56 Prospect Street,
P.O. Box 270

Hartford, CT 06103

Kathleen M. Shanley Manager - Transmission Siting Tel: (860) 728-4527

July 22, 2020

Melanie A. Bachman
Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Notice of Exempt Modification
 Eversource Site Meriden Cooper St.
 56 Cooper Street, Meriden, CT 06451
 Latitude: 41-31-57.1 N / Longitude: 72-48-21.4 W

Dear Ms. Bachman:

The Connecticut Light and Power Company doing business as Eversource Energy ("Eversource") currently maintains multiple antennas at various mounting heights on an existing building located at 56 Cooper Street in Meriden, CT. See Attachment A, Parcel Map and Property Card. The building and property are owned by Eversource. Eversource plans to install one 24-foot 3-inch tall omni-directional antenna on the existing penthouse wall; the top of the antenna will extend to approximately 67 feet above ground level ("AGL"). Two 7/8-inch diameter coaxial cables will be routed from the antenna into the existing building where it will terminate in an existing communications room. There will be no ground disturbance and no changes to the building or the existing antennas and equipment. The existing and proposed antennas on the building are depicted on Attachment B, Construction Drawings, dated March 30, 2020.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies ("R.C.S.A.") §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this notice is being delivered to Kevin Scarpati, Mayor of the City of Meriden and Renata Bertotti, Director of Planning, Development \& Enforcement for the City of Meriden via the United States Postal Service or private carrier. Proof of delivery is attached. See Attachment C, Proof of Delivery of Notice.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2):

1. There will be no change to the height of the existing building; an existing omni-directional antenna extends to 60'-11" AGL; the proposed omni-directional antenna will extend to 67'-0" AGL.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the new antenna will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard as shown in the attached Radio Frequency Emissions Report, dated March 6, 2020 (Attachment D - Power Density Report) ${ }^{1}$.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading as shown in the attached Structural Analysis, dated March 26, 2020 (Attachment E - Structural Analysis).

For the foregoing reasons, Eversource respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Two copies of this notice and a check in the amount of $\$ 625$ are enclosed.

Communications regarding this Notice of Exempt Modification should be directed to Kathleen Shanley at (860) 728-4527.

By:

Kathleen M. Shanley
Manager - Transmission Siting
cc: Honorable Kevin Scarpati, Mayor, City of Meriden
Renata Bertotti, Director of Planning, Development \& Enforcement, City of Meriden

Attachments
A. Parcel Map and Property Card
B. Construction Drawings
C. Proof of Delivery of Notice
D. Power Density Report
E. Structural Analysis

[^0]ATTACHMENT A - PARCEL MAP AND PROPERTY CARD

OWNER INFORMATION	Owner(s): YANKEE GAS SERVICES CO	Owner Address:	
	P O BOX 270		
	C/O PROPERTY TAX DEPT	HARTFORD, CT 06141	

Sub Area

Summary

> No Sub Area data found

Special Features

No Special Features found.
$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Land } \\ \text { Appraised }\end{array} & \begin{array}{c}\text { Building } \\ \text { Appraised }\end{array} & \begin{array}{c}\text { Yard } \\ \text { Appraised }\end{array} & \begin{array}{c}\text { Total } \\ \text { Appraised } \\ \text { Value }\end{array} & \begin{array}{c}\text { Land } \\ \text { Assessed }\end{array} & \begin{array}{c}\text { Building } \\ \text { Assessed }\end{array} & \begin{array}{c}\text { Yard } \\ \text { Assessed }\end{array} & \begin{array}{c}\text { Special } \\ \begin{array}{c}\text { Total } \\ \text { Vand } \\ \text { Value }\end{array} \\ \hline \$ 1,751,200\end{array} \$ 2,059,300 & \$ 625,300 \\ \hline \text { Assessed } \\ \text { Value }\end{array}\right]$

Previous Year: 2018

Land Value	Building Value	Yard Items	Appraised Value	Land Value	Building Value	Yard Items	Assessed Value
$\$ 1,749,800$	$\$ 2,057,800$	$\$ 625,300$	$\$ 4,432,900$	$\$ 1,224,860$	$\$ 1,440,460$	$\$ 437,710$	$\$ 3,103,030$

LAND						
INFORMATION	Land Use	Zoning	Land Area	Neighborhood Description		
	Comm Bldg	M-3	10.46919	INNER CITY AREA		

*Confirm zoning with Planning Office.
Zoning_map_is the official document to determine zone.

SALES INFORMATION	Sale Date	Sale Price	Book	Page	Grantor	Grantee	Deed Type
	$6 / 30 / 1989$	$\$ 0$	1646	11			

ASSESSOR'S PERMIT HISTORY
No data found.

PROPERTY IMAGES

909
0113-0059-0001-0010
1

ATTACHMENT B - CONSTRUCTION DRAWINGS

EVERS=URCE
 ENERGY

CONTACT INFORMATION	
107 SELDEN SIREET BERLN, CT O6037	POWER PROVIER: EVERSOURCE ENERGY (800) 286-2000
	TELCO PROVIDER: (800) 921-8102
EVERSOURCE ENERGY NIKOLL PRECI 60) 655-3079	

MERIDEN 56 COOPER STREET MERIDEN, CT 06451

Project no:	403093
DRamm Br:	${ }^{\text {cta }}$

CHECKED BY:

0	$03 / 3 / 20$	ISSUED FOR FIUM
REV	OATE	OESCRPRION

DO NOT SCALE DRAWINGS
MERIDEN
56 COOPER STREE
SHEET TTLE
TITLE SHEET

SHEET NUMBER
$\mathrm{T}-1$

DETAIL A

107 SELDEN STRET
BERLNET 0 O63T
PHONE: (800) $286-2000$
a
BLACK \& VEATCH

OVERLAND PARK, KS 66211
PHONE: (913) 458-3595

MERIDEN
56 COOPER STREE
MERIDEN, CT 0645

SHEET TTILE
STRUCTURAL DETAILS

DESIGN BASIS

Governing cooe: 2018 Connecticut state bullong cooe (2015 IBC basis)

GENERAL CONDITIONS

detals ncluoed in this plan set are trical and apply to smiar conotions.

8. THE CONTRACTOR SHALL SAFEGURD AGANST: CREATMG A FRE HAZARO, AFFECTMG TENANT EGRESS
9. THE CONTRACTOR SHALL REMOVE ALL DEERRS AND CONSTRUCTON WASTE FROM THE STE EACH DAY.
10. THE Contractor's hours of work shall ge in accordance wit local codes and

THERMAL \& MOISTURE PROTECTION

 HDERWERIRSS LABORACORES (LL) STSIEM NUMBER
3. Firesioppng shall be appled as soon as practicable after pentiratons are made and

6. ALL PENETRATONS

contractor to remuve and re-INSTALL AlL fire proofing as reaured during
construction.

SUBMITTALS

contractor to subut shop drawngs to enginer for revew prior to fabricaton.
2. Contractor to notif engineer for inspection prior to closng penetrations.

4. ALL STEEL MATERAL EXPOSED To WEATER SHALL BE GALVANZED ATER FAARRCATON IN

2. DAMAGED GALVANIZD SURFACES SHALL BE CleANED WTH A WRE BRUSH AND PANTED WTH TWO

3. DESIIN, FABRICATON AND ERECTON OF

5. All steel elements shall be installed plumb and level
6. Tower manufactuerr's desions shall preval for tower.

CONNECTIONS

Design connectons at beam ons ior io
3. all bulloing connection ponins are to be centered over bearng walls

5. nut locking devices are regured for all bolt assembles.

 L BE REPARED. SEE NOTE ABOVE.

10. ALI ARC AND GAS WELING SHALL BE DONE BY LICENSED ANO CEETIFED WELOER IN ACCORDANCE
 12. USE Precautions and proceoures per aws 01.1 when welong galvanized metals.

ANCHOR

XPPNSION ACCHORS SHALL BE UEED WHERE ATACHING TO CONCRETE. MASONRY MOUNTS SHAL
2. Exadnsion bolts shall be hiti kwi bolt 3 or approved equal. minmum embedment shal

BRICK wITH Holess:
SPACE ANCHORS

minom

ANCHORS SHALL RE ENSTALLED PER MANUFACTURER'S RECOMMENDATONS AND SHALL NOT BE
NSTTLLLE N MORTAR JONTS.

SITE GENERAL

6. Coniracion is responsile for repainng or replaing structures or utlites damage

F

BLACK \& VEATCH

OVERLAND PARK, KS 6621
PHONE: (913) 488-3595

	Ject No:		403093
	wn BY:		166
	CkED BY:		JR
-			
\bigcirc	03/30/20	ISSUEE Por filme	
Rriv	DAE	Discripron	

い11111,

MERIDEN 56 COOPER STREET
shet mer
\& SPECIFICATIONS

ELECTRICAL

4. ALL ELECTRCCAL CONOUCTors shall be 100% COPPER AND SHALL HAVE TPPE THHN INSULATION

9. Condut ANo caale witin corriors shall ee concealeo and exposed elsewtere, unless

15. ALL conouctor ends shall be tagged and electrical equipment labeled wth engraved
16. CONTtactor is responsible for all control wring and allarm tie-ns.

GROUNDING

\#G THWN Shal be strandoe \#g copper with green thwn insulaton sutable for wet
NStalations.
2. \#2 THWN SHALL BE STRANDED \#2 COPPER WTH THWN INSULATION SUTABELE FOR WET
3. \#2 bare tined shall ee solid copper tineed. all buried wie shall meet this crtera.

9. ALL Connectons to the ground ring shall be exothermi welo.
10. BoND HEE FENCE TO THE GRound RNG AT EACH CORNER, AND AT EACH GATE POST WTH \# \#

12. FERRROUS METAL CLIPS WHICH COMPLETELY SURROUND THE GRounong conouctor SHALL bE

14. Mge ground connecton shall be exothermi weloed to the ground srstem.
15. ALL CABEE TRAY AND/OR PLATFORM STEEL SHALL BE BONDED TOGETHER WTH UUMPERS (\#6 IN

CABLE TRAY

CaBEE TRAY SHALL
RESSITAT F FIISH.
2. Cable tray shall be of ladoer tray ippe wit flat cover clamped to side ralls.
3. CABLE LADOER SHALLL BE SIZED to FIT ALL CABLES IN ACCORD WTH NEC ANO NEMA 11-15-84.
. Cable ladoer trays shall be nema class 12 A ey pw inoustres, inc or equal.
5. CABLE LAODER TRAY Shall be supporied in accordance wit manufacturer's specifcations.
6. ALL WORKMANSHP SHALL CONFORM TO THEEE REOUREMENTS AND ALL LOCAL CODES AND

ANTENNA \& CABLE NOTES

 AND Yerir All of the M.
2. ATER NSTAALLTONN THE TRANMMSSON INE SYSTEM SHALL BE PMM SMEEP TESTED FOR PROPER
3. ANEENA CABEES SHALL BE COLOR COOED AT THE FOLLOWNG LOCATONS:

- AT THE WNEGUSE ENRY PLATE ON BoTH SIES OF THE EQUPMENT SHELITR WALL
JUMPER CABELES AT THE EQUIPMENT ENTER.

