Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

September 6, 2022

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 60 (a/k/a 82) North Eagleville Road, Storrs (Mansfield), Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains a wireless telecommunications facility at the above-referenced property address (the "Property"). The facility consists of antennas and remote radio heads attached to a tower and related equipment on the ground, near the base of the tower. The tower and Cellco's use of the tower were approved by the Siting Council ("Council") in November of 1997 (Docket No. 179). A copy of the Council's Docket No. 179 Decision and Order is included in <u>Attachment 1</u>.

Cellco now intends to modify its facility by installing four (4) new Samsung MT6407-77A antennas and four (4) new Samsung XXDWMM-12.5-65 CBRS antennas on its existing antenna platform. Cellco also intends to remove twenty (20) remote radio heads ("RRHs") and install twelve (12) new RRHs on the existing antenna platform. A set of project plans showing Cellco's proposed facility modifications, new antennas and RRHs specifications are included in Attachment 2.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Mansfield's Chief Elected Official and Land Use Officer.

Melanie A. Bachman, Esq. September 6, 2022 Page 2

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The installation of Cellco's new antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A Cumulative Power Density table for Cellco's modified facility is included in Attachment 3. The modified facility will be capable of providing Cellco's 5G wireless service.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. According to the attached Structural Analysis ("SA") and Mount Analysis ("MA"), the existing tower, tower foundation and antenna mounts, with certain modifications, can support Cellco's proposed modifications. Copies of the SA and MA are included in Attachment 4.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in Attachment 6.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Melanie A. Bachman, Esq. September 6, 2022 Page 3

Sincerely,

Kenneth C. Baldwin

Kunig mu

Enclosures Copy to:

Ryan Aylesworth, Mansfield Town Manager Jennifer Kaufman, Acting Director of Planning & Development UCONN Information Center 1 (North), Property Owner Aleksey Tyurin, Verizon Wireless

ATTACHMENT 1

DOCKET NO. 179 - An application of WHUS Radio for a Certificate of Environmental Compatibility and Public Need for the construction, operation, and maintenance of a telecommunications facility at the University of Connecticut Campus approximately 2,700 feet northwest of the intersection of North Eagleville Road and Storrs Road (Route 195), Storrs, Connecticut.

Connecticut Siting Council

November 19, 1997

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction of a telecommunications tower and associated equipment at the proposed site in Storrs, Connecticut, including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to WHUS Radio for the construction of a telecommunications tower, associated equipment, and an equipment building at the proposed site, located at the University of Connecticut, north of North Eagleville Road, Storrs, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The height of the proposed tower shall not exceed a height of 327 feet above ground level (AGL).
- 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be submitted to and approved by the Council prior to the commencement of construction and shall include specifications for the placement of all antennas to be attached to this tower; confirmation by a Professional Engineer that the tower design is adequate to hold all proposed antennas and meets all current applicable structural standards; plans for the new equipment building; and plans for water drainage and erosion and sedimentation controls consistent with the Connecticut Guidelines for Soil Erosion and Sediment Control, as amended.
- 3. The Certificate Holder shall remove the existing 212-foot WHUS tower within 60 days of the completion of the new tower.
- 4. No construction activities shall be undertaken on the proposed site from March 1 to June 30, so that the two existing populations of species of special concern are not affected.
- 5. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies used at this facility, the facility granted herein shall be brought into compliance with such standards.

- 6. The Certificate Holder shall provide the Council a recalculated report of electromagnetic radio frequency power density if and when circumstances in operation cause a change in power density above the levels originally calculated and provided in the application.
- 7. The Certificate Holder shall permit public and/or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 8. If the facility does not provide, or permanently ceases to provide the proposed telecommunications services following completion of construction, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply to the Council for any proposed new use. If any associated equipment permanently ceases to provide the proposed telecommunications services, such equipment shall be removed within 60 days after such equipment ceases to provide the proposed telecommunications services.
- 9. Unless otherwise approved by the Council, this Decision and Order shall be void if all construction authorized herein is not completed within three years of the effective date of this Decision and Order or within three years after all appeals to this Decision and Order have been resolved.

Pursuant to General Statutes § 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in The Hartford Courant and The Willimantic Chronicle.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

APPLICANT

WHUS Radio,
The University of Connecticut

ITS REPRESENTATIVE

Paul Shapiro Assistant Attorney General University of Connecticut Box U-177, 605 Gilbert Road Storrs, CT 06269-1177(860) 486-4241

John Murphy
General Manager
WHUS Radio
The University of Connecticut
Box U-8R, 2110 Hillside Road
Storrs, CT 06269-3008(860) 486-2955

INTERVENOR

Bell Atlantic NYNEX Mobile

ITS REPRESENTATIVE

Jennifer Young Gaudet
Regulatory Manager
Bell Atlantic NYNEX Mobile
20 Alexander Drive, P.O. Box 5029
Wallingford, CT 06492(203) 949-2805

ATTACHMENT 2

verizon

STORRS CT 60 NORTH EAGLEVILLE RD MANSFIELD, CT 06268

GENERAL NOTES

- ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT,
- SHOULD ANY FIELD CONDITIONS PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL NOT PROCEED WITH ANY AFFECTED WORK.
- CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES HAVING LIMIFUL JURISDICTION OVER THE WORK.
- CONTRACTOR SHALL MANTAIN A CURRENT SET OF DRAWNOS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWNESS TO SUBCONTRACTORS AND OTHER RELEWAY PARTIES AS SOME SHELL FROM A CONTRACTOR SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACTOR AREA. THE CONTRACTOR SHALL FURNISH AN "AS-BILLET" SET OF DRAWNINGS TO OMNER UPON COMPLETION OF PROJECT.
- 8. LOCATION OF EQUIPMENT, AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY MOICATED ON THE DRAWNINGS SHALL BE RETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBGOOTRACTIONS.
- THE CONTINUEDOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SOLUTIONE, AND DE INSURE THE SWETT OF THE DISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WAITCREST SHOWING, BINCHON, DECEMBER OF THE STRUCTURE OF THE STR
- DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ODBINANCES, SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ODBINANCES, CONTROLLED SHAUL INCLUDE IN HIS WORK AND SHAUL DECURIT THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS.

- ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY
- 13. ANY AND ALL ERRORS, DISCREPANCIES, AND "MISSED" ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE VERIZON WIRELESS CONSTRUCTION MANAGER DURING THE BIODING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BIO. NO "EXTRA" WILL BE ALLOWED FOR MISSED ITEMS.
- 14. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 15. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- CORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUIT AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.

- 20. THE CONTRACTOR SHALL CONTACT "CALL BEFORE YOU DIG" AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTLINES SHALL BE IDENTIFIED AND CLEARLY MARKED PRIOR TO ANY EXCAVATION WORK, CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTLINES THROUGHOUT PROJECT COMPLETION.

SITE DIRECTIONS

FROM: 20 ALEXANDER DRIVE WALLINGFORD, CONNECTICUT

STATE CUIT ORNO NORTH ON ALEXANDER OR TOWARD BARNES INDUSTRIAL, RD.
TIMM BOBHT DO DOILE NEUTRALL, ALEXANDER OR THE 1ST REART GOTTO.
TAKE THE 1ST REART GOTTO.
THE 1ST REART STATE OF THE TOWARD HARTFORD, MERICE ONTO CT-15 N WA ENT 29 TOWARD BOSTOM/E HARTFORD/I—84 E.
CT-15 N BECOMES 1—84 E.

5. MERIE ONTO CT-15 N W, EXIT 29 TOWARD DISCHOU/E HARTPROM/1-64 E. 2.14 M
CT-15 N RECORDS I-1-64 FG 92, TOWARD TOLLAND/MANSFELD. 15.88 M
7. TAKE THE CT-CD EXCENS I-1-64 FG 92, TOWARD TOLLAND/MANSFELD. 0.27 M
7. TAKE THE CT-CD EXCENS III OF THE CT-CD EXCENS III OF THE CREATER III

TO: 60 NORTH EAGLEVILLE ROAD

0.18 MI 0.11 MI 1.82 MI 20.82 MI 2.14 MI 15.96 MI 0.27 MI

0 VICINITY MAP 8CALE: 1" - 2000"

PROJECT SUMMARY

THE PROPOSED UPGRADE SCOPE OF WORK AT THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY GENERALLY INCLUDES THE FOLLOWING:

A. AT THE EXISTING GLYED MOUNTED ANTENNA SECTORS:

· REMOVE (20) EXISTING NOKIA RADIOS.

• RETAIN (4) EXISTING ANDREW - JAHH-85R-R3R ANTENNAS.

RETAIN (3) EXISTING ANTEL - BXA-80063/4 ANTENNAS.

• RETAIN (4) EXISTING COMMSCOPE - JAHH-45B-R3B ANTENNAS. RETAIN (2) EXISTING COMMSCOPE - BASMINT-SBS-2-2 ANTENNA MOUNTS.

· RETAIN (2) EXISTING 12x24 HYBRID CABLES.

RETAIN (2) EXISTING OVP-12 BOXES.

· RETAIN (6) EXISTING COAXIAL CABLES.

INSTALL MOUNT MODIFICATIONS AS PER MODIFICATION DETAILS BOTH PROVIDED WITHIN THESE DRAWINGS AND THOSE DESIGNED BY OTHERS AS REFERENCED HEREIN.

· INSTALL (4) SAMSUNG - MT8407-77A ALL-IN-ONE ANTENNA/ RRUS

INSTALL (4) SAMSUNG — XXDWMM—12.5—65 ANTENNAS.

INSTALL (4) SAMSUNG — B2/B86A RRH—BR049 RRUs.

INSTALL (4) SAMSLING - R5/R13 RRH-RR04C RRUE.

· INSTALL (4) SAMSUNG - CBRS RRH - RT4401-48A RRUs.

INSTALL (4) COMMSCOPE - CBC78T-DS-43-2X DIPLEXERS.

PROJECT INFORMATION

SITE ADDRESS:

LESSEE/TENANT:

CONTACT PERSON

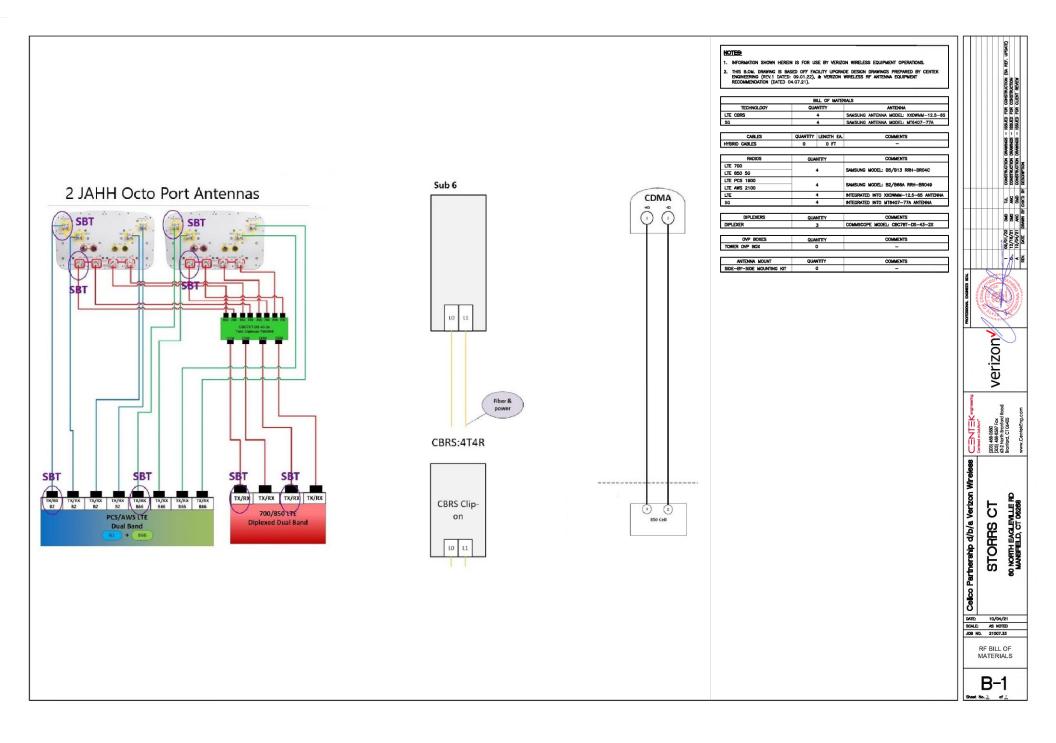
ENGINEER:

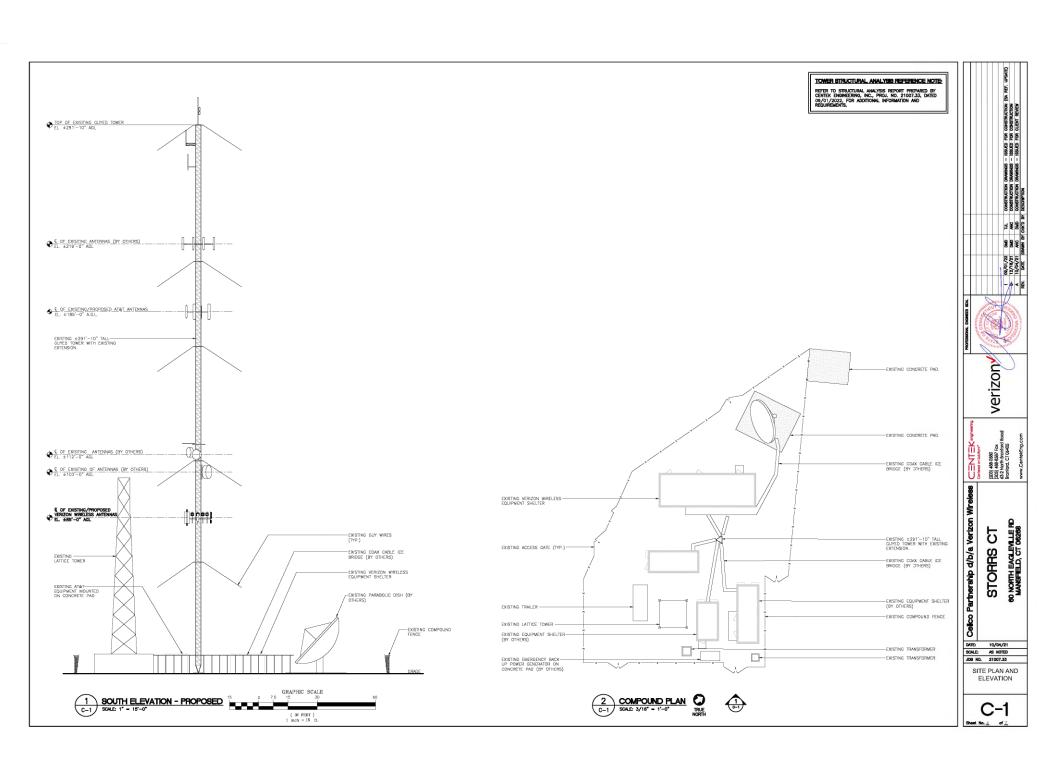
PROJECT COORDINATES:

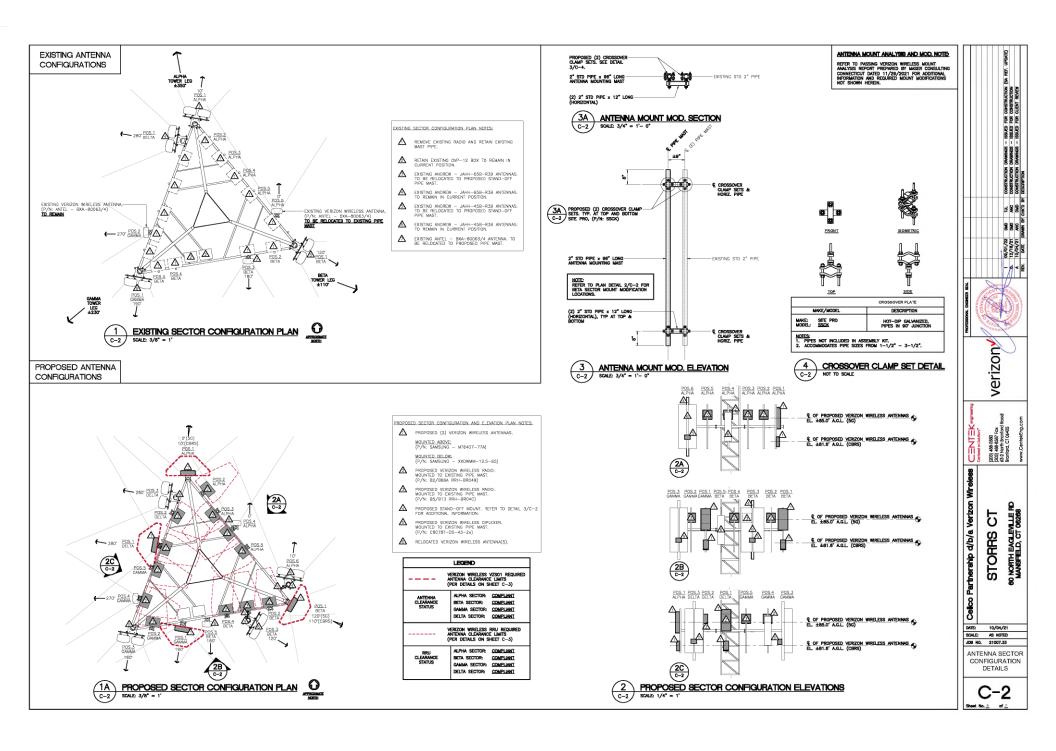
LATITUDE: 41"-48"-50.0004"N LONGITUDE: 72"-15"-33.9984 W COORDINATES ARE BASED ON VERIZON WIRELESS RFDS DATED APRIL 7, 2021.

SHEET	SHEET INDEX	
SHT. NO.	DESCRIPTION	REY
T-1	TITLE SHEET	1
N-1	NOTES AND SPECIFICATIONS	1
B-1	RF BILL OF MATERIALS	1
C-1	SITE PLAN AND ELEVATION	1
C-2	ANTENNA SECTOR CONFIGURATION DETAILS	1
C-3	RF DETAILS	1
E-1	ELECTRICAL DETAILS AND SPECIFICATIONS	1

2 2 2


Wireless


ᄓ


10/04/21 SCALE: AS NOTED JOB NO. 21007.33 TITLE

	JPOATE)
NOTES AND SPECIFICATIONS DESIGN BASIS:	
GOVERNING CODE: 2015 INTERNATIONAL BUILDING (IBC) AS MODIFIED BY THE 2018 OT STATE BUILDING CODE AND AMENDMENTS.	DON (SA PEW
DESIGN CRITERIA: RISK CATEGORY: II (BASED ON TABLE 1604.5 OF THE 2015 IBC)	CONSTRUCTION (CONSTRUCTION CLIBAT RENEW
 NEST CALEGRET: II (SESSE) ON LABEL 1804-0 OF THE 2015 BEC). NOMINAL DESIGN EPEDE (TOWER): 101 MPH (Vasa) (DEPOSITIES BY/MPORTANCE FACTOR 1.0 BASED ON ASCE 7-10) FER 2015 INTERNATIONAL BUILDING CODE. (BIC) AS MODIFIED BY THE 2018 CONNECTIONET STATE BUILDING CODE. 	1
MODIFIED BY THE 2018 CONNECTICUT STATE BUILDING CODE. SESSING LOAD (DOES NOT CONTROL): PER ASCE 7-10 MINIMUM DESIGN LOADS FOR BUILDING AND OTHER STRUCTURES.	issen issen
BULDING AND OTHER STRUCTURES: GENERAL NOTES:	DPAMINGS - DRAMINGS -
ALL CONSTRUCTION SHALL BE IN COMPLIANCE WITH THE GOVERNING BUILDING CODE.	80 80 80 NO.
 DRAMINGS BIOCATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RILLES, OR REGULATIONS BEAVING ON THE WORK, THE CONTRACTOR SUALL INCLIDE IN HIS WORK AND SHALL DECUTE THE WORK CORRECITLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULLES OR REGULATIONS WITH TO INCREMEE IN COSTS. 	CONSTRUCTION D CONSTRUCTION D CONSTRUCTION DESCRIPTION
WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.	<u> </u>
 BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH AMERICATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE AND SUBSURFACE) AT OR CONTROLOUS TO THE SITE WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK. 	TUL MAG
AND COST OF THE WORK. 4. DIMENSIONS AND DETAILS SHALL BE CHECKED AGAINST EXISTING FIELD CONDITIONS.	DAD DAD DAD DAND DAND DAND
 THE CONTRACTOR SHALL VERIFY AND COORDINATE THE SIZE AND LOCATION OF ALL OPENINGS, SLEEVES AND ANCHOR BOLTS AS REQUIRED BY ALL TRADES. 	09/01/22 12/16/21 10/04/21
 ALL DIMENSIONS, ELEVATIONS, AND OTHER REPERENCES TO EXISTING STRUCTURES, SURFACE, AND SUBSURFACE CONDITIONS ARE APPROXIMATE. NO ADMANTES IS MADE FOR THE ACCUPACY OF COMMENTERS OF THE INFORMATION SHOWN. THE CONTRACTOR SHALL YEAR'S AND COORDINATE ALL DIMENSIONS, ELEVATIONS, AND STRUCTURES AND WITH ADMINISTRATION, AND WITH ADMINISTRATION, AND WITH ADMINISTRATION, AND WITH ADMINISTRATION, AND WITH ADMINISTRATION AND WITH ADMINISTRATION, AND STRUCTURES AND WITH ADMINISTRATION AND WITH ADMINISTRATI	- O - 12 00
PROCEEDING WITH ANY WORK.	3
 AS THE WORK PRODRESSES, THE CONTRACTOR SIMIL MOTIFY THE OWNER OF ANY CONSTRUCTIONS WHICH ARE IN CONVENTION OF OR THE PROPERTY WITH THE CONSTRUCTION DOCUMENTS AND SHALL NOT PROCEED WITH SUCH WORK UNTIL THE CONVENT IS ASSESSED FOR A STATE OF THE PROCEED WITH SUCH WORK UNTIL THE CONVENTION THE PROPERTY OF T	CONT.
 THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE SMETY CODES AND RESOLUTIONS DURING ALL PHASES OF CONSTRUCTION. THE CONTRACTOR IS SOLELY RESPONSELE FOR PROMOTION AND MAINTAINING DOCUMET SOLOMON, BRACON, AND BARROCOES AS MAY BE REQUIRED FOR THE PROTECTION OF DOSTRING PROPERTY, CONSTRUCTION WORKERS, AND FOR PROLE SMETY. 	TANCHE IN CASE OF THE PARTY OF
BARRICADES AS MAY BE REQUIRED FOR THE PROTECTION OF EXISTING PROPERTY, CONSTRUCTION WORKERS, AND FOR PUBLIC SAFETY.	Manufacture Control
9. THE CHATHACTOR IS SCALLY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCESSING AND THE DESIRE AND THE DESIRE OF SHAPEY OF THE DESIRE STRUCTURES AND THE COMPONENT PARTS DURING CONSTRUCTION. THE INCLUDES THE ADDITION OF WHATEVER SHAPINE, BEAUCHIE, UNDERSTRUMME, ETC. THAT MAY BE NECESSARY. WHATAM DUSTING SITE OPERATIONS, COORDINATE WORK WITH KNOTHEST UTILIZES.	2
NECESSARY, MAINTAIN EXISTING SITE OPERATIONS, COORDINATE WORK WITH NORTHEAST UTILITIES	
 ALL DAMAGE CAUGED TO ANY DISTING STRUCTURES SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WHILE BE HELD LABLE FOR ALL REPAIRS REQUIRED FOR DISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES. 	erizon
11. REFER TO DRAWING TI FOR ADDITIONAL NOTES AND REQUIREMENTS.	>
	De e
	Fig.
	THIER PROBLEMS AND
	U 8 2222 1
	Wireless
	Wire
	5 P
	A Verize
	Therahip d/b/a Toron STORRS ON NORTH EAGLEY
	울 'ᆼ ;;;;
	ST Figure
	2
	8
	O DATE: 10/04/21
	SCALE: AS NOTED JOB NO. 21007.33
	NOTES AND
	SPECIFICATIONS
	N-1
	Sheet No. 2 of 7

ANTENNA FRONT

EQUIPMENT	DIMENSIONS		WEIGHT
MAKE: SAMSUNG MODEL: MT6407-77A	35.1"h x 16.1 (NOT TO 1		87 LBS. (NOT TO EXCEED)
CLEARANCES AND SERVIC	E AREA		
TOP:	31.5"	HORIZONTAL (ANT. TO AN	
FRONT, SIDES & BOTTOM: 15.7" VERTICAL DISTANCE: 63.0" (ANT. TO ANT.)			

1 ANTENNA DETAIL

C-3 NOT TO SCALE

CBRS CLIP-ON ANTENNA CBRS RRU (REMOTE RADIO UNIT)							
EQUIPMEN	NT	DIMENSIONS	WEIGHT	EQUIPMENT	BAND	DIMENSIONS	WEIGHT
MAKE: MODEL:	SAMSUNG XXDWMM-12.5-65-8T	12.3"H x 8.7"W x 1.4"D	2.9 LBS.	MAKE: SAMSUNG MODEL: CBRS RRH-RT4401-48A	CBRS	12.1"H x 8.5"W x 4.1"D	18.6 LBS.
NOTES: 1. CON	TRACTOR TO COORDINATE						

2 COMBINED RRH/CLIP-ON ANTENNA DETAIL
NOT TO SCALE

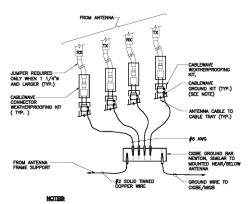
DIPLEXER				
EQUIPMENT	DESCRIPTION	DIMENSIONS	WEIGHT	
MAKE: COMMSCOPE MODEL: CBC78T-DS-43-2X	4 PACK DIPLEXER 700MHz/850MHz	6.4"H x 6.9"W x 9.6"D	21.8 LBS. (W/MNTG HDWR)	
NOTES: 1. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH VERIZON WIRELESS CONSTRUCTION MANAGER PRIOR TO ORDERING.				

3 DIPLEXER DETAIL
C-3 NOT TO SCALE

RRH - ISOMETRIC				RRH CLEARANCES	
DUAL BAND RRU (REMOTE RADIO UNIT)					
EQUIPMENT		BANDS	DIMENSIONS	WEIGHT	
MAKE: SAMSUNG MODEL: B2/B66A RRH-BR049 (RFV01U-D1A) B56: AWS (2100 MHz)		15.0"H x 15.0"W x 10.0"D	84.4 LBS.		
	V				

4 DUAL-BAND AWS/PCS RADIO UNIT DETAIL
NOT TO SCALE

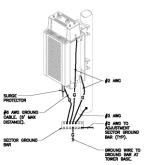
		DUAL BAND RRU (REMO	E RADIO UNIT)	
	EQUIPMENT	BANDS	DIMENSIONS	WEIGHT
MAKE: MODEL:	SAMSUNG B5/B13 RRH-BR04C (RFV01U-D2A)	B5: 850 MHz B13: 700 MHz	15.0°H x 15.0°W x 8.1°D	70.3 LBS

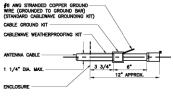

DUAL-BAND 700/850 MHZ RADIO UNIT DETAIL NOT TO SCALE

DRAWINGS — ISSUED FOR CONSTRUCTION DRAWINGS — ISSUED FOR CUIENT REVEW DRAWINGS — ISSUED FOR CLIENT REVEW

verizon

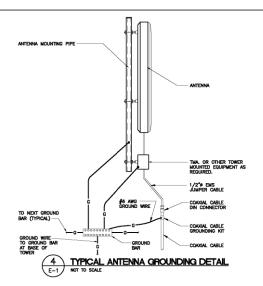
(203) 486 0580 (203) 488-8587 Fox 63-2 North Branford R Branford, CT 06405

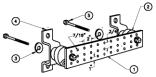

RF DETAILS


DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO CIGSE

CONNECTION OF GROUND WIRES TO GROUND BAR (E-1) NOT TO SCALE

> EACH RRH CABINET SHALL BE GROUNDED IN THE FOLLOWING MANNER: 1. AT TOP OF THE CABINET
> 2. AT RIGHT SIDE OF THE CABINET.


2 RRH POLE MOUNT GROUNDING



NOTES

DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO GROUND BAR.

3 ANTENNA CABLE GROUNDING DETAIL

NOTES

- TINNED COPPER GROUND BAR, 1/4" x 4" x 20". NEWTON INSTRUMENT CO. HOLE CENTERS TO MATCH NEMA DOUBLE LUG CONFIGURATION.
- INSULATORS, NEWTON INSTRUMENT CAT. NO. 3061-4.
- 5/8" LOCK WASHERS, NEWTON INSTRUMENT CO. CAT. NO. 3015-8.
- WALL MOUNTING BRACKET, NEWTON INSTRUMENT CO. CAT NO. A-6056.
- 5/8-11 x 1" STAINLESS STEEL TRUSS SPANNER MACHINE SCREWS.
 - GROUND BAR DETAIL

ELECTRICAL SPECIFICATIONS

1.01. SCOPE OF WORK

- WORK SHALL INCLUDE ALL LABOR, EQUIPMENT AND SERVICES REQUIRED TO COMPLETE.
 (MAKE READY FOR OPERATION) ALL THE ELECTRICAL WORK INCLUDING, BUT NOT LIMITED TO, THE FOLLOWING:
- CELLULAR GROUNDING SYSTEMS CONSISTING OF ANTENNA GROUNDING, GROUND BARS, ETC.

- B. THE ELECTRICAL CONTRACTOR IS TO BE RESPONSIBLE FOR THE COMPLETE INSTALLATION AND COORDINATION OF THE BATTRE ELECTRICAL SERVICE. ALL ACTIVITIES TO BE COORDINATED THROUGH OWNERS REPRESENTATIVE, DESIGN ENGINEER AND OTHER AUTHORITIES HAVING JURISDICTION OF TRACES.
- C. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND PAY ALL FEES THAT MAY BE REQUIRED FOR THE ELECTRICAL WORK AND FOR SCHEDULING OF ALL INSPECTIONS THAT MAY BE REQUIRED BY THE LOCAL AUTHORITY.
- D. THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATION WITH THE BUILDING OWNER FOR NEW AND/OR DEMOLITION WORK INVOLVED.
- NO MATERIAL OTHER THAN THAT CONTAINED IN THE "LATEST LIST OF ELECTRICAL FITTINGS" APPROVED BY THE UNDERWINTERS" LABORATORIES, SHALL BE USED IN ANY PART OF THE WORK, ALL MATERIAL FOR WHICH LABEL SERVICE HAS BEEN ESTABLISHED SHALL BEAR THE U.L. LABEL.
- F. THE CONTRACTOR SHALL GLARANTEE ALL NEW WORK FOR A PERIOD OF ONE YEAR FROM THE ACCEPTANCE DATE BY THE OWNER. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING MARRANTIES FROM ALL EQUIPMENT MANUFACTURERS FOR SUBMISSION TO THE OWNER.
- G. DRAWINGS INJUSTED OPERAL ARRANGEMENT OF WORK INCLUDED IN CONTRACT.

 CONTINUETER SHALL WITHOUT DUTN, OPERAGE, MAKE MEOPERSTONES IN THE LANGUT OF
 CONTINUETER SHALL BRAIN OF MAKE AND VISIT SHALL BRAIN OF BIO.
- ALL WORK SHALL BE INSTALLED IN A NEAT AND WORKMAN LIKE MANNER AND WILL BE SUBJECT TO THE APPROVAL OF THE OWNER'S REPRESENTATIVE.
- BEFORE FINAL PAYMENT, THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF PRINTS (AS-BUILTS), LEGIBLY MARKED IN RED PENCIL TO SHOW ALL CHANGES FROM THE ORIGINAL PLANS.

SECTION 16450

A. ALL NON-CURRENT CARRYING PARTS OF THE ELECTRICAL AND TELEPHONE CONDUIT SYSTEMS SHALL BE MECHANICALLY AND ELECTRICALLY CONNECTED TO PROVIDE AN INDEPENDENT RETURN PARTH TO THE COLUMENT GROUNDING SOURCES.

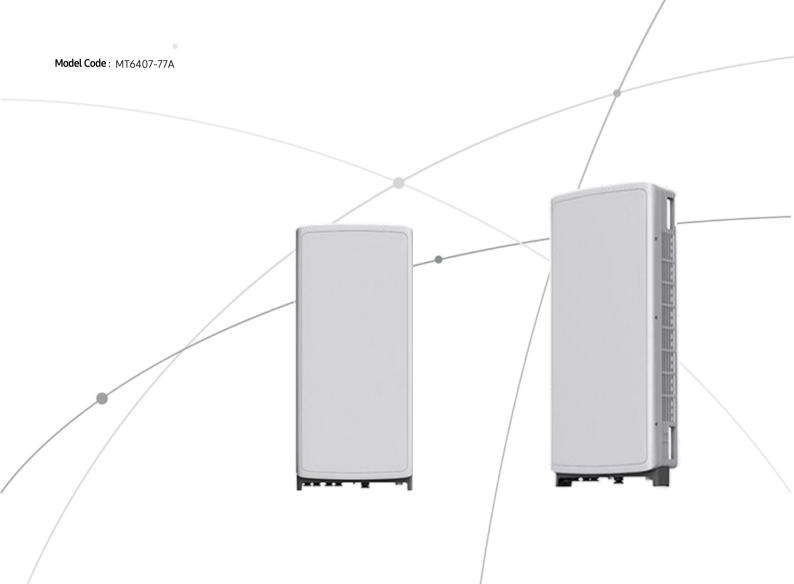
- B. GROUNDING SYSTEM WILL BE IN ACCORDANCE WITH THE LATEST ACCEPTABLE EDITION OF THE NATIONAL ELECTRICAL CODE AND REQUIREMENTS PER LOCAL INSPECTOR HAVING JURISDICTION.
- C. EQUIPMENT GROUNDING CONDUCTOR:
- EACH EQUIPMENT GROUND CONDUCTOR SHALL BE SIZED IN ACCORDANCE WITH THE N.E.C. ARTICLE 250-122.
- 2. THE MINIMUM SIZE OF EQUIPMENT GROUND CONDUCTOR SHALL BE #12 AWG COPPER.
- D. CELLULAR GROUNDING SYSTEM:
- PROVIDE THE CELLULAR GROUNDING SYSTEM AS SPECIFIED ON DRAWINGS, INCLUDING, BUT NOT LIMITED TO:
- GROUND BARS
 ANTENNA GROUND CONNECTIONS AND PLATES.
- E. ALL EQUIPMENT SHALL BE BONDED TO GROUND AS REQUIRED BY N.E.C., MFG. SPECIFICATIONS, AND OWNER'S SPECIFICATIONS.

5 8 8

verizon

Wirek

Partnership d/b/a Verizon

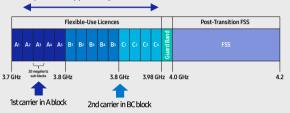

ELECTRICAL DETAILS AND SPECIFICATIONS

SAMSUNG

SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..


Points of Differentiation

Wide Bandwidth

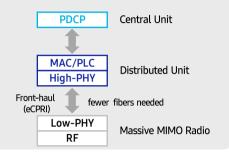
With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

C-Band spectrum supported by Massive MIMO Radio

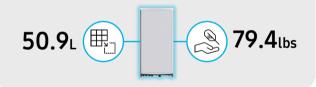
Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.


This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.

Future Proof Product


Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment..

Technical Specifications

Item	Specification
Tech	NR
Band	n77
Frequency Band	3700 - 3980 MHz
EIRP	78.5dBm (53.0 dBm+25.5 dBi)
IBW/OBW	280 MHz / 200 MHz
Installation	Pole/Wall
Size/ Weight	16.06 x 35.06 x 5.51 inch (50.86L)/ 79.4 lbs

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

Specifications

The table below outlines the main specifications of the RRH.

Table 1. Specifications

Item	RT4401-48A
Air Technology	LTE
Band	Band 48 (3.5 GHz)
Operating Frequency (MHz)	3550 to 3700
RF Chain	4TX/4RX
Input Power	-48 V DC (-38 to -57 V DC, 1 SKU), with clip-on AC-DC converter (Option)
Dimension (W × D × H) (mm)	8.55 in. (217.4) × 4.15 in. (105.5) × 13.91 in. (353.5) * RRH only
	11.39 in. (289.4) × 5.45 in. (138.5) × 16.16 in. (410.5) * with Clip-on antenna, AC-DC power unit
Cooling	Natural convection
Unwanted Emission	3GPP 36.104 Category A
	[B48]: FCC 47 CFR 96.41 e)
Spectrum Analyzer	TX/RX Support
Antenna Type	Integrated (Clip-on) antenna (Option),
	External antenna (Option)
Operating Humidity	5 to 100 [%] (RH), condensing, not to exceed 30 g/m ³ absolute humidity
Altitude	-60 to 1,800 m
Earthquake	Telcordia Earthquake Risk Zone4 (Telcordia GR-63-CORE)
Vibration in Use	Office Vibration
Transportation Vibration	Transportation Vibration
Noise	Fanless (natural convection cooling)
Wind Resistance	Telcordia GR-487-CORE, Section 3.34
EMC	FCC Title 47, CFR Part 96
Safety	UL 60950-1 2nd ED

Item	RT4401-48A	
	UL 62368-1	
	UL 60950-22	
RF	FCC Title 47, CFR Part 96	

The table below outlines the AC/DC power unit specifications of the RRH system.

SAMSUNG

Dual-Band Radio Unit 700/850MHz (B13/B5)

RFV01U-D2A

Samsung's RFV01U-D2A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.

The RFV01U-D2A RU targets dual-band support across Band 13 (700MHz) and Band 5 (850MHz), making it an ideal product for broad coverage footprints across multiple common low-end, long-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributed-and central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation

Key Technical Specifications

Duplex Type: FDD Operating Frequencies:

B13: DL(746-756MHz)/UL(777-787MHz) B5: DL(869-894MHz)/UL(824-849MHz) Instantaneous Bandwidth: 10MHz(B13) + 25MHz(B5)

RF Chain: 4T4R/2T4R/2T2R Output Power: Total 320W DU-RU Interface: CPRI (10Gbps) Dimensions: 380 x 380 x 207mm (29.9L)

Weight: 31.9kg Input Power: -48V DC

Operating Temp.: -40 - 55°(w/o solar load)

Cooling: Natural convection

SAMSUNG

Dual-Band Radio Unit AWS/PCS (B66/B2)

RFV01U-D1A

Samsung's RFV01U-D1A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.

The RFV01U-D1A RU targets dual-band support across Band 66 (AWS) and Band 2 (PCS), making it an ideal product for broad coverage footprints across multiple common mid-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributed-and central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation
- Built-in Broadcast Auxiliary Services (BAS) filter ensures compliant AWS operation without impacting footprint

Key Technical Specifications

Duplex Type: FDD Operating Frequencies:

B66: DL(2,110-2,180MHz)/UL(1,710-1,780MHz) B2: DL(1,930-1,990MHz)/UL(1,850-1,910MHz)

Instantaneous Bandwidth:

70MHz(B66) + 60MHz(B2)

RF Chain: 4T4R/2T4R/2T2R Output Power: Total 320W DU-RU Interface: CPRI (10Gbps)

Dimensions: 380 x 380 x 255mm (36.8L)

Weight: 38.3kg

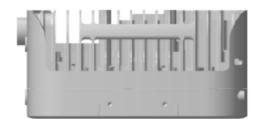
Input Power: -48V DC

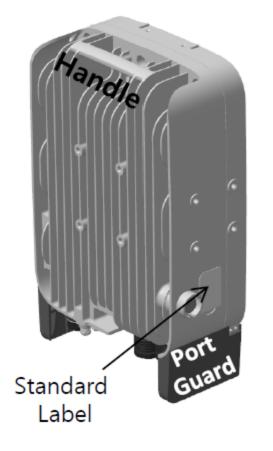
Operating Temp.: -40 - 55°(w/o solar load)

Cooling: Natural convection

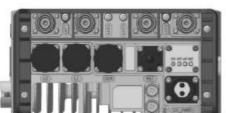
[CBRS] Clip-on Antenna Specifications

VzW accepted IP45 in FLD, but IP55 is Samsung Spec.




Items	Clip-on Antenna, BASTA**
Antenna Gain	12.5 ± 0.5 dBi (Max 13 dBi)
Horizontal BW (-3dB)	65° ± 5°
Vertical BW (-3dB)	17° ±3°
Electrical Tilt	8° (fixed) $\pm 2^{\circ}$
Front-to-Back Ratio	> 25 dB
Port-to-Port Tracking	< 3 dB
VSWR	< 1.5
Isolation	> 25 dB
Ingress Protection	IP55
Size	220(W)×313(H)×34.3(D) mm (*) (8.7 x 12.3 x 1.4 inch.)
Weight	< 2.0 kg [Typ. 1.3 kg]
with JMA WPS Boo	should be weatherproofed properly of with external antenna or Boot for clip-on antennas.

Antenna includes integrated cable with connector * Design is subject to minor change


^{**} Ant. spec. follows NGMN recommendations on Base Station Antenna Standards (BASTA). For example, 'mean ± tolerance of 86.6%' is applied to double-sided specification of statistical RF parameters.

[CBRS RRH] Spec.

Current Size: 216 x 307 x 105.5 mm (6.99L) (8.5 x 12.1 x 4.1 inch., excluding Port Guard)

Design is subject to minor change

Item	Specification
Band	Band 48 (3.5 GHz)
Frequency	3550~3700 MHz
IBW	150 MHz
OBW	80 MHz
# of Carriers	5/10/15/20 MHz x 4 carriers
RF Chain	4TX / 4RX
RF Output Power	4 path x 5 W (Total: 20 W = 43 dBm)
& EIRP	(EIRP: 47 dBm / 10 MHz)
RX Sensitivity	Typical: -101.5 dBm @ 1 Rx (3GPP 36.104, Wide Area)
Modulation	256-QAM support (1024-QAM with 1~2dB power back-off)
	-48 VDC (-38 to -57 VDC, 1 SKU),
Input Power	with clip-on AC-DC converter (Option)
Power Consumption	About 160 Watt @ 100% RF load, typical conditions
Volume	Under 7L (w/o Antenna), Under 9.6L (with antenna)
Weight	Under 8.0 kg (18.64 lb) (w/o Antenna), Under 10.5 Kg (with ant.)
Operating Temperature	-40°C (-40°F) ~ 55°C (131°F) (W/o solar load)
Cooling	Natural convection
Universal Engineers	3GPP 36.104 Category A
Unwanted Emission	[B48] : FCC 47 CFR 96.41 e)
Optic Interface	20km, 2 ports (9.8Gbps x 2), SFP, single mode, duplex or Bi-Di
CPRI Cascade	Not supported
# of Antenna Port	4
External Alarm (UDA)	4
RET	AISG 2.2
TMA & built-in Bias-T I//F and PIM cancellation	Not supported
	Pole, wall, tower, back to back, side by side (for external ant),
Mounting Options	3 RRH with Clip-on Antenna on the pole
Antonna Tyna	Integrated (Clip-on) antenna (Option),
Antenna Type	External antenna (Option)
NB-IoT	Not Supported (HW Resource reserved
NBIOI	for 1 Guard Band NB-IoT per LTE carrier)
Spectrum Analyzer	TX/RX Support
External Alarm (UDA)	4
5G NR	Support with S/W upgrade
XRAN	Support with S/W upgrade

ATTACHMENT 3

	General	Power	Density					
Site Name: Storrs (Mansfield)								
Tower Height: Verizon @ 81.6Ft,	83.6Ft, 85Ft							
CARRIER	# OF CHAN.	WATTS ERP	HEIGHT	FREQ.	CALC. POWER DENS	MAX. PERMISS. EXP.	FRACTION MPE	Total
*UCONN Police	3	197	180	866	0.007019934	0.5773333	0.001215924	
*Existing					0.153		0.1412	
*AT&T	2	414	185	850	0.009293265	0.5666667	0.001639988	
*AT&T	2	1297	185	850	0.029114406	0.5666667	0.005137836	
*AT&T	2	1079	185	700	0.024220851	0.4666667	0.005190182	
*AT&T	2	1876	185	2300	0.042111508	1	0.004211151	
*AT&T	2	1183	185	700	0.0266	0.4667	0.57%	
*AT&T	2	1596	185	2100	0.0358	1.0000	0.36%	
*AT&T	2	1423	185	1900	0.0319	1.0000	0.32%	
*AT&T	2	1239	185	700	0.0278	0.4667	0.60%	
*AT&T	2	1876	185	1900	0.0421	1.0000	0.42%	
*Nextel	9	100	240	851	0.0059	0.5673	0.10%	
*Pocket (now MetroPCS)	3	631	230	2130	0.0136	1.0000	0.14%	
VZW 700	4	1007	83.6	751	0.0207	0.5007	4.14%	
VZW CDMA	2	405	83.6	869	0.0042	0.5793	0.72%	
VZW Cellular	4	1224	83.6	869	0.0252	0.5793	4.35%	
VZW PCS	4	2255	83.6	1980	0.0464	1.0000	4.64%	
VZW AWS	4	2467	83.6	2125	0.0508	1.0000	5.08%	
VZW CBAND	4	6531	85	3730	0.1300	1.0000	13.00%	
VZW CBRS	4	12	81.6	3625	0.0003	1.0000	0.03%	
								50.32%
* Source: Siting Council								

ATTACHMENT 4

Centered on Solutions[™]

Structural Analysis Report

327' Existing Guyed Lattice Tower

Verizon Site Ref: Storrs

North Eagleville Road Mansfield, CT

Centek Project No. 21007.33

Date: November 4, 2021

Rev 1: September 1, 2022

Max Stress Ratio = 81.3%

Prepared for:

Verizon Wireless 20 Alexander Drive Wallingford, CT 06492

Structural Analysis - 327-ft Guyed Lattice Tower Verizon Antenna Upgrade ~ Storrs Storrs, CT Rev 1 ~ September 1, 2022

Table of Contents

SECTION 1 - REPORT

- INTRODUCTION
- ANTENNA AND APPURTENANCE SUMMARY
- PRIMARY ASSUMPTIONS USED IN THE ANALYSIS
- ANALYSIS
- TOWER LOADING
- TOWER CAPACITY
- CONCLUSION AND RECOMMENDATIONS

SECTION 2 - CONDITIONS & SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM

SECTION 3 - CALCULATIONS

- tnxTower INPUT/OUTPUT SUMMARY
- tnxTower FEED LINE PLAN
- tnxTower FEED LINE DISTRIBUTION
- tnxTower GUY ANCHOR REACTIONS
- tnxTower DETAILED OUTPUT
- TOWER BASE FOUNDATION ANALYSIS
- GUY ANCHOR FOUNDATION ANALYSIS

SECTION 4 - REFERENCE MATERIALS

RF DATA SHEET

TABLE OF CONTENTS TOC-1

Structural Analysis - 327-ft Guyed Lattice Tower Verizon Antenna Upgrade ~ Storrs Storrs, CT Rev 1 ~ September 1, 2022

Introduction

The purpose of this report is to summarize the results of the non-linear, P-∆ structural analysis of the antenna upgrade proposed by Verizon on the existing guyed lattice tower located in Storrs, CT.

The host tower is a 327-ft, three legged, guyed lattice tower. The original tower design documents were unavailable for use in this report. The tower geometry, structure member sizes and foundation information were obtained from a previous structural report prepared by Paul J. ford & Company job no. 42917-0010.002.8800 R1 dated January 9, 2018.

Antenna and appurtenance information were obtained from a previous structural report prepared by Centek job no. 17004.42 dated January 18, 2018 and a RF data sheet.

The tower consists of one (1) pole section, fifteen (15) straight and one (1) tapered base vertical sections consisting of solid round legs steel grade of ASTM A572-50. Diagonal and horizontal lateral support bracing consists of solid round steel grade of ASTM A36. The vertical tower sections are connected by bolted flanges with the diagonal and horizontal bracing to legs consisting of welded connections. The width of the tower face is 3.67-ft throughout its length.

<u>Antenna and Appurtenance Summary</u>

The existing and proposed loads considered in the analysis consist of the following:

UNKNOWN (EXISTING):

Antennas: One (1) 4-ft lighting rod and one (1) light beacon mounted to the top of the tower.

Cables: One (1) 1/2" rigid conduit

■ UNKNOWN (EXISTING):

<u>Antennas</u>: One (1) Shively Labs 6813 FM antenna and one (1) Celwave PD1110 omni-directional antenna flush mounted with an elevation of 305-ft above grade. <u>Cables</u>: One (1) $7/8" \varnothing$ and one (1) $1/2" \varnothing$ coax cable running on a leg/face of the existing tower as specified in Section 3 of this report.

UNKNOWN (EXISTING):

<u>Antennas</u>: One (1) Celwave PD1110 omni-directional antenna mounted on one (1) 4-ft sidearm with an elevation of 277-ft above grade.

<u>Cables:</u> One (1) 1/2" \varnothing coax cable running on a leg/face of the existing tower as specified in Section 3 of this report.

UNKNOWN (EXISTING):

<u>Antennas</u>: One (1) Kathrein Scala OGT9-840 and one (1) Decibel DB810K omnidirectional antennas mounted on 3-ft side arms with an elevation of 267-ft above grade.

<u>Cables:</u> Two (2) 1-5/8" \varnothing coax cables running on a leg/face of the existing tower as specified in Section 3 of this report.

UNKNOWN (EXISTING):

Antennas: One (1) Kathrein Scala AP14-850/105 panel antenna mounted on a 3-ft standoff with an elevation of 261-ft above grade.

<u>Cables:</u> One (1) 1-5/8 \varnothing coax cable running on a leg/face of the existing tower as specified in Section 3 of this report.

Structural Analysis - 327-ft Guyed Lattice Tower Verizon Antenna Upgrade ~ Storrs Storrs, CT Rev 1 ~ September 1, 2022

-

UNKNOWN (EXISTING):

<u>Antennas</u>: Two (2) Kathrein Scala OGT9-840 omni-directional antennas (inverted) leg mounted with an elevation of 256.5-ft above grade.

<u>Cables:</u> Two (2) 1-5/8" \varnothing coax cables running on a leg/face of the existing tower as specified in Section 3 of this report.

UNKNOWN (EXISTING):

Antennas: One (1) Kathrein Scala AP14-850/105 panel antenna mounted on a 3-ft standoff with an elevation of 252-ft above grade.

<u>Cables:</u> One (1) 1-5/8 \varnothing coax cable running on a leg/face of the existing tower as specified in Section 3 of this report.

UNKNOWN (EXISTING):

Antennas: Three (3) Sinclair SC479-HF1LDF omni-directional antennas, two (2) Bird 432-83H-01T tower top amplifiers and two (2) Antel BXA-70063/2CF panel antennas mounted on two (2) sector mounts with an elevation of 250-ft above grade.

<u>Cables:</u> Five (5) 1-5/8" \varnothing and two (2) 1/2 " \varnothing coax cables running on a leg/face of the existing tower as specified in Section 3 of this report.

UNKNOWN (EXISTING):

Antennas: Two (2) Sinclair SC479-HF1LDF omni-directional antennas and one (1) Bird 432-83H-01T tower top amplifier mounted on one (1) sector mount with an elevation of 240-ft above grade.

<u>Cables:</u> Two (2) 1-5/8" \varnothing and one (1) 1/2 " \varnothing coax cables running on a leg/face of the existing tower as specified in Section 3 of this report.

UNKNOWN (EXISTING):

<u>Antennas</u>: One (1) Shively Labs 6813 FM antenna flush mounted with an elevation of 211-ft above grade.

<u>Cables:</u> One (1) $7/8" \varnothing$ coax cable running on a leg/face of the existing tower as specified in Section 3 of this report.

UNKNOWN (RESERVED):

<u>Antennas</u>: One (1) RFI BA40-67-DIN dipole antenna leg mounted with an elevation of 205-ft above grade.

<u>Cables:</u> One (1) 7/8" \varnothing coax cable running on a leg/face of the existing tower as specified in Section 3 of this report.

UNKNOWN (EXISTING):

Antennas: One (1) Shively Labs 6813 FM antenna flush mounted with an elevation of 198-ft above grade.

<u>Cables:</u> One (1) 1/2" \varnothing coax cable running on a leg/face of the existing tower as specified in Section 3 of this report.

UNKNOWN (EXISTING):

<u>Antennas</u>: One (1) Shively Labs 6812 FM antenna flush mounted with an elevation of 198-ft above grade.

<u>Cables:</u> One (1) 7/8" \varnothing coax cable running on a leg/face of the existing tower as specified in Section 3 of this report.

Structural Analysis - 327-ft Guyed Lattice Tower Verizon Antenna Upgrade ~ Storrs Storrs. CT

Rev 1 ~ September 1, 2022

UNKNOWN (EXISTING):

Antennas: One (1) 6-ft Yagi antenna flush mounted with an elevation of 190-ft above grade.

<u>Cables:</u> One (1) 1/2" \varnothing coax cable running on a leg/face of the existing tower as specified in Section 3 of this report.

UNKNOWN (EXISTING):

Antennas: One (1) 2'x1'x5" panel antenna flush mounted with an elevation of 172'-2"-ft above grade.

<u>Cables:</u> One (1) 7/8" \varnothing coax cable running on a leg/face of the existing tower as specified in Section 3 of this report.

UNKNOWN (EXISTING):

<u>Antennas</u>: One (1) 8' omni-directional antenna flush mounted with an elevation of 172-ft above grade.

<u>Cables:</u> One (1) 7/8" \varnothing coax cables running on a leg/face of the existing tower as specified in Section 3 of this report.

UNKNOWN (EXISTING):

Antennas: One (1) 2'x1'x5" panel antenna flush mounted with an elevation of 158'-10"-ft above grade.

<u>Cables:</u> One (1) 1/2" \varnothing coax cable running on a leg/face of the existing tower as specified in Section 3 of this report.

UNKNOWN (EXISTING):

Antennas: Three (3) light beacons mounted to the tower with an elevation of 157'. Cables: One (1) 1/2" rigid conduit.

UNKNOWN (RESERVED):

<u>Antennas</u>: One (1) RFI BA40-67-DIN dipole antenna leg mounted with an elevation of 150-ft above grade.

<u>Cables:</u> One (1) 7/8" \varnothing coax cable running on a leg/face of the existing tower as specified in Section 3 of this report.

UNKNOWN (EXISTING):

Antennas: Two (2) 6-ft microwave dishes pipe mounted with a RAD center elevation of 116-ft above grade.

<u>Cables:</u> Two (2) EW63 cables running on a leg/face of the existing tower as specified in Section 3 of this report.

UNKNOWN (EXISTING):

<u>Antennas</u>: One (1) Celwave PD1110 omni-directional antenna mounted on one (1) 2-ft sidearm with an elevation of 112-ft above grade.

<u>Cables:</u> One (1) 7/8" \varnothing coax cables running on a leg/face of the existing tower as specified in Section 3 of this report.

UNKNOWN (FUTURE):

Antennas: One (1) 6-ft microwave dish pipe mounted with a RAD center elevation of 104-ft above grade.

<u>Cables:</u> One (1) EW63 cable running on a leg/face of the existing tower as specified in Section 3 of this report.

Structural Analysis - 327-ft Guyed Lattice Tower Verizon Antenna Upgrade ~ Storrs Storrs, CT Rev 1 ~ September 1, 2022

UNKNOWN (EXISTING):

Antennas: One (1) Kathrein PR-850 paraflector leg mounted with an elevation of 94-ft above grade.

<u>Cables:</u> One (1) 1/2" \varnothing coax cable running on a leg/face of the existing tower as specified in Section 3 of this report.

UNKNOWN (EXISTING):

Antennas: One (1) Decibel ASP-962 yagi leg mounted with an elevation of 94-ft above grade.

<u>Cables:</u> One (1) 1/2" \varnothing coax cable running on a leg/face of the existing tower as specified in Section 3 of this report.

UNKNOWN (EXISTING):

Antennas: One (1) Decibel DB212-1 dipole leg mounted with an elevation of 70-ft above grade.

<u>Cables:</u> One (1) 7/8" \varnothing coax cable running on a leg/face of the existing tower as specified in Section 3 of this report.

UNKNOWN (EXISTING):

Antennas: One (1) 6-ft yagi mounted on a 2-ft sidearm with an elevation of 18-ft above grade.

<u>Cables:</u> One (1) 1/2" \varnothing coax cable running on a leg/face of the existing tower as specified in Section 3 of this report.

AT&T (EXISTING TO REMAIN):

Antennas: Three (3) Powerwave 7770 panel antennas, one (1) CCI OPA-65R-LCUU-H6 panel antenna, two (2) CCI OPA-65R-LCUU-H8 panel antennas, one (1) CCI HPA-65R-BUU-H6 panel antenna, two (2) CCI HPA-65R-BUU-H8 panel antennas, two (2) CCI TPA-65R-LCUUUU-H8 panel antenna, one (1) Qunitel QS66512-2 panel antenna, three (3) CCI DTMABP7819VG12A TMAs, six (6) CCI TPX-070821 triplexers, three (3) Ericsson RRUS-11, six (6) Ericsson RRUS-32, six (6) Ericsson RRUS-32, three (3) B14 4478 and three (3) Raycap DC6-48-60-18-8F surge arrestors mounted on three (3) 12-ft V-Frames with a RAD center elevation of 185-ft above grade level.

<u>Coax Cables</u>: Twelve (12) 1-5/8" \varnothing coax cables, three (3) fiber cables and six (6) dc control cables running on the inside of the existing tower.

VERIZON (EXISTING TO REMAIN):

Antennas: Three (3) Antel BXA-80063-4CF panel antennas, four (4) Andrew JAHH-65B-R3B panel antennas, four (4) Andrew JAHH-45B-R3B panel antennas and two (2) Raycap RVZDC-6627-PF-48 distribution boxes mounted on (1) 13-ft platform w/ handrails with a rad center elevation of 84-ft above grade level.

<u>Cables:</u> Six (6) 1-1/4" \varnothing coax cables and two (2) 1-1/4" \varnothing fiber cables running on a leg/face of the existing tower as specified in Section 3 of this report.

VERIZON (EXISTING TO REMOVE):

Antennas: Four (4) B13 RRH 4x30, eight (8) B25 RRH 4x30 and four (4) B66Z RRH 4x45 mounted on (1) 13-ft platform w/ handrails with a rad center elevation of 84-ft above grade level.

Structural Analysis - 327-ft Guyed Lattice Tower Verizon Antenna Upgrade ~ Storrs Storrs, CT Rev 1 ~ September 1, 2022

VERIZON (PROPOSED):

Antennas: Four (4) Samsung XXDWMM-12.5-65 panel antennas, four (4) Samsung MT6407-77A panel antennas, four (4) Samsung B2/B66A remote radio heads, four (4) Samsung B5/B13 remote radio heads, four (4) CBRS remote radio heads and four (4) Commscope CBC78T-DS-43 diplexers mounted on (1) 13-ft platform w/ handrails with a rad center elevation of 84-ft above grade level.

.

Structural Analysis - 327-ft Guyed Lattice Tower Verizon Antenna Upgrade ~ Storrs Storrs, CT Rev 1 ~ September 1, 2022

Primary Assumptions Used in the Analysis

- The tower structure's theoretical capacity not including any assessment of the condition of the tower.
- The tower carries the horizontal and vertical loads due to the weight of antennas, ice load and wind.
- Tower is properly installed and maintained.
- Tower is in plumb condition.
- Tower loading for antennas and mounts as listed in this report.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All welds are fabricated with ER-70S-6 electrodes.
- All members are assumed to be as specified in the original tower design documents.
- All members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.
- All member protective coatings are in good condition.
- All tower members were properly designed, detailed, fabricated, installed and have been properly maintained since erection.
- Any deviation from the analyzed antenna loading will require a new analysis for verification of structural adequacy.
- All coax cables routed as specified in Section 3 of this report.
- The Verizon antenna mount information was taken from the mount analysis report prepared by Maser Consulting job no. 21781092A dated November 29, 2021 and construction drawings prepared by Centek dated September 1, 2022.

Structural Analysis - 327-ft Guyed Lattice Tower Verizon Antenna Upgrade ~ Storrs Storrs, CT Rev 1 ~ September 1, 2022

<u>Analysis</u>

The existing tower was analyzed using a comprehensive computer program entitled tnxTower. The program analyzes the tower, considering the worst case loading condition. The tower is considered as loaded by concentric forces along the tower, and the model assumes that the tower members are subjected to bending, axial, and shear forces.

The existing tower was analyzed for the controlling basic wind speed (3-second gust) with no ice and the applicable wind and ice combination to determine stresses in members as per guidelines of TIA-222-G-2005 entitled "Structural Standard for Antenna Support Structures and Antennas", the American Institute of Steel Construction (AISC) and the Manual of Steel Construction; Load and Resistance Factor Design (LRFD).

The controlling wind speed is determined by evaluating the local available wind speed data as provided in Appendix N of the CSBC¹ and the wind speed data available in the TIA-222-G-2005 Standard.

Tower Loading

Tower loading was determined by the basic wind speed as applied to projected surface areas with modification factors per TIA-222-G-2005, gravity loads of the tower structure and its components, and the application of 1.00" radial ice on the tower structure and its components.

Basic Wind Speed:	Tolland County; v = 95-105 mph (3-second gust)	[Annex B of TIA-222-G-2005]			
	Storrs; v = 101 mph (3 second gust)	[Appendix N of the 2016 CT Building Code]			
Load Cases:	Load Case 1; 101 mph wind speed w/ no ice plus gravity load – used in calculation of tower stresses and rotation.	[Appendix N of the 2016 CT Building Code]			
	Load Case 2; 40 mph wind speed w/ 1.00" radial ice plus gravity load – used in calculation of tower stresses.	[Annex B of TIA-222-G-2005]			

¹ The 2012 International Building Code as amended by the 2016 Connecticut State Building Code (CSBC).

Structural Analysis - 327-ft Guyed Lattice Tower Verizon Antenna Upgrade ~ Storrs Storrs, CT Rev 1 ~ September 1, 2022

Tower Capacity

Calculated stresses were found to be within allowable limits.

Tower Section	Elevation	Stress Ratio (percentage of capacity)	Result
Leg (T8)	140'-0"-160'-0"	80.0%	PASS
Diagonal (T11)	80'-0"-100'-0"	54.0%	PASS
Horizontal (T1)	280'-0"-288'-0"	81.3%	PASS
Guy A @ 235-ft radius (T13)	56.5-ft	64.5%	PASS

Foundations and Anchorage

The existing tower base foundation consists of a 3.0-ft diameter x 2.5-ft long reinforced concrete pier on a 10-ft square x 2.0-ft thick reinforced concrete pad bearing directly on the existing sub grade. Additionally, guy wire loading is transferred to three (3) 4.5'x4.0'x24.0' concrete support blocks. The sub-grade conditions used as the basis for the foundation analysis were derived from the aforementioned structural report.

The worst case tower base and guy anchor reactions developed from the governing Load Case 1 were used in the verification of the anchorage foundations:

Tower Guy Reactions				
Vector Inner				
Horizontal (In Plane of GW)	133 kips			
Horizontal (Out of Plane of GW)	5 kips			
Vertical	111 kips			
Resultant Force at end of Guy Wire	173 kips			
Tower Base Reactions				
Vector Proposed Reaction				
Horizontal Shear	6.0 kips			
Axial Compression	572.0 kips			

REPORT SECTION 1-8

Structural Analysis - 327-ft Guyed Lattice Tower Verizon Antenna Upgrade ~ Storrs Storrs, CT Rev 1 ~ September 1, 2022

Foundation	Design Limit	TIA-222-G Section 9.4 FS ⁽¹⁾	Proposed Loading (FS) ⁽¹⁾	Result
Reinf. Conc.	Uplift	1.0	2.23	PASS
Anchor Block	Sliding	1.0	3.0	PASS
		Ultimate Bearing	Proposed	
Base Foundation	Bearing	11.0 ksf	6.05 ksf	PASS

| Note 1: FS denotes 'Factor of Safety'.

Conclusion

This analysis shows that the subject tower <u>is adequate</u> to support the proposed modified antenna configuration with the below recommendations.

The analysis is based, in part, on the information provided to this office by Verizon. If the existing conditions are different than the information in this report, Centek Engineering, Inc. must be contacted for resolution of any potential issues.

Please feel free to call with any questions or comments.

Respectfully Submitted by:

Timothy J. Lynn, PE Structural Engineer

REPORT SECTION 1-9

Structural Analysis - 327-ft Guyed Lattice Tower Verizon Antenna Upgrade ~ Storrs Storrs, CT Rev 1 ~ September 1, 2022

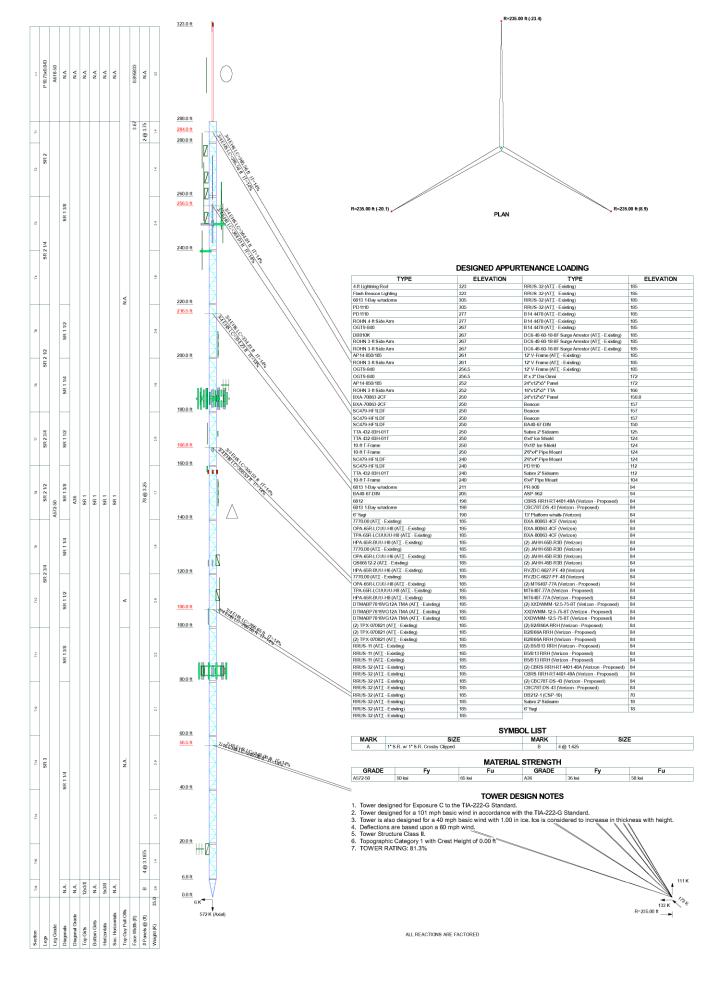
Standard Conditions for Furnishing of Professional Engineering Services on Existing Structures

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil conditions, the antenna and feed line loading on the structure and its components, or other relevant information.
- Information from the field and/or drawings in the possession of Centek Engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to Centek Engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an uncorroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to meet any other codes or requirements unless explicitly agreed in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement. In the absence of information to the contrary, all work will be performed in accordance with the latest revision of ANSI/ASCE10 & ANSI/EIA-222
- All services performed, results obtained, and recommendations made are in accordance
 with generally accepted engineering principles and practices. Centek Engineering, Inc.
 is not responsible for the conclusions, opinions and recommendations made by others
 based on the information we supply.

REPORT SECTION 2-1

Structural Analysis - 327-ft Guyed Lattice Tower Verizon Antenna Upgrade ~ Storrs Storrs, CT Rev 1 ~ September 1, 2022

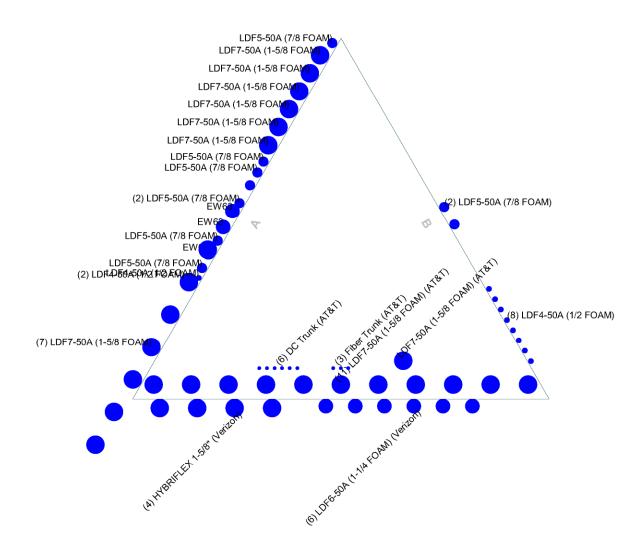

<u>GENERAL DESCRIPTION OF STRUCTURAL</u> ANALYSIS PROGRAM

tnxTower, is an integrated structural analysis and design software package for Designed specifically for the telecommunications industry, tnxTower, formerly ERITower, automates much of the tower analysis and design required by the TIA/EIA 222 Standard.

tnxTower Features:

- tnxTower can analyze and design 3- and 4-sided guyed towers, 3- and 4-sided selfsupporting towers and either round or tapered ground mounted poles with or without guys.
- The program analyzes towers using the TIA-222-G (2005) standard or any of the previous TIA/EIA standards back to RS-222 (1959). Steel design is checked using the AISC ASD 9th Edition or the AISC LRFD specifications.
- Linear and non-linear (P-delta) analyses can be used in determining displacements and forces in the structure. Wind pressures and forces are automatically calculated.
- Extensive graphics plots include material take-off, shear-moment, leg compression, displacement, twist, feed line, guy anchor and stress plots.
- tnxTower contains unique features such as True Cable behavior, hog rod take-up, foundation stiffness and much more.

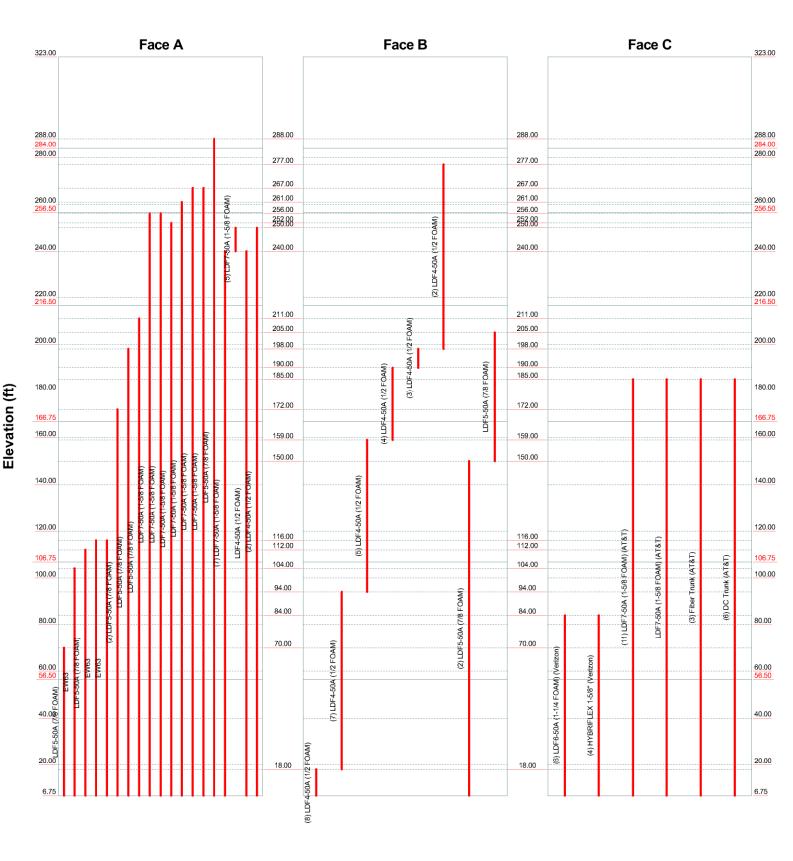
REPORT SECTION 2-2


Feed Line Plan

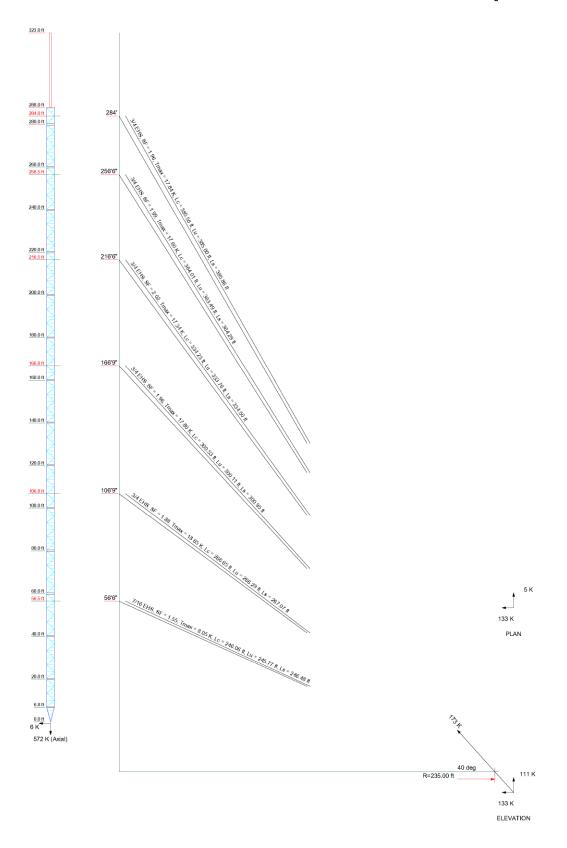
App Out Face

App In Face

Round


Flat

Centek Engineering Inc.	Job:
63-2 North Branford Rd.	Proje
Branford CT 06405	Clien
Phone: (203) 488-0580	Code
FAX: (203) 488-8587	Path:


^{lob:} 21007.33 - Storrs					
Project: 327' Guyed Tower -		rrs, CT			
^{Client:} Verizon	Drawn by: TJL	App'd:			
Code: TIA-222-G	Date: 11/04/21	Scale: NT			
Path: Jude#2100700Wi33_STORRS CT/05_StuduralTown/Bi	ickup Documentation(GalasERI/327-ft Guyad Towar - Storre, CT ar	Dwg No. E-			

Round ______ Flat ____ App In Face ____ App Out Face ____ Truss Leg

Centek Engineering Inc.
63-2 North Branford Rd.
Branford, CT 06405
Phone: (203) 488-0580
FAX: (203) 488-8587

^{Job:} 21007.33 - Storrs						
Project: 327' Guved To	wer - N. Eagleville Road	l Storrs, CT				
Client: Verizon	Drawn by: TJL	App'd:				
Code: TIA-222-G	Date: 11/04/21	Scale: NTS				
Path:	•	Dwg No.				

Centek Engineering Inc.	lob: 21007.33 - Storrs		
63-2 North Branford Rd.	Project: 327' Guyed Tower - N. Eagleville Road Storrs, CT		
Branford, CT 06405	Client: Verizon	Drawn by: TJL	App'd:
Phone: (203) 488-0580	Code: TIA-222-G	Date: 11/04/21	Scale: NTS
	Path:	when Dro annealest Date (EDIOSZA) Great Tower-Street CT	Dwg No. E-6

Centek Engineering Inc.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.33 - Storrs	1 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client Verizon	Designed by TJL

Tower Input Data

The main tower is a 3x guyed tower with an overall height of 323.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 3.67 ft at the top and tapered at the base.

An index plate is provided at the 3x guyed -tower connection.

There is a pole section.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Basic wind speed of 101 mph.

Structure Class II.

Exposure Category C.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 40 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Stress ratio used in tower member design is 1.

Safety factor used in guy design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

√ Use Code Stress Ratios

√ Use Code Safety Factors - Guys Escalate Ice

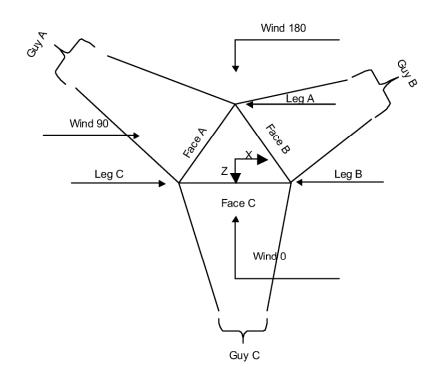
Always Use Max Kz Use Special Wind Profile

- √ Include Bolts In Member Capacity
- √ Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided)
- √ SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
- √ Retension Guys To Initial Tension Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.
- √ Autocalc Torque Arm Areas
 Add IBC .6D+W Combination
- √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA


- √ SR Leg Bolts Resist Compression
- √ All Leg Panels Have Same Allowable Offset Girt At Foundation
- ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21007.33 - Storrs	2 of 91
Project		Date
327' Guyed To	wer - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client	Verizon	Designed by TJL

Face Guyed

Pole Section Geometry

Section	Elevation	Section	Pole	Pole	Socket Length
		Length	Size	Grade	ft
	ft	ft			
L1	323.00-288.00	35.00	P10.75x0.843	A618-50	
				(50 ksi)	

Tower	Gusset	Gusset	Gusset Grade Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness	A_f	Factor	G	Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)			A_r		Spacing	Spacing	Spacing
	- 2					Diagonals	Horizontals	Redundants
ft	ft²	in				in	in	in
L1			1	1	1.025			
323.00-288.00								

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.33 - Storrs	3 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client Verizon	Designed by TJL

Tower Section Geometry

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	
	ft			ft		ft
T1	288.00-280.00			3.67	1	8.00
T2	280.00-260.00			3.67	1	20.00
T3	260.00-240.00			3.67	1	20.00
T4	240.00-220.00			3.67	1	20.00
T5	220.00-200.00			3.67	1	20.00
T6	200.00-180.00			3.67	1	20.00
T7	180.00-160.00			3.67	1	20.00
T8	160.00-140.00			3.67	1	20.00
T9	140.00-120.00			3.67	1	20.00
T10	120.00-100.00			3.67	1	20.00
T11	100.00-80.00			3.67	1	20.00
T12	80.00-60.00			3.67	1	20.00
T13	60.00-40.00			3.67	1	20.00
T14	40.00-20.00			3.67	1	20.00
T15	20.00-6.75			3.67	1	13.25
T16	6.75-0.00			3.67	1	6.75

Tower Section Geometry (cont'd)

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Gir
Section	Elevation	Spacing	Туре	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T1	288.00-280.00	3.75	K Brace Left	No	Yes+Steps	3.0000	3.0000
T2	280.00-260.00	3.25	K Brace Left	No	Yes+Steps	3.0000	3.0000
T3	260.00-240.00	3.25	K Brace Left	No	Yes+Steps	3.0000	3.0000
T4	240.00-220.00	3.25	K Brace Left	No	Yes+Steps	3.0000	3.0000
T5	220.00-200.00	3.25	K Brace Left	No	Yes+Steps	3.0000	3.0000
T6	200.00-180.00	3.25	K Brace Left	No	Yes+Steps	3.0000	3.0000
T 7	180.00-160.00	3.25	K Brace Left	No	Yes+Steps	3.0000	3.0000
T8	160.00-140.00	3.25	K Brace Left	No	Yes+Steps	3.0000	3.0000
Т9	140.00-120.00	3.25	K Brace Left	No	Yes+Steps	3.0000	3.0000
T10	120.00-100.00	3.25	K Brace Left	No	Yes+Steps	3.0000	3.0000
T11	100.00-80.00	3.25	K Brace Left	No	Yes+Steps	3.0000	3.0000
T12	80.00-60.00	3.25	K Brace Left	No	Yes+Steps	3.0000	3.0000
T13	60.00-40.00	3.25	K Brace Left	No	Yes+Steps	3.0000	3.0000
T14	40.00-20.00	3.25	K Brace Left	No	Yes+Steps	3.0000	3.0000
T15	20.00-6.75	3.19	K Brace Left	No	Yes+Steps	3.0000	3.0000
T16	6.75-0.00	1.63	X Brace	No	Yes	0.0000	3.0000

Tower Elevation ft	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
T1 288.00-280.00	Solid Round	2	A572-50	Solid Round	1 3/8	A36
			(50 ksi)			(36 ksi)
T2 280.00-260.00	Solid Round	2	A572-50	Solid Round	1 3/8	A36
			(50 ksi)			(36 ksi)

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Ţ	Job	Page
	21007.33 - Storrs	4 of 91
Γ	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client	Designed by
	Verizon	TJL

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation ft	Туре	Size	Grade	Туре	Size	Grade
ГЗ 260.00-240.00	Solid Round	2 1/4	A572-50	Solid Round	1 3/8	A36
			(50 ksi)			(36 ksi)
Γ4 240.00-220.00	Solid Round	2 1/4	A572-50	Solid Round	1 3/8	A36
			(50 ksi)			(36 ksi)
Г5 220.00-200.00	Solid Round	2 1/2	A572-50	Solid Round	1 1/2	A36
			(50 ksi)			(36 ksi)
Γ6 200.00-180.00	Solid Round	2 1/2	A572-50	Solid Round	1 1/4	A36
			(50 ksi)			(36 ksi)
Г7 180.00-160.00	Solid Round	2 3/4	À572-50	Solid Round	1 1/2	A36
			(50 ksi)			(36 ksi)
Г8 160.00-140.00	Solid Round	2 1/2	A572-50	Solid Round	1 3/8	A36
			(50 ksi)			(36 ksi)
Г9 140.00-120.00	Solid Round	2 3/4	A572-50	Solid Round	1 1/4	A36
			(50 ksi)			(36 ksi)
T10	Solid Round	2 3/4	A572-50	Solid Round	1 1/2	A36
120.00-100.00			(50 ksi)			(36 ksi)
Γ11 100.00-80.00	Solid Round	3	A572-50	Solid Round	1 3/8	A36
			(50 ksi)			(36 ksi)
T12 80.00-60.00	Solid Round	3	À572-50	Solid Round	1 1/4	A36
			(50 ksi)			(36 ksi)
T13 60.00-40.00	Solid Round	3	A572-50	Solid Round	1 1/4	A36
			(50 ksi)			(36 ksi)
T14 40.00-20.00	Solid Round	3	A572-50	Solid Round	1 1/4	A36
			(50 ksi)			(36 ksi)
T15 20.00-6.75	Solid Round	3	À572-50	Solid Round	1 1/4	A36
			(50 ksi)			(36 ksi)
T16 6.75-0.00	Solid Round	3	A572-50	Solid Round		A36
		-	(50 ksi)			(36 ksi)

Tower	Top Girt	Top Girt	Top Girt	Bottom Girt	Bottom Girt	Bottom Girt
Elevation	Туре	Size	Grade	Туре	Size	Grade
ft						
T1 288.00-280.00	Solid Round	1	A36	Solid Round	1	A36
			(36 ksi)			(36 ksi)
T2 280.00-260.00	Solid Round	1	A36	Solid Round	1	A36
			(36 ksi)			(36 ksi)
T3 260.00-240.00	Solid Round	1	A36	Solid Round	1	A36
			(36 ksi)			(36 ksi)
T4 240.00-220.00	Solid Round	1	A36	Solid Round	1	A36
			(36 ksi)			(36 ksi)
T5 220.00-200.00	Solid Round	1	A36	Solid Round	1	A36
			(36 ksi)			(36 ksi)
T6 200.00-180.00	Solid Round	1	A36	Solid Round	1	A36
			(36 ksi)			(36 ksi)
T7 180.00-160.00	Solid Round	1	A36	Solid Round	1	A36
			(36 ksi)			(36 ksi)
T8 160.00-140.00	Solid Round	1	A36	Solid Round	1	A36
			(36 ksi)			(36 ksi)
T9 140.00-120.00	Solid Round	1	A36	Solid Round	1	A36
			(36 ksi)			(36 ksi)
T10	Solid Round	1	A36	Solid Round	1	A36
120.00-100.00			(36 ksi)			(36 ksi)
T11 100.00-80.00	Solid Round	1	A36	Solid Round	1	A36
			(36 ksi)			(36 ksi)

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

T	Job	Page
	21007.33 - Storrs	5 of 91
ſ	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client	Designed by
1	Verizon	TJL

Tower	Top Girt	Top Girt	Top Girt	Bottom Girt	Bottom Girt	Bottom Girt
Elevation	Туре	Size	Grade	Туре	Size	Grade
ft						
T12 80.00-60.00	Solid Round	1	A36	Solid Round	1	A36
			(36 ksi)			(36 ksi)
T13 60.00-40.00	Solid Round	1	A36	Solid Round	1	A36
			(36 ksi)			(36 ksi)
T14 40.00-20.00	Solid Round	1	A36	Solid Round	1	A36
			(36 ksi)			(36 ksi)
T15 20.00-6.75	Solid Round	1	A36	Solid Round	1	A36
			(36 ksi)			(36 ksi)
T16 6.75-0.00	Flat Bar	12x3/8	A36	Flat Bar	12x3/8	A36
			(36 ksi)			(36 ksi)

Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal
Elevation	of	Туре	Size	Grade	Type	Size	Grade
	Mid						
ft	Girts						
Γ1 288.00-280.00	None	Solid Round		A572-50	Solid Round	1	A36
				(50 ksi)			(36 ksi)
Г2 280.00-260.00	None	Solid Round		A572-50	Solid Round	1	A36
				(50 ksi)			(36 ksi)
Γ3 260.00-240.00	None	Solid Round		A572-50	Solid Round	1	A36
				(50 ksi)			(36 ksi)
Γ4 240.00-220.00	None	Solid Round		A572-50	Solid Round	1	A36
				(50 ksi)			(36 ksi)
T5 220.00-200.00	None	Solid Round		A572-50	Solid Round	1	A36
				(50 ksi)			(36 ksi)
T6 200.00-180.00	None	Solid Round		A572-50	Solid Round	1	A36
				(50 ksi)			(36 ksi)
Γ7 180.00-160.00	None	Solid Round		A572-50	Solid Round	1	A36
				(50 ksi)			(36 ksi)
T8 160.00-140.00	None	Solid Round		A572-50	Solid Round	1	A36
				(50 ksi)			(36 ksi)
Т9 140.00-120.00	None	Solid Round		A572-50	Solid Round	1	A36
				(50 ksi)			(36 ksi)
T10	None	Solid Round		A572-50	Solid Round	1	A36
120.00-100.00				(50 ksi)			(36 ksi)
T11 100.00-80.00	None	Solid Round		A572-50	Solid Round	1	A36
				(50 ksi)			(36 ksi)
T12 80.00-60.00	None	Solid Round		A572-50	Solid Round	1	A36
				(50 ksi)			(36 ksi)
T13 60.00-40.00	None	Solid Round		A572-50	Solid Round	1	A36
				(50 ksi)			(36 ksi)
T14 40.00-20.00	None	Solid Round		A572-50	Solid Round	1	A36
				(50 ksi)			(36 ksi)
T15 20.00-6.75	None	Solid Round		À572-50	Solid Round	1	A36
				(50 ksi)			(36 ksi)
T16 6.75-0.00	None	Solid Round		À572-50	Flat Bar	9x3/8	A36
				(50 ksi)			(36 ksi)

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21007.33 - Storrs	6 of 91
Project		Date
;	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client	Verizon	Designed by

Tower Elevation	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
ft			Grade			
T1 288.00-280.00	Solid Round	1	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)
T2 280.00-260.00	Solid Round	1	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)
T3 260.00-240.00	Solid Round	1	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)
T4 240.00-220.00	Solid Round	1	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)
T5 220.00-200.00	Solid Round	1	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)
T6 200.00-180.00	Solid Round	1	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)
T7 180.00-160.00	Solid Round	1	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)
T8 160.00-140.00	Solid Round	1	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)
T9 140.00-120.00	Solid Round	1	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)
T10	Solid Round	1	A36	Solid Round		A572-50
120.00-100.00			(36 ksi)			(50 ksi)
T11 100.00-80.00	Solid Round	1	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)
T12 80.00-60.00	Solid Round	1	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)
T13 60.00-40.00	Solid Round	1	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)
T14 40.00-20.00	Solid Round	1	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)
T15 20.00-6.75	Solid Round	1	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness	Gussel Grune	A_f	Factor	neight muit.	Stitch Bolt	Stitch Bolt	Stitch Bolt
Lievation	(per face)	1 menness		Δf	A_r		Stuch Bott Spacing	Stuch Bott Spacing	Spacing
	(per juce)				A_T		Diagonals	Horizontals	Redundants
G	G^2	in					in	in	in
	0.00		126			1.025			
T1	0.00	0.0000	A36	1	1	1.025	36.0000	36.0000	36.0000
288.00-280.00			(36 ksi)						
T2	0.00	0.0000	A36	1	1	1.025	36.0000	36.0000	36.0000
280.00-260.00			(36 ksi)						
T3	0.00	0.0000	A36	1	1	1.025	36.0000	36.0000	36.0000
260.00-240.00			(36 ksi)						
T4	0.00	0.0000	A36	1	1	1.025	36.0000	36.0000	36.0000
240.00-220.00			(36 ksi)						
T5	0.00	0.0000	A36	1	1	1.025	36.0000	36.0000	36.0000
220.00-200.00			(36 ksi)						
T6	0.00	0.0000	A36	1	1	1.025	36,0000	36.0000	36.0000
200.00-180.00	0.00	0.000	(36 ksi)	•	•	11020	2010000	2010000	2010000
T7	0.00	0.0000	A36	1	1	1.025	36.0000	36.0000	36.0000
180.00-160.00	0.00	0.0000	(36 ksi)	1		1.025	30.000	30.0000	50.0000
T8	0.00	0.0000	A36	1	1	1.025	36,0000	36,0000	36.0000
	0.00	0.0000		1	1	1.023	30.0000	30.0000	30.0000
160.00-140.00	0.00	0.0000	(36 ksi)			1.00#	26,0000	26,0000	26,0000
T9	0.00	0.0000	A36	1	1	1.025	36.0000	36.0000	36.0000

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.33 - Storrs	7 of 91
Project 327' Guyed Tower - N. Eagleville Road Storrs, CT	Date 14:39:32 11/04/21
Client Verizon	Designed by TJL

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A_f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing	Stitch Bolt Spacing	Stitch Bolt Spacing
ft	ft^2	in					Diagonals in	Horizontals in	Redundants in
140.00-120.00			(36 ksi)						
T10	0.00	0.0000	A36	1	1	1.025	36.0000	36.0000	36.0000
120.00-100.00			(36 ksi)						
T11	0.00	0.0000	A36	1	1	1.025	36.0000	36.0000	36.0000
100.00-80.00			(36 ksi)						
T12	0.00	0.0000	A36	1	1	1.025	36.0000	36.0000	36.0000
80.00-60.00			(36 ksi)						
T13	0.00	0.0000	A36	1	1	1.025	36.0000	36.0000	36.0000
60.00-40.00			(36 ksi)						
T14	0.00	0.0000	A36	1	1	1.025	36.0000	36.0000	36.0000
40.00-20.00			(36 ksi)						
T15 20.00-6.75	0.00	0.0000	A36	1	1	1.025	36.0000	36.0000	36.0000
			(36 ksi)						
T16 6.75-0.00	0.00	0.0000	A36	1	1	1.025	36.0000	36.0000	36.0000
			(36 ksi)						

			K Factors ¹											
Tower	Calc	Calc	Legs	X	K	Single	Girts	Horiz.	Sec.	Inner				
Elevation	K	K		Brace	Brace	Diags			Horiz.	Brace				
	Single	Solid		Diags	Diags									
	Angles	Rounds		X	X	X	X	X	X	X				
ft				Y	Y	Y	Y	Y	Y	Y				
T1	Yes	Yes	1	1	1	1	1	1	1	1				
288.00-280.00				1	1	1	1	1	1	1				
T2	Yes	Yes	1	1	1	1	1	1	1	1				
280.00-260.00				1	1	1	1	1	1	1				
T3	Yes	Yes	1	1	1	1	1	1	1	1				
260.00-240.00				1	1	1	1	1	1	1				
T4	Yes	Yes	1	1	1	1	1	1	1	1				
240.00-220.00				1	1	1	1	1	1	1				
T5	Yes	Yes	1	1	1	1	1	1	1	1				
220.00-200.00				1	1	1	1	1	1	1				
T6	Yes	Yes	1	1	1	1	1	1	1	1				
200.00-180.00				1	1	1	1	1	1	1				
T 7	Yes	Yes	1	1	1	1	1	1	1	1				
180.00-160.00				1	1	1	1	1	1	1				
T8	Yes	Yes	1	1	1	1	1	1	1	1				
160.00-140.00				1	1	1	1	1	1	1				
T9	Yes	Yes	1	1	1	1	1	1	1	1				
140.00-120.00				1	1	1	1	1	1	1				
T10	Yes	Yes	1	1	1	1	1	1	1	1				
120.00-100.00				1	1	1	1	1	1	1				
T11	Yes	Yes	1	1	1	1	1	1	1	1				
100.00-80.00				1	1	1	1	1	1	1				
T12	Yes	Yes	1	1	1	1	1	1	1	1				
80.00-60.00				1	1	1	1	1	1	1				
T13	Yes	Yes	1	1	1	1	1	1	1	1				
60.00-40.00				1	1	1	1	1	1	1				
T14	Yes	Yes	1	1	1	1	1	1	1	1				
40.00-20.00				1	1	1	1	1	1	1				
T15	Yes	Yes	1	1	1	1	1	1	1	1				
20.00-6.75				1	1	1	1	1	1	1				
T16 6.75-0.00	Yes	Yes	1	1	1	1	1	1	1	1				

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Jo	ob	Page
	21007.33 - Storrs	8 of 91
F	Project OCTION AT THE PROPERTY OF	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
C	Client Verizon	Designed by TJL

				K Factors ¹								
Tower	Calc	Calc	Legs	X	K	Single	Girts	Horiz.	Sec.	Inner		
Elevation	K	K		Brace	Brace	Diags			Horiz.	Brace		
	Single	Solid		Diags	Diags							
	Angles	Rounds		X	X	X	X	X	X	X		
ft				Y	Y	Y	Y	Y	Y	Y		
				1	1	1	1	1	1	1		

Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Elevation ft	Leg		Diago	nal	Top G	irt	Bottom Girt Mid Girt		Girt	Long Ho	rizontal	Short Ho	rizontal	
, c	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 288.00-280.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T2 280.00-260.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T3 260.00-240.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T4 240.00-220.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 220.00-200.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 200.00-180.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 180.00-160.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 160.00-140.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 140.00-120.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T10 120.00-100.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T11 100.00-80.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T12 80.00-60.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T13 60.00-40.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T14 40.00-20.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T15 20.00-6.75 T16 6.75-0.00	0.0000 0.0000	0.75 0.75	0.0000 0.0000	0.75 0.75	0.0000 0.0000	0.75 0.75	0.0000	0.75 0.75	0.0000 0.0000	0.75 0.75	0.0000	0.75 0.75	0.0000	0.75 0.75

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

T	Job	Page
	21007.33 - Storrs	9 of 91
	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client Verizon	Designed by TJL

Tower	Reduna		Reduna		Reduna		Redur		Redundan	t Vertical	Redunde	ant Hip	Redunda	
Elevation	Horizoi	ntai	Diago	nai	Sub-Diag	gonai	Sub-Hoi	rizontal					Diago	onal
ft	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U
	Deduct	U	Deduct	U	Deduct	U	Width	U	Width		Width	U	Width	U
	in		in		in		Deduct		Deduct		Deduct		Deduct	
			""		""		in		in		in		in	
T1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
288.00-280.00														
T2	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
280.00-260.00														
Т3	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
260.00-240.00														
T4	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
240.00-220.00														
T5	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
220.00-200.00								0.55						0.55
T6	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
200.00-180.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
180.00-160.00 T8	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
160.00-140.00	0.0000	0.73	0.0000	0.73	0.0000	0.73	0.0000	0.73	0.0000	0.73	0.0000	0.73	0.0000	0.73
T9	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
140.00-120.00	0.0000	0.73	0.0000	0.73	0.0000	0.73	0.0000	0.73	0.0000	0.73	0.0000	0.73	0.0000	0.73
T10	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
120.00-100.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T11	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
100.00-80.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T12	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
80.00-60.00	0.0000	0.72	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T13	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
60.00-40.00														
T14	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
40.00-20.00														
T15 20.00-6.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T16 6.75-0.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower	Leg	Leg		Diagoi	ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hori	zontal
Elevation	Connection														
ft	Type														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T1	Flange	1.0000	4	0.5000	0	0.5000	0	0.5000	0	0.6250	0	0.5000	0	0.6250	0
288.00-280.00		A325N		A325N		A325N		A325N		A325X		A325N		A325X	
T2	Flange	1.0000	4	0.5000	0	0.5000	0	0.5000	0	0.6250	0	0.5000	0	0.6250	0
280.00-260.00		A325N		A325N		A325N		A325N		A325X		A325N		A325X	
T3	Flange	1.0000	4	0.5000	0	0.5000	0	0.5000	0	0.6250	0	0.5000	0	0.6250	0
260.00-240.00		A325N		A325N		A325N		A325N		A325X		A325N		A325X	
T4	Flange	1.0000	4	0.5000	0	0.5000	0	0.5000	0	0.6250	0	0.5000	0	0.6250	0
240.00-220.00		A325N		A325N		A325N		A325N		A325X		A325N		A325X	
T5	Flange	1.0000	4	0.5000	0	0.5000	0	0.5000	0	0.6250	0	0.5000	0	0.6250	0
220.00-200.00		A325N		A325N		A325N		A325N		A325X		A325N		A325X	
T6	Flange	1.0000	4	0.5000	0	0.5000	0	0.5000	0	0.6250	0	0.5000	0	0.6250	0
200.00-180.00		A325N		A325N		A325N		A325N		A325X		A325N		A325X	
T 7	Flange	1.0000	4	0.5000	0	0.5000	0	0.5000	0	0.6250	0	0.5000	0	0.6250	0
180.00-160.00		A325N		A325N		A325N		A325N		A325X		A325N		A325X	

Centek Engineering Inc. 63-2 North Branford Rd.

1	Job	Page
	21007.33 - Storrs	10 of 91
	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client	Designed by
	Verizon	TJL

Tower	Leg	Leg		Diago	nal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	izontal	Short Hori	izontal
Elevation	Connection														
ft	Туре														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T8	Flange	1.0000	4	0.5000	0	0.5000	0	0.5000	0	0.6250	0	0.5000	0	0.6250	0
160.00-140.00		A325N		A325N		A325N		A325N		A325X		A325N		A325X	
Т9	Flange	1.0000	4	0.5000	0	0.5000	0	0.5000	0	0.6250	0	0.5000	0	0.6250	0
140.00-120.00		A325N		A325N		A325N		A325N		A325X		A325N		A325X	
T10	Flange	1.0000	4	0.5000	0	0.5000	0	0.5000	0	0.6250	0	0.5000	0	0.6250	0
120.00-100.00	_	A325N		A325N		A325N		A325N		A325X		A325N		A325X	
T11	Flange	1.0000	4	0.5000	0	0.5000	0	0.5000	0	0.6250	0	0.5000	0	0.6250	0
100.00-80.00		A325N		A325N		A325N		A325N		A325X		A325N		A325X	
T12	Flange	1.3750	4	0.5000	0	0.5000	0	0.5000	0	0.6250	0	0.5000	0	0.6250	0
80.00-60.00		A325N		A325N		A325N		A325N		A325X		A325N		A325X	
T13	Flange	1.3750	4	0.5000	0	0.5000	0	0.5000	0	0.6250	0	0.5000	0	0.6250	0
60.00-40.00		A325N		A325N		A325N		A325N		A325X		A325N		A325X	
T14	Flange	1.3750	4	0.5000	0	0.5000	0	0.5000	0	0.6250	0	0.5000	0	0.6250	0
40.00-20.00		A325N		A325N		A325N		A325N		A325X		A325N		A325X	
T15 20.00-6.75	Flange	1.3750	4	0.5000	0	0.5000	0	0.5000	0	0.6250	0	0.5000	0	0.6250	0
	_	A325N		A325N		A325N		A325N		A325X		A325N		A325X	
T16 6.75-0.00	Flange	1.3750	4	0.5000	0	0.5000	0	0.5000	0	0.6250	0	0.5000	0	0.6250	0
		A325N		A325N		A325N		A325N		A325X		A325N		A325X	

Guy	Data
-----	------

Guy	Guy		Guy	Initial	%	Guy	Guy	L_u	Anchor	Anchor	Anchor	End
Elevation	Grade		Size	Tension		Modulus	Weight		Radius	Azimuth	Elevation	Fitting
										Adj.		Efficiency
ft				K		ksi	plf	ft	ft	0	ft	%
284	EHS	Α	3/4	8.16	14%	19000	1.155	385.07	235.00	0.0000	-23.40	100%
		В	3/4	8.16	14%	19000	1.155	359.88	235.00	0.0000	8.90	100%
		C	3/4	8.16	14%	19000	1.155	382.45	235.00	0.0000	-20.10	100%
256.5	EHS	A	3/4	8.16	14%	19000	1.155	363.55	235.00	0.0000	-23.40	100%
		В	3/4	8.16	14%	19000	1.155	339.38	235.00	0.0000	8.90	100%
		C	3/4	8.16	14%	19000	1.155	361.03	235.00	0.0000	-20.10	100%
216.5	EHS	A	3/4	8.16	14%	19000	1.155	333.82	235.00	0.0000	-23.40	100%
		В	3/4	8.16	14%	19000	1.155	311.47	235.00	0.0000	8.90	100%
		C	3/4	8.16	14%	19000	1.155	331.46	235.00	0.0000	-20.10	100%
166.75	EHS	A	3/4	8.16	14%	19000	1.155	300.15	235.00	0.0000	-23.40	100%
		В	3/4	8.16	14%	19000	1.155	280.86	235.00	0.0000	8.90	100%
		C	3/4	8.16	14%	19000	1.155	298.08	235.00	0.0000	-20.10	100%
106.75	EHS	A	3/4	8.16	14%	19000	1.155	266.31	235.00	0.0000	-23.40	100%
		В	3/4	8.16	14%	19000	1.155	252.15	235.00	0.0000	8.90	100%
		C	3/4	8.16	14%	19000	1.155	264.72	235.00	0.0000	-20.10	100%
56.5	EHS	A	7/16	2.91	14%	21000	0.399	245.77	235.00	0.0000	-23.40	100%
		В	7/16	2.91	14%	21000	0.399	237.27	235.00	0.0000	8.90	100%
		C	7/16	2.91	14%	21000	0.399	244.72	235.00	0.0000	-20.10	100%

Guy Data(cont'd)

Guy Elevation ft	Mount Type	Torque-Arm Spread	Torque-Arm Leg Angle	Torque-Arm Style	Torque-Arm Grade	Torque-Arm Type	Torque-Arm Size
		ft	0				

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

٦	Job	Page
	21007.33 - Storrs	11 of 91
	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client	Designed by
	Verizon	TJL

Guy Elevation ft	Mount Type	Torque-Arm Spread ft	Torque-Arm Leg Angle °	Torque-Arm Style	Torque-Arm Grade	Torque-Arm Type	Torque-Arm Size
284	Torque Arm	8.00	0.0000	Channel	A36 (36 ksi)	Channel	C15x33.9
256.5	Torque Arm	8.00	0.0000	Channel	A36 (36 ksi)	Channel	C15x33.9
216.5	Torque Arm	8.00	0.0000	Channel	A36 (36 ksi)	Channel	C15x33.9
166.75	Torque Arm	8.00	0.0000	Channel	A36 (36 ksi)	Channel	C15x33.9
106.75	Torque Arm	8.00	0.0000	Channel	A36 (36 ksi)	Channel	C15x33.9
56.5	Torque Arm	8.00	0.0000	Channel	A36 (36 ksi)	Channel	C15x33.9

Guv	Data	(cont'd
Guy	Dala	(COIIL U

Guy	Diagonal	Diagonal	Upper Diagonal	Lower Diagonal	Is	Pull-Off	Pull-Off Type	Pull-Off Size
Elevation	Grade	Туре	Size	Size	Strap.	Grade		
ft								
284.00	A572-50	Solid Round				A36	Channel	
	(50 ksi)					(36 ksi)		
256.50	A572-50	Solid Round				A36	Channel	
	(50 ksi)					(36 ksi)		
216.50	A572-50	Solid Round				A36	Channel	
	(50 ksi)					(36 ksi)		
166.75	A572-50	Solid Round				A36	Channel	
	(50 ksi)					(36 ksi)		
106.75	A572-50	Solid Round			No	A36	Arbitrary	1" S.R. w/ 1" S.R.
	(50 ksi)					(36 ksi)	Shape	Crosby Clipped
56.50	A572-50	Solid Round				A36	Channel	
	(50 ksi)					(36 ksi)		

Guy Data (cont'd)

Guy	Cable	Cable	Cable	Cable	Tower	Tower	Tower	Tower
Elevation	Weight	Weight	Weight	Weight	Intercept	Intercept	Intercept	Intercept
	\overline{A}	B	\bar{C}	\bar{D}	A	B	C	D
ft	K	K	K	K	ft	ft	ft	ft
284	0.44	0.42	0.44		10.28	9.00	10.15	
					5.5 sec/pulse	5.2 sec/pulse	5.5 sec/pulse	
256.5	0.42	0.39	0.42		9.18	8.02	9.06	
					5.2 sec/pulse	4.9 sec/pulse	5.2 sec/pulse	
216.5	0.39	0.36	0.38		7.76	6.77	7.66	
					4.8 sec/pulse	4.5 sec/pulse	4.8 sec/pulse	
166.75	0.35	0.32	0.34		6.30	5.53	6.21	
					4.3 sec/pulse	4.1 sec/pulse	4.3 sec/pulse	
106.75	0.31	0.29	0.31		4.98	4.47	4.92	
					3.9 sec/pulse	3.7 sec/pulse	3.8 sec/pulse	
56.5	0.10	0.09	0.10		4.12	3.85	4.09	
					3.5 sec/pulse	3.4 sec/pulse	3.5 sec/pulse	

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Jo	b	Page
	21007.33 - Storrs	12 of 91
Pi	roject	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
С	lient	Designed by
	Verizon	TJL

Guy Data (cont'd)

		Torque Arm			Pul	l Off	Diagonal	
Guy	Calc	Calc	K_x	K_y	K_x	K_y	K_x	K_y
Elevation	K	K						
ft	Single	Solid						
	Angles	Rounds						
284	No	No	1	1	1	1	1	1
256.5	No	No	1	1	1	1	1	1
216.5	No	No	1	1	1	1	1	1
166.75	No	No	1	1	1	1	1	1
106.75	No	No	1	1	0.7	0.7	1	1
56.5	No	No	1	1	1	1	1	1

Guy Data (cont'd)

		Torq	ue-Arm			Pul	l Off			Diag	gonal	
Guy	Bolt Size	Number	Net Width	U	Bolt Size	Number	Net Width	U	Bolt Size	Number	Net Width	U
Elevation	in		Deduct		in		Deduct		in		Deduct	
ft			in				in				in	
284	0.0000	0	0.0000	1	0.6250	0	0.0000	0.75	0.6250	0	0.0000	0.75
	A325N				A325N				A325N			
256.5	0.0000	0	0.0000	1	0.6250	0	0.0000	0.75	0.6250	0	0.0000	0.75
	A325N				A325N				A325N			
216.5	0.0000	0	0.0000	1	0.6250	0	0.0000	0.75	0.6250	0	0.0000	0.73
	A325N				A325N				A325N			
166.75	0.0000	0	0.0000	1	0.6250	0	0.0000	0.75	0.6250	0	0.0000	0.73
	A325N				A325N				A325N			
106.75	0.0000	0	0.0000	1	0.6250	0	0.0000	0.75	0.6250	0	0.0000	0.73
	A325N				A325N				A325N			
56.5	0.0000	0	0.0000	1	0.6250	0	0.0000	0.75	0.6250	0	0.0000	0.73
	A325N				A325N				A325N			

Guy Pressures

Guy	Guy	Z	q_z	q_z	Ice
Elevation	Location			Ice	Thickness
ft		ft	psf	psf	in
284	A	130.30	30	5	2.2944
	В	146.45	30	5	2.3214
	C	131.95	30	5	2.2973
256.5	A	116.55	29	5	2.2690
	В	132.70	30	5	2.2986
	C	118.20	29	5	2.2722
216.5	A	96.55	28	4	2.2267
	В	112.70	29	5	2.2614
	C	98.20	28	4	2.2304
166.75	A	71.68	26	4	2.1613
	В	87.83	27	4	2.2057
	C	73.33	26	4	2.1662
106.75	A	41.68	23	4	2.0472
	В	57.83	25	4	2.1154

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

٦	Job	Page
	21007.33 - Storrs	13 of 91
	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client	Designed by
	Verizon	TJL

Guy	Guy	Z	q_z	q_z	Ice
Elevation	Location			Ice	Thickness
ft		ft	psf	psf	in
	С	43.33	24	4	2.0552
56.5	A	16.55	19	3	1.8666
	В	32.70	22	3	1.9982
	С	18.20	20	3	1.8845

Guy-Tensioning Information

									Тетр	erature At T	Time Of Tens	ioning					
				0	F	20	0 F	4	0 F	6	0 F	80	F	10	00 F	12	00 F
Guy		H	V	Initial	Intercept	Initial	Intercept	Initial	Intercept	Initial	Intercept	Initial	Intercept	Initial	Intercept	Initial	Intercept
Elevation				Tension		Tension		Tension		Tension		Tension		Tension		Tension	
ft		ft	ft	K	ft	K	ft	K	ft	K	ft	K	ft	K	ft	K	ft
284	A	232.72	307.40	9.021	9.32	8.733	9.62	8.447	9.94	8.162	10.28	7.879	10.65	7.598	11.03	7.320	11.44
	В	232.72	275.10	9.146	8.05	8.816	8.34	8.488	8.66	8.162	9.00	7.838	9.37	7.518	9.76	7.200	10.18
	C	232.72	304.10	9.033	9.18	8.741	9.48	8.451	9.80	8.162	10.15	7.875	10.51	7.591	10.89	7.309	11.31
256.5	Α	232.72	279.90	9.126	8.23	8.803	8.52	8.481	8.84	8.162	9.18	7.845	9.55	7.531	9.94	7.219	10.36
	В	232.72	247.60	9.270	7.07	8.898	7.37	8.529	7.68	8.162	8.02	7.798	8.39	7.439	8.79	7.083	9.22
	C	232.72	276.60	9.140	8.10	8.812	8.40	8.486	8.72	8.162	9.06	7.841	9.42	7.522	9.82	7.206	10.24
216.5	Α	232.72	239.90	9.307	6.82	8.923	7.11	8.541	7.42	8.162	7.76	7.786	8.13	7.415	8.53	7.047	8.97
	В	232.72	207.60	9.479	5.84	9.037	6.13	8.598	6.44	8.162	6.77	7.731	7.15	7.305	7.56	6.885	8.01
	C	232.72	236.60	9.324	6.71	8.934	7.00	8.546	7.32	8.162	7.66	7.781	8.03	7.404	8.43	7.032	8.87
166.75	Α	232.72	190.15	9.582	5.37	9.105	5.65	8.631	5.96	8.162	6.30	7.698	6.67	7.239	7.09	6.789	7.56
	В	232.72	157.85	9.784	4.62	9.239	4.89	8.698	5.19	8.162	5.53	7.633	5.91	7.113	6.33	6.603	6.82
	C	232.72	186.85	9.602	5.29	9.118	5.57	8.638	5.87	8.162	6.21	7.694	6.59	7.231	7.00	6.775	7.47
106.75	Α	232.72	130.15	9.968	4.08	9.360	4.35	8.758	4.64	8.162	4.98	7.575	5.36	6.998	5.80	6.435	6.30
	В	232.72	97.85	10.179	3.59	9.500	3.85	8.827	4.14	8.162	4.47	7.508	4.86	6.867	5.31	6.245	5.84
	C	232.72	126.85	9.990	4.03	9.375	4.29	8.765	4.58	8.162	4.92	7.568	5.30	6.984	5.74	6.415	6.25
56.5	Α	232.72	79.90	3.721	3.23	3.448	3.48	3.178	3.78	2.912	4.12	2.650	4.53	2.395	5.01	2.149	5.58
	В	232.72	47.60	3.781	2.97	3.488	3.21	3.198	3.51	2.912	3.85	2.632	4.26	2.359	4.75	2.097	5.34
	C	232.72	76.60	3.728	3.19	3.453	3.45	3.181	3.74	2.912	4.09	2.648	4.49	2.391	4.97	2.143	5.55

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face	Allow Shield	Exclude	Component	Placement	Face Offset	Lateral	#	#	Clear		Perimeter	Weight
	or	Snieia	From	Туре	a	22	Offset				Diameter		10
	Leg		Torque		ft	in	(Frac FW)		Row	in	in	in	plf
			Calculation										
LDF6-50A	C	No	No	Ar (CaAa)	84.00 - 5.00	0.0000	-0.14	6	6	1.5500	1.5500		0.66
(1-1/4 FOAM)													
(Verizon)													
HYBRIFLEX	C	No	No	Ar (CaAa)	84.00 - 5.00	0.0000	0.3	4	4	1.9800	1.9800		1.90
1-5/8"													
(Verizon)													
LDF7-50A	C	No	No	Ar (CaAa)	185.00 -	-0.5000	0	11	11	1.9800	1.9800		0.82
(1-5/8 FOAM)					5.00								
(AT&T)													
LDF7-50A	C	No	No	Ar (CaAa)	185.00 -	-3.0000	-0.15	1	1	1.9800	1.9800		0.82
(1-5/8 FOAM)					5.00								
(AT&T)													
Fiber Trunk	C	No	No	Ar (CaAa)	185.00 -	-3.0000	0	3	3	0.4000	0.4000		1.00
(AT&T)					5.00								
DC Trunk	C	No	No	Ar (CaAa)	185.00 -	-3.0000	0.15	6	6	0.4000	0.4000		0.11
(AT&T)				, i	5.00								
LDF4-50A	В	No	No	Ar (CaAa)	18.00 - 5.00	0.0000	0.3	8	8	0.6300	0.6300		0.15
(1/2 FOAM)													
LDF4-50A	В	No	No	Ar (CaAa)	94.00 -	0.0000	0.3	7	7	0.6300	0.6300		0.15
(1/2 FOAM)				` ,	18.00								
LDF4-50A	В	No	No	Ar (CaAa)	159.00 -	0.0000	0.3	5	5	0.6300	0.6300		0.15
		_ , 0	- 70	(34114)			- 70	-	_				

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

7	Job	Page
	21007.33 - Storrs	14 of 91
	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client	Designed by
	Verizon	TJL

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacing	Width or Diameter	Perimeter	Weight
	Leg		Torque Calculation		ft	in	(Frac FW)		Row	in	in	in	plf
(1/2 FOAM)					94.00								
LDF4-50A	В	No	No	Ar (CaAa)	190.00 -	0.0000	0.3	4	4	0.6300	0.6300		0.15
(1/2 FOAM)					159.00								
LDF4-50A	В	No	No	Ar (CaAa)	198.00 -	0.0000	0.3	3	3	0.6300	0.6300		0.15
(1/2 FOAM)					190.00								
LDF4-50A	В	No	No	Ar (CaAa)	277.00 -	0.0000	0.3	2	2	0.6300	0.6300		0.15
(1/2 FOAM)					198.00								
LDF5-50A	Α	No	No	Ar (CaAa)	70.00 - 5.00	0.0000	-0.145	1	1	1.0900	1.0900		0.33
(7/8 FOAM)		3.7	3.7	. (6. 1.)	104.00	0.0000	0.105			1.57.10	1.57.10		0.51
EW63	A	No	No	Ar (CaAa)	104.00 - 5.00	0.0000	-0.105	1	1	1.5742	1.5742		0.51
LDF5-50A	Α	No	No	Ar (CaAa)	112.00 -	0.0000	-0.07	1	1	1.0900	1.0900		0.33
(7/8 FOAM)					5.00								
EW63	Α	No	No	Ar (CaAa)	116.00 -	0.0000	-0.035	1	1	1.5742	1.5742		0.51
					5.00								
EW63	A	No	No	Ar (CaAa)	116.00 -	0.0000	0.01	1	1	1.5742	1.5742		0.51
I DE5 504			3.7	. (6.1)	5.00	0.0000	0.06	•	2	1 0000	1 0000		0.22
LDF5-50A	Α	No	No	Ar (CaAa)	172.00 -	0.0000	0.06	2	2	1.0900	1.0900		0.33
(7/8 FOAM)		NT.	NI.	A = (C = A =)	5.00	0.0000	0.12			1 0000	1 0000		0.22
LDF5-50A	Α	No	No	Ar (CaAa)	198.00 - 5.00	0.0000	0.12	1	1	1.0900	1.0900		0.33
(7/8 FOAM) LDF5-50A	٨	No	No	Ar (CaAa)	211.00 -	0.0000	0.15	1	1	1.0900	1.0900		0.33
(7/8 FOAM)	A	No	NO	Ai (CaAa)	5.00	0.0000	0.15	1	1	1.0900	1.0900		0.55
LDF7-50A	A	No	No	Ar (CaAa)	256.00 -	0.0000	0.19	1	1	1.9800	1.9800		0.82
(1-5/8 FOAM)	11	140	110	m (cana)	5.00	0.0000	0.17	1	1	1.7000	1.7000		0.02
LDF7-50A	Α	No	No	Ar (CaAa)	256.00 -	0.0000	0.24	1	1	1.9800	1.9800		0.82
(1-5/8 FOAM)	11	110	110	m (cumu)	5.00	0.0000	0.21	•	•	1.5000	1.5000		0.02
LDF7-50A	Α	No	No	Ar (CaAa)	252.00 -	0.0000	0.29	1	1	1.9800	1.9800		0.82
(1-5/8 FOAM)				()	5.00				_				
LDF7-50A	Α	No	No	Ar (CaAa)	261.00 -	0.0000	0.34	1	1	1.9800	1.9800		0.82
(1-5/8 FOAM)				,	5.00								
LDF7-50A	Α	No	No	Ar (CaAa)	267.00 -	0.0000	0.39	1	1	1.9800	1.9800		0.82
(1-5/8 FOAM)					5.00								
LDF7-50A	A	No	No	Ar (CaAa)	267.00 -	0.0000	0.44	1	1	1.9800	1.9800		0.82
(1-5/8 FOAM)					5.00								
LDF5-50A	A	No	No	Ar (CaAa)	288.00 -	0.0000	0.48	1	1	1.0900	1.0900		0.33
(7/8 FOAM)					5.00								
LDF7-50A	Α	No	No	Ar (CaAa)	240.00 -	0.0000	-0.37	7	7	1.9800	1.9800		0.82
(1-5/8 FOAM)					5.00								
LDF7-50A	A	No	No	Ar (CaAa)	250.00 -	2.5000	-0.37	5	5	1.9800	1.9800		0.82
(1-5/8 FOAM)		3.7	3.7		240.00	0.0000	0.15			0.6200	0.6200		0.15
LDF4-50A	Α	No	No	Ar (CaAa)	240.00 -	0.0000	-0.17	1	1	0.6300	0.6300		0.15
(1/2 FOAM)		N.7	N	A = (C +)	5.00	0.0000	0.10	_	4	0.6200	0.6200		0.15
LDF4-50A	Α	No	No	Ar (CaAa)	250.00 -	0.0000	-0.19	2	1	0.6300	0.6300		0.15
(1/2 FOAM)	D	NT.	NTa	A = (C = A =)	5.00 150.00 -	0.0000	0	2	2	1.0000	1 0000		0.22
LDF5-50A	В	No	No	Ar (CaAa)	5.00 -	0.0000	U	2	2	1.0900	1.0900		0.33
(7/8 FOAM) LDF5-50A	В	No	No	Ar (Co Ao)	205.00 -	0.0000	0	1	1	1.0900	1.0900		0.33
(7/8 FOAM)	В	140	140	Ar (CaAa)	150.00	0.0000	U	1	1	1.0900	1.0900		0.55

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft ²	ft ²	ft ²	ft ²	K
L1	323.00-288.00	A	0.000	0.000	0.000	0.000	0.00

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

٦	Job	Page
	21007.33 - Storrs	15 of 91
	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client	Designed by
	Verizon	TJL

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation		-2	-2	In Face	Out Face	
	ft		ft ²	ft ²	ft ²	ft ²	K
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	0.000	0.00
T1	288.00-280.00	A	0.000	0.000	0.872	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	0.000	0.00
T2	280.00-260.00	A	0.000	0.000	5.150	0.000	0.02
		В	0.000	0.000	2.142	0.000	0.01
		C	0.000	0.000	0.000	0.000	0.00
T3	260.00-240.00	A	0.000	0.000	33.932	0.000	0.14
		В	0.000	0.000	2.520	0.000	0.01
		C	0.000	0.000	0.000	0.000	0.00
T4	240.00-220.00	A	0.000	0.000	57.440	0.000	0.23
		В	0.000	0.000	2.520	0.000	0.01
		C	0.000	0.000	0.000	0.000	0.00
T5	220.00-200.00	Α	0.000	0.000	58.639	0.000	0.23
		В	0.000	0.000	3.065	0.000	0.01
		C	0.000	0.000	0.000	0.000	0.00
T6	200.00-180.00	Α	0.000	0.000	61.582	0.000	0.24
		В	0.000	0.000	6.464	0.000	0.02
		C	0.000	0.000	13.680	0.000	0.07
T7	180.00-160.00	A	0.000	0.000	64.416	0.000	0.25
		В	0.000	0.000	7.220	0.000	0.02
		C	0.000	0.000	54.720	0.000	0.27
T8	160.00-140.00	A	0.000	0.000	66.160	0.000	0.26
		В	0.000	0.000	9.507	0.000	0.02
		C	0.000	0.000	54.720	0.000	0.27
Т9	140.00-120.00	A	0.000	0.000	66.160	0.000	0.26
		В	0.000	0.000	10.660	0.000	0.03
		Č	0.000	0.000	54.720	0.000	0.27
T10	120.00-100.00	A	0.000	0.000	73.135	0.000	0.28
110	120100 100100	В	0.000	0.000	10.660	0.000	0.03
		Č	0.000	0.000	54.720	0.000	0.27
T11	100.00-80.00	Ä	0.000	0.000	77.785	0.000	0.29
	100.00 00.00	В	0.000	0.000	12.424	0.000	0.03
		Č	0.000	0.000	61.608	0.000	0.32
T12	80.00-60.00	A	0.000	0.000	78.875	0.000	0.30
112	00.00-00.00	В	0.000	0.000	13.180	0.000	0.03
		C	0.000	0.000	89.160	0.000	0.50
T13	60.00-40.00	A	0.000	0.000	79.965	0.000	0.30
115	00.00-40.00	В	0.000	0.000	13.180	0.000	0.03
		C	0.000	0.000	89.160	0.000	0.50
T14	40.00-20.00	A	0.000	0.000	79.965	0.000	0.30
114	70.00-20.00	В	0.000	0.000	13.180	0.000	0.30
		C	0.000	0.000	89.160	0.000	0.03
T15	20.00-6.75		0.000	0.000	52.977	0.000	0.30
113	20.00-0.73	A					
		В	0.000	0.000	9.441	0.000	0.02
T16	6.75.0.00	C	0.000	0.000	59.069	0.000	0.33
T16	6.75-0.00	A	0.000	0.000	6.997	0.000	0.03
		В	0.000	0.000	1.264	0.000	0.00
		С	0.000	0.000	7.801	0.000	0.04

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft ²	ft²	ft ²	ft ²	K
L1	323.00-288.00	A	2.499	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.33 - Storrs	16 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client	Designed by
Verizon	TJL

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness	- 3	- 3	In Face	Out Face	
	ft	Leg	in	ft ²	ft ²	ft ²	ft²	K
		C		0.000	0.000	0.000	0.000	0.00
T1	288.00-280.00	A	2.480	0.000	0.000	4.841	0.000	0.09
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	0.00
T2	280.00-260.00	A	2.468	0.000	0.000	22.425	0.000	0.43
		В		0.000	0.000	18.715	0.000	0.21
		C		0.000	0.000	0.000	0.000	0.00
T3	260.00-240.00	A	2.449	0.000	0.000	124.118	0.000	2.42
		В		0.000	0.000	21.885	0.000	0.24
		C		0.000	0.000	0.000	0.000	0.00
T4	240.00-220.00	A	2.429	0.000	0.000	205.036	0.000	3.93
		В		0.000	0.000	21.742	0.000	0.24
		C		0.000	0.000	0.000	0.000	0.00
T5	220.00-200.00	A	2.407	0.000	0.000	210.539	0.000	4.00
		В		0.000	0.000	24.539	0.000	0.29
		C		0.000	0.000	0.000	0.000	0.00
T6	200.00-180.00	A	2.383	0.000	0.000	225.217	0.000	4.23
		В		0.000	0.000	36.736	0.000	0.52
		C		0.000	0.000	44.539	0.000	0.79
T7	180.00-160.00	A	2.356	0.000	0.000	239.795	0.000	4.38
		В		0.000	0.000	38.035	0.000	0.54
		C		0.000	0.000	177.536	0.000	3.12
T8	160.00-140.00	A	2.327	0.000	0.000	247.906	0.000	4.42
		В		0.000	0.000	46.833	0.000	0.63
		C		0.000	0.000	176.848	0.000	3.09
T9	140.00-120.00	A	2.294	0.000	0.000	245.923	0.000	4.34
		В		0.000	0.000	53.008	0.000	0.67
		C		0.000	0.000	176.072	0.000	3.04
T10	120.00-100.00	A	2.256	0.000	0.000	272.277	0.000	4.76
110	120100 100100	В	2.20	0.000	0.000	52.487	0.000	0.65
		č		0.000	0.000	175.181	0.000	3.00
T11	100.00-80.00	A	2.211	0.000	0.000	287.961	0.000	4.97
	100,00 00,00	В		0.000	0.000	55.899	0.000	0.70
		Č		0.000	0.000	194.960	0.000	3.31
T12	80.00-60.00	A	2.156	0.000	0.000	289.197	0.000	4.90
112	00.00 00.00	В	2.150	0.000	0.000	56.885	0.000	0.71
		Č		0.000	0.000	276,303	0.000	4.66
T13	60.00-40.00	A	2.085	0.000	0.000	288.899	0.000	4.77
115	00.00-40.00	В	2.003	0.000	0.000	55.925	0.000	0.68
		C		0.000	0.000	273.743	0.000	4.52
T14	40.00-20.00	A	1.981	0.000	0.000	280.605	0.000	4.46
114	70.00-20.00	В	1.701	0.000	0.000	54.532	0.000	0.64
		C		0.000	0.000	270.025	0.000	4.32
T15	20.00-6.75	A	1.827	0.000	0.000	177.769	0.000	2.67
113	20.00-0.73	В	1.02/	0.000	0.000	36.440	0.000	0.41
		C		0.000	0.000	175.256	0.000	2.67
T16	6.75-0.00	A	1.592	0.000	0.000	21.838	0.000	0.30
110	0.73-0.00	A B	1.392	0.000	0.000	4.580	0.000	0.30
		C B		0.000	0.000		0.000	0.03
				0.000	0.000	22.416	0.000	0.51

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
L1	323.00-288.00	0.0000	0.0000	0.0000	0.0000
T1	288.00-280.00	-0.0578	-1.5811	-0.0587	-1.6030

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

7	Job	Page
	21007.33 - Storrs	17 of 91
	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client	Designed by
	Verizon	TJL

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
T2	280.00-260.00	0.6934	-2.7492	1.2978	-1.9469
T3	260.00-240.00	-4.1337	-5.3168	-2.3675	-4.1448
T4	240.00-220.00	-7.2750	-3.0438	-5.1235	-2.8178
T5	220.00-200.00	-7.0154	-3.1070	- 4.9972	-2.9423
T6	200.00-180.00	-5.6891	-1.6571	-4.3293	-2.0336
T 7	180.00-160.00	-4.1681	1.3784	-3.5711	0.4613
T8	160.00-140.00	-4.0258	1.2622	-3.4965	0.2949
T9	140.00-120.00	-3.8920	1.2046	-3.3538	0.2519
T10	120.00-100.00	-4.1616	0.9253	-3.7349	0.0365
T11	100.00-80.00	-4 .1410	1.3008	-3.8543	0.3900
T12	80.00-60.00	-3.9538	2.8418	-3.8101	1.8300
T13	60.00-40.00	-4.0066	2.8224	-3.9108	1.8850
T14	40.00-20.00	-4.0066	2.8224	-3.9460	1.9982
T15	20.00-6.75	-3.8959	2.8286	-3.8905	2.1715
T16	6.75-0.00	-0.7357	0.5672	0.0000	0.0000

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	_	Segment Elev.	No Ice	Ice
T1	27	LDF5-50A (7/8 FOAM)	280.00 -	0.6000	0.4179
			288.00		
T2	12	LDF4-50A (1/2 FOAM)	260.00 -	0.6000	0.4113
			277.00		
T2	24	LDF7-50A (1-5/8 FOAM)	260.00 -	0.6000	0.4113
T-2	2.5	I DD7 504 (1.5% D0.446)	261.00	0.6000	0.41.10
T2	25	LDF7-50A (1-5/8 FOAM)	260.00 -	0.6000	0.4113
T2	26	I DE7 504 (1.5% FOAM)	267.00	0.6000	0.4112
12	26	LDF7-50A (1-5/8 FOAM)	260.00 -	0.6000	0.4113
T2	27	LDF5-50A (7/8 FOAM)	267.00 260.00 -	0.6000	0.4113
12	27	LDF3-30A (7/8 FOAM)	280.00	0.6000	0.4113
Т3	12	LDF4-50A (1/2 FOAM)	240.00 -	0.6000	0.4093
13	12	EDI 4-3071 (1/2 1 071111)	260.00	0.0000	0.4075
Т3	21	LDF7-50A (1-5/8 FOAM)	240.00 -	0.6000	0.4093
1.5	21	221 / 2011 (1 2/0 1 3/11/1)	256.00	0.0000	0.1032
Т3	22	LDF7-50A (1-5/8 FOAM)	240.00 -	0.6000	0.4093
		,	256.00		
T3	23	LDF7-50A (1-5/8 FOAM)	240.00 -	0.6000	0.4093
		· · · · · · · · · · · · · · · · · · ·	252.00		
Т3	24	LDF7-50A (1-5/8 FOAM)	240.00 -	0.6000	0.4093
			260.00		
T3	25	LDF7-50A (1-5/8 FOAM)	240.00 -	0.6000	0.4093
			260.00		
T3	26	LDF7-50A (1-5/8 FOAM)	240.00 -	0.6000	0.4093
			260.00		
T3	27	LDF5-50A (7/8 FOAM)		0.6000	0.4093
	20	I DE7 504 (1 5/0 PO 435)	260.00	0.000	0.4003
T3	29	LDF7-50A (1-5/8 FOAM)		0.6000	0.4093
Т3	31	LDE4 50A (1/2 FOARA)	250.00 240.00 -	0.6000	0.4093
13	31	LDF4-50A (1/2 FOAM)	240.00 - 250.00		0.4093
			230.00		

Centek Engineering Inc. 63-2 North Branford Rd.

Job		Page
	21007.33 - Storrs	18 of 91
Proje		Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Clien	t Verizon	Designed by TJL

		_			
Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K_a Ice
T4	12	LDF4-50A (1/2 FOAM)	220.00 -	0.6000	0.4125
T4	21	LDF7-50A (1-5/8 FOAM)	240.00 220.00 -	0.6000	0.4125
T4	22	LDF7-50A (1-5/8 FOAM)	240.00 220.00 - 240.00	0.6000	0.4125
Т4	23	LDF7-50A (1-5/8 FOAM)		0.6000	0.4125
Т4	24	LDF7-50A (1-5/8 FOAM)	220.00 - 240.00	0.6000	0.4125
Т4	25	LDF7-50A (1-5/8 FOAM)	220.00 - 240.00	0.6000	0.4125
Т4	26	LDF7-50A (1-5/8 FOAM)	220.00 - 240.00	0.6000	0.4125
Т4	27	LDF5-50A (7/8 FOAM)	240.00	0.6000	0.4125
Т4	28	LDF7-50A (1-5/8 FOAM)	220.00 - 240.00	0.6000	0.4125
T4	30	LDF4-50A (1/2 FOAM)	220.00 - 240.00	0.6000	0.4125
T4 T5	31 12	LDF4-50A (1/2 FOAM) LDF4-50A (1/2 FOAM)	220.00 - 240.00 200.00 -	0.6000 0.6000	0.4125 0.4075
T5	20	LDF5-50A (7/8 FOAM)	220.00 - 220.00 - 200.00 -	0.6000	0.4075
T5	21	LDF7-50A (1-5/8 FOAM)	211.00	0.6000	0.4075
T5	22	LDF7-50A (1-5/8 FOAM)	220.00	0.6000	0.4075
Т5	23	LDF7-50A (1-5/8 FOAM)	220.00	0.6000	0.4075
Т5	24	LDF7-50A (1-5/8 FOAM)	220.00 200.00 -	0.6000	0.4075
Т5	25	LDF7-50A (1-5/8 FOAM)	220.00 200.00 -	0.6000	0.4075
Т5	26	LDF7-50A (1-5/8 FOAM)		0.6000	0.4075
Т5	27	LDF5-50A (7/8 FOAM)	220.00 200.00 - 220.00	0.6000	0.4075
Т5	28	LDF7-50A (1-5/8 FOAM)	200.00 - 200.00 - 220.00	0.6000	0.4075
Т5	30	LDF4-50A (1/2 FOAM)	200.00 - 220.00	0.6000	0.4075
T5	31	LDF4-50A (1/2 FOAM)	I	0.6000	0.4075
T5	33	LDF5-50A (7/8 FOAM)		0.6000	0.4075
Т6	3	LDF7-50A (1-5/8 FOAM)	180.00 - 185.00	0.6000	0.4180
Т6	4	LDF7-50A (1-5/8 FOAM)	180.00 - 185.00	0.6000	0.4180
T6	5	Fiber Trunk	180.00 - 185.00	0.6000	0.4180
T6	6	DC Trunk	185.00	0.6000	0.4180
T6 T6	10	LDF4-50A (1/2 FOAM)	180.00 - 190.00	0.6000 0.6000	0.4180 0.4180
T6	11	LDF4-50A (1/2 FOAM) LDF4-50A (1/2 FOAM)	190.00 - 198.00 - 198.00 -	0.6000	0.4180
	12	EDIT-SUA (IIZ FOAM)	200.00	0.0000	0.7100

Centek Engineering Inc. 63-2 North Branford Rd.

٦	Job	Page
	21007.33 - Storrs	19 of 91
	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client	Designed by
	Verizon	TJL

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
Т6	19	LDF5-50A (7/8 FOAM)	180.00 - 198.00	0.6000	0.4180
Т6	20	LDF5-50A (7/8 FOAM)	180.00 - 200.00	0.6000	0.4180
Т6	21	LDF7-50A (1-5/8 FOAM)	180.00 - 200.00	0.6000	0.4180
Т6	22	LDF7-50A (1-5/8 FOAM)	180.00 - 200.00	0.6000	0.4180
Т6	23	LDF7-50A (1-5/8 FOAM)	180.00 -	0.6000	0.4180
Т6	24	LDF7-50A (1-5/8 FOAM)	200.00 180.00 -	0.6000	0.4180
Т6	25	LDF7-50A (1-5/8 FOAM)	200.00 180.00 -	0.6000	0.4180
Т6	26	LDF7-50A (1-5/8 FOAM)		0.6000	0.4180
Т6	27	LDF5-50A (7/8 FOAM)	200.00 180.00 -	0.6000	0.4180
Т6	28	LDF7-50A (1-5/8 FOAM)	200.00 180.00 -	0.6000	0.4180
Т6	30	LDF4-50A (1/2 FOAM)	200.00 180.00 -	0.6000	0.4180
Т6	31	LDF4-50A (1/2 FOAM)	200.00 180.00 -	0.6000	0.4180
Т6	33	LDF5-50A (7/8 FOAM)	200.00 180.00 -	0.6000	0.4180
Т7	3	LDF7-50A (1-5/8 FOAM)	200.00 160.00 -	0.6000	0.4103
Т7	4	LDF7-50A (1-5/8 FOAM)	180.00 160.00 -	0.6000	0.4103
Т7	5	Fiber Trunk	180.00 160.00 -	0.6000	0.4103
Т7	6	DC Trunk	180.00 160.00 -	0.6000	0.4103
T 7	10	LDF4-50A (1/2 FOAM)	180.00 160.00 -	0.6000	0.4103
Т7	18	LDF5-50A (7/8 FOAM)	180.00 160.00 -	0.6000	0.4103
Т7	19	LDF5-50A (7/8 FOAM)	172.00 160.00 -	0.6000	0.4103
Т7	20	LDF5-50A (7/8 FOAM)	180.00 160.00 -	0.6000	0.4103
Т7	21	LDF7-50A (1-5/8 FOAM)	180.00 160.00 -	0.6000	0.4103
T 7	22	LDF7-50A (1-5/8 FOAM)	I	0.6000	0.4103
Т7	23	LDF7-50A (1-5/8 FOAM)	I	0.6000	0.4103
Т7	24	LDF7-50A (1-5/8 FOAM)		0.6000	0.4103
Т7	25	LDF7-50A (1-5/8 FOAM)	180.00 160.00 -	0.6000	0.4103
Т7	26	LDF7-50A (1-5/8 FOAM)	180.00 160.00 -	0.6000	0.4103
Т7	27	LDF5-50A (7/8 FOAM)	I	0.6000	0.4103
Т7	28	LDF7-50A (1-5/8 FOAM)	180.00 160.00 -	0.6000	0.4103
Т7	30	LDF4-50A (1/2 FOAM)		0.6000	0.4103
Т7	31	LDF4-50A (1/2 FOAM)	180.00 160.00 -	0.6000	0.4103
	ı		180.00	·	

Centek Engineering Inc. 63-2 North Branford Rd.

Job	Page
21007.33 - Storrs	20 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client Verizon	Designed by
VENZON	TJL

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
T7	33	LDF5-50A (7/8 FOAM)	160.00 - 180.00	0.6000	0.4103
Т8	3	LDF7-50A (1-5/8 FOAM)	140.00 - 160.00	0.6000	0.4233
Т8	4	LDF7-50A (1-5/8 FOAM)	140.00 - 140.00	0.6000	0.4233
Т8	5	Fiber Trunk	140.00 - 140.00 - 160.00	0.6000	0.4233
Т8	6	DC Trunk	140.00 -	0.6000	0.4233
Т8	9	LDF4-50A (1/2 FOAM)	160.00 140.00 -	0.6000	0.4233
Т8	10	LDF4-50A (1/2 FOAM)	159.00 159.00 -	0.6000	0.4233
Т8	18	LDF5-50A (7/8 FOAM)		0.6000	0.4233
Т8	19	LDF5-50A (7/8 FOAM)	160.00 140.00 -	0.6000	0.4233
Т8	20	LDF5-50A (7/8 FOAM)	160.00 140.00 -	0.6000	0.4233
Т8	21	LDF7-50A (1-5/8 FOAM)	160.00 140.00 -	0.6000	0.4233
Т8	22	LDF7-50A (1-5/8 FOAM)	160.00 140.00 -	0.6000	0.4233
Т8	23	LDF7-50A (1-5/8 FOAM)	160.00 140.00 -	0.6000	0.4233
Т8	24	LDF7-50A (1-5/8 FOAM)	160.00 140.00 -	0.6000	0.4233
Т8	25	LDF7-50A (1-5/8 FOAM)	160.00 140.00 -	0.6000	0.4233
Т8	26	LDF7-50A (1-5/8 FOAM)	160.00 140.00 -	0.6000	0.4233
Т8	27	LDF5-50A (7/8 FOAM)	160.00 140.00 -	0.6000	0.4233
Т8	28	LDF7-50A (1-5/8 FOAM)	160.00 140.00 - 160.00	0.6000	0.4233
Т8	30	LDF4-50A (1/2 FOAM)	140.00 140.00 - 160.00	0.6000	0.4233
Т8	31	LDF4-50A (1/2 FOAM)	140.00 -	0.6000	0.4233
Т8	32	LDF5-50A (7/8 FOAM)	160.00 140.00 -	0.6000	0.4233
Т8	33	LDF5-50A (7/8 FOAM)	150.00 150.00 -	0.6000	0.4233
Т9	3	LDF7-50A (1-5/8 FOAM)	I I	0.6000	0.4267
Т9	4	LDF7-50A (1-5/8 FOAM)		0.6000	0.4267
Т9	5	Fiber Trunk	I I	0.6000	0.4267
Т9	6	DC Trunk	140.00 120.00 -	0.6000	0.4267
Т9	9	LDF4-50A (1/2 FOAM)	140.00 120.00 -	0.6000	0.4267
Т9	18	LDF5-50A (7/8 FOAM)	140.00 120.00 -	0.6000	0.4267
Т9	19	LDF5-50A (7/8 FOAM)	140.00 120.00 - 140.00	0.6000	0.4267
Т9	20	LDF5-50A (7/8 FOAM)	120.00 -	0.6000	0.4267
Т9	21	LDF7-50A (1-5/8 FOAM)	140.00 120.00 -	0.6000	0.4267
I i	ı l		140.00	ı	

Centek Engineering Inc. 63-2 North Branford Rd.

Job	Page
21007.33 - Storrs	21 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client	Designed by
Verizon	TJL

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	I DE7 504 (1 5/0 PO 43.0)	Segment Elev.	No Ice	Ice
Т9	22	LDF7-50A (1-5/8 FOAM)	120.00 - 140.00	0.6000	0.4267
Т9	23	LDF7-50A (1-5/8 FOAM)	120.00 -	0.6000	0.4267
		(1 0/0 1 0/11/1)	140.00		J. 1207
Т9	24	LDF7-50A (1-5/8 FOAM)	120.00 -	0.6000	0.4267
	2.5	I DES 501 (1.5% PO 11.6	140.00	0.6000	0.4065
Т9	25	LDF7-50A (1-5/8 FOAM)	120.00 - 140.00	0.6000	0.4267
Т9	26	LDF7-50A (1-5/8 FOAM)	120.00 -	0.6000	0.4267
			140.00		
Т9	27	LDF5-50A (7/8 FOAM)	120.00 -	0.6000	0.4267
TO	20	LDE7 504 (1.5% FOAM)	140.00	0.6000	0.4067
Т9	28	LDF7-50A (1-5/8 FOAM)	120.00 - 140.00	0.6000	0.4267
Т9	30	LDF4-50A (1/2 FOAM)	120.00 -	0.6000	0.4267
			140.00		
Т9	31	LDF4-50A (1/2 FOAM)	120.00 -	0.6000	0.4267
	22	I DEC 504 (5/0 EO 410	140.00	0.6000	0.4067
Т9	32	LDF5-50A (7/8 FOAM)	120.00 - 140.00	0.6000	0.4267
T10	3	LDF7-50A (1-5/8 FOAM)	100.00 -	0,6000	0.4276
110			120.00	0.0000	0.1270
T10	4	LDF7-50A (1-5/8 FOAM)	100.00 -	0.6000	0.4276
T.10	ا	121 m 1	120.00	0.6000	0.4277
T10	5	Fiber Trunk	100.00 - 120.00	0.6000	0.4276
T10	6	DC Trunk	100.00 -	0.6000	0.4276
110		DO TIMIK	120.00	0.0000	0.1270
T10	9	LDF4-50A (1/2 FOAM)	100.00 -	0.6000	0.4276
		7777.64	120.00	0.5000	0.40=6
T10	14	EW63	100.00 - 104.00	0.6000	0.4276
T10	15	LDF5-50A (7/8 FOAM)	100.00 -	0.6000	0.4276
110	13	EDIS SUIT (NOT OTHER)	112.00	0.0000	0.1270
T10	16	EW63	100.00 -	0.6000	0.4276
77.10		F111/A	116.00	0.6000	0.4276
T10	17	EW63	100.00 - 116.00	0.6000	0.4276
T10	18	LDF5-50A (7/8 FOAM)	100.00 -	0.6000	0.4276
110	10	2210 0011 (7/01/01/11/1)	120.00	010000	0
T10	19	LDF5-50A (7/8 FOAM)	100.00 -	0.6000	0.4276
æ (ô	30	I DES 504 (7/0 PO 13.0	120.00	0.000	0.4077
T10	20	LDF5-50A (7/8 FOAM)	100.00 - 120.00	0.6000	0.4276
T10	21	LDF7-50A (1-5/8 FOAM)	100.00 -	0.6000	0.4276
		,	120.00		
T10	22	LDF7-50A (1-5/8 FOAM)		0.6000	0.4276
T10	22	LDE7 504 (1 5/9 EQ 43.0)	120.00	0.000	0.4076
T10	23	LDF7-50A (1-5/8 FOAM)	100.00 - 120.00	0.6000	0.4276
T10	24	LDF7-50A (1-5/8 FOAM)	100.00 -	0.6000	0.4276
	- '	(/)	120.00		
T10	25	LDF7-50A (1-5/8 FOAM)	100.00 -	0.6000	0.4276
T10	36	I DE7 504 /1 5/0 EQ 4340	120.00	0.6000	0.4277
T10	26	LDF7-50A (1-5/8 FOAM)	100.00 - 120.00	0.0000	0.4276
T10	27	LDF5-50A (7/8 FOAM)	100.00 -	0.6000	0.4276
		,	120.00		
T10	28	LDF7-50A (1-5/8 FOAM)	100.00 -	0.6000	0.4276
Т10	30	I DE4-504 (1/2 EQ 434)	120.00 100.00 -	0.6000	0.4276
110	30	LDF4-50A (1/2 FOAM)	120.00	0.6000	0.42/6
'	'		120.00	'	

Centek Engineering Inc. 63-2 North Branford Rd.

Job	Page
21007.33 - Storrs	22 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client Verizon	Designed by TJL

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	•	Segment Elev.	No Ice	Ice
T10	31	LDF4-50A (1/2 FOAM)	100.00 -	0.6000	0.4276
			120.00		
T10	32	LDF5-50A (7/8 FOAM)	100.00 -	0.6000	0.4276
		I DEC 501 (1.14 DO 116	120.00	0.6000	0.4210
T11	1	LDF6-50A (1-1/4 FOAM)	80.00 - 84.00	0.6000	0.4310
T11	2	HYBRIFLEX 1-5/8"	80.00 - 84.00	0.6000	0.4310
T11 T11	3 4	LDF7-50A (1-5/8 FOAM)	80.00 - 100.00	0.6000 0.6000	0.4310
T11	5	LDF7-50A (1-5/8 FOAM) Fiber Trunk	80.00 - 100.00 80.00 - 100.00	0.6000	0.4310 0.4310
T11	6	DC Trunk		0.6000	0.4310
T11	8	LDF4-50A (1/2 FOAM)	80.00 - 100.00	0.6000	0.4310
T11	9	LDF4-50A (1/2 FOAM)	94.00 - 100.00	0.6000	0.4310
T11	14	EW63	80.00 - 100.00	0.6000	0.4310
T11	15	LDF5-50A (7/8 FOAM)	80.00 - 100.00	0.6000	0.4310
T11	16	EW63	80.00 - 100.00	0.6000	0.4310
T11	17	EW63	80.00 - 100.00	0.6000	0.4310
T11	18	LDF5-50A (7/8 FOAM)	80.00 - 100.00	0.6000	0.4310
T11	19	LDF5-50A (7/8 FOAM)	80.00 - 100.00	0.6000	0.4310
T11	20	LDF5-50A (7/8 FOAM)	80.00 - 100.00	0.6000	0.4310
T11	21	LDF7-50A (1-5/8 FOAM)	80.00 - 100.00	0.6000	0.4310
T11	22	LDF7-50A (1-5/8 FOAM)	80.00 - 100.00	0.6000	0.4310
T11	23	LDF7-50A (1-5/8 FOAM)	80.00 - 100.00	0.6000	0.4310
T11	24	LDF7-50A (1-5/8 FOAM)	80.00 - 100.00	0.6000	0.4310
T11	25	LDF7-50A (1-5/8 FOAM)	80.00 - 100.00	0.6000	0.4310
T11	26	LDF7-50A (1-5/8 FOAM)	80.00 - 100.00	0.6000	0.4310
T11	27	LDF5-50A (7/8 FOAM)	80.00 - 100.00	0.6000	0.4310
T11	28	LDF7-50A (1-5/8 FOAM)	80.00 - 100.00	0.6000	0.4310
T11	30	LDF4-50A (1/2 FOAM)	80.00 - 100.00	0.6000	0.4310
T11 T11	31 32	LDF4-50A (1/2 FOAM)	80.00 - 100.00 80.00 - 100.00	0.6000 0.6000	0.4310 0.4310
T12	1	LDF5-50A (7/8 FOAM) LDF6-50A (1-1/4 FOAM)	60.00 - 100.00	0.6000	0.4310
T12	2	HYBRIFLEX 1-5/8"	60.00 - 80.00	0.6000	0.4429
T12	3	LDF7-50A (1-5/8 FOAM)	60.00 - 80.00	0.6000	0.4429
T12	4	LDF7-50A (1-5/8 FOAM)	60.00 - 80.00	0.6000	0.4429
T12	5	Fiber Trunk	60.00 - 80.00	0.6000	0.4429
T12	6	DC Trunk	60.00 - 80.00	0.6000	0.4429
T12	8	LDF4-50A (1/2 FOAM)	60.00 - 80.00	0.6000	0.4429
T12	13	LDF5-50A (7/8 FOAM)	60.00 - 70.00	0.6000	0.4429
T12	14	EW63	60.00 - 80.00	0.6000	0.4429
T12	15	LDF5-50A (7/8 FOAM)	60.00 - 80.00	0.6000	0.4429
T12	16	EW63	60.00 - 80.00	0.6000	0.4429
T12	17	EW63	60.00 - 80.00	0.6000	0.4429
T12	18	LDF5-50A (7/8 FOAM)	60.00 - 80.00	0.6000	0.4429
T12	19	LDF5-50A (7/8 FOAM)	60.00 - 80.00	0.6000	0.4429
T12	20	LDF5-50A (7/8 FOAM)		0.6000	0.4429
T12	21	LDF7-50A (1-5/8 FOAM)		0.6000	0.4429
T12	22	LDF7-50A (1-5/8 FOAM)		0.6000	0.4429
T12	23	LDF7-50A (1-5/8 FOAM)		0.6000	0.4429
T12	24 25	LDF7-50A (1-5/8 FOAM)	60.00 - 80.00 60.00 - 80.00	0.6000 0.6000	0.4429 0.4429
T12 T12	25 26	LDF7-50A (1-5/8 FOAM) LDF7-50A (1-5/8 FOAM)	60.00 - 80.00	0.6000	0.4429
T12	26 27	LDF7-50A (1-5/8 FOAM) LDF5-50A (7/8 FOAM)	60.00 - 80.00	0.6000	0.4429
T12	28	LDF7-50A (1-5/8 FOAM)	60.00 - 80.00	0.6000	0.4429
T12	30	LDF4-50A (1/2 FOAM)	60.00 - 80.00	0.6000	0.4429
T12	31	LDF4-50A (1/2 FOAM)	60.00 - 80.00	0.6000	0.4429
T12	32	LDF5-50A (7/8 FOAM)	60.00 - 80.00	0.6000	0.4429
T13	1	LDF6-50A (1-1/4 FOAM)	40.00 - 60.00	0.6000	0.4541
T13	2	HYBRIFLEX 1-5/8"	40.00 - 60.00	0.6000	0.4541
T13	3	LDF7-50A (1-5/8 FOAM)		0.6000	0.4541
T13	4	LDF7-50A (1-5/8 FOAM)	40.00 - 60.00	0.6000	0.4541
	5	Fiber Trunk		0.6000	0.4541
T13 T13	6	* *** * * * *******		0.0000	0.4541

Centek Engineering Inc. 63-2 North Branford Rd.

Τ,	Job	Page
	21007.33 - Storrs	23 of 91
Γ	Project	Date
1	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client Verizon	Designed by TJL

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	I DE4 504 (1/2 E0 416)	Segment Elev.	No Ice	Ice
T13 T13	8 13	LDF4-50A (1/2 FOAM) LDF5-50A (7/8 FOAM)	40.00 - 60.00 40.00 - 60.00	0.6000 0.6000	0.4541 0.4541
T13	14	EW63	40.00 - 60.00	0.6000	0.4541
T13	15	LDF5-50A (7/8 FOAM)	40.00 - 60.00	0.6000	0.4541
T13	16	EW63	40.00 - 60.00	0.6000	0.4541
T13	17	EW63	40.00 - 60.00	0.6000	0.4541
T13	18	LDF5-50A (7/8 FOAM)	40.00 - 60.00	0.6000	0.4541
T13	19	LDF5-50A (7/8 FOAM)	40.00 - 60.00	0.6000	0.4541
T13	20	LDF5-50A (7/8 FOAM)	40.00 - 60.00	0.6000	0.4541
T13	21	LDF7-50A (1-5/8 FOAM)	40.00 - 60.00	0.6000	0.4541
T13	22	LDF7-50A (1-5/8 FOAM)	40.00 - 60.00	0.6000	0.4541
T13	23	LDF7-50A (1-5/8 FOAM)	40.00 - 60.00	0.6000	0.4541
T13	24	LDF7-50A (1-5/8 FOAM)	40.00 - 60.00	0.6000	0.4541
T13 T13	25 26	LDF7-50A (1-5/8 FOAM)	40.00 - 60.00 40.00 - 60.00	0.6000 0.6000	0.4541 0.4541
T13	27	LDF7-50A (1-5/8 FOAM) LDF5-50A (7/8 FOAM)	40.00 - 60.00	0.6000	0.4541
T13	28	LDF7-50A (1-5/8 FOAM)	40.00 - 60.00	0.6000	0.4541
T13	30	LDF4-50A (1/2 FOAM)	40.00 - 60.00	0.6000	0.4541
T13	31	LDF4-50A (1/2 FOAM)	40.00 - 60.00	0.6000	0.4541
T13	32	LDF5-50A (7/8 FOAM)	40.00 - 60.00	0.6000	0.4541
T14	1	LDF6-50A (1-1/4 FOAM)	20.00 - 40.00	0.6000	0.4705
T14	2	HYBRIFLEX 1-5/8"	20.00 - 40.00	0.6000	0.4705
T14	3	LDF7-50A (1-5/8 FOAM)	20.00 - 40.00	0.6000	0.4705
T14	4	LDF7-50A (1-5/8 FOAM)	20.00 - 40.00	0.6000	0.4705
T14	5	Fiber Trunk		0.6000	0.4705
T14	6 8	DC Trunk	20.00 - 40.00 20.00 - 40.00	0.6000	0.4705
T14 T14	13	LDF4-50A (1/2 FOAM) LDF5-50A (7/8 FOAM)	20.00 - 40.00	0.6000 0.6000	0.4705 0.4705
T14	14	EW63	20.00 - 40.00	0.6000	0.4705
T14	15	LDF5-50A (7/8 FOAM)	20.00 - 40.00	0.6000	0.4705
T14	16	EW63	20.00 - 40.00	0.6000	0.4705
T14	17	EW63	20.00 - 40.00	0.6000	0.4705
T14	18	LDF5-50A (7/8 FOAM)	20.00 - 40.00	0.6000	0.4705
T14	19	LDF5-50A (7/8 FOAM)	20.00 - 40.00	0.6000	0.4705
T14	20	LDF5-50A (7/8 FOAM)	20.00 - 40.00	0.6000	0.4705
T14	21	LDF7-50A (1-5/8 FOAM)	20.00 - 40.00	0.6000	0.4705
T14	22	LDF7-50A (1-5/8 FOAM)	20.00 - 40.00	0.6000	0.4705
T14	23	LDF7-50A (1-5/8 FOAM)	20.00 - 40.00 20.00 - 40.00	0.6000 0.6000	0.4705 0.4705
T14 T14	24 25	LDF7-50A (1-5/8 FOAM) LDF7-50A (1-5/8 FOAM)	20.00 - 40.00	0.6000	0.4705
T14	26	LDF7-50A (1-5/8 FOAM) LDF7-50A (1-5/8 FOAM)	20.00 - 40.00	0.6000	0.4705
T14	27	LDF5-50A (7/8 FOAM)	20.00 - 40.00	0.6000	0.4705
T14	28	LDF7-50A (1-5/8 FOAM)	20.00 - 40.00	0.6000	0.4705
T14	30	LDF4-50A (1/2 FOAM)		0.6000	0.4705
T14	31	LDF4-50A (1/2 FOAM)		0.6000	0.4705
T14	32	LDF5-50A (7/8 FOAM)		0.6000	0.4705
T15	1	LDF6-50A (1-1/4 FOAM)		0.6000	0.4867
T15	2	HYBRIFLEX 1-5/8"	6.75 - 20.00	0.6000	0.4867
T15	3	LDF7-50A (1-5/8 FOAM)	6.75 - 20.00	0.6000	0.4867
T15	4	LDF7-50A (1-5/8 FOAM)	6.75 - 20.00	0.6000	0.4867
T15 T15	5	Fiber Trunk DC Trunk		0.6000 0.6000	0.4867 0.4867
T15	7	LDF4-50A (1/2 FOAM)		0.6000	0.4867
T15	8	LDF4-50A (1/2 FOAM)	18.00 - 20.00	0.6000	0.4867
T15	13	LDF5-50A (7/8 FOAM)	6.75 - 20.00	0.6000	0.4867
T15	14	EW63	6.75 - 20.00	0.6000	0.4867
T15	15	LDF5-50A (7/8 FOAM)	6.75 - 20.00	0.6000	0.4867
T15	16	EW63	6.75 - 20.00	0.6000	0.4867
T15	17	EW63	6.75 - 20.00	0.6000	0.4867
T15	18	LDF5-50A (7/8 FOAM)	6.75 - 20.00	0.6000	0.4867
T15 T15	19 20	LDF5-50A (7/8 FOAM) LDF5-50A (7/8 FOAM)		0.6000 0.6000	0.4867 0.4867
1 13	20	LDF3-30A (//8 FOAM)	0.75 - 20.00	0.0000	0.480/

Centek Engineering Inc. 63-2 North Branford Rd.

1	Job	Page
	21007.33 - Storrs	24 of 91
	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client	Designed by
	Verizon	TJL

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	Description	Segment Elev.	No Ice	Ice
T15	21	LDF7-50A (1-5/8 FOAM)	6.75 - 20.00	0.6000	0.4867
T15	22	LDF7-50A (1-5/8 FOAM)	6.75 - 20.00	0.6000	0.4867
T15	23	LDF7-50A (1-5/8 FOAM) LDF7-50A (1-5/8 FOAM)	6.75 - 20.00	0.6000	0.4867
T15	24	LDF7-50A (1-5/8 FOAM) LDF7-50A (1-5/8 FOAM)	6.75 - 20.00	0.6000	0.4867
T15	25	LDF7-50A (1-5/8 FOAM) LDF7-50A (1-5/8 FOAM)	6.75 - 20.00	0.6000	0.4867
T15	26	LDF7-50A (1-5/8 FOAM) LDF7-50A (1-5/8 FOAM)	6.75 - 20.00	0.6000	0.4867
T15	27	LDF5-50A (7/8 FOAM)	6.75 - 20.00	0.6000	0.4867
T15	28	LDF7-50A (1-5/8 FQAM)	6.75 - 20.00	0.6000	0.4867
T15	30	LDF4-50A (1/2 FQAM)	6.75 - 20.00	0.6000	0.4867
T15	31	LDF4-50A (1/2 FOAM)	6.75 - 20.00	0.6000	0.4867
T15	32	LDF5-50A (7/8 FOAM)	6.75 - 20.00	0.6000	0.4867
T16	1	LDF6-50A (1-1/4 FOAM)	5.00 - 6.75	0.2447	0.0000
T16	2	HYBRIFLEX 1-5/8"	5.00 - 6.75	0.2447	0.0000
T16	3	LDF7-50A (1-5/8 FOAM)	5.00 - 6.75	0.2447	0.0000
T16	4	LDF7-50A (1-5/8 FOAM)	5.00 - 6.75	0.2447	0.0000
T16	5	Fiber Trunk	5.00 - 6.75	0.2447	0.0000
T16	6	DC Trunk	5.00 - 6.75	0.2447	0.0000
T16	7	LDF4-50A (1/2 FOAM)	5.00 - 6.75	0.2447	0.0000
T16	13	LDF5-50A (7/8 FOAM)	5.00 - 6.75	0.2447	0.0000
T16	14	EW63	5.00 - 6.75	0.2447	0.0000
T16	15	LDF5-50A (7/8 FOAM)	5.00 - 6.75	0.2447	0.0000
T16	16	EW63	5.00 - 6.75	0.2447	0.0000
T16	17	EW63	5.00 - 6.75	0.2447	0.0000
T16	18	LDF5-50A (7/8 FOAM)	5.00 - 6.75	0.2447	0.0000
T16	19	LDF5-50A (7/8 FOAM)	5.00 - 6.75	0.2447	0.0000
T16	20	LDF5-50A (7/8 FOAM)	5.00 - 6.75	0.2447	0.0000
T16	21	LDF7-50A (1-5/8 FOAM)	5.00 - 6.75	0.2447	0.0000
T16	22	LDF7-50A (1-5/8 FOAM)	5.00 - 6.75	0.2447	0.0000
T16	23	LDF7-50A (1-5/8 FOAM)	5.00 - 6.75	0.2447	0.0000
T16	24	LDF7-50A (1-5/8 FOAM)	5.00 - 6.75	0.2447	0.0000
T16	25	LDF7-50A (1-5/8 FOAM)	5.00 - 6.75	0.2447	0.0000
T16	26	LDF7-50A (1-5/8 FOAM)	5.00 - 6.75	0.2447	0.0000
T16	27	LDF5-50A (7/8 FOAM)	5.00 - 6.75	0.2447	0.0000
T16	28	LDF7-50A (1-5/8 FOAM)	5.00 - 6.75	0.2447	0.0000
T16	30	LDF4-50A (1/2 FOAM)	5.00 - 6.75	0.2447	0.0000
T16	31	LDF4-50A (1/2 FOAM)	5.00 - 6.75	0.2447	0.0000
T16	32	LDF5-50A (7/8 FOAM)	5.00 - 6.75	0.2447	0.0000

Disc	rete 🛚	Tower	Load	S

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
			Vert ft ft ft	٥	ft		ft²	ft²	K
4-ft Lightning Rod	A	From Face	0.00 0.00 0.00	0.0000	323.00	No Ice 1/2" Ice 1" Ice	0.40 0.81 1.06	0.40 0.81 1.06	0.01 0.01 0.02
Flash Beacon Lighting	В	None		0.0000	323.00	No Ice 1/2" Ice 1" Ice	2.70 3.10 3.50	2.70 3.10 3.50	0.05 0.07 0.09
6813 1-Bay w/radome	С	From Leg	2.00 0.00	0.0000	305.00	No Ice 1/2" Ice	4.90 6.00	4.90 6.00	0.10 0.20

Centek Engineering Inc. 63-2 North Branford Rd.

Job	Page
21007.33 - Storrs	25 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client Verizon	Designed by

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weig
	Leg		Lateral Vert						
			ft	0	ft		ft^2	ft^2	K
			ft ft						
			0.00			1" Ice	7.10	7.10	0.29
PD1110	C	From Leg	3.00	0.0000	305.00	No Ice	2.50	2.50	0.02
			0.00			1/2" Ice	3.84	3.84	0.04
PD1110	C	From Leg	0.00 4.00	0.0000	277.00	1" Ice No Ice	5.20 2.50	5.20 2.50	0.03
101110		110m Leg	0.00	0.0000	277.00	1/2" Ice	3.84	3.84	0.0
			0.00			1" Ice	5.20	5.20	0.0
ROHN 4-ft Side Arm	C	From Leg	2.00	0.0000	277.00	No Ice	5.28	5.28	0.0
			0.00			1/2" Ice	7.88	7.88	0.08
OCTO 940	C	F	0.00	0.0000	267.00	1" Ice	10.48	10.48	0.10
OGT9-840	С	From Leg	3.00 0.00	0.0000	267.00	No Ice 1/2" Ice	2.27 3.44	2.27 3.44	0.02
			0.00			1" Ice	4.61	4.61	0.0
DB810K	A	From Leg	3.00	0.0000	267.00	No Ice	4.08	4.08	0.0
			0.00			1/2" Ice	5.73	5.73	0.0
			0.00			1" Ice	7.41	7.41	0.1
ROHN 3-ft Side Arm	A	From Leg	1.50	0.0000	267.00	No Ice	3.10	3.10	0.0
			0.00			1/2" Ice	5.00	5.00	0.10
ROHN 3-ft Side Arm	С	From Leg	0.00 1.50	0.0000	267.00	1" Ice No Ice	6.90 3.10	6.90 3.10	0.13
KOIIN 3-11 SIGE AIIII	C	From Leg	0.00	0.0000	207.00	1/2" Ice	5.00	5.00	0.0
			0.00			1" Ice	6.90	6.90	0.1
AP14-850/105	В	From Leg	3.00	0.0000	261.00	No Ice	10.61	5.64	0.0
		· ·	0.00			1/2" Ice	11.25	6.28	0.0
			0.00			1" Ice	11.89	6.89	0.1
ROHN 3-ft Side Arm	С	From Leg	1.50	0.0000	261.00	No Ice	3.10	3.10	0.0
			0.00			1/2" Ice 1" Ice	5.00 6.90	5.00	0.1
OGT9-840	C	From Leg	0.00 3.00	0.0000	256.50	No Ice	2.27	6.90 2.27	0.1 0.0
0017-040		Trom Leg	0.00	0.0000	250.50	1/2" Ice	3.44	3.44	0.0
			0.00			1" Ice	4.61	4.61	0.0
OGT9-840	В	From Leg	3.00	0.0000	256.50	No Ice	2.27	2.27	0.0
			0.00			1/2" Ice	3.44	3.44	0.0
	_		0.00			1" Ice	4.61	4.61	0.0
AP14-850/105	В	From Leg	3.00	0.0000	252.00	No Ice	10.61	5.64	0.0
			0.00 0.00			1/2" Ice 1" Ice	11.25 11.89	6.28 6.89	0.0
ROHN 3-ft Side Arm	C	From Leg	1.50	0.0000	252.00	No Ice	3.10	3.10	0.0
			0.00			1/2" Ice	5.00	5.00	0.1
			0.00			1" Ice	6.90	6.90	0.1
BXA-70063-2CF	Α	From Leg	3.00	0.0000	250.00	No Ice	2.22	1.11	0.0
			0.00			1/2" Ice	2.42	1.27	0.0
BXA-70063-2CF	В	Enom I aa	0.00 3.00	0.0000	250.00	1" Ice No Ice	2.63 2.22	1.44	0.0
BXA-/0003-2CF	В	From Leg	0.00	0.0000	250.00	1/2" Ice	2.42	1.11 1.27	0.0
			0.00			1" Ice	2.63	1.44	0.0
SC479-HF1LDF	Α	From Leg	4.00	0.0000	250.00	No Ice	4.43	4.43	0.0
		J	0.00			1/2" Ice	6.54	6.54	0.0
			0.00			1" Ice	8.04	8.04	0.1
SC479-HF1LDF	В	From Leg	4.00	0.0000	250.00	No Ice	4.43	4.43	0.0
			0.00			1/2" Ice	6.54	6.54	0.0
SC479-HF1LDF	В	From Leg	0.00 4.00	0.0000	250.00	1" Ice No Ice	8.04 4.43	8.04 4.43	0.1
504/7-III ILDF	ь	From Leg	0.00	0.0000	430.00	1/2" Ice	6.54	4.43 6.54	0.0
			0.00			1" Ice	8.04	8.04	0.0
TTA 432-83H-01T	A	From Leg	4.00	0.0000	250.00	No Ice	1.40	0.82	0.0
		5	0.00			1/2" Ice	1.55	0.94	0.04

Centek Engineering Inc. 63-2 North Branford Rd.

Job	Page
21007.33 - Storrs	26 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client Verizon	Designed by TJL

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weigh
	Leg	**	Lateral	·					
			Vert	0	C.		cs2	ω2	ν
			ft ft	Ü	ft		ft²	ft ²	K
			ft			10.7	1.70	1.06	0.05
TTA 432-83H-01T	В	From Leg	0.00 4.00	0.0000	250.00	1" Ice No Ice	1.70 1.40	1.06 0.82	0.05 0.03
11A 432-0311-011	ь	From Leg	0.00	0.0000	230.00	1/2" Ice	1.55	0.82	0.03
			0.00			1" Ice	1.70	1.06	0.05
10-ft T-Frame	Α	From Leg	2.00	0.0000	250.00	No Ice	13.60	13.60	0.38
			0.00			1/2" Ice	17.50	17.50	0.53
			0.00			1" Ice	21.40	21.40	0.68
10-ft T-Frame	В	From Leg	2.00	0.0000	250.00	No Ice	13.60	13.60	0.38
			0.00			1/2" Ice	17.50	17.50	0.53
0.0450 11041 00			0.00		240.00	1" Ice	21.40	21.40	0.68
SC479-HF1LDF	С	From Leg	4.00	0.0000	240.00	No Ice	4.45	4.45	0.03
			0.00			1/2" Ice 1" Ice	6.54 8.04	6.54	0.07
SC479-HF1LDF	С	From Leg	0.00 4.00	0.0000	240.00	No Ice	4.45	8.04 4.45	0.11 0.03
SC4/9-HFILDF	C	From Leg	0.00	0.0000	240.00	1/2" Ice	6.54	6.54	0.03
			0.00			1" Ice	8.04	8.04	0.11
TTA 432-83H-01T	C	From Leg	4.00	0.0000	240.00	No Ice	1.40	0.82	0.03
			0.00			1/2" Ice	1.55	0.94	0.04
			0.00			1" Ice	1.70	1.06	0.05
10-ft T-Frame	C	From Leg	2.00	0.0000	240.00	No Ice	13.60	13.60	0.38
			0.00			1/2" Ice	17.50	17.50	0.53
			0.00			1" Ice	21.40	21.40	0.68
6813 1-Bay w/radome	C	From Leg	2.00	0.0000	211.00	No Ice	4.90	4.90	0.10
			0.00			1/2" Ice	6.00	6.00	0.20
6912 1 Day/ day	D	From Los	0.00	0.0000	100.00	1" Ice	7.10	7.10	0.29
6813 1-Bay w/radome	В	From Leg	2.00 0.00	0.0000	198.00	No Ice 1/2" Ice	4.90 6.00	4.90 6.00	0.10 0.20
			0.00			1" Ice	7.10	7.10	0.20
6812	Α	From Leg	3.00	0.0000	198.00	No Ice	0.20	0.20	0.00
			0.00	0.0000	230.00	1/2" Ice	0.36	0.36	0.00
			0.00			1" Ice	0.52	0.52	0.00
6' Yagi	В	From Leg	3.00	0.0000	190.00	No Ice	5.00	5.00	0.04
			0.00			1/2" Ice	6.50	6.50	0.06
			0.00			1" Ice	8.00	8.00	0.08
24"x12"x5" Panel	В	From Leg	1.00	0.0000	172.00	No Ice	2.40	1.09	0.03
			0.00			1/2" Ice	2.60	1.24	0.05
01 - 21 D' - O '	-	F	0.00	0.0000	172.00	1" Ice	2.81	1.41	0.07
8' x 3" Dia Omni	С	From Leg	1.00	0.0000	172.00	No Ice	2.40	2.40	0.03
			0.00 0.00			1/2" Ice 1" Ice	3.19 3.67	3.19 3.67	0.04 0.07
16"x12"x3" TTA	A	From Leg	1.00	0.0000	166.00	No Ice	1.60	0.44	0.07
10 X12 X3 1171	71	110m Leg	0.00	0.0000	100.00	1/2" Ice	1.76	0.55	0.02
			0.00			1" Ice	1.93	0.66	0.03
24"x12"x5" Panel	C	From Leg	1.00	0.0000	158.80	No Ice	2.40	1.09	0.03
			0.00			1/2" Ice	2.60	1.24	0.05
			0.00			1" Ice	2.81	1.41	0.07
Beacon	Α	From Leg	0.50	0.0000	157.00	No Ice	0.17	0.17	0.01
			0.00			1/2" Ice	0.31	0.31	0.01
_			0.00			1" Ice	0.39	0.39	0.02
Beacon	В	From Leg	0.50	0.0000	157.00	No Ice	0.17	0.17	0.01
			0.00			1/2" Ice	0.31	0.31	0.01
D	~	г т	0.00	0.0000	157.00	1" Ice	0.39	0.39	0.02
Beacon	С	From Leg	0.50	0.0000	157.00	No Ice	0.17	0.17	0.01
			0.00			1/2" Ice	0.31	0.31	0.01
			0.00			1" Ice	0.39	0.39	0.02
Sabre 2' Sidearm	В	From Leg	1.00	0.0000	125.00	No Ice	3.90	3.90	0.09

Centek Engineering Inc. 63-2 North Branford Rd.

1	Job	Page
	21007.33 - Storrs	27 of 91
	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client	Designed by
	Verizon	TJL

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weig
	Leg		Lateral Vert						
			ft	٥	ft		ft^2	ft^2	K
			ft ft						
			0.00			1" Ice	4.90	4.90	0.11
6'x4' Ice Shield	C	From Leg	1.00	0.0000	124.00	No Ice	0.02	0.03	0.28
			0.00			1/2" Ice	0.05	0.06	0.40
01 1017 01:11			0.00	0.0000	12100	1" Ice	0.08	0.09	0.52
9'x10' Ice Shield	Α	From Leg	1.00 0.00	0.0000	124.00	No Ice 1/2" Ice	0.88	1.00 2.00	1.0° 1.40
			0.00			1" Ice	1.20 1.52	3.00	1.73
2'6"x4" Pipe Mount	C	From Leg	0.50	0.0000	124.00	No Ice	0.65	0.65	0.0
20 AT TIPO MOUNT		Trom Deg	0.00	0.0000	121.00	1/2" Ice	0.91	0.91	0.0
			0.00			1" Ice	1.09	1.09	0.0
2'6"x4" Pipe Mount	A	From Leg	0.50	0.0000	124.00	No Ice	0.65	0.65	0.0
			0.00			1/2" Ice	0.91	0.91	0.0
			0.00			1" Ice	1.09	1.09	0.0
PD1110	В	From Leg	2.00	0.0000	112.00	No Ice	2.50	2.50	0.0
			0.00			1/2" Ice	3.84	3.84	0.0
Sabre 2' Sidearm	В	From Log	0.00 1.00	0.0000	112.00	1" Ice No Ice	5.20 3.90	5.20 3.90	0.0
Saure 2 Sideariii	ь	From Leg	0.00	0.0000	112.00	1/2" Ice	4.40	4.40	0.0
			0.00			1" Ice	4.90	4.90	0.1
6'x4" Pipe Mount	C	From Leg	0.50	0.0000	104.00	No Ice	1.81	1.81	0.0
			0.00			1/2" Ice	2.46	2.46	0.0
			0.00			1" Ice	2.83	2.83	0.0
PR-900	C	From Leg	0.50	0.0000	94.00	No Ice	6.35	6.35	0.0
			0.00			1/2" Ice	11.43	11.43	0.0
			0.00		0.4.00	1" Ice	16.51	16.51	0.0
ASP-962	В	From Leg	0.50	0.0000	94.00	No Ice	0.16	0.16	0.0
			0.00			1/2" Ice 1" Ice	0.29	0.29	0.0
DB212-1	С	From Leg	0.00 0.00	0.0000	70.00	No Ice	0.42 4.50	0.42 4.50	0.00
(CSP-10)		110m Leg	0.00	0.0000	70.00	1/2" Ice	8.10	8.10	0.0
(001 10)			0.00			1" Ice	11.70	11.70	0.0
6' Yagi	C	From Leg	3.00	0.0000	18.00	No Ice	5.00	5.00	0.0
_			0.00			1/2" Ice	6.50	6.50	0.0
			0.00			1" Ice	8.00	8.00	0.0
Sabre 2' Sidearm	C	From Leg	1.00	0.0000	18.00	No Ice	3.90	3.90	0.0
			0.00			1/2" Ice	4.40	4.40	0.1
DVA 90062 4CE	4	Enom I oo	0.00	0.0000	84.00	1" Ice	4.90	4.90	0.1
BXA-80063-4CF (Verizon)	A	From Leg	3.00 0.00	0.0000	84.00	No Ice 1/2" Ice	4.71 5.03	2.52 2.82	0.0
(Verizon)			0.00			1" Ice	5.35	3.13	0.0
BXA-80063-4CF	В	From Leg	3.00	0.0000	84.00	No Ice	4.71	2.52	0.0
(Verizon)	2	Trom Deg	0.00	0.0000	01.00	1/2" Ice	5.03	2.82	0.0
,			0.00			1" Ice	5.35	3.13	0.0'
BXA-80063-4CF	C	From Leg	3.00	0.0000	84.00	No Ice	4.71	2.52	0.0
(Verizon)			0.00			1/2" Ice	5.03	2.82	0.0
			0.00			1" Ice	5.35	3.13	0.0
(2) JAHH-65B-R3B	Α	From Leg	3.00	0.0000	84.00	No Ice	9.11	5.98	0.0
(Verizon)			0.00			1/2" Ice	9.58	6.44	0.17
(2) JAHH-65B-R3B	В	From Leg	0.00 3.00	0.0000	84.00	1" Ice No Ice	10.05 9.11	6.91 5.98	0.19
(Verizon)	Ь	From Leg	0.00	0.0000	04.00	1/2" Ice	9.11	5.98 6.44	0.00
(voitzon)			0.00			1" Ice	10.05	6.91	0.1
(2) JAHH-45B-R3B	C	From Leg	3.00	0.0000	84.00	No Ice	11.40	5.28	0.0
(Verizon)		. 3	0.00		-	1/2" Ice	11.89	5.74	0.1
			0.00			1" Ice	12.38	6.20	0.23
(2) JAHH-45B-R3B	В	From Leg	3.00	0.0000	84.00	No Ice	11.40	5.28	0.09
(Verizon)			0.00			1/2" Ice	11.89	5.74	0.1

Centek Engineering Inc. 63-2 North Branford Rd.

Job	Page
21007.33 - Storrs	28 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client	Designed by
Verizon	TJL

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
	Leg		Lateral						
			Vert	0	ft		ft²	ft²	K
			ft ft		Ji		ji	ji	Λ
						1" Ice	12.38	6.20	0.23
RVZDC-6627-PF-48	A	From Leg	3.00	0.0000	84.00	No Ice	3.25	2.15	0.23
(Verizon)	11	Trom Leg	6.00	0.0000	01.00	1/2" Ice	3.48	2.35	0.06
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			0.00			1" Ice	3.71	2.55	0.09
RVZDC-6627-PF-48	В	From Leg	3.00	0.0000	84.00	No Ice	3.25	2.15	0.03
(Verizon)		· ·	6.00			1/2" Ice	3.48	2.35	0.06
			0.00			1" Ice	3.71	2.55	0.09
(2) MT6407-77A	A	From Leg	3.00	0.0000	84.00	No Ice	4.71	1.84	0.00
(Verizon - Proposed)			0.00			1/2" Ice	5.00	2.06	0.03
NAT (407 77 A	D	F I	0.00	0.0000	04.00	1" Ice	5.29	2.29	0.06
MT6407-77A	В	From Leg	3.00	0.0000	84.00	No Ice 1/2" Ice	4.71	1.84	0.00
(Verizon - Proposed)			0.00 0.00			1" Ice	5.00 5.29	2.06 2.29	0.03 0.06
MT6407-77A	C	From Leg	3.00	0.0000	84.00	No Ice	4.71	1.84	0.00
(Verizon - Proposed)		From Leg	0.00	0.0000	04.00	1/2" Ice	5.00	2.06	0.00
(Verizon - Troposed)			0.00			1" Ice	5.29	2.29	0.06
(2) XXDWMM-12.5-75-8T	A	From Leg	3.00	0.0000	84.00	No Ice	0.89	0.17	0.00
(Verizon - Proposed)	••	Trom Leg	0.00	0.0000	01.00	1/2" Ice	1.01	0.25	0.01
(0.00			1" Ice	1.14	0.34	0.02
XXDWMM-12.5-75-8T	В	From Leg	3.00	0.0000	84.00	No Ice	0.89	0.17	0.00
(Verizon - Proposed)			0.00			1/2" Ice	1.01	0.25	0.01
•			0.00			1" Ice	1.14	0.34	0.02
XXDWMM-12.5-75-8T	C	From Leg	3.00	0.0000	84.00	No Ice	0.89	0.17	0.00
(Verizon - Proposed)			0.00			1/2" Ice	1.01	0.25	0.01
			0.00			1" Ice	1.14	0.34	0.02
(2) B2/B66A RRH	Α	From Leg	3.00	0.0000	84.00	No Ice	2.54	1.61	0.06
(Verizon - Proposed)			0.00			1/2" Ice	2.75	1.79	0.08
DA DACA DDII	D	D .	0.00	0.0000	0.4.00	1" Ice	2.97	1.98	0.10
B2/B66A RRH	В	From Leg	3.00	0.0000	84.00	No Ice	2.54	1.61	0.06
(Verizon - Proposed)			0.00			1/2" Ice	2.75	1.79	0.08
B2/B66A RRH	С	Erom I oa	0.00 3.00	0.0000	84.00	1" Ice No Ice	2.97 2.54	1.98 1.61	0.10 0.06
(Verizon - Proposed)	C	From Leg	0.00	0.0000	64.00	1/2" Ice	2.75	1.79	0.08
(Verizon - Froposed)			0.00			1" Ice	2.73	1.79	0.10
(2) B5/B13 RRH	A	From Leg	3.00	0.0000	84.00	No Ice	1.87	1.02	0.10
(Verizon - Proposed)	••	Trom Leg	0.00	0.0000	01.00	1/2" Ice	2.03	1.15	0.09
(· · · · · · · · · · · · · · · · · · ·			0.00			1" Ice	2.21	1.29	0.11
B5/B13 RRH	В	From Leg	3.00	0.0000	84.00	No Ice	1.87	1.02	0.07
(Verizon - Proposed)			0.00			1/2" Ice	2.03	1.15	0.09
			0.00			1" Ice	2.21	1.29	0.11
B5/B13 RRH	C	From Leg	3.00	0.0000	84.00	No Ice	1.87	1.02	0.07
(Verizon - Proposed)			0.00			1/2" Ice	2.03	1.15	0.09
			0.00			1" Ice	2.21	1.29	0.11
(2) CBRS RRH-RT4401-48A	A	From Leg	3.00	0.0000	84.00	No Ice	0.86	0.42	0.02
(Verizon - Proposed)			0.00			1/2" Ice	0.98	0.51	0.03
GDDG DDIT DD1101 101	-		0.00		0.4.00	1" Ice	1.10	0.61	0.04
CBRS RRH-RT4401-48A	В	From Leg	3.00	0.0000	84.00	No Ice	0.86	0.42	0.02
(Verizon - Proposed)			0.00			1/2" Ice	0.98	0.51	0.03
CBRS RRH-RT4401-48A	C	From Leg	0.00 3.00	0.0000	84.00	1" Ice No Ice	1.10 0.86	0.61 0.42	0.04 0.02
(Verizon - Proposed)		From Leg	0.00	0.0000	04.00	1/2" Ice	0.86	0.42	0.02
(verizon - rroposed)			0.00			1" Ice	1.10	0.51	0.03
(2) CBC78T-DS-43	Α	From Leg	3.00	0.0000	84.00	No Ice	0.37	0.26	0.04
(Verizon - Proposed)	••		0.00	0.000		1/2" Ice	0.45	0.32	0.02
(·			0.00			1" Ice	0.53	0.40	0.02
CBC78T-DS-43	В	From Leg	3.00	0.0000	84.00	No Ice	0.37	0.26	0.01
CBC/CL BO IS									

Centek Engineering Inc. 63-2 North Branford Rd.

