

April 11, 2019

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification for Verizon Wireless: 806372

Verizon Site ID: NG1904

266R Center Street, Manchester, CT 06040

Latitude: 41° -46' 19.0"/ Longitude: -72° -31' 48.8"

Dear Ms. Bachman:

Verizon currently maintains twelve (12) antennas at the 115-foot level of the existing 115-foot monopole tower at 266R Center Street, Manchester, CT 06040. The tower is owned by Crown Castle as well the property. Verizon now intends to replace six (6) antennas and six (6) remote radio units.

This facility was approved by the Connecticut Siting Council on August 24, 1990 in Docket No. 129. There were no conditions listed in the approval.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.S.C.A. § 16-50j-73, a copy of this letter is being sent to Town General Manager Mr. Scott Shanley and the town of Manchester Planning Department. Crown Castle is the tower and property owner.

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

The Foundation for a Wireless World.

CrownCastle.com

- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, Verizon respectfully submits that the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Jeffrey Barbadora.

Sincerely

ffrey Barbadora

Real Estate Specialist

12 Gill Street, Suite 5800, Woburn, MA 01801

781-729-0053

Jeff.Barbadora@crowncastle.com

Attachments:

Tab 1: Exhibit-1: Compound plan and elevation depicting the planned changes

Tab 2: Exhibit-2: Structural Modification Report

Tab 3: Exhibit-3: General Power Density Table Report (RF Emissions Analysis Report)

cc: Mr. Scott Shanley
General Manager
Town of Manchester
41 Center Street
Manchester, CT 06045

Planning and Zoning Town of Manchester Lincoln Center, 2nd FL Manchester, CT 06045

Town of Manchester, CT

Address: 266R CENTER STREET

RPKEY: 102000266R

Property Information:

Mailing

266R CENTER ST

Address: MANCHESTER, CT

Owner Name:

CROWN ATLANTIC CO LLC

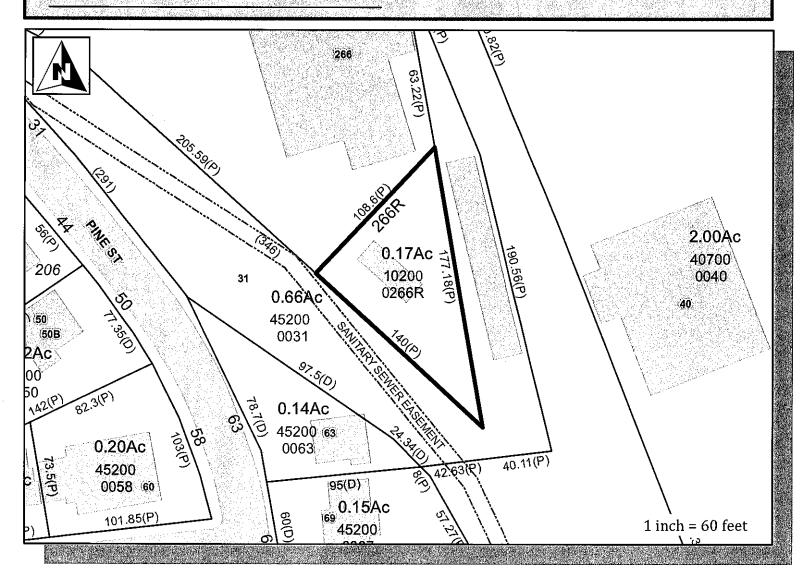
Owner

4017 WASHINGTON RD

Address: MCMURRAY, PA 15317

Land Class:

Ind Vac


Land Use Code:

302

Zoning:

IND

0.17 Acreage: Year Built: 164200 Appraisal: 115000 Assessment: Sale Price: 04/19/1999 Sale Date: Book/Page: 2071/309

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

136 Main Street, Suite 401 New Britain, Connecticut 06051 Phone: 827-7682

Gloria Dibble Pond Chairperson

COMMISSIONERS

Energy/Telecommunications

Peter G. Boucher Leslie Carothers

Hazardous Waste/Low-level Radioactive Waste

Frederick G. Adams Bernard R. Sullivan

COUNCIL MEMBERS

Harry E. Covey Mortimer A. Gelston Daniel P. Lynch, Jr. Paulann H. Sneets William H. Smith Colin C. Tait

Joel M. Rinebold Executive Director

Stanley J. Modzelesky Executive Assistant August 24, 1990

Mr. David S. Malko Manager, Engineering and Regulatory Services Metro Mobile 50 Rockland Road South Norwalk, CT 06854

RE: DOCKET NO. 129 - Metro Mobile CTS of Hartford, Inc., Certificate of Environmental Compatibility and Public Need for the construction, maintenance, and operation of a cellular telephone tower and associated equipment in the Town of Manchester, Connecticut.

Dear Mr. Malko:

On August 22, 1990, the Siting Council considered and approved all remaining sections of the Development and Management Plan (D&M) for this cellular telephone tower and associated equipment in the Town of Manchester, Connecticut. This decision confirms use of barbed wire on the security fence surrounding the cellular site that was approved by the Council by its Decision and Order on March 12, 1990.

This approval applies only to the D&M plan submitted for the Manchester site. Modifications to this D&M Plan require advance Council notification and approval. Please notify the Council when construction is completed.

Enclosed for your use is a copy of the Staff Report regarding the D&M Plan.

Very truly yours,

Gloria Dibble Pond

Chairperson

SMH/smh

enclosure

4706-2

July 20, 1990

Connecticut Siting Council 136 Main Street Suite 401 New Britain, CT 06051

Attention: Joel M. Rinebold, Executive Director

C

Re: Docket No. 129 - Metro Mobile CTS of Hartford, Inc. Manchester Cell Site

Dear Mr. Rinebold:

Metro Mobile CTS of Hartford, Inc. ("Metro Mobile") has submitted a proposed D&M Plan in the above-referenced proceeding and has received comments on it from the Town of Manchester and the Council.

Metro Mobile intends to construct an eight foot security fence around the facility with three strands of barbed wire on top. One of the comments received addresses the potential restriction on the use of barbed wire in constructing a fence at the proposed facility under Section 47-47 of the Connecticut General Statutes. This communication sets forth Metro Mobile's position that Metro Mobile is unaffected by said provision, as well as the Company's arguments in support of its position that the fencing plans already submitted are within State laws.

The provision of interest is Section 47-47 of the Connecticut General Statutes, which reads, in relevant part, as follows:

Barbed wire between adjoining premises or enclosing grounds of public buildings. No person shall use barbed wire in the construction of fences or have barbed wire upon existing fences between his own premises and those of an adjoining proprietor, within twenty-five rods of any house or barn belonging to such proprietor, unless either premises are used in connection with raising livestock, without first obtaining his written consent

Connecticut Siting Council
Mr. Joel M. Rinebold - Docket No. 129
July 20, 1990
Page 2

A. THE SITING COUNCIL'S JURISDICTION SUPERSEDES THE RESTRICTIONS IMPOSED BY C.G.S. SECTION 16-50x.

The Connecticut Siting Council was created with the express purpose of considering applications for the construction, operation, and maintenance of certain types of facilities within the state, including the proposed Manchester facility. The Council's jurisdiction overrides select state and local laws which would otherwise place restrictions on such activities. Section 16-50x of the C.G.S. contains the override language, as follows:

(a) Notwithstanding any other provision of the general statutes to the contrary, except as provided in Section 16-243, the council shall have exclusive jurisdiction over the location and type of facilities and over the location and type of modifications of facilities subject to the provisions of subsection (d) of this section. (emphasis added)

It should be noted that neither Section 16-243 nor subsection (d) of Section 16-50x modifies the applicability of the section quoted above with respect to the proposed Metro Mobile facility.

Whether the proposed facility uses barbed wire is an issue as to the type of facility to be constructed. Thus, it falls within the exclusive jurisdiction of the Council and cannot be affected by other statutes or local regulations.

B. EVEN IF THE COUNCIL'S JURISDICTION DOES NOT SUPERSEDE SECTION 47-47, METRO MOBILE'S PROPOSED FACILITY WILL NOT COME WITHIN THE AMBIT OF THAT PROVISION.

As set forth above, Metro Mobile's position is that the Council's jurisdiction supersedes the provisions of Section 47-47, and that the statute is therefore inapplicable to Metro Mobile at the Manchester facility certificated by the Council. If, however, the Council concludes that its jurisdiction does not supersede the statute, Metro Mobile contends that the provisions of the statute are inapplicable to Metro Mobile for the following reasons.

Proposed Fence Not Between Proprietors

The statute prohibits the use of barbed wire "... between his own premises and those of an adjoining proprietor . . . " In Manchester, Metro Mobile's proposed facility will not border two separate land parcels except on the east and southwest sides (see page 5 of Tab 1 in the Metro Mobile Application for the Manchester Site, Siting Council Docket No. 129).

Connecticut Siting Council
Mr. Joel M. Rinebold - Docket No. 129
July 20, 1990
Page 3

On the north side of Metro Mobile's facility, the proposed barbed wire will not be between two adjoining proprietors, since Metro Mobile facility is located on a portion of a parcel owned by S. Mark Stephens.

2. No Houses or Barns Located on Adjacent Property

The statute prohibits the use of barbed wire "... within twenty-five rods of any house or barn belonging to such proprietor ... " On the east side of the Metro Mobile facility, there is a strip of land owned by Kenneth C. Burkamp over which the Consolidated Rail Corporation at one time had an easement to operate a railway. There are no houses or barns located on this parcel, and therefore the prohibition cannot apply to Metro Mobile with respect to this parcel.

Similarly, the southwest side of the Metro Mobile facility is bordered by a parcel owned by Kenneth C. Burkamp. There are no houses or barns located on this parcel. The prohibition stated in the barbed wire statute therefore cannot apply to Metro Mobile with respect to this parcel.

Thus, even if the Council finds that its jurisdiction does not supersede the provisions of Section 47-47 of the C.G.S., those provisions, do not apply to Metro Mobile in this case.

Respectfully yours,

David S. Malko, P.E.

Manager, Engineering and Regulatory Services

DSM: mb

cc: Service List Docket 129

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

136 Main Street, Suite 401 New Britain, Connecticut 06051 Phone: 827-7682

Gloria Dibble Pond Chairperson

COMMISSIONERS

Energy Telecommunications

Peter G. Boucher Lestie Carothers

'Hazardous Waste Low-level Radioactive Waste

Frederick G. Adams Bernard R. Sullivan

COUNCIL MEMBERS

Harry E. Covey Mortimer A. Gelston Daniel P. Lynch, Jr. Paulann H. Sheets William H. Smith Colin C. Tait

Joel M. Rinebold Executive Director

Stanley J. Modzelesky Executive Assistant June 22, 1990

Metro Mobile CTS of Hartford, Inc.

100 Corporate Drive Windsor, CT. 06095 Attn: Gary N. Shulman

Vice Pres. & Gen. Mgr.

DOCKET NO. 129 - Metro Mobile CTS of Hartford, Inc., Certificate of Environmental Compatibility and Public Need for the construction, maintenance, and operation of a cellular telephone tower and associated equipment in the Town of Manchester, Connecticut.

Dear Mr. Shulman:

At a meeting of the Connecticut Siting Council (Council) on June 18, 1990, the Council considered and approved the Development and Management (D&M) Plan for the Manchester facility except for the subject of fencing to be reserved for final approval by the Council at a later date. Pursuant to Connecticut General Statutes Section 47-47, it states that no barbed wire is permitted on an existing or newly constructed fence. Enclosed for your reference is a copy of the staff report for this D&M Plan.

This approval applies only to the Manchester facility. Modifications to this D&M Plan require advance Council notification and approval. The Council awaits your submission of fencing plans, within State laws, that would meet Metro Mobile's needs and the Town of Manchester's requirements.

Very truly yours,

Gloria Dibble Pond

GDP:SJM:fc

Enclosures (3)

cc: Parties of Record Council Members

4442E-5

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

136 Main Street, Suite 401 New Britain, Connecticut 06051 Phone: 827-7682

DOCKET NO. 129

METRO MOBILE CTS OF HARTFORD, INC.

D&M PLAN MANCHESTER CELL SITE - MAY 21, 1990

On May 15, 1990, Metro Mobile CTS of Hartford, Inc. submitted to the Connecticut Siting Council a D&M Plan for its Manchester cell site. The plan includes construction of a 128 foot tower including antennas, at a total height of 324 feet above mean sea level, and a 14-foot by 40-foot equipment building surrounded by an eight foot security fence. In addition, Metro Mobile would remove an existing one story wood building from the site. In accordance with Regulations of State Agencies Section 16-50j-77, Metro Mobile has notified the Council of its intention to begin access work and clearing, to be followed immediately by the construction of the tower and associated equipment upon approval of the D&M Plan by the Council.

The existing site is flat, paved, and surrounded by buildings and railroad tracks. All areas disturbed by construction will be repaved. The right-of-way from Pine Street over the existing parking lot will be maintained, and all new pavement will meet the minimum specifications required by the Town.

Metro Mobile proposes to construct the tower foundation and the building foundation as per manufacturer specifications, soil test boring logs, and detailed engineering. Underground grounding will be installed as per Metro Mobile's specifications. The tower has been moved within the site as far east as possible to separate the fall zone of the tower from a residence located southwest of the tower site.

In preparation of the D&M Plan, Metro Mobile consulted with the Town of Manchester pursuant to the Council's Decision and Order. The Manchester Zoning Enforcement Officer recommended installation of erosion controls prior to the disturbance of the site. Metro Mobile will abide by this recommendation through the installation and maintenance of approximately 85 linear feet of hay bales located along the west perimeter of the site. The Town of Manchester has also provided comments requesting provisions for landscaping, delineation of areas to be paved, details regarding modifications to the drainage

Docket 129 D&M Plan Page 2

pattern, removal of barbed wire from the security fence, maintenance of the right-of-way, and installation of a driveway apron on Pine Street. Metro Mobile has responded indicating that it does not believe landscaping is appropriate or necessary, that all disturbed areas will be repaved, that drainage patterns will not be affected, that barbed wire on the security fence is necessary to provide security for its equipment, that the right-of-way will be maintained, and that the apron onto Pine Street will not be modified, but if it is, it will be restored as per Town requirements.

Staff recommends the approval of Town recommendations regarding erosion control, paving, and right-of-way maintenance. In addition, if dewatering is to be performed during site construction, the certificate holder must be prepared for proper disposal of water from dewatering operations.

No staff recommendations regarding site landscaping and the use of barbed wire in the security fence are made.

All other orders and provisions regarding the D&M Plan have been complied with.

JMR: bw

4442E

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

136 Main Street, Suite 401 New Britain, Connecticut 06051 Phone: 827-7682

DOCKET NO. 129
METRO MOBILE CTS OF HARTFORD, INC.
D&M PLAN MANCHESTER CELL SITE
June 18, 1990
Addendum

On Thursday, June 14, 1990, Brian Emerick of the Connecticut Siting Council (Council) and Fred Cunliffe of the Council staff met with David Malko of Metro Mobile and Stuart Popper of the Town of Manchester at the site of a telecommunications tower and building on Pine Street in Manchester, Connecticut.

The Town of Manchester recommends landscaping along the north and east sides of the leased parcel. White Pine or hemlock were perferred by the town. The town requests that the plantings be a minimum of four feet in height and four feet on center as required by town regulations. Metro Mobile would be willing to move the building and north-side of the fence several feet to the south and move the gate closer to the building to accommodate these plantings.

The town has requested that barbed wire not be used on the fence and have stated that the use of barbed wire on the fence is potentially inconsistent with Connecticut General Statutes section 47-47. No recommendations were made by the town or applicant for alternate fencing but Metro Mobile contends that security must be maintained.

Fred Cunliffe Siting Analyst 4442E-4

: not smaller than set in concrete, all end and rected, or any other fence. ed with the duty of fence de of incorporated cities, a h, suitably erected, a wire a part, stretched tightly, the less than four feet from the apart, and any other fence ence, shall be a sufficient of a divisional fence, the hall not exceed in width, if one fence, three feet; if ng the bank, which shall be e lot without the consent of

n named and treated as a boun at constitutes a divisional fence C 277. Terms "sufficient fee 52 C 34 Hedge as a division

fence viewers. Selec

:rty from three inches to one

as to fences. In any ions of any special atutes on selectmen : body of such mun to perform such de it be less than that

perty and state purposes adjoin section 47-43. ietor may, with hin sixty days [r replaced with ortation shall a urse the propin oot and in act

Sec. 47-46a. Payment for fence between agricultural property and property in control of environmental protection department. Where there is no fence between property used for agricultural purposes and adjoining property of the state under control of the department of environmental protection sufficient for the purposes of section 47-43, or when any fence so located is in need of replacement, and the boundary has been mutually agreed upon, the adjoining proprietor may, with the written agreement of the commissioner of envicommental protection, executed within sixty days of a written request by such proprietor. cause such a fence to be constructed or replaced within six months of the date of the agreement: and the commissioner shall, within sixty days after the construction or replacement is completed, reimburse the proprietor for one-half the cost thereof, the state's share not to exceed four dollars a rod, payments to be made in the order of receipt of applications and completion of projects. Total payments under this section shall not exceed five thousand

1961, P.A. 558; 1967, P.A. 72; 1971, P.A. 872, S. 205, P.A. 79-530, S. 1, 3)

History 1967 act increased state's maximum share in reimbursement from one to two dollars per rod; 1971 act replaced state purs and forest commission and its director with department and commissioner of environmental protection and revised reference to maximum for total payments to reflect change from biennial to annual budget; P.A. 79-530 raised state's maximum share for numbursement to four dollars per rod and raised maximum amount for total payments from twenty-five hundred to five thousand

Sec. 47-47. Barbed wire between adjoining premises or enclosing grounds of public buildings. No person shall use barbed wire in the construction of fences, or have barbed wire upon existing fences, between his own premises and those of an adjoining proprietor, within twenty-five rods of any house or barn belonging to such proprietor, unless either premises are used in connection with raising livestock, without first obtaining his written consent. No barbed wire shall be used in the construction of fences, or retained upon existing fences, connected with or enclosing the grounds of any public school or public building. except a department of transportation storage facility or a vessel operations area of a stateowned waterfront facility or aircraft operations area of a state-owned airport. Any person who violates any provision of this section shall be fined not more than one hundred dollars. (1949 Rev., S. 7157; P.A. 80-105; P.A. 84-322.)

Hoters, P. A. 80-105 added exception re-premises used in raising livestock to provision requiring written consent for barbed HINDER P. A. 80-100 agged exception re premises used in raising investors to provision requiring written consent for oursest leave within twenty-five rods of house or barn; P.A. 84-322 allowed use of barbed wire at department of transportation marge facilities, vessel operations areas of state-owned waterfront facilities and aircraft operations areas of state-owned airports.

Sec. 47-48. Barbed wire along sidewalks. No barbed wire shall be installed along my sidewalk unless it is at least six and one-half feet above the ground. Any barbed wire in use in conformity with section 7156 of the general statutes, revision of 1949, on October 1, 11449 Rev. S. 7156; 1957, P.A. 157, S. L.)

When subtation of a statute concerning barbed wire is not set up in complaint in action for damages for personal injuries, it is as read statute to the jury to show that legislature thought barbed wire a dangerous thing, 101 C. 549

Sec. 47-49. Purchase of division fence. If one proprietor or his predecessor in title the whole fence and the adjoining proprietor afterwards encloses his land, such Soming proprietor shall purchase and maintain half of the divisional fence. If the parties do agree in dividing and appraising it, either may call on the selectmen of the town in which fence is situated, who may set out, to each, his proportion of such fence and determine much shall be paid to the party erecting or owning the same by the other; a certificate of th determination, under the hands of the selectmen, shall be sufficient evidence for the by of the amount so determined. No action therefor shall be maintained unless the Pietof, who, or whose predecessor in title, first occupied his land and made the whole of

Date: December 13, 1989

Docket No. 129

LIST OF PARTIES AND INTERVENORS - SERVICE LIST

Status Granted	Status Holder (name, address & phone number)	Representative (name, address & phone number)
Party X Intervenor	Metro Mobile CTS of Hartford, Inc. 100 Corporate Drive Windsor, CT 06095 Attn: Gary N. Schulman Vice President and Gen. Mgr.	Robinson & Cole One Commercial Plaza Hartford, CT 06103-3597 Attn: Earl W. Phillips, Jr (203) 275-8200
Intervenor	SNET Cellular, Inc. 227 Church Street New Haven, CT 06506	Peter J. Tyrrell Senior Attorney SNET Cellular, Inc. 227 Church Street Room 1021 New Haven, CT 06506
x x ntervenor	Town of Manchester Planning & Zoning Comm. Town Hall 41 Center Street Manchester, CT 06040	Mark Pellegrini Director of Planning and Economic Development Town Hall 41 Center Street Manchester, CT 06040

Date: December 13, 1989 Docket No. 129

C

LIST OF PARTIES AND INTERVENORS - SERVICE LIST

		TENTIOL BISI
Status Granted	Status Holder (name, address & phone number)	Representative (name, address & phone number)
Party	Cheney Brothers National Historic	Bruce J. Comollo
<u> x </u>	Landmark District	Garrity, Diana, Conti & Houck 1091 Main Street
Intervenor	Historic Commission	Manchester, CT 06040 (203) 643-2181
11		
Party		
Intervenor		
11		
arty		
ntervenor		
<u> </u>		
<u></u>		

DOCKET NO. 129 - AN APPLICATION OF METRO MOBILE CTS OF HARTFORD, INC., FOR A CERTIFICATE OF ENVIRONMENTAL COMPATIBILITY AND PUBLIC NEED FOR THE CONSTRUCTION, OPERATION, AND MAINTENANCE OF A CELLULAR TELEPHONE TOWER AND ASSOCIATED EQUIPMENT IN THE TOWN OF MANCHESTER, CONNECTICUT.

Connecticut Siting

Council

March 12, 1990

FINDINGS OF FACT

- 1. Metro Mobile CTS of Hartford, Inc., in accordance with provisions of sections 16-50g to 16-50z of the Connecticut General Statutes (CGS), applied to the Connecticut Siting Council (Council) on September 29, 1989, for a Certificate of Environmental Compatibility and Public Need (Certificate) for the construction, maintenance, and operation of a telecommunications tower, associated equipment, and building to provide Domestic Public Cellular Radio Telecommunications Service (cellular service) in the Town of Manchester, part of the Hartford, Connecticut, New England County Metropolitan Area ("Hartford NECMA"). (Record)
- 2. The application was accompanied by proof of service as required by section 16-501 of the CGS. (Record)
- 3. Affidavit of newspaper notice as required by section 16-501 of the CGS was supplied by the applicant. Newspaper notice of this application was published twice by the applicant in The Hartford Courant. (Metro Mobile 1, pp.4-5, Exhibit 5)
- 4. The Council and its staff inspected the proposed and alternate sites in the Town of Manchester, Connecticut, on December 28, 1989. (Record)
- 5. Pursuant to section 16-50m of the CGS, the Council, after giving due notice thereof, held a public hearing on this application on December 28, 1989, at 3:30 P.M., and 7:00 P.M., at the Lincoln Center Hearing Room, 494 Main Street, Manchester, Connecticut. (Record)
- 6. The parties to the proceeding are the applicant and those persons and organizations whose names are listed in the Decision and Order which accompanies these Findings. (Record)
- 7. The Department of Environmental Protection (DEP) filed written comments with the Council pursuant to section 16-50j of the CGS. (Record)

- 8. In 1981, the Federal Communications Commission (FCC) recognized a national need for technical improvement, wide-area coverage, high quality service, and competitive pricing in mobile telephone service. (Metro Mobile 1, p.5; Docket 107, Finding of Fact 10)
- 9. The FCC has pre-empted State regulation in determining that a public need currently exists for cellular service, setting technical standards for that service, and establishing a competitive market. (Metro Mobile 1, p.6; Docket 107, Finding of Fact 12)
- The FCC has determined that the public interest requires two licenses for cellular service be made available in each market area or NECMA to provide competition. One license is awarded to a wireline company, the other to a non-wireline company. (Metro Mobile 1, pp.6, 10; Docket 107, Finding of Fact 11)
- 11. Conventional mobile telephone service has been limited by insufficient frequency availability, inefficient frequency use, and poor quality of service. These limitations have resulted in congestion, blocking of transmission, interference, lack of coverage, and high costs. (Metro Mobile 1, p.5; Docket 107 Finding of Fact 9)
- 12. Cellular service consists of small, overlapping broadcast regions. These regions or cells are limited in coverage by the FCC's technical standards governing transmitting power. The system design provides frequency reuse and hand-off and would be capable of an orderly and compatible expansion. (Metro Mobile 1, pp.13-14, Exhibit 11, p.6)
- 13. Cell site locations are limited by a basic need for a 10 percent to 20 percent overlap of coverage between cell sites. Location of cell sites is essential to provide for uninterrupted hand-off of calls in progress. (Metro Mobile 1, Exhibit 11, pp.6-7)
- 14. Presently, the proposed cellular system represents state-of-the-art technology and Metro Mobile is aware of no viable alternatives. A mobile satellite service has been under consideration by the FCC and may become available in the distant future. (Metro Mobile 1, p.18)
- 15. Metro Mobile expects digital cellular technology to be commercially available in the late 1990's. The technology would increase the capability of handling calls over present cellular technology without having to add additional sites. (Tr. 12/28/89, pp.33-34)

- In selecting a site for the cell, Metro Mobile found no available structures of adequate height or structural strength in or near a 0.6 mile theoretical search area within Manchester. (Metro Mobile I, Exhibit 11, pp.8-9 and Attachment "A"; Metro Mobile 7)
- 17. Before selecting the proposed and alternate sites Metro Mobile considered and rejected four sites within the search area. One site in an industrial zone to the west of the alternate cell site location was rejected because of inadequate space for a cell site. A second area in a B1 and B2 business zone located along Hartford Road to the west of Prospect Street was rejected by Metro Mobile because land uses were mostly small businesses on shallow lots adjacent to high density residential development. A third area in a B2 business zone located along Center Street east and west of Pine Street was rejected because of adjacent high-density residential development. A fourth site in a B3 business zone located near the intersection of High Street and Pine Street was rejected because it was a small site surrounded by high-density multi-family dwellings. (Metro Mobile 1, Exhibit 11, pp.8-9 and Attachment "A"; Metro Mobile 3, Q.5, Attachment 2)
- 18. At the hearing, attention was brought to a site at the Town-owned Lincoln Center as a possible location for Metro Mobile's tower and equipment building. The site is one-tenth of a mile outside the search area at a ground elevation of 260 feet AMSL, and is in a residential zone. The site had no acceptable space to construct a tower or building. (Metro Mobile 7; Tr. 12/28/89)
- 19. The applicant had no communication with the Town of Manchester to share antennas or tower space on Metro Mobile's proposed tower at the time of the hearing. The Town had not shown interest in sharing tower space from the time of the hearing to the close of the record on February 15, 1990. (Tr. 12/28/89, pp.40, 111, 112; Record)
- The proposed monopole could be designed to handle the Town of Manchester's police and fire antennas if the Town were interested. (Tr. 12/28/89, pp.105, 109)

- The Town of Manchester's Planning and Zoning Commission, a party to the proceeding, stated that Metro Mobile's tower at the proposed site would be very obtrusive and potentially incompatible with surrounding zoning districts and land uses, while the tower at the alternate site would be very obtrusive and totally incompatible with the surrounding Historic and residential neighborhood. The Town was also disappointed that Metro Mobile focused on two locations in the center of the urbanized portion of Manchester. (Town of Manchester 1; Tr. 12/28/89, p.91)
- 22. Both the proposed and alternate sites would primarily provide additional cellular traffic handling capacity, as opposed to providing coverage to an area otherwise unserved. (Metro Mobile 1, p.10)
- The proposed tower would primarily provide "off-loading" of calls from existing sites in Hartford, Vernon, and Glastonbury. (Metro Mobile 1, pp.10, 15-16, Exhibit 8, Exhibit 11, p.10; Metro Mobile 3, Q.12; Tr. 12/28/89, p.31)
- The existing Hartford, Glastonbury, and Vernon sites have been in service for a little over two years. (Tr. 12/28/89, p.25)
- The interrelationship of the traffic load between all of the sites in the area, not just one site, is causing the need for the proposed Manchester site. (Tr. 12/28/89, p.28)
- The proposed site would also increase the quality of coverage in the Manchester area. (Tr. 12/28/89, pp.22, 23)
- At the time of installation of the proposed Manchester facility, all existing sites in the area, including the Manchester site, would be fully sectorized. Such sectorization provides for increased call handling capacity within a cell by dividing the geographic service area into six directional sectors which allows for additional frequency reuse. Even with sectorization, the projected cellular traffic demands and frequency reuse requirements necessitate location of a site within the Manchester area. Operation of the proposed facility would off load the existing sites and improve coverage to the Manchester area. (Metro Mobile 3, Q.7, Q.11, Q.12, Q.13; Tr. 12/28/89, p.26)
- 28. The proposed site would increase the total cellular capacity in the Manchester area by up to 3,600 calls per hour. (Metro Mobile 4, Q.26)

- 29. With the addition of the proposed Manchester site, potential frequency interference problems from the Vernon, Glastonbury, and Hartford sites would be limited by a reassignment of frequencies recognizing their coverage areas and overlap. (Metro Mobile 3, Q.8)
- The Vernon and Glastonbury sites are currently omnidirectional sites which normally could accommodate approximately 45 channels and handle approximately 1,200 calls during the peak hour, however, because of a potential frequency separation problem due to the addition of new sites and the sectorization of surrounding sites, the Vernon and Glastonbury sites could only accommodate approximately 30 channels or 800 calls during the peak hour. Hartford is a sectorized site that can accommodate 12 to 15 channels in each of its six sectors which can handle approximately 3,600 calls or 600 calls per sector during the peak hour. (Metro Mobile 3, Q.10; Tr. 12/28/89, pp.20, 27-29)
- 31. The Vernon site currently handles approximately 250 calls during the peak hours and approximately 175 calls per hour averaged over a 12-hour business day from 7:00 a.m. to 7:00 p.m. The peak hour occurs during the afternoon on weekdays. (Metro Mobile 3, Q.14; Tr. 12/28/89, pp.26-27)
- The Glastonbury site currently handles approximately 300 calls during the peak hours and approximately 250 calls per hour averaged over a 12-hour business day from 7:00 a.m. to 7:00 p.m. The peak hour occurs during the afternoon on weekdays. (Metro Mobile 3, Q.14; Tr. 12/28/89, pp.26-27)
- The Hartford site currently handles approximately 2,225 calls from all six sectors during the peak hours and approximately 1,610 calls per hour averaged over a 12-hour business day from 7:00 a.m. to 7:00 p.m. The peak hour occurs during the afternoon on weekdays. (Metro Mobile 3, Q.14)

- 34. Sector three of the existing Hartford cell site is currently exceeding its 600 call per hour maximum call handling capacity during its peak hour. This sector covers parts of Hartford, East Hartford, and Glastonbury. The proposed Manchester site would provide relief to this sector. Sector five, the next busiest sector of the Hartford cell site, covers West Hartford and is also approaching its 600 call per hour capacity. A sector is the area within a 60 degree arc with sector one being between a vector starting at zero degrees and ending at 60 degrees, sector two between 60 degrees and 120 degrees, sector three between 120 degrees and 180 degrees, sector four between 180 degrees and 240 degrees, sector five between 240 degrees and 300 degrees, and sector six between 300 degrees and 360 degrees. (Metro Mobile 3, Q.15; Metro Mobile 4, Q.24; Tr. 12/28/89, p.21)
- 35. Without the proposed Manchester site, additional Hartford site sectors and the existing Vernon and Glastonbury cell sites would begin to exceed their maximum call handling capacity during 1990. No call projection data was provided, but Metro Mobile contends that the Vernon and Glastonbury sites could handle approximately twice the current demand. (Metro Mobile 3, Q.15; Metro Mobile 4, Q.24, Q.25, Q.27; Tr. 12/28/89, pp.30-31, 32; Record)
- 36. The proposed cellular site would be a triangular 7,600 square foot parcel of land located in the rear of a larger, 1.35 acre lot at 266 Center Street, Manchester, Connecticut. The remainder of the lot is used for storage and manufacturing. The proposed tower would be located approximately 12 feet west of an abutting property owned by Kenneth C. Burkamp, which has a metal storage shed on-site, and approximately 25 feet south of a manufacturing building owned by S. Mark Stephens, lessor of the site. The proposed tower would be located approximately 260 feet south of Center Street and approximately 140 feet east of the nearest residential building. (Metro Mobile 1, Exhibit 1, p.1; Metro Mobile 3, Q.6, Attachment 3; Tr. 12/28/89, pp.15-16, 17, 18)
- 37. Access to the proposed site would be over an existing driveway on land of an adjacent property owner (Kenneth C. Burkamp) and land of the lessor (S. Mark Stephens). Vehicular access over the adjacent property is permitted by a non-exclusive right of passage granted to the lessor. (Metro Mobile 1, p.9, Exhibit 1, p.1; Metro Mobile 3, Q.3)

- 38. Metro Mobile proposes to construct a 115-foot self-supporting monopole tower to which two platforms would be attached. Two 15-foot omnidirectional call-processing, whip transmit antennas would be mounted at 113 feet on the corners of the platform with six 11 1/2-foot transmit/receive antennas side mounted with center of radiation at 106 feet. The total height of the tower with antennas would be 128 feet above ground level. (Metro Mobile 1, Exhibit 1, p.8; Tr. 12/28/89, pp.18, 19, 77, 78)
- 39. The horizontal off-set of the antennas placed on the corners of the platform would be a maximum of 6 1/2 feet from the tower structure. (Tr. 12/28/89, p.78)
- 40. Ground elevation at the proposed site is 196 feet AMSI. Residential properties in the immediate area on Pine Street, Park Street, and New Street from where the tower would be visible are at an elevation ranging from 198 feet to 220 feet. (Tr. 12/28/89, pp.15-16, 17; Town of Manchester 1, pp.2-3)
- 41. Metro Mobile would raze an abandoned wood-frame building and construct a 20-foot by 40-foot single-story, prefabricated concrete building on the proposed site. The building would house receiving, transmitting, switching, processing, performance monitoring, and climate control equipment. The abandoned building could not be utilized for equipment because it is in poor condition, and the owner wanted it razed as part of the lease arrangement. (Metro Mobile 1, p.9; Metro Mobile 3, Q.2)
- 42. The alternate site would be on a 50-foot by 85-foot parcel of land located in the northern portion of a larger 1.1 acre lot at 218 Hartford Road, Manchester, Connecticut. The remainder of the lot is used for manufacturing. The proposed tower would be approximately 141 feet west of Prospect Street, approximately 44 feet west of an on-site two story brick manufacturing building, 46 feet south of Hartford Road, 120 feet east of abutting property also owned by S. Mark Stephens, and 120 feet north of land owned by Millbridge Hollow Condominiums. (Metro Mobile 1, Exhibit 2, p.1; Metro Mobile 3, Q.6, Attachment 3; Tr. 12/28/89, p.18; Town of Manchester 1, pp.3-4)
- 43. The southern boundary of the alternate site lot is 60 feet from the northern edge of Hop Brook. (Town of Manchester 1, p.4)
- 44. Access to the alternate site would be over an existing driveway and parking lot on land of the lessor (S. Mark Stephens). (Metro Mobile 1, Exhibit 1, p.9, Exhibit 2, pp.1, 7; Metro Mobile 3, Q.6, Attachment 3)

- 45. The alternate site tower would consist of a 140-foot self-supporting tower to which two platforms would be attached. Two 15-foot omnidirectional call-processing, whip transmit antennas would be mounted at 138-feet on the corners of the platform with six 11 1/2-foot transmit/receive antennas side mounted with center of radiation at 131 feet. The total height of the alternate site tower with antennas would be 153 feet above ground level. (Metro Mobile 1, p.8; Exhibit 2, p.8; Tr. 12/28/89, p. 78)
- 46. Ground elevation at the alternate site would be at 170 feet AMSL. (Tr. 12/28/89, p.18)
- 47. A 20-foot by 40-foot single story building would be constructed on the alternate site. The building would house the same equipment as the proposed site. (Metro Mobile 1, p.9)
- 48. Minimal site leveling or backfilling would be required at the proposed site. Removal of an on-site dirt pile would be required at the alternate site. (Metro Mobile 1, Exhibit 1, p.7, Exhibit 2, p.7; Tr. 12/28/89, p.18)
- 49. Utility lines for the proposed site would be routed from Center Street to the proposed cell site over land of the lessor. Utility lines for the alternate site would be routed from existing utility poles along Hartford Road to the alternate site. (Metro Mobile 1, p.9, Exhibit 1, p.1, Exhibit 2, p.1, Exhibit 9, pp. 1, 11; Tr. 12/28/89, p.88)
- The metal storage shed east of the site on adjacent property owned by Kenneth C. Burkamp, a one-story brick manufacturing building on the lessor's property, and property west of the site owned by Kenneth C. Burkamp would be within the fall zone of the proposed site tower. Hartford Road, land owned by the Millbridge Hollow Condominiums, and a two-story brick manufacturing building on property of the lessor would be within the fall zone of the alternate site tower. The fall zones would not be totally within the lessor's properties. (Town of Manchester 1, p.2; Metro Mobile 3, Q.6, Attachment 3)

- The zoning of the proposed cellular site is I,
 Industrial. This zone is approximately three acres in
 size and is surrounded to the north by a Business zone,
 to the east and west by Residential zones, and to the
 south by the Cheney Brothers National Historic Landmark
 District. The proposed tower would be a use requiring a
 special exception under Manchester zoning regulations.
 The zoning of the alternate cellular site is H,
 Historical, and is within the Cheney Brothers National
 Historic Landmark District. The alternate tower would
 be a use requiring a special exception under Manchester
 zoning regulations. (Town of Manchester 1, p.2; Metro
 Mobile 1, Exhibit 11, Attachment "A"; Metro Mobile 3,
 Q.5, Attachment 2)
- The Cheney Brothers National Historic Landmark District was established in 1978 through a designation by the United States Department of the Interior, and is listed in the National Register of Historic Places. (Town of Manchester 1, pp.3-4; Tr. 12/28/89, p.59)
- 53. Metro Mobile does not have any existing towers within a national landmark district. (Tr. 12/28/89, p.59)
- Within the Cheney Brothers District north of the alternate site are rehabilitated mill buildings used for multi-family dwellings and some neighborhood commercial purposes. Within the Cheney Brothers District east of the alternate site are buildings used for commercial purposes. To the west of the alternate site lot is property in an industrial zone used for commercial purposes. (Town of Manchester 1, pp.3-4)
- 55. The proposed site would be less than 200 feet north of the Cheney Brothers Historic District. (Town of Manchester 1, p.5; Metro Mobile 3, Q.5, Attachment 2)
- There are approximately 159 residences within a 1,000-foot radius of the proposed tower. The nearest residence is 140 feet southwest of the proposed property. There are approximately 24 residences, six condominium buildings, and two apartment buildings within a 1,000-foot radius of the alternate cell site. The nearest residence is 180 feet from the alternate tower. (Metro Mobile 1, Exhibit 1, p.7, Exhibit 2, p.7, Exhibit 9, p.12; Tr. 12/28/89, pp.17-18, 103)

- 57. The electromagnetic radio frequency power density at the proposed and alternate sites, assuming all channels operating simultaneously at maximum allowable power and broadcasting from the lowest set of antennas would be 0.1124 milliwatts per square centimeter (mW/cm2) at the proposed site and 0.0737 mW/cm² at the alternate site, and would be well below the American National Standards Institute standard of 2.92mW/cm2, as adopted by the State in CGS 22a-162. (Metro Mobile 1, p.12, Exhibit 9, pp.2, 12; DEP comments of 12/14/89; Tr. 12/28/89, p.19)
- 58. Both the proposed and alternate towers would be designed to withstand pressure equivalent to a 90 mph wind with a 1/2-inch solid ice accumulation in accordance with Electronic Industries Association standard RS-222-D. The overturn moment for the foundation would be 1.5. The antenna mounting arrangement, the support brackets, and the antenna structure would be designed to withstand 125 mph winds. (Metro Mobile 1, Exhibit 1, p.9, Exhibit 2, p.9; Tr. 12/28/89, pp.82-83, 87)
- 59. According to the Connecticut Historical Commission, "the prime site,..., does not appear to meet the eligibility criteria for the National Register of Historic Places, while the alternate site,...does appear to be of local historic and architectural significance. Therefore, we recommend that the proposed telecommunications tower and associated equipment shelter be constructed at the 266 Center Street [prime] site." (Metro Mobile 3, Q.1, Attachment 1)
- 60. There are no known extant populations of Connecticut "Species of Special Concern" or Federal Endangered and Threatened Species that occur at the site in question. (Metro Mobile 3, Q.1, Attachment 1; DEP Comments of 12/14/89)
- 61. The total estimated cost of construction for the proposed site is as follows:

Radio equipment \$676,500 Tower and antennas 38,800 Power system 18,000 Building 76,600 Miscellaneous 140,200 (Site preparation and

installation

TOTAL \$950,100.

