

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

October 7, 2021

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application 258 Ridge Road, Madison, CT 06433 Latitude: 41.309250 Longitude: -72.614333 Site# 5800059_Crown_Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 258 Ridge Road in Madison, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 5G MHz antenna and six (6) RRUs, at the 99-foot level of the existing 150-foot monopole tower, one (1) Fiber cables will also be installed. Dish Wireless LLC equipment cabinets will be placed within 7x5 lease area. Included are plans by Infinigy, dated August 23, 2021 Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated May 28, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was approved by the CT Siting Council, Docket No. 363 on October 30, 2008. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to First Selectwoman Peggy Lyons and John DeLaura, Chief Zoning Enforcement Officer for the Town of Madison, as well as the tower owner (Crown Castle) and property owner (Town of Madison)

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

- 1. The proposed modification will not result in an increase in the height of the existing structure. The top of the tower is 150-feet; Dish Wireless LLC proposed antennas will be located at a center line height of 99-feet.
- 2. The proposed modifications will not result in the increase of the site boundary as depicted on the attached site plan.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.

4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total power density of 17.95% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully indicates that the shared use of this facility satisfies these criteria.

A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.

B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this support tower in Madison. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.

C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 99-foot level of the existing 150-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.

D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.

E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing guyed tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Madison.

Sincerely,

Denise Sabo

Denise Sabo

Mobile: 203-435-3640 Fax: 413-521-0558

Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments cc:

Peggy Lyons, First Selectwoman (also property owner) Town of Madison 8 Campus Drive Madison, CT 06443

John DeLaura, Chief Zoning Enforcement Officer Town of Madison 8 Campus Drive Madison, CT 06443

Crown Castle, Tower Owner

Exhibit A

Original Facility Approval

DOCKET NO. 363 – Crown Communications Inc. application }
for a Certificate of Environmental Compatibility and Public Need
for the construction, maintenance and operation of a }
telecommunications facility located at 258 Ridge Road, Madison,
Connecticut.

Council
October 30, 2008

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a telecommunications facility, including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate, either alone or cumulatively with other effects, when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to Crown Communications Inc., hereinafter referred to as the Certificate Holder, for a telecommunications facility at 258 Ridge Road, Madison, Connecticut

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be constructed as a monopole, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of Omnipoint Communications, Inc. and other entities, both public and private, but such tower shall not exceed a height of 150 feet above ground level. The tower and compound shall be moved approximately 50 feet to the north to avoid tree clearing.
- 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be served on the Town of Madison for comment, and all parties and intervenors as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction and shall include:
 - a) a final site plan(s) of site development to include specifications for the tower, tower foundation, antennas, equipment compound, radio equipment, access road, utility line, and landscaping; and
 - b) construction plans for site clearing, grading, landscaping, water drainage, and erosion and sedimentation controls consistent with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, as amended.
- 3. The Certificate Holder shall, prior to the commencement of operation, provide the Council worst-case modeling of the electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of the electromagnetic radio frequency power density be submitted to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.

- 4. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 6. The Certificate Holder shall provide reasonable space on the tower for no compensation for any Town of Madison public safety services (police, fire and medical services), provided such use can be accommodated and is compatible with the structural integrity of the tower.
- 7. Unless otherwise approved by the Council, if the facility authorized herein is not fully constructed and providing wireless services within eighteen months from the date of the mailing of the Council's Findings of Fact, Opinion, and Decision and Order (collectively called "Final Decision"), this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made. The time between the filing and resolution of any appeals of the Council's Final Decision shall not be counted in calculating this deadline.
- 8. Any request for extension of the time period referred to in Condition 7 shall be filed with the Council not later than 60 days prior to the expiration date of this Certificate and shall be served on all parties and intervenors, as listed in the service list, and the Town of Madison. Any proposed modifications to this Decision and Order shall likewise be so served.
- 9. If the facility ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
- 10. The Certificate Holder shall remove any nonfunctioning antenna, and associated antenna mounting equipment, within 60 days of the date the antenna ceased to function.
- 11. In accordance with Section 16-50j-77 of the Regulations of Connecticut State Agencies, the Certificate Holder shall provide the Council with written notice two weeks prior to the commencement of site construction activities. In addition, the Certificate Holder shall provide the Council with written notice of the completion of site construction and the commencement of site operation.

Pursuant to General Statutes § 16-50p, the Council hereby directs that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in the *New Haven Register* and *The Source*.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

Docket No. 363 Decision and Order Page 3

The parties and intervenors to this proceeding are:

Applicant Its Representative

Crown Communications, Inc.

Christopher B. Fisher, Esq.

Cuddy & Feder LLP

445 Hamilton Avenue, 14th Floor

White Plains, NY 10601

<u>Intervenor</u> <u>Its Representative</u>

Omnipoint Communications, Inc.

Julie Kohler, Esq.

Jesse Langer, Esq.

Cohen and Wolf, P.C.

1115 Broad Street

Bridgeport, CT 06604

Exhibit B

Property Card

258 RIDGE RD

Location 258 RIDGE RD MBLU 78/3///

00453700 TOWN OF MADISON Acct# Owner

Assessment \$103,500 Appraisal \$147,900

> **Building Count** 1 PID 4717

Current Value

	Appraisal				
Valuation Year Building Extra Features Outbuildings				Land	Total
2018	\$0	\$0	\$0	\$147,900	\$147,900
		Assessment	:		
Valuation Year	Building	Extra Features	Outbuildings	Land	Total
2018	\$0	\$0	\$0	\$103,500	\$103,500

Parcel Addreses

Additional Addresses		
Address	City, State Zip	Туре
258 RIDGE RD		Primary

Owner of Record

Owner TOWN OF MADISON Sale Price \$100,000 Co-Owner **Book & Page** 660/ 162 Care Of Sale Date 06/16/1995

Instrument

Ownership History

Ownership History				
Owner	Sale Price	Book & Page	Instrument	Sale Date
TOWN OF MADISON	\$100,000	660/ 162	15	06/16/1995

Building Information

Building 1: Section 1

Year Built:

Living Area: 0

Living Area:	0			
Building Attributes				
Field	Description			
Style	Vacant Land			
Model				
Stories:				
Occupancy				
Exterior Wall 1				
Exterior Wall 2				
Roof Structure:				
Roof Cover				
Interior Wall 1				
Interior Wall 2				
Interior FIr 1				
Interior FIr 2				
Heat Fuel				
Heat Type:				
AC Type:				
Total Bedrooms:				
Total Bthrms:				
Total Half Baths:				
Total Xtra Fixtrs:				
Total Rooms:				
Fireplace(s)				
Xtra FPL Open				

Building Photo

(http://images.vgsi.com/photos/MadisonCTPhotos/\01\01\64/24.jpg)

Building Layout

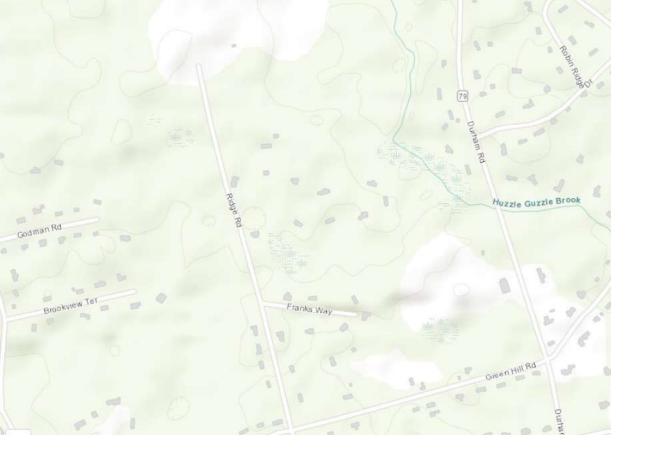
(http://images.vgsi.com/photos/MadisonCTPhotos//Sketches/4717_4717.jp

Building Sub-Areas (sq ft)

No Data for Building Sub-Areas

Extra Features

Extra Features
No Data for Extra Features


Land

Land Use		Land Line Valuation
Use Code	9035	Size (Acres) 3
Description	Municipal Town	
Zone	RU-1	

Outbuildings

0	utb	uil	di	ng	jS

No Data for Outbuildings
(c) 2020 Vision Government Solutions, Inc. All rights reserved.

Exhibit C

Construction Drawings

wireless.

DISH Wireless L.L.C. SITE ID:

BOHVN00007A

DISH Wireless L.L.C. SITE ADDRESS:

258 RIDGE ROAD MADISON, CT 06433

CONNECTICUT CODE COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:

2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS MECHANICAL ELECTRICAL 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS
2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS

	SHEET INDEX
SHEET NO.	SHEET TITLE
T-1	TITLE SHEET
A-1	OVERALL AND ENLARGED SITE PLAN
A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS
A-4	EQUIPMENT DETAILS
A-5	EQUIPMENT DETAILS
A-6	EQUIPMENT DETAILS
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES
E-2	ELECTRICAL DETAILS
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE
G-1	GROUNDING PLANS AND NOTES
G-2	GROUNDING DETAILS
G-3	GROUNDING DETAILS
RF-1	RF CABLE COLOR CODE
GN-1	LEGEND AND ABBREVIATIONS
GN-2	GENERAL NOTES
GN-3	GENERAL NOTES
GN-4	GENERAL NOTES

SCOPE OF WORK

THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIPMENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:

TOWER SCOPE OF WORK:

- INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR)
 INSTALL (1) PROPOSED PLATFORM
 INSTALL PROPOSED JUMPERS

- INSTALL (6) PROPOSED RRUS (2 PER SECTOR)
 INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP)
 INSTALL (1) PROPOSED HYBRID CABLE

- GROUND SCOPE OF WORK:

 INSTALL (1) PROPOSED METAL PLATFORM

 INSTALL (1) PROPOSED ICE BRIDGE

 INSTALL (1) PROPOSED PPC CABINET

 INSTALL (1) PROPOSED EQUIPMENT CABINET

 INSTALL (1) PROPOSED POWER CONDUIT

- PROPOSED TELCO CONDUIT
 PROPOSED TELCO-FIBER BOX INSTALL
- INSTALL (1) PROPOSED GPS UNIT INSTALL (1) PROPOSED SAFETY SWITCH (IF REQUIRED)
- INSTALL (1) PROPOSED METER SOCKET

SITE PHOTO

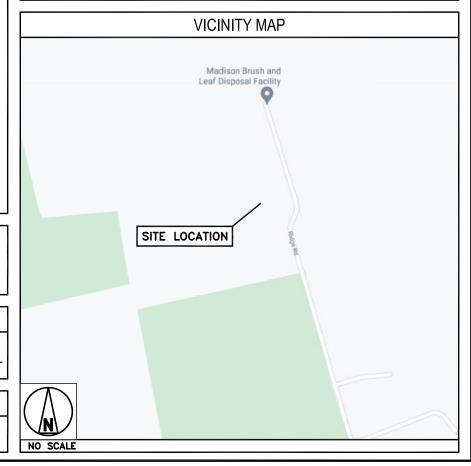
UNDERGROUND SERVICE ALERT CBYD 811 UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455 WWW.CBYD.COM

CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.

11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

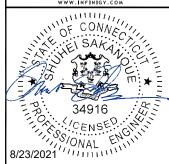

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

SITE INFORMATION PROJECT DIRECTORY PROPERTY OWNER: TOWN OF MADISON DISH Wireless L.L.C. ADDRESS: 8 CAMPUS DRIVE 5701 SOUTH SANTA FE DRIVE MADISON, CT 06443 LITTLETON, CO 80120 TOWER TYPE: MONOPOLE TOWER CO SITE ID: 5800059 TOWER OWNER: CROWN CASTLE 2000 CORPORATE DRIVE TOWER APP NUMBER: 553353 CANONSBURG, PA 15317 (877) 486-9377 COUNTY: NEW HAVEN SITE DESIGNER: INFINIGY 2500 W. HIGGINS RD. STE. 500 LATITUDE (NAD 83): 41° 18' 33.30" N 41.309250 N HOFFMAN ESTATES, IL 60169 LONGITUDE (NAD 83): 72° 36' 51.57" W (847) 648-4068 72.614333 W CONNECTICUIT SITTING COUNCIL SITE ACQUISITION: NICHOLAS CURRY ZONING JURISDICTION: NICHOLAS.CURRY@CROWNCASTLE.COI ZONING DISTRICT: CONSTRUCTION MANAGER: JAVIER SOTO JAVIER.SOTO@DISH.COM PARCEL NUMBER: MADI-000051-000001 (617) 839-6514 SYED ZAIDI OCCUPANCY GROUP: RF ENGINEER: SYFD ZAIDIODISH COM CONSTRUCTION TYPE: **EVERSOURCE** TELEPHONE COMPANY: LIGHTTOWER

DIRECTIONS

DIRECTIONS FROM TWEED NEW HAVEN AIRPORT:

DEPART AND HEAD (NORTHEAST), TURN LEFT, AVIS RENT A CAR ON THE CORNER, TURN RIGHT, TURN RIGHT TOWARD BURR ST, BUDGET CAR RENTAL ON THE CORNER, TURN RIGHT ONTO BURR ST, KEEP STRAIGHT TO GET ONTO DODGE AVE, TURN LEFT ONTO THOMPSON AVE, KEEP STRAIGHT TO GET ONTO CT-100 / HIGH ST, TAKE THE RAMP ON THE RIGHT FOR I-95 NORTH AND HEAD TOWARD NEW LONDON, AT EXIT 61, HEAD RIGHT ON THE RAMP FOR CT-79 TOWARD NORTH MADISON, TURN LEFT ONTO CT-79 / DURHAM RD TOWARD NORTH MADISON, TURN LEFT ONTO GREEN HILL RD, TURN RIGHT ONTO RIDGE RD, ARRIVE AT, 258 RIDGE ROAD,


5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY8

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, 1L 60169
PHONE: 847-648-4088 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

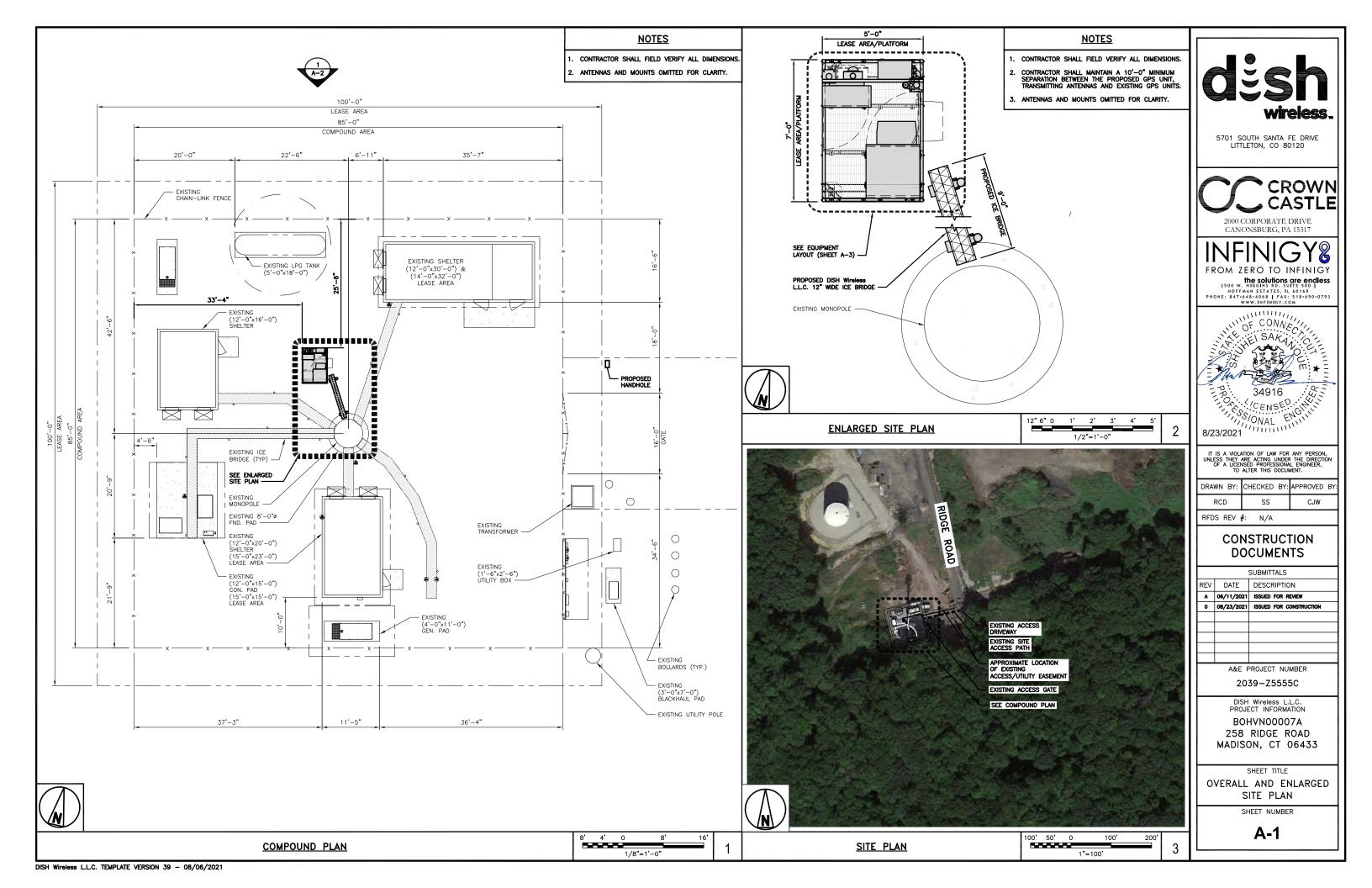
DRAWN BY:	CHECKED BY:	APPROVED BY:	
RCD	SS	CJW	

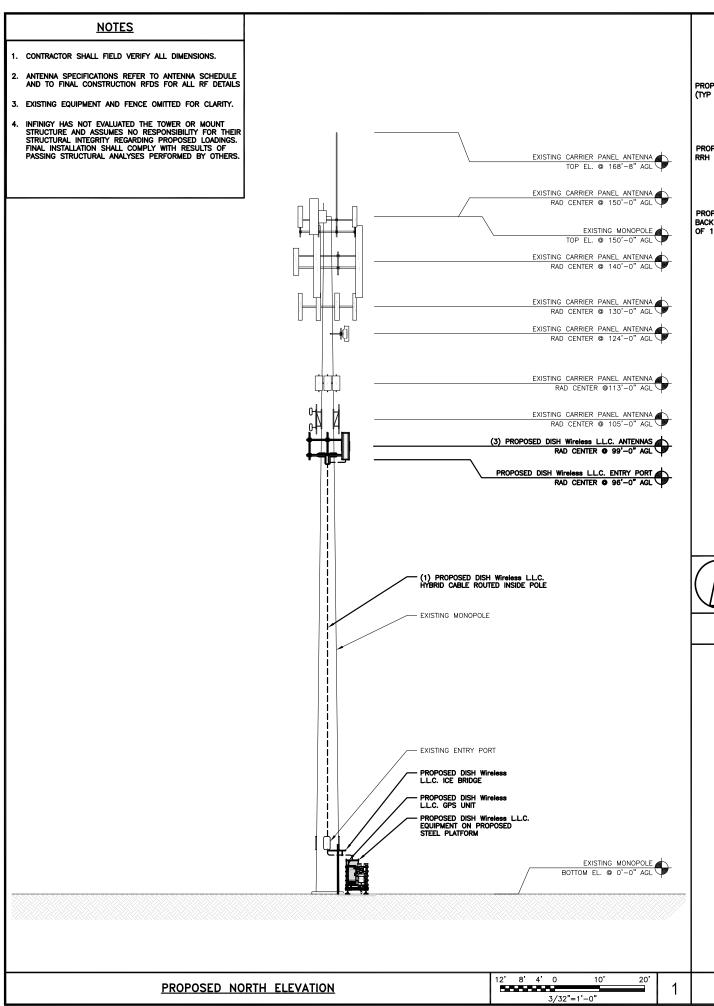
CONSTRUCTION

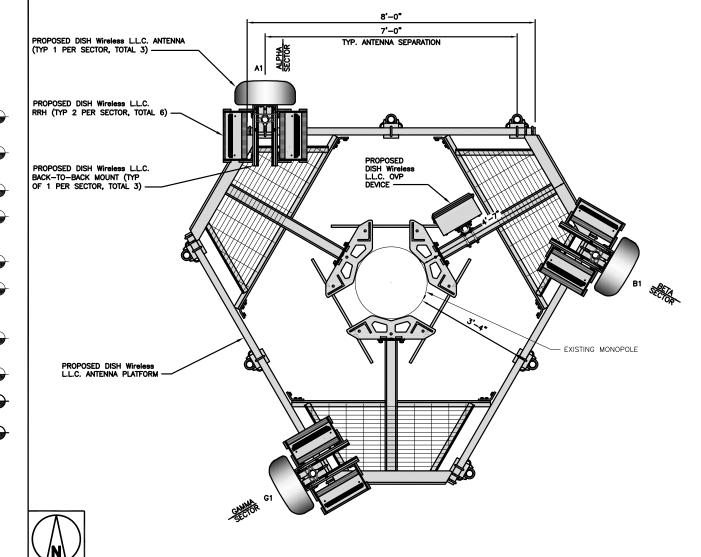
DOCUMENTS

RFDS REV #: N/A

	SUBMITTALS				
REV	DATE	DESCRIPTION			
A	06/11/2021	ISSUED FOR REVIEW			
0	08/23/2021	ISSUED FOR CONSTRUCTION			
	A&E F	PROJECT NUMBER			


2039-Z5555C


BOHVN00007A 258 RIDGE ROAD MADISON, CT 06433


> SHEET TITLE TITLE SHEET

SHEET NUMBER

T-1

ANTENNA TRANSMISSION CABLE SECTOR POSITION MANUFACTURER — MODEL NUMBER FEED LINE TYPE AND LENGTH TECHNOLOGY SIZE (HxW) **AZMUITH** JMA WIRELESS - MX08FR0665-21 99'-0" ALPHA A1 PROPOSED 5G 72.0" x 20.0" 0. (1) HIGH-CAPACITY
HYBRID CABLE BETA В1 PROPOSED JMA WIRELESS - MX08FR0665-2 72.0" x 20.0" 120° 99'-0" (130' LONG) 99'-0" GAMMA C1 PROPOSED JMA WIRELESS - MX08FR0665-21 5G 72.0" x 20.0" 240°

		RRH		
SECTOR	POSITION	MANUFACTURER — MODEL NUMBER	TECHNOLOGY	
ALPHA	A1	FUJITSU - TA08025-B604	5G	
	A1	FUJITSU - TA08025-B605	5G	
BETA	B1	FUJITSU - TA08025-B604	5G	
	B1	FUJITSU - TA08025-B605	5G	
GAMMA	G1	FUJITSU - TA08025-B604	5G	
	G1	FUJITSU - TA08025-B605	5G	

ANTENNA LAYOUT

NOTES

- 1. CONTRACTOR TO REFER TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS.
- ANTENNA AND RRH MODELS MAY CHANGE DUE TO EQUIPMENT AVAILABILITY. ALL EQUIPMENT CHANGES MUST BE APPROVED AND REMAIN IN COMPLIANCE WITH THE PROPOSED DESIGN AND STRUCTURAL ANALYSES.

NO SCALE

2" 6" 0

3/4"=1'-0

A-2

ANTENNA SCHEDULE

DISH Wireless L.L.C. TEMPLATE VERSION 39 - 08/06/2021

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CROWN

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY 8 FROM ZERO TO INFINIGY

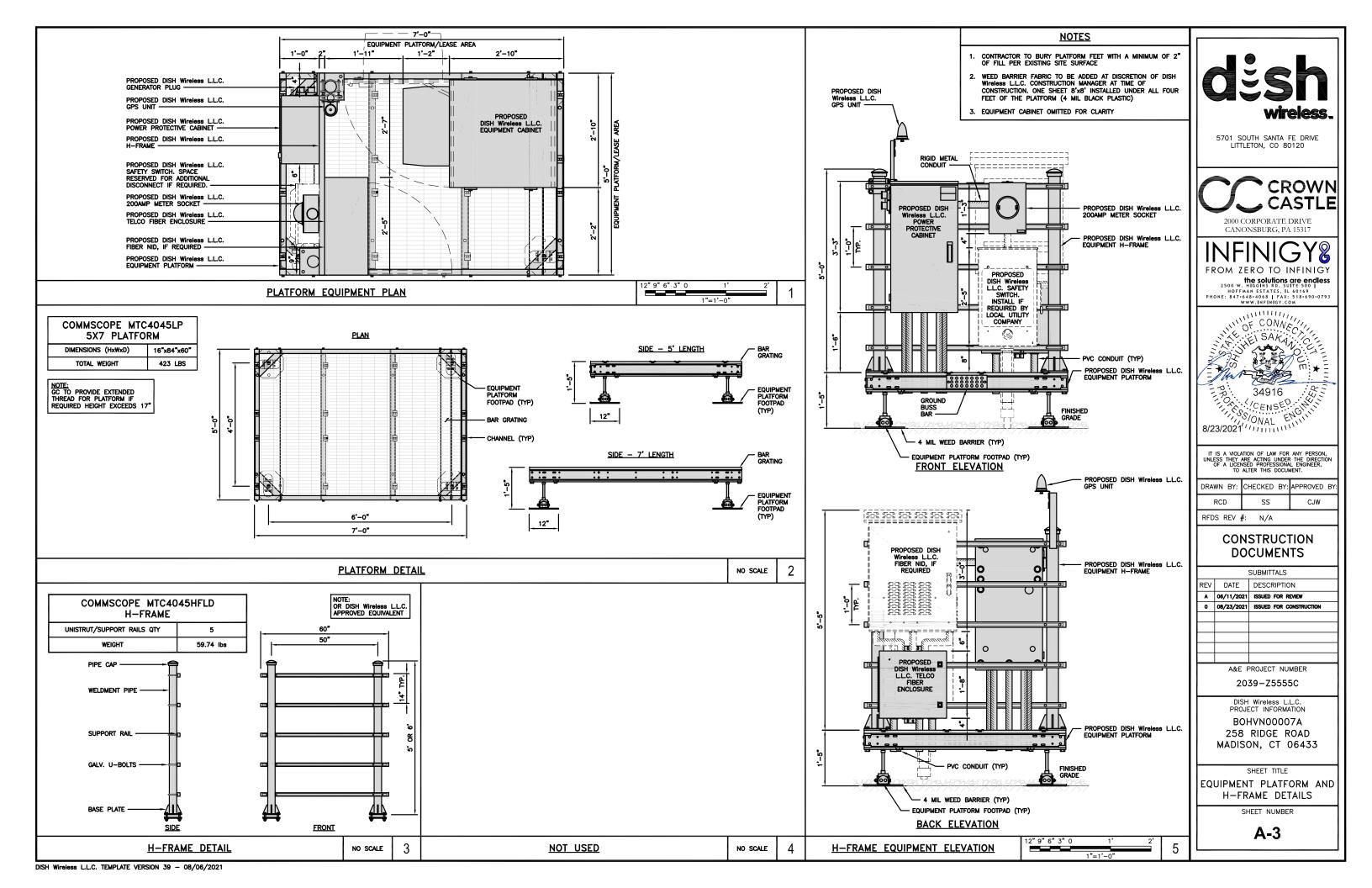
the solutions are endless
2500 w. HIGGINS RD. SUITE 500 |
HOFFANN ESTATES, IL 60169
PHONE: 847-648-4086 | FAX: 518-690-0793
www.infinigy.com

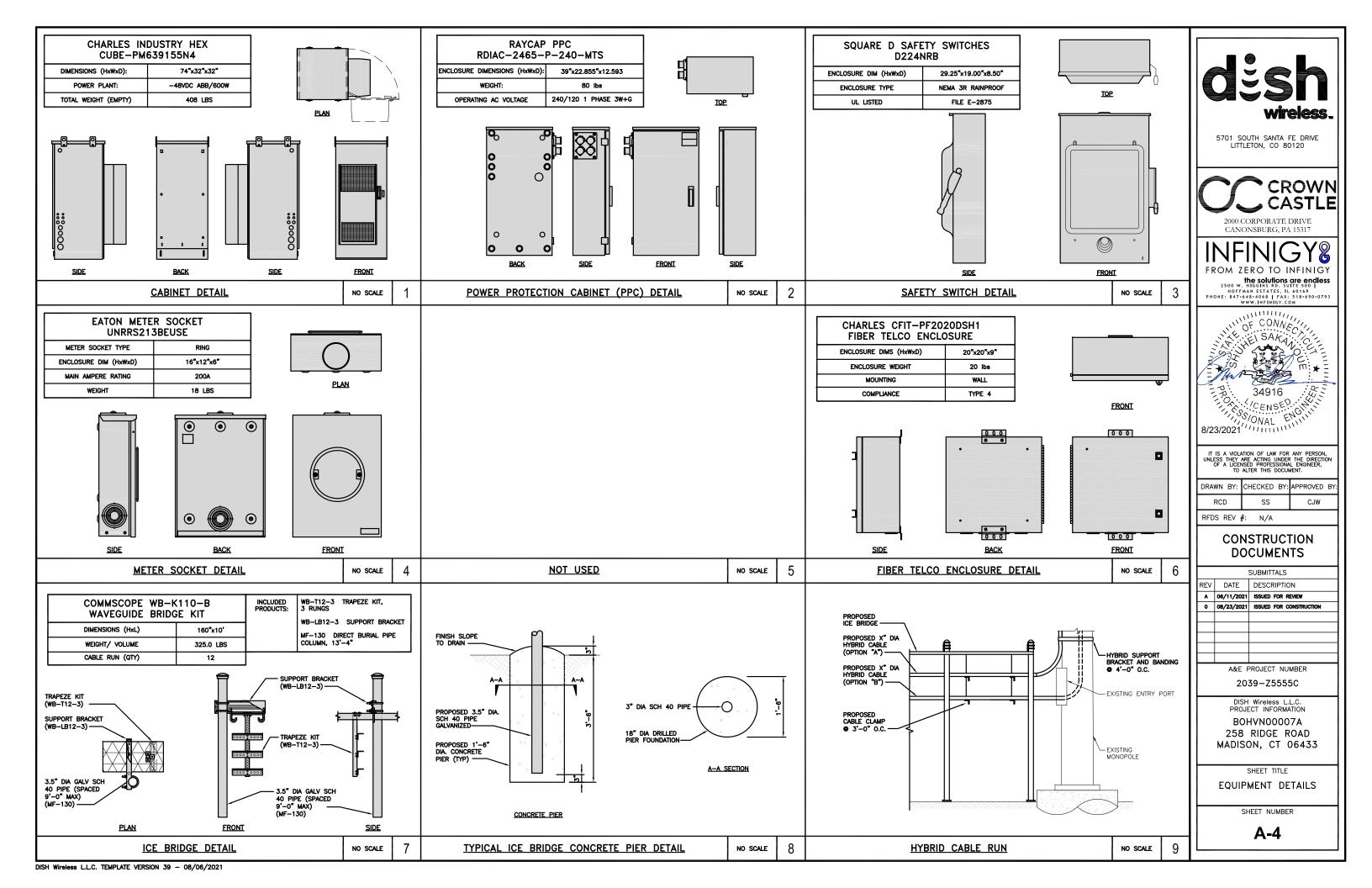
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