Job	Page
21007.33 - Storrs	29 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client Verizon	Designed by TJL

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
	Leg	**	Lateral	, and the second					
			Vert ft	0	ft		ft²	ft²	K
			ft ft		.) i		Jŧ	Ji	Α
			0.00			1" Ice	0.53	0.40	0.02
CBC78T-DS-43	C	From Leg	3.00	0.0000	84.00	No Ice	0.37	0.26	0.01
(Verizon - Proposed)			0.00			1/2" Ice	0.45	0.32	0.02
13' Platform w/rails	A	None	0.00	0.0000	84.00	1" Ice No Ice	0.53 31.30	0.40 31.30	0.02 1.82
(Verizon)	А	None		0.0000	04.00	1/2" Ice	40.20	40.20	2.45
(* • • • • • • • • • • • • • • • • • •						1" Ice	49.10	49.10	3.08
7770.00	A	From Leg	3.00	0.0000	185.00	No Ice	5.51	2.93	0.04
(AT&T - Existing)			-6.00			1/2" Ice	5.87	3.27	0.07
ODA (5D I CHILLIO		F I	0.00	0.0000	105.00	1" Ice	6.23	3.63	0.11
OPA-65R-LCUU-H8 (AT&T - Existing)	Α	From Leg	3.00 -3.00	0.0000	185.00	No Ice 1/2'' Ice	12.98 13.56	7.52 8.09	0.09 0.16
(AT&T - Existing)			0.00			1" Ice	14.15	8.67	0.10
TPA-65R-LCUUUU-H8	Α	From Leg	3.00	0.0000	185.00	No Ice	13.30	8.82	0.08
(AT&T - Existing)		· ·	3.00			1/2" Ice	13.90	9.42	0.15
			0.00			1" Ice	14.50	10.03	0.24
HPA-65R-BUU-H8	Α	From Leg	3.00	0.0000	185.00	No Ice	12.98	7.52	0.07
(AT&T - Existing)			6.00 0.00			1/2" Ice 1" Ice	13.56 14.15	8.09 8.67	$0.14 \\ 0.22$
7770.00	В	From Leg	3.00	0.0000	185.00	No Ice	5.51	2.93	0.22
(AT&T - Existing)	В	Trom Leg	-6.00	0.0000	105.00	1/2" Ice	5.87	3.27	0.07
(0.00			1" Ice	6.23	3.63	0.11
OPA-65R-LCUU-H6	В	From Leg	3.00	0.0000	185.00	No Ice	9.66	5.52	0.07
(AT&T - Existing)			-3.00			1/2" Ice	10.13	5.97	0.13
08///512.2	D	F I	0.00	0.0000	105.00	1" Ice	10.61	6.43	0.20
QS66512-2 (AT&T - Existing)	В	From Leg	3.00 3.00	0.0000	185.00	No Ice 1/2" Ice	8.13 8.59	6.80 7.27	0.11 0.17
(AT&T - Existing)			0.00			1" Ice	9.05	7.72	0.17
HPA-65R-BUU-H6	В	From Leg	3.00	0.0000	185.00	No Ice	9.66	6.45	0.05
(AT&T - Existing)			6.00			1/2" Ice	10.13	6.91	0.11
			0.00			1" Ice	10.61	7.38	0.18
7770.00	C	From Leg	3.00	0.0000	185.00	No Ice	5.51	2.93	0.04
(AT&T - Existing)			-6.00 0.00			1/2" Ice 1" Ice	5.87 6.23	3.27 3.63	0.07 0.11
OPA-65R-LCUU-H8	C	From Leg	3.00	0.0000	185.00	No Ice	12.98	7.52	0.09
(AT&T - Existing)	-		-3.00			1/2" Ice	13.56	8.09	0.16
			0.00			1" Ice	14.15	8.67	0.24
TPA-65R-LCUUUU-H8	C	From Leg	3.00	0.0000	185.00	No Ice	13.30	8.82	0.08
(AT&T - Existing)			3.00			1/2" Ice	13.90	9.42	0.15
HPA-65R-BUU-H8	C	From Leg	0.00 3.00	0.0000	185.00	1" Ice No Ice	14.50 12.98	10.03 7.52	0.24 0.07
(AT&T - Existing)	C	From Leg	6.00	0.0000	165.00	1/2" Ice	13.56	8.09	0.14
(iii ai aising)			0.00			1" Ice	14.15	8.67	0.22
DTMABP7819VG12A TMA	A	From Leg	3.00	0.0000	185.00	No Ice	1.36	0.51	0.02
(AT&T - Existing)			- 6.00			1/2" Ice	1.51	0.61	0.03
D			0.00		40500	1" Ice	1.66	0.72	0.04
DTMABP7819VG12A TMA	В	From Leg	3.00	0.0000	185.00	No Ice	1.36	0.51	0.02
(AT&T - Existing)			-6.00 0.00			1/2" Ice 1" Ice	1.51 1.66	0.61 0.72	0.03 0.04
DTMABP7819VG12A TMA	С	From Leg	3.00	0.0000	185.00	No Ice	1.36	0.72	0.04
(AT&T - Existing)	_		-6.00			1/2" Ice	1.51	0.61	0.03
			0.00			1" Ice	1.66	0.72	0.04
(2) TPX-070821	A	From Leg	3.00	0.0000	185.00	No Ice	0.47	0.10	0.01
(AT&T - Existing)			-3.00			1/2" Ice	0.56	0.15	0.01
(2) TPX-070821	В	From Leg	0.00 3.00	0.0000	185.00	1" Ice No Ice	0.66 0.47	0.20 0.10	$0.02 \\ 0.01$
(AT&T - Existing)	ם	1 Tom Leg	-3.00	0.0000	105.00	1/2" Ice	0.47	0.10	0.01

Centek Engineering Inc. 63-2 North Branford Rd.

Job		Page
	21007.33 - Storrs	30 of 91
Proje	ct	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Clien	t Verizon	Designed by

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weig
	Leg		Lateral Vert						
			ft	0	ft		ft^2	ft^2	K
			ft ft						
			0.00			1" Ice	0.66	0.20	0.0
(2) TPX-070821	C	From Leg	3.00	0.0000	185.00	No Ice	0.47	0.10	0.0
(AT&T - Existing)			-3.00			1/2" Ice	0.56	0.15	0.0
DDIIG 11		г. т	0.00	0.0000	105.00	1" Ice	0.66	0.20	0.0
RRUS-11	A	From Leg	1.00 1.00	0.0000	185.00	No Ice 1/2" Ice	2.57 2.76	1.07	0.0
(AT&T - Existing)			0.00			1" Ice	2.76	1.21 1.36	0.0
RRUS-11	В	From Leg	1.00	0.0000	185.00	No Ice	2.57	1.07	0.0
(AT&T - Existing)	_		1.00			1/2" Ice	2.76	1.21	0.0
<i>O</i> ,			0.00			1" Ice	2.97	1.36	0.0
RRUS-11	C	From Leg	1.00	0.0000	185.00	No Ice	2.57	1.07	0.0
(AT&T - Existing)			1.00			1/2" Ice	2.76	1.21	0.0
			0.00			1" Ice	2.97	1.36	0.0
RRUS-32	Α	From Leg	2.00	0.0000	185.00	No Ice	3.31	2.42	0.0
(AT&T - Existing)			2.00			1/2" Ice	3.56	2.64	0.1
RRUS-32	В	From Leg	0.00 2.00	0.0000	185.00	1" Ice No Ice	3.81 3.31	2.86 2.42	0.1 0.0
(AT&T - Existing)	ь	110iii Leg	2.00	0.0000	165.00	1/2" Ice	3.56	2.64	0.0
(Tiret Existing)			0.00			1" Ice	3.81	2.86	0.1
RRUS-32	C	From Leg	2.00	0.0000	185.00	No Ice	3.31	2.42	0.0
(AT&T - Existing)			2.00			1/2" Ice	3.56	2.64	0.1
			0.00			1" Ice	3.81	2.86	0.1
RRUS-32	A	From Leg	3.00	0.0000	185.00	No Ice	3.31	2.42	0.0
(AT&T - Existing)			-3.00			1/2" Ice	3.56	2.64	0.1
DDIIG 22		Б. Т	0.00	0.0000	105.00	1" Ice	3.81	2.86	0.1
RRUS-32	В	From Leg	3.00	0.0000	185.00	No Ice	3.31	2.42	0.0
(AT&T - Existing)			-3.00 0.00			1/2" Ice 1" Ice	3.56 3.81	2.64 2.86	0.1 0.1
RRUS-32	C	From Leg	3.00	0.0000	185.00	No Ice	3.31	2.42	0.0
(AT&T - Existing)		Trom Leg	-3.00	0.0000	105.00	1/2" Ice	3.56	2.64	0.1
(0.00			1" Ice	3.81	2.86	0.1
RRUS-32	A	From Leg	3.00	0.0000	185.00	No Ice	3.31	2.42	0.0
(AT&T - Existing)			0.00			1/2" Ice	3.56	2.64	0.1
			2.00			1" Ice	3.81	2.86	0.1
RRUS-32	В	From Leg	3.00	0.0000	185.00	No Ice	3.31	2.42	0.0
(AT&T - Existing)			0.00			1/2" Ice	3.56	2.64	0.1
RRUS-32	С	From Leg	2.00 3.00	0.0000	185.00	1" Ice No Ice	3.81 3.31	2.86 2.42	0.1 0.0
(AT&T - Existing)		110m Leg	0.00	0.0000	165.00	1/2" Ice	3.56	2.64	0.0
(Mich Existing)			2.00			1" Ice	3.81	2.86	0.1
RRUS-32	A	From Leg	3.00	0.0000	185.00	No Ice	3.31	2.42	0.0
(AT&T - Existing)		J	0.00			1/2" Ice	3.56	2.64	0.1
			-2.00			1" Ice	3.81	2.86	0.1
RRUS-32	В	From Leg	3.00	0.0000	185.00	No Ice	3.31	2.42	0.0
(AT&T - Existing)			0.00			1/2" Ice	3.56	2.64	0.1
DD110 44			-2.00		405.00	1" Ice	3.81	2.86	0.1
RRUS-32	С	From Leg	3.00	0.0000	185.00	No Ice 1/2" Ice	3.31	2.42	0.0
(AT&T - Existing)			0.00 -2.00			1" Ice	3.56 3.81	2.64 2.86	0.1 0.1
B14 4478	A	From Leg	3.00	0.0000	185.00	No Ice	1.84	1.06	0.0
(AT&T - Existing)	11	Trom Leg	3.00	0.0000	105.00	1/2" Ice	2.01	1.20	0.0
			0.00			1" Ice	2.19	1.34	0.0
B14 4478	В	From Leg	3.00	0.0000	185.00	No Ice	1.84	1.06	0.0
(AT&T - Existing)		3	3.00			1/2" Ice	2.01	1.20	0.0
			0.00			1" Ice	2.19	1.34	0.0
B14 4478 (AT&T - Existing)	C	From Leg	3.00	0.0000	185.00	No Ice	1.84	1.06	0.0
			3.00			1/2" Ice	2.01	1.20	0.0

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

٦	Job	Page
	21007.33 - Storrs	31 of 91
	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client	Designed by
	Verizon	TJL

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weigh
			Vert ft ft ft	0	ft		ft^2	ft²	K
			0.00			1" Ice	2.19	1.34	0.09
DC6-48-60-18-8F Surge	Α	None		0.0000	185.00	No Ice	1.91	1.91	0.02
Arrestor						1/2" Ice	2.10	2.10	0.04
(AT&T - Existing)						1" Ice	2.29	2.29	0.06
DC6-48-60-18-8F Surge	В	None		0.0000	185.00	No Ice	1.91	1.91	0.02
Arrestor						1/2" Ice	2.10	2.10	0.04
(AT&T - Existing)						1" Ice	2.29	2.29	0.06
DC6-48-60-18-8F Surge	C	None		0.0000	185.00	No Ice	1.91	1.91	0.02
Arrestor						1/2" Ice	2.10	2.10	0.04
(AT&T - Existing)						1" Ice	2.29	2.29	0.06
12' V-Frame	A	None		0.0000	185.00	No Ice	9.22	12.97	0.30
(AT&T - Existing)						1/2" Ice	9.22	12.97	0.40
						1" Ice	9.22	12.97	0.50
12' V-Frame	В	None		0.0000	185.00	No Ice	9.22	12.97	0.30
(AT&T - Existing)						1/2" Ice	9.22	12.97	0.40
						1" Ice	9.22	12.97	0.50
12' V-Frame	C	None		0.0000	185.00	No Ice	9.22	12.97	0.30
(AT&T - Existing)						1/2" Ice	9.22	12.97	0.40
						1" Ice	9.22	12.97	0.50
BA40-67-DIN	В	From Leg	1.00	0.0000	205.00	No Ice	2.08	2.08	0.01
			0.00			1/2" Ice	2.59	2.59	0.03
			0.00			1" Ice	3.02	3.02	0.05
BA40-67-DIN	В	From Leg	1.00	0.0000	150.00	No Ice	2.08	2.08	0.01
			0.00			1/2" Ice	2.59	2.59	0.03
			0.00			1" Ice	3.02	3.02	0.05

Tower Pressures - No Ice

 $G_H = 0.850$ (base tower), 1.350 (upper structure)

Section	Z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					a				%	In	Out
					c	,	,	,		Face	Face
ft	ft		psf	ft ²	е	ft ²	ft²	ft ²		ft²	ft ²
L1	305.55	1.601	36	31.354	Α	0.000	31.354	31.354	100.00	0.000	0.000
323.00-288.00					В	0.000	31.354		100.00	0.000	0.000
					C	0.000	31.354		100.00	0.000	0.000
T1	284.00	1.577	35	30.693	Α	0.000	4.690	2.667	56.85	0.872	0.000
288.00-280.00					В	0.000	4.690		56.85	0.000	0.000
					C	0.000	4.982		53.52	0.000	0.000
T2	270.00	1.56	35	76.733	Α	0.000	11.927	6.667	55.89	5.150	0.000
280.00-260.00					В	0.000	11.927		55.89	2.142	0.000
					C	0.000	12.803		52.07	0.000	0.000
T3	250.00	1.535	34	77.150	Α	0.000	12.730	7.500	58.92	33.932	0.000
260.00-240.00					В	0.000	12.730		58.92	2.520	0.000
					C	0.000	13.600		55.15	0.000	0.000
T4	230.00	1.508	33	77.150	Α	0.000	12.730	7.500	58.92	57.440	0.000
240.00-220.00					В	0.000	12.730		58.92	2.520	0.000
					C	0.000	13.600		55.15	0.000	0.000
T5	210.00	1.48	33	77.567	Α	0.000	13.821	8.333	60.30	58.639	0.000

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Jo	b	Page
	21007.33 - Storrs	32 of 91
Pı	roject	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
С	lient	Designed by
	Verizon	TJL

Section	z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	C_AA_A
Elevation	- 1	112	4z	216	a	117	11 _K	11 leg	%	In	Out
Bic valion					c				70	Face	Face
ft	ft		psf	ft ²	e	ft²	ft ²	ft ²		ft ²	ft ²
220.00-200.00	,		1 5	,	В	0.000	13.821	,	60.30	3.065	0.000
					C	0.000	14.686		56.74	0.000	0.000
Т6	190.00	1.449	32	77.567	Α	0.000	13.243	8.333	62.93	61.582	0.000
200.00-180.00					В	0.000	13.243		62.93	6.464	0.000
					C	0.000	14.108		59.07	13.680	0.000
T7	170.00	1.415	31	77.983	Α	0.000	14.621	9.167	62.70	64.416	0.000
180.00-160.00					В	0.000	14.621		62.70	7.220	0.000
					C	0.000	15.481		59.21	54.720	0.000
Т8	150.00	1.378	31	77.567	Α	0.000	13.532	8.333	61.58	66.160	0.000
160.00-140.00					В	0.000	13.532		61.58	9.507	0.000
					C	0.000	14.397		57.88	54.720	0.000
Т9	130.00	1.337	30	77.983	Α	0.000	14.046	9.167	65.26	66.160	0.000
140.00-120.00					В	0.000	14.046		65.26	10.660	0.000
					C	0.000	14.907		61.49	54.720	0.000
T10	110.00	1.291	29	77.983	Α	0.573	14.334	9.167	61.49	73.135	0.000
120.00-100.00					В	0.573	14.334		61.49	10.660	0.000
					C	0.573	15.194		58.13	54.720	0.000
T11	90.00	1.238	27	78.400	Α	0.000	15.136	10.000	66.07	77.785	0.000
100.00-80.00					В	0.000	15.136		66.07	12.424	0.000
					C	0.000	15.991		62.54	61.608	0.000
T12	70.00	1.174	26	78.400	Α	0.000	14.850	10.000	67.34	78.875	0.000
80.00-60.00					В	0.000	14.850		67.34	13.180	0.000
					C	0.000	15.705		63.67	89.160	0.000
T13	50.00	1.094	24	78.400	Α	0.000	14.850	10.000	67.34	79.965	0.000
60.00-40.00					В	0.000	14.850		67.34	13.180	0.000
					C	0.000	15.705		63.67	89.160	0.000
T14	30.00	0.982	22	78.400	Α	0.000	14.850	10.000	67.34	79.965	0.000
40.00-20.00					В	0.000	14.850		67.34	13.180	0.000
					C	0.000	15.705		63.67	89.160	0.000
T15 20.00-6.75	13.38	0.85	19	51.940	Α	0.000	9.937	6.625	66.67	52.977	0.000
					В	0.000	9.937		66.67	9.441	0.000
					C	0.000	10.507		63.05	59.069	0.000
T16 6.75-0.00	3.38	0.85	19	14.135	Α	7.139	3.537	3.537	33.13	6.997	0.000
					В	7.139	3.537		33.13	1.264	0.000
					C	7.139	3.537		33.13	7.801	0.000

Tower Pressure - With Ice

 $G_H = 0.850$ (base tower), 1.350 (upper structure)

Section	Z	K_Z	q_z	t_Z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	C_AA_A
Elevation						а				%	In	Out
						c					Face	Face
ft	ft		psf	in	ft^2	e	ft^2	ft^2	ft ²		ft^2	ft^2
L1	305.55	1.601	6	2.4985	45.929	Α	0.000	45.929	45.929	100.00	0.000	0.000
323.00-288.00						В	0.000	45.929		100.00	0.000	0.000
						C	0.000	45.929		100.00	0.000	0.000
T1	284.00	1.577	5	2.4803	34.000	Α	0.000	19.790	9.281	46.90	4.841	0.000
288.00-280.00						В	0.000	19.790		46.90	0.000	0.000
						C	0.000	21.531		43.11	0.000	0.000
T2	270.00	1.56	5	2.4678	84.959	Α	0.000	50.015	23.119	46.22	22.425	0.000
280.00-260.00						В	0.000	50.015		46.22	18.715	0.000
						C	0.000	55.214		41.87	0.000	0.000
T3	250.00	1.535	5	2.4489	85.313	A	0.000	50.397	23.826	47.28	124.118	0.000
260.00-240.00						В	0.000	50.397		47.28	21.885	0.000
						C	0.000	55.532	- 1	42.90	0.000	0.000

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21007.33 - Storrs	33 of 91
Proje		Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Clien	t Verizon	Designed by TJL

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 0.000 0 0.000 9 0.000 9 0.000 0 0.000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ft ² 6 0.000 2 0.000 0 0.000 9 0.000 9 0.000 0 0.000
T4	6 0.000 2 0.000 0 0.000 9 0.000 9 0.000 0 0.000
240.00-220.00	2 0.000 0 0.000 9 0.000 9 0.000 0 0.000
T5 210.00 1.48 5 2.4066 85.589 A 0.000 55.184 42.93 0.00 T6 190.00 1.449 5 2.3826 85.509 A 0.000 55.743 43.73 0.00 T6 190.00 1.415 5 2.3563 85.838 A 0.000 54.756 44.23 44.53 T7 170.00 1.415 5 2.3563 85.838 A 0.000 50.618 24.875 49.14 239.79 180.00-160.00	0.000 9 0.000 9 0.000 0 0.000
T5	9 0.000 9 0.000 0 0.000
220.00-200.00	9 0.000 0 0.000
T6	0.000
T6	
200.00-180.00	7 0.000
T7	
T7 170.00 1.415 5 2.3563 85.838 A 0.000 50.618 24.875 49.14 239.79 180.00-160.00	
180.00-160.00	
T8	
T8 150.00 1.378 5 2.3270 85.323 A 0.000 49.202 23.846 48.47 247.900 49.202 23.846 48.47 46.83 40.000 49.202 23.846 48.47 46.83 40.000 49.202 44.08 176.84 40.000 49.000 49.000 49.000 49.000 49.000 49.83 245.92 40.000 49.000 49.000 49.83 245.92 45.38 176.07 45.38 176.07 45.38 176.07 45.38 176.07 45.38 176.07 45.38 176.07 45.38 176.07 45.38 176.07 45.38 176.07 45.38 176.07 45.38 176.07 45.38 176.07 45.38 176.07 45.38 176.07 45.38 176.07 120.00-100.00 49.000	
160.00-140.00	6 0.000
T9 130.00 1.337 5 2.2939 85.630 A 0.000 49.090 24.459 49.83 245.92 85.630 A 0.000 49.090 24.459 49.83 53.00 C 0.000 53.897 45.38 176.07	
T9 130.00 1.337 5 2.2939 85.630 A 0.000 49.090 24.459 49.83 245.92 49.83 53.00 60.0	
140.00-120.00	0.000
T10 110.00 1.291 4 2.2559 85.503 A 1.436 47.504 24.206 49.46 272.27 120.00-100.00	3 0.000
T10 110.00 1.291 4 2.2559 85.503 A 1.436 47.504 24.206 49.46 272.27 B 1.436 47.504 47.504 49.46 52.48 49.46 52.48 49.46 52.48 6 47.504 49.46 6 47.504 49.46 6 47.5	0.000
120.00-100.00	2 0.000
T11 90.00 1.238 4 2.2111 85.770 A 0.000 48.799 24.740 50.70 287.96 100.00-80.00 C 0.000 53.435 46.30 194.96	7 0.000
T11 90.00 1.238 4 2.2111 85.770 A 0.000 48.799 24.740 50.70 287.96 100.00-80.00 C 0.000 53.435 46.30 194.96	7 0.000
100.00-80.00 B 0.000 48.799 50.70 55.89 C 0.000 53.435 46.30 194.96	1 0.000
C 0.000 53.435 46.30 194.96	1 0.000
	9 0.000
T12 90 00 60 00 70 00 1 174 4 2 1562 95 597 A 0 000 47 679 24 275 51 12 290 10	0.000
T12 80.00-60.00 70.00 1.174 4 2.1562 85.587 A 0.000 47.678 24.375 51.12 289.19	7 0.000
B 0.000 47.678 51.12 56.88	5 0.000
C 0.000 52.221 46.68 276.30	3 0.000
T13 60.00-40.00 50.00 1.094 4 2.0849 85.350 A 0.000 46.592 23.899 51.29 288.89	9 0.000
B 0.000 46.592 51.29 55.92	5 0.000
C 0.000 51.012 46.85 273.74	
T14 40.00-20.00 30.00 0.982 3 1.9810 85.003 A 0.000 45.011 23.207 51.56 280.60	
B 0.000 45.011 51.56 54.53	
C 0.000 49.254 47.12 270.02	
T15 20.00-6.75 13.38 0.85 3 1.8273 55.975 A 0.000 28.734 14.696 51.14 177.76	
B 0.000 28.734 51.14 36.44	
C 0.000 31.387 46.82 175.25	
T16 6.75-0.00 3.38 0.85 3 1.5922 15.991 A 7.139 9.516 7.292 43.78 21.83	
B 7.139 9.516 43.78 4.58	
C 7.139 9.516 43.78 22.41	() () ()()()

Tower Pressure - Service

 $G_H = 0.850$ (base tower), 1.350 (upper structure)

Section	Z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					a				%	In	Out
					c					Face	Face
ft	ft		psf	ft^2	е	ft ²	ft^2	ft^2		ft^2	ft^2
L1	305.55	1.601	13	31.354	Α	0.000	31.354	31.354	100.00	0.000	0.000
323.00-288.00					В	0.000	31.354		100.00	0.000	0.000
					C	0.000	31.354		100.00	0.000	0.000
T1	284.00	1.577	12	30.693	Α	0.000	4.690	2.667	56.85	0.872	0.000
288.00-280.00					В	0.000	4.690		56.85	0.000	0.000
					C	0.000	4.982		53.52	0.000	0.000
T2	270.00	1.56	12	76.733	Α	0.000	11.927	6.667	55.89	5.150	0.000

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Jol	b b	Page
	21007.33 - Storrs	34 of 91
Pr	roject	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
CI	lient	Designed by
	Verizon	TJL

Section	Z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
			_	-2	C	- 2	- 2	- 2		Face	Face
ft	ft		psf	ft ²	е	ft ²	ft ²	ft ²		ft ²	ft ²
280.00-260.00					В	0.000	11.927		55.89	2.142	0.000
					C	0.000	12.803		52.07	0.000	0.000
T3	250.00	1.535	12	77.150	Α	0.000	12.730	7.500	58.92	33.932	0.000
260.00-240.00					В	0.000	12.730		58.92	2.520	0.000
					C	0.000	13.600		55.15	0.000	0.000
T4	230.00	1.508	12	77.150	A	0.000	12.730	7.500	58.92	57.440	0.000
240.00-220.00					В	0.000	12.730		58.92	2.520	0.000
					C	0.000	13.600		55.15	0.000	0.000
T5	210.00	1.48	12	77.567	A	0.000	13.821	8.333	60.30	58.639	0.000
220.00-200.00					В	0.000	13.821		60.30	3.065	0.000
	400.00				C	0.000	14.686		56.74	0.000	0.000
T6	190.00	1.449	11	77.567	A	0.000	13.243	8.333	62.93	61.582	0.000
200.00-180.00					В	0.000	13.243		62.93	6.464	0.000
70.7	170.00	1 41.5		77.002	C	0.000	14.108	0.167	59.07	13.680	0.000
T7	170.00	1.415	11	77.983	A	0.000	14.621	9.167	62.70	64.416	0.000
180.00-160.00					В	0.000	14.621		62.70	7.220	0.000
TO	150.00	1 270	1.1	77.567	C	0.000 0.000	15.481	0 222	59.21	54.720	0.000 0.000
T8 160.00-140.00	150.00	1.378	11	77.567	A		13.532	8.333	61.58	66.160	0.000
160.00-140.00					B C	0.000	13.532 14.397		61.58	9.507 54.720	0.000
Т9	130.00	1.337	10	77.983		0.000	14.397	9.167	57.88 65.26	66.160	0.000
140.00-120.00	130.00	1.55/	10	//.963	A B	0.000	14.046	9.167	65.26	10.660	0.000
140.00-120.00					C	0.000	14.046		61.49	54.720	0.000
T10	110.00	1.291	10	77.983	A	0.573	14.334	9.167	61.49	73.135	0.000
120.00-100.00	110.00	1.291	10	//.903	В	0.573	14.334	9.107	61.49	10.660	0.000
120.00-100.00					C	0.573	15.194		58.13	54.720	0.000
T11	90.00	1.238	10	78.400	A	0.000	15.136	10.000	66.07	77.785	0.000
100.00-80.00	90.00	1.230	10	76.400	В	0.000	15.136	10.000	66.07	12.424	0.000
100.00-80.00					C	0.000	15.130		62.54	61.608	0.000
T12	70.00	1.174	9	78,400	A	0.000	14.850	10.000	67.34	78.875	0.000
80.00-60.00	70.00	1.17		70.400	В	0.000	14.850	10.000	67.34	13.180	0.000
00.00-00.00					Č	0.000	15.705		63.67	89.160	0.000
T13	50.00	1.094	9	78.400	Ã	0.000	14.850	10.000	67.34	79.965	0.000
60.00-40.00	20.00	1107		, 01.100	В	0.000	14.850	10.000	67.34	13.180	0.000
00.00 10.00					C	0.000	15.705		63.67	89.160	0.000
T14	30.00	0.982	8	78.400	Ã	0.000	14.850	10.000	67.34	79.965	0.000
40.00-20.00	20.00	0.502		701100	В	0.000	14.850	10.000	67.34	13.180	0.000
10100 20100					Ĉ	0.000	15.705		63.67	89.160	0.000
T15 20.00-6.75	13.38	0.85	7	51.940	Ã	0.000	9.937	6.625	66.67	52.977	0.000
			, i	22.5	В	0.000	9.937		66.67	9.441	0.000
					č	0.000	10.507		63.05	59.069	0.000
T16 6.75-0.00	3.38	0.85	7	14.135	A	7.139	3.537	3.537	33.13	6.997	0.000
					В	7.139	3.537		33.13	1.264	0.000
					C	7.139	3.537		33.13	7.801	0.000

Tower Forces - No Ice - Wind Normal To Face

Section	Add	Self	F	ϵ	C_{F}	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c			psf						
ft	K	K	е						ft ²	K	plf	
L1	0.00	3.20	Α	1	0.6	36	1	1	31.354	0.90	25.79	C
323.00-288.00			В	1	0.6		1	1	31.354			
			С	1	0.6		1	1	31.354			
T1	0.00	0.53	Α	0.153	2.761	35	1	1	2.663	0.25	30.68	C
288.00-280.00		TA 0.83	В	0.153	2.761		1	1	2.663			
I			C	0.162	2.727		1	1	2.834			

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

٦	Job	Page
	21007.33 - Storrs	35 of 91
	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client	Designed by
	Verizon	TJL

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a			_						Face
			c			psf						
ft	K	K	е						ft ²	K	plf	
T2	0.02	1.36	Α	0.155	2.752	35	1	1	6.776	0.71	35.52	C
280.00-260.00			В	0.155	2.752		1	1	6.776			
			С	0.167	2.71		1	1	7.291			
T3	0.14	1.53	Α	0.165	2.717	34	1	1	7.246	1.24	61.76	C
260.00-240.00		TA 0.83	В	0.165	2.717		1	1	7.246			
			С	0.176	2.677		1	1	7.762			
T4	0.23	1.53	A	0.165	2.717	33	1	1	7.246	1.62	80.75	С
240.00-220.00			В	0.165	2.717		1	1	7.246			
			C	0.176	2.677		1	1	7.762			
T5	0.24	1.81	A	0.178	2.671	33	1	1	7.892	1.65	82.58	С
220.00-200.00		TA 0.83	В	0.178	2.671		1	1	7.892			
			C	0.189	2.632		1	1	8.411			
T6	0.33	1.65	A	0.171	2.697	32	1	1	7.548	1.93	96.31	С
200.00-180.00			В	0.171	2.697		1	1	7.548			
		• • •	C	0.182	2.658		1	1	8.063			
T7	0.54	2.03	A	0.187	2.638	31	1	1	8.369	2.64	132.09	С
180.00-160.00		TA 0.83	В	0.187	2.638		1	1	8.369			
770	0.55	1.72	C	0.199	2.601	2.1	1	1	8.890	2 (0	120.06	
T8	0.55	1.73	A	0.174	2.684	31	1	1	7.719	2.60	130.06	С
160.00-140.00			В	0.174	2.684		1	1	7.719			
TO	0.55	1.06	C	0.186	2.645	30	1	1	8.237	2.56	107.00	
T9 140.00-120.00	0.55	1.86	A	0.18	2.664	30	1	1	8.024	2.56	127.88	С
140.00-120.00			В	0.18	2.664		1	1	8.024			
Т10	0.50	2.02	C	0.191	2.626	29	1	1	8.541	2.61	120.50	С
T10 120.00-100.00	0.58	2.03	A	0.191	2.626	29	1	1	8.787	2.61	130.59	
120.00-100.00		TA 0.83	B C	0.191 0.202	2.626 2.589		1 1	1 1	8.787 9.308			
T11	0.64	2.10			2.589	27		_		2.68	124.11	С
T11 100.00-80.00	0.64	2.18	A B	0.193 0.193	2.619	21	1 1	1 1	8.677 8.677	2.08	134.11	C
100.00-80.00			С	0.193	2.583				9.198			
Т12	0.83	2.10		0.204	2.632	26	1 1	1	9.198 8.505	2.93	146.36	С
80.00-60.00	0.83	2.10	A B	0.189	2.632	20	1	1 1	8.505 8.505	2.93	140.50	
80.00-00.00			C	0.189	2.595		1	1 1	9.023			
T13	0.83	2.10	A	0.189	2.632	24	1	1	8.505	2.74	137.03	С
60.00-40.00	0.63	TA 0.83	В	0.189	2.632	24	1	1	8.505	2./4	157.05	
00.00-40.00		1A 0.65	C	0.189	2.595		1		9.023			
T14	0.83	2.10	A	0.189	2.632	22	1		8.505	2.46	123.06	С
40.00-20.00	0.83	2.10	B	0.189	2.632	22	1	1 1	8.505	2.40	125.00	
40.00-20.00			С	0.189	2.595		1		9.023			
T15	0.55	1.40	A	0.191	2.625	19	1	1 1	5.694	1.42	107.15	С
20.00-6.75	0.33	1.40	B	0.191	2.625	19	1		5.694	1.42	107.13	
20.00-0.73			С	0.191	2.588		1	1 1	6.041			
T16 6.75-0.00	0.07	0.90	A	0.202	1.79	19	1	1 1	10.151	0.35	52.50	С
110 0./3-0.00	0.07	0.90	B	0.755	1.79	19	1		10.151	0.55	54.50	
			C	0.755	1.79		1	$\begin{array}{c c} & 1 \\ & 1 \end{array}$	10.151			
Sum Weight:	6.96	35.03		0.755	1./9		1	1	10.131	31.28		
Sum Weight.	0.50	33.03		ı						21.20		

Tower Forces - No Ice - Wind 45 To Face

ľ	Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
I	Elevation	Weight	Weight	а с			psf						Face
l	ft	K	K	е						ft^2	K	plf	
I	L1	0.00	3.20	Α	1	0.6	36	1	1	31.354	0.90	25.79	С

Centek Engineering Inc. 63-2 North Branford Rd.

Job	Page
21007.33 - Storrs	36 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client	Designed by
Verizon	TJL

Section	Add	Self	F	е	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a		C_F	42	D_{F}	D_K	21E	1	"	Face
Lievation	"Cigni	" cigii	c			psf						1 acc
ft	K	K	e			Poj			ft ²	K	plf	
323.00-288.00			В	1	0.6		1	1	31.354		P J	
225.00 200.00			Č	î	0.6		î	Î	31.354			
T1	0.00	0.53	Ā	0.153	2.761	35	0.825	1	2.663	0.25	30.68	С
288.00-280.00		TA 0.83	В	0.153	2.761		0.825	1	2.663			
			C	0.162	2.727		0.825	1	2.834			
T2	0.02	1.36	Α	0.155	2.752	35	0.825	1	6.776	0.71	35.52	С
280.00-260.00			В	0.155	2.752		0.825	1	6.776			
			C	0.167	2.71		0.825	1	7.291			
Т3	0.14	1.53	Α	0.165	2.717	34	0.825	1	7.246	1.24	61.76	C
260.00-240.00		TA 0.83	В	0.165	2.717		0.825	1	7.246			
			C	0.176	2.677		0.825	1	7.762			
T4	0.23	1.53	Α	0.165	2.717	33	0.825	1	7.246	1.62	80.75	C
240.00-220.00			В	0.165	2.717		0.825	1	7.246			
			C	0.176	2.677		0.825	1	7.762			
T5	0.24	1.81	Α	0.178	2.671	33	0.825	1	7.892	1.65	82.58	С
220.00-200.00		TA 0.83	В	0.178	2.671		0.825	1	7.892			
			C	0.189	2.632		0.825	1	8.411			
Т6	0.33	1.65	Α	0.171	2.697	32	0.825	1	7.548	1.93	96.31	C
200.00-180.00			В	0.171	2.697		0.825	1	7.548			
			С	0.182	2.658		0.825	1	8.063			
T7	0.54	2.03	Α	0.187	2.638	31	0.825	1	8.369	2.64	132.09	C
180.00-160.00		TA 0.83	В	0.187	2.638		0.825	1	8.369			
			C	0.199	2.601		0.825	1	8.890			
T8	0.55	1.73	A	0.174	2.684	31	0.825	1	7.719	2.60	130.06	С
160.00-140.00			В	0.174	2.684		0.825	1	7.719			
770	0.55	1.06	Ç	0.186	2.645	20	0.825	1	8.237	2.56	107.00	G
T9	0.55	1.86	A	0.18	2.664	30	0.825	1	8.024	2.56	127.88	С
140.00-120.00			В	0.18	2.664		0.825	1	8.024			
Т10	0.58	2.03	C	0.191 0.191	2.626	29	0.825	1	8.541	2.61	130.28	С
120.00-100.00	0.58	TA 0.83	A B	0.191	2.626 2.626	29	0.825 0.825	1 1	8.686 8.686	2.61	130.28	
120.00-100.00		1A 0.65	C	0.191	2.589		0.825	1 1	9.208			
T11	0.64	2.18	A	0.202	2.619	27	0.825	1 1	8.677	2.68	134.11	С
100.00-80.00	0.04	2.10	В	0.193	2.619	27	0.825	l î	8.677	2.00	134.11	
100.00 00.00			C	0.204	2.583		0.825	li	9.198			
T12	0.83	2.10	A	0.189	2.632	26	0.825	Î	8.505	2.93	146.36	С
80.00-60.00	0.02	2.10	В	0.189	2.632	20	0.825	1	8.505	2.55	110.50	Ŭ
00.00 00.00			C	0.2	2.595		0.825	Î	9.023			
T13	0.83	2.10	Ã	0.189	2.632	24	0.825	1	8.505	2.74	137.03	С
60.00-40.00		TA 0.83	В	0.189	2.632		0.825	1	8.505			
		222 0102	Ĉ	0.2	2.595		0.825	ĺ	9.023			
T14	0.83	2.10	Α	0.189	2.632	22	0.825	1	8.505	2.46	123.06	С
40.00-20.00			В	0.189	2.632		0.825	1	8.505			
			C	0.2	2.595		0.825	1	9.023			
T15	0.55	1.40	Α	0.191	2.625	19	0.825	1	5.694	1.42	107.15	C
20.00-6.75			В	0.191	2.625		0.825	1	5.694			
			С	0.202	2.588		0.825	1	6.041			
T16 6.75-0.00	0.07	0.90	Α	0.755	1.79	19	0.825	1	8.902	0.32	47.19	C
			В	0.755	1.79		0.825	1	8.902			
			С	0.755	1.79		0.825	1	8.902			
Sum Weight:	6.96	35.03								31.24		

Centek Engineering Inc. 63-2 North Branford Rd.

1	Job	Page
	21007.33 - Storrs	37 of 91
	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client	Designed by
	Verizon	TJL

	Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
F				a		•	1-						
1	1	Ü	Ü	c			psf						
323.00-288.00	ft												
Til		0.00	3.20	Α	1	0.6	36	1	1		0.90	25.79	C
Ti	323.00-288.00				1								
TA 0.83 B 0.153 2.761 0.8 1 2.663				C	_				1				
Teal		0.00					35				0.25	30.68	C
T2	288.00-280.00		TA 0.83										
280,00-260,00									-				
Table		0.02	1.36				35				0.71	35.52	C
Table Tabl	280.00-260.00												
TA 0.83 B 0.165 2.717 0.8 1 7.246 7.762 7.76													
T4		0.14					34				1.24	61.76	C
T4	260.00-240.00		1A 0.83										
240,00-220,00	T.	0.22	1.52				22				1.60	90.75	
T		0.23	1.53				33				1.62	80.75	
To To To To To To To To	240.00-220.00												
TA 0.83	т5	0.24	1 91				22				1.65	92.59	C
C		0.24					33				1.03	62.56	
Teal	220.00-200.00		1A 0.65										
200,00-180,00	т6	0.33	1.65				32				1 93	96.31	C
T7		0.55	1.05				32				1.75	70.51	
T7	200.00 100.00												
TA 0.83	T7	0.54	2.03				31				2.64	132.09	С
T8		0.0					2.1				2.0.	152.05	
T8													
To To To To To To To To	T8	0.55	1.73				31				2.60	130.06	С
T9	160.00-140.00			В		2.684		0.8	1	7.719			
T10	1			C		2.645		0.8	1	8.237			
T10	T9	0.55	1.86	Α	0.18	2.664	30	0.8	1	8.024	2.56	127.88	C
T10 0.58 2.03 A 0.191 2.626 29 0.8 1 8.672 2.60 130.23 C 120.00-100.00 B TA 0.83 B 0.191 2.626 0.8 1 8.672 2.60 130.23 C T11 0.64 2.18 A 0.193 2.619 27 0.8 1 8.677 2.68 134.11 C 100.00-80.00 B 0.193 2.619 0.8 1 8.677 2.68 134.11 C 80.00-60.00 C 0.204 2.583 0.8 1 9.198 2.93 146.36 C 80.00-60.00 B 0.189 2.632 26 0.8 1 8.505 2.93 146.36 C 137.03 0.8 0.189 2.632 24 0.8 1 8.505 2.74 137.03 C 14 0.83 2.10 A 0.189 2.632 0.8	140.00-120.00			В	0.18	2.664		0.8	1	8.024			
TA 0.83 B 0.191 2.626 0.8 1 8.672	1			C					1				
T11		0.58		Α			29		1		2.60	130.23	C
T11 0.64 2.18 A 0.193 2.619 27 0.8 1 8.677 2.68 134.11 C 100.00-80.00 0.83 2.10 A 0.189 2.632 26 0.8 1 9.198 2.93 146.36 C 80.00-60.00 0.83 2.10 A 0.189 2.632 26 0.8 1 8.505 2.93 146.36 C 80.00-60.00 0.83 2.10 A 0.189 2.632 0.8 1 8.505 2.93 146.36 C 0.2 2.595 0.8 1 9.023 2.74 137.03 C 60.00-40.00 TA 0.83 B 0.189 2.632 0.8 1 8.505 2.74 137.03 C 14 0.83 2.10 A 0.189 2.632 0.8 1 8.505 2.46 123.06 C 40.00-20.00 0.5 1.40 A 0.189<	120.00-100.00		TA 0.83										
T100.00-80.00													
T12		0.64	2.18				27				2.68	134.11	C
T12	100.00-80.00												
80.00-60.00 B 0.189 2.632 0.8 1 8.505 2.74 137.03 C T13 0.83 2.10 A 0.189 2.632 24 0.8 1 8.505 2.74 137.03 C 60.00-40.00 TA 0.83 B 0.189 2.632 0.8 1 8.505 2.74 137.03 C T14 0.83 2.10 A 0.189 2.632 0.8 1 9.023 T14 0.83 2.10 A 0.189 2.632 22 0.8 1 8.505 2.46 123.06 C 40.00-20.00 B 0.189 2.632 0.8 1 8.505 2.46 123.06 C T15 0.55 1.40 A 0.191 2.625 19 0.8 1 5.694 1.42 107.15 C 20.00-6.75 C 0.202 2.588 0.8 1 5.694 1 <									_				
T13		0.83	2.10				26				2.93	146.36	C
T13	80.00-60.00												
60.00-40.00 TA 0.83 B C 0.189 C 0.2 2.595 0.8 1 9.023 1 9.023 T14 0.83 2.10 A 0.189 2.632 C 0.8 1 8.505 0.8 1 8.505 2.46 123.06 C 0.4 123.06 C 40.00-20.00 B 0.189 2.632 C 0.8 1 8.505 0.8 1 8.505 2.46 123.06 C 0.4 123.06 C T15 0.55 1.40 A 0.191 2.625 D 0.8 1 2.625 D 0.8 1 5.694 0.8 1 5.694 1.42 107.15 C 0.4 123.06 C 20.00-6.75 D 0.90 A 0.755 1.79 D 0.8 1 8.723 D 0.8 1 8.723 0.31 46.43 C 0.31 46.43 C 0.3 123.0 C 0.3 1 46.43 C T16 6.75-0.00 D 0.07 D 0.90 A 0.755 1.79 D 0.8 1 8.723 D 0.8 1 8.723 0.8 1 8.723 D 0.31 46.43 C	T12	0.02	2.10				2.4				2.74	125.02	
T14 0.83 2.10 A 0.189 2.632 22 0.8 1 8.505 2.46 123.06 C 40.00-20.00		0.83					24				2.74	137.03	C
T14	60.00-40.00		1A 0.83										
A0.00-20.00	T14	0.82	2.10			2.393	22		1		2.46	122.06	C
T15		0.83	2.10				22		1		2.40	123.00	
T15	40.00-20.00									0.303			
20.00-6.75	T15	0.55	1.40				10				1 42	107.15	
T16 6.75-0.00		0.55	1.40				19		1		1.42	107.13	
T16 6.75-0.00	20.00-0./3								1				
B 0.755 1.79 0.8 1 8.723 C 0.755 1.79 0.8 1 8.723	T16 6 75-0 00	0.07	0.00				10				0.31	46.42	ا ر
C 0.755 1.79 0.8 1 8.723	110 0./3-0.00	0.07	0.90				19				0.51	40.43	
	Sum Weight:	6.96	35.03		0.755	1.//		0.0	'	6.723	31.24		

Centek Engineering Inc. 63-2 North Branford Rd.

Job		Page
	21007.33 - Storrs	38 of 91
Projec	:t	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client	Verizon	Designed by TJL

Section	4.1.1	C -1.C	F	_	C	_	D	D	1	F		Cil
Section Elevation	Add Weight	Self Weight	r a	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl. Face
Lievation	weigni	weigni	c c			nef						race
ft	K	K	e			psf			ft ²	K	plf	
L1	0.00	3.20	A	1	0.6	36	1	1	31.354	0.90	25.79	С
323.00-288.00	0.00	5.20	В	1	0.6	50	1	1	31.354	0.90	23.19	
323.00-288.00			C	1	0.6		1	1	31.354			
T1	0.00	0.53	A	0.153	2.761	35	0.85	Î	2.663	0.25	30.68	С
288.00-280.00	0.00	TA 0.83	В	0.153	2.761	55	0.85	l î	2.663	0.23	20.00	
200.00 200.00		111 0.05	C	0.162	2.727		0.85	î	2.834			
T2	0.02	1.36	A	0.155	2.752	35	0.85	1	6.776	0.71	35.52	С
280.00-260.00			В	0.155	2.752		0.85	1	6.776			
			C	0.167	2.71		0.85	1	7.291			
T3	0.14	1.53	Α	0.165	2.717	34	0.85	1	7.246	1.24	61.76	C
260.00-240.00		TA 0.83	В	0.165	2.717		0.85	1	7.246			
			C	0.176	2.677		0.85	1	7.762			
T4	0.23	1.53	A	0.165	2.717	33	0.85	1	7.246	1.62	80.75	C
240.00-220.00			В	0.165	2.717		0.85	1	7.246			
			С	0.176	2.677		0.85	1	7.762			
T5	0.24	1.81	Α	0.178	2.671	33	0.85	1	7.892	1.65	82.58	C
220.00-200.00		TA 0.83	В	0.178	2.671		0.85	1	7.892			
			С	0.189	2.632		0.85	1	8.411			
T6	0.33	1.65	A	0.171	2.697	32	0.85	1	7.548	1.93	96.31	C
200.00-180.00			В	0.171	2.697		0.85	1	7.548			
			C	0.182	2.658		0.85	1	8.063			
T7	0.54	2.03	A	0.187	2.638	31	0.85	1	8.369	2.64	132.09	С
180.00-160.00		TA 0.83	В	0.187	2.638		0.85	1	8.369			
mo	0.77		C	0.199	2.601		0.85	1	8.890	2.00	120.06	
T8	0.55	1.73	A	0.174	2.684	31	0.85	1	7.719	2.60	130.06	С
160.00-140.00			В	0.174	2.684		0.85	1	7.719			
TO.	0.55	1.06	C	0.186	2.645	20	0.85	1	8.237	2.56	127.00	G
T9	0.55	1.86	A	0.18	2.664	30	0.85	1	8.024	2.56	127.88	С
140.00-120.00			B C	0.18	2.664		0.85	1	8.024			
T10	0.58	2.03	A	0.191 0.191	2.626 2.626	29	0.85 0.85	1	8.541 8.701	2.61	130.32	С
120.00-100.00	0.56	TA 0.83	В	0.191	2.626	29	0.85	1 1	8.701	2.01	130.32	
120.00-100.00		1A 0.05	C	0.202	2.589		0.85	Î	9.222			
T11	0.64	2.18	A	0.193	2.619	27	0.85	1 1	8.677	2.68	134.11	С
100.00-80.00	0.04	2.10	В	0.193	2.619	21	0.85	1 1	8.677	2.00	154.11	
100.00-00.00			C	0.204	2.583		0.85	lî	9.198			
T12	0.83	2.10	A	0.189	2.632	26	0.85	Î	8.505	2.93	146.36	С
80.00-60.00	0.05	2.10	В	0.189	2.632	20	0.85	Î	8.505	2.55	110.50	Č
00.00			C	0.2	2.595		0.85	i	9.023			
T13	0.83	2.10	A	0.189	2.632	24	0.85	Î	8.505	2.74	137.03	С
60.00-40.00	0.02	TA 0.83	В	0.189	2.632		0.85	Î	8.505	2., .	157105	
			С	0.2	2.595		0.85	1	9.023			
T14	0.83	2.10	A	0.189	2.632	22	0.85	1	8.505	2.46	123.06	С
40.00-20.00			В	0.189		· l	0.85	1	8.505			
			C	0.2	2.595		0.85	1	9.023			
T15	0.55	1.40	A	0.191	2.625	19	0.85	1	5.694	1.42	107.15	C
20.00-6.75			В	0.191	2.625		0.85	1	5.694			
			C	0.202	2.588		0.85	1	6.041			
T16 6.75-0.00	0.07	0.90	A	0.755	1.79	19	0.85	1	9.080	0.32	47.95	C
			В	0.755	1.79		0.85	1	9.080			
			С	0.755	1.79		0.85	1	9.080			
Sum Weight:	6.96	35.03								31.25		

Centek Engineering Inc. 63-2 North Branford Rd.

1	Job	Page
	21007.33 - Storrs	39 of 91
	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client	Designed by
	Verizon	TJL

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a	c	C_F	q_z	D_F	D_R	21E	T'	rv	Face
Lievation	" eigni	" eight	c			psf						Tucc
ft	K	K	e			psj			ft ²	K	plf	
L1	0.00	4.62	Α	1	1.2	6	1	1	45.929	0.41	11.85	С
323.00-288.00			В	1	1.2		1	1	45.929			
			C	1	1.2		1	1	45.929			
T1	0.09	1.61	Α	0.582	1.816	5	1	1	14.497	0.15	18.35	C
288.00-280.00		TA 2.14	В	0.582	1.816		1	1	14.497			
			C	0.633	1.787		1	1	16.477			
T2	0.64	4.11	A	0.589	1.811	5	1	1	36.844	0.43	21.53	С
280.00-260.00			В	0.589	1.811		1	1	36.844			
	2.66	4.20	C	0.65	1.782	_	1	1	42.866	0.62	21.02	a
T3	2.66	4.29	A	0.591	1.81	5		1	37.189	0.62	31.03	С
260.00-240.00		TA 2.12	B C	0.591	1.81		1	1	37.189			
Т4	4.17	4.26	A	0.651 0.588	1.781 1.812	5	1 1	1	43.152 36.859	0.76	37.88	С
240.00-220.00	4.17	4.20	В	0.588	1.812	3	1	1 1	36.859	0.70	37.00	
240.00-220.00			C	0.588	1.782		1 1	1	42.749			
T5	4.29	4.57	A	0.593	1.809	5	1	1	37.478	0.76	37.87	С
220.00-200.00	7.29	TA 2.09	В	0.593	1.809	5	1	1	37.478	0.70	57.67	
220.00-200.00		111 2.05	C	0.651	1.781		î	1	43.329			
Т6	5.54	4.30	Ā	0.582	1.816	5	î	Î	36.454	0.77*	38.49	С
200.00-180.00	0.0.	1120	В	0.582	1.816		î	î	36.454	0.77	20113	
			C	0.64	1.785		1	1	42.161			
Т7	8.04	4.74	Α	0.59	1.811	5	1	1	37.319	0.75*	37.75	С
180.00-160.00		TA 2.06	В	0.59	1.811		1	1	37.319			
			С	0.647	1.782		1	1	43.003			
T8	8.14	4.31	Α	0.577	1.82	5	1	1	35.879	0.73*	36.55	C
160.00-140.00			В	0.577	1.82		1	1	35.879			
			C	0.634	1.787		1	1	41.424			
Т9	8.05	4.40	Α	0.573	1.823	5	1	1	35.697	0.71*	35.59	C
140.00-120.00			В	0.573	1.823		1	1	35.697			
			С	0.629	1.789		1	1	41.110			
T10	8.41	4.46	Α	0.572	1.824	4	1	1	35.953	0.69*	34.31	C
120.00-100.00		TA 2.00	В	0.572	1.824		1	1	35.953			
	0.00	4.64	C	0.628	1.789		1	1	41.231	0.55*	22.00	
T11	8.98	4.64	A	0.569	1.827	4	1	1	35.356	0.66*	32.99	С
100.00-80.00			В	0.569	1.827			1	35.356			
T12	10.27	4.44	C	0.623 0.557	1.792 1.837	4	1 1	1	40.533 34.204	0.62*	31.22	С
80.00-60.00	10.27	4.44	A B	0.557	1.837	4	1 1	1	34.204	0.62	31.22	
80.00-00.00			C	0.557	1.798		1 1	1	39.177			
T13	9.97	4.32	A	0.546	1.847	4	1	1	33.118	0.58*	29.01	С
60.00-40.00	5.57	TA 1.90	В	0.546	1.847	7	l il	ĺ	33.118	0.56	27.01	
00.00 10.00		1111.50	C	0.598	1.805		î	l î	37.866			
T14	9.42	4.15	Ā	0.53	1.865	3	1	1	31.570	0.52*	25.94	С
40.00-20.00			В	0.53		_	1	1	31.570			
			Č	0.579	1.818		î	î	36.001			
T15	5.75	2.62	A	0.513	1.883	3	1	1	19.892	0.30*	22.32	С
20.00-6.75			В	0.513	1.883		1	1	19.892			
			С	0.561	1.834		1	1	22.586			
T16 6.75-0.00	0.66	1.73	Α	1	2.1	3	1	1	16.655	0.08*	12.51	C
			В	1	2.1		1	1	16.655			
			C	1	2.1		1	1	16.655			
Sum Weight:	95.08	79.87			*2.1A _g					9.54		
					limit							

Centek Engineering Inc. 63-2 North Branford Rd.

T	Job	Page
	21007.33 - Storrs	40 of 91
ſ	Project	Date
١	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client	Designed by
١	Verizon	TJL

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a c			naf						Face
ft	K	K	e			psf			ft²	K	plf	
L1	0.00	4.62	Α	1	1.2	6	1	1	45.929	0.41	11.85	С
323.00-288.00			В	1	1.2		1	1	45.929			
			C	1	1.2		1	1	45.929			
T1	0.09	1.61	A	0.582	1.816	5	0.825	1	14.497	0.15	18.35	С
288.00-280.00		TA 2.14	В	0.582	1.816		0.825	1	14.497			
T-2	0.64	4.11	C	0.633	1.787	۔	0.825	1	16.477	0.42	21.52	
T2 280.00-260.00	0.64	4.11	A B	0.589 0.589	1.811 1.811	5	0.825 0.825	1	36.844 36.844	0.43	21.53	С
280.00-260.00			С	0.389	1.782		0.825	1 1	42.866			
Т3	2.66	4.29	A	0.591	1.782	5	0.825	1 1	37.189	0.62	31.03	С
260.00-240.00	2.00	TA 2.12	В	0.591	1.81	5	0.825	i	37.189	0.02	51.05	
200.00-240.00		171 2.12	C	0.651	1.781		0.825	Î	43.152			
T4	4.17	4.26	Ã	0.588	1.812	5	0.825	Î	36.859	0.76	37.88	С
240.00-220.00			В	0.588	1.812		0.825	ī	36.859			
			С	0.647	1.782		0.825	1	42.749			
T5	4.29	4.57	A	0.593	1.809	5	0.825	1	37.478	0.76	37.87	C
220.00-200.00		TA 2.09	В	0.593	1.809		0.825	1	37.478			
			C	0.651	1.781		0.825	1	43.329			
T6	5.54	4.30	Α	0.582	1.816	5	0.825	1	36.454	0.77^{*}	38.49	C
200.00-180.00			В	0.582	1.816		0.825	1	36.454			
			C	0.64	1.785		0.825	1	42.161			
T7	8.04	4.74	Α	0.59	1.811	5	0.825	1	37.319	0.75*	37.75	С
180.00-160.00		TA 2.06	В	0.59	1.811		0.825	1	37.319			
			C	0.647	1.782	_	0.825	1	43.003	*		
T8	8.14	4.31	A	0.577	1.82	5	0.825	1	35.879	0.73*	36.55	С
160.00-140.00			В	0.577	1.82		0.825	1	35.879			
то.	8.05	4.40	C	0.634 0.573	1.787 1.823	5	0.825	1	41.424 35.697	0.71*	35.59	С
T9 140.00-120.00	8.03	4.40	A B	0.573	1.823	3	0.825 0.825	1 1	35.697	0.71	33.39	
140.00-120.00			C	0.629	1.789		0.825	1 1	41.110			
Т10	8.41	4.46	A	0.572	1.824	4	0.825	Î	35.701	0.69^{*}	34.31	С
120.00-100.00	0.11	TA 2.00	В	0.572	1.824		0.825	lî	35.701	0.05	5 1.51	
			C	0.628	1.789		0.825	ī	40.980			
T11	8.98	4.64	Ā	0.569	1.827	4	0.825	ī	35.356	0.66^{*}	32.99	С
100.00-80.00			В	0.569	1.827		0.825	1	35.356			
			C	0.623	1.792		0.825	1	40.533			
T12	10.27	4.44	Α	0.557	1.837	4	0.825	1	34.204	0.62^{*}	31.22	С
80.00-60.00			В	0.557	1.837		0.825	1	34.204			
			C	0.61	1.798		0.825	1	39.177			
T13	9.97	4.32	Α	0.546	1.847	4	0.825	1	33.118	0.58*	29.01	С
60.00-40.00		TA 1.90	В	0.546	1.847		0.825	1	33.118			
	0.40		C	0.598	1.805		0.825	1	37.866	0.70*		
T14	9.42	4.15	A	0.53	1.865	3	0.825	1	31.570	0.52*	25.94	С
40.00-20.00			В	0.53			0.825		31.570			
T15	575	2.62	C	0.579	1.818	,	0.825	1	36.001	0.20*	22.22	C
T15 20.00-6.75	5.75	2.62	A	0.513 0.513	1.883	3	0.825 0.825	1	19.892 19.892	0.30*	22.32	С
20.00-0.73			B C	0.513	1.883 1.834		0.825	1	22.586			
T16 6.75-0.00	0.66	1.73	A	0.561	2.1	3	0.825	1 1	15.406	0.08	12.06	С
110 0.75-0.00	0.00	1./3	B	1	2.1		0.825	1	15.406	0.08	12.00	
			C	1	2.1		0.825	1	15.406			
Sum Weight:	95.08	79.87			*2.1A _g		0.023	·	15.100	9.54		
vigiiti	32.00	, , , , , ,			limit					J.D.1		

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

٦	Job	Page
	21007.33 - Storrs	41 of 91
	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client	Designed by
	Verizon	TJL

Tower Forces - With Ice - Wind 60 To Face

Elevation Weight Weight C Fi	Section	Add	Self	F	e	C_F	a	D_F	D_R	A_E	F	w	Ctrl.
Part					e	C_F	q_z	D_F	D_R	AE	1	w	
Part							psf						
323.00-288.00	ft	K	K	e			1 5			ft ²	K	plf	
TI	L1	0.00	4.62	Α	1	1.2	6	1	1	45.929	0.41		С
Til	323.00-288.00				1	1.2		1	1				
TA 2.14 B C 0.633 1.186 C 0.8 1 14.497 C	1			C		1.2		_	1				
T2		0.09					5		1		0.15	18.35	C
T2	288.00-280.00		TA 2.14						1				
280,00-260,00													
T3		0.64	4.11				5				0.43	21.53	C
T3	280.00-260.00												
TA 2.12 B 0.591 1.81 0.8 1 37.189 0.76 37.88 C 240.00-220.00 0.651 1.781 0.8 1 36.859 0.76 37.88 C 240.00-220.00 0.651 1.781 0.8 1 36.859 0.76 37.87 C 0.651 1.781 0.8 1 37.478 0.76 37.87 C 220.00-200.00 TA 2.09 B 0.593 1.809 0.8 1 37.478 0.76 37.87 C 220.00-200.00 TA 2.09 B 0.593 1.809 0.8 1 37.478 0.76 37.87 C 220.00-200.00 TA 2.09 B 0.593 1.809 0.8 1 37.478 0.76 37.87 C 200.00-180.00 TA 2.09 B 0.593 1.816 0.8 1 36.454 0.77 38.49 C 200.00-180.00 TA 2.00 B 0.593 1.811 5 0.8 1 37.319 0.75 37.75 C 200.00-180.00 TA 2.06 B 0.593 1.811 5 0.8 1 37.319 0.75 37.75 C 200.00-180.00 TA 2.06 B 0.593 1.811 5 0.8 1 37.319 0.75 37.75 C 200.00-180.00 TA 2.06 B 0.597 1.811 5 0.8 1 37.319 0.75 37.75 C 200.00-180.00 TA 2.00 B 0.577 1.82 5 0.8 1 37.319 0.75 37.75 C 200.00-180.00 TA 2.00 B 0.577 1.82 5 0.8 1 35.879 0.73 36.55 C 200.00-180.00 TA 2.00 B 0.577 1.82 5 0.8 1 35.879 0.71 35.59 C 200.00-180.00 TA 2.00 B 0.577 1.82 5 0.8 1 35.866 0.66 32.99 C 200.00-180.00 TA 2.00 B 0.577 1.82 0.8 1 35.665 0.66 32.99 C 200.00-180.00 TA 2.00 B 0.577 1.82 0.8 1 35.665 0.66 32.99 C 200.00-80.00 TA 2.00 B 0.572 1.824 4 0.8 1 35.356 0.66 32.99 C 200.00-80.00 TA 2.00 B 0.572 1.824 4 0.8 1 35.356 0.66 32.99 C 200.00-6.75 TA 2.00 TA	Т2	266	4.20				5				0.62	21.02	C
T4		2.00					3				0.02	31.03	
T4	200.00-240.00		1A 2.12										
240,00-220,00	T4	4 17	4 26				5				0.76	37.88	С
Total C		,	1.20								0.70	57.00	
T5 4.29	2 10100 220100												
TA 2.09	T5	4.29	4.57				5				0.76	37.87	С
C	220.00-200.00			В		1.809			1				
200.00-180.00	1			С		1.781		0.8	1	43.329			
T7		5.54	4.30	Α			5		1		0.77*	38.49	C
T7	200.00-180.00								1				
TA 2.06	1			C					1				
T8 8.14 4.31 A 0.577 1.82 5 0.8 1 43.003		8.04					5		1		0.75	37.75	C
T8	180.00-160.00		TA 2.06										
To To To To To To To To							_				*		
T9		8.14	4.31				5				0.73	36.55	C
Toleran	160.00-140.00								l 1				
140.00-120.00	T0	9.05	4.40				_		1		0.71*	25.50	
T10		8.03	4.40				3		1		0.71	33.39	
T10	140.00-120.00								1				
120.00-100.00 TA 2.00 B 0.572 1.824 0.8 1 35.665 40.944 40.942 40.942 40.944 40.942 40.944 40.942 40.944 40.942 40.942 40.944 40.942 40.842	T10	8 41	4 46				4		1		0.69*	34 31	С
T11 8.98		0.11							Î		0.05	5 1.51	
T11	120.00 100.00		111 2.00										
100.00-80.00	T11	8.98	4.64				4		1		0.66*	32.99	С
T12	100.00-80.00			В					1				
80.00-60.00 B 0.557 1.837 0.8 1 34.204 39.177 T13 9.97 4.32 A 0.546 1.847 4 0.8 1 39.177 60.00-40.00 TA 1.90 B 0.546 1.847 4 0.8 1 33.118 0.58* 29.01 C 60.00-40.00 TA 1.90 B 0.546 1.847 0.8 1 33.118 0.58* 29.01 C T14 9.42 4.15 A 0.53 1.865 3 0.8 1 37.866 T15 5.75 2.62 A 0.513 1.865 0.8 1 31.570 0.52* 25.94 C 20.00-6.75 B 0.513 1.883 0.8 1 19.892 0.30* 22.32 C T16 6.75-0.00 0.66 1.73 A 1 2.1 3 0.8 1 15.227 0.08 11.92 C Sum Weight: 95.08 79.87 "2.1Ag "2.1Ag 0.8 1 15	1			С		1.792			1				
T13		10.27	4.44	Α		1.837	4	0.8	1		0.62*	31.22	C
T13	80.00-60.00								1				
60.00-40.00	I												
T14 9.42 4.15 A 0.53 1.865 3 0.8 1 37.866 40.00-20.00 B 0.579 1.818 0.8 1 31.570 0.52* 25.94 C 40.00-20.00 C 0.579 1.818 0.8 1 36.001		9.97					4				0.58	29.01	C
T14 9.42 4.15 A 0.53 1.865 3 0.8 1 31.570 0.52* 25.94 C 40.00-20.00 C 0.579 1.818 0.8 1 36.001 36.001 C 0.579 1.818 0.8 1 19.892 0.30* 22.32 C 20.00-6.75 B 0.513 1.883 0.8 1 19.892 0.30* 22.32 C 20.00-6.75 C 0.561 1.834 0.8 1 19.892 0.30* 22.32 C 0.561 1.834 0.8 1 15.227 0.08 11.92 C C 1 2.1 0.8 1 15.227 0.08 11.92 C C 1 2.1 0.8 1 15.227 0.08 1 15.227	60.00-40.00		TA 1.90						1				
40.00-20.00 B 0.53 1.865 0.8 1 31.570 31.570 36.001 31.570 33.570 36.001 36											^ ~~* l	2501	
T15	114	9.42	4.15				3		1		0.52	25.94	C
T15 5.75 2.62 A 0.513 1.883 3 0.8 1 19.892 0.30* 22.32 C 20.00-6.75 B 0.513 1.883 0.8 1 19.892 0.30* 22.32 C 20.00-6.75 C 0.561 1.834 0.8 1 22.586 C 0.561 1.834 0.8 1 15.227 0.08 11.92 C C 1 2.1 0.8 1 15.227 C Sum Weight: 95.08 79.87 *2.1Ag *0.8 1 15.227 9.54 C 0.8 1 15.227 0.8 1 15.227 C 0.8 1 15.227 0.8 1 15.227 0.8 1 15.227 0.8 1 15.227 0.8 1 15.227 0.8 1 15.227 0.8 1 15.227 0.8 1 15.227 0.8 1 15.227 0.8 1 15.227 0.8 1 15.227 0.8 1 15.227 0.8 1 15.227 0.8 1 15.227 0.8 1 15.227 0.8 1 1	40.00-20.00								1				
20.00-6.75 B O 0.513 1.883 O 0.8 1 19.892 O 0.561 1.834 O 0.8 1 22.586 O 0.561 1.834 O 0.8 1 15.227 O 0.08 11.92 C O 0.561 1.73 A 1 2.1 O 0.8 1 15.227 O 0.08 11.92 C O 0.8 O	Tif	575	2.62				ا م		1		0.20*	22.22	
T16 6.75-0.00		3./3	2.02				3				0.30	22.32	C
T16 6.75-0.00	20.00-0./3												
Sum Weight: 95.08 79.87 B 1 2.1 0.8 1 15.227 Sum Weight: 95.08 79.87 8 95.08 79.87 9.54	T16 6 75-0 00	0.66	1 73				3				0.08	11 92	С
Sum Weight: 95.08 79.87 C 1 2.1 0.8 1 15.227 9.54	110 0.75-0.00	0.00	1./3								0.00	11.72	
Sum Weight: 95.08 79.87 *2.1Ag 9.54	 												
	Sum Weight:	95.08	79.87			*2.1A _e				12.22	9.54		
						limit							

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.33 - Storrs	42 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client	Designed by
Verizon	TJL

Tower Forces - With Ice - Wind 90 To Face

Elevation Weight Weight A C C C C C C C C C	Section	Add	Self	F	e	C_F	a	D_F	D_R	A_E	F	w	Ctrl.
β K K c c sysf L sysf K pf C C C C L 1 1 45,929 C A 1 1 1 45,929 C C 1 1 1 45,929 C 0.55 1 14,497 0.15 18.35 C 28.00,026,000 C 0.63 1.81 5 0.85 1 14.497 0.15 18.35 C 280,00-260,00 C 6 4.29 A 0.581 1.81 5 0.85 1 37,189 0.62 31.03 C 240,00-220,00 T <th></th> <th></th> <th></th> <th></th> <th>e</th> <th>C_F</th> <th>q_z</th> <th>D_F</th> <th>D_R</th> <th>AE</th> <th>I r</th> <th>W</th> <th></th>					e	C_F	q_z	D_F	D_R	AE	I r	W	
Process Proc	Zare remon	7, 0.5.11	77 018,111				psf						1 400
Section Color	ft	K	K				F-3			ft ²	K	plf	
Ti	L1	0.00	4.62	Α	1	1.2	6	1	1	45.929	0.41		С
Time	323.00-288.00				1	1.2		1	1				
288.00-280.00				C		1.2			1				
Teal		0.09					5			1	0.15	18.35	C
Teal	288.00-280.00		TA 2.14						1	1			
280,00-260,00		0.64					_		1			21.52	
Table C		0.64	4.11				5				0.43	21.53	C
Table Tabl	280.00-260.00								_				
TA 2.12 B 0.591 1.81 0.85 1 37.185 0.76 37.88 C	Т3	2 66	4 29				5				0.62	31.03	C
Table Tabl		2.00					5				0.02	31.03	
T4	200.00 2 10.00		111 2.12							1			
240.00-220.00	T4	4.17	4.26				5				0.76	37.88	C
T5	240.00-220.00			В		1.812		0.85	1	36.859			
TA 2.00 B				C	0.647	1.782		0.85	1	42.749			
To		4.29	4.57				5		1		0.76	37.87	C
T6 5.54 4.30 A 0.582 1.816 5 0.85 1 36.454 0.77° 38.49 C 200.00-180.00 B 0.582 1.816 0.85 1 36.454 0.77° 38.49 C T7 8.04 4.74 A 0.59 1.811 5 0.85 1 37.319 0.75° 37.75 C 180,00-160.00 TA 2.06 B 0.59 1.811 5 0.85 1 37.319 0.75° 37.75 C 160,00-140.00 B 0.647 1.782 0.85 1 35.879 0.73° 36.55 C 140,00-120.00 B 0.577 1.822 5 0.85 1 35.879 0.71° 35.59 C 140,00-120.00 B 0.573 1.823 5 0.85 1 35.697 0.71° 35.59 C 140,00-120.00 TA 4 4 0.672 1.824	220.00-200.00		TA 2.09						_				
December 200,00-180,00							_				*		_
T7		5.54	4.30				5		_	1	0.77	38.49	C
T7	200.00-180.00									1			
TA 2.06 B	T7	9.04	4.74				5			1	0.75*	27.75	C
TR		8.04					3				0.73	37.73	
T8	180.00-100.00		1A 2.00										
160.00-140.00	T8	8 14	4 3 1				5		1		0.73*	36.55	C
T9		0.14	4.51				5		Î		0.75	30.55	
T9 8.05	100100 110100								î				
T10	T9	8.05	4.40	Α	0.573		5	0.85	1	35.697	0.71*	35.59	C
T10	140.00-120.00			В		1.823		0.85	1	35.697			
TA 2.00									1	1			
T11 8.98 4.64 A 0.569 1.827 4 0.85 1 35.356 0.66* 32.99 C 100.00-80.00 B 0.569 1.827 0.85 1 35.356 0.66* 32.99 C 100.00-80.00 B 0.569 1.827 0.85 1 35.356 0.66* 32.99 C 100.00-80.00 B 0.557 1.837 4 0.85 1 34.204 0.62* 31.22 C 10.27 4.44 A 0.557 1.837 0.85 1 34.204 0.62* 31.22 C 10.27 4.32 A 0.546 1.847 0.85 1 39.177 0.85 1 33.118 0.58* 29.01 C 10.00-40.00 TA 1.90 B 0.546 1.847 0.85 1 33.118 0.58* 29.01 C 10.00-40.00 B 0.598 1.805 0.85 1 37.866 0.85 1 37.866 0.85 1 37.866 0.85 1 31.570 0.52* 25.94 C 10.00-60.75		8.41					4				0.69*	34.31	C
T11 8.98 4.64 A 0.569 1.827 4 0.85 1 35.356 0.66* 32.99 C 100.00-80.00 B 0.569 1.827 0.85 1 35.356 0.66* 32.99 C T12 10.27 4.44 A 0.557 1.837 4 0.85 1 34.204 0.62* 31.22 C 80.00-60.00 B 0.557 1.837 0.85 1 34.204 0.62* 31.22 C T13 9.97 4.32 A 0.546 1.847 4 0.85 1 39.177 T3 9.97 4.32 A 0.546 1.847 4 0.85 1 33.118 0.58* 29.01 C 60.00-40.00 TA 1.90 B 0.546 1.847 0.85 1 33.118 0.58* 29.01 C 40.00-20.00 B 0.53 1.865 0.85 1 31.570<	120.00-100.00		TA 2.00							1			
T100.00-80.00		0.00	4.64								0.66*	22.00	
T12		8.98	4.64				4		_	1	0.00	32.99	
T12	100.00-80.00									1			
80.00-60.00 B 0.557 1.837 0.85 1 34.204 39.177 T13 9.97 4.32 A 0.546 1.847 4 0.85 1 39.177 60.00-40.00 TA 1.90 B 0.546 1.847 0.85 1 33.118 0.58* 29.01 C T14 9.42 4.15 A 0.53 1.865 0.85 1 31.570 0.52* 25.94 C 40.00-20.00 B 0.53 1.865 0.85 1 31.570 0.52* 25.94 C T15 5.75 2.62 A 0.513 1.883 0.85 1 36.001 0.30* 22.32 C 20.00-6.75 B 0.513 1.883 0.85 1 19.892 0.30* 22.32 C T16 6.75-0.00 0.66 1.73 A 1 2.1 3 0.85 1 15.584 0.08 12.20 C	T12	10.27	4 44				4		_	1	0.62*	31.22	С
T13 9.97 4.32 A 0.546 1.847 4 0.85 1 39.177 0.58* 29.01 C 0.00-40.00 TA 1.90 B 0.546 1.847 0.85 1 33.118 0.58* 29.01 C 0.598 1.805 0.85 1 33.118 0.58* 29.01 C 0.598 1.805 0.85 1 31.570 0.52* 25.94 C 0.598 1.805 0.85 1 31.570 0.52* 25.94 C 0.579 1.818 0.85 1 31.570 0.52* 25.94 C 0.579 1.818 0.85 1 36.001 0.85 1 36.001 0.85 1 0.85		10.27	1.17								0.02	31.22	
T13													
T14 9.42 4.15 A 0.53 1.865 3 0.85 1 37.866 40.00-20.00 B 0.52* 25.94 C 40.00-20.00 B 0.53 1.865 0.85 1 31.570 0.52* 25.94 C 1 31.570 0.50* 1 31.570 0.85 1 31.570 0.85 1 19.892 0.30* 22.32 C 1 1 19.892 0.30* 22.32 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T13	9.97	4.32				4		1		0.58*	29.01	C
T14 9.42 4.15 A 0.53 1.865 3 0.85 1 31.570 0.52* 25.94 C 40.00-20.00 B 0.53 1.865 0.85 1 31.570 C 0.579 1.818 0.85 1 36.001 T15 5.75 2.62 A 0.513 1.883 3 0.85 1 19.892 0.30* 22.32 C 20.00-6.75 B 0.513 1.883 0.85 1 19.892 C 0.561 1.834 0.85 1 22.586 T16 6.75-0.00 0.66 1.73 A 1 2.1 3 0.85 1 15.584 0.08 12.20 C	60.00-40.00		TA 1.90	В	0.546	1.847		0.85	1	33.118			
40.00-20.00				C					1				
T15 5.75 2.62 A 0.513 1.883 3 0.85 1 36.001 19.892 0.30* 22.32 C 20.00-6.75 B 0.513 1.883 0.85 1 19.892 0.30* 22.32 C 116 6.75-0.00 0.66 1.73 A 1 2.1 3 0.85 1 15.584 0.08 12.20 C	T14	9.42	4.15				3		1		0.52*	25.94	C
T15 5.75 2.62 A 0.513 1.883 3 0.85 1 19.892 0.30* 22.32 C 20.00-6.75 B 0.513 1.883 0.85 1 19.892 T16 6.75-0.00 0.66 1.73 A 1 2.1 3 0.85 1 15.584 0.08 12.20 C	40.00-20.00												
20.00-6.75 B 0.513 1.883 0.85 1 19.892			2.52								0.00*	22.55	
T16 6.75-0.00 0.66 1.73 A 1 2.1 3 0.85 1 22.586 0.08 12.20 C		5.75	2.62				3				0.30	22.32	C
T16 6.75-0.00 0.66 1.73 A 1 2.1 3 0.85 1 15.584 0.08 12.20 C	20.00-6.75												
	T16.6.75-0.00	0.66	1 72				2		1	1	0.00	12.20	
B 1 2.1 0.85 1 15.584	110 0.75-0.00	0.00	1./3				3		1	1	0.08	12.20	
C 1 2.1 0.85 1 15.584 C 1 2.1 0.85 1 15.584	 												
Sum Weight: 95.08 79.87 *2.1A _g 9.54	Sum Weight:	95.08	79.87		·			5.65	·	15.504	9.54		
limit			,										

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.33 - Storrs	43 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client Verizon	Designed by TJL

Tower Forces - Service - Wind Normal To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
C	W	V	c			psf			ft ²	v	10	
ft	0.00	3.20	e	1	0.6	13	1	1	31.354	0.32	<i>plf</i> 9.10	С
L1 323.00-288.00	0.00	3.20	A B	1	0.6	13	1 1	1 1	31.354	0.32	9.10	
323.00-288.00			C	1	0.6		1	l i	31.354			
T1	0.00	0.53	A	0.153	2.761	12	1	l î	2.663	0.09	10.83	С
288.00-280.00	0.00	TA 0.83	В	0.153	2.761		1	Î	2.663	0.03	10100	
			С	0.162	2.727		1	1	2.834			
T2	0.02	1.36	A	0.155	2.752	12	1	1	6.776	0.25	12.54	C
280.00-260.00			В	0.155	2.752		1	1	6.776			
	0.14	1.50	C	0.167	2.71	10	1	1	7.291	0.44	21.00	
T3	0.14	1.53	A	0.165	2.717	12	1	1	7.246	0.44	21.80	С
260.00-240.00		TA 0.83	B C	0.165 0.176	2.717 2.677		1	1 1	7.246 7.762			
T4	0.23	1.53	A	0.176	2.717	12	1	1	7.702	0.57	28.50	С
240.00-220.00	0.23	1.55	В	0.165	2.717	12	1	Ιî	7.246	0.57	20.50	
			Ĉ	0.176	2.677		1	Î	7.762			
T5	0.24	1.81	A	0.178	2.671	12	1	1	7.892	0.58	29.14	C
220.00-200.00		TA 0.83	В	0.178	2.671		1	1	7.892			
			C	0.189	2.632		1	1	8.411			
T6	0.33	1.65	A	0.171	2.697	11	1	1	7.548	0.68	33.99	С
200.00-180.00			В	0.171	2.697		1	1 1	7.548			
T7	0.54	2.03	C A	0.182 0.187	2.658 2.638	11	1	1 1	8.063 8.369	0.93	46.61	С
180.00-160.00	0.54	TA 0.83	В	0.187	2.638	11	1	1	8.369	0.93	40.01	
100.00 100.00		111 0.05	Č	0.199	2.601		î	l î	8.890			
Т8	0.55	1.73	Ā	0.174	2.684	11	1	1	7.719	0.92	45.90	С
160.00-140.00			В	0.174	2.684		1	1	7.719			
			C	0.186	2.645		1	1	8.237			
T9	0.55	1.86	A	0.18	2.664	10	1	1	8.024	0.90	45.13	С
140.00-120.00			В	0.18	2.664		1	1	8.024			
Т10	0.58	2.03	C A	0.191 0.191	2.626 2.626	10	1	1 1	8.541 8.787	0.92	46.09	С
120.00-100.00	0.56	TA 0.83	В	0.191	2.626	10	1	l i	8.787	0.92	40.09	
120.00-100.00		171 0.05	C	0.202	2.589		1	Ιî	9.308			
T11	0.64	2.18	A	0.193	2.619	10	1	ĺ	8.677	0.95	47.33	С
100.00-80.00			В	0.193	2.619		1	1	8.677			
			C	0.204	2.583		1	1	9.198			
T12	0.83	2.10	Α	0.189	2.632	9	1	1	8.505	1.03	51.65	С
80.00-60.00			В	0.189	2.632		1	1	8.505			
Т13	0.83	2.10	C A	0.2 0.189	2.595 2.632	9	1	1 1	9.023 8.505	0.97	48.36	С
60.00-40.00	0.83	TA 0.83	В	0.189	2.632	9	1	l i	8.505	0.97	40.30	
00.00-40.00		1110.03	C	0.189	2.595		1	l i	9.023			
T14	0.83	2.10	A	0.189	2.632	8	1	Î	8.505	0.87	43.43	С
40.00-20.00			В	0.189	2.632		1	1	8.505	·		
			C	0.2	2.595		1	1	9.023			
T15	0.55	1.40	A	0.191	2.625	7	1	1	5.694	0.50	37.81	C
20.00-6.75			В	0.191	2.625		1		5.694			
T16 6 75 0 00	0.07	0.00	C	0.202	2.588		1 1	1	6.041	0.13	10.53	
T16 6.75-0.00	0.07	0.90	A B	0.755 0.755	1.79 1.79	7	1 1	$\begin{array}{c c} & 1 \\ & 1 \end{array}$	10.151 10.151	0.13	18.53	С
			С	0.755	1.79		1	1	10.151			
Sum Weight:	6.96	35.03		0.133	1.19		1	l '	10.131	11.04		
Duni 77 Cigni.	0.70	55.05								11.04		

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21007.33 - Storrs	44 of 91
Project		Date
327' G	uyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client	Vorizon	Designed by
	Verizon	TJL

Tower Forces - Service - Wind 45 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а		_	1-						Face
	_	_	c			psf						
ft	K	K	е						ft ²	K	plf	
L1	0.00	3.20	Α	1	0.6	13	1	1	31.354	0.32	9.10	C
323.00-288.00			В	1	0.6		1	1	31.354			
			C	1	0.6		1	1	31.354			-
T1	0.00	0.53	A	0.153	2.761	12	0.825	1	2.663	0.09	10.83	С
288.00-280.00		TA 0.83	В	0.153	2.761		0.825	1	2.663			
TO	0.02	1.26	C	0.162	2.727	10	0.825	1	2.834	0.25	10.54	<u> </u>
T2	0.02	1.36	A	0.155	2.752	12	0.825	1	6.776	0.25	12.54	С
280.00-260.00			B C	0.155 0.167	2.752 2.71		0.825 0.825	1 1	6.776 7.291			
Т3	0.14	1.53	A	0.167	2.717	12	0.825		7.246	0.44	21.80	С
260.00-240.00	0.14	TA 0.83	В	0.165	2.717	12	0.825		7.246	0.44	21.60	
200.00-240.00		1A 0.65	C	0.103	2.677		0.825		7.762			
T4	0.23	1.53	Ă	0.176	2.717	12	0.825	1	7.702	0.57	28.50	С
240.00-220.00	0.23	1.55	В	0.165	2.717	12	0.825	Î	7.246	0.57	20.50	
210.00 220.00			Č	0.176	2.677		0.825	Î	7.762			
T5	0.24	1.81	Ã	0.178	2.671	12	0.825	ĺ	7.892	0.58	29.14	С
220.00-200.00		TA 0.83	В	0.178	2.671		0.825	1	7.892			
			C	0.189	2.632		0.825	1	8.411			
Т6	0.33	1.65	Α	0.171	2.697	11	0.825	1	7.548	0.68	33.99	С
200.00-180.00			В	0.171	2.697		0.825	1	7.548			
			C	0.182	2.658		0.825	1	8.063			
T7	0.54	2.03	Α	0.187	2.638	11	0.825	1	8.369	0.93	46.61	C
180.00-160.00		TA 0.83	В	0.187	2.638		0.825	1	8.369			
			С	0.199	2.601		0.825	1	8.890			
T8	0.55	1.73	Α	0.174	2.684	11	0.825	1	7.719	0.92	45.90	C
160.00-140.00			В	0.174	2.684		0.825	1	7.719			
			C	0.186	2.645		0.825	1	8.237			
T9	0.55	1.86	Α	0.18	2.664	10	0.825	1	8.024	0.90	45.13	С
140.00-120.00			В	0.18	2.664		0.825	1	8.024			
T10	0.50	2.02	C	0.191	2.626	10	0.825	1	8.541	0.00	45.00	С
T10 120.00-100.00	0.58	2.03 TA 0.83	A	0.191 0.191	2.626 2.626	10	0.825 0.825	1	8.686 8.686	0.92	45.98	
120.00-100.00		1A 0.83	B C	0.191	2.589		0.825	1 1	9.208			
T11	0.64	2.18	A	0.202	2.619	10	0.825		8.677	0.95	47.33	С
100.00-80.00	0.04	2.10	В	0.193	2.619	10	0.825	1 1	8.677	0.93	47.33	
100.00-00.00			C	0.204	2.583		0.825	li	9.198			
T12	0.83	2.10	Ã	0.189	2.632	9	0.825	1	8.505	1.03	51.65	С
80.00-60.00	2.32	0	В	0.189	2.632		0.825	1	8.505	1.05	22,00	-
			Č	0.2	2.595		0.825	1	9.023			
T13	0.83	2.10	Ã	0.189	2.632	9	0.825	î	8.505	0.97	48.36	С
60.00-40.00		TA 0.83	В	0.189	2.632		0.825	1	8.505	·		
	l		С	0.2	2.595		0.825	1	9.023			
T14	0.83	2.10	Α	0.189	2.632	8	0.825	1	8.505	0.87	43.43	C
40.00-20.00			В	0.189	2.632		0.825	1	8.505			
			C	0.2	2.595		0.825	1	9.023			
T15	0.55	1.40	Α	0.191	2.625	7	0.825	1	5.694	0.50	37.81	С
20.00-6.75			В	0.191	2.625		0.825	1	5.694			
			C	0.202	2.588		0.825	1	6.041			
T16 6.75-0.00	0.07	0.90	A	0.755	1.79	7	0.825	1	8.902	0.11	16.65	C
[В	0.755	1.79		0.825	1	8.902			
I l		2.5.5	С	0.755	1.79		0.825	1	8.902			
Sum Weight:	6.96	35.03								11.03		

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

	Job	Page
	21007.33 - Storrs	45 of 91
	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
ı	Client	Designed by
	Verizon	TJL

Tower Forces - Service - Wind 60 To Face

Section	Add	Self	F	e	C_F	q_z	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а			•						Face
			c			psf			-2			
ft	K	K	е						ft ²	K	plf	
L1	0.00	3.20	A	1	0.6	13	1	1	31.354	0.32	9.10	С
323.00-288.00			В	1	0.6		1	1	31.354			
T1	0.00	0.53	C	0.153	0.6	12	$\frac{1}{0.8}$	1	31.354 2.663	0.09	10.83	С
T1 288.00-280.00	0.00	TA 0.83	A B	0.153	2.761 2.761	12	0.8	1 1	2.663	0.09	10.85	
288.00-280.00		1A 0.65	C	0.153	2.727		0.8	1 1	2.834			
T2	0.02	1.36	A	0.155	2.752	12	0.8	1 1	6.776	0.25	12.54	C
280.00-260.00	0.02	1.50	В	0.155	2.752	12	0.8	Î	6.776	0.23	12.51	
200.00 200.00			Č	0.167	2.71		0.8	l î	7.291			
Т3	0.14	1.53	A	0.165	2.717	12	0.8	1	7.246	0.44	21.80	С
260.00-240.00		TA 0.83	В	0.165	2.717		0.8	1	7.246			
			C	0.176	2.677		0.8	1	7.762			
T4	0.23	1.53	Α	0.165	2.717	12	0.8	1	7.246	0.57	28.50	C
240.00-220.00			В	0.165	2.717		0.8	1	7.246			
			C	0.176	2.677		0.8	1	7.762			
T5	0.24	1.81	A	0.178	2.671	12	0.8	1	7.892	0.58	29.14	C
220.00-200.00		TA 0.83	В	0.178	2.671		0.8	1	7.892			
			C	0.189	2.632		0.8	1	8.411	0.60		~
T6	0.33	1.65	A	0.171	2.697	11	0.8	1	7.548	0.68	33.99	C
200.00-180.00			В	0.171	2.697		0.8	1	7.548			
T-7	0.54	2.02	C	0.182	2.658		0.8	1	8.063	0.02	46.61	С
T7 180.00-160.00	0.54	2.03	A	0.187 0.187	2.638 2.638	11	0.8 0.8	1	8.369 8.369	0.93	46.61	
180.00-160.00		TA 0.83	B C	0.187	2.601		0.8	1 1	8.890 8.890			
Т8	0.55	1.73	A	0.174	2.684	11	0.8	1	7.719	0.92	45.90	С
160.00-140.00	0.55	1./3	В	0.174	2.684	11	0.8	1 1	7.719	0.92	43.30	·
100.00-1-10.00			Č	0.186	2.645		0.8	l î	8.237			
Т9	0.55	1.86	Ā	0.18	2.664	10	0.8	1	8.024	0.90	45.13	С
140.00-120.00			В	0.18	2.664		0.8	1	8.024			-
			С	0.191	2.626		0.8	1	8.541			
T10	0.58	2.03	Α	0.191	2.626	10	0.8	1	8.672	0.92	45.96	C
120.00-100.00		TA 0.83	В	0.191	2.626		0.8	1	8.672			
			С	0.202	2.589		0.8	1	9.194			
T11	0.64	2.18	Α	0.193	2.619	10	0.8	1	8.677	0.95	47.33	C
100.00-80.00			В	0.193	2.619		0.8	1	8.677			
	0.02	2.10	C	0.204	2.583		0.8	1	9.198	1.02		
T12	0.83	2.10	A	0.189	2.632	9	0.8	1	8.505	1.03	51.65	С
80.00-60.00			В	0.189	2.632		0.8	1	8.505			
T13	0.83	2.10	C	0.2 0.189	2.595 2.632	9	0.8 0.8	1	9.023 8.505	0.97	48.36	С
60.00-40.00	0.83	2.10 TA 0.83	A B	0.189	2.632	9	0.8	1 1	8.505	0.97	48.30	C
00.00-40.00		1A 0.65	C	0.189	2.595		0.8	1 1	9.023			
T14	0.83	2.10	A	0.189	2.632	8	0.8	1	8.505	0.87	43.43	С
40.00-20.00	0.05	2.10	В	0.189	2.632	0	0.8	l î	8.505	0.07	75.75	
10.00-20.00			C	0.103	2.595		0.8	i	9.023			
T15	0.55	1.40	Ă	0.191	2.625	7	0.8	Î	5.694	0.50	37.81	С
20.00-6.75			В	0.191	2.625		0.8	1	5.694			
]			C	0.202	2.588		0.8	1	6.041			
T16 6.75-0.00	0.07	0.90	Α	0.755	1.79	7	0.8	1	8.723	0.11	16.39	C
			В	0.755	1.79		0.8	1	8.723			
			С	0.755	1.79		0.8	1	8.723			
Sum Weight:	6.96	35.03								11.02		

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.33 - Storrs	46 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client	Designed by
Verizon	TJL

Tower Forces - Service - Wind 90 To Face

Section Elevation	Add Weight	Self	F				D_F	D_R	A_E	F	w	Ctrl.
	meigni	Weight	a	e	C_F	q_z	D _r	27/	112	•	,,	Face
			c			psf						
ft	K	K	e			1-5			ft²	K	plf	
L1	0.00	3.20	Α	1	0.6	13	1	1	31.354	0.32	9.10	С
323.00-288.00			В	1	0.6		1	1	31.354			
			C	1	0.6		1	1	31.354			
T1	0.00	0.53	Α	0.153	2.761	12	0.85	1	2.663	0.09	10.83	C
288.00-280.00		TA 0.83	В	0.153	2.761		0.85	1	2.663			
			C	0.162	2.727		0.85	1	2.834			
T2	0.02	1.36	Α	0.155	2.752	12	0.85	1	6.776	0.25	12.54	C
280.00-260.00			В	0.155	2.752		0.85	1	6.776			
			C	0.167	2.71		0.85	1	7.291			
T3	0.14	1.53	A	0.165	2.717	12	0.85	1	7.246	0.44	21.80	C
260.00-240.00		TA 0.83	В	0.165	2.717		0.85	1	7.246			
			C	0.176	2.677		0.85	1	7.762			
T4	0.23	1.53	A	0.165	2.717	12	0.85	1	7.246	0.57	28.50	С
240.00-220.00			В	0.165	2.717		0.85	1	7.246			
T.5	0.24	1.01	C	0.176	2.677	10	0.85	1	7.762	0.50	20.14	С
T5 220.00-200.00	0.24	1.81	A	0.178	2.671	12	0.85 0.85	1	7.892 7.892	0.58	29.14	
220.00-200.00		TA 0.83	B C	0.178 0.189	2.671 2.632		0.85	1 1	8.411			
Т6	0.33	1.65	A	0.189	2.697	11	0.85	1 1	7.548	0.68	33.99	С
200.00-180.00	0.55	1.05	В	0.171	2.697	11	0.85	1 1	7.548	0.08	33.77	
200.00-180.00			C	0.171	2.658		0.85	1	8.063			
T7	0.54	2.03	A	0.182	2.638	11	0.85	Î	8.369	0.93	46.61	С
180.00-160.00	0.51	TA 0.83	В	0.187	2.638		0.85	lî	8.369	0.55	10.01	
100.00 100.00		171 0.05	Č	0.199	2.601		0.85	Î	8.890			
Т8	0.55	1.73	Ā	0.174	2.684	11	0.85	1	7.719	0.92	45.90	С
160.00-140.00			В	0.174	2.684		0.85	1	7.719			
			C	0.186	2.645		0.85	1	8.237			
Т9	0.55	1.86	Α	0.18	2.664	10	0.85	1	8.024	0.90	45.13	С
140.00-120.00			В	0.18	2.664		0.85	1	8.024			
			C	0.191	2.626		0.85	1	8.541			
T10	0.58	2.03	Α	0.191	2.626	10	0.85	1	8.701	0.92	45.99	C
120.00-100.00		TA 0.83	В	0.191	2.626		0.85	1	8.701			
			С	0.202	2.589		0.85	1	9.222			
T11	0.64	2.18	A	0.193	2.619	10	0.85	1	8.677	0.95	47.33	C
100.00-80.00			В	0.193	2.619		0.85	1	8.677			
			C	0.204	2.583		0.85	1	9.198			_
T12	0.83	2.10	A	0.189	2.632	9	0.85	1	8.505	1.03	51.65	C
80.00-60.00			В	0.189	2.632		0.85	1	8.505			
т12	0.02	2.10	C	0.2	2.595	9	0.85	1	9.023	0.07	10.26	C .
T13 60.00-40.00	0.83	2.10	A	0.189	2.632	9	0.85	1	8.505	0.97	48.36	C
60.00-40.00		TA 0.83	В	0.189	2.632		0.85	1	8.505 9.023			
T14	0.83	2.10	C A	0.2 0.189	2.595 2.632	8	0.85 0.85	1	9.023 8.505	0.87	43.43	С
40.00-20.00	0.63	2.10	B	0.189		0	0.85	1 1	8.505	0.67	43.43	C
40.00-20.00			C	0.189	2.595		0.85	1	9.023			
T15	0.55	1.40	A	0.191	2.625	7	0.85		5.694	0.50	37.81	С
20.00-6.75	0.55	1.70	В	0.191	2.625	<u>_ </u>	0.85	1 1	5.694	0.50	10.1 د	
20.00-0.73			C	0.202	2.588		0.85	1	6.041			
T16 6.75-0.00	0.07	0.90	A	0.755	1.79	7	0.85	l î	9.080	0.11	16.92	С
110 0.75 0.00	0.07	0.50	В	0.755	1.79		0.85	î	9.080	0.11	10.52	
			C	0.755	1.79		0.85	1	9.080			
Sum Weight:	6.96	35.03	~	,55	,,,			l ,		11.03		

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21007.33 - Storrs	47 of 91
Projec	et .	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client		Designed by
	Verizon	TJL

Force Totals (Does not include forces on guys)

Load	Vertical	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Sum of Torques
		X	Z	
	K	K	K	kip-ft
Leg Weight	20.02			
Bracing Weight	15.01			
Total Member Self-Weight	35.03			
Guy Weight	11.74			
Total Weight	64.41			
Wind 0 deg - No Ice		-0.14	-47.25	-10.83
Wind 30 deg - No Ice		23.54	-40.82	-6.39
Wind 45 deg - No Ice		33.36	-33.28 -23.48	-3.44
Wind 60 deg - No Ice		40.90 47.32	-23.48 0.14	-0.24 5.97
Wind 90 deg - No Ice Wind 120 deg - No Ice		40.76	23.56	10.59
Wind 120 deg - No Ice Wind 135 deg - No Ice		33.31	33.23	11.88
Wind 155 deg - No Ice		23.59	40.63	12.37
Wind 180 deg - No Ice		0.14	46.83	10.83
Wind 210 deg - No Ice		-23.36	40.50	6.39
Wind 225 deg - No Ice		-33.36	33.28	3.44
Wind 240 deg - No Ice		-40.62	23.32	0.24
Wind 270 deg - No Ice		-46.95	-0.14	-5.97
Wind 300 deg - No Ice		-40.72	-23.53	-10.59
Wind 315 deg - No Ice		-33.29	-33.21	-11.88
Wind 330 deg - No Ice		-23.59	-40.63	-12.37
Member Ice	44.85			
Guy Ice	86.21			
Total Weight Ice	312.78			
Wind 0 deg - Ice		-0.02	-13.88	-3.33
Wind 30 deg - Ice		6.93	-12.01	-2.25
Wind 45 deg - Ice Wind 60 deg - Ice		9.82 12.03	-9.80 -6.92	-1.46 -0.57
Wind 90 deg - Ice Wind 90 deg - Ice		13.91	-0.92 0.02	1.27
Wind 120 deg - Ice		11.90	6.87	2.84
Wind 120 deg - Ice Wind 135 deg - Ice		9.72	9.70	3.35
Wind 155 deg - Ice		6.88	11.87	3.63
Wind 180 deg - Ice		0.02	13.69	3.46
Wind 210 deg - Ice		-6.84	11.85	2.35
Wind 225 deg - Ice		-9.82	9.80	1.46
Wind 240 deg - Ice		-11.87	6.83	0.62
Wind 270 deg - Ice		-13.72	-0.02	-1.28
Wind 300 deg - Ice		-11.89	-6.87	-2.84
Wind 315 deg - Ice		-9.72	-9.70	-3.35
Wind 330 deg - Ice		-6.88	-11.87	-3.63
Total Weight	64.41			
Wind 0 deg - Service		-0.05	-16.71	-3.83
Wind 30 deg - Service		8.33	-14.44	-2.24
Wind 45 deg - Service		11.80		-1.19
Wind 60 deg - Service		14.47	-8.31	-0.05
Wind 90 deg - Service		16.74 14.42	0.05	2.15
Wind 120 deg - Service Wind 135 deg - Service		14.42	8.33 11.75	3.77 4.22
Wind 155 deg - Service Wind 150 deg - Service		8.34	11.75	4.22
Wind 180 deg - Service Wind 180 deg - Service		0.05	16.56	3.83
Wind 210 deg - Service		-8.26	14.32	2.24
Wind 216 deg - Service		-11.80	11.77	1.19
Wind 240 deg - Service		-14.37	8.25	
Wind 270 deg - Service		-16.61		

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21007.33 - Storrs	48 of 91
Projec	t	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client	Verizon	Designed by TJL

Load	Vertical	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	
		X	Z	
	K	K	K	kip-ft
Wind 300 deg - Service		-14.40	-8.32	-3.77
Wind 315 deg - Service		-11.77	-11.75	-4.22
Wind 330 deg - Service		-8.34	-14.37	-4.39

Load Combinations

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice+1.0 Guy
3	1.2 Dead+1.6 Wind 30 deg - No Ice+1.0 Guy
4	1.2 Dead+1.6 Wind 45 deg - No Ice+1.0 Guy
5	1.2 Dead+1.6 Wind 60 deg - No Ice+1.0 Guy
6	1.2 Dead+1.6 Wind 90 deg - No Ice+1.0 Guy
7	1.2 Dead+1.6 Wind 120 deg - No Ice+1.0 Guy
8	1.2 Dead+1.6 Wind 135 deg - No Ice+1.0 Guy
9	1.2 Dead+1.6 Wind 150 deg - No Ice+1.0 Guy
10	1.2 Dead+1.6 Wind 180 deg - No Ice+1.0 Guy
11	1.2 Dead+1.6 Wind 210 deg - No Ice+1.0 Guy
12	1.2 Dead+1.6 Wind 225 deg - No Ice+1.0 Guy
13	1.2 Dead+1.6 Wind 240 deg - No Ice+1.0 Guy
14	1.2 Dead+1.6 Wind 270 deg - No Ice+1.0 Guy
15	1.2 Dead+1.6 Wind 300 deg - No Ice+1.0 Guy
16	1.2 Dead+1.6 Wind 315 deg - No Ice+1.0 Guy
17	1.2 Dead+1.6 Wind 330 deg - No Ice+1.0 Guy
18	1.2 Dead+1.0 Ice+1.0 Temp+Guy
19	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp+1.0 Guy
20	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp+1.0 Guy
21	1.2 Dead+1.0 Wind 45 deg+1.0 Ice+1.0 Temp+1.0 Guy
22	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp+1.0 Guy
23	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp+1.0 Guy
24	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp+1.0 Guy
25	1.2 Dead+1.0 Wind 135 deg+1.0 Ice+1.0 Temp+1.0 Guy
26	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp+1.0 Guy
27	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp+1.0 Guy
28	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp+1.0 Guy
29	1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp+1.0 Guy
30	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp+1.0 Guy
31	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp+1.0 Guy
32	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp+1.0 Guy
33 34	1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp+1.0 Guy
35	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp+1.0 Guy Dead+Wind 0 deg - Service+Guy
36	Dead+Wind 30 deg - Service+Guy Dead+Wind 30 deg - Service+Guy
37	Dead+Wind 45 deg - Service+Guy
38	Dead+Wind 43 deg - Service+Guy Dead+Wind 60 deg - Service+Guy
39	Dead+Wind 90 deg - Service+Guy
40	Dead+Wind 120 deg - Service+Guy
41	Dead+Wind 135 deg - Service+Guy Dead+Wind 135 deg - Service+Guy
42	Dead+Wind 150 deg - Service+Guy
43	Dead+Wind 180 deg - Service+Guy
44	Dead+Wind 210 deg - Service+Guy
45	Dead+Wind 225 deg - Service+Guy
46	Dead+Wind 240 deg - Service+Guy
.0	

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Jo	ob	Page
	21007.33 - Storrs	49 of 91
F	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
C	Client Verizon	Designed by TJL

Comb.	Description
No.	
47	Dead+Wind 270 deg - Service+Guy
48	Dead+Wind 300 deg - Service+Guy
49	Dead+Wind 315 deg - Service+Guy
50	Dead+Wind 330 deg - Service+Guy

Maximum Member Forces

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
				Comb.	K	kip-ft	kip-ft
L1	323 - 288	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	24	-6.31	-7.91	-6.88
			Max. Mx	14	-4.05	44.11	-0.12
			Max. My	10	-4.05	0.59	-43.90
			Max. Vy	6	2.26	-43.44	-0.17
			Max. Vx	10	2.26	0.59	-43.90
			Max. Torque	17			1.59
T1	288 - 280	Leg	Max Tension	10	14.29	-0.01	0.94
			Max. Compression	30	-31.83	- 0.87	0.34
			Max. Mx	22	0.88	-2.55	1.39
			Max. My	27	2.07	0.04	-2.93
			Max. Vy	31	-9.25	1.07	-0.57
			Max. Vx	19	-10.56	-0.04	1.21
		Diagonal	Max Tension	15	2.28	0.00	0.00
			Max. Compression	10	-2.17	0.00	0.00
			Max. Mx	19	0.35	0.04	0.00
			Max. My	26	-0.28	0.00	-0.00
			Max. Vy	19	-0.03	0.00	0.00
			Max. Vx	26	0.00	0.00	0.00
		Horizontal	Max Tension	9	3.61	0.00	0.00
			Max. Compression	17	-3.23	0.00	0.00
			Max. Mx	25	-0.19	0.02	0.00
			Max. My	26	-0.01	0.00	0.00
			Max. Vy	25	-0.03	0.00	0.00
			Max. Vx	26	-0.00	0.00	0.00
		Secondary Horizontal	Max Tension	24	0.00	0.00	0.00
			Max. Compression	24	-0.00	-0.01	-0.00
			Max. Mx	34	-0.00	-0.01	-0.00
			Max. My	23	-0.00	-0.01	-0.00
			Max. Vy	34	0.02	-0.01	-0.00
			Max. Vx	23	0.00	0.00	0.00
		Top Girt	Max Tension	25	6.65	0.00	0.00
		_	Max. Compression	1	0.00	0.00	0.00
			Max. Mx	22	6.40	0.02	0.00
			Max. My	25	6.48	0.00	-0.00
			Max. Vy	22	-0.03	0.00	0.00
			Max. Vx	25	0.00	0.00	0.00
		Bottom Girt	Max Tension	1	0.00	0.00	0.00
			Max. Compression	20	-1.89	0.00	0.00
			Max. Mx	30	-1.67	0.02	0.00
			Max. My	34	-1.47	0.00	0.00
			Max. Vy	30	-0.03	0.00	0.00
			Max. Vx	34	-0.00	0.00	0.00
		Guy A	Bottom Tension	27	14.88		
		•	Top Tension	27	17.84		
			Top Cable Vert	27	15.04		
			Top Cable Norm	27	9.61		
			Top Cable Tan	27	0.00		

Centek Engineering Inc. 63-2 North Branford Rd.

Job	Page
21007.33 - Storrs	50 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client	Designed by
Verizon	TJL

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axi Moment
		-Jr-		Comb.	K	kip-ft	kip-ft
			Bot Cable Vert	27	-10.99		
			Bot Cable Norm	27	10.02		
			Bot Cable Tan	27	0.01		
		Guy B	Bottom Tension	32	14.09		
			Top Tension	15	16.78		
			Top Cable Vert	32	13.67		
			Top Cable Norm	32	9.72		
			Top Cable Tan	32	0.01		
			Bot Cable Vert	15	-10.44		
			Bot Cable Norm	15	9.45		
		Guy C	Bot Cable Tan Bottom Tension	15 22	0.01 14.76		
		Guy C	Top Tension	22	17.70		
			Top Cable Vert	22	14.87		
			Top Cable Norm	22	9.60		
			Top Cable Tan	22	0.01		
			Bot Cable Vert	22	-10.85		
			Bot Cable Norm	22	10.00		
			Bot Cable Tan	22	0.00		
		Torque Arm Top	Max Tension	14	7.05	-23.45	0.00
			Max. Compression	6	-0.07	0.00	0.00
			Max. Mx	27	3.91	-60.32	0.00
			Max. My	26	5.40	-54.55	0.00
			Max. Vy	27	15.25	-60.32	0.00
			Max. Vx	26	0.00	-54.55	0.00
T2	280 - 260	Leg	Max Tension	1	0.00	0.00	0.00
			Max. Compression	25	-33.33	0.37	-0.39
			Max. Mx	22	-30.03	-0.57	0.18
			Max. My	27	-29.37	0.13	-0.59
			Max. Vy	32	2.10	0.46	0.41
		D'1	Max. Vx	27	-2.36	0.13	-0.59
		Diagonal	Max Tension	11 3	1.54	$0.00 \\ 0.00$	0.00
			Max. Compression Max. Mx	3 19	-2.05 -0.32	0.04	$0.00 \\ 0.00$
			Max. My	26	0.23	0.04	-0.00
			Max. Vy	19	-0.03	0.00	0.00
			Max. Vx	26	-0.00	0.00	0.00
		Horizontal	Max Tension	16	0.58	0.00	0.00
		Honzonta	Max. Compression	8	-0.37	0.00	0.00
			Max. Mx	30	0.28	0.02	0.00
			Max. My	34	0.18	0.00	0.00
			Max. Vy	30	-0.03	0.00	0.00
			Max. Vx	34	-0.00	0.00	0.00
		Secondary Horizontal	Max Tension	30	0.00	-0.01	-0.00
			Max. Compression	24	-0.00	-0.01	-0.00
			Max. Mx	31	0.00	-0.01	-0.00
			Max. My	19	-0.00	-0.01	0.00
			Max. Vy	31	0.02	-0.01	-0.00
			Max. Vx	19	-0.00	0.00	0.00
		Top Girt	Max Tension	31	1.39	0.00	0.00
			Max. Compression	1	0.00	0.00	0.00
			Max. Mx	30	1.22	0.02	0.00
			Max. My	34	1.09	0.00	0.00
			Max. Vy	30	-0.03	0.00	0.00
		D :: 6:	Max. Vx	34	-0.00	0.00	0.00
		Bottom Girt	Max Tension	2	0.07	0.00	0.00
			Max. Compression	10	-1.30	0.00	0.00
			Max. Mx	29	-1.07	0.02	0.00
			Max. My	34	-0.94	0.00	0.00
			Max. Vy	19	0.03	0.00	0.00

Centek Engineering Inc. 63-2 North Branford Rd.

Job	Page
21007.33 - Storrs	51 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client Verizon	Designed by TJL

lection No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
110.	Ji	Турс		Comb.	K	kip-ft	kip-ft
			Max. Vx	34	-0.00	0.00	0.00
T3	260 - 240	Leg	Max Tension	1	0.00	0.00	0.00
13		8	Max. Compression	27	-67.22	0.31	0.01
			Max. Mx	22	-61.80	2.51	-0.94
			Max. My	27	-31.63	-0.18	-2.81
			Max. Vy	23	1.82	-0.95	-0.38
			Max. Vx	19	-2.06	0.08	1.00
		Diagonal	Max Tension	14	3.63	0.00	0.00
		_	Max. Compression	17	-4.57	0.00	0.00
			Max. Mx	19	0.73	0.04	0.00
			Max. My	34	-0.07	0.00	0.00
			Max. Vy	19	-0.03	0.00	0.00
			Max. Vx	34	-0.00	0.00	0.00
		Horizontal	Max Tension	9	5.14	0.00	0.00
			Max. Compression	17	- 4.49	0.00	0.00
			Max. Mx	25	0.39	0.02	0.00
			Max. My	34	-0.20	0.00	0.00
			Max. Vy	25	-0.02	0.00	0.00
			Max. Vx	34	-0.00	0.00	0.00
		Secondary Horizontal	Max Tension	30	0.00	-0.01	-0.00
			Max. Compression	24	-0.00	-0.01	-0.00
			Max. Mx	31	0.00	-0.01	0.00
			Max. My	47	0.00	-0.00	-0.00
			Max. Vy	31	0.02	-0.01	0.00
			Max. Vx	47	0.00	-0.00	-0.00
		Top Girt	Max Tension	26	2.04	0.00	0.00
			Max. Compression	1	0.00	0.00	0.00
			Max. Mx	29	1.91	0.02	0.00
			Max. My	34	1.73	0.00	0.00
			Max. Vy	29	-0.02	0.00	0.00
			Max. Vx	34	-0.00	0.00	0.00
		Bottom Girt	Max Tension	10	0.96	0.00	0.00
			Max. Compression	2	-0.65	0.00	0.00
			Max. Mx	25	0.32	0.02	0.00
			Max. My	34	0.21	0.00	0.00
			Max. Vy	25	-0.02	0.00	0.00
			Max. Vx	34	-0.00	0.00	0.00
		Guy A	Bottom Tension	27	15.10		
			Top Tension	10	17.60		
			Top Cable Vert	27	14.36		
			Top Cable Norm	27	10.18		
			Top Cable Tan	27	0.00		
			Bot Cable Vert	10	-11.30		
			Bot Cable Norm	10	10.01		
		C D	Bot Cable Tan	10	0.01		
		Guy B	Bottom Tension	32	14.50		
			Top Tension	15	16.49		
			Top Cable Vert	32	12.90		
			Top Cable Norm	32	10.28		
			Top Cable Tan	32	0.01		
			Bot Cable Vert	15	-10.27		
			Bot Cable Norm Bot Cable Tan	15	10.24		
		Green C		15	0.01		
		Guy C	Bottom Tension	22	14.95		
			Top Tension	5	17.47		
			Top Cable Vert	22	14.20		
			Top Cable Norm Top Cable Tan	22	10.18		
			LOD CADIE LAD	22	0.01		
			Bot Cable Vert	5	-11.13		

Centek Engineering Inc. 63-2 North Branford Rd.

Job	Page
21007.33 - Storrs	52 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client	Designed by
Verizon	TJL

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Ax Moment
	<i>y</i> -	->I -		Comb.	K	kip-ft	kip-ft
			Bot Cable Tan	5	0.01		
		Torque Arm Top	Max Tension	14	8.25	-20.35	0.00
			Max. Compression	6	-1.15	-43.78	0.00
			Max. Mx	27	3.97	-57.66	0.00
			Max. My	9	6.16	-31.94	0.00
			Max. Vy	27	14.59	-57.66	0.00
			Max. Vx	9	0.00	-31.94	0.00
T4	240 - 220	Leg	Max Tension	1	0.00	0.00	0.00
			Max. Compression	22	-67.59	-0.20	-0.28
			Max. Mx	31	-65.40	-0.61	0.07
			Max. My	10	-42.65	-0.01	0.56
			Max. Vy	14	-2.71	0.11	-0.29
			Max. Vx	2	-2.65	0.17	0.23
		Diagonal	Max Tension	6	3.77	0.00	0.00
			Max. Compression	14	-4.32	0.00	0.00
			Max. Mx	19	-0.09	0.04	0.00
			Max. My	34	-0.88	0.00	0.00
			Max. Vy	19	-0.03	0.00	0.00
			Max. Vx	34	0.00	0.00	0.00
		Horizontal	Max Tension	4	0.69	0.00	0.00
			Max. Compression	7	-0.23	0.00	0.00
			Max. Mx	24	0.42	0.02	0.00
			Max. My	34	0.42	0.00	0.00
			Max. Vy	24	0.02	0.00	0.00
			Max. Vx	34	0.00	0.00	0.00
		Secondary Horizontal	Max Tension	30	0.00	-0.01	-0.00
			Max. Compression	24	-0.00	-0.01	-0.00
			Max. Mx	27	-0.00	-0.01	0.00
			Max. My	19	-0.00	-0.01	0.00
			Max. Vy	27	0.02	-0.01	0.00
			Max. Vx	19	-0.00	0.00	0.00
		Top Girt	Max Tension	5	0.77	0.00	0.00
			Max. Compression	13	-0.62	0.00	0.00
			Max. Mx	25	0.30	0.02	0.00
			Max. My	34	0.03	0.00	0.00
			Max. Vy	25	0.02	0.00	0.00
			Max. Vx	34	0.00	0.00	0.00
		Bottom Girt	Max Tension	2	0.86	0.00	0.00
			Max. Compression	10	-1.65	0.00	0.00
			Max. Mx	26	-1.06	0.02	0.00
			Max. My	34	-0.81	0.00	0.00
			Max. Vy	26	0.02	0.00	0.00
			Max. Vx	34	0.00	0.00	0.00
T5	220 - 200	Leg	Max Tension	1	0.00	0.00	0.00
			Max. Compression	22	-98.23	-0.29	-0.51
			Max. Mx	22	- 91.50	2.53	-0.58
			Max. My	27	-64.30	-0.46	-2.58
			Max. Vy	14	-2.70	0.79	-0.39
		.	Max. Vx	2	-2.64	0.02	0.89
		Diagonal	Max Tension	3	5.16	0.00	0.00
			Max. Compression	11	-6.60	0.00	0.00
			Max. Mx	19	0.39	0.04	0.00
			Max. My	34	-0.48	0.00	0.00
			Max. Vy	19	-0.03	0.00	0.00
		** .	Max. Vx	34	-0.00	0.00	0.00
		Horizontal	Max Tension	9	8.36	0.00	0.00
			Max. Compression	17	-7.25	0.00	0.00
			Max. Mx	25	0.68	0.02	0.00
			Max. My	34	0.12	0.00	0.00
			Max. Vy	25	0.02	0.00	0.00

Centek Engineering Inc. 63-2 North Branford Rd.

Job	Page
21007.33 - Storrs	53 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client Verizon	Designed by TJL

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axi. Moment
				Comb.	K	kip-ft	kip-ft
			Max. Vx	34	0.00	0.00	0.00
		Secondary	Max Tension	30	0.00	-0.01	0.00
		Horizontal					
			Max. Compression	24	-0.00	-0.01	-0.00
			Max. Mx	33	0.00	-0.01	0.00
			Max. My	2	-0.00	-0.00	0.00
			Max. Vy	33	0.02	-0.01	0.00
			Max. Vx	2	-0.00	0.00	0.00
		Top Girt	Max Tension	10	2.21	0.00	0.00
			Max. Compression	2	-0.28	0.00	0.00
			Max. Mx	26	2.00	0.02	0.00
			Max. My	34	1.75	0.00	0.00
			Max. Vy	26	0.02	0.00	0.00
			Max. Vx	34	0.00	0.00	0.00
		Bottom Girt	Max Tension	16	1.18	0.00	0.00
			Max. Compression	12	-0.66	0.00	0.00
			Max. Mx	25	0.38	0.02	0.00
			Max. My	34	0.64	0.00	0.00
			Max. Vy	25	0.02	0.00	0.00
			Max. Vx	34	0.00	0.00	0.00
		Guy A	Bottom Tension	27	16.28		
			Top Tension	10	17.34		
			Top Cable Vert	27	13.29		
			Top Cable Norm	27	11.14		
			Top Cable Tan	27	0.00		
			Bot Cable Vert	10	-11.40		
			Bot Cable Norm	10	11.62		
		-	Bot Cable Tan	10	0.01		
		Guy B	Bottom Tension	32	15.55		
			Top Tension	15	16.17		
			Top Cable Vert	32	11.67		
			Top Cable Norm	32	11.19		
			Top Cable Tan	32	0.00		
			Bot Cable Vert	15	-10.08		
			Bot Cable Norm	15	11.84		
		C C	Bot Cable Tan	15 22	0.01		
		Guy C	Bottom Tension		16.12		
			Top Tension	5 22	17.23 13.13		
			Top Cable Vert				
			Top Cable Norm	22	11.15		
			Top Cable Tan Bot Cable Vert	22 5	0.01 -11.21		
			Bot Cable Norm	5	11.58		
			Bot Cable Tan	5	0.01		
		Torque Arm Top				-15.05	-0.00
		Torque Arm Top	Max Tension Max. Compression	3 6	10.64 -3.17	-42.83	0.00
			Max. Mx	27	4.15	-53.45	0.00
			Max. My	9	7.85	-29.00	0.00
			Max. Vy	27	13.54	-53.45	0.00
			Max. Vx	9	0.00	-29.00	0.00
T6	200 - 180	Leg	Max Tension	1	0.00	0.00	0.00
10	200 - 100	Leg	Max. Compression	31	-103.79	0.45	-0.63
			Max. Mx	14	-53.41	-1.40	0.03
			Max. My	10	-39.11	-0.17	1.35
			Max. Vy	6	3.51	-0.23	-0.34
			Max. Vx	11	3.32	0.41	-0.03
		Diagonal	Max Tension	11	6.98	0.00	0.00
		Diagonai	Max. Compression	3	-8.40	0.00	0.00
			Max. Mx	19	0.26	0.04	0.00
			Max. My	34	-0.40	0.00	0.00
			Max. Vy	19	0.03	0.00	0.00

Centek Engineering Inc. 63-2 North Branford Rd.

Job	Page
21007.33 - Storrs	54 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client Verizon	Designed by
Venzon	TJL

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Ax Momen
-,	<i>J-</i>	-5F-		Comb.	K	kip-ft	kip-ft
			Max. Vx	34	-0.00	0.00	0.00
		Horizontal	Max Tension	5	2.76	0.00	0.00
			Max. Compression	13	-1.95	0.00	0.00
			Max. Mx	27	0.93	0.02	0.00
			Max. My	8	-0.02	0.00	-0.00
			Max. Vy	27	-0.02	0.00	0.00
			Max. Vx	8	0.00	0.00	0.00
		Secondary	Max Tension	30	0.00	-0.01	-0.00
		Horizontal					
			Max. Compression	24	-0.00	-0.01	-0.00
			Max. Mx	34	0.00	-0.01	0.00
			Max. My	19	-0.00	-0.01	0.00
			Max. Vy	34	0.02	-0.01	0.00
		_ ~.	Max. Vx	19	-0.00	0.00	0.00
		Top Girt	Max Tension	8	0.75	0.00	0.00
			Max. Compression	16	-0.58	0.00	0.00
			Max. Mx	25	0.25	0.02	0.00
			Max. My	34	-0.00	0.00	0.00
			Max. Vy	25	-0.02	0.00	0.00
			Max. Vx	34	-0.00	0.00	0.00
		Bottom Girt	Max Tension	7	2.06	0.00	0.00
			Max. Compression	10	-1.52	0.00	0.00
			Max. Mx	25	0.80	0.02	0.00
			Max. My	9	-1.19	0.00	0.00
			Max. Vy	25	-0.02	0.00	0.00
			Max. Vx	9	-0.00	0.00	0.00
T 7	180 - 160	Leg	Max Tension	1	0.00	0.00	0.00
		_	Max. Compression	24	-127.37	-0.35	-0.81
			Max. Mx	23	-99.52	-2.43	0.20
			Max. My	10	-38.62	0.47	-2.32
			Max. Vy	6	3.51	-1.10	-0.29
			Max. Vx	11	3.33	0.87	-0.86
		Diagonal	Max Tension	3	8.60	0.00	0.00
		J	Max. Compression	11	-9.56	0.00	0.00
			Max. Mx	30	-0.22	0.04	0.00
			Max. My	9	-4.11	0.00	-0.00
			Max. Vy	30	-0.03	0.00	0.00
			Max. Vx	9	0.00	0.00	0.00
		Horizontal	Max Tension	17	11.83	0.00	0.00
		11011120111111	Max. Compression	8	-10.23	0.00	0.00
			Max. Mx	24	-0.56	0.02	0.00
			Max. My	10	0.75	0.02	0.00
			Max. Vy	24	-0.02	0.00	0.00
			Max. Vx	10	-0.02	0.00	0.00
		Secondary	Max Tension	30	0.00	-0.01	0.00
		Horizontal	Max. Compression	24	-0.00	-0.01	-0.00
			1				
			Max. Mx	34	0.00	-0.01	0.00
			Max. My	10	-0.00	-0.00	0.00
			Max. Vy	34	0.01	-0.01	0.00
		Tr C.	Max. Vx	10	-0.00	-0.00	0.00
		Top Girt	Max Tension	10	1.98	0.00	0.00
			Max. Compression	2	-1.67	0.00	0.00
			Max. Mx	21	0.01	0.02	0.00
			Max. My	9	1.67	0.00	0.00
			Max. Vy	27	-0.02	0.00	0.00
		P	Max. Vx	9	-0.00	0.00	0.00
		Bottom Girt	Max Tension	9	1.72	0.00	0.00
			Max. Compression	2	-1.03	0.00	0.00
			Max. Mx	18	0.72	0.02	0.00
			Max. My	8	0.90	0.00	-0.00

Centek Engineering Inc. 63-2 North Branford Rd.

Job	Page
21007.33 - Storrs	55 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client	Designed by
Verizon	TJL

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axi Moment
				Comb.	K	kip-ft	kip-ft
			Max. Vy	18	-0.02	0.00	0.00
			Max. Vx	8	0.00	0.00	0.00
		Guy A	Bottom Tension	10	17.58		
			Top Tension	10	17.80		
			Top Cable Vert	10	11.47		
			Top Cable Norm	10	13.61		
			Top Cable Tan	10	0.00		
			Bot Cable Vert	10	-10.87		
			Bot Cable Norm	10	13.81		
			Bot Cable Tan	10	0.00		
		Guy B	Bottom Tension	15	16.87		
			Top Tension	15	17.06		
			Top Cable Vert	15	9.77		
			Top Cable Norm	15	13.98		
			Top Cable Tan	15	0.00		
			Bot Cable Vert	15	-9.24		
			Bot Cable Norm	15	14.12		
		C C	Bot Cable Tan	15	0.00		
		Guy C	Bottom Tension	5	17.44		
			Top Tension	5	17.66		
			Top Cable Vert	5	11.26		
			Top Cable Norm	5	13.60		
			Top Cable Tan	5	0.00		
			Bot Cable Vert	5	-10.67		
			Bot Cable Norm	5	13.80		
		TD 4 TD	Bot Cable Tan	5	0.00	0.00	0.00
		Torque Arm Top	Max Tension	3	13.94	0.00	0.00
			Max. Compression	7	-5.99	-31.76	-0.00
			Max. Mx	27	4.45	-46.94	0.00
			Max. My	8	2.27	-37.10	0.00
			Max. Vy	27	11.91	-46.94	0.00
T8	160 - 140	Laa	Max. Vx	8	0.00	-37.10 0.00	0.00
18	100 - 140	Leg	Max Tension	1 30	0.00		0.00
			Max. Compression		-132.91	-0.43	0.78
			Max. Mx	24 24	-128.75 -130.25	1.00 -0.50	-0.00 -0.87
			Max. My	14	2.35	-0.30 -0.07	-0.87 -0.36
			Max. Vy Max. Vx	2	2.09	0.39	0.12
		Diagonal	Max. vx Max Tension	7	3.96	0.00	0.12
		Diagonai	Max. Compression	14	-4.72	0.00	0.00
			Max. Mx	30	-0.50	0.04	0.00
			Max. My	9	-0.05	0.00	-0.00
			Max. Vy	30	0.03	0.00	0.00
			Max. Vx	9	-0.00	0.00	0.00
		Horizontal	Max Tension	15	1.04	0.00	0.00
		Honzontar	Max. Compression	7	-0.10	0.00	0.00
			Max. Mx	24	0.81	0.02	0.00
			Max. My	10	0.31	0.00	0.00
			Max. Vy	24	-0.02	0.00	0.00
			Max. Vx	10	-0.00	0.00	0.00
		Secondary	Max Tension	30	0.00	-0.01	0.00
		Horizontal	Will Telision	50	0.00	-0.01	0.00
		1101120111111	Max. Compression	25	-0.00	-0.01	0.00
			Max. Mx	34	0.00	-0.01	0.00
			Max. My	10	-0.00	-0.00	0.00
			Max. Vy	34	0.01	-0.01	0.00
			Max. Vx	10	-0.00	-0.00	0.00
		Top Girt	Max Tension	2	1.14	0.00	0.00
		rop ont	Max. Compression	9	-0.69	0.00	0.00
			Max. Mx	27	0.07	0.02	0.00
			Max. My	8	-0.24	0.02	-0.00

Centek Engineering Inc. 63-2 North Branford Rd.

Job		Page
	21007.33 - Storrs	56 of 91
Projec	t	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client	Verizon	Designed by TJL

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axi Moment
	,	<i>71</i>		Comb.	K	kip-ft	kip-ft
			Max. Vy	27	-0.02	0.00	0.00
			Max. Vx	8	0.00	0.00	0.00
		Bottom Girt	Max Tension	19	0.48	0.00	0.00
			Max. Compression	1	0.00	0.00	0.00
			Max. Mx	24	0.47	0.02	0.00
			Max. My	10	0.22	0.00	0.00
			Max. Vy	24	-0.02	0.00	0.00
TDO.	1.40 1.20		Max. Vx	10	-0.00	0.00	0.00
Т9	140 - 120	Leg	Max Tension	1	0.00	0.00	0.00
			Max. Compression Max. Mx	23 23	-137.19 -135.48	0.97 - 1.14	$0.01 \\ 0.01$
			Max. My	25 25	-133.46	0.53	-1.00
			Max. Vy	6	2.49	-0.28	-0.40
			Max. Vx	11	2.41	0.50	-0.40
		Diagonal	Max Tension	11	4.24	0.00	0.00
		2 lugoimi	Max. Compression	3	-5.83	0.00	0.00
			Max. Mx	22	-0.72	0.03	0.00
			Max. My	9	-1.83	0.00	-0.00
			Max. Vy	22	0.03	0.00	0.00
			Max. Vx	9	-0.00	0.00	0.00
		Horizontal	Max Tension	4	1.23	0.00	0.00
			Max. Compression	12	-0.03	0.00	0.00
			Max. Mx	24	1.04	0.02	0.00
			Max. My	10	0.46	0.00	0.00
			Max. Vy	24	-0.02	0.00	0.00
			Max. Vx	10	-0.00	0.00	0.00
		Secondary Horizontal	Max Tension	21	0.00	-0.01	0.00
			Max. Compression	33	-0.00	-0.01	0.00
			Max. Mx	34	0.00	-0.01	0.00
			Max. My	39	0.00	-0.00	-0.00
			Max. Vy	34	0.01	-0.01	0.00
		Top Girt	Max. Vx	39	0.00	-0.00	-0.00
		тор Опт	Max Tension Max. Compression	10 6	0.61 -0.08	0.00 0.00	0.00 0.00
			Max. Mx	24	0.31	0.00	0.00
			Max. My	10	0.51	0.02	0.00
			Max. Vy	24	-0.02	0.00	0.00
			Max. Vx	10	-0.00	0.00	0.00
		Bottom Girt	Max Tension	3	1.16	0.00	0.00
			Max. Compression	10	-0.72	0.00	0.00
			Max. Mx	24	0.75	0.02	0.00
			Max. My	10	-0.72	0.00	0.00
			Max. Vy	24	-0.02	0.00	0.00
			Max. Vx	10	-0.00	0.00	0.00
T10	120 - 100	Leg	Max Tension	1	0.00	0.00	0.00
			Max. Compression	24	-160.34	1.21	0.11
			Max. Mx	23	-132.68	-2.18	-0.34
			Max. My	24	-154.91	0.72	-2.05
			Max. Vy	14	6.86	1.24	-0.42
			Max. Vx	3	5.59	-0.17	1.23
		Diagonal	Max Tension	14	12.16	0.00	0.00
			Max. Compression	6	-13.74	0.00	0.00
			Max. Mx	30	0.39	0.04	0.00
			Max. My	8	3.39	0.00	-0.00
			Max. Vy	30	-0.03	0.00	0.00
		Horizontal	Max. Vx Max Tension	8	0.00	0.00	0.00
		Horizontal		24	1.72	0.00	0.00
			Max. Compression Max. Mx	15 21	-0.17 1.55	0.00 0.02	0.00 0.00

Centek Engineering Inc. 63-2 North Branford Rd.

Job	Page
21007.33 - Storrs	57 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client	Designed by
Verizon	TJL

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
	-			Comb.	K	kip-ft	kip-ft
			Max. Vy	21	-0.02	0.00	0.00
			Max. Vx	7	-0.00	0.00	0.00
		Secondary Horizontal	Max Tension	30	0.00	-0.01	0.00
			Max. Compression	22	-0.00	-0.01	0.00
			Max. Mx	34	0.00	-0.01	0.00
			Max. My	7	-0.00	-0.00	-0.00
			Max. Vy	34	0.01	-0.01	0.00
			Max. Vx	7	0.00	0.00	0.00
		Top Girt	Max Tension	10	1.60	0.00	0.00
			Max. Compression	2	-0.91	0.00	0.00
			Max. Mx	24	0.18	0.02	0.00
			Max. My	10	1.60	0.00	0.00
			Max. Vy Max. Vx	24 10	-0.02 -0.00	0.00 0.00	$0.00 \\ 0.00$
		Bottom Girt	Max Tension	10	3.23	0.00	0.00
		Bottom Girt	Max. Compression	2	-2.33	0.00	0.00
			Max. Mx	27	0.52	0.00	0.00
			Max. My	7	1.92	0.02	-0.00
			Max. Vy	27	-0.02	0.00	0.00
			Max. Vx	7	0.00	0.00	0.00
		Guy A	Bottom Tension	10	18.47	0.00	0.00
		•	Top Tension	10	18.62		
			Top Cable Vert	10	9.25		
			Top Cable Norm	10	16.15		
			Top Cable Tan	10	0.00		
			Bot Cable Vert	10	-8.81		
			Bot Cable Norm	10	16.23		
			Bot Cable Tan	10	0.00		
		Guy B	Bottom Tension	15	17.89		
			Top Tension	15	18.00		
			Top Cable Vert	15	7.13		
			Top Cable Norm	15	16.53		
			Top Cable Tan	15	0.00		
			Bot Cable Vert	15	-6.75		
			Bot Cable Norm	15	16.57		
		0 0	Bot Cable Tan	15	0.00		
		Guy C	Bottom Tension	5	18.19		
			Top Tension	5	18.34		
			Top Cable Vert	5	8.94		
			Top Cable Norm	5	16.01		
			Top Cable Tan Bot Cable Vert	5 5	0.00 -8.51		
			Bot Cable Norm	5	16.08		
			Bot Cable Tan	5	0.00		
		Top Guy Pull-Off	Max Tension	17	15.87	0.00	0.00
		Top Guy Tun On	Max. Compression	9	-13.91	0.00	0.00
			Max. Mx	21	3.94	0.01	0.00
			Max. My	7	11.47	0.00	0.00
			Max. Vy	21	-0.01	0.00	0.00
			Max. Vx	7	-0.00	0.00	0.00
		Torque Arm Top	Max Tension	14	17.20	-6.08	-0.00
			Max. Compression	6	-8.01	0.00	0.00
			Max. Mx	27	4.86	-36.72	0.00
			Max. My	7	6.72	-27.05	0.00
			Max. Vy	27	9.35	-36.72	0.00
			Max. Vx	7	0.00	-27.05	0.00
T11	100 - 80	Leg	Max Tension	1	0.00	0.00	0.00
			Max. Compression	27	-179.60	1.34	0.03
			Max. Mx	14	-81.05	-2.19	-0.52
			Max. My	9	-77.82	0.57	1.82

Centek Engineering Inc. 63-2 North Branford Rd.

Job	Page
21007.33 - Storrs	58 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client Verizon	Designed by TJL

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Ax Moment
	<i>J-</i>	-5F-		Comb.	K	kip-ft	kip-ft
			Max. Vy	14	6.85	-0.48	-0.47
			Max. Vx	3	5.59	0.65	-0.17
		Diagonal	Max Tension	6	11.40	0.00	0.00
			Max. Compression	14	-13.47	0.00	0.00
			Max. Mx	23	-2.45	0.04	0.00
			Max. My	9	-4.09	0.00	-0.00
			Max. Vy	23	-0.03	0.00	0.00
			Max. Vx	9	-0.00	0.00	0.00
		Horizontal	Max Tension	10	2.66	0.00	0.00
			Max. Compression	2	-1.15	0.00	0.00
			Max. Mx	33	1.21	0.02	0.00
			Max. My	9	2.31	0.00	-0.00
			Max. Vy	33	-0.02	0.00	0.00
			Max. Vx	9	0.00	0.00	0.00
		Secondary	Max Tension	23	0.00	-0.01	0.00
		Horizontal	1.1411 1 01151011	20	0.00	0.01	0.00
		11011201141	Max. Compression	24	-0.00	-0.01	0.00
			Max. Mx	34	0.00	-0.01	0.00
			Max. My	7	-0.00	-0.00	-0.00
			Max. Vy	34	0.01	-0.01	0.00
			Max. Vx	7	0.00	0.00	0.00
		Top Girt	Max Tension	2	2.65	0.00	0.00
		T OP CILT	Max. Compression	10	-2.04	0.00	0.00
			Max. Mx	27	0.79	0.00	0.00
				7	2.02	0.02	0.00
			Max. My Max. Vy	27	-0.02	0.00	
			Max. Vy Max. Vx				0.00
		Bottom Girt		7 9	-0.00	0.00	0.00
		Bottom Ont	Max Tension		1.23	0.00	0.00
			Max. Compression	17	-0.49	0.00	0.00
			Max. Mx	24	0.82	0.02	0.00
			Max. My	9	0.35	0.00	-0.00
			Max. Vy	24	-0.02	0.00	0.00
	00 60		Max. Vx	9	0.00	0.00	0.00
Т12	80 - 60	Leg	Max Tension	1	0.00	0.00	0.00
			Max. Compression	27	-186.53	1.36	0.18
			Max. Mx	25	-181.85	1.63	-0.01
			Max. My	24	-174.45	0.78	1.41
			Max. Vy	15	1.87	-0.41	-0.48
			Max. Vx	9	1.62	0.08	1.03
		Diagonal	Max Tension	17	2.24	0.00	0.00
			Max. Compression	15	-4.35	0.00	0.00
			Max. Mx	23	-1.31	0.03	0.00
			Max. My	8	-0.93	0.00	-0.00
			Max. Vy	23	-0.03	0.00	0.00
			Max. Vx	8	0.00	0.00	0.00
		Horizontal	Max Tension	22	1.66	0.00	0.00
			Max. Compression	1	0.00	0.00	0.00
			Max. Mx	32	1.37	0.02	0.00
			Max. My	9	1.20	0.00	-0.00
			Max. Vy	32	0.02	0.00	0.00
			Max. Vx	9	0.00	0.00	0.00
		Secondary	Max Tension	23	0.00	-0.00	-0.00
		Horizontal		-	,		
			Max. Compression	23	-0.00	0.00	0.00
			Max. Mx	34	0.00	-0.01	0.00
							-0.00
				6	0.00	-0.00	-().()()
			Max. My	6 34	0.00 0.01	-0.00 -0.01	
			Max. My Max. Vy	34	0.01	-0.01	0.00
		Ton Girt	Max. My Max. Vy Max. Vx	34 6	0.01 0.00	-0.01 -0.00	0.00 -0.00
		Top Girt	Max. My Max. Vy	34	0.01	-0.01	0.00

Centek Engineering Inc. 63-2 North Branford Rd.

Job		Page
	21007.33 - Storrs	59 of 91
Proje	ct	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client	t Verizon	Designed by

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axi Moment
				Comb.	K	kip-ft	kip-ft
			Max. My	9	0.28	0.00	-0.00
			Max. Vy	24	0.02	0.00	0.00
		D C	Max. Vx	9	0.00	0.00	0.00
		Bottom Girt	Max Tension	9	0.88	0.00	0.00
			Max. Compression	17	-0.30	0.00	0.00
			Max. Mx	34 9	0.47 0.88	0.02 0.00	0.00 -0.00
			Max. My Max. Vy	34	0.88	0.00	0.00
			Max. Vx	9	0.02	0.00	0.00
T13	60 - 40	Leg	Max Tension	1	0.00	0.00	0.00
115	00 10	205	Max. Compression	27	-198.11	1.47	0.03
			Max. Mx	25	-193.82	1.74	-0.03
			Max. My	31	-177.41	0.42	-1.69
			Max. Vy	14	-1.58	-0.06	-0.52
			Max. Vx	9	1.63	-0.19	0.63
		Diagonal	Max Tension	15	3.25	0.00	0.00
			Max. Compression	10	-5.74	0.00	0.00
			Max. Mx	26	-1.65	0.03	0.00
			Max. My	8	-3.07	0.00	-0.00
			Max. Vy	26	0.03	0.00	0.00
			Max. Vx	8	0.00	0.00	0.00
		Horizontal	Max Tension	9	6.76	0.00	0.00
			Max. Compression	17	-4.87	0.00	0.00
			Max. Mx	34	1.62	0.02	0.00
			Max. My	9	1.07	0.00	-0.00
			Max. Vy Max. Vx	34 9	0.02 0.00	0.00 0.00	0.00 0.00
		Secondary Horizontal	Max Tension	23	0.00	-0.00	-0.00
		Honzoman	Max. Compression	23	-0.00	0.00	0.00
			Max. Mx	34	0.00	-0.00	0.00
			Max. My	2	0.00	-0.00	0.00
			Max. Vy	34	0.01	-0.00	0.00
			Max. Vx	2	-0.00	-0.00	0.00
		Top Girt	Max Tension	34	1.15	0.00	0.00
		•	Max. Compression	8	-0.14	0.00	0.00
			Max. Mx	34	1.00	0.02	0.00
			Max. My	9	-0.11	0.00	-0.00
			Max. Vy	34	0.02	0.00	0.00
			Max. Vx	9	0.00	0.00	0.00
		Bottom Girt	Max Tension	9	0.96	0.00	0.00
			Max. Compression	17	-0.16	0.00	0.00
			Max. Mx	34	0.63	0.02	0.00
			Max. My	9	0.69	0.00	-0.00
			Max. Vy	34	0.02	0.00 0.00	0.00
		Corr. A	Max. Vx Bottom Tension	9	0.00	0.00	0.00
		Guy A	Top Tension	27 27	7.59 8.04		
			Top Cable Vert	27	3.24		
			Top Cable Norm	27	7.36		
			Top Cable Tan	27	0.00		
			Bot Cable Vert	27	-1.82		
			Bot Cable Norm	27	7.37		
			Bot Cable Tan	27	0.00		
		Guy B	Bottom Tension	33	7.56		
		· y –	Top Tension	33	7.86		
			Top Cable Vert	33	2.30		
			Top Cable Norm	33	7.52		
			Top Cable Tan	33	0.01		
			Bot Cable Vert	33	-0.78		
				33			

Centek Engineering Inc. 63-2 North Branford Rd.

Job	Page
21007.33 - Storrs	60 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client	Designed by
Verizon	TJL

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axi: Moment
	,	7.1		Comb.	K	kip-ft	kip-ft
			Bot Cable Tan	33	0.01		
		Guy C	Bottom Tension	22	7.54		
			Top Tension	22	7.98		
			Top Cable Vert	22	3.13		
			Top Cable Norm	22	7.34		
			Top Cable Tan	22	0.00		
			Bot Cable Vert	22	-1.70		
			Bot Cable Norm	22	7.35		
			Bot Cable Tan	22	0.00	0.00	0.00
		Torque Arm Top	Max Tension	6	7.04	0.00	0.00
			Max. Compression	6	-3.30	0.00	0.00
			Max. Mx	28 9	3.72 -1.46	-13.56 -5.33	0.00 0.00
			Max. My Max. Vy	28	3.56	-3.55 -13.56	0.00
			Max. Vy	9	0.00	-5.33	0.00
T14	40 - 20	Leg	Max Tension	1	0.00	0.00	0.00
117	40 - 20	Leg	Max. Compression	27	-198.11	1.42	0.00
			Max. Mx	25	-194.97	1.77	-0.01
			Max. My	24	-190.47	0.86	1.54
			Max. Vy	6	2.54	-0.28	-0.70
			Max. Vx	9	2.73	0.09	1.27
		Diagonal	Max Tension	17	4.15	0.00	0.00
		Č	Max. Compression	9	-6.45	0.00	0.00
			Max. Mx	26	-0.86	0.03	0.00
			Max. My	8	-1.08	0.00	-0.00
			Max. Vy	26	-0.02	0.00	0.00
			Max. Vx	8	0.00	0.00	0.00
		Horizontal	Max Tension	26	1.76	0.00	0.00
			Max. Compression	1	0.00	0.00	0.00
			Max. Mx	34	1.63	0.02	0.00
			Max. My	9	1.33	0.00	-0.00
			Max. Vy	34	-0.02	0.00	0.00
		a 1	Max. Vx	9	0.00	0.00	0.00
		Secondary Horizontal	Max Tension	23	0.00	-0.00	-0.00
			Max. Compression	14	-0.00	-0.00	-0.00
			Max. Mx	19	0.00	-0.00	0.00
			Max. My	2	0.00	-0.00	0.00
			Max. Vy	34	0.01	-0.00	0.00
		m or	Max. Vx	2	-0.00	-0.00	0.00
		Top Girt	Max Tension	20	0.86	0.00	0.00
			Max. Compression	7	-0.22	0.00	0.00
			Max. Mx	34 9	0.82	0.02	0.00
			Max. My	34	-0.12	0.00	-0.00
			Max. Vy Max. Vx	9	-0.02 0.00	0.00 0.00	0.00 0.00
		Bottom Girt	Max Tension	7	1.33	0.00	0.00
		Dottom Ont	Max. Compression	16	-0.49	0.00	0.00
			Max. Mx	28	0.81	0.02	0.00
			Max. My	9	1.23	0.00	-0.00
			Max. Vy	28	-0.02	0.00	0.00
			Max. Vx	9	0.00	0.00	0.00
T15	20 - 6.75	Leg	Max Tension	ĺ	0.00	0.00	0.00
		-0	Max. Compression	27	-196.66	1.47	-0.10
			Max. Mx	23	-192.90	-2.19	0.11
			Max. My	27	-192.44	0.93	-1.88
			Max. Vy	23	7.48	-2.19	0.11
			Max. Vx	28	7.88	0.95	-1.88
		Diagonal	Max Tension	6	5.61	0.00	0.00
		-	Max. Compression	9	-7.24	0.00	0.00
			man compression				

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21007.33 - Storrs	61 of 91
Proje	ect	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Clier	nt Verizon	Designed by

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
1,01	Je	1,770		Comb.	K	kip-ft	kip-ft
			Max. My	8	0.74	0.00	-0.00
			Max. Vy	26	0.02	0.00	0.00
			Max. Vx	8	0.00	0.00	0.00
		Horizontal	Max Tension	19	1.68	0.00	0.00
			Max. Compression	1	0.00	0.00	0.00
			Max. Mx	28	1.28	0.02	0.00
			Max. My	9	0.86	0.00	-0.00
			Max. Vy	28	0.02	0.00	0.00
			Max. Vx	9	0.00	0.00	0.00
		Secondary Horizontal	Max Tension	23	0.00	-0.00	-0.00
			Max. Compression	14	-0.00	-0.00	-0.00
			Max. Mx	19	0.00	-0.00	0.00
			Max. My	2	0.00	-0.00	0.00
			Max. Vy	19	0.01	-0.00	0.00
			Max. Vx	6	0.00	-0.00	-0.00
		Top Girt	Max Tension	15	1.48	0.00	0.00
			Max. Compression	7	-0.79	0.00	0.00
			Max. Mx	28	0.63	0.02	0.00
			Max. My	9	-0.57	0.00	-0.00
			Max. Vy	28	0.02	0.00	0.00
			Max. Vx	9	0.00	0.00	0.00
		Bottom Girt	Max Tension	23	4.79	0.00	0.00
			Max. Compression	1	0.00	0.00	0.00
			Max. Mx	28	4.55	0.02	0.00
			Max. My	9	2.90	0.00	-0.00
			Max. Vy	28	0.02	0.00	0.00
			Max. Vx	9	0.00	0.00	0.00
T16	6.75 - 0	Leg	Max Tension	1	0.00	0.00	0.00
		8	Max. Compression	23	-202.63	-0.59	0.11
			Max. Mx	28	-201.31	1.49	-0.05
			Max. My	8	-98.14	0.30	-0.36
			Max. Vy	26	1.59	-1.21	0.14
			Max. Vx	8	-0.23	-0.31	0.09
		Horizontal	Max Tension	24	0.74	-0.63	0.02
			Max. Compression	24	-0.16	-0.32	0.02
			Max. Mx	31	0.70	-1.06	-0.03
			Max. My	25	0.74	-1.02	-0.03
			Max. Vy	2	-0.63	-0.62	-0.01
			Max. Vx	23	-0.05	-0.94	-0.03
		Top Girt	Max Tension	23	29.90	-0.71	-0.04
		P	Max. Compression	1	0.00	0.00	0.00
			Max. Mx	6	12.28	1.33	0.02
			Max. My	25	29.77	-0.78	-0.04
			Max. Vy	23	-0.69	-0.95	-0.04
			Max. Vx	23	-0.03	-0.95	-0.04

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Mast	Max. Vert	24	572.38	-0.43	-0.02
	Max. H _x	14	267.12	5.47	0.02
	Max. H _z	2	261.50	0.00	5.84
	Max. M_x	1	0.00	-0.01	0.02
	Max. M _z	1	0.00	-0.01	0.02

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

٦	Job	Page
	21007.33 - Storrs	62 of 91
	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client	Designed by
	Verizon	TJL

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
	Max. Torsion	1	0.00	-0.01	0.02
	Min. Vert	1	227.38	-0.01	0.02
	Min. H _x	6	270.76	-5.53	-0.07
	Min. H _z	10	275.06	-0.09	-5.30
	$Min. M_x$	1	0.00	-0.01	0.02
	Min. M _z	1	0.00	-0.01	0.02
	Min. Torsion	1	0.00	-0.01	0.02
Guy C @ 235 ft	Max. Vert	13	-25.43	-19.41	11.20
Elev -20.1 ft					
Azimuth 240 deg					
_	Max. H _x	13	-25.43	-19.41	11.20
	Max. H _z	5	-109.27	-116.04	67.00
	Min. Vert	5	-109.27	-116.04	67.00
	Min. H _x	5	-109.27	-116.04	67.00
	Min. H _z	13	-25.43	-19.41	11.20
Guy B @ 235 ft Elev 8.9 ft	Max. Vert	7	-20.07	17.58	10.16
Azimuth 120 deg					
· ·	Max. H _x	15	- 95.16	117.82	67.98
	Max. H _z	15	- 95.16	117.82	67.98
	Min. Vert	15	-95.16	117.82	67.98
	Min. H _x	7	-20.07	17.58	10.16
	Min. H _z	7	-20.07	17.58	10.16
Guy A @ 235 ft Elev -23.4 ft Azimuth 0 deg	Max. Vert	2	-25.86	-0.02	-22.44
712mam o deg	Max. H _x	14	-69.81	5.04	-79.45
	Max. H _z	2	-25.86	-0.02	-22.44
	Min. Vert	10	-110.54	0.03	-133.39
	Min. H _x	6	-67.27	-5.05	-76.69
	Min. H _z	10	-110.54	0.03	-133.39

Tower Mast Reaction Summary

Load Combination	Vertical	$Shear_x$	$Shear_z$	Overturning Moment, M_x	Overturning Moment, M_z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	227.38	0.01	-0.02	-0.00	-0.00	0.00
1.2 Dead+1.6 Wind 0 deg - No	261.50	-0.00	-5.84	-0.00	-0.00	0.00
Ice+1.0 Guy						
1.2 Dead+1.6 Wind 30 deg - No Ice+1.0 Guy	269.25	2.74	-4.72	-0.00	-0.00	0.00
1.2 Dead+1.6 Wind 45 deg - No Ice+1.0 Guy	273.17	3.86	-3.77	-0.00	-0.00	0.00
1.2 Dead+1.6 Wind 60 deg - No	274.83	4.70	-2.63	-0.00	-0.00	0.00
Ice+1.0 Guy						
1.2 Dead+1.6 Wind 90 deg - No Ice+1.0 Guy	270.76	5.53	0.07	-0.00	-0.00	-0.00
1.2 Dead+1.6 Wind 120 deg - No Ice+1.0 Guy	264.24	5.16	2.94	-0.00	-0.00	-0.00
1.2 Dead+1.6 Wind 135 deg - No Ice+1.0 Guy	267.09	4.11	3.93	-0.00	-0.00	-0.00
1.2 Dead+1.6 Wind 150 deg - No Ice+1.0 Guy	270.86	2.83	4.67	-0.00	-0.00	-0.00
1.2 Dead+1.6 Wind 180 deg - No Ice+1.0 Guy	275.06	0.09	5.30	-0.00	-0.00	-0.00
1.2 Dead+1.6 Wind 210 deg -	269.38	-2.68	4.65	-0.00	-0.00	-0.00

Centek Engineering Inc. 63-2 North Branford Rd.

T	Job	Page
	21007.33 - Storrs	63 of 91
	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client	Designed by
	Verizon	TJL

Load Combination	Vertical	$Shear_x$	$Shear_z$	Overturning Moment, M_x	Overturning Moment, M_z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
No Ice+1.0 Guy	264.70	2.07	2.80	0.00	0.00	0.00
1.2 Dead+1.6 Wind 225 deg - No Ice+1.0 Guy	264.79	-3.97	3.89	-0.00	-0.00	-0.00
1.2 Dead+1.6 Wind 240 deg -	261.45	-5.01	2.86	-0.00	-0.00	0.00
No Ice+1.0 Guy	201.43	-5.01	2.00	-0.00	-0.00	0.00
1.2 Dead+1.6 Wind 270 deg -	267.12	-5.47	-0.02	-0.00	-0.00	0.00
No Ice+1.0 Guy						
1.2 Dead+1.6 Wind 300 deg -	271.48	-4.68	-2.72	-0.00	-0.00	0.00
No Ice+1.0 Guy						
1.2 Dead+1.6 Wind 315 deg -	270.29	-3.85	-3.85	-0.00	-0.00	0.00
No Ice+1.0 Guy	267.10	2.74	4.77	0.00	0.00	0.00
1.2 Dead+1.6 Wind 330 deg - No Ice+1.0 Guy	267.10	-2.74	-4.77	-0.00	-0.00	0.00
1.2 Dead+1.0 Ice+1.0	566.04	0.11	-0.16	-0.00	-0.00	0.00
Temp+Guy	500.04	0.11	-0.10	-0.00	-0.00	0.00
1.2 Dead+1.0 Wind 0 deg+1.0	569.40	0.10	-0.55	-0.00	-0.00	0.00
Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 30 deg+1.0	568.21	0.29	-0.50	-0.00	-0.00	0.00
Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 45 deg+1.0	567.26	0.37	-0.43	-0.00	-0.00	0.00
Ice+1.0 Temp+1.0 Guy	5/5 10	0.44	0.24	0.00	0.00	0.00
1.2 Dead+1.0 Wind 60 deg+1.0	567.12	0.44	-0.34	-0.00	-0.00	0.00
Ice+1.0 Temp+1.0 Guy 1.2 Dead+1.0 Wind 90 deg+1.0	569.91	0.49	-0.15	-0.00	-0.00	0.00
Ice+1.0 Temp+1.0 Guy	309.91	0.49	-0.13	-0.00	-0.00	0.00
1.2 Dead+1.0 Wind 120	572.38	0.43	0.02	-0.00	-0.00	-0.00
deg+1.0 Ice+1.0 Temp+1.0 Guy	5,2,50	0.12	0.02	0.00	0.00	0.00
1.2 Dead+1.0 Wind 135	571.71	0.38	0.10	-0.00	-0.00	-0.00
deg+1.0 Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 150	570.05	0.31	0.16	-0.00	-0.00	-0.00
deg+1.0 Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 180	567.37	0.11	0.22	-0.00	-0.00	-0.00
deg+1.0 Ice+1.0 Temp+1.0 Guy	560.50	0.00	0.16	0.00	0.00	0.00
1.2 Dead+1.0 Wind 210	568.50	-0.09	0.16	-0.00	-0.00	0.00
deg+1.0 Ice+1.0 Temp+1.0 Guy 1.2 Dead+1.0 Wind 225	569.48	-0.17	0.10	-0.00	-0.00	0.00
deg+1.0 Ice+1.0 Temp+1.0 Guy	302.40	-0.17	0.10	-0.00	-0.00	0.00
1.2 Dead+1.0 Wind 240	569.68	-0.23	0.03	-0.00	-0.00	0.00
deg+1.0 Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 270	567.01	-0.28	-0.15	-0.00	-0.00	0.00
deg+1.0 Ice+1.0 Temp+1.0 Guy						
1.2 Dead+1.0 Wind 300	564.71	-0.22	-0.35	-0.00	-0.00	0.00
deg+1.0 Ice+1.0 Temp+1.0 Guy		0.16	0.44	0.00	0.00	0.00
1.2 Dead+1.0 Wind 315	565.32	-0.16	-0.44	-0.00	-0.00	0.00
deg+1.0 Ice+1.0 Temp+1.0 Guy 1.2 Dead+1.0 Wind 330	566.86	-0.08	-0.50	-0.00	-0.00	0.00
deg+1.0 Ice+1.0 Temp+1.0 Guy	300.80	-0.08	-0.50	-0.00	-0.00	0.00
Dead+Wind 0 deg -	228.98	0.01	-1.27	-0.00	-0.00	0.00
Service+Guy	220.70	0.01	1.27	0.00	0.00	0.00
Dead+Wind 30 deg -	228.79	0.64	-1.09	-0.00	-0.00	0.00
Service+Guy						
Dead+Wind 45 deg -	228.64	0.89	-0.89	-0.00	-0.00	0.00
Service+Guy						
Dead+Wind 60 deg -	228.63	1.09	-0.63	-0.00	-0.00	0.00
Service+Guy	220.00	1.05	0.00	0.00	0.00	0.00
Dead+Wind 90 deg -	229.08	1.25	-0.02	-0.00	-0.00	-0.00
Service+Guy Dead+Wind 120 deg -	229.51	1.10	0.60	-0.00	-0.00	-0.00
Service+Guy	229.31	1.10	0.00	-0.00	-0.00	-0.00
Dead+Wind 135 deg -	229.38	0.89	0.85	-0.00	-0.00	-0.00
Service+Guy	227.00	0.07	0.05	0.00	0.00	0.00

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.33 - Storrs	64 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client	Designed by
Verizon	TJL

Load	Vertical	$Shear_x$	$Shear_z$	Overturning	Overturning	Torque
Combination				Moment, M_x	Moment, M_z	
	K	K	K	kip-ft	kip-ft	kip-ft
Dead+Wind 150 deg -	229.09	0.63	1.04	-0.00	-0.00	-0.00
Service+Guy						
Dead+Wind 180 deg -	228.65	0.02	1.20	-0.00	-0.00	-0.00
Service+Guy						
Dead+Wind 210 deg -	228.81	-0.59	1.04	-0.00	-0.00	-0.00
Service+Guy						
Dead+Wind 225 deg -	228.97	-0.86	0.85	-0.00	-0.00	-0.00
Service+Guy						
Dead+Wind 240 deg -	229.01	-1.06	0.59	-0.00	-0.00	0.00
Service+Guy						
Dead+Wind 270 deg -	228.57	-1.22	-0.03	-0.00	-0.00	0.00
Service+Guy						
Dead+Wind 300 deg -	228.22	-1.06	-0.64	-0.00	-0.00	0.00
Service+Guy						
Dead+Wind 315 deg -	228.31	-0.86	-0.89	-0.00	-0.00	0.00
Service+Guy						
Dead+Wind 330 deg -	228.56	-0.61	-1.09	-0.00	-0.00	0.00
Service+Guy						

Solution Summary

	Su	m of Applied Forces	3		Sum of Reaction	ıs	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-64.41	0.00	0.00	64.41	0.00	0.007%
2	-0.02	-75.90	-94.54	0.03	75.90	94.49	0.038%
3	47.20	-74.92	-81.84	-47.20	74.92	81.79	0.039%
4	66.76	-74.20	- 66.79	-66.77	74.20	66.71	0.067%
5	81.71	-73.94	-47.21	-81.62	73.94	47.22	0.079%
6	94.30	-75.22	0.13	-94.24	75.22	-0.08	0.063%
7	81.33	-76.45	47.02	-81.30	76.45	-47.00	0.027%
8	66.46	-76.09	66.32	-66.43	76.09	-66.31	0.028%
9	46.98	-75.24	81.20	-46.91	75.24	-81.18	0.063%
10	0.02	-73.99	93.87	0.03	73.98	-93.78	0.083%
11	- 46.90	- 74.97	81.32	46.86	74.97	-81.30	0.041%
12	- 66.76	- 75.69	66.79	66.71	75.69	-66.76	0.049%
13	-81.26	-75.95	46.95	81.22	75.95	-46.93	0.039%
14	-93.71	-74.67	-0.13	93.68	74.67	0.16	0.035%
15	-81.26	-73.44	-46.98	81.23	73.44	46.96	0.028%
16	-66.43	-73.80	-66.29	66.46	73.80	66.23	0.059%
17	-46.98	-74.65	-81.20	46.99	74.65	81.17	0.032%
18	0.00	-323.30	0.00	0.03	323.30	0.02	0.012%
19	0.15	-323.99	-27.08	-0.14	323.99	27.07	0.004%
20	13.58	-323.28	-23.55	-13.56	323.28	23.55	0.006%
21	19.14	-322.77	-19.25	-19.11	322.77	19.25	0.007%
22	23.33	-322.58	-13.67	-23.31	322.58	13.67	0.008%
23	26.79	-323.46	-0.06	-26.76	323.46	0.07	0.010%
24	23.05	-324.32	13.33	-23.02	324.32	-13.31	0.011%
25	18.84	-324.07	18.82	-18.81	324.07	-18.80	0.011%
26	13.26	-323.48	23.12	-13.24	323.48	-23.09	0.010%
27	-0.15	-322.61	26.89	0.16	322.61	-26.87	0.008%
28	-13.49	-323.31	23.39	13.49	323.31	-23.37	0.006%
29	-19.14	-323.82	19.25	19.14	323.82	-19.23	0.006%
30	-23.18	-324.01	13.57	23.17	324.01	-13.56	0.005%
31	-26.60	-323.13	0.06	26.59	323.13	-0.04	0.008%
32	-23.05	-322.28	-13.33	23.04	322.28	13.33	0.003%
33	-18.83	-322.53	-18.82	18.83	322.53	18.82	0.002%
34	-13.26	-323.12	-23.12	13.27	323.12	23.11	0.004%

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

1	Job	Page
	21007.33 - Storrs	65 of 91
	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client	Designed by
	Verizon	TJL

	Sur	n of Applied Force.	S		Sum of Reaction	is	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
35	-0.00	-64.62	-20.89	0.01	64.62	20.87	0.029%
36	10.43	-64.40	-18.08	-10.42	64.40	18.07	0.029%
37	14.75	-64.25	-14.76	-14.73	64.24	14.75	0.030%
38	18.05	-64.19	-10.43	-18.03	64.19	10.43	0.032%
39	20.84	-64.47	0.03	-20.81	64.47	-0.02	0.035%
40	17.97	-64.74	10.39	-17.95	64.74	-10.37	0.041%
41	14.68	-64.66	14.65	-14.66	64.66	-14.64	0.039%
42	10.38	-64.48	17.94	-10.37	64.48	-17.92	0.036%
43	0.00	-64.20	20.74	-0.00	64.20	-20.72	0.034%
44	-10.36	-64.42	17.97	10.36	64.42	-17.95	0.031%
45	-14.75	-64.57	14.76	14.74	64.57	-14.74	0.031%
46	-17.96	-64.63	10.37	17.94	64.63	-10.36	0.031%
47	-20.71	-64.35	-0.03	20.69	64.35	0.03	0.024%
48	-17.95	-64.08	-10.38	17.94	64.08	10.37	0.019%
49	-14.68	-64.16	-14.65	14.67	64.16	14.64	0.020%
50	-10.38	-64.34	-17.94	10.38	64.34	17.93	0.023%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination	convergeu.	of Cycles	Tolerance	Tolerance
1	Yes	8	0.00082527	0.00009025
	Yes	10	0.00082327	0.00103540
2 3	Yes	10	0.00062240	0.00103340
4	Yes	9	0.00008303	0.00070402
5	Yes	8	0.00103219	0.00092420
6	Yes	10	0.00088002	0.00110333
7	Yes	11	0.00121471	0.00127031
8	Yes	11	0.00067524	0.00090347
9	Yes	10	0.00007524	0.00083942
10	Yes	8	0.00118397	0.00127813
11	Yes	10	0.00072141	0.00074575
12	Yes	10	0.00098653	0.00105902
13	Yes	10	0.00086276	0.00109046
14	Yes	10	0.00065053	0.00055572
15	Yes	8	0.00036214	0.00089838
16	Yes	9	0.00097845	0.00070497
17	Yes	10	0.00060069	0.00052444
18	Yes	9	0.00123921	0.00025528
19	Yes	10	0.00080155	0.00015225
20	Yes	10	0.00075674	0.00017835
21	Yes	10	0.00068232	0.00020367
22	Yes	10	0.00062908	0.00023875
23	Yes	10	0.00075242	0.00032670
24	Yes	10	0.00091086	0.00039255
25	Yes	10	0.00086913	0.00037427
26	Yes	10	0.00077144	0.00033454
27	Yes	10	0.00064084	0.00025263
28	Yes	10	0.00077461	0.00020962
29	Yes	10	0.00081868	0.00020194
30	Yes	10	0.00083580	0.00019931
31	Yes	9	0.00142336	0.00028782
32	Yes	9	0.00085482	0.00018414
33	Yes	9	0.00106337	0.00018268
34	Yes	9	0.00142328	0.00022041
35	Yes	7	0.00123481	0.00041867

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.33 - Storrs	66 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client Verizon	Designed by
VOILEGIT	TJL

36	Yes	7	0.00097971	0.00035575
37	Yes	7	0.00081567	0.00032780
38	Yes	7	0.00070990	0.00033443
39	Yes	7	0.00083407	0.00043891
40	Yes	7	0.00105817	0.00052886
41	Yes	7	0.00098629	0.00050286
42	Yes	7	0.00084020	0.00044514
43	Yes	7	0.00072301	0.00035130
44	Yes	7	0.00096492	0.00037328
45	Yes	7	0.00112075	0.00041369
46	Yes	7	0.00120250	0.00043134
47	Yes	7	0.00095162	0.00038267
48	Yes	7	0.00062195	0.00034318
49	Yes	7	0.00074774	0.00035060
50	Yes	7	0.00098261	0.00037495

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	323 - 288	1.583	43	0.1039	0.0755
T1	288 - 280	1.100	43	0.0173	0.0687
T2	280 - 260	1.122	43	0.0228	0.0602
T3	260 - 240	1.200	43	0.0298	0.0521
T4	240 - 220	1.284	43	0.0284	0.0789
T5	220 - 200	1.330	43	0.0275	0.0685
T6	200 - 180	1.391	43	0.0241	0.0749
T7	180 - 160	1.383	43	0.0115	0.0625
T8	160 - 140	1.331	43	0.0091	0.0577
T9	140 - 120	1.293	43	0.0131	0.0614
T10	120 - 100	1.228	43	0.0138	0.0567
T11	100 - 80	1.206	43	0.0123	0.0592
T12	80 - 60	1.206	43	0.0157	0.0789
T13	60 - 40	1.079	43	0.0437	0.0977
T14	40 - 20	0.842	43	0.0721	0.1233
T15	20 - 6.75	0.471	43	0.1008	0.1420
T16	6.75 - 0	0.163	43	0.1119	0.1419

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
323.00	4-ft Lightning Rod	43	1.583	0.1039	0.0755	69462
305.00	6813 1-Bay w/radome	43	1.244	0.0357	0.1009	19295
284.00	Guy	43	1.107	0.0196	0.0487	20193
277.00	PD1110	43	1.134	0.0248	0.0666	175664
267.00	OGT9-840	43	1.172	0.0284	0.0602	126418
261.00	AP14-850/105	43	1.196	0.0297	0.0526	90906
256.50	Guy	43	1.215	0.0300	0.0533	125539
252.00	AP14-850/105	43	1.236	0.0298	0.0593	296532
250.00	BXA-70063-2CF	43	1.245	0.0296	0.0629	169872
240.00	SC479-HF1LDF	43	1.284	0.0284	0.0789	61832
216.50	Guy	43	1.341	0.0276	0.0682	102902
211.00	6813 1-Bay w/radome	43	1.359	0.0276	0.0702	419840

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.33 - Storrs	67 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client Verizon	Designed by
Venzon	TJL

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
205.00	BA40-67-DIN	43	1.379	0.0265	0.0734	74038
198.00	6813 1-Bay w/radome	43	1.394	0.0227	0.0747	47336
190.00	6' Yagi	43	1.397	0.0150	0.0705	59230
185.00	7770.00	43	1.392	0.0123	0.0664	65727
172.00	24"x12"x5" Panel	43	1.363	0.0104	0.0586	248587
166.75	Guy	43	1.348	0.0095	0.0576	238793
166.00	16"x12"x3" TTA	43	1.346	0.0094	0.0575	191754
158.80	24"x12"x5" Panel	43	1.329	0.0092	0.0579	94012
157.00	Beacon	43	1.325	0.0094	0.0582	112556
150.00	BA40-67-DIN	43	1.313	0.0105	0.0599	269487
125.00	Sabre 2' Sidearm	43	1.243	0.0152	0.0581	147617
124.00	6'x4' Ice Shield	43	1.240	0.0150	0.0578	121961
112.00	PD1110	43	1.211	0.0104	0.0557	70559
106.75	Guy	43	1.206	0.0112	0.0563	67409
104.00	6'x4" Pipe Mount	43	1.205	0.0122	0.0572	64272
94.00	PR-900	43	1.210	0.0099	0.0641	319505
84.00	BXA-80063-4CF	43	1.212	0.0113	0.0747	34832
70.00	DB212-1	43	1.159	0.0291	0.0881	36095
56.50	Guy	43	1.045	0.0487	0.1017	51493
18.00	6' Yagi	43	0.427	0.1028	0.1424	46076

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	323 - 288	9.486	10	0.5119	0.3620
T1	288 - 280	6.790	10	0.0902	0.3308
T2	280 - 260	6.781	10	0.0954	0.2901
T3	260 - 240	6.886	10	0.0972	0.2562
T4	240 - 220	7.072	10	0.0882	0.3272
T5	220 - 200	7.126	10	0.0953	0.2996
T6	200 - 180	7.269	10	0.0926	0.3018
T7	180 - 160	7.123	10	0.0748	0.2824
T8	160 - 140	6.777	10	0.0706	0.2806
T9	140 - 120	6.515	10	0.0775	0.3021
T10	120 - 100	6.140	10	0.0762	0.2877
T11	100 - 80	6.124	7	0.0650	0.3015
T12	80 - 60	6.307	7	0.0795	0.3803
T13	60 - 40	5.744	7	0.2195	0.4516
T14	40 - 20	4.500	7	0.3833	0.5615
T15	20 - 6.75	2.512	7	0.5380	0.6462
T16	6.75 - 0	0.869	7	0.5962	0.6565

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
323.00	4-ft Lightning Rod	10	9.486	0.5119	0.3620	15741
305.00	6813 1-Bay w/radome	10	7.688	0.2214	0.3784	4372
284.00	Guy	10	6.765	0.0932	0.3054	4665

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.33 - Storrs	68 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Stor	rs, CT 14:39:32 11/04/21
Client	Designed by
Verizon	TJL

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
277.00	PD1110	10	6.796	0.0966	0.2940	54193
267.00	OGT9-840	10	6.841	0.0976	0.2695	33749
261.00	AP14-850/105	10	6.878	0.0969	0.2563	21878
256.50	Guy	10	6.918	0.0973	0.2615	30545
252.00	AP14-850/105	10	6.964	0.0955	0.2781	39014
250.00	BXA-70063-2CF	10	6.985	0.0942	0.2874	33324
240.00	SC479-HF1LDF	10	7.072	0.0882	0.3272	16849
216.50	Guy	10	7.150	0.0982	0.2964	17036
211.00	6813 1-Bay w/radome	10	7.197	0.1010	0.2967	35012
205.00	BA40-67-DIN	10	7.245	0.0996	0.3002	18258
198.00	6813 1-Bay w/radome	10	7.272	0.0880	0.3014	11151
190.00	6' Yagi	10	7.240	0.0636	0.2945	13261
185.00	7770.00	10	7.191	0.0643	0.2883	15188
172.00	24"x12"x5" Panel	10	6.986	0.0763	0.2770	66787
166.75	Guy	10	6.890	0.0696	0.2768	24247
166.00	16"x12"x3" TTA	10	6.877	0.0686	0.2769	22225
158.80	24"x12"x5" Panel	10	6.760	0.0722	0.2818	16243
157.00	Beacon	10	6.735	0.0739	0.2839	19198
150.00	BA40-67-DIN	10	6.649	0.0733	0.2931	85426
125.00	Sabre 2' Sidearm	10	6.229	0.0853	0.2923	29770
124.00	6'x4' Ice Shield	10	6.210	0.0842	0.2913	24788
112.00	PD1110	10	6.038	0.0534	0.2852	14556
106.75	Guy	8	6.057	0.0625	0.2887	14086
104.00	6'x4" Pipe Mount	8	6.076	0.0653	0.2927	13842
94.00	PR-900	7	6.217	0.0541	0.3216	22522
84.00	BXA-80063-4CF	7	6.315	0.0559	0.3640	6153
70.00	DB212-1	7	6.124	0.1462	0.4146	6099
56.50	Guy	7	5.575	0.2496	0.4681	7857
18.00	6' Yagi	7	2.276	0.5488	0.6495	8896

Bolt Design Data

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
1,01	ft	1,770	0,444	in	Bolts	per Bolt K	per Bolt K	Allowable		
T1	288	Leg	A325N	1.0000	4	3.19	53.01	0.060	1	Bolt Tension
T2	280	Leg	A325N	1.0000	4	2.64	53.01	0.050	1	Bolt Tension
T3	260	Leg	A325N	1.0000	4	2.78	53.01	0.052	1	Bolt Tension
T4	240	Leg	A325N	1.0000	4	5.63	53.01	0.106	1	Bolt Tension
T5	220	Leg	A325N	1.0000	4	5.53	53.01	0.104	1	Bolt Tension
T6	200	Leg	A325N	1.0000	4	8.19	53.01	0.154	1	Bolt Tension
T 7	180	Leg	A325N	1.0000	4	8.64	53.01	0.163	1	Bolt Tension
Т8	160	Leg	A325N	1.0000	4	10.62	53.01	0.200	1	Bolt Tension
Т9	140	Leg	A325N	1.0000	4	11.08	53.01	0.209	1	Bolt Tension
T10	120	Leg	A325N	1.0000	4	11.43	53.01	0.216	1	Bolt Tension
T11	100	Leg	A325N	1.0000	4	13.36	53.01	0.252	1	Bolt Tension
T12	80	Leg	A325N	1.3750	4	14.97	100.23	0.149	1	Bolt Tension
T13	60	Leg	A325N	1.3750	4	15.54	100.23	0.155	1	Bolt Tension

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

٦	Job	Page
	21007.33 - Storrs	69 of 91
	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client	Designed by
	Verizon	TJL

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft	<i>71</i>		in	Bolts	per Bolt K	per Bolt K	Allowable		
T14	40	Leg	A325N	1.3750	4	16.51	100.23	0.165	1	Bolt Tension
T15	20	Leg	A325N	1.3750	4	16.39	100.23	0.164	1	Bolt Tension
T16	6.75	Leg	A325N	1.3750	4	16.83	100.23	0.168	1	Bolt Tension

Guy Design Data

Section No.	Elevation ft	Size	Initial Tension K	Breaking Load K	Actual T _u K	$Allowable \ \phi T_n \ K$	Required S.F.	Actual S.F.
T1	284.00 (A)	3/4 EHS	8.16	58.30	17.77	34.98	1.000	
	(703)	57 12115	0.10	50.50		2.130	11000	1.968 🔽
	284.00 (A)	3/4 EHS	8.16	58.30	17.84	34.98	1.000	1.960 🖊
	(704) 284.00 (B)	3/4 EHS	8.16	58.30	16.78	34.98	1.000	
	(699)	3/4 L113	6.10	36.50	10.76	34.56	1.000	2.085
	284.00 (B)	3/4 EHS	8.16	58.30	16.78	34.98	1.000	2.085
	(700)	2/4 ETTG	0.16	50.20	17.66	24.00	1.000	
	284.00 (C) (695)	3/4 EHS	8.16	58.30	17.66	34.98	1.000	1.980
	284.00 (C)	3/4 EHS	8.16	58.30	17.70	34.98	1.000	1056
	(696)							1.976
Т3	256.50 (A)	3/4 EHS	8.16	58.30	17.56	34.98	1.000	1.993 🏴
	(715) 256.50 (A)	3/4 EHS	8.16	58.30	17.60	34.98	1.000	
	(716)	5/12115	0.10	30.50	17.00	31.50	1.000	1.987
	256.50 (B)	3/4 EHS	8.16	58.30	16.49	34.98	1.000	2.121
	(711)	2/4 5770	0.16	50.20	16.46	24.00	1.000	
	256.50 (B) (712)	3/4 EHS	8.16	58.30	16.46	34.98	1.000	2.125
	256.50 (C)	3/4 EHS	8.16	58.30	17.46	34.98	1.000	2.003
	(707)							2.003
	256.50 (C)	3/4 EHS	8.16	58.30	17.47	34.98	1.000	2.002
T5	(708) 216.50 (A)	3/4 EHS	8.16	58.30	17.29	34.98	1.000	
13	(727)	3/4 LII3	0.10	30.30	17.29	54.50	1.000	2.024
	216.50 (A)	3/4 EHS	8.16	58.30	17.34	34.98	1.000	2.017
	(728)	2/4 EHG	8.16	50.20	16.17	24.00	1.000	
	216.50 (B) (723)	3/4 EHS	8.16	58.30	16.17	34.98	1.000	2.164
	216.50 (B)	3/4 EHS	8.16	58.30	16.14	34.98	1.000	2.167
	(724)							2.16/
	216.50 (C)	3/4 EHS	8.16	58.30	17.22	34.98	1.000	2.032
	(719) 216.50 (C)	3/4 EHS	8.16	58.30	17.23	34.98	1.000	
	(720)	57 1 2115	0.10	50.50	17.23	51.50	1.000	2.030
T 7	166.75 (A)	3/4 EHS	8.16	58.30	17.37	34.98	1.000	2.014
	(739)	2/4 EHG	9.16	50.20	17.00	24.00	1 000	
	166.75 (A) (740)	3/4 EHS	8.16	58.30	17.80	34.98	1.000	1.966
	166.75 (B)	3/4 EHS	8.16	58.30	17.06	34.98	1.000	2.051
	(735)							2.051
	166.75 (B)	3/4 EHS	8.16	58.30	16.63	34.98	1.000	2.103
	(736)							

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

1	Job	Page
	21007.33 - Storrs	70 of 91
	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client	Designed by
	Verizon	TJL

Section	Elevation	Size	Initial	Breaking	Actual	Allowable	Required	Actual
No.	o.		Tension	Load	T_u	ϕT_n	S.F.	S.F.
	ft		K	K	K	K		
	166.75 (C) (731)	3/4 EHS	8.16	58.30	17.66	34.98	1.000	1.981 🛂
	166.75 (C) (732)	3/4 EHS	8.16	58.30	17.53	34.98	1.000	1.996 🔽
T10	106.75 (A) (751)	3/4 EHS	8.16	58.30	18.09	34.98	1.000	1.934 🔽
	106.75 (A) (752)	3/4 EHS	8.16	58.30	18.62	34.98	1.000	1.879 🔽
	106.75 (B) (747)	3/4 EHS	8.16	58.30	18.00	34.98	1.000	1.943 🔽
	106.75 (B) (748)	3/4 EHS	8.16	58.30	17.34	34.98	1.000	2.017
	106.75 (C) (743)	3/4 EHS	8.16	58.30	18.30	34.98	1.000	1.911 🔽
	106.75 (C) (744)	3/4 EHS	8.16	58.30	18.34	34.98	1.000	1.907 🛂
T13	56.50 (A) (763)	7/16 EHS	2.91	20.80	7.98	12.48	1.000	1.565
	56.50 (A) (764)	7/16 EHS	2.91	20.80	8.04	12.48	1.000	1.552 🛂
	56.50 (B) (759)	7/16 EHS	2.91	20.80	7.86	12.48	1.000	1.588 🛂
	56.50 (B) (760)	7/16 EHS	2.91	20.80	7.85	12.48	1.000	1.591
	56.50 (C) (755)	7/16 EHS	2.91	20.80	7.94	12.48	1.000	1.571
	56.50 (C) (756)	7/16 EHS	2.91	20.80	7.98	12.48	1.000	1.564

Compression Checks

			Po	le Des	sign [Data			
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
110.	ft		ft	ft		in^2	K	K	$\frac{1}{\Phi P_n}$
L1	323 - 288 (1)	P10.75x0.843	35.00	35.00	119.5	26.2373	-4.06	415.23	0.010

		Р	ole Ben	ding De	sign [Data		
Section	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio	M_{uy}	ϕM_{ny}	Ratio
No.	ft		kip-ft	kip-ft	$\frac{M_{ux}}{\phi M_{nx}}$	kip-ft	kip-ft	$\frac{M_{uy}}{\phi M_{ny}}$
L1	323 - 288 (1)	P10.75x0.843	44.12	311.02	0.142	0.00	311.02	0.000

Pole Shear Design Data

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21007.33 - Storrs	71 of 91
Project		Date
327' (Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client	Mark and	Designed by
	Verizon	TJL

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.			V_u		V_u	T_u		T_u
	ft		K	K	ϕV_n	kip-ft	kip-ft	$\overline{\phi T_n}$
L1	323 - 288 (1)	P10.75x0.843	2.25	590.34	0.004	0.01	452.41	0.000

	Pole Interaction Design Data								
Section No.	Elevation ft	Ratio P_u ϕP_n	$Ratio$ M_{ux} ϕM_{nx}	$Ratio \ M_{uy} \ \phi M_{nv}$	Ratio V_u ϕV_n	Ratio T_u ϕT_n	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
L1	323 - 288 (1)	0.010	0.142	0.000	0.004	0.000	0.152	1.000	4.8.2

