November 25, 2014 Melanie A. Bachman Connecticut Siting Council 10 Franklin Square New Britain, CT 06051 **RE:** T-Mobile-Exempt Modification - Crown Site BU: 842869 T-Mobile Site ID: CT11733B Located at: 450 West Main Street, Meriden, CT 06451 Dear Ms. Bachman: This letter and exhibits are submitted on behalf of T-Mobile. T-Mobile is making modifications to certain existing sites in its Connecticut system in order to implement their 700MHz technology. Please accept this letter and exhibits as notification, pursuant to § 16-50j-73 of the Regulations of Connecticut State Agencies ("R.C.S.A."), of construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In compliance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to The Honorable Manuel A. Santos, Mayor for the City of Meriden and Hunter's Ambulance Service, Inc., Property Owner. T-Mobile plans to modify the existing wireless communications facility owned by Crown Castle and located at **450 West Main Street, Meriden, CT 06451**. Attached are a compound plan and elevation depicting the planned changes (Exhibit-1), and documentation of the structural sufficiency of the structure to accommodate the revised antenna configuration (Exhibit-2). Also included is a power density table report reflecting the modification to T-Mobile's operations at the site (Exhibit-3). The changes to the facility do not constitute a modification as defined in Connecticut General Statutes ("C.G.S.") § 16-50i(d) because the general physical characteristics of the facility will not be significantly changed. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for in the R.C.S.A. § 16-50j-72(b)(2). - 1. The proposed modifications will not result in an increase in the height of the existing tower. T-Mobile's replacement antennas will be located at the same elevation on the existing tower. - 2. There will be no proposed modifications to the ground and no extension of boundaries. - 3. The proposed modifications will not increase noise levels at the facility by six decibels or more. - 4. The operation of the replacement antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) adopted safety standard. A cumulative General Power Density table report for T-Mobile's modified facility is included as Exhibit-3. - 5. A Structural Modification Report confirming that the tower and foundation can support T-Mobile's proposed modifications is included as Exhibit-2. For the foregoing reasons, T-Mobile respectfully submits the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Sincerely, Jerry Feathers Real Estate Specialist #### Enclosure Tab 1: Exhibit-1: Compound plan and elevation depicting the planned changes Tab 2: Exhibit-2: Structural Modification Report Tab 3: Exhibit-3: General Power Density Table Report (RF Emissions Analysis Report) cc: The Honorable Manuel A. Santos, Mayor 142 East Main Street Meriden CT, 06450 cc: Hunter's Ambulance Service, Inc. 450 West Main Street Meriden, CT 06451 # T - Mobile® ## T-MOBILE NORTHEAST LLC T-MOBILE SITE #: CT11733B CROWN CASTLE BU #: 842869 SITE NAME: MERIDEN WEST CENTRAL 450-478 WEST MAIN STREET MERIDEN, CT 06451 NEW HAVEN COUNTY HEAD NORTHWEST ON SYLVAN WAY. TURN RIGHT ONTO US-202 N. CONTINUE STRAIGHT ONTO LITTLETON RD. TAKE THE RAMP ONTO I-287 N. TAKE THE I-87 S/I-287/NEW YORK THRUWAY EXIT TOWARD TAPPAN ZEE BR/INEW YORK CITY. MERGE ONTO I-287 E/II-87 S. KEEP RIGHT AT THE FORK TO CONTINUE ON I-87 S, FOLLOW SIGNS FOR SAW MILL PKWY S/INEW YORK CITY. TAKE EXIT 8A FOR NY-119/SAW MILL PKWY N TOWARD ELMSFORD. KEEP LEFT, FOLLOW SIGNS FOR SAW MILL RIVER PKWY N/KATONAH AND MERGE ONTO NEW YORK STATE REFERENCE RTE 987D N/SAW MILL RIVER PARKWAY N. KEEP LEFT, FOLLOW SIGNS FOR I-684/BREWSTER AND MERGE ONTO I-684 N. TAKE EXIT 9E FOR INTERSTATE 84 E TOWARD DANBURY. MERGE ONTO I-84 E. TAKE EXIT 27 FOR I-691 E TOWARD MERIDEN. CONTINUE ONTO I-691 E. TAKE EXIT 4 FOR W MAIN ST. TURN RIGHT ONTO MERIDEN—WATERBURY TURNPIKE. CONTINUE ONTO W MAIN ST. SITE WILL BE ON THE RIGHT. | T-MOBILE SITE #: | CT11733B | |--------------------|---| | CROWN CASTLE BU #: | 842869 | | SITE ADDRESS: | 450-478 WEST MAIN STREET
MERIDEN, CT 06451
NEW HAVEN COUNTY | | LATITUDE: | N 41° 32′ 24.24″ | | LONGITUDE: | W 72° 49′ 9.06″ | | TOWER OWNER: | CROWN CASTLE
1200 MACARTHUR BLVD., SUITE 200
MAHWAH, NJ 07430 | | CONTACT: | WARREN KELLEHER
(781) 970-0055 | | | | **PROJECT INFORMATION** 4 SYLVAN WAY PARSIPPANY, NJ 07054 PHONE #: (973) 397-4800 FAX #: (973) 292-8893 DEWBERRY ENGINEERS INC. T-MOBILE NORTHEAST, LLC 600 PARSIPPANY ROAD, SUITE 301 PARSIPPANY, NJ 07054 GREG NAWROTZKI (973) 576-9653 ADD (3) NEW ANTENNAS, ADD (3) NEW RRU'S CONSTRUCTION PROPOSED DESIGN: 702Cu (CS) | SHEET
NO. | SHEET DESCRIPTION | | | | | | |--------------|---------------------------------|--|--|--|--|--| | T-1 | TITLE SHEET | | | | | | | G-1 | GENERAL NOTES | | | | | | | C-1 | COMPOUND PLAN & EQUIPMENT PLANS | | | | | | | C-2 | ANTENNA LAYOUTS & ELEVATIONS | | | | | | | C-3 | CONSTRUCTION DETAILS | | | | | | | E-1 | GROUNDING NOTES & DETAILS | **SHEET INDEX** #### APPROVALS | T-MOBILE | DATE | |-----------------|------| | OWNER/ LANDLORD | DATE | | RF ENGINEER | DATE | | ZONING | DATE | ## Dewberry® Dewberry Engineers Inc. 600 PARSIPPANY ROAD SUITE 301 PARSIPPANY, NJ 07054 PHONE: 973.739.9400 FAX: 973.739.9710 ### T · Mobile· T-MOBILE NORTHEAST LLC 4 SYLVAN WAY PARSIPPANY, NJ 07054 PHONE: (973) 397-4800 #### MERIDEN WEST CENTRAL CT11733B #### 450-478 WEST MAIN STREET MERIDEN, CT 06451 NEW HAVEN COUNTY HIS DOCUMENT WAS DEVELOPED TO REFLECT A PECIFIC SITE AND ITS SITE CONDITIONS AND IS OT TO BE USED FOR ANOTHER SITE OR WHEN THER CONDITIONS PERTAIN. REUSE OF THIS OCUMENT IS AT THE SOLE RISK OF THE USER. #### SEAL THIS DRAWING IS COPYRIGHTED AND IS TO LE PROPERTY OF T - MOBIL COMMUNICATIONS, INC. IT IS PRODUCT SOLELY FOR THE USE BY T-MOBBLE AND AFFILATES. REPRODUCTION OR USE OF TO PRAWING AND/OR THE INFORMATIC CONTAINED IN ITS FORBIDDEN WITHOUT HE WRITTEN PERMISSION OF T-MOBIL SCALE #### AS SHOWN | Α | 11/11/14 | FG | ISSUED FOR REVIEW | |------|----------|----|-------------------| | REV. | DATE | BY | DESCRIPTION | | REV | ISIONS | | | | | | | | DRAWN BY FG CHECKED BY BSH APPROVED BY GHN DATE 10/30/14 TITLE #### TITLE SHEET PROJECT NO. 50066258/50070375 T - 1 D - 1. FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: PROJECT MANAGEMENT - CROWN CASTLE - CONTRACTOR GENERAL CONTRACTOR (CONSTRUCTION) OWNER T-MOBILE - DEM ORIGINAL EQUIPMENT MANUFACTURER - 2. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF PROJECT MANAGEMENT - ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. - 4. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS - DRAWINGS PROVIDED HERE ARE NOT TO SCALE UNLESS OTHERWISE NOTED AND ARE INTENDED TO SHOW - UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS. - THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE. - 8. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY PROJECT MANAGEMENT - CONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND T1 CABLES, GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING. CONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. CONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING - 10. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND CTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF - 11. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION. - 12. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION - 13. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES AND FOR COORDINATING ALL PORTIONS OF THE WORK UNDER THE CONTRACT - CONTRACTOR SHALL NOTIFY DEWBERRY 48 HOURS IN ADVANCE OF POURING CONCRETE, OR BACKFILLING TRENCHES, SEALING ROOF AND WALL PENETRATIONS & POST DOWNS, FINISHING NEW WALLS OR FINAL ELECTRICA CONNECTIONS FOR ENGINEER REVIEW. - 15. CONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. CONTRACTOR SHALL NOTIFY PROJECT MANAGEMENT OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING - THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION. ANY CONSTRUCTION WORK BY CONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE
COORDINATED WITH CONTRACTOR. ALSO, WORK SHOULD BE SCHEDULED FOR AN APPROPRIATE MAINTENANCE WINDOW USUALLY IN LOW TRAFFIC PERIODS AFTER MIDNIGHT - 17. SINCE THE CELL SITE IS ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE ADVISED TO BE WORN TO ALERT OF ANY DANGEROUS EXPOSURE LEVELS. #### SITE WORK GENERAL NOTES: - 1. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF CONSTRUCTION. - 2. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILIES CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO: - A) FALL PROTECTION - R) CONFINED SPACE - C) ELECTRICAL SAFETY D) TRENCHING & EXCAVATION. - 3. ALL SITE WORK SHALL BE AS INDICATED ON THE DRAWINGS AND PROJECT SPECIFICATIONS. - 4. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES, TOP SOIL AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY. - 5. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF CONTRACTOR, OWNER AND/OR LOCAL UTILITIES. - 6. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. - 7. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE T-MOBILE SPECIFICATION FOR SITE SIGNAGE. - 8. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE TRANSMISSION EQUIPMENT AND TOWER AREAS. - 9. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS. SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT - 10. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION, SEE SOIL COMPACTION NOTES. - 11. THE AREAS OF THE OWNER'S PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION. - 12. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL JURISDICTION'S GUIDELINES FOR EROSION AND SEDIMENT CONTROL. #### **ELECTRICAL INSTALLATION NOTES:** FOR APPROVAL. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE LOCAL CODES. 3 - CABLING TO THE NEW BTS EQUIPMENT. CONTRACTOR SHALL SUBMIT MODIFICATIONS TO PROJECT MANAGEMENT - 3. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT - WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE - 5. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC - 6. CABLES SHALL NOT BE ROUTED THROUGH LADDER-STYLE CABLE TRAY RUNGS. - 7. EACH END OF EVERY POWER, POWER PHASE CONDUCTOR (I.E., HOTS), GROUNDING, AND T1 CONDUCTOR AND CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2 INCH PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC & OSHA, AND MATCH EXISTING INSTALLATION REQUIREMENTS. - 8. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH ENGRAVED LAMACOID PLASTIC LABELS. ALL EQUIPMENT SHALL BE LABELED WITH THEIR VOLTAGE RATING, PHASE CONFIGURATION, WIRE CONFIGURATION. POWER OR AMPACITY RATING, AND BRANCH CIRCUIT ID NUMBERS (I.E., PANELBOARD AND CIRCUIT ID'S). - 9. PANELBOARDS (ID NUMBERS) AND INTERNAL CIRCUIT BREAKERS (CIRCUIT ID NUMBERS) SHALL BE CLEARLY LABELED WITH ENGRAVED LAMACOID PLASTIC LABELS. - 10. ALL TIE WRAPS SHALL BE CUT FLUSH WITH APPROVED CUTTING TOOL TO REMOVE SHARP EDGES. - 11. POWER, CONTROL, AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE CONDUCTOR (SIZE 14 AWG OR LARGER), 600V, OIL RESISTANT THHN OR THWN-2, CLASS B STRANDED COPPER CABLE RATED FOR 90 'C (WET AND DRY) OPERATION; LISTED OR LABELED FOR THE LOCATION AND RACEWAY SYSTEM USED, UNLESS OTHERWISE SPECIFIED. - 12. POWER PHASE CONDUCTORS (I.E., HOTS) SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2 INCH PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL.) PHASE CONDUCTOR COLOR CODES SHALL CONFORM WITH THE NEC & OSHA AND MATCH EXISTING INSTALLATION REQUIREMENTS. - 13. SUPPLEMENTAL FOUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE CONDUCTOR (SIZE 6 AWG OR LARGER), 600V, OIL RESISTANT THHN OR THWN-2 GREEN INSULATION, CLASS B STRANDED COPPER CABLE RATED FOR 90°C (WET AND DRY) OPERATION; LISTED OR LABELED FOR THE LOCATION AND RACEWAY SYSTEM - 14. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED OUTDOORS, OR BELOW GRADE, SHALL BE SINGLE CONDUCTOR #2 AWG SOLID TINNED COPPER CABLE, UNLESS OTHERWISE SPECIFIED. - 15. POWER AND CONTROL WIRING, NOT IN TUBING OR CONDUIT, SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (SIZE 14 AWG OR LARGER), 600V, OIL RESISTANT THHN OR THWN-2, CLASS B STRANDED COPPER CABLE RATED FOR 90°C (WET AND DRY) OPERATION; WITH OUTER JACKET; LISTED OR LABELED FOR THE LOCATION USED, UNLESS OTHERWISE SPECIFIED. - 16. ALL POWER AND POWER GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRENUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRENUTS SHALL BE RATED FOR OPERATION AT NO LESS THAN 75°C (90°C IF AVAILABLE). - 17. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA. UL, ANSI/IEEE, AND NEC. - 18. NEW RACEWAY OR CABLE TRAY WILL MATCH THE EXISTING INSTALLATION WHERE POSSIBLE. - 19. ELECTRICAL METALLIC TUBING (EMT) OR RIGID NONMETALLIC CONDUIT (I.E., RIGID PVC SCHEDULE 40. OR RIGID PVC SCHEDULE 80 FOR LOCATIONS SUBJECT TO PHYSICAL DAMAGE) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS. - 20. FLECTRICAL METALLIC TUBING (EMT), ELECTRICAL NONMETALLIC TUBING (ENT), OR RIGID NONMETALLIC CONDUIT (RIGID PVC, SCHEDULE 40) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS. - 21. GALVANIZED STEEL INTERMEDIATE METALLIC CONDUIT (IMC) SHALL BE USED FOR OUTDOOR LOCATIONS ABOVE - 22. RIGID NONMETALLIC CONDUIT (I.E., RIGID PVC SCHEDULE 40 OR RIGID PVC SCHEDULE 80) SHALL BE USED UNDERGROUND; DIRECT BURIED, IN AREAS OF OCCASIONAL LIGHT VEHICLE TRAFFIC OR ENCASED IN REINFORCED CONCRETE IN AREAS OF HEAVY VEHICLE TRAFFIC. - 23. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED. - 24. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED, SETSCREW FITTINGS ARE NOT ACCEPTABLE. - 25. CABINETS, BOXES, AND WIREWAYS SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA. UL. ANSI/IEEE. AND NEC. - 26. CABINETS, BOXES, AND WIREWAYS TO MATCH THE EXISTING INSTALLATION WHERE POSSIBLE. - 27. WIREWAYS SHALL BE EPOXY-COATED (GRAY) AND INCLUDE A HINGED COVER DESIGNED TO SWING OPEN DOWNWARD; SHALL BE PANDUIT TYPE E (OR EQUAL); AND RATED NEMA 1 (OR BETTER) INDOORS, OR NEMA 3R (OR BETTER) OUTDOORS. - 28. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES, AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET STEEL, SHALL MEET OR EXCEED UL 50, AND RATED NEMA 1 (OR BETTER) INDOORS, OR NEMA 3R (OR BETTER) OUTDOORS - 29. METAL RECEPTACLE, SWITCH, AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED, OR NON-CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1; AND RATED NEMA 1 (OR BETTER) INDOORS, OR WEATHER PROTECTED (WP OR BETTER) OUTDOORS - 30. NONMETALLIC RECEPTACLE, SWITCH, AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2; AND RATED NEMA 1 (OR BETTER) INDOORS, OR WEATHER PROTECTED (WP OR BETTER) OUTDOORS. - 31. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM PROJECT MANAGEMENT BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS. - 32. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD AGAINST LIFE AND PROPERTY. #### **CONCRETE AND REINFORCING STEEL NOTES:** - ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST—IN—PLACE CONCRETE. - 2. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 4000 PSI AT 28 DAYS, UNLESS NOTED OTHERWISE. A HIGHER STRENGTH (4000 PSI) MAY BE USED. ALL CONCRETING WORK SHALL BE DONE IN ACCORDANCE WITH ACI 318 CODE REQUIREMENTS. - REINFORCING STEEL SHALL CONFORM TO ASTM A 615, GRADE 60, DEFORMED UNLESS NOTED OTHERWISE. WELDED WIRE FABRIC SHALL CONFORM TO ASTM A 185 WELDED STEEL WIRE FABRIC UNLESS NOTED OTHERWISE (UNO). SPLICES SHALL BE CLASS "B" AND ALL HOOKS SHALL BE STANDARD, UNO. - 4. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN CONCRETE CAST AGAINST EARTH.......3 IN. CONCRETE EXPOSED TO EARTH OR WEATHER: #6 AND LARGER2 IN. #5 AND SMALLER & WWF......1 1/2 IN. CONCRETE NOT EXPOSED TO EARTH OR WEATHER R NOT CAST AGAINST THE GROUND: SLAB AND WALL BEAMS AND COLUMNS...... - 5. A CHAMFER 3/4" SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNO, IN ACCORDANCE WITH - INSTALLATION OF CONCRETE EXPANSION/WEDGE ANCHOR, SHALL BE PER MANUFACTURER'S WRITTEN RECOMMENDED PROCEDURE. THE ANCHOR BOLT, DOWEL OR ROD SHALL CONFORM TO MANUFACTURER'S RECOMMENDATION FOR EMBEDMENT DEPTH OR AS SHOWN ON THE DRAWINGS. NO REBAR SHALL BE CUT WITHOUT PRIOR CONTRACTOR APPROVAL WHEN DRILLING HOLES IN CONCRETE, SPECIAL INSPECTIONS, REQUIRED BY GOVERNING CODES, SHALL BE PERFORMED IN ORDER TO MAINTAIN MANUFACTURER'S MAXIMUM ALLOWABLE LOADS. ALL
EXPANSION/WEDGE ANCHORS SHALL BE STAINLESS STEEL OR HOT DIPPED GALVANIZED. EXPANSION BOLTS SHALL BE PROVIDED BY RAMSET/REDHEAD OR APPROVED EQUAL. - CONCRETE CYLINDER TEST IS NOT REQUIRED FOR SLAB ON GRADE WHEN CONCRETE IS LESS THAN 50 CUBIC YARDS (IBC 1905.6.2.3) IN THAT EVENT THE FOLLOWING RECORDS SHALL BE PROVIDED BY THE CONCRETE SUPPLIFR- - (A) RESULTS OF CONCRETE CYLINDER TESTS PERFORMED AT THE - SUPPLIER'S PLANT, - (B) CERTIFICATION OF MINIMUM COMPRESSIVE STRENGTH FOR THE CONCRETE GRADE SUPPLIED - FOR GREATER THAN 50 CUBIC YARDS THE GC SHALL PERFORM THE CONCRETE CYLINDER TEST. - AS AN ALTERNATIVE TO ITEM 7, TEST CYLINDERS SHALL BE TAKEN INITIALLY AND THEREAFTER FOR EVERY 50 YARDS OF CONCRETE FROM EACH DIFFERENT BATCH PLANT. - 9. EQUIPMENT SHALL NOT BE PLACED ON NEW PADS FOR SEVEN DAYS AFTER PAD IS POURED, UNLESS IT IS VERIFIED BY CYLINDER TESTS THAT COMPRESSIVE STRENGTH HAS BEEN ATTAINED. #### STRUCTURAL STEEL NOTES: - ALL STEEL WORK SHALL BE PAINTED OR GALVANIZED IN ACCORDANCE WITH THE DRAWINGS UNLESS NOTED OTHERWISE, STRUCTURAL STEEL SHALL BE ASTM—A-36 UNLESS OTHERWISE NOTED ON THE SITE SPECIFIC DRAWINGS. STEEL DESIGN, INSTALLATION AND BOLTING SHALL BE PERFORMED IN ACCORDANCE WITH THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) "MANUAL OF STEEL CONSTRUCTION - 2. ALL WELDING SHALL BE PERFORMED USING E70XX ELECTRODES AND WELDING SHALL CONFORM TO AISC. WHERE FILLET WELD SIZES ARE NOT SHOWN, PROVIDE THE MINIMUM SIZE PER TABLE J2.4 IN THE AISC "MANUAL OF STEEL CONSTRUCTION". PAINTED SURFACES SHALL BE TOUCHED UP. - BOLTED CONNECTIONS SHALL BE ASTM A325 BEARING TYPE (3/4"0) CONNECTIONS AND SHALL HAVE MINIMUM OF TWO BOLTS UNLESS NOTED OTHERWISE. - 4. NON-STRUCTURAL CONNECTIONS FOR STEEL GRATING MAY USE 5/8" DIA. ASTM A 307 BOLTS UNLESS NOTED - 5. INSTALLATION OF CONCRETE EXPANSION/WEDGE ANCHOR, SHALL BE PER MANUFACTURER'S WRITTEN RECOMMENDED PROCEDURE. THE ANCHOR BOLT, DOWEL OR ROD SHALL CONFORM TO MANUFACTURER'S RECOMMENDATION FOR EMBEDMENT DEPTH OR AS SHOWN ON THE DRAWINGS. NO REBAR SHALL BE CUT WITHOUT PRIOR CONTRACTOR APPROVAL WHEN DRILLING HOLES IN CONCRETE. SPECIAL INSPECTIONS, REQUIRED BY GOVERNING CODES, SHALL BE PERFORMED IN ORDER TO MAINTAIN MANUFACTURER'S MAXIMUM ALLOWABLE LOADS, ALL EXPANSION/WEDGE ANCHORS SHALL BE STAINLESS STEEL OR HOT DIPPED GALVANIZED. EXPANSION BOLTS SHALL BE PROVIDED BY RAMSET/REDHEAD OR APPROVED EQUAL. - CONTRACTOR SHALL SUBMIT SHOP DRAWINGS FOR ENGINEER REVIEW & APPROVAL ON PROJECTS REQUIRING STRUCTURAL STEEL. - 7. ALL STRUCTURAL STEEL WORK SHALL BE DONE IN ACCORDANCE WITH AISC SPECIFICATIONS. #### CONSTRUCTION NOTES: COORDINATION OF WORK - CONTRACTOR SHALL FIELD VERIFY SCOPE OF WORK, T-MOBILE ANTENNA PLATFORM LOCATION AND ANTENNAS TO BE REPLACED. - CONTRACTOR SHALL COORDINATE RF WORK AND PROCEDURES WITH PROJECT MANAGEMENT. - CABLE LADDER RACK: CONTRACTOR SHALL FURNISH AND INSTALL CABLE LADDER RACK, CABLE TRAY, AND CONDUIT AS REQUIRED TO SUPPORT CABLES TO THE NEW BTS LOCATION. - 4. GROUNDING OF ALL FOUIPMENT AND ANTENNAS IS NOT CONSIDERED PART OF THE SCOPE OF THIS PROJECT AND IS THE RESPONSIBILITY OF THE OWNER AND CONTRACTOR AT THE TIME OF CONSTRUCTION, ALL EQUIPMENT AND ANTENNAS TO BE INSTALLED AND GROUNDED IN ACCORDANCE WITH GOVERNING BUILDING CODE, MANUFACTURER RECOMMENDATIONS AND OWNER SPECEFICATIONS. Dewberry Engineers Inc. SUITE 301 PARSIPPANY, NJ 07054 PHONE: 973.739.9400 FAX: 973.739.9710 T · Mobile T-MOBILE NORTHEAST LLC MERIDEN WEST CENTRAL CT11733B 450-478 WEST MAIN STREET MERIDEN, CT 06451 NEW HAVEN COUNTY THIS DOCUMENT WAS DEVELOPED TO REFLECT A SPECIFIC SITE AND ITS SITE CONDITIONS AND IS NOT TO BE USED FOR ANOTHER SITE OR WHEN OTHER CONDITIONS PERTAIN. REUSE OF THIS DOCUMENT IS AT THE SOLE RISK OF THE USER. THIS DRAWING IS COPYRIGHTED AND IS THE COMMUNICATIONS, INC. IT IS PRODUCED SOLELY FOR THE USE BY T-MOBILE AND ITS AFFILIATES. REPRODUCTION OR USE OF THIS DRAWING AND/OR THE INFORMATION CONTAINED IN IT IS FORBIDDEN WITHOUT THE WRITTEN PERMISSION OF T-MOBILE AS SHOWN | Α | 11/11/14 | FG | ISSUED FOR REVIEW | |------|----------|----|-------------------| | REV. | DATE | BY | DESCRIPTION | | REV | ISIONS | | | DRAWN BY FG CHECKED BY BSH APPROVED BY GHN DATE 10/30/14 TITLE **GENERAL NOTES** PROJECT NO. 50066258/50070375 G - 1 Dewberry* Dewberry Engineers Inc. 600 PARSIPPANY ROAD SUITE 301 PARSIPPANY, NJ 07054 PHONE: 973.739.9400 FAX: 973.739.9710 ## **T** - Mobile- T-MOBILE NORTHEAST LLC #### MERIDEN WEST CENTRAL CT11733B #### 450-478 WEST MAIN STREET MERIDEN, CT 06451 NEW HAVEN COUNTY THIS DOCUMENT WAS DEVELOPED TO REFLECT A SPECIFIC SITE AND ITS SITE CONDITIONS AND IS NOT TO BE USED FOR ANOTHER SITE OR WHEN OTHER CONDITIONS PERTAIN, REUSE OF THIS DOCUMENT IS AT THE SOLE RISK OF THE USER. THIS DRAWING IS COPYRIGHTED AND IS THE SOLE PROPERTY OF T-MOBILE COMMUNICATIONS, INC. IT IS PRODUCED SOLELY FOR THE USE BY T-MOBILE AND ITS AFFILIATES. REPRODUCTION OR USE OF THIS DRAWING AND/OR THE INFORMATION CONTIAINED IN IT IS FORBIDDEN WITHOUT THE WRITTEN PERMISSION OF T-MOBILE. SCALE #### AS SHOWN | Α | 11/11/14 | FG | ISSUED FOR REVIEW | | | | | |-----------|----------|----|-------------------|--|--|--|--| | REV. | DATE | BY | DESCRIPTION | | | | | | REVISIONS | | | | | | | | DRAWN BY CHECKED BY BSH APPROVED BY GHN 10/30/14 DATE TITLE #### **COMPOUND PLAN & EQUIPMENT PLANS** PROJECT NO. 50066258/50070375 C - 1 Dewberry Engineers Inc. 600 PARSIPPANY ROAD SUITE 301 PARSIPPANY, NJ 07054 PHONE: 973.739.9400 FAX: 973.739.9710 ## T - Mobile- T-MOBILE NORTHEAST LLC #### MERIDEN WEST CENTRAL CT11733B #### 450-478 WEST MAIN STREET MERIDEN, CT 06451 NEW HAVEN COUNTY THIS DOCUMENT WAS DEVELOPED TO REFLECT A SPECIFIC SITE AND ITS SITE CONDITIONS AND IS NOT TO BE USED FOR ANOTHER SITE OR WHEN OTHER CONDITIONS PERTAIN. REUSE OF THIS DOCUMENT IS AT THE SOLE RISK OF THE USER. THIS DRAWING IS COPYRIGHTED AND IS THE SOLE PROPERTY OF T-MOBILE COMMUNICATIONS, INC. IT IS PRODUCED SOLELY FOR THE USE BY T-MOBILE AND ITS AFFILIATES. REPRODUCTION OR USE OF THIS AFFILIAIES. REPRODUCTION OR USE OF THIS DRAWING AND/OR THE INFORMATION CONTAINED IN IT IS FORBIDDEN WITHOUT THE WRITTEN PERMISSION OF T-MOBILE #### AS SHOWN APPROVED BY GHN 10/30/14 #### **ANTENNA LAYOUTS & ELEVATIONS** PROJECT NO. 50066258/50070375 **C-2** _PROPOSED 2-7/8"ø x 9'-0" LONG MOUNTING PIPE PROPOSED ANTENNA (COMMSCOPE P/N LNX-6515DS-VTM) (96.4" x 11.9" x 7.1") (50.3 LBS.) #### NOTES: - 1. MOUNT ANTENNAS PER MANUFACTURER'S RECOMMENDATIONS. - 2. GROUND ANTENNAS AND MOUNTS PER MANUFACTURER'S RECOMMENDATIONS AND T-MOBILE STANDARDS. - 3. CONFIRM REQUIRED ANTENNAS WITH THE LATEST RFDS. ISOMETRIC ANTENNA DETAIL SCALE: N.T.S. ERICSSON RRUS-11 B12 #### RRU NOTES: - 1. MOUNT EQUIPMENT PER MANUFACTURER'S RECOMMENDATIONS. - 2. GROUND EQUIPMENT AND MOUNTS PER MANUFACTURER'S RECOMMENDATIONS AND T-MOBILE STANDARDS. - 3. CONFIRM REQUIRED EQUIPMENT WITH THE LATEST RFDS. RRUS-11 - REMOTE RADIO UNIT | | DESIGN CONFIGURATION | | | | | | | | |-------|------------------------|--------------------------|----------|----------|--------|--|--|--| | | ANTENNAS | CO | COAX | | | | | | | | EXISTING | PROPOSED | EXISTING | PROPOSED | LENGTH | | | | | | ERICSSON AIR21 ANTENNA | EXISTING TO REMAIN | | | | | | | | ALPHA | _ | COMMSCOPE LNX-6515DS-VTM | (6) 7/8" | - | 90' | | | | | | ERICSSON AIR21 ANTENNA | EXISTING TO REMAIN | | | | | | | | | ERICSSON AIR21 ANTENNA | EXISTING TO REMAIN | | | | | | | | BETA | _ | COMMSCOPE LNX-6515DS-VTM | (6) 7/8" | _ | 90' | | | | | | ERICSSON AIR21 ANTENNA | EXISTING TO REMAIN | | | | | | | | | ERICSSON AIR21 ANTENNA | EXISTING TO REMAIN | | | | | | | | GAMMA | _ | COMMSCOPE LNX-6515DS-VTM | (6) 7/8" | _ | 90' | | | | | | ERICSSON AIR21 ANTENNA | EXISTING TO REMAIN | | | | | | | #### SITE CONFIGURATION 700MHZ TO EQUIPMENT AT GRADE SCALE: N.T.S. Dewberry* Dewberry Engineers Inc. 600 PARSIPPANY ROAD SUITE 301 PARSIPPANY, NJ 07054 PHONE: 973.739.9400 FAX: 973.739.9710 ## **T** · · Mobile T-MOBILE NORTHEAST LLC #### MERIDEN WEST CENTRAL CT11733B #### 450-478 WEST MAIN STREET MERIDEN, CT 06451 NEW HAVEN COUNTY THIS DOCUMENT WAS DEVELOPED TO REFLECT A SPECIFIC SITE AND ITS SITE CONDITIONS AND IS NOT TO BE USED FOR ANOTHER SITE OR WHEN OTHER CONDITIONS PERTAIN, REUSE OF THIS DOCUMENT IS AT THE SOLE RISK OF THE USER. THIS DRAWING IS COPYRIGHTED AND IS THE SOLE PROPERTY OF THOOBLE COMMUNICATIONS, INC. IT IS PRODUCED SOLELY FOR THE USE BY THOOBLE AND ITS AFFILLATES. REPRODUCTION OR USE OF THIS DRAWING AND/OR THE INFORMATION CONTIANCE IN IT IS FORBIDED WITHOUT THE WRITTEN PERMISSION OF THOOBLE. SCALE #### AS SHOWN | Α | 11/11/14 | FG | ISSUED FOR REVIEW | |------|----------|----|-------------------| | REV. | DATE | BY | DESCRIPTION | REVISIONS DRAWN BY CHECKED BY BSH APPROVED BY GHN 10/30/14 DATE TITLE #### CONSTRUCTION **DETAILS** PROJECT NO. 50066258/50070375 C - 3 #### **GROUNDING NOTES:** Ε В - THE CONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM AND LIGHTNING PROTECTION SYSTEM (AS DESIGNED AND INSTALLED) FOR STRICT COMPLIANCE WITH THE NEC (AS ADOPTED BY THE AHJ). THE SITE—SPECIFIC (UL, LPI, OR NFPA) LIGHTING PROTECTION CODE, AND GENERAL COMPLIANCE WITH TELCORDIA AND TIA GROUNDING STANDARDS. THE CONTRACTOR SHALL REPORT ANY VIOLATIONS OR ADVERSE FINDINGS TO THE ENGINEER FOR RESOLUTION. - ALL GROUND FLECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION. 2. RADIO, LIGHTNING PROTECTION, AND AC POWER GES'S) SHALL BE BONDED TOGETHER, AT OR BELLOW GRADE, BY TWO OR MORE COPPER BONDING TOGETHER, ALL AVAILABLE GROUNDING ELECTROBES SHALL BE CONNECTED TOGETHER IN ACCORDANCE WITH THE NEC. - THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS. USE OF OTHER METHODS MUST BE PRE-APPROVED BY THE - THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS ON TOWER SITES AND 10 OHMS OR LESS ON ROOFTOP SITES. WHEN ADDING ELECTRODES, CONTRACTOR SHALL MAINTAIN A MINIMUM DISTANCE
