

November 19, 2019

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification for Verizon:

Crown Castle Site ID#: 806372

266R Center Street, Manchester, CT 06040

Latitude: 41 ° -46' 19.0"/ Longitude: -72° -31' 48.8"

Dear Ms. Bachman:

Verizon currently maintains twelve (12) total antennas at the 115-foot mount on the existing 115-foot monopole tower, located at 266R Center Street in Manchester. Both the tower and property are owned by Crown Castle. Verizon now intends to replace six (6) antennas and six (6) remote radio units.

Tower modifications:

- Existing to be removed:
 - o (1) BXA-171063-12BF-EDIN-2 (267428) ANTENNA
 - o (2) 8XA-171085-128F-EDIN-2 (267438) ANTENNAS
 - o (2) BXA-70063-6CF-4-750MHZ (209256) ANTENNAS
 - o (1) BXA-70063-6CF-6-750MHZ (209258) ANTENNA
 - o (3) UHBA 813 RRH
 - o (3) UHIO 84 RRH
- Proposed additions:
 - o (6) NNHH-658-R4 ANTENNAS
 - o (3) 82/B66A RRH-BR049 (RFV01U-D1A)
 - o (3) 85/813 RRH-BR04C (RFV01 U-D2A)

Ground modifications:

- None

Melanie A. Bachman

This facility was approved by the Connecticut Siting Council on August 24, 1990 in Docket No. 129. There were no conditions listed in the approval.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.S.C.A. § 16-50j-73, a copy of this letter is being sent to Town General Manager Mr. Scott Shanley and the town of Manchester Planning Department. Crown Castle is the tower and property owner.

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, Verizon respectfully submits that the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to my attention at the address listed below.

Sincerely,

Richard Zajac

Network Real Estate Specialist

300 Meridian Centre Rochester, NY 14618

585-445-5896

richard.zajac@crowncastle.com

Melanie A. Bachman

cc:

Mr. Scott Shanley General Manager Town of Manchester 41 Center Street Manchester, CT 06045 860-647-3123

Mr. Gary Anderson Planning and Zoning Town of Manchester 494 Main Street Lincoln Center, 2nd FL Manchester, CT 06045 860-647-3044

Exhibit A

Original Facility Approval

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

136 Main Street, Suite 401 New Britain, Connecticut 06051 Phone: 827-7682

Gloria Dibble Pond Chairperson

COMMISSIONERS

Energy/Telecommunications

Peter G. Boucher Leslie Carothers

Hazardous Waste/Low-level Radioactive Waste

Frederick G. Adams Bernard R. Sullivan

COUNCIL MEMBERS

Harry E. Covey Mortimer A. Gelston Daniel P. Lynch, Jr. Paulann H. Sneets William H. Smith Colin C. Tait

Joel M. Rinebold Executive Director

Stanley J. Modzelesky Executive Assistant Mr. David S. Malko

Manager, Engineering and Regulatory Services Metro Mobile

50 Rockland Road

August 24, 1990

South Norwalk, CT 06854

RE: DOCKET NO. 129 - Metro Mobile CTS of Hartford, Inc., Certificate of Environmental Compatibility and Public Need for the construction, maintenance, and operation of a cellular telephone tower and associated equipment in the Town of Manchester, Connecticut.

Dear Mr. Malko:

On August 22, 1990, the Siting Council considered and approved all remaining sections of the Development and Management Plan (D&M) for this cellular telephone tower and associated equipment in the Town of Manchester, Connecticut. This decision confirms use of barbed wire on the security fence surrounding the cellular site that was approved by the Council by its Decision and Order on March 12, 1990.

This approval applies only to the D&M plan submitted for the Manchester site. Modifications to this D&M Plan require advance Council notification and approval. Please notify the Council when construction is completed.

Enclosed for your use is a copy of the Staff Report regarding the D&M Plan.

Very truly yours,

Gloria Dibble Pond

Chairperson

SMH/smh

enclosure

4706-2

July 20, 1990

Connecticut Siting Council 136 Main Street Suite 401 New Britain, CT 06051

Attention: Joel M. Rinebold, Executive Director

C

Re: Docket No. 129 - Metro Mobile CTS of Hartford, Inc. Manchester Cell Site

Dear Mr. Rinebold:

Metro Mobile CTS of Hartford, Inc. ("Metro Mobile") has submitted a proposed D&M Plan in the above-referenced proceeding and has received comments on it from the Town of Manchester and the Council.

Metro Mobile intends to construct an eight foot security fence around the facility with three strands of barbed wire on top. One of the comments received addresses the potential restriction on the use of barbed wire in constructing a fence at the proposed facility under Section 47-47 of the Connecticut General Statutes. This communication sets forth Metro Mobile's position that Metro Mobile is unaffected by said provision, as well as the Company's arguments in support of its position that the fencing plans already submitted are within State laws.

The provision of interest is Section 47-47 of the Connecticut General Statutes, which reads, in relevant part, as follows:

Barbed wire between adjoining premises or enclosing grounds of public buildings. No person shall use barbed wire in the construction of fences or have barbed wire upon existing fences between his own premises and those of an adjoining proprietor, within twenty-five rods of any house or barn belonging to such proprietor, unless either premises are used in connection with raising livestock, without first obtaining his written consent

Connecticut Siting Council
Mr. Joel M. Rinebold - Docket No. 129
July 20, 1990
Page 2

A. THE SITING COUNCIL'S JURISDICTION SUPERSEDES THE RESTRICTIONS IMPOSED BY C.G.S. SECTION 16-50x.

The Connecticut Siting Council was created with the express purpose of considering applications for the construction, operation, and maintenance of certain types of facilities within the state, including the proposed Manchester facility. The Council's jurisdiction overrides select state and local laws which would otherwise place restrictions on such activities. Section 16-50x of the C.G.S. contains the override language, as follows:

(a) Notwithstanding any other provision of the general statutes to the contrary, except as provided in Section 16-243, the council shall have exclusive jurisdiction over the location and type of facilities and over the location and type of modifications of facilities subject to the provisions of subsection (d) of this section. (emphasis added)

It should be noted that neither Section 16-243 nor subsection (d) of Section 16-50x modifies the applicability of the section quoted above with respect to the proposed Metro Mobile facility.

Whether the proposed facility uses barbed wire is an issue as to the type of facility to be constructed. Thus, it falls within the exclusive jurisdiction of the Council and cannot be affected by other statutes or local regulations.

B. EVEN IF THE COUNCIL'S JURISDICTION DOES NOT SUPERSEDE SECTION 47-47, METRO MOBILE'S PROPOSED FACILITY WILL NOT COME WITHIN THE AMBIT OF THAT PROVISION.

As set forth above, Metro Mobile's position is that the Council's jurisdiction supersedes the provisions of Section 47-47, and that the statute is therefore inapplicable to Metro Mobile at the Manchester facility certificated by the Council. If, however, the Council concludes that its jurisdiction does not supersede the statute, Metro Mobile contends that the provisions of the statute are inapplicable to Metro Mobile for the following reasons.

Proposed Fence Not Between Proprietors

The statute prohibits the use of barbed wire "... between his own premises and those of an adjoining proprietor . . . " In Manchester, Metro Mobile's proposed facility will not border two separate land parcels except on the east and southwest sides (see page 5 of Tab 1 in the Metro Mobile Application for the Manchester Site, Siting Council Docket No. 129).

Connecticut Siting Council
Mr. Joel M. Rinebold - Docket No. 129
July 20, 1990
Page 3

On the north side of Metro Mobile's facility, the proposed barbed wire will not be between two adjoining proprietors, since Metro Mobile facility is located on a portion of a parcel owned by S. Mark Stephens.

2. No Houses or Barns Located on Adjacent Property

The statute prohibits the use of barbed wire "... within twenty-five rods of any house or barn belonging to such proprietor ... " On the east side of the Metro Mobile facility, there is a strip of land owned by Kenneth C. Burkamp over which the Consolidated Rail Corporation at one time had an easement to operate a railway. There are no houses or barns located on this parcel, and therefore the prohibition cannot apply to Metro Mobile with respect to this parcel.

Similarly, the southwest side of the Metro Mobile facility is bordered by a parcel owned by Kenneth C. Burkamp. There are no houses or barns located on this parcel. The prohibition stated in the barbed wire statute therefore cannot apply to Metro Mobile with respect to this parcel.

Thus, even if the Council finds that its jurisdiction does not supersede the provisions of Section 47-47 of the C.G.S., those provisions, do not apply to Metro Mobile in this case.

Respectfully yours,

David S. Malko, P.E.

Varid S. Malko

Manager, Engineering and Regulatory Services

DSM:mb

cc: Service List Docket 129

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

136 Main Street, Suite 401 New Britain, Connecticut 06051 Phone: 827-7682

Gloria Dibble Pond Chairperson

COMMISSIONERS

Energy Telecommunications

Peter G. Boucher Lestie Carothers

'Hazardous Waste Low-level Radioactive Waste

Frederick G. Adams Bernard R. Sullivan

COUNCIL MEMBERS

Harry E. Covey Mortimer A. Gelston Daniel P. Lynch, Jr. Paulann H. Sheets William H. Smith Colin C. Tait

Joel M. Rinebold Executive Director

Stanley J. Modzelesky Executive Assistant June 22, 1990

Metro Mobile CTS of Hartford, Inc.

100 Corporate Drive Windsor, CT. 06095 Attn: Gary N. Shulman

Vice Pres. & Gen. Mgr.

DOCKET NO. 129 - Metro Mobile CTS of Hartford, Inc., Certificate of Environmental Compatibility and Public Need for the construction, maintenance, and operation of a cellular telephone tower and associated equipment in the Town of Manchester, Connecticut.

Dear Mr. Shulman:

At a meeting of the Connecticut Siting Council (Council) on June 18, 1990, the Council considered and approved the Development and Management (D&M) Plan for the Manchester facility except for the subject of fencing to be reserved for final approval by the Council at a later date. Pursuant to Connecticut General Statutes Section 47-47, it states that no barbed wire is permitted on an existing or newly constructed fence. Enclosed for your reference is a copy of the staff report for this D&M Plan.

This approval applies only to the Manchester facility. Modifications to this D&M Plan require advance Council notification and approval. The Council awaits your submission of fencing plans, within State laws, that would meet Metro Mobile's needs and the Town of Manchester's requirements.

Very truly yours,

Gloria Dibble Pond

GDP:SJM:fc

Enclosures (3)

cc: Parties of Record Council Members

4442E-5

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

136 Main Street, Suite 401 New Britain, Connecticut 06051 Phone: 827-7682

DOCKET NO. 129

METRO MOBILE CTS OF HARTFORD, INC.

D&M PLAN MANCHESTER CELL SITE - MAY 21, 1990

On May 15, 1990, Metro Mobile CTS of Hartford, Inc. submitted to the Connecticut Siting Council a D&M Plan for its Manchester cell site. The plan includes construction of a 128 foot tower including antennas, at a total height of 324 feet above mean sea level, and a 14-foot by 40-foot equipment building surrounded by an eight foot security fence. In addition, Metro Mobile would remove an existing one story wood building from the site. In accordance with Regulations of State Agencies Section 16-50j-77, Metro Mobile has notified the Council of its intention to begin access work and clearing, to be followed immediately by the construction of the tower and associated equipment upon approval of the D&M Plan by the Council.

The existing site is flat, paved, and surrounded by buildings and railroad tracks. All areas disturbed by construction will be repaved. The right-of-way from Pine Street over the existing parking lot will be maintained, and all new pavement will meet the minimum specifications required by the Town.

Metro Mobile proposes to construct the tower foundation and the building foundation as per manufacturer specifications, soil test boring logs, and detailed engineering. Underground grounding will be installed as per Metro Mobile's specifications. The tower has been moved within the site as far east as possible to separate the fall zone of the tower from a residence located southwest of the tower site.

In preparation of the D&M Plan, Metro Mobile consulted with the Town of Manchester pursuant to the Council's Decision and Order. The Manchester Zoning Enforcement Officer recommended installation of erosion controls prior to the disturbance of the site. Metro Mobile will abide by this recommendation through the installation and maintenance of approximately 85 linear feet of hay bales located along the west perimeter of the site. The Town of Manchester has also provided comments requesting provisions for landscaping, delineation of areas to be paved, details regarding modifications to the drainage

Docket 129 D&M Plan Page 2

pattern, removal of barbed wire from the security fence, maintenance of the right-of-way, and installation of a driveway apron on Pine Street. Metro Mobile has responded indicating that it does not believe landscaping is appropriate or necessary, that all disturbed areas will be repaved, that drainage patterns will not be affected, that barbed wire on the security fence is necessary to provide security for its equipment, that the right-of-way will be maintained, and that the apron onto Pine Street will not be modified, but if it is, it will be restored as per Town requirements.

Staff recommends the approval of Town recommendations regarding erosion control, paving, and right-of-way maintenance. In addition, if dewatering is to be performed during site construction, the certificate holder must be prepared for proper disposal of water from dewatering operations.

No staff recommendations regarding site landscaping and the use of barbed wire in the security fence are made.

All other orders and provisions regarding the D&M Plan have been complied with.

JMR: bw

4442E

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

136 Main Street, Suite 401 New Britain, Connecticut 06051 Phone: 827-7682

DOCKET NO. 129
METRO MOBILE CTS OF HARTFORD, INC.
D&M PLAN MANCHESTER CELL SITE
June 18, 1990
Addendum

On Thursday, June 14, 1990, Brian Emerick of the Connecticut Siting Council (Council) and Fred Cunliffe of the Council staff met with David Malko of Metro Mobile and Stuart Popper of the Town of Manchester at the site of a telecommunications tower and building on Pine Street in Manchester, Connecticut.

The Town of Manchester recommends landscaping along the north and east sides of the leased parcel. White Pine or hemlock were perferred by the town. The town requests that the plantings be a minimum of four feet in height and four feet on center as required by town regulations. Metro Mobile would be willing to move the building and north-side of the fence several feet to the south and move the gate closer to the building to accommodate these plantings.

The town has requested that barbed wire not be used on the fence and have stated that the use of barbed wire on the fence is potentially inconsistent with Connecticut General Statutes section 47-47. No recommendations were made by the town or applicant for alternate fencing but Metro Mobile contends that security must be maintained.

Fred Cunliffe Siting Analyst 4442E-4

: not smaller than et in concrete, all end and rected, or any other fence ed with the duty of fence de of incorporated cities, a h, suitably erected, a wire? part, stretched tightly, the less than four feet from the apart, and any other fence ence, shall be a sufficient of a divisional fence, the hall not exceed in width, it one fence, three feet; if ng the bank, which shall be e lot without the consent

n named and treated as a boxe at constitutes a divisional fence C 277. Terms "sufficient fee 52 C 34 Hedge as a division

fence viewers. Selec

rity from three inches to or

as to fences. In any ions of any special i atutes on selectmen : body of such muni to perform such de it be less than that

perty and state purposes adjoin section 47-43. cm ietor may, with) hin sixty days 🕽 r replaced with ortation shall. urse the propid oot and in act

Sec. 47-46a. Payment for fence between agricultural property and property in control of environmental protection department. Where there is no fence between properry used for agricultural purposes and adjoining property of the state under control of the department of environmental protection sufficient for the purposes of section 47-43, or when any fence so located is in need of replacement, and the boundary has been mutually agreed upon, the adjoining proprietor may, with the written agreement of the commissioner of envicommental protection, executed within sixty days of a written request by such proprietor, cause such a fence to be constructed or replaced within six months of the date of the agreement: and the commissioner shall, within sixty days after the construction or replacement is completed, reimburse the proprietor for one-half the cost thereof, the state's share not to exceed four dollars a rod, payments to be made in the order of receipt of applications and completion of projects. Total payments under this section shall not exceed five thousand

(1961, P.A. 558; 1967, P.A. 72; 1971, P.A. 872, S. 205, P.A. 79-530, S. 1, 3.)

History 1967 act increased state's maximum share in reimbursement from one to two dollars per rod; 1971 act replaced state purk and forest commission and its director with department and commissioner of environmental protection and revised reference to maximum for total payments to reflect change from biennial to annual budget; P.A. 79-530 raised state's maximum share for numbursement to four dollars per rod and raised maximum amount for total payments from twenty-five hundred to five thousand

Sec. 47-47. Barbed wire between adjoining premises or enclosing grounds of public buildings. No person shall use barbed wire in the construction of fences, or have barbed wire upon existing fences, between his own premises and those of an adjoining proprietor, within twenty-five rods of any house or barn belonging to such proprietor, unless either premises are used in connection with raising livestock, without first obtaining his written consent. No barbed wire shall be used in the construction of fences, or retained upon existing fences, connected with or enclosing the grounds of any public school or public building. except a department of transportation storage facility or a vessel operations area of a stateowned waterfront facility or aircraft operations area of a state-owned airport. Any person who violates any provision of this section shall be fined not more than one hundred dollars. (1949 Rev. , S. 7157; P.A. 80-105; P.A. 84-322.)

Hoters, P. A. 80-105 added exception re-premises used in raising livestock to provision requiring written consent for barbed are long within twenty-five rods of house or barn; P.A. 84-322 allowed use of barbed wire at department of transportation marge facilities, vessel operations areas of state-owned waterfront facilities and aircraft operations areas of state-owned airports.

Sec. 47-48. Barbed wire along sidewalks. No barbed wire shall be installed along any sidewalk unless it is at least six and one-half feet above the ground. Any barbed wire in use in conformity with section 7156 of the general statutes, revision of 1949, on October 1,

HM49 Rev. S. 7156; 1957, P.A. 157, S. L.)

When sustains of a statute concerning barbed wire is not set up in complaint in action for damages for personal injuries, it is to the jury to show that legislature thought barbed wire a dangerous thing. 101 C. 549

Sec. 47-49. Purchase of division fence. If one proprietor or his predecessor in title the whole fence and the adjoining proprietor afterwards encloses his land, such spoining proprietor shall purchase and maintain half of the divisional fence. If the parties do agree in dividing and appraising it, either may call on the selectmen of the town in which fence is situated, who may set out, to each, his proportion of such fence and determine much shall be paid to the party erecting or owning the same by the other; a certificate of th determination, under the hands of the selectmen, shall be sufficient evidence for the y of the amount so determined. No action therefor shall be maintained unless the pietor, who, or whose predecessor in title, first occupied his land and made the whole of

Date: December 13, 1989

Docket No. 129

LIST OF PARTIES AND INTERVENORS - SERVICE LIST

Status Holder (name, address & phone number)	Representative (name, address & phone number)
Metro Mobile CTS of Hartford, Inc. 100 Corporate Drive Windsor, CT 06095 Attn: Gary N. Schulman Vice President and Gen. Mgr.	Robinson & Cole One Commercial Plaza Hartford, CT 06103-3597 Attn: Earl W. Phillips, J. (203) 275-8200
SNET Cellular, Inc. 227 Church Street New Haven, CT 06506	Peter J. Tyrrell Senior Attorney SNET Cellular, Inc. 227 Church Street Room 1021 New Haven, CT 06506
Town of Manchester Planning & Zoning Comm. Town Hall 41 Center Street Manchester, CT 06040	Mark Pellegrini Director of Planning and Economic Development Town Hall 41 Center Street Manchester, CT 06040
	(name, address & phone number) Metro Mobile CTS of Hartford, Inc. 100 Corporate Drive Windsor, CT 06095 Attn: Gary N. Schulman Vice President and Gen. Mgr. SNET Cellular, Inc. 227 Church Street New Haven, CT 06506 Town of Manchester Planning & Zoning Comm. Town Hall 41 Center Street

Date: December 13, 1989
Docket No. 129

LIST OF PARTIES AND INTERVENORS - SERVICE LIST

	<u> </u>	THE PROPERTY OF THE PROPERTY O
Status Granted	Status Holder (name, address & phone number)	Representative (name, address & phone number)
Party X	Cheney Brothers National Historic Landmark District	Bruce J. Comollo Garrity, Diana, Conti & Houck
Intervenor	and Cheney National Historic Commission	1091 Main Street Manchester, CT 06040 (203) 643-2181
11		
Party		
ntervenor		
11		
erty		
1		
tervenor		
1_1		
-2		

DOCKET NO. 129 - AN APPLICATION OF METRO MOBILE CTS OF HARTFORD, INC., FOR A CERTIFICATE OF ENVIRONMENTAL COMPATIBILITY AND PUBLIC NEED FOR THE CONSTRUCTION, OPERATION, AND MAINTENANCE OF A CELLULAR TELEPHONE TOWER AND ASSOCIATED EQUIPMENT IN THE TOWN OF MANCHESTER, CONNECTICUT.

