February 28, 2014

David Martin and
Members of the Siting Council
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

```
RE: Notice of Exempt Modification
    651 Paddock Avenue
    Meriden, CT 06450
    N \(41^{\circ} 30^{\prime} 46^{\prime \prime}\)
    W \(-72^{\circ} 46^{\prime} 46^{\prime \prime}\)
```

Dear Mr. Martin and Members of the Siting Council:

On behalf of T-Mobile, SBA Communications is submitting an exempt modification application to the Connecticut Siting council for modification of existing equipment at a tower facility located at 651 Paddock Ave., Meriden, CT.

The 651 Paddock Ave., Meriden, CT facility consists of a 120^{\prime} Monopole Tower owned and operated by SBA Towers II LLC. In order to accommodate technological changes and enhance system performance in the State of Connecticut, T-Mobile plans to modify the equipment configurations at many of its existing cell sites. Please accept this letter and attachments as notification, pursuant to R.C.S.A. Section 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2). In compliance with R.C.S.A. Section 16-50j-73, a copy of this letter and attachments is being sent to the chief elected official of the municipality in which the affected cell site is located.

As part of T-Mobile's modernization project, T-Mobile desires to upgrade their equipment to meet the new standards of 4 G technology. The new equipment will allow customers to download files and browse the internet at a high rate of speed while also allowing their phones to be compatible with the latest 4G technology.

Attached is a summary of the planned modifications, including power density calculations reflecting the change in T-Mobile's operations at the site along with the required fee of $\$ 625$.

The changes to the facility do not constitute modifications as defined in Connecticut General Statutes ("C.G.S.") Section 16-50i(d) because the general physical characteristics of the facility will not be
significantly changed or altered. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for in R.C.S.A. Section 16-50j-72(b)(2).

1. The overall height of the structure will be unaffected.
2. The proposed changes will not extend the site boundaries. There will be no effect on the site compound other than the new equipment cabinets.
3. The proposed changes will not increase the noise level at the existing facility by six decibels or more.
4. The changes in radio frequency power density will not increase the calculated "worst case" power density for the combined operations at the site to a level at or above the applicable standard for uncontrolled environments as calculated for a mixed frequency site.

For the foregoing reasons, SBA Communications on behalf of T-Mobile, respectfully submits that he proposed changes at the referenced site constitute exempt modifications under R.C.S.A. Section 16-50j72(b)(2).

Please feel free to call me at $508.251 .0720 \times 3804$ with any questions you may have concerning this matter.

Thank you,

Kri Pelletier
SBA Communications Corporation
33 Boston Post Road West Suite 320
Marlborough, MA 01752
508-251-0720 x $3804+\mathrm{T}$
$508-251-1755+F$
203-446-7700 + C
kpelletier@sbasite.com

T-Mobile
 Equipment Modification

651 Paddock Ave., Meriden, CT
Site number CT11493A
Tower Owner:
SBA Towers II LLC
Equipment Configuration: Monopole

Current and/or approved:

- (3) RFS APX16PV-16PVL-E
- (6) OneBase Twin TMAs
- (12) $1-5 / 8^{\prime \prime}$ Coax / Lines
- (1) $1 / 4^{\prime \prime}$ Coax / Lines

Planned Modifications:

- (3) Ericsson Air B2A B4P
- (3) Ericsson KRY 112144 TMAs
- (12) $1-5 / 8^{\prime \prime}$ Coax / Lines
- (1) $1-5 / 8^{\prime \prime}$ Coax / Lines

Structural Information:

The attached structural analysis demonstrates that the tower and foundation will have adequate structural capacity to accommodate the proposed modifications.

Power Density:

The anticipated Maximum Composite contributions from the T-Mobile facility are $.776 \%$ of the allowable FCC established general public limit. The anticipated composite MPE value for this site assuming all carriers present is 23.396% of the allowable FCC established general public limit sampled at the ground level.

Site Composite MPE \%	
Carrier	MPE\%
T-Mobile	0.776%
Verizon Wireless	26.640%
Clearwire	1.980%
Total Site MPE \%	29.396%

Mayor Manuel A. Santos
City of Meriden
Meriden City Hall
142 East Main Street
Meriden, CT 06450

RE: Telecommunications Facility @ 651 Paddock Avenue, Meriden, CT

Dear Mayor Santos,

In order to accommodate technological changes and enhance system performance in the State of Connecticut, T-Mobile will be changing its equipment configuration at certain cell sites.