BETWEEN THE ADDED ELECTRODE AND ANY OTHER EXISTING ELECTRODE GUAL TO THE BURIED LENGTH OF THE ROD. IDEALLY, CONTRACTOR SHALL STRIVE TO KEEP THE SEPARATION DISTANCE EQUAL TO THE BURIED LENGTH OF THE ROD. TO TWICE THE BURIED LENGTH OF THE RODS. - THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT. - METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH 6 AWG COPPER WIRE AND UL APPROVED GROUNDING TYPE CONDUIT CLAMPS. - METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO TRANSMISSION EQUIPMENT. - CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR - ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS. - 10. USE OF 90' BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45' BENDS CAN BE ADEQUATELY SUPPORTED. IN ALL CASES, BENDS SHALL BE MADE WITH A MINIMUM BEND RADIUS OF 8 - 11. FACH INTERIOR TRANSMISSION CABINET FRAME/PLINTH SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH 6 AWG STRANDED, GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRE UNLESS NOTED OTHERWISE IN THE DETAILS, EACH OUTDOOR CABINET FRAME/PLINTH SHALL BE DIRECTLY CONNECTED TO THE BURIED GROUND RING WITH 2 AWG SOLID TIN-PLATED COPPER WIRE UNLESS NOTED OTHERWISE IN THE DETAILS. - 12. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING, SHALL BE 2 AWG SOLID TIN-PLATED COPPER UNLESS OTHERWISE INDICATED. - 13. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELLOW GRADE. CONNECTIONS TO ABOVE GRADE UNITS SHALL BE MADE WITH EXOTHERMIC WELDS WHERE PRACTICAL OR WITH 2 HOLE MECHANICAL TYPE BRASS CONNECTORS WITH STAINLESS STEEL HARDWARE, INCLUDING SET SCREWS. HICH PRESSURE CRIMP CONNECTORS MAY ONLY BE USED WITH WRITTEN PERMISSION FROM T-MOBILE MARKET DEPOSECENTATIVE. - 14. EXOTHERMIC WELDS SHALL BE PERMITTED ON TOWERS ONLY WITH THE EXPRESS APPROVAL OF THE TOWER MANUFACTURER OR THE CONTRACTORS STRUCTURAL ENGINEER. - 15. ALL WIRE TO WIRE GROUND CONNECTIONS TO THE INTERIOR GROUND RING SHALL BE FORMED USING HIGH PRESS CRIMPS OR SPLIT BOLT CONNECTORS WHERE INDICATED IN THE DETAILS. - 16. ON ROOFTOP SITES WHERE EXOTHERMIC WELDS ARE A FIRE HAZARD COPPER COMPRESSION CAP CONNECTORS MAY BE USED FOR WIRE TO WIRE CONNECTORS. 2 HOLE MECHANICAL TYPE BRASS CONNECTORS WITH STAINLESS STEEL HARDWARE, INCLUDING SET SCREWS SHALL BE USED FOR CONNECTION TO ALL ROOFTOP TRANSMISSION EQUIPMENT AND STRUCTURAL STEEL. - 17. COAX BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR USING TWO—HOLE MECHANICAL TYPE BRASS CONNECTORS AND STAINLESS STEEL HARDWARE. - 18. APPROVED ANTIOXIDANT COATINGS (I.E., CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND - ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL. - 20. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC. - BOND ALL METALLIC OBJECTS WITHIN 6 FT OF THE BURIED GROUND RING WITH 2 AWG SOLID TIN-PLATED COPPER GROUND CONDUCTOR. DURING EXCAVATION FOR NEW GROUND CONDUCTORS, IF EXISTING GROUND CONDUCTORS ARE ENCOUNTERED, BOND EXISTING GROUND CONDUCTORS - 22. GROUND CONDUCTORS USED IN THE FACILITY GROUND AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC PLASTIC CONDUIT SHALL BE USED. WHERE USE MATERIAL SOCI AS PYC PLASTIC CONDUIT STALL BE USED, WHERE US OF METAL CONDUIT IS UNAVOIDABLE (E.G., NON-METALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT WITH LISTED BONDING 3 #### NOTE: DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO CIGBE. #### **CONNECTION OF GROUND WIRES** TO GROUNDING BAR (CIGBE) **TYPICAL ANTENNA GROUNDING DETAIL** #### SECTION 'A-A' #### NOTES: - 1. DOUBLING UP OR STACKING OF CONNECTIONS IS NOT PERMITTED. - 2. OXIDE INHIBITING COMPOUND TO BE USED AT ALL LOCATIONS. #### TYPICAL GROUND BAR MECHANICAL CONNECTION DETAIL SCALE: N.T.S. #### NOTES: - 1. BOND ANTENNA GROUNDING KIT CABLE TO TOP CIGBE - 2. BOND ANTENNA GROUNDING KIT CABLE TO BOTTOM CIGBE. - 3. SCHEMATIC GROUNDING DIAGRAM IS TYPICAL FOR EACH SECTOR. - VERIFY EXISTING GROUND SYSTEM IS INSTALLED PER T-MOBILE #### SCHEMATIC GROUNDING DIAGRAM Dewberry* Dewberry Engineers Inc. SUITE 301 PARSIPPANY, NJ 07054 PHONE: 973,739,9400 FAX: 973.739.9710 ## T · Mobile· T-MOBILE NORTHEAST LLC #### MERIDEN WEST CENTRAL CT11733B #### 450-478 WEST MAIN STREET MERIDEN, CT 06451 NEW HAVEN COUNTY THIS DOCUMENT WAS DEVELOPED TO REFLECT A SPECIFIC SITE AND ITS SITE CONDITIONS AND IS NOT TO BE USED FOR ANOTHER SITE OR WHEN OTHER CONDITIONS PERTAIN. REUSE OF THIS DOCUMENT IS AT THE SOLE RISK OF THE USER. THIS DRAWING IS COPYRIGHTED AND IS THE SOLE PROPERTY OF T-MOBILE COMMUNICATIONS, INC. IT IS PRODUCED SOLELY FOR THE USE BY T-MOBILE AND ITS AFFILIATES. REPRODUCTION OR USE OF THIS DRAWING AND/OR THE INFORMATION CONTAINED IN IT IS FORBIDDEN WITHOUT THE WRITTEN PERMISSION OF T-MOBILE SCALE #### AS SHOWN DRAWN BY CHECKED BY BSH APPROVED BY GHN DATE 10/30/14 TITLE #### **GROUNDING NOTES & DETAILS** PROJECT NO. 50066258/50070375 E - 1 Date: November 07, 2014 Ms. Marianne Dunst Crown Castle 3530 Toringdon Way, Suite 300 Charlotte, NC 28277 1455 Lincoln Parkway, Suite 500 Atlanta, GA 30346 (770) 379-8500 Morrison Hershfield Subject: **Structural Analysis Report** **T-Mobile** Co-Locate Carrier Designation: Carrier Site Number: CT11733B Carrier Site Name: CT733/AT&THntr Amblnce FT Crown Castle Designation: Crown Castle BU Number: 842869 > Crown Castle Site Name: Meriden West Central **Crown Castle JDE Job Number:** 313426 **Crown Castle Work Order Number:** 961366 **Crown Castle Application Number:** 270002 Rev. 1 Engineering Firm Designation: **Morrison Hershfield Project Number:** CN4-064R1 / 6150003 450-478 West Main Street, Meriden, New Haven County, CT Latitude 41° 32' 24.24", Longitude -72° 49' 9.06" 100 Foot - Monopole Tower Dear Ms. Dunst, Site Data: Morrison Hershfield is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 726417, in accordance with application 270002, revision 1. The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be: LC7: Existing + Proposed for all applicants Note: See Table I and Table II for the proposed and existing/reserved loading, respectively. **Sufficient Capacity** The analysis has been performed for this tower in accordance with the requirements of the 2005 Connecticut State Building Code and the TIA/EIA-222-F Structural Standards for Steel Antenna Tower and Antenna Supporting Structures using a fastest mile wind speed of 85 mph with no ice, 37.6 mph with 0.75 in ice thickness and 50 mph under service loads. We at Morrison Hershfield appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call. Respectfully submitted by: THINKS SONAL ENTIN G. Lance Cooke, P.E. (CT License No. PEN.0028133) Senior Engineer #### **TABLE OF CONTENTS** #### 1) INTRODUCTION #### 2) ANALYSIS CRITERIA Table 1 - Proposed Antenna and Cable Information Table 2 - Existing and Reserved Antenna and Cable Information Table 3 - Design Antenna and Cable Information #### 3) ANALYSIS PROCEDURE Table 4 - Documents Provided 3.1) Analysis Method 3.2) Assumptions #### 4) ANALYSIS RESULTS Table 5 - Section Capacity (Summary) Table 6 - Tower Components vs. Capacity 4.1) Recommendations #### 5) APPENDIX A tnxTower Output #### 6) APPENDIX B Base Level Drawing #### 7) APPENDIX C Additional Calculations #### 1) INTRODUCTION This tower is a 100 ft monopole tower designed by Glen Martin Engineering, Inc., in December of 2003. The tower was originally designed for a wind speed of 85 mph per TIA/EIA-222-F. #### 2) ANALYSIS CRITERIA The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 85 mph with no ice, 37.6 mph with 0.75 inch ice thickness and 50 mph under service loads. **Table 1 - Proposed Antenna and Cable Information** | Mounting
Level (ft) | Elevation | Number
of
Antennas | Antenna
Manufacturer | | Number
of Feed
Lines | Feed
Line
Size (in) | Note | |------------------------|-----------|--------------------------|-------------------------|---------------------------------|----------------------------|---------------------------|------| | 86.0 | 90.0 | 3 | Commscope | LNX-6515DS-VTM w/
pipe mount | - | - | _ | | | | 3 | Ericsson | RRUS 11 B12 | | | | Table 2 - Existing and Reserved Antenna and Cable Information | Mounting
Level (ft) | Center
Line
Elevation
(ft) | Number
of
Antennas | Antenna
Manufacturer | Antenna Model | Number
of Feed
Lines | Feed
Line
Size (in) | Note | | |------------------------
-------------------------------------|--------------------------|--|--|----------------------------|------------------------------|------|--| | | 103.0 | 1 | Raycap | DC6-48-60-18-8F | - | - | 1 | | | | 101.0 | 3 | CCI Antennas | HPA-65R-BUU-H8 w/ pipe mount | 0 | 0/4 | | | | | | 6 | CCI Antennas | HPA-65R-BUU-H8 w/ pipe mount | 2
1 | 3/4
3/8 | 2 | | | | | 1 | Commscope | MTC 3607 | | | | | | 100.0 | | 3 | Ericsson | RRUS 11-700 | 6 | 1-1/4 | | | | 1 | 100.0 | 3 | KMW
Communications | AM-X-CD-16-65-00T-RET
w/ Mount Pipe | 2
1
1 | 3/4
3/8
Conduit | 1 | | | | | 3 | Ericsson | RRUS A2 Module | _ | - | | | | | | 3 | Ericsson | RRUS-11 1900 MHz | | | 2 | | | | | 1 | Raycap | DC6-48-60-18-8F | | | | | | | 90.0 | 1 | Andrew | VHLP2-13 | - | - | 1 | | | | | 6 | CSS | CSS-DTMA-BRS | - | - | 3 | | | | | 3 | Ericsson | AIR 21 B2A B4P w/ pipe mount | | | | | | 86.0 | | 3 | Ericsson AIR 21 B4A B2P w/ pipe 1 mount 18 | 1
18 | 1-5/8
7/8 | 1 | | | | | | 3 | Ericsson | KRY 112 71/2 | 2 | 1/2 | | | | | 86.0 | 1 | - | Platform Mount [LP 305-1] | | | | | | | 00.0 | 1 | Andrew | VHLP1-23 | | | | | | | | 3 | - | Side Arm Mount [SO 102-1] | | | | | | 78.0 | 78.0 | 3 | Alcatel Lucent | 1900MHz RRH | - | - | 1 | | | | | | 70.0 | 3 | Alcatel Lucent | 800 EXTERNAL NOTCH
FILTER | | | | Mounting
Level (ft) | Center
Line
Elevation
(ft) | Number
of
Antennas | Antenna
Manufacturer | Antenna Model | Number
of Feed
Lines | Feed
Line
Size (in) | Note | | | |------------------------|-------------------------------------|--------------------------|-------------------------|----------------------------------|----------------------------|---------------------------|------|--|--| | | | 3 | Alcatel Lucent | TME-800MHZ RRH | | | | | | | | | 3 | Alcatel Lucent | TD-RRH8x20-25 | 1 | 1-1/4 | | | | | 76.0 | 79.0 | 3 | RFS/Celwave | APXVTM14-C-120 w/
Mount Pipe | 3 | 5/16 | 2 | | | | 76.0 | | 3 | RFS/Celwave | APXVSPP18-C-A20 w/
Mount Pipe | 3 | 1-1/4 | 1 | | | | | 76.0 | 1 | - | Platform Mount [LP 303-1] | | | | | | | | 65.0 | 1 | - | Platform Mount [LP 303-1] | | | | | | | | | 3 | Alcatel Lucent | RRH2X40-AWS | | | | | | | | | | | 3 | Alcatel Lucent | RRH2x40 700 | | | | | 65.0 | | 6 | Antel | BXA-171063/12CF w/
Mount Pipe | 2 | 1-5/8 | 2 | | | | | | 6 | Antel | BXA-70063/6CF w/ Mount
Pipe | | | | | | | | | 2 | RFS/Celwave | DB-T1-6Z-8AB-0Z | | | | | | #### Notes: - 1) Existing equipment that is to remain on the tower. - 2) This equipment is reserved and has been considered in this analysis. - The existing equipment is to be removed and has not been considered in the calculations for this analysis. Table 3 - Design Antenna and Cable Information | Mounting
Level (ft) | | Number
of
Antennas | Antenna
Manufacturer | | Number of Feed Lines | Feed
Line
Size (in) | | | |------------------------|--|--------------------------|-------------------------|--|----------------------|---------------------------|--|--| | Unknown | | | | | | | | | #### 3) ANALYSIS PROCEDURE **Table 4 - Documents Provided** | | 1 | | | |--|--|-----------|----------| | Document | Remarks | Reference | Source | | 4-GEOTECHNICAL REPORTS | Tectonic, Job No. 2650.DT378,
dated 08/28/2002 | 4529388 | CCISITES | | 4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS | Glen Martin Engineering, Inc., Site
No. CT-378. dated 12/15/2003 | 4529387 | CCISITES | | 4-TOWER MANUFACTURER DRAWINGS | Glen Martin Engineering, Inc., Site
No. CT-378. dated 06/04/2003 | 4713237 | CCISITES | | 4-TOWER STRUCTURAL
ANALYSIS REPORTS | Morrison Hershfield, Project No.
