Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

May 5, 2022

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 846 Opening Hill Road, Madison, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an existing wireless telecommunications facility at the above-referenced property address (the "Property"). The facility consists of antennas and remote radio heads attached to a tower and associated equipment on the ground near the base of the tower. The tower was approved by the Town of Madison ("Town") in April of 1997. Cellco's use of the tower were approved by the Siting Council ("Council") in July of 1997. A copy of the Town's and the Council's approvals are included in Attachment 1.

Cellco now intends to modify its facility by removing nine (9) existing antennas and installing three (3) new Samsung MT6407-77A antennas and six (6) MX06FRO660-03 antennas on its existing antenna mounts. Cellco also intends to remove three (3) remote radio heads ("RRHs') and install six (6) new RRHs behind its antennas. A set of project plans showing Cellco's proposed facility modifications and new antenna and RRH specifications are included in Attachment 2.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Madison's Chief Elected Official and Land Use Officer.

Melanie A. Bachman, Esq. May 5, 2022 Page 2

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing tower. Cellco's replacement antennas will be installed on its existing antenna platform mounts.
- 2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The installation of Cellco's new antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A cumulative General Power Density table for Cellco's modified facility is included in Attachment 3. The modified facility will be capable of providing Cellco's 5G wireless service.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. According to the attached Structural Analysis ("SA") and Mount Analysis ("MA"), the existing tower, tower foundation and antenna mounts, with certain modifications, can support Cellco's proposed modifications. Copies of the SA and MA are included in https://dx.doi.org/10.1007/journal.org/

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 6</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Melanie A. Bachman, Esq. May 5, 2022 Page 3

Sincerely,

Kenneth C. Baldwin

Kunig mu

Enclosures Copy to:

Peggy Lyons, Madison First Selectwoman Erin Mannix, Town Planner North Madison Volunteer Fire Company Inc., Property Owner Alex Tyurin, Verizon Wireless

ATTACHMENT 1

TOWN OF MADISON

CONNECTICUT LAND USE OFFICE

8 CAMPUS DRIVE MADISON, CONNECTICUT 06443-2563 (203) 245-5632 FAX (203) 245-5613

MADISON PLANNING AND ZONING COMMISSION

CERTIFICATION OF SPECIAL EXCEPTION PERMIT OR MODIFICATION OF SPECIAL EXCEPTION PERMIT

APPL. NO.: 97-5D

DATE OF APPROVAL: April 17, 1997

This certifies that on the above date a MODIFICATION OF SPECIAL EXCEPTION PERMIT was granted by the Madison Planning and Zoning Commission to:

OWNER OF RECORD: North Madison Volunteer Fire Department

under the provisions of Sec. 4.7 of the Zoning Regulations of the Town of Madison on property located at:

STREET ADDRESS OR LOCATION: 864 OPENING HILL ROAD

TO ALLOW: Construction of a 180 ft. communications tower to replace existing tower, installation of equipment building and emergency back-up generator waiving requirements of 1) a traffic study; 2) a waste water report and engineering study; and 3) final floor plans for the equipment building. The temporary installation of the "Cell on Wheels" was also approved. This approval is conditioned on plastic slats being placed in the chain link fence to obscure the view of the materials enclosed.

In accordance with Section 4.6 of said Regulations, this approval and permit are conditioned upon completion of all proposed improvements in accordance with approved plans within five years from date of approval, and shall become null and void in the event of failure to complete such improvements within said five year period or any extension thereof granted by the Commission.

period or any extension thereof	granted by the Commission.
Appl.: Owner	
	William B. Bilcheck
ч	Chairman, Planning and Zoning Commission
Received for Record	, 19, (00,)
at	_hm 2)`
Signature of Town Cle	FRM. SEPERMIT 6/9:

TOWN OF MADISON

CONNECTICUT LAND USE OFFICE

8 CAMPUS DRIVE MADISON, CONNECTICUT 06443-2563 (203) 245-5632 FAX (203) 245-5613

May 24, 1999

CERTIFIED MAIL

North Madison Volunteer Fire Company, Inc. 864 Opening Hill Road Madison, CT 06443

Re: Application #99-26D: 864 OPENING HILL ROAD. Request for Modification of Special Exception Permit to allow relocation of the site for emergency generator, enlarge the fenced coumpound, change the style of the fence, add landscaping and permit Nextel Communications and Sprint PCS to install radio equipment shelters inside the enlarged compound.

Gentlemen:

At their regular meeting on May 20, 1999, the Planning and Zoning Commission approved the application above referenced as presented at the meeting.

Before this Modification of Special Exception Permit will become effective, it is necessary to file a Certificate in the Land Records of the Town for which there is a \$10.00 filing fee. At your earliest convenience, please forward this amount to our office so that we may file this Certificate in your behalf. Your check should be made payable to the Town of Madison.

When this Certificate is filed at the end of the appeal period, you may apply for building permits through normal Building Department procedures.

Very truly yours,

William McMinn

Planning and Zoning Administrator

: drk

Copy to: Ronald C. Clark, Nextel Communications

4: 4 mc mi

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

10 Franklin Square New Britain, Connecticut 06051 Phone: (860) 827-2935 Fax: (860) 827-2950

July 1, 1997

Kenneth C. Baldwin Robinson & Cole One Commercial Plaza 280 Trumbull Street Hartford, CT 06103-3597

Cellco Partnership d/b/a Bell Atlantic NYNEX Mobile notice of intent to modify an existing Re: telecommunications facility located at 864 Opening Hill Road in Madison, Connecticut. Dear Mr. Baldwin:

At a public meeting held on June 30, 1997, the Connecticut Siting Council (Council) acknowledged your notice of intent to modify an existing telecommunications site in Madison, Connecticut, pursuant to Section

The proposed modifications are to be implemented as specified in your notice dated June 16, 1997. The modifications are in compliance with the exception criteria in Section 16-50j-72 (c)(1) of the Regulations of Connecticut State Agencies as changes to an existing non-facility site that would not cause a significant change or alteration in the physical and environmental characteristics of the site. This site has been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequency now used on this tower. Any additional change to this site will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Science and Technology, Bulletin No. 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes J 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of

Thank you for your attention and cooperation.

Very truly yours,

Mortuer de Gelslogen Mortimer A. Gelston

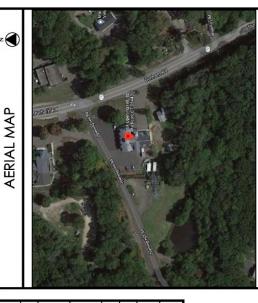
Chairman

MAG/RKE/ss

Honorable Thomas Rylander, First Selectman, Town of Madison

ATTACHMENT 2

Verizon


WIRELESS COMMUNICATIONS FACILITY

SITE NAME: MADISON CT

NORTH MADISON VOL. FIRE CO. 864 OPENING HILL RD. MADISON, CT 06443

ANTENNA MODIFICATION

	PROJECT SUMMARY
SITE NAME:	MADISON CT
SITE ADDRESS:	864 OPENING HILL RD. MADISON, CT 06443
PROPERTY OWNER:	NORTH MADISON VOL. FIRE CO. 864 OPENING HILL RD. MADISON, CT 06443
PARCEL ID:	134-17
COORDINATES:	41° 21' 26.33" N 72° 38' 19.52" W
VERIZON CONSTRUCTION:	WALTER CHARCZYNSKI (860) 306-1806
VERIZON REAL ESTATE:	ALEX TYURIN (860) 550-3195

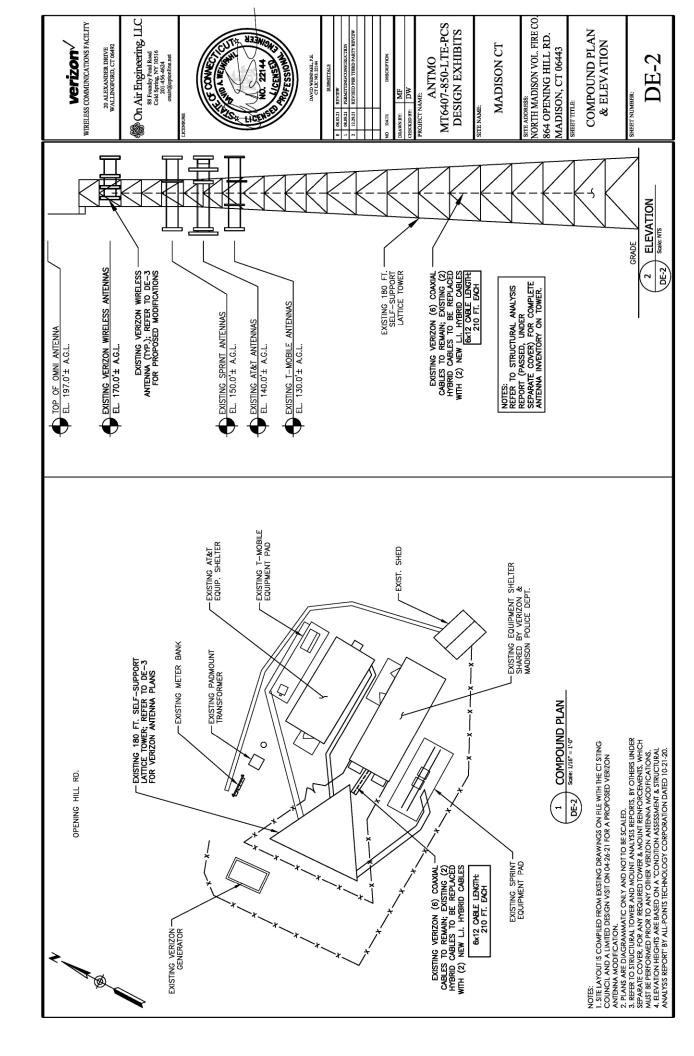
FIGURA	CONNECTION OF THE PROPERTY OF

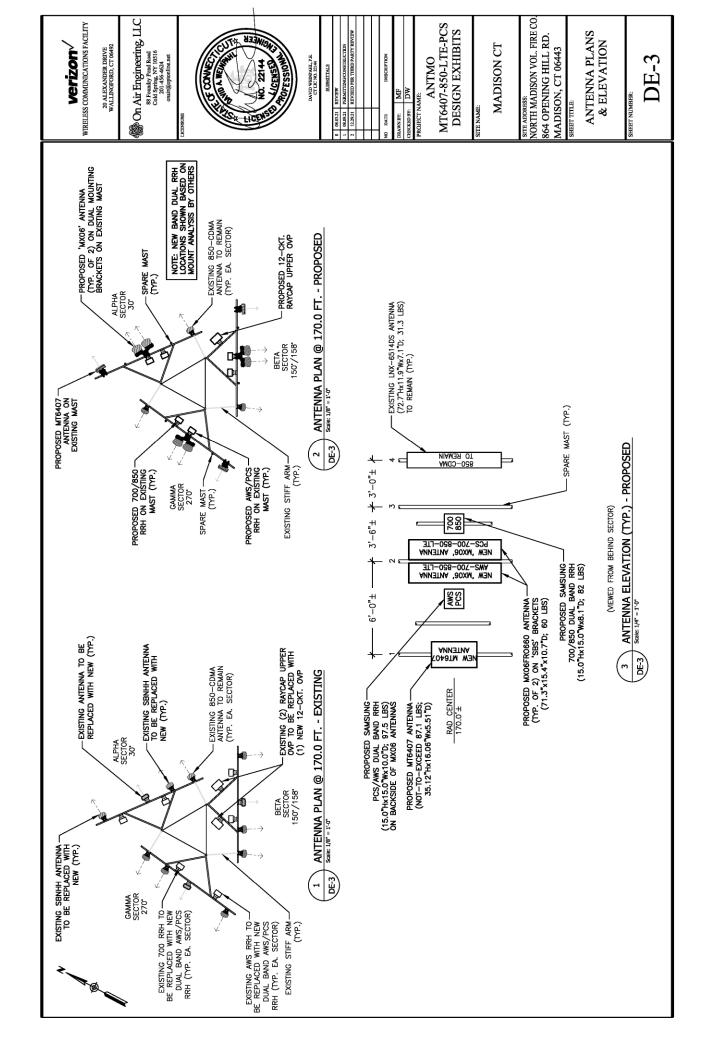
On Air Engineering, LLC 88 Founty Pont Road Cold Spring, NY 10516 201-456-4624 omin@openino.net

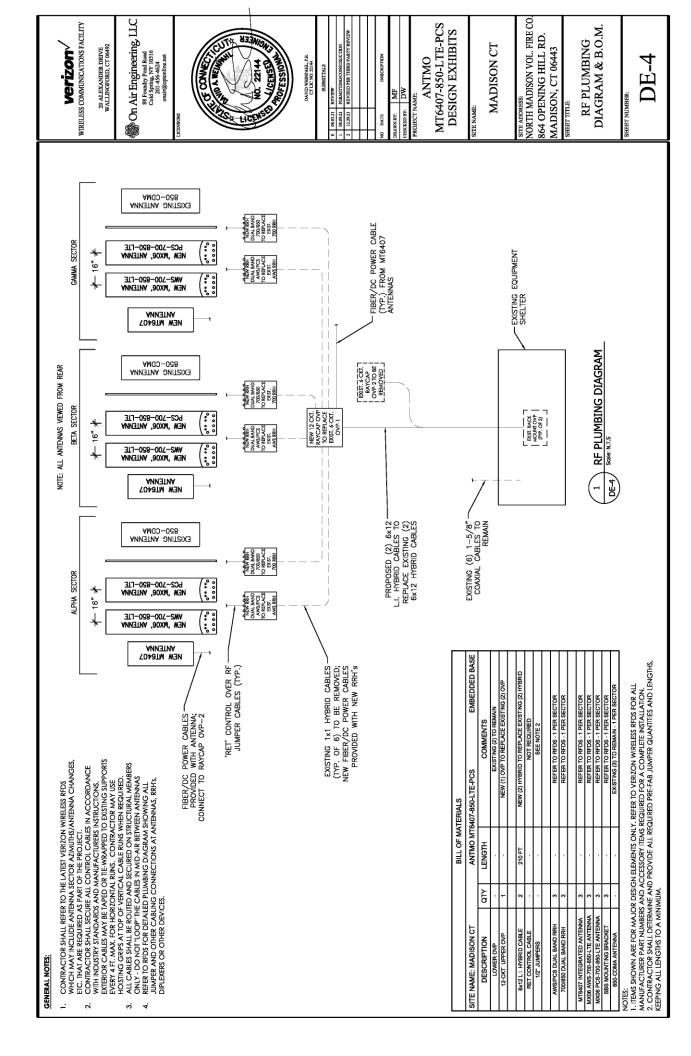
Verizon

Wireless communications facility

20 ALEXANDER DRIVE WALLINGFORD, CT 06492


MT6407-850-LTE-PCS DESIGN EXHIBITS ANTMO


MADISON CT


SITE ADDRESS:
NORTH MADISON VOL. FIRE CO.
864 OPENING HILL RD.
MADISON, CT 06443
SHERT TITLE.

TITLE SHEET

DE-1

GENERAL CONSTRUCTION NOTES

FERIZON, THE PROPERTY OWNER AND/OR PROPERTY MANAGEMENT COMPANY. 1. CONTRACTOR SHALL NOT COMMENCE ANY WORK UNTIL HE OBTAINS, AT HIS OWN EXPENSE, ALL INSURANCE REQUIRED BY CELLCO PARTNERSHIP d/b/a

2. ALL WORK SHALL BE DONE IN ACCORDANCE WITH ALL APPLICABLE CODES AND REGULATIONS, CURRENT EDITIONS.

CONDITIONS AFFECTING THE PROPOSED WORK AND MAKE PROVISIONS AS TO THE COST THERDE. CONTRACTOR SHALL BE RESPONSIBLE FOR FAMILARZING HIMSELF WITH HERDE. CONTRACT DOCUMENTS, FIELD CONDITIONS AND DIMENSIONS AND CONFIRMING THAT THE WORK MAY BE ACCOMPLISHED AS SHOWN PRIOR TO PROCEEDING WITH CONSTRUCTION. ANY DISCREPANCES SHALL BE BROUGHT TO HE ATTENTION OF THE BUSINESS FOR THE COMMENCENDENT OF WORK. CONTRACTOR SHALL VISIT THE JOB SITE AND FAMILIARIZE HIMSELF WITH ALL

4. CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXSTING CONDITIONS AT THE SITE FRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT REEA AND SUBMIT TO THE ENGINEER ANY DISCREPANICIS FROM THE DRAWINGS.

5. CONTRACTOR IS TO REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE STE OF DRAWINGS. CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS. CONTRACTORS SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUB-CONTRACTORS AND ALL RELATED PARTIES. THE SUB-CONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INSORMATION THAT AFFECTS THEIR WORK.

6. CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTUREAL MECHANICAL AND ELECTRICAL COMPONENTS AND PROVIDE ITS AS AS SHOWN OR INDICATED ON DRAWINGS OR WRITHEN IN SPECIFICATIONS.

7. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETE) JOB IN ACCORDANCE WITH LOCAL AND STATE GOVERING AUTHORITES AND OTHER AUTHORITES HAVING LAWRIL JURISDICTION OVER THE WORK.

8. CONTRACTOR SHALL OBTAIN AT HIS OWN EXPENSE ALL PERMITS AND ALL INSPECTIONS REQUIRED FROM FEDERAL AND STATE GOVERNMENTS, COUNTIES, MUNICIPALITIES AND OTHER REGULATORY AGENCIES WHICH MAY BE REQUIRED FOR THE PROJECT.

10. DETALIS ARE INTENDED TO SHOW END RESULT OF DESIGN. MINOR MODIFICATIONS, AND DIFFICATIONS MAY BE REQUIRED TO SUIT LOBE DIMENSIONS OR CONDITIONS, AND SUCH AMODIFICATIONS SHALL BE INCLUDED AS PART OF THE WORK.

11. ALL MATERIAL PROVIDED BY CELLCO PARTNERSHIP d/b/a VERIZON IS TO BE REVIEWED BY CONTRACTOR RAND ALL PAPILCABLE SUB-CONTRACTOR PRIOR TO INSTALLTON. ANY DEFICIENCIES TO PROVIDED MATERIALS SHALL BE BROUGHT TO THE CONSTRUCTION MANAGERS ATTENTON IMMEDIATELY.

12. THE MATERIALS INSTALLED IN THE WORK SHALL MEET THE REQUIREMENTS OF THE CONTRACT DOCUMENTS. NO SUBSTITUTIONS ARE ALLOWED.

CONSTRUCTION, FOR SEQUENCES AND PROCEDURES TO BE USED, AND TO ENSURE THE SAFETY OF THE EXISTING BULLDING AND ITS COMPONENT DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERSTRUCTION FIC. THAT MAY BE NECESSARY. 13. CONTRACTOR IS SOLELY RESPONSIBLE FOR THE MEANS AND METHODS OF

14. CONTRACTOR SHALL COORDINATE ALL CIVIL, STRUCTURAL AND ELECTRICAL DRAWINGS FOR THE LOCATION OF ALL OPENINGS, RECESSES, BUILT-IN WORK, FIC.

15. CONTRACTOR SHALL RECEIVE CLARFICATION IN WRITING AND SHALL RECEIVE IN WRITING AND SHALL RECEIVE IN WRITING AND TO THE PROCEED BEFORE STARTING WORK ON ANY ITEMS. TO CLEARLY DEFINED OR IDENIFIED SY THE CONTRACT DOCUMENTS.

CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER OF ALL PRODUCTS ITEMS NOTED AS "EXISTING" WHICH ARE NOT FOUND TO BE IN THE FIELD.

17. ERECTION SHALL BE DONE IN A WORKMANLKE MANNER BY COMPETENT EPREIBNCED WORKMEN IN ACCORDANCE WITH APPLICABLE CODES AND THE BEST-ACCEPTED PRACTICE. ALL MEMBERS SHALL BE LAID PLUMB AND THEUE AS INDICATED ON THE DRAWINGS.

18. CONTRACTOR SHALL BE RESPONS BLE FOR THE SAFETY OF THE WORK AREA, ADJACCHY AREAS, AND BUILDING OCCUPANTS THAT ARE LIKELY TO BE AFFECTED BY THE WORK LINDER THIS CONTRACT. WORK SHALL CONFORM TO CAS, HA REQUIREMENTS.

19. CONTRACTOR SHALL COORDINATE HIS WORK AND SCHEDULE HIS ACTIVITIES AND WORKING HOURS IN ACCORDANCE WITH THE REQUIREMENTS OF THE PROPERTY OWNER AND/OR PROPERTY MANAGEMENT COMPANY.

20. CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATING HIS WORK WITH THE WORK OF OTHERS AS IT MAY RELATE TO RADIO EQUIPMENT, ANTENNAS AND ANY OTHER PORTIONS OF THE WORK.

21. CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURERS RECOMMENDATIONS UNLESS SPECIFICALLY INDICATED OR WHERE LOCAL CODES OR REGULATIONS MAY TAKE PRECEDENCE.

22. CONTRACTOR SHALL MAKE NECESARY PROVISIONS TO PROTECT EXSTING SURFACES. EQUIPMENT, IMPROVEMENTS, PRING, ANTENNA AND ANTENNA CREEKS AND REPAIR ANY DAWAGE THAT OCCURS DURING CONSTRUCTION.

23. CONTRACTOR SHALL REPAIR ALL EXISTING SURFACES DAMAGED DURING CONTRACTION SUCH THAT THEY MATCH AND BLEND WITH ADJACENT SURFACES.

24. CONTRACTOR SHALL KEEP CONTRACT AREA CLEAN, HAZARD FREE AND DISPOSE OF ALL DERBERS AND RUBBISH. EQUIPMENT NOT SPECIFIED AS TERNANING ON THE ROWIER SHALL BE REMOYED. LEAVE PREMISES IN CLEAN CONDITIONS AND REEF ROAN PAIN SPOTS. DUST, OR SMUDGES OF ANY NATURE. CONTRACTOR SHALL BE RESPONSIBLE FOR MANINAMING ALL ITEMS UNTIL COMPLETION OF CONSTRUCTION.

25. BEORE FINAL ACCEPTANCE OF THE WORK, CONTRACTOR SHALL REMOVE ALL EQUIPMENT, TEMPORARY WORKS, INUED AND USELESS MATERALS, RABBSH AND TEMPORARY STRUCTURES.

WIRELESS COMMUNICATIONS FACILITY

20 ALEXANDER DRIVE WALLINGFORD, CT 06492

DAVID WEINPAHL, P.E. CT LIC NO. 22144

ACENSE!

		SUBMITTALS
0	08.03.21	REVER
	08.09.21	PERMITTING/CONSTRUCTION
7	12,29.21	REVISED PER THIRD PARTY REVIEW
Г		
Š	NO DATE	DESCRIPTION

Ā

MT6407-850-LTE-PCS **DESIGN EXHIBITS** ANTMO

MADISON CT

NORTH MADISON VOL. FIRE CO 864 OPENING HILL RD MADISON, CT 06443

CONSTRUCTION GENERAL NOTES SHBET TITLE

DE-5

MX06FRO660-03

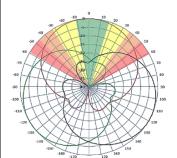
NWAV™ X-Pol Hex-Port Antenna

X-Pol Hex-Port 6 ft 60° Fast Roll Off antenna with independent tilt on 700 & 850 MHz:

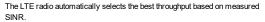
2 ports 698-798, 824-894 MHz and 4 ports 1695-2180 MHz

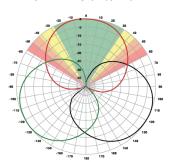
- Fast Roll Off (FRO™) azimuth beam pattern improves Intra- and Inter-cell SINR
- Compatible with dual band 700/850 MHz radios with independent low band EDT without external diplexers
- Fully integrated (iRETs) with independent RET control for low and high bands for ease of network optimization
- SON-Ready array spacing supports beamforming capabilities
- Suitable for LTE/CDMA/PCS/UMTS/GSM air interface technologies
- Integrated Smart Bias-Ts reduce leasing costs

Fast Roll-Off antennas increase data throughput without compromising coverage


The horizontal beam produced by Fast Roll-Off (FRO) technology increases the Signal to Interference & Noise Ratio (SINR) by eliminating overlap between sectors .

JMA's FRO antenna pattern minimizes overlap, thereby minimizing interference.

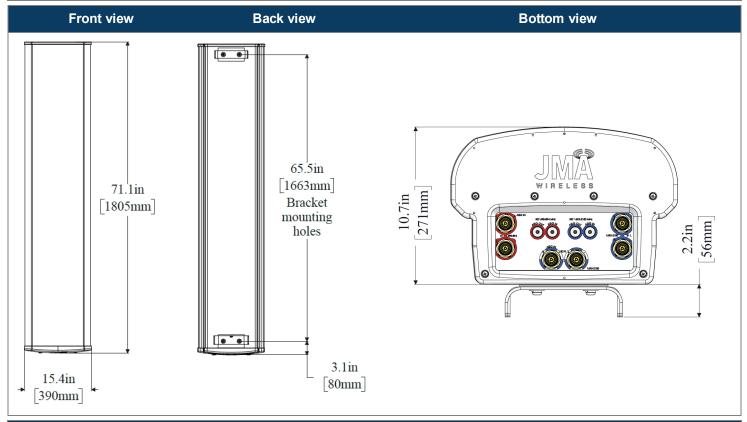

Non-FRO antenna


ntenna Large traditional antenna pattern overlap creates harmful interference.

JMA FRO antenna

LTE throughput	SINR	Speed (bps/Hz)	Speed increase	CQI
Excellent	>18	>4.5	333+%	8-10
Good	15-18	3.3-4.5	277%	6-7
Fair	10-15	2-3.3	160%	4-6
Poor	<10	<2	0%	1-3

Electrical specification (minimum/maximum)	Ports 1, 2 Ports 3, 4, 5, 6		;		
Frequency bands, MHz	698-798	824-894	1695-1880 1850-1990 1920-2		1920-2180
Polarization	± 45°			± 45°	
Average gain over all tilts, dBi	14.4	14.0	17.6	18.0	18.2
Horizontal beamwidth (HBW), degrees	60.5	53.0	55.0	55.0	55.5
Front-to-back ratio, co-polar power @180°± 30°, dB	>24	>24.0	>25.0 >25.0 >25.0		>25.0
X-Pol discrimination (CPR) at boresight, dB	>15.0	>14.2	>18 >18 >15		>15
Sector power ratio, percent	<3.5	<3.0	<3.0 <3.7 <3.8 <3.6		<3.6
Vertical beamwidth (VBW), degrees ¹	13.1	11.8	6.0 5.5 5.5		
Electrical downtilt (EDT) range, degrees	2-14	2-14	0-9		
First upper side lobe (USLS) suppression, dB ¹	≤-15.0	≤-16.5	≤-16.0 ≤-16.0 ≤-16.0		≤-16.0
Cross-polar isolation, port-to-port, dB ¹	25 25 25 25		25		
Max VSWR / return loss, dB	1.5:1 / -14.0 1.5:1 / -14.0				
Max passive intermodulation (PIM), 2x20W carrier, dBc	-153			-153	
Max input power per any port, watts	30	00	250		
Total composite power all ports, watts	1500				

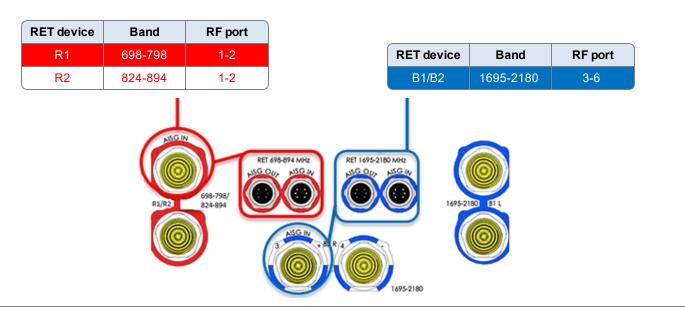

¹ Typical value over frequency and tilt

MX06FRO660-03

NWAV™ X-Pol Hex-Port Antenna

Mechanical specifications	
Dimensions height/width/depth, inches (mm)	71.3/ 15.4/ 10.7 (1811/ 392/ 273)
Shipping dimensions length/width/height, inches (mm)	82/ 20/ 15 (2083/ 508/ 381)
No. of RF input ports, connector type, and location	6 x 4.3-10 female, bottom
RF connector torque	96 lbf·in (10.85 N·m or 8 lbf·ft)
Net antenna weight, lb (kg)	60 (27.0)
Shipping weight, lb (kg)	90 (41.0)
Antenna mounting and downtilt kit included with antenna	91900318
Net weight of the mounting and downtilt kit, lb (kg)	18 (8.18)
Range of mechanical up/down tilt	-2° to 14°
Rated wind survival speed, mph (km/h)	150 (241)
Frontal, lateral, and rear wind loading @ 150 km/h, lbf (N)	154 (685), 73 (325), 158 (703)
Equivalent flat plate @ 100 mph and Cd=2, sq ft	2.6

Ordering information			
Antenna model	Description		
MX06FRO660-03	6F X-Pol HEX FRO 60° independent tilt 700/850 RET, 4.3-10 & SBT		
Optional accessories			
AISG cables	M/F cables for AISG connections		
PCU-1000 RET controller	Stand-alone controller for RET control and configurations		

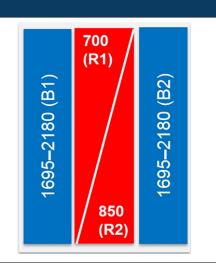

MX06FRO660-03

NWAV™ X-Pol Hex-Port Antenna

Remote electrical tilt (RET 1000) information		
RET location	Integrated into antenna	
RET interface connector type	8-pin AISG connector per IEC 60130-9	
RET connector torque	Min 0.5 N⋅m to max 1.0 N⋅m (hand pressure & finger tight)	
RET interface connector quantity	2 pairs of AISG male/female connectors	
RET interface connector location	Bottom of the antenna	
Total no. of internal RETs (low bands)	2	
Total no. of internal RETs (high bands)	1	
RET input operating voltage, vdc	10-30	
RET max power consumption, idle state, W	≤ 2.0	
RET max power consumption, normal operating conditions, W	≤ 13.0	
RET communication protocol	AISG 2.0 / 3GPP	

RET and RF connector topology

Each RET device can be controlled either via the designated external AISG connector or RF port as shown below:

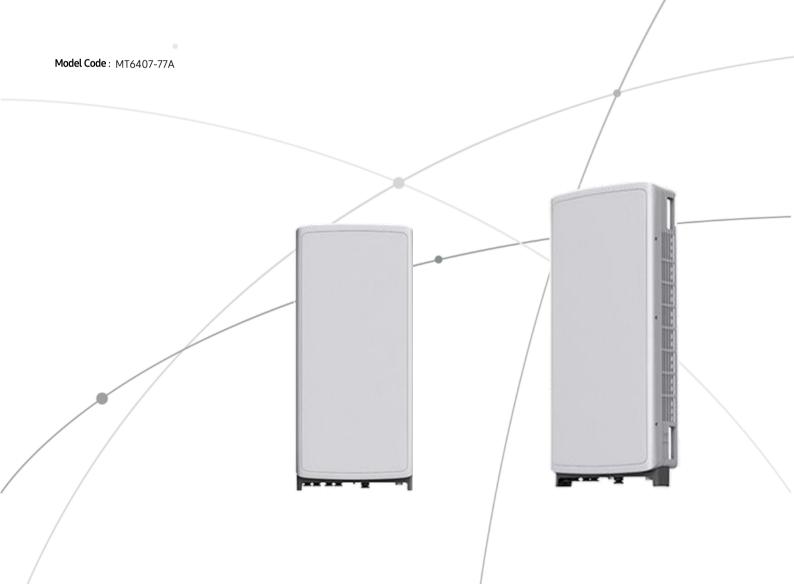


Array topology

3 sets of radiating arrays

R1/R2: 698-894 MHz B1: 1695-2180 MHz B2: 1695-2180 MHz

Band	RF port
1695-2180	3-4
698-894	1-2
1695-2180	5-6

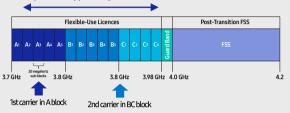


SAMSUNG

SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..


Points of Differentiation

Wide Bandwidth

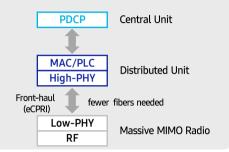
With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

C-Band spectrum supported by Massive MIMO Radio

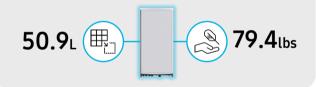
Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.


This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.

Future Proof Product


Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment..

Technical Specifications

Item	Specification
Tech	NR
Band	n77
Frequency Band	3700 - 3980 MHz
EIRP	78.5dBm (53.0 dBm+25.5 dBi)
IBW/OBW	280 MHz / 200 MHz
Installation	Pole/Wall
Size/ Weight	16.06 x 35.06 x 5.51 inch (50.86L)/ 79.4 lbs

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

SAMSUNG

Dual-Band Radio Unit 700/850MHz (B13/B5)

RFV01U-D2A

Samsung's RFV01U-D2A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.

The RFV01U-D2A RU targets dual-band support across Band 13 (700MHz) and Band 5 (850MHz), making it an ideal product for broad coverage footprints across multiple common low-end, long-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributed-and central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation

Key Technical Specifications

Duplex Type: FDD Operating Frequencies:

B13: DL(746-756MHz)/UL(777-787MHz) B5: DL(869-894MHz)/UL(824-849MHz) Instantaneous Bandwidth: 10MHz(B13) + 25MHz(B5)

RF Chain: 4T4R/2T4R/2T2R Output Power: Total 320W DU-RU Interface: CPRI (10Gbps) Dimensions: 380 x 380 x 207mm (29.9L)

Weight: 31.9kg Input Power: -48V DC

Operating Temp.: -40 - 55°(w/o solar load)

Cooling: Natural convection

SAMSUNG

Dual-Band Radio Unit AWS/PCS (B66/B2)

RFV01U-D1A

Samsung's RFV01U-D1A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.

The RFV01U-D1A RU targets dual-band support across Band 66 (AWS) and Band 2 (PCS), making it an ideal product for broad coverage footprints across multiple common mid-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributed-and central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation
- Built-in Broadcast Auxiliary Services (BAS) filter ensures compliant AWS operation without impacting footprint

Key Technical Specifications

Duplex Type: FDD Operating Frequencies:

B66: DL(2,110-2,180MHz)/UL(1,710-1,780MHz) B2: DL(1,930-1,990MHz)/UL(1,850-1,910MHz)

Instantaneous Bandwidth:

70MHz(B66) + 60MHz(B2)

RF Chain: 4T4R/2T4R/2T2R Output Power: Total 320W DU-RU Interface: CPRI (10Gbps)

Dimensions: 380 x 380 x 255mm (36.8L)

Weight: 38.3kg

Input Power: -48V DC

Operating Temp.: -40 - 55°(w/o solar load)

Cooling: Natural convection

ATTACHMENT 3

	General	Power	Density					
Site Name: Madison								
Tower Height: Verizon @ 170ft								
CARRIER	# OF CHAN.	WATTS ERP	HEIGHT	FREQ.	CALC. POWER DENS	MAX. PERMISS.EXP.	FRACTION MPE	Total
*T-Mobile	2	592	130	600	0.027691875	0.4	0.69%	
*T-Mobile	2	649	130	700		0.46666667	0.65%	
*T-Mobile	4	1102	130	1900	0.103096101	1	1.03%	
*T-Mobile	2	2204	130	1900	0.103096101	1	1.03%	
*T-Mobile	2	2589	130	2100	0.121105174	1	1.21%	
*Fire Company	1	100	180	46.06	0.001187806	0.2	0.06%	
*Police Dept	1	100	180	453.5	0.0012	0.3023	0.04%	
*AT&T	1	566	140	850	0.0113	0.5667	0.20%	
*AT&T	1	6311	140	1900	0.1264	1.0000	1.26%	
*AT&T	1	921	140	850	0.0184	0.5667	0.33%	
*AT&T	1	921	140	850	0.0184	0.5667	0.33%	
*AT&T	1	7114	140	2100	0.1425	1.0000	1.42%	
*AT&T	1	1423	140	737	0.0285	0.4913	0.58%	
*Sprint	1	438	150	850	0.0076	0.5667	0.13%	
*Sprint	2	438	150	850	0.0152	0.5667	0.27%	
*Sprint	5	623	150	1900	0.0540	1.0000	0.54%	
*Sprint	2	1556	150	1900	0.0540	1.0000	0.54%	
*Sprint	8	778	150	2500	0.1079	1.0000	1.08%	
*Nextel	9	100	160	851	0.0136	0.5673	0.24%	
VZW 700	4	966	170	751	0.0048	0.5007	0.96%	
VZW CDMA	2	447	170	877.26	0.0011	0.5848	0.19%	
VZW Cellular	4	944	170	874	0.0047	0.5827	0.81%	
VZW PCS	4	1476	170	1975	0.0073	1.0000	0.73%	
VZW AWS	4	2316	170	2120	0.0115	1.0000	1.15%	
VZW CBAND	2	6531	170	3730.08	0.0325	1.0000	3.25%	
								18.739

ATTACHMENT 4

Report Date: January 13, 2022

Client: On Air Engineering, LLC

88 Foundry Pond Road Cold Spring, NY 10516 Attn: David Weinpahl, P.E.

(201) 456-4624

dweinpahl@onaireng.com

Structure: Existing 180-ft Self Support Tower

Verizon Site Name: MADISON CT **Site Address:** 864 Opening Hill Rd

City, County, State: Madison, New Haven County, CT

Latitude, Longitude: 41.3573138, -72.638756

PJF Project: A42921-0018.003.8700

Paul J. Ford and Company is pleased to submit this "Structural Analysis Report" to determine the tower stress level.

Analysis Criteria:

This analysis utilizes an ultimate 3-second gust wind speed of 140 mph (converted to an equivalent 108 mph nominal 3-second gust wind speed per Section 1609.3.1 for use with TIA-222 G) as required by the 2018 Connecticut State Building Code and Appendix N. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Proposed Appurtenance Loads:

The structure was analyzed with the proposed loading configuration shown in Table 1 combined with the other considered equipment shown in Table 2 of this report.

Summary of Analysis Results:

Existing Structure: Pass – 59.6% Existing Foundation: Pass – 46.0%

We at Paul J. Ford and Company appreciate the opportunity of providing our continuing professional services to you and On Air Engineering, LLC. If you have any questions or need further assistance on this or any other projects, please give us a call.

Respectfully Submitted by: Paul J. Ford and Company

John Fawcett Structural Designer jfawcett@pauljford.com

AKT

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 180-ft self-support tower design by Rohn per the last structural analysis by American Tower Corporation. All information regarding tower geometry and foundations were taken from this analysis as no manufacturer drawings or tower mapping were provided.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-G

Risk Category:

Ultimate Wind Speed: 140 mph Nominal Wind Speed: 108 mph

Exposure Category:

Topographic Factor:

Ice Thickness:

Wind Speed with Ice:

Service Wind Speed:

B

0.75 in

50 mph

60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	andrew	LNX-6514DS-A1M w/ Mount Pipe		
		3	jma wireless	91900314-02 SBS Bracket		
		6	jma wireless	MX06FRO660-03 w/ Mount Pipe		
		1	raycap	RVZDC-6627-PF-48	6	1-5/8
168.75	170.0	3	samsung telecommunications	B2/B66A RRH-BR049 (RFV01U-D1A)	2	1-1/4
		3	samsung telecommunications	B5/B13 RRH-BR04C (RFV01U- D2A)		hybrid
		3	samsung telecommunications	MT6407-77A w/ Mount Pipe		
		3	tower mounts	Rohn 6'x15' Boom Gate		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)				
180.0	186.0	1	miscl	12' 4-Bay Dipole	1	7/8				
	187.0	1	miscl	20' x 3" omni whip						
177.0	177.0	177.0	177 O	177.0	177.0	1	tower mount	6' sidearm (Vacant Mount)	2	7/8
		1	tower mount	Side Arm Mount						
		9	ericsson	RRUS-11						
150.0	150.0	150.0		rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe	4	1-1/4			
		3	rfs celwave	APXVTM14-C-120 w/ Mount Pipe						
		3	tower mount	14' Sector Mount						

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)			
			3	cci antennas	HPA65R-BU6AA w/ Mount Pipe				
		6	ericsson	RRUS-11					
		3	kathrein	80010965 w/ Mount Pipe					
140.0	140.0	3	powerwave technologies	7770.00 w/ Mount Pipe	2 12	3/8 1-1/4			
		6	powerwave technologies	LGP1720X	4	3/4			
		2	raycap	DC6-48-60-18-8F					
		3 tower mount 14' Sector Mou		14' Sector Mount					
	130.0		3	ems wireless	RR90-17-DP				
		3	ericsson	KRY 112 71/2					
130.0		130.0	130.0	130.0	3	ericsson	RRUS-11	12	1-5/8
130.0					130.0	130.0	3	rfs celwave	APXVAARR24_43-U-NA20 w/ Mount Pipe
		3	tower mount	12' sector mount					
120.0	122.0	1	miscl	4' x 1-3/4" omni whip	1	7/8			
120.0	120.0	1	tower mount	6' Side Arm Mount		1/0			
108.0	108.0	1	miscl	12" x 12" x 12" Junction Box	3	1-1/4			
90.0	95.0	1	miscl	10' 4-bay dipole	1	7/8			
90.0	90.0	1	tower mount	6' Side Arm Mount		1/6			
86.0	88.0	1	miscl	4' x 1-3/4" omni whip	1	7/0			
00.0	86.0	1	tower mount	6' Side Arm Mount] '	7/8			
55.0	55.0	1	gps	GPS	1	1/2			
55.0	55.0		tower mount	3' Side Arm Mount	1	1/2			

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
Structural Analysis Report	American Tower, 7/18/2019	383660	On Air Engineering
Structural Analysis Report	All-Points Technology, 10/21/2020	CT656100	On Air Engineering
RFDS	Verizon, 11/24/2021	16092583	On Air Engineering
FAA 2-C Survey Certification	Martinez Couch and Associates, LLC, 5/12/2021	-	On Air Engineering
Construction Drawings	On Air Engineering, 12/29/2021	-	On Air Engineering
Mount Analysis Report	Maser, 1/11/2022	21777866A Rev 2	On Air Engineering

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 3) At the time of analysis, foundation information and a site-specific geotechnical report were not available. However, the structural analysis report, referenced in Table 3, referred to the original foundation design drawings and geotechnical report. Assuming the previous structural analysis is correct, we have analyzed the foundation.
- 4) Per assumption three, the original ROHN foundation design was not provided. If these documents are available, please provide them. The structural analysis by American Tower Corporation, dated 7/18/2019, specifically referenced the Rohn Foundation Drawings, hence, the foundation parameters from that analysis are assumed to be the most accurate and have been used in our analysis.
- 5) The APT Structural Analysis Report, dated 10/17/2020, only provides the tnx tower profile page, E-1 to provide member sizes. Based on that information, the tnx tower profile page, E-1, from our report utilized the same member sizes as the APT report. Any information not available in the APT report was obtained from the structural analysis from American Tower Corporation, dated 7/18/2019, which referenced the original Rohn tower drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

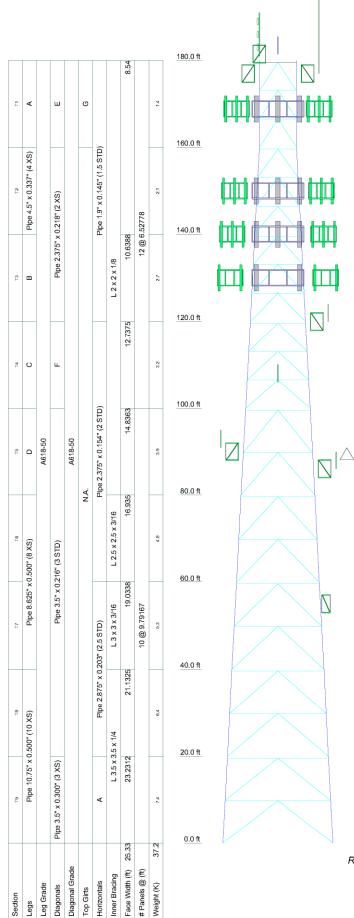
Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
T1	180 - 160	Leg	Pipe 3.5" x 0.216" (3 STD)	3	-7.73	75.60	10.2	Pass
T2	160 - 140	Leg	Pipe 4.5" x 0.337" (4 XS)	42	-26.63	169.40	15.7	Pass
Т3	140 - 120	Leg	Pipe 5.563" x 0.375" (5 EH)	80	-60.29	252.79	23.8	Pass
T4	120 - 100	Leg	Pipe 6.625" x 0.340" (6 EHS)	119	-97.36	289.63	33.6	Pass
T 5	100 - 80	Leg	Pipe 8.625" x 0.375" (8 EHS)	158	-127.29	407.78	31.2	Pass
Т6	80 - 60	Leg	Pipe 8.625" x 0.500" (8 XS)	184	-162.37	533.61	30.4 33.4 (b)	Pass
Т7	60 - 40	Leg	Pipe 8.625" x 0.500" (8 XS)	211	-197.80	533.61	37.1	Pass
Т8	40 - 20	Leg	Pipe 10.75" x 0.500" (10 XS)	238	-232.85	704.40	33.1	Pass
Т9	20 - 0	Leg	Pipe 10.75" x 0.500" (10 XS)	265	-267.30	704.40	37.9	Pass
T1	180 - 160	Diagonal	Pipe 2.375" x 0.154" (2 STD)	11	-4.81	19.32	24.9	Pass
T2	160 - 140	Diagonal	Pipe 2.375" x 0.218" (2 XS)	47	-6.50	21.65	30.0	Pass
Т3	140 - 120	Diagonal	Pipe 2.375" x 0.218" (2 XS)	86	-9.80	18.50	53.0	Pass
T4	120 - 100	Diagonal	Pipe 2.875" x 0.203" (2.5 STD)	125	-9.73	27.83	35.0	Pass

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
T5	100 - 80	Diagonal	Pipe 3.5" x 0.216" (3 STD)	164	-12.16	32.33	37.6	Pass
Т6	80 - 60	Diagonal	Pipe 3.5" x 0.216" (3 STD)	191	-12.52	28.78	43.5	Pass
T 7	60 - 40	Diagonal	Pipe 3.5" x 0.216" (3 STD)	218	-12.88	25.65	50.2	Pass
Т8	40 - 20	Diagonal	Pipe 3.5" x 0.216" (3 STD)	249	-13.20	23.29	56.7	Pass
T9	20 - 0	Diagonal	Pipe 3.5" x 0.300" (3 XS)	276	-13.66	26.89	50.8	Pass
T 1	180 - 160	Horizontal	Pipe 1.9" x 0.145" (1.5 STD)	10	-2.71	23.80	11.4	Pass
T2	160 - 140	Horizontal	Pipe 1.9" x 0.145" (1.5 STD)	46	-4.05	20.26	20.0	Pass
Т3	140 - 120	Horizontal	Pipe 1.9" x 0.145" (1.5 STD)	85	-6.77	15.17	44.6	Pass
T4	120 - 100	Horizontal	Pipe 2.375" x 0.154" (2 STD)	124	-7.22	23.14	31.2	Pass
T 5	100 - 80	Horizontal	Pipe 2.375" x 0.154" (2 STD)	163	-8.06	19.01	42.4	Pass
Т6	80 - 60	Horizontal	Pipe 2.375" x 0.154" (2 STD)	190	-8.75	14.68	59.6	Pass
Т7	60 - 40	Horizontal	Pipe 2.875" x 0.203" (2.5 STD)	217	-9.38	26.82	35.0 38.3 (b)	Pass
Т8	40 - 20	Horizontal	Pipe 2.875" x 0.203" (2.5 STD)	247	-9.94	22.20	44.8	Pass
T 9	20 - 0	Horizontal	Pipe 3.5" x 0.216" (3 STD)	274	-10.52	36.29	29.0 43.5 (b)	Pass
T 1	180 - 160	Top Girt	Pipe 1.9" x 0.145" (1.5 STD)	4	-0.16	23.80	0.7	Pass
T1	180 - 160	Inner Bracing	L 2 x 2 x 1/8	37	-0.00	6.84	0.7	Pass
T2	160 - 140	Inner Bracing	L 2 x 2 x 1/8	54	-0.01	5.09	0.8	Pass
Т3	140 - 120	Inner Bracing	L 2 x 2 x 1/8	93	-0.01	3.47	0.9	Pass
T4	120 - 100	Inner Bracing	L 2 x 2 x 1/8	130	-0.01	2.52	1.0	Pass
T5	100 - 80	Inner Bracing	L 2 x 2 x 1/8	171	-0.01	1.99	1.1	Pass
Т6	80 - 60	Inner Bracing	L 2.5 x 2.5 x 3/16	196	-0.01	4.49	0.8	Pass
T7	60 - 40	Inner Bracing	L 3 x 3 x 3/16	223	-0.01	6.32	0.9	Pass
T8	40 - 20	Inner Bracing	L 3.5 x 3.5 x 1/4	250	-0.02	10.88	0.7	Pass
T 9	20 - 0	Inner Bracing	L 3.5 x 3.5 x 1/4	277	-0.02	9.08	0.7	Pass
							Summary	
						Leg (T9)	37.9	Pass
						Diagonal (T8)	56.7	Pass
						Horizontal (T6)	59.6	Pass
						Top Girt (T1)	0.7	Pass
						Inner Bracing (T5)	1.1	Pass
						Bolt Checks	41.4	Pass
						Rating =	59.6	Pass

Table 5 - Tower Component Stresses vs. Capacity

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	36.2	Pass
1	Base Foundation (Structure)	0	9.3	Pass
1	Base Foundation (Soil Interaction)	0	46.0	Pass

Structure Rating (max from all components) =	59.6%


Notes:

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

APPENDIX A TNXTOWER OUTPUT

Legs

SYMBOL LIST

	02		
MARK	SIZE	MARK	SIZE
Α	Pipe 3.5" x 0.216" (3 STD)	E	Pipe 2.375" x 0.154" (2 STD)
В	Pipe 5.563" x 0.375" (5 EH)	F	Pipe 2.875" x 0.203" (2.5 STD)
С	Pipe 6.625" x 0.340" (6 EHS)	G	Pipe 1.9" x 0.145" (1.5 STD)
D	Pine 8 625" x 0 375" (8 EHS)		

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A618-50	50 ksi	70 ksi			

TOWER DESIGN NOTES

- Tower is located in New Haven County, Connecticut.
 Tower designed for Exposure B to the TIA-222-G Standard.
 Tower designed for a 108 mph basic wind in accordance with the TIA-222-G Standard.
- Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.

