.004	2
7	MP2A	X	-7.954	4
8	MP2A	Z	13.776	4
9	MP2A	Mx	.004	4
10	MP1A	X	-14.457	1.5
11	MP1A	Z	25.04	1.5
12	MP1A	Mx	.007	1.5
13	MP1A	X	-14.457	4.5
14	MP1A	Z	25.04	4.5
15	MP1A	Mx	.007	4.5
16	MP1A	X	-7.222	1
17	MP1A	Z	12.509	11
18	MP1A	Mx	004	1
19	MP2A	X	-6.996	1
20	MP2A	Z	12.117	1
21	MP2A	Mx	003	11

Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-1.519	3
2	MP1A	Z	.877	3
3	MP1A	Mx	00038	3
4	MP2A	X	-9.152	2
5	MP2A	Z	5.284	2
6	MP2A	Mx	.005	2
7	MP2A	X	-9.152	4
8	MP2A	Z	5.284	4
9	MP2A	Mx	.005	4
10	MP1A	X	-21.017	1.5
11	MP1A	Z	12.134	1.5
12	MP1A	Mx	.011	1.5
13	MP1A	X	-21.017	4.5
14	MP1A	Z	12.134	4.5
15	MP1A	Mx	.011	4.5
16	MP1A	X	-10.444	1
17	MP1A	Z	6.03	1
18	MP1A	Mx	005	1
19	MP2A	X	-9.267	1
20	MP2A	Z	5.35	1
21	MP2A	Mx	005	1

Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-1.432	3
2	MP1A	Z	0	3
3	MP1A	Mx	000358	3
4	MP2A	X	-7.898	2
5	MP2A	Z	0	2
6	MP2A	Mx	.004	2
7	MP2A	X	-7.898	4
8	MP2A	Z	0	4

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\...\Rev 2\RISA\5000185987-VZW_MT_LOT_A_H.r3d] Page 17

Member Point Loads (BLC 24 : Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
9	MP2A	Mx	.004	4
10	MP1A	X	-21.947	1.5
11	MP1A	Z	0	1.5
12	MP1A	Mx	.011	1.5
13	MP1A	X	-21.947	4.5
14	MP1A	Z	0	4.5
15	MP1A	Mx	.011	4.5
16	MP1A	X	-10.867	1
17	MP1A	Z	0	1
18	MP1A	Mx	005	1
19	MP2A	X	-9.055	1
20	MP2A	Z	0	1
21	MP2A	Mx	005	1

Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-1.519	3
2	MP1A	Z	877	3
3	MP1A	Mx	00038	3
4	MP2A	X	-9.152	2
5	MP2A	Z	-5.284	2
6	MP2A	Mx	.005	2
7	MP2A	X	-9.152	4
8	MP2A	Z	-5.284	4
9	MP2A	Mx	.005	4
10	MP1A	X	-21.017	1.5
11	MP1A	Z	-12.134	1.5
12	MP1A	Mx	.011	1.5
13	MP1A	X	-21.017	4.5
14	MP1A	Z	-12.134	4.5
15	MP1A	Mx	.011	4.5
16	MP1A	X	-10,444	1
17	MP1A	Z	-6.03	1
18	MP1A	Mx	005	1
19	MP2A	X	-9.267	1
20	MP2A	Z	-5.35	1
21	MP2A	Mx	005	1

Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-1.2	3
2	MP1A	Z	-2.078	3
3	MP1A	Mx	0003	3
4	MP2A	X	-7.954	2
5	MP2A	Z	-13,776	2
6	MP2A	Mx	.004	2
7	MP2A	X	-7.954	4
8	MP2A	Z	-13.776	4
9	MP2A	Mx	.004	4
10	MP1A	X	-14.457	1.5
11	MP1A	Z	-25.04	1.5
12	MP1A	Mx	.007	1.5
13	MP1A	X	-14.457	4.5
14	MP1A	Z	-25.04	4.5
15	MP1A	Mx	.007	4.5
16	MP1A	X	-7.222	1

IRISA	Company Designer Job Number	2 2 2	May 19, 2023 2:37 PM Checked By:
A MEMETSCHER COMPANY	Model Name	2	

Member Point Loads (BLC 26 : Antenna Wi (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
17	MP1A	Z	-12.509	1
18	MP1A	Mx	004	1
19	MP2A	X	-6.996	1
20	MP2A	Z	-12.117	1
21	MP2A	Mx	003	1

Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	3
2	MP1A	Z	606	3
3	MP1A	Mx	0	3
4	MP2A	X	0	2
5	MP2A	Z	-4.951	2
6	MP2A	Mx	0	2
7	MP2A	X	0	4
8	MP2A	Z	-4.951	4
9	MP2A	Mx	0	4
10	MP1A	X	0	1.5
11	MP1A	Z	-3.801	1.5
12	MP1A	Mx	0	1.5
13	MP1A	X	0	4.5
14	MP1A	Z	-3.801	4.5
15	MP1A	Mx	0	4.5
16	MP1A	X	0	1
17	MP1A	Z	-3.915	1
18	MP1A	Mx	0	1
19	MP2A	X	0	1
20	MP2A	Z	-3.915	1
21	MP2A	Mx	0	1

Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	.259	3
2	MP1A	Z	449	3
3	MP1A	Mx	6.5e-5	3
4	MP2A	X	2.07	2
5	MP2A	Z	-3.585	2
6	MP2A	Mx	001	2
7	MP2A	X	2.07	4
8	MP2A	Z	-3.585	4
9	MP2A	Mx	001	4
10	MP1A	X	1.852	1.5
11	MP1A	Z	-3.207	1.5
12	MP1A	Mx	000926	1.5
13	MP1A	X	1.852	4.5
14	MP1A	Z	-3.207	4.5
15	MP1A	Mx	000926	4.5
16	MP1A	X	1.796	1
17	MP1A	Z	-3.112	1
18	MP1A	Mx	.000898	1
19	MP2A	X	1.737	1
20	MP2A	Z	-3.008	1
21	MP2A	Mx	.000868	1

Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	.298	3
2	MP1A	Z	172	3
3	MP1A	Mx	7.4e-5	3
4	MP2A	X	2.179	2
5	MP2A	Z	-1.258	2
6	MP2A	Mx	001	2
7	MP2A	X	2.179	4
8	MP2A	Z	-1.258	4
9	MP2A	Mx	001	4
10	MP1A	X	3.038	1.5
11	MP1A	Z	-1.754	1.5
12	MP1A	Mx	002	1.5
13	MP1A	X	3.038	4.5
14	MP1A	Z	-1.754	4.5
15	MP1A	Mx	002	4.5
16	MP1A	X	2.554	1
17	MP1A	Z	-1.474	1
18	MP1A	Mx	.001	1
19	MP2A	X	2.242	1
20	MP2A	Z	-1.294	1
21	MP2A	Mx	.001	1

Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	.256	3
2	MP1A	Z	0	3
3	MP1A	Mx	6.4e-5	3
4	MP2A	X	1.705	2
5	MP2A	Z	0	2
6	MP2A	Mx	000853	2
7	MP2A	X	1.705	4
8	MP2A	Z	0	4
9	MP2A	Mx	000853	4
10	MP1A	X	3.41	1.5
11	MP1A	Z	0	1.5
12	MP1A	Mx	002	1.5
13	MP1A	X	3.41	4.5
14	MP1A	Z	0	4.5
15	MP1A	Mx	002	4.5
16	MP1A	X	2.627	1
17	MP1A	Z	0	1
18	MP1A	Mx	.001	1
19	MP2A	X	2.147	1
20	MP2A	Z	0	1
21	MP2A	Mx	.001	1

Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	.298	3
2	MP1A	Z	.172	3
3	MP1A	Mx	7.4e-5	3
4	MP2A	X	2.179	2
5	MP2A	Z	1.258	2
6	MP2A	Mx	001	2
7	MP2A	X	2.179	4
8	MP2A	Z	1.258	4

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\Rev 2\RISA\5000185987-VZW_MT_LOT_A_H.r3d] Page 20

Member Point Loads (BLC 31 : Antenna Wm (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
9	MP2A	Mx	001	4
10	MP1A	X	3.038	1.5
11	MP1A	Z	1.754	1.5
12	MP1A	Mx	002	1.5
13	MP1A	X	3.038	4.5
14	MP1A	Z	1.754	4.5
15	MP1A	Mx	002	4.5
16	MP1A	X	2.554	1
17	MP1A	Z	1.474	1
18	MP1A	Mx	.001	1
19	MP2A	X	2.242	1
20	MP2A	Z	1.294	1
21	MP2A	Mx	.001	1

Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	.259	3
2	MP1A	Z	.449	3
3	MP1A	Mx	6.5e-5	3
4	MP2A	X	2.07	2
5	MP2A	Z	3.585	2
6	MP2A	Mx	001	2
7	MP2A	X	2.07	4
8	MP2A	Z	3.585	4
9	MP2A	Mx	001	4
10	MP1A	X	1.852	1.5
11	MP1A	Z	3.207	1.5
12	MP1A	Mx	000926	1.5
13	MP1A	X	1.852	4.5
14	MP1A	Z	3.207	4.5
15	MP1A	Mx	000926	4.5
16	MP1A	X	1.796	1
17	MP1A	Z	3.112	1
18	MP1A	Mx	.000898	1
19	MP2A	X	1.737	1
20	MP2A	Z	3.008	1
21	MP2A	Mx	.000868	1

Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	3
2	MP1A	Z	.606	3
3	MP1A	Mx	0	3
4	MP2A	X	0	2
5	MP2A	Z	4.951	2
6	MP2A	Mx	0	2
7	MP2A	X	0	4
8	MP2A	Z	4.951	4
9	MP2A	Mx	0	4
10	MP1A	X	0	1.5
11	MP1A	Z	3.801	1.5
12	MP1A	Mx	0	1.5
13	MP1A	X	0	4.5
14	MP1A	Z	3.801	4.5
15	MP1A	Mx	0	4.5
16	MP1A	X	0	1

IRISA	Company Designer Job Number Model Name	May 19, 2023 2:37 PM Checked By:
A NEMETSCHER COMPANY	Woder Name	

Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
17	MP1A	Z	3.915	1
18	MP1A	Mx	0	1
19	MP2A	X	0	1
20	MP2A	Z	3.915	
21	MP2A	Mx	0	1

Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	259	3
2	MP1A	Z	.449	3
3	MP1A	Mx	-6.5e-5	3
4	MP2A	X	-2.07	2
5	MP2A	Z	3.585	2
6	MP2A	Mx	.001	2
7	MP2A	X	-2.07	4
8	MP2A	Z	3.585	4
9	MP2A	Mx	.001	4
10	MP1A	X	-1.852	1.5
11	MP1A	Z	3.207	1.5
12	MP1A	Mx	.000926	1.5
13	MP1A	X	-1.852	4.5
14	MP1A	Z	3.207	4.5
15	MP1A	Mx	.000926	4.5
16	MP1A	X	-1.796	1
17	MP1A	Z	3.112	1
18	MP1A	Mx	000898	1
19	MP2A	X	-1.737	1
20	MP2A	Z	3.008	1
21	MP2A	Mx	000868	1

Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	298	3
2	MP1A	Z	.172	3
3	MP1A	Mx	-7.4e-5	3
4	MP2A	X	-2.179	2
5	MP2A	Z	1.258	2
6	MP2A	Mx	.001	2
7	MP2A	X	-2.179	4
8	MP2A	Z	1.258	4
9	MP2A	Mx	.001	4
10	MP1A	X	-3.038	1.5
11	MP1A	Z	1.754	1.5
12	MP1A	Mx	.002	1.5
13	MP1A	X	-3.038	4.5
14	MP1A	Z	1.754	4.5
15	MP1A	Mx	.002	4.5
16	MP1A	X	-2.554	1
17	MP1A	Z	1.474	1
18	MP1A	Mx	001	1
19	MP2A	X	-2.242	1
20	MP2A	Z	1.294	1
21	MP2A	Mx	001	1

Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
1	MP1A	X	256	3
2	MP1A	Z	0	3
3	MP1A	Mx	-6.4e-5	3
4	MP2A	X	-1.705	2
5	MP2A	Z	0	2
6	MP2A	Mx	.000853	2
7	MP2A	X	-1.705	4
8	MP2A	Z	0	4
9	MP2A	Mx	.000853	4
10	MP1A	X	-3.41	1.5
11	MP1A	Z	0	1.5
12	MP1A	Mx	.002	1.5
13	MP1A	X	-3,41	4.5
14	MP1A	Z	0	4.5
15	MP1A	Mx	.002	4.5
16	MP1A	X	-2.627	1
17	MP1A	Z	0	1
18	MP1A	Mx	001	1
19	MP2A	X	-2.147	1
20	MP2A	Z	0	1
21	MP2A	Mx	001	1

Member Point Loads (BLC 36 : Antenna Wm (270 Deg)) (Continued)

Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	298	3
2	MP1A	Z	172	3
3	MP1A	Mx	-7.4e-5	3
4	MP2A	X	-2.179	2
5	MP2A	Z	-1.258	2
6	MP2A	Mx	.001	2
7	MP2A	X	-2.179	4
8	MP2A	Z	-1.258	4
9	MP2A	Mx	.001	4
10	MP1A	X	-3.038	1.5
11	MP1A	Z	-1.754	1.5
12	MP1A	Mx	.002	1.5
13	MP1A	X	-3.038	4.5
14	MP1A	Z	-1.754	4.5
15	MP1A	Mx	.002	4.5
16	MP1A	X	-2.554	1
17	MP1A	Z	-1.474	1
18	MP1A	Mx	001	1
19	MP2A	X	-2.242	1
20	MP2A	Z	-1.294	1
21	MP2A	Mx	001	1

Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	259	3
2	MP1A	Z	449	3
3	MP1A	Mx	-6.5e-5	3
4	MP2A	X	-2.07	2
5	MP2A	Z	-3.585	2
6	MP2A	Mx	.001	2
7	MP2A	X	-2.07	4
8	MP2A	Z	-3.585	4

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\Rev 2\RISA\5000185987-VZW_MT_LOT_A_H.r3d] Page 23

Member Point Loads (BLC 38 : Antenna Wm (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
9	MP2A	Mx	.001	4
10	MP1A	X	-1.852	1.5
11	MP1A	Z	-3.207	1.5
12	MP1A	Mx	.000926	1.5
13	MP1A	X	-1.852	4.5
14	MP1A	Z	-3.207	4.5
15	MP1A	Mx	.000926	4.5
16	MP1A	X	-1.796	1
17	MP1A	Z	-3.112	1
18	MP1A	Mx	000898	1
19	MP2A	X	-1.737	1
20	MP2A	Z	-3.008	1
21	MP2A	Mx	000868	1

Member Point Loads (BLC 77 : Lm1)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M8	Y	-500	0

Member Point Loads (BLC 78 : Lm2)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M10	Y	-500	0

Member Point Loads (BLC 79 : Lv1)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M4	Y	-250	0

Member Point Loads (BLC 80 : Lv2)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M4	Y	-250	%50

Member Point Loads (BLC 81 : Antenna Ev)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Y	297	3
2	MP1A	My	7.4e-5	3
3	MP1A	Mz	0	3
4	MP2A	Y	-1.96	2
5	MP2A	My	00098	2
6	MP2A	Mz	0	2
7	MP2A	Y	-1.96	4
8	MP2A	My	00098	4
9	MP2A	Mz	0	4
10	MP1A	Y	-1.659	1.5
11	MP1A	My	000829	1.5
12	MP1A	Mz	0	1.5
13	MP1A	Y	-1.659	4.5
14	MP1A	My	000829	4.5
15	MP1A	Mz	0	4.5
16	MP1A	Y	-3.799	1
17	MP1A	My	.002	1
18	MP1A	Mz	0	1
19	MP2A	Y	-3.164	1
20	MP2A	My	.002	1
21	MP2A	Mz	0	1

Member Point Loads (BLC 82 : Antenna Eh (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Z	743	3
2	MP1A	Mx	0	3
3	MP2A	Z	-4.901	2
4	MP2A	Mx	0	2
5	MP2A	Z	-4.901	4
6	MP2A	Mx	0	4
7	MP1A	Z	-4.147	1.5
8	MP1A	Mx	0	1.5
9	MP1A	Z	-4.147	4.5
10	MP1A	Mx	0	4.5
11	MP1A	Z	-9.498	11
12	MP1A	Mx	0	1
13	MP2A	Z	-7.911	1
14	MP2A	Mx	0	1

Member Point Loads (BLC 83 : Antenna Eh (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	.743	3
2	MP1A	Mx	.000186	3
3	MP2A	X	4.901	2
4	MP2A	Mx	002	2
5	MP2A	X	4.901	4
6	MP2A	Mx	002	4
7	MP1A	X	4.147	1.5
8	MP1A	Mx	002	1.5
9	MP1A	X	4.147	4.5
10	MP1A	Mx	002	4.5
11	MP1A	X	9.498	1
12	MP1A	Mx	.005	1
13	MP2A	X	7.911	1
14	MP2A	Mx	.004	1

