

Via Hand Delivery

October 23, 2012

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re:

Tower Sharing Application

Property Address:

15 Orchard Park Road, Madison, CT 06443 (the "Property")

Applicant:

New Cingular Wireless PCS, LLC d/b/a AT&T ("AT&T")

Dear Ms. Bachman:

On behalf of AT&T, enclosed in connection with the shared use of a tower located on the Property, please find an original and fifteen (15) copies of a tower sharing application package along with a check in the amount of six hundred and twenty five (\$625.00) dollars.

Please date stamp the copy of this letter and return it to the courier delivering this application package. If you have any questions, please contact me.

Sincerely,

Adam F. Braillard

Enclosures

Cc

Honorable Fillmore McPherson: First Selectman, Town of Madison, CT

David Milano, Milano Development Corp: Property Owner

w/enclosures:

APPLICATION TO THE CONNECTICUT SITING COUNCIL FOR AN ORDER TO APPROVE THE SHARED USE OF AN EXISTING TOWER PURSUANT TO CONNECTICUT GENERAL STATUTE §16-50aa

APPLICANT

New Cingular Wireless PCS, LLC, d/b/a AT&T 500 Enterprise Drive, Suite 3A Rocky Hill, CT 06067

TOWER/PROPERTY ADDRESS

15 Orchard Park Road Madison Connecticut 06443

PREPARED BY:

Adam F. Braillard

Regional Land Use Manager

Smartlink, LLC

33 Boston Post Road West

Marlborough Massachusetts 01752

508-954-7702

TABLE OF CONTENTS

APPLICANT

New Cingular Wireless PCS, LLC, d/b/a AT&T 500 Enterprise Drive, Suite 3A Rocky Hill, CT 06067

TOWER/PROPERTY ADDRESS

15 Orchard Park Road Madison Connecticut 06443

Project Narrative	Tab 1
Certificate of Service	Tab 2
Engineering Drawings	Tab 3
Structural Analysis	Tab 4
Memorandum of Lease	Tab 5
Power Density Calculations	Tab 6

TAB 1

October 23, 2013

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re:

Request for an Order to Approve the Shared Use of an

Existing Tower

Property Address: Applicant:

15 Orchard Park Road, Madison, CT 06443 (the "Property")

New Cingular Wireless PCS, LLC d/b/a AT&T ("AT&T")

Dear Ms. Bachman:

This firm represents AT&T in connection with an application pursuant to Connecticut General Statute §16-50aa, as amended (the "Statute"), requesting the finding from the Connecticut Siting Council (the "Council") that the shared use of the tower and facility located on the Property (the "Facility") is technically, legally, economically and environmentally feasible, will meet public safety concerns, will avoid the unnecessary proliferation of towers and is in the public interest. AT&T further requests an order from the Council approving the shared use of the Facility.

I. The Facility

The Facility is owned by Florida Tower Partners ("FTP") and consists of a 100' monopole style tower (the "Tower") located on the Property, which is located at latitude 40° 16' 59.09" N and longitude 72° 37' 22.93" W. The Tower is currently shared by T-Mobile at a height of 100'. The Facility also consists of a 44'-6" x 31'-6" fenced compound at the base of the Tower with T-Mobile's radio equipment therein.

II. The Proposal

AT&T proposes to install a total of twelve (12) panel antennas (4 per sector) and fifteen (15) remote radio head ("RRHs") on the tower (see attached plans). The antennas and RRHs will be mounted on the Tower at a centerline of 90'. Further, AT&T proposes to install an 11'.5" x 16' equipment shelter and a generator at the base of the Tower within the fenced compound. The generator and equipment shelter will be juxtaposed on a 12' x 24' concrete pad. The Tower

Connecticut Siting Council
AT&T Tower Sharing Application
15 Orchard Park Road, Madison
October 23, 2013

will not be increased in height and the compound will not be expanded. Moreover, no upgrades to the access road or parking area will be necessary.

III. Technical Feasibility

It is technically feasible for AT&T to install its equipment on the Tower. To confirm the structural integrity of the Tower, AT&T and FTP performed a structural analysis of the Tower with AT&T proposed modifications. The structural analysis, dated October 10, 2013 and attached herewith concludes that the "existing pole and foundation have sufficient capacity to support the existing, reserved and proposed antenna loads as detailed…". Consequently, the shared use of the Facility is technically feasible.

IV. Legal Feasibility

Pursuant to the Statute, the Council has the authority to issue an order approving the shared use of the Facility. By issuing an order approving AT&T's use of the Facility, AT&T will be able to proceed with obtaining a building permit from the Town of Madison for the proposed installation on the Facility. Therefore, the shared use of the Facility is legally feasible.

V. Economic Feasibility

AT&T is a federally licensed telecommunications company providing service in areas of Connecticut, including the Town of Madison. AT&T has entered into an agreement with FTP for the purpose of locating AT&T equipment at the Facility. Consequently, the shared use of the Facility is economically feasible.

VI. Environmental Feasibility

Pursuant to the Statute, AT&T's proposed sharing of the Facility will be environmentally feasible for the following reasons:

- a. The proposal will neither increase the height of the Tower, nor expand the size of the base compound around the Tower. Therefore, the proposed sharing of the Facility will have an insignificant incremental visual impact on the area surrounding the Tower and will no significant change or alter the physical or environmental characteristics of the Facility.
- b. The addition of AT&T equipment will not increase the noise levels by six (6) decibels or more.
- c. The addition of AT&T antennas will not exceed the RF emissions standard adopted by the Federal Communications Commission ("FCC"). The cumulative "worst-case" RF emissions for the operation of the existing T-Mobile antennas and the proposed AT&T antennas will be 26.16% of the FCC standards (see attached Power Density Table).

Connecticut Siting Council AT&T Tower Sharing Application 15 Orchard Park Road, Madison October 23, 2013

- d. The proposed installation will have no impact on the local wetlands or water resources.
- e. After installation, AT&T equipment will be unmanned and will only require monthly visits by maintenance personnel who will inspect the Facility to ensure it remains in good working order.
- f. AT&T's proposal will have no impact on water, sanitary or sewer systems or other municipal utilities. Additionally, the proposal complies with all applicable local, state and federal safety rules and regulations.

