Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com September 3, 2021 Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051 RE: Tower Share Application 266R Center Street, Manchester CT 06045 Latitude: 41.77194444 Longitude: -72.5302222 Site# 806372 Crown Dish #### Dear Ms. Bachman: This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 266R Center Street in Manchester, Connecticut. Dish Wireless LLC proposes to install three (3) 600/1900 5G MHz antenna and six (6) RRUs, at the 95-foot level of the existing 115-foot monopole tower, one (1) Fiber cables will also be installed. Dish Wireless LLC equipment cabinets will be placed within 7x5 lease area. Included are plans by Infinigy, dated July 27, 2021 Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated May 28, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. This facility was approved by Connecticut Siting Council, Docket No. 120 on August 24, 1990. Please see attached Exhibit A. Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Mayor Jay Moran for the Town of Manchester, Gary Anderson, Director of Planning, as well as the tower owner (Crown Castle) and property owner (Crown Castle) The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89. - 1. The proposed modification will not result in an increase in the height of the existing structure. The top of the tower is 115-feet; Dish Wireless LLC proposed antennas will be located at a center line height of 95-feet. - 2. The proposed modifications will not result in the increase of the site boundary as depicted on the attached site plan. - 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent. 4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total power density of 9.25% as evidenced by Exhibit F. Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully indicates that the shared use of this facility satisfies these criteria. A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D. B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this support tower in Manchester. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use. C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 95-foot level of the existing 115-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard. D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application. E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing guyed tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Manchester. Sincerely, #### Denise Sabo Denise Sabo Mobile: 203-435-3640 Fax: 413-521-0558 Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com Attachments cc: Mayor Jay Moran Town of Manchester 41 Center Street Manchester, CT 06045 Steve Stephanou-Deputy General Manager Town of Manchester 41 Center Street Manchester, CT 06045 Gary Anderson, Director of Planning Town of Manchester – Planning and Zoning 494 Main Street Lincoln Center, 2nd FL Manchester, CT 06045 Crown Castle, Tower and Property Owner # Exhibit A **Original Facility Approval** ### STATE OF CONNECTICUT #### CONNECTICUT SITING COUNCIL 136 Main Street, Suite 401 New Britain, Connecticut 06051 Phone: 827-7682 Gloria Dibble Pond Chairperson COMMISSIONERS Energy/Telecommunications Peter G. Boucher Leslie Carothers Hazardous Waste/Low-level Radioactive Waste Frederick G. Adams Bernard R. Sullivan COUNCIL MEMBERS Harry E. Covey Mortimer A. Gelston Daniel P. Lynch, Jr. Paulann H. Sheets William H. Smith Colin C. Tait Joel M. Rinebold Executive Director Stanley J. Modzelesky Executive Assistant August 24, 1990 Mr. David S. Malko Manager, Engineering and Regulatory Services Metro Mobile 50 Rockland Road South Norwalk, CT 06854 RE: DOCKET NO. 129 - Metro Mobile CTS of Hartford, Inc., Certificate of Environmental Compatibility and Public Need for the construction, maintenance, and operation of a cellular telephone tower and associated equipment in the Town of Manchester, Connecticut. Dear Mr. Malko: On August 22, 1990, the Siting Council considered and approved all remaining sections of the Development and Management Plan (D&M) for this cellular telephone tower and associated equipment in the Town of Manchester, Connecticut. This decision confirms use of barbed wire on the security fence surrounding the cellular site that was approved by the Council by its Decision and Order on March 12, 1990. This approval applies only to the D&M plan submitted for the Manchester site. Modifications to this D&M Plan require advance Council notification and approval. Please notify the Council when construction is completed. Enclosed for your use is a copy of the Staff Report regarding the D&M Plan. Very truly yours, Gloria Dibble Pond Chairperson SMH/smh enclosure 4706-2 # METRO MOBILE July 20, 1990 Connecticut Siting Council 136 Main Street Suite 401 New Britain, CT 06051 Attention: Joel M. Rinebold, Executive Director C Re: Docket No. 129 - Metro Mobile CTS of Hartford, Inc. Manchester Cell Site Dear Mr. Rinebold: Metro Mobile CTS of Hartford, Inc. ("Metro Mobile") has submitted a proposed D&M Plan in the above-referenced proceeding and has received comments on it from the Town of Manchester and the Council. Metro Mobile intends to construct an eight foot security fence around the facility with three strands of barbed wire on top. One of the comments received addresses the potential restriction on the use of barbed wire in constructing a fence at the proposed facility under Section 47-47 of the Connecticut General Statutes. This communication sets forth Metro Mobile's position that Metro Mobile is unaffected by said provision, as well as the Company's arguments in support of its position that the fencing plans already submitted are within State laws. The provision of interest is Section 47-47 of the Connecticut General Statutes, which reads, in relevant part, as follows: Barbed wire between adjoining premises or enclosing grounds of public buildings. No person shall use barbed wire in the construction of fences or have barbed wire upon existing fences between his own premises and those of an adjoining proprietor, within twenty-five rods of any house or barn belonging to such proprietor, unless either premises are used in connection with raising livestock, without first obtaining his written consent Connecticut Siting Council Mr. Joel M. Rinebold - Docket No. 129 July 20, 1990 Page 2 A. THE SITING COUNCIL'S JURISDICTION SUPERSEDES THE RESTRICTIONS IMPOSED BY C.G.S. SECTION 16-50x. The Connecticut Siting Council was created with the express purpose of considering applications for the construction, operation, and maintenance of certain types of facilities within the state, including the proposed Manchester facility. The Council's jurisdiction overrides select state and local laws which would otherwise place restrictions on such activities. Section 16-50x of the C.G.S. contains the override language, as follows: (a) Notwithstanding any other provision of the general statutes to the contrary, except as provided in Section 16-243, the council shall have exclusive jurisdiction over the location and type of facilities and over the location and
type of modifications of facilities subject to the provisions of subsection (d) of this section. (emphasis added) It should be noted that neither Section 16-243 nor subsection (d) of Section 16-50x modifies the applicability of the section quoted above with respect to the proposed Metro Mobile facility. Whether the proposed facility uses barbed wire is an issue as to the type of facility to be constructed. Thus, it falls within the exclusive jurisdiction of the Council and cannot be affected by other statutes or local regulations. B. EVEN IF THE COUNCIL'S JURISDICTION DOES NOT SUPERSEDE SECTION 47-47, METRO MOBILE'S PROPOSED FACILITY WILL NOT COME WITHIN THE AMBIT OF THAT PROVISION. As set forth above, Metro Mobile's position is that the Council's jurisdiction supersedes the provisions of Section 47-47, and that the statute is therefore inapplicable to Metro Mobile at the Manchester facility certificated by the Council. If, however, the Council concludes that its jurisdiction does not supersede the statute, Metro Mobile contends that the provisions of the statute are inapplicable to Metro Mobile for the following reasons. Proposed Fence Not Between Proprietors The statute prohibits the use of barbed wire "... between his own premises and those of an adjoining proprietor . . . " In Manchester, Metro Mobile's proposed facility will not border two separate land parcels except on the east and southwest sides (see page 5 of Tab 1 in the Metro Mobile Application for the Manchester Site, Siting Council Docket No. 129). Connecticut Siting Council Mr. Joel M. Rinebold - Docket No. 129 July 20, 1990 Page 3 On the north side of Metro Mobile's facility, the proposed barbed wire will not be between two adjoining proprietors, since Metro Mobile facility is located on a portion of a parcel owned by S. Mark Stephens. 2. No Houses or Barns Located on Adjacent Property The statute prohibits the use of barbed wire "... within twenty-five rods of any house or barn belonging to such proprietor ... " On the east side of the Metro Mobile facility, there is a strip of land owned by Kenneth C. Burkamp over which the Consolidated Rail Corporation at one time had an easement to operate a railway. There are no houses or barns located on this parcel, and therefore the prohibition cannot apply to Metro Mobile with respect to this parcel. Similarly, the southwest side of the Metro Mobile facility is bordered by a parcel owned by Kenneth C. Burkamp. There are no houses or barns located on this parcel. The prohibition stated in the barbed wire statute therefore cannot apply to Metro Mobile with respect to this parcel. Thus, even if the Council finds that its jurisdiction does not supersede the provisions of Section 47-47 of the C.G.S., those provisions, do not apply to Metro Mobile in this case. Respectfully yours, Varid S. Malko David S. Malko, P.E. Manager, Engineering and Regulatory Services DSM:mb cc: Service List Docket 129 # Exhibit B **Property Card** #### **266R CENTER STREET** **Location** 266R CENTER STREET **Mblu** 62/ 1020/ 266/ / Acct# 102000266R Owner CROWN ATLANTIC CO LLC Assessment \$115,000 Appraisal \$164,200 PID 2635 Building Count 1 DISTRICT T CONCRETE #### **Current Value** | Appraisal | | | | | |----------------|--------------|----------|-----------|--| | Valuation Year | Improvements | Land | Total | | | 2016 | \$82,000 | \$82,200 | \$164,200 | | | | Assessment | | | | | Valuation Year | Improvements | Land | Total | | | 2016 | \$57,500 | \$57,500 | \$115,000 | | #### **Owner of Record** Owner CROWN ATLANTIC CO LLC PMB 353-806372 Address 4017 WASHINGTON ROAD MCMURRAY, PA 15317 Certificate C Book & Page 2071/309 Sale Date 04/19/1999 \$0 **Instrument** 25 **Sale Price** #### **Ownership History** | Ownership History | | | | | | |-----------------------|------------|-------------|-------------|------------|------------| | Owner | Sale Price | Certificate | Book & Page | Instrument | Sale Date | | CROWN ATLANTIC CO LLC | \$0 | С | 2071/ 309 | 25 | 04/19/1999 | | CELCO PARTNERSHIP | \$0 | | 1923/ 202 | 25 | 10/16/1997 | | METRO MOBILE | \$0 | | 1382_142 | | 04/01/1990 | #### **Building Information** #### **Building 1: Section 1** Year Built: Living Area: 0 Replacement Cost: \$0 **Replacement Cost** **Less Depreciation:** \$0 Living Area: 0 Replacement Cost: \$0 **Replacement Cost** | Less Depreciation: \$0 | | | | |------------------------|--------------|--|--| | Building Attributes | | | | | Field | Description | | | | Style: | Outbuildings | | | | Model | | | | | Grade: | | | | | Stories: | | | | | Occupancy | | | | | Exterior Wall 1 | | | | | Exterior Wall 2 | | | | | Roof Structure: | | | | | Roof Cover | | | | | Interior Wall 1 | | | | | Interior Wall 2 | | | | | Interior FIr 1 | | | | | Interior FIr 2 | | | | | Heat Fuel | | | | | Heat Type: | | | | | AC Type: | | | | | Total Bedrooms: | | | | | Total Bthrms: | | | | | Total Half Baths: | | | | | Total Xtra Fixtrs: | | | | | Total Rooms: | | | | | Bath Style: | | | | | Kitchen Style: | | | | | Extra Kitchens | | | | | Whirlpool | | | | | Fireplace | | | | | Fin Basement | | | | | Fin Bsmnt Qual | | | | | Fin Bsmnt 2 | | | | | Fin Bsmnt2 Qual | | | | | Bsmnt Garage | | | | | Fireplaces | | | | | Fndtn Level | | | | | SFA Code | | | | | Fndtn Cndtn | | | | | Basement | | | | | | I . | | | (http://images.vgsi.com/photos2/ManchesterCTPhotos/\\00\02\40\81.jpg) #### **Building Layout** Building Layout (http://images.vgsi.com/photos2/ManchesterCTPhotos//Sketches/2635_263 | Building Sub-Areas (sq ft) | <u>Legend</u> | |--------------------------------|---------------| | No Data for Building Sub-Areas | | #### **Extra Features** | Extra Features | <u>Legend</u> | |----------------------------|---------------| | No Data for Extra Features | | #### Land | Land Use | | Land Line Valuation | | |---------------|---------|---------------------|----------| | Use Code | 302 | Size (Acres) | 0.17 | | Description | Ind Vac | Frontage | 0 | | Zone | IND | Depth | 0 | | Neighborhood | 4500 | Assessed Value | \$57,500 | | Alt Land Appr | No | Appraised Value | \$82,200 | | Category | | | | #### Outbuildings | | | | Outbuildings | | | Legend | |------|-----------------|----------|-----------------|---------------|----------|--------| | Code | Description | Sub Code | Sub Description | Size | Value | Bldg # | | FN4 | Fence 8' Chain | | | 264.00 L.F. | \$4,000 | 1 | | PAV1 | Paving Asphalt | | | 14000.00 S.F. | \$17,500 | 1 | | SHDT | Telephone Shed | | | 720.00 S.F. | \$59,400 | 1 | | LT1 | Lights 1Fix | | | 2.00 UNITS | \$800 | 1 | | PAV2 | Paving Concrete | | | 12.00 S.F. | \$300 | 1 | #### **Valuation History** | Appraisal | | | | |----------------|--------------|----------|-----------| | Valuation Year | Improvements | Land | Total | | 2020 | \$82,000 | \$82,200 | \$164,200 | | 2015 | \$85,100 | \$82,200 | \$167,300 | | 2010 | \$81,400 | \$86,500 | \$167,900 | | Assessment | | | | |----------------|--------------|----------|-----------| | Valuation Year | Improvements | Land | Total | | 2020 | \$57,500 | \$57,500 | \$115,000 | | 2015 | \$59,600 | \$57,500 | \$117,100 | | 2010 | \$57,000 | \$60,600 | \$117,600 | # Exhibit C **Construction Drawings** # wireless. DISH Wireless L.L.C. SITE ID: ## BOBDL00045A **DISH Wireless L.L.C. SITE ADDRESS:** # **266R CENTER STREET MANCHESTER, CT 06040** #### CONNECTICUT CODE COMPLIANCE ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES: 2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS MECHANICAL | | SHEET INDEX | |-----------|---| | SHEET NO. | SHEET TITLE | | T-1 | TITLE SHEET | | A-1 | OVERALL AND ENLARGED SITE PLAN | | A-2 | ELEVATION, ANTENNA LAYOUT AND SCHEDULE | | A-3 | EQUIPMENT PLATFORM AND H-FRAME DETAILS | | A-4 | EQUIPMENT DETAILS | | A-5 | EQUIPMENT DETAILS | | A-6 | EQUIPMENT DETAILS | | E-1 | ELECTRICAL/FIBER ROUTE PLAN AND NOTES | | E-2 | ELECTRICAL DETAILS | | E-3 | ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE | | G-1 | GROUNDING PLANS AND NOTES | | G-2 | GROUNDING DETAILS | | G-3 | GROUNDING DETAILS | | RF-1 | RF CABLE COLOR CODE | | GN-1 | LEGEND AND ABBREVIATIONS | | GN-2 | GENERAL NOTES | | GN-3 | GENERAL NOTES | | GN-4 | GENERAL NOTES | | | | | | | | | | | | | | | | #### SCOPE OF WORK THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIPMENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING: - TOWER SCOPE OF WORK: INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR) INSTALL (1) PROPOSED TOWER PLATFORM MOUNT INSTALL PROPOSED JUMPERS - INSTALL (6) PROPOSED RRUS (2 PER SECTOR) INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP) - INSTALL (1) PROPOSED HYBRID CABLE - GROUND SCOPE OF WORK: INSTALL (1) PROPOSED METAL PLATFORM - PROPOSED ICE BRIDGE PROPOSED PPC CABINET - INSTALL INSTALL (1) PROPOSED EQUIPMENT CABINET - INSTALL PROPOSED POWER CONDUIT - INSTALL (1) PROPOSED TELCO CONDUIT - PROPOSED TELCO-FIBER BOX - INSTALL (1) PROPOSED GPS UNIT - PROPOSED FIBER NID (IF REQUIRED) - INSTALL (1) PROPOSED METER IN EXISTING SOCKET #### SITE PHOTO **UNDERGROUND SERVICE ALERT CBYD 811** UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455 WWW.CBYD.COM CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION #### **GENERAL NOTES** THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED. ####
11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK. #### TOWER TYPE: MONOPOLE TOWER OWNER: CROWN CASTLE TOWER CO SITE ID: 806372 2000 CORPORATE DRIVE CANONSBURG, PA 15317 TOWER APP NUMBER: 556640 (877) 486-9377 COUNTY: HARTFORD SITE DESIGNER: B+T GROUP 1717 S. BOULDER AVE, SUITE 300 LATITUDE (NAD 83): TULSA, OK 74119 41° 46' 19.0" N 41.77194444 N (918) 587-4630 LONGITUDE (NAD 83): 72° 31' 48.8" W 72.53022222 W ZONING JURISDICTION: CT SITING COUNCIL, SITE ACQUISITION: NICHOLAS CURRY NICHOLAS.CURRY@CROWNCASTLE.COM ZONING DISTRICT: CONSTRUCTION JAVIER SOTO PARCEL NUMBER: 102000266R MANAGER: JAVIER.SOTO@DISH.COM OCCUPANCY GROUP: BOSSENER CHARLES RF ENGINEER: BOSSENER.CHARLES@DISH.COM CONSTRUCTION TYPE: II-B CONNECTICUT LIGHT & POWER PROJECT DIRECTORY DISH Wireless L.L.C. LITTLETON, CO 80120 5701 SOUTH SANTA FE DRIVE #### **DIRECTIONS** #### DIRECTIONS FROM BRADLEY INTERNATIONAL AIRPORT: TELEPHONE COMPANY: T.B.D. SITE INFORMATION M STEPHENS CO LLC 218 HARTFORD ROAD MANCHESTER, CT 06040 PROPERTY OWNER: ADDRESS: CONTINUE TO BRADLEY INTERNATIONAL AIRPORT CON HEAD NORTH TOWARD BRADLEY INTERNATIONAL AIRPORT SLIGHT LEFT ONTO BRADLEY INTERNATIONAL AIRPORT SLIGHT LEFT TAKE I-91 S AND I-84 E TO US-44 E/US-6 E/MIDDLE TURNPIKE W IN MANCHESTER. TAKE EXIT 60 FROM I-84 E CONTINUE ONTO BRADLEY INTERNATIONAL AIRPORT CON CONTINUE ONTO CT-20 E/BRADLEY INTERNATIONAL AIRPORT CON USE THE RIGHT 2 LANES TO MERGE WITH I-91 S TOWARD HARTFORD USE THE LEFT LANE TO TAKE EXIT 30 TO MERGE WITH I-84 E TAKE EXIT 60 FOR US-6/US-44/MIDDLE TURNPIKE W FOLLOW US-44 E/US-6 E TO PINE ST USE THE RIGHT 2 LANES TO TURN RIGHT ONTO US-44 E/US-6 E/MIDDLE TURNPIKE W TURN RIGHT ONTO US-44 E/US-6 E/CENTER ST PASS BY BURGER KING (ON THE LEFT IN 1.2 MI) SLIGHT RIGHT ONTO PINE ST 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 2000 CORPORATE DRIVE CANONSBURG, PA 15317 **B&T ENGINEERING, INC.** PEC.0001564 Expires 2/10/22 IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. | | DRAWN BY: | CHECKED BY: | APPROVED BY | |--|-----------|-------------|-------------| | | LHT | MTJ | MDW | RFDS REV #: #### CONSTRUCTION **DOCUMENTS** | | SUBMITTALS | | | |-----|------------|-------------------------|--| | REV | DATE | DESCRIPTION | | | A | 6/17/21 | ISSUED FOR REVIEW | | | 0 | 8/11/21 | ISSUED FOR CONSTRUCTION | A&E F | PROJECT NUMBER | | 134993.008.01 BOBDL00045A 266R CENTER STREET MANCHESTER CT 06040 > SHEET TITLE TITLE SHEET SHEET NUMBER T-1 #### **NOTES** - CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS. - 2. CONTRACTOR SHALL MAINTAIN A 10'-0" MINIMUM SEPARATION BETWEEN THE PROPOSED GPS UNIT, TRANSMITTING ANTENNAS AND EXISTING GPS UNITS. - 3. ANTENNAS AND MOUNTS OMITTED FOR CLARITY. **ENLARGED SITE PLAN** 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 2000 CORPORATE DRIVE CANONSBURG, PA 15317 B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22 IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. | DRAWN BY: | CHECKED BY: | APPROVED BY: | |-----------|-------------|--------------| | LHT | MTJ | MDW | RFDS REV #: #### CONSTRUCTION **DOCUMENTS** | | SUBMITTALS | | | | | |-----|---------------------|--------------------------------|--|--|--| | REV | DATE | DESCRIPTION ISSUED FOR REVIEW | | | | | A | 6/17/21 | | | | | | 0 | 8/11/21 | ISSUED FOR CONSTRUCTION | AAE DDO IEOT AUMDED | | | | | A&E PROJECT NUMBER 134993.008.01 BOBDL00045A 266R CENTER STREET MANCHESTER CT 06040 SHEET TITLE OVERALL AND ENLARGED SITE PLAN SHEET NUMBER **A-1** NOT USED - 1. CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS. - 2. ANTENNA AND MW DISH SPECIFICATIONS REFER TO ANTENNA SCHEDULE AND TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS - 3. EXISTING EQUIPMENT AND FENCE OMITTED FOR CLARITY. PROPOSED NORTH ELEVATION ANTENNA TRANSMISSION CABLE SECTOR MANUFACTURER - MODEL NUMBER FEED LINE TYPE AND LENGTH EXISTING OR PROPOSED RAD CENTER TECHNOLOGY SIZE (HxW) AZIMUTH ALPHA A1 JMA - MX08FR0665-21 72.0" x 20.0" (1) HIGH-CAPACITY HYBRID CABLE (128' LONG) BETA **B**1 JMA - MX08FR0665-21 72.0" x 20.0" 120° 95'-0" PROPOSED C1 PROPOSED JMA - MX08FR0665-21 5G 72.0" x 20.0" 240° 95'-0" | | POSITION | RRH | | | |--------|----------|--------------------------------|------------|--| | SECTOR | | MANUFACTURER — MODEL
NUMBER | TECHNOLOGY | | | ALPHA | A1 | FUJITSU- TA08025-B605 | 5G | | | ALFIIA | A1 | FUJITSU- TA08025-B604 | 5G | | | BETA | B1 | FUJITSU- TA08025-B605 | 5G | | | BEIA | B1 | FUJITSU- TA08025-B604 | 5G | | | GAMMA | C1 | FUJITSU- TA08025-B605 | 5G | | | GAMMA | C1 | FUJITSU- TA08025-B604 | 5G | | **ANTENNA LAYOUT** #### NOTES - CONTRACTOR TO REFER TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS. - ANTENNA AND RRH MODELS MAY CHANGE DUE TO EQUIPMENT AVAILABILITY. ALL EQUIPMENT CHANGES MUST BE APPROVED AND REMAIN IN COMPLIANCE WITH THE PROPOSED DESIGN AND STRUCTURAL ANALYSES. 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 2000 CORPORATE DRIVE CANONSBURG, PA 15317 B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22 IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. | DRAWN E | 3Y: | CHECKED | BY: | APPROVED | BY: | |---------|-----|---------|-----|----------|-----| | LHT | | MTJ | | MDW | | RFDS REV #: #### CONSTRUCTION **DOCUMENTS** | | | SUBMITTALS | |-----|---------|-------------------------| | REV | DATE | DESCRIPTION | | A | 6/17/21 | ISSUED FOR REVIEW | | 0 | 8/11/21 | ISSUED FOR CONSTRUCTION | • | A&E PROJECT NUMBER 134993.008.01 DISH Wireless L.L.C. PROJECT INFORMATION BOBDL00045A 266R CENTER STREET MANCHESTER CT 06040 SHEET TITLE ELEVATION, ANTENNA LAYOUT AND SCHEDULE SHEET NUMBER **A-2** 1/8"=1'-0" ANTENNA SCHEDULE 3/4"=1'-0" #### **NOTES** - CONTRACTOR SHALL FIELD VERIFY ALL PROPOSED UNDERGROUND UTILITY CONDUIT ROUTE. - ANTENNAS AND MOUNTS OMITTED FOR CLARITY. DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING ± 24 V and ± 48 V conductors. RED MARKINGS SHALL IDENTIFY ± 24 V and blue markings shall identify ± 48 V. - CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED. - ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS. - 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION. - CONDUIT ROUGH—IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS. VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED. - 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM. - 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314. - 7. CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS. - 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM. - INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250. THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL DISCONNECT SWITCHES, AND EQUIPMENT CABINETS. - 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL. - 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT. - 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS. - 13. ALL TRENCHES IN COMPOUND TO BE HAND DUG 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 2000 CORPORATE DRIVE CANONSBURG, PA 15317 **B&T ENGINEERING, INC.** PEC.0001564 Expires 2/10/22 IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. | DRAWN BY: | CHECKED BY: | APPROVED BY: | |-----------|-------------|--------------| | LHT | MTJ | MDW | RFDS REV #: #### CONSTRUCTION DOCUMENTS | | SUBMITTALS | | | | | | |-----------|---------------------------|-------------------------|--|--|--|--| | REV | DATE | DESCRIPTION | | | | | | A | 6/17/21 ISSUED FOR REVIEW | | | | | | | 0 8/11/21 | | ISSUED FOR CONSTRUCTION | A&E PROJECT NUMBER 134993.008.01 DISH Wireless L.L.C. PROJECT INFORMATION BOBDL00045A 266R CENTER STREET MANCHESTER CT 06040 SHEET TITLE ELECTRICAL/FIBER ROUTE PLAN AND NOTES SHEET NUMBER E-1 #### **NOTES** THE (2) CONDUITS WITH (4) CURRENT CARRYING CONDUCTORS EACH, SHALL APPLY THE ADJUSTMENT FACTOR OF 80% PER 2014/17 NEC TABLE 310.15(B)(3)(a) OR 2020 NEC TABLE 310.15(C)(1) FOR UL1015 WIRE. #12 FOR 15A-20A/1P BREAKER: 0.8 x 30A = 24.0A #10 FOR 25A-30A/2P BREAKER: 0.8 x 40A = 32.0A #8 FOR 35A-40A/2P BREAKER: 0.8 x 55A = 44.0A #6 FOR 45A-60A/2P BREAKER: 0.8 x 75A = 60.0A CONDUIT SIZING: AT 40% FILL PER NEC CHAPTER 9, TABLE 4, ARTICLE 358. 0.5" CONDUIT - 0.122 SQ. IN AREA 0.75" CONDUIT - 0.213 SQ. IN AREA 2.0" CONDUIT - 1.316 SQ. IN