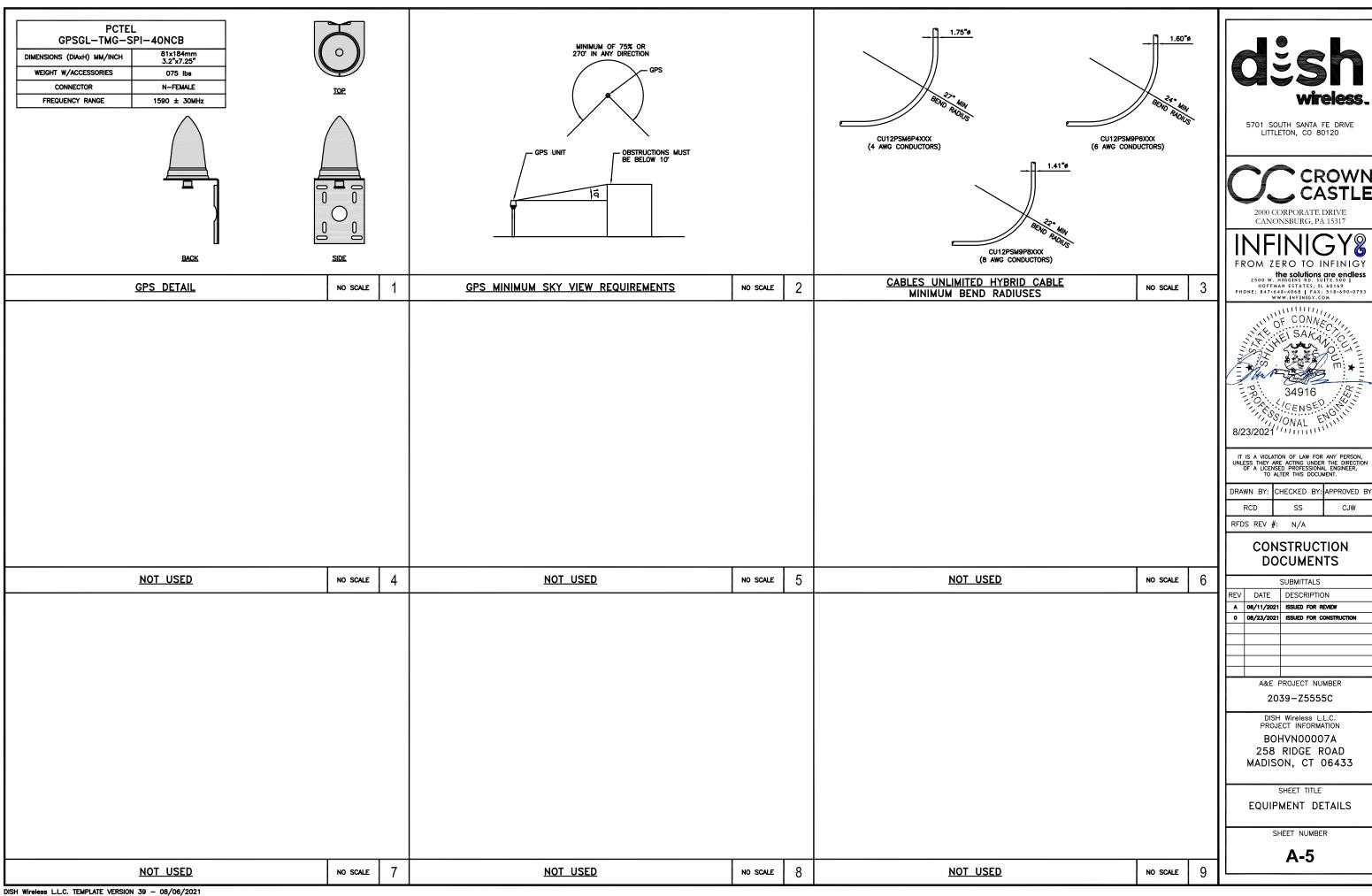
RCD SS CJW	DRAWN BY:	CHECKED BY:	APPROVED BY:
	RCD	SS	CJW

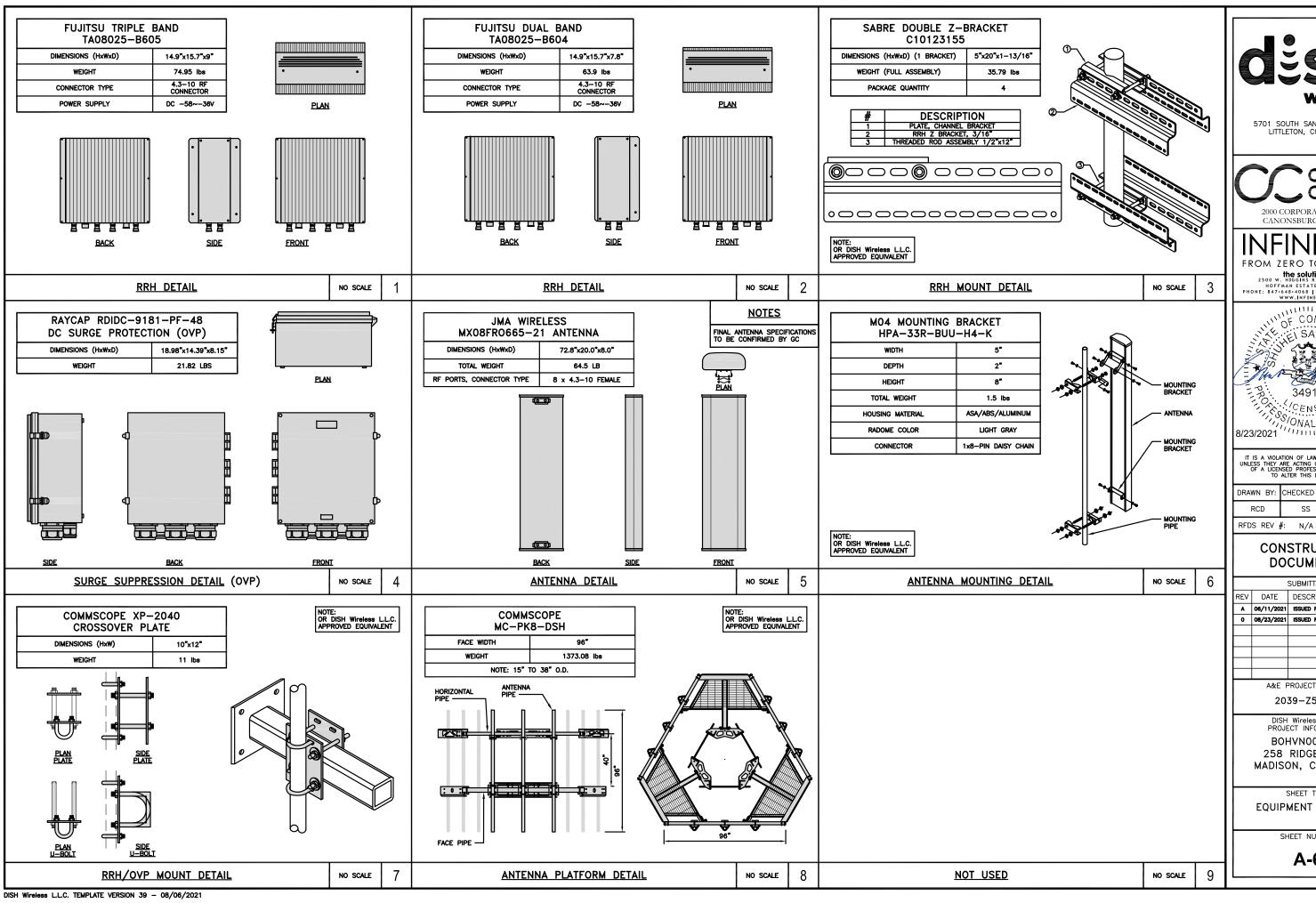
RFDS REV #: N/A

CONSTRUCTION **DOCUMENTS**


	SUBMITTALS						
REV	DATE	DESCRIPTION					
A	06/11/2021	ISSUED FOR REVIEW					
0	08/23/2021	ISSUED FOR CONSTRUCTION					
	A&E F	PROJECT NUMBER					


2039-Z5555C


PROJECT INFORMATION BOHVN00007A 258 RIDGE ROAD MADISON, CT 06433


SHEET TITLE ELEVATION, ANTENNA LAYOUT AND SCHEDULE

SHEET NUMBER

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

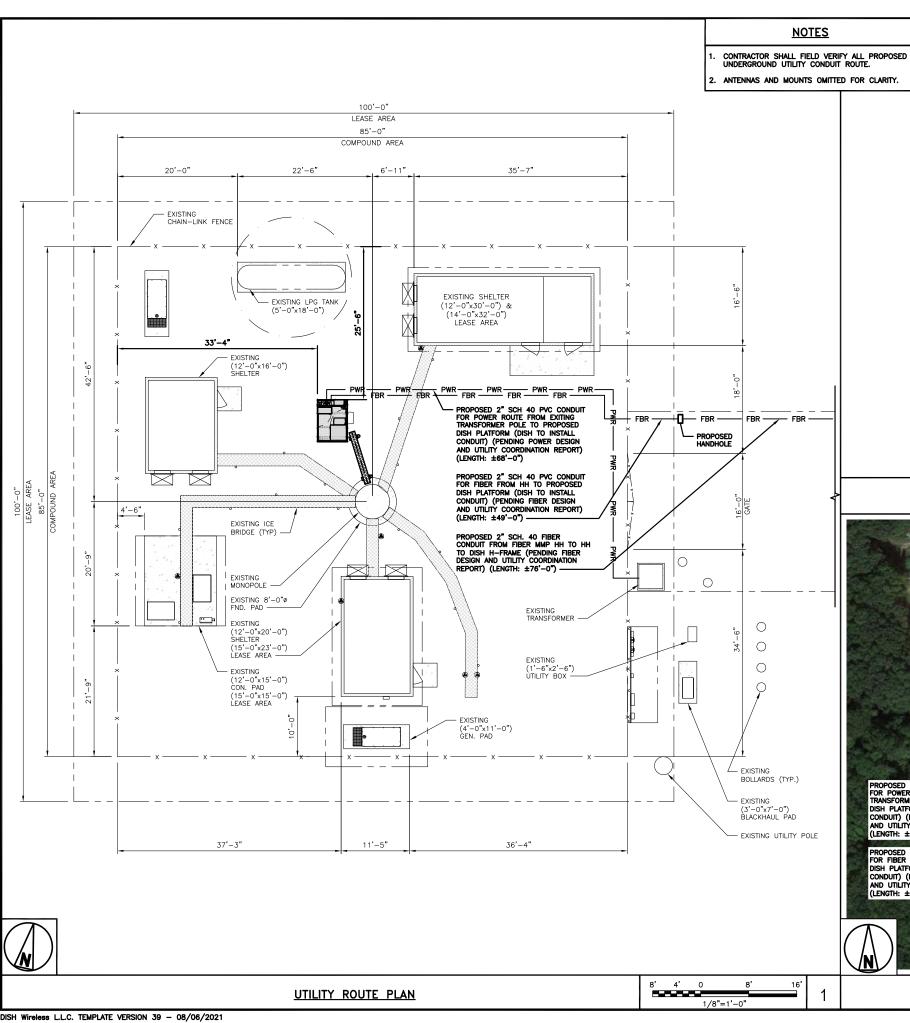
the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, 1L 60169
PHONE: 847-648-4088 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	RCD	SS		CJW	
	DRAWN BY:	CHECKED	BY:	APPROVED	BY

CONSTRUCTION **DOCUMENTS**

	SUBMITTALS							
REV	DATE	DESCRIPTION						
A	06/11/2021	ISSUED FOR REVIEW						
0	08/23/2021	ISSUED FOR CONSTRUCTION						
	A&E F	PROJECT NUMBER						


2039-Z5555C

BOHVN00007A 258 RIDGE ROAD MADISON, CT 06433

SHEET TITLE **EQUIPMENT DETAILS**

SHEET NUMBER

A-6

DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING $\pm 24V$ and $\pm 48V$ conductors. RED MARKINGS SHALL IDENTIFY $\pm 24V$ and blue markings shall identify $\pm 48V$.

- CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
- ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS.
- 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
- CONDUIT ROUGH—IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS.
 VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
- 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
- 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
- 7. CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
- 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
- INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250.
 THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL
 DISCONNECT SWITCHES, AND EQUIPMENT CABINETS.
- 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.
- 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT.
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS.
- 13. ALL TRENCHES IN COMPOUND TO BE HAND DUG

ELECTRICAL NOTES

EXISTING ACCESS DRIVEWAY EXISTING SITE ACCESS PATH PROPOSED 2" SCH 40 PVC CONDUIT FOR POWER ROUTE FROM EXITING TRANSFORMER POLE TO PROPOSED ACCESS/UTILITY EASEMENT EXISTING ACCESS GATE DISH PLATFORM (DISH TO INSTALL CONDUIT) (PENDING POWER DESIGN AND UTILITY COORDINATION REPORT) SEE COMPOUND PLAN PROPOSED 2" SCH 40 PVC CONDUIT FOR FIBER FROM HH TO PROPOSED SH PLATFORM (DISH TO INSTALL CONDUIT) (PENDING FIBER DESIGN AND UTILITY COORDINATION REPORT) (LENGTH: ±49'-0") -

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY8 FROM ZERO TO INFINIGY

the solutions are endless
2500 w. Higgins RD. Suite 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

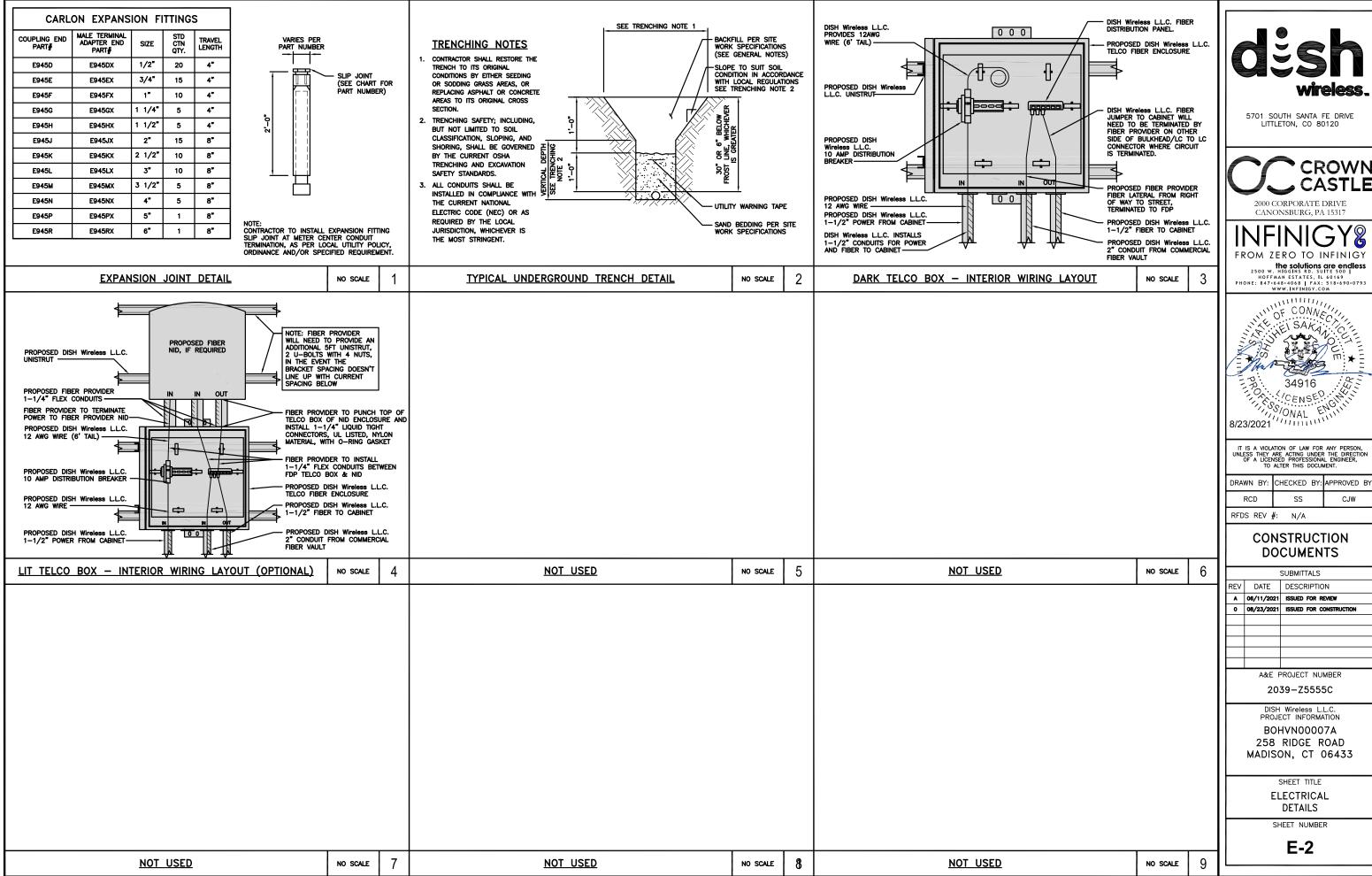
	DRAWN BY:	CHECKED BY:	APPROVED	B,
	RCD	SS	CJW	
	RFDS REV	#: N/A		

CONSTRUCTION **DOCUMENTS**

SUBMITTALS. REV DATE DESCRIPTION A 06/11/2021 ISSUED FOR REVIEW 0 08/23/2021 ISSUED FOR CONSTRUCTION A&E PROJECT NUMBER

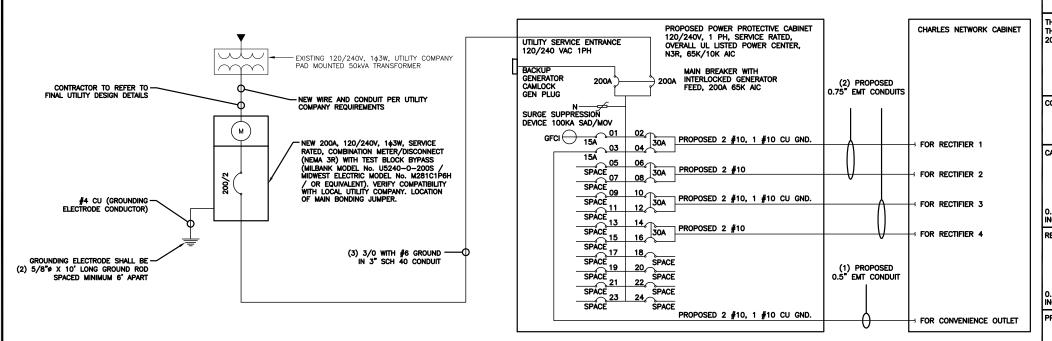
2039-Z5555C

PROJECT INFORMATION BOHVN00007A 258 RIDGE ROAD MADISON, CT 06433


SHEET TITLE

ELECTRICAL/FIBER ROUTE PLAN AND NOTES

SHEET NUMBER


E-1

OVERALL UTILITY ROUTE PLAN

CJW

DISH Wireless L.L.C. TEMPLATE VERSION 39 - 08/06/2021

NOTES

THE (2) CONDUITS WITH (4) CURRENT CARRYING CONDUCTORS EACH, SHALL APPLY THE ADJUSTMENT FACTOR OF 80% PER 2014/17 NEC TABLE 310.15(B)(3)(σ) OR 2020 NEC TABLE 310.15(C)(1) FOR UL1015 WIRE.

#12 FOR 15A-20A/1P BREAKER: 0.8 x 30A = 24.0A #10 FOR 25A-30A/2P BREAKER: 0.8 x 40A = 32.0A #8 FOR 35A-40A/2P BREAKER: 0.8 x 55A = 44.0A #6 FOR 45A-60A/2P BREAKER: 0.8 x 75A = 60.0A

CONDUIT SIZING: AT 40% FILL PER NEC CHAPTER 9, TABLE 4, ARTICLE 358. 0.5" CONDUIT - 0.122 SQ. IN AREA

0.75" CONDUIT - 0.213 SQ. IN AREA 2.0" CONDUIT - 1.316 SQ. IN AREA 3.0" CONDUIT - 2.907 SQ. IN AREA

CABINET CONVENIENCE OUTLET CONDUCTORS (1 CONDUIT): USING THWN-2, CU.

#10 - 0.0211 SQ. IN X 2 = 0.0422 SQ. IN #10 - 0.0211 SQ. IN X 1 = 0.0211 SQ. IN <GROUND = 0.0633 SQ, IN

0.5" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (3) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

RECTIFIER CONDUCTORS (2 CONDUITS): USING UL1015, CU.

#10 - 0.0266 SQ. IN X 4 = 0.1064 SQ. IN #10 - 0.0082 SQ. IN X 1 = 0.0082 SQ. IN <BARE GROUND = 0.1146 SQ. IN

0.75" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (5) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC FEED CONDUCTORS (1 CONDUIT): USING THWN, CU.

3/0 - 0.2679 SQ. IN X 3 = 0.8037 SQ. IN #6 - 0.0507 SQ. IN X 1 = 0.0507 SQ. IN <GROUND

= 0.8544 SQ. IN

3.0" SCH 40 PVC CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (4) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC ONE-LINE DIAGRAM

2

NO SCALE

BREAKERS REQUIRED: (4) 30A, 2P BREAKER - SQUARE D P/N:QO230 (1) 15A, 1P BREAKER - SQUARE D P/N:QO115

NOTE:
BRANCH CIRCUIT WIRING SUPPLYING RECTIFIERS ARE TO BE RATED UL1015, 105°C, 600V, AND PVC INSULATED, IN THE SIZES SHOWN IN THE ONE-LINE DIAGRAM. CONTRACTOR MAY SUBSTITUTE UL1015 WIRE FOR THWN-2 FOR CONVENIENCE OUTLET BRANCH CIRCUIT.

PANEL SCHEDULE

NO SCALE

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

5701 SOUTH SANTA FE DRIVE

LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG PA 15317

INFINIGY 8

FROM ZERO TO INFINIGY the solutions are endless
2500 w. Higgins RD. Suite 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

CONNECTION SAKAN COMMENTAL SAK

CROWN

DRAWN BY: CHECKED BY: APPROVED BY CJW RCD SS

RFDS REV #: N/A

CONSTRUCTION **DOCUMENTS**

	SUBMITTALS						
REV	DATE	DESCRIPTION					
A	06/11/2021	ISSUED FOR REVIEW					
0	08/23/2021	ISSUED FOR CONSTRUCTION					
	A &c F	DECT NUMBER					

A&E PROJECT NUMBER

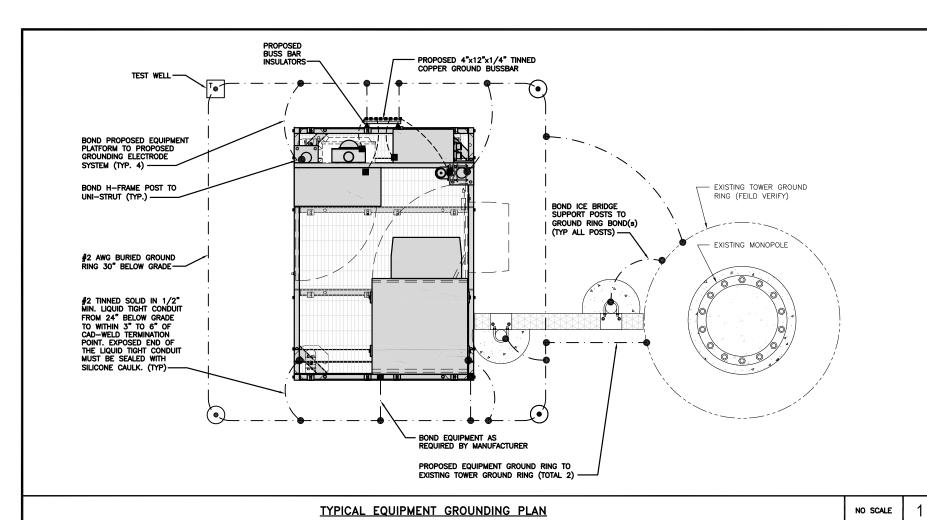
2039-Z5555C

PROJECT INFORMATION BOHVN00007A 258 RIDGE ROAD MADISON, CT 06433

SHEET TITLE

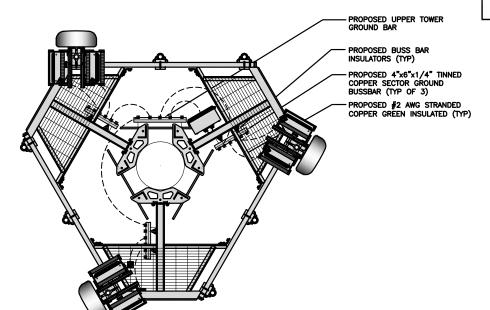
ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE

SHEET NUMBER


E-3

LOAD SERVED		AMPS TTS)	TRIP	СКТ #	F	PHAS	E	СКТ #	TRIP		AMPS TTS)	LOAD SERVED
	L1	L2						<i>"</i>		L1	L2	
PPC GFCI OUTLET	180		15A	1	Σ	4	4	2	30A	2880		ABB/GE INFINITY
CHARLES GFCI OUTLET		180	15A	3	Σ	ø	7	4	5		2880	RÉCTIFIER 1
-SPACE-				5	Σ	4	£	6	30A	2880		ABB/GE INFINITY
-SPACE-				7	Σ	ß	7	8	JUA		2880	RÉCTIFIER 2
-SPACE-				9	Σ	4	ł	10	30A	2880		ABB/GE INFINITY
-SPACE-				11	Σ	В	\sim	12	JUM		2880	RÉCTIFIER 3
-SPACE-				13	Σ	A	4	14	30A	2880		ABB/GE INFINITY
-SPACE-				15	Σ	В	\sim	16	JUA		2880	RÉCTIFIER 4
-SPACE-				17	7	A	7	18				-SPACE-
-SPACE-				19	Σ	В	7	20				-SPACE-
-SPACE-				21	\overline{Z}	A	$\overline{}$	22				-SPACE-
-SPACE-				23	7	В	7	24				-SPACE-
VOLTAGE AMPS	180	180								11520	11520	
200A MCB, 16, 24 SPA			L1			L2						
MB RATING: 65,000 AIC			11700)	1	170	0	VOL	TAGE AM	PS		
•			98			98		AMI				
				9	8			MAX	AMPS			
				11	23			MAX	125%			

NOT USED


DISH Wireless L.L.C. TEMPLATE VERSION 39 - 08/06/2021

NO SCALE

NOTES

ANTENNAS AND OVP SHOWN ARE GENERIC AND NOT REFERENCING TO A SPECIFIC MANUFACTURER. THIS LAYOUT IS FOR REFERENCE

EXOTHERMIC CONNECTION

MECHANICAL CONNECTION

TEST GROUND ROD WITH INSPECTION SLEEVE

▲ BUSS BAR INSULATOR

---- #6 AWG STRANDED & INSULATED

GROUND ROD

 (\bullet)

— · — · — #2 AWG SOLID COPPER TINNED

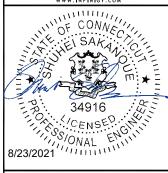
GROUNDING LEGEND

- 1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.
- CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM. GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH Wireless L.L.C. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS.
- 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED.