(Metro Mobile 1, pp.16-17, Exhibit 1, p.9)

62. The total estimated cost of construction for the alternate site is as follows: Radio equipment \$676,500 Tower and antennas 41,760 Power system 18,000 76,600 Building Miscellaneous 135,200 (Site preparation and installation TOTAL \$948,060. (Metro Mobile 1, p.17, Exhibit 2, p.9)

JAW

4024E

DOCKET NO. 129 - AN APPLICATION OF METRO MOBILE CTS OF HARTFORD, INC., FOR A CERTIFICATE OF ENVIRONMENTAL COMPATIBILITY AND PUBLIC NEED FOR THE CONSTRUCTION, OPERATION, AND MAINTENANCE OF A CELLULAR TELEPHONE TOWER AND ASSOCIATED EQUIPMENT IN THE TOWN OF MANCHESTER, CONNECTICUT.

Connecticut Siting

Council

March 12, 1990

OPINION

On September 29, 1989, Metro Mobile CTS of Hartford, Inc., (Metro Mobile) applied to the Connecticut Siting Council (Council) for a Certificate of Environmental Compatibility and Public Need (Certificate) to construct, maintain, and operate a cellular telecommunications tower, associated equipment, and building in the Town of Manchester, Connecticut.

A determination of public need for cellular telephone service has been pre-empted by the Federal Communications Commission (FCC). Under Connecticut State law, the Council must balance the need to develop the proposed site as a cellular telephone facility with the need to protect the environment, including public health and safety.

In finding a proposed tower site, an applicant must locate a site or existing tower to share, offering the necessary coverage that would not have a substantial effect on the environment and be adequately distant from wetlands, public recreation areas, and adjacent homes. Because Metro Mobile does not have the authority to take land through eminent domain, acquisition of a site requires consent of the property owners to lease or sell the property. These requirements restrict the number of potential tower sites within defined search areas.

The proposed or alternate site would function as a secondary cellular facility, located near the intersection of three existing, primary cellular facilities in Hartford, Glastonbury, and Vernon, Connecticut. Cellular service demand is exceeding the call-handling capacity of Sector three in Hartford and is soon expected to exceed the call-handling capacity of the facilities in Glastonbury and Vernon. The proposed Manchester site would provide additional overlapping coverage between these three cells for the continuous transfer of calls in the Hartford-Glastonbury-Vernon region, in which there are presently weak signals and interference. The proposed and alternate sites would provide similar coverage and call-handling capability throughout the area.

The proposed site would be leased and developed in the rear of a privately owned 1.35 acre lot located at 266 Center Street. The proposed 128-foot, self-supporting monopole tower and antenna structure would be located approximately 12 feet west of Kenneth C. Burkamp's property and 140 feet east of the nearest residential building. The fall zone of the tower could encompass a metal storage shed on Kenneth C. Burkamp's property east of the site; a one-story brick manufacturing building on the lessor's property; and a portion of the adjacent property that the nearest residential building is located on, west of the site. Metro Mobile would raze an abandoned wood-frame building and construct a single story equipment building, measuring 20 feet by 40 feet, on the site. Vehicle access to the proposed site would be over an existing driveway on land of Kenneth C. Burkamp and land of the lessor permitted by a non-exclusive right of passage granted by Kenneth C. Burkamp to the lessor. Utilities from Center Street would be available to the facility. Minimal site leveling or backfilling would be required at the site.

The alternate site would be leased and located on the northern boundary of a 1.1 acre lot at 218 Hartford Road. The 153-foot, self-supporting monopole tower and antenna structure would be located 46 feet south of Hartford Road and 120 feet north of land owned by Millbridge Hollow Condominiums. The fall zone of the alternate tower could encompass Hartford Road, land owned by the Millbridge Hollow Condominiums, and a two-story brick manufacturing building on the lessor's lot. A single story equipment building, measuring 20 feet by 40 feet, would be constructed on the site. Vehicle access to the cell site would be over an existing driveway and parking lot on land of the lessor. Utilities from existing utility poles along Hartford Road would be routed to the facility. Removal of an on-site dirt pile would be required:

Electromagnetic radio frequency power density is a health and safety concern of the Council. However, the power density level measured at the base of the proposed tower would be 0.1124 milliwatts per square centimeter (mW/cm²), and at the base of the alternate tower it would be 0.0737 mW/cm². These power densities are well below the American National Standards Institute (ANSI) safety standard of 2.92 mW/cm², as adopted by the State in Connecticut General Statutes Section 22a-162. The power density would rapidly decrease as distance from the tower increases.

No wetlands or watercourses exist at either site. No water flow and/or quality changes would be expected to result from the construction and operation of either the proposed or the alternate facilities. Docket 129 Opinion Page 3

There are no existing records of federally endangered or threatened species or Connecticut species of special concern occurring in the area of the proposed or alternate sites, according to the latest available information from the Connecticut Department of Environmental Protection Natural Resources Center.

The proposed facility is located near a historical zone. However, this historical zone is also a highly urbanized area that consists of industrial and commercial uses. There is no reason to believe that the proposed tower would have any significant effect on the zone. Furthermore, the State Historical Commission has stated that there would be no significant effect on the State's historic and architectural resources at the proposed site.

Moreover the Council believes that the industrial and urban nature of the proposed site lends itself to a commercial use such as the proposed cellular telecommunications tower. Visually, the tower will be acceptable with the site and surrounding land uses. Furthermore, the height of the tower is not so great that it will be visually obtrusive in the immediate area to adjacent residential units, or for any significant distance to the community in general.

The intrusion of the fall zone on adjacent structures and property should be avoided whenever possible to maintain a reasonable setback from other land uses. Nonetheless, the close proximity of tall urban structures on small urban sites make this goal impractical if not impossible. Although the Council will require the tower to be shifted the greatest distance possible from adjacent properties and structures to enhance the site, there is insufficient reason to deny the proposed site due to the location of the tower in relation to the adjacent land uses, properties, and structures.

In comparison, the alternate site tower would be 25 feet taller and located within the historic zone. Consequently it is the opinion of the Council that the proposed site is superior, and the alternate site should be denied.

Based on its record in this proceeding, the Council is of the opinion that the effects associated with the construction, operation, and maintenance of a cellular tower and associated equipment building at the proposed site, including the effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not significant either alone or cumulatively with other effects, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application for the proposed site.

Docket 129 Opinion Page 4

The Council will require Metro Mobile to submit a Development and Management (D&M) plan for approval prior to the commencement of any construction at the proposed site. This D&M plan shall include detailed plans of the site preparation with the final tower height in relation to the site elevation, and placement of the tower as great a distance as possible from abutting properties.

JAW

4158E

DOCKET NO. 129 - AN APPLICATION OF METRO MOBILE CTS OF HARTFORD, INC., FOR A CERTIFICATE OF ENVIRONMENTAL COMPATIBILITY AND PUBLIC NEED FOR THE CONSTRUCTION, OPERATION, AND MAINTENANCE OF A CELLULAR TELEPHONE TOWER AND ASSOCIATED EQUIPMENT IN THE TOWN OF MANCHESTER, CONNECTICUT.

Connecticut Siting

Council

March 12, 1990

DECISION AND ORDER

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council finds that the effects associated with the construction, operation, and maintenance of a cellular telephone facility at the proposed Manchester site, including effects on the natural environment; ecological integrity and balance; forests and parks; air and water purity; and fish and wildlife are not significant either alone or cumulatively with other effects, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by Section 16-50k of the General Statutes of Connecticut (CGS), be issued to Metro Mobile CTS of Hartford, Inc., for the construction, operation, and maintenance of a cellular telecommunications tower, associated equipment, and building at the proposed site in Manchester, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- The monopole tower including antennas and associated equipment shall not exceed a height of 128 feet above ground level, 324 feet AMSL.
- The facility shall be constructed in accordance with the State of Connecticut Basic Building Code.
- 3. The Certificate Holder shall prepare a Development and Management (D&M) plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of State Agencies. The D&M plan shall include detailed plans of the site preparation with a soil boring report; plans, design details, and specifications for the tower foundation; and a site plan with placement of the tower as far removed from abutting properties and structures as possible.
- 4. The Certificate Holder shall prepare the D&M plan in consultation with the Town of Manchester which may provide its comments to the Council within 20 days of submission to the Town.

- 5. The Certificate Holder shall comply with any future radio frequency (RF) standard promulgated by State or federal regulatory agencies. Upon the establishment of any new governmental RF standards, the facility granted in this Decision and Order shall be brought into compliance with such standards.
- 6. The Certificate Holder shall provide the Council a recalculated report of power density if and when additional channels over the proposed 90 channels, higher wattage over the proposed 100 watts per channel, or if other circumstances in operation cause a change in power density above the levels originally calculated in the application.
- 7. The Certificate Holder shall permit public or private entities to share space on the tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 8. If this facility does not initially provide, or permanently ceases to provide cellular service following the completion of construction, this Decision and Order shall be void, and the tower and all associated equipment in this application shall be dismantled and removed or reapplication of any new use shall be made to the Council before any such new use is made.
- 9. Unless otherwise approved by the Council, this Decision and Order shall be void if construction authorized herein is not completed within three years of the effective date of this Decision and Order.

Pursuant to Section 16-50p of the CGS, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below. A notice of issuance shall be published in the Hartford Courant and Journal Inquirer.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of State Agencies.

CERTIFICATE

OF

ENVIRONMENTAL COMPATIBILITY AND PUBLIC NEED DOCKET NO. 129

Pursuant to section 16-50k of the General Statutes of Connecticut, as amended, the Connecticut Siting Council hereby issues a Certificate of Environmental Compatibility and Public Need to Metro Mobile CTS of Hartford, Inc., for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance, and operation of a cellular telephone tower and associated equipment at the proposed primary site in the Town of Manchester, Connecticut. This Certificate is issued in accordance with and subject to the terms and conditions set forth in the Decision and Order of the Council on March 12, 1990.

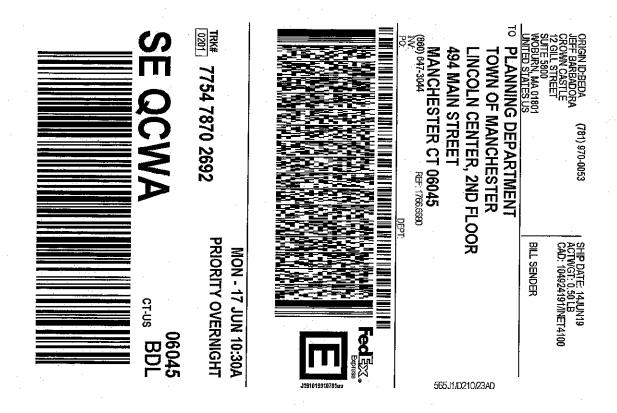
By order of the Council,

Gloria Dibble Pond, Chairperson

March 12, 1990

Site Name: Manches Cumulative Power Density Manchester, CT

52.10%		İ		(posure	ssible Ex	ım Permi	e of Maximu	Total Percentage of Maximum Permissible Exposure
13.48%	0.497333333 13.48%	0.0670	115	2465	2465	1	746	VZW 700
12.17%	1.0	0.1217	115	4476	4476	-7	2145	VZW AWS
5.72%	0.579333333	0.0331	115	1218	406	3	869	VZW Cellular
9.09%	0.579333333	0.0526	115	1936	1936	_	869	VZW Cellular LTE
11.65%	1.0	0.1165	115	4284	4284	_	1970	VZW PCS
(%)	(mW/cm^2)	(mW/cm^2)	(feet)	(watts)	(watts)		(MHz)	
Fraction of MPE	Maximum Permissable Exposure*	Calculated Power Density	Distance to Target	Total ERP	ERP Per Trans.	Number of Trans.	Operating Frequency	Operator


*Guidelines adopted by the FCC on August 1, 1996, 47 CFR Section 1.13101 based on NCRP Report 86, 1986 and generally on ANSI/IEEE C95.1

MHz = Megahertz

mVV/cm^2 = milliwatts per square centimeter ERP = Effective Radiated Power

Absolute worst case maximum values used, including the following assumptions: 1. closest accessible point is distance from antenna to base of pole;

- 2. continuous transmission from all available channels at full power for indefinite time period; and,
- 3. all RF energy is assumed to be directed solely to the base of the pole.

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss. Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

^{3.} Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

PF PAUL J. FORD & COMPANY

Date: May 29, 2019

Denice Nicholson Crown Castle 3 Corporate Dr Clifton Park, NY 12065 Paul J. Ford and Company 250 East Broad St., Suite 600 Columbus, OH 43215 (614) 221-6679

Subject:

Structural Analysis Report

Carrier Designation:

Verizon Wireless Co-Locate

Carrier Site Number:

NG1904 Carrier Site Name:

MANCHESTER CT

Crown Castle Designation:

Crown Castle BU Number:

806372 HRT 093 943228 Crown Castle Site Name:

Crown Castle JDE Job Number: **Crown Castle Work Order Number: Crown Castle Order Number:**

566028 1741558 486564 Rev. 0

Engineering Firm Designation:

Paul J. Ford and Company Project Number: 37519-1302.002.7805

Site Data:

266R Center Street, MANCHESTER, Hartford County, CT

Latitude 41° 46' 19", Longitude -72° 31' 48.8"

115 Foot - Monopole Tower

Dear Denice Nicholson,

Paul J. Ford and Company is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Proposed Equipment Configuration

58.8%

Sufficient Capacity

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code and Appendix N. Applicable Standard references and design criteria are listed in Section 2 -Analysis Criteria.

Respectfully submitted by:

Robert C. Kozak Jr., P.É

Project Engineer rkozak@pauljford.com

DMF

919.05.30 **5**:59:17-04'00'

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 115 ft Monopole tower designed by VALMONT in May of 1990.

2) ANALYSIS CRITERIA

TIA-222 Revision:

TIA-222-H

Risk Category:

П

Wind Speed:

125 mph

Exposure Category:

В

Topographic Factor:

1

Ice Thickness:

2 in

Wind Speed with Ice:

50 mph

Service Wind Speed:

60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	ufacturer Antenna Model		Feed Line Size (in)
		1	SitePro1	#HRK-12		
	115.0	1	SitePro1	#PRK-1245L		
		6	commscope	NNHH-65B-R4 w/ Mount Pipe		
115.0		6	decibel	DB844G65ZAXY w/ Mount Pipe	8	1-5/8
		2	rfs celwave	DB-T1-6Z-8AB-0Z	٥	
		3	samsung telecommunications	RFV01U-D1A		
		3	samsung telecommunications	RFV01U-D2A		
		1	tower mounts	Platform Mount [LP 714-1]		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
	107.0	2	andrew	VHLP1-23		
105.0	107.0	1	andrew	VHLP2-23	5 5 5 2	1/2 5/16 1/4 2-1/2" Conduit
	105.0	1	tower mounts	Platform Mount [LP 602-1]		
	85.0	2	tower mounts	Side Arm Mount [SO 701-1]	***	
85.0	65.0	1	wade antenna	WH14-69/S		
	84.0	3	wade antenna	WL 14-69/S	5	13/32
	78.0	2	tower mounts	Side Arm Mount [SO 701-1]		
	70.0	1	wade antenna	J105-HI		

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
4-GEOTECHNICAL REPORTS	Testwell Craig Laboratories of CT, Inc, 04/12/1990	262174	CCISites
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	FDH Engineering, 10-06100E N1, 06/21/2010 (Mapping)	2668863	CCISites
4-TOWER MANUFACTURER DRAWINGS	Valmont, DC03902, 05/01/1990	262172	CCISites

3.1) Analysis Method

tnxTower (version 8.0.5.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were built in accordance with the manufacturer's specifications.
- 2) The tower and structures have been maintained in accordance with the manufacturer's specification.
- 3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 4) The existing base plate grout was not considered in this analysis.
- 5) The foundation drawings were not available at the time of this analysis. Therefore, we have assumed the material yield strengths (F'c and Fy) as per the following:

 Concrete: 3000 PSI
 - Foundation Reinforcing: ASTM A615 Gr 60
- 6) At the time of analysis, the referenced geotechnical report did not provide definitive values for the soil properties. The soil properties were estimated off the boring logs.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.

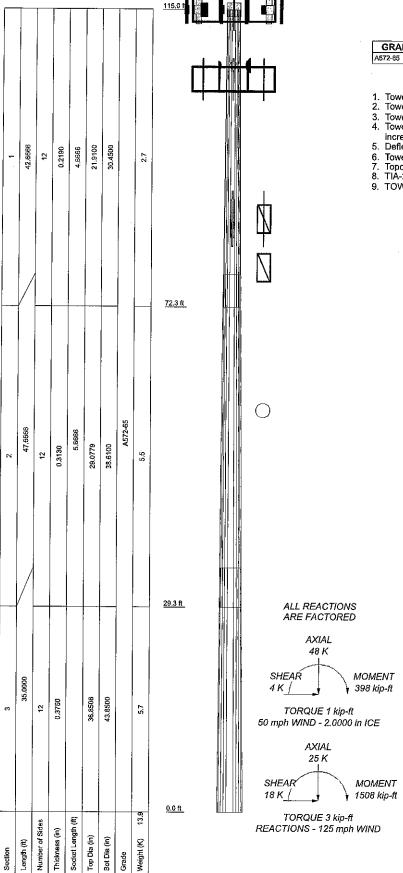
Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	115 - 72.3334	Pole	TP30.45x21.91x0.219	1	-9.37	1269.02	44.7	Pass
L2	72.3334 - 29.3334	Pole	TP38.61x29.0779x0.313	2	-16.26	2300.73	48.8	Pass
L3	29.3334 - 0	Pole	TP43.85x36.8508x0.375	3	-24.81	3224.57	48.5	Pass
		**					Summary	
		112000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Pole (L2)	48.8	Pass
				İ		RATING =	48.8	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC5

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail	
1	Anchor Rods	0	46.2	Pass	
1	Base Plate	0	26.5	Pass	
1	Base Foundation Soil Interaction	0	58.8	Pass	
1	Base Foundation Structural Steel	0	42.5	Pass	

Structure Rating (max from all components) =	58.8%
	-0.074


Notes:

- All structural ratings are per TIA-222-H Section 15.5
- See additional documentation in "Appendix C Additional Calculations" for calculations supporting the % capacity consumed.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A TNXTOWER OUTPUT

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

Tower is located in Hartford County, Connecticut.
 Tower designed for Exposure B to the TIA-222-H Standard.

- Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard.
- Tower is also designed for a 50 mph basic wind with 2.00 in ice, Ice is considered to increase in thickness with height.

 5. Deflections are based upon a 60 mph wind.

 6. Tower Risk Category II.

 7. Topographic Category 1 with Crest Height of 0.0000 ft.

 8. TIA-222-H Annex S.

- 9. TOWER RATING: 48.8%

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- 1) Tower is located in Hartford County, Connecticut.
- 2) Tower base elevation above sea level: 195.0000 ft.
- 3) Basic wind speed of 125 mph.
- 4) Risk Category II.
- 5) Exposure Category B.
- 6) Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- 7) Topographic Category: 1.
- 8) Crest Height: 0.0000 ft.
- 9) Nominal ice thickness of 2.0000 in.
- 10) Ice thickness is considered to increase with height.
- 11) Ice density of 56.00 pcf.
- 12) A wind speed of 50 mph is used in combination with ice.
- 13) Temperature drop of 50 °F.
- 14) Deflections calculated using a wind speed of 60 mph.
- 15) TIA-222-H Annex S.
- 16) A non-linear (P-delta) analysis was used.
- 17) Pressures are calculated at each section.
- 18) Stress ratio used in pole design is 1.05.
- 19) Tower analysis based on target reliabilities in accordance with Annex S.
- 20) Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.
- 21) Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios

√ Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz

Always Use Max Kz Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

√ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption

Poles
Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets
Pole Without Linear Attachments
Pole With Shroud Or No
Appurtenances
Outside and Inside Corner Radii Are

Known

Tapered Pole Section Geometry

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	115.0000- 72.3334	42.6666	4.67	12	21.9100	30.4500	0.2190	0.8760	A572-65 (65 ksi)
L2	72.3334-	47.6666	5.67	12	29.0779	38.6100	0.3130	1.2520	A572-65

tnxTower Report - version 8.0.5.0

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L3	29.3334 29.3334- 0.0000	35.0000		12	36.8508	43.8500	0.3750	1.5000	(65 ksi) A572-65 (65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	I	r	С	I/C	J	It/Q	W	w/t
	in	in²	in⁴	in	in	in³	in⁴	in²	in	
L1	22.6056	15.2961	918.5962	7.7654	11.3494	80.9380	1861.3250	7.5283	5.2850	24.132
	31.4469	21.3183	2486.8150	10.8227	15.7731	157.6618	5038.9614	10.4922	7.5737	34.583
L2	30.9594	28.9910	3061.8012	10.2979	15.0624	203.2748	6204.0393	14.2685	6.9541	22.217
•	39.8616	38.5980	7225.7083	13.7103	20.0000	361.2858	14641.244 0	18.9968	9.5086	30.379
L3	39.1917	44.0446	7479.7774	13.0583	19.0887	391.8426	15156.056 9	21.6774	8.8710	23.656
	45.2646	52.4961	12664.611 2	15.5641	22.7143	557.5611	25661.935 8	25.8370	10.7468	28.658

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Factor A _t	Adjust. Factor A,	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft²	in				in	in	in
L1 115.0000-			1	1	1			
72.3334								
L2 72.3334-			1	1	1			
29.3334								
L3 29.3334-			1	1	1			
0.0000								

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From	Componen t	Placement	Total Number	Number Per Row	Start/En d	Width or Diamete	Perimete r	Weight
		Torque Calculation	Турө	ft			Position	r in	in	kIf
LDF7-50A(1-5/8)	Α	No	Surface Ar (CaAa)	115.0000 - 0.0000	1	1	-0.242 -0.242	1.9800		0.00
HB158-1-08U8- S8J18(1-5/8) ***	Α	No	Surface Ar (CaAa)	115.0000 - 0.0000	2	2	-0.133 -0.117	1.9800		0.00
1110(13/32)	Α	No	Surface Ar (CaAa)	85.0000 - 0.0000	5	5	0.058 0.117	0.4050		0.00

Feed Line/Linear Appurtenances - Entered As Area

Description	Face	Allow	Exclude	Componen	Placement	Total		$C_A A_A$	Weight
	or Leg	Shield	From Torque	т Туре	ft	Number		ft²/ft	klf
			Calculation						
.DF7-50A(1-5/8)	С	No	No	Inside Pole	115.0000 -	5	No Ice	0.0000	0.00
					0.0000		1/2" Ice	0.0000	0.00
							1" Ice	0.0000	0.00
***							2" Ice	0.0000	0.00
FSJ1-50A(1/4)	С	No	No	Inside Pole	105.0000 -	5	No Ice	0.0000	0.00
	_				0.0000	•	1/2" Ice	0.0000	0.00
							1" Ice	0.0000	0.00
							2" lce	0.0000	0.00
FSJ4-50B(1/2)	C	No	No	Inside Pole	105.0000 -	5	No Ice	0.0000	0.00

Description	Face or	Allow Shield	Exclude From	Componen	Placement	Total Number		C_AA_A	Weight	
	Leg	Griicio	Torque Calculation	Type	ft	rvanibei		ft²/ft	klf	
•			Caroaration	<u> </u>	0.0000		1/2" Ice	0.0000	0.00	
							1" lce 2" lce	0.0000 0.0000	0.00 0.00	
9207(5/16)	С	No	No	Inside Pole	105.0000 -	5	No Ice	0.0000	0.00	
					0.0000		1/2" Ice 1" Ice	0.0000 0.0000	0.00 0.00	
	_						2" Ice	0.0000	0.00	
2-1/2" (Nominal) Conduit	С	No	No	Inside Pole	105.0000 - 0.0000	2	No Ice 1/2" Ice	0.0000 0.0000	0.00 0.00	
							1" Ice	0.0000	0.00	
							2" Ice	0.0000	0.00	

Feed Line/Linear Appurtenances Section Areas

Tower Sectio	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	C_AA_A Out Face	Weight
n	ft		ft²	ft ²	ft ²	ft²	K
L1	115.0000-	А	0.000	0.000	27.909	0.000	0.15
	72.3334	В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.29
L.2	72.3334-29.3334	Α	0.000	0.000	34.249	0.000	0.16
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.33
L3	29.3334-0.0000	Α	0.000	0.000	23.364	0.000	0.11
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	0.000	0.22

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	AF	C_AA_A	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	
<u>n</u>	ft	Leg	in	ft²	ft ²	ft ²	ft²	K
L1	115.0000-	Α	1.885	0.000	0.000	74.942	0.000	1.14
	72.3334	В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.29
L2	72.3334-29.3334	Α	1.774	0.000	0.000	97.430	0.000	1.39
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.33
L3	29.3334-0.0000	Α	1.564	0.000	0.000	64.184	0.000	0.88
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.22

Feed Line Center of Pressure

Section	Elevation	CP_X	CPz	CP _X	CPz
				Ice	Ice
	ft	in	in	in	in
L1	115.0000-72.3334	-2.9883	-0.6988	-4.1432	-1.0034
L2	72.3334-29.3334	-3.6684	-1.1682	-4.9742	-1.7357
L3	29.3334-0.0000	-3.7762	-1.2054	-5.3133	-1.8571

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment	No Ice	Ice
			Elev.		
L1	18	LDF7-50A(1-5/8)	72.33 -	1.0000	1.0000
			115.00		
L1	19	HB158-1-08U8-S8J18(1-	72.33 -	1.0000	1.0000
-		5/8)	115.00		
L1	26	1110(13/32)	72.33 -	1.0000	1.0000
			85.00		
L2	18	LDF7-50A(1-5/8)	29.33 -	1.0000	1.0000
		· .	72.33	i	
L2	19	HB158-1-08U8-S8J18(1-	29.33 -	1.0000	1.0000
		5/8)	72.33	ĺ	
L2	26	1110(13/32)	29.33 -	1.0000	1.0000
			72.33		

Die	croto	Tower	I nade
DIS	CIELE	LOWEL	LUAUS

Description	Face or Leg	Offset Type	Offsets; Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft²	ft²	K
(2) DB844G65ZAXY w/ Mount Pipe	A	From Leg	4.0000 0.00 0.00	0.000	115.0000	No Ice 1/2" Ice 1" Ice	4.5782 4.9555 5.3404 6.1369	4.8023 5.4160 6.0401 7.3370	0.03 0.08 0.13 0.26
(2) DB844G65ZAXY w/ Mount Pipe	В	From Leg	4.0000 0.00 0.00	0.000	115.0000	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	4.5782 4.9555 5.3404 6.1369	4.8023 5.4160 6.0401 7.3370	0.03 0.08 0.13 0.26
(2) DB844G65ZAXY w/ Mount Pipe	С	From Leg	4.0000 0.00 0.00	0.000	115.0000	No Ice 1/2" Ice 1" Ice 2" Ice	4.5782 4.9555 5.3404 6.1369	4.8023 5.4160 6.0401 7.3370	0.03 0.08 0.13 0.26
(2) NNHH-65B-R4 w/ Mount Pipe	Α	From Leg	4.0000 0.00 0.00	0.000	115.0000	No Ice 1/2" Ice 1" Ice 2" Ice	7.5500 8.0400 8.5300 9.5600	4.2300 4.6700 5.1200 6.0500	0.11 0.20 0.30 0.53
(2) NNHH-65B-R4 w/ Mount Pipe	В	From Leg	4.0000 0.00 0.00	0.000	115.0000	No Ice 1/2" Ice 1" Ice 2" Ice	7.5500 8.0400 8.5300 9.5600	4.2300 4.6700 5.1200 6.0500	0.11 0.20 0.30 0.53
(2) NNHH-65B-R4 w/ Mount Pipe	С	From Leg	4.0000 0.00 0.00	0.000	115.0000	No Ice 1/2" Ice 1" Ice 2" Ice	7.5500 8.0400 8.5300 9.5600	4.2300 4.6700 5.1200 6.0500	0.11 0.20 0.30 0.53
(2) RFV01U-D1A	Α	From Leg	4.0000 0.00 0.00	0.000	115.0000	No Ice 1/2" Ice 1" Ice 2" Ice	1.8750 2.0454 2.2231 2.6009	1.2500 1.3926 1.5426 1.8648	0.08 0.10 0.12 0.18
RFV01U-D1A	В	From Leg	4.0000 0.00 0.00	0.000	115.0000	No Ice 1/2" Ice 1" Ice 2" Ice	1.8750 2.0454 2.2231 2.6009	1.2500 1.3926 1.5426 1.8648	0.08 0.10 0.12 0.18

