

56 Prospect Street, P.O. Box 270 Hartford, CT 06103

Kathleen M. Shanley Manager – Transmission Siting Tel: (860) 728-4527

July 22, 2020

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification Eversource Site Meriden Cooper St. 56 Cooper Street, Meriden, CT 06451 Latitude: 41-31-57.1 N / Longitude: 72-48-21.4 W

Dear Ms. Bachman:

The Connecticut Light and Power Company doing business as Eversource Energy ("Eversource") currently maintains multiple antennas at various mounting heights on an existing building located at 56 Cooper Street in Meriden, CT. See <u>Attachment A</u>, Parcel Map and Property Card. The building and property are owned by Eversource. Eversource plans to install one 24-foot 3-inch tall omni-directional antenna on the existing penthouse wall; the top of the antenna will extend to approximately 67 feet above ground level ("AGL"). Two 7/8-inch diameter coaxial cables will be routed from the antenna into the existing building where it will terminate in an existing communications room. There will be no ground disturbance and no changes to the building or the existing antennas and equipment. The existing and proposed antennas on the building are depicted on <u>Attachment B</u>, Construction Drawings, dated March 30, 2020.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies ("R.C.S.A.") §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this notice is being delivered to Kevin Scarpati, Mayor of the City of Meriden and Renata Bertotti, Director of Planning, Development & Enforcement for the City of Meriden via the United States Postal Service or private carrier. Proof of delivery is attached. See <u>Attachment C</u>, Proof of Delivery of Notice.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2):

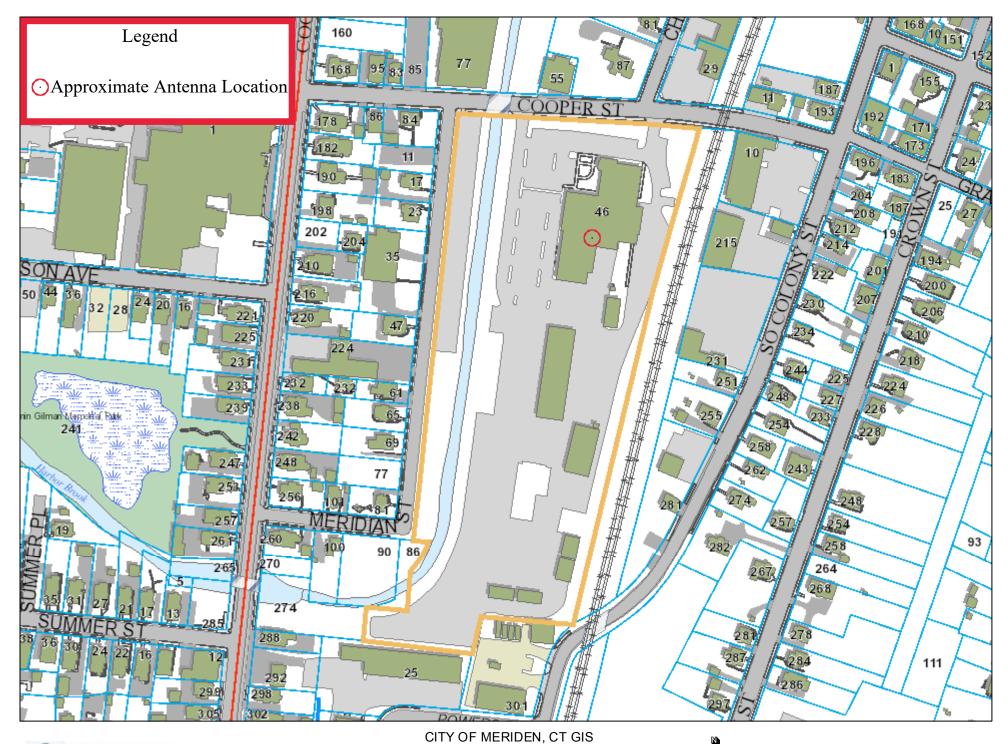
- There will be no change to the height of the existing building; an existing omni-directional antenna extends to 60'-11" AGL; the proposed omni-directional antenna will extend to 67'-0" AGL.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the new antenna will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard as shown in the attached Radio Frequency Emissions Report, dated March 6, 2020 (<u>Attachment D</u> Power Density Report)¹.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading as shown in the attached Structural Analysis, dated March 26, 2020 (<u>Attachment E</u> Structural Analysis).

For the foregoing reasons, Eversource respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Two copies of this notice and a check in the amount of \$625 are enclosed.

Communications regarding this Notice of Exempt Modification should be directed to Kathleen Shanley at (860) 728-4527.

Kathleen M. Shanley Manager – Transmission Siting

cc: Honorable Kevin Scarpati, Mayor, City of Meriden Renata Bertotti, Director of Planning, Development & Enforcement, City of Meriden


By:

Attachments

- A. Parcel Map and Property Card
- B. Construction Drawings
- C. Proof of Delivery of Notice
- D. Power Density Report
- E. Structural Analysis

¹ It should be noted that the number of transmitting antennas accounted for in the Power Density Report accounts for two channels on the 88' centerline antenna. Also, the "Antenna Height" column on Table 1 in the Power Density Report only accounts for the centerline of the Transmit or "TX" antenna centerline.

ATTACHMENT A – PARCEL MAP AND PROPERTY CARD

Date: 2/27/2020

ES-281 Meriden - 46 Cooper Street

OWNER

OF MERIDEN GIS Services

INFORMATION Location: 46 COOPER ST

Map/Lot: 0113-0059-0001-0010

Owner(s): **INFORMATION** YANKEE GAS SERVICES CO C/O PROPERTY TAX DEPT

Owner Address: P O BOX 270 HARTFORD, CT 06141

BUILDING INFORMATION

Card 1

Number:

Total Units: 1

Building ID	908
Finished Area	50,218
Comm/Rental Units	1
Living Units	0
Building Type	Ind Mfg (L)
Year Built	1969
Effective Yr Built	
Building Number	1
Condo Name	

OVERVIEW

INTERIOR DETAILS					
Rooms					
BedRooms					
Full Bath	0				
Full Bath Rating					
Half Bath	0				
Half Bath Rating					
Kitchens	0				
Kitchen Rating					
Fireplaces	0				

CONSTRUCTIO	ON DETAILS
Exterior	Masonry
Roof Structure	Flat
Roof Cover	Rubber
Quality	C+
Heat Fuel	Oil
Heat Type	Forced Air
Prcnt. Heated	100.00
Prcnt. AC	50.00
Stories	2 story
Foundation	Conc Slab

Sub Area Summary

No Sub Area data found

Special Features

No Special Features found.

APPRAISAL INFORMATION Tax District: 2 District Name: INNER DISTRICT District Mill Rate: 43.21

2/27/2020

Gran	d Lis	st
Year:	201	9

Land Appraised	Building Appraised	Yard Appraised	Total Appraised Value	Land Assessed	Building Assessed	Yard Assessed	Special Land Value	Total Assessed Value
\$1,751,200	\$2,059,300	\$625,300	\$4,435,800	\$1,225,840	\$1,441,510	\$437,710	\$0	\$3,105,060

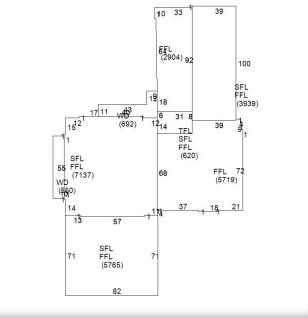
Previous Year: 2018

Land	Building	Yard	Appraised	Land	Building	Yard	Assessed
Value	Value	Items	Value	Value	Value	Items	Value
\$1,749,800	\$2,057,800	\$625,300	\$4,432,900	\$1,224,860	\$1,440,460	\$437,710	\$3,103,030

LAND INFORMATION

Land Use	Zoning	Land Area	Neighborhood Description
comm Bldg	M-3	10.46919	INNER CITY AREA

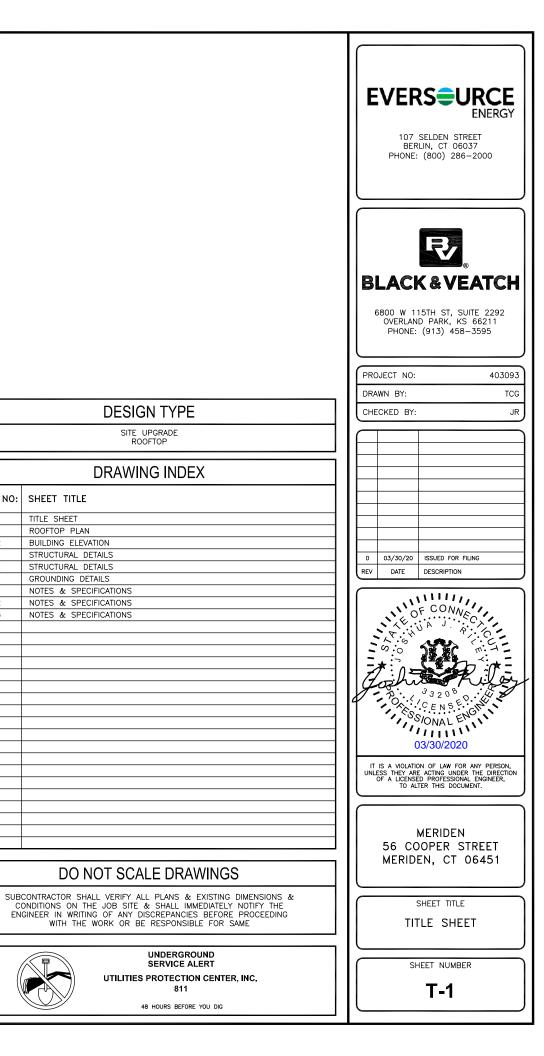
SALES

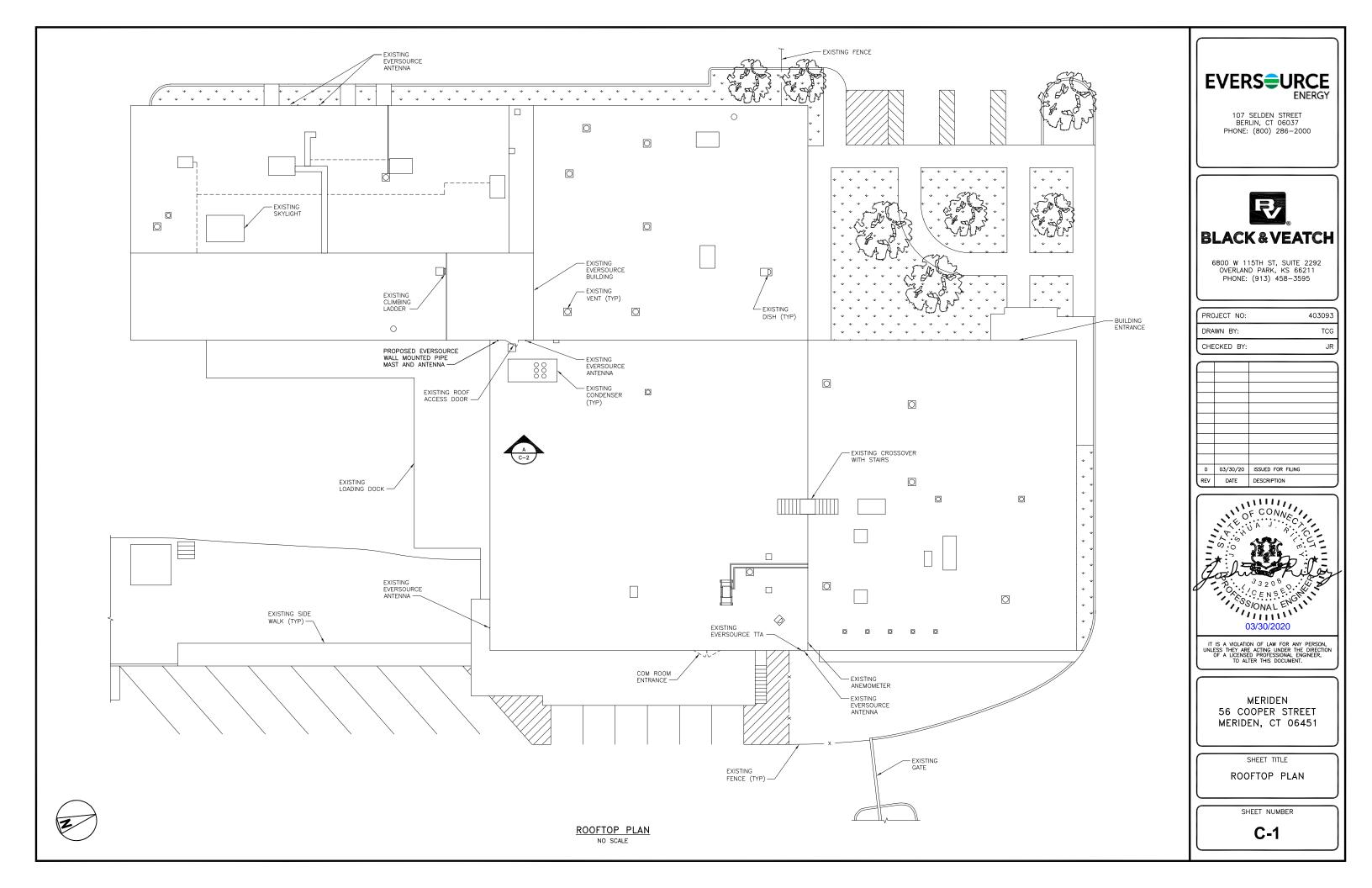

Sale Date	Sale Price	Book	Page	Grantor	Grantee	Deed Type
6/30/1989	\$0	1646	11			

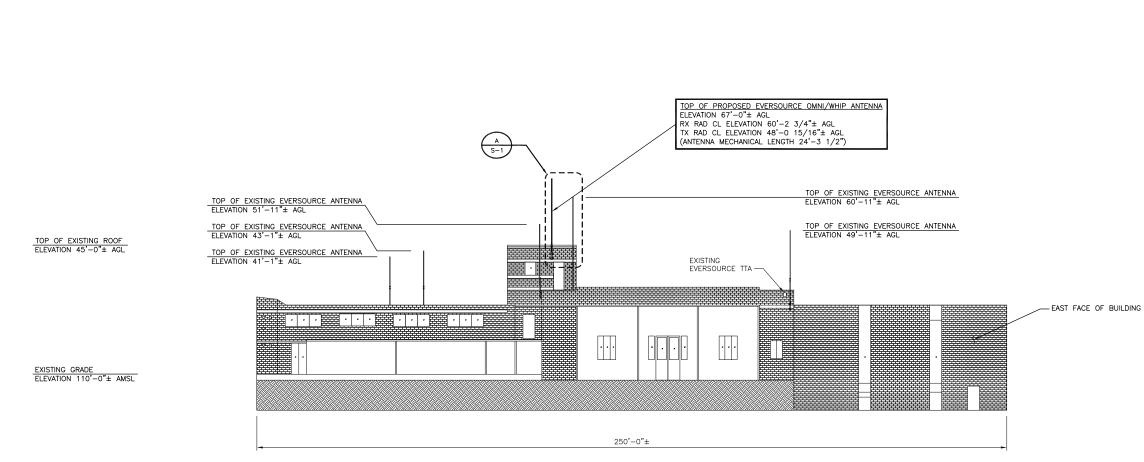
ASSESSOR'S		
PERMIT HISTORY	No data found.	

PROPERTY IMAGES

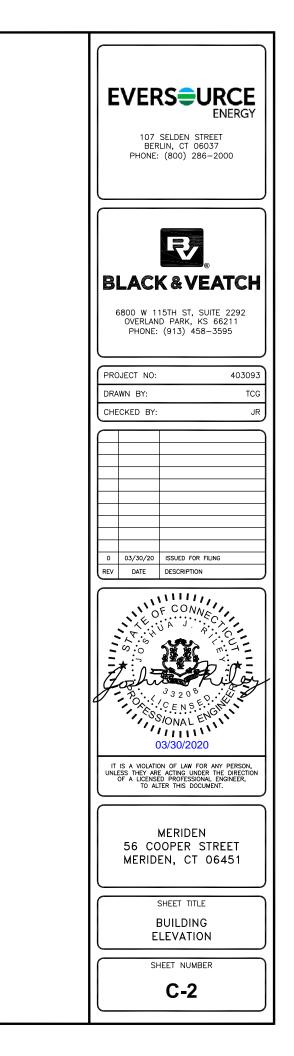
IMAGES

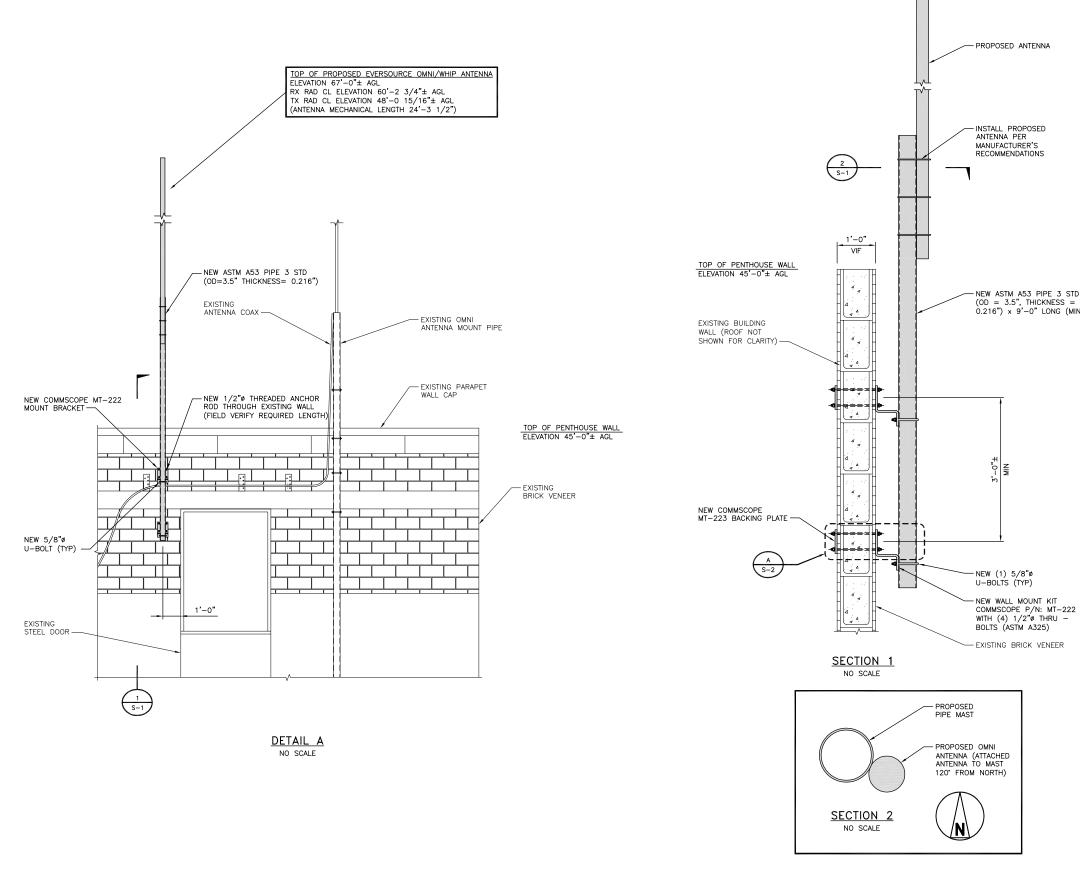

909 0113-0059-0001-0010 1 ATTACHMENT B – CONSTRUCTION DRAWINGS




MERIDEN 56 COOPER STREET MERIDEN, CT 06451

THE GENERAL SCOPE OF WORK CONSISTS OF THE FOLLOWING: 1. INSTALL (1) NEW ANTENNA MAST PIPE NEAR TOP OF EXISTING BUILDING WALL 2. INSTALL (1) NEW OMNI/WHIP ANTENNA AT ELEVATION 67'-0"± AGL SITE UPGRADE ROOFTOP 3. INSTALL (1) NEW RACK WITH DMR EQUIPMENT IN EXISTING TELECOM ROOM LOCATION MAP **GOVERNING CODES** 2018 CONNECTICUT STATE BUILDING CODE (2015 IBC BASIS) 2017 NATIONAL ELECTRIC CODE TIA-222-H SHEET NO: SHEET TITLE HANOVERSE ŝ T-1 TITLE SHEET GOLD ST C-1 ROOFTOP PLAN Ľ BUILDING ELEVATION C-2 HANOVERST **GENERAL NOTES** S-1 STRUCTURAL DETAILS STRUCTURAL DETAILS S-2 AVE G-1GROUNDING DETAILS A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT N-1 NOTES & SPECIFICATIONS COOK ON DRAINAGE: NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH N-2 NOTES & SPECIFICATIONS DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED. N-3NOTES & SPECIFICATIONS CHERRY ST ら SITE INFORMATION 71 VETERAN. SITE NAME: SITE ID NUMBER: MERIDEN #908 â ORANGE ST SITE ADDRESS: 56 COOPER STREET MERIDEN, CT 06451 MAP/LOT ZONE: 0113-0059-0001-0010 OL IVE ST ಷ M-3 KING COOPER ST LATITUDE 41° 31' 57.1" N GRANTST LONGITUDE 72' 48' 21.4" W MERIDEN ELEVATION: 110'± AMSI 5 MERIDIAN FEMA/FIRM DESIGNATION: ACREAGE: 10.47± AC (BOOK: 1646, PAGE: 11) х BRONSON AVE CONTACT INFORMATION <u>APPLICANTS:</u> EVERSOURCE ENERGY 107 SELDEN STREET POWER PROVIDER: EVERSOURCE ENERGY 6 VIEW (800) 286-2000 BERLIN, CT 06037 (64) [71] TELCO PROVIDER: FRONTIER PROPERTY_OWNER: EVERSOURCE_ENERGY 107_SELDEN_STREET (800) 921-8102 BERLIN, CT 06037 CALL BEFORE YOU DIG: (800) 922-4455 EVERSOURCE_ENERGY PROJECT_MANAGER: NIKOLL_PRECI -05 (860) 655-3079 NO SCALE


PROJECT SUMMARY



<u>DETAIL A</u> BUILDING ELEVATION NO SCALE

<u>NOTES</u>

INSTALL COAX GROUND KITS AT BOTTOM OF ANTENNA AND BEFORE COAX ENTERS BUILDING. CONNECT TO #6 AWG GROUND WIRE RUNNING FROM EGB TO ANTENNA MOUNT (SEE DETAILS "A" AND "B" SH G-1).