AREA 3.0" CONDUIT - 2.907 SQ. IN AREA CABINET CONVENIENCE OUTLET CONDUCTORS (1 CONDUIT): USING THWN-2, CU. #10 - 0.0211 SQ. IN X 2 = 0.0422 SQ. IN #10 - 0.0211 SQ. IN X 1 = 0.0211 SQ. IN <GROUND = 0.0633 SQ. IN 0.5" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (3) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE. RECTIFIER CONDUCTORS (2 CONDUITS): USING UL1015, CU. #10 - 0.0266 SQ. IN X 4 = 0.1064 SQ. IN #10 - 0.0082 SQ. IN X 1 = 0.0082 SQ. IN <BARE GROUND = 0.1146 SQ. IN 0.75" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (5) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE. PPC FEED CONDUCTORS (1 CONDUIT): USING THWN, CU. 3/0 - 0.2679 SQ. IN X 3 = 0.8037 SQ. IN #6 - 0.0507 SQ. IN X 1 = 0.0507 SQ. IN <GROUND TOTAL = 0.8544 SQ. IN 3.0" SCH 40 PVC CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (4) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE. PPC ONE-LINE DIAGRAM NO SCALE PANEL SCHEDULE 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 2000 CORPORATE DRIVE CANONSBURG, PA 15317 **B&T ENGINEERING, INC.** PEC.0001564 Expires 2/10/22 IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. | DRAWN | BY: | CHECKED | BY: | APPROVED | BY: | |-------|-----|---------|-----|----------|-----| | LHT | | MTJ | | MDW | | RFDS REV #: #### CONSTRUCTION **DOCUMENTS** | | SUBMITTALS | | | | | |-----------------------------|------------|-------------------------|--|--|--| | REV DATE DESCRIPTION | | | | | | | A 6/17/21 ISSUED FOR REVIEW | | ISSUED FOR REVIEW | | | | | 0 | 8/11/21 | ISSUED FOR CONSTRUCTION | A&E PROJECT NUMBER | | | | | | 134993.008.01 DISH Wireless L.L.C. PROJECT INFORMATION BOBDL00045A 266R CENTER STREET MANCHESTER CT 06040 SHEET TITLE ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE SHEET NUMBER NO SCALE E-3 NOT USED NO SCALE TYPICAL EQUIPMENT GROUNDING PLAN **NOTES** NO SCALE ANTENNAS AND OVP SHOWN ARE GENERIC AND NOT REFERENCING TO A SPECIFIC MANUFACTURER. THIS LAYOUT IS FOR REFERENCE ONLY TYPICAL ANTENNA GROUNDING PLAN EXOTHERMIC CONNECTION MECHANICAL CONNECTION GROUND BUS BAR GROUND ROD (\bullet) TEST GROUND ROD WITH INSPECTION SLEEVE ---- #6 AWG STRANDED & INSULATED — · — · — #2 AWG SOLID COPPER TINNED ▲ BUSS BAR INSULATOR #### **GROUNDING LEGEND** - 1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY. - CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM. GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH Wireless L.L.C. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS. - 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED. #### **GROUNDING KEY NOTES** - (A) EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW GRADE, OR 6 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM THE EXTERIOR WALL OR FOOTING. - B TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS, AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN BROWNER FOR THE FOUNDATION OF AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS. - © Interior ground ring: #2 awg stranded green insulated copper conductor extended around the perimeter of the equipment area. All non-telecommunications related metallic objects found within a site shall be grounded to the interior ground ring with #6 awg stranded green - D BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS SHALL BE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE CORNERS OF THE - (E) GROUND ROD: UL LISTED COPPER CLAD STEEL. MINIMUM 1/2" DIAMETER BY EIGHT FEET LONG. GROUND RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. GROUND RODS SHALL BE DRIVEN TO THE DEPTH OF GROUND RING CONDUCTOR. - F CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GREEN INSULATED COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUCTORS. - G HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH. - (H) EXTERIOR CABLE ENTRY PORT GROUND BARS; LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING, BOND TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTORS WITH AN EXOTHERMIC WELD AND INSPECTION SLEEVE. - 1 TELCO GROUND BAR: BOND TO BOTH CELL REFERENCE GROUND BAR OR EXTERIOR GROUND RING. - J FRAME BONDING: THE BONDING POINT FOR TELECOM EQUIPMENT FRAMES SHALL BE THE GROUND BUS THAT IS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEWORK. -) Interior unit bonds: Metal frames, cabinets and individual metallic units located with the area of the interior ground ring require a #6 awg stranded green insulated copper bond to the - L FENCE AND GATE GROUNDING: METAL FENCES WITHIN 7 FEET OF THE EXTERIOR GROUND RING OR OBJECTS BONDED TO THE EXTERIOR GROUND RING SHALL BE BONDED TO THE GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEEDING 25 FEET. BONDS SHALL BE MADE AT EACH CAST DEPARTMENT OF THE COPPER CAST OF THE COPPER CAST OF THE - M EXTERIOR UNIT BONDS: METALLIC OBJECTS, EXTERNAL TO OR MOUNTED TO THE BUILDING, SHALL BE BONDED TO THE EXTERIOR GROUND RING. USING #2 TINNED SOLID COPPER WIRE - N ICE BRIDGE SUPPORTS: EACH ICE BRIDGE LEG SHALL BE BONDED TO THE GROUND RING WITH #2 AWG BARE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRIDGE LEG AND BURIED - DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEMENTS AND INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICE CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPPED WITH A MASTER DC SYSTEM RETURN GROUND CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED TO THE CELL SITE - (P) TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICALLY BONDED TO PROPOSED ANTENNA MOUNT COLLAR. REFER TO DISH Wireless L.L.C. GROUNDING NOTES. 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 2000 CORPORATE DRIVE CANONSBURG, PA 15317 **B&T ENGINEERING, INC.** PEC.0001564 Expires 2/10/22 IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. | DRAWN 6 | BY: | CHECKED | BY: | APPROVED | BY: | |---------|-----|---------|-----|----------|-----| | LHT | | MTJ | | MDW | | RFDS REV #: #### CONSTRUCTION **DOCUMENTS** | | SUBMITTALS | | | | | | | |-----------|------------|-------------------------|--|--|--|--|--| | REV | DATE | DESCRIPTION | | | | | | | A 6/17/21 | | ISSUED FOR REVIEW | | | | | | | 0 8/11/21 | | ISSUED FOR CONSTRUCTION | Δ&F F | PROJECT NUMBER | | | | | | 134993.008.01 DISH Wireless L.L.C. PROJECT INFORMATION BOBDL00045A 266R CENTER STREET MANCHESTER CT 06040 SHEET TITLE GROUNDING PLANS AND NOTES SHEET NUMBER G-1 **GROUNDING KEY NOTES** NO SCALE 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 2000 CORPORATE DRIVE CANONSBURG, PA 15317 B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22 IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. | l | DRAWN BY: | CHECKED BY: | APPROVED BY: | |---|-----------|-------------|--------------| | ı | LHT | MTJ | MDW | RFDS REV #: ## CONSTRUCTION DOCUMENTS | l | | SUBMITTALS | | | | | | | | | |---|-----|------------|-------------------------|--|--|--|--|--|--|--| | l | REV | DATE | DESCRIPTION | | | | | | | | | ı | Α | 6/17/21 | ISSUED FOR REVIEW | | | | | | | | | ı | 0 | 8/11/21 | ISSUED FOR CONSTRUCTION | | | | | | | | | ı | | | | | | | | | | | | ı | | | | | | | | | | | | ı | | | | | | | | | | | | ı | | | | | | | | | | | | ı | A&E PROJECT NUMBER 134993.008.01 DISH Wireless L.L.C. PROJECT INFORMATION BOBDL00045A 266R CENTER STREET MANCHESTER CT 06040 SHEET TITLE RF CABLE COLOR CODES SHEET NUMBER RF-1 RF CABLE COLOR CODES NO SCALE 1 NOT USED NO SCALE 2 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 2000 CORPORATE DRIVE CANONSBURG, PA 15317 B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22 IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. | ı | DRAWN BY: | CHECKED E | RX: | APPROVED | BY: | |---|-----------|-----------|-----|----------|-----| | | | | | | | RFDS REV #: ## CONSTRUCTION DOCUMENTS | | SUBMITTALS | | | | | | | | | |-----|------------|-------------------------|--|--|--|--|--|--|--| | REV | DATE | DESCRIPTION | | | | | | | | | A | 6/17/21 | ISSUED FOR REVIEW | | | | | | | | | 0 | 8/11/21 | ISSUED FOR CONSTRUCTION | A&E PROJECT NUMBER 134993.008.01 PROJECT INFORMATION BOBDL00045A 266R CENTER STREET MANCHESTER CT 06040 SHEET TITLE LEGEND AND ABBREVIATIONS SHEET NUMBER GN-1 **LEGEND** **ABBREVIATIONS** #### SITE ACTIVITY REQUIREMENTS: - 1. NOTICE TO PROCEED NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER CONSTRUCTION MANAGER. - 2. "LOOK UP" DISH Wireless L.L.C. AND TOWER
OWNER SAFETY CLIMB REQUIREMENT: THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH WIReless L.L.C. AND DISH WIReless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET. - 3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS. - 4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELESS L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION). - 5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS." - 6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION. - 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS. - 8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE. - 9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION. - 10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES. - 11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION. - 12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY. - 13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIReless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES. - 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS. - 15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS. - 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION. - 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS. - 18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL. - 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER. - 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION. - 21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS. - 22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT. #### GENERAL NOTES: 1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION CARRIER:DISH Wireless L.L.C. TOWER OWNER:TOWER OWNER - 2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN. - 3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY. - 4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD. - 5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE. - 6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER. - 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS. - 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS. - 9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE. - 10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION
FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION - 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS. - 12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER - 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION. - 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS. 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 2000 CORPORATE DRIVE CANONSBURG, PA 15317 B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22 IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. | DRAWN | BY: | CHECKED | BY: | APPROVED | BY: | |-------|-----|---------|-----|----------|-----| | LHT | | MTJ | | MDW | | RFDS REV #: ## CONSTRUCTION DOCUMENTS | | SUBMITTALS | | | | | | | | | |-----|------------|-------------------------|--|--|--|--|--|--|--| | REV | DATE | DESCRIPTION | | | | | | | | | Α | 6/17/21 | ISSUED FOR REVIEW | | | | | | | | | 0 | 8/11/21 | ISSUED FOR CONSTRUCTION | A&E I | PROJECT NUMBER | | | | | | | | 134993.008.01 DISH Wireless L.L.C. PROJECT INFORMATION BOBDL00045A 266R CENTER STREET MANCHESTER CT 06040 SHEET TITLE GENERAL NOTES SHEET NUMBER GN-2 #### CONCRETE, FOUNDATIONS, AND REINFORCING STEEL: - 1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST—IN—PLACE CONCRETE. - 2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf. - 3. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90'F AT TIME OF PLACEMENT. - 4. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45. - 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS: #4 BARS AND SMALLER 40 ksi #5 BARS AND LARGER 60 ksi - 6. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS: - CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3" - CONCRETE EXPOSED TO EARTH OR WEATHER: - #6 BARS AND LARGER 2" - #5 BARS AND SMALLER 1-1/2" - . CONCRETE NOT EXPOSED TO EARTH OR WEATHER: - SLAB AND WALLS 3/4" - BEAMS AND COLUMNS 1-1/2" - 7. A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4. #### **ELECTRICAL INSTALLATION NOTES:** - 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES. - 2. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED. - 3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC. - 4. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC. - 4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE. - 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION. - 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR—CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA. - 6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S). - 7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS. - 8. TIE WRAPS ARE NOT ALLOWED - 9. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. - 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. - 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED. - 12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. - 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75° C (90° C IF AVAILABLE). - 14. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC. - 15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS. - ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS. - 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT. - 18. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED. - 19. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE. - 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE NEC. - 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY). - 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL). - 23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE. - 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS. - 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY—COATED OR NON—CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS. - 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS. - 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS. - 28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY. - 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.". -). ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED. 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 2000 CORPORATE DRIVE CANONSBURG, PA 15317 B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22 IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. | DRAWN |
BY: | CHECKED | BY: | APPROVED | BY: | |-------|-----|---------|-----|----------|-----| | LHT | | MTJ | | MDW | | RFDS REV #: ## CONSTRUCTION DOCUMENTS | | SUBMITTALS | | | | | | | |-----|--------------------|-------------------------|--|--|--|--|--| | REV | DATE | DESCRIPTION | | | | | | | Α | 6/17/21 | ISSUED FOR REVIEW | | | | | | | 0 | 8/11/21 | ISSUED FOR CONSTRUCTION | A&E PROJECT NUMBER | | | | | | | 134993.008.01 DISH Wireless L.L.C. PROJECT INFORMATION BOBDL00045A 266R CENTER STREET MANCHESTER CT 06040 SHEET TITLE GENERAL NOTES SHEET NUMBER GN-3 #### **GROUNDING NOTES:** - 1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC. - 2. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS. - 3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS. - 4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS. - 5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT. - 6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS. - 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED. - 8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED. - 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS. - 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED. - 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE. - 12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS. - COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS. - 14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR. - 15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS. - 16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL. - 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC. - 18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR. - 19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT. - 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL). - 21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/O COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES. 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 2000 CORPORATE DRIVE CANONSBURG, PA 15317 B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/22 IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. | DRAWN BY: | CHECKED BY: | APPROVED BY: | |-----------|-------------|--------------| | LHT | MTJ | MDW | RFDS REV #: # CONSTRUCTION DOCUMENTS | | SUBMITTALS | | | | | |-----|------------|-------------------------|--|--|--| | REV | DATE | DESCRIPTION | | | | | A | 6/17/21 | ISSUED FOR REVIEW | | | | | 0 | 8/11/21 | ISSUED FOR CONSTRUCTION | ∧ 9a⊑ I | DOLECT NUMBER | | | | A&E PROJECT NUMBER 134993.008.01 DISH Wireless L.L.C PROJECT INFORMATION BOBDL00045A 266R CENTER STREET MANCHESTER CT 06040 SHEET TITLE GENERAL NOTES SHEET NUMBER GN-4 # Exhibit D **Structural Analysis Report** Date: May 28, 2021 Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 724-416-2000 Subject: Structural Analysis Report Carrier Designation: DISH Network Co-Locate Site Number: BOBDL00045A Site Name: CT-CCI-T-806372 Crown Castle Designation: BU Number: 806372 **Site Name:** HRT 093 943228 JDE Job Number: 650040 Work Order Number: 1966182 Order Number: 556640 Rev. 1 Engineering Firm Designation: Crown Castle Project Number: 1966182 Site Data: 266R Center Street, MANCHESTER, HARTFORD County, CT Latitude 41° 46′ 19", Longitude -72° 31′ 48.8" 115 Foot - Monopole Tower Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower. The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be: LC7: Proposed Equipment Configuration **Sufficient Capacity - 63.0%** This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - "Analysis Criteria". Structural analysis prepared by: Subhash Mandal Respectfully submitted by: Bradley E. Byrom, P.E., S.E. Senior Project Engineer Digitally signed by Bradley E Byrom Date: 2021.05.29 16:14:19 -04'00' #### **TABLE OF CONTENTS** #### 1) INTRODUCTION #### 2) ANALYSIS CRITERIA Table 1 - Proposed Equipment Configuration Table 2 - Other Considered Equipment #### 3) ANALYSIS PROCEDURE Table 3 - Documents Provided - 3.1) Analysis Method - 3.2) Assumptions #### 4) ANALYSIS RESULTS Table 4 - Section Capacity (Summary) Table 5 - Tower Component Stresses vs. Capacity - LC7 4.1) Recommendations #### 5) APPENDIX A tnxTower Output #### 6) APPENDIX B Base Level Drawing #### 7) APPENDIX C **Additional Calculations** #### 1) INTRODUCTION This tower is a 115 ft Monopole tower designed by VALMONT. #### 2) ANALYSIS CRITERIA TIA-222 Revision: TIA-222-H Risk Category: Wind Speed: 125 mph Exposure Category: Topographic Factor: Ice Thickness: Wind Speed with Ice: Service Wind Speed: B 1 2 in 50 mph 60 mph **Table 1 - Proposed Equipment Configuration** | Mounting
Level (ft) | Flovation | Number
of
Antennas | Antenna
Manufacturer | Antenna Model | Number
of Feed
Lines | Feed
Line
Size (in) | | | | | | | |------------------------|-----------|--------------------------|-------------------------|-----------------------------|----------------------------|---------------------------|--|--|---|---------|--------------|--| | | | 3 | fujitsu | TA08025-B604 | | | | | | | | | | | | | | | | | | | 3 | fujitsu | TA08025-B605 | | | 95.0 | 95.0 | 3 | jma wireless | MX08FRO665-21 w/ Mount Pipe | 1 | 1-1/2 | | | | | | | | | | 1 | raycap | RDIDC-9181-PF-48 | | | | | | | | | | | | 1 | tower mounts | Commscope MC-PK8-DSH | | | | | | | | | **Table 2 - Other Considered Equipment** | Mounting
Level (ft) | Flevation | Number
of
Antennas | Antenna
Manufacturer | Antenna Model | Number
of Feed
Lines | Feed
Line
Size (in) | | |------------------------|-----------|--------------------------|-------------------------------|---------------------------------|--|---------------------------|--| | | 116.0 | 3 | samsung
telecommunications | MT6407-77A w/ Mount Pipe | | | | | | | 3 | andrew | LNX-6512DS-A1M w/ Mount
Pipe | | | | | | | 6 | commscope | NNHH-65B-R4 w/ Mount Pipe | | i i | | | | | 1 | raycap | RRFDC-3315-PF-48 | | i i | | | | 115.0 | 1 | rfs celwave | DB-T1-6Z-8AB-0Z | 8 | 1-5/8 | | | 115.0 | | 3 | samsung
telecommunications | RFV01U-D1A | | | | | | | 3 | samsung
telecommunications | RFV01U-D2A | | | | | | | | 1 | tower mounts | Platform Mount [LP 1201-
1_KCKR-HR-1] | | | | | | 3 | samsung
telecommunications | CBRS w/ Mount Pipe | | | | | | 107.0 | 2 | andrew | VHLP1-23 | 5 | 1/4 | | | 105.0 | 107.0 | 1 | andrew | VHLP2-23 | 5 | 1/2 | | | 100.0 | 105.0 | 1 | tower mounts | Platform Mount [LP
602-1] | 5
2 | 5/16
Conduit | | | 85.0 | 85.0 | 4 | tower mounts | Side Arm Mount [SO 701-1] | 5 | 13/32 | | | 00.0 | 05.0 | 85.0 | wade antenna | WH14-69/S | | 13/32 | | | Mounting
Level (ft) | Flouration | Number
of
Antennas | Antenna
Manufacturer | Antenna Model | Number
of Feed
Lines | Feed
Line
Size (in) | |------------------------|------------|--------------------------|-------------------------|---------------|----------------------------|---------------------------| | | 84.0 | 3 | wade antenna | WL 14-69/S | | | | | 78.0 | 1 | wade antenna | J105-HI | | | #### 3) ANALYSIS PROCEDURE **Table 3 - Documents Provided** | Document | Reference | Source | |--|-----------|----------| | 4-GEOTECHNICAL REPORTS | 262174 | CCISites | | 4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS | 2668863 | CCISites | | 4-TOWER MANUFACTURER DRAWINGS | 262172 | CCISites | #### 3.1) Analysis Method tnxTower (version 8.0.9.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard. #### 3.2) Assumptions - 1) Tower and structures were maintained in accordance with the TIA-222 Standard. - 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings. This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower. #### 4) ANALYSIS RESULTS Table 4 - Section Capacity (Summary) | Section
No. | Elevation (ft) | Component
Type | Size | Critical
Element | P (K) | SF*P_allow
(K) | %
Capacity | Pass / Fail | | |----------------|----------------------|-------------------|-----------------------|---------------------|--------|-------------------|---------------|-------------|--| | L1 | 115 - 72.3334 | Pole | TP30.45x21.91x0.219 | 1 | -13.52 | 1269.02 | 46.1 | Pass | | | L2 | 72.3334 -
29.3334 | Pole | TP38.61x29.0779x0.313 | 2 | -20.57 | 2300.73 | 52.3 | Pass | | | L3 | 29.3334 - 0 | Pole | TP43.85x36.8508x0.375 | 3 | -29.27 | 3224.57 | 52.1 | Pass | | | | | | | | | Summary | | | | | | | | | | | Pole (L2) | 52.3 | Pass | | | | | | | | | Rating = | 52.3 | Pass | | Table 5 - Tower Component Stresses vs. Capacity - LC7 | Notes | Component | Elevation (ft) | % Capacity | Pass / Fail | |-------|------------------------------------|----------------|------------|-------------| | 1 | Anchor Rods | 0 | 47.7 | Pass | | 1 | Base Plate | 0 | 28.4 | Pass | | 1 | Base Foundation (Structure) | 0 | 59.1 | Pass | | 1 | Base Foundation (Soil Interaction) | 0 | 63.0 | Pass | | Structure Rating (max from all components) = | 63.0% | |--|-------| Notes: ## 4.1) Recommendations The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time. ¹⁾ See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed. # APPENDIX A TNXTOWER OUTPUT **MATERIAL STRENGTH** | GRADE | Fy | Fu | GRADE | Fy | Fu | |---------|--------|--------|-------|----|----| | A572-65 | 65 ksi | 80 ksi | | | | #### **TOWER DESIGN NOTES** - 1. Tower is located in Hartford County, Connecticut. - 2. Tower designed for Exposure B to the TIA-222-H Standard. - Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard. - 4. Tower is also designed for a 50 mph basic wind with 2.00 in ice. Ice is considered to increase 1. Tower is also designed for a 50 mph basic will will in thickness with height. 5. Deflections are based upon a 60 mph wind. 6. Tower Risk Category II. 7. Topographic Category 1 with Crest Height of 0.00 ft 8. TOWER RATING: 52.3% | BU 806372 | | | | |--|--|--------|-------------------| | ject: | | | | | ent: Crown Castle | Drawn by: SMandal | App'd: | | | ^{de:} TIA-222-H | Date: 05/28/21 | Scale: | NTS | | h:
C:\Users\smandal\Desktop\WIP\80637 | 72\WO 1966182 - SA\Prod\806372_RPA.eri | Dwg No | ^{3.} E-1 | ## **Tower Input Data** The tower is a monopole. This tower is designed using the TIA-222-H standard. The following design criteria apply: - Tower is located in Hartford County, Connecticut. - Tower base elevation above sea level: 196.00 ft. - Basic wind speed of 125 mph. - Risk Category II. - Exposure Category B. - Simplified Topographic Factor Procedure for wind speed-up calculations is used. - Topographic Category: 1. - Crest Height: 0.00 ft. - Nominal ice thickness of 2.0000 in. - Ice thickness is considered to increase with height. - Ice density of 56 pcf. - A wind speed of 50 mph is used in combination with ice. - Temperature drop of 50 °F. - Deflections calculated using a wind speed of 60 mph. - A non-linear (P-delta) analysis was used. - Pressures are calculated at each section. - Stress ratio used in pole design is 1. - Tower analysis based on target reliabilities in accordance with Annex S. - Load Modification Factors used: K_{es}(F_w) = 0.95, K_{es}(t_i) = 0.85. - Maximum demand-capacity ratio is: 1.05. - Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered. ## **Options** Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification - √ Use Code Stress Ratios - ✓ Use Code Safety Factors Guys Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned - √ Assume Rigid Index Plate - √ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension - √ Bypass Mast Stability Checks - √ Use Azimuth Dish Coefficients - √ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption #### Poles Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known ## **Tapered Pole Section Geometry** | Section | Elevation | Section
Length | Splice
Length | Number
of | Top
Diameter | Bottom
Diameter | Wall
Thickness | Bend
Radius | Pole Grade | |---------|--------------|-------------------|------------------|--------------|-----------------|--------------------|-------------------|----------------|---------------------| | | ft | ft | ft | Sides | in | in | in | in | | | L1 | 115.00-72.33 | 42.67 | 4.6666 | 12 | 21.9100 | 30.4500 | 0.2190 | 0.8760 | A572-65
(65 ksi) | | L2 | 72.33-29.33 | 47.67 | 5.6666 | 12 | 29.0779 | 38.6100 | 0.3130 | 1.2520 | A572-65
(65 ksi) | | L3 | 29.33-0.00 | 35.00 | | 12 | 36.8508 | 43.8500 | 0.3750 | 1.5000 | A572-65
(65 ksi) | | | Tapered Pole Properties | | | | | | | | | | | | | |---------|-------------------------|-------------|----------------|---------|---------|------------|----------------|-------------|---------|--------|--|--|--| | Section | Tip Dia.
in | Area
in² | I
in⁴ | r
in | C
in | I/C
in³ | J
in⁴ | It/Q
in² | w
in | w/t | | | | | L1 | 22.6056 | 15.2961 | 918.5962 | 7.7654 | 11.3494 | 80.9380 | 1861.3250 | 7.5283 | 5.2850 | 24.132 | | | | | | 31.4469 | 21.3183 | 2486.8150 | 10.8227 | 15.7731 | 157.6618 | 5038.9614 | 10.4922 | 7.5737 | 34.583 | | | | | L2 | 30.9594 | 28.9910 | 3061.8012 | 10.2979 | 15.0624 | 203.2748 | 6204.0393 | 14.2685 | 6.9541 | 22.217 | | | | | | 39.8616 | 38.5980 | 7225.7083 | 13.7103 | 20.0000 | 361.2858 | 14641.244
0 | 18.9968 | 9.5086 | 30.379 | | | | | L3 | 39.1917 | 44.0446 | 7479.7774 | 13.0583 | 19.0887 | 391.8426 | 15156.056
9 | 21.6774 | 8.8710 | 23.656 | | | | | | 45.2646 | 52.4961 | 12664.611
2 | 15.5641 | 22.7143 | 557.5611 | 25661.935
8 | 25.8370 | 10.7468 | 28.658 | | | | | Tower
Elevation | Gusset
Area
(per face) | Gusset
Thickness | Gusset Grade Adjust. Factor
A _f | Adjust.