Description	Face	Offset	Offsets:	Azimuth	Placement	-	$C_A A_A$	C_AA_A	Weight
	or Leg	Туре	Horz Lateral Vert	Adjustmen t			Front	Side	
			ft ft ft	o	ft		ft²	ft²	Κ
RFV01U-D2A	В	From Leg	4.0000	0.000	115.0000	No Ice	1.8750	1.0125	0.07
			0.00			1/2"	2.0454	1.1445	0.09
			0.00			Ice	2.2231	1.2840	0.11
						1" Ice 2" Ice	2.6009	1.5851	0.15
(2) RFV01U-D2A	Ç	From Leg	4.0000	0.000	115.0000	No Ice	1.8750	1.0125	0.07
		~	0.00			1/2"	2.0454	1.1445	0.09
			0.00			Ice	2.2231	1.2840	0.11
•						1" Ice	2.6009	1.5851	0.15
DB-T1-6Z-8AB-0Z	Α	From Leg	4.0000	0.000	115.0000	2" Ice No Ice	4.8000	2.0000	0.04
	• •	, 2 0g	0.00	0.000	110.0000	1/2"	5.0704	2.1926	0.04
			0.00			Ice	5.3481	2.3926	0.12
						1" Ice	5.9259	2.8148	0.21
DB-T1-6Z-8AB-0Z	С	Erom Log	4.0000	0.000	115 0000	2" Ice	4.0000	0.0000	0.04
DB-11-02-0AB-02	C	From Leg	4.0000 0.00	0.000	115.0000	No Ice 1/2"	4.8000 5.0704	2.0000 2.1926	0.04 0.08
			0.00			Ice	5.3481	2.3926	0.00
						1" Ice	5.9259	2.8148	0.21
Die#e Marrie II D 742 41	_					2" Ice			
Platform Mount [LP 715-1]	C	None		0.000	115.0000	No Ice	44.2100	44.2100	1.77
						.1/2" Ice	53.9700 63.7300	53.9700 63.7300	2.32 2.87
						1" Ice	83.2500	83.2500	3.97
						2" ice	00.2000	00.2000	0.01
Miscellaneous [NA 509-3]	С	None		0.000	115.0000	No Ice	11.8400	11.8400	0.28
						1/2"	16.9600	16.9600	0.30
						lce 1" Ice	22.0800 32.3200	22.0800 32.3200	0.32 0.36
						2" Ice	32.3200	32.3200	0.36
(2) 2.375" OD x 6' Mount	Α	None		0.000	115.0000	No Ice	1.4250	1.4250	0.03
Pipe						1/2"	1.9250	1.9250	0.04
						lce	2.2939	2.2939	0.05
						1" Ice 2" Ice	3.0596	3.0596	0.09
(2) 2.375" OD x 6' Mount	В	None		0.000	115.0000	No Ice	1.4250	1.4250	0.03
Pipe						1/2"	1.9250	1.9250	0.04
						lce	2.2939	2.2939	0.05
						1" lce 2" lce	3.0596	3.0596	0.09
(2) 2.375" OD x 6' Mount	С	None		0.000	115,0000	No Ice	1.4250	1.4250	0.03
Pipe						1/2"	1.9250	1.9250	0.04
						Ice	2.2939	2.2939	0.05
						1" lce 2" lce	3.0596	3.0596	0.09
***						Z ICE			
Platform Mount [LP 602-1]	С	None		0.000	105.0000	No Ice	32.0300	32.0300	1.34
						1/2"	38.7100	38.7100	1.80
						lce 1" lee	45.3900	45.3900	2.26
						1" lce 2" lce	58.7500	58.7500	3.17
(2) 2.375" OD x 6' Mount	Α	From Leg	4.0000	0.000	105.0000	No Ice	1.4250	1.4250	0.03
Pipe			0.00			1/2"	1.9250	1.9250	0.04
			0.00			Ice	2.2939	2.2939	0.05
						1" lce 2" lce	3.0596	3.0596	0.09
(2) 2.375" OD x 6' Mount	В	From Leg	4.0000	0.000	105.0000	No Ice	1.4250	1.4250	0.03
Pipe		J	0.00			1/2"	1.9250	1.9250	0.04
			0.00			Ice	2.2939	2.2939	0.05
						1" lce	3.0596	3.0596	0.09
(2) 2.375" OD x 6' Mount	С	From Leg	4.0000	0.000	105.0000	2" Ice No Ice	1.4250	1.4250	0.03
Pipe	-		0.00	0.000	700.000	1/2"	1.9250	1.9250	0.03
			0.00			Ice	2.2939	2.2939	0.05
						1" Ice	3.0596	3.0596	0.09

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	o ,	ft		ft²	ft²	К
***						2" Ice			
WH14-69/\$	Α	From Leg	4.0000	0.000	85.0000	No Ice	1.8544	1.8544	0.01
		* ****** ===g	0.00	0.000	00.0000	1/2"	2.7029	2.7029	0.03
			0.00			Ice	3.0540	3.0540	0.06
						1" Ice	3.7841	3.7841	0.13
WL 14-69/S			4.0000			2" Ice			
WL 14-69/5	Α	From Leg	4.0000	0.000	85.0000	No Ice	0.2869	4.1479	0.01
			0.00 -1.00			1/2"	0.3655	4.4641	0.03
			-1.00			lce 1" lce	0.4511 0.6454	4.7877 5.4572	0.06
						2" Ice	0.0434	0.4572	0.12
WL 14-69/S	В	From Leg	4.0000	0.000	85.0000	No Ice	0.2869	4.1479	0.01
		•	0.00			1/2"	0.3655	4.4641	0.03
			-1.00			Ice	0.4511	4.7877	0.06
						1" Ice	0.6454	5.4572	0.12
WII 44.00/0	Б	E	4.0000			2" ice			
WL 14-69/S	В	From Leg	4.0000	0.000	85.0000	No Ice	0.2869	4.1479	0.01
			0.00			1/2"	0.3655	4.4641	0.03
			-1.00			ice 1" ice	0.4511	4.7877	0.06
						2" lce	0.6454	5.4572	0.12
J105-Hi	Α	From Leg	4.0000	0.000	85.0000	No Ice	3.2500	3.2500	0.02
			0.00	0.000	30.0000	1/2"	0.0000	0.0000	0.02
			-7.00			lce	8.4790	8.4790	0.03
						1" Ice	0.0000	0.0000	0.04
						2" lce			
Side Arm Mount [SO 701-	Α	From Leg	4.0000	0.000	85.0000	No Ice	0.8500	1.6700	0.07
1]			0.00			1/2"	1.1400	2.3400	0.08
			0.00			Ice	1.4300	3.0100	0.09
						1" Ice 2" Ice	2.0100	4.3500	0.12
Side Arm Mount [SO 701-	Α	From Leg	4.0000	0.000	85.0000	No Ice	0.8500	1.6700	0.07
1]	,,	o 20g	0.00	0.000	00.0000	1/2"	1.1400	2.3400	0.07
•			-7.00			lce	1.4300	3.0100	0.09
						1" Ice	2.0100	4.3500	0.12
						2" lce			
Side Arm Mount [SO 701-	В	From Leg	4.0000	0.000	85.0000	No Ice	0.8500	1.6700	0.07
1]			0.00			1/2"	1.1400	2.3400	0.08
			0.00			ice	1.4300	3.0100	0.09
						1" lce 2" lce	2.0100	4.3500	0.12
Side Arm Mount [SO 701-	В	From Leg	4.0000	0.000	85.0000	No Ice	0.8500	1.6700	0.07
1]	_		0.00	0.000	05.0000	1/2"	1.1400	2.3400	0.07
•			-7.00			Ice	1.4300	3.0100	0.09
						1" Ice	2.0100	4.3500	0.12
						2" Ice			
2.375" OD x 8' Mount Pipe	Α	From Leg	4.0000	0.000	85.0000	No Ice	1.9000	1.9000	0.03
			0.00			1/2"	2.7281	2.7281	0.04
			0.00			lce	3.4009	3.4009	0.06
						1" fce	4.3962	4.3962	0.12
2.375" OD x 8' Mount Pipe	В	From Leg	4.0000	0.000	85.0000	2" Ice No Ice	1.9000	1 0000	0.03
= 17.0 00 % o Modell Tipe	_	. rom Leg	0.00	0.000	00.0000	1/2"	2.7281	1.9000 2.7281	0.03 0.04
			0.00			lce	3.4009	3.4009	0.04
						1" Ice	4.3962	4.3962	0.12
						2" Ice			· · · ·

				~	Dish	es					
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	•	۰	ft	ft		ft²	κ
VHLP1-23	Α	Paraboloid w/o	From	1.0000	0.000		105.0000	1.2750	No Ice	1.2800	0.01
		Radome	Leg	0.00					1/2" Ice	1.4500	0.02
				2.00					1" lce	1.6200	0.03
									2" lce	1.9700	0.04
VHLP2-23	В	Paraboloid w/o	From	1.0000	0.000		105.0000	2.1750	No Ice	3.7200	0.03
		Radome	Leg	0.00					1/2" Ice	4.0100	0.05
				2.00					1" Ice	4.3000	0.07
									2" Ice	4.8800	0.11
VHLP1-23	С	Paraboloid w/o	From	1.0000	0.000		105.0000	1.2750	No Ice	1.2800	0.01
		Radome	Leg	0.00					1/2" Ice	1.4500	0.02
			-	2.00					1" Ice	1.6200	0.03
									2" Ice	1.9700	0.04

Tower Pressures - No Ice

 $G_H = 1.100$

Section	z	Kz	q_z	A_G	F	AF	A _R	A _{leg}	Leg	$C_A A_A$	C_AA_A
Elevation					а				%	ln	Out
					С					Face	Face
ft	ft		psf	ft ²	е	ft ²	ft ²	ft ²		ft²	ft²
L1 115.0000-	92.8501	0.968	34.59	96.093	Α	0.000	96.093	96.093	100.00	27.909	0.000
72.3334			8		В	0.000	96.093	i	100.00	0.000	0.000
					С	0.000	96.093		100.00	0.000	0.000
L2 72.3334-	50.5924	0.813	28.91	126.88	Α	0.000	126.888	126.888	100.00	34.249	0.000
29.3334	İ		2	8	В	0.000	126.888		100.00	0.000	0.000
					С	0.000	126.888		100.00	0.000	0.000
L3 29.3334-	14.3163	0.7	25.09	103.22	Α	0.000	103.225	103.225	100.00	23.364	0.000
0.0000			2	5	В	0.000	103.225		100.00	0.000	0.000
					С	0.000	103.225		100.00	0.000	0.000

Tower Pressure - With Ice

 $G_H=1.100$

Section	z	Kz	qz	tz	A_G	F	A_F	A _R	A_{leg}	Leg	C_AA_A	C_AA_A
Elevation						а				%	In	Out
						С					Face	Face
ft	ft		psf	in	ft²	е	ft ²	ft²	ft ²		ft ²	ft²
L1 115.0000-	92.8501	0.968	5.536	1.8853	109.500	Α	0.000	109.500	109.500	100.00	74.942	0.000
72.3334						В	0.000	109.500		100.00	0.000	0.000
	i					С	0.000	109.500	Ì	100.00	0.000	0.000
L2 72.3334-	50.5924	0.813	4.626	1.7742	140.399	Α	0.000	140.399	140.399	100.00	97.430	0.000
29.3334						В	0.000	140.399		100.00	0.000	0.000
				·		С	0.000	140.399		100.00	0.000	0.000
L3 29.3334-	14.3163	0.7	4.015	1.5638	111.898	Α	0.000	111.898	111.898	100.00	64.184	0.000
0.0000						В	0.000	111.898		100.00	0.000	0.000
						С	0.000	111.898		100.00	0.000	0.000

Tower Pressure - Service

 $G_H = 1.100$

Section Elevation	Z	Kz	qz	A _G	F	A_F	A _R	A_{leg}	Leg	C_AA_A	C_AA_A
Elevauon					а				%	_ln	Out
4.					C	_				Face	Face
ft	ft		psf	ft ²	e	ft ²	ft ²	ft²		ft ²	ft²
L1 115.0000-	92.8501	0.968	7.508	96.093	Α	0.000	96.093	96.093	100.00	27.909	0.000
72.3334					В	0.000	96.093		100.00	0.000	0.000
					C	0.000	96.093		100.00	0.000	0.000
L2 72.3334-	50.5924	0.813	6.274	126.88	Α	0.000	126.888	126.888	100.00	34.249	0.000
29.3334				8	В	0.000	126.888		100.00	0.000	0.000
					C	0.000	126.888		100.00	0.000	0.000
L3 29.3334-	14.3163	0.7	5.445	103.22	Α	0.000	103.225	103.225	100.00	23.364	0.000
0.0000				5	В	0.000	103.225		100.00	0.000	0.000
					C	0.000	103.225		100.00	0.000	0.000

Load Combinations

Comb.	Description	
No.	Description	
1	Dead Only	
2	1.2 Dead+1.0 Wind 0 deg - No Ice	
3	0.9 Dead+1.0 Wind 0 deg - No Ice	
4	1.2 Dead+1.0 Wind 30 deg - No Ice	
5	0.9 Dead+1.0 Wind 30 deg - No Ice	
6	1.2 Dead+1.0 Wind 60 deg - No Ice	
7	0.9 Dead+1.0 Wind 60 deg - No Ice	
8	1.2 Dead+1.0 Wind 90 deg - No Ice	
9	0.9 Dead+1.0 Wind 90 deg - No Ice	
10	1.2 Dead+1.0 Wind 120 deg - No Ice	
11	0.9 Dead+1.0 Wind 120 deg - No Ice	
12	1.2 Dead+1.0 Wind 150 deg - No Ice	
13	0.9 Dead+1.0 Wind 150 deg - No Ice	
14	1.2 Dead+1.0 Wind 180 deg - No Ice	
15	0.9 Dead+1.0 Wind 180 deg - No Ice	
16	1.2 Dead+1.0 Wind 210 deg - No Ice	
17	0.9 Dead+1.0 Wind 210 deg - No Ice	
18	1.2 Dead+1.0 Wind 240 deg - No Ice	
19	0.9 Dead+1.0 Wind 240 deg - No Ice	
20	1.2 Dead+1.0 Wind 270 deg - No Ice	
21	0.9 Dead+1.0 Wind 270 deg - No Ice	
22	1.2 Dead+1.0 Wind 300 deg - No Ice	
23	0.9 Dead+1.0 Wind 300 deg - No Ice	
24	1.2 Dead+1.0 Wind 330 deg - No Ice	
25	0.9 Dead+1.0 Wind 330 deg - No Ice	
26	1.2 Dead+1.0 Ice+1.0 Temp	
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	
30	1.2 Dead+1.0 Wind 60 deg+1.0 ice+1.0 Temp	
31	1.2 Dead+1.0 Wind 30 deg+1.0 ice+1.0 Temp	
32	1.2 Dead+1.0 Wind 120 deg+1.0 (ce+1.0 Temp	
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	
34	1.2 Dead+1.0 Wind 100 deg+1.0 ice+1.0 Temp	
35	1.2 Dead+1.0 Wind 240 deg+1.0 lce+1.0 Temp	
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	
37	1.2 Dead+1.0 Wind 270 deg+1.0 ice+1.0 Temp	
38	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	
39	Dead+Nind 0 deg - Service	
40	Dead+Wind 30 deg - Service	
41	Dead+Wind 60 deg - Service	
42	Dead+Wind 90 deg - Service	
43	Dead+Wind 120 deg - Service	
44	Dead+Wind 150 deg - Service Dead+Wind 150 deg - Service	
45	Dead+Wind 180 deg - Service	
46	Dead+Wind 210 deg - Service	
70	Podd - Willia 2 to day - Octobe	

Comb. No.	`	Description	
47	Dead+Wind 240 deg - Service		
48	Dead+Wind 270 deg - Service		
49	Dead+Wind 300 deg - Service		
50	Dead+Wind 330 deg - Service		

Maximum Member Forces

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
Ľ1	115 - 72.3334	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-23.50	-0.96	3.28
			Max. Mx	20	-9.39	334.01	1.62
			Max. My	2	-9.37	0.36	341.63
			Max, Vy	20	-11.56	334.01	1.62
			Max. Vx	2	-11.81	0.36	341.63
			Max. Torque	12			2.71
L2	72.3334 - 29.3334	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-35.01	0.80	4.41
			Max. Mx	20	-16.27	896.51	-1.65
			Max. My	2	-16.26	-2.48	916.12
			Max. Vý	20	-15.18	896.51	-1.65
			Max, Vx	2	-15.46	-2.48	916.12
			Max. Torque	12			2.71
L3	29.3334 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-47.57	2.42	5.30
			Max. Mx	20	-24.81	1479.00	-4.37
			Max. My	2	-24.81	-4,77	1508.49
			Max. Vý	20	-18.09	1479.00	-4.37
			Max. Vx	2	<i>-</i> 18.37	-4.77	1508.49
			Max. Torque	12			2.71

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load Comb.	K	K	Κ
Pole	Max. Vert	26	47.57	-0.00	-0.00
	Max. H _x	21	18.62	18.08	-0.08
	Max. H _z	3	18.62	~0.07	18.36
	Max. M _x	2	1508.49	-0.07	18.36
	Max. M₂	8	1474.43	-18.03	0.23
	Max. Torsion	12	2.70	-8.82	-15.54
	Min. Vert	3	18.62	-0.07	18.36
	Min. H _x	9	18.62	-18.03	0.23
	Min. H _z	15	18.62	0.18	-18.30
	Min. M _x	14	-1499.77	0.18	-18.30
	Min. M _z	20	-1479.00	18.08	-0.08
	Min. Torsion	24	-2.58	8.97	15.51

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shear₂	Overturning Moment, M _x	Overturning Moment. M ₂	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	20.68	0.00	-0.00	-1.02	-0.15	0.00
1.2 Dead+1.0 Wind 0 deg -	24.82	0.07	-18.36	-1508.49	-4.77	2.01

Load Combination	Vertical	Shearx	Shear _z	Overturning Moment, M _x	Overturning Moment, Mz	Torque
No Ice	<u> </u>	K	K	kip-ft	kip-ft	kip-ft
0.9 Dead+1.0 Wind 0 deg -	18.62	0.07	-18.36	- 1497.77	-4.70	2.00
No Ice 1.2 Dead+1.0 Wind 30 deg - No Ice	24.82	9.20	-15.66	-1281.98	-754.42	0.95
0.9 Dead+1.0 Wind 30 deg -	18.62	9.20	-15.66	-1272.82	-749.17	0.95
No Ice 1.2 Dead+1.0 Wind 60 deg -	24.82	15.72	- 9.17	-753.35	-1286.13	-0.39
No Ice 0.9 Dead+1.0 Wind 60 deg -	18.62	15.72	-9.17	-747.83	-1277.21	-0.38
No Ice 1.2 Dead+1.0 Wind 90 deg -	24.82	18.03	-0.23	-23.59	-1474.43	-1.64
No Ice 0.9 Dead+1.0 Wind 90 deg -	18.62	18.03	-0.23	-23.11	-1464.22	-1.63
No Ice 1.2 Dead+1.0 Wind 120 deg	24.82	15.56	8.87	723.47	-1272.27	-2.50
- No Ice 0.9 Dead+1.0 Wind 120 deg - No Ice	18.62	15.56	8.87	718.79	-1263.44	-2.49
1.2 Dead+1.0 Wind 150 deg - No Ice	24.82	8.82	15.54	1269.86	-718.00	-2.70
0.9 Dead+1.0 Wind 150 deg - No Ice	18.62	8.82	15.54	1261.41	-713.00	-2.69
1.2 Dead+1.0 Wind 180 deg - No Ice	24.82	-0.18	18.30	1499.77	16.56	-2.13
0.9 Dead+1.0 Wind 180 deg - No Ice	18.62	-0.18	18.30	1489.75	16.50	-2.12
1.2 Dead+1.0 Wind 210 deg - No Ice	24.82	-9.13	15.70	1283.86	746.37	-0.97
0.9 Dead+1.0 Wind 210 deg - No Ice	18.62	-9.13	15.70	1275.32	741.28	-0.96
1.2 Dead+1.0 Wind 240 deg - No Ice	24.82	-15.82	9.11	743.35	1297.17	0.49
0.9 Dead+1.0 Wind 240 deg - No Ice	18.62	-15.82	9.11	738.55	1288,27	0.49
1.2 Dead+1.0 Wind 270 deg - No Ice	24.82	-18.08	80.0	4.37	1479.00	1.78
0.9 Dead+1.0 Wind 270 deg - No Ice	18.62	-18.08	0.08	4.67	1468.86	1.76
1.2 Dead+1.0 Wind 300 deg - No Ice	24.82	-15.59	-8.89	-727.74	1274.90	2.52
0.9 Dead+1.0 Wind 300 deg - No Ice	18.62	-15.59	-8.89	-722.39	1266,15	2.50
1.2 Dead+1.0 Wind 330 deg - No Ice	24.82	-8.97	-15.51	-1268.36	734.55	2.58
0.9 Dead+1.0 Wind 330 deg - No Ice	18.62	-8.97	-15.51	-1259.28	729.52	2.57
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0	47.57 47.57	0.00 0.02	0.00 -4.45	-5.30 -397.62	2.42 1.02	0.00 0.58
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 30	47.57	2.26	-3.85	-344.66	-197.21	0.31
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 60	47.57	3.87	-2.25	-204.24	-338.52	-0.06
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 90	47.57	4.44	-0.05	-10.69	-388.78	-0.41
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 120	47.57	3.83	2.18	186.94	-335.32	-0.66
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150	47.57	2.18	3.82	331.45	-188.66	-0.74
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	47.57	-0.04	4.43	385.30	6.32	-0.60
1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	47.57	-2.25	3.86	334.77	200.22	-0.31
1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	47.57	-3.89	2.24	191.81	345.81	0.08
1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	47.57	-4.45	0.02	-4.08	394.70	0.44
1.2 Dead+1.0 Wind 300	47.57	-3.84	-2.19	-198.24	340.77	0.66

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	K	Κ	K	kip-ft	kip-ft	kip-ft
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	47.57	-2.21	-3.81	-341.42	197.35	0.71
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	20.68	0.02	-3.98	-326.70	-1.15	0.44
Dead+Wind 30 deg - Service	20.68	2.00	-3.40	-277.75	-163.12	0.21
Dead+Wind 60 deg - Service	20.68	3.41	-1.99	-163.54	-277.99	-0.08
Dead+Wind 90 deg - Service	20.68	3.91	-0.05	- 5.88	-318.68	-0.36
Dead+Wind 120 deg -	20.68	3.38	1.93	155.52	-274.99	-0.54
Service						
Dead+Wind 150 deg -	20.68	1.91	3.37	273.57	-155.24	-0.59
Service						
Dead+Wind 180 deg -	20.68	-0.04	3.97	323.26	3.46	-0.46
Service						
Dead+Wind 210 deg -	20.68	-1.98	3.41	276.60	161.14	-0.21
Service						
Dead+Wind 240 deg -	20.68	-3.43	1.98	159.83	280.14	0.11
Service						
Dead+Wind 270 deg -	20.68	- 3.92	0.02	0.17	319.43	0.38
Service						
Dead+Wind 300 deg -	20.68	- 3.38	-1.93	-158.01	275.32	0.54
Service						
Dead+Wind 330 deg -	20.68	- 1.95	-3.36	-274.81	158.58	0.56
Service						

Solution Summary

	Sun	n of Applied Force	es		Sum of Reactio		
Load	PX	PY	PΖ	PX	PY	PZ	% Error
Comb.	K	K	Κ	K	K	K	
1	0.00	-20.68	0.00	-0.00	20.68	0.00	0.000%
2	0.07	-24.82	-18.36	-0.07	24.82	18.36	0.002%
3	0.07	-18.62	-18.36	-0.07	18.62	18.36	0.001%
2 3 4	9.20	-24.82	-15.66	-9.20	24.82	15.66	0.000%
5	9.20	-18.62	-15.66	-9.20	18.62	15.66	0.000%
6	15.72	-24.82	-9.17	-15.72	24.82	9.17	0.000%
7	15.72	-18.62	-9.17	-15.72	18.62	9.17	0.000%
8	18.03	-24.82	-0.23	-18.03	24.82	0.23	0.002%
9	18.03	-18.62	-0.23	-18.03	18.62	0.23	0.001%
10	15. 56	-24.82	8.87	-15.56	24.82	-8.87	0.000%
11	15.56	-18.62	8.87	-15.56	18.62	-8.87	0.000%
12	8.82	-24.82	15.54	-8.82	24.82	-15.54	0.000%
13	8.82	-18.62	15.5 4	-8.82	18.62	-15.54	0.000%
14	-0.18	-24.82	18.30	0.18	24.82	-18.30	0.002%
15	-0.18	-18.62	18.30	0.18	18.62	-18.30	0.001%
16	- 9 .13	-24.82	15.70	9.13	24.82	-15.70	0.000%
17	-9.13	-18.62	15.70	9.13	18.62	-15.70	0.000%
18	-15.82	-24.82	9.11	15.82	24.82	-9.11	0.000%
19	-15.82	-18.62	9.11	15.82	18.62	- 9.1 1	0.000%
20	-18.08	-24.82	0.08	18.08	24.82	-0.08	0.002%
21	-18.08	-1 8.62	0.08	18.08	18.62	-0.08	0.001%
22	-15.59	-24.82	-8.89	15.59	24.82	8.89	0.000%
23	-15.59	-18.62	-8.89	15.59	18.62	8.89	0.000%
24	-8.97	-24.82	-15.51	8.97	24.82	15.51	0.000%
25	- 8.97	-18.62	-15.51	8.97	18.62	15.51	0.000%
26	0.00	-47.57	0.00	-0.00	47.57	-0.00	0.002%
27	0.02	-47.57	-4.45	-0.02	47.57	4.45	0.001%
28	2.26	-47.57	-3.85	-2.26	47.57	3.85	0.001%
29	3.87	- 47.57	-2.25	-3.87	47.57	2.25	0.001%
30	4.44	-47.57	-0.05	-4.44	47.57	0.05	0.001%
31	3.83	-47.57	2.18	-3.83	47.57	-2 .18	0.001%
32	2.18	-47.57	3.82	- 2.18	47.57	-3.82	0.001%
33	-0.04	-47.57	4.43	0.04	47.57	-4.43	0.001%
34	-2.25	- 47.57	3.86	2.25	47.57	- 3.86	0.001%
35	-3.89	-47.57	2.24	3.89	47.57	-2.24	0.001%
36	-4.45	-47.57	0.02	4.45	47.57	-0.02	0.001%
37	-3.84	- 47.57	-2.19	3.84	47.57	2.19	0.001%

	Sur	n of Applied Force	es .		Sum of Reaction	กร	
Load	PX	PY	PΖ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
38	-2.21	-47.57	-3.81	2.21	47.57	3.81	0.001%
. 39	0.02	-20.68	-3.98	-0.02	20.68	3.98	0.005%
40	2.00	-20.68	-3.40	-2.00	20.68	3.40	0.005%
41	3.41	-20.68	-1.99	-3.41	20.68	1.99	0.005%
42	3.91	-20.68	-0.05	-3.91	20.68	0.05	0.005%
43	3.38	-20.68	1.93	-3.38	20.68	-1.93	0.005%
44	1.91	-20.68	3.37	-1.91	20.68	-3.37	0.004%
45	-0.04	-20.68	3.97	0.04	20.68	-3.97	0.005%
46	-1.98	-20.68	3.41	1.98	20.68	-3.41	0.005%
47	-3.43	-20.68	1.98	3.43	20.68	-1.98	0.005%
48	-3.92	-20.68	0.02	3.92	20.68	-0.02	0.005%
49	-3.38	-20.68	-1.93	3.38	20.68	1.93	0.005%
50	-1 .95	-20.68	-3.36	1.95	20.68	3.36	0.005%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	6	0.00000001	0.00000001
2	Yes	12	0.0000001	0.00007233
3	Yes	12	0.00000001	0.00005912
4	Yes	13	0.0000001	0.00011049
5	Yes	13	0.00000001	0.00008606
6	Yes	13	0.00000001	0.00010853
7	Yes	13	0.00000001	0.00008442
8	Yes	12	0.00000001	0.00007326
9	Yes	12	0.00000001	0.00005978
10	Yes	13	0.00000001	0.00008997
11	Yes	13	0.00000001	0.00007016
12	Yes	13	0.00000001	0.00011460
13	Yes	13	0.00000001	0.00008989
14	Yes	12	0.00000001	0.00006682
15	Yes	12	0.00000001	0.00005488
16	Yes	13	0.00000001	0.00010024
17	Yes	13	0.00000001	0.00007808
18	Yes	13	0.00000001	0.00010275
19	Yes	13	0.00000001	0.00008001
20	Yes	12	0.00000001	0.00006611
21	Yes	12	0.00000001	0.00005418
22	Yes	13	0.00000001	0.00011577
23	Yes	13	0.00000001	0.00071377
24	Yes	13	0.00000001	0.00009188
25	Yes	13	0.00000001	0.00003156
26 26	Yes	7	0.0000001	0.00007138
20 27	Yes	12	0.0000001	0.00001737
27 28	Yes	12	0.0000001	0.00008629
26 29	Yes	12	0.00000001	0.00009677
29 30				
	Yes	12	0.00000001	0.00008592
31	Yes	12	0.00000001	0.00009149
32	Yes	12	0.00000001	0.00009223
33	Yes	12	0.00000001	0.00008443
34	Yes	12	0.00000001	0.00009290
35	Yes	12	0.00000001	0.00009399
36	Yes	12	0.00000001	0.00008663
37	Yes	12	0.00000001	0.00009650
38	Yes	12	0.00000001	0.00009530
39	Yes	10	0.00000001	0.00011953
40	Yes	10	0.00000001	0.00010497
41	Yes	10	0.00000001	0.00010398
42	Yes	10	0.00000001	0.00011617
43	Yes	10	0.00000001	0.00010208
44	Yes	10	0.00000001	0.00010901
45	Yes	10	0.00000001	0.00011780
46	Yes	10	0.00000001	0.00010153
47	Yes	10	0.00000001	0.00010261
48	Yes	10	0.00000001	0.00011618

 49
 Yes
 10
 0.00000001
 0.00010911

 50
 Yes
 10
 0.00000001
 0.00010239

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load	1	
	ft	in	Comb.	•	0
L1	115 - 72.3334	10.15	39	0.772	0.003
L2	77 - 29.3334	4.60	39	0.565	0.002
L3	35 - 0	0.94	39	0.242	0.001

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	•	a	ft
115.0000	(2) DB844G65ZAXY w/ Mount Pipe	39	10.15	0.772	0.003	52689
107.0000	VHLP1-23	39	8.90	0.733	0.003	32930
105.0000	Platform Mount [LP 602-1]	39	8.59	0.723	0.003	26344
85.0000	WH14-69/S	39	5.64	0.615	0.003	8781

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
140.	ft	in	Comb.	•	p
L1	115 - 72.3334	46.82	2	3.561	0.015
L2	77 - 29.3334	21.21	2	2.606	0.011
L3	35 - 0	4.36	2	1.117	0.003

Critical Deflections and Radius of Curvature - Design Wind

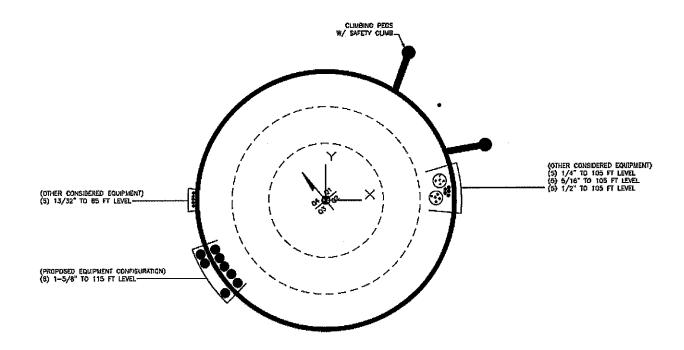
Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	٠	0	ft
115.0000	(2) DB844G65ZAXY w/ Mount Pipe	2	46.82	3.561	0.015	11513
107.0000	VHLP1-23	2	41.04	3.382	0.015	7195
105.0000	Platform Mount [LP 602-1]	2	39.61	3.337	0.015	5756
85.0000	WH14-69/S	2	26.03	2.840	0.013	1916

Compression Checks

Pole Design Data

Section No.	Elevation	Size	L	L_u	KI/r	Α	P_u	φP_n	Ratio P _u
	ft		ft	ft		in²	K	K	$-\varphi P_n$
L1	115 - 72.3334 (1)	TP30.45x21.91x0.219	42.666 6	0.0000	0.0	20.659 6	-9.37	1208.59	800,0
L2	72.3334 -	TP38.61x29.0779x0.313	47.666	0.0000	0.0	37.455	-16.26	2191.17	0.007

Section	Elevation	Size	L	L_u	KI/r	Α	P_u	φP_n	Ratio
No.	ft		ft	ft		in²	κ	κ	$\frac{P_u}{\varphi P_n}$
L3	29.3334 (2) 29.3334 - 0 (3)	TP43.85x36.8508x0.375	6 35.000 0	0.0000	0.0	9 52.496 1	-24.81	3071.02	0.008


Pole Bending Design Data									
Section No.	Elevation	Size	Mux	φM_{nx}	Ratio M _{ux}	Muy	φM _{ny}	Ratio M _{uy}	
	ft		kip-ft	kip-ft	φM_{nx}	kip-ft	kip-ft	φM _{ny}	
L1	115 - 72.3334 (1)	TP30.45x21.91x0.219	341.63	741.46	0.461	0.00	741.46	0.000	
L2	72.3334 - 29.3334 (2)	TP38.61x29.0779x0.313	916.13	1815.79	0.505	0.00	1815.79	0.000	
L3	29.3334 - Ó (3)	TP43.85x36.8508x0.375	1508.50	3010.72	0.501	0.00	3010.72	0.000	

Section No.	Elevation	Size	Actual Vu	$ \psi V_n $	Ratio Vu	Actual Tu	qT_n	Ratio Tu
	ft		K	K	φV_n	kip-ft	kip-ft	$\frac{T_u}{\varphi T_n}$
L1	115 - 72.3334 (1)	TP30.45x21.91x0.219	11.81	362.58	0.033	2.02	934.38	0.002
L2	72.3334 - 29.3334 (2)	TP38.61x29.0779x0.313	15.47	657.35	0.024	2.01	2148.91	0.001
L3	29.3334 - 0 (3)	TP43.85x36.8508x0.375	18.37	921.31	0.020	2.01	3523.25	0.001

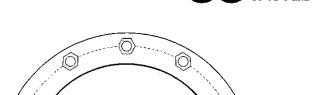
	Pole Interaction Design Data									
Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria	
	ft	φP_n	ϕM_{nx}	$\phi M_{n\nu}$	φV_n	φT_n	Ratio	Ratio		
L1	115 - 72.3334 (1)	800.0	0.461	0.000	0.033	0.002	0.470	1.050	4.8.2	
L2	72.3334 - 29.3334 (2)	0.007	0.505	0.000	0.024	0.001	0.513	1.050	4.8.2	
L3	29.3334 - Ó (3)	0.008	0.501	0.000	0.020	0.001	0.510	1.050	4.8.2	

Section Capacity Table									
Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail	
L.1	115 - 72.3334	Pole	TP30.45x21.91x0.219	1	-9.37	1269.02	44.7	Pass	
L2	72.3334 - 29.3334	Pole	TP38.61x29.0779x0.313	2	-16.26	2300.73	48.8	Pass	
L3	29.3334 - 0	Pole	TP43.85x36.8508x0.375	3	- 24.81	3224.57	48.5	Pass	
							Summary		
						Pole (L2)	48.8	Pass	
						RATING =	48.8	Pass	

APPENDIX B BASE LEVEL DRAWING

BUSINESS UNIT: 806372 TOWER 10:C_BASELEVEL

APPENDIX C ADDITIONAL CALCULATIONS


Monopole Base Plate Connection

Analysis Considerations	
TIA-222 Revision	H
Grout Considered:	No · ·
l _{er} (in)	2

Applied Loads	
Moment (kip-ft)	1508.50
Axial Force (kips)	24.81
Shear Force (kips)	18.37

^{*}TIA-222-H Section 15.5 Applied

Ar	nalysis Results	
Anchor Rod Summary	(ur	nits of kips, kip-in)
Pu_c = 118.24	φPn_c = 243.75	Stress Rating
Vu = 1.53	φVn = 73.13	46.2%
Mu = n/a	φMn = n/a	Pass
Base Plate Summary		
Max Stress (ksi):	15.01	(Flexural)

54

26.5%

Pass

Allowable Stress (ksi):

Stress Rating:

Anchor Rod Data	
(12) 2-1/4" ø bolts (A615-75 X; Fy=75 ksi, Fu=100 ksi) on 51.9'	BC.
Base Plate Data	
57.9" OD x 2.625" Plate (A572-60; Fy=60 ksi, Fu=75 ksi)	
Stiffener Data	
N/A	
Pole Data	

Connection Properties

CCIplate - version 3.6.0 Analysis Date: 5/30/2019

Drilled Pier Foundation

BU # : 606372 Site Name: Order Number:

TIA-222 Revison: H
Tower Type: Monopole

Applied Loads								
Comp. Uplift								
Moment (kip-ft)	1508.5							
Axial Force (kips)	24.81							
Shear Force (kips)	18.37							

Material P	Material Properties					
Concrete Strength, f'c:	3	ksi				
Rebar Strength, Fv:	60	ksi				

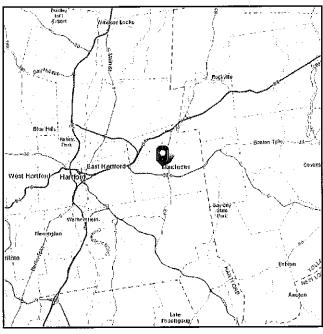
	Pier Desi	gn Data									
Г	Depth 21.1 ft										
Е	Ext. Above Grade	0.4	ft								
Ĺ	Pier Sec	ction 1	,								
From 0.4 above grade to 21.1 below grade											
Е	Pier Diameter	6	ft								
Г	Rebar Quantity	22									
Γ	Rebar Size	10									
	Clear Cover to Ties	. 5	in								
Г	Tie Size	4									

Analysis Results							
Soil Lateral Capacity	Uplift						
D _{v=0} (ft from TOC)	6.85	-					
Soil Safety Factor	2.15	-					
Max Moment (kip-ft)	1624.23	-					
Rating*	58.8%	-					
Soil Vertical Capacity	Compression	Uplift					
Skin Friction (kips)	146.76	-					
End Bearing (kips)	127.23	•					
Weight of Concrete (kips)	109.42	-					
Total Capacity (kips)	273.99	7					
Axial (kips)	134.23	-					
Rating*	46.7%	-					
Reinforced Concrete Capacity	Compression	Uplift					
Critical Depth (ft from TOC)	6.74	-					
Critical Moment (kip-ft)	1624.13	-					
Critical Moment Capacity	3637.12	-					
Rating*	42.5%						
Soil Interaction Rating*	Soil Interaction Rating* 58.8%						
Structural Foundation Rating*	42	.5%					
*Rating per TIA-222-H Section	n 15.5						

Check Limitation	
Apply TIA-222-H Section 15.5:	<u> </u>
N/A	

								Soi	Profile						
Į	Groundwa	ter Depth	N/A	ft			# of Layers	4							
	Layer	Top (ft)	Bottom (ft)	Thickness (ft)	Y _{toil} (pcf)	V _{concrete} (pcf)	Cahesion (ksf)	Angle of Friction (degrees)	Calculated Ultimate Skin Friction Comp (ksf)		Ultimate Skin Friction Comp Override (ksf)	Ultimate Skin Friction Uplift Override (ksf)	Ult. Gross Bearing Capacity (ksf)	SPT Blow Count	Soil Type
L	1	C	5	5	90	150	0	. 0	0.000	0.000	0.00	0.00			Cohesionless
	2	5	14	9	90	150		30	0.247	0.247				4	Cohesionless
	3	14	. 18	4	90	150		39	1.382	1.382	+ .			19	Cohesionless
Г	- 4	10	24.4	1 24	00	450		20	0.017	0.047			-	•	Cabasianiasa

Address:


No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 195.7 ft (NAVD 88)

Risk Category: || Latitude: 41.771944 Soil Class: D - Stiff Soil Longitude: -72.530222

Wind

Results:

Wind Speed: 124 Vmph 10-year MRI 77 Vmph 25-year MRI 87 Vmph 50-year MRI 94 Vmph

100-year MRI

101 Vmph

Data Source:

ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1-CC-4, incorporating errata of

March 12, 2014

Date Accessed:

Tue Apr 02 2019

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Ice

Results:

Ice Thickness:

1.00 in.