- NEW ASTM A53 PIPE 3 STD (OD = 3.5", THICKNESS = 0.216") × 9'-0" LONG (MIN)

EVERSURCE ENERGY

107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286–2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

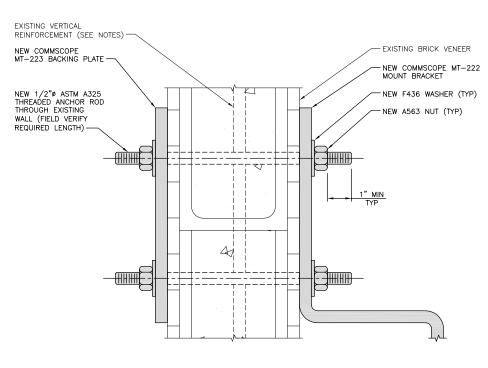
PROJECT NO:	403093
DRAWN BY:	TCG
CHECKED BY:	JR

0	03/30/20	ISSUED FOR FILING
REV	DATE	DESCRIPTION

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

MERIDEN 56 COOPER STREET MERIDEN, CT 06451

SHEET TITLE


STRUCTURAL DETAILS

SHEET NUMBER

S-1

<u>NOTES</u>

- 1. CONTRACTOR SHALL NOT INTERFERE WITH EXISTING WALL REINFORCEMENT. WALL MAY NEED TO BE X-RAYED TO DETERMINE REINFORCEMENT LOCATIONS.
- 2. EXISTING WALL REINFORCEMENT SHALL BE INTACT.
- 3. CONTRACTOR SHALL NOTIFY EOR IMMEDIATELY IF THE EXISTING WALL DOES NOT MATCH THE DETAIL SHOWN HERE.

<u>DETAIL A</u> NO SCALE

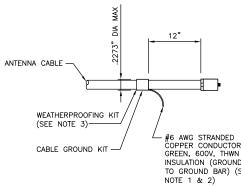
107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286–2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

PROJECT NO:	403093
DRAWN BY:	TCG
CHECKED BY:	JR

0	03/30/20	ISSUED FOR FILING
REV	DATE	DESCRIPTION

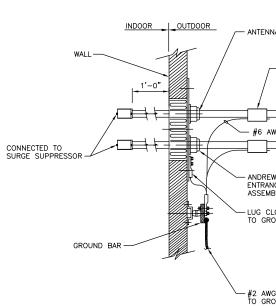
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.


MERIDEN 56 COOPER STREET MERIDEN, CT 06451

SHEET TITLE

STRUCTURAL DETAILS

SHEET NUMBER


S-2

<u>NOTES</u>

- 1. DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO GROUND BAR.
- 2. GROUNDING KIT SHALL BE TYPE AND PART NUMBER AS SUPPLIED OR RECOMMENDED BY CABLE MANUFACTURER.
- 3. WEATHER PROOFING SHALL BE TYPE AND PART NUMBER AS SUPPLIED OR RECOMMENDED BY CABLE MANUFACTURER.

CABLE INSTALLATION WITH WALL FEED THRU ASSEMBLY NO SCALE

DETAIL A CONNECTION OF CABLE GROUND KIT TO ANTENNA CABLE NO SCALE

INA CABLES (TYP)	EVERS EVERS URCE ENERGY
CABLE GROUNDING KIT	PHONE: (800) 286-2000
 AWG (TYP) 	R
EW (OR EQUAL) MULTIPLE NCE WALL FEED THRU BILY	BLACK & VEATCH
CLOSURE PLATE ROUND BAR	6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458–3595
	PROJECT NO: 403093
VG SOLID TINNED BCW ROUND RING	DRAWN BY: TCG
	CHECKED BY: JR
<u>LL</u>	
	0 03/30/20 ISSUED FOR FILING
	REV DATE DESCRIPTION
	OF CONNEC HE OF CONNEC OF CONNE
	IT IS A VOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.
	MERIDEN 56 COOPER STREET MERIDEN, CT 06451
	SHEET TITLE GROUNDING DETAILS
	SHEET NUMBER
	G-1

DESIGN BASIS

1. GOVERNING CODE: 2018 CONNECTICUT STATE BUILDING CODE (2015 IBC BASIS).

GENERAL CONDITIONS

- IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO COMPLY WITH ALL APPLICABLE FEDERAL, STATE, AND LOCAL BUILDING CODES, PERMIT CONDITIONS AND SAFETY CODES DURING CONSTRUCTION. 1.
- THE ENGINEER IS NOT: A GUARANTOR OF THE INSTALLING CONTRACTOR'S WORK; RESPONSIBLE FOR SAFETY IN, ON OR ABOUT THE WORK SITE; IN CONTROL OF THE SAFETY OR ADEQUACY OF ANY BUILDING COMPONENT, SCAFFOLDING OR SUPERINTENDING THE WORK.
- THE CONTRACTOR IS RESPONSIBLE FOR PROVIDING ALL PERMITS, INSPECTIONS, TESTING AND CERTIFICATES NEEDED FOR LEGAL OCCUPANCY OF THE FINISHED PROJECT. 3.
- THE CONTRACTOR IS RESPONSIBLE TO REVIEW THIS COMPLETE PLAN SET AND VERIFY THE EXISTING INCOMPTICATIONS SHOWN IS INCOMPTICATE LANS AS THEY RELATE TO THE WORK PRIOR TO SUBMITTING PRICE. SIGNIFICANT DEVIATIONS FROM WHAT IS SHOWN AFFECTING THE WORK SHALL BE REPORTED IMMEDIATELY TO THE CONSTRUCTION MANAGER.
- 5. DETAILS INCLUDED IN THIS PLAN SET ARE TYPICAL AND APPLY TO SIMILAR CONDITIONS.
- EXISTING ELECTRICAL AND MECHANICAL FIXTURES, PIPING, WIRING, AND EQUIPMENT OBSTRUCTING 6. THE WORK SHALL BE REMOVED AND/OR RELOCATED AS DIRECTED BY THE CONSTRUCTION MANAGER. PORARY SERVICE INTERRUPTIONS MUST BE COORDINATED WITH OWNER.
- 7. THE CONTRACTOR SHALL DILIGENTLY PROTECT THE EXISTING BUILDING/SITE CONDITIONS AND THOSE OF ANY ADJOINING BUILDING/SITES AND RESTORE ANY DAMAGE CAUSED BY HIS ACTIVITIES TO THE PRE-CONSTRUCTION CONDITION
- THE CONTRACTOR SHALL SAFEGUARD AGAINST: CREATING A FIRE HAZARD, AFFECTING TENANT EGRESS 8. OR COMPROMISING BUILDING SITE SECURITY MEASURES.
- 9. THE CONTRACTOR SHALL REMOVE ALL DEBRIS AND CONSTRUCTION WASTE FROM THE SITE EACH DAY. WORK AREAS SHALL BE SWEPT AND MADE CLEAN AT THE END OF EACH WORK DAY.
- THE CONTRACTOR'S HOURS OF WORK SHALL BE IN ACCORDANCE WITH LOCAL CODES AND ORDINANCES AND BE APPROVED BY OWNER.
- 11. THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE CONSTRUCTION MANAGER IF ASBESTOS IS ENCOUNTERED DURING THE EXECUTION OF HIS WORK. THE CONTRACTOR SHALL CEASE ALL ACTIVITIES WHERE THE ASBESTOS MATERIAL IS FOUND UNTIL NOTIFIED BY THE CONSTRUCTION MANAGER TO RESUME OPERATIONS.

THERMAL & MOISTURE PROTECTION

- FIRE-STOP ALL PENETRATIONS FOR ELECTRICAL CONDUITS OR WAVEGUIDE CABLING THROUGH BUILDING WALLS, FLOORS, AND CEILINGS SHALL BE FIRESTOPPED WITH ACCEPTED MATERIALS TO MAINTAIN THE FIRE RATING OF THE EXISTING ASSEMBLY. ALL FILL MATERIAL SHALL BE SHAPED, FITTED, AND PERMANENTLY SECURED IN PLACE. FIRESTOPPING SHALL BE INSTALLED IN ACCORDANCE
- 2. HILTI CP620 FIRE FOAM OR 3M FIRE BARRIER FILL, VOID OR CAVITY MATERIAL OR ACCEPTED EQUAL SHALL BE APPLIED IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS AND ASSOCIATED UNDERWRITERS LABORATORIES (UL) SYSTEM NUMBER.
- FIRESTOPPING SHALL BE APPLIED AS SOON AS PRACTICABLE AFTER PENETRATIONS ARE MADE AND EQUIPMENT INSTALLED. 3.
- FIRESTOPPED PENETRATIONS SHALL BE LEFT EXPOSED AND MADE AVAILABLE FOR INSPECTION BEFORE CONCEALING SUCH PENETRATIONS. FIRESTOPPING MATERIAL CERTIFICATES SHALL BE MADE AVAILABLE AT THE TIME OF INSPECTION.
- ANY BUILDING ROOF PENETRATION AND/OR RESTORATION SHALL BE PERFORMED SO THAT THE ROOF WARRANTY IN PLACE IS NOT COMPROMISED. CONTRACTOR SHALL ARRANGE FOR OWNER'S ROOFING CONTRACTOR TO PERFORM ANY AND ALL ROOFING WORK IF SO REQUIRED BY EXISTING ROOF WARRANTY. OTHERWISE, ROOF SHALL BE MADE WATERTIGHT WITH LIKE CONSTRUCTION AS SOON AS PRACTICABLE AND AT COMPLETION OF CONSTRUCTION.
- ALL PENETRATIONS INTO AND/OR THROUGH BUILDING EXTERIOR WALLS SHALL BE SEALED WITH 6. SILICONE SEALER.
- WHERE CONDUIT AND CABLES PENETRATES FIRE RATED WALLS AND FLOORS, FIRE GROUT ALL PENETRATIONS IN ORDER TO MAINTAIN THE FIRE RATING USING A LISTED FIRE SEALING DEVICE OR GROUT
- 8. CONTRACTOR TO REMOVE AND RE-INSTALL ALL FIRE PROOFING AS REQUIRED DURING CONSTRUCTION.

SUBMITTALS

- 1. CONTRACTOR TO SUBMIT SHOP DRAWINGS TO ENGINEER FOR REVIEW PRIOR TO FABRICATION.
- 2. CONTRACTOR TO NOTIFY ENGINEER FOR INSPECTION PRIOR TO CLOSING PENETRATIONS
- CONTRACTORS SHALL VERIFY ALL DIMENSIONS AND CONDITIONS IN THE FIELD PRIOR TO FABRICATION 3. AND ERECTION OF ANY MATERIAL. THE ENGINEER SHALL BE NOTIFIED OF ANY CONDITIONS WHICH PRECLUDE COMPLETION OF THE WORK IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.
- ALL STEEL MATERIAL EXPOSED TO WEATHER SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 " ZINC (HOT-DIPPED GALVANIZED) COATINGS" ON IRON AND STEEL PRODUCTS
- THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NONCONFORMING MATERIALS OR CONDITIONS FOR REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW.

STEEL

1. MATERIAL

ASTM A572, GR 50
ASTM A500, GR C
ASTM A53, GR B
ASTM A325
TYPE $GW-2$ (1"x3/16" BARS)
ASTM A36

ALL STEEL SHAPES SHALL BE HOT-DIPPED GALVANIZED IN ACCORDANCE WITH ASTM A123 WITH A COATING WEIGHT OF 2 OZ/SF

- DAMAGED GALVANIZED SURFACES SHALL BE CLEANED WITH A WIRE BRUSH AND PAINTED WITH TWO COATS OF COLD ZINC, "GALVANOX", "DRY GALV", "ZINC IT", OR APPROVED EQUIVALENT, IN ACCORDANCE WITH MANUFACTURER'S GUIDELINES. TOUCH UP DAMAGED NON GALVANIZED STEEL WITH SAME PAINT IN SHOP OR FIFLD.
- DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL SHALL CONFORM TO THE AISC "MANUAL OF STEEL CONSTRUCTION" 13TH EDITION.
- 4. THE STEEL STRUCTURE IS DESIGNED TO BE SELF-SUPPORTING AND STABLE AFTER COMPLETION. IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO DETERMINE ERECTION PROCEDURE AND SEQUENCE AND TO INSURE THE SAFETY OF THE BUILDING AND ITS COMPONENT PARTS DURING ERECTION.
- 5. ALL STEEL ELEMENTS SHALL BE INSTALLED PLUMB AND LEVEL
- 6. TOWER MANUFACTURER'S DESIGNS SHALL PREVAIL FOR TOWER.

CONNECTIONS

- CONNECTIONS SHALL BE DESIGNED BY THE FABRICATOR AND CONSTRUCTED IN ACCORDANCE WITH 1. THE AISC "MANUAL OF STEEL CONSTRUCTION" 13TH EDITION. CONNECTIONS SHALL BE PROVIDED TO CONFORM TO THE REQUIREMENTS OF TYPE 2 CONSTRUCTION UNLESS OTHERWISE DETAILED. ALL WELDING SHALL BE PERFORMED BY AWS CERTIFIED WELDERS.
- 2. DESIGN CONNECTIONS AT BEAM ENDS FOR 10 KIPS (MIN)
- 3. ALL BUILDING CONNECTION POINTS ARE TO BE CENTERED OVER BEARING WALLS
- CONNECTIONS SHALL BE MADE USING ASTM A325 BOLTS (SNUG TIGHT OR SLIP CRITICAL) OR WELDS. IF TENSION CONTROL BOLTS ARE USED, CONNECTIONS SHALL BE DESIGNED FOR SLIP CRITICAL BOLT ALLOWABLE LOAD VALUES. 4.
- 5. NUT LOCKING DEVICES ARE REQUIRED FOR ALL BOLT ASSEMBLIES.
- GRATING SHALL BE ATTACHED USING FOR GRATING CLAMPS OR 1/4 INCH FILLET WELDS. NON-STRUCTURAL CONNECTIONS FOR STEEL GRATING MAY BE 5/8" DIAMETER GALVANIZED ASTM A307 BOLTS UNLESS OTHERWISE NOTED.
- 7. ALL BOLTS, ANCHORS, AND MISCELLANEOUS HARDWARE EXPOSED TO WEATHER SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE."
- 8. CONTRACTOR SHALL COMPLY WITH AWS CODE FOR PROCEDURES, APPEARANCE AND QUALITY OF WELDS, AND WELDING PROCESSES SHALL BE QUALIFIED IN ACCORDANCE WITH AWS "STANDARD QUALIFICATION PROCEDURES". UPON COMPLETION OF WELDING, ALL DAMAGE TO GALVANIZED COATING SHALL BE REPAIRED. SEE NOTE ABOVE.
- 9. USE THE LARGER OF 1/4 INCH FILLET WELDS OR MINIMUM SIZE PER AISC REQUIREMENTS WHERE NO WELD SIZE IS SHOWN ON THE DRAWINGS.
- 10. ALL ARC AND GAS WELDING SHALL BE DONE BY LICENSED AND CERTIFIED WELDER IN ACCORDANCE WITH AMERICAN WELDING SOCIETY.
- 11. ALL WELDING SHALL BE DONE USING E70XX ELECTRODES AND WELDING SHALL CONFORM TO AISC AND AWS D1.1. UPON THE COMPLETION OF WELDING, ALL DAMAGE TO GALVANIZED COATINGS SHALL REPAIRED.
- 12. USE PRECAUTIONS AND PROCEDURES PER AWS D1.1 WHEN WELDING GALVANIZED METALS.

ANCHORS

- EXPANSION ANCHORS SHALL BE USED WHERE ATTACHING TO CONCRETE. MASONRY MOUNTS SHALL HAVE INJECTION ADHESIVE ANCHORING.
- 2. EXPANSION BOLTS SHALL BE HILTI KWIK BOLT 3 OR APPROVED EQUAL, MINIMUM EMBEDMENT SHALL BE 4 INCHES
- INJECTION ADHESIVE ANCHORING IN MASONRY WITH VOIDS SHALL BE HILTI HY-70 OR EQUAL WITH THREADED ROD AND SCREEN TUBES TO THE FOLLOWING BASE MATERIALS. 3.

BRICK WITH HOLES: SPACE ANCHORS 2 COMPLETE BRICKS APART MINIMUM. MAINTAIN 2 COMPLETE BRICKS OR 16 INCHES FROM FREE EDGES (WHICHEVER IS LESS). EMBEDMENT: 3 1/2 INCHES MINIMUM.

HOLLOW CONCRETE BLOCK: USE 50% MORE ANCHORS THAN SHOWN IN DETAIL. SPACING: ONE ANCHOR MAXIMUM PER BLOCK CELL. MAINTAIN 12 INCH SPACING FROM FREE EDGES. EMBEDMENT: THROUGH FACE.