- Deflections are based upon a 60 mph wind.
 Tower Structure Class III.
 Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 59.6%

ALL REACTIONS ARE FACTORED

MAX. CORNER REACTIONS AT BASE:

DOWN: 283 K SHEAR: 34 K

UPLIFT: -246 K SHEAR: 31 K

> AXIAL 194 K

MOMENT SHEAR 17 K 1840 kip-ft

TORQUE 12 kip-ft 50 mph WIND - 0.75 in ICE

> AXIAL 67 K MOMENT

SHEAR 58 K 5811 kip-ft

TORQUE 64 kip-ft REACTIONS - 108 mph WIND

Paul J. Ford and Company 250 E. Broad St., Ste 600

Columbus, OH 43215 Phone: 614-221-6679 FAX:

Job: Existing 180-ft SST / Madison, CT							
Project: PSLC 469121 / PJF 4	2921-0018						
Client: On Air Engineering	Drawn by: JMF	App'd:					
Code: TIA-222-G	Date: 01/13/22	Scale: NTS					
Path:	'	Dwg No. F_					

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 180.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 8.54 ft at the top and 25.33 ft at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

- Tower is located in New Haven County, Connecticut.
- ASCE 7-10 Wind Data is used (wind speeds converted to nominal values).
- Basic wind speed of 108 mph.
- Structure Class III.
- Exposure Category B.
- Topographic Category 1.
- Crest Height 0.00 ft.
- Nominal ice thickness of 0.75 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Deflections calculated using a wind speed of 60 mph.
- Pressures are calculated at each section.
- Stress ratio used in tower member design is 1.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- ✓ Use Code Safety Factors Guys Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile
- √ Include Bolts In Member Capacity
- Leg Bolts Are At Top Of Section

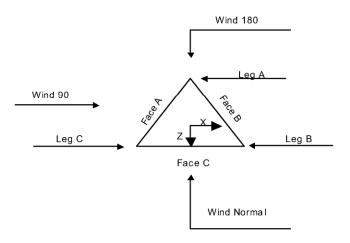
 ✓ Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)
 SR Members Have Cut Ends
 SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned Assume Rigid Index Plate Use Clear Spans For Wind Area

- √ Use Clear Spans For KL/r
- √ Retension Guys To Initial Tension Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination


- Sort Capacity Reports By Component
- Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

- Use ASCE 10 X-Brace Ly Rules

 √ Calculate Redundant Bracing Forces
- Ignore Redundant Bracing Forces
 Ignore Redundant Members in FEA
 SR Leg Bolts Resist Compression
 All Leg Panels Have Same Allowable
 Offset Girt At Foundation
- √ Consider Feed Line Torque
- ✓ Include Angle Block Shear Check Use TIA-222-G Bracing Resist.
 Exemption
 Use TIA-222-G Tension Splice
 Exemption

Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Triangular Tower

Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of	Section Length
					Sections	•
	ft			ft		ft
T 1	180.00-160.00			8.54	1	20.00
T2	160.00-140.00			8.54	1	20.00
T3	140.00-120.00	10.64	1	20.00		
T4	120.00-100.00			12.74	1	20.00
T5	100.00-80.00			14.84	1	20.00
T 6	80.00-60.00			16.94	1	20.00
T7	60.00-40.00			19.03	1	20.00
T8	40.00-20.00			21.13	1	20.00
T9	20.00-0.00			23.23	1	20.00

Tower Section Geometry (cont'd)

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Type	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T 1	180.00-160.00	6.53	K Brace Down	No	Yes	5.00	0.00
T2	160.00-140.00	6.53	K Brace Down	No	Yes	5.00	0.00
T3	140.00-120.00	6.53	K Brace Down	No	Yes	5.00	0.00
T4	120.00-100.00	6.53	K Brace Down	No	Yes	5.00	0.00
T5	100.00-80.00	9.79	K Brace Down	No	Yes	5.00	0.00
T6	80.00-60.00	9.79	K Brace Down	No	Yes	5.00	0.00
T 7	60.00-40.00	9.79	K Brace Down	No	Yes	5.00	0.00
T8	40.00-20.00	9.79	K Brace Down	No	Yes	5.00	0.00
T9	20.00-0.00	9.79	K Brace Down	No	Yes	5.00	0.00

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation	Type	Size	Grade	Type	Size	Grade
ft						
T1 180.00-	Pipe	Pipe 3.5" x 0.216" (3 STD)	A618-50	Pipe	Pipe 2.375" x 0.154" (2	A618-50
160.00			(50 ksi)		STD)	(50 ksi)
T2 160.00-	Pipe	Pipe 4.5" x 0.337" (4 XS)	A618-50	Pipe	Pipe 2.375" x 0.218" (2 XS)	A618-50
140.00			(50 ksi)			(50 ksi)
T3 140.00-	Pipe	Pipe 5.563" x 0.375" (5 EH)	A618-50	Pipe	Pipe 2.375" x 0.218" (2 XS)	A618-50
120.00			(50 ksi)			(50 ksi)
T4 120.00-	Pipe	Pipe 6.625" x 0.340" (6	A618-50	Pipe	Pipe 2.875" x 0.203" (2.5	A618-50
100.00		EHS)	(50 ksi)		STD)	(50 ksi)
T5 100.00-	Pipe	Pipe 8.625" x 0.375" (8	A618-50	Pipe	Pipe 3.5" x 0.216" (3 STD)	A618-50
80.00		EHS)	(50 ksi)			(50 ksi)
T6 80.00-60.00	Pipe	Pipe 8.625" x 0.500" (8 XS)	A618-50	Pipe	Pipe 3.5" x 0.216" (3 STD)	A618-50
			(50 ksi)			(50 ksi)
T7 60.00-40.00	Pipe	Pipe 8.625" x 0.500" (8 XS)	A618-50	Pipe	Pipe 3.5" x 0.216" (3 STD)	A618-50
			(50 ksi)			(50 ksi)
T8 40.00-20.00	Pipe	Pipe 10.75" x 0.500" (10	A618-50	Pipe	Pipe 3.5" x 0.216" (3 STD)	A618-50
		XS)	(50 ksi)			(50 ksi)
T9 20.00-0.00	Pipe	Pipe 10.75" x 0.500" (10	A618-50	Pipe	Pipe 3.5" x 0.300" (3 XS)	A618-50
		XS)	(50 ksi)			(50 ksi)

Tower Section Geometry (cont'd)

Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal
Elevation	of	Type	Size	Grade	Type	Size	Grade
	Mid						
ft	Girts						
T1 180.00-	None	Pipe		A618-50	Pipe	Pipe 1.9" x 0.145"	A618-50
160.00				(50 ksi)		(1.5 STD)	(50 ksi)
T2 160.00-	None	Pipe		A618-50	Pipe	Pipe 1.9" x 0.145"	A618-50
140.00				(50 ksi)		(1.5 STD)	(50 ksi)
T3 140.00-	None	Pipe		A618-50	Pipe	Pipe 1.9" x 0.145"	A618-50
120.00				(50 ksi)		(1.5 STD)	(50 ksi)
T4 120.00-	None	Pipe		A618-50	Pipe	Pipe 2.375" x 0.154"	A618-50
100.00				(50 ksi)		(2 STD)	(50 ksi)
T5 100.00-	None	Pipe		A618-50	Pipe	Pipe 2.375" x 0.154"	A618-50
80.00				(50 ksi)		(2 STD)	(50 ksi)
T6 80.00-60.00	None	Pipe		A618-50	Pipe	Pipe 2.375" x 0.154"	A618-50
				(50 ksi)		(2 STD)	(50 ksi)
T7 60.00-40.00	None	Pipe		A618-50	Pipe	Pipe 2.875" x 0.203"	A618-50
				(50 ksi)		(2.5 STD)	(50 ksi)
T8 40.00-20.00	None	Pipe		A618-50	Pipe	Pipe 2.875" x 0.203"	A618-50
				(50 ksi)		(2.5 STD)	(50 ksi)
T9 20.00-0.00	None	Pipe		A618-50	Pipe	Pipe 3.5" x 0.216" (3	A618-50
				(50 ksi)		STD)	(50 ksi)

Tower Section Geometry (cont'd)

Tower Elevation	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
ft T1 180.00-	Pipe		A618-50	Single Angle	L 2 x 2 x 1/8	A36
160.00	Fipe		(50 ksi)	Single Angle	L Z X Z X 1/0	(36 ksi)
T2 160.00- 140.00	Pipe		A618-50 (50 ksi)	Single Angle	L 2 x 2 x 1/8	A36 (36 ksi)
T3 140.00- 120.00	Pipe		A618-50 (50 ksi)	Single Angle	L 2 x 2 x 1/8	(36 ksi) (36 ksi)

Tower Elevation	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
ft			Grade			
T4 120.00- 100.00	Pipe		A618-50 (50 ksi)	Single Angle	L 2 x 2 x 1/8	A36 (36 ksi)
T5 100.00- 80.00	Pipe		À618-50 (50 ksi)	Single Angle	L 2 x 2 x 1/8	`A36 [′] (36 ksi)
T6 80.00-60.00	Pipe		À618-50 (50 ksi)	Single Angle	L 2.5 x 2.5 x 3/16	`A36 [′] (36 ksi)
T7 60.00-40.00	Pipe		À618-50 (50 ksi)	Single Angle	L 3 x 3 x 3/16	`A36 [′] (36 ksi)
T8 40.00-20.00	Pipe		À618-50 (50 ksi)	Single Angle	L 3.5 x 3.5 x 1/4	` A36 [′] (36 ksi)
T9 20.00-0.00	Pipe		À618-50 (50 ksi)	Single Angle	L 3.5 x 3.5 x 1/4	A36 (36 ksi)

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft ²	in					in	in	in
T1 180.00- 160.00	0.00	0.38	A36 (36 ksi)	1	1	1.1	0.00	0.00	36.00
T2 160.00- 140.00	0.00	0.38	A36 (36 ksi)	1	1	1.1	36.00	36.00	36.00
T3 140.00- 120.00	0.00	0.38	A36 (36 ksi)	1	1	1.1	36.00	36.00	36.00
T4 120.00- 100.00	0.00	0.38	A36 (36 ksi)	1	1	1.1	0.00	0.00	36.00
T5 100.00- 80.00	0.00	0.38	A36 ((36 ksi)	1	1	1.1	36.00	36.00	36.00
T6 80.00- 60.00	0.00	0.38	A36 ((36 ksi)	1	1	1.1	36.00	36.00	36.00
T7 60.00- 40.00	0.00	0.38	`A36 [′] (36 ksi)	1	1	1.1	36.00	36.00	36.00
T8 40.00- 20.00	0.00	0.38	`A36 [′] (36 ksi)	1	1	1.1	36.00	36.00	36.00
T9 20.00-0.00	0.00	0.38	A36 (36 ksi)	1	1	1.1	36.00	36.00	36.00

Tower Section Geometry (cont'd)

						K Fad	ctors¹			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Angles	Rounds		X	X	X	X	X	X	X
ft				ΥΥ	Υ	Y	Υ	Y	Υ	Υ
T1 180.00-	Yes	No	1	1	1	1	1	1	1	1
160.00				1	1	1	1	1	1	1
T2 160.00-	Yes	No	1	1	1	1	1	1	1	1
140.00				1	1	1	1	1	1	1
T3 140.00-	Yes	No	1	1	1	1	1	1	1	1
120.00				1	1	1	1	1	1	1
T4 120.00-	Yes	No	1	1	1	1	1	1	1	1
100.00				1	1	1	1	1	1	1
T5 100.00-	Yes	No	1	1	1	1	1	1	1	1
80.00				1	1	1	1	1	1	1
T6 80.00-	Yes	No	1	1	1	1	1	1	1	1
60.00		· · · -		1	1	1	1	1	1	1

		0-1-	K Factors ¹										
Elevation K	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace			
	Angles	Rounds		x	x	X	X	X	X	X			
ft	· ·			Y	Y	Y	Y	Y	Y	Y			
T7 60.00-	Yes	No	1	1	1	1	1	1	1	1			
40.00				1	1	1	1	1	1	1			
T8 40.00-	Yes	No	1	1	1	1	1	1	1	1			
20.00				1	1	1	1	1	1	1			
T9 20.00-	Yes	No	1	1	1	1	1	1	1	1			
0.00				1	1	1	1	1	1	1			

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg		Diagonal		Top Gi	Top Girt		Bottom Girt		Mid Girt		Long Horizontal		orizontal
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 180.00- 160.00	0.00	1	0.00	1	0.00	1	0.00	1	0.00	0.75	0.00	1	0.00	0.75
T2 160.00- 140.00	0.00	1	0.00	1	0.00	1	0.00	1	0.00	0.75	0.00	1	0.00	0.75
T3 140.00- 120.00	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1
T4 120.00- 100.00	0.00	1	0.00	1	0.00	1	0.00	1	0.00	0.75	0.00	1	0.00	0.75
T5 100.00- 80.00	0.00	1	0.00	1	0.00	1	0.00	1	0.00	0.75	0.00	1	0.00	0.75
T6 80.00-	0.00	1	0.00	1	0.00	1	0.00	1	0.00	0.75	0.00	1	0.00	0.75
T7 60.00- 40.00	0.00	1	0.00	1	0.00	1	0.00	1	0.00	0.75	0.00	1	0.00	0.75
T8 40.00- 20.00	0.00	1	0.00	1	0.00	1	0.00	1	0.00	0.75	0.00	1	0.00	0.75
T9 20.00-0.00	0.00	1	0.00	1	0.00	1	0.00	1	0.00	0.75	0.00	1	0.00	0.75

Tower Elevation ft			Redundant Diagonal			Redundant Sub- Diagonal		Redundant Sub- Horizontal		Redundant Vertical		ant Hip	Redunda Diago	
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 180.00- 160.00	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T2 160.00- 140.00	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T3 140.00- 120.00	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T4 120.00- 100.00	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T5 100.00- 80.00	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T6 80.00- 60.00	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T7 60.00- 40.00	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T8 40.00- 20.00	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T9 20.00-0.00	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75

Tower	Leg	Leg		Diagor	nal	Top G	irt	Bottom	Girt	Mid G	irt	Long Horizontal		Shor	t
Elevation	Connection													Horizoi	ntal
ft	Type														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T1 180.00-	Flange	0.88	4	0.63	3	0.00	0	0.00	0	0.00	0	0.63	2	0.00	0
160.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T2 160.00-	Flange	1.00	4	0.63	3	0.00	0	0.00	0	0.63	0	0.63	2	0.63	0
140.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T3 140.00-	Flange	1.00	6	0.63	3	0.00	0	0.00	0	0.00	0	0.63	2	0.00	0
120.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T4 120.00-	Flange	1.00	8	0.63	3	0.00	0	0.00	0	0.00	0	0.63	2	0.00	0
100.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T5 100.00-	Flange	1.00	8	0.63	3	0.00	0	0.00	0	0.63	0	0.63	2	0.63	0
80.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T6 80.00-	Flange	1.00	8	0.63	3	0.00	0	0.00	0	0.63	0	0.63	2	0.63	0
60.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T7 60.00-	Flange	1.00	12	0.63	3	0.00	0	0.00	0	0.63	0	0.63	2	0.63	0
40.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T8 40.00-	Flange	1.00	12	0.63	3	0.00	0	0.00	0	0.63	0	0.63	2	0.63	0
20.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T9 20.00-0.00	Flange	1.00	0	0.63	3	0.00	0	0.00	0	0.63	0	0.63	2	0.63	0
		A354-BC		A325N		A325N		A325N		A325N		A325N		A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	or	Allow Shield	Exclude From	t	Placement	Face Offset	Lateral Offset	#			Diameter	Perimete r	Weight
	Leg		Torque Calculation	Type	ft	in	(Frac FW)		Row	g in	in	in	plf
First SA loading			Carcaration										
1.5" flat Cable Ladder Rail	Α	No	No	Af (CaAa)	173.30 - 0.00	0.00	0.4	2	2	24.00 1.50	1.50		1.80
LDF7-50A (1 5/8" foam)	Α	No	No	Ar (CaAa)	170.00 - 0.00	0.00	0.4	6	6	0.50 1.98	1.98		0.92
HYBRID(1- 1/4) ***	Α	No	No	Ar (CaAa)	170.00 - 0.00	0.00	0.4	2	2	1.25	1.25		1.00
*** ***													
1.5" flat Cable Ladder Rail ***	Α	No	No	Af (CaAa)	131.00 - 0.00	0.00	-0.4	2	2	24.00 1.50	1.50		1.80
1.5" flat Cable Ladder Rail ***	В	No	No	Af (CaAa)	166.70 - 0.00	0.00	0.35	2	2	24.00 1.50	1.50		1.80
1.5" flat Cable Ladder Rail ***	В	No	No	Af (CaAa)	166.70 - 0.00	0.00	-0.4	2	2	24.00 1.50	1.50		1.80
1.5" flat Cable Ladder Rail	С	No	No	Af (CaAa)	160.00 - 0.00	0.00	-0.4	2	2	24.00 1.50	1.50		1.80

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Face Offset	Lateral Offset	#	# Per	Clear	Width or Diameter	Perimete r	Weight
	Leg	Siliela	Torque	Type	ft	in	(Frac FW)		Row	•	in	,	plf
	Leg		Calculation	туре	11	""	(I rac I vv)		NOW	g in	""	in	ρıı
**second SA													
loading***													
Safety Line 3/8	С	No	No	Ar (CaAa)	180.00 - 5.00	0.00	-0.5	1	1	0.38	0.38		0.22
LDF7-50A (1	В	No	No	Ar (CaAa)	130.00 -	0.00	-0.38	12	6	0.50	1.98		0.92
5/8" foam)	0	140	140	Ai (CaAa)	5.00	0.00	-0.30	12	O	0.50	1.30		0.32
LDF6-50 (1	В	No	No	Ar (CaAa)	130.00 -	0.00	-0.42	3	3	0.75	1.55		0.66
1/4" foam)	_	110	140	, (Ga, .a)	5.00	0.00	0.12	Ü	Ü	1.55	1.00		0.00
LDF6-50 (1	В	No	No	Ar (CaAa)	140.00 -	0.00	0.3	12	12	0.75	1.55		0.66
1/4" foam)				, ,	5.00					1.55			
3/4" power	В	No	No	Ar (CaAa)	140.00 -	0.00	0.36	4	4	0.71	0.71		0.30
·				, ,	5.00								
LDF2-50	В	No	No	Ar (CaAa)	140.00 -	6.00	0.36	2	2	0.44	0.44		0.08
(3/8" foam)					5.00								
LDF5-50A	Α	No	No	Ar (CaAa)	86.00 -	0.00	-0.27	1	1	1.09	1.09		0.33
(7/8" foam)					5.00								
LDF5-50A	Α	No	No	Ar (CaAa)	90.00 -	0.00	-0.29	1	1	1.09	1.09		0.33
(7/8" foam)					5.00								
LDF5-50A	Α	No	No	Ar (CaAa)	120.00 -	0.00	-0.31	1	1	1.09	1.09		0.33
(7/8" foam)					5.00								
LDF5-50A	Α	No	No	Ar (CaAa)	177.00 -	0.00	-0.37	2	2	1.09	1.09		0.33
(7/8" foam)					5.00								
LDF4-50A	Α	No	No	Ar (CaAa)	55.00 -	3.00	-0.34	1	1	0.63	0.63		0.15
(1/2" foam)					5.00								
LDF5-50A	Α	No	No	Ar (CaAa)	180.00 -	0.00	-0.4	1	1	1.09	1.09		0.33
(7/8" foam)					5.00								
LDF6-50 (1	Α	No	No	Ar (CaAa)	150.00 -	0.00	-0.34	3	3	0.75	1.55		0.66
1/4" foam)					5.00					1.55			
LDF6-50 (1	Α	No	No	Ar (CaAa)	150.00 -	0.00	-0.25	1	1	0.75	1.55		0.66
1/4" foam) ***					5.00					1.55			

			Disc	rete Tov	ver Loa	ds			
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	۰	ft		ft²	ft²	К
2.375" x 7' Safety Climb Extension	A	From Leg	0.00 0.00 3.50	0.000	180.00	No Ice 1/2" Ice 1" Ice	1.72 2.48 2.96	1.72 2.48 2.96	0.02 0.04 0.05
2.375" OD x 3' Mount Pipe	С	From Leg	0.00 0.00 1.50	0.000	180.00	No Ice 1/2" Ice 1" Ice	0.58 0.77 0.97	0.58 0.77 0.97	0.03 0.03 0.04
12' 4-Bay Dipole	С	From Leg	0.00 0.00 6.00	0.000	180.00	No Ice 1/2" Ice 1" Ice	4.00 6.00 8.00	4.00 6.00 8.00	0.06 0.10 0.14
Side Arm Mount	В	From Leg	3.00 0.00 0.00	0.000	177.00	No Ice 1/2" Ice 1" Ice	0.41 0.81 1.23	3.06 5.10 7.20	0.05 0.08 0.12
20' x 3" omni whip	В	From Leg	6.00 0.00 10.00	0.000	177.00	No Ice 1/2" Ice 1" Ice	3.56 7.13 10.70	3.56 7.13 10.70	0.02 0.05 0.07
6' sidearm (Vacant Mount)	С	From Leg	3.00 0.00 0.00	0.000	177.00	No Ice 1/2" Ice	0.41 0.81 1.23	3.06 5.10 7.20	0.05 0.08 0.12

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	۰	ft		ft²	ft²	Κ
***						1" Ice			
Rohn 6'x15' Boom Gate	Α	From Leg	2.00 0.00 0.00	0.000	168.75	No Ice 1/2" Ice 1" Ice	19.20 27.70 36.20	14.80 22.00 29.20	0.36 0.54 0.71
Rohn 6'x15' Boom Gate	В	From Leg	2.00 0.00 0.00	0.000	168.75	No Ice 1/2" Ice 1" Ice	19.20 27.70 36.20	14.80 22.00 29.20	0.36 0.54 0.71
Rohn 6'x15' Boom Gate	С	From Leg	2.00 0.00 0.00	0.000	168.75	No Ice 1/2" Ice 1" Ice	19.20 27.70 36.20	14.80 22.00 29.20	0.36 0.54 0.71
(2) MX06FRO660-03 w/ Mount Pipe	Α	From Leg	4.00 0.00 1.25	0.000	168.75	No Ice 1/2" Ice 1" Ice	10.11 10.68 11.22	8.99 10.15 11.03	0.10 0.19 0.29
(2) MX06FRO660-03 w/ Mount Pipe	В	From Leg	4.00 0.00 1.25	0.000	168.75	No Ice 1/2" Ice 1" Ice	10.11 10.68 11.22	8.99 10.15 11.03	0.10 0.19 0.29
(2) MX06FRO660-03 w/ Mount Pipe	С	From Leg	4.00 0.00 1.25	0.000	168.75	No Ice 1/2" Ice 1" Ice	10.11 10.68 11.22	8.99 10.15 11.03	0.10 0.19 0.29
MT6407-77A w/ Mount Pipe	Α	From Leg	4.00 0.00 1.25	0.000	168.75	No Ice 1/2" Ice 1" Ice	4.91 5.26 5.61	2.68 3.14 3.62	0.10 0.14 0.18
MT6407-77A w/ Mount Pipe	В	From Leg	4.00 0.00 1.25	0.000	168.75	No Ice 1/2" Ice 1" Ice	4.91 5.26 5.61	2.68 3.14 3.62	0.10 0.14 0.18
MT6407-77A w/ Mount Pipe	С	From Leg	4.00 0.00 1.25	0.000	168.75	No Ice 1/2" Ice 1" Ice	4.91 5.26 5.61	2.68 3.14 3.62	0.10 0.14 0.18
LNX-6514DS-A1M w/ Mount Pipe	Α	From Leg	4.00 0.00 1.25	0.000	168.75	No Ice 1/2" Ice 1" Ice	8.41 8.97 9.50	7.08 8.27 9.18	0.06 0.13 0.21
LNX-6514DS-A1M w/ Mount Pipe	В	From Leg	4.00 0.00 1.25	0.000	168.75	No Ice 1/2" Ice 1" Ice	8.41 8.97 9.50	7.08 8.27 9.18	0.06 0.13 0.21
LNX-6514DS-A1M w/ Mount Pipe	С	From Leg	4.00 0.00 1.25	0.000	168.75	No Ice 1/2" Ice 1" Ice	8.41 8.97 9.50	7.08 8.27 9.18	0.06 0.13 0.21
91900314-02 SBS Bracket	Α	From Leg	4.00 0.00 1.25	0.000	168.75	No Ice 1/2" Ice 1" Ice	0.00 0.00 0.00	0.00 0.00 0.00	0.03 0.05 0.07
91900314-02 SBS Bracket	В	From Leg	4.00 0.00 1.25	0.000	168.75	No Ice 1/2" Ice 1" Ice	0.00 0.00 0.00	0.00 0.00 0.00	0.03 0.05 0.07
91900314-02 SBS Bracket	С	From Leg	4.00 0.00 1.25	0.000	168.75	No Ice 1/2" Ice 1" Ice	0.00 0.00 0.00	0.00 0.00 0.00	0.03 0.05 0.07
RVZDC-6627-PF-48	Α	From Leg	4.00 0.00 1.25	0.000	168.75	No Ice 1/2" Ice	3.79 4.04 4.30	2.51 2.73 2.95	0.03 0.06 0.10

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustmen	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Lateral Vert	t					
			ft ft	٠	ft		ft ²	ft ²	K
			ft			1" Ice			
B2/B66A RRH-BR049	Α	From Leg	4.00	0.000	168.75	No Ice	1.88	1.25	0.08
(RFV01U-D1A)		· ·	0.00			1/2"	2.05	1.39	0.10
			1.25			Ice 1" Ice	2.22	1.54	0.12
B2/B66A RRH-BR049	В	From Leg	4.00	0.000	168.75	No Ice	1.88	1.25	0.08
(RFV01U-D1A)	_		0.00	0.000	100170	1/2"	2.05	1.39	0.10
,			1.25			Ice	2.22	1.54	0.12
B2/B66A RRH-BR049	С	From Leg	4.00	0.000	168.75	1" Ice No Ice	1.88	1.25	0.08
(RFV01U-D1A)	C	i ioni Leg	0.00	0.000	100.73	1/2"	2.05	1.39	0.00
(**************************************			1.25			Ice	2.22	1.54	0.12
						1" Ice			
B5/B13 RRH-BR04C (RFV01U-D2A)	Α	From Leg	4.00 0.00	0.000	168.75	No Ice 1/2"	1.88 2.05	1.01 1.14	0.07 0.09
(RFV010-D2A)			1.25			lce	2.05	1.14	0.09
			1.20			1" Ice	2.22	1.20	0.11
B5/B13 RRH-BR04C	В	From Leg	4.00	0.000	168.75	No Ice	1.88	1.01	0.07
(RFV01U-D2A)			0.00			1/2"	2.05	1.14	0.09
			1.25			lce 1" lce	2.22	1.28	0.11
B5/B13 RRH-BR04C	С	From Leg	4.00	0.000	168.75	No Ice	1.88	1.01	0.07
(RFV01U-D2A)			0.00			1/2"	2.05	1.14	0.09
			1.25			Ice	2.22	1.28	0.11
***						1" Ice			
APXVSPP18-C-A20 w/	Α	From Leg	4.00	0.000	150.00	No Ice	8.26	7.47	0.09
Mount Pipe		J	0.00			1/2"	8.82	8.66	0.16
			0.00			Ice	9.35	9.56	0.24
APXVSPP18-C-A20 w/	В	From Leg	4.00	0.000	150.00	1" Ice No Ice	8.26	7.47	0.09
Mount Pipe	В	i ioni Leg	0.00	0.000	130.00	1/2"	8.82	8.66	0.03
			0.00			Ice	9.35	9.56	0.24
ADVA/000040 0 A00 /	0		4.00	0.000	450.00	1" Ice	0.00	7 47	0.00
APXVSPP18-C-A20 w/ Mount Pipe	С	From Leg	4.00 0.00	0.000	150.00	No Ice 1/2"	8.26 8.82	7.47 8.66	0.09 0.16
Would be			0.00			Ice	9.35	9.56	0.10
						1" Ice			
APXVTM14-C-120 w/	Α	From Leg	4.00	0.000	150.00	No Ice	6.58	4.96	0.08
Mount Pipe			0.00 0.00			1/2" Ice	7.03 7.47	5.75 6.47	0.13 0.19
			0.00			1" Ice	1.41	0.47	0.19
APXVTM14-C-120 w/	В	From Leg	4.00	0.000	150.00	No Ice	6.58	4.96	0.08
Mount Pipe			0.00			1/2"	7.03	5.75	0.13
			0.00			Ice 1" Ice	7.47	6.47	0.19
APXVTM14-C-120 w/	С	From Leg	4.00	0.000	150.00	No Ice	6.58	4.96	0.08
Mount Pipe		ŭ	0.00			1/2"	7.03	5.75	0.13
			0.00			Ice	7.47	6.47	0.19
(3) RRUS-11	Α	From Leg	4.00	0.000	150.00	1" Ice No Ice	2.79	1.19	0.05
(5) 1(1(55-1)	^	1 Tolli Leg	0.00	0.000	130.00	1/2"	3.00	1.34	0.07
			0.00			Ice	3.21	1.50	0.09
(2) DDI 10 44	В	Fuerra Lear	4.00	0.000	150.00	1" Ice	2.70	1.19	0.05
(3) RRUS-11	В	From Leg	0.00	0.000	150.00	No Ice 1/2"	2.79 3.00	1.19	0.05
			0.00			Ice	3.21	1.50	0.09
(0) 55110 44			4.00		4=0.00	1" Ice			
(3) RRUS-11	С	From Leg	4.00 0.00	0.000	150.00	No Ice 1/2"	2.79 3.00	1.19 1.34	0.05 0.07
			0.00			Ice	3.21	1.50	0.07
						1" Ice			
14' Sector Mount	Α	From Leg	2.00	0.000	150.00	No Ice	17.35	13.30	0.35
			0.00 0.00			1/2" Ice	25.55 33.75	20.35 27.40	0.50 0.65
			5.00			100	55.75	_r. + U	0.00

Description	Face or	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
	Leg		Vert ft ft		ft		ft²	ft²	К
			ft						
14' Sector Mount	В	From Leg	2.00	0.000	150.00	1" Ice No Ice	17.35	13.30	0.35
14 Sector Mount	Б	r rom Leg	0.00 0.00	0.000	130.00	1/2" Ice 1" Ice	25.55 33.75	20.35 27.40	0.50 0.65
14' Sector Mount	С	From Leg	2.00 0.00 0.00	0.000	150.00	No Ice 1/2" Ice 1" Ice	17.35 25.55 33.75	13.30 20.35 27.40	0.35 0.50 0.65
***						1 100			
80010965 w/ Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.000	140.00	No Ice 1/2" Ice	14.05 14.69 15.30	7.63 8.90 9.96	0.14 0.23 0.34
	_					1" Ice			
80010965 w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.000	140.00	No Ice 1/2" Ice	14.05 14.69 15.30	7.63 8.90 9.96	0.14 0.23 0.34
80010965 w/ Mount Pipe	С	From Leg	4.00	0.000	140.00	1" Ice No Ice	14.05	7.63	0.14
ood 103003 W/ Wildum 1 ipe	Ü	r rom Log	0.00 0.00	0.000	140.00	1/2" Ice 1" Ice	14.69 15.30	8.90 9.96	0.23 0.34
cci antennas HPA65R-	Α	From Leg	4.00	0.000	140.00	No Ice	8.09	7.19	0.08
BU6AA w/ Mount Pipe			0.00	5.555	, , , , , ,	1/2" Ice 1" Ice	8.64 9.16	8.36 9.24	0.15 0.22
cci antennas HPA65R-	В	From Leg	4.00	0.000	140.00	No Ice	8.09	7.19	0.08
BU6AA w/ Mount Pipe		ű	0.00 0.00			1/2" Ice 1" Ice	8.64 9.16	8.36 9.24	0.15 0.22
cci antennas HPA65R- BU6AA w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.000	140.00	No Ice 1/2" Ice	8.09 8.64 9.16	7.19 8.36 9.24	0.08 0.15 0.23
			0.00			1" Ice	9.10	9.24	0.23
7770.00 w/ Mount Pipe	Α	From Leg	4.00	0.000	140.00	No Ice	5.75	4.25	0.06
			0.00 0.00			1/2" Ice 1" Ice	6.18 6.61	5.01 5.71	0.10 0.16
7770.00 w/ Mount Pipe	В	From Leg	4.00	0.000	140.00	No Ice	5.75	4.25	0.06
			0.00 0.00			1/2" Ice 1" Ice	6.18 6.61	5.01 5.71	0.10 0.16
7770.00 w/ Mount Pipe	С	From Leg	4.00	0.000	140.00	No Ice	5.75	4.25	0.06
			0.00 0.00			1/2" Ice 1" Ice	6.18 6.61	5.01 5.71	0.10 0.16
(2) LGP1720X	Α	From Leg	4.00	0.000	140.00	No Ice	1.67	0.45	0.03
			0.00 0.00			1/2" Ice 1" Ice	1.83 2.00	0.55 0.65	0.04 0.06
(2) LGP1720X	В	From Leg	4.00	0.000	140.00	No Ice	1.67	0.45	0.03
			0.00 0.00			1/2" Ice 1" Ice	1.83 2.00	0.55 0.65	0.04 0.06
(2) LGP1720X	С	From Leg	4.00 0.00	0.000	140.00	No Ice 1/2"	1.67 1.83	0.45 0.55	0.03 0.04
			0.00			Ice 1" Ice	2.00	0.65	0.06
(2) RRUS-11	Α	From Leg	4.00	0.000	140.00	No Ice	2.79	1.19	0.05
			0.00 0.00			1/2" Ice 1" Ice	3.00 3.21	1.34 1.50	0.07 0.09
(2) RRUS-11	В	From Leg	4.00	0.000	140.00	No Ice	2.79	1.19	0.05
			0.00 0.00			1/2" Ice	3.00 3.21	1.34 1.50	0.07 0.09

 Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	$C_A A_A$	Weight
Босоприон	or Leg	Туре	Horz Lateral Vert	Adjustmen t	ridoement		Front	Side	Worgin
			ft ft ft	٥	ft		ft²	ft²	K
(2) RRUS-11	С	From Leg	4.00	0.000	140.00	1" Ice No Ice	2.79	1.19	0.05
(2) 111.00	Ü	rrom Log	0.00	0.000	110.00	1/2" Ice 1" Ice	3.00 3.21	1.34 1.50	0.07 0.09
DC6-48-60-18-8F	Α	From Leg	4.00 0.00 0.00	0.000	140.00	No Ice 1/2" Ice 1" Ice	1.21 1.89 2.11	1.21 1.89 2.11	0.03 0.05 0.08
DC6-48-60-18-8F	С	From Leg	4.00 0.00 0.00	0.000	140.00	No Ice 1/2" Ice 1" Ice	1.21 1.89 2.11	1.21 1.89 2.11	0.03 0.05 0.08
14' Sector Mount	Α	From Leg	2.00 0.00 0.00	0.000	140.00	No Ice 1/2" Ice 1" Ice	17.35 25.55 33.75	13.30 20.35 27.40	0.35 0.50 0.65
14' Sector Mount	В	From Leg	2.00 0.00 0.00	0.000	140.00	No Ice 1/2" Ice 1" Ice	17.35 25.55 33.75	13.30 20.35 27.40	0.35 0.50 0.65
14' Sector Mount	С	From Leg	2.00 0.00 0.00	0.000	140.00	No Ice 1/2" Ice 1" Ice	17.35 25.55 33.75	13.30 20.35 27.40	0.35 0.50 0.65
***	_								
APXVAARR24_43-U-NA20 w/ Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.000	130.00	No Ice 1/2" Ice 1" Ice	20.48 21.23 21.99	11.02 12.55 14.10	0.19 0.32 0.47
APXVAARR24_43-U-NA20 w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.000	130.00	No Ice 1/2" Ice 1" Ice	20.48 21.23 21.99	11.02 12.55 14.10	0.19 0.32 0.47
APXVAARR24_43-U-NA20 w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.000	130.00	No Ice 1/2" Ice 1" Ice	20.48 21.23 21.99	11.02 12.55 14.10	0.19 0.32 0.47
RR90-17-DP	Α	From Leg	4.00 0.00 0.00	0.000	130.00	No Ice 1/2" Ice 1" Ice	4.36 4.70 5.06	1.97 2.31 2.66	0.02 0.04 0.07
RR90-17-DP	В	From Leg	4.00 0.00 0.00	0.000	130.00	No Ice 1/2" Ice 1" Ice	4.36 4.70 5.06	1.97 2.31 2.66	0.02 0.04 0.07
RR90-17-DP	С	From Leg	4.00 0.00 0.00	0.000	130.00	No Ice 1/2" Ice 1" Ice	4.36 4.70 5.06	1.97 2.31 2.66	0.02 0.04 0.07
RRUS-11	Α	From Leg	4.00 0.00 0.00	0.000	130.00	No Ice 1/2" Ice 1" Ice	2.79 3.00 3.21	1.19 1.34 1.50	0.05 0.07 0.09
RRUS-11	В	From Leg	4.00 0.00 0.00	0.000	130.00	No Ice 1/2" Ice 1" Ice	2.79 3.00 3.21	1.19 1.34 1.50	0.05 0.07 0.09
RRUS-11	С	From Leg	4.00 0.00 0.00	0.000	130.00	No Ice 1/2" Ice 1" Ice	2.79 3.00 3.21	1.19 1.34 1.50	0.05 0.07 0.09
KRY 112 71/2	Α	From Leg	4.00 0.00 0.00	0.000	130.00	No Ice 1/2" Ice	0.58 0.69 0.80	0.45 0.54 0.64	0.01 0.02 0.03

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	۰	ft		ft²	ft²	Κ
KRY 112 71/2	В	From Leg	4.00 0.00 0.00	0.000	130.00	1" Ice No Ice 1/2" Ice	0.58 0.69 0.80	0.45 0.54 0.64	0.01 0.02 0.03
KRY 112 71/2	С	From Leg	4.00 0.00 0.00	0.000	130.00	1" Ice No Ice 1/2" Ice 1" Ice	0.58 0.69 0.80	0.45 0.54 0.64	0.01 0.02 0.03
12' T-frame sector mount	Α	From Leg	2.00 0.00 0.00	0.000	130.00	No Ice 1/2" Ice 1" Ice	13.20 19.50 25.80	9.20 14.60 19.50	0.66 0.80 1.01
12' T-frame sector mount	В	From Leg	2.00 0.00 0.00	0.000	130.00	No Ice 1/2" Ice 1" Ice	13.20 19.50 25.80	9.20 14.60 19.50	0.66 0.80 1.01
12' T-frame sector mount	С	From Leg	2.00 0.00 0.00	0.000	130.00	No Ice 1/2" Ice 1" Ice	13.20 19.50 25.80	9.20 14.60 19.50	0.66 0.80 1.01
2.375" OD x 8' Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.000	130.00	No Ice 1/2" Ice 1" Ice	1.90 2.73 3.40	1.90 2.73 3.40	0.03 0.04 0.06
2.375" OD x 8' Mount Pipe	В	From Leg	4.00 0.00 0.00	0.000	130.00	No Ice 1/2" Ice 1" Ice	1.90 2.73 3.40	1.90 2.73 3.40	0.03 0.04 0.06
2.375" OD x 8' Mount Pipe	С	From Leg	4.00 0.00 0.00	0.000	130.00	No Ice 1/2" Ice 1" Ice	1.90 2.73 3.40	1.90 2.73 3.40	0.03 0.04 0.06
*** 6' Side Arm Mount	В	From Leg	3.00 0.00 0.00	0.000	120.00	No Ice 1/2" Ice 1" Ice	0.41 0.81 1.23	3.06 5.10 7.20	0.05 0.08 0.12
4' x 1-3/4" omni whip	В	From Leg	6.00 0.00 2.00	0.000	120.00	No Ice 1/2" Ice 1" Ice	0.79 1.03 1.28	0.79 1.03 1.28	0.01 0.01 0.02
*** 12" x 12" x 12" Junction Box	В	None		0.000	108.00	No Ice 1/2" Ice 1" Ice	1.20 1.34 1.48	0.80 0.91 1.04	0.02 0.03 0.05
6' Side Arm Mount	С	From Leg	3.00 0.00 0.00	0.000	90.00	No Ice 1/2" Ice 1" Ice	0.41 0.81 1.23	3.06 5.10 7.20	0.05 0.08 0.12
10' 4-bay dipole	С	From Leg	6.00 0.00 3.00	0.000	90.00	No Ice 1/2" Ice 1" Ice	0.79 1.03 1.28	0.79 1.03 1.28	0.02 0.03 0.04
*** 6' Side Arm Mount	В	From Leg	3.00 0.00 0.00	0.000	86.00	No Ice 1/2" Ice 1" Ice	0.41 0.81 1.23	3.06 5.10 7.20	0.05 0.08 0.12
4' x 1-3/4" omni whip	В	From Leg	6.00 0.00 2.00	0.000	86.00	No Ice 1/2" Ice 1" Ice	1.13 1.65 1.99	1.13 1.65 1.99	0.01 0.02 0.03

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weigh
			ft ft ft	o	ft		ft²	ft²	К
3' Side Arm Mount	В	From Leg	1.50 0.00 0.00	0.000	55.00	No Ice 1/2" Ice	0.85 1.14 1.43	1.67 2.34 3.01	0.07 0.08 0.09
GPS	В	From Leg	3.00 0.00 0.00	0.000	55.00	1" Ice No Ice 1/2" Ice 1" Ice	0.14 0.24 0.31	0.14 0.24 0.31	0.02 0.02 0.02
***						1 100			

Load Combinations

Comb.	Description
No.	Description
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice
3	0.9 Dead+1.6 Wind 0 deg - No Ice
4	1.2 Dead+1.6 Wind 30 deg - No Ice
5	0.9 Dead+1.6 Wind 30 deg - No Ice
6	1.2 Dead+1.6 Wind 60 deg - No Ice
7	0.9 Dead+1.6 Wind 60 deg - No Ice
8	1.2 Dead+1.6 Wind 90 deg - No Ice
9	0.9 Dead+1.6 Wind 90 deg - No Ice
10	1.2 Dead+1.6 Wind 120 deg - No Ice
11	0.9 Dead+1.6 Wind 120 deg - No Ice
12	1.2 Dead+1.6 Wind 150 deg - No Ice
13	0.9 Dead+1.6 Wind 150 deg - No Ice
14	1.2 Dead+1.6 Wind 180 deg - No Ice
15	0.9 Dead+1.6 Wind 180 deg - No Ice
16	1.2 Dead+1.6 Wind 210 deg - No Ice
17	0.9 Dead+1.6 Wind 210 deg - No Ice
18	1.2 Dead+1.6 Wind 240 deg - No Ice
19	0.9 Dead+1.6 Wind 240 deg - No Ice
20	1.2 Dead+1.6 Wind 270 deg - No Ice
21	0.9 Dead+1.6 Wind 270 deg - No Ice
22	1.2 Dead+1.6 Wind 300 deg - No Ice
23	0.9 Dead+1.6 Wind 300 deg - No Ice
24	1.2 Dead+1.6 Wind 330 deg - No Ice
25	0.9 Dead+1.6 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service

Comb.	Description
No.	
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

	D 4'
Mayımıım	Pasctions
IVIAXIIIIUIII	Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Leg C	Max. Vert	18	282.84	29.50	-17.78
_	Max. H _x	18	282.84	29.50	-17.78
	Max. H _z	7	-245.96	-26.80	16.20
	Min. Vert	7	-245.96	-26.80	16.20
	Min. H _x	7	-245.96	-26.80	16.20
	Min. H _z	18	282.84	29.50	-17.78
Leg B	Max. Vert	10	277.14	-28.08	-17.55
-	Max. H _x	23	-238.50	25.36	15.94
	Max. H _z	23	-238.50	25.36	15.94
	Min. Vert	23	-238.50	25.36	15.94
	Min. H _x	10	277.14	-28.08	-17.55
	$Min. H_z$	10	277.14	-28.08	-17.55
Leg A	Max. Vert	2	271.08	0.38	32.03
_	Max. H _x	20	23.15	7.43	1.79
	Max. H _z	2	271.08	0.38	32.03
	Min. Vert	15	-230.15	-0.37	-28.84
	Min. H _x	9	17.78	-7.41	1.40
	Min. H _z	15	-230.15	-0.37	-28.84

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M_x	Overturning Moment, M _z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	55.45	0.00	0.00	-22	-11	0
1.2 Dead+1.6 Wind 0 deg -	66.54	0.05	-53.31	-5460	-18	17
No Ice						
0.9 Dead+1.6 Wind 0 deg -	49.91	0.05	-53.31	-5453	-15	17
No Ice						
1.2 Dead+1.6 Wind 30 deg -	66.54	26.61	-46.30	-4696	-2692	25
No Ice						
0.9 Dead+1.6 Wind 30 deg -	49.91	26.61	-46.30	-4690	-2689	25
No Ice						
1.2 Dead+1.6 Wind 60 deg -	66.54	50.02	-29.06	-2915	-4976	-28
No Ice						
0.9 Dead+1.6 Wind 60 deg -	49.91	50.02	-29.06	-2908	-4972	-28
No Ice						
1.2 Dead+1.6 Wind 90 deg -	66.54	58.33	-0.05	-32	-5811	-64
No Ice						
0.9 Dead+1.6 Wind 90 deg -	49.91	58.33	-0.05	-25	-5808	-64
No Ice						
1.2 Dead+1.6 Wind 120 deg	66.54	47.83	27.73	2784	-4851	-50
- No Ice						
0.9 Dead+1.6 Wind 120 deg	49.91	47.83	27.73	2790	-4848	-50
- No Ice						_
1.2 Dead+1.6 Wind 150 deg	66.54	24.91	43.45	4487	-2595	-9
- No Ice						
0.9 Dead+1.6 Wind 150 deg	49.91	24.91	43.45	4493	-2592	-9
- No Ice						
1.2 Dead+1.6 Wind 180 deg	66.54	-0.05	53.31	5407	-7	-17
- No Ice						
0.9 Dead+1.6 Wind 180 deg	49.91	-0.05	53.31	5414	-4	-17
- No Ice						

Load Combination	Vertical K	Shear _x K	Shear₂ K	Overturning Moment, M_x kip-ft	Overturning Moment, M _z kip-ft	Torque kip-ft
1.2 Dead+1.6 Wind 210 deg	66.54	-26.61	46.30	4643	2667	-25
- No Ice						
0.9 Dead+1.6 Wind 210 deg	49.91	-26.61	46.30	4650	2670	-25
- No Ice 1.2 Dead+1.6 Wind 240 deg	66.54	-50.02	29.06	2862	4950	28
- No Ice						
0.9 Dead+1.6 Wind 240 deg - No Ice	49.91	-50.02	29.06	2868	4953	28
1.2 Dead+1.6 Wind 270 deg - No Ice	66.54	-58.33	0.05	-21	5785	64
0.9 Dead+1.6 Wind 270 deg - No Ice	49.91	-58.33	0.05	-15	5789	64
1.2 Dead+1.6 Wind 300 deg - No Ice	66.54	-47.83	-27.73	-2837	4826	50
0.9 Dead+1.6 Wind 300 deg	49.91	-47.83	-27.73	-2830	4829	50
- No Ice 1.2 Dead+1.6 Wind 330 deg	66.54	-24.91	-43.45	-4540	2570	9
- No Ice 0.9 Dead+1.6 Wind 330 deg	49.91	-24.91	-43.45	-4533	2573	9
- No Ice	49.91	-24.91	-43.43	-4000	2373	9
1.2 Dead+1.0 Ice	194.38	0.00	0.00	-120	-56	0
1.2 Dead+1.0 Wind 0	194.38	0.03	-16.00	-1763	-59	4
deg+1.0 Ice 1.2 Dead+1.0 Wind 30	194.38	8.03	-14.00	-1546	-872	7
deg+1.0 Ice	101.00	44.00	0.70	000	4540	
1.2 Dead+1.0 Wind 60 deg+1.0 Ice	194.38	14.92	-8.70	-993	-1549	-2
1.2 Dead+1.0 Wind 90 deg+1.0 Ice	194.38	17.08	-0.03	-122	-1775	-12
1.2 Dead+1.0 Wind 120 deg+1.0 Ice	194.38	14.46	8.41	738	-1527	-10
1.2 Dead+1.0 Wind 150 deg+1.0 Ice	194.38	7.70	13.49	1278	-852	-2
1.2 Dead+1.0 Wind 180 deg+1.0 Ice	194.38	-0.03	16.00	1524	-54	-4
1.2 Dead+1.0 Wind 210	194.38	-8.03	14.00	1307	759	-7
deg+1.0 Ice 1.2 Dead+1.0 Wind 240	194.38	-14.92	8.70	754	1437	2
deg+1.0 Ice 1.2 Dead+1.0 Wind 270	194.38	-17.08	0.03	-117	1663	12
deg+1.0 Ice 1.2 Dead+1.0 Wind 300	194.38	-14.46	-8.41	-977	1415	10
deg+1.0 Ice 1.2 Dead+1.0 Wind 330	194.38	-7.70	-13.49	-1517	739	2
deg+1.0 Ice						
Dead+Wind 0 deg - Service	55.45	0.01	-10.63	-1095	-12	3
Dead+Wind 30 deg - Service	55.45	5.31	-9.23	-945	-540	5
Dead+Wind 60 deg - Service	55.45	9.95	-5.78	-592	-990	-5
Dead+Wind 90 deg - Service	55.45	11.60	-0.01	-23	-1154	-12
Dead+Wind 120 deg - Service	55.45	9.53	5.52	533	-966	-10
Dead+Wind 150 deg - Service	55.45	4.98	8.68	870	-521	-2
Dead+Wind 180 deg - Service	55.45	-0.01	10.63	1051	-10	-3
Dead+Wind 210 deg -	55.45	-5.31	9.23	900	519	-5
Service Dead+Wind 240 deg -	55.45	-9.95	5.78	548	968	5
Service Dead+Wind 270 deg -	55.45	-11.60	0.01	-21	1133	12
Service Dead+Wind 300 deg -	55.45	-9.53	-5.52	-577	944	10
Service Dead+Wind 330 deg -	55.45	-4.98	-8.68	-914	500	2

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	180 - 160	1.55	42	0.063	0.023
T2	160 - 140	1.28	42	0.062	0.023
T3	140 - 120	1.01	42	0.058	0.021
T4	120 - 100	0.75	42	0.051	0.018
T5	100 - 80	0.53	42	0.041	0.015
T6	80 - 60	0.36	42	0.032	0.012
T7	60 - 40	0.21	42	0.024	0.008
T8	40 - 20	0.11	42	0.016	0.005
T9	20 - 0	0.04	48	0.008	0.002

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	٥	٥	ft
180.00	2.375" x 7' Safety Climb Extension	42	1.55	0.063	0.023	Inf
177.00	Side Arm Mount	42	1.51	0.063	0.023	Inf
168.75	Rohn 6'x15' Boom Gate	42	1.39	0.063	0.023	860156
150.00	APXVSPP18-C-A20 w/ Mount Pipe	42	1.14	0.061	0.022	742748
140.00	80010965 w/ Mount Pipe	42	1.01	0.058	0.021	936516
130.00	APXVAARR24_43-U-NA20 w/ Mount Pipe	42	0.88	0.055	0.020	193540
120.00	6' Side Arm Mount	42	0.75	0.051	0.018	106967
108.00	12" x 12" x 12" Junction Box	42	0.61	0.045	0.016	98881
90.00	6' Side Arm Mount	42	0.44	0.036	0.013	131600
86.00	6' Side Arm Mount	42	0.41	0.035	0.013	154911
55.00	3' Side Arm Mount	42	0.19	0.022	0.008	119672

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	٥	۰
T1	180 - 160	7.86	8	0.323	0.119
T2	160 - 140	6.46	8	0.318	0.119
T3	140 - 120	5.10	8	0.295	0.110
T4	120 - 100	3.80	8	0.261	0.095
T5	100 - 80	2.69	8	0.208	0.078
T6	80 - 60	1.81	8	0.163	0.061
T7	60 - 40	1.08	8	0.123	0.044
T8	40 - 20	0.55	8	0.078	0.028
T9	20 - 0	0.18	20	0.041	0.012

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	٥	٥	ft
180.00	2.375" x 7' Safety Climb Extension	8	7.86	0.323	0.119	375890
177.00	Side Arm Mount	8	7.65	0.323	0.119	375890
168.75	Rohn 6'x15' Boom Gate	8	7.07	0.321	0.120	167063

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
150.00	APXVSPP18-C-A20 w/ Mount	8	5.78	0.308	0.116	152890
	Pipe					
140.00	80010965 w/ Mount Pipe	8	5.10	0.295	0.110	199625
130.00	APXVAARR24_43-U-NA20 w/	8	4.44	0.280	0.103	38054
	Mount Pipe					
120.00	6' Side Arm Mount	8	3.80	0.261	0.095	20848
108.00	12" x 12" x 12" Junction Box	8	3.10	0.230	0.085	19333
90.00	6' Side Arm Mount	8	2.22	0.184	0.070	25805
86.00	6' Side Arm Mount	8	2.05	0.175	0.067	30398
55.00	3' Side Arm Mount	8	0.93	0.112	0.040	23594

Bolt Design Data

Section	Elevation	Component	Bolt	Bolt Size		Maximum	Allowable	Ratio	Allowable	Criteria
No.	£	Type	Grade	·	Of	Load	Load	Load	Ratio	
	ft			in	Bolts	per Bolt K	per Bolt K	Allowable		
	180	Lan	ADDEN	0.00		0.65		0.016	1.05	Bolt Tension
T 1	100	Leg	A325N	0.88	4		40.59		1.05	
		Diagonal	A325N	0.63	3	1.60	12.43	0.129	1.05	Bolt Shear
T 0	400	Horizontal	A325N	0.63	2	1.37	12.43	0.111	1.05	Bolt Shear
T2	160	Leg	A325N	1.00	4	5.15	53.01	0.097	1.05	Bolt Tension
		Diagonal	A325N	0.63	3	2.17	12.43	0.174	1.05	Bolt Shear
		Horizontal	A325N	0.63	2	2.03	12.43	0.163	1.05	Bolt Shear
T3	140	Leg	A325N	1.00	6	8.07	53.01	0.152	1.05	Bolt Tension
		Diagonal	A325N	0.63	3	3.27	12.43	0.263	1.05	Bolt Shear
		Horizontal	A325N	0.63	2	3.39	12.43	0.273	1.05	Bolt Shear
T4	120	Leg	A325N	1.00	8	10.32	53.01	0.195	1.05	Bolt Tension
		Diagonal	A325N	0.63	3	3.28	12.43	0.264	1.05	Bolt Shear
		Horizontal	A325N	0.63	2	3.65	12.43	0.294	1.05	Bolt Shear
T5	100	Leg	A325N	1.00	8	13.68	53.01	0.258	1.05	Bolt Tension
		Diagonal	A325N	0.63	3	4.05	12.43	0.326	1.05	Bolt Shear
		Horizontal	A325N	0.63	2	4.05	12.43	0.326	1.05	Bolt Shear
T6	80	Leg	A325N	1.00	8	17.71	53.01	0.334	1.05	Bolt Tension
		Diagonal	A325N	0.63	3	4.17	12.43	0.336	1.05	Bolt Shear
		Horizontal	A325N	0.63	2	4.41	12.43	0.355	1.05	Bolt Shear
T 7	60	Leg	A325N	1.00	12	14.42	53.01	0.272	1.05	Bolt Tension
		Diagonal	A325N	0.63	3	4.30	12.43	0.346	1.05	Bolt Shear
		Horizontal	A325N	0.63	2	4.76	12.43	0.383	1.05	Bolt Shear
T8	40	Leg	A325N	1.00	12	16.94	53.01	0.320	1.05	Bolt Tension
10	40	Diagonal	A325N	0.63	3	4.43	12.43	0.356	1.05	Bolt Shear
		Horizontal	A325N	0.63	2	5.06	12.43	0.330	1.05	Bolt Shear
T 9	20			0.63			12.43	0.407		
19	20	Diagonal	A325N		3	4.61		0.435	1.05	Bolt Shear
		Horizontal	A325N	0.63	2	5.41	12.43	0.435	1.05	Bolt Shear

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	K	K	$\overline{\phi P_n}$
T1	180 - 160	Pipe 3.5" x 0.216" (3 STD)	20.00	6.53	67.3 K=1.00	2.23	-7.73	72.00	0.107 1
T2	160 - 140	Pipe 4.5" x 0.337" (4 XS)	20.04	6.54	53.1 K=1.00	4.41	-26.63	161.33	0.165 ¹
Т3	140 - 120	Pipe 5.563" x 0.375" (5 EH)	20.04	6.54	42.7 K=1.00	6.11	-60.29	240.75	0.250 ¹

Section No.	Elevation	Size	L	L_u	KI/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	K	K	$\overline{\phi P_n}$
T4	120 - 100	Pipe 6.625" x 0.340" (6 EHS)	20.04	6.54	35.3 K=1.00	6.71	-97.36	275.84	0.353 ¹
T5	100 - 80	Pipe 8.625" x 0.375" (8 EHS)	20.04	9.81	40.3 K=1.00	9.72	-127.29	388.36	0.328 1
T6	80 - 60	Pipe 8.625" x 0.500" (8 XS)	20.04	9.81	40.9 K=1.00	12.76	-162.37	508.20	0.319 ¹
T 7	60 - 40	Pipe 8.625" x 0.500" (8 XS)	20.04	9.81	40.9 K=1.00	12.76	-197.80	508.20	0.389 1
T8	40 - 20	Pipe 10.75" x 0.500" (10 XS)	20.04	9.81	32.4 K=1.00	16.10	-232.85	670.86	0.347 1
Т9	20 - 0	Pipe 10.75" x 0.500" (10 XS)	20.04	9.81	32.4 K=1.00	16.10	-267.30	670.86	0.398 ¹

 $^{^{1}}$ P_{u} / ϕP_{n} controls

Diagona	l Desian	Data	(Compre	(noi229
Diagona	ı Desigii	Data	(OOIIIDI)	-331U11 <i>1</i>

Section No.	Elevation	Size	L	L_u	KI/r	Α	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in ²	K	Κ	ϕP_n
T 1	180 - 160	Pipe 2.375" x 0.154" (2 STD)	7.80	7.53	114.9 K=1.00	1.07	-4.81	18.40	0.261 1
T2	160 - 140	Pipe 2.375" x 0.218" (2 XS)	8.42	8.13	127.2 K=1.00	1.48	-6.50	20.62	0.315 ¹
Т3	140 - 120	Pipe 2.375" x 0.218" (2 XS)	9.12	8.79	137.6 K=1.00	1.48	-9.80	17.62	0.556 ¹
T4	120 - 100	Pipe 2.875" x 0.203" (2.5 STD)	9.88	9.52	120.5 K=1.00	1.70	-9.73	26.50	0.367 1
T5	100 - 80	Pipe 3.5" x 0.216" (3 STD)	12.95	12.40	127.9 K=1.00	2.23	-12.16	30.79	0.395 1
T6	80 - 60	Pipe 3.5" x 0.216" (3 STD)	13.66	13.14	135.5 K=1.00	2.23	-12.52	27.41	0.457 ¹
T 7	60 - 40	Pipe 3.5" x 0.216" (3 STD)	14.41	13.92	143.5 K=1.00	2.23	-12.88	24.43	0.527 1
Т8	40 - 20	Pipe 3.5" x 0.216" (3 STD)	15.19	14.61	150.7 K=1.00	2.23	-13.20	22.18	0.595 ¹
Т9	20 - 0	Pipe 3.5" x 0.300" (3 XS)	16.01	15.45	163.1 K=1.00	3.02	-13.66	25.61	0.533 ¹

 $^{^{1}}$ P $_{u}$ / ϕP_{n} controls

Horizontal Design Data (Compression)

Section No.	Elevation	Size	L	L_u	KI/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	K	K	ΦP_n
T1	180 - 160	Pipe 1.9" x 0.145" (1.5 STD)	8.54	4.12	79.5 K=1.00	0.80	-2.71	22.67	0.120 ¹
T2	160 - 140	Pipe 1.9" x 0.145" (1.5 STD)	9.95	4.79	92.3 K=1.00	0.80	-4.05	19.29	0.210 ¹
Т3	140 - 120	Pipe 1.9" x 0.145" (1.5 STD)	12.05	5.79	111.7 K=1.00	0.80	-6.77	14.45	0.468 1
T4	120 - 100	Pipe 2.375" x 0.154" (2 STD)	14.15	6.80	103.7 K=1.00	1.07	-7.22	22.04	0.328 1
T5	100 - 80	Pipe 2.375" x 0.154" (2 STD)	15.91	7.59	115.8 K=1.00	1.07	-8.06	18.11	0.445 ¹
Т6	80 - 60	Pipe 2.375" x 0.154" (2 STD)	18.01	8.64	131.8 K=1.00	1.07	-8.75	13.98	0.626 ¹
Т7	60 - 40	Pipe 2.875" x 0.203" (2.5 STD)	20.10	9.69	122.8 K=1.00	1.70	-9.38	25.54	0.367 1

tnxTower Report - version 8.1.1.0

Section	Elevation	Size	L	L_u	KI/r	Α	P_u	ϕP_n	Ratio
No.									P_u
	ft		ft	ft		in²	K	K	$\overline{\phi P_n}$
Т8	40 - 20	Pipe 2.875" x 0.203" (2.5 STD)	22.20	10.65	134.9 K=1.00	1.70	-9.94	21.14	0.470 ¹
Т9	20 - 0	Pipe 3.5" x 0.216" (3 STD)	24.30	11.70	120.7 K=1.00	2.23	-10.52	34.56	0.304 1