Factor
A _r | Weight Mult. | Double Angle
Stitch Bolt
Spacing
Diagonals | Stitch Bolt
Spacing
Horizontals | Stitch Bolt
Spacing
Redundants | |--------------------|------------------------------|---------------------|---|-------------------------------------|--------------|---|---------------------------------------|--------------------------------------| | ft | ft ² | in | | | | in | in | in | | L1 115.00- | | | 1 | 1 | 1 | | | | | 72.33 | | | | | | | | | | L2 72.33- | | | 1 | 1 | 1 | | | | | 29.33 | | | | | | | | | | L3 29.33-0.00 | | | 1 | 1 | 1 | | | | ## Feed Line/Linear Appurtenances - Entered As Round Or Flat | Description | Sector | Exclude
From | Componen
t | Placement | Total
Number | Number
Per Row | Start/En
d | Width or
Diamete | Perimete
r | Weight | |--------------------------|--------|-----------------------|----------------------
------------------------|-----------------|-------------------|------------------|---------------------|---------------|--------| | | | Torque
Calculation | Type | ft | | | Position | r
in | in | plf | | LDE7 F0A (4 F/0) | | | | 115.00 | | | 0.400 | | 111 | 0.00 | | LDF7-50A(1-5/8) | С | No | Surface Ar
(CaAa) | 115.00 -
0.00 | 3 | 3 | 0.400
0.500 | 1.9800 | | 0.82 | | **85** | | | | | | | | | | | | 1110(13/32) | Α | No | Surface Ar
(CaAa) | 85.00 -
0.00 | 5 | 5 | 0.000
0.080 | 0.4050 | | 0.05 | | *** | | | (- / | | | | | | | | | CU12PSM9P6XXX(1-
1/2) | В | No | Surface Ar
(CaAa) | 95.00 -
0.00 | 1 | 1 | -0.100
-0.100 | 1.6000 | | 2.35 | # Feed Line/Linear Appurtenances - Entered As Area | Description | Face
or | Allow
Shield | Exclude
From | Componen
t | Placement | Total
Number | | C _A A _A | Weight | |-----------------|------------|-----------------|-----------------------|---------------|---------------|-----------------|------------------------------|-------------------------------|----------------------| | | Leg | 00.0 | Torque
Calculation | Type | ft | | | ft²/ft | plf | | **115** | | | Carculation | | | | | | | | LDF7-50A(1-5/8) | С | No | No | Inside Pole | 115.00 - 0.00 | 5 | No Ice
1/2" Ice
1" Ice | 0.00
0.00
0.00 | 0.82
0.82
0.82 | | Description | Face
or | Allow
Shield | Exclude
From | Componen
t | Placement | Total
Number | | C _A A _A | Weight | |---------------------|------------|-----------------|-----------------------|---------------|---------------|-----------------|----------|-------------------------------|--------| | | Leg | | Torque
Calculation | Type | ft | | | ft²/ft | plf | | **105** | | | | | | | 2" Ice | 0.00 | 0.82 | | FSJ1-50A(1/4) | С | No | No | Inside Pole | 105.00 - 0.00 | 5 | No Ice | 0.00 | 0.04 | | , , | | | | | | | 1/2" Ice | 0.00 | 0.04 | | | | | | | | | 1" Ice | 0.00 | 0.04 | | | | | | | | | 2" Ice | 0.00 | 0.04 | | FSJ4-50B(1/2) | С | No | No | Inside Pole | 105.00 - 0.00 | 5 | No Ice | 0.00 | 0.14 | | | | | | | | | 1/2" Ice | 0.00 | 0.14 | | | | | | | | | 1" Ice | 0.00 | 0.14 | | | | | | | | | 2" Ice | 0.00 | 0.14 | | 9207(5/16) | С | No | No | Inside Pole | 105.00 - 0.00 | 5 | No Ice | 0.00 | 0.60 | | | | | | | | | 1/2" Ice | 0.00 | 0.60 | | | | | | | | | 1" Ice | 0.00 | 0.60 | | | | | | | | | 2" Ice | 0.00 | 0.60 | | 2" Flexible Conduit | С | No | No | Inside Pole | 105.00 - 0.00 | 2 | No Ice | 0.00 | 0.34 | | | | | | | | | 1/2" Ice | 0.00 | 0.34 | | | | | | | | | 1" Ice | 0.00 | 0.34 | | | | | | | | | 2" Ice | 0.00 | 0.34 | ## Feed Line/Linear Appurtenances Section Areas | Tower
Sectio | Tower
Elevation | Face | A_R | AF | C _A A _A
In Face | C _A A _A
Out Face | Weight | |-----------------|--------------------|------|-------|-------|--|---|--------| | n | ft | | ft² | ft² | ft ² | ft ² | K | | L1 | 115.00-72.33 | Α | 0.000 | 0.000 | 2.565 | 0.000 | 0.00 | | | | В | 0.000 | 0.000 | 3.627 | 0.000 | 0.05 | | | | С | 0.000 | 0.000 | 25.344 | 0.000 | 0.43 | | L2 | 72.33-29.33 | Α | 0.000 | 0.000 | 8.707 | 0.000 | 0.01 | | | | В | 0.000 | 0.000 | 6.880 | 0.000 | 0.10 | | | | С | 0.000 | 0.000 | 25.542 | 0.000 | 0.48 | | L3 | 29.33-0.00 | Α | 0.000 | 0.000 | 5.940 | 0.000 | 0.01 | | | | В | 0.000 | 0.000 | 4.693 | 0.000 | 0.07 | | | | С | 0.000 | 0.000 | 17.424 | 0.000 | 0.33 | # Feed Line/Linear Appurtenances Section Areas - With Ice | Tower
Sectio | Tower
Elevation | Face
or | Ice
Thickness | A _R | A _F | C₄A₄
In Face | C _A A _A
Out Face | Weight | |-----------------|--------------------|------------|------------------|----------------|-----------------|-----------------|---|--------| | n | ft | Leg | in | ft² | ft ² | ft² | ft² | K | | L1 | 115.00-72.33 | Α | 1.885 | 0.000 | 0.000 | 9.176 | 0.000 | 0.10 | | | | В | | 0.000 | 0.000 | 12.173 | 0.000 | 0.24 | | | | С | | 0.000 | 0.000 | 51.790 | 0.000 | 1.09 | | L2 | 72.33-29.33 | Α | 1.774 | 0.000 | 0.000 | 31.151 | 0.000 | 0.34 | | | | В | | 0.000 | 0.000 | 23.093 | 0.000 | 0.45 | | | | С | | 0.000 | 0.000 | 52.194 | 0.000 | 1.14 | | L3 | 29.33-0.00 | Α | 1.564 | 0.000 | 0.000 | 20.436 | 0.000 | 0.21 | | | | В | | 0.000 | 0.000 | 15.102 | 0.000 | 0.28 | | | | С | | 0.000 | 0.000 | 34.791 | 0.000 | 0.75 | ## **Feed Line Center of Pressure** | Section | Elevation | CP _X | CP_Z | CP_X | CPz | |---------|--------------|-----------------|--------|---------|--------| | | | | | Ice | Ice | | | ft | in | in | in | in | | L1 | 115.00-72.33 | -2.2774 | 1.2372 | -2.3435 | 0.9505 | | Section | Elevation | CPx | CPz | CP _X
Ice | CPz
Ice | |---------|-------------|---------|--------|------------------------|------------| | | ft | in | in | in | in | | L2 | 72.33-29.33 | -2.5190 | 0.6402 | -2.7560 | -0.0897 | | L3 | 29.33-0.00 | -2.6084 | 0.6570 | -2.9891 | -0.0721 | Note: For pole sections, center of pressure calculations do not consider feed line shielding. # **Shielding Factor Ka** | Tower | Feed Line | Description | Feed Line | Ka | Ka | |---------|------------|----------------------|--------------|--------|--------| | Section | Record No. | | Segment | No Ice | Ice | | | | | Elev. | | | | L1 | 5 | LDF7-50A(1-5/8) | 72.33 - | 1.0000 | 1.0000 | | | | | 115.00 | | | | L1 | 12 | 1110(13/32) | 72.33 - | 1.0000 | 1.0000 | | | | | 85.00 | | | | L1 | 14 | CU12PSM9P6XXX(1-1/2) | 72.33 - | 1.0000 | 1.0000 | | | | | 95.00 | | | | L2 | 5 | LDF7-50A(1-5/8) | 29.33 - | 1.0000 | 1.0000 | | | | | 72.33 | | | | L2 | 12 | 1110(13/32) | 29.33 - | 1.0000 | 1.0000 | | | | | 72.33 | | | | L2 | 14 | CU12PSM9P6XXX(1-1/2) | 29.33 - | 1.0000 | 1.0000 | | | | | 72.33 | | | | L3 | 5 | LDF7-50A(1-5/8) | 0.00 - 29.33 | 1.0000 | 1.0000 | | L3 | 12 | 1110(13/32) | 0.00 - 29.33 | 1.0000 | 1.0000 | | L3 | 14 | CU12PSM9P6XXX(1-1/2) | 0.00 - 29.33 | 1.0000 | 1.0000 | | - : | | | | |------------|-------|-------|--------| | I)ie∩r∆ | to la | ∩W/Δr | l nade | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral
Vert | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weigh | |----------------------------------|-------------------|---------------------------|-------------------------------------|---------------------------|-----------|---|--|---------------------------------------|------------------------------| | | | | ft
ft
ft | ۰ | ft | | ft² | ft² | K | | LNX-6512DS-A1M w/
Mount Pipe | A | From
Centroid-
Face | 4.00
0.00
0.00 | 0.0000 | 115.00 | No Ice
1/2"
Ice
1" Ice
2" Ice | 2.67
2.94
3.22
3.81 | 2.15
2.42
2.69
3.25 | 0.05
0.09
0.14
0.27 | | LNX-6512DS-A1M w/
Mount Pipe | В | From
Centroid-
Face | 4.00
0.00
0.00 | 0.0000 | 115.00 | No Ice
1/2"
Ice
1" Ice
2" Ice | 2.67
2.94
3.22
3.81 | 2.15
2.42
2.69
3.25 | 0.05
0.09
0.14
0.27 | | LNX-6512DS-A1M w/
Mount Pipe | С | From
Centroid-
Face | 4.00
0.00
0.00 | 0.0000 | 115.00 | No Ice
1/2"
Ice
1" Ice
2" Ice | 2.67
2.94
3.22
3.81 | 2.15
2.42
2.69
3.25 | 0.05
0.09
0.14
0.27 | | (2) NNHH-65B-R4 w/
Mount Pipe | А | From
Centroid-
Face | 4.00
0.00
0.00 | 0.0000 | 115.00 | No Ice
1/2"
Ice
1" Ice
2" Ice | 7.55
8.04
8.53
9.56 | 4.23
4.67
5.12
6.05 | 0.11
0.20
0.30
0.53 | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral
Vert | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |---------------------------|-------------------|-------------------|-------------------------------------|---------------------------|-----------|------------------|--|---------------------------------------|--------------| | | | | ft
ft
ft | ۰ | ft | | ft² | ft² | K | | (2) NNHH-65B-R4 w/ | В | From | 4.00 | 0.0000 | 115.00 | No Ice | 7.55 | 4.23 | 0.11 | | Mount Pipe | | Centroid- | 0.00 | | | 1/2" | 8.04 | 4.67 | 0.20 | | | | Face | 0.00 | | | Ice | 8.53 | 5.12 | 0.30 | | | | | | | | 1" Ice
2" Ice | 9.56 | 6.05 | 0.53 | | (2) NNHH-65B-R4 w/ | С | From | 4.00 | 0.0000 | 115.00 | No Ice | 7.55 | 4.23 | 0.11 | | Mount Pipe | | Centroid- | 0.00 | | | 1/2" | 8.04 | 4.67 | 0.20 | | | | Face | 0.00 | | | Ice | 8.53 | 5.12 | 0.30 | | | | | | | | 1" Ice
2" Ice | 9.56 | 6.05 | 0.53 | | CBRS w/ Mount Pipe | Α | From | 4.00 | 0.0000 | 115.00 | No Ice | 1.45 | 0.99 | 0.03 | | 02. to 11, 11.0a.ii. 1.pc | | Centroid- | 0.00 | 0.000 | | 1/2" | 1.67 | 1.18 | 0.05 | | | | Face | -2.00 | | | Ice | 1.90 | 1.39 | 0.07 | | | | | | | | 1" Ice
2" Ice | 2.42 | 1.85 | 0.12 | | CBRS w/ Mount Pipe | В | From | 4.00 | 0.0000 | 115.00 | No Ice | 1.45 | 0.99 | 0.03 | | • | | Centroid- | 0.00 | | | 1/2" | 1.67 | 1.18 | 0.05 | | | | Face | -2.00 | | | Ice | 1.90 | 1.39 | 0.07 | | | | | | | | 1" Ice | 2.42 | 1.85 | 0.12 | | CBRS w/ Mount Pipe | С | From | 4.00 | 0.0000 | 115.00 | 2" Ice
No Ice | 1.45 | 0.99 | 0.03 | | CBR3 W/ Mount Pipe | C | Centroid- | 0.00 | 0.0000 | 115.00 | 1/2" | 1.45 | 1.18 | 0.05 | | | | Face | -2.00 | | | Ice | 1.90 | 1.39 | 0.07 | | | | | | | | 1" Ice | 2.42 | 1.85 | 0.12 | | | | | | | | 2" Ice | | | | | MT6407-77A w/ Mount | Α | From | 4.00 | 0.0000 | 115.00 | No Ice | 4.91 | 2.68 | 0.10 | | Pipe | | Centroid-
Face | 0.00
1.00 | | | 1/2"
Ice | 5.26
5.61 | 3.14
3.62 | 0.14
0.18 | | | | race | 1.00 | | | 1" Ice | 6.36 | 4.63 | 0.18 | | | | | | | | 2" Ice | 0.00 | 1.00 | 0.20 | | MT6407-77A w/ Mount | В | From | 4.00 | 0.0000 | 115.00 | No Ice | 4.91 | 2.68 | 0.10 | | Pipe | | Centroid- | 0.00 | | | 1/2" | 5.26 | 3.14 | 0.14 | | | | Face | 1.00 | | | Ice | 5.61 | 3.62 | 0.18 | | | | | |
 | 1" Ice
2" Ice | 6.36 | 4.63 | 0.29 | | MT6407-77A w/ Mount | С | From | 4.00 | 0.0000 | 115.00 | No Ice | 4.91 | 2.68 | 0.10 | | Pipe | | Centroid- | 0.00 | | | 1/2" | 5.26 | 3.14 | 0.14 | | | | Face | 1.00 | | | lce
1" lce | 5.61
6.36 | 3.62
4.63 | 0.18
0.29 | | | | | | | | 2" Ice | 0.30 | 4.03 | 0.29 | | RFV01U-D1A | Α | From | 4.00 | 0.0000 | 115.00 | No Ice | 1.88 | 1.25 | 0.08 | | | | Centroid- | 0.00 | | | 1/2" | 2.05 | 1.39 | 0.10 | | | | Face | 0.00 | | | Ice | 2.22 | 1.54 | 0.12 | | | | | | | | 1" Ice
2" Ice | 2.60 | 1.86 | 0.18 | | RFV01U-D1A | В | From | 4.00 | 0.0000 | 115.00 | No Ice | 1.88 | 1.25 | 0.08 | | | | Centroid- | 0.00 | | | 1/2" | 2.05 | 1.39 | 0.10 | | | | Face | 0.00 | | | Ice | 2.22 | 1.54 | 0.12 | | | | | | | | 1" Ice
2" Ice | 2.60 | 1.86 | 0.18 | | RFV01U-D1A | С | From | 4.00 | 0.0000 | 115.00 | No Ice | 1.88 | 1.25 | 0.08 | | | | Centroid- | 0.00 | | | 1/2" | 2.05 | 1.39 | 0.10 | | | | Face | 0.00 | | | Ice | 2.22 | 1.54 | 0.12 | | | | | | | | 1" Ice
2" Ice | 2.60 | 1.86 | 0.18 | | RFV01U-D2A | Α | From | 4.00 | 0.0000 | 115.00 | 2 ice
No Ice | 1.88 | 1.01 | 0.07 | | NI VOIO-BZA | | Centroid- | 0.00 | 0.0000 | 110.00 | 1/2" | 2.05 | 1.14 | 0.09 | | | | Face | 0.00 | | | Ice | 2.22 | 1.28 | 0.11 | | | | | | | | 1" Ice | 2.60 | 1.59 | 0.15 | | DEVO411 BOA | | - | 4.00 | 0.0000 | 445.00 | 2" Ice | 4.00 | 4.04 | 0.07 | | RFV01U-D2A | В | From
Centroid- | 4.00
0.00 | 0.0000 | 115.00 | No Ice
1/2" | 1.88
2.05 | 1.01
1.14 | 0.07
0.09 | | | | Face | 0.00 | | | Ice | 2.03 | 1.14 | 0.09 | | | | | | | | 1" Ice | 2.60 | 1.59 | 0.15 | | | | | | | | 2" Ice | | | | | Description | <i></i> | Offset | Offsets: | Azimuth | Diagomont | | C 4 | C 4 | Maiaht | |----------------------------------|-------------------|-------------------|-------------------------|----------------|-----------|-------------------------|--|---------------------------------------|--------------| | Description | Face
or
Leg | Type | Horz
Lateral
Vert | Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | | | | | ft
ft
ft | ۰ | ft | | ft² | ft² | Κ | | RFV01U-D2A | С | From | 4.00 | 0.0000 | 115.00 | No Ice | 1.88 | 1.01 | 0.07 | | | | Centroid-
Face | 0.00
0.00 | | | 1/2"
Ice | 2.05
2.22 | 1.14
1.28 | 0.09
0.11 | | | | race | 0.00 | | | 1" Ice
2" Ice | 2.60 | 1.59 | 0.15 | | RRFDC-3315-PF-48 | В | From | 4.00 | 0.0000 | 115.00 | No Ice | 3.36 | 2.19 | 0.03 | | | | Centroid- | 0.00 | | | 1/2" | 3.60 | 2.39 | 0.06 | | | | Face | 0.00 | | | Ice
1" Ice
2" Ice | 3.84
4.34 | 2.61
3.05 | 0.09
0.17 | | DB-T1-6Z-8AB-0Z | С | From | 4.00 | 0.0000 | 115.00 | No Ice | 4.80 | 2.00 | 0.04 | | | | Centroid- | 0.00 | | | 1/2" | 5.07 | 2.19 | 0.08 | | | | Face | 0.00 | | | Ice
1" Ice
2" Ice | 5.35
5.93 | 2.39
2.81 | 0.12
0.21 | | 6' x 2" Mount Pipe | Α | From | 4.00 | 0.0000 | 115.00 | No Ice | 1.43 | 1.43 | 0.02 | | | | Centroid- | 0.00 | | | 1/2" | 1.92 | 1.92 | 0.03 | | | | Face | 0.00 | | | lce
1" lce | 2.29 | 2.29 | 0.05 | | | | | | | | 2" Ice | 3.06 | 3.06 | 0.09 | | 6' x 2" Mount Pipe | В | From | 4.00 | 0.0000 | 115.00 | No Ice | 1.43 | 1.43 | 0.02 | | | | Centroid- | 0.00 | | | 1/2" | 1.92 | 1.92 | 0.03 | | | | Face | 0.00 | | | Ice
1" Ice
2" Ice | 2.29
3.06 | 2.29
3.06 | 0.05
0.09 | | 6' x 2" Mount Pipe | С | From | 4.00 | 0.0000 | 115.00 | No Ice | 1.43 | 1.43 | 0.02 | | | | Centroid- | 0.00 | | | 1/2" | 1.92 | 1.92 | 0.03 | | | | Face | 0.00 | | | Ice
1" Ice
2" Ice | 2.29
3.06 | 2.29
3.06 | 0.05
0.09 | | Platform Mount [LP 1201- | С | None | | 0.0000 | 115.00 | No Ice | 37.61 | 37.61 | 2.63 | | 1_KCKR-HR-1] | | | | | | 1/2" | 45.62 | 45.62 | 3.48 | | | | | | | | Ice
1" Ice
2" Ice | 53.59
69.65 | 53.59
69.65 | 4.46
6.85 | | ***
(3) 6' x 2" Mount Pipe | Α | From | 4.00 | 0.0000 | 105.00 | No Ice | 1.43 | 1.43 | 0.02 | | (3) 0 X 2 Woullt Tipe | ^ | Centroid- | 0.00 | 0.0000 | 103.00 | 1/2" | 1.43 | 1.43 | 0.02 | | | | Leg | 0.00 | | | Ice | 2.29 | 2.29 | 0.05 | | (2) Clas Oll Manuat Din a | Б | F | 4.00 | 0.0000 | 405.00 | 1" Ice
2" Ice | 3.06 | 3.06 | 0.09 | | (3) 6' x 2" Mount Pipe | В | From
Centroid- | 4.00
0.00 | 0.0000 | 105.00 | No Ice
1/2" | 1.43
1.92 | 1.43
1.92 | 0.02
0.03 | | | | Leg | 0.00 | | | Ice | 2.29 | 2.29 | 0.05 | | | | - | | | | 1" Ice
2" Ice | 3.06 | 3.06 | 0.09 | | (3) 6' x 2" Mount Pipe | С | From | 4.00 | 0.0000 | 105.00 | No Ice | 1.43 | 1.43 | 0.02 | | | | Centroid-
Leg | 0.00
0.00 | | | 1/2"
Ice | 1.92
2.29 | 1.92
2.29 | 0.03
0.05 | | | | Log | 0.00 | | | 1" Ice | 3.06 | 3.06 | 0.09 | | | | | | | | 2" Ice | | | | | Platform Mount [LP 602-1] | С | None | | 0.0000 | 105.00 | No Ice | 31.07 | 31.07 | 1.34 | | | | | | | | 1/2"
Ice | 34.82
38.48 | 34.82
38.48 | 1.97
2.67 | | | | | | | | 1" Ice
2" Ice | 45.60 | 45.60 | 4.31 | | ***
(2) Side Arm Mount [SO | Α | From Leg | 2.00 | 0.0000 | 85.00 | No Ice | 0.85 | 1.67 | 0.07 | | (2) Side Arm Mount [50
701-1] | ^ | i ioiii Leg | 0.00 | 0.0000 | 05.00 | 1/2" | 1.14 | 2.34 | 0.07 | | 1 | | | 0.00 | | | Ice | 1.43 | 3.01 | 0.09 | | | | | | | | 1" Ice | 2.01 | 4.35 | 0.12 | | 8' x 2" Mount Pipe | Α | From Leg | 4.00 | 0.0000 | 85.00 | 2" Ice
No Ice | 1.90 | 1.90 | 0.03 | | O A Z WOULL FIPE | ^ | i ioni Leg | 0.00 | 0.0000 | 05.00 | 1/2" | 2.73 | 2.73 | 0.03 | | | | | 0.00 | | | Ice | 3.40 | 3.40 | 0.06 | | | | | | | | | | | | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral
Vert | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |--------------------------------|-------------------|----------------|-------------------------------------|---------------------------|-----------|-------------------------|--|---------------------------------------|--------------| | | | | ft
ft
ft | ۰ | ft | | ft² | ft² | K | | | | | | | | 1" Ice
2" Ice | 4.40 | 4.40 | 0.12 | | WL 14-69/S | Α | From Leg | 4.00 | 0.0000 | 85.00 | No Ice | 0.29 | 4.15 | 0.01 | | | | | 0.00 | | | 1/2" | 0.37 | 4.46 | 0.03 | | | | | -1.00 | | | Ice
1" Ice
2" Ice | 0.45
0.65 | 4.79
5.46 | 0.06
0.12 | | WL 14-69/S | Α | From Leg | 4.00
0.00 | 0.0000 | 85.00 | No Ice
1/2" | 0.29
0.37 | 4.15
4.46 | 0.01
0.03 | | | | | -1.00 | | | Ice | 0.45 | 4.79 | 0.06 | | | | | | | | 1" Ice
2" Ice | 0.65 | 5.46 | 0.12 | | (2) Side Arm Mount [SO 701-1] | С | From Leg | 2.00
0.00 | 0.0000 | 85.00 | No Ice
1/2" | 0.85
1.14 | 1.67
2.34 | 0.07
0.08 | | 701-1] | | | 0.00 | | | Ice | 1.14 | 3.01 | 0.08 | | | | | 0.00 | | | 1" Ice | 2.01 | 4.35 | 0.12 | | | _ | | | | | 2" Ice | | | | | 8' x 2" Mount Pipe | С | From Leg | 4.00 | 0.0000 | 85.00 | No Ice | 1.90 | 1.90 | 0.03 | | | | | 0.00 | | | 1/2"
Ice | 2.73
3.40 | 2.73
3.40 | 0.04
0.06 | | | | | | | | 1" Ice
2" Ice | 4.40 | 4.40 | 0.12 | | WH14-69/S | С | From Leg | 4.00 | 0.0000 | 85.00 | No Ice | 2.33 | 0.14 | 0.01 | | | | | 0.00 | | | 1/2"
Ice | 3.17
4.00 | 0.25
0.35 | 0.38
0.74 | | | | | 0.00 | | | 1" Ice
2" Ice | 5.67 | 0.56 | 1.46 | | WL 14-69/S | С | From Leg | 4.00 | 0.0000 | 85.00 | No Ice | 0.29 | 4.15 | 0.01 | | | | | 0.00 | | | 1/2" | 0.37 | 4.46 | 0.03 | | | | | -1.00 | | | Ice
1" Ice
2" Ice | 0.45
0.65 | 4.79
5.46 | 0.06
0.12 | | J105-HI | С | From Leg | 4.00 | 0.0000 | 85.00 | No Ice | 1.92 | 0.10 | 0.01 | | | | | 0.00 | | | 1/2" | 3.39 | 0.24 | 0.02 | | | | | -7.00 | | | Ice
1" Ice | 4.85
7.79 | 0.37
0.64 | 0.04
0.07 | | | | | | | | 2" Ice | 1.10 | 0.01 | 0.07 | | **** | | F | 4.00 | 0.0000 | 05.00 | NI. I. | 0.04 | 4.00 | 0.44 | | MX08FRO665-21 w/
Mount Pipe | Α | From Leg | 4.00
0.00 | 0.0000 | 95.00 | No Ice
1/2" | 8.01
8.52 | 4.23
4.69 | 0.11
0.19 | | Wouth Tipe | | | 0.00 | | | Ice | 9.04 | 5.16 | 0.13 | | | _ | | | | | 1" Ice
2" Ice | 10.11 | 6.12 | 0.52 | | MX08FRO665-21 w/
Mount Pipe | В | From Leg | 4.00
0.00 | 0.0000 | 95.00 | No Ice
1/2" | 8.01
8.52 | 4.23
4.69 | 0.11
0.19 | | Mount Pipe | | | 0.00 | | | lce | 9.04 | 4.69
5.16 | 0.19 | | | | | 0.00 | | | 1" Ice | 10.11 | 6.12 | 0.52 | | | | | | | | 2" Ice | | | | | MX08FRO665-21 w/ | С | From Leg | 4.00 | 0.0000 | 95.00 | No Ice | 8.01 | 4.23 | 0.11 | | Mount Pipe | | | 0.00
0.00 | | | 1/2"
Ice | 8.52
9.04 | 4.69
5.16 | 0.19
0.29 | | | | | 0.00 | | | 1" Ice
2" Ice | 10.11 | 6.12 | 0.52 | | TA08025-B604 | Α | From Leg | 4.00 | 0.0000 | 95.00 | No Ice | 1.96 | 0.98 | 0.06 | | | | | 0.00 | | | 1/2" | 2.14 | 1.11 | 0.08 | | | | | 0.00 | | | Ice
1" Ice
2" Ice | 2.32
2.71 | 1.25
1.55 | 0.10
0.15 | | TA08025-B604 | В | From Leg | 4.00 | 0.0000 | 95.00 | No Ice | 1.96 | 0.98 | 0.06 | | | | | 0.00 | | | 1/2" | 2.14 | 1.11 | 0.08 | | | | | 0.00 | | | lce
1" lce | 2.32
2.71 | 1.25 | 0.10 | | | | | | | | 2" Ice | 2.11 | 1.55 | 0.15 | | TA08025-B604 | С | From Leg | 4.00 | 0.0000 | 95.00 | No Ice | 1.96 | 0.98 | 0.06 | | | | 3 | 0.00 | | | 1/2" | 2.14 | 1.11 | 0.08 | | Description | Face
or
Leg | Offset
Type | Offsets:
Horz
Lateral
Vert | Azimuth
Adjustmen
t | Placement | | C _A A _A
Front | C _A A _A
Side | Weight | |------------------------|-------------------|----------------|-------------------------------------|---------------------------|-----------|---|--|---------------------------------------|------------------------------| | | | | ft
ft
ft | ۰ | ft | | ft² | ft² | К | | | | | 0.00 | | | Ice
1" Ice
2" Ice | 2.32
2.71 | 1.25
1.55 | 0.10
0.15 | | TA08025-B605 | Α | From Leg | 4.00
0.00
0.00 | 0.0000 | 95.00 | No Ice
1/2"
Ice | 1.96
2.14
2.32 | 1.13
1.27
1.41
| 0.08
0.09
0.11 | | | | | 0.00 | | | 1" Ice
2" Ice | 2.71 | 1.72 | 0.11 | | TA08025-B605 | В | From Leg | 4.00
0.00
0.00 | 0.0000 | 95.00 | No Ice
1/2"
Ice | 1.96
2.14
2.32 | 1.13
1.27
1.41 | 0.08
0.09
0.11 | | T400005 D005 | 0 | | | 0.0000 | 05.00 | 1" Ice
2" Ice | 2.71 | 1.72 | 0.16 | | TA08025-B605 | С | From Leg | 4.00
0.00
0.00 | 0.0000 | 95.00 | No Ice
1/2"
Ice
1" Ice
2" Ice | 1.96
2.14
2.32
2.71 | 1.13
1.27
1.41
1.72 | 0.08
0.09
0.11
0.16 | | RDIDC-9181-PF-48 | Α | From Leg | 4.00
0.00
0.00 | 0.0000 | 95.00 | No Ice
1/2"
Ice
1" Ice
2" Ice | 2.31
2.50
2.70
3.12 | 1.29
1.45
1.61
1.96 | 0.02
0.04
0.06
0.12 | | (2) 8' x 2" Mount Pipe | Α | From Leg | 4.00
0.00
0.00 | 0.0000 | 95.00 | No Ice
1/2"
Ice
1" Ice
2" Ice | 1.90
2.73
3.40
4.40 | 1.90
2.73
3.40
4.40 | 0.03
0.04
0.06
0.12 | | (2) 8' x 2" Mount Pipe | В | From Leg | 4.00
0.00
0.00 | 0.0000 | 95.00 | No Ice
1/2"
Ice
1" Ice
2" Ice | 1.90
2.73
3.40
4.40 | 1.90
2.73
3.40
4.40 | 0.03
0.04
0.06
0.12 | | (2) 8' x 2" Mount Pipe | С | From Leg | 4.00
0.00
0.00 | 0.0000 | 95.00 | No Ice
1/2"
Ice
1" Ice
2" Ice | 1.90
2.73
3.40
4.40 | 1.90
2.73
3.40
4.40 | 0.03
0.04
0.06
0.12 | | Commscope MC-PK8-DSH | С | None | | 0.0000 | 95.00 | No Ice
1/2"
Ice
1" Ice
2" Ice | 34.24
62.95
91.66
149.08 | 34.24
62.95
91.66
149.08 | 1.75
2.10
2.45
3.15 | | | | | | | Dishe | es | | | | | | |-------------|-------------------|---------------|----------------|-------------------------------------|-----------------------|-----------------------|-----------|---------------------|----------|------------------|--------| | Description | Face
or
Leg | Dish
Type | Offset
Type | Offsets:
Horz
Lateral
Vert | Azimuth
Adjustment | 3 dB
Beam
Width | Elevation | Outside
Diameter | | Aperture
Area | Weight | | | | | | ft | ۰ | ۰ | ft | ft | | ft² | K | | VHLP1-23 | Α | Paraboloid | From | 4.00 | 57.0000 | | 105.00 | 1.27 | No Ice | 1.28 | 0.01 | | | | w/Shroud (HP) | Centroi | 6.00 | | | | | 1/2" Ice | 1.45 | 0.02 | | | | , , | d-Leg | 2.00 | | | | | 1" Ice | 1.62 | 0.02 | | | | | • | | | | | | 2" Ice | 1.96 | 0.04 | | VHLP2-23 | В | Paraboloid | From | 4.00 | 90.0000 | | 105.00 | 2.18 | No Ice | 3.73 | 0.03 | | | | w/Shroud (HP) | Centroi | 6.00 | | | | | 1/2" Ice | 4.02 | 0.05 | | | | , | d-Leg | 2.00 | | | | | 1" Ice | 4.31 | 0.07 | | | | | J | | | | | | 2" Ice | 4.90 | 0.11 | | Description | Face
or
Leg | Dish
Type | Offset
Type | Offsets:
Horz
Lateral
Vert | Azimuth
Adjustment | 3 dB
Beam
Width | Elevation | Outside
Diameter | | Aperture
Area | Weight | |-------------|-------------------|-----------------------------|--------------------------|-------------------------------------|-----------------------|-----------------------|-----------|---------------------|--|------------------------------|------------------------------| | | | | | ft | ٥ | ۰ | ft | ft | | ft ² | K | | VHLP1-23 | С | Paraboloid
w/Shroud (HP) | From
Centroi
d-Leg | 4.00
6.00
2.00 | -53.0000 | | 105.00 | 1.27 | No Ice
1/2" Ice
1" Ice
2" Ice | 1.28
1.45
1.62
1.96 | 0.01
0.02
0.02
0.04 | | *** | | | | | | | | | | | | # **Load Combinations** | Comb. | Description | |----------|--| | No. | | | 1 | Dead Only | | 2 | 1.2 Dead+1.0 Wind 0 deg - No Ice | | 3 | 0.9 Dead+1.0 Wind 0 deg - No Ice | | 4 | 1.2 Dead+1.0 Wind 30 deg - No Ice | | 5 | 0.9 Dead+1.0 Wind 30 deg - No Ice | | 6 | 1.2 Dead+1.0 Wind 60 deg - No Ice | | 7 | 0.9 Dead+1.0 Wind 60 deg - No Ice | | 8 | 1.2 Dead+1.0 Wind 90 deg - No Ice | | 9 | 0.9 Dead+1.0 Wind 90 deg - No Ice | | 10 | 1.2 Dead+1.0 Wind 120 deg - No Ice | | 11 | 0.9 Dead+1.0 Wind 120 deg - No Ice | | 12 | 1.2 Dead+1.0 Wind 150 deg - No Ice | | 13 | 0.9 Dead+1.0 Wind 150 deg - No Ice | | 14 | 1.2 Dead+1.0 Wind 180 deg - No Ice | | 15 | 0.9 Dead+1.0 Wind 180 deg - No Ice | | 16 | 1.2 Dead+1.0 Wind 210 deg - No Ice | | 17 | 0.9 Dead+1.0 Wind 210 deg - No Ice | | 18
19 | 1.2 Dead+1.0 Wind 240 deg - No Ice | | 20 | 0.9 Dead+1.0 Wind 240 deg - No Ice | | 21 | 1.2 Dead+1.0 Wind 270 deg - No Ice
0.9 Dead+1.0 Wind 270 deg - No Ice | | 22 | 1.2 Dead+1.0 Wind 300 deg - No Ice | | 23 | 0.9 Dead+1.0 Wind 300 deg - No Ice | | 24 | 1.2 Dead+1.0 Wind 330 deg - No Ice | | 25 | 0.9 Dead+1.0 Wind 330 deg - No Ice | | 26 | 1.2 Dead+1.0 Ice+1.0 Temp | | 27 | 1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp | | 28 | 1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp | | 29 | 1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp | | 30 | 1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp | | 31 | 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp | | 32 | 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp | | 33 | 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp | | 34 | 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp | | 35 | 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp | | 36 | 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp | | 37 | 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp | | 38 | 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp | | 39 | Dead+Wind 0 deg - Service | | 40 | Dead+Wind 30 deg - Service | | 41 | Dead+Wind 60 deg - Service | | 42 | Dead+Wind 90 deg - Service | | 43 | Dead+Wind 120 deg - Service | | 44 | Dead+Wind 150 deg - Service | | 45 | Dead+Wind 180 deg - Service | | 46 | Dead+Wind 210 deg - Service | | 47 | Dead+Wind 240 deg - Service | | 48 | Dead+Wind 270 deg - Service | | 49 | Dead+Wind 300 deg - Service | | 50 | Dead+Wind 330 deg - Service | | N/1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | N/1 l | | |---|--------|--------| | Maximum | wember | Forces | | Sectio | Elevation | Component | Condition | Gov. | Axial | Major Axis | Minor Axis | |--------|----------------------|-----------|------------------|-------|--------|------------|------------| | n | ft | Туре | | Load | | Moment | Moment | | No. | | | | Comb. | K | kip-ft | kip-ft | | L1 | 115 -
72.3334 | Pole | Max Tension | 1 | 0.00 | 0.00 | 0.00 | | | | | Max. Compression | 26 | -35.64 | 8.02 | -3.49 | | | | | Max. Mx | 20 | -13.52 | 345.53 | -3.23 | | | | | Max. My | 2 | -13.52 | -2.55 | 348.90 | | | | | Max. Vy | 20 | -13.26 | 345.53 | -3.23 | | | | | Max. Vx | 2 | -13.13 | -2.55 | 348.90 | | | | | Max. Torque | 18 | | | -1.56 | | L2 | 72.3334 -
29.3334 | Pole | Max Tension | 1 | 0.00 | 0.00 | 0.00 | | | | | Max. Compression | 26 | -47.36 | 8.36 | -4.35 | | | | | Max. Mx | 20 | -20.57 | 976.96 | -7.07 | | | | | Max. My | 2 | -20.57 | -6.15 | 974.81 | | | | | Max. Vý | 20 | -16.76 | 976.96 | -7.07 | | | | | Max. Vx | 2 | -16.63 | -6.15 | 974.81 | | | | | Max. Torque | 18 | | | -1.56 | | L3 | 29.3334 - 0 | Pole | Max Tension | 1 | 0.00 | 0.00 | 0.00 | | | | | Max. Compression | 26 | -60.09 | 8.27 | -4.92 | | | | | Max. Mx | 20 | -29.27 | 1612.61 | -10.20 | | | | | Max. My | 2 | -29.28 | -9.10 | 1605.89 | | | | | Max. Vý | 20 | -19.56 | 1612.61 | -10.20 | | | | | Max. Vx | 2 | -19.42 | -9.10 | 1605.89 | | | | | Max. Torque | 18 | | | -1.55 | ## **Maximum Reactions** | Location | Condition | Gov.