Concurrent Temperature:

5 F

Gust Speed:

50 mph

Data Source:

Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed:

Tue Apr 02 2019

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Date: May 3, 2019

Kevin Morrow Crown Castle 3530 Toringdon Way, Suite 300 Charlotte, NC 28277 (704) 405-6619

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 (918) 587-4630 btwo@btgrp.com

Subject:

Mount Modification Report

Carrier Designation:

Verizon Wireless Equipment Change-Out

Carrier Site Number: Carrier Site Name:

NG1904 Manchester CT

Crown Castle Designation:

Engineering Frim Designation:

Crown Castle BU Number:

806372

Crown Castle Site Name:

HRT 093 943228

Crown Castle JDE Job Number: Crown Castle Order Number:

566028 486564, Rev. 0

Olowii Oustic O

B+T Group Report Designation:

134993.003.01

Site Data:

266R Center Street, Manchester, CT, Hartford County, 06040

Latitude 41° 46' 19.00" Longitude -72° 31' 48.80"

Structure Information:

Tower Height & Type:

115 ft. Monopole

Mount Elevation:

115 ft.

Mount Type:

14.125 ft. Platform Mount

Dear Mr. Morrow.

B+T Group is pleased to submit this "Mount Modification Report" to determine the structural integrity of Verizon Wireless's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount's stress level. Based on our analysis we have determined the stress level to be:

Platform Mount

Sufficient

*Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount structural analysis prepared by: Phanindra Kosaraju, E.I.T.

Respectfully submitted by: B&T Engineering, Inc

COA: PEC.0001564 Expires: 02/10/2020

Scott S. Vance, P.E. Engineer of Record

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity Table 4 - Tieback End Reactions 4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Mount Modification Design Drawings (MDD)

1) INTRODUCTION

This is a 14.125' Platform Mount, mapped by B+T Group.

2) ANALYSIS CRITERIA

Building Code:

2015 IBC

TIA-222 Revision:

TIA-222-H

Risk Category:

11

Ultimate Wind Speed:

125 mph

Exposure Category:

В

Topographic Factor at Base:

1

Topographic Factor at Mount:

1

Ice Thickness:

2 in

Wind Speed with Ice:

50 mph

Seismic S_s:

0.179

Seismic S₁:

0.064

Live Loading Wind Speed:

30 mph

Man Live Load at Mid/End-Points:

250 lb

Man Live Load at Mount Pipes:

500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline	Antenna Centerline	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount Details
	119.5 ft.	6	Decibel	DB844G65ZAXY	
		6	Commscope	NNHH-65B-R4	14.125 ft.
115 ft.	115 ft.	2	RFS/Celwave	DBT1-6Z-8AB-0Z	Platform
	11016.	3	Samsung Telecommunications	RFV01U-D1A	Mount
	<u> </u>	3	Samsung Telecommunications	RFV01U-D2A	

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
CCI Order	Existing Loading Proposed Loading	Date: 03/29/2019	
Structural Analysis Report	By Paul J. Ford	Date: 07/31/2017	Crown Castle
Mount Mapping	Py BIT Crown	Date: 04/17/2019	
Mount Analysis Report	By B+T Group	Date: 04/25/2019	On file

3.1) Analysis Method

RISA-3D (Version 17.0.2), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed by B+T Group, was used to calculate wind loading on all appurtenances, dishes and mount members for various loading cases. Selected output from the analysis is included in Appendix B "Software Input Calculations".

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 Tower Mount Analysis (Revision C).

3.2) Assumptions

- 1. The mount was properly fabricated and installed in accordance with its original design and manufacturer's specifications.
- 2. The mount has been maintained in accordance with the manufacturer's specifications and is free of damage.
- 3. The configuration of antennas, mounts, and other appurtenances are as specified in Table-1.
- 4. All mount components have been assumed to be in sufficient condition to carry their full design capacity for the analysis.
- 5. Mount areas and weights are determined from field measurements, standard material properties, and/or manufacturer product data.
- 6. Serviceability with respect to antenna twist, tilt, roll or lateral translation is not checked and is left to the carrier or tower owner to ensure conformance.
- 7. All prior structural modifications, if any are assumed to be correctly installed and fully effective.
- 8. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.

10. The following material grades were assumed (Unless Noted Otherwise):

(a) Connection Bolts : ASTM A325

(b) Steel Pipe : ASTM A53 (GR. 35) (c) HSS (Round) : ASTM 500 (GR. B-42) (d) HSS (Rectangular) : ASTM 500 (GR. B-46) (e) Channel : ASTM A36 (GR. 36) (f) Steel Solid Rod : ASTM A36 (GR. 36) (g) Steel Plate : ASTM A36 (GR. 36) (h) Steel Angle : ASTM A36 (GR. 36) (i) UNISTRUT : ASTM A570 (GR. 33)

This analysis may be affected if any assumptions are not valid or have been made in error. B+T Group should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3(a) - Mount Component Stresses vs. Capacity (Platform Mount)

Notes	Component	Component Critical Member Ce		% Capacity	Pass / Fail	
	Main Horizontal	M3	115	93.0	Pass	
1,2	Support Angles	M6	115	47.9	Pass	
1,2	Support Tubes	M11	115	33.1	Pass	
	Mount Pipes	M82	115	29.6	Pass	
	Handrail	M85A	115	39.2	Pass	
1,2,3	Handrail Corner Angle	M83	115	53.6	Pass	
	Kicker support	M82A	115	16.5	Pass	

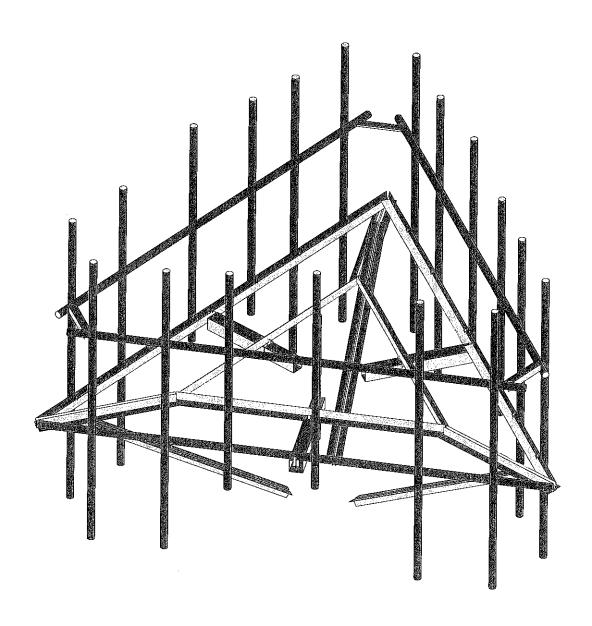
Structure Rating (max from all components) =	93.0%
S (see an am a simparionts)	33.070

Notes:

- All sectors are typical
- 3) Proposed members

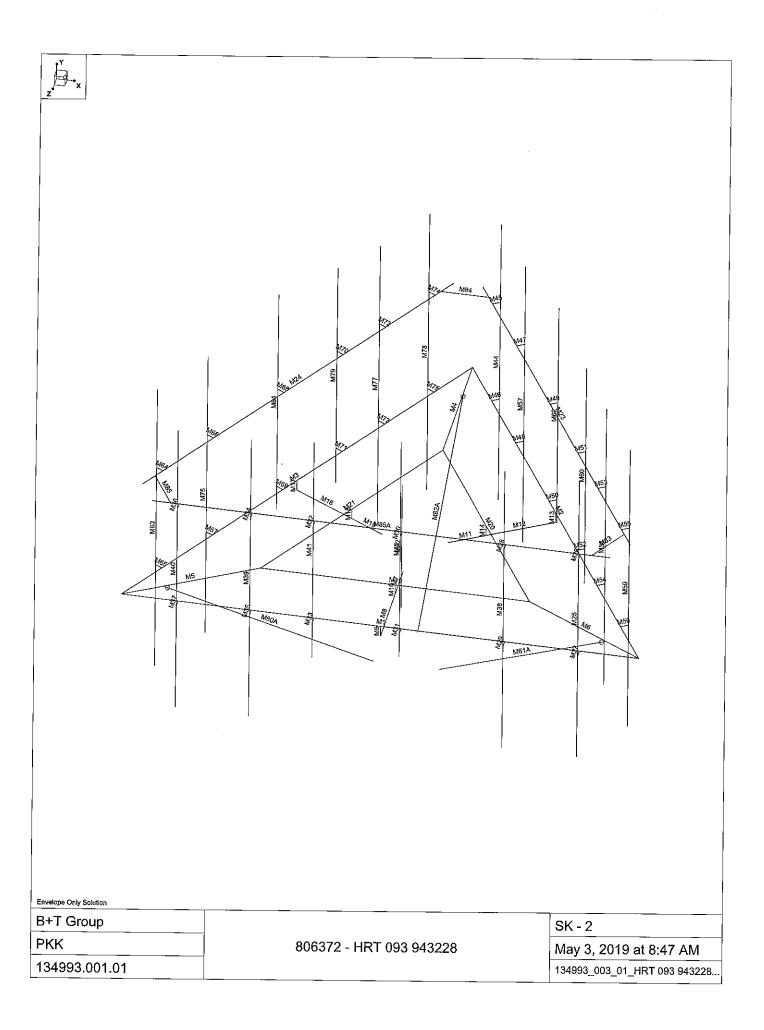
See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.

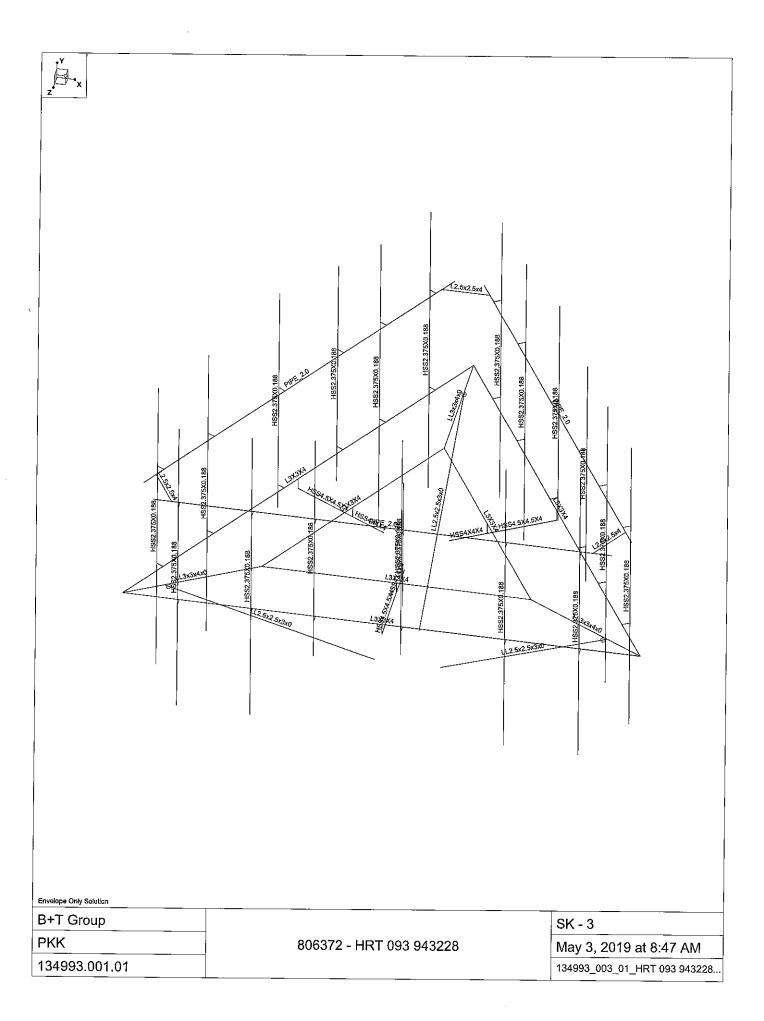
4.1) RECOMMENDATIONS

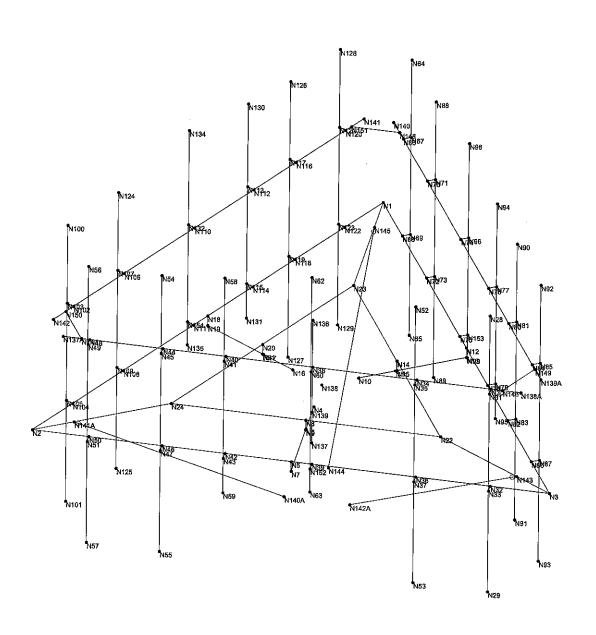

The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the structural modifications listed below must be completed.

- 1. Add (1) Monopole Kicker Kit Sitepro1 #PRK-1245L, 3'-6" below the collar mount
- 2. Replace the existing handrail kit with Sitepro1 #HRK-12, 3'-3" above the main horizontal
- 3. Reduce asymmetry by shifting mount pipes and loading vertically down by 0'-9" such that the loading and mount have the same centerline.

Engineering detail drawings have been provided in Appendix D – Mount Modification Design Drawings.


APPENDIX A WIRE FRAME AND RENDERED MODELS




Envelo	pe Only	y Solution

B+T Group		SK - 1
PKK	806372 - HRT 093 943228	May 3, 2019 at 8:46 AM
134993.001.01		134993_003_01_HRT 093 943228

Envelope Only Solution

B+T Group		SK - 4
PKK	806372 - HRT 093 943228	May 3, 2019 at 8:47 AM
134993.001.01		134993_003_01_HRT 093 943228

APPENDIX B SOFTWARE INPUT CALCULATIONS

PROJECT	134993.001	L.01 - HRT 093	94322	28, CT	PKK
SUBJECT	Platform Mo	ount Mount An	alysis	Heldendekkekin negungapepep	TOO THE SECOND
DATE	05/03/19	PAGE	1	OF	1

<u>INPUT</u>

[REF: ANSI/TIA-222-H]

Tower Type MP Tower Height 115 ft Mount Elevation 115 ft Antenna Elevation 115 ft Crest Height 0 ft Risk Category II Exposure Category В Topography Category 1

[Sec. 2.6.6.2] Wind Velocity 125 [Annex B] mph Ice wind Velocity V_i : 50 mph [Annex B] Service Velocity 30 mph [Annex B] Base Ice thickness t_i : 2 in [Annex B] Ground Elevation z_s : 195.7 ft [Sec. 2.6.8]

[Table 2-1]

[Sec. 2.6.5.1.2]

ANTENNAS

Manufacturer	Model	Height	Front	Side Width	Weight	Shape	Quantity	Location
	ASI CARAMON TO SAFETY	(in)	Width (in)	(in)	(lbs)	эларс		(%)
Mount Pipe M25	317 227 487 4 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Bond by Market and Johnson	al <u>a mara ya</u> maraka <u>k</u>	120 00 10 10 10 10 10 10 10 10 10 10 10 10	101881 N TOTA 40.48		Region of	100000000
Decibel	DB844G65ZAXY	48.00	10.00	8.00	16.00	Flat	0.5	5
Decibel	DB844G65ZAXY	48.00	10.00	8.00	16.00	Flat	0.5	55
						1192	0.0	
Mount Pipe M38								
Commscope	NNHH-65B-R4	72.00	19.60	7.80	78,30	Flat	0.5	10
Commscope	NNHH-65B-R4	72.00	19.60	7,80	78.30	Flat	0.5	85
amsung Telecommunication	RFV01U-D1A	15.00	10.00	15.00	84.40	Flat	2	50
Mount Pipe M39								
Commscope	NNHH-65B-R4	72.00	19.60	7.80	78.30	Flat	0.5	10
Commscope	NNHH-65B-R4	72.00	19.60	7.80	78.30	Flat	0.5	85
Mount Pipe M40								
Decibel	DB844G65ZAXY	48,00	10.00	8.00	16.00	Flat	0.5	5
Decibel	DB844G65ZAXY	48.00	10.00	8.00	16.00	Flat	0.5	55
M63								
Decibel	DB844G65ZAXY	48.00	10.00	8.00	16.00	Flat	0.5	5
Decibel	DB844G65ZAXY	48.00	10.00	8.00	16.00	Flat	0.5	55
M76				· · · · · · · · · · · · · · · · · · ·			<u> </u>	
Commscope	NNHH-65B-R4	72.00	19.60	7.80	78.30	Flat	0.5	10
Commscope	NNHH-65B-R4	72.00	19.60	7,80	78.30	Flat	0.5	85
amsung Telecommunication	RFV01U-D1A	15.00	10.00	15.00	84.40	Flat	1	50
Samsung Telecommunication	RFV01U-D2A	15.00	8.10	15.00	70.30	Flat	1	50

PROJECT	134993.001	L.01 - HRT 093	94322	28, CT	PKK
SUBJECT	Platform Mo	ount Mount An	alysis		
DATE	05/03/19	PAGE	1	OF	5

				B+	T GRP			
Mount Pipe M77								
Commscope	NNHH-65B-R4	72.00	19.60	7.80	78.30	Flat	0.5	10
Commscope	NNHH-65B-R4	72.00	19.60	7.80	78.30	Flat	0.5	85
						-	-	<u> </u>
Mount Pipe M78								
Decibel Decibel	DB844G65ZAXY	48.00	10.00	8.00	16.00	#I_+	T 0.5	
Decibel	DB844G65ZAXY	48.00	10.00	8.00	16.00 16.00	Flat Flat	0.5	5
	DD0 ((403270()	10.00	10.00	6.00	10.00	Fidt	0.5	55
Mount Pipe M44								
Decibel	DB844G65ZAXY	48.00	10.00	8.00	16.00	Flat	0.5	5
Decibel	DB844G65ZAXY	48.00	10.00	8.00	16.00	Flat	0,5	55
						····.		
Mount Pipe M57							<u></u>	
Commscope	NNHH-65B-R4	72.00	19.60	7.80	78.30	Flat	0.5	10
Commscope	NNHH-65B-R4	72.00	19.60	7.80	78.30	Flat	0.5	85
Samsung Telecommunication	RFV01U-D2A	15.00	8.10	15.00	70.30	Flat	2	50
Mount Pipe M58						·	<u> </u>	
Commscope	NNHH-65B-R4	72.00	19.60	7.80	78.30	Flat	0.5	10
Commscope	NNHH-65B-R4	72.00	19.60	7.80	78.30	Flat	0.5	85
Mount Pipe M59								
Decibel	DB844G65ZAXY	48.00	10.00	8.00	16.00	Flat	0.5	5
Decibel	DB844G65ZAXY	48.00	10.00	8,00	16.00	Flat	0.5	55
Nount Pipe M82 RFS/Celwave	DBT1-6Z-8AB-0Z	74.00	10.00	24.00	44.00 T		· · ·	
RFS/Celwave	DBT1-6Z-8AB-0Z	24.00	10.00	24.00	44.00	Flat	1	20
iti 3/cciwave	DB11-02-8AB-02	24.00	10.00	24.00	44.00	Flat	1	20
1ount Pipe		<u> </u>	· [
					+			
				-				
lount Pipe					I		1	
fount Pipe							<u> </u>	
fount Pipe								
fount Pipe								

PROJECT	134993.001	L.01 - HRT 093	94322	28, CT	РКК
SUBJECT	Platform Mo	ount Mount An	alysis		
DATE	05/03/19	PAGE	1	OF	1

<u>INPUT</u>

[REF: ANSI/TIA-222-G2005]

	Member Number	Section Set	Wind Projection (in)	Length (in)	Perimeter (in)	Shape	D _c (in)
\Box	M1	MF-H1	3.00	169.50	12.00	Flat	4.34
T	M2	MF-H1	3.00	169.50	12.00	Flat	4.24 4.24
\Box	M3	MF-H1	3.00	169.50	12.00	Flat	4.24
	M4	F1-SA2	3.00	47.00	18.00	Flat	6.00
	M5	F1-SA2	3.00	47.00	18.00	Flat	
	M6	F1-SA2	3.00	47.00	18.00		6.00
	M7	F1-S1	4.00	12.50	16.00	Flat Flat	6.00
T	M8	F1-S2	4.50	24.00	18.00		5.66
	M11	F1-S1	4.00	12.50	16.00	Flat Flat	6.36
T	M12	F1-S2	4.50	24.00	18.00	Flat	5.66
	M15	F1-S1	4.00	12.50	16.00	Flat	6.36
	M16	F1-S2	4.50	24.00	18.00		5.66
	M19	F1-SA1	3.00	88.09		Flat	6.36
	M20	F1-SA1	3.00	88.09	12.00 12.00	Flat	4.24
T	M21	F1-SA1	3.00	88.09		Flat	4.24
T	M23	Handrail Mod	2.38		12.00	Flat	4.24
1	M24	Handrail Mod	2.38	150.00 150.00	7.46	Round	2.38
十	M25	MF-P1	2.38		7.46	_ Round	2.38
十	M38	MF-P1	2.38	108.00	7.46	Round	2.38
\top	M39	MF-P1	2.38	108.00	7.46	Round	2.38
+	M40	MF-P1		108.00	7.46	Round	2.38
十	M41	MF-P1	2.38	108.00	7.46	Round	2.38
十	M43	MF-P1	2,38	84.00	7.46	Round	2.38
+	M44	MF-P1	2.38	84.00	7.46	Round	2.38
十	M57	MF-P1	2.38	108.00	7.46	Round	2.38
╅	M58		2.38	108.00	7.46	Round	2,38
+	M59	MF-P1	2.38	108.00	7.46	Round	2.38
┿	M60	MF-P1 MF-P1	2.38	108.00	7.46	Round	2.38
╁	M62		2.38	84.00	7.46	Round	2.38
╁	M63	MF-P1	2.38	84.00	7.46	Round	2.38
╁	M76	MF-P1	2.38	108.00	7.46	Round	2.38
+	M77	MF-P1	2.38	108.00	7.46	Round	2.38
┿		MF-P1	2.38	108.00	7.46	Round	2.38
+	M78	MF-P1	2.38	108.00	7.46	Round	2.38
+	M79	MF-P1	2.38	84.00	7.46	Round	2.38
╀	M81	MF-P1	2.38	84.00	7.46	Round	2.38
╫	M82	MF-P2	2.38	48.00	7.46	Round	2.38
-	M80A	Kicker	2.50	84.28	15.00	Flat	3.54
╀	M81A	Kicker	2.50	84.28	15.00	Flat	3.54
╄	M82A	Kicker	2.50	84.28	15.00	Flat	3.54
╀	M83	CA Mod	2.50	15.76	10.00	Flat	3.54
╀	M84	CA Mod	2.50	15.76	10.00	Flat	3.54
╀	M85	CA Mod	2.50	15.76	10.00	Flat	3.54
╀	M85A	Handrail Mod	2.38	150.00	7.46	Round	2.38
╀							
+-							
 		- <u>, </u>					
╀							
╄							
\vdash							
╄							
⊢							

PROJECT	134993.001.01	- HRT 093 94	РКК
SUBJECT	Platform Mount	Mount Analy	rsis
DATE	05/03/19	PAGE	OF

B+T Group
1717 S. Boulder, Suite 300
Tulsa, OK 74119
B-T GRP (918) 587-4630

Manufacturer	Model	Qty	Aspect Ratio	C _a flat/round	EPA _n *K _a (fl ²)	EPA _T *K _e (ft ²)	EPA _{N-los} *K _a (lt²)	EPA _{T-to,} *K, (ft²)	F _{A No Ice (N)}	F _{A No Ice (T)}	F _{A Ice (N)}	F _{A Ioe (I)}
Decibel	DB844G55ZAXY	0.5	4.80	1.30	1.50	1.20	2.39	2.06	0.08	0.05	0.01	0.01
Decibel	DB844G65ZAXY	0.5	4.80	1.30	1.50	1.20	2.39	2.06	0.08	0.06	0.01	0.01
Commscope	NNHH-65B-R4	0.5	3.67	1.25	4.41	1,76	5.77	2.95	0.21	0.10	0.03	0.02
Commscope	NNHH-65B-R4	0.5	3.67	1.25	4.41	1.76	5.77	2.95	0.21	0.10	0.03	0.02
nsung Telecommunicatic	RFV01U-D1A	2	1.50	1.20	1.88	2.81	3.55	4.77	0.09	0.13	0.01	0.02
Commscope	NNHH-65B-R4	0.5	3.67	1.25	4.41	1.76	5.77	2.95	0.21	0.10	0.03	0.02
Commscope	NNHH-65B-R4	0.5	3.67	1.25	4.41	1.76	5.77	2.95	0.21	0.10	0.03	0.02
Decibel					. .						_	
Decibel	DB844G65ZAXY DB844G65ZAXY	0.5 0.5	4.80 4.80	1.30 1.30	1.50 1.50	1.20 1.20	2.39 2.39	2.06 2.06	80.0 80.0	0.06 0.06	0.01 0.01	0.01 0.01
Decibel	DB844G65ZAXY	0.5	4.80	1.30	1.50	1.20	2.39	2.06	80.0	0.06	0.01	0.01
Decibel	DB844G65ZAXY	0.5	4.80	1.30	1.50	1.20	2.39	2.05	80.0	0.06	0.01	0.01
Commscope	NNHH-65B-R4							-				
Commscope	NNHH-65B-R4	0.5 0.5	3.67 3.67	1.25 1.25	4.41	1.76	5.77	2.95	0.21	0.10	0.03	0.02
sung Telecommunication	RFV01U-D1A	1	1.50	1.25	4.41 0.94	1.76 1.41	5.77 1.77	2.95 2.38	0.21	0.10	0.03	0.02
sung Telecommunication	RFV01U-DZA	1	1.85	1.20	0.76	1.41	1.77	2.38	0.04 0.04	0.07 0.07	0.01 0.01	0.01 0.01

PROJECT	134993.001.01	- HRT 093 943	PKK
SUBJECT	Platform Mount	: Mount Analysis	
DATE	05/03/19	PAGE	OF

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 B-T GRP (918) 587-4630

Model	Qty	Aspect Ratio	C _a flat/round	EPA _n *K _a (ft²)	EPA _T *K _a (fl ²)	EPA _{Ndes} *K _a (ft²)	EPA _{T-ks} *K _s (ft²)	F _{A No Ice (N)}	F _{A No Los (T)}	F _{A lot (N)}	F _{A Tor (T)}
NNHH-65B-R4	0.5	3.67	1.25	4.41	1.76	5.77	2.95	0.00	0.10	0.03	0.02
NNHH-65B-R4	0.5	3.67	1.25	4.41	1.76	5.77	2.95	0.00	0.10	0.03	0.02
DB844G65ZAXY	0.5	4.80	1.30	1.50	1.20	2.39	2.06	0.00	0.06	0.01	0.01
DB844G65ZAXY	0.5	4.80	1.30	1.50	1.20	2.39	2.06	0.00	0.06	0.01	0.01
DB844G65ZAXY	0.5	4.80	1.30	1.50	1.20	2 39	2.06	0.00	0.06	0.01	0.01
DB844G65ZAXY	0.5	4.80	1.30	1.50	1.20	2.39	2.06	0.00	0.06	0.01	0.01
							^"				
											0.02
RFV01U-D2A	2	1.85	1.20	1.52	2.81	3.08	4.77	0.00	0.10	0.03	0.02 0.02
NNHH-65B-R4	0.5	3.67	1.25	4.41	1.76	5.77	2.95	0.00	0.10	0.03	8.02
NNHH-65B-R4	0.5	3.67	1.25	4.41	1.76	5.77	2.95	0.00	0.10	0.03	0.02
	0.5	4.80	1.30								
DB844G65ZAXY				1.50	1.20	2.39	2.06	0.00	0.06	0.01	0.01
	DB844G65ZAXY DB844G65ZAXY DB844G65ZAXY DB844G65ZAXY DB844G65ZAXY DB844G65ZAXY NNHH-65B-R4 NNHH-65B-R4 NNHH-65B-R4 NNHH-65B-R4	D8844G65ZAXY 0.5 D8844G65ZAXY 0.5 D8844G65ZAXY 0.5 D8844G65ZAXY 0.5 NNHH-65B-R4 0.5 NNHH-65B-R4 0.5 RFV01U-D2A 2	NNHH-65B-R4 0.5 3.67 NNHH-65B-R4 0.5 3.67 DB844G65ZAXY 0.5 4.80 DB844G65ZAXY 0.5 4.80 DB844G65ZAXY 0.5 4.80 NNHH-65B-R4 0.5 3.67 NNHH-65B-R4 0.5 3.67 RFV01U-D2A 2 1.85	NNHH-65B-R4 0.5 3.67 1.25 NNHH-65B-R4 0.5 3.67 1.25 D8844G65ZAXY 0.5 4.80 1.30 D8844G65ZAXY 0.5 4.80 1.30 D8844G65ZAXY 0.5 4.80 1.30 NNHH-65B-R4 0.5 3.67 1.25 NNHH-65B-R4 0.5 3.67 1.25 RFV01U-D2A 2 1.85 1.20	NNHH-65B-R4 0.5 3.67 1.25 4.41 NNHH-65B-R4 0.5 3.67 1.25 4.41 DB844G65ZAXY 0.5 4.80 1.30 1.50 DB844G65ZAXY 0.5 4.80 1.30 1.50 DB844G65ZAXY 0.5 4.80 1.30 1.50 NNHH-65B-R4 0.5 3.67 1.25 4.41 RFV01U-DZA 2 1.85 1.20 1.52 NNHH-65B-R4 0.5 3.67 1.25 4.41 RFV01U-DZA 2 1.85 1.20 1.52	NNHH-65B-R4	NNHH-65B-R4	NNHH-65B-R4	NNHH-65B-R4	NNHH-65B-R4	NNHH-65B-R4

PROJECT	134993.001	.01 - HRT 093 943	PKK
SUBJECT	Platform Mo	unt Mount Analysis	
DATE	05/03/19	PAGE	OF

Г	B+T Group
	1717 S. Boulder, Suite 300
	Tulsa, OK 74119
B-T GRE	(918) 587-4630

Manufacturer	Model	Qty	Aspect Ratio	C _a flat/round	EPA _N *K _a (ft ²)	EPA _T *K _a (ft²)	EPA _{N4ce} *K _a (ft²)	EPA _{T-te} *K _a (ft²)	F _{A No Ice} (N)	F _{A No Ice (T)}	F _{A Ice (N)}	F _{A log (T)}
RFS/Celwave	DBT1-6Z-8AB-0Z	1	2.40	1.20	1.50	3.60	2.59	5.09	0.07	0.17	0.01	0.03
RFS/Celwave	DBT1-62-8AB-0Z	1	2.40	1.20	1.50	3.60	2.59	5.09	0.07	0.17	10.0	0.03
						·		· .			·	
··	· · · · · · · · · · · · · · · · · · ·				 -							
			·		-			"."	····	-		

: B+T Group : PKK : 134993.001.01 : 806372 - HRT 093 943228

May 3, 2019 9:07 AM Checked By:_

Hot Rolled Steel Section Sets

	Label	Shape	Type_	Design List	Material	Design R	A [in2]	lvv [in4]	Izz [in4]	J [in4]
1	<u>MF-H1</u>	L3X3X4	Beam	Single Angle	A36 Gr.36		1.44	1.23	1.23	.031
2	Handrail	L2.5x2.5x3	Beam	Single Angle	A36 Gr.36		901	.535	.535	011
3	MF <u>-P1</u>	HSS2.375X0	Column	HSS Pipe	A500 Gr.B		1.2	.733	.733	1.47
4	<u>F1-S1</u>	HSS4X4X4	Beam	Tube	A500 Gr.B		3.37	7.8	7.8	12.8
. 5	F1-S2	HSS4.5X4.5X4	Beam	Tube	A500 Gr.B		3.84	11.4	11.4	18.5
6	F1- <u>S</u> A1	L3X3X4	Beam	Single Angle	A36 Gr.36		1.44	1.23	1.23	.031
7	F1- <u>S</u> A2	LL3x3x4x0	Beam	Double Angle (No			2.88	4.5	2.46	.063
8	MF-P2	HSS2.375X0	Column	Pipe	A500 Gr.B	Typical	1.2	.733	733	1.47
9	Handrail Mod	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
10	CA Mod	L2.5x2.5x4	Beam	Single Angle	A36 Gr.36	Typical	1.19	.692	.692	.026
11	Kicker	LL2.5x2.5x3x0	Beam	Double Angle (No	A36 Gr.36	Typical	1.8	1.91	1.07	.023