¹ P_u / ϕP_n controls

	Top Girt Design Data (Compression)									
Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	φPn	Ratio P _u	
	ft		ft	ft		in ²	K	K	$\frac{1}{\Phi P_n}$	
T1	180 - 160	Pipe 1.9" x 0.145" (1.5 STD)	8.54	4.12	79.5 K=1.00	0.80	-0.16	22.67	0.007 1	

 $^{^{1}}$ P $_{u}$ / ϕP_{n} controls

Section No.	Elevation	Size	L	L_u	KI/r	Α	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in²	K	K	$\overline{\phi P_n}$
T1	180 - 160	L 2 x 2 x 1/8	4.27	4.27	128.9 K=1.00	0.48	-0.00	6.51	0.001 1
T2	160 - 140	L 2 x 2 x 1/8	4.98	4.98	150.2 K=1.00	0.48	-0.01	4.85	0.001 1
Т3	140 - 120	L 2 x 2 x 1/8	6.03	6.03	181.9 K=1.00	0.48	-0.01	3.31	0.002 1
T4	120 - 100	L 2 x 2 x 1/8	7.08	7.08	213.6 K=1.00	0.48	-0.01	2.40	0.004 1
T5	100 - 80	L 2 x 2 x 1/8	7.95	7.95	240.1 K=1.00	0.48	-0.01	1.90	0.006 1
T6	80 - 60	L 2.5 x 2.5 x 3/16	9.00	9.00	218.3 K=1.00	0.90	-0.01	4.28	0.003 1
T7	60 - 40	L 3 x 3 x 3/16	10.05	10.05	202.3 K=1.00	1.09	-0.01	6.02	0.002 1
T8	40 - 20	L 3.5 x 3.5 x 1/4	11.10	11.10	192.0 K=1.00	1.69	-0.02	10.36	0.002 1
Т9	20 - 0	L 3.5 x 3.5 x 1/4	12.15	12.15	210.1 K=1.00	1.69	-0.02	8.65	0.002 1

 $^{^{1}}$ P_{u} / ϕP_{n} controls

Tension Checks

		Leg	Desig	in Dat	a (Te	nsion			
Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	K	K	$\frac{P_u}{\phi P_n}$
T 1	180 - 160	Pipe 3.5" x 0.216" (3 STD)	20.00	6.53	67.3	2.23	2.62	100.28	0.026 1
T2	160 - 140	Pipe 4.5" x 0.337" (4 XS)	20.04	6.54	53.1	4.41	20.59	198.34	0.104 1

tnxTower Report - version 8.1.1.0

Section No.	Elevation	Size	L	L_u	KI/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	K	K	$\overline{\phi P_n}$
T3	140 - 120	Pipe 5.563" x 0.375" (5 EH)	20.04	6.54	42.7	6.11	48.43	275.04	0.176 ¹
T4	120 - 100	Pipe 6.625" x 0.340" (6 EHS)	20.04	6.54	35.3	6.71	82.52	302.10	0.273 ¹
T5	100 - 80	Pipe 8.625" x 0.375" (8 EHS)	20.04	9.81	40.3	9.72	109.44	437.37	0.250 ¹
Т6	80 - 60	Pipe 8.625" x 0.500" (8 XS)	20.04	9.81	40.9	12.76	141.68	574.32	0.247 1
T 7	60 - 40	Pipe 8.625" x 0.500" (8 XS)	20.04	9.81	40.9	12.76	173.04	574.32	0.301 1
T8	40 - 20	Pipe 10.75" x 0.500" (10 XS)	20.04	9.81	32.4	16.10	203.33	724.53	0.281 ¹
Т9	20 - 0	Pipe 10.75" x 0.500" (10 XS)	20.04	9.81	32.4	16.10	232.39	724.53	0.321 ¹

¹ P_u / ϕP_n controls

		Diagon	al De	sign [Data (Tensi	on)		
Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in ²	K	K	$\frac{-\frac{1}{6}P_n}{\phi P_n}$
T1	180 - 160	Pipe 2.375" x 0.154" (2 STD)	7.80	7.53	114.9	1.07	4.73	48.35	0.098 1
T2	160 - 140	Pipe 2.375" x 0.218" (2 XS)	8.42	8.13	127.2	1.48	6.39	66.48	0.096 1
Т3	140 - 120	Pipe 2.375" x 0.218" (2 XS)	9.12	8.79	137.6	1.48	9.67	66.48	0.145 ¹
T4	120 - 100	Pipe 2.875" x 0.203" (2.5 STD)	9.38	9.01	114.2	1.70	9.68	76.68	0.126 ¹
T5	100 - 80	Pipe 3.5" x 0.216" (3 STD)	12.95	12.40	127.9	2.23	11.92	100.28	0.119 ¹
T6	80 - 60	Pipe 3.5" x 0.216" (3 STD)	13.66	13.14	135.5	2.23	12.23	100.28	0.122 1
T7	60 - 40	Pipe 3.5" x 0.216" (3 STD)	14.04	13.55	139.7	2.23	12.52	100.28	0.125 ¹
T8	40 - 20	Pipe 3.5" x 0.216" (3 STD)	14.81	14.22	146.7	2.23	12.82	100.28	0.128 ¹
T 9	20 - 0	Pipe 3.5" x 0.300" (3 XS)	15.61	15.04	158.8	3.02	13.19	135.72	0.097 1

 $^{^{1}}$ P $_{u}$ / $_{\phi}P_{n}$ controls

		Horizor	ntal De	esign	Data	(Tensi	on)		
Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	φP _n	Ratio P _u
	ft		ft	ft		in²	K	K	ΦP_n
T1	180 - 160	Pipe 1.9" x 0.145" (1.5 STD)	8.54	4.12	79.5	0.80	2.75	35.98	0.076 ¹
T2	160 - 140	Pipe 1.9" x 0.145" (1.5 STD)	9.95	4.79	92.3	0.80	4.06	35.98	0.113 ¹
Т3	140 - 120	Pipe 1.9" x 0.145" (1.5 STD)	12.05	5.79	111.7	0.80	6.78	35.98	0.189 ¹
T4	120 - 100	Pipe 2.375" x 0.154" (2 STD)	14.15	6.80	103.7	1.07	7.30	48.35	0.151 ¹
T5	100 - 80	Pipe 2.375" x 0.154" (2 STD)	15.91	7.59	115.8	1.07	8.11	48.35	0.168 ¹
Т6	80 - 60	Pipe 2.375" x 0.154" (2 STD)	18.01	8.64	131.8	1.07	8.83	48.35	0.183 ¹

Section No.	Elevation	Size	L	L_u	KI/r	Α	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in ²	K	Κ	${\Phi P_n}$
T7	60 - 40	Pipe 2.875" x 0.203" (2.5 STD)	20.10	9.69	122.8	1.70	9.53	76.68	0.124 1
Т8	40 - 20	Pipe 2.875" x 0.203" (2.5 STD)	22.20	10.65	134.9	1.70	10.11	76.68	0.132 1
Т9	20 - 0	Pipe 3.5" x 0.216" (3 STD)	23.27	11.19	115.4	2.23	10.81	100.28	0.108 ¹

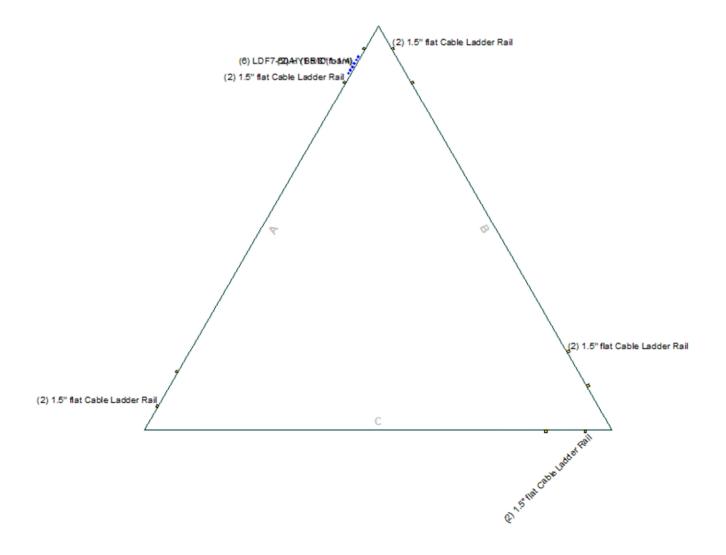
¹ P_u / ϕP_n controls

	Top Girt Design Data (Tension)										
Section No.	Elevation	Size	L	Lu	KI/r	Α	Pu	φP _n	Ratio P.,		
	ft		ft	ft		in ²	K	K	${\Phi P_n}$		
T 1	180 - 160	Pipe 1.9" x 0.145" (1.5 STD)	8.54	4.12	79.5	0.80	0.16	35.98	0.004 1		

 $^{^{1}}$ P $_{u}$ / ϕP_{n} controls

Inner Bracing Design Data	(Tension)

Section No.	Elevation	Size	L	L_u	KI/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	K	K	$\overline{\phi P_n}$
T1	180 - 160	L 2 x 2 x 1/8	4.27	4.27	81.8	0.48	0.00	15.69	0.000 1
T2	160 - 140	L 2 x 2 x 1/8	4.98	4.98	95.4	0.48	0.00	15.69	0.000^{-1}
T3	140 - 120	L 2 x 2 x 1/8	5.34	5.34	102.3	0.48	0.00	15.69	0.000^{-1}
T4	120 - 100	L 2 x 2 x 1/8	6.39	6.39	122.5	0.48	0.00	15.69	0.000^{-1}
T 5	100 - 80	L 2 x 2 x 1/8	7.44	7.44	142.6	0.48	0.00	15.69	0.000^{-1}
T 6	80 - 60	L 2.5 x 2.5 x 3/16	8.49	8.49	130.8	0.90	0.00	29.22	0.000^{-1}
Т7	60 - 40	L 3 x 3 x 3/16	9.54	9.54	121.9	1.09	0.00	35.31	0.000 1


 $^{^{1}}$ P $_{u}$ / ϕP_{n} controls

Section Capacity Table

Section	Elevation	Component	Size	Critical	P	øP _{allow}	%	Pass
No.	ft	Туре	0/26	Element	K	K allow	Capacity	Fail
T1	180 - 160	Leg	Pipe 3.5" x 0.216" (3 STD)	3	-7.73	75.60	10.2	Pass
T2	160 - 140	Leg	Pipe 4.5" x 0.337" (4 XS)	42	-26.63	169.40	15.7	Pass
T3	140 - 120	Leg	Pipe 5.563" x 0.375" (5 EH)	80	-60.29	252.79	23.8	Pass
T4	120 - 100	Leg	Pipe 6.625" x 0.340" (6 EHS)	119	-97.36	289.63	33.6	Pass
T5	100 - 80	Leg	Pipe 8.625" x 0.375" (8 EHS)	158	-127.29	407.78	31.2	Pass
T6	80 - 60	Leg	Pipe 8.625" x 0.500" (8 XS)	184	-162.37	533.61	30.4	Pass
		· ·	. , ,				33.4 (b)	
T7	60 - 40	Leg	Pipe 8.625" x 0.500" (8 XS)	211	-197.80	533.61	37.1	Pass
T8	40 - 20	Leg	Pipe 10.75" x 0.500" (10 XS)	238	-232.85	704.40	33.1	Pass
T 9	20 - 0	Leg	Pipe 10.75" x 0.500" (10 XS)	265	-267.30	704.40	37.9	Pass
T 1	180 - 160	Diagonal	Pipe 2.375" x 0.154" (2 STD)	11	-4.81	19.32	24.9	Pass
T2	160 - 140	Diagonal	Pipe 2.375" x 0.218" (2 XS)	47	-6.50	21.65	30.0	Pass
T 3	140 - 120	Diagonal	Pipe 2.375" x 0.218" (2 XS)	86	-9.80	18.50	53.0	Pass
T4	120 - 100	Diagonal	Pipe 2.875" x 0.203" (2.5	125	-9.73	27.83	35.0	Pass
		•	STD)					
T5	100 - 80	Diagonal	Pipe 3.5" x 0.216" (3 STD)	164	-12.16	32.33	37.6	Pass
T6	80 - 60	Diagonal	Pipe 3.5" x 0.216" (3 STD)	191	-12.52	28.78	43.5	Pass

Section	Elevation	Component	Size	Critical	Р	øP _{allow}	%	Pass
No.	ft	Type		Element	K	K	Capacity	Fail
T7	60 - 40	Diagonal	Pipe 3.5" x 0.216" (3 STD)	218	-12.88	25.65	50.2	Pass
T8	40 - 20	Diagonal	Pipe 3.5" x 0.216" (3 STD)	249	-13.20	23.29	56.7	Pass
T 9	20 - 0	Diagonal	Pipe 3.5" x 0.300" (3 XS)	276	-13.66	26.89	50.8	Pass
T 1	180 - 160	Horizontal	Pipe 1.9" x 0.145" (1.5 STD)	10	-2.71	23.80	11.4	Pass
T2	160 - 140	Horizontal	Pipe 1.9" x 0.145" (1.5 STD)	46	-4.05	20.26	20.0	Pass
T3	140 - 120	Horizontal	Pipe 1.9" x 0.145" (1.5 STD)	85	-6.77	15.17	44.6	Pass
T4	120 - 100	Horizontal	Pipe 2.375" x 0.154" (2 STD)	124	-7.22	23.14	31.2	Pass
T5	100 - 80	Horizontal	Pipe 2.375" x 0.154" (2 STD)	163	-8.06	19.01	42.4	Pass
T6	80 - 60	Horizontal	Pipe 2.375" x 0.154" (2 STD)	190	-8.75	14.68	59.6	Pass
T7	60 - 40	Horizontal	Pipe 2.875" x 0.203" (2.5	217	-9.38	26.82	35.0	Pass
			STD)				38.3 (b)	
Т8	40 - 20	Horizontal	Pipe 2.875" x 0.203" (2.5 STD)	247	-9.94	22.20	44.8	Pass
T 9	20 - 0	Horizontal	Pipe 3.5" x 0.216" (3 STD)	274	-10.52	36.29	29.0	Pass
							43.5 (b)	
T 1	180 - 160	Top Girt	Pipe 1.9" x 0.145" (1.5 STD)	4	-0.16	23.80	0.7	Pass
T 1	180 - 160	Inner Bracing	L 2 x 2 x 1/8	37	-0.00	6.84	0.7	Pass
T2	160 - 140	Inner Bracing	L 2 x 2 x 1/8	54	-0.01	5.09	0.8	Pass
T3	140 - 120	Inner Bracing	L 2 x 2 x 1/8	93	-0.01	3.47	0.9	Pass
T4	120 - 100	Inner Bracing	L 2 x 2 x 1/8	130	-0.01	2.52	1.0	Pass
T5	100 - 80	Inner Bracing	L 2 x 2 x 1/8	171	-0.01	1.99	1.1	Pass
T6	80 - 60	Inner Bracing	L 2.5 x 2.5 x 3/16	196	-0.01	4.49	0.8	Pass
T7	60 - 40	Inner Bracing	L 3 x 3 x 3/16	223	-0.01	6.32	0.9	Pass
T8	40 - 20	Inner Bracing	L 3.5 x 3.5 x 1/4	250	-0.02	10.88	0.7	Pass
T 9	20 - 0	Inner Bracing	L 3.5 x 3.5 x 1/4	277	-0.02	9.08	0.7	Pass
							Summary	
						Leg (T9)	37.9	Pass
						Diagonal (T8)	56.7	Pass
						Horizontal (T6)	59.6	Pass
						Top Girt (T1)	0.7	Pass
						Inner Bracing	1.1	Pass
						(T5) Bolt	41.4	Pass
						Checks RATING =	59.6	Pass

APPENDIX B BASE LEVEL DRAWING

APPENDIX C ADDITIONAL CALCULATIONS

1/13/2022 42921-0018.003.8700 Date ф JMF Project # Page

Self-Support Tower Anchor Rod Capacity - TIA-G

Loads

Ten.Shear: Tension: kips kips 283 Compression: Comp. Shear:

kips kips 246 31

TIA-G 1.00 Code: Maximum Ratio:

Existing Anchor Rods

Anchor Rod Condition (n) Anchor Rod ø: Anchor Rod Quantity:

16

A354 Gr. BC (1/4 to 2-1/2 incl.) Anchor Rod Grade:

109

ksi ksi

125

∞

0.61 Threads per Inch Net Tensile Area

. Iu

969.19 kip

0.80

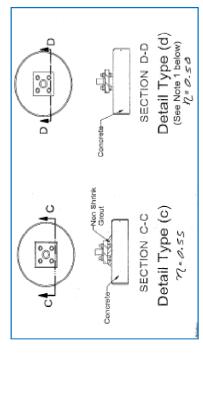
0.362

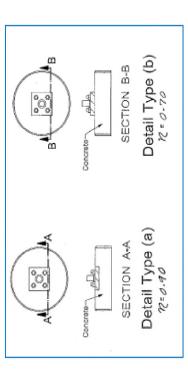
Anchor Rod Ratio:

0.75 0.90

inches

k-ir


22.10


Comp. Mu:

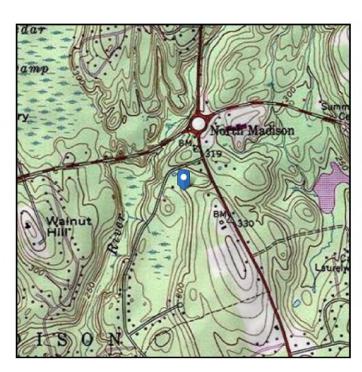
a..

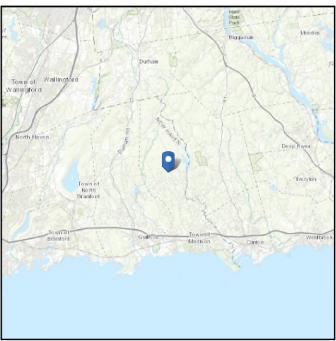
kips 530.14 $\phi_{\nu}R_{nv}$:

167.00 k-in

Job Number: Site Number: Site Name: 42921-0018.003.8700 469141 MADISON CT Page: By: Date: 1 JMF 1/13/2022

DRILLED PIER SOIL AND STEEL ANALYSIS - TIA-222-G Factored Base Reactions from RISA Safety Factors / Load Factors / Φ Factors Self-Supported Comp. (+) Tension (-) Tower Type = 0.0 k-ft Moment, Mu = ACI Code = ACI 318-08 0.0 Shear, Vu = 34.0 31.0 kips Seismic Design Category = Axial Load, Pu = 283.0 -246.0 kips Reference Standard = TIA-222-G Utilize Shear-Friction Methodology? Yes OTMu = 17.0 15.5 k-ft @ Ground Use 1.3 Load Factor? No Safety Factor Φ Factor **Drilled Pier Parameters** Soil Lateral Resistance = 2.00 0.75 Skin Friction = 2.00 0.75 Diameter = End Bearing = 2.00 0.75 0.5 ft Concrete Wt. Resist Uplift = Height Above Grade = 1.25 Depth Below Grade = 18 ft fc' = 4.5 ksi Load Combinations Checked per TIA-222-G εc = 0.003 in/in 1. (0.75) Ult. Skin Friction + (0.75) Ult. End Bearing + (0.75) Effective Soil Wt. - (1.2) Buoyant Conc. Wt. ≥ Comp. L / D Ratio = 3.08 2. (0.75) Ult. Skin Friction + (0.9) Buoyant Conc. Wt. ≥ Uplift Mat Ftdn, Cap Width = Mat Ftdn. Cap Length = Depth Below Grade = **Soil Parameters** Water Table Depth = *Note: The drilled pier foundation was analyzed using the methodology in the software 'PLS-Caisson' (Version 8.10, or Depth to Ignore Soil = 3.33 ft newer, by Power Line Systems, Inc.). Per the methods in PLS-Caisson, the soil reactions of cohesive soils are calculated Depth to Full Cohesion = using 8CD independent of the depth of the soil layer. The depth of soil to be ignored at the top of the drilled pier is based Full Cohesion Starts at?* Ground the recommendations of the site specific geotechnical report. In the absence of any recommendations, the frost depth at Above Full Cohesion Lateral Resistance = 4(Cohesion)(Dia)(H) the site or one half of the drilled pier diameter (whichever is greater) shall be ignored. Below Full Cohesion Lateral Resistance = 8(Cohesion)(Dia)(H) Steel Parameters **Direct Embed Pole Shaft Parameters** Rebar Ties Dia @ Grade = Dia @ Depth Below Grade = Number of Bars = 26 Number of Sides = Size = 60 60 ksi Thickness = MOE = 29000 ksi lksi Side Clear Cover to Ties = Backfill Condition = Top Clear Cover to Ties = **Maximum Capacity Ratios** Tie Upper Spacing = Tie Lower Spacing = 12 in Upper Tie Spacing Depth: Maximum Soil Ratio = Maximum Steel Ratio = 105.0% Apply 1.05 Normalization = **Define Soil Layers** Note: Cohesion = Undrained Shear Strengh = Unconfined Compressive Strength / 2 Friction Ultimate Comp. Ult. Tension Ult. Thicknes: **Unit Weight** Cohesion Angle **End Bearing** Skin Friction Skin Friction Depth ft psf degrees Soil Type psf psf psf ft 125 625 Clay 313 313 10 135 6250 Clay 3125 3125 Clay 36719 10 Soil Results: Overturning Soil Results: Uplift & Compression 246.00 kips Depth to COR = 14.78 ft, from Grade Uplift. Tu = Shear, Vu = 34.00 kips Uplift Capacity, $\Phi Tn =$ 534.96 kips Resisting Shear, ΦVn = 346.84 kips **UPLIFT RATIO =** 46.0% OK Bending Moment, Mu = 519.49 k-ft, from COR Resisting Moment, Φ Mn = 5299.39 k-ft, from COR Compression, Cu = 283.00 kips Comp. Capacity, Φ Cn = 1236.02 kips MOMENT/SHEAR RATIO = 9.8% OK COMPRESSION RATIO = 22.9% OK Steel Results (ACI 318-08): Shear Minimum Tie Size = Shear, Vu = 31.00 kips Maximum Tie Spacing = 18.05 Shear, $\Phi Vn =$ 367.27 kips Maximum Shear Reinf. Spacing = N/A 8.4% SHEAR RATIO = OK Minimum Tranverse Steel Area = Steel Results (ACI 318-08): Moment/Axial 13.66 sq in 190.54 kips @ 10.75 ft Below Grade Minimum Steel Area = Axial Load, Pu = 288.35 k-ft @ 10.75 ft Below Grade Actual Steel Area = Moment, Mu = 26.00 sq in Moment, ΦMn = 3112.10 k-ft Axial, Φ Pn (min) = 1404.00 kips, Where ФМn = 0 k-ft **MOMENT RATIO =** 9.3% Axial, Φ Pn (max) = 8857.71 kips, Where ΦMn = 0 k-ft


Address:


No Address at This Location

ASCE 7 Hazards Report

ASCE/SEI 7-10 **Elevation:** 297.61 ft (NAVD 88) Standard:

Risk Category: III Latitude: 41.356126 D - Stiff Soil Soil Class: Longitude: -72.63908

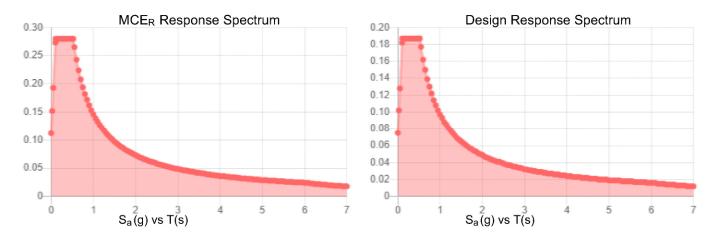
Wind

Results:

Wind Speed: 139 Vmph 10-year MRI 78 Vmph 25-year MRI 88 Vmph 50-year MRI 95 Vmph 100-year MRI 105 Vmph

Date &occessed: **XAS6GED8E137-2002** Fig. 26.5-1B and Figs. CC-1-CC-4, and Section 26.5.2, incorporating errata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 3% probability of exceedance in 50 years (annual exceedance probability = 0.000588, MRI = 1,700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.175	S _{DS} :	0.187	
S_1 :	0.061	S_{D1} :	0.097	
Fa:	1.6	T _L :	6	
F _v :	2.4	PGA:	0.089	
S _{MS} :	0.28	PGA _M :	0.142	
S _{M1} :	0.146	F _{PGA} :	1.6	
		1. •	1 25	

Seismic Design Category B

Data Accessed: Wed Oct 13 2021

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating

Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with

ASCE/SEI 7-10 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Wed Oct 13 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

STANDARD CONDITIONS FOR FURNISHING OF PROFESSIONAL ENGINEERING SERVICES ON EXISTING STRUCTURES BY PAUL J. FORD AND COMPANY

- 1) Paul J. Ford and Company has not made a field inspection to verify the tower member sizes or the antenna/coax loading. If the existing conditions are not as represented on these drawings, we should be contacted immediately to evaluate the significance of the deviation.
- 2) No allowance was made for any damaged, missing, or rusted members. The analysis of this tower assumes that no physical deterioration has occurred in any of the structural components of the tower and that all the tower members have the same load carrying capacity as the day the tower was erected.
- 3) It is not possible to have all the detailed information to perform a thorough analysis of every structural subcomponent of an existing tower. The structural analysis by Paul J. Ford and Company verifies the adequacy of the main structural members of the tower. Paul J. Ford and Company provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc.
- 4) The structural integrity of the existing tower foundation can only be verified if exact foundation sizes and soil conditions are known. Paul J. Ford and Company will not accept any responsibility for the adequacy of the existing foundations unless the foundation sizes and a soils report are provided.
- 5) This tower has been analyzed according to the minimum design wind loads recommended by the Telecommunications Industry Association Standard ANSI/TIA-222-G. If the owner or local or state agencies require a higher design wind load, Paul J. Ford and Company should be made aware of this requirement.
- 6) The enclosed sketches are a schematic representation of the tower that we have analyzed. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions and for the proper fit and clearance in the field.
- 7) Miscellaneous items such as antenna mounts etc. have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

Maser Consulting Connecticut
1055 Washington Boulevard
Stamford, CT 06901
203.324.0800
peter.albano@colliersengineering.com

Antenna Mount Analysis Report with Hardware Upgrades and PMI Requirements

Mount ReAnalysis-VZW

SMART Tool Project #: 10126890 Maser Consulting Connecticut Project #: 21777866A (Rev. 2)

January 11, 2022

<u>Site Information</u> Site ID: 469141-VZW / MADISON CT

Site Name: MADISON CT
Carrier Name: Verizon Wireless
Address: 864 Opening Hill Rd.

Madison, Connecticut 06443

New Haven County

Latitude: 41.356126° Longitude: -72.639080°

<u>Structure Information</u> Tower Type: 180-Ft Self Support

Mount Type: 15.00-Ft Sector Frame

FUZE ID # 16092583

Analysis Results

Sector Frame: 62.7% Pass w/ Hardware Upgrades*

* Antennas and equipment to be installed in compliance with PMI Requirements of this mount analysis.

***Contractor PMI Requirements:

Included at the end of this MA report
Available & Submitted via portal at https://pmi.vzwsmart.com
For additional questions and support, please reach out to:
pmisupport@colliersengineering.com

Report Prepared By: Nathan LaPorte

Executive Summary:

The objective of this report is to determine the capacity of the antenna support mount at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards. Any modification listed under Sources of Information was assumed completed and was included in this analysis.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

Sources of Information:

Document Type	Remarks	
Radio Frequency Data Sheet (RFDS)	Verizon RFDS, Site ID: 324276, dated November 24, 2021	
Mount Mapping Report	Hudson Design Group, LLC, Site ID: 469141, dated May 3, 2021	
Construction Drawings	On Air Engineering, LLC Site Name: Madison CT, dated December 29, 2021	
Previous Mount Analysis	Maser Consulting Connecticut Project #: 21777866A, dated November 29, 2021	

Analysis Criteria:

Codes and Standards:	ANSI/TIA-222-H
Codes and Standards.	ANOI/ HA-ZZZ-D

Wind Parameters:	Basic Wind Speed	d (Ultimate 3-sec	Gust) Vuit	122 mnh

Ice Wind Speed (3-sec. Gust): 50 mph Design Ice Thickness: 1.00 in Risk Category: Ш Exposure Category: В Topographic Category: 1 Topographic Feature Considered: N/A Topographic Method: N/A Ground Elevation Factor, Ke: 0.989

Seismic Parameters: Ss: 0.21 g

 S_1 : 0.05 g

Maintenance Parameters: Wind Speed (3-sec. Gust): 3 mph

Maintenance Live Load, Lv: 250 lbs. Maintenance Live Load, Lm: 500 lbs.

Analysis Software: RISA-3D (V17)

Final Loading Configuration:

The following equipment has been considered for the analysis of the mounts:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status
168.75 170.00	6	JMA Wireless	MX06FRO660-03		
	3	Samsung	MT6407-77A		
	3	Samsung	B2/B66A RRH-BR049	Added	
	3	Samsung	B5/B13 RRH-BR04C		
	1	Raycap	RVZDC-6627-PF-48		
		3	CommScope	LNX-6514DS-A1M	Retained

The recent mount mapping reported existing OVP units. It is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required unless replacing an existing OVP.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

Standard Conditions:

- All engineering services are performed on the basis that the information provided to Maser Consulting Connecticut and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation. Any deviation from the loading locations specified in this report shall be communicated to Maser Consulting Connecticut to verify deviation will not adversely impact the analysis.
- 2. Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

- 3. For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped in accordance with the NSTD-446 Standard, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- 4. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.

- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Maser Consulting Connecticut is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.
- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

Channel, Solid Round, Angle, Plate
 HSS (Rectangular)
 Pipe
 Threaded Rod
 Bolts
 ASTM A36 (Gr. 36)
 ASTM 500 (Gr. B-46)
 ASTM A53 (Gr. B-35)
 F1554 (Gr. 36)
 ASTM A325

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Maser Consulting Connecticut.

Analysis Results:

Component	Utilization %	Pass/Fail
Tie Back	4.7%	Pass
Antenna Pipe	24.9%	Pass
Dual Mounted Pipe	18.6%	Pass
Standoff Bar	62.7%	Pass
Standoff Vertical	59.9%	Pass
Standoff Diagonal	27.7%	Pass
Standoff Horizontal	30.0%	Pass
Face Horizontal	20.8%	Pass
Mount Connection	26.0%	Pass

Structure Rating – (Controlling Utilization of all Components)	62.7%
--	-------

^{*} Results valid after hardware upgrades noted in the PMI Requirements are installed.

Mount Steel (EPA)a per ANSI/TIA-222-H Section 2.6.11.2:

Ice	Mount Pipes Excluded		Mount Pipes Included	
Thickness (In)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)
0	22.5	14.4	34.9	26.9
0.5	32.8	21.6	50.3	39.1
1	42.6	28.2	65.1	50.7

Notes:

- (EPA)a values listed above may be used in the absence of more precise information
- (EPA)a values in the table above include 1 sector(s).
- Ka factors included in (EPA)a calculations

January 11, 2022 Site ID: 469141-VZW / MADISON CT Page | 5

Requirements:

The existing mounts will be **SUFFICIENT** for the final loading configuration shown in attachment 2 upon the completion of the requirements listed below.

Replace existing mount pipe in position 3 on all sectors (Position 1 being on the left side of mount when looking from behind) with new 84" long P2 1/2 STD mount pipe. Connect to all existing face horizontal members using new crossover plates (VZWSMART-MSK1).

Proposed OVP to be placed on upper right-hand side of the standoff horizontal facing the tower, 48" from the face horizontal connection.

ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other, if required. Separate review fees will apply.

Attachments:

- 1. Contractor Required Post Installation Inspection (PMI) Report Deliverables
- 2. Antenna Placement Diagrams
- 3. Mount Photos
- 4. Mount Mapping Report (for reference only)
- 5. Analysis Calculations
- 6. TIA Adoption and Wind Speed Usage Letter

Mount Desktop - Post Modification Inspection (PMI) Report Requirements

Documents & Photos Required from Contractor – Passing Mount Analysis

Passing Mount Analysis requires a PMI due to a modification in loading.

Electronic pdf version of this can be downloaded at https://pmi.vzwsmart.com.

For additional questions and support, please reach out to pmisupport@colliersengineering.com

PSLC #: 469141 SMART Project #: 10126890 Fuze Project ID: 16092583

<u>Purpose</u> – to provide SMART Tool structural vendor the proper documentation in order to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the installation was completed in accordance with this Passing Mount Analysis.
- Contractor shall relay any data that can impact the performance of the mount, this includes safety issues.

Base Requirements:

- If installation will cause damage to the structure, the climbing facility, or safety climb if present or any installed system, SMART Tool vendor to be notified prior to install. Any special photos outside of the standard requirements will be indicated on the drawings.
- Provide "as built mount drawings" showing contractor's name, contact information, preparer's signature, and date. Any deviations from the drawings (Proposed modification) shall be shown.
 NOTE: If loading is different than what is conveyed in the passing mount analysis (MA) contact the SMART Tool vendor immediately.
- Each photo should be time and date stamped
- Photos should be high resolution.
- Contractor shall ensure that the safety climb wire rope is supported and not adversely
 impacted by the install of the modification components. This may involve the install of wire
 rope guides, or other items to protect the wire rope. If there is conflict, contact the SMART Tool
 engineer for recommendations.
- The PMI can be accessed at the following portal: https://pmi.vzwsmart.com

Photo Requirements:

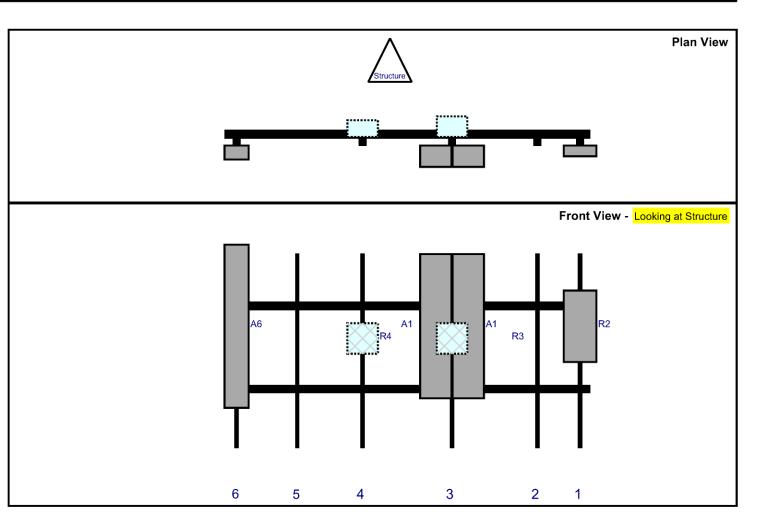
- Photos taken at ground level
 - Photo of Gate Signs showing the tower owner, site name, and number.
 - Overall tower structure after installation.
 - Photos of the mount after installation; if the mounts are at different rad elevations, pictures must be provided for all elevations that equipment was installed.
- Photos taken at Mount Elevation
 - Photos showing the safety climb wire rope above and below the mount prior to installation.
 - Photos showing the climbing facility and safety climb if present.
 - Photos showing each individual sector after installation. Each entire sector shall be in one photo to show the interconnection of members.

- These photos shall also certify that the placement and geometry of the equipment on the mount is as depicted in the antenna placement diagram in this form.
- o Photos that show the model number of each antenna and piece of equipment installed per sector.

Antenna & equipment placement and Geometry Confirmation:

 The contractor shall certify that the antenna & equipment placement and geometry is in accordance with the sketch and table as included in the mount analysis and noted below.
\Box The contractor certifies that the photos support and the equipment on the mount is as depicted on the sketch and table included in this form and with the mount analysis provided.
OR
\Box The contractor notes that the equipment on the mount is not in accordance with the sketch and has noted the differences below and provided photo documentation of any alterations.
Special Instructions / Validation as required from the MA or any other information the contractor
deems necessary to share that was identified:
<mark>Issue:</mark>
Replace existing mount pipe in position 3 on all sectors (Position 1 being on the left side of mount when looking from behind) with new 84" long P2 1/2 STD mount pipe. Connect to all existing face horizontal members using new crossover plates (VZWSMART-MSK1).
Proposed OVP to be placed on upper right-hand side of the standoff horizontal facing the tower, 48" from the face horizontal connection.
Response:
Special Instruction Confirmation:
\square The contractor has read and acknowledges the above special instructions.
\square All hardware listed in the Special Instructions above (if applicable) has been properly installed, and the existing hardware was inspected.
\Box The material utilized was as specified in the SMART Tool engineering vendor Special Instructions above (if applicable) and included in the material certification folder is a packing list or invoice for these materials.

\Box The material utilized was approved by a SMART Tool engineering vendor as an "equivalent" and this approval is included as part of the contractor submission.				
Comments:				
Contractor certifies th	nat the climbing facility /	safety climb was not damaged prior to starting work:		
□Yes	□ No			
Contractor certifies no	<mark>o new damage created d</mark>	uring the current installation:		
□Yes	□ No			
Contractor to certify t	he condition of the safe	ty climb and verify no damage when leaving the site:		
□ Safety Climb	in Good Condition	☐ Safety Climb Damaged		
Certifying Individual:				
Compan Employee Nam Contact Phon Ema Dat	e: e: il:			

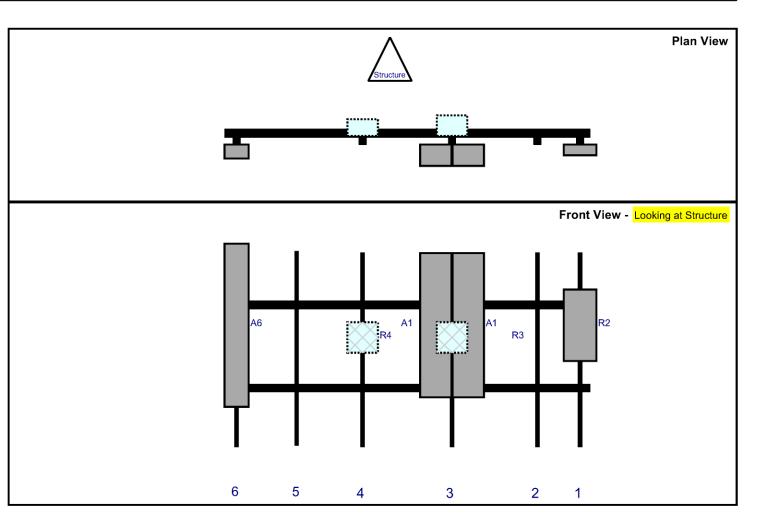

Structure: 469141-VZW - MADISON CT

Sector: **A** 1/11/2022

Structure Type: Self Support 10126890

Mount Elev: 168.75 Page: 1

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
R2	MT6407-77A	35.1	16.1	175	1	а	Front	36	0	Added	
A5	RVZDC-6627-PF-48	29.5	16.5	175	1	а	Front	36	0	Added	
A1	MX06FRO660-03	71.3	15.4	112	3	а	Front	36	8	Added	
A1	MX06FRO660-03	71.3	15.4	112	3	b	Front	36	-8	Added	
R3	B2/B66A RRH-BR049 (RFV01U-D1A)	15	15	112	3	а	Behind	42	0	Added	
R4	B5/B13 RRH-BR04C (RFV01U-D2A)	15	15	68	4	а	Behind	42	0	Added	
A6	LNX-6514DS-A1M	80.6	11.9	6	6	а	Front	36	0	Retained	05/04/2021
OVP	RVZDC-6627-PF-48	29.5	16.5		Memb	er				Added	

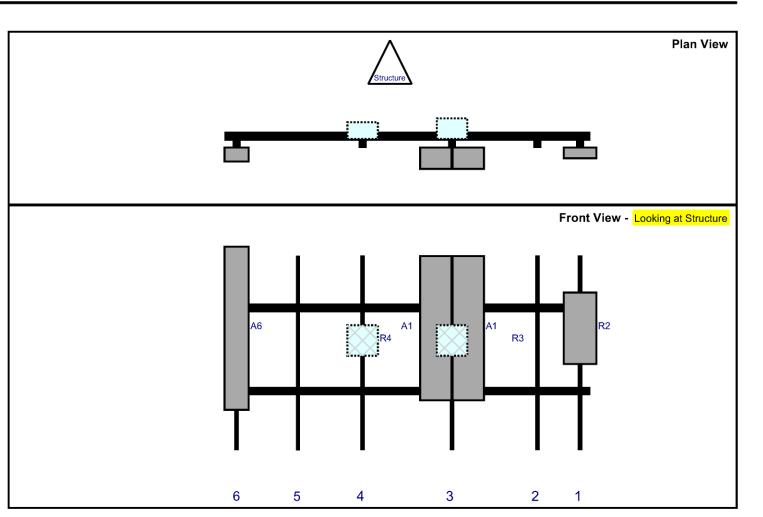

Structure: 469141-VZW - MADISON CT

Sector: **B** 1/11/2022

Structure Type: Self Support 10126890

Mount Elev: 168.75 Page: 2

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
R2	MT6407-77A	35.1	16.1	175	1	а	Front	36	0	Added	
A1	MX06FRO660-03	71.3	15.4	112	3	а	Front	36	8	Added	
A1	MX06FRO660-03	71.3	15.4	112	3	b	Front	36	-8	Added	
R3	B2/B66A RRH-BR049 (RFV01U-D1A)	15	15	112	3	а	Behind	42	0	Added	
R4	B5/B13 RRH-BR04C (RFV01U-D2A)	15	15	68	4	а	Behind	42	0	Added	
A6	LNX-6514DS-A1M	80.6	11.9	6	6	а	Front	36	0	Retained	05/04/2021

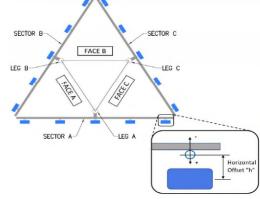

Structure: 469141-VZW - MADISON CT

Sector: **C** 1/11/2022

Structure Type: Self Support 10126890

Mount Elev: 168.75 Page: 3

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
R2	MT6407-77A	35.1	16.1	175	1	а	Front	36	0	Added	
A1	MX06FRO660-03	71.3	15.4	112	3	а	Front	36	8	Added	
A1	MX06FRO660-03	71.3	15.4	112	3	b	Front	36	-8	Added	
R3	B2/B66A RRH-BR049 (RFV01U-D1A)	15	15	112	3	а	Behind	42	0	Added	
R4	B5/B13 RRH-BR04C (RFV01U-D2A)	15	15	68	4	а	Behind	42	0	Added	
A6	LNX-6514DS-A1M	80.6	11.9	6	6	а	Front	36	0	Retained	05/04/2021



FCC# **Antenna Mount Mapping Form (PATENT PENDING)** Mapping Date: Tower Type: AMERICAN TOWER CO. Tower Owner: 5/3/2021 Site Name: MADISON CT Self Support Site Number or ID: 469141 Tower Height (Ft.): Mapping Contractor: HUDSON DESIGN GROUP, LLC Mount Elevation (Ft.): 172.41

This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication, modification or disclosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA and other safety requirements that may apply. TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements.

Please insert the sketches of the antenna mount from the "Sketches" tab with dimensions and members here.

		Mount Pip	e Configurat	tion and G	eometries [Unit = Inches]		
Sector / Position	Mount Pipe Size & Length	Vertical Offset Dimension "u"	Horizontal Offset "C1, C2, C3, etc."	Sector / Position	Mount Pipe Size & Length	Vertical Offset Dimension "u"	Horizontal Offset "C1, C2, C3, etc."
A1	2" STD PIPE X 96" LONG	67.00	6.00	C1	2" STD PIPE X 96" LONG	67.00	6.00
A2	2" STD PIPE X 60" LONG	57.00	25.00	C2	2" STD PIPE X 60" LONG	57.00	25.00
A3	2" STD PIPE X 96" LONG	67.00	88.00	C3	2" STD PIPE X 96" LONG	67.00	88.00
A4	2" STD PIPE X 60" LONG	57.00	112.00	C4	2" STD PIPE X 60" LONG	57.00	112.00
A5	2" STD PIPE X 96" LONG	67.00	136.00	C5	2" STD PIPE X 96" LONG	67.00	136.00
A6	2" STD PIPE X 96" LONG	67.00	175.00	C6	2" STD PIPE X 96" LONG	67.00	175.00
B1	2" STD PIPE X 96" LONG	67.00	6.00	D1			
B2	2" STD PIPE X 60" LONG	57.00	25.00	D2			
B3	2" STD PIPE X 96" LONG	67.00	88.00	D3			
B4	2" STD PIPE X 60" LONG	57.00	112.00	D4			
B5	2" STD PIPE X 96" LONG	67.00	136.00	D5			
B6	2" STD PIPE X 96" LONG	67.00	175.00	D6			
	Distance between bottom ra	il and mou	nt CL elevat	ion (dim d). Unit is inches. See 'Mount Elev Ref' tab f	or details. :	17.50
	Distance from t	op of botto	m support	rail to low	est tip of ant./eqpt. of Carrier above. (N/A	if > 10 ft.):	
	Distance from to	op of botto	m support r	ail to high	est tip of ant./eqpt. of Carrier below. (N/A	if > 10 ft.):	
		Please ent	er additiona	al infomati	ion or comments below.		
Tower Fac	e Width at Mount Elev. (ft.):	8.83	Tower Log S	Fiza or Bolo	Shaft Diameter at Mount Elev. (in.):		3.5
							5.5
FOR I-Arm	s/Platforms on monopoles, report	the weld siz	e from the n	nain stando	off to the plate bolting into the collar mount.		

	Enter antenn	a model.	If not label	ed, enter "	'Unknown"		Mountir [Units are inc	Photos of antennas		
Ants. Items	Antenna Models if Known	Width (in.)	Depth (in.)	Height (in.)	Coax Size and Qty	Antenna Center- line (Ft.)	Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches)	Horiz. Offset "h" (Use "-" if Ant. is behind)	Antenna Azīmuth (Degrees)	Photo Numbers
					Sector A					
Ant _{1a}										
Ant _{1b}	SBNHH-1D65B	12.00	7.00	73.00		173.868	32.00	8.00	40.00	5,60
Ant _{1c}										
Ant _{2a}	B4 RRH 4X45	11.00	5.50	36.00		173.952	21.00	-7.00		5,60
Ant₂ь	BXA-70063/6CF	11.00	5.00	71.00		173.035	32.00	8.00	40.00	6,61
Ant _{2c}										
Ant _{3a}										
Ant _{3b}	SBNHH-1D65B	12.00	7.00	73.00		173.868	32.00	8.00	40.00	7,62
Ant₃c										
Ant _{4a}	B13 RRH 4X30	12.00	7.50	20.50		174.868	10.00	-7.00		7,62
Ant _{4b}	SBNHH-1D65B	12.00	7.00	73.00		173.035	32.00	8.00	40.00	7,63
Ant _{4c}										
Ant _{5a}										
Ant _{5b}										
Ant _{5c}										
Ant on Standoff										
Ant on										
Standoff					-					
Ant on Tower										
Ant on Tower										

bit bid	Antia A	Antza Antza	Antso #	Antab	Ants
	p _{2c}	- p ₃ c	- å .	p ₂ e	#
C1	Antic	Antze	Antse	Ant4c	Antso
-	C2	C3 C4	C5	_	

						_										
		th (Degre	e)		muth (Degree)						Sector B					
Sector A:	for Each 40.00	_	Leg A:	for Each 0.00	Deg	Ant _{1a} Ant _{1b}	SBNHH-1D65B	12.00	7.00	73.00		173.868	32.00	8.00	170.00	9,64
Sector B:	170.0	8	Leg B:	120.00	Deg	Ant _{1c}	5511111 15035	12.00	7.00	75.00		175.000	32.00	0.00	170.00	3,04
Sector C:	280.0		Leg C:	240.00	Deg	Ant _{2a}	B4 RRH 4X45	11.00	5.50	36.00		173.952	21.00	-7.00		9,64
Sector D:		Deg	Leg D:		Deg	Antzb	BXA-70063/6CF	11.00	5.00	71.00		173.035	32.00	8.00	170.00	10,65
			bing Fac	ility Information		Ant _{2c}										
Location:	120.0	-		Sector B		Ant _{3a}	CDNUUL ADCED	12.00	7.00	72.00		172.000	22.00	0.00	170.00	11.66
Climbing	Cor	rosion Typ Access:	oe:	Minor corrosion obs Climbing path was u		Ant _{3b} Ant _{3c}	SBNHH-1D65B	12.00	7.00	73.00		173.868	32.00	8.00	170.00	11,66
Facility	(Condition:		Good condition.	nobstracted.	Ant _{4a}	B13 RRH 4X30	12.00	7.50	20.50		174.868	10.00	-7.00		11,66
						Ant _{4b}	SBNHH-1D65B	12.00	7.00	73.00		173.035	32.00	8.00	170.00	12,67
						Ant _{4c}										
						Ant _{5a}										
						Ant _{5b}										
						Ant _{5c}										
						Standoff										
						Ant on Standoff										
-						Ant on										
Plea	ase insert	a photo o	f the mo	ount centerline measu	rement here.	Tower										
						Ant on Tower										
											Sector C					
						Ant _{1a}	an					400.000			257.5	
						Ant _{1b}	SBNHH-1D65B	12.00	7.00	73.00		173.868	32.00	8.00	280.00	18,68
						Ant _{1c}	B4 RRH 4X45	11.00	5.50	36.00		173.952	21.00	-7.00		18,68
						Antzb	BXA-70063/6CF	11.00	5.00	71.00		173.035	32.00	8.00	280.00	19,69
						Ant _{2c}	,									·
		m	TI			Ant _{3a}										
[1	라베	Hå			Ant _{3b}	SBNHH-1D65B	12.00	7.00	73.00		173.868	32.00	8.00	280.00	20,69
						Ant₃c										
c			+	b		Ant _{4a} Ant _{4b}	B13 RRH 4X30 SBNHH-1D65B	12.00	7.50 7.00	20.50 73.00		174.868 173.035	10.00 32.00	-7.00 8.00	280.00	20,69
	П	. 111		THE OF EQUIPMENT	Ī	Ant _{4c}	3BMHH-1D03B	12.00	7.00	73.00		173.033	32.00	8.00	280.00	20,69
Г		$\neg \parallel \parallel$		1 🗆	DISTANCE FROM TOP OF MAIN PLATFORM MEMBER TO LOWEST TIP OF ANTI-FOSTY, OF CARRIER ABOVE. (N/A IF > 10 FT.)	Ant _{5a}										
-		+	1111		(N/A IF > 10 FE.)	Ant _{5b}										
				<u> </u>	l T	Ant _{5c}										
EXETING PLATFORM-			U U	Ē	DISTANCE FROM TOP OF MAIN PLATFORM MEMBER TO HIGHEST TIP OF ARRIER BELOW. (N/A IF > 10 FT.)	Ant on Standoff										
-	Д	பு	П.,	TIP OF EQUIPMENT		Ant on										
						Standoff Ant on										
c		1	3			Tower										
			-			Ant on										
		FOR PLA	TEORMS			Tower					Sector D					
	1	Ĥ.	n			Ant _{1a}										
c		-		1		Ant _{1b}										
				<u> </u>		Ant _{1c}										
7	_	4		TIP OF EQUIPMEN	<u> </u>	Ant _{2a}										
						Ant _{2b}										
					DISTANCE FROM TOP OF BOTTOM SUPPORT BAIL TO LOWEST TIP OF AMI./EDFT. OF CARRIER ABOVE. (N/A F > 10 FL)	Ant _{3a}										
-				j 		Ant _{3b}										
E	1				+	Ant _{3c}										
EXISTING SECTOR FROM	AME—/	π,	/	T	DISTANCE FROM TOP OF BOTTOM SUPPORT RAIL TO HIGHEST TIP OF ANT./EQPT. OF CARRIER BELOW. (N/A IF > 10 FT.)	Ant _{4a}										
-		.	1	TIP OF EQUIPMEN		Ant _{4b}										
L		m I		П		Ant _{4c} Ant _{5a}										
•		1 📑		1		Ant _{5b}										
			-	<u> </u>		Ant _{5c}										
<u>_</u>	_	<u> </u>		ا آ		Ant on										
For T-Arms	/Platforms	on monor	ooles, red	ord the weld size from	the main standoff	Standoff Ant on										
				lar. See below for refer		Standoff										
11					//	Ant on Tower										
77				_	\checkmark	Ant on										
1	15	<u> </u>				Tower										
"	M	Ţ	`	REPORT WE STANDOFF INTO COLL	ELD SIZE FROM TO PLATE BOLTING AR MOUNT.											

	Observed Safety and Structural Issues During the Mount Mapping							
Issue #	Description of Issue	Photo #						
1	Miner corrosion observed	65						
2								
3								
4								
5								
6								
7								
8								

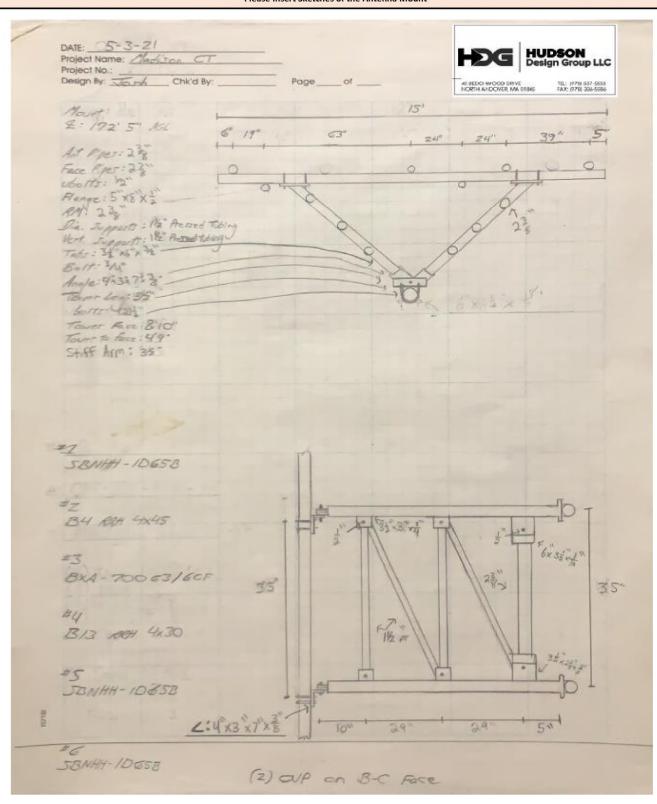
Observed Obstructions to Tower Lighting System										
f the tower lighting system is being obstructed by the carrier's equipment (for example: a light nested by the antennas), please provide photos and fill in the information below.										
Description of Obstruction:										
Type of Light:	Photo	#	Additional Comments:							
Lighting Technology:	Photo	#								
Elevation (AGL) at base of light (Ft.):	Photo	#								
Is a service loop available?	Photo	#								
Is beacon installed on an extension?	Photo	#								

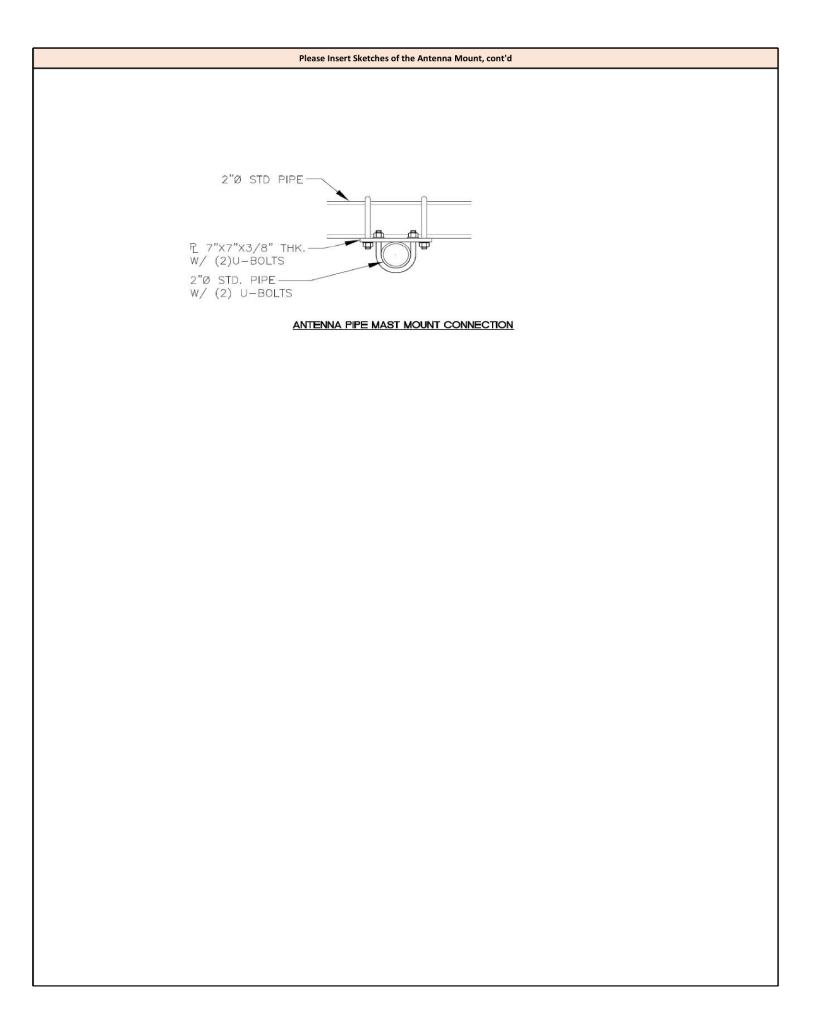
Mapping Notes

- 1. Please report any visible structural or safety issues observed on the antenna mounts (Damaged members, loose connections, tilting mounts, safety climb issues, etc.)
- 2. If the thickness of the existing pipes or tubing can't be obtained from a general tool (such as Caliper), please use an ultrasonic measurement tool (thickness gauge) to measure the thickness.
- 3. Please create all required detail sketches of the mounts and insert them into the "Sketches" tab.
- 4. Please measure and enter the bolt sizes and types under the Members Box in the spreadsheet of the mount type.
- 5. Take and label the photos of the tower, mounts, connections, antennas and all measurements. Minimum 50 photos are required.
- Rease measure and report the size and length of all existing antenna mounting pipes.
 Please measure and report the antenna information for all sectors.
- 8. Don't delete or rearrange any sheet or contents of any sheet from this mapping form.