Load | Vertical
K | Horizontal, X
K | Horizontal, Z
K | |----------|---------------------|--------------|---------------|--------------------|--------------------| | | | Comb. | | | | | Pole | Max. Vert | 35 | 60.09 | 4.54 | -2.61 | | | Max. H _x | 20 | 29.28 | 19.54 | -0.09 | | | Max. H _z | 2 | 29.28 | -0.08 | 19.41 | | | Max. M _x | 2 | 1605.89 | -0.08 | 19.41 | | | $Max. M_z$ | 8 | 1611.46 | -19.54 | 0.11 | | | Max. Torsion | 6 | 1.48 | -16.93 | 9.78 | | | Min. Vert | 13 | 21.96 | -9.70 | -16.77 | | | Min. H _x | 8 | 29.28 | -19.54 | 0.11 | | | $Min. H_z$ | 14 | 29.28 | 0.08 | -19.36 | | | Min. M _x | 14 | -1601.02 | 0.08 | -19.36 | | | Min. M _z | 20 | -1612.61 | 19.54 | -0.09 | | | Min. Torsion | 18 | -1.55 | 16.92 | -9.74 | # **Tower Mast Reaction Summary** | Load
Combination | Vertical | Shear _x | Shearz | Overturning
Moment, M _x | Overturning
Moment, M₂ | Torque | |--------------------------------------|----------|--------------------|--------|---------------------------------------|---------------------------|--------| | | K | K | K | kip-ft | kip-ft | kip-ft | | Dead Only | 24.40 | 0.00 | 0.00 | 0.09 | 0.23 | 0.00 | | 1.2 Dead+1.0 Wind 0 deg -
No Ice | 29.28 | 0.08 | -19.41 | -1605.89 | -9.10 | -0.89 | | 0.9 Dead+1.0 Wind 0 deg -
No Ice | 21.96 | 0.08 | -19.41 | -1591.35 | -9.08 | -0.88 | | 1.2 Dead+1.0 Wind 30 deg -
No Ice | 29.28 | 9.81 | -16.83 | -1392.79 | -811.11 | -1.45 | | 0.9 Dead+1.0 Wind 30 deg -
No Ice | 21.96 | 9.81 | -16.83 | -1380.18 | -803.85 | -1.44 | | 1.2 Dead+1.0 Wind 60 deg -
No Ice | 29.28 | 16.93 | -9.78 | -811.49 | -1397.54 | -1.48 | | Load
Combination | Vertical
ĸ | Shear _x | Shear₂
ĸ | Overturning
Moment, M _x | Overturning
Moment, Mz | Torque | |--|----------------|--------------------|----------------|---------------------------------------|---------------------------|-----------------| | 0.9 Dead+1.0 Wind 60 deg - | 21.96 | <i>K</i>
16.93 | -9.78 | kip-ft
-804.15 | kip-ft
-1384.98 | kip-ft
-1.48 | | No Ice | 21.90 | 10.93 | -9.76 | -004.13 | -1304.90 | -1.40 | | 1.2 Dead+1.0 Wind 90 deg - | 29.28 | 19.54 | -0.11 | -12.77 | -1611.46 | -0.93 | | No Ice
0.9 Dead+1.0 Wind 90 deg - | 21.96 | 19.54 | -0.11 | -12.67 | -1596.98 | -0.93 | | No Ice | 21.90 | 19.54 | -0.11 | -12.07 | -1330.30 | -0.93 | | 1.2 Dead+1.0 Wind 120 deg | 29.28 | 16.89 | 9.67 | 798.46 | -1391.89 | -0.33 | | - No Ice
0.9 Dead+1.0 Wind 120 deg | 21.96 | 16.89 | 9.67 | 791.19 | -1379.39 | -0.33 | | - No Ice | | | | | 1010.00 | | | 1.2
Dead+1.0 Wind 150 deg
- No Ice | 29.28 | 9.70 | 16.77 | 1386.63 | -797.67 | 0.25 | | 0.9 Dead+1.0 Wind 150 deg | 21.96 | 9.70 | 16.77 | 1374.03 | -790.54 | 0.25 | | - No Ice | 00.00 | 0.00 | 40.00 | 1001.00 | 0.54 | 0.05 | | 1.2 Dead+1.0 Wind 180 deg - No Ice | 29.28 | -0.08 | 19.36 | 1601.02 | 9.51 | 0.95 | | 0.9 Dead+1.0 Wind 180 deg | 21.96 | -0.08 | 19.36 | 1586.48 | 9.34 | 0.95 | | - No Ice
1.2 Dead+1.0 Wind 210 deg | 29.28 | -9.80 | 16.79 | 1389.06 | 810.36 | 1.45 | | - No Ice | 20.20 | 0.00 | 10.70 | 1000.00 | 010.00 | 1.40 | | 0.9 Dead+1.0 Wind 210 deg | 21.96 | -9.80 | 16.79 | 1376.43 | 802.96 | 1.45 | | - No Ice
1.2 Dead+1.0 Wind 240 deg | 29.28 | -16.92 | 9.74 | 808.06 | 1396.39 | 1.55 | | - No Ice | 24.00 | 40.00 | 0.74 | 200.00 | 4202.00 | 4.55 | | 0.9 Dead+1.0 Wind 240 deg - No Ice | 21.96 | -16.92 | 9.74 | 800.69 | 1383.69 | 1.55 | | 1.2 Dead+1.0 Wind 270 deg | 29.28 | -19.54 | 0.09 | 10.20 | 1612.61 | 1.04 | | - No Ice
0.9 Dead+1.0 Wind 270 deg | 21.96 | -19.54 | 0.09 | 10.06 | 1597.97 | 1.04 | | - No Ice | | | | | | | | 1.2 Dead+1.0 Wind 300 deg
- No Ice | 29.28 | -16.91 | -9.64 | -795.04 | 1394.60 | 0.14 | | 0.9 Dead+1.0 Wind 300 deg | 21.96 | -16.91 | -9.64 | -787.87 | 1381.93 | 0.14 | | - No Ice
1.2 Dead+1.0 Wind 330 deg | 29.28 | -9.67 | -16.82 | -1391.07 | 794.65 | -0.07 | | - No Ice | 29.20 | -9.07 | -10.02 | -1391.07 | 794.03 | -0.07 | | 0.9 Dead+1.0 Wind 330 deg | 21.96 | -9.67 | -16.82 | -1378.48 | 787.41 | -0.06 | | - No Ice
1.2 Dead+1.0 Ice+1.0 Temp | 60.09 | -0.00 | 0.00 | 4.92 | 8.27 | 0.00 | | 1.2 Dead+1.0 Wind 0 | 60.09 | 0.03 | -5.19 | -467.15 | 5.29 | -0.44 | | deg+1.0 Ice+1.0 Temp
1.2 Dead+1.0 Wind 30 | 60.09 | 2.64 | -4.50 | -404.81 | -231.52 | -0.53 | | deg+1.0 Ice+1.0 Temp | | | | | | | | 1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp | 60.09 | 4.55 | -2.62 | -233.85 | -404.47 | -0.45 | | 1.2 Dead+1.0 Wind 90 | 60.09 | 5.24 | -0.03 | 1.15 | -467.32 | -0.21 | | deg+1.0 Ice+1.0 Temp | 22.22 | 4.50 | 0.50 | 200.40 | 400.05 | 0.04 | | 1.2 Dead+1.0 Wind 120
deg+1.0 Ice+1.0 Temp | 60.09 | 4.53 | 2.58 | 239.16 | -402.35 | 0.04 | | 1.2 Dead+1.0 Wind 150 | 60.09 | 2.60 | 4.48 | 412.35 | -226.94 | 0.26 | | deg+1.0 Ice+1.0 Temp
1.2 Dead+1.0 Wind 180 | 60.09 | -0.03 | 5.18 | 475.88 | 11.36 | 0.45 | | deg+1.0 Ice+1.0 Temp | | | | | | | | 1.2 Dead+1.0 Wind 210
deg+1.0 Ice+1.0 Temp | 60.09 | -2.64 | 4.50 | 413.81 | 247.91 | 0.53 | | 1.2 Dead+1.0 Wind 240 | 60.09 | -4.54 | 2.61 | 242.91 | 420.79 | 0.47 | | deg+1.0 Ice+1.0 Temp | 60.00 | -5.24 | 0.03 | 8.16 | 484.16 | 0.24 | | 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp | 60.09 | -5.24 | 0.03 | 0.10 | 404.10 | 0.24 | | 1.2 Dead+1.0 Wind 300 | 60.09 | -4.53 | -2.57 | -228.55 | 419.49 | -0.09 | | deg+1.0 Ice+1.0 Temp
1.2 Dead+1.0 Wind 330 | 60.09 | -2.59 | -4.49 | -403.56 | 242.77 | -0.23 | | deg+1.0 Ice+1.0 Temp | | | | | | | | Dead+Wind 0 deg - Service | 24.40
24.40 | 0.02
2.13 | -4.21
-3.65 | -346.50
-300.51 | -1.78
-174.87 | -0.19
-0.31 | | Dead+Wind 30 deg - Service
Dead+Wind 60 deg - Service | 24.40
24.40 | 2.13
3.67 | -3.65
-2.12 | -300.51
-175.06 | -174.87
-301.43 | -0.31
-0.32 | | Dead+Wind 90 deg - Service | 24.40 | 4.24 | -0.02 | -2.69 | -347.60 | -0.32 | | Dead+Wind 120 deg - | 24.40 | 3.66 | 2.10 | 172.38 | -300.21 | -0.27 | | Service | 0 | 0.00 | 20 | | | 5.51 | | Load
Combination | Vertical | Shearx | Shearz | Overturning
Moment. Mx | Overturning
Moment. Mz | Torque | |--------------------------------|----------|--------|--------|---------------------------|---------------------------|--------| | | K | K | K | kip-ft | kip-ft | kip-ft | | Dead+Wind 150 deg -
Service | 24.40 | 2.11 | 3.64 | 299.32 | -171.97 | 0.05 | | Dead+Wind 180 deg -
Service | 24.40 | -0.02 | 4.20 | 345.59 | 2.23 | 0.21 | | Dead+Wind 210 deg -
Service | 24.40 | -2.13 | 3.64 | 299.84 | 175.07 | 0.32 | | Dead+Wind 240 deg -
Service | 24.40 | -3.67 | 2.11 | 174.46 | 301.54 | 0.34 | | Dead+Wind 270 deg -
Service | 24.40 | -4.24 | 0.02 | 2.27 | 348.21 | 0.22 | | Dead+Wind 300 deg -
Service | 24.40 | -3.67 | -2.09 | -171.51 | 301.15 | 0.03 | | Dead+Wind 330 deg -
Service | 24.40 | -2.10 | -3.65 | -300.14 | 171.68 | -0.02 | ## **Solution Summary** | | | n of Applied Force | | | Sum of Reactio | | | |----------|------------------|--------------------|----------------|----------------|----------------|----------------|--------| | Load | PX | PY | PZ | PX | PY | PZ | % Erro | | Comb. | K | K | K | K | K | K | | | 1 | 0.00 | -24.40 | 0.00 | 0.00 | 24.40 | 0.00 | 0.000% | | 2 | 0.08 | -29.28 | -19.41 | -0.08 | 29.28 | 19.41 | 0.000% | | 3 | 0.08 | -21.96 | -19.41 | -0.08 | 21.96 | 19.41 | 0.000% | | 4 | 9.81 | -29.28 | -16.83 | -9.81 | 29.28 | 16.83 | 0.000% | | 5 | 9.81 | -21.96 | -16.83 | -9.81 | 21.96 | 16.83 | 0.0009 | | 6 | 16.93 | -29.28 | -9.78 | -16.93 | 29.28 | 9.78 | 0.0009 | | 7 | 16.93 | -21.96 | -9.78 | -16.93 | 21.96 | 9.78 | 0.0009 | | 8 | 19.54 | -29.28 | -0.11 | -19.54 | 29.28 | 0.11 | 0.0009 | | 9 | 19.54 | -21.96 | -0.11 | -19.54 | 21.96 | 0.11 | 0.0009 | | 10 | 16.89 | -29.28 | 9.67 | -16.89 | 29.28 | -9.67 | 0.0009 | | 11 | 16.89 | -21.96 | 9.67 | -16.89 | 21.96 | -9.67 | 0.0009 | | 12 | 9.70 | -29.28 | 16.77 | - 9.70 | 29.28 | -16.77 | 0.000% | | 13 | 9.70 | -21.96 | 16.77 | - 9.70 | 21.96 | -16.77 | 0.000% | | 14 | -0.08 | -29.28 | 19.36 | 0.08 | 29.28 | -19.36 | 0.000% | | 15 | -0.08 | -21.96 | 19.36 | 0.08 | 21.96 | -19.36 | 0.000% | | 16 | -9.80 | -29.28 | 16.79 | 9.80 | 29.28 | -16.79 | 0.000% | | 17 | -9.80
-9.80 | -21.96 | 16.79 | 9.80 | 21.96 | -16.79 | 0.000% | | 18 | -16.92 | -29.28 | 9.74 | 16.92 | 29.28 | -9.74 | 0.000% | | 19 | -16.92 | -29.26
-21.96 | 9.74 | 16.92 | 21.96 | -9.74
-9.74 | 0.000% | | 20 | -10.92
-19.54 | -21.90
-29.28 | 0.09 | 19.54 | 29.28 | -0.09 | 0.000% | | 21 | -19.54
-19.54 | | 0.09 | | 21.96 | -0.09 | 0.0009 | | 22 | -19.54
-16.91 | -21.96
-29.28 | -9.64 | 19.54
16.91 | 29.28 | -0.09
9.64 | 0.0009 | | 23 | -16.91
-16.91 | -29.26
-21.96 | -9.64
-9.64 | 16.91 | 29.26
21.96 | 9.64 | 0.0009 | | 23
24 | -16.91
-9.67 | -21.96
-29.28 | | 9.67 | 29.28 | 16.82 | 0.0009 | | | | | -16.82 | | | | | | 25 | -9.67 | -21.96 | -16.82 | 9.67 | 21.96 | 16.82 | 0.0009 | | 26 | 0.00 | -60.09 | 0.00 | 0.00 | 60.09 | -0.00 | 0.0009 | | 27 | 0.03 | -60.09 | -5.19 | -0.03 | 60.09 | 5.19 | 0.0009 | | 28 | 2.64 | -60.09 | -4.50 | -2.64 | 60.09 | 4.50 | 0.0009 | | 29 | 4.55 | -60.09 | -2.62 | -4.55 | 60.09 | 2.62 | 0.0009 | | 30 | 5.24 | -60.09 | -0.03 | -5.24 | 60.09 | 0.03 | 0.0009 | | 31 | 4.53 | -60.09 | 2.58 | -4.53 | 60.09 | -2.58 | 0.0009 | | 32 | 2.60 | -60.09 | 4.48 | -2.60 | 60.09 | -4.48 | 0.0009 | | 33 | -0.03 | -60.09 | 5.18 | 0.03 | 60.09 | -5.18 | 0.0009 | | 34 | -2.64 | -60.09 | 4.49 | 2.64 | 60.09 | -4.50 | 0.0009 | | 35 | -4.54 | -60.09 | 2.61 | 4.54 | 60.09 | -2.61 | 0.0009 | | 36 | -5.24 | -60.09 | 0.03 | 5.24 | 60.09 | -0.03 | 0.0009 | | 37 | -4.53 | -60.09 | -2.57 | 4.53 | 60.09 | 2.57 | 0.0009 | | 38 | -2.59 | -60.09 | -4.49 | 2.59 | 60.09 | 4.49 | 0.0009 | | 39 | 0.02 | -24.40 | -4.21 | -0.02 | 24.40 | 4.21 | 0.0009 | | 40 | 2.13 | -24.40 | -3.65 | -2.13 | 24.40 | 3.65 | 0.0009 | | 41 | 3.67 | -24.40 | -2.12 | -3.67 | 24.40 | 2.12 | 0.0009 | | 42 | 4.24 | -24.40 | -0.02 | -4.24 | 24.40 | 0.02 | 0.0009 | | 43 | 3.66 | -24.40 | 2.10 | -3.66 | 24.40 | -2.10 | 0.0009 | | 44 | 2.11 | -24.40 | 3.64 | -2.11 | 24.40 | -3.64 | 0.0009 | | 45 | -0.02 | -24.40 | 4.20 | 0.02 | 24.40 | -4.20 | 0.0009 | | 46 | -2.13 | -24.40 | 3.64 | 2.13 | 24.40 | -3.64 | 0.000% | | | Sun | n of Applied Force | s | | Sum of Reaction | าร | | |-------|-------|--------------------|-------|------|-----------------|-------|---------| | Load | PX | PY | PZ | PX | PY | PZ | % Error | | Comb. | K | K | K | K | K | K | | | 47 | -3.67 | -24.40 | 2.11 | 3.67 | 24.40 | -2.11 | 0.000% | | 48 | -4.24 | -24.40 | 0.02 | 4.24 | 24.40 | -0.02 | 0.000% | | 49 | -3.67 | -24.40 | -2.09 | 3.67 | 24.40 | 2.09 | 0.000% | | 50 | -2.10 | -24.40 | -3.65 | 2.10 | 24.40 | 3.65 | 0.000% | ## **Non-Linear Convergence Results** | Load | Converged? | Number | Displacement | Force | |-------------|------------|-----------|--------------|------------| | Combination | | of Cycles | Tolerance | Tolerance | | 1 | Yes | 4 | 0.0000001 | 0.00000001 | | 2 | Yes | 4 | 0.00000001 | 0.00023835 | | 3 | Yes | 4 | 0.0000001 | 0.00014107 | | 4 | Yes | 5 | 0.0000001 | 0.00020547 | | 5 | Yes | 5 | 0.0000001 | 0.00009591 | | 6 | Yes | 5 | 0.0000001 | 0.00022603 | | 7 | Yes | 5 | 0.0000001 | 0.00010604 | | 8 | Yes | 4 | 0.0000001 | 0.00037784 | | 9 | Yes | 4 | 0.0000001 | 0.00023883 | | 10 | Yes | 5 | 0.0000001 | 0.00020722 | | 11 | Yes | 5 | 0.0000001 | 0.00009703 | | 12 | Yes | 5 | 0.0000001 | 0.00020707 | | 13 | Yes | 5 | 0.0000001 | 0.00009708 | | 14 | Yes | 4 | 0.0000001 | 0.00037926 | | 15 | Yes | 4 | 0.0000001 | 0.00023827 | | 16 | Yes | 5 | 0.0000001 | 0.00022524 | | 17 | Yes | 5 | 0.0000001 | 0.00010573 | | 18 | Yes | 5 | 0.0000001 | 0.00020388 | | 19 | Yes | 5 | 0.0000001 | 0.00009507 | | 20 | Yes | 4 | 0.0000001 | 0.00026862 | | 21 | Yes | 4 | 0.0000001 | 0.00016488 | | 22 | Yes | 5 | 0.0000001 | 0.00020868 | | 23 | Yes | 5 | 0.00000001 | 0.00009776 | | 24 | Yes | 5 | 0.00000001 | 0.00020886 | | 25 | Yes | 5 | 0.00000001 | 0.00009785 | | 26 | Yes | 4 | 0.00000001 | 0.00007623 | | 27 | Yes | 5 | 0.00000001 | 0.00023973 | | 28 | Yes | 5 | 0.00000001 | 0.00026527 | | 29 | Yes | 5 | 0.00000001 | 0.00026811 | | 30 | Yes | 5 | 0.0000001 | 0.00023622 | | 31 | Yes | 5 | 0.0000001 | 0.00023022 | | 32 | Yes | 5 | 0.0000001 | 0.00027111 | | 33 | Yes | 5 | 0.0000001 | 0.00027098 | | 34 | Yes | 5 | 0.0000001 | 0.00024737 | | 35 | Yes | 5 | 0.0000001 | 0.00029220 | | 36 | Yes | 5 | 0.0000001 | 0.00025999 | | 37 | Yes | 5 | 0.0000001 | 0.00023209 | | 38 | Yes | 5 | 0.0000001 | 0.00027931 | | | | 5
4 | | | | 39 | Yes | • | 0.00000001 |
0.00002011 | | 40 | Yes | 4 | 0.0000001 | 0.00005503 | | 41 | Yes | 4 | 0.0000001 | 0.00007253 | | 42 | Yes | 4 | 0.00000001 | 0.00002135 | | 43 | Yes | 4 | 0.00000001 | 0.00005712 | | 44 | Yes | 4 | 0.00000001 | 0.00005705 | | 45 | Yes | 4 | 0.0000001 | 0.00002195 | | 46 | Yes | 4 | 0.0000001 | 0.00007266 | | 47 | Yes | 4 | 0.0000001 | 0.00005527 | | 48 | Yes | 4 | 0.0000001 | 0.00002151 | | 49 | Yes | 4 | 0.0000001 | 0.00005866 | | 50 | Yes | 4 | 0.0000001 | 0.00005863 | # **Maximum Tower Deflections - Service Wind** | Section
No. | Elevation | Horz.
Deflection | Gov.
Load | Tilt | Twist | |----------------|---------------|---------------------|--------------|--------|--------| | | ft | in | Comb. | ۰ | ۰ | | L1 | 115 - 72.3334 | 10.623 | 47 | 0.7864 | 0.0011 | | L2 | 77 - 29.3334 | 4.881 | 47 | 0.5963 | 0.0015 | | L3 | 35 - 0 | 1.007 | 41 | 0.2579 | 0.0004 | ## **Critical Deflections and Radius of Curvature - Service Wind** | Elevation | Appurtenance | Gov.
Load | Deflection | Tilt | Twist | Radius of
Curvature | |-----------|---------------------------------|--------------|------------|--------|--------|------------------------| | ft | | Comb. | in | ۰ | ۰ | ft | | 115.00 | LNX-6512DS-A1M w/ Mount
Pipe | 47 | 10.623 | 0.7864 | 0.0011 | 54112 | | 107.00 | VHLP1-23 | 47 | 9.333 | 0.7523 | 0.0013 | 33820 | | 105.00 | (3) 6' x 2" Mount Pipe | 47 | 9.014 | 0.7437 | 0.0013 | 27056 | | 95.00 | MX08FRO665-21 w/ Mount Pipe | 47 | 7.448 | 0.6981 | 0.0015 | 13528 | | 85.00 | (2) Side Arm Mount [SO 701-1] | 47 | 5.970 | 0.6456 | 0.0015 | 9018 | ## **Maximum Tower Deflections - Design Wind** | Section | Elevation | Horz. | Gov. | Tilt | Twist | |---------|---------------|------------|---------------|--------|--------| | No. | 4 | Deflection | Load
Comb. | ۰ | ۰ | | | п | ın | COITID. | | | | L1 | 115 - 72.3334 | 49.297 | 6 | 3.6550 | 0.0055 | | L2 | 77 - 29.3334 | 22.656 | 6 | 2.7686 | 0.0069 | | L3 | 35 - 0 | 4.671 | 6 | 1.1970 | 0.0018 | # Critical Deflections and Radius of Curvature - Design Wind | Elevation | Appurtenance | Gov.
Load | Deflection | Tilt | Twist | Radius of
Curvature | |-----------|-------------------------------|--------------|------------|--------|--------|------------------------| | ft | | Comb. | in | 0 | 0 | ft | | 115.00 | LNX-6512DS-A1M w/ Mount | 6 | 49.297 | 3.6550 | 0.0055 | 11728 | | | Pipe | | | | | | | 107.00 | VHLP1-23 | 6 | 43.311 | 3.4972 | 0.0062 | 7330 | | 105.00 | (3) 6' x 2" Mount Pipe | 6 | 41.828 | 3.4568 | 0.0063 | 5863 | | 95.00 | MX08FRO665-21 w/ Mount Pipe | 6 | 34.563 | 3.2427 | 0.0069 | 2930 | | 85.00 | (2) Side Arm Mount [SO 701-1] | 6 | 27.708 | 2.9979 | 0.0071 | 1952 | ## **Compression Checks** # Pole Design Data | Section
No. | Elevation | Size | L | Lu | KI/r | Α | P_u | ϕP_n | Ratio
Pu | |----------------|--------------------------|-----------------------|-------|------|------|-------------|--------|------------|-------------| | | ft | | ft | ft | | in² | K | K | ϕP_n | | L1 | 115 - 72.3334
(1) | TP30.45x21.91x0.219 | 42.67 | 0.00 | 0.0 | 20.659
6 | -13.52 | 1208.59 | 0.011 | | L2 | 72.3334 -
29.3334 (2) | TP38.61x29.0779x0.313 | 47.67 | 0.00 | 0.0 | 37.455
9 | -20.57 | 2191.17 | 0.009 | | L3 | 29.3334 - Ó
(3) | TP43.85x36.8508x0.375 | 35.00 | 0.00 | 0.0 | 52.496
1 | -29.27 | 3071.02 | 0.010 | | Pole Bending Design Dat | |-------------------------| |-------------------------| | Section
No. | Elevation | Size | Mux | φ M _{nx} | Ratio
M _{ux} | Muy | ф М пу | Ratio
M _{uy} | |----------------|--------------------------|-----------------------|---------|--------------------------|--------------------------|--------|---------------|--------------------------| | | ft | | kip-ft | kip-ft | φ <i>M</i> _{nx} | kip-ft | kip-ft | φMny | | L1 | 115 - 72.3334
(1) | TP30.45x21.91x0.219 | 349.26 | 741.46 | 0.471 | 0.00 | 741.46 | 0.000 | | L2 | 72.3334 -
29.3334 (2) | TP38.61x29.0779x0.313 | 979.72 | 1815.79 | 0.540 | 0.00 | 1815.79 | 0.000 | | L3 | 29.3334 - Ó
(3) | TP43.85x36.8508x0.375 | 1616.06 | 3010.72 | 0.537 | 0.00 | 3010.72 | 0.000 | # Pole Shear Design Data | Section
No. | Elevation | Size | Actual
V _u | φVn | Ratio
Vu | Actual
T _u | ϕT_n | Ratio
T _u | |----------------|--------------------------|-----------------------|--------------------------|--------|-------------|--------------------------|------------|-------------------------| | | ft | | K | K | φVn | kip-ft | kip-ft | ϕT_n | | L1 | 115 - 72.3334
(1) | TP30.45x21.91x0.219 | 13.20 | 362.58 | 0.036 | 1.45 | 934.38 | 0.002 | | L2 | 72.3334 -
29.3334 (2) | TP38.61x29.0779x0.313 | 16.78 | 657.35 | 0.026 | 1.48 | 2148.91 | 0.001 | | L3 | 29.3334 - 0
(3) | TP43.85x36.8508x0.375 | 19.57 | 921.31 | 0.021 | 1.48 | 3523.25 | 0.000 | # **Pole Interaction Design Data** | Section
No. | Elevation
ft | Ratio
Pu | Ratio
M _{ux} | Ratio
M _{uy} | Ratio
V _u | Ratio
T _u | Comb.
Stress
Ratio | Allow.