Connecticut Siting

Council

March 12, 1990

FINDINGS OF FACT

- 1. Metro Mobile CTS of Hartford, Inc., in accordance with provisions of sections 16-50g to 16-50z of the Connecticut General Statutes (CGS), applied to the Connecticut Siting Council (Council) on September 29, 1989, for a Certificate of Environmental Compatibility and Public Need (Certificate) for the construction, maintenance, and operation of a telecommunications tower, associated equipment, and building to provide Domestic Public Cellular Radio Telecommunications Service (cellular service) in the Town of Manchester, part of the Hartford, Connecticut, New England County Metropolitan Area ("Hartford NECMA"). (Record)
- 2. The application was accompanied by proof of service as required by section 16-501 of the CGS. (Record)
- 3. Affidavit of newspaper notice as required by section 16-501 of the CGS was supplied by the applicant. Newspaper notice of this application was published twice by the applicant in The Hartford Courant. (Metro Mobile 1, pp.4-5, Exhibit 5)
- 4. The Council and its staff inspected the proposed and alternate sites in the Town of Manchester, Connecticut, on December 28, 1989. (Record)
- 5. Pursuant to section 16-50m of the CGS, the Council, after giving due notice thereof, held a public hearing on this application on December 28, 1989, at 3:30 P.M., and 7:00 P.M., at the Lincoln Center Hearing Room, 494 Main Street, Manchester, Connecticut. (Record)
- 6. The parties to the proceeding are the applicant and those persons and organizations whose names are listed in the Decision and Order which accompanies these Findings. (Record)
- 7. The Department of Environmental Protection (DEP) filed written comments with the Council pursuant to section 16-50j of the CGS. (Record)

- 8. In 1981, the Federal Communications Commission (FCC) recognized a national need for technical improvement, wide-area coverage, high quality service, and competitive pricing in mobile telephone service. (Metro Mobile 1, p.5; Docket 107, Finding of Fact 10)
- 9. The FCC has pre-empted State regulation in determining that a public need currently exists for cellular service, setting technical standards for that service, and establishing a competitive market. (Metro Mobile 1, p.6; Docket 107, Finding of Fact 12)
- The FCC has determined that the public interest requires two licenses for cellular service be made available in each market area or NECMA to provide competition. One license is awarded to a wireline company, the other to a non-wireline company. (Metro Mobile 1, pp.6, 10; Docket 107, Finding of Fact 11)
- 11. Conventional mobile telephone service has been limited by insufficient frequency availability, inefficient frequency use, and poor quality of service. These limitations have resulted in congestion, blocking of transmission, interference, lack of coverage, and high costs. (Metro Mobile 1, p.5; Docket 107 Finding of Fact 9)
- 12. Cellular service consists of small, overlapping broadcast regions. These regions or cells are limited in coverage by the FCC's technical standards governing transmitting power. The system design provides frequency reuse and hand-off and would be capable of an orderly and compatible expansion. (Metro Mobile 1, pp.13-14, Exhibit 11, p.6)
- 13. Cell site locations are limited by a basic need for a 10 percent to 20 percent overlap of coverage between cell sites. Location of cell sites is essential to provide for uninterrupted hand-off of calls in progress. (Metro Mobile 1, Exhibit 11, pp.6-7)
- 14. Presently, the proposed cellular system represents state-of-the-art technology and Metro Mobile is aware of no viable alternatives. A mobile satellite service has been under consideration by the FCC and may become available in the distant future. (Metro Mobile 1, p.18)
- Metro Mobile expects digital cellular technology to be commercially available in the late 1990's. The technology would increase the capability of handling calls over present cellular technology without having to add additional sites. (Tr. 12/28/89, pp.33-34)

- In selecting a site for the cell, Metro Mobile found no available structures of adequate height or structural strength in or near a 0.6 mile theoretical search area within Manchester. (Metro Mobile 1, Exhibit 11, pp.8-9 and Attachment "A"; Metro Mobile 7)
- 17. Before selecting the proposed and alternate sites Metro Mobile considered and rejected four sites within the search area. One site in an industrial zone to the west of the alternate cell site location was rejected because of inadequate space for a cell site. A second area in a B1 and B2 business zone located along Hartford Road to the west of Prospect Street was rejected by Metro Mobile because land uses were mostly small businesses on shallow lots adjacent to high density residential development. A third area in a B2 business zone located along Center Street east and west of Pine Street was rejected because of adjacent high-density residential development. A fourth site in a B3 business zone located near the intersection of High Street and Pine Street was rejected because it was a small site surrounded by high-density multi-family dwellings. (Metro Mobile 1, Exhibit 11, pp.8-9 and Attachment "A"; Metro Mobile 3, Q.5, Attachment 2)
- 18. At the hearing, attention was brought to a site at the Town-owned Lincoln Center as a possible location for Metro Mobile's tower and equipment building. The site is one-tenth of a mile outside the search area at a ground elevation of 260 feet AMSL, and is in a residential zone. The site had no acceptable space to construct a tower or building. (Metro Mobile 7; Tr. 12/28/89)
- The applicant had no communication with the Town of Manchester to share antennas or tower space on Metro Mobile's proposed tower at the time of the hearing. The Town had not shown interest in sharing tower space from the time of the hearing to the close of the record on February 15, 1990. (Tr. 12/28/89, pp.40, 111, 112; Record)
- The proposed monopole could be designed to handle the Town of Manchester's police and fire antennas if the Town were interested. (Tr. 12/28/89, pp.105, 109)

- The Town of Manchester's Planning and Zoning Commission, a party to the proceeding, stated that Metro Mobile's tower at the proposed site would be very obtrusive and potentially incompatible with surrounding zoning districts and land uses, while the tower at the alternate site would be very obtrusive and totally incompatible with the surrounding Historic and residential neighborhood. The Town was also disappointed that Metro Mobile focused on two locations in the center of the urbanized portion of Manchester. (Town of Manchester 1; Tr. 12/28/89, p.91)
- 22. Both the proposed and alternate sites would primarily provide additional cellular traffic handling capacity, as opposed to providing coverage to an area otherwise unserved. (Metro Mobile 1, p.10)
- The proposed tower would primarily provide "off-loading" of calls from existing sites in Hartford, Vernon, and Glastonbury. (Metro Mobile 1, pp.10, 15-16, Exhibit 8, Exhibit 11, p.10; Metro Mobile 3, Q.12; Tr. 12/28/89, p.31)
- The existing Hartford, Glastonbury, and Vernon sites have been in service for a little over two years. (Tr. 12/28/89, p.25)
- The interrelationship of the traffic load between all of the sites in the area, not just one site, is causing the need for the proposed Manchester site. (Tr. 12/28/89, p.28)
- 26. The proposed site would also increase the quality of coverage in the Manchester area. (Tr. 12/28/89, pp.22, 23)
- At the time of installation of the proposed Manchester facility, all existing sites in the area, including the Manchester site, would be fully sectorized. Such sectorization provides for increased call handling capacity within a cell by dividing the geographic service area into six directional sectors which allows for additional frequency reuse. Even with sectorization, the projected cellular traffic demands and frequency reuse requirements necessitate location of a site within the Manchester area. Operation of the proposed facility would off load the existing sites and improve coverage to the Manchester area. (Metro Mobile 3, Q.7, Q.11, Q.12, Q.13; Tr. 12/28/89, p.26)
- 28. The proposed site would increase the total cellular capacity in the Manchester area by up to 3,600 calls per hour. (Metro Mobile 4, Q.26)

- 29. With the addition of the proposed Manchester site, potential frequency interference problems from the Vernon, Glastonbury, and Hartford sites would be limited by a reassignment of frequencies recognizing their coverage areas and overlap. (Metro Mobile 3, Q.8)
- The Vernon and Glastonbury sites are currently omnidirectional sites which normally could accommodate approximately 45 channels and handle approximately 1,200 calls during the peak hour, however, because of a potential frequency separation problem due to the addition of new sites and the sectorization of surrounding sites, the Vernon and Glastonbury sites could only accommodate approximately 30 channels or 800 calls during the peak hour. Hartford is a sectorized site that can accommodate 12 to 15 channels in each of its six sectors which can handle approximately 3,600 calls or 600 calls per sector during the peak hour. (Metro Mobile 3, Q.10; Tr. 12/28/89, pp.20, 27-29)
- 31. The Vernon site currently handles approximately 250 calls during the peak hours and approximately 175 calls per hour averaged over a 12-hour business day from 7:00 a.m. to 7:00 p.m. The peak hour occurs during the afternoon on weekdays. (Metro Mobile 3, Q.14; Tr. 12/28/89, pp.26-27)
- The Glastonbury site currently handles approximately 300 calls during the peak hours and approximately 250 calls per hour averaged over a 12-hour business day from 7:00 a.m. to 7:00 p.m. The peak hour occurs during the afternoon on weekdays. (Metro Mobile 3, Q.14; Tr. 12/28/89, pp.26-27)
- The Hartford site currently handles approximately 2,225 calls from all six sectors during the peak hours and approximately 1,610 calls per hour averaged over a 12-hour business day from 7:00 a.m. to 7:00 p.m. The peak hour occurs during the afternoon on weekdays. (Metro Mobile 3, Q.14)

- 34. Sector three of the existing Hartford cell site is currently exceeding its 600 call per hour maximum call handling capacity during its peak hour. This sector covers parts of Hartford, East Hartford, and Glastonbury. The proposed Manchester site would provide relief to this sector. Sector five, the next busiest sector of the Hartford cell site, covers West Hartford and is also approaching its 600 call per hour capacity. A sector is the area within a 60 degree arc with sector one being between a vector starting at zero degrees and ending at 60 degrees, sector two between 60 degrees and 120 degrees, sector three between 120 degrees and 180 degrees, sector four between 180 degrees and 240 degrees, sector five between 240 degrees and 300 degrees, and sector six between 300 degrees and 360 degrees. (Metro Mobile 3, Q.15; Metro Mobile 4, Q.24; Tr. 12/28/89, p.21)
- 35. Without the proposed Manchester site, additional Hartford site sectors and the existing Vernon and Glastonbury cell sites would begin to exceed their maximum call handling capacity during 1990. No call projection data was provided, but Metro Mobile contends that the Vernon and Glastonbury sites could handle approximately twice the current demand. (Metro Mobile 3, Q.15; Metro Mobile 4, Q.24, Q.25, Q.27; Tr. 12/28/89, pp.30-31, 32; Record)
- 36. The proposed cellular site would be a triangular 7,600 square foot parcel of land located in the rear of a larger, 1.35 acre lot at 266 Center Street, Manchester, Connecticut. The remainder of the lot is used for storage and manufacturing. The proposed tower would be located approximately 12 feet west of an abutting property owned by Kenneth C. Burkamp, which has a metal storage shed on-site, and approximately 25 feet south of a manufacturing building owned by S. Mark Stephens, lessor of the site. The proposed tower would be located approximately 260 feet south of Center Street and approximately 140 feet east of the nearest residential building. (Metro Mobile 1, Exhibit 1, p.1; Metro Mobile 3, Q.6, Attachment 3; Tr. 12/28/89, pp.15-16, 17, 18)
- Access to the proposed site would be over an existing driveway on land of an adjacent property owner (Kenneth C. Burkamp) and land of the lessor (S. Mark Stephens). Vehicular access over the adjacent property is permitted by a non-exclusive right of passage granted to the lessor. (Metro Mobile 1, p.9, Exhibit 1, p.1; Metro Mobile 3, Q.3)

- 38. Metro Mobile proposes to construct a 115-foot self-supporting monopole tower to which two platforms would be attached. Two 15-foot omnidirectional call-processing, whip transmit antennas would be mounted at 113 feet on the corners of the platform with six 11 1/2-foot transmit/receive antennas side mounted with center of radiation at 106 feet. The total height of the tower with antennas would be 128 feet above ground level. (Metro Mobile 1, Exhibit 1, p.8; Tr. 12/28/89, pp.18, 19, 77, 78)
- 39. The horizontal off-set of the antennas placed on the corners of the platform would be a maximum of 6 1/2 feet from the tower structure. (Tr. 12/28/89, p.78)
- 40. Ground elevation at the proposed site is 196 feet AMSI. Residential properties in the immediate area on Pine Street, Park Street, and New Street from where the tower would be visible are at an elevation ranging from 198 feet to 220 feet. (Tr. 12/28/89, pp.15-16, 17; Town of Manchester 1, pp.2-3)
- 41. Metro Mobile would raze an abandoned wood-frame building and construct a 20-foot by 40-foot single-story, prefabricated concrete building on the proposed site. The building would house receiving, transmitting, switching, processing, performance monitoring, and climate control equipment. The abandoned building could not be utilized for equipment because it is in poor condition, and the owner wanted it razed as part of the lease arrangement. (Metro Mobile 1, p.9; Metro Mobile 3, Q.2)
- 42. The alternate site would be on a 50-foot by 85-foot parcel of land located in the northern portion of a larger 1.1 acre lot at 218 Hartford Road, Manchester, Connecticut. The remainder of the lot is used for manufacturing. The proposed tower would be approximately 141 feet west of Prospect Street, approximately 44 feet west of an on-site two story brick manufacturing building, 46 feet south of Hartford Road, 120 feet east of abutting property also owned by S. Mark Stephens, and 120 feet north of land owned by Millbridge Hollow Condominiums. (Metro Mobile 1, Exhibit 2, p.1; Metro Mobile 3, Q.6, Attachment 3; Tr. 12/28/89, p.18; Town of Manchester 1, pp.3-4)
- 43. The southern boundary of the alternate site lot is 60 feet from the northern edge of Hop Brook. (Town of Manchester 1, p.4)
- 44. Access to the alternate site would be over an existing driveway and parking lot on land of the lessor (S. Mark Stephens). (Metro Mobile 1, Exhibit 1, p.9, Exhibit 2, pp.1, 7; Metro Mobile 3, Q.6, Attachment 3)

- 45. The alternate site tower would consist of a 140-foot self-supporting tower to which two platforms would be attached. Two 15-foot omnidirectional call-processing, whip transmit antennas would be mounted at 138-feet on the corners of the platform with six 11 1/2-foot transmit/receive antennas side mounted with center of radiation at 131 feet. The total height of the alternate site tower with antennas would be 153 feet above ground level. (Metro Mobile 1, p.8; Exhibit 2, p.8; Tr. 12/28/89, p. 78)
- 46. Ground elevation at the alternate site would be at 170 feet AMSL. (Tr. 12/28/89, p.18)
- 47. A 20-foot by 40-foot single story building would be constructed on the alternate site. The building would house the same equipment as the proposed site. (Metro Mobile 1, p.9)
- 48. Minimal site leveling or backfilling would be required at the proposed site. Removal of an on-site dirt pile would be required at the alternate site. (Metro Mobile 1, Exhibit 1, p.7, Exhibit 2, p.7; Tr. 12/28/89, p.18)
- 49. Utility lines for the proposed site would be routed from Center Street to the proposed cell site over land of the lessor. Utility lines for the alternate site would be routed from existing utility poles along Hartford Road to the alternate site. (Metro Mobile 1, p.9, Exhibit 1, p.1, Exhibit 2, p.1, Exhibit 9, pp. 1, 11; Tr. 12/28/89, p.88)
- The metal storage shed east of the site on adjacent property owned by Kenneth C. Burkamp, a one-story brick manufacturing building on the lessor's property, and property west of the site owned by Kenneth C. Burkamp would be within the fall zone of the proposed site tower. Hartford Road, land owned by the Millbridge Hollow Condominiums, and a two-story brick manufacturing building on property of the lessor would be within the fall zone of the alternate site tower. The fall zones would not be totally within the lessor's properties. (Town of Manchester 1, p.2; Metro Mobile 3, Q.6, Attachment 3)

The zoning of the proposed cellular site is I,
Industrial. This zone is approximately three acres in
size and is surrounded to the north by a Business zone,
to the east and west by Residential zones, and to the
south by the Cheney Brothers National Historic Landmark
District. The proposed tower would be a use requiring a
special exception under Manchester zoning regulations.
The zoning of the alternate cellular site is H,
Historical, and is within the Cheney Brothers National
Historic Landmark District. The alternate tower would
be a use requiring a special exception under Manchester
zoning regulations. (Town of Manchester 1, p.2; Metro
Mobile 1, Exhibit 11, Attachment "A"; Metro Mobile 3,
Q.5, Attachment 2)

(

- The Cheney Brothers National Historic Landmark District was established in 1978 through a designation by the United States Department of the Interior, and is listed in the National Register of Historic Places. (Town of Manchester 1, pp.3-4; Tr. 12/28/89, p.59)
- 53. Metro Mobile does not have any existing towers within a national landmark district. (Tr. 12/28/89, p.59)
- Within the Cheney Brothers District north of the alternate site are rehabilitated mill buildings used for multi-family dwellings and some neighborhood commercial purposes. Within the Cheney Brothers District east of the alternate site are buildings used for commercial purposes. To the west of the alternate site lot is property in an industrial zone used for commercial purposes. (Town of Manchester 1, pp.3-4)
- 55. The proposed site would be less than 200 feet north of the Cheney Brothers Historic District. (Town of Manchester 1, p.5; Metro Mobile 3, Q.5, Attachment 2)
- There are approximately 159 residences within a 1,000-foot radius of the proposed tower. The nearest residence is 140 feet southwest of the proposed property. There are approximately 24 residences, six condominium buildings, and two apartment buildings within a 1,000-foot radius of the alternate cell site. The nearest residence is 180 feet from the alternate tower. (Metro Mobile 1, Exhibit 1, p.7, Exhibit 2, p.7, Exhibit 9, p.12; Tr. 12/28/89, pp.17-18, 103)

- 57. The electromagnetic radio frequency power density at the proposed and alternate sites, assuming all channels operating simultaneously at maximum allowable power and broadcasting from the lowest set of antennas would be 0.1124 milliwatts per square centimeter (mW/cm2) at the proposed site and 0.0737 mW/cm2 at the alternate site, and would be well below the American National Standards Institute standard of 2.92mW/cm2, as adopted by the State in CGS 22a-162. (Metro Mobile 1, p.12, Exhibit 9, pp.2, 12; DEP comments of 12/14/89; Tr. 12/28/89, p.19)
- 58. Both the proposed and alternate towers would be designed to withstand pressure equivalent to a 90 mph wind with a 1/2-inch solid ice accumulation in accordance with Electronic Industries Association standard RS-222-D. The overturn moment for the foundation would be 1.5. The antenna mounting arrangement, the support brackets, and the antenna structure would be designed to withstand 125 mph winds. (Metro Mobile 1, Exhibit 1, p.9, Exhibit 2, p.9; Tr. 12/28/89, pp.82-83, 87)
- 59. According to the Connecticut Historical Commission, "the prime site,..., does not appear to meet the eligibility criteria for the National Register of Historic Places, while the alternate site,...does appear to be of local historic and architectural significance. Therefore, we recommend that the proposed telecommunications tower and associated equipment shelter be constructed at the 266 Center Street [prime] site." (Metro Mobile 3, Q.1, Attachment 1)
- 60. There are no known extant populations of Connecticut "Species of Special Concern" or Federal Endangered and Threatened Species that occur at the site in question. (Metro Mobile 3, Q.1, Attachment 1; DEP Comments of 12/14/89)
- 61. The total estimated cost of construction for the proposed site is as follows:

Radio equipment	\$676,500
Tower and antennas	38,800
Power system	18,000
Building	76,600
Miscellaneous	140,200
(Site preparation and	
i	

installation

TOTAL \$950,100.

(Metro Mobile 1, pp.16-17, Exhibit 1, p.9)

62. The total estimated cost of construction for the alternate site is as follows: Radio equipment \$676,500 Tower and antennas 41,760 Power system 18,000 Building 76,600 Miscellaneous 135,200 (Site preparation and installation TOTAL \$948,060. (Metro Mobile 1, p.17, Exhibit 2, p.9)

JAW

4024E

DOCKET NO. 129 - AN APPLICATION OF METRO MOBILE CTS OF HARTFORD, INC., FOR A CERTIFICATE OF ENVIRONMENTAL COMPATIBILITY AND PUBLIC NEED FOR THE CONSTRUCTION, OPERATION, AND MAINTENANCE OF A CELLULAR TELEPHONE TOWER AND ASSOCIATED EQUIPMENT IN THE TOWN OF MANCHESTER, CONNECTICUT.

Connecticut Siting

Council

March 12, 1990

OPINION

On September 29, 1989, Metro Mobile CTS of Hartford, Inc., (Metro Mobile) applied to the Connecticut Siting Council (Council) for a Certificate of Environmental Compatibility and Public Need (Certificate) to construct, maintain, and operate a cellular telecommunications tower, associated equipment, and building in the Town of Manchester, Connecticut.

A determination of public need for cellular telephone service has been pre-empted by the Federal Communications Commission (FCC). Under Connecticut State law, the Council must balance the need to develop the proposed site as a cellular telephone facility with the need to protect the environment, including public health and safety.

In finding a proposed tower site, an applicant must locate a site or existing tower to share, offering the necessary coverage that would not have a substantial effect on the environment and be adequately distant from wetlands, public recreation areas, and adjacent homes. Because Metro Mobile does not have the authority to take land through eminent domain, acquisition of a site requires consent of the property owners to lease or sell the property. These requirements restrict the number of potential tower sites within defined search areas.

The proposed or alternate site would function as a secondary cellular facility, located near the intersection of three existing, primary cellular facilities in Hartford, Glastonbury, and Vernon, Connecticut. Cellular service demand is exceeding the call-handling capacity of Sector three in Hartford and is soon expected to exceed the call-handling capacity of the facilities in Glastonbury and Vernon. The proposed Manchester site would provide additional overlapping coverage between these three cells for the continuous transfer of calls in the Hartford-Glastonbury-Vernon region, in which there are presently weak signals and interference. The proposed and alternate sites would provide similar coverage and call-handling capability throughout the area.

The proposed site would be leased and developed in the rear of a privately owned 1.35 acre lot located at 266 Center Street. The proposed 128-foot, self-supporting monopole tower and antenna structure would be located approximately 12 feet west of Kenneth C. Burkamp's property and 140 feet east of the nearest residential building. The fall zone of the tower could encompass a metal storage shed on Kenneth C. Burkamp's property east of the site; a one-story brick manufacturing building on the lessor's property; and a portion of the adjacent property that the nearest residential building is located on, west of the site. Metro Mobile would raze an abandoned wood-frame building and construct a single story equipment building, measuring 20 feet by 40 feet, on the site. Vehicle access to the proposed site would be over an existing driveway on land of Kenneth C. Burkamp and land of the lessor permitted by a non-exclusive right of passage granted by Kenneth C. Burkamp to the lessor. Utilities from Center Street would be available to the facility. Minimal site leveling or backfilling would be required at the site.

The alternate site would be leased and located on the northern boundary of a 1.1 acre lot at 218 Hartford Road. The 153-foot, self-supporting monopole tower and antenna structure would be located 46 feet south of Hartford Road and 120 feet north of land owned by Millbridge Hollow Condominiums. The fall zone of the alternate tower could encompass Hartford Road, land owned by the Millbridge Hollow Condominiums, and a two-story brick manufacturing building on the lessor's lot. A single story equipment building, measuring 20 feet by 40 feet, would be constructed on the site. Vehicle access to the cell site would be over an existing driveway and parking lot on land of the Utilities from existing utility poles along Hartford Road would be routed to the facility. Removal of an on-site dirt pile would be required.

Electromagnetic radio frequency power density is a health and safety concern of the Council. However, the power density level measured at the base of the proposed tower would be 0.1124 milliwatts per square centimeter (mW/cm²), and at the base of the alternate tower it would be 0.0737 mW/cm². These power densities are well below the American National Standards Institute (ANSI) safety standard of 2.92 mW/cm², as adopted by the State in Connecticut General Statutes Section 22a-162. The power density would rapidly decrease as distance from the tower increases.