4. SYTEM NSTALATOTON.

- ALL CONECCTORS. ASSOCATEE CABEE MOUNTNG, AND GROUNONG HAROWARE
- WAAL L NOUHTS, STANOOFFS. AND ASSOCATEE HARODNARE.

5. MNIMUM BENOING RADUS FOR COAXALL CABLES:
$7 / 8$ INCHMHNMN RMI 15 INCHES
$15 / 8$ NCH, RMIN $=25$ NCHES
6. CABEE SHAL BE MSTALLD WTH AMNMUM NUMBER OF BENOS WHER POSSBLEE CABLE SHAL all cable connectons outside shall be covered wit waterproof splicing ki.
7. CONTRACTOR SHALL VERIT EXACT LENGTH AND DRECTON OF TRAVEL IN FIELD PRIOR TO

Cable shall be furnshed without splices ano wit connectors at fach en

Fr
 BLACK \& VEATCH

PRouect no:			403093
DRAWN BY:			Tc6
CHECKED BY:			JR
-			
\bigcirc	03/30/20	ISSUE For filuc	
Rev	оАIE	Discreprow	

い1111"

MERIDEN 6 COOPER STREE MERIDEN, CT 0645

REFERENCE CUTSHEETS

VHF Omni Antennas (160-222 MHz)

Model Number		160-174 MHz					
	Input Connector	N(F)	$\begin{aligned} & 7 / 16 \\ & \text { DIN } \end{aligned}$	N(F)	$\begin{array}{r} 7 / 16 \\ \text { DIN } \end{array}$	$N(F)$	$\begin{aligned} & 7 / 16 \\ & \text { DIN } \end{aligned}$
	Type	Single		Single		Dual	
$\begin{aligned} & \frac{1}{d} \\ & \frac{0}{d x} \\ & \frac{1}{6} \\ & \text { 피 } \end{aligned}$	Bandwidth, MHz	14		14		14	
	Power, Watts	500		500		350	
	Gain, dBd	3		6		3	
	Horizontal Beamwidth, degrees	360		360		360	
	Vertical Beamwidth, degrees	30		16		30	
	Beam Tilt, degrees	0		0		0	
	Isolation (minimum), dB	N/A		N/A		30	
	Number of Connectors	1		1		2	
	Flat Plate Area, $\mathrm{ft}^{2}\left(\mathrm{~m}^{2}\right)$	2.53 (0.24)		4.38 (0.41)		4.5 (0.42)	
	Lateral Windload Thrust, Ibf(N)	95 (423)		164 (730)		169 (752)	
	Survival Wind Speed without ice, $\mathrm{mph}(\mathrm{kph})$ with $0.5^{\prime \prime}$ radial ice, $\mathrm{mph}(\mathrm{kph})$	$\begin{aligned} & 110(177) \\ & 93(150) \\ & \hline \end{aligned}$		$\begin{gathered} 75(121) \\ 60(97) \end{gathered}$		$\begin{aligned} & 75(121) \\ & 65(105) \end{aligned}$	
	Mounting Hardware included	DSH3V3R		DSH3V3N		DSH3V3N	
	Length, ft(m)	12.7 (3.9)		21.9 (6.7)		22.3 (6.8)	
	Radome O.D., in(cm)	3 (7.6)		3 (7.6)		3 (7.6)	
	Mast O.D., in(cm)	2.5 (6.4)		2.5 (6.4)		2.5 (6.4)	
	Net Weight w/o bracket, lb(kg)	37 (16.8)		$60 \text { (27.2) }$		$63 \text { (28.6) }$	
	Shipping Weight, lb(kg)	$67 \text { (30.4) }$		$90 \text { (40.8) }$		93 (42.2)	

217-222 MHz					
				$\begin{aligned} & \text { z } \\ & \text { ì } \\ & \text { N} \\ & \text { M } \\ & \text { U } \\ & \text { Nin } \end{aligned}$	
$\begin{array}{l\|l} \hline \text { N(F) } & \begin{array}{c} 7 / 16 \\ \text { DIN } \end{array} \end{array}$	$\begin{array}{l\|l} \hline \text { N(F) } & \begin{array}{c} 7 / 16 \\ \text { DIN } \end{array} \end{array}$	$\begin{array}{l\|l} \hline \text { N(F) } & \begin{array}{c} 7 / 16 \\ \text { DIN } \end{array} \end{array}$	$\begin{array}{l\|l} \hline \text { N(F) } & \begin{array}{c} 7 / 16 \\ \text { DIN } \end{array} \end{array}$	$N(F)$	$\begin{aligned} & \hline 7 / 16 \\ & \text { DIN } \end{aligned}$
Single	Single	Single	Dual	Dual	
5	5	5	5	5	
500	500	500	350	350	
0	3	6	0	3	
360	360	360	360	360	
60	30	16	60	30	
0	0	0	0	0	
N/A	N/A	N/A	30	30	
1	1	1	2	2	
1.9 (0.18)	1.9 (0.18)	2.58 (0.24)	2.4 (0.22)	4.1 (0.38)	
53 (236)	69 (307)	108 (480)	90 (400)	169 (752)	
$\begin{aligned} & 222(357) \\ & 193 \text { (311) } \end{aligned}$	$\begin{aligned} & 172(277) \\ & 150(241) \end{aligned}$	110 (177)	130 (209)	75 (121)	
		96 (154)	115 (185)	65	
DSH2V3R	DSH2V3R	DSH3V3N	DSH3V3R	DSH3V3N	
7.7 (2.3)	9.9 (3)	18.1 (5.5)	13.6 (4.1)	24.3 (7.4)	
3 (7.6)	3 (7.6)	3 (7.6)	3 (7.6)	3 (7.6)	
2.5 (6.4)	2.5 (6.4)	2.5 (6.4)	2.5 (6.4)	2.5 (6.4)	
19 (8.6)	26 (11.8)	47 (21.3)	40 (18.1)	70 (31.8)	
39 (17.7)	56 (25.4)	77 (34.9)	70 (31.8)	100 (45.4)	

Product Classification

Dimensions

Height	$203.2 \mathrm{~mm} \mid 8.0 \mathrm{in}$
Length	$152.4 \mathrm{~mm} \mid 6.0 \mathrm{in}$
Pipe Outer Diameter	$23 / 8 \mathrm{in} \mathrm{\mid} \mathrm{2} \mathrm{7/8} \mathrm{in} \mathrm{\mid} 31 / 2 \mathrm{in} \mathrm{\mid} 41 / 2 \mathrm{in}$
Weight	$20.6 \mathrm{~kg} \mathrm{\mid} 45.5 \mathrm{lb}$
Width	$203.2 \mathrm{~mm} \mid 8.0 \mathrm{in}$

Environmental Specifications

Wind Rating
For Specifications, please contact steelproducts@commscope.com or call 800-255-1479

General Specifications

Mounting
Includes
Material Type
Package Quantity
Stand-off Distance

Solid walls
Backing plates or anchors | Wall brackets (2)
Hot dip galvanized steel
2
152.4 mm | 6.0 in

Outline Drawing

Regulatory Compliance/Certifications

Agency
ISO 9001:2015

Classification

Designed, manufactured and/or distributed under this quality management system

PARTS LIST								
ITEM	QTY	PART NO.	PART DESCRIPTION	LENGTH	UNIT WT.	NET WT.		
1	1	SP1586	WALL MOUNT BRACKET FOR 4 RUNS OF COAX	$111 / 4$ in	2.81	2.81		

A valmont \boldsymbol{F} COMPANY

MonoBloc Stackable Snap-In Hangers (SIC1, SIC2, SIC3, SIC4)

Features:

- Allows cable attachment without the need for hardware
- One-hand mounting
-Stack up to four $1 / 2$ ", $7 / 8$ " or $1-1 / 4$ " cables or three $1-5 / 8$ " cables

Construction:

- 301 stainless steel

Design Criteria:

- Can be used outdoors or indoors

Part \#	AT\&T	Cable Size	U of \mathbf{M}	A	B	H
SIC1	CEQ.11469	$1 / 2^{\prime \prime}$	10 pack	$1-1 / 4^{\prime \prime}$	$1-9 / 16^{\prime \prime}$	$1-1 / 2^{\prime \prime}$
SIC2	ANT.13860	$7 / 8^{\prime \prime}$	10 pack	$1-1 / 4^{\prime \prime}$	$1-9 / 16^{\prime \prime}$	$1-1 / 2^{\prime \prime}$
SIC3	ANT.13859	$1-1 / 4^{\prime \prime}$	10 pack	$2-1 / 4^{\prime \prime}$	$1-3 / 4^{\prime \prime}$	$2-5 / 8^{\prime \prime}$
SIC4	ANT.12719	$1-5 / 8^{\prime \prime}$	10 pack	$2-1 / 4^{\prime \prime}$	$1-3 / 4^{\prime \prime}$	$2-5 / 8^{\prime \prime}$

ATTACHMENT C - STRUCTURAL ANALYSIS REPORT

STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT AND PENTHOUSE WALL

MERIDEN COOPER ST.
46 COOPER ST.
MERIDEN, CT 06451

B\&V PROJECT NO. 403093.2000.2200
PROJECT NAME: LMR EPC PHASE 1.5

PREPARED FOR

EVERS $=$ URCE ENERGY

107 SELDEN STREET

 BERLIN, CT 06037BLACK \& VEATCH CORPORATION
6800 WEST 115TH ST, SUITE 2292
OVERLAND PARK, KANSAS 66211

March 26, 2020

Owner:	EVERSOURCE	Computed By:	Nattakit S.
Site Name:	MERIDEN COOPER ST.	Date:	$2 / 21 / 2020$
Project No.	403093.2000.2200	Verified By:	K. Hyun
	STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT	Date:	$2 / 21 / 2020$
	AND PENTHOUSE WALL		

TABLE OF CONTENTS

1. PURPOSE
2. REFERENCES
3. ASSUMPTIONS
4. CONCLUSION
5. ANALYSIS \& DESIGN
5.1 Structural Analysis of Proposed Antenna Mount
5.2 Structural Analysis of Existing Penthouse Wall
6. ATTACHMENTS

Owner: EVERSOURCE Computed By: Nattakit S.
Site Name: MERIDEN COOPER ST. \quad Date: $2 / 21 / 2020$
$\begin{array}{llrl}\text { Project No. } & \text { 403093.2000.2200 } & \text { Verified By: } & \text { K. Hyun } \\ & \text { STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT } & \text { Date: } & 2 / 21 / 2020\end{array}$ AND PENTHOUSE WALL

1. PURPOSE

The purpose of this calculation is to evaluate the proposed antenna mount and the existing penthouse wall under proposed loading.

2. REFERENCES

A. 2018 Connecticut State Building Code
B. International Building Code, IBC 2015
C. Structural Standard for Antenna Supporting Structures and Antennas, TIA-222-H
D. American Society of Civil Engineers, ASCE 7-10
E. American Institute of Steel Construction, 14th Edition
F. Site Survey Report Completed by Black \& Veatch Corp., dated 1/10/2019
G. Site Photos

3. ASSUMPTIONS

- The existing penthouse walls are assumed to be Masonry wall.