Stress
Ratio | Criteria | |----------------|------------------|-------------|--------------------------|--------------------------|-------------------------|-------------------------|--------------------------|---------------------------|----------| | | п | ϕP_n | ϕM_{nx} | ϕM_{ny} | ϕV_n | ϕT_n | Ralio | Ralio | | | L1 | 115 - 72.3334 | 0.011 | 0.471 | 0.000 | 0.036 | 0.002 | 0.484 | 1.050 | 4.8.2 | | L2 | (1)
72.3334 - | 0.009 | 0.540 | 0.000 | 0.026 | 0.001 | 0.550 | 1.050 | 4.8.2 | | LZ | 29.3334 (2) | 0.009 | 0.540 | 0.000 | 0.026 | 0.001 | 0.550 | 1.050 | 4.0.2 | | L3 | 29.3334 - 0 | 0.010 | 0.537 | 0.000 | 0.021 | 0.000 | 0.547 | 1.050 | 4.8.2 | | | (3) | 0.010 | 0.007 | 0.000 | 0.021 | 0.000 | 0.047 | 1.000 | 7.0.2 | # **Section Capacity Table** | Section
No. | Elevation
ft | Component
Type | Size | Critical
Element | P
K | øP _{allow}
K | %
Capacity | Pass
Fail | |----------------|----------------------|-------------------|-----------------------|---------------------|--------|--------------------------|---------------------|---------------------| | L1 | 115 - 72.3334 | Pole | TP30.45x21.91x0.219 | 1 | -13.52 | 1269.02 | 46.1 | Pass | | L2 | 72.3334 -
29.3334 | Pole | TP38.61x29.0779x0.313 | 2 | -20.57 | 2300.73 | 52.3 | Pass | | L3 | 29.3334 - 0 | Pole | TP43.85x36.8508x0.375 | 3 | -29.27 | 3224.57 | 52.1
Summary | Pass | | | | | | | | Pole (L2) RATING = | 52.3
52.3 | Pass
Pass | # APPENDIX B BASE LEVEL DRAWING # APPENDIX C ADDITIONAL CALCULATIONS # **Monopole Base Plate Connection** | Site Info | | |-----------|----------------| | BU# | 806372 | | Site Name | HRT 093 943228 | | Order# | 556640 Rev.1 | | Analysis Considerations | | |--------------------------------|----| | TIA-222 Revision | Н | | Grout Considered: | No | | I _{ar} (in) | 2 | | Applied Loads | | |--------------------|---------| | Moment (kip-ft) | 1616.06 | | Axial Force (kips) | 29.27 | | Shear Force (kips) | 19.57 | ^{*}TIA-222-H Section 15.5 Applied ## **Connection Properties** ## **Anchor Rod Data** (12) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 51.9" BC ## **Base Plate Data** 57.9" OD x 2.625" Plate (S-128; Fy=60 ksi, Fu=80 ksi) ## Stiffener Data N/A ## **Pole Data** 43.85" x 0.375" 12-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi) # **Analysis Results** | Pu_t = 122.02 | φPn_t = 243.75 | Stress Rating | |---------------|----------------|---------------| | Vu = 1.63 | φVn = 149.1 | 47.7% | | Mu = n/a | φMn = n/a | Pass | | Max Stress (ksi): | 16.11 | (Flexural) | |-------------------------|-------|------------| | Allowable Stress (ksi): | 54 | | | Stress Rating: | 28.4% | Pass | CCIplate - Version 4.1.1 Analysis Date: 5/28/2021 ## **Drilled Pier Foundation** BU #: 806372 Site Name: HRT 093 943228 Order Number: 556640 Rev.1 TIA-222 Revison: H Tower Type: Monopole | Applied Loads | | | | | | | | |--------------------|---------|--|--|--|--|--|--| | Comp. Uplift | | | | | | | | | Moment (kip-ft) | 1616.06 | | | | | | | | Axial Force (kips) | 29.28 | | | | | | | | Shear Force (kips) | 19.55 | | | | | | | | Material Properties | | | | | | | | |--------------------------|----|-----|--|--|--|--|--| | Concrete Strength, f'c: | 3 | ksi | | | | | | | Rebar Strength, Fy: | 60 | ksi | | | | | | | Tie Yield Strength, Fyt: | 40 | ksi | | | | | | | | Pier Design Data | | | | | | | | |---|--|-----------|----|--|--|--|--|--| | | Depth | 21.1 | ft | | | | | | | | Ext. Above Grade | 0.4 | ft | | | | | | | | Pier | Section 1 | | | | | | | | | From 0.4' above grade to 21.1' below grade | | | | | | | | | | Pier Diameter | 6 | ft | | | | | | | Γ | Rebar Quantity | 22 | | | | | | | | | Rebar Size | 10 | | | | | | | | | Clear Cover to Ties | 5 | in | | | | | | | | Tie Size | 4 | | | | | | | | | Tie Spacing | | in | | | | | | | Rebar & Pier Options | |----------------------| | Embedded Pole Inputs | | Belled Pier Inputs | | Analysis Results | | | | | | | | |------------------------------|-------------|--------|--|--|--|--|--| | Soil Lateral Check | Compression | Uplift | | | | | | | $D_{v=0}$ (ft from TOC) | 6.85 | • | | | | | | | Soil Safety Factor | 2.01 | - | | | | | | | Max Moment (kip-ft) | 1740.04 | - | | | | | | | Rating* | 63.0% | 1 | | | | | | | Soil Vertical Check | Compression | Uplift | | | | | | | Skin Friction (kips) | 226.42 | - | | | | | | | End Bearing (kips) | 1245.63 | • | | | | | | | Weight of Concrete (kips) | 109.42 | - | | | | | | | Total Capacity (kips) | 1472.05 | - | | | | | | | Axial (kips) | 138.70 | - | | | | | | | Rating* | 9.0% | - | | | | | | | Reinforced Concrete Flexure | Compression | Uplift | | | | | | | Critical Depth (ft from TOC) | 6.69 | - | | | | | | | Critical Moment (kip-ft) | 1739.82 | - | | | | | | | Critical Moment Capacity | 3646.35 | - | | | | | | | Rating* | 45.4% | - | | | | | | | Reinforced Concrete Shear | Compression |
Uplift | | | | | | | Critical Depth (ft from TOC) | 16.06 | - | | | | | | | Critical Shear (kip) | 265.81 | - | | | | | | | Critical Shear Capacity | 428.21 | - | | | | | | | Rating* | 59.1% | - | | | | | | | Structural Foundation Rating* | 59.1% | | | | | |--------------------------------------|-------|--|--|--|--| | Soil Interaction Rating* | 63.0% | | | | | | *Deting and TIA 000 II Continue 45 5 | | | | | | ^{*}Rating per TIA-222-H Section 15.5 | ✓ | |----------| | | | oar | | | | | | ✓ | | | | | | | Go to Soil Calculations | | Soil Profile | | | | | | | |-------------------|--------------|-------------|---|--|--|--|--| | Groundwater Depth | N/A | # of Layers | 4 | | | | | | | Layer | Top
(ft) | Bottom (ft) | Thickness
(ft) | Y _{soil}
(pcf) | Y _{concrete} (pcf) | Cohesion
(ksf) | Angle of
Friction
(degrees) | Calculated Ultimate Skin Friction Comp (ksf) | | Ultimate Skin
Friction Comp
Override
(ksf) | I Ultimate Skin | Ult. Gross
Bearing
Capacity
(ksf) | SPT Blow
Count | Soil Type | |---|-------|-------------|-------------|-------------------|----------------------------|-----------------------------|-------------------|-----------------------------------|--|-------|---|-----------------|--|-------------------|--------------| | Γ | 1 | 0 | 5 | 5 | 90 | 150 | 0 | 0 | 0.000 | 0.000 | 0.00 | 0.00 | | | Cohesionless | | | 2 | 5 | 14 | 9 | 90 | 150 | | 30 | 0.618 | 0.618 | | | | 10 | Cohesionless | | | 3 | 14 | 18 | 4 | 90 | 150 | | 39 | 1.382 | 1.382 | | | | 43 | Cohesionless | | Γ | 4 | 18 | 21.1 | 3.1 | 90 | 150 | | 30 | 1.589 | 1.589 | | | 58.74 | 16 | Cohesionless | #### Address: No Address at This Location ## **ASCE 7 Hazards Report** ASCE/SEI 7-10 Elevation: 195.7 ft (NAVD 88) Standard: 41.771944 Risk Category: ^Ⅱ Latitude: Soil Class: D - Stiff Soil Longitude: -72.530222 ## Wind #### Results: USE 125 MPH PER JURISDICTION Wind Speed: 124 Vmph 10-year MRI 77 Vmph 25-year MRI 87 Vmph 50-year MRI 94 Vmph 100-year MRI 101 Vmph Date &ocessed: MS6E/SF24-202Fig. 26.5-1A and Figs. CC-1-CC-4, and Section 26.5.2, incorporating errata of March 12, 2014 Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years). Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris. ## **Seismic** | Site Soil Class:
Results: | D - Stiff Soil | | | | |------------------------------|----------------|--------------------|-------|--| | S _s : | 0.179 | S _{DS} : | 0.191 | | | S_1 : | 0.064 | S _{D1} : | 0.102 | | | Fa: | 1.6 | T_L : | 6 | | | F _v : | 2.4 | PGA: | 0.09 | | | S _{MS} : | 0.286 | PGA _M : | 0.143 | | | S _{M1} : | 0.152 | F _{PGA} : | 1.6 | | | | | lo : | 1 | | ## Seismic Design Category B Data Accessed: Mon May 24 2021 Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS. ### **Ice** Results: Ice Thickness: 1.00 in. Concurrent Temperature: 5 F Gust Speed: 50 mph **Data Source:** Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8 Date Accessed: Mon May 24 2021 Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values. Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values. The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE. ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard. In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool. # Exhibit E **Mount Analysis** Date: August 2, 2021 Darcy Tarr Crown Castle 3530 Toringdon Way, Suite 300 Charlotte, NC 28277 704-405-6589 Trylon 1825 W. Walnut Hill Lane, Suite 302 Irving, TX 75038 214-930-1730 Subject: Mount Replacement Analysis Report Carrier Designation: Dish Network Dish 5G Carrier Site Number:BOBDL00045ACarrier Site Name:CT-CCI-T-806372 Crown Castle Designation: Crown Castle BU Number: 806372 Crown Castle Site Name: HRT 093 943228 Crown Castle JDE Job Number: 650040 Crown Castle Order Number: 556640 Rev. 1 **Engineering Firm Designation:** Trylon Report Designation: 189047 Site Data: 266R Center Street, Manchester, Hartford County, CT, 06040 Latitude 41°46'19.00" Longitude -72°31'48.80" Structure Information: Tower Height & Type: 115.0 ft Monopole Mount Elevation: 95.0 ft Mount Type: 8.0 ft Platform Dear Darcy Tarr, Trylon is pleased to submit this "Mount Replacement Analysis Report" to determine the structural integrity of Dish Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document. The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be: Platform Sufficient* *Sufficient upon completion of the changes listed in the 'Recommendations' section of this report. This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria. Mount analysis prepared by: Marius Balan Respectfully Submitted by: Cliff Abernathy, P.E. #### **TABLE OF CONTENTS** #### 1) INTRODUCTION ## 2) ANALYSIS CRITERIA Table 1 - Proposed Equipment Configuration #### 3) ANALYSIS PROCEDURE Table 2 - Documents Provided - 3.1) Analysis Method - 3.2) Assumptions ## 4) ANALYSIS RESULTS Table 3 - Mount Component Stresses vs. Capacity 4.1) Recommendations ## 5) APPENDIX A Wire Frame and Rendered Models #### 6) APPENDIX B Software Input Calculations #### 7) APPENDIX C Software Analysis Output ### 8) APPENDIX D **Additional Calculations** ## 9) APPENDIX E **Supplemental Drawings** ## 1) INTRODUCTION This is a proposed 3 sector 8.0 ft Platform, designed by Commscope. ### 2) ANALYSIS CRITERIA Building Code: 2015 IBC TIA-222 Revision: TIA-222-H Risk Category: Ultimate Wind Speed: 125 mph **Exposure Category:** В **Topographic Factor at Base:** 1.0 **Topographic Factor at Mount:** 1.0 Ice Thickness: 2.0 in Wind Speed with Ice: 50 mph Seismic S_s: 0.178 Seismic S₁: 0.064 Live Loading Wind Speed: 30 mph Man Live Load at Mid/End-Points: 250 lb Man Live Load at Mount Pipes: 500 lb **Table 1 – Proposed Equipment Configuration** | Mount
Centerline
(ft) | Antenna
Centerline
(ft) | Number
of
Antennas | Antenna
Manufacturer | Antenna Model | Mount / Modification
Details | | |-----------------------------|-------------------------------|--------------------------|-------------------------|------------------|---------------------------------|--------------------------------| | | | 3 | JMA WIRELESS | MX08FRO665-21 | 0.0 ft Dietferm | | | 95.0 | 05.0 | 95.0 | 3 | FUJITSU | TA08025-B604 | 8.0 ft Platform [Commscope MC- | | 95.0 | 95.0 | 3 | FUJITSU | TA08025-B605 | PK8-C] | | | | | 1 | RAYCAP | RDIDC-9181-PF-48 | F 10-0] | | #### 3) ANALYSIS PROCEDURE Table 2 - Documents Provided | Document | Remarks | Reference | Source | | |---------------------------------|-----------------------------|----------------|-----------|--| | Crown Application | Dish Network
Application | 556640, Rev. 1 | CCI Sites | | |
Mount Manufacturer Drawings | Commscope | MC-PK8-C | Trylon | | | Exposure Category Determination | Crown Castle | 6984626 | CCI Sites | | ## 3.1) Analysis Method RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases. A tool internally developed, using Microsoft Excel, by Trylon was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the analysis is included in Appendix B. This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B). ### 3.2) Assumptions - 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications. - 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings. - 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report. - 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members. - 5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data. - 6) Steel grades have been assumed as follows, unless noted otherwise: Channel, Solid Round, Angle, Plate HSS (Rectangular) Pipe ASTM A36 (GR 36) ASTM A500 (GR B-46) ASTM A53 (GR 35) ASTM A325 This analysis may be affected if any assumptions are not valid or have been made in error. Trylon should be notified to determine the effect on the structural integrity of the antenna mounting system. #### 4) ANALYSIS RESULTS Table 3 - Mount Component Stresses vs. Capacity (Platform, All Sectors) | Notes | Component | Critical
Member | Centerline (ft) | % Capacity | Pass / Fail | |-------|---------------------|--------------------|-----------------|------------|-------------| | 1, 2 | Mount Pipe(s) | MP1 | 95.0 | 23.9 | Pass | | | Horizontal(s) | H1 | | 10.9 | Pass | | | Standoff(s) | M12 | | 56.7 | Pass | | | Bracing(s) | M1 | | 44.0 | Pass | | | Plate(s) | M15 | | 18.3 | Pass | | | Handrail(s) | M20 | | 11.4 | Pass | | | Mount Connection(s) | - | | 23.8 | Pass | | Structure Rating (max from all components) = | 56.7% | |--|-------| |--|-------| Notes: - 1) See additional documentation in "Appendix C Software Analysis Output" for calculations supporting the % capacity - 2) Rating per TIA-222-H, Section 15.5 ## 4.1) Recommendations The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed. 1. Commscope, part no MC-PK8-C. No structural modifications are required at this time, provided that the above-listed changes are implemented. # APPENDIX A WIRE FRAME AND RENDERED MODELS ## Envelope Only Solution | Trylon | | SK - 1 | |--------|--------|--------------------------| | MB | 806372 | July 28, 2021 at 3:39 PM | | 189047 | | 806372.r3d | #### **Envelope Only Solution** | Trylon | 806372 | SK - 2 | | |--------|--------|--------------------------|--| | MB | | July 28, 2021 at 3:39 PM | | | 189047 | | 806372.r3d | | # APPENDIX B SOFTWARE INPUT CALCULATIONS #### Address: No Address at This Location # **ASCE 7 Hazards Report** Standard: ASCE/SEI 7-10 Elevation: 195.7 ft (NAVD 88) Risk Category: || Latitude: 41.771944 Soil Class: D - Stiff Soil Longitude: -72.530222 ### **Ice** #### Results: Ice Thickness: 1.00 in. Concurrent Temperature: 5 F Gust Speed: 50 mph **Data Source:** Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8 Date Accessed: Wed Jul 28 2021 Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values. Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values. The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE. ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard. In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool. Wed Jul 28 2021 ### **TIA LOAD CALCULATOR 2.0** | PROJECT DATA | | |--------------------|-----------------| | Job Code: | 189047 | | Carrier Site ID: | BOBDL00045A | | Carrier Site Name: | CT-CCI-T-806372 | | CODES AND STANDARDS | | |----------------------|-----------| | Building Code: | 2015 IBC | | Local Building Code: | 2018 CSBC | | Design Standard: | TIA-222-H | | STRUCTURE DETAILS | | | |--------------------|----------|-----| | Mount Type: | Platform | | | Mount Elevation: | 95.0 | ft. | | Number of Sectors: | 3 | | | Structure Type: | Monopole | | | Structure Height: | 115.0 | ft. | | ANALYSIS CRITERIA | | | |--------------------------|----------------|-----| | Structure Risk Category: | II | | | Exposure Category: | В | | | Site Class: | D - Stiff Soil | | | Ground Elevation: | 195.7 | ft. | | TOPOGRAPHIC DATA | | | |---------------------------------------|------|-----| | Topographic Category: | 1.00 | | | Topographic Feature: | N/A | | | Crest Point Elevation: | 0.00 | ft. | | Base Point Elevation: | 0.00 | ft. | | Crest to Mid-Height (L/2): | 0.00 | ft. | | Distance from Crest (x): | 0.00 | ft. | | Base Topo Factor (K _{zt}): | | | | Mount Topo Factor (K _{zt}): | 1.00 | | | WIND PARAMETERS | | | |---|-------|-----| | Design Wind Speed: | 125 | mph | | Wind Escalation Factor (K _s): | 1.00 | | | Velocity Coefficient (K _z): | 0.97 | | | Directionality Factor (K _d): | 0.95 | | | Gust Effect Factor (Gh): | 1.00 | | | Shielding Factor (K _a): | 0.90 | | | Velocity Pressure (q _z): | 36.75 | psf | | ICE PARAME | ETERS | | |---|-------|-----| | Design Ice Wind Speed: | 50 | mph | | Design Ice Thickness (t _i): | 2.00 | in | | Importance Factor (I _i): | 1.00 | | | Ice Velocity Pressure (qzi): | 36.75 | psf | | Mount Ice Thickness (tiz): | 2.22 | in | | WIND STRUCTURE CALCULATIONS | | | |-----------------------------|-------|-----| | Flat Member Pressure: | 66.14 | psf | | Round Member Pressure: | 39.68 | psf | | Ice Wind Pressure: | 7.25 | psf | | SEISMIC PARAMETERS | | | |---|-------|---| | Importance Factor (I _e): | 1.00 | | | Short Period Accel .(S _s): | 0.178 | g | | 1 Second Accel (S ₁): | 0.064 | g | | Short Period Des. (S _{DS}): | 0.19 | g | | 1 Second Des. (S _{D1}): | 0.10 | g | | Short Period Coeff. (F _a): | 1.60 | | | 1 Second Coeff. (F _v): | 2.40 | | | Response Coefficient (Cs): | 0.09 | | | Amplification Factor (A _S): | 1.20 | | # **LOAD COMBINATIONS [LRFD]** | # | Description | |----|-----------------------------| | 1 | 1.4DL | | 2 | 1.2DL + 1WL 0 AZI | | 3 | 1.2DL + 1WL 30 AZI | | 4 | 1.2DL + 1WL 45 AZI | | 5 | 1.2DL + 1WL 60 AZI | | 6 | 1.2DL + 1WL 90 AZI | | 7 | 1.2DL + 1WL 120 AZI | | 8 | 1.2DL + 1WL 135 AZI | | 9 | 1.2DL + 1WL 150 AZI | | 10 | 1.2DL + 1WL 180 AZI | | 11 | 1.2DL + 1WL 210 AZI | | 12 | 1.2DL + 1WL 225 AZI | | 13 | 1.2DL + 1WL 240 AZI | | 14 | 1.2DL + 1WL 270 AZI | | 15 | 1.2DL + 1WL 300 AZI | | 16 | 1.2DL + 1WL 315 AZI | | 17 | 1.2DL + 1WL 330 AZI | | 18 | 0.9DL + 1WL 0 AZI | | 19 | 0.9DL + 1WL 30 AZI | | 20 | 0.9DL + 1WL 45 AZI | | 21 | 0.9DL + 1WL 60 AZI | | 22 | 0.9DL + 1WL 90 AZI | | 23 | 0.9DL + 1WL 120 AZI | | 24 | 0.9DL + 1WL 135 AZI | | 25 | 0.9DL + 1WL 150 AZI | | 26 | 0.9DL + 1WL 180 AZI | | 27 | 0.9DL + 1WL 210 AZI | | 28 | 0.9DL + 1WL 225 AZI | | 29 | 0.9DL + 1WL 240 AZI | | 30 | 0.9DL + 1WL 270 AZI | | 31 | 0.9DL + 1WL 300 AZI | | 32 | 0.9DL + 1WL 315 AZI | | 33 | 0.9DL + 1WL 330 AZI | | 34 |
1.2DL + 1DLi + 1WLi 0 AZI | | 35 | 1.2DL + 1DLi + 1WLi 30 AZI | | 36 | 1.2DL + 1DLi + 1WLi 45 AZI | | 37 | 1.2DL + 1DLi + 1WLi 60 AZI | | 38 | 1.2DL + 1DLi + 1WLi 90 AZI | | 39 | 1.2DL + 1DLi + 1WLi 120 AZI | | 40 | 1.2DL + 1DLi + 1WLi 135 AZI | | 41 | 1.2DL + 1DLi + 1WLi 150 AZI | | # | Description | |----|--| | 42 | 1.2DL + 1DLi + 1WLi 180 AZI | | 43 | 1.2DL + 1DLi + 1WLi 210 AZI | | 44 | 1.2DL + 1DLi + 1WLi 225 AZI | | 45 | 1.2DL + 1DLi + 1WLi 240 AZI | | 46 | 1.2DL + 1DLi + 1WLi 270 AZI | | 47 | 1.2DL + 1DLi + 1WLi 300 AZI | | 48 | 1.2DL + 1DLi + 1WLi 315 AZI | | 49 | 1.2DL + 1DLi + 1WLi 330 AZI | | 50 | (1.2+0.2Sds) + 1.0E 0 AZI | | 51 | (1.2+0.2Sds) + 1.0E 30 AZI | | 52 | (1.2+0.2Sds) + 1.0E 45 AZI | | 53 | (1.2+0.2Sds) + 1.0E 60 AZI | | 54 | (1.2+0.2Sds) + 1.0E 90 AZI | | 55 | (1.2+0.2Sds) + 1.0E 120 AZI | | 56 | (1.2+0.2Sds) + 1.0E 135 AZI | | 57 | (1.2+0.2Sds) + 1.0E 150 AZI | | 58 | (1.2+0.2Sds) + 1.0E 180 AZI | | 59 | (1.2+0.2Sds) + 1.0E 210 AZI | | 60 | (1.2+0.2Sds) + 1.0E 225 AZI | | 61 | (1.2+0.2Sds) + 1.0E 240 AZI | | 62 | (1.2+0.2Sds) + 1.0E 270 AZI | | 63 | (1.2+0.2Sds) + 1.0E 300 AZI | | 64 | (1.2+0.2Sds) + 1.0E 315 AZI | | 65 | (1.2+0.2Sds) + 1.0E 330 AZI | | 66 | (0.9-0.2Sds) + 1.0E 0 AZI | | 67 | (0.9-0.2Sds) + 1.0E 30 AZI | | 68 | (0.9-0.2Sds) + 1.0E 45 AZI | | 69 | (0.9-0.2Sds) + 1.0E 60 AZI | | 70 | (0.9-0.2Sds) + 1.0E 90 AZI | | 71 | (0.9-0.2Sds) + 1.0E 120 AZI | | 72 | (0.9-0.2Sds) + 1.0E 135 AZI | | 73 | (0.9-0.2Sds) + 1.0E 150 AZI | | 74 | (0.9-0.2Sds) + 1.0E 180 AZI | | 75 | (0.9-0.2Sds) + 1.0E 210 AZI | | 76 | (0.9-0.2Sds) + 1.0E 225 AZI | | 77 | (0.9-0.2Sds) + 1.0E 240 AZI | | 78 | (0.9-0.2Sds) + 1.0E 270 AZI | | 79 | (0.9-0.2Sds) + 1.0E 300 AZI | | 80 | | | 81 | | | | ` | | | (0.9-0.2Sds) + 1.0E 315 AZI
