

# STATE OF CONNECTICUT CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950A E-Mail: siting.council@ct.gov Web Site: portal.ct.gov/csc

#### VIA ELECTRONIC MAIL

January 8, 2021

G. Scott Shepherd Site Development Specialist II SBA Communications Corporation 134 Flanders Road, Suite 125 Westborough, MA 01581

RE: **EM-T-MOBILE-082-201110** – T-Mobile notice of intent to modify an existing telecommunications facility located at 393 Jackson Hill Road, Middlefield, Connecticut.

Dear Mr. Shepherd:

The Connecticut Siting Council (Council) is in receipt of your correspondence of January 6, 2021 submitted in response to the Council's November 25, 2020 notification of an incomplete request for exempt modification with regard to the above-referenced matter.

The submission renders the request for exempt modification complete and the Council will process the request in accordance with the Federal Communications Commission 60-day timeframe.

Thank you for your attention and cooperation.

Sincerely,

s/Melanie A. Bachman

Melanie A. Bachman Executive Director

MAB/IN/emr

From: Glenn Shepherd < GShepherd@sbasite.com>

**Sent:** Wednesday, January 6, 2021 2:48 PM **To:** Fontaine, Lisa <Lisa.Fontaine@ct.gov>

Cc: Rick Woods <RWoods@sbasite.com>; Kri Pelletier <KPelletier@sbasite.com>; CSC-DL Siting Council

<Siting.Council@ct.gov>

Subject: RE: [External] Council Decision on Extension Request for EM-T-MOBILE-082-201110 - Jackson

Hill Road, Middlefield

EXTERNAL EMAIL: This email originated from outside of the organization. Do not click any links or open any attachments unless you trust the sender and know the content is safe.

Good Afternoon Lisa,

Thank you very much for granting the requested extension to remedy this Notice of Exempt Modifications.

Based upon your letter of incomplete dated, November 25, 2020, attached for your reference, it is my understanding that an electronic copy of a Mount Analysis and 5G statement is required in order to complete the notice of exempt modifications submitted 11/10/20.

As requested, please see the attached Mount Analysis for the above referenced site located at 393 Jackson Hill Rd., Middlefield, CT.

Also attached, is a revised letter describing the wireless services frequencies, including any frequency associated with 5G services.

Please let me know if there's anything else you may require to complete your review and approval and again, thank you for your cooperation.

#### G. Scott Shepherd

Site Development Specialist II

508.251.0720 Ext.3807 + **T** 508.366.2610 + F + **F** 508.868.6000 + C + **C** 



Filed by:

G. Scott Shepherd, Site Development Specialist - SBA Communications 134 Flanders Rd., Suite 125, Westborough, MA 01581 508.251.0720 x 3807 - GShepherd@sbasite.com

November 10, 2020

Melanie A. Bachman
Executive Director
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

RE: Notice of Exempt Modification

393 Jackson Hill Road, Middlefield, CT 06455

Latitude: 41.517360 Longitude: -72.714167

T-Mobile Site #: CTHA512A\_L600

Dear Ms. Bachman:

T-Mobile currently maintains three (3) antennas at the 88-foot level of the existing 146-foot Monopole Tower at 339 Jackson Hill Rd., Middlefield, CT. The 146-foot tower is owned by SBA 2012 TC Assets, LLC. The property is owned by the Town of Middlefield. T-Mobile now intends to install three (3) new 1900/2100 MHz antennas and replace three (3) 600/700MHz antennas with three (3) new 600/700/2100 MHz antennas.

The new antennas would support 5G services and would be installed at the 88-foot level of the tower.

**Please note:** Per the Connecticut Siting Council Website: CSC COVID 19 Guidelines. In order to prevent the spread of Coronavirus and protect the health and safety of our members and staff, as of March 18, 2020, the Connecticut Siting Council shall convert to full remote operations until March 30, 2020. Please be advised that during this time period, all hard copy filing requirements will be waived in lieu of an electronic filing. Please also be advised that the March 26, 2020 regular meeting shall be held via teleconference. The Council's website is not equipped with an on-line filing fee receipt service. Therefore, filing fees and/or direct cost charges associated with matters received electronically during the above-mentioned time period will be directly invoiced at a later date.

| Ρl | lanned | Modifications:  |
|----|--------|-----------------|
|    | ailleu | Middilleations. |

**TOWER** 

#### Remove:

Flush Mount

Remove and Replace:



#### Install New:

- (3) Ericsson AIR 32 KRD901146-1 B66A B2A antenna
- (3) 1-5/8" Fiber
- (3) Ericsson KRY 112 144/1 TMAs
- (3) Ericsson Radio 4449 B71+B12 -RRUs
- Platform w/Handrail (Site Pro RMQP-4096-HK)

#### **Existing Equipment to Remain:**

• (6) 1-5/8" coax

#### **Entitlements:**

N/A

#### **GROUND**

#### Remove and Replace:

- (1) RBS 6201 Equipment Cabinet (remove) (1) RBS6102 Equipment cabinet (replace)
- (1) 6201 battery cabinet (remove) (1) 6102 battery cabinet (replace)

#### Install New:

Equipment inside proposed 6102 equipment cabinet

This facility was approved by the Town of Middlefield's Planning and Zoning Commission on February 17, 1999. Special Permit approval was given with the condition that the applicant meet with town agencies, including 911 services, to determine their communications needs as related to the tower and that the applicant would further use best efforts to reserve a location which would meet such needs. No post construction stipulations were set. Please see attached.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. §16.50j-72(b)(2). In accordance with R.C.S.A. § 16.50j-73, a copy of this letter is being sent to the Town of Middlefield's First Selectman, Edward P. Bailey, and Zoning Enforcement Officer, Jerry Russ. (Separate notice is not being sent to tower owner, as it belongs to SBA.)

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. §16.50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing structure.
- 2. The proposed modification will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.



- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
- 5. The proposed modification will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above-referenced telecommunication facility constitute an exempt modifications under R.C.S.A. § 16-50i-72(b)(2).

Sincerely,

Site Development Specialist
SBA COMMUNICATIONS CORPORATION
134 Flanders Rd., Suite 125
Westborough, MA 01581
508.251.0720 x3804 + T
508.366.2610 + F
508.868.6000 + C
GShepherd@sbasite.com

#### **Attachments**

cc: Edward P. Bailey, First Selectman / with attachments

Town of Middlefield, 393 Jackson Hill Road, Middlefield, CT 06455

Jerry Russ, Zoning Enforcement Officer / with attachments

Town of Middlefield, 393 Jackson Hill Road, Middlefield, CT 06455

#### **Exhibit List**

| Exhibit 1 | Check Copy               | To be invoiced at a later date per Covid guidelines |
|-----------|--------------------------|-----------------------------------------------------|
| Exhibit 2 | Notification Receipts    | X                                                   |
| Exhibit 3 | Property Card            | X                                                   |
| Exhibit 4 | Property Map             | X                                                   |
| Exhibit 5 | Original Zoning Approval | Town of Middlefield P&Z Commission 2/17/99          |
| Exhibit 6 | Construction Drawings    | Chappell Engineering 9/17/19                        |
| Exhibit 7 | Structural Analysis      | TES 7/22/19                                         |
| Exhibit 8 | EME Report               | Transcom Egineering 6/4/19                          |





# **Mount Structural Analysis**

**SBA Site: CT46135-A** 

T-Mobile Site Number: CTHA512A

Project: L600

Prepared For: T-Mobile

Mount Description: Platform w/ Handrail and Kickers

Sitepro1 RMQP-4096-HK

Site Location: 421 Jackson Hill Road

Middlefield, CT 06234

**Middlesex County** 

41.517360°, -72.714167°

Design Codes: ANSI/TIA-222-G

2018 Connecticut Building Code 2015 IBC w/ State Amendments

Analysis Load Case: T-Mobile Final Configuration
Analysis Result: Adequate @ 66% Capacity



Revision 0 January 5, 2021

CTHA512A\_Mount\_Structural Analysis Report\_R0 200105 631

#### 1.0 Introduction

GeoStructural LLC has completed a structural analysis for proposed T-Mobile mount assembly located at the CTHA512A communications site in Middlesex County, CT considering the final appurtenance loading configurations listed in Section 3.0.

# 2.0 Analysis Procedure & Design Criteria

An elastic three-dimensional model of the structure has been analyzed pursuant to the following criteria:

- 2018 Connecticut Building Code.
- 2015 IBC International Building Code.
- ANSI/TIA-222-G Structural Standard for Antenna Supporting Structures and Antennas.
- ASCE 7-10 Minimum Design Loads and Associated Criteria for Buildings and Other Structures.
- AISC Steel Construction Manual.
- ANSI/AWS D1.1 Structural Welding Code.

Wind = 125 mph (3-sec gust Ultimate ASCE 7-10 Figure 26.5-1 & IBC 2015)

Wind w/o ice = 97 mph (3-sec gust Equivalent per TIA-222-G Tower Code)

Wind w/ ice = 50 mph (3-sec gust Basic) with 0.75" Design Ice (Escalated with Height) 1

Topographic Category 1; Exposure Category C

Structure Class (Risk Category) II; Ground Elevation = 241 ft (NAVD 88)

Gust Effect Factor = 1.0; Directionality Factor = 0.95

Seismic Design Parameters:

Site Class D "Stiff Soil";  $S_s = 0.181$ ,  $S_1 = 0.063$ ,  $S_{DS} = 0.193$ 

Maintenance Loads<sup>2</sup>:

L<sub>m</sub> = 500 lb @ Worst Case Mount Pipe (Concurrent with 30 mph Wind Speed)

L<sub>v</sub> = 250 lb @ Worst Case Member Location (Center Span or Cantilever)

- 1. Ice loading has been ignored with Design Ice Thickness ≤ 0.25".
- 2. The face horizontal boom rails of T-Arm mount assemblies are not rated for rigging, hoisting or maintenance loading unless noted otherwise.

GeoStructural has <u>not</u> conducted a site visit or independent study to verify existing structural conditions and the results of this analysis are based solely on the information provided. The following documents were obtained and/or provided:

- T-Mobile Site #: CTHA512A, Construction Drawings, Chappell, Rev-1, 09/17/19
- T-Mobile Site #: CTHA512A, RFDS, L600, 5G POPs, 09/17/20

The results of the analysis are illustrated in Section 4.0. If any of the existing or proposed conditions reported in this analysis are not accurately represented, please contact our office immediately to request an amended report.



# 3.0 Appurtenance Information

<u>Table 3.1 - Proposed Final T-Mobile Appurtenance Configuration<sup>1</sup></u>

| COR  | (Quantity) Appurtenance Make/Model | Mount Description                            |
|------|------------------------------------|----------------------------------------------|
|      | (3) ERICSSON AIR32 B66A B2A        |                                              |
| 9971 | (3) RFS APXVAALL24_43-U-NA20       | Proposed Platform w/<br>Handrail and Kickers |
| 88'± | (3) ERICSSON 4449 B71 B85 RRH      | •<br>Sitepro1 RMQP-4096-HK                   |
|      | (3) TWIN STYLE 1B AWS TMA          |                                              |

<sup>1.</sup> Refer to antenna installation Construction Drawings (when applicable) for additional information regarding final antenna and equipment orientations.