	Owner:	EVERSOURCE	Computed By:	Nattakit S.
	Site Name:	MERIDEN COOPER ST.	Date:	2/21/2020
	Project No.	403093.2000 .2200	Verified By:	K. Hyun
	Title:	STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT AND PENTHOUSE WALL	Date:	2/21/2020
BLACK \& VEATCH				

4. CONCLUSION

4.1 Structural Analysis of Proposed Antenna Mount

Governing Load Combination:	$1.2 \mathrm{DL}+\mathrm{WL}(0 \mathrm{DEG},+\mathrm{X})+0.5 R \mathrm{LL}$
Max Stress Ratio on Proposed Pipe Mast: Pipe $3.0 \mathrm{STD}:$	$81.3 \% *$
Governing Load Combination:	$1.2 \mathrm{DL}+\mathrm{WL}(0 \mathrm{DEG},+\mathrm{X})+0.5 R \mathrm{LL}$
Max Stress Ratio on Proposed Wall Mount Anchorage:	$54.8 \% *$
The Proposed Antenna Mount Result:	$\underline{\text { SUFFICIENT }}$
Use Pipe 3 STD (O.D. 3.5") pipe x 9'-0" long min., with Commscope MT-222 wall mount bracket.	
Anchor (4) 1/2" Dia. Thru - Bolts (ASTM A325) drill to the existing penthouse wall or engineer approve	
equal.	

[^1]

4. CONCLUSION (CONTINUED)

4.2 Structural Analysis of Existing Penthouse Wall

By engineering judgment/inspection, the existing penthouse wall is SUFFICIENT to support the proposed loads.

4.3 Disclaimers

This calculation is based on the loading and equipment position provided by client. If the installed loading and/or equipment position are different from the calculation, the calculation is considered invalid.

This certification assumes that all structural members are in good condition. Contractor shall inspect the condition of all relevant members and connectors and report any perceived deficiencies to the engineer prior to installation of any new equipment.

The contractor shall be responsible for the means and methods of construction. It is contractor's responsibility to provide necessary intermediate or temporary support during construction.

Summary of Final Loading

Eversource's Loading

Final Antenna/Equipment							
Equipment Owner	Equipment Elevation (ft)	Mount Location	Position	Type	Quantity	Manufacturer	Model
Eversource	55	Pipe Mount	-	Omni	1	dbSpectra	(P) dbSpectra DS2C03F36D

Note:

(P) = Proposed Equipment

Owner:	EVERSOURCE	Computed By:	Nattakit S.
Site Name:	MERIDEN COOPER ST.	Date:	2/21/2020
Project No.	403093.2000.2200	Verified By:	K. Hyun
Title:	STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT AND PENTHOUSE WALL	Date:	2/21/2020

5. ANALYSIS \& DESIGN

5.1 Structural Analysis of Proposed Antenna Mount

Equipment Dead Load \quad EVERSOURCE'S LOADING
(P) dbSpectra DS2C03F36D
100.0 lbs

	Owner:	EVERSOURCE	Computed By:	Nattakit S.
	Site Name:	MERIDEN COOPER ST.	Date:	2/21/2020
	Project No.	403093.2000.2200	Verified By:	K. Hyun
	Title:	STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT AND PENTHOUSE WALL	Date:	2/21/2020

Wind Pressure per ASCE 7-10 / IBC 2012 / IBC 2015 / TIA-222-H

a. Ultimate Velocity Pressure, $\mathrm{q}_{\mathrm{z} \text { or }} \mathrm{q}_{\mathrm{h}}$

$$
\begin{aligned}
\mathrm{qz} & =0.00256 \mathrm{Kz} \text { Kzt Kd Ke Ks V}{ }^{2} \\
& =0.00256 \times 1.19 \times 1.00 \times 0.95 \times 1.00 \times 1.00 \times 135.00^{\wedge} 2 \\
\mathrm{qz} & =\quad 52.80 \mathrm{psf}
\end{aligned}
$$

b. Velocity pressure coefficient, Kz

$$
\begin{aligned}
\mathrm{Kz} & =2.01\left(\mathrm{z} / \mathrm{z}_{\mathrm{g}}\right)^{2 / \alpha} \\
& =2.01(75 / 900 \\
\mathrm{Kz} & =1.19 \\
\alpha & =9.50
\end{aligned}
$$

Basic Wind Speed, Vult $=\quad 135 \mathrm{mph}$

qz	$=0.00256 \mathrm{Kz} \mathrm{Kzt} \mathrm{Kd} \mathrm{Ke} \mathrm{Ks} \mathrm{V}{ }^{2}$
	$=0.00256 \times 1.19 \times 1.00 \times 0.95 \times 1.00 \times 1.00 \times 135.00^{\wedge} 2$
qz	$=\quad 52.80 \mathrm{psf}$

$$
\begin{aligned}
& \text { Exposure Category }=\begin{array}{r}
\text { C } \\
\text { Height above Ground Level, } \\
z
\end{array} \\
&=\square 75 \mathrm{ft}
\end{aligned}
$$

$$
z_{\mathrm{g}}=\quad 900.00 \mathrm{ft}
$$

c. Topographic Factor, Kzt

$$
\begin{aligned}
\mu & =0.00 \\
\gamma & =0.00 \\
\mathrm{~K}_{1} & =0.00 \\
\mathrm{~K}_{2} & =(1-\mathrm{x} / \mu \mathrm{Lh}) \\
& =[1-15 /(0.0 \times 15)] \\
\mathrm{K}_{2} & =0.00 \\
\mathrm{~K}_{3} & =\mathrm{e}^{(\gamma z / \mathrm{Lh})} \\
& =\mathrm{e}^{\wedge}-(0.0 \times 75 / 15) \\
\mathrm{K}_{3} & =0.00
\end{aligned}
$$

$$
\begin{array}{r}
\text { Her } \mathrm{ft} \\
\text { Hill Shape } \begin{array}{r}
\text { Flat Terrain } \\
\text { Crest Type } \square \text { Upwind }
\end{array}
\end{array}
$$

Distance Upwind of crest, Lh =
\square
d. Wind Directionality Factor, Kd

(7) Chimney, Tank \& Similar Structures - Round Shape	$\mathrm{Kd}=$		
e. Ground Elevation Factor, Ke		$\mathrm{Ke}=$1.00 f. Rooftop Wind Speed-up Factor, Ks g. Structure Risk Category h. Gust Effect Factor, G	$\mathrm{Ks}=$1.00

Fig. 26.8-1

Eq. 26.8-1
ASCE 7-10 Section \# 29.3.2

Fig. $26.5-1 \mathrm{~A}$
TIA-222-H
Sec. 2.6.11.6

Table 26.6-1

TIA-222-H
Table 2-6

TIA-222-H
Sec. 2.6.7

Table 1.5-1
26.9

	Owner: Site Name:	EVERSOURCE	Computed By:	Nattakit S.
	Project No.	MERIDEN COOPER ST.	Date:	$2 / 21 / 2020$
Title:				

Wind Load

Wind Velocity Pressure @ z = 75 ft
Gust factor:

Wind Load on Members:
Proposed Pipe Mast: Pipe 3.0 STD

Depth:
Force Coefficient:
Wind Load:

Q_{z}	$=$
$\mathrm{G}=$	52.80 psf
	0.85

$\mathrm{Dp}=$	3.5 in.
$\mathrm{Ca}=$	0.93
$\mathrm{Pp}=$	$\mathrm{Qz}^{*} \mathrm{G}^{*} \mathrm{Ca}{ }^{*} \mathrm{Dp}$

$P p=\quad Q z^{*} G^{*} C a * D p$
$=$
12.2 plf

Wind Load (Continued)

Wind Load on Equipment:
(P) dbSpectra DS2C03F36D

Dimensions:	$\mathrm{B}=$	0.25 ft.		
	$\mathrm{H}=$	24.30 ft.		
Force Coefficient:	$\mathrm{Ca}=$	1.20		
Wind Load:	$\mathrm{Pa}=$	$\mathrm{Qz}^{*} \mathrm{G}^{*} \mathrm{Ca}^{*} \mathrm{~B}^{*} \mathrm{H}$	$=$	$\mathbf{3 2 7 . 2} \mathbf{~ l b s .}$
			$=$	$\mathbf{1 3 . 5} \mathbf{~ p l f}$

Note:

Ice Dead Load			ASCE 7-10 Section \#
Design Ice Thickness @ z=33 ft $\quad \mathrm{T}_{\mathrm{i}}=$	0.75 in. (Per TIA	nex B)	Fig. 10.2
Note: The design ice thickness shall be escalated with height when calculating the ice weight and wind force on the ice.			
Platform and antennas height elevation, Z: 75 ft			
Factored Ice Thickness, Tiz at Z for Ice Weight Calculations:			10.4 .6
$\mathrm{T}_{\mathrm{iz}}=\left.2.0 * \mathrm{~T}_{\mathrm{i}}{ }^{*}\right\|_{i}{ }^{*} \mathrm{f}_{\mathrm{z}}{ }^{*}\left(\mathrm{~K}_{z t}\right)^{0.35}$	$\mathrm{T}_{\mathrm{iz}}=2$.		Eq. 10.4-5
where,			
Importance Factor for Ice Thickness, I_{i}			10.4.4
Structure Risk Category:			Table 1.5-1
$I_{i}=1.25$ (multiplier on ice thickness)			Table 1.5-2
Height Factor, f_{z}			10.4.3
$\mathrm{f}_{\mathrm{z}}=(\mathrm{Z} / 33)^{0.10}=(75 / 33)^{\wedge} 0.10$	1.09		Eq. 10.4-4
Topographic Factor, K_{zt}			10.4 .5
$\mathrm{K}_{\mathrm{zt}}=\left[1+\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}\right]^{2}=\quad[1+0.00 \times 0.00 \times 0.00]^{\wedge} 2=1.000$			Eq. 26.8-1
$\mathrm{K}_{1}=0.00 \quad \mu=0.00 \quad \gamma=0.00$			Fig. 26.8-1
Exposure Category = C			(Use same values
	Hill Shape $=$ Flat Terr		from wind calcs)
	Hill Height, H = 15		
Distance	wind of crest, Lh = 15	ft	
Distance Up	d to Bldg Site, $\mathrm{x}=15$	ft	
$\mathrm{K}_{2}=\left(1-\mathrm{x} / \mu \mathrm{L}_{\mathrm{h}}\right)=[$	$15 /(0.0 \times 15)]=0.00$		Fig. 26.8-1
$K_{3}=\mathrm{e}^{-(\gamma z / L h)}=$	(0.0 $\times 75 / 15)=0.00$		Fig. 26.8-1
Ice Topographic Factor, $\left(\mathrm{K}_{\mathrm{zt}}\right)^{0.35}=$	($000{ }^{\wedge} 0.35=1.000$		10.4.5
The weight of ice shall be based on a unit weight of 56 pcf . Therefore	(Per TIA	2-G 2.6.8)	10.4.1
$\mathrm{W}_{\text {ice }}=56 \mathrm{pcf}$ * Tiz /12=	9.50 psf		