As required by Regulations of Connecticut State Agencies (R.C.S.A.) Section 16-50j-73, the Connecticut Siting Council has been notified of the changes and will review T-Mobile's proposal. Please accept this letter as notification under Section 16-50j-73 of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2).

The accompanying letter to the Siting Council fully describes T-Mobile's proposal for the referenced cell site. However, if you have any questions or require any further information on our plans or the Siting Council's procedures, please call me at 508.251.0720 x 3804 .

Thank you,

Kri Pelletier
SBA Communications Company
33 Boston Post Road West Suite 320
Marlborough, MA 01752
508-251-0720 x $3804+$ T
$508-251-1755+F$
203-446-7700 + C
kpelletier@sbasite.com
environmental | engineering | due diligence

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility
Site ID: CT11493A
SBA Meriden
651 Paddock Avenue
Meriden, CT 06450
February 26, 2014

EBI PROJECT NUMBER: 62141019

T-Mobile USA
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 06002

Re: Emissions Values for Site: CT11493A - SBA Meriden

EBI Consulting was directed to analyze the proposed T-Mobile facility located at 651 Paddock Avenue, Meriden, CT, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm} 2$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307 (b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The general population exposure limit for the cellular band is $567 \mu \mathrm{~W} / \mathrm{cm} 2$, and the general population exposure limit for the PCS and AWS bands is $1000 \mu \mathrm{~W} / \mathrm{cm} 2$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 651 Paddock Avenue, Meriden, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, the actual antenna pattern gain value in the direction of the sample area was used. For this report the sample point is a 6 foot person standing at the base of the tower

For all calculations, all equipment was calculated using the following assumptions:

1) 2 GSM channels (1935.000 MHz -to $1945.000 \mathrm{MHz} / 1980.000 \mathrm{MHz}$-to 1985.000 MHz) were considered for each sector of the proposed installation.
2) 2 UMTS channels (2110.000 to $2120.000 \mathrm{MHz} / 2140.000 \mathrm{MHz}$ to 2145.000 MHz) were considered for each sector of the proposed installation.
3) 2 LTE channels (2110.000 to $2120.000 \mathrm{MHz} / 2140.000 \mathrm{MHz}$ to 2145.000 MHz) were considered for each sector of the proposed installation.
4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
5) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The actual gain in this direction was used per the manufactures supplied specifications.
6) The antenna used in this modeling is the Ericsson AIR21 for LTE, UMTS and GSM. This is based on feedback from the carrier with regards to anticipated antenna selection. This antenna has a 15.6 dBd gain value at its main lobe. Actual antenna gain values were used for all calculations as per the manufacturers specifications
environmental | engineering | due diligence
7) The antenna mounting height centerline of the proposed antennas is $\mathbf{1 1 7}$ feet above ground level (AGL)
8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculation were done with respect to uncontrolled / general public threshold limits

	Site ID	CT11493A - SBA Meriden															
	Site Addresss	651 Paddock Avenue, Meriden, CT 06450															
	Site Type	Monopole															
Sector 1																	
Antenna Number	Antenna Make	Antenna Model	Status	Frequency Band	Technology	Power Out Per Channel (Watts)	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Number of } \\ \text { Channels } \end{array} \\ \hline \end{array}$	Composite Power	Antenna Gain in direction of sample point (dBd)	$\begin{array}{\|c\|} \hline \text { Antenna } \\ \text { Height (ft) } \end{array}$	analysis height	Cable Size	Cable Loss (dB)	Additional Loss	ERP	Power Density Value	Power Density Percentage
1a	Ericsson	AIR21 B4A/B2P	Active	PCS - 1950 MHz	GSM / UMTS	30	2	60	-3.95	117	111	NA	0	0	24.163022	0.705036	0.07050\%
1B	Ericsson	AIR21 B4A/B2P	Active	AWS - 2100 MHz	UMTS/LTE	40	4	160	-3.95	117	111	NA	0	0	64.434725	1.880096	0.18801\%
Sector total Power Density Value: 0.259%																	
Sector 2																	
Antenna Number	Antenna Make	Antenna Model	Status	Frequency Band	Technology	Power Out Per Channel (Watts)	Number of Channels	Composite Power	Antenna Gain in direction of sample point (dBd)	Antenna Height (ft)	analysis height	Cable Size	Cable Loss (dB)	Additional Loss	ERP	Power Density Value	Power Density Percentage
1a	Ericsson	AlR21 B4A/B2P	Active	PCS - 1950 MHz	GSM / UMTS	30	2	60	-3.95	117	111	NA	0	0	24.163022	0.705036	0.07050\%
1B	Ericsson	AlR21 B4A/B2P	Active	AWS - 2100 MHz	UMTS/LTE	40	4	160	-3.95	117	111	NA	0	0	64.434725	1.880096	0.18801\%
Sector total Power Density Value: 0.259%																	
Sector 3																	
Antenna Number	Antenna Make	Antenna Model	Status	Frequency Band	Technology	Power Out Per Channel (Watts)	Number of Channels	Composite Power	Antenna Gain in direction of sample point (dBd)	Antenna Height (ft)	analysis height	Cable Size	Cable Loss (dB)	Additional Loss	ERP	Power Density Value	Power Density Percentage
1a	Ericsson	AIR21 B4A/B2P	Active	PCS - 1950 MHz	GSM / UMTS	30		60	-3.95	117	111	NA	0	0	24.163022	0.705036	0.07050\%
18	Ericsson	AlR21 B4A/B2P	Active	AWS - 2100 MHz	UMTS/LTE	40	4	160	-3.95	117	111	NA	0	0	64.434725	1.880096	0.18801\%
												Sector tota	tal Power De	nsity Value:	0.259\%		