## 4.0 Structural Analysis Results

Table 4.1 - Mount Capacity

| Load Case      | Governing Mount Component <sup>1</sup> | % Capacity <sup>2</sup> | Result                              |
|----------------|----------------------------------------|-------------------------|-------------------------------------|
|                | Standoff                               | 24%                     |                                     |
|                | Bottom Rail                            | 13%                     |                                     |
|                | Bracing                                | 31%                     |                                     |
| Final T-Mobile | Pipe2.5STD Mount Pipe                  | 26%                     | Adequate                            |
| Configuration  | PRK Double Angles                      | 13%                     |                                     |
| Comiguration   | Handrail                               | 66%                     |                                     |
|                | Connection Plates                      | 42%                     |                                     |
|                | Collar                                 | 2.56 k-ft               | Adequate by Inspection <sup>3</sup> |

- 1. Refer to the Calculations & Software Output portion of this report for mount component and structural information.
- 2. Listed results are expressed as a percentage of available mount member capacity based upon the assumed material strengths listed in Table 4.2. 105% is an acceptable allowable stress percentage for mount components. Refer to Section 7.0 for additional member usage capacities.
- 3. By inspection the tri-collar mount assemblies of the platform and PRK kickers are adequate to support the proposed final configuration as they're designed to resist the forces required to fully develop the primary mount structural members.

Table 4.2 - Structural Component Material Strengths

| Structural Component                           | Nominal Strength/Material <sup>1</sup>                                                                                                                                                                             |  |  |  |  |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Pipe                                           | F <sub>y</sub> = 35 ksi (A53, Gr. B)                                                                                                                                                                               |  |  |  |  |
| Tube                                           | F <sub>y</sub> = 46 ksi (A500, Gr. B)                                                                                                                                                                              |  |  |  |  |
| Structural Shapes (L, C, W, etc.), Plate & Bar | F <sub>y</sub> = 36 ksi (A36) & Q235                                                                                                                                                                               |  |  |  |  |
| Uni-Strut (P1000, etc.)                        | F <sub>y</sub> = 33 ksi (A570, Gr. 33)<br>A325                                                                                                                                                                     |  |  |  |  |
| Connection Bolts                               |                                                                                                                                                                                                                    |  |  |  |  |
| U-Bolts / Threaded Rod                         | SAE J429 Grade 2 (Substitution: ASTM A449)<br>$F_y = 57$ ksi (Yield) & $F_u = 74$ ksi (Tension)<br>SAE J429 Grade 5 ( $\frac{1}{4}$ " to 1" Nominal $\phi$ )<br>$F_y = 92$ ksi (Yield) & $F_u = 120$ ksi (Tension) |  |  |  |  |
| Welds                                          | E70XX Electrodes                                                                                                                                                                                                   |  |  |  |  |

Strengths listed were assumed for this analysis and are based upon ASTM, AISC, RCSC, AWS and ACI preferred specification values. Values and materials are consistent with industry standards. Material strengths were taken from original design documents when available.



#### 5.0 Conclusion & Recommendations

Based on T-Mobile's final equipment loading configuration, the proposed mount assembly has sufficient capacity to support the loading considered in this analysis pursuant to the listed standards.

Antennas and equipment shall be installed centered vertically on the mount front rails (limit vertical installation eccentricity) with a maximum vertical eccentricity of 12" for panels and 6" for RRHs. If this assumption is incorrect, the results of this analysis will be inaccurate and may result in a failing mount condition. This analysis accounts for the vertical eccentricities required to install all panel antennas at the same relative top tip elevation (if desired).

- Install Proposed Replacement Platform Assembly; attach to monopole shaft per manufacturer's specifications and approved Construction Drawings.
  - Sitepro1 RMQP-4096-HK, (1) total.
    - Sitepro1 RMQP + PRK1245 + HRK12.
    - 12'-6" Low Pro-Platform with Twelve 2-7/8" Antenna Mounting Pipes and Handrail.
- Install in accordance with T-Mobile network standards.

This analysis only encompasses the antenna mount assembly. The tower, overall mount support structure, foundation, etc. are beyond the scope of this analysis. If any of the existing or proposed conditions (appurtenance loading, member sizes, etc.) reported in this analysis are not properly represented, please contact our office immediately to request an amended report.

Prepared by:

Jesse Drennen, PE, MLE 208.761.7986

jesse.drennen@geostructural.com

Reviewed and Approved by:

Don George, PE, SE, MLSE

208.602.6569

don.george@geostructural.com



#### 6.0 Standard Conditions

- All data required to complete our structural analysis was furnished by our client. GeoStructural has <u>not</u> conducted a site visit or independent study to verify existing conditions and the results of this analysis are based solely on the information provided. It has been assumed that the tower, antenna support structure and foundation have been constructed according to the provided existing drawings, previous structural analysis reports, mapping documents, etc.
- The default Structure Classification is Class II in accordance with ANSI/TIA-222-G §A.2.2 & §A.15.3 and has been assumed for this analysis. The owner shall verify this classification conforms with original or desired reliability criteria.
- This analysis assumes that the structure has been properly installed and maintained in accordance with ANSI/TIA-222-G §15.5 and that no physical deterioration has occurred in any of the components of the structure. Damaged, missing, or rusted members were not considered.
- This analysis verifies the adequacy of the main components of the structure. Not all connections, welds, bolts, plates, etc. were individually detailed and analyzed. Where not specifically analyzed, the existing connection plates, welds, bolts, etc. were assumed adequate to develop the full capacity of the main structural members.
- No consideration has been made for unusual or extreme wind events, rime/in-cloud ice loadings, harmonic or nodal vibration, vortex shedding or other similar conditions.
- It is the owner's responsibility to determine the appropriate design wind speed and amount of ice accumulation beyond code minimum values that should be considered in the analysis.
- This analysis report does not constitute a maintenance and condition assessment. No certifications regarding maintenance and condition are expressed or implied. If desired, GeoStructural can provide these services under a subsequent contract.
- This analysis only encompasses the antenna mount assembly. The tower, overall mount support structure, foundation, etc. are beyond the scope of this analysis. If desired, GeoStructural can provide these services under a subsequent contract.

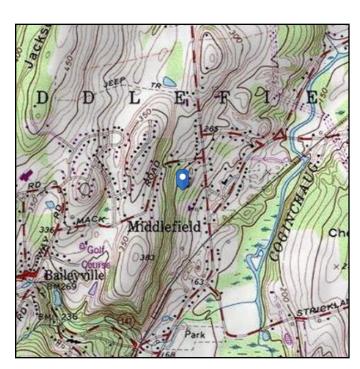


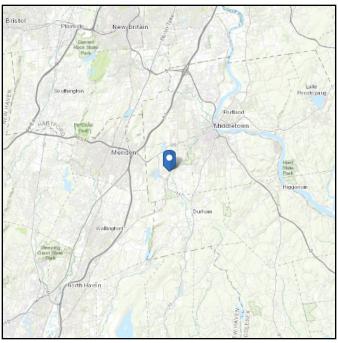
# 7.0 Attachments, Calculations & Software Output

This page intentionally left blank.






#### Address:


No Address at This Location

# **ASCE 7 Hazards Report**

Standard: ASCE/SEI 7-10 Elevation: 241.32 ft (NAVD 88)

Risk Category: || Latitude: 41.51736 Soil Class: D - Stiff Soil Longitude: -72.714167





# Wind

#### Results:

Wind Speed: 125 Vmph
10-year MRI 77 Vmph
25-year MRI 87 Vmph
50-year MRI 94 Vmph
100-year MRI 102 Vmph

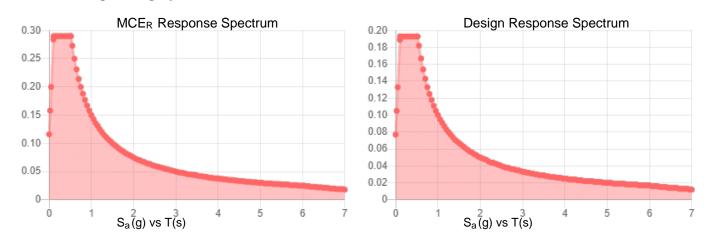
Data Source: ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, incorporating errata of

March 12, 2014

Date Accessed: Tue Jan 05 2021

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.


Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.



# **Seismic**

| Site Soil Class:<br>Results: | D - Stiff Soil |                    |       |  |
|------------------------------|----------------|--------------------|-------|--|
| S <sub>s</sub> :             | 0.181          | S <sub>DS</sub> :  | 0.193 |  |
| $S_1$ :                      | 0.063          | $S_{D1}$ :         | 0.1   |  |
| F <sub>a</sub> :             | 1.6            | T <sub>L</sub> :   | 6     |  |
| F <sub>v</sub> :             | 2.4            | PGA:               | 0.093 |  |
| S <sub>MS</sub> :            | 0.29           | PGA <sub>M</sub> : | 0.148 |  |
| S <sub>M1</sub> :            | 0.15           | F <sub>PGA</sub> : | 1.6   |  |
|                              |                | 1 .                | 1     |  |

## Seismic Design Category B



Data Accessed: Tue Jan 05 2021

Date Source: USGS Seismic Design I

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with

ASCE/SEI 7-10 Ch. 21 are available from USGS.



#### **Ice**

#### Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

**Data Source:** Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Tue Jan 05 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.



: GeoStructural, LLC : Jesse Drennen, PE

Job Number :

Model Name: CTHA512A

1/5/2021 12:31:19 PM

Checked By: DWG

## Basic Load Cases

|    | BLC Description | Category | Y Gravity | Nodal | Distributed |
|----|-----------------|----------|-----------|-------|-------------|
| 1  | D               | DĹ       | -1        | 18    | 9           |
| 2  | Di              | SL       |           | 18    | 60          |
| 3  | Lm [500]        | LL       |           | 1     |             |
| 4  | Lv [250]        | LL       |           | 2     |             |
| 5  | Woz             | WL       |           | 18    | 60          |
| 6  | Wox             | WL       |           | 18    | 60          |
| 7  | Wiz             | WL       |           | 18    | 60          |
| 8  | Wix             | WL       |           | 18    | 60          |
| 9  | Ez              | EL       |           | 18    |             |
| 10 | Ex              | EL       |           | 18    |             |