Joint Loads and Enforced Displacements

Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/
	No Data to Print		

Member Distributed Loads (BLC 40 : Structure Di)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	Mi Mi	Y	-9.345	-9.345	0	%100
2	M4	Y	-6.374	-6.374	0	%100
3	MP1A	Ý	-4.824	-4.824	0	%100
4	MP2A	Y	-4.824	-4.824	0	%100

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F	. Start Location[ft.%]	End Location[ft,%]
1	MdMbd/ Ldbb/	X	0	0	0	%100
2	M1	7	0	0	0	%100
3	M4	X	0	0	0	%100
4	M4	Z	-11.059	-11.059	0	%100
5	MP1A	X	0	0	0	%100
6	MP1A	Z	-9.589	-9.589	0	%100
7	MP2A	X	0	0	0	%100
8	MP2A	Z	-9.589	-9.589	0	%100

May 19, 2023 2:37 PM Checked By:

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft.%]	End Location[ft,%]
1	M1	X	1.43	1.43	0	%100
2	M1	Z	-2.477	-2.477	0	%100
3	M4	X	4.147	4.147	0	%100
4	M4	Z	-7.183	-7.183	0	%100
5	MP1A	X	4.794	4,794	0	%100
6	MP1A	Z	-8.304	-8.304	0	%100
7	MP2A	X	4.794	4.794	0	%100
8	MP2A	Z	-8.304	-8.304	0	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	7.43	7.43	0	%100
2	M1	Z	-4.29	-4.29	0	%100
3	M4	X	2.394	2.394	0	%100
4	M4	Z	-1.382	-1.382	0	%100
5	MP1A	X	8.304	8.304	0	%100
6	MP1A	Z	-4.794	-4.794	0	%100
7	MP2A	X	8.304	8.304	0	%100
8	MP2A	Z	-4.794	-4.794	0	%100

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft.	End Magnitude[lb/ft,F	. Start Location[ft.%]	End Location[ft,%]
1	M1	X	11.439	11.439	0	%100
2	M1	Z	0	0	0	%100
3	M4	X	0	0	0	%100
4	M4	Z	0	0	0	%100
5	MP1A	X	9.589	9.589	0	%100
6	MP1A	Z	0	0	0	%100
7	MP2A	X	9.589	9.589	0	%100
8	MP2A	Z	0	0	0	%100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F	. Start Location[ft.%]	End Location[ft,%]
1	M1	X	7.43	7.43	0	%100
2	M1	Z	4.29	4.29	0	%100
3	M4	X	2.394	2.394	0	%100
4	M4	Z	1.382	1.382	0	%100
5	MP1A	X	8.304	8.304	0	%100
6	MP1A	Z	4,794	4.794	0	%100
7	MP2A	X	8.304	8.304	0	%100
8	MP2A	Z	4.794	4.794	0	%100

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft.%]	End Location[ft,%]
1	M1	X	1.43	1.43	0	%100
2	M1	Z	2.477	2.477	0	%100
3	M4	X	4.147	4.147	0	%100
4	M4	Z	7.183	7.183	0	%100
5	MP1A	X	4.794	4,794	0	%100
6	MP1A	Z	8.304	8.304	0	%100
7	MP2A	X	4,794	4,794	0	%100
8	MP2A	Z	8.304	8.304	0	%100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg))

-

Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft F	Start Location[ft %]	End LocationIft %]
RISA-3D Version 17.0.4	[\\\\	\\\Rev 2\RIS	SA\5000185987-VZV	MT LOT A H.r3	d] Page 26

Company : Designer : Job Number : Model Name :	May 19, 2023 2:37 PM Checked By:
---	--

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft.F.,	. Start Location[ft.%]	End Location[ft.%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M4	X	0	0	0	%100
4	M4	Z	11.059	11.059	0	%100
5	MP1A	X	0	0	0	%100
6	MP1A	7	9.589	9.589	0	%100
7	MP2A	X	0	0	0	%100
8	MP2A	Z	9.589	9.589	0	%100

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	-1.43	-1.43	0	%100
2	M1	Z	2.477	2.477	0	%100
3	M4	X	-4,147	-4.147	0	%100
4	M4	Z	7.183	7.183	0	%100
5	MP1A	X	-4,794	-4.794	0	%100
6	MP1A	Z	8.304	8.304	0	%100
7	MP2A	X	-4.794	-4.794	0	%100
8	MP2A	Z	8.304	8.304	0	%100

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	-7.43	-7.43	0	%100
2	M1	Z	4.29	4.29	0	%100
3	M4	X	-2.394	-2.394	0	%100
4	M4	Z	1.382	1.382	0	%100
5	MP1A	X	-8.304	-8.304	0	%100
6	MP1A	Z	4.794	4.794	0	%100
7	MP2A	X	-8,304	-8.304	0	%100
8	MP2A	Z	4.794	4.794	0	%100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft.	End Magnitude[lb/ft,F	. Start Location[ft.%]	End Location[ft,%]
1	M1	X	-11.439	-11.439	0	%100
2	M1	Z	0	0	0	%100
3	M4	X	0	0	0	%100
4	M4	Z	0	0	0	%100
5	MP1A	X	-9.589	-9.589	0	%100
6	MP1A	Z	0	0	0	%100
7	MP2A	X	-9,589	-9.589	0	%100
8	MP2A	Z	0	0	0	%100