VII. Public Safety and Benefits

As referenced in Section III above, AT&T has performed a structural analysis of the Tower confirming that the Tower is structurally feasible to hold AT&T's additional equipment. Further, as referenced in Section VI.c above, AT&T has performed an analysis of the radio frequency emanating from its proposed antennas to ensure compliance with FCC standards. The analysis indicates that the maximum level of radio frequency energy emitting from the Facility after the installation of AT&T's antennas will be well below the FCC's exposure limits. Moreover, AT&T proposal is expected to enhance safety by improving wireless communications in the area of the Facility

VII. Conclusion

For the aforementioned reasons, AT&T proposed shared use of the Facility meet all of the requirements set forth in the Statute, and the proposal advances the Council's goal of preventing the unnecessary proliferation of towers in Connecticut. The proposal is technically, legally, economically and environmentally feasible and meets all public safety concerns. Consequently, AT&T respectfully requests that the Council issue an order approving the proposed sharing use of the Facility.

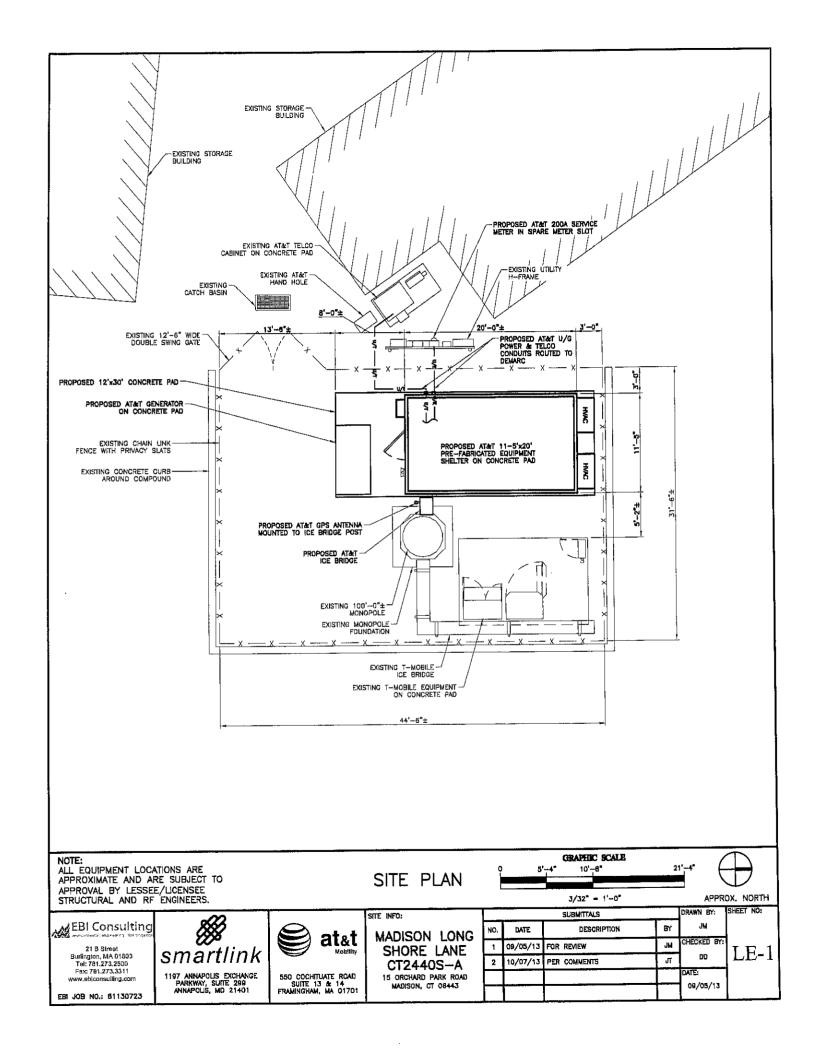
Sincerely

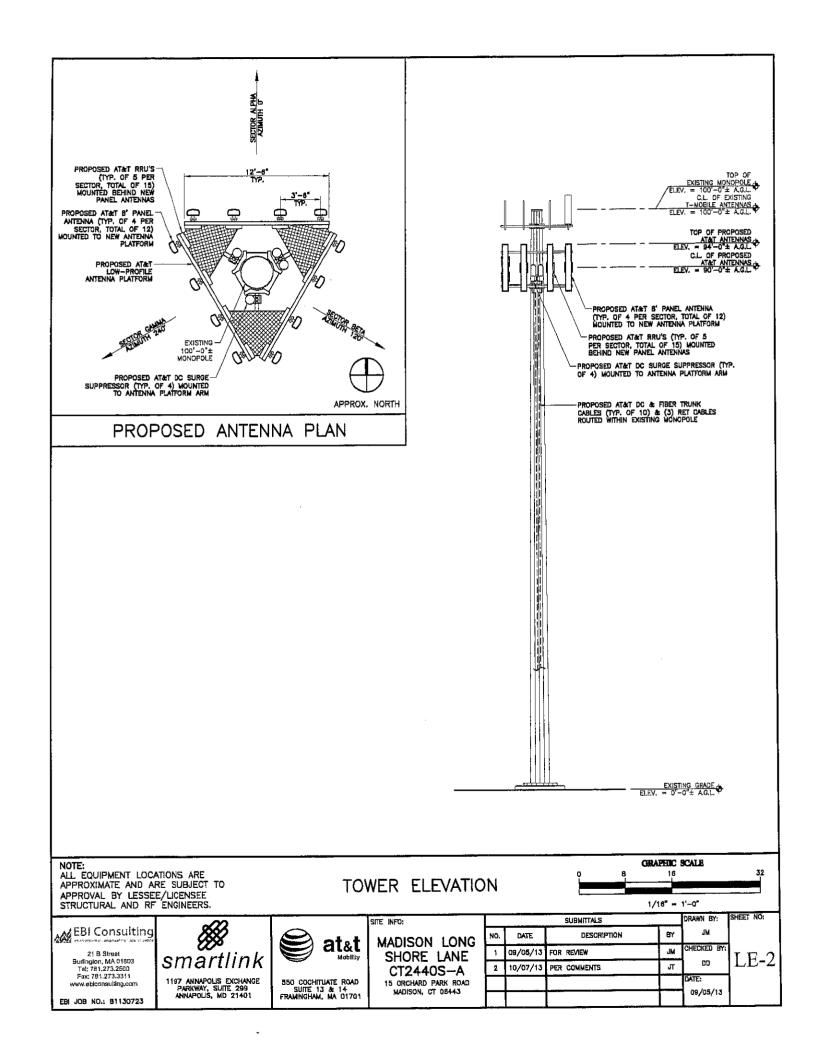
Adăm F. Braillarc

TAB 2

CERTIFICATE OF SERVICE

This is to certify that on the 23rd day of October, 2013, the foregoing application by AT&T for an Order to Approve the Shared Use of an Existing Tower was sent, via first class mail, to the following:


Honorable Fillmore McPherson First Selectman, Town of Madison 8 Campus Drive, Madison, CT 06443


and

David Milano Milano Development Corp 7 Orchard Park Road Madison, CT 06443

Adam E Busil

TAB 3

TAB 4

Structural Analysis 99-ft Monopole

Prepared For:
Florida Tower Partners, LLC
1001 3rd Ave. West, Suite 420
Bradenton, FL 34205

MFP Project #40913-039

Site Location:
CT-1014 / Madison
New Haven Co., Connecticut
Lat/Long: 41°16'59", -72°37'23"

Analysis Type: ANSI/TIA-222-G

October 10th 2013

Michael F. Plahovinsak, P.E. 1830| State Route | 6| W. Plain City, OH 43064 6|4-398-6250 - mike@mfpeng.com Page 2 of 5 10/10/2013

Project Summary:

I have completed a structural analysis of the existing monopole for the following new configuration:

- 90' AT&T:
 - o Install (3) Andrew SBNH-1D6565C + (9) SBNHH-1A65C Panel and (18) Ericsson RRUS-11 RRU's & (4) Raycap DC6-48-60-18-8F Suppressors. (8) 3/4" + (2) 1/2" + (3) 3/8" Cables.

The pole has been analyzed in accordance with the requirements of the International Building Code per IBC section 3108.4, and the recommendations of the Telecommunications Industry Association "Structural Standard for Steel Antenna Supporting Structures" ANSI/TIA-222-G.

This analysis may be considered a "Rigorous Structural Analysis" as defined in ANSI/TIA-222-G 15.5.2.

As indicated in the conclusions of this analysis, I have determined that the existing pole and foundation *have sufficient capacity* to support the existing, reserved and proposed antenna loads as detailed herein. Based on the results of my analysis, no structural modifications are required at this time.

Source of Data:

Resource	Source	Job Number	Date
Pole and Foundation Drawings	Sabre Towers	11-30257	03/23/11
Geotechnical Report	Terracon	J2095225	12/21/09

Page 3 of 5 10/10/2013

Analysis Criteria:

International Building Code (All Versions) Section 3108.4 Structural Standards for Steel Antenna Supporting Structures ANSI/TIA-222-G 2

• Basic Wind Speed

115 mph (3-Sec Gust)

• Basic Wind Speed w/ ¾" Ice

50 mph (3-Sec Gust)

Operational Wind Speed

60 mph (3-Sec Gust)

Structure Class	Exposure Category	Topographic Category
II (I = 1.0)	В	<u>I</u>

Appurtenance Listing:

Status	Elev.	Antenna / Mounting	Coax	Owner
Existing	100'	(6) RFS APX16DWV-16DWV + (3) APXV18-209014 Panel (6) RFS 11309 TMA's T-Arm Mounts	(18) 1 5/8"	T-Mobile
Proposed	90'	(3) Andrew SBNH-1D6565C + (9) SBNHH-1A65C Panel (18) RRUS-11 RRUs (4) Raycap DC6-48-60-18-8-F Suppressors T-Arm Mounts	(8) 3/4" + (2) 1/2" + (3) 3/8"	AT&T

All antenna lines assumed internally mounted, not exposed to the wind.

Foundation Analysis:

Two foundation alternatives were designed for this site. Both foundation alternatives have sufficient capacity to support the loads from this analysis.

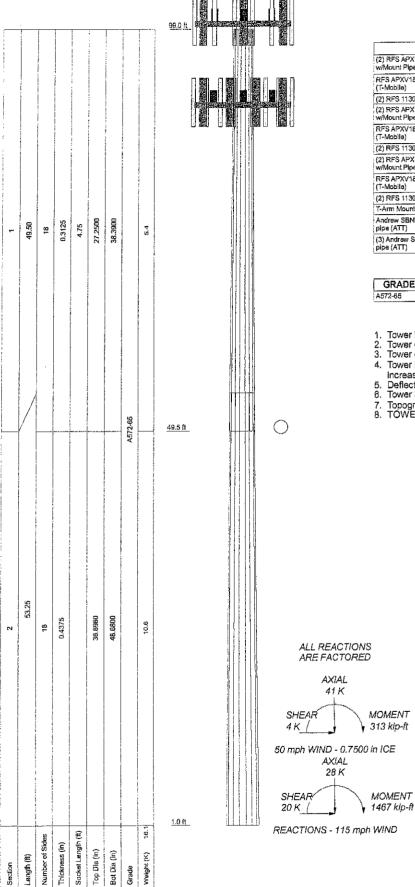
Page 4 of 5 10/10/2013

Conclusion:

I have completed a structural analysis of the existing monopole and foundation in accordance with the project specifics outlined above. My analysis indicates that the existing monopole and foundation is stressed to a maximum of 49% of its usable capacity when considering the existing plus proposed loading. Please refer to the attached calculations for an itemized listing of all member stress ratios. The existing pole and foundation have sufficient capacity to support the proposed configuration, and structural modifications are not required.

If you have any questions about the contents of this structural report or require any additional information, please feel free to contact my office.

Sincerely,


Michael F. Plahovinsak, P.E.

<u>mike@mfpeng.com</u> - 614.398-6250

Page 5 of 5 10/10/2013

Standard Conditions for Providing Structural Consulting Services on Existing Structures

- 1. The following standard conditions are a general overview of key issues regarding the work product supplied.
- 2. If the existing conditions are not as represented in this structural report or attached sketches, I should be contacted to evaluate the significance of the deviation and revise the structural assessment accordingly.
- 3. The structural analysis has been performed assuming that the structure is in "like new" condition. No allowance was made for excessive corrosion, damaged or missing structural members, loose bolts, etc. If there are any known deficiencies in the structure that potentially compromise structural integrity, I should be made aware of the deficiencies. If I am aware of a deficiency that exists in a structure at the time of my analysis, a general explanation of the structural concern due to the deficiency will be included in the structural report, but the deficiency will not be reflected in capacity calculations.
- 4. The structural analysis provided is an assessment of the primary load carrying capacity of the structure. I provide a limited scope of service in that I have not verified the capacity of every weld, plate, connection detail, etc. In most cases, structural fabrication details are unknown at the time of my analysis, and the detailed field measurement of this information is beyond the scope of my services. In instances where I have not performed connection capacity calculations, it is assumed that existing manufactured connections develop the full capacity of the primary members being connected.
- 5. The structural integrity of the existing foundation system can only be verified if exact foundation sizes and soils conditions are known. I will not accept any responsibility for the adequacy of the existing foundations unless this site-specific data is supplied.
- 6. Miscellaneous items such as antenna mounts, coax supports, etc. have not been designed, detailed, or specified as part of my work. It is assumed that material of adequate size and strength will be purchased from a reputable component manufacturer. The attached report and sketches are schematic in nature and should not be used to fabricate or purchase hardware and accessories to be attached to the structure. I recommend field measurement of the structure before fabricating or purchasing new hardware and accessories. I am not responsible for proper fit and clearance of hardware and accessory items in the field.
- 7. The structural analysis has been performed considering minimum code requirements or recommendations. If alternate wind, ice, or deflection criteria are to be considered, then I shall be made aware of the alternate criteria.