Joint Coordinates and Temperatures

	Label	X [in]	Y finl	Z (in)	Temp [F]	Detach From Diap
1_	N1	-Ò.	3.75	-97.860871	0	Bottom Flag
2	N2	-84.75	3.75	48.930435	0	
_ 3	N3	84.75	3.75	48.930435	ŏ	
4	N4	0.	0	12.431235	Ö	
5	N5	0.	0	24.930435	Ŏ	
6	N6	0.	3.75	48.930435	ŏ	
7	N7	0.	0	48.930435	Ŏ	
8	N8	0.	3.75	25.430435	0	
9	N9	0.	0	25.430435	Ō	
10	N10	10.765766	0	-6.215618	0	
11	N11	21.59039	0	-12.465218	ő	
12	N12	42.375	3.75	-24.465218	0	
_13	N13	42.375	0	-24.465218	o o	
14	N14	22.023403	3.75	-12.715218	Ö	
15	N15	22.023403	0	-12.715218	Ö	
16	N16	-10.765766	0	-6.215618	Ö	
17	N17	-21.59039	0	-12.465218	Ö	
18	N18	-42.375	3.75	-24.465218	0	
19	N19	-42.375	0	-24.465218	Ö	
_20	N20	-22.023403	3.75	-12.715218	0	
21	N21	-22.023403	0	-12.715218	ŏ –	
22	N22	44.046806	3.75	25.430435	Ö	
23	N23	-0.	3.75	-50.860871	0	
24	N24	-44.046806	3.75	25.430435	0 -	-
25	N28	65.25	72.2492	51,620427	0	
_26	N29	65.25	-35.7508	51.620427	Ö	
_27	N30	65.25	41.75	48.930435	0	.:
28	N31	65.25	41.75	51.620427	0	
29	N32	65.25	3.75	48.930435	0	
30	N33	65.25	3.75	51.620427	0	
31	N34	40.7508	41.75	48.930435	Ö	<u> </u>
32	N35	40.7508	41.75	51.620427	0	
33	N36	40.7508	3.75	48.930435	0	
34	N37	40.7508	3.75	51.620427	0	
35	N38	6.7508	41.75	48.930435	0	
_36	N39	6.7508	3.75	48.930435	Ŏ	
_37	N40	-21.7492	41.75	48.930435	Ö	
38	N41	-21.7492	41.75	51.620427	0	
39	N42	-21.7492	3.75	48.930435	0	
40	N43	-21.7492	3.75	51.620427	0	-

: B+T Group : PKK : 134993.001.01 : 806372 - HRT 093 943228

May 3, 2019 9:07 AM Checked By:__

Joint Coordinates and Temperatures (Continued)

		remperatures (Co				
41	<u>Label</u> N44	X [in]	<u>Y [in]</u>	Z [in]	Temp [F]	Detach From Diap
42	N45	<u>-42.2492</u>	41.75	48.930435	0	
43	N46	-42.2492 -42.2492	41.75	51.620427	0	<u> </u>
44	N47	-42.2492 -42.2492	3.75 3.75	48.930435	0	<u> </u>
45	N48	-66.2492	41.75	51.620427	0	
46	N49	-66.2492	41.75	48.930435	0	
47	N50	-66.2492	3.75	51.620427	0	
48	N51	-66.2492	3.75	48.930435	0	
49	N52	40.7508	72.2492	51.620427	0	
50	N53	40.7508		51.620427	0	
51	N54	<u>-42.2492</u>	-35.7508	51.620427	0	
52	N55	-42.2492	72.2492 -35.7508	51.620427	0	
53	N56	-66.2492	72.2492	51.620427	0	
54	N57	-66.2492	-35.7508	51.620427	0	
55	N58	-21.7492	74.2496	51.620427	0	
56	N59	<u>-21.7492</u> <u>-21.7492</u>	-9.7504	51.620427 51.620427	0	
57	N60	6.7508	-9.750 4 41.75		0	
58	N62	6.7508	78.75	51.620427	0	
59	N63	6.7508	-5.25	51.620427	0	-
60	N64	12.079601		51.620427	0	
61	N65	12.079601	72.2492	-82.318371	0	
62	N66	9.75	-35.7508	-82.318371	0	
63	N67	12.079601	41.75	-80.973375	0	
64	N68	9.75	41.75	-82.318371	0	
65	N69	12.079601	3.75	-80.973375	0	
66	N70	21.9996	3.75	-82.318371	0	
67	N71		41.75	-59.756446	0	
68	N72	24.329201	41.75	-61.101442	0	
69	N73	21.9996 24.329201	3.75	-59.756446	0	
70	N74		3.75	-61.101442	0	
71	N75	38.9996	41.75	-30.311582	0	
72	N76	38.9996	3.75	-30.311582	0	
73	N77	53.2496	41.75	-5.629858	0	
74	N78	55.579201	41.75	-6.974854	0	
75	N79	53.2496	3.75	-5.629858	0	
76	N80	55.579201	3.75	-6.974854	0	_
77	N81	63.4996	41.75	12.123662	0	
78	N82	65.829201	41.75	10.778666	0	
79	N83	63.4996	3.75	12.123662	0	
80	N84	65.829201	3.75	10.778666	<u> </u>	
81	N85	<u>75,4996</u>	41.75	32.908272	0	
82		77.829201	41.75	31.563276	0	
83	N86 N87	75.4996	3.75	32.908272	0	
84		77.829201	3.75	31.563276	0	
85	N88	24.329201	72.2492	-61.101442	0	
	<u>N89</u>	24.329201	-35.7508	-61.101442	0_	
86	<u>N90</u>	65.829201	72.2492	10.778666	0	
87	N91	65.829201	<u>-35.7508</u>	10.778666	0	
88	N92	77.829201	72.2492	31.563276		
	N93	77.829201	<u>-35.7508</u>	31.563276	0	
90	N94	55.579201	74.2496	-6.974854	0	
91	N95	55.579201	9.7504	-6.974854	0	
92	N96	41.329201	41.75	-31.65 <u>6578</u>	0	
93	N98	41.329201	78.75	-31.656578	0	
94	N99	41.329201		-31.656578	0	
95	N100	<u>-77.329601</u>	72.2492	30.697944	0	
96	N101	-77.329601	-35.7508	30.697944	0	
97	N102	75	<u>41.75</u>	32.04294	0	

: B+T Group : PKK : 134993.001.01 : 806372 - HRT 093 943228

May 3, 2019 9:07 AM Checked By:_

Joint Coordinates and Temperatures (Continued)

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Diap
98	N103	-77.329601	41.75	30.697944	0	Dotton Tom Diap
99	N104	-75	3.75	32.04294	0	
100	N105	-77.329601	3.75	30.697944	0	
101	N106	-62.7504	41.75	10.82601	0	
102	N107	-65.080001	41.75	9.481014	0	
103	N108	-62.7504	3.75	10.82601	0	
104	N109	-65.080001	3.75	9.481014	0	
105	N110	-45.7504	41.75	-18.618853	Ö	
106	N111	-45.7504	3.75	-18.618853	0	
107	N112	-31.5004	41.75	-43.300577	0	
108	N113	-33.830001	41.75	-44,645573	0	
109	N114	-31.5004	3.75	-43.300577	0	
110	N115	-33.830001	3.75	-44.645573	0	
111	N116	-21.2504	41.75	-61.054098	0	
112	N117	-23.580002	41.75	-62.399094	Ö	
113	N118	-21.2504	3.75	-61.054098	0	
114	N119	-23.580002	3.75	-62.399094	Ö	
115	N120	-9.2504	41.75	-81.838707	0	
116	N121	-11.580002	41.75	-83.183703	Ö	
117	N122	-9.2504	3.75	-81.838707	ő	
118	N123	-11.580002	3.75	-83.183703	Ö	
119	N124	-65.080001	72.2492	9.481014	0	
120	N125	-65.080001	-35.7508	9.481014	Ö	
121	N126	-23.580002	72.2492	-62.399094	0	
122	N127	-23.580002	-35.7508	-62.399094	0	
123	N128	-11.580002	72.2492	-83.183703	ő	
124	N129	-11.580002	-35.7508	-83.183703	Ö	
125	N130	-33.830001	74.2496	-44.64 <u>5</u> 573	0	
126	N131	-33.830001	-9.7504	-44.645573	0	
127	N132	-48.080001	41.75	-19.963849	0	
128	N134	-48.080001	78.75	-19.963849	0	
129	N135	-48.080001	-5.25	-19.963849	0	
130	N136	0.	36	15.458371		
131	N137	0.	-12	15.458371	0	
132	N138	0.	0	15.456371	0	
133	N139	0,	0	15.458371		-
134	N137A	-75	41.75		0	
135	N138A	75 75		48.930435	0	
136	N139A		41.75 41.75	48.930435	0	
137	N140	79.875		40.486688	<u> </u>	
138	N141	<u>4.875</u> -4.875	41.75	-89.417123	0	
139	N141 N142	-4.875 -79.875	41.75	<u>-89.417123</u>	0	*
140	N142 N140A		41.75	40.486688		-
141	N140A N141A	-10.736529	-41.085927	6.198738	0	
141		-72.539042	3.75	41.880435	0	
	N142A	10.736529	-41.085927	6.198738	0	-
143	N143	72.539042	3.75	41.880435	0	
144	N144	-0.	-41.085927	-12.397476	0	
145	N145	<u>-0.</u>	3.75	-83.760871	0	
146	N146	69	41.75	48.930435	0	<u> </u>
147	N147	-69	41.75	48.930435	0	
148	N148	7.875	41.75	-84.220971	0	
149	N149	76.875	41.75	35.290535	0	
150	N150	-76.875	41.75	35.290535	0	
151	N151	<u>-7.875</u>	41.75	-84.220971	0	
152	N152	6.7508	3.75	51.620427	0	
153	N153	41.329201	3.75	-31.656 <u>578</u>	. 0	
154	N154	-48.080001	3.75	-19.963849	00	

: B+T Group : PKK : 134993.001.01 : 806372 - HRT 093 943228

May 3, 2019 9:07 AM Checked By:_

Member Primary Data

<u> weri</u>	<u>iber Primai</u>	ry Data	_							
	Label	I Joint	J Joint_	K Joint	Rotate(dea)	Section/Shap	е Туре	Design List	Material	Donies Dules
1	M1	N2	N3	T COM	270	MF-H1	Beam	Single Angle		Design Rules
2	M2	N3	N1		270	MF-H1				
3	M3	N1	N2	· ·			Beam	Single Angle		
_ 4	M4	N1			270	MF-H1	Beam	Single Angle		Typical
5			N23	 	180	<u>F1-SA2</u>	Beam	Double Angle (.		Typical
	<u>M5</u>	N2	N24		180	F1-SA2	_ Beam_	Double Angle (.		Typical
6	<u>M6</u>	N3	N22	·	180	F1-SA2	Beam	Double Angle (.		_ Typical
7	<u>M7</u>	N4	N5	. <u> </u>		F1 <u>-</u> S1	Beam	Tube	A500 Gr.B	Tvpical
_ 8	M8	N5_	N7			F1-S2	Beam	Tube	A500 Gr.B.	Typical
_9	M9	N6	N7			RIGID	None	None	RIGID	Typical
10	<u>M10</u>	N8	N9			RIGID	None	None	RIGID	Typical
11	<u>M11</u>	N10	N11			F1-S1	Beam	Tube	A500 Gr.B	Typical
12	M1 <u>2_</u>	N11	N13			F1-S2	Beam	Tube	A500 Gr.B	Typical
13	M13	N12	N13			RIGID	None	None	RIGID	Typical
_14	M14	N14	N15		-	RIGID	None	None	RIGID	
15	M15	N16	N17		-	F1-S1			A500 Gr.B	Typical
16	M16	N17	N19			F1-S2	Beam	Tube		Typical
17	M17	N18	N19				Beam	Tube	A500 Gr.B	<u>Typical</u>
18	M18	N20	N21			RIGID	None	None_	RIGID	Typical
19	M19	N24			 	RIGID	None	None	RIGID	Typical
20			N22	 		F1-SA1	<u>Be</u> am	Single Angle	A36 Gr.36	Typica!
	M20	N22	N23			F1-SA1_	Beam	Single Angle	A36 Gr.36	Typical
21	<u> M21</u>	N23	N24			F1-S <u>A1</u>	Beam	Single Angle	A36 Gr.36	Typical
22	<u>M23</u>	N139A	N140		1 <u>80</u>	Handrail Mo	d Beam	Pipe	A53 Gr.B	Typical
23	<u>M24</u>	N141	N142	_	180	Handrail Mo	d Beam	Pipe	A53 Gr.B	Typical
24	<u>M25</u>	N28	N29			MF-P1	Column		A500 Gr.B	Typical
25	<u>M2</u> 6	N30	N31			RIGID	None	None	RIGID	Typical
26	M27	N32	N33			RIGID	None	None	RIGID	Typical
27	M28	N34	N35		-	RIGID	None	None	RIGID	Typical
28	M29	N36	N37			RIGID	None	None	RIGID	Typical
29	M30	N38	N60			RIGID	None	None	RIGID	
30	M31	N39	N152			RIGID	None			Typical
_31	M32	N40	N41			RIGID	None	None	RIGID	Typical
32	M33	N42	N43				None	None	RIGID	Typical
33	M34	N44	N45 N45	-		RIGID	None	None	RIGID	Typical
34	M35					RIGID	None	None	RIGID	Typical
35	M36	N46	N47	 -		RIGID	None	None	RIGID	Typical
		N48	N49			RIGID	None	<u>None</u>	RIGID	Typical
36	M37	N50	N51		<u> </u>	RIGID	None	None	RIGID	Typical
37	M38	N52	N53			MF-P1	Column		A500 Gr.B	Typical
_38	M39	N54	N5 <u>5</u>			MF-P1	Column	HSS Pipe	A500 Gr.B	Typical
_39	M40	N56	N57			MF-P1	Column		A500 Gr.B	Typical
40	<u>M41</u>	N58	N59		_	MF-P1	Column		A500 Gr.B	Typical
41	<u>M</u> 43	N62	N63			MF-P1	Column		A500 Gr.B	Typical
42	M4 <u>4</u>	N64	N65			MF-P1	Column	HSS Pipe	A500 Gr.B	_Typical_
43_	M45	N66	N67			RIGID	None	None	RIGID	Typical
44	M46	N68	N69	· ·		RIGID	None	None	RIGID	
45	M47	N70	N71			RIGID	None	None		Typical
46	M48	N72	N73	-		RIGID	None	None	RIGID	Typical
47	M49	N74	N96	-				None	RIGID	Typical
48	M50	N75	N153			RIGID	None	None_	RIGID	Typical
49	M51	N76	N77	_	- -	RIGID	None	None	RIGID	Typical
50						RIGID	None	None	RIGID	Typical
	M52	N78	N79	·		RIGID	None	<u>No</u> ne	RIGID	Typical
51	M53	N80	N81		_	RIGID	None	None	RIGID	Typical
52	M54	N82	N83			RIGID	None	<u>None</u>	RIGID	Typical
53	M55	N84	<u>N</u> 85			RIGID	None	None	RIGID	Typical
54	M56	N86	N87			RIGID	None	None	RIGID	Typical
55	M57	N88	N89			MF-P1	Column		\500 Gr.B	Typical
56	M58	N90	N91			MF-P1	Column		A500 Gr.B	Typical
								. 100 1 100 P	3113711	ANICAL

: B+T Group : PKK : 134993.001.01 : 806372 - HRT 093 943228

May 3, 2019 9:07 AM Checked By:_

Member Primary Data (Continued)

	Label	. I Joint	J Joint	K Joint	Rotate(deg	Section/Shape	Type	Design List	Material	Design Rules
57	M59	N92	N93			MF-P1	Column		A500 Gr.B	
58	M60	N94	N95			MF-P1	Column		A500 Gr.B	Typical
59	<u>M</u> 62	N98	N99			MF-P1	Column		A500 Gr.B	Typical
60	M63	N100	N101			MF-P1	Column		A500 Gr.B	Typical
61	M64	N102	N103			RIGID	None	None	RIGID	Typical
62	M65	N104	N105			RIGID	None	None	RIGID	Typical
63	M66	N106	N107			RIGID	None	None	RIGID	Typical
64	M67	N108	N109			RIGID	None	None	RIGID	Typical
65	M68	N110	N132			RIGID	None	None	RIGID	Typical
66	M69	N111	N154			RIGID	None	None	RIGID	Typical
67	M70	N112	N113			RIGID	None	None	RIGID	Typical
_68	<u>M71</u>	N114	N115			RIGID	None	None	RIGID	Typical
69	<u>M72</u>	N116	N117	<u></u> .		RIGID	None	None	RIGID	Typical
70	M73	N118	N119			RIGID	None	None	RIGID	Typical
71	M74	N120	N121			RIGID	None	None	RIGID	Typical
72	M75	N122	N123			RIGID	None	None	RIGID	Typical
73	M76	N124	N125			MF-P1	Column		A500 Gr.B	Typical
74	<u>M77</u>	N126	N127			MF-P1	Column		A500 Gr.B	Typical
75	M78	N128_	N129			MF-P1	Column		A500 Gr.B	Typical
76	M79	N130	N131			MF-P1	Column	HSS Pipe	A500 Gr.B	Typical
_77	M81	N134	_ N135			MF-P1	Column		A500 Gr.B	Typical
78	M82	N136	N137				Column	Pipe	A500 Gr.B	Typical
79		N141A	N140A		_	Kicker	Beam	Double Angle (. A36 Gr.36	Typical
80	<u>M</u> 81A	N143	N142A			Kicker		Double Angle (Typical
81	M82A	N145	N144			Kicker	Beam	Double Angle (Typical
82	M83	N146	N149		180	CA Mod		Single Angle	A36 Gr.36	Typical
83	M84	N148	N151		180	CA Mod	Beam	Single Angle		Typical
84	M85	N150	N147		180	CA Mod	Beam	Single Angle		Typical
85	<u>M85</u> A	N137A	N138A			Handrail Mod		Pipe	A53 Gr.B	Typical

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P.,
1	Dead	DL	-	-1			65		3	
2_	0 Wind - No Ice	WLZ					65	43		
3_	90 Wind - No Ice	WLX					65	43		
4	0 Wind - Ice	WLZ					65	43		
5	90 Wind - Ice	WLX					65	43	· · · · · ·	
_6	0 Wind - Service	WLZ					65	43	:	
7	90 Wind - Service	WLX					65	43		_
8 -	ice	OL1					65	43	3	
9	Live Load a	<u>L</u> L				3				
10	Live Load b	LL				3				
11	Live Load c	<u>LL</u>				3				
_12	Live Load d	LL				- 3				
13	Maint LL 1	LL								
14	Maint LL 2	LL				_	1			
_15	Maint LL 3	LL					1			
16	Maint LL 4						1			
17	Maint LL 5	LL LL					1			
18	Maint LL 6	LL					1			
19	Maint LL 7	LL							_	
20	Maint LL 8	LL					1			
21	Maint LL 9	LL					1		- i.	
22	Maint LL 10	LL					1			
23	Maint LL 11	LL					1 _	i		

: B+T Group : PKK

: 134993.001.01 : 806372 - HRT 093 943228

May 3, 2019 9:07 AM Checked By:

Basic Load Cases (Continued)

BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Δτοο/Μο	Surface(D
Maint LL 12	LL					1	Distributed	/ / Cativie	Surfacetr
Maint LL 13	LL					1			·
Maint LL 14	- LL						<u> </u>		
Maint LL 15	LL					1	_	 	
	None						30		
C 8 Transient Area	None					· · · · · · · · · · · · · · · · · · ·		 	
	Maint LL 12 Maint LL 13 Maint LL 14	Maint LL 12 LL Maint LL 13 LL Maint LL 14 LL Maint LL 15 LL C1 Transient Area None	Maint LL 12 LL Maint LL 13 LL Maint LL 14 LL Maint LL 15 LL C1 Transient Area None	Maint LL 12 LL Maint LL 13 LL Maint LL 14 LL Maint LL 15 LL C1 Transient Area None	Maint LL 12 LL Maint LL 13 LL Maint LL 14 LL Maint LL 15 LL C1 Transient Area None	Maint LL 12 LL Maint LL 13 LL Maint LL 14 LL Maint LL 15 LL C1 Transient Area None	Maint LL 12 LL 1 Maint LL 13 LL 1 Maint LL 14 LL 1 Maint LL 15 LL 1 C1 Transient Area None 1	Maint LL 12 LL 1 Distributed Maint LL 13 LL 1 1 Maint LL 14 LL 1 1 Maint LL 15 LL 1 1 C1 Transient Area None 30	Maint LL 12 LL 1 Distributed Area(Me Maint LL 13 LL 1 1 Maint LL 14 LL 1 1 Maint LL 15 LL 1 1 C1 Transient Area None 30 30