# Load Combination Design

| Description                                                        | Service | Hot Rolled | Cold Formed | Wood       | Concrete   | Masonry    | Aluminum   | Stainless  | Connection |
|--------------------------------------------------------------------|---------|------------|-------------|------------|------------|------------|------------|------------|------------|
| 1 1) 1.4D                                                          |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 2 2) 1.2D+1.0Wo [0deg]                                             |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 3 2) 1.2D+1.0Wo [30deg]                                            |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 4 2) 1.2D+1.0Wo [60deg]                                            |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 5 2) 1.2D+1.0Wo [90deg]                                            |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 6 2) 1.2D+1.0Wo [120deg]                                           |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 7 2) 1.2D+1.0Wo [150deg]                                           |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 8 2) 1.2D+1.0Wo [180deg]                                           |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 9 2) 1.2D+1.0Wo [210deg]                                           |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 10 2) 1.2D+1.0Wo [240deg]                                          |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 11 2) 1.2D+1.0Wo [270deg]                                          |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 12 2) 1.2D+1.0Wo [300deg]                                          |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 13 2) 1.2D+1.0Wo [330deg]                                          |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 14 3) 0.9D+1.0Wo [0deg]                                            |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 15 3) 0.9D+1.0Wo [30deg]                                           |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 16 3) 0.9D+1.0Wo [60deg]                                           |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 17 3) 0.9D+1.0Wo [90deg]                                           |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 18 3) 0.9D+1.0Wo [120deg]                                          |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 19 3) 0.9D+1.0Wo [150deg]                                          |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 20 3) 0.9D+1.0Wo [180deg]                                          |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 21 3) 0.9D+1.0Wo [210deg]                                          |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 22 3) 0.9D+1.0Wo [240deg]                                          |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 23 3) 0.9D+1.0Wo [270deg]                                          |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 24 3) 0.9D+1.0Wo [300deg]                                          |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 25 3) 0.9D+1.0Wo [330deg]                                          |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 26 4) 1.2D+1.0Di+1.0Wi [0deg]                                      |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 27 4) 1.2D+1.0Di+1.0Wi [30deg]                                     |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 28 4) 1.2D+1.0Di+1.0Wi [60deg]                                     |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 29 4) 1.2D+1.0Di+1.0Wi [90deg]                                     |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 30 4) 1.2D+1.0Di+1.0Wi [120deg]                                    |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 31 4) 1.2D+1.0Di+1.0Wi [150deg]                                    |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 32 4) 1.2D+1.0Di+1.0Wi [180deg]                                    |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 33 4) 1.2D+1.0Di+1.0Wi [210deg]                                    |         | Yes<br>Yes | Yes<br>Yes  | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes |
| 34 4) 1.2D+1.0Di+1.0Wi [240deg]                                    |         | Yes        |             | Yes        | Yes        |            |            |            |            |
| 35 4) 1.2D+1.0Di+1.0Wi [270deg]<br>36 4) 1.2D+1.0Di+1.0Wi [300deg] |         | Yes        | Yes<br>Yes  | Yes        | Yes        | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes |
| . 0.                                                               |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 37 4) 1.2D+1.0Di+1.0Wi [330deg]<br>38 5) 1.2D+1.5Lm+1.0WL [0deg]   |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 39 5) 1.2D+1.5Lm+1.0WL [30deg]                                     |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 40 5) 1.2D+1.5Lm+1.0WL [30deg]                                     |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 41 5) 1.2D+1.5Lm+1.0WL [90deg]                                     |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 42 5) 1.2D+1.5Lm+1.0WL [90deg]                                     |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 43 5) 1.2D+1.5Lm+1.0WL [120deg]                                    |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 44 5) 1.2D+1.5Lm+1.0WL [180deg]                                    |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 45 5) 1.2D+1.5Lm+1.0WL [100deg]                                    |         | Yes        | Yes         | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        |
| 400) 1.20+1.3LIII+1.0VVL [210deg]                                  |         | 165        | 162         | 165        | 165        | 162        | 162        | 162        | 165        |



: GeoStructural, LLC : Jesse Drennen, PE

Job Number:

Model Name: CTHA512A

1/5/2021 12:31:19 PM

Checked By: DWG

## Load Combination Design (Continued)

| Description                     | Service | Hot Rolled | Cold Formed | Wood | Concrete | Masonry | Aluminum | Stainless | Connection |
|---------------------------------|---------|------------|-------------|------|----------|---------|----------|-----------|------------|
| 46 5) 1.2D+1.5Lm+1.0WL [240deg  |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 47 5) 1.2D+1.5Lm+1.0WL [270deg] |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 48 5) 1.2D+1.5Lm+1.0WL [300deg  |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 49 5) 1.2D+1.5Lm+1.0WL [330deg  |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 50 6) 1.2D+1.5Lv                |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 51 7) (1.2+0.2Sds)D+E [0deg]    |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 52 7) (1.2+0.2Sds)D+E [30deg]   |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 53 7) (1.2+0.2Sds)D+E [60deg]   |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 54 7) (1.2+0.2Sds)D+E [90deg]   |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 55 7) (1.2+0.2Sds)D+E [120deg]  |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 56 7) (1.2+0.2Sds)D+E [150deg]  |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 57 7) (1.2+0.2Sds)D+E [180deg]  |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 58 7) (1.2+0.2Sds)D+E [210deg]  |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 59 7) (1.2+0.2Sds)D+E [240deg]  |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 60 7) (1.2+0.2Sds)D+E [270deg]  |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 61 7) (1.2+0.2Sds)D+E [300deg]  |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 62 7) (1.2+0.2Sds)D+E [330deg]  |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 63 8) (0.9-0.2Sds)D+E [0deg]    |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 64 8) (0.9-0.2Sds)D+E [30deg]   |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 65 8) (0.9-0.2Sds)D+E [60deg]   |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 66 8) (0.9-0.2Sds)D+E [90deg]   |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 67 8) (0.9-0.2Sds)D+E [120deg]  |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 68 8) (0.9-0.2Sds)D+E [150deg]  |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 69 8) (0.9-0.2Sds)D+E [180deg]  |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 70 8) (0.9-0.2Sds)D+E [210deg]  |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 71 8) (0.9-0.2Sds)D+E [240deg]  |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 72 8) (0.9-0.2Sds)D+E [270deg]  |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 73 8) (0.9-0.2Sds)D+E [300deg]  |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 74 8) (0.9-0.2Sds)D+E [330deg]  |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |
| 75 Dead Only                    |         | Yes        | Yes         | Yes  | Yes      | Yes     | Yes      | Yes       | Yes        |

# **Hot Rolled Steel Properties**

|    | Label            | E [ksi] | G [ksi] | Nu  | Therm. Coeff. [1e <sup>5</sup> °F <sup>-1</sup> ] | Density [k/ft³] | Yield [ksi] | Rv  | Fu [ksi] | Rt  |
|----|------------------|---------|---------|-----|---------------------------------------------------|-----------------|-------------|-----|----------|-----|
| 1  | A36 Gr.36        | 29000   | 11154   | 0.3 | 0.65                                              | 0.49            | 36          | 1.5 | 58       | 1.2 |
| 2  | A572 Gr.50       | 29000   | 11154   | 0.3 | 0.65                                              | 0.49            | 50          | 1.1 | 65       | 1.1 |
| 3  | A992             | 29000   | 11154   | 0.3 | 0.65                                              | 0.49            | 50          | 1.1 | 65       | 1.1 |
| 4  | A500 Gr.B RND    | 29000   | 11154   | 0.3 | 0.65                                              | 0.49            | 42          | 1.4 | 58       | 1.3 |
| 5  | A500 Gr.B Rect   | 29000   | 11154   | 0.3 | 0.65                                              | 0.49            | 46          | 1.4 | 58       | 1.3 |
| 6  | A53 Gr.B         | 29000   | 11154   | 0.3 | 0.65                                              | 0.49            | 35          | 1.6 | 60       | 1.2 |
| 7  | A500 Gr.B RND_1  | 29000   | 11154   | 0.3 | 0.65                                              | 0.527           | 42          | 1.4 | 58       | 1.3 |
| 8  | A500 Gr.B Rect_1 | 29000   | 11154   | 0.3 | 0.65                                              | 0.527           | 46          | 1.4 | 58       | 1.3 |
| 9  | A1085            | 29000   | 11154   | 0.3 | 0.65                                              | 0.49            | 50          | 1.4 | 65       | 1.3 |
| 10 | A500 Gr.42       | 29000   | 11154   | 0.3 | 0.65                                              | 0.49            | 42          | 1.3 | 58       | 1.1 |
| 11 | A500 Gr.46       | 29000   | 11154   | 0.3 | 0.65                                              | 0.49            | 46          | 1.2 | 58       | 1.1 |
| 12 | Q235             | 29000   | 11154   | 0.3 | 0.65                                              | 0.49            | 34          | 1.5 | 58       | 1.2 |

# **Cold Formed Steel Properties**

|   | Label         | E [ksi] | G [ksi] | Nu  | Therm. Coeff. [1e⁵°F⁻¹] | Density [k/ft³] | Yield [ksi] | Fu [ksi] |
|---|---------------|---------|---------|-----|-------------------------|-----------------|-------------|----------|
| 1 | A653 Gr.33    | 29500   | 11346   | 0.3 | 0.65                    | 0.49            | 33          | 45       |
| 2 | A570 Gr.33    | 29500   | 11346   | 0.3 | 0.65                    | 0.49            | 33          | 52       |
| 3 | A607 C1 Gr.55 | 29500   | 11346   | 0.3 | 0.65                    | 0.49            | 55          | 70       |
| 4 | A570_33       | 29500   | 11346   | 0.3 | 0.65                    | 0.49            | 33          | 52       |
| 5 | A607_C1_55    | 29500   | 11346   | 0.3 | 0.65                    | 0.49            | 55          | 70       |



STRUCTURAL

Company Designer

: GeoStructural, LLC

Job Number:

: Jesse Drennen, PE

Model Name: CTHA512A

1/5/2021 12:31:19 PM

Checked By: DWG

#### **Hot Rolled Steel Section Sets**

|    | Label         | Shape         | Type | Design List | Material       | Design Rule | Area [in²] | lyy [in⁴] | Izz [in⁴] | J [in⁴] |
|----|---------------|---------------|------|-------------|----------------|-------------|------------|-----------|-----------|---------|
| 1  | PIPE_1.5      | PIPE_1.5      | Beam | None        | A53 Gr.B       | Typical     | 0.749      | 0.293     | 0.293     | 0.586   |
| 2  | PIPE_2.0      | PIPE_2.0      | Beam | None        | A53 Gr.B       | Typical     | 1.02       | 0.627     | 0.627     | 1.25    |
| 3  | PIPE_2.5      | PIPE_2.5      | Beam | None        | A53 Gr.B       | Typical     | 1.61       | 1.45      | 1.45      | 2.89    |
| 4  | PIPE_3.0      | PIPE_3.0      | Beam | None        | A53 Gr.B       | Typical     | 2.07       | 2.85      | 2.85      | 5.69    |
| 5  | PIPE_3.5      | PIPE_3.5      | Beam | None        | A53 Gr.B       | Typical     | 2.5        | 4.52      | 4.52      | 9.04    |
| 6  | PIPE_4.0      | PIPE_4.0      | Beam | None        | A53 Gr.B       | Typical     | 2.96       | 6.82      | 6.82      | 13.6    |
| 7  | PIPE_2.0X     | PIPE_2.0X     | Beam | None        | A53 Gr.B       | Typical     | 1.4        | 0.827     | 0.827     | 1.65    |
| 8  | HSS2x2x3      | HSS2X2X3      | Beam | None        | A500 Gr.B Rect | Typical     | 1.19       | 0.641     | 0.641     | 1.09    |
| 9  | HSS3x3x3      | HSS3X3X3      | Beam | None        | A500 Gr.B Rect | Typical     | 1.89       | 2.46      | 2.46      | 4.03    |
| 10 | HSS4x4x3      | HSS4X4X3      | Beam | None        | A500 Gr.B Rect | Typical     | 2.58       | 6.21      | 6.21      | 10      |
| 11 | HSS4x4x4      | HSS4X4X4      | Beam | None        | A500 Gr.B Rect | Typical     | 3.37       | 7.8       | 7.8       | 12.8    |
| 12 | HSS5x5x4      | HSS5X5X4      | Beam | None        | A500 Gr.B Rect | Typical     | 4.3        | 16        | 16        | 25.8    |
| 13 | C3x3.5        | C3X3.5        | Beam | None        | A36 Gr.36      | Typical     | 1.09       | 0.169     | 1.57      | 0.023   |
| 14 | C4x4.5        | C4X4.5_HRA    | Beam | None        | A36 Gr.36      | Typical     | 1.38       | 0.289     | 3.65      | 0.032   |
| 15 | C5x6.7        | C5X6.7        | Beam | None        | A36 Gr.36      | Typical     | 1.97       | 0.47      | 7.48      | 0.055   |
| 16 | L2.5x2.5x3    | L2.5x2.5x3    | Beam | None        | A36 Gr.36      | Typical     | 0.901      | 0.535     | 0.535     | 0.011   |
| 17 | L2.5x2.5x4    | L2.5x2.5x4    | Beam | None        | A36 Gr.36      | Typical     | 1.19       | 0.692     | 0.692     | 0.026   |
| 18 | L3x3x3        | L3X3X3        | Beam | None        | A36 Gr.36      | Typical     | 1.09       | 0.948     | 0.948     | 0.014   |
| 19 | L3x3x4        | L3X3X4        | Beam | None        | A36 Gr.36      | Typical     | 1.44       | 1.23      | 1.23      | 0.031   |
| 20 | L3x3x6        | L3X3X6        | Beam | None        | A36 Gr.36      | Typical     | 2.11       | 1.75      | 1.75      | 0.101   |
| 21 | L3.5x3.5x4    | L3.5X3.5X4    | Beam | None        | A36 Gr.36      | Typical     | 1.7        | 2         | 2         | 0.039   |
| 22 | L4x4x4        | L4X4X4        | Beam | None        | A36 Gr.36      | Typical     | 1.93       | 3         | 3         | 0.044   |
| 23 | LL2.5x2.5x3x3 | LL2.5x2.5x3x3 | Beam | None        | A36 Gr.36      | Typical     | 1.8        | 2.46      | 1.07      | 0.023   |