			Leg D	esigr) Data	(Con	npress	ion)		
Section No.	Elevation	Size	L	L_u	Kl/r	A	Mast Stability	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	Index	K	K	$ \phi P_n$
T1	288 - 280	2	8.00	3.75	90.0 K=1.00	3.1416	1.00	-31.83	78.19	0.407 1
T2	280 - 260	2	20.00	3.25	78.0 K=1.00	3.1416	1.00	-33.33	90.61	0.368 1
Т3	260 - 240	2 1/4	20.00	3.25	69.3 K=1.00	3.9761	1.00	-67.22	125.90	0.534 1
T4	240 - 220	2 1/4	20.00	3.25	69.3 K=1.00	3.9761	1.00	-67.59	125.90	0.537 1
T5	220 - 200	2 1/2	20.00	3.25	62.4 K=1.00	4.9087	1.00	-98.23	166.16	0.591 1
T6	200 - 180	2 1/2	20.00	3.25	62.4 K=1.00	4.9087	1.00	-103.79	166.16	0.625 1
T7	180 - 160	2 3/4	20.00	3.25	56.7 K=1.00	5.9396	1.00	-127.37	211.24	0.603 1
T8	160 - 140	2 1/2	20.00	3.25	62.4 K=1.00	4.9087	1.00	-132.91	166.16	0.800 1
Т9	140 - 120	2 3/4	20.00	3.25	56.7 K=1.00	5.9396	1.00	-137.19	211.24	0.649 1
T10	120 - 100	2 3/4	20.00	3.25	56.7 K=1.00	5.9396	1.00	-160.34	211.24	0.759 1
T11	100 - 80	3	20.00	3.25	52.0 K=1.00	7.0686	1.00	-179.60	261.02	0.688 1
T12	80 - 60	3	20.00	3.25	52.0 K=1.00	7.0686	1.00	-186.53	261.02	0.715 1
T13	60 - 40	3	20.00	3.25	52.0 K=1.00	7.0686	1.00	-198.11	261.02	0.759 1
T14	40 - 20	3	20.00	3.25	52.0 K=1.00	7.0686	1.00	-198.11	261.02	0.759 1
T15	20 - 6.75	3	13.25	3.19	51.0 K=1.00	7.0686	1.00	-196.66	263.00	0.748 1
T16	6.75 - 0	3	7.07	1.97	31.4 K=1.00	7.0686	0.96	-202.63	285.39	0.710 1

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.33 - Storrs	72 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client Verizon	Designed by TJL

Section	Elevation	Size	L	L_u	Kl/r	A	Mast	P_u	ϕP_n	Ratio
No.							Stability			P_u
	ft		ft	ft		in^2	Index	K	K	$\overline{\phi P_n}$

 $^{^{1}}$ P_{u} / ϕP_{n} controls

Leg Bending Design Data (Compression)

Section	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio	M_{uy}	ϕM_{ny}	Ratio
No.					M_{ux}			M_{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
T1	288 - 280	2	0.00	5.00	0.000	0.00	5.00	0.000
T2	280 - 260	2	0.00	5.00	0.000	0.00	5.00	0.000
T3	260 - 240	2 1/4	0.00	7.12	0.000	0.00	7.12	0.000
T4	240 - 220	2 1/4	0.00	7.12	0.000	0.00	7.12	0.000
T5	220 - 200	2 1/2	0.00	9.77	0.000	0.00	9.77	0.000
T6	200 - 180	2 1/2	0.00	9.77	0.000	0.00	9.77	0.000
T7	180 - 160	2 3/4	0.00	13.00	0.000	0.00	13.00	0.000
T8	160 - 140	2 1/2	0.00	9.77	0.000	0.00	9.77	0.000
T9	140 - 120	2 3/4	0.00	13.00	0.000	0.00	13.00	0.000
T10	120 - 100	2 3/4	0.00	13.00	0.000	0.00	13.00	0.000
T11	100 - 80	3	0.00	16.88	0.000	0.00	16.88	0.000
T12	80 - 60	3	0.00	16.88	0.000	0.00	16.88	0.000
T13	60 - 40	3	0.00	16.88	0.000	0.00	16.88	0.000
T14	40 - 20	3	0.00	16.88	0.000	0.00	16.88	0.000
T15	20 - 6.75	3	0.00	16.88	0.000	0.00	16.88	0.000
T16	6.75 - 0	3	0.00	16.88	0.000	0.00	16.88	0.000

Leg Interaction Design Data (Compression)

Size	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
2	0.407	0.000	0.000		1.000	4.8.1
2	0.368	0.000	0.000	0.368^{-1}	1.000	4.8.1
				· ·		
2 1/4	0.534	0.000	0.000		1.000	4.8.1
2 1/4	0.537	0.000	0.000	0.537 1	1.000	4.8.1
				V		1.0.1
2 1/2	0.591	0.000	0.000	0.591 1	1.000	4.8.1
2 1/2	0.625	0.000	0.000		1.000	4.8.1
				_		4.8.1
2 3/4	0.603	0.000	0.000	0.603 1	1.000	4.8.1
				V		
2 1/2	0.800	0.000	0.000		1.000	4.8.1
2.2/4	0.640	0.000	0.000		1.000	
2 3/4	0.049	0.000	0.000		1.000	4.8.1
	2 2 2 1/4 2 1/4 2 1/2 2 1/2 2 3/4	$\begin{array}{c cccc} & & & & & & & & & & & \\ \hline & & & & & & &$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.33 - Storrs	73 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client	Designed by
Verizon	TJL

Section	Elevation	Size	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
No.	ft		$\frac{P_u}{\phi P_n}$	$\frac{M_{ux}}{\phi M_{ux}}$	$\frac{M_{uy}}{\phi M_{uy}}$	Stress Ratio	Stress Ratio	
T10	120 - 100	2 3/4	0.759	0.000	0.000	0.759 1	1.000	4.8.1
T11	100 - 80	3	0.688	0.000	0.000	$0.688^{\ 1}$	1.000	4.8.1
T12	80 - 60	3	0.715	0.000	0.000	0.715 ¹	1.000	4.8.1
T13	60 - 40	3	0.759	0.000	0.000	0.759 ¹	1.000	4.8.1
T14	40 - 20	3	0.759	0.000	0.000	0.759 ¹	1.000	4.8.1
T15	20 - 6.75	3	0.748	0.000	0.000	0.748 1	1.000	4.8.1
T16	6.75 - 0	3	0.710	0.000	0.000	0.710 1	1.000	4.8.1

 $^{^{1}}$ P_{u} / ϕP_{n} controls

Diagona	l Design D	ata (Compression)
---------	------------	-------------------

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	288 - 280	1 3/8	5.25	5.01	122.4 K=0.70	1.4849	-2.17	21.86	0.099 1
Т2	280 - 260	1 3/8	4.90	4.68	114.4 K=0.70	1.4849	-2.05	24.17	0.085 1
Т3	260 - 240	1 3/8	4.90	4.65	113.7 K=0.70	1.4849	-4.57	24.37	0.188 1
T4	240 - 220	1 3/8	4.90	4.65	113.7 K=0.70	1.4849	-4.32	24.37	0.177 1
T5	220 - 200	1 1/2	4.90	4.62	103.6 K=0.70	1.7672	-6.60	32.55	0.203 1
Т6	200 - 180	1 1/4	4.90	4.62	124.3 K=0.70	1.2272	-8.40	17.63	0.477 1
T7	180 - 160	1 1/2	4.90	4.60	103.0 K=0.70	1.7672	-9.56	32.77	0.292 1
T8	160 - 140	1 3/8	4.90	4.62	113.0 K=0.70	1.4849	-4.72	24.57	0.192 1
Т9	140 - 120	1 1/4	4.90	4.60	123.5 K=0.70	1.2272	-5.83	17.80	0.328 1
T10	120 - 100	1 1/2	4.90	4.60	103.0 K=0.70	1.7672	-13.74	32.77	0.419 ¹
T11	100 - 80	1 3/8	4.90	4.57	111.6 K=0.70	1.4849	-13.47	24.96	0.540 1
T12	80 - 60	1 1/4	4.90	4.57	122.8 K=0.70	1.2272	-4.35	17.98	0.242 1
T13	60 - 40	1 1/4	4.90	4.57	122.8 K=0.70	1.2272	-5.74	17.98	0.320 1
T14	40 - 20	1 1/4	4.90	4.57	122.8 K=0.70	1.2272	-6.45	17.98	0.359 1

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Jo	ob	Page
	21007.33 - Storrs	74 of 91
Р	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
С	Client	Designed by
	Verizon	TJL

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P
140.	ft		ft	ft		in^2	K	K	$\frac{P_u}{\phi P_n}$
T15	20 - 6.75	1 1/4	4.86	4.53	121.8 K=0.70	1.2272	-7.24	18.22	0.397 1

 $^{^{1}}$ P_{u} / ϕP_{n} controls

Horizontal Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
	ft		ft	ft		in^2	K	K	${\phi P_n}$
T1	288 - 280	1	3.67	3.50	117.7 K=0.70	0.7854	-3.23	12.27	0.263 1
T2	280 - 260	1	3.67	3.50	117.7 K=0.70	0.7854	-0.37	12.27	0.030 1
Т3	260 - 240	1	3.67	3.48	117.0 K=0.70	0.7854	-4.49	12.38	0.363 1
Т4	240 - 220	1	3.67	3.48	117.0 K=0.70	0.7854	-0.23	12.38	0.018 1
T5	220 - 200	1	3.67	3.46	116.3 K=0.70	0.7854	-7.25	12.48	0.581 1
Т6	200 - 180	1	3.67	3.46	116.3 K=0.70	0.7854	-1.95	12.48	0.157 1
Т7	180 - 160	1	3.67	3.44	115.6 K=0.70	0.7854	-10.23	12.59	0.813 ¹
Т8	160 - 140	1	3.67	3.46	116.3 K=0.70	0.7854	-0.10	12.48	0.008 1
Т9	140 - 120	1	3.67	3.44	115.6 K=0.70	0.7854	-0.03	12.59	0.002 1
T10	120 - 100	1	3.67	3.44	115.6 K=0.70	0.7854	-0.17	12.59	0.013 1
T11	100 - 80	1	3.67	3.42	114.9 K=0.70	0.7854	-1.15	12.70	0.091 1
T13	60 - 40	1	3.67	3.42	114.9 K=0.70	0.7854	-4.87	12.70	0.383 1
T16	6.75 - 0	9x3/8	1.90	1.65	183.2 K=1.00	3.3750	-0.16	22.71	$0.007^{\ 1}$

 $^{^{1}}$ P_{u} / ϕP_{n} controls

Secondary Horizontal Design Data (Compression)

Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
No.	ft		ft	ft		in ²	K	K	$\frac{P_u}{\phi P_n}$
T1	288 - 280	1	1.84	1.75	81.5 K=0.97	0.7854	-0.00	17.94	0.000 1

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.33 - Storrs	75 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client	Designed by
Verizon	TJL

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in ²	K	K	ϕP_n
T2	280 - 260	1	1.84	1.75	81.5 K=0.97	0.7854	-0.00	17.94	0.000 1
Т3	260 - 240	1	1.84	1.74	81.3 K=0.97	0.7854	-0.00	17.96	0.000 1
T4	240 - 220	1	1.84	1.74	81.3 K=0.97	0.7854	-0.00	17.96	$0.000^{\ 1}$
T5	220 - 200	1	1.84	1.73	81.2 K=0.98	0.7854	-0.00	17.99	0.000 1
Т6	200 - 180	1	1.84	1.73	81.2 K=0.98	0.7854	-0.00	17.99	0.000 1
Т7	180 - 160	1	1.84	1.72	81.0 K=0.98	0.7854	-0.00	18.02	0.000 1
Т8	160 - 140	1	1.84	1.73	81.2 K=0.98	0.7854	-0.00	17.99	0.000 1
Т9	140 - 120	1	1.84	1.72	81.0 K=0.98	0.7854	-0.00	18.02	0.000 1
T10	120 - 100	1	1.84	1.72	81.0 K=0.98	0.7854	-0.00	18.02	0.000 1
T11	100 - 80	1	1.84	1.71	80.8 K=0.98	0.7854	-0.00	18.05	0.000 1
T12	80 - 60	1	1.84	1.71	80.8 K=0.98	0.7854	-0.00	18.05	0.000 1
T13	60 - 40	1	1.84	1.71	80.8 K=0.98	0.7854	-0.00	18.05	0.000 1
T14	40 - 20	1	1.84	1.71	80.8 K=0.98	0.7854	-0.00	18.05	0.000 1
T15	20 - 6.75	1	1.84	1.71	80.8 K=0.98	0.7854	-0.00	18.05	0.000 1

 $^{^{1}}$ P_{u} / ϕP_{n} controls

Top Girt Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	K	K	ϕP_n
T4	240 - 220	1	3.67	3.48	117.0 K=0.70	0.7854	-0.62	12.38	0.050 1
T5	220 - 200	1	3.67	3.46	116.3 K=0.70	0.7854	-0.28	12.48	0.022 1
Т6	200 - 180	1	3.67	3.46	116.3 K=0.70	0.7854	-0.58	12.48	0.046 1
T7	180 - 160	1	3.67	3.44	115.6 K=0.70	0.7854	-1.67	12.59	0.132 1
Т8	160 - 140	1	3.67	3.46	116.3 K=0.70	0.7854	-0.69	12.48	0.055 1
Т9	140 - 120	1	3.67	3.44	115.6 K=0.70	0.7854	-0.08	12.59	$0.007^{\ 1}$

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

1	Job	Page
	21007.33 - Storrs	76 of 91
	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client	Designed by
	Verizon	TJL

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
110.	ft		ft	ft		in^2	K	K	$\frac{1}{\phi P_n}$
T10	120 - 100	1	3.67	3.44	115.6 K=0.70	0.7854	-0.91	12.59	0.073 1
T11	100 - 80	1	3.67	3.42	114.9 K=0.70	0.7854	-2.04	12.70	0.161 1
T12	80 - 60	1	3.67	3.42	114.9 K=0.70	0.7854	-0.13	12.70	0.010^{-1}
T13	60 - 40	1	3.67	3.42	114.9 K=0.70	0.7854	-0.14	12.70	0.011
T14	40 - 20	1	3.67	3.42	114.9 K=0.70	0.7854	-0.22	12.70	0.017 1
T15	20 - 6.75	1	3.67	3.42	114.9 K=0.70	0.7854	-0.79	12.70	0.062 1

 $^{^{1}}$ P_{u} / ϕP_{n} controls

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	K	K	ΦP_n
T1	288 - 280	1	3.67	3.50	117.7 K=0.70	0.7854	-1.89	12.27	0.154 1
T2	280 - 260	1	3.67	3.50	117.7 K=0.70	0.7854	-1.30	12.27	0.106 1
Т3	260 - 240	1	3.67	3.48	117.0 K=0.70	0.7854	-0.65	12.38	0.052 1
T4	240 - 220	1	3.67	3.48	117.0 K=0.70	0.7854	-1.65	12.38	0.134 1
T5	220 - 200	1	3.67	3.46	116.3 K=0.70	0.7854	-0.66	12.48	0.053 1
Т6	200 - 180	1	3.67	3.46	116.3 K=0.70	0.7854	-1.52	12.48	0.122 1
Т7	180 - 160	1	3.67	3.44	115.6 K=0.70	0.7854	-1.03	12.59	0.082 1
Т9	140 - 120	1	3.67	3.44	115.6 K=0.70	0.7854	-0.72	12.59	0.057 1
T10	120 - 100	1	3.67	3.44	115.6 K=0.70	0.7854	-2.33	12.59	0.185 ¹
T11	100 - 80	1	3.67	3.42	114.9 K=0.70	0.7854	-0.49	12.70	0.038 1
T12	80 - 60	1	3.67	3.42	114.9 K=0.70	0.7854	-0.30	12.70	$0.024^{\ 1}$
T13	60 - 40	1	3.67	3.42	114.9 K=0.70	0.7854	-0.16	12.70	0.013 1
T14	40 - 20	1	3.67	3.42	114.9 K=0.70	0.7854	-0.49	12.70	0.038 1

 $^{^{1}}$ P_{u} / ϕP_{n} controls

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21007.33 - Storrs	77 of 91
Project		Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client	Martinar	Designed by
	Verizon	TJL

	Top Guy Pull-Off Design Data (Compression)								
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T10	120 - 100	1" S.R. w/ 1" S.R. Crosby Clipped	3.67	3.44	81.8 K=0.70	0.7850	-13.91	17.88	0.778 1

 $^{^{1}}$ P_{u} / ϕP_{n} controls

	Top Guy Pull-Off Bending Design Data								
Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio	M_{uy}	ϕM_{ny}	Ratio	
IVO.	ft		kip-ft	kip-ft	$\frac{M_{ux}}{\phi M_{nx}}$	kip-ft	kip-ft	$\frac{M_{uy}}{\phi M_{ny}}$	
T10	120 - 100	1" S.R. w/ 1" S.R. Crosby Clipped	0.00	0.40	0.000	0.00	0.40	0.000	

Top Guy Pull-Off Interaction Design Data									
Section	Elevation	Size	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria	
No.			P_u	M_{ux}	M_{uy}	Stress	Stress		
	ft		ϕP_n	ϕM_{nx}	ϕM_{ny}	Ratio	Ratio		
T10	120 - 100	1" S.R. w/ 1" S.R. Crosby Clipped	0.778	0.000	0.000	0.778 1	1.000	4.8.1	

 $^{^{1}}$ P_{u} / ϕP_{n} controls

	Torque-Arm Top Design Data										
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u		
	ft		fì	ft		in^2	K	K	ϕP_n		
T1	288 - 280 (702)	C15x33.9	4.00	3.92	52.1 K=1.00	9.9600	-0.07	279.81	0.000		
Т3	260 - 240 (709)	C15x33.9	4.00	3.91	51.9 K=1.00	9.9600	-0.22	280.02	0.001		
Т3	260 - 240 (710)	C15x33.9	4.00	3.91	51.9 K=1.00	9.9600	-0.09	280.02	0.000		
Т3	260 - 240 (713)	C15x33.9	4.00	3.91	51.9 K=1.00	9.9600	-0.15	280.02	0.001		
Т3	260 - 240 (714)	C15x33.9	4.00	3.91	51.9 K=1.00	9.9600	-0.11	280.02	0.000		
Т3	260 - 240 (717)	C15x33.9	4.00	3.91	51.9 K=1.00	9.9600	-0.45	280.02	0.002		
T3	260 - 240 (718)	C15x33.9	4.00	3.91	51.9	9.9600	-0.89	280.02	0.003		

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	21007.33 - Storrs	78 of 91
Proje	ect	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Clier	nt Verizon	Designed by TJL

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in ²	K	K	$- \phi P_n$
T5	220 - 200 (721)	C15x33.9	4.00	3.90	K=1.00 51.8 K=1.00	9.9600	-1.75	280.23	0.006
T5	220 - 200 (722)	C15x33.9	4.00	3.90	51.8 K=1.00	9.9600	-1.59	280.23	0.006
T5	220 - 200 (725)	C15x33.9	4.00	3.90	51.8 K=1.00	9.9600	-1.53	280.23	0.005
T5	220 - 200 (726)	C15x33.9	4.00	3.90	51.8 K=1.00	9.9600	-1.52	280.23	0.005
T5	220 - 200 (729)	C15x33.9	4.00	3.90	51.8 K=1.00	9.9600	-1.21	280.23	0.004
T5	220 - 200 (730)	C15x33.9	4.00	3.90	51.8 K=1.00	9.9600	-1.31	280.23	0.005
T 7	180 - 160 (733)	C15x33.9	4.00	3.89	51.6 K=1.00	9.9600	-3.52	280.44	0.013
T 7	180 - 160 (734)	C15x33.9	4.00	3.89	51.6 K=1.00	9.9600	-3.66	280.44	0.013
T 7	180 - 160 (737)	C15x33.9	4.00	3.89	51.6 K=1.00	9.9600	-3.38	280.44	0.012
T 7	180 - 160 (738)	C15x33.9	4.00	3.89	51.6 K=1.00	9.9600	-3.42	280.44	0.012
T 7	180 - 160 (741)	C15x33.9	4.00	3.89	51.6 K=1.00	9.9600	-2.91	280.44	0.010
T 7	180 - 160 (742)	C15x33.9	4.00	3.89	51.6 K=1.00	9.9600	-3.15	280.44	0.011
T10	120 - 100 (745)	C15x33.9	4.00	3.89	51.6 K=1.00	9.9600	-5.26	280.44	0.019
T10	120 - 100 (746)	C15x33.9	4.00	3.89	51.6 K=1.00	9.9600	-5.64	280.44	0.020
T10	120 - 100 (749)	C15x33.9	4.00	3.89	51.6 K=1.00	9.9600	-5.38	280.44	0.019
T10	120 - 100 (750)	C15x33.9	4.00	3.89	51.6 K=1.00	9.9600	-5.49	280.44	0.020
T10	120 - 100 (753)	C15x33.9	4.00	3.89	51.6 K=1.00	9.9600	-4.59	280.44	0.016
T10	120 - 100 (754)	C15x33.9	4.00	3.89	51.6 K=1.00	9.9600	-4.98	280.44	0.018
T13	60 - 40 (757)	C15x33.9	4.00	3.88	51.5 K=1.00	9.9600	-2.37	280.65	0.008
T13	60 - 40 (758)	C15x33.9	4.00	3.88	51.5 K=1.00	9.9600	-2.80	280.65	0.010
T13	60 - 40 (761)	C15x33.9	4.00	3.88	51.5 K=1.00	9.9600	-2.31	280.65	0.008
T13	60 - 40 (762)	C15x33.9	4.00	3.88	51.5 K=1.00	9.9600	-2.05	280.65	0.007
T13	60 - 40 (765)	C15x33.9	4.00	3.88	51.5 K=1.00	9.9600	-1.67	280.65	0.006
T13	60 - 40 (766)	C15x33.9	4.00	3.88	51.5 K=1.00	9.9600	-1.67	280.65	0.006

Torque-Arm To	op Bending	Design Data
---------------	------------	--------------------

Section	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio	M_{uy}	ϕM_{n_V}	Ratio
No.					M_{ux}			M_{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
T1	288 - 280 (702)	C15x33.9	-44.74	135.28	0.331	0.00	12.60	0.000

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

٦	Job	Page
	21007.33 - Storrs	79 of 91
	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client	Designed by
	Verizon	TJL

Section	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio	M_{uy}	ϕM_{ny}	Ratio
No.					M_{ux}			M_{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_n
Т3	260 - 240 (709)	C15x33.9	-47.27	135.33	0.349	0.00	12.60	0.000
T3	260 - 240 (710)	C15x33.9	-4 7.06	135.33	0.348	0.00	12.60	0.00
T3	260 - 240 (713)	C15x33.9	-43.30	135.33	0.320	-0.00	12.60	0.00
T3	260 - 240 (714)	C15x33.9	-46.87	135.33	0.346	-0.00	12.60	0.00
T3	260 - 240 (717)	C15x33.9	-42.47	135.33	0.314	-0.00	12.60	0.00
T3	260 - 240 (718)	C15x33.9	-44.32	135.33	0.327	-0.00	12.60	0.00
T5	220 - 200 (721)	C15x33.9	-46.98	135.39	0.347	0.00	12.60	0.00
T5	220 - 200 (722)	C15x33.9	-46.75	135.39	0.345	-0.00	12.60	0.00
T5	220 - 200 (725)	C15x33.9	-41.97	135.39	0.310	-0.00	12.60	0.00
T5	220 - 200 (726)	C15x33.9	-46.56	135.39	0.344	-0.00	12.60	0.00
T5	220 - 200 (729)	C15x33.9	-41.82	135.39	0.309	-0.00	12.60	0.00
T5	220 - 200 (730)	C15x33.9	-47.05	135.39	0.348	0.00	12.60	0.00
T7	180 - 160 (733)	C15x33.9	-43.82	135.44	0.324	-0.00	12.60	0.00
T7	180 - 160 (734)	C15x33.9	-44.45	135.44	0.328	0.00	12.60	0.00
T7	180 - 160 (737)	C15x33.9	-43.96	135.44	0.325	-0.00	12.60	0.00
T 7	180 - 160 (738)	C15x33.9	-37.78	135.44	0.279	-0.00	12.60	0.00
T7	180 - 160 (741)	C15x33.9	-37.92	135.44	0.280	-0.00	12.60	0.00
T7	180 - 160 (742)	C15x33.9	-44.19	135.44	0.326	0.00	12.60	0.00
T10	120 - 100 (745)	C15x33.9	-34.99	135.44	0.258	0.00	12.60	0.00
T10	120 - 100 (746)	C15x33.9	-35.93	135.44	0.265	0.00	12.60	0.00
T10	120 - 100 (749)	C15x33.9	-35.16	135.44	0.260	-0.00	12.60	0.00
T10	120 - 100 (750)	C15x33.9	-27.49	135.44	0.203	-0.00	12.60	0.00
T10	120 - 100 (753)	C15x33.9	-27.59	135.44	0.204	-0.00	12.60	0.00
T10	120 - 100 (754)	C15x33.9	-35.62	135.44	0.263	0.00	12.60	0.00
T13	60 - 40 (757)	C15x33.9	-9.39	135.50	0.069	0.00	12.60	0.00
T13	60 - 40 (758)	C15x33.9	-8.93	135.50	0.066	0.00	12.60	0.00
T13	60 - 40 (761)	C15x33.9	-5.95	135.50	0.044	0.00	12.60	0.00
T13	60 - 40 (762)	C15x33.9	-9.00	135.50	0.066	0.00	12.60	0.00
T13	60 - 40 (765)	C15x33.9	-5.81	135.50	0.043	0.00	12.60	0.00
T13	60 - 40 (766)	C15x33.9	-9.24	135.50	0.068	0.00	12.60	0.00

Torque-Arm Top Interaction Design Data

Section	Elevation	Size	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
No.			P_u	M_{ux}	M_{uy}	Stress	Stress	
	ft		ϕP_n	ϕM_{nx}	ϕM_{ny}	Ratio	Ratio	
T1	288 - 280 (702)	C15x33.9	0.000	0.331	0.000	0.331	1.000	4.8.1
Т3	260 - 240 (709)	C15x33.9	0.001	0.349	0.000	0.350	1.000	4.8.1
Т3	260 - 240 (710)	C15x33.9	0.000	0.348	0.000	0.348	1.000	4.8.1
Т3	260 - 240 (713)	C15x33.9	0.001	0.320	0.000	0.320	1.000	4.8.1
T3	260 - 240 (714)	C15x33.9	0.000	0.346	0.000	0.346	1.000	4.8.1
T3	260 - 240 (717)	C15x33.9	0.002	0.314	0.000	0.315	1.000	4.8.1
Т3	260 - 240 (718)	C15x33.9	0.003	0.327	0.000	0.329	1.000	4.8.1
T5	220 - 200 (721)	C15x33.9	0.006	0.347	0.000	0.350	1.000	4.8.1
T5	220 - 200 (722)	C15x33.9	0.006	0.345	0.000	0.348	1.000	4.8.1

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.33 - Storrs	80 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client Verizon	Designed by TJL

Section No.	Elevation	Size	Ratio P	Ratio M_{ux}	Ratio M	Comb. Stress	Allow. Stress	Criteria
IVO.	ft		$\frac{P_u}{\phi P_n}$	$\frac{M_{ux}}{\phi M_{nx}}$	$\frac{M_{uy}}{\phi M_{uy}}$	Ratio	Ratio	
T5	220 - 200 (725)	C15x33.9	0.005	0.310	0.000	0.313	1.000	4.8.1
T5	220 - 200 (726)	C15x33.9	0.005	0.344	0.000	0.347	1.000	4.8.1
T5	220 - 200 (729)	C15x33.9	0.004	0.309	0.000	0.311	1.000	4.8.1
T5	220 - 200 (730)	C15x33.9	0.005	0.348	0.000	0.350	1.000	4.8.1
T7	180 - 160 (733)	C15x33.9	0.013	0.324	0.000	0.330	1.000	4.8.1
T7	180 - 160 (734)	C15x33.9	0.013	0.328	0.000	0.335	1.000	4.8.1
T 7	180 - 160 (737)	C15x33.9	0.012	0.325	0.000	0.331	1.000	4.8.1
T7	180 - 160 (738)	C15x33.9	0.012	0.279	0.000	0.285	1.000	4.8.1
Т7	180 - 160 (741)	C15x33.9	0.010	0.280	0.000	0.285	1.000	4.8.1
T7	180 - 160 (742)	C15x33.9	0.011	0.326	0.000	0.332	1.000	4.8.1
T10	120 - 100 (745)	C15x33.9	0.019	0.258	0.000	0.268	1.000	4.8.1
T10	120 - 100 (746)	C15x33.9	0.020	0.265	0.000	0.275	1.000	4.8.1
T10	120 - 100 (749)	C15x33.9	0.019	0.260	0.000	0.269	1.000	4.8.1
T10	120 - 100 (750)	C15x33.9	0.020	0.203	0.000	0.213	1.000	4.8.1
T10	120 - 100 (753)	C15x33.9	0.016	0.204	0.000	0.212	1.000	4.8.1
T10	120 - 100 (754)	C15x33.9	0.018	0.263	0.000	0.272	1.000	4.8.1
T13	60 - 40 (757)	C15x33.9	0.008	0.069	0.000	0.074	1.000	4.8.1
T13	60 - 40 (758)	C15x33.9	0.010	0.066	0.000	0.071	1.000	4.8.1
T13	60 - 40 (761)	C15x33.9	0.008	0.044	0.000	0.048	1.000	4.8.1
T13	60 - 40 (762)	C15x33.9	0.007	0.066	0.000	0.070	1.000	4.8.1
T13	60 - 40 (765)	C15x33.9	0.006	0.043	0.000	0.046	1.000	4.8.1
T13	60 - 40 (766)	C15x33.9	0.006	0.068	0.000	0.071	1.000	4.8.1

Tension Checks

Leg Design Data (Tension)

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.33 - Storrs	81 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client Verizon	Designed by TJL

Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
No.	ft		ft	ft		in^2	K	K	$\frac{P_u}{\Phi P_n}$
T1	288 - 280	2	8.00	3.75	90.0	3.1416	14.29	141.37	0.101 1

 $^{^{1}}$ P_{u} / ϕP_{n} controls

Leg Bending	Design	Data	(Tension)
	,	Dutu	(,

Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M_{ux}	M_{uy}	ϕM_{ny}	Ratio M _{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
T1	288 - 280	2	0.00	5.00	0.000	0.00	5.00	0.000

Leg Interaction Design Data (Tension)

Section No.	Elevation	Size	$Ratio$ P_u	Ratio M_{ux}	Ratio M_{uv}	Comb. Stress	Allow. Stress	Criteria
	ft		ϕP_n	ϕM_{nx}	ϕM_{ny}	Ratio	Ratio	
T1	288 - 280	2	0.101	0.000	0.000	0.101 1	1.000	4.8.1

 $^{^{1}}$ P_{u} / ϕP_{n} controls

Diagonal Design Data (Tension)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
110.	ft		ft	fì		in^2	K	K	$\frac{1}{\phi P_n}$
T1	288 - 280	1 3/8	5.25	5.01	174.9	1.4849	2.28	48.11	0.047 1
T2	280 - 260	1 3/8	4.90	4.68	163.4	1.4849	1.54	48.11	$0.032^{\ 1}$
Т3	260 - 240	1 3/8	4.90	4.65	162.4	1.4849	3.63	48.11	0.075 1
T4	240 - 220	1 3/8	4.90	4.65	162.4	1.4849	3.77	48.11	$0.078^{\ 1}$
T5	220 - 200	1 1/2	4.90	4.62	148.0	1.7672	5.16	57.26	0.090 1
Т6	200 - 180	1 1/4	4.90	4.62	177.6	1.2272	6.98	39.76	$0.176^{\ 1}$
Т7	180 - 160	1 1/2	4.90	4.60	147.1	1.7672	8.60	57.26	$0.150^{\ 1}$
Т8	160 - 140	1 3/8	4.90	4.62	161.4	1.4849	3.96	48.11	0.082 1
Т9	140 - 120	1 1/4	4.90	4.60	176.5	1.2272	4.24	39.76	$0.107^{\ 1}$

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Т	Job	Page		
	21007.33 - Storrs	82 of 91		
	Project	Date		
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21		
	Client Verizon	Designed by		
-	Venzon	TJL		

Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
No.	ft		ft	ft		in^2	K	K	$\frac{P_u}{\phi P_n}$
T10	120 - 100	1 1/2	4.90	4.60	147.1	1.7672	12.16	57.26	0.212 1
T11	100 - 80	1 3/8	4.90	4.57	159.5	1.4849	11.40	48.11	0.237 1
T12	80 - 60	1 1/4	4.90	4.57	175.4	1.2272	2.24	39.76	0.056^{1}
T13	60 - 40	1 1/4	4.90	4.57	175.4	1.2272	3.25	39.76	$0.082^{\ 1}$
T14	40 - 20	1 1/4	4.90	4.57	175.4	1.2272	4.15	39.76	$0.104^{\ 1}$
T15	20 - 6.75	1 1/4	4.86	4.53	173.9	1.2272	5.61	39.76	0.141 1

 $^{^{1}}$ P_{u} / ϕP_{n} controls

Horizontal	l Design l	Data ((Tension)
------------	------------	--------	-----------

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	288 - 280	1	3.67	3.50	168.2	0.7854	3.61	25.45	0.142 1
T2	280 - 260	1	3.67	3.50	168.2	0.7854	0.58	25.45	0.023 1
Т3	260 - 240	1	3.67	3.48	167.2	0.7854	5.14	25.45	0.202 1
T4	240 - 220	1	3.67	3.48	167.2	0.7854	0.69	25.45	$0.027^{\ 1}$
T5	220 - 200	1	3.67	3.46	166.2	0.7854	8.36	25.45	$0.329^{\ 1}$
Т6	200 - 180	1	3.67	3.46	166.2	0.7854	2.76	25.45	$0.109^{\ 1}$
T7	180 - 160	1	3.67	3.44	165.2	0.7854	11.83	25.45	0.465 ¹
Т8	160 - 140	1	3.67	3.46	166.2	0.7854	1.04	25.45	0.041 ¹
Т9	140 - 120	1	3.67	3.44	165.2	0.7854	1.23	25.45	0.048 ¹
T10	120 - 100	1	3.67	3.44	165.2	0.7854	1.72	25.45	$0.068^{\ 1}$
T11	100 - 80	1	3.67	3.42	164.2	0.7854	2.65	25.45	0.104 ¹
T12	80 - 60	1	3.67	3.42	164.2	0.7854	1.66	25.45	0.065 ¹
T13	60 - 40	1	3.67	3.42	164.2	0.7854	6.76	25.45	0.266 ¹
T14	40 - 20	1	3.67	3.42	164.2	0.7854	1.76	25.45	$0.069^{\ 1}$

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.33 - Storrs	83 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client Verizon	Designed by
V GHZOH	TJL

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
110.	ft		ft	ft		in^2	K	K	$\frac{1}{\phi P_n}$
T15	20 - 6.75	1	3.67	3.42	164.2	0.7854	1.68	25.45	0.066 1
T16	6.75 - 0	9x3/8	2.79	2.54	281.2	3.3750	0.74	109.35	0.007 1

 $^{^{1}}$ P_{u} / ϕP_{n} controls

Secondary Horizontal Design Data (Tension)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	288 - 280	1	1.84	1.75	84.1	0.7854	0.00	25.45	0.000 1
T2	280 - 260	1	1.84	1.75	84.1	0.7854	0.00	25.45	$0.000^{\ 1}$
Т3	260 - 240	1	1.84	1.74	83.6	0.7854	0.00	25.45	0.000 1
T4	240 - 220	1	1.84	1.74	83.6	0.7854	0.00	25.45	$0.000^{\ 1}$
T5	220 - 200	1	1.84	1.73	83.1	0.7854	0.00	25.45	0.000 1
Т6	200 - 180	1	1.84	1.73	83.1	0.7854	0.00	25.45	0.000 1
Т7	180 - 160	1	1.84	1.72	82.6	0.7854	0.00	25.45	0.000 1
Т8	160 - 140	1	1.84	1.73	83.1	0.7854	0.00	25.45	0.000^{1}
Т9	140 - 120	1	1.84	1.72	82.6	0.7854	0.00	25.45	0.000 1
T10	120 - 100	1	1.84	1.72	82.6	0.7854	0.00	25.45	0.000 1
T11	100 - 80	1	1.84	1.71	82.1	0.7854	0.00	25.45	0.000 1
T12	80 - 60	1	1.84	1.71	82.1	0.7854	0.00	25.45	$0.000^{\ 1}$
T13	60 - 40	1	1.84	1.71	82.1	0.7854	0.00	25.45	0.000 1
T14	40 - 20	1	1.84	1.71	82.1	0.7854	0.00	25.45	0.000 1
T15	20 - 6.75	1	1.84	1.71	82.1	0.7854	0.00	25.45	$0.000^{\ 1}$

 $^{^{1}}$ P_{u} / ϕP_{n} controls

Top Girt Design Data (Tension)

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page		
21007.33 - Storrs	84 of 91		
Project	Date		
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21		
Client	Designed by		
Verizon	TJL		

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
1101	ft		ft	ft		in^2	K	K	$\frac{1}{\phi P_n}$
T1	288 - 280	1	3.67	3.50	168.2	0.7854	6.65	25.45	0.261 1
T2	280 - 260	1	3.67	3.50	168.2	0.7854	1.39	25.45	0.055 1
Т3	260 - 240	1	3.67	3.48	167.2	0.7854	2.04	25.45	0.080 1
T4	240 - 220	1	3.67	3.48	167.2	0.7854	0.77	25.45	0.030 1
T5	220 - 200	1	3.67	3.46	166.2	0.7854	2.21	25.45	0.087 1
Т6	200 - 180	1	3.67	3.46	166.2	0.7854	0.75	25.45	0.030 1
Т7	180 - 160	1	3.67	3.44	165.2	0.7854	1.98	25.45	0.078 1
Т8	160 - 140	1	3.67	3.46	166.2	0.7854	1.14	25.45	0.045 1
Т9	140 - 120	1	3.67	3.44	165.2	0.7854	0.61	25.45	0.024 1
T10	120 - 100	1	3.67	3.44	165.2	0.7854	1.60	25.45	0.063 1
T11	100 - 80	1	3.67	3.42	164.2	0.7854	2.65	25.45	0.104 1
T12	80 - 60	1	3.67	3.42	164.2	0.7854	0.87	25.45	0.034 1
T13	60 - 40	1	3.67	3.42	164.2	0.7854	1.15	25.45	0.045 1
T14	40 - 20	1	3.67	3.42	164.2	0.7854	0.86	25.45	0.034 1
T15	20 - 6.75	1	3.67	3.42	164.2	0.7854	1.48	25.45	0.058 1
T16	6.75 - 0	12x3/8	3.67	3.42	379.1	4.5000	29.90	145.80	0.205 1

 $^{^{1}}$ P_{u} / ϕP_{n} controls

Bottom Girt Design Data (Tension

Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
No.	ft		ft	ft		in^2	K	K	P_u
T2	280 - 260	1	3.67	3.50	168.2	0.7854	0.07	25.45	$\phi P_n = 0.003^{-1}$
									V.
Т3	260 - 240	1	3.67	3.48	167.2	0.7854	0.96	25.45	0.038 1
T4	240 - 220	1	3.67	3.48	167.2	0.7854	0.86	25.45	0.034^{-1}
T5	220 200	1	2.67	2.46	166.2	0.7054	1 10	25.45	0.046 1
13	220 - 200	1	3.67	3.46	166.2	0.7854	1.18	25.45	0.046
T6	200 - 180	1	3.67	3.46	166.2	0.7854	2.06	25.45	0.081^{-1}

Centek Engineering Inc. 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

T	Job	Page
	21007.33 - Storrs	85 of 91
	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client	Designed by
1	Verizon	TJL

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
140.	ft		ft	ft		in^2	K	K	ϕP_n
T7	180 - 160	1	3.67	3.44	165.2	0.7854	1.72	25.45	0.068 1
T8	160 - 140	1	3.67	3.46	166.2	0.7854	0.48	25.45	$0.019^{\ 1}$
Т9	140 - 120	1	3.67	3.44	165.2	0.7854	1.16	25.45	0.046^{1}
T10	120 - 100	1	3.67	3.44	165.2	0.7854	3.23	25.45	0.127 1
T11	100 - 80	1	3.67	3.42	164.2	0.7854	1.23	25.45	0.048 1
T12	80 - 60	1	3.67	3.42	164.2	0.7854	0.88	25.45	0.035 1
T13	60 - 40	1	3.67	3.42	164.2	0.7854	0.96	25.45	0.038 1
T14	40 - 20	1	3.67	3.42	164.2	0.7854	1.33	25.45	$0.052^{\ 1}$
T15	20 - 6.75	1	3.67	3.42	164.2	0.7854	4.79	25.45	0.188 1

 $^{^{1}}$ P_{u} / ϕP_{n} controls

	Top Guy Pull-Off Design Data (Tension)								
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T10	120 - 100	1" S.R. w/ 1" S.R. Crosby Clipped	3.67	3.44	116.9	0.7850	15.87	25.43	0.624 1

 $^{^{1}}$ P_{u} / ϕP_{n} controls

		Top Guy	Pull-O	ff Bend	ling De	esign D	ata	
Section	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio	M_{uy}	ϕM_{ny}	Ratio
No.	ft		kip-ft	kip-ft	$\frac{M_{ux}}{\phi M_{nx}}$	kip-ft	kip-ft	$\frac{M_{uy}}{\phi M_{ny}}$
T10	120 - 100	1" S.R. w/ 1" S.R. Crosby Clipped	0.00	0.40	0.000	0.00	0.40	0.000

Top Guy Pull-Off Interaction Design Data

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.33 - Storrs	86 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client	Designed by
Verizon	TJL

Section No.	Elevation	Size	Ratio Pu	Ratio M_{ux}	Ratio M_{uv}	Comb. Stress	Allow. Stress	Criteria
	ft		$\frac{1}{\phi P_n}$	ϕM_{nx}	ϕM_{ny}	Ratio	Ratio	
T10	120 - 100	1" S.R. w/ 1" S.R. Crosby Clipped	0.624	0.000	0.000	0.624 1	1.000	4.8.1

 $^{^{1}}$ P_{u} / ϕP_{n} controls

Torque-Arm Top Design Data

Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
No.						. 2	7.0		P_u
	ft		ft	ft		in ²	K	K	ϕP_n
T1	288 - 280 (697)	C15x33.9	4.00	3.92	52.1	9.9600	3.66	322.70	0.011
T1	288 - 280 (698)	C15x33.9	4.00	3.92	52.1	9.9600	3.77	322.70	0.012
T1	288 - 280 (701)	C15x33.9	4.00	3.92	52.1	9.9600	3.65	322.70	0.011
T1	288 - 280 (702)	C15x33.9	4.00	3.92	52.1	9.9600	3.81	322.70	0.012
T1	288 - 280 (705)	C15x33.9	4.00	3.92	52.1	9.9600	3.68	322.70	0.011
T1	288 - 280 (706)	C15x33.9	4.00	3.92	52.1	9.9600	3.91	322.70	0.012
T3	260 - 240 (709)	C15x33.9	4.00	3.91	51.9	9.9600	3.81	322.70	0.012
T3	260 - 240 (710)	C15x33.9	4.00	3.91	51.9	9.9600	3.85	322.70	0.012
T3	260 - 240 (713)	C15x33.9	4.00	3.91	51.9	9.9600	3.79	322.70	0.012
T3	260 - 240 (714)	C15x33.9	4.00	3.91	51.9	9.9600	3.91	322.70	0.012
T3	260 - 240 (717)	C15x33.9	4.00	3.91	51.9	9.9600	3.85	322.70	0.012
T3	260 - 240 (718)	C15x33.9	4.00	3.91	51.9	9.9600	3.97	322.70	0.012
T5	220 - 200 (721)	C15x33.9	4.00	3.90	51.8	9.9600	4.01	322.70	0.012
T5	220 - 200 (722)	C15x33.9	4.00	3.90	51.8	9.9600	4.04	322.70	0.013
T5	220 - 200 (725)	C15x33.9	4.00	3.90	51.8	9.9600	4.32	322.70	0.013
T5	220 - 200 (726)	C15x33.9	4.00	3.90	51.8	9.9600	4.36	322.70	0.014
T5	220 - 200 (729)	C15x33.9	4.00	3.90	51.8	9.9600	4.09	322.70	0.013
T5	220 - 200 (730)	C15x33.9	4.00	3.90	51.8	9.9600	4.15	322.70	0.013
T7	180 - 160 (733)	C15x33.9	4.00	3.89	51.6	9.9600	4.38	322.70	0.014
T7	180 - 160 (734)	C15x33.9	4.00	3.89	51.6	9.9600	4.45	322.70	0.014
T 7	180 - 160 (737)	C15x33.9	4.00	3.89	51.6	9.9600	4.78	322.70	0.015
T7	180 - 160 (738)	C15x33.9	4.00	3.89	51.6	9.9600	4.77	322.70	0.015
Т7	180 - 160 (741)	C15x33.9	4.00	3.89	51.6	9.9600	4.57	322.70	0.014
T7	180 - 160 (742)	C15x33.9	4.00	3.89	51.6	9.9600	4.39	322.70	0.014
T10	120 - 100 (745)	C15x33.9	4.00	3.89	51.6	9.9600	5.01	322.70	0.016
T10	120 - 100 (746)	C15x33.9	4.00	3.89	51.6	9.9600	4.86	322.70	0.015
T10	120 - 100 (749)	C15x33.9	4.00	3.89	51.6	9.9600	5.07	322.70	0.016
T10	120 - 100 (750)	C15x33.9	4.00	3.89	51.6	9,9600	5.46	322.70	0.017
T10	120 - 100 (753)	C15x33.9	4.00	3.89	51.6	9.9600	6.28	322.70	0.019
T10	120 - 100 (754)	C15x33.9	4.00	3.89	51.6	9.9600	4.56	322.70	0.014
T13	60 - 40 (757)	C15x33.9	4.00	3.88	51.5	9.9600	3.32	322.70	0.010
T13	60 - 40 (758)	C15x33.9	4.00	3.88	51.5	9.9600	3.45	322.70	0.010
T13	60 - 40 (761)	C15x33.9	4.00	3.88	51.5	9.9600	3.24	322.70	0.011
T13	60 - 40 (762)	C15x33.9	4.00	3.88	51.5	9.9600	3.66	322.70	0.011
T13	60 - 40 (765)	C15x33.9	4.00	3.88	51.5	9.9600	3.25	322.70	0.011
T13	60 - 40 (766)	C15x33.9	4.00	3.88	51.5	9.9600	3.72	322.70	0.012

Torque-Arm Top Bending Design Data

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.33 - Storrs	87 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client	Designed by
Verizon	TJL

Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M_{ux}	M_{uy}	ϕM_{ny}	Ratio M_{uy}
140.	ft		kip-ft	kip-ft	$\frac{M_{ux}}{\phi M_{nx}}$	kip-ft	kip-ft	$\frac{M_{uy}}{\phi M_{ny}}$
T1	288 - 280 (697)	C15x33.9	-60.12	135.28	0.444	0.00	12.60	0.000
T1	288 - 280 (698)	C15x33.9	-59.72	135.28	0.441	0.00	12.60	0.000
T1	288 - 280 (701)	C15x33.9	-55.14	135.28	0.408	-0.00	12.60	0.000
T1	288 - 280 (702)	C15x33.9	-59.47	135.28	0.440	0.00	12.60	0.000
T1	288 - 280 (705)	C15x33.9	-54.93	135.28	0.406	-0.00	12.60	0.000
T1	288 - 280 (706)	C15x33.9	-60.32	135.28	0.446	0.00	12.60	0.000
T3	260 - 240 (709)	C15x33.9	-57.47	135.33	0.425	0.00	12.60	0.000
T3	260 - 240 (710)	C15x33.9	-57.14	135.33	0.422	0.00	12.60	0.000
T3	260 - 240 (713)	C15x33.9	-52.03	135.33	0.384	-0.00	12.60	0.000
T3	260 - 240 (714)	C15x33.9	-56.84	135.33	0.420	-0.00	12.60	0.000
T3	260 - 240 (717)	C15x33.9	-51.78	135.33	0.383	-0.00	12.60	0.000
T3	260 - 240 (718)	C15x33.9	-57.66	135.33	0.426	0.00	12.60	0.000
T5	220 - 200 (721)	C15x33.9	-53.25	135.39	0.393	0.00	12.60	0.000
T5	220 - 200 (722)	C15x33.9	-52.98	135.39	0.391	0.00	12.60	0.000
T5	220 - 200 (725)	C15x33.9	-47.22	135.39	0.349	-0.00	12.60	0.000
T5	220 - 200 (726)	C15x33.9	-52.55	135.39	0.388	-0.00	12.60	0.000
T5	220 - 200 (729)	C15x33.9	-46.99	135.39	0.347	-0.00	12.60	0.000
T5	220 - 200 (730)	C15x33.9	-53.45	135.39	0.395	0.00	12.60	0.000
T 7	180 - 160 (733)	C15x33.9	-46.05	135.44	0.340	-0.00	12.60	0.000
T 7	180 - 160 (734)	C15x33.9	-46.94	135.44	0.347	0.00	12.60	0.000
T7	180 - 160 (737)	C15x33.9	-46.13	135.44	0.341	-0.00	12.60	0.000
T7	180 - 160 (738)	C15x33.9	-39.68	135.44	0.293	-0.00	12.60	0.000
T 7	180 - 160 (741)	C15x33.9	-39.95	135.44	0.295	-0.00	12.60	0.000
T7	180 - 160 (742)	C15x33.9	-46.55	135.44	0.344	0.00	12.60	0.000
T10	120 - 100 (745)	C15x33.9	-35.53	135.44	0.262	-0.00	12.60	0.000
T10	120 - 100 (746)	C15x33.9	-36.72	135.44	0.271	0.00	12.60	0.000
T10	120 - 100 (749)	C15x33.9	-35.54	135.44	0.262	-0.00	12.60	0.000
T10	120 - 100 (750)	C15x33.9	-28.26	135.44	0.209	-0.00	12.60	0.000
T10	120 - 100 (753)	C15x33.9	-28.34	135.44	0.209	-0.00	12.60	0.000
T10	120 - 100 (754)	C15x33.9	-36.35	135.44	0.268	0.00	12.60	0.000
T13	60 - 40 (757)	C15x33.9	-13.51	135.50	0.100	-0.00	12.60	0.000
T13	60 - 40 (758)	C15x33.9	-13.30	135.50	0.098	-0.00	12.60	0.000
T13	60 - 40 (761)	C15x33.9	-10.09	135.50	0.074	0.00	12.60	0.000
T13	60 - 40 (762)	C15x33.9	-13.03	135.50	0.096	0.00	12.60	0.000
T13	60 - 40 (765)	C15x33.9	-9.92	135.50	0.073	-0.00	12.60	0.000
T13	60 - 40 (766)	C15x33.9	-13.56	135.50	0.100	0.00	12.60	0.000

Torque-Arm Top Interaction Design Data

Section	Elevation	Size	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
No.			P_u	M_{ux}	M_{uy}	Stress	Stress	
	ft		$\overline{\qquad}$ ϕP_n	ϕM_{nx}	ϕM_{ny}	Ratio	Ratio	
T1	288 - 280 (697)	C15x33.9	0.011	0.444	0.000	0.450	1.000	4.8.1
T1	288 - 280 (698)	C15x33.9	0.012	0.441	0.000	0.447	1.000	4.8.1
T1	288 - 280 (701)	C15x33.9	0.011	0.408	0.000	0.413	1.000	4.8.1
T1	288 - 280 (702)	C15x33.9	0.012	0.440	0.000	0.445	1.000	4.8.1
T1	288 - 280 (705)	C15x33.9	0.011	0.406	0.000	0.412	1.000	4.8.1
T1	288 - 280 (706)	C15x33.9	0.012	0.446	0.000	0.452	1.000	4.8.1

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

1	Job	Page
	21007.33 - Storrs	88 of 91
	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client	Designed by
	Verizon	TJL

Section No.	Elevation	Size	Ratio P_u	Ratio M_{ux}	Ratio M_{uy}	Comb. Stress	Allow. Stress	Criteria
	ft		ϕP_n	ϕM_{nx}	ϕM_{ny}	Ratio	Ratio	
Т3	260 - 240 (709)	C15x33.9	0.012	0.425	0.000	0.431	1.000	4.8.1
Т3	260 - 240 (710)	C15x33.9	0.012	0.422	0.000	0.428	1.000	4.8.1
Т3	260 - 240 (713)	C15x33.9	0.012	0.384	0.000	0.390	1.000	4.8.1
Т3	260 - 240 (714)	C15x33.9	0.012	0.420	0.000	0.426	1.000	4.8.1
Т3	260 - 240 (717)	C15x33.9	0.012	0.383	0.000	0.389	1.000	4.8.1
Т3	260 - 240 (718)	C15x33.9	0.012	0.426	0.000	0.432	1.000	4.8.1
Т5	220 - 200 (721)	C15x33.9	0.012	0.393	0.000	0.400	1.000	4.8.1
T5	220 - 200 (722)	C15x33.9	0.013	0.391	0.000	0.398	1.000	4.8.1
T5	220 - 200 (725)	C15x33.9	0.013	0.349	0.000	0.355	1.000	4.8.1
T5	220 - 200 (726)	C15x33.9	0.014	0.388	0.000	0.395	1.000	4.8.1
T5	220 - 200 (729)	C15x33.9	0.013	0.347	0.000	0.353	1.000	4.8.1
T5	220 - 200 (730)	C15x33.9	0.013	0.395	0.000	0.401	1.000	4.8.1
T 7	180 - 160 (733)	C15x33.9	0.014	0.340	0.000	0.347	1.000	4.8.1
T 7	180 - 160 (734)	C15x33.9	0.014	0.347	0.000	0.353	1.000	4.8.1
T 7	180 - 160 (737)	C15x33.9	0.015	0.341	0.000	0.348	1.000	4.8.1
T 7	180 - 160 (738)	C15x33.9	0.015	0.293	0.000	0.300	1.000	4.8.1
Т7	180 - 160 (741)	C15x33.9	0.014	0.295	0.000	0.302	1.000	4.8.1
T 7	180 - 160 (742)	C15x33.9	0.014	0.344	0.000	0.350	1.000	4.8.1
T10	120 - 100 (745)	C15x33.9	0.016	0.262	0.000	0.270	1.000	4.8.1
T10	120 - 100 (746)	C15x33.9	0.015	0.271	0.000	0.279	1.000	4.8.1
T10	120 - 100 (749)	C15x33.9	0.016	0.262	0.000	0.270	1.000	4.8.1
T10	120 - 100 (750)	C15x33.9	0.017	0.209	0.000	0.217	1.000	4.8.1
T10	120 - 100 (753)	C15x33.9	0.019	0.209	0.000	0.219	1.000	4.8.1
T10	120 - 100 (754)	C15x33.9	0.014	0.268	0.000	0.275	1.000	4.8.1
T13	60 - 40 (757)	C15x33.9	0.010	0.100	0.000	0.105	1.000	4.8.1
T13	60 - 40 (758)	C15x33.9	0.011	0.098	0.000	0.104	1.000	4.8.1

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

1	Job	Page
	21007.33 - Storrs	89 of 91
	Project	Date
	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
	Client	Designed by
	Verizon	TJL

Section	Elevation	Size	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
No.			P_u	M_{ux}	M_{uy}	Stress	Stress	
	ft		ϕP_n	ϕM_{nx}	ϕM_{ny}	Ratio	Ratio	
T13	60 - 40 (761)	C15x33.9	0.010	0.074	0.000	0.079	1.000	4.8.1
T13	60 - 40 (762)	C15x33.9	0.011	0.096	0.000	0.102	1.000	4.8.1
T13	60 - 40 (765)	C15x33.9	0.010	0.073	0.000	0.078	1.000	4.8.1
T13	60 - 40 (766)	C15x33.9	0.012	0.100	0.000	0.106	1.000	4.8.1

Section Capacity Table

Section	Elevation	Component	Size	Critical	P	$ olimits P_{allow} $	%	Pass
No.	ft	Туре		Element	K	K	Capacity	Fail
L1	323 - 288	Pole	P10.75x0.843	1	-4.06	415.23	15.2	Pass
T1	288 - 280	Leg	2 2	2	-31.83	78.19	40.7	Pass
T2	280 - 260	Leg	2	22	-33.33	90.61	36.8	Pass
T3	260 - 240	Leg	2 1/4	72	-67.22	125.90	53.4	Pass
T4	240 - 220	Leg	2 1/4	118	-67.59	125.90	53.7	Pass
T5	220 - 200	Leg	2 1/2	166	-98.23	166.16	59.1	Pass
T6	200 - 180	Leg	2 1/2	215	-103.79	166.16	62.5	Pass
T7	180 - 160	Leg	2 3/4	262	-127.37	211.24	60.3	Pass
T8	160 - 140	Leg	2 1/2	311	-132.91	166.16	80.0	Pass
Т9	140 - 120	Leg	2 3/4	360	-137.19	211.24	64.9	Pass
T10	120 - 100	Leg	2 3/4	408	-160.34	211.24	75.9	Pass
T11	100 - 80	Leg	3	456	-179.60	261.02	68.8	Pass
T12	80 - 60	Leg	3	504	-186.53	261.02	71.5	Pass
T13	60 - 40	Leg	3	552	-198.11	261.02	75.9	Pass
T14	40 - 20	Leg	3	600	-198.11	261.02	75.9	Pass
T15	20 - 6.75	Leg	3	648	-196.66	263.00	74.8	Pass
T16	6.75 - 0	Leg	3	680	-202.63	285.39	71.0	Pass
T1	288 - 280	Diagonal	1 3/8	20	-2.17	21.86	9.9	Pass
T2	280 - 260	Diagonal	1 3/8	33	-2.05	24.17	8.5	Pass
Т3	260 - 240	Diagonal	1 3/8	108	-4.57	24.37	18.8	Pass
T4	240 - 220	Diagonal	1 3/8	127	-4.32	24.37	17.7	Pass
T5	220 - 200	Diagonal	1 1/2	205	-6.60	32.55	20.3	Pass
Т6	200 - 180	Diagonal	1 1/4	225	-8.40	17.63	47.7	Pass
T7	180 - 160	Diagonal	1 1/2	294	-9.56	32.77	29.2	Pass
Т8	160 - 140	Diagonal	1 3/8	354	-4.72	24.57	19.2	Pass
Т9	140 - 120	Diagonal	1 1/4	369	-5.83	17.80	32.8	Pass
T10	120 - 100	Diagonal	1 1/2	415	-13.74	32.77	41.9	Pass
T11	100 - 80	Diagonal	1 3/8	498	-13.47	24.96	54.0	Pass
T12	80 - 60	Diagonal	1 1/4	546	-4.35	17.98	24.2	Pass
T13	60 - 40	Diagonal	1 1/4	589	-5.74	17.98	32.0	Pass
T14	40 - 20	Diagonal	1 1/4	608	-6.45	17.98	35.9	Pass
T15	20 - 6.75	Diagonal	1 1/4	656	-7.24	18.22	39.7	Pass
T1	288 - 280	Horizontal	1	15	-3.23	12.27	26.3	Pass
T2	280 - 260	Horizontal	1	63	-0.37	12.27	3.0	Pass
Т3	260 - 240	Horizontal	1	111	-4.49	12.38	36.3	Pass
T4	240 - 220	Horizontal	1	133	0.69	25.45	2.7	Pass
T5	220 - 200	Horizontal	î	207	-7.25	12.48	58.1	Pass
T6	200 - 180	Horizontal	1	229	-1.95	12.48	15.7	Pass
T7	180 - 160	Horizontal	1	284	-10.23	12.59	81.3	Pass
			ī					Pass
			Î					Pass
								Pass
T8 T9 T10	160 - 140 140 - 120 120 - 100	Horizontal Horizontal Horizontal	1 1 1	351 373 433	1.04 1.23 1.72	25.45 25.45 25.45		4.1 4.8 6.8

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Т	Job	Page
	21007.33 - Storrs	90 of 91
ſ	Project	Date
1	327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Ī	Client Verizon	Designed by

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	ø $P_{allow} \ K$	% Capacity	Pass Fail
T11	100 - 80	Horizontal	1	468	2.65	25.45	10.4	Pass
T12	80 - 60	Horizontal	1	531	1.66	25.45	6.5	Pass
T13	60 - 40	Horizontal	i	591	-4.87	12.70	38.3	Pass
T14	40 - 20	Horizontal	î	620	1.76	25.45	6.9	Pass
T15	20 - 6.75	Horizontal	1	673	1.68	25.45	6.6	Pass
T16	6.75 - 0	Horizontal	9x3/8	687	0.09	109.35	1.0	Pass
T1	288 - 280	Secondary Horizontal	1	21	-0.00	17.94	0.1	Pass
T2	280 - 260	Secondary Horizontal	1	69	-0.00	17.94	0.1	Pass
T3	260 - 240	Secondary Horizontal	1	103	-0.00	17.96	0.1	Pass
T4	240 - 220	Secondary Horizontal	1	165	-0.00	17.96	0.1	Pass
T5	220 - 200	Secondary Horizontal	1	178	0.00	25.45	0.1	Pass
T6	200 - 180	Secondary Horizontal	1	226	0.00	25.45	0.1	Pass
T7	180 - 160	Secondary Horizontal	1	274	0.00	25.45	0.1	Pass
T8	160 - 140	Secondary Horizontal	1	322	0.00	25.45	0.1	Pass
T9	140 - 120	Secondary Horizontal	1	370	0.00	25.45	0.1	Pass
T10	120 - 100	Secondary Horizontal	1	418	0.00	25.45	0.1	Pass
T11	100 - 80	Secondary Horizontal	1	466	0.00	25.45	0.1	Pass
T12	80 - 60	Secondary Horizontal	1	542	0.00	25.45	0.1	Pass
T13	60 - 40	Secondary Horizontal	1	590	0.00	25.45	0.1	Pass
T14	40 - 20	Secondary Horizontal	1	638	0.00	25.45	0.1	Pass
T15	20 - 6.75	Secondary Horizontal	1	672	-0.00	18.05	0.1	Pass
T1	288 - 280	Top Girt	1	7	6.65	25.45	26.1	Pass
T2	280 - 260	Top Girt	1	25	1.39	25.45	5.5	Pass
T3	260 - 240	Top Girt	1	75	2.04	25.45	8.0	Pass
T4	240 - 220	Top Girt	1	121	-0.62	12.38	5.0	Pass
T5	220 - 200	Top Girt	1	171	2.21	25.45	8.7	Pass
T6	200 - 180	Top Girt	1	218	-0.58	12.48	4.6	Pass
T7	180 - 160	Top Girt	1	267	-1.67	12.59	13.2	Pass
T8	160 - 140	Top Girt	1	315	-0.69	12.48	5.5	Pass
Т9	140 - 120	Top Girt	1	363	0.61	25.45	2.4	Pass
T10	120 - 100	Top Girt	1	411	-0.91	12.59	7.3	Pass
T11	100 - 80	Top Girt	1	459	-2.04	12.70	16.1	Pass
T12	80 - 60	Top Girt	1	507	0.87	25.45	3.4	Pass
T13	60 - 40	Top Girt	1	554	1.15	25.45	4.5	Pass
T14	40 - 20	Top Girt	ī	601	0.86	25.45	3.4	Pass
T15	20 - 6.75	Top Girt	1	650	-0.79	12.70	6.2	Pass
T16	6.75 - 0	Top Girt	12x3/8	685	29.90	145.80	20.5	Pass
T1	288 - 280	Bottom Girt	1	10	-1.89	12.27	15.4	Pass
T2	280 - 260	Bottom Girt	1	30	-1.30	12.27	10.6	Pass
T3	260 - 240	Bottom Girt	1	78	-0.65	12.38	5.2	Pass
T4	240 - 220	Bottom Girt	1	126	-1.65	12.38	13.4	Pass
T5	220 - 200	Bottom Girt	1	172	-0.66	12.48	5.3	Pass
T6	200 - 180	Bottom Girt	î	222	-1.52	12.48	12.2	Pass
T 7	180 - 160	Bottom Girt	1	270	-1.03	12.59	8.2	Pass
Т8	160 - 140	Bottom Girt	ī	317	0.48	25.45	1.9	Pass
Т9	140 - 120	Bottom Girt	1	366	-0.72	12.59	5.7	Pass
T10	120 - 100	Bottom Girt	i	414	-2.33	12.59	18.5	Pass
T11	100 - 80	Bottom Girt	î	462	1.23	25.45	4.8	Pass
T12	80 - 60	Bottom Girt	1	509	0.88	25.45	3.5	Pass
T13	60 - 40	Bottom Girt	1	558	0.96	25.45	3.8	Pass
T14	40 - 20	Bottom Girt	1	605	1.33	25.45	5.2	Pass
T15	20 - 6.75	Bottom Girt	1	654	4.79	25.45	18.8	Pass
T1	288 - 280	Guy A@284	3/4	704	17.84	34.98	51.0	Pass
T3	260 - 240	Guy A@256.5	3/4	716	17.60	34.98	50.3	Pass
T5	220 - 200	Guy A@216.5	3/4	728	17.34	34.98	49.6	Pass
T7	180 - 160	Guy A@166.75	3/4	740	17.80	34.98	50.9	Pass
T10	120 - 100	Guy A@106.75	3/4	752	18.62	34.98	53.2	Pass
T13	60 - 40	Guy A@56.5	7/16	764	8.04	12.48	64.4	Pass
T1	288 - 280	Guy B@284	3/4	699	16.78	34.98	48.0	Pass
T3	260 - 240	Guy B@256.5	3/4	711	16.49	34.98	47.1	Pass
T5	220 - 200	Guy B@216.5	3/4	723	16.17	34.98	46.2	Pass

Centek Engineering Inc. 63-2 North Branford Rd.

63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job	Page
21007.33 - Storrs	91 of 91
Project	Date
327' Guyed Tower - N. Eagleville Road Storrs, CT	14:39:32 11/04/21
Client	Designed by
Verizon	TJL

Section	Elevation	Component	Size	Critical	P	$ olimits P_{allow} $	%	Pass
No.	ft	Туре		Element	K	K	Capacity	Fail
T7	180 - 160	Guy B@166.75	3/4	735	17.06	34.98	48.8	Pass
T10	120 - 100	Guy B@106.75	3/4	747	18.00	34.98	51.5	Pass
T13	60 - 40	Guy B@56.5	7/16	759	7.86	12.48	63.0	Pass
T1	288 - 280	Guy C@284	3/4	696	17.70	34.98	50.6	Pass
T3	260 - 240	Guy C@256.5	3/4	708	17.47	34.98	50.0	Pass
T5	220 - 200	Guy C@216.5	3/4	720	17.23	34.98	49.3	Pass
T7	180 - 160	Guy C@166.75	3/4	731	17.66	34.98	50.5	Pass
T10	120 - 100	Guy C@106.75	3/4	744	18.34	34.98	52.4	Pass
T13	60 - 40	Guy C@56.5	7/16	756	7.98	12.48	63.9	Pass
T10	120 - 100	Top Guy Pull-Off@106.75	1" S.R. w/ 1" S.R. Crosby Clipped	428	-13.91	17.88	77.8	Pass
T1	288 - 280	Torque Arm Top@284	C15x33.9	706	3.91	322.70	45.2	Pass
Т3	260 - 240	Torque Arm Top@256.5	C15x33.9	718	3.97	322.70	43.2	Pass
T5	220 - 200	Torque Arm Top@216.5	C15x33.9	730	4.15	322.70	40.1	Pass
Т7	180 - 160	Torque Arm Top@166.75	C15x33.9	734	4.45	322.70	35.3	Pass
T10	120 - 100	Torque Arm Top@106.75	C15x33.9	746	-5.64	280.44	27.9	Pass
T13	60 - 40	Torque Arm Top@56.5	C15x33.9	766	3.72	322.70	10.6	Pass
		1000000					Summary	
						Pole (L1)	15.2	Pass
						Leg (T8)	80.0	Pass
						Diagonal (T11)	54.0	Pass
						Horizontal (T7)	81.3	Pass
						Secondary Horizontal (T1)	0.1	Pas
						Top Girt (T1)	26.1	Pass
						Bottom Girt (T15)	18.8	Pass
						Guy A (T13)	64.4	Pass
						Guy B (T13)	63.0	Pass
						Guy C (T13)	63.9	Pass
						Top Guy Pull-Off (T10)	77.8	Pass
						Torque Arm Top (T1)	45.2	Pass
						Bolt Checks	25.2	Pass
						RATING =	81.3	Pas

 $Program\ Version\ 8.1.1.0\ -\ 6/3/2021\ File: J:/Jobs/2100700. WI/33_STORRS\ CT/05_Structural/Tower/Backup\ Documentation/Calcs/ERI/327-ft\ Guyed\ Tower-Storrs,\ CT.eri$

Branford, CT 06405

Subject:

Location:

Base Foundation Analysis

327-ft Guyed Lattice Tower

Storrs, CT

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 21007.33

Rev. 0: 11/4/21

Guyed Tower Base Foundation:

F: (203) 488-8587

Input Data:

Tower Data

Shear Force = (User Input from tnxTower) Shear := 6·kip

Axial Force = (User Input from tnxTower) Axial := 572-kip

Tower Height = (User Input) $H_t := 323 \cdot ft$

Footing Data:

Overall Depth of Footing = (User Input) $D_f := 4 \cdot ft$

> Length of Pier = $L_0 := 2.5 \cdot ft$ (User Input)

Extension of Pier Above Grade = $L_{pag} := 0.5 \cdot ft$ (User Input)

> Diameter of Pier = $D_0 := 3.0 \cdot ft$ (User Input)

Width of Pad = (User Input) $W_{pad} := 10 \cdot ft$

Thickness of Pad = $t_{pad} := 2.0 \cdot ft$ (User Input)

Material Properties:

Concrete Compressive Strength = $f_c := 3000 \cdot psi$ (User Input)

Steel Reinforcment Yield Strength = (User Input) $f_v := 60000 \cdot psi$

Internal Friction Angle of Soil = $\Phi_{\mathbf{S}} \coloneqq 30 \cdot \deg$ (User Input)

 $q_S := 11000 \cdot psf$ Ultimate Soil Bearing Capacity = (User Input)

> Unit Weight of Soil = $\gamma_{\text{Soil}} \coloneqq 120 \cdot \text{pcf}$ (User Input)

Unit Weight of Concrete = $\gamma_{conc} := 150 \cdot pcf$ (User Input)

Foundation Bouyancy = (Yes=1/No=0) Bouyancy := 0 (User Input)

Depth to Neglect = (User Input) $n := 0 \cdot ft$

Cohesion of Clay Type Soil = (Use 0 for Sandy Soil) $c := 0 \cdot ksf$ (User Input)

Seismic Zone Factor = Z := 2(User Input)

Coefficient of Friction Between Concrete = $\mu := 0.45$ (User Input)

Calculated Factors:

Coefficient of Lateral Soil Pressure =

Load Factor = LF := 1.333 if $H_t \le 700$ ·ft = 1.333

Branford, CT 06405

F: (203) 488-8587

Subject:

Location:

Rev. 0: 11/4/21

Base Foundation Analysis

327-ft Guyed Lattice Tower

Storrs, CT

Prepared by: T.J.L. Checked by: C.F.C.

Job No. 21007.33

Stability of Footing:

Adjusted Concrete Unit Weight = $\gamma_c := if(Bouyancy = 1, \gamma_{conc} - 62.4pcf, \gamma_{conc}) = 150 \cdot pcf$

 $\gamma_s := if(Bouyancy = 1, \gamma_{soil} - 62.4pcf, \gamma_{soil}) = 120 \cdot pcf$ Adjusted Soil Unit Weight =

> Passive Pressure = $P_{top} = 0$

> > $P_{bot} := K_p \cdot \gamma_s \cdot D_f + c \cdot 2 \cdot \sqrt{K_p} = 1.44 \cdot ksf$

 $P_{ave} := \frac{P_{top} + P_{bot}}{2} = 0.72 \cdot ksf$

 $A_p := D_p \cdot L_p = 7.5$

Soil Shear Resistance = $Sl_1 := P_{ave} \cdot A_p = 5.4 \cdot kip$

 $\text{WT}_{\text{C}} := \left(\frac{1}{4} \cdot \pi \cdot \text{D}_{\text{p}}^{2} \cdot \text{L}_{\text{p}} + \text{W}_{\text{pad}}^{2} \cdot \text{t}_{\text{pad}}\right) \cdot \gamma_{\text{C}} = 32.65 \cdot \text{kip}$ Weight of Concrete =

Total Weight = $\text{WT}_{tot} := \text{WT}_c + \text{Axial} = 604.65 \cdot \text{kip}$

Soil/Concrete Friction Resistance = $Sl_2 := \mu \cdot WT_{tot} = 272.09 \cdot kips$

> Total Sliding Resistance = $Sl_{tot} := Sl_1 + Sl_2 = 277.49 \cdot kips$

 $Sliding_Resistance_{ratio} := \frac{0.75Sl_{tot}}{Shear} = 34.69$ Sliding Resistance Ratio =

Sliding_Resistance_Check := if $\left(\frac{\text{Shear}}{0.75\text{Sl}_{\text{tot}}} < 1.0\right)$, "Okay", "No Good"

Sliding_Resistance_Check = "Okay"

Bearing Pressure Caused by Footing:

 $P_{\text{max}} := \frac{WT_{\text{tot}}}{W_{\text{pad}}} = 6.05 \cdot \text{ksf}$ Maximum Pressure in Mat =

Max_Pressure_Check := if(P_{max} < 0.6q_s, "Okay", "No Good")

Max_Pressure_Check = "Okay"

Job: Verizon ~ Storrs: 327-ft Guyed Lattice Tower

Address: North Eagleville Rd., Storrs, CT

Guy Anchor Evaluation Description:

Project No. 21007.33 Computed by TJL Checked by CFC

Sheet Date Date

of

11/4/21

2

CHECK UPLIFT RESISTANCE

RESULTS FROM COMPUTER ANALYSIS:

Uplift =	111	kips
Sliding =	134	kips

Wdepth = ft 50

CONCRETE PARAMETERS:

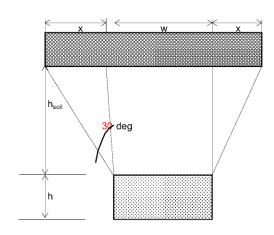
$\gamma_{conc} =$	150	pcf
γ conc.sub =	87.6	pcf
w =	4.5	ft
h =	4	ft
d =	24	ft
Vol. =	432.00	ft ³
Vol.sub =	0.00	ft ³
Wc =	64.80	kips
Ø =	0.90	

SOIL PARAMETERS:

γ_{soil} =	120	pcf
$\gamma_{\text{soil.sub}}$ =	57.6	pcf
h _{soil} =	8	ft
x =	4.62	ft

58.32

Soil Weight (Wr):


108.00	
108.00	
456.61	
251.73	kips
0.00	kips
251.73	kips
0.75	
188.80	
	108.00 456.61 251.73 0.00 251.73 0.75

SF AGAINST SLIDING

2.23 OK

GUY ANCHORS AGAINST UPLIFT ARE ADEQUATE

ANCHOR (A) AT 235.0 ft RADIUS

Foundation Section

63-2 North Branford Road Branford, CT 06405

Job:

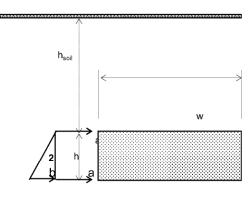
F: (203) 488-8587

Verizon ~ Storrs: 327-ft Guyed Lattice Tower Address: North Eagleville Rd., Storrs, CT Guy Anchor Evaluation Description:

Project No. Computed by Checked by 21007.33 TJL CFC

Sheet Date Date

2 of 11/4/21


2

CHECK SLIDING RESISTANCE

SOIL PARAMETERS

ANCHOR PARAMETERS

$$\gamma \, soil =$$
 120 pcf w = 4.5 ft
 $\gamma \, soil =$ 57.6 pcf h = 4.0 ft
 $h_{soil} =$ 8 ft d = 24.0 ft
 $\phi =$ 30 degrees

Foundation Elevation View

$$K_p = 3.00$$

HORIZONTAL FORCES

	2.88	ksf
	4.32	ksf
RESIST TO SLIDING =	345.60	k

SF AGAINST SLIDING

$$SF = 3.0 > 1 OK$$

GUY ANCHORS AGAINST SLIDING ARE ADEQUATE

EAST > North East > New England > New England West > STORRS CT

Brauer, Mark - mark.brauer2@verizonwireless.com - 4/7/2021 16:2:2

Project Details	Location
Carrier Aggregation: false	
MPT Id:	
eCIP-0: false	
Project Name: 5G 850MHz - Carrier Add	
FUZE Project ID: 16499984	
Designed Sector Carrier 4G: 19	
Designed Sector Carrier 5G: 4	
Additional Sector Carrier 4G: N/A	
Additional Sector Carrier 5G: N/A	
SiteTraker Project Id:	
FP Solution Type & Tech Type: MODIFICATION;4G_Radio Swap,5G_850,5G_vDU add - Sub3	
Suffix:	

ormation	Site ID: 324933	E-NodeB ID: 064225	PSLC: 468927	Switch Name: Wallingford 1	Tower Owner:	Tower Type: Self Support (Lattice Tower)	Site Type: MACRO	Street Address: 82 North Eagleville Rd. UCONN Campus	City: Storrs Mansfield	State: CT	Zip Code: 06268	County: Tolland	Latitude: 41.813889 / 41° 48' 50.0004" N	Longitude: -72.259444 / 72° 15' 33.9984" W
Location Information				S	To			Stre						

RFDS Project Scope:

Sub 6 add CBRS add

Antenna Summary

	ify				ity		ily	ì		
	Quant	4	4		Quantity		Quantity		ю	4
	Inst. Type Quantity	PHYSICAL	PHYSICAL		Inst. Type		Inst Type	PHYSICAL	PHYSICAL	PHYSICAL
	4xRx	false	false		4xRx		4vBv	false	false	false
	RET	false	false		RET		RET	false	false	false
	Azimuth	0(A) 120(B) 190(C) 280(D)	10(A) 110(B) 190(C) 280(D)		Azimuth	No data available.	Azimuth	10(A) 280(D)	0(D1) 180(D2) 270(D3)	120(B) 190(C)
	Centerline Tip Height Azimuth	86.5	82		Centerline Tip Height Azimuth	No di	Conterline Tin Height Azimuth	86.6	85.7	86.6
	Centerline	85	81.6		Centerline		Conterline	83.6	83.6	83.6
	Model	MT6407-77A	XXDWMM-12.5-65		Model		Model	JAHH-65B-R3B	BXA-80063/4 (97250)	JAHH-45B-R3B
	Make	Samsung	Samsung		Make		Make	ANDREW	ANTEL	COMMSCOPE
	9qns-7	55			P-Sub6		S. S.			
	CBRS L-Sub6 Make		Ë		CBRS L-Sub6 Make		CBBS 1-Sub6 Make			
	AWS				AWS		AWS			림
	1900				1900		1900			Ţ
	850			77	850		850		СБМА	56
Added	200			Removed	200		700	=======================================		Ę

Added: 8 Removed: 0 Retained: 11

Equipment Summary

Added													
Equipment Type	Location	200	850	1900	AWS	CBRS	L-Sub6 Make	Make	Model	Cable Length Cable Size Install Type Quantity	Sable Size	Install Type	Quantity
Diplexer	Tower							Comscope	CBC78T-DS-43-2x			PHYSICAL	4
RRU	Tower			35	35			Samsung	B2/B66A RRH-BR049 (RFV01U-D1A)			PHYSICAL	4
RRU	Tower	17	56					Samsung	B5/B13 RRH-BR04C (RFV01U-D2A)			PHYSICAL	4
RRU	Tower					LTE		Samsung	CBRS RRH - RT4401-48A			PHYSICAL	4
RRU	Tower						5G	Samsung	MT6407-77A			PHYSICAL	4
Removed													
Equipment Type	Location	200	850	1900	AWS	CBRS	L-Sub6 Make	Make	Model	Cable Length Cable Size Install Type Quantity	Sable Size	Install Type	Quantity
RRU	Tower		11					Nokia	AHCA AirScale RRH 4T4R B5 160W			PHYSICAL	4
RRU	Tower	TE						Nokia	UHBA B13 RRH 4x30			PHYSICAL	4
RRU	Tower			LTE				Nokia	UHFA B25 RRH 4x30			PHYSICAL	4
RRU	Tower			LTE				Nokia	UHFA B25 RRH 4x30			PHYSICAL	4
RRU	Tower				TI			Nokia	UHIE B66A RRH 4x45			PHYSICAL	4
Retained													
Equipment Type	Location	200	850	1900	AWS	CBRS	L-Sub6 Make		Model	Cable Length Cable Size Install Type Quantity	Sable Size	Install Type	Quantity
Mount	Tower							Commscope	BASMNT-SBS-2-2			PHYSICAL	2
Mount	Tower							Commscope	BASMNT-SBS-2-3			PHYSICAL	2
Hybrid Cable	Tower								12x24			PHYSICAL	2
OVP Box	Tower								OVP-12			PHYSICAL	2
Coaxial Cables	Tower											PHYSICAL	9

Service Info

\$199	?	92	190 10 120 190	064225 064225 064225 064225	JAHH-45B-R3B JAHH-45B-R3B JAHH-45B-R3B	COMMSCOPE COMMSCOPE COMMSCOPE	83.6	0	С	86,6	70.09				Samsung	(H 4x30 B5/B13 RRH-BR04C (RFV01U-D2A) B5/B13 RRH-BR04C (RFV01U-D2A) B5/B13 RRH-BR	2,4 4,4 4,4 4,4		1952381 10134462 10134460 10134470	ATOLL_API ATOLL_API ATOLL_API ATOLL_API	0.4	280	202	CZ7-607	JAHH-058-K38	ANDREW	Walter of the state of the stat	0.0		4.4	86.6	70.4		Samsung	B5/B13 RRH-BR04C (RFV01U-D2A)	4,4	***************************************	10144444	ALOUL_AM
0000	6	0.5	120	064225	JAHH-45B-R3B	COMMSCOPE	83.6	0	00	86,6	169.34				Nokia	UHBA B13 RRH 4x30	2,4		1955730	ATOLL_API																			
	3	5	10	064225	JAHH-65B-R3B	ANDREW	83.6	0	m	86,6	106.09				Nokia	UHBA B13 RRH 4x30	2,4		1955729	ATOLL_API	04	280	064225	004223	JAHH-65B-R3B	ANDREW	02.6	03.0	o •	4 (86.6	106.55		Nokia	UHBA B13 RRH 4x30	2,4		1955913	AIULLAPI
700 MHz LTE	2000	Sector	Azimuth	Cell / ENode B ID	Antenna Model	Antenna Make	Antenna Centerline(Ft)	Mechanical Down-Tilt(Deg.)	Electrical Down-Tilt	Tip Height	Regulatory Power	Total ERP (W)	TMA Make	TMA Model	RRU Make	RRU Model	Number of Tx, Rx Lines	Position	Transmitter Id	Source																			

	03	190	064225	JAHH-45B-R3B	COMMSCOPE	83.6	0	2	86,6	209.18				Nokia	AHCA AirScale RRH 4T4R B5 160W	2,4		1954606	ATOLL_API																
999	02	120	064225	JAHH-45B-R3B	COMMSCOPE	83.6	0	2	86,6	209.18				Nokia	AHCA AirScale RRH 4T4R B5 160W	2,4		1959883	ATOLL_API																
	5	10	064225	JAHH-65B-R3B	ANDREW	83.6	0	2	86,6	128,36				Nokia	T4R B5 160W			1947585	ATOLL_API	04	280	064225	JAHH-65B-R3B	ANDREW	83.6	0	2	86.6	128.36		N S S S S S S S S S S S S S S S S S S S	HCA AirScale BBH 4T4B B5 160W	2,4	1947586	ATOLL API
	Sector	Azimuth	Cell / ENode B ID	Antenna Model	Antenna Make	Antenna Centerline(Ft)	Mechanical Down-Tilt(Deg.)	Electrical Down-Tilt	Tip Height	Regulatory Power	Total ERP (W)	TMA Make	TMA Model	RRU Make	RRU Model A	Number of Tx, Rx Lines	Position	Transmitter Id	Source													10			

850 MHz CDMA		0000			90TS	
Sector	10	D2	D3	5	D2	B3
Azimuth	0	180	270	0	180	270
Cell / ENode B ID						
Antenna Model	BXA-80063/4 (97250)					
Antenna Make	ANTEL	ANTEL	ANTEL	ANTEL	ANTEL	ANTEL
Antenna Centerline(Ft)	83.6	83.6	83.6	83.6	83.6	83.6
Mechanical Down-Tilt(Deg.)	4	9	4	4	9	4
Electrical Down-Tilt	0	0	0	0	0	0
Tip Height	85.7	85.7	85.7	85.7	85.7	85.7
Regulatory Power	415.91	415.91	415.91	415.91	415.91	415.91
Total ERP (W)						
TMA Make						
TMA Model						
RRU Make						
RRU Model						
Number of Tx, Rx Lines						
Position						
Transmitter Id						
Source	ATOLL_API	ATOLL_AP!	ATOLL_AP!	ATOLL_API	ATOLL_API	ATOLL_API

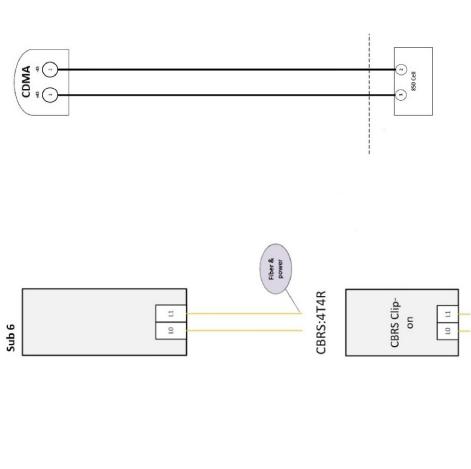
B B B5/B13 RRH-B AT AT AT	850 MHz 5GNR		SUS	
100 100		1000	0000	0003
AUDREW 83.6	Azimuth	10	120	190
ANDREW 83.6 0 0 8.6 8.6 8.0 8.6 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	Cell / ENode B ID	0649225	0649225	0649225
ANDREW 83.6 0 0 86.6 2 86.6 20.1.81 1013-45.81 ATOLL_API 0004 0004 0004 0004 0004 0004 0004 0008 0004 0008 0004 0008	Antenna Model	JAHH-65B-R3B	JAHH-45B-R3B	JAHH-45B-R3B
83.6 8.6 8.6 8.6 8.6 8.6 8.7 8.6 8.6	Antenna Make	ANDREW	COMMSCOPE	COMMSCOPE
Samsung Samsung Samsung BS/B13 RRH-BR04G (RFV01U-DZA) 4,4 10134618 10134618 AOULL_API 0004 288 0649225 JAHH-65B-R3B ANDREW 83.6 0 2 86.6 20.181 Samsung BS/B13 RRH-BR04C (RFV01U-DZA) 4,4 10134625	Antenna Centerline(Ft)	83.6	83.6	83.6
86.6 201.81 Samsung BS/B13 RRH-BR04C (RFV01U-D2A) 4,4 I013488 ANDREW 83.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Mechanical Down-Tilt(Deg.)	0	0	0
Samsung B5/B13 RRH-BRQ4C (RFV01U-D2A) 4,4 10134518 ATOLL_API 0004 280 0649225 JAHH-65B-R3B ANDREW 83.6 0 2 86.6 Samsung B5/B13 RRH-BRQ4C (RFV01U-D2A) 4,4 A14,4 A14,4 A14,4 A14,4 B5/B13 RRH-BRQ4C (RFV01U-D2A)	Electrical Down-Tilt	2	2	2
Samsung Samsung BS/B13 RRH-BR04C (RFV01L-D2A) 4,4 10134518 ATOLL_API 0044 280 0649225 JAHH-65B-R3B ANDREW 83.6 0 0 2 2 86.6 201.81 Samsung BS/B13 RRH-BR04C (RFV01L-D2A) 4,4	Tip Height	86.6	86.6	86.6
Samsung BS/B13 RRH-BROAC (REVOIU-DZA) 4,4 10134518 ATOLL_API 0004 280 0649225 JAHH-65B-R3B ANDREW 83.6 0 2 86.6 201.81 BS/B13 RRH-BROAC (REVOIU-DZA) 4,4	Regulatory Power	201.81	328.88	328.88
BS/B13 RRH-BR04C (RFV01U-DZA) 4,4 10134518 A701L_API 0004 280 0649225 JAHH-63B-R3B ANDREW 83.6 0 2 2 86.6 201.81 Samsung BS/B13 RRH-BR04C (RFV01U-DZA) 4,4	Total ERP (W)			
Samsung BS/B13 RRH-BR04C (RFV01U-D2A) 4,4 10134518 ATOLL_API 0004 280 0649225 JAHH-658-R3B ANDREW 83.6 0 2 86.6 201.81 Samsung B5/B13 RRH-BR04C (RFV01U-D2A) 4,4	TMA Make			
Samsung B5/B13 RRH-BRQ4C (RFV01L-DZA) 4,4 10134518 ATOLL_API 0004 280 0049225 JAHH-65B-R3B ANDREW 83.6 0 2 2 86.6 201.81 Samsung B5/B13 RRH-BRQ4C (RFV01L-DZA) 4,4	TMA Model			
BS/B13 RRH-BR04C (RFV010-DZA) 4,4 10134518 ATOLL_API 0004 280 0649225 JAHH-658-R38 83.6 0 2 86.6 201.81 Samsung BS/B13 RRH-BR04C (RFV010-DZA) 4,4	RRU Make	Samsung	Samsung	Samsung
10134518 10134519 ATOLL_API 0004 280 0649225 JAHH-658-R38 ANDREW 83.6 0 0 2 86.6 201.81 Samsung BS/B13 RRH-BRO4C (RFV01U-D2A) 4.4 10134625	KKU Model	B5/B13 RRH-BR04C (RFV010-DZA)	B5/B13 RRH-BR04C (RFV01U-D2A)	B5/B13 RRH-BR04C (RFV01U-D2A)
10134518 ATOLL_API 0004 280 0649225 JAHH-65B-R3B ANDREW 83.6 0 0 86.6 201.81 85/813 RRH-BROAC (REVOLU-D2A) 4.4	Number of Tx, Rx Lines	4,4	4,4	4,4
10134518 ATOLL_API ATOLL_API ATOLL_API ANDREW 83.6 0 2 86.6 2 86.6 86.6 86.6 201.81 Samsung BS/B13 RRH-BROAC (RFVO1U-D2A) 4.4	Position			
ATOLL_API 0004 2020 0649225 JAHH-65B-R3B ANDREW 83.6 0 2 2 86.6 201.81 Samsung BS/B13 RRH-BR04C (RFV01U-D2A) 4.4	Transmitter Id	10134518	10134519	10134520
0004 280 064925 JAHH-65B-R3B ANDREW 83.6 0 2 86.6 201.81 B5/B13 RRH-BROAC (RFVO1U-DZA) 4.4	Source	ATOLL_API	ATOLL_API	ATOLL_API
280 0649225 JAHH-658-R3B ANDREW 83.6 0 2 86.6 20181 Samsung BS/B13 RRH-BR04C (RFV01U-D2A) 4.4		0004		
064925 JAHH-658-R3B ANDREW 83.6 0 0 0 86.6 201.81 85/813 RRH-BROAC (REVOIU-D2A) 4.4		280		
JAHH-658-R3B ANDREW 83.6 0 2 86.6 201.81 Samsung 85/813 RRH-BR04C (RFV01U-D2A) 4,4 10134625		0649225		
ANDREW 83.6 0 2 2 86.6 201.81 Samsung B5/B13 RRH-BR04C (RFV01U-DZA) 4,4		IAHH-658-838		
ANDREW 83.6 0 0 2 2 86.6 201.81 Samsung B5/B13 RRH-BR04C (RFV01U-D2A) 4,4				
83.6 0 0 2 86.6 201.81 Samsung B5/B13 RRH-BR04C (RFV01U-D2A) 4,4		ANDREW		
Samsung B5/B13 RRH-BR04C (RFV01U-D2A) 4,4		M11200		
Samsung B5/B13 RRH-BR04C (RFV01U-D2A) 4,4		2		
Samsung B5/B13 RRH-BR04C (RFV01U-D2A) 4,4) ((
Samsung B5/B13 RRH-BR04C (RFV01U-D2A) 4,4 10134625		, , , , , , , , , , , , , , , , , , ,		
Samsung B5/B13 RRH-BR04C (RFV01U-D2A) 4,4		0.00		
Samsung B5/B13 RRH-BR04C (RFV01U-D2A) 4,4 10134625		201.81		
Samsung B5/B13 RRH-BR04C (RFV01U-D2A) 4,4 10134625				
Samsung B5/B13 RRH-BR04C (RFV01U-D2A) 4,4 10134625				
Samsung B5/B13 RRH-BR04C (RFV01U-D2A) 4,4 10134625				
B5/B13 RRH-BR04C (RFV01U-D2.A) 4,4 10134625		Samsung		
10134625		B5/B13 RRH-BR04C (RFV01U-D2A)		
10134625		4,4		
CZOASTOL		707400		
		\$795CTOT*		

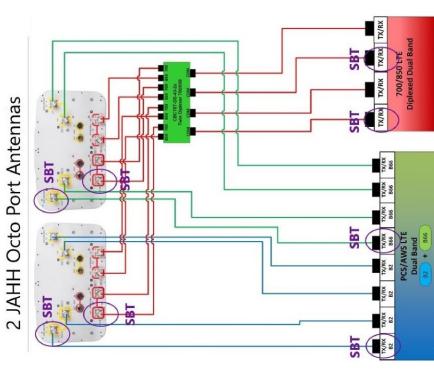
1900 MHz LTE		0000			98TS	
Sector	6	02	03	9	05	03
Azimuth	10	120	190	10	120	190
Cell / ENode B ID	064225	064225	064225	064225	064225	064225
Antenna Model	JAHH-65B-R3B	JAHH-45B-R3B	JAHH-45B-R3B	JAHH-65B-R3B	JAHH-45B-R3B	JAHH-45B-R3B
Antenna Make	ANDREW	COMMSCOPE	COMMSCOPE	ANDREW	COMMSCOPE	COMMSCOPE
Antenna Centerline(Ft)	83.6	83.6	83.6	83.6	83.6	83.6
Mechanical Down-Tilt(Deg.)	0	0	0	0	0	0
Electrical Down-Tilt	2	0	0	2	0	0
Tip Height	86,6	86,6	86.6	86,6	86.6	86.6
Regulatory Power	210.89	309,57	309,57	278.01	408.09	408.09
Total ERP (W)						
TMA Make						
TMA Model						
RRU Make	Nokia	Nokia	ejyoN	Samsling	Samsung	Samsung
RRU Model	UHFA B25 RRH 4x30	UHFA B25 RRH 4x30	UHFA B25 RRH 4x30	REVOIU-DIA)	B2/B66A RRH	B2/B66A RRH-BR049 (RFV01U-D1A)
Number of Tx. Bx Lines	2.4	2.4	2.4	4.4	2.4	4.4
Position	i	i	i			
Transmitter Id	1955914	1955916	1949602	10134463	10134467	10134471
Source	ATOLL_API	ATOLL_API	ATOLL_API	ATOLL_API	ATOLL_API	ATOLL_API
	5			2		
	000			Cac		
	280			280		
	064225			064225		
	JAHH-65B-R3B			JAHH-65B-R3B		
	ANDREW			ANDREW		
	83.6			83.6		
	0			0		
	86.5			86.6		
	204.62			269.75		
				Samsting		
	LINEA POE BBH 4×30			POZBEGA DBH-BB040 (BEVOTIL-D1A)		
	2 A			DZ/DOOA KKII-DKO49 (KI VOTO-DIA)		
	4,7			1,1		
	1954604			10134475		
	POSTOTA NEOTOTA			IN LICEN		
	ALOLL_API			ATOLL_API		

Off Off Off 10 02 04 10 100 100 10 100 100 10 064225 064225 104He5B-R3B JAHH+5B-R3B JAHH+65B-R3B ANDREW COMMSCOPE COMMSCOPE 83.6 83.6 83.6 86.6 86.6 86.6 86.6 86.6 86.6 86.6 86.6 86.6 86.6 86.6 86.6 152.7 23.781 136.09 195.605 135.731 136.436 195.605 136.09 136.09 195.605 136.09 136.09 195.73 136.436 136.09 195.80 136.09 136.09 195.80 136.09 136.09 195.80 136.09 136.09 10.04 136.09 136.00 10.04 136.00 136.00 10.04 136.00 10.04	2100 MHz LTE	;	0000	;		92LS	
190 190	Sector	5	02	03	9	02	03
Defa255 Defa255 Defa255 Defa255 Defa255 Defa255 Defa255 Defa255 Defa255 Defa255 Defa255 Defa255 Defa256 Defa255 Defa255 Defa255 Defa255 Defa256 Defa256 Defa256 Defa255 Defa256 Defa256 Defa256 Defa256 Defa256 Defa256 Defa256 Defa256 Defa256 Defa256 Defa256 Defa256 Defa256	Azimuth	10	120	190	10	120	190
ANDREW COMMSCOPE COMMSCOPE ANDREW B3.6 B3.6 B3.6 B3.6 B3.6 B3.6 B3.6 B3.6	Cell / ENode B ID	064225	064225	064225	064225	064225	064225
ANDREW COMMISCOPE COMMISCOPE ANDREW 83.6 83.6 83.6 83.6 0 0 0 0 0 86.6 86.6 86.6 86.6 86.6 152.7 237.81 237.81 136.09 136.09 Nokia Nokia Nokia 86.6 86.6 86.6 86.6 195460S 1955731 1018 B66A RRH 4x45 UHIE B66A RRH 4x45 10134464 4.4 4.4 ATOLL API ATOLL API ATOLL API ATOLL API ATOLL API ATOLL API 0 0 0 0.4 2.0 0.4 2.0 ANDREW 83.6 0.0	Antenna Model	JAHH-65B-R3B	JAHH-45B-R3B	JAHH-45B-R3B	JAHH-65B-R3B	JAHH-45B-R3B	ЈАНН-45В-R3В
83.6 83.6 83.6 83.6 0 0 0 0 152.7 237.81 86.6 86.6 86.6 152.7 237.81 136.09 86.6 86.6 152.7 237.81 136.09 86.6 86.6 86.6 152.7 237.81 136.09 136.00 136.00 136.00 136.00 136.00 136.00 136.00 136.00 136.00 136.00 136.00 136.00 136.00 136.00 136.00 </td <td>Antenna Make</td> <td>ANDREW</td> <td>COMMSCOPE</td> <td>COMMSCOPE</td> <td>ANDREW</td> <td>COMMSCOPE</td> <td>COMMSCOPE</td>	Antenna Make	ANDREW	COMMSCOPE	COMMSCOPE	ANDREW	COMMSCOPE	COMMSCOPE
Nokia	Antenna Centerline(Ft)	83.6	83.6	83.6	83.6	83.6	83.6
Nokia Nokia Nokia Nokia Samsung	Mechanical Down-Tilt(Deg.)	0	0	0	0	0	0
152.7 237.81 286.6 152.7 237.81 237.81 136.09 Nokia	Electrical Down-Tilt	2	0	0	2	0	0
152.7 237.81 237.81 136.09 Nokia Nokia UHIE B66A RRH 4x45 2.4 1954605 1955731 UHIE B66A RRH 4x45 OHE B66A RRH 4x45 2.4 ATOLL_API ATOLL_API ATOLL_API ANDREW ANDREW ANDREW 83.6 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Tip Height	86,6	86.6	86,6	86,6	86.6	9.98
NOKia NOKia NOKia NOKia Sansung Sa	Regulatory Power	152.7	237.81	237.81	136.09	211.95	211.95
Nokia Nokia Nokia Nokia Nokia Nokia Samsung UHIE B66A RRH 4x45 UHIE B66A RRH 4x45 UHIE B66A RRH 4x45 B2/B66A RRH 4x45 4,4 1954605 1355733 1364376 10134464 ATOLL_API ATOLL_API ATOLL_API ATOLL_API 0 0 280 064225 1AHH-65B-R3B ANDREW 83.6 0 0 0 0 0 1 86.6 86.6 86.6 148.33 132.2 132.2 UHIE B66A RRH 4x45 82,666 132.2 1013446 1955732 1013476 1013476	Total ERP (W)						
Nokia Nokia Samsung UHIE B66A RRH 4x45 UHIE B66A RRH 4x45 B2/4 4,4 2,4 2,4 4,4 4,4 1954605 1955731 1964376 ATOLL_API ATOLL_API ATOLL_API ATOLL_API ATOLL_API 04 20 04 280 064225 JAHH-65B-R3B ATOLL_API ATOLL_API ANDREW 83.6 194H-65B-R3B 83.6 ANDREW 83.6 86.6 86.6 148.33 132.2 132.2 UHIE B66A RRH 4x45 4,4 4,4 1955732 10134476 1013476	TMA Make						
Nokia Nokia Samsung 2.4 John Boga RRH 4x45 UHIE B66A RRH 4x45 B2/866A RRH 4x45 4.4 2.4 1955731 1964376 1013464 ATOLL_API ATOLL_API ATOLL_API 04 ATOLL_API ATOLL_API 04 04 280 064225 JAHH-65B-R3B ANDREW 83.6 0 044225 JAHH-65B-R3B ANDREW 83.6 0 0 1 86.6 1 86.6 148.33 132.2 132.2 UHIE B66A RRH 4x45 82,4 4,4 1955732 10134476 10134476	TMA Model						
UHIE B66A RRH 4x45 UHIE B66A RRH 4x45 UHIE B66A RRH 4x45 B2/866A RRH 4x45 B2/866A RRH 4R45 B2/866A RRH 4R46 4-4 R/40 LD-D1A 2.4 195405 1955731 1964376 1013464 4-4 4-4 1013464 4-4 4-4 1013464 4-4 1013464 1013464 4-4 4-4 1013464 4-4 1013464 4-4 1013464 4-4 1013464 4-4 1013464 4-4 1013464 4-4 1013476 10134476 1013476 1013476 1013476 1013476 10134476 10134476 10134476 10134476 10134476 10134476 10134476 10134476 10134476 10134446 10134446 10134446 10134446	RRU Make	Nokia	Nokia	Nokia	Samsung	Samsung	Samsund
2.4 2.4 4.4 1954605 1955731 1964376 1013464 ATOLL_API ATOLL_API ATOLL_API ATOLL_API ATOLL_API O4	RRU Model	UHIE B66A RRH 4x45	UHIE B66A RRH 4x45	UHIE B66A RRH 4x45	B2/B66A RRH-BR049 (RFV01U-D1A)	B2/B66A RRH	B2/B66A RRH-BR049 (F
1954605 1955731 1964376 1964376 1964376 1964376 1964376 1964376 1964225 196425 19642	Number of Tx, Rx Lines	2,4	2,4	2.4	4,4		4,4
1954605 1953731 1964376 1954605 1955731 1964376 1964376 1964376 1964376 1964376 1964376 1955732 1955	Position						
ATOLL_API ATOLL_API ATOLL_API 04 280 064225 JAHH-65B-R3B ANDREW 83.0 0 1 86.6 148.33 Nokia UHIE B66A RRH 4x45 2.4	Transmitter Id	1954605	1955731	1964376	10134464	10134468	10134472
	Source	ATOLL_API	ATOLL_API	ATOLL_API	ATOLL_API	ATOLL_API	ATOLL_API
		04			04		
		280			280		
		064225			064225		
		JAHH-658-R3B			IAHH-65B-R3B		
		ANDREW			ANDREW		
		ANDREW			ANDREW		
		83.6			83.6		
		0			0		
		1			1		
		86.6			86.6		
		148.33			132.2		
		Nokia			Samsung		
		UHIE B66A RRH 4x45			B2/B66A RRH-BR049 (RFV01U-D1A)		
		2,4			4,4		
		1955732			10134476		
ATOLL API		ATOLL API			ATOLL API		

19				
XXDWMWA12.5-65 XXDWMW	Sector	19	20	7
XXDWM412.5-65 XXDWM412.5-55 XX	Azimuth	10	110	190
Sameung Same	Cell / ENode B ID	064225	064225	064225
Samsung CBRS RRH - RT401-48A Samsung CBRS RRH - RT401-48A A1013447 A1011-API CBRS RRH - RT401-48A	Antenna Model	XXDWMM-12.5-65	XXDWMM-12.5-65	XXDWMM-12.5-65
816 816 816 816 816 816 816 816 816 816	Antenna Make	Samsung	Samsung	Samsung
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Antenna Centerline(Ft)	81.6	81.6	81.6
Samsung CBRS RRH - RT4401-48A - 1013467 CBRS RRH - RT4401-48A - 4.4 - 1013467 - 101	Mechanical Down-Tilt(Deg.)	0	0	0
8.08 8.08 8.08 8.08 8.08 8.08 8.08 8.03 8.08 8.08	Electrical Down-Tilt	ω	ω	ω
Samsung CBRS RNH - RT4401-48A A1013464B A1011_API A2 28 CBRS RNH - RT401-48P A1011_API A1013467 A1011 API A4 A4 A1011 API A1013467 A1011 API B16 B16 B2 B2 B3 B3 B16 B16 B16 B16 B16 B16 B16 B17	Tip Height	82	82	82
CBRS RRH - RT4401-48A 4,4 4,4 4,4 10134642 22 28 064225 XXDWMNH-12.5-65 Samsung 8 8 8 8 8 8 8 0 8 0 8 10 CBRS RRH - RT4401-48A 4,4 4,4 4,4 4,4 ATOLL_API CBRS RRH - RT4401-48A 1013467 ATOLL API ATOLL_API AT	Regulatory Power	8.08	8.08	8.08
Samsung CBRS RRH - R74401-48A 4.4 10134647 4.4 1013464 ATOLL_API A	Total ERP (W)			
Samsung CBRS RRH - FT7401-48A 4,4 4,4 4,4 10134647 10134648 4,4 4101_API AT01L_API	TMA Make			
Samsung CBRS RRH - FT4401-48A 4.4 10134647 ATOLL_API ATOLL_API ATOLL_API ATOLL_API ATOLL_API B1.6 0 8.8 8.08 Samsung CBRS RRH - FT4401-48A 4.4 ATOLL_API ATOLL_	TMA Model			
CERS RRH - R74401-48A 4,4 101346A7 ATOLL_API 22 22 22 22 ATOLL_API ATOLL_API ATOLL_API ATOLL_API ATOLL_API Samsung 8 8 8 8 8 8 8 8 8 8 8 8 8 9 8 9 8 10 CERS RRH - R74401-48A 4,4 ATOLL_API ATOLL_	RBU Make		Samsund	Samsund
10134647 10134648 ATOLL_API ATO	RRU Model		CBRS RRH - RT4401-48A	CBRS RRH - RT4401-48A
10134647 10134648 ATOLL_API 22 280 64225 XXDWMM-12.5-65 Samsung 81,6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Number of Tx, Rx Lines		4.4	4.4
10134648 ATOLL_API ATOLL_API 22 280 064225 XXDWMW-12.5-65 Samsung 8 8 8 8 8 82 8.08 Samsung CBRS RRH - RT4401-48A 4,4 ATOLL API ATOLL API	Position			
### ##################################	Transmitter Id	10134647	10134648	10134649
22 064025 XXDWMIN-12.5-65 Samsung 81.6 0 8 8 8 2 8.08 Samsung CBRS RRH - RT4401-48A 4,4	Source	ATOLL_API	ATOLL_API	ATOLL_API
280 064225 XXDWMM-12.5-65 Samsung 81.6 0 8 8 8 8 8 8 8 8 8 8 8 8 8 4 4 4 4 4 ATOL API		22		
\$\text{064225}\$ \times \text{\$\text{XXDWMMN-12.5-65}}\$ \text{\$\text{Samsung}\$}\$ \text{\$\text{81.6}}\$ \text{\$\text{82}\$}\$ \text{\$\text{82}\$}\$ \text{\$\text{82}\$}\$ \text{\$\text{8.08}\$}\$ \text{\$\text{8.08}\$}\$ \text{\$\text{Samsung}\$}\$ \text{\$\text{CBRS RRI+ RT4401-48A}\$}\$ \text{\$\text{4,4}\$}\$ \text{\$\text{4.4}\$}\$ \text{\$\text{A70L API}\$}\$		280		
Samsung 81.6 0 8 8 8 8 8 82 8.08 CBRS RRH - RT4401.48A 4,4 A101.34667 ATOLL API		064225		
Samsung 81.6 0 8 82 8 82 8.08 Samsung CBRS RRH - RT4401-48A 4,4 10134667 ATOLL API		XXDWMM-12.5-65		
Samsung 81.6 0 8 82 8.08 8.08 CBRS RRH - RT4401-48A 4,4 ATOLL API				
Samsung CBRS RRH - RT4401.48A 4,4 ATOLL API		Sams		
Samsung CBRS RRH - RT4401-48A 4,4 AT01.48P		200		
8 8 8 8 8 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9		0.10		
8 82 8.08 8.08 Samsung CBRS RRH - RT4401.48A 4,4 10134667		20 (
8.08 Samsung CBRS RRH - RT4401-48A 4,4 A701L API		α (
8.08 Samsung CBRS RRI- RT4401.48A 4,4 10134667 ATOLL API		78		
Samsung CBRS RRH - RT4401-48A 4,4 10134667 ATOLL API		8.08		
Samsung CBRS RRH - RT4401-48A 4,4 10134667 ATOLL API				
Samsung CBRS RRI - RT4401.48A 4,4 10134667 ATOLL API				
Samsung CBRS RRH - RT4401-48A 4,4 10134667 ATOLL API				
CBRS RRH - RT4401-48A 4,4 10134667 ATOLL API		Samsung		
1013467 ATOLL API		CBRS RRH - RT4401-48A		
10134667 ATOLL API		4.4		
10134667 ATOLL API				
ATOLL API		10134667		
		ATOLL API		

Cell (Nexion Broth	Sector Sector CoOO COO	nt-sub6		8108	
06-8777A NTG-407-77A Samsung Samsung Samsung Samsung Samsung Samsung ATOLL_API Adv 77A Adv 77A Samsung Samsung ATOLL_API ATOLL_AP	Call Relocation Coli 270 173 174 175 1		1000	0000	0003
MTG407-77A MTG407-77A Sansung	Coli Febre 8 D	Ath		126	300
Sameung Same	Action Make Michael Micha	Therefore And Annual Control of the Annual C		OZT	Table
Sameung Sameung Sameung Sameung BS C BS	Actional Model Actional Model Actional Model Actional Model Actional Model Actional Model Electrical Count. Till (1992) Total stage (1992) Total s	Cell Enode B ID	0649225	0649225	0649225
Samsung	Automate Same Sam	Antenna Model	MT6407-77A	MT6407-77A	MT6407-77A
8	Mechanical Power Tittlices 65	Antenna Make	Samsing	Dallsmey	Sameling
Samsung MTG407-77A A AT 71A Samsung MTG407-77A A AT 71A Samsung Samsung ATOLL_API Ood4 Samsung B 6 B 6 B 6.5 10134849 ATOLL_API ATOLL_API Samsung MTG407-77A Samsung B 6 B 6 B 6 B 6 B 6 B 6 B 6 B	Mechanistry	A state of the sta	, n		200
Samsung M1640777A M1640777A M1640777A M1640777A M1640777A M1640777A Samsung M1640777A Samsung B B B B B B B B B B B B B	Mechanic C	Amerine(Fr)	CO.	83	60
86.5 86.5 1247/92 1247/92 1247/92 1247/92 10134849	Fedicial Down-Till	Mechanical Down-Tilk(Deg.)	0	0	0
Samsung Samsung MT6407-77A MT6407-77	Regulatory Periodic Total ERP (W) Tota	Electrical Down-Tilt	٥	ဖ	Q
124792 1	Total top Power Total top	Tip Height	86.5	86.5	86.5
Sansung MT6407-77A 4,4 4,4 4,4 4,4 10134848 A1011_API A1011	Total Etek (w) Total Etek (w)	Regulatory Power	1247.92	1247.92	1247.92
Samsung MIGGO7-77A 4,4 4,4 10134848 ATOLL_API ADOLG 200 200 200 200 200 200 200 20	TMA Make	Total ERP (W)			
MTG407-77A MTG	TRM Model	TMA Make			
MTG407-77A MTG	RELL Make RELL	TMA Model			
MTG407-77A 4,4 4,4 4,4 4,4 10134848 ATOLL_API OGOG4 ATOLL_API OGOG4 ATOLL_API A10134849	Number of TA, Park Number	BBII Make	Samsling	Samsling	Sameling
10134848 10134849 ATOLL_API ATOLL_A	Number of Tr, Re Lines	apom Hada	WINCOUNTY MATERIAL	MTEAN 77A	MTEAOTTA
10134848 10134849 ATOLL_API ATOLL_API 0004 0049225 WT640-77A Samsung 86.5 1247.92 Samsung MT640-77A 4.4 4.4 ATOLL_API	Transmitter id Transmitter id 10134849 Source 0004 0004 0005 0004 0005 0004 0005 0004 0005 0004 0005 0004 0005 0004 0006 0006 0006 0006 0006 0006 0006 0006 0006 0006 0006 0006 0006 0007 0	Number of Tr. By Line		Z/2-/040III	W. Cotolle
10134848	Transmittered 10134848 10134849 Source 0004 ATOLL_API	Control of the Contro		t.	Ť
ATOLL API 0004	ATOLL_API Source 280 0004 280 0649225 MT6407-77A Samsung 8 6.5 124792 MT6407-77A 1013993 ATOLL_API ATOLL_API	Tronscript Indicate T	10124840	10134840	10124850
ATOLL_API O049225 MT6407-77A Samsung 86.5 86.5 1247.92 MT6407-77A 4.4 ATOLL_API	Source A101L_API		0+0+0+0+0	TOTO+0+3	10174670
2000 200 0649225 MT6407-77A Samsung 6 6 8 6 5 8 6 5 1247.92 MT4407-77A 4 4 10134913 A101L-API		Source	ATOLL API	ATOLL API	ATOLL API
280 0649255 WT6407-77A Samsung 85 86.5 186.5 1247/92 Samsung WT6407-77A 44 44 470L_API			0004		
0649225 MT6407-77A Samsung 85 0 0 6 86.5 1247.92 MT6407-77A 4.4 10134913 ATOUL,API			280		
Samsung 85 0 6 86.5 1247.92 Samsung MT6407-77A 4,4 410134913 ATOLL_API			0649225		
Samsung 85 0 6 86.5 1247.92 MT6407-77A 4.4 10134913 ATOLL_API			MT6407-77A		
Samsung 85 0 0 6 86.5 1247.92 MT6407-7A 41.4 10134913 ATOLL_API					
86.5 0 0 6 86.5 1247.92 MT6407-77A 4.4 10134913 ATOLL_API			Samsing		
0 0 6 6 8 6 5 8 6 5 1247.92 Samsung MT6407-77A 4.4 4.1013491.3 ATOLL_API					
86.5 1247.92 Samsung MT6407-77A 4,4 10134913 ATOLL_API			C		
86.5 1247.92 Samsung MT6407-77A 4.4 10134913 ATOLL_API			, (C		
1247.92 Samsung MT6407-77A 4.4 10134913 ATOLL_API			86.5		
Samsung MT6407-77A 4,4 10134913 ATOLL_API			1247.92		
Samsung MT6407-77A 4,4 10134913 ATOLL_API					
Samsung MT6407-77A 4.4 10134913 ATOLL_API					
Samsung MT6407-77A 4.4 10134913 ATOLL_API					
MT6407-77A 4,4 10134913 ATOLL_API			Samsung		
4,4 10134913 ATOLL_API			MT6407-77A		
10134913 ATOLL_API			4,4		
10134913 ATOLL_API					
ATOLL_API			10134913		
	ie Comments		ATOLL_API		


Callsigns Per Antenna


Power 700 850 1900 2100 28 GHz 31 GHz	Power	Tilt	leight AGL

Callsigns

Approved for Insvc	Yes	Yes	Yes	Yes	No	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes
Action	retained	added	added	added	added	retained	retained							
ii Status	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active
POPs/Sq Mi Status	372.22	372,22	372.22	372.22	372.22	372.22	372.22	372.22	372.22	372.22	372.22	372.22	372.22	372.22
Threshold (W)	1000	500	1640	1640		1640	1640							
Regulatory Power	111.88	415.91	408.09	408.09	8.08	211.95	211.95							
Freq Range 4	000-000	890.000-	000-000	000-000	UNLICENSED-UNLICE	000-000	000'-000'	000-000	000-000	.000000	.000-000	.000-000	.000-000	.000000
Freq Range 3	000-000	845,000-	000-000	000-000	UNLICENSED-UNLICE UNLICENSED-UNLICE	000-000	000'-000'	000-000	.000-000	.000000	.000000	.000-000	.000-000	.000000
Freq Range 2	776.000-	869,000-	1975.000 1982.500	1970,000	UNLICENSED-UNLICE	2110.000	2120.000-	29100.000-29250.00(31075.000-31225.000	31225,000.31300.000	27700.000-27925.000	28150.000-28350.000	.000-000	.000-000	.000-000
Freq Range 1	746.000- 757.000	824.000-	1895.000- 1902.500	1890,000- 1895,000	UNLICENSED-UNLICE	1710.000	1720.000	29100,000-29250,000	31000.000-31075.000	27500.000-27600.001	27925.000-28050.000	37600.000-37700.000	38500.000-38500.00	37700,000-37800,000
Total MHZ	22.000	25.000	15.000	10.000	UNLICENSE	20.000	20.000	300.000	150.000	325.000	325.000	100.000	100.000	100.000
Wholly Owned	Yes	Yes	Yes	Yes	UNLICENSE UNLICENSE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Licensee	Celico Partnership	Celico Partnership	Cellco Partnership	Cellco Partnership	UNLICENSE	Celico Partnership	Cellco Partnership	Cellco Partnership	Cellco Partnership	Cellco Partnership	Cellco Partnership	Straight Path um, LLC	Straight Path um, LLC	Straight Path um,
County	Tolland	Tolland	Tolland	Tolland	Tolland	Tolland	Tolland	Tolland	Tolland	Tolland	Tolland	Tolland	Tolland	Tolland
State	CT	כל	cı	CT	CT	b	CT	ст	cī	CT	СТ	CI	CT	تا تا
Block	U	٩	v	F	UNLICENSE UNLICENSE	٩	Ø	٨	B	5	2	Ę	M10	M S
Market Number	REA001	СМА032	BTA184	BTA184	UNLICENSE	СМА032	BEA010	BTA184	BTA184	BTA184	BTA184	PEA001	PEA001	PEA001
Radio Code	WU	72	CW	CW	3.5 GHz	AW	AW	9	9	3	n	3	n	a
Market	Northeast	Hartford- New Britain- Bristol, CT	Hartford, CT	Hartford, CT	CBRS_CALL UNLICENSE 3.5 GHZ	Hartford- New Britain- Bristol, CT	New York-No. New Jer Long Island, NY-NJ- CT-PA- MA-	Hartford, CT	Hartford, CT	Hartford, CT	Hartford, CT	New York, NY	New York, NY	New York, NY
Callsign	WQJQ689	KNKA404	WPOJ730	KNLH251	CBRS_CALL	WQGB276	WQGA906	WPOH943	WPLM398	WRBA712	WRBA713	WRHD609	WRHD610	WRHD611

Yes	Yes	Yes	Yes	Yes	Yes	Yes	o N
Active	Active	Active	Active	Active	Active	Active	Active
372.22	372.22	372.22	372.22	372.22	372.22	372.22	372.22
.000-000	.000-000	.000000	.000000	.000000	.000000	000-000	.000000
.000-000	.000-000	.000000	.000000	.000000	.000000	.000000	000-000.
.000-000	.000000	.000000	.000000	.000000	.000000	.000000	
37800,000-37900,00	37900,000-38000,001	38000.000-38100.00	38100,000-38200,000	38200,000-38300,00	38300,000-38400.00	38400,000-38500,00	38600,000-38700.00
100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Straight Path um, LLC	Straight Path um, LLC	Straight Path um,	Straight Path um,	Straight Path um, LLC	Straight Path um,	Straight Path um,	Straight Path um,
Tolland	Tolland	Tolland	Tolland	Tolland	Tolland	Tolland	Tolland
5	CI	CI	CI	CT	CT	CI	CI
M3	4 4	MS	M6	M7	M8	6W	Ξ
PEA001	PEA001	PEA001	PEA001	PEA001	PEA001	PEA001	PEA001
n	n	8	n	n	n	n	n
New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY
WRHD612	WRHD613	WRHD614	WRHD615	WRHD616	WRHD617	WRHD618	WRHD619

Maser Consulting Connecticut 2000 Midlantic Drive Suite 100 Mt. Laurel, NJ 08054 856.797.0412 peter.albano@colliersengineering.com

Antenna Mount Analysis Report with Hardware Upgrades and PMI Requirements

Mount ReAnalysis-VZW

SMART Tool Project #: 10110801 Maser Consulting Connecticut Project #: 21781092A (Rev. 3)

November 29, 2021

<u>Site Information</u> Site ID: 468927-VZW / STORRS CT

Site Name: STORRS CT Carrier Name: Verizon Wireless

Address: 82 North Eagleville Rd. UConn Campus

Storrs Mansfield, Connecticut 06268

Tolland County

Latitude: 41.813889° Longitude: -72.259444°

<u>Structure Information</u> Tower Type: 292-Ft Guyed

Mount Type: 14.42-FT Platform

FUZE ID # 16499984

Analysis Results

Platform: 79.6% Pass*

*Results valid after hardware upgrades noted in the PMI Requirements are installed.

***Contractor PMI Requirements:

Included at the end of this MA report

Available & Submitted via portal at https://pmi.vzwsmart.com

Contractor - Please Review Specific Site PMI Requirements Upon Award

Requirements may also be Noted on A & E drawings

For additional questions and support, please reach out to:

pmisupport@colliersengineering.com

Report Prepared By: Nathan LaPorte

November 29, 2021 Site ID: 468927-VZW / STORRS CT Page | 2

Executive Summary:

The objective of this report is to determine the capacity of the antenna support mount at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards. Any modification listed under Sources of Information was assumed completed and was included in this analysis.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

Sources of Information:

Document Type	Remarks
Radio Frequency Data Sheet (RFDS)	Verizon RFDS Site ID: 324933, dated April 7, 2021
Mount Mapping Report	Hudson Design Group, LLC, Site ID: 468927, dated June 22, 2021
Previous Mount Analysis	Maser Consulting Connecticut Project #: 21781092A, dated September 8, 2021
Construction Drawings	Centek Engineering Job #: 21007.33, dated October 4, 2021

Analysis Criteria:

Cadaaaaa	l Standards:	ANSI/TIA-222-I	
Codes and	i Standards.	ANOI/ HA-ZZZ-I	П

Wind Parameters:	Basic Wind Speed (Ultimate 3-sec. Gust), Vult:	119 mph
	Ice Wind Speed (3-sec. Gust):	50 mph

Ice Wind Speed (3-sec. Gust):	50 mph
Design Ice Thickness:	1.50 in
Risk Category:	II
Exposure Category:	С
Topographic Category:	1
Topographic Feature Considered:	N/A
Topographic Method:	N/A
Ground Elevation Factor, Ke:	0.975

Seismic Parameters:	S _S :	0.19 g
---------------------	------------------	--------

 S_1 : 0.06 g

Maintenance Parameters: Wind Speed (3-sec. Gust): 30 mph

Maintenance Live Load, Lv: 250 lbs. Maintenance Live Load, Lm: 500 lbs.

Analysis Software: RISA-3D (V17)

Final Loading Configuration:

The following equipment has been considered for the analysis of the mount:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status						
	85.00	4	Samsung	MT6407-77A							
	81.60	4									
		4	CommScope	CBC78T-DS-43-2X	Added						
	83.60	6	Samsung	B2/B66A RRH-BR049							
84.00		83.60	83.60	83.60	6	Samsung	B5/B13 RRH-BR04C				
					4	CommScope	JAHH-65B-R3B				
		3	Antel	BXA-80063/4	Dotoined						
		4	CommScope	JAHH-45B-R3B	Retained						
		2	Raycap	RHSDC-66627-PF-48*]						

^{*} Equipment to be flush mounted directly to the Guyed. They are not mounted on Platform mounts and are not included in this mount analysis.

The recent mount mapping reported existing OVP units. It is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required unless replacing an existing OVP.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

Standard Conditions:

- All engineering services are performed on the basis that the information provided to Maser Consulting Connecticut and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation. Any deviation from the loading locations specified in this report shall be communicated to Maser Consulting Connecticut to verify deviation will not adversely impact the analysis.
- 2. Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

3. For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped in accordance with the NSTD-446 Standard, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

November 29, 2021 Site ID: 468927-VZW / STORRS CT Page | 4

- 4. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.
- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Maser Consulting Connecticut is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.
- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

Channel, Solid Round, Angle, Plate
 HSS (Rectangular)
 Pipe
 Threaded Rod
 Bolts

ASTM A36 (Gr. 36)
ASTM 500 (Gr. B-46)
ASTM A53 (Gr. B-35)
F1554 (Gr. 36)
ASTM A325

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Maser Consulting Connecticut.

Analysis Results:

Component	Utilization %	Pass/Fail		
Pipe Bracing	33.5%	Pass		
Antenna Pipe	79.6%	Pass		
Cross Angle	59.7%	Pass		
Face Bracing	9.6%	Pass		
Standoff Bracing	35.9%	Pass		
Standoff Arm	53.3%	Pass		
Face Angle	74.0%	Pass		
Corner Angle	28.9%	Pass		
Mount Connection	17.3 %	Pass		

Recommendation:

The existing mount will be **SUFFICIENT** for the final loading configuration upon the completion of the recommendations listed in the Special Instructions section of the below referenced PMI document.

ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other, if required. Separate review fees will apply.

November 29, 2021 Site ID: 468927-VZW / STORRS CT Page | 5

Attachments:

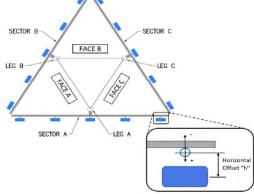
- 1. Mount Photos
- 2. Mount Mapping Report (for reference only)
- 3. Analysis Calculations
- 4. Contractor Required Post Installation Inspection (PMI) Report Deliverables
- 5. Antenna Placement Diagrams
- 6. TIA Adoption and Wind Speed Usage Letter

Mounting Locations

[Units are inches and degrees]

Photos of

antennas


	Antenna Mount Mapping Form (PATEN		Updated on 3-31	FCC #
Tower Owner:	UCONN	Mapping Date:	6/22/	2021
Site Name:	STORRS CT	Tower Type:	Self S	upport
Site Number or ID:	468927	Tower Height (Ft.):		
Mapping Contractor:	HUDSON DESIGN GROUP, LLC.	Mount Elevation (Ft.):	83.	.75

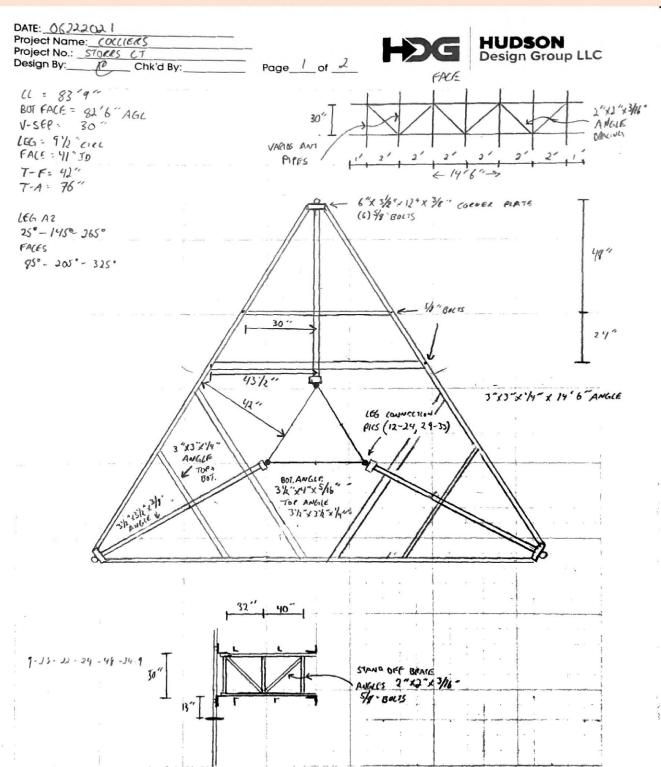
Enter antenna model. If not labeled, enter "Unknown".

This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication, modification or disclosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA and other safety requirements that may apply. TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements.

Please insert the sketches of the antenna mount from the "Sketches" tab with dimensions and members here.

Mount Pipe Configuration and Geometries [Unit = Inches]										
Sector / Position	Mount Pipe Size & Length	Vertical Offset Dimension "u"	Horizontal Offset "C1, C2, C3, etc."	Sector / Position	Mount Pipe Size & Length	Vertical Offset Dimension "u"	Horizontal Offset "C1, C2, C3, etc."			
A1	2" STD. PIPE MAST X 96" LONG	58.00	0.00	C1	2" STD. PIPE MAST X 96" LONG	58.00	0.00			
A2	2" STD. PIPE MAST X 72" LONG	43.00	11.00	C2	2" STD. PIPE MAST X 72" LONG	43.00	11.00			
A3	2" STD. PIPE MAST X 72" LONG	43.00	35.00	C3	2" STD. PIPE MAST X 72" LONG	43.00	35.00			
A4	2" STD. PIPE MAST X 96" LONG	58.00	59.00	C4	2" STD. PIPE MAST X 96" LONG	58.00	59.00			
A5	2" STD. PIPE MAST X 72" LONG	43.00	83.00	C5	2" STD. PIPE MAST X 96" LONG	58.00	83.00			
A6	2" STD. PIPE MAST X 96" LONG	58.00	131.00	C6	2" STD. PIPE MAST X 96" LONG	58.00	107.00			
B1	2" STD. PIPE MAST X 72" LONG	43.00	155.00	D1	2" STD. PIPE MAST X 72" LONG	43.00	131.00			
B2	2" STD. PIPE MAST X 96" LONG	58.00	0.00	D2	2" STD. PIPE MAST X 72" LONG	43.00	155.00			
B3	2" STD. PIPE MAST X 72" LONG	43.00	11.00	D3						
B4	2" STD. PIPE MAST X 72" LONG	43.00	35.00	D4						
B5	2" STD. PIPE MAST X 96" LONG	58.00	131.00	D5						
B6	2" STD. PIPE MAST X 72" LONG	43.00	155.00	D6						
	Distance between bottom r	ail and mou	int CL eleva	tion (dim d	d). Unit is inches. See 'Mount Elev Ref' tab i	for details. :	15.00			
	Distance from	top of bott	om support	rail to low	est tip of ant./eqpt. of Carrier above. (N/A	if > 10 ft.):				
	Distance from t	op of botto	m support i	rail to high	est tip of ant./eqpt. of Carrier below. (N/A	if > 10 ft.):				
		Please ent	er additiona	al infomat	ion or comments below.					
Tower Face Width at Mount Elev. (ft.): 3,5 Tower Leg Size or Pole Shaft Diameter at Mount Elev. (in.): 3										
			9		off to the plate bolting into the collar mount.					

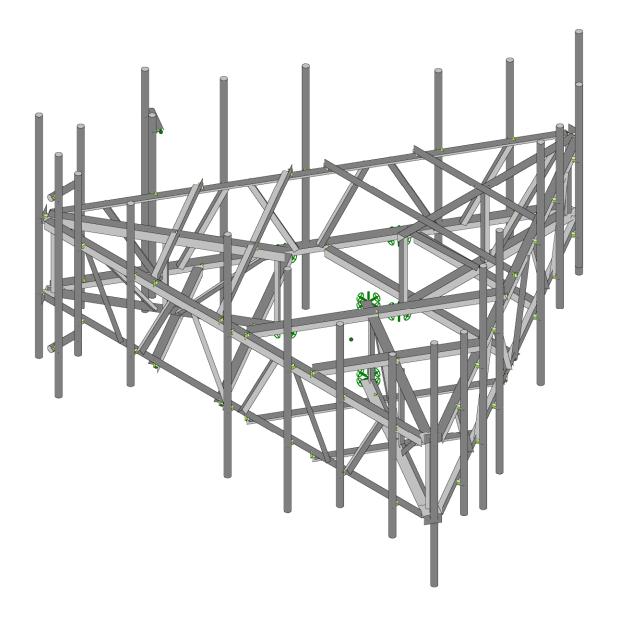
LEG	B LEG C	Ants. Items	Antenna Models if Known	Width (in.)	Depth (in.)	Height (in.)	Coax Size and Qty	Antenna Center- line (Ft.)	Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches)	Horiz. Offset "h" (Use "-" if Ant. is behind)	Antenna Azimuth (Degrees)	Photo Numbers
-			Sector A									
	SECTOR A	Ant _{1a}										
		Ant _{1b}	(2) JAHH-65B-R3B	13.80	8.20	72.00		84.5	34.00	13.00	25.00	155,156
	+ Horizontal	Ant _{1c}										
	Offset "h"	Ant _{2a}	AHCA	11.61	6.50	13.27		86.4167	-4.00	-8.00		79
	·)	Ant _{2b}										
		Ant _{2c}										
			B13 RRH4x30	12.00	9.00	21.60		85.1667	11.00	-6.00		80,82
bio.	Antio Antio Antio Antio Antio Antio	Ant _{3b}										
		Ant _{3c}										
ā,	Antra & Anta & Anta & Anta	Ant _{4a}	B25 RRH 4x30	12.00	7.20	21.40		86.4167	11.00	-6.00		83,84
	P	Ant _{4b}	BXA80063/4CFEDIN	11.20	4.50	47.40		83.6667	44.00		25.00	157,158
		Ant _{4c}										
	() 	Ant _{Sa}	B66A RRH 4x45	11.80	7.20	25.80		84.9167	14.00	-6.00		85,86
		Ant _{5b}										
		Ant _{5c}										
C1	Antie Antze Antze Antse	Ant on Standoff										
01	C2	Ant on										
	C3	Standoff										
	- C5	Ant on										
1	-	Tower										
	Antenna Layout (Looking Out From Tower)	Ant on Tower										
		TOWEI										


Mou	int Azimut for Each S		e)		muth (Degree) h Sector	Ant _{1a}					Sector B					
Sector A:	85.00		Leg A:	25.00	Deg	Ant _{1b}	(2) JAHH-65B-R3B	13.80	8.20	72.00		83.25	34.00	13.00	140.00	161,162
Sector B:	205.00		Leg B:	145.00	Deg	Ant _{1c}										,
Sector C:	325.00		Leg C:	265.00	Deg	Ant _{2a}	AHCA	11.61	6.50	13.27		87.6667	-4.00	-8.00		93,94
Sector D:		Deg	Leg D:		Deg	Ant _{2b}										
			bing Fac	ility Information		Ant _{2c}										
Location:	0.00	Deg osion Typ	201	Sector A Good condition.		Ant _{3a}	B13 RRH4x30	12.00	9.00	21.60		85.1667	11.00	-6.00		95,96
Climbing		Access:	Je.	Climbing path was u	nobstructed.	Ant _{3b} Ant _{3c}										
Facility		ondition:		Good condition.		Ant _{4a}	B25 RRH 4x30	12.00	7.20	21.40		85.1667	11.00	-6.00		98,99
						Ant _{4b}										,
						Ant _{4c}										
						Ant _{5a}	B66A RRH 4x45	11.80	7.20	25.80		86.1667	14.00	-6.00		89,90
						Ant _{5b}										
						Ant on										
						Standoff										
						Ant on Standoff										
DI.						Ant on										
Ple	ase insert a	pnoto o	r tne mo	ount centerline measi	urement nere.	Tower										
						Ant on Tower										
											Sector C					
						Ant _{1a}	AHCA	11.61	6.50	13.27		87.6667	-4.00	-8.00		103,104
						Ant _{1b}										
						Ant _{1c}	B13 RRH4x30	12.00	9.00	21.60		85.1667	11.00	-6.00		105,106
						Ant _{2b}	(2) JAHH-45B-R3B	18.00	7.00	72.00		83.0833	36.00	13.00	200.00	166,168
						Ant₂c										
		. 1	Π	ē		Ant _{3a}	B25 RRH 4x30	12.00	7.20	21.40		85.1667	11.00	-6.00		
[1 1	111	Шň	r in		Ant _{3b}										
						Ant _{3c} Ant _{4a}	B66A RRH 4x45	11.80	7.20	25.80		86.1667	14.00	-6.00		100,101
9	F	J. F		TIP OF EQUIPMENT		Ant _{4b}	BOOM KKII 4X43	11.60	7.20	23.80		80.1007	14.00	-0.00		100,101
						Ant _{4c}										
					DISTANCE FROM TOP OF MAIN PLATFORM MEMBER TO LOWEST TP OF ANT./EQPT. OF CARRIER ABOVE.	Ant _{5a}										
c		TITT	TIT	-	(N/A IF > 10 Pt.)	Ant _{Sb}	BXA80063/4CFEDIN	11.20	4.50	47.40		85.1667	26.00		200.00	163,164
ㅁ	# =		₩,		DISTANCE FROM TOP OF MAIN	Ant _{5c}										
EXISTING PLATFORM—				_	DISTANCE FROM TOP OF MAIN PLATFORM MEMBER TO HICHEST TIP OF ANT./DDPT. OF CARRIER HELOW. (N/A IF > 10 FT.)	Ant on Standoff										
Г	4 -	4	111-11	TIP OF EQUIPMENT	L	Ant on										
						Standoff Ant on										
q			2	==== Þ		Tower										
L	یا ل		-			Ant on Tower										
		FOR FLAT	FORMS								Sector D					
ſ				n 🗍		Ant _{1a}	AHCA	11.61	6.50	13.27		86.4167	-4.00	-8.00		115,116
	-		7			Ant _{1b}										
						Ant _{1c}	B13 RRH4x30	12.00	9.00	21.60		85.1667	11.00	-6.00		107,108
.0		П	T	T TIP OF EQUIPMENT	<u> </u>	Ant _{2b}	BXA80063/4CFEDIN	11.20	4.50	47.40		83.9167	26.00	0.00	300.00	171,172
_	_ ,	_			DISTANCE FROM TOP OF BOTTOM	Antzc										
					DISTANCE FROM TOP OF BOTTOM SUPPORT RAIL TO LOWEST TIP OF ANT./EDFT. OF CARRIER ABOVE. (N/A IF > 10 FL.)	Ant _{3a}	B25 RRH 4x30	12.00	7.20	21.40		81.5833	11.00	-6.00		109,110
9						Ant _{3b}										
-	1	J #			DISTANCE FROM THE OR SOTTON	Ant _{3c}										
EXISTING SECTOR FR	AME—/				DISTANCE FROM TOP OF BOTTOM SUPPORT RAIL, TO HIGHEST TIP OF ANT./EQPT. OF CARRIER BELOW. (N/A IF > 10 FL.)	Ant _{4a} Ant _{4b}	(2) JAHH-65B-R3B	13.80	8.20	72.00		79.6667	34.00	13.00	300.00	173,174
. n		_		TIP OF EQUIPMEN		Ant _{4b}	(2) JAIIII-03D-N3B	13.00	0.20	72.00		75.0007	34.00	13.00	300.00	1/3,1/4
					Ant _{5a}	B66A RRH 4x45	11.80	7.20	25.80		81.3333	14.00	-6.00		111,112	
1						Ant _{5b}										
					Ant _{5c}											
U====U						Ant on Standoff										
	For T-Arms/Platforms on monopoles, record the weld size from the main standoff					Ant on										
member to	the plate b	olting into	the coll	ar. See below for refer	ence.	Standoff Ant on										
			_		_ //	Tower										
4						Ant on										
//	1				_ //	Tower										

	Antenna Mount Mapping Form (PATEN		Opdated on 3-31	FCC#
Tower Owner:	UCONN	Mapping Date:	6/22/	2021
Site Name:	STORRS CT	Tower Type:	Self S	upport
Site Number or ID:	468927	Tower Height (Ft.):		
Mapping Contractor:	HUDSON DESIGN GROUP, LLC.	Mount Elevation (Ft.):		.75

This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication, modification or disclosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA and other safety requirements that may apply. TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements.

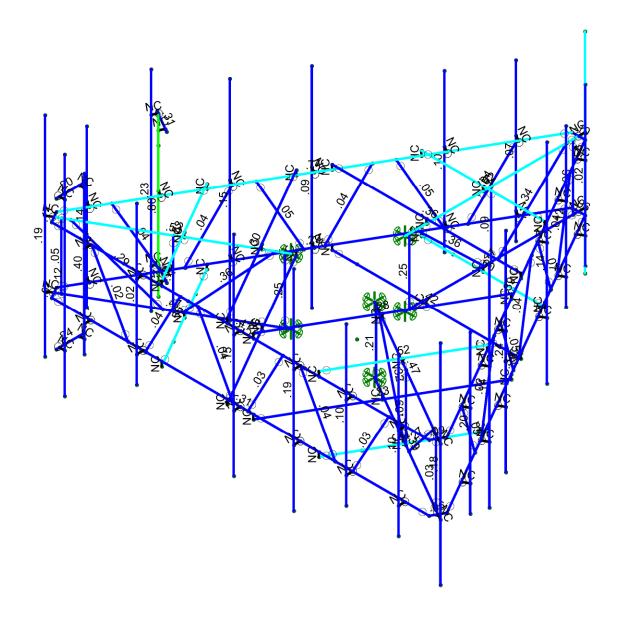
Please Insert Sketches of the Antenna Mount


Mapping Contractor: HUDSON DESIGN GROUP, LLC. Mount Elevation (FL): 83.75

This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication, modification or disclosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA and other safety requirements that may apply. TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements.

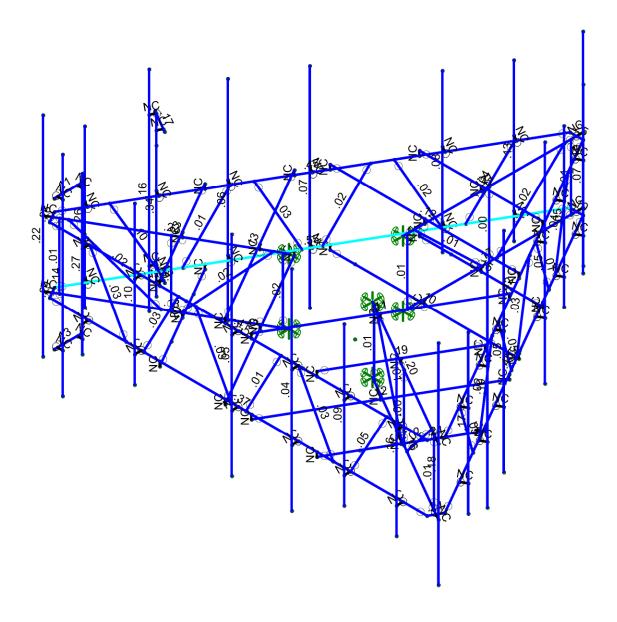
Please enter information about transmission lines.

Line Type (Pick from List)	Quantity	Please add a description if using type "Other".	Locati Tower	ed on Face	Photo #	Additional Comments				
(PICK From LIST)		using type "Other".				All Sectors				
Coax	6	1-5/8" Ø	DEI	TA	182,185	All sectors				
Hybrid	2	1-5/8" Ø	DEI		181,185					
Пурпа	2	1-3/8 Ø	52.	-171	101,103					
				Please e	nter infor	mation about additional RF equipment.				
Equipment Type (Pick from List)	Quantity	Model Numbers if Known	Width (in.)	Depth (in.)	Height (in.)	Location	Photo #	Additional Comments		
						Sector A				
						Contain				
						Sector B		T		
						Sector C				
OVP	2	RHSDC-6627-PF-48	16.50	12.60	29.50	MOUNTED TO TOWER FACE	165,168,265			



Envelope Only Solution

Maser Consulting		SK - 1
NL	Mount Analysis (Rev. 3)	Nov 23, 2021 at 5:47 PM
21781092A		468927-VZW_MT_LO_H.r3d



Member Code Checks Displayed (Enveloped) Envelope Only Solution

Maser Consulting		SK - 2
NL	Mount Analysis (Rev. 3)	Nov 23, 2021 at 5:47 PM
21781092A		468927-VZW_MT_LO_H.r3d

Member Shear Checks Displayed (Enveloped) Envelope Only Solution

Maser Consulting		SK - 3
NL	Mount Analysis (Rev. 3)	Nov 23, 2021 at 5:47 PM
21781092A		468927-VZW_MT_LO_H.r3d

Company Designer Job Number

: Maser Consulting: NL: 21781092A: Mount Analysis (Rev. 3) Model Name

Nov 23, 2021 5:47 PM Checked By: DX

Basic Load Cases

	BLC Description	Category	X Grav.	.Y Grav	Z Grav	Joint	Point	Distrib	Area(M.	Surfac
1	Antenna D	None					150		,	
2	Antenna Di	None					150			
3	Antenna Wo (0 Deg)	None					150			
4	Antenna Wo (30 Deg)	None					150			
5	Antenna Wo (60 Deg)	None					150			
6	Antenna Wo (90 Deg)	None					150			
7	Antenna Wo (120 Deg)	None					150			
8	Antenna Wo (150 Deg)	None					150			
9	Antenna Wo (180 Deg)	None					150			
10	Antenna Wo (210 Deg)	None					150			
11	Antenna Wo (240 Deg)	None					150			
12	Antenna Wo (270 Deg)	None					150			
13	Antenna Wo (300 Deg)	None					150			
14	Antenna Wo (330 Deg)	None					150			
15	Antenna Wi (0 Deg)	None					150			
16	Antenna Wi (30 Deg)	None					150			
17	Antenna Wi (60 Deg)	None					150			
18	Antenna Wi (90 Deg)	None					150			
19	Antenna Wi (120 Deg)	None					150			
20	Antenna Wi (150 Deg)	None					150			
21	Antenna Wi (180 Deg)	None					150			
22	Antenna Wi (210 Deg)	None					150			
23	Antenna Wi (240 Deg)	None					150			
24	Antenna Wi (270 Deg)	None					150			
25	Antenna Wi (300 Deg)	None					150			
26	Antenna Wi (330 Deg)	None					150			
27	Antenna Wm (0 Deg)	None					150			
28	Antenna Wm (30 Deg)	None					150			
29	Antenna Wm (60 Deg)	None					150			
30	Antenna Wm (90 Deg)	None					150			
31	Antenna Wm (120 Deg)	None					150			
32	Antenna Wm (150 Deg)	None					150			
33	Antenna Wm (180 Deg)	None					150			
34	Antenna Wm (210 Deg)	None					150			
35	Antenna Wm (240 Deg)	None					150			
36	Antenna Wm (270 Deg)	None					150			
37	Antenna Wm (300 Deg)	None					150			
38	Antenna Wm (330 Deg)	None					150			
39	Structure D	None		-1					6	
40	Structure Di	None						90	6	
41	Structure Wo (0 Deg)	None						180		
42	Structure Wo (30 Deg)	None						180		
43	Structure Wo (60 Deg)	None						180		
44	Structure Wo (90 Deg)	None						180		
45	Structure Wo (120 Deg)	None						180		
46	Structure Wo (150 Deg)	None						180		
47	Structure Wo (180 Deg)	None						180		
48	Structure Wo (210 Deg)	None						180		
49	Structure Wo (240 Deg)	None						180		
50	Structure Wo (270 Deg)	None						180		
51	Structure Wo (300 Deg)	None						180		
52	Structure Wo (330 Deg)	None						180		
53	Structure Wi (0 Deg)	None						180		
54	Structure Wi (30 Deg)	None						180		
55	Structure Wi (60 Deg)	None						180		
56	Structure Wi (90 Deg)	None						180		
	A 2D Version 17.0.4 [Dt) \ \ \									ao 1

Company Designer Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Basic Load Cases (Continued)

	BLC Description	Category	X Grav	.Y Grav	.Z Grav	Joint	Point	Distrib	Area(M	.Surfac
57	Structure Wi (120 Deg)	None						180	,	
58	Structure Wi (150 Deg)	None						180		
59	Structure Wi (180 Deg)	None						180		
60	Structure Wi (210 Deg)	None						180		
61	Structure Wi (240 Deg)	None						180		
62	Structure Wi (270 Deg)	None						180		
63	Structure Wi (300 Deg)	None						180		
64	Structure Wi (330 Deg)	None						180		
65	Structure Wm (0 Deg)	None						180		
66	Structure Wm (30 Deg)	None						180		
67	Structure Wm (60 Deg)	None						180		
68	Structure Wm (90 Deg)	None						180		
69	Structure Wm (120 Deg)	None						180		
70	Structure Wm (150 Deg)	None						180		
71	Structure Wm (180 Deg)	None						180		
72	Structure Wm (210 Deg)	None						180		
73	Structure Wm (240 Deg)	None						180		
74	Structure Wm (270 Deg)	None						180		
75	Structure Wm (300 Deg)	None						180		
76	Structure Wm (330 Deg)	None						180		
77	Lm1	None					1			
78	Lm2	None					1			
79	Lv1	None					1			
80	Lv2	None					1			
81	Antenna Ev	None					150			
82	Antenna Eh (0 Deg)	None					100			
83	Antenna Eh (90 Deg)	None					100			
84	Structure Ev	ELY		039						
85	Structure Eh (0 Deg)	ELZ	099							
86	Structure Eh (90 Deg)	ELX			.099					
87	BLC 39 Transient Area Loads	None						24		
88	BLC 40 Transient Area Loads	None						24		

Load Combinations

	Description	Solve	P	S	В	Fa	В	Fa	BLC	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	1.2D+1.0Wo (0 Deg)	Yes	Υ		1	1.2	39	1.2	3	1	41	1												
2	1.2D+1.0Wo (30 Deg)	Yes	Υ		1	1.2	39	1.2	4	1	42	1												
3	1.2D+1.0Wo (60 Deg)	Yes	Υ		1	1.2	39	1.2	5	1	43	1												
4	1.2D+1.0Wo (90 Deg)	Yes	Υ		1	1.2	39	1.2	6	1	44	1												
5	1.2D+1.0Wo (120 Deg)	Yes	Υ		1	1.2	39	1.2	7	1	45	1												
6	1.2D+1.0Wo (150 Deg)	Yes	Υ		1	1.2	39	1.2	8	1	46	1												
7	1.2D+1.0Wo (180 Deg)	Yes	Υ		1	1.2	39	1.2	9	1	47	1												
8	1.2D+1.0Wo (210 Deg)	Yes	Υ		1	1.2	39	1.2	10	1	48	1												
9	1.2D+1.0Wo (240 Deg)	Yes	Υ		1	1.2	39	1.2	11	1	49	1												
10	1.2D+1.0Wo (270 Deg)				1	1.2	39	1.2	12	1	50	1												
11	1.2D+1.0Wo (300 Deg)				1	1.2	39	1.2	13	1	51	1												
12	1.2D+1.0Wo (330 Deg)				1	1.2	39	1.2	14	1	52	1												
13	1.2D + 1.0Di + 1.0Wi (0 .				1	1.2	39	1.2	2	1	40	1	15	1	53	1								
14	1.2D + 1.0Di + 1.0Wi (3				1	1.2	39	1.2	2	1	40	1	16	1	54	1								
15	1.2D + 1.0Di + 1.0Wi (6				1	1.2	39	1.2	2	1	40	1	17	1	55	1								
16	1.2D + 1.0Di + 1.0Wi (9	Yes	Υ		1	1.2	39	1.2	2	1	40	1	18	1	56	1								
17	1.2D + 1.0Di + 1.0Wi (1				1	1.2	39	1.2	2	1	40	1	19	1	57	1								
18	1.2D + 1.0Di + 1.0Wi (1				1	1.2	39	1.2	2	1	40	1	20	1	58	1								
19	1.2D + 1.0Di + 1.0Wi (1				1	1.2	39	1.2	2	1	40	1	21	1	59	1								
20	1.2D + 1.0Di + 1.0Wi (2	Yes	Υ		1	1.2	39	1.2	2	1	40	1	22	1	60	1								

Company Designer Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Load Combinations (Continued)

	Description	Solve	P	S F	3	Fa	В	Fa	BI C	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
21	1.2D + 1.0Di + 1.0Wi (2	Yes	Υ		1			1.2		1	40		23	1	61	1								
22	1.2D + 1.0Di + 1.0Wi (2				1			1.2		1	40		24	1	62	1								
23	1.2D + 1.0Di + 1.0Wi (3				1			1.2		1	40	1	25	1	63	1								
24					1	1.2	39	1.2	2	1	40	1	26	1	64	1								
25	1.2D + 1.5Lm1 + 1.0W	Yes	Υ		1	1.2	39	1.2	77	1.5	27	1	65	1										
26	1.2D + 1.5Lm1 + 1.0W	Yes	Υ		1			1.2		1.5	28	1	66	1										
27	1.2D + 1.5Lm1 + 1.0W				1	1.2	39	1.2	77		29		67	1										
28	1.2D + 1.5Lm1 + 1.0W				1			1.2			30		68	1										
29	1.2D + 1.5Lm1 + 1.0W				1			1.2			31		69	1										
30	1.2D + 1.5Lm1 + 1.0W							1.2			32		70	1										
31	1.2D + 1.5Lm1 + 1.0W	Yes	Υ		1			1.2			33		71	1										
32					1			1.2			34		72	1										
33	1.2D + 1.5Lm1 + 1.0W				1			1.2			35		73	1										
34	1.2D + 1.5Lm1 + 1.0W							1.2			36		74	1										
35	1.2D + 1.5Lm1 + 1.0W				1			1.2			37		75	1										
36	1.2D + 1.5Lm1 + 1.0W				1			1.2			38		76	1										
37	1.2D + 1.5Lm2 + 1.0W 1.2D + 1.5Lm2 + 1.0W				1			1.2			27		65	1										
38	1.2D + 1.5Lm2 + 1.0W		Y		1			1.2					66	1										
39 40	1.2D + 1.5Lm2 + 1.0W				1 1			1.2			29		67	1										
41	1.2D + 1.5Lm2 + 1.0W				1			1.2			31		68											
42					1			1.2			32		69 70	1										
43	1.2D + 1.5Lm2 + 1.0W				1			1.2			33		71	1										
44					$\overline{}$			1.2			34		72	1										
45	1.2D + 1.5Lm2 + 1.0W				1			1.2			35		73	1										
46	1.2D + 1.5Lm2 + 1.0W				1			1.2					74	1										
47	1.2D + 1.5Lm2 + 1.0W				1			1.2			37		75	1										
48	1.2D + 1.5Lm2 + 1.0W		_		1			1.2			38		76	1										
49	1.2D + 1.5Lv1	Yes			1			1.2																
50	1.2D + 1.5Lv2	Yes			1			1.2																
51	1.4D	Yes			1			1.4																
52	1.2D + 1.0Ev + 1.0Eh (0.				1			1.2	81	1	E	1	82	1	83		ELZ	1	E					
53	1.2D + 1.0Ev + 1.0Eh (3.	Yes	Υ		1			1.2		1	E	1	82	.866	83	.5	ELZ	.866	E	.5				
54					1			1.2		1	E	1	82	.5	83	.866	ELZ	.5	E	.866				
55	1.2D + 1.0Ev + 1.0Eh (9.				1	1.2	39	1.2	81	1	E	1	82		83		ELZ		E	1				
56					1	1.2	39	1.2	81	1	E	1	82	5	83	.866								
57	1.2D + 1.0Ev + 1.0Eh (1.				1			1.2		1	E		82	866	83					.5				
58	1.2D + 1.0Ev + 1.0Eh (1.				1			1.2		1	E	_	82		83			-1						
59	1.2D + 1.0Ev + 1.0Eh (2.				1			1.2		1	E	_		866										
	1.2D + 1.0Ev + 1.0Eh (2.				1			1.2		1	E			5							i			
61	1.2D + 1.0Ev + 1.0Eh (2.				1			1.2		1	E		82	_		-1			E					
	1.2D + 1.0Ev + 1.0Eh (3.				1			1.2		1	E			.5										
63	1.2D + 1.0Ev + 1.0Eh (3.				1			1.2		1	E	_		.866						5				
	0.9D - 1.0Ev + 1.0Eh (0 .				1			.9				-1			83			1		_				
65					1			.9				-1		.866										
	0.9D - 1.0Ev + 1.0Eh (6				1			.9					82	.5		.866								
67	· · · · · · · · · · · · · · · · · · ·				1		39		81	-1			82		83				E	1				
68	0.9D - 1.0Ev + 1.0Eh (1				1		39		81	-1		-1		5 - 866			CLZ Fl Z	5 - 866	E	.000				
	0.9D - 1.0Ev + 1.0Eh (1				1	.9	39 39		81 91		E		82	866 _1				000 -1		.5				
71	0.9D - 1.0Ev + 1.0Eh (1				1 1		39		81	-1			82											
	0.9D - 1.0Ev + 1.0Eh (2				1		39		81	-1			82											
73	0.9D - 1.0Ev + 1.0Eh (2				1	.9	39		81	-1	E		82	5		600 -1			E	000 -1				
	0.9D - 1.0Ev + 1.0Eh (3				1			.9	81				82	5					_					
75					1	.9		.9	81			-1		.866										
7.5	11111 11111 (011	103	-		1	.0	00		U	- 1		- 1	UZ		UU					0				

Company Designer Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Joint Coordinates and Temperatures

1 N1 0. 0. 0. 0. 0. 2 N2 14.416667 0. -0. 0 0 3 N3 0. 2.5 0. 0 0 4 N4 14.416667 2.5 -0. 0 0 5 N5 2.916667 0 0. 0 0 6 N6 3.583334 0 0. 0 0 7 N7 6.917 0 -0. 0 0 8 N16 9.666667 2.5 -0. 0 0 9 N19 1.541667 2.5 0. 0 0 10 N21 14.666667 2.5 -0.433013 0 0 11 N22 14.666667 2.5 -0.433013 0 0 12 N23 -0.25 2.5 -0.433013 0 0 12 N23 -0.25	ach From Diap
1 N1 0. 0 0. 0 2 N2 14.416667 0 -0. 0 3 N3 0. 2.5 0. 0 4 N4 14.416667 2.5 -0. 0 5 N5 2.916667 0 0. 0 6 N6 3.583334 0 0. 0 7 N7 6.917 0 -0. 0 8 N16 9.666667 2.5 -0. 0 9 N19 1.541667 2.5 -0. 0 10 N21 14.666667 2.5 -0.433013 0 11 N22 14.666667 2.5 -0.433013 0 12 N23 -0.25 0 -0.433013 0 12 N23 -0.25 2.5 -0.433013 0 13 N24 -0.25 2.5 -0.216506 0	
2 N2 14.416667 0 -0. 0 3 N3 0. 2.5 0. 0 4 N4 14.416667 2.5 -0. 0 5 N5 2.916667 0 0. 0 6 N6 3.583334 0 0. 0 7 N7 6.917 0 -0. 0 8 N16 9.666667 2.5 -0. 0 9 N19 1.541667 2.5 -0. 0 10 N21 14.666667 2.5 -0. 0 11 N22 14.666667 2.5 -0.433013 0 12 N23 -0.25 0 -0.433013 0 12 N23 -0.25 2.5 -0.433013 0 13 N24 -0.25 2.5 -0.433013 0 14 N23A 14.541667 2.5 -0.216506 0 <	•
3 N3 0. 2.5 0. 0 4 N4 14.416667 2.5 -0. 0 5 N5 2.916667 0 0. 0 6 N6 3.583334 0 0. 0 7 N7 6.917 0 -0. 0 8 N16 9.666667 2.5 -0. 0 9 N19 1.541667 2.5 0. 0 10 N21 14.666667 0 -0.433013 0 11 N22 14.666667 2.5 -0.433013 0 12 N23 -0.25 0 -0.433013 0 12 N23 -0.25 2.5 -0.433013 0 13 N24 -0.25 2.5 -0.433013 0 14 N23A 14.541667 2.5 -0.216506 0 15 N24A 14.541667 2.5 -0.216506 <t< td=""><td></td></t<>	
4 N4 14.416667 2.5 -0. 0 5 N5 2.916667 0 0. 0 6 N6 3.583334 0 0. 0 7 N7 6.917 0 -0. 0 8 N16 9.666667 2.5 -0. 0 9 N19 1.541667 2.5 0. 0 10 N21 14.666667 0 -0.433013 0 11 N22 14.666667 0 -0.433013 0 12 N23 -0.25 0 -0.433013 0 12 N23 -0.25 0 -0.433013 0 13 N24 -0.25 2.5 -0.433013 0 14 N23A 14.541667 2.5 -0.216506 0 15 N24A 14.541667 2.5 -0.216506 0 16 N25 -0.125 2.5 -0.216506	
5 N5 2.916667 0 0. 0 6 N6 3.583334 0 0. 0 7 N7 6.917 0 -0. 0 8 N16 9.666667 2.5 -0. 0 9 N19 1.541667 2.5 0. 0 10 N21 14.666667 0 -0.433013 0 11 N22 14.666667 2.5 -0.433013 0 12 N23 -0.25 0 -0.433013 0 12 N23 -0.25 2.5 -0.433013 0 13 N24 -0.25 2.5 -0.433013 0 14 N23A 14.541667 2.5 -0.216506 0 15 N24A 14.541667 0 -0.216506 0 15 N24A 14.541667 0 -0.216506 0 16 N25 -0.125 2.5 -0.2165	
6 N6 3.583334 0 0. 0 7 N7 6.917 0 -0. 0 8 N16 9.666667 2.5 -0. 0 9 N19 1.541667 2.5 -0. 0 10 N21 14.666667 2.5 -0.433013 0 11 N22 14.666667 2.5 -0.433013 0 12 N23 -0.25 0 -0.433013 0 12 N23 -0.25 0 -0.433013 0 13 N24 -0.25 2.5 -0.433013 0 14 N23A 14.541667 2.5 -0.216506 0 15 N24A 14.541667 2.5 -0.216506 0 16 N25 -0.125 2.5 -0.216506 0 17 N26 -0.125 0 -0.216506 0 18 N27 5.612418 2.5 <	
7 N7 6.917 0 -0. 0 8 N16 9.666667 2.5 -0. 0 9 N19 1.541667 2.5 0. 0 10 N21 14.666667 0 -0.433013 0 11 N22 14.666667 2.5 -0.433013 0 12 N23 -0.25 0 -0.433013 0 13 N24 -0.25 2.5 -0.433013 0 13 N24 -0.25 2.5 -0.433013 0 14 N23A 14.541667 2.5 -0.216506 0 15 N24A 14.541667 0 -0.216506 0 16 N25 -0.125 2.5 -0.216506 0 17 N26 -0.125 0 -0.216506 0 18 N27 5.612418 2.5 -3.529006 0 19 N28 5.612418 0	
8 N16 9.666667 2.5 -0. 0 9 N19 1.541667 2.5 0. 0 10 N21 14.666667 0 -0.433013 0 11 N22 14.666667 2.5 -0.433013 0 12 N23 -0.25 0 -0.433013 0 13 N24 -0.25 2.5 -0.433013 0 14 N23A 14.541667 2.5 -0.433013 0 14 N23A 14.541667 2.5 -0.216506 0 15 N24A 14.541667 0 -0.216506 0 16 N25 -0.125 2.5 -0.216506 0 17 N26 -0.125 0 -0.216506 0 18 N27 5.612418 2.5 -3.529006 0 19 N28 5.612418 0 -3.445673 0 21 N30 5.468081	
9 N19 1.541667 2.5 0. 0 10 N21 14.666667 0 -0.433013 0 11 N22 14.666667 2.5 -0.433013 0 12 N23 -0.25 0 -0.433013 0 13 N24 -0.25 2.5 -0.433013 0 14 N23A 14.541667 2.5 -0.216506 0 15 N24A 14.541667 0 -0.216506 0 16 N25 -0.125 2.5 -0.216506 0 17 N26 -0.125 0 -0.216506 0 18 N27 5.612418 2.5 -3.529006 0 19 N28 5.612418 0 -3.529006 0 20 N29 5.468081 0 -3.445673 0 21 N30 5.468081 2.5 -3.445673 0 22 N31 2.761751 0 -1.883173 0 23 N32 2.761751 2.5 <td></td>	
10 N21 14.666667 0 -0.433013 0 11 N22 14.666667 2.5 -0.433013 0 12 N23 -0.25 0 -0.433013 0 13 N24 -0.25 2.5 -0.433013 0 14 N23A 14.541667 2.5 -0.216506 0 15 N24A 14.541667 0 -0.216506 0 15 N24A 14.541667 0 -0.216506 0 16 N25 -0.125 2.5 -0.216506 0 17 N26 -0.125 0 -0.216506 0 18 N27 5.612418 2.5 -3.529006 0 19 N28 5.612418 0 -3.529006 0 20 N29 5.468081 0 -3.445673 0 21 N30 5.468081 2.5 -3.445673 0 22 N31 2.761751<	
11 N22 14.666667 2.5 -0.433013 0 12 N23 -0.25 0 -0.433013 0 13 N24 -0.25 2.5 -0.433013 0 14 N23A 14.541667 2.5 -0.216506 0 15 N24A 14.541667 0 -0.216506 0 16 N25 -0.125 2.5 -0.216506 0 16 N25 -0.125 0 -0.216506 0 17 N26 -0.125 0 -0.216506 0 18 N27 5.612418 2.5 -3.529006 0 19 N28 5.612418 0 -3.529006 0 20 N29 5.468081 0 -3.445673 0 21 N30 5.468081 2.5 -3.445673 0 22 N31 2.761751 0 -1.883173 0 23 N32 2.761751	
12 N23 -0.25 0 -0.433013 0 13 N24 -0.25 2.5 -0.433013 0 14 N23A 14.541667 2.5 -0.216506 0 15 N24A 14.541667 0 -0.216506 0 16 N25 -0.125 2.5 -0.216506 0 17 N26 -0.125 0 -0.216506 0 18 N27 5.612418 2.5 -3.529006 0 19 N28 5.612418 0 -3.529006 0 20 N29 5.468081 0 -3.445673 0 21 N30 5.468081 2.5 -3.445673 0 21 N30 5.468081 2.5 -3.445673 0 22 N31 2.761751 0 -1.883173 0 23 N32 2.761751 2.5 -1.883173 0 24 N33 0.055422 <td></td>	
13 N24 -0.25 2.5 -0.433013 0 14 N23A 14.541667 2.5 -0.216506 0 15 N24A 14.541667 0 -0.216506 0 16 N25 -0.125 2.5 -0.216506 0 17 N26 -0.125 0 -0.216506 0 18 N27 5.612418 2.5 -3.529006 0 19 N28 5.612418 0 -3.529006 0 20 N29 5.468081 0 -3.445673 0 21 N30 5.468081 2.5 -3.445673 0 21 N30 5.468081 2.5 -3.445673 0 22 N31 2.761751 0 -1.883173 0 23 N32 2.761751 2.5 -1.883173 0 24 N33 0.055422 0 -0.320673 0 25 N34 0.055422	
14 N23A 14.541667 2.5 -0.216506 0 15 N24A 14.541667 0 -0.216506 0 16 N25 -0.125 2.5 -0.216506 0 17 N26 -0.125 0 -0.216506 0 18 N27 5.612418 2.5 -3.529006 0 19 N28 5.612418 0 -3.529006 0 20 N29 5.468081 0 -3.445673 0 21 N30 5.468081 2.5 -3.445673 0 22 N31 2.761751 0 -1.883173 0 23 N32 2.761751 2.5 -1.883173 0 24 N33 0.055422 0 -0.320673 0 25 N34 0.055422 2.5 -0.320673 0 26 N35 2.999908 0 -2.020673 0 27 N36 2.509161 0 -1.73734 0 28 N37 0.271928 <	
15 N24A 14.541667 0 -0.216506 0 16 N25 -0.125 2.5 -0.216506 0 17 N26 -0.125 0 -0.216506 0 18 N27 5.612418 2.5 -3.529006 0 19 N28 5.612418 0 -3.529006 0 20 N29 5.468081 0 -3.445673 0 21 N30 5.468081 2.5 -3.445673 0 22 N31 2.761751 0 -1.883173 0 23 N32 2.761751 2.5 -1.883173 0 24 N33 0.055422 0 -0.320673 0 25 N34 0.055422 2.5 -0.320673 0 26 N35 2.999908 0 -2.020673 0 27 N36 2.509161 0 -1.73734 0 28 N37 0.271928 <td></td>	
16 N25 -0.125 2.5 -0.216506 0 17 N26 -0.125 0 -0.216506 0 18 N27 5.612418 2.5 -3.529006 0 19 N28 5.612418 0 -3.529006 0 20 N29 5.468081 0 -3.445673 0 21 N30 5.468081 2.5 -3.445673 0 22 N31 2.761751 0 -1.883173 0 23 N32 2.761751 2.5 -1.883173 0 24 N33 0.055422 0 -0.320673 0 25 N34 0.055422 2.5 -0.320673 0 26 N35 2.999908 0 -2.020673 0 27 N36 2.509161 0 -1.73734 0 28 N37 0.271928 2.5 -0.445673 0 29 N38 5.251574 2.5 -3.320673 0	
17 N26 -0.125 0 -0.216506 0 18 N27 5.612418 2.5 -3.529006 0 19 N28 5.612418 0 -3.529006 0 20 N29 5.468081 0 -3.445673 0 21 N30 5.468081 2.5 -3.445673 0 22 N31 2.761751 0 -1.883173 0 23 N32 2.761751 2.5 -1.883173 0 24 N33 0.055422 0 -0.320673 0 25 N34 0.055422 2.5 -0.320673 0 26 N35 2.999908 0 -2.020673 0 27 N36 2.509161 0 -1.73734 0 28 N37 0.271928 2.5 -0.445673 0 29 N38 5.251574 2.5 -3.320673 0	
18 N27 5.612418 2.5 -3.529006 0 19 N28 5.612418 0 -3.529006 0 20 N29 5.468081 0 -3.445673 0 21 N30 5.468081 2.5 -3.445673 0 22 N31 2.761751 0 -1.883173 0 23 N32 2.761751 2.5 -1.883173 0 24 N33 0.055422 0 -0.320673 0 25 N34 0.055422 2.5 -0.320673 0 26 N35 2.999908 0 -2.020673 0 27 N36 2.509161 0 -1.73734 0 28 N37 0.271928 2.5 -0.445673 0 29 N38 5.251574 2.5 -3.320673 0	
19 N28 5.612418 0 -3.529006 0 20 N29 5.468081 0 -3.445673 0 21 N30 5.468081 2.5 -3.445673 0 22 N31 2.761751 0 -1.883173 0 23 N32 2.761751 2.5 -1.883173 0 24 N33 0.055422 0 -0.320673 0 25 N34 0.055422 2.5 -0.320673 0 26 N35 2.999908 0 -2.020673 0 27 N36 2.509161 0 -1.73734 0 28 N37 0.271928 2.5 -0.445673 0 29 N38 5.251574 2.5 -3.320673 0	
20 N29 5.468081 0 -3.445673 0 21 N30 5.468081 2.5 -3.445673 0 22 N31 2.761751 0 -1.883173 0 23 N32 2.761751 2.5 -1.883173 0 24 N33 0.055422 0 -0.320673 0 25 N34 0.055422 2.5 -0.320673 0 26 N35 2.999908 0 -2.020673 0 27 N36 2.509161 0 -1.73734 0 28 N37 0.271928 2.5 -0.445673 0 29 N38 5.251574 2.5 -3.320673 0	
21 N30 5.468081 2.5 -3.445673 0 22 N31 2.761751 0 -1.883173 0 23 N32 2.761751 2.5 -1.883173 0 24 N33 0.055422 0 -0.320673 0 25 N34 0.055422 2.5 -0.320673 0 26 N35 2.999908 0 -2.020673 0 27 N36 2.509161 0 -1.73734 0 28 N37 0.271928 2.5 -0.445673 0 29 N38 5.251574 2.5 -3.320673 0	
22 N31 2.761751 0 -1.883173 0 23 N32 2.761751 2.5 -1.883173 0 24 N33 0.055422 0 -0.320673 0 25 N34 0.055422 2.5 -0.320673 0 26 N35 2.999908 0 -2.020673 0 27 N36 2.509161 0 -1.73734 0 28 N37 0.271928 2.5 -0.445673 0 29 N38 5.251574 2.5 -3.320673 0	
23 N32 2.761751 2.5 -1.883173 0 24 N33 0.055422 0 -0.320673 0 25 N34 0.055422 2.5 -0.320673 0 26 N35 2.999908 0 -2.020673 0 27 N36 2.509161 0 -1.73734 0 28 N37 0.271928 2.5 -0.445673 0 29 N38 5.251574 2.5 -3.320673 0	
24 N33 0.055422 0 -0.320673 0 25 N34 0.055422 2.5 -0.320673 0 26 N35 2.999908 0 -2.020673 0 27 N36 2.509161 0 -1.73734 0 28 N37 0.271928 2.5 -0.445673 0 29 N38 5.251574 2.5 -3.320673 0	
25 N34 0.055422 2.5 -0.320673 0 26 N35 2.999908 0 -2.020673 0 27 N36 2.509161 0 -1.73734 0 28 N37 0.271928 2.5 -0.445673 0 29 N38 5.251574 2.5 -3.320673 0	
26 N35 2.999908 0 -2.020673 0 27 N36 2.509161 0 -1.73734 0 28 N37 0.271928 2.5 -0.445673 0 29 N38 5.251574 2.5 -3.320673 0	
27 N36 2.509161 0 -1.73734 0 28 N37 0.271928 2.5 -0.445673 0 29 N38 5.251574 2.5 -3.320673 0	
28 N37 0.271928 2.5 -0.445673 0 29 N38 5.251574 2.5 -3.320673 0	
29 N38 5.251574 2.5 -3.320673 0	
30 N47 14.361245 0 -0.320673 0	
31 N48 14.361245 2.5 -0.320673 0	
32 N51 14.144738 2.5 -0.445673 0	
33 N53 7.208333 2.5 -4.450408 0	
34 N44 7.458333 0 -12.918212 0	
35 N46 7.458333 2.5 -12.918212 0	
36 N61 6.958333 0 -12.918212 0	
37 N62 6.958333 2.5 -12.918212 0	
38 N65 7.208333 2.5 -12.918212 0	
39 N66 7.208333 0 -12.918212 0	
40 N69 8.804248 2.5 -3.529006 0	
41 N70 8.804248 0 -3.529006 0	
42 N71 8.948586 0 -3.445673 0	
43 N72 8.948586 2.5 -3.445673 0	
44 N73 11.654915 0 -1.883173 0	
45 N74 11.654915 2.5 -1.883173 0	
46 N77 11.416758 0 -2.020673 0	
47 N78 11.907506 0 -1.73734 0	
48 N80 9.165092 2.5 -3.320673 0	
49 N81 7.208333 0 -12.709879 0	
50 N82 7.208333 2.5 -12.709879 0	
51 N83 7.208333 2.5 -12.459879 0	
52 N111 7.208333 2.5 -6.293212 0	
53 N112 7.208333 0 -6.293212 0	
54 N113 7.208333 0 -6.459879 0	
55 N114 7.208333 2.5 -6.459879 0	
56 N115 7.208333 0 -9.584879 0	

Company Designer Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

	Labal	V [41]	V [#1	7 [41	Татат [[]	Datask Franc Dian
57	Label N116	X [ft] 7.208333	Y [ft] 2.5	Z [ft] -9.584879	Temp [F] 0	Detach From Diap
58	N119	7.208333	0	-9.309879	0	
59	N120	7.208333	0	-9.876546	0	
60	N122	7.208333	2.5		0	
				-6.709879		
61	N170	4.208333	0	0.	0	
	N171	4.208333	2.667	0.	0	
63	N172	10.208333	0 2.667	-0. -0.	0	
64	N173	10.208333			0	
65	N175	12.5625	0	-4.077536	0	
66	N176	12.5625	2.667	-4.077536	0	
67	N177	9.5625	0	-9.273689	0	
68	N178	9.5625	2.667	-9.273689	0	
69	N180	4.854167	0	-9.273689	0	
70	N181	4.854167	2.667	-9.273689	0	
71	N182	1.854167	0	-4.077536	0	
72	N183	1.854167	2.667	-4.077536	0	
73	N183A	3.03125	0	-2.038768	0	
74	N184	3.03125	2.5	-2.038768	0	
75	N185	11.385417	0	-2.038768	0	
76	N186	11.385417	2.5	-2.038768	0	
77	N187	7.208333	0	-9.273689	0	
78	N188	7.208333	2.5	-9.273689	0	
79	N201	3.03125	2.667	-2.038768	0	
80	N202	11.385417	2.667	-2.038768	0	
81	N203A	7.208333	2.667	-9.273689	0	
82	N204A	4.208333	2.5	0.	0	
83	N205A	10.208333	2.5	-0.	0	
84	N206A	12.5625	2.5	-4.077536	0	
85	N207	9.5625	2.5	-9.273689	0	
86	N208	4.854167	2.5	-9.273689	0	
87	N209	1.854167	2.5	-4.077536	00	
88	N210	4.208333	-0.167033	0.	0	
89	N211	10.208333	-0.167033	-0.	0	
90	N212	12.5625	-0.167033	-4.077536	0	
91	N213	9.5625	-0.167033	-9.273689	0	
92	N214	4.854167	-0.167033	-9.273689	0	
93	N215	1.854167	-0.167033	-4.077536	0	
94	N219	3.03125	-0.167033	-2.038768	0	
95	N220	11.385417	-0.167033	-2.038768	0	
96	N221	7.208333	-0.167033	-9.273689	0	
97	N226	11.962767	-0.167033	-3.038768	0	
98	N227	8.363034	-0.167033	-9.273689	0	
99	N235	6.053633	-0.167033	-9.273689	0	
100	N236	2.4539	-0.167033	-3.038768	0	
101	N116A	3.6086	0	0.	0	
102	N117	10.808066	0	0.	0	
103	N115A	12.862367	0	-3.558152	0	
104	N116B	9.262633	0	-9.793073	0	
105	N118	5.154033	0	-9.793073	0	
106	N119A	1.5543	0	-3.558152	0	
107	N118B	5.583667	2.5	-0.	0	
108	N119B	4.917	2.5	-0.	0	
109	N116C	7.208333	0	-0.	0	
110	N111A	11.5	0	0.	0	
111	N112A	10.833333	0	0.	0	
112	N113A	7.499666	0	-0.	0	
113	N114A	12.875	2.5	0.	0	
110	111177	12.070	2.0	J		1

Company Designer Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
114	N115B	8.833	2.5	-0.	0	
115	N116D	9.499666	2.5	-0.	0	
116	N117A	13.208333	0	-2.95892	0	
117	N118A	12.875	0	-3.536271	0	
118	N119C	11.208167	0	-6.423311	0	
119	N120A	13.895833	2.5	-1.768135	0	
120	N122A	11.874833	2.5	-5.26861	0	
121	N123	12.208167	2.5	-4.69126	0	
122	N125	8.916667	0	-10.392305	0	
123	N126	9.25	0	-9.814954	0	
124	N127	10.916834	0	-6.927914	0	
125	N128	8.229167	2.5	-11.583089	0	
126	N129	10.250167	2.5	-8.082615	0	
127	N130	9.916834	2.5	-8.659965	0	
128	N131	5.5	0	-10.392305	0	
129	N132	5.166666	0	-9.814954	0	
130	N133	3.499833	0		0	
			-	-6.927914		
131	N134	6.1875	2.5	-11.583089	0	
132	N136	4.1665	2.5	-8.082615	0	
133	N137	4.499833	2.5	-8.659965	0	
134	N139	1.208333	0	-2.95892	0	
135	N140	1.541667	0	-3.536271	0	
136	N141	3.2085	0	-6.423311	0	
137	N142	0.520833	2.5	-1.768135	0	
138	N143	2.541833	2.5	-5.26861	0	
139	N144	2.2085	2.5	-4.69126	0	
140	N217	3.6086	-0.167033	-1.038768	0	
141	N219A	10.808066	-0.167033	-1.038768	0	
142	N149	6.708333	0	0.	0	
143	N150	6.708333	2.667	0.	0	
144	N151A	6.708333	2.5	0.	0	
145	N152A	6.708333	-0.167033	0.	0	
146	N153	7.708333	0	-0.	Ö	
147	N154	7.708333	2.667	-0.	0	
148	N155	7.708333	2.5	-0.	0	
149	N156	7.708333	-0.167033	-0.	0	
150	N173B	7.208333	2.5	-13.168212	0	
151	N174A	7.208333	0	-13.168212	0	
152	N178A	-0.341506	2.5	-0.091506	0	
153	N179	-0.341506	0	-0.091506	0	
154	N183B	14.758173	2.5	-0.091506	0	
155	N184A	14.758173	0	-0.091506	0	
156	N179A	13.5	0	-0.	0	
157	N180A	13.5	2.5	-0.	0	
158	N181A	13.5	0	.25	0	
159	N182B	13.5	2.5	.25	0	
160	N184B	11.5	2.5	-0.	0	
161	N186A	11.5	2.5	.25	0	
162	N186B	9.5	0	0.	0	
163	N188A	9.5	0	.25	0	
164	N189	9.5	2.5	.25	0	
165	N189A	7.208	2.5	-0.	0	
166	N191	7.208333	0	.25	0	
167	N192	7.208333	2.5	.25	0	
168	N192A	3.5	0	-0.	Ö	
169	N193	3.499666	2.5	-0.	0	
170	N194	3.499000	0	.25	0	
170	11134	3.0	U	.20	U	