GROUNDING KEY NOTES

- (A) EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW GRADE, OR 6 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM THE EXTERIOR WALL OR FOOTING.
- B TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS, AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN BROWNER FOR THE FOUNDATION OF THE FOUNDATION AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS.
- C Interior ground Ring: #2 awg stranded green insulated copper conductor extended around the perimeter of the equipment area. All non-telecommunications related metallic objects found within a site shall be grounded to the interior ground ring with #6 awg stranded green
- D BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS SHALL BE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE CORNERS OF THE
- (E) GROUND ROD: UL LISTED COPPER CLAD STEEL. MINIMUM 1/2" DIAMETER BY EIGHT FEET LONG. GROUND RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. GROUND RODS SHALL BE DRIVEN TO THE DEPTH OF GROUND RING CONDUCTOR.
- F CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GREEN INSULATED COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUCTORS.
- G HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH.
- (H) EXTERIOR CABLE ENTRY PORT GROUND BARS; LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING, BOND TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTORS WITH AN EXOTHERMIC WELD AND INSPECTION SLEEVE.
- 1) TELCO GROUND BAR: BOND TO BOTH CELL REFERENCE GROUND BAR OR EXTERIOR GROUND RING.
- J FRAME BONDING: THE BONDING POINT FOR TELECOM EQUIPMENT FRAMES SHALL BE THE GROUND BUS THAT IS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEWORK.
- K Interior unit bonds: Metal Frames, Cabinets and Individual Metallic units located with the area of the interior ground ring require a #6 awg stranded green insulated copper bond to the
- L FENCE AND GATE GROUNDING: METAL FENCES WITHIN 7 FEET OF THE EXTERIOR GROUND RING OR OBJECTS BONDED TO THE EXTERIOR GROUND RING SHALL BE BONDED TO THE GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEEDING 25 FEET. BONDS SHALL BE MADE AT EACH CAST FOR THE ANGEL OF THE COPPER CONTINUED COPPER COPPE
- M <u>Exterior unit bonds:</u> Metallic objects, external to or mounted to the building, shall be bonded to the exterior ground ring. Using #2 tinned solid copper wire
- N ICE BRIDGE SUPPORTS: EACH ICE BRIDGE LEG SHALL BE BONDED TO THE GROUND RING WITH #2 AWG BARE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRIDGE LEG AND BURIED
- DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEMENTS AND INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICE CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPPED WITH A MASTER DC SYSTEM RETURN GROUND CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED TO THE CELL SITE REFERENCE (COLUMN) BAR
- (P) TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICALLY BONDED TO PROPOSED ANTENNA MOUNT COLLAR.

REFER TO DISH Wireless L.L.C. GROUNDING NOTES.


5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CROWN 2000 CORPORATE DRIVE

INFINIGY8 FROM ZERO TO INFINIGY

CANONSBURG PA 15317

the solutions are endless 2500 W. HIGGINS RD. SUITE 500 | HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN BY:		CHECKED BY:		APPROVED BY	
RCD SS CJW	RCD		SS		CJW	

RFDS REV #: N/A

CONSTRUCTION **DOCUMENTS**

SUBMITTALS. REV DATE DESCRIPTION A 06/11/2021 ISSUED FOR REVIEW 0 08/23/2021 ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER

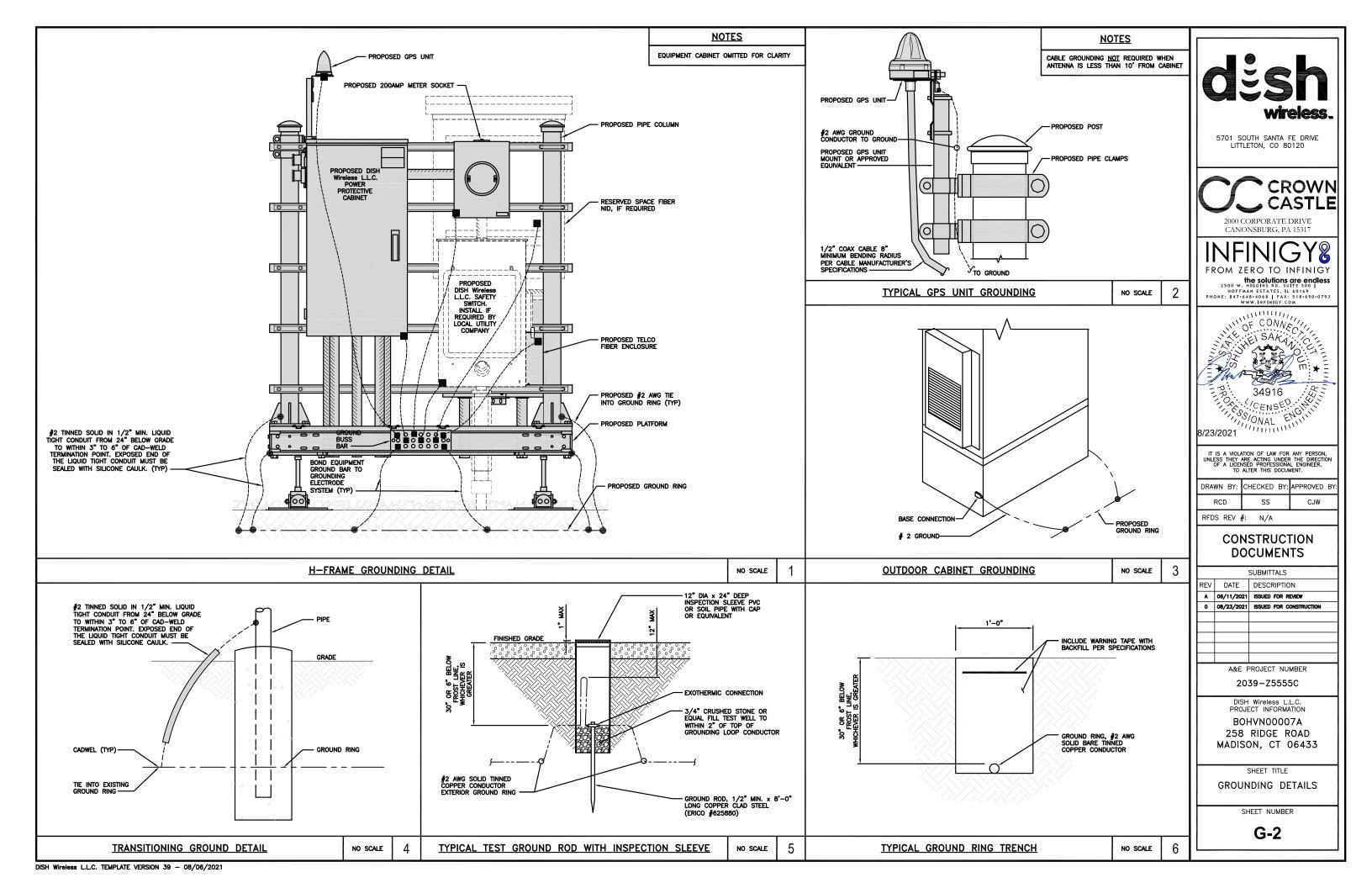
2039-Z5555C

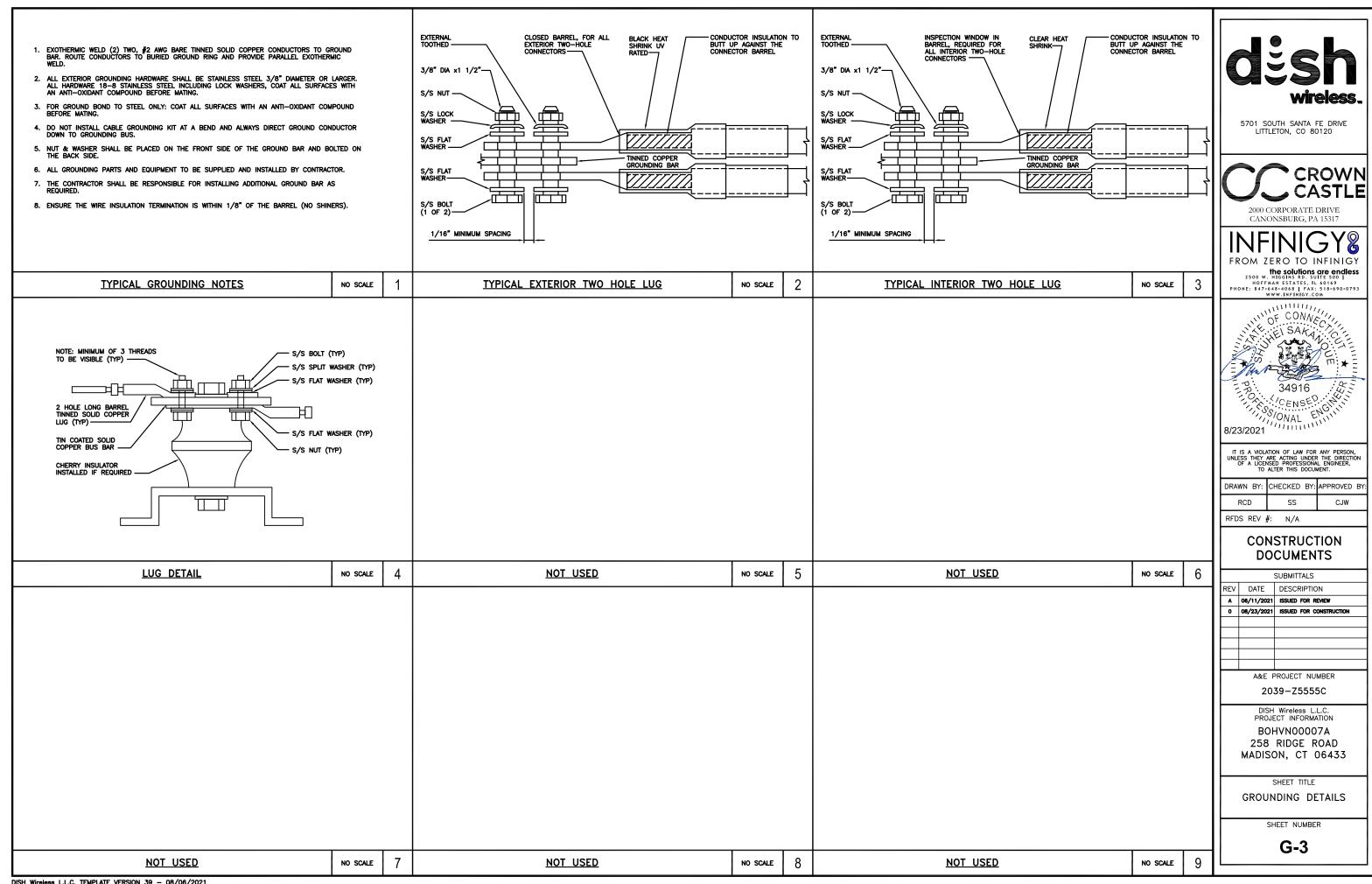
PROJECT INFORMATION BOHVN00007A 258 RIDGE ROAD MADISON, CT 06433

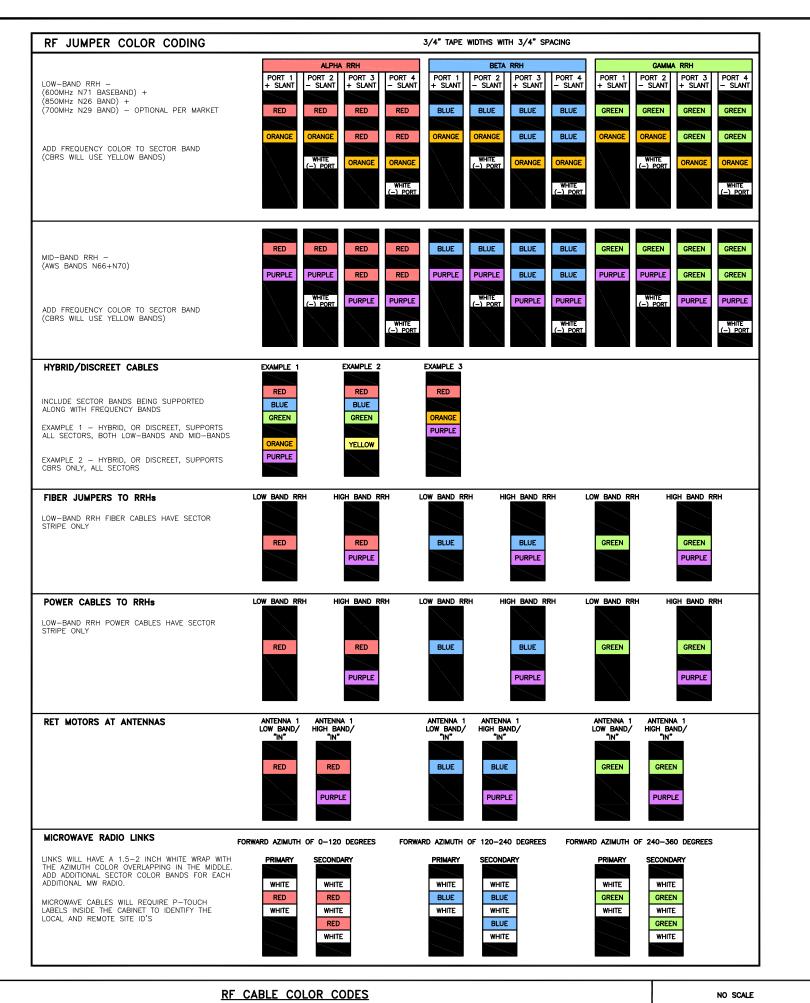
SHEET TITLE

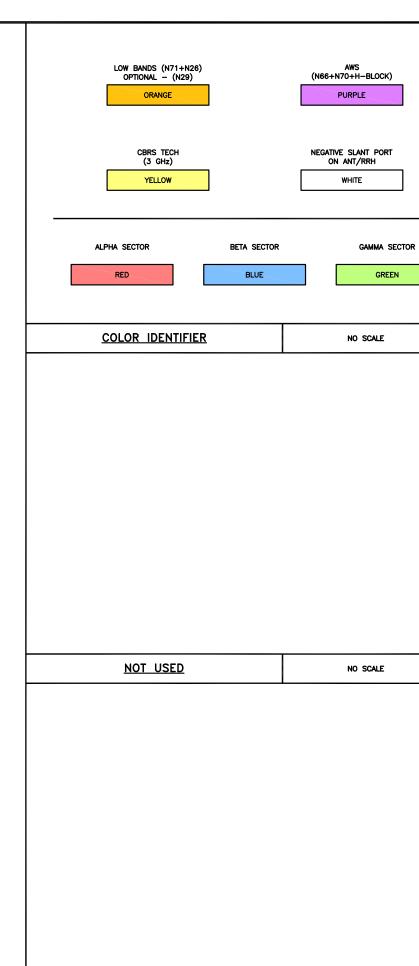
GROUNDING PLANS AND NOTES

SHEET NUMBER


G-1


TYPICAL ANTENNA GROUNDING PLAN


NO SCALE


GROUNDING KEY NOTES

NO SCALE

NOT USED

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY8 FROM ZERO TO INFINIGY

the solutions are endless
2500 w. Higgins RD. Sulte 500 |
HOFFAM ESTATES, IL 60169
PHONE: 847-648-4088 | FAX: 518-690-0793
www.infinigy.com

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

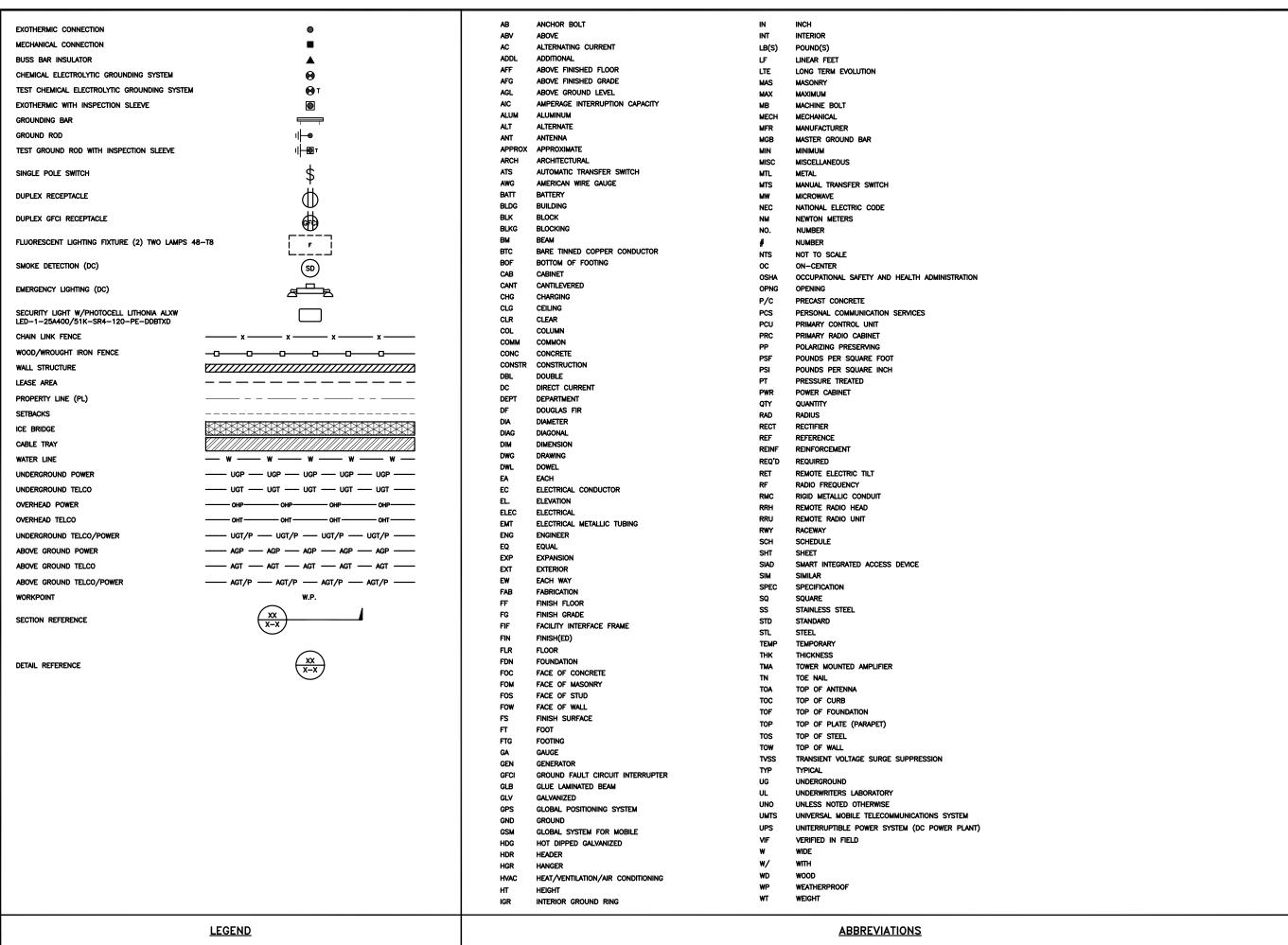
ı	DRAWN BY:	CHECKED BY:	APPROVED BY
ı	RCD	SS	CJW

RFDS REV #: N/A

CONSTRUCTION **DOCUMENTS**

	SUBMITTALS					
REV	DATE	DESCRIPTION				
A	06/11/2021	ISSUED FOR REVIEW				
0	08/23/2021	ISSUED FOR CONSTRUCTION				
	A&E F	PROJECT NUMBER				

2039-Z5555C


PROJECT INFORMATION BOHVN00007A 258 RIDGE ROAD MADISON, CT 06433

SHEET TITLE CABLE COLOR CODES

SHEET NUMBER

NO SCALE

RF-1

dësh wireless

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY&

2500 W. HIGGINS RD. SUITE 500 | HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4068 | FAX: 518-690-0793 WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
RCD)	SS		CJW	

RFDS REV #: N/A

CONSTRUCTION DOCUMENTS

SUBMITTALS									
REV	DATE	DESCRIPTION							
A	06/11/2021	ISSUED FOR REVIEW							
0	08/23/2021	ISSUED FOR CONSTRUCTION							
	∧ 9aE E	DO IECT NUMBER							

A&E PROJECT NUMBER

2039-Z5555C

DISH Wireless L.L.C.
PROJECT INFORMATION
BOHVN00007A
258 RIDGE ROAD
MADISON, CT 06433

SHEET TITLE

LEGEND AND ABBREVIATIONS

SHEET NUMBER

SITE ACTIVITY REQUIREMENTS:

- 1. NOTICE TO PROCEED NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER CONSTRUCTION MANAGER.
- 2. "LOOK UP" DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH WIReless L.L.C. AND DISH WIReless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

- 3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
- 4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIFELDS L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).
- 5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
- 6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.
- 11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
- 12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIReless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.
- 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
- 15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
- 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.
- 18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.
- 22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

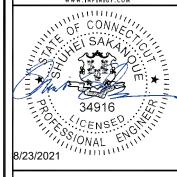
1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER:TOWER OWNER

- 2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
- 3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.
- 4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.
- 5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.
- 6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION
- 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS
- 12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER
- 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.


5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CANONSBURG PA 15317

INFINIGY FROM ZERO TO INFINIGY

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4088 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN BY	:	CHECKED	BY:	APPROVED	BY:
	RCD RFDS REV #		SS		CJW	
			#: N/A			

CONSTRUCTION DOCUMENTS

		SUBMITTALS
REV	DATE	DESCRIPTION
A	06/11/2021	ISSUED FOR REVIEW
0	08/23/2021	ISSUED FOR CONSTRUCTION
	A&E F	PROJECT NUMBER

DISH Wireless L.L.C. PROJECT INFORMATION BOHVN00007A 258 RIDGE ROAD MADISON, CT 06433

2039-Z5555C

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

- 1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST—IN—PLACE CONCRETE.
- 2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.
- 3. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90'f AT TIME OF PLACEMENT.
- 4. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.
- 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

- 6. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:
- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- · CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- · CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2*
- 7. A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

- 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.
- 2. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
- 3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
- 4. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.
- 4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.
- 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.
- 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR—CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
- 6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).
- 7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.
- 8. TIE WRAPS ARE NOT ALLOWED.
- 9. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.
- 12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW. THWN. THWN-2, XHHW. XHHW-2, THW. THW-2, RHW. OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75° C (90° C IF AVAILABLE).
- 14. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.
- 15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

- 6. ELECTRICAL METALLIC TUBING (EMT) OR METAL—CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.
- 18. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- 19. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.
- 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE NEC.
- 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).
- 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).
- 23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.
- 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY—COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS.
- 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY—COATED OR NON—CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- 28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.".
- ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CANONSBURG, PA 15317

FROM ZERO TO INFINIGY the solutions are encless

the solutions are enaless
2500 w. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
www.INFINIGY.CO

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	OFFICIALD DI.	APPROVED BY
RCD	SS	CJM
	RCD	RCD SS

RFDS REV #: N/A

CONSTRUCTION DOCUMENTS

	SUBMITTALS							
REV	DATE	DESCRIPTION						
A	06/11/2021	ISSUED FOR REVIEW						
0	08/23/2021	ISSUED FOR CONSTRUCTION						
	A&E PROJECT NUMBER							

2039-Z5555C

DISH Wireless L.L.C.
PROJECT INFORMATION
BOHVN00007A
258 RIDGE ROAD
MADISON, CT 06433

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GROUNDING NOTES:

- 1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 2. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
- 4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
- 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
- 8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.
- 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
- COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.
- 15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.
- 19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
- 21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/O COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY FROM ZERO TO INFINIGY

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.IPINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BI.	CHECKED BI	: APPROVED BY:				
RCD	SS	CJW				

RFDS REV #: N/A

CONSTRUCTION DOCUMENTS

SUBMITTALS							
REV	DATE	DESCRIPTION					
A	06/11/2021	ISSUED FOR REVIEW					
0	08/23/2021	ISSUED FOR CONSTRUCTION					
	4055	DO IFOT NUMBER					

A&E PROJECT NUMBER

2039-Z5555C

DISH Wireless L.L.C.
PROJECT INFORMATION
BOHVN00007A
258 RIDGE ROAD
MADISON, CT 06433

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

Exhibit D

Structural Analysis Report

Date: May 28, 2021

Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 (724) 416-2000

Subject: Structural Analysis Report

Carrier Designation: DISH Network Co-Locate

Site Number: BOHVN0007A Site Name: CT-CCI-T-5800059

Crown Castle Designation: BU Number: 5800059

Site Name: Ridge Road, Madison

 JDE Job Number:
 645212

 Work Order Number:
 1966315

 Order Number:
 553353 Rev. 1

Engineering Firm Designation: Crown Castle Project Number: 1966315

Site Data: 258 Ridge Road, MADISON, NEW HAVEN County, CT

Latitude 41° 18′ 33.3″, Longitude -72° 36′ 51.57″

150 Foot - Monopole Tower

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Proposed Equipment Configuration

Sufficient Capacity - 42.6%

This analysis utilizes an ultimate 3-second gust wind speed of 130 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - "Analysis Criteria".

Structural analysis prepared by: Nicholas Cvetic, E.I.T.

Respectfully submitted by:

Jamal A. Huwel, P.E. Director Engineering

PP 28893

**CENSED OF HIMMINGSTON A A FUNCTION AND A SENSON A SENS

Digitally signed by Jamal A Huwel Date: 2021.05.30

08:58:32 -04'00'

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity - LC5
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 150 ft monopole tower designed by Valmont.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Wind Speed: 130 mph

Exposure Category:
Topographic Factor:
Ice Thickness:
Wind Speed with Ice:
Service Wind Speed:

B
1.5 in
50 mph
60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Floyation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)			
					3	fujitsu	TA08025-B604		
		3	fujitsu	TA08025-B605					
99.0	99.0	3	jma wireless	MX08FRO665-21 w/ Mount Pipe	1	1-1/2			
		1	raycap	RDIDC-9181-PF-48					
		1	tower mounts	Commscope MC-PK8-DSH					

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)			
	159.0	1	dbspectra	DS4C06F36D-D					
		3	ericsson	AIR 32 B2A/B66AA w/ Mount Pipe					
		3	ericsson	AIR6449 B41 w/ Mount Pipe					
		3	ericsson	ERICSSON AIR 21 B2P w/ Mount Pipe					
	150.0	3	ericsson	KRY 112 144/1					
148.0		150.0	3	ericsson	RADIO 4449 B71 B85A_ T-MOBILE	12 2	1-5/8 7/8		
		3	ericsson	RRUS 4415 B25					
						3	rfs celwave	APXVAARR24_43-U-NA20_ T-MOBILE w/ Mount Pipe	
		1	tower mounts	Pipe Mount [PM 601-1]					
	1 tower mounts	tower mounts	Platform Mount [LP 301-1_KCKR]						
		1	tower mounts	Side Arm Mount [SO 102-3]					
140.0	140.0	3	cci antennas	HPA-65R-BUU-H6 w/ Mount Pipe	12	1-5/8			
140.0	140.0	3	ericsson	ericsson RRUS 11	2	7/16 3/8			
		3	ericsson	RRUS 32 B2	'	0,0			

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Model Manufacturer		Number of Feed Lines	Feed Line Size (in)
		6	powerwave technologies	7770.00 w/ Mount Pipe		
		6	powerwave technologies	LGP21401		
		1	raycap	DC6-48-60-18-8F		
		1	tower mounts	Platform Mount [LP 304-1_HR-1]		
	132.0	3	alcatel lucent	RRH2X60-AWS		
	130.0	4	alcatel lucent	RRH2X60-700		
		3	alcatel lucent	RRH2X60-PCS		
130.0		6	commscope	SBNHH-1D65B w/ Mount Pipe	14	1-5/8
		6	decibel	DB846F65ZAXY w/ Mount Pipe		
		2	rfs celwave	DB-T1-6Z-8AB-0Z		
		1	tower mounts	Platform Mount [LP 304-1]		
		1	kathrein	800 10251 w/ Mount Pipe		7/0
124.0	124.0	24.0 1 radiowaves HP2-4.7NS	1 2	7/8 11/32		
		1	tower mounts	Side Arm Mount [SO 701-1]		11/02
		3	kathrein	800 10252 w/ Mount Pipe		
113.0	113.0	1	tower mounts	Side Arm Mount [SO 102-3]	3	7/8
		1	tower mounts	T-Arm Mount [TA 702-1]		

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	2354009	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	2354010	CCISITES
4-TOWER MANUFACTURER DRAWINGS	2354011	CCISITES

3.1) Analysis Method

tnxTower (version 8.0.9.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

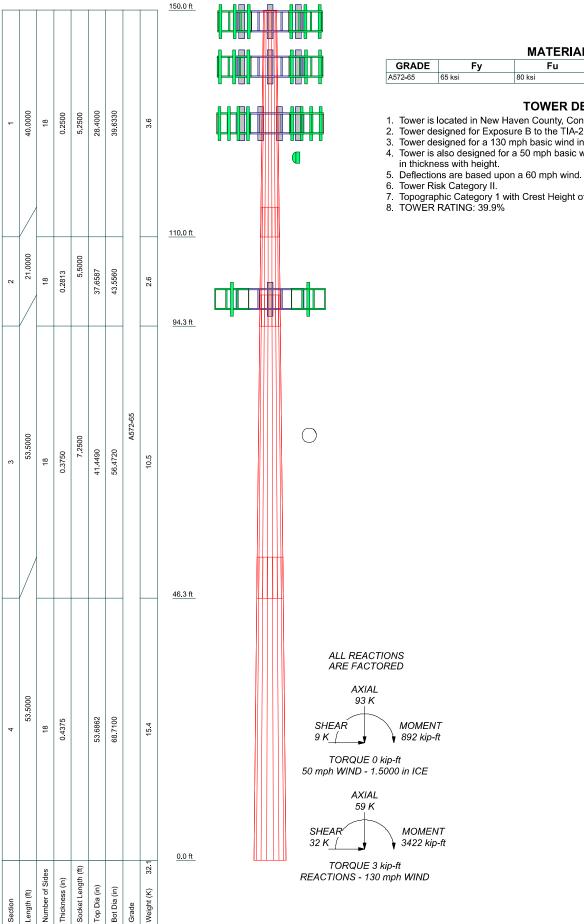
Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element		SF*P_allow (K)	% Capacity	Pass / Fail
L1	150 - 110	Pole	TP39.633x28.4x0.25	1	-15.6982	1847.6954	26.6	Pass
L2	110 - 94.25	Pole	TP43.556x37.6587x0.2813	2	-19.5062	2288.2019	33.0	Pass
L3	94.25 - 46.25	Pole	TP56.472x41.449x0.375	3	-36.3375	3952.4728	38.5	Pass
L4	46.25 - 0	Pole	TP68.71x53.6862x0.4375	4	-59.3270	5823.3942	39.9	Pass
							Summary	
						Pole (L4)	39.9	Pass
						Rating =	39.9	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC5

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	34.2	Pass
1	Base Plate	0	29.0	Pass
1	Base Foundation (Structure)	0	42.6	Pass
1	Base Foundation (Soil Interaction)	0	32.2	Pass

Structure Rating (max from all components) =	42.6%
--	-------


Notes:

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

¹⁾ See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the % capacity consumed.