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft.%]
1	M1	X	-7.43	-7.43	0	%100
2	M1	Z	-4.29	-4.29	0	%100
3	M4	X	-2.394	-2.394	0	%100
4	M4	7	-1.382	-1.382	0	%100
5	MP1A	X	-8.304	-8.304	0	%100
6	MP1A	Z	-4.794	-4.794	0	%100
7	MP2A	X	-8.304	-8.304	0	%100
8	MP2A	Z	-4.794	-4.794	0	%100

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg))

=

Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft E	Start Location[ft %]	End Location[ft %]
RISA-3D Version 17.0.4	Γ	\\\Rev 2\RIS	SA\5000185987-VZW	/_MT_LOT_A_H.r3d	d] Page 27

	Company Designer Iob Number Nodel Name	May 19, 2023 2:37 PM Checked By:
A NEMETSCHER COMPANY	nouer ivaille	

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	-1.43	-1.43	0	%100
2	M1	Z	-2.477	-2.477	0	%100
3	M4	X	-4.147	-4.147	0	%100
4	M4	Z	-7.183	-7.183	0	%100
5	MP1A	X	-4.794	-4.794	0	%100
6	MP1A	Z	-8.304	-8.304	0	%100
7	MP2A	X	-4.794	-4.794	0	%100
8	MP2A	Z	-8.304	-8.304	0	%100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M4	X	0	0	0	%100
4	M4	Z	-3.416	-3.416	0	%100
5	MP1A	X	0	0	0	%100
6	MP1A	Z	-3.248	-3.248	0	%100
7	MP2A	X	0	0	0	%100
8	MP2A	Z	-3.248	-3.248	0	%100

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	.368	.368	0	%100
2	M1	Z	637	637	0	%100
3	M4	X	1.281	1.281	0	%100
4	M4	Z	-2.219	-2.219	0	%100
5	MP1A	X	1.624	1.624	0	%100
6	MP1A	Z	-2.813	-2.813	0	%100
7	MP2A	X	1.624	1.624	0	%100
8	MP2A	Z	-2.813	-2.813	0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	1.911	1.911	0	%100
2	M1	Z	-1.103	-1.103	0	%100
3	M4	X	.74	.74	0	%100
4	M4	Z	427	427	0	%100
5	MP1A	X	2.813	2.813	0	%100
6	MP1A	Z	-1.624	-1.624	0	%100
7	MP2A	X	2.813	2.813	0	%100
8	MP2A	Z	-1.624	-1.624	0	%100

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	2.941	2.941	0	%100
2	M1	Z	0	0	0	%100
3	M4	X	0	0	0	%100
4	M4	Z	0	0	0	%100
5	MP1A	X	3.248	3.248	0	%100
6	MP1A	Z	0	0	0	%100
7	MP2A	X	3.248	3.248	0	%100
8	MP2A	Z	0	0	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg))

Member Label	Direction	Start Magnitude[]h/ft	End Magnitude[lb/ft F	Start Location[ft %]	End Location[ft %]
RISA-3D Version 17.0.4	[\\\\		A\5000185987-VZW	_MT_LOT_A_H.r3	d] Page 28

IRISA	Company Designer Job Number Model Name	May 19, 2023 2:37 PM Checked By:
A RECEIPTION OF STREET OF STREET, STRE	Model Name	

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	1.911	1.911	0	%100
2	M1	Z	1.103	1.103	0	%100
3	M4	X	.74	.74	0	%100
4	M4	Z	.427	.427	0	%100
5	MP1A	X	2.813	2.813	0	%100
6	MP1A	Z	1.624	1.624	0	%100
7	MP2A	X	2.813	2.813	0	%100
8	MP2A	Z	1.624	1.624	0	%100

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	.368	.368	0	%100
2	M1	Z	.637	.637	0	%100
3	M4	X	1.281	1.281	0	%100
4	M4	Z	2.219	2.219	0	%100
5	MP1A	X	1.624	1.624	0	%100
6	MP1A	Z	2.813	2.813	0	%100
7	MP2A	X	1.624	1.624	0	%100
8	MP2A	Z	2.813	2.813	0	%100

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M4	X	0	0	0	%100
4	M4	Z	3.416	3.416	0	%100
5	MP1A	X	0	0	0	%100
6	MP1A	Z	3.248	3.248	0	%100
7	MP2A	X	0	0	0	%100
8	MP2A	Z	3.248	3.248	0	%100

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	368	368	0	%100
2	M1	Z	.637	.637	0	%100
3	M4	X	-1.281	-1.281	0	%100
4	M4	Z	2.219	2.219	0	%100
5	MP1A	X	-1.624	-1.624	0	%100
6	MP1A	Z	2.813	2.813	0	%100
7	MP2A	X	-1.624	-1.624	0	%100
8	MP2A	Z	2.813	2.813	0	%100

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	-1.911	-1.911	0	%100
2	M1	Z	1.103	1.103	0	%100
3	M4	X	74	74	0	%100
4	M4	Z	.427	.427	0	%100
5	MP1A	X	-2.813	-2.813	0	%100
6	MP1A	Z	1.624	1.624	0	%100
7	MP2A	X	-2.813	-2.813	0	%100
8	MP2A	Z	1.624	1.624	0	%100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg))

Member Label	Direction	Start Magnitude[]b/ft	End Magnitude[lb/ft F	Start Location[ft %]	End Location[ft %]
RISA-3D Version 17.0.4	[]]]]	\\\Rev 2\RIS	A\5000185987-VZW	/_MT_LOT_A_H.r3d	d] Page 29

May 19, 2023 2:37 PM Checked By:

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft.F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	-2.941	-2.941	0	%100
2	M1	Z	0	0	0	%100
3	M4	X	0	0	0	%100
4	M4	Z	0	0	0	%100
5	MP1A	X	-3.248	-3.248	0	%100
6	MP1A	Z	0	0	0	%100
7	MP2A	X	-3.248	-3.248	0	%100
8	MP2A	Z	0	0	0	%100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	-1.911	-1.911	0	%100
2	M1	Z	-1.103	-1.103	0	%100
3	M4	X	74	74	0	%100
4	M4	Z	427	427	0	%100
5	MP1A	X	-2.813	-2.813	0	%100
6	MP1A	Z	-1.624	-1.624	0	%100
7	MP2A	X	-2.813	-2.813	0	%100
8	MP2A	Z	-1.624	-1.624	0	%100

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	368	368	0	%100
2	M1	Z	637	637	0	%100
3	M4	X	-1.281	-1.281	0	%100
4	M4	Z	-2.219	-2.219	0	%100
5	MP1A	X	-1.624	-1.624	0	%100
6	MP1A	Z	-2.813	-2.813	0	%100
7	MP2A	X	-1.624	-1.624	0	%100
8	MP2A	Z	-2.813	-2.813	0	%100

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M4	X	0	0	0	%100
4	M4	Z	692	692	0	%100
5	MP1A	X	0	0	0	%100
6	MP1A	Z	6	6	0	%100
7	MP2A	X	0	0	0	%100
8	MP2A	Z	6	6	0	%100

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft.	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	.089	.089	0	%100
2	M1	Z	155	155	0	%100
3	M4	X	.259	.259	0	%100
4	M4	Z	449	- 449	0	%100
5	MP1A	X	.3	.3	0	%100
6	MP1A	Z	52	52	0	%100
7	MP2A	X	.3	.3	0	%100
8	MP2A	Z	52	52	0	%100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg))

Member Label	Direction	Start MagnitudeIIb/ft	End Magnitude[lb/ft F	Start Location[ft %]	End Location[ft %]
RISA-3D Version 17.0.4	[\\\\	\\\Rev 2\RIS	A\5000185987-VZW	MT_LOT_A_H.r3	d] Page 30

Compa Design Job Nu Madel	ar : mber :	May 19, 2023 2:37 PM Checked By:
A NEMETSCHER COMPANY Model	lame :	

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft.%]	End Location[ft,%]
1	M1	X	.465	.465	0	%100
2	M1	Z	268	268	0	%100
3	M4	X	.15	.15	0	%100
4	M4	Z	086	086	0	%100
5	MP1A	X	.52	.52	0	%100
6	MP1A	Z	3	3	0	%100
7	MP2A	X	.52	.52	0	%100
8	MP2A	Z	3	3	0	%100

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	.716	.716	0	%100
2	M1	Z	0	0	0	%100
3	M4	X	0	0	0	%100
4	M4	Z	0	0	0	%100
5	MP1A	X	.6	.6	0	%100
6	MP1A	Z	0	0	0	%100
7	MP2A	X	.6	.6	0	%100
8	MP2A	Z	0	0	0	%100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft.F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	.465	.465	0	%100
2	M1	Z	.268	.268	0	%100
3	M4	X	.15	.15	0	%100
4	M4	Z	.086	.086	0	%100
5	MP1A	X	.52	.52	0	%100
6	MP1A	Z	.3	.3	0	%100
7	MP2A	X	.52	.52	0	%100
8	MP2A	Z	.3	.3	0	%100

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft.F	. Start Location[ft.%]	End Location[ft,%]
1	M1	X	.089	.089	0	%100
2	M1	Z	.155	.155	0	%100
3	M4	X	.259	.259	0	%100
4	M4	Z	.449	.449	0	%100
5	MP1A	X	.3	.3	0	%100
6	MP1A	Z	.52	.52	0	%100
7	MP2A	X	.3	.3	0	%100
8	MP2A	Z	.52	.52	0	%100

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M4	X	0	0	0	%100
4	M4	Z	.692	.692	0	%100
5	MP1A	X	0	0	0	%100
6	MP1A	Z	.6	.6	0	%100
7	MP2A	X	0	0	0	%100
8	MP2A	Z	.6	.6	0	%100

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg))

Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft.E	Start Location[ft %]	End Location[ft %]
RISA-3D Version 17.0.4	Γ	\\\Rev 2\RIS	SA\5000185987-VZW	MT_LOT_A_H.r3d	d] Page 31

Company Designer Job Number Model Name		May 19, 2023 2:37 PM Checked By:
---	--	--

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	089	089	0	%100
2	M1	Z	.155	.155	0	%100
3	M4	X	259	259	0	%100
4	M4	Z	.449	.449	0	%100
5	MP1A	X	3	3	0	%100
6	MP1A	Z	.52	.52	0	%100
7	MP2A	X	3	3	0	%100
8	MP2A	Z	.52	.52	0	%100

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	465	465	0	%100
2	M1	Z	.268	.268	0	%100
3	M4	X	15	15	0	%100
4	M4	Z	.086	.086	0	%100
5	MP1A	X	52	52	0	%100
6	MP1A	Z	.3	.3	0	%100
7	MP2A	X	52	52	0	%100
8	MP2A	Z	.3	.3	0	%100

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	716	716	0	%100
2	M1	Z	0	0	0	%100
3	M4	X	0	.0	0	%100
4	M4	Z	0	0	0	%100
5	MP1A	X	6	6	0	%100
6	MP1A	Z	0	0	0	%100
7	MP2A	X	6	6	0	%100
8	MP2A	Z	0	0	0	%100

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	465	465	0	%100
2	M1	Z	268	268	0	%100
3	M4	X	15	15	0	%100
4	M4	Z	086	086	0	%100
5	MP1A	X	52	52	0	%100
6	MP1A	Z	3	3	0	%100
7	MP2A	X	52	52	0	%100
8	MP2A	Z	3	3	0	%100