: Maser Consulting : NL : 21781092A Company Designer Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
171	N195	3.5	2.5	.25	0	Detacii Fiolii Diap
172	N196	1.5	0	-0.	0	
173	N197	1.499666	2.5	-0.	0	
174	N198	1.5	0	.25	0	
175	N199	1.5	2.5	.25	0	
176	N196A	14.758173	5.833333	-0.091506	Ö	
177	N197A	14.758173	-2.166667	-0.091506	0	
178	N198A	13.5	5	.25	0	
179	N199A	13.5	-1	.25	0	
180	N200	11.5	5	.25	0	
181	N202A	9.5	5.833333	.25	0	
182	N203	9.5	-2.166667	.25	0	
183	N204	7.208333	5.833333	.25	0	
184	N205	7.208333	-2.166667	.25	0	
185	N207A	5.208	2.5	-0.	0	
186	N212A	3.5	5	.25	0	
187	N213A	1.5	6	1	0	
188	N214A	3.5	-1	.25	0	
189	N215A	1.5	-2	1	0	
190	N217A	7.208333	5.833333	-13.168212	0	
191	N218	7.208333	-2.166667	-13.168212	0	
192	N220A	-0.341506	5.833333	-0.091506	0	
193	N221A	-0.341506	-2.166667	-0.091506	0	
194	N224	7.916667	0	-12.124356	0	
195	N225	7.916667	2.5	-12.124356	0	
196	N226A	8.133173	0	-12.249356	0	
197	N227A	8.133173	2.5	-12.249356	0	
198	N228	8.916667	2.5	-10.392305	0	
199	N229	9.133173	0	-10.517305	0	
200	N230	9.133173	2.5	-10.517305	0	
201	N237	12.916667	0	-3.464102	0	
202	N238	12.916834	2.5	-3.463813	0	
203	N239	13.133174	0	-3.589102	0	
204	N240	13.133174	2.5	-3.589102	0	
205	N241	13.916667	0	-1.732051	0	
206	N242	13.916834	2.5	-1.731762	0	
207	N243	14.133173	0	-1.857051	0	
208	N244	14.133173	2.5	-1.857051	0	
209	N245	8.133173	5	-12.249356	0	
210	N246	8.133173	-1	-12.249356	0	
211	N247	9.133173	5 -1	-10.517305	0	
212	N248	9.133173	5.833333	-10.517305		
213	N259 N260	13.133173		-3.589102	0	
214	N261	14.133173 13.133173	-2.166667	-1.857051 -3.589102	0	
216	N262	14.133173	-2.10000 <i>1</i>	-1.857051	0	
217	N267	0.208333	0	-1.226869	0	
218	N268	0.208333	2.5	-1.226869	0	
219	N269	-0.008173	0	-1.351869	0	
220	N270	-0.008173	2.5	-1.351869	0	
221	N270	1.208333	2.5	-2.95892	0	
222	N272	0.991827	0	-3.08392	0	
223	N273	0.991827	2.5	-3.08392	0	
224	N280	5.208333	0	-9.887123	0	
225	N281	5.2085	2.5	-9.887412	0	
226	N282	4.991827	0	-10.012123	0	
227	N283	4.991827	2.5	-10.012123	0	
441	14200	7.00 1021	۷.۷	-10.012120	<u> </u>	

Company Designer Job Number : Maser Consulting : NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
228	N288	-0.008173	5	-1.351869	0	
229	N289	-0.008173	-1	-1.351869	0	
230	N290	0.991827	5	-3.08392	0	
231	N291	0.991827	-1	-3.08392	0	
232	N302	4.991827	5	-10.012123	0	
233	N304	4.991827	-1	-10.012123	0	
234	N276A	12.0625	0	-4.943562	0	
235	N277A	12.062667	2.5	-4.943273	0	
236	N278A	12.279006	0	-5.068562	0	
237	N279A	12.279006	2.5	-5.068562	0	
238	N280A	12.279006	5.833333	-5.068562	0	
239	N281A	12.279006	-2.166667	-5.068562	0	
240	N290A	9.916667	0	-8.660254	0	
241	N291A	10.133173	0	-8.785254	0	
242	N292A	10.133173	2.5	-8.785254	0	
243	N296	10.133173	5.833333	-8.785254	0	
244	N297	10.133173	-2.166667	-8.785254	0	
245	N262A	11.3125	0	-6.2426	0	
246	N263	11.3125	2.667	-6.2426	0	
247	N264	11.3125	2.5	-6.2426	0	
248	N265	11.3125	-0.167033	-6.2426	0	
249	N266	10.8125	0	-7.108625	0	
250	N267A	10.8125	2.667	-7.108625	0	
251	N268A	10.8125	2.5	-7.108625	0	
252	N269A	10.8125	-0.167033	-7.108625	0	
253	N271A	3.604167	0	-7.108625	0	
254	N272A	3.604167	2.667	-7.108625	0	
255	N273A	3.604167	2.5	-7.108625	0	
256	N274	3.604167	-0.167033	-7.108625	0	
257	N275	3.104167	0	-6.2426	0	
258	N276	3.104167	2.667	-6.2426	0	
259	N277	3.104167	2.5	-6.2426	0	
260	N278	3.104167	-0.167033	-6.2426	0	
261	N277B	4.90625	0	-3.1213	0	
262	N278B	4.90625	-0.167033	-3.1213	0	
263	N279	4.90625	2.5	-3.1213	0	
264	N280B	4.90625	2.667	-3.1213	0	
265	N290B	9.510417	0	-3.1213	0	
266	N291B	9.510417	-0.167033	-3.1213	0	
267	N292	9.510417	2.5	-3.1213	0	
268	N293	9.510417	2.667	-3.1213	0	
269	N303A	7.208333	0	-7.108625	0	
270	N304A	7.208333	-0.167033	-7.108625	0	
271	N305A	7.208333	2.5	-7.108625	0	
272	N306	7.208333	2.667	-7.108625	0	
273	N292C	7.208333	0	-4.450408	0	
274	N295	11.5	0	.25	0	
275	N298A	11.5	-1	0.25	0	
276	N321	0.991827	4	-3.08392	0	
277	N302A	3.354167	0	-6.675612	0	
278	N303B	3.354333	2.5	-6.675901	0	
279	N304B	3.13766	0	-6.800612	0	
280	N305C	3.13766	2.5	-6.800612	0	
281	N306A	3.13766	5.83333	-6.800612	0	
282	N307	3.13766	-2.166666	-6.800612	0	
283	N290C	6.208333	0	-11.619174	0	
284	N291C	6.2085	2.5	-11.619463	0	

: Maser Consulting

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
285	N292B	5.991827	0	-11.744174	0	·
286	N293B	5.991827	2.5	-11.744174	0	
287	N294	5.991827	5	-11.744174	0	
288	N295B	5.991827	-1	-11.744174	0	
289	N290D	2.208187	0	-4.69007	0	
290	N291D	1.991681	0	-4.81507	0	
291	N292D	1.991681	2.5	-4.81507	0	
292	N293A	1.991681	5.833333	-4.81507	0	
293	N294A	1.991681	-2.166667	-4.81507	0	
294	N294B	1.5	5	.25	0	
295	N295A	1.5	-1	.25	0	
296	N296A	1.5	4.5	.25	0	
297	N297A	1.302083	4.5	.25	0	
298	N298	1.5	4.5	1	0	
299	N299	1.302083	4.5	1	0	
300	N300	1.302083	4.5	.125	0	
301	N301	1.302083	4.5	1.125	0	
302	N302B	1.5	5	.25	0	
303	N303	1.302083	5	.25	0	
304	N304C	1.5	5	1	0	
305	N305	1.302083	5	1	0	
306	N306B	1.302083	5	.125	0	
307	N307A	1.302083	5	1.125	0	
308	N308	0.342308	6	-3.45892	0	
309	N309	0.342308	-2	-3.45892	0	
310	N310	0.991827	4.5	-3.08392	0	
311	N311	1.090785	4.5	-3.255321	0	
312	N312	0.342308	4.5	-3.45892	0	
313	N313	0.441266	4.5	-3.630321	0	
314	N314	1.199038	4.5	-3.192821	0	
315	N315	0.333013	4.5	-3.692821	0	
316	N316	0.991827	5	-3.08392	0	
317	N317	1.090785	5	-3.255321	0	
318	N318	0.342308	5	-3.45892	0	
319	N319	0.441266	5	-3.630321	0	
320	N320	1.199038	5	-3.192821	0	
321	N321A	0.333013	5	-3.692821	0	

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	Antenna Pipe	PIPE 2.0	Beam	Pipe	A53 Gr. B	Typical	1.02	.627	.627	1.25
2	Mod FH	PIPE_2.5	Beam	Pipe	A53 Gr. B	Typical	1.61	1.45	1.45	2.89
3	Face Angle	L3X3X4	Beam	Single Angle	A36 Gr.36	Typical	1.44	1.23	1.23	.031
4	Face Bracing	L2x2x3	Beam	Single Angle	A36 Gr.36	Typical	.722	.271	.271	.009
5	Corner Angle	L6X3.5X6	Beam	Single Angle	A36 Gr.36	Typical	3.44	3.33	12.9	.168
6	Standoff Arm	L3.5X3.5X6	Beam	Single Angle	A36 Gr.36	Typical	2.5	2.86	2.86	.123
7	Cross Angle	L3X3X4	Beam	Single Angle	A36 Gr.36	Typical	1.44	1.23	1.23	.031
8	Standoff Bracing	L2x2x3	Beam	Single Angle	A36 Gr.36	Typical	.722	.271	.271	.009
9	Mod Support Rail	L3X3X4	Beam	Single Angle	A36 Gr.36	Typical	1.44	1.23	1.23	.031
10	Mod Stabilizer	L2.5x2.5x4	Beam	Single Angle	A36 Gr.36	Typical	1.19	.692	.692	.026
11	Pipe Bracing	PIPE_2.0	Beam	Pipe	A53 Gr. B	Typical	1.02	.627	.627	1.25

Company Designer Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1	Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A53 Gr. B	29000	11154	.3	.65	.49	35	1.5	60	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
5	A500 Gr. B 42	29000	11154	.3	.65	.49	42	1.4	58	1.3
6	A500 Gr. B 46	29000	11154	.3	.65	.49	46	1.4	58	1.3

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
1	M1	N1	N2		270	Face Angle	Beam	Single Angle	A36 Gr.36	Typical
2	M2	N3	N4		180	Face Angle	Beam	Single Angle	A36 Gr.36	Typical
3	M3	N6	N119B		90	Face Bracing	Beam	Single Angle	A36 Gr.36	Typical
4	M4	N118B	N7		90	Face Bracing	Beam	Single Angle	A36 Gr.36	Typical
5	M5	N5	N19		180	Face Bracing	Beam	Single Angle	A36 Gr.36	Typical
6	M6	N4	N22		270	Corner Angle	Beam	Single Angle	A36 Gr.36	Typical
7	M7	N21	N2		90	Corner Angle	Beam	Single Angle	A36 Gr.36	Typical
8	M8	N24	N3		270	Corner Angle	Beam	Single Angle	A36 Gr.36	Typical
9	M9	N1	N23		90	Corner Angle	Beam	Single Angle	A36 Gr.36	Typical
10	M10	N26	N28		270	Standoff Arm	Beam	Single Angle	A36 Gr.36	Typical
11	M11	N25	N27		180	Standoff Arm	Beam	Single Angle	A36 Gr.36	Typical
12	M12	N29	N30		30	Standoff Braci	Beam	Single Angle	A36 Gr.36	Typical
13	M13	N31	N32		30	Standoff Braci	Beam	Single Angle	A36 Gr.36	Typical
14	M14	N33	N34		30	Standoff Braci	Beam	Single Angle	A36 Gr.36	Typical
15	M15	N37	N36		90	Standoff Braci	Beam	Single Angle	A36 Gr.36	Typical
16	M16	N35	N38		90	Standoff Braci	Beam	Single Angle	A36 Gr.36	Typical
17	M17	N47	N48		30	Standoff Braci	Beam	Single Angle	A36 Gr.36	Typical
18	M18	N21	N44		270	Face Angle	Beam	Single Angle	A36 Gr.36	Typical
19	M19	N22	N46		180	Face Angle	Beam	Single Angle	A36 Gr.36	Typical
20	M20	N46	N62		270	Corner Angle	Beam	Single Angle	A36 Gr.36	Typical
21	M21	N61	N44		90	Corner Angle	Beam	Single Angle	A36 Gr.36	Typical
22	M22	N24A	N70		270	Standoff Arm	Beam	Single Angle	A36 Gr.36	Typical
23	M23	N23A	N69		180	Standoff Arm	Beam	Single Angle	A36 Gr.36	Typical
24	M24	N71	N72		150	Standoff Braci	Beam	Single Angle	A36 Gr.36	Typical
25	M25	N73	N74		150	Standoff Braci	Beam	Single Angle	A36 Gr.36	Typical
26	M26	N51	N78		90	Standoff Braci	Beam	Single Angle	A36 Gr.36	Typical
27	M27	N77	N80		90	Standoff Braci	Beam	Single Angle	A36 Gr.36	Typical
28	M28	N81	N82		150	Standoff Braci	Beam	Single Angle	A36 Gr.36	Typical
29	M29	N61	N23		270	Face Angle	Beam	Single Angle	A36 Gr.36	Typical
30	M30	N62	N24		180	Face Angle	Beam	Single Angle	A36 Gr.36	Typical
31	M31	N66	N112		270	Standoff Arm	Beam	Single Angle	A36 Gr.36	Typical
32	M32	N65	N111		180	Standoff Arm	Beam	Single Angle	A36 Gr.36	Typical
33	M33	N113	N114		270	Standoff Braci	Beam	Single Angle	A36 Gr.36	Typical
34	M34	N115	N116		270	Standoff Braci	Beam	Single Angle	A36 Gr.36	Typical
35	M35	N83	N120		90	Standoff Braci	Beam	Single Angle	A36 Gr.36	Typical
36	M36	N119	N122		90	Standoff Braci	Beam	Single Angle	A36 Gr.36	Typical
37	M37	N171	N183		270	Cross Angle	Beam	Single Angle	A36 Gr.36	Typical
38	M38	N181	N178		270	Cross Angle	Beam	Single Angle	A36 Gr.36	Typical
39	M39	N176	N173		270	Cross Angle	Beam	Single Angle	A36 Gr.36	Typical
40	M40	N204A	N171			RIGID	None	None	RIGID	Typical
41	M41	N184	N201			RIGID	None	None	RIGID	Typical
42	M42	N209	N183			RIGID	None	None	RIGID	Typical
43	M43	N208	N181			RIGID	None	None	RIGID	Typical
44	M44	N188	N203A			RIGID	None	None	RIGID	Typical
45	M45	N207	N178			RIGID	None	None	RIGID	Typical

Company Designer Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Primary Data (Continued)

M47 M205A M173 RIGID None None RIGID Typical		Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
M84 M84 M186 M202 RIGID None None RIGID Typical	46	M46	N206A	N176			RIGID	None	None	RIGID	Typical
M49	47	M47	N205A	N173			RIGID	None	None	RIGID	Typical
Section Sect	48	M48	N186	N202			RIGID	None	None	RIGID	Typical
ST	49	M49	N210	N215		180	Cross Angle	Beam	Single Angle		Typical
S2	50	M50	N214	N213		180	Cross Angle	Beam	Single Angle		Typical
Signature Sign	51	M51	N212	N211		180	Cross Angle	Beam	Single Angle	A36 Gr.36	Typical
S4	52	M52	N170	N210			RIGID	None	None	RIGID	Typical
Section Sect	53	M53	N183A	N219			RIGID	None	None	RIGID	Typical
Section Sect	54	M54	N182	N215			RIGID	None	None	RIGID	Typical
S7	55	M55	N180	N214			RIGID	None	None	RIGID	Typical
S7	56	M56	N187	N221			RIGID	None	None	RIGID	Typical
Section Sect	57	M57	N177	N213			RIGID	None	None	RIGID	Typical
Fig. M59 M172 N211 RIGID None None RIGID Typical	58	M58	N175	N212			RIGID		None	RIGID	Typical
RIGID None None RIGID Typical				N211							Typical
61 M61 N115B N113A 180 Face Bracing Beam Single Angle A36 Gr.36 Typical G3 62 M62 N115B N113A 180 Face Bracing Beam Single Angle A36 Gr.36 Typical G4 63 M63 N111A N114A 90 Face Bracing Beam Single Angle A36 Gr.36 Typical G4 64 M64 N118A N123 90 Face Bracing Beam Single Angle A36 Gr.36 Typical G5 65 M65 N12A N12O 90 Face Bracing Beam Single Angle A36 Gr.36 Typical G6 66 M66 N117A N12O 180 Face Bracing Beam Single Angle A36 Gr.36 Typical G7 67 M67 N126 N130 180 Face Bracing Beam Single Angle A36 Gr.36 Typical G8 68 M68 N129 N127 180 Face Bracing Beam Single Angle A36 Gr.36 Typical G7 70 M70 N132 N137 90 Face Bracing Beam Single Angle A36 Gr.36 Typical G7 71 M71 N131 N134 180 Face Bracing B				N220						RIGID	
62 M62 N115B N113A 180 Face Bracing land Beam Single Angle A36 Gr.36 Typical Typical A36 M64 A36 Gr.36 Typical A36 Gr.36 Typical A36 M64 N118A N123 90 Face Bracing land Beam Single Angle A36 Gr.36 Typical A36 Gr.36 Typical A36 M66 N122A N119C 90 Face Bracing land Beam Single Angle A36 Gr.36 Typical A36 Gr.36 Typical A36 Gr.36 Typical A36 Gr.36 Typical A36 M66 N17A N120A 180 Face Bracing land Beam Single Angle A36 Gr.36 Typical A36 Gr.36 Typical A36 M68 N129 N127 180 Face Bracing land Beam Single Angle A36 Gr.36 Typical A36 Gr.36 Ty	61	M61	N112A	N116D		180	Face Bracing		Single Angle	A36 Gr.36	
63 M63	62	M62	N115B	N113A		180				A36 Gr.36	Typical
64 M64 N112A N12C 90 Face Bracing Beam Single Angle A36 Gr.36 Typical 65 M65 N122A N119C 90 Face Bracing Beam Single Angle A36 Gr.36 Typical 66 M66 N117A N120A 180 Face Bracing Beam Single Angle A36 Gr.36 Typical 67 M67 N126 N130 180 Face Bracing Beam Single Angle A36 Gr.36 Typical 68 M68 N129 N127 180 Face Bracing Beam Single Angle A36 Gr.36 Typical 69 M69 N125 N128 90 Face Bracing Beam Single Angle A36 Gr.36 Typical 70 M70 N132 N137 90 Face Bracing Beam Single Angle A36 Gr.36 Typical 72 M72 N131 N134 180 Face Bracing Beam Single Angle A36 Gr.36	63	M63		N114A		90					Typical
65 M65 N122A N119C 90 Face Bracing Beam Single Angle A36 Gr.36 Typical Typical A36 Gr.36	64	M64	N118A	N123		90	Face Bracing			A36 Gr.36	
66 M66 N117A N120A 180 Face Bracing Beam Single Angle A36 Gr.36 Typical Typical A36 Gr.36 Typical A36						90				A36 Gr.36	
67 M67 N126 N130 180 Face Bracing Beam Single Angle A36 Gr.36 Typical 68 M68 N129 N127 180 Face Bracing Beam Single Angle A36 Gr.36 Typical 69 M69 N125 N128 90 Face Bracing Beam Single Angle A36 Gr.36 Typical 70 M70 N132 N137 90 Face Bracing Beam Single Angle A36 Gr.36 Typical 71 M71 N136 N133 90 Face Bracing Beam Single Angle A36 Gr.36 Typical 72 M72 N131 N144 180 Face Bracing Beam Single Angle A36 Gr.36 Typical 73 M73 N140 N141 180 Face Bracing Beam Single Angle A36 Gr.36 Typical 74 M74 N143 N141 180 Face Bracing Beam Single Angle A36 Gr.36 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
68 M68 N129 N127 180 Face Bracing Beam Single Angle A36 Gr.36 Typical 69 M69 N125 N128 90 Face Bracing Beam Single Angle A36 Gr.36 Typical 70 M70 N132 N137 90 Face Bracing Beam Single Angle A36 Gr.36 Typical 71 M71 N136 N133 90 Face Bracing Beam Single Angle A36 Gr.36 Typical 72 M72 N131 N134 180 Face Bracing Beam Single Angle A36 Gr.36 Typical 73 M73 N140 N144 180 Face Bracing Beam Single Angle A36 Gr.36 Typical 74 M74 N143 N141 180 Face Bracing Beam Single Angle A36 Gr.36 Typical 75 M75 N139 N142 90 Face Bracing Beam Single Angle A36 Gr.36 <td< td=""><td></td><td></td><td></td><td>N130</td><td></td><td></td><td></td><td></td><td></td><td>A36 Gr.36</td><td></td></td<>				N130						A36 Gr.36	
69 M69 N125 N128 90 Face Bracing Beam Grace Bracing Beam Single Angle A36 Gr.36 Typical A36 Gr.36 Typical Single Angle A36 Gr.36											
70 M70 N132 N137 90 Face Bracing Beam Face Bracing Beam Single Angle A36 Gr.36 Typical A36 Gr.36											
71 M71 N136 N133 90 Face Bracing Beam Single Angle A36 Gr.36 Typical 72 M72 N131 N134 180 Face Bracing Beam Single Angle A36 Gr.36 Typical 73 M73 N140 N144 180 Face Bracing Beam Single Angle A36 Gr.36 Typical 74 M74 N143 N141 180 Face Bracing Beam Single Angle A36 Gr.36 Typical 75 M75 N139 N142 90 Face Bracing Beam Single Angle A36 Gr.36 Typical 76 M76 N151A N150 RIGID None None<											
72 M72 N131 N134 180 Face Bracing Beam Single Angle A36 Gr.36 Typical Typical A36 Mr.36 Typical A36 Gr.36 Typical M36 Gr											
73 M73 N140 N144 180 Face Bracing Beam Single Angle A36 Gr.36 Typical Typical Typical Typical Single Angle A36 Gr.36 Typical Typical Typical Single Angle A36 Gr.36 Mone RiGiD Typical Single Angle A36 Gr.36 Typical Typical Single Angle A36 Gr.36 Mone RiGiD Typical Single Angle A36 Gr.36 Typical Single Angle A36 Gr.36 Mone RiGiD Typical Single Angle A36 Gr.36 Mone RiGiD Typical Single Angle A36 Gr.36 Mone A36 Gr.36 Typical Single Angle A36 Gr.36 Mone A36 Gr.36 Mone A36 Gr.36 Mone A36 Gr.36 Mone A36 Gr.36 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
74 M74 N143 N141 180 Face Bracing Beam Single Angle A36 Gr.36 Typical Typical Typical Typical RIGID 75 M75 N139 N142 90 Face Bracing Beam Single Angle A36 Gr.36 Typical Typical Typical A36 Gr.36 Typical T											
75 M75 N139 N142 90 Face Bracing RIGID Beam None A36 Gr.36 Typical Typical Typical Typical 76 M76 N151A N150 RIGID None None RIGID Typical Typical 77 M77 N149 N152A RIGID None None None RIGID Typical 78 M78 N155 N154 RIGID None None None RIGID Typical 80 M80 N65 N173B RIGID None None None RIGID Typical 81 M81 N66 N174A RIGID None None RIGID Typical 82 M82 N25 N178A RIGID None None RIGID Typical 83 M83 N26 N179 RIGID None None RIGID Typical 84 M84 N23A N183B RIGID None None <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
76 M76 N151A N150 RIGID None None RIGID Typical 77 M77 N149 N152A RIGID None None RIGID Typical 78 M78 N155 N154 RIGID None None RIGID Typical 80 M80 N65 N173B RIGID None None RIGID Typical 81 M81 N66 N174A RIGID None None RIGID Typical 82 M82 N25 N178A RIGID None None RIGID Typical 83 M83 N26 N179 RIGID None None RIGID Typical 84 M84 N23A N183B RIGID None None RIGID Typical 85 M85 N24A N184A RIGID None None RIGID Typical 87 M87 N179A <td></td>											
77 M77 N149 N152A RIGID None None RIGID Typical 78 M78 N155 N154 RIGID None None RIGID Typical 79 M79 N153 N156 RIGID None None RIGID Typical 80 M80 N65 N173B RIGID None None RIGID Typical 81 M81 N66 N174A RIGID None None RIGID Typical 82 M82 N25 N178A RIGID None None RIGID Typical 84 M84 N23A N183B RIGID None None RIGID Typical 85 M85 N24A N184A RIGID None None RIGID Typical 86 M86 N180A N182B RIGID None None RIGID Typical 87 M87 N179A<											
78 M78 N155 N154 RIGID None None RIGID Typical 79 M79 N153 N156 RIGID None None RIGID Typical 80 M80 N65 N173B RIGID None None RIGID Typical 81 M81 N66 N174A RIGID None None RIGID Typical 82 M82 N25 N178A RIGID None None RIGID Typical 83 M83 N26 N179 RIGID None None RIGID Typical 84 M84 N23A N183B RIGID None None RIGID Typical 85 M85 N24A N184B RIGID None None RIGID Typical 86 M86 N180A N181A RIGID None None RIGID Typical 88 M88 N184B <td></td>											
79 M79 N153 N156 RIGID None None RIGID Typical 80 M80 N65 N173B RIGID None None RIGID Typical 81 M81 N66 N174A RIGID None None RIGID Typical 82 M82 N25 N178A RIGID None None RIGID Typical 84 M83 N26 N179 RIGID None None RIGID Typical 84 M84 N23A N183B RIGID None None RIGID Typical 85 M85 N24A N184A RIGID None None RIGID Typical 86 M86 N180A N182B RIGID None None RIGID Typical 87 M87 N179A N181A RIGID None None RIGID Typical 88 M88 N184B<											
80 M80 N65 N173B RIGID None None RIGID Typical 81 M81 N66 N174A RIGID None None RIGID Typical 82 M82 N25 N178A RIGID None None None RIGID Typical 83 M83 N26 N179 RIGID None None None RIGID Typical 84 M84 N23A N183B RIGID None None None RIGID Typical 85 M85 N24A N184A RIGID None None RIGID Typical 86 M86 N180A N182B RIGID None None RIGID Typical 87 M87 N179A N181A RIGID None None RIGID Typical 89 M88 N184B N186A RIGID None None RIGID Typical											
81 M81 N66 N174A RIGID None None RIGID Typical 82 M82 N25 N178A RIGID None None RIGID Typical 83 M83 N26 N179 RIGID None None RIGID Typical 84 M84 N23A N183B RIGID None None RIGID Typical 85 M85 N24A N184A RIGID None None RIGID Typical 86 M86 N180A N182B RIGID None None RIGID Typical 87 M87 N179A N181A RIGID None None RIGID Typical 88 M88 N184B N186A RIGID None None RIGID Typical 89 M89 N116D N189 RIGID None None RIGID Typical 90 M90 N18											
82 M82 N25 N178A RIGID None None RIGID Typical 83 M83 N26 N179 RIGID None None RIGID Typical 84 M84 N23A N183B RIGID None None RIGID Typical 85 M85 N24A N184A RIGID None None RIGID Typical 86 M86 N180A N182B RIGID None None RIGID Typical 87 M87 N179A N181A RIGID None None RIGID Typical 88 M88 N184B N186A RIGID None None RIGID Typical 90 M90 N186B N188A RIGID None None RIGID Typical 91 M91 N189A N192 RIGID None None RIGID Typical 93 M92 N											
83 M83 N26 N179 RIGID None None RIGID Typical 84 M84 N23A N183B RIGID None None RIGID Typical 85 M85 N24A N184A RIGID None None RIGID Typical 86 M86 N180A N182B RIGID None None RIGID Typical 87 M87 N179A N181A RIGID None None RIGID Typical 88 M88 N184B N186A RIGID None None RIGID Typical 89 M89 N116D N189 RIGID None None RIGID Typical 90 M90 N186B N188A RIGID None None RIGID Typical 91 M91 N189A N192 RIGID None None RIGID Typical 92 M92				N178A							
84 M84 N23A N183B RIGID None None RIGID Typical 85 M85 N24A N184A RIGID None None RIGID Typical 86 M86 N180A N182B RIGID None None RIGID Typical 87 M87 N179A N181A RIGID None None RIGID Typical 88 M88 N184B N186A RIGID None None RIGID Typical 89 M89 N116D N189 RIGID None None RIGID Typical 90 M90 N186B N188A RIGID None None RIGID Typical 91 M91 N189A N192 RIGID None None RIGID Typical 92 M92 N116C N191 RIGID None None RIGID Typical 93 M93 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
85 M85 N24A N184A RIGID None None RIGID Typical 86 M86 N180A N182B RIGID None None RIGID Typical 87 M87 N179A N181A RIGID None None RIGID Typical 88 M88 N184B N186A RIGID None None RIGID Typical 89 M89 N116D N189 RIGID None None RIGID Typical 90 M90 N186B N188A RIGID None None RIGID Typical 91 M91 N189A N192 RIGID None None RIGID Typical 92 M92 N116C N191 RIGID None None RIGID Typical 93 M93 N193 N195 RIGID None None RIGID Typical 94 M94 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
86 M86 N180A N182B RIGID None None RIGID Typical 87 M87 N179A N181A RIGID None None RIGID Typical 88 M88 N184B N186A RIGID None None RIGID Typical 89 M89 N116D N189 RIGID None None RIGID Typical 90 M90 N186B N188A RIGID None None RIGID Typical 91 M91 N189A N192 RIGID None None RIGID Typical 92 M92 N116C N191 RIGID None None RIGID Typical 93 M93 N193 N195 RIGID None None RIGID Typical 94 M94 N192A N194 RIGID None None RIGID Typical 95 M95 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Typical</td></td<>											Typical
87 M87 N179A N181A RIGID None None RIGID Typical 88 M88 N184B N186A RIGID None None RIGID Typical 89 M89 N116D N189 RIGID None None RIGID Typical 90 M90 N186B N188A RIGID None None RIGID Typical 91 M91 N189A N192 RIGID None None RIGID Typical 92 M92 N116C N191 RIGID None None RIGID Typical 93 M93 N193 N195 RIGID None None RIGID Typical 94 M94 N192A N194 RIGID None None RIGID Typical 95 M95 N197 N199 RIGID None None RIGID Typical 96 M96 N											Typical
88 M88 N184B N186A RIGID None None RIGID Typical 89 M89 N116D N189 RIGID None None RIGID Typical 90 M90 N186B N188A RIGID None None RIGID Typical 91 M91 N189A N192 RIGID None None RIGID Typical 92 M92 N116C N191 RIGID None None RIGID Typical 93 M93 N193 N195 RIGID None None RIGID Typical 94 M94 N192A N194 RIGID None None RIGID Typical 95 M95 N197 N199 RIGID None None RIGID Typical 96 M96 N196 N198 RIGID None None RIGID Typical 98 MP1A N1											Typical
89 M89 N116D N189 RIGID None None RIGID Typical 90 M90 N186B N188A RIGID None None RIGID Typical 91 M91 N189A N192 RIGID None None RIGID Typical 92 M92 N116C N191 RIGID None None RIGID Typical 93 M93 N193 N195 RIGID None None RIGID Typical 94 M94 N192A N194 RIGID None None RIGID Typical 95 M95 N197 N199 RIGID None None RIGID Typical 96 M96 N196 N198 RIGID None None RIGID Typical 97 MP1A N196A N197A Antenna Pipe Beam Pipe A53 Gr. B Typical 98 MP2A											Typical
90 M90 N186B N188A RIGID None None RIGID Typical 91 M91 N189A N192 RIGID None None RIGID Typical 92 M92 N116C N191 RIGID None None RIGID Typical 93 M93 N193 N195 RIGID None None RIGID Typical 94 M94 N192A N194 RIGID None None RIGID Typical 95 M95 N197 N199 RIGID None None RIGID Typical 96 M96 N196 N198 RIGID None None RIGID Typical 97 MP1A N196A N197A Antenna Pipe Beam Pipe A53 Gr. B Typical 98 MP2A N198A N199A Antenna Pipe Beam Pipe A53 Gr. B Typical 99 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Typical</td></td<>											Typical
91 M91 N189A N192 RIGID None None RIGID Typical 92 M92 N116C N191 RIGID None None RIGID Typical 93 M93 N193 N195 RIGID None None RIGID Typical 94 M94 N192A N194 RIGID None None RIGID Typical 95 M95 N197 N199 RIGID None None RIGID Typical 96 M96 N196 N198 RIGID None None RIGID Typical 97 MP1A N196A N197A Antenna Pipe Beam Pipe A53 Gr. B Typical 98 MP2A N198A N199A Antenna Pipe Beam Pipe A53 Gr. B Typical 99 MP4A N202A N203 Antenna Pipe Beam Pipe A53 Gr. B Typical											
92 M92 N116C N191 RIGID None None RIGID Typical 93 M93 N193 N195 RIGID None None RIGID Typical 94 M94 N192A N194 RIGID None None RIGID Typical 95 M95 N197 N199 RIGID None None RIGID Typical 96 M96 N196 N198 RIGID None None RIGID Typical 97 MP1A N196A N197A Antenna Pipe Beam Pipe A53 Gr. B Typical 98 MP2A N198A N199A Antenna Pipe Beam Pipe A53 Gr. B Typical 99 MP4A N202A N203 Antenna Pipe Beam Pipe A53 Gr. B Typical											
93 M93 N193 N195 RIGID None None RIGID Typical 94 M94 N192A N194 RIGID None None RIGID Typical 95 M95 N197 N199 RIGID None None RIGID Typical 96 M96 N196 N198 RIGID None None RIGID Typical 97 MP1A N196A N197A Antenna Pipe Beam Pipe A53 Gr. B Typical 98 MP2A N198A N199A Antenna Pipe Beam Pipe A53 Gr. B Typical 99 MP4A N202A N203 Antenna Pipe Beam Pipe A53 Gr. B Typical											
94 M94 N192A N194 RIGID None None RIGID Typical 95 M95 N197 N199 RIGID None None RIGID Typical 96 M96 N196 N198 RIGID None None RIGID Typical 97 MP1A N196A N197A Antenna Pipe Beam Pipe A53 Gr. B Typical 98 MP2A N198A N199A Antenna Pipe Beam Pipe A53 Gr. B Typical 99 MP4A N202A N203 Antenna Pipe Beam Pipe A53 Gr. B Typical											
95 M95 N197 N199 RIGID None None RIGID Typical 96 M96 N196 N198 RIGID None None RIGID Typical 97 MP1A N196A N197A Antenna Pipe Beam Pipe A53 Gr. B Typical 98 MP2A N198A N199A Antenna Pipe Beam Pipe A53 Gr. B Typical 99 MP4A N202A N203 Antenna Pipe Beam Pipe A53 Gr. B Typical											Typical
96 M96 N196 N198 RIGID None None RIGID Typical 97 MP1A N196A N197A Antenna Pipe Beam Pipe A53 Gr. B Typical 98 MP2A N198A N199A Antenna Pipe Beam Pipe A53 Gr. B Typical 99 MP4A N202A N203 Antenna Pipe Beam Pipe A53 Gr. B Typical											Typical
97MP1AN196AN197AAntenna PipeBeamPipeA53 Gr. BTypical98MP2AN198AN199AAntenna PipeBeamPipeA53 Gr. BTypical99MP4AN202AN203Antenna PipeBeamPipeA53 Gr. BTypical											
98MP2AN198AN199AAntenna PipeBeamPipeA53 Gr. BTypical99MP4AN202AN203Antenna PipeBeamPipeA53 Gr. BTypical											Typical
99 MP4A N202A N203 Antenna Pipe Beam Pipe A53 Gr. B Typical							-				

: Maser Consulting

Company Designer Job Number : NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
103	MP1C	N217A	N218			Antenna Pipe	Beam		A53 Gr. B	Typical
104	MP1B	N220A	N221A			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
105	M105	N225	N227A			RIGID	None	None	RIGID	Typical
106	M106	N224	N226A			RIGID	None	None	RIGID	Typical
107	M107	N228	N230			RIGID	None	None	RIGID	Typical
108	M108	N125	N229			RIGID	None	None	RIGID	Typical
109	M109	N238	N240			RIGID	None	None	RIGID	Typical
110	M110	N237	N239			RIGID	None	None	RIGID	Typical
111	M111	N242	N244			RIGID	None	None	RIGID	Typical
112	M112	N241	N243			RIGID	None	None	RIGID	Typical
113	MPC	N245	N246			Antenna Pipe	Beam		A53 Gr. B	Typical
114	MP2C	N247	N248			Antenna Pipe	Beam		A53 Gr. B	Typical
115	MP5C	N259	N261			Antenna Pipe	Beam		A53 Gr. B	Typical
116	MP6C	N260	N262			Antenna Pipe	Beam		A53 Gr. B	Typical
117	M117	N268	N270			RIGID	None	None	RIGID	Typical
118	M118	N267	N269			RIGID	None	None	RIGID	Typical
119	M119	N271	N273			RIGID	None	None	RIGID	Typical
120	M120	N139	N272			RIGID	None	None	RIGID	Typical
121	M121	N281	N283			RIGID	None	None	RIGID	Typical
122	M122	N280	N282			RIGID	None	None	RIGID	Typical
123	MPB	N288	N289			Antenna Pipe	Beam		A53 Gr. B	Typical
124	MPB2	N290	N291			Antenna Pipe	Beam		A53 Gr. B	Typical
125	MP5B	N302	N304			Antenna Pipe	Beam		A53 Gr. B	Typical
126	M129	N277A	N279A			RIGID	None	None	RIGID	Typical
127	M130	N276A	N278A			RIGID	None	None	RIGID	Typical
128	MP4C	N280A	N281A			Antenna Pipe	Beam		A53 Gr. B	Typical
129	M132	N130	N292A			RIGID	None	None	RIGID	Typical
130	M133	N290A	N291A			RIGID	None	None	RIGID	Typical
131	MP3C	N296	N297			Antenna Pipe	Beam		A53 Gr. B	Typical
132	M138	N264	N263			RIGID	None	None	RIGID	Typical
133	M139	N262A	N265			RIGID	None	None	RIGID	Typical
134	M140	N268A	N267A			RIGID	None	None	RIGID	Typical
135	M141	N266	N269A			RIGID	None	None	RIGID	Typical
136	M142	N273A	N272A			RIGID	None	None	RIGID	Typical
137	M143	N271A	N274			RIGID	None	None	RIGID	Typical
138	M144	N277	N274			RIGID	None	None	RIGID	Typical
139	M145	N277	N278			RIGID	None	None	RIGID	Typical
140	M146	N152A	N278		180		Beam	Single Angle	A36 Gr.36	Typical
141	M147	N150	N276		270	Cross Angle Cross Angle	Beam	Single Angle		Typical
141	M148	N277B	N278B		270	RIGID	None	None None	RIGID	
									RIGID	Typical Typical
143 144	M149 M154	N280B N265	N279 N156		180	RIGID Cross Angle	None	None Single Angle	A36 Gr.36	
144	M155	N263	N156		270		Beam			Typical
145	M156		N291B		210	Cross Angle RIGID	Beam	Single Angle	RIGID	Typical
146		N290B N293	N291B N292			RIGID	None	None	RIGID	Typical
	M157				100		None	None Single Angle	A36 Gr.36	Typical
148	M162	N274	N269A		180	Cross Angle	Beam	Single Angle		Typical
149	M163	N272A	N267A		270	Cross Angle	Beam	Single Angle	A36 Gr.36	Typical
150	M164	N303A	N304A			RIGID	None	None	RIGID	Typical
151	M165	N306	N305A			RIGID	None	None	RIGID	Typical
152	M169	N111A	N295			RIGID	None	None	RIGID	Typical
153	MP3A	N200	N298A			Antenna Pipe	Beam		A53 Gr. B	Typical
154	M173	N303B	N305C			RIGID	None	None	RIGID	Typical
155	M174	N302A	N304B			RIGID	None	None	RIGID	Typical
156	MP4B	N306A	N307			Antenna Pipe	Beam		A53 Gr. B	Typical
157	M160	N291C	N293B			RIGID	None	None	RIGID	Typical
158	M161	N290C	N292B			RIGID	None	None	RIGID	Typical
159	MP6B	N294	N295B		<u> </u>	Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical

: Maser Consulting

: NL

Company Designer Job Number : 21781092A

Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
160	M160A	N144	N292D			RIGID	None	None	RIGID	Typical
161	M161A	N290D	N291D			RIGID	None	None	RIGID	Typical
162	MP3B	N293A	N294A			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
163	M163A	N294B	N295A			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
164	M164A	N296A	N297A			RIGID	None	None	RIGID	Typical
165	M165A	N298	N299			RIGID	None	None	RIGID	Typical
166	M166	N301	N300			Pipe Bracing	Beam	Pipe	A53 Gr. B	Typical
167	M167	N302B	N303			RIGID	None	None	RIGID	Typical
168	M168	N304C	N305			RIGID	None	None	RIGID	Typical
169	M169A	N307A	N306B			Pipe Bracing	Beam	Pipe	A53 Gr. B	Typical
170	MP2B	N308	N309			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
171	M171	N310	N311			RIGID	None	None	RIGID	Typical
172	M172	N312	N313			RIGID	None	None	RIGID	Typical
173	M173A	N315	N314			Pipe Bracing	Beam	Pipe	A53 Gr. B	Typical
174	M174A	N316	N317			RIGID	None	None	RIGID	Typical
175	M175	N318	N319			RIGID	None	None	RIGID	Typical
176	M176	N321A	N320			Pipe Bracing	Beam	Pipe	A53 Gr. B	Typical

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat	Analysis	Inactive	Seismic
1	M1		0000X0				Yes	Default			None
2	M2	00000X	00000X				Yes	Default			None
3	M3	BenPIN	BenPIN				Yes				None
4	M4	BenPIN	BenPIN				Yes				None
5	M5	BenPIN	BenPIN				Yes				None
6	M6						Yes	Default			None
7	M7						Yes				None
8	M8						Yes	Default			None
9	M9						Yes	Default			None
10	M10	0000X0	0000X0				Yes	Default			None
11	M11	00000X	00000X				Yes	Default			None
12	M12	BenPIN	BenPIN				Yes	Default			None
13	M13	BenPIN	BenPIN				Yes				None
14	M14	BenPIN	BenPIN				Yes				None
15	M15	BenPIN	BenPIN				Yes				None
16	M16	BenPIN	BenPIN				Yes				None
17	M17	BenPIN	BenPIN				Yes				None
18	M18	0000X0	0000X0				Yes	Default			None
19	M19	00000X	00000X				Yes	Default			None
20	M20						Yes	Default			None
21	M21						Yes				None
22	M22	0000X0	0000X0				Yes	Default			None
23	M23	00000X	00000X				Yes	Default			None
24	M24	BenPIN	BenPIN				Yes	Default			None
25	M25	BenPIN	BenPIN				Yes				None
26	M26	BenPIN	BenPIN				Yes				None
27	M27	BenPIN	BenPIN				Yes				None
28	M28	BenPIN	BenPIN				Yes				None
29	M29	0000X0	0000X0				Yes	Default			None
30	M30	00000X	00000X				Yes	Default			None
31	M31		0000X0				Yes	Default			None
32	M32	00000X	00000X				Yes	Default			None
33	M33	BenPIN	BenPIN				Yes	Default			None
34	M34	BenPIN	BenPIN				Yes				None
35	M35	BenPIN	BenPIN				Yes				None

Nov 23, 2021 5:47 PM

Company Designer Job Number

: Maser Consulting : NL : 21781092A Nov 23, 2021 5:47 PM Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Advanced Data (Continued)

36	Label M36	I Release BenPIN	J Release BenPIN	I Offset[in]	J Offset[in]	T/C Only	Physical Yes	Defl RatAnalysis	Inactive	Seismic None
37	M37	BenPIN	BenPIN				Yes	Default		None
38	M38	BenPIN	OOOXXX				Yes	Default		None
	M39						Yes	Delauit		
39	M40	BenPIN	BenPIN					** NA **		None
40			00000				Yes	** NA **		None
41	M41 M42		000X00				Yes Yes	** NA **		None
	M43						Yes	** NA **		None
43	M44		000000				Yes	** NA **		None
44	M45		000000					** NA **		None
45 46	M46						Yes Yes	** NA **		None
47	M47						Yes	** NA **		None
	M48		00000					** NA **		None
48		DonDIN					Yes			None
49	M49 M50	BenPIN	BenPIN				Yes	Default		None
50	M51	BenPIN	BenPIN				Yes	Default		None
51 52	M52	BenPIN	BenPIN				Yes	** NA **		None
	M53		00000				Yes Yes	** NA **		None
53			000X00					** NA **		None
54	M54						Yes			None
55	M55		00000				Yes	** NA ** ** NA **		None
56	M56		000X00				Yes	** NA **		None
57	M57						Yes	** NA **		None
58	M58						Yes			None
59	M59		00000				Yes	** NA ** ** NA **		None
60	M60	DonDIN	000X00				Yes	INA "		None
61	M61	BenPIN	BenPIN				Yes			None
62	M62	BenPIN	BenPIN				Yes			None
63	M63	BenPIN	BenPIN				Yes			None
64	M64	BenPIN	BenPIN				Yes			None
65	M65	BenPIN	BenPIN				Yes			None
66	M66 M67	BenPIN	BenPIN				Yes			None
67 68	M68	BenPIN	BenPIN				Yes			None
	M69	BenPIN	BenPIN				Yes			None
69	M70	BenPIN	BenPIN				Yes			None
70 71	M71	BenPIN	BenPIN				Yes Yes			None
72	M72	BenPIN BenPIN	BenPIN BenPIN				Yes			None
73	M73						Yes			None
74	M74	BenPIN	BenPIN BenPIN				Yes			None
75	M75	BenPIN BenPIN	BenPIN							None
76	M76	Denriin	Denrin				Yes Yes	** NA **		None None
77	M77						Yes	** NA **		None
78	M78						Yes	** NA **		None
79	M79						Yes	** NA **		None
80	M80		00000				Yes	** NA **		None
81	M81		000X00				Yes	** NA **		None
82	M82		000000				Yes	** NA **		None
83	M83		000X00				Yes	** NA **		
84	M84		000000				Yes	** NA **		None None
85	M85		000X00				Yes	** NA **		None
86	M86		000000				Yes	** NA **		None
87	M87		000X00				Yes	** NA **		None
88	M88		000X00				Yes	** NA **		None
89	M89		000X00				Yes	** NA **		None
90	M90		000000				Yes	** NA **		None
91	M91		000X00				Yes	** NA **		None
92	M92		000X00				Yes	** NA **		None
JZ	IVIJZ		OUCKUU				169	INA		INOILE

: Maser Consulting : NL : 21781092A

Company Designer Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Advanced Data (Continued)

93 M93 OCOXCO Yes "NA " None 94 M94 OCOXCO Yes "NA " None 95 M95 OCOXCO Yes "NA " None 96 M96 OCOXCO Yes "NA " None 97 MP1A OCOXCO Yes "NA " None 98 MP2A Yes None 100 MP5A Yes None 101 MPA Yes None 102 MP6A Yes None 103 MP1C Yes None 104 MP1B Yes None 105 M105 OCOXCO Yes "NA " None 106 M106 OCOXCO Yes "NA " None 107 M107 OCOXCO Yes "NA " None 108 M108 OCOXCO Yes "NA " None 109 M109 OCOXCO Yes "NA " None 110 M110 OCOXCO Yes "NA " None 111 M111 OCOXCO Yes "NA " None 112 M112 OCOXCO Yes "NA " None 113 MPC Yes Default None 114 MP2C Yes Default None 115 MP5C Yes Default None 116 M18 OCOXCO Yes "NA " None 117 M117 OCOXCO Yes "NA " None 118 M18 OCOXCO Yes "NA " None 119 M110 OCOXCO Yes "NA " None 110 M110 OCOXCO Yes "NA " None 111 M111 OCOXCO Yes "NA " None 112 M112 OCOXCO Yes "NA " None 113 MPC Yes Default None 114 MP2C Yes Default None 115 MP5C Yes Default None 119 M118 OCOXCO Yes "NA " None 119 M119 OCOXCO Yes "NA " None 119 M110 OCOXCO Yes "NA " None 110 MP6C Yes Default None 111 M111 OCOXCO Yes "NA " None 112 M12 OCOXCO Yes "NA " NONE 113 MPC Yes Default None 114 MP2C Yes Default None 115 MP5C Yes Default None 116 MP5C Yes Default None 117 M117 OCOXCO Yes "NA " NONE 118 M118 OCOXCO Yes "NA " NONE 119 M119 OCOXCO Yes "NA " NONE 119 M110 OCOXCO Yes "NA " NONE 110 M110 OCOXCO Yes "NA " NONE 111 M117 OCOXCO Yes "NA "		Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat	.Analysis	Inactive	Seismic
95	93	M93										None
96 M96		M94		00000				Yes	** NA **			
99	95	M95		00000				Yes	** NA **			None
99 MP2A Yes Default None 99 MP4A Yes Default None 99 MP5A Yes None None 100 MP5A Yes None 101 MP6A Yes None 102 MP6A Yes None 103 MP1C Yes None 104 MP1B Yes None 106 M106 OOXOO Yes "NA" None 106 M106 OOXOO Yes "NA" None 107 M107 M107 M107 M107 M107 M108 OOXOO Yes "NA" None 108 M108 OOXOO Yes "NA" None 109 M109 OOXOO Yes "NA" None 110 M110 OOXOO Yes "NA" None 111 M111 OOXOO Yes "NA" None 112 M112 OOXOO Yes "NA" None 113 MPC Yes Default None 114 MP2C Yes Default None 115 MP5C Yes Default None 116 MP5C Yes Default None 117 M117 OOXOO Yes "NA" None 118 M118 OOXOO Yes "NA" None 119 M119 OOXOO Yes "NA" None 110 M110 OOXOO Yes "NA" None 111 M111 OOXOO Yes "NA" None 112 M112 OOXOO Yes "NA" None 114 MP2C Yes Default None 115 MP5C Yes Default None 116 MP5C Yes Default None 117 M117 OOXOO Yes "NA" None 118 M118 OOXOO Yes "NA" None 119 M119 OOXOO Yes "NA" None 120 M120 OOXOO Yes "NA" None 120 M120 OOXOO Yes "NA" None 121 M121 OOXOO Yes "NA" None 122 M122 OOXOO Yes "NA" None 124 MP82 Yes Default None 125 MP5B Yes Default None 126 M122 OOXOO Yes "NA" None 127 M130 OOXOO Yes "NA" None 131 MP3C Yes "NA" None 132 M133 M139 Yes "NA" None 133 M144 Yes "NA" None 134 M149 Yes "NA" None 135 M141 Yes "NA" None 136 M142 Yes "NA" None 137 M143 Yes "NA" None 138 M144 Yes "NA" None 141 M147 None None 142 M148 OOXOO Yes "NA" None None 144 M147 None	96	M96		00000				Yes	** NA **			None
99 MP2A	97	MP1A						Yes				None
100 MP5A	98	MP2A						Yes	Default			
101 MPA	99	MP4A						Yes				None
103 MPC	100	MP5A						Yes				None
103 MP1C	101	MPA						Yes				None
105	102	MP6A						Yes				None
105	103	MP1C						Yes				None
106	104	MP1B						Yes				None
107	105	M105		000X00				Yes				None
108		M106		000X00				Yes				None
109								Yes				None
110		M108		000X00				Yes				None
111												None
113												None
113												None
114 MP2C				000X00					** NA **			None
116								Yes				None
116												
117									Default			
118												
119												
120 M120												None
121 M121												
122 M122 OOOXOO Yes ** NA ** None 123 MPB Yes Default None 124 MPB2 Yes Default None 125 MP5B Yes None 126 M129 OOOXOO Yes ** NA ** None 127 M130 OOOXOO Yes ** NA ** None 128 MP4C Yes None 129 M132 OOOXOO Yes ** NA ** None 130 M133 OOOXOO Yes ** NA ** None 131 MP3C M138 Yes NA ** None 132 M138 Yes NA ** None 133 M139 Yes ** NA ** None 134 M140 Yes ** NA ** None 135 M141 Yes ** NA ** None 136 M142 Yes ** NA ** None 137 M143 Yes ** NA ** None 138 M144 Yes ** NA ** None 139 M145 M140 Yes ** NA ** None 139 M145 M140 Yes ** NA ** None 139 M145 M140 Yes ** NA ** None 139 M145 M141 M147 BenPIN BenPIN Yes Default None 141 M147 BenPIN BenPIN Yes Default None 142 M148 OOOXOO Yes ** NA ** None 143 M149 OOOXOO Yes ** NA ** None 144 M148 BenPIN BenPIN Yes Default None 145 M155 BenPIN BenPIN Yes Default None 146 M156 OOOXOO Yes ** NA ** None 147 M157 OOOXOO Yes ** NA ** None 148 M162 BenPIN BenPIN Yes Default None Yes Table Tabl												
123												
124 MPB2 Yes Default None 125 MF5B Yes None 126 M129 OOOXOO Yes ** NA ** None 127 M130 OOOXOO Yes *NA ** None 128 MP4C Yes NA ** None 129 M132 OOOXOO Yes ** NA ** None 130 M133 OOOXOO Yes ** NA ** None 131 MP3C Yes ** NA ** None 132 M138 Yes ** NA ** None 133 M139 Yes ** NA ** None 134 M140 Yes ** NA ** None 135 M141 Yes ** NA ** None 136 M142 Yes ** NA ** None 137 M143 Yes ** NA ** None 138 M144 Yes ** NA ** None				000X00								
125												
126 M129 OOOXOO Yes ** NA ** None 127 M130 OOOXOO Yes ** NA ** None 128 MP4C Yes NA ** None 129 M132 OOOXOO Yes ** NA ** None 130 M133 OOOXOO Yes ** NA ** None 131 MP3C Yes ** NA ** None 132 M138 Yes ** NA ** None 133 M139 Yes ** NA ** None 134 M140 Yes ** NA ** None 135 M141 Yes ** NA ** None 136 M142 Yes ** NA ** None 137 M143 Yes ** NA ** None 138 M144 Yes ** NA ** None 139 M145 Yes ** NA ** None 140 M146 BenPIN Yes Default<									Default			
127 M130 OOOXOO Yes ** NA ** None 128 MP4C Yes None None 129 M132 OOOXOO Yes ** NA ** None 130 M133 OOOXOO Yes ** NA ** None 131 MP3C Yes ** NA ** None 132 M138 Yes ** NA ** None 133 M139 Yes ** NA ** None 134 M140 Yes ** NA ** None 135 M141 Yes ** NA ** None 136 M142 Yes ** NA ** None 137 M143 Yes ** NA ** None 138 M144 Yes *NA ** None 139 M145 Yes *NA ** None 140 M146 BenPIN Yes *NA ** None 140 M148 OOOXOO Yes *NA **				000000					++ b A ++			
128												
129 M132				OOOXOO					^^ NA ^^			
130 M133 OOOXOO Yes ** NA ** None 131 MP3C Yes NA ** None 132 M138 Yes ** NA ** None 133 M139 Yes ** NA ** None 134 M140 Yes ** NA ** None 135 M141 Yes ** NA ** None 136 M142 Yes ** NA ** None 137 M143 Yes ** NA ** None 138 M144 Yes ** NA ** None 139 M145 Yes ** NA ** None 140 M146 BenPIN Yes Default None 141 M147 BenPIN Yes Default None 142 M148 OOOXOO Yes ** NA ** None 143 M149 OOOXOO Yes ** NA ** None 145 M155 BenPIN Yes <td></td> <td></td> <td></td> <td>000000</td> <td></td> <td></td> <td></td> <td></td> <td>** * * * * * * * * * * * * * * * * * * *</td> <td></td> <td></td> <td></td>				000000					** * * * * * * * * * * * * * * * * * * *			
131 MP3C												
132 M138 Yes ** NA ** None 133 M139 Yes ** NA ** None 134 M140 Yes ** NA ** None 135 M141 Yes ** NA ** None 136 M142 Yes ** NA ** None 137 M143 Yes ** NA ** None 138 M144 Yes ** NA ** None 139 M145 Yes ** NA ** None 140 M146 BenPIN Yes Default None 141 M147 BenPIN Yes Default None 142 M148 OOOXOO Yes ** NA ** None 143 M149 OOOXOO Yes *NA ** None 144 M154 BenPIN Yes Default None 145 M155 BenPIN Yes Na ** None 146 M156 OOOXOO <td></td> <td></td> <td></td> <td>OOOXOO</td> <td></td> <td></td> <td></td> <td></td> <td>" NA</td> <td></td> <td></td> <td></td>				OOOXOO					" NA			
133 M139 Yes ** NA ** None 134 M140 Yes ** NA ** None 135 M141 Yes ** NA ** None 136 M142 Yes ** NA ** None 137 M143 Yes ** NA ** None 138 M144 Yes ** NA ** None 139 M145 Yes ** NA ** None 140 M146 BenPIN Yes Default None 141 M147 BenPIN Yes ** NA ** None 142 M148 OOOXOO Yes ** NA ** None 143 M149 OOOXOO Yes ** NA ** None 144 M154 BenPIN Yes Default None 145 M155 BenPIN Yes Default None 145 M156 OOOXOO Yes ** NA ** None 146 M15									** NIA **			
134 M140 Yes ** NA ** None 135 M141 Yes ** NA ** None 136 M142 Yes ** NA ** None 137 M143 Yes ** NA ** None 138 M144 Yes ** NA ** None 139 M145 Yes ** NA ** None 140 M146 BenPIN BenPIN None 141 M147 BenPIN BenPIN None 142 M148 OOOXOO Yes ** NA ** None 143 M149 OOOXOO Yes ** NA ** None 144 M154 BenPIN BenPIN Yes Default None 145 M155 BenPIN BenPIN Yes ** NA ** None 146 M156 OOOXOO Yes ** NA ** None 147 M157 OOOXOO Yes ** NA ** None									** NIA **			
135 M141 Yes ** NA ** None 136 M142 Yes ** NA ** None 137 M143 Yes ** NA ** None 138 M144 Yes ** NA ** None 139 M145 Yes ** NA ** None 140 M146 BenPIN Yes Default None 141 M147 BenPIN Yes Default None 142 M148 OOOXOO Yes ** NA ** None 143 M149 OOOXOO Yes ** NA ** None 144 M154 BenPIN Yes Default None 145 M155 BenPIN BenPIN Yes None 146 M156 OOOXOO Yes ** NA ** None 147 M157 OOOXOO Yes ** NA ** None 148 M162 BenPIN BenPIN Yes Default												
136 M142 Yes ** NA ** None 137 M143 Yes ** NA ** None 138 M144 Yes ** NA ** None 139 M145 Yes ** NA ** None 140 M146 BenPIN Yes Default None 141 M147 BenPIN Yes Default None 142 M148 OOOXOO Yes ** NA ** None 143 M149 OOOXOO Yes ** NA ** None 144 M154 BenPIN Yes Default None 145 M155 BenPIN Yes Default None 146 M156 OOOXOO Yes ** NA ** None 147 M157 OOOXOO Yes ** NA ** None 148 M162 BenPIN BenPIN Yes Default None												
137 M143 Yes ** NA ** None 138 M144 Yes ** NA ** None 139 M145 Yes ** NA ** None 140 M146 BenPIN BenPIN Yes Default None 141 M147 BenPIN Yes Default None 142 M148 OOOXOO Yes ** NA ** None 143 M149 OOOXOO Yes ** NA ** None 144 M154 BenPIN Yes Default None 145 M155 BenPIN Yes Default None 146 M156 OOOXOO Yes ** NA ** None 147 M157 OOOXOO Yes ** NA ** None 148 M162 BenPIN BenPIN Yes Default None												
138 M144 Yes ** NA ** None 139 M145 Yes ** NA ** None 140 M146 BenPIN BenPIN Yes Default None 141 M147 BenPIN BenPIN Yes None None 142 M148 OOOXOO Yes ** NA ** None 143 M149 OOOXOO Yes ** NA ** None 144 M154 BenPIN BenPIN Yes Default None 145 M155 BenPIN Yes Default None 146 M156 OOOXOO Yes ** NA ** None 147 M157 OOOXOO Yes ** NA ** None 148 M162 BenPIN BenPIN Yes Default None												
139 M145 Yes ** NA ** None 140 M146 BenPIN BenPIN Yes Default None 141 M147 BenPIN BenPIN Yes ** NA ** None 142 M148 OOOXOO Yes ** NA ** None 143 M149 OOOXOO Yes ** NA ** None 144 M154 BenPIN BenPIN Yes Default None 145 M155 BenPIN Yes Default None 146 M156 OOOXOO Yes ** NA ** None 147 M157 OOOXOO Yes ** NA ** None 148 M162 BenPIN BenPIN Yes Default None												
140 M146 BenPIN BenPIN Yes Default None 141 M147 BenPIN BenPIN Yes Default None 142 M148 OOOXOO Yes ** NA ** None 143 M149 OOOXOO Yes ** NA ** None 144 M154 BenPIN BenPIN Yes Default None 145 M155 BenPIN BenPIN Yes Default None 146 M156 OOOXOO Yes ** NA ** None 147 M157 OOOXOO Yes ** NA ** None 148 M162 BenPIN BenPIN Yes Default None												
141 M147 BenPIN BenPIN Yes Default None 142 M148 OOOXOO Yes ** NA ** None 143 M149 OOOXOO Yes ** NA ** None 144 M154 BenPIN BenPIN Yes Default None 145 M155 BenPIN Yes Default None 146 M156 OOOXOO Yes ** NA ** None 147 M157 OOOXOO Yes ** NA ** None 148 M162 BenPIN BenPIN Yes Default None			BenPIN	BenPIN								
142 M148 OOOXOO Yes ** NA ** None 143 M149 OOOXOO Yes ** NA ** None 144 M154 BenPIN BenPIN Yes Default None 145 M155 BenPIN Yes Default None 146 M156 OOOXOO Yes ** NA ** None 147 M157 OOOXOO Yes ** NA ** None 148 M162 BenPIN BenPIN Yes Default None												
143 M149 OOOXOO Yes ** NA ** None 144 M154 BenPIN BenPIN Yes Default None 145 M155 BenPIN Yes Default None 146 M156 OOOXOO Yes ** NA ** None 147 M157 OOOXOO Yes ** NA ** None 148 M162 BenPIN BenPIN Yes Default None			DOM: 114									
144 M154 BenPIN BenPIN Yes Default None 145 M155 BenPIN BenPIN Yes Default None 146 M156 OOOXOO Yes ** NA ** None 147 M157 OOOXOO Yes ** NA ** None 148 M162 BenPIN BenPIN Yes Default None			OOOXOO	JUDAGO								
145 M155 BenPIN BenPIN Yes Default None 146 M156 OOOXOO Yes ** NA ** None 147 M157 OOOXOO Yes ** NA ** None 148 M162 BenPIN BenPIN Yes Default None				BenPIN								
146 M156 OOOXOO Yes ** NA ** None 147 M157 OOOXOO Yes ** NA ** None 148 M162 BenPIN BenPIN Yes Default None				-								
147 M157 OOOXOO Yes ** NA ** None 148 M162 BenPIN BenPIN Yes Default None			50.11 114									
148 M162 BenPIN BenPIN Yes Default None			000000	JUDAGO								
				BenPIN								

: NL

Company Designer Job Number Nov 23, 2021 5:47 PM : 21781092A Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl RatAnalysis	Inactive	Seismic
150	M164	000X00					Yes	** NA **		None
151	M165	00000					Yes	** NA **		None
152	M169		00000				Yes	** NA **		None
153	MP3A						Yes	Default		None
154	M173		00000				Yes	** NA **		None
155	M174		00000				Yes	** NA **		None
156	MP4B						Yes			None
157	M160		00000				Yes	** NA **		None
158	M161		00000				Yes	** NA **		None
159	MP6B						Yes	Default		None
160	M160A		00000				Yes	** NA **		None
161	M161A		00000				Yes	** NA **		None
162	MP3B						Yes			None
163	M163A						Yes			None
164	M164A						Yes	** NA **		None
165	M165A	OOOXOX					Yes	** NA **		None
166	M166						Yes			None
167	M167						Yes	** NA **		None
168	M168	OOOXOX					Yes	** NA **		None
169	M169A						Yes			None
170	MP2B						Yes			None
171	M171						Yes	** NA **		None
172	M172	OOOXOX					Yes	** NA **		None
173	M173A						Yes			None
174	M174A						Yes	** NA **		None
175	M175	OOOXOX					Yes	** NA **		None
176	M176						Yes			None

Member Point Loads (BLC 1 : Antenna D)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Υ	-43.55	1
2	MP1A	My	011	1
3	MP1A	Mz	.019	1
4	MP1A	Υ	-43.55	3
5	MP1A	My	011	3
6	MP1A	Mz	.019	3
7	MP1B	Υ	-43.55	1
8	MP1B	My	011	1
9	MP1B	Mz	019	1
10	MP1B	Υ	-43.55	3
11	MP1B	My	011	3
12	MP1B	Mz	019	3
13	MP4C	Υ	-43.55	1
14	MP4C	My	.017	1
15	MP4C	Mz	.014	1
16	MP4C	Υ	-43.55	3
17	MP4C	My	.017	3
18	MP4C	Mz	.014	3
19	MP5B	Υ	-43.55	1
20	MP5B	My	.014	1
21	MP5B	Mz	017	1
22	MP5B	Υ	-43.55	3
23	MP5B	My	.014	3
24	MP5B	Mz	017	3
25	MP1A	Υ	-4.4	4.5

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 1 : Antenna D) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
26	MP1A	My	001	4.5
27	MP1A	Mz	.002	4.5
28	MP1B	Y	-4.4	4.5
29	MP1B	My	001	4.5
30	MP1B	Mz	002	4.5
31	MP4C	Y	-4.4	4.5
32	MP4C	My	.002	4.5
33	MP4C	Mz	.001	4.5
34	MP5B	Υ	-4.4	4.5
35	MP5B	My	.001	4.5
36	MP5B	Mz	002	4.5
37	MP1C	Υ	-10.4	3
38	MP1C	My	003	3
39	MP1C	Mz	.005	3
40	MP2B	Υ	-10.4	3
41	MP2B	My	003	3
42	MP2B	Mz	.005	3
43	MP2A	Υ	-84.4	1
44	MP2A	My	.042	1
45	MP2A	Mz	0	1
46	MP2C	Υ	-84.4	1
47	MP2C	My	032	1
48	MP2C	Mz	027	1
49	MP3B	Υ	-84.4	1
50	MP3B	My	021	1
51	MP3B	Mz	.037	1
52	MP4A	Υ	-84.4	1
53	MP4A	My	.042	1
54	MP4A	Mz	0	1
55	MP4C	Υ	-84.4	1
56	MP4C	My	032	1
57	MP4C	Mz	027	1
58	MP2B	Y	-70.3	1
59	MP2B	My	023	1
60	MP2B	Mz	.027	1
61	MP3A	Y	-70.3	1
62	MP3A	My	.035	1
63	MP3A	Mz	0	1
64	MP3C	Y	-70.3	1
65	MP3C	My	027 023	1
66 67	MP3C MP5A	Mz Y	023 -70.3	1
68	MP5A MP5A	My	.035	1
69	MP5A MP5A	Mz	0	1
70	MP5C	Y	-70.3	1
71	MP5C MP5C	My	027	1
72	MP5C	Mz	027	1
73	MP2C	Y	023 -4.95	
74	MP2C	My	.002	2 2
75	MP2C	Mz	.001	2
76	MP2C	Y	-4.95	2 5
77	MP2C	My	.002	5
78	MP2C	Mz	.001	5
79	MP4A	Y	-4.95	
80	MP4A	My	001	2 2
81	MP4A	Mz	.002	2
82	MP4A	Y	-4.95	5
ŲZ	IVII T/A		-7.80	J

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 1 : Antenna D) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
83	MP4A	My	001	5
84	MP4A	Mz	.002	5
85	MP4B	Y	-4.95	2
86	MP4B	My	.001	2
87	MP4B	Mz	002	2
88	MP4B	Y	-4.95	5
89	MP4B	My	.001	5
90	MP4B	Mz	002	5
91	MP1C	Υ	-45.75	1
92	MP1C	My	.041	1
93	MP1C	Mz	000839	1
94	MP1C	Υ	-45.75	5
95	MP1C	My	.041	5
96	MP1C	Mz	000839	5
97	MP1C	Υ	-45.75	1
98	MP1C	My	006	1
99	MP1C	Mz	04	1
100	MP1C	Υ	-45.75	5
101	MP1C	My	006	5
102	MP1C	Mz	04	5
103	MP2B	Υ	-45.75	1
104	MP2B	My	.013	1
105	MP2B	Mz	038	1
106	MP2B	Υ	-45.75	5
107	MP2B	My	.013	5
108	MP2B	Mz	038	5
109	MP2B	Υ	-45.75	1
110	MP2B	My	04	1
111	MP2B	Mz	008	1
112	MP2B	Υ	-45.75	5
113	MP2B	My	04	5
114	MP2B	Mz	008	5
115	MP6A	Υ	-31.65	2
116	MP6A	My	.004	2
117	MP6A	Mz	.024	2
118	MP6A	Y	-31.65	6
119	MP6A	My	.004	6
120	MP6A	Mz	.024	6
121	MP6A	Y	-31.65	2
122	MP6A	My	024	2
123	MP6A	Mz	.000255	2
124	MP6A	Y	-31.65	6
125	MP6A	My	024	6
126	MP6A	Mz	.000255	6
127	MP6C	Y	-31.65	2 2
128	MP6C	My	.024	
129	MP6C	Mz Y	004 -31.65	2
130	MP6C			6
131	MP6C MP6C	My	.024 004	6
132		Mz Y	004	6
133	MP6C			2 2
	MP6C	My	.000255	
135	MP6C MP6C	Mz Y	.024 -31.65	2 6
136		My		6
137 138	MP6C MP6C	Mz	.000255 .024	6
139	MP6B	Y	-70.3	1.5
139	IVIFOD	<u> </u>	-10.3	1.0

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 1 : Antenna D) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
140	MP6B	My	012	1.5
141	MP6B	Mz	.02	1.5
142	MPB	Υ	-84.4	1.5
143	MPB	My	014	1.5
144	MPB	Mz	.024	1.5
145	MP6A	Υ	-10.4	5
146	MP6A	My	.003	5
147	MP6A	Mz	0	5
148	MP6C	Υ	-10.4	5
149	MP6C	My	002	5
150	MP6C	Mz	003	5

Member Point Loads (BLC 2 : Antenna Di)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Υ	-53.322	1
2	MP1A	My	013	1
3	MP1A	Mz	.023	1
4	MP1A	Υ	-53.322	3
5	MP1A	My	013	3
6	MP1A	Mz	.023	3
7	MP1B	Υ	-53.322	1
8	MP1B	My	013	1
9	MP1B	Mz	023	1
10	MP1B	Υ	-53.322	3
11	MP1B	My	013	3
12	MP1B	Mz	023	3
13	MP4C	Υ	-53.322	1
14	MP4C	My	.02	1
15	MP4C	Mz	.017	1
16	MP4C	Υ	-53.322	3
17	MP4C	My	.02	3
18	MP4C	Mz	.017	3
19	MP5B	Υ	-53.322	1
20	MP5B	My	.017	1
21	MP5B	Mz	02	1
22	MP5B	Υ	-53.322	3
23	MP5B	My	.017	3
24	MP5B	Mz	02	3
25	MP1A	Υ	-21.353	4.5
26	MP1A	My	007	4.5
27	MP1A	Mz	.008	4.5
28	MP1B	Υ	-21.353	4.5
29	MP1B	My	007	4.5
30	MP1B	Mz	008	4.5
31	MP4C	Υ	-21.353	4.5
32	MP4C	My	.008	4.5
33	MP4C	Mz	.007	4.5
34	MP5B	Y	-21.353	4.5
35	MP5B	My	.007	4.5
36	MP5B	Mz	008	4.5
37	MP1C	Y	-17.133	3
38	MP1C	My	004	3
39	MP1C	Mz	.007	3
40	MP2B	Y	-17.133	3
41	MP2B	My	004	3
42	MP2B	Mz	.007	3

Job Number

Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Point Loads (BLC 2: Antenna Di) (Continued)

	er i onit Loads (DLC I			
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
43	MP2A	Υ	-67.692	1
44	MP2A	My	.034	1
45	MP2A	Mz	0	1
46	MP2C	Υ	-67.692	1
47	MP2C	My	026	1
48	MP2C	Mz	022	1
49	MP3B	Υ	-67.692	1
50	MP3B	My	017	1
51	MP3B	Mz	.029	1
52	MP4A	Υ	-67.692	1
53	MP4A	My	.034	1
54	MP4A	Mz	0	1
55	MP4C	Y	-67.692	1
56	MP4C	My	026	1
57	MP4C	Mz	022	1
58	MP2B	Y	-61.083	1
59	MP2B	My	02	1
60	MP2B	Mz	.023	1
		Y		1
61	MP3A		-61.083	
62	MP3A	My	.031	1
63	MP3A	Mz	0	1
64	MP3C	Y	-61.083	1
65	MP3C	My	023	1
66	MP3C	Mz	02	1
67	MP5A	Υ	-61.083	1
68	MP5A	My	.031	1
69	MP5A	Mz	0	1
70	MP5C	Υ	-61.083	1
71	MP5C	My	023	1
72	MP5C	Mz	02	1
73	MP2C	Υ	-51.424	2
74	MP2C	My	.022	2
75	MP2C	Mz	.013	2
76	MP2C	Υ	-51.424	5
77	MP2C	My	.022	5
78	MP2C	Mz	.013	5
79	MP4A	Υ	-51.424	2
80	MP4A	My	013	2
81	MP4A	Mz	.022	2
82	MP4A	Y	-51.424	5
83	MP4A	My	013	5
84	MP4A	Mz	.022	5
85	MP4B	Y	-51.424	2
86	MP4B	My	.013	2
87	MP4B	Mz	022	
88	MP4B	Y	-51.424	2 5
89	MP4B	My	.013	5
90	MP4B	Mz	022	5
	MP1C	Y	022 -116.49	1
91 92	MP1C MP1C			1
		My	.103	
93	MP1C	Mz	002	1
94	MP1C	Y	-116.49	5
95	MP1C	My	.103	5
96	MP1C	Mz	002	5
97	MP1C	Y	-116.49	1
98	MP1C	My	016	1
99	MP1C	Mz	102	1

Nov 23, 2021 5:47 PM

Company Designer : Maser Consulting

: NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
100	MP1C	Υ	-116.49	5
101	MP1C	My	016	5
102	MP1C	Mz	102	5
103	MP2B	Υ	-116.49	1
104	MP2B	My	.033	1
105	MP2B	Mz	098	1
106	MP2B	Υ	-116.49	5
107	MP2B	My	.033	5
108	MP2B	Mz	098	5
109	MP2B	Υ	-116.49	1
110	MP2B	My	101	1
111	MP2B	Mz	02	1
112	MP2B	Υ	-116.49	5
113	MP2B	My	101	5
114	MP2B	Mz	02	5
115	MP6A	Υ	-103.862	2
116	MP6A	My	.013	2
117	MP6A	Mz	.079	2
118	MP6A	Υ	-103.862	6
119	MP6A	My	.013	6
120	MP6A	Mz	.079	6
121	MP6A	Y	-103.862	2
122	MP6A	My	08	2
123	MP6A	Mz	.000837	2
124	MP6A	Υ	-103.862	6
125	MP6A	My	08	6
126	MP6A	Mz	.000837	6
127	MP6C	Υ	-103.862	2
128	MP6C	My	.079	2
129	MP6C	Mz	013	2
130	MP6C	Υ	-103.862	6
131	MP6C	My	.079	6
132	MP6C	Mz	013	6
133	MP6C	Υ	-103.862	2
134	MP6C	My	.000837	2
135	MP6C	Mz	.08	2
136	MP6C	Υ	-103.862	6
137	MP6C	My	.000837	6
138	MP6C	Mz	.08	6
139	MP6B	Υ	-61.083	1.5
140	MP6B	My	01	1.5
141	MP6B	Mz	.018	1.5
142	MPB	Υ	-67.692	1.5
143	MPB	My	011	1.5
144	MPB	Mz	.02	1.5
145	MP6A	Y	-17.133	5
146	MP6A	My	.006	5
147	MP6A	Mz	0	5
148	MP6C	Y	-17.133	5
149	MP6C	My	003	5
150	MP6C	Mz	005	5

Member Point Loads (BLC 3: Antenna Wo (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	1
2	MP1A	Z	-47.087	1

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
3	MP1A	Mx	02	1
4	MP1A	X	0	3
5	MP1A	Z	-47.087	3
6	MP1A	Mx	02	3
7	MP1B	X	0	1
8	MP1B	Z	-47.087	1
9	MP1B	Mx	.02	1
10	MP1B	X	0	3
11	MP1B	Z	-47.087	3
12	MP1B	Mx	.02	3
13	MP4C	X	0	1
14	MP4C	Z	-64.84	1
15	MP4C	Mx	021	1
16	MP4C	X	0	3
17	MP4C	Z	-64.84	3
18	MP4C	Mx	021	3
19	MP5B	X	0	1
20	MP5B	Z	-55.688	1
21	MP5B	Mx	.021	1
22	MP5B	X	0	3
23	MP5B	Z	-55.688	3
24	MP5B	Mx	.021	3
25	MP1A	X	0	4.5
26	MP1A	Z	-17.329	4.5
27	MP1A	Mx	007	4.5
28	MP1B	X	0	4.5
29	MP1B	Z	-17.329	4.5
30	MP1B	Mx	.007	4.5
31	MP4C	X	0	4.5
32	MP4C	Z	-21.908	4.5
33	MP4C	Mx	007	4.5
34	MP5B	X	0	4.5
35	MP5B	Z	-17.329	4.5
36	MP5B	Mx	.007	4.5
37	MP1C	X	0	3
38	MP1C	Z	-10.486	3
39	MP1C	Mx	005	3
40	MP2B	X	0	3
41	MP2B	Z	-10.486	3
42	MP2B	Mx	005	3
43	MP2A	X	0	1
44	MP2A	Z	-68.926	1
45	MP2A	Mx	0	1
46	MP2C	X	0	1
47	MP2C	Z	-59.484	1
48	MP2C	Mx	.019	1
49	MP3B	X	0	1
50	MP3B	Z	-51.786	1
51	MP3B	Mx	022	1
52	MP4A	X	0	1
53	MP4A	Z	-68.926	1
54	MP4A	Mx	0	1
55	MP4C	X	0	1
56	MP4C		-59.484	1
57	MP4C	Mx	.019	1
58	MP2B	X	0	1
59	MP2B	Z	-50.378	1

Company Designer : Maser Consulting : NL

Nov 23, 2021 5:47 PM Job Number : 21781092A Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

wemb	er Politi Loads (BLC S	<u>s : Antenna wo</u>	(0 Deg)) (Continued)	
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
60	MP2B	Mx	019	1
61	MP3A	X	0	1
62	MP3A	Z	-68.926	1
63	MP3A	Mx	0	1
64	MP3C	X	0	1
65	MP3C	Z	-55.867	1
66	MP3C	Mx	.018	1
67	MP5A	X	0	1
68	MP5A	Z	-68.926	1
				1
69	MP5A	Mx	0	1
70	MP5C	X	0	1
71	MP5C	Z	-55.867	1
72	MP5C	Mx	.018	1
73	MP2C	X	0	2
74	MP2C	Z	-75.598	2
75	MP2C	Mx	019	2
76	MP2C	X	0	5
77	MP2C	Z	-75.598	5
78	MP2C	Mx	019	5
79	MP4A	X	0	2
80	MP4A	Z	-52.821	2
81	MP4A	Mx	023	2
82	MP4A	X	0	5
83	MP4A	Z	-52.821	5
84	MP4A	Mx	023	5
85	MP4B	X	0	2
86	MP4B	Z	-52.821	2
87	MP4B	Mx	.023	2
88	MP4B	X	0	5
89	MP4B	Z	-52.821	5
90	MP4B	Mx	.023	5
91	MP1C	X	0	1
92	MP1C	Z	-143.944	1
93	MP1C	Mx	.003	1
94	MP1C	X	0	5
95	MP1C	Z	-143.944	5
96	MP1C	Mx	.003	5
97	MP1C	X	0	1
98	MP1C	Z	-143.944	1
99	MP1C	Mx	.126	1
100	MP1C	X	0	5
101	MP1C	Z	-143.944	5
101	MP1C	Mx	.126	5
102	MP2B		0	1
103	MP2B	X	-125.55	1
104		Mx		1
	MP2B		.105	5
106	MP2B	X	0	
107	MP2B	Z	-125.55	5
108	MP2B	Mx	.105 0	3
109	MP2B	X		1
110	MP2B	Z	-125.55	1
111	MP2B	Mx	.022	1
112	MP2B	X	0	5
113	MP2B	Z	-125.55	5
114	MP2B	Mx	.022	5
115	MP6A	X	0	2
116	MP6A	Z	-134.077	2

Company Designer : NL

Job Number 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 3: Antenna Wo (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
117	MP6A	Mx	102	2
118	MP6A	X	0	6
119	MP6A	Z	-134.077	6
120	MP6A	Mx	102	6
121	MP6A	X	0	2
122	MP6A	Z	-134.077	2
123	MP6A	Mx	001	2
124	MP6A	X	0	6
125	MP6A	Z	-134.077	6
126	MP6A	Mx	001	6
127	MP6C	X	0	2
128	MP6C	Z	-144.083	2
129	MP6C	Mx	.018	2
130	MP6C	X	0	6
131	MP6C	Z	-144.083	6
132	MP6C	Mx	.018	6
133	MP6C	X	0	2
134	MP6C	Z	-144.083	2
135	MP6C	Mx	111	2
136	MP6C	X	0	6
137	MP6C	Z	-144.083	6
138	MP6C	Mx	111	6
139	MP6B	X Z	0	1.5
140	MP6B	Z	-45.221	1.5
141	MP6B	Mx	013	1.5
142	MPB	X	0	1.5
143	MPB	Z	-51.786	1.5
144	MPB	Mx	015	1.5
145	MP6A	X	0	5
146	MP6A	Z	-13.638	5
147	MP6A	Mx	0	5
148	MP6C	X	0	5
149	MP6C	Z	-10.486	5
150	MP6C	Mx	.003	5

Member Point Loads (BLC 4 : Antenna Wo (30 Deg))

	or rount Loudo (BLO		100 = 03//	
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	16.955	1
2	MP1A	Z	-29.368	1
3	MP1A	Mx	017	1
4	MP1A	X	16.955	3
5	MP1A	Z	-29.368	3
6	MP1A	Mx	017	3
7	MP1B	X	36.72	1
8	MP1B	Z	-63.602	1
9	MP1B	Mx	.018	1
10	MP1B	X	36.72	3
11	MP1B	Z	-63.602	3
12	MP1B	Mx	.018	3
13	MP4C	X	42.514	1
14	MP4C	Z	-73.637	1
15	MP4C	Mx	007	1
16	MP4C	X	42.514	3
17	MP4C	Z	-73.637	3
18	MP4C	Mx	007	3
19	MP5B	X	17.75	1

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 4: Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
20	MP5B	Z	-30.744	1
21	MP5B	Mx	.017	1
22	MP5B	X	17.75	3
23	MP5B	Z	-30.744	3
24	MP5B	Mx	.017	3
25	MP1A	X	3.614	4.5
26	MP1A	Z	-6.26	4.5
27	MP1A	Mx	004	4.5
28	MP1B	X	14.86	4.5
29	MP1B	Z	-25.738	4.5
30	MP1B	Mx	.005	4.5
31	MP4C	X	16.004	4.5
32	MP4C	Z	-27.721	4.5
33	MP4C	Mx	003	4.5
34	MP5B	X	3.614	4.5
35	MP5B	Z	-6.26	4.5
36	MP5B	Mx	.004	4.5
37	MP1C	X	4.718	3
38	MP1C	Z	-8.172	3
39	MP1C	Mx	005	3
40	MP2B	X	4.718	3
41	MP2B	Z	-8.172	3
42	MP2B	Mx	005	3
43	MP2A	X	31.606	1
44	MP2A	Z	-54.744	1
45	MP2A	Mx	.016	1
46	MP2C	X	34.118	1
47	MP2C	Z	-59.095	1
48	MP2C	Mx	.006	1
49	MP3B	X	23.037	1
50	MP3B	Z	-39.901	1
51	MP3B	Mx	023	1
52	MP4A	X	31.606	1
53	MP4A	Z	-54.744	1
54	MP4A	Mx	.016	1
55	MP4C	X	34.118	1
56	MP4C	Z	-59.095	1
57	MP4C	Mx	.006	1
58	MP2B	X	19.136	1
59	MP2B	Z	-33.145	1
60	MP2B	Mx	019	1
61	MP3A	X	30.512	1
62	MP3A	Z	-52.848	1
63	MP3A	Mx	.015	7
64	MP3C	X Z	33.986	1
65	MP3C		-58.866	1
66	MP3C	Mx	.006	1
67	MP5A	X	30.512	1
68 69	MP5A MP5A		-52.848 .015	1
70	MP5A MP5C	Mx X	33.986	1
70	MP5C MP5C	Z	-58.866	1
71	MP5C MP5C	Mx	-58.866	1
73	MP2C	X	43.493	2
74	MP2C	Z	-75.332	2
75	MP2C	Mx	-75.532	2
76	MP2C	X	43.493	5
10	IVIFZU		43.483	J

Company Designer Job Number : Maser Consulting

Nov 23, 2021 5:47 PM Checked By: DX : NL : 21781092A Model Name : Mount Analysis (Rev. 3)

Member Point Loads (BLC 4: Antenna Wo (30 Deg)) (Continued)

		TTT IIII TTO	(30 Deg)) (Continued)	
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
77	MP2C	Z	-75.332	5
78	MP2C	Mx	0	5
79	MP4A	X	20.716	2
80	MP4A	Z	-35.882	2
81	MP4A	Mx	021	2
82	MP4A	X	20.716	5
83	MP4A	Z	-35.882	5
84	MP4A	Mx	021	5
85	MP4B	X	20.716	2
86	MP4B	Z	-35.882	2
87	MP4B	Mx	.021	2
88	MP4B	X	20.716	5
89	MP4B	Z	-35.882	5
90	MP4B	Mx	.021	5
91	MP1C	X	50.384	1
92	MP1C	Z	-87.267	1
				•
93	MP1C	Mx	.046	1
94	MP1C	X	50.384	5
95	MP1C	Z	-87.267	5
96	MP1C	Mx	.046	5
97	MP1C	X	50.384	1
98	MP1C	Z	-87.267	1
99	MP1C	Mx	.07	1
100	MP1C	X	50.384	5
101	MP1C	Z	-87.267	5
102	MP1C	Mx	.07	5
103	MP2B	X	90.956	1
104	MP2B	Z	-157.541	1
105	MP2B	Mx	.158	1
106	MP2B	X	90.956	5
107	MP2B	Z	-157.541	5
108	MP2B	Mx	.158	5
109	MP2B	X	90.956	1
110	MP2B	Z	-157.541	1
111	MP2B	Mx	052	1
112	MP2B	X	90.956	5
113	MP2B	Z	-157.541	5
114	MP2B	Mx	052	5
115	MP6A	X	56.003	2
116	MP6A	Z	-97	2
117	MP6A	Mx	066	2
118	MP6A	X	56.003	6
119		Z	-97	
	MP6A			6
120	MP6A	Mx	066	6
121	MP6A	X	56.003	2
122	MP6A	Z	-97	2
123	MP6A	Mx	044	2
124	MP6A	X	56.003	6
125	MP6A	Z	-97	6
126	MP6A	Mx	044	6
127	MP6C	X	83.077	2
128	MP6C	Z	-143.893	2
129	MP6C	Mx	.081	2
130	MP6C	X	83.077	6
131	MP6C	Z	-143.893	6
132	MP6C	Mx	.081	6
133	MP6C	X	83.077	2

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 4: Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
134	MP6C	Z	-143.893	2
135	MP6C	Mx	11	2
136	MP6C	X	83.077	6
137	MP6C	Z	-143.893	6
138	MP6C	Mx	11	6
139	MP6B	X	18.66	1.5
140	MP6B	Z	-32.32	1.5
141	MP6B	Mx	012	1.5
142	MPB	X	23.037	1.5
143	MPB	Z	-39.901	1.5
144	MPB	Mx	015	1.5
145	MP6A	X	6.294	5
146	MP6A	Z	-10.901	5
147	MP6A	Mx	.002	5
148	MP6C	X	6.294	5
149	MP6C	Z	-10.901	5
150	MP6C	Mx	.002	5

Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	40.779	1
2	MP1A	Z	-23.544	1
3	MP1A	Mx	02	1
4	MP1A	X	40.779	3
5	MP1A	Z	-23.544	3
6	MP1A	Mx	02	3
7	MP1B	X	75.013	1
8	MP1B	Z	-43.309	1
9	MP1B	Mx	0	1
10	MP1B	X	75.013	3
11	MP1B	Z	-43.309	3
12	MP1B	Mx	0	3
13	MP4C	X	69.674	1
14	MP4C	Z	-40.226	1
15	MP4C	Mx	.014	1
16	MP4C	X	69.674	3
17	MP4C	Z	-40.226	3
18	MP4C	Mx	.014	3
19	MP5B	X	34.707	1
20	MP5B	Z	-20.038	1
21	MP5B	Mx	.019	1
22	MP5B	X	34.707	3
23	MP5B	Z	-20.038	3
24	MP5B	Mx	.019	3
25	MP1A	X	8.243	4.5
26	MP1A	Z	-4.759	4.5
27	MP1A	Mx	004	4.5
28	MP1B	X	27.721	4.5
29	MP1B	Z	-16.004	4.5
30	MP1B	Mx	003	4.5
31	MP4C	X	25.738	4.5
32	MP4C	Z	-14.86	4.5
33	MP4C	Mx	.005	4.5
34	MP5B	X	8.243	4.5
35	MP5B	Z	-4.759	4.5
36	MP5B	Mx	.004	4.5

Company Designer : Maser Consulting

: NL Job Number : 21781092A : Mount Analysis (Rev. 3)

Model Name

Member Point Loads (BLC 5 : Antenna Wo (60 Deg)) (Continued)

<u>wembe</u>	er Point Loads (BLC)	<u>o : Antenna vvo</u>	(60 Deg)) (Continued)	
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
37	MP1C	X	9.081	3
38	MP1C	Z	-5.243	3
39	MP1C	Mx	005	3
40	MP2B	X	9.081	3
41	MP2B	Z	-5.243	3
42	MP2B	Mx	005	3
43	MP2A	X	44.848	1
44	MP2A	Z	-25.893	1
45	MP2A	Mx	.022	1
46	MP2C	X	57.376	1
47	MP2C	Z	-33.126	1
48	MP2C	Mx	011	1
49	MP3B	X	44.848	1
50	MP3B	Z	-25.893	1
51	MP3B	Mx	022	1
52	MP4A	X	44.848	1
53	MP4A	Z	-25.893	1
54	MP4A	Mx	.022	1
55	MP4C	X	57.376	1
56	MP4C	Z	-33.126	1
57	MP4C	Mx	011	1
58	MP2B	X	35.521	1
59	MP2B	Z	-20.508	1
60	MP2B	Mx	019	1
61	MP3A	X	39.162	1
62	MP3A	Z	-22.61	1
63	MP3A	Mx	.02	1
64	MP3C	X	56.489	1
65	MP3C	Z	-32.614	1
66	MP3C	Mx	011	1
67	MP5A	X	39.162	1
68	MP5A	Z	-22.61	1
69	MP5A	Mx	.02	1
70	MP5C	X	56.489	1
71	MP5C	Z	-32.614	1
72	MP5C	Mx	011	1
73	MP2C	X	65.47	2
74	MP2C	Z	-37.799	2
75	MP2C	Mx	.019	2
76	MP2C	X	65.47	5
77	MP2C	Z	-37.799	5
78	MP2C	Mx	.019	5
79	MP4A	X	45.745	2
80	MP4A	Z	-26.411	2
81	MP4A	Mx	023	2
82	MP4A	X	45.745	5
83	MP4A	Z	-26.411	5
84	MP4A MP4A	Mx	023	5
85	MP4B		023 45.745	2
86	MP4B	X	-26.411	2
87	MP4B	Mx	.023	2
			45.745	
88	MP4B	X		5
89	MP4B	Z	-26.411	5
90	MP4B	Mx	.023	5
91	MP1C	X	95.743	1
92	MP1C	Z	-55.277	1
93	MP1C	Mx	.086	1

Nov 23, 2021 5:47 PM

Checked By: DX

Company Designer : Maser Consulting

: NL : 21781092A

Nov 23, 2021 5:47 PM Job Number Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Point Loads (BLC 5 : Antenna Wo (60 Deg)) (Continued)

werns	<u>er Point Loads (BLC 5</u>	: Antenna wo	(60 Deg)) (Continuea)	
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
94	MP1C	X	95.743	5
95	MP1C	Z	-55.277	5
96	MP1C	Mx	.086	5
97	MP1C	X	95.743	1
98	MP1C	Z	-55.277	1
99	MP1C	Mx	.035	•
				1
100	MP1C	X	95.743	5
101	MP1C	Z	-55.277	5
102	MP1C	Mx	.035	5
103	MP2B	X	181.947	1
104	MP2B	Z	-105.047	1
105	MP2B	Mx	.14	1
106	MP2B	X	181.947	5
107	MP2B	Z	-105.047	5
108	MP2B	Mx	.14	5
109	MP2B	X	181.947	1
110	MP2B	Z	-105.047	1
111	MP2B	Mx	14	1
112	MP2B	X	181.947	5
113	MP2B	Z	-105.047	5
114	MP2B	Mx	14	5
115	MP6A	X	101.333	2
116	MP6A	Z	-58.505	2
117	MP6A	Mx	032	2
118	MP6A	X	101.333	6
119	MP6A	Z		6
			-58.505	
120	MP6A	Mx	032	6
121	MP6A	X	101.333	2
122	MP6A	Z	-58.505	2
123	MP6A	Mx	078	2
124	MP6A	X	101.333	6
125	MP6A	Z	-58.505	6
126	MP6A	Mx	078	6
127	MP6C	X	139.56	2
128	MP6C	Z	-80.575	2
129	MP6C	Mx	.116	2
130	MP6C	X	139.56	6
131	MP6C	Z	-80.575	6
132	MP6C	Mx	.116	6
133	MP6C	X	139.56	2
134	MP6C	Z	-80.575	2
135	MP6C	Mx	061	2
136	MP6C	X	139.56	6
137	MP6C	Z	-80.575	6
138	MP6C	Mx	061	6
139	MP6B	X	39.162	1.5
140	MP6B	Z	-22.61	1.5
141	MP6B	Mx	013	1.5
141	MPB	X	013 44.848	1.5
142	MPB	Z	-25.893	1.5
144	MPB	Mx	015	1.5
145	MP6A	X	9.081	5
146	MP6A	Z	-5.243	5
147	MP6A	Mx	.003	5
148	MP6C	X	11.811	5
149	MP6C	Z	-6.819	5
150	MP6C	Mx	0	5

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	73.441	1
2	MP1A	Z	0	1
3	MP1A	Mx	018	1
4	MP1A	X	73.441	3
5	MP1A	Z	0	3
6	MP1A	Mx	018	3
7	MP1B	X	73.441	1
8	MP1B	Z	0	1
9	MP1B	Mx	018	1
10	MP1B	X	73.441	3
11	MP1B	Z	0	3
12	MP1B	Mx	018	3
13	MP4C	X	55.688	1
14	MP4C	Z	0	1
15	MP4C	Mx	.021	1
16	MP4C	X	55.688	3
17	MP4C	Z	0	3
18	MP4C	Mx	.021	3
19	MP5B	X	64.84	1
20	MP5B	Z	0	1
21	MP5B	Mx	.021	1
22	MP5B	X	64.84	3
23	MP5B	Z	0	3
24	MP5B	Mx	.021	3
25	MP1A	X	21.908	4.5
26	MP1A	Z	0	4.5
27	MP1A	Mx	007	4.5
28	MP1B	X	21.908	4.5
29	MP1B	Z	0	4.5
30	MP1B	Mx	007	4.5
31	MP4C	X	17.329	4.5
32	MP4C	Z	0	4.5
33	MP4C	Mx	.007	4.5
34	MP5B	X	21.908	4.5
35	MP5B	Z	0	4.5
36	MP5B	Mx	.007	4.5
37	MP1C	X	12.587	3
38	MP1C	Z	0	3
39	MP1C	Mx	003	3
40	MP2B	X	12.587	3
41	MP2B	Z	0	3
42	MP2B	Mx	003	3
43	MP2A	X	46.073	1
44	MP2A	Z	0	1
45	MP2A	Mx	.023	1
46	MP2C	X	55.515	1
47	MP2C	Z	0	1
48	MP2C	Mx	021	1
49	MP3B	X	63.213	1
50	MP3B	Z	0	1
51	MP3B	Mx	016	1
52	MP4A	X	46.073	1
53	MP4A	Z	0	1
54	MP4A	Mx	.023	1
55	MP4C	X	55.515	1
56	MP4C	Z	0	1
57	MP4C	Mx	021	1
Ų,	IVII TO	IAIV	1041	<u> </u>

Nov 23, 2021 5:47 PM Checked By: DX Company Designer Job Number Model Name : Maser Consulting : NL : 21781092A : Mount Analysis (Rev. 3)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	55.867	1
59	MP2B	Z	0	1
60	MP2B	Mx	018	1
61	MP3A	X	37.319	1
62	MP3A	Z	0	1
63	MP3A	Mx	.019	1
64	MP3C	X	50.378	1
65	MP3C	Z	0	1
66	MP3C	Mx	019	1
67	MP5A	X	37.319	1
68	MP5A	Z	0	1
69	MP5A	Mx	.019	1
70	MP5C	X	50.378	1
71	MP5C	Z	0	1
72	MP5C	Mx	019	1
73	MP2C	X	52.821	2
74	MP2C	Z	0	2
75	MP2C	Mx	.023	2
76	MP2C	X	52.821	5
77	MP2C	Z	0	5
78	MP2C	Mx	.023	5
79	MP4A	X	75.598	2
80	MP4A	Z	0	2
81	MP4A	Mx	019	2
82	MP4A	X	75.598	5
83	MP4A	Z	0	5
84	MP4A	Mx	019	5
85	MP4B	X	75.598	2
86	MP4B	Z	0	2
87	MP4B	Mx	.019	2
88	MP4B	X	75.598	5
89	MP4B	Z	0	5
90	MP4B	Mx	.019	5
91	MP1C	X	163.518	1
92	MP1C		0	1
93	MP1C	Mx	.145	5
94	MP1C	Z	163.518	
95 96	MP1C MP1C	Mx	0 .145	5
97	MP1C	X	163.518	1
98	MP1C	Z	0	1
99	MP1C	Mx	022	1
100	MP1C	X	163.518	5
101	MP1C	Z	0	5
102	MP1C	Mx	022	5
103	MP2B	X	181.913	1
104	MP2B	Z	0	1
105	MP2B	Mx	.052	1
106	MP2B	X	181.913	5
107	MP2B	Z	0	5
108	MP2B	Mx	.052	5
109	MP2B	X	181.913	1
110	MP2B	Z	0	1
111	MP2B	Mx	158	1
112	MP2B	X	181.913	5
113	MP2B	Z	0	5
114	MP2B	Mx	158	5
				·

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 6 : Antenna Wo (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
115	MP6A	X	144.083	2
116	MP6A	Z	0	2
117	MP6A	Mx	.018	2
118	MP6A	X	144.083	6
119	MP6A	Z	0	6
120	MP6A	Mx	.018	6
121	MP6A	X	144.083	2
122	MP6A	Z	0	2
123	MP6A	Mx	111	2
124	MP6A	X	144.083	6
125	MP6A	Z	0	6
126	MP6A	Mx	111	6
127	MP6C	X	134.077	2
128	MP6C	Z	0	2
129	MP6C	Mx	.102	2
130	MP6C	X	134.077	6
131	MP6C	Z	0	6
132	MP6C	Mx	.102	6
133	MP6C	X	134.077	2
134	MP6C	Z	0	2
135	MP6C	Mx	.001	2
136	MP6C	X	134.077	6
137	MP6C	Z	0	6
138	MP6C	Mx	.001	6
139	MP6B	X	61.024	1.5
140	MP6B	Z	0	1.5
141	MP6B	Mx	01	1.5
142	MPB	X	63.213	1.5
143	MPB	Z	0	1.5
144	MPB	Mx	011	1.5
145	MP6A	X	9.436	5
146	MP6A	Z	0	5
147	MP6A	Mx	.003	5
148	MP6C	X	12.587	5
149	MP6C	Z	0	5
150	MP6C	Mx	002	5

Member Point Loads (BLC 7: Antenna Wo (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	75.013	1
2	MP1A	Z	43.309	1
3	MP1A	Mx	0	1
4	MP1A	X	75.013	3
5	MP1A	Z	43.309	3
6	MP1A	Mx	0	3
7	MP1B	X	40.779	1
8	MP1B	Z	23.544	1
9	MP1B	Mx	02	1
10	MP1B	X	40.779	3
11	MP1B	Z	23.544	3
12	MP1B	Mx	02	3
13	MP4C	X	30.744	1
14	MP4C	Z	17.75	1
15	MP4C	Mx	.017	1
16	MP4C	X	30.744	3
17	MP4C	Z	17.75	3

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 7: Antenna Wo (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
18	MP4C	Mx	.017	3
19	MP5B	X	73.637	1
20	MP5B	Z	42.514	1
21	MP5B	Mx	.007	1
22	MP5B	X	73.637	3
23	MP5B	Z	42.514	3
24	MP5B	Mx	.007	3
25	MP1A	X	27.721	4.5
26	MP1A	Z	16.004	4.5
27	MP1A	Mx	003	4.5
28	MP1B	X	8.243	4.5
29	MP1B	Z	4.759	4.5
30	MP1B	Mx	004	4.5
31	MP4C	X	6.26	4.5
32	MP4C	Z	3.614	4.5
33	MP4C	Mx	.004	4.5
34	MP5B	X	27.721	4.5
35	MP5B	Z	16.004	4.5
36	MP5B	Mx	.003	4.5
37	MP1C	X	11.811	3
38	MP1C	Z	6.819	3
39	MP1C	Mx	0	3
40	MP2B	X	11.811	3
41	MP2B	Z	6.819	3
42	MP2B	Mx	0	3
43	MP2A	X	44.848	1
44	MP2A	Z	25.893	1
45	MP2A	Mx	.022	1
46	MP2C	X	40.497	1
47	MP2C	Z	23.381	1
48	MP2C	Mx	023	1
49	MP3B	X	59.691	1
50	MP3B	Z	34.463	1
51	MP3B	Mx	0	1
52	MP4A	X	44.848	1
53	MP4A	Z	25.893	1
54	MP4A	Mx	.022	1
55	MP4C	X	40.497	1
56	MP4C	Z	23.381	1
57	MP4C	Mx	023	1
58	MP2B	X	58.866	1
59	MP2B	Z	33.986	1
60	MP2B	Mx	006	1
61	MP3A	X	39.162	1
62	MP3A	Z	22.61	1
63	MP3A	Mx	.02	1
64	MP3C	X	33.145	1
65	MP3C	Z	19.136	1
66	MP3C	Mx	019	1
67	MP5A	X	39.162	1
68	MP5A	Z	22.61	1
69	MP5A	Mx	.02	1
70	MP5C	X	33.145	1
71	MP5C	Z	19.136	1
72	MP5C	Mx	019	1
73	MP2C	X	35.882	2
74	MP2C	Z	20.716	2

Company Designer Job Number : Maser Consulting

Nov 23, 2021 5:47 PM : NL : 21781092A Checked By: DX Model Name Mount Analysis (Rev. 3)

Member Point Loads (BLC 7 : Antenna Wo (120 Deg)) (Continued)

MICHIO	TOTAL Educa (BEC		(120 Deg)) (Continuea)	
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
75	MP2C	Mx	.021	2
76	MP2C	X	35.882	5
77	MP2C	Z	20.716	5
78	MP2C	Mx	.021	5
79	MP4A	X	75.332	2
80	MP4A	Z	43.493	2
81	MP4A	Mx	0	2
82	MP4A	X	75.332	5
83	MP4A	Z	43.493	5
84	MP4A	Mx	0	5
85	MP4B	X	75.332	2
86		Z		2
	MP4B		43.493	
87	MP4B	Mx	0	2
88	MP4B	X	75.332	5
89	MP4B	Z	43.493	5
90	MP4B	Mx	0	5
91	MP1C	X	179.003	1
92	MP1C	Z	103.348	1
93	MP1C	Mx	.157	1
94	MP1C	X	179.003	5
95	MP1C	Z	103.348	5
96	MP1C	Mx	.157	5
97	MP1C	X	179.003	1
98	MP1C	Z	103.348	1
99	MP1C	Mx	115	1
100	MP1C	X	179.003	5
101	MP1C	Z	103.348	5
102	MP1C	Mx	115	5
103	MP2B	X	108.729	1
104	MP2B	Z	62.775	1
105	MP2B	Mx	022	1
106	MP2B	X	108.729	5
107	MP2B	Z	62.775	5
108	MP2B	Mx	022	5
109	MP2B	X	108.729	1
		Z		1
110	MP2B		62.775	1
111	MP2B	Mx	105	1
112	MP2B	X	108.729	5
113	MP2B	Z	62.775	5
114	MP2B	Mx	105	5
115	MP6A	X	143.893	2
116	MP6A	Z	83.077	2
117	MP6A	Mx	.081	2
118	MP6A	X	143.893	6
119	MP6A	Z	83.077	6
120	MP6A	Mx	.081	6
121	MP6A	X	143.893	2
122	MP6A	Z	83.077	2
123	MP6A	Mx	11	2
124	MP6A	X	143.893	6
125	MP6A	Z	83.077	6
126	MP6A	Mx	11	6
127	MP6C	X	97	2
128	MP6C	Z	56.003	2
129	MP6C	Mx	.066	2
130	MP6C	X	97	6
131	MP6C MP6C	Z	56.003	6
101	IVIPOU		50.003	U

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 7: Antenna Wo (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
132	MP6C	Mx	.066	6
133	MP6C	X	97	2
134	MP6C	Z	56.003	2
135	MP6C	Mx	.044	2
136	MP6C	X	97	6
137	MP6C	Z	56.003	6
138	MP6C	Mx	.044	6
139	MP6B	X	59.691	1.5
140	MP6B	Z	34.463	1.5
141	MP6B	Mx	0	1.5
142	MPB	X	59.691	1.5
143	MPB	Z	34.463	1.5
144	MPB	Mx	0	1.5
145	MP6A	X	9.081	5
146	MP6A	Z	5.243	5
147	MP6A	Mx	.003	5
148	MP6C	X	9.081	5
149	MP6C	Z	5.243	5
150	MP6C	Mx	003	5

Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	36.72	1
2	MP1A	Z	63.602	1
3	MP1A	Mx	.018	1
4	MP1A	X	36.72	3
5	MP1A	Z	63.602	3
6	MP1A	Mx	.018	3
7	MP1B	X	16.955	1
8	MP1B	Z	29.368	1
9	MP1B	Mx	017	1
10	MP1B	X	16.955	3
11	MP1B	Z	29.368	3
12	MP1B	Mx	017	3
13	MP4C	X	20.038	1
14	MP4C	Z	34.707	1
15	MP4C	Mx	.019	1
16	MP4C	X	20.038	3
17	MP4C	Z	34.707	3
18	MP4C	Mx	.019	3
19	MP5B	X	40.226	1
20	MP5B	Z	69.674	1
21	MP5B	Mx	014	1
22	MP5B	X	40.226	3
23	MP5B	Z	69.674	3
24	MP5B	Mx	014	3
25	MP1A	X	14.86	4.5
26	MP1A	Z	25.738	4.5
27	MP1A	Mx	.005	4.5
28	MP1B	X	3.614	4.5
29	MP1B	Z	6.26	4.5
30	MP1B	Mx	004	4.5
31	MP4C	X	4.759	4.5
32	MP4C	Z	8.243	4.5
33	MP4C	Mx	.004	4.5
34	MP5B	X	14.86	4.5
	02			

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
35	MP5B	Z	25.738	4.5
36	MP5B	Mx	005	4.5
37	MP1C	X	6.294	3
38	MP1C	Z	10.901	3
39	MP1C	Mx	.003	3
40	MP2B	X	6.294	3
41	MP2B	Z	10.901	3
42	MP2B	Mx	.003	3
43	MP2A	X	31.606	1
44	MP2A	Z	54.744	1
45	MP2A	Mx	.016	1
46	MP2C	X	24.373	1
47	MP2C	Z	42.216	1
48	MP2C	Mx	023	1
49	MP3B	X	31.606	1
50	MP3B	Z	54.744	1
51	MP3B	Mx	.016	1
52	MP4A	X	31.606	1
53	MP4A	Z	54.744	1
54	MP4A	Mx	.016	1
55	MP4C	X	24.373	1
56	MP4C	Z	42.216	1
57	MP4C	Mx	023	1
58	MP2B	X	32.614	1
59	MP2B	Z	56.489	1
60	MP2B	Mx	.011	1
61	MP3A	X	30.512	1
62	MP3A	Z	52.848	1
63	MP3A	Mx	.015	1
64	MP3C	X	20.508	1
65	MP3C	Z	35.521	1
66	MP3C	Mx	019	1
67	MP5A	X	30.512	1
68	MP5A	Z	52.848	1
69	MP5A	Mx	.015	1
70	MP5C	X	20.508	1
71	MP5C	Z	35.521	1
72	MP5C	Mx	019	1
73	MP2C	X	26.411	2
74	MP2C	Z	45.745	2
75	MP2C	Mx	.023	5
76	MP2C	X	26.411	
77	MP2C	Z	45.745	5
78	MP2C	Mx	.023	5
79	MP4A	X	37.799	2
80	MP4A	Z	65.47	2
81	MP4A	Mx	.019	2
82	MP4A	X	37.799	5
83	MP4A		65.47	5
84	MP4A	Mx	.019	5
85	MP4B	X	37.799	2 2
86	MP4B		65.47	
87	MP4B	Mx	019 37,700	5
88	MP4B	X Z	37.799	
89	MP4B		65.47	5
90	MP4B	Mx	019	5
91	MP1C	X	98.454	1

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
92	MP1C	Z	170.527	1
93	MP1C	Mx	.084	1
94	MP1C	X	98.454	5
95	MP1C	Z	170.527	5
96	MP1C	Mx	.084	5
97	MP1C	X	98.454	1
98	MP1C	Z	170.527	1
99	MP1C	Mx	163	1
100	MP1C	X	98.454	5
101	MP1C	Z	170.527	5
102	MP1C	Mx	163	5
103	MP2B	X	48.684	1
104	MP2B	Z	84.323	1
105	MP2B	Mx	057	1
106	MP2B	X	48.684	5
107	MP2B	Z	84.323	5
108	MP2B	Mx	057	5
109	MP2B	X	48.684	1
110	MP2B	Z	84.323	1
111	MP2B	Mx	057	1
112	MP2B	X	48.684	5
113	MP2B	Z	84.323	5
114	MP2B	Mx	057	5
115	MP6A	X	80.575	2
116	MP6A	Z	139.56	2
117	MP6A	Mx	.116	2
118	MP6A	X	80.575	6
119	MP6A	Z	139.56	6
120	MP6A	Mx	.116	6
121	MP6A	X	80.575	2
122	MP6A	Z	139.56	2
123	MP6A	Mx	061	2
124	MP6A	X	80.575	6
125	MP6A	Z	139.56	6
126	MP6A	Mx	061	6
127	MP6C	X	58.505	2
128	MP6C	Z	101.333	2
129	MP6C	Mx	.032	2
130	MP6C	X	58.505	6
131	MP6C	Z	101.333	6
132	MP6C	Mx	.032	6
133	MP6C	X	58.505	2
134	MP6C	Z	101.333	2
135	MP6C	Mx	.078	2
136	MP6C	X	58.505	6
137	MP6C	Z	101.333	6
138	MP6C	Mx	.078	6
139	MP6B	X	30.512	1.5
140	MP6B	Z	52.848	1.5
141	MP6B	Mx	.01	1.5
142	MPB	X	31.606	1.5
143	MPB	Z	54.744	1.5
144	MPB	Mx	.011	1.5
145	MP6A	X	6.294	5
146	MP6A	Z	10.901	5
147	MP6A	Mx	.002	5
148	MP6C	X	4.718	5

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 8: Antenna Wo (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
149	MP6C	Z	8.172	5
150	MP6C	Mx	003	5

Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	1
2	MP1A	Z	47.087	1
3	MP1A	Mx	.02	1
4	MP1A	X	0	3
5	MP1A	Z	47.087	3
6	MP1A	Mx	.02	3
7	MP1B	X	0	1
8	MP1B	Z	47.087	1
9	MP1B	Mx	02	1
10	MP1B	X	0	3
11	MP1B	Z	47.087	3
12	MP1B	Mx	02	3
13	MP4C	X	0	1
14	MP4C	Z	64.84	1
15	MP4C	Mx	.021	1
16	MP4C	X	0	3
17	MP4C	Z	64.84	3
18	MP4C MP4C	Mx	.021	3
19	MP5B		0	1
		X	55.688	1
20	MP5B			•
21	MP5B	Mx	021	1
22	MP5B	X	0	3
23	MP5B	Z	55.688	3
24	MP5B	Mx	021	3
25	MP1A	X	0	4.5
26	MP1A	Z	17.329	4.5
27	MP1A	Mx	.007	4.5
28	MP1B	X	0	4.5
29	MP1B	Z	17.329	4.5
30	MP1B	Mx	007	4.5
31	MP4C	X	0	4.5
32	MP4C	Z	21.908	4.5
33	MP4C	Mx	.007	4.5
34	MP5B	X	0	4.5
35	MP5B	Z	17.329	4.5
36	MP5B	Mx	007	4.5
37	MP1C	X	0	3
38	MP1C	Z	10.486	3
39	MP1C	Mx	.005	3
40	MP2B	X	0	3
41	MP2B	Z	10.486	3
42	MP2B	Mx	.005	3
43	MP2A	X	0	1
44	MP2A	Z	68.926	1
45	MP2A	Mx	0	1
46	MP2C	X	0	1
47	MP2C	Z	59.484	1
48	MP2C	Mx	019	1
49	MP3B	X	0	1
50	MP3B	Z	51.786	1
51	MP3B	Mx	.022	1
<u> </u>	WII OD	IVIX	1022	1

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 9: Antenna Wo (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
52	MP4A	X	0	1
53	MP4A	Z	68.926	1
54	MP4A	Mx	0	1
55	MP4C	X	0	1
56	MP4C	Z	59.484	1
57	MP4C	Mx	019	1
58	MP2B	X	0	1
59	MP2B	Z	50.378	1
60	MP2B	Mx	.019	1
61	MP3A	X	0	1
62	MP3A	Z	68.926	1
63	MP3A	Mx	0	1
64	MP3C	X	0	1
65	MP3C	Z	55.867	1
66	MP3C	Mx	018	1
67	MP5A	X	0	1
68	MP5A	Z	68.926	1
69	MP5A	Mx	0	1
70	MP5C	X	0	1
71	MP5C	Z	55.867	1
72	MP5C	Mx	018	1
73	MP2C	X	0	2
74	MP2C	Z	75.598	2
75	MP2C	Mx	.019	2
76	MP2C	X	0	5
77	MP2C	Z	75.598	5
78	MP2C	Mx	.019	5
79	MP4A	X	0	2
80	MP4A	Z	52.821	2
81	MP4A	Mx	.023	2
82	MP4A	X	0	5
83	MP4A	Z	52.821	5
84	MP4A	Mx	.023	5
85	MP4B	X	0	2
86	MP4B	Z	52.821	2
87	MP4B	Mx	023	2
88	MP4B	X	0	5
89	MP4B	Z	52.821	5
90	MP4B	Mx	023	5
91	MP1C	X	0	1
92	MP1C	Z	143.944	1
93	MP1C	Mx	003	1
94	MP1C	X	0	5
95	MP1C	Z	143.944	5
96	MP1C	Mx	003	5
97	MP1C	X	0	1
98	MP1C		143.944	
99	MP1C	Mx	126	1
100	MP1C	X Z	0	5
101 102	MP1C	Mx	143.944	5
	MP1C		126 0	3
103	MP2B	X	125.55	1
104	MP2B			1
105	MP2B	Mx	105 0	5
106 107	MP2B MP2B	X Z		5
107		Mx	125.55	5
100	MP2B	IVIX	105	J J

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 9 : Antenna Wo (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
109	MP2B	X	0	1
110	MP2B	Z	125.55	1
111	MP2B	Mx	022	1
112	MP2B	X	0	5
113	MP2B	Z	125.55	5
114	MP2B	Mx	022	5
115	MP6A	X	0	2
116	MP6A	Z	134.077	2
117	MP6A	Mx	.102	2
118	MP6A	X	0	6
119	MP6A	Z	134.077	6
120	MP6A	Mx	.102	6
121	MP6A	X	0	2
122	MP6A	Z	134.077	2
123	MP6A	Mx	.001	2
124	MP6A	X	0	6
125	MP6A	Z	134.077	6
126	MP6A	Mx	.001	6
127	MP6C	X	0	2
128	MP6C	Z	144.083	2
129	MP6C	Mx	018	2
130	MP6C	X	0	6
131	MP6C	Z	144.083	6
132	MP6C	Mx	018	6
133	MP6C	X	0	2
134	MP6C	Z	144.083	2
135	MP6C	Mx	.111	2
136	MP6C	X	0	6
137	MP6C	Z	144.083	6
138	MP6C	Mx	.111	6
139	MP6B	X	0	1.5
140	MP6B	Z	45.221	1.5
141	MP6B	Mx	.013	1.5
142	MPB	X	0	1.5
143	MPB	Z	51.786	1.5
144	MPB	Mx	.015	1.5
145	MP6A	X	0	5
146	MP6A	Z	13.638	5
147	MP6A	Mx	0	5
148	MP6C	X	0	5
149	MP6C	Z	10.486	5
150	MP6C	Mx	003	5

Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-16.955	1
2	MP1A	Z	29.368	1
3	MP1A	Mx	.017	1
4	MP1A	X	-16.955	3
5	MP1A	Z	29.368	3
6	MP1A	Mx	.017	3
7	MP1B	X	-36.72	1
8	MP1B	Z	63.602	1
9	MP1B	Mx	018	1
10	MP1B	X	-36.72	3
11	MP1B	Z	63.602	3

Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
12	MP1B	Mx	018	3
13	MP4C	X	-42.514	1
14	MP4C	Z	73.637	1
15	MP4C	Mx	.007	1
16	MP4C	X	-42.514	3
17	MP4C	Z	73.637	3
18	MP4C	Mx	.007	3
19	MP5B	X	-17.75	1
20	MP5B	Z	30.744	1
21	MP5B	Mx	017	1
22	MP5B	X	-17.75	3
23	MP5B	Z	30.744	3
24	MP5B	Mx	017	3
25	MP1A	X	-3.614	4.5
26	MP1A	Z	6.26	4.5
27	MP1A	Mx	.004	4.5
28	MP1B	X	-14.86	4.5
29	MP1B	Z	25.738	4.5
30	MP1B	Mx	005	4.5
31	MP4C	X	-16.004	4.5
32	MP4C	Z	27.721	4.5
33	MP4C	Mx	.003	4.5
34	MP5B	X	-3.614	4.5
35	MP5B	Z	6.26	4.5
36	MP5B	Mx	004	4.5
37	MP1C	X	-4.718	3
38	MP1C	Z	8.172	3
39	MP1C	Mx	.005	3
40	MP2B	X	-4.718	3
41	MP2B	Z	8.172	3
42	MP2B	Mx	.005	3
43	MP2A	X	-31.606	1
44	MP2A	Z	54.744	1
45	MP2A	Mx	016	1
46	MP2C	X	-34.118	1
47	MP2C	Z	59.095	1
48	MP2C	Mx	006	1
49	MP3B	X	-23.037	1
50	MP3B	Z	39.901	1
51	MP3B	Mx	.023	1
52	MP4A	X	-31.606	1
53	MP4A	Z	54.744	1
54	MP4A	Mx	016	1
55	MP4C	X	-34.118	1
56	MP4C		59.095	1
57	MP4C	Mx	006	1
58	MP2B	X	-19.136	1
59	MP2B	Z	33.145	1
60	MP2B	Mx	.019 -30.512	1
61 62	MP3A MP3A	X	-30.512 52.848	1
63	MP3A MP3A	Mx	015	1
64	MP3C	X	-33.986	1
65	MP3C MP3C	Z	-33.986 58.866	1
66	MP3C MP3C	Mx	006	1
67	MP5A	X	-30.512	1
68	MP5A MP5A	Z	52.848	1
00	IVIFOA		02.040	

Nov 23, 2021 5:47 PM

Nov 23, 2021 5:47 PM Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
69	MP5A	Mx	015	1
70	MP5C	X	-33.986	1
71	MP5C	Z	58.866	1
72	MP5C	Mx	006	1
73	MP2C	X	-43.493	2
74	MP2C	Z	75.332	2
75	MP2C	Mx	0	2
76	MP2C	X	-43.493	5
77	MP2C	Z	75.332	5
78	MP2C	Mx	0	5
79	MP4A	X	-20.716	2
80	MP4A	Z	35.882	2
81	MP4A	Mx	.021	2
82	MP4A	X	-20.716	5
83	MP4A	Z	35.882	5
84	MP4A	Mx	.021	5
85	MP4B	X	-20.716	2
86	MP4B	Z	35.882	2
87	MP4B	Mx	021	2
88	MP4B	X	-20.716	5
89	MP4B	Z	35.882	5
90	MP4B	Mx	021	5
91	MP1C	X	-50.384	1
92	MP1C	Z	87.267	1
93	MP1C	Mx	046	1
94	MP1C	X	-50.384	5
95	MP1C	Z	87.267	5
96	MP1C	Mx	046	5
97	MP1C	X	-50.384	1
98	MP1C	Z	87.267	1
99	MP1C	Mx	07	1
100	MP1C	X	-50.384	5
101	MP1C	Z	87.267	5
102	MP1C	Mx	07	5
103	MP2B	X	-90.956	1
104	MP2B	Z	157.541	1
105	MP2B	Mx	158	1
106	MP2B	X	-90.956	5
107	MP2B	Z	157.541	5
108	MP2B	Mx	158	5
109	MP2B	X	-90.956	1
110	MP2B	Z	157.541	1
111	MP2B	Mx	.052	1
112	MP2B	X	-90.956	5
113	MP2B	Z	157.541	5
114	MP2B	Mx	.052	5
115	MP6A	X	-56.003	2
116	MP6A	Z	97	2
117	MP6A	Mx	.066	2
118	MP6A	X	-56.003	6
119	MP6A	Z	97	6
120	MP6A	Mx	.066	6
121	MP6A	X	-56.003	2
122	MP6A	Z	97	2
123	MP6A	Mx	.044	2
124	MP6A	X	-56.003	6
125	MP6A	Z	97	6

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
126	MP6A	Mx	.044	6
127	MP6C	X	-83.077	2
128	MP6C	Z	143.893	2
129	MP6C	Mx	081	2
130	MP6C	X	-83.077	6
131	MP6C	Z	143.893	6
132	MP6C	Mx	081	6
133	MP6C	X	-83.077	2
134	MP6C	Z	143.893	2
135	MP6C	Mx	.11	2
136	MP6C	X	-83.077	6
137	MP6C	Z	143.893	6
138	MP6C	Mx	.11	6
139	MP6B	X	-18.66	1.5
140	MP6B	Z	32.32	1.5
141	MP6B	Mx	.012	1.5
142	MPB	X	-23.037	1.5
143	MPB	Z	39.901	1.5
144	MPB	Mx	.015	1.5
145	MP6A	X	-6.294	5
146	MP6A	Z	10.901	5
147	MP6A	Mx	002	5
148	MP6C	X	-6.294	5
149	MP6C	Z	10.901	5
150	MP6C	Mx	002	5

Member Point Loads (BLC 11: Antenna Wo (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-40.779	1
2	MP1A	Z	23.544	1
3	MP1A	Mx	.02	1
4	MP1A	X	-40.779	3
5	MP1A	Z	23.544	3
6	MP1A	Mx	.02	3
7	MP1B	X	-75.013	1
8	MP1B	Z	43.309	1
9	MP1B	Mx	0	1
10	MP1B	X	-75.013	3
11	MP1B	Z	43.309	3
12	MP1B	Mx	0	3
13	MP4C	X	-69.674	1
14	MP4C	Z	40.226	1
15	MP4C	Mx	014	1
16	MP4C	X	-69.674	3
17	MP4C	Z	40.226	3
18	MP4C	Mx	014	3
19	MP5B	X	-34.707	1
20	MP5B	Z	20.038	1
21	MP5B	Mx	019	1
22	MP5B	X	-34.707	3
23	MP5B	Z	20.038	3
24	MP5B	Mx	019	3
25	MP1A	X	-8.243	4.5
26	MP1A	Z	4.759	4.5
27	MP1A	Mx	.004	4.5
28	MP1B	X	-27.721	4.5

Company Designer Job Number

: NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 11: Antenna Wo (240 Deg)) (Continued)

			(240 Deg)) (Continued)	
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
29	MP1B	Z	16.004	4.5
30	MP1B	Mx	.003	4.5
31	MP4C	X	-25.738	4.5
32	MP4C	Z	14.86	4.5
33	MP4C	Mx	005	4.5
34	MP5B	X	-8.243	4.5
35	MP5B	Z	4.759	4.5
36	MP5B	Mx	004	4.5
37	MP1C	X	-9.081	3
38	MP1C	Z	5.243	3
39	MP1C	Mx	.005	3
40	MP2B	X	-9.081	3
41	MP2B	Z	5.243	3
42	MP2B	Mx	.005	3
43	MP2A	X	-44.848	1
44	MP2A	Z	25.893	1
45	MP2A	Mx	022	1
46	MP2C	X	-57.376	1
		Z		1
47	MP2C		33.126	
48	MP2C	Mx	.011	1
49	MP3B	X	-44.848	1
50	MP3B	Z	25.893	1
51	MP3B	Mx	.022	1
52	MP4A	X	-44.848	1
53	MP4A	Z	25.893	1
54	MP4A	Mx	022	1
55	MP4C	X	-57.376	1
56	MP4C	Z	33.126	1
57	MP4C	Mx	.011	1
58	MP2B	X	-35.521	1
59	MP2B	Z	20.508	1
60	MP2B	Mx	.019	1
61	MP3A	X	-39.162	1
62	MP3A	Z	22.61	1
63	MP3A	Mx	02	1
64	MP3C	X	-56.489	1
65	MP3C	Z	32.614	1
66	MP3C	Mx	.011	1
67	MP5A	X	-39.162	1
68	MP5A	Z	22.61	1
69	MP5A	Mx	02	1
70	MP5C	X	-56.489	1
71	MP5C	Z	32.614	1
72	MP5C	Mx	.011	1
73	MP2C	X	-65.47	2
		Z	37.799	2
74	MP2C			
75	MP2C	Mx	019	2
76	MP2C	X	-65.47	5
77	MP2C	Z	37.799	5
78	MP2C	Mx	019	5
79	MP4A	X	-45.745	2
80	MP4A	Z	26.411	2
81	MP4A	Mx	.023	2
82	MP4A	X	-45.745	5
83	MP4A	Z	26.411	5
84	MP4A	Mx	.023	5
85	MP4B	X	-45.745	2

Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Point Loads (BLC 11: Antenna Wo (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
86	MP4B	Z	26.411	2
87	MP4B	Mx	023	2
88	MP4B	X	-45.745	5
89	MP4B	Z	26.411	5
90	MP4B	Mx	023	5
91	MP1C	X	-95.743	1
92	MP1C	Z	55.277	1
93	MP1C	Mx	086	1
94	MP1C	X	-95.743	5
95	MP1C	Z	55.277	5
96	MP1C	Mx	086	5
97	MP1C	X	-95.743	1
98	MP1C	Z	55.277	1
99	MP1C	Mx	035	1
100	MP1C	X	-95.743	5
101	MP1C	Z	55.277	5
102	MP1C	Mx	035	5
103	MP2B	X	-181.947	1
104	MP2B	Z	105.047	1
105	MP2B	Mx	14	1
106	MP2B	X	-181.947	5
107	MP2B	Z	105.047	5
108	MP2B	Mx	14	5
109	MP2B	X	-181.947	1
110	MP2B	Z	105.047	1
111	MP2B	Mx	.14	1
112	MP2B	X	-181.947	5
113	MP2B	Z	105.047	5
114	MP2B	Mx	.14	5
115	MP6A	X	-101.333	2
116	MP6A	Z	58.505	2
117	MP6A	Mx	.032	2
118	MP6A	X	-101.333	6
119	MP6A	Z	58.505	6
120	MP6A	Mx	.032	6
121	MP6A	X	-101.333	2
122	MP6A	Z	58.505	2
123	MP6A	Mx	.078	2
124	MP6A	X	-101.333	6
125	MP6A	Z	58.505	6
126	MP6A	Mx	.078	6
127	MP6C	X	-139.56	2
128	MP6C	Z	80.575	2
129	MP6C	Mx	116	2
130	MP6C	X Z	-139.56	6
131	MP6C		80.575	6
132	MP6C	Mx ×	116 120.56	6
133	MP6C MP6C	X	-139.56	2 2
134 135	MP6C	Mx	80.575 .061	2
136	MP6C	X	-139.56	6
137	MP6C	Z	80.575	6
138	MP6C	Mx	.061	6
138	MP6B	X	-39.162	1.5
140	MP6B	Z	22.61	1.5
141	MP6B	Mx	.013	1.5
142	MPB	X	-44.848	1.5
142	IVIT'D	^	-44.040	1.0

Nov 23, 2021 5:47 PM

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 11 : Antenna Wo (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
143	MPB	Z	25.893	1.5
144	MPB	Mx	.015	1.5
145	MP6A	X	-9.081	5
146	MP6A	Z	5.243	5
147	MP6A	Mx	003	5
148	MP6C	X	-11.811	5
149	MP6C	Z	6.819	5
150	MP6C	Mx	0	5

Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-73.441	1
2	MP1A	Z	0	1
3	MP1A	Mx	.018	1
4	MP1A	X	-73.441	3
5	MP1A	Z	0	3
6	MP1A	Mx	.018	3
7	MP1B	X	-73.441	1
8	MP1B	Z	0	1
9	MP1B	Mx	.018	1
10	MP1B	X	-73.441	3
11	MP1B	Z	0	3
12	MP1B	Mx	.018	3
13	MP4C	X	-55.688	1
14	MP4C	Z	0	1
15	MP4C	Mx	021	1
16	MP4C	X	-55.688	3
17	MP4C	Z	0	3
18	MP4C	Mx	021	3
19	MP5B	X	-64.84	1
20	MP5B	Z	0	1
21	MP5B	Mx	021	1
22	MP5B	X	-64.84	3
23	MP5B	Z	0	3
24	MP5B	Mx	021	3
25	MP1A	X	-21.908	4.5
26	MP1A	Z	0	4.5
27	MP1A	Mx	.007	4.5
28	MP1B	X	-21.908	4.5
29	MP1B	Z	0	4.5
30	MP1B	Mx	.007	4.5
31	MP4C	X	-17.329	4.5
32	MP4C	Z	0	4.5
33	MP4C	Mx	007	4.5
34	MP5B	X	-21.908	4.5
35	MP5B	Z	0	4.5
36	MP5B	Mx	007	4.5
37	MP1C	X	-12.587	3
38	MP1C	Z	0	3
39	MP1C	Mx	.003	3
40	MP2B	X	-12.587	3
41	MP2B	Z	0	3
42	MP2B	Mx	.003	3
43	MP2A	X	-46.073	1
44	MP2A	Z	0	1
45	MP2A	Mx	023	1

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 12: Antenna Wo (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
46	MP2C	X	-55.515	1
47	MP2C	Z	0	1
48	MP2C	Mx	.021	1
49	MP3B	X	-63.213	1
50	MP3B	Z	0	1
51	MP3B	Mx	.016	1
52	MP4A	X	-46.073	1
53	MP4A	Z	0	1
54	MP4A	Mx	023	1
55	MP4C	X	-55.515	1
56	MP4C	Z	0	1
57	MP4C	Mx	.021	1
58	MP2B	X	-55.867	1
59	MP2B	Z	0	1
60	MP2B	Mx	.018	1
61	MP3A	X	-37.319	1
62	MP3A	Z	0	1
63	MP3A	Mx	019	1
64	MP3C	X	-50.378	1
65	MP3C	Z	0	1
66	MP3C	Mx	.019	1
67	MP5A	X	-37.319	1
68	MP5A	Z	0	1
69	MP5A	Mx	019	1
70	MP5C	X	-50.378	1
71	MP5C	Z	0	1
72	MP5C	Mx	.019	1
73	MP2C	X	-52.821	2
74	MP2C	Z	0	2
75 76	MP2C	Mx X	023	5
77	MP2C MP2C	Z	-52.821 0	5
78	MP2C	Mx	023	5
79	MP4A	X	-75.598	2
80	MP4A	Z	0	2
81	MP4A	Mx	.019	2
82	MP4A	X	-75.598	5
83	MP4A	Z	0	5
84	MP4A	Mx	.019	5
85	MP4B	X	-75.598	2
86	MP4B	Ž	0	2
87	MP4B	Mx	019	2
88	MP4B	X	-75.598	5
89	MP4B	Z	0	5
90	MP4B	Mx	019	5
91	MP1C	X	-163.518	1
92	MP1C	Z	0	1
93	MP1C	Mx	145	1
94	MP1C	X	-163.518	5
95	MP1C	Z	0	5
96	MP1C	Mx	145	5
97	MP1C	X	-163.518	1
98	MP1C	Z	0	1
99	MP1C	Mx	.022	1
100	MP1C	X	-163.518	5
101	MP1C	Z	0	5
102	MP1C	Mx	.022	5

Company Designer : Maser Consulting

: NL

5:47 PM Job Number : 21781092A Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Point Loads (BLC 12 : Antenna Wo (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
103	MP2B	X	-181.913	1
104	MP2B	Z	0	1
105	MP2B	Mx	052	1
106	MP2B	X	-181.913	5
107	MP2B	Z	0	5
108	MP2B	Mx	052	5
109	MP2B	X	-181.913	1
110	MP2B	Z	0	1
111	MP2B	Mx	.158	1
112	MP2B	X	-181.913	5
113	MP2B	Z	0	5
114	MP2B	Mx	.158	5
115	MP6A	X	-144.083	2
116	MP6A	Z	0	2
117	MP6A	Mx	018	2
118	MP6A	X	-144.083	6
119	MP6A	Z	0	6
120	MP6A	Mx	018	6
121	MP6A	X	-144.083	2
122	MP6A	Z	0	2
123	MP6A	Mx	.111	2
124	MP6A	X	-144.083	6
125	MP6A	Z	0	6
126	MP6A	Mx	.111	6
127	MP6C	X	-134.077	2
128	MP6C	Z	0	2
129	MP6C	Mx	102	2
130	MP6C	X	-134.077	6
131	MP6C	Z	0	6
132	MP6C	Mx	102	6
133	MP6C	X	-134.077	2
134	MP6C	Z	0	2
135	MP6C	Mx	001	2
136	MP6C	X	-134.077	6
137	MP6C	Z	0	6
138	MP6C	Mx	001	6
139	MP6B	X	-61.024	1.5
140	MP6B	Z	0	1.5
141	MP6B	Mx	.01	1.5
142	MPB	X	-63.213	1.5
143	MPB	Z	0	1.5
144	MPB	Mx	.011	1.5
145	MP6A	X	-9.436	5
146	MP6A	Z	0	5
147	MP6A	Mx	003	5
148	MP6C	X	-12.587	5
149	MP6C	Z	0	5
150	MP6C	Mx	.002	5
100	IVII OO	IVIA	.002	J

Member Point Loads (BLC 13: Antenna Wo (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-75.013	1
2	MP1A	Z	-43.309	1
3	MP1A	Mx	0	1
4	MP1A	X	-75.013	3
5	MP1A	Z	-43.309	3

Nov 23, 2021

Company Designer Job Number : Maser Consulting

: NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 13: Antenna Wo (300 Deg)) (Continued)

Member Label Direction Magnitude[lb,k-ft] 6 MP1A Mx 0 7 MP1B X -40.779 8 MP1B Z -23.544 9 MP1B Mx .02 10 MP1B X -40.779 11 MP1B Z -23.544 12 MP1B Mx .02	Location[ft,%] 3 1 1 1 1 3 3 3 3 1 1 1 1 1 1 1
7 MP1B X -40.779 8 MP1B Z -23.544 9 MP1B Mx .02 10 MP1B X -40.779 11 MP1B Z -23.544 12 MP1B Mx .02	1 1 1 3 3 3 1 1
8 MP1B Z -23.544 9 MP1B Mx .02 10 MP1B X -40.779 11 MP1B Z -23.544 12 MP1B Mx .02	1 1 3 3 3 3 1
9 MP1B Mx .02 10 MP1B X -40.779 11 MP1B Z -23.544 12 MP1B Mx .02	1 3 3 3 1 1
10 MP1B X -40.779 11 MP1B Z -23.544 12 MP1B Mx .02	3 3 3 1
11 MP1B Z -23.544 12 MP1B Mx .02	3 3 1 1
12 MP1B Mx .02	3 1 1
	1
	1
13 MP4C X -30.744	-
14 MP4C Z -17.75	1
15 MP4C Mx017	
16 MP4C X -30.744	3
17 MP4C Z -17.75	3
18 MP4C Mx017	3
19 MP5B X -73.637	1
20 MP5B Z -42.514	1
21 MP5B Mx007	1
22 MP5B X -73.637	3
23 MP5B Z -42.514	3
24 MP5B Mx007	3
25 MP1A X -27.721	4.5
26 MP1A Z -16.004	4.5
27 MP1A Mx .003	4.5
28 MP1B X -8.243	4.5
29 MP1B Z -4.759	4.5
30 MP1B Mx .004	4.5
31 MP4C X -6.26	4.5
32 MP4C Z -3.614	4.5
33 MP4C Mx004	4.5
34 MP5B X -27.721	4.5
35 MP5B Z -16.004	4.5
36 MP5B Mx003	4.5
37 MP1C X -11.811	3
38 MP1C Z -6.819	3
39 MP1C Mx 0	3
40 MP2B X -11.811	3
40 MF2B X -11.811 41 MP2B Z -6.819	3
42 MP2B Mx 0	3
42 MP2B MX 0 43 MP2A X -44.848	1
44 MP2A Z -25.893	1
44 MP2A Z -25.693 45 MP2A Mx022	1
	1
	1
	1
51 MP3B Mx 0	
52 MP4A X -44.848	1
53 MP4A Z -25.893	1
54 MP4A Mx022	1
55 MP4C X -40.497	1
56 MP4C Z -23.381	1
57 MP4C Mx .023	1
58 MP2B X -58.866	1
59 MP2B Z -33.986	1
60 MP2B Mx .006	1
61 MP3A X -39.162	1
62 MP3A Z -22.61	1

Company Designer Job Number : Maser Consulting

: NL : 21781092A

Model Name : Mount Analysis (Rev. 3)

Member Point Loads (BLC 13: Antenna Wo (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
63	MP3A	Mx	02	1
64	MP3C	X	-33.145	1
65	MP3C	Z	-19.136	1
66	MP3C	Mx	.019	1
67	MP5A	X	-39.162	1
68	MP5A	Z	-22.61	1
69	MP5A	Mx	02	1
70	MP5C	X	-33.145	1
71	MP5C	Z	-19.136	1
72	MP5C	Mx	.019	1
73	MP2C	X	-35.882	2
74	MP2C	Z	-20.716	2
75	MP2C	Mx	021	2
76	MP2C	X	-35.882	5
77	MP2C	Z	-20.716	5
78	MP2C	Mx	021	5
79	MP4A	X	-75.332	2
80	MP4A	Z	-43.493	2
81	MP4A	Mx	0	2
82	MP4A	X	-75.332	5
83	MP4A	Z	-73.332 -43.493	5
84	MP4A	Mx	0	5
85	MP4B	X	-75.332	2
86	MP4B	Z	-73.332 -43.493	2
87	MP4B	Mx	-43.493 0	2
88			-75.332	5
89	MP4B	X Z		
	MP4B		-43.493	5
90	MP4B	Mx	0	5
91	MP1C	X Z	-179.003	1
92	MP1C		-103.348	4
93	MP1C	Mx	157	1
94	MP1C	X	-179.003	5
95	MP1C	Z	-103.348	5
96	MP1C	Mx	157	5
97	MP1C	X	-179.003	1
98	MP1C	Z	-103.348	1
99	MP1C	Mx	.115	1
100	MP1C	X	-179.003	5
101	MP1C	Z	-103.348	5
102	MP1C	Mx	.115	5
103	MP2B	X	-108.729	1
104	MP2B		-62.775	1
105	MP2B	Mx	.022	1
106	MP2B	X	-108.729	5
107	MP2B	Z	-62.775	5
108	MP2B	Mx	.022	5
109	MP2B	X	-108.729	1
110	MP2B	Z	-62.775	1
111	MP2B	Mx	.105	1
112	MP2B	X	-108.729	5
113	MP2B	Z	-62.775	5
114	MP2B	Mx	.105	5
115	MP6A	X	-143.893	2
116	MP6A	Z	-83.077	2
117	MP6A	Mx	081	2
118	MP6A	X	-143.893	6
119	MP6A	Z	-83.077	6

Nov 23, 2021 5:47 PM Checked By: DX

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 13 : Antenna Wo (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
120	MP6A	Mx	081	6
121	MP6A	X	-143.893	2
122	MP6A	Z	-83.077	2
123	MP6A	Mx	.11	2
124	MP6A	X	-143.893	6
125	MP6A	Z	-83.077	6
126	MP6A	Mx	.11	6
127	MP6C	X	-97	2
128	MP6C	Z	-56.003	2
129	MP6C	Mx	066	2
130	MP6C	X	-97	6
131	MP6C	Z	-56.003	6
132	MP6C	Mx	066	6
133	MP6C	X	-97	2
134	MP6C	Z	-56.003	2
135	MP6C	Mx	044	2
136	MP6C	X	-97	6
137	MP6C	Z	-56.003	6
138	MP6C	Mx	044	6
139	MP6B	X	-59.691	1.5
140	MP6B	Z	-34.463	1.5
141	MP6B	Mx	0	1.5
142	MPB	X	-59.691	1.5
143	MPB	Z	-34.463	1.5
144	MPB	Mx	0	1.5
145	MP6A	X	-9.081	5
146	MP6A	Z	-5.243	5
147	MP6A	Mx	003	5
148	MP6C	X	-9.081	5
149	MP6C	Z	-5.243	5
150	MP6C	Mx	.003	5

Member Point Loads (BLC 14 : Antenna Wo (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-36.72	1
2	MP1A	Z	-63.602	1
3	MP1A	Mx	018	1
4	MP1A	X	-36.72	3
5	MP1A	Z	-63.602	3
6	MP1A	Mx	018	3
7	MP1B	X	-16.955	1
8	MP1B	Z	-29.368	1
9	MP1B	Mx	.017	1
10	MP1B	X	-16.955	3
11	MP1B	Z	-29.368	3
12	MP1B	Mx	.017	3
13	MP4C	X	-20.038	1
14	MP4C	Z	-34.707	1
15	MP4C	Mx	019	1
16	MP4C	X	-20.038	3
17	MP4C	Z	-34.707	3
18	MP4C	Mx	019	3
19	MP5B	X	-40.226	1
20	MP5B	Z	-69.674	1
21	MP5B	Mx	.014	1
22	MP5B	X	-40.226	3

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 14: Antenna Wo (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
23	MP5B	Z	-69.674	3
24	MP5B	Mx	.014	3
25	MP1A	X	-14.86	4.5
26	MP1A	Z	-25.738	4.5
27	MP1A	Mx	005	4.5
28	MP1B	X	-3.614	4.5
29	MP1B	Z	-6.26	4.5
30	MP1B	Mx	.004	4.5
31	MP4C	X	-4.759	4.5
32	MP4C	Z	-8.243	4.5
33	MP4C	Mx	004	4.5
34	MP5B	X	-14.86	4.5
35	MP5B	Z	-25.738	4.5
36	MP5B	Mx	.005	4.5
37	MP1C	X	-6.294	3
38	MP1C	Z	-10.901	3
39	MP1C	Mx	003	3
40	MP2B	X	-6.294	3
41	MP2B	Z	-10.901	3
42	MP2B	Mx	003	3
43	MP2A	X	-31.606	1
44	MP2A	Z	-51.000	1
45	MP2A	Mx	016	1
46	MP2C	X	-24.373	1
47		Z	-24.373 -42.216	1
48	MP2C MP2C	Mx	.023	1
				1
49	MP3B	X	-31.606	1
50	MP3B		-54.744	4
51	MP3B	Mx	016	1
52	MP4A	X	-31.606	1
53	MP4A	Z	-54.744	1
54	MP4A	Mx	016	1
55	MP4C	X	-24.373	1
56	MP4C	Z	-42.216	1
57	MP4C	Mx	.023	1
58	MP2B	X	-32.614	1
59	MP2B	Z	-56.489	1
60	MP2B	Mx	011	1
61	MP3A	X	-30.512	1
62	MP3A	Z	-52.848	1
63	MP3A	Mx	015	1
64	MP3C	X	-20.508	1
65	MP3C	Z	-35.521	1
66	MP3C	Mx	.019	1
67	MP5A	X	-30.512	1
68	MP5A	Z	-52.848	1
69	MP5A	Mx	015	1
70	MP5C	X	-20.508	1
71	MP5C	Z	-35.521	1
72	MP5C	Mx	.019	1
73	MP2C	X	-26.411	2
74	MP2C	Z	-45.745	2
75	MP2C	Mx	023	2
76	MP2C	X	-26.411	5
77	MP2C	Z	-45.745	5
78	MP2C	Mx	023	5
79	MP4A	X	-37.799	2

Company Designer Job Number : Maser Consulting

: NL : 21781092A

Nov 23, 2021 5:47 PM Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Point Loads (BLC 14 : Antenna Wo (330 Deg)) (Continued)

WEITING	Ulit Luaus (DLC	74. Antenna WC	(330 Deg)) (Conunuea)	
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
80	MP4A	Z	-65.47	2
81	MP4A	Mx	019	2
82	MP4A	X	-37.799	5
83	MP4A	Z	-65.47	5
84	MP4A	Mx	019	5
85	MP4B	X	-37.799	2
		Z		2
86	MP4B		-65.47	
87	MP4B	Mx	.019	2
88	MP4B	X	-37.799	5
89	MP4B	Z	-65.47	5
90	MP4B	Mx	.019	5
91	MP1C	X	-98.454	1
92	MP1C	Z	-170.527	1
93	MP1C	Mx	084	1
94	MP1C	X	-98.454	5
95	MP1C	Z	-170.527	5
96	MP1C	Mx	084	5
97	MP1C	X	-98.454	1
98		Z		1
	MP1C		<u>-170.527</u>	•
99	MP1C	Mx	.163	1
100	MP1C	X	-98.454	5
101	MP1C	Z	-170.527	5
102	MP1C	Mx	.163	5
103	MP2B	X	-48.684	1
104	MP2B	Z	-84.323	1
105	MP2B	Mx	.057	1
106	MP2B	X	-48.684	5
107	MP2B	Z	-84.323	5
108	MP2B	Mx	.057	5
109	MP2B	X	-48.684	1
110	MP2B	Z	-84.323	1
				1
111	MP2B	Mx	.057	1
112	MP2B	X	-48.684	5
113	MP2B	Z	-84.323	5
114	MP2B	Mx	.057	5
115	MP6A	X	-80.575	2
116	MP6A	Z	-139.56	2
117	MP6A	Mx	116	2
118	MP6A	X	-80.575	6
119	MP6A	Z	-139.56	6
120	MP6A	Mx	116	6
121	MP6A	X	-80.575	2
122	MP6A	Z	-139.56	2
123	MP6A	Mx	.061	2
	MP6A	X		6
124			-80.575	
125	MP6A	Z	-139.56	6
126	MP6A	Mx	.061	6
127	MP6C	X	-58.505	2
128	MP6C	Z	-101.333	2
129	MP6C	Mx	032	2
130	MP6C	X	-58.505	6
131	MP6C	Z	-101.333	6
132	MP6C	Mx	032	6
133	MP6C	X	-58.505	2
134	MP6C	Z	-101.333	2
135	MP6C	Mx	078	2
136	MP6C	X	-58.505	6
1000	IVII UU		-50.505	U

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 14: Antenna Wo (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
137	MP6C	Z	-101.333	6
138	MP6C	Mx	078	6
139	MP6B	X	-30.512	1.5
140	MP6B	Z	-52.848	1.5
141	MP6B	Mx	01	1.5
142	MPB	X	-31.606	1.5
143	MPB	Z	-54.744	1.5
144	MPB	Mx	011	1.5
145	MP6A	X	-6.294	5
146	MP6A	Z	-10.901	5
147	MP6A	Mx	002	5
148	MP6C	X	-4.718	5
149	MP6C	Z	-8.172	5
150	MP6C	Mx	.003	5

Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	1
2	MP1A	Z	-10.554	1
3	MP1A	Mx	005	1
4	MP1A	X	0	3
5	MP1A	Z	-10.554	3
6	MP1A	Mx	005	3
7	MP1B	X	0	1
8	MP1B	Z	-10.554	1
9	MP1B	Mx	.005	1
10	MP1B	X	0	3
11	MP1B	Z	-10.554	3
12	MP1B	Mx	.005	3
13	MP4C	X	0	1
14	MP4C	Z	-13.97	1
15	MP4C	Mx	004	1
16	MP4C	X	0	3
17	MP4C	Z	-13.97	3
18	MP4C	Mx	004	3
19	MP5B	X	0	1
20	MP5B	Z	-12.209	1
21	MP5B	Mx	.005	1
22	MP5B	X	0	3
23	MP5B	Z	-12.209	3
24	MP5B	Mx	.005	3
25	MP1A	X	0	4.5
26	MP1A	Z	-5.074	4.5
27	MP1A	Mx	002	4.5
28	MP1B	X	0	4.5
29	MP1B	Z	-5.074	4.5
30	MP1B	Mx	.002	4.5
31	MP4C	X	0	4.5
32	MP4C	Z	-6.039	4.5
33	MP4C	Mx	002	4.5
34	MP5B	X	0	4.5
35	MP5B	Z	-5.074	4.5
36	MP5B	Mx	.002	4.5
37	MP1C	X	0	3
38	MP1C	Z	-3.413	3
39	MP1C	Mx	001	3
00	IVII 10	IVIA	001	<u> </u>

Company Designer Job Number : Maser Consulting

: NL : 21781092A

Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Point Loads (BLC 15 : Antenna Wi (0 Deg)) (Continued)

momo			(0 Deg)) (Continued)	
40	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
40	MP2B	X	0	3
41	MP2B	Z	-3.413	3
42	MP2B	Mx	001	3
43	MP2A	X	0	1
44	MP2A	Z	-15.67	1
45	MP2A	Mx	0	1
46	MP2C	X	0	1
47	MP2C	Z	-13.774	1
48	MP2C	Mx	.004	1
49	MP3B	X	0	1
50	MP3B	Z	-12.229	1
51	MP3B	Mx	005	1
52	MP4A	X	0	1
53	MP4A	Z	-15.67	1
54	MP4A	Mx	0	1
55	MP4C	X	0	1
56	MP4C	Z	-13.774	1
57	MP4C	Mx	.004	1
58	MP2B	X	0	1
59	MP2B	Z	-11.954	1
60	MP2B	Mx	005	1
61	MP3A	X	0	1
62	MP3A	Z	-15.67	1
63	MP3A	Mx	0	1
64	MP3C	X	0	1
65	MP3C	Z	-13.054	1
66	MP3C	Mx	.004	1
67	MP5A	X	0	1
68	MP5A	Z	-15.67	1
69	MP5A	Mx	0	1
70	MP5C	X	0	1
71	MP5C	Z	-13.054	1
72	MP5C	Mx	.004	1
73	MP2C	X	0	2
74	MP2C	Z	-16.159	2
75	MP2C	Mx	004	2
76	MP2C	X	0	5
77	MP2C	Z	-16.159	5
78	MP2C	Mx	004	5
79	MP4A	X	0	2
80	MP4A	Z	-11.974	2
81	MP4A	Mx	005	2
82	MP4A	X	0	5
83	MP4A	Z	-11.974	5
84	MP4A	Mx	005	5
85	MP4B	X	0	2
86	MP4B	Z	-11.974	2
87	MP4B	Mx	.005	2 5
88	MP4B	X	0	
89	MP4B	Z	-11.974	5
90	MP4B	Mx	.005	5
91	MP1C	X	0	1
92	MP1C		-29.475	1
93	MP1C	Mx	.00054	1
94	MP1C	X	0	5
95	MP1C	Z	-29.475	5
96	MP1C	Mx	.00054	5

Nov 23, 2021 5:47 PM

Company : Maser Consulting Nov 23, 2021

Designer : NL 5:47 PM

Charles : 217810024

Job Number : 21781092A Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Point Loads (BLC 15: Antenna Wi (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
97	MP1C	X	0	1
98	MP1C	Z	-29.475	1
99	MP1C	Mx	.026	1
100	MP1C	X	0	5
101	MP1C	Z	-29.475	5
102	MP1C	Mx	.026	5
103	MP2B	X	0	1
104	MP2B	Z	-26.13	1
105	MP2B	Mx	.022	1
106	MP2B	X	0	5
107	MP2B	Z	-26.13	5
108	MP2B	Mx	.022	5
109	MP2B	X	0	1
110	MP2B	Z	-26.13	1
111	MP2B	Mx	.004	1
112	MP2B	X	0	5
113	MP2B	Z	-26.13	5
114	MP2B	Mx	.004	5
115	MP6A	X	0	2
116	MP6A	Z	-27.633	2
117	MP6A	Mx	021	2
118	MP6A	X	0	6
119	MP6A	Z	-27.633	6
120	MP6A	Mx	021	6
121	MP6A	X	0	2
122	MP6A	Z	-27.633	2
123	MP6A	Mx	000223	2
124	MP6A	X	0	6
125	MP6A	Z	-27.633	6
126	MP6A	Mx	000223	6
127	MP6C	X	0	2
128	MP6C	Z	-29.447	2
129	MP6C	Mx	.004	2
130	MP6C	X	0	6
131	MP6C	Z	-29.447	6
132	MP6C	Mx	.004	6
133	MP6C	X	0	2
134	MP6C	Z	-29.447	2
135	MP6C	Mx	023	2
136	MP6C	X	0	6
137	MP6C	Z	-29.447	6
138	MP6C	Mx	023	6
139	MP6B	X	0	1.5
140	MP6B	Z	-10.921	1.5
141	MP6B	Mx	003	1.5
142	MPB	X	0	1.5
143	MPB	Z	-12.229	1.5
144	MPB	Mx	004	1.5
145	MP6A	X	0	5
146	MP6A	Z	-4.123	5
147	MP6A	Mx	0	5
148	MP6C	X	0	5
149	MP6C	Z	-3.413	5
150	MP6C	Mx	.000985	5

Member Point Loads (BLC 16: Antenna Wi (30 Deg))

Mombor Labol	Direction	Magnitudo[]b k ft]	Location[ft %1

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 16: Antenna Wi (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	4.009	1
2	MP1A	Z	-6.944	1
3	MP1A	Mx	004	1
4	MP1A	X	4.009	3
5	MP1A	Z	-6.944	3
6	MP1A	Mx	004	3
7	MP1B	X	7.812	1
8	MP1B	Z	-13.532	1
9	MP1B	Mx	.004	1
10	MP1B	X	7.812	3
11	MP1B	Z	-13.532	3
12	MP1B	Mx	.004	3
13	MP4C	X	8.927	1
14	MP4C	Z	-15.463	1
15	MP4C	Mx	002	1
16	MP4C	X	8.927	3
17	MP4C	Z	-15.463	3
18	MP4C	Mx	002	3
19	MP5B	X	4.162	1
20	MP5B	Z	-7.209	1
21	MP5B	Mx	.004	1
22	MP5B	X	4.162	3
23	MP5B	Z	-7.209	3
24	MP5B	Mx		3
			.004	
25	MP1A	X	1.473	4.5
26	MP1A	Z	-2.552	4.5
27	MP1A	Mx	001	4.5
28	MP1B	X	3.842	4.5
29	MP1B	Z	-6.655	4.5
30	MP1B	Mx	.001	4.5
31	MP4C	X	4.083	4.5
32	MP4C	Z	-7.072	4.5
33	MP4C	Mx	000709	4.5
34	MP5B	X	1.473	4.5
35	MP5B	Z	-2.552	4.5
36	MP5B	Mx	.001	4.5
37	MP1C	X	1.588	3
38	MP1C	Z	-2.75	3
39	MP1C	Mx	002	3
40	MP2B	X	1.588	3
41	MP2B	Z	-2.75	3
42	MP2B	Mx	002	3
43	MP2A	X	7.261	1
44	MP2A	Z	-12.577	1
45	MP2A	Mx	.004	1
46	MP2C	X	7.766	1
47	MP2C	Z	-13.45	1
48	MP2C	Mx	.001	1
49	MP3B	X	5.541	1
50	MP3B	Z	-9.597	1
51	MP3B	Mx	006	1
52	MP4A	X	7.261	1
53	MP4A	Z	-12.577	1
54	MP4A	Mx	.004	1
55	MP4C	X	7.766	1
56	MP4C	Z	-13.45	1
57	MP4C	Mx	.001	1
UI	IVII 40	IVIA	١٠٥١	<u> </u>

Company Designer Job Number Nov 23, 2021 5:47 PM : Maser Consulting : NL : 21781092A Checked By: DX

Model Name : Mount Analysis (Rev. 3)

Member Point Loads (BLC 16 : Antenna Wi (30 Deg)) (Continued)

momo			(30 Deg)) (Continued)	
50	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	4.765	1
59	MP2B	Z	-8.253	1
60	MP2B	Mx	005	1
61	MP3A	X	7.043	1
62	MP3A	Z	-12.199	1
63	MP3A	Mx	.004	1
64	MP3C	X	7.739	1
65	MP3C	Z	-13.405	1
66	MP3C	Mx	.001	1
67	MP5A	X	7.043	1
68	MP5A	Z	-12.199	1
69	MP5A	Mx	.004	1
70	MP5C	X	7.739	1
71	MP5C	Z	-13.405	1
72	MP5C	Mx	.001	1
73	MP2C	X	9.126	2
74	MP2C	Z	-15.807	2
75	MP2C	Mx	0	2
76	MP2C	X	9.126	5
77	MP2C	Z	-15.807	5
78	MP2C	Mx	0	5
79	MP4A	X	4.941	2
80	MP4A	Z	-8.558	2
81	MP4A	Mx	005	2
82	MP4A	X	4.941	5
83	MP4A	Z	-8.558	5
84	MP4A	Mx	005	5
85	MP4B	X	4.941	2
86	MP4B	Z	-8.558	2
87	MP4B	Mx	.005	2
88	MP4B	X	4.941	5
89	MP4B	Z	-8.558	5
90	MP4B	Mx	.005	5
91	MP1C	X	10.811	1
92	MP1C	Z	-18.725	1
93	MP1C	Mx	.01	1
94	MP1C	X	10.811	5
95	MP1C	Z	-18.725	5
96	MP1C	Mx	.01	5
97	MP1C	X	10.811	1
98	MP1C	Z	-18.725	1
99	MP1C	Mx	.015	1
100	MP1C	X	10.811	5
101	MP1C	Z	-18.725	5
102	MP1C	Mx	.015	5
102	MP2B		18.19	1
		X Z	-31.507	1
104	MP2B			1
105	MP2B MP2B	Mx	.032	<u> </u>
106		X Z	18.19	5
107	MP2B		-31.507	5
108	MP2B	Mx	.032	5
109	MP2B	X	18.19	1
110	MP2B		-31.507	4
111	MP2B	Mx	01	7
112	MP2B	X	18.19	5
113	MP2B	Z	-31.507	5
114	MP2B	Mx	01	5

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 16: Antenna Wi (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
115	MP6A	X	11.816	2
116	MP6A	Z	-20.467	2
117	MP6A	Mx	014	2
118	MP6A	X	11.816	6
119	MP6A	Z	-20.467	6
120	MP6A	Mx	014	6
121	MP6A	X	11.816	2
122	MP6A	Z	-20.467	2
123	MP6A	Mx	009	2
124	MP6A	X	11.816	6
125	MP6A	Z	-20.467	6
126	MP6A	Mx	009	6
127	MP6C	X	16.723	2
128	MP6C	Z	-28.966	2
129	MP6C	Mx	.016	2
130	MP6C	X	16.723	6
131	MP6C	Z	-28.966	6
132	MP6C	Mx	.016	6
133	MP6C	X	16.723	2
134	MP6C	Z	-28.966	2
135	MP6C	Mx	022	2
136	MP6C	X	16.723	6
137	MP6C	Z	-28.966	6
138	MP6C	Mx	022	6
139	MP6B	X	4.669	1.5
140	MP6B	Z	-8.087	1.5
141	MP6B	Mx	003	1.5
142	MPB	X	5.541	1.5
143	MPB	Z	-9.597	1.5
144	MPB	Mx	004	1.5
145	MP6A	X	1.943	5
146	MP6A	Z	-3.366	5
147	MP6A	Mx	.000648	5
148	MP6C	X	1.943	5
149	MP6C	Z	-3.366	5
150	MP6C	Mx	.000648	5

Member Point Loads (BLC 17: Antenna Wi (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	9.14	1
2	MP1A	Z	-5.277	1
3	MP1A	Mx	005	1
4	MP1A	X	9.14	3
5	MP1A	Z	-5.277	3
6	MP1A	Mx	005	3
7	MP1B	X	15.727	1
8	MP1B	Z	-9.08	1
9	MP1B	Mx	0	1
10	MP1B	X	15.727	3
11	MP1B	Z	-9.08	3
12	MP1B	Mx	0	3
13	MP4C	X	14.7	1
14	MP4C	Z	-8.487	1
15	MP4C	Mx	.003	1
16	MP4C	X	14.7	3
17	MP4C	Z	-8.487	3

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 17: Antenna Wi (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
18	MP4C	Mx	.003	3
19	MP5B	X	7.971	1
20	MP5B	Z	-4.602	1
21	MP5B	Mx	.004	1
22	MP5B	X	7.971	3
23	MP5B	Z	-4.602	3
24	MP5B	Mx	.004	3
25	MP1A	X	2.969	4.5
26	MP1A	Z	-1.714	4.5
27	MP1A	Mx	002	4.5
28	MP1B	X	7.072	4.5
29	MP1B	Z	-4.083	4.5
30	MP1B	Mx	000709	4.5
31	MP4C	X	6.655	4.5
32	MP4C	Z	-3.842	4.5
33	MP4C	Mx	.001	4.5
34	MP5B	X	2.969	4.5
35	MP5B	Z	-1.714	4.5
36	MP5B	Mx	.002	4.5
37	MP1C	X	2.956	3
38	MP1C	Z	-1.706	3
39	MP1C	Mx	001	3
40	MP2B	X	2.956	3
41	MP2B	Z	-1.706	3
42	MP2B	Mx	001	3
43	MP2A	X	10.59	1
44	MP2A	Z	-6.114	1
45	MP2A	Mx	.005	1
46	MP2C		13.105	1
47		X Z	-7.566	1
48	MP2C MP2C	Mx		1
49	MP3B	X	003 10.59	1
50	MP3B	Z	-6.114	1
51	MP3B	Mx	-0.114	1
52	MP4A	X	10.59	1
53	MP4A	Z	-6.114	1
54	MP4A	Mx	.005	1
55	MP4C			1
56	MP4C MP4C	X Z	13.105 -7.566	1
57	MP4C	Mx		1
58	MP2B	X	003 8.729	1
59	MP2B MP2B	Z	-5.039	1
60	MP2B MP2B	Mx	-5.039	1
61	MP3A		9.458	1
62	MP3A MP3A	X	9.458 -5.461	1
63	MP3A MP3A	Mx	.005	1
		X	12.929	1
64	MP3C			1
65 66	MP3C MP3C	Z Mx	-7.464 003	1
67			9.458	1
68	MP5A MP5A	X	9.458 -5.461	1
				1
69	MP5A	Mx	.005	1
70	MP5C	X	12.929	1
71	MP5C	Z	-7.464	1
72	MP5C	Mx	003	
73	MP2C	X	13.994	2
74	MP2C	Z	-8.08	2

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 17: Antenna Wi (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
75	MP2C	Mx	.004	2
76	MP2C	X	13.994	5
77	MP2C	Z	-8.08	5
78	MP2C	Mx	.004	5
79	MP4A	X	10.37	2
80	MP4A	Z	-5.987	2
81	MP4A	Mx	005	2
82	MP4A	X	10.37	5
83	MP4A	Z	-5.987	5
84	MP4A	Mx	005	5
85	MP4B	X	10.37	2
86	MP4B	Z	-5.987	2
87	MP4B	Mx	.005	2
88	MP4B	X	10.37	5
89	MP4B	Ž	-5.987	5
90	MP4B	Mx	.005	5
91	MP1C	X	20.267	1
92	MP1C	Z	-11.701	1
93	MP1C	Mx	.018	1
94	MP1C	X	20.267	5
95	MP1C	Z	-11.701	5
96	MP1C	Mx	.018	5
97	MP1C	X	20.267	1
98	MP1C	Z	-11.701	1
99	MP1C	Mx	.007	1
100	MP1C	X	20.267	5
101	MP1C	Z	-11.701	5
102	MP1C	Mx	.007	5
103	MP2B	X	35.945	1
103	MP2B	Z	-20.753	1
104	MP2B	Mx	.028	-
106	MP2B		35.945	5
107		X Z		5
107	MP2B MP2B	Mx	-20.753 .028	5
109	MP2B	X	35.945	1
110	MP2B	Z	-20.753	1
			-20.753	·
111	MP2B	Mx		1
112	MP2B	X	35.945	5
113	MP2B	Z	-20.753	5
114	MP2B	Mx	028	5
115	MP6A	X	21.252	2 2
116	MP6A		-12.27	
117	MP6A	Mx	007	2
118	MP6A	X	21.252	6
119	MP6A	Z	-12.27	6
120	MP6A	Mx	007	6
121	MP6A	X	21.252	2
122	MP6A	Z	-12.27	2
123	MP6A	Mx	016	2
124	MP6A	X	21.252	6
125	MP6A	Z	-12.27	6
126	MP6A	Mx	016	6
127	MP6C	X	28.18	2
128	MP6C	Z	-16.27	2
129	MP6C	Mx	.023	2
130	MP6C	X	28.18	6
131	MP6C	Z	-16.27	6

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 17: Antenna Wi (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
132	MP6C	Mx	.023	6
133	MP6C	X	28.18	2
134	MP6C	Z	-16.27	2
135	MP6C	Mx	012	2
136	MP6C	X	28.18	6
137	MP6C	Z	-16.27	6
138	MP6C	Mx	012	6
139	MP6B	X	9.458	1.5
140	MP6B	Z	-5.461	1.5
141	MP6B	Mx	003	1.5
142	MPB	X	10.59	1.5
143	MPB	Z	-6.114	1.5
144	MPB	Mx	004	1.5
145	MP6A	X	2.956	5
146	MP6A	Z	-1.706	5
147	MP6A	Mx	.000985	5
148	MP6C	X	3.571	5
149	MP6C	Z	-2.062	5
150	MP6C	Mx	0	5

Member Point Loads (BLC 18 : Antenna Wi (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	15.625	1
2	MP1A	Z	0	1
3	MP1A	Mx	004	1
4	MP1A	X	15.625	3
5	MP1A	Z	0	3
6	MP1A	Mx	004	3
7	MP1B	X	15.625	1
8	MP1B	Z	0	1
9	MP1B	Mx	004	1
10	MP1B	X	15.625	3
11	MP1B	Z	0	3
12	MP1B	Mx	004	3
13	MP4C	X	12.209	1
14	MP4C	Z	0	1
15	MP4C	Mx	.005	1
16	MP4C	X	12.209	3
17	MP4C	Z	0	3
18	MP4C	Mx	.005	3
19	MP5B	X	13.97	1
20	MP5B	Z	0	1
21	MP5B	Mx	.004	1
22	MP5B	X	13.97	3
23	MP5B	Z	0	3
24	MP5B	Mx	.004	3
25	MP1A	X	6.039	4.5
26	MP1A	Z	0	4.5
27	MP1A	Mx	002	4.5
28	MP1B	X	6.039	4.5
29	MP1B	Z	0	4.5
30	MP1B	Mx	002	4.5
31	MP4C	X	5.074	4.5
32	MP4C	Z	0	4.5
33	MP4C	Mx	.002	4.5
34	MP5B	X	6.039	4.5

: Maser Consulting : NL Company Designer Job Number

: 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 18: Antenna Wi (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
35	MP5B	Z	0	4.5
36	MP5B	Mx	.002	4.5
37	MP1C	X	3.887	3
38	MP1C	Z	0	3
39	MP1C	Mx	000972	3
40	MP2B	X	3.887	3
41	MP2B	Z	0	3
42	MP2B	Mx	000972	3
43	MP2A	X	11.082	1
44	MP2A	Z	0	1
45	MP2A	Mx	.006	1
46	MP2C	X	12.977	1
47	MP2C	Z	0	1
48	MP2C	Mx	005	1
49	MP3B	X	14.523	1
50	MP3B	Z	0	1
51	MP3B	Mx	004	1
52	MP4A	X	11.082	1
53	MP4A	Z	0	1
54	MP4A	Mx	.006	1
55	MP4C	X	12.977	1
56	MP4C	Z	0	1
57	MP4C	Mx	005	1
58	MP2B	X	13.054	1
59	MP2B	Z	0	1
60	MP2B	Mx	004	1
61	MP3A	X	9.338	1
62	MP3A	Z	0	1
63	MP3A	Mx	.005	1
64	MP3C	X	11.954	1
65	MP3C	Z	0	1
66	MP3C	Mx	005	1
67	MP5A	X	9.338	1
68	MP5A	Z	0	1
69	MP5A	Mx	.005	1
70	MP5C	X	11.954	1
71	MP5C	Z	0	1
72	MP5C	Mx	005	1
73	MP2C	X	11.974	2
74	MP2C	Z	0	2
75	MP2C	Mx	.005	2
76	MP2C	X	11.974	5
77	MP2C	Z	0	5
78	MP2C	Mx	.005	5
79	MP4A	X	16.159	2
80	MP4A	Z	0	2
81	MP4A	Mx	004	2
82	MP4A	X	16.159	5
83	MP4A	Z	0	5
84	MP4A	Mx	004	5
85	MP4B	X	16.159	2
86	MP4B	Z	0	2
87	MP4B	Mx	.004	2
88	MP4B	X	16.159	5
89	MP4B	Z	0	5
90	MP4B	Mx	.004	5
91				1
91	MP1C	X	33.035	1

Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Point Loads (BLC 18: Antenna Wi (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
92	MP1C	Z	0	1
93	MP1C	Mx	.029	1
94	MP1C	X	33.035	5
95	MP1C	Z	0	5
96	MP1C	Mx	.029	5
97	MP1C	X	33.035	1
98	MP1C	Z	0	1
99	MP1C	Mx	004	1
100	MP1C	X	33.035	5
101	MP1C	Z	0	5
102	MP1C	Mx	004	5
103	MP2B	X	36.381	1
104	MP2B	Z	0	1
105	MP2B	Mx	.01	1
106	MP2B	X	36.381	5
107	MP2B	Z	0	5
108	MP2B	Mx	.01	5
109	MP2B	X	36.381	1
110	MP2B	Z	0	1
111	MP2B	Mx	032	1
112	MP2B	X	36.381	5
113	MP2B	Z	0	5
114	MP2B	Mx	032	5
115	MP6A	X	29.447	2
116	MP6A	Z	0	2
117	MP6A	Mx	.004	2
118	MP6A	X	29.447	6
119	MP6A	Z	0	6
120	MP6A	Mx	.004	6
121	MP6A	X	29.447	2
122	MP6A	Z	0	2
123	MP6A	Mx	023	2
124	MP6A	X	29.447	6
125	MP6A	Z	0	6
126	MP6A	Mx	023	6
127	MP6C	X	27.633	2
128	MP6C	Z	0	2
129	MP6C	Mx	.021	2
130	MP6C	X	27.633	6
131	MP6C	Z	0	6
132	MP6C	Mx	.021	6
133	MP6C	X	27.633	2
134	MP6C	Z	0	2
135	MP6C	Mx	.000223	2
136	MP6C	X	27.633	6
137	MP6C	Z	0	6
138	MP6C	Mx	.000223	6
139	MP6B	X	14.087	1.5
140	MP6B	Z	0	1.5
141	MP6B	Mx	002	1.5
142	MPB	X	14.523	1.5
143	MPB	Z	0	1.5
144	MPB	Mx	002	1.5
145	MP6A	X	3.176	5
146	MP6A	Z	0	5
147	MP6A	Mx	.001	5
148	MP6C	X	3.887	5

Nov 23, 2021 5:47 PM

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 18: Antenna Wi (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
149	MP6C	Z	0	5
150	MP6C	Mx	000648	5

Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	15.727	1
2	MP1A	Z	9.08	1
3	MP1A	Mx	0	1
4	MP1A	X	15.727	3
5	MP1A	Z	9.08	3
6	MP1A	Mx	0	3
7	MP1B	X	9.14	1
8	MP1B	Z	5.277	1
9	MP1B	Mx	005	1
10	MP1B	X	9.14	3
11	MP1B	Z	5.277	3
12	MP1B	Mx	005	3
13	MP4C	X	7.209	1
14	MP4C	Z	4.162	1
15	MP4C	Mx	.004	1
16	MP4C	X	7.209	3
17	MP4C	Z	4.162	3
18	MP4C	Mx	.004	3
19	MP5B	X	15.463	1
20	MP5B	Z	8.927	1
21	MP5B	Mx	.002	1
22	MP5B	X	15.463	3
23	MP5B	Z	8.927	3
24	MP5B	Mx	.002	3
25	MP1A	X	7.072	4.5
26	MP1A	Z	4.083	4.5
27	MP1A	Mx	000709	4.5
28	MP1B	X	2.969	4.5
29	MP1B	Z	1.714	4.5
30	MP1B	Mx	002	4.5
31	MP4C	X	2.552	4.5
32	MP4C	Z	1.473	4.5
33	MP4C	Mx	.001	4.5
34	MP5B	X	7.072	4.5
35	MP5B	Z	4.083	4.5
36	MP5B	Mx	.000709	4.5
37	MP1C	X	3.571	3
38	MP1C	Z	2.062	3
39	MP1C	Mx	0	3
40	MP2B	X	3.571	3
41	MP2B	Z	2.062	3
42	MP2B	Mx	0	3
43	MP2A	X	10.59	1
44	MP2A	Z	6.114	1
45	MP2A	Mx	.005	1
46	MP2C	X	9.717	1
47	MP2C	Z	5.61	1
48	MP2C	Mx	006	1
49	MP3B	X	13.57	1
50	MP3B	Z	7.835	1
51	MP3B	Mx	0	1
J I	IVIF 3D	IVIX	U	I .