APPENDIX A TNXTOWER OUTPUT

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu	
Δ572-65	65 kei	80 kei				

TOWER DESIGN NOTES

- Tower is located in New Haven County, Connecticut.
 Tower designed for Exposure B to the TIA-222-H Standard.
- Tower designed for a 130 mph basic wind in accordance with the TIA-222-H Standard.
- Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.

- 7. Topographic Category 1 with Crest Height of 0.0000 ft 8. TOWER RATING: 39.9%

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower is located in New Haven County, Connecticut.
- Tower base elevation above sea level: 133.0000 ft.
- Basic wind speed of 130 mph.
- Risk Category II.
- Exposure Category B.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.0000 ft.
- Nominal ice thickness of 1.5000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56.0000 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50.0000 °F.
- Deflections calculated using a wind speed of 60 mph.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: Kes(Fw) = 0.95, Kes(ti) = 0.85.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- ✓ Use Code Safety Factors Guys Escalate Ice
 Always Use Max Kz

Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Špans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
- Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination

Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

 ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption

Poles

- ✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets
- ✓ Pole Without Linear Attachments
 Pole With Shroud Or No
 Appurtenances
 Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	
L1	150.0000-	40.0000	5.2500	18	28.4000	39.6330	0.2500	1.0000	A572-65
	110.0000								(65 ksi)
L2	110.0000-	21.0000	5.5000	18	37.6587	43.5560	0.2813	1.1250	A572-65
	94.2500								(65 ksi)
L3	94.2500-	53.5000	7.2500	18	41.4490	56.4720	0.3750	1.5000	A572-65
	46.2500								(65 ksi)
L4	46.2500-	53.5000		18	53.6862	68.7100	0.4375	1.7500	À572-65
	0.0000								(65 ksi)

Section	Tip Dia.	Area	1	r	С	I/C	J	It/Q	W	w/t
	in	in²	in⁴	in	in	in³	in⁴	in²	in	
L1	28.7995	22.3370	2236.2460	9.9932	14.4272	155.0021	4475.4345	11.1706	4.5584	18.234
	40.2058	31.2504	6123.6557	13.9810	20.1336	304.1516	12255.369 1	15.6282	6.5354	26.142
L2	39.6933	33.3664	5889.3155	13.2690	19.1306	307.8479	11786.380 3	16.6863	6.1329	21.806
	44.1845	38.6308	9139.8824	15.3625	22.1264	413.0750	18291.791 2	19.3191	7.1709	25.496
L3	43.5988	48.8883	10420.184 2	14.5813	21.0561	494.8779	20854.079 5	24.4488	6.6350	17.693
	57.2853	66.7695	26545.722 5	19.9144	28.6878	925.3322	53126.374 5	33.3911	9.2791	24.744
L4	56.5142	73.9424	26487 <u>.</u> 969 4	18.9033	27.2726	971.2310	53010.792 3	36.9782	8.6788	19.837
	69.7025	94.8049	55828.999 9	24.2367	34.9047	1599.4703	111731.46 11	47.4115	11,3230	25.881

Tower Elevation	Gusset Area	Gusset Thickness	Gusset Grade Adjust. Factor A _f	Adjust. Factor	Weight Mult.	Double Angle Stitch Bolt	Double Angle Stitch Bolt	Double Angle Stitch Bolt
Lievation	(per face)	HIICKHESS	A_f	A _r		Spacing	Spacing	Spacing
	,			,		Diagonals	Horizontals	Redundants
ft	ft²	in				in	in	in
L1 150.0000-			1	1	1			
110.0000								
L2 110.0000-			1	1	1			
94.2500								
L3 94.2500-			1	1	1			
46.2500								
L4 46.2500-			1	1	1			
0.0000								

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Total Number	Number Per Row			Perimete r	Weight
	Leg	Ornela	Torque	Туре	ft	rvarriber	7 CI NOW	in	r	,	plf
			Calculation						in	in	
**											

Feed Line/Linear Appurtenances - Entered As Area

Description	Face	Allow	Exclude	Componen	Placement	Total	$C_A A_A$	Weight
	or	Shield	From	t		Number		
	Leg		Torque	Type	ft		ft²/ft	plf
			Calculation					

	or	Allow Shield	Exclude From	Componen t	Placement	Total Number		$C_A A_A$	Weight
1	Leg	Omora	Torque Calculation	Type	ft	rumoor		ft²/ft	plf
Safety Line 3/8	С	No	No	CaAa (Out	150.0000 -	1	No Ice	0.0375	0.2200
				Of Face)	0.0000		1/2" I ce	0.1375	0.7500
							1" I ce	0.2375	1.2800
							2" I ce	0.4375	2.3400
5/8 rod/step	С	No	No	CaAa (Out	150.0000 -	1	No Ice	0.0200	0.2740
				Of Face)	0.0000		1/2" Ice	0.1200	0.7016
							1" I ce	0.2200	1.7401
							2" I ce	0.4200	5.6496
**									
LCF158-50A(1-	С	No	No	Inside Pole	148.0000 -	12	No Ice	0.0000	0.8000
5/8)					0.0000		1/2" I ce	0.0000	0.8000
,							1" I ce	0.0000	0.8000
							2" I ce	0.0000	0.8000
LDF5-50A(7/8)	С	No	No	Inside Pole	148.0000 -	2	No Ice	0.0000	0.3300
(0.0000		1/2" Ice	0.0000	0.3300
							1" I ce	0.0000	0.3300
							2" Ice	0.0000	0.3300
**									
AVA7-50(1-5/8)	С	No	No	Inside Pole	140.0000 -	12	No Ice	0.0000	0.7000
					0.0000		1/2" Ice	0.0000	0.7000
							1" Ice	0.0000	0.7000
							2" I ce	0.0000	0.7000
WR-VG122ST-	С	No	No	Inside Pole	140,0000 -	2	No Ice	0.0000	0.1410
BRDA(7/16)	0	140	110	moide i die	0.0000	_	1/2" I ce	0.0000	0.1410
B(B)((1110)					0.0000		1" Ice	0.0000	0.1410
							2" I ce	0.0000	0.1410
FB-L98B-002-	С	No	No	Inside Pole	140,0000 -	1	No Ice	0.0000	0.0586
75000(3/8)	C	NO	NO	maide i die	0.0000		1/2" Ice	0.0000	0.0586
75000(3/6)					0.0000		1" Ice	0.0000	0.0586
							2" Ice	0.0000	0.0586
**							2 ice	0.0000	0.0360
AVA7-50(1-5/8)	С	No	No	Inside Pole	130,0000 -	14	No Ice	0.0000	0.7000
AVA1-30(1-3/0)	C	NO	NO	maide i die	0.0000	14	1/2" I ce	0.0000	0.7000
					0.0000		1" Ice	0.0000	0.7000
							2" Ice	0,0000	0.7000
**							2 ICE	0.0000	0.7000
LDF5-50A(7/8)	С	No	No	Inside Pole	124,0000 -	1	No Ice	0.0000	0.3300
LDI 0 00A(170)	0	140	140	maide i die	0.0000	•	1/2" I ce	0.0000	0.3300
					0.0000		1" Ice	0.0000	0.3300
							2" Ice	0.0000	0.3300
7921A(11/32)	С	No	No	Inside Pole	124,0000 -	2	No Ice	0.0000	0.5000
1921A(11/32)	C	NO	NO	Inside Fole	0.0000	2	1/2" I ce	0.0000	0.5000
					0.0000		1" Ice	0.0000	0.5000
							2" Ice		0.5000
**							∠ ice	0.0000	0.3000
LDF5-50A(7/8)	С	No	No	Inside Pole	113.0000 -	3	No Ice	0.0000	0.3300
LDI 3-30A(110)	C	INU	INO	moide Fole	0.0000	S	1/2" I ce	0.0000	0.3300
					0.0000		1/2 Ice 1" Ice	0.0000	0.3300
**							2" I ce	0.0000	0.3300
CU12PSM9P6XXX	С	No	No	Inside Pole	99.0000 -	1	No Ice	0.0000	2.3500
(1-1/2)	C	INO	INO	maide Fole	0.0000	į	1/2" I ce	0.0000	2.3500
(1-1/2)					0.0000				
							1" Ice 2" Ice	0.0000	2.3500
							Z ICE	0.0000	2.3500

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_{\digamma}	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation				In Face	Out Face	
n	ft		ft²	ft²	ft ²	ft ²	K
L1	150.0000-	Α	0.000	0.000	0.000	0.000	0.0000

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation				In Face	Out Face	
n	ft		ft ²	ft²	ft ²	ft ²	K
	110.0000	В	0.000	0.000	0.000	0.000	0.0000
		С	0.000	0.000	0.000	2.300	0.8894
L2	110.0000-	Α	0.000	0.000	0.000	0.000	0.0000
	94.2500	В	0.000	0.000	0.000	0.000	0.0000
		С	0.000	0.000	0.000	0.906	0.5091
L3	94.2500-46.2500	Α	0.000	0.000	0.000	0.000	0.0000
		В	0.000	0.000	0.000	0.000	0.0000
		С	0.000	0.000	0.000	2.760	1.6303
L4	46.2500-0.0000	Α	0.000	0.000	0.000	0.000	0.0000
		В	0.000	0.000	0.000	0.000	0.0000
		С	0.000	0.000	0.000	2.659	1.5709

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	
n	ft	Leg	in	ft ²	ft ²	ft ²	ft ²	K
L1	150.0000-	Α	1.461	0.000	0.000	0.000	0.000	0.0000
	110.0000	В		0.000	0.000	0.000	0.000	0.0000
		С		0.000	0.000	0.000	25.682	1.0822
L2	110.0000-	Α	1.427	0.000	0.000	0.000	0.000	0.0000
	94.2500	В		0.000	0.000	0.000	0.000	0.0000
		С		0.000	0.000	0.000	10.112	0.5850
L3	94.2500-46.2500	Α	1.374	0.000	0.000	0.000	0.000	0.0000
		В		0.000	0.000	0.000	0.000	0.0000
		С		0.000	0.000	0.000	30.164	1.8535
L4	46.2500-0.0000	Α	1.227	0.000	0.000	0.000	0.000	0.0000
		В		0.000	0.000	0.000	0.000	0.0000
		С		0.000	0.000	0.000	28.080	1.7737

Feed Line Center of Pressure

Section	Elevation	CP _X	CPz	CP _X	CPz
				Ice	Ice
	ft	in	in	in	in
L1	150.0000-	-0.4532	0.2616	-2.3220	1.3406
	110.0000				
L2	110.0000-94.2500	-0.4556	0.2631	-2.4208	1.3977
L3	94.2500-46.2500	-0.4576	0.2642	-2.4586	1.4195
L4	46.2500-0.0000	-0.4596	0.2653	-2.4718	1.4271

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert		£4		£ 12	£ 12	V
			ft		ft		ft ²	ft ²	K
			ft	0					
			ft						
Lighting Rod 5/8" x 2'	С	From Leg	0.0000	0.0000	150.0000	No Ice	0.1250	0.1250	0.0100
			0.0000			1/2"	0.2783	0.2783	0.0114
			1.0000			Ice	0.4098	0.4098	0.0143
						1" I ce	0.7005	0.7005	0.0250

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	۰	ft		ft²	ft²	К
**						2" I ce			
DS4C06F36D-D	Α	From Leg	4.0000 0.0000 11.0000	0.0000	148.0000	No Ice 1/2" Ice 1" Ice 2" Ice	5.8200 7.7933 9.7833 13.8133	5.8200 7.7933 9.7833 13.8133	0.0500 0.0919 0.1461 0.2920
Pipe Mount [PM 601-1]	Α	From Leg	0.5000 0.0000 2.0000	0.0000	148.0000	No Ice 1/2" Ice 1" Ice 2" Ice	1.3200 1.5800 1.8400 2.4000	1.3200 1.5800 1.8400 2.4000	0.0650 0.0775 0.0930 0.1338
Side Arm Mount [SO 102- 3]	С	None		0.0000	148.0000	No Ice 1/2" Ice 1" Ice 2" Ice	3.6000 4.1800 4.7500 5.9000	3.6000 4.1800 4.7500 5.9000	0.0750 0.1050 0.1350 0.1950
AIR 32 B2A/B66AA w/ Mount Pipe	Α	From Leg	4.0000 0.0000 2.0000	0.0000	148.0000	No Ice 1/2" Ice 1" Ice 2" Ice	3.7600 4.1200 4.4800 5.2400	3.1500 3.4900 3.8400 4.5800	0.1937 0.2519 0.3195 0.4845
AIR 32 B2A/B66AA w/ Mount Pipe	В	From Leg	4.0000 0.0000 2.0000	0.0000	148.0000	No Ice 1/2" Ice 1" Ice 2" Ice	3.7600 4.1200 4.4800 5.2400	3.1500 3.4900 3.8400 4.5800	0.1937 0.2519 0.3195 0.4845
AIR 32 B2A/B66AA w/ Mount Pipe	С	From Leg	4.0000 0.0000 2.0000	0.0000	148.0000	No Ice 1/2" Ice 1" Ice 2" Ice	3.7600 4.1200 4.4800 5.2400	3.1500 3.4900 3.8400 4.5800	0.1937 0.2519 0.3195 0.4845
AIR6449 B41 w/ Mount Pipe	Α	From Leg	4.0000 0.0000 2.0000	0.0000	148.0000	No Ice 1/2" Ice 1" Ice 2" Ice	5.1800 5.5900 6.0100 6.9000	2.7200 3.0500 3.3900 4.1300	0.1177 0.1636 0.2164 0.3441
AIR6449 B41 w/ Mount Pipe	В	From Leg	4.0000 0.0000 2.0000	0.0000	148.0000	No Ice 1/2" Ice 1" Ice 2" Ice	5.1800 5.5900 6.0100 6.9000	2.7200 3.0500 3.3900 4.1300	0.1177 0.1636 0.2164 0.3441
AIR6449 B41 w/ Mount Pipe	С	From Leg	4.0000 0.0000 2.0000	0.0000	148.0000	No Ice 1/2" Ice 1" Ice 2" Ice	5.1800 5.5900 6.0100 6.9000	2.7200 3.0500 3.3900 4.1300	0.1177 0.1636 0.2164 0.3441
ERICSSON AIR 21 B2P w/ Mount Pipe	Α	From Leg	4.0000 0.0000 2.0000	0.0000	148.0000	No Ice 1/2" Ice 1" Ice	3.1400 3.4500 3.7600 4.4200	2.5800 2.8800 3.1800 3.8200	0.1034 0.1544 0.2142 0.3617
ERICSSON AIR 21 B2P w/ Mount Pipe	В	From Leg	4.0000 0.0000 2.0000	0.0000	148.0000	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	3.1400 3.4500 3.7600 4.4200	2.5800 2.8800 3.1800 3.8200	0.1034 0.1544 0.2142 0.3617
ERICSSON AIR 21 B2P w/ Mount Pipe	С	From Leg	4.0000 0.0000 2.0000	0.0000	148.0000	No Ice 1/2" Ice 1" Ice 2" Ice	3.1400 3.4500 3.7600 4.4200	2.5800 2.8800 3.1800 3.8200	0.1034 0.1544 0.2142 0.3617
APXVAARR24_43-U- NA20_T-MOBILE w/ Mount	Α	From Leg	4.0000 0.0000	0.0000	148.0000	No Ice 1/2"	14.6900 15.4600	6.8700 7.5500	0.1862 0.3147

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C_AA_A Side	Weight
			Vert ft ft ft	۰	ft		ft ²	ft²	К
Pipe			2.0000			Ice 1" Ice	16.2300 17.8200	8.2500 9.6700	0.4577 0.7882
APXVAARR24_43-U- NA20 T-MOBILE w/ Mount	В	From Leg	4.0000 0.0000	0.0000	148.0000	2" Ice No Ice 1/2"	14.6900 15.4600	6.8700 7.5500	0.1862 0.3147
Pipe			2.0000			lce 1" lce 2" lce	16.2300 17.8200	8.2500 9.6700	0.4577 0.7882
APXVAARR24_43-U- NA20_T-MOBILE w/ Mount Pipe	С	From Leg	4.0000 0.0000 2.0000	0.0000	148.0000	No Ice 1/2" Ice 1" Ice	14.6900 15.4600 16.2300 17.8200	6.8700 7.5500 8.2500 9.6700	0.1862 0.3147 0.4577 0.7882
(2) KRY 112 144/1	Α	From Leg	4.0000	0.0000	148.0000	2" Ice No Ice	0.3500	0.1750	0.7662
(=)	•		0.0000 2.0000			1/2" Ice 1" Ice 2" Ice	0.4259 0.5093 0.6981	0.2343 0.3009 0.4565	0.0142 0.0186 0.0319
KRY 112 144/1	В	From Leg	4.0000 0.0000 2.0000	0.0000	148.0000	No Ice 1/2" Ice 1" Ice	0.3500 0.4259 0.5093 0.6981	0.1750 0.2343 0.3009 0.4565	0.0110 0.0142 0.0186 0.0319
(2) RADIO 4449 B71	Α	From Leg	4.0000	0.0000	148.0000	2" Ice No Ice	1.9701	1.5865	0.0732
` B85A_T-MOBILE		· ·	0.0000 2.0000			1/2" Ice 1" Ice 2" Ice	2.1466 2.3306 2.7207	1.7488 1.9185 2.2800	0.0930 0.1156 0.1704
RADIO 4449 B71 B85A_T- MOBILE	В	From Leg	4.0000 0.0000 2.0000	0.0000	148.0000	No Ice 1/2" Ice 1" Ice	1.9701 2.1466 2.3306 2.7207	1.5865 1.7488 1.9185 2.2800	0.0732 0.0930 0.1156 0.1704
RRUS 4415 B25	Α	From Leg	4.0000 0.0000 2.0000	0.0000	148.0000	2" Ice No Ice 1/2" Ice 1" Ice	1.6444 1.8044 1.9719 2.3292	0.6788 0.7911 0.9129 1.1834	0.0440 0.0564 0.0712 0.1087
RRUS 4415 B25	В	From Leg	4.0000 0.0000 2.0000	0.0000	148.0000	2" Ice No Ice 1/2" Ice 1" Ice	1.6444 1.8044 1.9719 2.3292	0.6788 0.7911 0.9129 1.1834	0.0440 0.0564 0.0712 0.1087
RRUS 4415 B25	С	From Leg	4.0000 0.0000 2.0000	0.0000	148.0000	2" Ice No Ice 1/2" Ice	1.6444 1.8044 1.9719	0.6788 0.7911 0.9129	0.0440 0.0564 0.0712
Platform Mount [LP 301- 1_KCKR]	С	None		0.0000	148.0000	1" Ice 2" Ice No Ice 1/2"	2.3292 35.0300 44.4600	1.1834 35.0300 44.4600	0.1087 1.8635 2.5158
**						Ice 1" Ice 2" Ice	53.7200 72.2900	53.7200 72.2900	3.3259 5.4239
HPA-65R-BUU-H6 w/ Mount Pipe	Α	From Leg	4.0000 0.0000 0.0000	0.0000	140.0000	No Ice 1/2" Ice 1" Ice 2" Ice	9.2200 9.9800 10.7600 12.3600	6.2500 6.9600 7.7000 9.2200	0.0736 0.1434 0.2242 0.4201
HPA-65R-BUU-H6 w/ Mount Pipe	В	From Leg	4.0000 0.0000 0.0000	0.0000	140.0000	No Ice 1/2" Ice 1" Ice	9.2200 9.9800 10.7600 12.3600	6.2500 6.9600 7.7000 9.2200	0.0736 0.1434 0.2242 0.4201
HPA-65R-BUU-H6 w/	С	From Leg	4.0000	0.0000	140.0000	2" Ice No Ice	9.2200	6.2500	0.0736

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	۰	ft		ft ²	ft²	K
Mount Pipe			0.0000			1/2"	9.9800	6.9600	0.1434
·			0.0000			Ice	10.7600	7.7000	0.2242
						1" Ice 2" Ice	12.3600	9.2200	0.4201
(2) 7770.00 w/ Mount Pipe	Α	From Leg	4.0000	0.0000	140.0000	No Ice	5.7460	4.2543	0.0554
			0.0000			1/2"	6.1791	5.0137	0.1028
			0.0000			Ice 1" Ice 2" Ice	6.6067 7.4880	5.7109 7.1553	0.1566 0.2866
(2) 7770.00 w/ Mount Pipe	В	From Leg	4.0000	0.0000	140.0000	No Ice	5.7460	4.2543	0.0554
(2) 7770.00 W/ Wodine 1 Ipo		r rom Log	0.0000	0.0000	110.0000	1/2"	6.1791	5.0137	0.1028
			0.0000			Ice	6.6067	5.7109	0.1566
						1" Ice	7.4880	7.1553	0.2866
						2" Ice			
(2) 7770.00 w/ Mount Pipe	С	From Leg	4.0000	0.0000	140.0000	No Ice	5.7460	4.2543	0.0554
, ,		_	0.0000			1/2"	6.1791	5.0137	0.1028
			0.0000			Ice	6.6067	5.7109	0.1566
						1" lce 2" lce	7.4880	7.1553	0.2866
RRUS 11	Α	From Leg	4.0000	0.0000	140.0000	No Ice	2.7845	1.1872	0.0476
			0.0000			1/2"	2.9919	1.3342	0.0684
			0.0000			Ice	3.2066	1.4897	0.0923
DD110.44	_		4 0000		4.40.0000	1" Ice 2" Ice	3.6584	1.8326	0.1498
RRUS 11	В	From Leg	4.0000	0.0000	140.0000	No Ice	2.7845	1.1872	0.0476
			0.0000			1/2"	2.9919	1.3342	0.0684
			0.0000			Ice	3.2066	1.4897	0.0923
DDU0.44	0		4.0000	0.0000	440,0000	1" Ice 2" Ice	3.6584	1.8326	0.1498
RRUS 11	С	From Leg	4.0000	0.0000	140.0000	No Ice	2.7845	1.1872	0.0476
			0.0000			1/2"	2.9919	1.3342	0.0684
			0.0000			Ice 1" Ice 2" Ice	3,2066 3,6584	1.4897 1.8326	0.0923 0.1498
RRUS 32 B2	Α	From Leg	4.0000	0.0000	140.0000	No Ice	2.7313	1.6681	0.0529
14.00 02 02	, ,	110111 209	0.0000	0.0000	1101000	1/2"	2.9531	1.8552	0.0740
			0.0000			lce	3.1823	2.0493	0.0982
			0.0000			1" Ice	3.6628	2.4585	0.1571
						2" Ice			
RRUS 32 B2	В	From Leg	4.0000	0.0000	140.0000	No Ice	2.7313	1.6681	0.0529
			0.0000			1/2"	2.9531	1.8552	0.0740
			0.0000			ce	3.1823	2.0493	0.0982
						1" I ce	3.6628	2.4585	0.1571
						2" I ce			
RRUS 32 B2	С	From Leg	4.0000	0.0000	140.0000	No Ice	2.7313	1.6681	0.0529
			0.0000			1/2"	2.9531	1.8552	0.0740
			0.0000			Ice	3.1823	2.0493	0.0982
						1" Ice 2" Ice	3.6628	2.4585	0.1571
(2) LGP21401	Α	From Leg	4.0000	0.0000	140.0000	No Ice	1.1040	0.2070	0.0141
			0.0000			1/2"	1.2388	0.2738	0.0213
			0.0000			Ice	1.3810	0.3475	0.0303
						1" Ice	1.6877	0.5208	0.0549
(0) 0004404	_		4.0000	0.0000	4.40.0000	2" Ice	4 4040	0.0070	0.0444
(2) LGP21401	В	From Leg	4.0000	0.0000	140.0000	No Ice	1.1040	0.2070	0.0141
			0.0000			1/2"	1.2388	0.2738	0.0213
			0.0000			Ice 1" Ice	1.3810 1.6877	0.3475	0.0303
(2) 1 2	_					2" I ce		0.5208	0.0549
(2) LGP21401	С	From Leg	4.0000	0.0000	140.0000	No Ice	1.1040	0.2070	0.0141
			0.0000			1/2"	1.2388	0.2738	0.0213
			0.0000			Ice	1.3810	0.3475	0.0303
						1" Ice	1.6877	0.5208	0.0549
DC6 40 00 40 05	Α.	Гиа /	4.0000	0.0000	140 0000	2" Ice	4 0447	4.0447	0.0000
DC6-48-60-18-8F	Α	From Leg	4.0000	0.0000	140.0000	No Ice	1.2117	1.2117	0.0200

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C₄A₄ Front	C _A A _A Side	Weight
			Vert ft ft ft	٥	ft		ft ²	ft ²	К
			0.0000			1/2"	1.8924	1.8924	0.0420
			0.0000			Ice 1" Ice 2" Ice	2.1051 2.5703	2.1051 2.5703	0.0668 0.1256
Platform Mount [LP 304- 1_HR-1]	С	None		0.0000	140.0000	No Ice 1/2"	21.4100 26.6200	21.4100 26.6200 31.6600	1.6047 2.0557
						Ice 1" Ice 2" Ice	31.6600 41.3800	41.3800	2.5979 3.9584
** (2) SBNHH-1D65B w/	Α	From Leg	4.0000	0.0000	130.0000	No Ice	4.0900	3.3000	0.0665
Mount Pipe			0.0000			1/2"	4.4900	3.6800	0.1297
			0.0000			Ice 1" Ice 2" Ice	4.8900 5.7200	4.0700 4.8700	0.2037 0.3859
(2) SBNHH-1D65B w/	В	From Leg	4.0000	0.0000	130.0000	No Ice	4.0900	3.3000	0.0665
Mount Pipe		J	0.0000			1/2"	4.4900	3.6800	0.1297
			0.0000			Ice 1" Ice	4.8900	4.0700	0.2037
						2" Ice	5.7200	4.8700	0.3859
(2) SBNHH-1D65B w/	С	From Leg	4.0000	0.0000	130.0000	No Ice	4.0900	3.3000	0.0665
Mount Pipe			0.0000			1/2"	4.4900	3.6800	0.1297
			0.0000			Ice 1" Ice 2" Ice	4.8900 5.7200	4.0700 4.8700	0.2037 0.3859
(2) DB846F65ZAXY w/	Α	From Leg	4.0000	0.0000	130.0000	No Ice	6.1000	6.8100	0.0577
Mount Pipe			0.0000			1/2"	6.8000	7.5200	0.1190
			0.0000			Ice 1" Ice 2" Ice	7.5100 8.9800	8.2400 9.7300	0.1911 0.3688
(2) DB846F65ZAXY w/	В	From Leg	4.0000	0.0000	130.0000	No Ice	6.1000	6.8100	0.0577
Mount Pipe			0.0000			1/2"	6.8000	7.5200	0.1190
			0.0000			Ice 1" Ice 2" Ice	7.5100 8.9800	8.2400 9.7300	0.1911 0.3688
(2) DB846F65ZAXY w/	С	From Leg	4.0000	0.0000	130.0000	No Ice	6.1000	6.8100	0.0577
Mount Pipe			0.0000			1/2"	6.8000	7.5200	0.1190
			0.0000			Ice 1" Ice 2" Ice	7.5100 8.9800	8.2400 9.7300	0.1911 0.3688
RRH2X60-700	Α	From Leg	4.0000	0.0000	130.0000	No Ice	3.5002	1.8157	0.0600
			0.0000			1/2"	3.7609 4.0285	2.0519	0.0827
			0.0000			Ice 1" Ice 2" Ice	4.0285	2.2894 2.7852	0.1091 0.1734
(2) RRH2X60-700	В	From Leg	4.0000	0.0000	130.0000	No Ice	3.5002	1.8157	0.0600
			0.0000			1/2"	3.7609 4.0285	2.0519 2.2894	0.0827 0.1091
			0.0000			Ice 1" Ice 2" Ice	4.0285	2.7852	0.1091
RRH2X60-700	С	From Leg	4.0000	0.0000	130.0000	No Ice	3.5002	1.8157	0.0600
			0.0000			1/2"	3.7609	2.0519	0.0827
			0.0000			Ice 1" Ice 2" Ice	4.0285 4.5849	2.2894 2.7852	0.1091 0.1734
RRH2X60-AWS	Α	From Leg	4.0000	0.0000	130.0000	No Ice	3.5002	1.8157	0.0600
			0.0000			1/2"	3.7609	2.0519	0.0827
			2.0000			Ice 1" Ice 2" Ice	4.0285 4.5849	2.2894 2.7852	0.1091 0.1734
RRH2X60-AWS	В	From Leg	4.0000	0.0000	130.0000	No Ice	3.5002	1.8157	0.0600
			0.0000			1/2"	3.7609	2.0519	0.0827
			2.0000			Ice 1" Ice	4.0285 4.5849	2.2894 2.7852	0.1091 0.1734