(0.9-0.2Sds) + 1.0E 330 AZI
1.2D + 1.5 Lv1 | | # | Description | |-----|------------------------------------| | 89 | 1.2D + 1.5Lm + 1.0Wm 0 AZI - MP1 | | 90 | 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP1 | | 91 | 1.2D + 1.5Lm + 1.0Wm 45 AZI - MP1 | | 92 | 1.2D + 1.5Lm + 1.0Wm 60 AZI - MP1 | | 93 | 1.2D + 1.5Lm + 1.0Wm 90 AZI - MP1 | | 94 | 1.2D + 1.5Lm + 1.0Wm 120 AZI - MP1 | | 95 | 1.2D + 1.5Lm + 1.0Wm 135 AZI - MP1 | | 96 | 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP1 | | 97 | 1.2D + 1.5Lm + 1.0Wm 180 AZI - MP1 | | 98 | 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP1 | | 99 | 1.2D + 1.5Lm + 1.0Wm 225 AZI - MP1 | | 100 | 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP1 | | 101 | 1.2D + 1.5Lm + 1.0Wm 270 AZI - MP1 | | 102 | 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1 | | 103 | 1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1 | | 104 | 1.2D + 1.5Lm + 1.0Wm 330 AZI - MP1 | | 105 | 1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2 | | 106 | 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2 | | 107 | 1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2 | | 108 | 1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2 | | 109 | 1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2 | | 110 | 1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2 | | 111 | 1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2 | | 112 | 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2 | | 113 | 1.2D + 1.5Lm + 1.0Wm 180 AZI - MP2 | | 114 | 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2 | | 115 | 1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2 | | 116 | 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2 | | 117 | 1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2 | | 118 | 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2 | | 119 | 1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2 | | 120 | 1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2 | | # | Description | |-----|------------------------------------| | 121 | 1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3 | | 122 | 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3 | | 123 | 1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3 | | 124 | 1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3 | | 125 | 1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3 | | 126 | 1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3 | | 127 | 1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3 | | 128 | 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3 | | 129 | 1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3 | | 130 | 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3 | | 131 | 1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3 | | 132 | 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3 | | 133 | 1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3 | | 134 | 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3 | | 135 | 1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3 | | 136 | 1.2D + 1.5Lm + 1.0Wm 330 AZI - MP3 | | 137 | 1.2D + 1.5Lm + 1.0Wm 0 AZI - MP4 | | 138 | 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP4 | | 139 | 1.2D + 1.5Lm + 1.0Wm 45 AZI - MP4 | | 140 | 1.2D + 1.5Lm + 1.0Wm 60 AZI - MP4 | | 141 | 1.2D + 1.5Lm + 1.0Wm 90 AZI - MP4 | | 142 | 1.2D + 1.5Lm + 1.0Wm 120 AZI - MP4 | | 143 | 1.2D + 1.5Lm + 1.0Wm 135 AZI - MP4 | | 144 | 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP4 | | 145 | 1.2D + 1.5Lm + 1.0Wm 180 AZI - MP4 | | 146 | 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP4 | | 147 | 1.2D + 1.5Lm + 1.0Wm 225 AZI - MP4 | | 148 | 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP4 | | 149 | 1.2D + 1.5Lm + 1.0Wm 270 AZI - MP4 | | 150 | 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP4 | | 151 | 1.2D + 1.5Lm + 1.0Wm 315 AZI - MP4 | | 152 | 1.2D + 1.5Lm + 1.0Wm 330 AZI - MP4 | ^{*}This page shows an example of maintenance loads for (4) pipes, the number of mount pipe LCs may vary per site # **EQUIPMENT LOADING** | Appurtenance Name/Location | Qty. | Elevation [ft] | | EPA _N (ft2) | EPA _T (ft2) | Weight (lbs) | |----------------------------|------|----------------|--------|------------------------|------------------------|--------------| | MX08FRO665-21 | 3 | 95 | No Ice | 8.01 | 3.21 | 82.50 | | MP1/MP4/MP7, 0/120/240 | | | w/ Ice | 10.18 | 5.12 | 380.44 | | TA08025-B604 | 3 | 95 | No Ice | 1.96 | 0.98 | 63.90 | | MP1/MP4/MP7, 0/120/240 | | | w/ Ice | 2.52 | 1.42 | 96.34 | | TA08025-B605 | 3 | 95 | No Ice | 1.96 | 1.13 | 75.00 | | MP1/MP4/MP7, 0/120/240 | | | w/ Ice | 2.52 | 1.59 | 102.37 | | RDIDC-9181-PF-48 | 1 | 95 | No Ice | 2.01 | 1.17 | 21.85 | | MP1/MP/MP, 0/120/240 | - | | w/ Ice | 2.58 | 1.64 | 100.96 | | | | | No Ice | | | | | | | | w/ Ice | | | | | | | | No Ice | | | | | | | | w/ Ice | | | | | | | | No Ice | | | | | | 1 | | w/ Ice | | | | | | | | No Ice | | | | | | 1 | | w/ Ice | | | | | | | | No Ice | | | | | | 1 | | w/ Ice | | | | | | | | No Ice | | | | | | 1 | | w/ Ice | | | | | | | | No Ice | | | | | | - | | w/ Ice | | | | | | | | No Ice | | | | | | | | w/ Ice | | | | | | | | No Ice | | | | | | | | w/ Ice | | | | | | | | No Ice | | | | | | | | w/ Ice | | | | | | | | No Ice | | | | | | | | w/ Ice | | | | | | | | No Ice | | | | | | | | w/ Ice | | | | | | | | No Ice | | | | | | | | w/ Ice | | | | | | | | No Ice | | | | | | | | w/ Ice | | | | | | | | No Ice | | | | | | | | w/ Ice | | | | | | | | No Ice | | | | | | | | w/ Ice | | | | | | | | No Ice | | | | | | | | | | | | | | | | w/ Ice | | | | | | | | No Ice | | | | | | | | w/ Ice | | | | # **EQUIPMENT LOADING [CONT.]** | Appurtenance Name/Location | Qty. | Elevation [ft] | | EPA _N (ft2) | EPA _T (ft2) | Weight (lbs) | |----------------------------|------|----------------|--------|------------------------|------------------------|--------------| | | | | No Ice | | | | | | | | w/ Ice | | | | | | | | No Ice | | | | | - | | | w/ Ice | | | | | | | | No Ice | | | | | - | | | w/ Ice | | | | | | | | No Ice | | | | | | | | w/ Ice | | | | | | | | No Ice | | | | | | | | w/ Ice | | | | | | | | No Ice | | | | | | | | w/ Ice | | | | | | | | No Ice | | | | | | | | w/ Ice | | | | | | | | No Ice | | | | | | | | w/ Ice | | | | | | | | No Ice | | | | | | | | w/ Ice | | | | | | | | No Ice | | | | | | | | w/ Ice | | | | | | | | No Ice | | | | | | | | w/ Ice | | | | | | | | No Ice | | | | | | | | w/ Ice | | | | # **EQUIPMENT WIND CALCULATIONS** | Appurtenance Name | Qty. | Elevation [ft] | K _{zt} | K _z | K _d | t _d | q _z
[psf] | q _{zi}
[psf] | |-------------------|------|----------------|------------------------|----------------|-----------------------|-----------------------|--------------------------------|---------------------------------| | MX08FRO665-21 | 3 | 95 | 1.00 | 0.97 | 0.95 | 2.22 | 36.75 | 5.88 | | TA08025-B604 | 3 | 95 | 1.00 | 0.97 | 0.95 | 2.22 | 36.75 | 5.88 | | TA08025-B605 | 3 | 95 | 1.00 | 0.97 | 0.95 | 2.22 | 36.75 | 5.88 | | RDIDC-9181-PF-48 | 1 | 95 | 1.00 | 0.97 | 0.95 | 2.22 | 36.75 | 5.88 | # **EQUIPMENT LATERAL WIND FORCE CALCULATIONS** | Appurtenance Name | Qty. | | 0°
180° | 30°
210° | 60°
240° | 90°
270° | 120°
300° | 150°
330° | |------------------------|------|------------------|------------|-------------|-------------|-------------|--------------|--------------| | MX08FRO665-21 | 3 | No Ice | 264.90 | 145.84 | 225.21 | 106.16 | 225.21 | 145.84 | | MP1/MP4/MP7, 0/120/240 | | w/ Ice | 53.88 | 33.78 | 47.18 | 27.09 | 47.18 | 33.78 | | TA08025-B604 | 3 | No Ice | 64.93 | 40.57 | 56.81 | 32.45 | 56.81 | 40.57 | | MP1/MP4/MP7, 0/120/240 | | w/ Ice | 13.36 | 8.97 | 11.89 | 7.51 | 11.89 | 8.97 | | TA08025-B605 | 3 | No Ice | 64.93 | 44.25 | 58.04 | 37.35 | 58.04 | 44.25 | | MP1/MP4/MP7, 0/120/240 | | w/ Ice | 13.36 | 9.64 | 12.12 | 8.40 | 12.12 | 9.64 | | RDIDC-9181-PF-48 | 1 | No Ice | 66.53 | 45.61 | 59.56 | 38.63 | 59.56 | 45.61 | | MP1/MP/MP, 0/120/240 | | w/ Ice | 13.65 | 9.93 | 12.41 | 8.69 | 12.41 | 9.93 | | | | No Ice | | | | | | | | | | w/ Ice | | | | | | | | | | No Ice | | | | | | | | | | w/ Ice | | | | | | | | | | No Ice | | | | | | | | | | w/ Ice | | | | | | | | | | No Ice | | | | | | | | | | w/ Ice | | | | | | | | | | No Ice | | | | | | | | | | w/ Ice | | | | | | | | | | No Ice
| | | | | | | | | | w/ Ice | | | | | | | | | | No Ice | | | | | | | | | | w/ Ice | | | | | | | | | | No Ice | | | | | | | | | | w/ Ice | | | | | | | | | | No Ice | | | | | | | | | | w/ Ice | | | | | | | | | | No Ice | | | | | | | | | | w/ Ice | | | | | | | | | | No Ice
w/ Ice | No Ice
w/ Ice | | | | | | | | | | No Ice | | | | | | | | | | w/ Ice | No Ice | | | | | | | | | | w/ Ice | | | | | | | | | | No Ice | | | | | | | | | | w/ Ice | | | | | | | | | | No Ice | | | | | | | | | | w/ Ice | | | | | | | | | | No Ice | | | | | | | | | | w/ Ice | | | | | | | | | | No Ice | | | | | | | | | | w/ Ice | | | | | | | | | | VV/ ICC | | | 1 | 1 | | | # **EQUIPMENT LATERAL WIND FORCE CALCULATIONS [CONT.]** | Appurtenance Name | Qty. | | 0°
180° | 30°
210° | 60°
240° | 90°
270° | 120°
300° | 150°
330° | |-------------------|------|--------|------------|-------------|-------------|-------------|--------------|--------------| | | | No Ice | | | | | | | | | | w/ Ice | | | | | | | | | | No Ice | | | | | | | | | | w/ Ice | | | | | | | | | | No Ice | | | | | | | | | | w/ Ice | | | | | | | | | | No Ice | | | | | | | | | | w/ Ice | | | | | | | | | | No Ice | | | | | | | | | | w/ Ice | | | | | | | | | | No Ice | | | | | | | | | | w/ Ice | | | | | | | | | | No Ice | | | | | | | | | | w/ Ice | | | | | | | | | | No Ice | | | | | | | | | | w/ Ice | | | | | | | | | | No Ice | | | | | | | | | | w/ Ice | | | | | | | | | | No Ice | | | | | | | | | | w/ Ice | | | | | | | | | | No Ice | | | | | | | | | | w/ Ice | | | | | | | | | | No Ice | | | | | | | | | | w/ Ice | | | | | | | # **EQUIPMENT SEISMIC FORCE CALCULATIONS** | | - | | Weight | F p | |-------------------|------|----------------|--------|------------| | Appurtenance Name | Qty. | Elevation [ft] | [lbs] | [lbs] | | MX08FRO665-21 | 3 | 95 | 82.5 | 9.40 | | TA08025-B604 | 3 | 95 | 63.9 | 7.28 | | TA08025-B605 | 3 | 95 | 75 | 8.54 | | RDIDC-9181-PF-48 | 1 | 95 | 21.85 | 2.49 | # APPENDIX C SOFTWARE ANALYSIS OUTPUT ## ft `cVUŁ'A cXY` GYHjb[g | | ÍÁ | |---|--------------------------------| | $T = \hat{A}(\hat{A}(x)) + \hat{A}(A$ | JÏÁ | | Q& `å^AÛ@æAÖ^-{ { æqa[}}Ñ | Ÿ^• | | Ó,&¦^æ•^Áræājāj *ÁÔæjæ&ãcÂj¦ÁYājåÑ | ΫΛ• | | Q́& `å^ÁYæ] ja * Ñ | Ϋ́Λ• | | √ĺa)•ÁŠ[æåÁÖc¸}ÁQ≀c^¦•^&α∄*ÁY[[åÁYæ∥Ñ | ΫΛ• | | O£^æAŠ[æåÁT^•@AG]âGD | FII | | T^ *^Å/[^ æ} &^Á@D | ÈG | | ÚÉÖ^ cæÁOE; æþ´•ã ÁVÍ ^¦æ} &^ | €ÉÆÃ | | Q& å^ÁÚÉÖ^ œÁ[¦Á/æ j•Ñ | Ÿ^• | | ÓE d[{ ææã8æ ^ÁQ0^¦ææ^ÁÛcã-}^••Á[¦ÁYæ •Ñ | Ÿ^• | | Tæ¢À@^\æaaaa } • Á{ Á⁄ æ ÁÚcã} ^ • • | Н | | Ölæçãc ÁOB&&^ ^læaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa | HÌÏÈ | | YællÁT^•@ÁÚã^ÁÇÃD | G | | Ôat^}•['cat } ÁÔ[\$\frac{1}{2} c^\ + ^ } &^ ÁV[ÉAGFEÒËD | 1 | | X^¦cã8ælÁ0T¢ã | Z | | Õ [[àæþÁT^{ à^¦ÁU¦ã^}cææã[}ÁÚ æ}^ | Ϋ́Ϋ́ | | Ùcaea8ÁÚ[ç^ | Ù]æ•^ÁOB&^ ^¦æe^å | | Ö^}æ{ & ÁÚ[ç^¦ | 0£8&^ ^\ae^åAÛ[ç^\ | | | | | P[œÛ[^ å ÂÛœ^^ ÂÔ[å^ | OEDÙÔÁFÍc@QH΀ËFÎDMÁŠÜØÖ | | Œabi • œÛca-} ^••Ñ | Ÿ^• (@ ^¦æ a c^D | | ÜQÜQĞ[}}^&a[}ÂÖ[å^ | OEDÙŐÁFÍc@ÓHÍ€ÉFĨDMÁSÜØÖ | | Ô[寨[¦{ ^åÆÛ&^^ÆÔ[å^ | Þ[}^ | | Y [[å <i>Ĥ</i> Ô[å^ | Þ[}^ | | Y[[åÁv^{]^\æc`\^ | ŁÅF€€Ø | | Ô[] &\^ &\^ \dot \ho [a^ | Þ[}^ | | Tæ-[} ¦^ÂÔ[å^ | Þ[}^ | | OĘ~{ ą}~{ AÔ[å^ | Þ[}^ÆÖ`āåäj* | | Ùæ a j ^••ÂÛc^^ ÂÔ[å^ | OEDÙÔÁFI c@ÇHÎ €ËF€DMÁSÜØÖ | | Ofabio • oAÛcã-} ^••Ñ | Ÿ^• @ 0\læag^D | | | | | Þ`{ à^¦Á[-ÁÛ@\æÁÜ^*ã[}• | | | Ü^* ã[} ÁÛ] æ&ã] *ÁQ&¦^{ ^} cÁQã} D | 1 | | Óãæ¢ãæÁÔ[ˇ{}ÁT^cQQå | Ò¢æ&cÁQ; c^* ¦ææã[} | | Úæl{ ^ÁÓ^æÁØæ&q ¦ÁQÚÔŒD | ÊÍ | | Ô[}& ^&\AÛd^••AŎ [&\ | Ü^&ca) * | | W•^ÁÔ¦æ&\^åÁÙ^&a₫}}•Ñ | Ϋ^• | | W•^ÁÔ¦æ&\^åÁÙ^&aa[}•ÁÛ æàÑ | Þ[| | ÓæåÁØlæ{ā,*Á/æ}}ã,*•Ñ | Þ[| | W} * • ^ å ÅØ[¦ & ^ ÁY æ b} ∄ * • Ñ | ΫΛ• | | Tā, ÁFÁÓæ ÁÖãæ (ÉÁÚ) æ&ā, *Ñ | Þ[| | Ô[} &\^&\AÜ^àæ\AÛ^c | ÜÒӌܴÙÒV´ŒÙVTŒÎFÍ | | T ā, ÁÁ, ÁÚ¢^^ Á[; ¦ÁÔ[ˇ { } | F | | Tæ¢ÁÑÁÙ¢^/Á[¦ÁÔ[ˇ{} | į | ## fł `cVUŁA cXY` GYłłjb[gž7 cbłjbi YX | Ù^ã{ 88ÁÔ[å^ | ŒÙÔÒĂ ËFÎ | |--|----------------| | Ù^ã{ ã&ÁÓæ ^ÁÒ ^çæaã }ÁÇa D | Þ[🔊 🖒 e^ ¦^ å | | Ođa đốc a chí cá | Ϋ́Λ• | | ÔæÝ | È€G | | ÔæZ | Œ G | | VÁÝÁG^&D | Þ[oÁÒ} c^\^å | | VÆÆ. | Þ[ơ�) ơ\^å | | ÜÄ | H | | ÜÆ | H | | ÔớÔ¢] ĐÝ | ĔÍ | | ÔÁÔ¢] ÉZ | Ĕĺ | | ÙÖF | F | | ÙÖÙ | F | | ÙF | F | | VŠÁĢ^&D | ĺ | | Üã√ÁÔæ | CÁT LÁCO. | | Ö¦ãø⁄Ôæc | U@\ | | U{ ÂZ | F | | U{ Ã′ | F | |  | F | | ÔåÂÝ | F | | ÜQÆ | F | | Ü @ Ř | F | | | | # <chFc``YX'GhYY`DfcdYfl]Yg | | Šæà^ | ÒÆX•ãa | ÕÆX•ãã | þř | V@\{ ÁJEF ÒÈ | BÖ^}•ãcÎŽÐdÌ | ÈŸã∧¦åŽj∙ãã | Ü^ | Ø"Žj∙ãã | Üc | |---|-----------------|--------|--------|----|---------------------|--------------|-------------|----|---------|-----| | F | ŒJG | GJ€€€ | FFFÍ I | È | ĒÍ | ÈJ | Í€€€€ | FÈ | îÍ€€€ | FÈ | | G | OHÎ ÁÕ¦ ÌHÎ | GJ€€€ | FFFÍ I | È | ÊÍ | ÈJ | HÎ €€€ | FĚ | í쀀€ | FÈG | | Н | OÉÏGÁÕ¦Ě€ | GJ€€€ | FFFÍ I | È | ĒÍ | ÈJ | Í€€€€ | FÈ | îÍ€€€ | FÈ | | 1 | ŒÉÆŐ¦ÈÓÁÜÞÖ | GJ€€€ | FFFÍ I | È | Ēĺ | ĚĞ | IŒ€€ | FÈ | ĺÌ€€€ | FÈH | | ĺ | OÉ €€ÁÕ¦ÈÓÁÜ^&c | GJ€€€ | FFFÍ I | È | Ēĺ | ĚĞ | I΀€€ | FÈ | í쀀€ | FÈH | | Î | OÉ HÁÕ¦ ÈÓ | GJ€€€ | FFFÍ I | È | ÊÍ | ÈJ | HÍ €€€ | F₿ | ΀€€€ | FÈG | | Ϊ | OEF€ÌÍ | GJ€€€ | FFFÍ I | ÈH | ÊÍ | ÈJ | Í€€€€ | FÈ | îÍ€€€ | FÈH | ## 7c'X': cfa YX'GhYY'DfcdYff]Yg | | Šæà^ | ÒÆX•ãã | ÕÆX•ãã | Þř | V@N¦{ ÁQEEFÒÍÁROI | Ö^}•ãcÎŽÐcâHá | ŸãN∣åŽj∙ãã | ØĭŽj•ãã | |---|--------------|--------|--------|----|-------------------|---------------|-------------------|---------| | Ŧ | OÉÍHÁÙÙÁÕ¦HH | GJÍ €€ | FFHI Î | È | ĚÍ | ÈΙ | HH€€€ | lÍ€€€ | | റ | OÉÍHÁÙÙÁզ̀EF | GJÍ €€ | FFHI Î | È | Ēĺ | ÈJ | Í €€€€ | îÍ€€€ | ## <chFc``YX'GhYY'GYWJcb'GYlg</pre> | | Šæà^ | Ù @ ∯^ | V^]^ | Ö^∙ã} Æãc | Tæe^∖ãæ∳ | Ö^•ã}ÁEECEÁŽAG | Q^ÃãjláQ | :ÆŽajláRÆŽajlá | |---|-----------------|------------------|-------|--------------------|-------------|----------------|-----------|----------------| | F | ÎLĂÄ¢€ÈHÄÁÚ æe^ | ÎÉÄ¢⊕ÈHÎÄÁÚ æe^ | Ó^æ{ | ÜÒÔV | OEHÎ ÁÕ¦ÈHÎ | V^]ã&æ;lŒÈ€Í | È€GÜÌ | ÈÎÌÌÈF€Î | | G | ŠŒ¢ŒH | ŠŒ¢ŒH | Ó^æ{ | Ùaj * ^ ÁOEj * ^ | OEHÎ ÁÕ¦ÈHÎ | V^]ã&æ; LËGG | ÈGÏF | ÈÄF ÈE€J | | Н | ÚŒÓ HĚ | ÚQÚÒ´HĚ | Ó^æ{ | Úą^ | OÉ HÁÕ¦ ÈÓ | V^]ã&æ; GÉL | IĚGI | ĚG JÈ€I | | 1 | ÔHÝÍ | ÔHÝÍ | Ó^æ{ | Ô@#}}^ | OEHÎ ÁÕ¦ÈHÎ | V^]ã&æ; FÈÏ | ÈGIF | FÈÍ ÈEIH | | ĺ | ÚŒÓ′GÈE | ÚQÚÒ′ GÈ€ | Ó^æ{ | Úą^ | OÉ HÁÕ¦ ÈÓ | V^]ã&æ; FÈ€G | ÊĞ Œ | ĒGÜ FĒGÚ | | Î | ŠÎÊÄÝIÈÎÄÝ€ÈGÍÄ | SÎÊÄYIÈ ÎÄY⊕EGÎÄ | √Ó^æ(| Ùaj * ^ ÁOEj * ^ | OHÎ ÁÕ¦ ÈHÎ | V^]ã&æ; OHË €H | I Ë Í J 🗗 | 3ÈΕ̈́Í ÉÉÍ | ### 7c'X': cfa YX'GhYY'GYWJcb'GYhg | | Šæà^ | Ù@ ≱ ^ | V^]^ | Ö^∙ãt}Æãa⊞ | Tæe^∖俢 | Ö^•ā*}ÁÜEEEOEAÃAjGá | Q^Ããjlá | Q:Æğlá RÆğlá | |---|------|---------------|------|------------|--------------|---------------------|---------|--------------| | F | ÔØFŒ | ÌÔWFÈGÍÝ€ÍÏ | Ó^æŧ | Þ[}^ | OÊÍHÁÙÙÁÕ¦HH | V^]ã&æ; LĚÌF | ÈÉÍÏ |
IÈF È€€ÎH | >c]bh6ci bXUfm7cbX]h]cbg | | R[ãjoÁŠæà∧ | ÝÃŽÐajá | ŸÆXEBjá | ZÁŽEAjá | ÝÁÜ[dŽŽËdĐæåá | ŸÁÜ[dÈŽËdĐæåá | ZÁÜ[dŠŽË-d6Dæåá | |---|------------|-------------------------------|--|-------------------------------|-----------------------------|-----------------------|-------------------------------| | F | ÞĠ | Ü^æ &a {}} | Ü^æ &a {}} | Ü^æ & æ [} | Ü^æ \$ æ []} | Ü^æ &a {}} | Ü^æ & æ [} | | G | ÞF | Ü^æ \$a {}} | Ü^æ \$ æ [} | Ü^æ & æ [} | Ü^æ \$ æ [} | Ü^æ &a {}} | Ü^æ & æ [} | | Н | ÞFH | Ü^æ & æ [} | Ü^æ & æ (a j } | Ü^æ & æ [} | Ü^æ % æ [} | Ü^æ &a {}} | Ü^æ & æ [} | ## 6 Ug]W@UX'7 UgYg | | ÓŠÔÁÖ^∙&¦ājcā[} | Ôæ e ^*[¦^ | ÝÁÕ¦æçãcî | ŸÁÕ¦æçãcî | ZÁŐ¦æçãcî | R[ã]c | Ú[ã]c | Öã dãa čo^å | OE^æQT^ E E | Ù`¦æ&^QÈÈ | |----|---------------------------------------|--|-----------|-----------|-----------|-------|-------|-------------|--------------------|-----------| | F | Ù^ ÁY ^ | ÖŠ | | | Ë | | G€ | | Н | | | G | Ùdǐ&cĭ¦^ÁYājåÁÝ | Y ŠÝ | | | | | | HH | | | | Н | Ùd šc ¦^ÁY a åÄŸ | Y ŠŸ | | | | | | HH | | | | 1 | YājåÁŠ[æåÁ€ÁOEZQ | Y ŠÝ | | | | | G€ | | | | | ĺ | YājåÁŠ[æåÁH€ÁOEZQ | Þ[}^ | | | | | I€ | | | | | Î | YājāÁŠ[æāÁ ÍÁOZQ | Þ[}^ | | | | | I€ | | | | | Ϊ | YājåÁŠ[æåÁÌ€ÁOEZQ | Þ[}^ | | | | | I€ | | | | | Ì | YājåÁŠ[æåÁJ€ÁOZQ | ΥŠΫ́ | | | | | G€ | | | | | J | YājåÁŠ[æåÁFG€ÁOZQ | Þ[}^ | | | | | I€ | | | | | F€ | YājāÁŠ[æāÁFHÍÁOZQ | Þ[}^ | | | | | I€ | | | | | FF | YajåÁŠ[æåÁFÍ€ÁOEZQ | Þ[}^ | | | | | I€ | | | | | FG | Q .∧ÁY ^ã* @c | UŠF | | | | | G€ | HH | Н | | | FH | Ùdĭ&cĭl^ÁQA^ÁYājåÁÝ | UŠG | | | | | | HH | | | | FI | Ùd`&c`¦^ÁQ&\ÁYā}åÄŸ | UŠH | | | | | | HH | | | | Fĺ | O&^ÁY ∄åÁŠ[æåÆÁOZQ | UŠG | | | | | G€ | | | | | FÎ | O&^ÁY ∄åÁŠ[æåÁH€ÁOEZQ | Þ[}^ | | | | | I€ | | | | | FΪ | O&∧ÁY ∄åÁŠ[æåÁNÍÁOEZQ | Þ[}^ | | | | | I€ | | | | | FÌ | Qa^ÁY ∄åÁŠ[æåÁÌ€ÁOEZQ | Þ[}^ | | | | | I€ | | | | | FJ | Qa^ÁY ∄åÁŠ[æåÁJ€ÁOEZQ | UŠH | | | | | G€ | | | | | G€ | O&^ÁY ðjáÁŠ[æáÁFG€ÁOZQ | Þ[}^ | | | | | I€ | | | | | Œ | O&vÁY ajáÁŠ[æáÁFHÍÁOEZQ | Þ[}^ | | | | | I€ | | | | | Œ | O&^ÁY ðjáÁŠ[æáÁFÍ€ÁOZQ | Þ[}^ | | | | | I€ | | | | | GH | Ù^ãr{ 88,485[æå,444 | ÒŠÝ | ⊞FI | | | | G€ | | | | | G | Ù^ãr{ 88AŠ[æåAŸ | ÒŠŸ | | ⊞FI | | | G€ | | | | | GÍ | Šãç^ÁŠ[æåÆÁŞŠçD | <u>ŠŠ</u> | | | | F | | | | | | Ĝ | Šãç^ÁŠ[æåÁGÁÇŠçD | ÓŠÝ
ÓŠŸ
ŠŠ
ŠŠ
ŠŠ
ŠŠ
ŠŠ | | | | F | | | | | | GÏ | Šãç^ÁŠ[æåÁHÁÇŠçD | <u>ŠŠ</u> | | | | F | | | | | | GÌ | Šãç^ÁŠ[æåÁkÁÇŠçD | ŠŠ | | | | F | | | | | | GJ | Šãç^ÁŠ[æåÁÁÁŠçD | <u>ŠŠ</u> | | | | F | | | | | | H€ | Šãç^ÁŠ[æåÁÁÁÇŠçD | | | | | F | | | | | | HF | Tænnije^}ænje&^AnsijænnijAFAnjsij D | Þ[}^ | | | | F | | | | | | HG | Tænijo^}æ)&^Áð[æniáÁGÁÇŠ(D | Þ[}^ | | | | F | | | | | | HH | Tænjio^}ænje&^AčjeæåAHÁÇŠ(D | Þ[}^ | | | | F | | | | | | H | Tænjio^}ænje&^AčjeæåAiAÇŠ(D | Þ[}^ | | | | F | | | | | | HÍ | Tænjio^}ænje&^AčjeæåAlAÇŠ(D | Þ[}^ | | | | F | | | | | | HÎ | Tænnije^}ænje&^AnsijænnijAnijAnsijE | Þ[}^ | | | | F | | | | | | ΗÏ | Tænnije^}ænje&^AnsijænnijaAiAijasij D | Þ[}^ | | | | F | | | | | | HÌ | Tænfic^}ænj&^Áq̃(ænåÁiÁÇŠ(D | Þ[}^ | | | | F | | | | | 6 Ug]W@ UX'7 UgYg'ff cbhjbi YXŁ | | ÓŠÔÁÖ^•&¦ā[æ[} | Ôæe^*[¦^ | ÝÁŐ¦æçãcî | ŸÁÕ¦æçãĉ | ZÁŐ¦æçãcî | R[ã]c | Ú[ặc | Öã dãa čo^å | Œ^æÇT^ŒÈl | Ù`¦æ&^ Q \} | |-----|---------------------------------|----------|-----------|----------|-----------|-------|------|-------------|-----------|--------------------| | HJ | Tænjie^}ænji&^ÁnjiænjiÁnjÁnjŠ(D | Þ[}^ | | | | F | | | | | | I€ | ÓŠÔÁFÁV¦æ)•ãN}œÁŒ^æÁŠ[æå• | Þ[}^ | | | | | | J | | | | 1 F | ÓŠÔÁFGÁV¦æ)• ã} oÁŒ^æ§s[ææ | Þ[}^ | | | | | | J | | | ## @UX'7ca V]bUh]cbg | | Ö^• &¦āj cā[} | ÙЩ̈́Ι | Ú誰Ù誰 | É | :