Site Composite MPE \%	
Carrier	MPE \%
T-Mobile	0.776%
Verizon Wireless	26.640%
Clearwire	1.980%
Total Site MPE \%	29.396%

environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were well within the allowable limits for general public exposure to RF Emissions.

The anticipated Maximum Composite contributions from the T-Mobile facility are $\mathbf{0 . 7 7 6 \%}$ ($\mathbf{0 . 2 5 9 \%}$ from each sector) of the allowable FCC established general public limit considering all three sectors simultaneously sampled at the ground level.

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{2 9 . 3 9 6 \%}$ of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were within the allowable 100% threshold standard per the federal government.

Scott Heffernan
RF Engineering Director

EBI Consulting
21 B Street
Burlington, MA 01803

FDH Engineering, Inc., 6521 Meridien Drive Raleigh, NC 27616, Ph. 919.755.1012

Structural Analysis for

 SBA Network Services, Inc.119' Monopole Tower

SBA Site Name: Meriden
SBA Site ID: CT13069-A-00
T-Mobile Site ID: CT11493A
FDH Project Number 1422QZ1400
Analysis Results

Tower Components	71.8%	Sufficient
Foundation	86.6%	Sufficient

Prepared By:
gavel Duncan

Jarel Duncan, El
Reviewed By:

Project Engineer

Bradley R. Newman, PE
Senior Project Engineer CT PE License No. 29630

FDH Engineering, Inc.
6521 Meridian Drive
Raleigh, NC 27616
(919) 755-1012
info@fdh-inc.com

February 18, 2014

TABLE OF CONTENTS

EXECUTIVE SUMMARY 3
Conclusions 3
Recommendation. 3
APPURTENANCE LISTING 4
RESULTS 5
GENERAL COMMENTS 6
LIMITATIONS. 6
APPENDIX 7

EXECUTIVE SUMMARY

At the request of SBA Network Services, Inc., FDH Engineering, Inc. performed a structural analysis of the monopole located in Meriden, CT to determine whether the tower is structurally adequate to support both the existing and proposed loads pursuant to the Structural Standards for Steel Antenna Towers and Antenna Supporting Structures, TIA/EIA-222-F and the 2005 Connecticut State Building Code (CSBC). Information pertaining to the existing/proposed antenna loading, current tower geometry, geotechnical data, and member sizes was obtained from:

[^0]The basic design wind speed per the TIA/EIA-222-F standards and the 2005 CSBC is 85 mph without ice and 38 mph with $3 / 4$ " radial ice. Ice is considered to increase in thickness with height.

Conclusions

With the existing and proposed antennas from T-Mobile in place at 117 ft , the tower meets the requirements of the TIA/EIA-$222-F$ standards and the 2005 CSBC provided the Recommendations listed below are satisfied. Furthermore, provided the foundation was designed and constructed to support the original design reactions (see Sabre Job No. 08-10201), the foundation should have the necessary capacity to support the existing and proposed loading. For a more detailed description of the analysis of the tower, see the Results section of this report.