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	089	089	0	%100
2	M1	Z	-,155	155	0	%100
3	M4	X	259	259	0	%100
4	M4	Z	449	449	0	%100
5	MP1A	X	3	3	0	%100
6	MP1A	Z	52	52	0	%100
7	MP2A	X	3	3	0	%100
8	MP2A	Z	52	52	0	%100

Member Area Loads

Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
Comm.		No Data	a to Print			

Envelope Joint Reactions

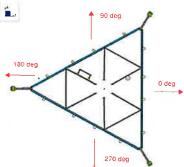
	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [kLC	MY [k-ft]	LC	MZ [k	LC
1	N1	m	366.85	10	1229.484	48	574.346	1	047 1	.513	9	1.35	
2		min	-366.85	4	341.627	68	-574.346	7	-1.316 43	513	3	-1.319	46
3	Totals:	m	366.85	10	1229.484	48	574.346	1					
4		min	-366.85	4	341.627	68	-574.346	7					

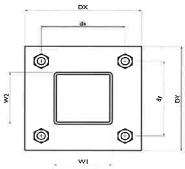
Envelope AISC 15th(360-16): LRFD Steel Code Checks

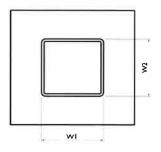
	Member Shape	Code Check	Loc[ft]	LC	Shear Check	L	Dir				phi*Mn y.		
1	M1 HSS4	.083	0	6	.131	0	V	28	13925	. 139518	16.181	16.181	H1
2	M4 PIPE	.301	2	28	.084	2		7	59852	65205	5.749	5.749	H1
3	MP1A PIPE	.204	3.5	1	.030	3.5		4	20866	32130	1.872	1.872	H1
4	MP2A PIPE	.191	3.5	1	.026	3.5		8	20866	.32130	1.872	1.872	H1

37-337	Client:	Verizon Wireless	Date:	5/19/2023
VzW	Site Name:	South Farms CT		
SMART Tool®	MDG #:	5000185987		
Vendor	Fuze ID #:	16235710	Page:	1
			١	/ersion 1.01

I. Mount-to-Tower Connection Check

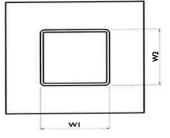

Phi*M_n (kip-in):


Plate Bending Utilization:


ustom Orientation Required	Yes
Nodes	Orientation
(labeled per Risa)	(per graphic of typical platform)
N1	0
	and the second second second
r Connection Bolt Checks	Yes
Drientation	Parallel
Juantity per Reaction:	4
(Delta X of typ. bolt config. sketch) :	6
(Delta Y of typ. bolt config. sketch):	6
ype:	A325N
Diameter (in):	0.625
ired Tensile Strength / bolt (kips):	1.3
ired Shear Strength / bolt (kips):	1.2
le Capacity / bolt (kips):	20.7
r Capacity / bolt (kips):	12.4
overall Utilization:	9.6%
r Connection Baseplate Checks	Yes
ecting Standoff Member Shape:	Rect Tube
Stiffener Configuration:	No Stiffeners
Nidth, D _x (in):	8
Height, D _v (in):	8
n):	4
in):	4
ber Thickness (in):	0.25
ner location a1 (in):	
er location b ₁ (in):	
er location a ₂ (in):	
ner location b_2 (in):	36
ter location b_2 (in): , plate):	36
ner location b ₂ (in): , plate): Thickness (in):	0.5
ner location b ₂ (in): , plate): Thickness (in): h of Yield Line, L _v (in):	0.5 5.85
ener location a ₂ (in): ener location b ₂ (in): si, plate): e Thickness (in): th of Yield Line, L _y (in): Eccentricity, e (in): kip-in):	0.5

11.85

20.0%



V2W	Client:	Verizon Wireless	Date: 5/19/2023
	Site Name:	South Farms CT	
SMART Tool [©]	PSLC #:	5000185987	
Vendor	Fuze ID #:	16235710	Page: 2
			Version 1.01

Tower Connection Weld Checks	Yes
Weld Shape:	Rectangle
Weld Stiffener Configuration:	None
Weld Size (1/16 in):	4
W1 (in):	4
W2 (in):	4
Weld Total Length (in):	16.00
Z_x (in ³ /in):	21.33
Z _v (in ³ /in):	21.33
$J_{o}(in^{4}/in)$:	85.33
c _x (in)	2.25
c, (in)	2.25
Required combined strength (kip/in):	0.73
Weld Capacity (kip/in):	5.57
Weld Utilization:	13.2%

ATTACHMENT 5

8

67 FAIRCHILD RD

Location	67 FAIRCHILD RD	Map-Lot	42/ / 0118/ /
Acct#	R15245	Owner	BORRELLI STEPHEN G & BARBARA L
Municipality		Assessment	\$578,330
Appraisal	\$826,190	PID	15236
Building Count	2	Assessing District	

Current Value

	Appraisal		
Valuation Year	Improvements	Land	Total
2022	\$489,970	\$336,220	\$826,190
	Assessment		
Valuation Year	Improvements	Land	Total
2022	\$342,980	\$235,350	\$578,330

Parcel Addreses

Ĩ	Additional Addresses
	No Additional Addresses available for this parcel

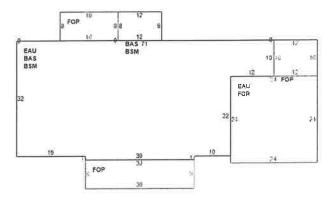
Owner of Record

Owner	BORRELLI STEPHEN G & BARBARA L	Sale Price	\$0
Co-Owner		Certificate	
Address	67 FAIRCHILD RD	Book & Page	1091/0136
	MIDDLETOWN, CT 06457	Sale Date	02/28/1996
		Instrument	29