Load Combinations

Description So. P., S. BLCFa., BLC					_								_		_									
2. 1.2 D + 1.0 - 3 W Yes Y 1 1.2 2 .866 3 .5		<u>Description</u>	So. F	S.,	. BL	CFa.	BL	CFa	BL (CFa.	BL	CFa	RI	CFa	RI.	CFa	BI (^ E-a	DI.	CE.	DI	CE.	DI /	~ F~
2 1.2 D + 1.0 - 0.0 W Yes Y 1 1.2 2 1 1 1.2 2 1 1 1.2 3 1.2 D + 1.0 - 3.0 W Yes Y 1 1.2 2 3.866 2 .5 5 1 2.0 D + 1.0 - 12.0 W Yes Y 1 1.2 3 3.866 2 .5 5 1 2.0 D + 1.0 - 12.0 W Yes Y 1 1.2 3 3.866 2 .5 5 1 1.2 D + 1.0 - 12.0 W Yes Y 1 1.2 3 3.866 2 .5 5 1 1.2 D + 1.0 - 12.0 W Yes Y 1 1.2 3 3.666 2 .5 5 1 1.2 D + 1.0 - 12.0 W Yes Y 1 1.2 2 3.866 3 .5 1 1.2 D + 1.0 - 12.0 W Yes Y 1 1.2 2 3.866 3 .5 1 1.2 D + 1.0 - 12.0 W Yes Y 1 1.2 2 3.866 3 .5 1 1.2 D + 1.0 - 21.0 W Yes Y 1 1.2 2 3.866 3 .5 1 1 1 1 2.D + 1.0 - 21.0 W Yes Y 1 1.2 2 3.866 3 .5 1 1 1 1 2.D + 1.0 - 21.0 W Yes Y 1 1.2 3 3.866 2 .5 1 1 1 1 2.D + 1.0 - 23.0 W Yes Y 1 1.2 3 3.866 2 .5 1 1 1 1 2.D + 1.0 - 33.0 W Yes Y 1 1.2 3 3.866 2 .5 1 1 1 1 2.D + 1.0 - 33.0 W Yes Y 1 1.2 3 3.866 2 .5 1 1 1 1 2.D + 1.0 - 33.0 W Yes Y 1 1.2 2 3.866 2 .5 1 1 1 1 2.D + 1.0 - 33.0 W Yes Y 1 1.2 2 3.866 3 .5 1 1 1 1 2.D + 1.0 - 30.0 W Yes Y 1 1.2 2 3.866 3 .5 1 1 1 1 2.D + 1.0 - 30.0 W Yes Y 1 1.2 2 3.866 3 .5 1 1 1 1 2.D + 1.0 - 30.0 W Yes Y 1 1.2 2 3.866 3 .5 1 1 1 1 2.D + 1.0 - 30.0 W Yes Y 1 1.2 4 4 8.66 5 .5 8 1 1 1 1 1 2.D + 1.0 - 30.0 W Yes Y 1 1.2 4 4 8.66 5 .5 8 1 1 1 1 1 2.D + 1.0 - 30.0 W Yes Y 1 1.2 5 8.66 4 .5 8 1 1 1 1 1 2.D + 1.0 - 30.0 W Yes Y 1 1.2 5 8.66 4 .5 8 1 1 1 1 1 2.D + 1.0 - 30.0 W Yes Y 1 1.2 5 8.66 4 .5 8 1 1 1 1 1 2.D + 1.0 - 30.0 W Yes Y 1 1.2 5 8.66 4 .5 8 1 1 1 1 1 2.D + 1.0 - 30.0 W Yes Y 1 1.2 5 8.66 4 .5 8 1 1 1 1 1 2.D + 1.0 - 30.0 W Yes Y 1 1.2 4 8.66 5 .5 8 1 1 1 1 1 2.D + 1.0 - 30.0 W Yes Y 1 1.2 5 8.66 4 .5 8 1 1 1 1 1 2.D + 1.0 - 30.0 W Yes Y 1 1.2 5 8.66 4 .5 8 1 1 1 1 1 2.D + 1.0 - 30.0 W Yes Y 1 1.2 5 8.66 4 .5 8 1 1 1 1 1 2.D + 1.0 - 30.0 W Yes Y 1 1.2 5 8.66 4 .5 8 1 1 1 1 1 2.D + 1.0 - 30.0 W Yes Y 1 1.2 5 8.66 4 .5 8 1 1 1 1 1 2.D + 1.0 - 30.0 W Yes Y 1 1.2 5 8.66 4 .5 8 1 1 1 1 1 2.D + 1.0 - 30.0 W Yes Y 1 1.2 5 8.66 4 .5 8 1 1 1 1 1 2.D + 1.0 - 30.0 W Yes Y 1 1.2 5 8.66 4 .5 8 1 1 1 1 1 2.D + 1.0 - 30.0 W Yes Y 1 1.2 5 8.66 6 .5 9 1.5 1 1 1 1 2.D + 1.0 - 30.0 W Yes Y 1 1.2 5 8.66 6 .5 9 1.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1_1_	1.4 Dead	Yes '	Υ	1	1.4	1	-	Т	1 7.1				<u> </u>)	, DE,	<u> </u>		<u> </u>	- -	Ul a	. DL(<u>-1-a</u>
3 1.2 D + 1.0 - 30 W Yes Y 1 1.2 2 868 3 .5 1 5 1.2 D + 1.0 - 90 W Yes Y 1 1.2 3 866 2 .5 1 6 1.2 D + 1.0 - 120 W Yes Y 1 1.2 3 866 2 .5 1 7 1.2 D + 1.0 - 120 W Yes Y 1 1.2 3 866 2 .5 1 8 1.2 D + 1.0 - 130 W Yes Y 1 1.2 2 .1 1 9 1.2 D + 1.0 - 130 W Yes Y 1 1.2 2 .1 1 9 1.2 D + 1.0 - 240 W Yes Y 1 1.2 2 .1 1 10 1.2 D + 1.0 - 240 W Yes Y 1 1.2 3 .866 2 .5 1 11 1.2 D + 1.0 - 240 W Yes Y 1 1.2 3 .866 2 .5 1 12 1.2 D + 1.0 - 300 W Yes Y 1 1.2 3 .866 2 .5 1 13 1.2 D + 1.0 - 300 W Yes Y 1 1.2 3 .866 2 .5 1 14 1.2 D + 1.0 - 300 W Yes Y 1 1.2 2 .866 3 .5 1 15 1.2 D + 1.0 - 30 W Yes Y 1 1.2 2 .866 3 .5 1 16 1.2 D + 1.0 - 30 W Yes Y 1 1.2 2 .866 3 .5 1 17 1.2 D + 1.0 - 90 W/lce Yes Y 1 1.2 4 .866 5 .5 8 1 1 18 1.2 D + 1.0 - 90 W/lce Yes Y 1 1.2 5 .866 4 .5 8 1 1 19 1.2 D + 1.0 - 120 W/lce Yes Y 1 1.2 5 .866 4 .5 8 1 1 19 1.2 D + 1.0 - 120 W/lce Yes Y 1 1.2 5 .866 4 .5 8 1 1 19 1.2 D + 1.0 - 180 W/lce Yes Y 1 1.2 5 .866 4 .5 8 1 1 19 1.2 D + 1.0 - 180 W/lce Yes Y 1 1.2 5 .866 4 .5 8 1 1 19 1.2 D + 1.0 - 180 W/lce Yes Y 1 1.2 5 .866 4 .5 8 1 1 10 1.2 D + 1.0 - 180 W/lce Yes Y 1 1.2 5 .866 4 .5 8 1 1 11 1.2 D + 1.0 - 190 W/lce Yes Y 1 1.2 5 .866 4 .5 8 1 1 12 1 1.2 D + 1.0 - 190 W/lce Yes Y 1 1.2 5 .866 4 .5 8 1 1 12 1 1.2 D + 1.0 - 190 W/lce Yes Y 1 1.2 5 .866 4 .5 8 1 1 12 1 1.2 D + 1.0 - 190 W/lce Yes Y 1 1.2 5 .866 4 .5 8 1 1 12 1 1.2 D + 1.0 - 190 W/lce Yes Y 1 1.2 5 .866 4 .5 8 1 1 12 1 1.2 D + 1.0 - 190 W/lce Yes Y 1 1.2 5 .866 5 .5 8 1 1 12 1 1.2 D + 1.0 - 190 W/lce Yes Y 1 1.2 5 .866 6 .5 8 1 1 12 1 1.2 D + 1.0 - 190 W/lce Yes Y 1 1.2 5 .866 6 .5 8 1 1 12 1 1.2 D + 1.0 - 190 W/lce Yes Y 1 1.2 5 .866 6 .5 8 1 1 12 1 1.2 D + 1.0 - 190 W/lce Yes Y 1 1.2 5 .866 6 .5 8 1 1 12 1 1.2 D + 1.0 - 190 W/lce Yes Y 1 1.2 5 .866 6 .5 8 1 1 12 1 1.2 D + 1.0 - 190 W/lce Yes Y 1 1.2 5 .866 6 .5 8 1 1 12 1 1.2 D + 1.0 -190 W/lce Yes Y 1 1.2 6 .866 7 .5 9 1.5 1 13 1 1.2 D + 1.5 L a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 1 14 1.2 D + 1.5 L a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 1 15 1.2 D + 1.5 L a + Service. Yes Y 1 1.2 6 .866 7	2	12D + 10 - 0W						1	+-	1		-	\vdash	+-	+		+	+	+	+	-	+	+	+
1.2 D + 1.0 - 90 W Yes Y 1.1.2 3. 866 25										-	+-	+-	-	-	+-	_	+-	-		_	-	-		
5 1.2 D + 1.0 - 90 W Yes Y													-	+-	┿.	↓			<u>ا</u>	4				
6 1.2 D + 1.0 - 120 W Yes Y									2	<u> .5</u>	_	 			_								1.	
Total Tota			_		<u> </u>				<u>L</u> .		_			-			İ							
7 1.2 D + 1.0 - 150 W Yes Y			Yes '	Y 📗	1	1.2	2 3	.866	2	5	;									1			1	
8 1.2 D + 1.0 - 180 W Yes Y 1 1.2 2 - 1 9 1.2 D + 1.0 - 210 W Yes Y 1 1.2 3 - 866 3 - 5 1 1 1 1.2 D + 1.0 - 210 W Yes Y 1 1.2 3 - 866 2 - 5 1 1 1 1.2 D + 1.0 - 270 W Yes Y 1 1.2 3 - 866 2 - 5 1 1 1 1.2 D + 1.0 - 30 W Yes Y 1 1.2 3 - 866 2 - 5 1 1 1 1.2 D + 1.0 - 30 W Yes Y 1 1.2 3 - 866 2 - 5 1 1 1 1.2 D + 1.0 - 30 W Yes Y 1 1.2 2 - 866 3 - 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7	1.2 D + 1.0 - 150 W	Yes '	Y	1	1.2	2 2	866	3	5			T		T	_		ļ —	†	<u> </u>	_	+	+	+
9 1.2 D + 1.0 - 210 W Yes Y 1 1.2 2 - 2.866 3 .5 5	8		Yes \	Y	1				<u> </u>	10		+ -	+	1	+	 	+		+-		+	 -	+-	+
10 1.2 D + 1.0 - 240 W Yes Y	9					1 2	2		2	+ =	.	+	+		-	-	-		+	+-	┿	+-	 	┵┵
11 1.2 D + 1.0 - 270 W Yes Y 1 1.2 3 -1 1.2 1.2 D + 1.0 - 300 W Yes Y 1 1.2 3 -866 2 .5 13 1.2 D + 1.0 - 0.330 W Yes Y 1 1.2 2 .866 3 .5 14 1.2 D + 1.0 - 0.0 W//ce Yes Y 1 1.2 4 .866 5 .5 8 1 15 1.2 D + 1.0 - 30 W//ce Yes Y 1 1.2 4 .866 5 .5 8 1 16 1.2 D + 1.0 - 30 W//ce Yes Y 1 1.2 5 .866 4 .5 8 1 17 1.2 D + 1.0 - 90 W//ce Yes Y 1 1.2 5 .866 4 .5 8 1 18 1.2 D + 1.0 - 10 W//ce Yes Y 1 1.2 5 .866 4 .5 8 1 19 1.2 D + 1.0 - 150 W//ce Yes Y 1 1.2 5 .866 4 .5 8 1 20 1.2 D + 1.0 - 210 W//ce Yes Y 1 1.2 4 .866 5 .5 8 1 21 1.2 D + 1.0 - 210 W//ce Yes Y 1 1.2 4 .866 5 .5 8 1 22 1.2 D + 1.0 - 240 W//ce Yes Y 1 1.2 5 .866 4 .5 8 1 23 1.2 D + 1.0 - 300 W//ce Yes Y 1 1.2 5 .866 4 .5 8 1 24 1.2 D + 1.0 - 300 W//ce Yes Y 1 1.2 5 .866 4 .5 8 1 25 1.2 D + 1.0 - 300 W//ce Yes Y 1 1.2 5 .866 4 .5 8 1 26 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 8 1 27 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 28 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 29 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 30 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 31 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 7 .866 6 .5 9 1.5 31 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 31 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 31 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2					7			000	1 >	- 5			-	-		_	-	-	<u> </u>	4		-	↓	╧
12					_	1.4	. 3		12	<u>5</u>		-		+-			<u> </u>	<u> </u>		<u> </u>				
13	-					1.2	<u>'_3</u>		<u> </u>	ļ. <u>.</u>	_							L.						1 1
14 1.2 D + 1.0 - 0 W/lce Yes Y			Yes \	<u>/ </u>			! 3		2	.5	1		1								1	T		1
14 1.2 D + 1.0 - 0 W/lce Yes Y	<u> 13</u>	<u>1.2 D + 1.0 - 330 W</u>		/	11	1.2	2	.866	3	- 5							1	_	1	!	1	_	+	\vdash
15 1.2 D + 1.0 - 30 W/Ice Yes Y	14	1.2 D + 1.0 - 0 W/Ice	Yes \		1						_	1	1	—	1	_	+	ļ.—	+	\dagger	-	+	+-	
16 1.2 D + 1.0 - 60 W/lce Yes Y 1 1.2 5 866 4 .5 8 1 17 1.2 D + 1.0 - 90 W/lce Yes Y 1 1.2 5 866 4 .5 8 1 18 1.2 D + 1.0 - 120 W/lce Yes Y 1 1.2 5 .866 4 .5 8 1 19 1.2 D + 1.0 - 150 W/lce Yes Y 1 1.2 4 .866 5 .5 8 1 20 1.2 D + 1.0 - 150 W/lce Yes Y 1 1.2 4 .866 5 .5 8 1 21 1.2 D + 1.0 - 240 W/lce Yes Y 1 1.2 4 .866 5 .5 8 1 22 1.2 D + 1.0 - 240 W/lce Yes Y 1 1.2 5 .866 4 .5 8 1 23 1.2 D + 1.0 - 270 W/lce Yes Y 1 1.2 5 .866 4 .5 8 1 24 1.2 D + 1.0 - 270 W/lce Yes Y 1 1.2 5 .866 4 .5 8 1 25 1.2 D + 1.0 - 270 W/lce Yes Y 1 1.2 5 .866 4 .5 8 1 26 1.2 D + 1.0 - 330 W/lce Yes Y 1 1.2 5 .866 4 .5 8 1 27 1.2 D + 1.0 - 330 W/lce Yes Y 1 1.2 6 .866 7 .5 8 1 28 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 29 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 7 .866 6 .5 9 1.5 29 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 7 .866 6 .5 9 1.5 30 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 31 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 32 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 32 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 33 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 33 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 34 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 35 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 36 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 37 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 38 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 39 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 30 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 31 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 31 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 32 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 33 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 34 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 35 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 36 1.2 D + 1.5	15								5	5			1-	+	+				┯	1	-	+	+	\vdash
17 1.2 D + 1.0 - 90 W/Ice Yes Y	16	1.2 D + 1.0 - 60 W//ce	Yes \	/-					4				+-	+	+-	-	+	ļ <u> </u>	+		4-	↓	┿	<u> </u>
18	17	12D+10-00 W/Ice	Voc 1	, -					4	_,5			 - -	ļ	 _	-	<u> </u>		<u> </u>		↓ _			
19		1.2 D + 1.0 - 90 VV/ICE	165		_				<u> </u>	1		-	ļ		-				<u>L</u>					
20		1.2 D + 1.0 - 120 VV/ICE			_1						8.	1											Ţ.	
20					1	1.2	4	866	5	.5	8	1					1 "		-		· ·	T		
21 1.2 D + 1.0 - 210 W/lce Yes Y		1.2 D + 1.0 - 180 W/Ice	Yes \	/	1	1.2	4				8	1					1				 	+	 	\vdash
22 1.2 D + 1.0 - 240 W/Ice Yes Y 1 1.2 5 - 866 4 - 5 8 1 2 3 1.2 D + 1.0 - 300 W/Ice Yes Y 1 1.2 5 - 1 8 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 5 1 1 2 1 2 1 2 1 2 1 2 2	21	1.2 D + 1.0 - 210 W/Ice			· -				-5	5		-	1	<u> </u>	+	_		 			1	 -	\vdash	
23 1.2 D + 1.0 - 270 W/lce Yes Y 1 1.2 5 -1 8 1 2 24 1.2 D + 1.0 - 300 W/lce Yes Y 1 1.2 5 -866 4 .5 8 1 2 25 1.2 D + 1.0 - 330 W/lce Yes Y 1 1.2 6 .866 5 .5 8 1 2 26 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 2 27 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 7 .866 6 .5 9 1.5 2 28 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 7 .866 6 .5 9 1.5 2 29 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 7 1 9 1.5 2 30 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 3 31 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 3 32 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 3 33 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 3 34 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 3 35 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 3 36 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 3 36 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 7 .866 6 .5 9 1.5 3 36 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 7 .866 6 .5 9 1.5 3 37 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 7 .866 6 .5 9 1.5 3 38 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 7 .866 6 .5 9 1.5 3 39 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 3 39 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 3 39 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 3 40 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 .5 10 1.5 3 41 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 .5 10 1.5 3 42 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 .5 10 1.5 3 44 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 .5 10 1.5 3 45 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 .5 10 1.5 3 46 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 .5 10 1.5 3 47 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 .5 10 1.5 3 48 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 3 49 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 .5 10 1.5 3 40 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 3 41 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 3 42 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7					-								+	-	-	-				-		-		
24 1.2 D + 1.0 - 300 W/lce Yes Y 1 1.2 5 - 866 4 .5 8 1 1 25 1.2 D + 1.0 - 1.3 0 W/lce Yes Y 1 1.2 4 .866 55 8 1 1 26 1.2 D + 1.5 LL a + Service Yes Y 1 1.2 6 .866 7 .5 9 1.5 1.5 27 1.2 D + 1.5 LL a + Service Yes Y 1 1.2 7 .866 6 .5 9 1.5 28 1.2 D + 1.5 LL a + Service Yes Y 1 1.2 7 .1 9 9 1.5 29 1.2 D + 1.5 LL a + Service Yes Y 1 1.2 7 .1 9 9 1.5 30 1.2 D + 1.5 LL a + Service Yes Y 1 1.2 6 .866 7 .5 9 1.5 31 1.2 D + 1.5 LL a + Service Yes Y 1 1.2 6 .866 7 .5 9 1.5 32 1.2 D + 1.5 LL a + Service Yes Y 1 1.2 6 .866 7 .5 9 1.5 33 1.2 D + 1.5 LL a + Service Yes Y 1 1.2 6 .866 7 .5 9 1.5 34 1.2 D + 1.5 LL a + Service Yes Y 1 1.2 7 .866 6 .5 9 1.5 35 1.2 D + 1.5 LL a + Service Yes Y 1 1.2 7 .866 6 .5 9 1.5 36 1.2 D + 1.5 LL b + Service Yes Y<		12D+10-270 W/Ice	Voc \	, 					4	-,o			+	_					<u> </u>		ļ	<u> </u>		
25													+	<u> </u>	<u> </u>	ļ <u>.</u>	ļ		ļ			<u> </u>		
26 1.2 D + 1.5 LL a + Service. Yes Y										_,5					<u> </u>				<u> </u>					
27 1.2 D + 1.5 LL a + Service Yes Y 1 1.2 6 .866 7 .5 9 1.5 28 1.2 D + 1.5 LL a + Service Yes Y 1 1.2 7 .866 6 .5 9 1.5 29 1.2 D + 1.5 LL a + Service Yes Y 1 1.2 7 1 9 1.5 30 1.2 D + 1.5 LL a + Service Yes Y 1 1.2 7 .866 6 5 9 1.5 31 1.2 D + 1.5 LL a + Service Yes Y 1 1.2 6 .866 7 .5 9 1.5 32 1.2 D + 1.5 LL a + Service Yes Y 1 1.2 6 .866 7 .5 9 1.5 33 1.2 D + 1.5 LL a + Service Yes Y 1 1.2 7 .866 6 5 9 1.5 34 1.2 D + 1.5 LL a + Service Yes Y 1 1.2 7 -1 9 1.5 35 1.2 D + 1.5 LL a + Service Yes Y 1 1.2 7 -1 9 1.5 36 1.2 D + 1.5 LL b + Service Yes Y 1 1.2 6 .866 7 5 9 1.5 39 1.2 D + 1.5 LL b + Service Yes Y 1 1.2 6 .866 7 5 10 1.5		1.2 D + 1.0 - 330 VV/ICe	Yes Y		1			.866	5_	5	8	1]									
27 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 28 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 7 .866 6 .5 9 1.5 29 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 7 1 30 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 7 .866 6 .5 9 1.5 31 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 32 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 33 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 34 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 35 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 7 .866 6 .5 9 1.5 36 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 7 .866 6 .5 9 1.5 37 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 38 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 39 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 39 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 40 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 .5 10 1.5 41 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 .5 10 1.5 42 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 .5 10 1.5 43 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 .5 10 1.5 44 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 44 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 45 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 46 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 47 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 48 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 49 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 40 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 40 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 41 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 42 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 43 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 44 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 45 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 46 1.2 D + 1.5 LL b + Serv	26	1.2 D + 1.5 LL a + Service.	Yes Y	'	_1	1.2	6	1		i	9	1.5											\vdash	
28 1.2 D + 1.5 LL a + ServiceYes Y 1 1.2 7 .866 6 .5 9 1.5	_27	1.2 D + 1.5 LL a + Service.	Yes Y	<i>'</i> "	1	1.2		.866	7	5							_	_	-		<u> </u>	 	\vdash	
29 1.2 D + 1.5 LL a + Service. Yes Y	28	1.2 D + 1.5 LL a + Service.	Yes Y	7							a	1 5	+	 -								 	\vdash	
30 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 7 .866 6 .5 9 1.5 31 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 32 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 33 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 34 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 7 .866 6 .5 9 1.5 35 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 7 .866 6 .5 9 1.5 36 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 7 .866 6 .5 9 1.5 37 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 38 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 9 1.5 39 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 39 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 40 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 .5 10 1.5 41 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 .5 10 1.5 42 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 .5 10 1.5 43 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 .5 10 1.5 44 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 44 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 45 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 46 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 47 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 48 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 49 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 40 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 40 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 41 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 42 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 43 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 44 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 45 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 46 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 47 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 48 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 49 1.2	29	1.2 D + 1.5 Li, a + Service	Yes V	,					<u> </u>	.ن.				-	-	<u> </u>	-		_		1			
31 1.2 D + 1.5 LL a + ServiceYes Y 1 1.2 6866 7 .5 9 1.5 32 1.2 D + 1.5 LL a + ServiceYes Y 1 1.2 6866 7 .5 9 1.5 33 1.2 D + 1.5 LL a + ServiceYes Y 1 1.2 6866 7 .5 9 1.5 34 1.2 D + 1.5 LL a + ServiceYes Y 1 1.2 7866 6 .5 9 1.5 35 1.2 D + 1.5 LL a + ServiceYes Y 1 1.2 7866 6 .5 9 1.5 36 1.2 D + 1.5 LL a + ServiceYes Y 1 1.2 7866 6 .5 9 1.5 37 1.2 D + 1.5 LL a + ServiceYes Y 1 1.2 6 .866 7 .5 9 1.5 38 1.2 D + 1.5 LL b + ServiceYes Y 1 1.2 6 .866 7 .5 10 1.5 39 1.2 D + 1.5 LL b + ServiceYes Y 1 1.2 6 .866 7 .5 10 1.5 40 1.2 D + 1.5 LL b + ServiceYes Y 1 1.2 7 .866 6 .5 10 1.5 41 1.2 D + 1.5 LL b + ServiceYes Y 1 1.2 7 .866 6 .5 10 1.5 42 1.2 D + 1.5 LL b + ServiceYes Y 1 1.2 7 .866 6 .5 10 1.5 43 1.2 D + 1.5 LL b + ServiceYes Y 1 1.2 6 .866 7 .5 10 1.5 43 1.2 D + 1.5 LL b + ServiceYes Y 1 1.2 6 .866 7 .5 10 1.5 45 1.2	30	12D + 15 LL a + Service	Voc V	,+-	·-				_	_				<u> </u>			<u> </u>		<u> </u>					
32 1.2 D + 1.5 LL a + Service Yes Y	24	1.2 D + 1.5 LL a + Comite.	165 Y																			<u> </u>		ı
33 1.2 D + 1.5 LL a + ServiceYes Y	31	1.2 D + 1.5 LL a + Service	res y			1.2	6		7	5					<u> </u>									
33 1.2 D + 1.5 LL a + ServiceYes Y	32_	1.2 D + 1.5 LL a + Service	Yes Y		_1			-1			9	1.5												
34 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 7866 65 9 1.5 35 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 71 9 1.5 36 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 7866 6 .5 9 1.5 37 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 75 9 1.5 38 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 39 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 40 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 .5 10 1.5 41 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 .5 10 1.5 42 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 .5 10 1.5 42 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 .5 10 1.5 43 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 44 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 45 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5	33	1.2 D + 1.5 LL a + Service	Yes Y	'	1	1.2	6	866	7	5														
35 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 7 -1 9 1.5 36 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 7 .866 6 .5 9 1.5 37 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 -5 9 1.5 38 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 1 10 1.5 39 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 40 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 .5 10 1.5 41 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 1 10 1.5 42 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 65 10 1.5 43 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 65 10 1.5 44 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 45 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 46 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 47 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 48 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 49 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 40 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 40 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5	_34	1.2 D + 1.5 LL a + Service	Yes Y	'	1							1.5						-	1	-				-
36 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 7 866 6 .5 9 1.5 37 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 7 38 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 39 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 40 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 41 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 1 10 1.5 42 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 43 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 44 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 45 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 46 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 47 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 48 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 49 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 40 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 40 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 41 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 42 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 43 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 44 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 45 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 46 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 47 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 48 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 49 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 40 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 40 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 41 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7	35	1.2 D + 1.5 LL a + Service	Yes Y		<u> </u>					٠.٠				<u> </u>			\vdash							
37 1.2 D + 1.5 LL a + Service. Yes Y 1 1.2 6 .866 75 9 1.5 38 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 1 10 1.5 39 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 40 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 .5 10 1.5 41 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 1 10 1.5 42 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 65 10 1.5 43 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 44 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 45 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5	36	1,2 D + 1,5 LL a + Service	Yes V						-				 		-							 	\vdash	
38 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 1 10 1.5 39 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 40 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 .5 10 1.5 41 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 1 10 1.5 42 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 65 10 1.5 43 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 44 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 45 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5	37	12D+15H a+ Service	Vec V	+-		1.5	-		$\overline{}$				<u> </u>		L		_				ļ		\sqcup	
39 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 40 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 .5 10 1.5 41 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 1 10 1.5 42 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 65 10 1.5 43 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 44 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 45 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5	20	12D ± 15LL b + Comitati	.ies Y	,						5			<u> </u>			l .						لـــــا		
40 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 .5 10 1.5 41 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 .5 10 1.5 42 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 65 10 1.5 43 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5 44 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6866 7 .5 10 1.5 45 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 .866 7 .5 10 1.5	30	1.2 D + 1.5 LL D + Service	ies Y			1.2]]			, -7		
40 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 6 .5 10 1.5 41 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 1 10 1.5 42 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 65 10 1.5 43 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6866 7 .5 10 1.5 44 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 -1 10 1.5 45 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6866 7 .5 10 1.5	39	1.2 D + 1.5 LL b + Service	Yes Y		1		6			5	<u> 1</u> 0	1.5												
41 1.2 D + 1.5 LL b + Service Yes Y 1 1.2 7 1 10 1.5 42 1.2 D + 1.5 LL b + Service Yes Y 1 1.2 7 .866 65 10 1.5 43 1.2 D + 1.5 LL b + Service Yes Y 1 1.2 6866 7 .5 10 1.5 44 1.2 D + 1.5 LL b + Service Yes Y 1 1.2 6 -1 10 1.5 45 1.2 D + 1.5 LL b + Service Yes Y 1 1.2 6866 7 .5 10 1.5	40_	1.2 D + 1.5 LL b + Service	Yes Y	<u> </u>	1		7	.866	6	.5			_											
42 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 7 .866 65 10 1.5 43 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6866 7 .5 10 1.5 44 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 61 10 1.5 45 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6866 7 .5 10 1.5	41	1.2 D + 1.5 LL b + Service	Yes Y		1						. 7		_		- 1				-		-			-
43 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 -866 7 .5 10 1.5 44 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 -1 10 1.5 45 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 -866 7 -5 10 1.5	42	1.2 D + 1.5 LL b + Service	Yes V	\top					6				<u> </u>									\longrightarrow		
44 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6 -1 10 1.5 45 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6866 75 10 1.5	43	12D + 15H h + Service	Yes V	+	<u>-</u> -		-							-+										
45 1.2 D + 1.5 LL b + Service. Yes Y 1 1.2 6866 75 10 1.5	44	12D+15H b+ Comice	Vos V	+ +	_				1	<u>.5</u>	10	<u>1.5</u>												
40 40 B 4 F 4 L B 1 T B	44	1.2 D + 1.5 LL D + Service	res Y	-]			T	
	45	1.2 D + 1.5 LL b + Service	res Y							5	10	1.5	i		Ī	7								
	46	1.2 D + 1.5 LL b + Service.	Yes Y		1	1.2	7	.866							j		j						\neg	

: B+T Group

: PKK : 134993.001.01 : 806372 - HRT 093 943228

May 3, 2019 9:07 AM Checked By:_

Load Combinations (Continued)

Description SoP S		DI.	250	DI C	·	- FI (DI 05							_		_	
Description So. P S 47 1.2 D + 1.5 LL b + Service. Yes Y	1 1.2	2 7	∍га <mark>-1</mark>	BLU	,га <u></u>	. BL(1.5	BLCFa.	BL	<u>CFa.</u>	. BL	<u> CFa</u>	. BLC	;Fa,	BLC	Fa	BLC	;Fa
48 1.2 D + 1.5 LL b + Service. Yes Y	1 1.2		866	-	-				-	_	-		-	ļ	↓		_	<u> </u>
49 1.2 D + 1.5 LL b + Service. Yes Y	1 1.2						1.5			+-	-	<u> </u>	<u> </u>	_	-		Ļ.	<u> </u>
50 1.2 D + 1.5 LL c + Service Yes Y	1 1.2		1		5	10	1.5		-		<u> </u>	-		Ļ	<u> </u>			_
51 1.2 D + 1.5 LL c + ServiceYes Y	1 1.2	6	.866		-		1.5	<u> </u>	-		+	├	<u> </u>	<u> </u>		 	1	
52 1.2 D + 1.5 LL c + ServiceYes Y	1 1.2	7	.866		<u></u>	11	1.5 1.5	-		-	+-	ļ . <u> </u>	 	<u> </u>			<u> </u>	
53 1.2 D + 1.5 LL c + Service Yes Y	1 1.2	7	1	0	.o_	11		 		+-	-	ļ. ·	<u> </u>		<u> </u>		ļ	
54 1.2 D + 1.5 LL c + ServiceYes Y	1 1.2		.866	R	_ =		1.5 1.5	 	+-	⊹	+	<u> </u>					ļ	
55 1.2 D + 1.5 LL c + ServiceYes Y	1 1.2		866		.5		1.5		+-		+-	<u> </u>	ļ					ļ
56 1.2 D + 1.5 LL c + Service Yes Y	1 1.2	6	-1		.5		1.5		+-	-	┼		-		_			
57 1.2 D + 1.5 LL c + Service Yes Y	1 1.2		.866	_	5		1.5	- -		-	-	-						
58 1.2 D + 1.5 LL c + Service Yes Y	1 1.2		866		<u></u> 5	11	1.5		+	+-	-	<u> </u>		_				<u> </u>
59 1.2 D + 1.5 LL c + ServiceYes Y	1 1.2		-1	•	<u>",</u> U		1.5		┿	+-								
60 1.2 D + 1.5 LL c + ServiceYes Y	1 1.2	7	866	6	.5	11	1.5		+-	-	1	-						
61 1.2 D + 1.5 LL c + ServiceYes Y	1 1.2		.866		- 5	11	1.5	_	+-	-	 	-	├					
62 1.2 D + 1.5 LL d + Service. Yes Y	1 1.2		1	-	<u></u>	12	1.5		-	†	-		-	_	-			
63 1.2 D + 1.5 LL d + Service. Yes Y	1 1.2	6	.866	7	5		1.5		+	 	 - -	_	-					
64 1.2 D + 1.5 LL d + ServiceYes Y	1 1.2	7	866		-5	12	1.5		-		-							
65 1.2 D + 1.5 LL d + Service. Yes Y	1 1.2		1				1.5		+-	+-	+-		-		\dashv			
66 1.2 D + 1.5 LL d + ServiceYes Y	1 1.2		.866	R	5	12	1.5	-	-									
67 1.2 D + 1.5 LL d + Service. Yes Y	1 1.2			7	.5		1.5		1-		†							
68 1.2 D + 1.5 LL d + Service. Yes Y	1 1.2		-1	•			1.5	_	-		-		- 1			_		
69 1.2 D + 1.5 LL d + Service. Yes Y	1 1.2		- 866	7	- 5	12	1.5	 -	 -	-			-	-		-+		
70 1.2 D + 1.5 LL d + Service. Yes Y	1 1.2		866		- 5				+	-			-					
71 1.2 D + 1.5 LL d + Service. Yes Y	1 1.2		-1	_			1.5		1	_			+		-			-
72 1.2 D + 1.5 LL d + Service. Yes Y	1 1.2		866	6	.5	12	1.5		+	T-	1 1		\dashv			-		
73 1.2 D + 1.5 LL d + ServiceYes Y	1 1.2	6			5										-+	-	\dashv	
74 1.2 D + 1.5 LL Maint (1) Yes Y	1 1.2			•		13		_ _	†	_		-	-	-	\dashv			
75 1.2 D + 1.5 LL Maint (2) Yes Y	1 1,2		T			14			1	-		\dashv		-	-		\dashv	
76 1.2 D + 1.5 LL Maint (3) Yes Y	1 1.2					15			_	· -					 		\rightarrow	
77 1.2 D + 1.5 LL Maint (4) Yes Y	1 1.2					16			1 -			1	-+	_			-	
78 1.2 D + 1.5 LL Maint (5) Yes Y	1 1.2					17		-	<u> </u>				-				-	
79 1.2 D + 1.5 LL Maint (6) Yes Y	1 1.2					18		·		_		-	\neg		-+	-		-
80 1.2 D + 1.5 LL Maint (7) Yes Y	1 1.2					19		<u> </u>		_			-+	+	+	+	-+	
81 1.2 D + 1.5 LL Maint (8) Yes Y	1 1.2					20						-		-	+			-
82 1.2 D + 1.5 LL Maint (9) Yes Y	1 1.2			Ť		21		-				_	_	-	+	-		\dashv
83 1.2 D + 1.5 LL Maint (10) Yes Y	1 1.2	_				22						\neg		\dashv	\dashv		-+	\dashv
84 1.2 D + 1.5 LL Maint (11) Yes Y	1 1.2					23				_			†		-	+	\dashv	\dashv
85 1.2 D + 1.5 LL Maint (12) Yes Y	1 1.2					24				-	-		-	_	\dashv	\dashv	-	
86 1.2 D + 1.5 LL Maint (13) Yes Y	1 1.2					25	1.5					-	-		-	-+	\dashv	
87 1.2 D + 1.5 LL Maint (14) Yes Y	1 1.2			I		26					$\neg \top$				-	$^{+}$	-	
88 1.2 D + 1.5 LL Maint (15) Yes Y	1 1.2					27				. "			\top			-	-+	$\neg \neg$

Joint Loads and Enforced Displacements (BLC 9 : Live Load a)

Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/i
1 N50	<u> </u>	Y	- 5
2 N86	L.	Y	- 5
3 N122	L	Y	5

Joint Loads and Enforced Displacements (BLC 10 : Live Load b)

Joint Label	L,D,M_	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/i
1 N46	<u> </u>	Y	- 5
2 N82	L	Y	-5
3 N118		Υ	5

: B+T Group : PKK : 134993.001.01 Model Name

: 806372 - HRT 093 943228

May 3, 2019 9:07 AM Checked By:_

Joint Loads and Enforced Displacements (BLC 11 : Live Load c)

Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/i
1 N36	L	Υ	- 5
2 N72	L	Ÿ	- 5
3 N108	L L	Ý	5

Joint Loads and Enforced Displacements (BLC 12 : Live Load d)

Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/i
_1 N32	L	Y	- 5
2 N68	L	Y	- 5
3N104	<u> </u>	Y	5

Member Point Loads (BLC 1 : Dead)

1 M25 2 M25 3 M25 4 M25 5 M25	Y Y Y	Magnitude[k,k-ft] 008 008	Location[in,%] %5 %55
3 M25 4 M25	Y		0/55
4 M25			%55
		0	0
5 1425	Y	0	Ŏ
	Y	0	0
6 M38	Y	039	%10
_7 M38	Υ	039	%85
8 M38	Υ Υ	169	%25
9 M38	Y	0	0
10 M38	Y	0	0
11 M39	Y	039	%10
12 M39	Y		<u>%85</u>
13 M39	Y	0	0
14 M39	Υ Υ	0	0
15 M39	Υ Υ	0	0
16 <u>M40</u>	Y	008	% 5
	Y	008	%55
18 M40	Υ Υ	0	0
19 M40	Y	0	0
20 M40	Y	0	0
21 M63	Y	008	%5
22 M63	Y		%55
23 M63	Ý	0	0
24 M63	Y	0	0
25 M63	Y	0	0
26 M76	Y	039	%10
27 M76	Y	039	%85
28 M76	Y	084	%25
29M76	Y	~.07	%25 %25
30 M76	Y	0	0
31 M77	Y	039	%10
32 M77	Y		%85
33 M77	Υ Υ	0	0
34 M77	Y		0
35 M77	Y	0	0
36 <u>M78</u>	Y	008	%5
37 M78	Y	008	%55
	Ý	0	0
_39 M78	Y	0	0
40 M78	Y	0	0
41 M44	Ý	008	%5
42 M44	Y	008	%55
43 M44	Ý	0	0

: B+T Group

PKK 134993.001.01 806372 - HRT 093 943228

May 3, 2019 9:07 AM Checked By:_

Member Point Loads (BLC 1 : Dead) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]
44	M44	Y	0	0
45	M44	Y	0	0
46	M57	Υ	039	%10
47	M57	Y	039	%85
48	M57	Y	141	%25
49	M57	Υ	. 0	0
50	M57	Y	0	0
51	M58	Υ	039	%10
52	M58	Y	039	%85
53	M58	Y	0	0
54	M58	Y	0	0
55	M58	Υ	0	0
_56	M59	Υ	008	%5
57	M59	Y	008	%55
58	M59	Y	0	0
59	M59	Y	0	0
60	M59	Υ	0.	0
61	M82	Υ	044	%20
62	M82	Υ	044	%20
63	M82	Υ	0	0
64	M82	Y	0	. 0
65	M82	Y	0	0

Member Point Loads (BLC 2: 0 Wind - No Ice)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]
1	M25	Z	077	%5
2	M25	Z	077	%55
3	M25	Z	0	0
4	M25	Z	0	0
5	M25	Z	0	0
6	M38	Z	217	%10
7	M38	Z	217	%85
8	M38	Z	088	%50
9	M38	Z	0	0
10	M38	Z	0	0
11	M39	Z	217	%10
12	M39	Z	-,217	%85
13	<u>M39</u>	Z	0	0
14	M39	Z	0	0
15	<u>M</u> 39	Z	0	0
16	M40	Z	077	%5
17	<u>M40</u>	Z	077	%55
18	M40		0	0
19	M40	Z	0	0
20	M40	Z	0	0
21	M63	Z	077	%5
22	M63	Z	077	%55
23	<u>M63</u>	Z	0	0
24	<u>M63</u>	Z	0	0
25	M63	Z	0	0
26	M76	Z	217	%10
27	<u>M76</u>	Z	217	%85
28	M76	Z	044	%50
29	M76	Z	036	%50
30	M76	Z	0	0
31	M77	Z	217	%10

npany : B+T Gr igner : PKK Number : 134993

: B+T Group : PKK : 134993.001.01 : 806372 - HRT 093 943228

May 3, 2019 9:07 AM Checked By:_

Member Point Loads (BLC 2: 0 Wind - No Ice) (Continued)

Γ	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]
32	<u> </u>	Z	217	%85
33	M77	Z	0	0
_34	M77	Z	0	0
35	<u>_M77</u>	Z	0	0 .
36	M78_	Z	077	%5
37	M78	Z	077	%55
38	M78	Z	0	0
39	M78	Z	0	0
40	M78	Z	0	0
41	M44	Z	077	%5
42	M44	Z	077	% <u>5</u> 5
43	M44	Z	0	0
_44	M44	Z	0	0
45	M44	Z	0	0
46	M57	Z	217	%10
47	M57	Z	217	%85
48	M57	Z	072	%50
49	M57	Z	0	0
50	M57	Z	0	0
51	M58	Z	217	%10
52	M58	Z	217	%85
_53	M58	Z	0	0
54	M58	Z	0	0
55	M58	Z	0	0
56	M59	Z	077	%5
57	M59	Z Z	077	%55
58	M59	Z	0	0
59	M59	Z	0	0
60	M59	Z	0	0
61	M82	Z	071	%20
62	M82	Z	071	%20 %20
63	M82	Z	0	0
64	M82	Z	0	0
65	M82	Z	0	Ö

Member Point Loads (BLC 3 : 90 Wind - No Ice)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]
_1	M25	X	064	%5
_ 2	M25	X	064	%55
3	M25	X	0	0
4	M25	X	0	0
_5	M25.	X	0	0
6_	M38	X	102	_%10
7	M38	X	102	%85
8	M38	X	133	%50
9	M38	X	0	
_10	M38	X	0	0
11	M39	X	102	%10
12	M39	X	102	<u>%85</u>
13	M39	X	0	0
14	M39	X	. 0.	0
15	M39	X	0	0
16	M40	X	064	%5
17	M40	X	064	%55
18	M40	X	0	0
19	M40	X	0	0

: B+T Group : PKK : 134993.001.01 : 806372 - HRT 093 943228

May 3, 2019 9:07 AM Checked By:

Member Point Loads (BLC 3: 90 Wind - No Ice) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]
20	<u>M40</u>	X	0	0
21	M63	X	064	%5
22	M63	X	064	<u>%55</u>
23	M63	X	0	0
24	M63	X	0	Ö
25	M63	X	0	0
26	M76	X	102	%10
27	M76	X	102	%85
28	M76	X	066	%50
29	M76	X	066	%50
30	M76	X	0	0
31	M77	X	102	%10
32	M77	X	102	%85
33	M77	X	0	7803
34	M77	X	0	0
35	M77	X	0	0
36	M78	X	064	%5
37	M78	X	064	%55 %55
38	M78	X	0	
39	M78	X	0	0
40	M78	X	0	0
41	M44	X	064	
42	M44	X		<u>%5</u>
43	M44	X	064	%55
44		X	0	0
45	M44		0	0
46	M57	X	0	0
47	M57		102	<u>%10</u>
48	M57	X	102	%85
49	M57	X	133	<u>%5</u> 0
50		X	0	0
51	M57	X	0	0
52	M58	X	102	%10
	M58	X	102	%85
53	M58	X	0	0
54	M58	X	0	0
55	M58	X	0	0
56	M59	X	064	% 5
_57	M59	X	064	<u>%55</u>
58	M59	X	0	<u>'0</u>
59	M59	X	0	0
60	M59	X	0	0
61	M82	X	17	%20
62	M82	X	17	%20
63	M82	X	0	0
_64	M82	X	0	0
65	M82	X	0	0

Member Point Loads (BLC 4: 0 Wind - Ice)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]
_ 1	M25	Z	012	%5
2	M25	Z	012	%55
3	M25	Z	0	0
4_	M25	Z	0	0
5	M25	Z	0	0
6	M38	Z	035	%10
7	M38	Z	035	%85

: B+T Group : PKK : 134993.001.01 : 806372 - HRT 093 943228

May 3, 2019 9:07 AM Checked By:_

Member Point Loads (BLC 4: 0 Wind - Ice) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]
8	M38	Z	014	%50
9	M38	Z	0	0
10	M38	Z	0	0
11	M39	Z	035	%10
12	<u>M39</u>	Z	035	%85
13	M39	Z	0	0
14	M39	Z	0	0
15	M39	Z	0	Ō
16	M40	Z	012	<u>%</u> 5
17	M40	Z	012	%55
18	M40	Z	0	0
19	M40	Z	0	0
20	M40	Z	Ŏ	0
21	M63	Z	012	<u>%5</u>
22	M63	Z	012	%55
23	M63	Z	0	0
24	M63	Z	Ö	0
25	M63	Z	0	0
26	M76	Z	035	%10
27	M76	Z	035	%10 %85
28	M76	Z	007	%50
29	M76	Z	007	%50 %50
30	M76	Z Z	000	0
31	M77	Z	035	<u>%</u> 10
32	M77	Z	035	%10 %85
33	M77	Z	035	
34	M77	Z	0	0
35	M77	Z	0	0
36	M78	Z	012	
37	M78	Z	012 012	<u>%5</u>
38	M78	Z	0	<u>%55</u>
39	M78	Z	0	0 0
_40	M78	Z	0	
41	M44	Z	012	0
42	M44	Z		%5 %55
43	M44	Z	012	<u>%55</u>
44	M44	Z	0 0	0
45	M44	Z		0
46	M57	Z	0	0
47	M57		035	<u>%10</u>
48	M57	<u>Z</u>	035	<u>%85</u>
49	M57 M57	7	011	<u>%50</u>
50	M57	Z	0	0
51	M57		0	0
52	M58	Z Z	035	%10 %25
53	M58	<u>Z</u>	035	%85
54		4 4	0	0
55	<u>M58</u> <u>M58</u>	Z	0	0
56	N59	Z Z	0	0
57		4 4	012	% 5
58	M59	Z	012	%55
59	M59	Z	0	0
	M59	Z Z	0	0
60	M59	<u> </u>	0	0
61 62	M82	Z	-,011	%20
62	M82	Z	011	<u>%20</u>
63	M82	Z	0	0
64	M82	Z	0	0

: B+T Group : PKK : 134993.001.01 : 806372 - HRT 093 943228

May 3, 2019 9:07 AM Checked By:

Member Point Loads (BLC 4: 0 Wind - Ice) (Continued)

	ember Label	Direction	Magnitudelk.k-ftl	Locationfin.%I
65	M82	Z_	0	0

Member Point Loads (BLC 5: 90 Wind - Ice)

	Member Label	Direction	Magnitude[k.k-ft]	Location[in,%]
1	<u>M25</u>	X	01	<u>%5</u>
2	M25	X	01	%55
3	<u> </u>	X	0	0
4	M25	X	0	o
5	M25	X	0	0
6	M38	X	016	<u>%10</u>
7	<u>M38</u>	X		%85
8	M38	X	021	%50
9	M38	X	0	0
10	M38	X	0	o
_ 11	M39	X	016	%10
12	M39	X	016	<u>%85</u>
13	M39	X	0	0
14	M39	X	0	Ŏ
15	M39	X	0	0
16	M40	X	01	<u>%</u> 5
17	M40	X	01	%55 %55
18	M40	X	0	0
19	M40	X	0	0
20	M40	X	0	0
21	M63	X	01	%5
22	M63	X	01	%55 %55
23	M63	X	0	0
24	M63	X	0	0
25	M63	X	0	
26	M76	X	016	0 0
27	M76	X	016	<u>%10</u> %85
28	M76		011	
29	M76	X	011	%50 %50
30	M76	X	0	<u>%50</u>
31	M77	X	016	0 %10
32	M77	X	016	
33	M77	X	0	<u>%85</u>
34	M77	X	0	0
35	M77	X	0	0
36	M78	X	01	0
37	M78	<u>X</u> X	01	700
38	M78	X	0	<u>%55</u>
39	M78	X	0	0
40	M78_	X	0	0
41	M44	X		
42	M44		01	<u>%5</u>
43	M44	X	~.01	<u>%55</u>
44	M44	+	0	0
45	M44	X	0	0
46	M57	X	0	0
47	M57		016	%1 <u>0</u>
48	M57	X	016	<u>%85</u>
49	M57 M57	X	021	<u>%50</u>
50		X	0	0
51		X	0	0
52	M58	X	016_	%10
UZ.	M58	X	-,016	%85

: B+T Group : PKK

: 134993.001.01 : 806372 - HRT 093 943228 May 3, 2019 9:07 AM Checked By:___

Member Point Loads (BLC 5 : 90 Wind - Ice) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]
53	M58	X	0	0
54	M58	X	0	0
55	M58	X	0	<u> </u>
56	M59	X	01	
57	M59	- X	01	7,5 %55
58	M59	X	0	7655
59	M59	X	0	0
60	M59	X	0	
61	M82	- X	027	0,00
62	M82	Ŷ	027	%20 %20
63	M82			%20
64	M82			<u> </u>
_65	M82	 	<u> </u>	
	10102			0