	Owner:	EVERSOURCE	Computed By:	Nattakit S.
	Site Name:	MERIDEN COOPER ST.	Date:	2/21/2020
	Project No.	403093.2000 .2200	Verified By:	K. Hyun
	Title:	STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT AND	Date:	2/21/2020
BLACK \& VEATCH		PENTHOUSE WALL		

	Owner:	EVERSOURCE	Computed By:	Nattakit S.
=	Site Name:	MERIDEN COOPER ST.	Date:	2/21/2020
	Project No.	403093.2000.2200	Verified By:	K. Hyun
-	Title:	STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT AND	Date:	2/21/2020
BLACK \& VEATCH		PENTHOUSE WALL		

Ice Dead Load (Continued)

Ice Dead Load on Equipment:
(P) dbSpectra DS2C03F36D

Dimensions w/out ice:

Ice cross sectional area:
Ice Dead Load:

$B=$	3 in.	W=	3 in .
$\mathrm{H}=$	291.6 in.	Dc=	4.24 in.
Aiz=	iz (Dc + Tiz) $=$	40.15	
DLice $=[A i z(H+2 T i z)+2 \mathrm{Tiz} \mathrm{B} \mathrm{D}]^{*} 56 \mathrm{pcf} / 1728 \mathrm{in}^{\wedge} 3=$			

385.9 lbs 15.9 plf

	Owner:	EVERSOURCE	Computed By:	Nattakit S.
	Site Name:	MERIDEN COOPER ST.	Date:	2/21/2020
	Project No.	403093.2000.2200	Verified By:	K. Hyun
	Title:	STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT	Date:	2/21/2020
BLACK \& VEATCH				

Ice Wind Pressure per ASCE 7-10 / IBC 2012 / IBC 2015 / TIA-222-H

a. Ultimate Velocity Pressure, $\mathrm{q}_{\mathrm{z} \text { or }} \mathrm{q}_{\mathrm{h}}$

Basic Wind Speed, Vult $=\quad 50 \mathrm{mph}$

$$
\begin{aligned}
q z & =0.00256 \mathrm{Kz} \text { Kzt Kd Ke Ks V} \\
& \\
& =0.00256 \times 1.19 \times 1.00 \times 0.95 \times 1.00 \times 1.00 \times 50.00^{\wedge} 2 \\
q z & =\quad 7.24 \mathrm{psf}
\end{aligned}
$$

b. Velocity pressure coefficient, Kz

$$
\begin{aligned}
\mathrm{Kz} & =2.01\left(\mathrm{z} / \mathrm{z}_{\mathrm{g}}\right)^{2 / \alpha} \\
& =2.01\left(75 / 900^{\wedge}(2 / 9.5)\right. \\
\mathrm{Kz} & =1.19 \\
\alpha & =9.50
\end{aligned}
$$

Exposure Category	$=\square$ C
Height above Ground Level, z	$=\square \mathrm{ft}$

c. Topographic Factor, Kzt

$$
\begin{aligned}
\mu & =0.00 \\
\gamma & =0.00 \\
\mathrm{~K}_{1} & =0.00 \\
\mathrm{~K}_{2} & =(1-\mathrm{x} / \mu \mathrm{Lh}) \\
& =[1-15 /(0.0 \times 15)] \\
\mathrm{K}_{2} & =0.00 \\
\mathrm{~K}_{3} & =\mathrm{e}^{(\gamma z / \mathrm{Lh})} \\
& =\mathrm{e}^{\wedge}-(0.0 \times 75 / 15) \\
\mathrm{K}_{3} & =0.00
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{Kzt} & =\left[1+\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}\right]^{2} \\
& =[1+0.00 \times 0.00 \times 0.00]^{\wedge} 2 \\
\mathrm{Kzt} & =1.00
\end{aligned}
$$

d. Wind Directionality Factor, Kd

(7) Chimney, Tank \& Similar Structures - Round Shape	$\mathrm{Kd}=0.95$	
e. Ground Elevation Factor, Ke	$\mathrm{Ke}=1.00$	
f. Rooftop Wind Speed-up Factor, Ks	$K s=1.00$	
g. Structure Risk Category \quad III		
h. Gust Effect Factor, G	$\mathrm{G}=$	0.85

Table 26.6-1

TIA-222-H
Table 2-6

TIA-222-H
Sec. 2.6.7

Table 1.5-1
26.9

	Owner:	EVERSOURCE	Computed By:	Nattakit S.
	Site Name:	MERIDEN COOPER ST.	Date:	2/21/2020
	Project No.	403093.2000.2200	Verified By:	K. Hyun
	Title:	STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT AND	Date:	2/21/2020
BLACK \& VEATCH		PENTHOUSE WALL		

Ice Wind Load

Wind Velocity Pressure @ z = 75 ft
Gust factor:

Ice Wind Load on Members:
Proposed Pipe Mast: Pipe 3.0 STD

Member Depth:	$\mathrm{Dp}=$	$3.5 \mathrm{in} .+2 \mathrm{Tiz}=$
Force Coefficient:	$\mathrm{Ca}=$	0.93
Ice wind load:	$\mathrm{Pp}=\mathrm{Qz}$ ice* $\mathrm{G}^{*} \mathrm{Ca}{ }^{*} \mathrm{Dp}=$	8 in.
	$\mathbf{3 . 6}$ plf	

$Q_{\text {zice }}$	$=$	7.24 psf	(based on $\mathbf{5 0} \mathbf{~ m p h}$ wind $)$
G	$=$	0.85	

Ice Wind Load (Continued)

Ice Wind Load on Equipment:
(P) dbSpectra DS2C03F36D

Dimensions:

Force Coefficient:
Wind Load:

$\mathrm{B}=$	$0.25 \mathrm{ft}+(2 \mathrm{Tiz}) / 12$	$=$	0.59 ft.
$\mathrm{H}=$	$24.30 \mathrm{ft}+(2 \mathrm{Tiz}) / 12=$	24.64 ft.	
$\mathrm{Ca}=$	1.20		
$\mathrm{~Pa}=$	Qz ice* ${ }^{*} \mathrm{G}^{*} \mathrm{Ca}^{*} \mathrm{~B}^{*} \mathrm{H}=$		107.3 lbs.
			4.4 plf

Note:
30° and 60° application of wind load will be considered directly in the load combinations by applying load factors of 0.866 (from $\cos 30$ or $\sin 60$) and 0.5 (from $\sin 30$ or $\cos 60$)

	Owner:	EVERSOURCE	Computed By:	Nattakit S.
	Plant:	MERIDEN COOPER ST.	Date:	2/21/2020
\checkmark	Project No.	403093.2000 .2200	Verified By:	K. Hyun
-	Title:	STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT AND	Date:	2/21/2020
BLACK \& VEATCH		PENTHOUSE WALL		

Seismic Load

The Equipment is considered a Non-Structural Component per section 13.3 of ASCE 7-10.
Location Information: Latitude: N 41.532722 Longitude: W 72.805667
$F p=0.4 a_{p} S_{D S} W p(1+2 z / h) /(R p / l p)=\quad 0.4 \times 1.00 \times 0.195 \mathrm{Wp}(1+2 \times 1.00) /(2.50 / 1.25)$
$F p=0.117 \quad W p$
$\mathrm{Fp}=1.6 \mathrm{~S}_{\mathrm{DS}} \mathrm{Ip} \mathrm{Wp}=$
$F p=0.390 \quad W p$
$1.6 \times 0.195 \times 1.25 \mathrm{Wp}$
$\mathrm{Fp}=0.30 \mathrm{~S}_{\mathrm{DS}} \mathrm{lp} \mathrm{Wp}=$
$\mathrm{Fp}=0.073 \quad \mathrm{Wp}$
$0.30 \times 0.195 \times 1.25 \mathrm{Wp}$

Use $F_{p}=0.117 W_{p}$

$$
\begin{aligned}
S_{D S} & =2 / 3 S_{M S} \\
& =2 / 3(0.293)
\end{aligned}
$$

$S_{D S}=0.195 \mathrm{~g}$
$\begin{array}{rc}\mathrm{SDC} & = \\ \mathrm{S}_{\mathrm{S}} & = \\ & 0.183 \mathrm{~g}\end{array}$
$\mathrm{Fa}=\quad 1.600$
$\mathrm{Ip}=\quad 1.25$
component importance factor
$R p=2.50$ component response modification factor
ap $=1.00 \quad$ component amplification factor
$z / h=\quad 1.00$

Equipment	DL on each $\mathbf{p o i n t}(\mathbf{l b} / \mathbf{p t})$	Vertical Seismic Load $\mathbf{W}_{\mathbf{p}} \mathbf{S}_{\mathbf{D S}}(\mathbf{l b})$	Horiz Seismic Load $\mathbf{W}_{\mathbf{p}} \mathbf{F}_{\mathbf{p}}(\mathbf{l b})$
(P) dbSpectra DS2C03F36D	100.0	19.50	11.70

ASCE 7-10
Section \#
eq. 13.3-1
eq. 13.3-2
eq. 13.3-3

IBC-2015
eq. 16-37
eq. 16-39

Tbl.1613.3.3(1)
ASCE 7-10
sec. 13.1.3
Table 13.6-1
Table 13.6-1
sec. 13.1.3

Black \& Veatch Corp.	Meriden Cooper St. Proposed Antenna Mount Analysis	Jan 9, 2020 at 1:12 PM
T. Eakkalak		Members in 3D
403093.2000 .2200		MeridenCooperSt_Phase 1.5-Pro...

Envelope Only Solution

Black \& Veatch Corp.	Meriden Cooper St. Proposed Antenna Mount Analysis	Joint Numbers
T. Eakkalak		Jan 9, 2020 at 1:12 PM
403093.2000.2200		MeridenCooperSt_Phase 1.5 - Pro...

Envelope Only Solution

Black \& Veatch Corp.	Meriden Cooper St. Proposed Antenna Mount Analysis	Member Numbers
T. Eakkalak		Jan 9,2020 at $1: 13$ PM
403093.2000 .2200		MeridenCooperSt_Phase 1.5 - Pro...

Envelope Only Solution

Black \& Veatch Corp.	Meriden Cooper St. Proposed Antenna Mount Analysis	Member Shape
T. Eakkalak		Jan 9,2020 at $1: 14$ PM
403093.2000 .2200		MeridenCooperSt_Phase 1.5 - Pro...

Member Length (ft) Displayed
Envelope Only Solution

Black \& Veatch Corp.	Meriden Cooper St. Proposed Antenna Mount Analysis	Member Length
T. Eakkalak		Jan 9, 2020 at 1:03 PM
403093.2000.2200		MeridenCooperSt_Phase 1.5-Pro...