CN4-064 / 6150003, Dated
10/27/2014 | 5366024 | CCISITES | #### 3.1) Analysis Method tnxTower (version 6.1.4.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. #### 3.2) Assumptions - 1) The tower and structures were built in accordance with the manufacturer's specifications and applicable ANSI/TIA/EIA standards. - 2) The tower and structures have been maintained in accordance with the manufacturer's specification. - 3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings. - 4) The foundation was properly designed and constructed for the original design loads. This analysis may be affected if any assumptions are not valid or have been made in error. Morrison Hershfield should be notified to determine the effect on the structural integrity of the tower. #### 4) ANALYSIS RESULTS Table 5 - Section Capacity (Summary) | Section
No. | Elevation (ft) | Component
Type | Size | Critical
Element | P (K) | SF*P_allow
(K) | %
Capacity | Pass / Fail | |----------------|----------------|-------------------|----------------------|---------------------|--------|-------------------|---------------|-------------| | L1 | 100 - 47 | Pole | TP40.72x28x0.3125 | 1 | -16.25 | 2019.47 | 52.8 | Pass | | L2 | 47 - 0 | Pole | TP51.37x38.655x0.375 | 2 | -28.58 | 3171.35 | 73.0 | Pass | | | | | | | | | Summary | | | | | | | | | Pole (L2) | 73.0 | Pass | | | | | | | | Rating = | 73.0 | Pass | Table 6 - Tower Component Stresses vs. Capacity – LC7 | Notes | Component | Elevation (ft) | % Capacity | Pass / Fail | | |-------|---------------------------|-----------------|------------|-------------|--| | 1 | Anchor Rods | 0 | 84.2 | Pass | | | 1 | Base Plate | Base Plate 0 52 | | Pass | | | 1 | Foundation
Overturning | 0 | 78.3 | Pass | | | 1 | Foundation Bearing | 0 | 36.6 | Pass | | | Structure Rating (max from all components) = | 84.2% | |--|-------| |--|-------| Notes: #### 4.1) Recommendations The tower and its foundation have sufficient capacity to carry the existing, reserved and proposed loads. No modifications are required at this time. ¹⁾ See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed. ## APPENDIX A TNXTOWER OUTPUT Grade #### **DESIGNED APPURTENANCE LOADING** | TYPE | ELEVATION | TYPE | ELEVATION | |----------------------------------|-----------|-----------------------------------|-----------| | AM-X-CD-16-65-00T-RET w/ Mount | 100 | VHLP2-13 | 86 | | Pipe | | TME-800MHZ RRH | 78 | | AM-X-CD-16-65-00T-RET w/ Mount | 100 | 1900MHz RRH | 78 | | Pipe | | 1900MHz RRH | 78 | | AM-X-CD-16-65-00T-RET w/ Mount | 100 | 1900MHz RRH | 78 | | Pipe | 100 | 800 EXTERNAL NOTCH FILTER | 78 | | RRUS 11-700 | 100 | 800 EXTERNAL NOTCH FILTER | 78 | | RRUS 11-700 | 100 | 800 EXTERNAL NOTCH FILTER | 78 | | RRUS 11-700 | 100 | 6' x 2" Mount Pipe | 78 | | DC6-48-60-18-8F | 100 | 6' x 2" Mount Pipe | 78 | | (2) HPA-65R-BUU-H8 w/ pipe mount | 100 | 6' x 2" Mount Pipe | 78 | | (2) HPA-65R-BUU-H8 w/ pipe mount | 100 | Side Arm Mount [SO 102-1] | 78 | | (2) HPA-65R-BUU-H8 w/ pipe mount | 100 | Side Arm Mount [SO 102-1] | 78 | | HPA-65R-BUU-H8 w/ pipe mount | 100 | Side Arm Mount [SO 102-1] | 78 | | HPA-65R-BUU-H8 w/ pipe mount | 100 | TME-800MHZ RRH | 78 | | HPA-65R-BUU-H8 w/ pipe mount | 100 | TME-800MHZ RRH | 78 | | RRUS-11 1900 MHz | 100 | APXVSPP18-C-A20 w/ Mount Pipe | 76 | | RRUS-11 1900 MHz | 100 | Platform Mount [LP 303-1] | 76 | | RRUS-11 1900 MHz | 100 | APXVTM14-C-120 w/ Mount Pipe | 76 | | RRUS A2 Module | 100 | APXVTM14-C-120 w/ Mount Pipe | 76 | | RRUS A2 Module | 100 | APXVTM14-C-120 w/ Mount Pipe | 76 | | RRUS A2 Module | 100 | TD-RRH8x20-25 | 76 | | DC6-48-60-18-8F | 100 | TD-RRH8x20-25 | 76 | | MTC 3607 | 100 | TD-RRH8x20-25 | 76 | | AIR 21 B4A B2P w/ pipe mount | 86 | APXVSPP18-C-A20 w/ Mount Pipe | 76 | | AIR 21 B4A B2P w/ pipe mount | 86 | APXVSPP18-C-A20 w/ Mount Pipe | 76 | | AIR 21 B4A B2P w/ pipe mount | 86 | (2) BXA-171063/12CF w/ Mount Pipe | 65 | | AIR 21 B2A B4P w/ pipe mount | 86 | (2) BXA-771063/12CF w/ Mount Pipe | 65 | | AIR 21 B2A B4P w/ pipe mount | 86 | (2) BXA-70063/6CF w/ Mount Pipe | 65 | | AIR 21 B2A B4P w/ pipe mount | 86 | (2) BXA-70063/6CF w/ Mount Pipe | 65 | | KRY 112 71/2 | 86 | RRH2x40 700 | 65 | | KRY 112 71/2 | 86 | | | | KRY 112 71/2 | 86 | RRH2x40 700
RRH2x40 700 | 65
65 | | 6' x 2" Mount Pipe | 86 | RRH2X40-AWS | 65 | | Platform Mount [LP 305-1] | 86 | | | | LNX-6515DS-VTM w/ pipe mount | 86 | RRH2X40-AWS | 65 | | LNX-6515DS-VTM w/ pipe mount | 86 | RRH2X40-AWS | 65 | | LNX-6515DS-VTM w/ pipe mount | 86 | DB-T1-6Z-8AB-0Z | 65 | | RRUS 11 B12 | 86 | DB-T1-6Z-8AB-0Z | 65 | | RRUS 11 B12 | 86 | Platform Mount [LP 303-1] | 65 | | RRUS 11 B12 | 86 | (2) BXA-171063/12CF w/ Mount Pipe | 65 | | VHLP1-23 | 86 | (2) BXA-171063/12CF w/ Mount Pipe | 65 | #### **MATERIAL STRENGTH** | GRADE | Fy | Fu | GRADE | Fy | Fu | |---------|--------|--------|-------|----|----| | A572-65 | 65 ksi | 80 ksi | | | | #### **TOWER DESIGN NOTES** - Tower is located in New Haven County, Connecticut. Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F Standard. Tower is also designed for a 38 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height. - 4. Deflections are based upon a 50 mph wind.5. TOWER RATING: 73% Morrison Hershfield 1455 Lincoln Parkway, Suite 500 Atlanta, GA 30346 Phone: (770) 379-8500 FAX: (770) 379-8501 | ^{Job:} CN4-064R1 / 615000 | 03 | | |--|--|------------| | Project: 842869 / Meriden Wes | | | | Client: Crown Castle USA | Drawn by: Chaitanya Katari | App'd: | | | | Scale: NTS | | Path: D::CHAITANYAUOBS/Crown Castle/Crown
Analysis-4/CN4-064R1 | - 842869 - MERIDEN WEST CENTRALICN4-064R1 SAIArralyzisiCN4-064R1.ori | Dwg No. E- | #### **Tower Input Data** There is a pole section. This tower is designed using the TIA/EIA-222-F standard. The following design criteria apply: Tower is located in New Haven County, Connecticut. Basic wind speed of 85 mph. Nominal ice thickness of 0.7500 in. Ice thickness is considered to increase with height. Ice density of 56 pcf. A wind speed of 38 mph is used in combination with ice. Temperature drop of 50 °F. Deflections calculated using a wind speed of 50 mph. A non-linear (P-delta) analysis was used. Pressures are calculated at each section. Stress ratio used in pole design is 1.333. Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered. #### **Options** Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals **Use Moment Magnification** - Use Code Stress Ratios - Use Code Safety Factors Guys - Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) Add IBC .6D+W Combination Distribute Leg Loads As Uniform Assume Legs Pinned - Assume Rigid Index Plate - Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension - Bypass Mast Stability Checks - Use Azimuth Dish Coefficients - Project Wind Area of Appurt. Autocalc Torque Arm Areas SR Members Have Cut Ends - Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Use TIA-222-G Tension Splice Capacity Exemption Treat Feedline Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation - Consider Feedline Torque Include Angle Block Shear Check Poles - Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets ## **Tapered Pole Section Geometry** | Section | Elevation
ft | Section
Length
ft | Splice
Length
ft | Number
of
Sides | Top
Diameter
in | Bottom
Diameter
in | Wall
Thickness
in | Bend
Radius
in | Pole Grade | |---------|-----------------|-------------------------|------------------------|-----------------------|-----------------------|--------------------------|-------------------------|----------------------|---------------------| | L1 | 100'-47' | 53' | 6' | 16 | 28.0000 | 40.7200 | 0.3125 | 1.2500 | A572-65
(65 ksi) | | L2 | 47'-0' | 53' | | 16 | 38.6550 | 51.3700 | 0.3750 | 1.5000 | A572-65
(65 ksi) | ### **Tapered Pole Properties** | Section | Tip Dia. | Area | 1 | ŗ | С | I/C | J | It/Q | W | w/t | |---------|----------|-----------------|----------------|---------|---------|----------|----------------|---------|--------|--------| | | in | in ² | in⁴ | in | in | in³ | in⁴ | in² | in | | | L1 | 28.5486 | 27.6010 | 2673.0452 | 9.8567 | 14.2800 | 187.1880 | 5386.5635 | 13.6472 | 4.9501 | 15.84 | | | 41.5178 | 40.2812 | 8308.8518 | 14.3851 | 20.7672 | 400.0949 | 16743.509
7 | 19.9169 | 7.4814 | 23.94 | | L2 | 40.8799 | 45.7925 | 8477.1936 | 13.6277 | 19.7141 | 430.0077 | 17082.742
2 | 22.6420 | 6.9461 | 18.523 | | | 52.3764 | 61.0028 | 20040.986
8 | 18.1542 | 26.1987 | 764.9611 | 40385.418
6 | 30.1627 | 9.4764 | 25.27 | | Tower | Gusset | Gusset | Gusset Grade Adjust. Factor | Adjust. | Weight Mult. | Double Angle | Double Angle | |-------------|-----------------|-----------|-----------------------------|---------|--------------|--------------|--------------| | Elevation | Area | Thickness | A_f | Factor | | Stitch Bolt | Stitch Bolt | | | (per face) | | | A_r | | Spacing | Spacing | | | _ | | | | | Diagonals | Horizontals | | ft | ft ² | in | | | | in | in | | L1 100'-47' | | | 1 | 1 | 1 | | | | L2 47'-0' | | | 1 | 1 | 1 | | | ## Feed Line/Linear Appurtenances - Entered As Area | Description | Face
or | Allow
Shield | Component
Type | Placement | Total
Number | | $C_A A_A$ | Weight | |----------------------|------------|-----------------|-------------------|-----------|-----------------|----------|-----------|--------| | | Leg | | 71 | ft | | | ft²/ft | plf | | Safety Line 3/8" | С | No | CaAa (Out Of | 100' - 8' | 1 | No Ice | 0.04 | 0.22 | | • | | | Face) | | | 1/2" Ice | 0.14 | 0.75 | | | | | , | | | 1" Ice | 0.24 | 1.28 | | | | | | | | 2" Ice | 0.44 | 2.34 | | | | | | | | 4" Ice | 0.84 | 4.46 | | Climbing Rungs | С | No | CaAa (Out Of | 100' - 8' | 1 | No Ice | 0.07 | 1.80 | | emmenig i izmige | _ | | Face) | | | 1/2" Ice | 0.17 | 2.54 | | | | | , | | | 1" Ice | 0.27 | 3.89 | | | | | | | | 2" Ice | 0.47 | 8.41 | | | | | | | | 4" Ice | 0.87 | 24.80 | | ***** | | | | | | 4 100 | 0.07 | 24.00 | | LDF6-50A(1-1/4") | Α | No | Inside Pole | 100' - 6' | 6 | No Ice | 0.00 | 0.66 | | EBI 0 0071(1 1/4) | ,, | 140 | molde i die | 100 0 | J | 1/2" Ice | 0.00 | 0.66 | | | | | | | | 1" Ice | 0.00 | 0.66 | | | | | | | | 2" Ice | 0.00 | 0.66 | | | | | | | | 4" Ice | 0.00 | 0.66 | | 2" Conduit | Α | No | Inside Pole | 100' - 6' | 1 | No Ice | 0.00 | 2.80 | | 2 Conduit | ^ | INO | ITISIDE FUIE | 100 - 0 | ı | 1/2" Ice | 0.00 | 2.80 | | | | | | | | 1" Ice | | 2.80 | | | | | | | | | 0.00 | | | | | | | | | 2" Ice | 0.00 | 2.80 | | ED 1 00D 004 | ^ | NI- | locide Dele | 1001 01 | 4 | 4" Ice | 0.00 | 2.80 | | FB-L98B-034- | Α | No | Inside Pole | 100' - 6' | 1 | No Ice | 0.00 | 0.05 | | XXXXXX(3/8") | | | | | | 1/2" Ice | 0.00 | 0.05 | | | | | | | | 1" Ice | 0.00 | 0.05 | | | | | | | | 2" Ice | 0.00 | 0.05 | | | _ | | | | _ | 4" Ice | 0.00 | 0.05 | | WR-VG86ST-BRD(| Α | No | Inside Pole | 100' - 6' | 2 | No Ice | 0.00 | 0.58 | | 3/4) | | | | | | 1/2" Ice | 0.00 | 0.58 | | | | | | | | 1" Ice | 0.00 | 0.58 | | | | | | | | 2" Ice | 0.00 | 0.58 | | | | | | | | 4" Ice | 0.00 | 0.58 | | FB-L98B-034- | Α | No | Inside Pole | 100' - 6' | 1 | No Ice | 0.00 | 0.05 | | XXXXXX(3/8") | | | | | | 1/2" Ice | 0.00 | 0.05 | | | | | | | | 1" Ice | 0.00 | 0.05 | | | | | | | | 2" Ice | 0.00 | 0.05 | | | | | | | | 4" Ice | 0.00 | 0.05 | | WR-VG86ST-BRD(| Α | No | Inside Pole | 100' - 6' | 2 | No Ice | 0.00 | 0.58 | | 3/4) | | | | | | 1/2" Ice | 0.00 | 0.58 | | | | | | | | 1" Ice | 0.00 | 0.58 | | | | | | | | 2" Ice | 0.00 | 0.58 | | | | | | | | 4" Ice | 0.00 | 0.58 | | ***** | | | | | | | | | | LDF4-50A(1/2") | С | No | Inside Pole | 86' - 6' | 2 | No Ice | 0.00 | 0.15 | | ` ' | | | | | | 1/2" Ice | 0.00 | 0.15 | | | | | | | | 1" Ice | 0.00 | 0.15 | | | | | | | | 2" Ice | 0.00 | 0.15 | | | | | | | | 4" Ice | 0.00 | 0.15 | | LDF5-50A(7/8") | С | No | Inside Pole | 86' - 6' | 18 | No Ice | 0.00 | 0.33 | | : 2 30. (0) | _ | | | • | . • | 1/2" Ice | 0.00 | 0.33 | | | | | | | | 1" Ice | 0.00 | 0.33 | | | | | | | | 2" Ice | 0.00 | 0.33 | | | | | | | | 4" Ice | 0.00 | 0.33 | | MLE Hybrid | С | No | Inside Pole | 86' - 6' | 1 | No Ice | 0.00 | 1.07 | | 9Power/18Fiber RL 2(| | 140 | molde i die | 00 - 0 | į | 1/2" Ice | 0.00 | 1.07 | | 1 5/8) | | | | | | 1" Ice | 0.00 | 1.07 | | 1 3/0) | | | | | | i ice | 0.00 | 1.07 | | Description | Face
or | Allow
Shield | Component
Type | Placement | Total
Number | | $C_A A_A$ | Weight | |----------------------|------------|-----------------|-------------------|-----------|-----------------|----------|-----------|--------| | | Leg | | 71 | ft | | | ft²/ft | plf | | | | | | | | 2" Ice | 0.00 | 1.07 | | ***** | | | | | | 4" Ice | 0.00 | 1.07 | | HB114-13U3M12- | В | No | Inside Pole | 76' - 6' | 2 | No Ice | 0.00 | 0.99 | | XXXF(1-1/4") | | - | | | | 1/2" Ice | 0.00 | 0.99 | | , | | | | | | 1" Ice | 0.00 | 0.99 | | | | | | | | 2" Ice | 0.00 | 0.99 | | | | | | | | 4" Ice | 0.00 | 0.99 | | HB114-21U3M12- | В | No | Inside Pole | 76' - 6' | 1 | No Ice | 0.00 | 1.22 | | XXXF(1-1/4") | | | | | | 1/2" Ice | 0.00 | 1.22 | | , , | | | | | | 1" Ice | 0.00 | 1.22 | | | | | | | | 2" Ice | 0.00 | 1.22 | | | | | | | | 4" Ice | 0.00 | 1.22 | | ATCB-B01-006(5/16") | В | No | Inside Pole | 76' - 6' | 3 | No Ice | 0.00 | 0.07 | | , , | | | | | | 1/2" Ice | 0.00 | 0.07 | | | | | | | | 1" Ice | 0.00 | 0.07 | | | | | | | | 2" Ice | 0.00 | 0.07 | | | | | | | | 4" Ice | 0.00 | 0.07 | | HB114-13U3M12- | В | No | Inside Pole | 76' - 6' | 1 | No Ice | 0.00 | 0.99 | | XXXF(1-1/4") | | | | | | 1/2" Ice | 0.00 | 0.99 | | , , | | | | | | 1" Ice | 0.00 | 0.99 | | | | | | | | 2" Ice | 0.00 | 0.99 | | | | | | | | 4" Ice | 0.00 | 0.99 | | ***** | | | | | | | | | | MLE Hybrid | В | No | Inside Pole | 65' - 6' | 2 | No Ice | 0.00 | 1.07 | | 9Power/18Fiber RL 2(| | | | | | 1/2" Ice | 0.00 | 1.07 | | 1 5/8) | | | | | | 1" Ice | 0.00 | 1.07 | | , | | | | | | 2" Ice | 0.00 | 1.07 | | | | | | | | 4" Ice | 0.00 | 1.07 | ## Feed Line/Linear Appurtenances Section Areas | Tower