Member Point Loads (BLC 6 : 0 Wind - Service)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]
1	M25	Z	004	%5
2	M25	Z	004	<u></u>
3	<u>M25</u>	Z	0	0
4	M25	Z	0	0
5	M25	Z	Ō	0
_6	M38	Z	013	%10
_ 7	<u>M38</u>	Z	013	
8	M38	Z		<u>%50</u>
9	<u> M38</u>	Z	0	0
10	M38	Z	Ō	0
11	M39	Z	013	%10
12	M39	Z		%85
13	M39	Z	0	0
14	M39	Z	0	0
15	M39	Z	0	0
16	M40	Z	004	%5
_17 _	M40	Z	004	%55
18	M40	Z	0	0
19	M40	Z	0	0
20_	M40	Z	0	0
21	M63	Z	004	%5
22	<u>M63</u>	Z	004	
_23	<u>M63</u>	Z	0	0
24	<u>M63</u>	Z	0	0
25	M63	Z	0	0
26	M76	Z	013	%10
27	M76	Z	013	%85
28	M76	Z	003	
29	M76	Z	002	%50
30	M76	Z	0.	0
31	<u>M77</u>	Z	013	%10
32	M77	Z		<u></u>
33	M77	Z	0	0
34	M77_	Z	0	0
35	M77	Z	0	0
36	M78	Z	004	%5
37	M78	Z	004	%55
38	_M78	Z	0_	0
39	M78		0	0
40	M78	Z	0	0

npany : B+T Group igner : PKK Number : 134993.001

: PKK : 134993.001.01 : 806372 - HRT 093 943228 May 3, 2019 9:07 AM Checked By:___

Member Point Loads (BLC 6: 0 Wind - Service) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]
41	M44	Z	004	%5
42	M44	Z	004	%55
43	M44	Z	0	0
44	M44	Z	0	0
_45	M44	Z	0	0
46	M57	Z	013	%10
47	M57	Z	013	<u>%85</u>
48	M57	Z	004	%50
49	M57	Z	0	0
50	M57	Z	Ō	0
51	M58	Z	013	%10
52	M58	Z	013	%85
53	M58	Z	0	0
_54	M58	Z	Ō	0
_ 5 5	M58	Z	0	0
56	M59	Z	004	%5
57	M59	Z	004	%55
58	M59	Z	0	0
59	M59	Z	0	0
60	M59	. Z	0	0
61	M82	Z	004	%20
62	M82	Z	004	%20 %20
63	M82	Z	0	0
64	M82	Z	Ö	Ö
<u>65</u>	M82	Z	0	0

Member Point Loads (BLC 7: 90 Wind - Service)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]
1	M25	X	004	
2	M25	X	004	%55
3	M25	X	0	0
4	M25	X		0
5	M25	X		0
6	M38	X	006	%10
7	M38	X	006	%85
8	M38	X	008	%50 %50
9	M38	X	0	0
10	M38	X	0	0
11	M39	X	006	%10
-12	M39	X	006	%85
13	M39	X	0	0
14	M39	X	0	0
<u> 15</u>	M39	X	0	0
16_	M40	X	004	%5
17	M40	X	004	%55
18	M40	X	0	0
19	M40	X	0	0
_20	M40	X	0	0
21	M63	X	004	% 5
22	M63	X	004	%55
23	M63	X	0	0
24	M63	X	0	0
25	M63	X	0	0
26	M76	X	006	%10
27_	M76	X	006	%85
28	M76	X	004	%50

: B+T Group : PKK : 134993.001.01 : 806372 - HRT 093 943228

May 3, 2019 9:07 AM Checked By:_

Member Point Loads (BLC 7 : 90 Wind - Service) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]
29	M76	X	004	<u>200au01[11, %]</u> ————————————————————————————————————
30	M76	X	0	0
31_	M77	X	006	%10
_32	M77	X	006	
_33	M77	X	0	0
34	M77	X	0	0
35	M77	X	0	0
36	M78	X	004	%5
37	M78	X	004	%55
38	M78	X	0	0
39	M78	X	. 0	0
40	M78	X	0	Ö
_41	M44	X	004	% 5
42	M44	X	004	%55
43	M44_	X	0	0
44	M44	X	0	Ŏ
45	M44	X	0	0
46	M57	X	006	%10
47	M57	X	006	%85
48	M57	X	008	%50
_49	M57	X	0	0
50	M57	X	0	0
51	M58	X	006	%10
52	M58	X	006	%85
<u>53</u>	M58	X	0	0
54	M58	X	0	0
55	M58	X	0	0
56	<u>M5</u> 9	X	004	%5
57	M59	X	004	%55
58	M59	X	0	0
_59	M <u>5</u> 9	X	0	0
60	M59	X	0	0
61	M82	X	01	%20
62	M82	X	01	%2 0
63	M82	X	0	0
64	M82	X	0	0
65_	M82	X	0	0

Member Point Loads (BLC 8 : Ice)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]
_1	M25	Y	084	%5
2	M25	Υ	084	%55
3	M25	Y	0) <u>000</u>
4	M25	Y	0	0
5 _	M25	Ý	0	0
6	M38	Ý		<u>%10</u>
_ 7	M38	Y		
	M38	Υ	141	%50
9	M38	Y	0	7,000
10	M38	Y	0	0
11	M39	Y	195	%10
12	M39	Y	195	<u>%85</u>
13	M39	Y		0
14	M39	Ý	0	0
15	M39	Y	0	Ŏ
16	M40	Υ	084	%5

: B+T Group : PKK

: 134993.001.01 : 806372 - HRT 093 943228 May 3, 2019 9:07 AM Checked By:

Member Point Loads (BLC 8 : Ice) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]
17	M40	Y	084	%55
18	M40	Ý	0	0
19	M40	Ý	0	0
20	M40	Y	0	0
21	M63	Y		
22	M63	Ÿ	084	%55 %55
23	M63	Y	0	
24	M63	- 'Y	0	0 0
25	M63	Y	0	
26	M76	Ý		0 %10
27	M76	Y	195 195	
28	M76	Y		<u>%85</u>
29	M76	Y		%50 %50
30	M76	Y		%50
31	M77	Y	0	0 0/40
32	M77	Y	195	%10 %25
33	M77	Y	195	
34	M77	Y	0	
35	M77	Y	0	0
36	M78	- Y	0	00
37	M78	Y	084	<u>%5</u>
38	M78	Y	084	%55
39	M78	Y	0	0
40	M78	Y	0	0
41	M44		0	0
42		Y	084	%5
43	M44 M44	Y	084	%55
44		Y	0	0
45	M44	Y	0	0
	M44	Y	0	0
46 47	M57	Υ	195	%10
48	M57	Y	195	<u>%85</u>
49	M57	Y	134	%50
50	<u>M57</u>	Y	0	0
51	M57	Y	0	0
52	M58	Y	195	%10
53	M58	Y		%85
	<u>M58</u>	Y	0	0
54	<u>M58</u>	Y	0	0
55	M58	Y	0	0
56	M <u>59</u>	Υ	084	%5
57	M59	Υ	084	%5 5
_58	M59	<u> </u>	0	0 -
59	M59	Y	0	0
60	NIO9	Y	0	0
61	M82	Y	<u>157</u>	%20
62	M82	Y	157	%20
63	M82	Y	0	0
64	M82	Y .	0	
65	M82	Y	0	0

Member Point Loads (BLC 14 : Maint LL 2)

 Member Label	Direction	Magnitude[k.k-ft]	Location[in.%]
M1	Υ	~.5	%5

Member Point Loads (BLC 15 : Maint LL 3)

				_
Member Label	Direction	Magnitude[k,k-ft]	Location[in,%]	

: B+T Group : PKK : 134993.001.01 : 806372 - HRT 093 943228

May 3, 2019 9:07 AM Checked By:_

Membe	er Point Loads (E	BLC 15 : Ma	int LL 3) (Contii	nued)				
	Member Labe	1	Direction	Magnitude[k,	k-ft]	Location[in,%]		
1	M24		<u>Y</u>	-,5		%5		
Membe	er Point Loads (E	BLC 16 : Ma	int LL 4)					
	Member Labe	I	Direction	Magnitude[k,	k-ft]	Location[in,%]		
1	M3		Υ	5		%5		
Membe	er Point Loads (B	BLC 17 : Mai	int LL 5)					
	Member Labe		Direction	Magnitude[k,l	k-ff1	Location[in,%]		
1	M23		Υ	5		%5		
Membe	er Point Loads (B	LC 18 : Mai	int LL 6)					
	Member Labe	<u>L</u>	Direction	Magnitude[k,	k-ft]	Location[in,%]		
1	<u>M2</u>		Υ	5		%5		
Membe	er Point Loads (B	LC 20 : Mai	int LL 8)					
	Member Labe	I	Direction	Magnitude[k,l	k-ft]	Location[in,%]		
1	M1		Υ	5		%95		
Membe	er Point Loads (B	LC 21 : Mai	int LL 9)					
	Member Labe	Member Label Direction Magnitude[k,k-ft]		k-ft]	Location[in,%]			
1	M24		Υ	5	-	%95		
Membe	er Point Loads (B	LC 22 : Mai	int LL 10)					
	Member Labe	1	Direction	Magnitude[k,I	k-ft]	Location[in,%]		
1	M3		Υ	5	•	%95		
Membe	er Point Loads (B	LC 23 : Mai	int LL 11)					
	Member Labe	<u> </u>	Direction	Magnitude[k,l	<-ft]	Location[in,%]		
1	M23			5		%95		
<u>Membe</u>	er Point Loads (B	LC 24 : Mai	int LL 12)					
	Member Labe	<u> </u>	Direction	Magnitude[k,l	<-ft]	Location[in,%]		
1	<u>M2</u>		Υ	5		%95		
Membe	r Point Loads (B	LC 25 : Mai	nt LL 13)					
	Member Labe		Direction	Magnitude[k,l	c-ft]	Location[in,%]		
1	M8		Υ	5		%90		
<u>Membe</u>	r Point Loads (B	LC 26 : Mai	int LL 14)					
	Member Label		Direction	Magnitude[k,		Location[in,%]		
1	M16		Υ	5		%90		
Membe	r Point Loads (B	LC 27 : Mai	int LL 15)					
	Member Label		Direction	Magnitude[k,l	(_ff1	Location[in,%]		
1	M12		Y	<u>5</u>	<u></u>	%90		
<u>Membe</u>	r Distributed Loa	ads (BLC 2	: 0 Wind - No Ic	e)				
	Member Label	Direction		End Magnitude[k/ft,F	Start Location[in,%]	End Location[in,%]		
1	M1	Z	018	018	0	0		
2	M2	Z	018	018	0	0		

: B+T Group : PKK : 134993.001 (

: 134993.001.01 : 806372 - HRT 093 943228 May 3, 2019 9:07 AM Checked By:__

Member Distributed Loads (BLC 2 : 0 Wind - No Ice) (Continued)

- No ice (Continued)								
	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	. Start Locationfin.%I	End Location[in,%]		
_3	M3	Z	018	018	0	0		
4	M4	Z	015	015	0	0		
5_	M5	Z	<u>0</u> 15	015	0	0		
6	M6	Z	~.015	015	0	0		
7	M7	Z	014	014	0	0		
8	M8	Z	017	017	0	0		
9	<u>M11</u>	Z	014	014	0	0		
10	M12	Z	017	017	0	0		
11	M15	Z	014	014	0	Ö		
12	M16	<u>Z</u>	017	017	0	0 -		
13	M19	<u>Z</u>	018	018	0	0		
14	<u>M20</u>	Z	018	018	0	0		
15	M21	Z	018	018	0	0		
16	M23	Z	008	008	0	0		
17	M2 <u>4</u>	Z	008	008	0	0		
18	M25	<u>Z</u>	-,008	008	0	0		
19	M38	Z	008	008	0	0		
20	M39	Z	008	008	0	0		
21	M40	Z	008	008	0	0		
22	M41	Z	008	008	0	0		
23	M43	Z	008	008	0	0		
24	M44	Z	008	008	0	0		
25	M57	Z	008	008	0	0		
26	M58	Z	008	008	0	0		
27	M59	Z	008	008	0	0		
28	M60	Z	008	008	0	0		
29	M62	Z	008	008	0	0		
30	<u>M63</u>	Z	008	008	0	0		
31	M76	Z	008	008	0	Ö		
32	M77	Z	008	008	Ō	Ö		
33	M78	Z	008	008	Ö	Ŏ i		
34	M79	Z	008	008	Ö	Ö		
35	M81	Z	008	008	0	Ö		
36	M82	Z	008	008	Ö	0		
37	M80A	Z	015	015	0	Ö .		
38	M81A	Z	015	015	0	ő		
39	M82A	Z	015	015	0	0		
40	M83	Z	01	01	Ö	0		
41	M84	Z	01	01	Ö	0		
42	M85	Z	01	01	Ö	0.		
43	M85A	7	008	- 008	ň	0.		

Member Distributed Loads (BLC 3: 90 Wind - No Ice)

	Member Label	Direction	Start Magnitude[k/ft	. End Magnitude[k/ft,F	Start Location(in.%)	End Location[in,%]
1	M1	X	018	018	0	0
2_	<u>M2</u>	Χ	018	018	0	0
3_	M3	X	018	018	0	0
4	<u>M4</u>	X	015	015	0	0
5	<u>M5</u>	X	015	015	0	0
6	<u> </u>	X	015	015	0	0
7	M7	X	014	014	0	0
8	M8	X	017	017	0	0
9	M11	X	014	014	0	0
10	M12	X	017	017	0	0
_11	M15	X	<u>-</u> .014	~.014	0	0
12	M16	Χ	017	017	0	0

Company : Designer : Job Number : Model Name : : B+T Group : PKK : 134993.001.01 : 806372 - HRT 093 943228

May 3, 2019 9:07 AM Checked By:_

Member Distributed Loads (BLC 3: 90 Wind - No Ice) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[in,%]	End Location[in,%]
13_	M19	X	018	018	0	0
14	M20	X	018	018	0	0
15	M21	Χ	018	018	0	0
16	M23	X	008	008	0	. 0
17	M24	X	008	008	0	0 ,
18	M25	X	008	008	0	0
19	M38	Х	008	008	Ô	0
20	M39	: X	008	008	0	0
21	M40	X	008	008	0	0
22	M41	Χ	008	008	0	0
23	M43	X	008	008	0	0
24	M44	X	008	008	0	0
25	M57	X	008	008	0	0
26	M58	. X	008	008	0	Ö
27	M59	X	008	008	0	0
28	M60	X	008	008	0	, O
29	M62	X	008	008	Ö	0
30	M63	X	008	008	0	0
31	M76	Х	008	008	0	0
32	M77	X	008	008	0	. 0
33	M78	X	008	008	0	0
34	M79	Х	008	008	Ŏ	0
35	M81	Х	008	008	0	0
36	M82	Х	008	008	0	0
37	M80A	X	015	015	Ö	Ö
38	M81A	X	015	015	0	0
39	M82A	X	015	015	0	Ö
40	M83	X	01	01	0	Ö
41	M84	X	01	01	0	Ō
42	M85	X	01	01	0	Ö
43	M85A	X	008	008	Ō	0

Member Distributed Loads (BLC 4: 0 Wind - Ice)

	Member Label	Direction	Start Magnitude[k/ft,	. End Magnitude[k/ft,F	Start Location[in,%]	End Location[in,%]
_1	M1	Z	007	007	0	0
2_	M2	Z	007	007	0	0
3	M3	Z	007	007	0	0
4	M4	Z	006	~.006	0	0
5	M5	Z	006	006	0	0
6	M6	Z	006	006	0	0
7	M7	Z	007	007	0	0
8	M8	Z	007	007	0	0
9_	M11	Z	007	007	0	0
10	M12	Z	007	007	0	0
11	M15	Z	007	007	0	0
12	M16	Z	007	~.007	0	0 .
13	M19	Z	007	007	0	0
14	M20	Z	007	- 007	0	0
_15	M21	Z	007	007	0	0
16	M23	Z	002	002	0	0
17	M24	Z	002	002	0	0
18	M25	Z	~.002	002	. 0	0
19	M38	Z	002	002	0	0
20	M39	Z	002	002	. 0	0
21	M40	Z	002	002	0	0
22	M41	Z	002	002	0	0

: B+T Group : PKK : 134993.001.01 : 806372 - HRT 093 943228

May 3, 2019 9:07 AM Checked By:_

Member Distributed Loads (BLC 4 : 0 Wind - Ice) (Continued)

	Member Label	Direction	Start Magnitude[k/ft	. End Magnitude[k/ft,F	Start Locationfin.%1	End Location[in,%]
23	M43	Z	002	002	0	0
24	M44_	Z	002	002	0	0
25	M57	Z	002	002	0	0
26	M58	Z	002	002	0	0
27	M59	Z	002	002	0	0
28	<u>M60</u>	Z	002	002	0	0
29	M62	Z	002	002	0	0
30	M63	Z	002	002	0	0
31	M76	Z	002	002	0	0
32	<u>M77</u>	Z	002	002	0	. 0
33	<u>M78</u>	Z	002	002	0	0
34	<u>M79</u>	Z	002	002	0	0
35	<u>M81</u>	Z	002	002	0	0
36	M82	Z	002	002	0	0
37	M80A	Z	007	007	0	0
_38	M81A	Z	007	007	0	0
39	M82A	Z	007	007	0	Ō
40	M83	Z	006	006	0	0
41	M84	Z	006	006	0	0
42	M85	Z	006	006	. 0	0
43	M85A	Z	002	002	0	0

Member Distributed Loads (BLC 5: 90 Wind - Ice)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft.F	_Start Location[in,%]	End Location[in,%]
1	M1	X	007	007	0	0
2	M2	X	007	007	0	0
3	M3	X	007	007	0	0
4	M4	X	006	006	0	0.
_ 5	<u>M</u> 5	X	006	006	0	0
6	M6	X	006	006	0	Ō
_7	M7	X	007	007	0	0
8	M8	X	007	007	0	Ō
9	M11	X	007	007	0	0
10	M12	X	007	007	0	. 0
11	M15	X	007	007	0	0
12	M16	X	007	007	0	0
13	<u>M19</u>	X	007	007	0	0
14	M20	X	007	007	0	0
15	M21	X	007	007	0	0
16	M23	X	002	002	0	0
17	M24	X	002	002	0	0
18	M25	X	002	002	0	0
_ 19	<u>M38</u>	X	002	002	0	0
20	M39	X	002	002	0	0
21	<u>M40</u>	X	002	002	0	0
22	M41	X	002	002	0	0
23_	M43	Χ	002	002	0	0
24	M44	Χ	002	002	0	0
25	M57	X	002	002	0	0
26	M58	X	002	002	0	0
27	M59	X	002	002	0	0
_28	M60	X	002	002	0	ō
_ 29	M62	X	002	002	0	0 .
30	M63	Χ	002	002	0	0
31	<u>M</u> 76	X	-,002	002	0	0
32	M77	Χ	002	002	0	0

: B+T Group : PKK : 134993.001.0

: 134993.001.01 : 806372 - HRT 093 943228 May 3, 2019 9:07 AM Checked By:___

Member Distributed Loads (BLC 5 : 90 Wind - Ice) (Continued)

	Member Label	Direction	Start Magnitude[k/ft	. End Magnitude[k/ft,F	Start Location(in.%)	End Location[in,%]
33	M78	X	002	002	0	<u> </u>
34	M79	X	- 002	002	Ô	ň
35	M81	X	002	002	0	n i
36	M82	X	002	002	0	n ·
37	M80A	X	007	007	0	0
38	<u> </u>	X	007	007	0	n
39	M82A	X	007	007	0	0
40	M83	X	006	006	0	0
41	M84	X	006	006	Ō	0
42	M85	X	006	006	0	ň
43	M85A	X	002	002	Ō	0

Member Distributed Loads (BLC 6: 0 Wind - Service)

	Member Labe!_	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Locationfin.%1	End Location[in,%]
1_	M1	<u>Z</u>	001	001	0	0
2	M2	Z	- .001	001	0	0
_ 3	M3	Z	001	001	0	0
_4	M4	Z	0009	0009	0	0
_5	M5	Z	0009	0009	0	0
6_	M6	Z	0009	0009	0	0
7	M7	Z	0008	0008	0	0
8	<u>M8</u>	Z	001	001	0	0
9_	<u>M11</u>	Z	0008	0008	0	0
10	<u>M12</u>	Z	<u>~.0</u> 01	001	0	0
11	M15	Z	<u>0</u> 008	0008	0	0
12	M16	Z	001	001	0	0
_13	M19	Z	<u>0</u> 01	001	0	0
14	M20	Z	001	001	. 0	0
15	M21	Z	001	001	0	0
16	M23	<u>Z</u>	0002	0002	0	0
17	M24	Z	0002_	0002	0	0
18	<u>M25</u>	Z	0002	0002	0	0
19	M38	Z	0002	0002	0	0
20	M39	Z	0002	0002	0	0
21	M40	Z	0002	0002	0	0
22	M41	Z	0002	0002	0	0
23	M43	<u>Z</u>	0002	0002	0	0
24	<u>M44</u>	Z	0002	0002	. 0	0
25	<u>M</u> 57	<u>Z</u>	0002	0002	0	0
26	M58	Z	0002	0002	0	0
27	M59	Z	0002	0002	0	0
28	M60	Z	0002	0002	0	0
29	M62	Z	0002	0002	0	0
30	M63	Z	- 0002	0002	0	0
31	M76	<u> </u>	0002	0002	0	0
32	M77	Z	0002	0002	0	0
33	<u>M78</u>	<u>Z</u>	0002	0002	0	0
34	<u>M79</u>	Z	0002	0002	0	0
35	M81	Z	0002	0002	0	0
36	M82	Z	0002	0002	0	0
37	A08M	Z	0008	0008	0	0
38	M8 <u>1A</u>	Z	0008	0008	0	0
39	M82A	Z	0008	0008	0	0
40	M83	<u>Z</u>	0006 _	0006	0	0
41	M84	Z	0006	0006	0	0
42_	M85	· <u>Z</u>	0006	0006	0	0

any : B+T Group ler : PKK Imber : 134993.001.6

134993.001.01 806372 - HRT 093 943228 May 3, 2019 9:07 AM Checked By:___

Member Distributed Loads (BLC 6 : 0 Wind - Service) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location(in,%)	End Location[in,%]
43	M85A	Z	0002	0002	0	0

Member Distributed Loads (BLC 7: 90 Wind - Service)

	Member Label	Direction	•	End Magnitude[k/ft,F	. Start Location[in.%]	End Location[in,%]
1	M1	X	001	001	0	0
2	M2	X	001	001	0	0
3	M3	Х	001	001	0	0
4	M4	X	0009	0009	0	0
5	M5	X	0009	0009	0	0
6	M6	X	0009	0009	0	0
7	M7	X	0008	0008	0	0
8	M8	X	001	001	0	0
9	M11	X	0008	-,0008	0	0
10	M12	X	001	001	0	0
11	M15	X	0008	0008	0	0
12	M16	X	001	001	0	0
13	M19	X	001	001	0	0
14	M20	X	001	-,001	0	0
15	M21	X	001	001	0	0
16	M23	Χ	0002	0002	0	0
17	M24	X	0002	0002	0	0
_18	M25	X	0002	0002	0	0
19	M38	X	0002	0002	0	0
20	M39	X	0002	0002	0	0
_21	M40	X	0002	0002	0	0
22	M41	X	0002	-,0002	0	0
23	M43	X	0002	0002	0	0
24	M44	X	0002	0002	0	0
25	M57	X	0002	0002	0	0
26	M58	X	0002	0002	0	0
27	M59	X	0002	0002	0	0
_28	M60	Χ	0002	0002	0	0
29	M62	X	0002	0002	0	0
30	M63	X	0002	0002	0	0
31	M76	X	0002	0002	0	0
32	M77	X	0002	0002	0	0
33	M78	X	0002	0002	0	0
34	M79	X	0002	0002	0	0
35	M81	X	0002	0002	0	0
36	M82	X	0002	0002	0	0
_37	M80A	X	0008	8	0	0
38	M81A	X	0008	0008	0	0.
39	M82A	X	0008	0008	0	0
40	M83	X	0006	0006	0	0
41	M84	X	0006	0006	0	0
42	M85	X	0006	0006	0 .	0
43	M85A	Χ	0002	0002	0	0

Member Distributed Loads (BLC 8 : Ice)

	Member Label	Direction	Start Magnitude[k/ft,	. End Magnitude[k/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	Υ	018	- 018	0	0
_2	M2	Y	018	018	0	0
3	M3	Y	018	018	0	0
4	M4	Υ	023	023	0	0
_ 5	M5	Υ	023	023	0	0
6	M6	Υ	023	023	0	0

B+T Group PKK

134993.001.01 Model Name

806372 - HRT 093 943228

May 3, 2019 9:07 AM Checked By:_

Member Distributed Loads (BLC 8 : Ice) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	. End Magnitude[k/ft,F	Start Location[in,%]	End Location[in,%]
7	M7	Υ	022	022	0	0
8	M8	Υ	024	024	0	0
9	M11	Y	022	022	0	0
10	M12	Ý	024	024	0	0
11	M15	Y	022	022	0	0
12	M16	Υ	024	024	0	0
13	M19	Y	018	018	0	0
14	M20	Y	018	018	0	0
15	M21	Y	018	018	0	0
16	M23	Υ	013	013	0	0
17	M24	Υ	013	013	0	0
18	M25	Υ	013	013	0	0
19	M38	Υ	013	013	0	0
20	M39	Y	013	013	0	0.
21	M40	Υ	013	013	0	0
22	M41	Y	013	-,013	0	0
23	M43	Y	013	013	. 0	0
24	M44	Υ	013	013	0	. 0 .
25	M57	Υ	013	013	0	0
26	M58	Υ	013	013	0	0
27	M59	Υ	013	013	0	0
28	M60	Υ	013	013	0	0
29	M62	Υ	013	013	0	0
30	M63	Υ	013	013	0	0
31	M76	Υ	013	013	0	0
32	M77	Υ	013	013	0	0
_ 33	M78	Υ	013	013	0	0
34	M79	Υ	013	013	0	0
35	M81	Υ	013	013	0	0
36	M82	ΥΥ	013	013	0	0
37	M80A	Υ	016	016	0	0
38	M81A	Υ	016	016	0	0
39	M82A	Υ	016	016	0	0
40	M83	Y	016	016	0	0
41	M84	Υ	016	016	0	0
42	M85	Υ	016	016	0	.0
43	M85A	Υ	013	013	0	0

Member Distributed Loads (BLC 28 : BLC 1 Transient Area Loads)

	Member Label	Direction	Start Magnitude[k/ft,	. End Magnitude[k/ft,F	Start Location[in,%]	End Location[in,%]
1_1_	M1	Y	0002014	006	0	24.214
2	M1	· Y	006	01	24.214	48.429
3	M1	Y	01	009	48.429	72.643
4	M1	Υ	009	009	72.643	96.857
5	M1	Υ	009	01	96.857	121.071
6	M1	·Y	01	006	121.071	145.286
7	M1	Υ	006	0002014	145.286	169.5
8	M5	Y	002	01	0	23.5
9	M5	Y	01	017	23.5	47
10	M6	Υ	002	01	0 .	23.5
11	M6	Υ	01	017	23.5	47
12	M19	Υ	01	01	.133	87.961
13	M2	Υ	0002014	006	0	24.214
14	M2	Υ	006	01	24.214	48.429
15	M2	Υ	01	009	48.429	72.643
16	M2	Y	009	009	72.643	96.857

: B+T Group : PKK

per : 134993.001.01 me : 806372 - HRT 093 943228 May 3, 2019 9:07 AM Checked By:_

Member Distributed Loads (BLC 28 : BLC 1 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[in,%]	End Location[in,%]
17	M2	Υ	009	01	96.857	121.071
18	M2	Υ	01	006	121.071	145.286
19	M2	Υ	006	0002014	145.286	169.5
20	M4	Y	002	01	0	23.5
21	M4	Υ	01	<i>-</i> .017	23.5	47
22	M20	Y	01	- 01	.133	87.961
23	M3	Υ	0002014	006	0	24,214
24	M3	ΥΥ	006	01	24.214	48.429
25	M3	Y	01	009	48.429	72.643
26	M3	Υ	009	009	72.643	96.857
27	M3	Υ	009	01	96.857	121.071
28	M3	Υ	01	006	121.071	145,286
29	M3	Υ	006	0002014	145.286	169,5
30	M21	Υ	01	01	.133	87.961

Member Distributed Loads (BLC 29 : BLC 8 Transient Area Loads)

	Member Label	Direction	Start Magnitude[k/ft,	. End Magnitude[k/ft.F	Start Location[in.%]	End Location(in.%)
1	M1	Υ	0002189	006	0	24,214
2	M1	Υ	006	011	24.214	48.429
3	M1	Υ	011	01	48.429	72.643
4	M1	Y	01	01	72.643	96.857
5	M1	Υ Υ	01	011	96.857	121.071
6	M1	Y	011	006	121.071	145.286
7	M1	Y	006	0002189	145.286	169.5
8	M5	Y	002	01	0	23.5
9	M5	Υ		019	23.5	47
10	M6	Υ	002	01	0	23.5
11	<u>M6</u>	Y	01	019	23.5	47
12_	M19	Υ	011	011	.133	87.961
13	M2	Υ	0002216	007	0	24.214
14	<u>M2</u>	Υ	007	011	24.214	48.429
15	<u>M2</u>	Υ	-,011	01	48.429	72.643
16	<u> </u>	Υ	01	01	72.643	96.857
17	<u> </u>	Y	01	011	96,857	121.071
18	<u>M2</u>	Y	011	007	121.071	145.286
19	M2	Υ	007	0002216	145.286	169.5
20	M4_	Y	002	01	0	23.5
21	M4	Y	01	019	23.5	47
22	M20	Y	011	011	.133	87.961
23	<u>M3</u>	Υ	0002216	007	0	24.214
24	M3	Υ	007	011	24.214	48.429
25	M3	Y	011	01	48.429	72,643
26	M3	Υ	01	01	72.643	96.857
27	M3	Υ	01	011	96.857	121.071
28	<u>M3</u>	Υ	011	007	121.071	145.286
29	M3	Υ	007	0002216	145.286	169.5
30	M21	Y	011	011	.133	87. <u>9</u> 61

Member Area Loads (BLC 1 : Dead)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N2	N24	N22	N3	Υ	Two Way	01
2	N3	N22	N23	N1	Υ	Two Way	01
_3	N24	N23	N1	N2	Υ	Two Way	01

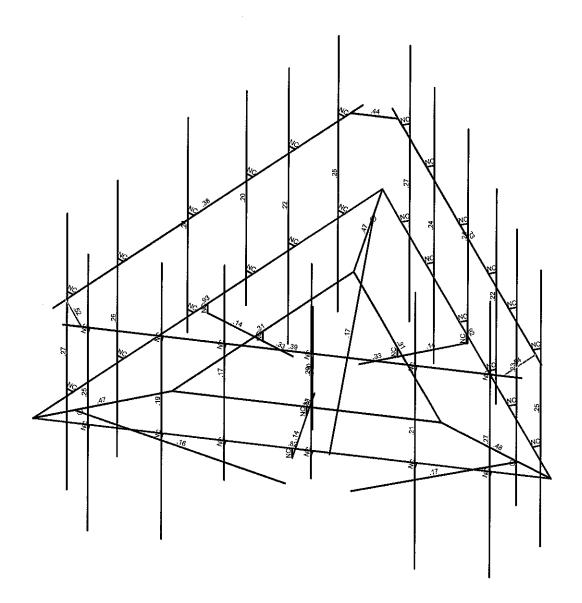
 Company
 : B+T Group

 Designer
 : PKK

 Job Number
 : 134993.001.01

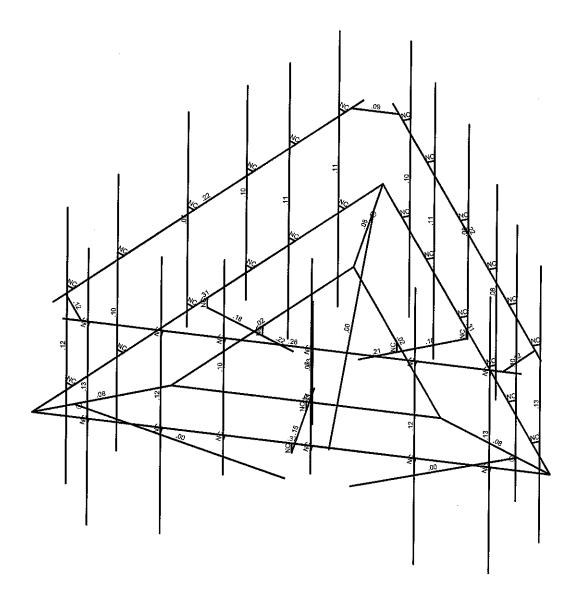
 Model Name
 : 806372 - HRT 093 943228

May 3, 2019 9:07 AM Checked By:_


Member Area Loads (BLC 8 : Ice)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N2	N24	N22	N3	Υ	Two Way	~.011
2	N3	N22	N23	N1	Υ	Two Way	011
3	N24	N23	N1	N2	Υ	Two Way	011

APPENDIX C SOFTWARE ANALYSIS OUTPUT



Member Code Checks Displayed (Enveloped) Envelope Only Solution

B+T Group		SK - 5
PKK	806372 - HRT 093 943228	May 3, 2019 at 8:48 AM
134993.001.01		134993_003_01_HRT 093 943228

Member Shear Checks Displayed (Enveloped)
Envelope Only Solution

B+T Group		SK - 6
PKK	806372 - HRT 093 943228	May 3, 2019 at 8:48 AM
134993.001.01		134993_003_01_HRT 093 943228

Company Designer Job Number Model Name

: B+T Group : PKK : 134993.001.01 : 806372 - HRT 093 943228

May 3, 2019 8:52 AM Checked By:__

_Envelope Joint Reactions

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
_ 1	N4	max	4.463	5	2,121	21	1.215	2	412	2	3.31	5	1.729	11
2		min	-4.463	11	.573	3	-1.21	8	-4,603	20	-3.326	11	-1.653	5
3	N16	max	2.363	7	1.622	18	4.264	13	2.316	14	3.822	13	351	12
4		min	-2.361	13	.441	11	<u>-4.282</u>	7	365	8	-3.852	7	-3.913	18
5	N10	max	2.357	3	1.618	25	4.257	3	2.425	14	3.852	9	3.794	22
6		min	-2.378	9	.418	7	-4.302	9	<u>-,505</u>	8	-3.833	3	.544	5
_7	N140A	max	05	12	2.789	18	2.144	18	0	88	0	88	0	88
8		min	-3.713	18	043	12	029	12	0	1	0	1	0	1
9	N142A	max	3.726	22	2.798	22	<u>2.</u> 151	22	0	88	0	88	0	88
_10		min	051	4	044	4	03	4	0	1	0	1	0	1
11	N144	max	.051	5	2,798	14	.336	8	0	88	0	88	0	88
12		min	051	11	218	8	-4.302	14	.0	1	0	1	0	1
13	Totals:	max	6.144	5	13.202	23	7.327	2						
14		min	-6.144	11	3.905	5	<u>-7</u> .327	8						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[in]	LC	Shear.	., Loc[in]	Dir	LC	phi*Pn	phi*Pnt	.phi*Mn	.phi*Mn	Cb	Egn
1	M3	L3X3X4	.930	0	2	.312	84.75	y	10	3.875	46.656	1.688			
2	M2	L3X3X4	.917	169.5	2	.308	84.75	V	6	3.875	46.656	1.688	3.185	2.684	H2-1
3	M1	L3X3X4	.825	169.5	9	.370	84.75	v	2	3.875	46.656	1.688	2.694	1.583	H2-1
4	M83	L2.5x2.5x4	.536	15.75	8	.120	0	z	7	36.449	38.556	1.114	2.537	1.424	H2-1
5	M85	L2.5x2.5x4	.522	0	8	.121	15.75	z	3	36.449	38.556	1.114	2.537	1.293	H2-1
6	<u>M6</u>	LL3x3x4x0	.479	0	20	.081	13.708	v		76.374			4.361	1.606	H1-1b
7	M5	LL3x3x4x0	.471	0	16	.080	13.708	v	17	76.374	93.312	6.48	4.361	1.577	H1-1b
-8	M4	LL3x3x4x0	.470	0	25	.081	13.708	v		76.374			4.361	1.539	H1-1b
9	M84	L2.5x2.5x4	.444	15.75	12	.095	0	z	11	36.449	38.556	1.114		1.325	H2-1
_10	M85A	PIPE_2.0	.392	117.188	8	.258	9.375		8	6.295	32.13	1.872	1.872	2.02	H3-6
_11	M24	PIPE 2.0	.382	115.625	2	.224	9.375		3			1.872	1.872		H1-1b
_12	M11	HSS4X4X4	.331	0	3	.215	0	Z	3	138.886				1.185	H1-1b
13	M15	HSS4X4X4	.326	0	7	.215	0	z	7	138.886				1.199	H1-1b
14	M23	PIPE 2.0	.325	115.625	9	.224	139.062		13			1.872		1.814	H1-1b
15	M7	HSS4X4X4	.325	0	23	.243	0	Z	11	138.886				1.21	H1-1b
16	M21	L3X3X4	.311	44.047	8	.017	44.047	٧	19	14.346				1.51	H2-1
17	M20	L3X3X4	.306	44.047	8	.017	44.047	V		14.346			3.366		H2-1
_18	M82	HSS2.375X0	.296	36	11	.027	36		11		45.36				H1-1b
19	M25	HSS2.375X0	.275	67.5	22	.126	31.5		8		45.36	2.662		3.059	H1-1b
20	M44	HSS2.375X0	.272	67.5	14	.104	67.5		5		45.36	2.662	2.662	2.953	H1-1b
21	M63	HSS2.375X0	.271	67.5	18	.124	67.5	-			45.36	2.662			H1-1b
22	M19	L3X3X4	.262	44.047	12	.017	44.047	V		14.346			3.211	1.442	H2-1
23	M76	HSS2.375X0	.255	67.5	8	.100	67.5		4		45.36	2.662		4.11	H1-1b
24	M78	HSS2.375X0	.252	67.5	14	.108	67.5		11		45.36	2.662			H1-1b
25	M40	HSS2.375X0	.249	67.5	18	.131	67.5		3		45.36	2.662	2.662	2.988	H1-1b
26	M59	HSS2.375X0	.247	67.5	22	.129	67.5		7		45.36				H1-1b
_27	M81	HSS2.375X0	.244	74.375	13	.070	74.375				45.36	2.662	2.662	2.047	H1-1b
28	M57	HSS2.375X0	.242	67.5	3	.112	67.5				45.36	2.662	2.662		
_29	M62	HSS2.375X0	.235	74.375	9	.085	74.375				45.36	2.662	2.662		
30	M58	HSS2.375X0	.229	67.5	8	.097	67.5					2.662	2.662		
31	M60	HSS2.375X0	.219	70	2	.082	70			22.313		2.662	2,662		
32	M77	HSS2.375X0	.219	67.5	13	.109	67.5			14.197			2.662		
33	M38	HSS2.375X0	.214	67.5	13	.120	67.5			14.197		2.662	2.662		
34	M79	HSS2.375X0	.204	70	7	.102	70				45.36	2.662	2.662		
35	M43	HSS2.375X0	.202	74.375	5	.069	74.375				45.36	2.662	2.662		
36	M39	HSS2.375X0	.191	67.5	3	.121	67.5			14.197			2.662		
_37	M41	HSS2.375X0	.175	70	10	.099	70			22.313		2.662	2.662	2.027	H1-1b

Company Designer Job Number Model Name

: B+T Group : PKK

134993.001.01 806372 - HRT 093 943228

May 3, 2019 8:52 AM Checked By:_

Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)

	<u>Member</u>	<u>Shape</u>	Code Check	Loc[in]	LC	Shear	_Loc[in]	Dir	LC	phi*Pn	phi*Pnt	.phi*Mn	.phi*Mn	. Cb	Ean
38	M82A	LL2.5x2.5x3x0	165	84.279	14	.005	84.279					3.3	2.493		H1-1b*
39	<u> M81A</u>	LL2.5x2.5x3x0	.165	84.279	22	.005	0	v	22	31.09	58.32	3.3	2.493	1	H1-1b*
40	M80A	LL2.5x2.5x3x0	.164	84.279	18	.005	84.279	V	18	31.09	58,32	3.3	2.493		H1-1b*
41	<u>M</u> 16	HSS4.5X4.5X4	.140	0	14	.179	0	z	7	156.915	158.976	20.907	20.907	1.673	H1-1b
42	M12	HSS4.5X4.5X4	.140	0	14	.178	0	z	3	156.915	158.976	20.907	20.907	1.673	H1-1b
_43	M8	HSS4.5X4.5X4	.140	0	22	.147	0	Z	11	156.915	158.976	20.907	20.907	1.672	H1-1b

APPENDIX D

MOUNT MODIFICATION DESIGN DRAWINGS (MDD)

MODIFICATION INSPECTION NOTES:

GENERAL HARDESCEND (M) S.A. YIRLUL HARDESCEND OF HOUSE MEDIFICATIONS AND A THE MODIFICATION INSPECTIONS AND OTHER REPORTS TO DESIGNED HE INSTALLATION WAS CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT COLUMNISTS MULTURY THE MODIFICATION DRAWNINGS, AS DESIGNED BY THE ENGINEER OF RECORD (COR).