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	۰	ft		ft²	ft²	К
RRH2X60-AWS	С	From Leg	4.0000 0.0000 2.0000	0.0000	130.0000	No Ice 1/2" Ice 1" Ice	3.5002 3.7609 4.0285 4.5849	1.8157 2.0519 2.2894 2.7852	0.0600 0.0827 0.1091 0.1734
RRH2X60-PCS	Α	From Leg	4.0000 0.0000 0.0000	0.0000	130.0000	2" Ice No Ice 1/2" Ice 1" Ice	2.2000 2.3926 2.5926 3.0148	1.7233 1.9015 2.0870 2.4804	0.0550 0.0754 0.0987 0.1552
RRH2X60-PCS	В	From Leg	4.0000 0.0000 0.0000	0.0000	130.0000	2" Ice No Ice 1/2" Ice 1" Ice	2.2000 2.3926 2.5926 3.0148	1.7233 1.9015 2.0870 2.4804	0.0550 0.0754 0.0987 0.1552
RRH2X60-PCS	С	From Leg	4.0000 0.0000 0.0000	0.0000	130.0000	2" Ice No Ice 1/2" Ice 1" Ice	2.2000 2.3926 2.5926 3.0148	1.7233 1.9015 2.0870 2.4804	0.0550 0.0754 0.0987 0.1552
(2) DB-T1-6Z-8AB-0Z	С	From Leg	4.0000 0.0000 0.0000	0.0000	130.0000	2" Ice No Ice 1/2" Ice 1" Ice	4.8000 5.0704 5.3481 5.9259	2.0000 2.1926 2.3926 2.8148	0.0440 0.0801 0.1202 0.2130
Platform Mount [LP 304-1]	С	None		0.0000	130.0000	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	17.4900 21.3700 25.2800 33.1700	17.4900 21.3700 25.2800 33.1700	1.3490 1.7089 2.1311 3.1644
** 800 10251 w/ Mount Pipe	В	From Leg	3.0000 0.0000 0.0000	0.0000	124.0000	No Ice 1/2" Ice 1" Ice	4.3564 4.7016 5.0560 5.7920	2.2557 2.7727 3.3064 4.4237	0.0414 0.0750 0.1137 0.2092
Side Arm Mount [SO 701- 1]	В	From Leg	1.5000 0.0000 0.0000	0.0000	124.0000	2" Ice No Ice 1/2" Ice 1" Ice	0.8500 1.1400 1.4300 2.0100	1.6700 2.3400 3.0100 4.3500	0.0650 0.0790 0.0930 0.1210
6' x 2" Mount Pipe	В	From Leg	1.5000 0.0000 0.0000	0.0000	124.0000	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	1.4250 1.9250 2.2939 3.0596	1.4250 1.9250 2.2939 3.0596	0.0220 0.0328 0.0477 0.0903
** (3) 800 10252 w/ Mount Pipe	В	From Leg	3.0000 0.0000 0.0000	0.0000	113.0000	No Ice 1/2" Ice 1" Ice 2" Ice	6.5270 6.9161 7.3149 8.1411	3.6247 4.1379 4.6674 5.7750	0.0420 0.0942 0.1522 0.2882
T-Arm Mount [TA 702-1]	В	From Leg	1.5000 0.0000 0.0000	0.0000	113.0000	No Ice 1/2" Ice 1" Ice	2.3800 2.9000 3.4600 4.7300	1.5800 1.9500 2.3600 3.3700	0.1130 0.1439 0.1832 0.2895
Side Arm Mount [SO 102- 3]	В	None		0.0000	113.0000	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	3.6000 4.1800 4.7500 5.9000	3.6000 4.1800 4.7500 5.9000	0.0750 0.1050 0.1350 0.1950
** MX08FRO665-21 w/ Mount Pipe	Α	From Leg	4.0000 0.0000	0.0000	99.0000	No Ice 1/2"	8.0100 8.5200	4.2300 4.6900	0.1081 0.1943

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
	Leg		Vert ft ft	0	ft		ft²	ft²	К
			0.0000			Ice	9.0400	5.1600	0.2919
						1" Ice 2" Ice	10.1100	6.1200	0.5225
MX08FRO665-21 w/	В	From Leg	4.0000	0.0000	99.0000	No Ice	8.0100	4.2300	0.1081
Mount Pipe			0.0000 0.0000			1/2" I ce	8.5200 9.0400	4.6900 5.1600	0.1943 0.2919
			0,000			1" Ice 2" Ice	10.1100	6.1200	0.5225
MX08FRO665-21 w/	С	From Leg	4.0000	0.0000	99.0000	No Ice	8.0100	4.2300	0.1081
Mount Pipe		Ü	0.0000			1/2"	8.5200	4.6900	0.1943
			0.0000			Ice 1" Ice	9.0400 10.1100	5.1600 6.1200	0.2919 0.5225
						2" Ice	10.1100	0.1200	0.3223
TA08025-B604	Α	From Leg	4.0000	0.0000	99.0000	No Ice	1.9635	0.9811	0.0639
			0.0000 0.0000			1/2" I ce	2.1378 2.3195	1.1117 1.2496	0.0807 0.1001
			0.0000			1" Ice	2.7052	1.5477	0.1479
T100005 B004	_		4.0000	0.0000	00.000	2" Ice	4.0005	0.0044	0.0000
TA08025-B604	В	From Leg	4.0000 0.0000	0.0000	99.0000	No Ice 1/2"	1.9635 2.1378	0.9811 1.1117	0.0639 0.0807
			0.0000			Ice	2.3195	1.2496	0.1001
						1" Ice	2.7052	1.5477	0.1479
TA08025-B604	С	From Leg	4.0000	0.0000	99.0000	2" Ice No Ice	1.9635	0.9811	0.0639
17.00020 2001	Ü	110111 209	0.0000	0.0000	00.000	1/2"	2.1378	1.1117	0.0807
			0.0000			Ice	2.3195	1.2496	0.1001
						1" Ice 2" Ice	2.7052	1.5477	0.1479
TA08025-B605	Α	From Leg	4.0000	0.0000	99.0000	No Ice	1.9635	1.1295	0.0750
			0.0000			1/2"	2.1378	1.2666	0.0930
			0.0000			Ice 1" Ice	2.3195 2.7052	1.4112 1.7225	0.1137 0.1643
						2" Ice			
TA08025-B605	В	From Leg	4.0000 0.0000	0.0000	99.0000	No Ice 1/2"	1.9635 2.1378	1.1295 1.2666	0.0750 0.0930
			0.0000			Ice	2.3195	1.4112	0.1137
						1" Ice	2.7052	1.7225	0.1643
TA08025-B605	С	From Leg	4.0000	0.0000	99.0000	2" Ice No Ice	1.9635	1.1295	0.0750
17.00020 2000	Ū	110111 209	0.0000	010000	3313333	1/2"	2.1378	1.2666	0.0930
			0.0000			Ice	2.3195	1.4112	0.1137 0.1643
						1" Ice 2" Ice	2.7052	1.7225	0.1643
RDIDC-9181-PF-48	Α	From Leg	4.0000	0.0000	99.0000	No Ice	2.3118	1.2931	0.0219
			0.0000 0.0000			1/2" I ce	2.5022 2.7000	1.4479 1.6101	0.0411 0.0633
			0.0000			1" Ice	3.1179	1.9566	0.1170
O MO BKO BOLL	0	NI.		0.0000	00 0000	2" Ice	04.0400	04.0400	4.7400
Commscope MC-PK8-DSH	С	None		0.0000	99.0000	No Ice 1/2"	34.2400 62.9500	34.2400 62.9500	1.7490 2.0994
						Ice	91.6600	91.6600	2.4498
						1" Ice 2" Ice	149.0800	149.0800	3.1506
(2) 8' x 2" Mount Pipe	Α	From Leg	4.0000	0.0000	99.0000	No Ice	1.9000	1.9000	0.0293
()		· ·	0.0000			1/2"	2.7281	2.7281	0.0436
			0.0000			Ice 1" Ice	3.4009 4.3962	3.4009 4.3962	0.0632 0.1189
						2" Ice	7.0302	7.0302	0.1103
(2) 8' x 2" Mount Pipe	В	From Leg	4.0000	0.0000	99.0000	No Ice	1.9000	1.9000	0.0293
			0.0000 0.0000			1/2" I ce	2.7281 3.4009	2.7281 3.4009	0.0436 0.0632
			0.0000			1" Ice	4.3962	4.3962	0.1189
(O) OI v OII Ma Din -	_	Eno	4.0000	0.0000	00 0000	2" Ice	1 0000	1.0000	0.0000
(2) 8' x 2" Mount Pipe	С	From Leg	4.0000 0.0000	0.0000	99.0000	No Ice 1/2"	1.9000 2.7281	1.9000 2.7281	0.0293 0.0436
						- · · -			

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft ft	o	ft		ft²	ft²	K
**			0.0000			Ice 1" Ice 2" Ice	3.4009 4.3962	3.4009 4.3962	0.0632 0.1189

Dishes											
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	0	ft	ft		ft ²	K
HP2-4.7NS	В	Paraboloid w/Shroud (HP)	From Leg	3.0000 0.0000 0.0000	0.0000		124.0000	2.0417	No Ice 1/2" Ice 1" Ice 2" Ice	3.2740 3.5470 3.8190 4.3650	0.0300 0.0500 0.0600 0.1000

Load Combinations

Comb.	Description
No.	'
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp

Comb.	Description
No.	
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Type		Load		Moment	Moment
No.				Comb.	K	kip-ft	kip-ft
L1	150 - 110	Pole	Max Tension	8	0.0000	0.0000	-0.0002
			Max. Compression	26	-33.9876	-1.2379	1.0381
			Max. Mx	8	-15.6982	-402.4046	0.3035
			Max. My	2	-15.7114	-0.3024	400.7640
			Max. Vy	20	-17.0770	400.9750	0.7459
			Max. Vx	2	-16.8899	-0.3024	400.7640
			Max. Torque	8			2.3943
L2	110 - 94.25	Pole	Max Tension	1	0.0000	0.0000	0.0000
			Max. Compression	26	-40.0876	-4.4927	-0.9594
			Max. Mx	8	-19.5094	-692.7943	-2.9986
			Max. My	2	-19.5288	2.2845	684.5212
			Max. Vy	20	-19.5959	690.0073	3.1845
			Max. Vx	2	-19.1999	2.2845	684.5212
			Max. Torque	15			2.9787
L3	94.25 - 46.25	Pole	Max Tension	1	0.0000	0.0000	0.0000
			Max. Compression	26	-63.9711	-4.0649	-0.6857
			Max. Mx	8	-36.3397	_	-12.4265
						1834.6195	
			Max. My	2	-36.3504	13.9728	1811.3861
			Max. Vy	20	-27.0352	1833.6100	13.3856
			Max. Vx	2	-26.6734	13.9728	1811.3861
			Max. Torque	15			2.9210
L4	46.25 - 0	Pole	Max Tension	1	0.0000	0.0000	0.0000
			Max. Compression	26	-92.5319	-3.4798	-1.0235
			Max. Mx	20	-59.3271	3413.9489	24.8772
			Max. My	2	-59.3274	27.4116	3372.4062
			Max. Vý	20	-31.9852	3413.9489	24.8772
			Max, Vx	2	-31.6305	27.4116	3372.4062
			Max. Torque	15			2.7314

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Pole	Max. Vert	26	92.5319	-0.0000	0.0000
	Max. H _x	20	59.3390	31.9631	0.2127
	Max. H _z	2	59.3390	0.2469	31.6086
	Max. M _x	2	3372.4062	0.2469	31.6086
	$Max. M_z$	8	3412.8569	-31.9264	-0.2015

Location	Condition	Gov. Load	Vertical K	Horizontal, X	Horizontal, Z ⊮
		Comb.	K	K	K
	Max. Torsion	15	2.5487	-0.2119	-31.6004
	Min. Vert	17	44.5042	15.7949	-27.2841
	Min. H _x	8	59.3390	-31.9264	-0.2015
	Min. H _z	14	59.3390	-0.2119	-31.6004
	Min. M _x	14	-3371.2875	-0.2119	-31.6004
	Min. M _z	20	-3413.9489	31.9631	0.2127
	Min. Torsion	3	-2.4742	0.2469	31.6086

Tower Mast Reaction Summary

Load Combination	Vertical K	Shear _x K	Shear₂ K	Overturning Moment, M _x	Overturning Moment, M _z	Torque
Dead Only	^ 49.4492	0.0000	0.0000	kip-ft -0.0223	<i>kip-ft</i> -1.4196	kip-ft 0.0000
1.2 Dead+1.0 Wind 0 deg - No Ice	59.3390	-0.2469	-31.6086	-3372.4062	27.4119	2.4711
0.9 Dead+1.0 Wind 0 deg - No Ice	44.5042	-0.2469	-31.6086	-3352,2282	27.7034	2.4742
1.2 Dead+1.0 Wind 30 deg - No Ice	59.3390	15.8227	-27.2680	-2908.2371	-1691.3689	2.3067
0.9 Dead+1.0 Wind 30 deg - No Ice	44.5042	15.8227	-27.2680	-2890.8296	-1680.7990	2.3123
1.2 Dead+1.0 Wind 60 deg - No Ice	59.3390	27.5783	-15.6166	-1664.2678	-2947.9667	1.3201
0.9 Dead+1.0 Wind 60 deg - No Ice	44.5042	27.5783	-15.6166	-1654.2979	-2929.8852	1.3266
1.2 Dead+1.0 Wind 90 deg - No Ice	59.3390	31.9264	0.2015	23.3872	-3412.8569	0.0042
0.9 Dead+1.0 Wind 90 deg - No Ice	44.5042	31.9264	0.2015	23.2643	-3392.0013	0.0099
1.2 Dead+1.0 Wind 120 deg - No Ice	59.3390	27.7385	15.9538	1703.2494	-2966.1199	-1.2244
- No Ice 0.9 Dead+1.0 Wind 120 deg - No Ice	44.5042	27.7385	15.9538	1693.0789	-2947.9386	-1.2211
1.2 Dead+1.0 Wind 150 deg - No Ice	59.3390	16.1377	27.4427	2928.1732	-1727.6027	-2.1253
- No Ice 0.9 Dead+1.0 Wind 150 deg - No Ice	44.5042	16.1377	27.4427	2910.6741	-1716.8299	-2.1252
1.2 Dead+1.0 Wind 180 deg - No Ice	59.3390	0.2119	31.6004	3371.2875	-26.5160	-2.5455
0.9 Dead+1.0 Wind 180 deg - No Ice	44.5042	0.2119	31.6004	3351.1357	-25.9162	-2.5487
1.2 Dead+1.0 Wind 210 deg - No Ice	59.3390	-15.7949	27.2841	2910.2086	1684.2768	-2.3077
0.9 Dead+1.0 Wind 210 deg - No Ice	44.5042	-15.7949	27.2841	2892,8093	1674.6477	-2.3132
1.2 Dead+1.0 Wind 240 deg - No Ice	59.3390	-27.6030	15,5905	1660.8710	2947.5425	-1.2466
0.9 Dead+1.0 Wind 240 deg - No Ice	44.5042	-27.6030	15.5905	1650,9418	2930.3621	-1.2530
1.2 Dead+1.0 Wind 270 deg - No Ice	59.3390	-31.9631	-0.2127	-24.8772	3413.9489	-0.0138
0.9 Dead+1.0 Wind 270 deg - No Ice	44.5042	-31.9631	-0.2127	-24.7262	3393.9855	-0.0194
1.2 Dead+1.0 Wind 300 deg - No Ice	59.3390	-27.7698	-15.9719	-1705.6098	2966.5413	1.2252
0.9 Dead+1.0 Wind 300 deg - No Ice	44.5042	-27.7698	-15.9719	-1695.4066	2949.2555	1.2220
1.2 Dead+1.0 Wind 330 deg - No Ice	59.3390	-16.1658	-27.4688	-2931.5540	1727.6078	2.1357
- No Ice 0.9 Dead+1.0 Wind 330 deg - No Ice	44.5042	-16.1658	-27.4688	-2914.0158	1717.7323	2.1356
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	92.5319 92.5319	0.0000 -0.0325	0.0000 -8.4674	1.0235 -881.6437	-3.4798 0.2390	-0.0001 -0.2124

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	K	K	K	kip-ft ^	kip-ft -	kip-ft
1.2 Dead+1.0 Wind 30	92.5319	4.2390	-7.3199	-761.8446	-445.8721	0.0059
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60	92.5319	7.3610	-4.2103	-437.5246	-771.7216	0.1849
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90	92.5319	8.5074	0.0242	3.8939	-891.3482	0.3184
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	92.5319	7.3776	4.2501	444.2700	-773.5671	0.3826
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	92.5319	4.2747	7.3392	766.1608	-449.9655	0.3443
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	92.5319	0.0261	8.4659	883.5693	-6.7572	0.1976
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	92.5319	-4.2339	7.3229	764.3517	437.8534	-0.0062
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	92.5319	-7.3656	4.2055	439.0229	764.9568	-0.1706
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	92.5319	-8.5141	-0.0263	-2.0382	884.8690	-0.3196
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	92.5319	-7.3834	-4.2534	-442.5788	766.9612	-0.3828
deg+1.0 Ice+1.0 Temp	00 5040	4.0700	70440	7040040	440.0005	0.0405
1.2 Dead+1.0 Wind 330	92.5319	-4.2798	-7.3440	-764.6613	443.2805	-0.3435
deg+1.0 Ice+1.0 Temp	40.4400	0.0405	0.0400	074 0050	4.0500	0.4007
Dead+Wind 0 deg - Service	49.4492	-0.0495	-6.3430	-674.2859	4.3599	0.4967
Dead+Wind 30 deg - Service	49.4492	3.1752	-5.4719	-581.4808	-339.2835	0.4607
Dead+Wind 60 deg - Service Dead+Wind 90 deg - Service	49.4492 49.4492	5.5342 6.4067	-3.1338 0.0404	-332.7684 4.6547	-590.5227 -683.4738	0.2599 -0.0059
Dead+Wind 120 deg - Service	49.4492 49.4492	5.4067 5.5663	3.2015	4.6547 340.5218	-594.1550	-0.0059
Service	49.4492	5.5663	3.2015	340.3210	-394.1330	-0.2327
Dead+Wind 150 deg -	49,4492	3,2384	5,5070	585.4283	-346.5290	-0.4317
Service	49.4492	3.2304	5.5070	303.4203	-340.3290	-0.4317
Dead+Wind 180 deg -	49.4492	0.0425	6.3413	674.0211	-6.4204	-0.5126
Service	43.4432	0.0423	0.5415	074.0211	-0.4204	-0.3120
Dead+Wind 210 deg -	49.4492	-3.1696	5.4752	581.8343	335.6269	-0.4607
Service	43,4432	-3.1030	3,4732	301,0343	333.0209	-0.4007
Dead+Wind 240 deg -	49,4492	-5,5391	3,1286	332,0490	588,1996	-0.2441
Service	40.440 2	0.0001	0.1200	002.0400	000.1000	0.2441
Dead+Wind 270 deg -	49,4492	-6.4141	-0.0427	-4.9938	681.4544	0.0048
Service	.5.1102	V. 1111	3.0 127	1,0000	55111617	3,00 10
Dead+Wind 300 deg -	49.4492	-5.5726	-3.2051	-341.0356	592,0010	0.2527
Service	1011102	3.3.20	3.2301	0.110000	002.0010	3,2321
Dead+Wind 330 deg -	49.4492	-3.2440	-5.5122	-586 1460	344,2910	0.4328
Service			<u>-</u>	_ 5550		5520

Solution Summary

	Sun	n of Applied Force	es		Sum of Reactio	ns	
Load	PX	· · PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.0000	-49.4492	0.0000	0.0000	49.4492	0.0000	0.000%
2	-0.2469	-59.3390	-31.6086	0.2469	59.3390	31,6086	0.000%
3	-0.2469	-44.5042	-31.6086	0.2469	44.5042	31.6086	0.000%
4	15.8227	-59.3390	-27.2680	-15.8227	59.3390	27.2680	0.000%
5	15.8227	-44.5042	-27.2680	-15.8227	44.5042	27.2680	0.000%
6	27.5783	-59.3390	-15.6166	-27.5783	59.3390	15.6166	0.000%
7	27.5783	-44.5042	-15.6166	-27.5783	44.5042	15.6166	0.000%
8	31.9264	-59.3390	0.2015	-31.9264	59.3390	-0.2015	0.000%
9	31.9264	-44.5042	0.2015	-31.9264	44.5042	-0.2015	0.000%
10	27.7385	-59.3390	15.9538	-27.7385	59.3390	-15.9538	0.000%
11	27.7385	-44.5042	15.9538	-27.7385	44.5042	-15.9538	0.000%
12	16.1377	-59.3390	27.4427	-16.1377	59.3390	-27.4427	0.000%
13	16.1377	-44.5042	27.4427	-16.1377	44.5042	-27.4427	0.000%
14	0.2119	-59.3390	31.6004	-0.2119	59.3390	-31.6004	0.000%
15	0.2119	-44.5042	31.6004	-0.2119	44.5042	-31.6004	0.000%
16	-15.7949	-59.3390	27.2841	15.7949	59.3390	-27.2841	0.000%
17	-15.7949	-44.5042	27.2841	15.7949	44.5042	-27.2841	0.000%
18	-27.6030	-59.3390	15.5905	27.6030	59.3390	-15.5905	0.000%

	Sun	n of Applied Force	 9\$		Sum of Reaction	าร	
Load	PX	PY	PZ	PX	PY	PΖ	% Error
Comb.	K	K	K	K	K	K	
19	-27.6030	-44.5042	15.5905	27.6030	44.5042	-15.5905	0.000%
20	-31.9631	-59.3390	-0.2127	31.9631	59.3390	0.2127	0.000%
21	-31.9631	-44.5042	-0.2127	31.9631	44.5042	0.2127	0.000%
22	-27.7698	-59.3390	-15.9719	27.7698	59.3390	15.9719	0.000%
23	-27.7698	-44.5042	-15.9719	27.7698	44.5042	15.9719	0.000%
24	-16.1658	-59.3390	-27.4688	16.1658	59.3390	27.4688	0.000%
25	-16.1658	-44.5042	-27.4688	16.1658	44.5042	27.4688	0.000%
26	0.0000	-92.5319	0.0000	-0.0000	92.5319	0.0000	0.000%
27	-0.0325	-92.5319	-8.4674	0.0325	92.5319	8.4674	0.000%
28	4.2390	-92.5319	-7.3199	-4 .2390	92.5319	7.3199	0.000%
29	7.3610	-92.5319	-4.2103	-7.3610	92.5319	4.2103	0.000%
30	8.5074	-92.5319	0.0242	-8.5074	92.5319	-0.0242	0.000%
31	7.3776	-92.5319	4.2501	-7.3776	92.5319	-4.2501	0.000%
32	4.2747	-92.5319	7.3392	-4.2747	92.5319	-7.3392	0.000%
33	0.0261	-92.5319	8.4659	-0.0261	92.5319	-8.4659	0.000%
34	-4.2339	-92.5319	7.3229	4.2339	92.5319	-7.3229	0.000%
35	-7.3656	-92.5319	4.2055	7.3656	92,5319	-4.2055	0.000%
36	-8.5141	-92.5319	-0.0263	8.5141	92.5319	0.0263	0.000%
37	-7.3834	-92.5319	-4.2534	7.3834	92.5319	4.2534	0.000%
38	-4.2798	-92.5319	-7.3440	4.2798	92.5319	7.3440	0.000%
39	-0.0495	-49.4492	-6.3430	0.0495	49.4492	6.3430	0.000%
40	3.1752	-49.4492	-5.4719	-3 1752	49.4492	5.4719	0.000%
41	5.5342	-49.4492	-3.1338	-5.5342	49.4492	3.1338	0.000%
42	6.4067	-49.4492	0.0404	-6.4067	49.4492	-0.0404	0.000%
43	5.5663	-49.4492	3.2015	-5.5663	49.4492	-3.2015	0.000%
44	3.2384	-49.4492	5.5070	-3.2384	49.4492	-5.5070	0.000%
45	0.0425	-49.4492	6.3413	-0.0425	49.4492	-6.3413	0.000%
46	-3.1696	-49.4492	5.4752	3.1696	49.4492	-5.4752	0.000%
47	-5.5391	-49.4492	3.1286	5.5391	49.4492	-3.1286	0.000%
48	-6.4141	-49.4492	-0.0427	6.4141	49.4492	0.0427	0.000%
49	-5.5726	-49.4492	-3.2051	5.5726	49.4492	3.2051	0.000%
50	-3.2440	-49.4492	-5.5122	3.2440	49.4492	5.5122	0.000%

Non-Linear Convergence Results

	0 10		5: , ,	
Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.0000001	0.00000001
2	Yes	4	0.0000001	0.00042101
3	Yes	4	0.0000001	0.00027896
4	Yes	5	0.0000001	0.00009308
5	Yes	5	0.0000001	0.00004498
6	Yes	5	0.0000001	0.00008322
7	Yes	5	0.0000001	0.00003992
8	Yes	4	0.0000001	0.00011595
9	Yes	4	0.0000001	0.00006501
10	Yes	5	0.0000001	0.00008520
11	Yes	5	0.0000001	0.00004080
12	Yes	5	0.0000001	0.00009565
13	Yes	5	0.0000001	0.00004612
14	Yes	4	0.0000001	0.00053520
15	Yes	4	0.0000001	0.00035515
16	Yes	5	0.0000001	0.00008031
17	Yes	5	0.0000001	0.00003857
18	Yes	5	0.0000001	0.00008911
19	Yes	5	0.0000001	0.00004299
20	Yes	4	0.0000001	0.00014327
21	Yes	4	0.0000001	0.00008524
22	Yes	5	0.0000001	0.00009318
23	Yes	5	0.0000001	0.00004486
24	Yes	5	0.0000001	0.00008333
25	Yes	5	0.0000001	0.00003994
26	Yes	4	0.0000001	0.00000905
27	Yes	5	0.0000001	0.00008452
28	Yes	5	0.0000001	0.00009154