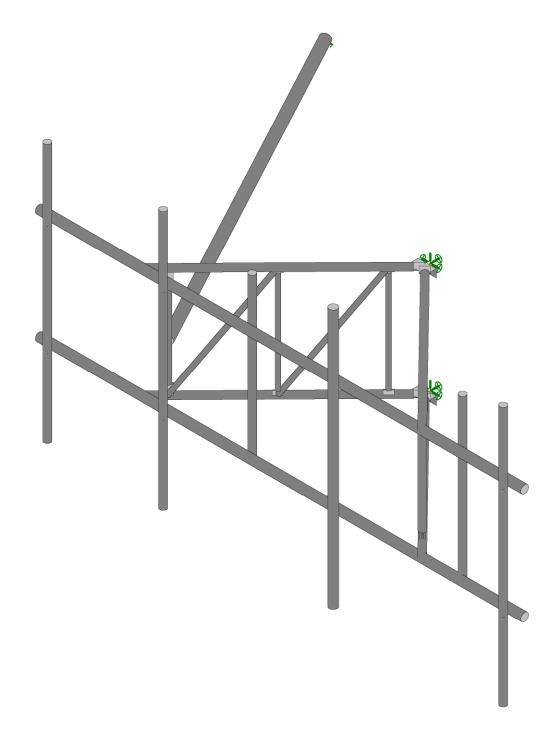
Standard Conditions

1. Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping are to be reported in this mapping. However, this mount mapping is not a condition assessment of the mount.

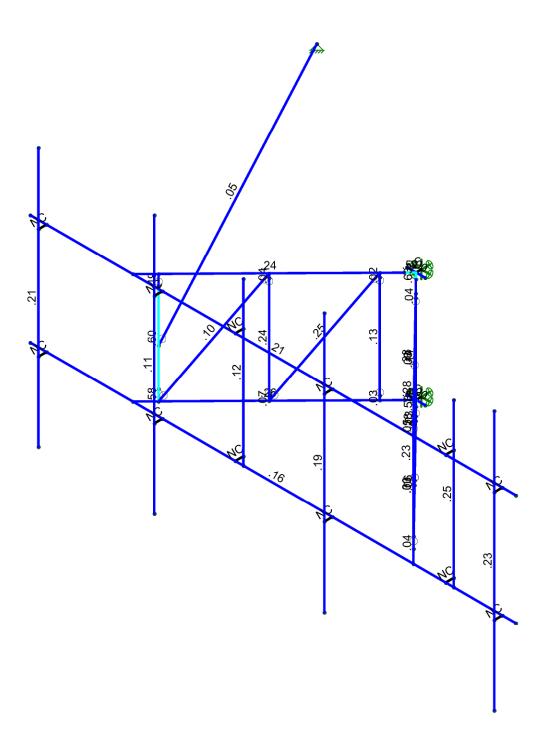

V4.0 Updated on 3-31-2021



FCC# **Antenna Mount Mapping Form (PATENT PENDING)** AMERICAN TOWER CO. Tower Owner: Mapping Date 5/3/2021 Site Name: MADISON CT Self Support Tower Type: Site Number or ID: 469141 Tower Height (Ft.): HUDSON DESIGN GROUP, LLC Mount Elevation (Ft.): 172 41 Mapping Contractor:

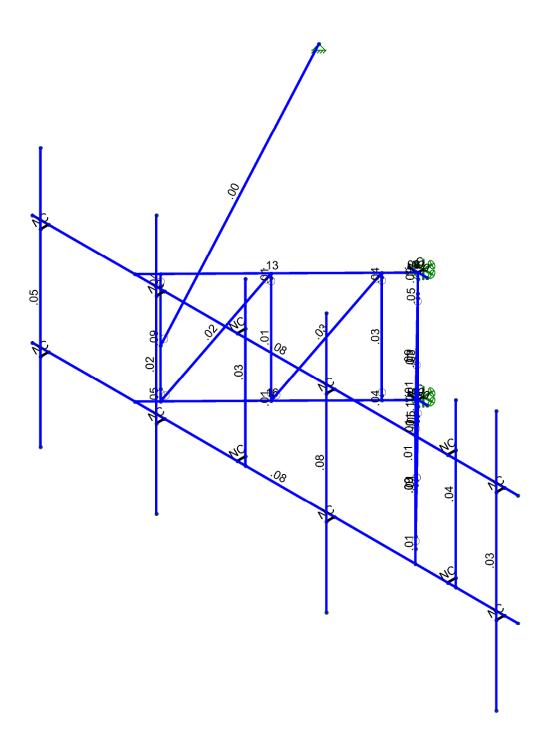

This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication, modification or disclosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA and other safety requirements that may apply. TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements.

Please Insert Sketches of the Antenna Mount



Envelope Only Solution

Maser Consulting		SK - 1
NL	Mount Analysis	Jan 11, 2022 at 1:32 PM
21777866A		469141-VZW_MT_LOT_A_H.r3d



Member Code Checks Displayed (Enveloped) Envelope Only Solution

Maser Consulting		SK - 2
NL	Mount Analysis	Jan 11, 2022 at 1:32 PM
21777866A		469141-VZW_MT_LOT_A_H.r3d

Member Shear Checks Displayed (Enveloped) Envelope Only Solution

Maser Consulting		SK - 3
NL	Mount Analysis	Jan 11, 2022 at 1:32 PM
21777866A		469141-VZW_MT_LOT_A_H.r3d

: Maser Consulting : NL : 21777866A : Mount Analysis Company Designer Job Number Model Name

Jan 11, 2022 1:33 PM Checked By: DH

Basic Load Cases

	BLC Description	Category	X Grav	.Y Grav	.Z Grav	Joint	Point	Distrib	Area(M	Surfac
1	Antenna D	None					33		,	
2	Antenna Di	None					33			
3	Antenna Wo (0 Deg)	None					33			
4	Antenna Wo (30 Deg)	None					33			
5	Antenna Wo (60 Deg)	None					33			
6	Antenna Wo (90 Deg)	None					33			
7	Antenna Wo (120 Deg)	None					33			
8	Antenna Wo (150 Deg)	None					33			
9	Antenna Wo (180 Deg)	None					33			
10	Antenna Wo (210 Deg)	None					33			
11	Antenna Wo (240 Deg)	None					33			
12	Antenna Wo (270 Deg)	None					33			
13	Antenna Wo (300 Deg)	None					33			
14	Antenna Wo (330 Deg)	None					33			
15	Antenna Wi (0 Deg)	None					33			
16	Antenna Wi (30 Deg)	None					33			
17	Antenna Wi (60 Deg)	None					33			
18	Antenna Wi (90 Deg)	None					33			
19	Antenna Wi (120 Deg)	None					33			
20	Antenna Wi (150 Deg)	None					33			
21	Antenna Wi (180 Deg)	None					33			
22	Antenna Wi (210 Deg)	None					33			
23	Antenna Wi (240 Deg)	None					33			
24	Antenna Wi (270 Deg)	None					33			
25	Antenna Wi (300 Deg)	None					33			
26	Antenna Wi (330 Deg)	None					33			
27	Antenna Wm (0 Deg)	None					33			
28	Antenna Wm (30 Deg)	None					33			
29	Antenna Wm (60 Deg)	None					33			
30	Antenna Wm (90 Deg)	None					33			
31	Antenna Wm (120 Deg)	None					33			
32	Antenna Wm (150 Deg)	None					33			
33	Antenna Wm (180 Deg)	None					33			
34	Antenna Wm (210 Deg)	None					33			
35	Antenna Wm (240 Deg)	None					33			
36	Antenna Wm (270 Deg)	None					33			
37	Antenna Wm (300 Deg)	None					33			
38	Antenna Wm (330 Deg)	None					33			
39	Structure D	None		-1						
40	Structure Di	None						41		
41	Structure Wo (0 Deg)	None						82		
42	Structure Wo (30 Deg)	None						82		
43	Structure Wo (60 Deg)	None						82		
44	Structure Wo (90 Deg)	None						82		
45	Structure Wo (120 Deg)	None						82		
46	Structure Wo (150 Deg)	None						82		
47	Structure Wo (180 Deg)	None						82		
48	Structure Wo (210 Deg)	None						82		
49	Structure Wo (240 Deg)	None						82		
50	Structure Wo (270 Deg)	None						82		
51	Structure Wo (300 Deg)	None						82		
52	Structure Wo (330 Deg)	None						82		
53	Structure Wi (0 Deg)	None						82		
54	Structure Wi (30 Deg)	None						82		
55	Structure Wi (60 Deg)	None						82		
56	Structure Wi (90 Deg)	None						82		

Company Designer Job Number : Maser Consulting : NL : 21777866A Model Name : Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Basic Load Cases (Continued)

	BLC Description	Category	X Grav	.Y Grav	.Z Grav	Joint	Point	Distrib	. Area(M.	.Surfac
57	Structure Wi (120 Deg)	None						82	,	
58	Structure Wi (150 Deg)	None						82		
59	Structure Wi (180 Deg)	None						82		
60	Structure Wi (210 Deg)	None						82		
61	Structure Wi (240 Deg)	None						82		
62	Structure Wi (270 Deg)	None						82		
63	Structure Wi (300 Deg)	None						82		
64	Structure Wi (330 Deg)	None						82		
65	Structure Wm (0 Deg)	None						82		
66	Structure Wm (30 Deg)	None						82		
67	Structure Wm (60 Deg)	None						82		
68	Structure Wm (90 Deg)	None						82		
69	Structure Wm (120 Deg)	None						82		
70	Structure Wm (150 Deg)	None						82		
71	Structure Wm (180 Deg)	None						82		
72	Structure Wm (210 Deg)	None						82		
73	Structure Wm (240 Deg)	None						82		
74	Structure Wm (270 Deg)	None						82		
75	Structure Wm (300 Deg)	None						82		
76	Structure Wm (330 Deg)	None						82		
77	Lm1	None					1			
78	Lm2	None					1			
79	Lv1	None					1			
80	Lv2	None					1			
81	Antenna Ev	None					33			
82	Antenna Eh (0 Deg)	None					22			
83	Antenna Eh (90 Deg)	None					22			
84	Structure Ev	ELY		045						
85	Structure Eh (0 Deg)	ELZ			111					
86	Structure Eh (90 Deg)	ELX	.111							

Load Combinations

	Description	Solve	Р	S	В	Fa	В	Fa	BLC	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	1.2D+1.0Wo (0 Deg)			Ū	1			1.2		1	41	1												
2	1.2D+1.0Wo (30 Deg)	Yes			1	1.2				1	42	1												
3	1.2D+1.0Wo (60 Deg)	Yes	Υ		1	1.2	39	1.2	5	1	43	1												
4	1.2D+1.0Wo (90 Deg)	Yes	Υ		1	1.2	39	1.2	6	1	44	1												
_ 5	1.2D+1.0Wo (120 Deg)	Yes	Υ		1	1.2	39	1.2	7	1	45	1												
6	1.2D+1.0Wo (150 Deg)	Yes	Υ		1	1.2	39	1.2	8	1	46	1												
7	1.2D+1.0Wo (180 Deg)	Yes			1			1.2		1	47	1												
8	1.2D+1.0Wo (210 Deg)	Yes			1	1.2		1.2		1	48	1												
9	1.2D+1.0Wo (240 Deg)	Yes			1	1.2				1	49	1												
10	1.2D+1.0Wo (270 Deg)	Yes			1	1.2		1.2	12	1	50	1												
11	1.2D+1.0Wo (300 Deg)	Yes			1	1.2		1.2	13	1	51	1												
12	1.2D+1.0Wo (330 Deg)				1	1.2		1.2		1	52	1												
13	1.2D + 1.0Di + 1.0Wi (0 .				1	1.2		1.2	2	1	40	1	15	1	53	1_								
14	1.2D + 1.0Di + 1.0Wi (3				1	1.2		1.2		1	40	1_	16	1	54	_1_								
15	1.2D + 1.0Di + 1.0Wi (6				1	1.2		1.2		1	40	1	17	1	55	_1_								
16	1.2D + 1.0Di + 1.0Wi (9				1	1.2				1	40	1	18	1	56	1_								
17	1.2D + 1.0Di + 1.0Wi (1				1		39	1.2		1	40	1	19	1	57	1								
18	1.2D + 1.0Di + 1.0Wi (1				1	1.2		1.2	2	1	40	1	20	1	58	1_								
19	1.2D + 1.0Di + 1.0Wi (1				1	1.2		1.2	2	1	40	1	21	1	59	1_								
20	1.2D + 1.0Di + 1.0Wi (2				1	1.2		1.2		1	40	1	22	1	60	1_								
21	1.2D + 1.0Di + 1.0Wi (2				1			1.2		1	40	1	23	1	61	1								
22	1.2D + 1.0Di + 1.0Wi (2	Yes	Υ		1	1.2	39	1.2	2	1	40	1	24	1	62	1								

Company Designer Job Number : Maser Consulting : NL : 21777866A Model Name : Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Load Combinations (Continued)

120 + 1,001 + 1,00W 3 Yes Y	23 120 + 1,001 + 1,00W (3Yes Y 1 1,2 39 1,2 2 1 40 1 26 1 64 1 1 25 1 63 1 25 1 63 1 25 120 + 1,5Lm + 1,0W		Description	Solve	P	S B	Fa	В	Fa	BLC	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
120 + 1,001 + 1,001 (3) Yes Y 1 1,2 39 1,2 2 1 40 1 26 1 64 1 1 1 1 1 1 1 1 1	24 120 + 1.00 1.00 1.00 1.00 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.50 1.20 1.20 1.50 1.20 1.20 1.50 1.20 1.50 1.20 1.20 1.50 1.20 1.20 1.50 1.20 1.20 1.50 1.20 1.20 1.20 1.50 1.20 1.50 1.20 1.20 1.50 1.20 1.20 1.20 1.50 1.20 1.20 1.20 1.50 1.50 1.20 1.20 1.20 1.50 1.50 1.20 1.20 1.50 1.50 1.20 1.20 1.20 1.20 1.50 1.50 1.20 1.20 1.20 1.50 1.50 1.20 1.20 1.50 1.50 1.2	23																							
25 120 + 1.5Lm1 + 1.0W Yes Y 1 1.2 39 1.2 77 1.5 27 1 65 1	25 120 + 1.5Lml + 1.0W Yes Y 1 1.2 39 1.2 77 1.5 27 1 65 1	24				1					1						1								
26 120 + 1.5Lml + 1.0W Yes Y 1 1.2 39 1.2 77 1.5 28 1 66 1 29 120 + 1.5Lml + 1.0W Yes Y 1 1.2 39 1.2 77 1.5 30 1 68 1 29 120 + 1.5Lml + 1.0W Yes Y 1 1.2 39 1.2 77 1.5 30 1 68 1 30 120 + 1.5Lml + 1.0W Yes Y 1 1.2 39 1.2 77 1.5 31 1 69 1	120 + 1.5Lm1 + 1.0W Yes Y										1.5		1		1										
12P + 15Lm1 + 10W Yes Y 1 1.2 39 1.2 77 1.5 29 1 67 1 29 1.2P + 15Lm1 + 10W Yes Y 1 1.2 39 1.2 77 1.5 30 1 68 1 30 1.2P + 15Lm1 + 10W Yes Y 1 1.2 39 1.2 77 1.5 31 1 69 1 30 1.2P + 15Lm1 + 10W Yes Y 1 1.2 39 1.2 77 1.5 31 1 69 1 33 1.2P + 15Lm1 + 10W Yes Y 1 1.2 39 1.2 77 1.5 33 1 77 1 1 33 1.2P + 15Lm1 + 10W Yes Y 1 1.2 39 1.2 77 1.5 33 1 77 1 1 33 1.2P + 15Lm1 + 10W Yes Y 1 1.2 39 1.2 77 1.5 34 1 72 1 33 1.2P + 15Lm1 + 10W Yes Y 1 1.2 39 1.2 77 1.5 36 1 74 1 1 1 1 1 1 1 1 1	22 120 + 1.5Lm1 + 1.0W Yes Y 1 1.2 39 1.2 77 1.5 29 1 67 1													-	1										
28 1.20 + 1.5Lm1 + 1.0W Yes Y 1 1.2 39 1.2 77 1.5 30 1 68 1 2 2 1.20 + 1.5Lm1 + 1.0W Yes Y 1 1.2 39 1.2 77 1.5 32 1 70 1 31 1.20 + 1.5Lm1 + 1.0W Yes Y 1 1.2 39 1.2 77 1.5 32 1 70 1 31 1.20 + 1.5Lm1 + 1.0W Yes Y 1 1.2 39 1.2 77 1.5 34 1 72 1 33 1.20 + 1.5Lm1 + 1.0W Yes Y 1 1.2 39 1.2 77 1.5 34 1 72 1 33 1.20 + 1.5Lm1 + 1.0W Yes Y 1 1.2 39 1.2 77 1.5 34 1 72 1 33 1.20 + 1.5Lm1 + 1.0W Yes Y 1 1.2 39 1.2 77 1.5 34 1 72 1 33 1.20 + 1.5Lm1 + 1.0W Yes Y 1 1.2 39 1.2 77 1.5 36 1 74 1 35 1.20 + 1.5Lm1 + 1.0W Yes Y 1 1.2 39 1.2 77 1.5 36 1 74 1 35 1.20 + 1.5Lm1 + 1.0W Yes Y 1 1.2 39 1.2 77 1.5 36 1 74 1 35 1.20 + 1.5Lm1 + 1.0W Yes Y 1 1.2 39 1.2 77 1.5 38 1 76 1 37 1 75 1 38 1 76 1 37 1.20 + 1.5Lm1 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 27 1 65 1 38 1 76 1 37 1.20 + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 29 1 67 1 1 39 1.20 + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 29 1 67 1 1 39 1.20 + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 30 1 68 1 4 1 1.20 + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 30 1 68 1 4 1 1.20 + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 31 1 69 1 4 1 1.20 + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 31 1 69 1 4 1 1.20 + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 33 1 70 1 4 1 1.20 + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 33 1 70 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	28 120+15Lm1+10W Yes Y					1									1										
120 + 1.5Lm1 + 1.0W Yes Y 1 1.2 39 1.2 77 1.5 32 1 70 1 1 1 1 1 1 1 1 1	120 + 1.5Lm1 + 1.0W Yes Y 1 1.2 39 1.2 77 1.5 31 1 69 1 30 1.2D + 1.5Lm1 + 1.0W Yes Y 1 1.2 39 1.2 77 1.5 33 1 71 1 1 33 1.2D + 1.5Lm1 + 1.0W Yes Y 1 1.2 39 1.2 77 1.5 33 1 71 1 1 33 1.2D + 1.5Lm1 + 1.0W Yes Y 1 1.2 39 1.2 77 1.5 33 1 71 1 1 33 1.2D + 1.5Lm1 + 1.0W Yes Y 1 1.2 39 1.2 77 1.5 35 1 73 1 1 1 1 1 1 1 1 1	28												_											
30 1.20 + 1.5Lm1 + 1.0W Yes Y	30 120 + 15Lm1 + 10W Yes Y 1 1.2 39 1.2 77 1.5 32 1 70 1 1 1 1 1 1 1 1 1	29											1		1										
31 1.2D+1.5Lm1+1.0W Yes Y	31 1.20 + 1.5Lm1 + 1.0W Yes Y												1		1										
33 1.2D + 1.5Lm1 + 1.0W Yes Y	32 12D+1.5Im1+1.0W Yes Y												1		1										
33 1.2D + 1.5Lm1 + 1.0W Yes Y	33 1.2D+1.5Lm1+1.0W Yes Y	32	1.2D + 1.5Lm1 + 1.0W	Yes	Υ	1							1												
34 1.2D+1.5Lm1+1.0W Yes Y	34 12D+1.5Lm1+1.0W Yes Y												_												
36 1.2D+1.5Lm1+1.0W Yes Y	36 1.2D + 1.5Lm1 + 1.0W Yes Y														_										
36 1.2D+1.5Lm2+1.0W Yes Y	36 1.2D + 1.5Lm2 + 1.0W Yes Y	35	1.2D + 1.5Lm1 + 1.0W	Yes	Ÿ								1		1										
37 1.20 + 1.5Lm2 + 1.0W Yes Y	37 1.20 + 1.5Lm2 + 1.0W Yes Y																								
38 1.2D + 1.5Lm2 + 1.0W Yes Y	38 1.20 + 1.5Lm2 + 1.0W Yes Y	37	1.2D + 1.5Lm2 + 1.0W	Yes	Ÿ								1		-										
1.2D + 1.5Lm2 + 1.0W Yes Y	39 1.2D + 1.5Lm2 + 1.0W Yes Y												1		1										
40 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 30 1 68 1 42 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 31 1 69 1 42 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 33 1 70 1 43 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 33 1 70 1 44 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 33 1 71 1 44 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 34 1 72 1 45 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 34 1 72 1 46 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 36 1 74 1 4 1 72 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 30 1 68 1 42 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 31 1 69 1 42 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 31 1 70 1 43 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 33 1 77 1 1 44 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 33 1 77 1 1 45 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 33 1 77 1 1 45 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 35 1 73 1 4 1 72 1 44 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 36 1 74 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1												1		1										
41 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 31 1 69 1 42 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 32 1 70 1 4 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 32 1 70 1 1 4 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 33 1 71 1 1 4 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 33 1 77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	41 1.2D + 1.5Lm2 + 1.0W Yes Y												_		-										
42 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 32 1 70 1 1 4 4 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 34 1 72 1 1 1 4 4 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 34 1 72 1 1 1 4 4 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 34 1 72 1 1 1 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1	42 12D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 32 1 70 1 4 1 2 4 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 33 1 77 1 1 4 1 4 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 34 1 72 1 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4												- :												
44 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 33 1 71 1 1	44 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 33 1 71 1 1												-												
44	44 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 34 1 72 1 4 1 4 1 4 1 1 4 1 1 1 1 1 2 39 1.2 78 1.5 36 1 73 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												1		1										
46 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 35 1 73 1 4 74 1 74 1 74 1 74 1 74 1 74 1	46 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 36 1 73 1												1												
46 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 36 1 74 1 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	46 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 36 1 74 1												1		- 1										
47 1.2D + 1.5Lm2 + 1.0W Yes Y	48 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 37 1 76 1 48 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 79 1.5 38 1 76 1 50 1.2D + 1.5Lv1 Yes Y 1 1.2 39 1.2 79 1.5 50 1.2D + 1.5Lv2 Yes Y 1 1.2 39 1.2 80 1.5 51 1.4D Yes Y 1 1.4 39 1.4 52 1.2D + 1.0Ev + 1.0Eh (0 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .866 83 .5 ELZ 1 E 53 1.2D + 1.0Ev + 1.0Eh (6 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .866 83 .5 ELZ 866 E5 56 1.2D + 1.0Ev + 1.0Eh (1 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .866 83 .5 ELZ 866 E5 56 1.2D + 1.0Ev + 1.0Eh (1 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .868 83 .5 ELZ 866 E5 56 1.2D + 1.0Ev + 1.0Eh (1 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .866 83 .5 ELZ 866 E5 56 1.2D + 1.0Ev + 1.0Eh (1 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .866 83 .5 ELZ 866 E5 56 1.2D + 1.0Ev + 1.0Eh (1 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .866 83 .5 ELZ 866 E5 57 1.2D + 1.0Ev + 1.0Eh (1 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .866 83 .5 ELZ 866 E5 58 1.2D + 1.0Ev + 1.0Eh (1 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .866 83 .5 ELZ 866 E5 59 1.2D + 1.0Ev + 1.0Eh (1 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .866 83 .5 ELZ 866 E5 56 1.2D + 1.0Ev + 1.0Eh (2 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .866 83 .5 ELZ 866 E5 66 1 1.2D + 1.0Ev + 1.0Eh (2 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .866 83 .5 ELZ 866 E5 66 1 1.2D + 1.0Ev + 1.0Eh (3 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .86 83 .5 ELZ 866 E5 66 1 1.2D + 1.0Ev + 1.0Eh (3 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .86 83 .5 ELZ 866 E5 66 1 1.2D + 1.0Ev + 1.0Eh (3 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .86 83 .5 ELZ 866 E5 66 1 1.2D + 1.0Ev + 1.0Eh (3 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .86 83 .5 ELZ 866 E5 66 1 1.2D + 1.0Ev + 1.0Eh (3 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .86 83 .5 ELZ 866 E5 66 1 1.2D + 1.0Ev + 1.0Eh (3 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .86 83 .5 ELZ 866 E5 66 1 1.2D + 1.0Ev + 1.0Eh (3 Yes Y 1 1.9 39 .9 81 -1 E1 82 .86 83 .5 ELZ 866 E5 66 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																								
48 1.2D + 1.5Lm2 + 1.0W Yes Y	48 1.2D + 1.5Lm2 + 1.0W Yes Y												-												
49	49	48				1							1		1										
50	50	49																							
51	51					1																			
52 1.2D + 1.0Ev + 1.0Eh (0 Yes Y 1 1.2 39 1.2 81 1 E 1 82 1 83 ELZ 1 E 5 53 1.2D + 1.0Ev + 1.0Eh (3 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .866 83 .5 ELZ .866 E5 54 1.2D + 1.0Ev + 1.0Eh (6 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .83 .866 ELZ .5 E866 55 1.2D + 1.0Ev + 1.0Eh (1 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .83 .866 ELZ .5 E866 56 1.2D + 1.0Ev + 1.0Eh (1 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .83 .866 ELZ .5 E866 57 1.2D + 1.0Ev + 1.0Eh (1 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .83 .866 ELZ .5 E866 58 1.2D + 1.0Ev + 1.0Eh (1 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .83 .866 ELZ .5 E866 59 1.2D + 1.0Ev + 1.0Eh (1 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .86 83 .5 ELZ -866 E5 58 1.2D + 1.0Ev + 1.0Eh (1 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .86 83 .5 ELZ -866 E5 59 1.2D + 1.0Ev + 1.0Eh (2 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .86 83 .5 ELZ -866 E5 60 1.2D + 1.0Ev + 1.0Eh (2 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .83 .866 ELZ .5 E866 61 1.2D + 1.0Ev + 1.0Eh (3 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .83 .866 ELZ .5 E866 62 1.2D + 1.0Ev + 1.0Eh (3 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .83 .866 ELZ .5 E866 63 1.2D + 1.0Ev + 1.0Eh (0 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .83 .866 ELZ .5 E866 64 0.9D - 1.0Ev + 1.0Eh (0 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .866 83 .5 ELZ .866 E5 65 0.9D - 1.0Ev + 1.0Eh (0 Yes Y 1 9 39 .9 81 -1 E 1 82 .866 83 .5 ELZ .866 E5 66 0.9D - 1.0Ev + 1.0Eh (6 Yes Y 1 .9 39 .9 81 -1 E 1 82 .866 83 .5 ELZ .866 E5 67 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 .9 39 .9 81 -1 E1 82 .866 83 .5 ELZ .866 E5 68 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 .9 39 .9 81 -1 E1 82 .866 83 .5 ELZ .866 E5 70 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 .9 39 .9 81 -1 E1 82 .866 83 .5 ELZ .866 E5 70 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 .9 39 .9 81 -1 E1 82 .866 83 .5 ELZ .866 E5 71 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 .9 39 .9 81 -1 E1 82 .866 83 .5 ELZ .866 E5 72 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 .9 39 .9 81 -1 E	52 1.2D + 1.0Ev + 1.0Eh (0 Yes Y	51	1.4D			1																			
53 1.2D + 1.0Ev + 1.0Eh (3 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .866 83 .5 ELZ .866 E5 5	53 1.2D + 1.0Ev + 1.0Eh (3 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .866 83 .5 ELZ .866 E5 5 1.2D + 1.0Ev + 1.0Eh (6 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .5 83 .866 ELZ .5 E866 5 1.2D + 1.0Ev + 1.0Eh (1 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .5 83 .866 ELZ .5 E866 5 1.2D + 1.0Ev + 1.0Eh (1 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .5 83 .866 ELZ .5 E866 5 1.2D + 1.0Ev + 1.0Eh (1 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .5 83 .866 ELZ .5 E866 5 1.2D + 1.0Ev + 1.0Eh (1 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .5 83 .866 ELZ .5 E866 5 1.2D + 1.0Ev + 1.0Eh (1 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .5 83 .866 ELZ .5 E866 5 1.2D + 1.0Ev + 1.0Eh (2 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .5 83 .866 ELZ .5 E866 6 1.5 6 1.2D + 1.0Ev + 1.0Eh (2 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .5 83 .866 ELZ .5 E866 6 1.2D + 1.0Ev + 1.0Eh (2 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .5 83 .866 ELZ .5 E866 6 1.2D + 1.0Ev + 1.0Eh (2 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .5 83 .866 ELZ .5 E866 6 1 .2D + 1.0Ev + 1.0Eh (2 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .5 83 .866 ELZ .5 E866 6 1 .2D + 1.0Ev + 1.0Eh (3 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .5 83 .866 ELZ .5 E866 6 1 .2D + 1.0Ev + 1.0Eh (0 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .5 83 .866 ELZ .5 E866 6 1 .2D + 1.0Ev + 1.0Eh (0 Yes Y 1 1.9 39 .9 81 -1 E 1 82 .866 83 .5 ELZ .866 E5 6 6 0.9D - 1.0Ev + 1.0Eh (0 Yes Y 1 1.9 39 .9 81 -1 E1 82 .866 83 .5 ELZ .866 E5 6 6 0.9D - 1.0Ev + 1.0Eh (0 Yes Y 1 1.9 39 .9 81 -1 E1 82 .866 83 .5 ELZ .866 E5 6 6 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 1.9 39 .9 81 -1 E1 82 .5 83 .866 ELZ .5 E866 6 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 1.9 39 .9 81 -1 E1 82 .5 83 .866 ELZ .5 E866 6 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 1.9 39 .9 81 -1 E1 82 .5 83 .866 ELZ .5 E866 6 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 1.9 39 .9 81 -1 E1 82 .5 83 .866 ELZ .5 E866 6 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 1.9 39 .9 81 -1 E1 82 .5 83 .866 ELZ .5 E866 6 0.9D - 1.0Ev + 1.0	52	1.2D + 1.0Ev + 1.0Eh (0	.Yes	Υ	1				81	1	E	1	82	1	83		ELZ	1	E					
54 1.2D + 1.0Ev + 1.0Eh (6 Yes Y	54 1.2D + 1.0Ev + 1.0Eh (6 Yes Y) 1 1.2 39 1.2 81 1 E 1 82 .5 83 .866 ELZ .5 E .866 55 1.2D + 1.0Ev + 1.0Eh (1 Yes Y) 1 1.2 39 1.2 81 1 E 1 82 83 1 ELZ .E 1 56 1.2D + 1.0Ev + 1.0Eh (1 Yes Y) 1 1.2 39 1.2 81 1 E 1 825 83 .866 ELZ .5 E .866 57 1.2D + 1.0Ev + 1.0Eh (1 Yes Y) 1 1.2 39 1.2 81 1 E 1 825 83 .866 ELZ .5 E .866 59 1.2D + 1.0Ev + 1.0Eh (1 Yes Y) 1 1.2 39 1.2 81 1 E 1 825 83866 ELZ .5 E .5 60 1.2D + 1.0Ev + 1.0Eh (2 Yes Y) 1 1.2 39 1.2 81 1 E 1 825 83866 ELZ .5 E -866 61																.5	ELZ	.866	E	.5				
55 1.2D + 1.0Ev + 1.0Eh (9 Yes Y	55 1.2D + 1.0Eh (9 Yes Y					1					1	E	1												
56 1.2D + 1.0Ev + 1.0Eh (1Yes Y	56	55	1.2D + 1.0Ev + 1.0Eh (9	Yes	Υ	1					1	E	1			83	1	ELZ		E	1				
57 1.2D + 1.0Ev + 1.0Eh (1 Yes Y 1 1 2 39 1 81 1 E 1 82 - 866 83 .5 ELZ - 866 E5 5	57 1.2D + 1.0Ev + 1.0Eh (1 Yes Y					1						E			5		.866	ELZ	5	E	.866				
58 1.2D + 1.0Ev + 1.0Eh (1 Yes Y	58 1.2D + 1.0Ev + 1.0Eh (1Yes Y 1 1.2 39 1.2 81 1 E 1 82 -1 83 ELZ -1 E 59 1.2D + 1.0Ev + 1.0Eh (2Yes Y 1 1.2 39 1.2 81 1 E 1 82 -866 835 ELZ-866 E5 60 1.2D + 1.0Ev + 1.0Eh (2Yes Y 1 1.2 39 1.2 81 1 E 1 825 83 -866 ELZ5 E866 61 1.2D + 1.0Ev + 1.0Eh (2Yes Y 1 1.2 39 1.2 81 1 E 1 82 83 -1 ELZ E1 62 1.2D + 1.0Ev + 1.0Eh (3Yes Y 1 1.2 39 1.2 81 1 E 1 82 83 -866 ELZ5 E866 63 1.2D + 1.0Ev + 1.0Eh (3Yes Y 1 1.2 39 1.2 81 1 E 1 82 866 835 ELZ 866 E5 64 0.9D - 1.0Ev + 1.0Eh (0Yes Y 1 9 39 9 81 -1 E1 82 1 83 ELZ 1 E 65 0.9D - 1.0Ev + 1.0Eh (3Yes Y 1 9 39 9 81 -1 E1 82 866 83 .5 ELZ 866 E5 66 0.9D - 1.0Ev + 1.0Eh (9Yes Y 1 9 39 9 81 -1 E1 82 .5 83 .866 ELZ .5 E 866 66 0.9D - 1.0Ev + 1.0Eh (9Yes Y 1 9 39 9 81 -1 E1 82 .5 83 .866 ELZ .5 E 866 67 0.9D - 1.0Ev + 1.0Eh (9Yes Y 1 9 39 9 81 -1 E1 82 .5 83 .866 ELZ .5 E 866 69 0.9D - 1.0Ev + 1.0Eh (1Yes Y 1 9 39 9 81 -1 E1 82 -5 83 .866 ELZ .5 E 866 69 0.9D - 1.0Ev + 1.0Eh (1Yes Y 1 9 39 9 81 -1 E1 82 -5 83 .866 ELZ .5 E 866 69 0.9D - 1.0Ev + 1.0Eh (1Yes Y 1 9 39 9 81 -1 E1 82 -866 83 .5 ELZ .866 E5 70 0.9D - 1.0Ev + 1.0Eh (1Yes Y 1 9 39 9 81 -1 E1 82 -866 83 .5 ELZ .866 E5 70 0.9D - 1.0Ev + 1.0Eh (1Yes Y 1 9 39 9 81 -1 E1 82 -866 83 .5 ELZ .866 E5 72 0.9D - 1.0Ev + 1.0Eh (2Yes Y 1 9 39 9 81 -1 E1 82 -866 83 .5 ELZ .866 E5 72 0.9D - 1.0Ev + 1.0Eh (2Yes Y 1 9 39 9 81 -1 E1 82 -866 83 .5 ELZ .866 E5 72 0.9D - 1.0Ev + 1.0Eh (2Yes Y 1 9 39 9 81 -1 E1 82 -866 83 .5 ELZ .866 E5 73 0.9D - 1.0Ev + 1.0Eh (2Yes Y 1 9 39 9 9 81 -1 E1 82 -866 83 .5 ELZ .866 E5 74 0.9D - 1.0Ev + 1.0Eh (2Yes Y 1 9 39 9 9 81 -1 E1 82 -866 83 .5 ELZ .5 E866 83 .5 ELZ .5 E866	57	1.2D + 1.0Ev + 1.0Eh (1	Yes	Υ	1					1	E	1	82	866	83	.5	ELZ	866	E	.5				
59 1.2D + 1.0Ev + 1.0Eh (2 Yes Y 1 1.2 39 1.2 81 1 E 1 82 -866 835 ELZ-866 E5 60 1.2D + 1.0Ev + 1.0Eh (2 Yes Y 1 1.2 39 1.2 81 1 E 1 825 83 -866 ELZ5 E866 61 1.2D + 1.0Ev + 1.0Eh (2 Yes Y 1 1.2 39 1.2 81 1 E 1 82 83 -1 ELZ E1 62 1.2D + 1.0Ev + 1.0Eh (3 Yes Y 1 1.2 39 1.2 81 1 E 1 82 83 -866 ELZ .5 E866 63 1.2D + 1.0Ev + 1.0Eh (3 Yes Y 1 1.2 39 1.2 81 1 E 1 82 866 835 ELZ 866 E5 64 0.9D - 1.0Ev + 1.0Eh (0 Yes Y 1 9 39 9 81 -1 E1 82 1 83 ELZ 1 E 65 0.9D - 1.0Ev + 1.0Eh (3 Yes Y 1 9 39 9 9 81 -1 E1 82 866 83 .5 ELZ 866 E5 66 0.9D - 1.0Ev + 1.0Eh (6 Yes Y 1 9 39 9 81 -1 E1 82 83 866 ELZ .5 E 866 63 0.9D - 1.0Ev + 1.0Eh (9 Yes Y 1 9 39 9 81 -1 E1 82 83 866 ELZ .5 E 866 64 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 9 39 9 9 81 -1 E1 82 83 866 ELZ .5 E 866 65 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 9 39 9 9 81 -1 E1 82 83 866 ELZ .5 E 866 65 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 9 39 9 9 81 -1 E1 82 83 866 ELZ .5 E 866 65 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 9 39 9 9 81 -1 E1 82 -866 83 .5 ELZ -866 E5 66 69 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 9 39 9 9 81 -1 E1 82 -866 83 .5 ELZ -866 E5 66 69 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 9 39 9 9 81 -1 E1 82 -866 83 .5 ELZ -866 E5 66 69 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 9 39 9 9 81 -1 E1 82 -866 83 .5 ELZ -866 E5 66 69 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 9 39 9 9 81 -1 E1 82 -866 83 -5 ELZ -866 E5 66 69 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 9 39 9 9 81 -1 E1 82 -866 83 -5 ELZ -866 E5 66 69 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 9 39 9 9 81 -1 E1 82 -866 83 -5 ELZ -866 E5 66 69 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 9 39 9 9 81 -1 E1 82 -866 83 -5 ELZ -866 E5 66 69 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 9 39 9 9 81 -1 E1 82 -866 83 -5 ELZ -866 E5 686 E5 686 ELZ -5 E866 E5 686 ELZ -5 E866 E5 686 E5 686 ELZ -5 E866 E5 686 ELZ -5 E866 E5 686 E	59 1.2D + 1.0Eh (2 Yes Y	58	1.2D + 1.0Ev + 1.0Eh (1	.Yes	Υ	1					1	E	1	82	-1	83		ELZ	-1	E					
60 1.2D + 1.0Ev + 1.0Eh (2Yes Y	60 1.2D + 1.0Ev + 1.0Eh (2 Yes Y 1 1 2 39 1 2 81 1 E 1 82 866 ELZ E866 61 1.2D + 1.0Ev + 1.0Eh (2 Yes Y 1 1 2 39 1 2 81 1 E 1 82 83 -1 ELZ E1	59	1.2D + 1.0Ev + 1.0Eh (2	Yes	Υ						1	E	1		866	83	5	ELZ	866	E	5				
61 1.2D + 1.0Ev + 1.0Eh (2Yes Y	61 1.2D + 1.0Ev + 1.0Eh (2Yes Y	60	1.2D + 1.0Ev + 1.0Eh (2	Yes	Υ	1					1	E	1	82	5	83	866	ELZ	5	E	866	i			
62 1.2D + 1.0Ev + 1.0Eh (3 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .5 83 -866 ELZ .5 E866 63 1.2D + 1.0Ev + 1.0Eh (3 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .866 835 ELZ .866 E5 64 0.9D - 1.0Ev + 1.0Eh (0 Yes Y 1 .9 39 .9 81 -1 E1 82 1 83 ELZ 1 E 65 0.9D - 1.0Ev + 1.0Eh (6 Yes Y 1 .9 39 .9 81 -1 E1 82 .5 83 .866 ELZ .5 E866 66 0.9D - 1.0Ev + 1.0Eh (9 Yes Y 1 .9 39 .9 81 -1 E1 82 .5 83 .866 ELZ .5 E866 66 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 .9 39 .9 81 -1 E1 82 .5 83 .866 ELZ .5 E866 66 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 .9 39 .9 81 -1 E1 825 83 .866 ELZ .5 E866 66 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 .9 39 .9 81 -1 E1 825 83 .866 ELZ .5 E866 67 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 .9 39 .9 81 -1 E1 82866 83 .5 ELZ866 E5 70 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 .9 39 .9 81 -1 E1 82866 83 .5 ELZ866 E5 71 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 .9 39 .9 81 -1 E1 82866 835 ELZ866 E5 72 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 .9 39 .9 81 -1 E1 825 83866 ELZ5 E866 73 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 .9 39 .9 81 -1 E1 825 83866 ELZ5 E866 73 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 .9 39 .9 81 -1 E1 825 83866 ELZ5 E866 73 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 .9 39 .9 81 -1 E1 825 83866 ELZ5 E866 73 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 .9 39 .9 81 -1 E1 825 83866 ELZ5 E866	62 1.2D + 1.0Ev + 1.0Eh (3 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .5 83 -866 ELZ .5 E866 63 1.2D + 1.0Ev + 1.0Eh (3 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .66 835 ELZ .866 E,5 64 0.9D - 1.0Ev + 1.0Eh (0 Yes Y 1 .9 39 .9 81 -1 E1 82 1 83 ELZ 1 E 65 0.9D - 1.0Ev + 1.0Eh (6 Yes Y 1 .9 39 .9 81 -1 E1 82 .5 83 .866 ELZ .5 E866 66 0.9D - 1.0Ev + 1.0Eh (6 Yes Y 1 .9 39 .9 81 -1 E1 82 .5 83 .866 ELZ .5 E866 66 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 .9 39 .9 81 -1 E1 82 .5 83 .866 ELZ .5 E866 67 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 .9 39 .9 81 -1 E1 825 83 .866 ELZ .5 E866 69 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 .9 39 .9 81 -1 E1 82866 83 .5 ELZ866 E5 70 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 .9 39 .9 81 -1 E1 82866 83 .5 ELZ866 E5 71 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 .9 39 .9 81 -1 E1 82866 83 .5 ELZ866 E5 72 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 .9 39 .9 81 -1 E1 825 83866 ELZ5 E866 73 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 .9 39 .9 81 -1 E1 825 83866 ELZ5 E866 73 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 .9 39 .9 81 -1 E1 825 83866 ELZ5 E866 73 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 .9 39 .9 81 -1 E1 82 .5 83866 ELZ5 E866	61	1.2D + 1.0Ev + 1.0Eh (2	-Yes	Υ						1	E	1	82		83	-1	ELZ		E	-1				
63 1.2D + 1.0Ev + 1.0Eh (3 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .866 835 ELZ .866 E5 64 0.9D - 1.0Ev + 1.0Eh (0 Yes Y 1 .9 39 .9 81 -1 E1 82 1 83 ELZ 1 E 65 0.9D - 1.0Ev + 1.0Eh (3 Yes Y 1 .9 39 .9 81 -1 E1 82 .866 83 .5 ELZ .866 E5 66 0.9D - 1.0Ev + 1.0Eh (6 Yes Y 1 .9 39 .9 81 -1 E1 82 .5 83 .866 ELZ .5 E866 67 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 .9 39 .9 81 -1 E1 82 .5 83 .866 ELZ .5 E866 68 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 .9 39 .9 81 -1 E1 825 83 .866 ELZ .5 E866 69 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 .9 39 .9 81 -1 E1 82866 83 .5 ELZ866 E5 70 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 .9 39 .9 81 -1 E1 82866 83 .5 ELZ866 E5 71 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 .9 39 .9 81 -1 E1 82866 835 ELZ866 E5 72 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 .9 39 .9 81 -1 E1 825 83866 ELZ5 E866 73 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 .9 39 .9 81 -1 E1 825 83866 ELZ5 E866 73 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 .9 39 .9 81 -1 E1 825 83866 ELZ5 E866 73 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 .9 39 .9 81 -1 E1 825 83866 ELZ5 E866 835 ELZ866 E5	63 1.2D + 1.0Ev + 1.0Eh (3 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .866 835 ELZ .866 E5 64 0.9D - 1.0Ev + 1.0Eh (0 Yes Y 1 .9 39 .9 81 -1 E1 82 1 83 ELZ 1 E 65 0.9D - 1.0Ev + 1.0Eh (3 Yes Y 1 .9 39 .9 81 -1 E1 82 .5 83 .866 ELZ .5 E866 6										1	E	1	82											
64 0.9D - 1.0Ev + 1.0Eh (0 Yes Y	64 0.9D - 1.0Ev + 1.0Eh (0 Yes Y					1						E	1												
65 0.9D - 1.0Ev + 1.0Eh (3 Yes Y	65 0.9D - 1.0Ev + 1.0Eh (3 Yes Y					1																			
66 0.9D - 1.0Ev + 1.0Eh (6 Yes Y 1 9 39 9 81 -1 E1 82 5 83 .866 ELZ 5 E866 67 0.9D - 1.0Ev + 1.0Eh (9 Yes Y 1 9 39 9 81 -1 E1 82 5 83 .866 ELZ 5 E866 68 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 9 39 9 81 -1 E1 82 5 83 .866 ELZ 5 E866 69 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 9 39 9 81 -1 E1 82 866 83 5 ELZ866 E 5 70 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 9 39 9 81 -1 E1 82 82 83 ELZ -1 E 71 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 9 39 9 81 -1 E1 82 866 83 5 ELZ866 E 5 72 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 9 39 9 81 -1 E1 82 83 866 ELZ 5 E866 73 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 9 39 9 81 -1 E1 82 83 ELZ E1	66 0.9D - 1.0Ev + 1.0Eh (6 Yes Y					1																			
67 0.9D - 1.0Ev + 1.0Eh (9 Yes Y	67 0.9D - 1.0Ev + 1.0Eh (9 Yes Y					1																			
68 0.9D - 1.0Ev + 1.0Eh (1 Yes Y	68 0.9D - 1.0Ev + 1.0Eh (1 Yes Y					1								82		83	1	ELZ		E	1				
69 0.9D - 1.0Ev + 1.0Eh (1 Yes Y	69 0.9D - 1.0Ev + 1.0Eh (1 Yes Y					1								82				ELZ	5	E	.866				
70 0.9D - 1.0Ev + 1.0Eh (1 Yes Y	70 0.9D - 1.0Ev + 1.0Eh (1 Yes Y																								
71 0.9D - 1.0Ev + 1.0Eh (2 Yes Y	71 0.9D - 1.0Ev + 1.0Eh (2 Yes Y																								
72 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 .9 39 .9 81 -1 E1 825 83866 ELZ5 E866 73 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 .9 39 .9 81 -1 E1 82 83 -1 ELZ E1	72 0.9D - 1.0Ev + 1.0Eh (2 Yes Y																	ELZ	866	E	5				
73 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 .9 39 .9 81 -1 E -1 82 83 -1 ELZ E -1	73 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 .9 39 .9 81 -1 E1 82 83 -1 ELZ E1 74 0.9D - 1.0Ev + 1.0Eh (3 Yes Y 1 .9 39 .9 81 -1 E1 82 .5 83 -866 ELZ .5 E866					1																			
	74 0.9D - 1.0Ev + 1.0Eh (3 Yes Y 1 .9 39 .9 81 -1 E -1 82 .5 83 .866 ELZ .5 E 866								_																
74 0.9D - 1.0Ev + 1.0Eh (3 Yes Y 1 .9 39 .9 81 -1 E -1 82 .5 83 .866 ELZ .5 E 866						1					-1	E	-1							E	866	i			
		75	0.9D - 1.0Ev + 1.0Eh (3	Yes	Υ	1					-1	E	-1												

Company Designer Job Number Model Name : Maser Consulting: NL: 21777866A: Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Joint Coordinates and Temperatures

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Diap
1	N1	-2.	0	2.	0	
2	N2	-5.375	0	2.	0	
3	N3	1.375	0	2.	0	
4	N4	-2.	0	0	0	
5	N5	-2.	-41.	2.	0	
6	N6	-5.375	-41.	2.	0	
7	N7	1.375	-41.	2.	0	
8	N10	-54	0	55.	0	
9	N11	50.	0	<u>55</u> .	0	
10	N11A	-92.	0	<u>55</u> .	0	
11	N12	88.	0	55.	0	
12	N14	-54	-41.	55.	0	
13	N15	50.	-41.	55.	0	
14	N16	-92.	-41.	55.	0	
15	N17	88.	-41.	55.	0	
16	N17A	-4.101022	0	4.141426	0	
17 18	N18 N19	0.101022 -4.101022	-41.	4.141426	0	
19	N20		-41. -41.	4.141426	0	
20	N21	0.101022 4.653236	0	4.141426 8.781183	0	
21	N22	4.653236	-41.	8.781183	0	
22	N23	24.963116	0	29.481637	0	
23	N24	24.963116	-41.	29.481637	0	
24	N25	45.272995	0	50.182091	0	
25	N26	45.272995	-41.	50.182091	0	
26	N27	4.653236	-39.5	8.781183	0	
27	N28	24.963116	-39.5	29.481637	0	
28	N29	4.653236	-1.5	8.781183	0	
29	N30	24.963116	-1.5	29.481637	0	
30	N31	45.272995	-37.	50.182091	0	
31	N32	45.272995	-4.	50.182091	0	
32	N33	-8.653236	0	8.781183	0	
33	N34	-8.653236	-41.	8.781183	0	
34	N35	-28.963116	0	29.481637	0	
35	N36	-28.963116	-41.	29.481637	0	
36	N37	-49.272995	0	50.182091	0	
37	N38	-49.272995	-41.	50.182091	0	
38	N39	-8.653236	-39.5	8.781183	0	
39	N40	-28.963116	-39.5	29.481637	0	
40	N41	-8.653236	-1.5	8.781183	0	
41	N42	-28.963116	-1.5	29.481637	0	
42	N43	-49.272995	-37.	50.182091	0	
43	N44	-49.272995	-4.	50.182091	0	
44	N65	-2.	-41.	0	0	
45	N45	-43.	0	55.	0	
46	N46	-43.	-41.	55.	0	
47	N47	-86.	0	55.	0	
48	N48	-86.	-41.	<u>55.</u>	0	
49 50	N49 N50	-16 -16	0 -41.	55. 55.	0	
51	N50 N51	20.	-41. 0	55.	0	
52	N52	20.	-41.	55.	0	
53	N53	62.	-4 1.	55. 55.	0	
54	N54	62.	-41.	55.	0	
55	N55	83.	0	55.	0	
56	N56	83.	-41.	55.	0	
JU	INUU	00.		JJ.	V	

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Joint Coordinates and Temperatures (Continued)

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Diap
57	N57	-43.	Ō	58.	0	
58	N58	-43.	-41.	58.	0	
59	N59	-86.	0	58.	0	
60	N60	-86.	-41.	58.	0	
61	N61	-16	0	52.	0	
62	N62	-16	-41.	52.	0	
63	N63	20.	0	58.	0	
64	N64	20.	-41.	58.	0	
65	N65A	62.	0	52.	0	
66	N66	62.	-41.	52.	0	
67	N67	83.	0	58.	0	
68	N68	83.	-41.	58.	0	
69	N69	-43.	26.	58.	0	
70	N70	-86.	26.	58.	0	
71	N71	20.	26.	58.	0	
72	N72	83.	26.	58.	0	
73	N73	-43.	-70.	58.	0	
74	N74	-86.	-70.	58.	0	
75	N75	20.	-70.	58.	0	
76	N76	83.	-70.	58.	0	
77	N77	-16	16.	52.	0	
78	N78	62.	16.	52.	0	
79	N79	-16	-44.	52.	0	
80	N80	62.	-44.	52.	0	
81	N81	-49.272995	-23.	50.182091	0	
82	N84	-93.764052	0	-52.98	0	

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	Antenna Pipe	PIPE 2.0	Column	Pipe	A53 Gr. B	Typical	1.02	.627	627	1.25
2	Dual Mounted Pipe	PIPE 2.5	Column	Pipe	A53 Gr. B	Typical	1.61	1.45	1.45	2.89
3	Standoff Horizontal	PIPE 2.0	Beam	Pipe	A53 Gr. B	Typical	1.02	.627	.627	1.25
4	Standoff Vertical	PIPE 2.0	Beam	Pipe	A53 Gr. B	Typical	1.02	.627	.627	1.25
5	Standoff Diagonal	1.5" w 0.06"	Beam	Pipe	A53 Gr. B	Typical	.271	.07	.07	.141
6	Face Horizontal	PIPE 2.5	Beam	Pipe	A53 Gr. B	Typical	1.61	1.45	1.45	2.89
7	Tie Back	PIPE 3.0	Beam	Pipe	A53 Gr. B	Typical	2.07	2.85	2.85	5.69
8	Standoff Bar	PL3/8X3_HRA	Beam	RECT	A36 Gr.36	Typical	1.125	.013	.844	.049
9	Mount Angle	L4X3X6	Beam	Single Angle	A36 Gr.36	Typical	2.49	1.89	3.94	.123
10	TES Standoff Diag	SR 1.25	Beam	Single Angle	A36 Gr.36	Typical	1.227	.12	.12	.24