No wetlands or watercourses exist at either site. No water flow and/or quality changes would be expected to result from the construction and operation of either the proposed or the alternate facilities. Docket 129 Opinion Page 3

There are no existing records of federally endangered or threatened species or Connecticut species of special concern occurring in the area of the proposed or alternate sites, according to the latest available information from the Connecticut Department of Environmental Protection Natural Resources Center.

The proposed facility is located near a historical zone. However, this historical zone is also a highly urbanized area that consists of industrial and commercial uses. There is no reason to believe that the proposed tower would have any significant effect on the zone. Furthermore, the State Historical Commission has stated that there would be no significant effect on the State's historic and architectural resources at the proposed site.

Moreover the Council believes that the industrial and urban nature of the proposed site lends itself to a commercial use such as the proposed cellular telecommunications tower. Visually, the tower will be acceptable with the site and surrounding land uses. Furthermore, the height of the tower is not so great that it will be visually obtrusive in the immediate area to adjacent residential units, or for any significant distance to the community in general.

The intrusion of the fall zone on adjacent structures and property should be avoided whenever possible to maintain a reasonable setback from other land uses. Nonetheless, the close proximity of tall urban structures on small urban sites make this goal impractical if not impossible. Although the Council will require the tower to be shifted the greatest distance possible from adjacent properties and structures to enhance the site, there is insufficient reason to deny the proposed site due to the location of the tower in relation to the adjacent land uses, properties, and structures.

In comparison, the alternate site tower would be 25 feet taller and located within the historic zone. Consequently it is the opinion of the Council that the proposed site is superior, and the alternate site should be denied.

Based on its record in this proceeding, the Council is of the opinion that the effects associated with the construction, operation, and maintenance of a cellular tower and associated equipment building at the proposed site, including the effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not significant either alone or cumulatively with other effects, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application for the proposed site.

Docket 129 Opinion Page 4

The Council will require Metro Mobile to submit a Development and Management (D&M) plan for approval prior to the commencement of any construction at the proposed site. This D&M plan shall include detailed plans of the site preparation with the final tower height in relation to the site elevation, and placement of the tower as great a distance as possible from abutting properties.

JAW

4158E

DOCKET NO. 129 - AN APPLICATION OF METRO MOBILE CTS OF HARTFORD, INC., FOR A CERTIFICATE OF ENVIRONMENTAL COMPATIBILITY AND PUBLIC NEED FOR THE CONSTRUCTION, OPERATION, AND MAINTENANCE OF A CELLULAR TELEPHONE TOWER AND ASSOCIATED EQUIPMENT IN THE TOWN OF MANCHESTER, CONNECTICUT.

Connecticut Siting

Council

March 12, 1990

DECISION AND ORDER

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council finds that the effects associated with the construction, operation, and maintenance of a cellular telephone facility at the proposed Manchester site, including effects on the natural environment; ecological integrity and balance; forests and parks; air and water purity; and fish and wildlife are not significant either alone or cumulatively with other effects, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by Section 16-50k of the General Statutes of Connecticut (CGS), be issued to Metro Mobile CTS of Hartford, Inc., for the construction, operation, and maintenance of a cellular telecommunications tower, associated equipment, and building at the proposed site in Manchester, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- The monopole tower including antennas and associated equipment shall not exceed a height of 128 feet above ground level, 324 feet AMSL.
- The facility shall be constructed in accordance with the State of Connecticut Basic Building Code.
- 3. The Certificate Holder shall prepare a Development and Management (D&M) plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of State Agencies. The D&M plan shall include detailed plans of the site preparation with a soil boring report; plans, design details, and specifications for the tower foundation; and a site plan with placement of the tower as far removed from abutting properties and structures as possible.
- 4. The Certificate Holder shall prepare the D&M plan in consultation with the Town of Manchester which may provide its comments to the Council within 20 days of submission to the Town.

- 5. The Certificate Holder shall comply with any future radio frequency (RF) standard promulgated by State or federal regulatory agencies. Upon the establishment of any new governmental RF standards, the facility granted in this Decision and Order shall be brought into compliance with such standards.
- 6. The Certificate Holder shall provide the Council a recalculated report of power density if and when additional channels over the proposed 90 channels, higher wattage over the proposed 100 watts per channel, or if other circumstances in operation cause a change in power density above the levels originally calculated in the application.
- 7. The Certificate Holder shall permit public or private entities to share space on the tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 8. If this facility does not initially provide, or permanently ceases to provide cellular service following the completion of construction, this Decision and Order shall be void, and the tower and all associated equipment in this application shall be dismantled and removed or reapplication of any new use shall be made to the Council before any such new use is made.
- 9. Unless otherwise approved by the Council, this Decision and Order shall be void if construction authorized herein is not completed within three years of the effective date of this Decision and Order.

Pursuant to Section 16-50p of the CGS, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below. A notice of issuance shall be published in the Hartford Courant and Journal Inquirer.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of State Agencies.

CERTIFICATE

OF

ENVIRONMENTAL COMPATIBILITY AND PUBLIC NEED DOCKET NO. 129

Pursuant to section 16-50k of the General Statutes of Connecticut, as amended, the Connecticut Siting Council hereby issues a Certificate of Environmental Compatibility and Public Need to Metro Mobile CTS of Hartford, Inc., for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance, and operation of a cellular telephone tower and associated equipment at the proposed primary site in the Town of Manchester, Connecticut. This Certificate is issued in accordance with and subject to the terms and conditions set forth in the Decision and Order of the Council on March 12, 1990.

By order of the Council,

Gloria Dibble Pond, Chairperson

March 12, 1990

Exhibit B

Property Card

266R CENTER STREET

Location 266R CENTER STREET **Mblu** 62/ 1020/ 266/ /

Acct# 102000266R Owner CROWN ATLANTIC CO LLC

Assessment \$115,000 Appraisal \$164,200

PID 2635 Building Count 1

DISTRICT T CONCRETE

Current Value

Appraisal						
Valuation Year	Improvements	Land	Total			
2016	\$82,000	\$82,200	\$164,200			
Assessment						
Valuation Year	Improvements	Land	Total			
2016	\$57,500	\$57,500	\$115,000			

Owner of Record

Owner CROWN ATLANTIC CO LLC

PMB 353-806372

Address 4017 WASHINGTON ROAD

MCMURRAY, PA 15317

Sale Price \$0

Certificate C

Book & Page 2071/309

Sale Date 04/19/1999

Instrument 25

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date
CROWN ATLANTIC CO LLC	\$0	С	2071/ 309	25	04/19/1999
CELCO PARTNERSHIP	\$0		1923/ 202	25	10/16/1997
METRO MOBILE	\$0		1382_142		04/01/1990

Building Information

Building 1: Section 1

Year Built:

Living Area: 0
Replacement Cost: \$0

Replacement Cost

Less Depreciation: \$0

\$0

Field	Description
tyle	Outbuildings
odel	
rade:	
tories:	
ccupancy	
kterior Wall 1	
kterior Wall 2	
oof Structure:	
oof Cover	
iterior Wall 1	
nterior Wall 2	
terior Flr 1	
iterior Flr 2	
eat Fuel	
eat Type:	
C Type:	
tal Bedrooms:	
tal Bthrms:	
tal Half Baths:	
tal Xtra Fixtrs:	
tal Rooms:	
ath Style:	
tchen Style:	
ktra Kitchens	
hirlpool	
replace	
n Basement	
n Bsmnt Qual	
n Bsmnt 2	
n Bsmnt2 Qual	
smnt Garage	
Sillit Garage	

Building Photo

(http://images.vgsi.com/photos2/ManchesterCTPhotos//\00\02\4

Building Layout

Building Layout

(http://images.vgsi.com/photos2/ManchesterCTPhotos//Sketches

Building Sub-Areas (sq ft)	<u>Legend</u>
No Data for Building Sub-Areas	

Extra Features

Extra Features	<u>Legend</u>
No Data for Extra Features	

Land

Land Use Land Line Valuation Use Code 302 Size (Acres) 0.17 0 Description Ind Vac Frontage Zone IND Depth 0 Neighborhood 4500 Assessed Value \$57,500 Appraised Value \$82,200 Alt Land Appr No Category

Outbuildings

	Outbuildings <u>Leg</u>						
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #	
FN4	Fence 8' Chain			264 L.F.	\$4,000	1	
PAV1	Paving Asphalt			14000 S.F.	\$17,500	1	
SHDT	Telephone Shed			720 S.F.	\$59,400	1	
LT1	Lights 1Fix			2 UNITS	\$800	1	
PAV2	Paving Concrete			12 S.F.	\$300	1	

Valuation History

Appraisal						
Valuation Year	Improvements	Land	Total			
2015	\$85,100	\$82,200	\$167,300			
2010	\$81,400	\$86,500	\$167,900			
2005	\$71,100	\$61,800	\$132,900			

Assessment						
Valuation Year	Improvements	Land	Total			
2015	\$59,600	\$57,500	\$117,100			
2010	\$57,000	\$60,600	\$117,600			
2005	\$49,900	\$43,300	\$93,200			

(c) 2019 Vision Government Solutions, Inc. All rights reserved.

Exhibit C

Construction Drawings

MANCHESTER CT 266R CENTER STREET MANCHESTER, CT 06040

PROJECT SUMMARY

SITE NAME: SITE ADDRESS:

MANCHESTER CT 266R CENTER STREET MANCHESTER, CT 06040 CROWN CASTLE 2000 CORPORATE DR CANONSBURG, PA 15317 806372

TOWER OWNER:
BU NUMBER:

MAP NUMBER: LOT NUMBER:

CUSTOMER/APPLICANT: VERIZON WIRELESS
400 FRIEBERG PARKWAY
WESTBOROUGH, MA 01581
DAN M7/2'RI
(617) 945-7288
NADB3
LATTILIFE: 41' 46' 18 96' N

B+T GROUP 1717 S. BOULDER, SUITE 300 TULSA, OK 74119 STEVE THORNHILL (918) 587–4630 LIMMANNED

OCCUPANCY TYPE: A.D.A. COMPLIANCE: UNMANNED
FACILITY IS UNMANNED AND NOT
FOR HUMAN HABITATION.

CODE COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:

DRIVING DIRECTIONS

DEPART FROM BRADLEY INTERNATIONAL AIRPORT ON TERMINAL RD. ROAD NAME CHANGES TO BRADLEY FIELD CONNECTOR. ROAD NAME CHANGES TO CT-20 [BRADLEY FIELD CONNECTOR]. TAKE RAMP (RIGHT) ONTO I-91 [RICHARD P HORAN MEMORIAL HWY]. AT EXIT 30, TAKE RAMP ONTO I-94 [US-4]. AT EXIT 60, TURN RIGHT ONTO STAY (US-6]. KEEP RIGHT ONTO PINE ST. KEEP RIGHT TO STAY ON PINE ST. TURN LEFT ONTO SK MECHANICAL ACCESS ROAD AND ARRIVE AT MANCHESTER CT.

		DRAWING INDEX						
	SHE	SHEET# SHEET DESCRIPTION						
	T-	-1	TITLE SHEET	0				
N	Α-	-1	COMPOUND PLAN AND TOWER ELEVATION	0				
1	Α-	-2	EQUIPMENT DETAILS	0				

A/E DOCUMENT REVIEW STATUS

ANTENNA MOUNTING DETAIL

00	TİTLE	SIGNATURE	DATE
2	OWNER:		
	R.F. ENGINEER:		
	CONSTRUCTION MGR.:		
	LEASING & ZONING:		
	VERIZON WIRELESS:		

THE FOLLOWING PARTIES HEREBY APPROVE AND ACCEPT THESE DOCUMENTS AND AUTHORIZE THE CONTRACTOR TO PROCEED WITH THE CONSTRUCTION DESCRIBED HEREIN, ALL DOCUMENTS ARE SUBJECT TO REVIEW BY THE LOCAL BUILDING DEPARTMENT AND MAY IMPOSE CHANGES OR MODIFICATIONS.

DO NOT SCALE DRAWINGS

ALL DRAWINGS CONTAINED HEREIN ARE FORMATTED FOR 11x17.
CONTRACTOR SHALL VERRIFY ALL PLANS AND EXISTING DIMENSIONS AND
CONDITIONS ON THE JOB SITE AND SHALL IMMEDIATELY NOTIFY THE ENGINEER
IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK
OR BE RESPONSIBLE FOR SAME.

CALL CONNECTICUT ONE CALL (800) 922-4455 CALL 3 WORKING DAYS BEFORE YOU DIG!

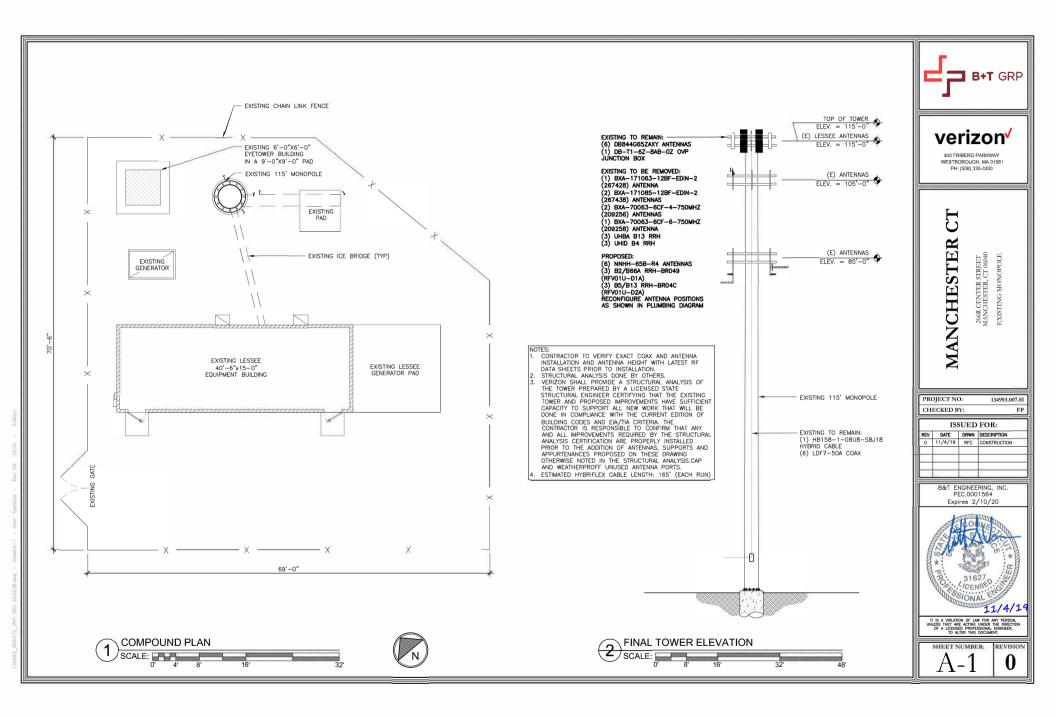
verizon v

400 FRIBERG PARKWAY WESTBOROUGH, MA 01581

MANCHESTER CT

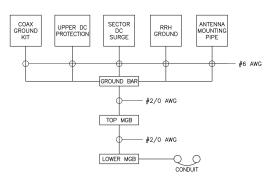
266R CENTER STREET
MANCHESTER, CT 06040
FYISTING MONOPOLE

_						
PR	OJECT NO	134993.007.01				
CH	ECKED B	FP				
	ISSUED FOR:					
REV	DATE	DRWN	DESCRIPTION			
0	11/4/19	RFC	CONSTRUCTION			


B&T ENGINEERING, INC. PEC.0001564

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL BUSINEER, TO ALTER THIS DOCUMENT.

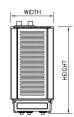
T-1


0

- NOTE:

 1. INSTALL ALL EQUIPMENT, MOUNTING BRACKETS AND HARDWARE ACCORDING WITH MANUFACTURE'S RECOMMENDATIONS.

 2. GROUND DISTRIBUTION BOXES, MOUNTING PIPES AND RRHs IN ACCORDANCE WITH MANUFACTURE'S RECOMMENDATIONS.
- INSTALLED EQUIPMENT AND MOUNTING BRACKETS SHALL NOT INTERFERE WITH CLIMBING ACCESS NOR ANT INSTALLED SAFETY DEVICES.
- EQUIPMENT TO BE INSTALLED AT VERIZON'S RAD. CENTER IN ACCORDANCE WITH TOWER STRUCTURAL ANALYSIS (ANALYSIS BY OTHERS).


- BOND ANTENNA GROUNDING KIT CABLES TO TOP CIEE. BOND ANTENNA GROUNDING KIT CABLE TO BOTTOM CIBE. TYPICAL FOR ALL SECTORS.

GROUNDING SCHEMATIC DIAGRAM

DB-T1-6Z-8AB-OZ OVP JUNCTION BOX TO REMAIN (1) TOTAL

SCALE: N.T.S.

REMOTE RADIO HEAD DIMENSIONS (INCHES)							
MODEL	HEIGHT	WIDTH	DEPTH	WEIGHT			
B2/B66A RRH BR049 RFV01U-D1A	15.0"	15.0"	10.0"	84.4 LBS			
B5/B13 RRH BR04C RFV01U-D2A	15.0"	15.0"	8.1"	70.3 LBS			

PROPOSED ANTENNA ORIENTATION

SCALE: N.T.S.

RRH SPECIFICATIONS SCALE: N.T.S.

DC SURGE SUPPRESSION DIMENSIONS (INCHES)						
MODEL	HEIGHT	WIDTH	DEPTH	WEIGHT		
RFS/CELWAVE/DB-T1-6Z- 8AB-0Z	24"	24"	10"	44 LBS		

RAYCAP SPECIFICATIONS SCALE: N.T.S.

DB844G65ZAXY ANTENNA REMAINS (2) PER SECTOR, (6) TOTAL NEW NNHH-65B-R4 ANTENNA (2) PER SECTOR, (6) TOTAL NEW B2/B66A RRH-BR049 (RFV01U-D1A) (1) PER SECTOR, (3) TOTAL (LTE) (ALPHA) 45° AZIMUTH (GAMMA) 270° AZIMUTH NEW B5/B13 RRH-BR04C (RFV01U-D2A)
(1) PER SECTOR, (3) TOTAL (LTE) (BETA) 155* AZIMUTH

verizon^v

400 FRIBERG PARKWAY WESTBOROUGH, MA 01581 PH: (508) 330-3300

MANCHESTER

PROJECT NO: CHECKED BY:

ISSUED FOR: REV DATE DRWN DESCRIPTION 11/4/19 RFC CONSTRUCTION

> B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/20

SHEET NUMBER:

REVISION

ANTENNA MOUNTING DETAIL

SCALE: N.T.S.

verizon/

400 FRIBERG PARKWAY WESTBOROUGH, MA 01581 PH: (508) 330-3300

MANCHESTER CT

266R CENTER STREE: MANCHESTER, CT 060 EXISTING MONOPOL

PROJECT NO: 134993.007.01
CHECKED BY: FP

> B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/20

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTIO OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT

SHEET NUMBER:

REVISION:

Exhibit D

Structural Analysis Report

Date: November 04, 2019

Amanda D Brown Crown Castle 3530 Toringdon Way Charlotte, NC 28277 Paul J. Ford and Company 250 E. Broad St., Ste 600 Columbus, OH 43215 614-221-6679

Subject: Structural Analysis Report

Carrier Designation: Verizon Wireless Co-Locate

Carrier Site Number: NG1904

Carrier Site Name: MANCHESTER CT

Crown Castle Designation: Crown Castle BU Number: 806372

Crown Castle Site Name: HRT 093 943228

Crown Castle JDE Job Number:592606Crown Castle Work Order Number:1802880Crown Castle Order Number:506740 Rev. 0

Engineering Firm Designation: Paul J. Ford and Company Project Number: 37519-1302.004.7805

Site Data: 266R Center Street, MANCHESTER, Hartford County, CT

Latitude 41° 46′ 19", Longitude -72° 31′ 48.8"

115 Foot - Monopole Tower

Dear Amanda D Brown,

Paul J. Ford and Company is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Proposed Equipment Configuration

Sufficient Capacity – 58.1%

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code and Appendix N. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Respectfully submitted by:

Udaykiran Yerra Structural Designer uyerra@pauliford.com

2019.11.05 15:18:16-05'00'

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 115 ft Monopole tower designed by VALMONT in May of 1990.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Wind Speed: 125 mph

Exposure Category:BTopographic Factor:1Ice Thickness:2 inWind Speed with Ice:50 mphService Wind Speed:60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)		
	115.0	6	commscope	NNHH-65B-R4 w/ Mount Pipe				
		6	decibel	DB844G65ZAXY w/ Mount Pipe				
		1	rfs celwave	DB-T1-6Z-8AB-0Z	7	1-5/8		
115.0		3	samsung telecommunications	RFV01U-D1A				
				3	samsung telecommunications	RFV01U-D2A		
		1	tower mounts	Miscellaneous [NA 509-3]				
		1	tower mounts	Platform Mount [LP 715-1]				

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
	107.0	2	andrew	VHLP1-23		
	107.0	1	andrew	VHLP2-23	5	1/2
105.0	105.0	105.0 1 tower mou		Platform Mount [LP 602-1]	5 5 2	5/16 1/4 2-1/2" Conduit
	85.0	2	tower mounts	Side Arm Mount [SO 701-		
		1	1 wade antenna WH14-69/S			
85.0	84.0	3	wade antenna	WL 14-69/S	5	13/32
	78.0	2	tower mounts	Side Arm Mount [SO 701-		
		1	wade antenna	J105-HI		

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
4-GEOTECHNICAL REPORTS	Testwell Craig Laboratories of CT, Inc, 04/12/1990	262174	CCISites
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	FDH Engineering, 10-06100E N1, 06/21/2010 (Mapping)	2668863	CCISites
4-TOWER MANUFACTURER DRAWINGS	Valmont, DC03902, 05/01/1990	262172	CCISites

3.1) Analysis Method

tnxTower (version 8.0.5.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were built in accordance with the manufacturer's specifications.
- 2) The tower and structures have been maintained in accordance with the manufacturer's specification.
- 3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 4) The existing base plate grout was not considered in this analysis.
- 5) The foundation drawings were not available at the time of this analysis. Therefore, we have assumed the material yield strengths (F'c and Fy) as per the following:

 Concrete: 3000 PSI
 - Foundation Reinforcing: ASTM A615 Gr 60
- 6) At the time of analysis, the referenced geotechnical report did not provide definitive values for the soil properties. The soil properties were estimated off the boring logs.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	115 - 72.3334	Pole	TP30.45x21.91x0.219	1	-9.26	1269.02	44.0	Pass
L2	72.3334 - 29.3334	Pole	TP38.61x29.0779x0.313	2	-16.05	2300.73	48.2	Pass
L3	29.3334 - 0	Pole	TP43.85x36.8508x0.375	3	-24.52	3224.57	48.0	Pass
							Summary	
						Pole (L2)	48.2	Pass
						Rating =	48.2	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC5

	ipononi ou cocco rei			
Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	45.7	Pass
1	Base Plate	0	26.2	Pass
1	Base Foundation Soil Interaction	0	58.1	Pass
1	Base Foundation Structural Steel	0	42.0	Pass

Structure Rating (max from all components) =	58.1%
--	-------

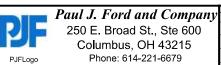
Notes:

- All structural ratings are per TIA-222-H Section 15.5
- 1) See additional documentation in "Appendix C Additional Calculations" for calculations supporting the % capacity consumed.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A TNXTOWER OUTPUT



MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

- Tower is located in Hartford County, Connecticut.
 Tower designed for Exposure B to the TIA-222-H Standard.
- 3. Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard.
- 4. Tower is also designed for a 50 mph basic wind with 2.00 in ice. Ice is considered to increase in thickness with height.
- 5. Deflections are based upon a 60 mph wind.
- Tower Risk Category II.
 Topographic Category 1 with Crest Height of 0.0000 ft
- 8. TIA-222-H Annex S 9. TOWER RATING: 48.2%

Phone: 614-221-6679 FAX:

^{ob:} HRT 093 94322	8	
Project: PJF # 37519-130	2.004.7805 / BU# 806372	
Client: CCI	Drawn by: Udaykiran Yerra	App'd:
		Scale: NTS
Path:	BB8777 LIDT 003 043228137840 1302 004 7805 Ca. 4802880437840 4302 004 780	Dwg No. E-

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower is located in Hartford County, Connecticut.