Øæ&d: | ÓŒ | Øæ&À | χĎЩ̈́ | Øæ&È | HĎ HÌ | Øæ£À | EĎE | Øæ&È | ĎΨ̈̀ | Øæ£À | ΉÖ | Øæ£À | HĎ ÌÌÌÌ | Øæ£À | ΉÖË | Øæ£È | Ě | Øæ&HH | |----|---------------------------------------|-------|------|-----------|------------|----|------|-------|------|-------|------|-----|------|------|------|----|------|---------|------|-----|------|---|--------| | F | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | | FÈ | G | FĚGÖŠÆÁFY ŠÆÁQZQ | Ÿ^• | Ϋ | ΪŠ | FÈG | G | F | Н | | 1 | F | | | | | | | | | | | | | | Н | FĚCÖŠÆÆY ŠÆÆÓZC | Ÿ^• | | ΪŠ | | G | ÈÎÎ | Н | Ě | ĺ | F | | | | | | | | | | | | | | | FÉGÖŠÁÉÁFY ŠÁLÍÁOEZO | | Ϋ | ΪŠ | | | È€Ï | Н | È€Ï | Î | F | | | | | | | | | | | | | | ĺ | FĚCÖŠÆÆFYŠÂR€ÆOEZO | Ÿ^• | Ϋ | ΰš | | G | Ě | Н | Èîî | Ϊ | F | | | | | | | | | | | | | | Î | FÉGÖŠÁÉÁFY ŠÁJ€ÁOZQ | | | | FÈG | G | | Н | F | ì | F | | | | | | | | | | | | | | Ï | | | | ÖŠ | | G | ΉĬ | | ĤÎÎ | J | F | | | | | | | | | | | | \neg | | ì | FÉGÖŠÆÆFYŠÆFHÍÆ | Ÿ^• | | ÖŠ | | | Ëë | | Ë€Ï | F€ | F | | | | | | | | | | | | | | J | FÈGÖŠÆÆFYŠÆFÍ€Æ0ZQ | Ÿ^• | Ϋ | ΰš | FÈG | G | Ĥîî | Н | Ě | FF | F | | | | | | | | | | | | | | F€ | FÈGÖŠÆÆFYŠÆFÌ€Æ0ZQ | Ÿ^• | Ϋ | ΪŠ | FÈG | G | Ë | Н | | I | Ë | | | | | | | | | | | | | | FF | FÈGÖŠÆÁFYŠÆGF€Á0ZQ | Ÿ^• | Ϋ | ΪŠ | FÈG | G | ĤÎÎ | Н | Η̈́ | ĺ | Ë | | | | | | | | | | | | | | FG | | Ÿ^• | Ϋ | ΪŠ | FÈG | G | ⊞ëë | Н | ËË€Ï | | Ë | | | | | | | | | | | | | | FH | | Ÿ^• | | ΪŠ | | G | Ħ | Н | ĤÎÎ | Ϊ | Ë | | | | | | | | | | | | | | FI | FÈGÖŠÆÁFYŠÆGÏ€Á0ZQ | Ÿ^• | | ΪŠ | | G | | Н | Ë | Ì | Ë | | | | | | | | | | | | | | FÍ | | Ÿ^• | | ΪŠ | | G | Ě | Н | ĤÎÎ | J | Ë | | | | | | | | | | | | | | FÎ | | Ÿ^• | | ΪŠ | | G | Ë€Ï | | Ëë | F€ | Ë | | | | | | | | | | | | | | FΪ | | | | ÖŠ | | G | ÈÎÎ | Н | Ħ | FF | Ħ | | | | | | | | | | | | | | FÌ | €ÈÖŠÁÉÁFYŠÁ€ÁDZQ | | Ϋ | ÖŠ | À | G | F | Н | | 1 | F | | | | | | | | | | | | | | FJ | €ÐÖŠÆÆFY ŠÆHEÆOZQ | | Ϋ | ΪŠ | È | | ÈÎÎ | Н | | ĺ | F | | | | | | | | | | | | | | G€ | €ÈÖŠÁÉÁFYŠÁNÍÁOEZO | | Ϋ | ΪŠ | | G | Ë€Ï | Н | Ë€Ï | Î | F | | | | | | | | | | | | | | Œ | €ÐÖŠÆÆFYŠÂR€ÆOEZQ | | Ϋ | ΪŠ | À | G | Ě | Н | Èîî | Ϊ | F | | | | | | | | | | | | | | Œ | €ÐÖŠÆÆFY ŠÁJ€ÆOEZO | Ÿ^• | Ϋ | ÖŠ | À | G | | Н | F | Ì | F | | | | | | | | | | | | | | GH | | Ÿ^• | | ÖŠ | À | G | Ħ | | Ħîî | J | F | | | | | | | | | | | | | | G | | Ÿ^• | | ÖŠ | À | _ | ĦĦ | | Ë€Ï | | F | | | | | | | | | | | | | | GÍ | | | | ΪŠ | À | _ | ĦÎÎÎ | Н | Ě | FF | F | | | | | | | | | | | | | | GÎ | | | Ϋ | ΪŠ | À | G | Ë | Н | | ļ | Ë | | | | | | | | | | | | | | Ğ | €ÈÖŠÆÆFYŠÆGF€ÁOZQ | _ | | ΪŠ | È | G | ĦÎÎÎ | | | ĺ | Ш | | | | | | | | | | | Ш | | | GÌ | | Ÿ^• | Ϋ | ΪŠ | À | | ĦĦ | | ŒÏ€Ï | Î | Ш | | | | | | | | | | | | | | GJ | | Ÿ^• | Ϋ | ÖŠ | À | G | Ħ | | Ħîî | Ï | Ë | | | | | | | | | | | | | | H€ | | Ÿ^• | Ϋ | ΰŠ | È | G | | Н | Ë | İ | Ë | | | | | | | | | | | | | | HF | | Ÿ^• | Ϋ | ÖŠ | | G | Ě | | Ħîî | | Ë | | | | | | | | | | | | | | HG | | Ÿ^• | | ΰŠ | È | G | È€Ï | | Ëë | | | | | | | | | | | | | | | | HH | | | | <u>ŠĊ</u> | È | G | ÈÎÎ | Н | _ | FF | Ë | | | | | | | | | | | | | | H | FÉGÖŠÆÁFÖŠÆÁFY ŠÆÆÁQEĚ | | | <u>Š</u> | | | ₽ F | FH | | FI | v | FÍ | F | | | | | | | | | | | | | FÉGÖSÁÉÁFÖSÁÁFÁFY SÁÁHEÁÐ | | | <u> </u> | | | ŧ F | FH | | FI | Ě | FΪ | F | | | | | | | | | | | | HĨ | FÈGÖŠÆÁFÖŠÆÆÁFY ŠÆÁ Í ÆÈ | | | ΰŠ | | | | FH | | _ | | FΪ | F | | | | | | | | | | | | ΗÏ | FÈGÖŠÆÆFÖŠÆÆFY ŠæÆÆ | | | ΰŠ | • | | F | FH | _ | | ÈÎÎ | FÌ | F | | | | | | | | | | | | | FÈCOSÁÉÁFOSÁÁÉÁFY ŠÁÁJ€ÁÐ | | | | FÈG | | | | | | F | | | | | | | | | | | | | | | FÈGÖŠÆÆFÖŠÆÆFY ŠÆFŒ | | | | FÈ | FÈGÖŠÆÆFÖŠÆÆFY ŠÆFHÈÈ | | | | FÈ | | | | | | | _ | | | | | | | | | | | | | | FÈGÖŠÆÆFÖŠÆÆFY ŠÆFÍ ÈÈ | | | | FÈ | | | | | | Ě | œ | | | | | | | | | | | | | | FÈGÖŠÆÆFÖŠÆÆFY ŠÆFÌ ÈÈ | | | | FÈG | | | | | | | FÍ | | | | | | | | | | | | | | FÈGÖŠÆÆFÖŠÆÆFY ŠÆGFÈÈ | | | | FÈG | | | | | | | | Ë | | | | | | | | | | | | | FÉGÖSÁÉÁFÖSÁÆÁFY SÁGGÉÉ | Y^• | Ϋ | IJS | FÈG | U⊞ | ‡ F_ | FH | ⊞€ | FI | ⊞€ | FI | Ë | | | | | | | | | | | ## @UX'7ca V]bUhjcbg'fl7cbhjbi YXŁ | & 0, | k / ca vjburjeby i / cbi | <u> j</u> OI | IXL | | | | | | | | | | | | | | | — | — | |-----------------|---------------------------------------|--------------|-----------------|----|------------------|------|----------|----|------|-----|------|------------|------|-----|------|----|------|----------|------| | | | | `JEÉÓŒØæ€q¦ | | | | | | | | | D E | Øæ£È | ĦŎĦ | Øæ£Ĥ | ĎÈ | Øæ&Ĥ | ĎÈ | Zæ&⊞ | | | FÉGÖSÁÉÁFÖSÁÉÁFÝ ŠÁGI ÉÉÉÝ^• | | ÖŠ FĒĞ | | | | | FI | ĤÎÎ | FÌ | Ë | | L_ | | | | | \Box | | | ΙÎ | FÉGÖSÁÉÁFÖSÁÉÁFY ŠÁGÜÉÉTY^• | Ϋ | ÖŠ FĒG | UЩ | ĒΕ | FH | | FI | Ë | FJ | Ë | | | | | | | | | | ΙÏ | FEGÖSÁÉÁFÖSÁÉÁFY ŠÁÁHEIE Y^• | Ϋ | ÖŠ FĖG | | | | | | ∰îî | | | | | | | | | | | | | FIEGÖSÁÉÁFÖSÁÁFÁFY ŠÁHFIII Y^• | | ÖŠ FÈG | | | | | | | | | | | | | | | | | | | FIEGÖSÁÉÁFÖSÁÁFÁFY ŠÁÁHHILLY^• | | ÖŠ FÈG | | | | | | | | | | | | | | | | | | | ŒŒÉEÈÙª• DÆÆÆÈÒÆÆØZŮŸ^• | | ÖŠ FĚG | | | ÒË | | Ė | | | | | | | | | | | | | | ŒÉÉÉÈÙª• DÉÁFÈÉÒÁHEÁÈÈŸ^• | | ÖŠ FĚG | | | | | | | | | | | | | | | | | | | ÇFÉEÉ€ÉSÙå• DÆÆFEEÒÁÍ ÁEÈŸ^• | | ÖŠ FĚG | | | | | | | | | | | | | | | | | | | (FÉCÉ€ÉGÙ å• DÁÉÁFÉEÒ Â €ÁÉÉŸ^• | | ÖŠ FĒG | ÒĤ | Ť | ÒЩ | | | | | | | | | | | | | | | | (FÉCÉ€ÉSÙ å• DÆÁFÉEÒÁJ€ÁÉÈŸ^• | | ÖŠ FĚG | | | ÒË | | | | | | | | | | | | | | | | ŒÉÉÉÈÙª• DÉÆÈÈÒÆG€ÆÉ^• | | ÖŠ FÉG | Ò# | i iii iii ii | | | | | | | | | | | | | | | | | ÇEEEEDÛA* DÆÆEDÆH ÆÆÊ^• | | ÖŠ FÉG | | | | | | | | | | | | | | | | | | | ÇEEEEDÀ DALA EEDA III AIII. · | | ÖŠ FEG | ン出 | iii îi | | тé | | | | | | | | | | | \vdash | | | | (FÉÉÉÉÉ)Ùå• DÉÁFÉÉÓÁFÌ €ÁÉÉ^• | | ÖŠ FEG | ÒÈ | ш- | OIII | ш. | | | | | | | | | | | | | | , . | FREEDA DEA EOAF €ATE^• | | | | | | | | | | | | | | | | | \vdash | | | | | | ÖŠ FÉG | | | | | | | | | | | | | | | | | | • | ÇÊÉ€ÊÙå• DÉÆÈÈÒÁGÍ ÆË^• | | ÖŠ FĒG | | | | | | | | | | | | | | | | | | | ŢŘĚ€ŘŮå• DŘÉÁFŘĚÔÁG €ÁŘĚ^• | | ÖŞ FEG | | | | | | | | | | | | | | | | | | | ÇÊÉÉ€ÈÙå• DÉÁFÈ€ÒÁG
€ÁÈÉ^• | | ÖŠ FĒG | | | ÒË | | | | | | | | | | | | | | | | ŢĔŒŒĠŮå• DÆÆFĒĠÁHŒ€ÆĒŽ^• | | ÖŞ FEG | | _ | 1 | ĦÎÎÎ | | | | | | | | | | | \Box | | | | ÇFÉCÉ€ÉSÙå• DÆÁFÉEÒÁFÍ ÁÐÉ^• | | ÖŞ FEG | | | | | | | | | | | | | | | | | | | ÇFÉCÉ€ÉSÙå•DÁÉÁFÉEÒÁHEÁÐÉÃ^• | | ÖŠ FÉG | | | | | | | | | | | | | | | Ш | | | | ÇEÐ ËEÐÐÚå•DÆÆÆÐÆÆOZOŸ^• | | | | F | | | | | | | | | | | | | | | | | Ç€È!Ë€ÈCÙå•DÆÆFÈ€ÒÆH€ÁOÈÈ ^• | | | | ÈÎÎ | | | | | | | | | | | | | oxdot | | | | ÇEÈJËETEGÙÅ • DÁÉÁFÌECÒÁ Í ÁQTÍTÍŽ ^• | | | | ŒĔ | | | | | | | | | | | | | | | | | ÇEÈJËEÈGÙå•DÁEÁFÈEÒ €ÁQHÌÌË^• | | | | _ | 1 | Èîî | | | | | | | | | | | | | | Ï€ | ÇĒDĒĒOÙå•DÆĀFĒOÁJ€ÁOHĖ?^• | Ϋ | ÖŠ ÈÎ | ÒŒ | | ÒÜ | | | | | | | | | | | | | | | ΪF | ÇED BEBU LA DÁEÁF REÓÁF CEÁRTÍ ^• | Ÿ | | ÒŒ | ΞĔ | ÒŒ | Èîî | | | | | | | | | | | | | | | ŒÈJËŒÈGÙª•DÆÆÆEÒÆH ÆËË | | | | Œ | | | | | | | | | | | | | | | | | ÇEÈJËETECUª DÁÉÁFTECÓÆÍ €ÁTTE ^• | | | | ĦΠÎÎ | | | | | | | | | | | | | | | | | ŒÈ ËŒĈŮª• DÆÆFĒÒÆÌ €ÆËË^• | | | | Ë | | | | | | | | | | | | | | | | | ŒÈ ËŒĈŮª• DÆÆFĒÒÆF€ÆŘŮ^• | | | | <u>⊐</u>
∰ÎÎÎ | | | | | | | | | | | | | | | | | ŒÈJËŒŒÙå• DÆÆFÆÒÆGÉ ÆËŸ^• | | | | Ħij | | | | | | | | | | | | | | | | | ÇEÈJËŒEGÙå• DÆÆFÈEÒÆJ €ÆËŸ^• | | | | Ĭ | | | | | | | | | | | | | | | | | ÇEÈJËŒEGÙå• DÆÁFÈEÒÆJ €ÆËŸ^• | | | ÒË | | ÒЩ | | | | | | | | | | | | | | | | ÇED EEBOUÅ • DÆÆFEOÆHEEÆË"^• | | | | | | <u> </u> | | | | | | | | | | | | | | | ŒÈËŒOÙå• DÆÆÆÒÆFÉ ÁHFÍ ÆËË^• | | | | EE | 1 | _ | | | ÖŠ ÈÎ | | | | ш | | | | | | | | | | | | | | İG | : ==:=;=;: | | ÖŠ FĒG | | | | | | | | | | | | | | | | | | ÌΗ | | | ÖŠ FĒG | | | | | | | | | | | | | | | | | | ÌI | FÉGÖÆÆFĚÆĞH Ÿ^• | | ÖŠ FĒG | | | | | | | | | | | | | | | | | | ÌÍ | FÈGÖÆÆFĚÆÇI Ÿ^• | | ÖŞ FEG | | | | | | | | | | | | | | | | | | ÌÎ | FÉGÖÁÉÁFÉ ÁĞÇÍ Ÿ^• | | ÖŞ FÈG | | | | | | | | | | | | | | | | | | ÌÏ | FÉGÖÆÆÆFÉÆĞÎ Ÿ^• | Υ | ÖŠ FĒG | | | | | | | | | | | | | | | | | | | FIEGÖÁEÁFIĽŠ, ÁEÁFIEÝ (ÁRTÝ^• | | ÖŠ FÉG | HF | FĖ | ļ | | | ÈÉÎH | | | | | | | | | | | | | FÉGÖÆÆFÉ Š(ÆÆFEEY {ÆÉËŸ^• | | ÖŠ FĒG | | | | | | ŒÍI | | | | | | | | | | | | | FÎBO ÂEÂFÎ Š, ÂEÂFÎEY { ÂEΟ^• | | ÖŠ F È G | | | | | | È∃I | | | | | | | | | | | | | FÉGÖÁÉÁFÉ Š ÁÉÁFÉEY (ÁBÉÉÝ^• | | ÖŠ FĒG | HF | FĚ | | | | È€HF | | | | | | | | | | | | | FÉGÖÆÆFÉ Š(ÆÆFEY (ÆÉFÝ^• | | ÖŠ FÈG | | | ì | ÈÉÎH | G | | Н | ÈÉÎH | | | | | | | | | | JH | FÉGÖÆÆFĚŠ(ÆÆÆÈY (ÆËËŸ^• | Ϋ | ÖŠ FĒG | | | | | | | | | | | | | | | | | | JI | FÉGÖÆÆFĚŠ(ÆÆFÈY (ÆÈŤÝ^• | Ϋ | ÖŠ FĒG | | | | | | | | | | | | | | | | | | | FIÈSÖÆÆFIĚ ŠĮ ÆÆÆFIÈEY { ÆÆËŸ^• | | ÖŠ FÈG | | | | | | | | | | | | | | | | | | | FÈSÖÆÆFË Š(ÆÆFEEY {ÆËŸ^• | | ÖŠ FĒG | | | | | | | | | | | | | | | | | | JI | | | | | ш | | | | | - 1 | | | | | | | | | | ## @UX7ca V]bUhjcbgff/cbhjbi YXŁ | | | | | , | *** | | | | | | , |
 | | | | | | | |-----|--------------------------|----------------------|----------|------|------|---------|---|-------|---|--------|------|------|----------|------|----|------|---------------|---------------| | | Ö^• &¦āj cāj} | | J∰Q∰Qæ&q | | | | | | | | ËØæ£ | Øæ&H | D | 268E | ĎË | Øæ&H | ĎЩ | 20 8 H | | Δĺ | FÉGÖÁÉÁFIĽŠ(ÁÉÁFÈEY { | | ÖŠ FĒG | | | | | Œ€ÍI | | iii€HF | | | | | | | | | | JI | FÈCOÁÉÁFÉŠ(ÁÉÁFÈEY { | | ÖŠ FÈG | | | | | Œ€II | | ⊞€I I | | | | | | | | | | JJ | | | ÖŠ FÈG | | | | | ŒHF | | | | | | | | | | | | | FÈCOÁÉÁFÉ Š(ÁÉÁFÉEY { | | ÖŠ FÈG | | | Ì ÈEÎH | | | | ⊞€ÎH | | | | | | | | | | | FÈSÖÆÆFĚŠ(ÆÆFEY { | | ÖŠ FÈG | | | | | È€HF | | Œ€ÍI | | | | | | | | | | | FÉGÖÆÆFÉ Š(ÆÆFEEY (| | ÖŠ FÈG | | | | | | | Œ€II | | | | | | | | | | | FÉGÖÆÆFÉ Š(ÆÆFEEY { | | ÖŠ FĖG | | | | | | | ŒHF | | | | | | | | | | | FÉGÖÁÉÁFÉ Š(ÁÉÁFÉEY { | | ÖŠ FĖG | | | | | ÈÉÎH | Н | | | | | | | | | | | | FÈGÖÆÆFË Š(ÆÆFEEY { | | ÖŠ FÈG | HG F | Έİ | ÍÈEÎH | G | ÈÉÍI | Н | È€HF | | | | | | | | | | | FÈGÖÆÆFE Š(ÆÆÆEY { | | ÖŠ FÈG | HG F | Ť í | ÌÈEÎH | | | Н | ÈE I | | | | | | | | | | | FÈGÖÆÆFE Š(ÆÆÆEY { | | ÖŠ FÈG | | | | | È€HF | Н | ŒÍI | | | | | | | | | | | FÈGÖÆÆFE Š(ÆÆÆEY { | | ÖŠ FÈG | HG F | ĚÌ | ÌÈEÎH | G | | Н | ÈÉÎH | | | | | | | | | | F€J | FÈGÖÁÉÁFÉ Š(ÁÉÁFÈEY { | [Æ Ÿ^• Ÿ | ÖŠ FÈG | HG F | Ě, | JÈEÎH | G | Ë€HF | Н | ÈÉÍI | | | | | | | | | | FF€ | FÈGÖÁÉÁFÉ Š(ÁÉÁFÈEY { | [Æ Ÿ^• Ÿ | ÖŠ FÈG | | | € ÈÉÎ H | G | Ë€II | Н | ÈΞΙ | | | | | | | | | | FFF | FÈGÖÁÉÁFIĽŠ(ÁÉÁFÈEY { | [Æ Ÿ^• Ÿ | ÖŠ FÈG | HG F | ΈF | F È H | G | ËŒίι | Н | È€HF | | | | | | | | | | FFG | FÈGÖÆÆÆÐ Š{ÆÆÆÐEY{ | [Æ Ÿ^• Ÿ | ÖŠ FÈG | HG F | Ή | IÈEÎH | G | ËÊÎH | Н | | | | | | | | | | | | FECOÁÉÁFE Š ÁÉÁFEEY { | | ÖŠ FĒG | | | | | Œ€ÍI | | ŒHF | | | | | | | | | | FFI | 7041AA 4117 | | ÖŠ FĒG | | | | | ŒII | | Œ€II | | | | | | | | | | FFÍ | \ // / V V // / \ | | ÖŠ FĒG | | | | | Ë€HF | | Œ€ÍI | | | | | | | | | | | FÈCOÁÉÁFĚŠ, ÁÉÁFÈEY (| | ÖŠ FĒG | | | ÌÈÉÎH | | | | ⊞€ÎH | | | | | | | | | | FFÏ | FÈGÖÆÆFË Š, ÆÆFEEY { | | ÖŠ FĒG | | | | | È€HF | | Œ€ÍI | | | | | | | \neg | | | | FÉGÖÁÉÁFÉ Š(ÁÉÁFÉEY { | | ÖŠ FĒG | | | | | | | Ë€II | | | | | | | | | | | FÈCOÁÉÁFĚŠ, ÁÉÁFÈEY (| | ÖŠ FĒG | | | | | | | Ë€HF | | | | | | | | | | | FÈCOÁÉÁFÉ Š(ÁÉÁFÉEY (| | ÖŠ FĖG | | | | | ÈÉÎH | | | | | | | | | | | | | FÈGÖÆÆFLE Š. ÆÆFLEY | | ÖŠ FĒG | | | | | ÈΕÍΙ | | È€HF | | | | | | | - | | | | FÉSÖÆÆFÉ Š(ÆÆFEY (| | ÖŠ FĒG | | | ÌÈÉÎH | | | H | È | | | | | | | | | | | FÈGÖÆÆFLÉ Š(ÆÆFLEY (| | ÖŠ FĒG | | | | | È€HF | | ŒÍ I | | | | | | | _ | | | | FÉSÖÆÆFÉ Š(ÆÆFEY (| | ÖŠ FĒG | | | EÉÎ H | | | H | ŒÎH | | | | | | | | | | | FÉGÖÁÉÁFÉ ŠĮ ÁÉÁFEY { | | ÖŠ FĒG | | | | | Ë€HF | | 闰日 | | | | | | | _ | | | | FÉSÖÆÆFÉ Š(ÆÆFEY (| | ÖŠ FĒG | | | | | | H | È | | | | | | | | | | | FÉGÖÁÉÁFÉ ŠĮ ÁÉÁFEY { | | ÖŠ FĒG | | | | | | | ÈEHF | | | | | | | _ | | | | FÉGÖÁÉÁFÉ ŠĮ ÁÉÁFEY { | | ÖŠ FĒG | | | | | ŒÎ H | | | | | | | | | | | | FGJ | \ " // / \ \ / / \ | | ÖŠ FĒG | | | | | Œ(i | | ŒHF | | | | | | | \rightarrow | | | | FÉGÖÁÉÁFÉ Š(ÁÉÁFÉEY { | | ÖŠ FĒG | | | | | Œ(I) | | EEI I | | | | | | | | | | | FÉGÖÁÉÁFÉ Š(ÁÉÁFÉEY { | | ÖŠ FĒG | | | | | ŒHF | | Œ€Í I | | | | | | | - | | | | FÉGÖÆÆFÉ Š(ÆÆÆEY (| | ÖŠ FĒG | | | È È H | | шен | | ŒÎ H | | | | | | | | | | | FÎGÖÁÉÁFÎÉ Š(ÁÉÁFÈEY { | | ÖŠ FĒG | | | | | È€HF | | Œ(I | | | | | | | - | | | | FÉGÖÁÉÁFÉ Š(ÁÉÁFÉEY { | | ÖŠ FEG | | ıt , | | | È 1 | П | | | | | | | | | | | | FIEGÖÁÉÁFIÍ ŠÍ ÁÉÁFIEY (| | | | | | | | | | | | | | | | \dashv | | | | FEGÖRÉAFIÉ Š(ÆÆFEEY { | | ÖŠ FĒG | | | | | È H | | uei F | | | | | | | | | | | FEGÖÁÉÁFIÉ Š(ÁÉÁFIEY { | | | | | | | 国日 | | | | | | | | | - | | | | FEGÖÆÆFE S(ÆÆFEEY { | | ÖŠ FĒG | | | | | | | È I | | | | | | | | | | | FEGÖÆÆFE S(ÆÆFEEY { | | ÖŠ FĒ | | | | | È I | | | | | | | | | | | | | | | ÖŠ FĒG | | | | | | | | | | | | | | _ | | | | FÎBOÄÉÁFÎË Š(ÆÁFÎEY (| | ÖŠ FĒG | | | Ì ÈÉÎH | | | | ÈÉÍH | | | | | | | | | | | FÎGÖÁÉÁFÎÉŠ(ÁÉÁFÎEY | | ÖŠ FĒG | | | | | Ë€HF | | ÈÉ I | | | | | | | | | | | FÉGÖÁÉÁFÉ Š(ÁÉÁFÉEY (| | ÖŠ FĒG | | | | | | | | | | | | | | | | | | FÎGÖÁÉÁFÎĚŠ(ÁÉÁFÌÉY | | ÖŠ FĒG | | | FEIH | | | | È€HF | | | | | | | | | | | FÈGÖÆÆFË Š(ÆÆFEY (| | ÖŠ FĒG | | | | | Œ€Î H | | The P | | | | | | | | | | | FÈGÖÁÉÁFÉ ŠĮ ÁÉÁFÈEY { | | ÖŠ FĒG | | Ě | | | | | ŒHF | | | | | | | | | | | FÈGÖÁÉÁFÉ ŠĮ ÁÉÁFÈEY { | | ÖŠ FĒG | | Ě | | | Œ€II | | | | | | | | | | | | FΙĮ | | | ÖŞ FEG | | Ę į | | | ŒHF | | | | | | | | | | | | FIÌ | FÉGÖÁÉÁFÉ Š(ÁÉÁFÉEY { | [Α ΕΕΥ^• Ϋ | ÖŠ FĒG | HI F | Œ | ÌÈÉÎH | G | | Н | ŒÎH | | | | | | | | | ## @UX'7ca V]bUhjcbg'fl7cbhjbi YXŁ | W UX 7 Ca V DUI C DY IF | CUIJUI | IAL | | |--------------------------------|---------|----------------------------|---| | Ö^• &¦āj cāj} | ù誰ú誰 | Ù ₩ Ó ₩ Øæ&q | $\dot{\dot{c}}$ | | FIJ FÉGÖÆÆFÉŠ(ÆÆÆÉY{ÆÉ | Ÿ^• Ÿ | ÖŠ FÈG | HI FÉ JÉHGÉHFHÉÉI | | FÍ€ FÉGÖÆÆFÉŠ(ÆÆÆEY { ÆÊ | Ÿ^• Ÿ | | HI FÉ F€ BÉ H G BE I H BÉBI | | FÍF FÉSÖÆÆÆÉŠ(ÆÆÆEY { ÆÆ | | | HI FÉ FF E H G E I H EEF | | FÍG FÉGÖÁÉÁFÉ Š(ÁÉÁFÉEY { ÁBÉ | | | | | FÍH FÉSÖÁÉÁFÉ Š(ÆÁFÉEY { ÁBÉ | | ÖŠ FĒG | | | FÍI FÉGÖÆÆÆÉ Š(ÆÆÆEY {Æ | | ÖŠ FĒG | | | FÍÍ FÉGÖÆÆÆËŠ(ÆÆÆEY { ÆË | | ÖŠ FĒG | | | FÍÍ FÉGÖÆÆÆËŠ(ÆÆÆEY { ÆË | | | | | | | | | | FÍÏ FÈGÖÆÆÆËŠ(ÆÆÆEY (Æ | | ÖŠ FĒG | | | FÍÌ FÈGÖÆÆÆËŠ(ÆÆÆEY(Æ | | OS FEG | HÍ FĚ F€ BÌ H G BÈI I H BÈI | | FÍJ FÉGÖÆÆÆÉŠ(ÆÆÆÆY{Æ | | | HÍ FẾ FF BÊ H G BEÚ H H BEHF | | F΀ FÊSÖÆÆÆÆŠ; ÆÆÆÆEY { ÆÆ | | | | | FÎF FÊSÖÆÆÆÊŠ(ÆÆÆÆE){ÆÊ | | ÖŠ FÈG | | | FÎG FÊGÖÁÉÁFÉŠ Š ÁÉÁFÈEY { ÁBÉ | | ÖŠ FĖG | HÍ FÉ Î ÈÉ H G ÈÉC H ÈÉC | | FÎH FÊGÖÆÆÆÊ Š(ÆÆÆÊY (ÆÊ | Ÿ^• Ÿ | ÖŠ FÈG | HÍ FĚ Ï È H G È H H È | | FÎ∣ FÊGÖÆÆFÊĞ Š{ÆÆÆÊ€Y {ÆÊ | Ϋ́^• Ϋ́ | | HÍ FĚ Ì ÈÉ H G H ÈÉ H | | FÎÍ FÈGÖÆÆÆFĚŠ(ÆÆÆFÈEY{ÆÈ | | ÖŠ FĒG | | | FÎÎ FÊSÖÆÆÆËŠ(ÆÆÆEY { ÆÊ | | | HÍ FÉ F€ É H G É H H É | | FÎ FÊSÖÆÆFÊ Š(ÆÆFÈEY { ÆÊ | | | HÍ FẾ FF EÝ H G EÝ I H EEF | | FÎÌ FÈSÖÆÆÆËŠ(ÆÆÆÈEY{ÆË | | | | | FÎJ FÊSÖÁÉÁFĚŠ ÁÉÁFÈEY { ÁBÉ | | ÖŠ FĒG | | | FÏ € FÈSÖÆÆÆË Š(ÆÆÆEY {ÆË | | | | | FI F FESÖÆÆFE S ÆÆFEY (AEE | | ÖŠ FĒG | | | | | ÖŠ FĒG | | | FÏG FÈGÖÆÆÆĚŠ(ÆÆÆEY (Æ | | | HÎ FĚ Ì BÊH G H BÊH | | FÏH FÈSÖÆÆÆËŠ(ÆÆÆEY {ÆË | | ÖŞ FEG | | | FÏ FÈSÖÆÆÆĚŠ(ÆÆÆÈEY { ÆÊ | Y^• Y | | HÍ FÉ F€ BÍH G BÉU H BEU | | FÏÍ FÌESÖÆÆFË Š(ÆÆFEEY {Æ | | | | | FÏÎ FÊGÖÆÆÆÊŠ; ÆÆÆÆÊY { ÆÊ | Ÿ^• Ÿ | | HÍ FÉ I ÉÍH GÉÍH H | | FÏÏ FÊGÖÆÆÆËŠ(ÆÆÆEY {Æ | | ÖŠ FĖG | HÍ FÉ I É HGEÍ HHEEF | | FÜ FÉGÖÆÆFÉ Š ÆÆÆÆY & Æ | | ÖŠ FÈG | HÍFÉ Í BÉHGEU HEEU | | FÏJ FÈGÖÆÆÆËŠ(ÆÆÆEY{ÆË | Ÿ^• Ÿ | ÖŠ FÈG | HÍ FĚ Ï È H G È H H È | | FÌ€ FÈSÖÆÆFËŠ(ÆÆÆEY{ÆË | Ÿ^• Ÿ | ÖŠ FÈG | | | FÌF FÈSÖÆÆÆËŠ(ÆÆÆEY{ÆË | | ÖŠ FĒG | | | FÌG FÈSÖÆÆFËŠ(ÆÆFÈEY { ÆË | | | HÍ FÉ F€ É HG É H HÉ | | FÌH FÉGÖÁÉÁFÉ Š(ÁÉÁFÉEY (ÁÉ | | | HÍ FĚ FF ÉÍ H G ÉÍ I H ÉÉFF | | FÌ FÈSÖÆÆFË Š(ÆÆFÈEY { Æ | | ÖŠ FĒG | | | FÌÍ FÌCSÖÆÆÆËŠ(ÆÆÆEEY {Æ | | | HI FÉ Í É H G É I H ÉHF | | FÌ Î FÈSÖÆÆÆË Š(ÆÆÆEY {Æ | | ÖŠ FE | | | FÌÏ FEGÖÆÆFË Š(ÆÆFEY (Æ | | | | | | | | | | FÌÌ FÈSÖÆÆÆËŠ(ÆÆÆÈCY (ÆË | | | | | FÌ J FÈGÖÆÆÆË Š(ÆÆÆEY (Æ | | | HI FĚ J È H G È H H È I | | FJ€ FÈSÖÆÆÆĚŠ(ÆÆÆEY (Æ | | | HI FÉ F€ BÉ H G BÉII H BÉI | | FJF FEGÖÆÆÆËŠ(ÆÆÆEY { ÆË | | | HI FÉ FF BÉ H G BÉIL H BEHF | | FJG FESÖÆÆFEŠ(ÆÆFEY (Æ | | | HI FÉ I BÍH G BÍH H
 | FJH FECOÁÉÁFÉ Š ÁEÁFEEY (ÁEÉ | | | HI FÉ Í BÍHGEÐ HEÐ | | FJI FÉSÖÁEÁFÉ Š ÁEÁFEEY (ÁBÉ | | | HI FE I FE H G EEIH H EEIH | | FJÍ FÉGÖÆÆÆËŠ(ÆÆÆEY {Æ | | | HI FE I E H G EEF H EE I | | FJÎ FÊGÖÆÆÆËŠ(ÆÆÆEY{ÆË | | | HÏ FĚ Ì EÍHG HEÉH | | FJÏ FÉGÖÆÆÆÉŠ(ÆÆÆEEY {Æ | | | HI FE J E H G EHF H EEI | | FJ) FESÖÆÆÆËŠ(ÆÆÆEY{ÆË | | | HÏ FĔ F€ Œ H G Œ I H Œ I | | FJJ FECOÁÉÁFÉ Š ÁEÁFEY { ÁR | | | HI FÉ FF É H G É I H ÉÉFF | | GEE FÉSÖÆÆFÉ Š(ÆÆFEY (Æ | | | Hì FĚ I È HG È HH | | OCC LOOPLING OF PLANES ARE | • Т | US FED | | ## @UX'7ca V]bUh]cbg'f/7cbh]bi YXŁ | <u> </u> | <i>y y</i> | | | | | | | | | | | | | |---------------------------|-------------------|-----------|----|----------|---|------|---|-------|--|--------|------|-------------------|-------| | Ö^• &¦āj cāj} | ù誰ú誰ù | ŒÓŒØæ4¦ÓŒ | | | | | | | | ÌÈØæ&È | EĎ È | Ze stii õi | ÈØæ€⊞ | | GEF FIESÖÆÆÆFEY | | ÖŠ FĒG HÌ | FĚ | ÍÈÉÍH | | ÈÉΙ | | | | | | | | | GEG FÉSÖÆÆFĚ Š(ÆÆFÈEY | | ÖŠ FĖG HÌ | FĚ | | | 闺! | | È I | | | | | | | GEH FIESÖÆÆFE Š(ÆÆFEEY | | ÖŠ FĖG HÌ | ΓĚ | | | È€HF | | | | | | | | | GE FÉSÖÆÆFÉ Š(ÆÆFEY | | ÖŠ FĒG HÌ | | ÈĤ | | | | ÈÉÎH | | | | | | | GÉ FÉGÖÆÆFÉ Š(ÆÆFEY | { Æ ₩Ÿ^• Ÿ | ÖŠ FĖG HÌ | FĚ | JÈÉH | | | | | | | | | | | GEÎ FÎBO ÂBÂFÎ Š(ÂBÂFÎEY | | ÖŠ FĖG HÌ | | F€ ÈÉÎ H | | Œ€II | Н | È I | | | | | | | GEÏ FÎTSÖÆÆFTĚ Š(ÆÆFTÈEY | | ÖŠ FĒG HÌ | | | | ËEÍI | | È€HF | | | | | | | GE FÉSÖÆÆFE Š ÆÆFEY | | ÖŠ FĒG HÌ | FĚ | | | ŒÎH | | | | | | | | | G€J FŘESÖÆÆÆŘ Š(ÆÆÆŘEY | | ÖŠ FĒG HÌ | FĚ | Í ÈÉÎ H | | Œ€ÍI | | | | | | | | | GF€ FÉSÖÆÆÆĚ Š(ÆÆÆÈEY | | ÖŠ FĒG HÌ | FĚ | | | Ë€II | | EE I | | | | | | | GFF FÉSÖÆÆFÉ Š(ÆÆFEY | | ÖŠ FĒG HÌ | ΓĚ | | | Ë€HF | | | | | | | | | GFG FÉSÖÆÆFĚ Š(ÆÆFÈEY | | | FĚ | | _ | | | Œ€ÎH | | | | | | | GFH FÉGÖÆÆÆÉ Š(ÆÆÆEY | | ÖŠ FĖG HÌ | FĚ | JÈ⊞Ĥ | | | | Œ€ÍI | | | | | | | GFI FÉSÖÆÆÆË Š(ÆÆÆEEY | | | FĚ | F€ Ħ H | G | 闺! | Н | EE I | | | | | | | GFÍ FÉGÖÆÆÆË Š(ÆÆÆEY | | ÖŠ FĖG HÌ | | FF ȀΠH | G | ÈÉΙ | Н | Ë€HF | | | | | | | GFÎ FÎBOÖAÊAFÎ Š AÊAFÎEY | | ÖŠ FĒG HJ | | ÈÉÎ H | G | ÈÉÎH | Н | | | | | | | | GFÏ FÉSÖÆÆFÉ Š(ÆÆFEY | | ÖŠ FĒG HJ | ΓĚ | | | ÈÉÍI | | È€HF | | | | | | | GFÌ FÈSÖÆÆÆË Š(ÆÆÆEY | | ÖŠ FĒG HJ | ΓĚ | ÎÈBĤ | G | 闺! | Н | È I | | | | | | | GFJ FÉGÖÆÆÆĚ Š(ÆÆÆÈEY | { Æ Ÿ^• Ÿ | ÖŠ FĒG HJ | ΓĚ | ÏÈÉÎH | | È€HF | Н | ÈÉÍ I | | | | | | | GG€ FÉSÖÆÆÆĚ Š(ÆÆÆÈEY | | ÖŠ FĒG HJ | ΓĚ | ÈĤ | | | | ÈÉÎH | | | | | | | GGF FÉGÖÆÆFÉ Š(ÆÆFEY | | ÖŠ FĒG HJ | | JÈ⊞Ĥ | G | | | | | | | | | | GGG FÉSÖÆÆFÉ Š(ÆÆFEY | | ÖŠ FĒG HJ | | | | Ë€II | | | | | | | | | GGH FÉGÖÆÆÆË Š(ÆÆÆEEY | | ÖŠ FĒG HJ | | | | Œ€ÍI | | È€HF | | | | | | | GG FÉGÖÆÆÆĚ Š(ÆÆÆÈEY | | ÖŠ FĒG HJ | | ÈÉÎH | | ËÊÎH | | | | | | | | | GG FÉGÖÆÆÆĚ Š(ÆÆÆÈEY | | ÖŠ FĒG HJ | FĚ | ÍÈÉH | | Œ€ÍI | | | | | | | | | GG FÉSÖÆÆÆĚ Š(ÆÆÆÈEY | { ÀE Ÿ^• Ÿ | ÖŠ FĒG HJ | FĚ | ÎBÉÎH | G | Œ€II | Н | IIE I | | | | | | | GG FESÖÆÆFE Š(ÆÆFEY | | ÖŠ FĒG HJ | | ΪŒĤ | | Ë€HF | | | | | | | | | GG FESÖÆÆFE Š(ÆÆFEY | | ÖŠ FĒG HJ | | Ì ÈÉÎ H | | | | ⊞€ÎH | | | | | | | GGJ FÉSÖÆÆFÉ Š(ÆÆFEY | | ÖŠ FĒG HJ | FĚ | JÈÉH | | È€HF | | | | | | | | | GH€ FÉSÖÆÆFĚŠ(ÆÆFEY | | ÖŠ FĒG HJ | | | | | | IIE I | | | | | | | GHF FIÈSÖÆÆFIĚ Š(ÆÆFIÈEY | { Æ ₩Ÿ^• Ÿ | ÖŠ FÉG HJ | FĚ | FF ȀΠH | G | ÈΕÍΙ | Н | ⊞€HF | | | | | | ## 9bj YcdY'>c]bhFYUMjcbg | | R[ã]c | | ÝÆjaá | ŠÔ | ŸÆjàá | ŠÔ | Z <i>Ä</i> Žjàá | ŠÔ | TÝÆjäËcá | ŠÔ | TŸÆŽàË-cá | ŠÔ | TZÁÃÇàËcá | ŠÔ | |---|----------------|------------|--------------|----|----------------|----|-----------------|----|------------|-----|-----------|-----|-----------|----| | F | ÞĞ | | FG CHÌFÌ | Н | ÌŒŒIJÌ | Œ | GGJI ËI | Н | ËHÆÎ | HF | HÌÈFÍ | НН | FIÏIÈÉÎH | FJ | | G | | | ËFGHÎÈÌG | ĞÏ | ÊHFĔĞ | FG | FÎÎÈEHÏ | HF | ËFÏHÈHG | HÌ | ËGĞIÈHFÌ | 1 F | ËFIÏÏÈÎ | FF | | Н | ÞF | { æ¢ | FH€ÎÈGH | FΪ | Ï₩Œ€J | Ì | GH΀ÈÏJ | Ιĺ | HÐÍÍÐ⊟ | Ιĺ | ÉÉÉÈ | FJ | FÍ F€È JÌ | GÍ | | 1 | | { a | ËHEI ÈGHÌ | ď | ËHFÈJF | HG | FÏÎĒÏI | Ф | FÍGÈÌIÏ | Œ | ËÖÏÍÈE€F | ΙH | ËFÍFÍĒÌÍ | FΪ | | ĺ | ÞFH | { æ¢ | HGJ ÈHGÌ | FÌ | FĠÍÈ | Œ | GGHHÈG€ | Н | ÎÍFĒÏÏ | FJI | lÎFIÈ€ÍÎ | Н | FG€ÈÎÎ | H€ | | Î | | { a | ËHĤÈ€H | F€ | ËĠÌĚÎΗ | FI | FIFÈ€JG | Ĝ | ÉÍ HÎ ÈH€G | FΪG | JHÈGJ | Ĝ | ËFG∣È€Ï | Î | | Ï | V[œ ∳ K | { æ¢ | GÍÍÌÈH€Î | FÌ | GHIFÈ Œ | Œ | ÎÏĠĦĠ | ΤH | | | | | | | | Ì | | { a | ËGÍ Í Ì ÈHEÏ | F€ | ËGHJ FÈ CG | FI | FĤIĒÏJ | ÎÏ | | | | | | | ## 9bj YcdY5=G7 % h fl *\$!