Sectio | Tower
Elevation | Face | A_R | A_F | C _A A _A
In Face | C _A A _A
Out Face | Weight | |-----------------|--------------------|------|-----------------|-----------------|--|---|--------| | n | ft | | ft ² | ft ² | ft ² | ft² | K | | L1 | 100'-47' | Α | 0.000 | 0.000 | 0.000 | 0.000 | 0.49 | | | | В | 0.000 | 0.000 | 0.000 | 0.000 | 0.17 | | | | С | 0.000 | 0.000 | 0.000 | 5.724 | 0.39 | | L2 | 47'-0' | Α | 0.000 | 0.000 | 0.000 | 0.000 | 0.38 | | | | В | 0.000 | 0.000 | 0.000 | 0.000 | 0.27 | | | | С | 0.000 | 0.000 | 0.000 | 4.212 | 0.38 | ## Feed Line/Linear Appurtenances Section Areas - With Ice | Tower
Sectio | Tower
Elevation | Face
or | Ice
Thickness | A_R | A_F | C _A A _A
In Face | C _A A _A
Out Face | Weight | |-----------------|--------------------|------------|------------------|-----------------|-----------------|--|---|--------| | n | ft | Leg | in | ft ² | ft ² | ft ² | ft ² | K | |
L1 | 100'-47' | Α | 0.824 | 0.000 | 0.000 | 0.000 | 0.000 | 0.49 | | | | В | | 0.000 | 0.000 | 0.000 | 0.000 | 0.17 | | | | С | | 0.000 | 0.000 | 0.000 | 23.201 | 0.52 | | L2 | 47'-0' | Α | 0.750 | 0.000 | 0.000 | 0.000 | 0.000 | 0.38 | | | | В | | 0.000 | 0.000 | 0.000 | 0.000 | 0.27 | | | | С | | 0.000 | 0.000 | 0.000 | 17.072 | 0.48 | ## **Feed Line Center of Pressure** | Section | Elevation | CP_X | CP_Z | CP_X | CP_Z | |---------|-----------|---------|--------|---------|--------| | | | | | Ice | Ice | | | ft | in | in | in | in | | L1 | 100'-47' | -0.1352 | 0.0781 | -0.4735 | 0.2734 | | Section | Elevation | CP_X | CPz | <i>CP</i> _X | CPz | |---------|-----------|---------|--------|------------------------|-----------| | | ft | in | in | Ice
in | Ice
in | | L2 | 47'-0' | -0.1114 | 0.0643 | -0.4083 | 0.2357 | | | | | Disc | rete Tov | wer Loa | ds | | | | |--|-------------------|----------------|-------------------------------------|---------------------------|-----------|---|---|--|--------------------------------------| | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral
Vert | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | | | | | ft
ft
ft | 0 | ft | | ft ² | ft ² | К | | AM-X-CD-16-65-00T-RET
w/ Mount Pipe | Α | From Leg | 4.00
0'
0' | 0.0000 | 100' | No Ice
1/2"
Ice
1" Ice
2" Ice | 8.50
9.15
9.77
11.03
13.68 | 6.30
7.48
8.37
10.18
14.02 | 0.07
0.14
0.21
0.38
0.87 | | AM-X-CD-16-65-00T-RET
w/ Mount Pipe | В | From Leg | 4.00
0'
0' | 0.0000 | 100' | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice | 8.50
9.15
9.77
11.03
13.68 | 6.30
7.48
8.37
10.18
14.02 | 0.07
0.14
0.21
0.38
0.87 | | AM-X-CD-16-65-00T-RET
w/ Mount Pipe | С | From Leg | 4.00
0'
0' | 0.0000 | 100' | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice | 8.50
9.15
9.77
11.03
13.68 | 6.30
7.48
8.37
10.18
14.02 | 0.07
0.14
0.21
0.38
0.87 | | RRUS 11-700 | Α | From Leg | 4.00
0'
0' | 0.0000 | 100' | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice | 2.94
3.17
3.41
3.91
5.02 | 1.25
1.41
1.59
1.96
2.82 | 0.06
0.07
0.10
0.15
0.30 | | RRUS 11-700 | В | From Leg | 4.00
0'
0' | 0.0000 | 100' | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice | 2.94
3.17
3.41
3.91
5.02 | 1.25
1.41
1.59
1.96
2.82 | 0.06
0.07
0.10
0.15
0.30 | | RRUS 11-700 | С | From Leg | 4.00
0'
0' | 0.0000 | 100' | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice | 2.94
3.17
3.41
3.91
5.02 | 1.25
1.41
1.59
1.96
2.82 | 0.06
0.07
0.10
0.15
0.30 | | DC6-48-60-18-8F | С | From Leg | 1.00
0'
3' | 0.0000 | 100' | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice | 1.60
1.81
2.02
2.49
3.56 | 1.60
1.81
2.02
2.49
3.56 | 0.03
0.05
0.07
0.13
0.27 | | (2) HPA-65R-BUU-H8 w/
pipe mount | Α | From Leg | 4.00
0'
0' | 0.0000 | 100' | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice | 13.60
14.44
15.28
16.88
20.21 | 9.65
11.15
12.68
14.98
19.76 | 0.11
0.21
0.32
0.56
1.24 | | (2) HPA-65R-BUU-H8 w/
pipe mount | В | From Leg | 4.00
0'
0' | 0.0000 | 100' | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice | 13.60
14.44
15.28
16.88
20.21 | 9.65
11.15
12.68
14.98
19.76 | 0.11
0.21
0.32
0.56
1.24 | | (2) HPA-65R-BUU-H8 w/ | С | From Leg | 4.00 | 0.0000 | 100' | 4" Ice
No Ice | 13.60 | 9.65 | 0.11 | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |---------------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|---|---|--|--------------------------------------| | | 209 | | Vert
ft
ft
ft | 0 | ft | | ft ² | ft ² | К | | pipe mount | | | 0'
0' | | | 1/2"
Ice
1" Ice | 14.44
15.28
16.88 | 11.15
12.68
14.98 | 0.21
0.32
0.56 | | HPA-65R-BUU-H8 w/ pipe
mount | Α | From Leg | 4.00
0' | 0.0000 | 100' | 2" Ice
4" Ice
No Ice
1/2" | 20.21
13.60
14.44 | 19.76
9.65
11.15 | 0.11
0.21 | | Gurk | | | 1' | | | Ice
1" Ice
2" Ice
4" Ice | 15.28
16.88
20.21 | 12.68
14.98
19.76 | 0.32
0.56
1.24 | | HPA-65R-BUU-H8 w/ pipe
mount | В | From Leg | 4.00
0'
1' | 0.0000 | 100' | No Ice
1/2"
Ice
1" Ice
2" Ice | 13.60
14.44
15.28
16.88
20.21 | 9.65
11.15
12.68
14.98
19.76 | 0.11
0.21
0.32
0.56
1.24 | | HPA-65R-BUU-H8 w/ pipe
mount | С | From Leg | 4.00
0'
1' | 0.0000 | 100' | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice | 13.60
14.44
15.28
16.88
20.21 | 9.65
11.15
12.68
14.98
19.76 | 0.11
0.21
0.32
0.56
1.24 | | RRUS-11 1900 MHz | Α | From Leg | 4.00
0'
0' | 0.0000 | 100' | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice | 2.94
3.17
3.41
3.91
5.02 | 1.19
1.35
1.52
1.89
2.72 | 0.04
0.06
0.09
0.14
0.29 | | RRUS-11 1900 MHz | В | From Leg | 4.00
0'
0' | 0.0000 | 100' | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice | 2.94
3.17
3.41
3.91
5.02 | 1.19
1.35
1.52
1.89
2.72 | 0.04
0.06
0.09
0.14
0.29 | | RRUS-11 1900 MHz | С | From Leg | 4.00
0'
0' | 0.0000 | 100' | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 2.94
3.17
3.41
3.91
5.02 | 1.19
1.35
1.52
1.89
2.72 | 0.04
0.06
0.09
0.14
0.29 | | RRUS A2 Module | Α | From Leg | 4.00
0'
0' | 0.0000 | 100' | No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice | 1.87
2.05
2.24
2.66
3.58 | 0.42
0.53
0.65
0.91
1.54 | 0.02
0.03
0.04
0.08
0.18 | | RRUS A2 Module | В | From Leg | 4.00
0'
0' | 0.0000 | 100' | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 1.87
2.05
2.24
2.66
3.58 | 0.42
0.53
0.65
0.91
1.54 | 0.02
0.03
0.04
0.08
0.18 | | RRUS A2 Module | С | From Leg | 4.00
0'
0' | 0.0000 | 100' | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 1.87
2.05
2.24
2.66
3.58 | 0.42
0.53
0.65
0.91
1.54 | 0.02
0.03
0.04
0.08
0.18 | | DC6-48-60-18-8F | С | From Leg | 1.00
0'
0' | 0.0000 | 100' | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 1.60
1.81
2.02
2.49
3.56 | 1.60
1.81
2.02
2.49
3.56 | 0.03
0.05
0.07
0.13
0.27 | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |---------------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|---|--|--|--------------------------------------| | | | | Vert
ft
ft
ft | ٥ | ft | | ft² | ft ² | К | | MTC 3607 | С | None | Tt . | 0.0000 | 100' | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 51.70
62.70
73.70
95.70
139.70 | 51.70
62.70
73.70
95.70
139.70 | 2.26
2.94
3.61
4.95
7.65 | | AIR 21 B4A B2P w/ pipe
mount | Α | From Leg | 4.00
0'
4' | 0.0000 | 86' | No Ice
1/2"
Ice
1" Ice
2" Ice | 6.90
7.46
8.00
9.10
11.44 | 5.74
6.64
7.44
9.09
12.59 | 0.12
0.18
0.24
0.40
0.83 | | AIR 21 B4A B2P w/ pipe
mount | В | From Leg | 4.00
0'
4' | 0.0000 | 86' | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 6.90
7.46
8.00
9.10
11.44 | 5.74
6.64
7.44
9.09
12.59 | 0.12
0.18
0.24
0.40
0.83 | | AIR 21 B4A B2P w/ pipe
mount | С | From Leg | 4.00
0'
4' | 0.0000 | 86' | No Ice
1/2"
Ice
1" Ice
2" Ice | 6.90
7.46
8.00
9.10
11.44 | 5.74
6.64
7.44
9.09
12.59 | 0.12
0.18
0.24
0.40
0.83 | | AIR 21 B2A B4P w/ pipe
mount | Α | From Leg | 4.00
0'
4' | 0.0000 | 86' | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice | 6.90
7.46
8.00
9.10
11.44 | 5.74
6.64
7.44
9.09
12.59 | 0.12
0.18
0.24
0.40
0.83 | | AIR 21 B2A B4P w/ pipe
mount | В | From Leg | 4.00
0'
4' | 0.0000 | 86' | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice | 6.90
7.46
8.00
9.10
11.44 | 5.74
6.64
7.44
9.09
12.59 | 0.12
0.18
0.24
0.40
0.83 | | AIR 21 B2A B4P w/ pipe
mount | С | From Leg | 4.00
0'
4' | 0.0000 | 86' | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice | 6.90
7.46
8.00
9.10
11.44 | 5.74
6.64
7.44
9.09
12.59 | 0.12
0.18
0.24
0.40
0.83 | | KRY 112 71/2 | Α | From Leg | 4.00
0'
4' | 0.0000 | 86' | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 0.68
0.80
0.93
1.22
1.90 | 0.45
0.56
0.68
0.94
1.57 | 0.01
0.02
0.03
0.04
0.11 | | KRY 112 71/2 | В | From Leg | 4.00
0'
4' | 0.0000 | 86' | No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice | 0.68
0.80
0.93
1.22
1.90 | 0.45
0.56
0.68
0.94
1.57 | 0.01
0.02
0.03
0.04
0.11 | | KRY 112 71/2 | С | From Leg | 4.00
0'
4' | 0.0000 | 86' | No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice |
0.68
0.80
0.93
1.22
1.90 | 0.45
0.56
0.68
0.94
1.57 | 0.01
0.02
0.03
0.04
0.11 | | 6' x 2" Mount Pipe | В | From Leg | 4.00
-6'
0' | 0.0000 | 86' | No Ice
1/2"
Ice
1" Ice | 1.43
1.92
2.29
3.06 | 1.43
1.92
2.29
3.06 | 0.02
0.03
0.05
0.09 | | Description | Face
or | Offset
Type | Offsets:
Horz | Azimuth
Adjustmen | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |---------------------------|------------|----------------|------------------|----------------------|-----------|------------------|--|---------------------------------------|--------------| | | Leg | | Lateral
Vert | t | | | | | | | | | | ft
ft
ft | 0 | ft | | ft ² | ft ² | К | | | | | - It | | | 2" Ice
4" Ice | 4.70 | 4.70 | 0.23 | | Platform Mount [LP 305-1] | С | None | | 0.0000 | 86' | No Ice | 18.01 | 18.01 | 1.12 | | , [= | _ | | | | | 1/2" | 23.33 | 23.33 | 1.35 | | | | | | | | Ice | 28.65 | 28.65 | 1.58 | | | | | | | | 1" lce
2" lce | 39.29
60.57 | 39.29 | 2.05 | | **** | | | | | | 4" Ice | 60.57 | 60.57 | 2.97 | | LNX-6515DS-VTM w/ pipe | Α | From Leg | 4.00 | 0.0000 | 86' | No Ice | 11.72 | 10.28 | 0.11 | | mount | | | 0' | | | 1/2" | 12.44 | 11.81 | 0.20 | | | | | 4' | | | Ice
1" Ice | 13.15
14.61 | 13.16 | 0.31 | | | | | | | | 2" Ice | 14.61 | 15.49
20.37 | 0.55
1.20 | | | | | | | | 4" Ice | 17.07 | 20.07 | 1.20 | | LNX-6515DS-VTM w/ pipe | В | From Leg | 4.00 | 0.0000 | 86' | No Ice | 11.72 | 10.28 | 0.11 | | mount | | | 0' | | | 1/2" | 12.44 | 11.81 | 0.20 | | | | | 4' | | | lce
1" lce | 13.15 | 13.16 | 0.31 | | | | | | | | 2" Ice | 14.61
17.87 | 15.49
20.37 | 0.55
1.20 | | | | | | | | 4" lce | 17.07 | 20.07 | 1.20 | | LNX-6515DS-VTM w/ pipe | С | From Leg | 4.00 | 0.0000 | 86' | No Ice | 11.72 | 10.28 | 0.11 | | mount | | | 0' | | | 1/2" | 12.44 | 11.81 | 0.20 | | | | | 4' | | | Ice | 13.15 | 13.16 | 0.31 | | | | | | | | 1" Ice
2" Ice | 14.61
17.87 | 15.49
20.37 | 0.55
1.20 | | | | | | | | 4" Ice | 17.07 | 20.57 | 1.20 | | RRUS 11 B12 | Α | From Leg | 4.00 | 0.0000 | 86' | No Ice | 3.31 | 1.36 | 0.05 | | | | | 0' | | | 1/2" | 3.55 | 1.54 | 0.07 | | | | | 4' | | | lce
1" lce | 3.80
4.33 | 1.73
2.13 | 0.10
0.15 | | | | | | | | 2" Ice | 4.33
5.50 | 3.04 | 0.13 | | | | | | | | 4" lce | 0.00 | 0.01 | 0.01 | | RRUS 11 B12 | В | From Leg | 4.00 | 0.0000 | 86' | No Ice | 3.31 | 1.36 | 0.05 | | | | | 0' | | | 1/2" | 3.55 | 1.54 | 0.07 | | | | | 4' | | | lce
1" lce | 3.80
4.33 | 1.73
2.13 | 0.10
0.15 | | | | | | | | 2" Ice | 4.33
5.50 | 3.04 | 0.13 | | | | | | | | 4" Ice | 0.00 | 0.0. | 0.0. | | RRUS 11 B12 | С | From Leg | 4.00 | 0.0000 | 86' | No Ice | 3.31 | 1.36 | 0.05 | | | | | 0' | | | 1/2" | 3.55 | 1.54 | 0.07 | | | | | 4' | | | lce
1" lce | 3.80
4.33 | 1.73
2.13 | 0.10
0.15 | | | | | | | | 2" Ice | 5.50 | 3.04 | 0.13 | | ***** | | | | | | 4" Ice | | | | | TME-800MHZ RRH | Α | From Leg | 2.00 | 0.0000 | 78' | No Ice | 2.49 | 2.07 | 0.05 | | | | Ü | 0' | | | 1/2" | 2.71 | 2.27 | 0.07 | | | | | 0' | | | Ice | 2.93 | 2.48 | 0.10 | | | | | | | | 1" Ice
2" Ice | 3.41
4.46 | 2.93
3.93 | 0.16
0.32 | | | | | | | | 4" Ice | 4.40 | 3.93 | 0.32 | | TME-800MHZ RRH | В | From Leg | 2.00 | 0.0000 | 78' | No Ice | 2.49 | 2.07 | 0.05 | | | | | 0' | | | 1/2" | 2.71 | 2.27 | 0.07 | | | | | 0' | | | Ice | 2.93 | 2.48 | 0.10 | | | | | | | | 1" Ice
2" Ice | 3.41
4.46 | 2.93
3.93 | 0.16
0.32 | | | | | | | | 4" Ice | →. T U | 0.00 | 0.02 | | TME-800MHZ RRH | С | From Leg | 2.00 | 0.0000 | 78' | No Ice | 2.49 | 2.07 | 0.05 | | | | - | 0' | | | 1/2" | 2.71 | 2.27 | 0.07 | | | | | 0' | | | Ice | 2.93 | 2.48 | 0.10 | | | | | | | | 1" Ice
2" Ice | 3.41
4.46 | 2.93
3.93 | 0.16
0.32 | | | | | | | | 4" Ice | 7.40 | ა.ჟა | 0.32 | | 1900MHz RRH | Α | From Leg | 2.00 | 0.0000 | 78' | No Ice | 2.91 | 3.80 | 0.04 | | | | | | | | | | | | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |------------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|------------------|--|---------------------------------------|--------------| | | | | Vert
ft
ft
ft | ٥ | ft | | ft ² | ft ² | К | | | | | 0' | | | 1/2" | 3.14 | 4.06 | 0.08 | | | | | 0' | | | Ice | 3.39 | 4.34 | 0.11 | | | | | | | | 1" Ice | 3.91 | 4.91 | 0.19 | | | | | | | | 2" Ice | 5.05 | 6.15 | 0.41 | | ACCOMUL DDU | _ | | 0.00 | 0.0000 | 701 | 4" Ice | 0.04 | 0.00 | 0.04 | | 1900MHz RRH | В | From Leg | 2.00 | 0.0000 | 78' | No Ice | 2.91 | 3.80 | 0.04 | | | | | 0'
0' | | | 1/2"
Ice | 3.14
3.39 | 4.06
4.34 | 0.08
0.11 | | | | | U | | | 1" lce | 3.91 | 4.34