Tower base elevation above sea level: 195.0000 ft.

Basic wind speed of 125 mph.

Risk Category II.

Exposure Category B.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1.

Crest Height: 0.0000 ft.

Nominal ice thickness of 2.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56.00 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

TIA-222-H Annex S.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.05.

Tower analysis based on target reliabilities in accordance with Annex S.

Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios

 ✓ Use Code Safety Factors - Guys Escalate Ice
 Always Use Max Kz

Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Špans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

√ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption

Line TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H Topping Splice

TIA-222 H T

Use TIA-222-H Tension Splice Exemption

Poles

✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	
L1	115.0000-	42.6666	4.67	12	21.9100	30.4500	0.2190	0.8760	A572-65
	72.3334								(65 ksi)
L2	72.3334-	47.6666	5.67	12	29.0779	38.6100	0.3130	1.2520	A572-65
	29.3334								(65 ksi)
L3	29.3334-	35.0000		12	36.8508	43.8500	0.3750	1.5000	A572-65
	0.0000								(65 ksi)

Tapered Pole Properties												
Section	Tip Dia. in	Area in²	I in ⁴		r in	C in	I/C in³	J in⁴	It/Q in²	w in	w/t	
L1	22.6056 31.4469	15.2961 21.3183	918.59 2486.8		7.7654 0.8227	11.3494 15.7731	80.9380 157.6618	1861.3250 5038.9614	7.5283 10.4922	5.2850 7.5737	24.132 34.583	
L2	30.9594 39.8616	28.9910 38.5980	3061.80 7225.70		0.2979 3.7103	15.0624 20.0000	203.2748 361.2858	6204.0393 14641.244	14.2685 18.9968	6.9541 9.5086	22.21 ² 30.37	
L3	39.1917	44.0446	7479.7	774 1	3.0583	19.0887	391.8426	15156.056 9	21.6774	8.8710	23.65	6
	45.2646	52.4961	12664.6 2	611 1	5.5641	22.7143	557.5611	25661.935 8	25.8370	10.7468	28.65	8
Tower Elevatio		ea Th	Gusset ickness	Gusse	t Grade,	Adjust. Factor A _f	Adjust. Factor A _r	Weight N	Stitci Spa	h Bolt St acing S	itch Bolt Spacing	Double Angle Stitch Bolt Spacing
ft	ft	-2	in						- · · · · · · · · · · · · · · · · · · ·	onals Ho n	rizontals in	Redundants in
L1 115 00 72 3334						1	1	1				

Feed Line/Linear Appurtenances - Entered As Round Or Flat

1

1

Description	Sector	Exclude	Componen	Placement	Total	Number	Start/En		Perimete	Weight
		From	I		Number	Per Row	d	Diamete	r	
		Torque	Туре	ft			Position	r		klf
		Calculation						in	in	
LDF7-50A(1-5/8)	Α	No	Surface Ar	115.0000 -	1	1	-0.117	1.9800		0.00
			(CaAa)	0.0000			-0.117			
LDF7-50A(1-5/8)	Α	No	Surface Ar	115.0000 -	1	1	-0.258	1.9800		0.00
			(CaAa)	0.0000			-0.258			
***			, ,							
1110(13/32)	Α	No	Surface Ar	85.0000 -	5	5	0.058	0.4050		0.00
(/			(CaAa)	0.0000			0.117			

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or Leg	Allow Shield	Exclude From Torque Calculatior	Componen t Type	Placement ft	Total Number		C _A A _A ft²/ft	Weight klf

LDF7-50A(1-5/8)	С	No	No	Inside Pole	115.0000 -	5	No Ice	0.0000	0.00

L2 72.3334-

29.3334 L3 29.3334-

0.0000

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation	Type	ft			ft²/ft	klf
					0.0000		1/2" I ce	0.0000	0.00
							1" I ce	0.0000	0.00
							2" Ice	0.0000	0.00

FSJ1-50A(1/4)	С	No	No	Inside Pole	105.0000 -	5	No Ice	0.0000	0.00
					0.0000		1/2" I ce	0.0000	0.00
							1" I ce	0.0000	0.00
							2" Ice	0.0000	0.00
FSJ4-50B(1/2)	С	No	No	Inside Pole	105.0000 -	5	No Ice	0.0000	0.00
` ,					0.0000		1/2" I ce	0.0000	0.00
							1" Ice	0.0000	0.00
							2" I ce	0.0000	0.00
9207(5/16)	С	No	No	Inside Pole	105.0000 -	5	No Ice	0.0000	0.00
()					0.0000		1/2" Ice	0.0000	0.00
							1" Ice	0.0000	0.00
							2" Ice	0.0000	0.00
2-1/2" (Nominal)	С	No	No	Inside Pole	105.0000 -	2	No Ice	0.0000	0.00
Conduit	•		. 10		0.0000	_	1/2" Ice	0.0000	0.00
23					2.2000		1" Ice	0.0000	0.00
							2" Ice	0.0000	0.00

Feed Line/Linear Appurtenances Section Areas

Tower Sectio	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft		ft ²	ft ²	ft ²	ft ²	K
L1	115.0000-	Α	0.000	0.000	19.461	0.000	0.07
	72.3334	В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.29
L2	72.3334-29.3334	Α	0.000	0.000	25.735	0.000	80.0
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.33
L3	29.3334-0.0000	Α	0.000	0.000	17.556	0.000	0.06
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.22

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Sectio	Tower Elevation	Face or	lce Thickness	A_R	A_{F}	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft	Leg	in	ft ²	ft ²	ft ²	ft ²	K
L1	115.0000-	Α	1.885	0.000	0.000	58.248	0.000	0.93
	72.3334	В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.29
L2	72.3334-29.3334	Α	1.774	0.000	0.000	80.606	0.000	1.18
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.33
L3	29.3334-0.0000	Α	1.564	0.000	0.000	52.869	0.000	0.74
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.22

Feed Line Center of Pressure

Section	Elevation	CP _X	CPz	CP _X Ice	CP _z Ice
	ft	in	in	in	in
L1	115.0000-72.3334	-2.2555	-0.4769	-3.9780	-0.9048
L2	72.3334-29.3334	-2.8569	-0.9444	-4.7549	-1.7210
L3	29.3334-0.0000	-2.9202	-0.9682	-4.9751	-1.8063

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment	No Ice	Ice
			Elev.		
L1	18	LDF7-50A(1-5/8)	72.33 -	1.0000	1.0000
			115.00		
L1	19	LDF7-50A(1-5/8)	72.33 -	1.0000	1.0000
			115.00		
L1	27	1110(13/32)	72.33 -	1.0000	1.0000
			85.00		
L2	18	LDF7-50A(1-5/8)	29.33 -	1.0000	1.0000
			72.33		
L2	19	LDF7-50A(1-5/8)	29.33 -	1.0000	1.0000
l			72.33		
L2	27	1110(13/32)	29.33 -	1.0000	1.0000
			72.33		

	4 1	
1110	~ × ~ + ~	I nade

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	0	ft		ft ²	ft ²	K
(2) DB844G65ZAXY w/ Mount Pipe	Α	From Leg	4.0000 0.00 0.00	0.000	115.0000	No Ice 1/2" Ice 1" Ice 2" Ice	4.5782 4.9555 5.3404 6.1369	4.8023 5.4160 6.0401 7.3370	0.03 0.08 0.13 0.26
(2) DB844G65ZAXY w/ Mount Pipe	В	From Leg	4.0000 0.00 0.00	0.000	115.0000	No Ice 1/2" Ice 1" Ice 2" Ice	4.5782 4.9555 5.3404 6.1369	4.8023 5.4160 6.0401 7.3370	0.03 0.08 0.13 0.26
(2) DB844G65ZAXY w/ Mount Pipe	С	From Leg	4.0000 0.00 0.00	0.000	115.0000	No Ice 1/2" Ice 1" Ice 2" Ice	4.5782 4.9555 5.3404 6.1369	4.8023 5.4160 6.0401 7.3370	0.03 0.08 0.13 0.26
(2) NNHH-65B-R4 w/ Mount Pipe	Α	From Leg	4.0000 0.00 0.00	0.000	115.0000	No Ice 1/2" Ice 1" Ice 2" Ice	7.5500 8.0400 8.5300 9.5600	4.2300 4.6700 5.1200 6.0500	0.11 0.20 0.30 0.53
(2) NNHH-65B-R4 w/ Mount Pipe	В	From Leg	4.0000 0.00	0.000	115.0000	No Ice 1/2"	7.5500 8.0400	4.2300 4.6700	0.11 0.20

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
	3		Vert ft ft ft	0	ft		ft²	ft²	κ
			0.00			Ice 1" Ice	8.5300 9.5600	5.1200 6.0500	0.30 0.53
(2) NNHH-65B-R4 w/ Mount Pipe	С	From Leg	4.0000 0.00 0.00	0.000	115.0000	2" Ice No Ice 1/2" Ice	7.5500 8.0400 8.5300	4.2300 4.6700 5.1200	0.11 0.20 0.30
			0.00			1" Ice 2" Ice	9.5600	6.0500	0.53
(2) RFV01U-D1A	Α	From Leg	4.0000 0.00 0.00	0.000	115.0000	No Ice 1/2" Ice	1.8750 2.0454 2.2231	1.2500 1.3926 1.5426	0.08 0.10 0.12
RFV01U-D1A	В	From Leg	4.0000	0.000	115.0000	1" Ice 2" Ice No Ice	2.6009 1.8750	1.8648 1.2500	0.18 0.08
N VOIC BIN	5	Trom Log	0.00	0.000	110.0000	1/2" Ice 1" Ice 2" Ice	2.0454 2.2231 2.6009	1.3926 1.5426 1.8648	0.10 0.12 0.18
RFV01U-D2A	В	From Leg	4.0000 0.00 0.00	0.000	115.0000	No Ice 1/2" Ice 1" Ice	1.8750 2.0454 2.2231 2.6009	1.0125 1.1445 1.2840 1.5851	0.07 0.09 0.11 0.15
(2) RFV01U-D2A	С	From Leg	4.0000 0.00	0.000	115.0000	2" Ice No Ice 1/2"	1.8750 2.0454	1.0125 1.1445	0.07 0.09
			0.00			Ice 1" Ice 2" Ice	2.2231 2.6009	1.2840 1.5851	0.11 0.15
DB-T1-6Z-8AB-0Z	С	From Leg	4.0000 0.00 0.00	0.000	115.0000	No Ice 1/2" Ice 1" Ice 2" Ice	4.8000 5.0704 5.3481 5.9259	2.0000 2.1926 2.3926 2.8148	0.04 0.08 0.12 0.21
Platform Mount [LP 715-1]	С	None		0.000	115.0000	No Ice 1/2" Ice 1" Ice 2" Ice	46.7700 50.2500 53.9700 62.2200	46.7700 50.2500 53.9700 62.2200	1.77 2.88 4.09 6.81
Miscellaneous [NA 509-3]	С	None		0.000	115.0000	No Ice 1/2" Ice 1" Ice	11.8400 16.9600 22.0800 32.3200	11.8400 16.9600 22.0800 32.3200	0.28 0.30 0.32 0.36
(2) 2.375" OD x 6' Mount Pipe	Α	None		0.000	115.0000	2" Ice No Ice 1/2" Ice 1" Ice	1.4250 1.9250 2.2939 3.0596	1.4250 1.9250 2.2939 3.0596	0.03 0.04 0.05 0.09
(2) 2.375" OD x 6' Mount Pipe	В	None		0.000	115.0000	2" Ice No Ice 1/2" Ice 1" Ice	1.4250 1.9250 2.2939 3.0596	1.4250 1.9250 2.2939 3.0596	0.03 0.04 0.05 0.09
(2) 2.375" OD x 6' Mount Pipe	С	None		0.000	115.0000	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	1.4250 1.9250 2.2939 3.0596	1.4250 1.9250 2.2939 3.0596	0.03 0.04 0.05 0.09
**** Platform Mount [LP 602-1]	С	None		0.000	105.0000	No Ice 1/2" Ice 1" Ice	31.0700 34.8200 38.4800 45.6000	31.0700 34.8200 38.4800 45.6000	1.34 1.97 2.67 4.31
(2) 2.375" OD x 6' Mount	Α	From Leg	4.0000	0.000	105.0000	2" Ice No Ice	1.4250	1.4250	0.03

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	0	ft		ft ²	ft²	K
Pipe			0.00			1/2"	1.9250	1.9250	0.04
·			0.00			Ice 1" Ice 2" Ice	2.2939 3.0596	2.2939 3.0596	0.05 0.09
(2) 2.375" OD x 6' Mount	В	From Leg	4.0000	0.000	105.0000	No Ice	1.4250	1.4250	0.03
Pipe			0.00			1/2"	1.9250	1.9250	0.04
			0.00			Ice 1" Ice 2" Ice	2.2939 3.0596	2.2939 3.0596	0.05 0.09
(2) 2.375" OD x 6' Mount	С	From Leg	4.0000	0.000	105.0000	No Ice	1.4250	1.4250	0.03
Pipe			0.00			1/2"	1.9250	1.9250	0.04
			0.00			Ice 1" Ice	2.2939 3.0596	2.2939 3.0596	0.05 0.09
***						2" Ice	3.0390	3.0390	0.09
WH14-69/S	Α	From Leg	4.0000	0.000	85.0000	No Ice	1.8544	1.8544	0.01
			0.00			1/2"	2.7029	2.7029	0.03
			0.00			Ice 1" Ice	3.0540 3.7841	3.0540 3.7841	0.06 0.13
						2" Ice	3.7041	3.7041	0.13
WL 14-69/S	Α	From Leg	4.0000	0.000	85.0000	No Ice	0.2869	4.1479	0.01
			0.00			1/2"	0.3655	4.4641	0.03
			-1.00			Ice 1" Ice	0.4511 0.6454	4.7877 5.4572	0.06 0.12
						2" Ice	0.0404	0.4072	0.12
WL 14-69/S	В	From Leg	4.0000	0.000	85.0000	No Ice	0.2869	4.1479	0.01
			0.00			1/2"	0.3655	4.4641	0.03
			-1.00			Ice 1" Ice	0.4511 0.6454	4.7877 5.4572	0.06 0.12
						2" Ice		01.0.2	
WL 14-69/S	В	From Leg	4.0000	0.000	85.0000	No Ice	0.2869	4.1479	0.01
			0.00 -1.00			1/2" I ce	0.3655 0.4511	4.4641 4.7877	0.03 0.06
			-1.00			1" Ice 2" Ice	0.6454	5.4572	0.12
J105-H I	Α	From Leg	4.0000	0.000	85.0000	No Ice	3.2500	3.2500	0.02
			0.00 -7.00			1/2" I ce	0.0000 8.4790	0.0000 8.4790	0.03 0.03
			-7.00			1" Ice	0.0000	0.0000	0.04
Cide Ame Mount ICO 701	٨		4.0000	0.000	0F 0000	2" Ice	0.0500	4 6700	0.07
Side Arm Mount [SO 701- 1]	Α	From Leg	4.0000 0.00	0.000	85.0000	No Ice 1/2"	0.8500 1.1400	1.6700 2.3400	0.07 0.08
-1			0.00			Ice	1.4300	3.0100	0.09
						1" Ice 2" Ice	2.0100	4.3500	0.12
Side Arm Mount [SO 701-	Α	From Leg	4.0000	0.000	85.0000	No Ice	0.8500	1.6700	0.07
1]		_	0.00			1/2"	1.1400	2.3400	0.08
			-7.00			Ice 1" Ice	1.4300 2.0100	3.0100 4.3500	0.09 0.12
						2" Ice	2.0100	4.5500	0.12
Side Arm Mount [SO 701-	В	From Leg	4.0000	0.000	85.0000	No Ice	0.8500	1.6700	0.07
1]			0.00			1/2"	1.1400 1.4300	2.3400 3.0100	80.0
			0.00			Ice 1" Ice	2.0100	4.3500	0.09 0.12
						2" Ice	210100	110000	0112
Side Arm Mount [SO 701-	В	From Leg	4.0000	0.000	85.0000	No Ice	0.8500	1.6700	0.07
1]			0.00 -7.00			1/2" I ce	1.1400 1.4300	2.3400 3.0100	0.08 0.09
			-1.00			1" Ice	2.0100	4.3500	0.09
						2" Ice			
2.375" OD x 8' Mount Pipe	Α	From Leg	4.0000	0.000	85.0000	No Ice	1.9000	1.9000	0.03
			0.00 0.00			1/2" I ce	2.7281 3.4009	2.7281 3.4009	0.04 0.06
			3.00			1" Ice	4.3962	4.3962	0.12
						2" Ice			

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			Vert ft ft ft	o	ft		ft²	ft²	К
2.375" OD x 8' Mount Pipe	В	From Leg	4.0000 0.00 0.00	0.000	85.0000	No Ice 1/2" Ice 1" Ice 2" Ice	1.9000 2.7281 3.4009 4.3962	1.9000 2.7281 3.4009 4.3962	0.03 0.04 0.06 0.12
****						2 ICE			

					Dishe	es					
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	۰	ft	ft		ft ²	K
VHLP1-23	Α	Paraboloid w/o Radome	From Leg	1.0000 0.00 2.00	0.000		105.0000	1.2750	No Ice 1/2" Ice 1" Ice 2" Ice	1.2800 1.4500 1.6200 1.9700	0.01 0.02 0.03 0.04
VHLP2-23	В	Paraboloid w/o Radome	From Leg	1.0000 0.00 2.00	0.000		105.0000	2.1750	No Ice 1/2" Ice 1" Ice 2" Ice	3.7200 4.0100 4.3000 4.8800	0.03 0.05 0.07 0.11
VHLP1-23	С	Paraboloid w/o Radome	From Leg	1.0000 0.00 2.00	0.000		105.0000	1.2750	No Ice 1/2" Ice 1" Ice 2" Ice	1.2800 1.4500 1.6200 1.9700	0.01 0.02 0.03 0.04

Tower Pressures - No Ice

 $G_H = 1.100$

Section	Z	Kz	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft ²	е	ft ²	ft ²	ft²		ft ²	ft ²
L1 115.0000-	92.8501	0.968	34.59	96.093	Α	0.000	96.093	96.093	100.00	19.461	0.000
72.3334			8		В	0.000	96.093		100.00	0.000	0.000
					С	0.000	96.093		100.00	0.000	0.000
L2 72.3334-	50.5924	0.813	28.91	126.88	Α	0.000	126.888	126.888	100.00	25.735	0.000
29.3334			2	8	В	0.000	126.888		100.00	0.000	0.000
					С	0.000	126.888		100.00	0.000	0.000
L3 29.3334-	14.3163	0.7	25.09	103.22	Α	0.000	103.225	103.225	100.00	17.556	0.000
0.0000			2	5	В	0.000	103.225		100.00	0.000	0.000
					С	0.000	103.225		100.00	0.000	0.000

Tower Pressure - With Ice

 $G_H = 1.100$

Section	Z	Kz	qz	t_Z	A_{G}	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Out
						С					Face	Face
ft	ft		psf	in	ft ²	е	ft ²	ft ²	ft ²		ft ²	ft ²
L1 115.0000-	92.8501	0.968	5.536	1.8853	109.500	Α	0.000	109.500	109.500	100.00	58.248	0.000
72.3334						В	0.000	109.500		100.00	0.000	0.000
						С	0.000	109.500		100.00	0.000	0.000
L2 72.3334-	50.5924	0.813	4.626	1.7742	140.399	Α	0.000	140.399	140.399	100.00	80.606	0.000
29.3334						В	0.000	140.399		100.00	0.000	0.000
						С	0.000	140.399		100.00	0.000	0.000
L3 29.3334-	14.3163	0.7	4.015	1.5638	111.898	Α	0.000	111.898	111.898	100.00	52.869	0.000
0.0000						В	0.000	111.898		100.00	0.000	0.000
						С	0.000	111.898		100.00	0.000	0.000

Tower Pressure - Service

 $G_H = 1.100$

Section	Z	Kz	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft ²	е	ft ²	ft ²	ft ²		ft²	ft ²
L1 115.0000-	92.8501	0.968	7.508	96.093	Α	0.000	96.093	96.093	100.00	19.461	0.000
72.3334					В	0.000	96.093		100.00	0.000	0.000
					С	0.000	96.093		100.00	0.000	0.000
L2 72.3334-	50.5924	0.813	6.274	126.88	Α	0.000	126.888	126.888	100.00	25.735	0.000
29.3334				8	В	0.000	126.888		100.00	0.000	0.000
					С	0.000	126.888		100.00	0.000	0.000
L3 29.3334-	14.3163	0.7	5.445	103.22	Α	0.000	103.225	103.225	100.00	17.556	0.000
0.0000				5	В	0.000	103.225		100.00	0.000	0.000
					С	0.000	103.225		100.00	0.000	0.000

Load Combinations

Comb.	Description
No.	-
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
tov.Tov.	or Donart Varsion 9.0 F.O.