Black \& Veatch Corp.		Appurtenance Loads
T. Eakkalak		Jan 9, 2020 at $1: 05$ PM
		MeridenCooperSt_Phase 1.5 - Pro...
403093.2000 .2200		

Black \& Veatch Corp.		Wind Loads - X Direction
T. Eakkalak		Jan 9, 2020 at 1:06 PM
		MeridenCooperSt_Phase 1.5 - Pro...

Black \& Veatch Corp.		Wind Loads - Z Direction
T. Eakkalak		Jan 9, 2020 at 1:06 PM
403093.2000.2200		MeridenCooperSt_Phase 1.5-Pro...

Black \& Veatch Corp.		Ice Loads
T. Eakkalak		Jan 9, 2020 at 1:07 PM
403093.2000 .2200		MeridenCooperSt_Phase 1.5 - Pro...

Loads: BLC 6, Ice Wind - 0 Deg (+X)
Envelope Only Solution

Black \& Veatch Corp.	Meriden Cooper St. Proposed Antenna Mount Analysis	Ice Wind Loads - X Direction
T. Eakkalak		Jan 9, 2020 at 1:08 PM
403093.2000.2200		MeridenCooperSt_Phase 1.5 - Pro...

Loads: BLC 7, Ice Wind - 90 Deg (+Z)
Envelope Only Solution

Black \& Veatch Corp.	Meriden Cooper St. Proposed Antenna Mount Analysis	Ice Wind Loads - Z Direction
T. Eakkalak		Jan 9, 2020 at 1:08 PM
403093.2000.2200		MeridenCooperSt_Phase 1.5 - Pro...

Black \& Veatch Corp.	Meriden Cooper St. Proposed Antenna Mount Analysis	Horizontal Seismic Load (X)
T. Eakkalak		Jan 9, 2020 at 1:59 PM
403093.2000.2200		MeridenCooperSt_Phase 1.5 - Pro...

Black \& Veatch Corp.	Meriden Cooper St. Proposed Antenna Mount Analysis	Horizontal Seismic Load (Z)
T. Eakkalak		Jan 9, 2020 at 1:59 PM
403093.2000.2200		MeridenCooperSt_Phase 1.5 - Pro...

Black \& Veatch Corp.		Vertical Seismic Load
T. Eakkalak		Jan 9, 2020 at $1: 10$ PM
		MeridenCooperSt_Phase 1.5 - Pro...
403093.2000 .2200		

Company
Designer
T. Eakkalak

2:00 PM
Job Number : 403093.2000.2200
Checked By: K. Hyun
Model Name : Meriden Cooper St. Proposed Antenna Mount Analysis
(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (ft/sec^2)	32.2
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	None
Cold Formed Steel Code	None
Wood Code	None
Wood Temperature	< 100F
Concrete Code	None
Masonry Code	None
Aluminum Code	None - Building
Stainless Steel Code	None

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	No
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min \% Steel for Column	1
Max \% Steel for Column	8

(Global) Model Settings, Continued

Seismic Code	None
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
R X	3
R Z	3

Hot Rolled Steel Properties

Label		E [ksi]	G [ksi]	Nu	Therm (/1E5 F)	Density[k/f.	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr. 36	29000	11154	. 3	. 65	. 49	36	1.5	58	1.2
2	A572 Gr. 50	29000	11154	. 3	. 65	. 49	50	1.1	65	1.1
3	A992	29000	11154	. 3	. 65	. 49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	. 3	. 65	527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	. 3	. 65	527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	. 3	. 65	. 49	35	1.6	60	1.2
7	A1085	29000	11154	3	. 65	. 49	50	1.4	65	1.3

General Material Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5 F)	Density[k/ft^3]
1	gen Conc3NW	3155	1372	. 15	. 6	. 145
2	gen_Conc4NW	3644	1584	. 15	6	145
3	gen Conc3LW	2085	906	. 15	6	. 11
4	gen Conc4LW	2408	1047	. 15	6	11
5	gen Alum	10600	4077	. 3	1.29	173
6	gen Steel	29000	11154	. 3	. 65	. 49
7	RIGID	$1 \mathrm{e}+6$. 3	0	0

Hot Rolled Steel Section Sets

Label		Shape	Type	Design List	Material	Design Ru... A [in2]		Iyy [in4]	Izz [in4]	J [in4]
1	Pipe 3.0 STD	PIPE_3.0	Column	Pipe	A53 Gr.B	Typical	2.07	2.85	2.85	5.69

General Section Sets

| | Label | Shape | Material | A [in2] | lyy [in4] | Izz [in4] | J [in4] | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | GEN1A | RE4X4 | Beam | gen_Conc3NW | 16 | 21.333 | 21.333 | 31.573 |
| 2 | RIGID | | None | RIGID | $1 \mathrm{e}+6$ | $1 \mathrm{e}+6$ | $1 \mathrm{e}+6$ | $1 \mathrm{e}+6$ |

Joint Coordinates and Temperatures

	Label	$\mathrm{X}[\mathrm{ft}]$	$\mathrm{Y}[\mathrm{ft}]$	Z [ft]	Temp [F]	Detach From Diap...
1	N1	0	-1	0	0	
2	N2	0	-. 5	0	0	
3	N3	0	2.5	0	0	
4	N4	-. 5	-. 5	0	0	
5	N5	-. 5	2.5	0	0	
6	N6	. 5	7.5	0	0	
7	N7	. 5	28.8	0	0	
8	N8	0	7.5	0	0	
9	N9	. 5	4.5	0	0	

Joint Coordinates and Temperatures (Continued)

	Label	$\mathrm{X}[\mathrm{ft}]$	$\mathrm{Y}[\mathrm{ft}]$	$\mathrm{Z}[\mathrm{ft}]$	Temp [F]	Detach From Diap...
10	N 10	0	4.5	0	0	
11	N 11	0	8	0	0	
12	N 12	.5	6.5	0	0	
13	N 13	0	6.5	0	0	

Joint Boundary Conditions

Joint Labe		X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N4	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N5	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Member Primary Data

Label		1 Joint	J Joint	K Joint Rotate(..		Section/Shape	Type Design List		Material	Design R.
1	M1	N11	N1			Pipe 3.0 STD	Column	Pipe	A53 Gr.B	Typical
2	M2	N4	N2			RIGID	None	None	RIGID	Typical
3	M3	N5	N3			RIGID	None	None	RIGID	Typical
4	M4	N9	N7			RIGID	None	None	RIGID	Typical
5	M5	N10	N9			RIGID	None	None	RIGID	Typical
6	M6	N8	N6			RIGID	None	None	RIGID	Typical
7	M7	N13	N12			RIGID	None	None	RIGID	Typical

Hot Rolled Steel Design Parameters

Label		Shape	Length... Lbyy[ft]		Lbzz[ft]	Lcomp to..	Lcomp bo...	.L-tor...	Kyy	Kzz	Cb Funct..
1	M1	Pipe 3.0 STD									Lateral

Member Point Loads (BLC 1 : DL)

Member Label	Direction		Magnitude[$[\mathrm{b}, \mathrm{lb}-\mathrm{ft}]$	Location[ft,\%]
1	M 4	Y	-100	$\%$
2	M 1	Y	-20	$\% 25$

Member Point Loads (BLC 10 : Lateral Seismic - Eh (X))

Member Label			Direction	Magnitude[lb,lb-ft]
1	M4	X	11.7	Location $[\mathrm{ft}, \%]$

Member Point Loads (BLC 11 : Lateral Seismic - Eh (Z))

Member Label	Direction		Magnitude[lb,lb-ft]	Location[ft,\%]
1	M 4	Z	11.7	$\% 50$

Member Point Loads (BLC 12 : Vertical Seismic - Ev (Y))

Member Label									Mirection	Magnitude $[\mathrm{lb}, \mathrm{lb}-\mathrm{ft}]$	Location $[\mathrm{ft}, \%]$
1	M4	Y	-19.5	$\% 50$							

Member Distributed Loads (BLC 3 : Wind - 0 Deg (+X))

Member Label			Direction	Start Magnitude[lb/ft,F,psf]		End Magnitude[lb/...Start Location[ft,\%] End Location[ft,\%]	
1	M1	PX	12.2	12.2	0	0	
2	M4	PX	13.5	13.5	0	0	

[^2]RISA-3D Version 17.0.4 [C:\.........................\...\MeridenCooperSt_Phase 1.5-Proposed Antenna Mourfiagedßl.r3d]

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/..	Start Location[ft, \%]	End Location[ft,\%]
1	M1	PZ	12.2	12.2	0	0
2	M4	PZ	13.5	13.5	0	0

Member Distributed Loads (BLC 5 : Ice DL)

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/..	Start Location[ft, \%]	End Location[ft,\%]
1	M1	Y	-13.8	-13.8	0	0
2	M4	Y	-15.9	-15.9	0	0

Member Distributed Loads (BLC 6 : Ice Wind - 0 Deg (+X))

	Member Label	Direction	Start Magnitude[lb/ft,F,psf]	End Magnitude[lb/..	Start Location[ft,\%]	End Location[ft,\%]
1	M1	PX	3.6	3.6	0	0
2	M4	PX	4.4	4.4	0	0

Member Distributed Loads (BLC 7 : Ice Wind - 90 Deg (+Z))

Member Label Direction Start Magnitude[lb/ft,F,psf] End Magnitude[lb/...Start Location[ft,\%] End Location[ft,\%]

1	M 1	PZ	3.6	3.6	0	0
2	M 4	PZ	4.4	4.4	0	0

Basic Load Cases

BLC Description		Category	X Grav...Y Grav.. Z Grav... Joint				Point	Distributed	Area(Mem...	Surfac...
1	DL	DL		-1			2			
3	Wind - 0 Deg (+X)	WL						2		
4	Wind -90 Deg (+Z)	WL						2		
5	Ice DL	DL						2		
6	Ice Wind - 0 Deg (+X)	WL						2		
7	Ice Wind - 90 Deg ($+Z$)	WL						2		
10	Lateral Seismic - Eh (X)	ELX	. 094				1			
11	Lateral Seismic - Eh (Z)	ELZ			. 094		1			
12	Vertical Seismic - Ev (Y)	ELY		-. 195			1			