4.91 | 0.11 | | | | | | | | 2" Ice | 5.05 | 6.15 | 0.19 | | | | | | | | 4" lce | 0.00 | 0.15 | 0.41 | | 1900MHz RRH | С | From Leg | 2.00 | 0.0000 | 78' | No Ice | 2.91 | 3.80 | 0.04 | | | | J | 0' | | | 1/2" | 3.14 | 4.06 | 0.08 | | | | | 0' | | | Ice | 3.39 | 4.34 | 0.11 | | | | | | | | 1" Ice | 3.91 | 4.91 | 0.19 | | | | | | | | 2" Ice | 5.05 | 6.15 | 0.41 | | and EVITEDNIAL NIGHTON | | | 0.00 | 0.0000 | 701 | 4" Ice | 0.77 | 0.07 | 0.04 | | 800 EXTERNAL NOTCH
FILTER | Α | From Leg | 2.00 | 0.0000 | 78' | No Ice
1/2" | 0.77 | 0.37 | 0.01 | | FILTER | | | 0' | | | lce | 0.89
1.02 | 0.46
0.56 | 0.02
0.02 | | | | | U | | | 1" Ice | 1.30 | 0.30 | 0.02 | | | | | | | | 2" lce | 1.97 | 1.34 | 0.11 | | | | | | | | 4" Ice | | | | | 800 EXTERNAL NOTCH | В | From Leg | 2.00 | 0.0000 | 78' | No Ice | 0.77 | 0.37 | 0.01 | | FILTER | | | 0' | | | 1/2" | 0.89 | 0.46 | 0.02 | | | | | 0' | | | Ice | 1.02 | 0.56 | 0.02 | | | | | | | | 1" Ice | 1.30 | 0.79 | 0.04 | | | | | | | | 2" Ice
4" Ice | 1.97 | 1.34 | 0.11 | | 800 EXTERNAL NOTCH | С | From Leg | 2.00 | 0.0000 | 78' | No Ice | 0.77 | 0.37 | 0.01 | | FILTER | Ü | 1 Tom Log | 0' | 0.0000 | 70 | 1/2" | 0.89 | 0.46 | 0.02 | | | | | 0' | | | Ice | 1.02 | 0.56 | 0.02 | | | | | | | | 1" Ice | 1.30 | 0.79 | 0.04 | | | | | | | | 2" Ice | 1.97 | 1.34 | 0.11 | | a. a | | | | | | 4" Ice | | | | | 6' x 2" Mount Pipe | Α | From Leg | 2.00 | 0.0000 | 78' | No Ice
1/2" | 1.43 | 1.43 | 0.02 | | | | | 0' | | | lce | 1.92
2.29 | 1.92
2.29 | 0.03
0.05 | | | | | U | | | 1" Ice | 3.06 | 3.06 | 0.03 | | | | | | | | 2" lce | 4.70 | 4.70 | 0.23 | | | | | | | | 4" Ice | | | | | 6' x 2" Mount Pipe | В | From Leg | 2.00 | 0.0000 | 78' | No Ice | 1.43 | 1.43 | 0.02 | | | | | 0' | | | 1/2" | 1.92 | 1.92 | 0.03 | | | | | 0' | | | lce
1" lce | 2.29 | 2.29 | 0.05 | | | | | | | | 2" Ice | 3.06
4.70 | 3.06
4.70 | 0.09
0.23 | | | | | | | | 4" Ice | 4.70 | 4.70 | 0.23 | | 6' x 2" Mount Pipe | С | From Leg | 2.00 | 0.0000 | 78' | No Ice | 1.43 | 1.43 | 0.02 | | | • | | 0' | | | 1/2" | 1.92 | 1.92 | 0.03 | | | | | 0' | | | Ice | 2.29 | 2.29 | 0.05 | | | | | | | | 1" Ice | 3.06 | 3.06 | 0.09 | | | | | | | | 2" Ice | 4.70 | 4.70 | 0.23 | | Olds Assa Massat 500 400 | | Farm Lan | 0.50 | 0.0000 | 701 | 4" Ice | 4.50 | 4.50 | 0.00 | | Side Arm Mount [SO 102- | Α | From Leg | 0.50 | 0.0000 | 78' | No Ice | 1.50 | 1.50 | 0.03
0.04 | | 1] | | | 0'
0' | | | 1/2"
Ice | 1.74
1.98 | 1.75
2.00 | 0.04 | | | | | U | | | 1" lce | 2.46 | 2.50 | 0.04 | | | | | | | | 2" lce | 3.42 | 3.50 | 0.11 | | | | | | | | 4" lce | | | - * * * | | Side Arm Mount [SO 102- | В | From Leg | 0.50 | 0.0000 | 78' | No Ice | 1.50 | 1.50 | 0.03 | | 1] | | | 0' | | | 1/2" | 1.74 | 1.75 | 0.04 | | | | | 0' | | | Ice | 1.98 | 2.00 | 0.04 | | | | | | | | 1" lce
2" lce | 2.46 | 2.50 | 0.07 | | | | | | | | 2 ice
4" lce | 3.42 | 3.50 | 0.11 | | | | | | | | 7 100 | | | | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |----------------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|---|---|---|--------------------------------------| | | | | Vert
ft
ft
ft | ٥ | ft | | ft ² | ft ² | K | | Side Arm Mount [SO 102-
1] | С | From Leg | 0.50
0'
0' | 0.0000 | 78' | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 1.50
1.74
1.98
2.46
3.42 | 1.50
1.75
2.00
2.50
3.50 | 0.03
0.04
0.04
0.07
0.11 | | APXVSPP18-C-A20 w/
Mount Pipe | Α | From Leg | 4.00
0'
3' | 0.0000 | 76' | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 8.50
9.15
9.77
11.03
13.68 | 6.95
8.13
9.02
10.84
14.85 | 0.08
0.15
0.23
0.41
0.91 | | APXVSPP18-C-A20 w/
Mount Pipe | В | From Leg | 4.00
0'
3' | 0.0000 | 76' | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 8.50
9.15
9.77
11.03
13.68 | 6.95
8.13
9.02
10.84
14.85 | 0.08
0.15
0.23
0.41
0.91 | | APXVSPP18-C-A20 w/
Mount Pipe | С | From Leg | 4.00
0'
3' | 0.0000 | 76' | No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice | 8.50
9.15
9.77
11.03
13.68 | 6.95
8.13
9.02
10.84
14.85 | 0.08
0.15
0.23
0.41
0.91 | | Platform Mount [LP 303-1] | С | None | | 0.0000 | 76' | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 14.66
18.87
23.08
31.50
48.34 | 14.66
18.87
23.08
31.50
48.34 | 1.25
1.48
1.71
2.18
3.10 | | APXVTM14-C-120 w/
Mount Pipe | Α | From Leg | 4.00
0'
3' | 0.0000 | 76' | No Ice
1/2"
Ice
1" Ice
2" Ice | 7.13
7.66
8.18
9.26
11.53 | 4.96
5.75
6.47
8.01
11.41 | 0.08
0.13
0.19
0.34
0.75 | |
APXVTM14-C-120 w/
Mount Pipe | В | From Leg | 4.00
0'
3' | 0.0000 | 76' | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice | 7.13
7.66
8.18
9.26
11.53 | 4.96
5.75
6.47
8.01
11.41 | 0.08
0.13
0.19
0.34
0.75 | | APXVTM14-C-120 w/
Mount Pipe | С | From Leg | 4.00
0'
3' | 0.0000 | 76' | 4" Ice
No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 7.13
7.66
8.18
9.26
11.53 | 4.96
5.75
6.47
8.01
11.41 | 0.08
0.13
0.19
0.34
0.75 | | TD-RRH8x20-25 | Α | From Leg | 4.00
0'
3' | 0.0000 | 76' | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 4.32
4.60
4.89
5.50
6.82 | 1.41
1.61
1.83
2.28
3.30 | 0.07
0.09
0.12
0.18
0.36 | | TD-RRH8x20-25 | В | From Leg | 4.00
0'
3' | 0.0000 | 76' | No Ice
1/2"
Ice
1" Ice
2" Ice
4" Ice | 4.32
4.60
4.89
5.50
6.82 | 1.41
1.61
1.83
2.28
3.30 | 0.07
0.09
0.12
0.18
0.36 | | TD-RRH8x20-25 | С | From Leg | 4.00
0'
3' | 0.0000 | 76' | No Ice
1/2"
Ice | 4.32
4.60
4.89 | 1.41
1.61
1.83 | 0.07
0.09
0.12 | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral
Vert | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |------------------------|-------------------|----------------|-------------------------------------|---------------------------|-----------|----------------------------|--|---------------------------------------|--------------| | | | | ft
ft
ft | ٥ | ft | | ft ² | ft ² | K | | | | | | | | 1" Ice
2" Ice
4" Ice | 5.50
6.82 | 2.28
3.30 | 0.18
0.36 | | *** | | | | | | | | | | | (2) BXA-171063/12CF w/ | Α | From Leg | 4.00 | 0.0000 | 65' | No Ice | 5.03 | 5.29 | 0.04 | | Mount Pipe | | | 0'
0' | | | 1/2"
Ice | 5.58
6.10 | 6.46
7.35 | 0.09
0.14 | | | | | U | | | 1" Ice | 7.17 | 9.15 | 0.14 | | | | | | | | 2" Ice
4" Ice | 9.44 | 12.95 | 0.68 | | (2) BXA-171063/12CF w/ | В | From Leg | 4.00 | 0.0000 | 65' | No Ice | 5.03 | 5.29 | 0.04 | | Mount Pipe | | | 0'
0' | | | 1/2"
Ice | 5.58
6.10 | 6.46
7.35 | 0.09
0.14 | | | | | U | | | 1" Ice | 7.17 | 9.15 | 0.14 | | | | | | | | 2" Ice | 9.44 | 12.95 | 0.68 | | | | | | | | 4" lce | | | | | (2) BXA-171063/12CF w/ | С | From Leg | 4.00 | 0.0000 | 65' | No Ice | 5.03 | 5.29 | 0.04 | | Mount Pipe | | | 0'
0' | | | 1/2" | 5.58 | 6.46 | 0.09 | | | | | U | | | lce
1" lce | 6.10
7.17 | 7.35
9.15 | 0.14
0.27 | | | | | | | | 2" lce | 9.44 | 12.95 | 0.68 | | | | | | | | 4" Ice | • | | | | (2) BXA-70063/6CF w/ | Α | From Leg | 4.00 | 0.0000 | 65' | No Ice | 7.98 | 5.41 | 0.04 | | Mount Pipe | | | 0' | | | 1/2" | 8.62 | 6.56 | 0.10 | | | | | 0' | | | lce
1" lce | 9.23
10.47 | 7.42
9.20 | 0.17
0.33 | | | | | | | | 2" Ice | 13.08 | 12.95 | 0.33 | | | | | | | | 4" lce | | | 00 | | (2) BXA-70063/6CF w/ | В | From Leg | 4.00 | 0.0000 | 65' | No Ice | 7.98 | 5.41 | 0.04 | | Mount Pipe | | | 0' | | | 1/2" | 8.62 | 6.56 | 0.10 | | | | | 0' | | | Ice
1" Ice | 9.23
10.47 | 7.42
9.20 | 0.17
0.33 | | | | | | | | 2" lce
4" lce | 13.08 | 12.95 | 0.79 | | (2) BXA-70063/6CF w/ | С | From Leg | 4.00 | 0.0000 | 65' | No Ice | 7.98 | 5.41 | 0.04 | | Mount Pipe | | | 0' | | | 1/2" | 8.62 | 6.56 | 0.10 | | | | | 0' | | | lce
1" lce | 9.23 | 7.42 | 0.17 | | | | | | | | 2" lce | 10.47
13.08 | 9.20
12.95 | 0.33
0.79 | | | | | | | | 4" lce | 10.00 | 12.55 | 0.75 | | RRH2x40 700 | Α | From Leg | 4.00 | 0.0000 | 65' | No Ice | 2.29 | 1.21 | 0.05 | | | | | 0' | | | 1/2" | 2.49 | 1.36 | 0.07 | | | | | 0' | | | Ice
1" Ice | 2.70
3.15 | 1.53
1.89 | 0.09
0.13 | | | | | | | | 2" Ice | 4.16 | 2.71 | 0.13 | | 55110 40 500 | _ | | | | 0.51 | 4" Ice | | | | | RRH2x40 700 | В | From Leg | 4.00
0' | 0.0000 | 65' | No Ice
1/2" | 2.29
2.49 | 1.21
1.36 | 0.05
0.07 | | | | | 0' | | | lce | 2.49 | 1.53 | 0.07 | | | | | ŭ | | | 1" Ice | 3.15 | 1.89 | 0.13 | | | | | | | | 2" Ice
4" Ice | 4.16 | 2.71 | 0.27 | | RRH2x40 700 | С | From Leg | 4.00 | 0.0000 | 65' | No Ice | 2.29 | 1.21 | 0.05 | | | | | 0'
0' | | | 1/2" | 2.49
2.70 | 1.36 | 0.07
0.09 | | | | | U | | | lce
1" lce | 3.15 | 1.53
1.89 | 0.09 | | | | | | | | 2" lce
4" lce | 4.16 | 2.71 | 0.27 | | RRH2X40-AWS | Α | From Leg | 4.00 | 0.0000 | 65' | No Ice | 2.52 | 1.59 | 0.05 | | | | | 0' | | | 1/2" | 2.75 | 1.80 | 0.07 | | | | | 0' | | | Ice
1" Ice | 2.99
3.50 | 2.01
2.46 | 0.09
0.14 | | | | | | | | 2" lce | 3.50
4.61 | 2.46
3.48 | 0.14 | | | | | | | | 4" lce | | | | | RRH2X40-AWS | В | From Leg | 4.00 | 0.0000 | 65' | No Ice | 2.52 | 1.59 | 0.05 | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral
Vert | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |---------------------------|-------------------|----------------|-------------------------------------|---------------------------|-----------|------------------|--|---------------------------------------|--------| | | | | ft
ft
ft | o | ft | | ft ² | ft ² | K | | | | | 0' | | | 1/2" | 2.75 | 1.80 | 0.07 | | | | | 0' | | | Ice | 2.99 | 2.01 | 0.09 | | | | | | | | 1" Ice | 3.50 | 2.46 | 0.14 | | | | | | | | 2" lce
4" lce | 4.61 | 3.48 | 0.28 | | RRH2X40-AWS | С | From Leg | 4.00 | 0.0000 | 65' | No Ice | 2.52 | 1.59 | 0.05 | | | | | 0' | | | 1/2" | 2.75 | 1.80 | 0.07 | | | | | 0' | | | Ice | 2.99 | 2.01 | 0.09 | | | | | | | | 1" Ice | 3.50 | 2.46 | 0.14 | | | | | | | | 2" Ice | 4.61 | 3.48 | 0.28 | | | | | | | | 4" Ice | | | | | DB-T1-6Z-8AB-0Z | Α | From Leg | 4.00 | 0.0000 | 65' | No Ice | 5.60 | 2.33 | 0.04 | | | | | 0' | | | 1/2" | 5.92 | 2.56 | 0.08 | | | | | 0' | | | Ice | 6.24 | 2.79 | 0.12 | | | | | | | | 1" Ice | 6.91 | 3.28 | 0.21 | | | | | | | | 2" lce
4" lce | 8.37 | 4.37 | 0.45 | | DB-T1-6Z-8AB-0Z | С | From Leg | 4.00 | 0.0000 | 65' | No Ice | 5.60 | 2.33 | 0.04 | | | | • | 0' | | | 1/2" | 5.92 | 2.56 | 0.08 | | | | | 0' | | | Ice | 6.24 | 2.79 | 0.12 | | | | | | | | 1" Ice | 6.91 | 3.28 | 0.21 | | | | | | | | 2" lce
4" lce | 8.37 | 4.37 | 0.45 | | Platform Mount [LP 303-1] | С | None | | 0.0000 | 65' | No Ice | 14.66 | 14.66 | 1.25 | | | | | | | | 1/2" | 18.87 | 18.87 | 1.48 | | | | | | | | Ice | 23.08 | 23.08 | 1.71 | | | | | | | | 1" Ice | 31.50 | 31.50 | 2.18 | | | | | | | | 2" lce
4" lce | 48.34 | 48.34 | 3.10 | | **** | | | | | | | | | | | | | | | | Dishe | es | | | | | | |-------------|-------------------|----------------|----------------|-------------------------------------|-----------------------|-----------------------|-----------|---------------------|----------|------------------|--------| | Description | Face
or
Leg | Dish
Type | Offset
Type | Offsets:
Horz
Lateral
Vert | Azimuth
Adjustment | 3 dB
Beam
Width | Elevation | Outside
Diameter | | Aperture
Area | Weight | | | | | | ft | 0 | 0 | ft | ft | | ft ² | K | | VHLP1-23 | В | Paraboloid w/o | From | 4.00 | 20.0000 | | 86' | 1.27 | No Ice | 1.28 | 0.01 | | | | Radome | Leg | -6' | | | | | 1/2" Ice | 1.45 | 0.02 | | | | | • | 0' | | | | | 1" Ice | 1.62 | 0.03 | | | | | | | | | | | 2" Ice | 1.97 | 0.04 | | | | | | | | | | | 4" Ice | 2.66 | 0.07 | | VHLP2-13 | В | Paraboloid w/o | From | 4.00 | 20.0000 | | 86' | 2.17 | No Ice | 3.72 | 0.03 | | | | Radome | Leg | -6' | | | | | 1/2" Ice | 4.01 | 0.05 | | | | | Ü | 4' | | | | | 1" Ice | 4.30 | 0.07 | | | | | | | | | | | 2" Ice | 4.88 | 0.11 | | | | | | | | | | | 4" Ice | 6.04 | 0.19 | ## **Load Combinations** | Comb. | | Description | | |-------|----------------------------|-------------|--| | No. | | | | | 1 | Dead Only | | | | 2 | Dead+Wind 0 deg - No Ice | | | | 3 | Dead+Wind 30 deg - No Ice | | | | 4 | Dead+Wind 60 deg - No Ice | | | | 5 | Dead+Wind 90 deg - No Ice | | | | 6 | Dead+Wind 120 deg - No Ice | | | | No. | | |----------|--| | | Deed Wedd 450 deer No. lea | | 7 | Dead+Wind 150 deg - No Ice | | 8 | Dead+Wind 180 deg - No Ice | | 9 | Dead+Wind 210 deg - No Ice | | 10 | Dead+Wind 240 deg - No Ice | | 11 | Dead+Wind 270 deg - No Ice | | 12
13 | Dead+Wind 300 deg - No Ice | | - | Dead+Wind 330 deg - No Ice | | 14 | Dead+Ice+Temp | | 15 | Dead+Wind 0 deg+lce+Temp | | 16
17 | Dead+Wind 30 deg+lce+Temp Dead+Wind 60 deg+lce+Temp | | 17 | | | 19 | Dead+Wind 90 deg+lce+Temp Dead+Wind 120 deg+lce+Temp | | 20 | Dead+Wind 150 deg+lce+Temp Dead+Wind 150 deg+lce+Temp | | 20 | Dead+Wind 180 deg+lce+Temp Dead+Wind 180 deg+lce+Temp | | 22 | Dead+Wind 210 deg+lce+Temp | | 23 | Dead+Wind 240 deg+lce+Temp | | 24 | Dead+Wind 270 deg+lce+Temp | | 25 | Dead+Wind 300 deg+lce+Temp | | 26 | Dead+Wind 330 deg+lce+Temp | | 27 | Dead+Wind 0 deg - Service | | 28 | Dead+Wind 30 deg - Service | | 29 | Dead+Wind 60 deg - Service | | 30 | Dead+Wind 90 deg - Service | | 31 | Dead+Wind 120 deg - Service | | 32 | Dead+Wind 150 deg - Service | | 33 | Dead+Wind 180 deg - Service | | 34 | Dead+Wind 210 deg - Service | | 35 | Dead+Wind 240 deg - Service | | 36 | Dead+Wind 270 deg - Service | | 37 | Dead+Wind 300 deg - Service | | 38 | Dead+Wind 330 deg - Service | ## **Maximum Member Forces** | Sectio | Elevation | Component | Condition | Gov. | Force | Major Axis | Minor Axis | |--------|-----------|-----------|------------------|-------|--------|------------|------------| | n | ft | Type | | Load | | Moment | Moment | | No. | | | | Comb. | K | kip-ft | kip-ft | | L1 | 100 - 47 | Pole | Max Tension | 1 | 0.00 | 0.00 | 0.00 | | | | | Max. Compression | 14 | -27.35 | 0.01 | 0.33 | | | | | Max. Mx | 11 | -16.26 | 834.75 | 8.71 | | | | | Max. My | 2 | -16.25 | 7.08 | 836.35 | | | | | Max. Vy | 11 | -26.21 | 834.75 | 8.71 | | | | | Max. Vx | 2 | -26.30 | 7.08 | 836.35 | | | | | Max.