29 Yes 5 0.00000001 0.00009183 30 Yes 5 0.00000001 0.00008592 31 Yes 5 0.00000001 0.00009242 32 Yes 5 0.00000001 0.00009209 33 Yes 5 0.00000001 0.00009209 33 Yes 5 0.00000001 0.0000915 34 Yes 5 0.00000001 0.00009015 35 Yes 5 0.00000001 0.00009028 36 Yes 5 0.00000001 0.00009028 36 Yes 5 0.00000001 0.00009070 38 Yes 5 0.00000001 0.00009070 38 Yes 4 0.00000001 0.00009070 38 Yes 4 0.00000001 0.00009070 38 Yes 4 0.00000001 0.0000961 39 Yes 4 0.00000001 0.0000961 4					
31 Yes 5 0.00000001 0.00009242 32 Yes 5 0.00000001 0.00009209 33 Yes 5 0.00000001 0.00008463 34 Yes 5 0.00000001 0.00009015 35 Yes 5 0.00000001 0.00009028 36 Yes 5 0.00000001 0.00009423 37 Yes 5 0.00000001 0.0000970 38 Yes 5 0.00000001 0.0000970 38 Yes 5 0.00000001 0.0000970 38 Yes 4 0.00000001 0.0000961 39 Yes 4 0.00000001 0.0000961 40 Yes 4 0.00000001 0.00003689 41 Yes 4 0.00000001 0.00003766 43 Yes 4 0.00000001 0.00003766 44 Yes 4 0.00000001 0.00003640 47<	29	Yes	5	0.00000001	0.00009183
32 Yes 5 0.00000001 0.00009209 33 Yes 5 0.00000001 0.00008463 34 Yes 5 0.00000001 0.00009015 35 Yes 5 0.00000001 0.00009028 36 Yes 5 0.00000001 0.00009070 38 Yes 5 0.00000001 0.00009070 38 Yes 5 0.00000001 0.00009070 38 Yes 4 0.00000001 0.00009061 39 Yes 4 0.00000001 0.00002516 40 Yes 4 0.00000001 0.00004659 41 Yes 4 0.00000001 0.00004659 41 Yes 4 0.00000001 0.00001716 43 Yes 4 0.00000001 0.00003766 44 Yes 4 0.00000001 0.00003640 47 Yes 4 0.00000001 0.00004128 <t< td=""><td>30</td><td>Yes</td><td>5</td><td>0.00000001</td><td>0.00008592</td></t<>	30	Yes	5	0.00000001	0.00008592
33 Yes 5 0.00000001 0.00008463 34 Yes 5 0.00000001 0.00009015 35 Yes 5 0.00000001 0.00009028 36 Yes 5 0.00000001 0.00009070 38 Yes 5 0.00000001 0.0009970 38 Yes 5 0.00000001 0.0000961 39 Yes 4 0.00000001 0.00002516 40 Yes 4 0.00000001 0.00004659 41 Yes 4 0.00000001 0.00004659 41 Yes 4 0.00000001 0.00001716 43 Yes 4 0.00000001 0.00003766 44 Yes 4 0.00000001 0.00004786 45 Yes 4 0.00000001 0.00003640 47 Yes 4 0.00000001 0.00004128 48 Yes 4 0.00000001 0.00004128	31	Yes	5	0.00000001	0.00009242
34 Yes 5 0.00000001 0.00009015 35 Yes 5 0.00000001 0.00009028 36 Yes 5 0.00000001 0.00008423 37 Yes 5 0.00000001 0.00009070 38 Yes 5 0.00000001 0.00009061 39 Yes 4 0.00000001 0.00002516 40 Yes 4 0.00000001 0.00004659 41 Yes 4 0.00000001 0.00003689 42 Yes 4 0.00000001 0.00003766 44 Yes 4 0.00000001 0.00003766 44 Yes 4 0.00000001 0.00004786 45 Yes 4 0.00000001 0.00003640 47 Yes 4 0.00000001 0.00004128 48 Yes 4 0.00000001 0.0000410 49 Yes 4 0.00000001 0.0000410	32	Yes	5	0.00000001	0.00009209
35 Yes 5 0.00000001 0.00009028 36 Yes 5 0.00000001 0.00008423 37 Yes 5 0.00000001 0.00009070 38 Yes 5 0.00000001 0.00009061 39 Yes 4 0.00000001 0.00002516 40 Yes 4 0.00000001 0.00004659 41 Yes 4 0.00000001 0.00003689 42 Yes 4 0.00000001 0.00003766 44 Yes 4 0.00000001 0.00003766 44 Yes 4 0.00000001 0.00004786 45 Yes 4 0.00000001 0.00003640 47 Yes 4 0.00000001 0.00004128 48 Yes 4 0.00000001 0.00004128 48 Yes 4 0.00000001 0.00004403	33	Yes	5	0.00000001	0.00008463
36 Yes 5 0.00000001 0.00008423 37 Yes 5 0.00000001 0.00009070 38 Yes 5 0.00000001 0.00009061 39 Yes 4 0.00000001 0.00002516 40 Yes 4 0.00000001 0.00004659 41 Yes 4 0.00000001 0.00003689 42 Yes 4 0.00000001 0.00001716 43 Yes 4 0.00000001 0.00003766 44 Yes 4 0.00000001 0.00004786 45 Yes 4 0.00000001 0.00002622 46 Yes 4 0.00000001 0.00003640 47 Yes 4 0.00000001 0.00004128 48 Yes 4 0.00000001 0.00004403	34	Yes	5	0.00000001	0.00009015
37 Yes 5 0.00000001 0.00009070 38 Yes 5 0.00000001 0.00009061 39 Yes 4 0.00000001 0.00002516 40 Yes 4 0.00000001 0.00004659 41 Yes 4 0.00000001 0.00003689 42 Yes 4 0.00000001 0.00001716 43 Yes 4 0.00000001 0.00003766 44 Yes 4 0.00000001 0.00004786 45 Yes 4 0.00000001 0.00002622 46 Yes 4 0.00000001 0.00003640 47 Yes 4 0.00000001 0.00004128 48 Yes 4 0.00000001 0.00004128 48 Yes 4 0.00000001 0.00004403	35	Yes	5	0.00000001	0.00009028
38 Yes 5 0.00000001 0.00009061 39 Yes 4 0.00000001 0.00002516 40 Yes 4 0.00000001 0.00004659 41 Yes 4 0.00000001 0.00003689 42 Yes 4 0.00000001 0.00001716 43 Yes 4 0.00000001 0.00003766 44 Yes 4 0.00000001 0.00004786 45 Yes 4 0.00000001 0.00002622 46 Yes 4 0.00000001 0.00003640 47 Yes 4 0.00000001 0.00004128 48 Yes 4 0.00000001 0.00001710 49 Yes 4 0.00000001 0.00004403	36	Yes	5	0.00000001	0.00008423
39 Yes 4 0.00000001 0.0002516 40 Yes 4 0.00000001 0.00004659 41 Yes 4 0.00000001 0.00003689 42 Yes 4 0.00000001 0.00001716 43 Yes 4 0.00000001 0.00003766 44 Yes 4 0.00000001 0.00004786 45 Yes 4 0.00000001 0.00004786 46 Yes 4 0.00000001 0.00003640 47 Yes 4 0.00000001 0.00003640 47 Yes 4 0.00000001 0.00004128 48 Yes 4 0.00000001 0.00001710 49 Yes 4 0.00000001 0.00004403	37	Yes	5	0.00000001	0.00009070
40 Yes 4 0.00000001 0.00004659 41 Yes 4 0.00000001 0.00003689 42 Yes 4 0.00000001 0.00001716 43 Yes 4 0.00000001 0.00003766 44 Yes 4 0.00000001 0.00004786 45 Yes 4 0.00000001 0.00002622 46 Yes 4 0.00000001 0.00003640 47 Yes 4 0.00000001 0.00004128 48 Yes 4 0.00000001 0.00001710 49 Yes 4 0.00000001 0.00004403	38	Yes	5	0.00000001	0.00009061
41 Yes 4 0.00000001 0.00003689 42 Yes 4 0.00000001 0.00001716 43 Yes 4 0.00000001 0.00003766 44 Yes 4 0.00000001 0.00004786 45 Yes 4 0.00000001 0.00002622 46 Yes 4 0.00000001 0.00003640 47 Yes 4 0.00000001 0.00004128 48 Yes 4 0.00000001 0.00001710 49 Yes 4 0.00000001 0.00004403	39	Yes	4	0.00000001	0.00002516
42 Yes 4 0.00000001 0.00001716 43 Yes 4 0.00000001 0.00003766 44 Yes 4 0.00000001 0.00004786 45 Yes 4 0.00000001 0.00002622 46 Yes 4 0.00000001 0.00003640 47 Yes 4 0.00000001 0.00004128 48 Yes 4 0.00000001 0.00001710 49 Yes 4 0.00000001 0.00004403	40	Yes	4	0.00000001	0.00004659
43 Yes 4 0.00000001 0.00003766 44 Yes 4 0.00000001 0.00004786 45 Yes 4 0.00000001 0.00002622 46 Yes 4 0.00000001 0.00003640 47 Yes 4 0.00000001 0.00004128 48 Yes 4 0.00000001 0.00001710 49 Yes 4 0.00000001 0.00004403	41	Yes	4	0.00000001	0.00003689
44 Yes 4 0.00000001 0.00004786 45 Yes 4 0.00000001 0.00002622 46 Yes 4 0.00000001 0.00003640 47 Yes 4 0.00000001 0.00004128 48 Yes 4 0.00000001 0.00001710 49 Yes 4 0.00000001 0.00004403	42	Yes	4	0.00000001	0.00001716
45 Yes 4 0.00000001 0.00002622 46 Yes 4 0.00000001 0.00003640 47 Yes 4 0.00000001 0.00004128 48 Yes 4 0.00000001 0.00001710 49 Yes 4 0.00000001 0.00004403	43	Yes	4	0.00000001	0.00003766
46 Yes 4 0.00000001 0.00003640 47 Yes 4 0.00000001 0.00004128 48 Yes 4 0.00000001 0.00001710 49 Yes 4 0.00000001 0.00004403	44	Yes	4	0.00000001	0.00004786
47 Yes 4 0.00000001 0.00004128 48 Yes 4 0.00000001 0.00001710 49 Yes 4 0.00000001 0.00004403	45	Yes	4	0.00000001	0.00002622
48 Yes 4 0.00000001 0.00001710 49 Yes 4 0.00000001 0.00004403	46	Yes	4	0.00000001	0.00003640
49 Yes 4 0.00000001 0.00004403	47	Yes	4	0.00000001	0.00004128
	48	Yes	4	0.00000001	0.00001710
50 Yes 4 0.00000001 0.00003765	49	Yes	4	0.00000001	0.00004403
	50	Yes	4	0.00000001	0.00003765

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	150 - 110	8.7163	43	0.5076	0.0019
L2	115.25 - 94.25	5.2013	43	0.4336	0.0012
L3	99.75 - 46.25	3.8732	43	0.3753	0.0008
L4	53.5 - 0	1.0892	43	0.1869	0.0002

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	٥	ft
150.0000	Lighting Rod 5/8" x 2'	43	8.7163	0.5076	0.0019	101744
148.0000	DS4C06F36D-D	43	8.5047	0.5044	0.0019	101744
140.0000	HPA-65R-BUU-H6 w/ Mount Pipe	43	7.6619	0.4913	0.0017	50872
130.0000	(2) SBNHH-1D65B w/ Mount Pipe	43	6.6307	0.4722	0.0014	25436
124.0000	HP2-4.7NS	43	6.0328	0.4585	0.0013	19566
113.0000	(3) 800 10252 w/ Mount Pipe	43	4.9968	0.4261	0.0012	14911
99.0000	MX08FRO665-21 w/ Mount Pipe	43	3.8137	0.3722	0.0008	15733

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	150 - 110	43.5021	10	2.5304	0.0094
L2	115.25 - 94.25	25.9672	10	2,1633	0.0058
L3	99.75 - 46.25	19.3423	10	1.8736	0.0040
L4	53.5 - 0	5.4424	22	0.9339	0.0012

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	•	ft
150.0000	Lighting Rod 5/8" x 2'	10	43.5021	2.5304	0.0096	20682
148.0000	DS4C06F36D-D	10	42.4463	2.5148	0.0093	20682
140.0000	HPA-65R-BUU-H6 w/ Mount Pipe	10	38.2420	2.4500	0.0083	10340
130.0000	(2) SBNHH-1D65B w/ Mount Pipe	10	33.0978	2.3560	0.0070	5169
124.0000	HP2-4.7NS	10	30.1153	2.2873	0.0067	3976
113.0000	(3) 800 10252 w/ Mount Pipe	10	24.9471	2.1259	0.0058	3022
99.0000	MX08FRO665-21 w/ Mount Pipe	10	19.0451	1.8584	0.0041	3173

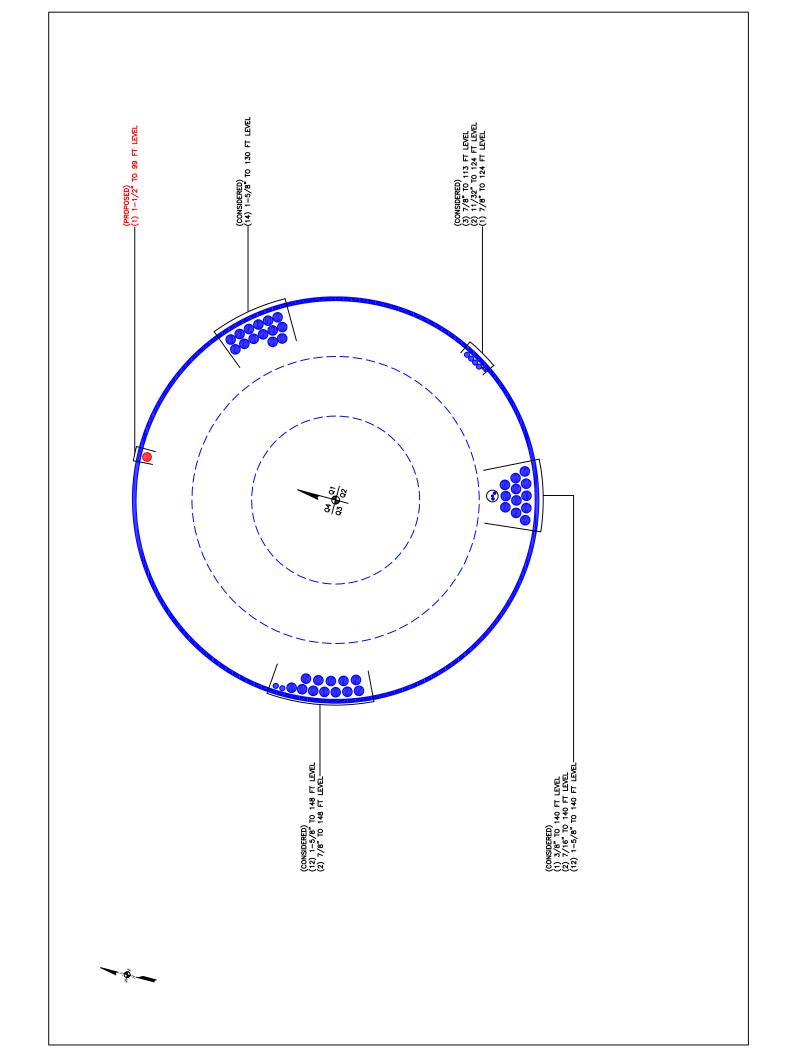
Compression Checks

Pole Design Data

Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	K	K	$\overline{\phi P_n}$
L1	150 - 110 (1)	TP39.633x28.4x0.25	40.000 0	0.0000	0.0	30.080 5	-15.6982	1759.7100	0.009
L2	110 - 94.25 (2)	TP43.556x37.6587x0.281	21.000 0	0.0000	0.0	37.252 0	-19.5062	2179.2400	0.009
L3	94.25 - 46.25	TP56.472x41.449x0.375	53.500 0	0.0000	0.0	64.346 3	-36.3375	3764.2600	0.010
L4	46 . 25 - 0 (4)	TP68.71x53.6862x0.4375	53.500 0	0.0000	0.0	94.804 9	-59.3270	5546.0900	0.011

Pole Bending Design Data

Section No.	Elevation	Size	M _{ux}	ф М _{пх}	Ratio M _{ux}	M _{uy}	ϕM_{ny}	Ratio M _{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	$\frac{M_{uy}}{\phi M_{ny}}$
L1	150 - 110 (1)	TP39.633x28.4x0.25	402.4050	1496.8500	0.269	0.0000	1496.8500	0.000
L2	110 - 94.25 (2)	TP43.556x37.6587x0.281	692.9733	2059.7333	0.336	0.0000	2059.7333	0.000
L3	94.25 - 46.25	TP56.472x41.449x0.375	1838.1667	4664.4083	0.394	0.0000	4664.4083	0.000
L4	46.25 - 0 (4)	TP68.71x53.6862x0.4375	3421.9083	8388.2500	0.408	0.0000	8388.2500	0.000


Pole Shear Design Data

Section No.	Elevation	Size	Actual V _u	ϕV_n	Ratio V _u	Actual T _u	ϕT_n	Ratio T _u
	ft		K	K	ϕV_n	kip-ft	kip-ft	$\overline{\phi T_n}$
L1	150 - 110 (1)	TP39.633x28.4x0.25	17.0412	527.9130	0.032	1.1988	1752,5917	0.001
L2	110 - 94.25 (2)	TP43.556x37.6587x0.281	19.6250	653.7730	0.030	1.4013	2389.2250	0.001
L3	94.25 - 46.25 (3)	TP56.472x41.449x0.375	27.0725	1129.2800	0.024	1.4460	5346.4583	0.000
L4	46.25 - 0 (4)	TP68.71x53.6862x0.4375	32.0575	1663.8300	0.019	1.2355	9947.9167	0.000

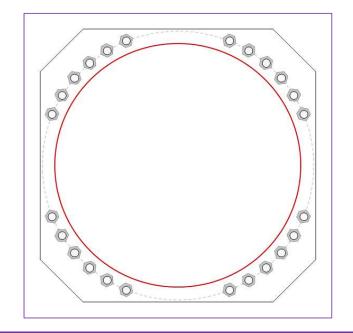
Pole Interaction Design Data									
Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	$\overline{\phi V_n}$	$\overline{\phi T_n}$	Ratio	Ratio	
L1	150 - 110 (1)	0.009	0.269	0.000	0.032	0.001	0.279	1.050	4.8.2
L2	110 - 94.25 (2)	0.009	0.336	0.000	0.030	0.001	0.346	1.050	4.8.2
L3	94.25 - 46.25 (3)	0.010	0.394	0.000	0.024	0.000	0.404	1.050	4.8.2
L4	46.25 - 0 (4)	0.011	0.408	0.000	0.019	0.000	0.419	1.050	4.8.2

	Section Capacity Table							
Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L1	150 - 110	Pole	TP39.633x28.4x0.25	1	-15.6982	1847.6954	26.6	Pass
L2	110 - 94.25	Pole	TP43.556x37.6587x0.2813	2	-19.5062	2288,2019	33.0	Pass
L3	94.25 - 46.25	Pole	TP56.472x41.449x0.375	3	-36.3375	3952.4728	38.5	Pass
L4	46.25 - 0	Pole	TP68.71x53.6862x0.4375	4	-59.3270	5823.3942	39.9	Pass
							Summary	
						Pole (L4)	39.9	Pass
						RATING =	39.9	Pass

APPENDIX B BASE LEVEL DRAWING

APPENDIX C ADDITIONAL CALCULATIONS

Monopole Base Plate Connection



Site Info	
BU#	5800059
Site Name	Ridge Road, Madison
Order #	553353 Rev. 1

Analysis Considerations					
TIA-222 Revision	Н				
Grout Considered:	No				
I _{ar} (in)	2.25				

Applied Loads					
Moment (kip-ft)	3421.91				
Axial Force (kips)	59.33				
Shear Force (kips)	32.06				

^{*}TIA-222-H Section 15.5 Applied

Stress Rating:

Connection Properties

Anchor Rod Data

(24) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 76" BC Anchor Spacing: 6 in

Base Plate Data

77" W x 3" Plate (A572-50; Fy=50 ksi, Fu=65 ksi); Clip: 12 in

Stiffener Data

N/A

Pole Data

68.71" x 0.4375" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results

Anchor Rod Summary		(units of kips, kip-in)
Pu_t = 87.55	φPn_t = 243.75	Stress Rating
Vu = 1.34	φVn = 149.1	34.2%
Mu = n/a	φMn = n/a	Pass
Base Plate Summary		
Max Stress (ksi):	13.69	(Flexural)
Allowable Stress (ksi):	45	

29.0%

Pass

CCIplate - Version 4.1.1 Analysis Date: 5/28/2021

Drilled Pier Foundation

BU #: 5800059
Site Name: Ridge Road, Madison
Order Number: 553353 Rev. 1
TIA-222 Revison: H
Tower Type: Monopole

	Uplift				
Applied Loads	Comp.	3421.91	59.34	32.04	
Applie		Moment (kip-ft)	Axial Force (kips)	Shear Force (kips)	

		Analysis	Analysis results	
		Soil Lateral Check	Compression	Uplift
		D _{v=0} (ft from TOC)	10.90	ı
		Soil Safety Factor	6.21	1
		Max Moment (kip-ft)	3714.57	ı
		Rating*	20.4%	1
		Soil Vertical Check	Compression	Uplift
^	Rebar 3, Fy	Skin Friction (kips)	649.44	ı
(ksi)	Override (ksi)	End Bearing (kips)	226.19	ı
		Weight of Concrete (kips)	236.89	
		Total Capacity (kips)	875.63	1
		(kips)	296.23	ı
Rebar & Pier Options	r Options	Rating*	32.2%	-
	. :	Reinforced Concrete Flexure	Compression	Uplift
Embedded Pole Inputs	ole Inputs	Critical Depth (ft from TOC)	10.49	ı
Belled Pier Inputs	r Inputs	Critical Moment (kip-ft)	3714.01	ı
		Critical Moment Capacity	8308,27	ı
		Rating*	45.6%	•
		Reinforced Concrete Shear	Compression	Uplift
		Critical Depth (ft from TOC)	28.78	ı
		Critical Shear (kip)	277.55	
		Critical Shear Capacity	729.88	-
		Rating*	36.2%	

40 ksi 40 ksi 40 ksi

Concrete Strength, fc:
Rebar Strength, Fy:
Tie Yield Strength, Fyt:

Material Properties

39 ft 0.5 ft

Depth

Ext. Above Grade

Pier Design Data

From 0.5' above grade to 39' below grade
Pier Diameter 8 | ft

Pier Section 1

Rebar Size Clear Cover to Ties Tie Size

Rebar Quantity

Tie Spacing

32.2%	*Rating per TIA-222-H Section 15.5
45.6%	Structural Foundation Rating*

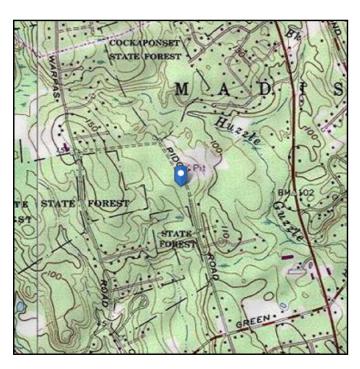
70 Cohesionless 85 Cohesionless SPT Blow Count Bearing Capacity Ult. Gross (kst) Friction Uplift Override (ksf) Ultimate Skin Ultimate Skin **Friction Comp** Override (ksf) 0.000 0.270 0.912 1.315 Friction Uplift Ultimate Skin Calculated (kst) 0.000 0.270 0.912 1.315 **Friction Comp** Ultimate Skin Calculated (ksf) Soil Profile 22 27 31 (degrees) Angle of Friction 4 0.4 # of Layers Cohesion (ksf) 150 87.6 87.6 87.6 (bct) 65 65 42.6 62.6 V_{soil} (pcf) 8 8 6 Thickness Œ 39 22 2 Bottom (ft) 4 2 2 Groundwater Depth 를 H Layer

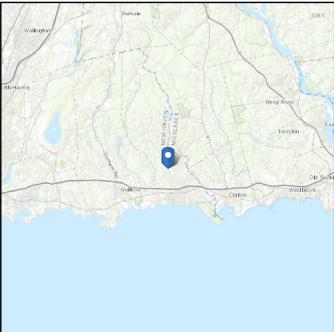
Cohesionless

Silty

Soil Type

Apply TIA-222-H Section 15.5: NA Additional Longitudinal Rebar Input Effective Depths (else Actual): Shear Design Options Check Shear along Depth of Pier: Utilize Shear-Friction Methodology: Override Critical Depth.	Check Limitation	
Additional Longitudinal Rebar Input Effective Depths (else Actual): Shear Design Options Check Shear along Depth of Pier: Utilize Shear-Friction Methodology: Override Critical Depth:	Apply TIA-222-H Section 15.5:	>
Additional Longitudinal Rebar Input Effective Depths (else Actual): Shear Design Options Check Shear along Depth of Pier: Utilize Shear-Friction Methodology: Override Critical Depth:	A/N	
Input Effective Depths (else Actual): Shear Design Options Check Shear along Depth of Pier: Utilize Shear-Friction Methodology: Override Critical Depth: Override Critic	Additional Longitudinal Reba	ıı
Shear Design Options Check Shear along Depth of Pier:	Input Effective Depths (else Actual):	>
Check Shear along Depth of Pier: Utilize Shear-Friction Methodology: Override Critical Depth:	Shear Design Options	
Utilize Shear-Friction Methodology: Override Critical Depth:	Check Shear along Depth of Pier:	>
Override Critical Depth: Override Cotto Soil Calculations	Utilize Shear-Friction Methodology:	
anoiteli iole of one	Override Critical Depth:	
CO TO COIL CALCULATIONS	Go to Soil Calculations	culations

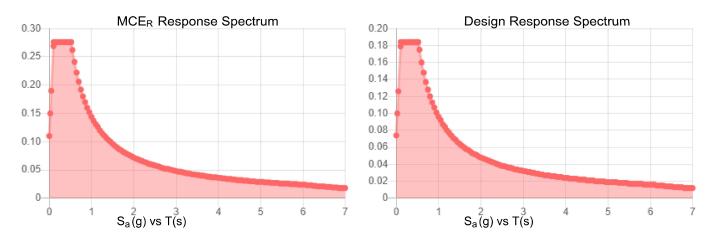

Address:


No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 132.55 ft (NAVD 88)

Risk Category: || Latitude: 41.30925 Soil Class: D - Stiff Soil Longitude: -72.614325



Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _S :	0.172	S _{DS} :	0.184	
S_1 :	0.06	S _{D1} :	0.096	
F _a :	1.6	T_L :	6	
F _v :	2.4	PGA :	0.088	
S_{MS} :	0.276	PGA _M :	0.14	
S_{M1} :	0.144	F _{PGA} :	1.6	
		l _e :	1	

Seismic Design Category B

Data Accessed: Tue Jun 23 2020

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating

Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with

ASCE/SEI 7-10 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Tue Jun 23 2020

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Date: July 27, 2021

Darcy Tarr Crown Castle 3530 Toringdon Way, Suite 300 Charlotte, NC 28277 (704) 405-6589

Trylon 1825 W. Walnut Hill Lane, Suite 302 Irving, TX 75038 214-930-1730

Subject: Mount Replacement Analysis Report

Carrier Designation: Dish Network Dish 5G

Carrier Site Number:BOHVN00007ACarrier Site Name:CT-CCI-T-5800059

Crown Castle Designation: Crown Castle BU Number: 5800059

Crown Castle Site Name: Ridge Road, Madison

Crown Castle JDE Job Number: 645212 Crown Castle Order Number: 553353 Rev. 1

Engineering Firm Designation: Trylon Report Designation: 188627

Site Data: 258 Ridge Road, Madison, New Haven County, CT, 06433

Latitude 41°18'33.30" Longitude -72°36'51.57"

Structure Information: Tower Height & Type: 150.0 ft Monopole

Mount Elevation: 99.0 ft
Mount Type: 8.0 ft Platform

Dear Darcy Tarr,

Trylon is pleased to submit this "Mount Replacement Analysis Report" to determine the structural integrity of Dish Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform Sufficient*
*Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis utilizes an ultimate 3-second gust wind speed of 130 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Aura Baltoiu

Respectfully Submitted by: Cliff Abernathy, P.E.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

9) APPENDIX E

Supplemental Drawings

1) INTRODUCTION

This is a proposed 3 sector 8.0 ft Platform, designed by Commscope.

2) ANALYSIS CRITERIA

Building Code: 2015 IBC TIA-222 Revision: TIA-222-H

Risk Category:

Ultimate Wind Speed: 130 mph

Exposure Category: Topographic Factor at Base: 1.00 Topographic Factor at Mount: 1.00 Ice Thickness: 1.5 in Wind Speed with Ice: 50 mph Seismic S_s: 0.173 Seismic S₁: 0.006 Live Loading Wind Speed: 30 mph Man Live Load at Mid/End-Points: 250 lb Man Live Load at Mount Pipes: 500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
		3	JMA Wireless	MX08FRO665-21	O O ft Dietform
00.0	99.0 99.0		Fujitsu	TA08025-B604	8.0 ft Platform
99.0 99.0		3	Fujitsu	TA08025-B605	[Commscope, MC-PK8-C]
		1	Raycap	RDIDC-9181-PF-48	WC-PRO-Cj

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Crown Application	Dish Network Application	553353, Rev.1	CCI Sites
Mount Manufacturer Drawings	Commscope	MC-PK8-C	Trylon

3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed, using Microsoft Excel, by Trylon was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate

HSS (Rectangular)

Pipe

ASTM A36 (GR 36)

ASTM A500 (GR B-46)

ASTM A53 (GR 35)

Connection Bolts

ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Trylon should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Platform, All Sectors)

	mount component chooses for cupacity (Figure 111), 7 in costors,					
Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail	
	Mount Pipe(s)	MP3		31.1	Pass	
	Horizontal(s)	H1		9.6	Pass	
1,2	Standoff(s)	SA2		48.0	Pass	
	Bracing(s)	PB2	00.0	33.8	Pass	
	Handrail(s)	M19	99.0	16.0	Pass	
	Corner Angle(s)	CP3		8.0	Pass	
	Plate(s)	CP6		21.8	Pass	
	Mount Connection(s)	-		19.4	Pass	

Structure Rating (max from all components) =	48.0%
--	-------

Notes:

2) Rating per TIA-222-H, Section 15.5

¹⁾ See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.

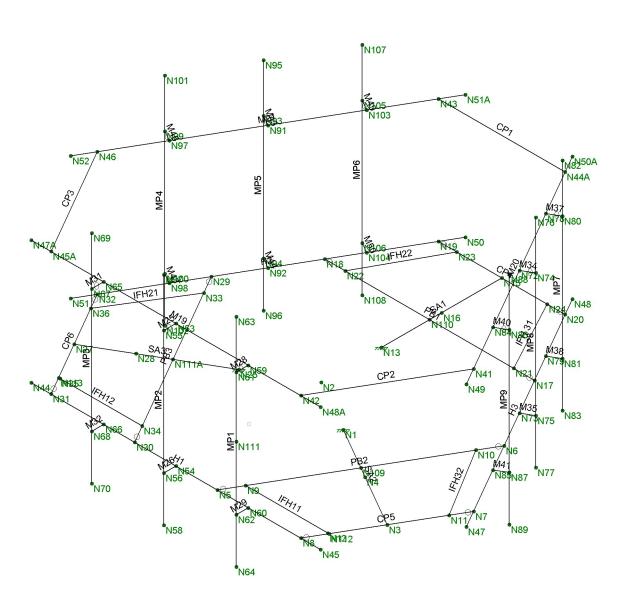
4.1) Recommendations


The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed.

1. Commscope, MC-PK8-C.

No structural modifications are required at this time, provided that the above-listed changes are implemented.