Our structural analysis has been performed assuming all information provided to FDH Engineering, Inc. is accurate (i.e., the steel data, tower layout, existing antenna loading, and proposed antenna loading) and that the tower has been properly erected and maintained per the original design drawings.

Recommendations

To ensure the requirements of the TIA/EIA-222-F standards and the 2005 CSBC are met with the existing and proposed loading in place, we have the following recommendation:

1. Proposed coax should be installed inside the monopole's shaft.
2. The proposed TMAs should be installed directly behind the proposed panel antennas.

APPURTENANCE LISTING

The proposed and existing antennas with their corresponding cables/coax lines are shown in Table 1. If the actual layout determined in the field deviates from the layout, FDH Engineering, Inc. should be contacted to perform a revised analysis.

Table 1 - Appurtenance Loading

Existing Loading:

Antenna Elevation (ft)	Description	Coax and Lines ${ }^{1}$	Carrier	Mount Elevation (ft)	Mount Type
117	(3) RFS APX16PV-16PVL-E (6) OneBase Twin TMAs	(12) 1-5/8" (1) $1 / 4$ "	T-Mobile	117	(3) 7' x 2.39" Pipe Mounts
107	(3) Antel BXA-70063-6CF (3) Antel BXA-80063/6CF (3) Antel BXA-171063/12CF (6) RFS FD9R6004/2C-3L Diplexers	(12) 1-5/8"	Verizon	107	(1) Site Pro Ring Mount (Part \# 801068)
97	(3) Argus LLPX310R (2) Andrew VHLP2-18 Dishes (1) Andrew VHLP1-23 Dish (3) Samsung 2.5 Ghz RRHs	(9) $5 / 16$ " (3) $1 / 2^{\prime \prime}$	Clearwire	97	(3) T-Arms (CaAa $=2.78 \mathrm{ft}^{2}$ each $)$

1. Coax installed inside the pole's shaft unless otherwise noted.

Proposed Loading:

Antenna Elevation (ft)	Description	Coax and Lines	Carrier	Mount Elevation (ft)	Mount Type
117	(3) Ericsson Air B2A B4P (3) Ericsson KRY 112 144 TMAs	$(12) 1-5 / 8^{\prime \prime}$ (1) $1-5 / 8^{\prime \prime}$ Fiber	T-Mobile	117	(3) $7^{\prime} \times 2.39^{\prime \prime}$ Pipe Mounts

RESULTS

The following yield strength of steel for individual members was used for analysis:
Table 2 - Material Strength

Member Type	Yield Strength
Tower Shaft Sections	65 ksi
Base Plate	60 ksi
Anchor Bolts	75 ksi

Table 3 displays the summary of the ratio (as a percentage) of force in the member to their capacities. Values greater than 100% indicate locations where the maximum force in the member exceeds its capacity. Note: Capacities up to 100% are considered acceptable. Table 4 displays the maximum foundation reactions. Table 5 displays the maximum antenna rotations at service wind speeds (dishes only).

If the assumptions outlined in this report differ from actual field conditions, FDH Engineering, Inc. should be contacted to perform a revised analysis. Furthermore, as no information pertaining to the allowable twist and sway requirements for the existing or proposed appurtenances was provided, deflection and rotation were not taken into consideration when performing this analysis.

See the Appendix for detailed modeling information

Table 3 - Summary of Working Percentage of Structural Components

Section No.	Elevation ft	Component Type	Size	$\%$ Capacity*	Pass Fail
L 1	$119-98.75$	Pole	TP28.14x24.86x0.1875	8.1	Pass
L2	$98.75-48.75$	Pole	$T P 35.87 \times 27.1981 \times 0.25$	42.0	Pass
L3	$48.75-0$	Pole	$T P 43.26 \times 34.6406 \times 0.25$	71.8	Pass
		Anchor Bolts	$(8) 2.25^{\prime \prime} \varnothing \mathrm{w} / \mathrm{BC}=49.125^{\prime \prime} \varnothing$	48.3	Pass
	Base Plate	$47^{\prime \prime}$ square PL $\times 2.25^{\prime \prime}$ thk.	60.2	Pass	

*Capacities include 1/3 allowable stress increase for wind per TIA/EIA-222-F Standards.