Comb.	Description
No.	
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

		_
Maximum	Mambar	Earasa
IVIAXIIIIIIII	wenner	COLCES

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load	Axial K	Major Axis Moment	Minor Axis Moment
	445	Dala	Man Tamaian	Comb.		kip-ft	kip-ft
L1	115 - 72.3334	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-26.88	-1.18	2.03
			Max. Mx	8	-9.27	-333.93	4.71
			Max. My	2	-9.26	0.28	336.15
			Max. Vy	20	-11.54	333.85	1.33
			Max. Vx	2	-11.64	0.28	336.15
			Max. Torque	12			2.53
L2	72.3334 - 29.3334	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-38.17	0.26	2.89
			Max. Mx	20	-16.05	895.69	-2.02
			Max. My	2	-16.05	-2.69	902.83
			Max. Vý	20	-15.17	895.69	-2.02
			Max. Vx	2	-15.28	-2.69	902.83
			Max. Torque	12			2.52
L3	29.3334 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-50.54	1.61	3.61
			Max. Mx	20	-24.52	1477.73	-4.80
			Max. My	2	-24.52	-5.09	1488.89
			Max. Vy	20	-18.08	1477.73	-4.80
			Max. Vx	2	-18.20	-5.09	1488.89
			Max. Torque	12			2.52

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Pole	Max. Vert	26	50.54	-0.00	-0.00
	Max. H _x	20	24.53	18.07	-0.08
	Max. H _z	3	18.40	-0.07	18.19
	$Max. M_x$	2	1488.89	-0.07	18.19
	Max. M _z	8	1473.79	-18.03	0.23
	Max. Torsion	12	2.52	-8.81	-15.45
	Min. Vert	21	18.40	18.07	-0.08

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
	Min. H _x	9	18.40	-18.03	0.23
	Min. H _z	15	18.40	0.18	-18.13
	Min. M _x	14	-1481.03	0.18	-18.13
	$Min. M_z$	20	-1477.73	18.07	-0.08
	Min. Torsion	24	-2.39	8.97	15.41

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	20.44	0.00	-0.00	-0.67	-0.41	0.00
1.2 Dead+1.0 Wind 0 deg -	24.53	0.07	-18.19	-1488.89	-5.09	2.01
No Ice	40.40		10.10			
0.9 Dead+1.0 Wind 0 deg -	18.40	0.07	-18.19	-1478.55	-4.94	2.00
No Ice 1.2 Dead+1.0 Wind 30 deg -	24.53	9.19	-15.56	-1270.23	-754.26	1.14
No Ice 0.9 Dead+1.0 Wind 30 deg -	18.40	9.19	-15.57	-1261.39	-749.00	1.13
No Ice 1.2 Dead+1.0 Wind 60 deg -	24.53	15.71	-9.12	-746.37	-1285.62	-0.06
No Ice 0.9 Dead+1.0 Wind 60 deg -	18.40	15.71	-9.12	-741.09	-1276.74	-0.06
No Ice 1.2 Dead+1.0 Wind 90 deg - No Ice	24.53	18.03	-0.23	-23.15	-1473.79	-1.26
0.9 Dead+1.0 Wind 90 deg - No Ice	18.40	18.03	-0.23	-22.78	-1463.64	-1.26
1.2 Dead+1.0 Wind 120 deg - No Ice	24.53	15.55	8.82	717.37	-1271.76	-2.18
0.9 Dead+1.0 Wind 120 deg - No Ice	18.40	15.55	8.82	712.69	-1262.97	-2.17
1.2 Dead+1.0 Wind 150 deg - No Ice	24.53	8.81	15.45	1258.97	-717.85	-2.52
0.9 Dead+1.0 Wind 150 deg - No Ice	18.40	8.81	15.45	1250.61	-712.84	-2.51
1.2 Dead+1.0 Wind 180 deg - No Ice	24.53	-0.18	18.13	1481.03	16.23	-2.13
0.9 Dead+1.0 Wind 180 deg - No Ice	18.40	-0.18	18.13	1471.18	16.26	-2.12
1.2 Dead+1.0 Wind 210 deg - No Ice	24.53	-9.12	15.61	1272.98	745.57	-1.15
0.9 Dead+1.0 Wind 210 deg - No Ice	18.40	-9.12	15.61	1264.53	740.63	-1.15
1.2 Dead+1.0 Wind 240 deg - No Ice	24.53	-15.81	9.05	737.25	1296.02	0.17
0.9 Dead+1.0 Wind 240 deg - No Ice	18.40	-15.81	9.05	732.45	1287.32	0.17
1.2 Dead+1.0 Wind 270 deg - No Ice	24.53	-18.07	80.0	4.80	1477.73	1.40
0.9 Dead+1.0 Wind 270 deg - No Ice	18.40	-18.07	0.08	4.99	1467.73	1.40
1.2 Dead+1.0 Wind 300 deg - No Ice	24.53	-15.58	-8.83	-720.78	1273.75	2.20
0.9 Dead+1.0 Wind 300 deg - No Ice	18.40	-15.58	-8.83	-715.66	1265.20	2.18
1.2 Dead+1.0 Wind 330 deg - No Ice	24.53	-8.97	-15.41	-1256.61	733.76	2.39
0.9 Dead+1.0 Wind 330 deg - No Ice	18.40	-8.97	-15.41	-1247.85	728.88	2.38
1.2 Dead+1.0 Ice+1.0 Temp	50.54	0.00	0.00	-3.61	1.61	0.00
1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	50.54	0.02	-4.20	-369.97	0.19	0.58
1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	50.54	2.15	-3.64	-320.48	-186.19	0.35

Load	Vertical	Shear _x	Shearz	Overturning	Overturning	Torque
Combination	17	14	17	Moment, M_x	Moment, M _z	12.0
105	K 50.51	K	K	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 60	50.54	3.67	-2.13	-189.62	-318.78	0.03
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90	50.54	4.22	-0.05	-9.11	-365.84	-0.31
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	50.54	3.64	2.06	175.53	-315.55	-0.58
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	50.54	2.06	3.61	310.52	-177.56	-0.69
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	50.54	-0.04	4.19	360.89	5.53	-0.60
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	50.54	-2.13	3.65	313.86	187.53	-0.36
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	50.54	-3.69	2.12	180.44	324.44	-0.01
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	50.54	-4.22	0.02	-2.44	370.12	0.34
deg+1.0 Ice+1.0 Temp	-0-4			400.50	0.40.00	2.50
1.2 Dead+1.0 Wind 300	50.54	-3.64	-2.06	-183.56	319.36	0.58
deg+1.0 Ice+1.0 Temp	-0-4			0.47.00	404.05	
1.2 Dead+1.0 Wind 330	50.54	-2.09	-3.60	-317.22	184.65	0.66
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	20.44	0.02	-3.95	-322.22	-1.42	0.44
Dead+Wind 30 deg - Service	20.44	1.99	-3.38	-274.97	-163.29	0.25
Dead+Wind 60 deg - Service	20.44	3.41	-1.98	-161.78	-278.09	-0.01
Dead+Wind 90 deg - Service	20.44	3.91	-0.05	-5.52	-318.76	-0.28
Dead+Wind 120 deg -	20.44	3.37	1.91	154.48	-275.09	-0.47
Service						
Dead+Wind 150 deg -	20.44	1.91	3.35	271.50	-155.42	-0.55
Service						
Dead+Wind 180 deg -	20.44	-0.04	3.93	319.49	3.19	-0.46
Service						
Dead+Wind 210 deg -	20.44	-1.98	3.39	274.53	160.78	-0.25
Service						
Dead+Wind 240 deg -	20.44	-3.43	1.96	158.78	279.71	0.04
Service						
Dead+Wind 270 deg -	20.44	-3.92	0.02	0.52	318.98	0.30
Service	00.44	0.00	4.00	450.05	074.00	0.10
Dead+Wind 300 deg -	20.44	-3.38	-1.92	-156.25	274.89	0.48
Service	00.11	4.6=	0.01	070.00	450.00	0.77
Dead+Wind 330 deg -	20.44	-1.95	-3.34	-272.02	158.22	0.52
Service						

Solution Summary

	Sun	n of Applied Force	es		Sum of Reaction	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-20.44	0.00	-0.00	20.44	0.00	0.000%
2	0.07	-24.53	-18.19	-0.07	24.53	18.19	0.002%
3	0.07	-18.40	-18.19	-0.07	18.40	18.19	0.001%
4	9.19	-24.53	-15.57	-9.19	24.53	15.56	0.000%
5	9.19	-18.40	-15.57	-9.19	18.40	15.57	0.000%
6	15.71	-24.53	-9.12	-15.71	24.53	9.12	0.000%
7	15.71	-18.40	-9.12	-15.71	18.40	9.12	0.000%
8	18.03	-24.53	-0.23	-18.03	24.53	0.23	0.002%
9	18.03	-18.40	-0.23	-18.03	18.40	0.23	0.001%
10	15.55	-24.53	8.82	-15.55	24.53	-8.82	0.000%
11	15.55	-18.40	8.82	-15.55	18.40	-8.82	0.000%
12	8.81	-24.53	15.45	-8.81	24.53	-15.45	0.000%
13	8.81	-18.40	15.45	-8.81	18.40	-15.45	0.000%
14	-0.18	-24.53	18.13	0.18	24.53	-18.13	0.002%
15	-0.18	-18.40	18.13	0.18	18.40	-18.13	0.001%
16	-9.12	-24.53	15.61	9.12	24.53	-15.61	0.000%
17	-9.12	-18.40	15.61	9.12	18.40	-15.61	0.000%
18	-15.81	-24.53	9.05	15.81	24.53	-9.05	0.000%
19	-15.81	-18.40	9.05	15.81	18.40	-9.05	0.000%
20	-18.07	-24.53	0.08	18.07	24.53	-0.08	0.002%

	Sun	n of Applied Force	es		Sum of Reaction		
Load	PX	PY	PΖ	PX	PY	PZ	% Erro
Comb.	K	K	K	K	K	K	
21	-18.07	-18.40	0.08	18.07	18.40	-0.08	0.004%
22	-15.58	-24.53	-8.83	15.58	24.53	8.83	0.000%
23	-15.58	-18.40	-8.83	15.58	18.40	8.83	0.000%
24	-8.97	-24.53	-15.41	8.97	24.53	15.41	0.000%
25	-8.97	-18.40	-15.41	8.97	18.40	15.41	0.000%
26	0.00	-50.54	0.00	-0.00	50.54	-0.00	0.0039
27	0.02	-50.54	-4.20	-0.02	50.54	4.20	0.001%
28	2.15	-50.54	-3.64	-2.15	50.54	3.64	0.0019
29	3.67	-50.54	-2.13	-3.67	50.54	2.13	0.0019
30	4.22	-50.54	-0.05	-4.22	50.54	0.05	0.0019
31	3.64	-50.54	2.06	-3.64	50.54	-2.06	0.0019
32	2.06	-50.54	3.61	-2.06	50.54	-3.61	0.0019
33	-0.04	-50.54	4.19	0.04	50.54	-4.19	0.0019
34	-2.13	-50.54	3.65	2.13	50.54	-3.65	0.0019
35	-3.69	-50.54	2.12	3.69	50.54	-2.12	0.0019
36	-4.22	-50.54	0.02	4.22	50.54	-0.02	0.0019
37	-3.64	-50.54	-2.07	3.64	50.54	2.06	0.0019
38	-2.09	-50.54	-3.60	2.09	50.54	3.60	0.0019
39	0.02	-20.44	-3.95	-0.02	20.44	3.95	0.0059
40	2.00	-20.44	-3.38	-1.99	20.44	3.38	0.005
41	3.41	-20.44	-1.98	-3.41	20.44	1.98	0.005
42	3.91	-20.44	-0.05	-3.91	20.44	0.05	0.005
43	3.38	-20.44	1.91	-3.37	20.44	-1.91	0.004
44	1.91	-20.44	3.35	-1.91	20.44	-3.35	0.0049
45	-0.04	-20.44	3.93	0.04	20.44	-3.93	0.005
46	-1.98	-20.44	3.39	1.98	20.44	-3.39	0.005
47	-3.43	-20.44	1.96	3.43	20.44	-1.96	0.0059
48	-3.92	-20.44	0.02	3.92	20.44	-0.02	0.0059
49	-3.38	-20.44	-1.92	3.38	20.44	1.92	0.0049
50	-1.95	-20.44	-3.34	1.95	20.44	3.34	0.004

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination	Ŭ	of Cycles	Tolerance	Tolerance
1	Yes	6	0.0000001	0.00000001
2	Yes	12	0.0000001	0.00007126
2 3	Yes	12	0.0000001	0.00005826
4	Yes	13	0.0000001	0.00010877
5	Yes	13	0.0000001	0.00008477
6	Yes	13	0.0000001	0.00010416
7	Yes	13	0.0000001	0.00008098
8	Yes	12	0.0000001	0.00006259
9	Yes	12	0.0000001	0.00005129
10	Yes	13	0.0000001	0.00008926
11	Yes	13	0.0000001	0.00006955
12	Yes	13	0.0000001	0.00011038
13	Yes	13	0.0000001	0.00008655
14	Yes	12	0.0000001	0.00006602
15	Yes	12	0.0000001	0.00005421
16	Yes	13	0.0000001	0.00009675
17	Yes	13	0.00000001	0.00007536
18	Yes	13	0.0000001	0.00010251
19	Yes	13	0.0000001	0.00007981
20	Yes	12	0.0000001	0.00005634
21	Yes	11	0.00000001	0.00014257
22	Yes	13	0.00000001	0.00011095
23	Yes	13	0.0000001	0.00008680
24	Yes	13	0.0000001	0.00009011
25	Yes	13	0.0000001	0.00007024
26	Yes	6	0.0000001	0.00003036
27	Yes	12	0.0000001	0.00009090
28	Yes	12	0.0000001	0.00009891
29	Yes	12	0.0000001	0.00009868
30	Yes	12	0.00000001	0.00008969

31	Yes	12	0.0000001	0.00009490
32	Yes	12	0.0000001	0.00009516
33	Yes	12	0.0000001	0.00008810
34	Yes	12	0.0000001	0.00009585
35	Yes	12	0.0000001	0.00009729
36	Yes	12	0.0000001	0.00009008
37	Yes	12	0.0000001	0.00009824
38	Yes	12	0.0000001	0.00009702
39	Yes	10	0.0000001	0.00011763
40	Yes	10	0.0000001	0.00010452
41	Yes	10	0.0000001	0.00010315
42	Yes	10	0.0000001	0.00011542
43	Yes	10	0.0000001	0.00010159
44	Yes	10	0.0000001	0.00010737
45	Yes	10	0.0000001	0.00011637
46	Yes	10	0.0000001	0.00010084
47	Yes	10	0.0000001	0.00010285
48	Yes	10	0.0000001	0.00011521
49	Yes	10	0.0000001	0.00010729
50	Yes	10	0.0000001	0.00010120

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	٥	0
L1	115 - 72,3334	9.99	39	0.759	0.002
L2	77 - 29.3334	4.53	39	0.556	0.002
L3	35 - 0	0.93	39	0.238	0.001

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	٥	ft
115.0000	(2) DB844G65ZAXY w/ Mount Pipe	39	9.99	0.759	0.003	53749
107.0000	VHLP1-23	39	8.76	0.721	0.003	33593
105.0000	Platform Mount [LP 602-1]	39	8.45	0.711	0.003	26874
85.0000	WH14-69/S	39	5.55	0.605	0.003	8958

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	115 - 72.3334	46.17	18	3.513	0.011
L2	77 - 29.3334	20.93	18	2.570	0.011
L3	35 - 0	4.31	18	1.103	0.003

Critical Deflections and Radius of Curvature - Design Wind

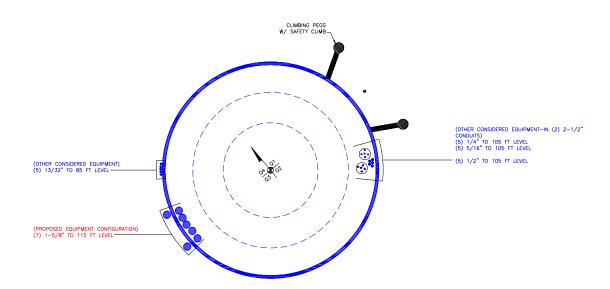
Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	٥	۰	ft
115.0000	(2) DB844G65ZAXY w/ Mount	18	46.17	3.513	0.012	11703

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	٥	ft
	Pipe					
107.0000	VHLP1-23	18	40.48	3.336	0.013	7314
105.0000	Platform Mount [LP 602-1]	18	39.07	3.291	0.013	5851
85.0000	WH14-69/S	18	25.69	2.800	0.012	1948

Compression Checks

	Pole Design Data									
Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	φP _n	Ratio Pu	
	ft		ft	ft		in ²	K	K	ΦP_n	
L1	115 - 72.3334 (1)	TP30.45x21.91x0.219	42.666 6	0.0000	0.0	20.659 6	-9.26	1208.59	0.008	
L2	72.3334 - 29.3334 (2)	TP38.61x29.0779x0.313	47.666 6	0.0000	0.0	37.455 9	-16.05	2191.17	0.007	
L3	29.3334 - Ó (3)	TP43.85x36.8508x0.375	35.000 0	0.0000	0.0	52 . 496 1	-24.52	3071.02	0.008	

	Pole Bending Design Data										
Section No.	Elevation	Size	M _{ux}	φ M _{nx}	Ratio M _{ux}	M _{uy}	φ M _{ny}	Ratio M _{uy}			
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}			
L1	115 - 72.3334 (1)	TP30.45x21.91x0.219	336.15	741.46	0.453	0.00	741.46	0.000			
L2	72.3334 - 29.3334 (2)	TP38.61x29.0779x0.313	903.77	1815.79	0.498	0.00	1815.79	0.000			
L3	29.3334 - 0 (3)	TP43.85x36.8508x0.375	1491.04	3010.72	0.495	0.00	3010.72	0.000			


	Pole Shear Design Data									
Section No.	Elevation	Size	Actual V _u	φV _n	Ratio V _u	Actual T _u	φ <i>T</i> _n	Ratio T _u		
	ft		K	K	$\overline{\phi V_n}$	kip-ft	kip-ft	φ <i>T</i> _n		
L1	115 - 72.3334 (1)	TP30.45x21.91x0.219	11.64	362.58	0.032	2.02	934.38	0.002		
L2	72.3334 - 29.3334 (2)	TP38.61x29.0779x0.313	15.32	657.35	0.023	0.17	2148.91	0.000		
L3	29.3334 - 0 (3)	TP43.85x36.8508x0.375	18.23	921.31	0.020	0.17	3523.25	0.000		

Pole Interaction Design Data									
Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	φ <i>M</i> _{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	

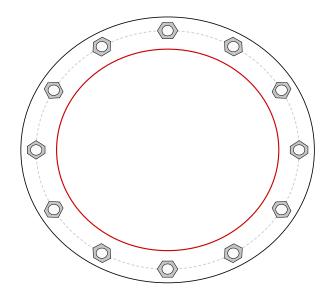
Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	<u></u> φ <i>M</i> _{nx}	ϕM_{ny}	$\overline{\phi V_n}$		Ratio	Ratio	
L1	115 - 72.3334 (1)	800.0	0.453	0.000	0.032	0.002	0.462	1.050	4.8.2
L2	72.3334 - 29.3334 (2)	0.007	0.498	0.000	0.023	0.000	0.506	1.050	4.8.2
L3	29.3334 - 0 (3)	800.0	0.495	0.000	0.020	0.000	0.504	1.050	4.8.2

Section Capacity Table								
Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L1	115 - 72.3334	Pole	TP30.45x21.91x0.219	1	-9.26	1269.02	44.0	Pass
L2	72.3334 - 29.3334	Pole	TP38.61x29.0779x0.313	2	-16.05	2300.73	48.2	Pass
L3	29.3334 - 0	Pole	TP43.85x36.8508x0.375	3	-24.52	3224.57	48.0 Summary	Pass
						Pole (L2)	48.2	Pass
						RATING =	48.2	Pass

APPENDIX B BASE LEVEL DRAWING

APPENDIX C ADDITIONAL CALCULATIONS

Monopole Base Plate Connection



Site Info	
BU#	806372
Site Name	
Order #	

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	No
I _{ar} (in)	2

Applied Loads				
Moment (kip-ft)	1491.04			
Axial Force (kips)	24.52			
Shear Force (kips)	18.23			

43.85" x 0.375" 12-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Connection Properties	Α	nalysis Results	
Anchor Rod Data	Anchor Rod Summary	(ui	nits of kips, kip-in)
(12) 2-1/4" ø bolts (A615-75 X; Fy=75 ksi, Fu=100 ksi) on 51.9" BC	Pu_c = 116.87	φPn_c = 243.75	Stress Rating
	Vu = 1.52	φVn = 73.13	45.7%
Base Plate Data	M u = n/a	φMn = n/a	Pass
57.9" OD x 2.625" Plate (A572-60; Fy=60 ksi, Fu=75 ksi)			
	Base Plate Summary		
Stiffener Data	Max Stress (ksi):	14.84	(Flexural)
N/A	Allowable Stress (ksi):	54	
	Stress Rating:	26.2%	Pass
Pole Data	_		