- 4. INJECTION ADHESIVE ANCHORING IN SOLID MASONRY AND GROUT FILLED BLOCK SHALL BE HILTI HIT HY-200 OR EQUAL WITH THREADED ROD. MAINTAIN 12 INCH SPACING BETWEEN ANCHORS AND ALL FREE EDGES. MINIMUM SPACING BETWEEN ANCHORS IS 8 INCHES.
- ANCHORS SHALL BE INSTALLED PER MANUFACTURER'S RECOMMENDATIONS AND SHALL NOT BE 5. INSTALLED IN MORTAR JOINTS.
- GRATING SHALL BE ATTACHED USING FOR GRATING CLAMPS OR 1/4 INCH FILLET WELDS AND STRUCTURAL CONNECTIONS FOR STEEL GRATING MAY BE 5/8" DIAMETER GALVANIZED ASTM A307 BOLTS UNLESS OTHERWISE NOTED.

SITE GENERAL

- CONTRACTOR SHALL FOLLOW CONDITIONS OF ALL APPLICABLE PERMITS AND WORK IN ACCORDANCE 1 WITH OSHA REGULATIONS
- THESE PLANS DEPICT KNOWN UNDERGROUND STRUCTURES, CONDUITS, AND/OR PIPELINES. THE LOCATIONS FOR THESE ELEMENTS ARE BASED UPON THE VARIOUS RECORD DRAWINGS AVAILABLE. THE CONTRACTOR IS HEREBY ADVISED THAT THESE DRAWINGS MAY NOT ACCURATELY DEPICT AS-BUILT LOCATIONS AND OTHER UNKNOWN STRUCTURES. THE CONTRACTOR SHALL THEREFORE DETERMINE THE EXACT LOCATION OF EXISTING UNDERGROUND ELEMENTS AND EXCAVATE WITH CARE 2. BLASTING
- ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, FIBER OPTIC, AND OTHER UTILITIES WHERE ENCOUNTERED, SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION, SHALL BE RELOCATED AS DIRECTED BY ENGINEER. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR PIER DRILLING AROUND OR NEAR UTILITIES. CONTRACTOR SHALL HAND DIG UTILITIES AS NEEDED. CONTRACTOR SHALL PROVIDE, BUT IS NOT AND D) TRENCHING AND EXCAVATION
- 4. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES, AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY
- ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC, FIBER OPTIC, OR OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED, AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT THE POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF THE CONSTRUCTION MANAGER
- 6. CONTRACTOR IS RESPONSIBLE FOR REPAIRING OR REPLACING STRUCTURES OR UTILITIES DAMAGED DURING CONSTRUCTION
- CONTRACTOR SHALL PROTECT EXISTING PAVED AND GRAVEL SURFACES, CURBS, LANDSCAPE AND STRUCTURES AND RESTORE SITE OR PRE-CONSTRUCTION CONDITION WITH AS GOOD, OR BETTER, MATERIALS. NEW MATERIALS SHALL MATCH EXISTING THICKNESS AND TYPE.
- THE CONTRACTOR SHALL SHORE ALL TRENCH EXCAVATIONS GREATER THAN 5 FEET IN DEPTH OR 8. LESS WHERE SOIL CONDITIONS ARE DEEMED UNSTABLE. ALL SHEETING AND/OR SHORING METHODS SHALL BE DESIGNED BY A PROFESSIONAL ENGINEER.
- THE CONTRACTOR IS RESPONSIBLE FOR MANAGING GROUNDWATER LEVELS IN THE VICINITY OF EXCAVATIONS TO PROTECT ADJACENT PROPERTIES AND NEW WORK. GROUNDWATER SHALL BE DRAINED IN ACCORDANCE WITH LOCAL SEDIMENTATION AND EROSION CONTROL GUIDELINES. 9

AFTER CALLING MARKOUT SERVICE AT 1-800-272-4480 48 HOURS BEFORE DIGGING, DRILLING OR

LIMITED TO, APPROPRIATE A) FALL PROTECTION, B) CONFINED SPACE ENTRY, C) ELECTRICAL SAFETY,

107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286-2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

PROJECT NO:	403093
DRAWN BY:	TCG
CHECKED BY:	JR

0	03/30/20	ISSUED FOR FILING	
REV	DATE	DESCRIPTION	

IT IS A VIOLATION OF LAW FOR ANY PERSON UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

> MERIDEN 56 COOPER STREET MERIDEN, CT 06451

> > SHEET TITLE

NOTES & SPECIFICATIONS

SHEET NUMBER

N-1

ELECTRICAL

- CONTRACTOR SHALL VERIFY EXISTING ELECTRIC SERVICE TYPE AND CAPACITY AND ORDER NEW ELECTRIC SERVICE FROM LOCAL ELECTRIC UTILITY, WHERE APPLICABLE.
- 2. ALL ELECTRICAL WORK SHALL BE IN ACCORDANCE WITH ALL APPLICABLE CODES, AND SHALL BE ACCEPTABLE TO ALL AUTHORITIES HAVING JURISDICTION. WHERE A CONFLICT EXISTS BETWEEN CODES, PLAN AND SPECIFICATIONS, OR AUTHORITIES HAVING JURISDICTION, THE MORE STRINGENT AUTHORITIES SHALL APPLY.
- 3. CONTRACTOR SHALL PROVIDE ALL LABOR, MATERIALS, INSURANCE, EQUIPMENT, INSTALLATION, CONSTRUCTION TOOLS, TRANSPORTATION, ETC, FOR A COMPLETE AND PROPERLY OPERATIVE SYSTEM ENERGIZED THROUGHOUT AND AS INDICATED ON THE DRAWINGS AND AS SPECIFIED HEREIN AND/OR HERWISE REQUIRED.
- 4. ALL ELECTRICAL CONDUCTORS SHALL BE 100% COPPER AND SHALL HAVE TYPE THHN INSULATION UNLESS INDICATED OTHERWISE.
- CONDUIT SHALL BE THREADED RIGID GALVANIZED STEEL OR EMT WITH ONLY COMPRESSION TYPE 5. COUPLINGS AND CONNECTORS, ALL MADE UP WRENCH TIGHT.
- 6. ALL BURIED CONDUIT SHALL BE MINIMUM SCH 40 PVC UNLESS NOTED OTHERWISE, OR AS PER LOCAL CODE REQUIREMENTS.
- PROVIDE FLEXIBLE STEEL CONDUIT OR LIQUID TIGHT FLEXIBLE STEEL CONDUIT TO ALL VIBRATING EQUIPMENT, INCLUDING HVAC UNITS, TRANSFORMERS, MOTORS, ETC, OR WHERE EQUIPMENT IS PLACED UPON A SLAB ON GRADE. 7.
- 8. ALL BRANCH CIRCUITS AND FEEDERS SHALL HAVE A SEPARATE GREEN INSULATED EQUIPMENT GROUNDING CONDUCTOR BONDED TO ALL ENCLOSURES, PULLBOXES, ETC.
- 9. CONDUIT AND CABLE WITHIN CORRIDORS SHALL BE CONCEALED AND EXPOSED ELSEWHERE, UNLESS NOTED OTHERWISE.
- 10. ELECTRICAL MATERIALS INSTALLED ON ROOFTOP SHALL BE LISTED FOR NEMA 3R USE. -AND ALL WIRING WITHIN A VENTILATION DUCT SHALL BE LISTED FOR SUCH USE. IN GENERAL WIRING METHODS WITHIN A DUCT SHALL BE AN MC CABLE WITH SMOOTH OR CORRUGATED METAL JACKET AND HAVE NO OUTER COVERING OVER THE METAL JACKET. INTERLOCKED ARMOR TYPE OF MC CABLE IS NOT ACCEPTABLE FOR THIS APPLICATION. CONTRACTOR CAN ALSO USE TYPE MI CABLE IN THE VENTILATION DUCT PROVIDED IT DOES NOT HAVE ANY OUTER COVERINGS OVER THE METAL EXTERIOR.
- 11. WIRING DEVICES SHALL BE SPECIFICATION GRADE, AND WIRING DEVICE COVER PLATES SHALL BE PLASTIC WITH ENGRAVING AS SPECIFIED.
- 12 GROUNDING SYSTEM RESISTANCE SHALL BE MEASURED RECORDED AND DATED LISING MEGGER DET14 OR SIMILAR INSTRUMENT. GROUND RESISTANCE SHALL NOT EXCEED 5 OHMS. IF THE RESISTANCE VALUE IS EXCEEDED, NOTIFY CONSTRUCTION MANAGER FOR FURTHER INSTRUCTION.
- 13. COORDINATE WITH BUILDING MANAGEMENT BEFORE PERFORMING ANY WORK INVOLVING EXISTING SYSTEMS OR EQUIPMENT IN ORDER TO DETERMINE THE EFFECT, IF ANY, ON OTHER TENANTS WITHIN THE BUILDING, AND TO DETERMINE THE APPROPRIATE TIME FOR PERFORMING THIS WORK.
- 14. THE CONTRACTOR SHALL BE REQUIRED TO VISIT THE SITE PRIOR TO SUBMITTING BID IN ORDER TO DETERMINE THE EXTENT OF THE EXISTING CONDITIONS.
- 15. ALL CONDUCTOR ENDS SHALL BE TAGGED AND ELECTRICAL EQUIPMENT LABELED WITH ENGRAVED IDENTIFICATION PLATES.
- 16. CONTRACTOR IS RESPONSIBLE FOR ALL CONTROL WIRING AND ALARM TIE-INS.

GROUNDING

- 1. #6 THWN SHALL BE STRANDED #6 COPPER WITH GREEN THWN INSULATION SUITABLE FOR WET INSTALLATIONS
- 2. #2 THWN SHALL BE STRANDED #2 COPPER WITH THWN INSULATION SUITABLE FOR WET STALLATIONS
- 3. #2 BARE TINNED SHALL BE SOLID COPPER TINNED. ALL BURIED WIRE SHALL MEET THIS CRITERIA.
- 4. ALL LUGS SHALL BE 2-HOLE, LONG BARREL, TINNED SOLID COPPER UNLESS OTHERWISE SPECIFIED, LUGS SHALL BE THOMAS AND BETTS SERIES 548##BE OR EQUIVALENT (IE #2 THWN - 54856BE, #2 SOLID - 54856BE, AND #6 THWN - 54852BE).
- ALL HARDWARE, BOLTS, NUTS, AND WASHERS SHALL BE 18-8 STAINLESS STEEL. EVERY CONNECTION SHALL BE BOLT-FLAT WASHER-BUSS-LUG-FLAT WASHER-BELLEVILLE WASHER-NUT IN THAT EXACT ORDER. BACK-TO-BACK LUGGING, BOLT-FLAT WASHER-LUG-BUSS-LUG-FLAT WASHER-BELLEVILLE WASHER-NUT, IN THAT EXACT ORDER, IS ACCEPTED WHERE INCESSARY TO CONNECT MANY LUGS TO A BUSS BAR. STACKING OF LUGS, BUSS-LUG-LUG, IS NOT ACCEPTABLE.
- 6. WHERE CONNECTIONS ARE MADE TO STEEL OR DISSIMILAR METALS, A THOMAS AND BETTS DRAGON TOOTH WASHER MODEL DTWXXX SHALL BE USED BETWEEN THE LUG AND THE STEEL, BOLT-FLAT WASHER-STEEL-DRAGON TOOTH WASHER-LUG-FLAT WASHER-BELEVILE WASHER-NUT.
- ALL CONNECTIONS, INTERIOR AND EXTERIOR, SHALL BE MADE WITH THOMAS AND BETTS KPOR-SHIELD. COAT ALL WIRES BEFORE LUGGING AND COAT ALL SURFACES BEFORE CONNECTING.
- 8. THE MINIMUM BEND RADIUS SHALL BE 8 INCHES FOR #6 WIRE AND SMALLER AND 12 INCHES FOR WIRE LARGER THAN #6.
- 9. ALL CONNECTIONS TO THE GROUND RING SHALL BE EXOTHERMIC WELD.
- 10. BOND THE FENCE TO THE GROUND RING AT EACH CORNER, AND AT EACH GATE POST WITH #2 SOLID TINNED WIRE, EXOTHERMIC WELD BOTH ENDS.
- 11. GROUND KITS SHALL BE SOLID COPPER STRAP WITH #6 WIRE 2-HOLE COMPRESSION CRIMPED LUGS AND SHALL BE SEALED ACCORDING TO MANUFACTURER INSTRUCTIONS.
- 12. FERROUS METAL CLIPS WHICH COMPLETELY SURROUND THE GROUNDING CONDUCTOR SHALL BE USED
- 13. GROUND BARS SHALL BE FURNISHED AND INSTALLED WITH PRE-DRILLED HOLE DIAMETERS AND SPACINGS GROUND BARS SHALL NEITHER BE FIELD FABRICATED NOR NEW HOLES DRILLED GROUND LUGS SHALL MATCH THE SPACING ON THE BAR. HARDWARE DIAMETER SHALL BE MINIMUM 3.8 INCH.
- 14. MGB GROUND CONNECTION SHALL BE EXOTHERMIC WELDED TO THE GROUND SYSTEM.
- 15. ALL CABLE TRAY AND/OR PLATFORM STEEL SHALL BE BONDED TOGETHER WITH JUMPERS (#6 IN EQUIPMENT ROOM, #2 ELSEWHERE AND HOMERUN).

CABLE TRAY

- CABLE TRAY SHALL BE MADE OF EITHER CORROSION RESISTANT METAL OR WITH A CORROSION 1. RESISTANT FINISH.
- 2. CABLE TRAY SHALL BE OF LADDER TRAY TYPE WITH FLAT COVER CLAMPED TO SIDE RAILS.
- 3. CABLE LADDER SHALL BE SIZED TO FIT ALL CABLES IN ACCORD WITH NEC AND NEMA 11-15-84.
- 4. CABLE LADDER TRAYS SHALL BE NEMA CLASS 12A BY PW INDUSTRIES, INC OR EQUAL.
- 5. CABLE LADDER TRAY SHALL BE SUPPORTED IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS.
- 6. ALL WORKMANSHIP SHALL CONFORM TO THESE REQUIREMENTS AND ALL LOCAL CODES AND STANDARDS TO ENSURE SAFE AND ADEQUATE GROUNDING SYSTEM.

ANTENNA & CABLE NOTES

- 1. THE CONTRACTOR SHALL FURNISH AND INSTALL ALL TRANSMISSION CABLES, JUMPERS, CONNECTORS, GROUNDING STRAPS, ANTENNAS, MOUNTS AND HARDWARE. ALL MATERIALS SHALL BE INSPECTED BY THE CONTRACTOR FOR DAMAGE UPON DELIVERY. JUMPERS SHALL BE SUPPLIED AT ANTENNAS AND EQUIPMENT INSIDE SHELTER COORDINATE LENGTH OF JUMP CABLES WITH EVERSOURCE. COORDINATE AND VERIFY ALL OF THE MATERIALS TO BE PROVIDED WITH EVERSOURCE PRIOR TO SUBMITTING BID DEDEDRICH ANTERIALS AND ORDERING MATERIALS.
- 2. AFTER INSTALLATION, THE TRANSMISSION LINE SYSTEM SHALL BE PIM/SWEEP TESTED FOR PROPER INSTALLATION AND DAMAGE WITH ANTENNAS CONNECTED. CONTRACTOR TO OBTAIN LATEST TESTING PROCEDURES FROM EVERSOURCE PRIOR TO BIDDING.
- 3. ANTENNA CABLES SHALL BE COLOR CODED AT THE FOLLOWING LOCATIONS:
- AT THE ANTENNAS. - AT THE WAVEGUIDE ENTRY PLATE ON BOTH SIDES OF THE EQUIPMENT SHELTER WALL. - JUMPER CABLES AT THE EQUIPMENT ENTER.
- 4. SYSTEM INSTALLATION: THE CONTRACTOR SHALL INSTALL ALL CABLES AND ANTENNAS TO THE MANUFACTURER'S SPECIFICATIONS. THE CONTRACTOR IS RESPONSIBLE FOR THE PROCUREMENT AND INSTALLATION OF
- THE FOLLOWING: - ALL CONNECTORS, ASSOCIATED CABLE MOUNTING, AND GROUNDING HARDWARE. - WALL MOUNTS, STANDOFFS, AND ASSOCIATED HARDWARE.
 - 1/2 INCH HELIAX ANTENNA JUMPERS OF APPROPRIATE LENGTHS.
- 5. MINIMUM BENDING RADIUS FOR COAXIAL CABLES: -7/8 INCH. RMIN = 15 INCHES -15/8 INCH, RMIN = 25 INCHES
- 7. ALL CABLE CONNECTIONS OUTSIDE SHALL BE COVERED WITH WATERPROOF SPLICING KIT.
- 8. CONTRACTOR SHALL VERIFY EXACT LENGTH AND DIRECTION OF TRAVEL IN FIELD PRIOR TO
- 9. CABLE SHALL BE FURNISHED WITHOUT SPLICES AND WITH CONNECTORS AT EACH END.

CABLE SHALL BE INSTALLED WITH A MINIMUM NUMBER OF BENDS WHERE POSSIBLE. CABLE SHALL NOT BE LEFT UNTERMINATED AND SHALL BE SEALED IMMEDIATELY AFTER BEING INSTALLED.