% L @F: 8 GhYY 7cXY7\ YWg | | T^{ à^¦ | Ù@ ∄ ^ | Ô[å^ÁÔ@^&\ | ŠĮ&އjá | ŠÔ | Ù@ælÁÔ@^&\ | ğ iii iii j | Èj@aLÚÈÈ | (®EÚÈÈ | ġ@aer##;@aer####:Ò~}_ | |-----|---------|---------------|-------------|--------|----|------------|-------------|------------|--------|--------------------------------------| | F | TG | ÚŒÓ HĚ | ĒFÌ | € | ΙÍ | ÈÍΗ | (€ 10 | 3ÎIIJ∰ | ïìïí€ | ÍJÍ HIIIÍJÍ HIIIIIÞFÉ | | G | TFG | ÚŒÓ HĚ | ĚJÎ | € | HJ | ÈΙÍ | € È | 聞いり開 | ÏÌÏÍ€ | ÏJÍH III JÍH IIII PFËà | | Н | ΤÏ | ÚŒÓ HĚ | ĚÌ€ | € | Н | ÈΙÍ | €E | ₿IJĦ | ïìïí€ | I JI HUUL JI HUUUUF FILEA | | - 1 | TF | ÔHÝÍ | ÈÎG | ΗĖίî | ΙÍ | ÈÎÏ | ÎH⊞≌Iŧ | €HÏ F€ÈÈÈÈ | ΙΪÎĠ | JÌFÈGÈÈÈ FĒFÀ | ## 9bj YcdY5=G7 '% h fl *\$!% L '@F: 8 'GhYY'7cXY7\ YWg 'fl cbh]bi YXL | | T^{ à^¦ | Ù@ ≱ ^ | Ô[å^ÁÔ@^&\ | Š[8Ž[já | ŠÔ | Ù@ælÁÔ@^&\ | | |----|---------|---------------------|-------------|---------|-----|------------|---| | ĺ | TFF | ÔHÝÍ | ÈÍF | Η̈́ḖÍÎ | ΙÍ | ÈÎÍ | ÎHEE HÎFFEE IIÎ GÎ JÎFEGE F€I EEPFE à | | Î | ΤÎ | ÔHÝÍ | ÈΗ | ΗĖίî | Н | È΀ | ÎHEE IÎH F€E IÏÎGÎ JÎFÊGÊ F€I EEPFË | | Ϊ | TÚF | ÚŒÓ′GÈ€ | ÈÉÍF | ΙÌ | FÎ | ÈEHÍ | | | Ì | ΤÚΙ | ÚŒÓ′GÈ€ | ĚΘΪ | ΙÌ | FF | ÈEHÍ | | | J | ΤÚΗ | ÚŒÓ′GÈ€ | ÈCHF | ΙÌ | ĺ | ÈEGF | | | F€ | ΤÚΪ | ÚŒÓ′GÈ€ | ÈHF | ΙÌ | F€ | ÈEGÌ | | | FF | ΤÚJ | ÚŒÓ′GÈ€ | ÈGÌ | ΙÌ | F€ | ÈEGG | | | FG | TÚG | ÚŒÓ′GÈE | ÈGÍ | ΙÌ | ĺ | ÈEHG | | | FH | ΤÚÌ | ÚŒÓ GÈE | ÈGH | ΙÌ | F€ | ÈEGÎ | | | FI | ΤÚÍ | ÚŒÓ′GÈE | ÈGFG | ΙÌ | FÎ | ÈEHG | | | FÍ | ΤÚÎ | ÚŒÓ GÈE | ÈGF€ | ΙÌ | FÍ | ÈEGH | j Geîî⊞HGFH€ FÌÏF⊞HÌÏF⊞HHPFEFà | | FÎ | T FÍ | Î LĂ Ä¢€ÈHÏ ÄÄÚ∣ÈÈÈ | ÈJΗ | Œ | Ϊ | ÈFF | GF ^ HÏ H FHHHT Ï JGG Î €€TÎ HÎ L €GHHHHPFE B | | FΪ | TF€ | Î LÊ Ä¢€LHÎ ÄÁÚ LHE | ÈJF | Œ | G | Æ€J | GF ^ Î H FHIIII I JGG Î €€ÎÎ ÎÎÎ I HFIIIIII PFÎFÂ | | FÌ | Τĺ | Î LE A¢€EHÎ AKU EE | ĖÌÌ | Œ | FG | ÈFÎ | GF ^ I GHÍ FHIIII Ï JGG Î €€ÎÎ ÎÎÎÎÎ Œ∏ÎÎÎPFEFA | | FJ | TH | ŠG¢G¢H | Èίί | € | Н | ÈH | € : IJŒJÎ ŒJHJŒĬÎÏĒŒFÌŒŒFPŒË | | G€ | TFH | ŠG¢G¢H | ÈίΗ | € | FI | ÈHH | € : IHŒJÎ ŒGHUŒÍÍÏËŒFÌŒŒFPŒË | | GF | ΤÌ | ŠG¢G¢H | ÈHH | € | J | È€HG | € : H ŒJ ŒJ ŒJ ŒF PŒ | | GG | TG€ | ÚŒÓ GÈE | ÈŒ | G | ΙÌ | HL€ | ÏG Î FI JFEEHGFH€ FÎ Î FEEEÎ Î Î FEEEÎ | | GH | TFJ | ÚŒÓ GÈE | ÈFÎ | G | I G | Ì€JÌ | ÏG GFIJF⊞HGFH€FÌÏF⊞HÌÏF⊞HPFEFà | | G | PF | ÚQÚÒ´HĚ | ÈΕΓÍ | ΪG | F€G | ÈÏI | ÎÎ | | GÍ | TI | Š@¢@¢H | ÈΕΓΙ | € | FH | È€HÎ | € ^ IFŒJÎ ŒGHUŒÍ Í ÏĒĒĒFÌŒĒF PŒĒ | | Ĝ | PH | ÚQÚÒ´HĚ | ÈFH | ΪG | FÌΪ | ÈΕΪΗ | G ljj€jj∰iji(€iliH∰iliH∰bb££a | | GÏ | PG | ÚQÚÒ´HĚ | ÈFH | ΪG | FIH | ÈÉÎÏ | G | | Ġ | TGF | ÚŒÓ GÈE | ÈFG | G | HÏ | ŒIJ | ÏG FHFI JF⊞ HGFH€ FÌ ÏF⊞ÈÌ ÏF⊞ÈÈà | | GJ | TJ | ŠŒ¢ŒH | ÈF€G | € | G | ÈEHÍ | € îÎŒĴŒĴŒĴŒĴPŒĴ | | H€ | TFI | ŠG¢G¢H | Ì€JÎ | € | Ï | ÈEHÎ | € ^ HÎ ŒJÎ ŒJHJŒĬÎÏËŒFÌŒŒFPŒË | | HF | TŒ | ŠÎÊÄÝIÈ ÎÄÝÈ | | € | Œ | È€GÎ | IG: I (FFI #) I (Î F G Î I # FG # PŒ | | HG | TGH | ŠÎ Ê ÄYI È Î ÄY È | | € | GÎ | ÈEGÍ | € ^ J ÍFFÏ ŒÌÏÍÎF GÎI Œ FG Œ PŒ | | HH | TG | ŠÎ Ê ÄYI È Î ÄY È | ÈEHÌ | HÈH | HH | È€G | € ^ FI Í FFI ŒÌ Ï Í Î F G Î I ŒË F G ŒË PŒË | ## 9bj YcdYBcbY7c`X': cfa YX'GhYY'7cXY7\ YWg | T^{à^¦ Ù@a}^ | Ô[å^ÁÔ@^&\ | ŠĮ &ŽĄ áŠÔÙ@ ædĖŠį &ŽAHĖŠaŠÔÚ) Žiàá V}ŽiaáT}^^ŽIĖĖT}::ŽIĖĖ | Ôà Ô{ ^^ Ô{ :: | Ò~} | |--------------|-------------|--|----------------|-----| | | | ÞÍ ÁÖæræÁt ÁÚlá cÁÍÉ | | | # APPENDIX D ADDITIONAL CALCUATIONS Analysis date: 7/28/2021 ### **BOLT TOOL 1.5.2** | Project Data | | | | | | | |--------------------|-----------------|--|--|--|--|--| | Job Code: | 189047 | | | | | | | Carrier Site ID: | BOBDL00045A | | | | | | | Carrier Site Name: | CT-CCI-T-806372 | | | | | | | Code | | | | | | | |----------------------|-----------|--|--|--|--|--| | Design Standard: | TIA-222-H | | | | | | | Slip Check: | No | | | | | | | Pretension Standard: | AISC | | | | | | | Bolt Properties | | | | | | | | |-------------------------|-------|-----|--|--|--|--|--| | Connection Type: | Bolt | | | | | | | | Diameter: | 0.625 | in | | | | | | | Grade: | A325 | | | | | | | | Yield Strength (Fy): | 92 | ksi | | | | | | | Ultimate Strength (Fu): | 120 | ksi | | | | | | | Number of Bolts: | 4 | | | | | | | | Threads Included: | Yes | | | | | | | | Double Shear: | No | | | | | | | | Connection Pipe Size: | - | in | | | | | | | Connection Description | | |------------------------|--| | Standoff to Collar | | | Bolt Check* | | | | | | | | | |--------------------------------------|---------|------|--|--|--|--|--|--| | Tensile Capacity (φT _n): | 20340.1 | lbs | | | | | | | | Shear Capacity (φV _n): | 13805.8 | lbs | | | | | | | | Tension Force (T _u): | 5073.7 | lbs | | | | | | | | Shear Force (V _u): | 414.5 | lbs | | | | | | | | Tension Usage: | 23.8% | | | | | | | | | Shear Usage: | 2.9% | | | | | | | | | Interaction: | 23.8% | Pass | | | | | | | | Controlling Member: | M2 | | | | | | | | | Controlling LC: | 42 | | | | | | | | ^{*}Rating per TIA-222-H Section 15.5 # APPENDIX E SUPPLEMENTAL DRAWINGS | ITEM | PART NO. | DESCRIPTION | QTY. | WEIGHT | NOTE NO. | | 1 MTC3006SB | STEEL BUNDLE FOR SNUB NOSE PLATFORM | 1 402.64 LBS | | 2 MCPK8CSB | PIPE STEEL BUNDLE FOR MC-PK8-C | 1 464.27 LBS | | 3 MCPK8CHWK | HARDWARE KIT FOR MC-PK8-C | 1 543.22 LBS | | | REVISIONS | | | | | | | | |------|------------|---------------------------------------|-----|----------|--|--|--|--| | REV. | ECN | DESCRIPTION | BY | DATE | | | | | | Α | | Initial release | DRR | 12/27/11 | | | | | | В | 8000005979 | CHANGE NOSE CORNER BRKT, ADD GUB-4240 | MSM | 11/25/14 | | | | | | С | 8000007579 | NEW RINGMOUNT WELDMENT DESIGN | RJC | 04/07/15 | | | | | # FOR BOM ENTRY ONLY NOTES: 1. CUSTOMER ASSEMBLY SHEETS 2-3. | property of ANDREW CORPORATION and
may be used
only for the specific purpose authorized in writing by
Andrew Corporation. | | MSM | 1 of 3 | MC-PK8-C | |---|--------------|-----------|-------------|----------------------------------| | ALL DIMENSIONS ARE IN INCHES U.O.S. | · | | NTS | LOW PROFILE PLATFORM KIT 8' FACE | | .X = ± .12 ANGLES .XX = ± .06 FRACTIONS | ±2°
±1/32 | 10/18/11 | A36, A500 | ASSEMBLY DRAWING | | .XXX= ± .03 REMOVE BURRS AND BREAK EDGES .005 | 11/02 | REVISION: | GALV A123 | WESTCHESTER, IL, 60154 | | DO NOT SCALE THIS PRIN | NT | C | 1410.14 LBS | ANDREW @ U.S.A. | | | | | | | ### NOTES: - 1. ALL METRIC DIMENSIONS ARE IN BRACKETS. 2. WILL FIT MONOPOLES 15"-38" OD. | | ITEM | PART NO. | DESCRIPTION | QTY. | WEIGHT | |----|------|-------------|--|------|------------| | >[| 1 | MC-RM1550-3 | 12" - 50" OD RINGMOUNT | 1 | 230.42 LBS | | | 2 | MTC300601 | Low Profile Co-Location Platform Snub Nose | 3 | 134.21 LBS | | | 3 | MT195801 | Corner Weldment Snub Nose Handrail | 3 | 27.10 LBS | | | 4 | XA2020.01 | CROSS OVER ANGLE | 9 | 2.65 LBS | | | 5 | GUB-4356 | 1/2" X 3-5/8" X 6" GALV U-BOLT | 18 | 0.82 LBS | | | 6 | GUB-4355 | 1/2" X 3-5/8" X 5" GALV U-BOLT | 12 | 0.71 LBS | | | 7 | GUB-4240 | 1/2" X 2-1/2" X 4" GALV U-BOLT | 48 | 0.56 LBS | | | 8 | GB-04145 | 1/2" X 1-1/2" GALV BOLT KIT | 12 | 0.13 LBS | | | 9 | GWF-04 | 1/2" GALV FLAT WASHER | 24 | 0.03 LBS | | | 10 | GB-0520A | 5/8" X 2" GALV BOLT KIT (A325) | 12 | 0.27 LBS | | | 11 | MT54796 | 3.50" OD X 96" GALV PIPE | 3 | 60.28 LBS | | | 12 | MT-651-96 | Ø 2.375" OD X 96" PIPE | 3 | 29.07 LBS | | Ī | 13 | MT-651 | 2.375" OD x 72" PIPE | 9 | 21.80 LBS | | Ī | 14 | MT19617 | MT196 Pipe Mount Plate | 6 | 2.49 LBS | | | 15 | MT21701 | PIPE MOUNT PLATE | 9 | 7.93 LBS | | These drawings and specifications are the proprietary
property of ANDREW CORPORATION and may be used
only for the specific purpose authorized in writing by
Andrew Corporation. | MSM | 2 of 3 | MC-PK8-C | |--|-------------------|-------------|--------------------------------| | LL DIMENSIONS ARE IN INCHES U.O.S. | онахиах вт:
ТР | NTS | 25" OD Snub Nose MT-196 | | OLERANCES UNLESS OTHERWISE SPECIFIED: .X = \pm .12 ANGLES \pm 2' .XX = \pm .06 FRACTIONS \pm 1/32 | 10/18/11 | A36, A53 | BRANG TYSE
ASSEMBLY DRAWING | | .XXX= ± .03 REMOVE BURRS AND BREAK EDGES .005 | REVISION: | GALV A123 | WESTCHESTER, IL, 60154 | | DO NOT SCALE THIS PRINT | C | 1361.27 LBS | ANDREW & U.S.A. | NTS A36, A53 FNSH GALV A123 1361.27 LBS 10/18/11 С DO NOT SCALE THIS PRINT 25" OD Snub Nose MT-196 WESTCHESTER, IL. 60154 ASSEMBLY DRAWING NOTES: 1. ALL METRIC DIMENSIONS ARE IN BRACKETS. # Exhibit F **Power Density/RF Emissions Report** # RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS Dish Wireless Existing Facility Site ID: BOBDL00045A 806372 266R Center Street Manchester, Connecticut 06040 August 30, 2021 EBI Project Number: 6221004795 | Site Compliance Summary | | | | | | |--|-----------|--|--|--|--| | Compliance Status: | COMPLIANT | | | | | | Site total MPE% of FCC general population allowable limit: | 9.25% | | | | | August 30, 2021 Dish Wireless Emissions Analysis for Site: BOBDL00045A - 806372 EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **266R Center Street** in **Manchester**, **Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits. All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density. All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below. General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area. Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density. Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. Additional details can be found in FCC OET 65. ### **CALCULATIONS** Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 266R Center Street in Manchester, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower. For all calculations, all equipment was calculated using the following assumptions: - 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel. - 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel. - 3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous. - 4) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction. - 5) The antennas used in this modeling are the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector A, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector B, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction. - 6) The antenna mounting height centerline of the proposed antennas is 95 feet above ground level (AGL). - 7) Emissions values for additional carriers were taken from the Connecticut
Siting Council active database. Values in this database are provided by the individual carriers themselves. - 8) All calculations were done with respect to uncontrolled / general population threshold limits. # Dish Wireless Site Inventory and Power Data | Sector: | Α | Sector: | В | Sector: | С | |---------------------|--------------------------|---------------------|--------------------------|---------------------|--------------------------| | Antenna #: | I | Antenna #: | I | Antenna #: | I | | Make / Model: | JMA MX08FRO665-
21 | Make / Model: | JMA MX08FRO665-
21 | Make / Model: | JMA MX08FRO665-
21 | | Frequency Bands: | 600 MHz / 1900
MHz | Frequency Bands: | 600 MHz / 1900
MHz | Frequency Bands: | 600 MHz / 1900
MHz | | Gain: | 17.45 dBd / 22.65
dBd | Gain: | 17.45 dBd / 22.65
dBd | Gain: | 17.45 dBd / 22.65
dBd | | Height (AGL): | 95 feet | Height (AGL): | 95 feet | Height (AGL): | 95 feet | | Channel Count: | 8 | Channel Count: | 8 | Channel Count: | 8 | | Total TX Power (W): | 280 Watts | Total TX Power (W): | 280 Watts | Total TX Power (W): | 280 Watts | | ERP (W): | 3,065.51 | ERP (W): | 3,065.51 | ERP (W): | 3,065.51 | | Antenna A1 MPE %: | 2.00% | Antenna B1 MPE %: | 2.00% | Antenna C1 MPE %: | 2.00% | ### environmental | engineering | due diligence | Site Composite MPE % | | | | | |----------------------------------|-------|--|--|--| | Carrier | MPE % | | | | | Dish Wireless (Max at Sector A): | 2.00% | | | | | Verizon | 5.48% | | | | | Clearwire | 0.17% | | | | | XM Sat Radio | 1.6% | | | | | Site Total MPE % : | 9.25% | | | | | Dish Wireless MPE % Per Sector | | | | | |--------------------------------|-------|--|--|--| | Dish Wireless Sector A Total: | 2.00% | | | | | Dish Wireless Sector B Total: | 2.00% | | | | | Dish Wireless Sector C Total: | 2.00% | | | | | | | | | | | Site Total MPE % : | 9.25% | | | | | Dish Wireless Maximum MPE Power Values (Sector A) | | | | | | | | |--|---------------|-------------------------------|------------------|------------------------------|--------------------|---------------------------|------------------| | Dish Wireless Frequency Band / Technology (Sector A) | #
Channels | Watts ERP
(Per
Channel) | Height
(feet) | Total Power Density (μW/cm²) | Frequency
(MHz) | Allowable MPE
(μW/cm²) | Calculated % MPE | | Dish Wireless 600 MHz n71 | 4 | 223.68 | 95.0 | 4.06 | 600 MHz n71 | 400 | 1.02% | | Dish Wireless 1900 MHz n70 | 4 | 542.70 | 95.0 | 9.85 | 1900 MHz n70 | 1000 | 0.99% | | | | | | | | Total: | 2.00% | [•] NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations. # **Summary** All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions. The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here: | Dish Wireless Sector | Power Density Value (%) | |---|-------------------------| | Sector A: | 2.00% | | Sector B: | 2.00% | | Sector C: | 2.00% | | Dish Wireless Maximum MPE % (Sector A): | 2.00% | | | | | Site Total: | 9.25% | | | | | Site Compliance Status: | COMPLIANT | The anticipated composite MPE value for this site assuming all carriers present is **9.25**% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions. FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government. # Exhibit G # **Letter of Authorization** 4545 E River Rd, Suite 320 West Henrietta, NY 14586 Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com ### **Crown Castle Letter of Authorization** #### CT - CONNECTICUT SITING COUNCIL Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051 **Re:** Tower Share Application Crown Castle telecommunications site at: 266R CENTER STREET, MANCHESTER, CT 06040 CROWN ATLANTIC COMPANY LLC ("Crown Castle") hereby authorizes DISH WIRELESS, LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below: Crown Site ID/Name: 806372/HRT 093 943228 Customer Site ID: BOBDL00045A/CT-CCI-T-806372 Site Address: 266R Center Street, MANCHESTER, CT 06040 By: Date: 8/18/2021 Richard Zajac Site Acquisition Specialist # Exhibit H **Recipient Mailings** ### Instructions - 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.** - 2. Place your label so it does not wrap around the edge of the package. - 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure. - 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box. - 5. Mail your package on the "Ship Date" you selected when creating this label. # Click-N-Ship® Label Record ### **USPS TRACKING #:** 9405 5036 9930 0498 0153 18 543104139 09/08/2021 Trans. #: Print Date: Ship Date: 09/08/2021 09/11/2021 Delivery Date: Priority Mail® Postage: Total: \$7.95 \$7.95 Ref#: DS-806372 From: DEBORAH CHASE NORTHEAST SITE SOLUTIONS 420 MAIN ST STE 1 STURBRIDGE MA 01566-1359 GARY ANDERSON DIRECTOR OF PLANNING AND ZONING-MANCHESTER 494 MAIN ST LINCOLN CENTER 2ND FLOOR MANCHESTER CT 06040-4102 * Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date. ### Instructions - 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.** - 2. Place your label so it does not wrap around the edge of the package. - 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure. - 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box. - 5. Mail your package on the "Ship Date" you selected when creating this label. # Click-N-Ship® Label Record ### **USPS TRACKING #:** 9405 5036 9930 0498 0153 25 543104139 09/08/2021 Trans. #: Print Date: Ship Date: 09/08/2021 09/11/2021 Delivery Date: Priority Mail® Postage: Total: \$7.95 \$7.95 Ref#: DS-806372 From: DEBORAH CHASE NORTHEAST SITE SOLUTIONS 420 MAIN ST STE 1 STURBRIDGE MA 01566-1359 **RICH ZAJAC** **CROWN CASTLE** 4545 E RIVER RD **STE 320** W HENRIETTA NY 14586-9024 * Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date. ### Instructions - 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.** - 2. Place your label so it does not wrap around the edge of the package. - 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure. - 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box. - 5. Mail your package on the "Ship Date" you selected when creating this label. # Click-N-Ship® Label Record ### **USPS TRACKING #:** 9405 5036 9930 0498 0153 32 543104139 09/08/2021 Trans. #: Print Date: Ship Date: 09/08/2021 09/11/2021 Delivery Date: Priority Mail® Postage: \$7.95 \$7.95 Total: Ref#: DS-806372 From: DEBORAH CHASE NORTHEAST SITE SOLUTIONS 420 MAIN ST STE 1 **STURBRIDGE MA 01566-1359** STEVE STEPHANOU DEPUTY GENERAL MANGER 41 CENTER ST MANCHESTER CT 06040-5090 Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date. ### Instructions - 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.** - 2. Place your label so it does not wrap around the edge of the package. - 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure. - 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box. - 5. Mail your package on the "Ship Date" you selected when creating this label. # Click-N-Ship® Label Record ### **USPS TRACKING #:** 9405 5036 9930 0498 8402 17 543170515 09/09/2021 Trans. #: Print Date: Ship Date: 09/09/2021 09/13/2021 Delivery Date: Priority Mail® Postage: Total: \$7.95 \$7.95 Ref#: DS-806372 From: DEBORAH CHASE NORTHEAST SITE SOLUTIONS 420 MAIN ST STE 1 **STURBRIDGE MA 01566-1359** JAY MORAN MAYOR- MANCHESTER 41 CENTER ST MANCHESTER CT
06040-5090 Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date. # 806372 FISKDALE 458 MAIN ST FISKDALE, MA 01518-9998 (800)275-8777 | 20 /00 /2021 | (800)275-8 | | 02:15 PM | |---|----------------------------------|------------------------------------|-------------------| | Droduct | Qty | Unit | Price | | Prepaid Mail
Manchester, (
Weight: 1 lb
Acceptance Da
Thu 09/09
Tracking #: | 1
CT 06040
4.10 oz
ate: | | \$0.00 | | Prepaid Mail
Manchester, Meight: 1 lb
Acceptance D
Thu 09/0
Tracking #:
9405 503 | CT 06040
4.10 oz
ate: | 98 0153 : | \$0.00 | | Prepaid Mail
West Henriet
Weight: O lb
Acceptance D
Thu 09/0
Tracking #:
9405 503 | ta, NY 14
2.00 oz
ate: | | \$0.00
-
25 | | Prepaid Mail
Manchester,
Weight: 1 lk
Acceptance E
Thu 09/0
Tracking #:
9405 503 |) 4.20 oz
Date: | | \$0.00 | | Grand Total: | er one not not one to see one on | a and the one has the state of the | \$0.0 |