CCIplate - version 3.6.0 Analysis Date: 11/4/2019

^{*}TIA-222-H Section 15.5 Applied

BU #: 806372 Site Name: Order Number:

Monopole ェ TIA-222 Revison: Tower Type:

	Uplift				
Loads	Comp.	1491	25	18	
Applied Loads		Moment (kip-ft)	Axial Force (kips)	Shear Force (kips)	

roperties	3 ksi	60 ksi	
Material Properties	Concrete Strength, f'c:	Rebar Strength, Fy:	

gn Data	21.1 ft	0.4 ft	tion 1	to 21.1' below grade	# 9 H	22	10	5 in	4
Pier Design Data	Depth	Ext. Above Grade	Pier Section 1	From 0.4' above grade to 21.1' below grade	Pier Diameter	Rebar Quantity	Rebar Size	Clear Cover to Ties	Tie Size

N/A

Groundwater Depth

58.1% Soil Interaction Rating*

Structural Foundation Rating*

*Rating per TIA-222-H Section 15.5

Soil Profile

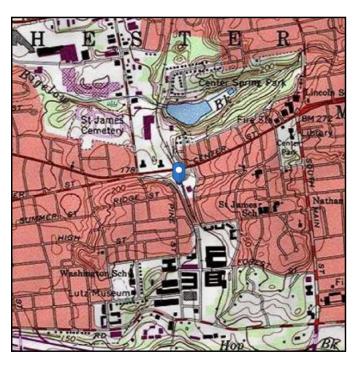
of Layers

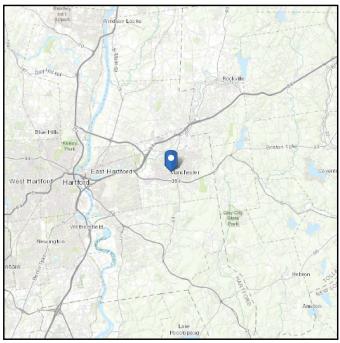
Soil Type	Cohesionless	Cohesionless	19 Cohesionless	Cohesionless
Soil	Cohe	Cohes	Cohes	Cohes
Jlt. Gross Bearing SPT Blow Capacity Count (ksf)		7	19	8
Ult. Gross Bearing Capacity (ksf)				9
Ultimate Skin Friction Uplift Override (ksf)	00'0			
Calculated Calculated Ultimate Skin Ultimate Skin Priction Comp riction Comp Friction Uplift Override (ksf) (ksf) (ksf)	00'0			
Calculated Calculated Ultimate Skin Ultimate Skin Friction Comp Friction Uplift (ksf) (ksf)	000'0	0.247	1.382	0.847
Calculated Ultimate Skin Friction Comp (ksf)	000'0	0.247	1.382	0.847
Angle of Friction (degrees)	0	30	39	30
Cohesion (ksf)	0			
Y _{concrete} (pcf)	150	150	150	150
Y _{soil} (pcf)	06	06	06	90
Thickness (ft)	2	6	4	3.1
Bottom (ft)	5	14	18	21.1
Top (ft)	0	2	14	18
Layer	1	2	3	4

CASTLE

Apply TIA-222-H Section 15.5:	N/A

Address:


No Address at This Location


ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 195.7 ft (NAVD 88)

Risk Category: || Latitude: 41.771944

Soil Class: D - Stiff Soil Longitude: -72.530222

Wind

Results:

Wind Speed: 124 Vmph
10-year MRI 77 Vmph
25-year MRI 87 Vmph
50-year MRI 94 Vmph
100-year MRI 101 Vmph

Data Source: ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1—CC-4, incorporating errata of

March 12, 2014

Date Accessed: Tue Apr 02 2019

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

lce

Results:

Ice Thickness: 1.00 in.

Concurrent Temperature: 5 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Tue Apr 02 2019

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Date: October 25, 2019

Darcy Tarr Crown Castle 3530 Toringdon Way Charlotte, NC 28277

Paul J Ford and Company 250 E. Broad Street, Suite 600

Columbus, OH 43215

614.221.6679

Subject: **Mount Analysis Report**

Carrier Designation: Verizon Wireless Equipment Change-out

> **Carrier Site Number:** NG1904

Carrier Site Name: MANCHESTER CT

Crown Castle Designation: Crown Castle BU Number: 806372

> Crown Castle Site Name: HRT 093 943228

Crown Castle JDE Job Number: 592606 **Crown Castle Purchase Order Number:** 1465087

Crown Castle Order Number: 506740 Rev. 0

Engineering Firm Designation: Paul J Ford and Company Project Number: A37519-1302.003.7190

266R Center Street, Manchester, Hartford County, CT 06040 Site Data:

Latitude 41.771944°, Longitude -72.530222°

Structure Information: **Tower Height & Type:** 115 Foot Monopole

> **Mount Elevation:** 115 Foot

Mount Type: (1) 14 Foot Platform

Dear Darcy Tarr,

Paul J Ford and Company is pleased to submit this "Mount Analysis Report" to determine the structural integrity of the Verizon Wireless antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

14' Platform 83.8% SUFFICIENT*

*The mount has sufficient capacity once the modifications, as described in Section 4.1 Recommendations of this report, are completed.

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code and Appendix N. Applicable Standard references and design criteria are listed in Section 2 -Analysis Criteria.

Respectfully submitted by:

Auc Pry

Steven Pozz, E.I. Structural Designer

spozz@pauljford.com

19.10.28

20:14-04'00'

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Capacity

4.1) Recommendations

5) STANDARD CONDITIONS

6) APPENDIX A

WIRE FRAME AND RENDERED MODELS

7) APPENDIX B

SOFTWARE INPUT CALCULATIONS

8) APPENDIX C

SOFTWARE ANALYSIS OUTPUT

1) INTRODUCTION

The existing mount under consideration is (1) 14' Platform mount mapped by B+T on 04/17/2019.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Ultimate Wind Speed: 125 mph

Exposure Category:
Topographic Factor at Base:
Topographic Factor at Mount:
Ice Thickness:
Wind Speed with Ice:
Live Loading Wind Speed:
Man Live Load at Mid/End-Points:
Man Live Load at Mount Pipes:

1.00
2.00 in
50 mph
30 mph
40 man Live Load at Mid/End-Points:
500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)		Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
		6	Commscope	NNHH-65B-R4	
		6	Decibel	DB844G65ZAXY	
115	115	1	RFS Celwave	DB-T1-6Z-8AB-0Z	(1) 14' Platform
		3	Samsung Tech	RFV01U-D1A	
		3	Samsung Tech	RFV01U-D2A	

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Mount Mapping	File #: B+T, 134993.002.01 Dated: 04/25/2019	8364339	CCISites
Mount Modification Drawings	File #: B+T, 134993.003.01 Dated: 05/03/2019	8390235	CCISites
Order	ID: 506740 Rev. 0 Dated: 10/22/2019	-	CCISites

3.1) Analysis Method

RISA-3D (version 17.0.3), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision C). In addition, this analysis is in accordance with Verizon's NSTD-445 *Antenna Mounting System Classification Standard*.

3.2) Assumptions

- 1) The analysis of the existing tower or the effect of the mount attachment to the tower is not within the current scope of work.
- 2) The antenna mounting system was properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications and all bolts are tightened as specified by the manufacturer and AISC requirements.
- 3) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1.
- 4) All member connections have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report. All U-Bolt connections have been properly tightened. This analysis will be required to be revised if the existing conditions in the field differ from those shown in the above referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Steel grades are as follows, unless noted otherwise:

a) Channel, Solid Round, Angle, Plate, Unistrut
b) Pipe
c) HSS (Rectangular)
d) HSS (Round)
e) Threaded Rods
f) Connection Bolts
g) U-Bolts

ASTM A36 (GR 36)
ASTM 500 (GR B-46)
ASTM 500 (GR B-42)
ASTM 500 (GR B-42)
ASTM F1554 (GR 36)
ASTM A325
SAE J429 (GR 2)

6) Proposed equipment is to be installed in the locations specified in Appendix A. Any changes to the proposed equipment locations will render this report invalid.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J Ford and Company should be notified to determine the effect on the structural integrity of the mount.

4) ANALYSIS RESULTS

Table 3- Mount Component Capacity

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Face Horizontals		72.7	Pass
1	Bracing Members		51.1	Pass
1	Support Rails		32.8	Pass
1	Standoff Members	115	40.9	Pass
1	Kick-Brace		12.5	Pass
1	Mount Pipes		37.0	Pass
1	Mount to Tower Connection		83.8	Pass

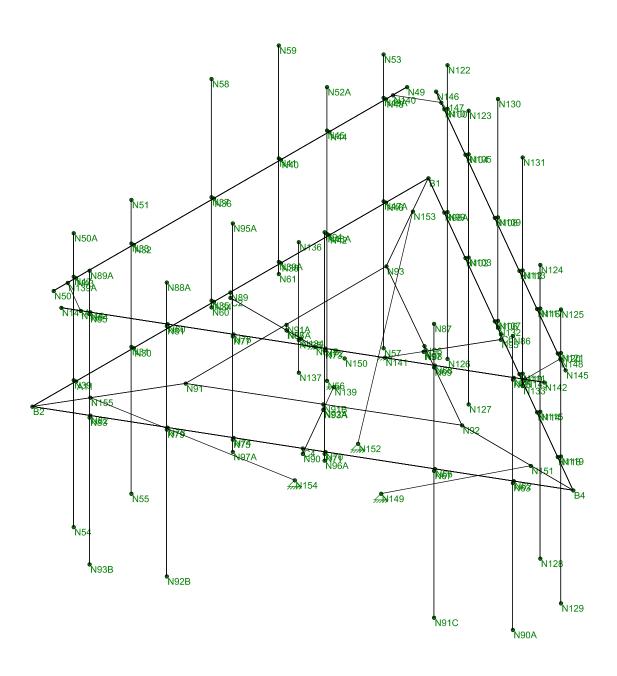
Mount Rating (max from all components) =	83.8%
--	-------

Notes:

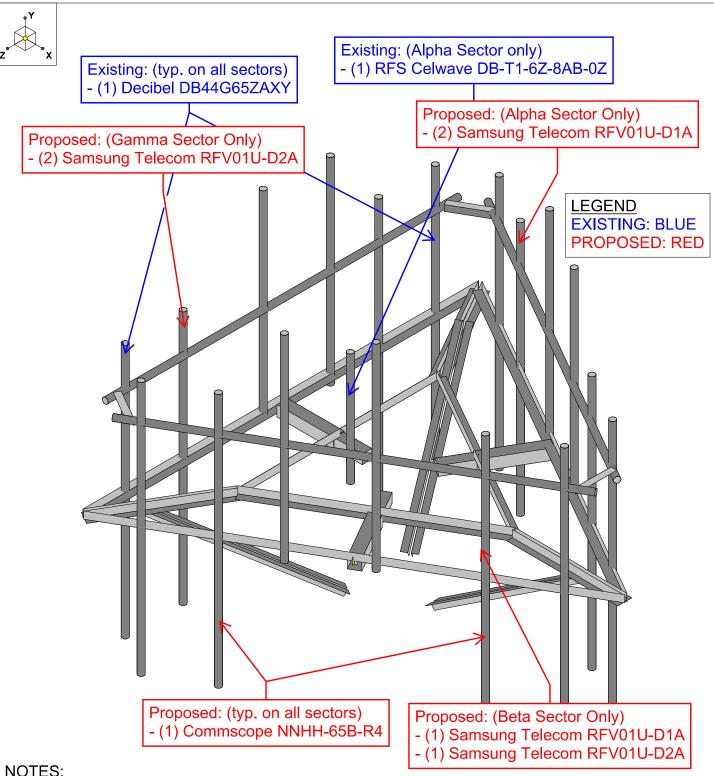
4.1) Recommendations

 All referenced proposed modifications designed by B+T (Project #:134993.003.01, dated 05/03/2019) must be installed prior to installation of the proposed loading.

¹⁾ See additional documentation in "Appendix C – Software Analysis Output" for calculations supporting the % capacity consumed.


STANDARD CONDITIONS FOR FURNISHING OF PROFESSIONAL ENGINEERING SERVICES ON EXISTING MOUNTS BY PAUL J. FORD AND COMPANY

- 1) It is the responsibility of the client to ensure that the information provided to Paul J. Ford and Company is accurate and complete. Paul J. Ford and Company will rely on the accuracy and completeness of such information in performing or furnishing services under this project.
- 2) If the existing conditions are not as represented on the referenced drawings and/or documents, Paul J. Ford and Company should be contacted immediately to evaluate the significance of the deviation.
- 3) The mount has been analyzed according to the minimum design loads recommended by the Reference Standard. If additional design loads are required, Paul J. Ford and Company should be made aware of this prior to the start of the project.
- 4) The standard of care for all Professional Engineering Services performed or furnished by Paul J. Ford and Company under this project will be the skill and care used by members of the Consultant's profession practicing under similar circumstances at the same time and in the same locality.
- 5) All Services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Paul J. Ford and Company is not responsible for the conclusions, opinions and/or recommendations made by others based on the information supplied herein.


APPENDIX A WIRE FRAME AND RENDERED MODELS

Envelope Only Solution

Paul J. Ford and Company		SK - 1
STP	806372 HRT 093 943228	Oct 25, 2019 at 1:19 PM
37519-1302.003.7190		37519-1302_Client_mods.r3d

- 1) A 6" VERTICAL TOLERANCE FOR PROPOSED EQUIPMENT IS ACCEPTABLE.
- 2) CONTRACTOR TO VERIFY LOCATION OF EXISTING EQUIPMENT PRIOR TO INSTALLATION OF PROPOSED EQUIPMENT. NOTIFY EOR FOR ANY DEVIATIONS.
- 3) INSTALL SHALL NOT CAUSE HARM TO THE STRUCTURE, CLIMBING FACILITY. SAFETY CLIMB OR ANY SYSTEM INSTALLED ON THE STRUCTURE.

Envelope Only Solution

Paul J. Ford and Company		SK - 2
STP	806372 HRT 093 943228	Oct 25, 2019 at 1:19 PM
37519-1302.003.7190		37519-1302_Client_mods.r3d

APPENDIX B SOFTWARE INPUT CALCULATION

PAUL J. FORD & COM PANY 250 E Broad St. Ste 600 · Columbus, OH 43215 Phone 614.221.6679 www.pauliford.com

Project #

v1.9, Effective 9/23/19

Ice Loading

Mount Loading per TIA-222-H

A37519-1302.003.7190 STP degrees Analysis 30 EPA Method Projected Area File Client.r3d

> Structure & Wind Speed

Topography	Velocity Pressure Coefficients
Risk Category =	z ₀ = 1200
Exposure Category = B	α = 7.00
Topographic Category = 1	K ₂ = 1.03
Structure Base Height $(Z_s) = $ 195 ft	K _{zmin} = (
Crest Height (H) =	K _{zcak} =
	K _{zmax} = :
	$K_{zt} = 1.00$
	K _d = 0.95
Maintenance Point Loads	K _o = 0.99
Label Node#	G,= 1.00
L _m = 500 lbs @ N62 62 (Typicall	(Typically 500 lbs) K _{es} = 1.0
L,= 250 lbs @ B4 4 (Typicall	(Typically 250 lbs) q _z = 38.81
*In negative y-direction	_

Antennas

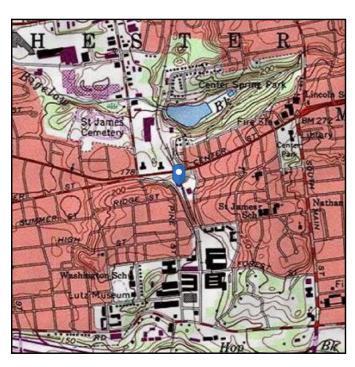
	(Table 2-3)	(Annex S - Ice)	(Section 2.6.11.	(Section 2.6.10)	(Section 2.6.10)	(Bar Grating He	(Grating Ice We				for All Antennas and Members		(ea)
			bst		.⊆	.⊑	bst	ı			for A	bst	Dsf (Ice)
	1.00	1.0	6.25	1.13	2.27	1.00	15.24					38.81	6.25
'	-	K _{es} =	=zib	⊼	t _{lz} =	= u	= 'M				Ka Override =	$(q_z) (G_h) (K_{es}) =$	$(q_{iz}) (G_h) (K_{es}) =$
									Wind Pressure				
	(Table 2-4)	(Table 2-4)	(Section 2.6.5.2)				(Section 2.6.6.2.1)	(Table 2-2)	(Section 2.6.8)	(Section 2.6.9)	(Annex S - Wind Force)	(Section 2.6.11.6)	
	1200 ft	7.00	1.03	K _{zmin} = 0.70	$K_{zcab} = 1.03$	$K_{zmax} = 2.01$	K _{zt} = 1.00	0.95	K _e = 0.99	1.00	1.0	38.81 psf	

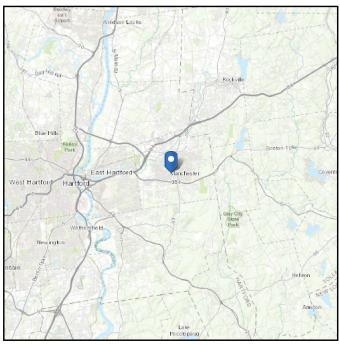
(Table 2-3)
(Annex S - Ice)
(Section 2.6.11.6)
(Section 2.6.10)
(Section 2.6.10)
(Bar Grating Height)
(Grating Ice Weight)

Transverse Wind Force per Antenna (lbs)	116,811	116,811	116,811	116,811	116,811	116,811	126.255	126,255	126,255	126,255	126,255	126,255	69,854	43,659	43,659	43,659	35,364	35,364	35.364
Normal Tra Wind Force Wir oer Antenna per (lbs)	295,715 1	295,715 1	295,715 1	295,715 1	295,715 1	295,715 1	151,609 1	151,609 1	151,609 1	151,609 1	151,609	151,609 1	167,650	65,488 4	65,488	65,488	65,488	65.488	65,488
	296	296	296	296	296	296	151	151	151	151	151	151	167	65	65	65	65	65.	65
	_	_	_	_															
Override om Top ion Antenna ipe Mounting (in)																			
Antenna Bottom Mount Location from Mount Pipe Bottom (in)	21.00	21.00	21.00	21.00	21.00	21.00	33.00	33.00	33,00	33,00	33.00	33.00	29.00	61.50	73.50	61.50	73.50	61.50	73.50
Antenna Top Mount Location from Mount Pipe Bottom (in)	87.00	87.00	87.00	87.00	87.00	87.00	75.00	75.00	75.00	75.00	75,00	75,00	47.00	70.50	82,50	70.50	82,50	70.50	82.50
Antenna C/L (ft)	115	115	115	115	115	115	115	115	115	115	115	115	117	116	117	116	117	116	117
Min Antenna C/L (ft)	113,250	113,250	113,250	113,250	113,250	113,250	112,250	112,250	112,250	112,250	112,250	112,250	114,583	110,875	110,875	110,875	110,875	110.875	110.875
Max Antenna C/L (ft)	116,750	116,750	116,750	116,750	116,750	116,750	117,750	117,750	117,750	117,750	117,750	117,750	117,083	119,125	119,125	119,125	119,125	119.125	119.125
Override Spacing (In)																			
Top/Bottom (Mounting Point Spacing	00 99	00.99	00.99	00.99	00.99	00'99	42.00	42.00	42.00	42.00	42,00	42,00	18,00	00'6	00'6	00'6	00 6	00.6	00.6
Use Tc C _a A _a (CFD)	Yes	Yes	Yes	Yes	Yes	Yes	S.	No.	No.	No.	No.	No.	No.	S.	S.	S.	No	No	No No
=																			
Orientation	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Norma
Quantity Orientation	1 Normal	1 Normal	1 Normal	1 Normal	1 Normal	1 Normal	1 Normal	1 Normal	1 Normal	1 Normal	1 Normal	1 Normal	1 Normal	1 Normal					
	2 1 Normal	2 1 Normal	2 1 Normal	+		5 1 Normal	-	1 Normal	1 Normal	6 1 Normal	-	6 1 Normal	-	-	2 1 Normal	-	+	2 1 Normal	-
Quantity	+	+	+	+	-	-	-	B 1 Normal	C 1 1 Normal	-	-	-	-	-	-	-	+	1	-
Position Quantity	2 1	2 1	2 1	5 1	5 1	5 1	-	1	1	- 1	- 1	- 1	1 2	-	-	2 1	2 1	2 1	2 1
Sector / Position Quantity	A 2 1	B 2 1	C 2 1	A 5 1	B 5 1	C 5 1	A 1	B 1	C	A 6 1	B 6 1	C 6 1	A 7 1	A 2 1	A 2 1	B 2 1	B 2 1	C 2 1	C 2 1
Weight Sector/ Position Quantity	77.4 A 2 1	77.4 B 2 1	77.4 C 2 1	77.4 A 5 1	77.4 B 5 1	77.4 C 5 1	16 A 1 1	16 B 1 1	16 C 1 1	16 A 6 1	16 B 6 1	16 C 6 1	44 A 7 1	84.4 A 2 1	84.4 A 2 1	84.4 B 2 1	70.3 B 2 1	70.3 C 2 1	70.3 C 2 1
Width Depth Flat Weight Sector/ Position Quantity (in) (in) Round (hs) Face	Flat 77.4 A 2 1	Flat 77.4 B 2 1	Flat 77.4 C 2 1	Flat 77.4 A 5 1	Flat 77.4 B 5 1	Flat 77.4 C 5 1	Flat 16 A 1 1	Flat 16 B 1 1	Flat 16 C 1 1	Flat 16 A 6 1	Flat 16 B 6 1	Flat 16 C 6 1	Flat 44 A 7 1	Flat 84.4 A 2 1	Flat 84.4 A 2 1	Flat 84.4 B 2 1	Flat 70.3 B 2 1	Flat 70.3 C 2 1	Flat 70.3 C 2 1
Depth Flat Weight Sector/ Position Quantity (in) Round (lbs) Face	7.8 Flat 77.4 A 2 1	7.8 Flat 77.4 B 2 1	7.8 Flat 77.4 C 2 1	7.8 Flat 77.4 A 5 1	7.8 Flat 77.4 B 5 1	7.8 Flat 77.4 C 5 1	8 Flat 16 A 1 1	8 Flat 16 B 1 1	8 Flat 16 C 1 1	8 Flat 16 A 6 1	8 Flat 16 B 6 1	8 Flat 16 C 6 1	10 Flat 44 A 7 1	10 Flat 84.4 A 2 1	10 Flat 84.4 A 2 1	10 Flat 84.4 B 2 1	8.1 Flat 70.3 B 2 1	8.1 Flat 70.3 C 2 1	8.1 Flat 70.3 C 2 1
Width Depth Flat Weight Sector/ Position Quantity (in) (in) Round (hs) Face	19.6 7.8 Flat 77.4 A 2 1	19.6 7.8 Flat 77.4 B 2 1	19.6 7.8 Flat 77.4 C 2 1	19.6 7.8 Flat 77.4 A 5 1	19.6 7.8 Flat 77.4 B 5 1	19.6 7.8 Flat 77.4 C 5 1	10 8 Flat 16 A 1 1	10 8 Flat 16 B 1 1	10 8 Flat 16 C 1 1	10 8 Flat 16 A 6 1	10 8 Flat 16 B 6 1	10 8 Flat 16 C 6 1	24 10 Flat 44 A 7 1	15 10 Flat 84.4 A 2 1	15 10 Flat 84.4 A 2 1	15 10 Flat 84.4 B 2 1	15 8.1 Flat 70.3 B 2 1	15 8.1 Flat 70.3 C 2 1	15 8.1 Flat 70.3 C 2 1
Height (in) (in) (in) (in) Round (lbs) Face Position Quantity	72 19.6 7.8 Flat 77.4 A 2 1	72 19.6 7.8 Flat 77.4 B 2 1	72 19.6 7.8 Flat 77.4 C 2 1	72 19.6 7.8 Flat 77.4 A 5 1	72 19.6 7.8 Flat 77.4 B 5 1	72 19.6 7.8 Flat 77.4 C 5 1	. 48 10 8 Flat 16 A 1 1	48 10 8 Flat 16 B 1 1	48 10 8 Flat 16 C 1 1	48 10 8 Flat 16 A 6 1	48 10 8 Flat 16 B 6 1	. 48 10 8 Flat 16 C 6 1	24 24 10 Flat 44 A 7 1	RFV01U-D1A 15 15 10 Flat 84.4 A 2 1	RFV01U-D1A 15 15 10 Flat 84.4 A 2 1	RFV01U-D1A 15 15 10 Flat 84.4 B 2 1	RFV01U-D2A 15 15 8.1 Flat 70.3 B 2 1	RFV01U-D2A 15 15 8.1 Flat 70.3 C 2 1	RFV01U-D2A 15 15 8.1 Flat 70.3 C 2 1
. Antonna Height (in) (in) (in) Round (lbs) Face Position Quantity	NNHH-65B-R4_CCI CFD 72 19.6 7.8 Flat 77.4 A 2 1	NNHH-65B-R4_CCI CFD 72 19.6 7.8 Flat 77.4 B 2 1	NNHH-65B-R4_CCI CFD 72 19.6 7.8 Flat 77.4 C 2 1	NNHH-65B-R4_CCI CFD 72 19.6 7.8 Flat 77.4 A 5 1	NNHH-65B-R4_CCI CFD 72 19.6 7.8 Flat 77.4 B 5 1	NNHH-65B-R4_CCI CFD 72 19.6 7.8 Flat 77.4 C 5 1	. DB844G65ZAXY 48 10 8 Flat 16 A 1 1	DB844G65ZAXY 48 10 8 Flat 16 B 1 1	DB844G65ZAXY 48 10 8 Flat 16 C 1 1 1	DB844G65ZAXY 48 10 8 Flat 16 A 6 1	. DB844G65ZAXY 48 10 8 Flat 16 B 6 1	. DB844G65ZAXY 48 10 8 Flat 16 C 6 1	DB-T1-6Z-8AB-0Z 24 24 10 Flat 44 A 7 1	15 15 10 Flat 84.4 A 2 1	15 15 10 Flat 84.4 A 2 1	15 15 10 Flat 84.4 B 2 1	15 15 8.1 Flat 70.3 B 2 1	15 15 8.1 Flat 70.3 C 2 1	15 15 8.1 Flat 70.3 C 2 1