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 19: Antenna Wi (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
52	MP4A	X	10.59	1
53	MP4A	Z	6.114	1
54	MP4A	Mx	.005	1
55	MP4C	X	9.717	1
56	MP4C	Z	5.61	1
57	MP4C	Mx	006	1
58	MP2B	X	13.405	1
59	MP2B	Z	7.739	1
60	MP2B	Mx	001	1
61	MP3A	X	9.458	1
62	MP3A	Z	5.461	1
63	MP3A	Mx	.005	1
64	MP3C	X	8.253	1
65	MP3C	Z	4.765	1
66	MP3C	Mx	005	1
67	MP5A	X	9.458	1
68	MP5A	Z	5.461	1
69	MP5A	Mx	.005	1
70	MP5C	X	8.253	1
71	MP5C	Z	4.765	1
72	MP5C	Mx	005	1
73	MP2C	X	8.558	2
74	MP2C	Z	4.941	2
75	MP2C	Mx	.005	2
76	MP2C	X	8.558	5
77	MP2C	Z	4.941	5
78	MP2C	Mx	.005	5
79	MP4A	X	15.807	2
80	MP4A	Z	9.126	2
81	MP4A	Mx	0	2
82	MP4A	X	15.807	5
83	MP4A	Z	9.126	5
84	MP4A	Mx	0	5
85	MP4B	X	15.807	2
86	MP4B	Z	9.126	2
87	MP4B	Mx	0	2
88	MP4B	X	15.807	5
89	MP4B	Z	9.126	5
90	MP4B	Mx	0	5
91	MP1C	X	35.41	1
92	MP1C	Z	20.444	1
93	MP1C	Mx	.031	1
94	MP1C	X	35.41	5
95	MP1C	Z	20.444	5
96	MP1C	Mx	.031	5
97	MP1C	X	35.41	1
98	MP1C		20.444	•
99	MP1C MP1C	Mx	023 35.41	5
101	MP1C	X Z	20.444	5
101	MP1C MP1C	Mx	023	5
102	MP2B	X	22.629	1
103	MP2B	Z	13.065	1
104	MP2B	Mx	004	1
106	MP2B	X	22.629	5
107	MP2B	Z	13.065	5
107	MP2B	Mx	004	5
100	IVIFZD	IVIX	004	J

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 19 : Antenna Wi (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
109	MP2B	X	22.629	1
110	MP2B	Z	13.065	1
111	MP2B	Mx	022	1
112	MP2B	X	22.629	5
113	MP2B	Z	13.065	5
114	MP2B	Mx	022	5
115	MP6A	X	28.966	2
116	MP6A	Z	16.723	2
117	MP6A	Mx	.016	2
118	MP6A	X	28.966	6
119	MP6A	Z	16.723	6
120	MP6A	Mx	.016	6
121	MP6A	X	28.966	2
122	MP6A	Z	16.723	2
123	MP6A	Mx	022	2
124	MP6A	X	28.966	6
125	MP6A	Z	16.723	6
126	MP6A	Mx	022	6
127	MP6C	X	20.467	2
128	MP6C	Z	11.816	2
129	MP6C	Mx	.014	2
130	MP6C	X	20.467	6
131	MP6C	Z	11.816	6
132	MP6C	Mx	.014	6
133	MP6C	X	20.467	2
134	MP6C	Z	11.816	2
135	MP6C	Mx	.009	2
136	MP6C	X	20.467	6
137	MP6C	Z	11.816	6
138	MP6C	Mx	.009	6
139	MP6B	X	13.57	1.5
140	MP6B	Z	7.835	1.5
141	MP6B	Mx	0	1.5
142	MPB	X	13.57	1.5
143	MPB	Z	7.835	1.5
144	MPB	Mx	0	1.5
145	MP6A	X	2.956	5
146	MP6A	Z	1.706	5
147	MP6A	Mx	.000985	5
148	MP6C	X	2.956	5
149	MP6C	Z	1.706	5
150	MP6C	Mx	000985	5

Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	7.812	1
2	MP1A	Z	13.532	1
3	MP1A	Mx	.004	1
4	MP1A	X	7.812	3
5	MP1A	Z	13.532	3
6	MP1A	Mx	.004	3
7	MP1B	X	4.009	1
8	MP1B	Z	6.944	1
9	MP1B	Mx	004	1
10	MP1B	X	4.009	3
11	MP1B	Z	6.944	3

: Maser Consulting : NL Company Designer Job Number

: 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
12	MP1B	Mx	004	3
13	MP4C	X	4.602	1
14	MP4C	Z	7.971	1
15	MP4C	Mx	.004	1
16	MP4C	X	4.602	3
17	MP4C	Z	7.971	3
18	MP4C	Mx	.004	3
19	MP5B	X	8.487	1
20	MP5B	Z	14.7	1
21	MP5B	Mx	003	1
22	MP5B	X	8.487	3
23	MP5B	Z	14.7	3
24	MP5B	Mx	003	3
25	MP1A	X	3.842	4.5
26	MP1A	Z	6.655	4.5
27	MP1A	Mx	.001	4.5
28	MP1B	X	1.473	4.5
29	MP1B	Z	2.552	4.5
30	MP1B	Mx	001	4.5
31	MP4C	X	1.714	4.5
32	MP4C	Z	2.969	4.5
33	MP4C	Mx	.002	4.5
34	MP5B	X	3.842	4.5
35	MP5B	Z	6.655	4.5
36	MP5B	Mx	001	4.5
37	MP1C	X	1.943	3
38	MP1C	Z	3.366	3
39	MP1C	Mx	.000972	3
40	MP2B	X	1.943	3
41	MP2B	Z	3.366	3
42	MP2B	Mx	.000972	3
43	MP2A	X	7.261	1
44	MP2A	Z	12.577	1
45	MP2A	Mx	.004	1
46	MP2C	X	5.809	1
47	MP2C	Z	10.062	1
48	MP2C	Mx	005	1
49	MP3B		7.261	1
50	MP3B	X	12.577	1
51	MP3B	Mx	.004	1
52	MP4A		7.261	1
53	MP4A	X Z	12.577	1
54	MP4A	Mx	.004	1
55	MP4C	X	5.809	1
56	MP4C	Z	10.062	1
57	MP4C	Mx	005	1
58	MP2B		7.464	1
		X		1
59	MP2B	Z	12.929	1
60	MP2B	Mx	.003	1
61	MP3A	X Z	7.043	1
62	MP3A		12.199	•
63	MP3A	Mx	.004	1
64	MP3C	X	5.039	1
65	MP3C	Z	8.729	1
66	MP3C	Mx	005	1
67	MP5A	X	7.043	1
68	MP5A	Z	12.199	1

Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
69	MP5A	Mx	.004	1
70	MP5C	X	5.039	1
71	MP5C	Z	8.729	1
72	MP5C	Mx	005	1
73	MP2C	X	5.987	2
74	MP2C	Z	10.37	2
75	MP2C	Mx	.005	2
76	MP2C	X	5.987	5
77	MP2C	Z	10.37	5
78	MP2C	Mx	.005	5
79	MP4A	X	8.08	2
80	MP4A	Z	13.994	2
81	MP4A	Mx	.004	2
82	MP4A	X	8.08	5
83	MP4A	Z	13.994	5
84	MP4A	Mx	.004	5
85	MP4B	X	8.08	2
86	MP4B	Z	13.994	2
87	MP4B	Mx	004	2
88	MP4B	X	8.08	5
89	MP4B	Z	13.994	5
90	MP4B	Mx	004	5
91	MP1C	X	19.554	1
92	MP1C	Z	33.868	1
93	MP1C	Mx	.017	1
94	MP1C	X	19.554	5
95	MP1C	Z	33.868	5
96	MP1C	Mx	.017	5
97	MP1C	X	19.554	1
98	MP1C	Z	33.868	1
99	MP1C	Mx	032	1
100	MP1C	X	19.554	5
101	MP1C	Z	33.868	5
102	MP1C	Mx	032	5
103	MP2B	X	10.502	1
104	MP2B	Z	18.19	1
105	MP2B	Mx	012	1
106	MP2B	X	10.502	5
107	MP2B	Z	18.19	5
108	MP2B	Mx	012	5
109	MP2B	X	10.502	1
110	MP2B		18.19	•
111	MP2B	Mx	012	1
112	MP2B	X	10.502	5
113	MP2B	Z	18.19	5
114	MP2B	Mx	012	5
115	MP6A	X	16.27 28.18	2 2
116 117	MP6A		.023	2
117	MP6A MP6A	Mx X	16.27	6
119	MP6A	Z	28.18	6
120	MP6A	Mx	.023	6
121	MP6A	X	16.27	2
122	MP6A	Z	28.18	2
123	MP6A	Mx	012	2
124	MP6A	X	16.27	6
125	MP6A	Z	28.18	6
140	IVIFUA		20.10	U

Nov 23, 2021 5:47 PM

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
126	MP6A	Mx	012	6
127	MP6C	X	12.27	2
128	MP6C	Z	21.252	2
129	MP6C	Mx	.007	2
130	MP6C	X	12.27	6
131	MP6C	Z	21.252	6
132	MP6C	Mx	.007	6
133	MP6C	X	12.27	2
134	MP6C	Z	21.252	2
135	MP6C	Mx	.016	2
136	MP6C	X	12.27	6
137	MP6C	Z	21.252	6
138	MP6C	Mx	.016	6
139	MP6B	X	7.043	1.5
140	MP6B	Z	12.199	1.5
141	MP6B	Mx	.002	1.5
142	MPB	X	7.261	1.5
143	MPB	Z	12.577	1.5
144	MPB	Mx	.002	1.5
145	MP6A	X	1.943	5
146	MP6A	Z	3.366	5
147	MP6A	Mx	.000648	5
148	MP6C	X	1.588	5
149	MP6C	Z	2.75	5
150	MP6C	Mx	001	5

Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	1
2	MP1A	Z	10.554	1
3	MP1A	Mx	.005	1
4	MP1A	X	0	3
5	MP1A	Z	10.554	3
6	MP1A	Mx	.005	3
7	MP1B	X	0	1
8	MP1B	Z	10.554	1
9	MP1B	Mx	005	1
10	MP1B	X	0	3
11	MP1B	Z	10.554	3
12	MP1B	Mx	005	3
13	MP4C	X	0	1
14	MP4C	Z	13.97	1
15	MP4C	Mx	.004	1
16	MP4C	X	0	3
17	MP4C	Z	13.97	3
18	MP4C	Mx	.004	3
19	MP5B	X	0	1
20	MP5B	Z	12.209	1
21	MP5B	Mx	005	1
22	MP5B	X	0	3
23	MP5B	Z	12.209	3
24	MP5B	Mx	005	3
25	MP1A	X	0	4.5
26	MP1A	Z	5.074	4.5
27	MP1A	Mx	.002	4.5
28	MP1B	X	0	4.5

Company Designer Job Number : Maser Consulting

: NL : 21781092A

Model Name Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 21 : Antenna Wi (180 Deg)) (Continued)

MOM			(180 Deg)) (Continuea)	
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
29	MP1B	Z	5.074	4.5
30	MP1B	Mx	002	4.5
31	MP4C	X	0	4.5
32	MP4C	Z	6.039	4.5
33	MP4C	Mx	.002	4.5
34	MP5B	X	0	4.5
35	MP5B	Z	5.074	4.5
36	MP5B	Mx	002	4.5
37	MP1C	X	0	3
38	MP1C	Z	3.413	3
39	MP1C	Mx	.001	3
40	MP2B	X	0	3
41	MP2B	Z	3.413	3
42	MP2B	Mx	.001	3
43	MP2A	X	0	1
44	MP2A	Z	15.67	1
45	MP2A	Mx	0	1
46	MP2C	X	0	1
47	MP2C	Z	13.774	1
48	MP2C	Mx	004	1
	MP3B			1
49		X Z	0	1
50	MP3B		12.229	1
51	MP3B	Mx	.005	1
52	MP4A	X	0	
53	MP4A	Z	15.67	1
54	MP4A	Mx	0	1
55	MP4C	X	0	1
56	MP4C	Z	13.774	1
57	MP4C	Mx	004	1
58	MP2B	X	0	1
59	MP2B	Z	11.954	1
60	MP2B	Mx	.005	1
61	MP3A	X	0	1
62	MP3A	Z	15.67	1
63	MP3A	Mx	0	1
64	MP3C	X	0	1
65	MP3C	Z	13.054	1
66	MP3C	Mx	004	1
67	MP5A	X	0	1
68	MP5A	Z	15.67	1
69	MP5A	Mx	0	1
70	MP5C	X	0	1
71	MP5C	Z	13.054	1
72	MP5C	Mx	004	1
73	MP2C	X	0	2
74	MP2C	Z	16.159	2 2
75	MP2C	Mx	.004	2
76	MP2C	X	0	5
77	MP2C	Z		5
78	MP2C	Mx	.004	5
79	MP4A	X	0	2
80	MP4A	Z	11.974	2
81	MP4A	Mx	.005	2
82		X	0	5
	MP4A	Z		
83	MP4A		11.974	5
84	MP4A	Mx	.005	5
85	MP4B	X	0	2

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 21: Antenna Wi (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
86	MP4B	Z	11.974	2
87	MP4B	Mx	005	2
88	MP4B	X	0	5
89	MP4B	Z	11.974	5
90	MP4B	Mx	005	5
91	MP1C	X	0	1
92	MP1C	Z	29.475	1
93	MP1C	Mx	00054	1
94	MP1C	X	0	5
95	MP1C	Z	29.475	5
96	MP1C	Mx	00054	5
97	MP1C	X	0	1
98	MP1C	Z	29.475	1
99	MP1C	Mx	026	1
100	MP1C	X	0	5
101	MP1C	Z	29.475	5
102	MP1C	Mx	026	5
103	MP2B	X	0	1
104	MP2B	Z	26.13	1
105	MP2B	Mx	022	1
106	MP2B	X	0	5
107	MP2B	Z	26.13	5
108	MP2B	Mx	022	5
109	MP2B	X	0	1
110	MP2B	Z	26.13	1
111	MP2B	Mx	004	1
112	MP2B	X	0	5
113	MP2B	Z	26.13	5
114	MP2B	Mx	004	5
115	MP6A	X	0	2
116	MP6A	Z	27.633	2
117	MP6A	Mx	.021	2
118	MP6A	X	0	6
119	MP6A	Z	27.633	6
120	MP6A	Mx	.021	6
121	MP6A	X	0	2
122	MP6A	Z	27.633	2
123	MP6A	Mx	.000223	2
124	MP6A	X	0	6
125	MP6A	Z	27.633	6
126	MP6A	Mx	.000223	6
127	MP6C	X	0	2
128	MP6C	Z	29.447	2
129	MP6C	Mx	004	2
130	MP6C	X	0	6
131	MP6C	Z	29.447	6
132	MP6C	Mx	004	6
133	MP6C	X	0	2
134	MP6C	Z	29.447	2
135	MP6C	Mx	.023	2
136	MP6C	X	0	6
137	MP6C	Z	29.447	6
138	MP6C	Mx	.023	6
139	MP6B	X	0	1.5
140	MP6B	Z	10.921	1.5
141	MP6B	Mx	.003	1.5
142	MPB	X	0	1.5
174	IVII D	^	U	1.0

Company Designer : NL

Job Number : 21781092A

Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Point Loads (BLC 21 : Antenna Wi (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
143	MPB	Z	12.229	1.5
144	MPB	Mx	.004	1.5
145	MP6A	X	0	5
146	MP6A	Z	4.123	5
147	MP6A	Mx	0	5
148	MP6C	X	0	5
149	MP6C	Z	3.413	5
150	MP6C	Mx	000985	5

Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-4.009	1
2	MP1A	Z	6.944	1
3	MP1A	Mx	.004	1
4	MP1A	X	-4.009	3
5	MP1A	Z	6.944	3
6	MP1A	Mx	.004	3
7	MP1B	X	-7.812	1
8	MP1B	Z	13.532	1
9	MP1B	Mx	004	1
10	MP1B	X	-7.812	3
11	MP1B	Z	13.532	3
12	MP1B	Mx	004	3
13	MP4C	X	-8.927	1
14	MP4C	Z	15.463	1
15	MP4C	Mx	.002	1
16	MP4C	X	-8.927	3
17	MP4C	Z	15.463	3
18	MP4C	Mx	.002	3
19	MP5B	X	-4.162	1
20	MP5B	Z	7.209	1
21	MP5B	Mx	004	1
22	MP5B	X	-4.162	3
23	MP5B	Z	7.209	3
24	MP5B	Mx	004	3
25	MP1A	X	-1.473	4.5
26	MP1A	Z	2.552	4.5
27	MP1A	Mx	.001	4.5
28	MP1B	X	-3.842	4.5
29	MP1B	Z	6.655	4.5
30	MP1B	Mx	001	4.5
31	MP4C	X	-4.083	4.5
32	MP4C	Z	7.072	4.5
33	MP4C	Mx	.000709	4.5
34	MP5B	X	-1.473	4.5
35	MP5B	Z	2.552	4.5
36	MP5B	Mx	001	4.5
37	MP1C	X	-1.588	3
38	MP1C	Z	2.75	3
39	MP1C	Mx	.002	3
40	MP2B	X	-1.588	3
41	MP2B	Z	2.75	3
42	MP2B	Mx	.002	3
43	MP2A	X	-7.261	1
44	MP2A	Z	12.577	1
45	MP2A MP2A	Mx	004	1
40	IVIPZA	IVIX	004	

Nov 23, 2021

5:47 PM

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
46	MP2C	X	-7.766	1
47	MP2C	Z	13.45	1
48	MP2C	Mx	001	1
49	MP3B	X	-5.541	1
50	MP3B	Z	9.597	1
51	MP3B	Mx	.006	1
52	MP4A	X	-7.261	1
53	MP4A	Z	12.577	1
54	MP4A	Mx	004	1
55	MP4C	X	-7.766	1
56	MP4C	Z	13.45	1
57	MP4C	Mx	001	1
58	MP2B	X	-4.765	1
59	MP2B	Z	8.253	1
60	MP2B	Mx	.005	1
61	MP3A	X	-7.043	1
62	MP3A	Z	12.199	1
63	MP3A	Mx	004	1
64	MP3C	X	-7.739	1
65	MP3C	Z	13.405	1
66	MP3C	Mx	001	1
67	MP5A	X	-7.043	1
68	MP5A	Z	12.199	1
69	MP5A	Mx	004	1
70	MP5C	X	-7.739	1
71	MP5C	Z	13.405	1
72	MP5C	Mx	001	1
73	MP2C	X	-9.126	2
74	MP2C	Z	15.807	2
75	MP2C	Mx	0	2
76	MP2C	X	-9.126	5
77	MP2C	Z	15.807	5
78	MP2C	Mx	0	5
79	MP4A	X	-4.941	2
80	MP4A	Z	8.558	2
81	MP4A	Mx	.005	2
82	MP4A	X	-4.941	5
83	MP4A	Z	8.558	5
84 85	MP4A	Mx	.005 -4.941	5
86	MP4B MP4B	X Z		2 2
87	MP4B	Mx	8.558 005	2
88	MP4B	X	005 -4.941	5
89	MP4B	Z	8.558	5
90	MP4B	Mx	005	5
91	MP1C	X	-10.811	1
92	MP1C	Z	18.725	1
93	MP1C	Mx	01	1
94	MP1C	X	-10.811	5
95	MP1C	Z	18.725	5
96	MP1C	Mx	01	5
97	MP1C	X	-10.811	1
98	MP1C	Z	18.725	1
99	MP1C	Mx	015	1
100	MP1C	X	-10.811	5
101	MP1C	Z	18.725	5
102	MP1C	Mx	015	5
	10	.7174	.510	· · · · · · · · · · · · · · · · · · ·

Company Designer : Maser Consulting

: NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
103	MP2B	X	-18.19	1
104	MP2B	Z	31.507	1
105	MP2B	Mx	032	1
106	MP2B	X	-18.19	5
107	MP2B	Z	31.507	5
108	MP2B	Mx	032	5
109	MP2B	X	-18.19	1
110	MP2B	Z	31.507	1
111	MP2B	Mx	.01	1
112	MP2B	X	-18.19	5
113	MP2B	Z	31.507	5
114	MP2B	Mx	.01	5
115	MP6A	X	-11.816	2
116	MP6A	Z	20.467	2
117	MP6A	Mx	.014	2
118	MP6A	X	-11.816	6
119	MP6A	Z	20.467	6
120	MP6A	Mx	.014	6
121	MP6A	X	-11.816	2
122	MP6A	Z	20.467	2
123	MP6A	Mx	.009	2
124	MP6A	X	-11.816	6
125	MP6A	Z	20.467	6
126	MP6A	Mx	.009	6
127	MP6C	X	-16.723	2
128	MP6C	Z	28.966	2
129	MP6C	Mx	016	2
130	MP6C	X	-16.723	6
131	MP6C	Z	28.966	6
132	MP6C	Mx	016	6
133	MP6C	X	-16.723	2
134	MP6C	Z	28.966	2
135	MP6C	Mx	.022	2
136	MP6C	X	-16.723	6
137	MP6C	Z	28.966	6
138	MP6C	Mx	.022	6
139	MP6B	X	-4.669	1.5
140	MP6B	Z	8.087	1.5
141	MP6B	Mx	.003	1.5
142	MPB	X	-5.541	1.5
143	MPB	Z	9.597	1.5
144	MPB	Mx	.004	1.5
145	MP6A	X	-1.943	5
146	MP6A	Z	3.366	5
147	MP6A	Mx	000648	5
148	MP6C	X	-1.943	5
149	MP6C	Z	3.366	5
150	MP6C	Mx	000648	5
100	IVII OO	IVIA	-,000040	J

Member Point Loads (BLC 23: Antenna Wi (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-9.14	1
2	MP1A	Z	5.277	1
3	MP1A	Mx	.005	1
4	MP1A	X	-9.14	3
5	MP1A	Z	5.277	3

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 23 : Antenna Wi (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
6	MP1A	Mx	.005	3
7	MP1B	X	-15.727	1
8	MP1B	Z	9.08	1
9	MP1B	Mx	0	1
10	MP1B	X	-15.727	3
11	MP1B	Z	9.08	3
12	MP1B	Mx	0	3
13	MP4C	X	-14.7	1
14	MP4C	Z	8.487	1
15	MP4C	Mx	003	1
16	MP4C	X	-14.7	3
17	MP4C	Z	8.487	3
18	MP4C	Mx	003	3
19	MP5B	X	-7.971	1
20	MP5B	Z	4.602	1
21	MP5B	Mx	004	1
22	MP5B	X	-7.971	3
23	MP5B	Z	4.602	3
24	MP5B	Mx	004	3
25	MP1A	X	-2.969	4.5
26	MP1A	Z	1.714	4.5
27	MP1A	Mx	.002	4.5
28	MP1B	X	-7.072	4.5
29	MP1B	Z	4.083	4.5
30	MP1B	Mx	.000709	4.5
31	MP4C	X	-6.655	4.5
32	MP4C	Z	3.842	4.5
33	MP4C	Mx	001	4.5
34	MP5B	X	-2.969	4.5
35	MP5B	Z	1.714	4.5
36	MP5B	Mx	002	4.5
37	MP1C	X	-2.956	3
38	MP1C	Z	1.706	3
39	MP1C	Mx	.001	3
40	MP2B	X	-2.956	3
41	MP2B	Z	1.706	3
42	MP2B	Mx	.001	3
43	MP2A	X	-10.59	1
44	MP2A	Z	6.114	1
45	MP2A	Mx	005	1
46	MP2C	X	-13.105	1
47	MP2C	Z	7.566	1
48	MP2C	Mx	.003	1
49	MP3B	X	-10.59	1
50	MP3B	Z	6.114	1
51	MP3B	Mx	.005	1
52	MP4A	X	-10.59	1
53	MP4A	Z	6.114	1
54	MP4A	Mx	005	1
55	MP4C	X	-13.105	1
56	MP4C	Z	7.566	1
57	MP4C	Mx	.003	1
58	MP2B	X	-8.729	1
59	MP2B	Z	5.039	1
60	MP2B	Mx	.005	
61	MP3A	X	-9.458	1
62	MP3A	Z	5.461	1

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 23 : Antenna Wi (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
63	MP3A	Mx	005	1
64	MP3C	X	-12.929	1
65	MP3C	Z	7.464	1
66	MP3C	Mx	.003	1
67	MP5A	X	-9.458	1
68	MP5A	Z	5.461	1
69	MP5A	Mx	005	1
70	MP5C	X	-12.929	1
71	MP5C	Z	7.464	1
72	MP5C	Mx	.003	1
73	MP2C	X	-13.994	2
74	MP2C	Z	8.08	2
75	MP2C	Mx	004	2
76	MP2C	X	-13.994	5
77	MP2C	Z	8.08	5
78	MP2C	Mx	004	5
79	MP4A	X	-10.37	2
80	MP4A	Z	5.987	2
81	MP4A	Mx	.005	2
82	MP4A	X	-10.37	5
83	MP4A	Z	5.987	5
84	MP4A	Mx	.005	5
85	MP4B	X	-10.37	2
86	MP4B	Z	5.987	2
87	MP4B	Mx	005	2
88	MP4B	X	-10.37	5
89	MP4B	Z	5.987	5
90	MP4B	Mx	005	5
91	MP1C	X	-20.267	1
92	MP1C	Z	11.701	1
93	MP1C	Mx	018	1
94	MP1C	X	-20.267	5
95	MP1C	Z	11.701	5
96	MP1C	Mx	018	5
97	MP1C	X	-20.267	1
98	MP1C	Z	11.701	1
99	MP1C	Mx	007	1
100	MP1C	X	-20.267	5
101	MP1C	Z	11.701	5
102	MP1C	Mx	007	5
103	MP2B	X	-35.945	1
104	MP2B	Z	20.753	1
105	MP2B	Mx	028	1
106	MP2B	X	-35.945	5
107	MP2B	Z	20.753	5
108	MP2B	Mx	028	5
109	MP2B	X	-35.945	1
110	MP2B	Z	20.753	1
111	MP2B	Mx	.028	1
112	MP2B	X	-35.945	5
113	MP2B	Z	20.753	5
114	MP2B	Mx	.028	5
115	MP6A	X	-21.252	2
116	MP6A	Z	12.27	2
117	MP6A	Mx	.007	2
118	MP6A	X	-21.252	6
119	MP6A	Z	12.27	6

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 23 : Antenna Wi (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
120	MP6A	Mx	.007	6
121	MP6A	X	-21.252	2
122	MP6A	Z	12.27	2
123	MP6A	Mx	.016	2
124	MP6A	X	-21.252	6
125	MP6A	Z	12.27	6
126	MP6A	Mx	.016	6
127	MP6C	X	-28.18	2
128	MP6C	Z	16.27	2
129	MP6C	Mx	023	2
130	MP6C	X	-28.18	6
131	MP6C	Z	16.27	6
132	MP6C	Mx	023	6
133	MP6C	X	-28.18	2
134	MP6C	Z	16.27	2
135	MP6C	Mx	.012	2
136	MP6C	X	-28.18	6
137	MP6C	Z	16.27	6
138	MP6C	Mx	.012	6
139	MP6B	X	-9.458	1.5
140	MP6B	Z	5.461	1.5
141	MP6B	Mx	.003	1.5
142	MPB	X	-10.59	1.5
143	MPB	Z	6.114	1.5
144	MPB	Mx	.004	1.5
145	MP6A	X	-2.956	5
146	MP6A	Z	1.706	5
147	MP6A	Mx	000985	5
148	MP6C	X	-3.571	5
149	MP6C	Z	2.062	5
150	MP6C	Mx	0	5

Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-15.625	1
2	MP1A	Z	0	1
3	MP1A	Mx	.004	1
4	MP1A	X	-15.625	3
5	MP1A	Z	0	3
6	MP1A	Mx	.004	3
7	MP1B	X	-15.625	1
8	MP1B	Z	0	1
9	MP1B	Mx	.004	1
10	MP1B	X	-15.625	3
11	MP1B	Z	0	3
12	MP1B	Mx	.004	3
13	MP4C	X	-12.209	1
14	MP4C	Z	0	1
15	MP4C	Mx	005	1
16	MP4C	X	-12.209	3
17	MP4C	Z	0	3
18	MP4C	Mx	005	3
19	MP5B	X	-13.97	1
20	MP5B	Z	0	1
21	MP5B	Mx	004	1
22	MP5B	X	-13.97	3

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 24: Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
23	MP5B	Z	0	3
24	MP5B	Mx	004	3
25	MP1A	X	-6.039	4.5
26	MP1A	Z	0	4.5
27	MP1A	Mx	.002	4.5
28	MP1B	X	-6.039	4.5
29	MP1B	Z	0	4.5
30	MP1B	Mx	.002	4.5
31	MP4C	X	-5.074	4.5
32	MP4C	Z	0	4.5
33	MP4C	Mx	002	4.5
34	MP5B	X	-6.039	4.5
35	MP5B	Z	0	4.5
36	MP5B	Mx	002	4.5
37	MP1C	X	-3.887	3
38	MP1C	Z	0	3
39	MP1C	Mx	.000972	3
40	MP2B	X	-3.887	3
41	MP2B	Z	0	3
42	MP2B	Mx	.000972	3
43	MP2A	X	-11.082	1
44	MP2A	Z	0	1
45	MP2A	Mx	006	1
46	MP2C	X	-12.977	1
47	MP2C	Z	0	1
48	MP2C	Mx	.005	1
49	MP3B	X	-14.523	1
50	MP3B	Z	0	1
51	MP3B	Mx	.004	1
52	MP4A	X	-11.082	1
53	MP4A	Z	0	1
54	MP4A	Mx	006	1
55	MP4C	X	-12.977	1
56	MP4C	Z	0	1
57	MP4C	Mx	.005	1
58	MP2B	X	-13.054	1
59	MP2B	Z	0	1
60	MP2B	Mx	.004	1
61	MP3A	X	-9.338	1
62	MP3A	Z	0	1
63	MP3A	Mx	005	1
64	MP3C	X	-11.954	1
65	MP3C	Z	0	1
66	MP3C	Mx	.005	1
67	MP5A	X	-9.338	1
68	MP5A	Z	0	1
69	MP5A	Mx	005	1
70	MP5C	X	-11.954	1
71	MP5C	Z	0	1
72	MP5C	Mx	.005	1
73	MP2C	X	-11.974	2
74	MP2C	Z	0	2
75	MP2C	Mx	005	2
76	MP2C	X	-11.974	5
77	MP2C	Z	0	5
78	MP2C	Mx	005	5
79	MP4A	X	-16.159	2

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 24: Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
80	MP4A	Z	0	2
81	MP4A	Mx	.004	2
82	MP4A	X	-16.159	5
83	MP4A	Z	0	5
84	MP4A	Mx	.004	5
85	MP4B	X	-16.159	2
86	MP4B	Z	0	2
87	MP4B	Mx	004	2
88	MP4B	X	-16.159	5
89	MP4B	Z	0	5
90	MP4B	Mx	004	5
91	MP1C	X	-33.035	1
92	MP1C	Z	0	1
93	MP1C	Mx	029	1
94	MP1C	X	-33.035	5
95	MP1C	Z	0	5
96	MP1C	Mx	029	5
97	MP1C	X	-33.035	1
98	MP1C	Z	0	1
99	MP1C	Mx	.004	1
100	MP1C	X	-33.035	5
101	MP1C	Z	0	5
102	MP1C	Mx	.004	5
103	MP2B	X	-36.381	1
104	MP2B	Z	0	1
105	MP2B	Mx	01	1
106	MP2B	X	-36.381	5
107	MP2B	Z	0	5
108	MP2B	Mx	01	5
109	MP2B	X	-36.381	1
110	MP2B	Z	0	1
111	MP2B	Mx	.032	1
112	MP2B	X	-36.381	5
113	MP2B	Z	0	5
114	MP2B	Mx	.032	5
115	MP6A	X	-29.447	2
116	MP6A	Z	0	2
117	MP6A	Mx	004	2
118	MP6A	X	-29.447	6
119	MP6A	Z	0	6
120	MP6A	Mx	004	6
121	MP6A	X	-29.447	2
122	MP6A	Z	0	2
123	MP6A	Mx	.023	6
124	MP6A	X Z		
125	MP6A		0	6
126	MP6A	Mx	.023	6
127	MP6C	X	-27.633	2
128	MP6C	Z	0	2
129	MP6C	Mx	021	2 6
130	MP6C	X	-27.633	
131	MP6C	Z	0 021	6
132	MP6C	Mx		6
133	MP6C	X	-27.633	2
134	MP6C		0	2
135	MP6C	Mx	000223	2
136	MP6C	X	-27.633	6

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 24 : Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
137	MP6C	Z	0	6
138	MP6C	Mx	000223	6
139	MP6B	X	-14.087	1.5
140	MP6B	Z	0	1.5
141	MP6B	Mx	.002	1.5
142	MPB	X	-14.523	1.5
143	MPB	Z	0	1.5
144	MPB	Mx	.002	1.5
145	MP6A	X	-3.176	5
146	MP6A	Z	0	5
147	MP6A	Mx	001	5
148	MP6C	X	-3.887	5
149	MP6C	Z	0	5
150	MP6C	Mx	.000648	5

Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-15.727	1
2	MP1A	Z	-9.08	1
3	MP1A	Mx	0	1
4	MP1A	X	-15.727	3
5	MP1A	Z	-9.08	3
6	MP1A	Mx	0	3
7	MP1B	X	-9.14	1
8	MP1B	Z	-5.277	1
9	MP1B	Mx	.005	1
10	MP1B	X	-9.14	3
11	MP1B	Z	-5.277	3
12	MP1B	Mx	.005	3
13	MP4C	X	-7.209	1
14	MP4C	Z	-4.162	1
15	MP4C	Mx	004	1
16	MP4C	X	-7.209	3
17	MP4C	Z	-4.162	3
18	MP4C	Mx	004	3
19	MP5B	X	-15.463	1
20	MP5B	Z	-8.927	1
21	MP5B	Mx	002	1
22	MP5B	X	-15.463	3
23	MP5B	Z	-8.927	3
24	MP5B	Mx	002	3
25	MP1A	X	-7.072	4.5
26	MP1A	Z	-4.083	4.5
27	MP1A	Mx	.000709	4.5
28	MP1B	X	-2.969	4.5
29	MP1B	Z	-1.714	4.5
30	MP1B	Mx	.002	4.5
31	MP4C	X	-2.552	4.5
32	MP4C	Z	-1.473	4.5
33	MP4C	Mx	001	4.5
34	MP5B	X	-7.072	4.5
35	MP5B	Z	-4.083	4.5
36	MP5B	Mx	000709	4.5
37	MP1C	X	-3.571	3
38	MP1C	Z	-2.062	3
39	MP1C	Mx	0	3
	10	14124	·	•

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 25 : Antenna Wi (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
40	MP2B	X	-3.571	3
41	MP2B	Z	-2.062	3
42	MP2B	Mx	0	3
43	MP2A	X	-10.59	1
44	MP2A	Z	-6.114	1
45	MP2A	Mx	005	1
46	MP2C	X	-9.717	1
47	MP2C	Z	-5.61	1
48	MP2C	Mx	.006	1
49	MP3B	X	-13.57	1
50	MP3B	Z	-7.835	1
51	MP3B	Mx	0	1
52	MP4A	X	-10.59	1
53	MP4A	Z	-6.114	1
54	MP4A	Mx	005	1
55	MP4C	X	-9.717	1
56	MP4C	Z	-5.61	1
57	MP4C	Mx	.006	1
58	MP2B	X	-13.405	1
59	MP2B	Z	-7.739	1
60	MP2B	Mx	.001	1
61	MP3A	X	-9.458	1
62	MP3A	Z	-5.461	1
63	MP3A	Mx	005	1
64	MP3C	X	-8.253	1
65	MP3C	Z	-4.765	1
66	MP3C	Mx	.005	1
67	MP5A	X	-9.458	1
68	MP5A	Z	-5.461	1
69	MP5A	Mx	005	1
70	MP5C	X	-8.253	1
71	MP5C	Z	-4.765	1
72	MP5C	Mx	.005	1
73	MP2C	X	-8.558	2
74	MP2C	Z	-4.941	2
75	MP2C	Mx	005	2
76	MP2C	X	-8.558	5
77	MP2C	Z	-4.941	5
78	MP2C	Mx	005	5
79	MP4A	X	-15.807	2
80	MP4A	Z	-9.126	2
81	MP4A	Mx	0	2
82	MP4A	X	-15.807	5
83	MP4A	Z	-9.126	5
84	MP4A	Mx	0	5
85	MP4B	X	-15.807	2
86	MP4B	Z	-9.126	2
87	MP4B	Mx	0	2
88	MP4B	X	-15.807	5
89	MP4B	Z	-9.126	5
90	MP4B	Mx	0	5
91	MP1C	X	-35.41	1
92	MP1C	Z	-20.444	1
93	MP1C	Mx	031	7
94	MP1C	X	-35.41	5
95	MP1C	Z	-20.444	5
96	MP1C	Mx	031	5

Company : Maser Consulting Nov 23, 2021
Designer : NL 5:47 PM

Job Number : 21781092A Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Point Loads (BLC 25 : Antenna Wi (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
97	MP1C	X	-35.41	1
98	MP1C	Z	-20.444	1
99	MP1C	Mx	.023	1
100	MP1C	X	-35.41	5
101	MP1C	Z	-20.444	5
102	MP1C	Mx	.023	5
103	MP2B	X	-22.629	1
104	MP2B	Z	-13.065	1
105	MP2B	Mx	.004	1
106	MP2B	X	-22.629	5
107	MP2B	Z	-13.065	5
108	MP2B	Mx	.004	5
109	MP2B	X	-22.629	1
110	MP2B	Z	-13.065	1
111	MP2B	Mx	.022	1
112	MP2B	X	-22.629	5
113	MP2B	Z	-13.065	5
114	MP2B	Mx	.022	5
115	MP6A	X	-28.966	2
116	MP6A	Z	-16.723	2
117	MP6A	Mx	016	2
118	MP6A	X	-28.966	6
119	MP6A	Z	-16.723	6
120	MP6A	Mx	016	6
121	MP6A	X	-28.966	2
122	MP6A	Z	-16.723	2
123	MP6A	Mx	.022	2
124	MP6A	X	-28.966	6
125	MP6A	Z	-16.723	6
126	MP6A	Mx	.022	6
127	MP6C	X	-20.467	2
128	MP6C	Z	-20.467 -11.816	2
129	MP6C	Mx	014	2
130	MP6C	X	-20.467	6
131	MP6C	Z	-11.816	6
132	MP6C	Mx	014	6
133	MP6C	X	-20.467	2
134	MP6C	Z	-20.467 -11.816	2
135				
	MP6C	Mx	009	6
136	MP6C MP6C	X Z	-20.467	
137			-11.816	6
138	MP6C	Mx	009	
139	MP6B	X	-13.57 -7.835	1.5
140	MP6B		-7.835	1.5
141	MP6B	Mx	0	1.5
142	MPB	X	-13.57	1.5
143	MPB	Z	-7.835	1.5
144	MPB	Mx	0	1.5
145	MP6A	X	-2.956	5
146	MP6A	Z	-1.706	5
147	MP6A	Mx	000985	5
148	MP6C	X	-2.956	5
149	MP6C	Z	-1.706	5
150	MP6C	Mx	.000985	5

Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

Mombor Labol	Direction	Magnitudo[]b k ft]	Location[ft %1

: Maser Consulting : NL : 21781092A

Company Designer Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 26: Antenna Wi (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-7.812	1
2	MP1A	Z	-13.532	1
3	MP1A	Mx	004	1
4	MP1A	X	-7.812	3
5	MP1A	Z	-13.532	3
6	MP1A	Mx	004	3
7	MP1B	X	-4.009	1
8	MP1B	Z	-6.944	1
9	MP1B	Mx	.004	1
10	MP1B	X	-4.009	3
11	MP1B	Z	-6.944	3
12	MP1B	Mx	.004	3
13	MP4C	X	-4.602	1
14	MP4C	Z	-7.971	1
15	MP4C	Mx	004	1
16	MP4C	X	-4.602	3
17	MP4C	Z	-7.971	3
18	MP4C	Mx	004	3
19	MP5B	X	-8.487	1
20	MP5B	Z	-14.7	1
21	MP5B	Mx	.003	1
22	MP5B	X	-8.487	3
23	MP5B	Z	-14.7	3
24	MP5B	Mx	.003	3
25	MP1A	X	-3.842	4.5
26	MP1A	Z	-6.655	4.5
27	MP1A	Mx	001	4.5
28	MP1B	X	-1.473	4.5
29	MP1B	Z	-2.552	4.5
30	MP1B	Mx	.001	4.5
31	MP4C	X	-1.714	4.5
32	MP4C	Z	-2.969	4.5
33	MP4C	Mx	002	4.5
34	MP5B	X	-3.842	4.5
35	MP5B	Z	-6.655	4.5
36	MP5B	Mx	.001	4.5
37	MP1C	X	-1.943	3
38	MP1C	Z	-3.366	3
39	MP1C	Mx	000972	3
40	MP2B	X	-1.943	3
41	MP2B	Z	-3.366	3
42	MP2B	Mx	000972	3
43	MP2A	X	-7.261	1
44	MP2A	Z	-12.577	1
45	MP2A	Mx	004	1
46	MP2C	X	-5.809	1
47	MP2C	Z	-10.062	1
48	MP2C	Mx	.005	1
49	MP3B	X	-7.261	1
50	MP3B	Z	-12.577	1
51	MP3B	Mx	004	1
52	MP4A	X	-7.261	1
53	MP4A	Z	-12.577	11
54	MP4A	Mx	004	1
55	MP4C	X	-5.809	1
56	MP4C	Z	-10.062	1
57	MP4C	Mx	.005	1

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 26: Antenna Wi (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	-7.464	1
59	MP2B	Z	-12.929	1
60	MP2B	Mx	003	1
61	MP3A	X	-7.043	1
62	MP3A	Z	-12.199	1
63	MP3A	Mx	004	1
64	MP3C	X	-5.039	1
65	MP3C	Z	-8.729	1
66	MP3C	Mx	.005	1
67	MP5A	X	-7.043	1
68	MP5A	Z	-12.199	1
69	MP5A	Mx	004	1
70	MP5C	X	-5.039	1
71	MP5C	Z	-8.729	1
72	MP5C	Mx	.005	1
73	MP2C	X	-5.987	2
74	MP2C	Z	-10.37	2
75	MP2C	Mx	005	2
76	MP2C	X	-5.987	5
77	MP2C	Z	-10.37	5
78	MP2C	Mx	005	5
79	MP4A	X	-8.08	2
80	MP4A	Z	-13.994	2
81	MP4A	Mx	004	2
82	MP4A	X	-8.08	5
83	MP4A	Z	-13.994	5
84	MP4A	Mx	004	5
85	MP4B	X	-8.08	2
86	MP4B	Z	-13.994	2
87	MP4B	Mx	.004	2
88	MP4B	X	-8.08	5
89	MP4B	Z	-13.994	5
90	MP4B	Mx	.004	5
91	MP1C	X	-19.554	1
92	MP1C	Z	-33.868	1
93	MP1C	Mx	017	1
94	MP1C	X	-19.554	5
95	MP1C	Z	-33.868	5
96	MP1C	Mx	017	5
97	MP1C	X	-19.554	1
98	MP1C	Z	-33.868	1
99	MP1C MP1C	Mx	.032 -19.554	5
		X Z		
101 102	MP1C MP1C	Mx	-33.868	5
102	MP2B	X	.032 -10.502	5
		Z		1
104 105	MP2B MP2B	Mx	-18.19 .012	1
106	MP2B	X	-10.502	5
107	MP2B	Z	-10.502	5
107	MP2B	Mx	.012	5
109	MP2B	X	-10.502	1
110	MP2B	Z	-18.19	1
111	MP2B	Mx	.012	1
112	MP2B	X	-10.502	5
113	MP2B	Z	-18.19	5
114	MP2B	Mx	.012	5
117	IVII ZD	IVIA	.012	J

Company Designer : Maser Consulting

: NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 26: Antenna Wi (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
115	MP6A	X	-16.27	2
116	MP6A	Z	-28.18	2
117	MP6A	Mx	023	2
118	MP6A	X	-16.27	6
119	MP6A	Z	-28.18	6
120	MP6A	Mx	023	6
121	MP6A	X	-16.27	2
122	MP6A	Z	-28.18	2
123	MP6A	Mx	.012	2
124	MP6A	X	-16.27	6
125	MP6A	Z	-28.18	6
126	MP6A	Mx	.012	6
127	MP6C	X	-12.27	2
128	MP6C	Z	-21.252	2
129	MP6C	Mx	007	2
130	MP6C	X	-12.27	6
131	MP6C	Z	-21.252	6
132	MP6C	Mx	007	6
133	MP6C	X	-12.27	2
134	MP6C	Z	-21.252	2
135	MP6C	Mx	016	2
136	MP6C	X	-12.27	6
137	MP6C	Z	-21.252	6
138	MP6C	Mx	016	6
139	MP6B	X	-7.043	1.5
140	MP6B	Z	-12.199	1.5
141	MP6B	Mx	002	1.5
142	MPB	X	-7.261	1.5
143	MPB	Z	-12.577	1.5
144	MPB	Mx	002	1.5
145	MP6A	X	-1.943	5
146	MP6A	Z	-3.366	5
147	MP6A	Mx	000648	5
148	MP6C	X	-1.588	5
149	MP6C	Z	-2.75	5
150	MP6C	Mx	.001	5

Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	1
2	MP1A	Z	-2.993	1
3	MP1A	Mx	001	1
4	MP1A	X	0	3
5	MP1A	Z	-2.993	3
6	MP1A	Mx	001	3
7	MP1B	X	0	1
8	MP1B	Z	-2.993	1
9	MP1B	Mx	.001	1
10	MP1B	X	0	3
11	MP1B	Z	-2.993	3
12	MP1B	Mx	.001	3
13	MP4C	X	0	1
14	MP4C	Z	-4.121	1
15	MP4C	Mx	001	1
16	MP4C	X	0	3
17	MP4C	Z	-4.121	3

Company Designer Job Number : Maser Consulting

: NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

			Magnitude (lb. k. #1	Location[ft 0/1
18	Member Label MP4C	Direction Mx	Magnitude[lb,k-ft]001	Location[ft,%]
19	MP5B	X	0	1
20	MP5B	Z	-3.539	1
21	MP5B	Mx	.001	1
22	MP5B	X	0	3
23	MP5B	Z	-3.539	3
24	MP5B	Mx	.001	3
25	MP1A	X	0	4.5
26	MP1A	Z	-1.101	4.5
27	MP1A	Mx	000422	4.5
28	MP1B	X	000422 0	4.5
29	MP1B	Z	-1.101	4.5
30	MP1B	Mx	.000422	4.5
31	MP4C	X	0	4.5
32	MP4C MP4C	Z	-1.392	4.5
33	MP4C	Mx	000447	4.5
34	MP5B	X	000447 0	4.5
35	MP5B	Z	-1.101	4.5
36	MP5B	Mx	.000422	4.5
37	MP1C	X	0	3
38	MP1C	Z	666	3
39		Mx		3
40	MP1C MP2B	X	000288 0	3
		Z	666	
41	MP2B			3 3
	MP2B	Mx	000288	1
43	MP2A	X	0	
44	MP2A		-4.381	1
45	MP2A	Mx	0	1
46	MP2C	X	0	1
47	MP2C	Z	-3.78	
48	MP2C	Mx	.001	1
49	MP3B	X Z	0	1
50	MP3B		-3.291	1
51	MP3B	Mx	001	1
52	MP4A	X	0	1
53	MP4A	Z	-4.381	1
54	MP4A	Mx	0	1
55	MP4C	X	0	1
56	MP4C	Z	-3.78	1
57	MP4C	Mx	.001	1
58	MP2B	X Z	0	1
59	MP2B		-3.202	1
60	MP2B	Mx	001	1
61	MP3A	X	0	1
62	MP3A		-4.381	1
63	MP3A	Mx	0	1
64	MP3C	X	0	1
65	MP3C	Z	-3.551	1
66	MP3C	Mx	.001	1
67	MP5A	X	0	1
68	MP5A	Z	-4.381	1
69	MP5A	Mx	0	1
70	MP5C	X	0	1
71	MP5C	Z	-3.551	1
72	MP5C	Mx	.001	1
73	MP2C	X	0	2 2
74	MP2C	Z	-4.805	2

Company Designer : Maser Consulting

: NL

Nov 23, 2021 5:47 PM Job Number : 21781092A Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)					
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]	
75	MP2C	Mx	001	2	
76	MP2C	X	0	5	
77	MP2C	Z	-4.805	5	
78	MP2C	Mx	001	5	
79	MP4A	X	0	2	
80	MP4A	Z	-3.357	2	
81	MP4A	Mx	001	2	
82	MP4A	X	0	5	
83	MP4A	Z	-3.357	5	
84	MP4A	Mx	001	5	
85	MP4B	X	0	2	
86	MP4B	Z	-3.357	2	
87	MP4B	Mx	.001		
			0	5	
88	MP4B	X Z			
89	MP4B		-3.357	5	
90	MP4B	Mx	.001	5	
91	MP1C	X	0	1	
92	MP1C	Z	-9.148	1	
93	MP1C	Mx	.000168	1	
94	MP1C	X	0	5	
95	MP1C	Z	-9.148	5	
96	MP1C	Mx	.000168	5	
97	MP1C	X	0	1	
98	MP1C	Z	-9.148	1	
99	MP1C	Mx	.008	1	
100	MP1C	X	0	5	
101	MP1C	Z	-9.148	5	
102	MP1C	Mx	.008	5	
103	MP2B	X	0	1	
104	MP2B	Z	-7.979	1	
105	MP2B	Mx	.007	1	
106	MP2B	X	0	5	
107	MP2B	Z	-7.979	5	
108	MP2B	Mx	.007	5	
109	MP2B	X	0	1	
110	MP2B	Z	-7.979	1	
111	MP2B	Mx	.001	1	
112	MP2B	X	0	5	
113	MP2B	Z	-7.979	5	
114	MP2B	Mx	.001	5	
115	MP6A	X	0	2	
116	MP6A	Z	-8.521	2	
117	MP6A	Mx	006	2	
118	MP6A	X	0	6	
119	MP6A	Z	-8.521	6	
120	MP6A	Mx	006	6	
121	MP6A	X	0	2	
122	MP6A	Z	-8.521	2	
123	MP6A	Mx	-6.9e-5	2	
124	MP6A	X	0	6	
125	MP6A	Z	-8.521	6	
126	MP6A	Mx	-6.9e-5	6	
127	MP6C	X	0	2	
128	MP6C	Z	-9.157	2	
129	MP6C	Mx	.001	2	
130	MP6C	X	0	6	
131	MP6C	Z	-9.157	6	
101	IVIFUC		-3.10 <i>1</i>	U	

Company Designer : Maser Consulting

: NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
132	MP6C	Mx	.001	6
133	MP6C	X	0	2
134	MP6C	Z	-9.157	2
135	MP6C	Mx	007	2
136	MP6C	X	0	6
137	MP6C	Z	-9.157	6
138	MP6C	Mx	007	6
139	MP6B	X	0	1.5
140	MP6B	Z	-2.874	1.5
141	MP6B	Mx	00083	1.5
142	MPB	X	0	1.5
143	MPB	Z	-3.291	1.5
144	MPB	Mx	00095	1.5
145	MP6A	X	0	5
146	MP6A	Z	867	5
147	MP6A	Mx	0	5
148	MP6C	X	0	5
149	MP6C	Z	666	5
150	MP6C	Mx	.000192	5

Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	1.078	1
2	MP1A	Z	-1.866	1
3	MP1A	Mx	001	1
4	MP1A	X	1.078	3
5	MP1A	Z	-1.866	3
6	MP1A	Mx	001	3
7	MP1B	X	2.334	1
8	MP1B	Z	-4.042	1
9	MP1B	Mx	.001	1
10	MP1B	X	2.334	3
11	MP1B	Z	-4.042	3
12	MP1B	Mx	.001	3
13	MP4C	X	2.702	1
14	MP4C	Z	-4.68	1
15	MP4C	Mx	000469	1
16	MP4C	X	2.702	3
17	MP4C	Z	-4.68	3
18	MP4C	Mx	000469	3
19	MP5B	X	1.128	1
20	MP5B	Z	-1.954	1
21	MP5B	Mx	.001	1
22	MP5B	X	1.128	3
23	MP5B	Z	-1.954	3
24	MP5B	Mx	.001	3
25	MP1A	X	.23	4.5
26	MP1A	Z	398	4.5
27	MP1A	Mx	000226	4.5
28	MP1B	X	.944	4.5
29	MP1B	Z	-1.636	4.5
30	MP1B	Mx	.000323	4.5
31	MP4C	X	1.017	4.5
32	MP4C	Z	-1.762	4.5
33	MP4C	Mx	000177	4.5
34	MP5B	X	.23	4.5

: Maser Consulting : NL : 21781092A

Company Designer Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 28: Antenna Wm (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
35	MP5B	Z	398	4.5
36	MP5B	Mx	.000226	4.5
37	MP1C	X	.3	3
38	MP1C	Z	519	3
39	MP1C	Mx	0003	3
40	MP2B	X	.3	3
41	MP2B	Z	519	3
42	MP2B	Mx	0003	3
43	MP2A	X	2.009	1
44	MP2A	Z	-3.479	1
45	MP2A	Mx	.001	1
46	MP2C	X	2.168	1
47	MP2C	Z	-3.756	1
48	MP2C	Mx	.000377	1
49	MP3B	X	1.464	1
50	MP3B	Z	-2.536	1
51	MP3B	Mx	001	1
52	MP4A	X	2.009	1
53	MP4A	Z	-3.479	1
54	MP4A	Mx	.001	1
55	MP4C	X	2.168	1
56	MP4C	Z	-3.756	1
57	MP4C	Mx	.000377	1
58	MP2B	X	1.216	1
59	MP2B	Z	-2.107	1
60	MP2B	Mx	001	1
61	MP3A	X	1.939	1
62	MP3A	Z	-3.359	1
63	MP3A	Mx	.00097	1
64	MP3C	X	2.16	1
65	MP3C	Z	-3.741	1
66	MP3C	Mx	.000375	1
67	MP5A	X	1.939	1
68	MP5A	Z	-3.359	1
69	MP5A	Mx	.00097	1
70	MP5C	X	2.16	1
71	MP5C	Z	-3.741	1
72	MP5C	Mx	.000375	1
73	MP2C	X	2.764	2
74	MP2C	Z	-4.788	2
75	MP2C	Mx	0	2
76	MP2C	X	2.764	5
77	MP2C	Z	-4.788	5
78	MP2C	Mx	0	5
79	MP4A	X	1.317	2 2
80	MP4A		-2.28	
81	MP4A	Mx	001 1 217	2
82 83	MP4A	X Z	1.317 -2.28	5
84	MP4A MP4A	Mx	-2.28 001	5 5
85	MP4B	X	1.317	2
86	MP4B MP4B	Z	-2.28	2
87	MP4B MP4B	Mx	.001	2
88	MP4B MP4B	X	1.317	5
89	MP4B MP4B	Z	-2.28	5
90	MP4B	Mx	.001	5
91	MP1C	X	3.202	1
ופ	IVIFIC		3.202	<u> </u>

: Maser Consulting : NL : 21781092A Company Designer Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 28: Antenna Wm (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
92	MP1C	Z	-5.546	1
93	MP1C	Mx	.003	1
94	MP1C	X	3.202	5
95	MP1C	Z	-5.546	5
96	MP1C	Mx	.003	5
97	MP1C	X	3.202	1
98	MP1C	Z	-5.546	1
99	MP1C	Mx	.004	1
100	MP1C	X	3.202	5
101	MP1C	Z	-5.546	5
102	MP1C	Mx	.004	5
103	MP2B	X	5.781	1
104	MP2B	Z	-10.012	1
105	MP2B	Mx	.01	1
106	MP2B	X	5.781	5
107	MP2B	Z	-10.012	5
108	MP2B	Mx	.01	5
109	MP2B	X	5.781	1
110	MP2B	Z	-10.012	1
111	MP2B	Mx	003	1
112	MP2B	X	5.781	5
113	MP2B	Z	-10.012	5
114	MP2B	Mx	003	5
115	MP6A	X	3.559	2
116	MP6A	Z	-6.165	2
117	MP6A	Mx	004	2
118	MP6A	X	3.559	6
119	MP6A	Z	-6.165	6
120	MP6A	Mx	004	6
121	MP6A	X	3.559	2
122	MP6A	Z	-6.165	2
123	MP6A	Mx	003	2
124	MP6A	X	3.559	6
125	MP6A	Z	-6.165	6
126	MP6A	Mx	003	6
127	MP6C	X	5.28	2
128	MP6C	Z	-9.145	2
129	MP6C	Mx	.005	2
130	MP6C	X	5.28	6
131	MP6C	Z	-9.145	6
132	MP6C	Mx	.005	6
133	MP6C	X	5.28	2
134	MP6C	Z	-9.145	2
135	MP6C	Mx	-9.145	2
136	MP6C MP6C	X	5.28	6
137	MP6C	Z	-9.145	6
138	MP6C MP6C	Mx	-9.145	6
139	MP6B	X	1.186	1.5
140	MP6B	Z	-2.054	1.5
141	MP6B	Mx	000791	1.5
142	MPB	X	1.464	1.5
143	MPB	Z	-2.536	1.5
143	MPB	Mx	-2.556	1.5
144	MP6A	X	000976 .4	5
145	MP6A	Z	.4 693	5
146	MP6A	Mx	.000133	5
147	MP6C			5
140	IVIPOU	X	.4	Į į

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 28: Antenna Wm (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
149	MP6C	Z	693	5
150	MP6C	Mx	.000133	5

Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	2.592	1
2	MP1A	Z	-1.496	1
3	MP1A	Mx	001	1
4	MP1A	X	2.592	3
5	MP1A	Z	-1.496	3
6	MP1A	Mx	001	3
7	MP1B	X	4.767	1
8	MP1B	Z	-2.752	1
9	MP1B	Mx	0	1
10	MP1B	X	4.767	3
11	MP1B	Z	-2.752	3
12	MP1B	Mx	0	3
13	MP4C	X	4.428	1
14	MP4C	Z	-2.557	1
15	MP4C	Mx	.000874	1
16	MP4C	X	4.428	3
17	MP4C	Z	-2.557	3
18	MP4C	Mx	.000874	3
19	MP5B	X	2.206	1
20	MP5B	Z	-1.274	1
21	MP5B	Mx	.001	1
22	MP5B	X	2.206	3
23	MP5B	Z	-1.274	3
24	MP5B	Mx	.001	3
25	MP1A	X	.524	4.5
26	MP1A	Z	302	4.5
27	MP1A	Mx	000284	4.5
28	MP1B	X	1.762	4.5
29	MP1B	Z	-1.017	4.5
30	MP1B	Mx	000177	4.5
31	MP4C	X	1.636	4.5
32	MP4C	Z	944	4.5
33	MP4C	Mx	.000323	4.5
34	MP5B	X	.524	4.5
35	MP5B	Z	302	4.5
36	MP5B	Mx	.000284	4.5
37	MP1C	X	.577	3
38	MP1C	Z	333	3
39	MP1C	Mx	000288	3
40	MP2B	X	.577	3
41	MP2B	Z	333	3
42	MP2B	Mx	000288	3
43	MP2A	X	2.85	1
44	MP2A	Z	-1.646	1
45	MP2A	Mx	.001	1
46	MP2C	X	3.647	1
47	MP2C	Z	-2.105	1
48	MP2C	Mx	00072	1
49	MP3B	X	2.85	1
50	MP3B	Z	-1.646	1
51	MP3B	Mx	001	1
JI	IVIF 3D	IVIX	001	I

: Maser Consulting : NL : 21781092A Company Designer Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 29: Antenna Wm (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
52	MP4A	X	2.85	1
53	MP4A	Z	-1.646	1
54	MP4A	Mx	.001	1
55	MP4C	X	3.647	1
56	MP4C	Z	-2.105	1
57	MP4C	Mx	00072	1
58	MP2B	X	2.258	1
59	MP2B	Z	-1.303	1
60	MP2B	Mx	001	1
61	MP3A	X	2.489	1
62	MP3A	Z	-1.437	1
63	MP3A	Mx	.001	1
64	MP3C	X	3.59	1
65	MP3C	Z	-2.073	1
66	MP3C	Mx	000709	1
67	MP5A	X	2.489	1
68	MP5A	Z	-1.437	1
69	MP5A	Mx	.001	1
70	MP5C	X	3.59	1
71	MP5C	Z	-2.073	1
72	MP5C	Mx	000709	1
73	MP2C	X	4.161	2
74	MP2C	Z	-2.402	2
75	MP2C	Mx	.001	2
76	MP2C	X	4.161	5
77	MP2C	Z	-2.402	5
78	MP2C	Mx	.001	5
79	MP4A	X	2.907	2
80	MP4A	Z	-1.679	2
81	MP4A	Mx	001	2
82	MP4A MP4A	X	2.907	5
83	MP4A	Z	-1.679	5
84	MP4A	Mx	001	5
85	MP4B	X	2.907	2
86	MP4B	Z	-1.679	2
87	MP4B	Mx	.001	2
88	MP4B	X	2.907	5
89	MP4B	Z	-1.679	5
90	MP4B	Mx	.001	5
91	MP1C	X	6.085	1
92	MP1C	Z	-3.513	1
93	MP1C	Mx	.005	1
94	MP1C	X	6.085	5
95	MP1C	Z	-3.513	5
96	MP1C	Mx	.005	5
97	MP1C	X	6.085	1
98	MP1C	Z	-3.513	1
99	MP1C	Mx	.002	1
100	MP1C	X	6.085	5
101	MP1C	Z	-3.513	5
102	MP1C	Mx	.002	5
103	MP2B	X	11.564	1
104	MP2B	Z	-6.676	1
105	MP2B	Mx	.009	1
106	MP2B	X	11.564	5
107	MP2B	Z	-6.676	5
108	MP2B	Mx	.009	5
100	IVII ZU	IAIV	.000	

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 29: Antenna Wm (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
109	MP2B	X	11.564	1
110	MP2B	Z	-6.676	1
111	MP2B	Mx	009	1
112	MP2B	X	11.564	5
113	MP2B	Z	-6.676	5
114	MP2B	Mx	009	5
115	MP6A	X	6.44	2
116	MP6A	Z	-3.718	2
117	MP6A	Mx	002	2
118	MP6A	X	6.44	6
119	MP6A	Z	-3.718	6
120	MP6A	Mx	002	6
121	MP6A	X	6.44	2
122	MP6A	Z	-3.718	2
123	MP6A	Mx	005	2
124	MP6A	X	6.44	6
125	MP6A	Z	-3.718	6
126	MP6A	Mx	005	6
127	MP6C	X	8.87	2
128	MP6C	Z	-5.121	2
129	MP6C	Mx	.007	2
130	MP6C	X	8.87	6
131	MP6C	Z	-5.121	6
132	MP6C	Mx	.007	6
133	MP6C	X	8.87	2
134	MP6C	Z	-5.121	2
135	MP6C	Mx	004	2
136	MP6C	X	8.87	6
137	MP6C	Z	-5.121	6
138	MP6C	Mx	004	6
139	MP6B	X	2.489	1.5
140	MP6B	Z	-1.437	1.5
141	MP6B	Mx	00083	1.5
142	MPB	X	2.85	1.5
143	MPB	Z	-1.646	1.5
144	MPB	Mx	00095	1.5
145	MP6A	X	.577	5
146	MP6A	Z	333	5
147	MP6A	Mx	.000192	5
148	MP6C	X	.751	5
149	MP6C	Z	433	5
150	MP6C	Mx	0	5

Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	4.668	1
2	MP1A	Z	0	1
3	MP1A	Mx	001	1
4	MP1A	X	4.668	3
5	MP1A	Z	0	3
6	MP1A	Mx	001	3
7	MP1B	X	4.668	1
8	MP1B	Z	0	1
9	MP1B	Mx	001	1
10	MP1B	X	4.668	3
11	MP1B	Z	0	3

: Maser Consulting : NL : 21781092A

Company Designer Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
12	MP1B	Mx	001	3
13	MP4C	X	3.539	1
14	MP4C	Z	0	1
15	MP4C	Mx	.001	1
16	MP4C	X	3.539	3
17	MP4C	Z	0	3
18	MP4C	Mx	.001	3
19	MP5B	X	4.121	1
20	MP5B	Z	0	1
21	MP5B	Mx	.001	1
22	MP5B	X	4.121	3
23	MP5B	Z	0	3
24	MP5B	Mx	.001	3
25	MP1A	X	1.392	4.5
26	MP1A	Z	0	4.5
27	MP1A	Mx	000447	4.5
28	MP1B	X	1.392	4.5
29	MP1B	Z	0	4.5
30	MP1B	Mx	000447	4.5
31	MP4C	X	1.101	4.5
32	MP4C	Z	0	4.5
33	MP4C	Mx	.000422	4.5
34	MP5B	X	1.392	4.5
35	MP5B	Z	0	4.5
36	MP5B	Mx	.000447	4.5
37	MP1C	X	.8	3
38	MP1C	Z	0	3
39	MP1C	Mx	0002	3
40	MP2B	X	.8	3
41	MP2B	Z	0	3
42	MP2B	Mx	0002	3
43	MP2A	X	2.928	1
44	MP2A	Z	0	1
45	MP2A	Mx	.001	1
46	MP2C	X	3.528	1
47	MP2C	Z	0	1
48	MP2C	Mx	001	1
49	MP3B	X	4.017	1
50	MP3B	Z	0	1
51	MP3B	Mx	001	1
52	MP4A	X	2.928	1
53	MP4A	Z	0	1
54	MP4A	Mx	.001	1
55	MP4C	X	3.528	1
56	MP4C	Z	0	1
57	MP4C	Mx	001	1
58	MP2B	X	3.551	1
59	MP2B	Z	0	1
60	MP2B	Mx	001	1
61	MP3A	X	2.372	1
62	MP3A	Z	0	1
63	MP3A	Mx	.001	1
64	MP3C	X	3.202	1
65	MP3C	Z	0	1
66	MP3C	Mx	001	1
67	MP5A	X	2.372	1
68	MP5A	Z	0	1

: Maser Consulting : NL : 21781092A Company Designer Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
69	MP5A	Mx	.001	1
70	MP5C	X	3.202	1
71	MP5C	Z	0	1
72	MP5C	Mx	001	1
73	MP2C	X	3.357	2
74	MP2C	Z	0	2
75	MP2C	Mx	.001	2
76	MP2C	X	3.357	5
77	MP2C	Z	0	5
78	MP2C	Mx	.001	5
79	MP4A	X	4.805	2
80	MP4A	Z	0	2
81	MP4A	Mx	001	2
82	MP4A	X	4.805	5
83	MP4A	Z	0	5
84	MP4A	Mx	001	5
85	MP4B	X	4.805	2
86	MP4B	Z	0	2
87	MP4B	Mx	.001	2
88	MP4B	X	4.805	5
89	MP4B	Z	0	5
90	MP4B	Mx	.001	5
91	MP1C	X	10.392	1
92	MP1C	Z	0	1
93	MP1C	Mx	.009	1
94	MP1C	X	10.392	5
95	MP1C	Z	0	5
96	MP1C	Mx	.009	5
97	MP1C	X	10.392	1
98	MP1C MP1C	Z	0	1
99	MP1C MP1C	Mx	001	-
100	MP1C MP1C		10.392	5
101	MP1C	X Z	0	5
102	MP1C MP1C	Mx	001	5
103	MP2B	X	11.561	1
103	MP2B	Z	0	1
			.003	
105	MP2B	Mx		1
106	MP2B	X Z	11.561	5
107	MP2B		0	5
108	MP2B	Mx	.003	5
109	MP2B	X Z	11.561	1
110	MP2B		01	1
111	MP2B	Mx		
112	MP2B	X Z	11.561	5
113	MP2B		0	5
114	MP2B	Mx	01	5
115	MP6A	X	9.157	2
116	MP6A	Z	0	2
117	MP6A	Mx	.001	2
118	MP6A	X	9.157	6
119	MP6A	Z	0	6
120	MP6A	Mx	.001	6
121	MP6A	X	9.157	2
122	MP6A	Z	0	2
123	MP6A	Mx	007	2
124	MP6A	X	9.157	6
125	MP6A	Z	0	6

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
126	MP6A	Mx	007	6
127	MP6C	X	8.521	2
128	MP6C	Z	0	2
129	MP6C	Mx	.006	2
130	MP6C	X	8.521	6
131	MP6C	Z	0	6
132	MP6C	Mx	.006	6
133	MP6C	X	8.521	2
134	MP6C	Z	0	2
135	MP6C	Mx	6.9e-5	2
136	MP6C	X	8.521	6
137	MP6C	Z	0	6
138	MP6C	Mx	6.9e-5	6
139	MP6B	X	3.878	1.5
140	MP6B	Z	0	1.5
141	MP6B	Mx	000646	1.5
142	MPB	X	4.017	1.5
143	MPB	Z	0	1.5
144	MPB	Mx	00067	1.5
145	MP6A	X	.6	5
146	MP6A	Z	0	5
147	MP6A	Mx	.0002	5
148	MP6C	X	.8	5
149	MP6C	Z	0	5
150	MP6C	Mx	000133	5

Member Point Loads (BLC 31: Antenna Wm (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	4.767	1
2	MP1A	Z	2.752	1
3	MP1A	Mx	0	1
4	MP1A	X	4.767	3
5	MP1A	Z	2.752	3
6	MP1A	Mx	0	3
7	MP1B	X	2.592	1
8	MP1B	Z	1.496	1
9	MP1B	Mx	001	1
10	MP1B	X	2.592	3
11	MP1B	Z	1.496	3
12	MP1B	Mx	001	3
13	MP4C	X	1.954	1
14	MP4C	Z	1.128	1
15	MP4C	Mx	.001	1
16	MP4C	X	1.954	3
17	MP4C	Z	1.128	3
18	MP4C	Mx	.001	3
19	MP5B	X	4.68	1
20	MP5B	Z	2.702	1
21	MP5B	Mx	.000469	1
22	MP5B	X	4.68	3
23	MP5B	Z	2.702	3
24	MP5B	Mx	.000469	3
25	MP1A	X	1.762	4.5
26	MP1A	Z	1.017	4.5
27	MP1A	Mx	000177	4.5
28	MP1B	X	.524	4.5

: Maser Consulting : NL : 21781092A

Company Designer Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 31: Antenna Wm (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
29	MP1B	Z	.302	4.5
30	MP1B	Mx	000284	4.5
31	MP4C	X	.398	4.5
32	MP4C	Z	.23	4.5
33	MP4C	Mx	.000226	4.5
34	MP5B	X	1.762	4.5
35	MP5B	Z	1.017	4.5
36	MP5B	Mx	.000177	4.5
37	MP1C	X	.751	3
38	MP1C	Z	.433	3
39	MP1C	Mx	0	3
40	MP2B	X	.751	3
41	MP2B	Z	.433	3
42	MP2B	Mx	0	3
43	MP2A	X	2.85	1
44	MP2A	Z	1.646	1
45	MP2A	Mx	.001	1
46	MP2C	X	2.574	1
47	MP2C	Z	1.486	1
48	MP2C	Mx	001	1
49	MP3B	X	3.794	1
50	MP3B	Z	2.19	1
51	MP3B	Mx	0	1
52	MP4A	X	2.85	1
53	MP4A	Z	1.646	1
54	MP4A	Mx	.001	1
55	MP4C	X	2.574	1
56	MP4C	Z	1.486	1
57	MP4C	Mx	001	1
58	MP2B	X	3.741	1
59	MP2B	Z	2.16	1
60	MP2B	Mx	000375	1
61	MP3A	X	2.489	1
62	MP3A	Z	1.437	1
63	MP3A	Mx	.001	1
64	MP3C	X	2.107	1
65	MP3C	Z	1.216	1
66	MP3C	Mx	001	1
67	MP5A	X	2.489	1
68	MP5A	Z	1.437	1
69	MP5A	Mx	.001	1
70	MP5C	X	2.107	1
71	MP5C	Z	1.216	1
72	MP5C	Mx	001	1
73	MP2C	X	2.28	2
74	MP2C	Z	1.317	2
75	MP2C	Mx	.001	2
76	MP2C	X	2.28	5
77	MP2C	Z	1.317	5
78	MP2C	Mx	.001	5
79	MP4A	X	4.788	2
80	MP4A	Z	2.764	2
81	MP4A	Mx	0	2
82	MP4A	X	4.788	5
83	MP4A	Z	2.764	5
84	MP4A	Mx	0	5
85	MP4B	X	4.788	2

: Maser Consulting : NL : 21781092A Company Designer Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 31: Antenna Wm (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
86	MP4B	Z	2.764	2
87	MP4B	Mx	0	2
88	MP4B	X	4.788	5
89	MP4B	Z	2.764	5
90	MP4B	Mx	0	5
91	MP1C	X	11.377	1
92	MP1C	Z	6.568	1
93	MP1C	Mx	.01	1
94	MP1C	X	11.377	5
95	MP1C	Z	6.568	5
96	MP1C	Mx	.01	5
97	MP1C	X	11.377	1
98	MP1C	Z	6.568	1
99	MP1C	Mx	007	1
100	MP1C	X	11.377	5
101	MP1C	Z	6.568	5
102	MP1C	Mx	007	5
103	MP2B	X	6.91	1
104	MP2B	Z	3.99	1
105	MP2B	Mx	001	1
106	MP2B	X	6.91	5
107	MP2B	Z	3.99	5
108	MP2B	Mx	001	5
109	MP2B	X	6.91	1
110	MP2B	Z	3.99	1
111	MP2B	Mx	007	1
112	MP2B	X	6.91	5
113	MP2B	Z	3.99	5
114	MP2B	Mx	007	5
115	MP6A	X	9.145	2
116	MP6A	Z	5.28	2
117	MP6A	Mx	.005	2
118	MP6A	X	9.145	6
119	MP6A	Z	5.28	6
120	MP6A	Mx	.005	6
121	MP6A	X	9.145	2
122	MP6A	Z	5.28	2
123	MP6A	Mx	007	2
124	MP6A	X	9.145	6
125	MP6A	Z	5.28	6
126	MP6A	Mx	007	6
127	MP6C	X	6.165	2
128	MP6C	Z	3.559	2
129	MP6C	Mx X	.004	2
130	MP6C	X	6.165	6
131	MP6C	Z	3.559	6
132	MP6C	Mx	.004	6
133	MP6C	X	6.165	2
134	MP6C	Z	3.559	2
135	MP6C	Mx	.003	2
136	MP6C	X	6.165	6
137	MP6C	Z	3.559	6
138	MP6C	Mx	.003	6
139	MP6B	X	3.794	1.5
140	MP6B	Z	2.19	1.5
141	MP6B	Mx	0	1.5
142	MPB	X	3.794	1.5

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 31 : Antenna Wm (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
143	MPB	Z	2.19	1.5
144	MPB	Mx	0	1.5
145	MP6A	X	.577	5
146	MP6A	Z	.333	5
147	MP6A	Mx	.000192	5
148	MP6C	X	.577	5
149	MP6C	Z	.333	5
150	MP6C	Mx	000192	5

Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	2.334	1
2	MP1A	Z	4.042	1
3	MP1A	Mx	.001	1
4	MP1A	X	2.334	3
5	MP1A	Z	4.042	3
6	MP1A	Mx	.001	3
7	MP1B	X	1.078	1
8	MP1B	Z	1.866	1
9	MP1B	Mx	001	1
10	MP1B	X	1.078	3
11	MP1B	Z	1.866	3
12	MP1B	Mx	001	3
13	MP4C	X	1.274	1
14	MP4C	Z	2.206	1
15	MP4C	Mx	.001	1
16	MP4C	X	1.274	3
17	MP4C	Z	2.206	3
18	MP4C	Mx	.001	3
19	MP5B	X	2.557	1
20	MP5B	Z	4.428	1
21	MP5B	Mx	000874	1
22	MP5B	X	2.557	3
23	MP5B	Z	4.428	3
24	MP5B	Mx	000874	3
25	MP1A	X	.944	4.5
26	MP1A	Z	1.636	4.5
27	MP1A	Mx	.000323	4.5
28	MP1B	X	.23	4.5
29	MP1B	Z	.398	4.5
30	MP1B	Mx	000226	4.5
31	MP4C	X	.302	4.5
32	MP4C	Z	.524	4.5
33	MP4C	Mx	.000284	4.5
34	MP5B	X	.944	4.5
35	MP5B	Z	1.636	4.5
36	MP5B	Mx	000323	4.5
37	MP1C	X	.4	3
38	MP1C	Z	.693	3
39	MP1C	Mx	.0002	3
40	MP2B	X	.4	3
41	MP2B	Z	.693	3
42	MP2B	Mx	.0002	3
43	MP2A	X	2.009	1
44	MP2A	Z	3.479	1
45	MP2A	Mx	.001	1

Company Designer Job Number : Maser Consulting : NL : 21781092A

Checked By: DX Model Name : Mount Analysis (Rev. 3)

Nov 23, 2021 5:47 PM

Member Point Loads (BLC 32: Antenna Wm (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
46	MP2C	X	1.549	1
47	MP2C	Z	2.683	1
48	MP2C	Mx	001	1
49	MP3B	X	2.009	1
50	MP3B	Z	3.479	1
51	MP3B	Mx	.001	1
52	MP4A	X	2.009	1
53	MP4A	Z	3.479	1
54	MP4A	Mx	.001	1
55	MP4C	X	1.549	1
56	MP4C	Z	2.683	1
57	MP4C	Mx	001	1
58	MP2B	X	2.073	1
59	MP2B	Z	3.59	1
60	MP2B	Mx	.000709	1
61	MP3A	X	1.939	1
62	MP3A	Z	3.359	1
63	MP3A	Mx	.00097	1
64	MP3C	X	1.303	1
65	MP3C	Z	2.258	1
66	MP3C	Mx	001	1
67	MP5A	X	1.939	1
68	MP5A	Z	3.359	1
69	MP5A	Mx	.00097	1
70	MP5C	X	1.303	1
71	MP5C	Z	2.258	1
72	MP5C	Mx	001	1
73	MP2C	X	1.679	2
74	MP2C	Z	2.907	2
75	MP2C	Mx	.001	2
76	MP2C	X	1.679	5
77	MP2C	Z	2.907	5
78	MP2C	Mx	.001	5
79	MP4A	X	2.402	2
80	MP4A	Z	4.161	2
81	MP4A	Mx	.001	2
82	MP4A	X	2.402	5
83	MP4A	Z	4.161	5
84	MP4A	Mx	.001	5
85	MP4B	X	2.402	2
86	MP4B	Z	4.161	2
87	MP4B	Mx	001	2
88	MP4B	X	2.402	5
89	MP4B	Z	4.161	5
90	MP4B	Mx	001	5
91	MP1C	X	6.257	1
92	MP1C	Z	10.838	1
93	MP1C	Mx	.005	1
94	MP1C	X	6.257	5
95	MP1C	Z	10.838	5
96	MP1C	Mx	.005	5
97	MP1C	X Z	6.257	1
98	MP1C		10.838	1
99	MP1C	Mx	01	<u> </u>
100	MP1C	X Z	6.257	5
101	MP1C		10.838	5
102	MP1C	Mx	01	5

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

MICHIDE	T T Offic Loads (BLC	32 . Antenna Will	(130 Deg)) (Continued)	
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
103	MP2B		3.094	1
104	MP2B	X	5.359	1
105	MP2B	Mx	004	1
106	MP2B	X	3.094	5
107	MP2B	Z	5.359	5
108	MP2B	Mx	004	5
109	MP2B	X	3.094	1
110	MP2B	Z	5.359	1
111	MP2B	Mx	004	1
112	MP2B	X	3.094	5
113	MP2B	Z	5.359	5
114	MP2B	Mx	004	5
115	MP6A	X	5.121	2
116	MP6A	Z	8.87	2
117	MP6A	Mx	.007	2
118	MP6A	X	5.121	6
119	MP6A	Z	8.87	6
120	MP6A	Mx	.007	6
121	MP6A	X	5.121	2
122	MP6A	Z	8.87	2
123	MP6A	Mx	004	2
124	MP6A	X	5.121	6
125	MP6A	Z	8.87	6
126	MP6A	Mx	004	6
127	MP6C	X	3.718	2
128	MP6C	Z	6.44	2
129	MP6C	Mx	.002	2
130	MP6C	X	3.718	6
131	MP6C	Z	6.44	6
132	MP6C	Mx	.002	6
133	MP6C	X	3.718	2
134	MP6C	Z	6.44	2
135	MP6C	Mx	.005	2
136	MP6C	X	3.718	6
137	MP6C	Z	6.44	6
138	MP6C	Mx	.005	6
139	MP6B	X	1.939	1.5
140	MP6B	Z	3.359	1.5
141	MP6B	Mx	.000646	1.5
142	MPB	X	2.009	1.5
143	MPB	Z	3.479	1.5
144	MPB	Mx	.000669	1.5
145	MP6A	X	.4	5
146	MP6A	Z	.693	5
147	MP6A	Mx	.000133	5
148	MP6C	X	.3	5
149	MP6C	Z	.519	5
150	MP6C	Mx	0002	5

Member Point Loads (BLC 33: Antenna Wm (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	1
2	MP1A	Z	2.993	1
3	MP1A	Mx	.001	1
4	MP1A	X	0	3
5	MP1A	Z	2.993	3

Company Designer Job Number : Maser Consulting : NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
6	MP1A	Mx	.001	3
7	MP1B	X	0	1
8	MP1B	Z	2.993	1
9	MP1B	Mx	001	1
10	MP1B	X	0	3
11	MP1B	Z	2.993	3
12	MP1B	Mx	001	3
13	MP4C	X	0	1
14	MP4C	Z	4.121	1
15	MP4C	Mx	.001	1
16	MP4C	X	0	3
17	MP4C	Z	4.121	3
18	MP4C	Mx	.001	3
19	MP5B	X	0	1
20	MP5B	Z	3.539	1
21	MP5B	Mx	001	1
22	MP5B	X	0	3
23	MP5B	Z	3.539	3
24	MP5B	Mx	001	3
25	MP1A	X	0	4.5
26	MP1A	Z	1.101	4.5
27	MP1A	Mx	.000422	4.5
28	MP1B	X	0	4.5
29	MP1B	Ž	1.101	4.5
30	MP1B	Mx	000422	4.5
31	MP4C	X	-:000422 0	4.5
32	MP4C	Z	1.392	4.5
33	MP4C	Mx	.000447	4.5
34	MP5B	X	0	4.5
35	MP5B	Z	1.101	4.5
36	MP5B	Mx	000422	4.5
37	MP1C		-:000422 0	3
38	MP1C	X Z	.666	3
39	MP1C	Mx	.000288	3
40	MP2B	X	0	3
41	MP2B	Z	.666	3
42	MP2B	Mx	.000288	3
43	MP2A			1
44	MP2A	X	0 4.381	1
45	MP2A	Mx	0	1
46	MP2C		0	1
47	MP2C	X Z	3.78	1
48	MP2C	Mx	001	1
49	MP3B	X	0	1
50	MP3B	Z	3.291	1
51	MP3B	Mx	.001	1
52	MP4A	X	0	1
53	MP4A	Z	4.381	1
54	MP4A	Mx	0	1
55	MP4C	X	0	1
56	MP4C	Z	3.78	1
57	MP4C	Mx	001	1
58	MP2B	X	0	1
59	MP2B	Z	3.202	1
60	MP2B	Mx	.001	1
61	MP3A	X	0	1
62	MP3A	Z	4.381	1
02	IVII JA		7.001	

Company Designer Job Number : Maser Consulting : NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
63	MP3A	Mx	0	1
64	MP3C	X	0	1
65	MP3C	Z	3.551	1
66	MP3C	Mx	001	1
67	MP5A	X	0	1
68	MP5A	Z	4.381	1
69	MP5A	Mx	0	1
70	MP5C	X	0	1
71	MP5C	Z	3.551	1
72	MP5C	Mx	001	1
73	MP2C	X	0	2
74	MP2C	Z	4.805	2
75	MP2C	Mx	.001	2
76	MP2C	X	0	5
77	MP2C	Z	4.805	5
78	MP2C	Mx	.001	5
79	MP4A	X	0	2
80	MP4A	Z	3.357	2
81	MP4A	Mx	.001	2
82	MP4A	X	0	5
83	MP4A	Z	3.357	5
84	MP4A	Mx	.001	5
85	MP4B	X	0	2
86	MP4B	Z	3.357	2
87	MP4B	Mx	001	2
88	MP4B	X	0	5
89	MP4B	Z	3.357	5
90	MP4B	Mx	001	5
91	MP1C	X	0	1
92	MP1C	Z	9.148	1
93	MP1C	Mx	000168	1
94	MP1C	X	0	5
95	MP1C	Z	9.148	5
96	MP1C	Mx	000168	5
97	MP1C	X	0	1
98	MP1C	Z	9.148	1
99	MP1C	Mx	008	1
100	MP1C	X	0	5
101	MP1C	Z	9.148	5
102	MP1C	Mx	008	5
103	MP2B	X	0	1
104	MP2B	Z	7.979	1
105	MP2B	Mx	007	1
106	MP2B	X	0	5
107	MP2B	Z	7.979	5
108	MP2B	Mx	007	5
109	MP2B	X	0	1
110	MP2B	Z	7.979	1
111	MP2B	Mx	001	1
112	MP2B	X	0	5
113	MP2B	Z	7.979	5
114	MP2B	Mx	001	5
115	MP6A	X	0	2
116	MP6A		8.521	2
117	MP6A	Mx	.006	2
118	MP6A	X	0	6
119	MP6A	Z	8.521	6

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
120	MP6A	Mx	.006	6
121	MP6A	X	0	2
122	MP6A	Z	8.521	2
123	MP6A	Mx	6.9e-5	2
124	MP6A	X	0	6
125	MP6A	Z	8.521	6
126	MP6A	Mx	6.9e-5	6
127	MP6C	X	0	2
128	MP6C	Z	9.157	2
129	MP6C	Mx	001	2
130	MP6C	X	0	6
131	MP6C	Z	9.157	6
132	MP6C	Mx	001	6
133	MP6C	X	0	2
134	MP6C	Z	9.157	2
135	MP6C	Mx	.007	2
136	MP6C	X	0	6
137	MP6C	Z	9.157	6
138	MP6C	Mx	.007	6
139	MP6B	X	0	1.5
140	MP6B	Z	2.874	1.5
141	MP6B	Mx	.00083	1.5
142	MPB	X	0	1.5
143	MPB	Z	3.291	1.5
144	MPB	Mx	.00095	1.5
145	MP6A	X	0	5
146	MP6A	Z	.867	5
147	MP6A	Mx	0	5
148	MP6C	X	0	5
149	MP6C	Z	.666	5
150	MP6C	Mx	000192	5

Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-1.078	1
2	MP1A	Z	1.866	1
3	MP1A	Mx	.001	1
4	MP1A	X	-1.078	3
5	MP1A	Z	1.866	3
6	MP1A	Mx	.001	3
7	MP1B	X	-2.334	1
8	MP1B	Z	4.042	1
9	MP1B	Mx	001	1
10	MP1B	X	-2.334	3
11	MP1B	Z	4.042	3
12	MP1B	Mx	001	3
13	MP4C	X	-2.702	1
14	MP4C	Z	4.68	1
15	MP4C	Mx	.000469	1
16	MP4C	X	-2.702	3
17	MP4C	Z	4.68	3
18	MP4C	Mx	.000469	3
19	MP5B	X	-1.128	1
20	MP5B	Z	1.954	1
21	MP5B	Mx	001	1
22	MP5B	X	-1.128	3

: Maser Consulting : NL : 21781092A

Company Designer Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 34: Antenna Wm (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
23	MP5B	Z	1.954	3
24	MP5B	Mx	001	3
25	MP1A	X	23	4.5
26	MP1A	Z	.398	4.5
27	MP1A	Mx	.000226	4.5
28	MP1B	X	944	4.5
29	MP1B	Z	1.636	4.5
30	MP1B	Mx	000323	4.5
31	MP4C	X	-1.017	4.5
32	MP4C	Z	1.762	4.5
33	MP4C	Mx	.000177	4.5
34	MP5B	X	23	4.5
35	MP5B	Z	.398	4.5
36	MP5B	Mx	000226	4.5
37	MP1C	X	3	3
38	MP1C	Z	.519	3
39	MP1C	Mx	.0003	3
40	MP2B	X	3	3
41	MP2B	Z	.519	3
42	MP2B	Mx	.0003	3
43	MP2A	X	-2.009	1
44	MP2A	Z	3.479	1
45	MP2A	Mx	001	1
46	MP2C	X	-2.168	1
47	MP2C	Z	3.756	1
48	MP2C	Mx	000377	1
49	MP3B	X	-1.464	1
50	MP3B	Z	2.536	1
51	MP3B	Mx	.001	1
52	MP4A	X	-2.009	1
53	MP4A	Z	3.479	1
54	MP4A	Mx	001	1
55	MP4C	X	-2.168	1
56	MP4C		3.756	1
57	MP4C	Mx	000377	1
58	MP2B	X	-1.216	1
59	MP2B	Z	2.107	1
60	MP2B	Mx	.001	1
61	MP3A	X	-1.939	1
62	MP3A MP3A		3.359	1
63		Mx X	00097	1
64 65	MP3C MP3C	Z	-2.16 3.741	1
66	MP3C MP3C	Mx	000375	1
67	MP5A	X	-1.939	1
68	MP5A MP5A	Z	3.359	1
69	MP5A	Mx	00097	1
70	MP5C	X	00097 -2.16	1
71	MP5C	Z	3.741	1
72	MP5C MP5C	Mx	000375	1
73	MP2C	X	-2.764	2
74	MP2C	Z	4.788	2
75	MP2C	Mx	0	2
76	MP2C MP2C	X	-2.764	5
77	MP2C	Z	4.788	5
78	MP2C MP2C	Mx	0	5
79	MP4A	X	-1.317	2
18	IVICAA		-1.31/	

Company Designer Job Number : Maser Consulting

: NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 34: Antenna Wm (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
80	MP4A	Z	2.28	2
81	MP4A	Mx	.001	2
82	MP4A	X	-1.317	5
83	MP4A	Z	2.28	5
84	MP4A	Mx	.001	5
85	MP4B	X	-1.317	2
86	MP4B	Z	2.28	2
87	MP4B	Mx	001	2
88	MP4B	X	-1.317	5
89	MP4B	Z	2.28	5
90	MP4B	Mx	001	5
91	MP1C	X	-3.202	1
92	MP1C	Z	5.546	1
93	MP1C	Mx	003	1
94	MP1C	X	-3.202	5
95	MP1C	Z	5.546	5
96	MP1C	Mx	003	5
97	MP1C	X	-3.202	1
98	MP1C	Z	5.546	1
99	MP1C	Mx	004	1
100	MP1C	X	-3.202	5
101	MP1C	Z	5.546	5
102	MP1C	Mx	004	5
103	MP2B	X	-5.781	1
104	MP2B	Z	10.012	1
105	MP2B	Mx	01	1
106	MP2B	X	-5.781	5
107	MP2B	Z	10.012	5
107	MP2B	Mx	01	5
108	MP2B	X	01 -5.781	1
110	MP2B	Z	10.012	1
111	MP2B	Mx	.003	1
112	MP2B		-5.781	5
113	MP2B	X Z	10.012	5
114	MP2B	Mx	.003	5
115	MP6A	X	-3.559	2
116	MP6A	Z	6.165	2
117	MP6A	Mx	.004	2
118	MP6A	X	-3.559	6
119	MP6A	Z	6.165	6
120	MP6A	Mx	.004	6
121	MP6A	X	-3.559	2
122	MP6A	Z	6.165	2
123	MP6A	Mx	.003	2
123	MP6A	X	-3.559	6
125	MP6A	Z	6.165	6
126	MP6A	Mx	.003	6
127			-5.28	2
128	MP6C MP6C	X	9.145	2
129	MP6C	Mx	005	2
130	MP6C	X	-5.28	6
131	MP6C	Z	9.145	6
132	MP6C MP6C	Mx	005	6
133	MP6C	X	-5.28	2
134	MP6C MP6C	Z	9.145	2
135	MP6C	Mx	.007	2
136	MP6C MP6C		-5.28	6
130	IVIFOU	X	-0.20	0

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 34 : Antenna Wm (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
137	MP6C	Z	9.145	6
138	MP6C	Mx	.007	6
139	MP6B	X	-1.186	1.5
140	MP6B	Z	2.054	1.5
141	MP6B	Mx	.000791	1.5
142	MPB	X	-1.464	1.5
143	MPB	Z	2.536	1.5
144	MPB	Mx	.000976	1.5
145	MP6A	X	4	5
146	MP6A	Z	.693	5
147	MP6A	Mx	000133	5
148	MP6C	X	4	5
149	MP6C	Z	.693	5
150	MP6C	Mx	000133	5

Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-2.592	1
2	MP1A	Z	1.496	1
3	MP1A	Mx	.001	1
4	MP1A	X	-2.592	3
5	MP1A	Z	1.496	3
6	MP1A	Mx	.001	3
7	MP1B	X	-4.767	1
8	MP1B	Z	2.752	1
9	MP1B	Mx	0	1
10	MP1B	X	-4.767	3
11	MP1B	Z	2.752	3
12	MP1B	Mx	0	3
13	MP4C	X	-4.428	1
14	MP4C	Z	2.557	1
15	MP4C	Mx	000874	1
16	MP4C	X	-4.428	3
17	MP4C	Z	2.557	3
18	MP4C	Mx	000874	3
19	MP5B	X	-2.206	1
20	MP5B	Z	1.274	1
21	MP5B	Mx	001	1
22	MP5B	X	-2.206	3
23	MP5B	Z	1.274	3
24	MP5B	Mx	001	3
25	MP1A	X	524	4.5
26	MP1A	Z	.302	4.5
27	MP1A	Mx	.000284	4.5
28	MP1B	X	-1.762	4.5
29	MP1B	Z	1.017	4.5
30	MP1B	Mx	.000177	4.5
31	MP4C	X	-1.636	4.5
32	MP4C	Z	.944	4.5
33	MP4C	Mx	000323	4.5
34	MP5B	X	524	4.5
35	MP5B	Z	.302	4.5
36	MP5B	Mx	000284	4.5
37	MP1C	X	577	3
38	MP1C	Z	.333	3
39	MP1C	Mx	.000288	3
	13	14124		•

: Maser Consulting : NL : 21781092A Company Designer Job Number

Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Point Loads (BLC 35 : Antenna Wm (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
40	MP2B	X	577	3
41	MP2B	Z	.333	3
42	MP2B	Mx	.000288	3
43	MP2A	X	-2.85	1
44	MP2A	Z	1.646	1
45	MP2A	Mx	001	1
46	MP2C	X	-3.647	1
47	MP2C	Z	2.105	1
48	MP2C	Mx	.00072	1
49	MP3B	X	-2.85	1
50	MP3B	Z	1.646	1
51	MP3B	Mx	.001	1
52	MP4A	X	-2.85	1
53	MP4A	Z	1.646	1
54	MP4A	Mx	001	1
55	MP4C	X	-3.647	1
56	MP4C	Z	2.105	1
57	MP4C	Mx	.00072	1
58	MP2B	X	-2.258	1
59	MP2B	Z	1.303	1
60	MP2B	Mx	.001	1
61	MP3A	X	-2.489	1
62	MP3A	Z	1.437	1
63	MP3A	Mx	001	1
64	MP3C	X	-3.59	1
65	MP3C	Z	2.073	1
66	MP3C	Mx	.000709	1
67	MP5A	X	-2.489	1
68	MP5A	Z	1.437	1
69	MP5A	Mx	001	1
70	MP5C	X	-3.59	1
71	MP5C	Z	2.073	1
72	MP5C	Mx	.000709	1
73	MP2C	X	-4.161	2
74	MP2C	Z	2.402	2
75	MP2C	Mx	001	2
76	MP2C	X	-4.161	5
77	MP2C	Z	2.402	5
78	MP2C	Mx	001	5
79	MP4A	X	-2.907	2
80	MP4A	Z	1.679	2
81	MP4A	Mx	.001	2
82	MP4A	X	-2.907	5
83	MP4A	Z	1.679	5
84	MP4A	Mx	.001	5
85	MP4B	X Z	-2.907	2
86	MP4B		1.679	2
87	MP4B	Mx	001	5
88	MP4B MD4B	Z	-2.907 1.670	5
89 90	MP4B MP4B	Mx	1.679 001	5
90	MP1C	X	-6.085	1
91	MP1C MP1C	Z	3.513	1
93	MP1C MP1C	Mx	005	1
94	MP1C MP1C	X	-6.085	5
95	MP1C	Z	3.513	5
96	MP1C MP1C	Mx	005	5
90	IVIP 10	IVIX	000	Ü

Nov 23, 2021 5:47 PM

Company Designer : NL

Nov 23, 2021 5:47 PM Job Number 21781092A Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Point Loads (BLC 35 : Antenna Wm (240 Deg)) (Continued)

			240 Degjj (Continued)	
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
97	MP1C	X	-6.085	1
98	MP1C	Z	3.513	1
99	MP1C	Mx	002	1
100	MP1C	X	-6.085	5
101	MP1C	Z	3.513	5
102	MP1C	Mx	002	5
103	MP2B	X	-11.564	1
104	MP2B	Z	6.676	1
105	MP2B	Mx	009	1
106	MP2B	X	-11.564	5
107	MP2B	Z	6.676	5
108	MP2B	Mx	009	5
109	MP2B	X	-11.564	1
110	MP2B	Z	6.676	1
111	MP2B	Mx	.009	1
112	MP2B	X	-11.564	5
113	MP2B	Z	6.676	5
114	MP2B	Mx	.009	5
115	MP6A	X	-6.44	2
116	MP6A	Z	3.718	2
117	MP6A	Mx	.002	2
118	MP6A	X	-6.44	6
119	MP6A	Z	3.718	6
120	MP6A	Mx	.002	6
121	MP6A	X	-6.44	2
122	MP6A	Z	3.718	2
123	MP6A	Mx	.005	2
124	MP6A	X	-6.44	6
125	MP6A	Z	3.718	6
126	MP6A	Mx	.005	6
127	MP6C	X	-8.87	2
128	MP6C	Z	5.121	2
129	MP6C	Mx	007	2
130	MP6C	X	-8.87	6
131	MP6C	Z	5.121	6
132	MP6C	Mx	007	6
133	MP6C	X	-8.87	2
134	MP6C	Z	5.121	2
135	MP6C	Mx	.004	2
136	MP6C	X	-8.87	6
137	MP6C	Z	5.121	6
138	MP6C	Mx	.004	6
139	MP6B	X	-2.489	1.5
140	MP6B	Z	1.437	1.5
141	MP6B	Mx	.00083	1.5
142	MPB	X	-2.85	1.5
143	MPB	Z	1.646	1.5
144	MPB	Mx	.00095	1.5
145	MP6A	X	577	5
146	MP6A	Z	.333	5
147	MP6A	Mx	000192	5
148	MP6C	X	751	5
149	MP6C	Z	.433	5
150	MP6C	Mx	0	5
100	IVII OO	IVIA	•	

Member Point Loads (BLC 36: Antenna Wm (270 Deg))

: Maser Consulting : NL : 21781092A

Company Designer Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 36: Antenna Wm (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-4.668	1
2	MP1A	Z	0	1
3	MP1A	Mx	.001	1
4	MP1A	X	-4.668	3
5	MP1A	Z	0	3
6	MP1A	Mx	.001	3
7	MP1B	X	-4.668	1
8	MP1B	Z	0	1
9	MP1B	Mx	.001	1
10	MP1B	X	-4.668	3
11	MP1B	Z	0	3
12	MP1B	Mx	.001	3
13	MP4C	X	-3.539	1
14	MP4C	Z	0	1
15	MP4C	Mx	001	1
16	MP4C	X	-3.539	3
17	MP4C	Z	0	3
18	MP4C	Mx	001	3
19	MP5B	X	-4.121	1
20	MP5B	Z	0	1
21	MP5B	Mx	001	1
22	MP5B	X	-4.121	3
23	MP5B	Z	0	3
24	MP5B	Mx	001	3
25	MP1A	X	-1.392	4.5
26	MP1A	Z	0	4.5
27	MP1A	Mx	.000447	4.5
28	MP1B	X	-1.392	4.5
29	MP1B	Z	0	4.5
30	MP1B	Mx	.000447	4.5
31	MP4C	X	-1.101	4.5
32	MP4C	Z	0	4.5
33	MP4C	Mx	000422	4.5
34	MP5B	X	-1.392	4.5
35	MP5B	Z	0	4.5
36	MP5B	Mx	000447	4.5
37	MP1C	X	8	3
38	MP1C	Z	0	3
39	MP1C	Mx	.0002	3
40	MP2B	X	8	3
41	MP2B	Z	0	
42	MP2B	Mx	.0002	3 3
43	MP2A	X	-2.928	1
44	MP2A	Z	0	1
45	MP2A	Mx	001	1
46	MP2C	X	-3.528	1
47	MP2C	Z	0	1
48	MP2C	Mx	.001	1
49	MP3B	X	-4.017	1
50	MP3B	Z	0	1
51	MP3B	Mx	.001	1
52	MP4A	X	-2.928	1
53	MP4A	Z	0	1
54	MP4A	Mx	001	1
55	MP4C	X	-3.528	1
56	MP4C	Z	0	1
57	MP4C	Mx	.001	1
Ų į	IVII TO	IVIA	·VV I	l l

Company Designer Job Number : Maser Consulting

: NL

: 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 36: Antenna Wm (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	-3.551	1
59	MP2B	Z	0	1
60	MP2B	Mx	.001	1
61	MP3A	X	-2.372	1
62	MP3A	Z	0	1
63	MP3A	Mx	001	1
64	MP3C	X	-3.202	1
65	MP3C	Z	0	1
66	MP3C	Mx	.001	1
67	MP5A	X	-2.372	1
68	MP5A	Z	0	1
69	MP5A	Mx	001	1
70	MP5C	X	-3.202	1
71	MP5C	Z	0	1
72	MP5C	Mx	.001	1
73	MP2C	X	-3.357	2
74	MP2C	Z	0	2
75	MP2C	Mx	001	2
76	MP2C	X	-3.357	5
77	MP2C	Z	0	5
78	MP2C	Mx	001	5
79	MP4A	X	-4.805	2
80	MP4A	Z	0	2
81	MP4A	Mx	.001	2
82	MP4A	X	-4.805	5
83	MP4A	Z	0	5
84	MP4A	Mx	.001	5
85	MP4B	X	-4.805	2
86	MP4B	Z	0	2
87	MP4B	Mx	001	2
88	MP4B	X	-4.805	5
89	MP4B	Z	-4.805 0	5
90	MP4B	Mx	001	5
91	MP1C	X	-10.392	1
92	MP1C	Z	0	1
93	MP1C	Mx	009	1
94	MP1C	X	-10.392	5
95	MP1C	Z	0	5
96	MP1C	Mx	009	5
97	MP1C	X	-10.392	1
98	MP1C	Z	0	1
99	MP1C	Mx	.001	1
100	MP1C	X	-10.392	5
101	MP1C	Z	0	5
102	MP1C	Mx	.001	5
103	MP2B	X	-11.561	1
104	MP2B	Z	0	1
105	MP2B	Mx	003	1
106	MP2B	X	-11.561	5
107	MP2B	Z	0	5
108	MP2B	Mx	003	5
109	MP2B	X	-11.561	1
110	MP2B	Z	0	1
111	MP2B	Mx	.01	1
112	MP2B	X	-11.561	5
113	MP2B	Z	0	5
114	MP2B	Mx	.01	5
117	IVII ZD	IVIA	١٠٧١	J

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 36: Antenna Wm (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
115	MP6A	X	-9.157	2
116	MP6A	Z	0	2
117	MP6A	Mx	001	2
118	MP6A	X	-9.157	6
119	MP6A	Z	0	6
120	MP6A	Mx	001	6
121	MP6A	X	-9.157	2
122	MP6A	Z	0	2
123	MP6A	Mx	.007	2
124	MP6A	X	-9.157	6
125	MP6A	Z	0	6
126	MP6A	Mx	.007	6
127	MP6C	X	-8.521	2
128	MP6C	Z	0	2
129	MP6C	Mx	006	2
130	MP6C	X	-8.521	6
131	MP6C	Z	0	6
132	MP6C	Mx	006	6
133	MP6C	X	-8.521	2
134	MP6C	Z	0	2
135	MP6C	Mx	-6.9e-5	2
136	MP6C	X	-8.521	6
137	MP6C	Z	0	6
138	MP6C	Mx	-6.9e-5	6
139	MP6B	X	-3.878	1.5
140	MP6B	Z	0	1.5
141	MP6B	Mx	.000646	1.5
142	MPB	X	-4.017	1.5
143	MPB	Z	0	1.5
144	MPB	Mx	.00067	1.5
145	MP6A	X	6	5
146	MP6A	Z	0	5
147	MP6A	Mx	0002	5
148	MP6C	X	8	5
149	MP6C	Z	0	5
150	MP6C	Mx	.000133	5

Member Point Loads (BLC 37: Antenna Wm (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-4.767	1
2	MP1A	Z	-2.752	1
3	MP1A	Mx	0	1
4	MP1A	X	-4.767	3
5	MP1A	Z	-2.752	3
6	MP1A	Mx	0	3
7	MP1B	X	-2.592	1
8	MP1B	Z	-1.496	1
9	MP1B	Mx	.001	1
10	MP1B	X	-2.592	3
11	MP1B	Z	-1.496	3
12	MP1B	Mx	.001	3
13	MP4C	X	-1.954	1
14	MP4C	Z	-1.128	1
15	MP4C	Mx	001	1
16	MP4C	X	-1.954	3
17	MP4C	Z	-1.128	3

: Maser Consulting : NL : 21781092A

Company Designer Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 37: Antenna Wm (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
18	MP4C	Mx	001	3
19	MP5B	X	-4.68	1
20	MP5B	Z	-2.702	1
21	MP5B	Mx	000469	1
22	MP5B	X	-4.68	3
23	MP5B	Z	-2.702	3
24	MP5B	Mx	000469	3
25	MP1A	X	-1.762	4.5
26	MP1A	Z	-1.017	4.5
27		Mx	.000177	4.5
28	MP1A	X	524	4.5
	MP1B	Z		
29	MP1B		302	4.5
30	MP1B	Mx	.000284	4.5
31	MP4C	X Z	398	4.5
32	MP4C		23	4.5
33	MP4C	Mx	000226	4.5
34	MP5B	X	-1.762	4.5
35	MP5B	Z	-1.017	4.5
36	MP5B	Mx	000177	4.5
37	MP1C	X	751	3
38	MP1C	Z	433	3
39	MP1C	Mx	0	3
40	MP2B	X	751	3
41	MP2B	Z	433	3
42	MP2B	Mx	0	3
43	MP2A	X	-2.85	1
44	MP2A	Z	-1.646	1
45	MP2A	Mx	001	1
46	MP2C	X	-2.574	1
47	MP2C	Z	-1.486	1
48	MP2C	Mx	.001	1
49	MP3B	X	-3.794	1
50	MP3B	Z	-2.19	1
51	MP3B	Mx	0	1
52	MP4A	X	-2.85	1
53	MP4A	Z	-1.646	1
54	MP4A	Mx	001	1
55	MP4C	X	-2.574	1
56	MP4C	Z	-1.486	1
57	MP4C	Mx	.001	1
58	MP2B	X	-3.741	1
59	MP2B	Z	-2.16	1
60	MP2B	Mx	.000375	1
61	MP3A	X	-2.489	1
62	MP3A	Z	-1.437	1
63	MP3A	Mx	001	1
64	MP3C	X	-2.107	1
65	MP3C	Z	-1.216	1
66	MP3C	Mx	.001	1
67	MP5A	X	-2.489	1
68	MP5A	Z	-1.437	1
69	MP5A	Mx	001	1
70	MP5C	X	-2.107	1
71	MP5C MP5C	Z	-2.107 -1.216	1
72	MP5C MP5C	Mx	.001	1
				2
73	MP2C	X Z	-2.28	2
74	MP2C	Z	-1.317	2

Company Designer Job Number : Maser Consulting : NL : 21781092A

Nov 23, 2021 5:47 PM Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Point Loads (BLC 37: Antenna Wm (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
75	MP2C	Mx	001	2
76	MP2C	X	-2.28	5
77	MP2C	Z	-1.317	5
78	MP2C	Mx	001	5
79	MP4A	X	-4.788	2
80	MP4A	Z	-2.764	2
81	MP4A	Mx	0	2
82	MP4A	X	-4.788	5
83	MP4A	Z	-2.764	5
84	MP4A	Mx	0	5
85	MP4B	X	-4.788	2
86	MP4B	Z	-2.764	2
87	MP4B	Mx	0	2
88	MP4B	X	-4.788	5
89	MP4B	Z	-2.764	5
90	MP4B	Mx	0	5
91	MP1C	X	-11.377	1
92	MP1C	Z	-6.568	1
93	MP1C	Mx	01	1
94	MP1C	X	-11.377	5
95	MP1C	Z	-6.568	5
96	MP1C	Mx	01	5
97	MP1C	X	-11.377	1
98	MP1C	Z	-6.568	1
99	MP1C	Mx	.007	1
100	MP1C	X	-11.377	5
101	MP1C	Z	-6.568	5
102	MP1C	Mx	.007	5
103	MP2B	X	-6.91	1
104	MP2B	Z	-3.99	1
105	MP2B	Mx	.001	1
106	MP2B	X	-6.91	5
107	MP2B	Z	-3.99	5
108	MP2B	Mx	.001	5
109	MP2B	X	-6.91	1
110	MP2B	Z	-3.99	1
111	MP2B	Mx	.007	1
112	MP2B	X	-6.91	5
113	MP2B	Z	-3.99	5
114	MP2B	Mx	.007	5
115	MP6A	X	-9.145	
116	MP6A	Z	-5.143	2 2
117	MP6A	Mx	005	2
118	MP6A	X	005 -9.145	6
119	MP6A	Z	-9.145 -5.28	6
120	MP6A	Mx	-0.20	6
121	MP6A		-9.145	2
122	MP6A	X	-9.145 -5.28	2
123	MP6A	Mx	-5.28 .007	2
123	MP6A	X	-9.145	6
		Z	-9.145 -5.28	
125	MP6A			6
126	MP6A	Mx	.007	6
127	MP6C	X	-6.165	2
128	MP6C		-3.559	2
129	MP6C	Mx	004	2
130	MP6C	X	-6.165	6
131	MP6C	Z	-3.559	6

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 37 : Antenna Wm (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
132	MP6C	Mx	004	6
133	MP6C	X	-6.165	2
134	MP6C	Z	-3.559	2
135	MP6C	Mx	003	2
136	MP6C	X	-6.165	6
137	MP6C	Z	-3.559	6
138	MP6C	Mx	003	6
139	MP6B	X	-3.794	1.5
140	MP6B	Z	-2.19	1.5
141	MP6B	Mx	0	1.5
142	MPB	X	-3.794	1.5
143	MPB	Z	-2.19	1.5
144	MPB	Mx	0	1.5
145	MP6A	X	577	5
146	MP6A	Z	333	5
147	MP6A	Mx	000192	5
148	MP6C	X	577	5
149	MP6C	Z	333	5
150	MP6C	Mx	.000192	5

Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-2.334	1
2	MP1A	Z	-4.042	1
3	MP1A	Mx	001	1
4	MP1A	X	-2.334	3
5	MP1A	Z	-4.042	3
6	MP1A	Mx	001	3
7	MP1B	X	-1.078	1
8	MP1B	Z	-1.866	1
9	MP1B	Mx	.001	1
10	MP1B	X	-1.078	3
11	MP1B	Z	-1.866	3
12	MP1B	Mx	.001	3
13	MP4C	X	-1.274	1
14	MP4C	Z	-2.206	1
15	MP4C	Mx	001	1
16	MP4C	X	-1.274	3
17	MP4C	Z	-2.206	3
18	MP4C	Mx	001	3
19	MP5B	X	-2.557	1
20	MP5B	Z	-4.428	1
21	MP5B	Mx	.000874	1
22	MP5B	X	-2.557	3
23	MP5B	Z	-4.428	3
24	MP5B	Mx	.000874	3
25	MP1A	X	944	4.5
26	MP1A	Z	-1.636	4.5
27	MP1A	Mx	000323	4.5
28	MP1B	X	23	4.5
29	MP1B	Z	398	4.5
30	MP1B	Mx	.000226	4.5
31	MP4C	X	302	4.5
32	MP4C	Z	524	4.5
33	MP4C	Mx	000284	4.5
34	MP5B	X	944	4.5

: Maser Consulting : NL : 21781092A

Company Designer Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 38: Antenna Wm (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
35	MP5B	Z	-1.636	4.5
36	MP5B	Mx	.000323	4.5
37	MP1C	X	4	3
38	MP1C	Z	693	3
39	MP1C	Mx	0002	3
40	MP2B	X	4	3
41	MP2B	Z	693	3
42	MP2B	Mx	0002	3
43	MP2A	X	-2.009	1
44	MP2A	Z	-3.479	1
45	MP2A	Mx	001	1
46	MP2C	X	-1.549	1
47	MP2C	Z	-2.683	1
48	MP2C	Mx	.001	1
49	MP3B	X	-2.009	1
50	MP3B	Z	-3.479	1
51	MP3B	Mx	001	1
52	MP4A	X	-2.009	1
53	MP4A	Z	-3.479	1
54	MP4A	Mx	001	1
55	MP4C	X	-1.549	1
56	MP4C	Z	-2.683	1
57	MP4C	Mx	.001	1
58	MP2B	X	-2.073	1
59	MP2B	Z	-3.59	1
60	MP2B	Mx	000709	1
61	MP3A	X	-1.939	1
62	MP3A	Z	-3.359	1
63	MP3A	Mx	00097	1
64	MP3C	X	-1.303	1
65	MP3C	Z	-2.258	1
66	MP3C	Mx	.001	1
67	MP5A	X	-1.939	1
68	MP5A	Z	-3.359	1
69	MP5A	Mx	00097	1
70	MP5C	X	-1.303	1
71	MP5C	Z	-2.258	1
72	MP5C	Mx	.001	1
73	MP2C	X	-1.679	2
74	MP2C	Z	-2.907	2
75	MP2C	Mx	001	2 5
76	MP2C	X	-1.679	
77	MP2C	Z	-2.907	5
78	MP2C	Mx	001	5
79	MP4A	X	-2.402	2
80	MP4A	Z	-4.161	2
81	MP4A	Mx	001	2
82	MP4A	X	-2.402	5
83	MP4A	Z	-4.161	5
84	MP4A	Mx	001	5
85	MP4B	X	-2.402	2
86	MP4B	Z	-4.161	2
87	MP4B	Mx	.001	2
88	MP4B	X	-2.402	5
89	MP4B	Z	-4.161	5
90	MP4B	Mx	.001	5
91	MP1C	X	-6.257	1

Company Designer Job Number

: NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 38: Antenna Wm (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
92	MP1C	Z	-10.838	1
93	MP1C	Mx	005	1
94	MP1C	X	-6.257	5
95	MP1C	Z	-10.838	5
96	MP1C	Mx	005	5
97	MP1C	X	-6.257	1
98	MP1C	Z	-10.838	1
99	MP1C	Mx	.01	1
100	MP1C	X	-6.257	5
101	MP1C	Z	-10.838	5
102	MP1C	Mx	.01	5
103	MP2B	X	-3.094	1
104	MP2B	Z	-5.359	1
105	MP2B	Mx	.004	1
106	MP2B	X	-3.094	5
107	MP2B	Z	-5.359	5
108	MP2B	Mx	.004	5
109	MP2B	X	-3.094	1
110	MP2B	Z	-5.359	1
111	MP2B	Mx	.004	1
112	MP2B	X	-3.094	5
113	MP2B	Z	-5.359	5
114	MP2B	Mx	.004	5
115	MP6A	X	-5.121	2
116	MP6A	Z	-8.87	2
117	MP6A	Mx	007	2
118	MP6A	X	-5.121	6
119	MP6A	Z	-8.87	6
120	MP6A	Mx	007	6
121	MP6A	X	-5.121	2
122	MP6A	Z	-8.87	2
123	MP6A	Mx	.004	2
124	MP6A	X	-5.121	6
125	MP6A	Z	-8.87	6
126	MP6A	Mx	.004	6
127	MP6C	X	-3.718	2
128	MP6C	Z	-6.44	2
129	MP6C	Mx	002	2
130	MP6C	X	-3.718	6
131	MP6C	Z	-6.44	6
132	MP6C	Mx	002	6
133	MP6C	X	-3.718	2
134	MP6C	Z	-6.44	2
135	MP6C	Mx	005	2
136	MP6C	X	-3.718	6
137	MP6C	Z	-6.44	6
138	MP6C	Mx	005	6
139	MP6B	X	-1.939	1.5
140	MP6B	Z	-3.359	1.5
141	MP6B	Mx	000646	1.5
142	MPB	X	-2.009	1.5
143	MPB	Z	-3.479	1.5
144	MPB	Mx	000669	1.5
145	MP6A	X	4	5
146	MP6A	Z	693	5
147	MP6A	Mx	000133	5
148	MP6C	X	3	5

Company : Maser Consulting

Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3)

Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads	(BLC 38 : Antenna Wm	(330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
149	MP6C	Z	519	5
150	MP6C	Mx	.0002	5

Member Point Loads (BLC 77 : Lm1)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M1	Υ	-500	%66

Member Point Loads (BLC 78 : Lm2)

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft.%]	
1	M1	Υ	-500	%50	7

Member Point Loads (BLC 79 : Lv1)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M1	Υ	-250	%50

Member Point Loads (BLC 80 : Lv2)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M1	Y	-250	0

Member Point Loads (BLC 81 : Antenna Ev)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Υ	-1.719	1
2	MP1A	My	00043	1
3	MP1A	Mz	.000744	1
4	MP1A	Υ	-1.719	3
5	MP1A	My	00043	3
6	MP1A	Mz	.000744	3
7	MP1B	Υ	-1.719	1
8	MP1B	My	00043	1
9	MP1B	Mz	000744	1
10	MP1B	Υ	-1.719	3
11	MP1B	My	00043	3
12	MP1B	Mz	000744	3
13	MP4C	Υ	-1.719	1
14	MP4C	My	.000658	1
15	MP4C	Mz	.000552	1
16	MP4C	Υ	-1.719	3
17	MP4C	My	.000658	3
18	MP4C	Mz	.000552	3
19	MP5B	Υ	-1.719	1
20	MP5B	My	.000552	1
21	MP5B	Mz	000658	1
22	MP5B	Υ	-1.719	3
23	MP5B	My	.000552	3
24	MP5B	Mz	000658	3
25	MP1A	Υ	174	4.5
26	MP1A	My	-5.6e-5	4.5
27	MP1A	Mz	6.7e-5	4.5
28	MP1B	Υ	174	4.5
29	MP1B	My	-5.6e-5	4.5
30	MP1B	Mz	-6.7e-5	4.5
31	MP4C	Υ	174	4.5
32	MP4C	My	6.7e-5	4.5
33	MP4C	Mz	5.6e-5	4.5

: Maser Consulting : NL : 21781092A Company Designer Job Number Nov 23, 2021 5:47 PM

Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
34	MP5B	Υ	174	4.5
35	MP5B	My	5.6e-5	4.5
36	MP5B	Mz	-6.7e-5	4.5
37	MP1C	Υ	41	3
38	MP1C	My	000103	3
39	MP1C	Mz	.000178	3
40	MP2B	Υ	41	3
41	MP2B	My	000103	3
42	MP2B	Mz	.000178	3
43	MP2A	Υ	-3.331	1
44	MP2A	My	.002	1
45	MP2A	Mz	0	1
46	MP2C	Y	-3.331	1
47	MP2C	My	001	1
48	MP2C	Mz	001	1
49	MP3B	Y	-3.331	1
50	MP3B	My	000833	1
51	MP3B	Mz	.001	1
52	MP4A	Y	-3.331	1
53	MP4A	My	.002	1
54	MP4A	Mz	0	1
55	MP4C	Y	-3.331	1
56	MP4C	My	001	1
57	MP4C	Mz	001	1
58	MP2B	Y	-2.775	1
59	MP2B	My	000892	1
60	MP2B	Mz	.001	1
61	MP3A	Y	-2.775	1
62	MP3A	My	.001	1
63	MP3A	Mz	0	1
64	MP3C	Y	-2.775	1
65	MP3C	My	001	1
66	MP3C	Mz	000892	1
67	MP5A	Y	-2.775	1
68	MP5A	My	.001	1
69	MP5A	Mz	0	1
70	MP5C	Y	-2.775	1
71	MP5C	My	001	1
72	MP5C	Mz	000892	1
73	MP2C	Y	195	2
74	MP2C	My	8.5e-5	
75	MP2C	Mz	4.9e-5	2 2
76	MP2C	Y	195	5
77	MP2C	My	8.5e-5	5
78	MP2C	Mz	4.9e-5	5
79	MP4A	Υ	195	2
80	MP4A	My	-4.9e-5	2
81	MP4A	Mz	8.5e-5	2
82	MP4A	Y	195	5
83	MP4A	My	-4.9e-5	5
84	MP4A	Mz	8.5e-5	5
85	MP4B	Y	195	2
86	MP4B	My	4.9e-5	2
87	MP4B	Mz	-8.5e-5	2
88	MP4B	Y	195	5
89	MP4B	My	4.9e-5	5
90	MP4B	Mz	-8.5e-5	5

Company Designer Job Number

: Maser Consulting : NL : 21781092A Nov 23, 2021 5:47 PM Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
91	MP1C	Υ	-1.806	1
92	MP1C	My	.002	1
93	MP1C	Mz	-3.3e-5	1
94	MP1C	Y	-1.806	5
95	MP1C	My	.002	5
96	MP1C	Mz	-3.3e-5	5
97	MP1C	Υ	-1.806	1
98	MP1C	My	000245	1
99	MP1C	Mz	002	1
100	MP1C	Υ	-1.806	5
101	MP1C	My	000245	5
102	MP1C	Mz	002	5
103	MP2B	Υ	-1.806	1
104	MP2B	My	.000516	1
105	MP2B	Mz	002	1
106	MP2B	Y	-1.806	5
107	MP2B	My	.000516	5
108	MP2B	Mz	002	5
109	MP2B	Υ	-1.806	1
110	MP2B	My	002	1
111	MP2B	Mz	00031	1
112	MP2B	Υ	-1.806	5
113	MP2B	My	002	5
114	MP2B	Mz	00031	5
115	MP6A	Υ	-1.249	2
116	MP6A	My	.000157	2
117	MP6A	Mz	.000947	2
118	MP6A	Υ	-1.249	6
119	MP6A	My	.000157	6
120	MP6A	Mz	.000947	6
121	MP6A	Υ	-1.249	2
122	MP6A	My	00096	2
123	MP6A	Mz	1e-5	2
124	MP6A	Υ	-1.249	6
125	MP6A	My	00096	6
126	MP6A	Mz	1e-5	6
127	MP6C	Υ	-1.249	2
128	MP6C	My	.000947	2
129	MP6C	Mz	000157	2
130	MP6C	Y	-1.249	6
131	MP6C	My	.000947	6
132	MP6C	Mz	000157	6
133	MP6C	Y	-1.249	2
134	MP6C	My	1e-5	2
135	MP6C	Mz	.00096	2
136	MP6C	Υ	-1.249	6
137	MP6C	My	1e-5	6
138	MP6C	Mz	.00096	6
139	MP6B	Υ	-2.775	1.5
140	MP6B	My	000462	1.5
141	MP6B	Mz	.000801	1.5
142	MPB	Υ	-3.331	1.5
143	MPB	My	000555	1.5
144	MPB	Mz	.000962	1.5
145	MP6A	Υ	41	5
146	MP6A	My	.000137	5
147	MP6A	Mz	0	5

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 81: Antenna Ev) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
148	MP6C	Υ	41	5
149	MP6C	My	-6.8e-5	5
150	MP6C	Mz	000118	5

Member Point Loads (BLC 82: Antenna Eh (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Z	-4.297	1
2	MP1A	Mx	002	1
3	MP1A	Z	-4.297	3
4	MP1A	Mx	002	3
5	MP1B	Z	-4.297	1
6	MP1B	Mx	.002	1
7	MP1B	Z	-4.297	3
8	MP1B	Mx	.002	3
9	MP4C	Z	-4.297	1
10	MP4C	Mx	001	1
11	MP4C	Z	-4.297	3
12	MP4C	Mx	001	3
13	MP5B	Z	-4.297	1
14	MP5B	Mx	.002	1
15	MP5B	Z	-4.297	3
16	MP5B	Mx	.002	3
17	MP1A	Z	434	4.5
18	MP1A	Mx	000166	4.5
19	MP1B	Z	434	4.5
20	MP1B	Mx	.000166	4.5
21	MP4C	Z	434	4.5
22	MP4C	Mx	00014	4.5
23	MP5B	Z	434	4.5
	MP5B		.000166	
24		Mx	-1.026	4.5
25	MP1C	Z		3 3
26	MP1C	Mx Z	000444	
27	MP2B		-1.026	3
28	MP2B	Mx	000444	3
29	MP2A	Z	-8.327	1
30	MP2A	Mx	0	1
31	MP2C	Z	-8.327	1
32	MP2C	Mx	.003	1
33	MP3B	Z	-8.327	1
34	MP3B	Mx	004	1
35	MP4A	Z	-8.327	1
36	MP4A	Mx	0	1
37	MP4C	Z	-8.327	1
38	MP4C	Mx	.003	1
39	MP2B	Z	-6.936	1
40	MP2B	Mx	003	1
41	MP3A	Z	-6.936	1
42	MP3A	Mx	0	1
43	MP3C	Z	-6.936	1
44	MP3C	Mx	.002	1
45	MP5A	Z	-6.936	1
46	MP5A	Mx	0	1
47	MP5C	Z	-6.936	1
48	MP5C	Mx	.002	1
49	MP2C	Z	488	2
50	MP2C	Mx	000122	2

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 82 : Antenna Eh (0 Deg)) (Continued)

WICHIDE	T Offic Loads (DLO	02 . Antenna Lii (Degij (Continued)	
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
51	MP2C	Z	488	5
52	MP2C	Mx	000122	5
53	MP4A	Z	488	2
54	MP4A	Mx	000211	2
55	MP4A	Z	488	5
56	MP4A	Mx	000211	5
57	MP4B	Z	488	2
58	MP4B	Mx	.000211	2
59	MP4B	Z	488	5
60	MP4B	Mx	.000211	5
61	MP1C	Z	-4.514	1
62	MP1C	Mx	8.3e-5	1
63	MP1C	Z	-4.514	5
64	MP1C	Mx	8.3e-5	5
65	MP1C	Z	-4.514	1
66	MP1C	Mx	.004	1
67	MP1C	Z	-4.514	5
68	MP1C	Mx	.004	5
69	MP2B	Z	-4.514	1
70	MP2B	Mx	.004	1
71	MP2B	Z	-4.514	5
72	MP2B	Mx	.004	5
73	MP2B	Z	-4.514	1
74	MP2B	Mx	.000776	1
75	MP2B	Z	-4.514	5
76	MP2B	Mx	.000776	5
77	MP6A	Z	-3.123	2
78	MP6A	Mx	002	2
79	MP6A	Z	-3.123	6
80	MP6A	Mx	002	6
81	MP6A	Z	-3.123	2
82	MP6A	Mx	-2.5e-5	2
83	MP6A	Z	-3.123	6
84	MP6A	Mx	-2.5e-5	6
85	MP6C	Z	-3.123	2
86	MP6C	Mx	.000392	2
87	MP6C	Z	-3.123	6
88	MP6C	Mx	.000392	6
89	MP6C	Z	-3.123	2
90	MP6C	Mx	002	2
91	MP6C	Z	-3.123	6
92	MP6C	Mx	002	6
93	MP6B	Z	-6.936	1.5
94	MP6B	Mx	002	1.5
95	MPB	Z	-8.327	1.5
96	MPB	Mx	002	1.5
97	MP6A	Z	-1.026	5
98	MP6A	Mx	0	5
99	MP6C	Z	-1.026	5
100	MP6C	Mx	.000296	5
.00	1111 00	111/	1000200	•

Member Point Loads (BLC 83 : Antenna Eh (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	4.297	1
2	MP1A	Mx	001	1
3	MP1A	X	4,297	3

: Maser Consulting : NL : 21781092A Company Designer Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 83 : Antenna Eh (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
4	MP1A	Mx	001	3
5	MP1B	X	4.297	1
6	MP1B	Mx	001	1
7	MP1B	X	4.297	3
8	MP1B	Mx	001	3
9	MP4C	X	4.297	1
10	MP4C	Mx	.002	1
11	MP4C	X	4.297	3
12	MP4C	Mx	.002	3
13	MP5B	X	4.297	1
14	MP5B	Mx	.001	1
15	MP5B	X	4.297	3
16	MP5B	Mx	.001	3
17	MP1A	X	.434	4.5
18	MP1A	Mx	00014	4.5
19	MP1B	X	.434	4.5
20	MP1B	Mx	00014	4.5
21	MP4C	X	.434	4.5
22	MP4C	Mx	.000166	4.5
23	MP5B	X	.434	4.5
24	MP5B	Mx	.00014	4.5
25	MP1C	X	1.026	3
26	MP1C	Mx	000257	3
27	MP2B	X	1.026	3
28	MP2B	Mx	000257	3
29	MP2A	X	8.327	1
30	MP2A	Mx	.004	1
31	MP2C	X	8.327	1
32	MP2C	Mx	003	1
33	MP3B	X	8.327	1
34	MP3B	Mx	002	1
35	MP4A	X	8.327	1
36	MP4A	Mx	.004	1
37	MP4C	X	8.327	1
38	MP4C	Mx	003	1
39	MP2B	X	6.936	1
40	MP2B	Mx	002	1
41	MP3A	X	6.936	1
42	MP3A	Mx	.003	1
43	MP3C	X	6.936	1
44	MP3C	Mx	003	1
45	MP5A	X	6.936	1
46	MP5A	Mx	.003	1
47	MP5C	X	6.936	1
48	MP5C	Mx	003	1
49	MP2C	X	.488	2
50	MP2C	Mx	.000211	2
51	MP2C	X	.488	5
52	MP2C	Mx	.000211	5
53	MP4A	X	.488	2
54	MP4A	Mx	000122	2
55	MP4A	X	.488	5
56	MP4A	Mx	000122	5
57	MP4B	X	.488	2
58	MP4B	Mx	.000122	2
59	MP4B	X	.488	5
60	MP4B	Mx	.000122	5

Company Designer : Maser Consulting

: NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Point Loads (BLC 83 : Antenna Eh (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
61	MP1C	X	4.514	1
62	MP1C	Mx	.004	1
63	MP1C	X	4.514	5
64	MP1C	Mx	.004	5
65	MP1C	X	4.514	1
66	MP1C	Mx	000613	1
67	MP1C	X	4.514	5
68	MP1C	Mx	000613	5
69	MP2B	X	4.514	1
70	MP2B	Mx	.001	1
71	MP2B	X	4.514	5
72	MP2B	Mx	.001	5
73	MP2B	X	4.514	1
74	MP2B	Mx	004	1
75	MP2B	X	4.514	5
76	MP2B	Mx	004	5
77	MP6A	X	3.123	2
78	MP6A	Mx	.000392	2
79	MP6A	X	3.123	6
80	MP6A	Mx	.000392	6
81	MP6A	X	3.123	2
82	MP6A	Mx	002	2
83	MP6A	X	3.123	6
84	MP6A	Mx	002	6
85	MP6C	X	3.123	2
86	MP6C	Mx	.002	2
87	MP6C	X	3.123	6
88	MP6C	Mx	.002	6
89	MP6C	X	3.123	2
90	MP6C	Mx	2.5e-5	2
91	MP6C	X	3.123	6
92	MP6C	Mx	2.5e-5	6
93	MP6B	X	6.936	1.5
94	MP6B	Mx	001	1.5
95	MPB	X	8.327	1.5
96	MPB	Mx	001	1.5
97	MP6A	X	1.026	5
98	MP6A	Mx	.000342	5
99	MP6C	X	1.026	5
100	MP6C	Mx	000171	5

Member Distributed Loads (BLC 40 : Structure Di)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Υ	-11.85	-11.85	0	%100
2	M2	Υ	-11.85	-11.85	0	%100
3	M3	Υ	-9.005	-9.005	0	%100
4	M4	Υ	-9.005	-9.005	0	%100
5	M5	Υ	-9.005	-9.005	0	%100
6	M6	Υ	-17.29	-17.29	0	%100
7	M7	Υ	-17.29	-17.29	0	%100
8	M8	Υ	-17.29	-17.29	0	%100
9	M9	Υ	-17.29	-17.29	0	%100
10	M10	Υ	-13.273	-13.273	0	%100
11	M11	Υ	-13.273	-13.273	0	%100
12	M12	Υ	-9.005	-9.005	0	%100

: Maser Consulting : NL : 21781092A Company Designer Job Number

Model Name : Mount Analysis (Rev. 3)

Member Distributed Loads (BLC 40 : Structure Di) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F	Start Location[ft %]	End Location[ft,%]
13	M13	Y	-9.005	-9.005	0	%100
14	M14	Y	-9.005	-9.005	0	%100 %100
15	M15	Y	-9.005	-9.005	0	%100 %100
16	M16	Y	-9.005	-9.005	0	%100 %100
17	M17	Y	-9.005	-9.005	0	%100 %100
18	M18	Ý	-11.85	-11.85	0	%100 %100
19	M19	Y	-11.85	-11.85	0	%100 %100
20	M20	Y	-17.29	-17.29	Ö	%100 %100
21	M21	Ϋ́	-17.29	-17.29	0	%100
22	M22	Ý	-13.273	-13.273	Ŏ	%100 %100
23	M23	Y	-13.273	-13.273	0	%100 %100
24	M24	Y	-9.005	-9.005	0	%100 %100
25	M25	Y	-9.005	-9.005	0	%100 %100
26	M26	Y	-9.005	-9.005	0	%100 %100
27	M27	Y	-9.005	-9.005	0	%100 %100
28	M28	Y	-9.005	-9.005	0	%100 %100
29	M29	Ϋ́	-11.85	-11.85	0	%100 %100
30	M30	Y	-11.85	-11.85	0	%100 %100
31	M31	Ϋ́	-13.273	-13.273	0	%100 %100
32	M32	Y	-13.273	-13.273	0	%100 %100
33	M33	Y	-9.005	-9.005	0	%100 %100
34	M34	Y	-9.005	-9.005	0	%100 %100
35	M35	Y	-9.005	-9.005	0	%100
36	M36	Y	-9.005	-9.005	0	%100 %100
37	M37	Y	-11.85	-11.85	0	%100 %100
38	M38	Y	-11.85	-11.85	0	%100 %100
39	M39	Y	-11.85	-11.85	0	%100 %100
40	M49	Y	-11.85	-11.85	0	%100 %100
41	M50	Y	-11.85	-11.85	0	%100 %100
42	M51	Y	-11.85	-11.85	0	%100 %100
43	M61	Y	-9.005	-9.005	0	%100 %100
44	M62	Y	-9.005	-9.005	0	%100 %100
45	M63	Y	-9.005	-9.005	0	%100
46	M64	Y	-9.005	-9.005	0	%100 %100
47	M65	Y	-9.005	-9.005	0	%100 %100
48	M66	Y	-9.005	-9.005	0	%100 %100
49	M67	Y	-9.005	-9.005	0	%100 %100
50	M68	Y	-9.005	-9.005	0	%100 %100
51	M69	Y	-9.005	-9.005	0	%100 %100
52	M70	Y	-9.005	-9.005	0	%100 %100
53	M71	Y	-9.005	-9.005	0	%100 %100
54	M72	Y	-9.005	-9.005	0	%100 %100
55	M73	Y	-9.005	-9.005	0	%100 %100
56	M74	Y	-9.005	-9.005	0	%100 %100
57	M75	Y	-9.005	-9.005	0	%100 %100
58	MP1A	Y	-8.092	-8.092	0	%100 %100
59	MP2A	Y	-8.092	-8.092	0	%100
60	MP4A	Y	-8.092	-8.092	0	%100 %100
61	MP5A	Y	-8.092	-8.092	0	%100 %100
62	MPA	Y	-8.092	-8.092	0	%100 %100
63	MP6A	Y	-8.092	-8.092	0	%100 %100
64	MP1C	Y	-8.092	-8.092	0	%100 %100
65	MP1B	Y	-8.092	-8.092	0	%100 %100
66	MPC	Y	-8.092	-8.092	0	%100 %100
67	MP2C	Y	-8.092	-8.092	0	%100 %100
68	MP5C	Y	-8.092	-8.092	0	%100 %100
69	MP6C	V	-8.092	-8.092	0	%100 %100
บช	IVIFOC	1	-0.092	-0.092	U	70 100

Nov 23, 2021 5:47 PM Checked By: DX

RISA-3D Version 17.0.4

[R:\...\...\Mount Analysis\Rev 3\RISA\468927-VZW_MT_LO_H.r3d] Page 126

Company Designer : Maser Consulting

: NL

5:47 PM Job Number : 21781092A Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Distributed Loads (BLC 40 : Structure Di) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
70	MPB	Υ	-8.092	-8.092	0	%100
71	MPB2	Υ	-8.092	-8.092	0	%100
72	MP5B	Υ	-8.092	-8.092	0	%100
73	MP4C	Υ	-8.092	-8.092	0	%100
74	MP3C	Υ	-8.092	-8.092	0	%100
75	M146	Υ	-11.85	-11.85	0	%100
76	M147	Υ	-11.85	-11.85	0	%100
77	M154	Υ	-11.85	-11.85	0	%100
78	M155	Υ	-11.85	-11.85	0	%100
79	M162	Υ	-11.85	-11.85	0	%100
80	M163	Υ	-11.85	-11.85	0	%100
81	MP3A	Υ	-8.092	-8.092	0	%100
82	MP4B	Υ	-8.092	-8.092	0	%100
83	MP6B	Υ	-8.092	-8.092	0	%100
84	MP3B	Υ	-8.092	-8.092	0	%100
85	M163A	Υ	-8.092	-8.092	0	%100
86	M166	Υ	-8.092	-8.092	0	%100
87	M169A	Υ	-8.092	-8.092	0	%100
88	MP2B	Υ	-8.092	-8.092	0	%100
89	M173A	Υ	-8.092	-8.092	0	%100
90	M176	Υ	-8.092	-8.092	0	%100

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	-18.429	-18.429	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	-18.429	-18.429	0	%100
5	M3	X	0	0	0	%100
6	M3	Z	-10.648	-10.648	0	%100
7	M4	X	0	0	0	%100
8	M4	Z	-10.648	-10.648	0	%100
9	M5	X	0	0	0	%100
10	M5	Z	-10.672	-10.672	0	%100
11	M6	X	0	0	0	%100
12	M6	Z	-3.225	-3.225	0	%100
13	M7	X	0	0	0	%100
14	M7	Z	-3.225	-3.225	0	%100
15	M8	X	0	0	0	%100
16	M8	Z	-3.225	-3.225	0	%100
17	M9	X	0	0	0	%100
18	M9	Z	-3.225	-3.225	0	%100
19	M10	X	0	0	0	%100
20	M10	Z	-15.511	-15.511	0	%100
21	M11	X	0	0	0	%100
22	M11	Z	-15.511	-15.511	0	%100
23	M12	X	0	0	0	%100
24	M12	Z	-10.239	-10.239	0	%100
25	M13	X	0	0	0	%100
26	M13	Z	-10.239	-10.239	0	%100
27	M14	X	0	0	0	%100
28	M14	Z	-10.239	-10.239	0	%100
29	M15	X	0	0	0	%100
30	M15	Z	-10.088	-10.088	0	%100
31	M16	X	0	0	0	%100
32	M16	Z	-10.092	-10.092	0	%100

Nov 23, 2021

Model Name : Mount Analysis (Rev. 3)

Company Designer Job Number Nov 23, 2021 5:47 PM : NL 21781092A Checked By: DX

Member Distributed Loads (BLC 41: Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	
33	M17	X	0	0	0	%100
34	M17	Z	-10.239	-10.239	0	%100
35	M18	X	0	0	0	%100
36	M18	Z	-4.607	-4.607	0	%100
37	M19	X	0	0	0	%100
38	M19	Z	-4.607	-4.607	0	%100
39	M20	X	0	0	0	%100
40	M20	Z	-12.901	-12.901	0	%100
41	M21	X	0	0	0	%100
42	M21	Z	-12.901	-12.901	Ö	%100
43	M22	X	0	0	0	%100 %100
44	M22	Z	-15.511	-15.511	Ö	%100 %100
45	M23	X	0	0	0	%100 %100
46	M23	Ž	-15.511	-15.511	0	%100 %100
47	M24	X	0	0	0	%100 %100
		Ž	-10.239	-10.239		
48	M24				0	%100
49	M25	X	0	0	0	%100
50	M25	Z	-10.239	-10.239	0	%100
51	M26	X	0	0	0	%100
52	M26	Z	-10.088	-10.088	0	%100
53	M27	X	0	0	0	%100
54	M27	Z	-10.092	-10.092	0	%100
55	M28	X	0	0	0	%100
56	M28	Z	-10.239	-10.239	0	%100
57	M29	X	0	0	0	%100
58	M29	Z	-4.607	-4.607	0	%100
59	M30	X	0	0	0	%100
60	M30	Z	-4.607	-4.607	0	%100
61	M31	X	0	0	0	%100
62	M31	Z	Ö	0	Ö	%100
63	M32	X	0	0	0	%100
64	M32	Z	0	0	0	%100 %100
65	M33	X	0	0	0	%100 %100
66	M33	Z	-10.239	-10.239	0	%100 %100
67	M34	X	0	0	0	%100 %100
68	M34	Ž	-10.239	-10.239	0	%100 %100
69	M35					%100 %100
		X Z	0	0	0	
70	M35		-5.602	-5.602	0	%100
71	M36	X	0	0	0	%100
72	M36	Z	-5.572	-5.572	0	%100
73	M37	X	0	0	0	%100
74	M37	Z	-4.134	-4.134	0	%100
75	M38	X	0	0	0	%100
76	M38	Z	-16.535	-16.535	0	%100
77	M39	X	0	0	0	%100
78	M39	Z	-4.134	-4.134	0	%100
79	M49	X	0	0	0	%100
80	M49	Z	-4.134	-4.134	0	%100
81	M50	X	0	0	0	%100
82	M50	Z	-16.535	-16.535	0	%100
83	M51	X	0	0	0	%100
84	M51	Z	-4.134	-4.134	0	%100
85	M61	X	0	0	0	%100
86	M61	Z	-10.648	-10.648	0	%100 %100
87	M62	X	0	0	0	%100 %100
88	M62	Z	-10.648	-10.648	Ö	%100 %100
89	M63	X	0	0	0	%100 %100
	11100					70100

: NL

: 21781092A

Model Name : Mount Analysis (Rev. 3)

Member Distributed Loads (BLC 41: Structure Wo (0 Deg)) (Continued)

Nov 23, 2021 5:47 PM

Checked By: DX

	Member Label	Direction		. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
90	M63	Z	-10.672	-10.672	0	%100
91	M64	X	0	0	0	%100
92	M64	Z	-8.879	-8.879	0	%100
93	M65	X	0	0	0	%100
94	M65	Z	-8.88	-8.88	0	%100
95	M66	X	0	0	0	%100
96	M66	Z	-8.813	-8.813	0	%100
97	M67	X	0	0	0	%100
98	M67	Z	-8.879	-8.879	0	%100
99	M68	X	0	0	0	%100
100	M68	Z	-8.88	-8.88	Ö	%100
101	M69	X	0	0	0	%100 %100
102	M69	Z	-8.813	-8.813	0	%100 %100
103	M70	X	0.010	0	0	%100
104	M70	Z	-8.879	-8.879	0	%100 %100
105	M71	X	0.075	0	0	%100 %100
106	M71	Z	-8.88	-8.88	Ö	%100 %100
107	M72	X	0	0	0	%100 %100
108	M72	Z	-8.813	-8.813	0	%100 %100
109	M73	X	-0.013	0	0	%100 %100
110	M73	Z	-8.879	-8.879	0	%100 %100
111	M74	X	-0.079	-0.079	0	%100
112	M74	Z	-8.88	-8.88	0	%100 %100
113	M75	X	-0.00	0	0	%100 %100
114	M75	Z	-8.813	-8.813	0	%100 %100
115		X	-0.013	-0.013	0	
	MP1A	Z				%100
116	MP1A		-8.754	-8.754	0	%100
117	MP2A	X Z	0	0 754	0	%100
118	MP2A		-8.754	-8.754	0	%100
119	MP4A	X	0	0 754	0	%100
120	MP4A	Z	-8.754	-8.754	0	%100
121	MP5A	X	0	0 754	0	%100
122	MP5A	Z	-8.754	-8.754	0	%100
123	MPA	X	0	0	0	%100
124	MPA	Z	-8.754	-8.754	0	%100
125	MP6A	X	0	0	0	%100
126	MP6A	Z	-8.754	-8.754	0	%100
127	MP1C	X	0	0	0	%100
128	MP1C	Z	-8.754	-8.754	0	%100
129	MP1B	X	0 754	0 754	0	%100
130	MP1B	Z	-8.754	-8.754	0	%100
131	MPC	X	0 754	0	0	%100
132	MPC	Z	-8.754	-8.754	0	%100
133	MP2C	X	0	0	0	%100
134	MP2C	Z	-8.754	-8.754	0	%100
135	MP5C	X	0	0	0	%100
136	MP5C	Z	-8.754	-8.754	0	%100
137	MP6C	X	0	0	0	%100
138	MP6C	Z	-8.754	-8.754	0	%100
139	MPB	X	0	0	0	%100
140	MPB	Z	-8.754	-8.754	0	%100
141	MPB2	X	0	0	0	%100
142	MPB2	Z	-8.754	-8.754	0	%100
143	MP5B	X	0	0	0	%100
144	MP5B	Z	-8.754	-8.754	0	%100
145	MP4C	X	0	0	0	%100
146	MP4C	Z	-8.754	-8.754	0	%100

[R:\...\...\Mount Analysis\Rev 3\RISA\468927-VZW_MT_LO_H.r3d] Page 129 RISA-3D Version 17.0.4

Company Designer : NL

Job Number 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 41: Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
147	MP3C	X	0	0	0	%100
148	MP3C	Z	-8.754	-8.754	0	%100
149	M146	X	0	0	0	%100
150	M146	Z	-4.607	-4.607	0	%100
151	M147	X	0	0	0	%100
152	M147	Z	-4.607	-4.607	0	%100
153	M154	X	0	0	0	%100
154	M154	Z	-4.607	-4.607	0	%100
155	M155	X	0	0	0	%100
156	M155	Z	-4.607	-4.607	0	%100
157	M162	X	0	0	0	%100
158	M162	Z	-18.429	-18.429	0	%100
159	M163	X	0	0	0	%100
160	M163	Z	-18.429	-18.429	0	%100
161	MP3A	X	0	0	0	%100
162	MP3A	Z	-8.754	-8.754	0	%100
163	MP4B	X	0	0	0	%100
164	MP4B	Z	-8.754	-8.754	0	%100
165	MP6B	X	0	0	0	%100
166	MP6B	Z	-8.754	-8.754	0	%100
167	MP3B	X	0	0	0	%100
168	MP3B	Z	-8.754	-8.754	0	%100
169	M163A	X	0	0	0	%100
170	M163A	Z	-8.754	-8.754	0	%100
171	M166	X	0	0	0	%100
172	M166	Z	0	0	0	%100
173	M169A	X	0	0	0	%100
174	M169A	Z	0	0	0	%100
175	MP2B	X	0	0	0	%100
176	MP2B	Z	-8.754	-8.754	0	%100
177	M173A	X	0	0	0	%100
178	M173A	Z	-4.14	-4.14	0	%100
179	M176	X	0	0	0	%100
180	M176	Z	-4.14	-4.14	0	%100

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	X	6.911	6.911	0	%100
2	M1	Z	-11.97	-11.97	0	%100
3	M2	X	6.911	6.911	0	%100
4	M2	Z	-11.97	-11.97	0	%100
5	M3	X	5.029	5.029	0	%100
6	M3	Z	-8.711	-8.711	0	%100
7	M4	X	5.029	5.029	0	%100
8	M4	Z	-8.711	-8.711	0	%100
9	M5	X	5.026	5.026	0	%100
10	M5	Z	-8.706	-8.706	0	%100
11	M6	X	0	0	0	%100
12	M6	Z	0	0	0	%100
13	M7	X	0	0	0	%100
14	M7	Z	0	0	0	%100
15	M8	X	4.838	4.838	0	%100
16	M8	Z	-8.379	-8.379	0	%100
17	M9	X	4.838	4.838	0	%100
18	M9	Z	-8.379	-8.379	0	%100
19	M10	X	2.585	2.585	0	%100

: NL

: 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 42: Structure Wo (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
20	M10	Z	-4.478	-4.478	0	%100
21	M11	X	2.585	2.585	0	%100
22	M11	Z	-4.478	-4.478	0	%100
23	M12	X	5.119	5.119	0	%100
24	M12	Z	-8.867	-8.867	0	%100
25	M13	X	5.119	5.119	0	%100
26	M13	Z	-8.867	-8.867	0	%100
27	M14	X	5.119	5.119	0	%100
28	M14	Z	-8.867	-8.867	0	%100
29	M15	X	3.549	3.549	0	%100
30	M15	Z	-6.147	-6.147	0	%100
31	M16	X	3.539	3.539	0	%100
32	M16	Z	-6.13	-6.13	0	%100
33	M17	X	5.119	5.119	0	%100
34	M17	Z	-8.867	-8.867	0	%100
35	M18	X	6.911	6.911	0	%100
36	M18	Z	-11.97	-11.97	0	%100
37	M19	X	6.911	6.911	0	%100
38	M19	Z	-11.97	-11.97	0	%100
39	M20	X	4.838	4.838	0	%100
40	M20	Z	-8.379	-8.379	0	%100
41	M21	X	4.838	4.838	0	%100
42	M21	Z	-8.379	-8.379	0	%100
43	M22	X	10.341	10.341	0	%100
44	M22	Z	-17.911	-17.911	0	%100
45	M23	X	10.341	10.341	0	%100
46	M23	Z	-17.911	-17.911	0	%100
47	M24	X	5.119	5.119	0	%100
48	M24	Z	-8.867	-8.867	0	%100
49	M25	X	5.119	5.119	0	%100
50	M25	Z	-8.867	-8.867	0	%100 %100
51	M26	X	5.792	5.792	0	%100 %100
52	M26	Z	-10.032	-10.032	0	%100 %100
53	M27	X	5.799	5.799	0	%100 %100
54	M27	Z	-10.045	-10.045	0	%100 %100
55	M28	X	5.119	5.119	0	%100 %100
56	M28	Z	-8.867	-8.867	0	%100 %100
57	M29	X	0	0	0	%100 %100
58	M29	Z	0	0	0	%100 %100
59	M30	X	0	0	0	%100 %100
60	M30	Z	0	0	0	%100 %100
61	M31	X	2.585	2.585	0	%100 %100
62	M31	Z	-4.478	-4.478	0	%100 %100
63	M32	X	2.585	2.585	0	%100 %100
64	M32	Z	-4.478	-4.478	0	%100 %100
65	M33	X	5.119	5.119	0	%100 %100
66	M33	Z	-8.867	-8.867	0	%100 %100
67	M34	X	5.119	5.119	0	%100 %100
68	M34	Z	-8.867	-8.867	0	%100 %100
69	M35	X	3.549	3.549	0	%100 %100
70	M35	Z	-6.147	-6.147	0	%100 %100
71	M36	X	3.539	3.539	0	%100 %100
72	M36	Z	-6.13	-6.13	0	%100 %100
73	M37	X	6.201	6.201	0	%100 %100
74	M37	Ž	-10.74	-10.74	0	%100 %100
75	M38	X	6.201	6.201	0	%100 %100
76	M38	Z	-10.74	-10.74	0	%100 %100
70	IVIOU		-10.74	-10.74	U	70 100

: NL

: 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 42: Structure Wo (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
77	M39	X	0	0	0	%100
78	M39	Z	0	0	0	%100
79	M49	X	6.201	6.201	0	%100
80	M49	Z	-10.74	-10.74	0	%100
81	M50	X	6.201	6.201	0	%100
82	M50	Z	-10.74	-10.74	0	%100
83	M51	X	0	0	0	%100
84	M51	Z	0	0	0	%100
85	M61	X	5.029	5.029	0	%100
86	M61	Z	-8.711	-8.711	0	%100
87	M62	X	5.029	5.029	0	%100
88	M62	Z	-8.711	-8.711	0	%100
89	M63	X	5.026	5.026	0	%100
90	M63	Z	-8.706	-8.706	0	%100
91	M64	X	5.029	5.029	0	%100
92	M64	Z	-8.711	-8.711	0	%100
93	M65	X	5.029	5.029	0	%100 %100
94	M65	Z	-8.711	-8.711	0	%100 %100
95	M66	X	5.026	5.026	0	%100 %100
96	M66	Z	-8.706	-8.706	0	%100 %100
97	M67	X	5.029	5.029	0	%100 %100
98	M67	Z	-8.711	-8.711	0	%100 %100
99	M68	X	5.029	5.029	0	%100 %100
100	M68	Z	-8.711	-8.711	0	%100 %100
101	M69	X	5.026	5.026	0	%100
102	M69	Z	-8.706	-8.706	0	%100
103	M70	X	4.145	4.145	0	%100
104	M70	Z	-7.179	-7.179	0	%100
105	<u>M71</u>	X	4.145	4.145	0	%100
106	M71	Z	-7.179	-7.179	0	%100
107	M72	X	4.097	4.097	0	%100
108	M72	Z	-7.096	-7.096	0	%100
109	M73	X	4.145	4.145	0	%100
110	M73	Z	-7.179	-7.179	0	%100
111	M74	X	4.145	4.145	0	%100
112	M74	Z	-7.179	-7.179	0	%100
113	M75	X	4.097	4.097	0	%100
114	M75	Z	-7.096	-7.096	0	%100
115	MP1A	X	4.377	4.377	0	%100
116	MP1A	Z	-7.581	-7.581	0	%100
117	MP2A	X	4.377	4.377	0	%100
118	MP2A	Z	-7.581	-7.581	0	%100
119	MP4A	X	4.377	4.377	0	%100
120	MP4A	Z	-7.581	-7.581	0	%100
121	MP5A	X	4.377	4.377	0	%100
122	MP5A	Z	-7.581	-7.581	0	%100
123	MPA	X	4.377	4.377	0	%100
124	MPA	Z	-7.581	-7.581	0	%100
125	MP6A	X	4.377	4.377	0	%100
126	MP6A	X Z	-7.581	-7.581	0	%100
127	MP1C	X	4.377	4.377	0	%100 %100
128	MP1C	Z	-7.581	-7.581	0	%100 %100
129	MP1B	X	4.377	4.377	0	%100 %100
130	MP1B	Z	-7.581	-7.581	0	%100 %100
131	MPC	X	4.377	4.377	0	%100 %100
132	MPC	Z	-7.581	-7.581	0	%100 %100
133	MP2C		4.377			%100 %100
133	IVIPZU	X	4.311	4.377	0	70 IUU

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 42: Structure Wo (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
134	MP2C	Z	-7.581	-7.581	0	%100
135	MP5C	X	4.377	4.377	0	%100
136	MP5C	Z	-7.581	-7.581	0	%100
137	MP6C	X	4.377	4.377	0	%100
138	MP6C	Z	-7.581	-7.581	0	%100
139	MPB	X	4.377	4.377	0	%100
140	MPB	Z	-7.581	-7.581	0	%100
141	MPB2	X	4.377	4.377	0	%100
142	MPB2	Z	-7.581	-7.581	0	%100
143	MP5B	X	4.377	4.377	0	%100
144	MP5B	Z	-7.581	-7.581	0	%100
145	MP4C	X	4.377	4.377	0	%100
146	MP4C	Z	-7.581	-7.581	0	%100
147	MP3C	X	4.377	4.377	0	%100
148	MP3C	Z	-7.581	-7.581	Ö	%100
149	M146	X	6.911	6.911	0	%100
150	M146	Z	-11.97	-11.97	0	%100
151	M147	X	6.911	6.911	0	%100
152	M147	Z	-11.97	-11.97	0	%100
153	M154	X	0	0	Ō	%100
154	M154	Z	0	Ö	Ö	%100
155	M155	X	0	0	0	%100
156	M155	Z	0	0	Ō	%100
157	M162	X	6.911	6.911	0	%100
158	M162	Z	-11.97	-11.97	0	%100
159	M163	X	6.911	6.911	0	%100
160	M163	Z	-11.97	-11.97	0	%100
161	MP3A	X	4.377	4.377	0	%100
162	MP3A	Z	-7.581	-7.581	0	%100
163	MP4B	X	4.377	4.377	0	%100
164	MP4B	Z	-7.581	-7.581	0	%100
165	MP6B	X	4.377	4.377	0	%100
166	MP6B	Z	-7.581	-7.581	0	%100
167	MP3B	X	4.377	4.377	0	%100
168	MP3B	Z	-7.581	-7.581	0	%100
169	M163A	X	4.377	4.377	0	%100
170	M163A	Z	-7.581	-7.581	0	%100
171	M166	X	.69	.69	0	%100
172	M166	Z	-1.195	-1.195	0	%100
173	M169A	X	.69	.69	0	%100
174	M169A	Z	-1.195	-1.195	Ō	%100
175	MP2B	X	4.377	4.377	0	%100
176	MP2B	Z	-7.581	-7.581	0	%100 %100
177	M173A	X	2.76	2.76	0	%100
178	M173A	Z	-4.781	-4.781	0	%100 %100
179	M176	X	2.76	2.76	0	%100 %100
180	M176	Z	-4.781	-4.781	Ō	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	3.99	3.99	0	%100
2	M1	Z	-2.304	-2.304	0	%100
3	M2	X	3.99	3.99	0	%100
4	M2	Z	-2.304	-2.304	0	%100
5	M3	X	7.689	7.689	0	%100
6	M3	Z	-4.439	-4.439	0	%100

Company Designer Job Number Nov 23, 2021 5:47 PM : NL : 21781092A Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Distributed Loads (BLC 43: Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
7	M4	X	7.69	7.69	0	%100
8	M4	Z	-4.44	-4.44	0	%100
9	M5	X	7.633	7.633	0	%100
10	M5	Z	-4.407	-4.407	0	%100
11	M6	X	2.793	2.793	0	%100
12	M6	Z	-1.613	-1.613	0	%100
13	M7	X	2.793	2.793	0	%100
14	M7	Z	-1.613	-1.613	0	%100
15	M8	X	11.172	11.172	0	%100
16	M8	Z	-6.45	-6.45	0	%100
17	M9	X	11.172	11.172	0	%100
18	M9	Z	-6.45	-6.45	0	%100
19	M10	X	0	0	0	%100
20	M10	Z	0	0	0	%100
21	M11	X	0	0	0	%100
22	M11	Z	0	0	0	%100
23	M12	X	8.867	8.867	0	%100
24	M12	Z	-5.119	-5.119	0	%100
25	M13	X	8.867	8.867	0	%100
26	M13	Z	-5.119	-5.119	0	%100
27	M14	X	8.867	8.867	0	%100
28	M14	Z	-5.119	-5.119	0	%100
29	M15	X	4.852	4.852	0	%100
30	M15	Z	-2.801	-2.801	0	%100
31	M16	X	4.825	4.825	0	%100
32	M16	Z	-2.786	-2.786	0	%100
33	M17	X	8.867	8.867	0	%100
34	M17	Z	-5.119	-5.119	0	%100
35	M18	X	15.96	15.96	0	%100
36	M18	Z	-9.215	-9.215	0	%100
37	M19	X	15.96	15.96	0	%100
38	M19	Z	-9.215	-9.215	0	%100
39	M20	X	2.793	2.793	0	%100
40	M20	Z	-1.613	-1.613	0	%100
41	M21	X	2.793	2.793	0	%100
42	M21	Z	-1.613	-1.613	0	%100
43	M22	X	13.433	13.433	0	%100
44	M22	Z	-7.756	-7.756	0	%100
45	M23	X	13.433	13.433	0	%100
46	M23	Z	-7.756	-7.756	0	%100
47	M24	X	8.867	8.867	0	%100
48	M24	Z	-5.119	-5.119	0	%100
49	M25	X	8.867	8.867	0	%100
50	M25	Z	-5.119	-5.119	0	%100
51	M26	X	8.737	8.737	0	%100
52	M26	Z	-5.044	-5.044	0	%100
53	M27	X	8.74	8.74	0	%100
54	M27	Z	-5.046	-5.046	0	%100
55	M28	X	8.867	8.867	0	%100
56	M28	Z	-5.119	-5.119	0	%100
57	M29	X	3.99	3.99	0	%100
58	M29	Z	-2.304	-2.304	0	%100
59	M30	X	3.99	3.99	0	%100
60	M30	Z	-2.304	-2.304	0	%100
61	M31	X	13.433	13.433	0	%100
62	M31	Z	-7.756	-7.756	0	%100
63	M32	X	13.433	13.433	0	%100

RISA-3D Version 17.0.4

[R:\...\...\Mount Analysis\Rev 3\RISA\468927-VZW_MT_LO_H.r3d] Page 134

Company Designer Job Number : NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 43: Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
64	M32	Z	-7.756	-7.756	0	%100
65	M33	X	8.867	8.867	0	%100
66	M33	Z	-5.119	-5.119	0	%100
67	M34	X	8.867	8.867	0	%100
68	M34	Z	-5.119	-5.119	0	%100
69	M35	X	8.737	8.737	0	%100
70	M35	Z	-5.044	-5.044	0	%100
71	M36	X	8.74	8.74	0	%100
72	M36	Z	-5.046	-5.046	0	%100
73	M37	X	14.32	14.32	0	%100
74	M37	Z	-8.268	-8.268	0	%100
75	M38	X	3.58	3.58	0	%100
76	M38	Z	-2.067	-2.067	0	%100
77	M39	X	3.58	3.58	0	%100
78	M39	Z	-2.067	-2.067	0	%100
79	M49	X	14.32	14.32	0	%100
80	M49	Z	-8.268	-8.268	0	%100
81	M50	X	3.58	3.58	0	%100
82	M50	Z	-2.067	-2.067	0	%100
83	M51	X	3.58	3.58	0	%100
84	M51	Z	-2.067	-2.067	0	%100
85	M61	X	7.689	7.689	0	%100
86	M61	Z	-4.439	-4.439	0	%100
87	M62	X	7.69	7.69	0	%100
88	M62	Z	-4.44	-4.44	0	%100
89	M63	X	7.633	7.633	0	%100
90	M63	Z	-4.407	-4.407	Ö	%100
91	M64	X	9.222	9.222	0	%100
92	M64	Z	-5.324	-5.324	Ö	%100
93	M65	X	9.221	9.221	0	%100
94	M65	Z	-5.324	-5.324	Ů	%100 %100
95	M66	X	9.243	9.243	0	%100
96	M66	Z	-5.336	-5.336	0	%100
97	M67	X	9.222	9.222	0	%100
98	M67	Z	-5.324	-5.324	0	%100 %100
99	M68	X	9.221	9.221	0	%100 %100
100	M68	Z	-5.324	-5.324	0	%100 %100
101	M69	X	9.243	9.243	0	%100 %100
102	M69	Z	-5.336	-5.336	0	%100 %100
103	M70	X	7.689	7.689	0	%100 %100
104	M70	Z	-4.439	-4.439	0	%100 %100
105	M71	X	7.69	7.69	0	%100 %100
106	M71	Z	-4.44	-4.44	0	%100 %100
107	M72	X	7.633	7.633	0	%100 %100
108	M72	Z	-4.407	-4.407	0	%100 %100
109	M73	X	7.689	7.689	0	%100 %100
110	M73	Z	-4.439	-4.439	0	%100 %100
111	M74	X	7.69	7.69	0	%100 %100
112	M74	Z	-4.44	-4.44	0	%100 %100
113	M75	X	7.633	7.633	0	%100 %100
114	M75	Z	-4.407	-4.407	0	%100 %100
115	MP1A		7.581	7.581		%100 %100
		X Z	-4.377	-4.377	0	%100 %100
116	MP1A MP2A					
117	MP2A	X	7.581	7.581	0	%100 %100
118	MP2A	Z	-4.377 7.591	-4.377	0	%100 %100
119	MP4A	X	7.581	7.581	0	%100 %100
120	MP4A	Z	-4.377	-4.377	0	%100

Company Designer Job Number Nov 23, 2021 5:47 PM Checked By: DX : NL : 21781092A Model Name : Mount Analysis (Rev. 3)

Member Distributed Loads (BLC 43: Structure Wo (60 Deg)) (Continued)

121	MP5A MP5A	X	7.581	7 504	0	0/400
	MD5A		7.301	7.581	0	%100
122	IVII JA	Z	-4.377	-4.377	0	%100
123	MPA	X	7.581	7.581	0	%100
124	MPA	Z	-4.377	-4.377	0	%100
125	MP6A	X	7.581	7.581	0	%100
126	MP6A	Z	-4.377	-4.377	0	%100
127	MP1C	X	7.581	7.581	0	%100
128	MP1C	Z	-4.377	-4.377	0	%100
129	MP1B	X	7.581	7.581	0	%100
130	MP1B	Ž	-4.377	-4.377	Ö	%100
131	MPC	X	7.581	7.581	0	%100
132	MPC	Z	-4.377	-4.377	0	%100
133	MP2C	X	7.581	7.581	0	%100 %100
134	MP2C	Z	-4.377	-4.377	0	%100 %100
135	MP5C	X	7.581	7.581	0	%100 %100
136	MP5C	Z	-4.377	-4.377	0	%100 %100
137	MP6C	X	7.581	7.581	0	%100 %100
138	MP6C	Z	-4.377	-4.377	0	%100 %100
139	MPB	X	7.581	7.581	0	%100
140	MPB	Z	-4.377	-4.377	0	%100
141	MPB2	X	7.581	7.581	0	%100
142	MPB2	Z	-4.377	-4.377	0	%100
143	MP5B	X	7.581	7.581	0	%100
144	MP5B	Z	-4.377	-4.377	0	%100
145	MP4C	X	7.581	7.581	0	%100
146	MP4C	Z	-4.377	-4.377	0	%100
147	MP3C	X	7.581	7.581	0	%100
148	MP3C	Z	-4.377	-4.377	0	%100
149	M146	X	15.96	15.96	0	%100
150	M146	Z	-9.215	-9.215	0	%100
151	M147	X	15.96	15.96	0	%100
152	M147	Z	-9.215	-9.215	0	%100
153	M154	X	3.99	3.99	0	%100
154	M154	Z	-2.304	-2.304	0	%100
155	M155	X	3.99	3.99	0	%100
156	M155	Z	-2.304	-2.304	0	%100
157	M162	X	3.99	3.99	0	%100 %100
158	M162	Z	-2.304	-2.304	0	%100 %100
159	M163	X	3.99	3.99	0	%100 %100
160	M163	^ 	-2.304	-2.304	0	%100 %100
					0	
161 162	MP3A MP3A	Z Z	7.581 -4.377	7.581 -4.377	0	%100 %100
163		X	7.581	7.581		%100 %100
	MP4B	Z			0	
164	MP4B		-4.377	-4.377	0	%100
165	MP6B	X	7.581	7.581	0	%100
166	MP6B	Z	-4.377	-4.377	0	%100
167	MP3B	X	7.581	7.581	0	%100
168	MP3B	Z	-4.377	-4.377	0	%100
169	M163A	X	7.581	7.581	0	%100
170	M163A	Z	-4.377	-4.377	0	%100
171	M166	X	3.586	3.586	0	%100
172	M166	Z	-2.07	-2.07	0	%100
173	M169A	X	3.586	3.586	0	%100
174	M169A	Z	-2.07	-2.07	0	%100
175	MP2B	X	7.581	7.581	0	%100
176	MP2B	Z	-4.377	-4.377	0	%100
177	M173A	X	3.586	3.586	0	%100

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 43: Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
178	M173A	Z	-2.07	-2.07	0	%100
179	M176	Χ	3.586	3.586	0	%100
180	M176	Z	-2.07	-2.07	0	%100

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M3	X	8.289	8.289	0	%100
6	M3	Z	0	0	0	%100
7	M4	X	8.29	8.29	0	%100
8	M4	Z	0	0	0	%100
9	M5	X	8.194	8.194	0	%100
10	M5	Z	0	0	0	%100
11	M6	X	9.675	9.675	0	%100
12	M6	Z	0	0	0	%100
13	M7	X	9.675	9.675	0	%100
14	M7	Z	0	0	0	%100
15	M8	X	9.675	9.675	0	%100
16	M8	Z	0	0	0	%100
17	M9	X	9.675	9.675	0	%100
18	M9	Z	0	0	0	%100
19	M10	X	5.17	5.17	0	%100
20	M10	Z	0	0	0	%100
21	M11	X	5.17	5.17	0	%100
22	M11	Z	0	0	0	%100
23	M12	X	10.239	10.239	0	%100
24	M12	Z	0	0	0	%100
25	M13	X	10.239	10.239	0	%100
26	M13	Z	0	0	0	%100
27	M14	X	10.239	10.239	0	%100
28	M14	Z	0	0	0	%100
29	M15	X	7.097	7.097	0	%100
30	M15	Z	0	0	0	%100
31	M16	X	7.079	7.079	0	%100
32	M16	Z	0	0	0	%100
33	M17	X	10.239	10.239	0	%100
34	M17	Z	0	0	0	%100
35	M18	X	13.822	13.822	0	%100
36	M18	Z	0	0	0	%100
37	M19	X	13.822	13.822	0	%100
38	M19	Z	0	0	0	%100
39	M20	X	0	0	0	%100
40	M20	Z	0	0	0	%100
41	M21	X	0	0	0	%100
42	M21	Z	0	0	0	%100
43	M22	X	5.17	5.17	0	%100
44	M22	Z	0	0	0	%100
45	M23	X	5.17	5.17	0	%100
46	M23	Z	0	0	0	%100
47	M24	X	10.239	10.239	0	%100
48	M24	Z	0	0	0	%100
49	M25	X	10.239	10.239	0	%100
50	M25	Z	0	0	0	%100

Company Designer Job Number : NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 44: Structure Wo (90 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F	.Start Location[ft,%]	
51	M26	X	7.097	7.097	0	%100
52	M26	Z	0	0	0	%100
53	M27	X	7.079	7.079	0	%100
54	M27	Z	0	0	0	%100
55	M28	X	10.239	10.239	0	%100
56	M28	Z	0	0	0	%100
57	M29	X	13.822	13.822	0	%100
58	M29	Ž	0	0	Ö	%100
59	M30	X	13.822	13.822	0	%100
60	M30	Z	0	0	Ö	%100 %100
61	M31	X	20.682	20.682	0	%100
62	M31	Z	0	0	Ö	%100 %100
63	M32	X	20.682	20.682	0	%100 %100
64	M32	Ž	0	0	0	%100 %100
65	M33	X	10.239	10.239	0	%100 %100
		Ž				
66	M33		0	0	0	%100
67	M34	X	10.239	10.239	0	%100
68	M34	Z	0	0	0	%100
69	M35	X	11.584	11.584	0	%100
70	M35	Z	0	0	0	%100
71	M36	X	11.599	11.599	0	%100
72	M36	Z	0	0	0	%100
73	M37	X	12.401	12.401	0	%100
74	M37	Z	0	0	0	%100
75	M38	X	0	0	0	%100
76	M38	Z	0	0	0	%100
77	M39	X	12.401	12.401	0	%100
78	M39	Z	0	0	0	%100
79	M49	X	12.401	12.401	0	%100
80	M49	Z	0	0	0	%100
81	M50	X	0	0	0	%100
82	M50	Z	0	0	0	%100
83	M51	X	12.401	12.401	0	%100
84	M51	Z	0	0	0	%100
85	M61	X	8.289	8.289	0	%100
86	M61	Ž	0	0	0	%100
87	M62	X	8.29	8.29	0	%100 %100
88	M62	Z	0	0	0	%100 %100
89	M63	X	8.194	8.194	0	%100
90	M63	Z	0.194	0.194	0	%100 %100
91	M64	X	10.058	10.058	0	%100 %100
92	M64	Z	0	0	0	%100 %100
93	M65	X	10.059	10.059	0	%100 %100
94	M65	Z	0	0	0	%100 %100
			-	-		
95	M66	X	10.053	10.053	0	%100 %100
96	M66	Z	0	0	0	%100
97	M67	X	10.058	10.058	0	%100
98	M67	Z	0	0	0	%100
99	M68	X	10.059	10.059	0	%100
100	M68	Z	0	0	0	%100
101	M69	X	10.053	10.053	0	%100
102	M69	Z	0	0	0	%100
103	M70	X	10.058	10.058	0	%100
104	M70	Z	0	0	0	%100
105	M71	X	10.059	10.059	0	%100
106	M71	Z	0	0	0	%100
107	M72	X	10.053	10.053	0	%100

: Maser Consulting : NL : 21781092A Company Designer

Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 44: Structure Wo (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
108	M72	Z	0	0	0	%100
109	M73	X	10.058	10.058	0	%100
110	M73	Z	0	0	0	%100
111	M74	X	10.059	10.059	0	%100
112	M74	Z	0	0	0	%100
113	M75	X	10.053	10.053	0	%100
114	M75	Z	0	0	0	%100
115	MP1A	X	8.754	8.754	0	%100
116	MP1A	Z	0	0	0	%100
117	MP2A	X	8.754	8.754	0	%100
118	MP2A	Z	0	0	0	%100
119	MP4A	X	8.754	8.754	0	%100
120	MP4A	Z	0	0	0	%100
121	MP5A	X	8.754	8.754	0	%100
122	MP5A	Z	0	0	0	%100
123	MPA	X	8.754	8.754	0	%100
124	MPA	Z	0	0	0	%100
125	MP6A	X	8.754	8.754	0	%100
126	MP6A	Z	0.704	0	Ö	%100 %100
127	MP1C	X	8.754	8.754	0	%100
128	MP1C	Z	0.704	0.704	0	%100 %100
129	MP1B	X	8.754	8.754	0	%100 %100
130	MP1B	Z	0.734	0.734	0	%100 %100
131	MPC	X	8.754	8.754	0	%100 %100
132	MPC	Z	0.734	0.734	0	%100 %100
133	MP2C	X	8.754	8.754	0	%100 %100
134	MP2C	Ž	0.734	0.754	0	%100 %100
135	MP5C		8.754	8.754	·	
		X Z			0	%100 %100
136	MP5C		0 754	0 754	0	%100 %100
137	MP6C	X Z	8.754	8.754	0	%100 %100
138	MP6C		0 754	0 754	·	%100 %100
139	MPB MPB	X	8.754	8.754	0	%100
140	MPB	Z	0 754	0 754	0	%100
141	MPB2	X	8.754	8.754	0	%100
142	MPB2	Z	0	0	0	%100
143	MP5B	X	8.754	8.754	0	%100
144	MP5B	Z	0	0	0	%100
145	MP4C	X	8.754	8.754	0	%100
146	MP4C	Z	0	0	0	%100
147	MP3C	X	8.754	8.754	0	%100
148	MP3C	Z	0	0	0	%100
149	M146	X	13.822	13.822	0	%100
150	M146	Z	0	0	0	%100
151	M147	X	13.822	13.822	0	%100
152	M147	Z	0	0	0	%100
153	M154	X	13.822	13.822	0	%100
154	M154	Z	0	0	0	%100
155	M155	X	13.822	13.822	0	%100
156	M155	Z	0	0	0	%100
157	M162	X	0	0	0	%100
158	M162	Z	0	0	0	%100
159	M163	X	0	0	0	%100
160	M163	Z	0	0	0	%100
161	MP3A	X	8.754	8.754	0	%100
162	MP3A	Z	0	0	0	%100
163	MP4B	X	8.754	8.754	0	%100
164	MP4B	Z	0	0	0	%100
		<u> </u>	<u> </u>	· •		

: Maser Consulting Company

Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 44: Structure Wo (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
165	MP6B	X	8.754	8.754	0	%100
166	MP6B	Z	0	0	0	%100
167	MP3B	X	8.754	8.754	0	%100
168	MP3B	Z	0	0	0	%100
169	M163A	X	8.754	8.754	0	%100
170	M163A	Z	0	0	0	%100
171	M166	X	5.52	5.52	0	%100
172	M166	Z	0	0	0	%100
173	M169A	X	5.52	5.52	0	%100
174	M169A	Z	0	0	0	%100
175	MP2B	X	8.754	8.754	0	%100
176	MP2B	Z	0	0	0	%100
177	M173A	X	1.38	1.38	0	%100
178	M173A	Z	0	0	0	%100
179	M176	X	1.38	1.38	0	%100
180	M176	Z	0	0	0	%100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	X	3.99	3.99	0	%100
2	M1	Z	2.304	2.304	0	%100
3	M2	X	3.99	3.99	0	%100
4	M2	Z	2.304	2.304	0	%100
5	M3	X	7.689	7.689	0	%100
6	M3	Z	4.439	4.439	0	%100
7	M4	X	7.69	7.69	0	%100
8	M4	Z	4.44	4.44	0	%100
9	M5	X	7.633	7.633	0	%100
10	M5	Z	4.407	4.407	0	%100
11	M6	X	11.172	11.172	0	%100
12	M6	Z	6.45	6.45	0	%100
13	M7	X	11.172	11.172	0	%100
14	M7	Z	6.45	6.45	0	%100
15	M8	X	2.793	2.793	0	%100
16	M8	Z	1.613	1.613	0	%100
17	M9	X	2.793	2.793	0	%100
18	M9	Z	1.613	1.613	0	%100
19	M10	X	13.433	13.433	0	%100
20	M10	Z	7.756	7.756	0	%100
21	M11	X	13.433	13.433	0	%100
22	M11	Z	7.756	7.756	0	%100
23	M12	X	8.867	8.867	0	%100
24	M12	Z	5.119	5.119	0	%100
25	M13	X	8.867	8.867	0	%100
26	M13	Z	5.119	5.119	0	%100
27	M14	X	8.867	8.867	0	%100
28	M14	Z	5.119	5.119	0	%100
29	M15	X	8.737	8.737	0	%100
30	M15	Z	5.044	5.044	0	%100
31	M16	X	8.74	8.74	0	%100
32	M16	Z	5.046	5.046	0	%100
33	M17	X	8.867	8.867	0	%100
34	M17	Z	5.119	5.119	0	%100
35	M18	X	3.99	3.99	0	%100
36	M18	Z	2.304	2.304	0	%100
37	M19	X	3.99	3.99	0	%100

: NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Page 141

Member Distributed Loads (BLC 45: Structure Wo (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	. End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
38	M19	Z	2.304	2.304	0	%100
39	M20	X	2.793	2.793	0	%100
40	M20	Z	1.613	1.613	0	%100
41	M21	X	2.793	2.793	0	%100
42	M21	Z	1.613	1.613	0	%100
43	M22	X	0	0	0	%100
44	M22	Z	0	0	0	%100
45	M23	X	0	0	0	%100
46	M23	Z	0	0	Ö	%100 %100
47	M24	X	8.867	8.867	0	%100 %100
48	M24	Z	5.119	5.119	Ö	%100 %100
49	M25	X	8.867	8.867	0	%100 %100
50	M25	Z	5.119	5.119	0	%100 %100
51	M26	X	4.852	4.852	0	%100 %100
52	M26	Ž	2.801	2.801	0	%100 %100
53	M27	X	4.825	4.825	0	%100 %100
54	M27	Z	2.786	2.786	0	%100 %100
55	M28	X	8.867	8.867	0	%100 %100
56	M28	Z	5.119	5.119	0	
						%100 %100
57	M29	X	15.96	15.96	0	%100 %100
58	M29	Z	9.215	9.215	0	%100
59	M30	X	15.96	15.96	0	%100
60	M30	Z	9.215	9.215	0	%100
61	M31	X Z	13.433	13.433	0	%100
62	M31		7.756	7.756	0	%100
63	M32	X	13.433	13.433	0	%100
64	M32	Z	7.756	7.756	0	%100
65	M33	X	8.867	8.867	0	%100
66	M33	Z	5.119	5.119	0	%100
67	M34	X	8.867	8.867	0	%100
68	M34	Z	5.119	5.119	0	%100
69	M35	X	8.737	8.737	0	%100
70	M35	Z	5.044	5.044	0	%100
71	M36	X	8.74	8.74	0	%100
72	M36	Z	5.046	5.046	0	%100
73	M37	X	3.58	3.58	0	%100
74	M37	Z	2.067	2.067	0	%100
75	M38	X	3.58	3.58	0	%100
76	M38	Z	2.067	2.067	0	%100
77	M39	X	14.32	14.32	0	%100
78	M39	Z	8.268	8.268	0	%100
79	M49	X	3.58	3.58	0	%100
80	M49	Z	2.067	2.067	0	%100
81	M50	X	3.58	3.58	0	%100
82	M50	Z	2.067	2.067	0	%100
83	M51	X	14.32	14.32	0	%100
84	M51	Z	8.268	8.268	0	%100 %100
85	M61	X	7.689	7.689	0	%100
86	M61	Z	4.439	4.439	Ö	%100 %100
87	M62	X	7.69	7.69	0	%100 %100
88	M62	Z	4.44	4.44	0	%100 %100
89	M63	X	7.633	7.633	0	%100 %100
90	M63	Z	4.407	4.407	0	%100 %100
91	M64	X	7.689	7.689	0	%100 %100
92	N64	Z	4.439	4.439	0	%100 %100
93	M65	X	7.69	7.69		%100 %100
93		Z			0	
94	M65		4.44	4.44	0	%100

Company Designer

: Maser Consulting : NL : 21781092A 5:47 PM Job Number Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Distributed Loads (BLC 45: Structure Wo (120 Deg)) (Continued)

96 M86 X 7.633 7.633 0 %100 97 M87 X 7.689 7.689 0 %100 98 M86 X 7.69 7.69 0 %100 99 M88 X 7.69 7.69 0 %100 100 M88 Z 4.439 4.439 0 %100 101 M89 X 7.633 7.633 0 %100 102 M89 X 7.633 7.633 0 %100 103 M70 X 9.222 9.222 0 %100 104 M70 Z 5.324 5.324 0 %100 105 M71 X 9.221 9.221 0 %100 106 M71 Z 5.324 5.324 0 %100 107 M72 X 9.243 9.243 0 %100 108 M72 X 9.243 9.243 0 %100 109 M73 X 9.222 9.222 0 %100 110 M74 X 9.221 9.221 0 %100 110 M75 Z 5.336 5.336 0 %100 111 M74 X 9.221 9.221 0 %100 111 M74 X 9.234 5.324 0 %100 111 M74 X 9.234 5.324 0 %100 111 M74 X 9.243 9.243 0 %100 111 M75 X 9.243 9.243 0 %100 112 M74 Z 7.581 7.581 0 %100 113 M75 X 9.243 9.243 0 %100 114 M75 X 9.243 9.243 0 %100 115 MP1A X 7.581 7.581 0 %100 116 MP1A X 7.581 7.581 0 %100 117 MP2A X 7.581 7.581 0 %100 118 MP2A X 7.581 7.581 0 %100 119 MP4A X 7.581 7.581 0 %100 119 MP4A X 7.581 7.581 0 %100 120 MP4B Z 7.581 7.581 0 %100 121 MP5A X 7.581 7.581 0 %100 122 MP5A X 7.581 7.581 0 %100 133 MP6C X 7.581 7.581 0 %100 134 MP2C X 4.377 4.377 0 %100 135 MP6C X 7.581 7.581 0 %100 136 MP8B X 7.581 7.581 0 %100 137 M79B X 7.581 7.581 0 %100 138 MP6C X 7.581 7.581 0 %100 140 MP8 X 7.581 7.581 0 %100 141 MP8B X 7.581 7.581 0 %100 142 MP6C X 7.581 7.581 0 %100 143 MP6B X 7.581 7.581 0 %100 144 MP8B X 7.581 7.581 0 %100 145 MP6C X 7.581 7.581 0 %100 146 MP6C X 7.581 7.581 0 %100 147 MP8C X 7.581 7.581 0 %100 148 MP8B X 7.581 7.581 0 %100 149 M146 X 3.99 3.99 0 %100 14		Member Label	Direction		End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
97			X			-	
98 M67 Z 4.439 4.439 0 %100 100 M68 X 7.69 7.69 0 %100 101 M68 Z 4.44 4.44 0 %100 102 M69 X 7.633 7.633 0 %100 102 M69 Z 4.407 4.407 0 %100 103 M70 X 9.222 9.222 0 %100 104 M70 Z 5.324 5.324 0 %100 105 M71 X 9.221 9.221 0 %100 106 M71 Z 5.324 5.324 0 %100 107 M72 X 9.243 9.243 0 %100 108 M72 Z 5.336 5.336 0 %100 108 M72 Z 5.336 5.336 0 %100 109 M73 X 9.222 9.22 0 %100 110 M73 Z 5.324 5.324 0 %100 110 M73 Z 5.324 5.324 0 %100 111 M74 X 9.221 9.241 0 %100 112 M74 X 9.221 9.243 0 %100 113 M75 X 9.222 9.22 0 %100 114 M75 Z 5.324 5.324 0 %100 115 M74 Z 7.532 0 %100 116 M74 X 9.221 9.221 0 %100 117 M74 X 9.221 9.221 0 %100 118 M75 X 9.243 9.243 0 %100 119 M73 X 9.222 9.221 0 %100 111 M74 X 9.221 9.221 0 %100 112 M74 Z 5.324 5.324 0 %100 113 M75 X 9.243 9.243 0 %100 114 M75 Z 5.326 5.336 0 %100 115 MP1A X 7.581 7.581 0 %100 116 MP1A Z 4.377 7.581 0 %100 117 MP2A X 7.581 7.581 0 %100 118 MP2A Z 4.377 4.377 0 %100 118 MP2A Z 4.377 4.377 0 %100 119 MP4A X 7.581 7.581 0 %100 120 MP4A Z 4.377 4.377 0 %100 121 MP5A X 7.581 7.581 0 %100 122 MP4A Z 4.377 4.377 0 %100 123 MP4A X 7.581 7.581 0 %100 124 MP5A X 7.581 7.581 0 %100 125 MP5A X 7.581 7.581 0 %100 126 MP5A X 7.581 7.581 0 %100 127 MP1C X 7.581 7.581 0 %100 128 MP6A X 7.581 7.581 0 %100 129 MP4B X 7.581 7.581 0 %100 120 MP5A X 7.581 7.581 0 %100 121 MP5A X 7.581 7.581 0 %100 122 MP5A X 7.581 7.581 0 %100 123 MP5 X 7.581 7.581 0 %100 124 MP5A X 7.581 7.581 0 %100 125 MP5A X 7.581 7.581 0 %100 126 MP5A X 7.581 7.581 0 %100 127 MP1C X 7.581 7.581 0 %100 130 MP6C X 7.581 7.581 0 %100 131 MPC X 7.581 7.581 0 %100 132 MP6C X 7.581 7.581 0 %100 133 MP2C X 7.581 7.581 0 %100 144 MP8B X 7.581 7.581 0 %100 145 MP5B X 7.581 7.581 0 %100 147 MP3C X 7.581 7.581 0 %100 149 MP6C X 7.581 7.581 0 %100 140 MP8B X 7.581 7.581 0 %100 141 MP8B X 7.581 7.581 0 %100 142 MP6C X 7.581 7.581 0 %100 143 MP6C X 7.581 7.581 0 %100 144 MP8B X 7.581 7.581 0 %100 145 MP6C X 7.581 7.581 0 %100 146 MP6C X 7.581 7.581 0 %100 147 MP3C X 7.581 7.581 0 %100 149 MP4C X 7.581 7.581 0 %100 149 MP4C X 7.581 7.							
99 M68 Z 4.44 4.44 0 %100 101 M69 X 7.693 7.693 0 %100 102 M69 Z 4.407 4.407 0 %100 103 M70 X 9.222 9.222 0 %100 104 M70 Z 5.324 5.324 0 %100 105 M71 X 9.221 9.221 0 %100 106 M71 Z 5.324 5.324 0 %100 107 M72 X 9.221 9.221 0 %100 108 M72 X 9.243 9.243 0 %100 109 M73 X 9.222 9.222 0 %100 100 M73 X 9.222 9.222 0 %100 101 M73 X 9.221 9.221 0 %100 108 M72 Z 5.336 5.336 0 %100 109 M73 X 9.222 9.222 0 %100 110 M73 X 9.221 9.221 0 %100 110 M73 X 9.221 9.221 0 %100 1110 M73 X 9.221 9.221 0 %100 1111 M74 X 9.221 9.221 0 %100 1110 M73 X 9.222 0 %100 1111 M74 X 9.221 9.221 0 %100 1110 M73 X 9.222 0 %100 1111 M74 X 9.221 9.221 0 %100 1112 M74 Z 5.324 5.324 0 %100 1114 M75 X 9.243 9.243 0 %100 1115 M74 Z 5.324 5.324 0 %100 116 M71 X 9.221 9.271 0 %100 117 M72 X 9.243 9.243 0 %100 118 M75 X 9.243 9.243 0 %100 119 M74 Z 5.336 5.336 0 %100 1114 M75 Z 5.336 5.336 0 %100 115 M71 X 7.581 7.581 0 %100 116 M71 X 7.581 7.581 0 %100 117 M72 X 7.581 7.581 0 %100 118 M72 X 7.581 7.581 0 %100 119 M74 X 7.581 7.581 0 %100 120 M74 X 7.581 7.581 0 %100 121 M75A X 7.581 7.581 0 %100 122 M75A X 7.581 7.581 0 %100 123 M74 X 7.581 7.581 0 %100 124 M74 X 7.581 7.581 0 %100 125 M74 X 7.581 7.581 0 %100 126 M74 X 7.581 7.581 0 %100 127 M74 X 7.581 7.581 0 %100 128 M74 X 7.581 7.581 0 %100 129 M74 X 7.581 7.581 0 %100 120 M74 X 7.581 7.581 0 %100 121 M75A X 7.581 7.581 0 %100 122 M75A X 7.581 7.581 0 %100 123 M74 X 7.581 7.581 0 %100 124 M74 X 7.581 7.581 0 %100 125 M75A X 7.581 7.581 0 %100 130 M79B X 7.581 7.581 0 %100 131 M75B X 7.581 7.581 0 %100 132 M76B X 7.581 7.581 0 %100 133 M76B X 7.581 7.581 0 %100 134 M79C X 7.581 7.581 0 %100 135 M75B X 7.581 7.581 0 %100 136 M75B X 7.581 7.581 0 %100 137 M75B X 7.581 7.581 0 %100 138 M75B X 7.581 7.581 0 %100 139 M75B X 7.581 7.581 0 %100 130 M79B X 7.581 7.581 0 %100 131 M75B X 7.581 7.581 0 %100 132 M76B X 7.581 7.581 0 %100 133 M76B X 7.581 7.581 0 %100 134 M79C X 7.581 7.581 0 %100 135 M76B X 7.581 7.581 0 %100 136 M76B X 7.581 7.581 0 %100 137 M76B X 7.581 7.581 0 %100 139 M79B X 7.581 7.581 0 %1			X				
100							
101			X				
102 M69 Z	100	M68				0	%100
103				7.633	7.633	0	
104	102	M69	Z	4.407	4.407	0	%100
105	103	M70	X	9.222	9.222	0	%100
106	104	M70	Z	5.324	5.324	0	%100
106	105	M71	X	9.221	9.221	0	%100
107 M72 X 9.243 9.243 0 %100 108 M72 Z 5.336 5.336 0 %100 119 M73 X 9.222 9.222 0 %100 111 M74 X 9.221 9.221 0 %100 1112 M74 Z 5.324 5.324 0 %100 112 M74 Z 5.324 5.324 0 %100 113 M75 X 9.243 9.243 0 %100 114 M75 Z 5.336 5.336 0 %100 114 M75 Z 5.336 5.336 0 %100 115 MP1A X 7.581 7.581 0 %100 116 MP1A X 7.581 7.581 0 %100 117 MP2A X 7.581 7.581 0 %100 119	106	M71	Z	5.324	5.324	0	%100
108	107	M72				0	%100
109 M73			Z				
110							
111 M74 X 9.221 9.221 0 %100 112 M74 Z 5.324 5.324 0 %100 113 M75 X 9.243 9.243 0 %100 114 M75 Z 5.336 5.336 0 %100 116 MP1A X 7.581 7.581 0 %100 116 MP1A Z 4.377 4.377 0 %100 117 MP2A X 7.581 7.581 0 %100 118 MIP2A Z 4.377 4.377 0 %100 119 MIP4A X 7.581 7.581 0 %100 120 MIP5A X 7.581 7.581 0 %100 121 MP5A X 7.581 7.581 0 %100 121 MP5A X 7.581 7.581 0 %100 123			Z				
112 M74 Z 5.324 5.324 0 %100 113 M75 X 9.243 9.243 0 %100 114 M75 Z 5.336 5.336 0 %100 115 MP1A X 7.581 7.581 0 %100 116 MP1A Z 4.377 4.377 0 %100 117 MP2A X 7.581 7.581 0 %100 119 MP4A X 7.581 7.581 0 %100 120 MP4A X 7.581 7.581 0 %100 120 MP4A X 7.581 7.581 0 %100 121 MP5A X 7.581 7.581 0 %100 122 MP5A X 7.581 7.581 0 %100 122 MP6A X 7.581 7.581 0 %100 125							
113 M75 X 9.243 9.243 0 %100 114 M75 Z 5.336 5.336 0 %100 116 MP1A X 7.581 7.581 0 %100 116 MP1A Z 4.377 4.377 0 %100 118 MP2A X 7.581 7.581 0 %100 119 MP4A X 7.581 7.581 0 %100 120 MP4A X 7.581 7.581 0 %100 121 MP5A X 7.581 7.581 0 %100 121 MP5A X 7.581 7.581 0 %100 122 MP5A X 7.581 7.581 0 %100 124 MPA X 7.581 7.581 0 %100 124 MPA Z 4.377 4.377 0 %100 125							
114 M75 Z 5,336 5,336 0 %100 115 MP1A X 7,581 7,581 0 %100 117 MP2A X 7,581 7,581 0 %100 118 MP2A X 7,581 7,581 0 %100 119 MP4A X 7,581 7,581 0 %100 120 MP4A X 7,581 7,581 0 %100 120 MP4A X 7,581 7,581 0 %100 120 MP4A X 7,581 7,581 0 %100 122 MP5A X 7,581 7,581 0 %100 122 MP6A Z 4,377 4,377 0 %100 123 MPA X 7,581 7,581 0 %100 124 MPA Z 4,377 4,377 0 %100 125							
115 MP1A X 7.581 7.581 0 %100 116 MP1A Z 4.377 4.377 0 %100 117 MP2A X 7.581 7.581 0 %100 118 MP2A Z 4.377 4.377 0 %100 120 MP4A X 7.581 7.581 0 %100 120 MP4A Z 4.377 4.377 0 %100 121 MP5A X 7.581 7.581 0 %100 122 MP5A Z 4.377 4.377 0 %100 123 MPA X 7.581 7.581 0 %100 124 MPA Z 4.377 4.377 0 %100 125 MP6A X 7.581 7.581 0 %100 126 MP6A Z 4.377 4.377 0 %100 127			7				
116 MP1A Z 4,377 4,377 0 %100 117 MP2A X 7,581 7,581 0 %100 118 MP2A Z 4,377 4,377 0 %100 119 MP4A X 7,581 7,581 0 %100 120 MP4A Z 4,377 4,377 0 %100 121 MP5A X 7,581 7,581 0 %100 122 MP5A X 7,581 7,581 0 %100 122 MP6A X 7,581 7,581 0 %100 123 MPA X 7,581 7,581 0 %100 124 MPA Z 4,377 4,377 0 %100 125 MP6A X 7,581 7,581 0 %100 126 MP6A Z 4,377 4,377 0 %100 127							
117 MP2A X 7.581 7.581 0 %100 118 MP2A Z 4.377 4.377 0 %100 120 MP4A X 7.581 7.581 0 %100 120 MP5A X 7.581 7.581 0 %100 121 MP5A X 7.581 7.581 0 %100 122 MP5A Z 4.377 4.377 0 %100 123 MPA X 7.581 7.581 0 %100 124 MPA Z 4.377 4.377 0 %100 125 MP6A X 7.581 7.581 0 %100 125 MP6A X 7.581 7.581 0 %100 126 MP6A Z 4.377 4.377 0 %100 128 MP1C X 7.581 7.581 0 %100 128			7				
118 MP2A Z 4.377 4.377 0 %100 119 MP4A X 7.581 7.581 0 %100 120 MP4A Z 4.377 4.377 0 %100 121 MP5A X 7.581 7.581 0 %100 122 MP5A Z 4.377 4.377 0 %100 123 MPA X 7.581 7.581 0 %100 124 MPA X 7.581 7.581 0 %100 125 MP6A X 7.581 7.581 0 %100 125 MP6A X 7.581 7.581 0 %100 126 MP6A X 7.581 7.581 0 %100 127 MP1C X 7.581 7.581 0 %100 128 MP1B X 7.581 7.581 0 %100 130							
119 MP4A X 7.581 7.581 0 %100 120 MP4A Z 4.377 4.377 0 %100 121 MP5A X 7.581 7.581 0 %100 122 MP5A Z 4.377 4.377 0 %100 123 MPA X 7.581 7.581 0 %100 124 MPA Z 4.377 4.377 0 %100 125 MP6A X 7.581 7.581 0 %100 126 MP6A Z 4.377 4.377 0 %100 127 MP1C X 7.581 7.581 0 %100 128 MP1C Z 4.377 4.377 0 %100 130 MP1B X 7.581 7.581 0 %100 131 MPC X 7.581 7.581 0 %100 133			7				
120 MP4A Z 4.377 4.377 0 %100 121 MP5A X 7.581 7.581 0 %100 122 MP6A Z 4.377 4.377 0 %100 123 MPA X 7.581 7.581 0 %100 124 MPA Z 4.377 4.377 0 %100 126 MP6A X 7.581 7.581 0 %100 126 MP6A Z 4.377 4.377 0 %100 127 MP1C X 7.581 7.581 0 %100 129 MP1B X 7.581 7.581 0 %100 130 MP1B Z 4.377 4.377 0 %100 131 MPC X 7.581 7.581 0 %100 132 MPC Z 4.377 4.377 0 %100 133							
121 MP5A X 7.581 7.581 0 %100 122 MP5A Z 4.377 4.377 0 %100 123 MPA X 7.581 7.581 0 %100 124 MPA Z 4.377 4.377 0 %100 125 MP6A X 7.581 7.581 0 %100 126 MP6A Z 4.377 4.377 0 %100 127 MP1C X 7.581 7.581 0 %100 128 MP1C Z 4.377 4.377 0 %100 129 MP1B X 7.581 7.581 0 %100 130 MP1B X 7.581 7.581 0 %100 131 MPC X 7.581 7.581 0 %100 131 MPC X 7.581 7.581 0 %100 133			7				
122 MP5A Z 4.377 4.377 0 %100 123 MPA X 7.581 7.581 0 %100 124 MPA Z 4.377 4.377 0 %100 125 MP6A X 7.581 7.581 0 %100 126 MP6A Z 4.377 4.377 0 %100 127 MP1C X 7.581 7.581 0 %100 128 MP1C Z 4.377 4.377 0 %100 129 MP1B X 7.581 7.581 0 %100 130 MP1B Z 4.377 4.377 0 %100 131 MPC X 7.581 7.581 0 %100 132 MPC Z 4.377 4.377 0 %100 134 MP2C X 7.581 7.581 0 %100 135							
123 MPA X 7.581 7.581 0 %100 124 MPA Z 4.377 4.377 0 %100 126 MP6A X 7.581 7.581 0 %100 126 MP6A Z 4.377 4.377 0 %100 127 MP1C X 7.581 7.581 0 %100 128 MP1C Z 4.377 4.377 0 %100 130 MP1B X 7.581 7.581 0 %100 130 MP1B Z 4.377 4.377 0 %100 131 MPC X 7.581 7.581 0 %100 131 MPC X 7.581 7.581 0 %100 133 MP2C X 7.581 7.581 0 %100 134 MP2C X 7.581 7.581 0 %100 135							
124 MPA Z 4.377 4.377 0 %100 125 MP6A X 7.581 7.581 0 %100 126 MP6A Z 4.377 4.377 0 %100 127 MP1C X 7.581 7.581 0 %100 128 MP1C Z 4.377 4.377 0 %100 129 MP1B X 7.581 7.581 0 %100 130 MP1B Z 4.377 4.377 0 %100 131 MPC X 7.581 7.581 0 %100 132 MPC Z 4.377 4.377 0 %100 133 MP2C X 7.581 7.581 0 %100 134 MP2C X 7.581 7.581 0 %100 135 MP5C X 7.581 7.581 0 %100 136						-	
125 MP6A X 7.581 7.581 0 %100 126 MP6A Z 4.377 4.377 0 %100 127 MP1C X 7.581 7.581 0 %100 128 MP1C Z 4.377 4.377 0 %100 129 MP1B X 7.581 7.581 0 %100 130 MP1B Z 4.377 4.377 0 %100 131 MPC X 7.581 7.581 0 %100 132 MPC Z 4.377 4.377 0 %100 133 MP2C X 7.581 7.581 0 %100 134 MP2C X 7.581 7.581 0 %100 135 MP5C X 7.581 7.581 0 %100 136 MP5C Z 4.377 4.377 0 %100 137			7				
126 MP6A Z 4.377 4.377 0 %100 127 MP1C X 7.581 7.581 0 %100 128 MP1C Z 4.377 4.377 0 %100 129 MP1B X 7.581 7.581 0 %100 130 MP1B Z 4.377 4.377 0 %100 131 MPC X 7.581 7.581 0 %100 132 MPC Z 4.377 4.377 0 %100 133 MP2C X 7.581 7.581 0 %100 134 MP2C Z 4.377 4.377 0 %100 134 MP2C Z 4.377 4.377 0 %100 135 MP5C X 7.581 7.581 0 %100 136 MP5C X 7.581 7.581 0 %100 138							
127 MP1C X 7.581 7.581 0 %100 128 MP1C Z 4.377 4.377 0 %100 129 MP1B X 7.581 7.581 0 %100 130 MP1B Z 4.377 4.377 0 %100 131 MPC X 7.581 7.581 0 %100 132 MPC Z 4.377 4.377 0 %100 133 MP2C X 7.581 7.581 0 %100 134 MP2C Z 4.377 4.377 0 %100 135 MP5C X 7.581 7.581 0 %100 136 MP5C X 7.581 7.581 0 %100 137 MP6C X 7.581 7.581 0 %100 138 MP6C Z 4.377 4.377 0 %100 140			7				
128 MP1C Z 4.377 4.377 0 %100 129 MP1B X 7.581 7.581 0 %100 130 MP1B Z 4.377 4.377 0 %100 131 MPC X 7.581 7.581 0 %100 132 MPC Z 4.377 4.377 0 %100 133 MP2C X 7.581 7.581 0 %100 134 MP2C Z 4.377 4.377 0 %100 135 MP5C X 7.581 7.581 0 %100 136 MP5C X 7.581 7.581 0 %100 137 MP6C X 7.581 7.581 0 %100 138 MP6C X 7.581 7.581 0 %100 139 MP8 X 7.581 7.581 0 %100 140							
129							
130 MP1B Z 4.377 4.377 0 %100 131 MPC X 7.581 7.581 0 %100 132 MPC Z 4.377 4.377 0 %100 133 MP2C X 7.581 7.581 0 %100 134 MP2C Z 4.377 4.377 0 %100 135 MP5C X 7.581 7.581 0 %100 136 MP5C Z 4.377 4.377 0 %100 137 MP6C X 7.581 7.581 0 %100 138 MP6C X 7.581 7.581 0 %100 139 MPB X 7.581 7.581 0 %100 140 MPB X 7.581 7.581 0 %100 140 MPB X 7.581 7.581 0 %100 141							
131 MPC X 7.581 7.581 0 %100 132 MPC Z 4.377 4.377 0 %100 133 MP2C X 7.581 7.581 0 %100 134 MP2C Z 4.377 4.377 0 %100 135 MP5C X 7.581 7.581 0 %100 136 MP5C Z 4.377 4.377 0 %100 137 MP6C X 7.581 7.581 0 %100 138 MP6C X 7.581 7.581 0 %100 139 MPB X 7.581 7.581 0 %100 140 MPB Z 4.377 4.377 0 %100 141 MPB2 X 7.581 7.581 0 %100 142 MPB2 X 7.581 7.581 0 %100 143			X				
132 MPC Z 4.377 4.377 0 %100 133 MP2C X 7.581 7.581 0 %100 134 MP2C Z 4.377 4.377 0 %100 135 MP5C X 7.581 7.581 0 %100 136 MP5C Z 4.377 4.377 0 %100 137 MP6C X 7.581 7.581 0 %100 138 MP6C Z 4.377 4.377 0 %100 139 MPB X 7.581 7.581 0 %100 140 MPB X 7.581 7.581 0 %100 141 MPB2 X 7.581 7.581 0 %100 142 MPB2 X 7.581 7.581 0 %100 143 MP5B X 7.581 7.581 0 %100 145							
133 MP2C X 7.581 7.581 0 %100 134 MP2C Z 4.377 4.377 0 %100 135 MP5C X 7.581 7.581 0 %100 136 MP5C Z 4.377 4.377 0 %100 137 MP6C X 7.581 7.581 0 %100 138 MP6C Z 4.377 4.377 0 %100 139 MPB X 7.581 7.581 0 %100 140 MPB X 7.581 7.581 0 %100 140 MPB Z 4.377 4.377 0 %100 141 MPB2 X 7.581 7.581 0 %100 142 MPB2 Z 4.377 4.377 0 %100 143 MP5B X 7.581 7.581 0 %100 144							
134 MP2C Z 4.377 4.377 0 %100 135 MP5C X 7.581 7.581 0 %100 136 MP5C Z 4.377 4.377 0 %100 137 MP6C X 7.581 7.581 0 %100 138 MP6C Z 4.377 4.377 0 %100 139 MPB X 7.581 7.581 0 %100 140 MPB Z 4.377 4.377 0 %100 141 MPB2 X 7.581 7.581 0 %100 142 MPB2 Z 4.377 4.377 0 %100 143 MP5B X 7.581 7.581 0 %100 144 MP5B X 7.581 7.581 0 %100 145 MP4C X 7.581 7.581 0 %100 146							
135 MP5C X 7.581 7.581 0 %100 136 MP5C Z 4.377 4.377 0 %100 137 MP6C X 7.581 7.581 0 %100 138 MP6C Z 4.377 4.377 0 %100 139 MPB X 7.581 7.581 0 %100 140 MPB Z 4.377 4.377 0 %100 141 MPB2 X 7.581 7.581 0 %100 142 MPB2 Z 4.377 4.377 0 %100 143 MP5B X 7.581 7.581 0 %100 144 MP5B Z 4.377 4.377 0 %100 145 MP4C X 7.581 7.581 0 %100 146 MP4C Z 4.377 4.377 0 %100 148			X				
136 MP5C Z 4.377 4.377 0 %100 137 MP6C X 7.581 7.581 0 %100 138 MP6C Z 4.377 4.377 0 %100 139 MPB X 7.581 7.581 0 %100 140 MPB Z 4.377 4.377 0 %100 141 MPB2 X 7.581 7.581 0 %100 142 MPB2 Z 4.377 4.377 0 %100 143 MP5B X 7.581 7.581 0 %100 144 MP5B Z 4.377 4.377 0 %100 145 MP4C X 7.581 7.581 0 %100 146 MP4C Z 4.377 4.377 0 %100 147 MP3C X 7.581 7.581 0 %100 148	134						
137 MP6C X 7.581 7.581 0 %100 138 MP6C Z 4.377 4.377 0 %100 139 MPB X 7.581 7.581 0 %100 140 MPB Z 4.377 4.377 0 %100 141 MPB2 X 7.581 7.581 0 %100 142 MPB2 Z 4.377 4.377 0 %100 143 MP5B X 7.581 7.581 0 %100 144 MP5B Z 4.377 4.377 0 %100 145 MP4C X 7.581 7.581 0 %100 146 MP4C Z 4.377 4.377 0 %100 147 MP3C X 7.581 7.581 0 %100 148 MP3C Z 4.377 4.377 0 %100 149			X				
138 MP6C Z 4.377 4.377 0 %100 139 MPB X 7.581 7.581 0 %100 140 MPB Z 4.377 4.377 0 %100 141 MPB2 X 7.581 7.581 0 %100 142 MPB2 Z 4.377 4.377 0 %100 143 MP5B X 7.581 7.581 0 %100 144 MP5B Z 4.377 4.377 0 %100 145 MP4C X 7.581 7.581 0 %100 146 MP4C Z 4.377 4.377 0 %100 147 MP3C X 7.581 7.581 0 %100 148 MP3C Z 4.377 4.377 0 %100 149 M146 X 3.99 3.99 0 %100 150							
139 MPB X 7.581 7.581 0 %100 140 MPB Z 4.377 4.377 0 %100 141 MPB2 X 7.581 7.581 0 %100 142 MPB2 Z 4.377 4.377 0 %100 143 MP5B X 7.581 7.581 0 %100 144 MP5B Z 4.377 4.377 0 %100 145 MP4C X 7.581 7.581 0 %100 146 MP4C Z 4.377 4.377 0 %100 147 MP3C X 7.581 7.581 0 %100 148 MP3C Z 4.377 4.377 0 %100 149 M146 X 3.99 3.99 0 %100 150 M146 Z 2.304 2.304 0 %100			X				
141 MPB2 X 7.581 7.581 0 %100 142 MPB2 Z 4.377 4.377 0 %100 143 MP5B X 7.581 7.581 0 %100 144 MP5B Z 4.377 4.377 0 %100 145 MP4C X 7.581 7.581 0 %100 146 MP4C Z 4.377 4.377 0 %100 147 MP3C X 7.581 7.581 0 %100 148 MP3C Z 4.377 4.377 0 %100 149 M146 X 3.99 3.99 0 %100 150 M146 Z 2.304 2.304 0 %100							
141 MPB2 X 7.581 7.581 0 %100 142 MPB2 Z 4.377 4.377 0 %100 143 MP5B X 7.581 7.581 0 %100 144 MP5B Z 4.377 4.377 0 %100 145 MP4C X 7.581 7.581 0 %100 146 MP4C Z 4.377 4.377 0 %100 147 MP3C X 7.581 7.581 0 %100 148 MP3C Z 4.377 4.377 0 %100 149 M146 X 3.99 3.99 0 %100 150 M146 Z 2.304 2.304 0 %100			X				
142 MPB2 Z 4.377 4.377 0 %100 143 MP5B X 7.581 7.581 0 %100 144 MP5B Z 4.377 4.377 0 %100 145 MP4C X 7.581 7.581 0 %100 146 MP4C Z 4.377 4.377 0 %100 147 MP3C X 7.581 7.581 0 %100 148 MP3C Z 4.377 4.377 0 %100 149 M146 X 3.99 3.99 0 %100 150 M146 Z 2.304 2.304 0 %100							
143 MP5B X 7.581 7.581 0 %100 144 MP5B Z 4.377 4.377 0 %100 145 MP4C X 7.581 7.581 0 %100 146 MP4C Z 4.377 4.377 0 %100 147 MP3C X 7.581 7.581 0 %100 148 MP3C Z 4.377 4.377 0 %100 149 M146 X 3.99 3.99 0 %100 150 M146 Z 2.304 2.304 0 %100			X				
144 MP5B Z 4.377 4.377 0 %100 145 MP4C X 7.581 7.581 0 %100 146 MP4C Z 4.377 4.377 0 %100 147 MP3C X 7.581 7.581 0 %100 148 MP3C Z 4.377 4.377 0 %100 149 M146 X 3.99 3.99 0 %100 150 M146 Z 2.304 2.304 0 %100	142	MPB2	Z	4.377	4.377	0	%100
144 MP5B Z 4.377 4.377 0 %100 145 MP4C X 7.581 7.581 0 %100 146 MP4C Z 4.377 4.377 0 %100 147 MP3C X 7.581 7.581 0 %100 148 MP3C Z 4.377 4.377 0 %100 149 M146 X 3.99 3.99 0 %100 150 M146 Z 2.304 2.304 0 %100			X				
145 MP4C X 7.581 7.581 0 %100 146 MP4C Z 4.377 4.377 0 %100 147 MP3C X 7.581 7.581 0 %100 148 MP3C Z 4.377 0 %100 149 M146 X 3.99 3.99 0 %100 150 M146 Z 2.304 2.304 0 %100	144	MP5B	Z	4.377	4.377	0	%100
146 MP4C Z 4.377 4.377 0 %100 147 MP3C X 7.581 7.581 0 %100 148 MP3C Z 4.377 4.377 0 %100 149 M146 X 3.99 3.99 0 %100 150 M146 Z 2.304 2.304 0 %100	145	MP4C	X		7.581	0	%100
147 MP3C X 7.581 7.581 0 %100 148 MP3C Z 4.377 4.377 0 %100 149 M146 X 3.99 3.99 0 %100 150 M146 Z 2.304 2.304 0 %100		MP4C	Z				
148 MP3C Z 4.377 4.377 0 %100 149 M146 X 3.99 3.99 0 %100 150 M146 Z 2.304 2.304 0 %100		MP3C	X	7.581			
149 M146 X 3.99 3.99 0 %100 150 M146 Z 2.304 2.304 0 %100			Z				
			Z				

Nov 23, 2021

Company Designer : Maser Consulting

: NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
152	M147	Z	2.304	2.304	0	%100
153	M154	X	15.96	15.96	0	%100
154	M154	Z	9.215	9.215	0	%100
155	M155	X	15.96	15.96	0	%100
156	M155	Z	9.215	9.215	0	%100
157	M162	X	3.99	3.99	0	%100
158	M162	Z	2.304	2.304	0	%100
159	M163	X	3.99	3.99	0	%100
160	M163	Z	2.304	2.304	0	%100
161	MP3A	X	7.581	7.581	0	%100
162	MP3A	Z	4.377	4.377	0	%100
163	MP4B	X	7.581	7.581	0	%100
164	MP4B	Z	4.377	4.377	0	%100
165	MP6B	X	7.581	7.581	0	%100
166	MP6B	Z	4.377	4.377	0	%100
167	MP3B	X	7.581	7.581	0	%100
168	MP3B	Z	4.377	4.377	0	%100
169	M163A	X Z	7.581	7.581	0	%100
170	M163A	Z	4.377	4.377	0	%100
171	M166	X	3.586	3.586	0	%100
172	M166	Z	2.07	2.07	0	%100
173	M169A	X	3.586	3.586	0	%100
174	M169A	Z	2.07	2.07	0	%100
175	MP2B	X	7.581	7.581	0	%100
176	MP2B	Z	4.377	4.377	0	%100
177	M173A	X	0	0	0	%100
178	M173A	Z	0	0	0	%100
179	M176	X	0	0	0	%100
180	M176	Z	0	0	0	%100

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	X	6.911	6.911	0	%100
2	M1	Z	11.97	11.97	0	%100
3	M2	X	6.911	6.911	0	%100
4	M2	Z	11.97	11.97	0	%100
5	M3	X	5.029	5.029	0	%100
6	M3	Z	8.711	8.711	0	%100
7	M4	X	5.029	5.029	0	%100
8	M4	Z	8.711	8.711	0	%100
9	M5	X	5.026	5.026	0	%100
10	M5	Z	8.706	8.706	0	%100
11	M6	X	4.838	4.838	0	%100
12	M6	Z	8.379	8.379	0	%100
13	M7	X	4.838	4.838	0	%100
14	M7	Z	8.379	8.379	0	%100
15	M8	X	0	0	0	%100
16	M8	Z	0	0	0	%100
17	M9	X	0	0	0	%100
18	M9	Z	0	0	0	%100
19	M10	X	10.341	10.341	0	%100
20	M10	Z	17.911	17.911	0	%100
21	M11	Χ	10.341	10.341	0	%100
22	M11	Z	17.911	17.911	0	%100
23	M12	Χ	5.119	5.119	0	%100
24	M12	Z	8.867	8.867	0	%100

: NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 46: Structure Wo (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
25	M13	X	5.119	5.119	0	%100
26	M13	Z	8.867	8.867	0	%100
27	M14	X	5.119	5.119	0	%100
28	M14	Z	8.867	8.867	0	%100
29	M15	X	5.792	5.792	0	%100
30	M15	Z	10.032	10.032	0	%100
31	M16	X	5.799	5.799	0	%100
32	M16	Ž	10.045	10.045	Ö	%100
33	M17	X	5.119	5.119	0	%100
34	M17	Z	8.867	8.867	Ö	%100 %100
35	M18	X	0.007	0.007	0	%100 %100
36	M18	Z	0	0	0	%100 %100
37	M19	X	0	0	0	%100 %100
38	M19	Ž	0	0	0	%100 %100
39	M20	X	4.838	4.838	0	%100
40	M20	Z	8.379	8.379	0	%100
41	M21	X	4.838	4.838	0	%100
42	M21	Z	8.379	8.379	0	%100
43	M22	X	2.585	2.585	0	%100
44	M22	Z	4.478	4.478	0	%100
45	M23	X	2.585	2.585	0	%100
46	M23	Z	4.478	4.478	0	%100
47	M24	X	5.119	5.119	0	%100
48	M24	Z	8.867	8.867	0	%100
49	M25	X	5.119	5.119	0	%100
50	M25	Z	8.867	8.867	0	%100
51	M26	X	3.549	3.549	0	%100
52	M26	Z	6.147	6.147	0	%100
53	M27	X	3.539	3.539	0	%100
54	M27	Ž	6.13	6.13	Ö	%100
55	M28	X	5.119	5.119	0	%100
56	M28	Z	8.867	8.867	0	%100 %100
57	M29	X	6.911	6.911	0	%100 %100
58	M29	Z	11.97	11.97	0	%100 %100
59	M30	X	6.911	6.911	0	%100 %100
60	M30	Z	11.97	11.97	0	%100 %100
61	M31					%100 %100
		X Z	2.585	2.585	0	
62	M31		4.478	4.478	0	%100
63	M32	X	2.585	2.585	0	%100
64	M32	Z	4.478	4.478	0	%100
65	M33	X	5.119	5.119	0	%100
66	M33	Z	8.867	8.867	0	%100
67	M34	X	5.119	5.119	0	%100
68	M34	Z	8.867	8.867	0	%100
69	M35	X	3.549	3.549	0	%100
70	M35	Z	6.147	6.147	0	%100
71	M36	X	3.539	3.539	0	%100
72	M36	Z	6.13	6.13	0	%100
73	M37	X	0	0	0	%100
74	M37	Z	0	0	0	%100
75	M38	X	6.201	6.201	0	%100
76	M38	Z	10.74	10.74	0	%100
77	M39	X	6.201	6.201	0	%100
78	M39	Z	10.74	10.74	0	%100
79	M49	X	0	0	0	%100
80	M49	Ž	0	0	0	%100
81	M50	X	6.201	6.201	0	%100
						,

: NL

: 21781092A

Model Name : Mount Analysis (Rev. 3)

Member Distributed Loads (BLC 46: Structure Wo (150 Deg)) (Continued)

Nov 23, 2021 5:47 PM

Checked By: DX

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft %]	End Location[ft,%]
82	M50	Z	10.74	10.74	0	%100
83	M51	X	6.201	6.201	0	%100
84	M51	Z	10.74	10.74	0	%100
85	M61	X	5.029	5.029	0	%100
86	M61	Z	8.711	8.711	0	%100
87	M62	X	5.029	5.029	0	%100
88	M62	Z	8.711	8.711	0	%100
89	M63	X	5.026	5.026	0	%100
90	M63	Z	8.706	8.706	0	%100
91	M64	X	4.145	4.145	0	%100
92	M64	Z	7.179	7.179	0	%100
93	M65	X	4.145	4.145	0	%100
94	M65	Z	7.179	7.179	0	%100
95	M66	X	4.097	4.097	0	%100
96	M66	Z	7.096	7.096	0	%100
97	M67	X	4.145	4.145	0	%100
98	M67	Z	7.179	7.179	0	%100
99	M68	X	4.145 7.179	4.145	0	%100
100	M68	Z		7.179	0	%100 %100
101	M69 M69	X Z	4.097 7.096	4.097 7.096	0	%100 %100
102	M70	X	5.029	5.029	0	%100 %100
103	M70	Z	8.711	8.711	0	%100 %100
105	M71	X	5.029	5.029	0	%100 %100
106	M71	Z	8.711	8.711	0	%100 %100
107	M72	X	5.026	5.026	0	%100 %100
108	M72	Z	8.706	8.706	0	%100 %100
109	M73	X	5.029	5.029	0	%100 %100
110	M73	Z	8.711	8.711	Ö	%100 %100
111	M74	X	5.029	5.029	0	%100 %100
112	M74	Z	8.711	8.711	Ů	%100
113	M75	X	5.026	5.026	0	%100
114	M75	Z	8.706	8.706	0	%100
115	MP1A	X	4.377	4.377	0	%100
116	MP1A	Z	7.581	7.581	0	%100
117	MP2A	X	4.377	4.377	0	%100
118	MP2A	Z	7.581	7.581	0	%100
119	MP4A	X	4.377	4.377	0	%100
120	MP4A	Z	7.581	7.581	0	%100
121	MP5A	X	4.377	4.377	0	%100
122	MP5A	Z	7.581	7.581	0	%100
123	MPA	X	4.377	4.377	0	%100
124	MPA	Z	7.581	7.581	0	%100
125	MP6A	X	4.377	4.377	0	%100
126	MP6A	Z	7.581	7.581	0	%100
127	MP1C	X	4.377	4.377	0	%100
128	MP1C	Z	7.581	7.581	0	%100
129	MP1B	X	4.377	4.377	0	%100
130	MP1B	Z	7.581	7.581	0	%100 %100
131	MPC	X	4.377	4.377	0	%100
132	MPC	Z	7.581	7.581	0	%100 %100
133	MP2C	X	4.377	4.377	0	%100 %100
134	MP2C MP5C	Z	7.581	7.581	0	%100 %100
135 136	MP5C MP5C	X	4.377 7.581	4.377	0	%100 %100
136	MP6C	Z X	4.377	7.581 4.377	0	%100 %100
138	MP6C	Z	7.581	7.581	0	%100 %100
130	IVIFOC		1.501	1.001	U	/0100

RISA-3D Version 17.0.4

[R:\...\...\Mount Analysis\Rev 3\RISA\468927-VZW_MT_LO_H.r3d] Page 145

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 46: Structure Wo (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
139	MPB	X	4.377	4.377	0	%100
140	MPB	Z	7.581	7.581	0	%100
141	MPB2	X	4.377	4.377	0	%100
142	MPB2	Z	7.581	7.581	0	%100
143	MP5B	X	4.377	4.377	0	%100
144	MP5B	Z	7.581	7.581	0	%100
145	MP4C	X	4.377	4.377	0	%100
146	MP4C	Z	7.581	7.581	0	%100
147	MP3C	X	4.377	4.377	0	%100
148	MP3C	Z	7.581	7.581	0	%100
149	M146	X	0	0	0	%100
150	M146	Z	0	0	0	%100
151	M147	X	0	0	0	%100
152	M147	Z	0	0	0	%100
153	M154	X	6.911	6.911	0	%100
154	M154	Z	11.97	11.97	0	%100
155	M155	X	6.911	6.911	0	%100
156	M155	Z	11.97	11.97	0	%100
157	M162	X	6.911	6.911	0	%100
158	M162	Z	11.97	11.97	0	%100
159	M163	X	6.911	6.911	0	%100
160	M163	Z	11.97	11.97	0	%100
161	MP3A	X	4.377	4.377	0	%100
162	MP3A	Z	7.581	7.581	0	%100
163	MP4B	X	4.377	4.377	0	%100
164	MP4B	Z	7.581	7.581	0	%100
165	MP6B	X	4.377	4.377	0	%100
166	MP6B	Z	7.581	7.581	0	%100
167	MP3B	X	4.377	4.377	0	%100
168	MP3B	Z	7.581	7.581	0	%100
169	M163A	X	4.377	4.377	0	%100
170	M163A	Z	7.581	7.581	0	%100
171	M166	X	.69	.69	0	%100
172	M166	Z	1.195	1.195	0	%100
173	M169A	X	.69	.69	0	%100
174	M169A	Z	1.195	1.195	0	%100
175	MP2B	X	4.377	4.377	0	%100
176	MP2B	Z	7.581	7.581	0	%100
177	M173A	X	.69	.69	0	%100
178	M173A	Z	1.195	1.195	0	%100
179	M176	X	.69	.69	0	%100
180	M176	Z	1.195	1.195	0	%100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	18.429	18.429	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	18.429	18.429	0	%100
5	M3	X	0	0	0	%100
6	M3	Z	10.648	10.648	0	%100
7	M4	X	0	0	0	%100
8	M4	Z	10.648	10.648	0	%100
9	M5	X	0	0	0	%100
10	M5	Z	10.672	10.672	0	%100
11	M6	X	0	0	0	%100

: NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 47: Structure Wo (180 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
12	M6	Z	3.225	3.225	0	%100
13	M7	X	0	0	0	%100
14	M7	Z	3.225	3.225	0	%100
15	M8	X	0	0	0	%100
16	M8	Z	3.225	3.225	0	%100
17	M9	X	0	0	0	%100
18	M9	Z	3.225	3.225	0	%100
19	M10	X	0	0	0	%100
20	M10	Z	15.511	15.511	0	%100
21	M11	X	0	0	0	%100
22	M11	Z	15.511	15.511	0	%100
23	M12	X	0	0	0	%100
24	M12	Z	10.239	10.239	0	%100
25	M13	X	0	0	0	%100
26	M13	Z	10.239	10.239	0	%100
27	M14	X	0	0	0	%100
28	M14	Z	10.239	10.239	0	%100
29	M15	X	0	0	0	%100
30	M15	Z	10.088	10.088	0	%100
31	M16	X	0	0	0	%100
32	M16	Z	10.092	10.092	0	%100
33	M17	X	0	0	0	%100
34	M17	Z	10.239	10.239	0	%100
35	M18	X	0	0	0	%100
36	M18	Z	4.607	4.607	0	%100
37	M19	X	0	0	0	%100
38	M19	Z	4.607	4.607	0	%100
39	M20	X	0	0	0	%100
40	M20	Z	12.901	12.901	0	%100
41	M21	X	0	0	0	%100
42	M21	Z	12.901	12.901	0	%100 %100
43	M22	X	0	0	0	%100
44	M22	Z	15.511	15.511	0	%100 %100
45	M23	X	0	0	0	%100
46	M23	Z	15.511	15.511	0	%100
47	M24	X	0	0	0	%100 %100
48	M24	Z	10.239	10.239	0	%100 %100
49	M25	X	0	0	0	%100 %100
50	M25	Z	10.239	10.239	0	%100 %100
51	M26	X	0	0	0	%100 %100
52	M26	Z	10.088	10.088	0	%100 %100
53	M27	X	0	0	0	%100 %100
54	M27	Z	10.092	10.092	0	%100 %100
55	M28	X	0	0	0	%100 %100
56	M28	Z	10.239	10.239	0	%100 %100
57	M29	X	0	0	0	%100 %100
58	M29	Ž	4.607	4.607	0	%100 %100
59	M30	X	4.607	4.607	0	%100 %100
60	M30	Z	4.607	4.607	0	%100 %100
					0	%100 %100
61	M31	X Z	0	0		
62	M31		0	0	0	%100 %100
63	M32	X Z	0	0	0	%100 %100
64	M32		0	0	0	%100 %100
65	M33	X	0	0	0	%100
66	M33	Z	10.239	10.239	0	%100
67	M34	X	0	0	0	%100
68	M34	Z	10.239	10.239	0	%100

Company Designer : Maser Consulting

: NL : 21781092A Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 47: Structure Wo (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
69	M35	X	0	0	0	%100
70	M35	Z	5.602	5.602	0	%100
71	M36	X	0	0	0	%100
72	M36	Z	5.572	5.572	0	%100
73	M37	X	0	0	0	%100
74	M37	Z	4.134	4.134	0	%100
75	M38	X	0	0	0	%100
76	M38	Z	16.535	16.535	0	%100
77	M39	X	0	0	0	%100
78	M39	Z	4.134	4.134	0	%100
79	M49	X	0	0	0	%100
80	M49	Z	4.134	4.134	0	%100
81	M50	X	0	0	0	%100
82	M50	Z	16.535	16.535	0	%100
83	M51	X	0	0	0	%100 %100
84	M51	Z	4.134	4.134	0	%100 %100
85	M61	X	0	0	0	%100 %100
86	M61	Z	10.648	10.648	0	%100 %100
87	M62	X	0	0	0	%100 %100
88	M62	Z	10.648	10.648	0	%100 %100
89	M63	X	0	0	0	%100 %100
90	M63	Z	10.672	10.672		%100 %100
	M64				0	
91		X Z	0	0	0	%100 %100
92	M64		8.879	8.879	0	%100
93	M65	X	0	0	0	%100
94	M65	Z	8.88	8.88	0	%100
95	M66	X	0	0	0	%100
96	M66	Z	8.813	8.813	0	%100
97	M67	X	0	0	0	%100
98	M67	Z	8.879	8.879	0	%100
99	M68	X	0	0	0	%100
100	M68	Z	8.88	8.88	0	%100
101	M69	X	0	0	0	%100
102	M69	Z	8.813	8.813	0	%100
103	M70	X	0	0	0	%100
104	M70	Z	8.879	8.879	0	%100
105	M71	X	0	0	0	%100
106	M71	Z	8.88	8.88	0	%100
107	M72	X	0	0	0	%100
108	M72	Z	8.813	8.813	0	%100
109	M73	X	0	0	0	%100
110	M73	Z	8.879	8.879	0	%100
111	M74	X	0	0	0	%100
112	M74	Z	8.88	8.88	0	%100
113	M75	X	0	0	0	%100
114	M75	Z	8.813	8.813	0	%100
115	MP1A	X	0	0	0	%100
116	MP1A	Z	8.754	8.754	0	%100
117	MP2A	X	0	0	0	%100 %100
118	MP2A	Z	8.754	8.754	Ŏ	%100 %100
119	MP4A	X	0	0	0	%100 %100
120	MP4A	Z	8.754	8.754	0	%100 %100
121	MP5A	X	0.754	0.754	0	%100 %100
122	MP5A MP5A	Z	8.754	8.754	0	%100 %100
123	MPA MPA	X	0 754	0 754	0	%100 %100
124	MPA	Z	8.754	8.754	0	%100 %100
125	MP6A	X	0	0	0	%100

: Maser Consulting : NL

Company Designer

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
126	MP6A	Z	8.754	8.754	0	%100
127	MP1C	X	0	0	0	%100
128	MP1C	Z	8.754	8.754	0	%100
129	MP1B	X	0	0	0	%100
130	MP1B	Z	8.754	8.754	0	%100
131	MPC	X	0	0	0	%100
132	MPC	Z	8.754	8.754	0	%100
133	MP2C	X	0	0	0	%100
134	MP2C	Z	8.754	8.754	0	%100
135	MP5C	X	0	0	0	%100
136	MP5C	Z	8.754	8.754	Ō	%100
137	MP6C	X	0	0	0	%100
138	MP6C	Z	8.754	8.754	0	%100
139	MPB	X	0	0	0	%100 %100
140	MPB	Z	8.754	8.754	Ö	%100 %100
141	MPB2	X	0	0	0	%100 %100
142	MPB2	Z	8.754	8.754	0	%100 %100
143	MP5B	X	0.704	0	0	%100 %100
144	MP5B	Z	8.754	8.754	Ö	%100 %100
145	MP4C	X	0.754	0	0	%100 %100
146	MP4C	Z	8.754	8.754	0	%100 %100
147	MP3C	X	0.754	0.754	0	%100 %100
148	MP3C	Z	8.754	8.754	0	%100 %100
149	M146	X	0.754	0.734	0	%100 %100
150	M146	Z	4.607	4.607	0	%100 %100
151	M147	X	0	0	0	%100 %100
152	M147	Z	4.607	4.607	0	%100 %100
153	M154	X	0	0	0	%100 %100
154	M154	Ž	4.607	4.607	0	%100 %100
155	M155	X	0	0	0	%100 %100
156	M155	Ž	4.607	4.607	0	%100 %100
157	M162	X	0	0	0	%100 %100
158	M162	Z	18.429	18.429	0	%100 %100
159	M163	X	0	0	0	%100 %100
160	M163	Z	18.429	18.429	0	%100 %100
161	MP3A	X	0	0	0	%100 %100
162	MP3A	Z	8.754	8.754	0	%100 %100
163	MP4B	X	0.734	0.734	0	%100 %100
164	MP4B	Z	8.754	8.754	0	%100 %100
165	MP6B	X	0.754	0	0	%100 %100
166	MP6B	Z	8.754	8.754	0	%100 %100
167	MP3B	X	0.704	0	0	%100 %100
168	MP3B	Z	8.754	8.754	0	%100 %100
169	M163A	X	0.734	0.734	0	%100 %100
170	M163A	Z	8.754	8.754	0	%100 %100
171	M166	X	0	0.734	0	%100 %100
172	M166	Ž	0	0	0	%100 %100
173	M169A	X	0	0	0	%100 %100
174	M169A	Z	0	0	0	%100 %100
175	MP2B	X	0	0	0	%100 %100
176	MP2B	Ž	8.754	8.754	0	%100 %100
177	M173A	X	0.734	0.734	0	%100 %100
178	M173A	Z	4.14	4.14	0	%100 %100
179	M176	X	0	0	0	%100 %100
180	M176	Z	4.14	4.14	0	%100 %100
100	WITTO	_	7.17	7.17	•	70100

Nov 23, 2021 5:47 PM Checked By: DX : NL : 21781092A Model Name : Mount Analysis (Rev. 3)

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	X	-6.911	-6.911	0	%100
2	M1	Z	11.97	11.97	0	%100
3	M2	X	-6.911	-6.911	0	%100
4	M2	Z	11.97	11.97	0	%100
5	M3	X	-5.029	-5.029	0	%100
6	M3	Z	8.711	8.711	0	%100
7	M4	X	-5.029	-5.029	0	%100
8	M4	Z	8.711	8.711	0	%100
9	M5	X	-5.026	-5.026	0	%100
10	M5	Z	8.706	8.706	0	%100
11	M6	X	0	0	0	%100
12	M6	Z	0	0	0	%100
13	M7	X	0	0	0	%100
14	M7	Z	0	0	0	%100
15	M8	X	-4.838	-4.838	0	%100
16	M8	Z	8.379	8.379	0	%100
17	M9	X	-4.838	-4.838	0	%100
18	M9	Z	8.379	8.379	0	%100
19	M10	X	-2.585	-2.585	0	%100
20	M10	Z	4.478	4.478	0	%100
21	M11	X	-2.585	-2.585	0	%100
22	M11	Z	4.478	4.478	0	%100
23	M12	X	-5.119	-5.119	0	%100
24	M12	Z	8.867	8.867	0	%100
25	M13	X	-5.119	-5.119	0	%100
26	M13	Z	8.867	8.867	0	%100
27	M14	X	-5.119	-5.119	0	%100
28	M14	Ž	8.867	8.867	Ö	%100
29	M15	X	-3.549	-3.549	0	%100
30	M15	Ž	6.147	6.147	0	%100
31	M16	X	-3.539	-3.539	0	%100
32	M16	Ž	6.13	6.13	0	%100
33	M17	X	-5.119	-5.119	0	%100
34	M17	Z	8.867	8.867	0	%100 %100
35	M18	X	-6.911	-6.911	0	%100 %100
36	M18	Z	11.97	11.97	0	%100 %100
37	M19	X	-6.911	-6.911	0	%100 %100
38	M19	Z	11.97	11.97	0	%100 %100
39	M20	X	-4.838	-4.838	0	%100 %100
40	M20	Z	8.379	8.379	0	%100 %100
41	M21	X	-4.838	-4.838	0	%100 %100
42	M21	Z	8.379	8.379	0	%100 %100
43	M22	X	-10.341	-10.341	0	%100 %100
44	M22	Z	17.911	17.911	0	%100 %100
45	M23	X	-10.341	-10.341	0	%100 %100
46	M23	Ž	17.911	17.911	0	%100 %100
47	M24	<u>Z</u>	-5.119	-5.119	0	%100 %100
48	M24	X Z	8.867	8.867	0	%100 %100
48	M25	X	-5.119	-5.119	0	%100 %100
50	M25	Z	8.867	8.867	0	%100 %100
51	M26		-5.792	-5.792		%100 %100
52	M26	X Z		10.032	0	%100 %100
53		<u> </u>	10.032			
		X Z	-5.799 10.045	-5.799	0	%100 %100
54	M27		10.045	10.045	0	%100 %100
55	M28	X	-5.119	-5.119	0	%100 %100
56	M28	Z	8.867	8.867	0	%100 %100
57	M29	X	0	0	0	%100

: NL

: 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 48: Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
58	M29	Z	0	0	0	%100
59	M30	X	0	0	0	%100
60	M30	Z	0	0	0	%100
61	M31	X	-2.585	-2.585	0	%100
62	M31	Z	4.478	4.478	0	%100
63	M32	X	-2.585	-2.585	0	%100
64	M32	Z	4.478	4.478	0	%100
65	M33	X	-5.119	-5.119	0	%100
66	M33	Z	8.867	8.867	0	%100
67	M34	X	-5.119	-5.119	0	%100
68	M34	Z	8.867	8.867	0	%100
69	M35	X	-3.549	-3.549	0	%100
70	M35	Z	6.147	6.147	0	%100
71	M36	X	-3.539	-3.539	0	%100
72	M36	Z	6.13	6.13	0	%100
73	M37	X	-6.201	-6.201	0	%100
74	M37	Z	10.74	10.74	0	%100
75	M38	X	-6.201	-6.201	0	%100
76	M38	Z	10.74	10.74	0	%100
77	M39	X	0	0	0	%100
78	M39	Z	0	0	0	%100
79	M49	X	-6.201	-6.201	0	%100
80	M49	Z	10.74	10.74	0	%100
81	M50	X	-6.201	-6.201	0	%100
82	M50	Z	10.74	10.74	0	%100
83	M51	X	0	0	0	%100
84	M51	Z	0	0	0	%100
85	M61	X	-5.029	-5.029	0	%100
86	M61	Z	8.711	8.711	0	%100
87	M62	X	-5.029	-5.029	0	%100
88	M62	Ž	8.711	8.711	0	%100 %100
89	M63	X	-5.026	-5.026	0	%100
90	M63	Ž	8.706	8.706	0	%100
91	M64	X	-5.029	-5.029	0	%100
92	M64	Z	8.711	8.711	0	%100
93	M65	X	-5.029	-5.029	0	%100 %100
94	M65	Z	8.711	8.711	0	%100 %100
95	M66	X	-5.026	-5.026	0	%100 %100
96	M66	Z	8.706	8.706	0	%100 %100
97	M67	X	-5.029	-5.029	0	%100 %100
98	M67	Z	8.711	8.711	0	%100 %100
99	M68	X	-5.029	-5.029	0	%100 %100
100	M68	Z	8.711	8.711	0	%100 %100
101	M69	X	-5.026	-5.026	0	%100 %100
102	M69	Z	8.706	8.706	0	%100 %100
103	M70	X	-4.145	-4.145	0	%100 %100
104	M70	Z	7.179	7.179	0	%100 %100
105	M71	X	-4.145	-4.145	0	%100 %100
106	M71	Ž	7.179	7.179	0	%100 %100
107	M72	X	-4.097	-4.097	0	%100 %100
107	M72	Z	7.096	7.096	0	%100 %100
108			-4.145	-4.145		%100 %100
	M73	X Z		7.179	0	
110	M73		7.179			%100 %100
111	M74	X	-4.145 7.170	-4.145	0	%100 %100
112	M74	Z	7.179	7.179	0	%100 %100
113	M75	X	-4.097	-4.097	0	%100 %100
114	M75	Z	7.096	7.096	0	%100

Company Designer Job Number Nov 23, 2021 5:47 PM : Maser Consulting : NL : 21781092A

Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Distributed Loads (BLC 48: Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
115	MP1A	X	-4.377	-4.377	0	%100
116	MP1A	Z	7.581	7.581	0	%100
117	MP2A	X	-4.377	-4.377	0	%100
118	MP2A	Z	7.581	7.581	0	%100
119	MP4A	X	-4.377	-4.377	0	%100
120	MP4A	Z	7.581	7.581	0	%100
121	MP5A	X	-4.377	-4.377	0	%100
122	MP5A	Z	7.581	7.581	0	%100
123	MPA	X	-4.377	-4.377	0	%100
124	MPA	Z	7.581	7.581	0	%100 %100
125	MP6A	X	-4.377	-4.377	0	%100 %100
126	MP6A	Z	7.581	7.581	0	%100 %100
127	MP1C	X	-4.377	-4.377	0	%100 %100
128	MP1C	Z	7.581	7.581	0	%100 %100
129	MP1B	X	-4.377	-4.377	0	%100 %100
130	MP1B	Z	7.581	7.581	0	%100 %100
131	MPC	X	-4.377	-4.377	0	%100 %100
132	MPC	Z	7.581	7.581	0	%100 %100
133	MP2C	X	-4.377	-4.377	0	%100 %100
134	MP2C	Z	7.581	7.581	0	%100 %100
135	MP5C	X	-4.377	-4.377	0	%100 %100
136	MP5C MP5C	Z	7.581	7.581	0	%100 %100
137	MP6C	X	-4.377	-4.377	0	%100 %100
138	MP6C	Ž	7.581	7.581	0	%100 %100
139	MPB MPB	Z	-4.377	-4.377	0	%100
140	MPB		7.581	7.581	0	%100
141	MPB2	X	-4.377	-4.377	0	%100
142	MPB2	Z	7.581	7.581	0	%100
143	MP5B	X	-4.377	-4.377	0	%100
144	MP5B	Z	7.581	7.581	0	%100
145	MP4C	X	-4.377	-4.377	0	%100
146	MP4C	Z	7.581	7.581	0	%100
147	MP3C	X	-4.377	-4.377	0	%100
148	MP3C	Z	7.581	7.581	0	%100
149	M146	X	-6.911	-6.911	0	%100
150	M146	Z	11.97	11.97	0	%100
151	M147	X	-6.911	-6.911	0	%100
152	M147	Z	11.97	11.97	0	%100
153	M154	X	0	0	0	%100
154	M154	Z	0	0	0	%100
155	M155	X	0	0	0	%100
156	M155	Z	0	0	0	%100
157	M162	X	-6.911	-6.911	0	%100
158	M162	Z	11.97	11.97	0	%100
159	M163	X	-6.911	-6.911	0	%100
160	M163	Z	11.97	11.97	0	%100
161	MP3A	X	-4.377	-4.377	0	%100
162	MP3A	Z	7.581	7.581	0	%100
163	MP4B	X	-4.377	-4.377	0	%100
164	MP4B	Z	7.581	7.581	0	%100
165	MP6B	X	-4.377	-4.377	0	%100
166	MP6B	Z	7.581	7.581	0	%100
167	MP3B	X	-4.377	-4.377	0	%100
168	MP3B	Z	7.581	7.581	0	%100
169	M163A	X	-4.377	-4.377	0	%100
170	M163A	Z	7.581	7.581	0	%100
171	M166	X	69	69	0	%100

: Maser Consulting Company

Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
172	M166	Z	1.195	1.195	0	%100
173	M169A	X	69	69	0	%100
174	M169A	Z	1.195	1.195	0	%100
175	MP2B	X	-4.377	-4.377	0	%100
176	MP2B	Z	7.581	7.581	0	%100
177	M173A	X	-2.76	-2.76	0	%100
178	M173A	Z	4.781	4.781	0	%100
179	M176	X	-2.76	-2.76	0	%100
180	M176	Z	4.781	4.781	0	%100

Member Distributed Loads (BLC 49: Structure Wo (240 Deg))

1 M1 X -3.99 -3.99 0 %100 3 M2 X -3.99 -3.99 0 %100 4 M2 Z 2.304 2.304 0 %100 5 M3 X -7.689 -7.689 0 %100 6 M3 Z 4.439 4.439 0 %100 7 M4 X -7.69 -7.69 0 %100 8 M4 Z 4.44 4.44 0 %100 9 M5 X -7.633 -7.633 0 %100 10 M5 Z 4.407 4.407 0 %100 11 M6 X -2.793 -2.793 0 %100 12 M6 Z 1.613 1.613 0 %100 13 M7 X 2.793 -2.793 0 %100 14 M7 Z		Member Label	Direction		. End Magnitude[lb/ft,F	.Start Location[ft,%]	
3 M2 X -3.99 -3.99 0 %100 4 M2 Z 2.304 2.304 0 %100 5 M3 X -7.689 -7.689 0 %100 6 M3 Z 4.439 4.439 0 %100 7 M4 X -7.69 -7.699 0 %100 8 M4 Z 4.44 4.44 0 %100 9 M5 X -7.633 -7.633 0 %100 10 M5 Z 4.407 4.407 0 %100 11 M6 X -2.793 -2.793 0 %100 12 M6 Z 1.613 1.613 0 %100 13 M7 X -2.793 -2.793 0 %100 14 M7 Z 1.663 1.613 0 %100 15 M8 X </td <td></td> <td>M1</td> <td>X</td> <td>-3.99</td> <td>-3.99</td> <td>0</td> <td>%100</td>		M1	X	-3.99	-3.99	0	%100
4 M2 Z 2.304 2.304 0 %100 5 M3 X -7.689 -7.689 0 %100 6 M3 Z 4.439 4.439 0 %100 7 M4 X -7.69 -7.69 0 %100 8 M4 Z 4.44 4.44 0 %100 9 M5 X -7.633 -7.633 0 %100 10 M5 Z 4.407 4.407 0 %100 11 M6 X -2.793 2.293 0 %100 12 M6 Z 1.613 1.613 0 %100 14 M7 Z 2.793 -2.793 0 %100 14 M7 Z 1.613 1.613 0 %100 15 M8 X -11.172 -11.172 0 %100 16 M8 Z						0	
6 M3 X -7.689 -7.689 0 %100 6 M3 Z 4.439 4.439 0 %100 7 M4 X -7.69 -7.69 0 %100 8 M4 Z 4.44 4.44 0 %100 10 M5 X -7.633 -7.633 0 %100 11 M6 X -2.793 -2.793 0 %100 11 M6 X -2.793 -2.793 0 %100 12 M6 Z 1.613 1.613 0 %100 13 M7 X -2.793 -2.793 0 %100 14 M7 Z 1.613 1.613 0 %100 15 M8 X -11.172 -11.172 0 %100 16 M8 Z 6.45 6.45 0 %100 17 M9 <		M2				0	
6 M3 Z 4,439 4,439 0 %100 7 M4 X -7.69 -7.69 0 %100 8 M4 Z 4,444 4,44 0 %100 9 M5 X -7.633 -7.633 0 %100 10 M5 Z 4.407 4.407 0 %100 11 M6 X -2.793 -2.793 0 %100 12 M6 Z 1.613 1.613 0 %100 14 M7 Z 1.613 1.613 0 %100 14 M7 Z 1.613 1.613 0 %100 15 M8 X -1.1.72 -11.172 0 %100 16 M8 Z 6.45 6.45 0 %100 17 M9 X -11.172 -11.172 0 %100 18 M9 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td></t<>						0	
R M4 X -7.69 -7.69 0 %100 8 M4 Z 4.444 4.444 0 %100 9 M5 X -7.633 -7.633 0 %100 10 M5 Z 4.407 4.407 0 %100 11 M6 X -2.793 -2.793 0 %100 12 M6 Z 1.613 1.613 0 %100 13 M7 X -2.793 -2.793 0 %100 14 M7 Z 1.613 1.613 0 %100 15 M8 X -11.172 -11.172 0 %100 16 M8 Z 6.45 6.45 0 %100 17 M9 X -11.172 -11.172 0 %100 18 M9 Z 6.45 6.45 0 %100 20 M10	5	M3	X	-7.689	-7.689	0	
8 M4 Z 4.44 4.44 0 %100 10 M5 X -7.633 -7.633 0 %100 11 M6 X -2.793 -2.793 0 %100 12 M6 Z 1.613 1.613 0 %100 13 M7 X -2.793 -2.793 0 %100 14 M7 Z 1.613 1.613 0 %100 14 M7 Z 1.613 1.613 0 %100 15 M8 X -11.172 -11.172 0 %100 16 M8 Z 6.45 6.45 0 %100 17 M9 X -11.172 -11.172 0 %100 18 M9 Z 6.45 6.45 0 %100 19 M10 X 0 0 0 %100 21 M11 X<	6	M3	Z	4.439	4.439	0	%100
8 M4 Z 4.44 4.44 0 %100 10 M5 X -7.633 -7.633 0 %100 11 M6 X -2.793 -2.793 0 %100 12 M6 Z 1.613 1.613 0 %100 13 M7 X -2.793 -2.793 0 %100 14 M7 Z 1.613 1.613 0 %100 14 M7 Z 1.613 1.613 0 %100 15 M8 X -11.172 -11.172 0 %100 16 M8 Z 6.45 6.45 0 %100 17 M9 X -11.172 -11.172 0 %100 18 M9 Z 6.45 6.45 0 %100 20 M10 X 0 0 0 %100 21 M11 X<		M4	X	-7.69	-7.69	0	
10 M5 Z 4.407 4.407 0 %100 11 M6 X -2.793 -2.793 0 %100 12 M6 Z 1.613 1.613 0 %100 13 M7 X -2.793 -2.793 0 %100 14 M7 Z 1.613 1.613 0 %100 15 M8 X -11.172 -11.172 0 %100 16 M8 Z 6.45 6.45 0 %100 17 M9 X -11.172 -11.172 0 %100 18 M9 Z 6.45 6.45 0 %100 20 M10 X 0 0 0 %100 20 M10 X 0 0 0 %100 21 M11 X 0 0 0 %100 22 M11 X	8	M4	Z	4.44	4.44	0	%100
11 M6 X -2.793 -2.793 0 %100 12 M6 Z 1.613 1.613 0 %100 13 M7 X -2.793 0 %100 14 M7 Z 1.613 1.613 0 %100 15 M8 X -11.172 -11.172 0 %100 16 M8 Z 6.45 6.45 0 %100 17 M9 X -11.172 -11.172 0 %100 18 M9 Z 6.45 6.45 0 %100 18 M9 Z 6.45 0 %100 20 M10 X 0 0 0 %100 21 M11 X 0 0 0 %100 22 M11 X 0 0 0 %100 23 M12 X -8.867 -8.867		M5	X	-7.633	-7.633	0	%100
12 M6 Z 1.613 1.613 0 %100 13 M7 X -2.793 -2.793 0 %100 14 M7 Z 1.613 1.613 0 %100 15 M8 X -11.172 -11.172 0 %100 16 M8 Z 6.45 6.45 0 %100 17 M9 X -11.172 -11.172 0 %100 18 M9 Z 6.45 6.45 0 %100 19 M10 X 0 0 0 %100 20 M10 Z 0 0 0 %100 21 M11 X 0 0 0 %100 22 M11 Z 0 0 0 %100 23 M12 X -8.867 -8.867 0 %100 24 M12 Z 5.	10	M5	Z	4.407	4.407	0	%100
13 M7 X -2.793 -2.793 0 %100 14 M7 Z 1.613 1.613 0 %100 15 M8 X -11.172 -11.172 0 %100 16 M8 Z 6.45 6.45 0 %100 17 M9 X -11.172 -11.172 0 %100 18 M9 Z 6.45 6.45 0 %100 19 M10 X 0 0 0 %100 20 M10 Z 0 0 0 %100 21 M11 X 0 0 0 %100 21 M11 Z 0 0 0 %100 23 M12 X -8.867 -8.867 0 %100 24 M12 Z 5.119 5.119 0 %100 26 M13 X -		M6		-2.793	-2.793	0	%100
14 M7 Z 1.613 1.613 0 %100 15 M8 X -11.172 -11.172 0 %100 16 M8 Z 6.45 6.45 0 %100 17 M9 X -11.172 -11.172 0 %100 18 M9 Z 6.45 6.45 0 %100 19 M10 X 0 0 0 %100 20 M10 X 0 0 0 %100 21 M11 X 0 0 0 %100 21 M11 X 0 0 0 %100 23 M12 X -8.867 -8.867 0 %100 24 M12 Z 5.119 5.119 0 %100 25 M13 X -8.867 -8.867 0 %100 27 M14 X	12	M6	Z	1.613	1.613	0	%100
14 M7 Z 1.613 1.613 0 %100 15 M8 X -11.172 -11.172 0 %100 16 M8 Z 6.45 6.45 0 %100 17 M9 X -11.172 -11.172 0 %100 18 M9 Z 6.45 6.45 0 %100 19 M10 X 0 0 0 %100 20 M10 X 0 0 0 %100 21 M11 X 0 0 0 %100 21 M11 X 0 0 0 %100 23 M12 X -8.867 -8.867 0 %100 24 M12 Z 5.119 5.119 0 %100 25 M13 X -8.867 -8.867 0 %100 27 M14 X	13	M7	X	-2.793	-2.793	0	%100
15 M8 X -11.172 -11.172 0 %100 16 M8 Z 6.45 6.45 0 %100 17 M9 X -11.172 -11.172 0 %100 18 M9 Z 6.45 6.45 0 %100 19 M10 X 0 0 0 %100 20 M10 Z 0 0 0 %100 20 M10 Z 0 0 0 %100 21 M11 X 0 0 0 %100 22 M11 Z 0 0 0 %100 23 M12 X -8.867 -8.867 0 %100 23 M12 X -8.867 -8.867 0 %100 25 M13 X -8.867 -8.867 0 %100 26 M13 Z 5.119		M7	Z			0	
16 M8 Z 6.45 6.45 0 %100 17 M9 X -11.172 -11.172 0 %100 18 M9 Z 6.45 6.45 0 %100 19 M10 X 0 0 0 %100 20 M10 Z 0 0 0 %100 21 M11 X 0 0 0 %100 22 M11 Z 0 0 0 %100 23 M12 X -8.867 -8.867 0 %100 24 M12 Z 5.119 5.119 0 %100 25 M13 X -8.867 -8.867 0 %100 25 M13 X -8.867 -8.867 0 %100 27 M14 X -8.867 -8.867 0 %100 28 M14 Z <t< td=""><td>15</td><td>M8</td><td>X</td><td></td><td></td><td>0</td><td></td></t<>	15	M8	X			0	
17 M9 X -11.172 -11.172 0 %100 18 M9 Z 6.45 6.45 0 %100 19 M10 X 0 0 0 %100 20 M10 Z 0 0 0 %100 21 M11 X 0 0 0 %100 22 M11 Z 0 0 0 %100 22 M11 Z 0 0 0 %100 23 M12 X -8.867 -8.867 0 %100 24 M12 Z 5.119 5.119 0 %100 25 M13 X -8.867 -8.867 0 %100 26 M13 Z 5.119 5.119 0 %100 27 M14 X -8.867 -8.867 0 %100 28 M14 Z 5.119			Z				
18 M9 Z 6.45 6.45 0 %100 19 M10 X 0 0 0 %100 20 M10 Z 0 0 0 %100 21 M11 X 0 0 0 %100 22 M11 Z 0 0 0 %100 23 M12 X -8.867 -8.867 0 %100 24 M12 Z 5.119 5.119 0 %100 24 M12 Z 5.119 5.119 0 %100 25 M13 X -8.867 -8.867 0 %100 26 M13 Z 5.119 5.119 0 %100 27 M14 X -8.867 -8.867 0 %100 28 M14 Z 5.119 5.119 0 %100 30 M15 X						0	
19 M10 X 0 0 0 %100 20 M10 Z 0 0 0 %100 21 M11 X 0 0 0 %100 22 M11 Z 0 0 0 %100 23 M12 X -8.867 -8.867 0 %100 24 M12 Z 5.119 5.119 0 %100 25 M13 X -8.867 -8.867 0 %100 26 M13 Z 5.119 5.119 0 %100 26 M13 Z 5.119 5.119 0 %100 27 M14 X -8.867 -8.867 0 %100 28 M14 Z 5.119 5.119 0 %100 30 M15 X -4.852 -4.852 0 %100 31 M16 X							
20 M10 Z 0 0 0 %100 21 M11 X 0 0 0 %100 22 M11 Z 0 0 0 %100 23 M12 X -8.867 -8.867 0 %100 24 M12 Z 5.119 5.119 0 %100 25 M13 X -8.867 -8.867 0 %100 26 M13 Z 5.119 5.119 0 %100 27 M14 X -8.867 -8.867 0 %100 28 M14 Z 5.119 5.119 0 %100 29 M15 X -4.8252 -4.852 0 %100 30 M15 Z 2.801 2.801 0 %100 31 M16 X -4.825 -4.825 0 %100 32 M16 Z </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td>						0	
21 M11 X 0 0 0 %100 22 M11 Z 0 0 0 %100 23 M12 X -8.867 -8.867 0 %100 24 M12 Z 5.119 0 %100 24 M12 Z 5.119 0 %100 25 M13 X -8.867 -8.867 0 %100 26 M13 Z 5.119 5.119 0 %100 27 M14 X -8.867 -8.867 0 %100 28 M14 Z 5.119 5.119 0 %100 29 M15 X -4.852 -4.852 0 %100 30 M15 X 2.801 2.801 0 %100 31 M16 X 2.786 2.786 0 %100 32 M16 Z 2.786 2.		M10	Z			0	
22 M11 Z 0 0 %100 23 M12 X -8.867 -8.867 0 %100 24 M12 Z 5.119 5.119 0 %100 25 M13 X -8.867 -8.867 0 %100 26 M13 Z 5.119 5.119 0 %100 27 M14 X -8.867 -8.867 0 %100 28 M14 Z 5.119 5.119 0 %100 29 M15 X -4.852 -4.852 0 %100 30 M15 Z 2.801 0 %100 31 M16 X -4.825 -4.825 0 %100 32 M16 Z 2.786 2.786 0 %100 33 M17 X -8.867 -8.867 0 %100 34 M17 Z 5.119 <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td>						0	
23 M12 X -8.867 -8.867 0 %100 24 M12 Z 5.119 5.119 0 %100 25 M13 X -8.867 -8.867 0 %100 26 M13 Z 5.119 0 %100 27 M14 X -8.867 -8.867 0 %100 28 M14 Z 5.119 0 %100 29 M15 X -4.852 -4.852 0 %100 30 M15 X -4.852 -4.852 0 %100 30 M15 X -4.825 -4.825 0 %100 31 M16 X -4.825 -4.825 0 %100 32 M16 Z 2.786 2.786 0 %100 33 M17 X -8.867 0 %100 34 M17 Z 5.119 5.			Z				
24 M12 Z 5.119 5.119 0 %100 25 M13 X -8.867 -8.867 0 %100 26 M13 Z 5.119 5.119 0 %100 27 M14 X -8.867 -8.867 0 %100 28 M14 Z 5.119 5.119 0 %100 29 M15 X -4.852 -4.852 0 %100 30 M15 Z 2.801 0 %100 31 M16 X -4.825 -4.825 0 %100 32 M16 Z 2.786 2.786 0 %100 33 M17 X -8.867 -8.867 0 %100 34 M17 Z 5.119 5.119 0 %100 35 M18 X -15.96 -15.96 0 %100 36 M18 Z							
25 M13 X -8.867 -8.867 0 %100 26 M13 Z 5.119 5.119 0 %100 27 M14 X -8.867 -8.867 0 %100 28 M14 Z 5.119 5.119 0 %100 29 M15 X -4.852 -4.852 0 %100 30 M15 Z 2.801 0 %100 31 M16 X -4.825 -4.825 0 %100 31 M16 X -4.825 -4.825 0 %100 32 M16 Z 2.786 2.786 0 %100 33 M17 X -8.867 -8.867 0 %100 34 M17 Z 5.119 5.119 0 %100 35 M18 X -15.96 -15.96 0 %100 37 M18 <td< td=""><td></td><td></td><td>Z</td><td></td><td></td><td></td><td></td></td<>			Z				
26 M13 Z 5.119 5.119 0 %100 27 M14 X -8.867 -8.867 0 %100 28 M14 Z 5.119 5.119 0 %100 29 M15 X -4.852 -4.852 0 %100 30 M15 Z 2.801 2.801 0 %100 31 M16 X -4.825 -4.825 0 %100 32 M16 Z 2.786 2.786 0 %100 33 M17 X -8.867 -8.867 0 %100 34 M17 Z 5.119 5.119 0 %100 35 M18 X -15.96 -15.96 0 %100 36 M18 Z 9.215 9.215 0 %100 38 M19 X -15.96 -15.96 0 %100 39 <td< td=""><td></td><td></td><td>X</td><td></td><td></td><td></td><td></td></td<>			X				
27 M14 X -8.867 -8.867 0 %100 28 M14 Z 5.119 5.119 0 %100 29 M15 X -4.852 -4.852 0 %100 30 M15 Z 2.801 2.801 0 %100 31 M16 X -4.825 -4.825 0 %100 32 M16 Z 2.786 2.786 0 %100 33 M17 X -8.867 -8.867 0 %100 34 M17 Z 5.119 5.119 0 %100 35 M18 X -15.96 0 %100 36 M18 Z 9.215 9.215 0 %100 37 M19 X -15.96 0 %100 %100 38 M19 Z 9.215 9.215 0 %100 40 M20 X <td></td> <td></td> <td>Z</td> <td></td> <td></td> <td></td> <td></td>			Z				
28 M14 Z 5.119 0 %100 29 M15 X -4.852 -4.852 0 %100 30 M15 Z 2.801 2.801 0 %100 31 M16 X -4.825 -4.825 0 %100 32 M16 Z 2.786 2.786 0 %100 33 M17 X -8.867 -8.867 0 %100 34 M17 Z 5.119 5.119 0 %100 35 M18 X -15.96 -15.96 0 %100 36 M18 Z 9.215 9.215 0 %100 37 M19 X -15.96 -15.96 0 %100 38 M19 Z 9.215 9.215 0 %100 39 M20 X -2.793 -2.793 0 %100 40 M20 Z						0	
29 M15 X -4.852 -4.852 0 %100 30 M15 Z 2.801 0 %100 31 M16 X -4.825 -4.825 0 %100 32 M16 Z 2.786 2.786 0 %100 33 M17 X -8.867 -8.867 0 %100 34 M17 Z 5.119 5.119 0 %100 35 M18 X -15.96 -15.96 0 %100 36 M18 Z 9.215 9.215 0 %100 37 M19 X -15.96 -15.96 0 %100 38 M19 Z 9.215 9.215 0 %100 39 M20 X -2.793 -2.793 0 %100 40 M20 Z 1.613 1.613 0 %100 41 M21 X -2.793 -2.793 0 %100 42 M21 Z			Z				
30 M15 Z 2,801 2,801 0 %100 31 M16 X -4,825 -4,825 0 %100 32 M16 Z 2,786 2,786 0 %100 33 M17 X -8,867 -8,867 0 %100 34 M17 Z 5,119 0 %100 35 M18 X -15,96 -15,96 0 %100 36 M18 Z 9,215 9,215 0 %100 37 M19 X -15,96 -15,96 0 %100 38 M19 Z 9,215 9,215 0 %100 39 M20 X -2,793 -2,793 0 %100 40 M20 Z 1,613 1,613 0 %100 41 M21 X -2,793 -2,793 0 %100 42 M21 Z						0	
31 M16 X -4.825 -4.825 0 %100 32 M16 Z 2.786 2.786 0 %100 33 M17 X -8.867 -8.867 0 %100 34 M17 Z 5.119 5.119 0 %100 35 M18 X -15.96 -15.96 0 %100 36 M18 Z 9.215 9.215 0 %100 37 M19 X -15.96 -15.96 0 %100 38 M19 Z 9.215 9.215 0 %100 39 M20 X -2.793 -2.793 0 %100 40 M20 Z 1.613 1.613 0 %100 41 M21 X -2.793 -2.793 0 %100 42 M21 Z 1.613 1.613 0 %100			Z				
32 M16 Z 2.786 2.786 0 %100 33 M17 X -8.867 -8.867 0 %100 34 M17 Z 5.119 0 %100 35 M18 X -15.96 -15.96 0 %100 36 M18 Z 9.215 9.215 0 %100 37 M19 X -15.96 -15.96 0 %100 38 M19 Z 9.215 9.215 0 %100 39 M20 X -2.793 -2.793 0 %100 40 M20 Z 1.613 1.613 0 %100 41 M21 X -2.793 -2.793 0 %100 42 M21 Z 1.613 1.613 0 %100							
33 M17 X -8.867 -8.867 0 %100 34 M17 Z 5.119 5.119 0 %100 35 M18 X -15.96 -15.96 0 %100 36 M18 Z 9.215 9.215 0 %100 37 M19 X -15.96 -15.96 0 %100 38 M19 Z 9.215 9.215 0 %100 39 M20 X -2.793 -2.793 0 %100 40 M20 Z 1.613 1.613 0 %100 41 M21 X -2.793 -2.793 0 %100 42 M21 Z 1.613 1.613 0 %100							
34 M17 Z 5.119 0 %100 35 M18 X -15.96 -15.96 0 %100 36 M18 Z 9.215 9.215 0 %100 37 M19 X -15.96 -15.96 0 %100 38 M19 Z 9.215 9.215 0 %100 39 M20 X -2.793 -2.793 0 %100 40 M20 Z 1.613 1.613 0 %100 41 M21 X -2.793 -2.793 0 %100 42 M21 Z 1.613 1.613 0 %100						0	
35 M18 X -15.96 -15.96 0 %100 36 M18 Z 9.215 9.215 0 %100 37 M19 X -15.96 -15.96 0 %100 38 M19 Z 9.215 9.215 0 %100 39 M20 X -2.793 -2.793 0 %100 40 M20 Z 1.613 1.613 0 %100 41 M21 X -2.793 -2.793 0 %100 42 M21 Z 1.613 1.613 0 %100			Z				
36 M18 Z 9.215 9.215 0 %100 37 M19 X -15.96 -15.96 0 %100 38 M19 Z 9.215 9.215 0 %100 39 M20 X -2.793 -2.793 0 %100 40 M20 Z 1.613 1.613 0 %100 41 M21 X -2.793 -2.793 0 %100 42 M21 Z 1.613 1.613 0 %100							
37 M19 X -15.96 -15.96 0 %100 38 M19 Z 9.215 9.215 0 %100 39 M20 X -2.793 -2.793 0 %100 40 M20 Z 1.613 1.613 0 %100 41 M21 X -2.793 -2.793 0 %100 42 M21 Z 1.613 1.613 0 %100			Z				
38 M19 Z 9.215 9.215 0 %100 39 M20 X -2.793 -2.793 0 %100 40 M20 Z 1.613 1.613 0 %100 41 M21 X -2.793 -2.793 0 %100 42 M21 Z 1.613 1.613 0 %100						· ·	
39 M20 X -2.793 -2.793 0 %100 40 M20 Z 1.613 1.613 0 %100 41 M21 X -2.793 -2.793 0 %100 42 M21 Z 1.613 1.613 0 %100							
40 M20 Z 1.613 0 %100 41 M21 X -2.793 -2.793 0 %100 42 M21 Z 1.613 1.613 0 %100			X				
41 M21 X -2.793 -2.793 0 %100 42 M21 Z 1.613 1.613 0 %100			Z				
42 M21 Z 1.613 1.613 0 %100							
			Z				
44 M22 Z 7.756 7.756 0 %100			Z				

: NL : 21781092A

Model Name : Mount Analysis (Rev. 3)

Member Distributed Loads (BLC 49: Structure Wo (240 Deg)) (Continued)

Nov 23, 2021 5:47 PM

Checked By: DX

	Member Label	Direction		. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
45	M23	X	-13.433	-13.433	0	%100
46	M23	Z	7.756	7.756	0	%100
47	M24	X	-8.867	-8.867	0	%100
48	M24	Z	5.119	5.119	0	%100
49	M25	X	-8.867	-8.867	0	%100
50	M25	Z	5.119	5.119	0	%100
51	M26	X	-8.737	-8.737	0	%100
52	M26	Z	5.044	5.044	0	%100
53	M27	X	-8.74	-8.74	0	%100
54	M27	Z	5.046	5.046	0	%100
55	M28	X	-8.867	-8.867	0	%100
56	M28	Z	5.119	5.119	0	%100
57	M29	X	-3.99	-3.99	0	%100
58	M29	Z	2.304	2.304	0	%100
59	M30	X	-3.99	-3.99	0	%100
60	M30	Z	2.304	2.304	0	%100
61	M31	X	-13.433	-13.433	0	%100
62	M31	Z	7.756	7.756	0	%100
63	M32	X	-13.433	-13.433	0	%100
64	M32	Z	7.756	7.756	0	%100
65	M33	X	-8.867	-8.867	0	%100
66	M33	Z	5.119	5.119	0	%100
67	M34	X	-8.867	-8.867	0	%100
68	M34	Z	5.119	5.119	0	%100
69	M35	X	-8.737	-8.737	0	%100
70	M35	Z	5.044	5.044	0	%100
71	M36	X	-8.74	-8.74	0	%100
72	M36	Z	5.046	5.046	0	%100 %100
73	M37	X	-14.32	-14.32	0	%100
74	M37	Z	8.268	8.268	0	%100
75	M38	X	-3.58	-3.58	0	%100 %100
76	M38	Z	2.067	2.067	0	%100 %100
77	M39	X	-3.58	-3.58	0	%100
78	M39	Z	2.067	2.067	0	%100
79	M49	X	-14.32	-14.32	0	%100
80	M49	Z	8.268	8.268	0	%100 %100
81	M50	X	-3.58	-3.58	0	%100 %100
82	M50	Z	2.067	2.067	0	%100 %100
83	M51	X	-3.58	-3.58	0	%100 %100
84	M51	Z	2.067	2.067	0	%100 %100
85	M61	X	-7.689	-7.689	0	%100 %100
86	M61	Z	4.439	4.439	0	%100 %100
87	M62	X	-7.69	-7.69	0	%100 %100
88	M62	Z	4.44	4.44	0	%100 %100
89	M63	X	-7.633	-7.633	0	%100 %100
90	M63	Z	4.407	4.407	0	%100 %100
91	M64	X	-9.222	-9.222	0	%100 %100
92	M64	Z	5.324	5.324	0	%100 %100
93	M65	X	-9.221	-9.221	0	%100 %100
94	M65	Z	5.324	5.324	0	%100 %100
95	M66	X	-9.243	-9.243	0	%100 %100
96	M66	Z	5.336	5.336	0	%100
97	M67	X	-9.222	-9.222	0	%100 %100
98	M67	Z	5.324	5.324	0	%100 %100
99	M68	X	-9.221	-9.221	0	%100 %100
100	M68	Z	5.324	5.324	0	%100 %100
101	N69	X	-9.243	-9.243	0	%100 %100
IUI	IVIOS	^	-9.243	-9.243	U	70 TUU

RISA-3D Version 17.0.4

[R:\...\...\Mount Analysis\Rev 3\RISA\468927-VZW_MT_LO_H.r3d] Page 154

Company Designer : Maser Consulting

: NL

Job Number

: 21781092A Checked By: DX Model Name : Mount Analysis (Rev. 3)

Nov 23, 2021

5:47 PM

Member Distributed Loads (BLC 49: Structure Wo (240 Deg)) (Continued)

	Member Label	Direction		.End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
102	M69	Z	5.336	5.336	0	%100
103	M70	X	-7.689	-7.689	0	%100
104	M70	Z	4.439	4.439	0	%100
105	M71	X	-7.69	-7.69	0	%100
106	M71	Z	4.44	4.44	0	%100
107	M72	X	-7.633	-7.633	0	%100
108	M72	Z	4.407	4.407	0	%100
109	M73	X	-7.689	-7.689	0	%100 %100
110	M73	Ž	4.439	4.439	Ö	%100
111	M74	X	-7.69	-7.69	0	%100 %100
112	M74	Z	4.44	4.44	0	
						%100
113	M75	X	-7.633	-7.633	0	%100
114	M75	Z	4.407	4.407	0	%100
115	MP1A	X Z	-7.581	-7.581	0	%100
116	MP1A		4.377	4.377	0	%100
117	MP2A	X	-7.581	-7.581	0	%100
118	MP2A	Z	4.377	4.377	0	%100
119	MP4A	X	-7.581	-7.581	0	%100
120	MP4A	Z	4.377	4.377	0	%100
121	MP5A	X	-7.581	-7.581	0	%100
122	MP5A	Z	4.377	4.377	0	%100
123	MPA	X	-7.581	-7.581	0	%100
124	MPA	Z	4.377	4.377	0	%100
125	MP6A	X	-7.581	-7.581	Ö	%100
126	MP6A	Z	4.377	4.377	0	%100 %100
127	MP1C	X	-7.581	-7.581	0	%100
128	MP1C	Z	4.377	4.377	0	%100 %100
129	MP1B					%100 %100
		X Z	-7.581	-7.581	0	
130	MP1B		4.377	4.377	0	%100
131	MPC	X	-7.581	-7.581	0	%100
132	MPC	Z	4.377	4.377	0	%100
133	MP2C	X	-7.581	-7.581	0	%100
134	MP2C	Z	4.377	4.377	0	%100
135	MP5C	X	-7.581	-7.581	0	%100
136	MP5C	Z	4.377	4.377	0	%100
137	MP6C	X	-7.581	-7.581	0	%100
138	MP6C	Z	4.377	4.377	0	%100
139	MPB	X	-7.581	-7.581	0	%100
140	MPB	Z	4.377	4.377	0	%100
141	MPB2	X	-7.581	-7.581	0	%100
142	MPB2	Z	4.377	4.377	0	%100
143	MP5B	X	-7.581	-7.581	0	%100
144	MP5B	Z	4.377	4.377	0	%100
145	MP4C		-7.581	-7.581	0	%100 %100
146	MP4C	X Z	4.377	4.377	Ö	%100 %100
147	MP3C	X	-7.581	-7.581	0	%100 %100
148	MP3C	Z	4.377	4.377	0	%100
149	M146	X	-15.96	-15.96	0	%100
150	M146	Z	9.215	9.215	0	%100 %100
151	M147	X	-15.96	-15.96	0	%100
152	M147	Z	9.215	9.215	0	%100
153	M154	X	-3.99	-3.99	0	%100
154	M154	Z	2.304	2.304	0	%100
155	M155	X	-3.99	-3.99	0	%100
156	M155	Z	2.304	2.304	0	%100
157	M162	X	-3.99	-3.99	0	%100
158	M162	Z	2.304	2.304	0	%100

Company Designer : Maser Consulting : NL

Job Number : 21781092A

Checked By: DX Model Name : Mount Analysis (Rev. 3)

Nov 23, 2021

5:47 PM

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
159	M163	X	-3.99	-3.99	0	%100
160	M163	Z	2.304	2.304	0	%100
161	MP3A	X	-7.581	-7.581	0	%100
162	MP3A	Z	4.377	4.377	0	%100
163	MP4B	X	-7.581	-7.581	0	%100
164	MP4B	Z	4.377	4.377	0	%100
165	MP6B	X	-7.581	-7.581	0	%100
166	MP6B	Z	4.377	4.377	0	%100
167	MP3B	X	-7.581	-7.581	0	%100
168	MP3B	Z	4.377	4.377	0	%100
169	M163A	X	-7.581	-7.581	0	%100
170	M163A	Z	4.377	4.377	0	%100
171	M166	X	-3.586	-3.586	0	%100
172	M166	Z	2.07	2.07	0	%100
173	M169A	X	-3.586	-3.586	0	%100
174	M169A	Z	2.07	2.07	0	%100
175	MP2B	X	-7.581	-7.581	0	%100
176	MP2B	Z	4.377	4.377	0	%100
177	M173A	X	-3.586	-3.586	0	%100
178	M173A	Z	2.07	2.07	0	%100
179	M176	X	-3.586	-3.586	0	%100
180	M176	Z	2.07	2.07	0	%100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg))

1 M1 X 0 0 0 %100 2 M1 Z 0 0 0 %100 4 M2 X 0 0 0 %100 5 M3 X -8.289 -8.289 0 %100 6 M3 Z 0 0 0 %100 7 M4 X -8.29 -8.29 0 %100 8 M4 Z 0 0 0 %100 9 M5 X -8.194 -8.194 0 %100 10 M5 X -8.194 -8.194 0 %100 10 M5 X -8.194 -8.194 0 %100 11 M6 X -9.675 -9.675 0 %100 12 M6 Z 0 0 0 %100 12 M6 Z 0 0		Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
3 M2 X 0 0 0 %100 4 M2 Z 0 0 0 %100 5 M3 X -8.289 -8.289 0 %100 6 M3 Z 0 0 0 %100 7 M4 X -8.29 -8.29 0 %100 8 M4 Z 0 0 0 %100 9 M5 X -8.194 -8.194 0 %100 10 M5 Z 0 0 0 %100 11 M6 X -9.675 -9.675 0 %100 12 M6 Z 0 0 0 %100 13 M7 X -9.675 -9.675 0 %100 14 M7 Z 0 0 0 %100 15 M8 X -9.675 -9.675	1	M1	X	0	0	0	%100
4 M2 Z 0 0 %100 5 M3 X -8.289 -8.289 0 %100 6 M3 Z 0 0 0 %100 7 M4 X -8.29 -8.29 0 %100 8 M4 Z 0 0 0 %100 9 M5 X -8.194 -8.194 0 %100 10 M6 Z 0 0 0 %100 11 M6 X -9.675 -9.675 0 %100 12 M6 Z 0 0 0 %100 13 M7 X -9.675 -9.675 0 %100 13 M7 X -9.675 -9.675 0 %100 15 M8 X -9.675 -9.675 0 %100 16 M8 Z 0 0 <td< td=""><td>2</td><td>M1</td><td>Z</td><td>0</td><td>0</td><td>0</td><td>%100</td></td<>	2	M1	Z	0	0	0	%100
5 M3 X -8.289 -8.289 0 %100 6 M3 Z 0 0 0 %100 7 M4 X -8.29 -8.29 0 %100 8 M4 Z 0 0 0 %100 9 M5 X -8.194 -8.194 0 %100 10 M5 Z 0 0 0 %100 11 M6 X -9.675 -9.675 0 %100 12 M6 Z 0 0 0 %100 12 M6 Z 0 0 %100 13 M7 X -9.675 -9.675 0 %100 14 M7 Z 0 0 %100 14 M7 Z 0 0 %100 15 M8 X -9.675 -9.675 0 %100 <tr< td=""><td>3</td><td>M2</td><td>X</td><td>0</td><td>0</td><td>0</td><td>%100</td></tr<>	3	M2	X	0	0	0	%100
6 M3 Z 0 0 %100 7 M4 X -8.29 -8.29 0 %100 8 M4 Z 0 0 0 %100 9 M5 X -8.194 -8.194 0 %100 10 M5 Z 0 0 0 %100 11 M6 X -9.675 -9.675 0 %100 12 M6 Z 0 0 0 %100 12 M6 Z 0 0 0 %100 13 M7 X -9.675 -9.675 0 %100 14 M7 Z 0 0 0 %100 14 M7 Z 0 0 0 %100 15 M8 X -9.675 -9.675 0 %100 16 M8 Z 0 0 0 <t< td=""><td>4</td><td>M2</td><td>Z</td><td>0</td><td>0</td><td>0</td><td>%100</td></t<>	4	M2	Z	0	0	0	%100
6 M3 Z 0 0 %100 7 M4 X -8.29 -8.29 0 %100 8 M4 Z 0 0 0 %100 9 M5 X -8.194 -8.194 0 %100 10 M5 Z 0 0 0 %100 11 M6 X -9.675 -9.675 0 %100 12 M6 Z 0 0 0 %100 12 M6 Z 0 0 0 %100 13 M7 X -9.675 -9.675 0 %100 14 M7 Z 0 0 0 %100 14 M7 Z 0 0 0 %100 15 M8 X -9.675 -9.675 0 %100 16 M8 Z 0 0 0 <t< td=""><td>5</td><td>M3</td><td>X</td><td>-8.289</td><td>-8.289</td><td>0</td><td>%100</td></t<>	5	M3	X	-8.289	-8.289	0	%100
8 M4 Z 0 0 %100 9 M5 X -8.194 -8.194 0 %100 10 M5 Z 0 0 0 %100 11 M6 X -9.675 -9.675 0 %100 12 M6 Z 0 0 0 %100 13 M7 X -9.675 -9.675 0 %100 13 M7 X -9.675 -9.675 0 %100 14 M7 Z 0 0 0 %100 15 M8 X -9.675 -9.675 0 %100 16 M8 Z 0 0 0 %100 17 M9 X -9.675 -9.675 0 %100 18 M9 Z 0 0 0 %100 19 M10 X -5.17 -5.17	6	M3	Z			0	%100
9 M5 X -8.194 -8.194 0 %100 10 M5 Z 0 0 0 %100 11 M6 X -9.675 -9.675 0 %100 12 M6 Z 0 0 0 %100 13 M7 X -9.675 -9.675 0 %100 14 M7 Z 0 0 0 %100 15 M8 X -9.675 -9.675 0 %100 15 M8 X -9.675 -9.675 0 %100 16 M8 Z 0 0 0 %100 17 M9 X -9.675 -9.675 0 %100 18 M9 Z 0 0 0 %100 19 M10 X -5.17 -5.17 0 %100 20 M10 X -5.17	7	M4	X	-8.29	-8.29	0	%100
10 M5 Z 0 0 %100 11 M6 X -9.675 -9.675 0 %100 12 M6 Z 0 0 0 %100 13 M7 X -9.675 -9.675 0 %100 14 M7 Z 0 0 0 %100 15 M8 X -9.675 -9.675 0 %100 16 M8 Z 0 0 0 %100 17 M9 X -9.675 -9.675 0 %100 18 M9 Z 0 0 0 %100 19 M10 X -5.17 -5.17 0 %100 20 M10 Z 0 0 0 %100 21 M11 X -5.17 -5.17 0 %100 22 M11 Z 0 0 0	8	M4	Z	0	0	0	%100
10 M5 Z 0 0 %100 11 M6 X -9.675 -9.675 0 %100 12 M6 Z 0 0 0 %100 13 M7 X -9.675 -9.675 0 %100 14 M7 Z 0 0 0 %100 15 M8 X -9.675 -9.675 0 %100 16 M8 Z 0 0 0 %100 17 M9 X -9.675 -9.675 0 %100 18 M9 Z 0 0 0 %100 19 M10 X -5.17 -5.17 0 %100 20 M10 Z 0 0 0 %100 21 M11 X -5.17 -5.17 0 %100 22 M11 Z 0 0 0	9	M5	X	-8.194	-8.194	0	%100
12 M6 Z 0 0 0 %100 13 M7 X -9.675 -9.675 0 %100 14 M7 Z 0 0 0 %100 15 M8 X -9.675 -9.675 0 %100 16 M8 Z 0 0 0 %100 17 M9 X -9.675 -9.675 0 %100 18 M9 Z 0 0 0 %100 18 M9 Z 0 0 0 %100 19 M10 X -5.17 -5.17 0 %100 20 M10 X -5.17 -5.17 0 %100 21 M11 X -5.17 -5.17 0 %100 22 M11 Z 0 0 0 %100 23 M12 X -10.239 -10.239 0 %100 24 M12 Z 0 0 <	10	M5	Z	0	0	0	%100
13 M7 X -9.675 -9.675 0 %100 14 M7 Z 0 0 0 %100 15 M8 X -9.675 -9.675 0 %100 16 M8 Z 0 0 0 %100 17 M9 X -9.675 -9.675 0 %100 18 M9 Z 0 0 0 %100 19 M10 X -5.17 -5.17 0 %100 20 M10 Z 0 0 %100 21 M11 X -5.17 -5.17 0 %100 22 M11 Z 0 0 %100 23 M12 X -10.239 -10.239 0 %100 24 M12 Z 0 0 %100 25 M13 X -10.239 -10.239 0 %10	11	M6	X	-9.675	-9.675	0	%100
14 M7 Z 0 0 0 %100 15 M8 X -9.675 -9.675 0 %100 16 M8 Z 0 0 0 %100 17 M9 X -9.675 -9.675 0 %100 18 M9 Z 0 0 0 %100 19 M10 X -5.17 -5.17 0 %100 20 M10 Z 0 0 0 %100 21 M11 X -5.17 -5.17 0 %100 22 M11 Z 0 0 0 %100 23 M12 X -10.239 -10.239 0 %100 24 M12 Z 0 0 %100 25 M13 X -10.239 0 %100 26 M13 Z 0 0 %100 <td>12</td> <td>M6</td> <td>Z</td> <td>0</td> <td>0</td> <td>0</td> <td>%100</td>	12	M6	Z	0	0	0	%100
15 M8 X -9.675 -9.675 0 %100 16 M8 Z 0 0 0 %100 17 M9 X -9.675 -9.675 0 %100 18 M9 Z 0 0 0 %100 19 M10 X -5.17 -5.17 0 %100 20 M10 Z 0 0 0 %100 21 M11 X -5.17 -5.17 0 %100 22 M11 Z 0 0 0 %100 23 M12 X -10.239 -10.239 0 %100 24 M12 Z 0 0 %100 25 M13 X -10.239 -10.239 0 %100 26 M13 Z 0 0 %100 %100 28 M14 X -10.239 -1	13	M7		-9.675	-9.675	0	%100
16 M8 Z 0 0 %100 17 M9 X -9.675 -9.675 0 %100 18 M9 Z 0 0 0 %100 19 M10 X -5.17 -5.17 0 %100 20 M10 Z 0 0 0 %100 21 M11 X -5.17 -5.17 0 %100 22 M11 Z 0 0 0 %100 23 M12 X -10.239 -10.239 0 %100 24 M12 Z 0 0 0 %100 25 M13 X -10.239 -10.239 0 %100 26 M13 Z 0 0 0 %100 27 M14 X -10.239 -10.239 0 %100 28 M14 Z 0 0	14	M7	Z	0	0	0	%100
17 M9 X -9.675 -9.675 0 %100 18 M9 Z 0 0 0 %100 19 M10 X -5.17 -5.17 0 %100 20 M10 Z 0 0 0 %100 21 M11 X -5.17 -5.17 0 %100 22 M11 Z 0 0 0 %100 23 M12 X -10.239 -10.239 0 %100 24 M12 Z 0 0 0 %100 25 M13 X -10.239 -10.239 0 %100 26 M13 Z 0 0 0 %100 27 M14 X -10.239 -10.239 0 %100 28 M14 Z 0 0 0 %100 29 M15 X -7.097 -7.097 0 %100 30 M15 Z 0 0<	15	M8		-9.675	-9.675	0	%100
18 M9 Z 0 0 %100 19 M10 X -5.17 -5.17 0 %100 20 M10 Z 0 0 0 %100 21 M11 X -5.17 -5.17 0 %100 22 M11 Z 0 0 0 %100 23 M12 X -10.239 -10.239 0 %100 24 M12 Z 0 0 0 %100 25 M13 X -10.239 -10.239 0 %100 26 M13 Z 0 0 %100 27 M14 X -10.239 -10.239 0 %100 28 M14 Z 0 0 %100 29 M15 X -7.097 -7.097 0 %100 30 M15 Z 0 0 %100 <td></td> <td>M8</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>%100</td>		M8		0	0	0	%100
19 M10 X -5.17 -5.17 0 %100 20 M10 Z 0 0 0 %100 21 M11 X -5.17 -5.17 0 %100 22 M11 Z 0 0 0 %100 23 M12 X -10.239 -10.239 0 %100 24 M12 Z 0 0 0 %100 25 M13 X -10.239 -10.239 0 %100 26 M13 Z 0 0 %100 27 M14 X -10.239 -10.239 0 %100 28 M14 Z 0 0 %100 29 M15 X -7.097 -7.097 0 %100 30 M15 Z 0 0 %100	17	M9		-9.675	-9.675	0	%100
20 M10 Z 0 0 %100 21 M11 X -5.17 -5.17 0 %100 22 M11 Z 0 0 0 %100 23 M12 X -10.239 -10.239 0 %100 24 M12 Z 0 0 0 %100 25 M13 X -10.239 -10.239 0 %100 26 M13 Z 0 0 %100 27 M14 X -10.239 -10.239 0 %100 28 M14 Z 0 0 %100 29 M15 X -7.097 -7.097 0 %100 30 M15 Z 0 0 %100	18	M9	Z	0	0	0	%100
21 M11 X -5.17 -5.17 0 %100 22 M11 Z 0 0 0 %100 23 M12 X -10.239 -10.239 0 %100 24 M12 Z 0 0 0 %100 25 M13 X -10.239 -10.239 0 %100 26 M13 Z 0 0 0 %100 27 M14 X -10.239 -10.239 0 %100 28 M14 Z 0 0 %100 29 M15 X -7.097 -7.097 0 %100 30 M15 Z 0 0 %100	19	M10		-5.17	-5.17	0	%100
22 M11 Z 0 0 0 %100 23 M12 X -10.239 -10.239 0 %100 24 M12 Z 0 0 0 %100 25 M13 X -10.239 -10.239 0 %100 26 M13 Z 0 0 0 %100 27 M14 X -10.239 -10.239 0 %100 28 M14 Z 0 0 %100 29 M15 X -7.097 -7.097 0 %100 30 M15 Z 0 0 %100	20	M10		0	0	0	%100
23 M12 X -10.239 -10.239 0 %100 24 M12 Z 0 0 0 %100 25 M13 X -10.239 -10.239 0 %100 26 M13 Z 0 0 0 %100 27 M14 X -10.239 -10.239 0 %100 28 M14 Z 0 0 %100 29 M15 X -7.097 -7.097 0 %100 30 M15 Z 0 0 %100	21	M11		-5.17	-5.17	0	%100
24 M12 Z 0 0 0 %100 25 M13 X -10.239 -10.239 0 %100 26 M13 Z 0 0 0 %100 27 M14 X -10.239 -10.239 0 %100 28 M14 Z 0 0 0 %100 29 M15 X -7.097 -7.097 0 %100 30 M15 Z 0 0 0 %100	22	M11		0	0	0	%100
25 M13 X -10.239 0 %100 26 M13 Z 0 0 0 %100 27 M14 X -10.239 -10.239 0 %100 28 M14 Z 0 0 0 %100 29 M15 X -7.097 -7.097 0 %100 30 M15 Z 0 0 0 %100	23	M12	X	-10.239	-10.239	0	%100
26 M13 Z 0 0 0 %100 27 M14 X -10.239 -10.239 0 %100 28 M14 Z 0 0 0 %100 29 M15 X -7.097 -7.097 0 %100 30 M15 Z 0 0 0 %100		M12		0	0	0	
27 M14 X -10.239 0 %100 28 M14 Z 0 0 0 %100 29 M15 X -7.097 -7.097 0 %100 30 M15 Z 0 0 0 %100	25	M13		-10.239	-10.239	0	
28 M14 Z 0 0 %100 29 M15 X -7.097 -7.097 0 %100 30 M15 Z 0 0 %100				•	•	0	
29 M15 X -7.097 -7.097 0 %100 30 M15 Z 0 0 0 %100	27	M14		-10.239	-10.239	0	%100
30 M15 Z 0 0 0 %100				•	•	0	
				-7.097	-7.097	0	
21 M16 V 7.070 7.070 0 0/400				0	0	0	%100
31 WITO A -7.079 0 %100	31	M16	X	-7.079	-7.079	0	%100

Company Designer Job Number : NL

21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Page 157

Member Distributed Loads (BLC 50: Structure Wo (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	
32	M16	Z	0	0	0	%100
33	M17	X	-10.239	-10.239	0	%100
34	M17	Z	0	0	0	%100
35	M18	X	-13.822	-13.822	0	%100
36	M18	Z	0	0	0	%100
37	M19	X	-13.822	-13.822	0	%100
38	M19	Z	0	0	0	%100
39	M20	X	0	0	0	%100
40	M20	Z	0	0	0	%100
41	M21	X	0	0	0	%100
42	M21	Z	0	0	0	%100 %100
43	M22	X	-5.17	-5.17	0	%100
44	M22	Z	0	0	0	%100 %100
45	M23	X	-5.17	-5.17	0	%100
46	M23	Z	0	0	0	%100
47	M24	X	-10.239	-10.239	0	%100
48	M24	Z	0	0	Ö	%100 %100
49	M25	X	-10.239	-10.239	0	%100 %100
50	M25	Z	0	0	0	%100 %100
51	M26	X	-7.097	-7.097	0	%100 %100
52	M26	Z	0	0	0	%100 %100
53	M27	X	-7.079	-7.079	0	%100 %100
54	M27	Z	0	0	0	%100 %100
55	M28	X	-10.239	-10.239	0	%100 %100
56	M28	Z	0	0	0	%100 %100
57	M29	X	-13.822	-13.822	0	%100 %100
58	M29	Z	0	0	0	%100 %100
59	M30	X	-13.822	-13.822	0	%100 %100
60	M30	Z	-13.622	0	0	%100 %100
61	M31	X	-20.682	-20.682	0	%100 %100
62	M31	Ž	-20.082	-20.002	0	%100 %100
63	M32	X	-20.682	-20.682	0	%100 %100
64	M32	Ž	-20.082	-20.002	0	%100 %100
65	M33	X	-10.239	-10.239	0	%100 %100
66	M33	Z	-10.239	-10.239	0	%100 %100
67	M34	X	-10.239	-10.239	0	%100 %100
68	M34	Z	-10.239	-10.239	0	%100 %100
69	M35	X	-11.584	-11.584	0	%100 %100
	M35	Z	-11.584	-11.584		
70				-	0	%100 %100
71	M36 M36	X Z	-11.599	-11.599	0	%100 %100
			12.401	12.401	0	
73	M37	X	-12.401	-12.401	0	%100 %100
74	M37	Z	0	0	0	%100 %100
75	M38	X	0	0	0	%100 %100
76	M38	Z	0	0	0	%100
77	M39	X	-12.401	-12.401	0	%100
78	M39	Z	0	0	0	%100
79	M49	X	-12.401	-12.401	0	%100
80	M49	Z	0	0	0	%100
81	M50	X	0	0	0	%100
82	M50	Z	0	0	0	%100
83	M51	X	-12.401	-12.401	0	%100
84	M51	Z	0	0	0	%100
85	M61	X	-8.289	-8.289	0	%100
86	M61	Z	0	0	0	%100
87	M62	X	-8.29	-8.29	0	%100
88	M62	Z	0	0	0	%100

: NL

Nov 23, 2021 5:47 PM 21781092A Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Distributed Loads (BLC 50: Structure Wo (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[ft,%]	
89	M63	X	-8.194	-8.194	0	%100
90	M63	Z	0	0	0	%100
91	M64	X	-10.058	-10.058	0	%100
92	M64	Z	0	0	0	%100
93	M65	X	-10.059	-10.059	0	%100
94	M65	Z	0	0	0	%100
95	M66	X	-10.053	-10.053	0	%100
96	M66	Z	0	0	0	%100
97	M67	X	-10.058	-10.058	0	%100
98	M67	Z	0	0	Ō	%100
99	M68	X	-10.059	-10.059	0	%100
100	M68	Z	0	0	Ö	%100
101	M69	X	-10.053	-10.053	0	%100
102	M69	Z	0	0	0	%100 %100
103	M70	X	-10.058	-10.058	0	%100
104	M70	Z	0	0	0	%100 %100
105	M71	X	-10.059	-10.059	0	%100 %100
106	M71	Z	0	0	0	%100 %100
107	M72	X	-10.053	-10.053	0	%100 %100
108	M72	Z	0	0	0	%100 %100
109	M73	X	-10.058	-10.058	0	%100 %100
110	M73	Z	-10.056	-10.056	0	%100 %100
111	M74	X	-10.059	-10.059	0	%100 %100
112	M74	Ž	-10.039	0	0	%100 %100
113	M75	X	-10.053	-10.053	0	%100 %100
114	M75	Z	-10.055	0	0	%100 %100
115		X				
	MP1A	Z	-8.754	-8.754	0	%100 %100
116	MP1A		0 754	0 754	0	%100 %100
117	MP2A	X	-8.754	-8.754	0	%100 %400
118	MP2A	Z	0 754	0 754	0	%100
119	MP4A	X	-8.754	-8.754	0	%100 %100
120	MP4A	Z	0 754	0 754	0	%100
121	MP5A	X	-8.754	-8.754	0	%100
122	MP5A	Z	0	0	0	%100
123	MPA	X	-8.754	-8.754	0	%100
124	MPA	Z	0	0	0	%100
125	MP6A	X	-8.754	-8.754	0	%100
126	MP6A	Z	0	0	0	%100
127	MP1C	X	-8.754	-8.754	0	%100
128	MP1C	Z	0	0	0	%100
129	MP1B	X	-8.754	-8.754	0	%100
130	MP1B	Z	0	0	0	%100
131	MPC	X	-8.754	-8.754	0	%100
132	MPC	Z	0	0	0	%100
133	MP2C	X	-8.754	-8.754	0	%100
134	MP2C	Z	0	0	0	%100
135	MP5C	X	-8.754	-8.754	0	%100
136	MP5C	Z	0	0	0	%100
137	MP6C	X	-8.754	-8.754	0	%100
138	MP6C	Z	0	0	0	%100
139	MPB	X	-8.754	-8.754	0	%100
140	MPB	Z	0	0	0	%100
141	MPB2	X	-8.754	-8.754	0	%100
142	MPB2	Z	0	0	0	%100
143	MP5B	X	-8.754	-8.754	0	%100
144	MP5B	Ž	0	0	0	%100 %100
145	MP4C	X	-8.754	-8.754	0	%100

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	
146	MP4C	Z	0	0	0	%100
147	MP3C	X	-8.754	-8.754	0	%100
148	MP3C	Z	0	0	0	%100
149	M146	X	-13.822	-13.822	0	%100
150	M146	Z	0	0	0	%100
151	M147	X	-13.822	-13.822	0	%100
152	M147	Z	0	0	0	%100
153	M154	X	-13.822	-13.822	0	%100
154	M154	Z	0	0	0	%100
155	M155	X	-13.822	-13.822	0	%100
156	M155	Z	0	0	0	%100
157	M162	X	0	0	0	%100
158	M162	Z	0	0	0	%100
159	M163	X	0	0	0	%100
160	M163	Z	0	0	0	%100
161	MP3A	X	-8.754	-8.754	0	%100
162	MP3A	Z	0	0	0	%100
163	MP4B	X	-8.754	-8.754	0	%100
164	MP4B	Z	0	0	0	%100
165	MP6B	X	-8.754	-8.754	0	%100
166	MP6B	Z	0	0	0	%100
167	MP3B	X	-8.754	-8.754	0	%100
168	MP3B	Z	0	0	0	%100
169	M163A	X	-8.754	-8.754	0	%100
170	M163A	Z	0	0	0	%100
171	M166	X	-5.52	-5.52	0	%100
172	M166	Z	0	0	0	%100
173	M169A	X	-5.52	-5.52	0	%100
174	M169A	Z	0	0	0	%100
175	MP2B	X	-8.754	-8.754	0	%100
176	MP2B	Z	0	0	0	%100
177	M173A	Χ	-1.38	-1.38	0	%100
178	M173A	Z	0	0	0	%100
179	M176	X	-1.38	-1.38	0	%100
180	M176	Z	0	0	0	%100

Member Distributed Loads (BLC 51: Structure Wo (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	X	-3.99	-3.99	0	%100
2	M 1	Z	-2.304	-2.304	0	%100
3	M2	X	-3.99	-3.99	0	%100
4	M2	Z	-2.304	-2.304	0	%100
5	M3	X	-7.689	-7.689	0	%100
6	M3	Z	-4.439	-4.439	0	%100
7	M4	X	-7.69	-7.69	0	%100
8	M4	Z	-4.44	-4.44	0	%100
9	M5	X	-7.633	-7.633	0	%100
10	M5	Z	-4.407	-4.407	0	%100
11	M6	X	-11.172	-11.172	0	%100
12	M6	Z	-6.45	-6.45	0	%100
13	M7	X	-11.172	-11.172	0	%100
14	M7	Z	-6.45	-6.45	0	%100
15	M8	X	-2.793	-2.793	0	%100
16	M8	Z	-1.613	-1.613	0	%100
17	M9	X	-2.793	-2.793	0	%100
18	M9	Z	-1.613	-1.613	0	%100

: NL

Nov 23, 2021 5:47 PM 21781092A Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Distributed Loads (BLC 51: Structure Wo (300 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
19	M10	X	-13.433	-13.433	0	%100
20	M10	Z	-7.756	-7.756	0	%100
21	M11	X	-13.433	-13.433	0	%100
22	M11	Z	-7.756	-7.756	0	%100
23	M12	X	-8.867	-8.867	0	%100
24	M12	Z	-5.119	-5.119	0	%100
25	M13	X	-8.867	-8.867	0	%100
26	M13	Z	-5.119	-5.119	0	%100
27	M14	X	-8.867	-8.867	0	%100
28	M14	Z	-5.119	-5.119	0	%100
29	M15	X	-8.737	-8.737	0	%100
30	M15	Z	-5.044	-5.044	0	%100
31	M16	X	-8.74	-8.74	0	%100
32	M16	Ž	-5.046	-5.046	0	%100
33	M17	X	-8.867	-8.867	0	%100 %100
34	M17	Z	-5.119	-5.119	0	%100 %100
35	M18	X	-3.99	-3.99	0	%100 %100
36	M18	Z	-2.304	-2.304	0	%100 %100
37	M19	X	-3.99	-3.99	0	%100 %100
38	M19	Ž	-2.304	-2.304	0	%100 %100
39	M20	X	-2.793	-2.793	0	%100
40	M20	Z	-1.613	-1.613	0	%100
41	M21	X	-2.793	-2.793	0	%100
42	M21	Z	-1.613	-1.613	0	%100
43	M22	X	0	0	0	%100
44	M22	Z	0	0	0	%100
45	M23	X	0	0	0	%100
46	M23	Z	0	0	0	%100
47	M24	X	-8.867	-8.867	0	%100
48	M24	Z	-5.119	-5.119	0	%100
49	M25	X	-8.867	-8.867	0	%100
50	M25	Z	-5.119	-5.119	0	%100
51	M26	X	-4.852	-4.852	0	%100
52	M26	Z	-2.801	-2.801	0	%100
53	M27	X	-4.825	-4.825	0	%100
54	M27	Z	-2.786	-2.786	0	%100
55	M28	X	-8.867	-8.867	0	%100
56	M28	Z	-5.119	-5.119	0	%100
57	M29	X	-15.96	-15.96	0	%100
58	M29	Z	-9.215	-9.215	0	%100
59	M30	X	-15.96	-15.96	0	%100
60	M30	Ž	-9.215	-9.215	0	%100
61	M31	X	-13.433	-13.433	0	%100 %100
62	M31	Z	-7.756	-7.756	0	%100 %100
63	M32	X	-13.433	-13.433	0	%100
64	M32	Z	-7.756	-7.756	Ö	%100 %100
65	M33	X	-8.867	-8.867	0	%100 %100
66	M33	X Z	-5.119	-5.119	0	%100 %100
67	M34	X	-8.867	-8.867	0	%100 %100
68	M34	Ž	-5.119	-5.119	0	%100 %100
69	M35	X	-8.737	-8.737	0	%100 %100
70	M35	Z	-5.044	-5.044	0	%100 %100
71	M36	X Z	-8.74	-8.74	0	%100 %100
72	M36		-5.046	-5.046	0	%100 %100
73	M37	X	-3.58	-3.58	0	%100
74	M37	Z	-2.067	-2.067	0	%100
75	M38	X	-3.58	-3.58	0	%100

: NL

21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Page 161

Member Distributed Loads (BLC 51: Structure Wo (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	. End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
76	M38	Z	-2.067	-2.067	0	%100
77	M39	X	-14.32	-14.32	0	%100
78	M39	Z	-8.268	-8.268	0	%100 %100
79	M49	X	-3.58	-3.58	0	%100 %100
80	M49	Z	-2.067	-2.067	0	%100 %100
81	M50	X	-3.58	-3.58	0	%100 %100
82	M50	Z	-2.067	-2.067	Ö	%100 %100
83	M51	X	-14.32	-14.32	0	%100
84	M51	Z	-8.268	-8.268	0	%100
85	M61	X	-7.689	-7.689	0	%100
86	M61	Z	-4.439	-4.439	0	%100 %100
87	M62	X	-7.69	-7.69	0	%100
88	M62	Z	-4.44	-4.44	Ō	%100
89	M63	X	-7.633	-7.633	0	%100
90	M63	Z	-4.407	-4.407	0	%100 %100
91	M64	X	-7.689	-7.689	0	%100
92	M64	Z	-4.439	-4.439	0	%100
93	M65	X	-7.69	-7.69	0	%100
94	M65	Z	-4.44	-4.44	0	%100 %100
95	M66	X	-7.633	-7.633	0	%100
96	M66	Z	-4.407	-4.407	0	%100 %100
97	M67	X	-7.689	-7.689	0	%100
98	M67	Z	-4.439	-4.439	0	%100
99	M68	X	-7.69	-7.69	0	%100
100	M68	Z	-4.44	-4.44	0	%100
101	M69	X	-7.633	-7.633	0	%100
102	M69	Z	-4.407	-4.407	0	%100
103	M70	X	-9.222	-9.222	0	%100
104	M70	Z	-5.324	-5.324	Ö	%100
105	M71	X	-9.221	-9.221	0	%100
106	M71	Z	-5.324	-5.324	0	%100
107	M72	X	-9.243	-9.243	0	%100
108	M72	Z	-5.336	-5.336	0	%100
109	M73	X	-9.222	-9.222	0	%100
110	M73	Z	-5.324	-5.324	0	%100
111	M74	X	-9.221	-9.221	0	%100
112	M74	Z	-5.324	-5.324	0	%100
113	M75	X	-9.243	-9.243	0	%100
114	M75	Z	-5.336	-5.336	0	%100
115	MP1A	X	-7.581	-7.581	0	%100
116	MP1A	Z	-4.377	-4.377	0	%100
117	MP2A	X	-7.581	-7.581	0	%100
118	MP2A	Z	-4.377	-4.377	0	%100
119	MP4A	X	-7.581	-7.581	0	%100
120	MP4A	Z	-4.377	-4.377	0	%100
121	MP5A	X	-7.581	-7.581	0	%100
122	MP5A	Z	-4.377	-4.377	0	%100
123	MPA	X	-7.581	-7.581	0	%100
124	MPA	Z	-4.377	-4.377	Ō	%100
125	MP6A	X	-7.581	-7.581	0	%100
126	MP6A	Z	-4.377	-4.377	0	%100
127	MP1C	X	-7.581	-7.581	0	%100
128	MP1C	Z	-4.377	-4.377	0	%100
129	MP1B	X	-7.581	-7.581	0	%100
130	MP1B	Z	-4.377	-4.377	0	%100
131	MPC	X	-7.581	-7.581	0	%100
132	MPC	Z	-4.377	-4.377	0	%100

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 51: Structure Wo (300 Deg)) (Continued)

	oci Distributca Lot	•	. Otractare We	1000 Dcg// (00/		
400	Member Label	Direction		. End Magnitude[lb/ft,F		End Location[ft,%]
133	MP2C	X	-7.581	-7.581	0	%100
134	MP2C	Z	-4.377	-4.377	0	%100
135	MP5C	X	-7.581	-7.581	0	%100
136	MP5C	Z	-4.377	-4.377	0	%100
137	MP6C	X	-7.581	-7.581	0	%100
138	MP6C	Z	-4.377	-4.377	0	%100
139	MPB	X	-7.581	-7.581	0	%100
140	MPB	Z	-4.377	-4.377	0	%100
141	MPB2	X	-7.581	-7.581	0	%100
142	MPB2	Z	-4.377	-4.377	0	%100
143	MP5B	X	-7.581	-7.581	0	%100
144	MP5B	Z	-4.377	-4.377	0	%100
145	MP4C	X	-7.581	-7.581	0	%100
146	MP4C	Z	-4.377	-4.377	0	%100
147	MP3C	X	-7.581	-7.581	0	%100
148	MP3C	Z	-4.377	-4.377	0	%100
149	M146	X	-3.99	-3.99	0	%100
150	M146	Z	-2.304	-2.304	0	%100
151	M147	X	-3.99	-3.99	Ö	%100
152	M147	Ž	-2.304	-2.304	Ö	%100
153	M154	X	-15.96	-15.96	0	%100
154	M154	Z	-9.215	-9.215	0	%100 %100
155	M155	X	-15.96	-15.96	0	%100 %100
156	M155	Z	-9.215	-9.215	0	%100 %100
157	M162	X	-3.99	-3.99	0	%100 %100
158	M162	Z	-2.304	-2.304	Ö	%100 %100
159	M163	X	-3.99	-3.99	0	%100 %100
160	M163	Z	-2.304	-2.304	0	%100 %100
161	MP3A	X	-7.581	-7.581	0	%100 %100
162	MP3A	Z	-4.377	-4.377	0	%100 %100
163	MP4B	X	-7.581	-7.581	0	%100 %100
164	MP4B	Z	-4.377	-4.377	0	%100 %100
165			-4.377 -7.581			
	MP6B	X		-7.581	0	%100
166	MP6B	Z	-4.377	-4.377	0	%100 %100
167	MP3B	X	-7.581	-7.581	0	%100
168	MP3B	Z	-4.377	-4.377	0	%100
169	M163A	X	-7.581	-7.581	0	%100
170	M163A	Z	-4.377	-4.377	0	%100
171	M166	X	-3.586	-3.586	0	%100
172	M166	Z	-2.07	-2.07	0	%100
173	M169A	X Z	-3.586	-3.586	0	%100
174	M169A		-2.07	-2.07	0	%100
175	MP2B	X	-7.581	-7.581	0	%100
176	MP2B	Z	-4.377	-4.377	0	%100
177	M173A	X Z	0	0	0	%100
178	M173A		0	0	0	%100
179	M176	X	0	0	0	%100
180	M176	Z	0	0	0	%100

Member Distributed Loads (BLC 52: Structure Wo (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	-6.911	-6.911	0	%100
2	M1	Z	-11.97	-11.97	0	%100
3	M2	X	-6.911	-6.911	0	%100
4	M2	Z	-11.97	-11.97	0	%100
5	M3	X	-5.029	-5.029	0	%100

Job Number

Model Name

Company Designer Nov 23, 2021 : NL 5:47 PM : 21781092A Checked By: DX : Mount Analysis (Rev. 3)

Member Distributed Loads (BLC 52: Structure Wo (330 Deg)) (Continued)

	Member Label	Direction		.End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
6	M3	Z	-8.711	-8.711	0	%100
7	M4	X	-5.029	-5.029	0	%100
8	M4	Z	-8.711	-8.711	0	%100
9	M5	Χ	-5.026	-5.026	0	%100
10	M5	Z	-8.706	-8.706	0	%100
11	M6	X	-4.838	-4.838	0	%100
12	M6	Ž	-8.379	-8.379	0	%100
13	M7	X	-4.838	-4.838	0	%100 %100
14	M7	Z	-8.379	-8.379	0	%100 %100
15		X				%100 %100
	M8		0	0	0	
16	M8	Z	0	0	0	%100
17	<u>M9</u>	X	0	0	0	%100
18	M9	Z	0	0	0	%100
19	M10	X	-10.341	-10.341	0	%100
20	M10	Z	-17.911	-17.911	0	%100
21	M11	X	-10.341	-10.341	0	%100
22	M11	Z	-17.911	-17.911	0	%100
23	M12	Χ	-5.119	-5.119	0	%100
24	M12	Z	-8.867	-8.867	0	%100
25	M13	X	-5.119	-5.119	0	%100
26	M13	Ž	-8.867	-8.867	0	%100 %100
27	M14	X	-5.119	-5.119	0	%100 %100
28	M14	Z	-8.867	-8.867	0	%100 %100
29	M15	X				%100 %100
		Z	-5.792	-5.792	0	
30	M15		-10.032	-10.032	0	%100
31	M16	X	-5.799	-5.799	0	%100
32	M16	Z	-10.045	-10.045	0	%100
33	M17	X	-5.119	-5.119	0	%100
34	M17	Z	-8.867	-8.867	0	%100
35	M18	X	0	0	0	%100
36	M18	Z	0	0	0	%100
37	M19	Χ	0	0	0	%100
38	M19	Z	0	0	0	%100
39	M20	Χ	-4.838	-4.838	0	%100
40	M20	Z	-8.379	-8.379	0	%100
41	M21	X	-4.838	-4.838	0	%100
42	M21	Z	-8.379	-8.379	0	%100 %100
43	M22	X	-2.585	-2.585	0	%100 %100
44	M22	Ž	-4.478	-4.478	0	%100 %100
45						%100 %100
	M23	X	-2.585	-2.585	0	
46	M23	Z	-4.478	-4.478	0	%100
47	M24	X	-5.119	-5.119	0	%100
48	M24	Z	-8.867	-8.867	0	%100
49	M25	X Z	-5.119	-5.119	0	%100
50	M25		-8.867	-8.867	0	%100
51	M26	X	-3.549	-3.549	0	%100
52	M26	Z	-6.147	-6.147	0	%100
53	M27	X	-3.539	-3.539	0	%100
54	M27	Z	-6.13	-6.13	0	%100
55	M28	X	-5.119	-5.119	0	%100
56	M28	Ž	-8.867	-8.867	Ō	%100
57	M29	X	-6.911	-6.911	0	%100 %100
58	M29	Z	-11.97	-11.97	0	%100 %100
59	M30	X	-6.911	-6.911	0	%100 %100
60	M30	Z	-11.97	-11.97	0	%100
61	M31	X	-2.585	-2.585	0	%100
62	M31	Z	-4.478	-4.478	0	%100

: NL

21781092A

Model Name Mount Analysis (Rev. 3)

Nov 23, 2021 5:47 PM

Checked By: DX

	Member Label		2 : Structure Wo	. End Magnitude[lb/ft,F		End Location[ft 0/1
63	M32	Direction X	-2.585	. End Magnitude[ib/π,F	.Start Location[π,%]	End Location[ft,%] %100
64	M32	Z	-4.478	-4.478	0	%100 %100
65	M33	X	-5.119	-5.119	0	%100 %100
66	M33	Z	-8.867	-8.867	0	%100 %100
67					-	
	M34	X Z	-5.119	-5.119	0	%100 %100
68	M34		-8.867	-8.867		%100
69	M35	X	-3.549	-3.549	0	%100 %100
70	M35	Z	-6.147	-6.147	0	%100
71	M36	X	-3.539	-3.539	0	%100
72	M36	Z	-6.13	-6.13	0	%100
73	M37	X	0	0	0	%100
74	M37	Z	0	0	0	%100
75	M38	X	-6.201	-6.201	0	%100
76	M38	Z	-10.74	-10.74	0	%100
77	M39	X	-6.201	-6.201	0	%100
78	M39	Z	-10.74	-10.74	0	%100
79	M49	X	0	0	0	%100
80	M49	Z	0	0	0	%100
81	M50	X	-6.201	-6.201	0	%100
82	M50	Z	-10.74	-10.74	0	%100
83	M51	X	-6.201	-6.201	0	%100
84	M51	Z	-10.74	-10.74	0	%100
85	M61	X	-5.029	-5.029	0	%100
86	M61	Z	-8.711	-8.711	0	%100
87	M62	X	-5.029	-5.029	0	%100
88	M62	Z	-8.711	-8.711	0	%100
89	M63	X	-5.026	-5.026	0	%100
90	M63	Z	-8.706	-8.706	0	%100
91	M64	X	-4.145	-4.145	0	%100
92	M64	Z	-7.179	-7.179	0	%100
93	M65	X	-4.145	-4.145	0	%100
94	M65	Z	-7.179	-7.179	0	%100
95	M66	X	-4.097	-4.097	0	%100
96	M66	Z	-7.096	-7.096	0	%100
97	M67	X	-4.145	-4.145	0	%100
98	M67	Z	-7.179	-7.179	0	%100
99	M68	X	-4.145	-4.145	0	%100 %100
100	M68	Z	-7.179	-7.179	0	%100 %100
101	M69	X	-4.097	-4.097	0	%100 %100
102	M69	Z	-7.096	-7.096	0	%100 %100
103	M70	X	-5.029	-5.029	0	%100 %100
104	M70	Z	-8.711	-8.711	0	%100 %100
105	M71	X	-5.029	-5.029	0	%100 %100
106	M71	Z	-8.711	-8.711	0	%100 %100
107	M72	X	-5.026	-5.026	0	%100 %100
107	M72	Z	-8.706	-8.706	0	%100 %100
109	M73	X	-5.029	-5.029	0	%100 %100
110	M73	Z	-8.711	-8.711	0	%100 %100
111	M74		-8.711 -5.029	-8.711		%100 %100
112	M74	X Z	-5.029 -8.711	-8.711	0	
						%100 %100
113	M75	X	-5.026	-5.026	0	%100 %100
114	M75	Z	-8.706	-8.706	0	%100 %100
115	MP1A	X	-4.377	-4.377	0	%100 %100
116	MP1A	Z	-7.581	-7.581	0	%100
117	MP2A	X	-4.377	-4.377	0	%100
118	MP2A	Z	-7.581	-7.581	0	%100
119	MP4A	X	-4.377	-4.377	0	%100

Company Designer Job Number Nov 23, 2021 5:47 PM : Maser Consulting : NL

: 21781092A

Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Distributed Loads (BLC 52: Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
120	MP4A	Z	-7.581	-7.581	0	%100
121	MP5A	X	-4.377	-4.377	0	%100
122	MP5A	Z	-7.581	-7.581	0	%100
123	MPA	X	-4.377	-4.377	0	%100
124	MPA	Z	-7.581	-7.581	0	%100
125	MP6A	X	-4.377	-4.377	0	%100
126	MP6A	Z	-7.581	-7.581	0	%100
127	MP1C	X	-4.377	-4.377	0	%100
128	MP1C	Z	-7.581	-7.581	0	%100
129	MP1B	X	-4.377	-4.377	0	%100
130	MP1B	Z	-7.581	-7.581	0	%100
131	MPC	X	-4.377	-4.377	0	%100
132	MPC	Z	-7.581	-7.581	0	%100
133	MP2C	X	-4.377	-4.377	0	%100 %100
134	MP2C	Z	-7.581	-7.581	Ö	%100 %100
135	MP5C	X	-4.377	-4.377	0	%100 %100
136	MP5C	Z	-7.581	-7.581	0	%100 %100
137	MP6C	X	-4.377	-4.377	0	%100 %100
138	MP6C	Ž	-7.581	-7.581	0	%100 %100
139	MPB	X	-4.377	-4.377	0	%100 %100
140	MPB	Ž	-7.581	-4.577 -7.581	0	%100 %100
141	MPB2	X	-4.377	-4.377	0	%100 %100
142	MPB2	Z	-4.577 -7.581	-4.577 -7.581	0	%100 %100
143	MP5B	X	-4.377	-4.377	0	%100 %100
	MP5B	Z				
144			-7.581	-7.581	0	%100 %100
145	MP4C	X	-4.377	-4.377	0	%100
146	MP4C	Z	-7.581	-7.581	0	%100
147	MP3C	X	-4.377	-4.377	0	%100
148	MP3C	Z	-7.581	-7.581	0	%100
149	M146	X	0	0	0	%100
150	M146	Z	0	0	0	%100
151	M147	X	0	0	0	%100
152	M147	Z	0	0	0	%100
153	M154	X	-6.911	-6.911	0	%100
154	M154	Z	-11.97	-11.97	0	%100
155	M155	X	-6.911	-6.911	0	%100
156	M155	Z	-11.97	-11.97	0	%100
157	M162	X	-6.911	-6.911	0	%100
158	M162	Z	-11.97	-11.97	0	%100
159	M163	X	-6.911	-6.911	0	%100
160	M163	Z	-11.97	-11.97	0	%100 %400
161	MP3A	X	-4.377	-4.377	0	%100
162	MP3A	Z	-7.581	-7.581	0	%100
163	MP4B	X	-4.377	-4.377	0	%100
164	MP4B	Z	-7.581	-7.581	0	%100
165	MP6B	X	-4.377	-4.377	0	%100
166	MP6B	Z	-7.581	-7.581	0	%100
167	MP3B	X	-4.377	-4.377	0	%100
168	MP3B	Z	-7.581	-7.581	0	%100
169	M163A	X	-4.377	-4.377	0	%100
170	M163A	Z	-7.581	-7.581	0	%100
171	M166	X	69	69	0	%100
172	M166	Z	-1.195	-1.195	0	%100
173	M169A	X	69	69	0	%100
174	M169A	Z	-1.195	-1.195	0	%100
175	MP2B	X	-4.377	-4.377	0	%100
176	MP2B	Z	-7.581	-7.581	0	%100

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
177	M173A	X	69	69	0	%100
178	M173A	Z	-1.195	-1.195	0	%100
179	M176	X	69	69	0	%100
180	M176	Z	-1.195	-1.195	0	%100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	
1	M1	X	0	0	0	%100
2	M1	Z	-5.397	-5.397	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	-5.397	-5.397	0	%100
5	M3	X	0	0	0	%100
6	M3	Z	-3.441	-3.441	0	%100
7	M4	X	0	0	0	%100
8	M4	Z	-3.441	-3.441	0	%100
9	M5	X	0	0	0	%100
10	M5	Z	-3.448	-3.448	0	%100
11	M6	X	0	0	0	%100
12	M6	Z	882	882	0	%100
13	M7	X	0	0	0	%100
14	M7	Z	882	882	0	%100
15	M8	X	0	0	0	%100
16	M8	Z	882	882	0	%100
17	M9	X	0	0	0	%100
18	M9	Z	882	882	0	%100
19	M10	X	0	0	0	%100
20	M10	Z	-4.32	-4.32	0	%100
21	M11	X	0	0	0	%100
22	M11	Z	-4.32	-4.32	0	%100
23	M12	X	0	0	0	%100
24	M12	Z	-3.32	-3.32	0	%100
25	M13	X	0	0	0	%100
26	M13	Z	-3.32	-3.32	0	%100
27	M14	X	0	0	0	%100
28	M14	Z	-3.32	-3.32	0	%100
29	M15	X	0	0	0	%100
30	M15	Z	-3.236	-3.236	0	%100
31	M16	X	0	0	0	%100
32	M16	Z	-3.237	-3.237	Ö	%100
33	M17	X	0	0	0	%100
34	M17	Z	-3.32	-3.32	Ö	%100
35	M18	X	0	0	0	%100
36	M18	Z	-1.349	-1.349	0	%100 %100
37	M19	X	0	0	0	%100
38	M19	Z	-1.349	-1.349	0	%100 %100
39	M20	X	0	0	0	%100
40	M20	Z	-3.528	-3.528	0	%100
41	M21	X	0	0	0	%100 %100
42	M21	Z	-3.528	-3.528	0	%100 %100
43	M22	X	0.020	0	0	%100
44	M22	Z	-4.32	-4.32	Ö	%100
45	M23	X	0	0	0	%100 %100
46	M23	X Z	-4.32	-4.32	0	%100
47	M24	X	0	0	0	%100
48	M24	Z	-3.32	-3.32	0	%100 %100
49	M25	X	0	0	0	%100 %100
70	IVIZO				•	70100

: NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 53: Structure Wi (0 Deg)) (Continued)

69 M26 Z -3.32 0 %100 51 M26 Z -3.236 -3.236 0 %100 52 M26 Z -3.236 0 %100 54 M27 Z -3.237 0 %100 55 M28 X 0 0 0 %100 56 M28 Z -3.32 -3.32 0 %100 56 M28 Z -3.32 -3.32 0 %100 57 M29 X 0 0 0 %100 58 M29 Z -1.349 1.349 0 %100 60 M30 Z -1.349 1.349 0 %100 61 M31 X 0 0 0 %100 62 M31 Z 0 0 0 %100 63 M32 X 0 0 0 %100		Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
52 M26 Z -3.236 -3.236 0 %100 54 M27 Z -3.237 -3.237 0 %100 55 M28 X 0 0 0 0 %100 56 M28 Z -3.322 -3.322 0 %100 57 M29 X 0 0 0 0 %100 58 M29 Z -1.349 -1.349 0 %100 9 %100 69 M30 X 0 0 0 %100 9 %100 60 M30 Z -1.349 -1.349 0 %100 9 %100 60 %100 61 M31 X 0 0 0 %100 63 M310 X 0 0 0 %100 60 %100 60 %100 60 %100 60 %100 60 %100 60 %100	50	M25	Z			_	
53 M27 X 0 0 %100 54 M27 Z 3.237 0 %100 55 M28 X 0 0 0 %100 56 M28 Z 3.32 3.32 0 %100 57 M29 X 0 0 0 %100 58 M29 Z 1.349 1.349 0 %100 59 M30 X 0 0 0 %100 60 M30 Z 1.349 1.349 0 %100 61 M31 X 0 0 0 %100 62 M31 Z 0 0 0 %100 63 M32 X 0 0 0 %100 64 M32 X 0 0 0 %100 65 M33 X 0 0 0 %100	51	M26	X	0	0	0	%100
53 M27 X 0 0 %100 54 M27 Z 3.237 0 %100 55 M28 X 0 0 0 %100 56 M28 Z 3.32 3.32 0 %100 57 M29 X 0 0 0 %100 58 M29 Z 1.349 1.349 0 %100 59 M30 X 0 0 0 %100 60 M30 Z 1.349 1.349 0 %100 61 M31 X 0 0 0 %100 62 M31 Z 0 0 0 %100 63 M32 X 0 0 0 %100 64 M32 X 0 0 0 %100 65 M33 X 0 0 0 %100	52	M26	Z	-3.236	-3.236	0	%100
Section Sect						0	
556 M28 X 0 0 %100 57 M29 X 0 0 0 %100 58 M29 Z 1.349 0 0 %100 59 M30 X 0 0 0 %100 60 M30 Z 1.349 -1.349 0 %100 61 M31 X 0 0 0 %100 62 M31 Z 0 0 0 %100 63 M32 X 0 0 0 %100 64 M32 Z 0 0 0 %100 65 M33 X 0 0 0 %100 66 M33 Z -3.32 -3.32 0 %100 67 M34 X 0 0 0 %100 68 M34 Z -3.32 -3.32 0 <td< td=""><td></td><td>M27</td><td></td><td>-3.237</td><td>-3.237</td><td>0</td><td></td></td<>		M27		-3.237	-3.237	0	
56 M28 Z -3.32 -3.32 0 %100 57 M29 X 0 0 0 %100 58 M29 Z -1.349 -1.349 0 %1100 60 M30 Z -1.349 -1.349 0 %1100 61 M31 X 0 0 0 %100 62 M31 Z 0 0 0 %100 63 M32 X 0 0 0 %100 64 M32 X 0 0 0 %100 65 M33 X 0 0 0 %100 66 M33 X 0 0 0 %100 67 M34 X 0 0 0 %100 69 M35 X 0 0 0 %100 70 M35 X 0 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
SF			Z		-3.32		
58 M29 Z -1.349 -1.349 0 %100 60 M30 X 0 0 0 %100 61 M31 X 0 0 0 %100 62 M31 Z 0 0 0 %100 63 M32 X 0 0 0 %100 64 M32 Z 0 0 0 %100 65 M33 X 0 0 0 0 %100 65 M33 X 0 0 0 0 %100 66 M33 Z -3.32 -3.32 0 %100 67 M34 X 0 0 0 %100 69 M35 X 0 0 0 %100 70 M35 X 0 0 0 %100 71 M36 X 0							
59				-1.349	-1.349		
60							
61 M31 X 0 0 0 0 0 100 62 M31 Z 0 0 0 0 0 0 100 63 M32 X 0 0 0 0 0 0 0 100 64 M32 Z 0 0 0 0 0 0 0 100 65 M33 X 0 0 0 0 0 0 100 66 M33 Z 3 32 3.32 0 0 100 67 M34 X 0 0 0 0 0 100 68 M34 Z 3.32 3.32 0 0 100 69 M35 X 0 0 0 0 0 100 70 M35 Z 1.1797 1.797 0 100 71 M36 X 0 0 0 0 0 100 72 M36 Z 1.1787 1.787 0 100 73 M37 X 0 0 0 0 0 100 74 M37 Z 1.188 1.188 0 100 75 M38 X 0 0 0 0 0 0 100 76 M38 Z 4.751 0 1.188 0 100 77 M39 X 0 0 0 0 0 100 78 M39 X 0 0 0 0 0 100 79 M49 X 0 0 0 0 0 100 79 M49 X 0 0 0 0 0 100 81 M50 X 0 0 0 0 0 100 81 M50 X 0 0 0 0 0 100 82 M50 X 0 0 0 0 0 0 100 83 X 0 0 0 0 0 0 100 84 M50 X 0 0 0 0 0 0 100 85 X 0 0 0 0 0 0 0 100 86 M61 X 0 0 0 0 0 100 87 M50 X 0 0 0 0 0 0 100 88 M50 X 0 0 0 0 0 0 0 100 89 M63 X 0 0 0 0 0 0 0 100 80 M49 X 0 0 0 0 0 0 100 81 M50 X 0 0 0 0 0 0 100 82 M50 X 0 0 0 0 0 0 0 100 83 M51 X 0 0 0 0 0 0 0 0 100 84 M51 Z 1.188 -1.188 0 0 100 85 M60 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			7		-		
62 M31 Z 0 0 0 0 %100 63 M32 X 0 0 0 0 0 %100 64 M32 Z 0 0 0 0 0 0 %100 65 M33 X 0 0 0 0 0 0 %100 66 M33 Z -3.32 -3.32 0 %100 67 M34 X 0 0 0 0 0 0 %100 68 M34 Z -3.32 -3.32 0 %100 69 M35 X 0 0 0 0 0 %100 70 M35 Z -1.797 1.797 0 %100 71 M36 X 0 0 0 0 0 %100 72 M36 Z -1.787 -1.787 0 %100 73 M37 X 0 0 0 0 0 %100 74 M37 Z -1.188 -1.188 0 %100 75 M38 X 0 0 0 0 0 %100 76 M38 Z -4.751 -4.751 0 %100 77 M39 X 0 0 0 0 0 %100 78 M39 Z -1.188 -1.188 0 %100 79 M49 X 0 0 0 0 0 %100 79 M49 X 0 0 0 0 0 %100 81 M50 X 0 0 0 0 0 %100 81 M50 X 0 0 0 0 0 %100 82 M50 X 0 0 0 0 0 0 %100 83 M51 X 0 0 0 0 0 0 %100 84 M39 Z -1.188 -1.188 0 0 %100 85 M61 X 0 0 0 0 0 0 %100 86 M61 X 0 0 0 0 0 0 %100 87 M62 X 0 0 0 0 0 0 %100 88 M62 Z -3.441 -3.441 0 0 %100 88 M62 X -3.441 -3.441 0 0 %100 89 M63 X 0 0 0 0 0 0 0 %100 90 M63 Z -3.441 -3.441 0 0 0 0 0 0 %100 90 M63 Z -3.441 -3.441 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
63			7				
64 M32 Z Z 0 0 0 0 0 %100 65 65 M33 X 0 0 0 0 0 0 %100 66 M33 Z -3.32 -3.32 0 0 %100 66 M33 Z -3.32 -3.32 0 0 %100 67 M34 X 0 0 0 0 0 0 %100 68 M34 Z -3.32 -3.32 0 0 %100 69 M35 X 0 0 0 0 0 0 %100 70 M35 Z -1.797 1.797 0 %100 71 M36 X 0 0 0 0 0 0 %100 71 M36 X 0 0 0 0 0 0 %100 73 M37 X 0 0 0 0 0 0 %100 73 M37 X 0 0 0 0 0 0 %100 74 M37 Z -1.188 -1.188 0 0 %100 75 M38 X 0 0 0 0 0 0 %100 76 M38 Z -4.751 -4.751 0 0 %100 76 M38 Z -4.751 -4.751 0 0 0 0 0 %100 78 M39 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
65 M33 X 0 0 %100 66 M33 Z -3.32 -3.32 0 %100 67 M34 X 0 0 0 %100 68 M34 Z -3.32 -3.32 0 %100 70 M35 X 0 0 0 0 %100 70 M35 Z -1.787 -1.787 0 %100 71 M36 X 0 0 0 %100 72 M36 Z -1.787 -1.787 0 %100 73 M37 X 0 0 0 %100 73 M37 X 0 0 0 %100 75 M38 X 0 0 0 %100 75 M38 X 0 0 0 %100 78 M39 X 0 0			Z				
66 M33 Z -3.32 -3.32 0 %100 67 M34 X 0 0 0 %100 68 M34 Z -3.32 -3.32 0 %100 69 M35 X 0 0 0 %100 70 M35 Z -1.787 -1.797 0 %4100 71 M36 X 0 0 0 %100 72 M36 X 0 0 0 %100 72 M36 Z -1.787 -1.787 0 %100 74 M37 X 0 0 0 %100 74 M37 Z -1.188 -1.188 0 %100 75 M38 X 0 0 0 %100 76 M38 Z -4.751 -4.751 0 %100 78 M39 Z -1.188 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
67 M34 X 0 0 0 %100 68 M34 Z -3.32 -3.32 0 %100 69 M35 X 0 0 0 %100 70 M35 Z -1.787 -1.787 0 %100 71 M36 X 0 0 0 %100 72 M36 Z -1.787 -1.787 0 %100 73 M37 X 0 0 0 %100 74 M37 Z -1.188 -1.188 0 %100 75 M38 X 0 0 0 %100 76 M38 X 0 0 0 %100 78 M39 X 0 0 0 %100 78 M39 X 0 0 0 %100 80 M49 X 0 0			7				
68 M34 Z -3.32 -3.32 0 %100 69 M35 X 0 0 0 %100 70 M35 Z -1.797 -1.797 0 %100 71 M36 X 0 0 0 %100 72 M36 Z -1.787 0 %100 73 M37 X 0 0 0 %100 74 M37 Z -1.188 -1.188 0 %100 75 M38 X 0 0 0 %100 76 M38 Z -4.751 -4.751 0 %100 76 M38 Z -4.751 -4.751 0 %100 78 M39 Z -1.188 -1.188 0 %100 79 M49 X 0 0 0 %100 80 M49 Z -1.188 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
69 M35 X 0 0 0 %100 70 M35 Z -1.797 -1.797 0 %100 71 M36 X 0 0 0 %100 72 M36 Z -1.787 -1.787 0 %100 73 M37 X 0 0 0 %100 74 M37 Z -1.188 -1.188 0 %100 75 M38 X 0 0 0 %100 76 M38 X 0 0 0 %100 77 M39 X 0 0 0 %100 78 M39 Z -1.188 -1.188 0 %100 79 M49 X 0 0 0 %100 80 M49 Z -1.188 -1.188 0 %100 81 M50 X 0 <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></t<>				-			
70 M35 Z -1.797 -1.797 0 %100 71 M36 X 0 0 0 %100 72 M36 Z -1.787 -1.787 0 %100 73 M37 X 0 0 0 %100 74 M37 Z -1.188 -1.188 0 %100 75 M38 X 0 0 0 %100 76 M38 Z -4.751 -4.751 0 %100 76 M38 Z -4.751 -4.751 0 %100 78 M39 Z -1.188 -1.188 0 %100 79 M49 X 0 0 0 %100 81 M50 X 0 0 0 %100 82 M50 Z -4.751 -4.751 0 %100 83 M51 X <							
71 M36 X 0 0 0 %100 72 M36 Z -1.787 -1.787 0 %100 73 M37 X 0 0 0 %100 74 M37 Z -1.188 -1.188 0 %100 76 M38 X 0 0 0 %100 76 M38 Z -4.751 -4.751 0 %100 77 M39 X 0 0 0 %100 78 M39 Z -1.188 -1.188 0 %100 79 M49 X 0 0 0 %100 80 M49 Z -1.188 -1.188 0 %100 81 M50 X 0 0 0 %100 82 M50 Z -4.751 -4.751 0 %100 83 M51 X 0							
72 M36 Z -1.787 -1.787 0 %100 73 M37 X 0 0 0 %100 74 M37 Z -1.188 -1.188 0 %100 75 M38 X 0 0 0 %100 76 M38 Z -4.751 -4.751 0 %100 76 M39 X 0 0 0 %100 77 M39 X 0 0 0 %100 78 M39 Z -1.188 -1.188 0 %100 80 M49 X 0 0 0 %100 81 M50 X 0 0 0 %100 81 M50 X 0 0 0 %100 82 M50 Z -4.751 -4.751 0 %100 83 M51 X 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
73 M37 X 0 0 %100 74 M37 Z -1.188 -1.188 0 %100 75 M38 X 0 0 0 %100 76 M38 Z -4.751 -4.751 0 %100 77 M39 X 0 0 0 %100 78 M39 Z -1.188 -1.188 0 %100 79 M49 X 0 0 0 %100 80 M49 Z -1.188 -1.188 0 %100 81 M50 X 0 0 0 %100 82 M50 Z -4.751 -4.751 0 %100 83 M51 X 0 0 0 %100 84 M51 Z -1.188 -1.188 0 %100 85 M61 X 0 0			7				
74 M37 Z -1.188 -1.188 0 %100 75 M38 X 0 0 0 %100 76 M38 Z -4.751 -4.751 0 %100 77 M39 X 0 0 0 %100 78 M39 Z -1.188 -1.188 0 %100 80 M49 X 0 0 0 %100 80 M49 Z -1.188 -1.188 0 %100 81 M50 X 0 0 0 %100 82 M50 Z -4.751 -4.751 0 %100 83 M51 X 0 0 0 %100 84 M51 Z -1.188 -1.188 0 %100 86 M61 X 0 0 0 %100 87 M62 X 0							
75 M38 X 0 0 %100 76 M38 Z -4.751 -4.751 0 %100 77 M39 X 0 0 0 %100 78 M39 Z -1.188 -1.188 0 %100 79 M49 X 0 0 0 %100 80 M49 Z -1.188 -1.188 0 %100 81 M50 X 0 0 0 0 %100 82 M50 Z -4.751 -4.751 0 %100 %100 83 M51 X 0 0 0 %100 %100 84 M51 Z -1.188 -1.188 0 %100 %100 85 M61 X 0 0 0 %100 %100 87 M62 X 0 0 0 %100 %100 <td></td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td>			7				
76 M38 Z -4.751 0 %100 77 M39 X 0 0 0 %100 78 M39 Z -1.188 -1.188 0 %100 79 M49 X 0 0 0 %100 80 M49 Z -1.188 -1.188 0 %100 81 M50 X 0 0 0 %100 82 M50 Z -4.751 -4.751 0 %100 83 M51 X 0 0 0 %100 84 M51 Z -1.188 -1.188 0 %100 85 M61 X 0 0 0 %100 86 M61 Z -3.441 -3.441 0 %100 87 M62 X 0 0 0 %100 89 M63 X 0 0							
77 M39 X 0 0 %100 78 M39 Z -1.188 -1.188 0 %100 79 M49 X 0 0 0 %100 80 M49 Z -1.188 -1.188 0 %100 81 M50 X 0 0 0 %100 82 M50 Z -4.751 -4.751 0 %100 83 M51 X 0 0 0 %100 84 M51 Z -1.188 -1.188 0 %100 85 M61 X 0 0 0 %100 86 M61 X 0 0 0 %100 87 M62 X 0 0 0 %100 88 M62 Z -3.441 -3.441 0 %100 89 M63 X 0 0 <t< td=""><td></td><td></td><td>7</td><td></td><td></td><td></td><td></td></t<>			7				
78 M39 Z -1.188 -1.188 0 %100 79 M49 X 0 0 0 %100 80 M49 Z -1.188 -1.188 0 %100 81 M50 X 0 0 0 %100 82 M50 Z -4.751 0 %100 83 M51 X 0 0 %100 84 M51 Z -1.188 -1.188 0 %100 85 M61 X 0 0 0 %100 86 M61 Z -3.441 -3.441 0 %100 88 M62 X 0 0 0 %100 89 M63 X 0 0 0 %100 90 M63 Z -3.448 -3.448 0 %100 91 M64 X 0 0 0							
79 M49 X 0 0 %100 80 M49 Z -1.188 -1.188 0 %100 81 M50 X 0 0 0 %100 82 M50 Z -4.751 0 %100 83 M51 X 0 0 0 %100 84 M51 Z -1.188 -1.188 0 %100 85 M61 X 0 0 0 %100 86 M61 Z -3.441 -3.441 0 %100 87 M62 X 0 0 0 %100 87 M62 X 0 0 0 %100 88 M62 Z -3.441 -3.441 0 %100 89 M63 X 0 0 0 %100 90 M63 Z -3.448 -3.448 0				-			
80 M49 Z -1.188 -1.188 0 %100 81 M50 X 0 0 0 %100 82 M50 Z -4.751 0 %100 83 M51 X 0 0 0 %100 84 M51 Z -1.188 -1.188 0 %100 85 M61 X 0 0 0 %100 86 M61 X 0 0 0 %100 87 M62 X 0 0 0 %100 87 M62 X 0 0 0 %100 89 M63 X 0 0 0 %100 89 M63 X 0 0 0 %100 91 M64 X 0 0 0 %100 92 M64 Z -2.869 -2.869 0							
81 M50 X 0 0 %100 82 M50 Z -4,751 -4,751 0 %100 83 M51 X 0 0 0 %100 84 M51 Z -1,188 -1,188 0 %100 85 M61 X 0 0 0 %100 86 M61 Z -3,441 -3,441 0 %100 87 M62 X 0 0 0 %100 88 M62 Z -3,441 -3,441 0 %100 89 M63 X 0 0 0 %100 89 M63 X 0 0 0 %100 90 M63 Z -3,448 -3,448 0 %100 91 M64 X 0 0 0 %100 92 M64 Z -2,869 -2,869			7				
82 M50 Z -4.751 -4.751 0 %100 83 M51 X 0 0 0 %100 84 M51 Z -1.188 -1.188 0 %100 85 M61 X 0 0 0 %100 86 M61 Z -3.441 -3.441 0 %100 87 M62 X 0 0 0 %100 88 M62 Z -3.441 -3.441 0 %100 89 M63 X 0 0 0 %100 90 M63 Z -3.448 -3.448 0 %100 91 M64 X 0 0 0 %100 92 M64 Z -2.869 -2.869 0 %100 93 M65 X 0 0 0 %100 94 M65 Z -2.869<							
83 M51 X 0 0 %100 84 M51 Z -1.188 -1.188 0 %100 85 M61 X 0 0 0 %100 86 M61 Z -3.441 -3.441 0 %100 87 M62 X 0 0 0 %100 88 M62 Z -3.441 -3.441 0 %100 89 M63 X 0 0 0 %100 90 M63 Z -3.448 -3.448 0 %100 90 M63 Z -3.448 -3.448 0 %100 91 M64 X 0 0 0 %100 92 M64 X 0 0 0 %100 93 M65 X 0 0 0 %100 94 M65 Z -2.869 -2.869							
84 M51 Z -1.188 -1.188 0 %100 85 M61 X 0 0 0 %100 86 M61 Z -3.441 -3.441 0 %100 87 M62 X 0 0 0 %100 88 M62 Z -3.441 -3.441 0 %100 89 M63 X 0 0 0 %100 90 M63 Z -3.448 -3.448 0 %100 90 M63 Z -3.448 -3.448 0 %100 91 M64 X 0 0 0 %100 92 M64 X 0 0 0 %100 92 M64 Z -2.869 -2.869 0 %100 94 M65 X 0 0 0 %100 95 M66 X 0							
85 M61 X 0 0 %100 86 M61 Z -3.441 -3.441 0 %100 87 M62 X 0 0 0 %100 88 M62 Z -3.441 -3.441 0 %100 89 M63 X 0 0 0 %100 90 M63 Z -3.448 -3.448 0 %100 91 M64 X 0 0 0 %100 91 M64 X 0 0 0 %100 92 M64 Z -2.869 -2.869 0 %100 93 M65 X 0 0 0 %100 95 M66 X 0 0 0 %100 95 M66 X 0 0 0 %100 97 M67 X 0 0 0							
86 M61 Z -3.441 -3.441 0 %100 87 M62 X 0 0 0 %100 88 M62 Z -3.441 -3.441 0 %100 89 M63 X 0 0 0 %100 90 M63 Z -3.448 -3.448 0 %100 91 M64 X 0 0 0 %100 92 M64 X 0 0 0 %100 93 M65 X 0 0 0 %100 93 M65 X 0 0 0 %100 94 M65 Z -2.869 -2.869 0 %100 95 M66 X 0 0 0 %100 96 M66 Z -2.847 -2.847 0 %100 98 M67 Z -2.869							
87 M62 X 0 0 %100 88 M62 Z -3.441 -3.441 0 %100 89 M63 X 0 0 0 %100 90 M63 Z -3.448 -3.448 0 %100 91 M64 X 0 0 0 %100 92 M64 X 0 0 0 %100 92 M64 Z -2.869 -2.869 0 %100 93 M65 X 0 0 0 %100 94 M65 X 0 0 0 %100 95 M66 X 0 0 0 %100 96 M66 X 0 0 0 %100 97 M67 X 0 0 %100 99 M68 X 0 0 %100							
88 M62 Z -3.441 -3.441 0 %100 89 M63 X 0 0 0 %100 90 M63 Z -3.448 -3.448 0 %100 91 M64 X 0 0 0 %100 92 M64 Z -2.869 -2.869 0 %100 93 M65 X 0 0 0 %100 94 M65 Z -2.869 -2.869 0 %100 95 M66 X 0 0 0 %100 96 M66 Z -2.847 -2.847 0 %100 97 M67 X 0 0 0 %100 98 M67 Z -2.869 -2.869 0 %100 99 M68 X 0 0 0 %100 100 M68 Z -2.869							
89 M63 X 0 0 0 %100 90 M63 Z -3.448 -3.448 0 %100 91 M64 X 0 0 0 %100 92 M64 Z -2.869 -2.869 0 %100 93 M65 X 0 0 0 %100 94 M65 Z -2.869 -2.869 0 %100 95 M66 X 0 0 0 %100 96 M66 Z -2.847 -2.847 0 %100 97 M67 X 0 0 0 %100 98 M67 Z -2.869 -2.869 0 %100 99 M68 X 0 0 0 %100 100 M68 Z -2.869 0 %100 101 M69 X 0 0				-	<u> </u>		
90 M63 Z -3.448 -3.448 0 %100 91 M64 X 0 0 0 %100 92 M64 Z -2.869 -2.869 0 %100 93 M65 X 0 0 0 %100 94 M65 Z -2.869 -2.869 0 %100 95 M66 X 0 0 0 %100 96 M66 Z -2.847 -2.847 0 %100 97 M67 X 0 0 0 %100 98 M67 Z -2.869 -2.869 0 %100 99 M68 X 0 0 0 %100 100 M68 Z -2.869 -2.869 0 %100 101 M69 X 0 0 0 %100 102 M69 Z -2.8							
91 M64 X 0 0 %100 92 M64 Z -2.869 0 %100 93 M65 X 0 0 0 %100 94 M65 Z -2.869 -2.869 0 %100 95 M66 X 0 0 0 %100 96 M66 Z -2.847 -2.847 0 %100 97 M67 X 0 0 0 %100 98 M67 Z -2.869 -2.869 0 %100 99 M68 X 0 0 0 %100 100 M68 Z -2.869 -2.869 0 %100 101 M69 X 0 0 0 %100 102 M69 Z -2.847 -2.847 0 %100 103 M70 X 0 0 0						-	
92 M64 Z -2.869 0 %100 93 M65 X 0 0 0 %100 94 M65 Z -2.869 0 %100 95 M66 X 0 0 0 %100 96 M66 Z -2.847 -2.847 0 %100 97 M67 X 0 0 0 %100 98 M67 Z -2.869 -2.869 0 %100 99 M68 X 0 0 0 %100 100 M68 Z -2.869 -2.869 0 %100 101 M69 X 0 0 0 %100 102 M69 Z -2.847 -2.847 0 %100 103 M70 X 0 0 %100 104 M70 Z -2.869 -2.869 0 %1							
93 M65 X 0 0 0 %100 94 M65 Z -2.869 -2.869 0 %100 95 M66 X 0 0 0 %100 96 M66 Z -2.847 -2.847 0 %100 97 M67 X 0 0 0 %100 98 M67 Z -2.869 -2.869 0 %100 99 M68 X 0 0 0 %100 100 M68 Z -2.869 -2.869 0 %100 101 M69 X 0 0 0 %100 102 M69 Z -2.847 -2.847 0 %100 103 M70 X 0 0 %100 105 M71 X 0 0 %100							
94 M65 Z -2.869 -2.869 0 %100 95 M66 X 0 0 0 %100 96 M66 Z -2.847 -2.847 0 %100 97 M67 X 0 0 0 %100 98 M67 Z -2.869 -2.869 0 %100 99 M68 X 0 0 0 %100 100 M68 Z -2.869 -2.869 0 %100 101 M69 X 0 0 0 %100 102 M69 Z -2.847 -2.847 0 %100 103 M70 X 0 0 %100 105 M71 X 0 0 %100							
95 M66 X 0 0 %100 96 M66 Z -2.847 -2.847 0 %100 97 M67 X 0 0 0 %100 98 M67 Z -2.869 -2.869 0 %100 99 M68 X 0 0 0 %100 100 M68 Z -2.869 -2.869 0 %100 101 M69 X 0 0 0 %100 102 M69 Z -2.847 -2.847 0 %100 103 M70 X 0 0 %100 104 M70 Z -2.869 -2.869 0 %100 105 M71 X 0 0 0 %100							
96 M66 Z -2.847 -2.847 0 %100 97 M67 X 0 0 0 %100 98 M67 Z -2.869 -2.869 0 %100 99 M68 X 0 0 0 %100 100 M68 Z -2.869 -2.869 0 %100 101 M69 X 0 0 0 %100 102 M69 Z -2.847 -2.847 0 %100 103 M70 X 0 0 %100 104 M70 Z -2.869 -2.869 0 %100 105 M71 X 0 0 0 %100							
97 M67 X 0 0 0 %100 98 M67 Z -2.869 -2.869 0 %100 99 M68 X 0 0 0 %100 100 M68 Z -2.869 -2.869 0 %100 101 M69 X 0 0 0 %100 102 M69 Z -2.847 -2.847 0 %100 103 M70 X 0 0 %100 104 M70 Z -2.869 -2.869 0 %100 105 M71 X 0 0 %100			7				
98 M67 Z -2.869 -2.869 0 %100 99 M68 X 0 0 0 %100 100 M68 Z -2.869 0 %100 101 M69 X 0 0 0 %100 102 M69 Z -2.847 -2.847 0 %100 103 M70 X 0 0 %100 104 M70 Z -2.869 0 %100 105 M71 X 0 0 %100							
99 M68 X 0 0 0 %100 100 M68 Z -2.869 -2.869 0 %100 101 M69 X 0 0 0 %100 102 M69 Z -2.847 -2.847 0 %100 103 M70 X 0 0 %100 104 M70 Z -2.869 0 %100 105 M71 X 0 0 %100			7				%100
100 M68 Z -2.869 -2.869 0 %100 101 M69 X 0 0 0 %100 102 M69 Z -2.847 -2.847 0 %100 103 M70 X 0 0 0 %100 104 M70 Z -2.869 -2.869 0 %100 105 M71 X 0 0 0 %100							
101 M69 X 0 0 0 %100 102 M69 Z -2.847 -2.847 0 %100 103 M70 X 0 0 0 %100 104 M70 Z -2.869 -2.869 0 %100 105 M71 X 0 0 0 %100			Z				
102 M69 Z -2.847 -2.847 0 %100 103 M70 X 0 0 0 %100 104 M70 Z -2.869 -2.869 0 %100 105 M71 X 0 0 %100							
103 M70 X 0 0 0 %100 104 M70 Z -2.869 -2.869 0 %100 105 M71 X 0 0 %100			7				
104 M70 Z -2.869 -2.869 0 %100 105 M71 X 0 0 %100							
105 M71 X 0 0 0 %100							
			Z				

: NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 53: Structure Wi (0 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F		End Location[ft,%]
107	M72	X	0	0	0	%100
108	M72	Z	-2.847	-2.847	0	%100
109	M73	X	0	0	0	%100
110	M73	Z	-2.869	-2.869	0	%100
111	M74	X	0	0	0	%100
112	M74	Z	-2.869	-2.869	0	%100
113	M75	X	0	0	0	%100
114	M75	Z	-2.847	-2.847	0	%100
115	MP1A	X	0	0	0	%100
116	MP1A	Z	-3.689	-3.689	0	%100
117	MP2A	X	0	0	0	%100
118	MP2A	Z	-3.564	-3.564	0	%100
119	MP4A	X	0	0	0	%100
120	MP4A	Z	-3.689	-3.689	0	%100
121	MP5A	X	0	0	0	%100
122	MP5A	Z	-3.689	-3.689	0	%100
123	MPA	Χ	0	0	0	%100
124	MPA	Z	-3.564	-3.564	0	%100
125	MP6A	X	0	0	0	%100
126	MP6A	Z	-3.689	-3.689	0	%100
127	MP1C	X	0	0	0	%100
128	MP1C	Z	-3.689	-3.689	0	%100
129	MP1B	X	0	0	0	%100
130	MP1B	Z	-3.689	-3.689	0	%100
131	MPC	X	0	0	0	%100
132	MPC	Z	-3.564	-3.564	Ů	%100 %100
133	MP2C	X	0	0	0	%100 %100
134	MP2C	Z	-3.564	-3.564	Ö	%100 %100
135	MP5C	X	0	0	0	%100 %100
136	MP5C	Z	-3.689	-3.689	0	%100 %100
137	MP6C	X	0	0	0	%100 %100
138	MP6C	Z	-3.564	-3.564	0	%100 %100
139	MPB	X	0	0	0	%100 %100
140	MPB	Z	-3.564	-3.564	0	%100 %100
141	MPB2	X	-5.504	-5.504	0	%100 %100
142	MPB2	Ž	-3.564	-3.564	0	%100 %100
143	MP5B			-3.504		%100 %100
		X Z	0	-3.564	0	
144	MP5B		-3.564			%100 %100
145	MP4C	X	0	0	0	
146	MP4C	Z	-3.689	-3.689	0	%100 %100
147	MP3C	X	0	3 690	0	%100 %100
148	MP3C	Z	-3.689	-3.689	0	%100 %100
149	M146	X	0	0	0	%100
150	M146	Z	-1.349	-1.349	0	%100
151	M147	X	0	0	0	%100
152	M147	Z	-1.349	-1.349	0	%100
153	M154	X	0	0	0	%100
154	M154	Z	-1.349	-1.349	0	%100
155	M155	X	0	0	0	%100
156	M155	Z	-1.349	-1.349	0	%100
157	M162	X	0	0	0	%100
158	M162	Z	-5.397	-5.397	0	%100
159	M163	X	0	0	0	%100
160	M163	Z	-5.397	-5.397	0	%100
161	MP3A	X	0	0	0	%100
162	MP3A	Z	-3.564	-3.564	0	%100
163	MP4B	X	0	0	0	%100

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 53: Structure Wi (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
164	MP4B	Z	-3.689	-3.689	0	%100
165	MP6B	X	0	0	0	%100
166	MP6B	Z	-3.564	-3.564	0	%100
167	MP3B	X	0	0	0	%100
168	MP3B	Z	-3.689	-3.689	0	%100
169	M163A	X	0	0	0	%100
170	M163A	Z	-3.564	-3.564	0	%100
171	M166	X	0	0	0	%100
172	M166	Z	0	0	0	%100
173	M169A	X	0	0	0	%100
174	M169A	Z	0	0	0	%100
175	MP2B	X	0	0	0	%100
176	MP2B	Z	-3.689	-3.689	0	%100
177	M173A	X	0	0	0	%100
178	M173A	Z	-1.703	-1.703	0	%100
179	M176	X	0	0	0	%100
180	M176	Z	-1.703	-1.703	0	%100

Member Distributed Loads (BLC 54: Structure Wi (30 Deg))

	Member Label			End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	2.024	2.024	0	%100
2	M1	Z	-3.505	-3.505	0	%100
3	M2	X	2.024	2.024	0	%100
4	M2	Z	-3.505	-3.505	0	%100
5	M3	X	1.625	1.625	0	%100
6	M3	Z	-2.815	-2.815	0	%100
7	M4	X	1.625	1.625	0	%100
8	M4	Z	-2.815	-2.815	0	%100
9	M5	X	1.624	1.624	0	%100
10	M5	Z	-2.812	-2.812	0	%100
11	M6	X	0	0	0	%100
12	M6	Z	0	0	0	%100
13	M7	X	0	0	0	%100
14	M7	Z	0	0	0	%100
15	M8	X	1.323	1.323	0	%100
16	M8	Z	-2.291	-2.291	0	%100
17	M9	X	1.323	1.323	0	%100
18	M9	Z	-2.291	-2.291	0	%100
19	M10	X	.72	.72	0	%100
20	M10	Z	-1.247	-1.247	0	%100
21	M11	X	.72	.72	0	%100
22	M11	Z	-1.247	-1.247	0	%100
23	M12	X	1.66	1.66	0	%100
24	M12	Z	-2.875	-2.875	0	%100
25	M13	X	1.66	1.66	0	%100
26	M13	Z	-2.875	-2.875	0	%100
27	M14	X	1.66	1.66	0	%100
28	M14	Z	-2.875	-2.875	0	%100
29	M15	X	1.138	1.138	0	%100
30	M15	Z	-1.972	-1.972	0	%100
31	M16	X	1.135	1.135	0	%100
32	M16	Z	-1.966	-1.966	0	%100
33	M17	X	1.66	1.66	0	%100
34	M17	Z	-2.875	-2.875	0	%100
35	M18	X	2.024	2.024	0	%100
36	M18	Z	-3.505	-3.505	0	%100

Company Designer Job Number Nov 23, 2021 5:47 PM Checked By: DX : NL : 21781092A Model Name : Mount Analysis (Rev. 3)

Member Distributed Loads (BLC 54: Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
37	M19	X	2.024	2.024	0	%100
38	M19	Z	-3.505	-3.505	0	%100
39	M20	X	1.323	1.323	0	%100
40	M20	Z	-2.291	-2.291	0	%100
41	M21	X	1.323	1.323	0	%100
42	M21	Z	-2.291	-2.291	0	%100
43	M22	X	2.88	2.88	0	%100
44	M22	Z	-4.988	-4.988	0	%100
45	M23	X	2.88	2.88	0	%100
46	M23	Z	-4.988	-4.988	0	%100
47	M24	X	1.66	1.66	0	%100
48	M24	Z	-2.875	-2.875	0	%100
49	M25	X	1.66	1.66	0	%100
50	M25	Z	-2.875	-2.875	0	%100
51	M26	X	1.858	1.858	0	%100
52	M26	Z	-3.218	-3.218	0	%100
53	M27	X	1.86	1.86	0	%100
54	M27	Z	-3.222	-3.222	0	%100
55	M28	X	1.66	1.66	0	%100
56	M28	Z	-2.875	-2.875	0	%100
57	M29	X	0	0	0	%100
58	M29	Z	0	0	0	%100
59	M30	X	0	0	0	%100
60	M30	Ž	0	0	0	%100
61	M31	X	.72	.72	0	%100
62	M31	Z	-1.247	-1.247	0	%100 %100
63	M32	X	.72	.72	0	%100 %100
64	M32	Z	-1.247	-1.247	0	%100 %100
65	M33	X	1.66	1.66	0	%100 %100
66	M33	Ž	-2.875	-2.875	0	%100 %100
67	M34	X	1.66	1.66	0	%100 %100
68	M34	Z	-2.875	-2.875	0	%100 %100
69	M35	X	1.138	1.138	0	%100 %100
70	M35	Ž	-1.972	-1.972	0	%100 %100
71	M36	X	1.135	1.135	0	%100 %100
72		Z	-1.966	-1.966		%100 %100
	M36				0	
73 74	M37	X Z	1.782	1.782	0	%100 %100
	M37		-3.086	-3.086		%100 %100
75	M38	X Z	1.782	1.782	0	%100 %100
76	M38		-3.086	-3.086	0	%100 %100
77	M39	Z	0	0	0	%100 %100
78	M39		1 702		0	%100 %100
79	M49	X	1.782	1.782	0	%100 %100
80	M49	Z	-3.086	-3.086	0	%100 %100
81	M50	X	1.782	1.782	0	%100
82	M50	Z	-3.086	-3.086	0	%100
83	M51	X	0	0	0	%100
84	M51	Z	0	0	0	%100
85	M61	X	1.625	1.625	0	%100
86	M61	Z	-2.815	-2.815	0	%100
87	M62	X	1.625	1.625	0	%100
88	M62	Z	-2.815	-2.815	0	%100
89	M63	X	1.624	1.624	0	%100
90	M63	Z	-2.812	-2.812	0	%100
91	M64	X	1.625	1.625	0	%100
92	M64	Z	-2.815	-2.815	0	%100
93	M65	X	1.625	1.625	0	%100

Job Number

Model Name : Mount Analysis (Rev. 3)

Company Designer Nov 23, 2021 : NL 5:47 PM : 21781092A Checked By: DX

Member Distributed Loads (BLC 54: Structure Wi (30 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F.	.Start Location[ft,%]	End Location[ft,%]
94	M65	Z	-2.815	-2.815	0	%100
95	M66	X	1.624	1.624	0	%100
96	M66	Z	-2.812	-2.812	0	%100
97	M67	X	1.625	1.625	0	%100
98	M67	Z	-2.815	-2.815	0	%100
99	M68	X	1.625	1.625	0	%100
100	M68	Z	-2.815	-2.815	0	%100
101	M69	X	1.624	1.624	0	%100
102	M69	Z	-2.812	-2.812	Ö	%100 %100
103	M70	X	1.339	1.339	0	%100 %100
104	M70	Z	-2.32	-2.32	0	%100 %100
105	M71	X Z	1.339	1.339	0	%100
106	M71		-2.32	-2.32	0	%100
107	M72	X	1.324	1.324	0	%100
108	M72	Z	-2.292	-2.292	0	%100
109	M73	X	1.339	1.339	0	%100
110	M73	Z	-2.32	-2.32	0	%100
111	M74	X	1.339	1.339	0	%100
112	M74	Z	-2.32	-2.32	0	%100
113	M75	X	1.324	1.324	0	%100
114	M75	Z	-2.292	-2.292	0	%100
115	MP1A	X	1.844	1.844	0	%100
116	MP1A	Z	-3.195	-3.195	0	%100
117	MP2A	X	1.782	1.782	0	%100
118	MP2A	Z	-3.087	-3.087	0	%100
119	MP4A	X	1.844	1.844	Ö	%100
120	MP4A	Z	-3.195	-3.195	Ö	%100 %100
121	MP5A	X	1.844	1.844	Ö	%100 %100
122	MP5A	Z	-3.195	-3.195	0	%100 %100
123	MPA	X	1.782	1.782	0	%100 %100
		Z			0	
124	MPA		-3.087	-3.087	·	%100
125	MP6A	X	1.844	1.844	0	%100
126	MP6A	Z	-3.195	-3.195	0	%100
127	MP1C	X	1.844	1.844	0	%100
128	MP1C	Z	-3.195	-3.195	0	%100
129	MP1B	X	1.844	1.844	0	%100
130	MP1B	Z	-3.195	-3.195	0	%100
131	MPC	X	1.782	1.782	0	%100
132	MPC	Z	-3.087	-3.087	0	%100
133	MP2C	X	1.782	1.782	0	%100
134	MP2C	Z	-3.087	-3.087	0	%100
135	MP5C	X	1.844	1.844	0	%100
136	MP5C	Z	-3.195	-3.195	0	%100
137	MP6C		1.782	1.782	0	%100
138	MP6C	X Z	-3.087	-3.087	Ö	%100
139	MPB	X	1.782	1.782	0	%100
140	MPB	Z	-3.087	-3.087	Ö	%100 %100
141	MPB2	X	1.782	1.782	0	%100 %100
142	MPB2	Z	-3.087	-3.087	0	%100 %100
143	MP5B	X	1.782	1.782	0	%100 %100
144		Z				
	MP5B		-3.087	-3.087	0	%100 %100
145	MP4C	X	1.844	1.844	0	%100
146	MP4C	Z	-3.195	-3.195	0	%100
147	MP3C	X	1.844	1.844	0	%100
148	MP3C	Z	-3.195	-3.195	0	%100
149	M146	X	2.024	2.024	0	%100
150	M146	Z	-3.505	-3.505	0	%100

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 54: Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
151	M147	X	2.024	2.024	0	%100
152	M147	Z	-3.505	-3.505	0	%100
153	M154	X	0	0	0	%100
154	M154	Z	0	0	0	%100
155	M155	X	0	0	0	%100
156	M155	Z	0	0	0	%100
157	M162	X	2.024	2.024	0	%100
158	M162	Z	-3.505	-3.505	0	%100
159	M163	X	2.024	2.024	0	%100
160	M163	Z	-3.505	-3.505	0	%100
161	MP3A	X	1.782	1.782	0	%100
162	MP3A	Z	-3.087	-3.087	0	%100
163	MP4B	X	1.844	1.844	0	%100
164	MP4B	Z	-3.195	-3.195	0	%100
165	MP6B	X	1.782	1.782	0	%100
166	MP6B	Z	-3.087	-3.087	0	%100
167	MP3B	X	1.844	1.844	0	%100
168	MP3B	Z	-3.195	-3.195	0	%100
169	M163A	X	1.782	1.782	0	%100
170	M163A	Z	-3.087	-3.087	0	%100
171	M166	X	.284	.284	0	%100
172	M166	Z	492	492	0	%100
173	M169A	X	.284	.284	0	%100
174	M169A	Z	492	492	0	%100
175	MP2B	X	1.844	1.844	0	%100
176	MP2B	Z	-3.195	-3.195	0	%100
177	M173A	X	1.135	1.135	0	%100
178	M173A	Z	-1.966	-1.966	0	%100
179	M176	X	1.135	1.135	0	%100
180	M176	Z	-1.966	-1.966	0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	1.168	1.168	0	%100
2	M1	Z	675	675	0	%100
3	M2	X	1.168	1.168	0	%100
4	M2	Z	675	675	0	%100
5	M3	X	2.485	2.485	0	%100
6	M3	Z	-1.434	-1.434	0	%100
7	M4	X	2.485	2.485	0	%100
8	M4	Z	-1.435	-1.435	0	%100
9	M5	X	2.466	2.466	0	%100
10	M5	Z	-1.424	-1.424	0	%100
11	M6	X	.764	.764	0	%100
12	M6	Z	441	441	0	%100
13	M7	X	.764	.764	0	%100
14	M7	Z	441	441	0	%100
15	M8	X	3.055	3.055	0	%100
16	M8	Z	-1.764	-1.764	0	%100
17	M9	X	3.055	3.055	0	%100
18	M9	Z	-1.764	-1.764	0	%100
19	M10	X	0	0	0	%100
20	M10	Z	0	0	0	%100
21	M11	X	0	0	0	%100
22	M11	Z	0	0	0	%100
23	M12	X	2.875	2.875	0	%100

Job Number

Model Name : Mount Analysis (Rev. 3)

: Maser Consulting : NL : 21781092A Company Designer Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 55: Structure Wi (60 Deg)) (Continued)

24 M12 Z -1.66 -1.66 0 %100 26 M13 X 2.875 2.875 0 0 %100 26 M13 Z -1.66 -1.66 0 %100 27 M14 X 2.875 2.875 0 0 %100 28 M14 Z -1.66 -1.66 0 %100 29 M15 X 1.556 1.556 0 %100 30 M15 Z -8.99 -8.99 0 %100 31 M16 X 1.548 1.548 0 0 %100 32 M16 Z -8.94 -8.94 0 %100 32 M16 Z -8.94 -8.94 0 %100 33 M17 X 2.875 2.875 0 0 %100 34 M17 Z -1.66 -1.66 0 %100 36 M18 Z -2.98 -2.98 0 %100 36 M18 Z -2.998 -2.998 0 %100 37 M19 X 4.674 4.674 0 0 %100 38 M19 Z -2.698 -2.698 0 %100 38 M19 Z -2.698 -2.698 0 %100 39 M20 X 764 764 0 0 %100 40 M20 Z -441 -441 0 %100 41 M21 X 764 -764 0 0 %100 42 M21 Z -441 -441 0 %100 43 M22 Z -441 -441 0 %100 44 M22 Z -441 -441 0 %100 45 M20 X 744 -764 0 0 %100 46 M23 Z -2.16 -2.16 0 %100 47 M24 M27 Z -2.16 0 0 %100 48 M24 Z -2.16 0 0 %100 50 M25 Z -1.66 0 0 %100 50 M30 X -1.67 -6.75 0 0 %100 50 M30 X -1.68 -1.66 0 0 %100 50 M30 X -1.68 -1.68 0 0 %100 50 M30 X -1.69 -1.68 0 0 %100 50 M30 X -1.69 -1.69 0 0 %100		Member Label	Direction		End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
26						•	
27							
28						0	
29							
30	28					0	
31	29	M15		1.556	1.556	0	%100
32	30	M15	Z	899	899	0	%100
33	31	M16	X	1.548	1.548	0	%100
34 M17 Z -1.66 -1.66 0 %100 36 M18 X 4.674 4.674 0 %100 37 M19 X 4.674 4.674 0 %100 38 M19 Z -2.698 2.698 0 %100 39 M20 X .764 .764 .0 %100 40 M20 Z 441 441 0 %100 41 M21 X .764 .764 .0 %100 41 M21 X .764 .764 .0 %100 42 M21 Z 441 .441 0 %100 43 M22 X 3.741 3.741 0 %100 44 M22 Z 2.16 -2.16 0 %100 45 M23 X 3.741 3.741 0 %100 46 M23	32	M16	Z	894	894	0	%100
34 M17 Z -1.66 -1.66 0 %100 35 M18 X 4.674 4.674 0 %100 36 M18 Z -2.698 -2.698 0 %100 37 M19 X 4.674 4.674 0 %100 38 M19 Z -2.698 -2.698 0 %100 39 M20 X .764 .764 0 %100 40 M20 Z -441 -441 0 %100 41 M21 X .764 .764 0 %100 42 M21 Z -441 -441 0 %100 42 M21 Z -441 -441 0 %100 43 M22 X 3.741 3.741 0 %100 45 M23 X 3.741 3.741 0 %100 46 M23	33	M17	X	2.875	2.875	0	%100
M18	34	M17	Z	-1.66	-1.66	0	%100
M18	35	M18	X	4.674	4.674	0	%100
38 M19 X	36	M18		-2.698	-2.698	0	%100
M19			X			0	
M20			Z				
40 M20 Z -,441 -,441 0 %100 41 M21 X .764 .764 0 %100 43 M21 Z -,441 -,441 0 %100 43 M22 X 3,741 3,741 0 %100 45 M23 X 3,741 3,741 0 %100 46 M23 Z -2,16 -2,16 0 %100 47 M24 X 2,875 2,2875 0 %100 48 M24 Z -1,66 -1,66 0 %100 49 M25 X 2,875 2,2875 0 %100 50 M25 X 2,875 2,2875 0 %100 51 M26 X 2,803 2,803 0 %100 52 M26 X 2,803 2,803 0 %100 54 M27			X			0	
41 M21 X .764 0 %100 42 M21 Z 441 441 0 %100 43 M22 X 3.741 3.741 0 %100 44 M22 Z -2.16 0 %100 45 M23 X 3.741 3.741 0 %100 46 M23 Z -2.16 -2.16 0 %100 47 M24 X 2.875 2.875 0 %100 47 M24 X 2.875 2.875 0 %100 49 M25 X 2.875 2.875 0 %100 50 M25 Z -1.66 -1.66 0 %100 51 M26 X 2.803 2.803 0 %100 52 M26 Z -1.618 -1.618 0 %100 53 M27 X 2.803							
42 M21 Z 441 441 0 %100 43 M22 X 3.741 3.741 0 %100 45 M23 X 3.741 3.741 0 %100 46 M23 Z 2.16 0 %100 47 M24 X 2.875 2.875 0 %100 48 M24 Z -1.66 -1.66 0 %100 49 M25 X 2.875 2.875 0 %100 50 M25 X 2.875 2.875 0 %100 51 M26 X 2.803 2.803 0 %100 51 M26 X 2.803 2.803 0 %100 52 M26 Z -1.618 -1.618 0 %100 53 M27 X 2.803 2.803 0 %100 54 M27 Z							
43 M22 X 3,741 3,741 0 %100 44 M23 X 3,741 3,741 0 %100 46 M23 Z -2,16 -2,16 0 %100 47 M24 X 2,875 2,875 0 %100 48 M24 Z -1,66 -1,66 0 %100 49 M25 X 2,875 2,875 0 %100 50 M25 Z -1,66 -1,66 0 %100 51 M26 X 2,803 2,803 0 %100 51 M26 X 2,803 2,803 0 %100 52 M26 Z -1,618 -1,618 0 %100 53 M27 X 2,803 2,803 0 %100 54 M27 Z -1,618 -1,618 0 %100 56 M28 <td></td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td>			7				
44 M22 Z -2.16 0 %100 45 M23 X 3.741 3.741 0 %100 46 M23 Z 2.2.16 -2.16 0 %100 47 M24 X 2.875 2.875 0 %100 48 M24 Z -1.66 -1.66 0 %100 49 M25 X 2.875 2.875 0 %100 50 M25 Z -1.66 -1.66 0 %100 51 M26 X 2.803 2.803 0 %100 51 M26 Z -1.618 -1.618 0 %100 52 M26 Z -1.618 -1.618 0 %100 54 M27 X 2.803 2.803 0 %100 54 M27 Z -1.618 -1.618 0 %100 55 M28 X							
45 M23 X 3.741 3.741 0 %100 46 M23 Z -2.16 -2.875 0 %100 47 M24 X 2.875 0 %100 48 M24 Z -1.66 -1.66 0 %100 49 M25 X 2.875 2.875 0 %100 50 M25 Z -1.66 -1.66 0 %100 51 M26 X 2.803 2.803 0 %100 51 M26 Z -1.618 -1.618 0 %100 53 M27 X 2.803 2.803 0 %100 54 M27 Z -1.618 -1.618 0 %100 54 M27 Z -1.66 -1.66 0 %100 55 M28 X 2.875 2.875 0 %100 56 M28 Z			7				
46 M23 Z -2.16 -2.16 0 %100 47 M24 X 2.875 2.875 0 %100 48 M24 Z -1.66 0 %100 49 M25 X 2.875 2.875 0 %100 50 M25 Z -1.66 -1.66 0 %100 51 M26 X 2.803 2.803 0 %100 52 M26 Z -1.618 -1.618 0 %100 53 M27 X 2.803 2.803 0 %100 54 M27 Z -1.618 -1.618 0 %100 54 M27 Z -1.618 -1.618 0 %100 55 M28 X 2.875 2.875 0 %100 56 M28 Z -1.66 -1.66 0 %100 57 M29 X							
47 M24 X 2.875 2.875 0 %100 48 M24 Z -1.66 -1.66 0 %100 50 M25 X 2.875 2.875 0 %100 50 M25 Z -1.66 -1.66 0 %100 51 M26 X 2.803 2.803 0 %100 52 M26 Z -1.618 -1.618 0 %100 53 M27 X 2.803 2.803 0 %100 54 M27 Z -1.618 -1.618 0 %100 54 M27 Z -1.618 -1.618 0 %100 55 M28 X 2.875 2.875 0 %100 56 M28 Z -1.66 -1.66 0 %100 57 M29 X 1.168 1.168 0 %100 58 M29 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
48 M24 Z -1.66 -1.66 0 %100 49 M25 X 2.875 0 %100 50 M25 Z -1.66 -1.66 0 %100 51 M26 X 2.803 2.803 0 %100 52 M26 Z -1.618 -1.618 0 %100 53 M27 X 2.803 2.803 0 %100 54 M27 Z -1.618 -1.618 0 %100 54 M27 Z -1.618 -1.618 0 %100 55 M28 X 2.875 2.875 0 %100 56 M28 Z -1.66 -1.66 0 %100 57 M29 X 1.168 1.168 0 %100 59 M30 X 1.168 1.168 0 %100 60 M30 Z							
49 M25 X 2.875 2.875 0 %100 50 M25 Z -1.66 -1.66 0 %100 51 M26 X 2.803 2.803 0 %100 52 M26 Z -1.618 -1.618 0 %100 53 M27 X 2.803 2.803 0 %100 54 M27 Z -1.618 -1.618 0 %100 55 M28 X 2.875 2.875 0 %100 56 M28 Z -1.66 -1.66 0 %100 57 M29 X 1.168 1.168 0 %100 58 M29 Z 675 675 0 %100 59 M30 X 1.168 1.168 0 %100 60 M30 Z 675 675 0 %100 61 M31 <td></td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td>			7				
50 M25 Z -1.66 -1.66 0 %100 51 M26 X 2.803 2.803 0 %100 52 M26 Z -1.618 -1.618 0 %100 53 M27 X 2.803 2.803 0 %100 54 M27 Z -1.618 -1.618 0 %100 55 M28 X 2.875 2.875 0 %100 56 M28 Z -1.66 -1.666 0 %100 57 M29 X 1.168 1.168 0 %100 58 M29 Z -675 -675 0 %100 59 M30 X 1.168 1.168 0 %100 60 M30 Z -675 -675 0 %100 61 M31 X 3.741 3.741 0 %100 62 M31						·	
51 M26 X 2.803 2.803 0 %100 52 M26 Z -1.618 -1.618 0 %100 53 M27 X 2.803 2.803 0 %100 54 M27 Z -1.618 -1.618 0 %100 55 M28 X 2.875 2.875 0 %100 56 M28 Z -1.66 -1.66 0 %100 57 M29 X 1.168 1.168 0 %100 58 M29 Z -675 -675 0 %100 59 M30 X 1.168 1.168 0 %100 60 M30 Z -675 -675 0 %100 61 M31 X 3.741 3.741 0 %100 62 M31 Z -2.16 -2.16 0 %100 63 M32							
52 M26 Z -1.618 -1.618 0 %100 53 M27 X 2.803 2.803 0 %100 54 M27 Z -1.618 -1.618 0 %100 55 M28 X 2.875 2.875 0 %100 56 M28 Z -1.66 -1.66 0 %100 57 M29 X 1.168 1.168 0 %100 58 M29 Z -675 675 0 %100 59 M30 X 1.168 1.168 0 %100 60 M30 Z 675 675 0 %100 61 M31 X 3.741 3.741 0 %100 62 M31 Z -2.16 0 %100 63 M32 X 3.741 3.741 0 %100 63 M32 X							
53 M27 X 2.803 2.803 0 %100 54 M27 Z -1.618 -1.618 0 %100 55 M28 X 2.875 2.875 0 %100 56 M28 Z -1.66 -1.66 0 %100 57 M29 X 1.168 1.168 0 %100 58 M29 Z -675 -675 0 %100 59 M30 X 1.168 1.168 0 %100 60 M30 Z -675 -675 0 %100 61 M31 X 3.741 3.741 0 %100 62 M31 Z -2.16 -2.16 0 %100 63 M32 X 3.741 3.741 0 %100 64 M32 Z -2.16 -2.16 0 %100 65 M33			7				
54 M27 Z -1.618 -1.618 0 %100 55 M28 X 2.875 2.875 0 %100 56 M28 Z -1.66 -1.66 0 %100 57 M29 X 1.168 1.168 0 %100 58 M29 Z -675 -675 0 %100 59 M30 X 1.168 1.168 0 %100 60 M30 Z -675 -675 0 %100 61 M31 X 3.741 3.741 0 %100 62 M31 Z -2.16 -2.16 0 %100 63 M32 X 3.741 3.741 0 %100 63 M32 Z -2.16 -2.16 0 %100 65 M33 X 2.875 0 %100 66 M33 Z							
55 M28 X 2.875 2.875 0 %100 56 M28 Z -1.66 -1.66 0 %100 57 M29 X 1.168 1.168 0 %100 58 M29 Z -675 -675 0 %100 59 M30 X 1.168 1.168 0 %100 60 M30 Z -675 -675 0 %100 61 M31 X 3.741 3.741 0 %100 62 M31 Z -2.16 -2.16 0 %100 63 M32 X 3.741 3.741 0 %100 64 M32 Z -2.16 -2.16 0 %100 65 M33 X 2.875 2.875 0 %100 66 M33 Z -1.66 -1.66 0 %100 68 M34			7				
56 M28 Z -1.66 -1.66 0 %100 57 M29 X 1.168 1.168 0 %100 58 M29 Z -675 -675 0 %100 59 M30 X 1.168 1.168 0 %100 60 M30 Z -675 -675 0 %100 61 M31 X 3.741 3.741 0 %100 62 M31 Z -2.16 -2.16 0 %100 63 M32 X 3.741 3.741 0 %100 64 M32 Z -2.16 -2.16 0 %100 65 M33 X 2.875 0 %100 66 M33 Z -1.66 -1.66 0 %100 67 M34 X 2.875 2.875 0 %100 68 M34 Z <t< td=""><td></td><td></td><td></td><td></td><td></td><td>·</td><td></td></t<>						·	
57 M29 X 1.168 1.168 0 %100 58 M29 Z 675 675 0 %100 59 M30 X 1.168 1.168 0 %100 60 M30 Z 675 675 0 %100 61 M31 X 3.741 3.741 0 %100 62 M31 Z -2.16 -2.16 0 %100 63 M32 X 3.741 3.741 0 %100 63 M32 X 3.741 3.741 0 %100 64 M32 Z -2.16 -2.16 0 %100 65 M33 X 2.875 2.875 0 %100 66 M33 Z -1.66 -1.66 0 %100 67 M34 X 2.875 2.875 0 %100 68 M34							
58 M29 Z 675 675 0 %100 59 M30 X 1.168 1.168 0 %100 60 M30 Z 675 675 0 %100 61 M31 X 3.741 3.741 0 %100 62 M31 Z -2.16 -2.16 0 %100 63 M32 X 3.741 3.741 0 %100 64 M32 Z -2.16 -2.16 0 %100 64 M32 Z -2.16 -2.16 0 %100 65 M33 X 2.875 2.875 0 %100 66 M33 Z -1.66 -1.66 0 %100 67 M34 X 2.875 2.875 0 %100 68 M34 Z -1.66 -1.66 0 %100 70 M35							
59 M30 X 1.168 1.168 0 %100 60 M30 Z 675 675 0 %100 61 M31 X 3.741 3.741 0 %100 62 M31 Z -2.16 0 %100 63 M32 X 3.741 0 %100 64 M32 X 3.741 0 %100 64 M32 Z -2.16 0 %100 65 M33 X 2.875 2.875 0 %100 66 M33 Z -1.66 -1.66 0 %100 67 M34 X 2.875 2.875 0 %100 68 M34 Z -1.66 -1.66 0 %100 69 M35 X 2.803 2.803 0 %100 70 M35 Z -1.618 -1.618 0							
60 M30 Z 675 675 0 %100 61 M31 X 3.741 3.741 0 %100 62 M31 Z -2.16 -2.16 0 %100 63 M32 X 3.741 3.741 0 %100 64 M32 Z -2.16 -2.16 0 %100 64 M32 Z -2.16 -2.16 0 %100 65 M33 X 2.875 0 %100 66 M33 Z -1.66 0 %100 67 M34 X 2.875 0 %100 68 M34 Z -1.66 -1.66 0 %100 69 M35 X 2.803 2.803 0 %100 70 M35 Z -1.618 -1.618 0 %100 71 M36 X 2.803 2.803							
61 M31 X 3.741 3.741 0 %100 62 M31 Z -2.16 -2.16 0 %100 63 M32 X 3.741 3.741 0 %100 64 M32 Z -2.16 -2.16 0 %100 65 M33 X 2.875 0 %100 66 M33 Z -1.66 -1.66 0 %100 67 M34 X 2.875 0 %100 68 M34 Z -1.66 -1.66 0 %100 69 M35 X 2.803 2.803 0 %100 70 M35 Z -1.618 -1.618 0 %100 71 M36 X 2.803 2.803 0 %100 72 M36 Z -1.618 -1.618 0 %100 73 M37 X 4.114							
62 M31 Z -2.16 0 %100 63 M32 X 3.741 3.741 0 %100 64 M32 Z -2.16 -2.16 0 %100 65 M33 X 2.875 2.875 0 %100 66 M33 Z -1.66 -1.66 0 %100 67 M34 X 2.875 0 %100 68 M34 Z -1.66 -1.66 0 %100 69 M35 X 2.803 2.803 0 %100 70 M35 Z -1.618 -1.618 0 %100 71 M36 X 2.803 2.803 0 %100 72 M36 Z -1.618 -1.618 0 %100 73 M37 X 4.114 0 %100 75 M38 X 1.029 1.029							
63 M32 X 3.741 3.741 0 %100 64 M32 Z -2.16 -2.16 0 %100 65 M33 X 2.875 2.875 0 %100 66 M33 Z -1.66 -1.66 0 %100 67 M34 X 2.875 0 %100 68 M34 Z -1.66 -1.66 0 %100 69 M35 X 2.803 2.803 0 %100 70 M35 Z -1.618 -1.618 0 %100 71 M36 X 2.803 2.803 0 %100 72 M36 Z -1.618 -1.618 0 %100 73 M37 X 4.114 4.114 0 %100 75 M38 X 1.029 1.029 0 %100 76 M38 Z							
64 M32 Z -2.16 -2.16 0 %100 65 M33 X 2.875 0 %100 66 M33 Z -1.66 -1.66 0 %100 67 M34 X 2.875 0 %100 68 M34 Z -1.66 -1.66 0 %100 69 M35 X 2.803 2.803 0 %100 70 M35 Z -1.618 -1.618 0 %100 71 M36 X 2.803 2.803 0 %100 72 M36 Z -1.618 -1.618 0 %100 73 M37 X 4.114 4.114 0 %100 74 M37 Z -2.376 -2.376 0 %100 75 M38 X 1.029 1.029 0 %100 76 M38 Z 594							
65 M33 X 2.875 2.875 0 %100 66 M33 Z -1.66 -1.66 0 %100 67 M34 X 2.875 2.875 0 %100 68 M34 Z -1.66 -1.66 0 %100 69 M35 X 2.803 2.803 0 %100 70 M35 Z -1.618 -1.618 0 %100 71 M36 X 2.803 2.803 0 %100 72 M36 Z -1.618 -1.618 0 %100 73 M37 X 4.114 4.114 0 %100 74 M37 Z -2.376 -2.376 0 %100 75 M38 X 1.029 1.029 0 %100 76 M38 Z 594 594 0 %100 78 M39 Z 594 594 0 %100							
66 M33 Z -1.66 -1.66 0 %100 67 M34 X 2.875 2.875 0 %100 68 M34 Z -1.66 -1.66 0 %100 69 M35 X 2.803 2.803 0 %100 70 M35 Z -1.618 0 %100 71 M36 X 2.803 2.803 0 %100 72 M36 Z -1.618 -1.618 0 %100 73 M37 X 4.114 4.114 0 %100 74 M37 Z -2.376 -2.376 0 %100 75 M38 X 1.029 1.029 0 %100 76 M38 Z 594 594 0 %100 78 M39 X 1.029 1.029 0 %100 78 M39 Z 594 594 0 %100							
67 M34 X 2.875 2.875 0 %100 68 M34 Z -1.66 -1.66 0 %100 69 M35 X 2.803 2.803 0 %100 70 M35 Z -1.618 0 %100 71 M36 X 2.803 2.803 0 %100 72 M36 Z -1.618 -1.618 0 %100 73 M37 X 4.114 4.114 0 %100 74 M37 Z -2.376 -2.376 0 %100 75 M38 X 1.029 1.029 0 %100 76 M38 Z 594 594 0 %100 77 M39 X 1.029 1.029 0 %100 78 M39 Z 594 594 0 %100							
68 M34 Z -1.66 -1.66 0 %100 69 M35 X 2.803 2.803 0 %100 70 M35 Z -1.618 -1.618 0 %100 71 M36 X 2.803 2.803 0 %100 72 M36 Z -1.618 -1.618 0 %100 73 M37 X 4.114 4.114 0 %100 74 M37 Z -2.376 -2.376 0 %100 75 M38 X 1.029 1.029 0 %100 76 M38 Z 594 594 0 %100 77 M39 X 1.029 1.029 0 %100 78 M39 Z 594 594 0 %100							
69 M35 X 2.803 2.803 0 %100 70 M35 Z -1.618 -1.618 0 %100 71 M36 X 2.803 2.803 0 %100 72 M36 Z -1.618 -1.618 0 %100 73 M37 X 4.114 4.114 0 %100 74 M37 Z -2.376 -2.376 0 %100 75 M38 X 1.029 1.029 0 %100 76 M38 Z 594 594 0 %100 77 M39 X 1.029 1.029 0 %100 78 M39 Z 594 594 0 %100			X				
70 M35 Z -1.618 -1.618 0 %100 71 M36 X 2.803 2.803 0 %100 72 M36 Z -1.618 -1.618 0 %100 73 M37 X 4.114 4.114 0 %100 74 M37 Z -2.376 -2.376 0 %100 75 M38 X 1.029 1.029 0 %100 76 M38 Z 594 594 0 %100 77 M39 X 1.029 1.029 0 %100 78 M39 Z 594 594 0 %100							
71 M36 X 2.803 2.803 0 %100 72 M36 Z -1.618 -1.618 0 %100 73 M37 X 4.114 4.114 0 %100 74 M37 Z -2.376 -2.376 0 %100 75 M38 X 1.029 1.029 0 %100 76 M38 Z 594 594 0 %100 77 M39 X 1.029 1.029 0 %100 78 M39 Z 594 594 0 %100			X				
72 M36 Z -1.618 -1.618 0 %100 73 M37 X 4.114 4.114 0 %100 74 M37 Z -2.376 -2.376 0 %100 75 M38 X 1.029 1.029 0 %100 76 M38 Z 594 594 0 %100 77 M39 X 1.029 1.029 0 %100 78 M39 Z 594 594 0 %100							
73 M37 X 4.114 4.114 0 %100 74 M37 Z -2.376 -2.376 0 %100 75 M38 X 1.029 1.029 0 %100 76 M38 Z 594 594 0 %100 77 M39 X 1.029 1.029 0 %100 78 M39 Z 594 594 0 %100							
74 M37 Z -2.376 0 %100 75 M38 X 1.029 1.029 0 %100 76 M38 Z 594 594 0 %100 77 M39 X 1.029 1.029 0 %100 78 M39 Z 594 594 0 %100							
74 M37 Z -2.376 0 %100 75 M38 X 1.029 1.029 0 %100 76 M38 Z 594 594 0 %100 77 M39 X 1.029 1.029 0 %100 78 M39 Z 594 594 0 %100			X				
76 M38 Z 594 0 %100 77 M39 X 1.029 1.029 0 %100 78 M39 Z 594 594 0 %100			Z				
76 M38 Z 594 0 %100 77 M39 X 1.029 1.029 0 %100 78 M39 Z 594 594 0 %100	75	M38			1.029	0	%100
77 M39 X 1.029 1.029 0 %100 78 M39 Z 594 594 0 %100	76	M38	Z	594	594	0	%100
78 M39 Z594594 0 %100		M39	X	1.029	1.029	0	%100
			Z				
	79	M49	X	4.114	4.114	0	%100
80 M49 Z -2.376 -2.376 0 %100	80	M49		-2.376			%100

: NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 55: Structure Wi (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
81	M50	X	1.029	1.029	0	%100
82	M50	Z	594	594	0	%100
83	M51	X	1.029	1.029	0	%100
84	M51	Z	594	594	0	%100
85	M61	X	2.485	2.485	0	%100
86	M61	Z	-1.434	-1.434	0	%100
87	M62	X	2.485	2.485	0	%100
88	M62	Z	-1.435	-1.435	0	%100
89	M63	X	2.466	2.466	0	%100
90	M63	Z	-1.424	-1.424	0	%100
91	M64	X	2.98	2.98	0	%100
92	M64	Z	-1.72	-1.72	Ů	%100
93	M65	X	2.98	2.98	0	%100 %100
94	M65	Z	-1.72	-1.72	0	%100 %100
95	M66	X	2.986	2.986	0	%100 %100
96	M66	Z	-1.724	-1.724	0	%100 %100
97	M67	X	2.98	2.98	0	%100 %100
98	M67	Z	-1.72	-1.72	0	%100 %100
99	M68	X	2.98	2.98	0	%100 %100
100	M68	Ž	-1.72	-1.72	0	%100 %100
					-	
101	M69	X	2.986	2.986	0	%100 %100
102	M69	Z	-1.724	-1.724	0	%100 %100
103	M70	X Z	2.485	2.485	0	%100 %100
104	M70		-1.434	-1.434	0	%100
105	M71	X	2.485	2.485	0	%100
106	M71	Z	-1.435	-1.435	0	%100
107	M72	X	2.466	2.466	0	%100
108	M72	Z	-1.424	-1.424	0	%100
109	M73	X	2.485	2.485	0	%100
110	M73	Z	-1.434	-1.434	0	%100
111	M74	X	2.485	2.485	0	%100
112	M74	Z	-1.435	-1.435	0	%100
113	<u>M75</u>	X	2.466	2.466	0	%100
114	M75	Z	-1.424	-1.424	0	%100
115	MP1A	X	3.195	3.195	0	%100
116	MP1A	Z	-1.844	-1.844	0	%100
117	MP2A	X	3.087	3.087	0	%100
118	MP2A	Z	-1.782	-1.782	0	%100
119	MP4A	X	3.195	3.195	0	%100
120	MP4A	Z	-1.844	-1.844	0	%100
121	MP5A	X	3.195	3.195	0	%100
122	MP5A	Z	-1.844	-1.844	0	%100
123	MPA	X	3.087	3.087	0	%100
124	MPA	Z	-1.782	-1.782	0	%100
125	MP6A	X	3.195	3.195	0	%100
126	MP6A	Z	-1.844	-1.844	0	%100
127	MP1C	X	3.195	3.195	0	%100
128	MP1C	Z	-1.844	-1.844	Ů	%100 %100
129	MP1B	X	3.195	3.195	0	%100 %100
130	MP1B	Z	-1.844	-1.844	Ů	%100 %100
131	MPC	X	3.087	3.087	0	%100 %100
132	MPC	Z	-1.782	-1.782	0	%100 %100
133	MP2C	X	3.087	3.087	0	%100 %100
134	MP2C	Z	-1.782	-1.782	0	%100 %100
135	MP5C	X	3.195	3.195	0	%100 %100
136	MP5C	Z	-1.844	-1.844	0	%100 %100
137	MP6C	X	3.087	3.087	0	%100 %100
101	IVII OO		0.007	0.007	V	70 1 0 0

: NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
138	MP6C	Z	-1.782	-1.782	0	%100
139	MPB	X	3.087	3.087	0	%100
140	MPB	Z	-1.782	-1.782	0	%100
141	MPB2	X	3.087	3.087	0	%100
142	MPB2	Z	-1.782	-1.782	0	%100
143	MP5B	X	3.087	3.087	0	%100
144	MP5B	Z	-1.782	-1.782	0	%100
145	MP4C	X	3.195	3.195	0	%100
146	MP4C	Z	-1.844	-1.844	0	%100
147	MP3C	X	3.195	3.195	0	%100
148	MP3C	Z	-1.844	-1.844	0	%100
149	M146	X	4.674	4.674	0	%100
150	M146	Z	-2.698	-2.698	0	%100
151	M147	X	4.674	4.674	0	%100
152	M147	Z	-2.698	-2.698	0	%100
153	M154	X	1.168	1.168	0	%100
154	M154	Z	675	675	0	%100
155	M155	X	1.168	1.168	0	%100
156	M155	Z	675	675	0	%100
157	M162	X	1.168	1.168	0	%100
158	M162	Z	675	675	0	%100
159	M163	X	1.168	1.168	0	%100
160	M163	Z	675	675	0	%100
161	MP3A	X	3.087	3.087	0	%100
162	MP3A	Z	-1.782	-1.782	0	%100
163	MP4B	X	3.195	3.195	0	%100
164	MP4B	Z	-1.844	-1.844	0	%100
165	MP6B	X	3.087	3.087	0	%100
166	MP6B	Z	-1.782	-1.782	0	%100
167	MP3B	X	3.195	3.195	0	%100
168	MP3B	Z	-1.844	-1.844	0	%100
169	M163A	X	3.087	3.087	0	%100
170	M163A	Z	-1.782	-1.782	0	%100
171	M166	X	1.475	1.475	0	%100
172	M166	Z	851	851	0	%100
173	M169A	X	1.475	1.475	0	%100
174	M169A	Z	851	851	0	%100
175	MP2B	X	3.195	3.195	0	%100
176	MP2B	Z	-1.844	-1.844	0	%100
177	M173A	X	1.475	1.475	0	%100
178	M173A	Z	851	851	0	%100
179	M176	X	1.475	1.475	0	%100
180	M176	Z	851	851	0	%100

Member Distributed Loads (BLC 56: Structure Wi (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M3	X	2.678	2.678	0	%100
6	M3	Z	0	0	0	%100
7	M4	X	2.679	2.679	0	%100
8	M4	Z	0	0	0	%100
9	M5	X	2.647	2.647	0	%100
10	M5	Z	0	0	0	%100

Model Name

Company Designer Job Number Nov 23, 2021 5:47 PM : NL : 21781092A Checked By: DX : Mount Analysis (Rev. 3)

Member Distributed Loads (BLC 56: Structure Wi (90 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F	Start Location[ft,%]	
11	M6	X	2.646	2.646	0	%100
12	M6	Z	0	0	0	%100
13	M7	X	2.646	2.646	0	%100
14	M7	Z	0	0	0	%100
15	M8	X	2.646	2.646	0	%100
16	M8	Z	0	0	0	%100
17	M9	X	2.646	2.646	0	%100
18	M9	Z	0	0	0	%100 %100
19	M10	X	1.44	1.44	0	%100 %100
20	M10	Z	0	0	0	%100 %100
21	M11	X	1.44	1.44	0	%100 %100
22	M11	Z	0	0	0	%100 %100
23	M12	X	3.32	3.32	0	%100
24	M12	Z	0	0	0	%100
25	M13	X	3.32	3.32	0	%100
26	M13	Z	0	0	0	%100
27	M14	X	3.32	3.32	0	%100
28	M14	Z	0	0	0	%100
29	M15	X	2.277	2.277	0	%100
30	M15	Z	0	0	0	%100
31	M16	X	2.27	2.27	0	%100
32	M16	Z	0	0	0	%100
33	M17	X	3.32	3.32	0	%100
34	M17	Z	0	0	0	%100
35	M18	X	4.048	4.048	0	%100
36	M18	Z	0	0	0	%100
37	M19	X	4.048	4.048	0	%100
38	M19	Z	0	0	0	%100
39	M20	X	0	0	0	%100
40	M20	Z	0	0	0	%100
41	M21	X	0	0	0	%100
42	M21	Z	0	0	0	%100 %100
43	M22	X	1.44	1.44	0	%100 %100
44	M22	Z	0	0	0	%100
45	M23	X	1.44	1.44	0	%100
46	M23	Z	0	0	0	%100 %100
47	M24	X	3.32	3.32	0	%100 %100
48	M24	Z	0	0	0	%100
				-		
49	M25	X	3.32	3.32	0	%100
50	M25	Z	2 277	2 277	0	%100 %100
51	M26	X	2.277	2.277	0	%100 %100
52	M26	Z	0	0	0	%100
53	M27	X	2.27	2.27	0	%100
54	M27	Z	0	0	0	%100
55	M28	X	3.32	3.32	0	%100
56	M28	Z	0	0	0	%100
57	M29	X	4.048	4.048	0	%100
58	M29	Z	0	0	0	%100
59	M30	X	4.048	4.048	0	%100
60	M30	Z	0	0	0	%100
61	M31	X	5.76	5.76	0	%100
62	M31	Z	0	0	0	%100
63	M32	X	5.76	5.76	0	%100
64	M32	Z	0	0	0	%100
65	M33	X	3.32	3.32	0	%100
66	M33	Z	0	0	0	%100
67	M34	X	3.32	3.32	0	%100

Page 176

: NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 56: Structure Wi (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[ft,%]	
68	M34	Z	0	0	0	%100
69	M35	X	3.716	3.716	0	%100
70	M35	Z	0	0	0	%100
71	M36	X	3.72	3.72	0	%100
72	M36	Z	0	0	0	%100
73	M37	X	3.563	3.563	0	%100
74	M37	Z	0	0	0	%100
75	M38	X	0	0	0	%100
76	M38	Z	0	0	0	%100
77	M39	X	3.563	3.563	0	%100
78	M39	Z	0	0	0	%100
79	M49	X	3.563	3.563	0	%100
80	M49	Z	0	0	0	%100
81	M50	X	0	0	0	%100
82	M50	Z	0	0	0	%100
83	M51	X	3.563	3.563	0	%100
84	M51	Z	0	0	0	%100
85	M61	X	2.678	2.678	0	%100
86	M61	Z	0	0	0	%100
87	M62	X	2.679	2.679	0	%100
88	M62	Z	0	0	0	%100
89	M63	X	2.647	2.647	0	%100
90	M63	Z	0	0	0	%100
91	M64	X	3.25	3.25	0	%100
92	M64	Z	0	0	0	%100
93	M65	X	3.25	3.25	0	%100
94	M65	Z	0	0	Ö	%100
95	M66	X	3.248	3.248	0	%100
96	M66	Z	0	0	Ö	%100
97	M67	X	3.25	3.25	0	%100
98	M67	Z	0	0	Ů	%100
99	M68	X	3.25	3.25	0	%100
100	M68	Z	0	0	0	%100
101	M69	X	3.248	3.248	0	%100
102	M69	Z	0	0	0	%100
103	M70	X	3.25	3.25	0	%100 %100
104	M70	Z	0	0	0	%100 %100
105	M71	X	3.25	3.25	0	%100 %100
106	M71	Z	0	0	0	%100 %100
107	M72	X	3.248	3.248	0	%100 %100
108	M72	Z	0	0	0	%100 %100
109	M73	X	3.25	3.25	0	%100 %100
110	M73	Z	0	0	0	%100 %100
111	M74	X	3.25	3.25	0	%100 %100
112	M74	Z	0	0	0	%100 %100
113	M75	X	3.248	3.248	0	%100 %100
114	M75	Z	0	0	0	%100 %100
115	MP1A	X	3.689	3.689	0	%100 %100
116	MP1A	Z	0	0	0	%100 %100
117	MP2A	X	3.564	3.564	0	%100 %100
118	MP2A	Z	_	0	0	%100 %100
	MP4A		3.689	3.689		%100 %100
119		X Z		3.689	0	
120	MP4A		2 690	-		%100 %100
121	MP5A	X	3.689	3.689	0	%100 %100
122	MP5A	Z	0	0	0	%100 %100
123	MPA MPA	X	3.564	3.564	0	%100 %100
124	MPA	Z	0	0	0	%100

: NL

Company Designer Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 56: Structure Wi (90 Deg)) (Continued)

125		Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
126	125	MP6A	X				
127			Z			0	
128							
129							
130							
131			7				
132				-			
133			7				
134				-		·	
135			7				
136				*			
137			7				
138							
139							
140 MPB							
141 MPB2 X 3.564 3.564 0 %100 142 MPB2 Z 0 0 0 %100 143 MP5B X 3.564 3.564 0 %100 144 MP5B Z 0 0 0 %100 145 MP4C X 3.689 3.689 0 %100 146 MP4C Z 0 0 0 %100 146 MP4C Z 0 0 0 %100 147 MP3C X 3.689 3.689 0 %100 149 M146 X 4.048 4.048 0 %100 150 M146 Z 0 0 0 %100 151 M147 X 4.048 4.048 0 %100 152 M147 Z 0 0 0 %100 153 M151 X			X				
142 MPB2 Z 0 0 %100 143 MP5B X 3.564 3.564 0 %100 144 MP6B Z 0 0 0 %100 145 MP4C X 3.689 3.689 0 %100 146 MP4C Z 0 0 0 %100 147 MP3C X 3.689 3.689 0 %100 148 MP3C Z 0 0 0 %100 150 M146 X 4.048 4.048 0 %100 151 M147 X 4.048 4.048 0 %100 153 M154 X 4.048 <				-			
143 MP5B X 3.564 0 %100 144 MP5B Z 0 0 %100 145 MP4C X 3.689 3.689 0 %100 146 MP4C Z 0 0 0 %100 147 MP3C X 3.689 3.689 0 %1100 148 MP3C Z 0 0 0 %100 149 M146 X 4.048 4.048 0 %100 150 M146 Z 0 0 0 %100 151 M147 X 4.048 4.048 0 %100 152 M147 Z 0 0 0 %100 153 M154 X 4.048 4.048 0 %100 154 M154 Z 0 0 0 %100 155 M155 X 4.048 4.048			<u> </u>				
144 MP4C X 3.689 3.689 0 %100 145 MP4C Z 0 0 0 %100 146 MP4C Z 0 0 0 %100 147 MP3C X 3.689 3.689 0 %100 148 MP3C Z 0 0 0 %100 149 M146 X 4.048 4.048 0 %100 150 M146 X 4.048 4.048 0 %100 151 M147 X 4.048 4.048 0 %100 152 M147 Z 0 0 0 %100 153 M154 X 4.048 4.048 0 %100 154 M154 Z 0 0 0 %100 155 M155 X 4.048 4.048 0 %100 155 M162 X <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td>				*			
145 MP4C X 3.689 3.689 0 %100 146 MP4C Z 0 0 0 %100 147 MP3C X 3.689 3.689 0 %100 148 MP3C Z 0 0 0 %100 149 M146 X 4.048 4.048 0 %100 150 M146 Z 0 0 0 %100 151 M147 X 4.048 4.048 0 %100 152 M147 Z 0 0 0 %100 153 M154 X 4.048 4.048 0 %100 154 M154 Z 0 0 0 %100 155 M155 X 4.048 4.048 0 %100 156 M155 X 4.048 4.048 0 %100 157 M162 X <td></td> <td></td> <td>X</td> <td></td> <td></td> <td></td> <td></td>			X				
146 MP4C Z 0 0 %100 147 MP3C X 3.689 3.689 0 %100 148 MP3C Z 0 0 0 %100 149 M146 X 4.048 4.048 0 %100 150 M146 Z 0 0 0 %100 151 M147 X 4.048 4.048 0 %100 152 M147 Z 0 0 0 %100 153 M154 X 4.048 4.048 0 %100 154 M154 Z 0 0 0 %100 155 M155 X 4.048 4.048 0 %100 155 M155 X 4.048 4.048 0 %100 157 M162 X 0 0 0 %100 157 M163 X 0				-	-		
147 MP3C X 3.689 3.689 0 %100 148 MP3C Z 0 0 0 %100 150 M146 X 4.048 4.048 0 %100 150 M146 Z 0 0 0 %100 151 M147 X 4.048 4.048 0 %100 152 M147 Z 0 0 0 %100 153 M154 X 4.048 4.048 0 %100 153 M154 X 4.048 4.048 0 %100 155 M155 X 4.048 4.048 0 %100 156 M155 X 4.048 4.048 0 %100 157 M162 X 0 0 0 %100 158 M163 X 0 0 0 %100 159 M163 X <td></td> <td></td> <td>X</td> <td>3.689</td> <td>3.689</td> <td></td> <td></td>			X	3.689	3.689		
148 MP3C Z 0 0 %100 149 M146 X 4.048 4.048 0 %100 150 M146 Z 0 0 0 %100 151 M147 X 4.048 4.048 0 %100 152 M147 Z 0 0 0 %100 153 M154 X 4.048 4.048 0 %100 154 M154 Z 0 0 0 %100 155 M155 X 4.048 4.048 0 %100 156 M155 X 4.048 4.048 0 %100 157 M162 X 0 0 0 %100 157 M162 X 0 0 0 %100 159 M163 X 0 0 0 %100 159 M163 X 0 0					-		
149 M146 X 4.048 4.048 0 %100 150 M146 Z 0 0 0 %100 151 M147 X 4.048 4.048 0 %100 152 M147 Z 0 0 0 %100 153 M154 X 4.048 4.048 0 %100 154 M154 Z 0 0 0 %100 155 M155 X 4.048 4.048 0 %100 155 M155 X 4.048 4.048 0 %100 156 M155 Z 0 0 0 %100 157 M162 X 0 0 0 %100 158 M162 Z 0 0 0 %100 159 M163 X 0 0 0 %100 160 M163 Z 0				3.689	3.689	0	
150 M146 Z 0 0 %100 151 M147 X 4.048 4.048 0 %100 152 M147 Z 0 0 0 %100 153 M154 X 4.048 4.048 0 %100 154 M154 Z 0 0 0 %100 155 M155 X 4.048 4.048 0 %100 156 M155 X 4.048 4.048 0 %100 156 M155 X 4.048 4.048 0 %100 157 M162 X 0 0 0 %100 157 M162 X 0 0 0 %100 158 M163 X 0 0 0 %100 159 M163 X 0 0 0 %100 160 M163 X 3.564 <	148	MP3C	Z	0	0	0	%100
151 M147 X 4.048 4.048 0 %100 152 M147 Z 0 0 0 %100 153 M154 X 4.048 4.048 0 %100 154 M154 Z 0 0 0 %100 155 M155 X 4.048 4.048 0 %100 156 M155 X 4.048 4.048 0 %100 156 M155 X 4.048 4.048 0 %100 157 M162 X 0 0 0 %100 157 M162 X 0 0 0 %100 158 M162 Z 0 0 0 %100 159 M163 X 0 0 0 %100 160 M163 Z 0 0 0 %100 161 MP3A X 3	149	M146	X	4.048	4.048	0	%100
152 M147 Z 0 0 %100 153 M154 X 4.048 4.048 0 %100 154 M154 Z 0 0 0 %100 155 M155 X 4.048 4.048 0 %100 156 M155 Z 0 0 0 %100 157 M162 X 0 0 0 %100 158 M162 X 0 0 0 %100 159 M163 X 0 0 0 %100 160 M163 Z 0 0 0 %100 161 MP3A X 3.564 3.564 0 %100 162 MP3A Z 0 0 0 %100 163 MP4B X 3.568 3.689 0 %100 164 MP4B Z 0 0	150	M146	Z	0	0	0	%100
152 M147 Z 0 0 %100 153 M154 X 4.048 4.048 0 %100 154 M154 Z 0 0 0 %100 155 M155 X 4.048 4.048 0 %100 156 M155 Z 0 0 0 %100 157 M162 X 0 0 0 %100 158 M162 X 0 0 0 %100 159 M163 X 0 0 0 %100 160 M163 Z 0 0 0 %100 161 MP3A X 3.564 3.564 0 %100 162 MP3A Z 0 0 0 %100 163 MP4B X 3.568 3.689 0 %100 164 MP4B Z 0 0				4.048	4.048	0	
153 M154 X 4.048 4.048 0 %100 154 M154 Z 0 0 0 %100 155 M155 X 4.048 4.048 0 %100 156 M155 Z 0 0 0 %100 157 M162 X 0 0 0 %100 158 M162 Z 0 0 0 %100 159 M163 X 0 0 0 %100 160 M163 Z 0 0 0 %100 160 M163 Z 0 0 0 %100 161 MP3A X 3.564 3.564 0 %100 162 MP3A Z 0 0 0 %100 163 MP4B X 3.689 3.689 0 %100 164 MP4B Z 0			Z				
154 M154 Z 0 0 %100 155 M155 X 4.048 4.048 0 %100 156 M155 Z 0 0 0 %100 157 M162 X 0 0 0 %100 158 M162 Z 0 0 0 %100 159 M163 X 0 0 0 %100 160 M163 X 0 0 0 %100 161 MP3A X 3.564 3.564 0 %100 162 MP3A Z 0 0 0 %100 163 MP4B X 3.689 3.689 0 %100 164 MP4B Z 0 0 0 %100 165 MP6B X 3.564 3.564 0 %100 166 MP6B Z 0 0				4.048	4.048	0	
155			Z				
156 M155 Z 0 0 0 %100 157 M162 X 0 0 0 %100 158 M162 Z 0 0 0 %100 159 M163 X 0 0 0 %100 160 M163 Z 0 0 0 %100 161 MP3A X 3.564 3.564 0 %100 162 MP3A Z 0 0 0 %100 163 MP4B X 3.689 3.689 0 %100 164 MP4B Z 0 0 0 %100 165 MP6B X 3.564 3.564 0 %100 166 MP6B Z 0 0 0 %100 167 MP3B X 3.689 3.689 0 %100 168 MP3B Z 0				4.048	4.048		
157 M162 X			Z				
158 M162 Z 0 0 %100 159 M163 X 0 0 0 %100 160 M163 Z 0 0 0 %100 161 MP3A X 3.564 3.564 0 %100 162 MP3A Z 0 0 0 %100 163 MP4B X 3.689 3.689 0 %100 163 MP4B X 3.689 3.689 0 %100 164 MP4B Z 0 0 0 %100 165 MP6B X 3.564 3.564 0 %100 166 MP6B Z 0 0 0 %100 168 MP3B X 3.689 3.689 0 %100 169 M163A X 3.564 3.564 0 %100 170 M163A Z 0							
159 M163 X 0 0 %100 160 M163 Z 0 0 %100 161 MP3A X 3.564 3.564 0 %100 162 MP3A Z 0 0 0 %100 163 MP4B X 3.689 3.689 0 %100 164 MP4B Z 0 0 0 %100 165 MP6B X 3.564 3.564 0 %100 166 MP6B Z 0 0 0 %100 167 MP3B X 3.689 3.689 0 %100 168 MP3B Z 0 0 0 %100 169 M163A X 3.564 3.564 0 %100 170 M163A Z 0 0 %100 171 M166 X 2.27 2.27 0							
160 M163 Z 0 0 %100 161 MP3A X 3.564 3.564 0 %100 162 MP3A Z 0 0 0 %100 163 MP4B X 3.689 3.689 0 %100 163 MP4B X 3.689 3.689 0 %100 164 MP4B Z 0 0 0 %100 165 MP6B X 3.564 3.564 0 %100 166 MP6B Z 0 0 0 %100 167 MP3B X 3.689 3.689 0 %100 168 MP3B Z 0 0 0 %100 169 M163A X 3.564 0 %100 170 M163A Z 0 0 %100 171 M166 X 2.27 2.27 0							
161 MP3A X 3.564 3.564 0 %100 162 MP3A Z 0 0 0 %100 163 MP4B X 3.689 3.689 0 %100 164 MP4B Z 0 0 0 %100 165 MP6B X 3.564 3.564 0 %100 166 MP6B Z 0 0 0 %100 167 MP3B X 3.689 3.689 0 %100 168 MP3B X 3.689 3.689 0 %100 169 M163A X 3.564 3.564 0 %100 170 M163A X 3.564 3.564 0 %100 171 M166 X 2.27 2.27 0 %100 172 M166 Z 0 0 0 %100 173 M169A			7				
162 MP3A Z 0 0 %100 163 MP4B X 3.689 3.689 0 %100 164 MP4B Z 0 0 0 %100 165 MP6B X 3.564 3.564 0 %100 166 MP6B Z 0 0 0 %100 167 MP3B X 3.689 3.689 0 %100 167 MP3B X 3.689 3.689 0 %100 169 M163A X 3.564 3.564 0 %100 170 M163A X 3.564 3.564 0 %100 171 M166 X 2.27 2.27 0 %100 172 M166 Z 0 0 0 %100 173 M169A X 2.27 2.27 0 %100 175 MP2B X <							
163 MP4B X 3.689 3.689 0 %100 164 MP4B Z 0 0 0 %100 165 MP6B X 3.564 3.564 0 %100 166 MP6B Z 0 0 0 %100 167 MP3B X 3.689 3.689 0 %100 168 MP3B Z 0 0 0 %100 169 M163A X 3.564 3.564 0 %100 170 M163A Z 0 0 0 %100 171 M166 X 2.27 2.27 0 %100 172 M166 Z 0 0 0 %100 173 M169A X 2.27 2.27 0 %100 175 MP2B X 3.689 3.689 0 %100 176 MP2B Z <td></td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td>			7				
164 MP4B Z 0 0 %100 165 MP6B X 3.564 3.564 0 %100 166 MP6B Z 0 0 0 %100 167 MP3B X 3.689 3.689 0 %100 168 MP3B Z 0 0 0 %100 169 M163A X 3.564 3.564 0 %100 170 M163A Z 0 0 0 %100 171 M166 X 2.27 2.27 0 %100 172 M166 Z 0 0 0 %100 173 M169A X 2.27 2.27 0 %100 174 M169A Z 0 0 %100 175 MP2B X 3.689 3.689 0 %100 176 MP2B Z 0 0							
165 MP6B X 3.564 3.564 0 %100 166 MP6B Z 0 0 0 %100 167 MP3B X 3.689 3.689 0 %100 168 MP3B Z 0 0 0 %100 169 M163A X 3.564 3.564 0 %100 170 M163A Z 0 0 0 %100 171 M163A Z 0 0 0 %100 171 M166 X 2.27 2.27 0 %100 172 M166 Z 0 0 %100 173 M169A X 2.27 2.27 0 %100 174 M169A Z 0 0 %100 175 MP2B X 3.689 3.689 0 %100 176 MP2B Z 0 0							
166 MP6B Z 0 0 %100 167 MP3B X 3.689 0 %100 168 MP3B Z 0 0 0 %100 169 M163A X 3.564 3.564 0 %100 170 M163A Z 0 0 0 %100 171 M166 X 2.27 2.27 0 %100 172 M166 Z 0 0 0 %100 173 M169A X 2.27 2.27 0 %100 174 M169A Z 0 0 0 %100 175 MP2B X 3.689 3.689 0 %100 176 MP2B Z 0 0 0 %100 178 M173A X .568 .568 0 %100 179 M176 X .568 .568							
167 MP3B X 3.689 3.689 0 %100 168 MP3B Z 0 0 0 %100 169 M163A X 3.564 3.564 0 %100 170 M163A Z 0 0 0 %100 171 M166 X 2.27 2.27 0 %100 172 M166 Z 0 0 0 %100 173 M169A X 2.27 2.27 0 %100 174 M169A Z 0 0 0 %100 175 MP2B X 3.689 3.689 0 %100 176 MP2B Z 0 0 %100 177 M173A X .568 .568 0 %100 178 M173A Z 0 0 %100 179 M176 X .568 .568 0 %100			7				
168 MP3B Z 0 0 %100 169 M163A X 3.564 3.564 0 %100 170 M163A Z 0 0 0 %100 171 M166 X 2.27 2.27 0 %100 172 M166 Z 0 0 0 %100 173 M169A X 2.27 2.27 0 %100 174 M169A Z 0 0 0 %100 175 MP2B X 3.689 3.689 0 %100 176 MP2B Z 0 0 %100 177 M173A X .568 .568 0 %100 179 M176 X .568 .568 0 %100				-			
169 M163A X 3.564 3.564 0 %100 170 M163A Z 0 0 %100 171 M166 X 2.27 2.27 0 %100 172 M166 Z 0 0 0 %100 173 M169A X 2.27 2.27 0 %100 174 M169A Z 0 0 0 %100 175 MP2B X 3.689 3.689 0 %100 176 MP2B Z 0 0 %100 177 M173A X .568 .568 0 %100 178 M173A Z 0 0 %100 179 M176 X .568 .568 0 %100							
170 M163A Z 0 0 %100 171 M166 X 2.27 2.27 0 %100 172 M166 Z 0 0 0 %100 173 M169A X 2.27 2.27 0 %100 174 M169A Z 0 0 0 %100 175 MP2B X 3.689 3.689 0 %100 176 MP2B Z 0 0 %100 177 M173A X .568 .568 0 %100 178 M173A Z 0 0 %100 179 M176 X .568 .568 0 %100				-			
171 M166 X 2.27 2.27 0 %100 172 M166 Z 0 0 0 %100 173 M169A X 2.27 2.27 0 %100 174 M169A Z 0 0 0 %100 175 MP2B X 3.689 0 %100 176 MP2B Z 0 0 %100 177 M173A X .568 .568 0 %100 178 M173A Z 0 0 %100 179 M176 X .568 .568 0 %100			X				
172 M166 Z 0 0 %100 173 M169A X 2.27 2.27 0 %100 174 M169A Z 0 0 0 %100 175 MP2B X 3.689 0 %100 176 MP2B Z 0 0 0 %100 177 M173A X .568 .568 0 %100 178 M173A Z 0 0 0 %100 179 M176 X .568 .568 0 %100			Z	-			
173 M169A X 2.27 2.27 0 %100 174 M169A Z 0 0 0 %100 175 MP2B X 3.689 0 %100 176 MP2B Z 0 0 0 %100 177 M173A X .568 .568 0 %100 178 M173A Z 0 0 %100 179 M176 X .568 .568 0 %100			X				
174 M169A Z 0 0 0 %100 175 MP2B X 3.689 3.689 0 %100 176 MP2B Z 0 0 0 %100 177 M173A X .568 .568 0 %100 178 M173A Z 0 0 %100 179 M176 X .568 .568 0 %100				*			
175 MP2B X 3.689 0 %100 176 MP2B Z 0 0 0 %100 177 M173A X .568 .568 0 %100 178 M173A Z 0 0 %100 179 M176 X .568 .568 0 %100			X				
176 MP2B Z 0 0 %100 177 M173A X .568 .568 0 %100 178 M173A Z 0 0 0 %100 179 M176 X .568 .568 0 %100				-			
177 M173A X .568 .568 0 %100 178 M173A Z 0 0 0 %100 179 M176 X .568 .568 0 %100			X				
178 M173A Z 0 0 %100 179 M176 X .568 .568 0 %100				<u> </u>	-		
179 M176 X .568 .568 0 %100				.568	.568		
	178	M173A	Z	*		0	%100
		M176	X	.568	.568	0	
180 M176 Z 0 0 0 %100	180	M176	Z	0	0	0	%100

: Maser Consulting : NL : 21781092A Company Designer Job Number

Model Name : Mount Analysis (Rev. 3)

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg))

	Manakaatakat	Di			Ot	F
4	Member Label	Direction		End Magnitude[lb/ft,F		End Location[ft,%]
2	<u>M1</u> M1	X Z	1.168 .675	1.168 .675	0	%100 %100
3	M2	X	1.168	1.168	0	%100 %100
4	M2	Z	.675	.675	0	%100
5	<u>M3</u>	X Z	2.485	2.485	0	%100
6	M3		1.434	1.434	0	%100
7	M4	X	2.485	2.485	0	%100
8	M4	Z	1.435	1.435	0	%100
9	M5	X	2.466	2.466	0	%100
10	<u>M5</u>	Z	1.424	1.424	0	%100
11	<u>M6</u>	X	3.055	3.055	0	%100
12	<u>M6</u>	Z	1.764	1.764	0	%100
13	<u>M7</u>	X	3.055	3.055	0	%100
14	<u>M7</u>	Z	1.764	1.764	0	%100
15	M8	X	.764	.764	0	%100
16	M8	Z	.441	.441	0	%100
17	<u>M9</u>	X	.764	.764	0	%100
18	<u>M9</u>	Z	.441	.441	0	%100
19	M10	X	3.741	3.741	0	%100
20	M10	Z	2.16	2.16	0	%100
21	M11	X	3.741	3.741	0	%100
22	M11	Z	2.16	2.16	0	%100
23	M12	X	2.875	2.875	0	%100
24	M12	Z	1.66	1.66	0	%100
25	M13	X	2.875	2.875	0	%100
26	M13	Z	1.66	1.66	0	%100
27	M14	X	2.875	2.875	0	%100
28	M14	Z	1.66	1.66	0	%100
29	M15	X	2.803	2.803	0	%100
30	M15	Z	1.618	1.618	0	%100
31	M16	X	2.803	2.803	0	%100
32	M16	Z	1.618	1.618	0	%100
33	M17	X	2.875	2.875	0	%100
34	M17	Z	1.66	1.66	0	%100
35	M18	X	1.168	1.168	0	%100
36	M18	Z	.675	.675	0	%100
37	M19	X	1.168	1.168	0	%100
38	M19	Z	.675	.675	0	%100
39	M20	X	.764	.764	0	%100
40	M20	Z	.441	.441	0	%100
41	M21	X	.764	.764	0	%100
42	M21	Z	.441	.441	0	%100
43	M22	X	0	0	0	%100
44	M22	Z	0	0	0	%100
45	M23	X	0	0	0	%100
46	M23	Z	0	0	0	%100
47	M24	X	2.875	2.875	0	%100
48	M24	Z	1.66	1.66	0	%100
49	M25	X	2.875	2.875	0	%100
50	M25	Z	1.66	1.66	0	%100
51	M26	X	1.556	1.556	0	%100
52	M26	Ž	.899	.899	0	%100
53	M27	X	1.548	1.548	0	%100
54	M27	Z	.894	.894	0	%100 %100
55	M28	X	2.875	2.875	0	%100 %100
56	M28	Z	1.66	1.66	Ö	%100 %100
57	M29	X	4.674	4.674	0	%100 %100
	11.20			1.07-		70.00

Nov 23, 2021 5:47 PM Checked By: DX

RISA-3D Version 17.0.4

[R:\...\...\Mount Analysis\Rev 3\RISA\468927-VZW_MT_LO_H.r3d] Page 179

Company Designer Job Number Nov 23, 2021 5:47 PM : NL : 21781092A Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Distributed Loads (BLC 57: Structure Wi (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
58	M29	Z	2.698	2.698	0	%100
59	M30	X	4.674	4.674	0	%100
60	M30	Z	2.698	2.698	0	%100
61	M31	X	3.741	3.741	0	%100
62	M31	Z	2.16	2.16	0	%100
63	M32	X	3.741	3.741	0	%100
64	M32	Z	2.16	2.16	0	%100
65	M33	X	2.875	2.875	0	%100
66	M33	Z	1.66	1.66	0	%100
67	M34	X	2.875	2.875	0	%100
68	M34	Z	1.66	1.66	Ö	%100 %100
69	M35	X	2.803	2.803	0	%100
70	M35	Z	1.618	1.618	0	%100 %100
71	M36	X	2.803	2.803	0	%100 %100
72	M36	Ž	1.618	1.618	0	%100 %100
73	M37	X	1.029	1.029	0	%100
		Z			0	
74	M37		.594	.594		%100
75	M38	X	1.029	1.029	0	%100
76	M38	Z	.594	.594	0	%100
77	M39	X	4.114	4.114	0	%100
78	M39	Z	2.376	2.376	0	%100
79	M49	X	1.029	1.029	0	%100
80	M49	Z	.594	.594	0	%100
81	M50	X	1.029	1.029	0	%100
82	M50	Z	.594	.594	0	%100
83	M51	X	4.114	4.114	0	%100
84	M51	Z	2.376	2.376	0	%100
85	M61	X	2.485	2.485	0	%100
86	M61	Z	1.434	1.434	0	%100
87	M62	X	2.485	2.485	0	%100
88	M62	Z	1.435	1.435	0	%100
89	M63	X	2.466	2.466	0	%100
90	M63	Z	1.424	1.424	0	%100
91	M64	X	2.485	2.485	0	%100 %100
92	M64	Z	1.434	1.434	Ö	%100 %100
93	M65	X	2.485	2.485	0	%100 %100
94	M65	Z	1.435	1.435	0	%100 %100
95	M66	X	2.466	2.466	0	%100 %100
96	M66	Z	1.424	1.424	0	%100 %100
97						
	M67	X	2.485	2.485	0	%100
98	M67	Z	1.434	1.434	0	%100 %100
99	M68	X	2.485	2.485	0	%100
100	M68	Z	1.435	1.435	0	%100
101	M69	X	2.466	2.466	0	%100
102	M69	Z	1.424	1.424	0	%100
103	<u>M70</u>	X	2.98	2.98	0	%100
104	M70	Z	1.72	1.72	0	%100
105	M71	X	2.98	2.98	0	%100
106	M71	Z	1.72	1.72	0	%100
107	M72	X	2.986	2.986	0	%100
108	M72	Z	1.724	1.724	0	%100
109	M73	X	2.98	2.98	0	%100
110	M73	Z	1.72	1.72	0	%100
111	M74	X	2.98	2.98	0	%100
112	M74	Z	1.72	1.72	0	%100
113	M75	X	2.986	2.986	0	%100
114	M75	Z	1.724	1.724	Ŏ	%100
						, , , , ,

RISA-3D Version 17.0.4

[R:\...\...\...\Mount Analysis\Rev 3\RISA\468927-VZW_MT_LO_H.r3d] Page 180

Company Designer Job Number : NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 57: Structure Wi (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
115	MP1A	X	3.195	3.195	0	%100
116	MP1A	Z	1.844	1.844	0	%100
117	MP2A	X	3.087	3.087	0	%100
118	MP2A	Z	1.782	1.782	0	%100
119	MP4A	X	3.195	3.195	0	%100
120	MP4A	Z	1.844	1.844	0	%100
121	MP5A	X	3.195	3.195	0	%100
122	MP5A	Z	1.844	1.844	0	%100
123	MPA	X	3.087	3.087	0	%100 %100
124	MPA	Z	1.782	1.782	Ö	%100 %100
125	MP6A	X	3.195	3.195	0	%100 %100
126	MP6A	Z	1.844	1.844	0	%100 %100
127		X				
	MP1C	Z	3.195	3.195	0	%100
128	MP1C		1.844	1.844	0	%100 %100
129	MP1B	X	3.195	3.195	0	%100
130	MP1B	Z	1.844	1.844	0	%100
131	MPC	X	3.087	3.087	0	%100
132	MPC	Z	1.782	1.782	0	%100
133	MP2C	X	3.087	3.087	0	%100
134	MP2C	Z	1.782	1.782	0	%100
135	MP5C	X	3.195	3.195	0	%100
136	MP5C	Z	1.844	1.844	0	%100
137	MP6C	X	3.087	3.087	0	%100
138	MP6C	Z	1.782	1.782	0	%100
139	MPB	X	3.087	3.087	0	%100
140	MPB	Z	1.782	1.782	0	%100
141	MPB2	X	3.087	3.087	0	%100
142	MPB2	Z	1.782	1.782	0	%100
143	MP5B	X	3.087	3.087	0	%100
144	MP5B	Z	1.782	1.782	0	%100
145	MP4C	X	3.195	3.195	0	%100
146	MP4C	Ž	1.844	1.844	0	%100
147	MP3C	X	3.195	3.195	0	%100
148	MP3C	Ž	1.844	1.844	0	%100
149	M146	X	1.168	1.168	0	%100 %100
150	M146	Z	.675	.675	0	%100 %100
151	M147	X	1.168	1.168	0	%100 %100
152	M147	Z	.675	.675	0	%100 %100
153	M154	X	4.674	4.674	0	%100 %100
		Z				
154	M154		2.698	2.698	0	%100 %100
155	M155	X	4.674	4.674	0	%100 %100
156	M155	Z	2.698	2.698	0	%100 %100
157	M162	X	1.168	1.168	0	%100
158	M162	Z	.675	.675	0	%100
159	M163	X	1.168	1.168	0	%100
160	M163	Z	.675	.675	0	%100
161	MP3A	X	3.087	3.087	0	%100
162	MP3A	Z	1.782	1.782	0	%100
163	MP4B	X	3.195	3.195	0	%100
164	MP4B	Z	1.844	1.844	0	%100
165	MP6B	X	3.087	3.087	0	%100
166	MP6B	Z	1.782	1.782	0	%100
167	MP3B	X	3.195	3.195	0	%100
168	MP3B	Z	1.844	1.844	0	%100
169	M163A	X	3.087	3.087	0	%100
170	M163A	Z	1.782	1.782	0	%100
171	M166	X	1.475	1.475	0	%100

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 57: Structure Wi (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
172	M166	Z	.851	.851	0	%100
173	M169A	X	1.475	1.475	0	%100
174	M169A	Z	.851	.851	0	%100
175	MP2B	X	3.195	3.195	0	%100
176	MP2B	Z	1.844	1.844	0	%100
177	M173A	X	0	0	0	%100
178	M173A	Z	0	0	0	%100
179	M176	X	0	0	0	%100
180	M176	Z	0	0	0	%100

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	2.024	2.024	0	%100
2	M1	Z	3.505	3.505	0	%100
3	M2	X	2.024	2.024	0	%100
4	M2	Z	3.505	3.505	0	%100
5	M3	X	1.625	1.625	0	%100
6	M3	Z	2.815	2.815	0	%100
7	M4	X	1.625	1.625	0	%100
8	M4	Z	2.815	2.815	0	%100
9	M5	X	1.624	1.624	0	%100
10	M5	Z	2.812	2.812	0	%100
11	M6	X	1.323	1.323	0	%100
12	M6	Z	2.291	2.291	0	%100
13	M7	X	1.323	1.323	0	%100
14	M7	Z	2.291	2.291	0	%100
15	M8	X	0	0	0	%100
16	M8	Z	0	0	0	%100
17	M9	X	0	0	0	%100
18	M9	Z	0	0	0	%100
19	M10	X	2.88	2.88	0	%100
20	M10	Z	4.988	4.988	0	%100
21	M11	X	2.88	2.88	0	%100
22	M11	Z	4.988	4.988	0	%100
23	M12	X	1.66	1.66	0	%100
24	M12	Z	2.875	2.875	0	%100
25	M13	X	1.66	1.66	0	%100
26	M13	Z	2.875	2.875	0	%100
27	M14	X	1.66	1.66	0	%100
28	M14	Z	2.875	2.875	0	%100
29	M15	X	1.858	1.858	0	%100
30	M15	Z	3.218	3.218	0	%100
31	M16	X	1.86	1.86	0	%100
32	M16	Z	3.222	3.222	0	%100
33	M17	X	1.66	1.66	0	%100
34	M17	Z	2.875	2.875	0	%100
35	M18	X	0	0	0	%100
36	M18	Z	0	0	0	%100
37	M19	X	0	0	0	%100
38	M19	Z	0	0	0	%100
39	M20	X	1.323	1.323	0	%100
40	M20	Z	2.291	2.291	0	%100
41	M21	X	1.323	1.323	0	%100
42	M21	Z	2.291	2.291	0	%100
43	M22	X Z	.72	.72	0	%100
44	M22	Z	1.247	1.247	0	%100

: NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 58: Structure Wi (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
45	M23	X	.72	.72	0	%100
46	M23	Z	1.247	1.247	0	%100
47	M24	X	1.66	1.66	0	%100
48	M24	Z	2.875	2.875	0	%100
49	M25	X	1.66	1.66	0	%100
50	M25	Z	2.875	2.875	0	%100
51	M26	X	1.138	1.138	0	%100
52	M26	Z	1.972	1.972	0	%100
53	M27	X	1.135	1.135	0	%100
54	M27	Z	1.966	1.966	0	%100
55	M28	X	1.66	1.66	0	%100
56	M28	Z	2.875	2.875	0	%100
57	M29	X	2.024	2.024	0	%100
58	M29	Z	3.505	3.505	0	%100
59	M30	X	2.024	2.024	0	%100
60	M30	Z	3.505	3.505	0	%100
61	M31	X	.72	.72	0	%100
62	M31	Z	1.247	1.247	0	%100
63	M32	X	.72	.72	0	%100
64	M32	Z	1.247	1.247	0	%100 %100
65	M33	X	1.66	1.66	0	%100 %100
66	M33	Ž	2.875	2.875	0	%100 %100
67	M34	X	1.66	1.66	0	%100 %100
68	M34	Z	2.875	2.875	Ö	%100 %100
69	M35	X	1.138	1.138	0	%100 %100
70	M35	Z	1.972	1.972	Ö	%100 %100
71	M36	X	1.135	1.135	0	%100 %100
72	M36	Z	1.966	1.966	0	%100 %100
73	M37	X	0	0	Ö	%100 %100
74	M37	Z	0	0	0	%100 %100
75	M38	X	1.782	1.782	0	%100 %100
76	M38	Z	3.086	3.086	0	%100 %100
77	M39	X	1.782	1.782	0	%100 %100
78	M39	Z	3.086	3.086	0	%100 %100
79	M49	X	0	0	0	%100 %100
80	M49	Z	0	0	0	%100 %100
81	M50		1.782	1.782	0	%100 %100
82		Z	3.086	3.086	0	%100 %100
83	M50 M51				0	
84		X Z	1.782	1.782		%100
85	M51 M61		3.086 1.625	3.086 1.625	0	%100 %100
	M61	Z	2.815		0	%100 %100
86			1.625	2.815 1.625		%100 %100
	M62	X Z			0	
88	M62		2.815 1.624	2.815 1.624		%100 %100
89	M63	X			0	
90	M63	Z	2.812	2.812	0	%100
91	M64	X	1.339	1.339	0	%100
92	M64	Z	2.32	2.32	0	%100
93	M65	X	1.339	1.339	0	%100
94	M65	Z	2.32	2.32	0	%100
95	M66	X	1.324	1.324	0	%100
96	M66	Z	2.292	2.292	0	%100
97	M67	X	1.339	1.339	0	%100
98	M67	Z	2.32	2.32	0	%100
99	M68	X	1.339	1.339	0	%100
100	M68	Z	2.32	2.32	0	%100
101	M69	X	1.324	1.324	0	%100

: NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 58: Structure Wi (150 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
102	M69	Z	2.292	2.292	0	%100
103	M70	X	1.625	1.625	0	%100
104	M70	Z	2.815	2.815	0	%100
105	M71	X	1.625	1.625	0	%100
106	M71	Z	2.815	2.815	0	%100
107	M72	X	1.624	1.624	0	%100
108	M72	Z	2.812	2.812	Ō	%100
109	M73		1.625	1.625	0	%100 %100
110	M73	X Z	2.815	2.815	0	%100 %100
111	M74	X	1.625			%100 %100
				1.625	0	
112	M74	Z	2.815	2.815	0	%100
113	<u>M75</u>	X	1.624	1.624	0	%100
114	M75	Z	2.812	2.812	0	%100
115	MP1A	X Z	1.844	1.844	0	%100
116	MP1A		3.195	3.195	0	%100
117	MP2A	X	1.782	1.782	0	%100
118	MP2A	Z	3.087	3.087	0	%100
119	MP4A	X	1.844	1.844	0	%100
120	MP4A	Z	3.195	3.195	0	%100
121	MP5A	X	1.844	1.844	0	%100
122	MP5A	Z	3.195	3.195	0	%100 %100
123	MPA	X	1.782	1.782	0	%100 %100
124	MPA	Z	3.087	3.087	0	%100 %100
125	MP6A	X	1.844	1.844		%100 %100
		Z			0	
126	MP6A		3.195	3.195	0	%100
127	MP1C	X	1.844	1.844	0	%100
128	MP1C	Z	3.195	3.195	0	%100
129	MP1B	X	1.844	1.844	0	%100
130	MP1B	Z	3.195	3.195	0	%100
131	MPC	X	1.782	1.782	0	%100
132	MPC	Z	3.087	3.087	0	%100
133	MP2C	X	1.782	1.782	0	%100
134	MP2C	Z	3.087	3.087	0	%100
135	MP5C	X	1.844	1.844	0	%100
136	MP5C	Z	3.195	3.195	0	%100
137	MP6C	X	1.782	1.782	0	%100
138	MP6C	Z	3.087	3.087	0	%100 %100
139	MPB	X	1.782	1.782	0	%100 %100
140	MPB	Z	3.087	3.087	0	%100 %100
141	MPB2	X	1.782	1.782	0	%100
142	MPB2	Z	3.087	3.087	0	%100
143	MP5B	X	1.782	1.782	0	%100
144	MP5B	Z	3.087	3.087	0	%100
145	MP4C	X Z	1.844	1.844	0	%100
146	MP4C		3.195	3.195	0	%100
147	MP3C	X	1.844	1.844	0	%100
148	MP3C	Z	3.195	3.195	0	%100
149	M146	X	0	0	0	%100
150	M146	Z	0	0	0	%100
151	M147	X	0	0	0	%100
152	M147	Z	0	0	0	%100
153	M154	X	2.024	2.024	0	%100 %100
154	M154	Z	3.505	3.505	Ö	%100 %100
155	M155	X	2.024	2.024	0	%100 %100
156	M155	Z	3.505	3.505	0	%100
157	M162	X	2.024	2.024	0	%100
158	M162	Z	3.505	3.505	0	%100

: NL

5:47 PM Job Number : 21781092A Checked By: DX Model Name : Mount Analysis (Rev. 3)

Nov 23, 2021

Member Distributed Loads (BLC 58: Structure Wi (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
159	M163	X	2.024	2.024	0	%100
160	M163	Z	3.505	3.505	0	%100
161	MP3A	X	1.782	1.782	0	%100
162	MP3A	Z	3.087	3.087	0	%100
163	MP4B	X	1.844	1.844	0	%100
164	MP4B	Z	3.195	3.195	0	%100
165	MP6B	X	1.782	1.782	0	%100
166	MP6B	Z	3.087	3.087	0	%100
167	MP3B	X	1.844	1.844	0	%100
168	MP3B	Z	3.195	3.195	0	%100
169	M163A	X	1.782	1.782	0	%100
170	M163A	Z	3.087	3.087	0	%100
171	M166	X	.284	.284	0	%100
172	M166	Z	.492	.492	0	%100
173	M169A	X	.284	.284	0	%100
174	M169A	Z	.492	.492	0	%100
175	MP2B	X	1.844	1.844	0	%100
176	MP2B	Z	3.195	3.195	0	%100
177	M173A	X	.284	.284	0	%100
178	M173A	Z	.492	.492	0	%100
179	M176	X	.284	.284	0	%100
180	M176	Z	.492	.492	0	%100

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg))

1 M1 X 0 0 0 %100 2 M1 Z 5.397 5.397 0 %100 3 M2 X 0 0 0 %100 4 M2 Z 5.397 5.397 0 %100 5 M3 X 0 0 0 %100 6 M3 Z 3.441 3.441 0 %100 7 M4 X 0 0 0 %100 8 M4 Z 3.441 3.441 0 %100 9 M5 X 0 0 0 %100 10 M5 Z 3.448 3.448 0 %100 11 M6 X 0 0 0 %100 12 M6 Z 882 882 0 %100 13 M7 X 0 0 0		Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
3 M2 X 0 0 %100 4 M2 Z 5.397 5.397 0 %100 5 M3 X 0 0 0 %100 6 M3 Z 3.441 3.441 0 %100 7 M4 X 0 0 0 %100 8 M4 Z 3.441 3.441 0 %100 9 M5 X 0 0 0 %100 10 M5 Z 3.448 3.448 0 %100 10 M5 Z 3.448 3.448 0 %100 11 M6 X 0 0 0 %100 12 M6 Z .882 .882 0 %100 13 M7 X 0 0 0 %100 14 M7 Z .882 .882 0 <	1	M1		T	7		
4 M2 Z 5.397 5.397 0 %100 5 M3 X 0 0 0 %100 6 M3 Z 3.441 3.441 0 %100 7 M4 X 0 0 0 %100 8 M4 Z 3.441 3.441 0 %100 9 M5 X 0 0 0 %100 10 M5 Z 3.448 3.448 0 %100 11 M6 X 0 0 0 %100 12 M6 Z .882 .882 0 %100 13 M7 X 0 0 0 %100 13 M7 X 0 0 0 %100 15 M8 X 0 0 0 %100 15 M8 X 0 0 0	2	M1	Z	5.397	5.397	0	%100
5 M3 X 0 0 0 %100 6 M3 Z 3.441 3.441 0 %100 7 M4 X 0 0 0 %100 8 M4 Z 3.441 3.441 0 %100 9 M5 X 0 0 0 %100 10 M5 Z 3.448 3.448 0 %100 11 M6 X 0 0 0 %100 12 M6 X 0 0 0 %100 12 M6 Z .882 .882 0 %100 13 M7 X 0 0 0 %100 14 M7 Z .882 .882 0 %100 15 M8 X 0 0 0 %100 16 M8 Z .882 .882 0 <td>3</td> <td>M2</td> <td>X</td> <td>0</td> <td>0</td> <td>0</td> <td>%100</td>	3	M2	X	0	0	0	%100
6 M3 Z 3.441 3.441 0 %100 7 M4 X 0 0 0 %100 8 M4 Z 3.441 3.441 0 %100 9 M5 X 0 0 0 %100 10 M5 Z 3.448 3.448 0 %100 11 M6 X 0 0 0 %100 12 M6 Z .882 .882 0 %100 12 M6 Z .882 .882 0 %100 13 M7 X 0 0 0 %100 14 M7 Z .882 .882 0 %100 14 M7 Z .882 .882 0 %100 15 M8 X 0 0 0 %100 16 M8 Z .882 .882	4	M2	Z	5.397	5.397	0	%100
6 M3 Z 3.441 3.441 0 %100 7 M4 X 0 0 0 %100 8 M4 Z 3.441 3.441 0 %100 9 M5 X 0 0 0 %100 10 M5 Z 3.448 3.448 0 %100 11 M6 X 0 0 0 %100 12 M6 Z .882 .882 0 %100 12 M6 Z .882 .882 0 %100 13 M7 X 0 0 0 %100 14 M7 Z .882 .882 0 %100 14 M7 Z .882 .882 0 %100 15 M8 X 0 0 0 %100 16 M8 Z .882 .882	5	M3	X	0	0	0	%100
8 M4 Z 3.441 3.441 0 %100 9 M5 X 0 0 0 %100 10 M5 Z 3.448 3.448 0 %100 11 M6 X 0 0 0 %100 12 M6 Z .882 .882 0 %100 13 M7 X 0 0 0 %100 13 M7 X 0 0 0 %100 14 M7 Z .882 .882 0 %100 15 M8 X 0 0 0 %100 15 M8 X 0 0 0 %100 16 M8 Z .882 .882 .0 %100 17 M9 X 0 0 0 %100 18 M9 Z .882 .882 0 </td <td>6</td> <td>M3</td> <td>Z</td> <td>3.441</td> <td>3.441</td> <td>0</td> <td>%100</td>	6	M3	Z	3.441	3.441	0	%100
9 M5 X 0 0 %100 10 M5 Z 3.448 3.448 0 %100 11 M6 X 0 0 0 %100 12 M6 Z .882 .882 0 %100 13 M7 X 0 0 0 %100 14 M7 Z .882 .882 0 %100 15 M8 X 0 0 0 %100 15 M8 X 0 0 0 %100 16 M8 Z .882 .882 0 %100 17 M9 X 0 0 0 %100 18 M9 Z .882 .882 0 %100 19 M10 X 0 0 0 %100 20 M10 X 0 0 0 %100	7	M4	X	0	0	0	%100
10 M5 Z 3.448 3.448 0 %100 11 M6 X 0 0 0 %100 12 M6 Z .882 .882 0 %100 13 M7 X 0 0 0 %100 14 M7 Z .882 .882 0 %100 15 M8 X 0 0 0 %100 15 M8 X 0 0 0 %100 16 M8 Z .882 .882 0 %100 17 M9 X 0 0 0 %100 18 M9 Z .882 .882 0 %100 19 M10 X 0 0 0 %100 20 M10 X 0 0 0 %100 21 M11 X 0 0 0	8	M4	Z	3.441	3.441	0	%100
10 M5 Z 3.448 3.448 0 %100 11 M6 X 0 0 0 %100 12 M6 Z .882 .882 0 %100 13 M7 X 0 0 0 %100 14 M7 Z .882 .882 0 %100 15 M8 X 0 0 0 %100 15 M8 X 0 0 0 %100 16 M8 Z .882 .882 0 %100 17 M9 X 0 0 0 %100 18 M9 Z .882 .882 0 %100 19 M10 X 0 0 0 %100 20 M10 X 0 0 0 %100 21 M11 X 0 0 0	9	M5	X	0	0	0	%100
12 M6 Z .882 .882 0 %100 13 M7 X 0 0 0 %100 14 M7 Z .882 .882 0 %100 15 M8 X 0 0 0 %100 16 M8 Z .882 .882 0 %100 17 M9 X 0 0 0 %100 18 M9 Z .882 .882 0 %100 19 M10 X 0 0 0 %100 20 M10 X 0 0 %100 %100 21 M11 X 0 0 %100 %100 21 M11 X 0 0 %100 %100 23 M12 X 0 0 %100 %100 24 M12 X 3.32 3.32	10	M5		3.448	3.448	0	%100
13 M7 X 0 0 0 %100 14 M7 Z .882 .882 0 %100 15 M8 X 0 0 0 %100 16 M8 Z .882 .882 0 %100 17 M9 X 0 0 0 %100 18 M9 Z .882 .882 0 %100 19 M10 X 0 0 0 %100 20 M10 X 0 0 %100 21 M11 X 0 0 %100 21 M11 X 0 0 %100 22 M11 X 0 0 %100 23 M12 X 0 0 %100 24 M12 X 0 0 %100 25 M13 X 0	11	M6		0	0	0	%100
14 M7 Z .882 .882 0 %100 15 M8 X 0 0 0 %100 16 M8 Z .882 .882 0 %100 17 M9 X 0 0 0 %100 18 M9 Z .882 .882 0 %100 19 M10 X 0 0 0 %100 20 M10 X 0 0 0 %100 21 M11 X 0 0 0 %100 22 M11 X 0 0 0 %100 23 M12 X 0 0 0 %100 24 M12 X 0 0 0 %100 24 M12 X 0 0 0 %100 25 M13 X 0 0 0 %100 26 M13 X 0 0 0 %100 <	12	M6	Z	.882	.882	0	%100
15 M8 X 0 0 0 %100 16 M8 Z .882 .882 0 %100 17 M9 X 0 0 0 %100 18 M9 Z .882 .882 0 %100 19 M10 X 0 0 0 %100 20 M10 Z 4.32 4.32 0 %100 21 M11 X 0 0 0 %100 22 M11 Z 4.32 4.32 0 %100 23 M12 X 0 0 0 %100 24 M12 X 0 0 %100 25 M13 X 0 0 %100 26 M13 Z 3.32 3.32 0 %100 28 M14 X 0 0 0 %100	13	M7	X	0	0	0	%100
16 M8 Z .882 .882 0 %100 17 M9 X 0 0 0 %100 18 M9 Z .882 .882 0 %100 19 M10 X 0 0 0 %100 20 M10 Z 4.32 4.32 0 %100 21 M11 X 0 0 0 %100 22 M11 Z 4.32 4.32 0 %100 23 M12 X 0 0 0 %100 24 M12 X 0 0 0 %100 25 M13 X 0 0 0 %100 26 M13 Z 3.32 3.32 0 %100 27 M14 X 0 0 0 %100 28 M14 Z 3.32 3.236	14	M7		.882	.882	0	%100
17 M9 X 0 0 %100 18 M9 Z .882 .882 0 %100 19 M10 X 0 0 0 %100 20 M10 Z 4.32 4.32 0 %100 21 M11 X 0 0 0 %100 22 M11 Z 4.32 4.32 0 %100 23 M12 X 0 0 0 %100 24 M12 X 0 0 %100 25 M13 X 0 0 %100 26 M13 Z 3.32 3.32 0 %100 27 M14 X 0 0 %100 28 M14 Z 3.32 3.32 0 %100 29 M15 X 0 0 0 %100 30 <	15	M8		0	0	0	%100
18 M9 Z .882 .882 0 %100 19 M10 X 0 0 0 %100 20 M10 Z 4.32 4.32 0 %100 21 M11 X 0 0 0 %100 22 M11 Z 4.32 4.32 0 %100 23 M12 X 0 0 0 %100 24 M12 Z 3.32 3.32 0 %100 25 M13 X 0 0 0 %100 26 M13 Z 3.32 3.32 0 %100 27 M14 X 0 0 0 %100 28 M14 Z 3.32 3.32 0 %100 29 M15 X 0 0 0 %100 30 M15 Z 3.236 3.236 <td></td> <td>M8</td> <td></td> <td>.882</td> <td>.882</td> <td>0</td> <td>%100</td>		M8		.882	.882	0	%100
19 M10 X 0 0 0 %100 20 M10 Z 4.32 4.32 0 %100 21 M11 X 0 0 0 %100 22 M11 Z 4.32 4.32 0 %100 23 M12 X 0 0 0 %100 24 M12 Z 3.32 3.32 0 %100 25 M13 X 0 0 0 %100 26 M13 Z 3.32 3.32 0 %100 27 M14 X 0 0 0 %100 28 M14 Z 3.32 3.32 0 %100 29 M15 X 0 0 0 %100 30 M15 Z 3.236 3.236 0 %100	17	M9		0	0	0	%100
20 M10 Z 4.32 4.32 0 %100 21 M11 X 0 0 0 %100 22 M11 Z 4.32 4.32 0 %100 23 M12 X 0 0 0 %100 24 M12 Z 3.32 3.32 0 %100 25 M13 X 0 0 0 %100 26 M13 Z 3.32 3.32 0 %100 27 M14 X 0 0 0 %100 28 M14 Z 3.32 3.32 0 %100 29 M15 X 0 0 0 %100 30 M15 Z 3.236 3.236 0 %100	18	M9		.882	.882	0	%100
21 M11 X 0 0 0 %100 22 M11 Z 4.32 4.32 0 %100 23 M12 X 0 0 0 %100 24 M12 Z 3.32 3.32 0 %100 25 M13 X 0 0 0 %100 26 M13 Z 3.32 3.32 0 %100 27 M14 X 0 0 0 %100 28 M14 Z 3.32 3.32 0 %100 29 M15 X 0 0 0 %100 30 M15 Z 3.236 3.236 0 %100	19	M10		0	0	0	%100
22 M11 Z 4.32 4.32 0 %100 23 M12 X 0 0 0 %100 24 M12 Z 3.32 3.32 0 %100 25 M13 X 0 0 0 %100 26 M13 Z 3.32 3.32 0 %100 27 M14 X 0 0 0 %100 28 M14 Z 3.32 3.32 0 %100 29 M15 X 0 0 0 %100 30 M15 Z 3.236 3.236 0 %100	20	M10		4.32	4.32	0	%100
23 M12 X 0 0 0 %100 24 M12 Z 3.32 3.32 0 %100 25 M13 X 0 0 0 %100 26 M13 Z 3.32 3.32 0 %100 27 M14 X 0 0 0 %100 28 M14 Z 3.32 3.32 0 %100 29 M15 X 0 0 0 %100 30 M15 Z 3.236 3.236 0 %100		M11		•	•	0	
24 M12 Z 3.32 3.32 0 %100 25 M13 X 0 0 0 %100 26 M13 Z 3.32 3.32 0 %100 27 M14 X 0 0 0 %100 28 M14 Z 3.32 3.32 0 %100 29 M15 X 0 0 0 %100 30 M15 Z 3.236 3.236 0 %100	22	M11		4.32	4.32	0	%100
25 M13 X 0 0 %100 26 M13 Z 3.32 3.32 0 %100 27 M14 X 0 0 0 %100 28 M14 Z 3.32 3.32 0 %100 29 M15 X 0 0 0 %100 30 M15 Z 3.236 3.236 0 %100	23	M12	X	0	0	0	%100
26 M13 Z 3.32 3.32 0 %100 27 M14 X 0 0 0 %100 28 M14 Z 3.32 3.32 0 %100 29 M15 X 0 0 0 %100 30 M15 Z 3.236 3.236 0 %100				3.32	3.32	0	
27 M14 X 0 0 0 %100 28 M14 Z 3.32 3.32 0 %100 29 M15 X 0 0 0 %100 30 M15 Z 3.236 3.236 0 %100	25	M13	X				
28 M14 Z 3.32 3.32 0 %100 29 M15 X 0 0 0 %100 30 M15 Z 3.236 3.236 0 %100				3.32	3.32	0	
29 M15 X 0 0 0 %100 30 M15 Z 3.236 3.236 0 %100	27					-	%100
30 M15 Z 3.236 3.236 0 %100				3.32	3.32	0	
					-		
31 M16 X 0 0 %100				3.236	3.236	0	
	31	M16	X	0	0	0	%100

: NL

Company Designer Job Number Nov 23, 2021 5:47 PM : 21781092A Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Distributed Loads (BLC 59: Structure Wi (180 Deg)) (Continued)

		Discotion				Fred Location (ft 0/1
32	Member Label M16	Direction Z	3.237	End Magnitude[lb/ft,F 3.237		End Location[ft,%] %100
33	M17		0	0	0	%100 %100
	M17	X Z				
34			3.32	3.32	0	%100 %100
35	M18	X	0	0	0	%100
36	M18	Z	1.349	1.349	0	%100
37	M19	X	0	0	0	%100
38	M19	Z	1.349	1.349	0	%100
39	M20	X	0	0	0	%100
40	M20	Z	3.528	3.528	0	%100
41	M21	X	0	0	0	%100
42	M21	Z	3.528	3.528	0	%100
43	M22	X	0	0	0	%100
44	M22	Z	4.32	4.32	0	%100
45	M23	X	0	0	0	%100
46	M23	Z	4.32	4.32	0	%100
47	M24	X	0	0	0	%100
48	M24	Z	3.32	3.32	0	%100
49	M25	X	0	0	0	%100
50	M25	Z	3.32	3.32	0	%100
51	M26	X	0	0	0	%100
52	M26	Z	3.236	3.236	0	%100
53	M27	X	0	0	0	%100
54	M27	Z	3.237	3.237	0	%100
55	M28	X	0	0	0	%100
56	M28	Z	3.32	3.32	0	%100
57	M29	X	0	0	0	%100
58	M29	Z	1.349	1.349	0	%100
59	M30	X	0	0	0	%100
60	M30	Z	1.349	1.349	0	%100
61	M31	X	0	0	0	%100
62	M31	Z	0	0	0	%100
63	M32	X	0	0	0	%100
64	M32	Z	0	0	0	%100
65	M33	X	0	0	0	%100
66	M33	Z	3.32	3.32	0	%100
67	M34	X	0	0	0	%100
68	M34	Z	3.32	3.32	0	%100
69	M35	X	0	0	0	%100
70	M35	Z	1.797	1.797	0	%100
71	M36	X	0	0	0	%100
72	M36	Z	1.787	1.787	0	%100
73	M37	X	0	0	0	%100
74	M37	Z	1.188	1.188	0	%100
75	M38	X	0	0	0	%100
76	M38	Z	4.751	4.751	0	%100
77	M39	X	0	0	0	%100
78	M39	Z	1.188	1.188	0	%100
79	M49	X	0	0	0	%100
80	M49	Z	1.188	1.188	0	%100
81	M50	X	0	0	0	%100
82	M50	Z	4.751	4.751	0	%100
83	M51	X	0	0	0	%100
84	M51	Z	1.188	1.188	0	%100
85	M61	X	0	0	0	%100
86	M61	Z	3.441	3.441	0	%100
87	M62	X	0	0	0	%100
88	M62	Z	3.441	3.441	0	%100

: NL

Company Designer Job Number 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 59: Structure Wi (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
89	M63	X	0	0	0	%100
90	M63	Z	3.448	3.448	0	%100
91	M64	X	0	0	0	%100
92	M64	Z	2.869	2.869	0	%100
93	M65	X	0	0	0	%100
94	M65	Z	2.869	2.869	0	%100
95	M66	X	0	0	0	%100
96	M66	Z	2.847	2.847	0	%100
97	M67	X	0	0	0	%100
98	M67	Z	2.869	2.869	0	%100
99	M68	X	0	0	0	%100
100	M68	Z	2.869	2.869	Ö	%100
101	M69	X	0	0	0	%100
102	M69	Z	2.847	2.847	0	%100 %100
103	M70	X	0	0	0	%100 %100
104	M70	Z	2.869	2.869	0	%100 %100
105	M71	X	0	0	0	%100 %100
106	M71	Z	2.869	2.869	0	%100 %100
107	M72	X	0	0	0	%100 %100
108	M72	Ž	2.847	2.847	0	%100 %100
109	M73	X	0	0	0	%100 %100
110	M73	Z	2.869	2.869	0	%100 %100
111	M74	X	0	0	0	%100 %100
112		Z			0	
	M74		2.869	2.869		%100
113	M75	X	0	0	0	%100
114	M75	Z	2.847	2.847	0	%100
115	MP1A	X	0	0	0	%100
116	MP1A	Z	3.689	3.689	0	%100
117	MP2A	X	0	0	0	%100
118	MP2A	Z	3.564	3.564	0	%100
119	MP4A	X	0	0	0	%100
120	MP4A	Z	3.689	3.689	0	%100
121	MP5A	X	0	0	0	%100
122	MP5A	Z	3.689	3.689	0	%100
123	MPA	X	0	0	0	%100
124	MPA	Z	3.564	3.564	0	%100
125	MP6A	X	0	0	0	%100
126	MP6A	Z	3.689	3.689	0	%100
127	MP1C	X	0	0	0	%100
128	MP1C	Z	3.689	3.689	0	%100
129	MP1B	X	0	0	0	%100
130	MP1B	Z	3.689	3.689	0	%100
131	MPC	X	0	0	0	%100
132	MPC	Z	3.564	3.564	0	%100
133	MP2C	X	0	0	0	%100
134	MP2C	Z	3.564	3.564	0	%100
135	MP5C	X	0	0	0	%100
136	MP5C	Z	3.689	3.689	0	%100
137	MP6C	X	0	0	0	%100
138	MP6C	Z	3.564	3.564	0	%100
139	MPB	X	0	0	0	%100
140	MPB	Z	3.564	3.564	0	%100
141	MPB2	X	0	0	0	%100
142	MPB2	Z	3.564	3.564	0	%100
143	MP5B	X	0	0	0	%100
144	MP5B	Z	3.564	3.564	0	%100
145	MP4C	X	0	0	0	%100

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 59: Structure Wi (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
146	MP4C	Z	3.689	3.689	0	%100
147	MP3C	X	0	0	0	%100
148	MP3C	Z	3.689	3.689	0	%100
149	M146	X	0	0	0	%100
150	M146	Z	1.349	1.349	0	%100
151	M147	X	0	0	0	%100
152	M147	Z	1.349	1.349	0	%100
153	M154	X	0	0	0	%100
154	M154	Z	1.349	1.349	0	%100
155	M155	X	0	0	0	%100
156	M155	Z	1.349	1.349	0	%100
157	M162	X	0	0	0	%100
158	M162	Z	5.397	5.397	0	%100
159	M163	X Z	0	0	0	%100
160	M163	Z	5.397	5.397	0	%100
161	MP3A	X	0	0	0	%100
162	MP3A	Z	3.564	3.564	0	%100
163	MP4B	X	0	0	0	%100
164	MP4B	Z	3.689	3.689	0	%100
165	MP6B	X	0	0	0	%100
166	MP6B	Z	3.564	3.564	0	%100
167	MP3B	X	0	0	0	%100
168	MP3B	Z	3.689	3.689	0	%100
169	M163A	X	0	0	0	%100
170	M163A	Z	3.564	3.564	0	%100
171	M166	X	0	0	0	%100
172	M166	Z	0	0	0	%100
173	M169A	X	0	0	0	%100
174	M169A	Z	0	0	0	%100
175	MP2B	X	0	0	0	%100
176	MP2B	Z	3.689	3.689	0	%100
177	M173A	Χ	0	0	0	%100
178	M173A	Z	1.703	1.703	0	%100
179	M176	X	0	0	0	%100
180	M176	Z	1.703	1.703	0	%100

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	X	-2.024	-2.024	0	%100
2	M 1	Z	3.505	3.505	0	%100
3	M2	X	-2.024	-2.024	0	%100
4	M2	Z	3.505	3.505	0	%100
5	M3	X	-1.625	-1.625	0	%100
6	M3	Z	2.815	2.815	0	%100
7	M4	X	-1.625	-1.625	0	%100
8	M4	Z	2.815	2.815	0	%100
9	M5	X	-1.624	-1.624	0	%100
10	M5	Z	2.812	2.812	0	%100
11	M6	X	0	0	0	%100
12	M6	Z	0	0	0	%100
13	M7	X	0	0	0	%100
14	M7	Z	0	0	0	%100
15	M8	X	-1.323	-1.323	0	%100
16	M8	Z	2.291	2.291	0	%100
17	M9	X	-1.323	-1.323	0	%100
18	M9	Z	2.291	2.291	0	%100

: NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

	Member Label	Direction		. End Magnitude[lb/ft,F.	.Start Location[ft,%]	End Location[ft,%]
19	M10	X	72	72	0	%100
20	M10	Z	1.247	1.247	0	%100
21	M11	X	72	72	0	%100
22	M11	Z	1.247	1.247	0	%100
23	M12	X	-1.66	-1.66	0	%100
24	M12	Z	2.875	2.875	0	%100
25	M13	X	-1.66	-1.66	0	%100
26	M13	Z	2.875	2.875	0	%100
27	M14	X	-1.66	-1.66	0	%100
28	M14	Z	2.875	2.875	0	%100
29	M15	X	-1.138	-1.138	0	%100
30	M15	Z	1.972	1.972	0	%100
31	M16	X	-1.135	-1.135	0	%100
32	M16	Z	1.966	1.966	Ö	%100
33	M17	X	-1.66	-1.66	Ö	%100
34	M17	Z	2.875	2.875	0	%100 %100
35	M18	X	-2.024	-2.024	0	%100 %100
36	M18	Z	3.505	3.505	0	%100 %100
37	M19	X	-2.024	-2.024	0	%100 %100
38	M19	Z	3.505	3.505	0	%100 %100
39	M20	X	-1.323	-1.323	0	%100 %100
40	M20	Z	2.291	2.291		%100 %100
					0	%100 %100
41	M21	X Z	-1.323	-1.323	0	%100 %100
42	M21		2.291	2.291	0	
43	M22	X	-2.88	-2.88	0	%100
44	M22	Z	4.988	4.988	0	%100
45	M23	X	-2.88	-2.88	0	%100
46	M23	Z	4.988	4.988	0	%100
47	M24	X	-1.66	-1.66	0	%100
48	M24	Z	2.875	2.875	0	%100
49	M25	X	-1.66	-1.66	0	%100
50	M25	Z	2.875	2.875	0	%100
51	M26	X	-1.858	-1.858	0	%100
52	M26	Z	3.218	3.218	0	%100
53	M27	X	-1.86	-1.86	0	%100
54	M27	Z	3.222	3.222	0	%100
55	M28	X	-1.66	-1.66	0	%100
56	M28	Z	2.875	2.875	0	%100
57	M29	X Z	0	0	0	%100
58	M29	Z	0	0	0	%100
59	M30	X	0	0	0	%100
60	M30	Z	0	0	0	%100
61	M31	X	72	72	0	%100
62	M31	Z	1.247	1.247	0	%100
63	M32	X	72	72	Ö	%100
64	M32	Z	1.247	1.247	0	%100 %100
65	M33	X	-1.66	-1.66	0	%100
66	M33	Z	2.875	2.875	Ö	%100 %100
67	M34	X	-1.66	-1.66	0	%100 %100
68	M34	Z	2.875	2.875	0	%100 %100
69	M35	X	-1.138	-1.138	0	%100 %100
70	M35	Z	1.972	1.972	0	%100 %100
71	M36	X	-1.135	-1.135	0	%100 %100
72	M36	Z			0	%100 %100
			1.966	1.966		
73	M37	X	-1.782	-1.782	0	%100 %100
74	M37	Z	3.086	3.086	0	%100 %100
75	M38	X	-1.782	-1.782	0	%100

Company Designer Job Number Nov 23, 2021 5:47 PM : NL : 21781092A Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Distributed Loads (BLC 60: Structure Wi (210 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
76	M38	Z	3.086	3.086	0	%100
77	M39	X	0	0	0	%100
78	M39	Z	0	0	0	%100
79	M49	X	-1.782	-1.782	0	%100
80	M49	Z	3.086	3.086	0	%100
81	M50	X	-1.782	-1.782	0	%100
82	M50	Z	3.086	3.086	0	%100
83	M51	X	0	0	0	%100
84	M51	Z	0	0	0	%100
85	M61	X	-1.625	-1.625	0	%100
86	M61	Z	2.815	2.815	0	%100
87	M62	X	-1.625	-1.625	0	%100
88	M62	Z	2.815	2.815	0	%100
89	M63	X	-1.624	-1.624	0	%100
90	M63	Z	2.812	2.812	0	%100
91	M64	X	-1.625	-1.625	0	%100
92	M64	Z	2.815	2.815	0	%100
93	M65	X	-1.625	-1.625	0	%100
94	M65	Z	2.815	2.815	0	%100
95	M66	X	-1.624	-1.624	Ō	%100
96	M66	Z	2.812	2.812	0	%100 %100
97	M67	X	-1.625	-1.625	0	%100
98	M67	Z	2.815	2.815	0	%100 %100
99	M68	X	-1.625	-1.625	0	%100 %100
100	M68	Z	2.815	2.815	0	%100 %100
101	M69	X	-1.624	-1.624	0	%100 %100
102	M69	Z	2.812	2.812	0	%100
103	M70	X	-1.339	-1.339	0	%100 %100
104	M70	Z	2.32	2.32	Ö	%100 %100
105	M71	X	-1.339	-1.339	0	%100 %100
106	M71	Z	2.32	2.32	Ö	%100 %100
107	M72	X	-1.324	-1.324	0	%100 %100
108	M72	Z	2.292	2.292	0	%100 %100
109	M73	X	-1.339	-1.339	0	%100
110	M73	Z	2.32	2.32	0	%100 %100
111	M74	X	-1.339	-1.339	0	%100 %100
112	M74	Z	2.32	2.32	0	%100 %100
113	M75	X	-1.324	-1.324	0	%100 %100
114	M75	Z	2.292	2.292	0	%100 %100
115	MP1A	X	-1.844	-1.844	0	%100
116	MP1A	Ž	3.195	3.195	0	%100 %100
117	MP2A	X	-1.782	-1.782	0	%100 %100
118	MP2A	Z	3.087	3.087	0	%100 %100
119	MP4A	X	-1.844	-1.844	0	%100
120	MP4A	Z	3.195	3.195	0	%100 %100
121	MP5A	X	-1.844	-1.844	0	%100 %100
122	MP5A	Z	3.195	3.195	0	%100 %100
123	MPA	X	-1.782	-1.782	0	%100 %100
124	MPA	Ž	3.087	3.087	0	%100 %100
125	MP6A	X	-1.844	-1.844	0	%100 %100
126	MP6A	Z	3.195	3.195	0	%100 %100
127	MP1C	X	-1.844	-1.844	0	%100 %100
128	MP1C	Z	3.195	3.195	0	%100 %100
129	MP1B	X	-1.844	-1.844	0	%100 %100
130	MP1B	Ž	3.195	3.195	0	%100 %100
131	MPC	X	-1.782	-1.782	0	%100 %100
132	MPC	Ž	3.087	3.087	0	%100 %100
102	IVII O	_	0.007	0.007	•	/0100

RISA-3D Version 17.0.4

[R:\...\...\...\Mount Analysis\Rev 3\RISA\468927-VZW_MT_LO_H.r3d] Page 190

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
133	MP2C	X	-1.782	-1.782	0	%100
134	MP2C	Z	3.087	3.087	0	%100
135	MP5C	X	-1.844	-1.844	0	%100
136	MP5C	Z	3.195	3.195	0	%100
137	MP6C	X	-1.782	-1.782	0	%100
138	MP6C	Z	3.087	3.087	0	%100
139	MPB	X	-1.782	-1.782	0	%100
140	MPB	Z	3.087	3.087	0	%100
141	MPB2	X	-1.782	-1.782	0	%100
142	MPB2	Z	3.087	3.087	0	%100
143	MP5B	X	-1.782	-1.782	0	%100
144	MP5B	Z	3.087	3.087	0	%100
145	MP4C	X	-1.844	-1.844	0	%100
146	MP4C	Z	3.195	3.195	0	%100
147	MP3C	X	-1.844	-1.844	0	%100
148	MP3C	Z	3.195	3.195	0	%100
149	M146	X	-2.024	-2.024	0	%100
150	M146	Z	3.505	3.505	0	%100
151	M147	X	-2.024	-2.024	0	%100
152	M147	Z	3.505	3.505	0	%100
153	M154	X	0	0	0	%100
154	M154	Z	0	0	0	%100
155	M155	X	0	0	0	%100 %100
156	M155	Z	0	0	0	%100
157	M162	X	-2.024	-2.024	0	%100 %100
158	M162	Z	3.505	3.505	Ŏ	%100 %100
159	M163	X	-2.024	-2.024	0	%100 %100
160	M163	Z	3.505	3.505	Ö	%100 %100
161	MP3A	X	-1.782	-1.782	0	%100 %100
162	MP3A	Z	3.087	3.087	Ö	%100 %100
163	MP4B	X	-1.844	-1.844	0	%100 %100
164	MP4B	Z	3.195	3.195	0	%100 %100
165	MP6B	X	-1.782	-1.782	0	%100 %100
166	MP6B	Z	3.087	3.087	Ö	%100 %100
167	MP3B	X	-1.844	-1.844	0	%100 %100
168	MP3B	Z	3.195	3.195	0	%100 %100
169	M163A	X	-1.782	-1.782	0	%100 %100
170	M163A	Z	3.087	3.087	0	%100 %100
171	M166	X	284	284	0	%100 %100
172	M166	Z	.492	.492	0	%100 %100
173	M169A	X	284	284	0	%100
174	M169A	Z	.492	.492	0	%100 %100
175	MP2B		-1.844	-1.844	0	%100 %100
176	MP2B	X Z	3.195	3.195	0	%100 %100
177	M173A	X	-1.135	-1.135	0	%100 %100
178	M173A	Z	1.966	1.966	0	%100 %100
179	M176	X	-1.135	-1.135	0	%100 %100
180	M176	Ž	1.966	1.966	0	%100 %100
100	IVITIO	_	1.300	1.300	U	70 100

Member Distributed Loads (BLC 61: Structure Wi (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	X	-1.168	-1.168	0	%100
2	M1	Z	.675	.675	0	%100
3	M2	X	-1.168	-1.168	0	%100
4	M2	Z	.675	.675	0	%100
5	M3	X	-2.485	-2.485	0	%100

: NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3)

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg)) (Continued)

Nov 23, 2021

Checked By: DX

5:47 PM

<u>werr</u>	iber Distributed Loa	us (BLC 01	: Structure wi	(240 Deg)) (Con	unuea)	
	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft %]	End Location[ft,%]
6	M3	Z	1.434	1.434	0	%100
7	M4	X	-2.485	-2.485	0	%100
8	M4	Z	1.435	1.435	0	%100 %100
9	M5	X	-2.466	-2.466	0	%100
10	M5	Z	1.424	1.424	0	%100 %100
11	M6	X	764	764	0	%100
12	M6	Z	.441	.441	0	%100
13	M7	X	764	764	0	%100
14	M7	Z	.441	.441	0	%100
15	M8	X	-3.055	-3.055	0	%100
16	M8	Z	1.764	1.764	0	%100
17	M9	X	-3.055	-3.055	0	%100
18	M9	Z	1.764	1.764	0	%100
19	M10	X	0	0	0	%100
20	M10	Z	0	0	0	%100
21	M11	X	0	0	0	%100
22	M11	Z	0	0	0	%100
23	M12	X	-2.875	-2.875	0	%100
24	M12	Z	1.66	1.66	0	%100
25	M13	X	-2.875	-2.875	0	%100
26	M13	Ž	1.66	1.66	Ö	%100
27	M14	X	-2.875	-2.875	0	%100
28	M14	Z	1.66	1.66	0	%100 %100
29	M15	X	-1.556	-1.556	0	%100 %100
30	M15	Z	.899	.899	Ö	%100 %100
31	M16	X	-1.548	-1.548	0	%100 %100
32	M16	Ž	.894	.894	0	%100
					-	
33	M17	X	-2.875	-2.875	0	%100
34	M17	Z	1.66	1.66	0	%100
35	M18	X	-4.674	-4.674	0	%100
36	M18	Z	2.698	2.698	0	%100
37	M19	X	-4.674	-4.674	0	%100
38	M19	Z	2.698	2.698	0	%100
39	M20	X	764	764	0	%100
40	M20	Z	.441	.441	0	%100
41	M21	X	764	764	0	%100
42	M21	Z	.441	.441	0	%100
43	M22	X	-3.741	-3.741	0	%100
44	M22	Z	2.16	2.16	0	%100
45	M23	X	-3.741	-3.741	0	%100
46	M23	Z	2.16	2.16	0	%100
47	M24	X	-2.875	-2.875	0	%100
48	M24	Z	1.66	1.66	0	%100
49	M25		-2.875	-2.875	0	%100
50	M25	X Z	1.66	1.66	0	%100 %100
51	M26	X	-2.803	-2.803	0	%100 %100
52	M26	Z	1.618	1.618	Ö	%100
53	M27	X	-2.803	-2.803	0	%100 %100
54	M27	Z	1.618	1.618	0	%100 %100
55	M28	X	-2.875	-2.875	0	%100 %100
56	M28	Z	1.66	1.66	0	%100 %100
57	M29	X	-1.168	-1.168	0	%100 %100
58	M29	Z	.675	.675	0	%100
59	M30	X Z	-1.168	-1.168	0	%100
60	M30		.675	.675	0	%100
61	M31	X	-3.741	-3.741	0	%100
62	M31	Z	2.16	2.16	0	%100

RISA-3D Version 17.0.4

[R:\...\...\...\Mount Analysis\Rev 3\RISA\468927-VZW_MT_LO_H.r3d] Page 192

: NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 61: Structure Wi (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
63	M32	X	-3.741	-3.741	0	%100
64	M32	Z	2.16	2.16	0	%100
65	M33	X	-2.875	-2.875	0	%100
66	M33	Z	1.66	1.66	0	%100
67	M34	X	-2.875	-2.875	0	%100
68	M34	Z	1.66	1.66	0	%100
69	M35	X	-2.803	-2.803	0	%100
70	M35	Z	1.618	1.618	0	%100
71	M36	X	-2.803	-2.803	0	%100
72	M36	Z	1.618	1.618	Ö	%100 %100
73	M37	X	-4.114	-4.114	0	%100 %100
74	M37	Z	2.376	2.376	0	%100 %100
75	M38	X	-1.029	-1.029	0	%100 %100
76	M38	Ž	.594	.594	0	%100 %100
77	M39	X	-1.029	-1.029	0	%100
78	M39	Z	.594	.594	0	%100
79	M49	X	-4.114	-4.114	0	%100
80	M49	Z	2.376	2.376	0	%100
81	M50	X	-1.029	-1.029	0	%100
82	M50	Z	.594	.594	0	%100
83	M51	X	-1.029	-1.029	0	%100
84	M51	Z	.594	.594	0	%100
85	M61	X	-2.485	-2.485	0	%100
86	M61	Z	1.434	1.434	0	%100
87	M62	X	-2.485	-2.485	0	%100
88	M62	Z	1.435	1.435	0	%100
89	M63	X	-2.466	-2.466	0	%100
90	M63	Z	1.424	1.424	0	%100
91	M64	X	-2.98	-2.98	0	%100
92	M64	Ž	1.72	1.72	Ö	%100
93	M65	X	-2.98	-2.98	0	%100
94	M65	Z	1.72	1.72	0	%100 %100
95	M66	X	-2.986	-2.986	0	%100 %100
96	M66	Z	1.724	1.724	Ö	%100 %100
97	M67	X	-2.98	-2.98	0	%100 %100
98	M67	Ž	1.72	1.72	0	%100 %100
99	M68					%100 %100
		X Z	-2.98	-2.98	0	
100	M68		1.72	1.72	0	%100
101	M69	X	-2.986	-2.986	0	%100
102	M69	Z	1.724	1.724	0	%100
103	M70	X	-2.485	-2.485	0	%100
104	M70	Z	1.434	1.434	0	%100
105	M71	X	-2.485	-2.485	0	%100
106	M71	Z	1.435	1.435	0	%100
107	M72	X	-2.466	-2.466	0	%100
108	M72	Z	1.424	1.424	0	%100
109	M73	X	-2.485	-2.485	0	%100
110	M73	Z	1.434	1.434	0	%100
111	M74	X	-2.485	-2.485	0	%100
112	M74	Z	1.435	1.435	0	%100
113	M75	X	-2.466	-2.466	0	%100
114	M75	Z	1.424	1.424	0	%100
115	MP1A	X	-3.195	-3.195	0	%100
116	MP1A	Z	1.844	1.844	0	%100
117	MP2A	X	-3.087	-3.087	0	%100
118	MP2A	Z	1.782	1.782	0	%100 %100
119	MP4A	X	-3.195	-3.195	0	%100
	1711 77.1		0.100	0.100		70.100

: Maser Consulting : NL : 21781092A Company Designer

5:47 PM Job Number Checked By: DX Model Name : Mount Analysis (Rev. 3)

Member Distributed Loads (BLC 61: Structure Wi (240 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
120	MP4A	Z	1.844	1.844	0	%100
121	MP5A	X	-3.195	-3.195	0	%100
122	MP5A	Z	1.844	1.844	0	%100
123	MPA	X	-3.087	-3.087	0	%100
124	MPA	Z	1.782	1.782	0	%100
125	MP6A	X	-3.195	-3.195	0	%100
126	MP6A	Z	1.844	1.844	0	%100
127	MP1C	X	-3.195	-3.195	0	%100
128	MP1C	Z	1.844	1.844	0	%100
129	MP1B	X	-3.195	-3.195	0	%100
130	MP1B	Z	1.844	1.844	0	%100
131	MPC	X	-3.087	-3.087	0	%100
132	MPC	Z	1.782	1.782	0	%100
133	MP2C	X	-3.087	-3.087	0	%100
134	MP2C	Ž	1.782	1.782	Ö	%100
135	MP5C	X	-3.195	-3.195	0	%100
136	MP5C	Ž	1.844	1.844	0	%100
137	MP6C	X	-3.087	-3.087	0	%100 %100
138	MP6C	Z	1.782	1.782	0	%100 %100
139	MPB	X	-3.087	-3.087	0	%100 %100
140	MPB	Z	1.782	1.782	0	%100 %100
141	MPB2	X	-3.087	-3.087	0	%100 %100
142	MPB2	Z	1.782	1.782	Ö	%100 %100
143	MP5B	X	-3.087	-3.087	0	%100 %100
144	MP5B	Z	1.782	1.782	Ö	%100 %100
145	MP4C	X	-3.195	-3.195	0	%100 %100
146	MP4C	Z	1.844	1.844	Ö	%100 %100
147	MP3C	X	-3.195	-3.195	0	%100 %100
148	MP3C	Z	1.844	1.844	Ö	%100 %100
149	M146	X	-4.674	-4.674	0	%100 %100
150	M146	Z	2.698	2.698	0	%100 %100
151	M147	X	-4.674	-4.674	0	%100 %100
152	M147	Z	2.698	2.698	0	%100 %100
153	M154	X	-1.168	-1.168	0	%100 %100
154	M154	Z	.675	.675	0	%100 %100
155	M155	X	-1.168	-1.168	0	%100 %100
156	M155	Z	.675	.675	0	%100 %100
157	M162	X	-1.168	-1.168	0	%100 %100
158	M162	Z	.675	.675	0	%100 %100
159	M163	X	-1.168	-1.168	0	%100 %100
160	M163	Ž	.675	.675	0	%100 %100
161	MP3A	X	-3.087	-3.087	0	%100 %100
162	MP3A	Z	1.782	1.782	0	%100 %100
163	MP4B	X	-3.195	-3.195	0	%100 %100
164	MP4B	Z	1.844	1.844	0	%100 %100
165	MP6B	X	-3.087	-3.087	0	%100 %100
166	MP6B	Ž	1.782	1.782	0	%100 %100
167	MP3B	X	-3.195	-3.195	0	%100 %100
168	MP3B	Z	1.844	1.844	0	%100 %100
169	M163A		-3.087	-3.087	0	%100 %100
170	M163A	X Z	1.782	1.782	0	%100 %100
170	M163A M166	X	-1.475	-1.475		%100 %100
171	M166	Z	.851	.851	0	%100 %100
173	M169A	X	-1.475	-1.475	0	%100 %100
174	M169A M169A	Z	.851	.851	0	%100 %100
175	MP2B	X	-3.195	-3.195	0	%100 %100
176	MP2B	Ž	1.844	1.844	0	%100 %100
170	IVIFZD		1.044	1.044	U	70 100

Nov 23, 2021

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 61: Structure Wi (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
177	M173A	X	-1.475	-1.475	0	%100
178	M173A	Z	.851	.851	0	%100
179	M176	Χ	-1.475	-1.475	0	%100
180	M176	Z	.851	.851	0	%100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[ft,%]	
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M3	X	-2.678	-2.678	0	%100
6	M3	Z	0	0	0	%100
7	M4	X	-2.679	-2.679	0	%100
8	M4	Z	0	0	0	%100
9	M5	X	-2.647	-2.647	0	%100
10	M5	Z	0	0	0	%100
11	M6	X	-2.646	-2.646	0	%100
12	M6	Z	0	0	0	%100
13	M7	X	-2.646	-2.646	0	%100
14	M7	Z	0	0	0	%100
15	M8	X	-2.646	-2.646	0	%100
16	M8	Z	0	0	0	%100
17	M9	X	-2.646	-2.646	0	%100
18	M9	Z	0	0	0	%100
19	M10	X	-1.44	-1.44	0	%100
20	M10	Z	0	0	0	%100
21	M11	X	-1.44	-1.44	0	%100
22	M11	Z	0	0	0	%100
23	M12	X	-3.32	-3.32	0	%100
24	M12	Z	0	0	Ō	%100
25	M13	X	-3.32	-3.32	0	%100
26	M13	Z	0	0	0	%100
27	M14	X	-3.32	-3.32	0	%100
28	M14	Z	0	0	0	%100
29	M15	X	-2.277	-2.277	0	%100
30	M15	Z	0	0	0	%100
31	M16	X	-2.27	-2.27	0	%100
32	M16	Z	0	0	0	%100
33	M17	X	-3.32	-3.32	0	%100
34	M17	Z	0	0	0	%100
35	M18	X	-4.048	-4.048	0	%100
36	M18	Z	0	0	0	%100
37	M19	X	-4.048	-4.048	0	%100
38	M19	Z	0	0	0	%100
39	M20	X	0	0	0	%100
40	M20	Z	0	0	0	%100
41	M21	X	0	0	0	%100
42	M21	Z	0	0	0	%100
43	M22	X	-1.44	-1.44	0	%100
44	M22	Z	0	0	0	%100
45	M23	X	-1.44	-1.44	0	%100
46	M23	X Z	0	0	0	%100
47	M24	X	-3.32	-3.32	0	%100
48	M24	Z	0	0	0	%100
49	M25	X	-3.32	-3.32	0	%100
					-	72.22

Company Designer Job Number : NL

: 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 62: Structure Wi (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	
50	M25	Z	0	0	0	%100
51	M26	X	-2.277	-2.277	0	%100
52	M26	Z	0	0	0	%100
53	M27	X	-2.27	-2.27	0	%100
54	M27	Z	0	0	0	%100
55	M28	X	-3.32	-3.32	0	%100
56	M28	Z	0	0	0	%100
57	M29	X	-4.048	-4.048	0	%100
58	M29	Z	0	0	Ö	%100
59	M30	X	-4.048	-4.048	0	%100
60	M30	Z	0	0	Ö	%100
61	M31	X	-5.76	-5.76	0	%100 %100
62	M31	Z	-3.70	-5.76	0	%100 %100
63						
	M32	X	-5.76	-5.76	0	%100
64	M32	Z	0	0	0	%100
65	M33	X	-3.32	-3.32	0	%100
66	M33	Z	0	0	0	%100
67	M34	X	-3.32	-3.32	0	%100
68	M34	Z	0	0	0	%100
69	M35	X	-3.716	-3.716	0	%100
70	M35	Z	0	0	0	%100
71	M36	X	-3.72	-3.72	0	%100
72	M36	Z	0	0	0	%100
73	M37	X	-3.563	-3.563	0	%100
74	M37	Z	0	0	0	%100
75	M38	X	0	0	0	%100
76	M38	Z	0	0	0	%100
77	M39	X	-3.563	-3.563	0	%100
78	M39	Z	0	0	Ö	%100
79	M49	X	-3.563	-3.563	0	%100 %100
80	M49	Z	0	0	Ö	%100
81	M50	X	0	0	0	%100 %100
82	M50	Z	0	0	0	%100 %100
83	M51	X	-3.563	-3.563	0	%100 %100
		Z				
84	M51		0 070	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	%100
85	M61	X	-2.678	-2.678	0	%100
86	M61	Z	0	0	0	%100
87	M62	X	-2.679	-2.679	0	%100
88	M62	Z	0	0	0	%100
89	M63	X	-2.647	-2.647	0	%100
90	M63	Z	0	0	0	%100
91	M64	X	-3.25	-3.25	0	%100
92	M64	Z	0	0	0	%100
93	M65	X	-3.25	-3.25	0	%100
94	M65	Z	0	0	0	%100
95	M66	X	-3.248	-3.248	0	%100
96	M66	Z	0	0	0	%100
97	M67	X	-3.25	-3.25	0	%100
98	M67	Z	0	0	0	%100 %100
99	M68	X	-3.25	-3.25	0	%100
100	M68	Z	0	0	0	%100 %100
101	M69	X	-3.248	-3.248	0	%100
102	M69	Z	0	0	0	%100 %100
102	M70	X	-3.25	-3.25	0	%100 %100
103	M70	Z	-3.25	-3.25	0	%100 %100
104	M71	X	-3.25	<u> </u>		
				-3.25	0	%100 %100
106	M71	Z	0	0	0	%100

: NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 62: Structure Wi (270 Deg)) (Continued)

407	Member Label	Direction		. End Magnitude[lb/ft,F		
107	M72	X	-3.248	-3.248	0	%100
108	M72	Z	0	0	0	%100
109	M73	X	-3.25	-3.25	0	%100
110	M73	Z	0	0	0	%100
111	M74	X	-3.25	-3.25	0	%100
112	M74	Z	0	0	0	%100
113	M75	X	-3.248	-3.248	0	%100
114	M75	Z	0	0	0	%100
115	MP1A	X	-3.689	-3.689	0	%100
116	MP1A	Z	0	0	0	%100
117	MP2A	X	-3.564	-3.564	0	%100
118	MP2A	Z	0	0	0	%100
119	MP4A	X	-3.689	-3.689	0	%100
120	MP4A	Z	0	0	0	%100
121	MP5A	X	-3.689	-3.689	0	%100
122	MP5A	Z	0	0	0	%100
123	MPA	X	-3.564	-3.564	0	%100
124	MPA	Z	0	0	0	%100
125	MP6A	X	-3.689	-3.689	0	%100
126	MP6A	Z	0	0	0	%100
127	MP1C	X	-3.689	-3.689	0	%100
128	MP1C	Z	0	0	0	%100
129	MP1B	X	-3.689	-3.689	0	%100
130	MP1B	Z	0	0	0	%100
131	MPC	X	-3.564	-3.564	0	%100
132	MPC	Z	0	0	0	%100
133	MP2C	X	-3.564	-3.564	0	%100
134	MP2C	Z	0	0	0	%100
135	MP5C	X	-3.689	-3.689	0	%100
136	MP5C	Z	0	0	0	%100
137	MP6C	X	-3.564	-3.564	0	%100
138	MP6C	Z	0	0	0	%100
139	MPB	X	-3.564	-3.564	0	%100
140	MPB	Z	0	0	0	%100
141	MPB2	X	-3.564	-3.564	0	%100
142	MPB2	Z	0	0	0	%100
143	MP5B	X	-3.564	-3.564	0	%100
144	MP5B	Z	0	0	0	%100
145	MP4C	X	-3.689	-3.689	0	%100
146	MP4C	Z	0	0	0	%100
147	MP3C	X	-3.689	-3.689	0	%100
148	MP3C	Z	0	0	0	%100
149	M146	X	-4.048	-4.048	0	%100
150	M146	Z	0	0	0	%100
151	M147	X	-4.048	-4.048	0	%100
152	M147	Z	0	0	0	%100
153	M154	X	-4.048	-4.048	0	%100
154	M154	Z	0	0	0	%100
155	M155	X	-4.048	-4.048	0	%100
156	M155	Z	0	0	0	%100
157	M162	X	0	0	0	%100
158	M162	Z	0	0	0	%100
159	M163	X	0	0	0	%100
160	M163	Z	0	0	0	%100
161	MP3A	X	-3.564	-3.564	0	%100
162	MP3A	Z	0	0	0	%100
163	MP4B	X	-3.689	-3.689	0	%100

Company Designer : Maser Consulting

: NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 62: Structure Wi (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
164	MP4B	Z	0	0	0	%100
165	MP6B	X	-3.564	-3.564	0	%100
166	MP6B	Z	0	0	0	%100
167	MP3B	X	-3.689	-3.689	0	%100
168	MP3B	Z	0	0	0	%100
169	M163A	X	-3.564	-3.564	0	%100
170	M163A	Z	0	0	0	%100
171	M166	X	-2.27	-2.27	0	%100
172	M166	Z	0	0	0	%100
173	M169A	X	-2.27	-2.27	0	%100
174	M169A	Z	0	0	0	%100
175	MP2B	X	-3.689	-3.689	0	%100
176	MP2B	Z	0	0	0	%100
177	M173A	X	568	568	0	%100
178	M173A	Z	0	0	0	%100
179	M176	X	568	568	0	%100
180	M176	Z	0	0	0	%100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	X	-1.168	-1.168	0	%100
2	M1	Z	675	675	0	%100
3	M2	X	-1.168	-1.168	0	%100
4	M2	Z	675	675	0	%100
5	M3	X	-2.485	-2.485	0	%100
6	M3	Z	-1.434	-1.434	0	%100
7	M4	X	-2.485	-2.485	0	%100
8	M4	Z	-1.435	-1.435	0	%100
9	M5	X	-2.466	-2.466	0	%100
10	M5	Z	-1.424	-1.424	0	%100
11	M6	X	-3.055	-3.055	0	%100
12	M6	Z	-1.764	-1.764	0	%100
13	M7	X	-3.055	-3.055	0	%100
14	M7	Z	-1.764	-1.764	0	%100
15	M8	X	764	764	0	%100
16	M8	Z	441	441	0	%100
17	M9	X	764	764	0	%100
18	M9	Z	441	441	0	%100
19	M10	X	-3.741	-3.741	0	%100
20	M10	Z	-2.16	-2.16	0	%100
21	M11	X	-3.741	-3.741	0	%100
22	M11	Z	-2.16	-2.16	0	%100
23	M12	X	-2.875	-2.875	0	%100
24	M12	Z	-1.66	-1.66	0	%100
25	M13	X	-2.875	-2.875	0	%100
26	M13	Z	-1.66	-1.66	0	%100
27	M14	X	-2.875	-2.875	0	%100
28	M14	Z	-1.66	-1.66	0	%100
29	M15	X	-2.803	-2.803	0	%100
30	M15	Z	-1.618	-1.618	0	%100
31	M16	X	-2.803	-2.803	0	%100
32	M16	Z	-1.618	-1.618	0	%100
33	M17	X	-2.875	-2.875	0	%100
34	M17	Z	-1.66	-1.66	0	%100
35	M18	X	-1.168	-1.168	0	%100
36	M18	Z	675	675	0	%100

Company Designer Job Number

: NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 63: Structure Wi (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
37	M19	X	-1.168	-1.168	0	%100
38	M19	Z	675	675	0	%100
39	M20	X	764	764	0	%100
40	M20	Z	441	441	0	%100
41	M21	X	764	764	0	%100
42	M21	Z	441	441	0	%100
43	M22	X	0	0	0	%100
44	M22	Z	0	0	0	%100
45	M23	X	0	0	0	%100
46	M23	Z	0	0	Ö	%100 %100
47	M24	X	-2.875	-2.875	0	%100 %100
48	M24	Z	-1.66	-1.66	0	%100 %100
49	M25	X	-2.875	-2.875	0	%100 %100
50	M25	Ž		-1.66	0	%100 %100
			-1.66			
51	M26	X	-1.556	-1.556	0	%100
52	M26	Z	899	899	0	%100
53	M27	X	-1.548	-1.548	0	%100
54	M27	Z	894	894	0	%100
55	M28	X	-2.875	-2.875	0	%100
56	M28	Z	-1.66	-1.66	0	%100
57	M29	X	-4.674	-4.674	0	%100
58	M29	Z	-2.698	-2.698	0	%100
59	M30	X	-4.674	-4.674	0	%100
60	M30	Z	-2.698	-2.698	0	%100
61	M31	X	-3.741	-3.741	0	%100
62	M31	Z	-2.16	-2.16	0	%100
63	M32	X	-3.741	-3.741	0	%100
64	M32	Z	-2.16	-2.16	0	%100
65	M33	X	-2.875	-2.875	0	%100
66	M33	Z	-1.66	-1.66	0	%100
67	M34	X	-2.875	-2.875	0	%100
68	M34	Ž	-1.66	-1.66	Ö	%100
69	M35	X	-2.803	-2.803	0	%100
70	M35	Ž	-1.618	-1.618	0	%100
71	M36	X	-2.803	-2.803	0	%100 %100
72	M36	Z	-1.618	-1.618	0	%100 %100
73	M37	X	-1.029	-1.029	0	%100 %100
74	M37	Z	594	594	0	%100 %100
75	M38	X		-1.029	0	%100 %100
76		Z	-1.029		0	%100 %100
	M38		594	594		
77	M39	X	-4.114	-4.114	0	%100 %100
78	M39	Z	-2.376	-2.376	0	%100 %100
79	M49	X	-1.029	-1.029	0	%100
80	M49	Z	594	594	0	%100
81	M50	X	-1.029	-1.029	0	%100
82	M50	Z	594	594	0	%100
83	M51	X	-4.114	-4.114	0	%100
84	M51	Z	-2.376	-2.376	0	%100
85	M61	X	-2.485	-2.485	0	%100
86	M61	Z	-1.434	-1.434	0	%100
87	M62	X	-2.485	-2.485	0	%100
88	M62	Z	-1.435	-1.435	0	%100
89	M63	X	-2.466	-2.466	0	%100
90	M63	Z	-1.424	-1.424	0	%100
91	M64	X	-2.485	-2.485	0	%100
92	M64	Z	-1.434	-1.434	0	%100
93	M65	X	-2.485	-2.485	0	%100

: Maser Consulting : NL : 21781092A Company Designer

Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 63: Structure Wi (300 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
94	M65	Z	-1.435	-1.435	0	%100
95	M66	X	-2.466	-2.466	0	%100
96	M66	Z	-1.424	-1.424	0	%100
97	M67	X	-2.485	-2.485	0	%100
98	M67	Z	-1.434	-1.434	0	%100
99	M68	X	-2.485	-2.485	0	%100
100	M68	Z	-1.435	-1.435	0	%100
101	M69	X	-2.466	-2.466	0	%100
102	M69	Z	-1.424	-1.424	0	%100
103	M70	X	-2.98	-2.98	0	%100
104	M70	Z	-1.72	-1.72	0	%100
105	M71	X	-2.98	-2.98	0	%100
106	M71	Z	-1.72	-1.72	0	%100
107	M72	X	-2.986	-2.986	0	%100
108	M72	Z	-1.724	-1.724	0	%100
109	M73	X	-2.98	-2.98	0	%100
110	M73	Z	-1.72	-1.72	0	%100 %100
111	M74	X	-2.98	-2.98	0	%100 %100
112	M74	Z	-1.72	-1.72	0	%100 %100
113	M75	X	-2.986	-2.986	0	%100 %100
114	M75	Z	-1.724	-1.724	0	%100 %100
115	MP1A	X	-3.195	-3.195	0	%100 %100
116	MP1A	Z	-1.844	-1.844	0	%100 %100
117	MP2A	X	-3.087	-3.087	0	%100 %100
118	MP2A	Z	-1.782	-1.782	0	%100 %100
119	MP4A					
		X Z	-3.195	-3.195	0	%100
120	MP4A		-1.844	-1.844	0	%100
121	MP5A	X	-3.195	-3.195	0	%100
122	MP5A	Z	-1.844	-1.844	0	%100
123	MPA MPA	X	-3.087	-3.087	0	%100
124	MPA	Z	-1.782	-1.782	0	%100
125	MP6A	X	-3.195	-3.195	0	%100
126	MP6A	Z	-1.844	-1.844	0	%100
127	MP1C	X	-3.195	-3.195	0	%100
128	MP1C	Z	-1.844	-1.844	0	%100
129	MP1B	X	-3.195	-3.195	0	%100
130	MP1B	Z	-1.844	-1.844	0	%100
131	MPC	X	-3.087	-3.087	0	%100
132	MPC	Z	-1.782	-1.782	0	%100
133	MP2C	X	-3.087	-3.087	0	%100
134	MP2C	Z	-1.782	-1.782	0	%100
135	MP5C	X	-3.195	-3.195	0	%100
136	MP5C	Z	-1.844	-1.844	0	%100
137	MP6C	X	-3.087	-3.087	0	%100
138	MP6C	Z	-1.782	-1.782	0	%100
139	MPB	X	-3.087	-3.087	0	%100
140	MPB	Z	-1.782	-1.782	0	%100
141	MPB2	X	-3.087	-3.087	0	%100
142	MPB2	Z	-1.782	-1.782	0	%100
143	MP5B		-3.087	-3.087	0	%100
144	MP5B	X Z	-1.782	-1.782	0	%100
145	MP4C	X	-3.195	-3.195	0	%100
146	MP4C	Z	-1.844	-1.844	0	%100 %100
147	MP3C	X	-3.195	-3.195	0	%100 %100
148	MP3C	7	-1.844	-1.844	Ö	%100
149	M146	Z X	-1.168	-1.168	0	%100 %100
150	M146	Z	675	675	0	%100 %100
100	IVI 140		070	070	U	70 100

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 63: Structure Wi (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
151	M147	X	-1.168	-1.168	0	%100
152	M147	Z	675	675	0	%100
153	M154	X	-4.674	-4.674	0	%100
154	M154	Z	-2.698	-2.698	0	%100
155	M155	X	-4.674	-4.674	0	%100
156	M155	Z	-2.698	-2.698	0	%100
157	M162	X	-1.168	-1.168	0	%100
158	M162	Z	675	675	0	%100
159	M163	X	-1.168	-1.168	0	%100
160	M163	Z	675	675	0	%100
161	MP3A	X	-3.087	-3.087	0	%100
162	MP3A	Z	-1.782	-1.782	0	%100
163	MP4B	X	-3.195	-3.195	0	%100
164	MP4B	Z	-1.844	-1.844	0	%100
165	MP6B	X	-3.087	-3.087	0	%100
166	MP6B	Z	-1.782	-1.782	0	%100
167	MP3B	X	-3.195	-3.195	0	%100
168	MP3B	Z	-1.844	-1.844	0	%100
169	M163A	X	-3.087	-3.087	0	%100
170	M163A	Z	-1.782	-1.782	0	%100
171	M166	X	-1.475	-1.475	0	%100
172	M166	Z	851	851	0	%100
173	M169A	X	-1.475	-1.475	0	%100
174	M169A	Z	851	851	0	%100
175	MP2B	X	-3.195	-3.195	0	%100
176	MP2B	Z	-1.844	-1.844	0	%100
177	M173A	X	0	0	0	%100
178	M173A	Z	0	0	0	%100
179	M176	X	0	0	0	%100
180	M176	Z	0	0	0	%100

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	X	-2.024	-2.024	0	%100
2	M1	Z	-3.505	-3.505	0	%100
3	M2	X	-2.024	-2.024	0	%100
4	M2	Z	-3.505	-3.505	0	%100
5	M3	X	-1.625	-1.625	0	%100
6	M3	Z	-2.815	-2.815	0	%100
7	M4	X	-1.625	-1.625	0	%100
8	M4	Z	-2.815	-2.815	0	%100
9	M5	X	-1.624	-1.624	0	%100
10	M5	Z	-2.812	-2.812	0	%100
11	M6	X	-1.323	-1.323	0	%100
12	M6	Z	-2.291	-2.291	0	%100
13	M7	X	-1.323	-1.323	0	%100
14	M7	Z	-2.291	-2.291	0	%100
15	M8	X	0	0	0	%100
16	M8	Z	0	0	0	%100
17	M9	X	0	0	0	%100
18	M9	Z	0	0	0	%100
19	M10	X	-2.88	-2.88	0	%100
20	M10	Z	-4.988	-4.988	0	%100
21	M11	X	-2.88	-2.88	0	%100
22	M11	Z	-4.988	-4.988	0	%100
23	M12	X	-1.66	-1.66	0	%100

Company Designer : Maser Consulting

: NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 64: Structure Wi (330 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
24	M12	Z	-2.875	-2.875	0	%100
25	M13	X	-1.66	-1.66	0	%100
26	M13	Z	-2.875	-2.875	0	%100
27	M14	Χ	-1.66	-1.66	0	%100
28	M14	Z	-2.875	-2.875	0	%100
29	M15	X	-1.858	-1.858	0	%100
30	M15	Z	-3.218	-3.218	0	%100
31	M16	X	-1.86	-1.86	0	%100 %100
32	M16	Z	-3.222	-3.222	Ö	%100 %100
33	M17	X	-1.66	-1.66	0	%100
34	M17	Z	-2.875	-2.875	0	%100 %100
			_			
35	M18	X Z	0	0	0	%100
36	M18		0	0	0	%100
37	M19	X	0	0	0	%100
38	M19	Z	0	0	0	%100
39	M20	X	-1.323	-1.323	0	%100
40	M20	Z	-2.291	-2.291	0	%100
41	M21	X	-1.323	-1.323	0	%100
42	M21	Z	-2.291	-2.291	0	%100
43	M22	X	72	72	0	%100
44	M22	Z	-1.247	-1.247	0	%100
45	M23	Χ	72	72	0	%100
46	M23	Z	-1.247	-1.247	0	%100
47	M24	Χ	-1.66	-1.66	0	%100
48	M24	Z	-2.875	-2.875	0	%100
49	M25	X	-1.66	-1.66	0	%100
50	M25	Z	-2.875	-2.875	0	%100 %100
51	M26	X	-1.138	-1.138	0	%100
52	M26	Z	-1.972	-1.972	0	%100 %100
53	M27	X	-1.135	-1.135	0	%100 %100
54	M27	Ž	-1.966	-1.966	0	%100 %100
55	M28	X	-1.66	-1.66		%100 %100
56		Z			0	
	M28		-2.875	-2.875	0	%100
57	M29	X	-2.024	-2.024	0	%100
58	M29	Z	-3.505	-3.505	0	%100
59	M30	X	-2.024	-2.024	0	%100
60	M30	Z	-3.505	-3.505	0	%100
61	M31	X	72	72	0	%100
62	M31	Z	-1.247	-1.247	0	%100
63	M32	X	72	72	0	%100
64	M32	Z	-1.247	-1.247	0	%100
65	M33	X	-1.66	-1.66	0	%100
66	M33	Z	-2.875	-2.875	0	%100
67	M34		-1.66	-1.66	0	%100
68	M34	X Z	-2.875	-2.875	0	%100
69	M35	Χ	-1.138	-1.138	0	%100
70	M35	Ž	-1.972	-1.972	Ö	%100
71	M36	X	-1.135	-1.135	0	%100 %100
72	M36	Z	-1.966	-1.966	0	%100 %100
73	M37	X	0	0	0	%100 %100
74	M37	Z	0	0	Ö	%100
75	M38	X	-1.782	-1.782	0	%100 %100
76	M38	Z	-3.086	-3.086	0	%100 %100
77	M39					
		X Z	-1.782	-1.782	0	%100 %100
78	M39		-3.086	-3.086	0	%100 %100
79	M49	X	0	0	0	%100
80	M49	Z	0	0	0	%100

: NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 64: Structure Wi (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
81	M50	X	-1.782	-1.782	0	%100
82	M50	Z	-3.086	-3.086	0	%100
83	M51	X	-1.782	-1.782	0	%100
84	M51	Z	-3.086	-3.086	0	%100
85	M61	X	-1.625	-1.625	0	%100
86	M61	Z	-2.815	-2.815	0	%100
87	M62	X	-1.625	-1.625	0	%100
88	M62	Z	-2.815	-2.815	Ö	%100
89	M63	X	-1.624	-1.624	0	%100
90	M63	Z	-2.812	-2.812	Ö	%100 %100
91	M64	X	-1.339	-1.339	0	%100 %100
92	M64	Z	-2.32	-2.32	0	%100 %100
93	M65	X	-1.339	-1.339	0	%100
94	M65	Z	-2.32	-2.32	0	%100
95	M66	X	-1.324	-1.324	0	%100
96	M66	Z	-2.292	-2.292	0	%100
97	M67	X	-1.339	-1.339	0	%100
98	M67	Z	-2.32	-2.32	0	%100
99	M68	X	-1.339	-1.339	0	%100
100	M68	Z	-2.32	-2.32	0	%100
101	M69	X	-1.324	-1.324	0	%100
102	M69	Z	-2.292	-2.292	0	%100
103	M70	X	-1.625	-1.625	0	%100
104	M70	Z	-2.815	-2.815	0	%100
105	M71	X	-1.625	-1.625	0	%100
106	M71	Z	-2.815	-2.815	0	%100
107	M72	X	-1.624	-1.624	0	%100
108	M72	Z	-2.812	-2.812	0	%100 %100
109	M73	X	-1.625	-1.625	0	%100 %100
110	M73	Z	-2.815	-2.815	0	%100 %100
111	M74	X	-1.625	-1.625	0	%100 %100
112	M74	Z	-2.815	-2.815	0	%100 %100
113	M75					
		X Z	-1.624	-1.624	0	%100
114	M75		-2.812	-2.812	0	%100
115	MP1A	X	-1.844	-1.844	0	%100
116	MP1A	Z	-3.195	-3.195	0	%100
117	MP2A	X	-1.782	-1.782	0	%100
118	MP2A	Z	-3.087	-3.087	0	%100
119	MP4A	X	-1.844	-1.844	0	%100
120	MP4A	Z	-3.195	-3.195	0	%100
121	MP5A	X	-1.844	-1.844	0	%100
122	MP5A	Z	-3.195	-3.195	0	%100
123	MPA	X	-1.782	-1.782	0	%100
124	MPA	Z	-3.087	-3.087	0	%100
125	MP6A	X	-1.844	-1.844	0	%100
126	MP6A	Z	-3.195	-3.195	0	%100
127	MP1C	X	-1.844	-1.844	0	%100
128	MP1C	X Z	-3.195	-3.195	0	%100 %100
129	MP1B	X	-1.844	-1.844	0	%100 %100
130	MP1B	Z	-3.195	-3.195	0	%100 %100
131	MPC	X	-1.782	-1.782	0	%100 %100
132	MPC	Z	-3.087	-3.087	0	%100 %100
133	MP2C	X	-3.067	-1.782		%100 %100
		Z			0	
134	MP2C		-3.087	-3.087	0	%100 %100
135	MP5C	X	-1.844	-1.844	0	%100
136	MP5C	Z	-3.195	-3.195	0	%100
137	MP6C	X	-1.782	-1.782	0	%100

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 64: Structure Wi (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
138	MP6C	Z	-3.087	-3.087	0	%100
139	MPB	X	-1.782	-1.782	0	%100
140	MPB	Z	-3.087	-3.087	0	%100
141	MPB2	X	-1.782	-1.782	0	%100
142	MPB2	Z	-3.087	-3.087	0	%100
143	MP5B	X	-1.782	-1.782	0	%100
144	MP5B	Z	-3.087	-3.087	0	%100
145	MP4C	X	-1.844	-1.844	0	%100
146	MP4C	Z	-3.195	-3.195	0	%100
147	MP3C	X	-1.844	-1.844	0	%100
148	MP3C	Z	-3.195	-3.195	0	%100
149	M146	X	0	0	0	%100
150	M146	Z	0	0	0	%100
151	M147	X	0	0	0	%100
152	M147	Z	0	0	0	%100
153	M154	X	-2.024	-2.024	0	%100
154	M154	Z	-3.505	-3.505	0	%100
155	M155	X	-2.024	-2.024	0	%100
156	M155	Z	-3.505	-3.505	0	%100
157	M162	X	-2.024	-2.024	0	%100
158	M162	Z	-3.505	-3.505	0	%100
159	M163	X	-2.024	-2.024	0	%100
160	M163	Z	-3.505	-3.505	0	%100
161	MP3A	X	-1.782	-1.782	0	%100
162	MP3A	Z	-3.087	-3.087	0	%100
163	MP4B	X	-1.844	-1.844	0	%100
164	MP4B	Z	-3.195	-3.195	0	%100
165	MP6B	X	-1.782	-1.782	0	%100
166	MP6B	Z	-3.087	-3.087	0	%100
167	MP3B	X	-1.844	-1.844	0	%100
168	MP3B	Z	-3.195	-3.195	0	%100
169	M163A	X	-1.782	-1.782	0	%100
170	M163A	Z	-3.087	-3.087	0	%100
171	M166	X	284	284	0	%100
172	M166	Z	492	492	0	%100
173	M169A	X	284	284	0	%100
174	M169A	Z	492	492	0	%100
175	MP2B	X	-1.844	-1.844	0	%100
176	MP2B	Z	-3.195	-3.195	0	%100
177	M173A	X	284	284	0	%100
178	M173A	Z	492	492	0	%100
179	M176	X	284	284	0	%100
180	M176	Z	492	492	0	%100

Member Distributed Loads (BLC 65: Structure Wm (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	-1.171	-1.171	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	-1.171	-1.171	0	%100
5	M3	X	0	0	0	%100
6	M3	Z	677	677	0	%100
7	M4	X	0	0	0	%100
8	M4	Z	677	677	0	%100
9	M5	X	0	0	0	%100
10	M5	Z	678	678	0	%100

: NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 65: Structure Wm (0 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F	Start Location[ft,%]	
11	M6	X	0	0	0	%100
12	M6	Z	205	205	0	%100
13	M7	X	0	0	0	%100
14	M7	Z	205	205	0	%100
15	M8	X	0	0	0	%100
16	M8	Z	205	205	0	%100
17	M9	X	0	0	0	%100
18	M9	Z	205	205	0	%100
19	M10	X	0	0	0	%100
20	M10	Z	986	986	0	%100
21	M11	X	0	0	0	%100
22	M11	Z	986	986	0	%100
23	M12	X	0	0	0	%100
24	M12	Z	651	651	0	%100
25	M13	X	0	0	0	%100
26	M13	Z	651	651	0	%100
27	M14	X	0	0	0	%100
28	M14	Z	651	651	0	%100
29	M15	X	0	0	0	%100
30	M15	Z	641	641	0	%100
31	M16	X	0	0	0	%100
32	M16	Z	641	641	0	%100
33	M17	X	0	0	0	%100
34	M17	Z	651	651	0	%100
35	M18	X	0	0	0	%100
36	M18	Z	293	293	0	%100 %100
37	M19	X	0	0	0	%100 %100
38	M19	Z	293	293	Ö	%100 %100
39	M20	X	0	0	0	%100 %100
40	M20	Z	82	82	0	%100 %100
41	M21	X	0	0	0	%100 %100
42	M21	Z	82	82	0	%100 %100
43	M22	X	0	0	0	%100 %100
44	M22	Z	986	986	0	%100 %100
45	M23	X	0	0	0	%100 %100
46	M23	Ž	986	986	0	%100 %100
47	M24	X	960	960	0	%100 %100
48	M24	Z	651	651	0	%100 %100
49	M25	X	0	0	0	%100 %100
50	M25	Z	651	651	0	%100 %100
51	M26		651	051	0	%100 %100
52	M26	X Z	641	641	0	%100 %100
53	M27	X	641	041	0	%100 %100
54	M27	Z	641	641	0	
				641		%100 %100
55	M28	X Z	0		0	%100 %100
56	M28		651	651	0	%100 %100
57	M29	X Z	0	0	0	%100 %100
58	M29		293	293	0	%100 %100
59	M30	X	0	0	0	%100 %400
60	M30	Z	293	293	0	%100
61	M31	X	0	0	0	%100
62	M31	Z	0	0	0	%100
63	M32	X	0	0	0	%100
64	M32	Z	0	0	0	%100
65	M33	X	0	0	0	%100
66	M33	Z	651	651	0	%100
67	M34	X	0	0	0	%100

: NL

: 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 65: Structure Wm (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	
68	M34	Z	651	651	0	%100
69	M35	X	0	0	0	%100
70	M35	Z	356	356	0	%100
71	M36	X	0	0	0	%100
72	M36	Z	354	354	0	%100
73	M37	X	0	0	0	%100
74	M37	Z	263	263	0	%100
75	M38	X	0	0	0	%100
76	M38	Z	-1.051	-1.051	0	%100
77	M39	X	0	0	0	%100
78	M39	Z	263	263	0	%100
79	M49	X	0	0	0	%100
80	M49	Z	263	263	0	%100
81	M50	X	0	0	0	%100
82	M50	Z	-1.051	-1.051	Ö	%100
83	M51	X	0	0	0	%100
84	M51	Z	263	263	0	%100 %100
85	M61	X	0	0	0	%100 %100
86	M61	Z	677	677	Ö	%100
87	M62	X	0	0	0	%100 %100
88	M62	Z	677	677	0	%100 %100
89	M63	X	0	0	0	%100 %100
90	M63	Z	678	678	0	%100 %100
91	M64	X	678	678	0	%100 %100
92	N64	Z				
			564	564	0	%100
93	M65	X	0	0	0	%100
94	M65	Z	564	564	0	%100
95	M66	X	0	0	0	%100
96	M66	Z	56	56	0	%100
97	M67	X	0	0	0	%100
98	M67	Z	564	564	0	%100
99	M68	X	0	0	0	%100
100	M68	Z	564	564	0	%100
101	M69	X	0	0	0	%100
102	M69	Z	56	56	0	%100
103	M70	X	0	0	0	%100
104	M70	Z	564	564	0	%100
105	M71	X	0	0	0	%100
106	M71	Z	564	564	0	%100
107	M72	X	0	0	0	%100
108	M72	Z	56	56	0	%100
109	<u>M73</u>	X	0	0	0	%100
110	M73	Z	564	564	0	%100
111	M74	X	0	0	0	%100
112	M74	Z	564	564	0	%100
113	M75	X	0	0	0	%100
114	M75	Z	56	56	0	%100
115	MP1A	X	0	0	0	%100
116	MP1A	Z	556	556	0	%100
117	MP2A	X	0	0	0	%100
118	MP2A	Z	556	556	0	%100
119	MP4A	Х	0	0	0	%100
120	MP4A	Z	556	556	0	%100
121	MP5A	X	0	0	0	%100
122	MP5A	Z	556	556	0	%100
123	MPA	X	0	0	0	%100
124	MPA	Z	556	556	0	%100

Company Designer Job Number : NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 65: Structure Wm (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	
125	MP6A	X	0	0	0	%100
126	MP6A	Z	556	556	0	%100
127	MP1C	X	0	0	0	%100
128	MP1C	Z	556	556	0	%100
129	MP1B	X	0	0	0	%100
130	MP1B	Z	556	556	0	%100 %100
131	MPC	X	0	0	0	%100 %100
132	MPC	Z	556	556	Ö	%100 %100
133	MP2C	X	0	0	0	%100
134	MP2C	Z	556	556	0	%100 %100
135	MP5C	X	556	550	0	%100 %100
136	MP5C MP5C	Z	556	556	0	%100 %100
137	MP6C	X	0	0	0	%100
138	MP6C	Z	556	556	0	%100
139	MPB	X	0	0	0	%100
140	MPB	Z	556	556	0	%100
141	MPB2	X	0	0	0	%100
142	MPB2	Z	556	556	0	%100
143	MP5B	X	0	0	0	%100
144	MP5B	Z	556	556	0	%100
145	MP4C	X	0	0	0	%100
146	MP4C	Z	556	556	0	%100
147	MP3C	X	0	0	0	%100
148	MP3C	Z	556	556	0	%100
149	M146	X	0	0	0	%100
150	M146	Z	293	293	0	%100
151	M147	X	0	0	0	%100
152	M147	Z	293	293	0	%100
153	M154	X	0	0	0	%100
154	M154	Z	293	293	0	%100
155	M155	X	0	0	0	%100
156	M155	Z	293	293	0	%100
157	M162	X	0	0	0	%100
158	M162	Z	-1.171	-1.171	0	%100
159	M163	X	0	0	0	%100
160	M163	Z	-1.171	-1.171	0	%100 %100
161	MP3A	X	0	0	0	%100
162	MP3A	Z	556	556	0	%100 %100
163	MP4B	X	0	0	0	%100 %100
164	MP4B	Z	556	556	0	%100 %100
165	MP6B	X	0	0	0	%100 %100
166	MP6B	Z	556	556	0	%100 %100
167	MP3B	X	550	550	0	%100 %100
168	MP3B	Z	556	556	0	%100 %100
169	M163A	X	336	556	0	%100 %100
		Z	556	556	0	%100 %100
170	M163A					
171	M166	X	0	0	0	%100
172	M166	Z	0	0	0	%100
173	M169A	X	0	0	0	%100
174	M169A	Z	0	0	0	%100
175	MP2B	X	0	0	0	%100
176	MP2B	Z	556	556	0	%100
177	M173A	X	0	0	0	%100
178	M173A	Z	263	263	0	%100
179	M176	X	0	0	0	%100
180	M176	Z	263	263	0	%100

Company Designer Job Number : NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 66: Structure Wm (30 Deg))

	Member Label	Direction		End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	X	.439	.439	0	%100
2	M1	Z	761	761	0	%100
3	M2	X	.439	.439	0	%100
4	M2	Z	761	761	0	%100
5	M3	X	.32	.32	0	%100
6	M3	Z	554	554	0	%100
7	M4	X	.32	.32	0	%100
8	M4	Z	554	554	0	%100
9	M5	X	.319	.319	0	%100
10	M5	Z	553	553	0	%100
11	M6	X	0	0	0	%100
12	M6	Z	0	0	0	%100
13	M7	X	0	0	0	%100
14	M7	Z	0	0	0	%100
15	M8	X	.307	.307	0	%100
16	M8	Z	533	533	0	%100
17	M9	X	.307	.307	0	%100
18	M9	Ž	533	533	Ö	%100
19	M10	X	.164	.164	0	%100
20	M10	Z	285	285	Ö	%100 %100
21	M11	X	.164	.164	0	%100 %100
22	M11	Z	285	285	0	%100 %100
23	M12	X	.325	.325	0	%100 %100
24	M12	Ž	564	564	0	%100 %100
25	M13	X	.325	.325	0	%100 %100
26	M13	Z	564	564	0	%100 %100
27	M14	X	.325	.325	0	%100 %100
28	M14	Ž	564	564	0	%100 %100
29	M15	X	.226	.226	0	%100
30	M15	Z	391	391	0	%100
31	M16	X	.225	.225	0	%100
32	M16	Z	39	39	0	%100
33	M17	X	.325	.325	0	%100
34	M17	Z	564	564	0	%100
35	M18	X	.439	.439	0	%100
36	M18	Z	761	761	0	%100
37	M19	X	.439	.439	0	%100
38	M19	Z	761	761	0	%100
39	M20	X	.307	.307	0	%100
40	M20	Z	533	533	0	%100
41	M21	X	.307	.307	0	%100
42	M21	Z	533	533	0	%100
43	M22	X	.657	.657	0	%100
44	M22	Z	-1.138	-1.138	0	%100
45	M23	X	.657	.657	0	%100
46	M23	Z	-1.138	-1.138	0	%100
47	M24	X	.325	.325	0	%100
48	M24	Z	564	564	0	%100
49	M25	X	.325	.325	0	%100
50	M25	Z	564	564	0	%100
51	M26	X	.368	.368	0	%100
52	M26	Ž	638	638	0	%100
53	M27	X	.369	.369	0	%100 %100
54	M27	Z	638	638	Ö	%100 %100
55	M28	X	.325	.325	0	%100
56	M28	Z	564	564	Ö	%100 %100
57	M29	X	0	0	0	%100 %100
<u> </u>	17120					70100

Company Designer

Job Number

: Maser Consulting : NL : 21781092A Model Name : Mount Analysis (Rev. 3)

Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 66: Structure Wm (30 Deg)) (Continued)

58 M29 Z O O O %100 60 M30 Z O O O %100 61 M31 X .164 .164 O %100 62 M31 Z .285 .285 O %100 63 M32 X .164 .164 O %100 64 M32 Z .285 .285 O %100 66 M33 Z .564 .564 O %100 67 M34 X .325 .325 O %100 68 M34 Z .564 .564 O %100 69 M35 X .226 .226 O %100 70 M35 Z .391 .391 O %100 71 M36 X .225 .225 O %100 73 M37 X .394 <th></th> <th>Member Label</th> <th>Direction</th> <th>Start Magnitude[lb/ft,</th> <th>End Magnitude[lb/ft,F</th> <th>.Start Location[ft,%]</th> <th>End Location[ft,%]</th>		Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
60	58	M29	Z		•	*	%100
61 M31 X							
62 M31 Z -285 -285 0 %100 64 M32 X .164 .164 0 %100 66 M33 X .325 .285 0 %100 66 M33 Z -564 .564 0 %100 67 M34 X .325 .325 0 %100 68 M34 Z -564 .564 0 %100 69 M35 X .226 .226 0 %100 70 M35 Z .391 .391 0 %100 71 M36 X .225 .226 0 %100 72 M36 Z .391 .391 0 %100 73 M37 X .394 .394 0 %100 74 M37 Z .683 .683 0 %100 75 M38 X .394 .394 0 %100 76 M38 Z .683 .683 0 %100 77 M39 X 0 0 0 0 %100 78 M39 X 0 0 0 0 %100 79 M49 X .394 .394 0 %100 79 M49 X .394 .394 0 %100 79 M49 X .394 .394 0 %100 88 M39 Z .683 .683 0 %100 89 M49 Z .683 .683 0 %100 81 M50 X .394 .394 0 %100 82 M60 X .394 .394 0 %100 83 M51 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
63			X				
64 M32 Z -285 .285 0 %100 66 M33 X 325 .325 0 %100 66 M33 Z -564 .564 0 %100 67 M34 X 325 .325 0 %100 68 M34 Z -564 .564 0 %100 69 M35 X 226 .226 0 %100 70 M35 Z -391 .391 0 %100 71 M36 X .225 .225 0 %100 72 M36 Z -39 .39 0 %100 72 M36 Z -39 .39 0 %100 73 M37 X 394 .394 .394 0 %100 74 M37 Z -683 .683 0 %100 75 M38 X .394 .394 0 %100 77 M39 X 0 0 0 0 %100 77 M39 X 0 0 0 0 %100 78 M39 Z 0 0 0 0 %100 79 M49 X .394 .394 0 %100 79 M49 X .394 .394 0 %100 80 M49 Z .683 .683 0 0 %100 81 M50 X .394 .394 0 %100 82 M60 X .394 .394 0 %100 83 M51 X 0 0 0 0 0 %100 84 M50 X .394 .394 0 %100 85 M61 X .394 .394 0 %100 86 M61 X .32 .32 .32 0 %100 87 M62 X .32 .32 0 %100 88 M63 X .394 .394 0 %100 89 M64 X .32 .32 .32 0 %100 89 M65 X .32 .32 0 %100 89 M63 X .319 .319 0 %100 89 M63 X .319 .319 0 %100 89 M64 X .32 .32 .32 0 %100 89 M63 X .319 .319 0 %100 89 M63 X .319 .319 0 %100 89 M64 X .32 .32 .32 0 %100 89 M65 X .32 .32 0 %100 90 M68 Z .554 .554 0 %100 91 M64 X .32 .32 .32 0 %100 92 M64 X .32 .32 .32 0 %100 93 M65 X .339 .319 0 %100 94 M66 X .319 .319 0 %100 95 M66 X .319 .319 0 %100 96 M66 X .319 .319 0 %100 97 M69 X .32 .32 0 %100 98 M67 X .32 .32 0 %100 99 M68 X .32 .32 0 %100 90 M68 Z .554 .554 .554 0 %100 91 M64 X .32 .32 .32 0 %100 92 M64 X .32 .32 .32 0 %100 93 M65 X .32 .32 .32 0 %100 94 M66 X .319 .319 0 %100 95 M68 X .32 .32 .32 0 %100 96 M66 X .319 .319 0 %100 97 M69 X .354 .554 .554 0 %100 98 M67 X .32 .32 .32 0 %100 99 M68 X .32 .32 .32 0 %100 90 M68 X .32 .32 .32 0 %100 91 M64 X .32 .32 .32 0 %100 91 M64 X .32 .32 .32 0 %100 92 M69 X .354 .554 .554 0 %100 93 M65 X .32 .32 0 %100 94 M69 X .354 .554 .554 0 %100 96 M66 X .319 .319 0 %100 97 M69 X .366 .456 0 %100 98 M67 X .263 .263 0 %100 98 M67 X .263 .263 0 %100 98 M67 X .265 .456 0 %100 98 M69 X .379 .379 .319 0 %100 99 M69 X .379 .379 .319 0 %100 90 M69 X .379 .379 .319 0 %100 91 M69 X .379 .379 .319 0 %100 91 M69 X .379 .379 .379 .319 0 %100 91 M60 M71 X .263 .						0	
66 M33 Z -564 -564 0 %100 67 M34 X -325 325 0 %100 68 M34 Z -564 -564 0 %100 69 M35 X 2-564 -564 0 %100 70 M35 Z -391 -391 0 %100 71 M36 X 225 -226 0 %100 71 M36 X 225 -391 -391 0 %100 72 M36 Z -391 -391 0 %100 73 M37 X 394 394 0 %100 74 M37 Z -683 -683 0 %100 75 M38 X 394 394 0 %100 76 M38 Z -683 -683 0 %100 77 M39 X 0 0 0 0 %100 78 M39 Z 0 0 0 0 %100 80 M49 X 394 394 0 %100 80 M49 Z -683 -683 0 %100 81 M50 X 394 394 0 0 %100 82 M50 Z -683 -683 0 %100 83 M51 X 0 0 0 0 %100 84 M51 Z -683 -683 0 %100 85 M60 X 394 394 0 0 %100 86 M61 Z -554 -554 0 %100 87 M62 X 32 32 0 %100 88 M63 X 32 32 32 0 %100 89 M63 X 32 -553 -553 0 %100 91 M64 X 32 32 32 0 %100 93 M65 X 339 39 0 %100 94 M68 X 339 319 0 %100 95 M66 X 319 319 0 %100 96 M68 X 32 -555 553 -553 0 %100 97 M67 X 32 32 32 0 %100 99 M68 X 339 319 0 %100 99 M68 X 32 -555 553 -553 0 %100 99 M68 X 339 319 0 %100 90 M69 X 339 319 0 %100 90 M68 X 359 -555 3 -553 0 %100 91 M64 X 32 32 32 0 %100			X	.164	.164	0	
66 M33 Z -564 -564 0 %100 67 M34 X 325 0 325 0 %100 68 M34 Z -564 -564 0 %100 69 M35 X 226 226 0 %100 70 M35 Z -391 -391 0 %100 71 M36 X 225 225 0 %100 72 M36 Z -39 -39 0 %100 73 M37 X 394 394 0 %100 74 M37 Z -683 -683 0 %100 75 M38 X 394 394 0 0 %100 76 M38 Z -683 -683 0 %100 77 M39 X 0 0 0 0 %100 78 M39 X 0 0 0 0 %100 79 M49 X 394 394 0 %100 79 M49 X 394 394 0 %100 79 M49 X 394 394 0 %100 80 M49 Z -683 -683 0 %100 81 M50 X 394 394 0 %100 82 M50 Z -39 39 0 %100 83 M51 X 0 0 0 0 0 %100 84 M51 X 0 0 0 0 %100 85 M60 X 334 394 0 %100 86 M61 X 32 -683 0 683 0 %100 87 M62 X 32 0 0 0 0 %100 88 M62 X -554 -554 0 %100 89 M63 X 319 319 0 %100 90 M63 Z -5554 -5554 0 %100 91 M64 X 32 32 0 %100 91 M65 X 32 32 0 %100 91 M63 X 319 319 0 %100 91 M64 X 32 32 0 %100 91 M63 X 319 319 0 %100 91 M64 X 32 32 0 %100 92 M64 X 32 32 0 %100 93 M63 X 319 319 0 %100 94 M65 Z -554 -5554 0 %100 95 M66 X 32 32 32 0 %100 96 M63 Z -5553 -5553 0 %100 97 M67 X 32 32 0 %100 98 M68 X 32 32 0 %100 99 M68 X 319 319 0 %100 99 M68 X 32 32 0 %100 99 M68 X 32 32 0 %100 90 M63 Z -5554 -5554 0 %100 91 M64 X 32 32 0 %100 91 M64 X 32 32 0 %100 92 M64 X 32 32 0 %100 93 M65 X 319 319 0 %100 94 M68 X 32 32 0 %100 95 M66 X 319 319 0 %100 96 M68 X 32 32 0 %100 97 M67 X 32 32 0 %100 98 M68 X 32 32 0 %100 99 M68 X 319 319 0 %100 90 M68 Z -5554 -5554 0 %100 90 M68 Z -5554 -5554 0 %100 90 M68 X 319 319 0 %100 90 M68 X 32 32 0 %100 90 M68 X 339 319 319 0 %100 90 M68 X 349 319 319 0 %100 90 M69	64	M32	Z	285	285	0	%100
66 M33 Z -564 -564 0 %100 67 M34 X 325 325 0 %100 68 M34 Z -564 -564 0 %100 69 M35 X 226 0 %100 70 M35 Z -391 -391 0 %100 71 M36 X 225 225 0 %100 72 M36 Z -391 -391 0 %100 73 M37 X 394 394 0 %100 74 M37 Z -683 -683 0 %100 75 M38 X 394 394 0 %100 76 M38 Z -683 -683 0 %100 77 M39 X 0 0 0 0 %100 78 M39 X 0 0 0 0 %100 79 M49 X 394 394 0 %100 79 M49 X 394 394 0 %100 79 M49 X 394 394 0 %100 80 M49 Z -683 -683 0 %100 81 M50 X 394 394 0 %100 82 M50 Z -683 -683 0 %100 83 M51 X 0 0 0 0 %100 84 M51 Z -683 -683 0 %100 85 M61 X 394 394 0 %100 86 M61 Z -554 -554 0 %100 87 M62 X 32 0 0 0 %100 88 M62 Z -554 -5554 0 %100 90 M63 Z -5553 -553 0 %100 91 M64 X 32 2 2 2 0 %100 91 M64 X 32 2 2 2 0 %100 91 M64 X 32 2 32 0 %100 91 M64 X 32 2 32 0 %100 91 M64 X 32 32 0 %100 91 M64 X 32 32 0 0 %100 91 M63 Z -5554 -5554 0 0 %100 91 M64 X 32 32 0 0 %100 91 M63 Z -5554 -5554 0 0 %100 91 M64 X 32 32 0 0 %100 92 M64 Z -5554 -5554 0 0 %100 93 M65 Z -5554 -5554 0 0 %100 94 M65 Z -5554 -5554 0 0 %100 95 M66 X 319 319 0 %100 97 M67 X 32 32 0 0 %100 99 M68 X 319 319 0 %100 90 M68 Z -5554 -5554 0 0 %100 91 M69 X 32 32 0 0 %100 91 M69 X 32 32 0 0 %100 91 M64 X 32 32 0 0 %100 91 M69 X 319 319 0 0 %100 91 M69 X 319 319 0 0 %100 91 M69 X 32 32 0 0 %100 91 M69 X 32 32 0 0 %100 91 M69 X 319 319 0 0 %100 91 M69 X 319 319 0 0 %100 91 M69 X 32 32 0 0 %100 91 M69 X 319 319 0 0 %100 91 M69 X 319 319 0 0 %100 91 M69 X 32 32 0 0 %100 91 M69 X 319 319 0 0 %100 91 M69 X 32 32 0 0 %100 91 M69 X 319 319 0 0 %100 91 M69 X 32 32 0 0 %100 91 M69 X 32 34 34 34 34 34 34 34 34 34 34 34 34 34	65	M33	X	.325	.325	0	%100
68 M34 Z564564 0 %100 69 M35 X 226 0.226 0 %100 70 M35 Z391391 0 %100 71 M36 X 225 0 %100 72 M36 Z3939 0 %100 73 M37 X394394 0 %100 74 M37 Z663683 0 %100 75 M38 X394394 0 %100 76 M38 Z683683 0 %100 77 M39 X 0 0 0 0 %100 78 M39 X 0 0 0 0 %100 79 M49 X394394 0 %100 79 M49 X394394 0 %100 79 M49 X394394 0 %100 81 M50 X394394 0 %100 82 M50 Z683683 0 %100 83 M51 X 0 0 0 0 0 %100 84 M51 Z 0 0 0 0 0 %100 85 M61 X3232 0 0 0 0 0 %100 86 M61 Z554554554 0 %100 88 M62 X3232 0 %100 88 M62 X3232 0 %100 90 M63 Z553553 0 %100 91 M64 X3232 0 0 %100 91 M64 X3232 0 0 %100 92 M64 X32 0 0 0 0 0 0 %100 93 M63 X319319 0 %100 94 M65 X32 0 0 %100 95 M66 X319319 0 %100 96 M63 Z554554 0 %100 97 M67 X3232 0 %100 98 M63 X319319 0 %100 99 M63 Z554554 0 %100 99 M63 Z555 0553 0 %100 99 M63 Z555 0553 0 %100 99 M63 X319319 0 %100 90 M63 Z555 0553 0 %100 91 M64 X3232 0 %100 92 M64 Z554554 0554 0 %100 99 M68 X319319 0 %100 99 M68 X319319 0 %100 90 M63 Z555 0553 0 %100 91 M64 X3232 0 %100 91 M64 X3232 0 %100 92 M64 Z5554 0554 0 %100 93 M65 X319319 0 %100 94 M65 X319319 0 %100 95 M66 X319319 0 %100 96 M68 Z554 0554 0554 0 %100 97 M67 X3232 0 %100 98 M68 X319319 0 %100 99 M68 X319319 0 %100 90 M68 Z5554 0554 0 %100 90 M68 Z5554 0554 0554 0 %100 90 M68 Z5554 0554 0554 0554 0554 0554 0554 0554 0554 0554 05554 05554 05554 0556 0	66	M33	Z	564	564	0	%100
68 M34 Z564564 0 %100 69 M35 X 226 0.226 0 %100 70 M35 Z391391 0 %100 71 M36 X 225 0 %100 72 M36 Z3939 0 %100 73 M37 X394394 0 %100 74 M37 Z663683 0 %100 75 M38 X394394 0 %100 76 M38 Z683683 0 %100 77 M39 X 0 0 0 0 %100 78 M39 X 0 0 0 0 %100 79 M49 X394394 0 %100 79 M49 X394394 0 %100 79 M49 X394394 0 %100 81 M50 X394394 0 %100 82 M50 Z683683 0 %100 83 M51 X 0 0 0 0 0 %100 84 M51 Z 0 0 0 0 0 %100 85 M61 X3232 0 0 0 0 0 %100 86 M61 Z554554554 0 %100 88 M62 X3232 0 %100 88 M62 X3232 0 %100 90 M63 Z553553 0 %100 91 M64 X3232 0 0 %100 91 M64 X3232 0 0 %100 92 M64 X32 0 0 0 0 0 0 %100 93 M63 X319319 0 %100 94 M65 X32 0 0 %100 95 M66 X319319 0 %100 96 M63 Z554554 0 %100 97 M67 X3232 0 %100 98 M63 X319319 0 %100 99 M63 Z554554 0 %100 99 M63 Z555 0553 0 %100 99 M63 Z555 0553 0 %100 99 M63 X319319 0 %100 90 M63 Z555 0553 0 %100 91 M64 X3232 0 %100 92 M64 Z554554 0554 0 %100 99 M68 X319319 0 %100 99 M68 X319319 0 %100 90 M63 Z555 0553 0 %100 91 M64 X3232 0 %100 91 M64 X3232 0 %100 92 M64 Z5554 0554 0 %100 93 M65 X319319 0 %100 94 M65 X319319 0 %100 95 M66 X319319 0 %100 96 M68 Z554 0554 0554 0 %100 97 M67 X3232 0 %100 98 M68 X319319 0 %100 99 M68 X319319 0 %100 90 M68 Z5554 0554 0 %100 90 M68 Z5554 0554 0554 0 %100 90 M68 Z5554 0554 0554 0554 0554 0554 0554 0554 0554 0554 05554 05554 05554 0556 0	67	M34	X	.325	.325	0	%100
69 M35 X .226 .226 0 %100 70 M35 Z .391 .391 0 %100 71 M36 X .225 .225 0 %100 72 M36 Z .394 .394 0 %100 73 M37 X .394 .394 0 %100 74 M37 Z .683 683 0 %100 75 M38 X .394 .394 0 %100 76 M38 Z .683 683 0 %100 76 M38 Z .683 683 0 %100 78 M39 Z 0 0 0 %100 78 M39 Z 0 0 0 %100 80 M49 X .394 .394 0 %100 81 M50 Z .683	68	M34	Z			0	%100
70 M35 Z -391 -391 0 %100 72 M36 X 225 0 %100 73 M37 X .394 .394 0 %100 74 M37 Z 683 683 0 %100 75 M38 X .394 .394 0 %100 75 M38 X .394 .394 0 %100 76 M38 X .394 .394 0 %100 77 M39 X 0 0 0 %100 78 M39 Z 0 0 0 %100 79 M49 X .334 .394 .0 %100 80 M49 Z 683 683 0 %100 81 M50 Z 683 683 0 %100 82 M50 Z 683		M35	X			0	
71 M36 X .225 .225 0 %100 72 M36 Z .394 .394 0 %100 74 M37 X .394 .394 0 %100 75 M38 X .394 .94 0 %100 76 M38 X .394 .94 0 %100 76 M38 Z -683 -683 0 %100 77 M39 X 0 0 0 %100 78 M39 Z 0 0 0 %100 79 M49 X .394 .394 0 %100 81 M50 X .394 .394 0 %100 81 M50 X .394 .394 0 %100 82 M50 Z -683 -683 0 %100 83 M51 X 0			Z				
72 M36 Z 39 394 0 %100 74 M37 Z 683 683 0 %100 75 M38 X .394 .394 0 %100 76 M38 Z 683 683 0 %100 77 M39 X 0 0 0 %100 78 M39 X 0 0 0 %100 79 M49 X .394 .394 0 %100 80 M49 Z 683 683 0 %100 81 M50 X .394 .394 0 %100 82 M50 Z 683 683 0 %100 82 M50 Z 683 683 0 %100 83 M51 X 0 0 0 %100 84 M51 Z 0<						0	
73 M37 X 394 .683 0 %100 74 M37 Z .683 683 0 %100 75 M38 X .394 .394 0 %100 76 M38 Z 683 683 0 %100 77 M39 X 0 0 0 %100 78 M39 Z 0 0 0 %100 80 M49 X .394 394 0 %100 81 M50 X .394 .394 0 %100 82 M50 Z 683 683 0 %100 83 M51 X .32<			Z				
74 M37 Z -683 -683 0 %100 76 M38 X .394 0 %100 76 M38 Z -683 -683 0 %100 77 M39 X 0 0 0 %100 78 M39 Z 0 0 0 %100 79 M49 X .394 .394 0 %100 80 M49 Z -683 -683 0 %100 81 M50 X .394 .394 0 %100 82 M50 Z -683 -683 0 %100 82 M50 Z -683 -683 0 %100 84 M51 Z 0 0 0 %100 85 M61 X .32 .32 0 %100 87 M62 X .32 .32						0	
75 M38 X 394 394 0 %100 76 M38 Z -683 -683 0 %100 77 M39 X 0 0 0 %100 78 M39 Z 0 0 0 %100 80 M49 X .394 .394 0 %100 80 M49 Z 683 683 0 %100 81 M50 X .394 .394 0 %100 82 M50 Z 683 683 0 %100 83 M51 X 0 0 0 %100 84 M51 Z 0 0 0 %100 85 M61 X .32 .32 0 %100 87 M62 X .32 .32 0 %100 88 M62 Z 554 <t< td=""><td></td><td></td><td>Z</td><td></td><td></td><td></td><td></td></t<>			Z				
76 M38 Z 683 683 0 %100 77 M39 X 0 0 0 %100 78 M39 Z 0 0 0 %100 79 M49 X .394 .394 0 %100 80 M49 Z 683 683 0 %100 81 M50 X .394 394 0 %100 81 M50 X .394 .394 0 %100 82 M50 Z 683 683 0 %100 83 M51 X 0 0 0 %100 84 M51 Z 0 0 0 %100 85 M61 X .32 .32 0 %100 87 M62 X .32 .32 0 %100 87 M62 X .32 <							
77 M39 X 0 0 0 %100 78 M39 Z 0 0 0 %100 79 M49 X .394 .394 0 %100 80 M49 Z 683 683 0 %100 81 M50 X .394 .394 0 %100 82 M50 Z 683 683 0 %100 83 M51 X 0 0 0 %100 84 M61 X .32 .32 0 %100 85 M61 X .32 .32 0 %100 86 M61 Z 554 554 0 %100 87 M62 X .32 .32 0 %100 88 M62 Z 554 554 0 %100 90 M63 X .319			7				
78 M39 Z 0 0 %100 79 M49 X 394 394 0 %100 80 M49 Z -683 -683 0 %100 81 M50 X .394 0 %100 82 M50 Z -683 -683 0 %100 83 M51 X 0 0 0 %100 84 M51 Z 0 0 0 %100 85 M61 X .32 .32 .32 .0 %100 86 M61 Z 554 554 0 %100 88 M62 Z 554 554 0 %100 89 M63 X .319 .319 0 %100 90 M63 Z 553 553 0 %100 91 M64 X .32 .32							
79 M49 X .394 .394 0 %100 80 M49 Z 683 683 0 %100 81 M50 X .394 .394 0 %100 82 M50 Z 683 683 0 %100 83 M51 X 0 0 0 %100 84 M51 Z 0 0 0 %100 85 M61 X .32 .32 0 %100 86 M61 Z .554 554 0 %100 87 M62 X .32 .32 0 %100 88 M62 Z 554 554 0 %100 89 M63 X .319 .319 0 %100 90 M63 Z 553 553 0 %100 91 M64 X .3			7				
80 M49 Z 683 683 0 %100 81 M50 X .394 .394 0 %100 82 M50 Z 683 0 %100 84 M51 X 0 0 0 %100 85 M61 X .32 .32 0 %100 86 M61 Z 554 554 0 %100 87 M62 X .32 .32 0 %100 88 M62 Z 554 554 0 %100 89 M63 X .319 .319 0 %100 90 M63 Z 553 553 0 %100 91 M64 X .32 .32 0 %100 92 M64 Z 554 554 0 %100 93 M65 X .32 <							
81 M50 X .394 .394 0 %100 82 M50 Z 683 683 0 %100 83 M51 X 0 0 0 %100 84 M51 Z 0 0 0 %100 85 M61 X .32 .32 0 %100 86 M61 Z 554 0 %100 87 M62 X .32 .32 0 %100 88 M62 Z 554 554 0 %100 89 M63 X .319 .319 0 %100 90 M63 Z 553 553 0 %100 91 M64 X .32 .32 0 %100 92 M64 Z 554 554 0 %100 93 M65 X .32 .32 </td <td></td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td>			7				
82 M50 Z 683 683 0 %100 84 M51 X 0 0 0 %100 85 M61 X .32 .32 0 %100 86 M61 Z 554 554 0 %100 87 M62 X .32 .32 0 %100 88 M62 Z 554 554 0 %100 89 M63 X .319 .319 0 %100 89 M63 X .319 .319 0 %100 90 M63 Z 553 553 0 %100 91 M64 X .32 .32 0 %100 92 M64 Z 554 554 0 %100 93 M65 X .32 .32 0 %100 94 M65 Z <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
83 M51 X 0 0 0 %100 84 M51 Z 0 0 0 %100 85 M61 X .32 .32 0 %100 86 M61 Z 554 554 0 %100 87 M62 X .32 .32 0 %100 89 M63 X .319 .319 0 %100 89 M63 X .319 .319 0 %100 90 M63 Z 553 553 0 %100 91 M64 X .32 .32 0 %100 92 M64 Z 554 554 0 %100 93 M65 X .32 .32 0 %100 94 M65 Z 554 554 0 %100 95 M66 X .319 <td></td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td>			7				
84 M51 Z 0 0 %100 85 M61 X .32 .32 0 %100 86 M61 Z .554 554 0 %100 87 M62 X .32 .32 0 %100 88 M62 Z 554 554 0 %100 89 M63 X .319 .319 0 %100 90 M63 Z 553 553 0 %100 91 M64 X .32 .32 0 %100 92 M64 Z 554 554 0 %100 93 M65 X .32 .32 0 %100 94 M65 Z 554 554 0 %100 95 M66 X .319 .319 0 %100 97 M67 X .32 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
85 M61 X .32 .32 0 %100 86 M61 Z .554 554 0 %100 87 M62 X .32 .32 0 %100 88 M62 Z 554 554 0 %100 89 M63 X .319 .319 0 %100 90 M63 Z 553 553 0 %100 91 M64 X .32 .32 0 %100 92 M64 Z 554 554 0 %100 93 M65 X .32 .32 0 %100 94 M65 Z 554 554 0 %100 95 M66 X .319 .319 0 %100 96 M66 Z 553 553 0 %100 98 M67 Z			7				
86 M61 Z 554 554 0 %100 87 M62 X .32 .32 0 %100 88 M62 Z 554 554 0 %100 89 M63 X .319 .319 0 %100 90 M63 Z 553 553 0 %100 91 M64 X .32 .32 0 %100 91 M64 X .32 .32 0 %100 92 M64 Z 554 554 0 %100 93 M65 X .32 .32 0 %100 94 M65 Z 554 554 0 %100 96 M66 X .319 .319 0 %100 97 M67 X .32 .32 0 %100 98 M67 Z							
87 M62 X .32 .32 0 %100 88 M62 Z 554 554 0 %100 89 M63 X .319 .319 0 %100 90 M63 Z 553 553 0 %100 91 M64 X .32 .32 0 %100 92 M64 Z 554 554 0 %100 93 M65 X .32 .32 0 %100 94 M65 Z 554 554 0 %100 95 M66 X .319 .319 0 %100 96 M66 Z 553 553 0 %100 98 M67 X .32 .32 0 %100 99 M68 X .32 .32 0 %100 100 M68 Z			7				
88 M62 Z 554 554 0 %100 89 M63 X .319 .319 0 %100 90 M63 Z 553 553 0 %100 91 M64 X .32 .32 0 %100 92 M64 Z 554 554 0 %100 93 M65 X .32 .32 0 %100 94 M65 Z 554 554 0 %100 95 M66 X .319 .319 0 %100 96 M66 Z 553 553 0 %100 97 M67 X .32 .32 0 %100 98 M67 Z 554 554 0 %100 99 M68 X .32 .32 0 %100 100 M68 Z							
89 M63 X .319 .319 0 %100 90 M63 Z 553 553 0 %100 91 M64 X .32 .32 0 %100 92 M64 Z 554 554 0 %100 93 M65 X .32 .32 0 %100 94 M65 Z 554 554 0 %100 95 M66 X .319 .319 0 %100 95 M66 Z 553 553 0 %100 97 M67 X .32 .32 0 %100 97 M67 X .32 .32 0 %100 98 M67 Z 554 554 0 %100 99 M68 X .32 .32 0 %100 101 M69 X			7				
90 M63 Z 553 553 0 %100 91 M64 X .32 .32 0 %100 92 M64 Z 554 554 0 %100 93 M65 X .32 .32 0 %100 94 M65 Z 554 554 0 %100 95 M66 X .319 .319 0 %100 96 M66 Z 553 553 0 %100 97 M67 X .32 .32 0 %100 98 M67 Z 554 554 0 %100 99 M68 X .32 .32 0 %100 100 M68 Z 554 554 0 %100 101 M69 X .319 .319 .319 0 %100 102 M69 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
91 M64 X .32 .32 0 %100 92 M64 Z 554 554 0 %100 93 M65 X .32 .32 0 %100 94 M65 Z 554 554 0 %100 95 M66 X .319 .319 0 %100 96 M66 Z 553 553 0 %100 97 M67 X .32 .32 0 %100 98 M67 Z 554 554 0 %100 99 M68 X .32 .32 0 %100 100 M68 Z 554 554 0 %100 101 M69 X .319 .319 0 %100 102 M69 Z 553 553 0 %100 103 M70 X							
92 M64 Z 554 554 0 %100 93 M65 X .32 .32 0 %100 94 M65 Z 554 554 0 %100 95 M66 X .319 0 %100 96 M66 Z 553 553 0 %100 97 M67 X .32 .32 0 %100 98 M67 Z 554 554 0 %100 99 M68 X .32 .32 0 %100 100 M68 Z 554 554 0 %100 101 M69 X .319 .319 0 %100 102 M69 Z 553 553 0 %100 103 M70 X .263 .263 0 %100 104 M70 Z 456<							
93 M65 X .32 .32 0 %100 94 M65 Z 554 554 0 %100 95 M66 X .319 .319 0 %100 96 M66 Z 553 553 0 %100 97 M67 X .32 .32 0 %100 98 M67 Z 554 554 0 %100 99 M68 X .32 .32 0 %100 100 M68 Z 554 554 0 %100 101 M69 X .319 .319 0 %100 102 M69 Z 553 553 0 %100 103 M70 X .263 .263 0 %100 104 M70 Z 456 456 0 %100 105 M71 X<			X 7				
94 M65 Z 554 554 0 %100 95 M66 X .319 .319 0 %100 96 M66 Z 553 553 0 %100 97 M67 X .32 .32 0 %100 98 M67 Z 554 554 0 %100 99 M68 X .32 .32 0 %100 100 M68 Z 554 554 0 %100 100 M68 Z 554 554 0 %100 101 M69 X .319 .319 0 %100 102 M69 Z 553 553 0 %100 103 M70 X .263 .263 0 %100 104 M70 Z 456 456 0 %100 105 M71 <							
95 M66 X .319 .319 0 %100 96 M66 Z 553 553 0 %100 97 M67 X .32 .32 0 %100 98 M67 Z 554 554 0 %100 99 M68 X .32 .32 0 %100 100 M68 Z 554 554 0 %100 101 M69 X .319 .319 0 %100 102 M69 Z 553 553 0 %100 103 M70 X .263 .263 0 %100 104 M70 Z 456 456 0 %100 105 M71 X .263 .263 0 %100 106 M71 Z 456 456 0 %100 107 M72 <t< td=""><td></td><td></td><td>X</td><td></td><td></td><td></td><td></td></t<>			X				
96 M66 Z 553 553 0 %100 97 M67 X .32 .32 0 %100 98 M67 Z 554 554 0 %100 99 M68 X .32 .32 0 %100 100 M68 Z 554 554 0 %100 101 M69 X .319 .319 0 %100 102 M69 Z 553 553 0 %100 103 M70 X .263 .263 0 %100 104 M70 Z 456 456 0 %100 105 M71 X .263 .263 0 %100 106 M71 Z 456 456 0 %100 107 M72 X .26 .26 0 %100 108 M72 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
97 M67 X .32 .32 0 %100 98 M67 Z 554 554 0 %100 99 M68 X .32 .32 0 %100 100 M68 Z 554 554 0 %100 101 M69 X .319 .319 0 %100 102 M69 Z 553 553 0 %100 103 M70 X .263 .263 0 %100 104 M70 Z 456 456 0 %100 105 M71 X .263 .263 0 %100 106 M71 X .263 .266 0 %100 107 M72 X .26 .26 0 %100 108 M72 Z 451 451 0 %100 109 M73			X				
98 M67 Z 554 554 0 %100 99 M68 X .32 .32 0 %100 100 M68 Z 554 554 0 %100 101 M69 X .319 .319 0 %100 102 M69 Z 553 553 0 %100 103 M70 X .263 .263 0 %100 104 M70 Z 456 456 0 %100 105 M71 X .263 .263 0 %100 106 M71 Z 456 456 0 %100 107 M72 X .26 .26 0 %100 108 M72 Z 451 451 0 %100 109 M73 X .263 .263 0 %100 110 M74							
99 M68 X .32 .32 0 %100 100 M68 Z 554 554 0 %100 101 M69 X .319 .319 0 %100 102 M69 Z 553 553 0 %100 103 M70 X .263 .263 0 %100 104 M70 Z 456 456 0 %100 105 M71 X .263 .263 0 %100 106 M71 Z 456 456 0 %100 107 M72 X .26 .26 0 %100 108 M72 Z 451 451 0 %100 109 M73 X .263 .263 0 %100 110 M73 Z 456 456 0 %100 111 M74			X				
100 M68 Z 554 554 0 %100 101 M69 X .319 .319 0 %100 102 M69 Z 553 553 0 %100 103 M70 X .263 .263 0 %100 104 M70 Z 456 456 0 %100 105 M71 X .263 .263 0 %100 106 M71 Z 456 456 0 %100 107 M72 X .26 .26 0 %100 108 M72 Z 451 451 0 %100 109 M73 X .263 .263 0 %100 110 M73 Z 456 456 0 %100 111 M74 X .263 .263 0 %100 113 M75							
101 M69 X .319 .319 0 %100 102 M69 Z 553 553 0 %100 103 M70 X .263 .263 0 %100 104 M70 Z 456 456 0 %100 105 M71 X .263 .263 0 %100 106 M71 Z 456 456 0 %100 107 M72 X .26 .26 0 %100 108 M72 Z 451 451 0 %100 109 M73 X .263 .263 0 %100 110 M73 Z 456 456 0 %100 111 M74 X .263 .263 0 %100 112 M74 Z 456 456 0 %100 113 M75 X .26 .26 0 %100							
102 M69 Z 553 553 0 %100 103 M70 X .263 .263 0 %100 104 M70 Z 456 456 0 %100 105 M71 X .263 .263 0 %100 106 M71 Z 456 456 0 %100 107 M72 X .26 .26 0 %100 108 M72 Z 451 451 0 %100 109 M73 X .263 .263 0 %100 110 M73 Z 456 456 0 %100 111 M74 X .263 .263 0 %100 112 M74 Z 456 456 0 %100 113 M75 X .26 .26 0 %100							
103 M70 X .263 .263 0 %100 104 M70 Z 456 456 0 %100 105 M71 X .263 .263 0 %100 106 M71 Z 456 456 0 %100 107 M72 X .26 .26 0 %100 108 M72 Z 451 451 0 %100 109 M73 X .263 .263 0 %100 110 M73 Z 456 456 0 %100 111 M74 X .263 .263 0 %100 112 M74 Z 456 456 0 %100 113 M75 X .26 .26 0 %100			X				
104 M70 Z 456 456 0 %100 105 M71 X .263 .263 0 %100 106 M71 Z 456 456 0 %100 107 M72 X .26 .26 0 %100 108 M72 Z 451 451 0 %100 109 M73 X .263 .263 0 %100 110 M73 Z 456 456 0 %100 111 M74 X .263 .263 0 %100 112 M74 Z 456 456 0 %100 113 M75 X .26 .26 0 %100			Z				
105 M71 X .263 .263 0 %100 106 M71 Z 456 456 0 %100 107 M72 X .26 .26 0 %100 108 M72 Z 451 451 0 %100 109 M73 X .263 .263 0 %100 110 M73 Z 456 456 0 %100 111 M74 X .263 .263 0 %100 112 M74 Z 456 456 0 %100 113 M75 X .26 .26 0 %100			X				
106 M71 Z 456 456 0 %100 107 M72 X .26 .26 0 %100 108 M72 Z 451 451 0 %100 109 M73 X .263 .263 0 %100 110 M73 Z 456 456 0 %100 111 M74 X .263 .263 0 %100 112 M74 Z 456 456 0 %100 113 M75 X .26 .26 0 %100			Z			0	
107 M72 X .26 .26 0 %100 108 M72 Z 451 451 0 %100 109 M73 X .263 .263 0 %100 110 M73 Z 456 456 0 %100 111 M74 X .263 .263 0 %100 112 M74 Z 456 456 0 %100 113 M75 X .26 .26 0 %100	105	M71	X	.263	.263	0	%100
108 M72 Z 451 451 0 %100 109 M73 X .263 .263 0 %100 110 M73 Z 456 456 0 %100 111 M74 X .263 .263 0 %100 112 M74 Z 456 456 0 %100 113 M75 X .26 .26 0 %100	106	M71		456	456	0	%100
108 M72 Z 451 451 0 %100 109 M73 X .263 .263 0 %100 110 M73 Z 456 456 0 %100 111 M74 X .263 .263 0 %100 112 M74 Z 456 456 0 %100 113 M75 X .26 .26 0 %100	107	M72	X	.26	.26	0	%100
110 M73 Z 456 456 0 %100 111 M74 X .263 .263 0 %100 112 M74 Z 456 456 0 %100 113 M75 X .26 .26 0 %100	108	M72	Z		451	0	%100
110 M73 Z 456 456 0 %100 111 M74 X .263 .263 0 %100 112 M74 Z 456 456 0 %100 113 M75 X .26 .26 0 %100	109	M73	X	.263	.263	0	%100
111 M74 X .263 .263 0 %100 112 M74 Z 456 456 0 %100 113 M75 X .26 .26 0 %100			Z				
112 M74 Z 456 0 %100 113 M75 X .26 .26 0 %100							
113 M75 X .26 .26 0 %100			Z				
114 M75 Z451451 0 %100			X				
			Z				

: NL

Company Designer Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 66: Structure Wm (30 Deg)) (Continued)

	Member Label	Direction		. End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
115	MP1A	X	.278	.278	0	%100
116	MP1A	Z	482	482	0	%100
117	MP2A	X	.278	.278	0	%100
118	MP2A	Z	482	482	0	%100
119	MP4A	X	.278	.278	0	%100
120	MP4A	Z	482	482	0	%100
121	MP5A	X	.278	.278	0	%100
122	MP5A	Z	482	482	0	%100
123	MPA	X	.278	.278	0	%100
124	MPA	Z	482	482	0	%100
125	MP6A	X	.278	.278	0	%100
126	MP6A	Z	482	482	Ŏ	%100 %100
127	MP1C	X	.278	.278	0	%100 %100
128	MP1C	Z	482	482	0	%100 %100
129	MP1B	X	.278	.278	0	%100 %100
130	MP1B	Z	482	482	0	%100 %100
131	MPC	X	.278	.278		%100 %100
132	MPC	Ž			0	
			482	482		%100
133	MP2C	X	.278	.278	0	%100
134	MP2C	Z	482	482	0	%100
135	MP5C	X	.278	.278	0	%100
136	MP5C	Z	482	482	0	%100
137	MP6C	X	.278	.278	0	%100
138	MP6C	Z	482	482	0	%100
139	MPB	X	.278	.278	0	%100
140	MPB	Z	482	482	0	%100
141	MPB2	X	.278	.278	0	%100
142	MPB2	Z	482	482	0	%100
143	MP5B	X	.278	.278	0	%100
144	MP5B	Z	482	482	0	%100
145	MP4C	X	.278	.278	0	%100
146	MP4C	Z	482	482	0	%100
147	MP3C	X	.278	.278	0	%100
148	MP3C	Z	482	482	0	%100
149	M146	X	.439	.439	0	%100
150	M146	Z	761	761	Ů.	%100
151	M147	X	.439	.439	0	%100
152	M147	Z	761	761	0	%100 %100
153	M154	X	0	0	0	%100
154	M154	Z	0	0	0	%100 %100
155	M155	X	0	0	0	%100 %100
156	M155	Z	0	0	0	%100 %100
157	M162	X	.439	.439	0	%100 %100
158	M162	Z	761	761	0	%100 %100
159	M163	X	.439	.439	0	%100 %100
160	M163	Z	761	761	0	%100 %100
161	MP3A	X	.278	.278	0	%100 %100
162	MP3A	Z	482	482	0	%100
163	MP4B	X	.278	.278	0	%100
164	MP4B	Z	482	482	0	%100
165	MP6B	X	.278	.278	0	%100
166	MP6B	Z	482	482	0	%100
167	MP3B	X	.278	.278	0	%100
168	MP3B	Z	482	482	0	%100
169	M163A	X	.278	.278	0	%100
170	M163A	Z	482	482	0	%100
171	M166	X	.044	.044	0	%100

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 66: Structure Wm (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
172	M166	Z	076	076	0	%100
173	M169A	X	.044	.044	0	%100
174	M169A	Z	076	076	0	%100
175	MP2B	X	.278	.278	0	%100
176	MP2B	Z	482	482	0	%100
177	M173A	X	.175	.175	0	%100
178	M173A	Z	304	304	0	%100
179	M176	X	.175	.175	0	%100
180	M176	Z	304	304	0	%100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	.254	.254	0	%100
2	M1	Z	146	146	0	%100
3	M2	X	.254	.254	0	%100
4	M2	Z	146	146	0	%100
5	M3	X	.489	.489	0	%100
6	M3	Z	282	282	0	%100
7	M4	X	.489	.489	0	%100
8	M4	Z	282	282	0	%100
9	M5	X	.485	.485	0	%100
10	M5	Z	28	28	0	%100
11	M6	X	.178	.178	0	%100
12	M6	Z	102	102	0	%100
13	M7	X	.178	.178	0	%100
14	M7	Z	102	102	0	%100
15	M8	X	.71	.71	0	%100
16	M8	Z	41	41	0	%100
17	M9	X	.71	.71	0	%100
18	M9	Z	41	41	0	%100
19	M10	X	0	0	0	%100
20	M10	Z	0	0	0	%100
21	M11	X	0	0	0	%100
22	M11	Z	0	0	0	%100
23	M12	X	.564	.564	0	%100
24	M12	Z	325	325	0	%100
25	M13	X	.564	.564	0	%100
26	M13	Z	325	325	0	%100
27	M14	X	.564	.564	0	%100
28	M14	Z	325	325	0	%100
29	M15	X	.308	.308	0	%100
30	M15	Z	178	178	0	%100
31	M16	X	.307	.307	0	%100
32	M16	Z	177	177	0	%100
33	M17	X	.564	.564	0	%100
34	M17	Z	325	325	0	%100
35	M18	X	1.014	1.014	0	%100
36	M18	Z	586	586	0	%100
37	M19	X	1.014	1.014	0	%100
38	M19	Z	586	586	0	%100
39	M20	X	.178	.178	0	%100
40	M20	Z	102	102	0	%100
41	M21	X	.178	.178	0	%100
42	M21	Z	102	102	0	%100
43	M22	X	.854	.854	0	%100
44	M22	Z	493	493	0	%100

: Maser Consulting : NL : 21781092A Company Designer

Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 67: Structure Wm (60 Deg)) (Continued)

	Member Label	Direction		. End Magnitude[lb/ft,F.	Start Location[ft,%]	End Location[ft,%]
45	M23	X	.854	.854	0	%100
46	M23	Z	493	493	0	%100
47	M24	X	.564	.564	0	%100
48	M24	Z	325	325	0	%100
49	M25	X	.564	.564	0	%100
50	M25	Z	325	325	0	%100
51	M26	X	.555	.555	0	%100
52	M26	Z	321	321	0	%100
53	M27	X	.555	.555	0	%100
54	M27	Z	321	321	0	%100
55	M28	X	.564	.564	0	%100
56	M28	Z	325	325	0	%100
57	M29	X	.254	.254	0	%100
58	M29	Z	146	146	0	%100
59	M30	X	.254	.254	0	%100
60	M30	Z	146	146	0	%100
61	M31	X	.854	.854	0	%100
62	M31	Z	493	493	0	%100
63	M32	X	.854	.854	0	%100
64	M32	Z	493	493	0	%100
65	M33	X	.564	.564	0	%100
66	M33	Z	325	325	0	%100
67	M34	X	.564	.564	0	%100
68	M34	Z	325	325	0	%100
69	M35	X	.555	.555	0	%100
70	M35	Z	321	321	0	%100
71	M36	X	.555	.555	Ö	%100
72	M36	Z	321	321	Ö	%100
73	M37	X	.91	.91	0	%100
74	M37	Z	525	525	0	%100 %100
75	M38	X	.228	.228	0	%100
76	M38	Z	131	131	Ö	%100
77	M39	X	.228	.228	0	%100
78	M39	Z	131	131	0	%100
79	M49	X	.91	.91	0	%100
80	M49	Z	525	525	0	%100
81	M50	X	.228	.228	0	%100
82	M50	Z	131	131	0	%100 %100
83	M51	X	.228	.228	0	%100
84	M51	Z	131	131	0	%100 %100
85	M61	X	.489	.489	0	%100 %100
86	M61	Z	282	282	0	%100 %100
87	M62	X	.489	.489	0	%100 %100
88	M62	Z	282	282	0	%100 %100
89	M63		.485	.485	0	%100 %100
90	M63	X Z	28	28	0	%100 %100
91	M64	X	.586	.586	0	%100 %100
92	M64	Z	338	338	0	%100 %100
93	M65	X	.586	.586	0	%100 %100
94	M65	Z	338	338	0	%100 %100
95	M66	X	.587	.587	0	%100 %100
96	M66	Z			0	%100 %100
96	M67	Z V	339	339		
		X Z	.586	.586	0	%100 %100
98	M67	Z	338	338	0	%100 %100
99	M68	X Z	.586	.586	0	%100 %100
100	M68		338	338	0	%100 %100
101	M69	X	.587	.587	0	%100

: NL

Company Designer Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 67: Structure Wm (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
102	M69	Z	339	339	0	%100
103	M70	X	.489	.489	0	%100
104	M70	Z	282	282	0	%100
105	M71	X	.489	.489	0	%100
106	M71	Z	282	282	0	%100
107	M72	X	.485	.485	0	%100
108	M72	Z	28	28	0	%100
109	M73	X	.489	.489	0	%100
110	M73	Z	282	282	0	%100
111	M74	X	.489	.489	0	%100
112	M74	Z	282	282	0	%100
113	M75	X	.485	.485	0	%100
114	M75	Z	28	28	0	%100
115	MP1A	X	.482	.482	0	%100
116	MP1A	Z	278	278	0	%100
117	MP2A	X	.482	.482	0	%100
118	MP2A	Z	278	278	0	%100
119	MP4A	X	.482	.482	0	%100
120	MP4A	Z	278	278	0	%100
121	MP5A	X	.482	.482	0	%100 %100
122	MP5A	Z	278	278	Ö	%100 %100
123	MPA	X	.482	.482	0	%100 %100
124	MPA	Z	278	278	0	%100 %100
125	MP6A	X	.482	.482	0	%100 %100
126	MP6A	Z	278	278	0	%100 %100
127	MP1C	X	.482	.482	0	%100 %100
128	MP1C	Ž	278	278	0	%100 %100
129	MP1B	X	.482	.482		
		Z			0	%100 %100
130	MP1B		278	278	0	%100 %400
131	MPC	X	.482	.482	0	%100
132	MPC	Z	278	278	0	%100 %100
133	MP2C	X	.482	.482	0	%100
134	MP2C	Z	278	278	0	%100
135	MP5C	X	.482	.482	0	%100
136	MP5C	Z	278	278	0	%100
137	MP6C	X	.482	.482	0	%100
138	MP6C	Z	278	278	0	%100
139	MPB	X	.482	.482	0	%100
140	MPB	Z	278	278	0	%100
141	MPB2	X	.482	.482	0	%100
142	MPB2	Z	278	278	0	%100
143	MP5B	X	.482	.482	0	%100
144	MP5B	Z	278	278	0	%100
145	MP4C	X	.482	.482	0	%100
146	MP4C	Z	278	278	0	%100
147	MP3C	X	.482	.482	0	%100
148	MP3C	Z	278	278	0	%100
149	M146	X	1.014	1.014	0	%100
150	M146	Z	586	586	0	%100
151	M147	X	1.014	1.014	0	%100
152	M147	Z	586	586	0	%100
153	M154	X	.254	.254	0	%100
154	M154	Z	146	146	0	%100
155	M155	X	.254	.254	0	%100
156	M155	Z	146	146	0	%100
157	M162	X	.254	.254	0	%100 %100
158	M162	Z	146	146	0	%100 %100
	11110=	_	1110	1110	•	,0100

Company Designer : Maser Consulting

: NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 67: Structure Wm (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
159	M163	X	.254	.254	0	%100
160	M163	Z	146	146	0	%100
161	MP3A	X	.482	.482	0	%100
162	MP3A	Z	278	278	0	%100
163	MP4B	X	.482	.482	0	%100
164	MP4B	Z	278	278	0	%100
165	MP6B	X	.482	.482	0	%100
166	MP6B	Z	278	278	0	%100
167	MP3B	X	.482	.482	0	%100
168	MP3B	Z	278	278	0	%100
169	M163A	X	.482	.482	0	%100
170	M163A	Z	278	278	0	%100
171	M166	X	.228	.228	0	%100
172	M166	Z	132	132	0	%100
173	M169A	X	.228	.228	0	%100
174	M169A	Z	132	132	0	%100
175	MP2B	X	.482	.482	0	%100
176	MP2B	Z	278	278	0	%100
177	M173A	X	.228	.228	0	%100
178	M173A	Z	132	132	0	%100
179	M176	X	.228	.228	0	%100
180	M176	Z	132	132	0	%100

Member Distributed Loads (BLC 68: Structure Wm (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M3	X	.527	.527	0	%100
6	M3	Z	0	0	0	%100
7	M4	X	.527	.527	0	%100
8	M4	Z	0	0	0	%100
9	M5	X	.521	.521	0	%100
10	M5	Z	0	0	0	%100
11	M6	X	.615	.615	0	%100
12	M6	Z	0	0	0	%100
13	M7	X	.615	.615	0	%100
14	M7	Z	0	0	0	%100
15	M8	X	.615	.615	0	%100
16	M8	Z	0	0	0	%100
17	M9	X	.615	.615	0	%100
18	M9	Z	0	0	0	%100
19	M10	X	.329	.329	0	%100
20	M10	Z	0	0	0	%100
21	M11	X	.329	.329	0	%100
22	M11	Z	0	0	0	%100
23	M12	X	.651	.651	0	%100
24	M12	Z	0	0	0	%100
25	M13	X	.651	.651	0	%100
26	M13	Z	0	0	0	%100
27	M14	X	.651	.651	0	%100
28	M14	Z	0	0	0	%100
29	M15	X	.451	.451	0	%100
30	M15	Z	0	0	0	%100
31	M16	X	.45	.45	0	%100

: NL

: 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 68: Structure Wm (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
32	M16	Z	0	0	0	%100
33	M17	X	.651	.651	0	%100
34	M17	Z	0	0	0	%100
35	M18	X	.878	.878	0	%100
36	M18	Z	0	0	0	%100
37	M19	X	.878	.878	0	%100
38	M19	Z	0	0	0	%100
39	M20	X	0	0	0	%100
40	M20	Z	0	0	0	%100
41	M21	X	0	0	0	%100
42	M21	Z	Ö	Ö	Ö	%100
43	M22	X	.329	.329	0	%100 %100
44	M22	Z	0	0	Ö	%100
45	M23	X	.329	.329	0	%100 %100
46	M23	Z	.529	.529	0	%100 %100
47	M24	X	.651	.651	0	%100 %100
48	M24	Z	.031	0	0	%100 %100
49	M25		.651	.651		%100
		X Z			0	
50	M25		0	0		%100
51	M26	X	.451	.451	0	%100
52	M26	Z	0	0	0	%100
53	M27	X	.45	.45	0	%100
54	M27	Z	0	0	0	%100
55	M28	X	.651	.651	0	%100
56	M28	Z	0	0	0	%100
57	M29	X	.878	.878	0	%100
58	M29	Z	0	0	0	%100
59	M30	X	.878	.878	0	%100
60	M30	Z	0	0	0	%100
61	M31	X	1.314	1.314	0	%100
62	M31	Z	0	0	0	%100
63	M32	X	1.314	1.314	0	%100
64	M32	Z	0	0	0	%100
65	M33	X	.651	.651	0	%100
66	M33	Z	0	0	0	%100
67	M34	X	.651	.651	0	%100
68	M34	Z	0	0	0	%100
69	M35	X	.736	.736	0	%100
70	M35	Z	0	0	0	%100
71	M36	X	.737	.737	0	%100
72	M36	Z	0	0	0	%100 %100
73	M37	X	.788	.788	0	%100 %100
74	M37	Z	0	0	0	%100 %100
75	M38	X	0	0	0	%100
76	M38	Z	0	0	0	%100 %100
77	M39	X	.788	.788	0	%100 %100
78	M39	Z	0	0	0	%100 %100
79	M49	X	.788	.788	0	%100 %100
80	M49	Z	0	0	0	%100
81	M50	X	0	0	0	%100
82	M50	Z	0	0	0	%100
83	M51		.788	.788		%100 %100
		X Z			0	
84	M51		0	0	0	%100 %100
85	M61	X	.527	.527	0	%100
86	M61	Z	0	0	0	%100
87	M62	X	.527	.527	0	%100
88	M62	Z	0	0	0	%100

: Maser Consulting : NL : 21781092A

Company Designer

Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 68: Structure Wm (90 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
89	M63	X	.521	.521	0	%100
90	M63	Z	0	0	0	%100
91	M64	X	.639	.639	0	%100
92	M64	Z	0	0	0	%100
93	M65	X	.639	.639	0	%100
94	M65	Z	0	0	0	%100
95	M66	X	.639	.639	0	%100
96	M66	Z	0	0	0	%100
97	M67	X	.639	.639	0	%100
98	M67	Z	0	0	0	%100
99	M68	X	.639	.639	0	%100
100	M68	Z	0	0	0	%100
101	M69	X	.639	.639	0	%100
102	M69	Z	0	0	0	%100
103	M70	X	.639	.639	0	%100
104	M70	Z	0	0	0	%100
105	M71	X	.639	.639	0	%100
106	M71	Z	0	0	0	%100
107	M72	X	.639	.639	0	%100
108	M72	Z	0	0	0	%100
109	M73	X	.639	.639	0	%100
110	M73	Z	0	0	0	%100
111	M74	X	.639	.639	0	%100
112	M74	Z	0	0	0	%100
113	M75	X	.639	.639	Ö	%100
114	M75	Z	0	0	Ö	%100
115	MP1A	X	.556	.556	0	%100 %100
116	MP1A	Z	0	0	Ö	%100 %100
117	MP2A	X	.556	.556	0	%100
118	MP2A	Z	0	0	Ö	%100 %100
119	MP4A	X	.556	.556	0	%100 %100
120	MP4A	Z	0	0	Ö	%100 %100
121	MP5A	X	.556	.556	0	%100 %100
122	MP5A	Z	0	0	0	%100 %100
123	MPA	X	.556	.556	0	%100 %100
124	MPA	Z	0	0	0	%100 %100
125	MP6A	X	.556	.556	0	%100 %100
126	MP6A	Z	0	0	0	%100 %100
127	MP1C		.556	.556	0	%100 %100
128	MP1C	X Z	0	0	0	%100 %100
129	MP1B	X	.556	.556	0	%100 %100
130	MP1B	Z	.550	0		%100 %100
131	MPC		.556	.556	0	%100 %100
131	MPC MPC	X Z	.556	.556	0	%100 %100
			-	-		
133	MP2C MP2C	X Z	.556	.556	0	%100
134			0	0	0	%100
135	MP5C	X	.556	.556	0	%100
136	MP5C	Z	0	0	0	%100
137	MP6C	X	.556	.556	0	%100
138	MP6C	Z	0	0	0	%100
139	MPB	X	.556	.556	0	%100
140	MPB	Z	0	0	0	%100
141	MPB2	X	.556	.556	0	%100
142	MPB2	Z	0	0	0	%100
143	MP5B	X Z	.556	.556	0	%100
144	MP5B		0	0	0	%100
145	MP4C	X	.556	.556	0	%100

: Maser Consulting Company

Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 68: Structure Wm (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
146	MP4C	Z	0	0	0	%100
147	MP3C	X	.556	.556	0	%100
148	MP3C	Z	0	0	0	%100
149	M146	X	.878	.878	0	%100
150	M146	Z	0	0	0	%100
151	M147	X	.878	.878	0	%100
152	M147	Z	0	0	0	%100
153	M154	Χ	.878	.878	0	%100
154	M154	Z	0	0	0	%100
155	M155	X	.878	.878	0	%100
156	M155	Z	0	0	0	%100
157	M162	X	0	0	0	%100
158	M162	Z	0	0	0	%100
159	M163	X	0	0	0	%100
160	M163	Z	0	0	0	%100
161	MP3A	X	.556	.556	0	%100
162	MP3A	Z	0	0	0	%100
163	MP4B	X	.556	.556	0	%100
164	MP4B	Z	0	0	0	%100
165	MP6B	X	.556	.556	0	%100
166	MP6B	Z	0	0	0	%100
167	MP3B	X	.556	.556	0	%100
168	MP3B	Z	0	0	0	%100
169	M163A	X	.556	.556	0	%100
170	M163A	Z	0	0	0	%100
171	M166	X	.351	.351	0	%100
172	M166	Z	0	0	0	%100
173	M169A	X	.351	.351	0	%100
174	M169A	Z	0	0	0	%100
175	MP2B	X	.556	.556	0	%100
176	MP2B	Z	0	0	0	%100
177	M173A	Χ	.088	.088	0	%100
178	M173A	Z	0	0	0	%100
179	M176	Χ	.088	.088	0	%100
180	M176	Z	0	0	0	%100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	X	.254	.254	0	%100
2	M 1	Z	.146	.146	0	%100
3	M2	X	.254	.254	0	%100
4	M2	Z	.146	.146	0	%100
5	M3	X	.489	.489	0	%100
6	M3	Z	.282	.282	0	%100
7	M4	X	.489	.489	0	%100
8	M4	Z	.282	.282	0	%100
9	M5	X	.485	.485	0	%100
10	M5	Z	.28	.28	0	%100
11	M6	X	.71	.71	0	%100
12	M6	Z	.41	.41	0	%100
13	M7	X	.71	.71	0	%100
14	M7	Z	.41	.41	0	%100
15	M8	X	.178	.178	0	%100
16	M8	Z	.102	.102	0	%100
17	M9	X	.178	.178	0	%100
18	M9	Z	.102	.102	0	%100

: NL

21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 69: Structure Wm (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
19	M10	X	.854	.854	0	%100
20	M10	Z	.493	.493	0	%100
21	M11	X	.854	.854	0	%100
22	M11	Z	.493	.493	0	%100
23	M12	X	.564	.564	0	%100
24	M12	Z	.325	.325	0	%100
25	M13	X	.564	.564	0	%100
26	M13	Z	.325	.325	0	%100
27	M14	X	.564	.564	0	%100
28	M14	Ž	.325	.325	Ö	%100
29	M15	X	.555	.555	0	%100 %100
30	M15	Z	.321	.321	Ö	%100 %100
31	M16	X	.555	.555	0	%100 %100
32	M16	Ž	.321	.321	0	%100 %100
33	M17	X	.564	.564	0	%100 %100
34	M17	Ž	.325	.325	0	%100 %100
35	M18	X Z	.254	.254	0	%100
36	M18		.146	.146	0	%100
37	M19	X	.254	.254	0	%100
38	M19	Z	.146	.146	0	%100
39	M20	X	.178	.178	0	%100
40	M20	Z	.102	.102	0	%100
41	M21	X	.178	.178	0	%100
42	M21	Z	.102	.102	0	%100
43	M22	X	0	0	0	%100
44	M22	Z	0	0	0	%100
45	M23	X	0	0	0	%100
46	M23	Z	0	0	0	%100
47	M24	X	.564	.564	0	%100
48	M24	Z	.325	.325	0	%100
49	M25	X	.564	.564	0	%100
50	M25	Z	.325	.325	0	%100
51	M26	X	.308	.308	0	%100
52	M26	Z	.178	.178	0	%100
53	M27	X	.307	.307	0	%100
54	M27	Z	.177	.177	0	%100
55	M28	X	.564	.564	0	%100
56	M28	Z	.325	.325	0	%100
57	M29	X	1.014	1.014	0	%100 %100
58	M29	Z	.586	.586	0	%100 %100
59	M30	X	1.014	1.014	0	%100
60	M30	Z	.586	.586	0	%100 %100
61	M31	X	.854	.854	0	%100 %100
62	M31	Z	.493	.493	0	%100 %100
63	M32	X	.854	.854	0	%100 %100
64	M32	Z	.493	.493	0	%100 %100
65			.564			
	M33	X Z		.564	0	%100 %100
66	M33		.325	.325	0	%100 %100
67	M34	X	.564	.564	0	%100 %100
68	M34	Z	.325	.325	0	%100 %100
69	M35	X	.555	.555	0	%100
70	M35	Z	.321	.321	0	%100
71	M36	X	.555	.555	0	%100
72	M36	Z	.321	.321	0	%100
73	<u>M37</u>	X	.228	.228	0	%100
74	M37	Z	.131	.131	0	%100
75	M38	X	.228	.228	0	%100

: NL

: 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 69: Structure Wm (120 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
76	M38	Z	.131	.131	0	%100
77	M39	X	.91	.91	0	%100
78	M39	Z	.525	.525	0	%100
79	M49	X	.228	.228	0	%100
80	M49	Z	.131	.131	0	%100
81	M50	X	.228	.228	0	%100
82	M50	Z	.131	.131	0	%100
83	M51	X	.91	.91	0	%100
84	M51	Z	.525	.525	0	%100
85	M61	X	.489	.489	0	%100
86	M61	Z	.282	.282	0	%100
87	M62	X	.489	.489	0	%100
88	M62	Z	.282	.282	0	%100
89	M63	X	.485	.485	0	%100
90	M63	Z	.28	.28	0	%100
91	M64	Χ	.489	.489	0	%100
92	M64	Z	.282	.282	0	%100
93	M65	X	.489	.489	0	%100
94	M65	Z	.282	.282	0	%100
95	M66	X	.485	.485	0	%100
96	M66	Z	.28	.28	0	%100
97	M67	X	.489	.489	0	%100
98	M67	Z	.282	.282	0	%100
99	M68	X	.489	.489	0	%100
100	M68	Ž	.282	.282	0	%100
101	M69	X	.485	.485	0	%100
102	M69	Z	.28	.28	0	%100 %100
103	M70	X	.586	.586	0	%100 %100
104	M70	Z	.338	.338	Ö	%100 %100
105	M71	X	.586	.586	0	%100 %100
106	M71	Z	.338	.338	0	%100 %100
107	M72	X	.587	.587	0	%100 %100
108	M72	Z	.339	.339	0	%100 %100
109	M73	X	.586	.586	0	%100 %100
110	M73	Z	.338	.338	0	%100 %100
111	M74	X	.586	.586	0	%100 %100
112	M74	Z	.338	.338	0	%100 %100
113	M75	X	.587	.587	0	%100 %100
114	M75	Ž	.339	.339	0	%100 %100
115	MP1A	X	.482	.482	0	%100 %100
116 117	MP1A MP2A	X X	.278 .482	.278 .482	0	%100 %100
117	MP2A MP2A	Z	.278	.278	0	%100 %100
119	MP4A	X	.482			%100 %100
120		Z		.482	0	
120	MP4A MP5A		.278 .482	.278 .482	0	%100 %100
		X			0	%100
122	MP5A	Z	.278	.278	0	%100
123	MPA	X	.482	.482	0	%100
124	MPA	Z	.278	.278	0	%100 %100
125	MP6A	X	.482	.482	0	%100
126	MP6A	Z	.278	.278	0	%100
127	MP1C	X	.482	.482	0	%100
128	MP1C	Z	.278	.278	0	%100
129	MP1B	X	.482	.482	0	%100
130	MP1B	Z	.278	.278	0	%100
131	MPC	X	.482	.482	0	%100
132	MPC	Z	.278	.278	0	%100

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 69: Structure Wm (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
133	MP2C	X	.482	.482	0	%100
134	MP2C	Z	.278	.278	0	%100
135	MP5C	X	.482	.482	0	%100
136	MP5C	Z	.278	.278	0	%100
137	MP6C	X	.482	.482	0	%100
138	MP6C	Z	.278	.278	0	%100
139	MPB	X	.482	.482	0	%100
140	MPB	Z	.278	.278	0	%100
141	MPB2	X	.482	.482	0	%100
142	MPB2	Z	.278	.278	0	%100
143	MP5B	X	.482	.482	0	%100
144	MP5B	Z	.278	.278	0	%100
145	MP4C	X	.482	.482	0	%100
146	MP4C	Z	.278	.278	0	%100
147	MP3C	X	.482	.482	0	%100
148	MP3C	Z	.278	.278	0	%100
149	M146	X	.254	.254	0	%100
150	M146	Z	.146	.146	0	%100
151	M147	X	.254	.254	0	%100
152	M147	Z	.146	.146	0	%100
153	M154	X	1.014	1.014	0	%100
154	M154	Z	.586	.586	0	%100
155	M155	X	1.014	1.014	0	%100
156	M155	Z	.586	.586	0	%100
157	M162	X	.254	.254	0	%100
158	M162	Z	.146	.146	0	%100
159	M163	X	.254	.254	0	%100
160	M163	Z	.146	.146	0	%100
161	MP3A	X	.482	.482	0	%100
162	MP3A	Z	.278	.278	0	%100
163	MP4B	X	.482	.482	0	%100
164	MP4B	Z	.278	.278	0	%100
165	MP6B	X	.482	.482	0	%100
166	MP6B	Z	.278	.278	0	%100
167	MP3B	X	.482	.482	0	%100
168	MP3B	Z	.278	.278	0	%100
169	M163A	X	.482	.482	0	%100
170	M163A	Z	.278	.278	0	%100
171	M166	X	.228	.228	0	%100
172	M166	Z	.132	.132	0	%100
173	M169A	X	.228	.228	0	%100
174	M169A	Z	.132	.132	0	%100
175	MP2B	X	.482	.482	0	%100
176	MP2B	Z	.278	.278	0	%100
177	M173A	X	0	0	0	%100
178	M173A	Z	0	0	0	%100
179	M176	X	0	0	0	%100
180	M176	Z	0	0	0	%100

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	.439	.439	0	%100
2	M1	Z	.761	.761	0	%100
3	M2	X	.439	.439	0	%100
4	M2	Z	.761	.761	0	%100
5	M3	X	.32	.32	0	%100

: NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
6	M3	Z	.554	.554	0	%100
7	M4	X	.32	.32	0	%100
8	M4	Z	.554	.554	0	%100
9	M5	X	.319	.319	0	%100
10	M5	Z	.553	.553	0	%100
11	M6	X	.307	.307	0	%100
12	M6	Z	.533	.533	0	%100
13	M7	X	.307	.307	0	%100
14	M7	Z	.533	.533	0	%100
15	M8	X	0	0	0	%100
16	M8	Z	0	0	0	%100
17	M9	X	0	0	0	%100
18	M9	Z	0	0	0	%100
19	M10	X	.657	.657	0	%100
20	M10	Z	1.138	1.138	Ö	%100
21	M11	X	.657	.657	0	%100
22	M11	Z	1.138	1.138	0	%100 %100
23	M12	X	.325	.325	0	%100 %100
24	M12	Z	.564	.564	Ö	%100 %100
25	M13	X	.325	.325	0	%100 %100
26	M13	Z	.564	.564	0	%100 %100
27	M14	X	.325	.325	0	%100 %100
28	M14	Z	.564	.564	0	%100 %100
29	M15	X	.368	.368	0	%100 %100
30	M15	Z	.638	.638	0	%100 %100
31					0	
	M16	X Z	.369	.369	0	%100 %100
32	M16		.638	.638		%100 %400
33	M17	X	.325	.325	0	%100
34	M17	Z	.564	.564	0	%100
35	M18	X	0	0	0	%100
36	M18	Z	0	0	0	%100
37	M19	X	0	0	0	%100
38	M19	Z	0	0	0	%100
39	M20	X	.307	.307	0	%100
40	M20	Z	.533	.533	0	%100
41	M21	X	.307	.307	0	%100
42	M21	Z	.533	.533	0	%100
43	M22	X	.164	.164	0	%100
44	M22	Z	.285	.285	0	%100
45	M23	X	.164	.164	0	%100
46	M23	Z	.285	.285	0	%100
47	M24	X	.325	.325	0	%100
48	M24	Z	.564	.564	0	%100
49	M25	X	.325	.325	0	%100
50	M25	Z	.564	.564	0	%100
51	M26	X	.226	.226	0	%100
52	M26	Z	.391	.391	0	%100
53	M27	X	.225	.225	0	%100
54	M27	Z	.39	.39	0	%100
55	M28	X	.325	.325	0	%100
56	M28	Z	.564	.564	0	%100
57	M29	X	.439	.439	0	%100
58	M29	Z	.761	.761	0	%100
59	M30	X	.439	.439	0	%100
60	M30	Z	.761	.761	0	%100
61	M31	X	.164	.164	0	%100
62	M31	Z	.285	.285	0	%100

Job Number

Model Name : Mount Analysis (Rev. 3)

Company Designer Nov 23, 2021 : NL 5:47 PM : 21781092A Checked By: DX

Member Distributed Loads (BLC 70: Structure Wm (150 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
63	M32	X	.164	.164	0	%100
64	M32	Z	.285	.285	0	%100
65	M33	X	.325	.325	0	%100
66	M33	Z	.564	.564	0	%100
67	M34	X	.325	.325	0	%100
68	M34	Z	.564	.564	0	%100
69	M35	X	.226	.226	0	%100
70	M35	Z	.391	.391	0	%100
71	M36	X	.225	.225	0	%100
72	M36	Z	.39	.39	0	%100
73	M37	X	0	0	0	%100
74	M37	Z	0	0	0	%100
75	M38	X	.394	.394	0	%100
76	M38	Z	.683	.683	0	%100
77	M39	X	.394	.394	0	%100
78	M39	Z	.683	.683	0	%100
79	M49	X	0	0	0	%100
80	M49	Ž	0	0	0	%100 %100
81	M50	X	.394	.394	0	%100 %100
82	M50	Z	.683	.683	0	%100 %100
83	M51		.394		0	%100 %100
84	M51	X Z		.394		%100 %100
85			.683	.683	0	
	M61	X Z	.32	.32	0	%100
86	M61		.554	.554	0	%100
87	M62	X	.32	.32	0	%100
88	M62	Z	.554	.554	0	%100
89	M63	X	.319	.319	0	%100
90	M63	Z	.553	.553	0	%100
91	M64	X	.263	.263	0	%100
92	M64	Z	.456	.456	0	%100
93	M65	X	.263	.263	0	%100
94	M65	Z	.456	.456	0	%100
95	M66	X	.26	.26	0	%100
96	M66	Z	.451	.451	0	%100
97	M67	X	.263	.263	0	%100
98	M67	Z	.456	.456	0	%100
99	M68	X	.263	.263	0	%100
100	M68	Z	.456	.456	0	%100
101	M69	X Z	.26	.26	0	%100
102	M69	Z	.451	.451	0	%100
103	M70	X	.32	.32	0	%100
104	M70	Z	.554	.554	0	%100
105	M71	X	.32	.32	0	%100
106	M71	Z	.554	.554	0	%100
107	M72	X	.319	.319	Ō	%100
108	M72	Z	.553	.553	0	%100 %100
109	M73	X	.32	.32	0	%100 %100
110	M73	Z	.554	.554	0	%100
111	M74	X	.32	.32	0	%100
112	M74	Ž	.554	.554	Ö	%100
113	M75	X	.319	.319	0	%100 %100
114	M75	Z	.553	.553	0	%100 %100
115	MP1A	X	.278	.278		%100 %100
		Z			0	
116	MP1A		.482	.482		%100 %100
117	MP2A	X	.278	.278	0	%100
118	MP2A	Z	.482	.482	0	%100
119	MP4A	X	.278	.278	0	%100

: NL

: 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
120	MP4A	Z	.482	.482	0	%100
121	MP5A	X	.278	.278	0	%100
122	MP5A	Z	.482	.482	0	%100
123	MPA	X	.278	.278	0	%100
124	MPA	Z	.482	.482	0	%100
125	MP6A	X	.278	.278	0	%100
126	MP6A	Z	.482	.482	0	%100
127	MP1C	X	.278	.278	0	%100
128	MP1C	Z	.482	.482	0	%100
129	MP1B	X	.278	.278	0	%100
130	MP1B	Z	.482	.482	0	%100
131	MPC	X	.278	.278	0	%100
132	MPC	Z	.482	.482	0	%100
133	MP2C	X	.278	.278	0	%100
134	MP2C	Z	.482	.482	0	%100
135	MP5C	X	.278	.278	0	%100
136	MP5C	Z	.482	.482	0	%100
137	MP6C	X	.278	.278	0	%100
138	MP6C	Z	.482	.482	0	%100
139	MPB	X	.278	.278	0	%100
140	MPB	Z	.482	.482	0	%100
141	MPB2	X	.278	.278	0	%100
142	MPB2	Z	.482	.482	0	%100
143	MP5B	X	.278	.278	0	%100
144	MP5B	Z	.482	.482	0	%100
145	MP4C	X	.278	.278	0	%100
146	MP4C	Z	.482	.482	0	%100
147	MP3C	X	.278	.278	0	%100
148	MP3C	Z	.482	.482	Ō	%100
149	M146	X	0	0	0	%100
150	M146	Z	0	0	0	%100
151	M147	X	0	0	0	%100
152	M147	Z	0	0	Ö	%100
153	M154	X	.439	.439	0	%100
154	M154	Z	.761	.761	0	%100
155	M155	X	.439	.439	0	%100 %100
156	M155	Z	.761	.761	0	%100 %100
157	M162	X	.439	.439	0	%100 %100
158	M162	Z	.761	.761	0	%100 %100
159	M163	X	.439	.439	0	%100 %100
160	M163	Z	.761	.761	0	%100 %100
161	MP3A	X	.278	.278	0	%100 %100
162	MP3A	Z	.482	.482	0	%100 %100
163	MP4B	X	.278	.278	0	%100 %100
164	MP4B	Z	.482	.482	0	%100 %100
165	MP6B	X	.278	.278	0	%100
166	MP6B	Ž	.482	.482	0	%100 %100
167	MP3B	X	.278	.278	0	%100
168	MP3B	Z	.482	.482	0	%100 %100
169	M163A	X	.278	.278	0	%100 %100
170	M163A	Z	.482	.482	0	%100 %100
171	M166	X	.044	.044	0	%100 %100
172	M166	Z	.076	.076	0	%100 %100
173	M169A	X	.044	.044	0	%100 %100
174	M169A	Ž	.076	.076	0	%100 %100
175	MP2B	X	.278	.278	0	%100 %100
176	MP2B	Z	.482	.482	0	%100 %100
170	IVII ZD	_	.402	.402	U	/0100

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
177	M173A	X	.044	.044	0	%100
178	M173A	Z	.076	.076	0	%100
179	M176	X	.044	.044	0	%100
180	M176	Z	.076	.076	0	%100

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	1.171	1.171	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	1.171	1.171	0	%100
5	M3	X	0	0	0	%100
6	M3	Z	.677	.677	0	%100
7	M4	X	0	0	0	%100
8	M4	Z	.677	.677	0	%100
9	M5	X	0	0	0	%100
10	M5	Ž	.678	.678	0	%100
11	M6	X	0	0	0	%100
12	M6	Z	.205	.205	0	%100
13	M7	X	0	0	0	%100 %100
14	M7	Z	.205	.205	0	%100 %100
15	M8	X	0	0	0	%100 %100
16	M8	Z	.205	.205	Ö	%100 %100
17	M9	X	0	0	0	%100 %100
18	M9	Z	.205	.205	0	%100 %100
19	M10	X	0	0	0	%100 %100
20	M10	Z	.986	.986	0	%100 %100
21	M11	X	0	0	0	%100 %100
22	M11	Z	.986	.986	0	%100 %100
23	M12	X	0	0	0	%100 %100
24	M12	Z	.651	.651	0	%100 %100
25	M13	X	0	0	0	%100 %100
		Z		.651	0	
26	M13		.651			%100 %100
27	M14	X	0	0	0	%100
28	M14	Z	.651	.651	0	%100
29	M15	X	0	0	0	%100
30	M15	Z	.641	.641	0	%100
31	M16	X	0	0	0	%100
32	M16	Z	.641	.641	0	%100
33	M17	X	0	0	0	%100
34	M17	Z	.651	.651	0	%100
35	M18	X	0	0	0	%100
36	M18	Z	.293	.293	0	%100
37	M19	X	0	0	0	%100
38	M19	Z	.293	.293	0	%100
39	M20	X	0	0	0	%100
40	M20	Z	.82	.82	0	%100
41	M21	X	0	0	0	%100
42	M21	Z	.82	.82	0	%100
43	M22	X	0	0	0	%100
44	M22	Z	.986	.986	0	%100
45	M23	X	0	0	0	%100
46	M23	Z	.986	.986	0	%100
47	M24	X	0	0	0	%100
48	M24	Z	.651	.651	0	%100
49	M25	X	0	0	0	%100

: NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 71: Structure Wm (180 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
50	M25	Z	.651	.651	0	%100
51	M26	X	0	0	0	%100
52	M26	Z	.641	.641	0	%100
53	M27	X	0	0	0	%100
54	M27	Z	.641	.641	0	%100
55	M28	X	0	0	0	%100
56	M28	Z	.651	.651	0	%100
57	M29	X	0	0	0	%100
58	M29	Z	.293	.293	0	%100
59	M30	X	0	0	0	%100
60	M30	Z	.293	.293	0	%100
61	M31	X	0	0	0	%100
62	M31	Z	0	0	0	%100
63	M32	X	0	0	0	%100
64	M32	Z	0	0	0	%100
65	M33	X	0	0	0	%100
66	M33	Z	.651	.651	0	%100
67	M34	X	0	0	0	%100
68	M34	Z	.651	.651	0	%100
69	M35	X	0	0	0	%100
70	M35	Z	.356	.356	0	%100
71	M36	X	0	0	0	%100
72	M36	Z	.354	.354	0	%100
73	M37	X	0	0	0	%100
74	M37	Z	.263	.263	0	%100
75	M38	X	0	0	0	%100
76	M38	Z	1.051	1.051	0	%100
77	M39	X	0	0	0	%100
78	M39	Z	.263	.263	0	%100
79	M49	X	0	0	0	%100
80	M49	Z	.263	.263	0	%100 %100
81	M50	X	0	0	0	%100
82	M50	Z	1.051	1.051	0	%100
83	M51	X	0	0	0	%100
84	M51	Z	.263	.263	0	%100
85	M61	X	0	0	0	%100 %100
86	M61	Z	.677	.677	0	%100 %100
87	M62	X	0	0	0	%100 %100
88	M62	Z	.677	.677	0	%100 %100
89	M63	X	0	0	0	%100 %100
90	M63	Z	.678	.678	0	%100 %100
91	M64	X	0	0	0	%100 %100
92	M64	Z	.564	.564	0	%100 %100
93	M65	X	0	0	0	%100 %100
94	M65	Z	.564	.564	0	%100 %100
95	M66	X	.304	0	0	%100 %100
96	M66	Z	.56	.56	0	%100 %100
97	M67	X	0	0	0	%100 %100
98	M67	Z	.564	.564	0	%100 %100
99	M68	X	.564	0	0	%100 %100
100	N68	Z	.564	.564	0	%100 %100
100	N69				0	%100 %100
101		Z Z	.56	.56	0	%100 %100
	M69		0.50	.56		
103	M70	X			0	%100 %100
104	M70	Z	.564	.564	0	%100 %100
105	M71	X	0	0	0	%100 %100
106	M71	Z	.564	.564	0	%100

: NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 71: Structure Wm (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
107	M72	X	0	0	0	%100
108	M72	Z	.56	.56	0	%100
109	M73	X	0	0	0	%100
110	M73	Z	.564	.564	0	%100
111	M74	X	0	0	0	%100
112	M74	Z	.564	.564	0	%100
113	M75	X	0	0	0	%100
114	M75	Z	.56	.56	0	%100
115	MP1A	X	0	0	0	%100
116	MP1A	Z	.556	.556	0	%100
117	MP2A	X	0	0	0	%100
118	MP2A	Z	.556	.556	0	%100
119	MP4A	Χ	0	0	0	%100
120	MP4A	Z	.556	.556	0	%100
121	MP5A	X	0	0	0	%100
122	MP5A	Z	.556	.556	0	%100
123	MPA	X	0	0	0	%100
124	MPA	Z	.556	.556	0	%100
125	MP6A	X	0	0	0	%100
126	MP6A	Z	.556	.556	0	%100
127	MP1C	X	0	0	0	%100
128	MP1C	Z	.556	.556	0	%100
129	MP1B	X	0	0	0	%100 %100
130	MP1B	Ž	.556	.556	0	%100
131	MPC	X	0	0	0	%100 %100
132	MPC	Z	.556	.556	Ö	%100 %100
133	MP2C	X	0	0	0	%100 %100
134	MP2C	Z	.556	.556	0	%100 %100
135	MP5C	X	0	0	0	%100 %100
136	MP5C	Z	.556	.556	0	%100 %100
137	MP6C	X	0	0	0	%100 %100
138	MP6C	Z	.556	.556	0	%100 %100
139	MPB	X	0	0	0	%100 %100
140	MPB	Ž	.556	.556	0	%100 %100
141	MPB2	X	0	0	0	%100 %100
142	MPB2	Ž	.556	.556		%100 %100
					0	
143	MP5B	X Z	0	0	0	%100 %100
144	MP5B		.556	.556	0	%100
145	MP4C	X Z	0	0	0	%100 %100
146	MP4C		.556	.556	0	%100 %100
147	MP3C	X	0	0	0	%100 %100
148	MP3C	Z	.556	.556	0	%100 %100
149	M146	X	0	0	0	%100 %100
150	M146	Z	.293	.293	0	%100 %100
151	M147	X	0	0	0	%100
152	M147	Z	.293	.293	0	%100
153	M154	X	0	0	0	%100
154	M154	Z	.293	.293	0	%100
155	M155	X	0	0	0	%100
156	M155	Z	.293	.293	0	%100
157	M162	X	0	0	0	%100
158	M162	Z	1.171	1.171	0	%100
159	M163	X	0	0	0	%100
160	M163	Z	1.171	1.171	0	%100
161	MP3A	X	0	0	0	%100
162	MP3A	Z	.556	.556	0	%100
163	MP4B	X	0	0	0	%100

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 71: Structure Wm (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
164	MP4B	Z	.556	.556	0	%100
165	MP6B	X	0	0	0	%100
166	MP6B	Z	.556	.556	0	%100
167	MP3B	X	0	0	0	%100
168	MP3B	Z	.556	.556	0	%100
169	M163A	X	0	0	0	%100
170	M163A	Z	.556	.556	0	%100
171	M166	X	0	0	0	%100
172	M166	Z	0	0	0	%100
173	M169A	X	0	0	0	%100
174	M169A	Z	0	0	0	%100
175	MP2B	X	0	0	0	%100
176	MP2B	Z	.556	.556	0	%100
177	M173A	X	0	0	0	%100
178	M173A	Z	.263	.263	0	%100
179	M176	X	0	0	0	%100
180	M176	Z	.263	.263	0	%100

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	X	439	439	0	%100
2	M1	Z	.761	.761	0	%100
3	M2	X	439	439	0	%100
4	M2	Z	.761	.761	0	%100
5	M3	X	32	32	0	%100
6	M3	Z	.554	.554	0	%100
7	M4	X	32	32	0	%100
8	M4	Z	.554	.554	0	%100
9	M5	X	319	319	0	%100
10	M5	Z	.553	.553	0	%100
11	M6	X	0	0	0	%100
12	M6	Z	0	0	0	%100
13	M7	X	0	0	0	%100
14	M7	Z	0	0	0	%100
15	M8	X	307	307	0	%100
16	M8	Z	.533	.533	0	%100
17	M9	X	307	307	0	%100
18	M9	Z	.533	.533	0	%100
19	M10	X	164	164	0	%100
20	M10	Z	.285	.285	0	%100
21	M11	X	164	164	0	%100
22	M11	Z	.285	.285	0	%100
23	M12	X	325	325	0	%100
24	M12	Z	.564	.564	0	%100
25	M13	X	325	325	0	%100
26	M13	Z	.564	.564	0	%100
27	M14	X	325	325	0	%100
28	M14	Z	.564	.564	0	%100
29	M15	X	226	226	0	%100
30	M15	Z	.391	.391	0	%100
31	M16	X	225	225	0	%100
32	M16	Z	.39	.39	0	%100
33	M17	X	325	325	0	%100
34	M17	Z	.564	.564	0	%100
35	M18	X	439	439	0	%100
36	M18	Z	.761	.761	0	%100

: NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 72: Structure Wm (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
37	M19	X	439	439	0	%100
38	M19	Z	.761	.761	0	%100
39	M20	X	307	307	0	%100
40	M20	Z	.533	.533	0	%100
41	M21	X	307	307	0	%100
42	M21	Z	.533	.533	0	%100
43	M22	X	657	657	0	%100
44	M22	Ž	1.138	1.138	Ö	%100
45	M23	X	657	657	0	%100 %100
46	M23	Z	1.138	1.138	Ö	%100 %100
47	M24	X	325	325	0	%100 %100
48	M24	Z	.564	.564	0	%100 %100
49				325		
	M25	X	325		0	%100
50	M25	Z	.564	.564	0	%100
51	M26	X	368	368	0	%100
52	M26	Z	.638	.638	0	%100
53	M27	X	369	369	0	%100
54	M27	Z	.638	.638	0	%100
55	M28	X	325	325	0	%100
56	M28	Z	.564	.564	0	%100
57	M29	X	0	0	0	%100
58	M29	Z	0	0	0	%100
59	M30	X	0	0	0	%100
60	M30	Z	0	0	0	%100
61	M31	X	164	164	0	%100
62	M31	Z	.285	.285	0	%100
63	M32	X	164	164	0	%100
64	M32	Z	.285	.285	0	%100
65	M33	X	325	325	0	%100 %100
66	M33	Z	.564	.564	0	%100 %100
67	M34	X	325	325	0	%100 %100
68	M34	Ž	.564	.564	0	%100 %100
69	M35		226			
		X Z		226	0	%100
70	M35		.391	.391	0	%100
71	M36	X	225	225	0	%100
72	M36	Z	.39	.39	0	%100
73	M37	X	394	394	0	%100
74	M37	Z	.683	.683	0	%100
75	M38	X	394	394	0	%100
76	M38	Z	.683	.683	0	%100
77	M39	X	0	0	0	%100
78	M39	Z	0	0	0	%100
79	M49	X	394	394	0	%100
80	M49	Z	.683	.683	0	%100
81	M50	X	394	394	0	%100
82	M50	Z	.683	.683	0	%100
83	M51	X	0	0	0	%100
84	M51	Ž	0	Ö	0	%100
85	M61	X	32	32	0	%100 %100
86	M61	Z	.554	.554	Ö	%100 %100
87	M62	X	32	32	0	%100 %100
88	M62	Z	.554	.554	0	%100 %100
89	M63	X	319	319	0	%100 %100
90	M63	Ž	.553	.553	0	%100 %100
91	M64	X				
			32	32	0	%100 %100
92	M64	Z	.554	.554	0	%100
93	M65	X	32	32	0	%100

Company Designer : Maser Consulting

Job Number

Model Name

: NL 5:47 PM : 21781092A Checked By: DX : Mount Analysis (Rev. 3)

Member Distributed Loads (BLC 72: Structure Wm (210 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F.	Start Location[ft,%]	End Location[ft,%]
94	M65	Z	.554	.554	0	%100
95	M66	X	319	319	0	%100
96	M66	Z	.553	.553	0	%100
97	M67	X	32	32	0	%100
98	M67	Z	.554	.554	0	%100
99	M68	X	32	32	0	%100
100	M68	Z	.554	.554	0	%100
101	M69	X	319	319	0	%100
102	M69	Ž	.553	.553	Ö	%100 %100
103	M70	X	263	263	0	%100 %100
104	M70	Z	.456	.456	0	%100 %100
105	M71	X Z	263	263	0	%100
106	M71		.456	.456	0	%100
107	M72	X	26	26	0	%100
108	M72	Z	.451	.451	0	%100
109	M73	X	263	263	0	%100
110	M73	Z	.456	.456	0	%100
111	M74	X	263	263	0	%100
112	M74	Z	.456	.456	0	%100
113	M75	X	26	26	0	%100
114	M75	Z	.451	.451	0	%100
115	MP1A	X	278	278	0	%100
116	MP1A	Z	.482	.482	0	%100
117	MP2A	X	278	278	0	%100
118	MP2A	Z	.482	.482	0	%100
119	MP4A	X	278	278	Ö	%100
120	MP4A	Z	.482	.482	Ö	%100 %100
121	MP5A	X	278	278	0	%100 %100
122	MP5A	Z	.482	.482	0	%100 %100
123	MPA	X	278	278	0	%100 %100
		7			0	
124	MPA	Z	.482	.482		%100
125	MP6A	X	278	278	0	%100
126	MP6A	Z	.482	.482	0	%100
127	MP1C	X	278	278	0	%100
128	MP1C	Z	.482	.482	0	%100
129	MP1B	X	278	278	0	%100
130	MP1B	Z	.482	.482	0	%100
131	MPC	X	278	278	0	%100
132	MPC	Z	.482	.482	0	%100
133	MP2C	X	278	278	0	%100
134	MP2C	Z	.482	.482	0	%100
135	MP5C	X	278	278	0	%100
136	MP5C	Z	.482	.482	0	%100
137	MP6C		278	278	Ö	%100
138	MP6C	X Z	.482	.482	0	%100 %100
139	MPB	X	278	278	0	%100 %100
140	MPB	Ž	.482	.482	0	%100 %100
141	MPB2	X	278	278	0	%100 %100
142	MPB2	Z	.482	.482	0	%100 %100
143	MP5B	X	278	278	0	%100 %100
		7				%100 %100
144	MP5B	Z	.482	.482	0	
145	MP4C	X	278	278	0	%100
146	MP4C	Z	.482	.482	0	%100
147	MP3C	X	278	278	0	%100
148	MP3C	Z	.482	.482	0	%100
149	M146	X	439	439	0	%100
150	M146	Z	.761	.761	0	%100

Nov 23, 2021

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 72: Structure Wm (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
151	M147	X	439	439	0	%100
152	M147	Z	.761	.761	0	%100
153	M154	X	0	0	0	%100
154	M154	Z	0	0	0	%100
155	M155	X	0	0	0	%100
156	M155	Z	0	0	0	%100
157	M162	X	439	439	0	%100
158	M162	Z	.761	.761	0	%100
159	M163	X	439	439	0	%100
160	M163	Z	.761	.761	0	%100
161	MP3A	X	278	278	0	%100
162	MP3A	Z	.482	.482	0	%100
163	MP4B	X	278	278	0	%100
164	MP4B	Z	.482	.482	0	%100
165	MP6B	X	278	278	0	%100
166	MP6B	Z	.482	.482	0	%100
167	MP3B	X	278	278	0	%100
168	MP3B	Z	.482	.482	0	%100
169	M163A	X	278	278	0	%100
170	M163A	Z	.482	.482	0	%100
171	M166	X	044	044	0	%100
172	M166	Z	.076	.076	0	%100
173	M169A	X	044	044	0	%100
174	M169A	Z	.076	.076	0	%100
175	MP2B	X	278	278	0	%100
176	MP2B	Z	.482	.482	0	%100
177	M173A	X	175	175	0	%100
178	M173A	Z	.304	.304	0	%100
179	M176	X	175	175	0	%100
180	M176	Z	.304	.304	0	%100

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	254	254	0	%100
2	M1	Z	.146	.146	0	%100
3	M2	X	254	254	0	%100
4	M2	Z	.146	.146	0	%100
5	M3	X	489	489	0	%100
6	M3	Z	.282	.282	0	%100
7	M4	Χ	489	489	0	%100
8	M4	Z	.282	.282	0	%100
9	M5	X	485	485	0	%100
10	M5	Z	.28	.28	0	%100
11	M6	X	178	178	0	%100
12	M6	Z	.102	.102	0	%100
13	M7	X	- 178	178	0	%100
14	M7	Z	.102	.102	0	%100
15	M8	X	71	71	0	%100
16	M8	Z	.41	.41	0	%100
17	M9	X	71	71	0	%100
18	M9	Z	.41	.41	0	%100
19	M10	X	0	0	0	%100
20	M10	Z	0	0	0	%100
21	M11	X	0	0	0	%100
22	M11	Z	0	0	0	%100
23	M12	X	564	564	0	%100

Company Designer Job Number : Maser Consulting

: NL

: 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 73: Structure Wm (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
24	M12	Z	.325	.325	0	%100
25	M13	X	564	564	0	%100
26	M13	Z	.325	.325	0	%100
27	M14	X	564	564	0	%100
28	M14	Z	.325	.325	0	%100
29	M15	X	308	308	0	%100
30	M15	Z	.178	.178	0	%100
31	M16	X	307	307	0	%100
32	M16	Z	.177	.177	0	%100
33	M17	X	564	564	0	%100
34	M17	Z	.325	.325	Ö	%100
35	M18	X	-1.014	-1.014	0	%100 %100
36	M18	Z	.586	.586	Ö	%100 %100
37	M19	X	-1.014	-1.014	0	%100
38	M19	Z	.586	.586	0	%100 %100
39	M20	X	178	178	0	%100 %100
40	M20	Z	.102	.102		%100 %100
					0	
41	M21	X Z	178	178	0	%100
42	M21		.102	.102	0	%100
43	M22	X	854	854	0	%100
44	M22	Z	.493	.493	0	%100
45	M23	X	854	854	0	%100
46	M23	Z	.493	.493	0	%100
47	M24	X	564	564	0	%100
48	M24	Z	.325	.325	0	%100
49	M25	X	564	564	0	%100
50	M25	Z	.325	.325	0	%100
51	M26	X	555	555	0	%100
52	M26	Z	.321	.321	0	%100
53	M27	X	555	555	0	%100
54	M27	Z	.321	.321	0	%100
55	M28	X	564	564	0	%100
56	M28	Z	.325	.325	0	%100
57	M29	X	254	254	0	%100
58	M29	Z	.146	.146	0	%100
59	M30	X	254	254	Ö	%100
60	M30	Z	.146	.146	0	%100
61	M31	X	854	854	0	%100 %100
62	M31	Z	.493	.493	0	%100 %100
63	M32	X	854	854	0	%100 %100
64	M32	Z	.493	.493	0	%100 %100
65	M33	X	564	564	0	%100 %100
66	M33	Z	.325	.325	0	%100 %100
67	M34	X	564	564	0	%100 %100
68	M34	Z	.325	.325	0	%100 %100
69	M35	X		555	0	%100 %100
			555			
70	M35	Z	.321	.321	0	%100 %100
71	M36	X	555	555	0	%100
72	M36	Z	.321	.321	0	%100 %100
73	M37	X	91	91	0	%100
74	M37	Z	.525	.525	0	%100
75	M38	X	228	228	0	%100
76	M38	Z	.131	.131	0	%100
77	M39	X	228	228	0	%100
78	M39	Z	.131	.131	0	%100
79	M49	X	91	91	0	%100
80	M49	Z	.525	.525	0	%100

Company Designer Job Number : Maser Consulting

: NL

21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 73: Structure Wm (240 Deg)) (Continued)

82 M50 Z 131 131 0 %100 84 M51 Z 131 131 0 %100 85 M61 X -489 -489 0 %100 86 M61 Z 282 282 0 %100 87 M62 X -489 -489 0 %100 88 M62 Z 282 282 0 %100 89 M63 X -485 -485 0 %100 90 M63 Z 28 28 0 %100 90 M63 Z 28 28 0 %100 91 M64 X -586 -586 0 %100 92 M64 X -386 -586 0 %100 94 M65 X -387 -383 .338 0 %100 96 M66 X		Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
84 M51 X -228 -228 0 %100 85 M61 X -489 -489 0 %100 86 M61 X -489 -489 0 %100 87 M62 X -489 -489 0 %100 88 M62 X -489 -489 0 %100 89 M63 X -485 -485 0 %100 90 M63 Z 282 282 0 %100 91 M64 X -566 -566 0 %100 92 M64 Z -338 338 338 0 %100 93 M65 X -586 -566 0 %100 94 M65 X -586 -566 0 %100 95 M66 Z -338 338 338 0 %100 96 M66 Z -338 338 338 0 %100 97 M67 X -586 -586 0 %100 98 M67 Z -338 338 0 %100 99 M68 X -566 -566 0 %100 99 M68 X -586 -566 0 %100 90 M68 Z -339 339 0 %100 91 M64 X -586 -586 0 %100 92 M64 M65 X -586 -586 0 %100 93 M65 X -586 -586 0 %100 94 M65 X -587 -587 0 %100 95 M66 X -587 -587 0 %100 96 M66 X -586 -586 0 %100 97 M67 X -586 -586 0 %100 98 M67 Z -338 338 0 %100 100 M68 Z -338 338 0 %100 100 M68 X -586 -586 0 %100 100 M68 X -586 -586 0 %100 100 M68 X -586 -586 0 %100 100 M68 X -587 -587 0 %100 101 M69 X -587 -587 0 %100 102 M69 Z -339 339 0 %100 104 M70 Z -282 282 0 %100 105 M71 X -489 -489 0 %100 106 M71 Z -282 282 0 %100 107 M72 X -489 -489 0 %100 108 M72 Z -282 282 0 %100 109 M73 X -489 -489 0 %100 110 M73 Z -282 282 0 %100 110 M73 Z -282 282 0 %100 110 M73 X -489 -489 0 %100 110 M73 Z -282 282 0 %100 111 M74 X -489 -489 0 %100 112 M74 X -489 -489 0 %100 114 M75 Z -282 282 0 %100 116 M71 Z -282 282 0 %100 117 M72 X -485 -485 0 %100 118 M72 Z -28 28 0 %100 119 M73 X -489 -489 0 %100 110 M73 Z -282 282 0 %100 111 M74 X -489 -489 0 %100 112 M74 X -489 -489 0 %100 114 M75 Z -282 282 0 %100 115 M74 X -489 -489 0 %100 116 M74 Z -282 282 0 %100 117 M74 X -489 -489 0 %100 118 M72 Z -283 28 0 %100 119 M74 X -482 -482 0 %100 110 M75 X -482 -482 0 %100 111 M74 X -489 -489 0 %100 112 M74 X -489 -489 0 %100 113 M75 X -485 -485 0 %100 114 M75 Z -282 280 0 %100 115 M74 X -489 -489 0 %100 116 M74 Z -282 282 0 %100 117 M74 X -482 -482 0 %100 118 M72 Z -283 280 0 %100 119 M74 X -482 -482 0 %100 119 M74 X -482 -482 0 %100 110 M75 X -482 -482 0 %100 111 M74 X -482 -482 0 %100 112 M74 X -482 -482 0 %100 113 M75 X -485 -482 0 %100 114 M75 Z -282 280 0 %100 115 M74 X -482 -482 0 %100 116 M74 X -482 -482 0 %100	81	M50					
84 M51 Z .131 .131 0 %100 86 M61 X .489 .489 0 %100 87 M62 X .489 .489 0 %100 88 M62 Z .282 .282 0 %100 90 M63 X .485 .485 .0 %100 90 M63 Z .28 .28 .0 %100 90 M63 Z .28 .28 .0 %100 90 M63 Z .28 .28 .0 %100 91 M64 X .586 .586 .0 %100 92 M64 X .586 .586 .0 %100 93 M66 X .587 .587 .0 %100 94 M65 X .587 .587 .0 %100 98 M67 X			Z			0	%100
85 M61 X -489 -489 0 %100 87 M62 X -489 -489 0 %100 88 M62 X -485 -485 0 %100 89 M63 X -485 -485 0 %100 90 M63 X -485 -485 0 %100 91 M64 X -586 -586 0 %100 91 M64 X -586 -586 0 %100 92 M64 Z .338 .338 0 %100 93 M65 X .586 -586 0 %100 94 M65 X .388 .338 0 %100 95 M66 X .388 .338 0 %100 96 M66 X .388 .338 0 %100 98 M67 Z	83	M51	X	228	228	0	%100
86 M61 Z .282 .282 0 %100 88 M62 Z .282 .282 0 %100 89 M63 X .485 .485 0 %100 90 M63 Z .28 .28 0 %100 91 M64 X .586 .586 0 %100 92 M64 Z .338 .388 0 %100 92 M64 Z .338 .388 0 %100 93 M66 X .586 .586 .586 0 %100 95 M66 X .587 .587 0 %100 %100 95 M66 X .586 .586 .586 0 %100 97 M67 X .586 .586 .586 0 %100 99 M68 X .586 .586 0 %100	84	M51	Z	.131	.131	0	%100
86 M61 Z .282 .282 0 %100 88 M62 Z .282 .282 0 %100 89 M63 X .485 .485 0 %100 90 M63 Z .28 .28 0 %100 91 M64 X .586 .586 0 %100 92 M64 Z .338 .388 0 %100 92 M64 Z .338 .388 0 %100 93 M66 X .586 .586 .586 0 %100 95 M66 X .587 .587 0 %100 %100 95 M66 X .586 .586 .586 0 %100 97 M67 X .586 .586 .586 0 %100 99 M68 X .586 .586 0 %100	85	M61	X	489	489	0	%100
87 M62 X -489 -489 0 %100 89 M63 X -485 -282 0 %100 90 M63 Z 28 28 0 %100 91 M64 X 586 586 0 %100 92 M64 Z .338 .338 0 %100 92 M64 Z .338 .338 0 %100 93 M65 X -586 586 0 %100 94 M65 Z .338 .338 0 %100 95 M66 X 587 587 0 %100 96 M66 Z .339 .339 0 %100 98 M67 Z .338 .338 0 %100 98 M67 Z .338 .338 0 %100 101 M68 X			Z				
88 M62 Z 282 282 0 %100 90 M63 Z 28 28 0 %100 91 M64 X -586 -586 0 %100 92 M64 Z 338 338 0 %100 93 M65 X -586 -586 0 %100 94 M65 Z 338 338 0 %100 95 M66 X -587 -587 0 %100 95 M66 X -586 -586 0 %100 97 M67 X -586 -586 0 %100 97 M67 X -586 -586 0 %100 99 M68 X -586 -586 0 %100 100 M68 Z 338 338 0 %100 101 M69 X -587<							
89 M63 X -485 -485 0 %100 91 M64 X -586 -586 0 %100 92 M64 Z 338 338 0 %100 93 M65 X -586 -586 0 %100 94 M65 Z .338 .338 0 %100 95 M66 X -587 -587 0 %100 96 M66 Z .339 .339 0 %100 96 M66 Z .338 .338 0 %100 98 M67 Z .338 .338 0 %100 98 M67 Z .338 .338 0 %100 99 M68 X .586 .586 0 %100 101 M69 X .587 .587 0 %100 102 M69 Z			7				
90 M63 Z .28 .28 .0 %100 91 M64 X .586 .586 0 %100 92 M64 Z .338 .338 0 %100 93 M65 X .586 .586 0 %100 94 M65 Z .338 .338 0 %100 95 M66 X .587 .587 0 %100 96 M66 Z .339 .339 0 %100 97 M67 X .586 .586 0 .940 98 M67 Z .338 .338 0 %100 99 M88 X .586 .586 0 %100 99 M88 X .586 .586 0 %100 100 M68 Z .338 .338 0 %100 101 M69 X .587 .587 0 %100 102 M69 Z .338 .338 0 %100 103 M70 X .489 .489 0 %100 104 M70 Z .282 .282 .00 %100 105 M71 X .489 .489 0 %100 106 M71 Z .282 .282 0 %100 107 M72 X .485 .485 0 %100 108 M72 Z .282 .282 0 %100 109 M73 X .489 .489 0 %100 110 M73 Z .282 .282 0 %100 110 M73 Z .282 .282 0 %100 110 M73 Z .282 .282 0 %100 110 M74 Z .282 .282 0 %100 110 M75 X .489 .489 0 %100 110 M73 Z .282 .282 0 %100 110 M74 Z .282 .282 0 %100 110 M75 X .489 .485 0 %100 110 M73 Z .282 .282 0 %100 110 M74 Z .282 .282 0 %100 110 M73 Z .282 .282 0 %100 110 M73 Z .282 .282 0 %100 111 M74 Z .282 .282 0 %100 112 M74 Z .282 .282 0 %100 113 M75 X .485 .485 0 %100 114 M75 Z .282 .282 0 %100 115 MP1A X .489 .489 0 %100 116 MP1A Z .278 0 %100 117 MP2A X .482 .482 0 %100 118 MP2A Z .278 0 %100 119 MP4A Z .278 0 %100 120 MP4A Z .278 0 %100 121 MP5A X .482 .482 0 %100 122 MP5A Z .278 .278 0 %100 124 MPA Z .278 .278 0 %100 125 MP6A Z .278 .278 0 %100 126 MP6A Z .278 .278 0 %100 127 MP1C X .482 .482 0 %100 128 MP1C Z .278 .278 0 %100 133 MP2C X .482 .482 0 %100 134 MP2C Z .278 .278 0 %100 135 MP5C Z .278 .278 0 %100							
91 M64 X -586 -586 0 %100 92 M64 Z 338 338 0 %100 93 M65 X -586 -586 0 %100 94 M65 Z 338 338 0 %100 95 M66 X -587 -587 0 %100 96 M66 Z 339 339 0 %100 97 M67 X -586 -586 0 %100 98 M67 Z 338 338 339 0 %100 99 M68 X -586 -586 0 %100 100 M68 Z 339 339 0 %100 1101 M69 X -587 -587 0 %100 1101 M69 X -587 -587 0 %100 1102 M69 Z 339 339 0 %100 1103 M70 X -489 -489 0 %100 1105 M71 X -489 -489 0 %100 1106 M71 Z 2282 2282 0 %100 1107 M72 X -485 -485 0 %100 1109 M73 X -489 -489 0 %100 1101 M70 Z 2282 2282 0 %100 1101 M70 X -489 -489 0 %100 1101 M71 Z 2282 2282 0 %100 1101 M72 X -489 -489 0 %100 1102 M73 X -489 -489 0 %100 1103 M70 X -489 -489 0 %100 1104 M70 Z 228 22 280 0 %100 1105 M71 X -489 -489 0 %100 1106 M71 Z 228 280 0 %100 1107 M72 X -485 -485 0 %100 1109 M73 X -489 -489 0 %100 1109 M73 X -489 -489 0 %100 1109 M73 X -489 -489 0 %100 1110 M73 Z 228 22 202 0 %100 1111 M74 X -489 -489 0 %100 1112 M74 Z 282 282 200 %100 1114 M75 Z 28 28 28 0 %100 115 MP1A X -485 -485 0 %100 116 MP1A Z 278 28 28 0 %100 117 MP2A X -485 -485 0 %100 118 MP4A Z 278 28 28 0 %100 119 MP4A X -482 -482 0 %100 119 MP4A Z 278 278 0 %100 120 MP4A Z 278 278 0 %100 121 MP5A X -482 -482 0 %100 122 MP6A Z 278 278 0 %100 123 MPA X -482 -482 0 %100 124 MPA Z 278 278 0 %100 125 MP6A X -482 -482 0 %100 126 MP6A Z 278 278 0 %100 127 MP1C X -482 -482 0 %100 128 MP1C Z 278 278 0 %100 130 MP1B Z 278 278 0 %100 131 MPC X -482 -482 0 %100 132 MPC Z 278 278 0 %100 133 MPC Z 278 278 0 %100 134 MPC Z 278 278 0 %100 135 MP5C Z 278 278 0 %100							
92							
93			7				
94 M66 Z							
95 M66 X -587 -587 0 %100 96 M66 Z 339 339 0 %100 97 M67 X -586 -586 0 %100 98 M67 Z 338 338 0 %100 99 M68 X -586 -586 0 %100 100 M68 Z 338 338 0 %100 101 M69 X -587 -587 0 %100 102 M69 Z 339 339 0 %100 102 M69 Z 339 339 0 %100 104 M70 Z 282 282 0 %100 105 M71 X -489 -489 0 %100 106 M71 Z 282 282 0 %100 107 M72 X -485 -485 0 %100 108 M72 Z 28 28 0 %100 109 M73 X -489 -489 0 %100 109 M73 X -489 -489 0 %100 110 M74 X -489 -489 0 %100 111 M74 X -489 -489 0 %100 111 M74 X -489 -489 0 %100 111 M75 Z 282 282 0 %100 111 M74 X -489 -489 0 %100 111 M75 X -489 -489 0 %100 111 M74 X -482 -482 0 %100 114 M75 Z 28 28 20 %100 115 MP1A X -482 -482 0 %100 116 MP1A Z -278 278 0 %100 117 MP2A X -482 -482 0 %100 118 MP2A Z -278 278 0 %100 119 MP4A Z -278 278 0 %100 120 MP4A Z -278 278 0 %100 121 MP6A X -482 -482 0 %100 122 MP6A Z -278 278 0 %100 123 MPA X -482 -482 0 %100 124 MPA Z -278 278 0 %100 125 MP6A X -482 -482 0 %100 126 MP6A Z -278 278 0 %100 127 MP1C X -482 -482 0 %100 128 MP1C Z -278 278 0 %100 133 MPA X -482 -482 0 %100 133 MPA X -482 -482 0 %100 133 MPC X -482 -482 0 %100 133 MPC X -482 -482 0 %100 134 MPC X -482 -482 0 %100 135 MP6C X -482 -482 0 %100 136 MP5C X -482 -482 0 %100 137 MP6C X -482 -482 0 %100 138 MPC X -482 -482 0 %100 139 MP6C X -482 -482 0 %100 130 MP1B Z -278 278 0 %100 131 MPC X -482 -482 0 %100 133 MPC X -482 -482 0 %100 134 MPC Z -278 278 0 %100			7				
96 M66 Z							
97 M67 X -586 -586 0 %100 98 M67 Z 338 338 0 %100 99 M68 X -586 -586 0 %100 100 M68 Z 338 338 0 %100 101 M69 X -587 -587 0 %100 102 M69 Z 339 339 0 %100 103 M70 X -489 -489 0 %100 104 M70 Z 282 282 0 %100 105 M71 X -489 -489 0 %100 106 M71 Z 282 282 0 %100 107 M72 X -485 -485 0 %100 108 M72 Z 2 282 282 0 %100 109 M73 X -489 -489 0 %100 110 M73 Z 282 282 0 %100 110 M73 Z 282 282 0 %100 111 M74 X -489 -489 0 %100 112 M75 X -489 -485 0 %100 115 M71 Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			7				
98 M67 Z 338 338 0 %100 100 M68 X -586 -586 0 %100 101 M69 X -587 -587 0 %100 102 M69 Z 339 339 0 %100 103 M70 X -489 -489 0 %100 104 M70 Z 282 282 0 %100 105 M71 X -489 -489 0 %100 106 M71 Z 282 282 0 %100 107 M72 X -485 -485 0 %100 108 M72 Z 28 28 0 %100 109 M73 X -489 -489 0 %100 110 M73 Z 282 282 0 %100 111 M74 X -489 -489 0 %100 112 M74 Z 282 282 0 %100 111 M75 Z 288 28 0 %100 111 M74 X -489 -489 0 %100 111 M75 X -489 -489 0 %100 112 M74 Z 282 282 0 %100 111 M75 X -485 -485 0 %100 112 M74 X -482 -482 0 %100 115 MP1A X -482 -482 0 %100 116 MP1A Z 278 278 0 %100 117 MP2A X -482 -482 0 %100 118 MP2A Z 278 278 0 %100 120 MP4A Z 278 278 0 %100 121 MP5A X -482 -482 0 %100 122 MP6A Z 278 278 0 %100 124 MPA Z 278 278 0 %100 125 MP6A X -482 -482 0 %100 126 MP6A Z 278 278 0 %100 127 MP6A X -482 -482 0 %100 128 MP6A Z 278 278 0 %100 129 MP1B X -482 -482 0 %100 129 MP1B X -482 -482 0 %100 120 MP6A Z 278 278 0 %100 121 MP5A X -482 -482 0 %100 122 MP6A Z 278 278 0 %100 123 MPA X -482 -482 0 %100 124 MPA Z 278 278 0 %100 125 MP6A Z 278 278 0 %100 126 MP6A Z 278 278 0 %100 127 MP1C X -482 -482 0 %100 128 MP1C Z 278 278 0 %100 129 MP1B X -482 -482 0 %100 129 MP1B Z 278 278 0 %100 120 MP1B Z 278 278 0 %100 121 MP5C X -482 -482 0 %100 133 MPC Z 278 278 0 %100 134 MPC X -482 -482 0 %100 135 MPC Z 278 278 0 %100 136 MP6C Z 278 278 0 %100 137 MPC X -482 -482 0 %100 138 MPC Z 278 278 0 %100 139 MP1B Z 278 278 0 %100 130 MP1B Z 278 278 0 %100 131 MPC X -482 -482 0 %100 133 MPC Z 278 278 278 0 %100 134 MP2C Z 278 278 278 0 %100 135 MP5C Z 278 278 278 0 %100							
99 M68 X -586 -586 0 %100 100 M68 Z .338 .338 .0 %100 101 M69 X -587 -587 0 %100 102 M69 Z .339 .339 0 %100 103 M70 X -489 -489 0 %100 104 M70 Z .282 .282 0 %100 105 M71 X -489 -489 0 %100 106 M71 Z .282 .282 0 %100 107 M72 X -485 -485 0 %100 108 M72 Z .28 .28 0 %100 109 M73 X -489 -489 0 %100 110 M73 Z .282 .282 0 %100 110 M73 Z .282 .282 0 %100 111 M74 X -489 -489 0 %100 112 M74 Z .282 .282 0 %100 115 M71			X				
100 M68 Z .338 .338 .338 0 %100 101 M69 X 587 587 0 %100 102 M69 Z .339 .339 0 %100 103 M70 X 489 489 0 %100 104 M70 Z 282 282 0 %100 105 M71 X 489 489 0 %100 105 M71 X 489 489 0 %100 106 M71 Z .282 .282 0 %100 107 M72 X 485 485 0 %100 108 M72 Z 28 28 0 %100 109 M73 X 489 489 0 %100 110 M73 Z .282 .282 0 %100 111							
101 M69							
102 M69 Z .339 .339 0 %100 103 M70 X .489 .489 .489 0 %100 104 M70 Z .282 .282 0 %100 105 M71 X .489 .489 0 %100 106 M71 Z .282 .282 0 %100 107 M72 X .485 .485 0 %100 108 M72 Z .28 .28 0 %100 109 M73 X .489 .489 0 %100 110 M73 Z .282 .282 0 %100 111 M74 X .489 .489 0 %100 112 M74 Z .282 .282 0 %100 113 M75 X .485 .485 0 %100 114 M75 Z .28 .28 0 %100 115 MP1A X .482 .482 0 %100 116 MP1A Z .278 .278 0 %100 117 MP2A X .482 .482 0 %100 118 MP2A Z .278 .278 0 %100 119 MP4A X .482 .482 0 %100 120 MP4A Z .278 .278 0 %100 121 MP5A X .482 .482 0 %100 122 MP5A X .482 .482 0 %100 123 MPA X .482 .482 0 %100 124 MP5A X .482 .482 0 %100 125 MP6A X .482 .482 0 %100 126 MP6A X .482 .482 0 %100 127 MP1C X .482 .482 0 %100 128 MP1C X .482 .482 0 %100 129 MP1B X .482 .482 0 %100 120 MP4B Z .278 .278 0 %100 121 MP6A X .482 .482 0 %100 122 MP6A X .482 .482 0 %100 123 MPA X .482 .482 0 %100 124 MP6 Z .278 .278 0 %100 125 MP6A X .482 .482 0 %100 126 MP6A Z .278 .278 0 %100 127 MP1C X .482 .482 0 %100 128 MP1C Z .278 .278 0 %100 131 MPC X .482 .482 0 %100 133 MPC X .482 .482 0 %100 134 MP2C Z .278 .278 0 %100 135 MP5C Z .278 .278 0 %100 136 MP5C Z .278 .278 0 %100 137 MP5C Z .278 .278 0 %100 138 MP5C Z .278 .278 0 %100 139 MP5C Z .278 .278 0 %100 130 MP5C Z .278 .278 0 %100 131 MP5C Z .278 .278 0							
103			X				
104 M70 Z .282 .282 0 %100 105 M71 X 489 489 0 %100 106 M71 Z .282 .282 0 %100 107 M72 X 485 485 0 %100 108 M72 Z .28 .28 0 %100 109 M73 X 489 489 0 %100 110 M73 Z .282 .282 0 %100 111 M74 X 489 489 0 %100 111 M74 X 489 489 0 %100 112 M74 Z .282 .282 0 %100 112 M74 Z .282 .282 0 %100 113 M75 X 485 485 485 0 %100 115			Z				
105 M71 X 489 489 0 %100 106 M71 Z .282 .282 0 %100 107 M72 X 485 485 0 %100 108 M72 Z .28 .28 0 %100 109 M73 X 489 489 0 %100 110 M73 Z .282 .282 0 %100 111 M74 X 489 489 0 %100 112 M74 Z .282 .282 0 %100 112 M74 Z .282 .282 0 %100 113 M75 X 485 485 0 %100 114 M75 Z .28 .28 0 %100 116 MP1A X 482 482 0 %100 116 MP1A			X				
106							
107 M72 X 485 485 0 %100 108 M72 Z .28 .28 0 %100 109 M73 X 489 489 0 %100 110 M73 Z .282 .282 0 %100 111 M74 X 489 489 0 %100 111 M74 X 485 485 0 %100 113 M75 X 485 485 0 %100 114 M75 Z .28 .28 0 %100 115 MP1A X 482 482 0 %100 116 MP1A X 482 482 0 %100 117 MP2A X 482 482 0 %100 118 MP2A Z .278 .278 0 %100 120 MP4A </td <td>105</td> <td>M71</td> <td>X</td> <td>489</td> <td>489</td> <td>0</td> <td>%100</td>	105	M71	X	489	489	0	%100
108 M72 Z .28 .28 0 %100 109 M73 X .489 489 0 %100 110 M73 Z .282 .282 0 %100 111 M74 X .489 .489 0 %100 112 M74 Z .282 .282 0 %100 113 M75 X .485 485 0 %100 114 M75 Z .28 .28 0 %100 115 MP1A X .482 482 0 %100 115 MP1A X .482 482 0 %100 116 MP1A Z .278 .278 0 %100 117 MP2A X 482 482 0 %100 118 MP2A X 482 482 0 %100 120 MP4A	106	M71	Z	.282	.282	0	%100
108 M72 Z .28 .28 0 %100 109 M73 X .489 489 0 %100 110 M73 Z .282 .282 0 %100 111 M74 X .489 .489 0 %100 112 M74 Z .282 .282 0 %100 113 M75 X .485 485 0 %100 114 M75 Z .28 .28 0 %100 115 MP1A X .482 482 0 %100 115 MP1A X .482 482 0 %100 116 MP1A Z .278 .278 0 %100 117 MP2A X 482 482 0 %100 118 MP2A X 482 482 0 %100 120 MP4A	107	M72	X	485	485	0	%100
109 M73			Z			0	
110						0	
111 M74 X 489 489 0 %100 112 M74 Z 2.282 2.82 0 %100 113 M75 X 485 485 0 %100 114 M75 Z .28 .28 0 %100 115 MP1A X 482 482 0 %100 116 MP1A Z .278 .278 0 %100 117 MP2A X 482 482 0 %100 118 MP2A Z .278 .278 0 %100 119 MP4A X 482 482 0 %100 120 MP4A X 482 482 0 %100 120 MP4A Z .278 .278 0 %100 121 MP5A X 482 482 0 <t>%100 122 MP</t>							
112 M74 Z .282 .282 0 %100 113 M75 X .485 485 0 %100 114 M75 Z .28 .28 0 %100 115 MP1A X .482 .482 0 %100 116 MP1A Z .278 .278 0 %100 117 MP2A X .482 482 0 %100 118 MP2A Z .278 .278 0 %100 119 MP4A X .482 482 0 %100 120 MP4A X .482 482 0 %100 120 MP4A X .482 482 0 %100 121 MP5A X .482 482 0 %100 122 MP5A X .482 482 0 %100 124 MPA							
113 M75 X 485 485 0 %100 114 M75 Z .28 .28 0 %100 115 MP1A X 482 482 0 %100 116 MP1A Z .278 .278 0 %100 117 MP2A X 482 482 0 %100 118 MP2A Z .278 .278 0 %100 119 MP4A X 482 482 0 %100 120 MP4A X 482 482 0 %100 120 MP4A Z .278 .278 0 %100 121 MP5A X 482 482 0 %100 122 MP5A Z .278 .278 0 %100 123 MPA X 482 482 0 %100 124 M			Z				
114 M75 Z .28 .28 0 %100 115 MP1A X .482 .482 0 %100 116 MP1A Z .278 .278 0 %100 117 MP2A X .482 .482 0 %100 118 MP2A Z .278 .278 0 %100 119 MP4A X .482 482 0 %100 120 MP4A X .482 482 0 %100 120 MP5A X .482 482 0 %100 121 MP5A X .482 482 0 %100 122 MP5A X .482 482 0 %100 123 MPA X .482 482 0 %100 124 MPA Z .278 .278 0 %100 125 MP6A							
115 MP1A X 482 482 0 %100 116 MP1A Z .278 .278 0 %100 117 MP2A X 482 482 0 %100 118 MP2A Z .278 .278 0 %100 119 MP4A X 482 482 0 %100 120 MP4A X 482 482 0 %100 120 MP4A X 482 482 0 %100 121 MP5A X 482 482 0 %100 122 MP5A X 482 482 0 %100 123 MPA X 482 482 0 %100 124 MPA Z .278 .278 0 %100 125 MP6A X 482 482 0 %100 126			7				
116 MP1A Z .278 .278 .0 %100 117 MP2A X 482 482 0 %100 118 MP2A Z .278 .278 0 %100 119 MP4A X 482 482 0 %100 120 MP4A X 282 .278 0 %100 121 MP5A X 482 482 0 %100 122 MP5A X 482 482 0 %100 123 MPA X 482 482 0 %100 124 MPA Z .278 .278 0 %100 125 MP6A X 482 482 0 %100 126 MP6A Z .278 .278 0 %100 127 MP1C X 482 482 0 %100 128							
117 MP2A X 482 482 0 %100 118 MP2A Z .278 .278 0 %100 119 MP4A X 482 482 0 %100 120 MP4A Z .278 .278 0 %100 120 MP5A X 482 482 0 %100 121 MP5A X 482 482 0 %100 122 MP5A Z .278 .278 0 %100 123 MPA X 482 482 0 %100 124 MPA X 482 482 0 %100 125 MP6A X 482 482 0 %100 126 MP6A X 482 482 0 %100 127 MP1C X 482 482 0 %100 129			7				
118 MP2A Z .278 .278 0 %100 119 MP4A X 482 482 0 %100 120 MP4A Z .278 .278 0 %100 121 MP5A X 482 482 0 %100 122 MP5A Z .278 .278 0 %100 123 MPA X 482 482 0 %100 123 MPA X 482 482 0 %100 124 MPA Z .278 .278 0 %100 125 MP6A X 482 482 0 %100 126 MP6A Z .278 .278 0 %100 127 MP1C X 482 482 0 %100 128 MP1C Z .278 .278 0 %100 129 M							
119 MP4A X 482 482 0 %100 120 MP4A Z .278 .278 0 %100 121 MP5A X 482 482 0 %100 122 MP5A Z .278 .278 0 %100 123 MPA X 482 482 0 %100 124 MPA Z .278 .278 0 %100 125 MP6A X 482 482 0 %100 126 MP6A X 482 482 0 %100 127 MP1C X 482 482 0 %100 128 MP1C Z .278 .278 0 %100 129 MP1B X 482 482 0 %100 130 MP1B Z .278 .278 0 %100 131 <t< td=""><td></td><td></td><td>7</td><td></td><td></td><td></td><td></td></t<>			7				
120 MP4A Z .278 .278 .0 %100 121 MP5A X 482 482 0 %100 122 MP5A Z .278 .278 0 %100 123 MPA X 482 482 0 %100 124 MPA Z .278 .278 0 %100 125 MP6A X 482 482 0 %100 126 MP6A X 482 482 0 %100 127 MP1C X 482 482 0 %100 128 MP1C Z .278 .278 0 %100 129 MP1B X 482 482 0 %100 130 MP1B Z .278 .278 0 %100 132 MPC X 482 482 0 %100 133 MP2C X 482 482 0 %100 134 MP2C </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
121 MP5A X 482 482 0 %100 122 MP5A Z .278 .278 0 %100 123 MPA X 482 482 0 %100 124 MPA Z .278 .278 0 %100 125 MP6A X 482 482 0 %100 126 MP6A Z .278 .278 0 %100 127 MP1C X 482 482 0 %100 128 MP1C Z .278 .278 0 %100 129 MP1B X 482 482 0 %100 130 MP1B X 482 482 0 %100 131 MPC X 482 482 0 %100 132 MPC Z .278 .278 0 %100 134 MP2C X 482 482 0 %100 135 MP5C <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
122 MP5A Z .278 .278 0 %100 123 MPA X 482 482 0 %100 124 MPA Z .278 .278 0 %100 125 MP6A X 482 482 0 %100 126 MP6A Z .278 .278 0 %100 127 MP1C X 482 482 0 %100 128 MP1C Z .278 .278 0 %100 129 MP1B X 482 482 0 %100 130 MP1B Z .278 .278 0 %100 131 MPC X 482 482 0 %100 132 MPC Z .278 .278 0 %100 133 MP2C X 482 482 0 %100 134 MP						_	
123 MPA X 482 482 0 %100 124 MPA Z .278 .278 0 %100 125 MP6A X 482 482 0 %100 126 MP6A Z .278 .278 0 %100 127 MP1C X 482 482 0 %100 128 MP1C Z .278 .278 0 %100 129 MP1B X 482 482 0 %100 130 MP1B Z .278 .278 0 %100 131 MPC X 482 482 0 %100 132 MPC Z .278 .278 0 %100 133 MP2C X 482 482 0 %100 134 MP2C Z .278 .278 0 %100 135 MP			7				
124 MPA Z .278 .278 0 %100 125 MP6A X 482 482 0 %100 126 MP6A Z .278 .278 0 %100 127 MP1C X 482 482 0 %100 128 MP1C Z .278 .278 0 %100 129 MP1B X 482 482 0 %100 130 MP1B Z .278 .278 0 %100 131 MPC X 482 482 0 %100 132 MPC Z .278 .278 0 %100 133 MP2C X 482 482 0 %100 134 MP2C Z .278 .278 0 %100 135 MP5C X 482 482 0 %100 136 MP5C Z .278 .278 0 %100							
125 MP6A X 482 482 0 %100 126 MP6A Z .278 .278 0 %100 127 MP1C X 482 482 0 %100 128 MP1C Z .278 .278 0 %100 129 MP1B X 482 482 0 %100 130 MP1B Z .278 .278 0 %100 131 MPC X 482 482 0 %100 132 MPC Z .278 .278 0 %100 133 MP2C X 482 482 0 %100 134 MP2C Z .278 .278 0 %100 135 MP5C X 482 482 0 %100 136 MP5C Z .278 .278 0 %100			<u> </u>				
126 MP6A Z .278 .278 0 %100 127 MP1C X 482 482 0 %100 128 MP1C Z .278 .278 0 %100 129 MP1B X 482 482 0 %100 130 MP1B Z .278 .278 0 %100 131 MPC X 482 482 0 %100 132 MPC Z .278 .278 0 %100 133 MP2C X 482 482 0 %100 134 MP2C Z .278 .278 0 %100 135 MP5C X 482 482 0 %100 136 MP5C Z .278 .278 0 %100							
127 MP1C X 482 482 0 %100 128 MP1C Z .278 .278 0 %100 129 MP1B X 482 482 0 %100 130 MP1B Z .278 .278 0 %100 131 MPC X 482 482 0 %100 132 MPC Z .278 .278 0 %100 133 MP2C X 482 482 0 %100 134 MP2C Z .278 .278 0 %100 135 MP5C X 482 482 0 %100 136 MP5C Z .278 .278 0 %100			X				
128 MP1C Z .278 .278 0 %100 129 MP1B X 482 482 0 %100 130 MP1B Z .278 .278 0 %100 131 MPC X 482 482 0 %100 132 MPC Z .278 .278 0 %100 133 MP2C X 482 482 0 %100 134 MP2C Z .278 .278 0 %100 135 MP5C X 482 482 0 %100 136 MP5C Z .278 .278 0 %100							
129 MP1B X 482 482 0 %100 130 MP1B Z .278 .278 0 %100 131 MPC X 482 482 0 %100 132 MPC Z .278 .278 0 %100 133 MP2C X 482 482 0 %100 134 MP2C Z .278 .278 0 %100 135 MP5C X 482 482 0 %100 136 MP5C Z .278 .278 0 %100			X				
130 MP1B Z .278 .278 0 %100 131 MPC X 482 482 0 %100 132 MPC Z .278 .278 0 %100 133 MP2C X 482 482 0 %100 134 MP2C Z .278 .278 0 %100 135 MP5C X 482 482 0 %100 136 MP5C Z .278 .278 0 %100							
131 MPC X 482 482 0 %100 132 MPC Z .278 .278 0 %100 133 MP2C X 482 482 0 %100 134 MP2C Z .278 .278 0 %100 135 MP5C X 482 482 0 %100 136 MP5C Z .278 .278 0 %100			X				
132 MPC Z .278 .278 0 %100 133 MP2C X 482 482 0 %100 134 MP2C Z .278 .278 0 %100 135 MP5C X 482 482 0 %100 136 MP5C Z .278 .278 0 %100							
133 MP2C X 482 482 0 %100 134 MP2C Z .278 .278 0 %100 135 MP5C X 482 482 0 %100 136 MP5C Z .278 .278 0 %100			X				
134 MP2C Z .278 .278 0 %100 135 MP5C X 482 482 0 %100 136 MP5C Z .278 .278 0 %100			Z				
134 MP2C Z .278 .278 0 %100 135 MP5C X 482 482 0 %100 136 MP5C Z .278 .278 0 %100			X				
135 MP5C X 482 482 0 %100 136 MP5C Z .278 .278 0 %100	134	MP2C	Z	.278	.278	0	%100
136 MP5C Z .278 .278 0 %100							
137 IVIFOU A402482 U %100	137	MP6C	Χ	482	482	0	%100

Company : Maser Consulting

Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3)

Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
138	MP6C	Z	.278	.278	0	%100
139	MPB	X	482	482	0	%100
140	MPB	Z	.278	.278	0	%100
141	MPB2	X	482	482	0	%100
142	MPB2	Z	.278	.278	0	%100
143	MP5B	X	482	482	0	%100
144	MP5B	Z	.278	.278	0	%100
145	MP4C	X	482	482	0	%100
146	MP4C	Z	.278	.278	0	%100
147	MP3C	X	482	482	0	%100
148	MP3C	Z	.278	.278	0	%100
149	M146	X	-1.014	-1.014	0	%100
150	M146	Z	.586	.586	0	%100
151	M147	X	-1.014	-1.014	0	%100
152	M147	Z	.586	.586	0	%100
153	M154	X	254	254	0	%100
154	M154	Z	.146	.146	0	%100
155	M155	X	254	254	0	%100
156	M155	Z	.146	.146	0	%100
157	M162	X	254	254	0	%100
158	M162	Z	.146	.146	0	%100
159	M163	X	254	254	0	%100
160	M163	Z	.146	.146	0	%100
161	MP3A	X	482	482	0	%100
162	MP3A	Z	.278	.278	0	%100
163	MP4B	X	482	482	0	%100
164	MP4B	Z	.278	.278	0	%100
165	MP6B	X	482	482	0	%100
166	MP6B	Z	.278	.278	0	%100
167	MP3B	X	482	482	0	%100
168	MP3B	Z	.278	.278	0	%100
169	M163A	Χ	482	482	0	%100
170	M163A	Z	.278	.278	0	%100
171	M166	X	228	228	0	%100
172	M166	Z	.132	.132	0	%100
173	M169A	Χ	228	228	0	%100
174	M169A	Z	.132	.132	0	%100
175	MP2B	X	482	482	0	%100
176	MP2B	Z	.278	.278	0	%100
177	M173A	X	228	228	0	%100
178	M173A	Z	.132	.132	0	%100
179	M176	X	228	228	0	%100
180	M176	Z	.132	132	0	%100

Member Distributed Loads (BLC 74: Structure Wm (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M3	X	527	527	0	%100
6	M3	Z	0	0	0	%100
7	M4	X	527	527	0	%100
8	M4	Z	0	0	0	%100
9	M5	X	521	521	0	%100
10	M5	Z	0	0	0	%100

Model Name : Mount Analysis (Rev. 3)

Company Designer Job Number Nov 23, 2021 5:47 PM Checked By: DX : NL : 21781092A

Member Distributed Loads (BLC 74: Structure Wm (270 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F	Start Location[ft,%]	
11	M6	X	615	615	0	%100
12	M6	Z	0	0	0	%100
13	M7	X	615	615	0	%100
14	M7	Z	0	0	0	%100
15	M8	X	615	615	0	%100
16	M8	Z	0	0	0	%100
17	M9	X	615	615	0	%100
18	M9	Z	0	0	0	%100
19	M10	X	329	329	0	%100
20	M10	Z	0	0	0	%100
21	M11	X	329	329	0	%100
22	M11	Z	0	0	0	%100
23	M12	X	651	651	0	%100
24	M12	Z	0	0	0	%100
25	M13	X	651	651	0	%100
26	M13	Z	0	0	0	%100
27	M14	X	651	651	0	%100 %100
28	M14	Z	0	0	0	%100 %100
29	M15	X	451	451	0	%100 %100
30	M15	Z	0	0	0	%100 %100
31	M16	X	45	45	0	%100 %100
32	M16	Z	0	0	0	%100 %100
33	M17	X	651	651	0	%100 %100
34	M17	Ž	651	651	0	%100 %100
35	M18	X	878	878	0	%100 %100
36	M18	Z	070	070	0	%100 %100
37	M19	X Z	878	878	0	%100
38	M19		0	0		%100
39	M20	X	0	0	0	%100
40	M20	Z	0	0	0	%100
41	M21	X	0	0	0	%100
42	M21	Z	0	0	0	%100
43	M22	X	329	329	0	%100
44	M22	Z	0	0	0	%100
45	M23	X	329	329	0	%100
46	M23	Z	0	0	0	%100
47	M24	X	651	651	0	%100
48	M24	Z	0	0	0	%100
49	M25	X	651	651	0	%100
50	M25	Z	0	0	0	%100
51	M26	X	451	451	0	%100
52	M26	Z	0	0	0	%100
53	M27	X	45	45	0	%100
54	M27	Z	0	0	0	%100
55	M28	X	651	651	0	%100
56	M28	Z	0	0	0	%100
57	M29	X	878	878	0	%100
58	M29	Z	0	0	0	%100
59	M30	X	878	878	0	%100
60	M30	Z	0	0	0	%100
61	M31	X	-1.314	-1.314	0	%100
62	M31	Z	0	0	0	%100
63	M32	X	-1.314	-1.314	0	%100
64	M32	Z	0	0	0	%100 %100
65	M33	X	651	651	0	%100 %100
66	M33	Z	0	0	Ö	%100 %100
67	M34	X	651	651	0	%100 %100
	****					,,,,,,

Company Designer Job Number : Maser Consulting

: NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 74: Structure Wm (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
68	M34	Z	0	0	0	%100
69	M35	X	736	736	0	%100
70	M35	Z	0	0	0	%100
71	M36	X	737	737	0	%100
72	M36	Z	0	0	0	%100
73	M37	X	788	788	0	%100
74	M37	Z	0	0	0	%100
75	M38	X	0	0	0	%100
76	M38	Z	0	0	0	%100
77	M39	X	788	788	0	%100
78	M39	Z	0	0	Ö	%100
79	M49	X	788	788	0	%100
80	M49	Z	0	0	Ö	%100
81	M50	X	0	0	0	%100
82	M50	Z	0	Ů Ů	Ŏ	%100 %100
83	M51	X	788	788	0	%100 %100
84	M51	Z	0	0	Ů	%100 %100
85	M61	X	527	527	0	%100
86	M61	Z	0	0	Ö	%100 %100
87	M62	X	527	527	0	%100 %100
88	M62	Z	0	0	0	%100 %100
89	M63	X	521	521	0	%100 %100
90	M63	Z	0	0	0	%100 %100
91	M64	X	639	639	0	%100 %100
92	M64	Z	0	0	0	%100 %100
93	M65	X	639	639	0	%100 %100
94	M65	Z	039	039	0	%100 %100
95	M66	X	639	639	0	%100 %100
96	M66	Ž	039	039	0	%100 %100
97	M67	X	639	639	0	%100 %100
98	M67	Z	039	039	0	%100 %100
99	M68	X	639	639	0	%100 %100
100	M68	Z	039	039	0	%100 %100
101	M69	X	639	639	0	%100 %100
102	M69	Z	039	039	0	%100 %100
102	M70	X	639	639	0	%100 %100
103	M70	Z	039	039	0	%100 %100
105	M71	X	639	639	0	%100 %100
106	M71	Z	039	039	0	%100 %100
107	M72	X	639	639	0	%100 %100
107	M72	Z	0	_	0	%100 %100
108	M73	X	639	639	0	%100 %100
110	M73	Z	639	639	0	%100 %100
111	M74	X	639	639	0	%100 %100
112	N74 M74	Z	639	639	0	%100 %100
	M75		-			%100 %100
113		X Z	639	639	0	
114	M75		0	0		%100 %100
115	MP1A	X Z	556	556	0	%100 %100
116	MP1A MP2A		0	0	0	%100 %100
117	MP2A	X	556	556	0	%100 %100
118	MP2A	Z	0	0	0	%100 %100
119	MP4A	X	556	556	0	%100
120	MP4A	Z	0	0	0	%100
121	MP5A	X	556	556	0	%100
122	MP5A	Z	0	0	0	%100
123	MPA	X	556	556	0	%100
124	MPA	Z	0	0	0	%100

Company Designer

Model Name

: Maser Consulting : NL : 21781092A 5:47 PM Job Number Checked By: DX : Mount Analysis (Rev. 3)

Nov 23, 2021

Member Distributed Loads (BLC 74: Structure Wm (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
125	MP6A	X	556	556	0	%100
126	MP6A	Z	0	0	0	%100
127	MP1C	X	556	556	0	%100
128	MP1C	Z	0	0	0	%100
129	MP1B	X	556	556	0	%100
130	MP1B	Z	0	0	0	%100
131	MPC	X	556	556	0	%100
132	MPC	Z	0	0	0	%100
133	MP2C	X	556	556	0	%100
134	MP2C	Z	0	0	0	%100
135	MP5C	X	556	556	0	%100
136	MP5C	Z	0	0	0	%100
137	MP6C	X	556	556	0	%100
138	MP6C	Z	0	0	Ö	%100 %100
139	MPB	X	556	556	0	%100 %100
140	MPB	Z	0	0	Ö	%100 %100
141	MPB2	X	556	556	0	%100 %100
142	MPB2	Z	0	0	0	%100 %100
143	MP5B	X	556	556	0	%100 %100
144	MP5B	Z	0	0	0	%100 %100
145	MP4C	X	556	556	0	%100 %100
146	MP4C	Z	0	0	0	%100 %100
147	MP3C	X	556	556	0	%100 %100
148	MP3C	Ž	0	0	0	%100 %100
149	M146	X	878	878	0	%100 %100
150	M146	Z	070	878	0	%100 %100
151	M147	X	878	878	0	%100 %100
152	M147	Ž	070	070	0	%100 %100
				-	-	
153	M154	X Z	878 0	878 0	0	%100 %100
154	M154			•	0	
155	M155	X Z	878	878	0	%100 %100
156	M155		0	0		%100 %100
157	M162	X Z	0	0	0	%100 %100
158	M162		0	0	0	%100
159	M163	X	0	0	0	%100
160	M163	Z	0	0	0	%100
161	MP3A	X	556	556	0	%100
162	MP3A	Z	0	0	0	%100
163	MP4B	X	556	556	0	%100
164	MP4B	Z	0	0	0	%100
165	MP6B	X	556	556	0	%100
166	MP6B	Z	0	0	0	%100
167	MP3B	X	556	556	0	%100
168	MP3B	Z	0	0	0	%100
169	M163A	X	556	556	0	%100
170	M163A	Z	0	0	0	%100
171	M166	X	351	351	0	%100
172	M166	Z	0	0	0	%100
173	M169A	X	351	351	0	%100
174	M169A	Z	0	0	0	%100
175	MP2B	X	556	556	0	%100
176	MP2B	Z	0	0	0	%100
177	M173A	X	088	088	0	%100
178	M173A	Z	0	0	0	%100
179	M176	X	088	088	0	%100
180	M176	Z	0	0	0	%100

: Maser Consulting : NL : 21781092A Company Designer Job Number

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg))

	Member Label	Direction		. End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	254	254	0	%100
2	M1	Z	146	146	0	%100
3	M2	X	254	254	0	%100
4	M2	Z	146	146	0	%100
5	M3	X	489	489	0	%100
6	M3	Z	282	282	0	%100
7	M4	X	489	489	0	%100
8	M4	Z	282	282	0	%100
9	M5	X	485	485	0	%100
10	M5	Z	28	28	0	%100
11	M6	X	71	71	0	%100
12	M6	Z	41	41	0	%100
13	M7	X	71	71	0	%100
14	M7	Z	41	41	0	%100
15	M8	X	178	178	0	%100
16	M8	Z	102	102	0	%100
17	M9	X	178	178	0	%100
18	M9	Z	102	102	0	%100
19	M10	X	854	854	0	%100
20	M10	Z	493	493	0	%100
21	M11	X	854	854	0	%100
22	M11	Z	493	493	0	%100
23	M12	X	564	564	0	%100
24	M12	Z	325	325	0	%100
25	M13	X	564	564	0	%100
26	M13	Z	325	325	0	%100
27	M14	X	564	564	0	%100
28	M14	Z	325	325	0	%100
29	M15	X	555	555	0	%100
30	M15	Z	321	321	0	%100
31	M16	X	555	555	0	%100
32	M16	Z	321	321	0	%100
33	M17	X	564	564	0	%100
34	M17	Z	325	325	0	%100
35	M18	X	254	254	0	%100
36	M18	Z	146	146	0	%100
37	M19	X	254	254	0	%100
38	M19	Z	146	146	0	%100
39	M20	X	178	178	0	%100
40	M20	Z	102	102	0	%100
41	M21	X	178	178	0	%100
42	M21	Z	102	102	0	%100
43	M22	X	0	0	0	%100
44	M22	Z	0	0	0	%100
45	M23	X	0	0	0	%100
46	M23	Z	0	0	0	%100
47	M24	X	564	564	0	%100
48	M24	Z	325	325	0	%100
49	M25	X	564	564	0	%100
50	M25	Z	325	325	0	%100
51	M26	X	308	308	0	%100
52	M26	Z	178	178	0	%100
53	M27	X	307	307	0	%100
54	M27	Z	177	177	0	%100
55	M28	X	564	564	0	%100
56	M28	Z	325	325	0	%100
57	M29	X	-1.014	-1.014	0	%100

Company Designer Job Number : Maser Consulting

: NL

: 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
58	M29	Z	586	586	0	%100
59	M30	X	-1.014	-1.014	0	%100
60	M30	Z	586	586	0	%100
61	M31	X	854	854	0	%100
62	M31	Z	493	493	0	%100
63	M32	X	854	854	0	%100
64	M32	Z	493	493	0	%100
65	M33	X	564	564	0	%100
66	M33	Z	325	325	0	%100
67	M34	X	564	564	0	%100
68	M34	Z	325	325	0	%100
69	M35	X	555	555	0	%100
70	M35	Z	321	321	0	%100
71	M36	X	555	555	0	%100
72	M36	Z	321	321	0	%100
73	M37	X	228	228	0	%100
74	M37	Z	131	131	0	%100
75	M38	X	228	228	0	%100
76	M38	Z	131	131	0	%100
77	M39	X	91	91	0	%100 %100
78	M39	Z	525	525	0	%100 %100
79	M49	X	228	228	0	%100
80	M49	Z	131	131	Ö	%100 %100
81	M50	X	228	228	0	%100 %100
82	M50	Z	131	131	Ö	%100 %100
83	M51	X	91	91	0	%100
84	M51	Z	525	525	Ö	%100 %100
85	M61	X	489	489	0	%100 %100
86	M61	Z	282	282	0	%100 %100
87	M62	X	489	489	0	%100 %100
88	M62	Z	282	282	0	%100 %100
89	M63	X	485	485	0	%100 %100
90	M63	Z	28	28	0	%100 %100
91	M64	X	489	489	0	%100 %100
92	M64	Z	282	282	0	%100 %100
93	M65	X	489	489	0	%100
94	M65	Z	282	282	0	%100 %100
95		X				%100 %100
96	M66 M66	Z	485 28	485 28	0	%100 %100
96	M67	X	26 489		0	
98	M67	Z	282	489 282	·	%100 %100
99		X	262 489	262 489	0	
	M68	Z			0	%100
100	M68	Z	282	282	0	%100
101	M69	X Z	485	485	0	%100
102	M69		28	28	0	%100
103	M70	X	586	586	0	%100
104	M70	Z	338	338	0	%100
105	M71	X	586	586	0	%100
106	M71	Z	338	338	0	%100 %100
107	M72	X	587	587	0	%100
108	M72	Z	339	339	0	%100
109	M73	X	586	586	0	%100
110	M73	Z	338	338	0	%100
111	M74	X	586	586	0	%100
112	M74	Z	338	338	0	%100
113	M75	X	587	587	0	%100
114	M75	Z	339	339	0	%100

Model Name

Company Designer Job Number Nov 23, 2021 5:47 PM : NL : 21781092A Checked By: DX : Mount Analysis (Rev. 3)

Member Distributed Loads (BLC 75: Structure Wm (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	. End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
115	MP1A	X	482	482	0	%100
116	MP1A	Z	278	278	0	%100
117	MP2A	X	482	482	0	%100
118	MP2A	Z	278	278	0	%100 %100
119	MP4A	X	482	482	0	%100 %100
120	MP4A	Z	278	278	Ö	%100 %100
121	MP5A	X	482	482	0	%100
122	MP5A	Z	278	278	Ö	%100 %100
123	MPA	X	482	482	0	%100
124	MPA	Z	278	278	Ö	%100 %100
125	MP6A	X	482	482	0	%100
126	MP6A	Z	278	278	Ō	%100
127	MP1C	X	482	482	0	%100
128	MP1C	Z	278	278	0	%100 %100
129	MP1B	X	482	482	0	%100
130	MP1B	Z	278	278	0	%100
131	MPC	X	482	482	0	%100 %100
132	MPC	Z	278	278	0	%100
133	MP2C	X	482	482	0	%100
134	MP2C	Z	278	278	0	%100 %100
135	MP5C	X	482	482	0	%100
136	MP5C	Z	278	278	0	%100 %100
137	MP6C	X	482	482	0	%100 %100
138	MP6C	Z	278	278	0	%100
139	MPB	X	482	482	0	%100
140	MPB	Z	278	278	0	%100
141	MPB2	X	482	482	0	%100
142	MPB2	Z	278	278	0	%100
143	MP5B	X	482	482	0	%100
144	MP5B	Z	278	278	0	%100
145	MP4C	X	482	482	0	%100
146	MP4C	Z	278	278	0	%100
147	MP3C	X	482	482	0	%100
148	MP3C	Z	278	278	0	%100
149	M146	X	254	254	0	%100
150	M146	Z	146	146	0	%100
151	M147	X	254	254	0	%100
152	M147	Z	146	146	0	%100
153	M154	X	-1.014	-1.014	0	%100
154	M154	Z	- 586	586	0	%100
155	M155	X	-1.014	-1.014	0	%100
156	M155	Z	586	586	0	%100
157	M162	X	254	254	0	%100
158	M162	Z	146	146	0	%100
159	M163	X	254	254	0	%100
160	M163	Z	146	146	0	%100
161	MP3A	X	482	482	0	%100
162	MP3A	Z	278	278	0	%100
163	MP4B	X	482	482	0	%100
164	MP4B	Z	278	278	0	%100
165	MP6B	X	482	482	0	%100
166	MP6B	Z	278	278	0	%100
167	MP3B	X	482	482	0	%100
168	MP3B	Z	278	278	0	%100
169	M163A	X	482	482	0	%100
170	M163A	Z	278	278	0	%100
171	M166	X	228	228	0	%100

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 75: Structure Wm (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
172	M166	Z	132	132	0	%100
173	M169A	X	228	228	0	%100
174	M169A	Z	132	132	0	%100
175	MP2B	X	482	482	0	%100
176	MP2B	Z	278	278	0	%100
177	M173A	X	0	0	0	%100
178	M173A	Z	0	0	0	%100
179	M176	X	0	0	0	%100
180	M176	Z	0	0	0	%100

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	X	439	439	0	%100
2	M1	Z	761	761	0	%100
3	M2	X	439	439	0	%100
4	M2	Z	761	761	0	%100
5	M3	X	32	32	0	%100
6	M3	Z	554	554	0	%100
7	M4	X	32	32	0	%100
8	M4	Z	554	554	0	%100
9	M5	X	319	319	0	%100
10	M5	Z	553	553	0	%100
11	M6	X	307	307	0	%100
12	M6	Z	533	533	0	%100
13	M7	X	307	307	0	%100
14	M7	Z	533	533	0	%100
15	M8	X	0	0	0	%100
16	M8	Z	0	0	0	%100
17	M9	X	0	0	0	%100
18	M9	Z	0	0	0	%100
19	M10	X	657	657	0	%100
20	M10	Z	-1.138	-1.138	0	%100
21	M11	X	657	657	0	%100
22	M11	Z	-1.138	-1.138	0	%100
23	M12	X	325	325	0	%100
24	M12	Z	564	564	0	%100
25	M13	X	325	325	0	%100
26	M13	Z	564	564	0	%100
27	M14	X	325	325	0	%100
28	M14	Z	564	564	0	%100
29	M15	X	368	368	0	%100
30	M15	Z	638	638	0	%100
31	M16	X	369	369	0	%100
32	M16	Z	638	638	0	%100
33	M17	X	325	325	0	%100
34	M17	Z	564	564	0	%100
35	M18	X	0	0	0	%100
36	M18	Z	0	0	0	%100
37	M19	X	0	0	0	%100
38	M19	Z	0	0	0	%100
39	M20	X	307	307	0	%100
40	M20	Z	533	533	0	%100
41	M21	Χ	307	307	0	%100
42	M21	Z	533	533	0	%100
43	M22	X	164	164	0	%100
44	M22	Z	285	285	0	%100

Model Name

Company Designer Job Number Nov 23, 2021 5:47 PM : NL : 21781092A Checked By: DX : Mount Analysis (Rev. 3)

Member Distributed Loads (BLC 76: Structure Wm (330 Deg)) (Continued)

45		Member Label	Direction	Start Magnitude[lb/ft	. End Magnitude[lb/ft,F	Start Location[ft.%]	End Location[ft,%]
46	45						
47			Z				
48 M24 Z 564							
49							
50 M25 Z -,564 -,564 0 %100 52 M26 Z -,391 -,391 0 %1100 52 M26 Z -,391 -,391 0 %1100 54 M27 Z -,399 -,399 0 %1100 55 M28 X -,325 -,325 0 %1100 56 M28 Z -,564 -,664 0 %1100 57 M29 X -,439 -,439 0 %1100 58 M29 Z -,761 -,761 0 %1100 59 M30 X -,439 -,439 0 %1100 60 M30 Z -,761 -,761 0 %1100 61 M31 X -,164 -,164 0 %1100 62 M31 Z -,2285 -,285 0 %1100 63 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
51 M26 X 226 0 9,4100 52 M26 Z 391 0 9,4100 53 M27 X 225 225 0 9,4100 54 M27 Z 39 39 0 9,4100 55 M28 X 325 325 0 9,4100 56 M28 Z 564 564 0 9,4100 57 M29 X 439 439 0 9,4100 58 M29 Z 761 761 0 9,4100 60 M30 Z 761 761 0 9,4100 61 M31 X 164 164 0 9,4100 62 M31 Z 285 285 0 9,4100 63 M32 X 164 164 0 9,4100 64 M32 Z			Z				
S2							
53			7				
54 M27 Z 39 39 0 %100 56 M28 X 325 0 %100 56 M28 Z 564 564 0 %100 57 M29 X 439 439 0 %100 58 M29 Z 761 761 0 %100 59 M30 X 439 439 0 %100 60 M30 Z 761 761 0 %100 61 M31 X 164 164 0 %100 62 M31 Z 285 285 0 %100 63 M32 X 164 164 0 %100 64 M32 Z 225 225 0 %100 65 M33 X 325 325 0 %100 66 M33 Z							
Section Sect			7				
56 M28 Z 564 564 0 %100 57 M29 X 439 439 0 %1100 58 M29 Z 761 761 0 %1100 59 M30 X 439 439 0 %100 60 M30 Z 761 761 0 %100 61 M31 X 164 164 0 %100 62 M31 Z 285 285 0 %100 63 M32 X 164 164 0 %100 64 M32 Z 285 225 0 %100 66 M33 X 325 225 0 %100 67 M34 X 325 325 0 %100 68 M34 Z 564 564 0 %100 70 M35							
57 M29 X 439 439 0 %100 58 M29 Z 761 761 0 %100 59 M30 X 439 439 0 %100 60 M30 Z 761 761 0 %100 61 M31 X 164 0 %100 62 M31 Z 285 285 0 %100 63 M32 X 164 164 0 %100 64 M32 Z 285 285 0 %100 65 M33 X 325 285 0 %100 66 M33 Z 564 564 0 %100 67 M34 X 325 325 0 %100 68 M34 Z 564 564 0 %100 69 M35 X			7				
58 M29 Z 761 761 0 %100 59 M30 X 439 439 0 %100 60 M30 Z 761 761 0 %100 61 M31 X 154 164 0 %100 62 M31 Z 285 285 0 %100 63 M32 X 164 164 0 %100 64 M32 Z 285 285 0 %100 65 M33 X 325 325 0 %100 66 M33 Z 564 564 0 %100 67 M34 X 325 325 0 %100 68 M34 Z 564 564 0 %100 70 M35 X 226 0 %100 71 M36 X							
59 M30 X 439 439 0 %100 60 M30 Z 761 761 0 %100 61 M31 X 164 164 0 %100 62 M31 Z 285 285 0 %100 63 M32 X 164 1 %100 64 M32 Z 285 285 0 %100 66 M33 X 325 325 0 %100 66 M33 Z 564 564 0 %100 67 M34 X 325 325 0 %100 68 M34 Z 564 564 0 %100 69 M35 X 226 226 0 %100 70 M35 Z 391 .391 0 %100 71 M36 X							
60 M30 Z761761 0 %100 61 M31 X164164 0 %100 62 M31 Z285285 0 %100 63 M32 X164164 0 %100 64 M32 Z285285 0 %100 65 M33 X164164 0 %100 66 M33 Z285285 0 %100 66 M33 Z285325 0 %100 67 M34 X325325 0 %100 68 M34 Z564564 0 %100 69 M35 X226226 0 %100 70 M35 Z391391 0 %100 70 M36 X225225 0 %100 71 M36 X225225 0 %100 72 M36 Z391391 0 %100 73 M37 X 0 0 0 %100 74 M37 Z 0 0 0 0 %100 75 M38 X394394 0 %100 77 M39 X394394 0 %100 78 M39 X394394 0 %100 79 M49 X 0 0 0 %100 79 M49 X 0 0 0 %100 80 M49 Z 0 0 0 %100 81 M50 X325683 0 %100 82 M50 Z683683 0 %100 83 M51 X394394 0 %100 84 M51 Z683683 0 %100 85 M61 X394394 0 %100 86 M61 X3232 0 %100 87 M62 X32394 0 %100 88 M60 X394394 0 %100 89 M61 X3232 0 %100 89 M63 X394394 0 %100 80 M64 Z683683 0 %100 87 M66 X3232 0 %100 88 M60 Z683683 0 %100 99 M63 X3232 0 %100 99 M64 Z456 0 %100 99 M66 X263 0 %100 99 M68 X263 0 %100 99 M68 X263 0 %100							
61 M31 X 164 164 0 %100 62 M31 Z 285 285 0 %100 63 M32 X 164 164 0 %100 64 M32 Z 285 285 0 %100 65 M33 X 325 325 0 %100 66 M33 Z 564 564 0 %100 67 M34 X 325 325 0 %100 68 M34 Z 564 564 0 %100 69 M35 X 226 226 0 %100 71 M36 X 225 225 0 %100 71 M36 X 225 225 0 %100 72 M36 X 394 394 0 %100 74 M37			7				
62 M31 Z -285 -285 O %100 63 M32 X -164 -164 O %100 64 M32 Z -285 -285 O %100 65 M33 X -325 -325 O %100 66 M33 Z -564 -564 O %100 67 M34 X -325 -325 O %100 68 M34 Z -564 -564 O %100 69 M35 X -226 -226 O %100 70 M35 Z -391 -391 O %100 71 M36 X -225 -225 O %100 72 M36 Z -391 -391 O %100 73 M37 X O O O %100 74 M37 Z O O O %100 75 M38 X -394 -394 O %100 76 M38 Z -683 -683 O %100 77 M39 X -394 -394 O %100 78 M39 Z -683 -683 O %100 79 M49 X O O O %100 80 M49 Z O O O %100 81 M50 X -394 -394 O %100 82 M50 X -394 -394 O %100 83 M51 X -394 -394 O %100 84 M51 X -394 -394 O %100 85 M60 X -394 -394 O %100 86 M60 X -394 -394 O %100 87 M60 X -394 -394 O %100 88 M39 Z -683 -683 O %100 89 M60 X -394 -394 O %100 80 M49 Z O O O O %100 81 M50 X -394 -394 O %100 82 M50 X -394 -394 O %100 83 M51 X -394 -394 O %100 84 M51 Z -683 -683 O %100 85 M61 X -32 -32 O O O O %100 86 M61 Z -554 -554 O %100 87 M62 X -32 -32 O %100 88 M62 Z -554 -554 O %100 99 M63 X -263 -263 O %100 99 M66 X -266 -266 O %100 99 M66 X -266 -266 O %100 99 M66 X -263 -263 O %100 99 M68 X -263 -263 O %100 99 M68 X -263 -263 O %100							
63 M32 X -,164 -,164 0 %100 64 M32 Z -,285 -,285 0 %100 65 M33 X -,325 -,325 0 %100 66 M33 Z -,564 -,564 0 %100 67 M34 X -,325 -,325 0 %100 68 M34 Z -,564 -,564 0 %100 69 M35 X -,226 -,226 0 %100 70 M35 Z -,391 -,391 0 %100 71 M36 X -,225 -,225 0 %100 72 M36 Z -,393 -,399 0 %100 73 M37 X 0 0 0 %100 74 M37 Z 0 0 0 %100 75 M38 X			7				
64 M32 Z -285 -285 0 %100 65 M33 X -325 -325 0 %100 66 M33 Z -564 -564 0 %100 67 M34 X -325 -325 0 %100 68 M34 Z -564 -564 0 %100 69 M35 X -226 -226 0 %100 70 M35 Z -391 0 %100 71 M36 X -225 -225 0 %100 72 M36 Z -391 -391 0 %100 73 M37 X 0 0 0 0 %100 74 M37 Z 0 0 0 0 %100 75 M38 X -394 -394 0 %100 76 M38 Z -683 -683 0 %100 77 M39 X -394 -394 0 %100 78 M39 Z -683 -683 0 %100 79 M49 X 0 0 0 0 %100 80 M49 Z 0 0 0 0 %100 81 M50 X -394 -394 0 %100 82 M50 X -394 -394 0 %100 83 M51 X -394 -394 0 %100 84 M51 Z -683 -683 0 %100 85 M60 X -394 -394 0 %100 86 M61 Z -554 -554 0 %100 87 M62 X -394 -394 0 %100 88 M62 Z -554 -554 0 %100 89 M63 Z -565 -565 0 %100 99 M63 Z -466 -456 0 %100 99 M66 X -263 -263 0 %100 99 M66 X -263 -263 0 %100 99 M68 Z -466 -456 0 %100 99 M68 Z -4656 -456 0 %100							
65 M33 X -325 -325 0 %100 66 M33 Z -564 -564 0 %100 67 M34 X -325 -325 0 %100 68 M34 Z -564 -564 0 %100 69 M35 X -226 -226 0 %100 70 M35 Z -391 0 %100 71 M36 X -225 -225 0 %100 72 M36 Z -39 -39 0 %100 73 M37 X 0 0 0 0 %100 74 M37 Z 0 0 0 0 %100 75 M38 X -324 -394 0 %100 76 M38 Z -683 -683 0 %100 77 M39 X -394 -394 0 %100 78 M39 Z -683 -683 0 %100 79 M49 X 0 0 0 0 %100 79 M49 X 0 0 0 0 %100 80 M49 Z 0 0 0 0 %100 81 M50 X -394 -394 0 %100 82 M50 Z -683 -683 0 %100 83 M51 X -394 -394 0 %100 84 M51 Z -683 -683 0 %100 85 M60 X -394 -394 0 %100 86 M49 Z 0 0 0 0 0 %100 87 M39 X -394 -394 0 %100 88 M49 Z 0 0 0 0 0 %100 89 M50 Z -683 -683 0 %100 80 M49 Z 0 0 0 0 0 %100 81 M50 X -394 -394 0 %100 82 M50 Z -683 -683 0 %100 83 M51 X -394 -394 0 %100 84 M51 Z -683 -683 0 %100 85 M61 X -32 -32 0 %100 86 M61 Z -555 0 -554 0 %100 87 M62 X -32 -32 0 %100 88 M62 Z -555 -553 0 %100 90 M63 Z -555 -553 0 %100 91 M64 X -263 -263 0 %100 92 M64 Z -466 -456 0 %100 93 M65 X -263 -263 0 %100 94 M65 Z -456 -456 0 %100 99 M68 X -263 -263 0 %100 99 M68 Z -456 -456 0 %100 99 M68 Z -456 -456 0 %100			7				
66 M33 Z -,564 -,564 0 %100 67 M34 X -,325 -,325 0 %100 68 M34 Z -,564 -,564 0 %100 69 M35 X -,226 -,226 0 %100 70 M35 Z -,391 -,391 0 %100 71 M36 X -,225 -,225 0 %100 72 M36 Z -,39 -,39 0 %100 73 M37 X 0 0 0 %100 74 M37 Z 0 0 0 %100 75 M38 X -,394 -,394 0 %100 76 M38 X -,394 -,394 0 %100 77 M39 X -,394 -,394 0 %100 78 M49 X							
67 M34 X -325 -325 0 %100 68 M34 Z564564564 0 %100 69 M35 X226226 0 %100 70 M35 X226226 0 %100 70 M35 Z3391391 0 %100 71 M36 X225225 0 %100 72 M36 Z3939 0 %100 73 M37 X 0 0 0 0 0 %100 74 M37 Z 0 0 0 0 0 %100 75 M38 X394394 0 %100 76 M38 Z683683 0 %100 77 M39 X394394 0 %100 78 M39 X394394 0 %100 78 M39 X394394 0 %100 78 M39 X394394 0 %100 79 M49 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			7				
68 M34 Z -,564 -,226 0 %100 69 M35 X -,226 -,226 0 %100 70 M35 Z -,391 0 %100 71 M36 X -,225 -,225 0 %100 72 M36 Z -,39 -,39 0 %100 73 M37 X 0 0 0 %100 74 M37 Z 0 0 0 %100 75 M38 X -,394 -,394 0 %100 76 M38 Z -,683 -,683 0 %100 77 M39 X -,394 -,394 0 %100 78 M39 Z -,683 -,683 0 %100 79 M49 X 0 0 0 %100 81 M50 X -,394 <							
69 M35 X 226 226 0 %100 70 M35 Z 391 391 0 %100 72 M36 X 225 225 0 %100 73 M37 X 0 0 0 %100 74 M37 Z 0 0 0 %100 75 M38 X 394 394 0 %100 76 M38 Z 683 683 0 %100 76 M38 Z 683 683 0 %100 77 M39 X 394 394 0 %100 78 M39 Z 683 683 0 %100 80 M49 X 0 0 0 %100 81 M50 X 394 394 0 %100 82 M50 Z							
70 M35 Z 391 391 0 %100 71 M36 X 225 225 0 %100 72 M36 Z 39 39 0 %100 73 M37 X 0 0 0 %100 74 M37 Z 0 0 0 %100 75 M38 X 394 394 0 %100 76 M38 Z 683 683 0 %100 77 M39 X 394 394 0 %100 78 M39 Z 683 683 0 %100 79 M49 X 0 0 0 %100 80 M49 Z 0 0 0 %100 81 M50 X 394 394 0 %100 82 M50 X 394							
71 M36 X 225 225 0 %100 72 M36 Z 39 39 0 %100 73 M37 X 0 0 0 %100 74 M37 Z 0 0 0 %100 75 M38 X 394 394 0 %100 76 M38 Z 683 683 0 %100 77 M39 X 394 394 0 %100 78 M39 Z 683 683 0 %100 79 M49 X 0 0 0 %100 80 M49 Z 0 0 0 %100 81 M50 X 394 394 0 %100 82 M50 Z 683 683 0 %100 84 M51 X 394			7				
72 M36 Z 39 39 0 %100 73 M37 X 0 0 0 %100 74 M37 Z 0 0 0 %100 75 M38 X 394 394 0 %100 76 M38 Z 683 683 0 %100 77 M39 X 394 394 0 %100 78 M39 Z 683 683 0 %100 79 M49 X 0 0 0 %100 80 M49 Z 0 0 0 %100 81 M50 X 394 394 0 %100 82 M50 Z 683 683 0 %100 83 M51 X 394 394 0 %100 84 M51 Z 683							
73 M37 X 0 0 0 %100 74 M37 Z 0 0 0 %100 75 M38 X 394 394 0 %100 76 M38 Z 683 683 0 %100 77 M39 X 394 394 0 %100 78 M39 Z 683 683 0 %100 79 M49 X 0 0 0 %100 80 M49 Z 0 0 0 %100 81 M50 X 394 394 0 %100 81 M50 X 394 394 0 %100 83 M51 X 394 394 0 %100 84 M51 Z 683 683 0 %100 85 M61 X 3			7				
74 M37 Z 0 0 %100 75 M38 X 394 394 0 %100 76 M38 Z 683 683 0 %100 77 M39 X 394 394 0 %100 78 M39 Z 683 683 0 %100 79 M49 X 0 0 0 %100 80 M49 X 0 0 0 %100 81 M50 X 394 394 0 %100 82 M50 Z 683 683 0 %100 83 M51 X 394 394 0 %100 84 M51 X 394 394 0 %100 85 M61 X 32 32 0 %100 86 M61 Z 554							
75 M38 X 394 394 0 %100 76 M38 Z 683 683 0 %100 77 M39 X 394 394 0 %100 78 M39 Z 683 683 0 %100 79 M49 X 0 0 0 %100 80 M49 Z 0 0 0 %100 81 M50 X 394 394 0 %100 82 M50 Z 683 683 0 %100 83 M51 X 394 394 0 %100 84 M51 Z 683 683 0 %100 85 M61 X 322 32 0 %100 86 M61 Z 554 554 0 %100 87 M62 X			7				
76 M38 Z 683 683 0 %100 77 M39 X 394 394 0 %100 78 M39 Z 683 683 0 %100 79 M49 X 0 0 0 %100 80 M49 Z 0 0 0 %100 81 M50 X 394 394 0 %100 82 M50 Z 683 683 0 %100 83 M51 X 394 394 0 %100 84 M51 Z 683 683 0 %100 85 M61 X 32 32 0 %100 86 M61 Z 554 554 0 %100 88 M62 Z 554 554 0 %100 89 M63 X							
77 M39 X 394 394 0 %100 78 M39 Z 683 683 0 %100 79 M49 X 0 0 0 %100 80 M49 Z 0 0 0 %100 81 M50 X 394 394 0 %100 82 M50 Z 683 683 0 %100 83 M51 X 394 394 0 %100 84 M51 Z 683 683 0 %100 86 M61 X 324 322 0 %100 87 M62 X 32 322 0 %100 87 M62 X 32 32 0 %100 88 M62 Z 554 554 0 %100 89 M63 X			Z				
78 M39 Z 683 683 0 %100 79 M49 X 0 0 0 %100 80 M49 Z 0 0 0 %100 81 M50 X 394 394 0 %100 82 M50 Z 683 683 0 %100 83 M51 X 394 394 0 %100 84 M51 Z 683 683 0 %100 85 M61 X 322 32 0 %100 86 M61 Z 554 554 0 %100 87 M62 X 32 32 0 %100 88 M62 Z 554 554 0 %100 89 M63 X 319 319 0 %100 91 M64 X							
79 M49 X 0 0 0 %100 80 M49 Z 0 0 0 %100 81 M50 X 394 394 0 %100 82 M50 Z 683 683 0 %100 83 M51 X 394 394 0 %100 84 M51 Z 683 683 0 %100 85 M61 X 32 32 0 %100 86 M61 Z 554 554 0 %100 87 M62 X 32 32 0 %100 89 M63 X 319 319 0 %100 89 M63 X 319 319 0 %100 90 M63 Z 553 553 0 %100 91 M64 X							
80 M49 Z 0 0 %100 81 M50 X 394 394 0 %100 82 M50 Z 683 683 0 %100 83 M51 X 394 394 0 %100 84 M51 Z 683 683 0 %100 85 M61 X 32 32 0 %100 86 M61 Z 554 554 0 %100 87 M62 X 32 32 0 %100 87 M62 X 32 554 0 %100 89 M63 X 319 319 0 %100 90 M63 Z 553 553 0 %100 91 M64 X 263 263 0 %100 92 M64 Z 4							
81 M50 X 394 394 0 %100 82 M50 Z 683 683 0 %100 83 M51 X 394 394 0 %100 84 M51 Z 683 683 0 %100 85 M61 X 32 32 0 %100 86 M61 Z 554 554 0 %100 87 M62 X 32 32 0 %100 88 M62 Z 554 554 0 %100 89 M63 X 319 319 0 %100 90 M63 Z 553 553 0 %100 91 M64 X 263 263 0 %100 92 M64 Z 456 456 0 %100 94 M65			7				
82 M50 Z 683 683 0 %100 83 M51 X 394 394 0 %100 84 M51 Z 683 683 0 %100 85 M61 X 32 32 0 %100 86 M61 Z 554 554 0 %100 87 M62 X 32 32 0 %100 88 M62 Z 554 554 0 %100 89 M63 X 319 0 %100 90 M63 Z 553 553 0 %100 91 M64 X 263 263 0 %100 92 M64 Z 456 456 0 %100 93 M65 X 263 263 0 %100 94 M65 Z <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
83 M51 X 394 394 0 %100 84 M51 Z 683 683 0 %100 85 M61 X 32 32 0 %100 86 M61 Z 554 554 0 %100 87 M62 X 32 32 0 %100 88 M62 Z 554 554 0 %100 89 M63 X 319 0 %100 90 M63 Z 553 553 0 %100 91 M64 X 263 263 0 %100 92 M64 Z 456 456 0 %100 93 M65 X 263 263 0 %100 94 M65 Z 456 456 0 %100 96 M66 X <t< td=""><td></td><td></td><td>7</td><td></td><td></td><td></td><td></td></t<>			7				
84 M51 Z 683 683 0 %100 85 M61 X 32 32 0 %100 86 M61 Z 554 554 0 %100 87 M62 X 32 32 0 %100 88 M62 Z 554 554 0 %100 89 M63 X 319 319 0 %100 90 M63 Z 553 553 0 %100 91 M64 X 263 263 0 %100 92 M64 Z 456 456 0 %100 93 M65 X 263 263 0 %100 94 M65 Z 456 456 0 %100 95 M66 X 26 26 0 %100 96 M66							
85 M61 X 32 32 0 %100 86 M61 Z 554 554 0 %100 87 M62 X 32 32 0 %100 88 M62 Z 554 554 0 %100 89 M63 X 319 319 0 %100 90 M63 Z 553 553 0 %100 91 M64 X 263 263 0 %100 92 M64 Z 456 456 0 %100 93 M65 X 263 263 0 %100 94 M65 Z 456 456 0 %100 95 M66 X 26 26 0 %100 96 M66 Z 451 451 0 %100 98 M67			7				
86 M61 Z 554 554 0 %100 87 M62 X 32 32 0 %100 88 M62 Z 554 554 0 %100 89 M63 X 319 319 0 %100 90 M63 Z 553 553 0 %100 91 M64 X 263 263 0 %100 92 M64 Z 456 456 0 %100 93 M65 X 263 263 0 %100 94 M65 Z 456 456 0 %100 95 M66 X 26 26 0 %100 96 M66 Z 451 451 0 %100 98 M67 X 263 263 0 %100 99 M68						-	
87 M62 X 32 32 0 %100 88 M62 Z 554 554 0 %100 89 M63 X 319 319 0 %100 90 M63 Z 553 553 0 %100 91 M64 X 263 263 0 %100 92 M64 Z 456 456 0 %100 93 M65 X 263 263 0 %100 94 M65 Z 456 456 0 %100 95 M66 X 26 26 0 %100 96 M66 Z 451 451 0 %100 97 M67 X 263 263 0 %100 98 M67 Z 456 456 0 %100 99 M68			Z				
88 M62 Z 554 554 0 %100 89 M63 X 319 319 0 %100 90 M63 Z 553 553 0 %100 91 M64 X 263 263 0 %100 92 M64 Z 456 456 0 %100 93 M65 X 263 263 0 %100 94 M65 Z 456 456 0 %100 95 M66 X 26 26 0 %100 96 M66 Z 451 451 0 %100 97 M67 X 263 263 0 %100 98 M67 Z 456 456 0 %100 99 M68 X 263 263 0 %100 100 M68							
89 M63 X 319 319 0 %100 90 M63 Z 553 553 0 %100 91 M64 X 263 263 0 %100 92 M64 Z 456 456 0 %100 93 M65 X 263 263 0 %100 94 M65 Z 456 456 0 %100 95 M66 X 26 26 0 %100 96 M66 Z 451 451 0 %100 97 M67 X 263 263 0 %100 98 M67 Z 456 456 0 %100 99 M68 X 263 263 0 %100 100 M68 Z 456 456 0 %100			7				
90 M63 Z 553 553 0 %100 91 M64 X 263 263 0 %100 92 M64 Z 456 456 0 %100 93 M65 X 263 263 0 %100 94 M65 Z 456 456 0 %100 95 M66 X 26 26 0 %100 96 M66 Z 451 451 0 %100 97 M67 X 263 263 0 %100 98 M67 Z 456 456 0 %100 99 M68 X 263 263 0 %100 100 M68 Z 456 456 0 %100							
91 M64 X 263 263 0 %100 92 M64 Z 456 456 0 %100 93 M65 X 263 263 0 %100 94 M65 Z 456 456 0 %100 95 M66 X 26 26 0 %100 96 M66 Z 451 451 0 %100 97 M67 X 263 263 0 %100 98 M67 Z 456 456 0 %100 99 M68 X 263 263 0 %100 100 M68 Z 456 456 0 %100			7				
92 M64 Z 456 456 0 %100 93 M65 X 263 263 0 %100 94 M65 Z 456 456 0 %100 95 M66 X 26 26 0 %100 96 M66 Z 451 451 0 %100 97 M67 X 263 263 0 %100 98 M67 Z 456 456 0 %100 99 M68 X 263 263 0 %100 100 M68 Z 456 456 0 %100			X				
93 M65 X 263 263 0 %100 94 M65 Z 456 456 0 %100 95 M66 X 26 26 0 %100 96 M66 Z 451 451 0 %100 97 M67 X 263 263 0 %100 98 M67 Z 456 456 0 %100 99 M68 X 263 263 0 %100 100 M68 Z 456 456 0 %100			7				
94 M65 Z 456 456 0 %100 95 M66 X 26 26 0 %100 96 M66 Z 451 451 0 %100 97 M67 X 263 263 0 %100 98 M67 Z 456 456 0 %100 99 M68 X 263 263 0 %100 100 M68 Z 456 456 0 %100							
95 M66 X 26 26 0 %100 96 M66 Z 451 451 0 %100 97 M67 X 263 263 0 %100 98 M67 Z 456 456 0 %100 99 M68 X 263 263 0 %100 100 M68 Z 456 456 0 %100			7				
96 M66 Z 451 451 0 %100 97 M67 X 263 263 0 %100 98 M67 Z 456 456 0 %100 99 M68 X 263 263 0 %100 100 M68 Z 456 456 0 %100							
97 M67 X 263 263 0 %100 98 M67 Z 456 456 0 %100 99 M68 X 263 263 0 %100 100 M68 Z 456 456 0 %100			7				
98 M67 Z 456 0 %100 99 M68 X 263 263 0 %100 100 M68 Z 456 456 0 %100							
99 M68 X263263 0 %100 100 M68 Z456456 0 %100			7				
100 M68 Z456456 0 %100							
101 M69 X2626 0 %100			7				
			X				

Company Designer Job Number : NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 76: Structure Wm (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
102	M69	Z	451	451	0	%100
103	M70	X	32	32	0	%100
104	M70	Z	554	554	0	%100
105	M71	X	32	32	0	%100
106	M71	Z	554	554	0	%100
107	M72	X	319	319	0	%100
108	M72	Z	553	553	0	%100
109	M73	X	32	32	0	%100
110	M73	Z	554	554	0	%100
111	M74	X	32	32	0	%100
112	M74	Z	554	554	0	%100
113	M75	X	319	319	0	%100
114	M75	Z	553	553	0	%100
115	MP1A	X	278	278	0	%100
116	MP1A	Z	482	482	0	%100
117	MP2A	X	278	278	0	%100
118	MP2A	Z	482	482	0	%100
119	MP4A	X	278	278	0	%100
120	MP4A	Z	482	482	0	%100
121	MP5A	X	278	278	0	%100
122	MP5A	Z	482	482	0	%100
123	MPA	X	278	278	0	%100
124	MPA	Z	482	482	0	%100
125	MP6A	X	278	278	0	%100
126	MP6A	Z	482	482	0	%100
127	MP1C	X	278	278	0	%100
128	MP1C	Z	482	482	Ö	%100
129	MP1B	X	278	278	0	%100
130	MP1B	Z	482	482	Ö	%100
131	MPC	X	278	278	0	%100
132	MPC	Z	482	482	Ů	%100
133	MP2C	X	278	278	0	%100
134	MP2C	Z	482	482	Ö	%100 %100
135	MP5C	X	278	278	0	%100
136	MP5C	Z	482	482	0	%100
137	MP6C	X	278	278	0	%100 %100
138	MP6C	Z	482	482	0	%100 %100
139	MPB	X	278	278	0	%100 %100
140	MPB	Z	482	482	0	%100 %100
141	MPB2	X	278	278	0	%100 %100
142	MPB2	Z	482	482	0	%100 %100
143	MP5B	X	278	278	0	%100 %100
144	MP5B	Z	482	482	0	%100 %100
145	MP4C	X	278	278	0	%100 %100
146	MP4C	Z	482	482	0	%100 %100
147	MP3C	X	278	278	0	%100 %100
148	MP3C	Ž	482	482	0	%100 %100
149	M146	X			0	%100 %100
150	N146 M146	Z	0	0	0	%100 %100
151	M147	X	0	0	0	%100 %100
152	M147	Z	0	0	0	%100 %100
153	M154		439	439		%100 %100
		X Z	439	439	0	
154	M154					%100 %100
155	M155	X	439	439	0	%100 %100
156	M155	Z	761	761	0	%100 %100
157	M162	X	439	439	0	%100 %100
158	M162	Z	761	761	0	%100

Company : Maser Consulting

Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3)

Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 76: Structure Wm (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
159	M163	X	439	439	0	%100
160	M163	Z	761	761	0	%100
161	MP3A	X	278	278	0	%100
162	MP3A	Z	482	482	0	%100
163	MP4B	X	278	278	0	%100
164	MP4B	Z	482	482	0	%100
165	MP6B	X	278	278	0	%100
166	MP6B	Z	482	482	0	%100
167	MP3B	X	278	278	0	%100
168	MP3B	Z	482	482	0	%100
169	M163A	X	278	278	0	%100
170	M163A	Z	482	482	0	%100
171	M166	X	044	044	0	%100
172	M166	Z	076	076	0	%100
173	M169A	X	044	044	0	%100
174	M169A	Z	076	076	0	%100
175	MP2B	X	278	278	0	%100
176	MP2B	Z	482	482	0	%100
177	M173A	X	044	044	0	%100
178	M173A	Z	076	076	0	%100
179	M176	X	044	044	0	%100
180	M176	Z	076	076	0	%100

Member Distributed Loads (BLC 87 : BLC 39 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	Υ	-5.471	-5.471	3.609	10.808
2	M18	Υ	-5.471	-5.471	3.609	10.808
3	M29	Υ	-5.471	-5.471	3.609	10.808
4	M1	Υ	451	-4.506	1.442	3.46
5	M1	Υ	-4.506	-8.403	3.46	5.478
6	M1	Υ	-8.403	-10.449	5.478	7.497
7	M1	Υ	-10.449	-6.828	7.497	9.515
8	M1	Υ	-6.828	451	9.515	11.533
9	M10	Υ	-5.059	-5.059	2.911	4.433
10	M22	Υ	-5.73	-5.73	3.484	5.131
11	M18	Υ	451	-4.506	1.442	3.46
12	M18	Υ	-4.506	-8.403	3.46	5.478
13	M18	Υ	-8.403	-10.449	5.478	7.497
14	M18	Υ	-10.449	-6.828	7.497	9.515
15	M18	Υ	-6.828	451	9.515	11.533
16	M22	Υ	-5.059	-5.059	2.911	4.433
17	M31	Υ	-5.73	-5.73	3.484	5.131
18	M10	Υ	-5.73	-5.73	3.484	5.131
19	M29	Υ	451	-4.506	1.442	3.46
20	M29	Υ	-4.506	-8.403	3.46	5.478
21	M29	Υ	-8.403	-10.449	5.478	7.497
22	M29	Υ	-10.449	-6.828	7.497	9.515
23	M29	Υ	-6.828	451	9.515	11.533
24	M31	Υ	-5.059	-5.059	2.911	4.433

Member Distributed Loads (BLC 88 : BLC 40 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	Υ	-16.203	-16.203	3.609	10.808
2	M18	Υ	-15.782	-15.782	3.609	10.808
3	M29	Υ	-15.782	-15.782	3.609	10.808
4	M1	Υ	-1.352	-13.518	1.442	3.46

Company : Maser Consulting

Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3)

Nov 23, 2021 5:47 PM Checked By: DX

Member Distributed Loads (BLC 88 : BLC 40 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
5	M1	Υ	-13.518	-25.208	3.46	5.478
6	M1	Υ	-25.208	-31.348	5.478	7.497
7	M1	Υ	-31.348	-20.484	7.497	9.515
8	M1	Υ	-20.484	-1.352	9.515	11.533
9	M10	Υ	-15.177	-15.177	2.911	4.433
10	M22	Υ	-17.19	-17.19	3.484	5.131
11	M18	Υ	-1.352	-13.518	1.442	3.46
12	M18	Υ	-13.518	-25.208	3.46	5.478
13	M18	Υ	-25.208	-31.348	5.478	7.497
14	M18	Υ	-31.348	-20.484	7.497	9.515
15	M18	Υ	-20.484	-1.352	9.515	11.533
16	M22	Υ	-15.177	-15.177	2.911	4.433
17	M31	Υ	-17.19	-17.19	3.484	5.131
18	M10	Υ	-17.19	-17.19	3.484	5.131
19	M29	Υ	-1.352	-13.518	1.442	3.46
20	M29	Υ	-13.518	-25.208	3.46	5.478
21	M29	Υ	-25.208	-31.348	5.478	7.497
22	M29	Υ	-31.348	-20.484	7.497	9.515
23	M29	Υ	-20.484	-1.352	9.515	11.533
24	M31	Υ	-15.177	-15.177	2.911	4.433

Member Area Loads (BLC 39 : Structure D)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N217	N116A	N117	N219A	Υ	Two Way	005
2	N115A	N226	N227	N116B	Υ	Two Way	005
3	N235	N118	N119A	N236	Υ	Two Way	005
4	N5	N36	N77	N112A	Υ	Two Way	005
5	N117A	N78	N119	N126	Υ	Two Way	005
6	N131	N120	N35	N140	Υ	Two Way	- 005

Member Area Loads (BLC 40 : Structure Di)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N217	N116A	N117	N219A	Υ	Two Way	015
2	N115A	N226	N227	N116B	Υ	Two Way	015
3	N235	N118	N119A	N236	Υ	Two Way	015
4	N5	N36	N77	N112A	Υ	Two Way	015
5	N117A	N78	N119	N126	Υ	Two Way	015
6	N131	N120	N35	N140	Υ	Two Way	015

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N28	max	-1505.712	65	4021.603	24	3985.646	13	.015	18	Ō	75	.005	48
2		min	-6432.614	15	481.964	6	830.414	6	009	48	0	1	009	18
3	N27	max	7581.304	21	1306.99	18	582.203	3	.014	24	0	75	.006	42
4		min	-1076.877	3	-483.929	12	-4489.318	21	01	42	0	1	008	24
5	N69	max		11	1252.171	14	730.743	11	.014	14	0	75	.008	14
6		min	-6636.531	17	-113.292	8	-3479.995	17	011	32	0	1	006	32
7	N70	max	5533.754	23	3433.433	20	2947.978	22	.014	24	0	75	.008	24
8		min	1378.498	5	700.373	2	771.605	64	012	30	0	1	007	30
9	N111	max	903.978	10	1356.679	22	7108.265	13	0	10	0	75	.002	4
10		min	-689.551	4	-169.611	4	-1549.24	7	0	4	0	1	007	22
11	N112	max	295.253	10	4053.696	16	-1430.046		0	10	0	75	.005	10
12		min	-497.91	4	778.982	10	-6041.187	19	0	4	0	1	009	4

Company Designer : NL

Job Number : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Envelope Joint Reactions (Continued)

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
13	Totals:	max	8380.194	10	14288.541	15	7992.321	1						
14		min	-8380.141	4	3712.014	71	-7992.37	7						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

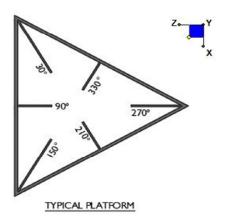
	Member	Shape	Code Check		LC	Shear Check	k Loc[ft] [Dir	LC			phi*Mn	.phi*Mn	.Cb Eqn
1	M1	L3X3X4	.312	9.461	26	.370	0	z	13	17395.3		1.688	3.595	2 H2-1
2	M2	L3X3X4	.407	1.352	12	.412	0	У	13	36458.3		1.688	2.122	1 H2-1
3	M3	L2x2x3	.038	1.387	12	.026	2.833	Z	4	15645.9		.558	1.163	1 H2-1
4	M4	L2x2x3	.042	1.417	7	.033	0	Z	9	15646.6		.558	1.163	1 H2-1
5	M5	L2x2x3	.023	1.427	7	.030	0	z	1	15558.4	23392.8	.558	1.162	1 H2-1
6	M6	L6X3.5X6	.090	.25	8	.236	.25	у	9	102181	111456	4.002	13.334	1 H2-1
7	M7	L6X3.5X6	.056	.5	8	244		У	2	102181	111456	3.896	13.971	2 H2-1
8	M8	L6X3.5X6	.110	.25	12	.265	.25	У	1	102181		4.002	13.447	1 H2-1
9	M9	L6X3.5X6	.075	.5	12	.289	.25	У	6	102181		3.896	13.971	1 H2-1
10	M10	L3.5X3.5X6	.468	3.658	18	.178	6.625	z	24	39693.7	81000	3.34	7.452	3 H2-1
11	M11	L3.5X3.5X6	.533	6.211	22	.221	6.418	У	24	67476.8	81000	3.34	7.452	1 H2-1
12	M12	L2x2x3	.253	1.146	24	.020	0	z	12	17104.1	23392.8	.558	1.189	1 H2-1
13	M13	L2x2x3	.100	1.146	24	.005	0	z	6	17104.1	23392.8	.558	1.189	1 H2-1
14	M14	L2x2x3	.048	1.328	24	.015	0	z	11	17104.1	23392.8	.558	1.189	1 H2-1
15	M15	L2x2x3	.295	1.835	19	.018	3.595	У	12	12243.4	23392.8	.558	1.11	1 H2-1
16	M16	L2x2x3	.357	1.803	14	.015	0	У	6	12190.54	23392.8	.558	1.109	1 H2-1
17	M17	L2x2x3	.032	1.328	19	.010		У	8	17104.1		.558	1.189	1 H2-1
18	M18	L3X3X4	.344	1.502	3	.446	0	z	21	17395.3		1.688	2.122	1 H2-1
19	M19	L3X3X4	.387	3.454	9	.416	10.062	z	21	36458.3	46656	1.688	2.122	1 H2-1
20	M20	L6X3.5X6	.100	.25	5	.253	.25	У	17	102181	111456	3.896	13.409	1 H2-1
21	M21	L6X3.5X6	.061	.25	24	.104	.25	V	12	102181	111456	4.002	14.35	1 H2-1
22	M22	L3.5X3.5X6	.387	3.658	14	.161	6.625	z	20	39693.7	81000	3.34	7.452	2 H2-1
23	M23	L3.5X3.5X6	.471	6.211	17	.200	6.418	ν	14	67476.8	81000	3.34	7.452	2 H2-1
24	M24	L2x2x3	.211	1.146	20	.013	0	z	8	17104.1	23392.8	.558	1.189	1 H2-1
25	M25	L2x2x3	.087	1.146	20	.003	0	z	2	17104.1	23392.8	.558	1.189	1 H2-1
26	M26	L2x2x3	.270	1.835	15	.023	0	z	14	12243.4	23392.8	.558	1.11	1 H2-1
27	M27	L2x2x3	.316	1.803	22	.013	3.607	٧	8	12190.54	23392.8	.558	1.109	1 H2-1
28	M28	L2x2x3	.058	1.328	16	.009	2.5	У	10	17104.1	23392.8	.558	1.189	1 H2-1
29	M29	L3X3X4	.295	13.3	11	.554	14.417	z	17	17395.3	46656	1.688	2.122	1 H2-1
30	M30	L3X3X4	.740	11.5	5	.450	14.417	٧	16	36458.3	46656	1.688	2.122	1 H2-1
31	M31	L3.5X3.5X6	.413	3.658	19	.171	6.625	z	16	39693.7	81000	3.34	7.452	2.1 H2-1
32	M32	L3.5X3.5X6	.523	6.211	14	.213	6.418	٧	19	67476.8		3.34		2 H2-1
33	M33	L2x2x3	.249	1.146	16	.011	0	z	4	17104.1		.558	1.189	1 H2-1
34	M34	L2x2x3	.085	1.146	16	.003	0	z	10	17104.1	23392.8	.558	1.189	1 H2-1
35	M35	L2x2x3	.337	1.835	23	.017	0	z	23	12243.4	23392.8	.558	1.11	1 H2-1
36	M36	L2x2x3	.359	1.803	18	.012	0	У	4	12190.54	23392.8	.558	1.109	1 H2-1
37	M37	L3X3X4	.531	2.354	18	.227	2.354	z	16	41255.5	46656	1.688	3.272	1 H2-1
38	M38	L3X3X4	.540	2.354	21	.153	2.354	z	17	41255.5	46656	1.688	3.272	1 H2-1
39	M39	L3X3X4	.518	2.354	14	.191	2.354	z	21	41255.5	46656	1.688	3.272	1 H2-1
40	M49	L3X3X4	.557	2.354	17	.205	2.354	٧	17	28552.3	46656	1.688	3.473	1 H2-1
41	M50	L3X3X4	.597	2.354	22	.146	2.354	v		28552.3		1.688		1 H2-1
42	M51	L3X3X4	.545	2.354		.169	2.354			28552.3		1.688		1 H2-1
43	M61	L2x2x3	.040	1.358	44	.030	0	٧	24	15645.9	23392.8	.558	1.163	1 H2-1
44	M62	L2x2x3	.031	1.417	7	.012	0	ý		15646.6		.558		1 H2-1
45	M63	L2x2x3	.033	1.427	7	.051	2.853	z				.558		1 H2-1
46	M64	L2x2x3	.023	1.417	9	.023		у	9	15645.9	23392.8	.558		1 H2-1
47	M65	L2x2x3	.053	1.446	17	.050		y	9	15646.6	23392.8	.558		1 H2-1
48	M66	L2x2x3	.027	1.456	17	.047		z	9	15558.4	23392.8	.558		1 H2-1
49	M67	L2x2x3	.071	1.387	17	.013		z	9	15645.9		.558	1.163	1 H2-1
50	M68	L2x2x3	.042	1.387		.031		z	3	15646.6	23392.8	.558		1 H2-1

Company Designer Job Number : NL : 21781092A

Model Name : Mount Analysis (Rev. 3) Nov 23, 2021 5:47 PM Checked By: DX

Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)

	Member	Shape	Code Check	Loc[Shear Check			LC	phi*Pnc	phi*Pnt	phi*Mn	.phi*Mn	.Cb Eqn
51	M69	L2x2x3	.038	1.456	13	.037	2.853	z	22	15558.4	.23392.8	.558	1.162	1 H2-1
52	M70	L2x2x3	.051	1.387	19	.022	0	У	5	15645.9	.23392.8	.558	1.163	1 H2-1
53	M71	L2x2x3	.045	1.387	15	.020	2.833	Z	14	15646.6	.23392.8	.558	1.163	1 H2-1
54	M72	L2x2x3	.036	1.456	13	.040	0	z	5	15558.4	.23392.8	.558	1.162	1 H2-1
55	M73	L2x2x3	.039	1.417	11	.015	0	z	10	15645.9	.23392.8	.558	1.163	1 H2-1
56	M74	L2x2x3	.046	1.446	22	.032	2.833	z	5	15646.6	.23392.8	.558	1.163	1 H2-1
57	M75	L2x2x3	.036	1.427	11	.096	0	z	17	15558.4	.23392.8	.558	1.162	1 H2-1
58	MP1A	PIPE_2.0	.182	3.333	5	.178	3.333		2	14916.0	32130	1.872	1.872	1H1-1b
59	MP2A	PIPE 2.0	.100	2.5	1	.161	2.5		1	20866.7	32130	1.872	1.872	1H1-1b
60	MP4A	PIPE_2.0	.187	3.333	12	.045	3.333		11	14916.0	32130	1.872	1.872	2H1-1b
61	MP5A	PIPE 2.0	.145	3.333	1	.052	3.333		4	14916.0		1.872	1.872	1H1-1b
62	MPA	PIPE_2.0	.017	2.5	4	.103	2.5		13	20866.7	32130	1.872	1.872	1H1-1b
63	MP6A	PIPE 2.0	.123	5.083	6	.137	6.5		2	14916.0		1.872	1.872	1H1-1b
64	MP1C	PIPE 2.0	.581	3.333	11	.195	3.333		11	14916.0	32130	1.872	1.872	1H1-1b
65	MP1B	PIPE 2.0	.186	3.333	9	.224	3.333		5	14916.0		1.872	1.872	1H1-1b
66	MPC	PIPE_2.0	.015	2.5	10	.073	2.5		22	20866.7		1.872	1.872	1H1-1b
67	MP2C	PIPE 2.0	.121	2.5	8	.048	2.5		9	20866.7		1.872	1.872	1H1-1b
68	MP5C	PIPE_2.0	.138	3.333	8	.104	3.333		9	14916.0		1.872	1.872	1H1-1b
69	MP6C	PIPE 2.0	.201	5	8	.173	2.5		8	20866.7		1.872	1.872	1H1-1b
70	MPB	PIPE 2.0	.135	2.5	5	.258	2.5		5	20866.7	32130	1.872	1.872	1 H3-6
71	MPB2	PIPE 2.0	.796	2.5	8	.336	2.5		8	20866.7		1.872	1.872	1 H3-6
72	MP5B	PIPE_2.0	.098	2.5	11	.083	2.5		5	20866.7	32130	1.872	1.872	1H1-1b
73	MP4C	PIPE 2.0	.242	3.333	2	.053	3.333		2	14916.0		1.872	1.872	1H1-1b
74	MP3C	PIPE_2.0	.137	3.333	8	.051	3.333		9	14916.0		1.872	1.872	1H1-1b
75	M146	L3X3X4	.362	3.604	24	.134	3.604		16			1.688	3.179	1 H2-1
76	M147	L3X3X4	.296	3.604	18	.133	3.604	z	5	14879.2		1.688	3.185	1 H2-1
77	M154	L3X3X4	.331	3.604	24	.117	3.604			14879.2		1.688	3.175	1 H2-1
78	M155	L3X3X4	.276	3.604	14	.111	3.604		13	14879.2		1.688	3.185	1 H2-1
79	M162	L3X3X4	.422	3.604	16	.103	3.604		17	14879.2		1.688	3.172	1 H2-1
80	M163	L3X3X4	.356	3.604	22	.115	3.604	Z	5	14879.2		1.688	3.175	1 H2-1
81	MP3A	PIPE 2.0	.095	2.5	_1_	.095	2.5		13	20866.7	32130	1.872	1.872	1H1-1b
82	MP4B	PIPE_2.0	.094	3.333		.071	3.333		5	14916.1		1.872	1.872	2H1-1b
83	MP6B	PIPE 2.0	.069	2.5	5	.134	2.5		5	20866.7		1.872	1.872	1H1-1b
84	MP3B	PIPE_2.0	.146	3.333	5	.060	3.333		11	14916.0		1.872	1.872	1H1-1b
85	M163A	PIPE 2.0	.405	2.5	5	.272	5		4	20866.7		1.872	1.872	1H1-1b
86	M166	PIPE_2.0	.195	.875	1_	.106	.875		12	31747.0		1.872	1.872	1H1-1b
87	M169A	PIPE 2.0	.238	.875	7	.127	.875		19	31747.0		1.872	1.872	1H1-1b
88	MP2B	PIPE_2.0	.233	5	9	.159	6.5		2	14916.0		1.872	1.872	1H1-1b
89	M173A	PIPE 2.0	.311	.875	5	.170	.875		4	31747.0		1.872	1.872	1H1-1b
90	M176	PIPE_2.0	.335	.875	10	.185	.875		10	31747.0	32130	1.872	1.872	1H1-1b


Client:	Verizon Wireless	Date:	11/23/2021
Site Name:	STORRS CT		
Project No.	21781092A		
Title:	Mount Analysis (Rev. 3)	Page:	1

Version 3.1

I. Mount-to-Tower Connection Check

RISA Model Data

Nodes (labeled per RISA)	Orientation (per graphic of typical platform)
N111	270
N112	270
N27	30
N28	30
N69	150
N70	150

Tower Connection Bolt Checks

Any moment resistance?:

Bolt Quantity per Reaction:

 d_x (in) (Delta X of typ. bolt config. sketch):

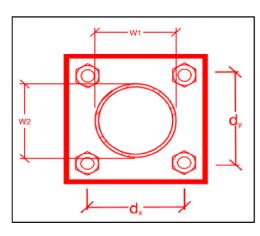
 d_y (in) (Delta Y of typ. bolt config. sketch):

Bolt Type:

Bolt Diameter (in):

Required Tensile Strength (kips):

Required Shear Strength (kips):


Tensile Strength / bolt (kips):

Shear Strength / bolt (kips):

Tensile Capacity Overall:

Shear Capacity Overall:

Yes	
2	
2.625	
2	
U-Bolt	
0.625	
8.8	
4.2	
25.5	
15.3	
17.3%*	
13.6%	

*Note: Tension reduction not required if tension or shear capacity < 30%

November 29, 2021 Site ID: 468927-VZW / STORRS CT Page | 1

Mount Desktop – Post Modification Inspection (PMI) Report Requirements

Documents & Photos Required from Contractor – Passing Mount Analysis

Passing Mount Analysis requires a PMI due to a modification in loading.

Electronic pdf version of this can be downloaded at https://pmi.vzwsmart.com.

For additional questions and support, please reach out to pmisupport@colliersengineering.com

<u>Purpose</u> – to provide SMART Tool structural vendor the proper documentation in order to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the installation was completed in accordance with this Passing Mount Analysis.
- Contractor shall relay any data that can impact the performance of the mount, this includes safety issues.

Base Requirements:

- If installation will cause damage to the structure, the climbing facility, or safety climb if present or any installed system, SMART Tool vendor to be notified prior to install. Any special photos outside of the standard requirements will be indicated on the drawings.
- Provide "as built mount drawings" showing contractor's name, contact information, preparer's
 signature, and date. Any deviations from the drawings (Proposed modification) shall be shown.
 NOTE: If loading is different than what is conveyed in the passing mount analysis (MA) contact
 the SMART Tool vendor immediately.
- Each photo should be time and date stamped
- Photos should be high resolution.
- Contractor shall ensure that the safety climb wire rope is supported and not adversely
 impacted by the install of the modification components. This may involve the install of wire
 rope guides, or other items to protect the wire rope. If there is conflict, contact the SMART Tool
 engineer for recommendations.
- The PMI can be accessed at the following portal: https://pmi.vzwsmart.com

Photo Requirements:

- <u>Photos taken at ground level</u>
 - o Photo of Gate Signs showing the tower owner, site name, and number.
 - Overall tower structure after installation.
 - Photos of the mount after installation; if the mounts are at different rad elevations, pictures must be provided for all elevations that equipment was installed.
- Photos taken at Mount Elevation
 - Photos showing the safety climb wire rope above and below the mount prior to installation.
 - Photos showing the climbing facility and safety climb if present.

November 29, 2021 Site ID: 468927-VZW / STORRS CT Page | 2

- o Photos showing each individual sector after installation. Each entire sector shall be in one photo to show the interconnection of members.
 - These photos shall also certify that the placement and geometry of the equipment on the mount is as depicted in the antenna placement diagram in this form.
- Photos that show the model number of each antenna and piece of equipment installed per sector.

Antenna & equipment placement and Geometry Confirmation:

• The contractor shall certify that the antenna & equipment placement and geometry is in accordance with the sketch and table as included in the mount analysis and noted below.

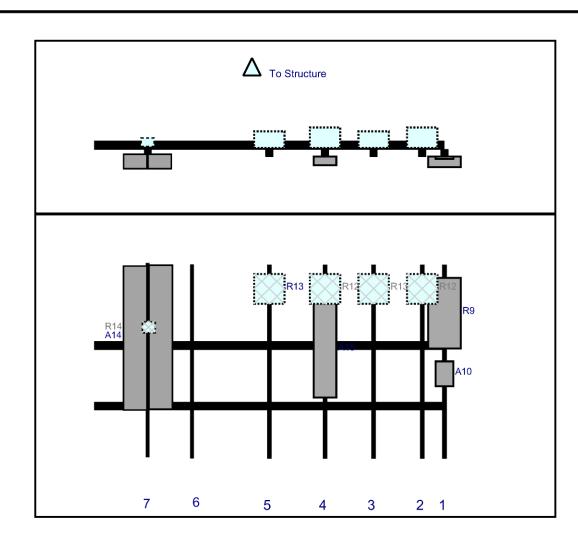
<u>Special Instructions / Validation as required from the MA or any other information the contractor deems necessary to share that was identified:</u>

Issue:		
Contractor shall insta	ll two (2) new 96" long P2 STD mount	pipes in new position 4 and position 5 on the Beta sector at a
		. Connect to existing upper and lower face horizontal members
using one (1) new 1/2	" Dia. U-bolt at each connection. Refe	er to attached antenna placement diagrams.
Contractor shall insta	II two (2) new 96" long P2 STD mount	pipes in new position 4 and position 5 on the Gamma sector at
		ctively. Connect to existing upper and lower face horizontal ction. Refer to attached antenna placement diagrams.
	nount pipe on the Beta sector. Con	on existing position 7 mount pipe on the Alpha sector and on nect to existing mount pipes as detailed in the referenced
Response:		
Contractor certifie starting work:	s that the climbing facility / safe	ety climb was not damaged or obstructed prior to
☐ Yes	□ No	
Contractor certifie	s no new damage/obstructions	created during the current installation:
☐ Yes	□ No	

November 29, 2021 Site ID: 468927-VZW / STORRS CT Page | 3

<u>Cont</u> ı	ractor to certify the condition of the safety climb and verify no obstructions when leaving the										
<u>site:</u>											
	☐ Safety climb in good condition with no obstructions ☐ Safety Climb Damaged ☐ Safety Climb Obstructed										
Comr	ments:										
□ All	l hardware has been properly installed, and the existing hardware was inspected.										
	☐ The material utilized was as specified on the SMART Tool engineering vendor Mount Modification Drawings and included in the material certification folder is a packing list or invoice for these materials.										
	OR										
	\Box The material utilized was approved by a SMART Tool as an "equivalent" and this approval is included as part of the contractor submission.										
<u>Ante</u>	nna & equipment placement and Geometry Confirmation:										
	\Box The contractor certifies that the photos support and the equipment on the mount is as depicted on the sketch and table included in this form and with the mount analysis provided.										
	OR										
	\Box The contractor notes that the equipment on the mount is not in accordance with the sketch and has noted the differences below and provided photo documentation of any alterations.										
<u>Speci</u>	al Instruction Confirmation:										
	\square The contractor has read and acknowledges the above special instructions.										
Certif	fying Individual:										
	Company: Employee Name: Contact Phone: Email: Date:										

Structure: 468927-VZW - STORRS CT


Sector: **A** 11/23/2021

Structure Type: Guyed 10110801

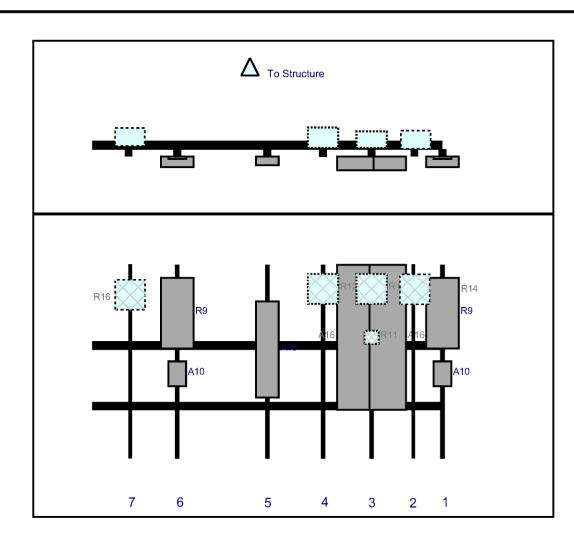
Mount Elev: 84.00 Page: 1

Plan View

Front View Looking at Structure

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A10	XXDWMM-12.5-65-8T-CBRS	12.3	8.7	173	1	а	Front	54	0	Added	
R9	MT6407-77A	35.1	16.1	173	1	а	Front	24	0	Added	
R12	B2/B66A RRH-BR049	15	15	162	2	а	Behind	12	0	Added	
R13	B5/B13 RRH-BR04C	15	15	138	3	а	Behind	12	0	Added	
A15	BXA-80063/4	47.4	11.2	114	4	а	Front	42	0	Retained	06/22/2021
R12	B2/B66A RRH-BR049	15	15	114	4	а	Behind	12	0	Added	
R13	B5/B13 RRH-BR04C	15	15	86.5	5	а	Behind	12	0	Added	
A14	JAHH-65B-R3B	7 2	13.8	18	7	а	Front	36	-8	Retained	06/22/2021
A14	JAHH-65B-R3B	72	13.8	18	7	а	Front	36	-8	Retained	06/22/2021
R14	CBC78T-DS-43	6.4	6.9	18	7	а	Behind	36	0	Added	

Structure: 468927-VZW - STORRS CT


Sector: **B** 11/23/2021

Structure Type: Guyed 10110801

Mount Elev: 84.00 Page: 2

Front View Looking at Structure

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A10	XXDWMM-12.5-65-8T-CBRS	12.3	8.7	173	1	а	Front	54	0	Added	
R14	B2/B66A RRH-BR049	15	15	150	2	а	Behind	12	0	Added	
R9	MT6407-77A	35.1	16.1	173	1	а	Front	24	0	Added	
A16	JAHH-45B-R3B	72	18	138	3	а	Front	36	-8	Retained	06/22/2021
A16	JAHH-45B-R3B	72	18	138	3	b	Front	36	8	Retained	06/22/2021
R11	CBC78T-DS-43	6.4	6.9	138	3	а	Behind	36	0	Added	
R13	B5/B13 RRH-BR04C	15	15	138	3	а	Behind	12	0	Added	
R12	B2/B66A RRH-BR049	15	15	114	4	а	Behind	12	0	Added	
A15	BXA-80063/4	47.4	11.2	86.5	5	а	Front	42	0	Retained	06/22/2021
A10	XXDWMM-12.5-65-8T-CBRS	12.3	8.7	42	6	а	Front	54	0	Added	
R9	MT6407-77A	35.1	16.1	42	6	а	Front	24	0	Added	
R16	B5/B13 RRH-BR04C	15	15	30	7	а	Behind	12	0	Added	

Structure: 468927-VZW - STORRS CT


Sector: **C** 11/23/2021

Structure Type: Guyed 10110801

Mount Elev: 84.00 Page: 3

Front View Looking at Structure

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A16	JAHH-45B-R3B	72	18	173	1	а	Front	36	-8	Retained	06/22/2021
A16	JAHH-45B-R3B	72	18	173	1	b	Front	36	8	Retained	06/22/2021
R11	CBC78T-DS-43	6.4	6.9	173	1	а	Behind	36	0	Added	
A15	BXA-80063/4	47.4	11.2	138	3	а	Front	42	0	Retained	06/22/2021
R12	B2/B66A RRH-BR049	15	15	138	3	а	Behind	12	0	Added	
R13	B5/B13 RRH-BR04C	15	15	114	4	а	Behind	12	0	Added	
A10	XXDWMM-12.5-65-8T-CBRS	12.3	8.7	62.5	5	а	Front	54	0	Added	
R9	MT6407-77A	35.1	16.1	62.5	5	а	Front	24	0	Added	
R12	B2/B66A RRH-BR049	15	15	62.5	5	а	Behind	12	0	Added	
R13	B5/B13 RRH-BR04C	15	15	42	6	а	Behind	12	0	Added	
A14	JAHH-65B-R3B	72	13.8	18	7	а	Front	36	-8	Retained	06/22/2021
A14	JAHH-65B-R3B	7 2	13.8	18	7	а	Front	36	-8	Retained	06/22/2021
R14	CBC78T-DS-43	6.4	6.9	18	7	а	Behind	36	0	Added	

Maser Consulting Connecticut

<u>Subject</u> TIA-222-H Usage

<u>Site Information</u> Site ID: 468927-VZW / STORRS CT

Site Name: STORRS CT
Carrier Name: Verizon Wireless

Address: 82 North Eagleville Rd. UConn Campus

Storrs Mansfield, Connecticut 06268

Tolland County

Latitude: 41.813889° Longitude: -72.259444°

<u>Structure Information</u> Tower Type: 292-Ft Guyed

Mount Type: 14.42-FT Platform

To Whom It May Concern,

We respectfully submit the above referenced Antenna Mount Structural Analysis report in conformance with ANSI/TIA-222-H, Structural Standard for Antenna Supporting Structures and Antennas and Small Wind Turbine Support Structures.

The 2015 International Building Code states that, in Section 3108, telecommunication towers shall be designed and constructed in accordance with the provisions of TIA-222. TIA-222-H is the latest revision of the TIA-222 Standard, effective as of January 01, 2018.

As with all ANSI standards and engineering best practice is to apply the most current revision of the standard. This ensures the engineer is applying all updates. As an example, the TIA-222-H Standard includes updates to bring it in line with the latest AISC and ACI standards and it also incorporates the latest wind speed maps by ASCE 7 based on updated studies of the wind data.

The TIA-222-H standard clarifies these specific requirements for the antenna mount analysis such as modeling methods, seismic analysis, 30-degree increment wind directions and maintenance loading. Therefore, it is our opinion that TIA-222-H is the most appropriate standard for antenna mount structural analysis and is acceptable for use at this site to ensure the engineer is taking into account the most current engineering standard available.

Sincerely,

Derek Hartzell, PE V Technical Specialist

ATTACHMENT 5

Property Card: .

Town of Mansfield, CT

Parcel Information Parcel ID: 9.23.15 **Map:** 9 Vision ID: 6473 Lot: 23-UC278 Owner: UNIVERSITY OF CONNECTICUT Use Description: State OB **Co-Owner:** INFORMATION CENTER 1 (NORTH) Zone: I Mailing U BOX 3252 FACILITIES MGMT Land Area in Acres: 0 Address: STORRS CT, 06269 STORRS MANSFIELD, CT 06269 **Sale History Assessed Value** Book/Page: 0/0 **Land:** \$2,100 **Buildings:** \$0 **Sale Date:** 10/1/2014 Extra Bldg Features: \$0 Sale Price: \$0 Outbuildings: \$1,800 **Total:** \$3,900 **Building Details: Building #1** NO PHOTO NO PHOTO AVAILABLE AVAILABLE Model: Vacant Int Wall Desc 1: Int Wall Desc 2: Living Area: 20 Style: Ext Wall Desc 1: Stories: Ext Wall Desc 2: Occupancy: **Roof Cover:** No. Total Rooms: **Roof Structure:** No. Bedrooms: **Heat Type:** No. Baths: **Heat Fuel:** No. Half Baths: A/C Type **Outbuildings & Extra Features Sketch Areas**

Units:

2500 UNITS

Sub Area:

Effective Area: Gross Area:

Code:

LUMP

Description:

Lump Sum Misc

Living Area:

ATTACHMENT 6

STORRS Certificate of Mailing — Firm

POSTAL SERVICE ®	11				inoute of man	ing init
Name and Address of Sender	TOTAL NO. of Pieces Listed by Sender	TOTAL NO. of Pieces Received at Post Office™	Affix Stamp Here Postmark with Date	of Possint		
Kenneth C. Baldwin, Esq.			Fusililark with Date	or Receipt.		
Robinson & Cole LLP						
	1 3					
280 Trumbull Street				neopost ^M		
Hartford, CT 06103				09/06/2022	4	
				09/06/2022 US POSTAG	≣\$0 03. 0 9∮)
	Postmaster, per (name of rece	pilying employee)	EHOUSL	3011001110	E 7 0 0 0 0	
				1900/06/04/2000	# 71D 00000	
	1 1 1		The state of	经验	ZIP 06103	
	I MONT TO		19	6	4 041L1220393	7
	1 WOULD		- S 2000	10		
	11/2011	MA I	2022	, co		
	1, 4	7 9				
USPS® Tracking Number		Address , City, State, and ZIP Code™)	Postage	Fee	Special Handling	Parcel Airlift
Firm-specific Identifier			1.			
	Ryan Aylesworth, Town of Mansfield					
•••••	4 South Eagleville					
	Storrs-Mansfield, C	1 00208	D 1			
2.		Acting Director of Planning	k Development			
	Town of Mansfield					
	4 South Eagleville					
	Storrs-Mansfield, C					
3.	UCONN Informati	on Center 1 (North)				
··	UBOX 3252 Facili	ties Management				
	Storrs, CT 06269	•				
•						
• 						
i.						
*						
]			
6.						
l <u>·</u>						
]			