## **Cold Formed Steel Section Sets**

|   | Label    | Shape         | Type | Design List | Material   | Design Rule | Area [in²] | lyy [in⁴] | lzz [in⁴] | J [in⁴] |
|---|----------|---------------|------|-------------|------------|-------------|------------|-----------|-----------|---------|
| 1 | P1000UNI | P1000UNI      | Beam | None        | A653 Gr.33 | Typical     | 0.555      | 0.185     | 0.236     | 0.002   |
| 2 | CF1      | 8CU1.25X057   | Beam | None        | A570 Gr.33 | Typical     | 0.581      | 0.057     | 4.41      | 0.00063 |
| 3 | CF1A     | 1.5CU1.25X035 | Beam | None        | A570_33    | Typical_APP | 0.131      | 0.022     | 0.052     | 5.4e-05 |

## Member Primary Data

|    | Label | I Node | J Node | Rotate(deg) | Section/Shape | Type | Design List | Material  | Design Rule |
|----|-------|--------|--------|-------------|---------------|------|-------------|-----------|-------------|
| 1  | M1    | N3     | N1     |             | 3/8"X6"_HRA   | Beam | RECT        | Q235      | Typical     |
| 2  | M2    | N1     | N14    |             | 3/8"X6"_HRA   | Beam | RECT        | Q235      | Typical     |
| 3  | M3    | N4     | N2     |             | 3/8"X6"_HRA   | Beam | RECT        | Q235      | Typical     |
| 4  | M4    | N2     | N11    |             | 3/8"X6"_HRA   | Beam | RECT        | Q235      | Typical     |
| 5  | M5    | N4     | N3     |             | HSS4X4X4      | Beam | None        | Q235      | Typical_APP |
| 6  | M6    | N16    | N15    |             | LL2.5x2.5x3x3 | Beam | None        | A36 Gr.36 | Typical     |
| 7  | M7    | N17    | N18    |             | PIPE_2.0      | Beam | None        | A53 Gr.B  | Typical     |
| 8  | M8    | N27    | N25    | 90          | 1/2 X 6       | Beam | RECT        | Q235      | Typical     |
| 9  | M9    | N27    | N26    | 90          | 1/2 X 6       | Beam | RECT        | Q235      | Typical     |
| 10 | M10   | N23    | N21    |             | 3/8"X6"_HRA   | Beam | RECT        | Q235      | Typical     |
| 11 | M11   | N21    | N34    |             | 3/8"X6"_HRA   | Beam | RECT        | Q235      | Typical     |
| 12 | M12   | N24    | N22    |             | 3/8"X6"_HRA   | Beam | RECT        | Q235      | Typical     |
| 13 | M13   | N22    | N31    |             | 3/8"X6"_HRA   | Beam | RECT        | Q235      | Typical     |
| 14 | M14   | N27    | N29    |             | L2X2X4        | Beam | None        | Q235      | Typical_APP |
| 15 | M15   | N27    | N28    | 270         | L2X2X4        | Beam | None        | Q235      | Typical_APP |
| 16 | M16   | N25    | N33    | 90          | 1/2 X 6       | Beam | RECT        | Q235      | Typical     |
| 17 | M17   | N26    | N32    | 90          | 1/2 X 6       | Beam | RECT        | Q235      | Typical     |
| 18 | M18   | N24    | N23    |             | HSS4X4X4      | Beam | None        | Q235      | Typical_APP |
| 19 | M19   | N39    | N37    |             | 3/8"X6"_HRA   | Beam | RECT        | Q235      | Typical     |
| 20 | M20   | N37    | N49    |             | 3/8"X6"_HRA   | Beam | RECT        | Q235      | Typical     |
| 21 | M21   | N40    | N38    |             | 3/8"X6"_HRA   | Beam | RECT        | Q235      | Typical     |
| 22 | M22   | N38    | N46    |             | 3/8"X6"_HRA   | Beam | RECT        | Q235      | Typical     |
| 23 | M23   | N40    | N39    |             | HSS4X4X4      | Beam | None        | Q235      | Typical_APP |
| 24 | M24   | N50    | N51    | 180         | L2.5x2.5x3    | Beam | None        | A36 Gr.36 | Typical     |
| 25 | M25   | N52    | N53    |             | PIPE_2.0      | Beam | None        | A53 Gr.B  | Typical     |



**OSTRUCTURAL** 

Company Designer : GeoStructural, LLC : Jesse Drennen, PE

Job Number :

Model Name: CTHA512A

1/5/2021 12:31:19 PM

Checked By: DWG

# Member Primary Data (Continued)

|    | Label | I Node | J Node | Rotate(deg) | Section/Shape | Type | Design List | Material  | Design Rule |
|----|-------|--------|--------|-------------|---------------|------|-------------|-----------|-------------|
| 26 | M26   | N54    | N55    |             | PIPE 2.0      | Beam | None        | A53 Gr.B  | Typical     |
| 27 | M27   | N56    | N57    |             | PIPE 3.0      | Beam | None        | A53 Gr.B  | Typical     |
| 28 | M28   | N58    | N59    |             | PIPE 3.0      | Beam | None        | A53 Gr.B  | Typical     |
| 29 | M29   | N60    | N61    |             | PIPE 3.0      | Beam | None        | A53 Gr.B  | Typical     |
| 30 | M30   | N62    | N63    |             | RIGID         | None | None        | RIGID     | Typical     |
| 31 | M31   | N65    | N64    |             | PIPE 2.5      | Beam | None        | A53 Gr.B  | Typical     |
| 32 | M32   | N66    | N67    |             | RIGID         | None | None        | RIGID     | Typical     |
| 33 | M33   | N69    | N41    | 90          | 1/2 X 6       | Beam | RECT        | Q235      | Typical     |
| 34 | M34   | N69    | N42    | 90          | 1/2 X 6       | Beam | RECT        | Q235      | Typical     |
| 35 | M35   | N41    | N48    | 90          | 1/2 X 6       | Beam | RECT        | Q235      | Typical     |
| 36 | M36   | N42    | N47    | 90          | 1/2 X 6       | Beam | RECT        | Q235      | Typical     |
| 37 | M37   | N7     | N5     | 90          | 1/2 X 6       | Beam | RECT        | Q235      | Typical     |
| 38 | M38   | N7     | N6     | 90          | 1/2 X 6       | Beam | RECT        | Q235      | Typical     |
| 39 | M39   | N5     | N13    | 90          | 1/2 X 6       | Beam | RECT        | Q235      | Typical     |
| 40 | M40   | N6     | N12    | 90          | 1/2 X 6       | Beam | RECT        | Q235      | Typical     |
| 41 | M41   | N69    | N44    |             | L2X2X4        | Beam | None        | Q235      | Typical APP |
| 42 | M42   | N69    | N43    | 270         | L2X2X4        | Beam | None        | Q235      | Typical_APP |
| 43 | M43   | N7     | N8     |             | L2X2X4        | Beam | None        | Q235      | Typical_APP |
| 44 | M44   | N7     | N108   |             | HSS4X4X4      | Beam | None        | Q235      | Typical_APP |
| 45 | M45   | N19    | N20    | 180         | L2.5x2.5x3    | Beam | None        | A36 Gr.36 | Typical     |
| 46 | M46   | N35    | N36    | 180         | L2.5x2.5x3    | Beam | None        | A36 Gr.36 | Typical     |
| 47 | M47   | N70    | N71    |             | RIGID         | None | None        | RIGID     | Typical     |
| 48 | M48   | N73    | N72    |             | RIGID         | None | None        | RIGID     | Typical     |
| 49 | M49   | N75    | N76    |             | RIGID         | None | None        | RIGID     | Typical     |
| 50 | M50   | N78    | N77    |             | PIPE 2.5      | Beam | None        | A53 Gr.B  | Typical     |
| 51 | M51   | N79    | N80    |             | RIGID         | None | None        | RIGID     | Typical     |
| 52 | M52   | N81    | N82    |             | RIGID         | None | None        | RIGID     | Typical     |
| 53 | M53   | N84    | N83    |             | RIGID         | None | None        | RIGID     | Typical     |
| 54 | M54   | N85    | N86    |             | RIGID         | None | None        | RIGID     | Typical     |
| 55 | M55   | N88    | N87    |             | PIPE 2.5      | Beam | None        | A53 Gr.B  | Typical     |
| 56 | M56   | N89    | N90    |             | RIGID         | None | None        | RIGID     | Typical     |
| 57 | M57   | N91    | N92    |             | RIGID         | None | None        | RIGID     | Typical     |
| 58 | M58   | N94    | N93    |             | RIGID         | None | None        | RIGID     | Typical     |
| 59 | M59   | N95    | N96    |             | RIGID         | None | None        | RIGID     | Typical     |
| 60 | M60   | N98    | N97    |             | PIPE 2.5      | Beam | None        | A53 Gr.B  | Typical     |
| 61 | M61   | N99    | N100   |             | RIGID         | None | None        | RIGID     | Typical     |
| 62 | M62   | N102   | N103   |             | RIGID         | None | None        | RIGID     | Typical     |
| 63 | M63   | N105   | N104   |             | RIGID         | None | None        | RIGID     | Typical     |
| 64 | M64   | N7     | N107   | 270         | L2X2X4        | Beam | None        | Q235      | Typical_APP |
| 65 | M65   | N110   | N109   |             | LL2.5x2.5x3x3 | Beam | None        | A36 Gr.36 | Typical     |
| 66 | M66   | N27    | N111   |             | HSS4X4X4      | Beam | None        | Q235      | Typical APP |
| 67 | M67   | N113   | N112   |             | LL2.5x2.5x3x3 | Beam | None        | A36 Gr.36 | Typical     |
| 68 | M68   | N69    | N114   |             | HSS4X4X4      | Beam | None        | Q235      | Typical_APP |
| 69 | M69   | N115   | N116   |             | RIGID         | None | None        | RIGID     | Typical     |
| 70 | M70   | N118   | N117   |             | PIPE_2.5      | Beam | None        | A53 Gr.B  | Typical     |
| 71 | M71   | N119   | N120   |             | RIGID         | None | None        | RIGID     | Typical     |
| 72 | M72   | N122   | N123   |             | RIGID         | None | None        | RIGID     | Typical     |
| 73 | M73   | N125   | N124   |             | RIGID         | None | None        | RIGID     | Typical     |
| 74 | M74   | N127   | N128   |             | RIGID         | None | None        | RIGID     | Typical     |
| 75 | M75   | N130   | N129   |             | PIPE 2.5      | Beam | None        | A53 Gr.B  | Typical     |
| 76 | M76   | N131   | N132   |             | RIGID         | None | None        | RIGID     | Typical     |
| 77 | M77   | N133   | N134   |             | RIGID         | None | None        | RIGID     | Typical     |
| 78 | M78   | N136   | N135   |             | RIGID         | None | None        | RIGID     | Typical     |
| 79 | M79   | N137   | N138   |             | RIGID         | None | None        | RIGID     | Typical     |
| 80 | M80   | N140   | N139   |             | PIPE 2.5      | Beam | None        | A53 Gr.B  | Typical     |
| 81 | M81   | N141   | N142   |             | RIGID         | None | None        | RIGID     | Typical     |
| 82 | M82   | N143   | N144   |             | RIGID         | None | None        | RIGID     | Typical     |
| 83 | M83   | N146   | N145   |             | RIGID         | None | None        | RIGID     | Typical     |
|    |       |        |        |             | -             |      |             |           | 71          |