EVERS ENERG

> 107 SELDEN STREET BERLIN, CT 06037 PHONE: (800) 286-2000

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211 PHONE: (913) 458-3595

PROJECT NO:	403093
DRAWN BY:	TCG
CHECKED BY:	JR

0 03/30/20 ISSUED FOR FILING
REV DATE DESCRIPTION

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

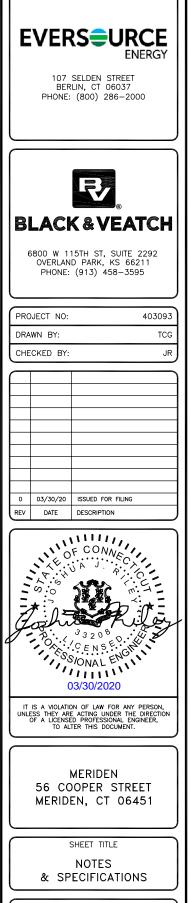
> MERIDEN 56 COOPER STREET MERIDEN, CT 06451

> > SHEET TITLE

NOTES & SPECIFICATIONS

SHEET NUMBER

N-2


<u>SYMBOLS</u>

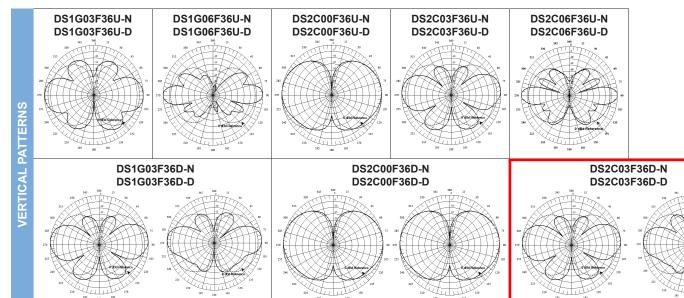
•	EXOTHERMIC CONNECTION
	COMPRESSION CONNECTION
u⊨●	5/8"øx10-'0" COPPER CLAD STEEL GROUND ROD.
	TEST GROUND ROD WITH INSPECTION SLEEVE
	GROUNDING CONDUCTOR
A	KEY NOTES
FENCE	x x x x x
LEASE AREA	
ICE BRIDGE	
CABLE TRAY	
GAS LINE	C C C C
UNDERGROUND ELECTRICAL/TELCO	E/T E/T E/T E/T
UNDERGROUND ELECTRICAL/CONTROL	E/C E/C E/C
UNDERGROUND ELECTRICAL	——— е ——— е ——— е ——— е ———
UNDERGROUND TELCO	TTTTTT
PROPERTY LINE (PL)	

ABBREVIATIONS

AC	ALTERNATING CURRENT	MGB	MASTER GROUNDING BAR
AIC	AMPERAGE INTERRUPTION CAPACITY	MIN	MINIMUM
ANI	AUXILIARY NETWORK INTERFACE	MW	MICROWAVE
ATM	ASYNCHRONOUS TRANSFER MODE	MTS	MANUAL TRANSFER SWITCH
ATS	AUTOMATIC TRANSFER SWITCH	NEC	NATIONAL ELECTRICAL CODE
AWG	AMERICAN WIRE GAUGE	oc	ON CENTER
AWS	ADVANCED WIRELESS SERVICES	PP	POLARIZING PRESERVING
BATT	BATTERY	PCU	PRIMARY CONTROL UNIT
BBU	BASEBAND UNIT	PDU	PROTOCOL DATA UNIT
BTC	BARE TINNED COPPER CONDUCTOR	PWR	POWER
BTS	BASE TRANSCEIVER STATION	RECT	RECTIFIER
CCU	CLIMATE CONTROL UNIT	RET	REMOTE ELECTRICAL TILT
CDMA	CODE DIVISION MULTIPLE ACCESS	RMC	RIGID METALLIC CONDUIT
CHG	CHARGING	RF	RADIO FREQUENCY
CLU	CLIMATE UNIT	RUC	RACK USER COMMISSIONING
СОММ	COMMON	RRH	REMOTE RADIO HEAD
DC	DIRECT CURRENT	RRU	REMOTE RADIO UNIT
DIA	DIAMETER	RWY	RACEWAY
DWG	DRAWING	SFP	SMALL FORM-FACTOR PLUGGABLE
EC	ELECTRICAL CONDUCTOR	SIAD	SMART INTEGRATED ACCESS DEVICE
EMT	ELECTRICAL METALLIC TUBING	SSC	SITE SOLUTIONS CABINET
FIF	FACILITY INTERFACE FRAME	T1	1544KBPS DIGITAL LINE
GEN	GENERATOR	TDMA	TIME-DIVISION MULTIPLE ACCESS
GPS	GLOBAL POSITIONING SYSTEM	TMA	TOWER MOUNT AMPLIFIER
GSM	GLOBAL SYSTEM FOR MOBILE	TVSS	TRANSIENT VOLTAGE SUPPRESSION SYSTEM
HVAC	HEAT/VENTILATION/AIR CONDITIONING	TYP	TYPICAL
ICF	INTERCONNECTION FRAME	UMTS	UNIVERSAL MOBILE TELECOMMUNICATION SYSTEM
IGR	INTERIOR GROUNDING RING (HALO)	UPS	UNINTERRUPTIBLE POWER SUPPLY
LTE	LONG TERM EVOLUTION		(DC POWER PLANT)

LTE LONG TERM EVOLUTION

SHEET NUMBER


N-3

REFERENCE CUTSHEETS

dbSpectra

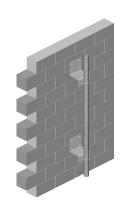
VHF Omni Antennas (160-222 MHz)

		160-174 MHz					217-222 MHz											
	Model Number		DS1G03F36U-D	DS1G06F36U-N	DS1G06F36U-D	DS1G03F36D-N	DS1G03F36D-D	DS2C00F36U-N	DS2C00F36U-D	DS2C03F36U-N	DS2C03F36U-D	DS2C06F36U-N	DS2C06F36U-D	DS2C00F36D-N	DS2C00F36D-D	DS2C03F36D-N	DS2C03F36D-D	
	Input Connector	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	N(F)	7/16 DIN	
	Туре	Sin	igle	Sin	igle	Dual		Sin	Single		Single		gle	Dı	ıal	Du	ıal	
	Bandwidth, MHz		4	1	4	14		į	5		5		5	5		5		
Ļ	Power, Watts		00	500		350		50	500		500		00	350		350		
RICA	Gain, dBd		3		6		3		0		3		6		0		3	
CTF	Horizontal Beamwidth, degrees	360		36	360		360		360		360		360		360		360	
ELECTRICAL	Vertical Beamwidth, degrees	th, degrees 30		16		30		6	60		30		16		60		30	
	Beam Tilt, degrees	n Tilt, degrees 0		0		0		(0		0		0		0		0	
	Isolation (minimum), dB		N/A		N/A		30		N/A		N/A		N/A		30		30	
	Number of Connectors		1		1		2		1	1		1		2		2		
SAL	Flat Plate Area, ft ² (m ²)		2.53 (0.24) 4.38 (0.41		(0.41)	4.5 (0.42)		1.9 (1.9 (0.18)		1.9 (0.18)		2.58 (0.24)		2.4 (0.22)		4.1 (0.38)	
NIC	Lateral Windload Thrust, lbf(N)	95 (423) 164		164 (64 (730) 169 (75		(752)	53 (53 (236)		69 (307)		108 (480)		90 (400)		169 (752)	
MECHANICAL	Survival Wind Speed without ice, mph(kph) with 0.5" radial ice, mph(kph)	110 (177) 93 (150)		75 (121) 60 (97)		75 (121) 65 (105)		222 193	(357) (311)		(277) (241)	110 (96 (*	· /	130 (115 ((209) (185)	75 (* 65 (*		
	Mounting Hardware included	DSH:	3V3R	DSH:	3V3N	DSH:	3V3N	DSH:	2V3R	DSH	2V3R	DSH	3V3N	DSH:	3V3R	DSH3	3V3N	
လ	Length, ft(m)	12.7 (3.9)		21.9 (6.7)		22.3 (6.8)		7.7	(2.3)	9.9	(3)	18.1	(5.5)	13.6	(4.1)	24.3	(7.4)	
NO	Radome O.D., in(cm)	3 (7.6)		3 (7.6)		3 (7.6)		3 (7	7.6)	3 (7.6)	3 (7	7.6)	3 (7	7.6)	3 (7	' .6)	
ENSIONS	Mast O.D., in(cm)		(6.4)	2.5	(6.4)	2.5 (6.4)		2.5	(6.4)	2.5	(6.4)	2.5 ((6.4)	2.5 ((6.4)	2.5 (6.4)	
MID	Net Weight w/o bracket, lb(kg)	37 (*	16.8)	60 (27.2)		63 (2	28.6)	19 (19 (8.6)		26 (11.8)		47 (21.3)		40 (18.1)		81.8)	
	Shipping Weight, lb(kg)	67 (3	30.4)	90 (4	40.8)	93 (4	42.2)	39 (*	17.7)	56 (2	25.4)	77 (3	34.9)	70 (3	81.8)	100 (45.4)	

Тор

Specifications are subject to change • www.dbspectra.com • 1590 E Hwy 121 Bus, Ste A100, Lewisville, TX 75056 • P(469)322-0080 • F(469)322-0079 • ISO 9001:2008 • 096000-030.D • © 04/15

Bottom


Тор

Bottom

2

Тор

Bottom

Adjustable Wall Mount for solid walls, 6 in stand-off

Product Classification
Product Type Wall mount kit

Dimensions

Height	203.2 mm 8.0 in
Length	152.4 mm 6.0 in
Pipe Outer Diameter	2 3/8 in 2 7/8 in 3 1/2 in 4 1/2 in
Weight	20.6 kg 45.5 lb
Width	203.2 mm 8.0 in

Environmental Specifications

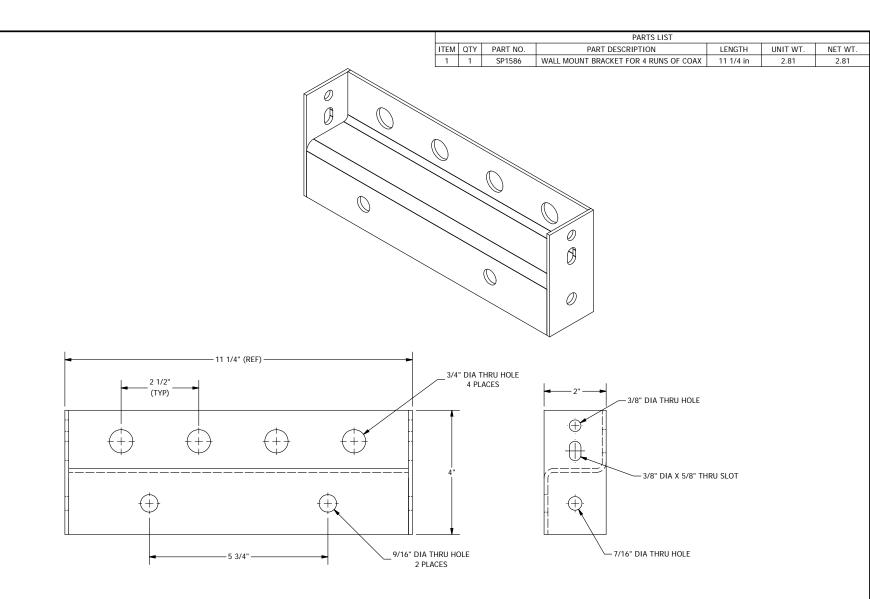
Wind Rating For Specifications, please contact steelproducts@commscope.com or call 800-255-1479

General Specifications

Mounting	Solid walls
Includes	Backing plates or anchors Wall brackets (2)
Material Type	Hot dip galvanized steel
Package Quantity	2
Stand-off Distance	152.4 mm 6.0 in

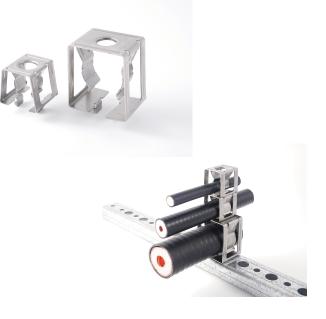
Outline Drawing

Regulatory Compliance/Certifications


AgencyClassificationISO 9001:2015Designed, manufactured and/or distributed under this quality management system

page 1 of 2 October 10, 2019

©2019 CommScope, Inc. All rights reserved. All trademarks identified by ® or ™ are registered trademarks, respectively, of CommScope.All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: April 29, 2019

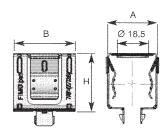


					TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030") DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 112 DEGREE		DESCRIPTION WALL MOUNT BRACKET FOR 4 RUNS GALVANIZED				SITE I	Engineering Support Team: 1-888-753-7446	Locations: New York, NY Atlanta, GA Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX	, ,
					ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")	CPD N 50		DRAWN BY KC8 5/16/2012	ENG. APPROVAL	PAR	T NO. SP	P1586		о L
A	CHANGED SPACING ON 9/16" HOLES		CEK	4/30/2015	PROPRIETARY NOTE:		SUID	DRAWING USAGE	CHECKED BY	DWC	G. NO.			Πő
REV	DESCRIPTION OF REVISIONS	CPD	BY		THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT INDUSTRIEB AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF						SE	P1586		- m
	REVISION HISTORY				INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF VALMONT INDUSTRIES IS STRICTLY PROHIBITED.	81	02	CUSTOMER	BMC 4/30/2015		01	1000		

MonoBloc Stackable Snap-In Hangers (SIC1, SIC2, SIC3, SIC4)

Features:

- · Allows cable attachment without the need for hardware
- One-hand mounting
- Stack up to four 1/2", 7/8" or 1-1/4" cables or three 1-5/8" cables


Construction:

· 301 stainless steel

Design Criteria:

Can be used outdoors or indoors

Part #	AT&T	Cable Size	U of M	Α	В	Н
SIC1	CEQ.11469	1/2"	10 pack	1-1/4"	1-9/16"	1-1/2"
SIC2	ANT.13860	7/8"	10 pack	1-1/4"	1-9/16"	1-1/2"
SIC3	ANT.13859	1-1/4"	10 pack	2-1/4"	1-3/4"	2-5/8"
SIC4	ANT.12719	1-5/8"	10 pack	2-1/4"	1-3/4"	2-5/8"

ATTACHMENT C - STRUCTURAL ANALYSIS REPORT

STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT AND PENTHOUSE WALL

MERIDEN COOPER ST. 46 COOPER ST. MERIDEN, CT 06451

B&V PROJECT NO. 403093.2000.2200 PROJECT NAME: LMR EPC PHASE 1.5

PREPARED FOR

EVERS URCE ENERGY

107 SELDEN STREET BERLIN, CT 06037

BLACK & VEATCH CORPORATION 6800 WEST 115TH ST, SUITE 2292 OVERLAND PARK, KANSAS 66211

March 26, 2020

Owner:	EVERSOURCE	Computed By:	Nattakit S.
Site Name:	MERIDEN COOPER ST.	Date:	2/21/2020
Project No.	403093.2000.2200	Verified By:	K. Hyun
Title:	STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT	Date:	2/21/2020
	AND PENTHOUSE WALL		

TABLE OF CONTENTS

- 1. PURPOSE
- 2. REFERENCES
- 3. ASSUMPTIONS
- 4. CONCLUSION
- 5. ANALYSIS & DESIGN
 - 5.1 Structural Analysis of Proposed Antenna Mount
 - 5.2 Structural Analysis of Existing Penthouse Wall
- 6. ATTACHMENTS

Owner:	EVERSOURCE	Computed By:	Nattakit S.
Site Name:	MERIDEN COOPER ST.	Date:	2/21/2020
Project No.	403093.2000.2200	Verified By:	K. Hyun
Title:	STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT	Date:	2/21/2020
	AND PENTHOUSE WALL		

1. PURPOSE

The purpose of this calculation is to evaluate the proposed antenna mount and the existing penthouse wall under proposed loading.

2. REFERENCES

- A. 2018 Connecticut State Building Code
- B. International Building Code, IBC 2015
- C. Structural Standard for Antenna Supporting Structures and Antennas, TIA-222-H
- D. American Society of Civil Engineers, ASCE 7-10
- E. American Institute of Steel Construction, 14th Edition
- F. Site Survey Report Completed by Black & Veatch Corp., dated 1/10/2019
- G. Site Photos

3. ASSUMPTIONS

- The existing penthouse walls are assumed to be Masonry wall.

Owner:	EVERSOURCE	Computed By:	Nattakit S.
Site Name:	MERIDEN COOPER ST.	Date:	2/21/2020
Project No.	403093.2000.2200	Verified By:	K. Hyun
Title:	STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT	Date:	2/21/2020
	AND PENTHOUSE WALL		

4. CONCLUSION

Design Criteria b	ased or	:	2018 Connecticut State Building Code		
Wind			lce		
Wind Speed:	135	mph	Ice Thickness:	0.75	inch
Exposure Category:	С		Ice Wind:	50	mph
Topographic Factor K _{zt} :	1.00				
Risk Category:	III		<u>Seismic</u>		
			Seismic Importance Factor:	1.25	
			Seismic S _{DS} :	0.195g	
			Seismic Design Category:	В	

4.1 Structural Analysis of Proposed Antenna Mount

Governing Load Combination:	1.2DL+ WL (0 DEG, +X) + 0.5RLL	
Max Stress Ratio on Proposed Pipe Mast: Pipe 3.0 STD:	81.3%	*
Governing Load Combination:	1.2DL+ WL (0 DEG, +X) + 0.5RLL	
Max Stress Ratio on Proposed Wall Mount Anchorage:	54.8%	*
The Proposed Antenna Mount Result:	SUFFICIENT	

Use Pipe 3 STD (O.D. 3.5") pipe x 9'-0" long min., with Commscope MT-222 wall mount bracket. Anchor (4) 1/2" Dia. Thru - Bolts (ASTM A325) drill to the existing penthouse wall or engineer approve equal.

* Note: The % ratio rating per TIA-222-H Section 15.5.

Owner:	EVERSOURCE	Computed By:	Nattakit S.
Site Name:	MERIDEN COOPER ST.	Date:	2/21/2020
Project No.	403093.2000.2200	Verified By:	K. Hyun
Title:	STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT	Date:	2/21/2020
	AND PENTHOUSE WALL		

4. CONCLUSION (CONTINUED)

4.2 Structural Analysis of Existing Penthouse Wall

By engineering judgment/inspection, the existing penthouse wall is <u>SUFFICIENT</u> to support the proposed loads.

4.3 Disclaimers

This calculation is based on the loading and equipment position provided by client. If the installed loading and/or equipment position are different from the calculation, the calculation is considered invalid.

This certification assumes that all structural members are in good condition. Contractor shall inspect the condition of all relevant members and connectors and report any perceived deficiencies to the engineer prior to installation of any new equipment.

The contractor shall be responsible for the means and methods of construction. It is contractor's responsibility to provide necessary intermediate or temporary support during construction.

	EVERSOURCE	Computed By:	Nattakit S.
me:	MERIDEN COOPER ST.	Date:	2/21/2020
No.	403093.2000.2200	Verified By:	K. Hyun
	STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT AND PENTHOUSE	Date:	2/21/2020

Summary of Final Loading

Eversource's Loading

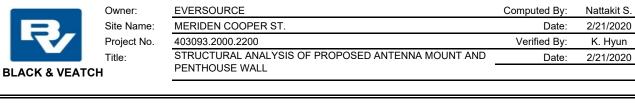
	Final Antenna / Equipment								
Equipment Owner	Equipment Elevation (ft)	Mount Location	Position	Туре	Quantity	Manufacturer	Model		
Eversource	55	Pipe Mount	-	Omni	1	dbSpectra	(P) dbSpectra DS2C03F36D		

Note:

(P) = Proposed Equipment

Owner:	EVERSOURCE	Computed By:	Nattakit S.
Site Name:	MERIDEN COOPER ST.	Date:	2/21/2020
Project No.	403093.2000.2200	Verified By:	K. Hyun
Title:	STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT	Date:	2/21/2020
	AND PENTHOUSE WALL		

5. ANALYSIS & DESIGN


5.1 Structural Analysis of Proposed Antenna Mount

Equipment Dead Load	EVERSOURCE'S LOADING	
(P) dbSpectra DS2C03F36D		100.0 lbs

R.	Owner:	EVERSOURCE	Computed By:	Nattakit S.
	Site Name:	MERIDEN COOPER ST.	Date:	2/21/2020
	Project No.	403093.2000.2200	Verified By:	K. Hyun
	Title:	STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT	Date:	2/21/2020
BLACK & VEATCH		AND PENTHOUSE WALL		

Wind Pressure per ASCE 7-10 / I	BC 2012 / IBC 2015 / TIA-222-H	ASCE 7-10
		Section #
a. Ultimate Velocity Pressure, q _{z or} q _h		29.3.2
	Basic Wind Speed, Vult =135 mph	Fig. 26.5-1A
qz = 0.00256 Kz Kzt Kd Ke Ks V ²		TIA-222-H
= 0.00256 x 1.19 x 1.00 x 0.95	x 1.00 x 1.00 x 135.00^2	Sec. 2.6.11.
qz = 52.80 psf		
b. Velocity pressure coefficient, Kz		29.3.1
$Kz = 2.01 (z/z_g)^{2/\alpha}$	Exposure Category = C	
= 2.01 (75 / 900^(2/9.5)		
Kz = 1.19	Height above Ground Level, z = 75 ft	Table 29.3-
α = 9.50	z _g = 900.00 ft	
c. Topographic Factor, Kzt	H = 15 ft	26.8.2
μ = 0.00	n – 19 K	Fig. 26.8-1
$\mu = 0.00$ $\gamma = 0.00$	Hill Shape Flat Terrain	rıy. 20.ö-1
1 0.00		
K ₁ = 0.00	Crest Type Upwind	
$K_2 = (1 - x / \mu Lh)$	Distance Upwind of crest, Lh = 15 ft	
= [1 - 15 / (0.0 x 15)]		
$K_2 = 0.00$	Distance Upwind to Bldg Site, x = 15 ft	
$K_3 = e^{(\gamma z / Lh)}$	$Kzt = [1 + K_1 K_2 K_3]^2$	Eq. 26.8-1
= e^-(0.0 x 75 / 15)	= [1 + 0.00 x 0.00 x 0.00]^2	
K ₃ = 0.00	Kzt = 1.00	
d. Wind Directionality Factor, Kd	tructures Pound Shape	Table 26.6-
(7) Chimney, Tank & Similar S	tructures - Round Shape Kd = 0.95	
e. Ground Elevation Factor, Ke	Ke = 1.00	TIA-222-H
		Table 2-6
f. Rooftop Wind Speed-up Factor, Ks	Ks = 1.00	TIA-222-H
		Sec. 2.6.7
g. Structure Risk Category	III	Table 1.5-1
h. Gust Effect Factor, G	G = 0.85	26.9

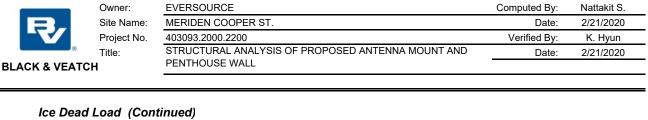
REVISED, SUPERSEDED, AND VOID CALCULATIONS MUST BE CLEARLY IDENTIFIED, INITIALED, AND DATED BY THE RESPONSIBLE INDIVIDUAL.