APPENDIX A WIRE FRAME AND RENDERED MODELS



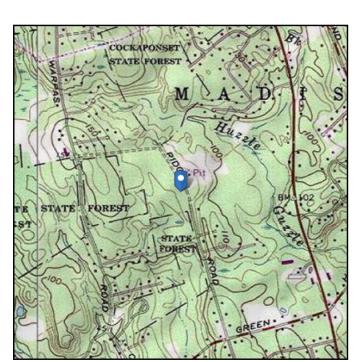
Envelope Only Solution

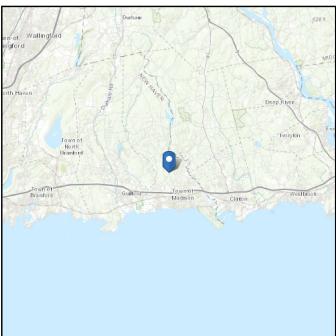
Trylon		SK - 1
AB	5800059	July 27, 2021 at 3:18 PM
188627		5800059 .r3d

Envelope Only Solution

Trylon		SK - 2
AB	5800059	July 27, 2021 at 3:18 PM
188627		5800059 .r3d

APPENDIX B SOFTWARE INPUT CALCULATIONS


Address:


No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 132.55 ft (NAVD 88)

Risk Category: || Latitude: 41.30925 Soil Class: D - Stiff Soil Longitude: -72.614325

Ice

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Mon Jul 26 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

TIA LOAD CALCULATOR 2.0

PROJECT DATA	
Job Code:	188627
Carrier Site ID:	BOHVN00007A
Carrier Site Name:	CT-CCI-T-5800059

CODES AND STANDARDS	
Building Code:	2015 IBC
Local Building Code:	2018 CSBC
Design Standard:	TIA-222-H

STRUCTURE DETAILS		
Mount Type:	Platform	
Mount Elevation:	99.0	ft.
Number of Sectors:	3	
Structure Type:	Monopole	
Structure Height:	150.0	ft.

ANALYSIS CRITERIA		
Structure Risk Category:	=	
Exposure Category:	В	
Site Class:	D - Stiff Soil	
Ground Elevation:	132.55	ft.

TOPOGRAPHIC DATA		
Topographic Category:	1.00	
Topographic Feature:	N/A	
Crest Point Elevation:	0.00	ft.
Base Point Elevation:	0.00	ft.
Crest to Mid-Height (L/2):	0.00	ft.
Distance from Crest (x):	0.00	ft.
Base Topo Factor (K _{zt}):	1.00	
Mount Topo Factor (K _{zt}):	1.00	

WIND PARAM	ETERS	
Design Wind Speed:	130	mph
Wind Escalation Factor (K _s):	1.00	
Velocity Coefficient (Kz):	0.99	
Directionality Factor (K _d):	0.95	
Gust Effect Factor (Gh):	1.00	
Shielding Factor (K _a):	0.90	
Velocity Pressure (q_z) :	40.31	psf

ICE PARAMETERS		
Design Ice Wind Speed:	50	mph
Design Ice Thickness (t _i):	1.50	in
Importance Factor (I _i):	1.00	
Ice Velocity Pressure (q _{zi}):	40.31	psf
Mount Ice Thickness (t _{iz}):	1.67	in

WIND STRUCTURE C	ALCULATIONS	
Flat Member Pressure:	72.55	psf
Round Member Pressure:	43.53	psf
Ice Wind Pressure:	7.29	psf

SEISMIC PARA	METERS	
Importance Factor (I _e):	1.00	
Short Period Accel .(S _s):	0.173	g
1 Second Accel (S ₁):	0.060	g
Short Period Des. (S_{DS}) :	0.18	g
1 Second Des. (S _{D1}):	0.10	g
Short Period Coeff. (F _a):	1.60	
1 Second Coeff. (F _v):	2.40	
Response Coefficient (Cs):	0.09	
Amplification Factor (A _S):	1.20	

LOAD COMBINATIONS [LRFD]

#	Description
1	1.4DL
2	1.2DL + 1WL 0 AZI
3	1.2DL + 1WL 30 AZI
4	1.2DL + 1WL 45 AZI
5	1.2DL + 1WL 60 AZI
6	1.2DL + 1WL 90 AZI
7	1.2DL + 1WL 120 AZI
8	1.2DL + 1WL 135 AZI
9	1.2DL + 1WL 150 AZI
10	1.2DL + 1WL 180 AZI
11	1.2DL + 1WL 210 AZI
12	1.2DL + 1WL 225 AZI
13	1.2DL + 1WL 240 AZI
14	1.2DL + 1WL 270 AZI
15	1.2DL + 1WL 300 AZI
16	1.2DL + 1WL 315 AZI
17	1.2DL + 1WL 330 AZI
18	0.9DL + 1WL 0 AZI
19	0.9DL + 1WL 30 AZI
20	0.9DL + 1WL 45 AZI
21	0.9DL + 1WL 60 AZI
22	0.9DL + 1WL 90 AZI
23	0.9DL + 1WL 120 AZI
24	0.9DL + 1WL 135 AZI
25	0.9DL + 1WL 150 AZI
26 27	0.9DL + 1WL 180 AZI 0.9DL + 1WL 210 AZI
28	0.9DL + 1WL 210 AZI 0.9DL + 1WL 225 AZI
29	0.9DL + 1WL 240 AZI
30	0.9DL + 1WL 240 AZI 0.9DL + 1WL 270 AZI
31	0.9DL + 1WL 300 AZI
32	0.9DL + 1WL 315 AZI
33	0.9DL + 1WL 330 AZI
34	1.2DL + 1DLi + 1WLi 0 AZI
35	1.2DL + 1DLi + 1WLi 30 AZI
36	1.2DL + 1DLi + 1WLi 45 AZI
37	1.2DL + 1DLi + 1WLi 43 AZI
38	1.2DL + 1DLi + 1WLi 90 AZI
39	1.2DL + 1DLi + 1WLi 120 AZI
40	1.2DL + 1DLi + 1WLi 135 AZI
41	1.2DL + 1DLi + 1WLi 150 AZI

42
44 1.2DL + 1DLi + 1WLi 225 AZI
45 1.2DL + 1DLi + 1WLi 240 AZI
46 1.2DL + 1DLi + 1WLi 270 AZI
47 1.2DL + 1DLi + 1WLi 300 AZI
48 1.2DL + 1DLi + 1WLi 315 AZI
49 1.2DL + 1DLi + 1WLi 330 AZI
50 (1.2+0.2Sds) + 1.0E 0 AZI
51 (1.2+0.2Sds) + 1.0E 30 AZI
52 (1.2+0.2Sds) + 1.0E 45 AZI
53 (1.2+0.2Sds) + 1.0E 60 AZI
54 (1.2+0.2Sds) + 1.0E 90 AZI
55 (1.2+0.2Sds) + 1.0E 120 AZI
56 (1.2+0.2Sds) + 1.0E 135 AZI
57 (1.2+0.2Sds) + 1.0E 150 AZI
58 (1.2+0.2Sds) + 1.0E 180 AZI
59 (1.2+0.2Sds) + 1.0E 210 AZI
60 (1.2+0.2Sds) + 1.0E 225 AZI
61 (1.2+0.2Sds) + 1.0E 240 AZI
62 (1.2+0.2Sds) + 1.0E 270 AZI
63 (1.2+0.2Sds) + 1.0E 300 AZI
64 (1.2+0.2Sds) + 1.0E 315 AZI
65 (1.2+0.2Sds) + 1.0E 330 AZI
66 (0.9-0.2Sds) + 1.0E 0 AZI
67 (0.9-0.2Sds) + 1.0E 30 AZI
68 (0.9-0.2Sds) + 1.0E 45 AZI
69 (0.9-0.2Sds) + 1.0E 60 AZI
70 (0.9-0.2Sds) + 1.0E 90 AZI
71 (0.9-0.2Sds) + 1.0E 120 AZI
72 (0.9-0.2Sds) + 1.0E 135 AZI
73 (0.9-0.2Sds) + 1.0E 150 AZI
74 (0.9-0.2Sds) + 1.0E 180 AZI
75 (0.9-0.2Sds) + 1.0E 210 AZI
76 (0.9-0.2Sds) + 1.0E 225 AZI
77 (0.9-0.2Sds) + 1.0E 240 AZI
78 (0.9-0.2Sds) + 1.0E 270 AZI
79 (0.9-0.2Sds) + 1.0E 300 AZI
80 (0.9-0.2Sds) + 1.0E 315 AZI
81 (0.9-0.2Sds) + 1.0E 330 AZI
82-88 1.2D + 1.5 Lv1

#	Description
89	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP1
90	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP1
91	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP1
92	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP1
93	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP1
94	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP1
95	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP1
96	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP1
97	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP1
98	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP1
99	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP1
100	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP1
101	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP1
102	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1
103	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1
104	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP1
105	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2
106	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2
107	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2
108	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2
109	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2
110	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2
111	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2
112	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2
113	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP2
114	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2
115	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2
116	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2
117	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2
118	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2
119	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2
120	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2

#	Description
121	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3
122	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3
123	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3
124	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3
125	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3
126	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3
127	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3
128	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3
129	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3
130	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3
131	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3
132	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3
133	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3
134	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3
135	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3
136	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP3
137	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP4
138	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP4
139	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP4
140	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP4
141	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP4
142	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP4
143	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP4
144	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP4
145	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP4
146	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP4
147	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP4
148	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP4
149	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP4
150	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP4
151	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP4
152	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP4

^{*}This page shows an example of maintenance loads for (4) pipes, the number of mount pipe LCs may vary per site

EQUIPMENT LOADING

Appurtenance Name/Location	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
MX08FRO665-21	3	99	No Ice	8.01	3.21	82.50
MP1/MP4/MP7, 0/120/240			w/ Ice	9.62	4.62	273.67
TA08025-B604	3	99	No Ice	1.96	0.98	63.90
MP1/MP4/MP7, 0/120/240			w/ Ice	2.37	1.30	67.03
TA08025-B605	3	99	No Ice	1.96	1.13	75.00
MP1/MP4/MP7, 0/120/240			w/ Ice	2.37	1.46	71.43
RDIDC-9181-PF-48	1	99	No Ice	2.01	1.17	21.85
MP1, 0			w/ Ice	2.43	1.51	70.39
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

EQUIPMENT LOADING [CONT.]

Appurtenance Name/Location	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
			N. I.			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

EQUIPMENT WIND CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	K _{zt}	Kz	K _d	t _d	q _z [psf]	q _{zi} [psf]
MX08FRO665-21	3	99	1.00	0.99	0.95	1.67	40.31	5.96
TA08025-B604	3	99	1.00	0.99	0.95	1.67	40.31	5.96
TA08025-B605	3	99	1.00	0.99	0.95	1.67	40.31	5.96
RDIDC-9181-PF-48	1	99	1.00	0.99	0.95	1.67	40.31	5.96

EQUIPMENT LATERAL WIND FORCE CALCULATIONS

Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
MX08FRO665-21	3	No Ice	290.57	159.98	247.04	116.45	247.04	159.98
MP1/MP4/MP7, 0/120/240		w/ Ice	51.63	31.51	44.92	24.81	44.92	31.51
TA08025-B604	3	No Ice	71.23	44.50	62.32	35.59	62.32	44.50
MP1/MP4/MP7, 0/120/240		w/ Ice	12.73	8.41	11.29	6.97	11.29	8.41
TA08025-B605	3	No Ice	71.23	48.54	63.66	40.97	63.66	48.54
MP1/MP4/MP7, 0/120/240	-	w/ Ice	12.73	9.06	11.51	7.84	11.51	9.06
RDIDC-9181-PF-48	1	No Ice	72.98	50.03	65.33	42.38	65.33	50.03
MP1, 0	-	w/ Ice	13.02	9.34	11.80	8.12	11.80	9.34
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
	-	w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		W/ ICE			l			

EQUIPMENT LATERAL WIND FORCE CALCULATIONS [CONT.]

Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						

EQUIPMENT SEISMIC FORCE CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	Weight [lbs]	F p [lbs]
MX08FRO665-21	3	99	82.5	9.13
TA08025-B604	3	99	63.9	7.08
TA08025-B605	3	99	75	8.30
RDIDC-9181-PF-48	1	99	21.85	2.42

APPENDIX C SOFTWARE ANALYSIS OUTPUT

Company Designer Job Number Model Name : Trylon : AB

: 188627 : 5800059

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include W arping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P - Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (in/sec ^2)	386.4
Wall Mesh Size (in)	24
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Z
Global Member Orientation Plane	XY
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 15th(360-16): LRFD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 15th(360-16): LRFD
Cold Formed Steel Code	AIS I S 100-12: LRF D
Wood Code	AWC NDS-15: ASD
Wood Temperature	< 100F
Concrete Code	ACI318-14
Masonry Code	ACI 530-13: Strength
Aluminum Code	AA ADM 1-10: LRFD - Building
Stainless Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

: 188627 : 5800059

July 27, 2021 3:18 PM Checked By: CA

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (in)	Not Entered
Add Base Weight?	Yes
CtX	.02
CtZ	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
RX	3
R Z	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	l or II
Drift Cat	Other
O m Z	1
Om X	1
Cd Z	1
CdX	1
Rho Z	1
Rho X	1

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5 F)	Density[k/ft^3]	Yield[psi]	Ry	Fu[psi]	Rt
1	A992	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36000	1.5	58000	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42000	1.4	58000	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46000	1.4	58000	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35000	1.6	60000	1.2
7	A1085	29000	11154	.3	.65	.49	50000	1.4	65000	1.3

Cold Formed Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5F)	Density[k/ft^3]	Yie l d[psi]	Fu[psi]
1	A653 S S G r33	29500	11346	.3	.65	.49	33000	45000
2	A653 S S G r50/1	29500	11346	.3	.65	.49	50000	65000

Hot Rolled Steel Section Sets

	Label	S hape	Type	Design List	Material	Design	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Plates	6.5"x0.37" Plate	Beam	RECT	A53 Gr.B	Typical	2.405	.027	8.468	.106
2	Grating Bracing	L2x2x3	Beam	Single Angle	A36 Gr.36	Typical	.722	.271	.271	.009
3	Standoffs	PIPE 3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04
4	Standoff Bracing	C3X5	Beam	Channel	A36 Gr.36	Typical	1.47	.241	1.85	.043
5	Handrails	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
6	Handrail Corners	6.6x4.46x0.25	Beam	Single Angle	A36 Gr.36	Typical	2.702	4.759	12.473	.055
7	Horizontals	PIPE_3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04

Company Designer Job Number : Trylon

: 188627 : 5800059

July 27, 2021 3:18 PM Checked By: CA

Hot Rolled Steel Section Sets (Continued)

	Label	Shape	Type	Design List	Material	Design	A [in2]	lyy [in4]	lzz [in4]	J [in4]
8	Mount Pipes	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25

Cold Formed Steel Section Sets

	Label	Shape	Type	Des ign List	Material	Design R	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	CF1A	8CU1.25X057	Beam	None	A653 S S G r33	Typical	.581	.057	4.41	.00063

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N25	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N13	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z G ravity	Joint	Point	Distribu	.A rea (M	Surface
1	Self Weight	DL			-1		13		3	
2	Structure Wind X	WLX						33		
3	Structure Wind Y	WLY						33		
4	Wind Load 0 AZI	WLX					13			
5	Wind Load 30 AZI	None					26			
6	Wind Load 45 AZI	None					26			
7	Wind Load 60 AZI	None					26			
8	Wind Load 90 AZI	WLY					13			
9	Wind Load 120 AZI	None					26			
10	Wind Load 135 AZI	None					26			
11	Wind Load 150 AZI	None					26			
12	lce Weight	OL1					13	33	3	
13	Structure Ice Wind X	OL2						33		
14	Structure Ice Wind Y	OL3						33		
15	Ice Wind Load 0 AZI	OL2					13			
16	Ice Wind Load 30 AZI	None					26			
17	Ice Wind Load 45 AZI	None					26			
18	Ice Wind Load 60 AZI	None					26			
19	Ice Wind Load 90 AZI	OL3					13			
20	Ice Wind Load 120 AZI	None					26			
21	Ice Wind Load 135 AZI	None					26			
22	Ice Wind Load 150 AZI	None					26			
23	Seismic Load X	ELX	111				13			
24	Seismic Load Y	ELY		111			13			
25	Live Load 1 (Lv)	LL					1			
26	Live Load 2 (Lv)	LL					1			
27	Live Load 3 (Lv)	LL					1			
28	Live Load 4 (Lv)	LL					1			
29	Live Load 5 (Lv)	LL					1			
30	Live Load 6 (Lv)	LL					1			
31	Maintenance Load 1 (Lm)	None					1			
32	Maintenance Load 2 (Lm)	None					1			
33	Maintenance Load 3 (Lm)	None					1			

Company Designer Job Number : Trylon : AB

: 188627 : 5800059 July 27, 2021 3:18 P M Checked By: CA

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity Z Gravity	Joint	P oint	Distribu	.Area(M	Surface
34	Maintenance Load 4 (Lm)	None				1			
35	Maintenance Load 5 (Lm)	None				1			
36	Maintenance Load 6 (Lm)	None				1			
37	Maintenance Load 7 (Lm)	None				1			
38	Maintenance Load 8 (Lm)	None				1			
39	Maintenance Load 9 (Lm)	None				1			
40	Maintenance Load 7 (Lm)	None				1			
41	Maintenance Load 8 (Lm)	None				1			
42	Maintenance Load 9 (Lm)	None				1			
43	BLC 1 Transient Area Loads	None					9		
44	BLC 12 Transient Area Loads	None					9		

Load Combinations

	Des cription	Solve	PD	SRB	Factor	BLC	Factor	В.,	.Fa	.B	.Fa	.BLC	Fa	В	Fal	3	Fa	.B	.Fa	.B	Fa	.B	Fa
1	1.4DL	Yes	Υ	DL	1.4																		
2	1.2DL + 1WL 0 AZI	Yes	Υ	DL	1.2	2	1	3		4	1												
3	1.2DL + 1WL 30 AZI	Yes	Υ	DL	1.2	2	.866	3	.5	5	1												
4	1.2DL + 1WL 45 AZI	Yes	Υ	DL	1.2	2	.707	3	.707		1												
5	1.2DL + 1WL 60 AZI	Yes	Υ	DL	1.2	2	.5	3	.866	7	1												
6	1.2DL + 1WL 90 AZI	Yes	Υ	DL	1.2	2		3	1	8	1												
7	1.2DL + 1WL 120 AZI	Yes	Υ	DL	1.2	2	5	3	.866		1												
8	1.2DL + 1WL 135 AZI	Yes	Υ	DL	1.2	2	707	3	.707	110	1												
9	1.2DL + 1WL 150 AZI	Yes	Υ	DL	1.2	2	866	3	.5	11	_												
	1.2DL + 1WL 180 AZI	Yes	Υ	DL	1.2	2	-1	3		4	-1												
	1.2DL + 1WL 210 AZI	Yes	Υ	DL	1.2	2	866	3	5	_	-1												
	1.2DL + 1WL 225 AZI	Yes	Υ	DL	1.2	2	707	3	7.	-6	-1												
- 10	1.2DL + 1WL 240 AZI	Yes	Υ	DL	1.2	2	5	3	8.	_	-1												
	1.2DL + 1WL 270 AZI	Yes	Υ	DL	1.2	2		3	-1	8	-1												
15	1.2DL + 1WL 300 AZI	Yes	Υ	DL	1.2	2	.5	3	8.		-1												
16	1.2DL + 1WL 315 AZI	Yes	Υ	DL	1.2	2	.707	3	7.	10	-1												
17	1.2DL + 1WL 330 AZI	Yes	Υ	DL	1.2	2	.866	3	5	11	-1												
18	0.9DL + 1WL 0 AZI	Yes	Υ	DL	.9	2	1	3		4	1												
19	0.9DL + 1WL 30 AZI	Yes	Υ	DL	.9	2	.866	3	.5	5	1												
20	0.9DL + 1WL 45 AZI	Yes	Υ	DL	.9	2	.707	3	.707	6	1												
21	0.9DL + 1WL 60 AZI	Yes	Υ	DL	.9	2	.5	3	.866	7	1												
22	0.9DL + 1WL 90 AZI	Yes	Υ	DL	.9	2		3	1	8	1												
23	0.9DL + 1WL 120 AZI	Yes	Υ	DL	.9	2	5	3	.866	9	1												
24	0.9DL + 1WL 135 AZI	Yes	Υ	DL	.9	2	707	3	.707	10	1												
25	0.9DL + 1WL 150 AZI	Yes	Υ	DL	.9	2	866	3	.5	11	1												
26	0.9DL + 1WL 180 AZI	Yes	Υ	DL	.9	2	-1	3		4	-1												
27	0.9DL + 1WL 210 AZI	Yes	Υ	DL	.9	2	866	3	5	5	-1												
28	0.9DL + 1WL 225 AZI	Yes	Υ	DL	.9	2	707	3	7.	-6	-1												
29	0.9DL + 1WL 240 AZI	Yes	Υ	DL	.9	2	5	3	8.	7	-1												
30	0.9DL + 1WL 270 AZI	Yes	Υ	DL	.9	2		3	-1	8	-1												
31	0.9DL + 1WL 300 AZI	Yes	Υ	DL	.9	2	.5	3	8.	9	-1												
32	0.9DL + 1WL 315 AZI	Yes	Υ	DL	.9	2	.707	3	7.	10	-1												
33	0.9DL + 1WL 330 AZI	Yes	Υ	DL	.9	2	.866	3	5	11	-1												
34	1.2DL + 1DLi + 1W L	Yes	Υ	DL	1.2	OL1	1	13		14		15	1										
35	1.2DL + 1DLi + 1W L	Yes	Υ	DL	1.2	OL1	1	13	.866	14	.5	16	1										
36	1.2DL + 1DLi + 1W L	Yes	Υ	DL	1.2	OL1	1	13	.707	14	.707	17	1										

July 27, 2021 3:18 PM Checked By: CA

Load Combinations (Continued)

							_		_				_							_		
	Des cription	Solve		SRB		T -		_						<u>BF</u>	aB	F	aE	3Fa	В.	<u>Fa.</u>	<u>B</u>	Fa
37	1.2DL + 1DLi + 1W L	Yes	Υ	DL	1.2	OL1	1					18	1		_	_			\perp		\perp	
38	1.2DL + 1DLi + 1W L	Yes	Υ	DL	1.2	OL1	1	13	_	14		19	1									
	1.2DL + 1DLi + 1W L	Yes	Υ	DL	1.2	OL1	1	_				20	1			\perp			\perp			
40	1.2DL + 1DLi + 1W L	Yes	Υ	DL	1.2	OL1	1	13	7	14	707	21	1									
41	1.2DL + 1DLi + 1W L	Yes	Υ	DL	1.2	OL1	1	13	8	14	.5	22	1									
42	1.2DL + 1DLi + 1W L	Yes	Υ	DL	1.2	OL1	1	13	-1	14		15	-1									
43	1.2DL + 1DLi + 1W L	Yes	Υ	DL	1.2	OL1	1	13	8	14	5	16	-1									
	1.2DL + 1DLi + 1W L	Yes	Υ	DL	1,2	OL1	1					17	-1									
	1.2DL + 1DLi + 1W L	Yes	Y	DL	1.2	OL1	1	_				. 18	-1									
	1,2DL + 1DLi + 1W L	Yes	Y	DL	1.2	OL1	1	13		14		19										
47	1.2DL + 1DLi + 1W L	Yes	Ϋ́	DL	1.2	OL1	1	_	_			20	-1		+	_			+			
48	1.2DL + 1DLi + 1W L	Yes	Y	DL	1.2	OL1	1					21										
	1.2DL + 1DLi + 1W L		Y	DL	1.2	OL1	1		.866						+				+			
	(1.2+0.2Sds) +1.0E	Yes	Y	DL		ELX		E		14	o	22	-1									
	, ,	Yes				<u> </u>	1														+	
51	(1.2+0.2Sds) + 1.0E	Yes	Υ	DL	1.237	ELX			.5										\perp			
	(1.2+0.2Sds) + 1.0E	<u>Yes</u>	Y	DL		ELX		_	.707	_												
	(1.2+0.2Sds) + 1.0E	Yes	Y	DL		ELX	.5		.866						_	\perp			+			
54	(1.2+0.2Sds) + 1.0E	Yes	Υ	DL		ELX		E														
	(1.2+0.2Sds) + 1.0E	Yes	Υ	DL	1.237	ELX	5	_	.866	-												
	(1.2+0.2Sds) + 1.0E	Yes	Υ	DL		ELX	707	E	.707													
	(1.2+0.2Sds) +1.0E	Yes	Υ	DL		ELX		E	.5													
	(1.2+0.2Sds) +1.0E	Yes	Υ	DL	1.237			E														
59	(1.2+0.2Sds) +1.0E	Yes	Υ	DL	1.237	ELX																
60	(1.2+0.2Sds) +1.0E	Yes	Y	DL	1.237	ELX	707	E	7	.												
61	(1.2+0.2Sds) +1.0E	Yes	Υ	DL	1.237	ELX	5	E	8	.												
62	(1.2+0.2Sds) + 1.0E	Yes	Υ	DL	1.237	ELX		E	-1													
63	(1.2+0.2Sds) + 1.0E	Yes	Υ	DL		ELX	.5		8													
	(1.2+0.2Sds) + 1.0E	Yes	Υ	DL		ELX		-	7													
	(1.2+0.2Sds) + 1.0E	Yes	Y	DL	1.237	ELX		_	5													
	(0.9-0.2Sds) + 1.0E	Yes	Y	DL	.863	ELX	1	E														
67	(0.9-0.2Sds) + 1.0E	Yes	Y	DL	.863	ELX		E							_						\Box	\blacksquare
68	(0.9-0.2Sds) + 1.0E	Yes	Y	DL	.863	ELX			707													
69	(0.9-0.2Sds) + 1.0E	Yes	Y	DL	.863	ELX	.5	_	.866													
	(0.9-0.2Sds) + 1.0E	Yes	Y	DL	.863	ELX		E														
	(0.9-0.2Sds) + 1.0E		Y	DL		ELX	E	_	.866													\blacksquare
71	· · · · · · · · · · · · · · · · · · ·	Yes			.863		5	_	_	_						+						
72	(0.9-0.2Sds) + 1.0E	Yes	Y	DL		ELX		_	.707													
	(0.9-0.2Sds) + 1.0E	Yes	Υ	DL	.863			E							-	_			+	-		
	(0.9-0.2Sds) + 1.0E	Yes	Y	DL	.863			E														
	(0.9-0.2Sds) + 1.0E	Yes	Υ	DL		ELX										\perp			\perp			
	(0.9-0.2Sds) + 1.0E	Yes	Υ	DL		ELX																
	(0.9-0.2Sds) + 1.0E	Yes	Υ	DL	.863	ELX	5		8										1			
	(0.9-0.2Sds) + 1.0E	Yes	Υ	DL	.863	ELX			-1													
79	(0.9-0.2Sds) + 1.0E	Yes	Υ	DL	.863	ELX			8	ŀ.						\perp			\perp			
80	(0.9-0.2Sds) + 1.0E	Yes	Υ	DL	.863	ELX		_	7													
81	(0.9-0.2Sds) + 1.0E	Yes	Υ	DL	.863	ELX	.866	E	5												$oxed{oxed}$	
82	1.2D + 1.5 Lv1	Yes	Υ	DL	1.2	25	1.5															
83	1.2D + 1.5 Lv2	Yes	Υ	DL	1.2	26	1.5]								╧		LĪ	
84	1.2D + 1.5 Lv3	Yes	Υ	DL	1.2	27	1.5															
85	1.2D + 1.5 Lv4	Yes	Υ	DL	1.2	28	1.5															\Box
86	1.2D + 1.5 Lv5	Yes	Υ	DL	1.2	29	1.5															
87	1.2D + 1.5 Lv6	Yes	Υ	DL	1.2	30	1.5															
88	1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	31	1.5	4	.053	2	053	3										
																						_

July 27, 2021 3:18 PM Checked By: CA

Load Combinations (Continued)