Ownership History

	Ownership	o History			
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date
BORRELLI STEPHEN G & BARBARA L	\$0		1091/0136	29	02/28/1996

Building 1 : Section 1


Year Built: Living Area: Replacement Cost: Building Percent Good: Replacement Cost Less Depreciation:	2012 2,134 \$390,930 90 \$351,840
E	Building Attributes
Field	Description
Style	Cape Cod
Model	Residential
Grade	В-
Stories	1.25
Occupancy	1
Exterior Wall 1	Vinyl Siding
Exterior Wall 2	
Roof Structure	Gable
Roof Cover	Asphalt Shingl
Interior Wall 1	Drywall
Interior Wall 2	
Interior Floor 1	Hardwood
Interior Floor 2	
Heat Fuel	Propane
Heat Type	Forced Air
Ас Туре	
Bedrooms	3
Full Baths	2
Half Baths	0
Extra Fixtures	2
Total Rooms	5
Bath Remodel	Not Updated
Kitchen Remodel	Not Updated
Extra Kitchens	
Fireplaces	0
Extra Openings	
Gas Fireplace	1
Int vs Ext	Same
А/С Туре	Central
A/C %	100
Fireplaces 1	2137

Building Photo

(https://images.vgsi.com/photos/MiddletownCTPhotos/\0046\IMG_1129_4

Building Layout

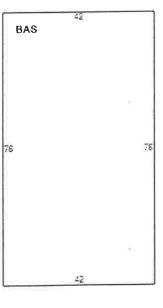
(ParcelSketch.ashx?pid=15236&bid=15236)

	Building Sub-Areas (sq ft)		<u>Legend</u>
Code	Description	Gross Area	Living Area
BAS	First Floor	2,134	2,134
BSM	Basement	2,134	0
EAU	Expansion Attic Unfinished	2,614	0
FGR	Garage	576	0
FOP	Framed Open Porch	488	0
		7,946	2,134

Fin Bsmt Area		
FBM grade		
Bsmt Garage		
Fndtn Cndtn		
In Law	 	

Building 2 : Section 1

Year Built:	2000
Living Area:	3,192
Replacement Cost:	\$87,537
Building Percent Good:	82
Replacement Cost	
Less Depreciation:	\$71,780


Building Attributes : Bldg 2 of 2			
Field	Description		
Style	Equip Garage		
Model	Commercial		
Grade	D		
Stories	1		
Occupancy	1.00		
Exterior Wall 1	Pre-finsh Metl		
Exterior Wall 2			
Roof Structure	Gable		
Roof Cover	Metal/Tin		
Interior Wall 1	Minimum		
Interior Wall 2			
Interior Floor 1	Concrete		
Interior Floor 2			
Heating Fuel	None		
Heating Type	None		
АС Туре	None		
Struct Class			
Bidg Use	Res / Comm MDL 94		
Cov Parking			
Uncov Parking			
Percent Fin			
1st Floor Use			
Heat/AC	None		
Frame Type	Steel		
Baths/Plumbing	Average		
Ceiling/Walls	None		
Rooms/Prtns	None		

Building Photo

(https://images.vgsi.com/photos/MiddletownCTPhotos/\0048\IMG_1129_4;

Building Layout

(ParcelSketch.ashx?pid=15236&bid=20634)

	Building Sub-Areas	s (sq ft)	<u>Legend</u>
Code	Description	Gross	Living
		Area	Area

Wall Height	14.00
the second	

BAS	First Floor	3,192	3,192
		3,192	3,192

Extra Features

 Extra Features	Legend
No Data for Extra Features	

Land

Land Use

Land Line Valuation

Use Code	101	Size (Acres)	18.89
Description	Single Family	Assessed Value	\$235,350
Zone	R-30	Appraised Value	\$336,220
Neighborhood	13		
Alt Land Appr	No		

Outbuildings

Category

Outbuildings Legend						
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
CSHD	Cell Shed			240.00 UNITS	\$16,320	2
CSHD	Cell Shed			240.00 UNITS	\$16,320	2
SHD1	Shed	MS	Мазопгу	143.00 UNITS	\$1,430	1
CSHD	Cell Shed			360.00 UNITS	\$24,480	2
FN4	Fence-8' Chain			280.00 UNITS	\$4,200	2
РТО	Patio	ST	Stone	480.00 UNITS	\$3,600	1

Valuation History

Appraisal						
Valuation Year	Improvements	Land	Total			
2022	\$489,970	\$336,220	\$826,190			
2020	\$394,130	\$313,650	\$707,780			
2019	\$394,130	\$313,650	\$707,780			

Assessment					
Valuation Year	Improvements	Land	Total		
2022	\$342,980	\$235,350	\$578,330		
2020	\$275,890	\$219,560	\$495,450		
2019	\$275,890	\$219,560	\$495,450		

ATTACHMENT 6

1

POSTAL SERVICE ®					ing — Firm
Name and Address of Sender Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	TOTAL NO. of Pieces Listed by Sender Postmaster, per (name of receiving employee)	Affix Stamp Here			
	K. U			2	
USPS® Tracking Number	Address (Name, Street, City, State, and ZIP Code™)	Postage	Fee	Special Handling	Parcel Airlift
Firm-specific Identifier 1. 2. 3. 4	Benjamin Florsheim, Mayor City of Middletown 245 deKoven Drive Middletown, CT 06457 Marek Kozikowski, Director of Land Use City of Middletown 245 deKoven Drive Middletown, CT 06457 Stephen and Barbara Borrelli 67 Fairchild Road Middletown, CT 06457				
4.					
5.					
6.					