Wind Load

Wind Velocity Gust factor:	γ Pressure @ z = 75 ft	Q _z = G =	52.80 psf 0.85	(based	on 135 mph wind)
<u>Wind Load or</u> Proposed Pip	<u>n Members:</u> pe Mast: Pipe 3.0 STD				
	Depth: Force Coefficient:	Dp= Ca=	3.5 in. 0.93		
	Wind Load:		G*Ca*Dp	=	12.2 plf

er:	EVERSOURCE	Computed By:	Nattakit S.
lame:	MERIDEN COOPER ST.	Date:	2/21/2020
ct No.	403093.2000.2200	Verified By:	K. Hyun
	STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT AND	Date:	2/21/2020
	PENTHOUSE WALL		

Wind Load (Continued)


Wind Load on E	quipment:					
(P) dbSpectra D	S2C03F36D					
D	imensions:	B=	0.25 ft			
		H=	24.30 ft			
F	orce Coefficient:	Ca=	1.20			
W	/ind Load:	Pa=	Qz*G*Ca*B*H	=	327.2 lbs.	
				=	13.5 plf	

Note:

30° and 60° application of wind load will be considered directly in the load combinations by applying load factors of 0.866 (from cos 30 or sin 60) and 0.5 (from sin 30 or cos 60) 60mph service wind will also be considered directly in the load combinations by applying a reduction factor of **0.198** based on (60mph)^2 / (135mph)^2.

	Owner:	EVERSOURCE		Computed B	y: Nattakit S.
	Site Name:	MERIDEN COOPER ST.		Date	e: 2/21/2020
	Project No.	403093.2000.2200		Verified B	y: K. Hyun
•	Title:	STRUCTURAL ANALYSIS	S OF PROPOSED ANTEN	NNA MOUNT AND Date	e: 2/21/2020
CK & VEATCH	1				
					ASCE 7-10
Ice Dead I	oad				Section #
Design Ice T	hickness @ z	2 = 33 ft	Γ _i = 0.75 in.	(Per TIA Annex B)	Fig. 10.2
<u>Note:</u> The de wind force on	•	ness shall be escalated with	height when calculating th	ne ice weight and	
Platform and	antennas heig	ht elevation, Z:	75 ft		
Factored lo	ce Thicknes	ss, Tiz at Z for Ice Weig	tht Calculations:		10.4.6
T _{iz} =	2.0*T _i *l _i *f _z *	$(K_{zt})^{0.35}$	T _{iz} =	= 2.04 in	Eq. 10.4-5
where,					
	Importance F	actor for Ice Thickness, ${f l}_{f i}$			10.4.4
		Structure Risk Catego	ry: III		Table 1.5-1
	l _i :	= 1.25	(multiplier on ice thick	kness)	Table 1.5-2
	Height Factor	r f.			10.4.3
		$= (Z/33)^{0.10} = (75/33)'$	0.10 = 1.09		Eq. 10.4-4
	'Z	(2,00) = (10,00)			_q. 10.1 1
	Topographic	Factor, K _{zt}			10.4.5
		$= [1 + K_1 K_2 K_3]^2 =$	[1+0.00 x 0.00 x 0.0	00]^2 = 1.000	Eq. 26.8-1
		K ₁ = 0.00	$\mu = 0.00$	$\gamma = 0.00$	Fig. 26.8-1
			Exposure Category =	= C	(Use same valu
				Flat Terrain	from wind calc
			Crest Type =	= Upwind	
				= 15 ft	
			ance Upwind of crest, Lh =		
		Distanc	e Upwind to Bldg Site, x =	= 15 ft	
		$K_2 = (1 - x / \mu L_h)$.) = [1 - 15 / (0.0 x 15)] =	0.00	Fig. 26.8-1
		$K_3 = e^{-(\gamma z / Lh)}$	= e^-(0.0 x 75 / 15) =	0.00	Fig. 26.8-1
	Ice Topograp	hic Factor, $(K_{zt})^{0.35}$ =	(1.000)^0.35 =	1.000	10.4.5
The weight of	f ice shall be b	ased on a unit weight of 56	pcf.	(Per TIA-222-G 2.6.8)	10.4.1
0	Therefore			, , ¬	
	Wice	= 56pcf * Tiz /12=	9.50 psf	1	

.

Design Ice Thickness @ z = 33 ft Ti = 0.75 in. Factored ice thickness @ z = 75 ft Tiz = 2.04 in. Ice Dead Load on Members: Proposed Pipe Mast: Pipe 3.0 STD Dimensions: Dia= 3.5 in. 3.50 Dc= Ice cross sectional area: Aiz= π Tiz (Dc + Tiz) = 35.40 in.^2 plf DLice= Aiz * 56pcf * ft2 / 144 in2 = 13.8

	EVERSOURCE	Computed By:	Nattakit S.
ne:	MERIDEN COOPER ST.	Date:	2/21/2020
No.	403093.2000.2200	Verified By:	K. Hyun
	STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT AND PENTHOUSE WALL	Date:	2/21/2020

Ice Dead Load (Continued)

<u>Ice Dead Load on Equipment:</u> (P) dbSpectra DS2C03F36D					
Dimensions w/out ice:	B=	3 in.	VV=	3 in.	
	H=	291.6 in.	Dc=	4.24 in.	
Ice cross sectional area:	Aiz= π	Tiz (Dc + Tiz) =	40.15 in/	2	
Ice Dead Load:	DLice= [Aiz(H+2Tiz)+2Tiz B D]*56pcf /1728 in^3=			אי 1^3=	385.9 lbs
					15.9 plf

REVISED, SUPERSEDED, AND VOID CALCULATIONS MUST BE CLEARLY IDENTIFIED, INITIALED, AND DATED BY THE RESPONSIBLE INDIVIDUAL.

	Owner:	EVERSOURCE	Computed By:	Nattakit S.
	Site Name:	MERIDEN COOPER ST.	Date:	2/21/2020
	Project No.	403093.2000.2200	Verified By:	K. Hyun
®	Title:	STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT	Date:	2/21/2020
BLACK & VEATCH		AND PENTHOUSE WALL		

Ice Wind Pressure per ASCE 7-1	0 / IBC 2012 / IBC 2015 / TIA-222-H	ASCE 7-10
a. Ultimate Velocity Pressure, q _{z or} q _h		29.3.2
a. Ontimate Velocity Pressure, qz or qh	Basic Wind Speed, Vult = 50 mph	Fig. 10-2
qz = 0.00256 Kz Kzt Kd Ke Ks V ²		TIA-222-H
= 0.00256 x 1.19 x 1.00 x 0.95		Sec. 2.6.11.6
qz = 7.24 psf		0000 2000 000
b. Velocity pressure coefficient, Kz		29.3.1
$Kz = 2.01 (z/z_g)^{2/\alpha}$	Exposure Category = C	
= 2.01 (75 / 900^(2/9.5)		
Kz = 1.19	Height above Ground Level, z = 75 ft	Table 29.3-1
α = 9.50	z _g = 900.00 ft	
c. Topographic Factor, Kzt		26.8.2
	H = 15 ft	
μ = 0.00		Fig. 26.8-1
γ = 0.00	Hill Shape Flat Terrain	-
K ₁ = 0.00	Crest Type Upwind	
$K_2 = (1 - x / \mu Lh)$	Distance Upwind of crest, Lh = 15 ft	
= [1 - 15 / (0.0 x 15)]		
$K_2 = 0.00$	Distance Upwind to Bldg Site, x = 15 ft	
$K_3 = e^{(\gamma z / Lh)}$		F 00.0.4
	$Kzt = [1 + K_1 K_2 K_3]^2$	Eq. 26.8-1
= e [^] -(0.0 x 75 / 15) K ₃ = 0.00	= [1 + 0.00 × 0.00 × 0.00]^2 Kzt = 1.00	
N ₃ = 0.00	N21 = 1.00	
d. Wind Directionality Factor, Kd		Table 26.6-1
(7) Chimney, Tank & Similar	Structures - Round Shape Kd = 0.95	
e. Ground Elevation Factor, Ke	Ke = 1.00	TIA-222-H
		Table 2-6
f. Rooftop Wind Speed-up Factor, Ks	Ks = 1.00	TIA-222-H
		Sec. 2.6.7
g. Structure Risk Category	III	Table 1.5-1
h. Gust Effect Factor, G	G = 0.85	26.9

	Owner:	EVERSOURCE				Computed By:	Nattakit S.
	Site Name:	MERIDEN COOF	PER ST.			Date:	2/21/2020
	Project No.	403093.2000.2200			Verified By:	K. Hyun	
	Title:			PROPOSED ANTE	NNA MOUNT AND	Date:	2/21/2020
BLACK & VEAT	СН	PENTHOUSE W	ALL				
Ice Win	d Load						
Wind Velo	city Pressure @	z = 75 ft	Q _{z ice} =	7.24 psf	(based on	1 50 mph wind)	

0.85

0.93

Pp= Qz ice*G*Ca*Dp =

3.5 in. + 2 Tiz =

8 in.

3.6 plf

G =

Dp=

Ca=

Gust factor:

Ice Wind Load on Members: Proposed Pipe Mast: Pipe 3.0 STD

Member Depth:

Ice wind load:

Force Coefficient:

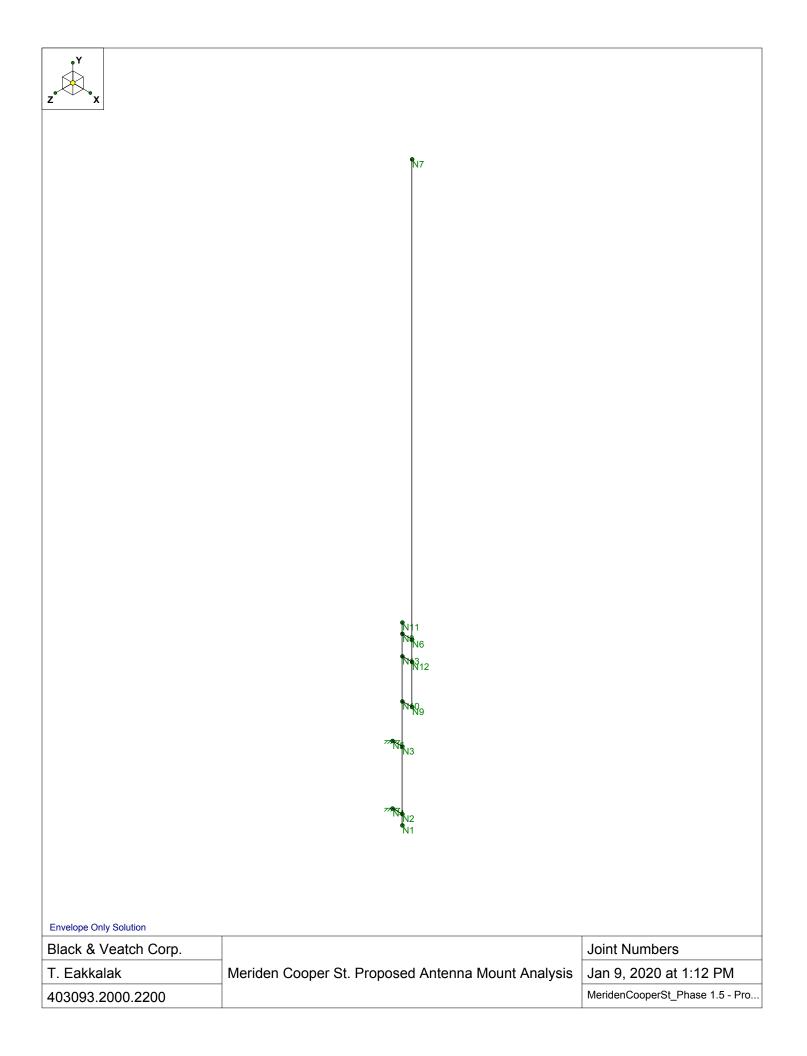
REVISED, SUPERSEDED, AND VOID CALCULATIONS MUST BE CLEARLY IDENTIFIED, INITIALED, AND DATED BY THE RESPONSIBLE INDIVIDUAL.

	EVERSOURCE	Computed By:	Nattakit S.
e:	MERIDEN COOPER ST.	Date:	2/21/2020
) .	403093.2000.2200	Verified By:	K. Hyun
	STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT AND	Date:	2/21/2020
	PENTHOUSE WALL		

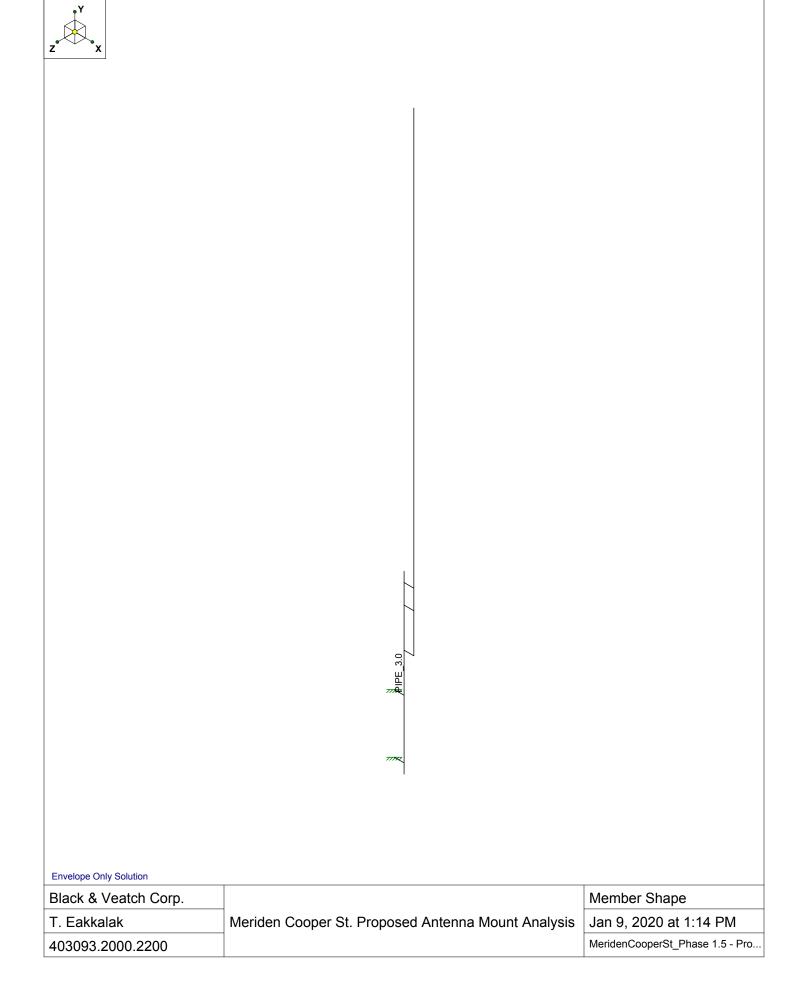
Ice Wind Load (Continued)

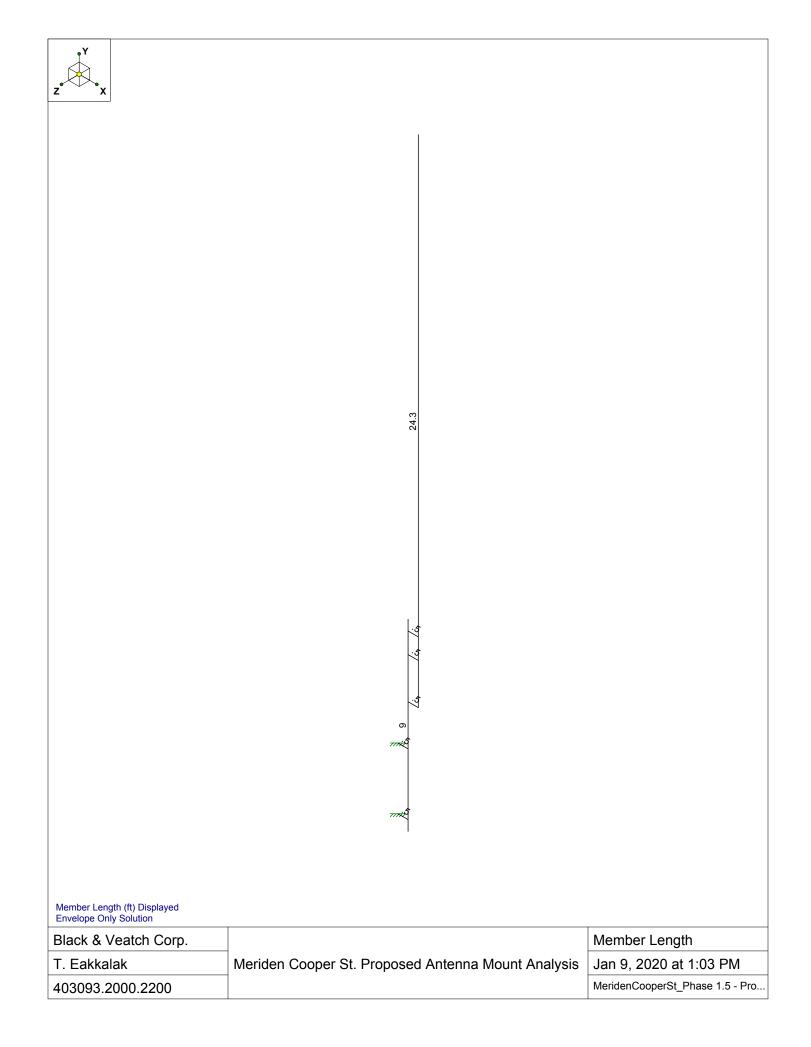
Ice Wind Load on Equipment:				
(P) dbSpectra DS2C03F36D				
Dimensions:	B=	0.25 ft + (2 Tiz) / 12	=	0.59 ft.
	H=	24.30 ft + (2 Tiz) / 12	=	24.64 ft.
Force Coefficient:	Ca=	1.20		
Wind Load:	Pa= Q	z ice*G*Ca*B*H =		107.3 lbs.
			=	4.4 plf