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1	Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A53 Gr. B	29000	11154	.3	.65	.49	35	1.5	60	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
5	A500 Gr. B 42	29000	11154	.3	.65	.49	42	1.4	58	1.3
6	A500 Gr. B 46	29000	11154	.3	.65	.49	46	1.4	58	1.3

Company Designer Job Number Model Name : Maser Consulting : NL : 21777866A : Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N2	N3		90	Mount Angle	Beam	Single Angle	A36 Gr.36	Typical
2	M2	N1	N4			RIGID	None	None	RIGID	Typical
3	M3	N6	N7		90	Mount Angle	Beam	Single Angle	A36 Gr.36	Typical
4	M5	N1	N17A		90	Standoff Bar	Beam	RECT	A36 Gr.36	Typical
5	M6	N1	N18		90	Standoff Bar	Beam	RECT	A36 Gr.36	Typical
6	M7	N11A	N12			Face Horizontal	Beam	Pipe	A53 Gr. B	Typical
7	M8	N5	N19		90	Standoff Bar	Beam	RECT	A36 Gr.36	Typical
8	M9	N5	N20		90	Standoff Bar	Beam	RECT	A36 Gr.36	Typical
9	M10	N16	N17			Face Horizontal			A53 Gr. B	Typical
10	OVP	N17A	N10			Standoff Horiz	Beam		A53 Gr. B	
11	M12	N18	N11			Standoff Horiz	Beam		A53 Gr. B	
12	M13	N19	N14			Standoff Horiz	Beam		A53 Gr. B	
13	M14	N20	N15			Standoff Horiz	Beam		A53 Gr. B	Typical
14	M15	N21	N29	N1		Standoff Bar	Beam	RECT	A36 Gr.36	Typical
15	M16	N21	N24	141	90	Standoff Diago			A53 Gr. B	
16	M17	N23	N30	N1	- 00	Standoff Bar	Beam	RECT	A36 Gr.36	Typical
17	M18	N23	N26	141	90	Standoff Diago			A53 Gr. B	
18	M19	N26	N31	N1	30	Standoff Bar	Beam	RECT	A36 Gr.36	Typical
19	M20	N27	N22	N1		Standoff Bar	Beam	RECT	A36 Gr.36	Typical
20	M21	N28	N24	N1		Standoff Bar	Beam	RECT	A36 Gr.36	
21	M22	N29	N27	N1		Standoff Diago				Typical
						Standoff Diago			A53 Gr. B	
22	M23	N30	N28	N1		Standoff Vertical			A53 Gr. B	
23	M24	N31	N32	N1			200111		A53 Gr. B	
24	M25	N32	N25	N1		Standoff Bar	Beam	RECT	A36 Gr.36	Typical
25	M26	N33	N41	N1	00	Standoff Bar	Beam	RECT	A36 Gr.36	Typical
26	M27	N33	N36		90	Standoff Diago			A53 Gr. B	
27	M28	N35	N42	N1		Standoff Bar	Beam	RECT	A36 Gr.36	Typical
28	M29	N35	N38		90	Standoff Diago			A53 Gr. B	Typical
29	M30	N38	N43	N1		Standoff Bar	Beam	RECT	A36 Gr.36	Typical
30	M31	N39	N34	N1		Standoff Bar	Beam	RECT	A36 Gr.36	Typical
31	M32	N40	N36	N1		Standoff Bar	Beam	RECT	A36 Gr.36	Typical
32	M33	N41	N39	N1		Standoff Diago			A53 Gr. B	
33	M34	N42	N40	N1		Standoff Diago			A53 Gr. B	
34	M35	N43	N44	N1		Standoff Vertical			A53 Gr. B	Typical
35	M36	N44	N37	N1		Standoff Bar	Beam	RECT	A36 Gr.36	Typical
36	M46A	N5	N65			RIGID	None	None	RIGID	Typical
37	M37	N45	N57			RIGID	None	None	RIGID	Typical
38	M38	N47	N59			RIGID	None	None	RIGID	Typical
39	M39	N49	N61			RIGID	None	None	RIGID	Typical
40	M40	N46	N58			RIGID	None	None	RIGID	Typical
41	M41	N48	N60			RIGID	None	None	RIGID	Typical
42	M42	N50	N62			RIGID	None	None	RIGID	Typical
43	M43	N51	N63			RIGID	None	None	RIGID	Typical
44	M44	N52	N64			RIGID	None	None	RIGID	Typical
45	M45	N53	N65A			RIGID	None	None	RIGID	Typical
46	M46	N54	N66			RIGID	None	None	RIGID	Typical
47	M47	N55	N67			RIGID	None	None	RIGID	Typical
48	M48	N56	N68			RIGID	None	None	RIGID	Typical
49	MP6A	N69	N73			Antenna Pipe	Column		A53 Gr. B	
50	MP5A	N70	N74			Antenna Pipe	Column	Pipe	A53 Gr. B	Typical
51	MP3A	N71	N75			Dual Mounted	Column	Pipe	A53 Gr. B	Typical
52	MP1A	N72	N76			Antenna Pipe	Column		A53 Gr. B	
53	MP4A	N77	N79			Antenna Pipe	Column		A53 Gr. B	Typical
54	MP2A	N78	N80			Antenna Pipe	Column		A53 Gr. B	
55	M55	N81	N84			Tie Back	Beam		A53 Gr. B	
JU	IVIJO	INOI	1104			I IE Dack	Deam	ripe	AJJ GI. D	Гурісаі

Company Designer Job Number Model Name : Maser Consulting: NL: 21777866A: Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl RatAnalysis	Inactive	Seismic
1	M1						Yes			None
2	M2						Yes	** NA **		None
3	M3						Yes			None
4	M5						Yes	Default		None
5	M6						Yes	Default		None
6	M7						Yes			None
7	M8						Yes	Default		None
8	M9						Yes	Default		None
9	M10						Yes			None
10	OVP						Yes			None
11	M12						Yes			None
12	M13						Yes			None
13	M14						Yes			None
14	M15	00000X					Yes			None
15	M16	BenPIN	BenPIN				Yes	Default		None
16	M17	00000X					Yes			None
17	M18	BenPIN	BenPIN				Yes	Default		None
18	M19	00000X					Yes			None
19	M20		000000				Yes			None
20	M21		000000				Yes			None
21	M22						Yes			None
22	M23						Yes	Default		None
23	M24						Yes			None
24	M25		000000				Yes	Default		None
25	M26	00000X					Yes			None
26	M27	BenPIN	BenPIN				Yes			None
27	M28	00000X					Yes			None
28	M29	BenPIN	BenPIN				Yes			None
29	M30	00000X					Yes			None
30	M31		000000				Yes			None
31	M32		000000				Yes			None
32	M33						Yes			None
33	M34						Yes			None
34	M35						Yes			None
35	M36		000000				Yes			None
36	M46A						Yes	** NA **		None
37	M37						Yes	** NA **		None
38	M38						Yes	** NA **		None
39	M39						Yes	** NA **		None
40	M40						Yes	** NA **		None
41	M41						Yes	** NA **		None
42	M42						Yes	** NA **		None
43	M43						Yes	** NA **		None
44	M44						Yes	** NA **		None
45	M45						Yes	** NA **		None
46	M46						Yes	** NA **		None
47	M47						Yes	** NA **		None
48	M48						Yes	** NA **		None
49	MP6A						Yes	** NA **		None
50	MP5A						Yes	** NA **		None
51	MP3A						Yes	** NA **		None
52	MP1A						Yes	** NA **		None
53	MP4A						Yes	** NA **		None
54	MP2A						Yes	** NA **		None
55	M55	000000					Yes	Default		None
00	14100	JUUUNU			1		103	Doladit		140110

Company Designer Job Number : NL : 21777866A Model Name : Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Member Point Loads (BLC 1 : Antenna D)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Υ	-23	6
2	MP3A	My	011	6
3	MP3A	Mz	.015	6
4	MP3A	Υ	-23	66
5	MP3A	My	011	66
6	MP3A	Mz	.015	66
7	MP3A	Υ	-23	6
8	MP3A	My	011	6
9	MP3A	Mz	015	6
10	MP3A	Υ	-23	66
11	MP3A	My	011	66
12	MP3A	Mz	015	66
13	MP1A	Υ	-43.55	24
14	MP1A	My	022	24
15	MP1A	Mz	0	24
16	MP1A	Υ	-43.55	48
17	MP1A	My	022	48
18	MP1A	Mz	0	48
19	MP3A	Υ	-84.4	42
20	MP3A	My	.042	42
21	MP3A	Mz	0	42
22	MP4A	Υ	-70.3	42
23	MP4A	My	.035	42
24	MP4A	Mz	0	42
25	OVP	Υ	-32	24
26	OVP	My	0	24
27	OVP	Mz	0	24
28	MP5A	Υ	-22.95	6
29	MP5A	My	011	6
30	MP5A	Mz	0	6
31	MP5A	Υ	-22.95	66
32	MP5A	My	011	66
33	MP5A	Mz	0	66

Member Point Loads (BLC 2 : Antenna Di)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Υ	-84.267	6
2	MP3A	My	042	6
3	MP3A	Mz	.056	6
4	MP3A	Υ	-84.267	66
5	MP3A	My	042	66
6	MP3A	Mz	.056	66
7	MP3A	Υ	-84.267	6
8	MP3A	My	042	6
9	MP3A	Mz	056	6
10	MP3A	Υ	-84.267	66
11	MP3A	My	042	66
12	MP3A	Mz	056	66
13	MP1A	Υ	-36.415	24
14	MP1A	My	018	24
15	MP1A	Mz	0	24
16	MP1A	Υ	-36.415	48
17	MP1A	My	018	48
18	MP1A	Mz	0	48
19	MP3A	Υ	-45.925	42

Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
20	MP3A	My	.023	42
21	MP3A	Mz	0	42
22	MP4A	Υ	-41.308	42
23	MP4A	My	.021	42
24	MP4A	Mz	0	42
25	OVP	Υ	-89.857	24
26	OVP	My	0	24
27	OVP	Mz	0	24
28	MP5A	Υ	-68.787	6
29	MP5A	My	034	6
30	MP5A	Mz	0	6
31	MP5A	Υ	-68.787	66
32	MP5A	My	034	66
33	MP5A	Mz	0	66

Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	0	6
2	MP3A	Z	-182.524	6
3	MP3A	Mx	122	6
4	MP3A	X	0	66
5	MP3A	Z	-182.524	66
6	MP3A	Mx	122	66
7	MP3A	X	0	6
8	MP3A	Z	-182.524	6
9	MP3A	Mx	.122	6
10	MP3A	X	0	66
11	MP3A	Z	-182.524	66
12	MP3A	Mx	.122	66
13	MP1A	X	0	24
14	MP1A	Z	-86.916	24
15	MP1A	Mx	0	24
16	MP1A	X	0	48
17	MP1A	Z	-86.916	48
18	MP1A	Mx	0	48
19	MP3A	X	0	42
20	MP3A	Z	-69.163	42
21	MP3A	Mx	0	42
22	MP4A	X	0	42
23	MP4A	Z	-69.163	42
24	MP4A	Mx	0	42
25	OVP	X	0	24
26	OVP	Z	-118.727	24
27	OVP	Mx	0	24
28	MP5A	X	0	6
29	MP5A	Z	-170.688	6
30	MP5A	Mx	0	6
31	MP5A	X	0	66
32	MP5A	Z	-170.688	66
33	MP5A	Mx	0	66

Member Point Loads (BLC 4: Antenna Wo (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	85.409	6
2	MP3A	Z	-147.932	6
3	MP3A	Mx	141	6

: NL

Company Designer Job Number : 21777866A Model Name : Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Member Point Loads (BLC 4: Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
4	MP3A	X	85.409	66
5	MP3A	Z	-147.932	66
6	MP3A	Mx	141	66
7	MP3A	X	85.409	6
8	MP3A	Z	-147.932	6
9	MP3A	Mx	.056	6
10	MP3A	X	85.409	66
11	MP3A	Z	-147.932	66
12	MP3A	Mx	.056	66
13	MP1A	X	36.847	24
14	MP1A	Z	-63.821	24
15	MP1A	Mx	018	24
16	MP1A	X	36.847	48
17	MP1A	Z	-63.821	48
18	MP1A	Mx	018	48
19	MP3A	X	31.715	42
20	MP3A	Z	-54.932	42
21	MP3A	Mx	.016	42
22	MP4A	X	30.617	42
23	MP4A	Z	-53.03	42
24	MP4A	Mx	.015	42
25	OVP	X	57.818	24
26	OVP	Z	-100.144	24
27	OVP	Mx	0	24
28	MP5A	X	78.202	6
29	MP5A	Z	-135.449	6
30	MP5A	Mx	039	6
31	MP5A	X	78.202	66
32	MP5A	Z	-135.449	66
33	MP5A	Mx	039	66

Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	127.657	6
2	MP3A	Z	-73.703	6
3	MP3A	Mx	113	6
4	MP3A	X	127.657	66
5	MP3A	Z	-73.703	66
6	MP3A	Mx	113	66
7	MP3A	X	127.657	6
8	MP3A	Z	-73.703	6
9	MP3A	Mx	015	6
10	MP3A	X	127.657	66
11	MP3A	Z	-73.703	66
12	MP3A	Mx	015	66
13	MP1A	X	40.919	24
14	MP1A	Z	-23.625	24
15	MP1A	Mx	02	24
16	MP1A	X	40.919	48
17	MP1A	Z	-23.625	48
18	MP1A	Mx	02	48
19	MP3A	X	45.003	42
20	MP3A	Z	-25.982	42
21	MP3A	Mx	.023	42
22	MP4A	X	39.297	42
23	MP4A	Z	-22.688	42

Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Point Loads (BLC 5: Antenna Wo (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
24	MP4A	Mx	.02	42
25	OVP	X	111.952	24
26	OVP	Z	-64.636	24
27	OVP	Mx	0	24
28	MP5A	X	110.707	6
29	MP5A	Z	-63.917	6
30	MP5A	Mx	055	6
31	MP5A	X	110.707	66
32	MP5A	Z	-63.917	66
33	MP5A	Mx	055	66

Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	135.699	6
2	MP3A	Z	0	6
3	MP3A	Mx	068	6
4	MP3A	Χ	135.699	66
5	MP3A	Z	0	66
6	MP3A	Mx	068	66
7	MP3A	X	135.699	6
8	MP3A	Z	0	6
9	MP3A	Mx	068	6
10	MP3A	X	135.699	66
11	MP3A	Z	0	66
12	MP3A	Mx	068	66
13	MP1A	X	34.027	24
14	MP1A	Z	0	24
15	MP1A	Mx	017	24
16	MP1A	X	34.027	48
17	MP1A	Z	0	48
18	MP1A	Mx	017	48
19	MP3A	X	46.232	42
20	MP3A	Z	0	42
21	MP3A	Mx	.023	42
22	MP4A	X	37.448	42
23	MP4A	Z	0	42
24	MP4A	Mx	.019	42
25	OVP	X	145.997	24
26	OVP	Z	0	24
27	OVP	Mx	0	24
28	MP5A	X	113.549	6
29	MP5A	Z	0	6
30	MP5A	Mx	057	6
31	MP5A	X	113.549	66
32	MP5A	Z	0	66
33	MP5A	Mx	057	66

Member Point Loads (BLC 7: Antenna Wo (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	127.657	6
2	MP3A	Z	73.703	6
3	MP3A	Mx	015	6
4	MP3A	X	127.657	66
5	MP3A	Z	73.703	66
6	MP3A	Mx	015	66
7	MP3A	X	127.657	6

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Point Loads (BLC 7: Antenna Wo (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
8	MP3A	Z	73.703	6
9	MP3A	Mx	113	6
10	MP3A	X	127.657	66
11	MP3A	Z	73.703	66
12	MP3A	Mx	113	66
13	MP1A	X	40.919	24
14	MP1A	Z	23.625	24
15	MP1A	Mx	02	24
16	MP1A	X	40.919	48
17	MP1A	Z	23.625	48
18	MP1A	Mx	02	48
19	MP3A	X	45.003	42
20	MP3A	Z	25.982	42
21	MP3A	Mx	.023	42
22	MP4A	X	39.297	42
23	MP4A	Z	22.688	42
24	MP4A	Mx	.02	42
25	OVP	X	129.114	24
26	OVP	Z	74.544	24
27	OVP	Mx	0	24
28	MP5A	X	110.707	6
29	MP5A	Z	63.917	6
30	MP5A	Mx	055	6
31	MP5A	X	110.707	66
32	MP5A	Z	63.917	66
33	MP5A	Mx	055	66

Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	85.409	6
2	MP3A	Z	147.932	6
3	MP3A	Mx	.056	6
4	MP3A	X	85.409	66
5	MP3A	Z	147.932	66
6	MP3A	Mx	.056	66
7	MP3A	X	85.409	6
8	MP3A	Z	147.932	6
9	MP3A	Mx	141	6
10	MP3A	X	85.409	66
11	MP3A	Z	147.932	66
12	MP3A	Mx	141	66
13	MP1A	X	36.847	24
14	MP1A	Z	63.821	24
15	MP1A	Mx	018	24
16	MP1A	X	36.847	48
17	MP1A	Z	63.821	48
18	MP1A	Mx	018	48
19	MP3A	X	31.715	42
20	MP3A	Z	54.932	42
21	MP3A	Mx	.016	42
22	MP4A	X	30.617	42
23	MP4A	Z	53.03	42
24	MP4A	Mx	.015	42
25	OVP	X	67.726	24
26	OVP	Z	117.306	24
27	OVP	Mx	0	24

Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
28	MP5A	X	78.202	6
29	MP5A	Z	135.449	6
30	MP5A	Mx	039	6
31	MP5A	X	78.202	66
32	MP5A	Z	135.449	66
33	MP5A	M×	039	66

Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	0	6
2	MP3A	Z	182.524	6
3	MP3A	Mx	.122	6
4	MP3A	X	0	66
5	MP3A	Z	182.524	66
6	MP3A	Mx	.122	66
7	MP3A	X	0	6
8	MP3A	Z	182.524	6
9	MP3A	Mx	122	6
10	MP3A	Χ	0	66
11	MP3A	Z	182.524	66
12	MP3A	Mx	122	66
13	MP1A	X	0	24
14	MP1A	Z	86.916	24
15	MP1A	Mx	0	24
16	MP1A	X	0	48
17	MP1A	Z	86.916	48
18	MP1A	Mx	0	48
19	MP3A	X	0	42
20	MP3A	Z	69.163	42
21	MP3A	Mx	0	42
22	MP4A	X	0	42
23	MP4A	Z	69.163	42
24	MP4A	Mx	0	42
25	OVP	X	0	24
26	OVP	Z	118.727	24
27	OVP	Mx	0	24
28	MP5A	X	0	6
29	MP5A	Z	170.688	6
30	MP5A	Mx	0	6
31	MP5A	X	0	66
32	MP5A	Z	170.688	66
33	MP5A	Mx	0	66

Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	-85.409	6
2	MP3A	Z	147.932	6
3	MP3A	Mx	.141	6
4	MP3A	X	-85.409	66
5	MP3A	Z	147.932	66
6	MP3A	Mx	.141	66
7	MP3A	X	-85.409	6
8	MP3A	Z	147.932	6
9	MP3A	Mx	056	6
10	MP3A	X	-85.409	66
11	MP3A	Z	147.932	66

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
12	MP3A	Mx	056	66
13	MP1A	X	-36.847	24
14	MP1A	Z	63.821	24
15	MP1A	Mx	.018	24
16	MP1A	X	-36.847	48
17	MP1A	Z	63.821	48
18	MP1A	Mx	.018	48
19	MP3A	X	-31.715	42
20	MP3A	Z	54.932	42
21	MP3A	Mx	016	42
22	MP4A	X	-30.617	42
23	MP4A	Z	53.03	42
24	MP4A	Mx	015	42
25	OVP	X	-57.818	24
26	OVP	Z	100.144	24
27	OVP	Mx	0	24
28	MP5A	X	-78.202	6
29	MP5A	Z	135.449	6
30	MP5A	Mx	.039	6
31	MP5A	X	-78.202	66
32	MP5A	Z	135.449	66
33	MP5A	Mx	.039	66

Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	-127.657	6
2	MP3A	Z	73.703	6
3	MP3A	Mx	.113	6
4	MP3A	X	-127.657	66
5	MP3A	Z	73.703	66
6	MP3A	Mx	.113	66
7	MP3A	X	-127.657	6
8	MP3A	Z	73.703	6
9	MP3A	Mx	.015	6
10	MP3A	X	-127.657	66
11	MP3A	Z	73.703	66
12	MP3A	Mx	.015	66
13	MP1A	X	-40.919	24
14	MP1A	Z	23.625	24
15	MP1A	Mx	.02	24
16	MP1A	X	-40.919	48
17	MP1A	Z	23.625	48
18	MP1A	Mx	.02	48
19	MP3A	X	-45.003	42
20	MP3A	Z	25.982	42
21	MP3A	Mx	023	42
22	MP4A	X	-39.297	42
23	MP4A	Z	22.688	42
24	MP4A	Mx	02	42
25	OVP	X	-111.952	24
26	OVP	Z	64.636	24
27	OVP	Mx	0	24
28	MP5A	X	-110.707	6
29	MP5A	Z	63.917	6
30	MP5A	Mx	.055	6
31	MP5A	X	-110.707	66

Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Point Loads (BLC 11: Antenna Wo (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
32	MP5A	Z	63.917	66
33	MP5A	Mx	.055	66

Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	-135.699	6
2	MP3A	Z	0	6
3	MP3A	Mx	.068	6
4	MP3A	X	-135.699	66
5	MP3A	Z	0	66
6	MP3A	Mx	.068	66
7	MP3A	X	-135.699	6
8	MP3A	Z	0	6
9	MP3A	Mx	.068	6
10	MP3A	X	-135.699	66
11	MP3A	Z	0	66
12	MP3A	Mx	.068	66
13	MP1A	X	-34.027	24
14	MP1A	Z	0	24
15	MP1A	Mx	.017	24
16	MP1A	X	-34.027	48
17	MP1A	Z	0	48
18	MP1A	Mx	.017	48
19	MP3A	X	-46.232	42
20	MP3A	Z	0	42
21	MP3A	Mx	023	42
22	MP4A	X	-37.448	42
23	MP4A	Z	0	42
24	MP4A	Mx	019	42
25	OVP	X	-145.997	24
26	OVP	Z	0	24
27	OVP	Mx	0	24
28	MP5A	X	-113.549	6
29	MP5A	Z	0	6
30	MP5A	Mx	.057	6
31	MP5A	X	-113.549	66
32	MP5A	Z	0	66
33	MP5A	Mx	.057	66

Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	-127.657	6
2	MP3A	Z	-73.703	6
3	MP3A	Mx	.015	6
4	MP3A	X	-127.657	66
5	MP3A	Z	-73.703	66
6	MP3A	Mx	.015	66
7	MP3A	X	-127.657	6
8	MP3A	Z	-73.703	6
9	MP3A	Mx	.113	6
10	MP3A	X	-127.657	66
11	MP3A	Z	-73.703	66
12	MP3A	Mx	.113	66
13	MP1A	X	-40.919	24
14	MP1A	Z	-23.625	24
15	MP1A	Mx	.02	24

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Point Loads (BLC 13: Antenna Wo (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
16	MP1A	X	-40.919	48
17	MP1A	Z	-23.625	48
18	MP1A	Mx	.02	48
19	MP3A	X	-45.003	42
20	MP3A	Z	-25.982	42
21	MP3A	Mx	023	42
22	MP4A	X	-39.297	42
23	MP4A	Z	-22.688	42
24	MP4A	Mx	02	42
25	OVP	X	-129.114	24
26	OVP	Z	-74.544	24
27	OVP	Mx	0	24
28	MP5A	X	-110.707	6
29	MP5A	Z	-63.917	6
30	MP5A	Mx	.055	6
31	MP5A	X	-110.707	66
32	MP5A	Z	-63.917	66
33	MP5A	Mx	.055	66

Member Point Loads (BLC 14: Antenna Wo (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	-85.409	6
2	MP3A	Z	-147.932	6
3	MP3A	Mx	056	6
4	MP3A	X	-85.409	66
5	MP3A	Z	-147.932	66
6	MP3A	Mx	056	66
7	MP3A	X	-85.409	6
8	MP3A	Z	-147.932	6
9	MP3A	Mx	.141	6
10	MP3A	X	-85.409	66
11	MP3A	Z	-147.932	66
12	MP3A	Mx	.141	66
13	MP1A	X	-36.847	24
14	MP1A	Z	-63.821	24
15	MP1A	Mx	.018	24
16	MP1A	X	-36.847	48
17	MP1A	Z	-63.821	48
18	MP1A	Mx	.018	48
19	MP3A	X	-31.715	42
20	MP3A	Z	-54.932	42
21	MP3A	Mx	016	42
22	MP4A	X	-30.617	42
23	MP4A	Z	-53.03	42
24	MP4A	Mx	015	42
25	OVP	X	-67.726	24
26	OVP	Z	-117.306	24
27	OVP	Mx	0	24
28	MP5A	X	-78.202	6
29	MP5A	Z	-135.449	6
30	MP5A	Mx	.039	6
31	MP5A	X	-78.202	66
32	MP5A	Z	-135.449	66
33	MP5A	Mx	.039	66

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	0	6
2	MP3A	Z	-33.489	6
3	MP3A	Mx	022	6
4	MP3A	X	0	66
5	MP3A	Z	-33.489	66
6	MP3A	Mx	022	66
7	MP3A	X	0	6
8	MP3A	Z	-33.489	6
9	MP3A	Mx	.022	6
10	MP3A	X	0	66
11	MP3A	Z	-33.489	66
12	MP3A	Mx	.022	66
13	MP1A	X	0	24
14	MP1A	Z	-16.532	24
15	MP1A	Mx	0	24
16	MP1A	X	0	48
17	MP1A	Z	-16.532	48
18	MP1A	Mx	0	48
19	MP3A	X	0	42
20	MP3A	Z	-13.949	42
21	MP3A	Mx	0	42
22	MP4A	X	0	42
23	MP4A	Z	-13.949	42
24	MP4A	Mx	0	42
25	OVP	X	0	24
26	OVP	Z	-23.133	24
27	OVP	Mx	0	24
28	MP5A	X	0	6
29	MP5A	Z	-31.607	6
30	MP5A	Mx	0	6
31	MP5A	X	0	66
32	MP5A	Z	-31.607	66
33	MP5A	Mx	0	66

Member Point Loads (BLC 16: Antenna Wi (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	15.726	6
2	MP3A	Z	-27.239	6
3	MP3A	Mx	026	6
4	MP3A	X	15.726	66
5	MP3A	Z	-27.239	66
6	MP3A	Mx	026	66
7	MP3A	X	15.726	6
8	MP3A	Z	-27.239	6
9	MP3A	Mx	.01	6
10	MP3A	X	15.726	66
11	MP3A	Z	-27.239	66
12	MP3A	Mx	.01	66
13	MP1A	X	7.081	24
14	MP1A	Z	-12.265	24
15	MP1A	Mx	004	24
16	MP1A	X	7.081	48
17	MP1A	Z	-12.265	48
18	MP1A	Mx	004	48
19	MP3A	X	6.445	42
20	MP3A	Z	-11.162	42

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Member Point Loads (BLC 16: Antenna Wi (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
21	MP3A	Mx	.003	42
22	MP4A	X	6.243	42
23	MP4A	Z	-10.814	42
24	MP4A	Mx	.003	42
25	OVP	X	11.296	24
26	OVP	Z	-19.565	24
27	OVP	Mx	0	24
28	MP5A	X	14.584	6
29	MP5A	Z	-25.26	6
30	MP5A	Mx	007	6
31	MP5A	X	14.584	66
32	MP5A	Z	-25.26	66
33	MP5A	Mx	007	66

Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	23.712	6
2	MP3A	Z	-13.69	6
3	MP3A	Mx	021	6
4	MP3A	X	23.712	66
5	MP3A	Z	-13.69	66
6	MP3A	Mx	021	66
7	MP3A	X	23.712	6
8	MP3A	Z	-13.69	6
9	MP3A	Mx	003	6
10	MP3A	X	23.712	66
11	MP3A	Z	-13.69	66
12	MP3A	Mx	003	66
13	MP1A	Χ	8.161	24
14	MP1A	Z	-4.712	24
15	MP1A	Mx	004	24
16	MP1A	X	8.161	48
17	MP1A	Z	-4.712	48
18	MP1A	Mx	004	48
19	MP3A	X	9.327	42
20	MP3A	Z	-5.385	42
21	MP3A	Mx	.005	42
22	MP4A	X	8.281	42
23	MP4A	Z	-4.781	42
24	MP4A	Mx	.004	42
25	OVP	X	21.632	24
26	OVP	Z	-12.489	24
27	OVP	Mx	0	24
28	MP5A	X	21.036	6
29	MP5A	Z	-12.145	6
30	MP5A	Mx	011	6
31	MP5A	X	21.036	66
32	MP5A	Z	-12.145	66
33	MP5A	Mx	011	66

Member Point Loads (BLC 18: Antenna Wi (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	25.344	6
2	MP3A	Z	0	6
3	MP3A	Mx	013	6
4	MP3A	X	25.344	66

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Point Loads (BLC 18: Antenna Wi (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
5	MP3A	Z	0	66
6	MP3A	Mx	013	66
7	MP3A	X	25.344	6
8	MP3A	Z	0	6
9	MP3A	Mx	013	6
10	MP3A	X	25.344	66
11	MP3A	Z	0	66
12	MP3A	Mx	013	66
13	MP1A	X	7.054	24
14	MP1A	Z	0	24
15	MP1A	Mx	004	24
16	MP1A	X	7.054	48
17	MP1A	Z	0	48
18	MP1A	Mx	004	48
19	MP3A	X	9.71	42
20	MP3A	Z	0	42
21	MP3A	Mx	.005	42
22	MP4A	X	8.1	42
23	MP4A	Z	0	42
24	MP4A	Mx	.004	42
25	OVP	X	27.908	24
26	OVP	Z	0	24
27	OVP	Mx	0	24
28	MP5A	X	21.851	6
29	MP5A	Z	0	6
30	MP5A	Mx	011	6
31	MP5A	X	21.851	66
32	MP5A	Z	0	66
33	MP5A	Mx	011	66

Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	23.712	6
2	MP3A	Z	13.69	6
3	MP3A	Mx	003	6
4	MP3A	X	23.712	66
5	MP3A	Z	13.69	66
6	MP3A	Mx	003	66
7	MP3A	X	23.712	6
8	MP3A	Z	13.69	6
9	MP3A	Mx	021	6
10	MP3A	X	23.712	66
11	MP3A	Z	13.69	66
12	MP3A	Mx	021	66
13	MP1A	X	8.161	24
14	MP1A	Z	4.712	24
15	MP1A	Mx	004	24
16	MP1A	X	8.161	48
17	MP1A	Z	4.712	48
18	MP1A	Mx	004	48
19	MP3A	X	9.327	42
20	MP3A	Z	5.385	42
21	MP3A	Mx	.005	42
22	MP4A	X	8.281	42
23	MP4A	Z	4.781	42
24	MP4A	Mx	.004	42

Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Point Loads (BLC 19 : Antenna Wi (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
25	OVP	X	24.637	24
26	OVP	Z	14.224	24
27	OVP	Mx	0	24
28	MP5A	X	21.036	6
29	MP5A	Z	12.145	6
30	MP5A	Mx	011	6
31	MP5A	X	21.036	66
32	MP5A	Z	12.145	66
33	MP5A	Mx	011	66

Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	15.726	6
2	MP3A	Z	27.239	6
3	MP3A	Mx	.01	6
4	MP3A	X	15.726	66
5	MP3A	Z	27.239	66
6	MP3A	Mx	.01	66
7	MP3A	X	15.726	6
8	MP3A	Z	27.239	6
9	MP3A	Mx	026	6
10	MP3A	X	15.726	66
11	MP3A	Z	27.239	66
12	MP3A	Mx	026	66
13	MP1A	X	7.081	24
14	MP1A	Z	12.265	24
15	MP1A	Mx	004	24
16	MP1A	X	7.081	48
17	MP1A	Z	12.265	48
18	MP1A	Mx	004	48
19	MP3A	X	6.445	42
20	MP3A	Z	11.162	42
21	MP3A	Mx	.003	42
22	MP4A	X	6.243	42
23	MP4A	Z	10.814	42
24	MP4A	Mx	.003	42
25	OVP	X	13.031	24
26	OVP	Z	22.57	24
27	OVP	Mx	0	24
28	MP5A	X	14.584	6
29	MP5A	Z	25.26	6
30	MP5A	Mx	007	6
31	MP5A	X	14.584	66
32	MP5A	Z	25.26	66
33	MP5A	Mx	007	66

Member Point Loads (BLC 21: Antenna Wi (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	0	6
2	MP3A	Z	33.489	6
3	MP3A	Mx	.022	6
4	MP3A	X	0	66
5	MP3A	Z	33.489	66
6	MP3A	Mx	.022	66
7	MP3A	X	0	6
8	MP3A	Z	33.489	6

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Point Loads (BLC 21: Antenna Wi (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP3A	Mx	022	6
10	MP3A	X	0	66
11	MP3A	Z	33.489	66
12	MP3A	Mx	022	66
13	MP1A	X	0	24
14	MP1A	Z	16.532	24
15	MP1A	Mx	0	24
16	MP1A	X	0	48
17	MP1A	Z	16.532	48
18	MP1A	Mx	0	48
19	MP3A	X	0	42
20	MP3A	Z	13.949	42
21	MP3A	Mx	0	42
22	MP4A	X	0	42
23	MP4A	Z	13.949	42
24	MP4A	Mx	0	42
25	OVP	X	0	24
26	OVP	Z	23.133	24
27	OVP	Mx	0	24
28	MP5A	X	0	6
29	MP5A	Z	31.607	6
30	MP5A	Mx	0	6
31	MP5A	X	0	66
32	MP5A	Z	31.607	66
33	MP5A	Mx	0	66

Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	-15.726	6
2	MP3A	Z	27.239	6
3	MP3A	Mx	.026	6
4	MP3A	X	-15.726	66
5	MP3A	Z	27.239	66
6	MP3A	Mx	.026	66
7	MP3A	X	-15.726	6
8	MP3A	Z	27.239	6
9	MP3A	Mx	01	6
10	MP3A	X	-15.726	66
11	MP3A	Z	27.239	66
12	MP3A	Mx	01	66
13	MP1A	X	-7.081	24
14	MP1A	Z	12.265	24
15	MP1A	Mx	.004	24
16	MP1A	X	-7.081	48
17	MP1A	Z	12.265	48
18	MP1A	Mx	.004	48
19	MP3A	X	-6.445	42
20	MP3A	Z	11.162	42
21	MP3A	Mx	003	42
22	MP4A	X	-6.243	42
23	MP4A	Z	10.814	42
24	MP4A	Mx	003	42
25	OVP	X	-11.296	24
26	OVP	Z	19.565	24
27	OVP	Mx	0	24
28	MP5A	X	-14.584	6

Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
29	MP5A	Z	25.26	6
30	MP5A	Mx	.007	6
31	MP5A	X	-14.584	66
32	MP5A	Z	25.26	66
33	MP5A	Mx	.007	66

Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	-23.712	6
2	MP3A	Z	13.69	6
3	MP3A	Mx	.021	6
4	MP3A	X	-23.712	66
5	MP3A	Z	13.69	66
6	MP3A	Mx	.021	66
7	MP3A	X	-23.712	6
8	MP3A	Z	13.69	6
9	MP3A	Mx	.003	6
10	MP3A	X	-23.712	66
11	MP3A	Z	13.69	66
12	MP3A	Mx	.003	66
13	MP1A	X	-8.161	24
14	MP1A	Z	4.712	24
15	MP1A	Mx	.004	24
16	MP1A	X	-8.161	48
17	MP1A	Z	4.712	48
18	MP1A	Mx	.004	48
19	MP3A	X	-9.327	42
20	MP3A	Z	5.385	42
21	MP3A	Mx	005	42
22	MP4A	X	-8.281	42
23	MP4A	Z	4.781	42
24	MP4A	Mx	004	42
25	OVP	X	-21.632	24
26	OVP	Z	12.489	24
27	OVP	Mx	0	24
28	MP5A	X	-21.036	6
29	MP5A	Z	12.145	6
30	MP5A	Mx	.011	6
31	MP5A	X	-21.036	66
32	MP5A	Z	12.145	66
33	MP5A	Mx	.011	66

Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	-25.344	6
2	MP3A	Z	0	6
3	MP3A	Mx	.013	6
4	MP3A	X	-25.344	66
5	MP3A	Z	0	66
6	MP3A	Mx	.013	66
7	MP3A	X	-25.344	6
8	MP3A	Z	0	6
9	MP3A	Mx	.013	6
10	MP3A	X	-25.344	66
11	MP3A	Z	0	66
12	MP3A	Mx	.013	66

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Point Loads (BLC 24: Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
13	MP1A	X	-7.054	24
14	MP1A	Z	0	24
15	MP1A	Mx	.004	24
16	MP1A	X	-7.054	48
17	MP1A	Z	0	48
18	MP1A	Mx	.004	48
19	MP3A	X	-9.71	42
20	MP3A	Z	0	42
21	MP3A	Mx	005	42
22	MP4A	X	-8.1	42
23	MP4A	Z	0	42
24	MP4A	Mx	004	42
25	OVP	X	-27.908	24
26	OVP	Z	0	24
27	OVP	Mx	0	24
28	MP5A	X	-21.851	6
29	MP5A	Z	0	6
30	MP5A	Mx	.011	6
31	MP5A	X	-21.851	66
32	MP5A	Z	0	66
33	MP5A	Mx	.011	66

Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	-23.712	6
2	MP3A	Z	-13.69	6
3	MP3A	Mx	.003	6
4	MP3A	X	-23.712	66
5	MP3A	Z	-13.69	66
6	MP3A	Mx	.003	66
7	MP3A	X	-23.712	6
8	MP3A	Z	-13.69	6
9	MP3A	Mx	.021	6
10	MP3A	X	-23.712	66
11	MP3A	Z	-13.69	66
12	MP3A	Mx	.021	66
13	MP1A	X	-8.161	24
14	MP1A	Z	-4.712	24
15	MP1A	Mx	.004	24
16	MP1A	X	-8.161	48
17	MP1A	Z	-4.712	48
18	MP1A	Mx	.004	48
19	MP3A	X	-9.327	42
20	MP3A	Z	-5.385	42
21	MP3A	Mx	005	42
22	MP4A	X	-8.281	42
23	MP4A	Z	-4.781	42
24	MP4A	Mx	004	42
25	OVP	X	-24.637	24
26	OVP	Z	-14.224	24
27	OVP	Mx	0	24
28	MP5A	X	-21.036	6
29	MP5A	Z	-12.145	6
30	MP5A	Mx	.011	6
31	MP5A	X	-21.036	66
32	MP5A	Z	-12.145	66

Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Point Loads (BLC 25 : Antenna Wi (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
33	MP5A	Mx	.011	66

Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	-15.726	6
2	MP3A	Z	-27.239	6
3	MP3A	Mx	01	6
4	MP3A	X	-15.726	66
5	MP3A	Z	-27.239	66
6	MP3A	Mx	01	66
7	MP3A	X	-15.726	6
8	MP3A	Z	-27.239	6
9	MP3A	Mx	.026	6
10	MP3A	X	-15.726	66
11	MP3A	Z	-27.239	66
12	MP3A	Mx	.026	66
13	MP1A	X	-7.081	24
14	MP1A	Z	-12.265	24
15	MP1A	Mx	.004	24
16	MP1A	X	-7.081	48
17	MP1A	Z	-12.265	48
18	MP1A	Mx	.004	48
19	MP3A	X	-6.445	42
20	MP3A	Z	-11.162	42
21	MP3A	Mx	003	42
22	MP4A	X	-6.243	42
23	MP4A	Z	-10.814	42
24	MP4A	Mx	003	42
25	OVP	X	-13.031	24
26	OVP	Z	-22.57	24
27	OVP	Mx	0	24
28	MP5A	X	-14.584	6
29	MP5A	Z	-25.26	6
30	MP5A	Mx	.007	6
31	MP5A	X	-14.584	66
32	MP5A	Z	-25.26	66
33	MP5A	Mx	.007	66

Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	0	6
2	MP3A	Z	11	6
3	MP3A	Mx	-7.3e-5	6
4	MP3A	X	0	66
5	MP3A	Z	11	66
6	MP3A	Mx	-7.3e-5	66
7	MP3A	X	0	6
8	MP3A	Z	11	6
9	MP3A	Mx	7.3e-5	6
10	MP3A	X	0	66
11	MP3A	Z	11	66
12	MP3A	Mx	7.3e-5	66
13	MP1A	X	0	24
14	MP1A	Z	053	24
15	MP1A	Mx	0	24
16	MP1A	X	0	48

Company : Maser Consulting

Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
17	MP1A	Z	053	48
18	MP1A	Mx	0	48
19	MP3A	X	0	42
20	MP3A	Z	042	42
21	MP3A	Mx	0	42
22	MP4A	X	0	42
23	MP4A	Z	042	42
24	MP4A	Mx	0	42
25	OVP	X	0	24
26	OVP	Z	072	24
27	OVP	Mx	0	24
28	MP5A	X	0	6
29	MP5A	Z	103	6
30	MP5A	Mx	0	6
31	MP5A	X	0	66
32	MP5A	Z	103	66
33	MP5A	Mx	0	66

Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	.052	6
2	MP3A	Z	089	6
3	MP3A	Mx	-8.5e-5	6
4	MP3A	X	.052	66
5	MP3A	Z	089	66
6	MP3A	Mx	-8.5e-5	66
7	MP3A	X	.052	6
8	MP3A	Z	089	6
9	MP3A	Mx	3.3e-5	6
10	MP3A	X	.052	66
11	MP3A	Z	089	66
12	MP3A	Mx	3.3e-5	66
13	MP1A	X	.022	24
14	MP1A	Z	039	24
15	MP1A	Mx	-1.1e-5	24
16	MP1A	X	.022	48
17	MP1A	Z	039	48
18	MP1A	Mx	-1.1e-5	48
19	MP3A	X	.019	42
20	MP3A	Z	033	42
21	MP3A	Mx	9e-6	42
22	MP4A	X	.019	42
23	MP4A	Z	032	42
24	MP4A	Mx	9e-6	42
25	OVP	X	.035	24
26	OVP	Z	061	24
27	OVP	Mx	0	24
28	MP5A	X	.047	6
29	MP5A	Z	082	6
30	MP5A	Mx	-2.4e-5	6
31	MP5A	X	.047	66
32	MP5A	Z	082	66
33	MP5A	Mx	-2.4e-5	66

Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
--------------	-----------	--------------------	----------------

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	.077	6
2	MP3A	Z	045	6
3	MP3A	Mx	-6.8e-5	6
4	MP3A	X	.077	66
5	MP3A	Z	045	66
6	MP3A	Mx	-6.8e-5	66
7	MP3A	X	.077	6
8	MP3A	Z	045	6
9	MP3A	Mx	-8e-6	6
10	MP3A	X	.077	66
11	MP3A	Z	045	66
12	MP3A	Mx	-8e-6	66
13	MP1A	X	.025	24
14	MP1A	Z	014	24
15	MP1A	Mx	-1.3e-5	24
16	MP1A	X	.025	48
17	MP1A	Z	014	48
18	MP1A	Mx	-1.3e-5	48
19	MP3A	X	.027	42
20	MP3A	Z	016	42
21	MP3A	Mx	1.4e-5	42
22	MP4A	X	.024	42
23	MP4A	Z	014	42
24	MP4A	Mx	1.2e-5	42
25	OVP	X	.068	24
26	OVP	Z	039	24
27	OVP	Mx	0	24
28	MP5A	X	.067	6
29	MP5A	Z	039	6
30	MP5A	Mx	-3.4e-5	6
31	MP5A	X	.067	66
32	MP5A	Z	039	66
33	MP5A	Mx	-3.4e-5	66

Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	.082	6
2	MP3A	Z	0	6
3	MP3A	Mx	-4.1e-5	6
4	MP3A	X	.082	66
5	MP3A	Z	0	66
6	MP3A	Mx	-4.1e-5	66
7	MP3A	X	.082	6
8	MP3A	Z	0	6
9	MP3A	Mx	-4.1e-5	6
10	MP3A	X	.082	66
11	MP3A	Z	0	66
12	MP3A	Mx	-4.1e-5	66
13	MP1A	X	.021	24
14	MP1A	Z	0	24
15	MP1A	Mx	-1e-5	24
16	MP1A	X	.021	48
17	MP1A	Z	0	48
18	MP1A	Mx	-1e-5	48
19	MP3A	X	.028	42
20	MP3A	Z	0	42

Company : Maser Consulting

Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
21	MP3A	Mx	1.4e-5	42
22	MP4A	X	.023	42
23	MP4A	Z	0	42
24	MP4A	Mx	1.2e-5	42
25	OVP	X	.088	24
26	OVP	Z	0	24
27	OVP	Mx	0	24
28	MP5A	X	.069	6
29	MP5A	Z	0	6
30	MP5A	Mx	-3.5e-5	6
31	MP5A	X	.069	66
32	MP5A	Z	0	66
33	MP5A	Mx	-3.5e-5	66

Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	.077	6
2	MP3A	Z	.045	6
3	MP3A	Mx	-8e-6	6
4	MP3A	X	.077	66
5	MP3A	Z	.045	66
6	MP3A	Mx	-8e-6	66
7	MP3A	X	.077	6
8	MP3A	Z	.045	6
9	MP3A	Mx	-6.8e-5	6
10	MP3A	X	.077	66
11	MP3A	Z	.045	66
12	MP3A	Mx	-6.8e-5	66
13	MP1A	X	.025	24
14	MP1A	Z	.014	24
15	MP1A	Mx	-1.3e-5	24
16	MP1A	X	.025	48
17	MP1A	Z	.014	48
18	MP1A	Mx	-1.3e-5	48
19	MP3A	X	.027	42
20	MP3A	Z	.016	42
21	MP3A	Mx	1.4e-5	42
22	MP4A	X	.024	42
23	MP4A	Z	.014	42
24	MP4A	Mx	1.2e-5	42
25	OVP	X	.078	24
26	OVP	Z	.045	24
27	OVP	Mx	0	24
28	MP5A	X	.067	6
29	MP5A	Z	.039	6
30	MP5A	Mx	-3.4e-5	6
31	MP5A	X	.067	66
32	MP5A	Z	.039	66
33	MP5A	Mx	-3.4e-5	66

Member Point Loads (BLC 32: Antenna Wm (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	.052	6
2	MP3A	Z	.089	6
3	MP3A	Mx	3.3e-5	6
4	MP3A	X	.052	66

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Point Loads (BLC 32: Antenna Wm (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
5	MP3A	Z	.089	66
6	MP3A	Mx	3.3e-5	66
7	MP3A	X	.052	6
8	MP3A	Z	.089	6
9	MP3A	Mx	-8.5e-5	6
10	MP3A	X	.052	66
11	MP3A	Z	.089	66
12	MP3A	Mx	-8.5e-5	66
13	MP1A	X	.022	24
14	MP1A	Z	.039	24
15	MP1A	Mx	-1.1e-5	24
16	MP1A	X	.022	48
17	MP1A	Z	.039	48
18	MP1A	Mx	-1.1e-5	48
19	MP3A	X Z	.019	42
20	MP3A		.033	42
21	MP3A	Mx	9e-6	42
22	MP4A	X	.019	42
23	MP4A	Z	.032	42
24	MP4A	Mx	9e-6	42
25	OVP	X	.041	24
26	OVP	Z	.071	24
27	OVP	Mx	0	24
28	MP5A	X	.047	6
29	MP5A	Z	.082	6
30	MP5A	Mx	-2.4e-5	6
31	MP5A	X	.047	66
32	MP5A	Z	.082	66
33	MP5A	Mx	-2.4e-5	66

Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	0	6
2	MP3A	Z	.11	6
3	MP3A	Mx	7.3e-5	6
4	MP3A	X	0	66
5	MP3A	Z	.11	66
6	MP3A	Mx	7.3e-5	66
7	MP3A	X	0	6
8	MP3A	Z	.11	6
9	MP3A	Mx	-7.3e-5	6
10	MP3A	X	0	66
11	MP3A	Z	.11	66
12	MP3A	Mx	-7.3e-5	66
13	MP1A	X	0	24
14	MP1A	Z	.053	24
15	MP1A	Mx	0	24
16	MP1A	X	0	48
17	MP1A	Z	.053	48
18	MP1A	Mx	0	48
19	MP3A	X	0	42
20	MP3A	Z	.042	42
21	MP3A	Mx	0	42
22	MP4A	X	0	42
23	MP4A	Z	.042	42
24	MP4A	Mx	0	42

Company : Maser Consulting

Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
25	OVP	X	0	24
26	OVP	Z	.072	24
27	OVP	Mx	0	24
28	MP5A	X	0	6
29	MP5A	Z	.103	6
30	MP5A	Mx	0	6
31	MP5A	X	0	66
32	MP5A	Z	.103	66
33	MP5A	Mx	0	66

Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	052	6
2	MP3A	Z	.089	6
3	MP3A	Mx	8.5e-5	6
4	MP3A	X	052	66
5	MP3A	Z	.089	66
6	MP3A	Mx	8.5e-5	66
7	MP3A	X	052	6
8	MP3A	Z	.089	6
9	MP3A	Mx	-3.3e-5	6
10	MP3A	X	052	66
11	MP3A	Z	.089	66
12	MP3A	Mx	-3.3e-5	66
13	MP1A	X	022	24
14	MP1A	Z	.039	24
15	MP1A	Mx	1.1e-5	24
16	MP1A	X	022	48
17	MP1A	Z	.039	48
18	MP1A	Mx	1.1e-5	48
19	MP3A	X	019	42
20	MP3A	Z	.033	42
21	MP3A	Mx	-9e-6	42
22	MP4A	X	019	42
23	MP4A	Z	.032	42
24	MP4A	Mx	-9e-6	42
25	OVP	X	035	24
26	OVP	Z	.061	24
27	OVP	Mx	0	24
28	MP5A	X	047	6
29	MP5A	Z	.082	6
30	MP5A	Mx	2.4e-5	6
31	MP5A	X	047	66
32	MP5A	Z	.082	66
33	MP5A	Mx	2.4e-5	66

Member Point Loads (BLC 35: Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	077	6
2	MP3A	Z	.045	6
3	MP3A	Mx	6.8e-5	6
4	MP3A	X	077	66
5	MP3A	Z	.045	66
6	MP3A	Mx	6.8e-5	66
7	MP3A	X	077	6
8	MP3A	Z	.045	6

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Point Loads (BLC 35 : Antenna Wm (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP3A	Mx	8e-6	6
10	MP3A	X	077	66
11	MP3A	Z	.045	66
12	MP3A	Mx	8e-6	66
13	MP1A	X	025	24
14	MP1A	Z	.014	24
15	MP1A	Mx	1.3e-5	24
16	MP1A	X	025	48
17	MP1A	Z	.014	48
18	MP1A	Mx	1.3e-5	48
19	MP3A	X	027	42
20	MP3A	Z	.016	42
21	MP3A	Mx	-1.4e-5	42
22	MP4A	X	024	42
23	MP4A	Z	.014	42
24	MP4A	Mx	-1.2e-5	42
25	OVP	X	068	24
26	OVP	Z	.039	24
27	OVP	Mx	0	24
28	MP5A	X	067	6
29	MP5A	Z	.039	6
30	MP5A	Mx	3.4e-5	6
31	MP5A	X	067	66
32	MP5A	Z	.039	66
33	MP5A	Mx	3.4e-5	66

Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	082	6
2	MP3A	Z	0	6
3	MP3A	Mx	4.1e-5	6
4	MP3A	X	082	66
5	MP3A	Z	0	66
6	MP3A	Mx	4.1e-5	66
7	MP3A	X	082	6
8	MP3A	Z	0	6
9	MP3A	Mx	4.1e-5	6
10	MP3A	X	082	66
11	MP3A	Z	0	66
12	MP3A	Mx	4.1e-5	66
13	MP1A	X	021	24
14	MP1A	Z	0	24
15	MP1A	Mx	1e-5	24
16	MP1A	X	021	48
17	MP1A	Z	0	48
18	MP1A	Mx	1e-5	48
19	MP3A	X	028	42
20	MP3A	Z	0	42
21	MP3A	Mx	-1.4e-5	42
22	MP4A	X	023	42
23	MP4A	Z	0	42
24	MP4A	Mx	-1.2e-5	42
25	OVP	X	088	24
26	OVP	Z	0	24
27	OVP	Mx	0	24
28	MP5A	X	069	6

Company : Maser Consulting

Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Point Loads (BLC 36: Antenna Wm (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
29	MP5A	Z	0	6
30	MP5A	Mx	3.5e-5	6
31	MP5A	X	069	66
32	MP5A	Z	0	66
33	MP5A	Mx	3.5e-5	66

Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	077	6
2	MP3A	Z	045	6
3	MP3A	Mx	8e-6	6
4	MP3A	X	077	66
5	MP3A	Z	045	66
6	MP3A	Mx	8e-6	66
7	MP3A	X	077	6
8	MP3A	Z	045	6
9	MP3A	Mx	6.8e-5	6
10	MP3A	X	077	66
11	MP3A	Z	045	66
12	MP3A	Mx	6.8e-5	66
13	MP1A	X	025	24
14	MP1A	Z	014	24
15	MP1A	Mx	1.3e-5	24
16	MP1A	X	025	48
17	MP1A	Z	014	48
18	MP1A	Mx	1.3e-5	48
19	MP3A	X	027	42
20	MP3A	Z	016	42
21	MP3A	Mx	-1.4e-5	42
22	MP4A	X	024	42
23	MP4A	Z	014	42
24	MP4A	Mx	-1.2e-5	42
25	OVP	X	078	24
26	OVP	Z	045	24
27	OVP	Mx	0	24
28	MP5A	X	067	6
29	MP5A	Z	039	6
30	MP5A	Mx	3.4e-5	6
31	MP5A	X	067	66
32	MP5A	Z	039	66
33	MP5A	Mx	3.4e-5	66

Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	052	6
2	MP3A	Z	089	6
3	MP3A	Mx	-3.3e-5	6
4	MP3A	X	052	66
5	MP3A	Z	089	66
6	MP3A	Mx	-3.3e-5	66
7	MP3A	X	052	6
8	MP3A	Z	089	6
9	MP3A	Mx	8.5e-5	6
10	MP3A	X	052	66
11	MP3A	Z	089	66
12	MP3A	Mx	8.5e-5	66

Company : Maser Consulting

Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

<u>Member Point Loads</u>	<u>(BLC 38 : Antenna Wm </u>	<u>(330 Deg)) (Continued)</u>	

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
13	MP1A	X	022	24
14	MP1A	Z	039	24
15	MP1A	Mx	1.1e-5	24
16	MP1A	X	022	48
17	MP1A	Z	039	48
18	MP1A	Mx	1.1e-5	48
19	MP3A	X	019	42
20	MP3A	X Z	033	42
21	MP3A	Mx	-9e-6	42
22	MP4A	X	019	42
23	MP4A	Z	032	42
24	MP4A	Mx	-9e-6	42
25	OVP	X	041	24
26	OVP	Z	071	24
27	OVP	Mx	0	24
28	MP5A	X	047	6
29	MP5A	Z	082	6
30	MP5A	Mx	2.4e-5	6
31	MP5A	X	047	66
32	MP5A	Z	082	66
33	MP5A	Mx	2.4e-5	66

Member Point Loads (BLC 77 : Lm1)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	M10	Υ	-500	%97

Member Point Loads (BLC 78 : Lm2)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	M10	Υ	-500	%62

Member Point Loads (BLC 79 : Lv1)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	M10	Υ	-250	0

Member Point Loads (BLC 80 : Lv2)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	M10	Υ	-250	%50