Load Combinations

	Description	Solve	PDelta	SRSS		Factor				F.		F.	F	F......	F..	F.	F.	F.	F.
1	LOAD COMBINATION USING ...																		
2	WIND LOAD COMBINATIONS (..																		
3	1.4DL	Yes	Y		1	1.4													
4	1.2DL + 0.5RLL	Yes	Y		1	1.2	2	. 5											
5	1.2DL + 1.6RLL + 0.5WL (0 DE...	Yes	Y		1	1.2	2	1.6		. 5									
6	1.2DL + 1.6RLL - 0.5WL (0 DE...	Yes	Y		1	1.2	2	1.6	3	-. 5									
7	1.2DL + 1.6RLL + 0.5WL (30 D...	Yes	Y		1	1.2	2	1.6	3	4..	4	25							
8	1.2DL + 1.6RLL - 0.5WL (30 DE.	Yes	Y		1	1.2	2	1.6	3	-....	4	-....							
9	1.2DL + 1.6RLL + 0.5WL (60 D...	Yes	Y		1	1.2	2	1.6	4	4..	3	25							
10	1.2DL + 1.6RLL - 0.5WL (60 DE...	Yes	Y		1	1.2	2	1.6	4	-....	3	-...							
11	1.2DL + 1.6RLL + 0.5WL (90 D...	Yes	Y		1	1.2	2	1.6	4	. 5									
12	1.2DL + 1.6RLL - 0.5WL (90 DE...	Yes	Y		1	1.2	2	1.6		-. 5									
13	1.2DL+ WL (0 DEG, +X) + 0.5R...	Yes	Y		1	1.2	2	. 5	3	1									
14	1.2DL - WL (0 DEG, -X) + 0.5RLL	Yes	Y		1	1.2	2	. 5	3	-1									
15	1.2DL + WL (30 DEG) + 0.5RLL	Yes	Y		1	1.2	2	. 5	3	.8..	4	. 5							
16	1.2DL - WL (30 DEG) + 0.5RLL	Yes	Y		1	1.2	2	. 5	3		4	-. 5							
17	1.2DL + WL (60 DEG) + 0.5RLL	Yes	Y		1	1.2	2	. 5	4	8..	3	. 5							
18	1.2DL - WL (60 DEG) + 0.5RLL	Yes	Y		1	1.2	2	. 5	4	...	3	-. 5							
19	1.2DL + WL (90 DEG, +Z) + 0.5...	Yes	Y		1	1.2	2	. 5	4	1									
20	1.2DL - WL (90 DEG, -Z) + 0.5R..	Yes	Y		1	1.2	2	. 5	4	-1									

Company Designer Job Number

Load Combinations (Continued)

	Description	Solve	Delt	SRSS	BLC	Factor											F.	F.	F.	F.
21	0.9DL + WL (0 DEG, +X)	Yes	Y		1	. 9	3	1												
22	0.9DL - WL (0 DEG, -X)	Yes	Y		1	. 9	3	-1												
23	0.9DL + WL (30 DEG)	Yes	Y		1	. 9	3	.8...	4	. 5										
24	0.9DL - WL (30 DEG)	Yes	Y		1	. 9	3	-....	4	-. 5										
25	0.9DL + WL (60 DEG)	Yes	Y		1	. 9	4	8...	3	. 5										
26	0.9DL - WL (60 DEG)	Yes	Y		1	. 9	4	.	3	-. 5										
27	0.9DL + WL (90 DEG, +Z)	Yes	Y		1	. 9	4	1												
28	0.9DL - WL (90 DEG, -Z)	Yes	Y		1	. 9	4	-1												
29																				
30	LOAD COMBINATIONS WITH I...																			
31	1.2DL + 0.2Ice DL + 0.5SL1	Yes	Y		1	1.2	5	. 2	8	. 5										
32	1.2DL + Ice DL + Ice WL (0 DE...	Yes	Y		1	1.2	5	1	6	1	8	. 5								
33	1.2DL + Ice DL - Ice WL (0 DEG..	Yes	Y		1	1.2	5	1	6	-1	8	. 5								
34	1.2DL + Ice DL + Ice WL (30 DE..	Yes	Y		1	1.2	5	1	6	.8..	7	. 5	8	. 5						
35	1.2DL + Ice DL - Ice WL (30 DE..	Yes	Y		1	1.2	5	1	6	-....	7	-. 5	8	. 5						
36	1.2DL + Ice DL + Ice WL (60 DE..	Yes	Y		1	1.2	5	1	7	8..	6	. 5	8	. 5						
37	1.2DL + Ice DL - Ice WL (60 DE..	Yes	Y		1	1.2	5	1	7	-	6	-. 5	8	. 5						
38	1.2DL + Ice DL + Ice WL (90 DE..	Yes	Y		1	1.2	5	1	7	1	8	. 5								
39	1.2DL + Ice DL - Ice WL (90 DE.	Yes	Y		1	1.2	5	1	7	-1	8	. 5								
40	0.9DL + Ice DL + Ice WL (0 DE...	Yes	Y		1	. 9	5	1	6	1										
41	0.9DL + Ice DL - Ice WL (0 DEG...	Yes	Y		1	. 9	5	1	6	-1										
42	0.9DL + Ice DL + Ice WL (30 DE..	Yes	Y		1	. 9	5	1	6	8.	7	. 5								
43	0.9DL + Ice DL - Ice WL (30 DE...	Yes	Y		1	. 9	5	1	6	-	7	-. 5								
44	0.9DL + Ice DL + Ice WL (60 DE..	Yes	Y		1	. 9	5	1	7	8.	6	. 5								
45	0.9DL + Ice DL - Ice WL (60 DE...	Yes	Y		1	. 9	5	1	7	-....	6	-. 5								
46	0.9DL + Ice DL + Ice WL (90 DE..	Yes	Y		1	. 9	5	1	7	1										
47	0.9DL + Ice DL - Ice WL (90 DE.	Yes	Y		1	. 9	5	1	7	-1										
48																				
49	SEISMIC LOAD COMBINATIO...																			
50	1.2DL + 0.2Ev $(Y)+E h(X)+0 . .$.	Yes	Y		1	1.2	8	. 2	12	2.2	10	1								
51	1.2DL - 0.2Ev $(Y)+\mathrm{Eh}(\mathrm{X})+0.2 \ldots$	Yes	Y		1	1.2	8	. 2	12	-. 2	10	1								
52	1.2DL + 0.2Ev $(Y)-E h(X)+0.2 \ldots$	Yes	Y		1	1.2	8	. 2	12	2.2	10	-1								
53	1.2DL -0.2Ev (Y) - Eh (X) + 0.2...	Yes	Y		1	1.2	8	. 2	12	--. 2	10	-1								
54	1.2DL + 0.2Ev $(Y)+E h(Z)+0 . \ldots$	Yes	Y		1	1.2	8	. 2	12	2.2	11	1								
55	1.2DL-0.2Ev $(Y)+E h(Z)+0.2$.	Yes	Y		1	1.2	8	. 2	12	--. 2	11	1								
56	1.2DL + 0.2Ev $(Y)-\operatorname{Eh}(Z)+0.2 \ldots$	Yes	Y		1	1.2	8	2	12	2.2	11	-1								
57	1.2DL-0.2Ev (Y)-Eh $(Z)+0.2$..	Yes	Y		1	1.2	8	. 2	12	--. 2	11	-1								
58	0.9DL - 0.2Ev (Y) + Eh (X)	Yes	Y		1	. 9		-. 2	10	1										
59	0.9DL + 0.2Ev (Y) + Eh (X)	Yes	Y		1	. 9	12	. 2	10	1										
60	0.9DL - 0.2Ev (Y) - Eh (X)	Yes	Y		1	. 9	12	-. 2	10	-1										
61	0.9DL + 0.2Ev (Y) - Eh (X)	Yes	Y		1	. 9		. 2	10	-1										
62	0.9DL-0.2Ev $(Y)+E h(Z)$	Yes	Y		1	. 9	12	-. 2	11	11										
63	0.9DL + 0.2Ev (Y) + Eh (Z)	Yes	Y		1	. 9		. 2	11	11										
64	0.9DL - 0.2Ev (Y) - Eh (Z)	Yes	Y		1	9	12	-. 2	11	1-1										
65	0.9DL + 0.2Ev (Y) - Eh (Z)	Yes	Y		1	. 9	12	. 2	11	1-1										
66																				

Envelope Joint Reactions

Joint			X [Ib]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC MY [lb-..LC MZ [lb-				LC
1	N4	max	24.4	14	44.506	32	24.4	28	7.625	28	12.2	27	24.503	32
2		min	-24.4	21	12.129	60	-24.4	27	-7.625	27	-12.2	28	-1.286	22
3	N5	max	413.399	14	686.138	33	413.438	28	4854.291	20	370.738	27	5012.9..	13
4		min	-413.398	21	146.553	58	-413.438	27	-4854.291	19	-370.7...	28	-4726....	22
5	Totals:	max	437.799	14	730.643	33	437.838	28						
6		min	-437.798	21	158.682	58	-437.838	27						

Envelope AISC 14th(360-10): LRFD Steel Code Checks

Memb.		Shape	Code Check	Loc[ft]	LC	Sh... Lo		phi*Pnc [lb] phi* ...phi*M...phi*Mn z-.			Eqn
1	M1	PIPE 3.0	. 854	5.438	13	. 0525	5....	... 42263.948	652... 5748....	5748.75	. $\mathrm{H} 1-.$.

LC		Joint Label	X [16]	Y [lb]	Z [lb]	MX [lb-ft]	MY [lb-ft $] \quad \mathrm{MZ}[\mathrm{lb-ft}]$	
1	13	N4	-24.4	16.906	0	0	0	16.078
2	13	N5	-413.398	203.164	0	0	0	5012.955
3	13	Totals:	-437.798	220.07	0			
4	13	COG (ft):	X: . 273	Y: 10.916	Z: 0			

Maximum Joint Reactions (L.C. 13)

	Owner: Plant:	EVERSOURCE	Prepared By:	T. Eakkalak
	Project No.	MERIDEN COOPER ST.	Date:	$1 / 9 / 2020$
	Title:	STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT AND	Verified By:	K. Hyun

Wall Anchor Check (LRFD) - Bolted Thru Wall
AISC 14th Ed.

Load Inputs:

Vertical Force
Horizontal Force (Tension)
Horizontal Force
Moment about Y-Axis
Moment about X-Axis
Moment about Z-Axis

Force Couple Y-Axis
Force Couple Z-Axis
Number of Anchors

Shear from Fy
Tension from Fx
Shear from Fz
Tension from My
Shear from Mx
Tension from Mz

Total Shear
Total Tension

LC13 : 1.2DL+ WL (0 DEG, +X) + 0.5RLL

$$
\begin{aligned}
& S y=F y / N \\
& T x=F x / N \\
& S z=F z / N \\
& T m y=M y / D z /(N / 2) \\
& S m x=M x / D z /(N / 2) \\
& T m z=M z / D y /(N / 2)
\end{aligned}
$$

$$
\begin{aligned}
& S=\operatorname{SQRT}\left(S x^{2}+S z^{2}+S m y^{2}\right) \\
& T=T y+T m x+T m z
\end{aligned}
$$

	Owner: Plant: Project No. Title:	EVERSOURCE		Prepared By:	T. Eakkalak
		MERIDEN COOPE		Date:	1/9/2020
		403093.2000 .2200	File No.	Verified By:	K. Hyun
		STRUCTURAL AN	OF PROPOSED ANTENNA MOUNT AND	Date:	1/9/2020
BLACK \& VEATCH		PENTHOUSE WALL			

Wall Anchor Check (LRFD) - Bolted Thru Wall (Continued)

Thru Bolt Steel Analysis

Loads
Applied Shear Load
Applied Tensile Load

Parameters

Bolt Diameter
Bolt Gross Area
Specified Yield Strength of Bolt
Specified Tensile Strength of Bolt