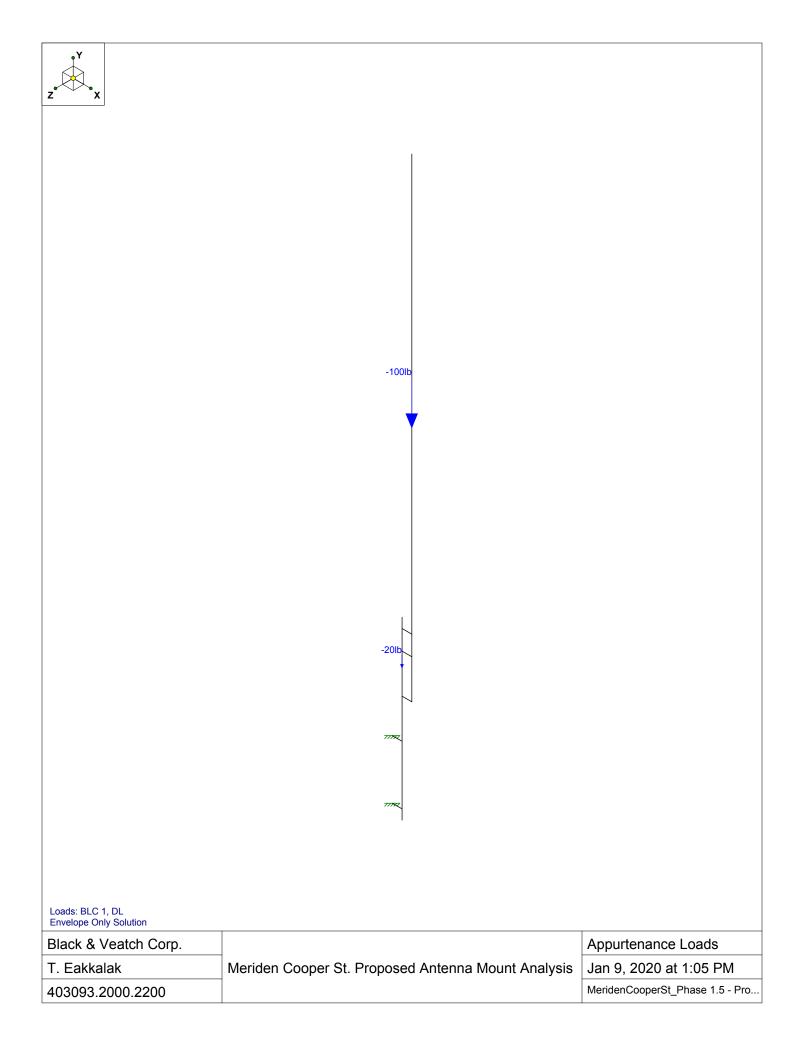
Note:


30° and 60° application of wind load will be considered directly in the load combinations by applying load factors of 0.866 (from cos 30 or sin 60) and 0.5 (from sin 30 or cos 60)

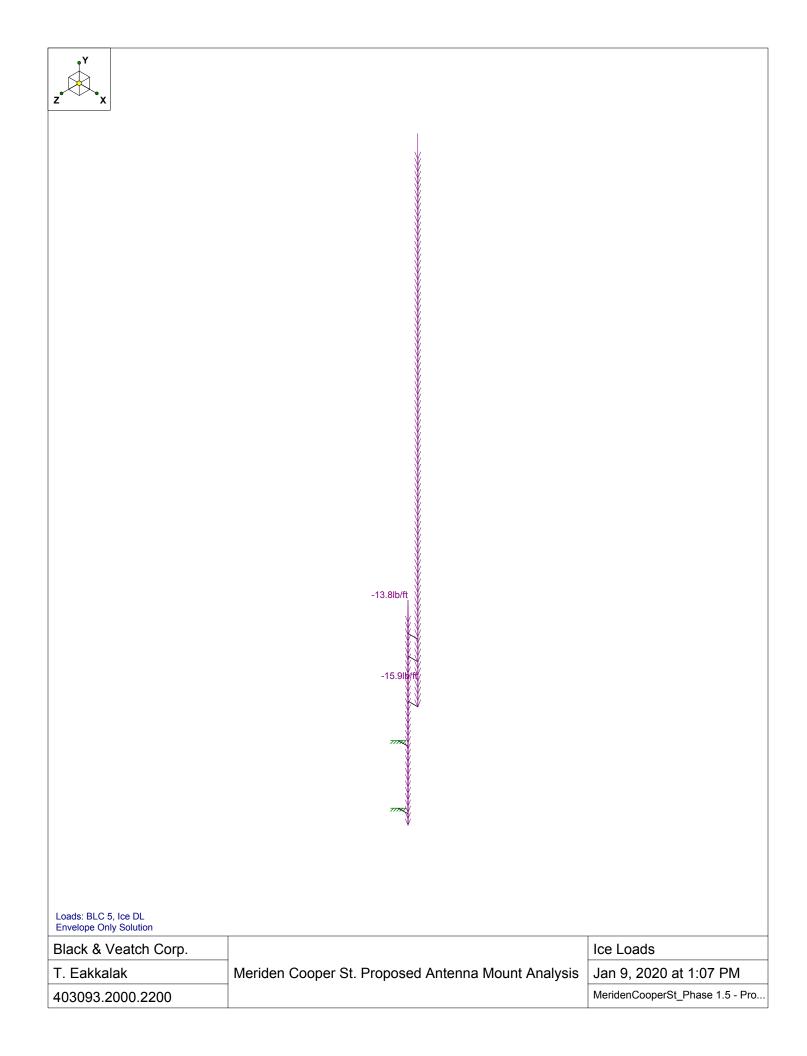
REVISED, SUPERSEDED, AND VOID CALCULATIONS MUST BE CLEARLY IDENTIFIED, INITIALED, AND DATED BY THE RESPONSIBLE INDIVIDUAL.

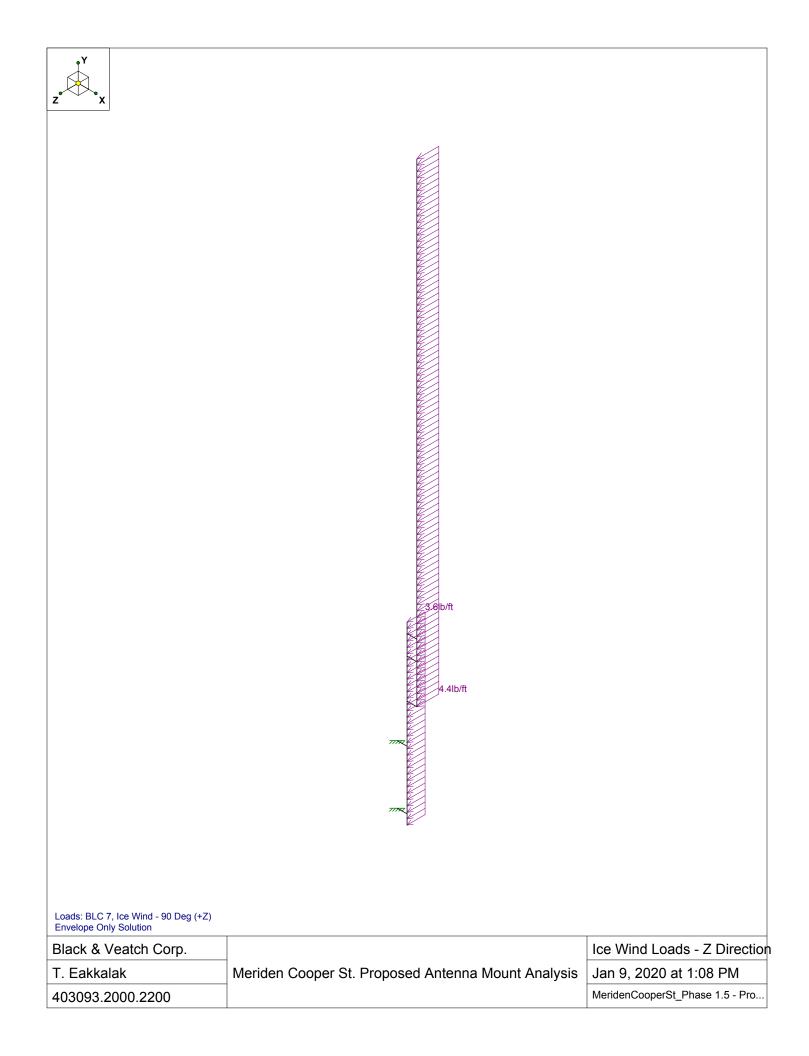

-	Owner:	EVERSOURCE	Computed By:	Nattakit S.
	Plant:	MERIDEN COOPER ST.	Date:	2/21/2020
	Project No.	403093.2000.2200	Verified By:	K. Hyun
	Title:	STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT AND	Date:	2/21/2020
BLACK & VEATCH		PENTHOUSE WALL		

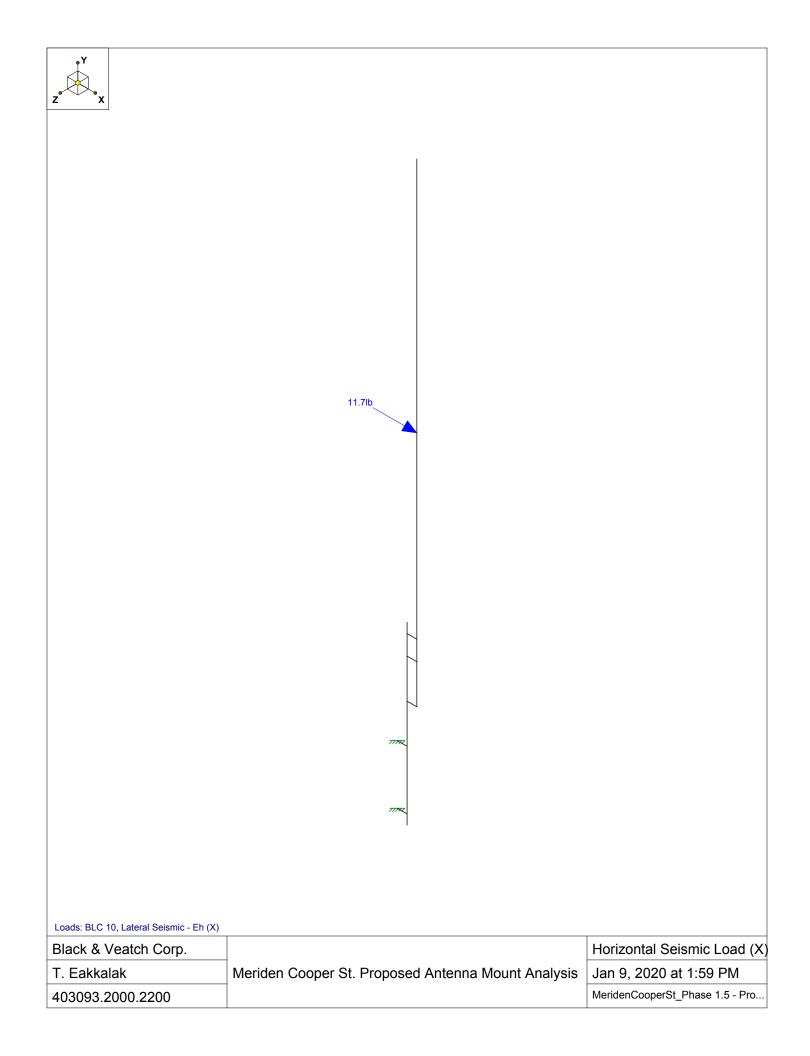

Seismic Loa	ad					ASCE 7-10 Section #
The Equipment	is considere	d a Non-Struct	ural Component pe	er section 13.3 of ASCE 7-10.		
Location Informa	ation:	Latitude:	N 41.532722	Longitude:	W 72.805667	
Fp = 0 Fp =	.4 a _p S _{DS} Wp 0.117	o (1 + 2 z/h) / (l Wp	Rp/Ip) =	0.4 x 1.00 x 0.195 Wp (1 + 2 x	1.00) / (2.50 / 1.25)	eq. 13.3-1
Fp = 1	.6 S _{DS} Ip Wp	- =	1.6 x 0.195 x 1.1	25 Wp		eq. 13.3-2
Fp =	0.390	Wp	(maximum)			
Fp = 0	.30 S _{DS} Ip W	'p =	0.30 x 0.195 x 1	I.25 Wp		eq. 13.3-3
Fp =	0.073	Wp	(minimum)			
Use F _p =	0.117	W _p	_			
S _{DS} = 2	125		S _{MS} =	Eas		IBC-2015
	/ 3 (0.293)			1.60 x 0.183		eq. 16-37 eq. 16-39
= 2 S _{DS} =	0.195	~	= S _{MS} = (eq. 10-39
S _{DS} –	0.195	g	S _{MS} – I	0.293		
SDC =	В		Seismic Design	Category		
S _S =	0.183g		maximum spect	tral response at short period		
			per USGS Seisi	per USGS Seismic Data		
Fa =	1.600		short period site	short period site coefficient (at 0.2-s period)		
						ASCE 7-10
Ip =	1.25		component imp	ortance factor		sec. 13.1.
Rp =	2.50		component resp	oonse modification factor		Table 13.6-
ap =	1.00		component amp	blification factor		Table 13.6-
z/h =	1.00		maximum value	•		sec. 13.1.3
	Equipment	:	DL on each point (lb/pt)	Vertical Seismic Load W _p S _{DS} (Ib)	Horiz Seismic Load W _p F _p (Ib)	
(P) dbSpectra D	S2C03F36E)	100.0	19.50	11.70	
			+ +			
			1			1

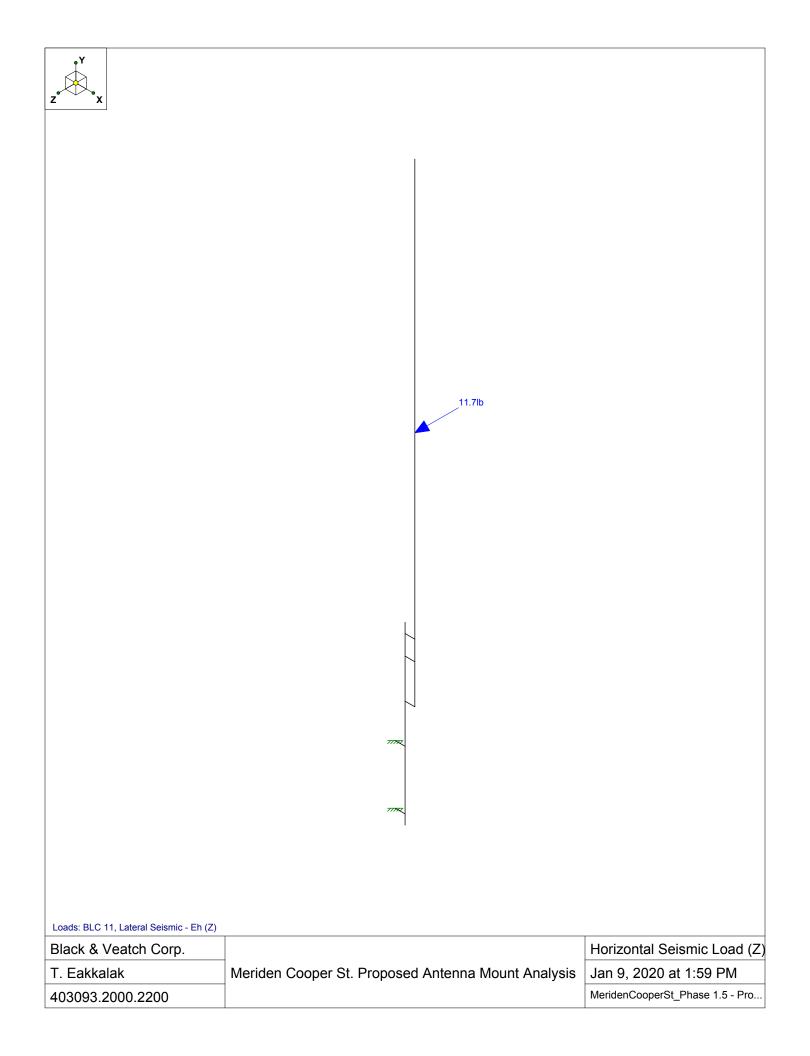


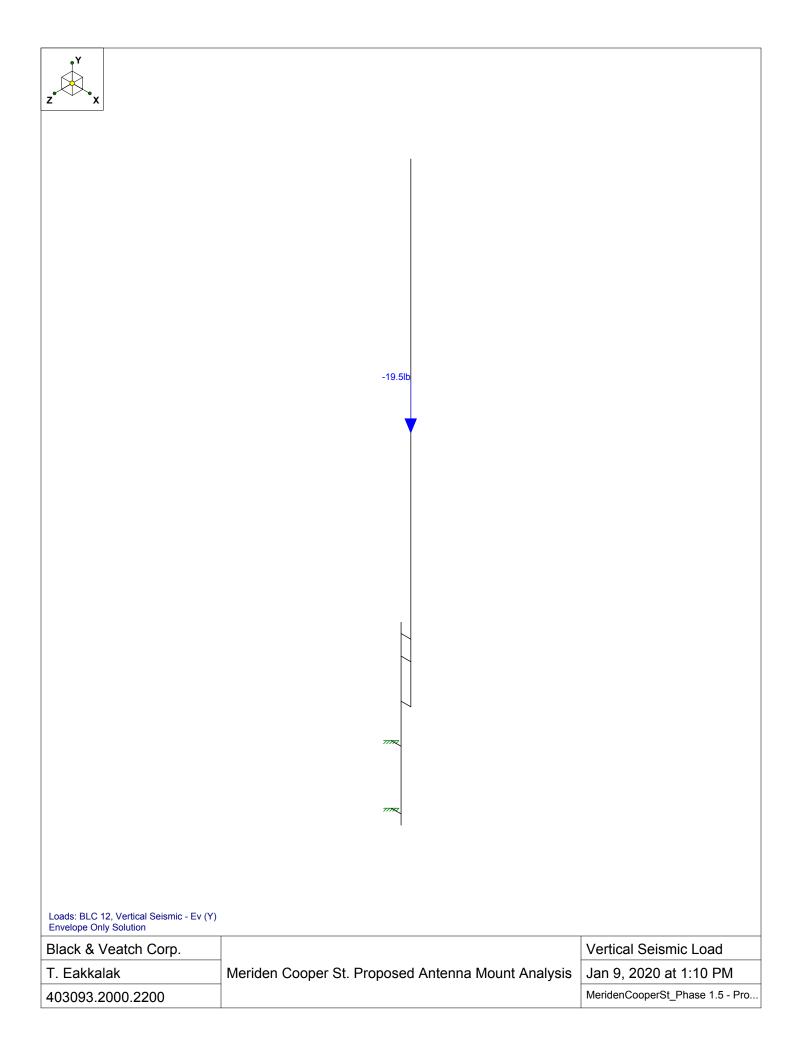
× ×		
	A4	
	126	
	EM A	
	5 10 10 10 10 10 10 10 10 10 10 10 10 10	
Envelope Only Solution		.
Black & Veatch Corp.		Member Numbers
	Meriden Cooper St. Proposed Antenna Mount Analysis	Jan 9, 2020 at 1:13 PM






z × ×			
Loads: BLC 3, Wind - 0 Deg (+X) Envelope Only Solution			
Black & Veatch Corp.		Wind Loads - X Direction	
T. Eakkalak			
403093.2000.2200		MeridenCooperSt_Phase 1.5 - Pro	





z × x		
Loads: BLC 6, Ice Wind - 0 Deg (+X) Envelope Only Solution		
Black & Veatch Corp.		Ice Wind Loads - X Direction
T. Eakkalak	Meriden Cooper St. Proposed Antenna Mount Analysis	Jan 9, 2020 at 1:08 PM
403093.2000.2200		MeridenCooperSt_Phase 1.5 - Pro

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in ²)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (ft/sec^2)	32.2
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver
Hot Rolled Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	None
Cold Formed Steel Code	None
Wood Code	None
Wood Temperature	< 100F
Concrete Code	None
Masonry Code	None
Aluminum Code	None - Building
Stainless Steel Code	None
Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	No
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

(Global) Model Settings, Continued

Seismic Code	None
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	Yes
Ct X Ct Z	.02
Ct Z	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
RX	3
RZ	3

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5 F)	Density[k/f	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
3	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.4	65	1.3

General Material Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5 F)	Density[k/ft^3]
1	gen Conc3NW	3155	1372	.15	.6	.145
2	gen Conc4NW	3644	1584	.15	.6	.145
3	gen Conc3LW	2085	906	.15	.6	.11
4	gen Conc4LW	2408	1047	.15	.6	.11
5	gen Alum	10600	4077	.3	1.29	.173
6	gen Steel	29000	11154	.3	.65	.49
7	RIGID	1e+6		.3	0	0

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design Ru	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Pipe 3.0 STD	PIPE_3.0	Column	Pipe	A53 Gr.B	Typical	2.07	2.85	2.85	5.69