Torque | 11 | | | -2.76 | | L2 | 47 - 0 | Pole | Max Tension | 1 | 0.00 | 0.00 | 0.00 | | | | | Max. Compression | 14 | -41.55 | 0.33 | 0.15 | | | | | Max. Mx | 11 | -28.58 | 2381.75 | 19.33 | | | | | Max. My | 2 | -28.58 | 15.67 | 2387.41 | | | | | Max. Vy | 11 | -32.20 | 2381.75 | 19.33 | | | | | Max. Vx | 2 | -32.28 | 15.67 | 2387.41 | | | | | Max. Torque | 11 | | | -2.74 | | | | | • | | | | | ## **Maximum Reactions** | Location | Condition | Gov.
Load
Comb. | Vertical
K | Horizontal, X
K | Horizontal, Z
K | |----------|---------------------|-----------------------|---------------|--------------------|--------------------| | Pole | Max. Vert | 26 | 41.55 | 3.78 | 6.55 | | | Max. H _x | 11 | 28.60 | 32.18 | 0.20 | | | Max. H₂ | 2 | 28.60 | 0.16 | 32.26 | | | Max. M _x | 2 | 2387.41 | 0.16 | 32.26 | | | Max. M _z | 5 | 2372.58 | -32.08 | 0.04 | | Location | Condition | Gov.
Load | Vertical
K | Horizontal, X
K | Horizontal, Z
✓ | |----------|---------------------|--------------|---------------|--------------------|--------------------| | | | Comb. | K | Λ | K | | | Max. Torsion | 7 | 1.34 | -16.03 | -27.86 | | | Min. Vert | 1 | 28.60 | 0.00 | 0.00 | | | Min. H _x | 5 | 28.60 | -32.08 | 0.04 | | | Min. H _z | 8 | 28.60 | 0.05 | -32.16 | | | Min. M _x | 8 | -2377.94 | 0.05 | -32.16 | | | $Min. M_z$ | 11 | -2381.75 | 32.18 | 0.20 | | | Min. Torsion | 11 | -2.71 | 32.18 | 0.20 | ## **Tower Mast Reaction Summary** | Load
Combination | Vertical | Shear _x | Shear _z | Overturning Moment, M_x | Overturning Moment, M_z | Torque | |----------------------------|----------|--------------------|--------------------|---------------------------|---------------------------|--------| | | K | K | K | kip-ft ^ | kip-ft | kip-ft | | Dead Only | 28.60 | 0.00 | 0.00 | -0.05 | 0.11 | 0.00 | | Dead+Wind 0 deg - No Ice | 28.60 | -0.16 | -32.26 | -2387.41 | 15.67 | 2.08 | | Dead+Wind 30 deg - No Ice | 28.60 | 15.91 | -28.02 | -2074.57 | -1173.18 | 1.98 | | Dead+Wind 60 deg - No Ice | 28.60 | 27.80 | -16.04 | -1184.13 | -2056.09 | -0.67 | | Dead+Wind 90 deg - No Ice | 28.60 | 32.08 | -0.04 | -2.50 | -2372.58 | -0.55 | | Dead+Wind 120 deg - No Ice | 28.60 | 27.80 | 16.05 | 1188.01 | -2056.87 | -1.10 | | Dead+Wind 150 deg - No Ice | 28.60 | 16.03 | 27.86 | 2061.12 | -1186.30 | -1.34 | | Dead+Wind 180 deg - No Ice | 28.60 | -0.05 | 32.16 | 2377.94 | 3.12 | -0.85 | | Dead+Wind 210 deg - No Ice | 28.60 | -16.02 | 27.87 | 2060.94 | 1183.71 | -0.62 | | Dead+Wind 240 deg - No Ice | 28.60 | -27.85 | 15.98 | 1178.83 | 2060.58 | 1.24 | | Dead+Wind 270 deg - No Ice | 28.60 | -32.18 | -0.20 | -19.33 | 2381.75 | 2.71 | | Dead+Wind 300 deg - No Ice | 28.60 | -27.83 | -16.21 | -1202.00 | 2060.34 | 2.40 | | Dead+Wind 330 deg - No Ice | 28.60 | -16.14 | -27.93 | -2067.43 | 1196.42 | 2.11 | | Dead+Ice+Temp | 41.55 | 0.00 | 0.00 | -0.15 | 0.33 | 0.00 | | Dead+Wind 0 | 41.55 | -0.04 | -7.56 | -571.71 | 3.96 | 0.43 | | deg+lce+Temp | | | | | | | | Dead+Wind 30 | 41.55 | 3.73 | -6.57 | -496.69 | -280.77 | 0.43 | | deg+Ice+Temp | | | | | | | | Dead+Wind 60 | 41.55 | 6.52 | -3.76 | -283.68 | -492.10 | -0.14 | | deg+lce+Temp | | | | | | | | Dead+Wind 90 | 41.55 | 7.52 | -0.01 | -0.64 | -567.96 | -0.09 | | deg+lce+Temp | | | | | | | | Dead+Wind 120 | 41.55 | 6.52 | 3.76 | 284.40 | -492.36 | -0.20 | | deg+Ice+Temp | | | | | | | | Dead+Wind 150 | 41.55 | 3.76 | 6.53 | 493.41 | -283.90 | -0.25 | | deg+Ice+Temp | | | | | | | | Dead+Wind 180 | 41.55 | -0.01 | 7.54 | 569.26 | 0.94 | -0.15 | | deg+lce+Temp | | | | | | | | Dead+Wind 210 | 41.55 | -3.76 | 6.53 | 493.29 | 283.78 | -0.12 | | deg+Ice+Temp | | | | | | | | Dead+Wind 240 | 41.55 | -6.53 | 3.74 | 282.17 | 493.74 | 0.27 | | deg+lce+Temp | | | | | | | | Dead+Wind 270 | 41.55 | -7.54 | -0.05 | -4.64 | 570.67 | 0.58 | | deg+Ice+Temp | | | | | | | | Dead+Wind 300 | 41.55 | -6.53 | -3.80 | -287.89 | 493.76 | 0.50 | | deg+lce+Temp | | | | | | | | Dead+Wind 330 | 41.55 | -3.78 | -6.55 | -495.14 | 286.82 | 0.43 | | deg+Ice+Temp | | | | | | | | Dead+Wind 0 deg - Service | 28.60 | -0.05 | -11.16 | -826.37 | 5.50 | 0.72 | | Dead+Wind 30 deg - Service | 28.60 | 5.50 | -9.70 | -718.09 | -406.00 | 0.69 | | Dead+Wind 60 deg - Service | 28.60 | 9.62 | -5.55 | -409.89 | -711.59 | -0.23 | | Dead+Wind 90 deg - Service | 28.60 | 11.10 | -0.01 | -0.90 | -821.13 | -0.19 | | Dead+Wind 120 deg - | 28.60 | 9.62 | 5.56 | 411.16 | -711.86 | -0.38 | | Service | | | | | | | | Dead+Wind 150 deg - | 28.60 | 5.55 | 9.64 | 713.37 | -410.53 | -0.46 | | Service | | | | _ | | _ | | Dead+Wind 180 deg - | 28.60 | -0.02 | 11.13 | 823.03 | 1.15 | -0.29 | | Service | | - /- | | | | | | Dead+Wind 210 deg - | 28.60 | -5.54 | 9.64 | 713.31 | 409.78 | -0.21 | | Service | | | | -1-1 | | | | Dead+Wind 240 deg - | 28.60 | -9.64 | 5.53 | 407.99 | 713.29 | 0.43 | | Service | | | _ | | - | _ | | Load
Combination | Vertical | Shear _x | Shear₂ | Overturning
Moment, M _x | Overturning
Moment, M _z | Torque | |--------------------------------|----------|--------------------|--------|---------------------------------------|---------------------------------------|--------| | | K | K | K | kip-ft | kip-ft | kip-ft | | Dead+Wind 270 deg -
Service | 28.60 | -11.13 | -0.07 | -6.72 | 824.45 | 0.94 | | Dead+Wind 300 deg -
Service | 28.60 | -9.63 | -5.61 | -416.08 | 713.20 | 0.83 | | Dead+Wind 330 deg -
Service | 28.60 | -5.58 | -9.66 | -715.62 | 414.18 | 0.73 | ## **Solution Summary** | | | | | | - | | | |------------|---------------|------------------|---------------|--------|----------------|--------|---------| | | Sun | of Applied Force | es | | Sum of Reactio | ns | | | Load | PX | '' PY | PZ | PX | PY | PZ | % Error | | Comb. | K | K | K | K | K | K | | | 1 | 0.00 | -28.60 | 0.00 | 0.00 | 28.60 | 0.00 | 0.000% | | 2 | -0.16 | -28.60 | -32.26 | 0.16 | 28.60 | 32.26 | 0.000% | | 3 | 15.91 | -28.60 | -28.02 | -15.91 | 28.60 | 28.02 | 0.000% | | 4 | 27.80 | -28.60 | -16.04 | -27.80 | 28.60 | 16.04 | 0.000% | | 5 | 32.08 | -28.60 | -0.04 | -32.08 | 28.60 | 0.04 | 0.000% | | 6 | 27.80 | -28.60 | 16.05 | -27.80 | 28.60 | -16.05 | 0.000% | | 7 | 16.03 | -28.60 | 27.86 | -16.03 | 28.60 | -27.86 | 0.000% | | 8 | -0.05 | -28.60 | 32.16 | 0.05 | 28.60 | -32.16 | 0.000% | | 9 | -16.02 | -28.60 | 27.87 | 16.02 | 28.60 | -27.87 | 0.000% | | 10 | -27.85 | -28.60 | 15.98 | 27.85 | 28.60 | -15.98 | 0.000% | | 11 | -32.18 | -28.60 | -0.20 | 32.18 | 28.60 | 0.20 | 0.000% | | 12 | -27.83 | -28.60 | -16.21 | 27.83 | 28.60 | 16.21 | 0.000% | | 13 | -16.14 | -28.60 | -27.93 | 16.14 | 28.60 | 27.93 | 0.000% | | 14 | 0.00 | -41.55 | 0.00 | 0.00 | 41.55 | 0.00 | 0.000% | | 15 | -0.04 | -41.55 | -7.56 | 0.04 | 41.55 | 7.56 | 0.000% | | 16 | 3.73 | -41.55 | -6.57 | -3.73 | 41.55 | 6.57 | 0.000% | | 17 | 6.52 | -41.55 | -3.76 | -6.52 | 41.55 | 3.76 | 0.000% | | 18 | 7.52 | -41.55 | -0.01 | -7.52 | 41.55 | 0.01 | 0.000% | | 19 | 6.52 | -41.55 | 3.76 | -6.52 | 41.55 | -3.76 | 0.000% | | 20 | 3.76 | -41.55 | 6.53 | -3.76 | 41.55 | -6.53 | 0.000% | | 21 | -0.01 | -41.55 | 7.54 | 0.01 | 41.55 | -7.54 | 0.000% | | 22 | -3.76 | -41.55 | 6.53 | 3.76 | 41.55 | -6.53 | 0.000% | | 23 | -6.53 | -41.55 | 3.74 | 6.53 | 41.55 | -3.74 | 0.000% | | 24 | -7.54 | -41.55 | -0.05 | 7.54 | 41.55 | 0.05 | 0.000% | | 25 | -6.53 | -41.55 | -3.80 | 6.53 | 41.55 | 3.80 | 0.000% | | 26 | -3.78 | -41.55 | -6.55 | 3.78 | 41.55 | 6.55 | 0.000% | | 27 | -0.05 | -28.60 | -11.16 | 0.05 | 28.60 | 11.16 | 0.000% | | 28 | 5.50 | -28.60 | -9.70 | -5.50 | 28.60 | 9.70 | 0.000% | | 29 | 9.62 | -28.60 | -5.55 | -9.62 | 28.60 | 5.55 | 0.000% | | 30 | 11.10 | -28.60 | -0.01 | -11.10 | 28.60 | 0.01 | 0.000% | | 31 | 9.62 | -28.60 | 5.56 | -9.62 | 28.60 | -5.56 | 0.000% | | 32 | 5.55 | -28.60 | 9.64 | -5.55 | 28.60 | -9.64 | 0.000% | | 33 | -0.02 | -28.60 | 11.13 | 0.02 | 28.60 | -11.13 | 0.000% | | 34 | -5.54 | -28.60 | 9.64 | 5.54 | 28.60 | -9.64 | 0.000% | | 35 | -9.64 | -28.60 | 5.53 | 9.64 | 28.60 | -5.53 | 0.000% | | 36 | -11.13 | -28.60 | -0.07
5.61 | 11.13 | 28.60 | 0.07 | 0.000% | | 37
38 | -9.63
5.50 | -28.60 | -5.61 | 9.63 | 28.60 | 5.61 | 0.000% | | კ გ | -5.58 | -28.60 | -9.66 | 5.58 | 28.60 | 9.66 | 0.000% | ## **Non-Linear Convergence Results** | Load | Converged? | Number | Displacement | Force | |-------------|------------|-----------|--------------|------------| | Combination | | of Cycles | Tolerance | Tolerance | | 1 | Yes | 4 | 0.0000001 | 0.0000001 | | 2 | Yes | 4 | 0.0000001 | 0.00005200 | | 3 | Yes | 4 | 0.0000001 | 0.00034509 | | 4 | Yes | 4 | 0.0000001 | 0.00032011 | | 5 | Yes | 4 | 0.0000001 | 0.00001532 | | 6 | Yes | 4 | 0.0000001 | 0.00030109 | | 7 | Yes | 4 | 0.0000001 | 0.00033539 | | 8 | Yes | 4 | 0.0000001 | 0.00002577 | | 9 | Yes | 4 | 0.0000001 | 0.00030360 | |----|-----|---|-----------|------------| | 10 | Yes | 4 | 0.0000001 | 0.00029812 | | 11 | Yes | 4 | 0.0000001 | 0.00007474 | | 12 | Yes | 4 | 0.0000001 | 0.00035517 | | 13 | Yes | 4 | 0.0000001 | 0.00029493 | | 14 | Yes | 4 | 0.0000001 | 0.0000001 | | 15 | Yes | 4 | 0.0000001 | 0.00016483 | | 16 | Yes | 4 | 0.0000001 | 0.00017443 | | 17 | Yes | 4 | 0.0000001 | 0.00017333 | | 18 | Yes | 4 | 0.0000001 | 0.00016359 | | 19 | Yes | 4 | 0.0000001 | 0.00017337 | | 20 | Yes | 4 | 0.0000001 | 0.00017388 | | 21 | Yes | 4 | 0.0000001 | 0.00016374 | | 22 | Yes | 4 | 0.0000001 | 0.00017316 | | 23 | Yes | 4 | 0.0000001 | 0.00017296 | | 24 | Yes | 4 | 0.0000001 | 0.00016453 | | 25 | Yes | 4 | 0.0000001 | 0.00017514 | | 26 | Yes | 4 | 0.0000001 | 0.00017461 | | 27 | Yes | 4 | 0.0000001 | 0.00001102 | | 28 | Yes | 4 | 0.0000001 | 0.00002939 | | 29 | Yes | 4 | 0.0000001 | 0.00002430 | | 30 | Yes | 4 | 0.0000001 | 0.0000001 | | 31 | Yes | 4 | 0.0000001 | 0.00002116 | | 32 | Yes | 4 | 0.0000001 | 0.00002708 | | 33 | Yes | 4 | 0.0000001 | 0.00000582 | | 34 | Yes | 4 | 0.0000001 | 0.00002153 | | 35 | Yes | 4 | 0.0000001 | 0.00002090 | | 36 | Yes | 4 | 0.0000001 | 0.00001376 | | 37 | Yes | 4 |
0.0000001 | 0.00003073 | | 38 | Yes | 4 | 0.0000001 | 0.00002094 | | | | | | | ## **Maximum Tower Deflections - Service Wind** | Section | Elevation | Horz. | Gov. | Tilt | Twist | |---------|-----------|------------|-------|--------|--------| | No. | | Deflection | Load | | | | | ft | in | Comb. | 0 | 0 | | L1 | 100 - 47 | 10.826 | 38 | 0.8536 | 0.0035 | | L2 | 53 - 0 | 3.389 | 38 | 0.5695 | 0.0013 | ### **Critical Deflections and Radius of Curvature - Service Wind** | Elevation | Appurtenance | Gov. | Deflection | Tilt | Twist | Radius of | |-----------|--------------------------------------|---------------|------------|--------|--------|-----------------| | ft | | Load
Comb. | in | 0 | 0 | Curvature
ft | | 100' | AM-X-CD-16-65-00T-RET w/ | 38 | 10.826 | 0.8536 | 0.0035 | 39881 | | 90' | Mount Pipe
VHLP2-13 | 38 | 9.032 | 0.8037 | 0.0030 | 19941 | | 86' | VHLP1-23 | 38 | 8.328 | 0.7830 | 0.0030 | 14243 | | 78' | TME-800MHZ RRH | 38 | 6.964 | 0.7396 | 0.0024 | 9064 | | 76' | APXVSPP18-C-A20 w/ Mount
Pipe | 38 | 6.635 | 0.7281 | 0.0023 | 8308 | | 65' | (2) BXA-171063/12CF w/ Mount
Pipe | 38 | 4.942 | 0.6592 | 0.0018 | 5697 | ## **Maximum Tower Deflections - Design Wind** | Section
No. | Elevation | Horz.
Deflection | Gov.