Results

Strength Resistance Factor
Nominal Shear Strength
Nominal Tensile Strength
Design Shear Strength of Bolt
Design Tensile Strength of Bolt
Required Shear Stress for Bolt
Required Tensile Stress for Bolt
Combined Shear and Tension
$F_{n t}^{\prime}=1.3^{*} F_{n t}-F_{n t}^{*} f_{v} / F_{n v} / \phi \leq F_{n t}$
Available Tensile Strength of Bolt Stress Ratio (Less than 1.0)

Available Shear Strength of Bolt
Stress Ratio (Less than 1.0)

$V_{\text {ua }}$	$=51$	lbs
$N_{\text {ua }}$	$=7,623$	per bolt
lbs	per bolt	

$\mathrm{d}_{\mathrm{b}}=1 / 2$	in
$\mathrm{A}_{\mathrm{b}}=0.196 \mathrm{in}^{2}$	$\pi \mathrm{~d}_{\mathrm{b}}^{2} / 4$

$\mathrm{f}_{\mathrm{y}}=$	92	ksi	
$f_{\text {uta }}=$	120	ksi	A325

φ	$=0.75$		
$\mathrm{~F}_{\mathrm{nv}}$	$=54.0$	ksi	$0.45 \times \mathrm{f}_{\mathrm{uta}}$
F_{nt}	$=90.0$	(ductile)	
		ksi	$0.75 \times \mathrm{F}_{\mathrm{ut}}$

$\varphi \mathrm{R}_{\mathrm{nv}}=$		
$\varphi \mathrm{R}_{\mathrm{nt}}=$	$=7,952$	lbs
$13,254 \mathrm{lbs}$	$\varphi \times \mathrm{F}_{\mathrm{nv}} \times \mathrm{A}_{\mathrm{b}}$	
$\varphi \times \mathrm{F}_{\mathrm{nt}} \times \mathrm{A}_{\mathrm{b}}$		

$\mathrm{f}_{\mathrm{v}}=$		
$\mathrm{f}_{\mathrm{t}}=$	$=0.3$	ksi
ksi	$\mathrm{V}_{\text {ua }} / \mathrm{A}_{\mathrm{b}}$	
ksi	$\mathrm{N}_{\text {ua }} / \mathrm{A}_{\mathrm{b}}$	

$\mathrm{F}_{\text {nt }}=$	116.4	$] \mathrm{ksi}>\mathrm{Fnt}$ lbs	Use Fnt for Eq. J3-2	
$\varphi \mathrm{R}_{\mathrm{nt}}=$	13,254		$\varphi \times$ Fnt \times Ab	
SR =	0.575		$\mathrm{N}_{\mathrm{ua}} / \varphi \mathrm{R}_{\mathrm{nt}}$	OK

AISC 14th Ed.
Section \#

J3.2
C-J3-4
C-J3-2

Eq. J3-1
Eq. J3-1

Eq. J3-3a
Eq. J3-2

J3.7

Use 1/2" dia A325 bolts thru existing penthouse wall

	Owner:	EVERSOURCE	Computed By:	Nattakit S.
	Project:	MERIDEN COOPER ST.	Date:	2/21/2020
	Project No.	403093.2000.2200	Verified By:	K. Hyun
BLACK \& VEAT	Title:	STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT AND PENTHOUSE WALL	Date:	2/21/2020

5.2 Structural Analysis of Existing Penthouse Wall

By inspection and engineering judgment, the final configuration of the equipment loading will not have significant adverse effect on the existing penthouse wall.

Owner:	EVERSOURCE	Computed By:	Nattakit S.
Project:	MERIDEN COOPER ST.	Date:	2/21/2020
Project No.	403093.2000 .2200	Verified By:	K. Hyun
Title:	STRUCTURAL ANALYSIS OF PROPOSED ANTENNA MOUNT AND PENTHOUSE WALL	Date:	2/21/2020

BLACK \& VEATCH

6. ATTACHMENTS

MT-222
Adjustable Wall Mount for solid walls, 6 in stand-off

Dimensions

| Height | 203.2 mm \| 8.0 in | | |
| :--- | :--- | :--- | :--- | :--- |
| Length | 152.4 mm \| 6.0 in | | |
| Pipe Outer Diameter | $23 / 8 \mathrm{in} \mathrm{\mid} 27 / 8 \mathrm{in} \mathrm{\mid} 31 / 2 \mathrm{in} \mathrm{\mid} 41 / 2 \mathrm{in}$ | | |
| Width | $203.2 \mathrm{~mm} \mid 8.0 \mathrm{in}$ | | |
| Weight | $20.6 \mathrm{~kg} \mathrm{\mid} 45.5 \mathrm{lb}$ | | |

Environmental Specifications

Wind Rating For specifications—contact 828-324-2200 or 1-800-982-1708 (toll free), or your local CommScope representative

General Specifications

Product Type
Mounting
Stand-off Distance
Includes
Material Type
Package Quantity

Wall mount
Solid walls
152.4 mm | 6.0 in

Backing plates or anchors | Wall brackets (2)
Hot dip galvanized steel
2

140-222 MHz						
	Model Number	DS1E03F36D-D	DS1F03F36D-D	DS1G03F36D-D	DS2C00F36D-D	DS2C03F36D-D
	Input Connector	7/16 DIN				
	Type	Dual	Dual	Dual	Dual	Dual
	Frequency	140-150 MHz	150-164 MHz	160-174 MHz	217-222 MHz	217-222 MHz
	Bandwidth	11 MHz	15 MHz	15 MHz	6 MHz	6 MHz
	Power	500 Watts				
	Gain	3 dBd	3 dBd	3 dBd	0 dBd	3 dBd
	Horizontal Beamwidth	$360{ }^{\circ}$	360°	360°	360°	360°
	Vertical Beamwidth	30°	30°	30°	60°	30°
	Beam Tilt	0°	0°	0°	0°	0°
	Isolation (minimum)	30	30	30 dB	30 dB	30 dB
MECHANICAL	Number of Connectors	2	2	2	2	2
	Flat Plate Area	$4.1 \mathrm{ft}^{2}\left(0.38 \mathrm{~m}^{2}\right)$	$4.5 \mathrm{ft}^{2}\left(0.42 \mathrm{~m}^{2}\right)$	$4.5 \mathrm{ft}^{2}\left(0.42 \mathrm{~m}^{2}\right)$	$2.4 \mathrm{ft}^{2}\left(0.22 \mathrm{~m}^{2}\right)$	$4.1 \mathrm{ft}^{2}\left(0.38 \mathrm{~m}^{2}\right)$
	Lateral Windload Thrust	$169 \operatorname{lbf}($ (752 N)	169 lbf (752 N)	169 lbf (752 N)	$90 \mathrm{lbf}(400 \mathrm{~N})$	169 lbf (752 N)
	Survival Wind Speed					
	without ice with 0.5 " radial ice	75 mph (121 kph) $65 \mathrm{mph}(105 \mathrm{kph})$	75 mph (121 kph) $65 \mathrm{mph}(105 \mathrm{kph})$	75 mph (121 kph) 65 mph (105 kph)	130 mph (209 kph) 115 mph (185 kph)	$75 \mathrm{mph}(121 \mathrm{kph})$ $65 \mathrm{mph}(105 \mathrm{kph})$
	Mounting Hardware included	DSH3V3N	DSH3V3N	DSH3V3N	DSH3V3R	DSH3V3N
0$\frac{0}{2}$$\frac{0}{2}$$\frac{11}{2}$$\frac{1}{2}$	Length	24.3 ft (7.4 m)	22.3 ft (6.8 m)	22.3 ft (6.8 m)	13.6 ft (4.1 m)	24.3 ft (7.4 m)
	Radome O.D.	$3 \mathrm{in}(7.6 \mathrm{~cm})$				
	Mast O.D.	$2.5 \mathrm{in}(6.4 \mathrm{~cm})$	2.5 in (6.4 cm)	2.5 in (6.4 cm)	2.5 in (6.4 cm)	$2.5 \mathrm{in}(6.4 \mathrm{~cm})$
	Net Weight w/o bracket	$70 \mathrm{lb}(31.8 \mathrm{~kg})$	$63 \mathrm{lb}(28.6 \mathrm{~kg})$	$63 \mathrm{lb}(28.6 \mathrm{~kg})$	$40 \mathrm{lb}(18.1 \mathrm{~kg})$	$70 \mathrm{lb}(31.8 \mathrm{~kg})$
	Shipping Weight	$100 \mathrm{lb}(45.4 \mathrm{~kg})$	$93 \mathrm{lb}(42.2 \mathrm{~kg})$	$93 \mathrm{lb}(42.2 \mathrm{~kg})$	$70 \mathrm{lb}(31.8 \mathrm{~kg})$	$100 \mathrm{lb}(45.4 \mathrm{~kg})$

Antenna Patterns on the next page.

ANTENNA PATTERNS

Address:

No Address at This Location

ASCE 7 Hazards Report

Data Source:

Date Accessed:

Value provided is 3 -second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 3\% probability of exceedance in 50 years (annual exceedance probability $=$ $0.000588, \mathrm{MRI}=1,700$ years)

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Seismic

Site Soil Class: D - Stiff Soil

Results:

$\mathrm{S}_{\mathrm{S}}:$	0.183
$\mathrm{~S}_{1}:$	0.063
$\mathrm{~F}_{\mathrm{a}}:$	1.6
$\mathrm{~F}_{\mathrm{V}}:$	2.4
$\mathrm{~S}_{\mathrm{Ms}}:$	0.293
$\mathrm{~S}_{\mathrm{M} 1}:$	0.151

$\mathrm{S}_{\mathrm{DS}}:$	0.195
$\mathrm{~S}_{\mathrm{D} 1}:$	0.101
$\mathrm{~T}_{\mathrm{L}}:$	6
$\mathrm{PGA}:$	0.094
$\mathrm{PGA}_{\mathrm{M}}:$	0.15
$\mathrm{~F}_{\mathrm{PGA}}:$	1.6
$\mathrm{I}_{\mathrm{e}}:$	1.25

Seismic Design Category
 B

Data Accessed:

Date Source:

Wed Dec 042019
USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating
Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results

Ice Thickness: $\quad 0.75 \mathrm{in}$.

Concurrent Temperature: 15 F
Gust Speed: $\quad 50 \mathrm{mph}$
Data Source:
Date Accessed:
Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Wed Dec 042019
Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3 -second gust speeds, for a 50 -year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Snow

Results:

Ground Snow Load, p_{g} : $\quad 30 \mathrm{lb} / \mathrm{ft}^{2}$
Elevation:
Data Source:
Date Accessed:
127.1 ft

ASCE/SEI 7-10, Fig. 7-1.
Wed Dec 042019
Values provided are ground snow loads. In areas designated "case study required," extreme local variations in ground snow loads preclude mapping at this scale. Site-specific case studies are required to establish ground snow loads at elevations not covered.