General Section Sets

	Label	Shape	Туре	Material	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	GEN1A	RE4X4	Beam	gen_Conc3NW	16	21.333	21.333	31.573
2	RIGID		None	RIGID	1e+6	1e+6	1e+6	1e+6

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
1	N1	0	-1	Ō	0	
2	N2	0	5	0	0	
3	N3	0	2.5	0	0	
4	N4	5	5	0	0	
5	N5	5	2.5	0	0	
6	N6	.5	7.5	0	0	
7	N7	.5	28.8	0	0	
8	N8	0	7.5	0	0	
9	N9	.5	4.5	0	0	

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
10	N10	0	4.5	0	0	
11	N11	0	8	0	0	
12	N12	.5	6.5	0	0	
13	N13	0	6.5	0	0	

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N4	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N5	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(Section/Shape	Туре	Design List	Material	Design R
1	M1	N11	N1			Pipe 3.0 STD	Column	Pipe	A53 Gr.B	Typical
2	M2	N4	N2			RIGID	None	None	RIGID	Typical
3	M3	N5	N3			RIGID	None	None	RIGID	Typical
4	M4	N9	N7			RIGID	None	None	RIGID	Typical
5	M5	N10	N9			RIGID	None	None	RIGID	Typical
6	M6	N8	N6			RIGID	None	None	RIGID	Typical
7	M7	N13	N12			RIGID	None	None	RIGID	Typical

Hot Rolled Steel Design Parameters

	Label	Shape	Length	Lbyy[ft]	Lbzz[ft]	Lcomp to	Lcomp boL-tor	Куу	Kzz	Cb Funct
1	M1	Pipe 3.0 STD	9				•			Lateral

Member Point Loads (BLC 1 : DL)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[ft,%]
1	M4	Y	-100	%50
2	M1	Y	-20	%25

Member Point Loads (BLC 10 : Lateral Seismic - Eh (X))

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[ft,%]
1	M4	Х	11.7	%50

Member Point Loads (BLC 11 : Lateral Seismic - Eh (Z))

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[ft,%]
1	M4	Z	11.7	%50

Member Point Loads (BLC 12 : Vertical Seismic - Ev (Y))

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[ft,%]
1	M4	Y	-19.5	%50

Member Distributed Loads (BLC 3 : Wind - 0 Deg (+X))

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/	.Start Location[ft,%]	End Location[ft,%]
1	M1	PX	12.2	12.2	0	0
2	M4	PX	13.5	13.5	0	0

Member Distributed Loads (BLC 4 : Wind - 90 Deg (+Z))

Member Label Direction Start Magnitude[lb/ft,F,psf] End Magnitude[lb/...Start Location[ft,%] End Location[ft,%] RISA-3D Version 17.0.4 [C:\...\...\...\...\...\...\MeridenCooperSt_Phase 1.5 - Proposed Antenna Mountagedel.r3d]

Member Distributed Loads (BLC 4 : Wind - 90 Deg (+Z)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/	Start Location[ft,%]	End Location[ft,%]
1	M1	PZ	12.2	12.2	0	0
2	M4	PZ	13.5	13.5	0	0

Member Distributed Loads (BLC 5 : Ice DL)

_		Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/	Start Location[ft,%]	End Location[ft,%]
	1	M1	Y	-13.8	-13.8	0	0
	2	M4	Y	-15.9	-15.9	0	0

Member Distributed Loads (BLC 6 : Ice Wind - 0 Deg (+X))

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/	Start Location[ft,%]	End Location[ft,%]
1	M1	PX	3.6	3.6	0	0
2	M4	PX	4.4	4.4	0	0

Member Distributed Loads (BLC 7 : Ice Wind - 90 Deg (+Z))

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/	.Start Location[ft,%]	End Location[ft,%]
1	M1	PZ	3.6	3.6	0	0
2	M4	ΡZ	4.4	4.4	0	0

Basic Load Cases

	BLC Description	Category	X Grav	Y Grav	Z Grav	Joint	Point	Distributed	Area(Mem	Surfac
1	DL	DĽ		-1			2		•	
3	Wind - 0 Deg (+X)	WL						2		
4	Wind - 90 Deg (+Z)	WL						2		
5	Ice DL	DL						2		
6	Ice Wind - 0 Deg (+X)	WL						2		
7	Ice Wind - 90 Deg (+Ź)	WL						2		
10	Lateral Seismic - Eh (X)	ELX	.094				1			
11	Lateral Seismic - Eh (Z)	ELZ			.094		1			
12	Vertical Seismic - Ev (Y)	ELY		195			1			

Load Combinations

	Description	Solve	PDelta	SRSS	BLC	Factor		F		F	F.		F	. F.	 F	 F	F	=	. <u>F</u> .	
1	LOAD COMBINATION USING																			
2	WIND LOAD COMBINATIONS (
3	1.4DL	Yes	Y		1	1.4														
4	1.2DL + 0.5RLL	Yes	Y		1	1.2	2	.5												
5	1.2DL + 1.6RLL + 0.5WL (0 DE		Y		1	1.2	2	1.6	3	.5										
6	1.2DL + 1.6RLL - 0.5WL (0 DE	Yes	Y		1	1.2	2	1.6	3	5										
7	1.2DL + 1.6RLL + 0.5WL (30 D				1	1.2	2	1.6	3	.4	4 .2	5								
8	1.2DL + 1.6RLL - 0.5WL (30 DE				1	1.2	2	1.6	3		4									
9	1.2DL + 1.6RLL + 0.5WL (60 D				1	1.2	2	1.6	4	.4	3 .2	5								
10	1.2DL + 1.6RLL - 0.5WL (60 DE		Y		1	1.2	2	1.6	4 ·		3									
11	1.2DL + 1.6RLL + 0.5WL (90 D		Y		1	1.2	2	1.6	4	.5										
12	1.2DL + 1.6RLL - 0.5WL (90 DE				1	1.2	2	1.6	4	5										
13	1.2DL+ WL (0 DEG, +X) + 0.5R	Yes	×		1	1.2	2	.5	3	1										
14	1.2DL - WL (0 DEG, -X) + 0.5RLL		Y		1	1.2	2	.5	3	-1										
15	1.2DL + WL (30 DEG) + 0.5RLL	Yes	Υ		1	1.2	2	.5	3	.8	4 .5	5								
16		Yes	Y		1	1.2	2	.5	3		4!	5								
17	1.2DL + WL (60 DEG) + 0.5RLL		Y		1	1.2	2	.5	4	.8	3 .5	5								
18	1.2DL - WL (60 DEG) + 0.5RLL	Yes	Y		1	1.2	2	.5	4 ·		3!	5								
	1.2DL + WL (90 DEG, +Z) + 0.5				1	1.2	2	.5	4	1										
20	1.2DL - WL (90 DEG, -Z) + 0.5R	Yes	Y		1	1.2	2	.5	4	-1										

Load Combinations (Continued)

	Description	Solve	PDelta	SRSS	BLC	Factor		F		F		F	 F	F	=	F	=		F	 F	F	=
21	0.9DL + WL (0 DEG, +X)	Yes	Y		1	.9		1														
22	0.9DL - WL (0 DEG, -X)	Yes	Y		1	.9	3	-1														
23	0.9DL + WL (30 DEG)	Yes	Y		1	.9	3	.8	4	.5												
24	0.9DL - WL (30 DEG)	Yes	Y		1	.9	3		4	5												
25	0.9DL + WL (60 DEG)	Yes	Y		1	.9	4	.8	3	.5												
26	0.9DL - WL (60 DEG)	Yes	Y		1	.9	4		3	5												
27	0.9DL + WL (90 DEG, +Z)	Yes	Y		1	.9	4															
28	0.9DL - WL (90 DEG, -Z)	Yes	Y		1	.9	4	-1														
29																						
	LOAD COMBINATIONS WITH I																					
	1.2DL + 0.2Ice DL + 0.5SL1		Y		1	1.2				.5												
			Y		1	1.2		1		1												
	1.2DL + Ice DL - Ice WL (0 DEG		Y		1	1.2	5		6	-1	8	.5	_		_			_			\perp	
	1.2DL + Ice DL + Ice WL (30 DE		Y		1	1.2	5	1		.8											_	
	1.2DL + Ice DL - Ice WL (30 DE		Υ		1	1.2	5														\perp	
	1.2DL + Ice DL + Ice WL (60 DE		Υ		1	1.2				.8												
	1.2DL + Ice DL - Ice WL (60 DE		Y		1	1.2	5						.5		_					_		_
	1.2DL + Ice DL + Ice WL (90 DE		Y		1	1.2				1												
	1.2DL + Ice DL - Ice WL (90 DE	Yes	Y		1	1.2	5			-1	8	.5	_		_						\perp	
	0.9DL + Ice DL + Ice WL (0 DE	Yes	Y		1	.9		1		1												
	0.9DL + Ice DL - Ice WL (0 DEG		Υ		1	.9		1		-1			_		_			_			_	_
	0.9DL + Ice DL + Ice WL (30 DE		Y		1	.9		1		.8											_	
10	0.9DL + Ice DL - Ice WL (30 DE	- 00	Υ		1	.9	5						_		_						\rightarrow	_
	0.9DL + Ice DL + Ice WL (60 DE		Υ		1	.9				.8												
	0.9DL + Ice DL - Ice WL (60 DE	Yes	Y		1	.9					6	5	_		_						_	_
	0.9DL + Ice DL + Ice WL (90 DE		Y		1	.9		1													4	
	0.9DL + Ice DL - Ice WL (90 DE	Yes	Y		1	.9	5	1	7	-1			_	_	_	_				_	_	_
48															_							
	SEISMIC LOAD COMBINATIO					1.0		-	40	-	10		_		_	_		_			_	_
	1.2DL + 0.2Ev (Y) + Eh (X) + 0		Y		1	1.2				.2			_		_						_	
	1.2DL - 0.2Ev (Y) + Eh (X) + 0.2		Y		1	1.2				2			_		_	_				_	_	_
	1.2DL + 0.2Ev (Y) - Eh (X) + 0.2		Y		1	1.2				.2			_		_	_	_	_		_	-	_
	1.2DL - 0.2Ev (Y) - Eh (X) + 0.2		Y		1	1.2	8	.2	12	2	10	-1	_		_						-	-
	1.2DL + 0.2Ev (Y) + Eh (Z) + 0	Yes	Y			1.2		.2	12	.2	11	1	_		-						+	-
	1.2DL - 0.2Ev (Y) + Eh (Z) + 0.2		Y		1	1.2	8	.2	12	2	11	1	_		_	_	_	_		_	_	_
	1.2DL + 0.2Ev (Y) - Eh (Z) + 0.2		Y		1	1.2				.2					_	_					_	_
	1.2DL - 0.2Ev (Y) - Eh (Z) + 0.2	Yes	Y		1	1.2				2	11	-1									_	
	0.9DL - 0.2Ev (Y) + Eh (X)		Y		1	.9		2														
	0.9DL + 0.2Ev (Y) + Eh (X)		Y		1	.9		.2														
	0.9DL - 0.2Ev (Y) - Eh (X)		Y		1	.9		2														
61	0.9DL + 0.2Ev (Y) - Eh (X)		Y		1	.9		.2							_						-	
62			Y		1	.9		2													-	
63	0.9DL + 0.2Ev (Y) + Eh (Z)		Y		1	.9		.2														
	0.9DL - 0.2Ev (Y) - Eh (Z)		Y		1	.9		2 .2														
65	0.9DL + 0.2Ev (Y) - Eh (Z)	Yes	Y		I	.9	12	.2		-1											+	
66																						

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC MY [lb	LC MZ [lb	LC
1	N4	max	24.4	14	44.506	32	24.4	28	7.625	28 12.2	27 24.503	32
2		min	-24.4	21	12.129	60	-24.4	27	-7.625		28 -1.286	22
3	N5	max	413.399	14	686.138	33	413.438	28	4854.291	20 370.738	27 5012.9	13
4		min	-413.398	21	146.553	58	-413.438	27	-4854.291	19-370.7	28-4726	22
5	Totals:	max	437.799	14	730.643	33	437.838	28				
6		min	-437.798	21	158.682	58	-437.838	27				

RISA-3D Version 17.0.4 [C:\...\...\...\...\...\...\MeridenCooperSt_Phase 1.5 - Proposed Antenna Mountagedel.r3d]

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Memb	Shape	Code Check	Loc[ft]	LC	Sh Lo phi*Pnc [lb]_phi*phi*Mphi*Mn zEqn_
1	M1	PIPE_3.0	.854	5.438	13	.052 5 42263.948 652 5748 5748.75 H1

Joint Reactions (By Combination)

	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [lb-ft]	MY [lb-ft]	MZ [lb-ft]
1	13	N4	-24.4	16.906	0	0	Ō	16.078
2	13	N5	-413.398	203.164	0	0	0	5012.955
3	13	Totals:	-437.798	220.07	0			
4	13	COG (ft):	X: .273	Y: 10.916	Z: 0			

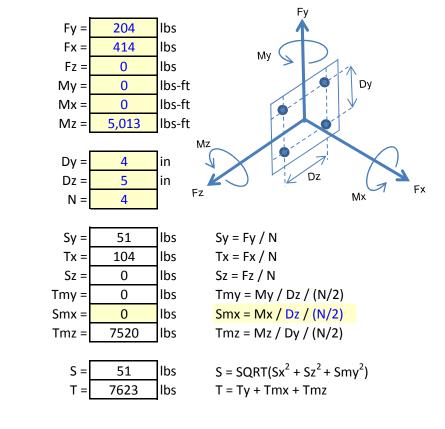
Maximum Joint Reactions (L.C. 13)

RISA-3D Version 17.0.4 [C:\...\...\...\...\...\...\MeridenCooperSt_Phase 1.5 - Proposed Antenna Mouritagedel.r3d]

ner:	EVERSOURCE	Prepared By:	T. Eakkalak	
nt:	MERIDEN COOPER ST.	Date:	1/9/2020	
ject No.	403093.2000.2200	Verified By:	K. Hyun	
e:	STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT AND	Date:	1/9/2020	
	PENTHOUSE WALL			
				1

Wall Anchor Check (LRFD) - Bolted Thru Wall

Load Inputs:


Vertical Force Horizontal Force (Tension) Horizontal Force Moment about Y-Axis Moment about X-Axis Moment about Z-Axis

Force Couple Y-Axis Force Couple Z-Axis Number of Anchors

Shear from Fy Tension from Fx Shear from Fz Tension from My Shear from Mx Tension from Mz

Total Shear Total Tension

LC13 : 1.2DL+ WL (0 DEG, +X) + 0.5RLL

AISC 14th Ed.

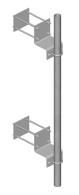
wner:	EVERSOURCE		Prepared By:	T. Eakkalak	
ant:	MERIDEN COOPER ST		Date:	1/9/2020	_
oject No.	403093.2000.2200	File No.	Verified By:	K. Hyun	_
tle:	STRUCTURAL ANALYS	IS OF PROPOSED ANTENNA MOUNT AND	Date:	1/9/2020	-
	PENTHOUSE WALL				
					_

Wall Anchor Check (LRFD) - Bolted Thru Wall (Continued)					
Thru Bolt Steel Analysis			Section #		
Loads					
Applied Shear Load	$V_{ua} = 51$ lbs	per bolt			
Applied Tensile Load	N _{ua} = 7,623 lbs	per bolt			
Parameters					
Bolt Diameter	d _b = 1/2 in				
Bolt Gross Area	$A_{b} = 0.196$ in ²	$\pi d_b^2/4$			
Specified Yield Strength of Bolt	f _y = <mark>92</mark> ksi				
Specified Tensile Strength of Bolt	f _{uta} = 120 ksi	A325			
<u>Results</u>					
Strength Resistance Factor	φ = 0.75		J3.2		
Nominal Shear Strength	F _{nv} = 54.0 ksi	0.45 x f _{uta} (ductile)	C-J3-4		
Nominal Tensile Strength	F _{nt} = 90.0 ksi	0.75 x F _{ut} (ductile)	C-J3-2		
			E 12.4		
Design Shear Strength of Bolt	$\varphi R_{nv} = 7,952$ lbs	$\varphi \times F_{nv} \times A_b$	Eq. J3-1		
Design Tensile Strength of Bolt	$\varphi R_{nt} = 13,254$ lbs	$\phi x F_{nt} x A_b$	Eq. J3-1		
Required Shear Stress for Bolt	f _v = 0.3 ksi	V _{ua} /A _b			
Required Tensile Stress for Bolt	f _t = <u>38.8</u> ksi	N_{ua}/A_{b}			
Combined Shear and Tension					
$F'_{nt} = 1.3*F_{nt} - F_{nt}*f_v/F_{nv}/\phi \leq F_{nt}$	F' _{nt} = 116.4 ksi > Fn	t Use Fnt for Eq. J3-2	Eq. J3-3a		
Available Tensile Strength of Bolt	$\varphi R_{nt} = 13,254$ lbs	φ x Fnt x Ab	Eq. J3-2		
Stress Ratio (Less than 1.0)	SR = 0.575	$N_{ua} / \phi R_{nt}$ OK	_9.00 _		
Available Cheen Cheensth of Dolt			10 7		
Available Shear Strength of Bolt	$\varphi R_{nv} = 7,952$ lbs	$\varphi \times F_{nv} \times A_b$	J3.7		
Stress Ratio (Less than 1.0)	SR = 0.006	V _{ua} / φR _{nv} ΟΚ			
Use 1/2" dia A325 bolts thru existing penthouse wall					

	Owner:	EVERSOURCE	Computed By:	Nattakit S.
	Project:	MERIDEN COOPER ST.	Date:	2/21/2020
	Project No.	403093.2000.2200	Verified By:	K. Hyun
	Title:	STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT AND) Date:	2/21/2020
BLACK & VEATC	H	PENTHOUSE WALL		

5.2 Structural Analysis of Existing Penthouse Wall

By inspection and engineering judgment, the final configuration of the equipment loading will not have significant adverse effect on the existing penthouse wall.