STRUCTURAL

Company Designer

: GeoStructural, LLC

Job Number:

Model Name: CTHA512A

: Jesse Drennen, PE

1/5/2021 12:31:19 PM

Checked By: DWG

# Member Primary Data (Continued)

|     | Label | I Node | J Node | Rotate(deg) | Section/Shape | Type | Design List | Material | Design Rule |
|-----|-------|--------|--------|-------------|---------------|------|-------------|----------|-------------|
| 84  | M84   | N147   | N148   |             | RIGID         | None | None        | RIGID    | Typical     |
| 85  | M85   | N150   | N149   |             | PIPE_2.5      | Beam | None        | A53 Gr.B | Typical     |
| 86  | M86   | N151   | N152   |             | RIGID         | None | None        | RIGID    | Typical     |
| 87  | M87   | N153   | N154   |             | RIGID         | None | None        | RIGID    | Typical     |
| 88  | M88   | N156   | N155   |             | RIGID         | None | None        | RIGID    | Typical     |
| 89  | M89   | N157   | N158   |             | RIGID         | None | None        | RIGID    | Typical     |
| 90  | M90   | N160   | N159   |             | PIPE_2.5      | Beam | None        | A53 Gr.B | Typical     |
| 91  | M91   | N161   | N162   |             | RIGID         | None | None        | RIGID    | Typical     |
| 92  | M92   | N164   | N165   |             | RIGID         | None | None        | RIGID    | Typical     |
| 93  | M93   | N167   | N166   |             | RIGID         | None | None        | RIGID    | Typical     |
| 94  | M94   | N169   | N170   |             | RIGID         | None | None        | RIGID    | Typical     |
| 95  | M95   | N172   | N171   |             | PIPE_2.5      | Beam | None        | A53 Gr.B | Typical     |
| 96  | M96   | N173   | N174   |             | RIGID         | None | None        | RIGID    | Typical     |
| 97  | M97   | N175   | N176   |             | RIGID         | None | None        | RIGID    | Typical     |
| 98  | M98   | N178   | N177   |             | RIGID         | None | None        | RIGID    | Typical     |
| 99  | M99   | N179   | N180   |             | RIGID         | None | None        | RIGID    | Typical     |
| 100 | M100  | N182   | N181   |             | PIPE_2.5      | Beam | None        | A53 Gr.B | Typical     |
| 101 | M101  | N183   | N184   |             | RIGID         | None | None        | RIGID    | Typical     |
| 102 | M102  | N185   | N186   |             | RIGID         | None | None        | RIGID    | Typical     |
| 103 | M103  | N188   | N187   |             | RIGID         | None | None        | RIGID    | Typical     |
| 104 | M104  | N189   | N190   |             | RIGID         | None | None        | RIGID    | Typical     |
| 105 | M105  | N192   | N191   |             | PIPE_2.5      | Beam | None        | A53 Gr.B | Typical     |
| 106 | M106  | N193   | N194   |             | RIGID         | None | None        | RIGID    | Typical     |
| 107 | M107  | N195   | N196   |             | RIGID         | None | None        | RIGID    | Typical     |
| 108 | M108  | N198   | N197   |             | RIGID         | None | None        | RIGID    | Typical     |

# **Envelope Node Reactions**

|    | Node Label |     | X [k]  | LC | Y [k]  | LC | Z [k]  | LC | MX [k-ft] | LC | MY [k-ft] | LC | MZ [k-ft] | LC |
|----|------------|-----|--------|----|--------|----|--------|----|-----------|----|-----------|----|-----------|----|
| 1  | N15        | max | 0.045  | 17 | 2.803  | 26 | 0.064  | 20 | 0         | 74 | 0         | 4  | 0         | 22 |
| 2  |            | min | -0.045 | 23 | -0.054 | 20 | -4.57  | 26 | 0         | 1  | 0         | 22 | 0         | 4  |
| 3  | N108       | max | 1.253  | 5  | 0.276  | 8  | 6.149  | 2  | 0.331     | 32 | 2.559     | 11 | 0.592     | 23 |
| 4  |            | min | -1.243 | 23 | -0.138 | 14 | -3.041 | 20 | -0.029    | 14 | -2.573    | 17 | -0.63     | 5  |
| 5  | N109       | max | 0.177  | 24 | 2.819  | 30 | 2.297  | 30 | 0         | 16 | 0         | 10 | 0         | 10 |
| 6  |            | min | -3.977 | 30 | -0.149 | 24 | -0.102 | 24 | 0         | 10 | 0         | 16 | 0         | 16 |
| 7  | N111       | max | 5.634  | 6  | 0.303  | 12 | 2.289  | 25 | 0.446     | 15 | 1.956     | 13 | 0.229     | 20 |
| 8  |            | min | -2.952 | 24 | -0.166 | 18 | -3.862 | 7  | -0.608    | 9  | -1.947    | 19 | -0.453    | 2  |
| 9  | N112       | max | 3.973  | 34 | 2.816  | 34 | 2.295  | 34 | 0         | 12 | 0         | 12 | 0         | 12 |
| 10 |            | min | -0.15  | 16 | -0.131 | 16 | -0.087 | 16 | 0         | 18 | 0         | 18 | 0         | 18 |
| 11 | N114       | max | 3.271  | 16 | 0.283  | 4  | 1.819  | 16 | 0.485     | 24 | 0.517     | 9  | 0.456     | 13 |
| 12 |            | min | -5.965 | 10 | -0.164 | 50 | -3.384 | 10 | -0.6      | 6  | -0.528    | 15 | -0.22     | 43 |
| 13 | Totals:    | max | 6.753  | 17 | 8.236  | 31 | 6.229  | 2  |           |    |           |    |           |    |
| 14 |            | min | -6.753 | 11 | 2.566  | 74 | -6.229 | 20 |           |    |           |    |           |    |

# Envelope AISC 14TH (360-10): LRFD Member Steel Code Checks

|    | Member | Shape       | Code Check | Loc[ft]Lo | Shear Check | Loc[ft] | Dir | LC | phi*Pnc [k] | phi*Pnt [k] | phi*Mn y-y [k-ft] | phi*Mn z-z [k-ft] | Cb    | Eqn   |
|----|--------|-------------|------------|-----------|-------------|---------|-----|----|-------------|-------------|-------------------|-------------------|-------|-------|
| 1  | M45    | L2.5x2.5x3  | 0.662      | 1.07      | 0.107       | 1.07    | у   | 5  | 27.686      | 29.192      | 0.873             | 1.972             | 1.136 | H2-1  |
| 2  | M46    | L2.5x2.5x3  | 0.637      | 1.07 3    | 0.108       | 0       | z   | 8  | 27.686      | 29.192      | 0.873             | 1.972             | 1.136 | H2-1  |
| 3  | M24    | L2.5x2.5x3  | 0.602      | 1.07 7    | 0.115       | 0       | z   | 12 | 27.686      | 29.192      | 0.873             | 1.972             | 1.136 | H2-1  |
| 4  | M25    | PIPE_2.0    | 0.526      | 1.302 5   |             | 3.906   |     | 6  | 6.295       | 32.13       | 1.872             | 1.872             | 3     | H3-6  |
| 5  | M26    | PIPE_2.0    | 0.496      | 1.172 1   | 0.307       | 3.906   |     | 11 | 6.295       | 32.13       | 1.872             | 1.872             | 3     | H3-6  |
| 6  | M7     | PIPE_2.0    | 0.455      | 1.302 2   | 0.321       | 3.906   |     | 2  | 6.295       | 32.13       | 1.872             | 1.872             | 3     | H3-6  |
| 7  | M19    | 3/8"X6"_HRA | 0.316      | 0 5       | 0.417       | 0       | у   | 6  | 67.691      | 68.85       | 0.538             | 8.606             | 1.21  | H1-1b |
| 8  | M42    | L2X2X4      | 0.306      | 4.3591    | 0.011       | 0       | z   | 42 | 11.646      | 28.886      | 0.653             | 1.474             | 1.5   | H2-1  |
| 9  | M12    | 3/8"X6"_HRA | 0.298      | 0 1       | 0.359       | 0       | У   | 9  | 67.691      | 68.85       | 0.538             | 8.606             | 1.195 | H1-1b |
| 10 | M15    | L2X2X4      | 0.294      | 4.359 7   | 0.01        | 4.359   | у   | 8  | 11.646      | 28.886      | 0.653             | 1.474             | 1.5   | H2-1  |
| 11 | M105   | PIPE_2.5    | 0.259      | 2.667 1   | 0.051       | 2.667   |     | 12 | 30.04       | 50.715      | 3.596             | 3.596             | 1.803 | H1-1b |
| 12 | M41    | L2X2X4      | 0.257      | 0 1       | 0.012       | 0       | у   | 36 | 11.646      | 28.886      | 0.653             | 1.474             | 1.5   | H2-1  |



: GeoStructural, LLC : Jesse Drennen, PE

Job Number :

Job Number : Model Name : CTHA512A

1/5/2021 12:31:19 PM

Checked By: DWG

#### Envelope AISC 14TH (360-10): LRFD Member Steel Code Checks (Continued)

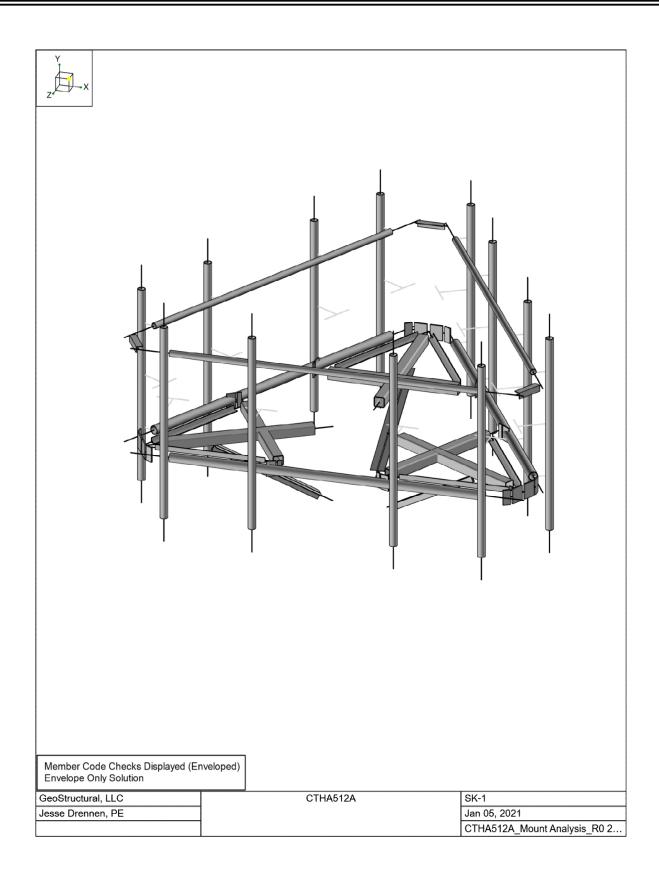
|    | Member | Shape         | Code Chec | kLoc[ft]LcS | hear Che | ck Loc[ft]DirLC | ohi*Pnc [k] | phi*Pnt [k] | phi*Mn y-y [k-ft] | phi*Mn z-z [k- | ft] Cb Eqn   |
|----|--------|---------------|-----------|-------------|----------|-----------------|-------------|-------------|-------------------|----------------|--------------|
| 13 | M80    | PIPE_2.5      | 0.256     | 2.667 4     | 0.061    | 2.667 8         | 30.04       | 50.715      | 3.596             | 3.596          | 2.24 H1-1b   |
| 14 | M64    | L2X2X4        | 0.247     | 4.359 3     | 0.009    | 0 z 27          | 11.646      | 28.886      | 0.653             | 1.474          | 1.5 H2-1     |
| 15 | M14    | L2X2X4        | 0.245     | 0 6         | 0.012    | 0 y 33          | 11.646      | 28.886      | 0.653             | 1.474          | 1.5 H2-1     |
| 16 | M1     | 3/8"X6"_HRA   | 0.24      | 0 8         | 0.403    | 0 y 10          | 67.691      | 68.85       | 0.538             | 8.606          | 1.183 H1-1b  |
| 17 | M43    | L2X2X4        | 0.237     | 0 13        | 0.012    | 0 y 29          | 11.646      | 28.886      | 0.653             | 1.474          | 1.5 H2-1     |
| 18 | M44    | HSS4X4X4      | 0.237     | 5.998 11    | 0.107    | 5.998 z 5       | 92.262      | 103.122     | 11.96             | 11.96          | 2.09 H1-1b   |
| 19 | M100   | PIPE_2.5      | 0.231     | 2.667 6     | 0.086    | 2.667 12        | 30.04       | 50.715      | 3.596             | 3.596          | 2.058 H1-1b  |
| 20 | M60    | PIPE_2.5      | 0.231     | 2.583 8     | 0.044    | 2.667 4         | 30.04       | 50.715      | 3.596             | 3.596          | 1.551 H1-1b  |
| 21 | M85    | PIPE_2.5      | 0.231     | 2.583 11    | 0.045    | 2.667 9         | 30.04       | 50.715      | 3.596             | 3.596          | 1.528 H1-1b  |
| 22 | M21    | 3/8"X6"_HRA   | 0.223     | 0 13        | 0.367    | 0 y 13          | 67.691      | 68.85       | 0.538             | 8.606          | 1.169 H1-1b  |
| 23 | M55    | PIPE_2.5      | 0.222     | 2.667 13    | 0.08     | 2.667 4         | 30.04       | 50.715      | 3.596             | 3.596          | 2.142 H1-1b  |
| 24 | M33    | 1/2 X 6       | 0.215     | 0 11        | 0.256    | 0   y   6       | 84.3        | 91.8        | 11.475            | 0.956          | 1.279 H1-1b  |
| 25 | M90    | PIPE_2.5      | 0.212     | 2.667 13    | 0.074    | 2.667 6         | 30.04       | 50.715      | 3.596             | 3.596          | 2.116 H1-1b  |
| 26 | M70    | PIPE_2.5      | 0.21      | 2.667 10    | 0.058    | 2.667 12        | 30.04       | 50.715      | 3.596             | 3.596          | 2.212 H1-1b  |
| 27 | M66    | HSS4X4X4      | 0.203     | 5.998 13    | 0.096    | 5.998 z 9       | 92.262      | 103.122     | 11.96             | 11.96          | 2.049 H1-1b  |
| 28 | M68    | HSS4X4X4      | 0.202     | 1.87434     | 0.091    | 1.812 y 43      | 92.262      | 103.122     | 11.96             | 11.96          | 1.986 H1-1b  |
| 29 | M9     | 1/2 X 6       | 0.199     | 0 5         | 0.265    | 0 y 9           | 84.3        | 91.8        | 11.475            | 0.956          | 1.284 H1-1b  |
| 30 | M31    | PIPE_2.5      | 0.192     | 2.667 5     | 0.074    | 2.667 9         | 30.04       | 50.715      | 3.596             | 3.596          | 2.136 H1-1b  |
| 31 | M37    | 1/2 X 6       | 0.188     | 0 2         | 0.261    | 0.5 y 10        | 84.3        | 91.8        | 11.475            | 0.956          | 1.305 H1-1b  |
| 32 | M20    | 3/8"X6"_HRA   | 0.181     | 0 5         | 0.416    | 0 y 12          | 63.5        | 68.85       | 0.538             | 8.606          | 1.673 H1-1b  |
| 33 | M13    | 3/8"X6"_HRA   | 0.179     | 0 11        | 0.367    | 0 y 4           | 63.5        | 68.85       | 0.538             | 8.606          | 1.675 H1-1b  |
| 34 | M95    | PIPE_2.5      | 0.17      | 2.667 7     | 0.114    | 2.667 6         | 30.04       | 50.715      | 3.596             | 3.596          | 1.529 H1-1b  |
| 35 | M75    | PIPE_2.5      | 0.152     | 2.667 3     | 0.095    | 6.083 13        | 30.04       | 50.715      | 3.596             | 3.596          | 2.301 H1-1b  |
| 36 | M50    | PIPE_2.5      | 0.151     | 2.667 11    | 0.122    | 6.083 9         | 30.04       | 50.715      | 3.596             | 3.596          | 2.115 H1-1b  |
| 37 | M2     | 3/8"X6"_HRA   | 0.149     | 0 7         | 0.4      | 0 y 4           | 63.5        | 68.85       | 0.538             | 8.606          | 1.675 H1-1b  |
| 38 | M23    | HSS4X4X4      | 0.148     | 2.58335     | 0.081    | 4.79 z 11       | 94.949      | 103.122     | 11.96             | 11.96          | 1.359 H1-1b  |
| 39 | M18    | HSS4X4X4      | 0.145     | 2.58329     | 0.076    | 4.79 z 7        | 94.949      | 103.122     | 11.96             | 11.96          | 1.361 H1-1b  |
| 40 | M5     | HSS4X4X4      | 0.143     | 2.58326     | 0.066    | 4.79 z 3        | 94.949      | 103.122     | 11.96             | 11.96          | 1.36 H1-1b   |
| 41 | M22    | 3/8"X6"_HRA   | 0.142     | 0 13        | 0.363    | 0 y 7           | 63.5        | 68.85       | 0.538             | 8.606          | 1.67 H1-1b   |
| 42 | M34    | 1/2 X 6       | 0.133     | 0 9         | 0.262    | 0.5 y 13        | 84.3        | 91.8        | 11.475            | 0.956          | 1.28 H1-1b   |
| 43 | M8     | 1/2 X 6       | 0.132     | 0 6         | 0.248    | 0.5 y 2         | 84.3        | 91.8        | 11.475            | 0.956          | 1.3 H1-1b    |
| 44 | M29    | PIPE_3.0      | 0.128     | 4.036 13    | 0.105    | 4.167 5         | 59.853      | 65.205      | 5.749             | 5.749          | 3 H1-1b      |
| 45 | M65    | LL2.5x2.5x3x3 | 0.126     | 4.85330     | 0.007    | 4.853 z 10      | 42.67       | 58.32       | 3.954             | 2.55           | 1.136 H1-1b* |
| 46 | M67    | LL2.5x2.5x3x3 | 0.126     | 4.85334     | 0.008    | 4.853 z 12      | 42.67       | 58.32       | 3.954             | 2.55           | 1.136 H1-1b* |
| 47 | M27    | PIPE_3.0      | 0.126     | 4.167 5     | 0.103    | 4.167 9         | 59.853      | 65.205      | 5.749             | 5.749          | 3 H1-1b      |
| 48 | M6     | LL2.5x2.5x3x3 | 0.126     | 4.853 26    | 0.004    | 4.853 y 27      | 42.67       | 58.32       | 3.954             | 2.55           | 1 H1-1b*     |
| 49 | M28    | PIPE_3.0      | 0.124     | 4.036 9     | 0.097    | 3.906 11        | 59.853      | 65.205      | 5.749             | 5.749          | 3 H1-1b      |
| 50 | M38    | 1/2 X 6       | 0.116     | 0 2         | 0.303    | 0.5 y 5         | 84.3        | 91.8        | 11.475            | 0.956          | 1.329 H1-1b  |
| 51 | M10    | 3/8"X6"_HRA   | 0.1       | 0 13        | 0.401    | 0 y 2           | 67.691      | 68.85       | 0.538             | 8.606          | 1.203 H1-1b  |
| 52 | M3     | 3/8"X6"_HRA   | 0.096     | 0 8         | 0.402    | 0 y 5           | 67.691      | 68.85       | 0.538             | 8.606          | 1.167 H1-1b  |
| 53 | M35    | 1/2 X 6       | 0.095     | 0 12        | 0.357    | 0 y 12          | 89.215      | 91.8        | 11.475            | 0.956          | 1.668 H1-1b  |
| 54 | M16    | 1/2 X 6       | 0.084     | 0 8         | 0.333    | 0 y 8           | 89.215      | 91.8        | 11.475            | 0.956          | 1.668 H1-1b  |
| 55 | M39    | 1/2 X 6       | 0.076     | 0 4         | 0.343    | 0 y 4           | 89.215      | 91.8        | 11.475            | 0.956          | 1.668 H1-1b  |
| 56 | M4     | 3/8"X6"_HRA   | 0.057     | 0 31        | 0.404    | 0 y 11          | 63.5        | 68.85       | 0.538             | 8.606          | 1.671 H1-1b  |
| 57 | M36    | 1/2 X 6       | 0.056     | 0 12        | 0.336    | 0 y 7           | 89.215      | 91.8        | 11.475            | 0.956          | 1.674 H1-1b  |
| 58 | M17    | 1/2 X 6       | 0.048     | 0 10        | 0.348    | 0 y 3           | 89.215      | 91.8        | 11.475            | 0.956          | 1.66 H1-1b   |
| 59 | M11    | 3/8"X6"_HRA   | 0.038     | 0 37        | 0.395    | 0 y 8           | 63.5        | 68.85       | 0.538             | 8.606          | 1.671 H1-1b  |
| 60 | M40    | 1/2 X 6       | 0.035     | 0 4         | 0.37     | 0 y 11          | 89.215      | 91.8        | 11.475            | 0.956          | 1.671 H1-1b  |

# Envelope AISI S100-10: ASD Member Cold Formed Steel Code Checks

No Data to Print...

## **Envelope Plate Principal Stresses**

No Data to Print...