Dish Bottom Mount Location Mounting Mounting Mounting Mounting Mounting Location (in)
im tion Pipe
Dish Bottom Mount Location from Mount Pipe Bottom
Dish Top Mount Location from Mount Pipe Bottom
Dish C/L (ft)
Min Dish C/L (ft)
Max Dish C/L (ft)
Override Spacing (in)
Top/Bottom Mounting Point Spacing
Position
Sector / Face
Weight (lbs)
Dish Type
Dia (in)
Microwave Dish
Manufacturer
Status
Item

Address:


No Address at This Location


ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 195.7 ft (NAVD 88)

Risk Category: || Latitude: 41.771944

Soil Class: D - Stiff Soil Longitude: -72.530222

Wind

Results:

Wind Speed: 124 Vmph ← 125 MPH PER JURISDICTION

10-year MRI77 Vmph25-year MRI87 Vmph50-year MRI94 Vmph100-year MRI101 Vmph

Data Source: ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1—CC-4, incorporating errata of

March 12, 2014

Date Accessed: Tue Apr 02 2019

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

lce

Results:

Ice Thickness: 1.00 in.

Concurrent Temperature: 5 F

Gust Speed: 50 mph

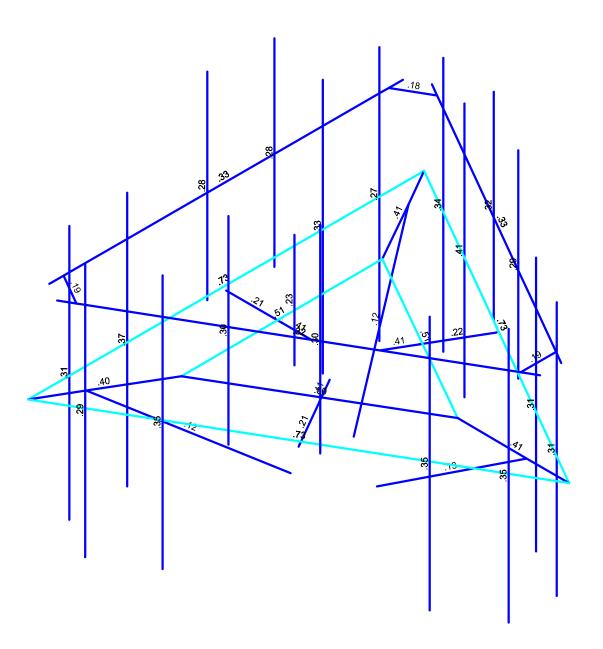
Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Tue Apr 02 2019

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

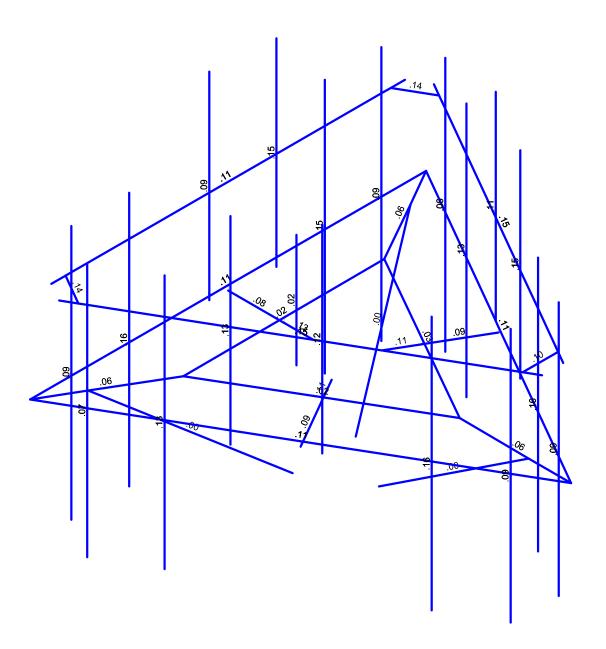
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.


ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

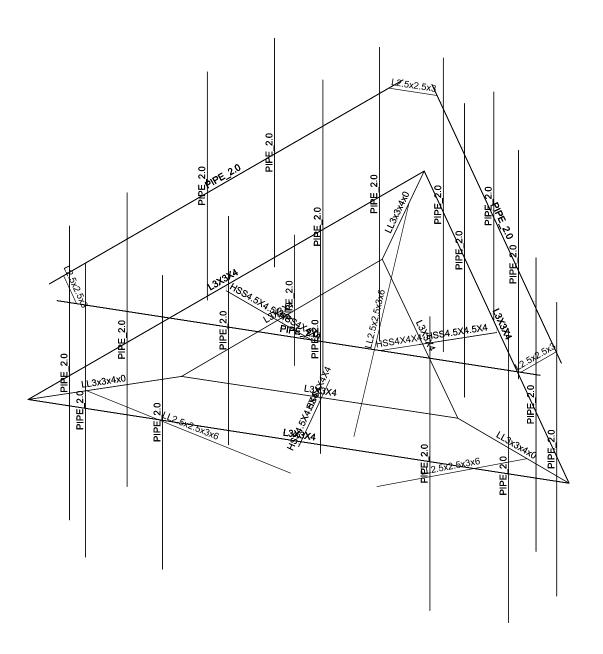
In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

APPENDIX C SOFTWARE ANALYSIS OUTPUT



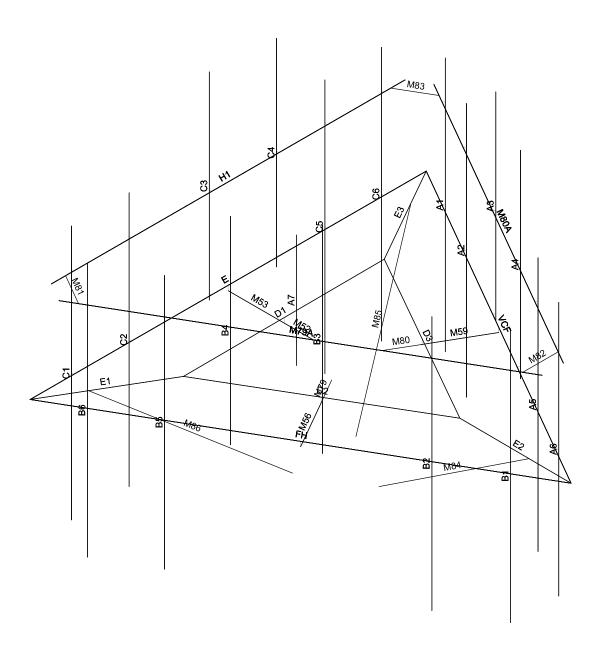
Member Code Checks Displayed (Enveloped) Envelope Only Solution

Paul J. Ford and Company		SK - 3
STP	806372 HRT 093 943228	Oct 25, 2019 at 1:20 PM
37519-1302.003.7190		37519-1302_Client_mods.r3d



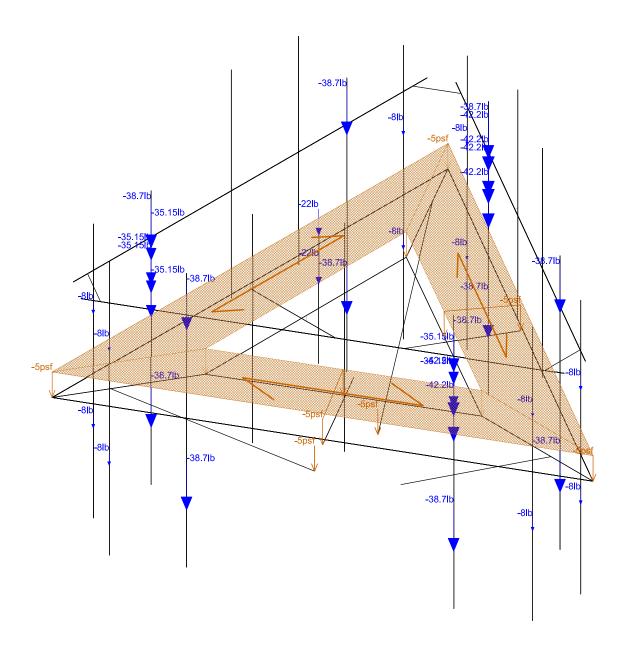
Member Shear Checks Displayed (Enveloped) Envelope Only Solution

Paul J. Ford and Company		SK - 4
STP	806372 HRT 093 943228	Oct 25, 2019 at 1:20 PM
37519-1302.003.7190		37519-1302_Client_mods.r3d



Envelope Only Solution

Paul J. Ford and Company		SK - 5
STP	806372 HRT 093 943228	Oct 25, 2019 at 1:20 PM
37519-1302.003.7190		37519-1302_Client_mods.r3d



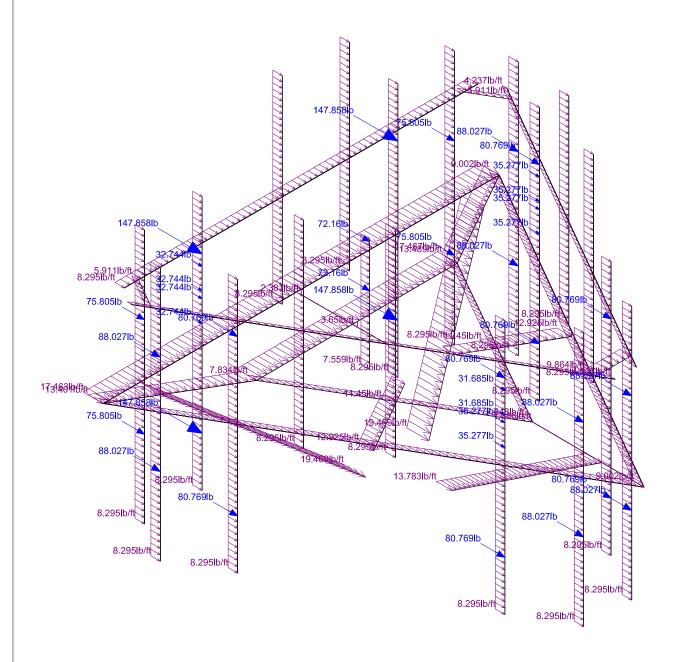
Envelope Only Solution

Paul J. Ford and Company		SK - 6
STP	806372 HRT 093 943228	Oct 25, 2019 at 1:20 PM
37519-1302.003.7190		37519-1302_Client_mods.r3d



Loads: BLC 1, Dead Envelope Only Solution

Paul J. Ford and Company		SK - 7
STP	806372 HRT 093 943228	Oct 25, 2019 at 1:20 PM
37519-1302.003.7190		37519-1302_Client_mods.r3d



Loads: BLC 2, Wind 0 Envelope Only Solution

Paul J. Ford and Company		SK - 8
STP	806372 HRT 093 943228	Oct 25, 2019 at 1:23 PM
37519-1302.003.7190		37519-1302_MODS_Client.r3d

Loads: BLC 5, Wind 90 Envelope Only Solution

Paul J. Ford and Company		SK - 9
STP	806372 HRT 093 943228	Oct 25, 2019 at 1:23 PM
37519-1302.003.7190		37519-1302_MODS_Client.r3d

Company Designer Job Number Model Name

: Paul J. Ford and Company: STP: 37519-1302.003.7190: 806372 | HRT 093 943228

Oct 25, 2019 3:03 PM Checked By:_

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	No
Max Iterations for Wall Stiffness	3
Gravity Acceleration (in/sec^2)	386.4
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Υ
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 15th(360-16): LRFD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	None
Cold Formed Steel Code	None
Wood Code	None
Wood Temperature	< 100F
Concrete Code	None
Masonry Code	None
Aluminum Code	None - Building
Stainless Steel Code	None

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	No
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

: Paul J. Ford and Company : STP

Company : Paul J. Ford and Comp Designer : STP Job Number : 37519-1302.003.7190 Model Name : 806372 | HRT 093 943 : 806372 | HRT 093 943228

Oct 25, 2019 3:03 PM Checked By:_

(Global) Model Settings, Continued

Seismic Code	ASCE 7-05
Seismic Base Elevation (in)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
RX	3
RZ	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Occupancy Cat	I or II
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	4
Cd X	4
Rho Z	1
Rho X	1

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E	.Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A53 Gr. B (35 ksi)	29000	11154	.3	.65	.49	35	1.5	60	1.2
2	A500 Gr. B (46ksi)	29000	11154	.3	.65	.49	46	1.5	58	1.2
3	A36	29000	11154	3	65	.49	36	1.5	58	12

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
1	E	B2	B1		, ,,	L3X3X4	None	None	A36	Typical
2	FH	B4	B2			L3X3X4	None	None	A36	Typical
3	VCF	B1	B4			L3X3X4	None	None	A36	Typical
4	D1	N93	N91			L3X3X4	None	None	A36	Typical
5	D2	N91	N92			L3X3X4	None	None	A36	Typical
6	D3	N92	N93			L3X3X4	None	None	A36	Typical
7	E1	B2	N91		180	LL3x3x4x0	None	None	A36	Typical
8	E2	N92	B4		180	LL3x3x4x0	None	None	A36	Typical
9	E3	N93	B1		180	LL3x3x4x0	None	None	A36	Typical
10	H1	N50	N49			PIPE 2.0	None	None	A53 Gr. B	Typical
11	Z 4	A11	N39			RIGĪD	None	None	RIGID	Typical
12	Z 8	N43	N47			RIGID	None	None	RIGID	Typical
13	M52	N87A	N87B			HSS4X4X4	None	None	A500 Gr	Typical
14	M53	C2	N87A			HSS4.5X4.5X4	None	None	A500 Gr	Typical
15	M54	C2	N89			RIGID	None	None	RIGID	Typical
16	M55	N88	N91A			RIGID	None	None	RIGID	Typical
17	M56	N90	N92A			HSS4.5X4.5X4	None	None	A500 Gr	Typical
18	M57	N90	C4			RIGID	None	None	RIGID	Typical
19	M58	N93A	N91B			RIGID	None	None	RIGID	Typical
20	M59	N95	N97			HSS4.5X4.5X4	None	None	A500 Gr	Typical
21	M60	N95	C6			RIGID	None	None	RIGID	Typical
22	M61	N98	N96			RIGID	None	None	RIGID	Typical
23	M25	N30	N31			RIGID	None	None	RIGID	Typical

Company Designer Job Number Model Name

: Paul J. Ford and Company: STP: 37519-1302.003.7190: 806372 | HRT 093 943228

Oct 25, 2019 3:03 PM Checked By:_

Member Primary Data (Continued)

	<u>DCI I IIIIIGI</u>	,	Jonanac	/						
	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
24	M26	N32	N33			RIGID	None	None	RIGID	Typical
25	M27	N34	N35			RIGID	None	None	RIGID	Typical
26	M28	N36	N37			RIGID	None	None	RIGID	Typical
27	M29	N38	N39A			RIGID	None	None	RIGID	Typical
28	M30	N40	N41			RIGID	None	None	RIGID	Typical
29	M31	N42	N43A			RIGID	None	None	RIGID	Typical
30	M32	N44	N45			RIGID	None	None	RIGID	Typical
31	M33	N46	N47A			RIGID	None	None	RIGID	Typical
32	M34	N48	N49A			RIGID	None	None	RIGID	Typical
33	C1	N54	N50A			PIPE 2.0	None	None	A53 Gr. B	Typical
34	C2	N55	N51			PIPE 2.0	None	None	A53 Gr. B	Typical
35	C5	N56	N52A			PIPE 2.0	None	None	A53 Gr. B	Typical
36	<u>C6</u>	N57	N53			PIPE 2.0	None	None	A53 Gr. B	Typical
37	C3	N60	N58			PIPE 2.0	None	None	A53 Gr. B	
38	C4	N61	N59			PIPE 2.0	None	None	A53 Gr. B	Typical
39	<u>C4</u> M41	N62	N63			RIGID			RIGID	
	M42	N64				RIGID	None	None		Typical
40			N65				None	None	RIGID	Typical
41	M43	N66	N67			RIGID	None	None	RIGID	Typical
42	M44	N68	N69			RIGID	None	None	RIGID	Typical
43	M45	N70	N71			RIGID	None	None	RIGID	Typical
44	M46	N72	N73			RIGID	None	None	RIGID	Typical
45	M47	N74	N75			RIGID	None	None	RIGID	Typical
46	M48	N76	N77			RIGID	None	None	RIGID	Typical
47	<u>M49</u>	N78	N79			RIGID	None	None	RIGID	Typical
48	M50	N80	N81			RIGID	None	None	RIGID	Typical
49	M51	N82	N83			RIGID	None	None	RIGID	Typical
50	M52A	N84	N85			RIGID	None	None	RIGID	Typical
51	<u>B1</u>	N90A	N86			PIPE 2.0	None	None	A53 Gr. B	Typical
52	B2	N91C	N87			PIPE_2.0	None	None	A53 Gr. B	Typical
53	B5	N92B	N88A			PIPE 2.0	None	None	A53 Gr. B	Typical
54	B6	N93B	N89A			PIPE 2.0	None	None	A53 Gr. B	Typical
55	B3	N96A	N94			PIPE 2.0	None	None	A53 Gr. B	Typical
56	B4	N97A	N95A			PIPE 2.0	None	None	A53 Gr. B	Typical
57	M59A	N98A	N99			RIGID	None	None	RIGID	Typical
58	M60A	N100	N101			RIGID	None	None	RIGID	Typical
59	M61A	N102	N103			RIGID	None	None	RIGID	Typical
60	M62	N104	N105			RIGID	None	None	RIGID	Typical
61	M63	N106	N107			RIGID	None	None	RIGID	Typical
62	M64	N108	N109			RIGID	None	None	RIGID	Typical
63	M65	N110	N111			RIGID	None	None	RIGID	Typical
64	M66	N112	N113			RIGID	None	None	RIGID	Typical
65	M67	N114	N115			RIGID	None	None	RIGID	Typical
66	M68	N116	N117			RIGID	None	None	RIGID	Typical
67	M69	N118	N119			RIGID	None	None	RIGID	Typical
68	M70	N120	N121			RIGID	None	None	RIGID	Typical
69	A1	N126	N122			PIPE 2.0	None	None	A53 Gr. B	Typical
70	A2	N127	N123			PIPE 2.0	None	None	A53 Gr. B	Typical
71	A5	N127	N123			PIPE 2.0	None	None	A53 Gr. B	Typical
72	A5 A6	N129	N124			PIPE 2.0	None	None	A53 Gr. B	
73	A0 A3	N132	N130			PIPE 2.0	None	None	A53 Gr. B	Typical
74	A3 A4	N132	N131			PIPE 2.0		None	A53 Gr. B	
75	<u>— A4</u> M77	N133	N131			RIGID	None		RIGID	Typical
	A7						None	None	A53 Gr. B	Typical
76		N137	N136			PIPE_2.0	None	None	A500 Gr	Typical
77	M79	N92A	N139			HSS4X4X4	None	None	A500 Gr	. , ,
78	M80	N97	N141			HSS4X4X4	None	None	A500 Gr	Typical
79	M79A	N142	N141A			PIPE 2.0	None	None	A53 Gr. B	Typical
80	M80A	N146	N145			PIPE_2.0	None	None	AUU Gr. B	Typical