Des cription	Solve	PΠ	. SRB	Factor	BLC	Factor	R	Fa	R I	Fa	BLC	Fa B	Fa	R	Fa	R	Fa	R	Fa	R	Fa
89 1.2D + 1.5Lm + 1.		Y	DL	1.2	31	1.5	_	053				.027		Ϊ	., u	<u></u>	u	<u></u>	T 4		T
90 1.2D + 1.5Lm + 1.		Y	DL	1.2	31	1.5		.053				.038									
91 1.2D + 1.5Lm + 1.		Y	DL	1.2	31	1.5	_	.053	-			.046								П	\Box
92 1.2D + 1.5Lm + 1.		Y	DL	1.2	31	1.5	_	.053	-	_	3	.053									
93 1.2D + 1.5Lm + 1.		Y	DL	1.2	31	1.5	_	.053	_		. 3	.046									
94 1.2D + 1.5Lm + 1.		Y	DL	1.2	31	1.5	_	.053	-	-		.038									
95 1.2D + 1.5Lm + 1.		Y	DL	1.2	31	1.5	_	.053	-		. 3	.027								П	
96 1.2D + 1.5Lm + 1.		Y	DL	1,2	31	1.5	_	.053	-	_		6									
97 1.2D + 1.5Lm + 1.		Y	DL	1.2	31	1.5		.053			. 3	0									
98 1.2D + 1.5Lm + 1.		Y	DL	1.2	31	1.5	_	.053	-	_		0									
99 1.2D + 1.5Lm + 1.		Y	DL	1.2	31	1.5	_	.053				0									
100 1.2D + 1.5Lm + 1.		Y	DL	1.2	31	1.5	_	.053	-	$\overline{}$	_	0									
101 1.2D + 1.5Lm + 1.		Y	DL	1.2	31	1.5	_	.053				0									
102 1.2D + 1.5Lm + 1.		Y	DL	1.2	31	1.5		.053				0									
103 1.2D + 1.5Lm + 1.		Y	DL	1.2	31	1.5		.053				0									
104 1.2D + 1.5Lm + 1.		Y	DL	1.2	32	1.5		.053													
105 1.2D + 1.5Lm + 1.		Y	DL	1.2	32	1.5	_	.053	-			.027									
106 1.2D + 1.5Lm + 1.		Y	DL	1.2	32	1.5	_	.053	-			.038									
107 1.2D + 1.5Lm + 1.		Y	DL	1.2	32	1.5	_	.053	-			.046									
108 1.2D + 1.5Lm + 1.		Y	DL	1.2	32	1.5	_	.053	-	_	3	.053									
109 1.2D + 1.5Lm + 1.		Y	DL	1.2	32	1.5	_	.053	-			.046									
110 1.2D + 1.5Lm + 1.		Y	DL	1.2	32	1.5	_	.053	-	_		.038									
111 1.2D + 1.5Lm + 1.		Y	DL	1.2	32	1.5	_	.053	-		. 3	.027									
112 1.2D + 1.5Lm + 1.		Y	DL	1.2	32	1.5		.053				6									
113 1.2D + 1.5Lm + 1.		Y	DL	1.2	32	1.5	_	.053	_		. 3	0									
114 1.2D + 1.5Lm + 1.		Y	DL	1.2	32	1.5	_	.053	-	_		0									
115 1.2D + 1.5Lm + 1.		Y	DL	1.2	32	1.5	_	.053	-			0								П	\Box
116 1.2D + 1.5Lm + 1.		Y	DL	1.2	32	1.5	_	.053	-		. 3	0									
117 1.2D + 1.5Lm + 1.		Y	DL	1.2	32	1.5	_	.053				0								П	
118 1.2D + 1.5Lm + 1.		Y	DL	1.2	32	1.5	_	.053	-	-		0									
119 1.2D + 1.5Lm + 1.		Y	DL	1.2	32	1.5		.053				0								П	
120 1.2D + 1.5Lm + 1.		Y	DL	1.2	33	1.5	_	.053	_	-											
121 1.2D + 1.5Lm + 1.		Y	DL	1.2	33	1.5	_	.053	_			.027								П	
122 1.2D + 1.5Lm + 1.		Y	DL	1.2	33	1.5	_	.053	-	-		.038									
123 1.2D + 1.5Lm + 1.		Υ	DL	1.2	33	1.5		.053				.046								П	
124 1.2D + 1.5Lm + 1.		Υ	DL	1.2	33	1.5	8	.053	2	3	3	.053									
125 1.2D + 1.5Lm + 1.	0 Yes	Υ	DL	1.2	33	1.5	9	.053	2	0	. 3	.046									
126 1.2D + 1.5Lm + 1.	0 Yes	Υ	DL	1.2	33	1.5	10	.053	2	0	. 3	.038									
127 1.2D + 1.5Lm + 1.		Υ	DL	1.2	33	1.5		.053				.027									
128 1.2D + 1.5Lm + 1.	0 Yes	Υ	DL	1.2	33	1.5	4	.053	2	0	. 3	6									
129 1.2D + 1.5Lm + 1.	0 Yes	Υ	DL	1.2	33	1.5	5	.053	2	0	. 3	0									
130 1.2D + 1.5Lm + 1.	0 Yes	Υ	DL	1.2	33	1.5	6	.053	2	0	. 3	0									
131 1.2D + 1.5Lm + 1.	0 Yes	Υ	DL	1.2	33	1.5	7	.053	2	0	. 3	0									
132 1.2D + 1.5Lm + 1.		Υ	DL	1.2	33	1.5	8	.053	2	9	. 3	0									
133 1.2D + 1.5Lm + 1.		Υ	DL	1.2	33	1.5		.053				0								\square	
134 1.2D + 1.5Lm + 1.		Υ	DL	1.2	33	1.5		.053				0									
135 1.2D + 1.5Lm + 1.		Υ	DL	1.2	33	1.5		.053				0									Ш
136 1.2D + 1.5Lm + 1.		Υ	DL	1.2	34	1.5		.053													
137 1.2D + 1.5Lm + 1.		Υ	DL	1.2	34	1.5		.053				.027									Ш
138 1.2D + 1.5Lm + 1.		Υ	DL	1.2	34	1.5		.053				.038									
139 1.2D + 1.5Lm + 1.		Y	DL		34	1.5		.053				.046									
140 1.2D + 1.5Lm + 1.	0 Yes	Υ	DL	1.2	34	1.5	8	.053	2	პ	3	.053									

July 27, 2021 3:18 PM Checked By: CA

Load Combinations (Continued)

Des cription	Solve	PΠ	SRB	Factor	BLC	Factor	R	Fa	R F	a	BLC	Fa B	Fa	R	Fa	R	Fa	R	Fa	R	Fa
141 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	34	1.5	_	053				.046	1			<u> </u>	T	<u> </u>			
142 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	34	1.5	_	.053	_	-		.038									
143 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	34	1.5	_	.053	_			.027									
144 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	34	1.5		.053				6									
145 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	34	1.5	_	.053	_		. 3	0									
146 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	34	1.5	_	.053	_	-	. 3	0									
147 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	34	1.5	7	.053	2 -	.0	. 3	0									
148 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	34	1.5	8	.053	2 -	9	. 3	0									
149 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	34	1.5	9	.053	2 .0	027	3	0									
150 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	34	1.5	10	.053	2 .0	038	3	0									
151 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	34	1.5	11	.053	2 .0	046	3	0									
152 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	35	1.5	4	.053	2 .0	053	3										
153 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	35	1.5	5	.053	2 .0	046	3	.027									
154 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	35	1.5	_	.053				.038									
155 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	35	1.5		.053			3	.046									
156 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	35	1.5		.053			3	.053									
157 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	35	1.5	_	.053	_		. 3	.046									
158 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	35	1.5	_	.053	_	_	_	.038									
159 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	35	1.5	_	.053	_			.027									
160 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	35	1.5	_	.053	_			6									
161 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	35	1.5	_	.053	-	-		0							Ш		
162 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	35	1.5		.053			. 3	0									
163 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	35	1.5	_	.053	_	$\overline{}$. 3	0									
164 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	35	1.5		.053			. 3	0									
165 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	35	1.5	_	.053	-	-		0							\square		
166 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	35	1.5	_	.053	_			0									
167 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	35	1.5	_	.053	-			0									
168 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5		.053	_												
169 1.2D + 1.5Lm + 1.0	<u>Yes</u>	Y	DL	1.2	36	1.5	_	.053	_	-		.027									
170 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5	_	.053	_			.038									
171 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5	_	.053	_	-		.046									
172 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5		.053			3	.053									
173 1.2D + 1.5Lm + 1.0 174 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5		.053			. 3	.046									
174 1.2D + 1.5Lm + 1.0 175 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5		.053			. 3	.036									
176 1.2D + 1.5Lm + 1.0	Yes	Y	DL DL	1.2	36	1.5		.053 .053			. 3	6									
177 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2 1.2	36	1.5 1.5		.053			. 3	0									
178 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5	_	.053	_			0									
179 1.2D + 1.5Lm + 1.0	Yes Yes	Y	DL	1.2	36	1.5		.053				0									
180 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5		.053	_	$\overline{}$		0									
181 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5		.053				0									
182 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5	_	.053	_	-	_	0									
183 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	36	1.5	_	.053	_			0									
184 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5		.053													
185 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5		.053	_	_		.027									
186 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5		.053				.038									
187 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5		.053				.046									
188 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5		.053			3	.053									
189 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5		.053				.046									
190 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5		.053				.038									
191 1.2D + 1.5Lm + 1.0	Yes	Y	DL	1.2	37	1.5		.053				.027									
192 1.2D + 1.5Lm + 1.0	Yes	Y	DL		37	1.5		.053				6									
132 1125 110211 110	1 69			1.4	JI.	1.0	14	.000	4		. J	3									

July 27, 2021 3:18 PM Checked By: CA

Load Combinations (Continued)

Des cription	Solve	PD\$	SRB	Factor	BLC	Factor	В	FaB	Fa.	.BLC	FaB.	Fa	.B	.Fa	.BFa	B.	Fa.	B	.Fa
193 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	37	1.5	5	.053 2	20.	. 3	0								
194 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	37	1.5	6	.053 2	20.	. 3	0								
195 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	37	1.5	7	.053 2	20.	. 3	0								
196 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	37	1.5	8	.053 2	9	. 3	0								
197 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	37	1.5	9	.053 2	2 .02	3	0								
198 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	37	1.5	10	.053 2	2 .038	3	0								
199 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	37	1.5	11	.053 2	2 .040	3	0								
200 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	4	.053 2	2 .05	3									
201 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	5	.053 2	2 .040	3	.027								
202 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	6	.053 2	2 .038	3	.038								
203 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	7	.053 2	2 .02	3	.046								
204 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	8	.053 2	2 3	3	.053								
205 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	9	.053 2	20.	. 3	.046								
206 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	10	.053 2	20.	. 3	.038								
207 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	11	.053 2	20.	. 3	.027								
208 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	4	.053 2	20.	. 3	6								
209 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	5	.053 2	20.	. 3	0								
210 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	6	.053 2	20.	. 3	0								
211 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	7	.053 2	20.	. 3	0								
212 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	8	.053 2	<u>-</u> 9	. 3	0								
213 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	9	.053 2	2 .02	3	0								
214 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	10	.053 2	2 .038	3	0								
215 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	38	1.5	11	.053 2	040	3	0								
216 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5		.053 2											
217 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	5	.053 2	2 .040	3	.027								
218 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	6	.053 2	2 .038	3	.038								
219 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	7	.053 2	02	3	.046								
220 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	8	.053 2	2 3	3	.053								
221 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	9	.053 2	20.	. 3	.046								
222 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	10	.053 2	20.	. 3	.038								
223 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	11	.053 2	20.	. 3	.027								
224 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	4	.053 2	20.	. 3	6								
225 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	5	.053 2	20.	. 3	0								
226 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	6	.053 2	20.	. 3	0								
227 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	7	.053 2	20.	. 3	0								
228 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	8	.053 2	9	. 3	0								
229 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5		.053 2			0							П	
230 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	10	.053 2	2 .038	3	0								
231 1.2D + 1.5Lm + 1.0	Yes	Υ	DL	1.2	39	1.5	11	.053 2	2 .040	3	0								

Envelope Joint Reactions

	Joint		X [b]	LC	Y [b]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N25	max	1416.53	3	904.68	20	1838.62	39	332.01	30	353.24	33	1679.66	19
2		min	-1409.72	27	-908.16	12	-32.32	31	-3408.26	38	-1973.93	175	-1685.39	11
3	N1	max	1468.22	17	837.76	8	1890.06	45	3356.91	45	401.9	19	1720.4	25
4		min	-1467.77	25	-829.46	32	-22.41	21	-275.88	21	-2256.05	43	-1727.19	17
5	N13	max	315.32	18	1440.12	22	1793.87	34	679.89	200	3782.43	34	1417.75	30
6		min	-322.85	10	-1444.8	14	-62.39	26	-554.52	22	-435.57	26	-1422.69	6
7	Totals:	max	2807.11	18	2621.76	6	5271.5	45						
8		min	-2807.11	10	-2621.76	30	1369.25	69						

Company Designer Job Number : Trylon

: AB : 188627 : 5800059 July 27, 2021 3:18 PM Checked By: CA

Envelope AISC 15th (360-16): LRFD Steel Code Checks

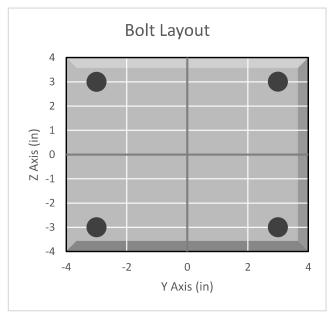
	Member	Shape	Code Check	Loc[in]	LC	SheLo phi*P phi*P phi*Mphi*M Eqn
1	SA2	PIPE 3.5	.505	40	45	.177 40 9 6449178750 79537953H1-1b
2	SA3	PIPE 3.5	.487	40	39	.169 40 3 6449178750 79537953H1-1b
3	SA1	PIPE_3.5	.476	40	34	.159 40 14 6449178750 79537953H1-1b
4	PB2	C3X5	.355	34.86	45	.133 63y 41 3285847628 981.26 4104H1-1b
5	PB3	C3X5	.351	34.86	40	.134 63y 36 3285847628 981.26 4104H1-1b
6	PB1	C3X5	.337	34.86	34	.127 63y 46 3285847628 981.26 4104H1-1b
7	MP3	PIPE 2.0	.327	57	5	.036 57 10 2086632130 187118711 H1-1b
8	MP9	PIPE 2.0	.327	57	10	.034 57 3 2086632130 18711871H1-1b
9	MP8	PIPE 2.0	.321	57	10	.037 57 14 2086632130 1871 1871 H1-1b
10	MP2	PIPE 2.0	.320	57	5	.046 57 9 2086632130 187118711 H1-1b
11	MP1	PIPE 2.0	.314	57	16	.039 57 17 2086632130 18711871H1-1b
12	MP5	PIPE 2.0	.300	57	16	.046 57 3 2086632130 18711871H1-1b
13	MP4	PIPE 2.0	.298	57	11	.039 57 11 2086632130 18711871H1-1b
14	MP6	PIPE_2.0	.298	57	7	.034 57 8 2086632130 187118711 H1-1b
15	MP7	PIPE 2.0	.295	57	10	.031 57 9 2086632130 18711871H1-1b
16	CP5	6.5"x0.37" Plate	.229	21	12	.096 21 y 42 2754875757583.96 6636H1-1b
17	CP6	6.5"x0.37" Plate	.229	21	7	.095 21 y 37 2754875757583.96 6370H1-1b
18	CP4	6.5"x0.37" Plate	.229	21	2	.090 21 y 48 2754875757583.96 6399H1-1b
19	M19	PIPE_2.0	.162	72	10	.168 72 2 1491632130 18711871H1-1b
20	M21	PIPE_2.0	.156	72	5	.163 72 13 1491632130 1871 1871 H1-1b
21	M20	PIPE_2.0	.148	72	15	.161 72 8 1491632130 18711871H1-1b
22	IFH21	L2x2x3	.143	0	14	.025 0 z 43 1808423392557.72 1182 1 H2-1
23	IFH11	L2x2x3	.143	0	3	.025 0 z 49 1808423392557.72 11791 H2-1
24	IFH 31	L2x2x3	.118	0	9	.025 0 z 38 1808423392557.72 1182 1 H2-1
25	IFH32	L2x2x3	.103	0	13	.028 0 y 42 1808423392557.72 1182 1 H2-1
26	H1	PIPE 3.5	.097	72	152	.101 24 10 60666 78750 7953 7953 1 H1-1b
27	Н3	PIPE 3.5	.095	72	204	.099 24 16 6066678750 795379531 H1-1b
28	IFH22	L2x2x3	.088	0	2	.027 0 y 47 1808423392557.72 11821 H2-1
29	H2	PIPE 3.5	.088	34	7	.093 24 5 6066678750 79537953H1-1b
30	IFH12	L2x2x3	.087	0	8	.027 0 y 36 1808423392557.72 11791 H2-1
31	CP3	6.6x4.46x0.25	.084	0	21	.037 42 z 4 5117087561 24647125 1 H2-1
32	CP2	6.6x4.46x0.25	.082	0	26	.037 0 y 9 5117087561 24647125 1 H2-1
33	CP1	6.6x4.46x0.25	.074	0	32	034 0 y 14 51 17087561 24647125 1 H2-1

Envelope AISIS 100-12: LRFD Cold Formed Steel Code Checks

Member Shape	Code Check	Loc[in]LC SheaLoc[iDirLC phi*Pn[phi*Tn[phi*Mnphi*Mn Cb Cmyy Cmzz Eqn
		No Data to Print

APPENDIX D ADDITIONAL CALCUATIONS

Analysis date: 07/27/21



BOLT TOOL 1.5.2

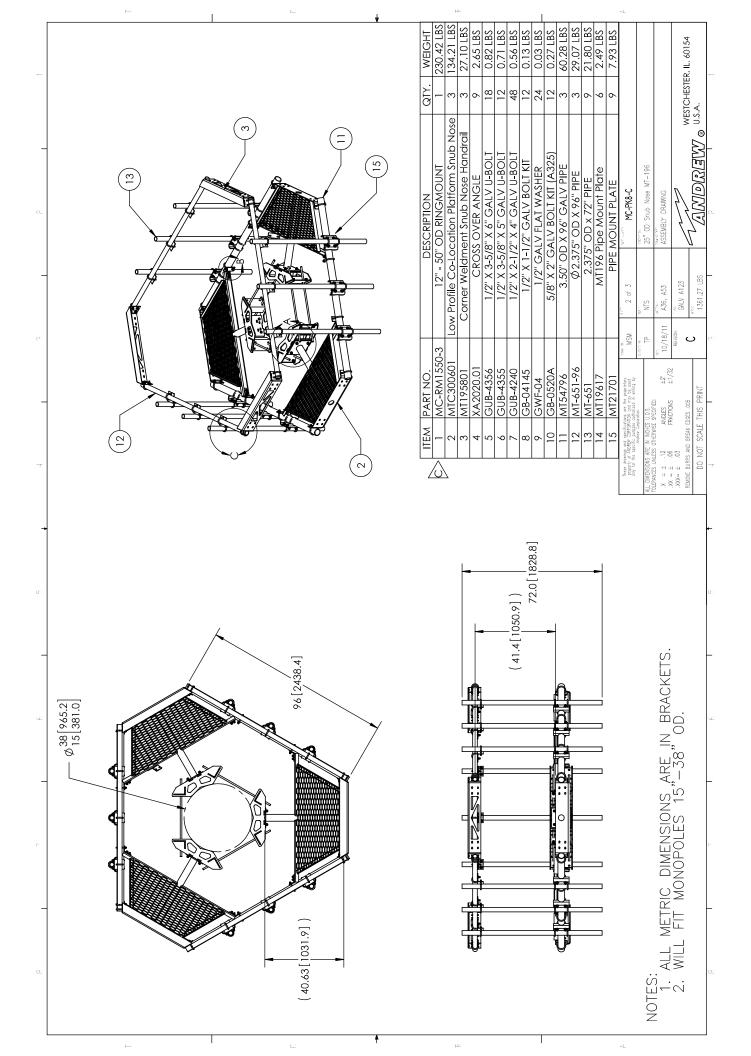
Project Data								
Job Code:	188627							
Carrier Site ID:	BOHVN00007A							
Carrier Site Name:	CT-CCI-T-5800059							

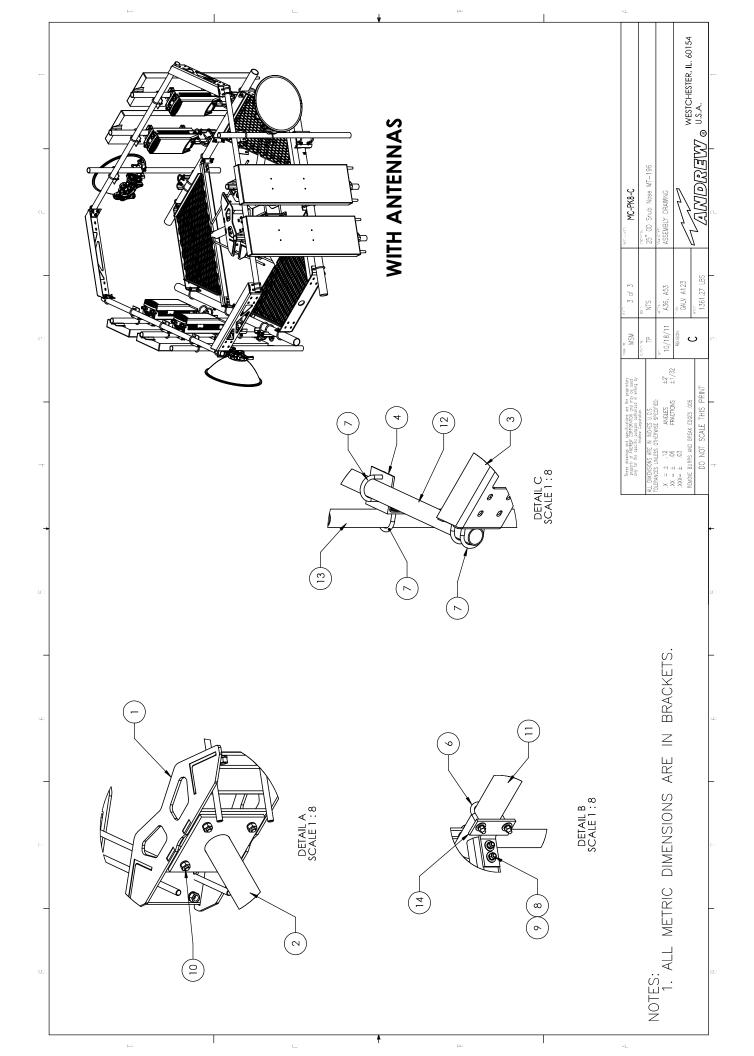
Code								
Design Standard:	TIA-222-H							
Slip Check:	No							
Pretension Standard:	TIA-222-H							

Bolt Properties									
Connection Type:	Bolt								
Diameter:	0.625	in							
Grade:	A325								
Yield Strength (Fy):	92	ksi							
Ultimate Strength (Fu):	120	ksi							
Number of Bolts:	4								
Threads Included:	No								
Double Shear:	No								
Connection Pipe Size:	ı	in							

Connection Description	
Standoff to Monopole	

Bolt Check*									
Tensile Capacity (ϕT_n) :		lbs							
Shear Capacity (ϕV_n) :	17257.3	lbs							
Tension Force (T _u):	4142.4	lbs							
Shear Force (V _u):	666.5	lbs							
Tension Usage:	19.4%								
Shear Usage:	3.7%								
Interaction:	19.4%	Pass							
Controlling Member:	SA2								
Controlling LC:	42								


^{*}Rating per TIA-222-H Section 15.5


APPENDIX E SUPPLEMENTAL DRAWINGS

WESTCHESTER, IL. 60154

MESTCHESTER, IL. 60154

U.S.A. BY DRR MSM DESCRIPTION
INITIAL RELEASE
CHANGE NOSE CORNER BRKT, ADD GUB-4240 LOW PROFILE PLATFORM KIT 8' FACE MC-PK8-C REVISIONS ASSEMBLY DRAWING 1410.14 LBS GALV A123 1 of 3 A36, A500 10/18/11 MSM DO NOT SCALE THIS PRINT \triangle NOTE NO. 464.27 LBS 543.22 LBS FOR BOM ENTRY ONLY 402.64 LBS WEIGHT QIY. NOTES: 1. CUSTOMER ASSEMBLY SHEETS 2-3. STEEL BUNDLE FOR SNUB NOSE PLATFORM PIPE STEEL BUNDLE FOR MC-PK8-C HARDWARE KIT FOR MC-PK8-C DESCRIPTION 2 MCPK8CSB 3 MCPK8CHWK MTC3006SB ITEM PART NO.

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOHVN00007A

5800059 258 Ridge Road Madison, Connecticut 06433

September 29, 2021

EBI Project Number: 6221005712

Site Compliance Summary								
Compliance Status:	COMPLIANT							
Site total MPE% of FCC general population allowable limit:	17.95%							

September 29, 2021

Dish Wireless

Emissions Analysis for Site: BOHVN00007A - 5800059

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **258 Ridge Road** in **Madison, Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 258 Ridge Road in Madison, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 4) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 5) The antennas used in this modeling are the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz channel(s) in Sector A, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz channel(s) in Sector B, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 6) The antenna mounting height centerline of the proposed antennas is 99 feet above ground level (AGL).
- 7) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 8) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	Α	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665- 20	Make / Model:	JMA MX08FRO665- 20	Make / Model:	JMA MX08FRO665- 20
Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz
Gain:	17.45 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd
Height (AGL):	99 feet	Height (AGL):	99 feet	Height (AGL):	99 feet
Channel Count:	8	Channel Count:	8	Channel Count:	8
Total TX Power (W):	280 Watts	Total TX Power (W):	280 Watts	Total TX Power (W):	280 Watts
ERP (W):	3,065.51	ERP (W):	3,065.51	ERP (W):	3,065.51
Antenna A1 MPE %:	1.83%	Antenna B1 MPE %:	1.83%	Antenna C1 MPE %:	1.83%

environmental | engineering | due diligence

Site Composite MPE %		
Carrier	MPE %	
Dish Wireless (Max at Sector A):	1.83%	
T-Mobile	9.48%	
Verizon	3.17%	
AT&T	3.47%	
Site Total MPE % :	17.95%	

Dish Wireless MPE % Per Sector		
1.83%		
1.83%		
1.83%		
17.95%		

Dish Wireless Maximum MPE Power Values (Sector A)							
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (μW/cm²)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE
Dish Wireless 600 MHz n71	4	223.68	99.0	3.72	600 MHz n71	400	0.93%
Dish Wireless 1900 MHz n70	4	542.70	99.0	9.02	1900 MHz n70	1000	0.90%
					Total:	1.83%	

[•] NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)
Sector A:	1.83%
Sector B:	1.83%
Sector C:	1.83%
Dish Wireless Maximum MPE % (Sector A):	1.83%
Site Total:	17.95%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is 17.95% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320 West Henrietta, NY 14586

Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

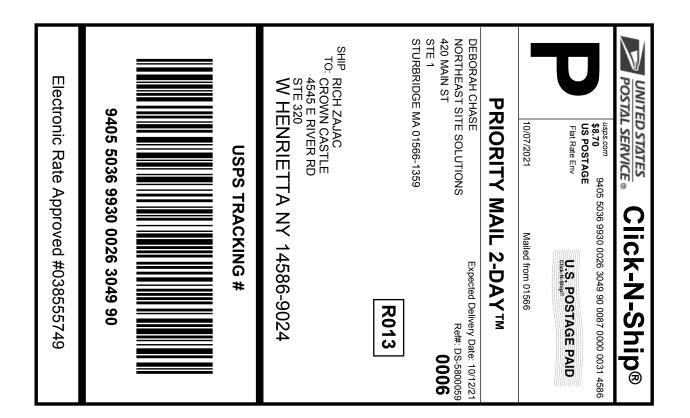
Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Tower Share Application

Crown Castle telecommunications site at: 258 RIDGE ROAD, MADISON, CT 06433


TOWER DEVELOPMENT CORPORATION ("Crown Castle") hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name: 5800059/Ridge Road, Madison Customer Site ID: BOHVN00007A/CT-CCI-T-5800059 Site Address: 258 Ridge Road, MADISON, CT 06433

Crow	n Castle		
Ву: _	Richard Zajac Site Acquisition Specialist	Date:	10/4/2021

Exhibit H

Recipient Mailings

Cut on dotted line.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0026 3049 90

545436265 10/07/2021 Trans. #: Print Date: Ship Date: 10/07/2021 10/12/2021 Delivery Date:

Priority Mail® Postage: Total:

\$8.70 \$8.70

Ref#: DS-5800059

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

RICH ZAJAC

CROWN CASTLE 4545 E RIVER RD

STE 320

W HENRIETTA NY 14586-9024

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Cut on dotted line.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0026 3050 03

545436265 10/07/2021 Trans. #: Print Date: Ship Date: 10/07/2021 10/12/2021 Delivery Date:

Priority Mail® Postage: Total:

\$8.70 \$8.70

Ref#: DS-5800059

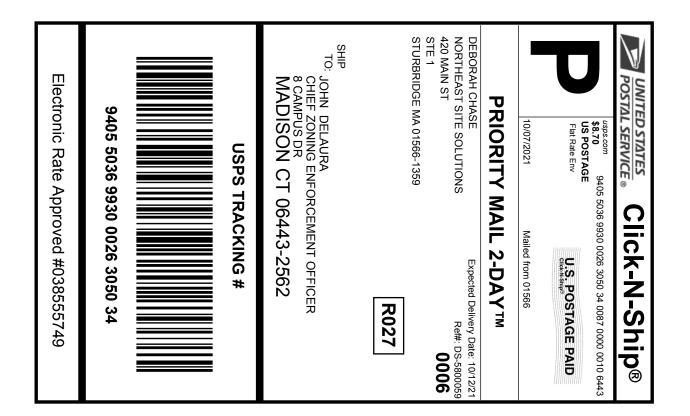
From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


PEGGY LYONS

FIRST SELECTWOMAN

8 CAMPUS DR

MADISON CT 06443-2562

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Cut on dotted line.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0026 3050 34

545436265 10/07/2021 Trans. #: Print Date: Ship Date: 10/07/2021 10/12/2021 Delivery Date:

Priority Mail® Postage: Total:

\$8.70 \$8.70

From: DEBORAH CHASE Ref#: DS-5800059

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

JOHN DELAURA

CHIEF ZONING ENFORCEMENT OFFICER

8 CAMPUS DR

MADISON CT 06443-2562

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

UNIONVILLE 24 MILL ST UNIONVILLE, CT 06085-9998 (800)275-8777

10/08/2021	(800) 275-8	3777	
			01:41 PM
Product	Qty 	Unit Price	Price
West Henriet: Weight: 0 lb Acceptance Da Fri 10/08 Tracking #: 9405 5036	1 ta, NY 1458 2.10 oz	B6	\$0.00
Prepaid Mail Madison, CT 06 Weight: 1 lb Acceptance Dat Fri 10/08/ Tracking #: 9405 5036	4.40 oz e: 2021	3050 o3	\$0.00
Prepaid Mail Madison, CT 064 Weight: 1 lb 4 Acceptance Date Fri 10/08/2 Tracking #: 9405 5036 98	1 143 1.50 oz 1: 021 930 0026 3	050 34	\$0.00
Grand Total:			\$0.00
**************************************	*******	*****	~~~~ ~~~~