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION	
(2) RFS APX18DWV-16DWV-S-E-ACU w/Mount Pipe (T-Mobile)	100	(6) Ericsson RRUS11 Dual PA RRU (ATT)	90	
RFS APXV18-209014-C w/ mount pipe (T-Mobile)	100	Andrew SBNH-1D6565C w/ mount pipe (ATT)	90	
(2) RFS 11309 TMA (T-Mobile)	100	(3) Andrew SBNHH-1A65C w/ mount	90	
(2) RFS APX16DWV-16DWV-S-E-ACU	100	plpe (ATT)		
w/Mount Pipe (T-Mobile)		(6) Ericsson RRUS11 Dual PA RRU	90	
RFS APXV18-209014-C w/ mount pipe	100	(ATT)		
(T-Mobile)	t .	Andrew SBNH-1D6565C w/ mount	80	
(2) RFS 11309 TMA (T-Mobile)	100	pipe (ATT)	 	
(2) RFS APX18DWV-16DWV-S-E-ACU w/Mount Pipe (T-Mobile)	100	(3) Andrew SBNHH-1A65C w/ mount pips (ATT)	90	
RFS APXV18-209014-C w/ mount pipe (T-Mobile)	100	(6) Ericason RRUS11 Dual PA RRU (ATT)	90	
(2) RFS 11309 TMA (T-Mobile)	100	(4) Raycap DC6-48-60-18-8F	90	
T-Arm Mounts (T-Mobile)	100	Supressor (ATT)		
Andrew SBNH-1D6565C w/ mount pipe (ATT)	90	T-Arm Mounts (ATT)	90	
(3) Andrew SBNHH-1A65C w/ mount pipe (ATT)	90			

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
	65 ks	A0 ksi			

TOWER DESIGN NOTES

- Tower Is located in New Haven County, Connecticut.
 Tower designed for Exposure B to the TIA-222-G Standard.
 Tower designed for a 115 mph basic wind in accordance with the TIA-222-G Standard.
 Tower is also designed for a 50 mph basic wind with 0.75 in Ice. Ice is considered to increase in thickness with height.
- Deflections are based upon a 60 mph wind.
 Tower Structure Class II.
- 7. Topographic Category 1 with Crest Height of 0.00 ft 8. TOWER RATING: 31.1%

MOMENT 313 kip-ft

> 99-ft Monopole / MFP #40913-039 Michael F. Plahovinsak, P.E. Project: CT1014, Madison 18301 State Route 161 W Client: Florida Tower Partners Drawn by: Mike App'd: Plain City, OH 43064 Date: 10/10/13 Scale: NTS Code: TIA-222-G Phone: 614-398-6250 Dwg No. E-FAX: mike@mfpeng.com I:\Prolects\409-Misc\40913-039\40913-039.eri

Michael F. Plahovinsak, P.E. 18301 State Route 161 W

> Plain City, OH 43064 Phone: 614-398-6250 FAX: mike@mfpeng.com

Job	99-ft Monopole / MFP #40913-039	Page 1 of 6
Project	CT1014, Madison	Date 15:25:49 10/10/13
Client	Florida Tower Partners	Designed by Mike

Tower Input Data

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Tower is located in New Haven County, Connecticut.

Basic wind speed of 115 mph.

Structure Class II.

Exposure Category B.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 0.7500 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Local bending stresses due to climbing loads, feedline supports, and appurtenance mounts are not considered.

Tapered Pole Section Geometry

-	******				CTI	***************************************	177_11	Bend	Pole Grade
Section	Elevation	Section	Splice	Number	Top	Bottom	Wall		1 Die Graae
***************************************		Length	Length	of	Diameter	Diameter	Thickness	Radius	
		Dungin	D0115231	3		in	in	in	
	ft	ft	Jt	Sides	in	in			
L1	99.00-49.50	49.50	4.75	18	27.2500	38.3900	0.3125	1.2500	A572-65
LI	77.00-77.30	47.50	1.75						(65 ksi)
					* * * * * * * * * * * * * * * * * * * *	40 6000	0.4376	1.7500	A 572-65
L2	49.50-1.00	53.25		18	36.6960	48.6800	0.4375	1.7300	
	**								(65 ksi)

Tapered Pole Properties

								-1-14	AND DESCRIPTION OF THE PARTY OF	TANGE - CARLOTTING
Section	Tip Dia.	Area	I	r	C	I/C	J	It/Q	w	w/t
300	in	in ²	in⁴	in	in	in³	in⁴	in²	<u>in</u>	117
Γ1	27.6704	26.7186	2449,4369	9.5628	13.8430	176.9441	4902,0968	13.3619	4.2460	13.587
LI	38.9822	37.7681	6918.3045	13.5175	19,5021	354.7463	13845.7123	18.8876	6.2066	19.861
1.2	38.3476	50.3495	8362.8112	12.8718	18.6416	448.6108	16736.6263	25,1795	5.6885	13.002
LL	49.4310	66 9907	19697 5334	17.1261	24.7294	796.5216	39420.9854	33.5017	7.7977	17.823
No. of the last of	サフ・サンエリ	00.7701	エンピンドレンコー	1,17701				Charles of the same of the same	***************************************	

Feed Line/Linear Appurtenances - Entered As Area

Description	Face	Allow Shield	Component Type	Placement	Total Number		C_AA_A	Weight
	or Leg	Juieta	Type	ft	774,770-07		ft²/ft	plf
1.5/8"	C	No	Inside Pole	99.00 - 1.00	18	No Ice	0.00	0.92
(T-Mobile)						1/2" Ice	00,0	0.92
(1-1/100110)						l" Ice	0.00	0.92

3/4"	С	No	Inside Pole	90.00 - 1.00	8	No Ice	0.00	0.33
(ATT)	_	1.10	220177 2 0 1 -			1/2" Ice	0.00	0.33
(A(1)						1" Ice	0.00	0.33
1/2"	С	No	Inside Pole	90.00 - 1.00	2	No Ice	0.00	0.15
(ATT)	_	110	HIBRED I OID	, , , , , , , , , , , , , , , , , , , ,		1/2" Ice	0.00	0.15
(A11)						l" Ice	0.00	0.15