Member Point Loads (BLC 81 : Antenna Ev)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Υ	-1.025	6
2	MP3A	My	000513	6
3	MP3A	Mz	.000684	6
4	MP3A	Υ	-1.025	66
5	MP3A	My	000513	66
6	MP3A	Mz	.000684	66
7	MP3A	Υ	-1.025	6
8	MP3A	My	000513	6
9	MP3A	Mz	000684	6
10	MP3A	Υ	-1.025	66
11	MP3A	My	000513	66
12	MP3A	Mz	000684	66
13	MP1A	Υ	-1.942	24
14	MP1A	My	000971	24

: Maser Consulting Jan 11, 2022 Company Designer : NL 1:33 PM

Job Number : 21777866A Checked By: DH Model Name : Mount Analysis

Member Point Loads (BLC 81: Antenna Ev) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
15	MP1A	Mz	0	24
16	MP1A	Υ	-1.942	48
17	MP1A	My	000971	48
18	MP1A	Mz	0	48
19	MP3A	Υ	-3.763	42
20	MP3A	My	.002	42
21	MP3A	Mz	0	42
22	MP4A	Υ	-3.134	42
23	MP4A	My	.002	42
24	MP4A	Mz	0	42
25	OVP	Υ	-1.427	24
26	OVP	My	0	24
27	OVP	Mz	0	24
28	MP5A	Υ	-1.023	6
29	MP5A	My	000512	6
30	MP5A	Mz	0	6
31	MP5A	Υ	-1.023	66
32	MP5A	My	000512	66
33	MP5A	Mz	0	66

Member Point Loads (BLC 82 : Antenna Eh (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Z	-2.564	6
2	MP3A	Mx	002	6
3	MP3A	Z	-2.564	66
4	MP3A	Mx	002	66
5	MP3A	Z	-2.564	6
6	MP3A	Mx	.002	6
7	MP3A	Z	-2.564	66
8	MP3A	Mx	.002	66
9	MP1A	Z	-4.854	24
10	MP1A	Mx	0	24
11	MP1A	Z	-4.854	48
12	MP1A	Mx	0	48
13	MP3A	Z	-9.408	42
14	MP3A	Mx	0	42
15	MP4A	Z	-7.836	42
16	MP4A	Mx	0	42
17	OVP	Z	-3.567	24
18	OVP	Mx	0	24
19	MP5A	Z	-2.558	6
20	MP5A	Mx	0	6
21	MP5A	Z	-2.558	66
22	MP5A	Mx	0	66

Member Point Loads (BLC 83: Antenna Eh (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	2.564	6
2	MP3A	Mx	001	6
3	MP3A	X	2.564	66
4	MP3A	Mx	001	66
5	MP3A	X	2.564	6
6	MP3A	Mx	001	6
7	MP3A	X	2.564	66
8	MP3A	Mx	001	66
9	MP1A	X	4.854	24

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Point Loads (BLC 83: Antenna Eh (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
10	MP1A	Mx	002	24
11	MP1A	X	4.854	48
12	MP1A	Mx	002	48
13	MP3A	X	9.408	42
14	MP3A	Mx	.005	42
15	MP4A	X	7.836	42
16	MP4A	Mx	.004	42
17	OVP	X	3.567	24
18	OVP	Mx	0	24
19	MP5A	X	2.558	6
20	MP5A	Mx	001	6
21	MP5A	X	2.558	66
22	MP5A	Mx	001	66

Member Distributed Loads (BLC 40 : Structure Di)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	Υ	-8.885	-8.885	0	%100
2	M3	Υ	-8.885	-8.885	0	%100
3	M5	Υ	-6.042	-6.042	0	%100
4	M6	Υ	-6.042	-6.042	0	%100
5	M7	Υ	-5.828	-5.828	0	%100
6	M8	Υ	-6.042	-6.042	0	%100
7	M9	Υ	-6.042	-6.042	0	%100
8	M10	Υ	-5.828	-5.828	0	%100
9	OVP	Υ	-5.109	-5.109	0	%100
10	M12	Υ	-5.109	-5.109	0	%100
11	M13	Υ	-5.109	-5.109	0	%100
12	M14	Υ	-5.109	-5.109	0	%100
13	M15	Υ	-6.042	-6.042	0	%100
14	M16	Υ	-3.491	-3.491	0	%100
15	M17	Υ	-6.042	-6.042	0	%100
16	M18	Υ	-3.491	-3.491	0	%100
17	M19	Υ	-6.042	-6.042	0	%100
18	M20	Υ	-6.042	-6.042	0	%100
19	M21	Υ	-6.042	-6.042	0	%100
20	M22	Υ	-3.491	-3.491	0	%100
21	M23	Υ	-3.491	-3.491	0	%100
22	M24	Υ	-5.109	-5.109	0	%100
23	M25	Υ	-6.042	-6.042	0	%100
24	M26	Υ	-6.042	-6.042	0	%100
25	M27	Υ	-3.491	-3.491	0	%100
26	M28	Υ	-6.042	-6.042	0	%100
27	M29	Υ	-3.491	-3.491	0	%100
28	M30	Υ	-6.042	-6.042	0	%100
29	M31	Υ	-6.042	-6.042	0	%100
30	M32	Υ	-6.042	-6.042	0	%100
31	M33	Υ	-3.491	-3.491	0	%100
32	M34	Υ	-3.491	-3.491	0	%100
33	M35	Υ	-5.109	-5.109	0	%100
34	M36	Υ	-6.042	-6.042	0	%100
35	MP6A	Υ	-5.109	-5.109	0	%100
36	MP5A	Υ	-5.109	-5.109	0	%100
37	MP3A	Y	-5.828	-5.828	0	%100
38	MP1A	Υ	-5.109	-5.109	0	%100
39	MP4A	Υ	-5.109	-5.109	0	%100

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 40 : Structure Di) (Continued)

		Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
	40	MP2A	Υ	-5.109	-5.109	0	%100
ĺ	41	M55	Υ	-6.727	-6.727	0	%100

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	
1	M1	X	0	0	0	%100
2	M1	Z	-11.096	-11.096	0	%100
3	M3	X	0	0	0	%100
4	M3	Z	-11.096	-11.096	0	%100
5	M5	X	0	0	0	%100
6	M5	Z	68	68	0	%100
7	M6	X	0	0	0	%100
8	M6	Z	68	68	0	%100
9	M7	X	0	0	0	%100
10	M7	Z	-10.633	-10.633	0	%100
11	M8	X	0	0	0	%100
12	M8	Z	68	68	0	%100
13	M9	X	0	0	0	%100
14	M9	Z	68	68	0	%100
15	M10	X	0	0	0	%100
16	M10	Z	-10.633	-10.633	0	%100
17	OVP	X	0	0	0	%100
18	OVP	Z	-4.308	-4.308	0	%100
19	M12	X	0	0	0	%100
20	M12	Z	-4.308	-4.308	0	%100
21	M13	X	0	0	0	%100
22	M13	Z	-4.308	-4.308	0	%100
23	M14	X	0	0	0	%100
24	M14	Z	-4.308	-4.308	0	%100
25	M15	X	0	0	0	%100
26	M15	Z	-1.464	-1.464	0	%100
27	M16	X	0	0	0	%100
28	M16	Z	-3.838	-3.838	0	%100
29	M17	X	0	0	0	%100
30	M17	Z	-1.464	-1.464	0	%100
31	<u>M18</u>	X	0	0	0	%100
32	M18	Z	-3.838	-3.838	0	%100
33	M19	X	0	0	0	%100
34	M19	Z	-1.759	-1.759	0	%100
35	M20	X	0	0	0	%100
36	M20	Z	-1.464	-1.464	0	%100
37	M21	X	0	0	0	%100
38	M21	Z	-1.464	-1.464	0	%100
39	M22	X	0	0	0	%100
40	M22	Z	-4.623	-4.623	0	%100
41	M23	X	0	0	0	%100
42	M23	Z	-4.623	-4.623	0	%100
43	M24	X	0	0	0	%100
44	M24	Z	-6.978	-6.978	0	%100
45	M25	X	0	0	0	%100
46	M25	Z	-1.759	-1.759	0	%100
47	M26	X	0	0	0	%100
48	M26	Z	-1.464	-1.464	0	%100
49	M27	X	0	0	0	%100
50	M27	Z	-3.838	-3.838	0	%100
51	M28	X	0	0	0	%100

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
52	M28	Z	-1.464	-1.464	0	%100
53	M29	X	0	0	0	%100
54	M29	Z	-3.838	-3.838	0	%100
55	M30	X	0	0	0	%100
56	M30	Z	-1.759	-1.759	0	%100
57	M31	X	0	0	0	%100
58	M31	Z	-1.464	-1.464	0	%100
59	M32	X	0	0	0	%100
60	M32	Z	-1.464	-1.464	0	%100
61	M33	X	0	0	0	%100
62	M33	Z	-4.623	-4.623	0	%100
63	M34	X	0	0	0	%100
64	M34	Z	-4.623	-4.623	0	%100
65	M35	X	0	0	0	%100
66	M35	Z	-6.978	-6.978	0	%100
67	M36	X	0	0	0	%100
68	M36	Z	-1.759	-1.759	0	%100
69	MP6A	X	0	0	0	%100
70	MP6A	Z	-8.784	-8.784	0	%100
71	MP5A	X	0	0	0	%100
72	MP5A	Z	-8.784	-8.784	0	%100
73	MP3A	X	0	0	0	%100
74	MP3A	Z	-10.633	-10.633	0	%100
75	MP1A	X	0	0	0	%100
76	MP1A	Z	-8.784	-8.784	0	%100
77	MP4A	X	0	0	0	%100
78	MP4A	Z	-8.784	-8.784	0	%100
79	MP2A	X	0	0	0	%100
80	MP2A	Z	-8.784	-8.784	0	%100
81	M55	Χ	0	0	0	%100
82	M55	Z	-2.469	-2.469	0	%100

Member Distributed Loads (BLC 42: Structure Wo (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
1	M1	X	4.161	4.161	0	%100
2	M1	Z	-7.207	-7.207	0	%100
3	M3	X	4.161	4.161	0	%100
4	M3	Z	-7.207	-7.207	0	%100
5	M5	X	.043	.043	0	%100
6	M5	Z	075	075	0	%100
7	M6	X	.644	.644	0	%100
8	M6	Z	-1.115	-1.115	0	%100
9	M7	X	3.988	3.988	0	%100
10	M7	Z	-6.907	-6.907	0	%100
11	M8	X	.043	.043	0	%100
12	M8	Z	075	075	0	%100
13	M9	X	.644	.644	0	%100
14	M9	Z	-1.115	-1.115	0	%100
15	M10	X	3.988	3.988	0	%100
16	M10	Z	-6.907	-6.907	0	%100
17	OVP	X	.274	.274	0	%100
18	OVP	Z	474	474	0	%100
19	M12	X	4.077	4.077	0	%100
20	M12	Z	-7.061	-7.061	0	%100
21	M13	X	.274	.274	0	%100
22	M13	Z	474	474	0	%100

Company Designer Job Number : NL : 21777866A Model Name : Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 42: Structure Wo (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	
23	M14	X	4.077	4.077	0	%100
24	M14	Z	-7.061	-7.061	0	%100
25	M15	X	1.936	1.936	0	%100
26	M15	Z	-3.353	-3.353	0	%100
27	M16	X	2.256	2.256	0	%100
28	M16	Z	-3.908	-3.908	0	%100
29	M17	X	1.936	1.936	0	%100
30	M17	Z	-3.353	-3.353	0	%100
31	M18	X	2.256	2.256	0	%100
32	M18	Z	-3.908	-3.908	0	%100
33	M19	X	2.047	2.047	0	%100
34	M19	Z	-3.545	-3.545	0	%100
35	M20	X	1.936	1.936	0	%100
36	M20	Z	-3.353	-3.353	0	%100
37	M21	X	1.936	1.936	0	%100
38	M21	Z	-3.353	-3.353	0	%100
39	M22	X	2.312	2.312	0	%100
40	M22	Z	-4.004	-4.004	0	%100
41	M23	X	2.312	2.312	0	%100
42	M23	Z	-4.004	-4.004	Ö	%100
43	M24	X	3.489	3.489	0	%100
44	M24	Z	-6.043	-6.043	0	%100 %100
45	M25	X	2.047	2.047	0	%100 %100
46	M25	Z	-3.545	-3.545	Ö	%100 %100
47	M26	X	1.936	1.936	0	%100 %100
48	M26	Z	-3.353	-3.353	0	%100 %100
49	M27	X	1.589	1.589	0	%100 %100
50	M27	Ž	-2.752	-2.752	0	%100 %100
51	M28	X	1.936	1.936	0	%100 %100
52	M28	Z	-3.353	-3.353	0	%100 %100
53	M29	X			0	%100 %100
54	M29	Z	1.589 -2.752	1.589 -2.752	0	%100 %100
55	M30	X	2.047	2.047	0	%100 %100
56	M30	Z	-3.545	-3.545	0	%100 %100
57	M31	X	1.936	1.936	0	%100 %100
58	M31	Z		-3.353	0	%100 %100
			-3.353			
59	M32	X Z	1.936	1.936	0	%100
60	M32		-3.353	-3.353	0	%100
61	M33	X Z	2.312	2.312	0	%100
62	M33 M34		-4.004 2.312	-4.004 2.312	0	%100 %100
63		Z			0	%100
64 65	M34		-4.004	-4.004	0	%100 %100
	M35	X Z	3.489	3.489	0	%100
66	M35		-6.043	-6.043	0	%100
67	M36	X	2.047	2.047	0	%100
68	M36	Z	-3.545	-3.545	0	%100
69	MP6A	X	4.392	4.392	0	%100
70	MP6A	Z	-7.607	-7.607	0	%100
71	MP5A	X Z	4.392	4.392	0	%100
72	MP5A	Z	-7.607	-7.607	0	%100
73	MP3A	X	5.317	5.317	0	%100
74	MP3A	Z	-9.209	-9.209	0	%100
75	MP1A	X	4.392	4.392	0	%100
76	MP1A	Z	-7.607	-7.607	0	%100
77	MP4A	X	4.392	4.392	0	%100
78	MP4A	Z	-7.607	-7.607	0	%100
79	MP2A	X	4.392	4.392	0	%100

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 42: Structure Wo (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
80	MP2A	Z	-7.607	-7.607	0	%100
81	M55	X	4.257	4.257	0	%100
82	M55	Z	-7.373	-7.373	0	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[in,%]	
1	M1	X	2.402	2.402	0	%100
2	M1	Z	-1.387	-1.387	0	%100
3	M3	X	2.402	2.402	0	%100
4	M3	Z	-1.387	-1.387	0	%100
5	M5	X	.086	.086	0	%100
6	M5	Z	05	05	0	%100
7	M6	X	1.126	1.126	0	%100
8	M6	Z	65	65	0	%100
9	M7	X	2.302	2.302	0	%100
10	M7	Z	-1.329	-1.329	0	%100
11	M8	X	.086	.086	0	%100
12	M8	Z	05	05	0	%100
13	M9	X	1.126	1.126	0	%100
14	M9	Z	65	65	0	%100
15	M10	X	2.302	2.302	0	%100
16	M10	Z	-1.329	-1.329	0	%100
17	OVP	X	.546	.546	0	%100
18	OVP	Z	315	315	0	%100
19	M12	X	7.133	7.133	0	%100
20	M12	Z	-4.118	-4.118	0	%100
21	M13	X	.546	.546	0	%100
22	M13	Z	315	315	0	%100
23	M14	X	7.133	7.133	0	%100
24	M14	Z	-4.118	-4.118	0	%100
25	M15	X	7.524	7.524	0	%100
26	M15	Z	-4.344	-4.344	0	%100
27	M16	X	3.921	3.921	0	%100
28	M16	Z	-2.264	-2.264	0	%100
29	M17	X	7.524	7.524	0	%100
30	M17	Z	-4.344	-4.344	0	%100
31	M18	X	3.921	3.921	0	%100
32	M18	Z	-2.264	-2.264	0	%100
33	M19	X	7.588	7.588	0	%100
34	M19	Z	-4.381	-4.381	0	%100
35	M20	X	7.524	7.524	0	%100
36	M20	Z	-4.344	-4.344	0	%100
37	M21	X	7.524	7.524	0	%100
38	M21	Z	-4.344	-4.344	0	%100
39	M22	X	4.004	4.004	0	%100
40	M22	Z	-2.312	-2.312	0	%100
41	M23	X	4.004	4.004	0	%100
42	M23	Z	-2.312	-2.312	0	%100
43	M24	X	6.043	6.043	0	%100
44	M24	Z	-3.489	-3.489	0	%100
45	M25	X	7.588	7.588	0	%100
46	M25	Z	-4.381	-4.381	0	%100
47	M26	X	7.524	7.524	0	%100
48	M26	Z	-4.344	-4.344	0	%100
49	M27	X	2.765	2.765	0	%100
50	M27	Z	-1.596	-1.596	0	%100

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 43: Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
51	M28	X	7.524	7.524	0	%100
52	M28	Z	-4.344	-4.344	0	%100
53	M29	X	2.765	2.765	0	%100
54	M29	Z	-1.596	-1.596	0	%100
55	M30	X	7.588	7.588	0	%100
56	M30	Z	-4.381	-4.381	0	%100
57	M31	X	7.524	7.524	0	%100
58	M31	Z	-4.344	-4.344	0	%100
59	M32	X	7.524	7.524	0	%100
60	M32	Z	-4.344	-4.344	0	%100
61	M33	Χ	4.004	4.004	0	%100
62	M33	Z	-2.312	-2.312	0	%100
63	M34	X	4.004	4.004	0	%100
64	M34	Z	-2.312	-2.312	0	%100
65	M35	X	6.043	6.043	0	%100
66	M35	Z	-3.489	-3.489	0	%100
67	M36	X	7.588	7.588	0	%100
68	M36	Z	-4.381	-4.381	0	%100
69	MP6A	X	7.607	7.607	0	%100
70	MP6A	Z	-4.392	-4.392	0	%100
71	MP5A	X	7.607	7.607	0	%100
72	MP5A	Z	-4.392	-4.392	0	%100
73	MP3A	X	9.209	9.209	0	%100
74	MP3A	Z	-5.317	-5.317	0	%100
75	MP1A	X	7.607	7.607	0	%100
76	MP1A	Z	-4.392	-4.392	0	%100
77	MP4A	X	7.607	7.607	0	%100
78	MP4A	Z	-4.392	-4.392	0	%100
79	MP2A	X	7.607	7.607	0	%100
80	MP2A	Z	-4.392	-4.392	0	%100
81	M55	X	11.065	11.065	0	%100
82	M55	Z	-6.389	-6.389	0	%100

Member Distributed Loads (BLC 44: Structure Wo (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M3	X	0	0	0	%100
4	M3	Z	0	0	0	%100
5	M5	X	.707	.707	0	%100
6	M5	Z	0	0	0	%100
7	M6	X	.707	.707	0	%100
8	M6	Z	0	0	0	%100
9	M7	X	0	0	0	%100
10	M7	Z	0	0	0	%100
11	M8	X	.707	.707	0	%100
12	M8	Z	0	0	0	%100
13	M9	X	.707	.707	0	%100
14	M9	Z	0	0	0	%100
15	M10	X	0	0	0	%100
16	M10	Z	0	0	0	%100
17	OVP	X	4.476	4.476	0	%100
18	OVP	Z	0	0	0	%100
19	M12	X	4.476	4.476	0	%100
20	M12	Z	0	0	0	%100
21	M13	X	4.476	4.476	0	%100

Company Designer Job Number : NL : 21777866A Model Name : Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 44: Structure Wo (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	
22	M13	Z	0	0	0	%100
23	M14	X	4.476	4.476	0	%100
24	M14	Z	0	0	0	%100
25	M15	X	11.096	11.096	0	%100
26	M15	Z	0	0	0	%100
27	M16	X	3.867	3.867	0	%100
28	M16	Z	0	0	0	%100
29	M17	X	11.096	11.096	0	%100
30	M17	Z	0	0	0	%100 %100
31	M18	X	3.867	3.867	0	%100
32	M18	Z	0	0	0	%100 %100
33	M19	X	11.096	11.096	0	%100 %100
34	M19	Z	0	0	0	%100
			*	-		
35	M20	Z	11.096	11.096	0	%100
36	M20		0	0	0	%100
37	M21	X	11.096	11.096	0	%100
38	M21	Z	0	0	0	%100
39	M22	X	4.623	4.623	0	%100
40	M22	Z	0	0	0	%100
41	M23	X	4.623	4.623	0	%100
42	M23	Z	0	0	0	%100
43	M24	X	6.978	6.978	0	%100
44	M24	Z	0	0	0	%100
45	M25	X	11.096	11.096	0	%100
46	M25	Z	0	0	0	%100
47	M26	X	11.096	11.096	0	%100
48	M26	Z	0	0	0	%100
49	M27	X	3.867	3.867	0	%100
50	M27	Z	0	0	0	%100
51	M28	X	11.096	11.096	0	%100
52	M28	Z	0	0	0	%100
53	M29	X	3.867	3.867	0	%100
54	M29	Z	0	0	0	%100
55	M30	X	11.096	11.096	0	%100
56	M30	Z	0	0	0	%100
57	M31	X	11.096	11.096	0	%100 %100
58	M31	Z	0	0	0	%100 %100
59	M32	X	11.096	11.096	0	%100 %100
60	M32	Z	0	0	0	%100 %100
61	M33	X	4.623	4.623	0	%100 %100
62	M33	Z	0	0	0	%100
63	M34	X	4.623	4.623	0	%100 %100
64	M34	Z	4.023	4.023	0	%100 %100
65	M35	X	6.978	6.978	0	%100 %100
66	N35 M35	Z			0	%100 %100
	M36		11,006	11,006		
67		X	11.096	11.096	0	%100 %100
68	M36	Z	0 704	0 704	0	%100 %100
69	MP6A	X	8.784	8.784	0	%100
70	MP6A	Z	0 704	0 704	0	%100
71	MP5A	X	8.784	8.784	0	%100
72	MP5A	Z	0	0	0	%100
73	MP3A	X	10.633	10.633	0	%100
74	MP3A	Z	0	0	0	%100
75	MP1A	X	8.784	8.784	0	%100
76	MP1A	Z	0	0	0	%100
77	MP4A	X	8.784	8.784	0	%100
78	MP4A	Z	0	0	0	%100

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 44: Structure Wo (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
79	MP2A	X	8.784	8.784	0	%100
80	MP2A	Z	0	0	0	%100
81	M55	X	10.996	10.996	0	%100
82	M55	Z	0	0	0	%100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[in.%]	End Location[in,%]
1	M1	X	2.402	2.402	0	%100
2	M1	Z	1.387	1.387	0	%100
3	M3	X	2.402	2.402	0	%100
4	M3	Z	1.387	1.387	0	%100
5	M5	X	1.126	1.126	0	%100
6	M5	Z	.65	.65	0	%100
7	M6	X	.086	.086	Ö	%100
8	M6	Z	.05	.05	0	%100
9	M7	X	2.302	2.302	0	%100
10	M7	Z	1.329	1.329	0	%100
11	M8	X	1.126	1.126	0	%100
12	M8	Z	.65	.65	Ō	%100
13	M9	X	.086	.086	0	%100
14	M9	Z	.05	.05	0	%100
15	M10	X	2.302	2.302	0	%100
16	M10	Ž	1.329	1.329	Ö	%100
17	OVP	X	7.133	7.133	0	%100
18	OVP	Z	4.118	4.118	Ů Ů	%100
19	M12	X	.546	.546	0	%100
20	M12	Z	.315	.315	0	%100
21	M13	X	7.133	7.133	0	%100
22	M13	Z	4.118	4.118	0	%100
23	M14	X	.546	.546	0	%100
24	M14	Z	.315	.315	0	%100 %100
25	M15	X	7.524	7.524	0	%100
26	M15	Z	4.344	4.344	0	%100
27	M16	X	2.765	2.765	0	%100
28	M16	Z	1.596	1.596	0	%100
29	M17	X	7.524	7.524	0	%100
30	M17	Z	4.344	4.344	0	%100
31	M18	X	2.765	2.765	0	%100
32	M18	Z	1.596	1.596	0	%100
33	M19	X	7.588	7.588	0	%100
34	M19	Z	4.381	4.381	0	%100
35	M20	X	7.524	7.524	0	%100
36	M20	Z	4.344	4.344	0	%100
37	M21	X	7.524	7.524	0	%100
38	M21	Z	4.344	4.344	0	%100
39	M22	X	4.004	4.004	0	%100
40	M22	Z	2.312	2.312	Ō	%100
41	M23	X	4.004	4.004	0	%100
42	M23	Ž	2.312	2.312	0	%100
43	M24	X	6.043	6.043	0	%100
44	M24	Z	3.489	3.489	0	%100
45	M25	X	7.588	7.588	0	%100
46	M25	Z	4.381	4.381	0	%100
47	M26	X	7.524	7.524	0	%100
48	M26	Ž	4.344	4.344	Ö	%100
49	M27	X	3.921	3.921	0	%100

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
50	M27	Z	2.264	2.264	0	%100
51	M28	X	7.524	7.524	0	%100
52	M28	Z	4.344	4.344	0	%100
53	M29	X	3.921	3.921	0	%100
54	M29	Z	2.264	2.264	0	%100
55	M30	X	7.588	7.588	0	%100
56	M30	Z	4.381	4.381	0	%100
57	M31	X	7.524	7.524	0	%100
58	M31	Z	4.344	4.344	0	%100
59	M32	X	7.524	7.524	0	%100
60	M32	Z	4.344	4.344	0	%100
61	M33	X	4.004	4.004	0	%100
62	M33	Z	2.312	2.312	0	%100
63	M34	X	4.004	4.004	0	%100
64	M34	Z	2.312	2.312	0	%100
65	M35	X	6.043	6.043	0	%100
66	M35	Z	3.489	3.489	0	%100
67	M36	X	7.588	7.588	0	%100
68	M36	Z	4.381	4.381	0	%100
69	MP6A	X	7.607	7.607	0	%100
70	MP6A	Z	4.392	4.392	0	%100
71	MP5A	X	7.607	7.607	0	%100
72	MP5A	Z	4.392	4.392	0	%100
73	MP3A	X	9.209	9.209	0	%100
74	MP3A	Z	5.317	5.317	0	%100
75	MP1A	X	7.607	7.607	0	%100
76	MP1A	Z	4.392	4.392	0	%100
77	MP4A	X	7.607	7.607	0	%100
78	MP4A	Z	4.392	4.392	0	%100
79	MP2A	X	7.607	7.607	0	%100
80	MP2A	Z	4.392	4.392	0	%100
81	M55	Χ	4.289	4.289	0	%100
82	M55	Z	2.476	2.476	0	%100

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
1	M1	X	4.161	4.161	0	%100
2	M1	Z	7.207	7.207	0	%100
3	M3	X	4.161	4.161	0	%100
4	M3	Z	7.207	7.207	0	%100
5	M5	X	.644	.644	0	%100
6	M5	Z	1.115	1.115	0	%100
7	M6	X	.043	.043	0	%100
8	M6	Z	.075	.075	0	%100
9	M7	X	3.988	3.988	0	%100
10	M7	Z	6.907	6.907	0	%100
11	M8	X	.644	.644	0	%100
12	M8	Z	1.115	1.115	0	%100
13	M9	X	.043	.043	0	%100
14	M9	Z	.075	.075	0	%100
15	M10	X	3.988	3.988	0	%100
16	M10	Z	6.907	6.907	0	%100
17	OVP	X	4.077	4.077	0	%100
18	OVP	Z	7.061	7.061	0	%100
19	M12	X	.274	.274	0	%100
20	M12	Z	.474	.474	0	%100

Company Designer Job Number : NL : 21777866A Model Name : Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 46: Structure Wo (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	
21	M13	X	4.077	4.077	0	%100
22	M13	Z	7.061	7.061	0	%100
23	M14	X	.274	.274	0	%100
24	M14	Z	.474	.474	0	%100
25	M15	X	1.936	1.936	0	%100
26	M15	Z	3.353	3.353	0	%100
27	M16	X	1.589	1.589	0	%100
28	M16	Z	2.752	2.752	0	%100
29	M17	X	1.936	1.936	0	%100
30	M17	Z	3.353	3.353	0	%100
31	M18	X	1.589	1.589	0	%100 %100
32	M18	Z	2.752	2.752	Ö	%100 %100
33	M19	X	2.047	2.047	0	%100
34	M19	Z	3.545	3.545	0	%100 %100
35	M20	X	1.936	1.936	0	%100 %100
36	M20	Z	3.353	3.353	0	%100 %100
37	M21	X	1.936	1.936		%100 %100
		Z			0	
38	M21		3.353	3.353	0	%100
39	M22	X	2.312	2.312	0	%100
40	M22	Z	4.004	4.004	0	%100
41	M23	X	2.312	2.312	0	%100
42	M23	Z	4.004	4.004	0	%100
43	M24	X	3.489	3.489	0	%100
44	M24	Z	6.043	6.043	0	%100
45	M25	X	2.047	2.047	0	%100
46	M25	Z	3.545	3.545	0	%100
47	M26	X	1.936	1.936	0	%100
48	M26	Z	3.353	3.353	0	%100
49	M27	X	2.256	2.256	0	%100
50	M27	Z	3.908	3.908	0	%100
51	M28	X	1.936	1.936	0	%100
52	M28	Z	3.353	3.353	0	%100
53	M29	X	2.256	2.256	0	%100
54	M29	Z	3.908	3.908	0	%100
55	M30	X	2.047	2.047	0	%100
56	M30	Z	3.545	3.545	0	%100
57	M31	X	1.936	1.936	0	%100
58	M31	Z	3.353	3.353	0	%100 %100
59	M32	X	1.936	1.936	0	%100
60	M32	Z	3.353	3.353	0	%100 %100
61	M33	X	2.312	2.312	0	%100 %100
62	M33	Z	4.004	4.004	0	%100 %100
63	M34	X	2.312	2.312	0	%100 %100
64	M34	Z	4.004	4.004	0	%100 %100
65	M35	X	3.489	3.489	0	%100 %100
66	M35	Z	6.043	6.043	0	%100 %100
67	M36	X	2.047	2.047	0	%100
68	M36	Z	3.545	3.545	0	%100 %100
69	MP6A	X Z	4.392	4.392	0	%100
70	MP6A		7.607	7.607	0	%100
71	MP5A	X	4.392	4.392	0	%100
72	MP5A	Z	7.607	7.607	0	%100
73	MP3A	X	5.317	5.317	0	%100
74	MP3A	Z	9.209	9.209	0	%100
75	MP1A	X	4.392	4.392	0	%100
76	MP1A	Z	7.607	7.607	0	%100
77	MP4A	X	4.392	4.392	0	%100

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 46: Structure Wo (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
78	MP4A	Z	7.607	7.607	0	%100
79	MP2A	X	4.392	4.392	0	%100
80	MP2A	Z	7.607	7.607	0	%100
81	M55	X	.344	.344	0	%100
82	M55	Z	.596	.596	0	%100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	X	0	0	0	%100
2	M1	Z	11.096	11.096	0	%100
3	M3	X	0	0	0	%100
4	M3	Z	11.096	11.096	0	%100
5	M5	X	0	0	0	%100
6	M5	Z	.68	.68	0	%100
7	M6	X	0	0	0	%100
8	M6	Z	.68	.68	0	%100
9	M7	X	0	0	0	%100
10	M7	Z	10.633	10.633	0	%100
11	M8	X	0	0	0	%100
12	M8	Z	.68	.68	0	%100
13	M9	X	0	0	0	%100
14	M9	Z	.68	.68	0	%100
15	M10	X	0	0	0	%100
16	M10	Z	10.633	10.633	0	%100
17	OVP	X	0	0	0	%100
18	OVP	Z	4.308	4.308	0	%100
19	M12	X	0	0	0	%100
20	M12	Z	4.308	4.308	0	%100
21	M13	X	0	0	0	%100
22	M13	Z	4.308	4.308	0	%100
23	M14	X	0	0	0	%100
24	M14	Z	4.308	4.308	0	%100
25	M15	X	0	0	0	%100
26	M15	Z	1.464	1.464	0	%100
27	M16	X	0	0	0	%100
28	M16	Z	3.838	3.838	0	%100
29	M17	X	0	0	0	%100
30	M17	Z	1.464	1.464	0	%100
31	M18	X	0	0	0	%100
32	M18	Z	3.838	3.838	0	%100
33	M19	X	0	0	0	%100
34	M19	Z	1.759	1.759	0	%100
35	M20	X	0	0	0	%100
36	M20	Z	1.464	1.464	0	%100
37	M21	X	0	0	0	%100
38	M21	Z	1.464	1.464	0	%100
39	M22	X	0	0	0	%100
40	M22	Z	4.623	4.623	0	%100
41	M23	X	0	0	0	%100
42	M23	Z	4.623	4.623	0	%100
43	M24		0	0	0	%100
44	M24	X Z	6.978	6.978	0	%100
45	M25	X	0	0	0	%100
46	M25	Z	1.759	1.759	0	%100
47	M26	X	0	0	0	%100
48	M26	Z	1.464	1.464	0	%100

Company : Maser Consulting

Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	
49	M27	X	0	0	0	%100
50	M27	Z	3.838	3.838	0	%100
51	M28	X	0	0	0	%100
52	M28	Z	1.464	1.464	0	%100
53	M29	X	0	0	0	%100
54	M29	Z	3.838	3.838	0	%100
55	M30	X	0	0	0	%100
56	M30	Z	1.759	1.759	0	%100
57	M31	X	0	0	0	%100
58	M31	Z	1.464	1.464	0	%100
59	M32	X	0	0	0	%100
60	M32	Z	1.464	1.464	0	%100
61	M33	Х	0	0	0	%100
62	M33	Z	4.623	4.623	0	%100
63	M34	X	0	0	0	%100
64	M34	Z	4.623	4.623	0	%100
65	M35	X	0	0	0	%100
66	M35	Z	6.978	6.978	0	%100
67	M36	X	0	0	0	%100
68	M36	Z	1.759	1.759	0	%100
69	MP6A	Х	0	0	0	%100
70	MP6A	Z	8.784	8.784	0	%100
71	MP5A	X	0	0	0	%100
72	MP5A	Z	8.784	8.784	0	%100
73	MP3A	X	0	0	0	%100
74	MP3A	Z	10.633	10.633	0	%100
75	MP1A	X	0	0	0	%100
76	MP1A	Z	8.784	8.784	0	%100
77	MP4A	X	0	0	0	%100
78	MP4A	Z	8.784	8.784	0	%100
79	MP2A	X	0	0	0	%100
80	MP2A	Z	8.784	8.784	0	%100
81	M55	Х	0	0	0	%100
82	M55	Z	2.469	2.469	0	%100

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg))

	Member Label	Direction	Start Magnitude [lb/ft	. End Magnitude[lb/ft,F	Start Location(in 9/1	End Location[in,%]
4					.Start Location[iii, 76]	
	M1	X	-4.161	-4.161	U	%100
2	<u>M1</u>	Z	7.207	7.207	0	%100
3	M3	X	-4.161	-4.161	0	%100
4	M3	Z	7.207	7.207	0	%100
5	M5	X	043	043	0	%100
6	M5	Z	.075	.075	0	%100
7	M6	X	644	644	0	%100
8	M6	Z	1.115	1.115	0	%100
9	M7	X	-3.988	-3.988	0	%100
10	M7	Z	6.907	6.907	0	%100
11	M8	X	043	043	0	%100
12	M8	Z	.075	.075	0	%100
13	M9	X	644	644	0	%100
14	M9	Z	1.115	1.115	0	%100
15	M10	X	-3.988	-3.988	0	%100
16	M10	Z	6.907	6.907	0	%100
17	OVP	X	274	274	0	%100
18	OVP	Z	.474	.474	0	%100
19	M12	X	-4.077	-4.077	0	%100

Company Designer Job Number : NL : 21777866A Model Name : Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	
20	M12	Z	7.061	7.061	0	%100
21	M13	X	274	274	0	%100
22	M13	Z	.474	.474	0	%100
23	M14	X	-4.077	-4.077	0	%100
24	M14	Z	7.061	7.061	0	%100
25	M15	X	-1.936	-1.936	0	%100
26	M15	Z	3.353	3.353	0	%100
27	M16	X	-2.256	-2.256	0	%100
28	M16	Z	3.908	3.908	0	%100
29	M17	X	-1.936	-1.936	0	%100
30	M17	Z	3.353	3.353	Ö	%100
31	M18	X	-2.256	-2.256	0	%100
32	M18	Z	3.908	3.908	Ö	%100 %100
33	M19	X	-2.047	-2.047	0	%100
34	M19	Z	3.545	3.545	0	%100 %100
35	M20	X	-1.936	-1.936	0	%100 %100
36	M20	Z	3.353	3.353	0	%100 %100
37	M21				0	%100 %100
		X Z	-1.936	-1.936		
38	M21		3.353	3.353	0	%100
39	M22	X	-2.312	-2.312	0	%100
40	M22	Z	4.004	4.004	0	%100
41	M23	X	-2.312	-2.312	0	%100
42	M23	Z	4.004	4.004	0	%100
43	M24	X	-3.489	-3.489	0	%100
44	M24	Z	6.043	6.043	0	%100
45	M25	X	-2.047	-2.047	0	%100
46	M25	Z	3.545	3.545	0	%100
47	M26	X	-1.936	-1.936	0	%100
48	M26	Z	3.353	3.353	0	%100
49	M27	X	-1.589	-1.589	0	%100
50	M27	Z	2.752	2.752	0	%100
51	M28	Χ	-1.936	-1.936	0	%100
52	M28	Z	3.353	3.353	0	%100
53	M29	X	-1.589	-1.589	0	%100
54	M29	Z	2.752	2.752	0	%100
55	M30	X	-2.047	-2.047	0	%100
56	M30	Z	3.545	3.545	0	%100
57	M31	X	-1.936	-1.936	0	%100
58	M31	Z	3.353	3.353	0	%100
59	M32	X	-1.936	-1.936	Ō	%100
60	M32	Z	3.353	3.353	Ö	%100
61	M33	X	-2.312	-2.312	0	%100 %100
62	M33	Z	4.004	4.004	0	%100 %100
63	M34	X	-2.312	-2.312	0	%100
64	M34	Z	4.004	4.004	0	%100 %100
65	M35	X	-3.489	-3.489	0	%100 %100
66	M35	Z	6.043	6.043	0	%100 %100
67	M36	X	-2.047	-2.047	0	%100 %100
68	M36	Z	3.545	3.545	0	%100
69	MP6A	X	-4.392	-4.392	0	%100 %100
70	MP6A	Ž	7.607	7.607	0	%100 %100
71			-4.392	-4.392		%100 %100
	MP5A	X Z			0	
72	MP5A	Z	7.607	7.607	0	%100 %100
73	MP3A	X	-5.317	-5.317	0	%100
74	MP3A	Z	9.209	9.209	0	%100
75	MP1A	X	-4.392	-4.392	0	%100
76	MP1A	Z	7.607	7.607	0	%100

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
77	MP4A	X	-4.392	-4.392	0	%100
78	MP4A	Z	7.607	7.607	0	%100
79	MP2A	X	-4.392	-4.392	0	%100
80	MP2A	Z	7.607	7.607	0	%100
81	M55	X	-4.257	-4.257	0	%100
82	M55	Z	7.373	7.373	0	%100

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	
1	M1	X	-2.402	-2.402	0	%100
2	M1	Z	1.387	1.387	0	%100
3	M3	X	-2.402	-2.402	0	%100
4	M3	Z	1.387	1.387	0	%100
5	M5	X	086	086	0	%100
6	M5	Z	.05	.05	0	%100
7	M6	X	-1.126	-1.126	0	%100
8	M6	Z	.65	.65	0	%100
9	M7	X	-2.302	-2.302	0	%100
10	M7	Z	1.329	1.329	0	%100
11	M8	X	086	086	0	%100
12	M8	Z	.05	.05	0	%100
13	M9	X	-1.126	-1.126	0	%100
14	M9	Ž	.65	.65	0	%100
15	M10	X	-2.302	-2.302	0	%100
16	M10	Ž	1.329	1.329	0	%100
17	OVP	X	546	546	0	%100
18	OVP	Z	.315	.315	Ö	%100
19	M12	X	-7.133	-7.133	0	%100 %100
20	M12	Z	4.118	4.118	0	%100 %100
21	M13	X	546	546	0	%100 %100
22	M13	Z	.315	.315	0	%100 %100
23	M14	X	-7.133	-7.133	0	%100 %100
24	M14	Z	4.118	4.118	0	%100 %100
25	M15	X	-7.524	-7.524	0	%100 %100
26	M15	Z	4.344	4.344	0	%100 %100
27	M16	X Z	-3.921	-3.921	0	%100 %100
28	M16		2.264	2.264		%100 %400
29	M17	X	-7.524	-7.524	0	%100 %100
30	M17	Z	4.344	4.344	0	%100
31	M18	X Z	-3.921	-3.921	0	%100
32	M18		2.264	2.264	0	%100
33	M19	X	-7.588	-7.588	0	%100
34	M19	Z	4.381	4.381	0	%100
35	M20	X	-7.524	-7.524	0	%100
36	M20	Z	4.344	4.344	0	%100
37	M21	X	-7.524	-7.524	0	%100
38	M21	Z	4.344	4.344	0	%100
39	M22	X	-4.004	-4.004	0	%100
40	M22	Z	2.312	2.312	0	%100
41	M23	X Z	-4.004	-4.004	0	%100
42	M23	Z	2.312	2.312	0	%100
43	M24	X	-6.043	-6.043	0	%100
44	M24	Z	3.489	3.489	0	%100
45	M25	X	-7.588	-7.588	0	%100
46	M25	Z	4.381	4.381	0	%100
47	M26	X	-7.524	-7.524	0	%100

Company Designer : NL

Job Number 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[in,%]	
48	M26	Z	4.344	4.344	0	%100
49	M27	X	-2.765	-2.765	0	%100
50	M27	Z	1.596	1.596	0	%100
51	M28	X	-7.524	-7.524	0	%100
52	M28	Z	4.344	4.344	0	%100
53	M29	X	-2.765	-2.765	0	%100
54	M29	Z	1.596	1.596	0	%100
55	M30	X	-7.588	-7.588	0	%100
56	M30	Z	4.381	4.381	0	%100
57	M31	X	-7.524	-7.524	0	%100
58	M31	Z	4.344	4.344	0	%100
59	M32	X	-7.524	-7.524	0	%100
60	M32	Z	4.344	4.344	0	%100
61	M33	X Z	-4.004	-4.004	0	%100
62	M33	Z	2.312	2.312	0	%100
63	M34	X	-4.004	-4.004	0	%100
64	M34	Z	2.312	2.312	0	%100
65	M35	X	-6.043	-6.043	0	%100
66	M35	Z	3.489	3.489	0	%100
67	M36	X	-7.588	-7.588	0	%100
68	M36	Z	4.381	4.381	0	%100
69	MP6A	X	-7.607	-7.607	0	%100
70	MP6A	Z	4.392	4.392	0	%100
71	MP5A	X	-7.607	-7.607	0	%100
72	MP5A	Z	4.392	4.392	0	%100
73	MP3A	X	-9.209	-9.209	0	%100
74	MP3A	Z	5.317	5.317	0	%100
75	MP1A	X	-7.607	-7.607	0	%100
76	MP1A	Z	4.392	4.392	0	%100
77	MP4A	X	-7.607	-7.607	0	%100
78	MP4A	Z	4.392	4.392	0	%100
79	MP2A	Χ	-7.607	-7.607	0	%100
80	MP2A	Z	4.392	4.392	0	%100
81	M55	X	-11.065	-11.065	0	%100
82	M55	Z	6.389	6.389	0	%100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M3	X	0	0	0	%100
4	M3	Z	0	0	0	%100
5	M5	X	707	707	0	%100
6	M5	Z	0	0	0	%100
7	M6	X	707	707	0	%100
8	M6	Z	0	0	0	%100
9	M7	X	0	0	0	%100
10	M7	Z	0	0	0	%100
11	M8	X	707	707	0	%100
12	M8	Z	0	0	0	%100
13	M9	X	707	707	0	%100
14	M9	Z	0	0	0	%100
15	M10	X	0	0	0	%100
16	M10	Z	0	0	0	%100
17	OVP	X	-4.476	-4.476	0	%100
18	OVP	Z	0	0	0	%100

Company Designer Job Number : NL : 21777866A Model Name : Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[in,%]	
19	M12	X	-4.476	-4.476	0	%100
20	M12	Z	0	0	0	%100
21	M13	X	-4.476	-4.476	0	%100
22	M13	Z	0	0	0	%100
23	M14	X	-4.476	-4.476	0	%100
24	M14	Z	0	0	0	%100
25	M15	X	-11.096	-11.096	0	%100
26	M15	Z	0	0	0	%100
27	M16	X	-3.867	-3.867	0	%100
28	M16	Z	0	0	0	%100
29	M17	X	-11.096	-11.096	0	%100
30	M17	Z	0	0	Ö	%100
31	M18	X	-3.867	-3.867	0	%100 %100
32	M18	Z	0.007	0	Ö	%100 %100
33	M19	X	-11.096	-11.096	0	%100 %100
34	M19	Z	0	0	0	%100 %100
35	M20	X	-11.096	-11.096	0	%100 %100
36	M20	Z	0	0	0	%100 %100
37	M21	X	-11.096	-11.096	0	%100 %100
38	M21	Z	0	0	0	%100 %100
39	M22	X	-4.623	-4.623	0	%100 %100
40	M22	Z	-4.023	-4.023	0	%100 %100
41	M23	X	-4.623	-4.623	0	%100 %100
42	M23	Ž	-4.023	-4.023	0	%100 %100
43	M24	X	-6.978	-6.978	0	%100 %100
44	M24	Z	-0.978	-0.978	0	%100 %100
			*	· · · · · · · · · · · · · · · · · · ·		
45	M25	X	-11.096	-11.096	0	%100
46	M25	Z	0	0	0	%100
47	M26	X	-11.096	-11.096	0	%100
48	M26	Z	0	0	0	%100
49	M27	X	-3.867	-3.867	0	%100
50	M27	Z	0	0	0	%100
51	M28	X	-11.096	-11.096	0	%100
52	M28	Z	0	0	0	%100
53	M29	X	-3.867	-3.867	0	%100
54	M29	Z	0	0	0	%100
55	M30	X	-11.096	-11.096	0	%100
56	M30	Z	0	0	0	%100
57	M31	X	-11.096	-11.096	0	%100
58	M31	Z	0	0	0	%100
59	M32	X	-11.096	-11.096	0	%100
60	M32	Z	0	0	0	%100
61	M33	X	-4.623	-4.623	0	%100
62	M33	Z	0	0	0	%100
63	M34	X	-4.623	-4.623	0	%100
64	M34	Z	0	0	0	%100
65	M35	X	-6.978	-6.978	0	%100
66	M35	Z	0	0	0	%100
67	M36	X	-11.096	-11.096	0	%100
68	M36	Z	0 704	0 704	0	%100
69	MP6A	X	-8.784	-8.784	0	%100
70	MP6A	Z	0 704	0 704	0	%100
71	MP5A	X	-8.784	-8.784	0	%100
72	MP5A	Z	0	0	0	%100
73	MP3A	X	-10.633	-10.633	0	%100
74	MP3A	Z	0 704	0 704	0	%100
75	MP1A	X	-8.784	-8.784	0	%100

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 50: Structure Wo (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
76	MP1A	Z	0	0	0	%100
77	MP4A	X	-8.784	-8.784	0	%100
78	MP4A	Z	0	0	0	%100
79	MP2A	X	-8.784	-8.784	0	%100
80	MP2A	Z	0	0	0	%100
81	M55	X	-10.996	-10.996	0	%100
82	M55	Z	0	0	0	%100

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
1	M1	X	-2.402	-2.402	0	%100
2	M1	Z	-1.387	-1.387	0	%100
3	M3	X	-2.402	-2.402	0	%100
4	M3	Z	-1.387	-1.387	0	%100
5	M5	X	-1.126	-1.126	0	%100
6	M5	Z	65	65	0	%100
7	M6	X	086	086	0	%100
8	M6	Z	05	05	0	%100
9	M7	X	-2.302	-2.302	0	%100
10	M7	Z	-1.329	-1.329	0	%100
11	M8	X	-1.126	-1.126	0	%100
12	M8	Z	65	65	0	%100
13	M9	X	086	086	0	%100
14	M9	Z	05	05	0	%100
15	M10	X	-2.302	-2.302	0	%100
16	M10	Z	-1.329	-1.329	0	%100
17	OVP	X	-7.133	-7.133	0	%100
18	OVP	Z	-4.118	-4.118	0	%100
19	M12	X	546	546	0	%100
20	M12	Z	315	315	0	%100
21	M13	X	-7.133	-7.133	0	%100
22	M13	Z	-4.118	-4.118	0	%100
23	M14	X	546	546	0	%100
24	M14	Z	315	315	0	%100
25	M15	X	-7.524	-7.524	0	%100
26	M15	Z	-4.344	-4.344	0	%100
27	M16	X	-2.765	-2.765	0	%100
28	M16	Z	-1.596	-1.596	0	%100
29	M17	X	-7.524	-7.524	0	%100
30	M17	Z	-4.344	-4.344	0	%100
31	M18	X	-2.765	-2.765	0	%100
32	M18	Z	-1.596	-1.596	0	%100
33	M19	X	-7.588	-7.588	0	%100
34	M19	Z	-4.381	-4.381	0	%100
35	M20	X	-7.524	-7.524	0	%100
36	M20	Z	-4.344	-4.344	0	%100
37	M21	X	-7.524	-7.524	0	%100
38	M21	Z	-4.344	-4.344	0	%100
39	M22	X	-4.004	-4.004	0	%100
40	M22	Z	-2.312	-2.312	0	%100
41	M23	X	-4.004	-4.004	0	%100
42	M23	Z	-2.312	-2.312	0	%100
43	M24	X	-6.043	-6.043	0	%100
44	M24	Z	-3.489	-3.489	Ō	%100
45	M25	X	-7.588	-7.588	0	%100
46	M25	Z	-4.381	-4.381	0	%100
		_				

Company Designer : NL

Job Number 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 51: Structure Wo (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
47	M26	X	-7.524	-7.524	0	%100
48	M26	Z	-4.344	-4.344	0	%100
49	M27	X	-3.921	-3.921	0	%100
50	M27	Z	-2.264	-2.264	0	%100
51	M28	X	-7.524	-7.524	0	%100
52	M28	Z	-4.344	-4.344	0	%100
53	M29	X	-3.921	-3.921	0	%100
54	M29	Z	-2.264	-2.264	0	%100
55	M30	X	-7.588	-7.588	0	%100
56	M30	Z	-4.381	-4.381	0	%100
57	M31	X	-7.524	-7.524	0	%100
58	M31	Z	-4.344	-4.344	0	%100
59	M32	X	-7.524	-7.524	0	%100
60	M32	Z	-4.344	-4.344	0	%100
61	M33	X	-4.004	-4.004	0	%100
62	M33	Z	-2.312	-2.312	0	%100
63	M34	X	-4.004	-4.004	0	%100
64	M34	Z	-2.312	-2.312	0	%100
65	M35	X	-6.043	-6.043	0	%100
66	M35	Z	-3.489	-3.489	0	%100
67	M36	X	-7.588	-7.588	0	%100
68	M36	Z	-4.381	-4.381	0	%100
69	MP6A	X	-7.607	-7.607	0	%100
70	MP6A	Z	-4.392	-4.392	0	%100
71	MP5A	X	-7.607	-7.607	0	%100
72	MP5A	Z	-4.392	-4.392	0	%100
73	MP3A	X	-9.209	-9.209	0	%100
74	MP3A	Z	-5.317	-5.317	0	%100
75	MP1A	X	-7.607	-7.607	0	%100
76	MP1A	Z	-4.392	-4.392	0	%100
77	MP4A	X	-7.607	-7.607	0	%100
78	MP4A	Z	-4.392	-4.392	0	%100
79	MP2A	X	-7.607	-7.607	0	%100
80	MP2A	Z	-4.392	-4.392	0	%100
81	M55	X	-4.289	-4.289	0	%100
82	M55	Z	-2.476	-2.476	0	%100

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
1	M1	X	-4.161	-4.161	0	%100
2	M1	Z	-7.207	-7.207	0	%100
3	M3	X	-4.161	-4.161	0	%100
4	M3	Z	-7.207	-7.207	0	%100
5	M5	X	644	644	0	%100
6	M5	Z	-1.115	-1.115	0	%100
7	M6	X	043	043	0	%100
8	M6	Z	075	075	0	%100
9	M7	X	-3.988	-3.988	0	%100
10	M7	Z	-6.907	-6.907	0	%100
11	M8	X	644	644	0	%100
12	M8	Z	-1.115	-1.115	0	%100
13	M9	X	043	043	0	%100
14	M9	Z	075	075	0	%100
15	M10	X	-3.988	-3.988	0	%100
16	M10	Z	-6.907	-6.907	0	%100
17	OVP	X	-4.077	-4.077	0	%100

: NL

Company Designer Job Number 21777866A Model Name : Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 52: Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	
18	OVP	Z	-7.061	-7.061	0	%100
19	M12	X	274	274	0	%100
20	M12	Z	474	474	0	%100
21	M13	X	-4.077	-4.077	0	%100
22	M13	Z	-7.061	-7.061	0	%100
23	M14	X	274	274	0	%100
24	M14	Z	474	474	0	%100
25	M15	X	-1.936	-1.936	0	%100
26	M15	Z	-3.353	-3.353	0	%100
27	M16	X	-1.589	-1.589	0	%100
28	M16	Z	-2.752	-2.752	0	%100
29	M17	X	-1.936	-1.936	0	%100
30	M17	Z	-3.353	-3.353	0	%100
31	M18	X	-1.589	-1.589	0	%100
32	M18	Z	-2.752	-2.752	0	%100
33	M19	X	-2.047	-2.047	0	%100
34	M19	Z	-3.545	-3.545	0	%100
35	M20	X	-1.936	-1.936	0	%100 %100
36	M20	Z	-3.353	-3.353	0	%100
37	M21	X	-1.936	-1.936	0	%100 %100
38	M21	Z	-3.353	-3.353	0	%100 %100
39	M22	X	-2.312	-2.312	0	%100 %100
40	M22	Z	-4.004	-4.004	0	%100 %100
41	M23	X	-2.312	-2.312	0	%100 %100
42	M23	Ž	-4.004	-4.004	0	%100 %100
43	M24	X	-3.489	-3.489	0	%100 %100
44	M24	Ž	-6.043	-6.043	0	%100 %100
45	M25	X	-2.047			
		Z		-2.047	0	%100 %100
46	M25		-3.545	-3.545	0	%100 %400
47	M26	X	-1.936	-1.936	0	%100
48	M26	Z	-3.353	-3.353	0	%100 %100
49	M27	X	-2.256	-2.256	0	%100
50	M27	Z	-3.908	-3.908	0	%100
51	M28	X	-1.936	-1.936	0	%100
52	M28	Z	-3.353	-3.353	0	%100
53	M29	X	-2.256	-2.256	0	%100
54	M29	Z	-3.908	-3.908	0	%100
55	M30	X	-2.047	-2.047	0	%100
56	M30	Z	-3.545	-3.545	0	%100
57	M31	X	-1.936	-1.936	0	%100
58	M31	Z	-3.353	-3.353	0	%100
59	M32	X	-1.936	-1.936	0	%100
60	M32	Z	-3.353	-3.353	0	%100
61	M33	X	-2.312	-2.312	0	%100
62	M33	Z	-4.004	-4.004	0	%100
63	M34	X	-2.312	-2.312	0	%100
64	M34	Z	-4.004	-4.004	0	%100
65	M35	X Z	-3.489	-3.489	0	%100
66	M35		-6.043	-6.043	0	%100
67	M36	X	-2.047	-2.047	0	%100
68	M36	Z	-3.545	-3.545	0	%100
69	MP6A	X Z	-4.392	-4.392	0	%100
70	MP6A		-7.607	-7.607	0	%100
71	MP5A	X	-4.392	-4.392	0	%100
72	MP5A	Z	-7.607	-7.607	0	%100
73	MP3A	X	-5.317	-5.317	0	%100
74	MP3A	Z	-9.209	-9.209	0	%100

