

SAI Group
12 Industrial Way
Salem, NH 03079
603-421-0470

June 10, 2022
Melanie A. Bachman
Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051
Notice of Exempt Modification - New Cingular Wireless PCS, LLC (AT\&T) - CT1013
27 Butler Street, Meriden, CT 06451
N 41.558333
W 72.807222
Dear Ms. Bachman:
AT\&T currently maintains nine (9) antennas at the rooftop level (86^{\prime} AGL) of the 4 -story Central Office building at 27 Butler Street (a/k/a 25 Butler Street), Meriden, CT. The property is owned by Southern New England Telephone. AT\&T now intends to replace three (3) antennas and add three (3) antennas. This modification may include B2, B5, B17, B14, B29, B30, B66 \& n77 hardware that is 4G (LTE) and/or 5GNR capable through remote software configuration and either or both services may be turned on or off at various times.

AT\&T Planned Modifications:

Remove:

(6) TMAs

Remove and Replace:

(3) ANDREW 7770 Antennas (REMOVE) - (3) Ericsson AIR 6419 B77G Antennas (REPLACE)

Install New:
(3) Ericsson AIR 6449 B77D Antennas
(3) Ericsson 4478 B14 RRU

Existing to Remain:

(4) KATHREIN 800-10964 Antennas
(2) KATHREIN 800-10965 Antennas
(3) Ericsson 8843 B2/B66A RRU
(3) Ericsson 4449 B5/B12 RRU
(3) Raycap Surge Units
(3) Fiber Lines
(6) DC Lines

AT\&T’s use of this facility was first approved by the Connecticut Siting Council, Petition \# 292 on October 14, 1992. The approval included no conditions that could feasibly be violated by this proposed modification, including total facility height and mounting restrictions. This modification therefore complies with the aforementioned approvals.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to the Mayor Kevin Scarpati and Paul Dickson, Acting Director of Planning, Development \& Enforcement for the City of Meriden as well as the property owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, AT\&T respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitute an exempt modification under
R.C.S.A. § 16-50j-72(b)(2).

Please feel free to call me at (860) 670-9068 with any questions regarding this matter. Thank you for your consideration.

Sincerely,

Mark Roberts

Mark Roberts
Consultant for SAI
Mark.Roberts@QCDevelopment.net

Attachments

Cc: Mayor Kevin Scarpati - Elected Official
Paul Dickson - Acting Director of Planning, Development \& Enforcement
SNET - Property Owner

Exhibit A

Original Facility Approval

STATEOF CONNECTICUT

CONNECTICUT SITING COUNCIL
136 Main Street, Suite 401
New Britain, Connecticut 06051-4225
Phone: 827-7682
Petition No. 292 -- Staff Report
Springwich Cellular Limited Partnership
Meriden, Connecticut
1992

On September 15, 1992, Chairman Mortimer A. Gelston of the Connecticut Siting Council and Joel M. Rinebold, Executive Director of the Council staff met Peter Van wilgen of the Springwich Cellular Limited Partnership for a field review of this Petition. Springwich is petitioning the Council under the Regulations of Connecticut State Agencies section 16-50j-38 through 40 , for a declaratory ruling that the addition of cellular equipment and antennas to an existing office building at 27 Butler Street, Meriden, Connecticut, would not have a substantial adverse environmental effect and therefore would not require a Certificate of Environmental Compatibility and Public Need from the Council.

Springwich proposes to initially install four whip antennas and later replace them with nine directional panal antennas on the top of the Southern New England Telephone Company's central office building located at 27 Butler Street, Meriden, Connecticut.

No towers or other structures would be necessary to support these antennas. There is presently a SNET microwave dish located on the roof at a slightly lower height.

The antennas would be attached to the building, which stands approximately 77 feet above ground level. The tops of the antennas would rise about 13 feet above the top of the building. A building permit and federal approval for this installation would be obtained following a favorable ruling by the Council. No other approvals are necessary.

Springwich would install its telecommunications equipment on the $3 r d$ floor of the 4 story building. There would be no other changes to the building or proposed site. The nonionizing radio frequency power density levels from the proposed cellular equipment would be well below allowable state levels, both from within the building, as well as at the base of the building.

The proposed cellular equipment would not increase noise levels at the site boundary by six decibels or more, and would not increase the boundaries of the site. Springwich contends that the antennas will not add noticeably to the physical characteristics or visual appearance of the building or surroundings, and will have no affect on the ecology.

JMR/CP

Exhibit B

Property Card

DISCLAIMER: The City of Meriden maintains this website to enhance public access to the City's tax assessment information. However, this information is continually being developed and is subject to change. The data presented here is not legally binding on the City of Meriden or any of its departments. This website reflects the best information available to the City Assessor and it should not be construed as confirming or denying the existence of any permits, licenses, or other such rights. The City of Meriden shall not be liable for any loss, damages, or claims that arise out of the user's access to, and use of, this information.

THE USER IS RESPONSIBLE FOR CHECKING THE ACCURACY OF ALL INFORMATION OBTAINED WITH THE APPROPRIATE CITY DEPARTMENT AND TO COMPLY WITH ALL CURRENT LAWS, RULES, REGULATIONS, ORDINANCES, PROCEDURES, AND GUIDELINES.
PROPERTY Location: 25 BUTLER ST Map/Lot: 0111-0050-0019-0027
INFORMATION

OWNER INFORMATION	Owner(s):	Owner Address:
SOUTHERN NEW ENGLAND TEL CO SU	DUFF \& PHELPS LLC PO BOX 2629	
	C/O FRONTIER COMMUNICATIONS	ADDISON, TX 75001

BUILDING

 INFORMATIONCard Number: 1

OVERVIEW	
Building ID	699
Finished Area	58,395
Comm/Rental Units	4
Living Units	0
Building Type	Office
Year Built	1900
Effective Yr Built	
Building Number	1

INTERIOR DETAILS	
Rooms	
BedRooms	0
Full Bath	0
Full Bath Rating	0
Half Bath	
Half Bath Rating	0
Kitchens	
Kitchen Rating	
Fireplaces	

CONSTRUCTION DETAILS	
Exterior	Concrete Blo
Roof Structure	Flat
Roof Cover	Tar and Gr
Quality	B-
Heat Fuel	Oil
Heat Type	Forced Air
Prcnt. Heated	100.00
Prcnt. AC	100.00
Stories	4 story
Foundation	Concrete

Building Area Summary

Exhibit C

Construction Drawings

GROUNDING NOTES

THE SUBCONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM
AND LIGHTNING PROTECTION SYTEM (AS DESIGNED AND INSTALLED) FOR STRICT COMPLANCE

2. ALL GROUND ELECTRODE SYSTEMS (INCLUING TELLCOMMUNICATION, RADIO, LIGHTNNG
PROTECTION, AND AC POWER GES'S) SHALL BE BONDED TOCETHER, AT OR BELOW GRADE, BY PROTECTION, AND AC POWER GES'S) SHALL BE BONDED TOGETHER, AT OR BELOW
TWO OR MORE COPPER BONOING CONOUCTORS IN ACCORDANCE WITH THE NEC.
3. THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTAL RESISTANCE TO EARTH
TESTING (PER IEEE 1100 AND 81 STANDARDS) FOR NEW GROUND ELECTRODE SYSTEMS. SUBBONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS SUBCONRACTOR SHAL FURNISH AND INSTALL SUPD SEMENTAL
4. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQURED EQUPMENT GROUND
CONDUCTOR. STRANDED COPPER CONUCTORS WITH GREEN INSULATON, SIZED IN AACCODDANCE WTH THE NEC, SHALL BE FURNSHED AND INSTALLED WTH THE POWER CIRCUITS
TO BTS EQUPMENT.
5. EACH BTS CABINET FRAME SHALL BE DRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUPMENT GROUND WIRES, \#6 AWG STRANDED
COPPER OR LARGER FOR INDOOR BTS AND \#2 AWG STRANDED COPPER FOR OUTDOOR BTS.
6. EXOthermic weldo shall be used for all grounding connections below grade.
7. APPROVED ANTIXXIDANT COATINGS (I.E.E, CONDUCTVE GEL OR PASTE) SHALL BE USED ON ALL
COMPRESSION AND BOLTED GROUND CONNECTONS.
8. ICE BRIDGE Bonoing conductors shall be exothermically bonded or bolted to
9. ALUMINMM CONDCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR
GROUNOING CONNECTONS.
10. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES A

1. METAL CONDUIT SHALL BE MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS
OR BY BONIING ACROSS THE DISCONTNUITY WITH \#G AWG COPPER WIRE UL APPROVED OR BY BONDING ACROSS THE DISCO
GROUNDING TYPE CONDIT CLAMPS.
2. ALL NEW STRUCTURES WITH A FOUNDATION AND/OR FOOTING HAVING 20 FT. OR MORE OF

GENERAL NOTES

for the purpose of construction drawing, the following definitions shall apply CONTRACTOR - SAI
SUBCONTRACTOR
SUBCONTRACTOR - GENERAL CONTRACTOR (CONSTRUCTION)
OWNER - AT\&T MOBILTTY
2. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL
STIE TO FAMLIARIZ WITH THE EXISTING CONDITONS AND TO CONFIRM THAT THE WORK CAN BE ACCMPMLIAED AS SOWN ON THE CONSTRUNTON DR
SHALL BE BROUGHT TO THE ATENTION OF CONTRACTOR.
3. ALL MATERILLS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WTH ALL
 COL WORK CARRIED OUT SHALL COMPLY WTH ALL APPLLCABLE MUNCIPAL AND UTLITYYK.
COMPANY SPEIFICATIONS AND LOCAL JURISICTIONAL COOES, ORDNANCS AND APLICABLE
4. drawings provided here are not to be sCaled and are intended to show outuine
5. UNLESS NOTED OTHERWISE, THE WORK SHAL INCLUDE FURNSHHNG MATERALS, EQUPMENT,
APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INTTALLATONS AS INICATED ON THE DRAWNGS.
 THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH
MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
8. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALED AS SHOWN ON THESE DRAWINGS, THE
SUBCONRACTOR SHALL PROPOSE AN ALTERNATVE INTALLATON SPACE FOR APPROVAL BY
THE CONTRACTOR.
9. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND T1 CABLES,
GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING. SUBCONTRACTOR SHALL UTIIIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS
NECESSARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUL ROUTING WITH THE CONTRACTOR.
10. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS,
LANOSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REARED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTON OF OWNER.
11. SUBCONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS
COAXIAL CABLLES AND OTHER ITEMS REMOVED FROM THE EXITING FACIITY. ANTENNAS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILIM,
REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATON.
12. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION.
3. ALL CONCRETE REPAR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN CONCRETE
INSTIUTE (ACI) 301 .
14. ANY NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL BE AIR-ENTRAINED AND SHALL HAV 4000 PSI STRENCTH AT 28 DAYS. ALL CONC
15. ALL STRUCTURAL STEEL WORK SHALL BE DETALLED, FABRICATED AND ERECTED IN ACCORDANCE WITH AISC SPECIFICATIONS. ALL STRUCTURAL STEEL SHALL BE ASTM A36 (Fy $=36 \mathrm{kSi})$
UNIESS OTHRRISE NOTED. PIPES SHALL BE ASTM A53 TVPE (Fy $=36$ ksi). AL STEL

16. CONSTRUCTION SHALL COMPLY WITH. SPECIFICATIONS AND "GENERAL CONSTRUCTION SERVICES
FOR CONSTRUCTION OF AT\&T SITES."
17. SUBCONTRACTOR SHALL VERIF ALL EXISTING DIMENSIONS AND CONDTIONS PRIOR TO DRAWNGS MUST BE VERIFED. SUBCONTRACTOR SHALL NOTIFY THE CONTRACTOR OF ANY
DISCREPANCIES PRIOR TO ORDERING MATERAL OR PROCEEDNG WIH CONSTRUCTINN.
18. THE EXISTING CELL SITE IS IN FULL COMMERCILL OPERATION. ANY CONSTRUCTION WORK BY
SUBCONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON

19. SINCE THE CELL SITE IS ACTVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING
 PERSONAL RF EXPO
EXPOSURE LEVELS.
20. APPLICABLE BuILDING CODES:
sUBCONTRACTOR'S WORK SHALL

CODES AS ADOPTED BY THE LOCAL AUTHOSTH HAVING JURISDICTOTO (AHI) STATE, AND LOCAL CODES AS ADOPTED BY THE LOCAL AUTHORIN HAVING JURISOICTION (AHJ) FOR THE LOCATIO
THE ${ }^{\text {OTITON }}$ OF TH AHJ ADOPTTD CODS AND STANDARDS IN EFFECT ON THE DATE OF RD SHALL GOVE
BULLDING CODE: IBC 2015 WITH 2018 CT STATE bullding code amendment
ELECTRICAL CODE: 2017 NATINAL ELECTRICAL CODE (NFPA 70-2017)
SUBCONTRACTOR'S WORK SHALL COMPLY WITH THE LATEST EDTIION OF THE FOLLOWING
STANDARDS:
AMERRCAN CONCRETE INSTTUTE (ACI) 318; BULLDING CODE REQUIREMENTS FOR
STRUCAURAL CONCRETE:
AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) MANUAL OF STEEL
CONSTRUCTION, ASD, FOURTEENTH EDITION;
TELECOMMUNICATIONS INDUSTRY ASSOCIATION (TIA) 222-H,
STRUCTURAL STANDARDS FOR STEEL
FOR ANY CONFLCTS BETWEEN SECTION OF LISTED CODES AND STANDARDS REGARDING
MATERILL, METHOS OF CONTTUCTIN, OR OHER ROUURMENS THE MOT RETRTCTVE

| (800-10965) (TTP. OF |
| :--- | (800-10965) (TYP.

SECTOR, TOTAL OF 3) ROPOSED AT\&T DOD ANTENNA ARE419 B77 (TPP. OF 1 PER SECTOR, TOTAL OF 3)
existing surge arrestors (total of 3) PROPOSED ATETT C-Band ANTENNA
AR6449 B77) (TTP. OF (AR6449 B77) (TTP. OF 1 PER
SECTOR, TOTAL OF 3) (BELOW)
(10 ELEV. $58^{\circ}-0^{\prime \prime} \pm$ (AGL)
$\frac{\text { ROUND LEVEL }}{\text { LEV. } 0^{\prime}-0^{" \pm}(A G L)}$

SPECIAL INSPECTIONS (REFERENCE IBC CHAPTER 17):
EENERAL: WHERE APPLICATION IS MADE FOR CONSTRUCTION, THE OWNER OR THE REGISTERED DESIGN PROFESSIONAL IN RESPONSIBLE CHARGE ACTING AS THE OWNER'S AGENT SHALL EMPLOY ONE OR MORE APPROVED AGENCIES TO
PERFORM INSPECTIONS DURING CONSTRUCTON ON THE TYPES OF WORK LSTED IN THE INSPECTION CHECKLIST ABOVE,
 DESIGN OF THE PROLECT ARE
TOACT AS TE SPECIL ASPE
QUALIICATION REPCUREMENTS.
STATEMENT OF SPECIAL INSPECTIONS: THE APPLLCANT SHALL SUBMT A STATEMENT OF SPECIAL INSPECTIONS PREPARED
S THE REGISTERED DESIGN PROFESSIONAL IN RESPONSIBE CHARGE IN ACCORDANCE WTH SECTION 107.1 AS A BY THE REGISTERED DESIGN PROFESSIONAL IN RESPONSIBLE CHARGE IN ACCORDANCE WITH
CONDITON FOR ISSUANCE. THIS STATEMENT SHALL BE IN ACCORDANCE WTH SECTON 1705.
REPORT REQUREMENT: SPECIAL INSPECTORS SHALL KEEP RECORDS OF INSPECTIONS. THE SPECIAL INSPECTOR SHALL
FURNISH INSPECTON REPORTS TO THE BUULDING OFFICIAL, AND TO THE REGITERED DESIGN PROFESSIONAL IN

 RROUGHT TO THE ATCENTION OF THE BUULDING OFFICIAL AND TO THE REGIITERED DESIIGN PROFESSIONAL IN
RESPONSIBLE CHAREE. A FINLL REPORT DOCUMENTING REQURED SPECIAL INSPECTINS SHALL BE SUBMITED.