: Paul J. Ford and Company : STP

 Company
 : Paul J. Ford and Company

 Designer
 : STP

 Job Number
 : 37519-1302.003.7190

 Model Name
 : 806372 | HRT 093 943228

Oct 25, 2019 3:03 PM Checked By:_

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
81	M81	N139A	N144		90	L2.5x2.5x3	None	None	A36	Typical
82	M82	N143	N148		90	L2.5x2.5x3	None	None	A36	Typical
83	M83	N147	N140		90	L2.5x2.5x3	None	None	A36	Typical
84	M84	N149	N151			LL2.5x2.5x3x6	None	None	A36	Typical
85	M85	N152	N153			LL2.5x2.5x3x6	None	None	A36	Typical
86	M86	N154	N155			LL2.5x2.5x3x6	None	None	A36	Typical

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl RatAnalysis	. Inactive	Seismic
1	E						Yes	** NA **		None
2	FH						Yes	** NA **		None
3	VCF						Yes	** NA **		None
4	D1						Yes	** NA **		None
5	D2						Yes	** NA **		None
6	D3						Yes	** NA **		None
7	E1	BenPIN	BenPIN				Yes	** NA **		None
8	E2	BenPIN	BenPIN				Yes	** NA **		None
9	E3	BenPIN	BenPIN				Yes	** NA **		None
10	H1						Yes	** NA **		None
11	Z4						Yes	** NA **	Exclude	None
12	<u>Z</u> 8	OOOXOX					Yes	** NA **	Exclude	None
13	M52	JOURNA					Yes	** NA **	ZXOIGGO	None
14	M53						Yes	** NA **		None
15	M54		BenPIN				Yes	** NA **		None
16	M55		BenPIN				Yes	** NA **		None
17	M56		Delli IIV				Yes	** NA **		None
18	M57		BenPIN				Yes	** NA **		None
19	M58		BenPIN				Yes	** NA **		None
20	M59		Deliriii				Yes	** NA **		None
21	M60		BenPIN				Yes	** NA **		None
22	M61							** NA **		
			BenPIN				Yes		Fuelude	None
23	M25	00000					Yes	** NA **	Exclude	None
24	M26	OOOXOX					Yes	** NA **	Exclude	None
25	M27	000000					Yes	** NA **	Exclude	None
26	M28	OOOXOX					Yes	** NA **	Exclude	None
27	<u>M29</u>	000000					Yes	** NA **	Exclude	None
28	M30	OOOXOX					Yes	** NA **	Exclude	None
29	<u>M31</u>	0001/01/					Yes	** NA **	Exclude	None
30	M32	OOOXOX					Yes	** NA **	Exclude	None
31	<u>M33</u>						Yes	** NA **	Exclude	None
32	M34	OOOXOX					Yes	** NA **	Exclude	None
33	<u>C1</u>						Yes	** NA **		None
34	C2						Yes	** NA **		None
35	<u>C5</u>						Yes	** NA **		None
36	C6						Yes	** NA **		None
37	<u>C3</u>						Yes	** NA **		None
38	C4						Yes	** NA **		None
39	M41						Yes	** NA **	Exclude	None
40	M42	OOOXOX					Yes	** NA **	Exclude	None
41	M43						Yes	** NA **	Exclude	None
42	M44	OOOXOX					Yes	** NA **	Exclude	None
43	M45						Yes	** NA **	Exclude	None
44	M46	OOOXOX					Yes	** NA **	Exclude	None
45	M47						Yes	** NA **	Exclude	None
46	M48	OOOXOX					Yes	** NA **	Exclude	None

Company Designer Job Number Model Name

: Paul J. Ford and Company : STP

: 37519-1302.003.7190 : 806372 | HRT 093 943228 Oct 25, 2019 3:03 PM Checked By:___

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl RatAnalysis	Inactive	Seismic
47	M49						Yes	** NA **	Exclude	None
48	M50	OOOXOX					Yes	** NA **	Exclude	None
49	M51						Yes	** NA **	Exclude	None
50	M52A	OOOXOX					Yes	** NA **	Exclude	None
51	B1						Yes	** NA **		None
52	B2						Yes	** NA **		None
53	B5						Yes	** NA **		None
54	B6						Yes	** NA **		None
55	B3						Yes	** NA **		None
56	B4						Yes	** NA **		None
57	M59A						Yes	** NA **	Exclude	None
58	M60A	OOOXOX					Yes	** NA **	Exclude	None
59	M61A						Yes	** NA **	Exclude	None
60	M62	000X0X					Yes	** NA **	Exclude	None
61	M63						Yes	** NA **	Exclude	None
62	M64	OOOXOX					Yes	** NA **	Exclude	None
63	M65						Yes	** NA **	Exclude	None
64	M66	OOOXOX					Yes	** NA **	Exclude	None
65	M67						Yes	** NA **	Exclude	None
66	M68	OOOXOX					Yes	** NA **	Exclude	None
67	M69						Yes	** NA **	Exclude	None
68	M70	OOOXOX					Yes	** NA **	Exclude	None
69	A1						Yes	** NA **		None
70	A2						Yes	** NA **		None
71	A5						Yes	** NA **		None
72	A6						Yes	** NA **		None
73	A3						Yes	** NA **		None
74	A4						Yes	** NA **		None
75	M77						Yes	** NA **		None
76	A7						Yes	** NA **		None
77	M79						Yes	** NA **		None
78	M80						Yes	** NA **		None
79	M79A						Yes	** NA **		None
80	M80A						Yes	** NA **		None
81	M81	0000X0	0000X0				Yes	** NA **		None
82	M82		0000X0				Yes	** NA **		None
83	M83	0000X0	0000X0				Yes	** NA **		None
84	M84		BenPIN				Yes	** NA **		None
85	M85		BenPIN				Yes	** NA **		None
86	M86		BenPIN				Yes	** NA **		None

Hot Rolled Steel Design Parameters

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]Lcomp bot[in]L-tore	gu Kyy	Kzz	Cb	Function
1	E	L3X3X4	168	84		Lbyy				Lateral
2	FH	L3X3X4	168	84		Lbyy				Lateral
3	VCF	L3X3X4	168	84		Lbyy				Lateral
4	D1	L3X3X4	85.717			Lbyy				Lateral
5	D2	L3X3X4	85.717			Lbyy				Lateral
6	D3	L3X3X4	85.717			Lbyy				Lateral
7	E1	LL3x3x4x0	47.508			Lbyy				Lateral
8	E2	LL3x3x4x0	47.508			Lbyy				Lateral
9	E3	LL3x3x4x0	47.508			Lbyy				Lateral
10	H1	PIPE 2.0	150			Lbyy				Lateral
11	M52	HSS4X4X4	12							Lateral
12	M53	HSS4.5X4.5	. 24							Lateral

Company Designer Job Number Model Name

: Paul J. Ford and Company: STP: 37519-1302.003.7190

: 806372 | HRT 093 943228

Oct 25, 2019 3:03 PM Checked By:_

Hot Rolled Steel Design Parameters (Continued)

	Label		Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]	Lcomp bot[in]	L-torqu	. Kyy	Kzz	Cb	Function
13	M56	HSS4.5X4.5	. 24									Lateral
14	M59	HSS4.5X4.5	. 24									Lateral
15	C1	PIPE 2.0	108									Lateral
16	C2	PIPE 2.0	108									Lateral
17	C5	PIPE 2.0	108									Lateral
18	C6	PIPE 2.0	108									Lateral
19	C3	PIPE 2.0	84									Lateral
20	C4	PIPE 2.0	84									Lateral
21	B1	PIPE 2.0	108									Lateral
22	B2	PIPE 2.0	108									Lateral
23	B5	PIPE 2.0	108									Lateral
24	B6	PIPE 2.0	108									Lateral
25	B3	PIPE 2.0	84									Lateral
26	B4	PIPE_2.0	84									Lateral
27	A1	PIPE 2.0	108									Lateral
28	A2	PIPE 2.0	108									Lateral
29	A5	PIPE 2.0	108									Lateral
30	A6	PIPE_2.0	108									Lateral
31	A3	PIPE 2.0	84									Lateral
32	A4	PIPE 2.0	84									Lateral
33	A7	PIPE 2.0	48									Lateral
34	M79	HSS4X4X4	12									Lateral
35	M80	HSS4X4X4	12									Lateral
36	M79A	PIPE_2.0	150			Lbyy						Lateral
37	M80A	PIPE 2.0	150			Lbyy						Lateral
38	M81	L2.5x2.5x3										Lateral
39	M82	L2.5x2.5x3	15									Lateral
40	M83	L2.5x2.5x3										Lateral
41	M84	LL2.5x2.5x3	76.131									Lateral
42	M85	LL2.5x2.5x3										Lateral
43	M86	LL2.5x2.5x3	76.131									Lateral

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Dead	None	Ĭ	-1.1	·		38		3	,
2	Wind 0	None					76	86		
3	Wind 30	None					76	86		
4	Wind 60	None					76	86		
5	Wind 90	None					76	86		
6	Wind 120	None					76	86		
7	Wind 150	None					76	86		
8	Ice Load	None					38	43	3	
9	Ice 0	None					76	86		
10	Ice 30	None					76	86		
11	Ice 60	None					76	86		
12	Ice 90	None					76	86		
13	Ice 120	None					76	86		
14	Ice 150	None					76	86		
15	Lm	None				1				
16	Lv	None				1				
17	BLC 1 Transient Area	None						30		
18	BLC 8 Transient Area	None						30		

 Company
 : Paul J. Ford and Company

 Designer
 : STP

 Job Number
 : 37519-1302.003.7190

 Model Name
 : 806372 | HRT 093 943228

Oct 25, 2019 3:03 PM Checked By:__

Load Combinations

			. S B	. Fa	В	Fa	. В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	<u> </u>
1		Yes Y		1.4																		
2		Yes Y		1.2	2	1																
3		Yes Y		1.2																		
4		Yes Y		1.2																		
5		Yes Y		1.2		1																
6		Yes Y		1.2		1																
7		Yes Y		1.2		1																
8		Yes Y		1.2		-1																
9		Yes Y		1.2																		
10		Yes Y		1.2																		
11		Yes Y		1.2																		
12		Yes Y		1.2																		
13		Yes Y		1.2																		
14	1.2 D + 1.0 Di + 1.0 Wi @ 0			1.2		1	9	_														
15		Yes Y		1.2		1	10															
16		Yes Y		1.2		1	11															
17		Yes Y		1.2		1	12															
18		Yes Y		1.2		1	13															
19		Yes Y		1.2		1	14															
20		Yes Y		1.2		1	9															
21		Yes Y		1.2		1	10															
22		Yes Y		1.2		1	11															
23		Yes Y		1.2		1	12															
24		Yes Y		1.2		1	13															
25		Yes Y		1.2				-1														
26		Yes Y				1.5		.058														
27		Yes Y				1.5		.058														
28		Yes Y		1.2	15	1.5	4	.058														
29	1.2 D + 1.5 Lm + 1.0 Wm @ 90			1.2	15	1.5	5	.058														
30	1.2 D + 1.5 Lm + 1.0 Wm @ 120		1	1.2					_													
31	1.2 D + 1.5 Lm + 1.0 Wm @ 150			1.2				.058	_													
32	1.2 D + 1.5 Lm + 1.0 Wm @ 180					1.5		0	_													
33	1.2 D + 1.5 Lm + 1.0 Wm @ 210		1			1.5		0	_													
34	1.2 D + 1.5 Lm + 1.0 Wm @ 240					1.5																
35	1.2 D + 1.5 Lm + 1.0 Wm @ 270					1.5																
36	1.2 D + 1.5 Lm + 1.0 Wm @ 300					1.5		0														
37	1.2 D + 1.5 Lm + 1.0 Wm @ 330			1.2				0														
38		Yes Y		1.2	16	1.5																
39	1.0 D	Yes Y	1	1																		

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N87B	max	957.69	11	2025.401	21	2771.972	3	.822	2	2.012	3	852	4
2		min	-1237.435	5	456.959	39	-2703.945	7	827	8	-1.952	7	-6.054	23
3	N139	max	2464.819	11	1766.685	17	1701.971	3	929	2	1.927	11	3.027	17
4		min	-2349.511	5	410.363	39	-1481.296	9	- 5.105	20	-1.916	3	.287	11
5	N141	max	2498.514	11	1770.369	25	1491.904	13	5.158	14	1.934	7	3.032	17
6		min	-2319.055	5	363.525	27	-1697.132	7	.913	8	-1.934	11	.339	11
7	N149	max	3667.559	17	2533.497	17	53.313	13	0	39	0	39	0	39
8		min	613.886	11	403	11	-53.29	9	0	1	0	1	0	1
9	N152	max	-314.509	7	2548.156	25	-544.752	7	0	39	0	39	0	39
10		min	-1844.852	25	413.021	7	-3195.46	25	0	1	0	1	0	1
11	N154	max	-300.382	3	2523.708	21	3163.352	21	0	39	0	39	0	39
12		min	-1826.397	21	394.31	3	520.257	3	0	1	0	1	0	1

Company Designer Job Number Model Name

: Paul J. Ford and Company : STP

: 37519-1302.003.7190 : 806372 | HRT 093 943228 Oct 25, 2019 3:03 PM Checked By:_

Envelope Joint Reactions (Continued)

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
13	Totals:	max	5567.852	11	12889.93	23	5459.359	2			•			
14		min	-5567.807	5	2848.472	39	-5459.344	8						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[.LC	Shear Che.	.Loc[DirLC phi*Pnc	phi*Pnt	.phi*Mn	phi*MnCb_ Ec	
1	VCF	L3X3X4	.727	84	14	.109	77	y 15 15745	10000		3.269 1 H2	
2	FH	L3X3X4	.719	84	18	.108	77	y 19 15745		1.688	3.268 1 H2	
3	Е	L3X3X4	.716	84	22	.107	77	y 23 15745	46656	1.688	3.27 1 H2	2-1
4	D3	L3X3X4	.492	42.8		.026	0	y 29 15152	46656	1.688	3.149 1 H2	2-1
5	D1	L3X3X4	.487	42.8	22	.021	0	y 25 15152	46656	1.688	3.149 1 H2	
6	D2	L3X3X4	.478	42.8	18	.025	0	y 31 15152	46656	1.688	3.149 1 H2	2-1
7	M52	HSS4X4X4	.410	12	25	.130	12	z 2 138935		16.181		-1b
8	E3	LL3x3x4x0	.406	29.1		.059	29.6	y 16 76330	. 93312	6.48	4.911 1 H1	
9	E2	LL3x3x4x0	.403	29.1		.059		y 20 76330	93312	6.48	4.911 1 H1-	-1b
10	M80	HSS4X4X4	.401	12	25	.100	12	z 11 138935.	139518	16.181	16.181 1 H1	-1b
11	E1	LL3x3x4x0	.401	18.31		.058	17.8	у 24 76330	93312	6.48	4.911 1 H1	
12	M79	HSS4X4X4	.398	12	17	.099	12	z 3 138935		16.181	16.181 1 H1	-1b
13	A2	PIPE 2.0	.361	54	4	.144	54	8 12143		1.872	1.872 1 H1	-1b
14	B2	PIPE_2.0	.343	54	9	.143	54	6 12143	. 32130	1.872	1.872 1 H1	
15	C2	PIPE 2.0	.342	54	13	.143	54	4 12143	0= .00	1.872	1.872 1 H1	-1b
16	B5	PIPE_2.0	.322	54	6	.137	54	8 12143	32130	1.872	1.872 1 H1-	-1b
17	M80A	PIPE 2.0	.322	68.75		.123	10.9	6 6295.42		1.872	1.872 1 H1	
18	M79A	PIPE_2.0	.318	68.75		.123	10.9	106295.42	2 32130	1.872	1.872 1 H1	-1b
19	H1	PIPE 2.0	.317	68.75	23	.124	10.9	2 6295.42	2 32130	1.872	1.872 1 H1	-1b
20	A1	PIPE_2.0	.310	54	13	.074	54	8 12143	32130	1.872	1.872 1 H1	-1b
21	B1	PIPE 2.0	.309	54	5	.072	54	12 12143		1.872	1.872 1 H1	-1b
22	A5	PIPE_2.0	.308	54	2	.138	54	4 12143	32130	1.872	1.872 1 H1-	-1b
23	C5	PIPE 2.0	.306	54	10	.137	54	12 12143	32130	1.872	1.872 1 H1	_
24	C1	PIPE 2.0	.304	54	9	.073	54	4 12143			1.872 1 H1	
25	A3	PIPE 2.0	.290	2.625		.092	2.625		32130		1.872 2H1	
26	B3	PIPE_2.0	.285	2.625	21	.092	2.625		. 32130	1.872	1.872 2H1	
27	C3	PIPE 2.0	.281	2.625		.092	2.625		. 32130		1.872 2 H1	
28	C4	PIPE_2.0	.276	5.25		.137	42	12 17855	. 32130		1.872 2 H1-	
29	A4	PIPE 2.0	.275	5.25		.139	42	4 17855	. 32130	1.872	1.872 2 H1	
30	B4	PIPE_2.0	.275	5.25		.138	42	8 17855			1.872 2 H1-	
31	C6	PIPE 2.0	.263	54	13	.076	54	12 12143	. 32130		1.872 1 H1	
32	B6	PIPE_2.0	.262	54	9	.077	54	8 12143	. 32130	1.872	1.872 1 H1	
33	A6	PIPE 2.0	.260	54	5	.078	54	4 12143	32130		1.872 1 H1	
34	A7	PIPE_2.0	.228	12	10	.021	12	10 26521	32130		1.872 1H1	
35	M59	HSS4.5X4	.213	24	24	.084	24	z 11 156914			20.907 1 H1-	
36	M56	HSS4.5X4	.211	24	16	.083	24	z 3 156914			20.907 1 H1-	
37	M53	HSS4.5X4	.210	24	20	.083	24	z 3 156914				
38	M83	L2.5x2.5x3	<u>.157</u>	15	8	.119	0		29192.4		1.972 1 H2	
39	M81	L2.5x2.5x3	.157	15	4	.117	0	z 12 27407.4			1.972 1 H2	
40	M82	L2.5x2.5x3	.156	0	4	.118	0	z 8 27407.4			1.972 1 H2	-
41	M85	LL2.5x2.5	.128	0	25	.005	76.1	y 24 34905	58320	4.643	2.535 1 H1-	
42	M84	LL2.5x2.5	.128	0	17	.005	76.1	y 18 34905	000_0		2.535 1 H1-	
43	M86	LL2.5x2.5	.127	0	21	.005	76.1	y 22 34905	58320	4.643	2.535 1 H1-	1b*

Project # 37519-1302.003.7190

By STP

Date: 10/25/19 v0.1, Effective 07/10/18

MOUNT TO TOWER CONNECTION CHECKS

REACTIONS-LC23

Px=	0.0293	Kip
Py=	2.03	Kip
(Axial)Pz=	0.21	Kip
Mx=	73.764	Kip-in
My=	0.384	Kip-in
Torque)Mz=	0.216	Kip-in

WELD CHECKS

Standoff Member Type	Square	
Width =	4	in
Depth (only for square members) =	4	in
Assumed Weld Size =	0.1875	
Total Forces in X direction =	0.009	kips
Total Forces in Y direction =	0.259	kips
Total Forces in Z direction =	3.49	kips
Resultant =	3.50	kips
Φ *Fw (Kip/in)/16" weld =	1.392	
Capacity used	83.77%	

Exhibit F

Power Density/RF Emissions Report

Site Name: Manchester, CT

Cumulative Power Density

Operator	Operating Frequency	Number of Trans.	ERP Per Trans.	Total ERP	Distance to Target	Calculated Power Density	Maximum Permissible Exposure*	Fraction of MPE
	(MHz)		(watts)	(watts)	(feet)	(mW/cm^2)	(mW/cm^2)	(%)
CBRS	3500	1	50	50	115	0.0014	1.0	0.14%
VZW PCS	1970	1	4690	4690	115	0.1275	1.0	12.75%
VZW Cellular LTE	869	1	1470	1470	115	0.0400	0.579333333	6.90%
VZW Cellular	869	2	408	816	115	0.0222	0.579333333	3.83%
VZW AWS	2145	1	4860	4860	115	0.1322	1.0	13.22%
VZW 700	746	1	2470	2470	115	0.0672	0.497333333	13.51%

Total Percentage of Maximum Permissible Exposure

50.34%

MHz = Megahertz mW/cm^2 = milliwatts per square centimeter ERP = Effective Radiated Power

Absolute worst case maximum values used, including the following assumptions:

- 1. closest accessible point is distance from antenna to base of pole;
- 2. continuous transmission from all available channels at full power for indefinite time period; and,
- 3. all RF energy is assumed to be directed solely to the base of the pole.

^{*}Guidelines adopted by the FCC on August 1, 1996, 47 CFR Section 1.13101 based on NCRP Report 86, 1986 and generally on ANSI/IEEE C95.1-1992