Michael F. Plahovinsak, P.E. 18301 State Route 161 W Plain City, OH 43064 Phone: 614-398-6250 FAX: mike@mfpeng.com

Job	99-ft Monopole / MFP #40913-039	Page 2 of 6
Project	CT1014, Madison	Date 15:25:49 10/10/13
Client	Florida Tower Partners	Designed by Mike

Description	Face	Allow	Component	Placement	Total Number	OK	$C_{d}A_{d}$	Weight
	or Leg	Shield	Туре	ft	Number		ft²/ft	<i>plf</i> 0.08
3/8" (ATT)	Ĉ	No	Inside Pole	90.00 - 1.00	3	No Ice 1/2" Ice	0.00	0.08 0.08
(1111)					WAR TO THE TOTAL PROPERTY OF THE TOTAL PROPE	1" Ice	0.00	U.VO

			Di	screte T	ower Lo	oads			<u>-</u>
Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement	W. Carlotte Colonia (1984)	C _A A _A Front	C _A A _A Side	Weight
	J		Vert ft	٥	ft		ft²	ft²	K
			ft ft						
(2) RFS	A	From Face	3.00	0,0000	100.00	No Ice	7.00	3.52	0.07
PX16DWV-16DWV-S-E-A CU w/Mount Pipe			0.00 00.0			1/2" Ice 1" Ice	7.50 8.00	4.18 4.85	0.12 0.17
(T-Mobile) RFS APXV18-209014-C w/	A	From Face	3.00	0.0000	100.00	No Ice	3.64	3.19	0.03
mount pipe	ΓĽ	Trom russ	0.00			1/2" Ice	4.02	3.82	0.06
(T-Mobile)			0.00			1" Ice	4,43	4.46	0.10
(2) RFS 11309 TMA	Α	From Face	3.00	0.0000	100.00	No Ice	1.50	1.50	0.05 0.07
(T-Mobile)			0.00			1/2" Ice	2.00	2.00	0.07
(1-Mobile)			0.00			I" Ice	3.00	3.00	0.07
(2) RFS	В	From Face	3.00	0.0000	100.00	No Ice	7.00	3.52	0.07
APX16DWV-16DWV-S-E-A CU w/Mount Pipe			0.00			1/2" Ice 1" Ice	7.50 8.00	4.18 4.85	0.17
(T-Mobile)	-	Frank Enga	3.00	0.0000	100.00	No Ice	3.64	3.19	0.03
RFS APXV18-209014-C w/	В	From Face	0.00	0.0000	100104	1/2" Ice	4.02	3.82	0.06
mount pipe			0.00			1" Ice	4.43	4,46	0.10
(T-Mobile)		F F	3.00	0.0000	100.00	No Ice	1.50	1.50	0.05
(2) RFS 11309 TMA	В	From Face	0.00	0.0000	100.00	1/2" Ice	2.00	2.00	0.07
(T-Mobile)			0.00			1" Ice	3.00	3.00	0.07
	_	я п	3.00	0.0000	100.00	No Ice	7.00	3.52	0.07
(2) RFS	C	From Face	0.00	0,0000	100.00	1/2" Ice	7.50	4.18	0.12
APX16DWV-16DWV-S-E-A CU w/Mount Pipe			0.00			l" Ice	8.00	4.85	0.17
(T-Mobile) RFS APXV18-209014-C w/	С	From Face	3.00	0.0000	100,00	No Ice	3.64	3.19	0.03
	C	T TOTAL T BOO	0.00	7		1/2" Ice	4.02	3.82	0.06
mount pipe			0.00			1" Ice	4.43	4.46	0.10
(T-Mobile)	C	From Face	3.00	0.0000	100.00	No Ice	1.50	1.50	0.05
(2) RFS 11309 TMA	Ç.	From Pace	0.00	0,000		1/2" Ice	2.00	2.00	0.07
(T-Mobile)			0.00			1" Ice	3.00	3.00	0.07
m 1 15 4	С	None	0.00	0,0000	100.00	No Ice	14.00	14.00	1.14
T-Arm Mounts	C	Mone		0,0000		1/2" Ice	16,00	16.00	1.27
(T-Mobile)						l" Ice	18,00	18.00	0.47
***					20.00	No Ice	11.45	9.60	0.09
Andrew SBNH-ID6565C w/	Α	From Face	3.00	0.0000	90.00	1/2" Ice	12.06	11.02	0.17
mount pipe			0.00			172 100 1" Ice	12,69	12.29	0.27
(ATT)			0.00	A 0000	00.00	No Ice	11.45	9.60	80.0
(3) Andrew SBNHH-1A65C	A	From Face	3.00	0.0000	90.00	1/2" Ice	12.06	11.02	0,16
w/ mount pipe			0.00			1" Ice	12.69	12.29	0.26
(ATT)			0.00	0.0000	00.00	No Ice	2.55	0.92	0.05
(6) Ericsson RRUS11 Dual	Α	From Face	3.00	0.000	90.00	1/2" Ice	2.33	1.07	0.06
PA RRU			0.00			I' Ice	2.99	1.23	0.08
(ATT)		_	0.00	0.0000	90.00	No Ice	11.45	9,60	0,09
Andrew SBNH-1D6565C w/	В	From Face	3.00	0.000	90.00	1/2" Ice	12,06	11.02	0.17
mount pipe			0.00			1/2 ice	12.69	12.29	0.27
(ATT)			0.00			1 100	12.09	, 2.27	

Michael F. Plahovinsak, P.E. 18301 State Route 161 W Plain City, OH 43064 Phone: 614-398-6250 FAX: mike@mfpeng.com

1-1-		Page
Job	99-ft Monopole / MFP #40913-039	3 of 6
Project	CT1014, Madison	Date 15:25:49 10/10/13
Client	Florida Tower Partners	Designed by Mike

Description	Face or	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _{.1} A _{.1} Side	Weight
	Leg		Vert ft ft ft	o	ft		ft ²	ft²	K
(3) Andrew SBNHH-1A65C	В	From Face	3.00	0.0000	90.00	No Ice	11.45	9.60	0.08
w/ mount pipe	_		0.00			1/2" [ce	12.06	11.02	0.16
(ATT)			0.00			l™ Ice	12.69	12.29	0.26
(6) Ericsson RRUS11 Dual	В	From Face	3.00	0.0000	90.00	No Ice	2.55	0.92	0.05
PA RRU			0.00			1/2" Ice	2.77	1.07	0.06
(ATT)			0.00			1" Ice	2.99	1.23	0.08
Andrew SBNH-1D6565C w/	C	From Face	3.00	0.0000	90.00	No Ice	11.45	9,60	0.09
mount pipe			0.00			1/2" Ice	12,06	11.02	0.17
(ATT)			0.00			l" Ice	12.69	12.29	0.27
3) Andrew SBNHH-1A65C	C	From Face	3.00	0.0000	90.00	No Ice	11.45	9,60	0.08
w/ mount pipe			0.00			1/2" Ice	12.06	11.02	0.16
(ATT)			0.00			i" Ice	12.69	12.29	0.26
(6) Ericsson RRUS11 Dual	С	From Face	3.00	0.0000	90.00	No Ice	2.55	0.92	0.05
PARRU			0.00			1/2" Ice	2.77	1.07	0.06
(ATT)			0.00			1" Ice	2.99	1.23	0.08
4) Raycap DC6-48-60-18-8F	C	None		0.0000	90,00	No Ice	1.47	1.47	0.03 0.05
Supressor						1/2" Ice	1.67	1.67	0.03
(ATT)						1" Ice	1.88	1.88	1.14
T-Arm Mounts	C	None		0.0000	90.00	No Ice	14.00	14.00	1.14
(ATT)						1/2" Ice	16.00	16.00 18.00	0.47
• •						1" Ice	18.00	10,00	U.T/

Load Combinations

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice
3	0.9 Dead+1.6 Wind 0 deg - No Ice
4	1.2 Dead+1.6 Wind 90 deg - No Ice
5	0.9 Dead+1.6 Wind 90 deg - No Ice
6	1.2 Dead+1.6 Wind 180 deg - No Ice
7	0.9 Dead+1.6 Wind 180 deg - No Ice
8	1.2 Dead+1.0 Ice+1.0 Temp
9	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
10	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
11	1.2 Dead+1.0 Wind 180 deg+1.0 lce+1.0 Temp
12	Dead+Wind 0 deg - Service
13	Dead+Wind 90 deg - Service
14	Dead+Wind 180 deg - Service

Michael F. Plahovinsak, P.E. 18301 State Route 161 W Plain City, OH 43064 Phone: 614-398-6250

FAX: mike@mfpeng.com

Job	99-ft Monopole / MFP #40913-039	Page 4 of 6
Project	CT1014, Madison	Date 15:25:49 10/10/13
Client	Florida Tower Partners	Designed by Mike

M	lavim	um	Mem	her	Forces
12	1712111		1416111	-	

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L1	99 - 49.5	Pole	Max Tension	13	0.00	0.00	0.00
LI)) - 4).5	1010	Max. Compression	8	-21.87	0.00	0.00
			Max. Mx	4	-12.66	-520.56	0.00
			Max. My	2	-12.66	0.00	520.56
			Max. Vy	4	15.29	-520.56	0.00
			Max. Vx	2	-15.29	0.00	520.56
L2	49.5 - 1	Pole	Max Tension	$\overline{1}$	0.00	0.00	0.00
L2	49.3 - 1	1010	Max. Compression	8	-41.22	0.00	0.00
			Max. Mx	4	-27.67	-1466.59	0.00
			Max. My	2	-27.67	0.00	1466.59
			Max. Vy	4	20.25	-1466,59	0.00
			Max. Vx	2	-20.25	0.00	1466.59

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.	ft	Deflection in	Load Comb.	0	0
L1 L2	99 - 49.5 54.25 - 1	2.962 0.935	13 13	0.2450 0.1582	0.0000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	a	0	fl
100.00	(2) RFS Apx16DWV-16DWV-S-E-Acu	13	2.962	0.2450	0.0000	126577
90.00	w/Mount Pipe Andrew SBNH-1D6565C w/ mount	13	2.500	0.2296	00000,0	70321
market and a second a second and a second an	pipe		A10			

Maximum Tower Deflections - Design Wind

Twist	Tilt	Gov.	Horz.	Elevation	Section
_		Load	Deflection		No.
0	0	Comb.	in	ft	
0.0000	1.6139	2	19.504	99 - 49.5	Ll
0.0000	1.0421	2	6.159	54.25 - l	L2

Michael F. Plahovinsak, P.E. 18301 State Route 161 W Plain City, OH 43064 Phone: 614-398-6250 FAX: mike@mfpeng.com

Job		Page
	99-ft Monopole / MFP #40913-039	5 of 6
Project		Date
-	CT1014, Madison	15:25:49 10/10/13
Client		Designed by
	Florida Tower Partners	Mike

Critical Deflections	and Radius of	Curvature -	Design Wind
-----------------------------	---------------	-------------	-------------

		(d-11/2)	The state of the s	CONTRACTOR OF THE PERSON OF TH		CARLOR TO SERVICE AND ADDRESS OF THE PARTY O
Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist .	Radius of
	*-	Load				Curvature
ft		Comb.	in	٥	٥	ft
100.00	(2) RFS	2	19.504	1.6139	0.0000	19242
	APX16DWV-16DWV-S-E-ACU					
	w/Mount Pipe					
90.00	Andrew SBNH-1D6565C w/ mount	2	16.460	1,5123	0.0000	10690
	pipe					

Pole Design Dat	ä	a	D	ın	a	Si)e		le	0	P
-----------------	---	---	---	----	---	----	----	--	----	---	---

Section	Elevation	Size	<i>I</i> .	L_{n}	Kl/r	A	P.,	φ <i>P</i> ,,	Ratio
No.	Zitir dilori	C/AC	-	-,			- *	Y - 11	P_u
	ft		ft	ft		in²	K	K	ϕP_n
Ll	99 - 49.5 (1)	TP38.39x27.25x0.3125	49.50	0.00	0,0	36.7078	-12.66	2601.61	0.005
L2	49.5 - 1 (2)	TP48.68x36.696x0.4375	53.25	0.00	0.0	66.9907	-27.67	4849.69	0.006

Pole Bending Design Data

Section	Elevation	Size	$M_{\rm nx}$	ϕM_{nx}	Ratio	M_{ny}	ϕM_{ny}	Ratio
No.				,	M_{ux}			$M_{i\phi}$
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-fi	kip-ft	ϕM_{nv}
L1	99 - 49.5 (1)	TP38,39x27.25x0,3125	520.56	1978.72	0.263	0,00	1978.72	0.000
L2	49.5 - 1 (2)	TP48.68x36.696x0.4375	1466,58	4805.25	0.305	0.00	4805.25	0.000

Pole Shear Design Data

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.	ft		V _u K	K	- V _ν	T _" kip-ft	kip-ft	$\frac{T_n}{\Phi T_n}$
L1 L2	99 - 49.5 (1) 49.5 - 1 (2)	TP38.39x27.25x0.3125 TP48.68x36.696x0.4375	15.29 20.25	1300.81 2424.85	0.012 0.008	0.00 00.0	3962.28 9622.25	0.000 0.000

Pole Interaction Design Data

Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T.,	Comb. Stress	Allow. Stress	Criteria
	ft	ΦP_n	ϕM_{ax}	$\phi M_{n\nu}$	ϕV_a	ϕT_n	Ratio	Ratio	
L1	99 - 49.5 (1)	0.005	0.263	0.000	0.012	0.000	0.268	1.000	4.8.2
L2	49.5 - 1 (2)	0.006	0.305	0.000	800.0	0,000	0.311	1,000	4.8.2

Michael F. Plahovinsak, P.E. 18301 State Route 161 W

Plain City, OH 43064 Phone: 614-398-6250 FAX: mike@mfpeng.com

Job		Page
	99-ft Monopole / MFP #40913-039	6 of 6
Project		Date
	CT1014, Madison	15:25:49 10/10/13
Client		Designed by
	Florida Tower Partners	Mike

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
Ll	99 - 49.5	Pole	TP38,39x27.25x0.3125	1	-12.66	2601.61	26.8	Pass
L2	49.5 - 1	Pole	TP48.68x36.696x0.4375	2	-27,67	4849.69	31.1	Pass
							Summary	
						Pole (L2)	31.1	Pass
						RATING =		Pass

Michael F. Plahovinsak, P.E.

18301 State Route 161 W Plain City, OH 43064 Phone: 614-398-6250 email: mike@mfpeng.com

lob	99-ft monopole - MFP #40913-039	Page	BP-G
Project	CT1014, Madison	Date 1	0/10/2013
Client	FLORIDA TOWER PARTNERS	Designed b	y Mike

Anchor Rod and Base Plate Calculation

ANSI/TIA-222-G-2

Factored Base Reactions:

Pole Shape:

Anchor Rods:

Base Plate:

Moment: Shear: 1467 ft-kips 20 kips

18-Sided Pole Dia. (D_f) : (16) 2.25 in. A615 GR. 75 Anchor Rods in Quadrants 3 in. x 55.5 in. Souare fy = 50 ksi

Axial:

28 kips

48.68 in

On a 55 in Bolt Circle

Anchor Rod Calculation According to TIA-222-G section 4.9.9

0.80 TIA 4.9.9

 $I_{bolts} =$

6050.00 in Momet of Inertia

 $\mathbf{P}_{n} =$

80 kips Tension Force 1 kips Shear Force

 $V_n =$ $\mathbf{R}_{nt} =$

325.00 kips Nominal Tensile Strength

 $\eta =$

0.50 for detail type (d)

The following Interation Equation Shall Be Satisfied:

$$\left(\begin{array}{c} \mathbf{P}_{\mathrm{u}} + \frac{\mathbf{V}_{\mathrm{u}}}{\eta} \\ \hline \phi \mathbf{R}_{\mathrm{nt}} \end{array}\right) \leq 1.0$$

 $0.317 \leq 1$

Base Plate Calculation According to TIA-222-G

0.90 TIA 4.7

 $M_{PL} =$

665.6 in-kip Plate Moment

L =

29.8 in Section Length

Z =

67.1 Plastic Section Modulus

Calculated Moment vs Factored Resistance 665.59 in-kip ≤

3018 in-kip

3353.5 in-kip Plastic Moment $M_P =$

 $\phi M_n =$

3018.1 in-kip Factored Resistance

Anchor Rods Are Adequate

31.7% 🗹

Base Plate is Adequate

22.1% 🗹

Michael F. Plahovinsak, P.E.	lob	99-ft monopole - MFP #40913-039	Page	FND
18301 State Route 161 W Plain City, OH 43064	Project	CT1014, Madison	Date 10,	/10/2013
Phone: 614-398-6250 email: mike@mfpeng.com	Client	FLORIDA TOWER PARTNERS	Designed b	y Mike

Caisson Calculation

According to ANSI/TIA-222-G-2

- 1. Foundation overturning resistance calculated with PLS Caisson, for Brom's method for rigid piles. Soil layers modeled after recommendations from the geotechnical report.
- 2. Cohesion strength for the upper 15.5 ft has been reduced by 50%
- 3. In lieu of a soil resistance factor fs = 0.75 (TIA-9.4.1) an additional safey fator against soil failure of 1.33 has been applied.
- 4. Foundation is designed with a minimum safety factor resisting overturning of 2.0
- 5. Foundation has been designed with factored loads per TIA-222-G.
- 6. Design water table = 8 ft below grade

*** PIER PROPERTIES CONCRETE STRENGTH (ksi) = 4.00

STEEL STRENGTH (ksi) = 60.00

DIAMETER (ft) = 7,000 DISTANCE FROM TOP OF PIER TO GROUND LEVEL (ft) = 1,00

*** SOIL PROPERTIES	LAYER (ft)	TYPE THICKN				DENSITY	cu	KP	PHI
i s	4.00	0.00	0.0	L.000	-0.00				
2 S	2.00		100.0	1.698	14.99				
3 S	2.00		110.0	3,000	30.00				
4 S	7.50		47.6	3.000	30.00				
5 C	30,00	15.50		6000.0	36.00				

*** DESIGN (FACTORED) LOADS AT TOP OF PIER MOMENT (fi-k) = 1467.0 VERTICAL (k) = 28.0 SHEAR (k) = 20.0 ADDITIONAL SAFETY FACTOR AGAINST SOIL FAILURE = 1.33

^{***} CHECK OF SOILS PROPERTIES AND ULTIMATE RESISTING FORCES ALONG PIER

TYPE TOP OF	LAYER BE	LOW T	OP OF P	IER THICKNES	S DENS	ITY	CIJ	K.P	FORCE	ARM
	(ft)	(ft)	(pcf)	(psf)	(k) (ft)				
S	1,00	4.00	0.0	1.000	0.00	3.67				
S	5.00	2.00	100.0	1,698	7,13	6.33				
S	7.00	2.00	110.0	3.000	39,06	8.12				
S	9,D0	7.50	47.6	3.000	282.79	13.12				
C	16,50	1.05	67.6	6000.0	353.12	17.03				
С	17.55	1,95	67,6	6,000	-654.88	18.53				

*** SHEAR AND MOMENTS ALONG PIER

	WITH THE ADDI	TIONAL SAFETY	FACTOR	WITHOUT	ADDITIONA	L SAFETY FACTOR
DISTANCE BELOW	OP OF PIER (ft)	SHEAR (k)	MOMEN	T (ft-k)	SHEAR (k)	MOMENT (fi-k)
0.00	27.2	2046.6	20,4	1535,4		
1.95	27.2	2099.7	20.4	1575,2		
3,90	27.2	2152.8	20.4	1615.0		
5.85	25.9	2205.5	19.5	1654,6		
7,80	7.8	2243.9	5,8	1683,3		
9,75	-39.7	2216.3	-29.8	1662,6		
11.70	-101.3	2080,7	-76.0	1560,9		
13,65	-174.4	1813.7	-130,9	1360.6		
15.60	-2.58.9	1393.0	-194,2	1045.0		
17.55	-654.6	638.8	-491.0	479.2		
19.50	-0.0	-0.0	-0.0	-0.0		

^{***} TOTAL REINFORCEMENT PCT = 0.42 REINFORCEMENT AREA (in^2) = 23.28

Est. Foundation Usage 499

Minimum Steel Per ACI-318

17.85 in²

7-ft Diameter caisson x 22-ft long (21-ft Embeded with 1-ft above grade) W/(36) #8 Vertical Rebar. Concrete strength =4000 PSI @ 28 days. Estimated Concrete Volume = 31 cubic yards.

^{***} CALCULATED PIER LENGTH (ft) = 19,500

^{***} USABLE AXIAL CAP. (k) = 28.0 USABLE MOMENT CAP. (fi-k) = 3664.5

TAB 5

MEMORANDUM OF LEASE

Prepared by:

<u>Desa Azizi</u>

<u>Smartlink, LLC</u>

<u>33 Boston Post Road, W</u>

<u>Marlborough, MA 01752</u>

Return to: 33 Boston Post Road, W Marlborough, MA 01752

Re: Cell Site #: CT2440S; Cell Site Name: Orchard Park Lane, Madison, (CT2440S-A)

Fixed Asset Number: 12906937

State: Connecticut County: New Haven

MEMORANDUM OF LEASE

This Memorandum of Lease is entered into on this $\frac{16}{100}$ day of $\frac{1}{100}$, 2013, by and between
Florida Tower Partners, LLC, a Delaware limited liability company, having a	mailing address of 1001 Third
Avenue West, Suite 420, Bradenton, FL 34205 (hereinafter referred to as "La	indlord") and New Cingular Wireless
PCS, LLC, a Delaware limited liability company, having a mailing address of	f Suite 13-F West Tower, 575
Morosgo Drive, Atlanta, GA 30324 (hereinafter referred to as "Tenant").	

- 1. Landlord and Tenant entered into a certain Lease Agreement ("Agreement") on the day of a communications facility and other improvements. All of the foregoing is set forth in the Agreement.
- 2. The initial lease term will be five (5) years commencing on the Rent Commencement Date of the Agreement, with four (4) successive five (5) year options to renew.
- 3. The portion of the land being leased to Tenant and associated easements are described in Exhibit 1 annexed hereto.
- 4. This Memorandum of Lease is not intended to amend or modify, and shall not be deemed or construed as amending or modifying, any of the terms, conditions or provisions of the Agreement, all of which are hereby ratified and affirmed. In the event of a conflict between the provisions of this Memorandum of Lease and the provisions of the Agreement, the provisions of the Agreement shall control. The Agreement shall be binding upon and inure to the benefit of the parties and their respective heirs, successors, and assigns, subject to the provisions of the Agreement.

IN WITNESS WHEREOF, the parties have executed this Memorandum of Lease as of the day and year first above written.

"LANDLORD"

By: John Me
Print Name Brett Buggeln
Its: Manager/President
Date: 10/16/3

FLORIDA TOWER PARTNERS, LLC a Delaware limited liability company

"TENANT"

New Cingular Wireless PCS, LLC, a Delaware limited liability company

By: AT&T Mobility Corporation

Its: Manager

Print Name: Kevin L. Mason

Its: Area Manager

Date: 11-7013

[ACKNOWLEDGMENTS APPEAR ON THE NEXT PAGE]

TAB 6

Power Density Calculations

Applicant: New Cingular Wireless PCS, LLC d/b/a AT&T

Site ID: CT2440SA

Site Type: Existing 100' Monopole Tower

Address: 15 Orchard Park Road, Madison, CT 06443

Date: October 21, 2013

1. Existing Power Density 1

Carrier	#Channels	ERP/Ch	Ant Ht	Power Density (mW/cm2)	Frequency MHz	Limit	%МРЕ
T-Mobile GSM	8	144	100′	0.0414	1945	1.0000	4.14%
T-Mobile UMTS	2	730	100′	0.0414	2100	1.0000	5.25%
		·				TOTAL	9.39%

2. Proposed AT&T Power Density ²

Carrier	#Channels	ERP/Ch	Ant Ht	Power Density (mW/cm2)	Frequency MHz	Limit	%МРЕ
AT&T	2	500	90'	0.0444	800 Band	0.5867	7.57%
AT&T	2	500	90′	0.0444	1900 Band	1.0000	4.44%
AT&T	1	500	90′	0.0222	700 Band	0.4667	4.76%
		I				TOTAL	16.77%

3. Cumulative Power Density Calculation Results

Carrier	#Channels	ERP/Ch	Ant Ht	Power Density (mW/cm2)	Frequency MHz	Limit	%MPE
T-Mobile GSM	8	144	100′	0.0414	1945	1.0000	4.14%
T-Mobile UMTS	2	730	100′	0.0414	2100	1.0000	5.25%
AT&T	2	500	90′	0.0444	800 Band	0.5867	7.57%
AT&T	.2	500	90′	0.0444	1900 Band	1.0000	4.44%
AT&T	1	500	90'	0.0222	700 Band	0.4667	4.76%
			<u> </u>			TOTAL	26.16%

¹ This Power Density information was taken from the Connecticut Siting Council database dated October 1, 2013.
² This Power Density information is based on worse case assumptions from AT&T's radio frequency engineers.

4. Conclusion:

The addition of AT&T's antennas on the existing tower will result in the cumulative maximum permissible exposure (MPE) level of 26.16%. The proposal complies with the National Council on Radiation Protection and Measurements standard for MPE adopted by the Federal Communications Commission ("FCC"). Moreover, the maximum level of radio-frequency energy emitted from AT&T's installation will be well below the FCC's mandated radio frequency exposure limits.