Table 4 - Maximum Base Reactions

Base Reactions	Current Analysis (TIA/EIA-222-F)	Original Design (ANSI/TIA-222-G)
Axial	16 k	19 k
Shear	13 k	27 k
Moment	$1,044 \mathrm{k}-\mathrm{ft}$	$1,627 \mathrm{k}-\mathrm{ft}$

Table 5 - Maximum Antenna Rotations at Service Wind Speeds (Dishes Only)

Centerline Elevation (ft)	Antenna	Tilt (deg) *	Twist (deg) *
97	(2) Andrew VHLP2-18 Dishes (1) Andrew VHLP1-23 Dish	0.9147	0.0006

[^1]
GENERAL COMMENTS

This engineering analysis is based upon the theoretical capacity of the structure. It is not a condition assessment of the tower and its foundation. It is the responsibility of SBA Network Services, Inc. to verify that the tower modeled and analyzed is the correct structure (with accurate antenna loading information) modeled. If there are substantial modifications to be made or the assumptions made in this analysis are not accurate, FDH Engineering, Inc. should be notified immediately to perform a revised analysis.

LIMITATIONS

All opinions and conclusions are considered accurate to a reasonable degree of engineering certainty based upon the evidence available at the time of this report. All opinions and conclusions are subject to revision based upon receipt of new or additional/updated information. All services are provided exercising a level of care and diligence equivalent to the standard and care of our profession. No other warranty or guarantee, expressed or implied, is offered. Our services are confidential in nature and we will not release this report to any other party without the client's consent. The use of this engineering work is limited to the express purpose for which it was commissioned and it may not be reused, copied, or distributed for any other purpose without the written consent of FDH Engineering, Inc.

APPENDIX

4.5

$$
1.1
$$

s9-zLs४
98.8 ft

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Lightning Rod	119	BXA-171063/12CF w/ Mount Pipe	107
AIR 21 B2A/B4P w/Mount Pipe	117	(2) FD9R6004/2C-3L Diplexer	107
AIR 21 B2A/B4P w/Mount Pipe	117	(2) FD9R6004/2C-3L Diplexer	107
AIR 21 B2A/B4P w/Mount Pipe	117	(2) FD9R6004/2C-3L Diplexer	107
KRY 112 144 TMA	117	(1) Ring Mount	107
KRY 112 144 TMA	117	LLPX310R w/ Mount Pipe	97
KRY 112 144 TMA	117	LLPX310R w/ Mount Pipe	97
BXA-70063-6CF w/ Mount Pipe	107	2.5 Ghx RRH	97
BXA-70063-6CF w/ Mount Pipe	107	2.5 Ghx RRH	97
BXA-70063-6CF w/ Mount Pipe	107	2.5 Ghx RRH	97
BXA-80063/6CF w/ Mount Pipe	107	(3) T-Arms	97
BXA-80063/6CF w/ Mount Pipe	107	VHLP2-18	97
BXA-80063/6CF w/ Mount Pipe	107	VHLP2-18	97
BXA-171063/12CF w/ Mount Pipe	107	VHLP1-23	97
BXA-171063/12CF w/ Mount Pipe	107		97

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu	
A572-65	65 ksi	80 ksi				

TOWER DESIGN NOTES

1. Tower is located in New Haven County, Connecticut.
2. Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F Standard
3. Tower is also designed for a 38 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
4. Deflections are based upon a 50 mph wind.
5. TOWER RATING: 71.8\%

TORQUE 0 kip-ft 38 mph WIND - 0.7500 in ICE AXIAL

TORQUE 0 kip-ft REACTIONS - 85 mph WIND

FDH Engineering, Inc. 6521 Meridien Drive Raleigh, NC 27616 Phone: (919) 755-1012
FAX: (919) 755-1031
${ }^{\text {ob: }}$ MERIDEN - CT13069-A-00
Project: 1422QZ1400

Client: SBA Network Services, Inc.	Drawn by: Jarel Duncan	App'd:
Code: TIA/EIA-222-F	Date: $02 / 18 / 14$	Scale: NTS
Path:		Dwg No. E-1

[^0]: Sabre Communications Corporation (Job No. 08-10201) original design drawings dated November 9, 2007

 - Sabre Communications Corporation (Job No. 08-10201) Stamped Permit Drawings dated November 7, 2007
 - FDH, Inc. (Job No. 08-07134T) TIA Inspection Report dated October 7, 2008
 - SBA Network Services, Inc.

[^1]: *Allowable tilt and twist values to be reviewed by the carrier.