ATTACHMENT D - PROOF OF DELIVERY OF NOTICE

ATTACHMENT E - POWER DENSITY REPORT

Calculated Radio Frequency Emissions Report EVERS=URCE ENERGY

ES-281

46 Cooper Street

Meriden, CT 06451

Table of Contents

1. Introduction. 1
2. FCC Guidelines for Evaluating RF Radiation Exposure Limits 1
3. Power Density Calculation Methods 2
4. Calculated \% MPE Results 3
5. Conclusion 4
6. Statement of Certification 4
Attachment A: References 5
Attachment B: FCC Limits for Maximum Permissible Exposure (MPE) 6
Attachment C: Eversource Antenna Data Sheets and Electrical Patterns 8

List of Tables

Table 1: Proposed Tower \% MPE 3
Table 2: FCC Limits for Maximum Permissible Exposure (MPE) 6

List of Figures

Figure 1: Graph of FCC Limits for Maximum Permissible Exposure (MPE)... 7

1. Introduction

The purpose of this report is to investigate compliance with applicable FCC regulations for the proposed Eversource installation to be located on the rooftop of 46 Cooper Street in Meriden, CT.

Eversource is proposing to install an omnidirectional antenna as part of its 220 MHz communications system.
This report considers the planned antenna configuration as provided by Eversource along with power density information of the existing antennas to calculate the cumulative \% MPE (Maximum Permissible Exposure) of the proposed facility at ground level.

2. FCC Guidelines for Evaluating RF Radiation Exposure Limits

In 1985, the FCC established rules to regulate radio frequency (RF) exposure from FCC licensed antenna facilities. In 1996, the FCC updated these rules, which were further amended in August 1997 by OET Bulletin 65 Edition 97-01. These new rules include Maximum Permissible Exposure (MPE) limits for transmitters operating between 300 kHz and 100 GHz . The FCC MPE limits are based upon those recommended by the National Council on Radiation Protection and Measurements (NCRP), developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI).

The FCC general population/uncontrolled limits set the maximum exposure to which most people may be subjected. General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Public exposure to radio frequencies is regulated and enforced in units of milliwatts per square centimeter ($\mathrm{mW} / \mathrm{cm}^{2}$). The general population exposure limits for the various frequency ranges are defined in the attached "FCC Limits for Maximum Permissible Exposure (MPE)" in Attachment B of this report.

Higher exposure limits are permitted under the occupational/controlled exposure category, but only for persons who are exposed as a consequence of their employment and who have been made fully aware of the potential for exposure, and they must be able to exercise control over their exposure. General population/uncontrolled limits are five times more stringent than the levels that are acceptable for occupational, or radio frequency trained individuals. Attachment B contains excerpts from OET Bulletin 65 and defines the Maximum Exposure Limit.

Finally, it should be noted that the MPE limits adopted by the FCC for both general population/uncontrolled exposure and for occupational/controlled exposure incorporate a substantial margin of safety and have been established to be well below levels generally accepted as having the potential to cause adverse health effects.

3. Power Density Calculation Methods

The power density calculation results were generated using the following formula as outlined in FCC bulletin OET 65, and Connecticut Siting Council recommendations:

Power Density $=\left(\frac{1.6^{2} \times 1.64 \times \text { ERP }}{4 \pi \times R^{2}}\right) X$ Off Beam Loss

Where:
EIRP $=$ Effective Isotropic Radiated Power $=1.64 \times$ ERP
$\mathrm{R}=$ Radial Distance $=\sqrt{\left(H^{2}+V^{2}\right)}$
$\mathrm{H}=$ Horizontal Distance from antenna
$\mathrm{V}=$ Vertical Distance from radiation center of antenna
Ground reflection factor of 1.6
Off Beam Loss is determined by the selected antenna pattern

These calculations assume that the antennas are operating at 100 percent capacity and full power, and that all antenna channels are transmitting simultaneously. Obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. The calculations assume even terrain in the area of study and do not consider actual terrain elevations which could attenuate the signal. Furthermore, all antennas on the rooftop are assumed to in the same location. As a result, the calculated power density and corresponding \% MPE levels reported below are much higher than the actual levels will be from the final installation.

4. Calculated \% MPE Results

Table 1 below outlines the power density information for the site. The proposed Eversource omnidirectional antenna has a relatively narrow vertical beamwidth of 30°; therefore, the majority of the RF power is focused out towards the horizon. As a result, there will be less RF power directed below the antennas relative to the horizon, and consequently lower power density levels around the base of the facility. The vertical patterns of the other existing antennas also exhibit varying degrees of directionality. Please refer to Attachment C for the vertical pattern of the existing and proposed Eversource antenna. The calculated results in Table 1 for the Eversource antennas include a nominal of 10 dB off-beam pattern loss for the antennas to account for the lower relative gain below the antennas.

Carrier	Antenna Height (Feet)	Operating Frequency (MHz)	Number of Trans.	ERP Per Transmitter (Watts)	Power Density $\left(\mathbf{m w} / \mathbf{c m}^{2}\right)$	Limit	\%MPE
Eversource	33	37.62	1	120	0.0059	0.2000	2.96%
Eversource	35	37.84	1	120	0.0051	0.2000	2.57%
Eversource	51.4	173.25	1	380	0.0066	0.2000	3.32%
Eversource	45.3	938	1	240	0.0056	0.6256	0.89%
Eversource	48	217	4	124	0.0101	0.2000	5.06%

Table 1: Proposed Tower \% MPE 123

[^3]
5. Conclusion

The above analysis concludes that RF exposure at ground level with the proposed antenna installation will be below the maximum power density limits as outlined by the FCC in the OET Bulletin 65 Ed. 97-01. Using the conservative calculation methods discussed herein, the highest expected percent of Maximum Permissible Exposure at ground level with the proposed installation is $\mathbf{1 4 . 8 0 \%}$ of the FCC General Population/Uncontrolled limit.

As noted previously, the calculated \% MPE levels are more conservative (higher) than the actual levels will be from the finished installation.

6. Statement of Certification

I certify to the best of my knowledge that the statements in this report are true and accurate. The calculations follow guidelines set forth in FCC OET Bulletin 65 Edition 97-01, IEEE Std. C95.1, and IEEE Std. C95.3.

Report Prepared By: Sokol Andoni
RF Engineer
C Squared Systems, LLC

Keith Vellante

Reviewed/Approved By: Keith Vellante
Director of RF Services
C Squared Systems, LLC
© squared Systems, LLC

March 4, 2020
Date

March 6, 2020
Date

Attachment A: References

OET Bulletin 65 - Edition 97-01 - August 1997 Federal Communications Commission Office of Engineering \& Technology
IEEE C95.1-2005, IEEE Standard Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz IEEE-SA Standards Board

IEEE C95.3-2002 (R2008), IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, $100 \mathrm{kHz}-300 \mathrm{GHz}$ IEEE-SA Standards Board

Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)

(A) Limits for Occupational/Controlled Exposure ${ }^{4}$

Frequency Range (MHz)	Electric Field Strength (E) $(\mathrm{V} / \mathrm{m})$	Magnetic Field Strength (E) $(\mathrm{A} / \mathrm{m})$	Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Time $\|\mathrm{E}\|^{2},\|\mathrm{H}\|^{2}$ or S (minutes)
$0.3-3.0$	614	1.63	$(100)^{*}$	6
$3.0-30$	$1842 / \mathrm{f}$	$4.89 / \mathrm{f}$	$\left(900 / \mathrm{f}^{2}\right)^{*}$	6
$30-300$	61.4	0.163	1.0	6
$300-1500$	-	-	$\mathrm{f} / 300$	6
$1500-100,000$	-	-	5	6

(B) Limits for General Population/Uncontrolled Exposure ${ }^{5}$

Frequency Range (MHz)	Electric Field Strength (E) $(\mathrm{V} / \mathrm{m})$	Magnetic Field Strength (E) $(\mathrm{A} / \mathrm{m})$	Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Time $\|\mathrm{E}\|^{2},\|\mathrm{H}\|^{2}$ or S (minutes)
$0.3-1.34$	614	1.63	$(100)^{*}$	30
$1.34-30$	$824 / \mathrm{f}$	$2.19 / \mathrm{f}$	$\left(180 / \mathrm{f}^{2}\right)^{*}$	30
$30-300$	27.5	0.073	0.2	30
$300-1500$	-	-	f 1500	30
$1500-100,000$	-	-	1.0	30
$\mathrm{f}=$ frequency in MHz * Plane-wave equivalent power density				

Table 2: FCC Limits for Maximum Permissible Exposure (MPE)

[^4]

Figure 1: Graph of FCC Limits for Maximum Permissible Exposure (MPE)

Attachment C: Eversource Antenna Data Sheets and Electrical Patterns

38 MHz		
Manufacturer: Model \#: Frequency Band: Gain: Vertical Beamwidth: Horizontal Beamwidth: Polarization: Length:	Amphenol MA431E40 $34.3-40.8 \mathrm{MHz}$ 0.0 dBd 84° 360° Vertical- Polarization 16.2'	Vertical
173 MHz		
Manufacturer: Model \#: Frequency Band: Gain: Vertical Beamwidth: Horizontal Beamwidth: Polarization: Length:	Commander $220-7 \mathrm{~N}$ $165-174 \mathrm{MHz}$ 5.25 dBd 18° 360° Vertical- $^{\text {Polarization }}$ 19^{\prime}	Vertical Pattern
$217 \mathrm{MHz}$		DS2C03F36D-N DS2C03F36D-D
Manufacturer: Model \#: Frequency Band: Gain: Vertical Beamwidth: Horizontal Beamwidth: Polarization: Length:	dbSpectra DS2C03F36D $217-222 \mathrm{MHz}$ 3.0 dBd 30° 360° Vertical- Polarization 24.3'	 Top Bottom

938 MHz	
Manufacturer:	CommScope
Model \#:	DB589-Y
Frequency Band:	$890-960 \mathrm{MHz}$
Gain:	9.0 dBd
Vertical Beamwidth:	30°
Length:	9.2

[^0]: ${ }^{1}$ It should be noted that the number of transmitting antennas accounted for in the Power Density Report accounts for two channels on the 88^{\prime} centerline antenna. Also, the "Antenna Height" column on Table 1 in the Power Density Report only accounts for the centerline of the Transmit or "TX" antenna centerline.

[^1]: * Note: The \% ratio rating per TIA-222-H Section 15.5.

[^2]: Member Distributed Loads (BLC 4 : Wind - 90 Deq (+Z))
 Member Label Direction Start Magnitude[lb/ft,F,psf] End Magnitude[lb/...Start Location[ft,\%] End Location[ft,\%]

[^3]: ${ }^{1}$ The operating parameters for the existing Eversource antennas were taken from a survey report conducted by C Squared Systems on October 11, 2013 and recently confirmed through Eversource's agent. Please note that \% MPE values listed are rounded to two decimal points and the total \% MPE listed is a summation of each unrounded contribution. Therefore, summing each rounded value may not identically match the total value reflected in the table.
 ${ }^{2}$ The heights listed for the proposed (highlighted in blue) and existing Eversource antennas are in reference to Black \& Veatch construction drawing dated 01/07/2020 (Rev. A).
 ${ }^{3}$ In cases where Eversource antennas were unable to be identified during the 2013 field survey (37.76 MHz and 37.84 MHz), an antenna model with like characteristics was considered in this analysis.

[^4]: ${ }^{4}$ Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure
 ${ }^{5}$ General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure