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 52: Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
75	MP1A	X	-4.392	-4.392	0	%100
76	MP1A	Z	-7.607	-7.607	0	%100
77	MP4A	X	-4.392	-4.392	0	%100
78	MP4A	Z	-7.607	-7.607	0	%100
79	MP2A	X	-4.392	-4.392	0	%100
80	MP2A	Z	-7.607	-7.607	0	%100
81	M55	X	344	344	0	%100
82	M55	Z	596	596	0	%100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg))

1 2 3 4 5 6 7 8 9	M1 M1 M3 M3 M5 M5 M6 M6	X Z X Z X Z	0 -2.727 0 -2.727 0 533	0 -2.727 0 -2.727 0	0 0 0	%100 %100 %100 %100
3 4 5 6 7 8	M3 M3 M5 M5 M6 M6	X Z X Z	0 -2.727 0	0 -2.727	0	%100
4 5 6 7 8	M3 M5 M5 M6 M6	Z X Z	-2.727 0	-2.727		
5 6 7 8	M5 M5 M6 M6	X Z	0		0	0/ 100
6 7 8	M5 M6 M6	Z		<u> </u>	_	70 100
7 8	M6 M6	Z	533	U	0	%100
8	M6	Х		533	0	%100
	M6		0	0	0	%100
		Z	533	533	0	%100
9	1917	X	0	0	0	%100
10	M7	Z	-3.249	-3.249	0	%100
11	M8	X	0	0	0	%100
12	M8	Z	533	533	0	%100
13	M9	X	0	0	0	%100
14	M9	Z	533	533	0	%100
15	M10	X	0	0	0	%100
16	M10	Z	-3.249	-3.249	0	%100
17	OVP	X	0	0	0	%100
18	OVP	Z	-1.441	-1.441	0	%100
19	M12	Х	0	0	0	%100
20	M12	Z	-1.441	-1.441	0	%100
21	M13	X	0	0	0	%100
22	M13	Z	-1.441	-1.441	0	%100
23	M14	X	0	0	0	%100
24	M14	Z	-1.441	-1.441	0	%100
25	M15	X	0	0	0	%100
26	M15	Z	-1.099	-1.099	0	%100
27	M16	X	0	0	0	%100
28	M16	Z	-1.776	-1.776	0	%100
29	M17	X	0	0	0	%100
30	M17	Z	-1.099	-1.099	0	%100
31	M18	X	0	0	0	%100
32	M18	Z	-1.776	-1.776	0	%100
33	M19	X	0	0	0	%100
34	M19	Z	-1.149	-1.149	0	%100
35	M20	X	0	0	0	%100
36	M20	Z	-1.099	-1.099	0	%100
37	M21	X	0	0	0	%100
38	M21	Z	-1.099	-1.099	0	%100
39	M22	X	0	0	0	%100
40	M22	Z	-1.999	-1.999	0	%100
41	M23	X	0	0	0	%100
42	M23	Z	-1.999	-1.999	0	%100
43	M24	X	0	0	0	%100
44	M24	Z	-2.337	-2.337	0	%100
45	M25	X	0	0	0	%100

Company Designer : NL

Job Number 21777866A Model Name Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 53: Structure Wi (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F.	Start Location[in,%]	End Location[in,%]
46	M25	Z	-1.149	-1.149	0	%100
47	M26	X	0	0	0	%100
48	M26	Z	-1.099	-1.099	0	%100
49	M27	X	0	0	0	%100
50	M27	Z	-1.776	-1.776	0	%100
51	M28	X	0	0	0	%100
52	M28	Z	-1.099	-1.099	0	%100
53	M29	X	0	0	0	%100
54	M29	Z	-1.776	-1.776	0	%100
55	M30	X	0	0	0	%100
56	M30	Z	-1.149	-1.149	0	%100
57	M31	X	0	0	0	%100
58	M31	Z	-1.099	-1.099	0	%100
59	M32	X	0	0	0	%100
60	M32	Z	-1.099	-1.099	0	%100
61	M33	X	0	0	0	%100
62	M33	Z	-1.999	-1.999	0	%100
63	M34	X	0	0	0	%100
64	M34	Z	-1.999	-1.999	0	%100
65	M35	X	0	0	0	%100
66	M35	Z	-2.337	-2.337	0	%100
67	M36	X	0	0	0	%100
68	M36	Z	-1.149	-1.149	0	%100
69	MP6A	X	0	0	0	%100
70	MP6A	Z	-2.938	-2.938	0	%100
71	MP5A	X	0	0	0	%100
72	MP5A	Z	-2.938	-2.938	0	%100
73	MP3A	X	0	0	0	%100
74	MP3A	Z	-3.249	-3.249	0	%100
75	MP1A	X	0	0	0	%100
76	MP1A	Z	-2.938	-2.938	0	%100
77	MP4A	Χ	0	0	0	%100
78	MP4A	Z	-2.938	-2.938	0	%100
79	MP2A	X	0	0	0	%100
80	MP2A	Z	-2.938	-2.938	0	%100
81	M55	X	0	0	0	%100
82	M55	Z	694	694	0	%100

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg))

	Manushan Labat		Charles Managerites and a fille ##		Ott1titi 0/1	F
	Member Label	Direction		End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
1	M1	X	1.023	1.023	0	%100
2	M1	Z	-1.771	-1.771	0	%100
3	M3	X	1.023	1.023	0	%100
4	M3	Z	-1.771	-1.771	0	%100
5	M5	X	.034	.034	0	%100
6	M5	Z	059	059	0	%100
7	M6	X	.504	.504	0	%100
8	M6	Z	873	873	0	%100
9	M7	X	1.218	1.218	0	%100
10	M7	Z	-2.11	-2.11	0	%100
11	M8	X	.034	.034	0	%100
12	M8	Z	059	059	0	%100
13	M9	X	.504	.504	0	%100
14	M9	Z	873	873	0	%100
15	M10	X	1.218	1.218	0	%100
16	M10	Z	-2.11	-2.11	0	%100

Company Designer Job Number : NL : 21777866A Model Name : Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 54: Structure Wi (30 Deg)) (Continued)

	Member Label	Direction		. End Magnitude[lb/ft,F	Start Location[in,%]	
17	OVP	X	.092	.092	0	%100
18	OVP	Z	159	159	0	%100
19	M12	X	1.364	1.364	0	%100
20	M12	Z	-2.362	-2.362	0	%100
21	M13	X	.092	.092	0	%100
22	M13	Z	159	159	0	%100
23	M14	X	1.364	1.364	0	%100
24	M14	Z	-2.362	-2.362	0	%100
25	M15	X	.752	.752	0	%100
26	M15	Z	-1.302	-1.302	0	%100
27	M16	X	1.044	1.044	0	%100
28	M16	Z	-1.809	-1.809	Ö	%100 %100
29	M17	X	.752	.752	0	%100 %100
30	M17	Z	-1.302	-1.302	0	%100 %100
31	M18	X	1.044	1.044	0	%100 %100
32	M18	Z	-1.809	-1.809	0	%100 %100
33	M19	X	.77	.77	0	%100 %100
34	M19	Z	-1.334	-1.334	0	%100 %100
35	M20	X	.752	.752	0	%100 %100
36	M20	Ž	-1.302	-1.302	0	%100 %100
37		X	.752	.752		%100 %100
	M21	Z			0	
38	M21		-1.302	-1.302 1	0	%100
39	M22	X Z	1 724		0	%100
40	M22		-1.731	-1.731	0	%100
41	M23	X	1 704	1 704	0	%100
42	M23	Z	-1.731	-1.731	0	%100
43	M24	X	1.169	1.169	0	%100
44	M24	Z	-2.024	-2.024	0	%100
45	M25	X	.77	.77	0	%100
46	M25	Z	-1.334	-1.334	0	%100
47	M26	X	.752	.752	0	%100
48	M26	Z	-1.302	-1.302	0	%100
49	M27	X	.735	.735	0	%100
50	M27	Z	-1.274	-1.274	0	%100
51	M28	X	.752	.752	0	%100
52	M28	Z	-1.302	-1.302	0	%100
53	M29	X	.735	.735	0	%100
54	M29	Z	-1.274	-1.274	0	%100
55	M30	X	.77	.77	0	%100
56	M30	Z	-1.334	-1.334	0	%100
57	M31	X	.752	.752	0	%100
58	M31	Z	-1.302	-1.302	0	%100
59	M32	X	.752	.752	0	%100
60	M32	Z	-1.302	-1.302	0	%100
61	M33	X	1	1	0	%100
62	M33	Z	-1.731	-1.731	0	%100
63	M34	X	1	1	0	%100
64	M34	Ž	-1.731	-1.731	0	%100
65	M35	X	1.169	1.169	0	%100
66	M35	Z	-2.024	-2.024	Ö	%100
67	M36	X	.77	.77	0	%100
68	M36	Z	-1.334	-1.334	Ö	%100 %100
69	MP6A	X	1.469	1.469	0	%100 %100
70	MP6A	Z	-2.544	-2.544	0	%100 %100
71	MP5A	X	1.469	1.469	0	%100 %100
72	MP5A	Z	-2.544	-2.544	Ö	%100 %100
73	MP3A	X	1.624	1.624	0	%100 %100
	IVII O/A		1.027	1.047	.	70 1 0 0

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 54: Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
74	MP3A	Z	-2.813	-2.813	0	%100
75	MP1A	X	1.469	1.469	0	%100
76	MP1A	Z	-2.544	-2.544	0	%100
77	MP4A	X	1.469	1.469	0	%100
78	MP4A	Z	-2.544	-2.544	0	%100
79	MP2A	X	1.469	1.469	0	%100
80	MP2A	Z	-2.544	-2.544	0	%100
81	M55	X	1.196	1.196	0	%100
82	M55	Z	-2.072	-2.072	0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	X	.59	.59	0	%100
2	M1	Z	341	341	0	%100
3	M3	X	.59	.59	0	%100
4	M3	Z	341	341	0	%100
5	M5	X	.068	.068	0	%100
6	M5	Z	039	039	0	%100
7	M6	X	.882	.882	0	%100
8	M6	Z	509	509	0	%100
9	M7	X	.703	.703	0	%100
10	M7	Z	406	406	0	%100
11	M8	X	.068	.068	0	%100
12	M8	Z	039	039	0	%100
13	M9	X	.882	.882	0	%100
14	M9	Z	509	509	0	%100
15	M10	X	.703	.703	0	%100
16	M10	Z	406	406	0	%100
17	OVP	X	.183	.183	0	%100
18	OVP	Z	106	106	0	%100
19	M12	X	2.386	2.386	0	%100
20	M12	Z	-1.378	-1.378	0	%100
21	M13	X	.183	.183	0	%100
22	M13	Z	106	106	0	%100
23	M14	X	2.386	2.386	0	%100
24	M14	Z	-1.378	-1.378	0	%100
25	M15	X	2.003	2.003	0	%100
26	M15	Z	-1.156	-1.156	0	%100
27	M16	X	1.815	1.815	0	%100
28	M16	Z	-1.048	-1.048	0	%100
29	M17	X	2.003	2.003	0	%100
30	M17	Z	-1.156	-1.156	0	%100
31	M18	X	1.815	1.815	0	%100
32	M18	Z	-1.048	-1.048	0	%100
33	M19	X	2.013	2.013	0	%100
34	M19	Z	-1.162	-1.162	0	%100
35	M20	X	2.003	2.003	0	%100
36	M20	Z	-1.156	-1.156	0	%100
37	M21	X	2.003	2.003	0	%100
38	M21	Z	-1.156	-1.156	0	%100
39	M22	X	1.731	1.731	0	%100
40	M22	Z	-1	-1	0	%100
41	M23	X	1.731	1.731	0	%100
42	M23	Z	-1	-1	0	%100
43	M24	X	2.024	2.024	0	%100
44	M24	Z	-1.169	-1.169	0	%100

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
45	M25	X	2.013	2.013	0	%100
46	M25	Z	-1.162	-1.162	0	%100
47	M26	X	2.003	2.003	0	%100
48	M26	Z	-1.156	-1.156	0	%100
49	M27	X	1.28	1.28	0	%100
50	M27	Z	739	739	0	%100
51	M28	X	2.003	2.003	0	%100
52	M28	Z	-1.156	-1.156	0	%100
53	M29	X	1.28	1.28	0	%100
54	M29	Z	739	739	0	%100
55	M30	X	2.013	2.013	0	%100
56	M30	Z	-1.162	-1.162	0	%100
57	M31	X	2.003	2.003	0	%100
58	M31	Z	-1.156	-1.156	0	%100
59	M32	X	2.003	2.003	Ö	%100
60	M32	Z	-1.156	-1.156	0	%100
61	M33	X	1.731	1.731	0	%100
62	M33	Z	-1	-1	0	%100
63	M34	X	1.731	1.731	Ö	%100
64	M34	Ž	-1	-1	Ö	%100
65	M35	X	2.024	2.024	Ō	%100
66	M35	Z	-1.169	-1.169	Ö	%100
67	M36	X	2.013	2.013	Ö	%100
68	M36	Z	-1.162	-1.162	0	%100
69	MP6A	X	2.544	2.544	0	%100
70	MP6A	Z	-1.469	-1.469	Ö	%100 %100
71	MP5A	X	2.544	2.544	Ö	%100
72	MP5A	Ž	-1.469	-1.469	Ö	%100
73	MP3A	X	2.813	2.813	Ö	%100
74	MP3A	Ž	-1.624	-1.624	Ö	%100
75	MP1A	X	2.544	2.544	0	%100 %100
76	MP1A	Z	-1.469	-1.469	0	%100 %100
77	MP4A	X	2.544	2.544	0	%100 %100
78	MP4A	Z	-1.469	-1.469	0	%100 %100
79	MP2A	X	2.544	2.544	0	%100 %100
80	MP2A	Z	-1.469	-1.469	0	%100
81	M55	X	3.109	3.109	0	%100 %100
82	M55	Z	-1.795	-1.795	0	%100

Member Distributed Loads (BLC 56: Structure Wi (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M3	X	0	0	0	%100
4	M3	Z	0	0	0	%100
5	M5	X	.553	.553	0	%100
6	M5	Z	0	0	0	%100
7	M6	X	.553	.553	0	%100
8	M6	Z	0	0	0	%100
9	M7	X	0	0	0	%100
10	M7	Z	0	0	0	%100
11	M8	X	.553	.553	0	%100
12	M8	Z	0	0	0	%100
13	M9	X	.553	.553	0	%100
14	M9	Z	0	0	0	%100
15	M10	X	0	0	0	%100

Company Designer Job Number : NL : 21777866A Model Name : Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 56: Structure Wi (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	
16	M10	Z	0	0	0	%100
17	OVP	X	1.497	1.497	0	%100
18	OVP	Z	0	0	0	%100
19	M12	X	1.497	1.497	0	%100
20	M12	Z	0	0	0	%100
21	M13	X	1.497	1.497	0	%100 %100
22	M13	Z	0	0	Ö	%100 %100
23	M14	X	1.497	1.497	0	%100 %100
24	M14	Z	0	0	0	%100 %100
25						
	M15	X	2.717	2.717	0	%100
26	M15	Z	0	0	0	%100
27	M16	X	1.79	1.79	0	%100
28	M16	Z	0	0	0	%100
29	M17	X	2.717	2.717	0	%100
30	M17	Z	0	0	0	%100
31	M18	X	1.79	1.79	0	%100
32	M18	Z	0	0	0	%100
33	M19	X	2.717	2.717	0	%100
34	M19	Z	0	0	0	%100
35	M20	X	2.717	2.717	0	%100
36	M20	Z	0	0	0	%100
37	M21	X	2.717	2.717	0	%100
38	M21	Z	0	0	0	%100 %100
39	M22	X	1.999	1.999	0	%100 %100
40	M22	Z	0	0	0	%100 %100
41	M23	X	1.999	1.999	0	%100 %100
42	M23	Z				%100 %100
			0	0	0	
43	M24	X	2.337	2.337	0	%100
44	M24	Z	0	0	0	%100
45	M25	X	2.717	2.717	0	%100
46	M25	Z	0	0	0	%100
47	M26	X	2.717	2.717	0	%100
48	M26	Z	0	0	0	%100
49	M27	X	1.79	1.79	0	%100
50	M27	Z	0	0	0	%100
51	M28	X	2.717	2.717	0	%100
52	M28	Z	0	0	0	%100
53	M29	X	1.79	1.79	0	%100
54	M29	Z	0	0	0	%100
55	M30	X	2.717	2.717	0	%100
56	M30	Z	0	0	Ö	%100
57	M31	X	2.717	2.717	0	%100 %100
58	M31	Z	0	0	0	%100 %100
59	M32	X	2.717	2.717	0	%100 %100
60	M32	Z	0	0	0	%100 %100
			_	_		
61	M33	X	1.999	1.999	0	%100
62	M33	Z	0	0	0	%100
63	M34	X	1.999	1.999	0	%100
64	M34	Z	0	0	0	%100
65	M35	X	2.337	2.337	0	%100
66	M35	Z	0	0	0	%100
67	M36	X	2.717	2.717	0	%100
68	M36	Z	0	0	0	%100
69	MP6A	X	2.938	2.938	0	%100
70	MP6A	Z	0	0	0	%100
71	MP5A	X	2.938	2.938	0	%100
72	MP5A	Z	0	0	0	%100

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 56: Structure Wi (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
73	MP3A	X	3.249	3.249	0	%100
74	MP3A	Z	0	0	0	%100
75	MP1A	X	2.938	2.938	0	%100
76	MP1A	Z	0	0	0	%100
77	MP4A	X	2.938	2.938	0	%100
78	MP4A	Z	0	0	0	%100
79	MP2A	X	2.938	2.938	0	%100
80	MP2A	Z	0	0	0	%100
81	M55	X	3.09	3.09	0	%100
82	M55	Z	0	0	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg))

	Member Label		Start Magnitude[lb/ft,		.Start Location[in,%]	
1	M1	X	.59	.59	0	%100
2	M1	Z	.341	.341	0	%100
3	M3	X	.59	.59	0	%100
4	M3	Z	.341	.341	0	%100
5	M5	X	.882	.882	0	%100
6	M5	Z	.509	.509	0	%100
7	M6	X	.068	.068	0	%100
8	M6	Z	.039	.039	0	%100
9	M7	X	.703	.703	0	%100
10	M7	Z	.406	.406	0	%100
11	M8	X	.882	.882	0	%100
12	M8	Z	.509	.509	0	%100
13	M9	X	.068	.068	0	%100
14	M9	Z	.039	.039	0	%100
15	M10	X	.703	.703	0	%100
16	M10	Z	.406	.406	0	%100
17	OVP	X	2.386	2.386	0	%100
18	OVP	Z	1.378	1.378	0	%100
19	M12	X	.183	.183	0	%100
20	M12	Z	.106	.106	0	%100
21	M13	X	2.386	2.386	0	%100
22	M13	Z	1.378	1.378	0	%100
23	M14	X	.183	.183	0	%100
24	M14	Z	.106	.106	0	%100
25	M15	X	2.003	2.003	0	%100
26	M15	Z	1.156	1.156	0	%100
27	M16	X	1.28	1.28	0	%100
28	M16	Z	.739	.739	0	%100
29	M17	X	2.003	2.003	0	%100
30	M17	Z	1.156	1.156	0	%100
31	M18	X	1.28	1.28	0	%100
32	M18	Z	.739	.739	0	%100
33	M19	X	2.013	2.013	0	%100
34	M19	Z	1.162	1.162	0	%100
35	M20	X	2.003	2.003	0	%100
36	M20	Z	1.156	1.156	0	%100
37	M21	X	2.003	2.003	0	%100
38	M21	Z	1.156	1.156	0	%100
39	M22	X	1.731	1.731	0	%100
40	M22	Z	1	1	0	%100
41	M23	X	1.731	1.731	0	%100
42	M23	Z	1	1	0	%100
43	M24	X	2.024	2.024	0	%100

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 57: Structure Wi (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
44	M24	Z	1.169	1.169	0	%100
45	M25	X	2.013	2.013	0	%100
46	M25	Z	1.162	1.162	0	%100
47	M26	X	2.003	2.003	0	%100
48	M26	Z	1.156	1.156	0	%100
49	M27	X	1.815	1.815	0	%100
50	M27	Z	1.048	1.048	0	%100
51	M28	X	2.003	2.003	0	%100
52	M28	Z	1.156	1.156	0	%100
53	M29	X	1.815	1.815	0	%100
54	M29	Z	1.048	1.048	0	%100
55	M30	X	2.013	2.013	0	%100
56	M30	Z	1.162	1.162	0	%100
57	M31	X	2.003	2.003	0	%100
58	M31	Ž	1.156	1.156	Ö	%100
59	M32	X	2.003	2.003	0	%100
60	M32	Z	1.156	1.156	Ō	%100
61	M33	X	1.731	1.731	0	%100
62	M33	Z	1	1	Ö	%100
63	M34	X	1.731	1.731	0	%100 %100
64	M34	Z	1	1	0	%100 %100
65	M35	X	2.024	2.024	0	%100
66	M35	Z	1.169	1.169	0	%100 %100
67	M36	X	2.013	2.013	0	%100
68	M36	Z	1.162	1.162	0	%100 %100
69	MP6A	X	2.544	2.544	0	%100 %100
70	MP6A	Z	1.469	1.469	Ö	%100 %100
71	MP5A	X	2.544	2.544	0	%100 %100
72	MP5A	Z	1.469	1.469	Ö	%100 %100
73	MP3A	X	2.813	2.813	0	%100
74	MP3A	Z	1.624	1.624	Ö	%100 %100
75	MP1A	X	2.544	2.544	0	%100 %100
76	MP1A	Z	1.469	1.469	0	%100 %100
77	MP4A	X	2.544	2.544	0	%100 %100
78	MP4A	Z	1.469	1.469	0	%100 %100
79	MP2A	X	2.544	2.544	0	%100 %100
80	MP2A	Z	1.469	1.469	0	%100 %100
81	M55	X	1.205	1.205	0	%100 %100
82	M55	Z	.696	.696	0	%100 %100
OZ	IVIOO	_	.090	.090	U	/0 100

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
1	M1	X	1.023	1.023	0	%100
2	M1	Z	1.771	1.771	0	%100
3	M3	X	1.023	1.023	0	%100
4	M3	Z	1.771	1.771	0	%100
5	M5	X	.504	.504	0	%100
6	M5	Z	.873	.873	0	%100
7	M6	X	.034	.034	0	%100
8	M6	Z	.059	.059	0	%100
9	M7	X	1.218	1.218	0	%100
10	M7	Z	2.11	2.11	0	%100
11	M8	X	.504	.504	0	%100
12	M8	Z	.873	.873	0	%100
13	M9	X	.034	.034	0	%100
14	M9	Z	.059	.059	0	%100

Company Designer Job Number : NL : 21777866A Model Name : Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 58: Structure Wi (150 Deg)) (Continued)

	Member Label	Direction		. End Magnitude[lb/ft,F	Start Location[in,%]	
15	M10	X	1.218	1.218	0	%100
16	M10	Z	2.11	2.11	0	%100
17	OVP	X	1.364	1.364	0	%100
18	OVP	Z	2.362	2.362	0	%100
19	M12	X	.092	.092	0	%100
20	M12	Z	.159	.159	0	%100
21	M13	X	1.364	1.364	0	%100
22	M13	Ž	2.362	2.362	Ö	%100 %100
23	M14	X	.092	.092	0	%100 %100
24	M14	Z	.159	.159	0	%100 %100
25	M15	X	.752	.752	0	%100 %100
26	M15	Z	1.302	1.302		
					0	%100 %100
27	M16	X	.735	.735	0	%100
28	M16	Z	1.274	1.274	0	%100
29	M17	X	.752	.752	0	%100
30	M17	Z	1.302	1.302	0	%100
31	M18	X	.735	.735	0	%100
32	M18	Z	1.274	1.274	0	%100
33	M19	X	.77	.77	0	%100
34	M19	Z	1.334	1.334	0	%100
35	M20	X	.752	.752	0	%100
36	M20	Z	1.302	1.302	0	%100
37	M21	X	.752	.752	0	%100
38	M21	Z	1.302	1.302	0	%100
39	M22	X	1	1	0	%100
40	M22	Z	1.731	1.731	0	%100
41	M23	X	1	1	0	%100
42	M23	Ž	1.731	1.731	Ö	%100 %100
43	M24	X	1.169	1.169	0	%100 %100
44	M24	Z	2.024	2.024	0	%100 %100
45	M25	X	.77	.77	0	%100 %100
46	M25	Z	1.334	1.334	0	%100 %100
47	M26	X	.752	.752	0	%100 %100
		Z				
48	M26		1.302	1.302	0	%100
49	M27	X	1.044	1.044	0	%100
50	M27	Z	1.809	1.809	0	%100
51	M28	X	.752	.752	0	%100
52	M28	Z	1.302	1.302	0	%100
53	M29	X	1.044	1.044	0	%100
54	M29	Z	1.809	1.809	0	%100
55	M30	X	.77	.77	0	%100
56	M30	Z	1.334	1.334	0	%100
57	M31	X	.752	.752	0	%100
58	M31	Z	1.302	1.302	0	%100
59	M32	X	.752	.752	0	%100
60	M32	Z	1.302	1.302	0	%100
61	M33	X	1	1	0	%100
62	M33	Ž	1.731	1.731	0	%100
63	M34	X	1	1	0	%100
64	M34	Z	1.731	1.731	Ö	%100 %100
65	M35	X	1.169	1.169	0	%100 %100
66	M35	Z	2.024	2.024	0	%100 %100
67	M36	X	.77	.77	0	%100 %100
68	M36	Z	1.334	1.334	0	%100 %100
69	MP6A	X	1.469	1.469	0	%100 %100
70	MP6A	Z	2.544	2.544	0	%100
71	MP5A	X	1.469	1.469	0	%100

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 58: Structure Wi (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
72	MP5A	Z	2.544	2.544	0	%100
73	MP3A	X	1.624	1.624	0	%100
74	MP3A	Z	2.813	2.813	0	%100
75	MP1A	X	1.469	1.469	0	%100
76	MP1A	Z	2.544	2.544	0	%100
77	MP4A	X	1.469	1.469	0	%100
78	MP4A	Z	2.544	2.544	0	%100
79	MP2A	X	1.469	1.469	0	%100
80	MP2A	Z	2.544	2.544	0	%100
81	M55	X	.097	.097	0	%100
82	M55	Z	.167	.167	0	%100

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	
1	M1	X	0	0	0	%100
2	M1	Z	2.727	2.727	0	%100
3	M3	X	0	0	0	%100
4	M3	Z	2.727	2.727	0	%100
5	M5	X	0	0	0	%100
6	M5	Z	.533	.533	0	%100
7	M6	X	0	0	0	%100
8	M6	Z	.533	.533	0	%100
9	M7	X	0	0	0	%100
10	M7	Z	3.249	3.249	0	%100
11	M8	X	0	0	0	%100
12	M8	Z	.533	.533	0	%100
13	M9	X	0	0	0	%100
14	M9	Z	.533	.533	0	%100
15	M10	X	0	0	0	%100
16	M10	Z	3.249	3.249	0	%100
17	OVP	X	0	0	0	%100
18	OVP	Z	1.441	1.441	0	%100
19	M12	X	0	0	0	%100
20	M12	Z	1.441	1.441	0	%100
21	M13	X	0	0	0	%100
22	M13	Z	1.441	1.441	0	%100
23	M14	X	0	0	0	%100
24	M14	Z	1.441	1.441	0	%100
25	M15	X	0	0	0	%100
26	M15	Z	1.099	1.099	0	%100
27	M16	X	0	0	0	%100
28	M16	Z	1.776	1.776	0	%100
29	M17	X	0	0	0	%100
30	M17	Z	1.099	1.099	0	%100
31	M18	X	0	0	0	%100
32	M18	Z	1.776	1.776	0	%100
33	M19	X	0	0	0	%100
34	M19	Z	1.149	1.149	0	%100
35	M20	X	0	0	0	%100
36	M20	Z	1.099	1.099	0	%100
37	M21	X	0	0	0	%100
38	M21	Z	1.099	1.099	0	%100
39	M22	X	0	0	0	%100
40	M22	Z	1.999	1.999	0	%100
41	M23	X	0	0	0	%100
42	M23	Z	1.999	1.999	0	%100

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 59: Structure Wi (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
43	M24	X	0	0	0	%100
44	M24	Z	2.337	2.337	0	%100
45	M25	X	0	0	0	%100
46	M25	Z	1.149	1.149	0	%100
47	M26	X	0	0	0	%100
48	M26	Z	1.099	1.099	0	%100
49	M27	X	0	0	0	%100
50	M27	Z	1.776	1.776	0	%100
51	M28	X	0	0	0	%100
52	M28	Z	1.099	1.099	0	%100
53	M29	X	0	0	0	%100
54	M29	Z	1.776	1.776	0	%100
55	M30	X	0	0	0	%100
56	M30	Z	1.149	1.149	0	%100
57	M31	X	0	0	0	%100
58	M31	Z	1.099	1.099	0	%100
59	M32	X	0	0	0	%100
60	M32	Z	1.099	1.099	0	%100
61	M33	X	0	0	0	%100
62	M33	Z	1.999	1.999	0	%100
63	M34	X	0	0	0	%100
64	M34	Z	1.999	1.999	0	%100
65	M35	X	0	0	0	%100
66	M35	Z	2.337	2.337	0	%100
67	M36	X	0	0	0	%100
68	M36	Z	1.149	1.149	0	%100
69	MP6A	X	0	0	0	%100
70	MP6A	Z	2.938	2.938	0	%100
71	MP5A	X	0	0	0	%100
72	MP5A	Z	2.938	2.938	0	%100
73	MP3A	X	0	0	0	%100
74	MP3A	Z	3.249	3.249	0	%100
75	MP1A	X	0	0	0	%100
76	MP1A	Z	2.938	2.938	0	%100
77	MP4A	X	0	0	0	%100
78	MP4A	Z	2.938	2.938	0	%100
79	MP2A	X	0	0	0	%100
80	MP2A	Z	2.938	2.938	0	%100
81	M55	X	0	0	0	%100
82	M55	Z	.694	.694	0	%100

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
1	M1	X	-1.023	-1.023	0	%100
2	M1	Z	1.771	1.771	0	%100
3	M3	X	-1.023	-1.023	0	%100
4	M3	Z	1.771	1.771	0	%100
5	M5	X	034	034	0	%100
6	M5	Z	.059	.059	0	%100
7	M6	X	504	504	0	%100
8	M6	Z	.873	.873	0	%100
9	M7	X	-1.218	-1.218	0	%100
10	M7	Z	2.11	2.11	0	%100
11	M8	X	034	034	0	%100
12	M8	Z	.059	.059	0	%100
13	M9	Χ	504	504	0	%100

Company Designer Job Number : NL : 21777866A Model Name : Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	
14	M9	Z	.873	.873	0	%100
15	M10	X	-1.218	-1.218	0	%100
16	M10	Z	2.11	2.11	0	%100
17	OVP	X	092	092	0	%100
18	OVP	Z	.159	.159	0	%100
19	M12	X	-1.364	-1.364	0	%100 %100
20	M12	Z	2.362	2.362	Ö	%100 %100
21	M13	X	092	092	0	%100 %100
22	M13	Ž	.159	.159	0	%100 %100
23	M14	X	-1.364	-1.364	0	%100
24	M14	Z	2.362	2.362	0	%100
25	M15	X	752	752	0	%100
26	M15	Z	1.302	1.302	0	%100
27	M16	X	-1.044	-1.044	0	%100
28	M16	Z	1.809	1.809	0	%100
29	M17	X	752	752	0	%100
30	M17	Z	1.302	1.302	0	%100
31	M18	X	-1.044	-1.044	0	%100
32	M18	Z	1.809	1.809	0	%100
33	M19	X	77	77	Ō	%100
34	M19	Z	1.334	1.334	0	%100 %100
35	M20	X	752	752	0	%100
36	M20	Z	1.302	1.302	0	%100
37	M21					
		X	752	752	0	%100
38	M21	Z	1.302	1.302	0	%100
39	M22	X	-1	-1	0	%100
40	M22	Z	1.731	1.731	0	%100
41	M23	X	-1	-1	0	%100
42	M23	Z	1.731	1.731	0	%100
43	M24	X	-1.169	-1.169	0	%100
44	M24	Z	2.024	2.024	0	%100
45	M25	Χ	77	77	0	%100
46	M25	Z	1.334	1.334	0	%100
47	M26	X	752	752	0	%100
48	M26	Z	1.302	1.302	Ö	%100
49	M27	X	735	735	0	%100 %100
50	M27	Z	1.274	1.274	0	%100 %100
51	M28	X	752	752	0	%100 %100
52	M28	Z	1.302	1.302	0	%100 %100
53	M29	X	735	735	0	%100
54	M29	Z	1.274	1.274	0	%100
55	M30	X	77	77	0	%100
56	M30	Z	1.334	1.334	0	%100
57	M31	X	752	752	0	%100
58	M31	Z	1.302	1.302	0	%100
59	M32	X	752	752	0	%100
60	M32	Z	1.302	1.302	0	%100
61	M33	X	-1	-1	0	%100
62	M33	Z	1.731	1.731	0	%100
63	M34	X	-1	-1	0	%100
64	M34	Z	1.731	1.731	0	%100 %100
65	M35	X	-1.169	-1.169	0	%100
66	M35	Z	2.024	2.024	0	%100 %100
67		X	77			
	M36	7		77	0	%100
68	M36	Z	1.334	1.334	0	%100
69	MP6A	X	-1.469	-1.469	0	%100
70	MP6A	Z	2.544	2.544	0	%100

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
71	MP5A	X	-1.469	-1.469	0	%100
72	MP5A	Z	2.544	2.544	0	%100
73	MP3A	X	-1.624	-1.624	0	%100
74	MP3A	Z	2.813	2.813	0	%100
75	MP1A	X	-1.469	-1.469	0	%100
76	MP1A	Z	2.544	2.544	0	%100
77	MP4A	X	-1.469	-1.469	0	%100
78	MP4A	Z	2.544	2.544	0	%100
79	MP2A	X	-1.469	-1.469	0	%100
80	MP2A	Z	2.544	2.544	0	%100
81	M55	X	-1.196	-1.196	0	%100
82	M55	Z	2.072	2.072	0	%100

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg))

1 M1 X 59 59 0 %100 3 M3 X 59 59 0 %100 4 M3 Z .341 .341 0 %100 5 M5 X 068 068 0 %100 6 M5 Z .039 .039 0 %100 7 M6 X 882 882 0 %100 8 M6 Z .509 .509 0 %100 9 M7 X 703 703 0 %100 10 M7 Z .406 .406 0 %100 11 M8 X 068 068 0 %100 12 M8 Z .039 .039 0 %100 13 M9 X 882 882 0 %100 15 M10 X 703		Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
3 M3 X 59 59 0 %100 4 M3 Z .341 .341 0 %100 5 M5 X 068 068 0 %100 6 M5 Z .039 .039 0 %100 7 M6 X 882 882 0 %100 8 M6 Z .509 .509 0 %100 9 M7 X 703 703 0 %100 10 M7 Z .406 .406 0 %100 11 M8 X 068 068 0 %100 12 M8 Z .039 .039 0 %100 13 M9 X 882 882 0 %100 14 M9 Z .509 .509 0 %100 15 M10 X 70			X			0	
4 M3 Z .341 .341 0 %100 5 M5 X .068 .068 0 %100 6 M5 Z .039 .039 0 %100 7 M6 X .382 .882 0 %100 8 M6 Z .509 .509 0 %4100 9 M7 X .703 .703 0 %100 10 M7 Z .406 .406 0 %4100 11 M8 X .088 .068 0 %4100 12 M8 Z .039 .039 0 %4100 13 M9 X .882 .882 0 %100 14 M9 Z .509 .509 0 %100 15 M10 X .703 .703 0 %100 15 M10 X .703 <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td>						0	
5 M5 X -,068 -,068 0 %100 6 M5 Z ,039 ,039 0 %100 7 M6 X -,882 -,882 0 %100 8 M6 Z ,509 ,509 0 %100 9 M7 X -,703 -,703 0 %100 10 M7 Z ,406 ,406 0 %100 11 M8 X -,068 -,068 0 %100 12 M8 Z ,039 ,039 0 %1100 13 M9 X -,882 -,882 0 %100 14 M9 Z ,509 ,509 0 %100 15 M10 X -,703 -,703 0 %100 17 OVP X -,183 -,183 0 %100 18 OVP Z	3					0	
6 M5 Z 0.039 0.039 0 %100 7 M6 X 882 882 0 %100 8 M6 Z .509 .509 0 %100 9 M7 X 703 703 0 %100 10 M7 Z 406 406 0 %1100 11 M8 X 068 068 0 %1100 12 M8 X 068 068 0 %1100 13 M9 X 882 882 0 %1100 14 M9 Z .509 .509 0 %1100 15 M10 X 703 703 0 %1100 15 M10 X 703 703 0 %100 17 OVP X 183 183 0 %100 18 OVP Z <td>4</td> <td>M3</td> <td></td> <td>.341</td> <td>.341</td> <td>0</td> <td>%100</td>	4	M3		.341	.341	0	%100
7 M6 X 882 882 0 %100 8 M6 Z .509 .509 0 %100 9 M7 X 703 703 0 %100 10 M7 Z .406 .406 0 %100 11 M8 X 068 068 0 %100 11 M8 X 068 068 0 %100 12 M8 Z .039 .039 0 %100 13 M9 X 882 882 0 %100 14 M9 Z .509 .509 0 %100 15 M10 X 703 703 0 %100 15 M10 X 703 703 0 %100 16 M10 Z .406 .406 0 %100 17 OVP X	5		X			0	
8 M6 Z 509 509 0 %100 9 M7 X 703 703 0 %100 10 M7 Z .406 .406 0 %100 11 M8 X 068 068 0 %100 12 M8 Z .039 .039 0 %100 13 M9 X 882 882 0 %100 14 M9 Z .509 .509 0 %100 15 M10 X 703 703 0 %100 15 M10 X 703 703 0 %100 15 M10 X 703 703 0 %100 16 M10 Z .406 .406 0 %100 17 OVP X 183 183 0 %100 18 OVP Z	6	M5	Z	.039	.039	0	%100
9 M7 X 703 703 0 %100 10 M7 Z 406 .406 0 %100 11 M8 X 068 0 %100 12 M8 Z .039 .039 0 %100 13 M9 X 882 882 0 %100 14 M9 Z .509 .509 0 %100 15 M10 X 703 703 0 %100 16 M10 Z .406 .406 0 %100 16 M10 Z .406 .406 0 %100 17 OVP X 183 183 0 %100 18 OVP Z .106 .106 0 %100 20 M12 X -2.386 -2.386 0 %100 21 M13 X 183	7	M6		882	882	0	%100
10 M7 Z 406 .406 0 %100 11 M8 X .068 068 0 %100 12 M8 Z .039 .039 0 %100 13 M9 X .882 882 0 %100 14 M9 Z .509 .509 0 %100 15 M10 X .703 703 0 %100 16 M10 Z .406 .406 0 %100 16 M10 Z .406 .406 0 %100 17 OVP X 183 183 0 %100 19 M12 X -2.386 -2.386 0 %100 20 M12 Z 1.378 1.378 0 %100 21 M13 X -183 -183 0 %100 22 M13 Z						0	
111 M8 X 068 068 0 %100 12 M8 Z .039 .039 0 %100 13 M9 X 882 882 0 %100 14 M9 Z .509 .509 0 %100 15 M10 X 703 703 0 %100 16 M10 Z .406 .406 0 %100 16 M10 Z .406 .406 0 %100 17 OVP X 183 183 0 %100 18 OVP Z .106 .106 0 %100 19 M12 X 2386 -2.386 0 %100 20 M12 Z 1.378 1.378 0 %100 21 M13 X 183 183 0 %100 22 M13 Z		M7	X	703	703	0	%100
12 M8 Z .039 .039 0 %100 13 M9 X 882 882 0 %100 14 M9 Z .509 .509 0 %100 15 M10 X 703 703 0 %100 16 M10 Z .406 .406 0 %100 17 OVP X 183 183 0 %100 18 OVP Z .106 .106 0 %100 19 M12 X -2.386 -2.386 0 %100 20 M12 Z 1.378 1.378 0 %100 21 M13 X 183 183 0 %100 22 M13 Z 1.06 .106 0 %100 23 M14 X -2.386 -2.386 0 %100 24 M14 <td< td=""><td>10</td><td></td><td></td><td>.406</td><td>.406</td><td>0</td><td></td></td<>	10			.406	.406	0	
13 M9 X 882 882 0 %100 14 M9 Z .509 .509 0 %100 15 M10 X 703 703 0 %100 16 M10 Z .406 .406 0 %100 17 OVP X 183 183 0 %100 18 OVP Z .106 .106 0 %100 19 M12 X -2.386 -2.386 0 %100 20 M12 Z 1.378 1.378 0 %100 21 M13 X 183 183 0 %100 21 M13 X 183 183 0 %100 23 M14 X -2.386 -2.386 0 %100 24 M14 X -2.386 -2.386 0 %100 25 M15		M8	X	068	068	0	%100
14 M9 Z .509 .509 0 %100 15 M10 X 703 703 0 %100 16 M10 Z 406 406 0 %100 17 OVP X 183 183 0 %100 18 OVP Z .106 .106 0 %100 19 M12 X -2.386 -2.386 0 %100 20 M12 Z 1.378 1.378 0 %100 21 M13 X 183 183 0 %100 22 M13 Z .106 .106 0 %100 23 M14 X -2.386 -2.386 0 %100 23 M14 X -2.386 -2.386 0 %100 25 M15 X -2.003 -2.003 0 %100 26 M15	12	M8		.039	.039	0	%100
15 M10 X 703 703 0 %100 16 M10 Z .406 .406 0 %100 17 OVP X 183 183 0 %100 18 OVP Z .106 .106 0 %100 19 M12 X -2.386 -2.386 0 %100 20 M12 Z 1.378 1.378 0 %100 21 M13 X 183 183 0 %100 22 M13 Z .106 .106 0 %100 23 M14 X -2.386 -2.386 0 %100 24 M14 Z 1.378 1.378 0 %100 24 M14 Z 1.378 1.378 0 %100 25 M15 X -2.036 -2.386 0 %100 26 M15	13	M9		882	882	0	%100
16 M10 Z .406 .406 0 %100 17 OVP X 183 183 0 %100 18 OVP Z .106 .106 0 %100 19 M12 X -2.386 -2.386 0 %100 20 M12 Z 1.378 1.378 0 %100 21 M13 X 183 183 0 %100 21 M13 X 183 183 0 %100 22 M13 Z .106 .06 0 %100 23 M14 X -2.386 -2.386 0 %100 24 M14 Z 1.378 1.378 0 %100 25 M15 X -2.003 -2.003 0 %100 26 M15 Z 1.156 1.156 0 %100 28 M16	14	M9	Z	.509	.509	0	%100
17 OVP X 183 183 0 %100 18 OVP Z .106 .106 0 %100 19 M12 X -2.386 -2.386 0 %100 20 M12 Z 1.378 1.378 0 %100 21 M13 X 183 183 0 %100 22 M13 Z .106 .106 0 %100 23 M14 X -2.386 -2.386 0 %100 24 M14 Z 1.378 1.378 0 %100 24 M14 Z 1.378 1.378 0 %100 26 M15 X -2.036 -2.003 0 %100 27 M16 X -1.815 -1.815 0 %100 28 M16 Z 1.048 1.048 0 %100 29 M17 <td>15</td> <td>M10</td> <td>X</td> <td>703</td> <td>703</td> <td>0</td> <td>%100</td>	15	M10	X	703	703	0	%100
18 OVP Z .106 .106 0 %100 19 M12 X -2.386 -2.386 0 %100 20 M12 Z 1.378 1.378 0 %100 21 M13 X 183 183 0 %100 22 M13 Z .106 .106 0 %100 23 M14 X -2.386 -2.386 0 %100 24 M14 Z 1.378 1.378 0 %100 24 M14 Z 1.378 1.378 0 %100 25 M15 X -2.003 -2.003 0 %100 26 M15 Z 1.156 1.156 0 %100 27 M16 X -1.815 -1.815 0 %100 28 M16 Z 1.048 1.048 0 %100 29 M17 <td>16</td> <td>M10</td> <td></td> <td>.406</td> <td>.406</td> <td>0</td> <td>%100</td>	16	M10		.406	.406	0	%100
19 M12 X -2.386 -2.386 0 %100 20 M12 Z 1.378 1.378 0 %100 21 M13 X 183 183 0 %100 22 M13 Z .106 .106 0 %100 23 M14 X -2.386 -2.386 0 %100 24 M14 Z 1.378 1.378 0 %100 24 M14 Z 1.378 1.378 0 %100 25 M15 X -2.003 -2.003 0 %100 26 M15 Z 1.156 1.156 0 %100 27 M16 X -1.815 0 %100 28 M16 Z 1.048 1.048 0 %100 29 M17 X -2.003 -2.003 0 %100 30 M17 Z	17	OVP	X	183	183	0	%100
20 M12 Z 1.378 1.378 0 %100 21 M13 X 183 183 0 %100 22 M13 Z .106 .106 0 %100 23 M14 X -2.386 -2.386 0 %100 24 M14 Z 1.378 1.378 0 %100 25 M15 X -2.003 -2.003 0 %100 26 M15 X -2.003 -2.003 0 %100 27 M16 X -1.815 -1.815 0 %100 28 M16 Z 1.048 1.048 0 %100 29 M17 X -2.003 -2.003 0 %100 30 M17 Z 1.156 1.156 0 %100 31 M18 X -1.815 -1.815 0 %100 32 M	18	OVP	Z	.106	.106	0	%100
21 M13 X 183 183 0 %100 22 M13 Z .106 .106 0 %100 23 M14 X -2.386 -2.386 0 %100 24 M14 Z 1.378 1.378 0 %100 24 M14 Z 1.378 1.378 0 %100 25 M15 X -2.003 -2.003 0 %100 26 M15 Z 1.156 1.156 0 %100 27 M16 X -1.815 -1.815 0 %100 28 M16 Z 1.048 1.048 0 %100 29 M17 X -2.003 -2.003 0 %100 30 M17 Z 1.156 1.156 0 %100 31 M18 X -1.815 0 %100 32 M18 Z	19	M12	X	-2.386	-2.386	0	%100
22 M13 Z .106 .106 0 %100 23 M14 X -2.386 -2.386 0 %100 24 M14 Z 1.378 1.378 0 %100 25 M15 X -2.003 -2.003 0 %100 26 M15 Z 1.156 1.156 0 %100 27 M16 X -1.815 0 %100 28 M16 Z 1.048 1.048 0 %100 28 M16 Z 1.048 1.048 0 %100 30 M17 X -2.003 -2.003 0 %100 30 M17 Z 1.156 1.156 0 %100 31 M18 X -1.815 -1.815 0 %100 32 M18 Z 1.048 1.048 0 %100 33 M19 X	20	M12	Z	1.378	1.378	0	%100
23 M14 X -2.386 -2.386 0 %100 24 M14 Z 1.378 1.378 0 %100 25 M15 X -2.003 -2.003 0 %100 26 M15 Z 1.156 1.156 0 %100 27 M16 X -1.815 0 %100 28 M16 Z 1.048 0 %100 28 M16 Z 1.048 0 %100 29 M17 X -2.003 -2.003 0 %100 30 M17 Z 1.156 1.156 0 %100 31 M18 X -1.815 -1.815 0 %100 32 M18 X -1.815 -1.815 0 %100 33 M19 X -2.013 -2.013 0 %100 34 M19 X -2.003 -2.	21	M13	X	183	183	0	%100
24 M14 Z 1.378 1.378 0 %100 25 M15 X -2.003 -2.003 0 %100 26 M15 Z 1.156 1.156 0 %100 27 M16 X -1.815 -1.815 0 %100 28 M16 Z 1.048 1.048 0 %100 29 M17 X -2.003 -2.003 0 %100 30 M17 Z 1.156 1.156 0 %100 31 M18 X -1.815 -1.815 0 %100 31 M18 X -1.815 -1.815 0 %100 32 M18 Z 1.048 1.048 0 %100 33 M19 X -2.013 -2.013 0 %100 34 M19 X -2.013 -2.003 0 %100 35 <	22	M13	Z	.106	.106	0	%100
25 M15 X -2.003 -2.003 0 %100 26 M15 Z 1.156 1.156 0 %100 27 M16 X -1.815 -1.815 0 %100 28 M16 Z 1.048 1.048 0 %100 29 M17 X -2.003 -2.003 0 %100 30 M17 Z 1.156 1.156 0 %100 31 M18 X -1.815 -1.815 0 %100 32 M18 Z 1.048 1.048 0 %100 33 M19 X -2.013 -2.013 0 %100 34 M19 X -2.013 -2.013 0 %100 36 M20 X -2.003 -2.003 0 %100 36 M20 Z 1.156 1.156 0 %100 37 <	23	M14	X	-2.386	-2.386	0	%100
26 M15 Z 1.156 1.156 0 %100 27 M16 X -1.815 -1.815 0 %100 28 M16 Z 1.048 1.048 0 %100 29 M17 X -2.003 -2.003 0 %100 30 M17 Z 1.156 1.156 0 %100 31 M18 X -1.815 -1.815 0 %100 32 M18 X -1.815 -1.815 0 %100 33 M19 X -2.013 -2.013 0 %100 34 M19 X -2.013 -2.013 0 %100 35 M20 X -2.003 -2.003 0 %100 36 M20 X -2.003 -2.003 0 %100 37 M21 X -2.003 -2.003 0 %100 38	24	M14	Z	1.378	1.378	0	%100
27 M16 X -1.815 -1.815 0 %100 28 M16 Z 1.048 1.048 0 %100 29 M17 X -2.003 -2.003 0 %100 30 M17 Z 1.156 1.156 0 %100 31 M18 X -1.815 -1.815 0 %100 32 M18 Z 1.048 1.048 0 %100 33 M19 X -2.013 -2.013 0 %100 34 M19 Z 1.162 1.162 0 %100 35 M20 X -2.003 -2.003 0 %100 36 M20 Z 1.156 1.156 0 %100 37 M21 X -2.003 -2.003 0 %100 38 M21 Z 1.156 1.156 0 %100 39 M22 X -1.731 -1.731 0 %100 40 M22 <td>25</td> <td>M15</td> <td></td> <td>-2.003</td> <td>-2.003</td> <td>0</td> <td>%100</td>	25	M15		-2.003	-2.003	0	%100
28 M16 Z 1.048 1.048 0 %100 29 M17 X -2.003 -2.003 0 %100 30 M17 Z 1.156 1.156 0 %100 31 M18 X -1.815 -1.815 0 %100 32 M18 Z 1.048 1.048 0 %100 33 M19 X -2.013 -2.013 0 %100 34 M19 Z 1.162 1.162 0 %100 35 M20 X -2.003 -2.003 0 %100 36 M20 Z 1.156 1.156 0 %100 37 M21 X -2.003 -2.003 0 %100 38 M21 Z 1.156 1.156 0 %100 39 M22 X -1.731 -1.731 0 %100 40 <td< td=""><td>26</td><td>M15</td><td>Z</td><td>1.156</td><td>1.156</td><td>0</td><td>%100</td></td<>	26	M15	Z	1.156	1.156	0	%100
29 M17 X -2.003 -2.003 0 %100 30 M17 Z 1.156 1.156 0 %100 31 M18 X -1.815 -1.815 0 %100 32 M18 Z 1.048 1.048 0 %100 33 M19 X -2.013 -2.013 0 %100 34 M19 Z 1.162 1.162 0 %100 35 M20 X -2.003 -2.003 0 %100 36 M20 Z 1.156 1.156 0 %100 37 M21 X -2.003 -2.003 0 %100 38 M21 Z 1.156 1.156 0 %100 39 M22 X -1.731 -1.731 0 %100 40 M22 Z 1 1 0 %100	27	M16	X	-1.815	-1.815	0	%100
30 M17 Z 1.156 1.156 0 %100 31 M18 X -1.815 -1.815 0 %100 32 M18 Z 1.048 1.048 0 %100 33 M19 X -2.013 -2.013 0 %100 34 M19 Z 1.162 1.162 0 %100 35 M20 X -2.003 -2.003 0 %100 36 M20 Z 1.156 1.156 0 %100 37 M21 X -2.003 -2.003 0 %100 38 M21 Z 1.156 1.156 0 %100 39 M22 X -1.731 -1.731 0 %100 40 M22 Z 1 1 0 %100	28	M16		1.048	1.048	0	%100
31 M18 X -1.815 -1.815 0 %100 32 M18 Z 1.048 1.048 0 %100 33 M19 X -2.013 -2.013 0 %100 34 M19 Z 1.162 1.162 0 %100 35 M20 X -2.003 -2.003 0 %100 36 M20 Z 1.156 1.156 0 %100 37 M21 X -2.003 -2.003 0 %100 38 M21 Z 1.156 1.156 0 %100 39 M22 X -1.731 -1.731 0 %100 40 M22 Z 1 1 0 %100	29	M17		-2.003	-2.003	0	%100
32 M18 Z 1.048 1.048 0 %100 33 M19 X -2.013 -2.013 0 %100 34 M19 Z 1.162 1.162 0 %100 35 M20 X -2.003 -2.003 0 %100 36 M20 Z 1.156 1.156 0 %100 37 M21 X -2.003 -2.003 0 %100 38 M21 Z 1.156 1.156 0 %100 39 M22 X -1.731 -1.731 0 %100 40 M22 Z 1 1 0 %100	30	M17	Z	1.156	1.156	0	%100
33 M19 X -2.013 -2.013 0 %100 34 M19 Z 1.162 1.162 0 %100 35 M20 X -2.003 -2.003 0 %100 36 M20 Z 1.156 1.156 0 %100 37 M21 X -2.003 -2.003 0 %100 38 M21 Z 1.156 1.156 0 %100 39 M22 X -1.731 -1.731 0 %100 40 M22 Z 1 1 0 %100		M18	X	-1.815	-1.815	0	
34 M19 Z 1.162 1.162 0 %100 35 M20 X -2.003 -2.003 0 %100 36 M20 Z 1.156 1.156 0 %100 37 M21 X -2.003 -2.003 0 %100 38 M21 Z 1.156 1.156 0 %100 39 M22 X -1.731 -1.731 0 %100 40 M22 Z 1 1 0 %100		M18			1.048	0	%100
35 M20 X -2.003 -2.003 0 %100 36 M20 Z 1.156 1.156 0 %100 37 M21 X -2.003 -2.003 0 %100 38 M21 Z 1.156 1.156 0 %100 39 M22 X -1.731 -1.731 0 %100 40 M22 Z 1 1 0 %100	33	M19		-2.013	-2.013	0	%100
36 M20 Z 1.156 0 %100 37 M21 X -2.003 -2.003 0 %100 38 M21 Z 1.156 1.156 0 %100 39 M22 X -1.731 -1.731 0 %100 40 M22 Z 1 1 0 %100		M19		1.162	1.162	0	%100
37 M21 X -2.003 -2.003 0 %100 38 M21 Z 1.156 1.156 0 %100 39 M22 X -1.731 -1.731 0 %100 40 M22 Z 1 1 0 %100	35	M20	X	-2.003	-2.003	0	%100
38 M21 Z 1.156 0 %100 39 M22 X -1.731 -1.731 0 %100 40 M22 Z 1 1 0 %100	36	M20	Z	1.156	1.156	0	%100
39 M22 X -1.731 -1.731 0 %100 40 M22 Z 1 1 0 %100	37	M21		-2.003	-2.003	0	%100
40 M22 Z 1 1 0 %100	38	M21	Z	1.156	1.156	0	%100
40 M22 Z 1 1 0 %100	39	M22		-1.731	-1.731	0	%100
41 M23 X -1.731 -1.731 0 %100	40	M22	Z	1	1	0	%100
	41	M23	X	-1.731	-1.731	0	%100