SPECIAL INSPECTION CHECKLIST	
BEFORE CONSTRUCTION	
CONSTRUCTION/INSTALAATION INSPECTIONS AND TESTNG REQUIRED (COMPLETED BY ENGINEER OF RECORD)	REPort item
N/A	ENGINEER OF RECORD APPROVED SHOP DRAWINGS
N/A	${ }^{\text {MATERRAL }}$ SPECIFICATIONS REPORT
N/A	FABRICATOR NDE INSPECTION
reauired	PACKING SLIPS ${ }^{3}$
ADOITIONAL TESTING AND INSPECTIONS:	
DURING CONSTRUCTION	
CONSTRUCTION/INSTALLATION INSPECTIONS AND TESTING REQUIRED (COMPLETED BY ENGINEER OF RECORD)	REPORT Item
reauired	STEEL INSPECTIONS
N/A	HIGH STRENGTH BOLT INSPECTIONS
N/A	HIGH WIND ZONE INSPECTIONS ${ }^{4}$
N/A	FOUNDATION INSPECTIONS
N/A	CONCRETE COMP. STRENGTH SUUP TESTS AND PLACEMENT
N/A	POST INSTALLED ANCHOR VERIFICATION
N/A	Grout Verifiation
N/A	CERTIFED WELD INSPECTION
N/A	EARTHWORK: LIT AND DENSITY
N/A	ON SITE COLD GALVANIZING VERIFICATION
N/A	GUY WRE TENSION REPORT
ADOITIONAL TESTING AND INSPECTIONS:	
AFTER CONSTRUCTION	
CONSTRUCTION/INSTALLATION INSPECTIONS AND TESTING REQURED (COMPLETED BY ENGINEER OF RECORD	REPORT Item
reauired	MODIFICATION INSPECTOR REDLINE OR RECORD DRAWINGS
N/A	POST INSTALLED ANCHOR PULL-OUT TESTING
reauired	PHOTOGRAPHS
ADDITIONAL TESTING AND INSPECTIONS:	

Exhibit D

Structural Analysis Report

(REVISED) STRUCTURAL ANALYSIS REPORT

For

CT1013
MERIDEN SBC CO
27 Butler Street
Meriden, CT 06451

Antennas Mounted on Non-Penetrating Ballasted

 Cable Tray on Roof

Prepared for:

Dated: May 10, 2022 (Rev. 1)
February 25, 2022

Prepared by:

Design Grmp mic

SCOPE OF WORK:

Hudson Design Group LLC (HDG) has been authorized by AT\&T to conduct a structural evaluation of the structure supporting the proposed equipment located in the areas depicted in the latest HDG construction drawings.
This report represents this office's findings, conclusions and recommendations pertaining to the support of AT\&T's proposed antennas listed below.
This office conducted an on-site visual survey of the above site on November 18, 2021. The following documents were used for our reference:

- Previous HDG Structural Analysis Report dated November 11, 2019.

CONCLUSION SUMMARY:

Based on our evaluation, we have determined that the existing structure IS CAPABLE of supporting the proposed equipment loading.

	Member	Stress Ratio	Pass/Fail
Roof (Bar Joist 2)	SJ-103 Bar Joist	99%	PASS

Based on our evaluation, we have determined that the existing and proposed ballast mounts ARE CAPABLE of supporting the proposed equipment loading with the following modifications:

- Install new ballast mount to support relocated 800-10964 antenna.

	Controlling Load Case	Stress Ratio	Pass/Fail
Existing Alpha Sector Ballast Mount	Overturning	99%	PASS
Proposed Alpha Sector Ballast Mount	Overturning	99%	PASS
Existing Beta Sector Ballast Mount	Overturning	99%	PASS
Existing Gamma Sector Ballast Mount	Overturning	99%	PASS

Based on our evaluation, we have determined that the existing and proposed pipe masts ARE CAPABLE of supporting the proposed equipment loading.

	Member	Controlling Load Case	Stress Ratio	Pass/Fail
Pipe Mast	$2-1 / 2^{\prime \prime}$ std pipe	Deflection	27%	PASS

Reference the table below for the minimum ballast requirements for the Alpha sector:

MINIMUM BALLAST REQUIREMENTS - ALPHA SECTOR			
	Existing	Proposed	Total
Number of Blocks on Front Sled	6	0	6
Number Blocks on Back Sled	25	0	25
Size of Blocks	$4 " \times 8 " \times 16$ " Solid	-	$4 " \times 8$ " $\times 16$ " Solid
Weight of Blocks	$38 \mathrm{lbs} . /$ each	-	$38 \mathrm{lbs} . / \mathrm{each}$
Total Ballast Weight	1178 lbs.	0 lbs.	1178 lbs.

MINIMUM BALLAST REQUIREMENTS - ALPHA SECTOR (PROPOSED MOUNT)			
Number of Blocks on Front Sled	Existing	Proposed	Total
Number Blocks on Back Sled	0	0	0
Size of Blocks	0	8	8
Weight of Blocks	-	$4 " \times 8 " \times 16$ " Solid	$4 " \times 8$ " $\times 16$ " Solid
Total Ballast Weight	-	$38 \mathrm{lbs} . / e a c h$	$38 \mathrm{lbs} . / \mathrm{leach}$
	0 lbs.	304 lbs.	304 lbs.

Reference the table below for the minimum ballast requirements for the Beta sector:

MINIMUM BALLAST REQUIREMENTS - BETA SECTOR			
	Existing	Proposed	Total
Number of Blocks on Front Sled	8	0	8
Number Blocks on Back Sled	33	0	33
Size of Blocks	$4 " \times 8 " \times 16^{\prime \prime}$ Solid	-	$4 " \times 88^{\prime \prime} \times 16$ " Solid
Weight of Blocks	38 lbs. /each	-	38 lbs. /each
Total Ballast Weight	1558 lbs.	0 lbs.	1558 lbs.

Reference the table below for the minimum ballast requirements for the Gamma sector:

MINIMUM BALLAST REQUIREMENTS - GAMMA SECTOR			
	Existing	Proposed	Total
Number of Blocks on Front Sled	8	0	8
Number Blocks on Back Sled	27	0	27
Size of Blocks	$4 " \times 8 " \times 16^{\prime \prime}$ Solid	-	$4 " \times 8$ " $\times 16$ " Solid
Weight of Blocks	$38 \mathrm{lbs} . /$ each	-	$38 \mathrm{lbs} . / \mathrm{each}$
Total Ballast Weight	1330 lbs.	0 lbs.	1330 lbs.

HDG did not perform a condition assessment of the entire roof but did perform an inspection of the existing roof members and structural bearing walls below the area where the equipment is proposed to be located.

APPURTENANCE CONFIGURATION:

Appurtenances	Dimensions	Weight	${ }^{* *}$ Elevation	Mount
(2) 800-10965 Antennas	$78.7^{\prime \prime} \times 20.0^{\prime \prime} \times 6.9^{\prime \prime}$	109 lbs	86^{\prime}	Ballast Mount
(4) 800-10964 Antennas	$59.0 " \times 20.0^{\prime \prime} \times 6.9^{\prime \prime}$	84 lbs	86^{\prime}	Ballast Mount
(3) 4449 B5/B12 RRH's	$14.9^{\prime \prime} \times 13.2^{\prime \prime} \times 10.4^{\prime \prime}$	73 lbs	-	Ballast Mount
(3) 8843 B2/B66A RRH's	$14.9^{\prime \prime} \times 13.2^{\prime \prime} \times 10.9^{\prime \prime}$	72 lbs	-	Ballast Mount
(3) DC6-48-60-18 Surge Arrestor	$18.9^{\prime \prime} \times 15.9^{\prime \prime} \times 9.6^{\prime \prime}$	35 lbs	-	Ballast Mount
(3) AIR6419 Antennas	$31.0^{\prime \prime} \times 16.1^{\prime \prime} \times 7.3^{\prime \prime}$	66 lbs	88^{\prime}	Ballast Mount
(3) AIR6449 Antennas	$30.6^{\prime \prime} \times 15.9^{\prime \prime} \times 10.6^{\prime \prime}$	82 lbs	$84^{\prime}-4 "$	Ballast Mount
(3) B14 4478 RRH's	$18.1 " \times 13.4^{\prime \prime} \times 8.3^{\prime \prime}$	60 lbs	-	Ballast Mount

* Proposed equipment shown in bold.
** Elevation to antenna centerline.

DESIGN CRITERIA:

International Building Code (IBC) 2015 with 2018 Connecticut State Building Code, and ASCE-10 (Minimum Design Loads for Buildings and Other Structures).

Wind		
Reference Wind Speed:	125 mph	(2018 CTSBC Appendix N)
Exposure Category:	B	(ASCE 7-10 Chapter 26)
Risk Category:	Il	(ASCE 7-10 Table 1.5-1)
Snow	30	
Ground Snow, Pg:	1.0	(2018 CTSBC Appendix N)
Importance Factor (I_{s}):	1.0	(Partially Exposed, Table 7-2)
Exposure Factor (Ce):	1.0	(ASCE 7-10 Table 7-3)
Thermal Factor ($\left.\mathrm{C}_{\mathrm{f}}\right):$	21 psf	(ASCE 7-10 Equation 7.3-1)
Flat Roof Snow Load:	30 psf	
Min. Flat Roof Snow Load:		

EIA/TIA-222-H Structural Standards for Steel Antenna Towers and Antenna Supporting Structures

Wind		
City/Town:	Meriden	
County:	New Haven	
Wind Load:	125 mph	(TIA-222-H Annex B)
Ice		
Design Ice Thickness (i_{i}):	1.5 in	(TIA-222-H Annex B)
Structure Class:	II	(TIA-222-H Table 2-1)
Importance Factor ($\left(\mathrm{l}_{\mathrm{i}}\right):$	1.0	(TIA-222-H Table 2-3)
Factored Thickness of Radial Ice (t_{i}):	1.64 in	(TIA-222-H Sec. 2.6.10)

HUDSON
Design Group LLC

EXISTING ROOF CONSTRUCTION:

The existing roof construction consists of a roofing membrane over rigid insulation over precast concrete planks supported by steel bar joists, beams, and columns.

ANTENNA/RRH/SURGE ARRESTOR SUPPORT RECOMMENDATIONS:

The new antennas are proposed to be mounted on proposed pipe masts installed on new and existing non-penetrating ballasted cable tray located on the roof. Reference the table on page 2 and 3 for the minimum ballast requirements. All ballasts have been located over existing steel beams and bar joists around the exterior portion of the penthouse roof.

Limitations and Assumptions:

1. Reference the latest HDG construction drawings for all the equipment locations.
2. All detail requirements will be designed and furnished in the construction drawings.
3. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
4. HDG is not responsible for any modifications completed prior to and hereafter which HDG was not directly involved.
5. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer requirements.
6. If field conditions differ from what is assumed in this report, then the engineer of record is to be notified as soon as possible.

Њ

HUDSON

Design Group LLC

FIELD PHOTOS:

Photo 1: Sample photo illustrating the existing antennas and mounts

Photo 2: Sample photo illustrating the existing ballast mounts.

HUDSON

Design Group LLC

FIELD PHOTOS (CONT.):

Photo 3: Sample photo illustrating the existing roof framing.

Date: 2/25/2022
$\begin{array}{ll}\text { Project Name: } & \text { MERIDEN SBC CO } \\ \text { Project No.: } & \text { CTl013 }\end{array}$
Designed By: ID Checked By: MSC

2.6.5.2 Velocity Pressure Coeff:

$\mathrm{K}_{\mathrm{z}}=2.01\left(\mathrm{z} / \mathrm{z}_{\mathrm{g}}\right)^{2 / \alpha}$

$$
\mathrm{K}_{\mathrm{z}}=
$$

$$
0.947
$$

$K z m i n \leq K z \leq 2.01$

Table 2-4

Exposure		$\mathbf{Z}_{\mathbf{g}}$	$\mathbf{\alpha}$	$\mathbf{K}_{\mathbf{z m i n}}$
B	1200 ft	7.0	0.70	0.9
C	900 ft	9.5	0.85	1.0
D	700 ft	11.5	1.03	1.1

2.6.6.2 Topographic Factor:

Table 2-5

Topo. Category	$\mathbf{K}_{\mathbf{t}}$			\mathbf{f}
2	0.43	1.25		
3	0.53	2.0		
4	0.72	1.5		

$K_{z t}=\left[1+\left(K_{c} K_{t} / K_{h}\right)\right]^{2}$
$\mathrm{K}_{\mathrm{zt}}=\quad$ \#DIV/0!
(If Category 1 then $\mathrm{K}_{\text {zt }}=1.0$)
Category=

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{h}}=\mathrm{e}^{\left(\mathrm{f}^{*} z / \mathrm{H}\right)} \\
& \\
& \mathrm{K}_{\mathrm{h}}= \text { \#DIV/0! } \\
& \mathrm{K}_{\mathrm{c}}= 0 \text { (from Table 2-4) } \\
& \mathrm{K}_{\mathrm{t}}= 0 \text { (from Table 2-5) } \\
& \mathrm{f}= 0 \text { (from Table 2-5) } \\
& \mathrm{z}= 86 \\
& \mathrm{Z}_{\mathrm{s}}= 120 \text { (Mean elevation of base of structure above sea level) } \\
& \mathrm{H}= 0 \text { (Ht. of the crest above surrounding terrain) } \\
& \mathrm{K}_{\mathrm{zt}}= 1.00 \text { (from 2.6.6.2.1) } \\
& \mathrm{K}_{\mathrm{e}}= 1.00 \text { (from 2.6.8) }
\end{aligned}
$$

2.6.10 Design Ice Thickness

Max Ice Thickness =
Importance Factor =
$\mathrm{t}_{\mathrm{iz}}=\mathrm{t}_{\mathrm{i}}{ }^{*} \mathrm{I}^{*} \mathrm{~K}_{\mathrm{iz}}{ }^{*}\left(\mathrm{~K}_{z t}\right)^{0.35}$

Date: 2/25/2022
Project Name: MERIDEN SBC CO
Project No.: CT1013
Designed By: ID Checked By: MSC
HUDSON

2.6.9 Gust Effect Factor

2.6.9.1 Self Supporting Lattice Structures

$\mathrm{G}_{\mathrm{h}}=1.0$ Latticed Structures $>600 \mathrm{ft}$
$\mathrm{G}_{\mathrm{h}}=0.85$ Latticed Structures 450 ft or less
$\mathrm{G}_{\mathrm{h}}=0.85+0.15[\mathrm{~h} / 150-3.0] \quad \mathrm{h}=\mathrm{ht}$. of structure

$\mathrm{h}=$2	$\mathrm{G}_{\mathrm{h}}=$	0.85
2.6.9.2 Guyed Masts		
2.6.9.3 Pole Structures	$\mathrm{G}_{\mathrm{h}}=$	0.85
2.6.9 Appurtenances	$\mathrm{G}_{\mathrm{h}}=$	1.1
	$\mathrm{G}_{\mathrm{h}}=$	1.0

2.6.9.4 Structures Supported on Other Structures
(Cantilivered tubular or latticed spines, pole, structures on buildings (ht. : width ratio >5)

```
G}

Gh= 1.00

\subsection*{2.6.11.2 Design Wind Force on Appurtenances}

\section*{\(\mathrm{F}=\mathrm{q}_{\mathrm{z}}{ }^{*} \mathrm{G}_{\mathrm{h}}{ }^{*}(\mathrm{EPA})_{\mathrm{A}}\)}
\[
\mathrm{q}_{\mathrm{z}}=0.00256 * \mathrm{~K}_{\mathrm{z}} * \mathrm{~K}_{\mathrm{zt}} * \mathrm{~K}_{\mathrm{s}} * \mathrm{~K}_{\mathrm{e}} * \mathrm{~K}_{\mathrm{d}} * \mathrm{~V}_{\max }^{2}
\]
\begin{tabular}{rr}
\(\mathrm{q}_{\mathbf{z}}=\) & 35.81 \\
\(\mathrm{q}_{\mathbf{z} \text { (ice) })}=\) & 5.73 \\
\(\mathrm{q}_{\mathbf{z}(30)}=\) & 2.06
\end{tabular}
\begin{tabular}{rl}
\(\mathrm{K}_{\mathrm{z}}=\) & 0.947 (from 2.6.5.2) \\
\(\mathrm{K}_{\mathrm{zt}}=\) & 1.0 (from 2.6.6.2.1) \\
\(\mathrm{K}_{\mathrm{s}}=\) & 1.0 (from 2.6.7) \\
\(\mathrm{K}_{\mathrm{e}}=\) & 1.00 (from 2.6.8) \\
\(\mathrm{K}_{\mathrm{d}}=\) & 0.95 (from Table 2-2) \\
\(\mathrm{V}_{\text {max }}=\) & 125 mph (Ultimate Wind Speed) \\
\(\mathrm{V}_{\max }\) (ice) \(=\) & 50 mph \\
\(\mathrm{V}_{30}=\) & 30 mph
\end{tabular}

Table 2-2
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Structure Type } & Wind Direction Probability Factor, Kd \\
\hline \begin{tabular}{l} 
Latticed structures with triangular, square or rectangular cross \\
sections
\end{tabular} & 0.85 \\
\hline \begin{tabular}{l} 
Tubular pole structures, latticed structures with other cross \\
sections, appurtenances
\end{tabular} & 0.95 \\
\hline \begin{tabular}{l} 
Tubular pole structures supporting antennas enclosed within a \\
cylindrical shroud
\end{tabular} & 1.00 \\
\hline
\end{tabular}

Date: 2/25/2022
Project Name: MERIDEN SBC CO
ProjectNo.: CT1013
\(\square>\)
HUDSON
Design Group LLC
Designed By: ID Checked By: MSC

Determine Ca:

Table 2-9
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Force Coefficients (Ca) for Appurtenances} \\
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Member Type}} & Aspect Ratio \(\leq 2.5\) & Aspect Ratio = 7 & Aspect Ratio \(\geq 25\) \\
\hline & & Ca & Ca & Ca \\
\hline & Flat & 1.2 & 1.4 & 2.0 \\
\hline \multicolumn{2}{|r|}{Square/Rectangular HSS} & 1.2-2.8( \(\left.r_{s}\right) \geq 0.85\) & \(1.4-4.0\left(r_{s}\right) \geq 0.90\) & \(2.0-6.0\left(r_{s}\right) \geq 1.25\) \\
\hline \multirow[t]{3}{*}{Round} & \begin{tabular}{l}
\[
C<39
\] \\
(Subcritical)
\end{tabular} & 0.7 & 0.8 & 1.2 \\
\hline & \[
\begin{gathered}
39 \leq \mathrm{C} \leq 78 \\
\text { (Transitional) }
\end{gathered}
\] & 4.14/( \(\left.C^{0.485}\right)\) & \(3.66 /\left(C^{0.415}\right)\) & 46.8/( \(\left.\mathrm{C}^{1.0}\right)\) \\
\hline & \begin{tabular}{l}
\[
C>78
\] \\
(Supercritical)
\end{tabular} & 0.5 & 0.6 & 0.6 \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Aspect Ratio is the overall length/width ratio in the plane normal to the wind direction. (Aspect ratio is independent of the spacing between support points of a linear appurtenance, \\
Note: Linear interpolation may be used for aspect ratios other than those shown.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Ice Thickness = & \multicolumn{2}{|c|}{1.65 in} & Angle = & 0 (deg) & & Equivale & nt Angle = & 180 (deg) \\
\hline Appurtenances & Height & Width & Depth & Flat Area & \begin{tabular}{l}
Aspect \\
Ratio
\end{tabular} & Ca & Force (lbs) & \[
\frac{\text { Force (lbs) }}{\text { (w/ Ice) }}
\] \\
\hline AIR 6449 Antenna & 30.6 & 15.9 & 10.6 & 3.38 & 1.92 & 1.20 & 145 & 31 \\
\hline AIR 6419 Antenna & 31.0 & 16.1 & 7.3 & 3.47 & 1.93 & 1.20 & 149 & 32 \\
\hline 800-10964 Antenna & 59.0 & 20.0 & 6.9 & 8.19 & 2.95 & 1.22 & 358 & 70 \\
\hline 800-10965 Antenna & 78.7 & 20.0 & 6.9 & 10.93 & 3.94 & 1.26 & 495 & 96 \\
\hline 4449 B5/B12 RRH & 17.9 & 13.2 & 9.4 & 1.64 & 1.36 & 1.20 & 71 & 17 \\
\hline 4449 B5/B12 RRH (Shielded) & 17.9 & 0.0 & 9.4 & 0.00 & 0.00 & 1.20 & 0 & 0 \\
\hline 8843 B2/B66A RRH & 14.9 & 13.2 & 10.9 & 1.37 & 1.13 & 1.20 & 59 & 14 \\
\hline 8843 B2/B66A RRH (Shielded) & 14.9 & 2.7 & 13.2 & 0.28 & 0.00 & 1.20 & 12 & 0 \\
\hline B14 4478 RRH & 18.1 & 13.4 & 8.3 & 1.68 & 1.35 & 1.20 & 72 & 17 \\
\hline B14 4478 RRH (Shielded) & 18.1 & 2.1 & 13.4 & 0.26 & 0.00 & 1.20 & 11 & 0 \\
\hline DC6-48-60-18 Surge Arrestor & 18.9 & 15.9 & 9.6 & 2.09 & 1.19 & 1.20 & 90 & 20 \\
\hline L1-1/2x1-1/2 Angle & 1.5 & 12.0 & & 0.13 & 0.13 & 2.00 & 9 & \\
\hline L3x3 Angle & 3.0 & 12.0 & & 0.25 & 0.25 & 2.00 & 18 & \\
\hline Cable Tray & 3.5 & 12.0 & & 0.29 & 0.29 & 2.00 & 21 & \\
\hline
\end{tabular}


HUDSON
Design Group LLC

Pipe Mast
Calculations

Project Title: MERIDEN SBC CO
Engineer:
ID
Project ID: CT1013
Project Descr:

Steel Beam
LIC\# : KW-06013026, Build:20.22.2.9
Hudson Design Group LLC
(c) ENERCALC INC 1983-2022

DESCRIPTION: Proposed AIR 6419 + 6449 Antenna Pipe Mast

\section*{CODE REFERENCES}

Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set : ASCE 7-10

\section*{Material Properties}
\begin{tabular}{ll} 
Analysis Method Allowable Strength Design & Fy: Steel Yield: \\
Beam Bracing: Completely Unbraced & E: Modulus: \\
Bending Axis: Major Axis Bending & \\
\hline
\end{tabular}


Applied Loads Service loads entered. Load Factors will be applied for calculations.

> Beam self weight calculated and added to loading
> Load(s) for Span Number 1
> Point Load: \(\mathrm{W}=0.0750 \mathrm{k} @ 0.50 \mathrm{ft}\), (AIR 6419 Wind Load)
> Point Load: \(\mathrm{W}=0.0750 \mathrm{k} @ 3.50 \mathrm{ft}\), (AIR 6419 Wind Load)
> Load(s) for Span Number 2
> Point Load: \(\mathrm{W}=0.0730 \mathrm{k} @ 0.50 \mathrm{ft}\), (AIR 6449 Wind Load)
> Point Load: \(\mathrm{W}=0.0730 \mathrm{k} @ 3.50 \mathrm{ft}\), (AIR 6449 Wind Load)

\begin{tabular}{ll} 
Project Title: & MERIDEN SBC CO \\
Engineer: & ID \\
Project ID: & CT1013 \\
Project Descr: &
\end{tabular}

\section*{Steel Beam}

DESCRIPTION: Proposed AIR \(6419+6449\) Antenna Pipe Mast
Maximum Forces \& Stresses for Load Combinations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Load Combination Segment Length} & \multirow[b]{2}{*}{Span \#} & \multicolumn{2}{|l|}{Max Stress Ratios} & \multicolumn{6}{|c|}{Summary of Moment Values} & \multicolumn{3}{|l|}{Summary of Shear Values} \\
\hline & & M & V & Mmax + & Mmax - & Ma Max & Mnx Mnx & mega Cb & Rm & Va Max & VnxVnx & mega \\
\hline \multicolumn{13}{|l|}{+0.60D+0.60W} \\
\hline Dsgn. L = 4.00 ft & 1 & 0.087 & 0.010 & & -0.21 & 0.21 & 4.00 & 2.391 .00 & 1.00 & 0.10 & 16.91 & 10.12 \\
\hline Dsgn. \(\mathrm{L}=3.50 \mathrm{ft}\) & 2 & 0.087 & 0.010 & -0.00 & -0.21 & 0.21 & 4.00 & 2.391 .85 & 1.00 & 0.10 & 16.91 & 10.12 \\
\hline Dsgn. L \(=0.50 \mathrm{ft}\) & 3 & 0.000 & 0.000 & & -0.00 & 0.00 & 4.00 & 2.391 .00 & 1.00 & 0.00 & 16.91 & 10.12 \\
\hline \multicolumn{13}{|l|}{+0.60D} \\
\hline Dsgn. \(\mathrm{L}=4.00 \mathrm{ft}\) & 1 & 0.012 & 0.001 & & -0.03 & 0.03 & 4.00 & 2.391 .00 & 1.00 & 0.01 & 16.91 & 10.12 \\
\hline Dsgn. \(\mathrm{L}=3.50 \mathrm{ft}\) & 2 & 0.012 & 0.001 & -0.00 & -0.03 & 0.03 & 4.00 & 2.392 .10 & 1.00 & 0.01 & 16.91 & 10.12 \\
\hline Dsgn. L = 0.50 ft & 3 & 0.000 & 0.000 & & -0.00 & 0.00 & 4.00 & 2.391 .00 & 1.00 & 0.00 & 16.91 & 10.12 \\
\hline
\end{tabular}

\section*{Overall Maximum Deflections}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Load Combination & Span & Max. "-" Defl & Location in Span & Load Combination & Max. "+" Defl & Location in Span \\
\hline W Only & 1 & 0.1072 & 0.000 & & 0.0000 & 0.000 \\
\hline & 2 & 0.0000 & 0.000 & W Only & -0.0087 & 1.493 \\
\hline W Only & 3 & 0.0032 & 0.500 & & 0.0000 & 1.493 \\
\hline Vertical Reactions & \multicolumn{4}{|r|}{Support notation : Far left is \#'} & Values in KIPS & \\
\hline Load Combination & Support 1 & Support 2 & Support 3 Supp & ort 4 & & \\
\hline Overall MAXimum & & 0.298 & -0.002 & & & \\
\hline Overall MINimum & & 0.028 & 0.000 & & & \\
\hline D Only & & 0.046 & 0.000 & & & \\
\hline +D+0.60W & & 0.225 & -0.001 & & & \\
\hline +D+0.450W & & 0.181 & -0.001 & & & \\
\hline +0.60D+0.60W & & 0.207 & -0.001 & & & \\
\hline +0.60D & & 0.028 & 0.000 & & & \\
\hline W Only & & 0.298 & -0.002 & & & \\
\hline
\end{tabular}

\section*{Alpha Sector Ballast Mount Calculations (Existing Conditions)}

Project Name: MERIDEN SBC CO
Project No.:
CT1013
Designed By: ID Checked By: MSC

Weight of Ballast Mount - Alpha Sector
\begin{tabular}{|c|c|c|c|c|}
\hline Item & \(\underline{\text { Wt. (Lbs.) }}\) & Linear ft. & \(\underline{\text { Qty. }}\) & \(\underline{\text { Total (Lbs.) }}\) \\
\hline \(\mathrm{L} 1-1 / 2 \times 1-1 / 2 \times 3 / 16(\mathrm{~V})\) & 1.8 & 2.1 & 12 & 45.0 \\
\hline \(\mathrm{~L} 1-1 / 2 \times 1-1 / 2 \times 3 / 16(\mathrm{H})\) & 1.8 & 3.67 & 6 & 39.6 \\
\hline \(\mathrm{~L} 1-1 / 2 \times 1-1 / 2 \times 3 / 16(\mathrm{H})\) & 1.8 & 1.33 & 12 & 28.7 \\
\hline \(\mathrm{~L} 3 \times 3 \times 1 / 4(\mathrm{~V})\) & 4.9 & 2.1 & 40 & 408.3 \\
\hline \(\mathrm{~L} 3 \times 3 \times 1 / 4(\mathrm{H})\) & 4.9 & 7.5 & 20 & 735.0 \\
\hline \(\mathrm{~L} 3 \times 3 \times 1 / 4(\mathrm{H})\) & 4.9 & 1.42 & 40 & 278.3 \\
\hline \(\mathrm{~L} 3 \times 2 \times 3 / 6(\mathrm{H})\) & 3.07 & 30 & 2 & 184.2 \\
\hline 1/2" Round Bar & 0.668 & 2.39 & 4 & 6.4 \\
\hline 2 " STD. Pipe & 3.66 & 7 & 3 & 76.9 \\
\hline \(2-1 / 2\) " STD. Pipe & 5.8 & 6 & 1 & 34.8 \\
\hline \(2-1 / 2\) " XS Pipe & 7.67 & 6 & 2 & 92.0 \\
\hline Cable Tray & 10 & 28 & 1 & 280.0 \\
\hline
\end{tabular}

\author{
Total, \(\mathrm{T}_{\text {weight }}\)
}
2209.2 Ibs.

Weight of Appurtenances - Alpha Sector
\begin{tabular}{|c|c|c|c|}
\hline Item & Wt. (Lbs.) & Qty. & Total (Lbs.) \\
\hline AIR6419 Antenna & 66 & 1 & 66.0 \\
\hline AIR6449 Antenna & 82 & 1 & 82.0 \\
\hline 800-10964 Antennas & 84 & 1 & 84.0 \\
\hline 4449 B5/B12 RRH's & 73 & 1 & 73.0 \\
\hline 8843 B2/B66A RRH's & 72 & 1 & 72.0 \\
\hline B14 4478 RRH's & 60 & 1 & 60.0 \\
\hline DC6-48-60-18 Surge Arrestor & 35 & 1 & 35.0 \\
\hline
\end{tabular}

Total, \(\mathrm{T}_{\text {weight }} \quad 472.0\) lbs.

Project Name: MERIDEN SBC CO
Project No.: CT1013
Designed By: ID Checked By: MSC
HUDSON
Design Group LLC

Calculate Total Ballast Required for Ballast Mount - Existing Conditions - Alpha Sector
*Assume (3) Antennas as projected area*

Wind Force on Appurtenances (Fa) =

Height (H) \(=\)

Wind Force on Ballast Frame (Fb) \(=\)

Height \((Y)=\)

Weight of Appurtenances (Wa) =

Distance to Appurtenances \((X)=\)

Weight of Ballast Mount \((W m)=\)

Center of Cable Tray \((Z)=\)

Length (L) \(=\)

Ballast (Wb) \(=\)

Safety Factor (SF) =

Overturning at Ballast
\(\Sigma \mathrm{M}=0=(\mathrm{Fa*} \mathrm{H})+\left(\mathrm{Fb}^{*} \mathrm{Y}\right)-\left(\mathrm{Wa*}{ }^{*}\right)-\left(\mathrm{Wm} \mathrm{W}^{*} \mathrm{Z}\right)-\left(\mathrm{Wb}{ }^{*} \mathrm{~L}\right)\)
\(\mathrm{Wb}=\left[\left(\mathrm{Fa}^{*} \mathrm{H}^{*} \mathrm{SF}+\mathrm{Fb}^{*} \mathrm{Y}^{*} \mathrm{SF}-\mathrm{Wa} * \mathrm{X}-\mathrm{Wm} * \mathrm{Z}\right) / \mathrm{L}\right]=\)

Determine Number of Blocks Required
(assume 4"x8"x16" solid blocks @ 38 lbs. each)

Number of Blocks Required =
-28 BLOCKS FRONT SIDE

Existing Blocks =
0 BLOCKS FRONT SIDE

Additional Blocks Required =
0 BLOCKS FRONT SIDE
*Note: Additional blocks are NOT required.

Project Name: MERIDEN SBC CO
Project No.: CT1013
Designed By: ID Checked By: MSC

Calculate Total Ballast Required for Ballast Mount - Existing Conditions - Alpha Sector
*Assume (3) Antennas as projected area*


\section*{Overturning at Ballast}
\(\Sigma \mathrm{M}=0=\left(\mathrm{Fa}{ }^{*} \mathrm{H}\right)+\left(\mathrm{Fb}{ }^{*} \mathrm{Y}\right)-(\mathrm{Wa*})-\left(\mathrm{Wm}{ }^{*} \mathrm{Z}\right)-\left(\mathrm{Wb}{ }^{*} \mathrm{~L}\right)-\left(\mathrm{Wb}_{2}{ }^{*} \mathrm{~L} / 2\right)\)
\(\mathrm{Wb}=\left[\left(\mathrm{Fa}{ }^{*} \mathrm{H}^{*} \mathrm{SF}+\mathrm{Fb}^{*} \mathrm{Y}^{*} \mathrm{SF}\right)-\left(\mathrm{Wa*}{ }^{*}-\mathrm{Wm}{ }^{*} \mathrm{Z}\right)-\left(\mathrm{Wb}_{2}{ }^{*} \mathrm{~L} / 2\right) / \mathrm{I}\right.\)
409 lbs.

Determine Number of Blocks Required
(assume 4"x8"x16" solid blocks @ 38 lbs. each)

Number of Blocks Required \(=\)
\[
11 \text { BLOCKS BACK SIDE }
\]

Existing Blocks @ L =
19 BLOCKS BACK SIDE

Additional Blocks Required =
0 BLOCKS BACK SIDE
*Note: Additional blocks are NOT required.

HUDSON
Design Group LLC

\section*{Alpha Sector Ballast Mount Calculations (Proposed Conditions)}

Date:
5/10/2022
Project Name: MERIDEN SBC CO
Project No.: CT1013
Designed By: ID Checked By: MSC

HUDSON
Design Group LLC

Calculate Total Ballast Required for Ballast Mount - Proposed - Alpha Sector - (800-10964 Antenna)

Wind Force on Appurtenances (Fa) \(=\)
Height (H) \(=\)
Wind Force on Ballast Frame (Fb) \(=\)
Height \((Y)=\)
Weight of Appurtenances ( Wa ) \(=\)
Distance to Appurtenances (X)=
Weight of Ballast Mount (Wm) \(=\)
Center of Cable Tray (Z) \(=\)
Length (L) \(=\)
Ballast (Wb) \(=\)
Safety Factor (SF) =

Overturning at Ballast
\(\Sigma \mathrm{M}=0=(\mathrm{Fa} * \mathrm{H})+(\mathrm{Fb} * \mathrm{Y})-\left(\mathrm{Wa}{ }^{*} \mathrm{X}\right)-\left(\mathrm{Wm} \mathrm{W}^{*} \mathrm{Z}\right)-\left(\mathrm{Wb}{ }^{*} \mathrm{~L}\right)\)
\(\mathrm{Wb}=\left[\left(\mathrm{Fa}^{*} \mathrm{H}^{*} \mathrm{SF}+\mathrm{Fb}^{*} \mathrm{Y}^{*} \mathrm{SF}-\mathrm{Wa}{ }^{*} \mathrm{X}-\mathrm{Wm}{ }^{*} \mathrm{Z}\right) / \mathrm{L}\right]=\)
Determine Number of Blocks Required
(assume 4"x8"x16" solid blocks @ 38 lbs. each)
Number of Blocks Required \(=\)

Existing Blocks =

Additional Blocks Required =
-7 lbs.
\[
-1 \text { BLOCKS FRONT SIDE }
\]
 1.5

0 BLOCKS FRONT SIDE

0 BLOCKS FRONT SIDE

Date:
5/10/2022
Project Name: MERIDEN SBC CO
Project No.: CT1013
Designed By: ID Checked By: MSC

Calculate Total Ballast Required for Ballast Mount - Proposed - Alpha Sector - (800-10964 Antenna)
*Assume (3) Antennas as projected area*


Overturning at Ballast
\(\Sigma \mathrm{M}=0=\left(\mathrm{Fa}^{*} \mathrm{H}\right)+\left(\mathrm{Fb}^{*} \mathrm{Y}\right)-(\mathrm{Wa*})-\left(\mathrm{Wm}{ }^{*} \mathrm{Z}\right)-\left(\mathrm{Wb}{ }^{*} \mathrm{~L}\right)-\left(\mathrm{Wb}_{2}{ }^{*} \mathrm{~L} / 2\right)\)
\(W b=\left[\left(F a^{*} H^{*} S F+F b^{*} Y^{*} \mathrm{SF}\right)-\left(\mathrm{Wa}^{*} \mathrm{X}-\mathrm{Wm}{ }^{*} \mathrm{Z}\right)-\left(\mathrm{Wb}_{2}{ }^{*} \mathrm{~L} / 2\right) / \mathrm{I}\right.\)
291 lbs.

Determine Number of Blocks Required
(assume 4"x8"x16" solid blocks @ 38 lbs. each)

Number of Blocks Required =
8 BLOCKS BACK SIDE

Existing Blocks @ L =
0 BLOCKS BACK SIDE

\section*{HUDSON}

Design Group LLC

\section*{Beta Sector Ballast Mount Calculations (Existing Conditions)}

Project Name: MERIDEN SBC CO

\section*{Project No.: \\ CT1013}

Designed By: ID Checked By: MSC

\section*{Weight of Ballast Mount - Beta Sector}
\begin{tabular}{|c|c|c|c|c|}
\hline Item & Wt. (Lbs.) & Linear ft. & Qty. & Total (Lbs.) \\
\hline L1-1/2x1-1/2x3/16 (V) & 1.8 & 2.1 & 16 & 60.0 \\
\hline L1-1/2x1-1/2x3/16 (H) & 1.8 & 3.67 & 8 & 52.8 \\
\hline L1-1/2x1-1/2x3/16 (H) & 1.8 & 1.33 & 16 & 38.3 \\
\hline L3x3x1/4 (V) & 4.9 & 2.1 & 48 & 489.9 \\
\hline L3x3x1/4 (H) & 4.9 & 7.5 & 24 & 882.0 \\
\hline L3 \(3 \times 3 \times 1 / 4\) (H) & 4.9 & 1.42 & 48 & 334.0 \\
\hline L3x2x3/6 (H) & 3.07 & 28 & 2 & 171.9 \\
\hline 1/2" Round Bar & 0.668 & 2.39 & 16 & 25.5 \\
\hline 2" STD. Pipe & 3.66 & 7 & 3 & 76.9 \\
\hline 2-1/2" STD. Pipe & 5.8 & 6 & 1 & 34.8 \\
\hline 2-1/2" XS Pipe & 7.67 & 6 & 2 & 92.0 \\
\hline Cable Tray & 10 & 32.5 & 1 & 325.0 \\
\hline \multicolumn{5}{|r|}{Total, \(\mathrm{T}_{\text {weight }} \mathbf{2 5 8 3 . 2}\)} \\
\hline
\end{tabular}

Weight of Appurtenances - Beta Sector
\begin{tabular}{|c|c|c|c|}
\hline Item & Wt. (Lbs.) & \(\underline{\text { Qty. }}\) & Total (Lbs.) \\
\hline AlR6419 Antenna & 66 & 1 & 66.0 \\
\hline AIR6449 Antenna & 82 & 1 & 82.0 \\
\hline 800-10965 Antennas & 109 & 2 & 218.0 \\
\hline 4449 B5/B12 RRH's & 73 & 1 & 73.0 \\
\hline 8843 B2/B66A RRH's & 72 & 1 & 72.0 \\
\hline B14 4478 RRH's & 60 & 1 & 60.0 \\
\hline DC6-48-60-18 Surge Arrestor & 35 & 1 & 35.0 \\
\hline
\end{tabular}

Total, \(\mathrm{T}_{\text {weight }} \quad \mathbf{6 0 6 . 0}\) lbs.

Date:
Project Name: MERIDEN SBC CO
Project No.: CT1013
Designed By: ID Checked By: MSC

Calculate Total Ballast Required for Ballast Mount - Existing Conditions - Beta Sector
*Assume (3) Antennas as projected area*

Wind Force on Appurtenances (Fa) =

Height ( \(H\) ) \(=\)

Wind Force on Ballast Frame (Fb) \(=\)

Height ( Y ) \(=\)

Weight of Appurtenances \((\mathrm{Wa})=\)

Distance to Appurtenances \((X)=\)

Weight of Ballast Mount (Wm) =

Length (L) \(=\)

Ballast (Wb) =

Safety Factor (SF) =

\section*{Overturning at Ballast}
\(\Sigma \mathrm{M}=0=\left(\mathrm{Fa}^{*} \mathrm{H}\right)+(\mathrm{Fb} * \mathrm{Y})-(\mathrm{Wa*})-(\mathrm{Wm} * \mathrm{Z})-(\mathrm{Wb} * \mathrm{~L})\)
\(\mathrm{Wb}=\left[\left(\mathrm{Fa}{ }^{*} \mathrm{H}^{*} \mathrm{SF}+\mathrm{Fb}^{*} \mathrm{Y}^{*} \mathrm{SF}-\mathrm{Wa}{ }^{*} \mathrm{X}-\mathrm{Wm}{ }^{*} \mathrm{Z}\right) / \mathrm{L}\right]=\)

Determine Number of Blocks Required
(assume 4"x8"x16" solid blocks @ 38 lbs. each)

Number of Blocks Required \(=\)

Existing Blocks =

Additional Blocks Required \(=\)

\section*{Center of Ballast Mount \((Z)=\)}

0
1.5
6.75 ft

804 lbs.
-22 BLOCKS FRONT SIDE

0 BLOCKS FRONT SIDE

0 BLOCKS FRONT SIDE

Design Group LLC
*Note: Additional blocks are NOT required.

Date:
Project Name: MERIDEN SBC CO
Project No.: CT1013
Designed By: ID Checked By: MSC
HUDSON
Design Group LLC

\section*{Calculate Total Ballast Required for Ballast Mount - Existing Conditions - Beta Sector}
*Assume (3) Antennas as projected area*

\(\Sigma \mathrm{M}=0=\left(\mathrm{Fa}^{*} \mathrm{H}\right)+(\mathrm{Fb} * \mathrm{Y})-(\mathrm{Wa} * \mathrm{X})-(\mathrm{Wm} * \mathrm{Z})-\left(\mathrm{Wb}^{*} \mathrm{~L}\right)-\left(\mathrm{Wb}_{2}{ }^{*} \mathrm{~L} / 2\right)\)
\(\mathrm{Wb}=\left[\left(\mathrm{Fa}{ }^{*} \mathrm{H}^{*} \mathrm{SF}+\mathrm{Fb}{ }^{*} \mathrm{Y}^{*} \mathrm{SF}\right)-\left(\mathrm{Wa*}{ }^{*}-\mathrm{Wm}{ }^{*} \mathrm{Z}\right)-\left(\mathrm{Wb}_{2}{ }^{*} \mathrm{~L} / 2\right) / \mathrm{L}\right]=\)
945 lbs.

Determine Number of Blocks Required
(assume 4"x8"x16" solid blocks @ 38 lbs. each)

Number of Blocks Required \(=\)
25 BLOCKS BACK SIDE

Existing Blocks @ L =
25 BLOCKS BACK SIDE

Additional Blocks Required \(=\)
*Note: Additional blocks are NOT required.

HUDSON
Design Group LLC

\section*{Gamma Sector Ballast Mount Calculations (Existing Conditions)}

Project Name: MERIDEN SBC CO
Project No.:
CT1013
Designed By: ID Checked By: MSC

Weight of Ballast Mount - Gamma Sector
\begin{tabular}{|c|c|c|c|c|}
\hline Item & Wt. (Lbs.) & Linear ft. & Qty. & Total (Lbs.) \\
\hline L1-1/2x1-1/2x3/16 (V) & 1.8 & 2.1 & 16 & 60.0 \\
\hline L1-1/2x1-1/2x3/16 (H) & 1.8 & 3.67 & 8 & 52.8 \\
\hline L1-1/2x1-1/2x3/16 (H) & 1.8 & 1.33 & 16 & 38.3 \\
\hline L3x3x1/4 (V) & 4.9 & 2.1 & 40 & 408.3 \\
\hline L3 \(\times 3 \times 1 / 4\) (H) & 4.9 & 7.5 & 20 & 735.0 \\
\hline L3x3x1/4 (H) & 4.9 & 1.42 & 40 & 278.3 \\
\hline L3x2x3/6 (H) & 3.07 & 30 & 2 & 184.2 \\
\hline 1/2" Round Bar & 0.668 & 2.39 & 16 & 25.5 \\
\hline 2" STD. Pipe & 3.66 & 7 & 3 & 76.9 \\
\hline 2-1/2" STD. Pipe & 5.8 & 6 & 1 & 34.8 \\
\hline 2-1/2" XS Pipe & 7.67 & 6 & 2 & 92.0 \\
\hline Cable Tray & 10 & 31 & 1 & 310.0 \\
\hline
\end{tabular}

\author{
Total, \(\mathrm{T}_{\text {weight }}\)
}
2296.2 Ibs.

Weight of Appurtenances - Gamma Sector
\begin{tabular}{|c|c|c|c|}
\hline Item & Wt. (Lbs.) & Qty. & Total (Lbs.) \\
\hline AIR6419 Antenna & 66 & 1 & 66.0 \\
\hline AIR6449 Antenna & 82 & 1 & 82.0 \\
\hline 800-10964 Antennas & 84 & 1 & 84.0 \\
\hline 4449 B5/B12 RRH's & 73 & 1 & 73.0 \\
\hline 8843 B2/B66A RRH's & 72 & 1 & 72.0 \\
\hline B14 4478 RRH's & 60 & 1 & 60.0 \\
\hline DC6-48-60-18 Surge Arrestor & 35 & 1 & 35.0 \\
\hline
\end{tabular}

Project Name: MERIDEN SBC CO
Project No.: CT1013
Designed By: ID Checked By: MSC

Calculate Total Ballast Required for Ballast Mount - Existing Conditions - Gamma Sector
*Assume (3) Antennas as projected area*

Wind Force on Appurtenances (Fa) =
\(\underline{\text { Height }(H)=}\)

Wind Force on Ballast Frame (Fb) \(=\)

Height (Y) \(=\)

Weight of Appurtenances \((\mathbf{W a})=\)

Distance to Appurtenances \((X)=\)

Weight of Ballast Mount (Wm) =

Center of Ballast Mount \((Z)=\)

Length (L) =

Ballast (Wb) =

Safety Factor (SF) =

Overturning at Ballast
\(\Sigma \mathrm{M}=0=\left(\mathrm{Fa}{ }^{*} \mathrm{H}\right)+\left(\mathrm{Fb}^{*} \mathrm{Y}\right)-(\mathrm{Wa*})-\left(\mathrm{Wm}{ }^{*} \mathrm{Z}\right)-\left(\mathrm{Wb}{ }^{*} \mathrm{~L}\right)\)
\(\mathrm{Wb}=\left[\left(\mathrm{Fa}^{*} \mathrm{H}^{*} \mathrm{SF}+\mathrm{Fb}^{*} \mathrm{Y}^{*} \mathrm{SF}-\mathrm{Wa}{ }^{*} \mathrm{X}-\mathrm{Wm}{ }^{*} \mathrm{Z}\right) / \mathrm{L}\right]=\)

Determine Number of Blocks Required
(assume 4"x8"x16" solid blocks @ 38 lbs. each)

Number of Blocks Required \(=\)
20 BLOCKS FRONT SIDE

Existing Blocks =
0 BLOCKS FRONT SIDE

Additional Blocks Required \(=\)
0 BLOCKS FRONT SIDE
*Note: Additional blocks are NOT required.

Project Name: MERIDEN SBC CO
Project No.: CT1013

Design Group LLC
Designed By: ID Checked By: MSC

Calculate Total Ballast Required for Ballast Mount - Existing Conditions - Gamma Sector
*Assume (3) Antennas as projected area*


Overturning at Ballast
\(\Sigma \mathrm{M}=0=(\mathrm{Fa} * \mathrm{H})+\left(\mathrm{Fb}^{*} \mathrm{Y}\right)-\left(\mathrm{Wa*}{ }^{*}\right)-\left(\mathrm{Wm} \mathrm{W}^{*} \mathrm{Z}\right)-\left(\mathrm{Wb}{ }^{*} \mathrm{~L}\right)-\left(\mathrm{Wb}_{2}{ }^{*} \mathrm{~L} / 2\right)\)
\(\mathrm{Wb}=\left[\left(\mathrm{Fa}{ }^{*} \mathrm{H}^{*} \mathrm{SF}+\mathrm{Fb}{ }^{*} \mathrm{Y}^{*} \mathrm{SF}\right)-\left(\mathrm{Wa*}{ }^{*}-\mathrm{Wm}{ }^{*} \mathrm{Z}\right)-\left(\mathrm{Wb}_{2}{ }^{*} \mathrm{~L} / 2\right) /\right.\)
720 lbs.

Determine Number of Blocks Required
(assume 4"x8"x16" solid blocks @ 38 lbs. each)

Number of Blocks Required \(=\)
\[
19 \text { BLOCKS BACK SIDE }
\]

Existing Blocks @ L =
19 BLOCKS BACK SIDE

Additional Blocks Required =
0 BLOCKS BACK SIDE
*Note: Additional blocks are NOT required.



\section*{Properties and Dimensions}

\section*{Welded Type, Bethlehem Standard Open-Web Joists}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Type} & \multirow[t]{2}{*}{} & \multicolumn{5}{|c|}{Top Chord 2-La} & \multicolumn{3}{|l|}{Bottom Chord 2-Ls} & & \multicolumn{3}{|c|}{Web End Section} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Web \\
Middie Section
\end{tabular}} & \multirow[b]{2}{*}{\begin{tabular}{l}
Moment \\
Inertia \\
Axia 1-1
\end{tabular}} & \multicolumn{2}{|l|}{S. I. I. Std. Propertie:} & \multirow[b]{2}{*}{Approx. Weight per ft .} \\
\hline & & Anglea & Area &  & \(\underset{\substack{\text { Axis } \\ \text { A-3 } \\ \hline}}{ }\) & "A" & Angles & Area & "B" & & \(\underset{\text { Wia, }}{\text { W }}\) & Area & \[
\underset{\substack{\mathrm{F} \\ \mathrm{~A}, 2 \\ \hline}}{ }
\] & \[
\frac{\mathrm{Dia}}{\mathrm{w}}
\] & Area & \[
\underset{\substack{2-2}}{\substack{\mathrm{r} i a}}
\] & & Resist Monsent & End React. & \\
\hline & Ins & Ins. & Ins. \({ }^{\text {P }}\) & Ins. & Ins. \({ }^{\text {a }}\) & Ing. & In. & Ins. \({ }^{\text {P }}\) & Ins. & & Ins. & Ins. \({ }^{2}\) & Ins. & Ima. & Ins. \({ }^{\text {a }}\) & Ine. & Ins, \({ }^{\text {d }}\) & In.-lbs. & Lis. & Lbs. \\
\hline S.J-81 & 81/4 & 1 x ( \(\mathrm{x}^{1 / 8}\) & . 46 & . 20 & . 062 & . 30 & \(1 \mathrm{x} 1 \mathrm{x} / 8\) & . 46 & . 30 & 12 & 716 & . 150 & . 109 & 8/8 & . 110 & . 094 & 13.52 & 29,500 & 1,600 & 3.9 \\
\hline SJ-82 & 81/4 & \(1 \mathrm{xl} \mathrm{x}^{1 / 8}\) & . 46 & . 20 & . 062 & . 30 & 1 x ( 1 x \(1 / 8\) & . 40 & . 30 & 12 & 1/2 & . 196 & . 125 & \(7 / 16\) & . 150 & . 109 & 13.52 & 52,500 & 1,900 & 4.3 \\
\hline SJ-102 & 10 & \(1 \mathrm{x} 1 \mathrm{x} / 1 / 6\) & . 46 & . 20 & . 062 & . 30 & 1 x x \(\mathrm{x} / \mathrm{8}\) & . 46 & . 30 & 14 & 1/2 & .196 & . 125 & 76 & . 150 & .109 & 20.40 & 63,000 & 1,900 & 4.4 \\
\hline S.J. 103 & 10 & 11/4x11/4x1/4 & . 60 & . 25 & . 098 & . 36 & 11/4x134x1/8 & . 60 & . 36 & 14 & \(1 / 2\) & . 196 & . 125 & 76 & .150 & . 109 & 26.00 & 82,000 & 1,950 & 5.1 \\
\hline S.J-104 & 10 & 18/4x11/4x/6 & . 72 & . 27 & . 102 & . 31 & 11/4x11/4x1/8 & . 60 & . 36 & 14 & \(1 / 2\) & .196 & . 125 & 1/2 & .196 & . 125 & 28.73 & 100,000 & 2,200 & 6.0 \\
\hline S.J-123 & 12 & 11/4x11/4x1/8 & . 60 & . 25 & . 098 & . 36 & 1 xl x \(/ 8\) & . 46 & . 30 & 15 & 966 & . 248 & . 141 & 1/2 & . 196 & . 125 & 33.60 & 92,000 & 2,200 & 5.2 \\
\hline S.J-124 & 12 & 13/4x12/4816 & . 72 & . 27 & . 102 & . 31 & 11/4x1/4x1/8 & . 60 & . 36 & 15 & 96 & . 248 & . 141 & \(1 / 2\) & . 196 & . 125 & 42.27 & 115,000 & 2,300 & 6.1 \\
\hline S.J-125 & 12 & \(2 \times 1 / 2 \times 1 / 8\) & . 84 & . 33 & . 150 & . 37 & 18/4x1/4x/8 & .72 & . 31 & 15 & 86 & . 248 & . 141 & 1/2 & . 196 & . 125 & 49.95 & 142,000 & 2,500 & 7.1 \\
\hline S.J-126 & 12 & 13/4x11/4x/26 & 1.06 & . 27 & . 150 & . 33 & 11/4x11/4x d \(_{6}\) & . 86 & . 38 & 15 & 926 & . 248 & . 141 & 916 & . 248 & . 141 & 60.77 & 175,000 & 2,700 & 8.7 \\
\hline S.J-145 & 14 & \(2 \times 116 \times 36\) & . 84 & . 33 & . 150 & . 37 & 13/4x13/41/8 & . 72 & . 31 & 16 & \(5 / 8\) & . 307 & . 156 & 966 & .248 & . 141 & 69.06 & 156,000 & 2,900 & 7.2 \\
\hline SJ. 146 & 14 & 18/4x1/ax3/16 & 1.06 & . 27 & . 150 & . 33 & 13/4x13/4x 16 & . 86 & . 38 & 16 & \(3 / 8\) & . 307 & . 156 & \(9 / 16\) & . 248 & . 141 & 84.12 & 205,000 & 3,100 & 8.9 \\
\hline SJ-147 & 14 & \(2 x 13 / 2 \times 16\) & 1.24 & . 32 & . 220 & . 39 & 13/4x1/4x3/15 & 1.06 & . 33 & 26 & 8 & . 307 & . 156 & \(5 / 8\) & . 307 & .156 & 101.16 & 246,000 & 3,400 & 10.2 \\
\hline S.J-166 & 16 & 18/4x1/43/6 & 1.06 & . 27 & . 150 & . 33 & 11/4x1/48/6 & . 86 & . 38 & 18 & 11/6 & . 371 & . 172 & 56 & . 307 & . 156 & 111.25 & 232,000 & 3,200 & 9,2 \\
\hline SJ-167 & 16 & \(2 \times 11 / 2 x^{3} / 6\) & 1.24 & . 32 & . 220 & . 39 & 18/8x13/4x/5 & 1.06 & . 33 & 18 & 1/46 & . 371 & . 172 & \(8 / 8\) & . 307 & . 156 & 133.80 & 281,000 & 3,600 & 10.5 \\
\hline *SJ-1806 & 18 & 12/4x1/4x:/6 & 1.06 & . 27 & . 150 & .33 & 11/4x1/4x/r & . 86 & . 38 & 20 & 11/6 & . 371 & . 172 & 11/16 & . 371 & . 172 & 142.19 & 255,000 & 3,600 & 9.4 \\
\hline -S.1807 & 18 & \(2 \times 11 / 2 x^{3} / 6\) & 1.24 & . 32 & .220 & . 39 & 151x11/4x/is & 1.06 & 33 & 20 & 34 & . 442 & . 188 & 11/16 & . 371 & . 172 & 171.02 & 310,000 & 3,800 & 10.8 \\
\hline *SJ-2007 & 20 & 2 x \(11 / 2 x^{3} / 1_{6}\) & 1.24 & . 32 & . 220 & . 39 & 14/411/43/6 & 1.06 & . 33 & 22 & \(8 / 4\) & . 442 & . 188 & 12/16 & . 371 & . 172 & 212.81 & 340,000 & 3,900 & 10.9 \\
\hline
\end{tabular}

\footnotetext{
*These joists are bcyond the range of sizen included in the Steel Joist Institute standard types. Fowever, they are designed in accordance with the Steel Joist Institute standard specifieations.
}

Date:
2/25/2022
Project Name: MERIDEN SBC CO
Project No.: CT1013
HUDSON
Design Group LLC
Designed By: ID Checked By: MSC

\section*{CHECK ROOF JOIST CAPACITY - Bar Joist 1}

\section*{SJ-103 (Assumed)}

Length
Spacing
Resisting Moment
Maximum End Reaction

Load Breakdown
\(\begin{array}{ll}\text { Flat Roof Snow Load } & 30 \text { psf } \\ 60 \text { plf }\end{array}\)

Roof Dead Load (Assumed)
\begin{tabular}{lr} 
Concrete Panel & 27 \\
Rigid insul. & 1 \\
Membrane & 1 \\
Ballast Stone & 7 \\
Miscellaneous & 5 \\
& 41 psf \\
& 82 plf
\end{tabular}

Joist

Total \(=\quad 86.75\) plf

Point Load 1

Point Load 2

Point Load 3

Point Load 4
\(=\)
\(17 \mathrm{ft} .+/-\)
\(2 \mathrm{ft} .+/-\)
82 in-kip
1950 lbs.

82 plf
4.75 plf
\(=\quad 175 \mathrm{lbs}\).
\(=112 \mathrm{lbs}\)
\(=112 \mathrm{lbs}\)

175 lbs.

Date:
2/25/2022
Project Name: MERIDEN SBC CO
Project No.: CT1013
Designed By: ID Checked By: MSC

\section*{Calculate End Reactions}
\begin{tabular}{lllll} 
Reaction \(A\) & 1634.15 lbs & \(<\) & 1950 lbs. & \(\underline{O K!}\) \\
Reaction B & 1434.60 lbs. & \(<\) & 1950 lbs. & \(\underline{\text { OK! }}\)
\end{tabular}

\section*{Calculate Resistant Moment}
\[
\begin{aligned}
\text { Moment }= & \mathrm{wl}^{2} / 8+\mathrm{Pab} / I+\mathrm{Pab} / I+\mathrm{Pab} / I+\mathrm{Pab} / I \\
& =6741.54 \mathrm{ft}-\mathrm{lb} \\
& =80.90 \text { in-kip } \quad<\quad 82 \text { in-kip } \quad \underline{\text { OK! }}
\end{aligned}
\]

\section*{Conclusion}

The roof is capable of supporting the proposed and the existing loads. If field conditions differ from what is assumed in this report, then the engineer of record is to be notified as soon as possible.

Date:
2/25/2022
Project Name: MERIDEN SBC CO
Project No.: CT1013
HUDSON
Design Group LLC
Designed By: ID Checked By: MSC

\section*{CHECK ROOF JOIST CAPACITY - Bar Joist 2}

\section*{SJ-103 (Assumed)}

Length
Spacing
Resisting Moment
Maximum End Reaction

Load Breakdown
\(\begin{array}{ll}\text { Flat Roof Snow Load } & 30 \text { psf } \\ 60 \text { plf }\end{array}\)

Roof Dead Load (Assumed)
\begin{tabular}{lr} 
Concrete Panel & 27 \\
Rigid insul. & 1 \\
Membrane & 1 \\
Ballast Stone & 7 \\
Miscellaneous & 5 \\
& 41 psf \\
& 82 plf
\end{tabular}

Joist

Total \(=\quad \mathbf{8 6 . 7 5}\) plf

Point Load \(1=230.5\) lbs.

Point Load \(2=175 \mathrm{lbs}\).

Point Load \(3=112\) lbs.

Point Load 4
\(=\quad 112 \mathrm{lbs}\).

Date:
2/25/2022
Project Name: MERIDEN SBC CO
Project No.: CT1013

\section*{Calculate End Reactions}
\begin{tabular}{lllll} 
Reaction A & 1457.90 lbs. & \(<\) & 1950 lbs. & \(\underline{O K!}\) \\
Reaction B & 1666.35 lbs. & \(<\) & 1950 lbs. & \(\underline{O K!}\)
\end{tabular}

\section*{Calculate Resistant Moment}
```

Moment = ww '
= 6831.10 ft-lb
= 81.97 in-kip < OK in-kip

```

\section*{Conclusion}

The roof is capable of supporting the proposed and the existing loads. If field conditions differ from what is assumed in this report, then the engineer of record is to be notified as soon as possible.

Date:
2/25/2022
Project Name: MERIDEN SBC CO
Project No.: CT1013

Designed By: ID Checked By: MSC

\section*{CHECK ROOF JOIST CAPACITY - Bar Joist 3}

\section*{SJ-103 (Assumed)}

Length
Spacing
Resisting Moment
Maximum End Reaction

Load Breakdown
\(\begin{array}{ll}\text { Flat Roof Snow Load } & 30 \text { psf } \\ 60 \text { plf }\end{array}\)

Roof Dead Load (Assumed)
\begin{tabular}{lr} 
Concrete Panel & 27 \\
Rigid insul. & 1 \\
Membrane & 1 \\
Ballast Stone & 7 \\
Miscellaneous & 5 \\
& 41 psf \\
& 82 plf
\end{tabular}

Joist

Total \(=\quad \mathbf{8 6 . 7 5}\) plf

Point Load 1

Point Load 2

Point Load 3
\(=111.6667\) lbs.

Date:
2/25/2022
Project Name: MERIDEN SBC CO
Project No.: CT1013

\section*{Calculate End Reactions}
\begin{tabular}{lllll} 
Reaction A & 1378.92 lbs. & \(<\) & 1950 lbs. & \(\underline{O K!}\) \\
Reaction B & 1451.49 lbs. & \(<\) & 1950 lbs. & \(\underline{O K!}\)
\end{tabular}

\section*{Calculate Resistant Moment}
```

Moment = wl }\mp@subsup{|}{}{2}/8+\textrm{Pab}/l+Pab/l+Pab/
= 6435.70 ft-lb
= 77.23 in-kip < OK!

```

\section*{Conclusion}

The roof is capable of supporting the proposed and the existing loads. If field conditions differ from what is assumed in this report, then the engineer of record is to be notified as soon as possible.

Date:
2/25/2022
Project Name: MERIDEN SBC CO
Project No.: CT1013
HUDSON
Design Group LLC
Designed By: ID Checked By: MSC

\section*{CHECK ROOF JOIST CAPACITY - Bar Joist 4}

\section*{SJ-103 (Assumed)}

Length
Spacing
Resisting Moment
Maximum End Reaction

Load Breakdown
\(\begin{array}{ll}\text { Flat Roof Snow Load } & 30 \text { psf } \\ 60 \text { plf }\end{array}\)

Roof Dead Load (Assumed)
\begin{tabular}{lr} 
Concrete Panel & 27 \\
Rigid insul. & 1 \\
Membrane & 1 \\
Ballast Stone & 7 \\
Miscellaneous & 5 \\
& 41 psf \\
& 82 plf
\end{tabular}

Joist
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Joist} & & 4.75 plf \\
\hline & Total \(=\) & 86.75 plf \\
\hline Point Load 1 & \(=\) & 112 lbs. \\
\hline Point Load 2 & \(=\) & 112 lbs. \\
\hline Point Load 3 & = & 187 lbs. \\
\hline Point Load 4 & = & 230.5 lbs . \\
\hline
\end{tabular}

Date:
2/25/2022
Project Name: MERIDEN SBC CO
Project No.: CT1013

\section*{Calculate End Reactions}
\begin{tabular}{lllll} 
Reaction A & 1668.20 lbs & \(<\) & 1950 lbs. & \(\underline{\text { OK! }}\) \\
Reaction B & 1468.05 lbs & \(<\) & 1950 lbs. & \(\underline{\text { OK! }}\)
\end{tabular}

\section*{Calculate Resistant Moment}
```

Moment = ww '
= 6825.17 ft-lb
= 81.90 in-kip < OK!

```

\section*{Conclusion}

The roof is capable of supporting the proposed and the existing loads. If field conditions differ from what is assumed in this report, then the engineer of record is to be notified as soon as possible.

Date:
Project Name: MERIDEN SBC CO
Project No.: CT1013
Designed By: ID Checked By: MSC

\section*{CHECK ROOF JOIST CAPACITY - Bar Joist 5}

SJ-103 (Assumed)

Length
Spacing
Resisting Moment
Maximum End Reaction

Load Breakdown
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{Flat Roof Snow Load} & 30 psf \\
\hline & 60 plf \\
\hline \multicolumn{2}{|l|}{Roof Dead Load (Assumed)} \\
\hline Concrete Panel & 27 \\
\hline Rigid insul. & 1 \\
\hline Membrane & 1 \\
\hline Ballast Stone & 7 \\
\hline Miscellaneous & 5 \\
\hline & 41 psf \\
\hline & 82 plf \\
\hline Joist & 4.75 plf \\
\hline Total \(=\) & 86.75 plf \\
\hline Point Load 1 = & 289 lbs. \\
\hline
\end{tabular}

Date:
2/25/2022
Project Name: MERIDEN SBC CO
Project No.:
CT1013
Designed By: ID Checked By: MSC

\section*{Calculate End Reactions}
\begin{tabular}{lllll} 
Reaction A & 1490.99 lbs. & \(<\) & 1950 lbs. & \(\underline{\text { OK! }}\) \\
Reaction B & 1292.77 lbs. & \(<\) & 1950 lbs. & \(\underline{\text { OK! }}\)
\end{tabular}

\section*{Calculate Resistant Moment}

Moment \(=\mathrm{wl}^{2} / 8+\mathrm{Pab} / \mathrm{l}\)
\(=\quad 5951.78 \mathrm{ft}-\mathrm{lb}\)
\(=71.42\) in-kip \(<82\) in-kip \(\quad\) OK!

\section*{Conclusion}

The roof is capable of supporting the proposed and the existing loads. If field conditions differ from what is assumed in this report, then the engineer of record is to be notified as soon as possible.

Date:
2/25/2022
Project Name: MERIDEN SBC CO
Project No.: CT1013
HUDSON
Design Group LLC
Designed By: ID Checked By: MSC

\section*{CHECK ROOF JOIST CAPACITY - Bar Joist 6}

\section*{SJ-103 (Assumed)}

Length
Spacing
Resisting Moment
Maximum End Reaction

Load Breakdown
Flat Roof Snow Load

Roof Dead Load (Assumed)
\begin{tabular}{lr} 
Concrete Panel & 27 \\
Rigid insul. & 1 \\
Membrane & 1 \\
Ballast Stone & 7 \\
Miscellaneous & 5 \\
& 41 psf \\
& \(\mathbf{8 2} \mathbf{~ p l f}\) \\
& \\
Joist & \(\mathbf{4 . 7 5} \mathbf{~ p l f}\)
\end{tabular}

Point Load 1
\(=\quad 260 \mathrm{lbs}\).

Date:
2/25/2022
Project Name: MERIDEN SBC CO
Project No.: CT1013

\section*{Calculate End Reactions}
\begin{tabular}{lllll} 
Reaction A & 1466.54 lbs & \(<\) & 1950 lbs. & \(\underline{\text { OK! }}\) \\
Reaction B & 1288.21 lbs & \(<\) & 1950 lbs. & \(\underline{\text { OK! }}\)
\end{tabular}

\section*{Calculate Resistant Moment}
```

Moment = wl'}/8+P\textrm{Pab}/
= 5886.51 ft-lb
= 70.64 in-kip < OK!

```

\section*{Conclusion}

The roof is capable of supporting the proposed and the existing loads. If field conditions differ from what is assumed in this report, then the engineer of record is to be notified as soon as possible.

Date:
5/10/2022
Project Name: MERIDEN SBC CO
Project No.: CT1013
Designed By: ID Checked By: MSC

\section*{CHECK ROOF JOIST CAPACITY - Bar Joist 7}

SJ-103 (Assumed)

Length
Spacing
Resisting Moment
Maximum End Reaction

Load Breakdown
\begin{tabular}{c|c}
\hline Flat Roof Snow Load & 30 psf \\
Roof Dead Load (Assumed) & \(\mathbf{6 0}\) plf \\
Concrete Panel & 27 \\
Rigid insul. & 1 \\
Membrane & 1 \\
Ballast Stone & 7 \\
Miscellaneous & 5 \\
& \(\mathbf{4 1}\) psf \\
& \(\mathbf{8 2}\) plf \\
Joist & \(\mathbf{4 . 7 5}\) plf \\
& \(\mathbf{8 6 . 7 5}\) plf \\
\hline
\end{tabular}

Point Load \(1=368 \mathrm{lbs}\). (Ballast to be supported by (2) roof joists)

Date: 5/10/2022
Project Name: MERIDEN SBC CO
Project No.: CT1013
Designed By: ID Checked By: MSC

\section*{Calculate End Reactions}
\begin{tabular}{lllll} 
Reaction A & 1333.96 lbs. & \(<\) & 1950 lbs. & \(\underline{\text { OK! }}\) \\
Reaction B & 1528.79 lbs. & \(<\) & 1950 lbs. & \(\underline{\text { OK! }}\)
\end{tabular}

\section*{Calculate Resistant Moment}
\[
\begin{aligned}
\text { Moment }= & \mathrm{wl}^{2} / 8+\mathrm{Pab} / \mathrm{l} \\
= & 6426.99 \mathrm{ft}-\mathrm{lb}
\end{aligned}
\]
\[
=77.12 \text { in-kip } \quad<\quad 82 \text { in-kip OK! }
\]

\section*{Conclusion}

The roof is capable of supporting the proposed and the existing loads. If field conditions differ from what is assumed in this report, then the engineer of record is to be notified as soon as possible.

HUDSON
Engineer: ID
Project ID: CT1013
Project Descr:

\section*{Steel Beam}

LIC\# : KW-06013026, Build:20.22.3.16
Hudson Design Group LLC
(c) ENERCALC INC 1983-202ぇ

DESCRIPTION: Beam 1

\section*{CODE REFERENCES}

Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set : ASCE 7-10

\section*{Material Properties}
\begin{tabular}{llr} 
Analysis Method Allowable Strength Design & Fy: Steel Yield: & 36.0 ksi \\
Beam Bracing: Beam is Fully Braced against lateral-torsional buckling & E: Modulus : & \(29,000.0 \mathrm{ksi}\) \\
Bending Axis: Major Axis Bending & &
\end{tabular}


\section*{Applied Loads}

Beam self weight calculated and added to loading
Uniform Load: \(\mathrm{D}=0.0410, \mathrm{~S}=0.030 \mathrm{ksf}\), Tributary Width \(=8.50 \mathrm{ft}\), (Roof Load)

Point Load : D = 0.2370 k @ 7.750 ft, (Point Load 1 (Per Previous SA by HDG))

Point Load : D = 0.4470 k @ 14.50 ft, (Point Load 2 (Per Previous SA by HDG))

Point Load : D = 0.3270 k @ \(17.0 \mathrm{ft},(\) Point Load \(3(\) Per Previous SA by HDG))

Point Load : D = 0.6560 k @ 19.50 ft, (Point Load 4(Per Previous SA by HDG))

Point Load: D = 0.1830 k @ 5.0 ft , (Point Load (Propose Antennas + Surge Arrestor))

Point Load : D = 0.7360 k @ 7.0 ft, (Point Load - Proposed Alpha Sector Ballast Mount)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{DESIGN SUMMARY} & \multicolumn{3}{|c|}{Design OK} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Maximum Bending Stress Ratio = Section used for this span}} & \multicolumn{3}{|r|}{0.865:1 Maxir} & \multicolumn{3}{|l|}{aximum Shear Stress Ratio =} & \multicolumn{3}{|c|}{0.186:1} \\
\hline & & & \multicolumn{2}{|r|}{S10x25.4} & \multicolumn{4}{|c|}{Section used for this span} & \multicolumn{3}{|c|}{S10x25.4} \\
\hline \multicolumn{3}{|c|}{Ma : Applied} & \multicolumn{2}{|r|}{43.950 k -ft} & \multicolumn{4}{|l|}{ft Va: Applied} & \multicolumn{3}{|c|}{8.325 k} \\
\hline \multicolumn{3}{|r|}{Mn / Omega : Allowable} & \multicolumn{3}{|c|}{\(50.838 \mathrm{k}-\mathrm{ft}\)} & \multicolumn{3}{|c|}{Vn/Omega : Allowable} & \multicolumn{3}{|c|}{44.784 k} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Load Combination}} & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{+D+S}} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Load Combination \\
Location of maximum on span
\end{tabular}}} & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{\[
+D+S
\]
\[
21.670 \mathrm{ft}
\]}} \\
\hline & & & & & & & & & & & \\
\hline \multicolumn{3}{|l|}{Span \# where maximum occurs} & \multicolumn{3}{|c|}{Span \# 1} & \multicolumn{3}{|l|}{Span \# where maximum occurs} & \multicolumn{3}{|c|}{Span \# 1} \\
\hline \multicolumn{12}{|l|}{Maximum Deflection} \\
\hline \multicolumn{3}{|l|}{Max Downward Transient Deflection} & \multicolumn{2}{|l|}{0.356 in Ratio \(=\)} & \(=729\) & \multicolumn{3}{|l|}{>=360} & & & \\
\hline \multicolumn{3}{|l|}{Max Upward Transient Deflection} & \multicolumn{2}{|l|}{0.000 in Ratio \(=\)} & & <360 & \multicolumn{2}{|l|}{Span: 1 : S Only} & & & \\
\hline \multicolumn{3}{|l|}{Max Downward Total Deflection} & \multicolumn{2}{|l|}{1.056 in Ratio \(=\)} & & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\(>=240\).
\(<240.0\)}} & & & \\
\hline Max Upward Tota & Deflectio & & 0.000 & in Ratio & 0 & & & & & & \\
\hline \multicolumn{12}{|l|}{Maximum Forces \& Stresses for Load Combinations} \\
\hline \multicolumn{2}{|l|}{Load Combination} & \multicolumn{2}{|l|}{Max Stress Ratios} & \multicolumn{5}{|c|}{Summary of Moment Values} & \multicolumn{3}{|l|}{Summary of Shear Values} \\
\hline Segment Length & Span \# & M & V & Mmax + & Mmax - & Ma Max & Mnx Mnx & Omega Cb Rm & Va Max & VnxVnx & mega \\
\hline \multicolumn{12}{|l|}{D Only} \\
\hline Dsgn. L = 21.67 ft & 1 & 0.570 & 0.124 & 28.99 & & 28.99 & 84.90 & 50.841 .001 .00 & 5.56 & 67.18 & 44.78 \\
\hline \multicolumn{12}{|l|}{+D+S} \\
\hline Dsgn. \(\mathrm{L}=21.67 \mathrm{ft}\) & 1 & 0.865 & 0.186 & 43.95 & & 43.95 & 84.90 & 50.841 .001 .00 & 8.32 & 67.18 & 44.78 \\
\hline \multicolumn{12}{|l|}{+D+0.750S} \\
\hline Dsgn. L = 21.67 ft & 1 & 0.791 & 0.170 & 40.21 & & 40.21 & 84.90 & 50.841 .001 .00 & 7.63 & 67.18 & 44.78 \\
\hline +0.60D & & & & & & & & & & & \\
\hline
\end{tabular}

Project Title: MERIDEN SBC CO

\section*{Steel Beam}

Hudson Design Group LLC
(c) ENERCALC INC 1983-202 \({ }^{2}\)

\section*{DESCRIPTION: Beam 1}

Maximum Forces \& Stresses for Load Combinations

\(\frac{\text { Overall Maximum Deflections }}{\text { Load Combination }}\)
\begin{tabular}{lrrrrr}
\hline Load Combination & Span & Max. "-" Defl & Location in Span & Load Combination & Max. "+" Defl Location in Span \\
\hline +D+S & 1 & 1.0556 & 10.835 & 0.0000 & 0.000 \\
Vertical Reactions & & & Support notation : Far left is \# & Values in KIPS \\
\hline Load Combination & Support 1 & Support 2 & & \\
\hline Overall MAXimum & 7.889 & 8.325 & & \\
Overall MINimum & 2.763 & 2.763 & & \\
D Only & 5.127 & 5.562 & & \\
+D+S & 7.889 & 8.325 & & \\
+D+0.750S & 7.199 & 7.634 & & \\
+0.60D & 3.076 & 3.337 & & \\
S Only & 2.763 & 2.763 & & & \\
\end{tabular}

HUDSON
Engineer: ID
Project ID: CT1013
Project Descr:

\section*{Steel Beam}

LIC\# : KW-06013026, Build:20.22.3.16
Hudson Design Group LLC
(c) ENERCALC INC 1983-202ぇ

DESCRIPTION: Beam 2

\section*{CODE REFERENCES}

Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set : ASCE 7-10

\section*{Material Properties}
\begin{tabular}{llr} 
Analysis Method Allowable Strength Design & Fy : Steel Yield: & 36.0 ksi \\
Beam Bracing: & Beam is Fully Braced against lateral-torsional buckling & E: Modulus : \\
Bending Axis: & Major Axis Bending &
\end{tabular}


\section*{Applied Loads}

Service loads entered. Load Factors will be applied for calculations
Beam self weight calculated and added to loading
Uniform Load: \(D=0.0410, S=0.030 \mathrm{ksf}\), Tributary Width = 17.0 ft , (Roof Load)

Point Load : D = 0.0890 k @ 1.50 ft, (Point Load 1 (Per Previous SA by HDG))

Point Load : D = 0.0680 k @ 4.0 ft, (Point Load 2 (Per Previous SA by HDG))

Point Load : D = 0.1240 k @ 7.750 ft, (Point Load 3 (Per Previous SA by HDG))

Point Load : D = 0.2010 k @ 14.50 ft, (Point Load 4(Per Previous SA by HDG))

Point Load : D = 0.1140 k @ 17.0 ft, (Point Load 5(Per Previous SA by HDG))

Point Load : D = 2.253 k @ 19.50 ft, (Point Load 6(Per Previous SA by HDG))

Point Load : D = 0.7360 k @ 7.0 ft , (Point Load - Proposed Alpha Sector Ballast Mount)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{DESIGN SUMMARY} & \multicolumn{3}{|c|}{Design OK} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Maximum Bending Stress Ratio \(=\)
Section used for this span}} & \multicolumn{2}{|r|}{0.693:1} & \multicolumn{5}{|c|}{Maximum Shear Stress Ratio =} & \multicolumn{3}{|c|}{0.237:1} \\
\hline & & & \multicolumn{2}{|r|}{W16x36} & \multicolumn{5}{|c|}{Section used for this span} & \multicolumn{3}{|c|}{W16x36} \\
\hline \multicolumn{3}{|c|}{Ma: Applied} & \multicolumn{2}{|r|}{79.653 k -ft} & \multicolumn{5}{|l|}{ft Va:Applied} & \multicolumn{3}{|c|}{16.020 k} \\
\hline \multicolumn{3}{|r|}{Mn / Omega : Allowable} & \multicolumn{2}{|r|}{114.970 k-ft} & \multicolumn{5}{|c|}{Vn/Omega : Allowable} & \multicolumn{3}{|c|}{67.543 k} \\
\hline \multicolumn{3}{|l|}{Load Combination} & \multicolumn{2}{|r|}{+D+S} & \multicolumn{5}{|c|}{Load Combination} & \multicolumn{3}{|c|}{\[
\begin{gathered}
+\mathrm{D}+\mathrm{S} \\
21.670 \mathrm{ft}
\end{gathered}
\]} \\
\hline \multicolumn{3}{|l|}{Span \# where maximum occurs} & \multicolumn{2}{|r|}{Span \# 1} & \multicolumn{5}{|c|}{Span \# where maximum occurs} & \multicolumn{3}{|c|}{Span \# 1} \\
\hline \multicolumn{13}{|l|}{Maximum Deflection} \\
\hline \multicolumn{3}{|l|}{Max Downward Transient Deflection} & \multicolumn{2}{|l|}{0.196 in Ratio \(=\)} & \multicolumn{2}{|l|}{1,329 >=360} & \multicolumn{3}{|l|}{} & & & \\
\hline Max Upward Tran & ient Defl & & \multicolumn{2}{|l|}{0.000 in Ratio \(=\)} & 0 & <360 & \multicolumn{3}{|l|}{Span: 1 : S Only} & & & \\
\hline Max Downward T & tal Defle & & \multicolumn{2}{|l|}{0.525 in Ratio \(=\)} & & >=240. & \multicolumn{3}{|l|}{Span: 1 : +D+S} & & & \\
\hline Max Upward Tota & Deflectio & & \multicolumn{2}{|l|}{0.000 in Ratio \(=\)} & \multicolumn{5}{|c|}{\(0<240.0\)} & & & \\
\hline \multicolumn{13}{|l|}{Maximum Forces \& Stresses for Load Combinations} \\
\hline \multicolumn{2}{|l|}{Load Combination} & \multicolumn{2}{|l|}{Max Stress Ratios} & \multicolumn{6}{|c|}{Summary of Moment Values} & \multicolumn{3}{|l|}{Summary of Shear Values} \\
\hline Segment Length & Span \# & M & V & Mmax + & Mmax - & Ma Max & Mnx Mnx & x/Omega Cb & Rm & Va Max & VnxVnx/ & mega \\
\hline D Only & & & & & & & & & & & & \\
\hline Dsgn. L = 21.67 ft & 1 & 0.432 & 0.155 & 49.72 & & 49.72 & 192.00 & 114.971 .00 & 1.00 & 10.49 & 101.31 & 67.54 \\
\hline +D+S & & & & & & & & & & & & \\
\hline Dsgn. L = 21.67 ft & 1 & 0.693 & 0.237 & 79.65 & & 79.65 & 192.00 & 114.971 .00 & 1.00 & 16.02 & 101.31 & 67.54 \\
\hline
\end{tabular}

Project Title: MERIDEN SBC CO


\section*{Overall Maximum Deflections}
\begin{tabular}{lrrrrr}
\hline Load Combination & Span & Max. "-" Defl & Location in Span & Load Combination & Max. "+" Defl Location in Span \\
\hline +D+S & 1 & 0.5246 & 10.897 & 0.0000 \\
Vertical Reactions & & & & \\
\hline Load Combination & Support 1 & Support 2 & & \\
\hline Overall MAXimum & 14.501 & 16.020 & & \\
Overall MINimum & 5.385 & 5.526 & & \\
D Only & 8.975 & 10.494 & & \\
+D+S & 14.501 & 16.020 & & \\
+D+0.750S & 13.119 & 14.639 & & \\
+0.60D & 5.385 & 6.297 & & \\
S Only & 5.526 & 5.526 & & & \\
& & & & & \\
\end{tabular}
\begin{tabular}{ll} 
Project Title: & MERIDEN SBC CO \\
Engineer: & ID \\
Project ID: & CT1013 \\
Project Descr: &
\end{tabular}

Steel Beam
LIC\# : KW-06013026, Build:20.22.2.9
Hudson Design Group LLC
(c) ENERCALC INC 1983-202 \({ }^{2}\)

\section*{DESCRIPTION: Beam 3}

\section*{CODE REFERENCES}

Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set : ASCE 7-10

\section*{Material Properties}
\begin{tabular}{llr} 
Analysis Method Allowable Strength Design & Fy: Steel Yield: & 36.0 ksi \\
Beam Bracing: & Beam is Fully Braced against lateral-torsional buckling & E: Modulus: \\
Bending Axis: & Major Axis Bending &
\end{tabular}


Applied Loads Service loads entered. Load Factors will be applied for calculations
Beam self weight calculated and added to loading
Loads on all spans...
Uniform Load on ALL spans : \(\mathrm{D}=0.0410, \mathrm{~S}=0.030 \mathrm{ksf}\), Tributary Width \(=8.50 \mathrm{ft}\)

Load(s) for Span Number 1
Point Load : D = 0.3920 k @ 2.50 ft, (Point Load 1 (Per Previous SA by HDG))

Point Load : D = 0.4790 k @ 5.0 ft, (Point Load 2 (Per Previous SA by HDG))

Point Load : D = 0.5110 k @ 8.580 ft, (Point Load 3 (Per Previous SA by HDG))

Point Load : D = 0.3910 k @ 11.0 ft, (Point Load 4(Per Previous SA by HDG))

Point Load : D = 0.4790 k @ 13.50 ft, (Point Load 5(Per Previous SA by HDG))

Point Load : D = 0.2370 k @ 18.750 ft, (Point Load 6(Per Previous SA by HDG))

Point Load : D = 0.1830 k @ 5.0 ft , (Point Load (Proposed Antennas + Surge Arrestor))

Point Load : D = 0.060 k @ 17.0 ft, (Point Load (Proposed RRH))

Load(s) for Span Number 2
Point Load : D = 0.4790 k @ 1.750 ft, (Point Load 7 (Per Previous SA by HDG))

Point Load : D = 0.3270 k @ 4.330 ft, (Point Load 8 (Per Previous SA by HDG))

Point Load : D = 0.8250 k @ 6.750 ft, (Point Load 9 (Per Previous SA by HDG))
\begin{tabular}{ll} 
Project Title: & MERIDEN SBC CO \\
Engineer: & ID \\
Project ID: & CT1013 \\
Project Descr: &
\end{tabular}


\section*{Maximum Forces \& Stresses for Load Combinations}


\section*{Overall Maximum Deflections}
\begin{tabular}{lrrrrr}
\hline Load Combination & Span & Max. "-" Defl & Location in Span & Load Combination & Max. "+" Defl \\
\hline LD+S & 1 & 0.1161 & 8.891 & 0.0000 & -0.0111 \\
& 2 & 0.0000 & 8.891 & \(+D+S\) & 0.000 \\
Vertical Reactions & & & Support notation : Far left is \# & \\
\hline Load Combination & Support 1 & Support 2 & Support 3 & & \\
\hline Overall MAXimum & 6.284 & 15.874 & 0.535 & \\
Overall MINimum & 2.037 & 5.157 & 0.117 & \\
D Only & 4.248 & 10.717 & 0.418 & \\
+D+S & 6.284 & 15.874 & 0.535 & \\
+D+0.750S & 5.775 & 14.585 & 0.506 & \\
+0.60D & 2.549 & 6.430 & 0.251 & \\
S Only & 2.037 & 5.157 & 0.117 & &
\end{tabular}

Project Title: MERIDEN SBC CO
Engineer: ID
Project ID: CT1013
Project Descr:

Steel Beam
LIC\# : KW-06013026, Build:20.22.2.9
Hudson Design Group LLC
(c) ENERCALC INC 1983-202 \({ }^{2}\)

\section*{DESCRIPTION: Beam 4}

\section*{CODE REFERENCES}

Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set : ASCE 7-10

\section*{Material Properties}
\begin{tabular}{llr} 
Analysis Method Allowable Strength Design & Fy : Steel Yield: & 36.0 ksi \\
Beam Bracing: & Beam is Fully Braced against lateral-torsional buckling & E: Modulus : \\
Bending Axis: Major Axis Bending & &
\end{tabular}


\section*{Applied Loads}

Beam self weight calculated and added to loading
Uniform Load : \(\mathrm{D}=0.0410, \mathrm{~S}=0.030 \mathrm{ksf}\), Tributary Width \(=8.50 \mathrm{ft}\), (Roof Load)

Point Load : D = 0.5540 k @ 2.50 ft, (Point Load 1 (Per Previous SA by HDG))

Point Load : D = 0.2370 k @ 13.0 ft, (Point Load 2 (Per Previous SA by HDG))

Point Load : D = 0.4790 k @ 9.250 ft, (Point Load 3 (Per Previous SA by HDG))

Point Load : D = 0.4790 k @ 12.670 ft, (Point Load 4(Per Previous SA by HDG))

Point Load : D = 0.1830 k @ 2.0 ft, (Point Load 5 (Propose Antennas + Surge Arrestor))
\begin{tabular}{|c|c|c|c|c|c|}
\hline DESIGN SUMMARY & & & & & Design OK \\
\hline Maximum Bending Stress Ratio = & 0.506: 1 & & ximum & ear Stress Ratio = & 0.160:1 \\
\hline Section used for this span & S8x18.4 & & Sec & used for this span & S8x18.4 \\
\hline Ma: Applied & 14.990 k-ft & & & Va : Applied & 4.985 k \\
\hline Mn / Omega : Allowable & 29.641 k-ft & & & Vn/Omega : Allowable & 31.219 k \\
\hline Load Combination & +D+S & & Load & Combination on of maximum on span & \[
\begin{aligned}
& +\mathrm{D}+\mathrm{S} \\
& 13.000 \mathrm{ft}
\end{aligned}
\] \\
\hline Span \# where maximum occurs & Span \# 1 & & Span & \# where maximum occurs & Span \# 1 \\
\hline Maximum Deflection & & & & & \\
\hline Max Downward Transient Deflection & 0.099 in Ratio \(=\) & 1,580 & >=360 & & \\
\hline Max Upward Transient Deflection & 0.000 in Ratio \(=\) & & <360 & Span: 1: S Only & \\
\hline Max Downward Total Deflection & 0.278 in Ratio \(=\) & 560 & \(>=240\). & Span: 1 : +D+S & \\
\hline Max Upward Total Deflection & 0.000 in Ratio \(=\) & 0 & <240.0 & & \\
\hline
\end{tabular}

Maximum Forces \& Stresses for Load Combinations


Project Title: MERIDEN SBC CO
Engineer: ID
Project ID: CT1013
Project Descr:
\begin{tabular}{|ll|}
\hline Steel Beam & \\
LIC\#:KW-06013026, Build:20.22.2.9 & Project File: CT1013.ec6 \\
DESCRIPTION: Beam 4 & \\
\hline
\end{tabular}

Overall Maximum Deflections
\begin{tabular}{lrrrrr}
\hline Load Combination & Span & Max. "-" Defl & Location in Span & Load Combination & Max. "+" Defl Location in Span \\
\hline +D+S & 1 & 0.2784 & 6.500 & 0.0000 \\
Vertical Reactions & & \multicolumn{4}{c}{0.000} \\
\hline Load Combination & Support 1 & Support 2 \\
\hline Overall MAXimum & 4.795 & 5.222 & 0.117 & Support notation : Far left is \# & Values in KIPS \\
Overall MINimum & 1.658 & 1.658 & 0.117 & \\
D Only & 3.137 & 3.564 & 0.117 & \\
+D+S & 4.795 & 5.222 & 0.117 & \\
+D+0.750S & 4.381 & 4.807 & 0.117 & \\
+0.60D & 1.882 & 2.139 & 0.117 & \\
S Only & 1.658 & 1.658 & 0.117 &
\end{tabular}

\section*{Steel Beam}

Hudson Design Group LLC
(c) ENERCALC INC 1983-202^

\section*{DESCRIPTION: Beam 5}

\section*{CODE REFERENCES}

Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set : ASCE 7-10

\section*{Material Properties}
\begin{tabular}{llr} 
Analysis Method Allowable Strength Design & Fy : Steel Yield: & 36.0 ksi \\
Beam Bracing: & Beam is Fully Braced against lateral-torsional buckling & E: Modulus : \\
Bending Axis: & Major Axis Bending & \\
\hline
\end{tabular}


\section*{Applied Loads}

Beam self weight calculated and added to loading
Uniform Load : \(\mathrm{D}=0.0410, \mathrm{~S}=0.030 \mathrm{ksf}\), Tributary Width \(=17.0 \mathrm{ft}\), (Roof Load)

Point Load : D = 2.299 k @ 2.50 ft, (Point Load 1 (Per Previous SA by HDG))

Point Load : D = 0.0820 k @ 4.750 ft, (Point Load 2 (Per Previous SA by HDG))

Point Load : D = 0.160 k @ 4.750 ft, (Point Load 3 (Per Previous SA by HDG))

Point Load : D = 0.0830 k @ 12.670 ft, (Point Load 4(Per Previous SA by HDG))

Point Load : D = 0.1090 k @ 15.50 ft, (Point Load 5(Per Previous SA by HDG))

Point Load : D = 0.0830 k @ 18.0 ft, (Point Load 6(Per Previous SA by HDG))

Point Load : D = 0.060 k @ 2.50 ft, (Point Load (Proposed RRH))

Point Load : D = 0.160 k @ 9.250 ft, (Point Load 3 (Per Previous SA by HDG))


Project Title: MERIDEN SBC CO
Engineer:
ID
Project ID: CT1013
Project Descr:
\begin{tabular}{|ll|}
\hline Steel Beam & \\
\hline LIC\#: KW-06013026, Build:20.22.2.9 & Project File: CT1013.ec6 \\
\hline
\end{tabular}

\section*{DESCRIPTION: Beam 5}

Maximum Forces \& Stresses for Load Combinations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Load Combination Segment Length} & \multirow[b]{2}{*}{Span \#} & \multicolumn{2}{|l|}{Max Stress Ratios} & \multicolumn{7}{|c|}{Summary of Moment Values} & \multicolumn{3}{|l|}{Summary of Shear Values} \\
\hline & & M & V & Mmax + & Mmax - & Ma Max & Mnx Mn & Omega & Cb & Rm & Va Max & VnxVnx & mega \\
\hline Dsgn. L = 20.00 ft & 1 & 0.442 & 0.122 & 41.88 & & 41.88 & 158.10 & 94.67 & 1.00 & 1.00 & 9.78 & 119.75 & 79.83 \\
\hline +D+S & & & & & & & & & & & & & \\
\hline Dsgn. L = 20.00 ft & 1 & 0.711 & 0.186 & 67.34 & & 67.34 & 158.10 & 94.67 & 1.00 & 1.00 & 14.88 & 119.75 & 79.83 \\