Load | Tilt | Twist | |----------------|-----------|---------------------|--------------|--------|--------| | | ft | in | Comb. | 0 | 0 | | L1 | 100 - 47 | 31.261 | 13 | 2.4655 | 0.0102 | | L2 | 53 - 0 | 9.787 | 13 | 1.6448 | 0.0038 | ## Critical Deflections and Radius of Curvature - Design Wind | Elevation
ft | Appurtenance | Gov.
Load
Comb. | Deflection
in | Tilt
。 | Twist
° | Radius of
Curvature
ft | |-----------------|--------------------------------------|-----------------------|------------------|-----------|------------|------------------------------| | 100' | AM-X-CD-16-65-00T-RET w/ | 13 | 31.261 | 2.4655 | 0.0102 | 13850 | | | Mount Pipe | | | | | | | 90' | VHLP2-13 | 13 | 26.082 | 2.3214 | 0.0087 | 6925 | | 86' | VHLP1-23 | 13 | 24.049 | 2.2618 | 0.0081 | 4946 | | 78' | TME-800MHZ RRH | 13 | 20.111 | 2.1362 | 0.0069 | 3146 | | 76' | APXVSPP18-C-A20 w/ Mount
Pipe | 13 | 19.161 | 2.1031 | 0.0067 | 2884 | | 65' | (2) BXA-171063/12CF w/ Mount
Pipe | 13 | 14.273 | 1.9041 | 0.0052 | 1977 | ## Compression Checks | Pole Design Data | | | | | | | | | | | |------------------|--------------|----------------------|-----|----|------|--------|---------|-------------|--------------|------------| | Section
No. | Elevation | Size | L | Lu | KI/r | Fa | Α | Actual
P | Allow.
Pa | Ratio
P | | | ft | | ft | ft | | ksi | in² | K | ĸ | P_a | | L1 | 100 - 47 (1) | TP40.72x28x0.3125 | 53' | 0' | 0.0 | 39.000 | 38.8457 | -16.25 | 1514.98 | 0.011 | | L2 | 47 - 0 (2) | TP51.37x38.655x0.375 | 53' | 0' | 0.0 | 39.000 | 61.0028 | -28.58 | 2379.11 | 0.012 | | Pole Bending Design Data | | | | | | | | | | | |--------------------------|--------------|----------------------|--------------------------|------------------------|---------------------------|--------------------------|--------------------------|---------------------------|---------------------------|--------------------------| | Section
No. | Elevation | Size | Actual
M _x | Actual f _{bx} | Allow.
F _{bx} | Ratio
f _{bx} | Actual
M _v | Actual
f _{bv} | Allow.
F _{bv} | Ratio
f _{by} | | | ft | | kip-ft | ksi | ksi | $\overline{F_{bx}}$ | kip-ft | ksi | ksi | F_{by} | | L1 | 100 - 47 (1) | TP40.72x28x0.3125 | 837.69 | 27.024 | 39.000 | 0.693 | 0.00 | 0.000 | 39.000 | 0.000 | | L2 | 47 - 0 (2) | TP51.37x38.655x0.375 | 2388.6
6 | 37.471 | 39.000 | 0.961 | 0.00 | 0.000 | 39.000 | 0.000 | | | Pole Shear Design Data | | | | | | | | | | |----------------|----------------------------|----------------------|-------------|-----------------------|--------|-------------------------|-------------|------------------------|--------|--------------------------| | Section
No. | Elevation | Size | Actual
V | Actual f _v | Allow. | Ratio
f _v | Actual
T | Actual f _{vt} | Allow. | Ratio
f _{vt} | | 1.4 | ft 100 47 (1) | TP40.72x28x0.3125 | 26.29 | 0.677 | 26.000 | $\frac{F_{\nu}}{0.053}$ | 2.18 | 0.034 | 26.000 | $\frac{F_{vt}}{0.001}$ | | L1
L2 | 100 - 47 (1)
47 - 0 (2) | TP51.37x38.655x0.375 | 32.28 | 0.529 | 26.000 | 0.053 | 2.18 | 0.034 | 26.000 | 0.001 | | Pole Interaction Design Data | | | | | | | | | | |------------------------------|--------------|------------|--------------------------|--------------------------|-------------------------|--------------------------|-----------------|------------------|-----------| | Section
No. | Elevation | Ratio
P | Ratio
f _{bx} | Ratio
f _{by} | Ratio
f _v | Ratio
f _{vt} | Comb.
Stress | Allow.
Stress | Criteria | | | ft | P_a | F_{bx} | F_{by} | F_{ν} | F_{vt} | Ratio | Ratio | | | L1 | 100 - 47 (1) | 0.011 | 0.693 | 0.000 | 0.053 | 0.001 | 0.704 | 1.333 | H1-3+VT 🖊 | | L2 | 47 - 0 (2) | 0.012 | 0.961 | 0.000 | 0.041 | 0.001 | 0.973 | 1.333 | H1-3+VT 🖊 | | Section Capacity Table | | | | | | | | | |------------------------|-----------------|-------------------|----------------------|---------------------|--------|----------------------------|---------------|--------------| | Section
No. | Elevation
ft | Component
Type | Size | Critical
Element | P
K | SF*P _{allow}
K | %
Capacity | Pass
Fail | | L1 | 100 - 47 | Pole | TP40.72x28x0.3125 | 1 | -16.25 | 2019.47 | 52.8 | Pass | | L2 | 47 - 0 | Pole | TP51.37x38.655x0.375 | 2 | -28.58 | 3171.35 | 73.0 | Pass | | | | | | | | | Summary | | | | | | | | | Pole (L2) | 73.0 | Pass | | | | | | | | RATING = | 73.0 | Pass | ## APPENDIX B BASE LEVEL DRAWING ## APPENDIX C ADDITIONAL CALCULATIONS #### Stiffened or Unstiffened, Ungrouted, Circular Base Plate - Any Rod Material #### TIA Rev F Site Data BU#: 842869 Site Name: Meriden West Central App #: 270002 Rev. 1 Pole Manufacturer: Other | Anchor Rod Data | | | | | | | | |-----------------|-------|-----|--|--|--|--|--| | Qty: | 20 | | | | | | | | Diam: | 2.25 | in | | | | | | | Rod Material: | Other | | | | | | | | Strength (Fu): | 65 | ksi | | | | | | | Yield (Fy): | 50 | ksi | | | | | | | Bolt Circle: | 59 | in | | | | | | | Plate Data | | | | | | | | |-------------------|------|-----|--|--|--|--|--| | Diam: | 69 | in | | | | | | | Thick: | 3 | in | | | | | | | Grade: | 36 | ksi | | | | | | | Single-Rod B-eff: | 8.17 | in | | | | | | | Stiffener Data (| Welding at bo | th sides) | |------------------|---------------|-------------| | Config: | 0 | * | | Weld Type: | | | | Groove Depth: | | < Disregard | | Groove Angle: | | < Disregard | | Fillet H. Weld: | | in | | Fillet V. Weld: | | in | | Width: | | in | | Height: | | in | | Thick: | | in | | Notch: | | in | | Grade: | | ksi | | Weld str.: | | ksi | | Thick: | 0.375 | in | |--------------------|-------|--------------| | Grade: | 65 | ksi | | # of Sides: | 16 | "0" IF Round | | Fu | 80 | ksi | | Reinf. Fillet Weld | 0 | "0" if None | Pole Data 51.37 in Diam: | Stress Increase Factor | | | | |------------------------|-------|--|--| | ASIF: | 1.333 | | | | Reactions | | | |-----------|------|---------| | Moment: | 2389 | ft-kips | | Axial: | 29 | kips | | Shear: | 32 | kips | | If No stiffeners, Criteria: AISC ASD | <-Only Applcable to Unstiffened Cases | |--------------------------------------|---------------------------------------| |--------------------------------------|---------------------------------------| **Anchor Rod Results** Maximum Rod Tension: 95.7 Kips Allowable Tension: 113.7 Kips Anchor Rod Stress Ratio: 84.2% Pass | Rigid | |--------------| | Service, ASD | | Fty*ASIF | Base Plate ResultsFlexural CheckBase Plate Stress:18.9 ksiAllowable Plate Stress:36.0 ksiBase Plate Stress Ratio:52.4% Pass | Rigid | | |--------------|--| | Service ASD | | | 0.75*Fy*ASIF | | | Y.L. Length: | | | 29.02 | | n/a Stiffener Results Horizontal Weld: n/a Vertical Weld: n/a Plate Flex+Shear, fb/Fb+(fv/Fv)^2: n/a Plate Tension+Shear, ft/Ft+(fv/Fv)^2: n/a Plate Comp. (AISC Bracket): n/a **Pole Results** Pole Punching Shear Check: n/a CCIplate v2.0 Analysis Date: 11/7/2014 $^{^*}$ 0 = none, 1 = every bolt, 2 = every 2 bolts, 3 = 2 per bolt ^{**} Note: for complete joint penetration groove welds the groove depth must be exactly 1/2 the stiffener thickness for calculation purposes #### **ANALYSIS OF SPREAD FOOTING: OVERTURNING / BEARING** Engr = "CK" JobDescription = "CN4-064R1" $$M_0 = 2.389 \times 10^3 \cdot \text{kip} \cdot \text{ft Moment load on foundation}$$ $$S = 32 \cdot kip$$ Shear load on foundation $$\sigma_{\text{b}} = 8000 \cdot \text{psf} \quad \text{Allowable bearing pressure}$$ Net ignores fdn and soil weight for computed bearing pressure. $$FOS_{REQ} = 1.5$$ Required FOS against overturning #### **INPUT:** | $w_0 = 8 \text{ ft}$ | Pedestal width | $e_g = 1 ft$ | Extension above grade | |----------------------|--|--|---------------------------------| | iped = 1 | Pedestal type
(0=round, 1=square) | $t_p = 2.5 \text{ft}$ $W = 20 \text{ft}$ | Pad thickness Pad width (W x W) | | $d_0 = 5 \text{ ft}$ | Depth to top of pad | $\gamma_{\rm c} = 150 \cdot {\sf pcf}$ | Concrete density | | $d_s = 5 ft$ | Depth to soil uplift cone (0=no cone, normally d0) | $\gamma_{\text{s}} = 110 \cdot \text{pcf}$ | Soil density | | $d_n = 0$ | Depth of water to neglect for passive pr. | $\varphi_{\text{S}} = 30 \cdot \text{deg}$ | Soil angle of friction | | $d_w = 8.5 ft$ | Depth of water; 0 = no water | | | #### **RESULTS** $$W_{s1} = 184.80 \cdot \text{kip}$$ Weight of soil directly above pad $q_{avg} = 1.906 \cdot \text{ksf}$ Average bearing pressure $q_{max} = 3.812 \cdot \text{ksfMaximum}$ edge bearing $q_{max} = 3.812 \cdot \text{ksfMaximum}$ edge bearing pressure $$M_r = 5100.3 \cdot \text{kip} \cdot \text{ft}$$ Total resisting
moment FOS = 1.92 Factor of safety against overturning $M_t = 2.661 \times 10^3 \cdot \text{kip} \cdot \text{ft}$ Fotal applied moment $$\frac{\left(M_{t} \cdot FOS_{REQ}\right)}{M_{r}} = 78.3 \cdot \%$$ $$\frac{q_{\text{max}}}{\sigma_{\text{hF}}} = 36.6 \cdot \%$$ ## RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS ## T-Mobile Existing Facility Site ID: CT11733B Meriden West Central 450 - 478 West Main Street Meriden, CT 06451 November 24, 2014 EBI Project Number: 62146378 | Site Compliance Summary | | | |--|-----------|--| | Compliance Status: | COMPLIANT | | | Site total MPE% of FCC general public allowable limit: | 87.15 % | | November 24, 2014 T-Mobile USA Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, CT 06002 Emissions Analysis for Site: CT11733B – Meriden West Central EBI Consulting was directed to analyze the proposed T-Mobile facility located at **450 - 478 West Main Street, Meriden, CT**, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits. All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density. All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below. General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area. Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limit for the 700 MHz Band is 467 μ W/cm², and the general population exposure limit for the PCS and AWS bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density. Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. Additional details can be found in FCC OET 65. #### **CALCULATIONS** Calculations were done for the proposed T-Mobile Wireless antenna facility located at **450 - 478 West Main Street, Meriden, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower. For all calculations, all equipment was calculated using the following assumptions: - 1) 2 GSM channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel - 2) 2 UMTS channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel. - 3) 2 LTE channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel. - 4) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts. - 5) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous. - 6) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction. - 7) The antennas used in this modeling are the **Ericsson AIR21 B4A/B2P** for 1900 MHz (PCS) and 2100 MHz (AWS) channels and the **Commscope LNX-6515DS-VTM** for 700 MHz channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The **Ericsson AIR21 B4A/B2P** has a maximum gain of **15.9 dBd** at its main lobe. The **Commscope LNX-6515DS-VTM** has a maximum gain of **14.6 dBd** at its main lobe. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction. - 8) The antenna mounting height centerline of the proposed antennas is **90 feet** above ground level (AGL). - 9) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves. All calculations were done with respect to uncontrolled / general public threshold limits. #### **T-Mobile Site Inventory and Power Data** | Sector: | A | Sector: | В | Sector: | С | |-----------------|-----------------------------------|-----------------|-----------------------------------|-----------------|-----------------------------------| | Antenna #: | 1 | Antenna #: | 1 | Antenna #: | 1 | | Make / Model: | Ericsson AIR21
B4A/B2P | Make / Model: | Ericsson AIR21
B4A/B2P | Make / Model: | Ericsson AIR21
B4A/B2P | | Gain: | 15.9 dBd | Gain: | 15.9 dBd | Gain: | 15.9 dBd | | Height (AGL): | 90 | Height (AGL): | 90 | Height (AGL): | 90 | | Frequency Bands | 1900 MHz(PCS) /
2100 MHz (AWS) | Frequency Bands | 1900 MHz(PCS) /
2100 MHz (AWS) | Frequency Bands | 1900 MHz(PCS) /
2100 MHz (AWS) | | Channel Count | 2 | Channel Count | 2 | # PCS Channels: | 2 | | Total TX Power: | 120 | Total TX Power: | 120 | # AWS Channels: | 120 | | ERP (W): | 1,906.06 | ERP (W): | 1,906.06 | ERP (W): | 1,906.06 | | Antenna A1 MPE% | 2.38 | Antenna B1 MPE% | 2.38 | Antenna C1 MPE% | 2.38 | | Antenna #: | 2 | Antenna #: | 2 | Antenna #: | 2 | | Make / Model: | Ericsson AIR21
B4A/B2P | Make / Model: | Ericsson AIR21
B4A/B2P | Make / Model: | Ericsson AIR21
B4A/B2P | | Gain: | 15.9 dBd | Gain: | 15.9 dBd | Gain: | 15.9 dBd | | Height (AGL): | 90 | Height (AGL): | 90 | Height (AGL): | 90 | | Frequency Bands | 1900 MHz(PCS) /
2100 MHz (AWS) | Frequency Bands | 1900 MHz(PCS) /
2100 MHz (AWS) | Frequency Bands | 1900 MHz(PCS) /
2100 MHz (AWS) | | Channel Count | 4 | Channel Count | 4 | Channel Count | 4 | | Total TX Power: | 120 | Total TX Power: | 120 | Total TX Power: | 120 | | ERP (W): | 1,906.06 | ERP (W): | 1,906.06 | ERP (W): | 1,906.06 | | Antenna A2 MPE% | 2.38 | Antenna B2 MPE% | 2.38 | Antenna C2 MPE% | 2.38 | | Antenna #: | 3 | Antenna #: | 3 | Antenna #: | 3 | | Make / Model: | Commscope LNX-
6515DS-VTM | Make / Model: | Commscope LNX-
6515DS-VTM | Make / Model: | Commscope LNX-
6515DS-VTM | | Gain: | 14.6 dBd | Gain: | 14.6 dBd | Gain: | 14.6 dBd | | Height (AGL): | 90 | Height (AGL): | 90 | Height (AGL): | 90 | | Frequency Bands | 700 Mhz | Frequency Bands | 700 Mhz | Frequency Bands | 700 Mhz | | Channel Count | 1 | Channel Count | 1 | Channel Count | 1 | | Total TX Power: | 30 | Total TX Power: | 30 | Total TX Power: | 30 | | ERP (W): | 445.37 | ERP (W): | 445.37 | ERP (W): | 445.37 | | Antenna A3 MPE% | 0.94 | Antenna B3 MPE% | 0.94 | Antenna C3 MPE% | 0.94 | | Site Composite MPE% | | | |---------------------|---------|--| | Carrier | MPE% | | | T-Mobile | 17.10 | | | Hunter Yagi 1 | 7.43 % | | | Hunter Yagi 2 | 7.43 % | | | Hunter Yagi 3 | 22.28 % | | |
HunterWhip | 7.43 % | | | Sprint | 10.89 % | | | Verizon Wireless | 14.59 % | | | Site Total MPE %: | 87.15 % | | | T-Mobile Sector 1 Total: | 5.70 % | |--------------------------|---------| | T-Mobile Sector 2 Total: | 5.70 % | | T-Mobile Sector 3 Total: | 5.70 % | | | | | Site Total: | 87.15 % | 21 B Street Burlington, MA 01803 Tel: (781) 273.2500 Fax: (781) 273.3311 #### **Summary** All calculations performed for this analysis yielded results that were **within** the allowable limits for general public exposure to RF Emissions. The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here: | T-Mobile Sector | Power Density Value (%) | |-------------------------|-------------------------| | Sector 1: | 5.70 % | | Sector 2: | 5.70 % | | Sector 3: | 5.70 % | | T-Mobile Total: | 17.10 % | | | | | Site Total: | 87.15 % | | | | | Site Compliance Status: | COMPLIANT | The anticipated composite MPE value for this site assuming all carriers present is **87.15%** of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions. FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government. Scott Heffernan RF Engineering Director **EBI Consulting** 21 B Street Burlington, MA 01803`