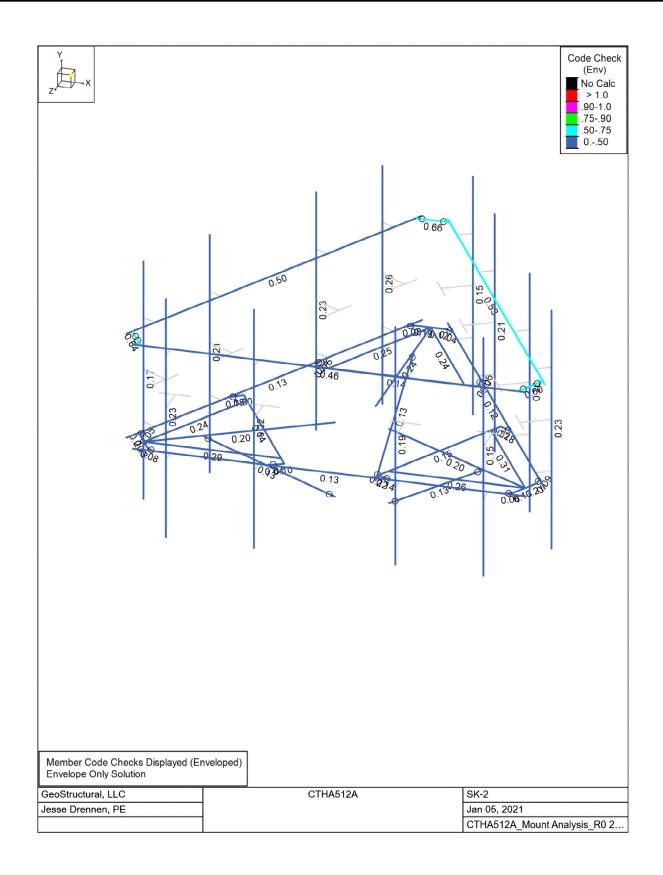

: GeoStructural, LLC : Jesse Drennen, PE

Job Number:

Model Name: CTHA512A

1/5/2021 12:31:19 PM





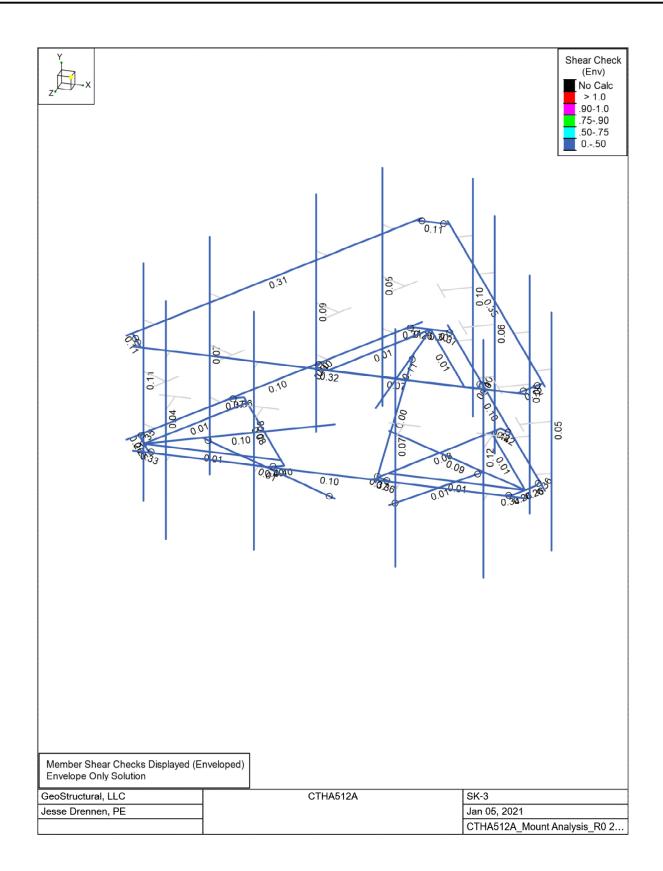

: GeoStructural, LLC : Jesse Drennen, PE

Job Number:

Model Name: CTHA512A

1/5/2021 12:31:19 PM






: GeoStructural, LLC : Jesse Drennen, PE

Job Number:

Model Name: CTHA512A

1/5/2021 12:31:19 PM





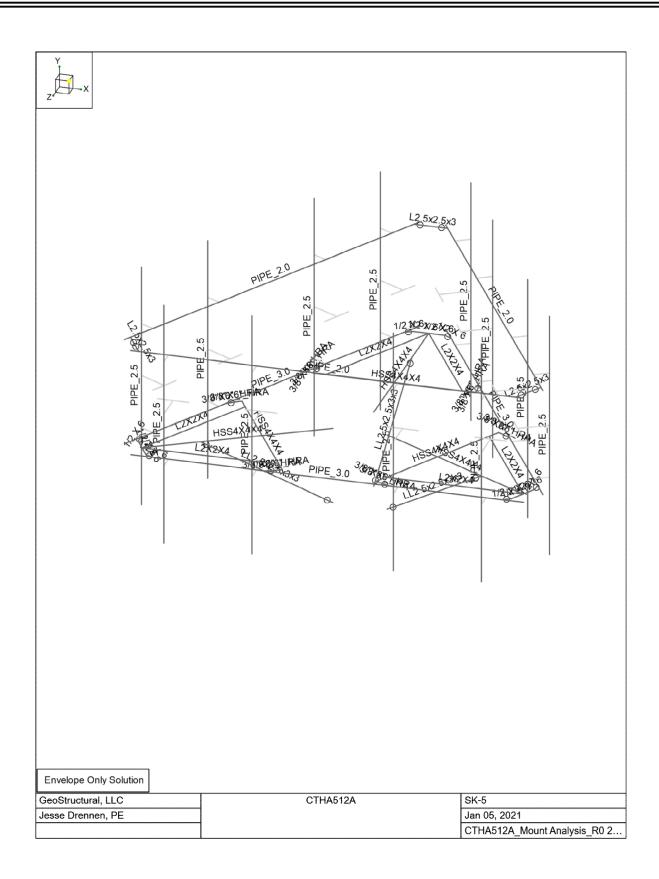
: GeoStructural, LLC : Jesse Drennen, PE

Job Number:

Model Name: CTHA512A

1/5/2021 12:31:19 PM






: GeoStructural, LLC : Jesse Drennen, PE

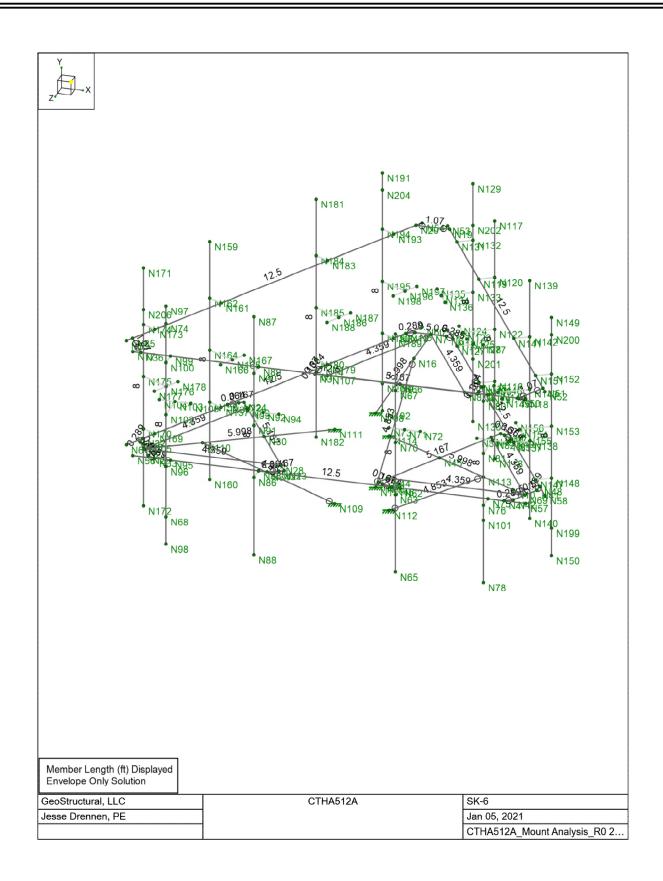
Job Number:

Model Name: CTHA512A

1/5/2021 12:31:19 PM






Company : Designer :

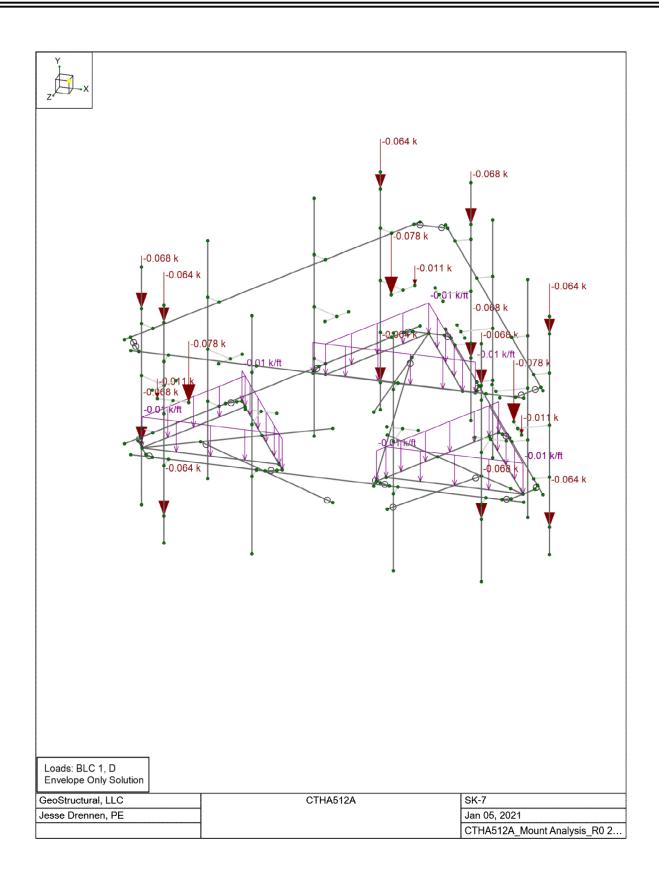
: GeoStructural, LLC : Jesse Drennen, PE

Job Number:

Model Name: CTHA512A

1/5/2021 12:31:19 PM






: GeoStructural, LLC : Jesse Drennen, PE

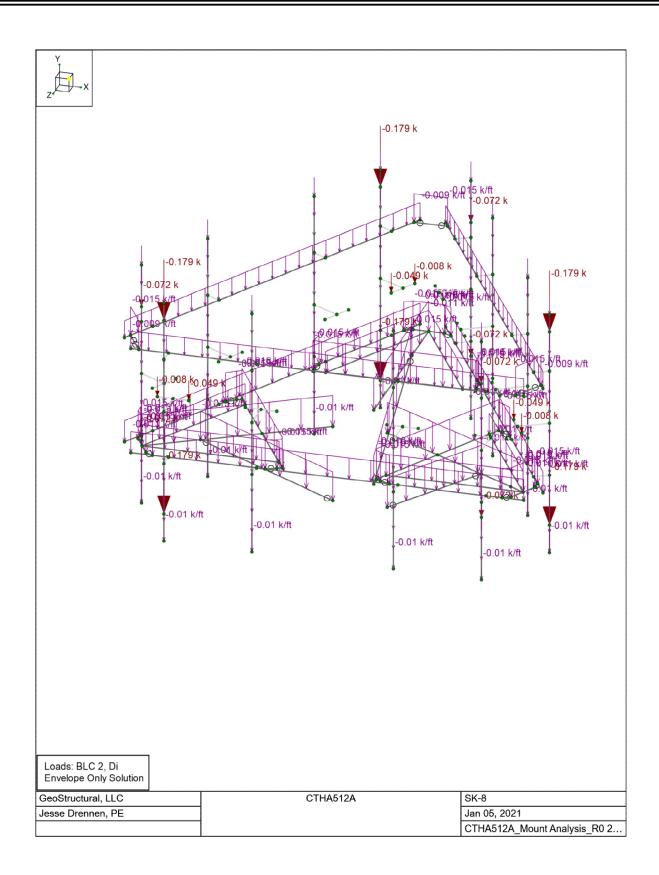
Job Number:

Model Name: CTHA512A

1/5/2021 12:31:19 PM






Company : Designer :