\hline +D+0.750S & & & & & & & & & & & & & \\
\hline Dsgn. L = 20.00 ft & 1 & 0.644 & 0.170 & 60.97 & & 60.97 & 158.10 & 94.67 & 1.00 & 1.00 & 13.60 & 119.75 & 79.83 \\
\hline +0.60D & & & & & & & & & & & & & \\
\hline Dsgn. L = 20.00 ft & 1 & 0.265 & 0.073 & 25.13 & & 25.13 & 158.10 & 94.67 & 1.00 & 1.00 & 5.87 & 119.75 & 79.83 \\
\hline
\end{tabular}

Overall Maximum Deflections
\begin{tabular}{lrrccc}
\hline Load Combination & Span & Max. "-" Defl & Location in Span & Load Combination & Max. "+" Defl Location in Span \\
\hline +D+S & 1 & 0.6264 & 9.943 & 0.0000 \\
Vertical Reactions & & & Support notation : Far left is \# & \\
\hline Load Combination & Support 1 & Support 2 & & \\
\hline Overall MAXimum & 14.876 & 13.116 & 0.117 & & \\
Overall MINimum & 5.100 & 4.810 & 0.117 & \\
D Only & 9.776 & 8.016 & 0.117 & \\
+D+S & 14.876 & 13.116 & 0.117 & \\
+D+0.750S & 13.601 & 11.841 & 0.117 & \\
+0.60D & 5.866 & 4.810 & 0.117 & & \\
S Only & 5.100 & 5.100 & 0.117 & & \\
& & & & &
\end{tabular}

Project Title: MERIDEN SBC CO
Engineer: ID
Project ID: CT1013
Project Descr:

Steel Beam
LIC\# : KW-06013026, Build:20.22.2.9
Hudson Design Group LLC
(c) ENERCALC INC 1983-202 \({ }^{2}\)

DESCRIPTION: Beam 6

\section*{CODE REFERENCES}

Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set : ASCE 7-10

\section*{Material Properties}
\begin{tabular}{llr} 
Analysis Method Allowable Strength Design & Fy : Steel Yield: & 36.0 ksi \\
Beam Bracing: & Beam is Fully Braced against lateral-torsional buckling & E: Modulus : \\
Bending Axis: & Major Axis Bending &
\end{tabular}


\section*{Applied Loads}

Beam self weight calculated and added to loading
Uniform Load: \(D=0.0410, S=0.030 \mathrm{ksf}\), Tributary Width \(=8.50 \mathrm{ft}\), (Roof Load)

Point Load : D = 0.6480 k @ 2.50 ft, (Point Load 1 (Per Previous SA by HDG))

Point Load : D = 0.2370 k @ 4.750 ft, (Point Load \(2(\) Per Previous SA by HDG))

Point Load : D = 0.4790 k @ 9.250 ft, (Point Load 3 (Per Previous SA by HDG))

Point Load : D = 0.2370 k @ 15.50 ft, (Point Load 4(Per Previous SA by HDG))
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{DESIGN SUMMARY} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Design OK } \\
\hline 0.164: 1 \\
\mathrm{~S} 10 \times 25.4
\end{gathered}
\]} \\
\hline Maximum Bending Stress Ratio = & 0.701: 1 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Maximum Shear Stress Ratio = Section used for this span}} & \\
\hline Section used for this span & S10x25.4 & & & & \\
\hline Ma: Applied & \(35.640 \mathrm{k}-\mathrm{ft}\) & \multicolumn{3}{|r|}{Va : Applied} & 7.348 k \\
\hline Mn / Omega : Allowable & \(50.838 \mathrm{k}-\mathrm{ft}\) & \multicolumn{3}{|r|}{Vn/Omega : Allowable} & 44.784 k \\
\hline Load Combination & +D+S & \multicolumn{3}{|r|}{Load Combination} & +D+S \\
\hline & & \multicolumn{3}{|r|}{Location of maximum on span} & 0.000 ft \\
\hline Span \# where maximum occurs & Span \# 1 & \multicolumn{3}{|r|}{Span \# where maximum occurs} & Span \# 1 \\
\hline Maximum Deflection & & & & & \\
\hline Max Downward Transient Deflection & 0.258 in Ratio \(=\) & 928 & >=360 & & \\
\hline Max Upward Transient Deflection & 0.000 in Ratio \(=\) & & <360 & Span: 1 : S Only & \\
\hline Max Downward Total Deflection & 0.720 in Ratio \(=\) & 333 & \(>=240\). & Span: 1 : +D+S & \\
\hline Max Upward Total Deflection & 0.000 in Ratio \(=\) & 0 & <240.0 & & \\
\hline
\end{tabular}

Maximum Forces \& Stresses for Load Combinations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Load Combination Segment Length} & \multirow[b]{2}{*}{Span \#} & \multicolumn{2}{|l|}{Max Stress Ratios} & \multicolumn{6}{|c|}{Summary of Moment Values} & \multicolumn{3}{|l|}{Summary of Shear Values} \\
\hline & & M & V & Mmax + & Mmax - & Ma Max & Mnx Mnx & Omega Cb & Rm & Va Max & VnxVnx & nega \\
\hline \multicolumn{13}{|l|}{D Only} \\
\hline Dsgn. L = 20.00 ft & 1 & 0.451 & 0.107 & 22.94 & & 22.94 & 84.90 & 50.841 .00 & 1.00 & 4.80 & 67.18 & 44.78 \\
\hline \multicolumn{13}{|l|}{+D+S} \\
\hline Dsgn. L = 20.00 ft & 1 & 0.701 & 0.164 & 35.64 & & 35.64 & 84.90 & 50.841 .00 & 1.00 & 7.35 & 67.18 & 44.78 \\
\hline \multicolumn{13}{|l|}{+D+0.750S} \\
\hline Dsgn. L = 20.00 ft & 1 & 0.639 & 0.150 & 32.46 & & 32.46 & 84.90 & 50.841 .00 & 1.00 & 6.71 & 67.18 & 44.78 \\
\hline \multicolumn{13}{|l|}{+0.60D} \\
\hline Dsgn. L = 20.00 ft & 1 & 0.271 & 0.064 & 13.76 & & 13.76 & 84.90 & 50.841 .00 & 1.00 & 2.88 & 67.18 & 44.78 \\
\hline
\end{tabular}

\section*{Overall Maximum Deflections}
\begin{tabular}{cccccc} 
Load Combination & Span & Max. "-" Defl Location in Span & Load Combination & Max. "+" Defl & Location in Span \\
\hline\(+\mathrm{D}+\mathrm{S}\) & 1 & 0.7203 & 10.000 & 0.0000 & 0.000
\end{tabular}

Project Title: MERIDEN SBC CO
Engineer: ID
Project ID: CT1013
Project Descr:
\begin{tabular}{|ll|}
\hline Steel Beam & \\
\hline LIC\#:KW-06013026, Build:20.22.2.9 & Project File: CT1013.ec6 \\
DESCRIPTION: Beam 6 & \\
\hline
\end{tabular}
\begin{tabular}{lrrl} 
Vertical Reactions & & & Support notation : Far left is \# \\
\hline Load Combination & Support 1 & Support 2 & \\
\hline Overall MAXimum & 7.348 & 6.832 & 0.117 \\
Overall MINimum KIPS & 2.550 & 2.550 & 0.117 \\
D Only & 4.798 & 4.282 & 0.117 \\
+D+S & 7.348 & 6.832 & 0.117 \\
+D+0.750S & 6.710 & 6.194 & 0.117 \\
+0.60D & 2.879 & 2.569 & 0.117 \\
S Only & 2.550 & 2.550 & 0.117
\end{tabular}

\section*{Exhibit E}

\section*{Power Density/RF Emissions Report}

\section*{Calculated Radio Frequency Exposure}


June 8, 2022

\section*{Table of Contents}
1. Introduction ..... 1
2. FCC Guidelines for Evaluating RF Radiation Exposure Limits .....  1
3. RF Exposure Calculation Methods .....  2
4. Calculation Results .....  3
5. Conclusion ..... 4
6. Statement of Certification .....  4
Attachment A: References .....  .5
Attachment B: FCC Limits for Maximum Permissible Exposure (MPE) .....  6
Attachment C: AT\&T Antenna Data Sheets and Electrical Patterns .....  8
List of Tables
Table 1: Carrier Information .....  3
Table 2: FCC Limits for Maximum Permissible Exposure (MPE) .....  6
List of FiguresFigure 1: Graph of FCC Limits for Maximum Permissible Exposure (MPE) 7

\section*{1. Introduction}

The purpose of this report is to investigate compliance with applicable FCC regulations for the proposed modification of AT\&T antenna arrays on top of the existing rooftop located at 27 Butler Street in Meriden, CT. The coordinates of the existing rooftop are \(41-32-15.37 \mathrm{~N}, 72-48-22.20 \mathrm{~W}\)

AT\&T is proposing the following:
1) Install twelve (12) multi-band antennas (four (4) per sector) to support its commercial LTE network and the FirstNet National Public Safety Broadband Network ("NPSBN").

This report considers the planned antenna configuration for AT\&T \({ }^{1}\) to derive the resulting \% Maximum Permissible Exposure of its proposed installation.

\section*{2. FCC Guidelines for Evaluating RF Radiation Exposure Limits}

In 1985, the FCC established rules to regulate radio frequency (RF) exposure from FCC licensed antenna facilities. In 1996, the FCC updated these rules, which were further amended in August 1997 by OET Bulletin 65 Edition 97-01. These new rules include Maximum Permissible Exposure (MPE) limits for transmitters operating between 300 kHz and 100 GHz . The FCC MPE limits are based upon those recommended by the National Council on Radiation Protection and Measurements (NCRP), developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI).

The FCC general population/uncontrolled limits set the maximum exposure to which most people may be subjected. General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Public exposure to radio frequencies is regulated and enforced in units of milliwatts per square centimeter ( \(\mathrm{mW} / \mathrm{cm}^{2}\) ). The general population exposure limits for the various frequency ranges are defined in the attached "FCC Limits for Maximum Permissible Exposure (MPE)" in Attachment B of this report.

Higher exposure limits are permitted under the occupational/controlled exposure category, but only for persons who are exposed as a consequence of their employment and who have been made fully aware of the potential for exposure, and they must be able to exercise control over their exposure. General population/uncontrolled limits are five times more stringent than the levels that are acceptable for occupational, or radio frequency trained individuals. Attachment B contains excerpts from OET Bulletin 65 and defines the Maximum Exposure Limit.

Finally, it should be noted that the MPE limits adopted by the FCC for both general population/uncontrolled exposure and for occupational/controlled exposure incorporate a substantial margin of safety and have been established to be well below levels generally accepted as having the potential to cause adverse health effects.

\footnotetext{
\({ }^{1}\) As referenced to AT\&T's Radio Frequency Design Sheet dated 5/13/22.
}

\section*{3. RF Exposure Calculation Methods}

The power density calculation results were generated using the following formula as outlined in FCC bulletin OET 65:
\[
\text { Power Density }=\left(\frac{1.6^{2} \times 1.64 \times \text { ERP }}{4 \pi \times R^{2}}\right) X \text { Off Beam Loss }
\]

Where:

> ERP \(=\) Effective Radiated Power
> \(\mathrm{R}=\) Radial Distance \(=\sqrt{\left(H^{2}+V^{2}\right)}\)
> \(\mathrm{H}=\) Horizontal Distance from antenna
> \(\mathrm{V}=\) Vertical Distance from radiation center of antenna
> Ground reflection factor of 1.6

Off Beam Loss is determined by the selected antenna pattern

These calculations assume that the antennas are operating at 100 percent capacity and power, and that all antenna channels are transmitting simultaneously. Obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. The calculations assume even terrain in the area of study and do not consider actual terrain elevations which could attenuate the signal. As a result, the predicted signal levels reported below are much higher than the actual signal levels will be from the final installations.

\section*{4. Calculation Results}

Table 1 below outlines the cumulative power density information for the AT\&T modification to the existing rooftop facility at the site. The proposed antennas are directional in nature; therefore, the majority of the RF power is focused out towards the horizon. As a result, there will be less RF power directed below the antennas relative to the horizon, and consequently lower power density levels around the base of the building. Please refer to Attachment C for the vertical pattern of the proposed AT\&T antennas. The calculated results for AT\&T in Table 1 include a nominal 10 dB off-beam pattern loss to account for the lower relative gain below the antennas.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Carrier & Antenna Height (Feet) & Operating Frequency (MHz) &  & ERP Per Transmitter (Watts) & Power
Density
\(\left(\mathrm{mw} / \mathrm{cm}^{2}\right)\) & Limit & \% MPE \\
\hline AT\&T & 86 & 739 & 2 & 2234 & 0.0251 & 0.4927 & 5.10\% \\
\hline AT\&T & 86 & 885 & 1 & 2625 & 0.0148 & 0.5900 & 2.50\% \\
\hline AT\&T & 86 & 1900 & 3 & 5237 & 0.0883 & 1.0000 & 8.83\% \\
\hline AT\&T & 86 & 2100 & 2 & 8226 & 0.0925 & 1.0000 & 9.25\% \\
\hline AT\&T & 88 & 3500 & 1 & 24286 & 0.1299 & 1.0000 & 12.99\% \\
\hline AT\&T & 84 & 3500 & 1 & 24286 & 0.1436 & 1.0000 & 14.36\% \\
\hline & & & & & & Total & 53.03\% \\
\hline
\end{tabular}

Table 1: Carrier Information \({ }^{2}\)

\footnotetext{
\({ }^{2}\) The existing record in the CSC Power Density Table for AT\&T should be removed and replaced with the updated AT\&T technologies and values provided in Table 1. Please note that \(\%\) MPE values listed are rounded to two decimal points and the total \(\%\) MPE listed is a summation of each unrounded contribution. Therefore, summing each rounded value may not identically match the total value reflected in the table.
}

\section*{5. Conclusion}

The above analysis concludes that RF exposure at ground level from the proposed facility will be below the maximum power density levels as outlined by the FCC in the OET Bulletin 65 Ed. 97-01. Using conservative calculation methods, the highest expected percent of Maximum Permissible Exposure at ground level for AT\&T's equipment is \(\mathbf{5 3 . 0 3 \%}\) of the FCC General Population/Uncontrolled limit.

As noted previously, the calculated \% MPE levels are more conservative (higher) than the actual signal levels will be from the finished modifications.

\section*{6. Statement of Certification}

I certify to the best of my knowledge that the statements in this report are true and accurate. The calculations follow guidelines set forth in FCC OET Bulletin 65 Edition 97-01, ANSI/IEEE Std. C95.1 and ANSI/IEEE Std. C95.3.


June 8, 2022
Date
Reviewed/Approved By: Martin J. Lavin
Senior RF Engineer
C Squared Systems, LLC

\section*{Attachment A: References}

OET Bulletin 65 - Edition 97-01 - August 1997 Federal Communications Commission Office of Engineering \& Technology
IEEE C95.1-2005, IEEE Standard Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz IEEE-SA Standards Board

IEEE C95.3-2002 (R2008), IEEE Recommended Practice for Measurements and Computations of Radio Frequency
Electromagnetic Fields With Respect to Human Exposure to Such Fields, \(100 \mathrm{kHz}-300 \mathrm{GHz}\) IEEE-SA Standards Board

\section*{Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)}
(A) Limits for Occupational/Controlled Exposure \({ }^{3}\)
\begin{tabular}{cccccc} 
Frequency \\
Range \\
\((\mathrm{MHz})\) & \begin{tabular}{c} 
Electric Field \\
Strength (E) \\
\((\mathrm{V} / \mathrm{m})\)
\end{tabular} & \begin{tabular}{c} 
Magnetic Field \\
Strength ( E\()\) \\
\((\mathrm{A} / \mathrm{m})\)
\end{tabular} & \begin{tabular}{c} 
Power Density (S) \\
\(\left(\mathrm{mW} / \mathrm{cm}^{2}\right)\)
\end{tabular} & \begin{tabular}{c} 
Averaging Time \\
\(|\mathrm{E}|^{2},|\mathrm{H}|^{2}\) or S (minutes)
\end{tabular} \\
\hline \(0.3-3.0\) & 614 & 1.63 & \((100)^{*}\) & 6 \\
\(3.0-30\) & \(1842 / \mathrm{f}\) & \(4.89 / \mathrm{f}\) & \(\left(900 / \mathrm{f}^{2}\right)^{*}\) & 6 \\
\(30-300\) & 61.4 & 0.163 & 1.0 & 6 \\
\(300-1500\) & - & - & \(\mathrm{f} / 300\) & 6 \\
\(1500-100,000\) & - & - & 5 & 6
\end{tabular}
(B) Limits for General Population/Uncontrolled Exposure \({ }^{4}\)
\begin{tabular}{ccccc}
\hline \begin{tabular}{c} 
Frequency \\
Range \\
\((\mathrm{MHz})\)
\end{tabular} & \begin{tabular}{c} 
Electric Field \\
Strength \((\mathrm{E})\) \\
\((\mathrm{V} / \mathrm{m})\)
\end{tabular} & \begin{tabular}{c} 
Magnetic Field \\
Strength (E) \\
\((\mathrm{A} / \mathrm{m})\)
\end{tabular} & \begin{tabular}{c} 
Power Density \((\mathrm{S})\) \\
\(\left(\mathrm{mW} / \mathrm{cm}^{2}\right)\)
\end{tabular} & \begin{tabular}{c} 
Averaging Time \\
\(|\mathrm{E}|^{2},|\mathrm{H}|^{2}\) or S (minutes)
\end{tabular} \\
\hline \(0.3-1.34\) & 614 & 1.63 & \((100)^{*}\) & 30 \\
\(1.34-30\) & \(824 / \mathrm{f}\) & \(2.19 / \mathrm{f}\) & \(\left(180 / \mathrm{f}^{2}\right)^{*}\) & 30 \\
\(30-300\) & 27.5 & 0.073 & 0.2 & 30 \\
\(300-1500\) & - & - & \(\mathrm{f} / 1500\) & 1.0 \\
\(1500-100,000\) & - & - & & 30 \\
& & & \\
\(\mathrm{f}=\) frequency in \(\mathrm{MHz} *\) Plane-wave equivalent power density
\end{tabular}

Table 2: FCC Limits for Maximum Permissible Exposure (MPE)

\footnotetext{
\({ }^{3}\) Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure
\({ }^{4}\) General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure
}


Figure 1: Graph of FCC Limits for Maximum Permissible Exposure (MPE)

\section*{Attachment C: AT\&T Antenna Data Sheets and Electrical Patterns}

\section*{700 MHz}

Manufacturer: Kathrein
Model \#: 80010964
Frequency Band: \(698-798 \mathrm{MHz}\)
Gain: \(\quad 13.6 \mathrm{dBi}\)
Vertical Beamwidth: \(17.8^{\circ}\)
Horizontal Beamwidth: \(64.6^{\circ}\)
Polarization: Dual Linear \(45^{\circ}\)
Size L x W x D: \(59.0^{\prime \prime} \times 20.0^{\prime \prime} \times 6.9 "\)


885 MHz
Manufacturer: Kathrein
Model \#: 80010964
Frequency Band: \(824-896 \mathrm{MHz}\)
Gain: 14.3 dBi
Vertical Beamwidth: \(15.8^{\circ}\)
Horizontal Beamwidth: \(62.0^{\circ}\)
Polarization: Dual Linear \(45^{\circ}\)

Size L x W x D: \(59.0 "\) x \(20.0 "\) x \(6.9 "\)

\begin{tabular}{|c|c|}
\hline  &  \\
\hline  &  \\
\hline
\end{tabular}

\section*{Exhibit F}

\section*{Recipient Mailings}


\section*{Instructions}
1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT РНОTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage \(®\), you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office \({ }^{\text {TM }}\), or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Click-N-Ship \({ }^{\text {e }}\) Label Record} \\
\hline \multicolumn{3}{|r|}{\begin{tabular}{l}
USPS TRACKING \# : \\
9405503699300269584869
\end{tabular}} \\
\hline  &  & Priority Maile Postage:
Total:
\(\frac{58.95}{58.95}\) \\
\hline From:
\(\square\) & \multicolumn{2}{|l|}{QC DEVELOPMENT 5900 BALCONES DR STE 8148 AUSTIN TX 78731-4257} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
MAYOR KEVIN SCARPATI \\
CITY OF MERIDEN \\
142 E MAIN ST \\
CC: PAUL DICKSON, PLANNING \& DEVT \\
06450-5605
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{} \\
\hline
\end{tabular}

\section*{Track Another Package +}

Tracking Number: 9405503699300269584869
Expected Delivery by

\section*{SATURDAY}

USPS Tracking Plus \({ }^{\circledR}\) Available \(\vee\)

\section*{USPS in possession of item}

June 10, 2022 at 1:53 pm
STORRS MANSFIELD, CT 06268

Change Delivery Instructions \(\vee\)

> Text \& Email Updates

Delivery Instructions

Tracking History

USPS Tracking Plus®

Product Information

\(\stackrel{\circ}{\circ}-\quad-\quad-\quad-\quad-\overline{\text { Cut on }} \overline{\text { dotted }} \overline{\text { line. }}\)

\section*{Instructions}
1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage \(®\), you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office \({ }^{\text {TM }}\), or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

\section*{Click-N-Ship® Label Record}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{USPS TRACKING \# :
\[
9405503699300269584920
\]} \\
\hline \multirow[t]{4}{*}{} & 565278519 & Priority Mail® Postage: & \$8.95 \\
\hline & : 06/09/2022 & & \$8.95 \\
\hline & : 06/10/2022 & & \\
\hline & Date: 06/13/2022 & & \\
\hline \multirow[t]{3}{*}{From:} & \multicolumn{2}{|l|}{QC DEVELOPMENT} & \\
\hline & \multicolumn{2}{|l|}{5900 BALCONES DR STE 8148} & \\
\hline & \multicolumn{2}{|l|}{AUSTIN TX 78731-4257} & \\
\hline \multirow[t]{5}{*}{} & \multicolumn{2}{|l|}{SOUTHERN NEW ENGLAND TELEPHONE} & \\
\hline & \multicolumn{2}{|l|}{C/O FRONTIER COMMUNICATIONS} & \\
\hline & \multicolumn{2}{|l|}{PO BOX 2629} & \\
\hline & \multicolumn{2}{|l|}{DUFF \& PHELPS LLC} & \\
\hline & \multicolumn{2}{|l|}{ADDISON TX 75001-2629} & \\
\hline \multicolumn{4}{|l|}{* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking \({ }^{\circledR}\) service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date} \\
\hline
\end{tabular}

\section*{Track Another Package +}

Tracking Number: 9405503699300269584920
Expected Delivery by
MONDAY

USPS Tracking Plus \({ }^{\circledR}\) Available \(\vee\)

\section*{USPS in possession of item}

June 10, 2022 at 1:53 pm
STORRS MANSFIELD, CT 06268

Change Delivery Instructions \(\vee\)

> Text \& Email Updates

Delivery Instructions

Tracking History

USPS Tracking Plus® \({ }^{\circledR}\)

Product Information```