Owner:	EVERSOURCE	Computed By:	Nattakit S.
Project:	MERIDEN COOPER ST.	Date:	2/21/2020
Project No.	403093.2000.2200	Verified By:	K. Hyun
Title:	STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT AND PENTHOUSE WALL	Date:	2/21/2020

6. ATTACHMENTS

Product Specifications

MT-222 Adjustable Wall Mount for solid walls, 6 in stand-off

Dimensions

Height	203.2 mm 8.0 in
Length	152.4 mm 6.0 in
Pipe Outer Diameter	2 3/8 in 2 7/8 in 3 1/2 in 4 1/2 in
Width	203.2 mm 8.0 in
Weight	20.6 kg 45.5 lb

Environmental Specifications

Wind Rating

For specifications—contact 828-324-2200 or 1-800-982-1708 (toll free), or your local CommScope representative

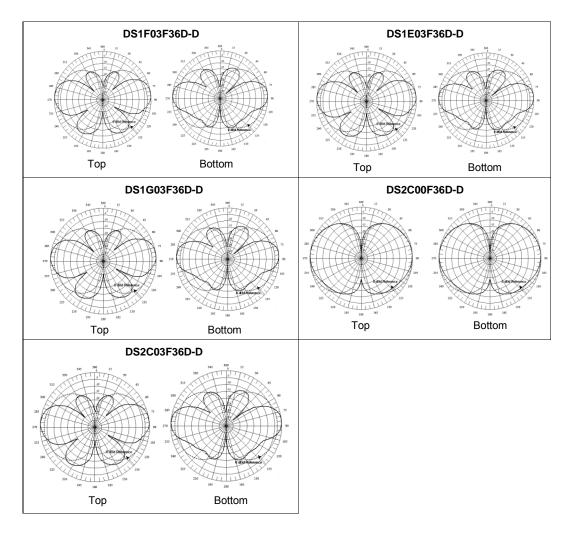
General Specifications

Product Type	Wall mount
Mounting	Solid walls
Stand-off Distance	152.4 mm 6.0 in
Includes	Backing plates or anchors Wall brackets (2)
Material Type	Hot dip galvanized steel
Package Quantity	2

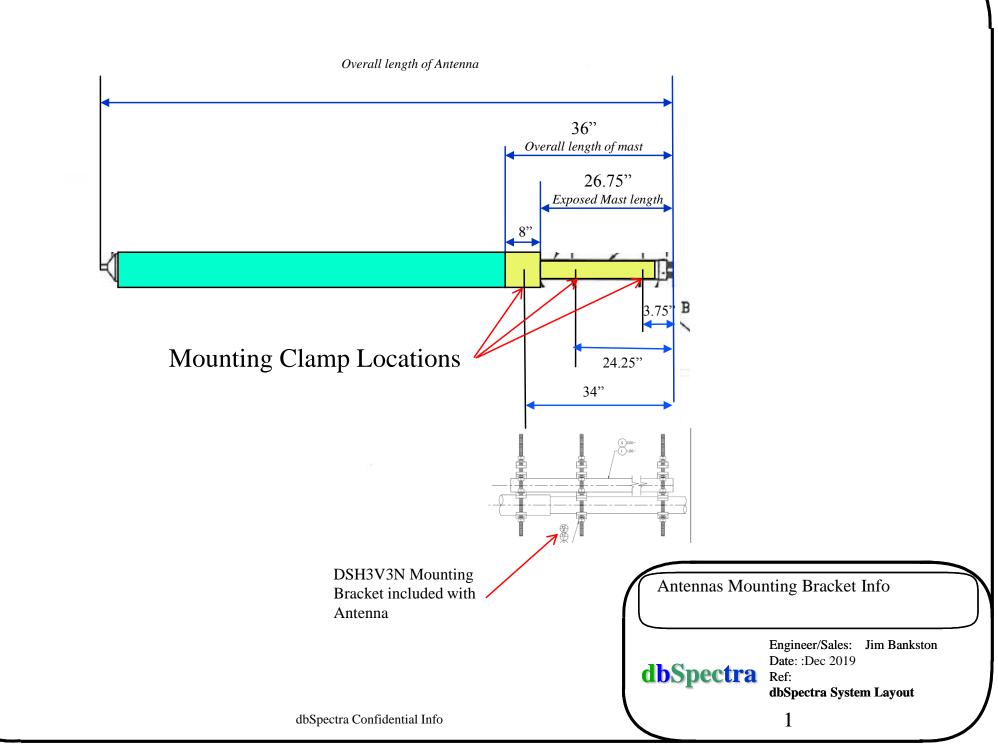
©2016 CommScope, Inc. All rights reserved. All trademarks identified by ® or TM are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: January 16, 2016

8 7 6	5	4	3	2	1
ITEM PART NO. DESCRIPTION QTY. WEIGHT	•			REVISIONS	
1 MT222.05 6" WALL MOUNT BRACKET 2 10.81 LBS		-	REV. ZONE B	DESCRIPTION REVISED & REDRAWN	BY DATE JTS 04/12/01
2 MT222H HARDWARE KIT (ITEM 3) 2			С	UPDATE PART LIST	JTS 05/21/01
3 MT-271 1/2" X 3-3/4" WEDGE ANCHOR KIT 8 0.18 LBS			D E	REDRAWN IN SOLIDWORKS	ACG 09/06/06
		l	E	REDESIGN ITEM #1	MSM 02/27/08
n					
ם					
				\bigcirc	
	► 6.0[152.5]				
					_
◄──► 7.0[177.8]	\frown				
	(3)				
● 10.1 [257.3]					
	INOIL.	GALV PIPE AND U-BOLT ORDERED SEPERATELY	5		
▶					-
				a m	
B					
	-			\bigcirc	
	•E				
		These drawings and specifications are the proprietor	TY DRAWN BY: SHEET:	Part NUMBER:	
		These drawings and specifications are the proprietar property of ANDREW CORPORATION and may be use only for the specific purpose authorized in writing b Andrew Corporation.	ACG 1 c	of 1 MT-222	
		ALL DIMENSIONS ARE IN INCHES U.O.S. TOLERANCES UNLESS OTHERWISE SPECIFIED:	TP NTS	6" ADJUSTABLE SOLID WALL MOUNT	
		.X = ± .06 ANGLES ±	27 1/32 09/06/06 A36	ASSEMBLY DRAWING	
		X = ± .06 ANGLES ± .XX = ± .03 FRACTIONS ± .XXX= ± .010	:1/32 REVISION: FINSH: GALV /		
		REMOVE BURRS AND BREAK EDGES .005	WEOHT		
		DO NOT SCALE THIS PRINT	44.10	LBS.	

VHF Dual Omni Antennas (140-222 MHz)


				140-222 MHz		
	Model Number	DS1E03F36D-D	DS1F03F36D-D	DS1G03F36D-D	DS2C00F36D-D	DS2C03F36D-D
	Input Connector	7/16 DIN				
	Туре	Dual	Dual	Dual	Dual	Dual
	Frequency	140-150 MHz	150-164 MHz	160-174 MHz	217-222 MHz	217-222 MHz
	Bandwidth	11 MHz	15 MHz	15 MHz	6 MHz	6 MHz
	Power	500 Watts				
ELECTRICAL	Gain	3 dBd	3 dBd	3 dBd	0 dBd	3 dBd
CTRI	Horizontal Beamwidth	360°	360°	360°	360°	360°
ELE	Vertical Beamwidth	30°	30°	30°	60°	30°
	Beam Tilt	0°	0°	0°	0°	0°
	Isolation (minimum)	30	30	30 dB	30 dB	30 dB
	Number of Connectors	2	2	2	2	2
	Flat Plate Area	4.1 ft ² (0.38 m ²)	4.5 ft ² (0.42 m ²)	4.5 ft ² (0.42 m ²)	2.4 ft ² (0.22 m ²)	4.1 ft ² (0.38 m ²)
ICAI	Lateral Windload Thrust	169 lbf((752 N)	169 lbf (752 N)	169 lbf (752 N)	90 lbf (400 N)	169 lbf (752 N)
MECHANICAL	Survival Wind Speed					
MEC	without ice with 0.5" radial ice	75 mph (121 kph) 65 mph (105 kph)	75 mph (121 kph) 65 mph (105 kph)	75 mph (121 kph) 65 mph (105 kph)	130 mph (209 kph) 115 mph (185 kph)	75 mph (121 kph) 65 mph (105 kph)
	Mounting Hardware included	DSH3V3N	DSH3V3N	DSH3V3N	DSH3V3R	DSH3V3N
	Length	24.3 ft (7.4 m)	22.3 ft (6.8 m)	22.3 ft (6.8 m)	13.6 ft (4.1 m)	24.3 ft (7.4 m)
DIMENSIONS	Radome O.D.	3 in (7.6 cm)	<mark>3 in (7.6 cm)</mark>			
ISN	Mast O.D.	2.5 in (6.4 cm)				
DIME	Net Weight w/o bracket	70 lb (31.8 kg)	63 lb (28.6 kg)	63 lb (28.6 kg)	40 lb (18.1 kg)	70 lb (31.8 kg)
	Shipping Weight	100 lb (45.4 kg)	93 lb (42.2 kg)	93 lb (42.2 kg)	70 lb (31.8 kg)	100 lb (45.4 kg)

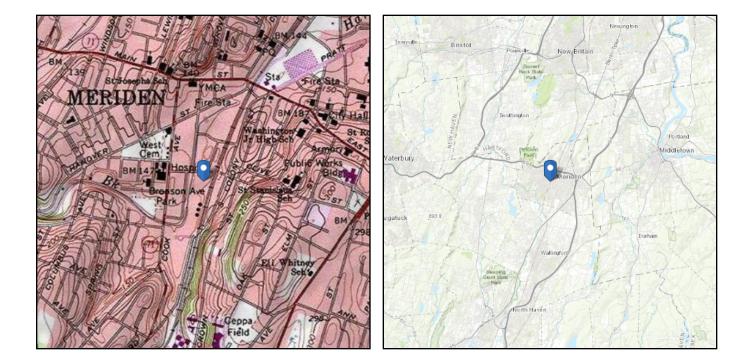
Antenna Patterns on the next page.


VHF Dual Omni Antennas (140-222 MHz)

ANTENNA PATTERNS

Mounting Bracket locations and Antenna Mast Dimensions of Dual antenna

Location

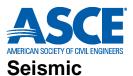

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IIISoil Class:D - Stiff Soil

 Elevation:
 127.09 ft (NAVD 88)

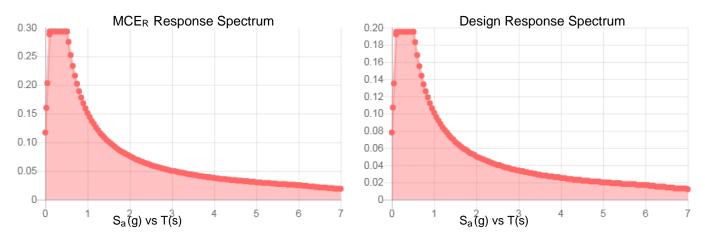
 Latitude:
 41.532722

 Longitude:
 -72.805667


Data Source: ASCE/SEI 7-10, Fig. 26.5-1B and Figs. CC-1–CC-4, incorporating errata of March 12, 2014

Date Accessed: Wed Dec 04 2019

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 3% probability of exceedance in 50 years (annual exceedance probability = 0.000588, MRI = 1,700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.183	S _{DS} :	0.195	
S ₁ :	0.063	S _{D1} :	0.101	
F _a :	1.6	T∟ :	6	
F _v :	2.4	PGA :	0.094	
S _{MS} :	0.293	PGA M:	0.15	
S _{M1} :	0.151	F _{PGA} :	1.6	
		l _e :	1.25	

Seismic Design Category B

Data Accessed: Date Source:

Wed Dec 04 2019

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:	0.75 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Wed Dec 04 2019

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Snow

Results:	
Ground Snow Load, p _g :	30 lb/ft ²
Elevation:	127.1 ft
Data Source:	ASCE/SEI 7-10, Fig. 7-1.
Date Accessed:	Wed Dec 04 2019
	Values provided are ground snow loads. In areas designated "case study required," extreme local variations in ground snow loads preclude mapping at this scale. Site-specific case studies are required to establish ground snow

loads at elevations not covered.

ATTACHMENT D – PROOF OF DELIVERY OF NOTICE

ATTACHMENT E - POWER DENSITY REPORT

C Squared Systems, LLC 65 Dartmouth Drive Auburn, NH 03032 603-644-2800 support@csquaredsystems.com

Calculated Radio Frequency Emissions Report

ES-281

46 Cooper Street

Meriden, CT 06451

March 6, 2020

Table of Contents

1. Introduction	1
2. FCC Guidelines for Evaluating RF Radiation Exposure Limits	1
3. Power Density Calculation Methods	2
4. Calculated % MPE Results	3
5. Conclusion	4
6. Statement of Certification	4
Attachment A: References	5
Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)	6
Attachment C: Eversource Antenna Data Sheets and Electrical Patterns	8

List of Tables

Table 1: Proposed Tower % MPE		3
Table 2: FCC Limits for Maximum	Permissible Exposure (MPE)	6

List of Figures

Figure 1: Graph of FCC Limits for Maximum Permissible Exposure (MPE)7

1. Introduction

The purpose of this report is to investigate compliance with applicable FCC regulations for the proposed Eversource installation to be located on the rooftop of 46 Cooper Street in Meriden, CT.

Eversource is proposing to install an omnidirectional antenna as part of its 220 MHz communications system.

This report considers the planned antenna configuration as provided by Eversource along with power density information of the existing antennas to calculate the cumulative % MPE (Maximum Permissible Exposure) of the proposed facility at ground level.

2. FCC Guidelines for Evaluating RF Radiation Exposure Limits

In 1985, the FCC established rules to regulate radio frequency (RF) exposure from FCC licensed antenna facilities. In 1996, the FCC updated these rules, which were further amended in August 1997 by OET Bulletin 65 Edition 97-01. These new rules include Maximum Permissible Exposure (MPE) limits for transmitters operating between 300 kHz and 100 GHz. The FCC MPE limits are based upon those recommended by the National Council on Radiation Protection and Measurements (NCRP), developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI).

The FCC general population/uncontrolled limits set the maximum exposure to which most people may be subjected. General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Public exposure to radio frequencies is regulated and enforced in units of milliwatts per square centimeter (mW/cm²). The general population exposure limits for the various frequency ranges are defined in the attached "FCC Limits for Maximum Permissible Exposure (MPE)" in Attachment B of this report.

Higher exposure limits are permitted under the occupational/controlled exposure category, but only for persons who are exposed as a consequence of their employment and who have been made fully aware of the potential for exposure, and they must be able to exercise control over their exposure. General population/uncontrolled limits are five times more stringent than the levels that are acceptable for occupational, or radio frequency trained individuals. Attachment B contains excerpts from OET Bulletin 65 and defines the Maximum Exposure Limit.

Finally, it should be noted that the MPE limits adopted by the FCC for both general population/uncontrolled exposure and for occupational/controlled exposure incorporate a substantial margin of safety and have been established to be well below levels generally accepted as having the potential to cause adverse health effects.

3. Power Density Calculation Methods

The power density calculation results were generated using the following formula as outlined in FCC bulletin OET 65, and Connecticut Siting Council recommendations:

Power Density =
$$\left(\frac{1.6^2 \times 1.64 \times \text{ERP}}{4\pi \times R^2}\right)$$
 X Off Beam Loss

Where:

EIRP = Effective Isotropic Radiated Power = 1.64 x ERP

R = Radial Distance = $\sqrt{(H^2 + V^2)}$

H = Horizontal Distance from antenna

V = Vertical Distance from radiation center of antenna

Ground reflection factor of 1.6

Off Beam Loss is determined by the selected antenna pattern

These calculations assume that the antennas are operating at 100 percent capacity and full power, and that all antenna channels are transmitting simultaneously. Obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. The calculations assume even terrain in the area of study and do not consider actual terrain elevations which could attenuate the signal. Furthermore, all antennas on the rooftop are assumed to in the same location. As a result, the calculated power density and corresponding % MPE levels reported below are much higher than the actual levels will be from the final installation.

4. Calculated % MPE Results

Table 1 below outlines the power density information for the site. The proposed Eversource omnidirectional antenna has a relatively narrow vertical beamwidth of 30°; therefore, the majority of the RF power is focused out towards the horizon. As a result, there will be less RF power directed below the antennas relative to the horizon, and consequently lower power density levels around the base of the facility. The vertical patterns of the other existing antennas also exhibit varying degrees of directionality. Please refer to Attachment C for the vertical pattern of the existing and proposed Eversource antenna. The calculated results in Table 1 for the Eversource antennas include a nominal of 10 dB off-beam pattern loss for the antennas to account for the lower relative gain below the antennas.

Carrier	Antenna Height (Feet)	Operating Frequency (MHz)	Number of Trans.	ERP Per Transmitter (Watts)	Power Density (mw/cm ²)	Limit	%MPE
Eversouræ	33	37.62	1	120	0.0059	0.2000	2.96%
Eversource	35	37.84	1	120	0.0051	0.2000	2.57%
Eversouræ	51.4	173.25	1	380	0.0066	0.2000	3.32%
Eversouræ	45.3	938	1	240	0.0056	0.6256	0.89%
Eversource	48	217	4	124	0.0101	0.2000	5.06%
						Total	14.80%

Table 1: Proposed Tower % MPE ^{1 2 3}

¹ The operating parameters for the existing Eversource antennas were taken from a survey report conducted by C Squared Systems on October 11, 2013 and recently confirmed through Eversource's agent. Please note that % MPE values listed are rounded to two decimal points and the total % MPE listed is a summation of each unrounded contribution. Therefore, summing each rounded value may not identically match the total value reflected in the table.

 $^{^{2}}$ The heights listed for the proposed (highlighted in blue) and existing Eversource antennas are in reference to Black & Veatch construction drawing dated 01/07/2020 (Rev. A).

³ In cases where Eversource antennas were unable to be identified during the 2013 field survey (37.76 MHz and 37.84 MHz), an antenna model with like characteristics was considered in this analysis.

5. Conclusion

The above analysis concludes that RF exposure at ground level with the proposed antenna installation will be below the maximum power density limits as outlined by the FCC in the OET Bulletin 65 Ed. 97-01. Using the conservative calculation methods discussed herein, the highest expected percent of Maximum Permissible Exposure at ground level with the proposed installation is **14.80% of the FCC General Population/Uncontrolled limit**.

As noted previously, the calculated % MPE levels are more conservative (higher) than the actual levels will be from the finished installation.

6. Statement of Certification

I certify to the best of my knowledge that the statements in this report are true and accurate. The calculations follow guidelines set forth in FCC OET Bulletin 65 Edition 97-01, IEEE Std. C95.1, and IEEE Std. C95.3.

Andoni

March 4, 2020

Report Prepared By:

Sokol Andoni RF Engineer C Squared Systems, LLC Date

Keith Whate

Reviewed/Approved By:

Keith Vellante Director of RF Services C Squared Systems, LLC March 6, 2020 Date

Attachment A: References

OET Bulletin 65 - Edition 97-01 - August 1997 Federal Communications Commission Office of Engineering & Technology

IEEE C95.1-2005, IEEE Standard Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz IEEE-SA Standards Board

IEEE C95.3-2002 (R2008), IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, 100 kHz-300 GHz IEEE-SA Standards Board

A) Limits for Occu	pational/Contro	olled Exposure ⁴		
Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f ²)*	6
30-300	61.4	0.163	1.0	6
300-1500	-	-	f/300	6
1500-100,000	-	-	5	6

Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)

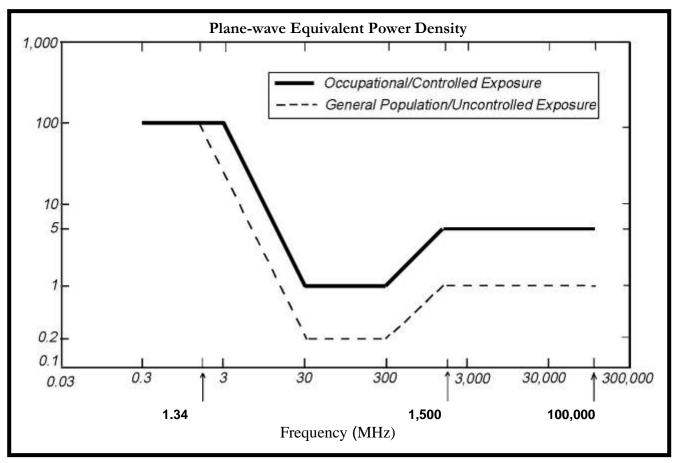
(B) Limits for General Population/Uncontrolled Exposure⁵

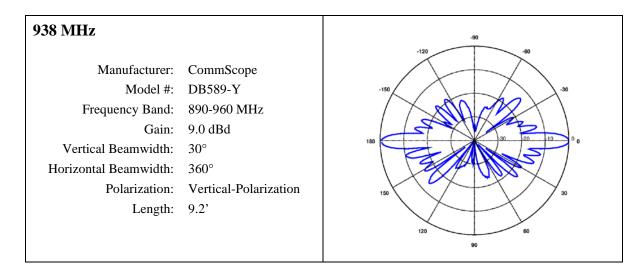
Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ \mathbf{E} ^2$, $ \mathbf{H} ^2$ or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f ²)*	30
30-300	27.5	0.073	0.2	30
300-1500	-	-	f/1500	30
1500-100,000	-	-	1.0	30

Table 2: FCC Limits for Maximum Permissible Exposure (MPE)

⁴ Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure

⁵ General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure





Figure 1: Graph of FCC Limits for Maximum Permissible Exposure (MPE)