THE MI IS TO CONTROL INSTALLATION CONFIGURATION AND WIGHRAMSHIP CHILY AND IS NOT A REVIEW OF THE MODIFICATION DESIGN RISELF, NOR DOES THE MI RESPECTOR TAME COMMERSHIP OF THE MODIFICATION DESIGN. ON MODIFISHING THE MODIFICATION DESIGN OF

TO DISJUE THAT THE REQUIREMENTS OF THE MI ARE MET, IT IS YITH, THAT THE GENERAL CONTRACTOR (OC) AND THE MI INSPECTOR BEOIN COMMUNICATION AND DOCROMATION AS SOON AS A PO IS RECEIVED. IT IS EXPECTED THAT EACH PARTY WILL BE PROMITTIE IN REACHING OUT TO THE OTHER PARTY. IF CONTRACT INFORMATION IS NOT KNOWN, CONTRACT SHY GROUP.

MI_INSPECTOR
THE MI_INSPECTOR IS REQUIRED TO CONTACT THE GC AS SOON AS RECEMING A PO FOR THE MI_TO_AT A MINIMUM:

TO, AT A MINIMUM: REVENT HE REQUIREMENTS OF THE MI CHECKUST WORK WITH THE GC TO DEVELOP A SCHEDULE TO CONDUCT ONSITE INSPECTIONS. INCLUDING FOUNDATION INSPECTIONS

THE MI INSPECTOR IS RESPONSIBLE FOR COLLECTING ALL GENERAL CONTRACTOR (GC) INSPECTION AND TEST REPORTS, REMEMBING THE OCCUPENTS FOR ADMERSIZE TO THE CONTRACT COCUMENTS, CONDUCTING THE IN-FRED INSPECTIONS, AND SUBJUTTING THE MI REPORT.

<u>GENERAL COMPACTOR</u>
THE GC IS REQUIRED TO CONTACT THE MI INSPECTOR AS SOON AS RECEIVING A PO FOR THE MODIFICATION INSTALLATION OR TURNKEY PROJECT TO, AT A MINIMUM:

REVIEW THE REQUIREMENTS OF THE MI CHECKLIST . WORK WITH THE MI INSPECTOR TO DEVELOP A SCHEDULE TO CONDUCT ON-SITE MI ENSPECTIONS

• BETTER UNDERSTAND ALL INSPECTION AND TESTING REQUIREMENTS

THE GC SHALL PERFORM AND RECORD THE TEST AND INSPECTION RESULTS IN ACCORDANCE WITH THE REQUIREMENTS OF THE MI CHECKLIST.

RECOMMENDATIONS
THE FOLLOWING ECOMMENDATIONS AND SLIGGESTIONS ARE OFFERED TO ENHANCE THE EFFICIENCY AND EFFECTIVENESS OF DELAFRING A MI REPORT:

IT IS SUGGISTED THAT THE OF PROVINE A UNIMINAL OF 5 BUSINESS DAYS NOTICE, PREFERENCY TO, TO THE MI MEMPETER AS TO WHEN THE STIT WILL BE PRADY FOR THE ME TO SECONDATION OF THE STIT WILL BE PRADY FOR THE MEMPETER PROSENCE.

WHEN POSSIBLE, IT IS PREFERRED TO NAVE THE OF AND MI MEMPETER ON-THE TO WHEN THE MEMPETER ANY DESCRIPTION OF THE MEMPETER TO HENDER THE MEMPETER ANY DESCRIPTION OF THE MEMPETER ANY DESCRIPTION

CANSELLATION OR DELAYS IN SCHEDULED M.

IF THE GO AND M INSPECTOR AGREE TO A DATE ON WHICH THE LIE MELLING ECONOMICE,
IF THE GO AND M INSPECTOR AGREE TO A DATE ON WHICH THE LIE MESTINGUISE FOR THE PROPERTY OF THE PROPERTY

CORRECTION OF FAILING MI'S IF THE MODIFICATION INSPECTOR FALLS THE MI ("FAILED MI"), THE GC SHALL WORK WITH CARRIER TO COORDINATE A REMEDIATION PLAN IN ONE OF TWO WAYS:

- ODRRECT FALING ISSUES TO COMPLY WITH THE SPECIFICATIONS COMPANDED IN THE ORIGINAL COMPAND TO COMPLETE AND COMPANDED AND COM

MI VERIFICATION INSPECTIONS
CARRIER RESERVES THE RIGHT TO CONDUCT A MI VERIFICATION INSPECTION TO VERIFY THE
ACCOUNTERTINESS OF PREVIOUSLY COMPLETED MI INSPECTION(S) ON TOWER
MODIFICATION PROJECTS.

ALL VERIFICATION INSPECTIONS SHALL BE HELD TO THE SAME SPECIFICATIONS AND REQUIREMENTS IN THE CONTRACT DOCUMENTS.

VERIFICATION INSPECTION WAY BE CONDUCTED BY AN INDEPENDENT FIRM AFTER A MODIFICATION PROJECT IS COMPLETED, AS MARKED BY THE ORIGINAL PROJECT OF AN ACCEPTED PASSING UT OR "PASS AS NOTED UT REPORT FOR THE ORIGINAL PROJECT.

REQUIRED PHOTOS BETWEEN THE GO AND THE MI INSPECTOR THE FOLLOWING PHOTOGRAPHS, AT A MINIMUM, ARE TO BE TAKEN AND INCLUDED IN THE MI REPORT:

TO BE TAKEN AND INCLUDED IN THE MI RECORTS

PRE-CONSTRUCTION OBSCRIBED, SEC CONSTRUCTION CONSTRUCTION/ERECTION AND

REPOTOGRAPH'S QUBING THE BEINTGREEMEN' MODIFICATION CONSTRUCTION/ERECTION AND

MEANINGTON OF CREATION OF CREATION

FOUNDATION MODIFICATIONS

MEDIO REPARATION AND TOLIQUE

BEGIN REVIEWLED HAVE TO CONTROLOGY

SUBJECT CONTROL REVIEW

SUBFACE CORNING REVIEW

POST CONSTRUCTION PROTOGRAPHS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MODIFICATIONS

PRICE OF MOD

PHOTOS OF ELEVATED MCDIFICATIONS TAKEN FROM THE GROUND SHALL BE CONSIDERED INADEQUATE.

B+T GRP 1717 S. BOULDER SUITE 300 TULSA, OK 74119 PH: (916) 587-4830

verizon⁴

CC CROWN

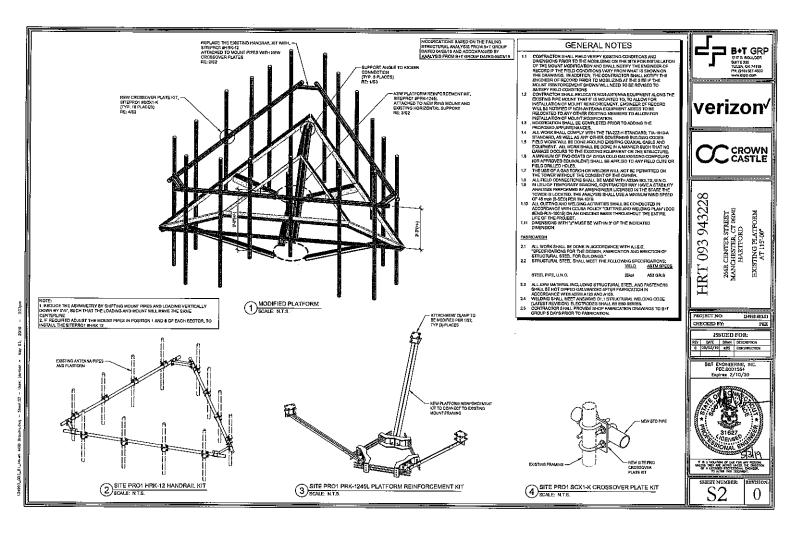
943228

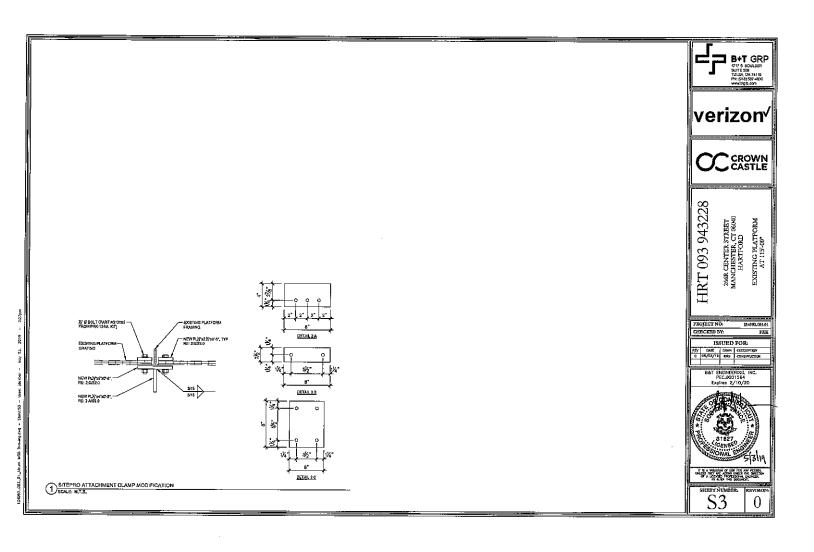
093

HRT

266R CENTER STREET MANCHESTER, CT 06040 HARTFORD EXISTING PLATFORM AT 115-00"

CHECKED BY: ISSUED FOR-REV DATE DISWN SESCRETION


G 55/03/18 KRS CONSTRUCTION


B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/20

S1

0

MANCHEST 266R CENTE MANCHESTER,

PROJECT SUMMARY

806372

266R

102000266R

DAN MYZYRI

MANCHESTER CT

266R CENTER ST MANCHESTER, CT 06040

CROWN CASTLE 2000 CORPORATE DR

CANONSBURG, PA 15317

400 FRIEBERG PARKWAY

WESTBOROUGH, MA 01581

SITE NAME: SITE ADDRESS:

TOWER OWNER:

BU NUMBER:

LOT NUMBER:

CUSTOMER/APPLICANT:

CONTACT:

NAD83 LATITUDE:

ELEVATION: CURRENT ZONING:

A&E FIRM:

OCCUPANCY TYPE: A.D.A. COMPLIANCE: (617) 945-7288 41' 46' 18.95"

VERIZON WIRELESS

72' 31' 48.81" W 203'

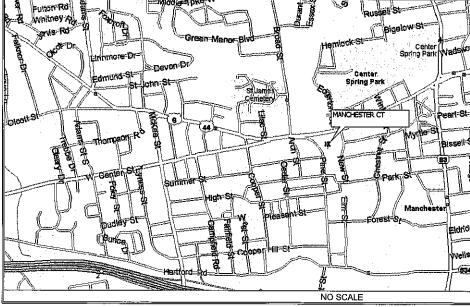
INDUSTRIAL

B+T GROUP 1717 S. BOULDER, SUITE 300 TULSA, OK 74119 STEVE THORNHILL (918) 587–4630

UNMANNED

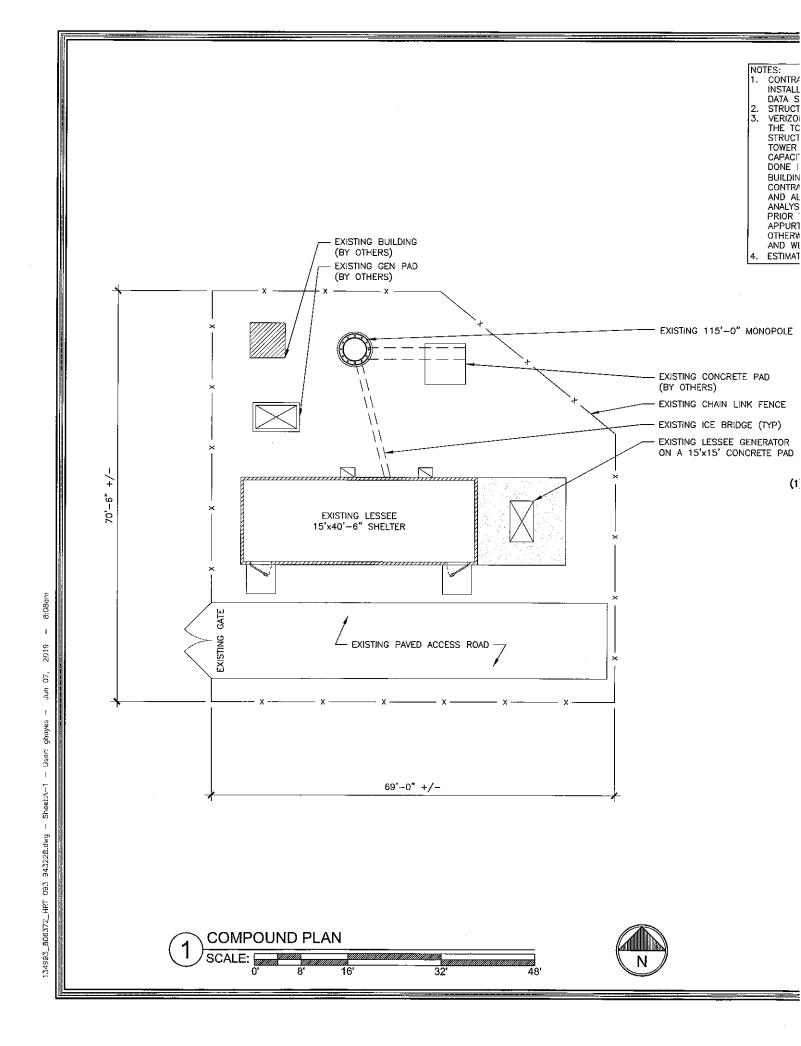
FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION,

CODE COMPLIANCE


ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING CODES AS ADDITED
BY THE LOCAL GOVERNING AUTHORITIES. NOTHING
IN THESE PLANS IS TO BE CONSTRUED TO PERMIT
WORK NOT CONFORMING TO THESE CODES:

CODE TYPE
CODE

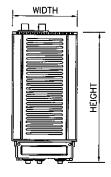
BUILDING STRUCTURAL MECHANICAL ELECTRICAL


CODE
CONNECTICUT SBC 2018
CONNECTICUT SBC 2018
CONNECTICUT SBC 2018 NEC 2017

LOCATION MAP Fulton Rd

DRIVING DIRECTIONS

DEPART FROM BRADLEY INTERNATIONAL AIRPORT, HEAD SOUTH ON CT-75 [TURN PIKE RD]. BEAR RIC TAKE RAMP (RIGHT) ONTO CT-20 [BRADLEY FIELD CONNECTOR]. TAKE RAMP (RIGHT) ONTO I-91 [RI 30, TAKE RAMP ONTO I-84 [US-44]. AT EXIT 60, TURN RIGHT ONTO RAMP. TURN RIGHT ONTO US-KEEP RIGHT TO STAY ON PINE ST. TURN LEFT ONTO LOCAL ROADS AND ARRIVE AT MANCHESTER CT.



NOTE:

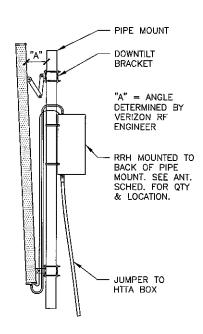
- INSTALL ALL EQUIPMENT, MOUNTING BRACKETS AND HARDWARE ACCORDING WITH
- MANUFACTURE'S RECOMMENDATIONS.
 GROUND DISTRIBUTION BOXES, MOUNTING PIPES AND RRHs IN ACCORDANCE WITH MANUFACTURE'S RECOMMENDATIONS.
 INSTALLED EQUIPMENT AND MOUNTING BRACKETS SHALL NOT INTERFERE WITH CLIMBING ACCESS NOR ANT INSTALLED SAFETY DEVICES.
- EQUIPMENT TO BE INSTALLED AT VERIZON'S RAD. CENTER IN ACCORDANCE WITH TOWER STRUCTURAL ANALYSIS (ANALYSIS BY OTHERS).

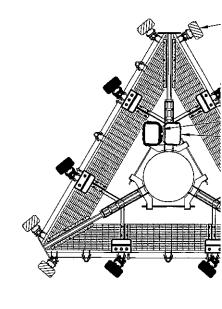
COAX GROUND KIT	UPPER DC PROTECTION	SECTOR DC SURGE	RRH GROUND	ANTENNA MOUNTING PIPE	
	—	GROUND BAR			— #6 AWG
		—	- #2/0 AWG		
		TOP MGB	- #2/0 AWG		
		LOWER MGB	CONI	O TIUC	

REMOTE RADIO HEAD DIMENSI							
MODEL	HEIGHT	WIDTH					
RFV01U-D1A	15"	15"					
RFV01U-D2A	15"	15"					

NOTE:

- E: BOND ANTENNA GROUNDING KIT CABLES TO TOP CIBE. BOND ANTENNA GROUNDING KIT CABLE TO BOTTOM CIBE.
- TYPICAL FOR ALL SECTORS.


GROUNDING SCHEMATIC DIAGRAM


SCALE: N.T.S.

RRH SPECIFICATIONS

SCALE: N.T.S.

EXISTING TOWER IS SUFFICIENT PER STRUC BY PAUL J. FORD & COMPANY DATED 5/2

ANTENNA MOUNTING DETAIL

SCALE: N.T.S.

PROPOSED ANTENNA ORIENTA

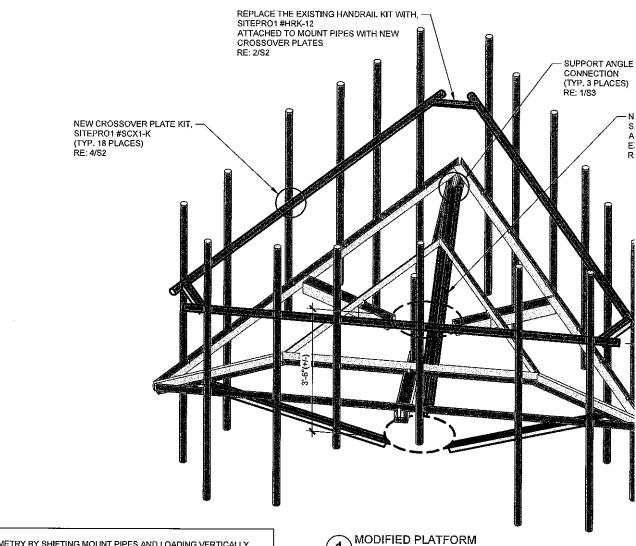
SCALE: N.T.S.

		HE OUT OF							
DEOLUDED	REQUIRED REPORT ITEM REPORT ITEM								
REQUIRED	REPORT ITEM	BRIEF DESCRIPTION							
[]		PRE-CONSTRUCTION							
X	MI CHECKLIST DRAWING	THIS CHECKLIST SHALL BE INCLUDED IN THE MI REPORT.							
N/A	EOR APPROVED SHOP DRAWINGS	FABRICATION DRAWINGS SHALL BE SUBMITTED TO THE ENGINEER OF RECORD FOR REVIEW. THE (PROVIDE APPROVED SHOP DRAWINGS TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.							
X N/A N/A	ASSEMBLY DRAWINGS	ONCE THE PRE-MODIFICATION MAPPING IS COMPLETE, PRIOR TO FABRICATION, THE CONTRACTOR ASSEMBLY DRAWINGS. THESE ARE TO INCLUDE, BUT ARE NOT LIMITED TO, A VISUAL LAYOUT OF EXISTING REINFORCEMENT CONFIGURATION, PORTHOLES, MOUNTS, STEP PEGS, SAFETY CLIMBS AN MISCELLANEOUS ITEMS WHICH MAY AFFECT SUCCESSFUL INSTALLATION OF MODIFICATIONS ON THE DRAWINGS SHALL BE SUBMITTED TO THE EOR FOR APPROVAL. APPROVED ASSEMBLY DRAWINGS S THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.							
х	FABRICATION INSPECTION	A LETTER FROM THE FABRICATOR, STATING THAT THE WORK WAS PERFORMED IN ACCORDANCE W AND THE CONTRACT DOCUMENTS SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN							
×	FABRICATOR CERTIFIED WELD INSPECTION	A VISUAL OBSERVATION BY CWI OF A PORTION OF WELDING ON THE PROPOSED STRUCTURAL ME A WRITTEN REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPO							
х	MATERIAL TEST REPORT (MTR)	MILL CERTIFICATION SHALL BE PROVIDED FOR ALL STEEL AS SPECIFIED IN THE MODIFICATION DR. DOCUMENTATION SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.							
N/A	FABRICATOR NDE INSPECTION	CRITICAL SHOP WELDS THAT REQUIRE TESTING ARE NOTED ON THESE CONTRACT DRAWINGS. A CI SHALL PERFORM NON-DESTRUCTIVE EXAMINATION AND A REPORT SHALL BE PROVIDED TO THE M INCLUSION IN THE MI REPORT.							
×	PACKING SLIPS	THE MATERIAL SHIPPING LIST SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE							
		CONSTRUCTION (PERFORMED BY CONTRACTOR)							
х	CONSTRUCTION INSPECTIONS	A LETTER FROM THE GENERAL CONTRACTOR STATING THAT THE WORKMANSHIP WAS PERFORMED INDUSTRY STANDARDS AND THESE CONTRACT DRAWINGS SHALL BE PROVIDED TO THE MI INSPECT THE MI REPORT.							
N/A	CONTRACTOR'S CERTIFIED WELD INSPECTION	A CERTIFIED WELD INSPECTOR SHALL INSPECT AND TEST AS NECESSARY ALL FIELD WELDS. A REPROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.							
N/A	ON SITE COLD GALVANIZING VERIFICATION	THE GENERAL CONTRACTOR SHALL PROVIDE DOCUMENTATION TO THE MI INSPECTOR VERIFYING THE GALVANIZING WAS APPLIED AS SPECIFIED IN THE MODIFICATION DRAWINGS.							
х	GC AS-BUILT DOCUMENTS	THE GENERAL CONTRACTOR SHALL SUBMIT A COPY OF THE CONTRACT DRAWINGS EITHER STATING DESIGNED" OR NOTING ANY CHANGES THAT WERE REQUIRED AND APPROVED BY THE ENGINEER CONDITIONS.							
POST-CONSTRUCTION									
х	MI INSPECTOR REDLINE OR RECORD DRAWING(S)	THE MI INSPECTOR SHALL OBSERVE AND REPORT ANY DISCREPANCIES BETWEEN THE CONTRACTOL AND THE ACTUAL COMPLETED INSTALLATION.							
×	PHOTOGRAPHS	PHOTOGRAPHS SHALL BE SUBMITTED TO THE MI WHICH DOCUMENT ALL PHASES OF THE CONSTRI SHALL BE ORGANIZED IN A MANNER THAT EASILY IDENTIFIES THE EXACT LOCATION OF THE PHOTO							
ADDITIONAL.	TESTING AND INSPECTIONS:								
NOTE: X DE	NOTE: X DENOTES A DOCUMENT NEEDED FOR THE MI REPORT AND N/A DENOTES A DOCUMENT THAT IS NOT REQUIRED FOR THE MI REPORT								

MODIFICATION INSPECTION NOTES:

GENERAL

THE MODIFICATION INSPECTION (MI) IS A VISUAL INSPECTION OF TOWER MODIFICATIONS AND A REVIEW OF CONSTRUCTION INSPECTIONS AND OTHER REPORTS TO ENSURE THE INSTALLATION WAS CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS, NAMELY THE MODIFICATION DRAWINGS, AS DESIGNED BY THE ENGINEER OF RECORD (EOR).

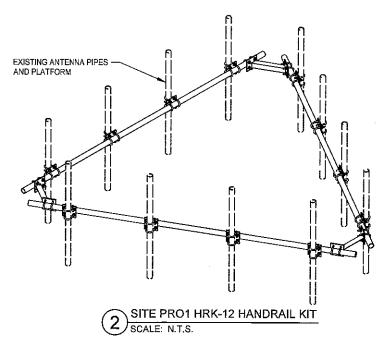

THE MI IS TO CONFIRM INSTALLATION CONFIGURATION AND WORKMANSHIP ONLY AND IS NOT A REVIEW OF THE MODIFICATION DESIGN ITSELF, NOR DOES THE MI INSPECTOR TAKE OWNERSHIP OF THE MODIFICATION DESIGN. OWNERSHIP OF THE STRUCTURAL MODIFICATION DESIGN EFFECTIVENESS AND INTEGRITY RESIDES WITH THE EOR AT ALL TIMES.

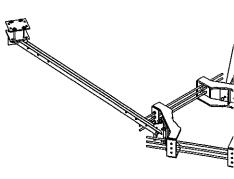
TO ENSURE THAT THE REQUIREMENTS OF THE MI ARE MET, IT IS VITAL THAT THE GENERAL CONTRACTOR (GC) AND THE MI INSPECTOR BEGIN COMMUNICATING AND COORDINATING AS SOON AS A PO IS RECEIVED. IT IS EXPECTED THAT EACH PARTY WILL BE PROACTIVE IN REACHING OUT TO THE OTHER PARTY. IF CONTACT INFORMATION IS NOT KNOWN, CONTACT B+T GROUP.

 $\underline{\text{MI INSPECTOR}}$ The MI INSPECTOR IS REQUIRED TO CONTACT THE GC AS SOON AS MI TO, AT A MINIMUM:

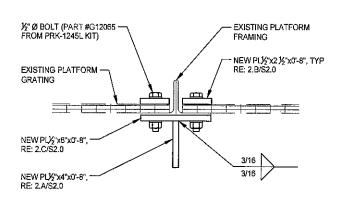
- REVIEW THE REQUIREMENTS OF THE MI CHECKLIST
 WORK WITH THE GC TO DEVELOP A SCHEDULE TO CONDUCT O INCLUDING FOUNDATION INSPECTIONS

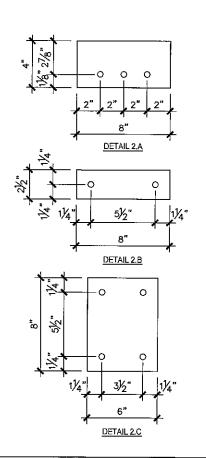
THE MI INSPECTOR IS RESPONSIBLE FOR COLLECTING ALL GENERAL INSPECTION AND TEST REPORTS, REVIEWING THE DOCUMENTS FOR A CONTRACT DOCUMENTS, CONDUCTING THE IN-FIELD INSPECTIONS, A REPORT.




NOTE:

1. REDUCE THE ASYMMETRY BY SHIFTING MOUNT PIPES AND LOADING VERTICALLY DOWN BY 0'-9", SUCH THAT THE LOADING AND MOUNT WILL HAVE THE SAME CENTERLINE


2. IF REQUIRED ADJUST THE MOUNT PIPES IN POSITION 1 AND 6 OF EACH SECTOR, TO INSTALL THE SITEPRO1 #HRK 12


MODIFIED PLATFORM
SCALE: N.T.S.

SITE PRO1 PRK-1245L PLATFOR SCALE: N.T.S.

Mathews, Lisa A

From:

TrackingUpdates@fedex.com

Sent:

Monday, June 17, 2019 9:19 AM

To:

Barbadora, Jeff

Subject:

FedEx Shipment 775478649210 Delivered

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Your package has been delivered

Tracking # 775478649210

Ship date:

Fri, 6/14/2019

Jeff Barbadora

Crown Castle

WOBURN, MA 01801

US

Mon, 6/17/2019 9:15

General Manager-Mr. Scott

Shanley

Town of Manchester Delivered

41 Center Street

Delivery date:

MANCHESTER, CT 06045

US

Shipment Facts

Our records indicate that the following package has been delivered.

Tracking number:

775478649210

Status:

Delivered: 06/17/2019 09:15

AM Signed for By: D.HUOT

Reference:

1766.6680

Signed for by:

D.HUOT

Delivery location:

MANCHESTER, CT

Delivered to:

Receptionist/Front Desk

Service type:

FedEx Priority Overnight®

Packaging type:

FedEx® Envelope

Number of pieces:

Weight: 1.00 lb

Special handling/Services: Deliver Weekday

Standard transit: 6/17/2019 by 10:30 am

Please do not respond to this message. This email was sent from an unattended mailbox. This report was generated at approximately 8:18 AM CDT on 06/17/2019.

All weights are estimated.

To track the latest status of your shipment, click on the tracking number above.

Standard transit is the date and time the package is scheduled to be delivered by, based on the selected service, destination and ship date. Limitations and exceptions may apply. Please see the FedEx Service Guide for terms and conditions of service, including the FedEx Money-Back Guarantee, or contact your FedEx Customer Support representative.

© 2019 Federal Express Corporation. The content of this message is protected by copyright and trademark laws under U.S. and international law. Review our <u>privacy policy</u>. All rights reserved.

Thank you for your business.

Mathews, Lisa A

From:

TrackingUpdates@fedex.com

Sent:

Monday, June 17, 2019 9:12 AM

To:

Barbadora, Jeff

Subject:

FedEx Shipment 775478702692 Delivered

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Your package has been delivered

Tracking # 775478702692

Ship date:

Fri, 6/14/2019

Jeff Barbadora

Crown Castle

WOBURN, MA 01801

US

×

Delivered

Delivery date:

Mon, 6/17/2019 9:10

Planning Department

Town of Manchester

494 Main Street

Lincoln Center, 2nd Floor MANCHESTER, CT 06045

US

Shipment Facts

Our records indicate that the following package has been delivered

Tracking number:

775478702692

Status:

Delivered: 06/17/2019 09:10

AM Signed for By: A.WILLIFORD

Reference:

1766.6680

Signed for by:

A.WILLIFORD

Delivery location:

MANCHESTER, CT

Delivered to:

Receptionist/Front Desk

Service type:

FedEx Priority Overnight®

Packaging type:

FedEx® Envelope

Number of pieces:

Weight:

Special handling/Services: Deliver Weekday

Standard transit: 6/17/2019 by 10:30 am

1.00 lb

Please do not respond to this message. This email was sent from an unattended mailbox. This report was generated at approximately 8:12 AM CDT on 06/17/2019.

All weights are estimated.

To track the latest status of your shipment, click on the tracking number above.

Standard transit is the date and time the package is scheduled to be delivered by, based on the selected service, destination and ship date. Limitations and exceptions may apply. Please see the FedEx Service Guide for terms and conditions of service, including the FedEx Money-Back Guarantee, or contact your FedEx Customer Support representative.

© 2019 Federal Express Corporation. The content of this message is protected by copyright and trademark laws under U.S. and international law. Review our <u>privacy policy</u>. All rights reserved.

Thank you for your business.