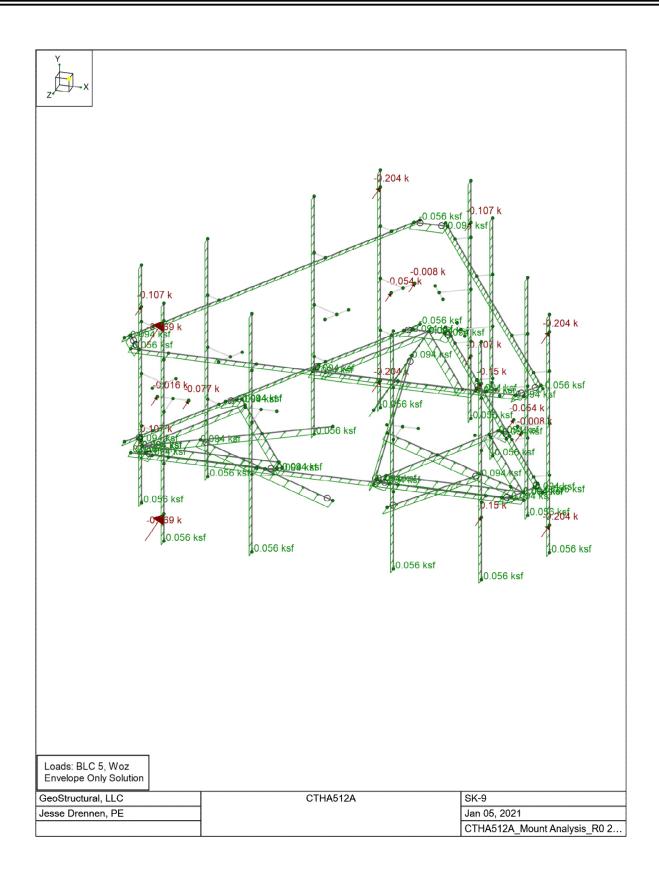
: GeoStructural, LLC : Jesse Drennen, PE

Job Number :

Model Name: CTHA512A

1/5/2021 12:31:19 PM






: GeoStructural, LLC : Jesse Drennen, PE

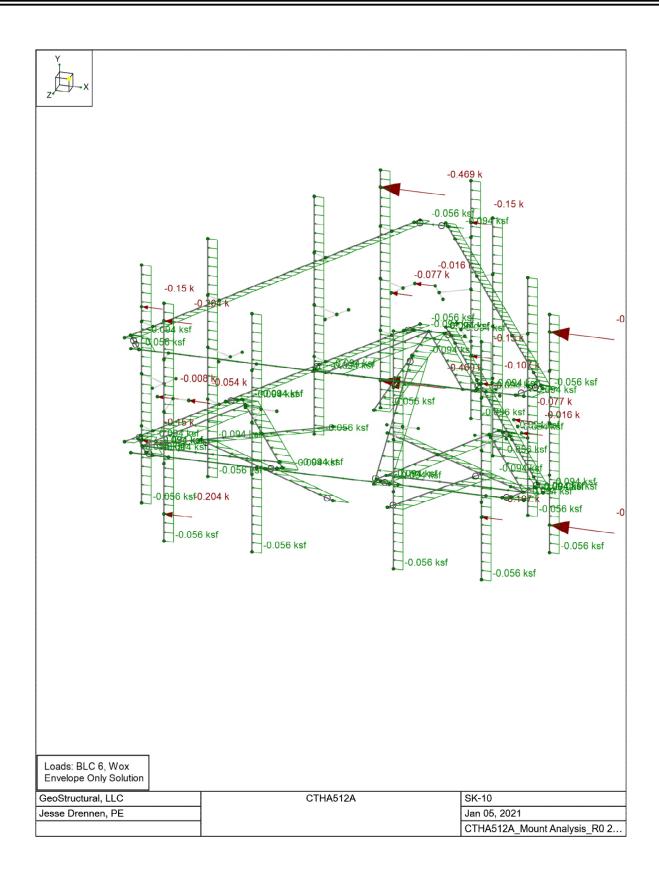
Job Number:

Model Name: CTHA512A

1/5/2021 12:31:19 PM






Company : Geo Designer : Jess

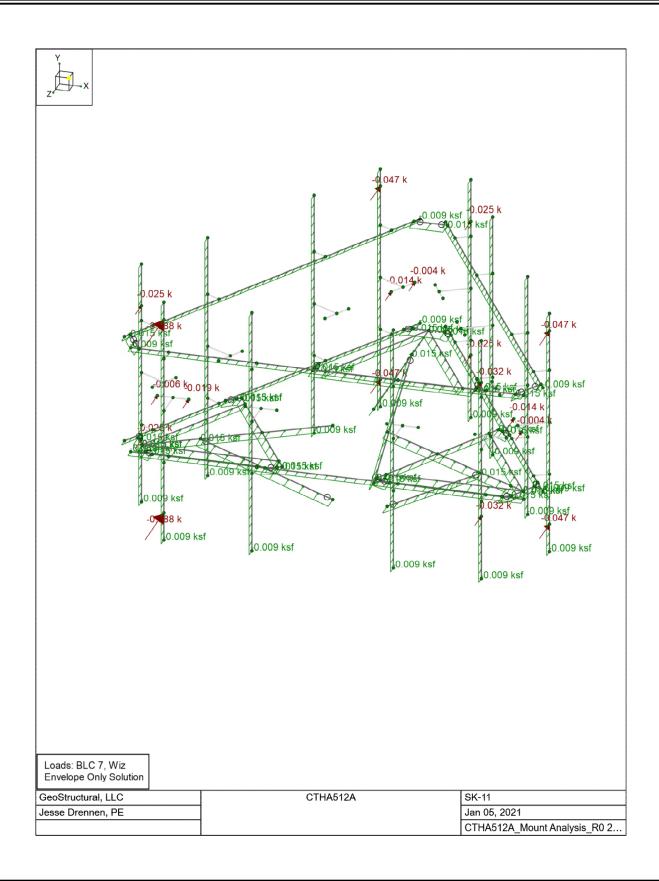
: GeoStructural, LLC : Jesse Drennen, PE

Job Number:

Model Name: CTHA512A

1/5/2021 12:31:19 PM





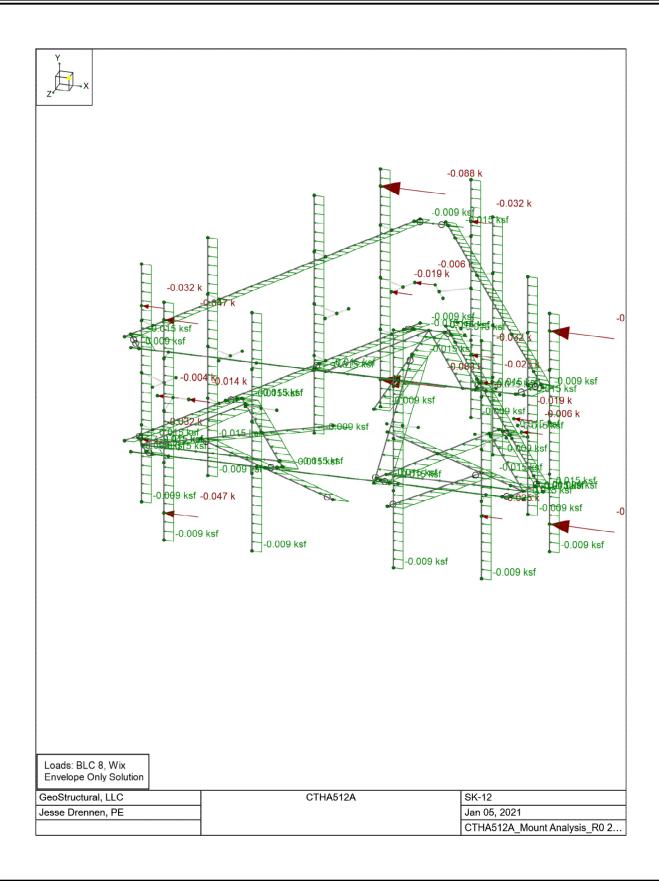

: GeoStructural, LLC : Jesse Drennen, PE

Job Number:

Model Name: CTHA512A

1/5/2021 12:31:19 PM





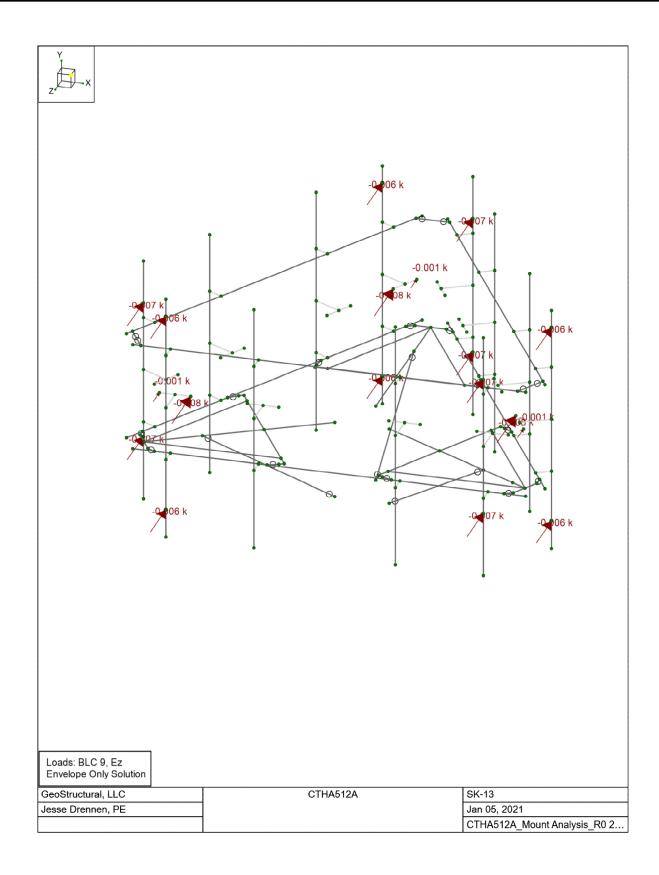

: GeoStructural, LLC : Jesse Drennen, PE

Job Number:

Model Name: CTHA512A

1/5/2021 12:31:19 PM





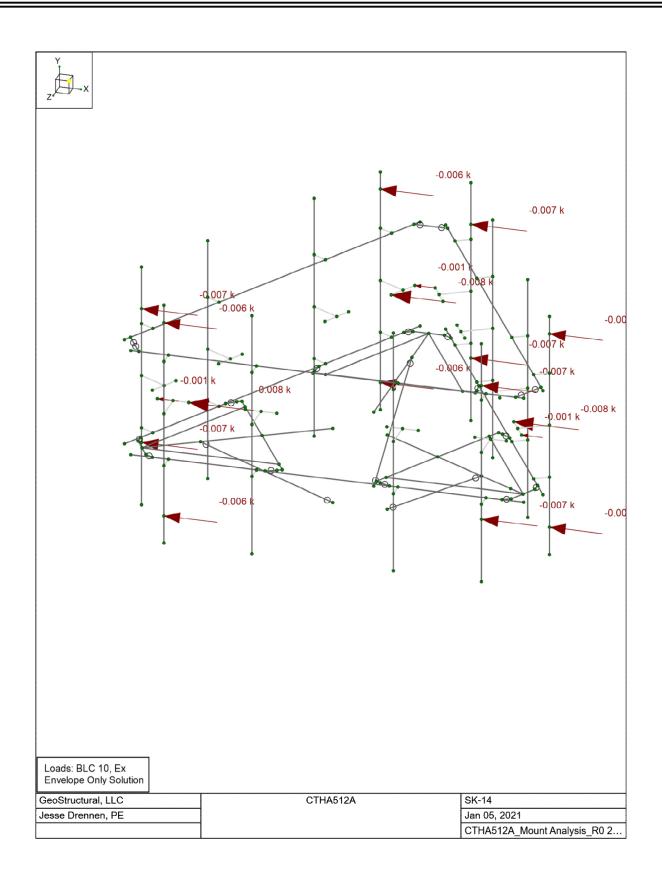

: GeoStructural, LLC : Jesse Drennen, PE

Job Number :

Model Name: CTHA512A

1/5/2021 12:31:19 PM






: GeoStructural, LLC : Jesse Drennen, PE

Job Number:

Model Name: CTHA512A

1/5/2021 12:31:19 PM