Company : Maser Consulting

Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
42	M23	Z	1	1	0	%100
43	M24	X	-2.024	-2.024	0	%100
44	M24	Z	1.169	1.169	0	%100
45	M25	X	-2.013	-2.013	0	%100
46	M25	Z	1.162	1.162	0	%100
47	M26	X	-2.003	-2.003	0	%100
48	M26	Z	1.156	1.156	0	%100
49	M27	X	-1.28	-1.28	0	%100
50	M27	Z	.739	.739	0	%100
51	M28	X	-2.003	-2.003	0	%100
52	M28	Z	1.156	1.156	0	%100
53	M29	X	-1.28	-1.28	0	%100
54	M29	Z	.739	.739	0	%100
55	M30	X	-2.013	-2.013	0	%100
56	M30	Z	1.162	1.162	0	%100
57	M31	X	-2.003	-2.003	0	%100
58	M31	Z	1.156	1.156	0	%100
59	M32	X	-2.003	-2.003	0	%100
60	M32	Z	1.156	1.156	0	%100
61	M33	X	-1.731	-1.731	0	%100
62	M33	Z	1	1	0	%100
63	M34	X	-1.731	-1.731	0	%100
64	M34	Z	1	1	0	%100
65	M35	X	-2.024	-2.024	0	%100
66	M35	Z	1.169	1.169	0	%100
67	M36	X	-2.013	-2.013	0	%100
68	M36	Z	1.162	1.162	0	%100
69	MP6A	X	-2.544	-2.544	0	%100
70	MP6A	Z	1.469	1.469	0	%100
71	MP5A	X	-2.544	-2.544	0	%100
72	MP5A	Z	1.469	1.469	0	%100
73	MP3A	Χ	-2.813	-2.813	0	%100
74	MP3A	Z	1.624	1.624	0	%100
75	MP1A	X	-2.544	-2.544	0	%100
76	MP1A	Z	1.469	1.469	0	%100
77	MP4A	X	-2.544	-2.544	0	%100
78	MP4A	Z	1.469	1.469	0	%100
79	MP2A	X	-2.544	-2.544	0	%100
80	MP2A	Z	1.469	1.469	0	%100
81	M55	X	-3.109	-3.109	0	%100
82	M55	Z	1.795	1.795	0	%100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M3	X	0	0	0	%100
4	M3	Z	0	0	0	%100
5	M5	X	553	553	0	%100
6	M5	Z	0	0	0	%100
7	M6	X	553	553	0	%100
8	M6	Z	0	0	0	%100
9	M7	X	0	0	0	%100
10	M7	Z	0	0	0	%100
11	M8	X	553	553	0	%100
12	M8	Z	0	0	0	%100

Company Designer Job Number : NL : 21777866A Model Name : Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 62: Structure Wi (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[in,%]	
13	M9	X	553	553	0	%100
14	M9	Z	0	0	0	%100
15	M10	X	0	0	0	%100
16	M10	Z	0	0	0	%100
17	OVP	X	-1.497	-1.497	0	%100
18	OVP	Z	0	0	0	%100
19	M12	X	-1.497	-1.497	0	%100
20	M12	Z	0	0	0	%100
21	M13	X	-1.497	-1.497	0	%100
22	M13	Z	0	0	Ö	%100
23	M14	X	-1.497	-1.497	0	%100 %100
24	M14	Z	0	0	0	%100 %100
25	M15	X	-2.717	-2.717	0	%100 %100
26	M15	Z	0	0	0	%100 %100
27	M16	X	-1.79	-1.79	0	%100 %100
28		Z	0	0	0	%100 %100
	M16					
29	M17	X	-2.717	-2.717	0	%100
30	M17	Z	0	0	0	%100
31	M18	X	-1.79	-1.79	0	%100
32	M18	Z	0	0	0	%100
33	M19	X	-2.717	-2.717	0	%100
34	M19	Z	0	0	0	%100
35	M20	X	-2.717	-2.717	0	%100
36	M20	Z	0	0	0	%100
37	M21	X	-2.717	-2.717	0	%100
38	M21	Z	0	0	0	%100
39	M22	X	-1.999	-1.999	0	%100
40	M22	Z	0	0	0	%100
41	M23	X	-1.999	-1.999	0	%100
42	M23	Z	0	0	0	%100
43	M24	X	-2.337	-2.337	0	%100
44	M24	Z	0	0	0	%100
45	M25	X	-2.717	-2.717	0	%100
46	M25	Z	0	0	0	%100
47	M26	X	-2.717	-2.717	0	%100
48	M26	Z	0	0	0	%100
49	M27	X	-1.79	-1.79	0	%100
50	M27	Z	0	0	Ö	%100 %100
51	M28	X	-2.717	-2.717	0	%100
52	M28	Z	0	0	0	%100 %100
53	M29	X	-1.79	-1.79	0	%100
54	M29	Z	0	0	0	%100 %100
55	M30	X	-2.717	-2.717	0	%100 %100
56	M30	Z	-2.717	0	0	%100 %100
57	M31	X	-2.717	-2.717	0	%100 %100
58	M31	Z	-2.717	-2.717	0	%100 %100
59	M32	X	-2.717	-2.717	0	%100
60	M32	Z	0	0	0	%100
61	M33	X	-1.999	-1.999	0	%100
62	M33	Z	0	0	0	%100
63	M34	X	-1.999	-1.999	0	%100
64	M34	Z	0	0	0	%100
65	M35	X	-2.337	-2.337	0	%100
66	M35	Z	0	0	0	%100
67	M36	X	-2.717	-2.717	0	%100
68	M36	Z	0	0	0	%100
69	MP6A	X	-2.938	-2.938	0	%100

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 62: Structure Wi (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
70	MP6A	Z	0	0	0	%100
71	MP5A	X	-2.938	-2.938	0	%100
72	MP5A	Z	0	0	0	%100
73	MP3A	X	-3.249	-3.249	0	%100
74	MP3A	Z	0	0	0	%100
75	MP1A	X	-2.938	-2.938	0	%100
76	MP1A	Z	0	0	0	%100
77	MP4A	X	-2.938	-2.938	0	%100
78	MP4A	Z	0	0	0	%100
79	MP2A	X	-2.938	-2.938	0	%100
80	MP2A	Z	0	0	0	%100
81	M55	X	-3.09	-3.09	0	%100
82	M55	Z	0	0	0	%100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	X	59	59	0	%100
2	M1	Z	341	341	0	%100
3	M3	X	59	59	0	%100
4	M3	Z	341	341	0	%100
5	M5	X	882	882	0	%100
6	M5	Z	509	509	0	%100
7	M6	X	068	068	0	%100
8	M6	Z	039	039	0	%100
9	M7	X	703	703	0	%100
10	M7	Z	406	406	0	%100
11	M8	X	882	882	0	%100
12	M8	Z	509	509	0	%100
13	M9	X	068	068	0	%100
14	M9	Z	039	039	0	%100
15	M10	X	703	703	0	%100
16	M10	Z	406	406	0	%100
17	OVP	X	-2.386	-2.386	0	%100
18	OVP	Z	-1.378	-1.378	0	%100
19	M12	X	183	183	0	%100
20	M12	Z	106	106	0	%100
21	M13	X	-2.386	-2.386	0	%100
22	M13	Z	-1.378	-1.378	0	%100
23	M14	X	183	183	0	%100
24	M14	Z	106	106	0	%100
25	M15	X	-2.003	-2.003	0	%100
26	M15	Z	-1.156	-1.156	0	%100
27	M16	X	-1.28	-1.28	0	%100
28	M16	Z	739	739	0	%100
29	M17	X	-2.003	-2.003	0	%100
30	M17	Z	-1.156	-1.156	0	%100
31	M18	X	-1.28	-1.28	0	%100
32	M18	Z	739	739	0	%100
33	M19	X	-2.013	-2.013	0	%100
34	M19	Z	-1.162	-1.162	0	%100
35	M20	X	-2.003	-2.003	0	%100
36	M20	Z	-1.156	-1.156	0	%100
37	M21	X	-2.003	-2.003	0	%100
38	M21	Z	-1.156	-1.156	0	%100
39	M22		-1.731	-1.731	0	%100
40	M22	X Z	-1	-1	0	%100

Company Designer : NL

Job Number 21777866A Model Name : Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 63: Structure Wi (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
41	M23	X	-1.731	-1.731	0	%100
42	M23	Z	-1	-1	0	%100
43	M24	X	-2.024	-2.024	0	%100
44	M24	Z	-1.169	-1.169	0	%100
45	M25	X	-2.013	-2.013	0	%100
46	M25	Z	-1.162	-1.162	0	%100
47	M26	X	-2.003	-2.003	0	%100
48	M26	Z	-1.156	-1.156	0	%100
49	M27	X	-1.815	-1.815	0	%100
50	M27	Z	-1.048	-1.048	0	%100
51	M28	X	-2.003	-2.003	0	%100
52	M28	Z	-1.156	-1.156	0	%100
53	M29	X	-1.815	-1.815	0	%100
54	M29	Z	-1.048	-1.048	0	%100
55	M30	X	-2.013	-2.013	0	%100
56	M30	Z	-1.162	-1.162	0	%100
57	M31	X	-2.003	-2.003	0	%100
58	M31	Z	-1.156	-1.156	0	%100
59	M32	X	-2.003	-2.003	0	%100
60	M32	Z	-1.156	-1.156	0	%100
61	M33	X	-1.731	-1.731	0	%100
62	M33	Z	-1	-1	0	%100
63	M34	X	-1.731	-1.731	0	%100
64	M34	Z	-1	-1	0	%100
65	M35	X	-2.024	-2.024	0	%100
66	M35	Z	-1.169	-1.169	0	%100
67	M36	X	-2.013	-2.013	0	%100
68	M36	Z	-1.162	-1.162	0	%100
69	MP6A	X	-2.544	-2.544	0	%100
70	MP6A	Z	-1.469	-1.469	0	%100
71	MP5A	X	-2.544	-2.544	0	%100
72	MP5A	Z	-1.469	-1.469	0	%100
73	MP3A	X	-2.813	-2.813	0	%100
74	MP3A	Z	-1.624	-1.624	0	%100
75	MP1A	X	-2.544	-2.544	0	%100
76	MP1A	Z	-1.469	-1.469	0	%100
77	MP4A	X	-2.544	-2.544	0	%100
78	MP4A	Z	-1.469	-1.469	0	%100
79	MP2A	Χ	-2.544	-2.544	0	%100
80	MP2A	Z	-1.469	-1.469	0	%100
81	M55	X	-1.205	-1.205	0	%100
82	M55	Z	696	696	0	%100

Member Distributed Loads (BLC 64: Structure Wi (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
1	M1	X	-1.023	-1.023	0	%100
2	M1	Z	-1.771	-1.771	0	%100
3	M3	X	-1.023	-1.023	0	%100
4	M3	Z	-1.771	-1.771	0	%100
5	M5	X	504	504	0	%100
6	M5	Z	873	873	0	%100
7	M6	X	034	034	0	%100
8	M6	Z	059	059	0	%100
9	M7	X	-1.218	-1.218	0	%100
10	M7	Z	-2.11	-2.11	0	%100
11	M8	X	504	504	0	%100

Company Designer Job Number : NL : 21777866A Model Name : Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 64: Structure Wi (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	
12	M8	Z	873	873	0	%100
13	M9	X	034	034	0	%100
14	M9	Z	059	059	0	%100
15	M10	X	-1.218	-1.218	0	%100
16	M10	Z	-2.11	-2.11	0	%100
17	OVP	X	-1.364	-1.364	0	%100
18	OVP	Z	-2.362	-2.362	0	%100
19	M12	X	092	092	0	%100
20	M12	Z	159	159	Ö	%100
21	M13	X	-1.364	-1.364	0	%100 %100
22	M13	Z	-2.362	-2.362	Ö	%100
23	M14	X	092	092	0	%100
24	M14	Z	159	159	0	%100 %100
25	M15	X	752	752	0	%100 %100
26	M15	Z	-1.302	-1.302	0	%100 %100
27						
	M16	X	735 -1.274	735 -1.274	0	%100
28	M16	Z			0	%100
29	M17	X	752	752	0	%100
30	M17	Z	-1.302	-1.302	0	%100
31	M18	X	735	735	0	%100
32	M18	Z	-1.274	-1.274	0	%100
33	M19	X	77	77	0	%100
34	M19	Z	-1.334	-1.334	0	%100
35	M20	X	752	752	0	%100
36	M20	Z	-1.302	-1.302	0	%100
37	M21	X	752	752	0	%100
38	M21	Z	-1.302	-1.302	0	%100
39	M22	X	-1	-1	0	%100
40	M22	Z	-1.731	-1.731	0	%100
41	M23	X	-1	-1	0	%100
42	M23	Z	-1.731	-1.731	0	%100
43	M24	X	-1.169	-1.169	0	%100
44	M24	Z	-2.024	-2.024	0	%100
45	M25	X	77	77	0	%100
46	M25	Z	-1.334	-1.334	0	%100
47	M26	X	752	752	0	%100
48	M26	Z	-1.302	-1.302	0	%100
49	M27	X	-1.044	-1.044	0	%100
50	M27	Z	-1.809	-1.809	0	%100
51	M28	X	752	752	0	%100
52	M28	Z	-1.302	-1.302	0	%100
53	M29	X	-1.044	-1.044	0	%100
54	M29	Z	-1.809	-1.809	0	%100 %100
55	M30	X	77	77	0	%100 %100
56	M30	Z	-1.334	-1.334	0	%100 %100
57	M31	X	752	752	0	%100 %100
58	M31	Z	-1.302	-1.302	0	%100
59	M32		752		0	%100 %100
60	M32	X Z	-1.302	752 -1.302	0	%100 %100
61	M33	X	-1.302	-1.302	0	%100 %100
62	M33	Z	-1.731	-1.731	0	%100 %100
63	M34	X	-1	-1	0	%100
64	M34	Z	-1.731	-1.731	0	%100
65	M35	X	-1.169	-1.169	0	%100
66	M35	Z	-2.024	-2.024	0	%100
67	M36	X	77	77	0	%100
68	M36	Z	-1.334	-1.334	0	%100

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 64: Structure Wi (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
69	MP6A	X	-1.469	-1.469	0	%100
70	MP6A	Z	-2.544	-2.544	0	%100
71	MP5A	X	-1.469	-1.469	0	%100
72	MP5A	Z	-2.544	-2.544	0	%100
73	MP3A	X	-1.624	-1.624	0	%100
74	MP3A	Z	-2.813	-2.813	0	%100
75	MP1A	X	-1.469	-1.469	0	%100
76	MP1A	Z	-2.544	-2.544	0	%100
77	MP4A	X	-1.469	-1.469	0	%100
78	MP4A	Z	-2.544	-2.544	0	%100
79	MP2A	X	-1.469	-1.469	0	%100
80	MP2A	Z	-2.544	-2.544	0	%100
81	M55	X	097	097	0	%100
82	M55	Z	167	167	0	%100

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg))

1 M1 X 0 0 %100 3 M3 X 0 0 0 %100 4 M3 Z 007 007 0 %100 5 M5 X 0 0 0 %100 6 M5 Z 000411 000411 0 %100 7 M6 X 0 0 0 %100 8 M6 Z 000411 000411 0 %100 9 M7 X 0 0 0 %100 10 M7 Z 006 006 0 %100 11 M8 X 0 0 0 %100 12 M8 Z 000411 000411 0 %100 13 M9 X 0 0 0 %100 14 M9 Z 000411 000411 <		Member Label		Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[in,%]	
3 M3 X 0 0 0 %100 4 M3 Z 007 007 0 %100 5 M5 X 0 0 0 %100 6 M5 Z 000411 000411 0 %100 7 M6 X 0 0 0 %100 8 M6 Z 000411 000411 0 %100 9 M7 X 0 0 0 %100 10 M7 Z 006 006 0 %100 11 M8 X 0 0 0 %100 12 M8 Z 000411 000411 0 %100 13 M9 X 0 0 0 %100 14 M9 Z 000411 000411 0 %100 15 M10 X 0		M1		•		0	
4 M3 Z -,007 -,007 0 %100 5 M5 X 0 0 0 %100 6 M5 Z -,000411 -,000411 0 %100 7 M6 X 0 0 0 %100 8 M6 Z -,000411 -,000411 0 %100 9 M7 X 0 0 0 %100 10 M7 Z -,006 -,006 0 %100 11 M8 X 0 0 0 %100 12 M8 Z -,000411 -,000411 0 %100 13 M9 X 0 0 0 %100 14 M9 Z -,000411 -,000411 0 %100 15 M10 X 0 0 0 %100 17 OVP X 0						-	
6 M5 X 0 0 %100 6 M5 Z 000411 000411 0 %100 7 M6 X 0 0 0 %100 8 M6 Z 000411 000411 0 %100 9 M7 X 0 0 0 %100 10 M7 Z 006 0 %100 11 M8 X 0 0 0 %100 12 M8 Z 000411 000411 0 %100 13 M9 X 0 0 0 %100 14 M9 Z 000411 000411 0 %100 15 M10 X 0 0 0 %100 16 M10 Z 006 006 0 %100 17 OVP X 0 0 0			X				
6 M5 Z 000411 000411 0 %100 7 M6 X 0 0 0 %100 8 M6 Z 000411 0 %100 9 M7 X 0 0 0 %100 10 M7 Z 006 006 0 %100 11 M8 X 0 0 0 %100 12 M8 Z 00411 000411 0 %100 13 M9 X 0 0 0 %100 14 M9 Z 000411 0 %100 15 M10 X 0 0 0 %100 16 M10 X 0 0 0 %100 17 OVP X 0 0 0 %100 18 OVP Z 003 003 0 %100				007	007	0	
7 M6 X 0 0 %100 8 M6 Z 000411 000411 0 %100 9 M7 X 0 0 0 %100 10 M7 Z 006 006 0 %100 11 M8 X 0 0 0 %100 12 M8 Z 000411 0 %100 13 M9 X 0 0 0 %100 14 M9 Z 00411 000411 0 %100 15 M10 X 0 0 0 %100 15 M10 X 0 0 0 %100 16 M10 Z 006 006 0 %100 17 OVP X 0 0 0 %100 18 OVP Z 003 003 0 %			X				
8 M6 Z 000411 000411 0 %100 9 M7 X 0 0 0 %100 10 M7 Z 006 006 0 %100 11 M8 X 0 0 0 %100 12 M8 Z 00411 000411 0 %100 14 M9 X 0 0 0 %100 15 M10 X 0 0 0 %100 15 M10 X 0 0 0 %100 17 OVP X 0 0 0 %100 17 OVP X 0 0 0 %100 18 OVP Z 003 003 0 %100 20 M12 X 0 0 0 %100 21 M13 X 0 0	6			000411	000411		
9 M7 X 0 0 %100 10 M7 Z 006 006 0 %100 11 M8 X 0 0 0 %100 12 M8 Z 000411 000411 0 %100 13 M9 X 0 0 0 %100 14 M9 Z 00411 0 %100 15 M10 X 0 0 0 %100 16 M10 Z 006 006 0 %100 17 OVP X 0 0 0 %100 18 OVP Z 003 003 0 %100 19 M12 X 0 0 0 %100 20 M12 Z 003 003 0 %100 21 M13 X 0 0 0 %10		M6	X			0	
10 M7 Z 006 006 0 %100 11 M8 X 0 0 0 %100 12 M8 Z 000411 000411 0 %100 13 M9 X 0 0 0 %100 14 M9 Z 000411 000411 0 %100 15 M10 X 0 0 0 %100 16 M10 Z 006 006 0 %100 17 OVP X 0 0 0 %100 18 OVP Z 003 003 0 %100 19 M12 X 0 0 0 %100 20 M12 Z 003 003 0 %100 21 M13 X 0 0 0 %100 22 M13 Z 003		M6		000411	000411	0	%100
111 M8 X 0 0 %100 122 M8 Z 000411 000411 0 %100 13 M9 X 0 0 0 %100 14 M9 Z 00411 000411 0 %100 15 M10 X 0 0 0 %100 16 M10 Z 006 006 0 %100 16 M10 Z 006 0 0 %100 18 OVP Z 003 003 0 %100 18 OVP Z 003 003 0 %100 19 M12 X 0 0 0 %100 20 M12 X 0 0 0 %100 21 M13 X 0 0 0 %100 22 M13 Z 003 003			X	0	0	0	%100
12 M8 Z 000411 000411 0 %100 13 M9 X 0 0 0 %100 14 M9 Z 000411 000411 0 %100 15 M10 X 0 0 0 %100 16 M10 Z 006 006 0 %100 17 OVP X 0 0 0 %100 18 OVP Z 003 003 0 %100 19 M12 X 0 0 0 %100 20 M12 Z 003 003 0 %100 21 M13 X 0 0 0 %100 21 M13 X 0 0 0 %100 23 M14 X 0 0 0 %100 24 M14 X 0 <td< td=""><td>10</td><td>M7</td><td>Z</td><td>006</td><td>006</td><td>0</td><td>%100</td></td<>	10	M7	Z	006	006	0	%100
13 M9 X 0 0 %100 14 M9 Z 000411 000411 0 %4100 15 M10 X 0 0 0 %100 16 M10 Z 006 006 0 %100 17 OVP X 0 0 0 %100 18 OVP Z 003 003 0 %100 19 M12 X 0 0 0 %100 20 M12 Z 003 003 0 %100 21 M13 X 0 0 0 %100 21 M13 X 0 0 0 %100 22 M13 Z 003 003 0 %100 23 M14 X 0 0 0 %100 24 M14 Z 003 003	11	M8	X	0	0	0	%100
14 M9 Z 000411 000411 0 %100 15 M10 X 0 0 0 %100 16 M10 Z 006 006 0 %100 17 OVP X 0 0 0 %100 18 OVP Z 003 003 0 %100 19 M12 X 0 0 0 %100 20 M12 Z 003 003 0 %100 20 M12 Z 003 003 0 %100 21 M13 X 0 0 0 %100 22 M13 Z 003 003 0 %100 23 M14 X 0 0 0 %100 24 M14 Z 003 003 0 %100 26 M15 X 0	12	M8	Z	000411	000411	0	%100
14 M9 Z 000411 000411 0 %100 15 M10 X 0 0 0 %100 16 M10 Z 006 006 0 %100 17 OVP X 0 0 0 %100 18 OVP Z 003 003 0 %100 19 M12 X 0 0 0 %100 20 M12 Z 003 003 0 %100 20 M12 Z 003 003 0 %100 21 M13 X 0 0 0 %100 22 M13 Z 003 003 0 %100 23 M14 X 0 0 0 %100 24 M14 Z 003 003 0 %100 26 M15 X 0	13	M9	X	0	0	0	%100
16 M10 Z 006 006 0 %100 17 OVP X 0 0 0 %100 18 OVP Z 003 003 0 %100 19 M12 X 0 0 0 %100 20 M12 Z 003 003 0 %100 21 M13 X 0 0 0 %100 22 M13 Z 003 003 0 %100 23 M14 X 0 0 0 %100 24 M14 X 0 0 0 %100 25 M15 X 0 0 0 %100 26 M15 Z 000885 000885 0 %100 27 M16 X 0 0 0 %100 29 M17 X 0 0<		M9	Z	000411	000411	0	%100
17 OVP X 0 0 %100 18 OVP Z 003 003 0 %100 19 M12 X 0 0 0 %100 20 M12 Z 003 003 0 %100 21 M13 X 0 0 0 %100 22 M13 Z 003 003 0 %100 23 M14 X 0 0 0 %100 24 M14 X 0 0 0 %100 25 M15 X 0 0 0 %100 25 M15 X 0 0 0 %100 26 M15 Z 00885 000885 0 %100 27 M16 X 0 0 0 %100 28 M16 Z 002 002 0 </td <td></td> <td>M10</td> <td>X</td> <td></td> <td></td> <td>0</td> <td>%100</td>		M10	X			0	%100
17 OVP X 0 0 %100 18 OVP Z 003 003 0 %100 19 M12 X 0 0 0 %100 20 M12 Z 003 003 0 %100 21 M13 X 0 0 0 %100 22 M13 Z 003 003 0 %100 23 M14 X 0 0 0 %100 24 M14 Z 003 003 0 %100 25 M15 X 0 0 0 %100 26 M15 Z 00885 000885 0 %100 27 M16 X 0 0 0 %100 28 M16 Z 002 002 0 %100 29 M17 X 0 0	16	M10	Z	006	006	0	%100
19 M12 X 0 0 %100 20 M12 Z 003 003 0 %100 21 M13 X 0 0 0 %100 22 M13 Z 003 003 0 %100 23 M14 X 0 0 0 %100 24 M14 Z 003 003 0 %100 25 M15 X 0 0 0 %100 26 M15 Z 000885 000885 0 %100 27 M16 X 0 0 0 %100 28 M16 Z 002 002 0 %100 29 M17 X 0 0 0 %100 31 M18 X 0 0 0 %100 32 M18 X 0 0 0<	17	OVP	X			0	%100
20 M12 Z 003 003 0 %100 21 M13 X 0 0 0 %100 22 M13 Z 003 003 0 %100 23 M14 X 0 0 0 %100 24 M14 Z 003 003 0 %100 25 M15 X 0 0 0 %100 26 M15 Z 000885 000885 0 %100 27 M16 X 0 0 0 %100 28 M16 Z 002 002 0 %100 29 M17 X 0 0 0 %100 30 M17 Z 000885 000885 0 %100 31 M18 X 0 0 0 %100 32 M18 Z 002 </td <td>18</td> <td>OVP</td> <td>Z</td> <td>003</td> <td>003</td> <td>0</td> <td>%100</td>	18	OVP	Z	003	003	0	%100
20 M12 Z 003 003 0 %100 21 M13 X 0 0 0 %100 22 M13 Z 003 003 0 %100 23 M14 X 0 0 0 %100 24 M14 Z 003 003 0 %100 25 M15 X 0 0 0 %100 26 M15 Z 000885 000885 0 %100 27 M16 X 0 0 0 %100 28 M16 Z 002 002 0 %100 29 M17 X 0 0 0 %100 30 M17 Z 000885 000885 0 %100 31 M18 X 0 0 0 %100 32 M18 Z 002 </td <td>19</td> <td>M12</td> <td>X</td> <td>0</td> <td>0</td> <td>0</td> <td>%100</td>	19	M12	X	0	0	0	%100
21 M13 X 0 0 0 %100 22 M13 Z 003 003 0 %100 23 M14 X 0 0 0 %100 24 M14 Z 003 003 0 %100 25 M15 X 0 0 0 %100 26 M15 Z 00885 000885 0 %100 26 M16 X 0 0 0 %100 27 M16 X 0 0 0 %100 28 M16 Z 002 002 0 %100 29 M17 X 0 0 0 %100 30 M17 X 0 0 0 %100 31 M18 X 0 0 0 %100 32 M18 X 0 0	20	M12	Z	003	003	0	%100
22 M13 Z 003 003 0 %100 23 M14 X 0 0 0 %100 24 M14 Z 003 003 0 %100 25 M15 X 0 0 0 %100 26 M15 Z 000885 000885 0 %100 27 M16 X 0 0 0 %100 28 M16 Z 002 002 0 %100 29 M17 X 0 0 0 %100 30 M17 Z 000885 000885 0 %100 31 M18 X 0 0 0 %100 32 M18 X 0 0 %100 33 M19 X 0 0 %100 34 M19 X 0 0 %100 <	21	M13	X	0	0	0	
23 M14 X 0 0 %100 24 M14 Z 003 003 0 %100 25 M15 X 0 0 0 %100 26 M15 Z 000885 000885 0 %100 27 M16 X 0 0 0 %100 28 M16 Z 002 002 0 %100 29 M17 X 0 0 0 %100 30 M17 Z 000885 000885 0 %100 31 M18 X 0 0 0 %100 32 M18 X 0 0 %100 33 M19 X 0 0 %100 34 M19 X 0 0 %100 35 M20 X 0 0 %100 36		M13	Z	003	003	0	
25 M15 X 0 0 %100 26 M15 Z 000885 000885 0 %100 27 M16 X 0 0 0 %100 28 M16 Z 002 002 0 %100 29 M17 X 0 0 0 %100 30 M17 Z 000885 000885 0 %100 31 M18 X 0 0 0 %100 32 M18 Z 002 002 0 %100 33 M19 X 0 0 0 %100 34 M19 Z 001 001 0 %100 35 M20 X 0 0 0 %100 36 M20 Z 000885 000885 0 %100 37 M21 X 0 0	23	M14	X			0	%100
26 M15 Z 000885 000885 0 %100 27 M16 X 0 0 0 %100 28 M16 Z 002 002 0 %100 29 M17 X 0 0 0 %100 30 M17 Z 000885 000885 0 %100 31 M18 X 0 0 0 %100 32 M18 Z 002 002 0 %100 33 M19 X 0 0 0 %100 34 M19 Z 001 001 0 %100 35 M20 X 0 0 0 %100 36 M20 Z 000885 000885 0 %100 37 M21 X 0 0 0 %100 38 M21 Z -	24	M14	Z	003	003	0	%100
27 M16 X 0 0 0 %100 28 M16 Z 002 002 0 %100 29 M17 X 0 0 0 %100 30 M17 Z 000885 000885 0 %100 31 M18 X 0 0 0 %100 32 M18 Z 002 002 0 %100 33 M19 X 0 0 0 %100 34 M19 Z 001 001 0 %100 35 M20 X 0 0 %100 36 M20 Z 000885 000885 0 %100 38 M21 Z 000885 000885 0 %100	25	M15	X	0	0	0	%100
27 M16 X 0 0 0 %100 28 M16 Z 002 002 0 %100 29 M17 X 0 0 0 %100 30 M17 Z 000885 000885 0 %100 31 M18 X 0 0 0 %100 32 M18 Z 002 002 0 %100 33 M19 X 0 0 0 %100 34 M19 Z 001 001 0 %100 35 M20 X 0 0 %100 36 M20 Z 000885 000885 0 %100 37 M21 X 0 0 0 %100 38 M21 Z 000885 000885 0 %100	26	M15		000885	000885	0	%100
28 M16 Z 002 002 0 %100 29 M17 X 0 0 0 %100 30 M17 Z 000885 000885 0 %100 31 M18 X 0 0 0 %100 32 M18 Z 002 002 0 %100 33 M19 X 0 0 0 %100 34 M19 Z 001 001 0 %100 35 M20 X 0 0 0 %100 36 M20 Z 000885 000885 0 %100 37 M21 X 0 0 0 %100 38 M21 Z 000885 000885 0 %100	27	M16	X		0	0	%100
30 M17 Z 000885 000885 0 %100 31 M18 X 0 0 0 %100 32 M18 Z 002 002 0 %100 33 M19 X 0 0 0 %100 34 M19 Z 001 001 0 %100 35 M20 X 0 0 0 %100 36 M20 Z 000885 000885 0 %100 37 M21 X 0 0 0 %100 38 M21 Z 000885 000885 0 %100	28	M16	Z	002	002	0	%100
31 M18 X 0 0 0 %100 32 M18 Z 002 002 0 %100 33 M19 X 0 0 0 %100 34 M19 Z 001 001 0 %100 35 M20 X 0 0 0 %100 36 M20 Z 000885 000885 0 %100 37 M21 X 0 0 0 %100 38 M21 Z 000885 000885 0 %100	29	M17	X	0	0	0	%100
32 M18 Z 002 002 0 %100 33 M19 X 0 0 0 %100 34 M19 Z 001 001 0 %100 35 M20 X 0 0 0 %100 36 M20 Z 000885 000885 0 %100 37 M21 X 0 0 0 %100 38 M21 Z 000885 000885 0 %100	30	M17	Z	000885	000885	0	%100
33 M19 X 0 0 0 %100 34 M19 Z 001 001 0 %100 35 M20 X 0 0 0 %100 36 M20 Z 000885 000885 0 %100 37 M21 X 0 0 0 %100 38 M21 Z 000885 000885 0 %100		M18	X				
34 M19 Z 001 001 0 %100 35 M20 X 0 0 0 %100 36 M20 Z 000885 000885 0 %100 37 M21 X 0 0 0 %100 38 M21 Z 000885 000885 0 %100		M18		002	002	0	%100
35 M20 X 0 0 0 %100 36 M20 Z 000885 000885 0 %100 37 M21 X 0 0 0 %100 38 M21 Z 000885 000885 0 %100	33	M19	X	0	0	0	%100
35 M20 X 0 0 0 %100 36 M20 Z 000885 000885 0 %100 37 M21 X 0 0 0 %100 38 M21 Z 000885 000885 0 %100						0	
36 M20 Z 000885 000885 0 %100 37 M21 X 0 0 0 %100 38 M21 Z 000885 000885 0 %100	35	M20	X	0	0	0	%100
37 M21 X 0 0 0 %100 38 M21 Z 000885 000885 0 %100		M20	Z	000885	000885		
38 M21 Z000885000885 0 %100	37	M21	X			0	
			Z	000885	000885		

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
40	M22	Z	003	003	0	%100
41	M23	X	0	0	0	%100
42	M23	Z	003	003	0	%100
43	M24	X	0	0	0	%100
44	M24	Z	004	004	0	%100
45	M25	X	0	0	0	%100
46	M25	Z	001	001	0	%100
47	M26	X	0	0	0	%100
48	M26	Z	000885	000885	0	%100
49	M27	X	0	0	0	%100
50	M27	Z	002	002	0	%100
51	M28	X	0	0	0	%100
52	M28	Z	000885	000885	Ö	%100
53	M29	X	0	0	0	%100
54	M29	Z	002	002	Ö	%100
55	M30	X	0	0	0	%100
56	M30	Z	001	001	0	%100
57	M31	X	0	0	Ö	%100
58	M31	Ž	000885	000885	Ö	%100
59	M32	X	0	0	Ö	%100
60	M32	Z	000885	000885	Ö	%100
61	M33	X	0	0	Ö	%100
62	M33	Z	003	003	Ö	%100
63	M34	X	0	0	0	%100
64	M34	Z	003	003	0	%100
65	M35	X	0	0	0	%100
66	M35	Z	004	004	0	%100
67	M36	X	0	0	0	%100
68	M36	Z	001	001	0	%100
69	MP6A	X	0	0	0	%100
70	MP6A	Z	005	005	0	%100
71	MP5A	X	0	0	0	%100
72	MP5A	Z	005	005	0	%100
73	MP3A	X	0	0	0	%100
74	MP3A	Z	006	006	0	%100
75	MP1A	X	0	0	0	%100
76	MP1A	Z	005	005	0	%100
77	MP4A	X	0	0	0	%100
78	MP4A	Z	005	005	Ö	%100
79	MP2A	X	0	0	0	%100
80	MP2A	Ž	005	005	Ö	%100
81	M55	X	0	0	0	%100
82	M55	Z	001	001	0	%100

Member Distributed Loads (BLC 66: Structure Wm (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
1	M1	X	.003	.003	0	%100
2	M1	Z	004	004	0	%100
3	M3	X	.003	.003	0	%100
4	M3	Z	004	004	0	%100
5	M5	X	2.6e-5	2.6e-5	0	%100
6	M5	Z	-4.5e-5	-4.5e-5	0	%100
7	M6	X	.000389	.000389	0	%100
8	M6	Z	000674	000674	0	%100
9	M7	X	.002	.002	0	%100
10	M7	Z	004	004	0	%100

Company Designer Job Number : NL : 21777866A Model Name : Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 66: Structure Wm (30 Deg)) (Continued)

	Member Label	Direction		. End Magnitude[lb/ft,F	.Start Location[in,%]	
11	M8	X	2.6e-5	2.6e-5	0	%100
12	M8	Z	-4.5e-5	-4.5e-5	0	%100
13	M9	X	.000389	.000389	0	%100
14	M9	Z	000674	000674	0	%100
15	M10	X	.002	.002	0	%100
16	M10	Z	004	004	0	%100
17	OVP	X	.000165	.000165	0	%100
18	OVP	Z	000287	000287	0	%100
19	M12	X	.002	.002	0	%100
20	M12	Z	004	004	0	%100
21	M13	X	.000165	.000165	0	%100
22	M13	Z	000287	000287	Ö	%100 %100
23	M14	X	.002	.002	0	%100 %100
24	M14	Z	004	004	0	%100 %100
25	M15	X	.001	.001	0	%100 %100
26	M15	Z	002	002	0	%100 %100
27	M16	X	.001	.001		%100 %100
28		Z	002	002	0	
	M16					%100 %400
29	M17	X	.001	.001	0	%100
30	M17	Z	002	002	0	%100
31	M18	X	.001	.001	0	%100
32	M18	Z	002	002	0	%100
33	M19	X	.001	.001	0	%100
34	M19	Z	002	002	0	%100
35	M20	X	.001	.001	0	%100
36	M20	Z	002	002	0	%100
37	M21	X	.001	.001	0	%100
38	M21	Z	002	002	0	%100
39	M22	X	.001	.001	0	%100
40	M22	Z	002	002	0	%100
41	M23	X	.001	.001	0	%100
42	M23	Z	002	002	0	%100
43	M24	X	.002	.002	0	%100
44	M24	Z	004	004	0	%100
45	M25	X	.001	.001	0	%100
46	M25	Z	002	002	0	%100
47	M26	X	.001	.001	0	%100
48	M26	Z	002	002	Ö	%100 %100
49	M27	X	.000961	.000961	0	%100 %100
50	M27	Z	002	002	0	%100 %100
51	M28	X	.001	.001	0	%100 %100
52	M28	Z	002	002	0	%100 %100
53	M29	X	.000961	.000961	0	%100 %100
54	M29	Z	002	002	0	%100 %100
55	M30	X	.001	.001	0	%100 %100
56	M30	Z	002	002	0	%100 %100
57	M31	X	.001	.001	0	%100 %100
58	M31	Z	002	002	0	%100
59	M32	X	.001	.001	0	%100 %400
60	M32	Z	002	002	0	%100
61	M33	X	.001	.001	0	%100
62	M33	Z	002	002	0	%100
63	M34	X	.001	.001	0	%100
64	M34	Z	002	002	0	%100
65	M35	X	.002	.002	0	%100
66	M35	Z	004	004	0	%100
67	M36	X	.001	.001	0	%100

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 66: Structure Wm (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
68	M36	Z	002	002	0	%100
69	MP6A	X	.003	.003	0	%100
70	MP6A	Z	005	005	0	%100
71	MP5A	X	.003	.003	0	%100
72	MP5A	Z	005	005	0	%100
73	MP3A	X	.003	.003	0	%100
74	MP3A	Z	006	006	0	%100
75	MP1A	X	.003	.003	0	%100
76	MP1A	Z	005	005	0	%100
77	MP4A	X	.003	.003	0	%100
78	MP4A	Z	005	005	0	%100
79	MP2A	X	.003	.003	0	%100
80	MP2A	Z	005	005	0	%100
81	M55	X	.003	.003	0	%100
82	M55	Z	004	004	0	%100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	
1	M1	X	.001	.001	0	%100
2	M1	Z	000839	000839	0	%100
3	M3	X	.001	.001	0	%100
4	M3	Z	000839	000839	0	%100
5	M5	X	5.2e-5	5.2e-5	0	%100
6	M5	Z	-3e-5	-3e-5	0	%100
7	M6	X	.000681	.000681	0	%100
8	M6	Z	000393	000393	0	%100
9	M7	X	.001	.001	0	%100
10	M7	Z	000804	000804	0	%100
11	M8	X	5.2e-5	5.2e-5	0	%100
12	M8	Z	-3e-5	-3e-5	0	%100
13	M9	X	.000681	.000681	0	%100
14	M9	Z	000393	000393	0	%100
15	M10	X	.001	.001	0	%100
16	M10	Z	000804	000804	0	%100
17	OVP	X	.00033	.00033	0	%100
18	OVP	Z	000191	000191	0	%100
19	M12	X	.004	.004	0	%100
20	M12	Z	002	002	0	%100
21	M13	X	.00033	.00033	0	%100
22	M13	Z	000191	000191	0	%100
23	M14	X	.004	.004	0	%100
24	M14	Z	002	002	0	%100
25	M15	X	.005	.005	0	%100
26	M15	Z	003	003	0	%100
27	M16	X	.002	.002	0	%100
28	M16	Z	001	001	0	%100
29	M17	X	.005	.005	0	%100
30	M17	Z	003	003	0	%100
31	M18	X	.002	.002	0	%100
32	M18	Z	001	001	0	%100
33	M19	X	.005	.005	0	%100
34	M19	Z	003	003	0	%100
35	M20	X	.005	.005	0	%100
36	M20	Z	003	003	0	%100
37	M21	X	.005	.005	0	%100
38	M21	Z	003	003	0	%100

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 67: Structure Wm (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
39	M22	X	.002	.002	0	%100
40	M22	Z	001	001	0	%100
41	M23	X	.002	.002	0	%100
42	M23	Z	001	001	0	%100
43	M24	X	.004	.004	0	%100
44	M24	Z	002	002	0	%100
45	M25	X	.005	.005	0	%100
46	M25	Z	003	003	0	%100
47	M26	X	.005	.005	0	%100
48	M26	Z	003	003	0	%100
49	M27	X	.002	.002	0	%100
50	M27	Z	000965	000965	Ŏ	%100
51	M28	X	.005	.005	0	%100
52	M28	Ž	003	003	Ö	%100 %100
53	M29	X	.002	.002	0	%100 %100
54	M29	Z	000965	000965	Ö	%100 %100
55	M30	X	.005	.005	0	%100 %100
56	M30	Z	003	003	0	%100 %100
57	M31	X	.005	.005	0	%100 %100
58	M31	Z	003	003	0	%100 %100
59	M32	X	.005	.005	0	%100 %100
60	M32	Z	003	003	0	%100 %100
61	M33	X	.002	.002	0	%100 %100
62	M33	Ž	001	001	0	%100 %100
63	M34	X	.002	.002	0	%100 %100
64	M34	Z	001	001	0	%100 %100
65	M35	X	.004	.004	0	%100 %100
66	M35	Ž	002	002	0	%100 %100
67	M36	X	.005	.005	0	%100 %100
68	M36	Ž	003	003	0	%100 %100
69	MP6A	X	.005	.005	0	%100 %100
70	MP6A	Z	003	003	0	%100 %100
71	MP5A	X	.005	.005	0	%100 %100
72	MP5A	Ž			0	
73	MP3A		003 .006	003 .006	-	%100 %100
		X Z			0	%100
74	MP3A		003	003	-	%100
75	MP1A	X	.005	.005	0	%100
76	MP1A	Z	003	003	0	%100
77	MP4A	X	.005	.005	0	%100
78	MP4A	Z	003	003	0	%100
79	MP2A	X	.005	.005	0	%100
80	MP2A	Z	003	003	0	%100
81	<u>M55</u>	X	.007	.007	0	%100
82	M55	Z	004	004	0	%100

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M3	X	0	0	0	%100
4	M3	Z	0	0	0	%100
5	M5	X	.000427	.000427	0	%100
6	M5	Z	0	0	0	%100
7	M6	X	.000427	.000427	0	%100
8	M6	Z	0	0	0	%100
9	M7	X	0	0	0	%100

Company Designer

: Maser Consulting : NL : 21777866A Job Number Model Name : Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 68: Structure Wm (90 Deg)) (Continued)

40	Member Label	Direction	_	. End Magnitude[lb/ft,F.		
10	M7	Z	0	0	0	%100
11	M8	X	.000427	.000427	0	%100
12	M8	Z	0	0	0	%100
13	M9	X	.000427	.000427	0	%100
14	M9	Z	0	0	0	%100
15	M10	X	0	0	0	%100
16	M10	Z	0	0	0	%100
17	OVP	X	.003	.003	0	%100
18	OVP	Z	0	0	0	%100
19	M12	X Z	.003	.003	0	%100
20	M12	Z	0	0	0	%100
21	M13	Χ	.003	.003	0	%100
22	M13	Z	0	0	0	%100
23	M14	X	.003	.003	0	%100
24	M14	Z	0	0	0	%100
25	M15	X	.007	.007	0	%100
26	M15	Z	0	0	0	%100
27	M16	X	.002	.002	0	%100
28	M16	Z	0	0	Ö	%100
29	M17	X	.007	.007	0	%100
30	M17	X Z	0	0	0	%100 %100
31	M18	X	.002	.002	0	%100
32	M18	Z	0	0	0	%100 %100
33	M19	X	.007	.007	Ö	%100 %100
34	M19	Z	0	0	0	%100 %100
35	M20	X	.007	.007	0	%100 %100
36	M20	Ž	0	0	0	%100 %100
37	M21	X	.007	.007	0	%100 %100
38	M21	Z	0	0	0	%100 %100
39	M22	<u> </u>	.003	.003	0	%100 %100
40	M22	X Z	0	0	0	%100 %100
41	M23	X	.003	.003	0	%100 %100
42	M23	Z	0	0	0	%100 %100
43	M24	X	.004	.004	0	%100 %100
44	M24	Z	0	0	0	%100 %100
45	M25	X	.007	.007	0	%100 %100
46	M25	Z	0	0	0	%100 %100
47	M26	X	.007	.007	0	%100 %100
48	M26	Z	0	0	0	%100 %100
49	M27	X	.002	.002	0	%100 %100
50	M27	Z	0	0	0	%100 %100
51	M28	X	.007	.007	0	%100 %100
52	M28	Z	0	0	0	%100 %100
53	M29	X	.002	.002	0	%100 %100
54	M29	Z	0	0	0	%100 %100
55	M30	X	.007	.007		%100 %100
56	M30	Z	0	0	0	
						%100 %100
57	M31	X Z	.007	.007	0	%100
58 59	M31		.007	0	0	%100 %100
	M32	X Z		.007	0	%100 %100
60	M32		0	0	0	%100 %100
61 62	M33	X Z	.003	.003	0	
	M33				0	%100 %100
63 64	M34	X Z	.003	.003	0	%100 %100
65	M34 M35	X	.004	.004	0	%100 %100
66		Z			0	%100 %100
00	M35		0	0	U	76 100

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 68: Structure Wm (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
67	M36	X	.007	.007	0	%100
68	M36	Z	0	0	0	%100
69	MP6A	X	.005	.005	0	%100
70	MP6A	Z	0	0	0	%100
71	MP5A	X	.005	.005	0	%100
72	MP5A	Z	0	0	0	%100
73	MP3A	X	.006	.006	0	%100
74	MP3A	Z	0	0	0	%100
75	MP1A	X	.005	.005	0	%100
76	MP1A	Z	0	0	0	%100
77	MP4A	X	.005	.005	0	%100
78	MP4A	Z	0	0	0	%100
79	MP2A	X	.005	.005	0	%100
80	MP2A	Z	0	0	0	%100
81	M55	X	.007	.007	0	%100
82	M55	Z	0	0	0	%100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
1	M1	X	.001	.001	0	%100
2	M1	Z	.000839	.000839	0	%100
3	M3	X	.001	.001	0	%100
4	M3	Z	.000839	.000839	0	%100
5	M5	X	.000681	.000681	0	%100
6	M5	Z	.000393	.000393	0	%100
7	M6	X	5.2e-5	5.2e-5	0	%100
8	M6	Z	3e-5	3e-5	0	%100
9	M7	X	.001	.001	0	%100
10	M7	Z	.000804	.000804	0	%100
11	M8	X	.000681	.000681	0	%100
12	M8	Z	.000393	.000393	0	%100
13	M9	X	5.2e-5	5.2e-5	0	%100
14	M9	Z	3e-5	3e-5	0	%100
15	M10	X	.001	.001	0	%100
16	M10	Z	.000804	.000804	0	%100
17	OVP	X	.004	.004	0	%100
18	OVP	Z	.002	.002	0	%100
19	M12	X	.00033	.00033	0	%100
20	M12	Z	.000191	.000191	0	%100
21	M13	X	.004	.004	0	%100
22	M13	Z	.002	.002	0	%100
23	M14	X	.00033	.00033	0	%100
24	M14	Z	.000191	.000191	0	%100
25	M15	X	.005	.005	0	%100
26	M15	Z	.003	.003	0	%100
27	M16	X	.002	.002	0	%100
28	M16	Z	.000965	.000965	0	%100
29	M17	X	.005	.005	0	%100
30	M17	Z	.003	.003	0	%100
31	M18	X	.002	.002	0	%100
32	M18	Z	.000965	.000965	0	%100
33	M19	X	.005	.005	0	%100
34	M19	Z	.003	.003	0	%100
35	M20	X	.005	.005	0	%100
36	M20	Z	.003	.003	0	%100
37	M21	X	.005	.005	0	%100

Company Designer : Maser Consulting

: NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 69: Structure Wm (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
38	M21	Z	.003	.003	0	%100
39	M22	X	.002	.002	0	%100
40	M22	Z	.001	.001	0	%100
41	M23	X	.002	.002	0	%100
42	M23	Z	.001	.001	0	%100
43	M24	X	.004	.004	0	%100
44	M24	Z	.002	.002	0	%100
45	M25	X	.005	.005	Ö	%100
46	M25	Ž	.003	.003	0	%100 %100
47	M26	X	.005	.005	0	%100
48	M26	Z	.003	.003	Ö	%100 %100
49	M27	X	.002	.002	0	%100 %100
50	M27	Z	.001	.001	Ö	%100 %100
51	M28	X	.005	.005	0	%100 %100
52	M28	Z	.003	.003	0	%100 %100
53	M29	X	.002	.002	0	%100 %100
54	M29	Z	.002	.002	0	%100 %100
55	M30	X	.005	.005	0	%100 %100
56	M30	Z	.003	.003	0	%100 %100
57	M31	X	.005	.005	0	%100 %100
58	M31	Ž	.003	.003	0	%100 %100
59	M32	X	.005	.005	0	%100 %100
60	M32	Z	.003	.003	0	%100 %100
61	M33	X	.003	.003	0	%100 %100
62	M33	Z	.002	.002	0	%100 %100
63	M34	X	.001	.001	0	%100 %100
					0	
64 65	M34	Z X	.001 .004	.001		%100 %100
	M35			.004	0	%100
66	M35	Z	.002	.002	0	%100
67	M36	X Z	.005	.005	0	%100
68	M36		.003	.003	0	%100 %100
69 70	MP6A	X Z	.005	.005	0	%100
	MP6A		.003		0	%100
71 72	MP5A	X Z	.005	.005	0	%100 %100
	MP5A		.003	.003	0	%100 %100
73	MP3A	X	.006	.006	0	%100 %100
74	MP3A	Z	.003	.003	0	%100 %100
75	MP1A	X	.005	.005	0	%100
76	MP1A	Z	.003	.003	0	%100
77	MP4A	X	.005	.005	0	%100
78	MP4A	Z	.003	.003	0	%100
79	MP2A	X	.005	.005	0	%100
80	MP2A	Z	.003	.003	0	%100
81	<u>M55</u>	X	.003	.003	0	%100
82	M55	Z	.001	.001	0	%100

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	X	.003	.003	0	%100
2	M1	Z	.004	.004	0	%100
3	M3	X	.003	.003	0	%100
4	M3	Z	.004	.004	0	%100
5	M5	X	.000389	.000389	0	%100
6	M5	Z	.000674	.000674	0	%100
7	M6	X	2.6e-5	2.6e-5	0	%100
8	M6	Z	4.5e-5	4.5e-5	0	%100

Company Designer Job Number : NL : 21777866A Model Name : Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

9 M7 X		Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[in,%]	
11 M8 X .000389 .000389 0 %100 12 M8 Z .000674 .000674 0 %100 13 M9 X 2.6e-5 2.6e-5 0 %100 14 M9 Z 4.5e-5 4.5e-5 0 %100 15 M10 X .002 .002 0 %100 16 M10 Z .004 .004 0 %100 17 OVP X .002 .002 0 %100 18 OVP Z .004 .004 0 %100 19 M12 X .00165 .000165 0 %100 20 M12 Z .000287 .000287 0 %100 21 M13 X .002 .002 0 %100 22 M13 X .002 .002 0 %100 24 M14						0	
12						-	
13 M9 X 2.6e-5 2.6e-5 0 %100 14 M9 Z 4.5e-5 0 %100 15 M10 X .002 .002 0 %100 16 M10 Z .004 .004 0 %100 17 OVP X .002 .002 0 %100 18 OVP Z .004 .004 0 %100 19 M12 X .000165 .000165 0 %100 20 M12 Z .000287 .000287 0 %100 21 M13 X .002 .002 0 %100 21 M13 X .002 .002 0 %100 22 M13 X .002 .002 0 %100 23 M14 X .000165 .000165 0 %100 25 M15 X			X				
14 M9 Z 4.5e-5 0 %100 15 M10 X .002 .002 0 %100 16 M10 Z .004 .004 0 %100 17 OVP X .002 .002 0 %100 18 OVP Z .004 .004 0 %100 19 M12 X .000165 .000165 0 %100 20 M12 Z .000287 .002 .002 .004 21 M13 X .002 .002 .004		M8		.000674	.000674	0	
15 M10 X .002 .002 0 %100 16 M10 Z .004 .004 0 %100 17 OVP X .002 .002 0 %100 18 OVP Z .004 .004 0 %100 20 M12 X .000165 .000165 0 %100 20 M12 Z .000287 .000287 0 %100 21 M13 X .002 .002 .004 .004 22 M13 Z .004 .004 .0 %100 23 M14 X .000165 .000165 0 %100 24 M14 Z .000287 .000287 0 %100 25 M15 X .001 .001 0 %100 26 M15 Z .002 .002 .0 %100 28 M16 <td>13</td> <td>M9</td> <td></td> <td>2.6e-5</td> <td>2.6e-5</td> <td>0</td> <td>%100</td>	13	M9		2.6e-5	2.6e-5	0	%100
16 M10 Z .004 .004 0 %100 17 OVP X .002 .002 0 %100 18 OVP Z .004 .004 0 %6100 19 M12 X .000165 .000165 0 %6100 20 M12 Z .000287 .00287 0 %6100 21 M13 X .002 .002 0 %6100 22 M13 Z .004 .004 0 %6100 23 M14 X .000165 .00165 0 %6100 24 M14 Z .000287 .00287 0 %6100 25 M15 X .001 .001 .001 0 %6100 27 M16 X .000961 .00961 .00961 0 %6100 28 M16 Z .002 .002 .002 %6100	14	M9	Z	4.5e-5	4.5e-5	0	%100
16 M10 Z .004 .004 0 %100 17 OVP X .002 .002 0 %100 18 OVP Z .004 .004 0 %6100 19 M12 X .000165 .000165 0 %6100 20 M12 Z .000287 .00287 0 %6100 21 M13 X .002 .002 0 %6100 22 M13 Z .004 .004 0 %6100 23 M14 X .000165 .00165 0 %6100 24 M14 Z .000287 .00287 0 %6100 25 M15 X .001 .001 .001 0 %6100 27 M16 X .000961 .00961 .00961 0 %6100 28 M16 Z .002 .002 .002 %6100						0	%100
17 OVP X .002 .004 .0 4 0 %100 19 M12 X .000165 .000165 0 %100 20 M12 Z .000287 .000287 0 %100 21 M13 X .002 .002 0 %100 22 M13 Z .004 .004 0 %100 23 M14 X .000165 .00165 0 %100 24 M14 Z .000287 .00287 0 %100 25 M15 X .001 .001 0 %100 26 M15 Z .002 .002 0 %100 28 M16 X .00961 .00961 .00961 .004 29 M17 X .001 .001 .0 %100 30 M17 Z .002 .002 .0 %100			Z				
18 OVP Z .004 .004 0 %100 19 M12 X .000165 .000165 0 %100 20 M12 Z .000287 0 %100 21 M13 X .002 .002 0 %100 22 M13 Z .004 .004 0 %100 23 M14 X .000165 .000165 0 %100 24 M14 Z .000287 .000287 0 %100 25 M15 X .001 .001 0 %100 25 M15 X .001 .001 0 %100 27 M16 X .009961 .00961 0 %100 28 M16 Z .002 .002 0 %100 29 M17 X .001 .001 0 %100 30 M17 Z							
19							
20 M12 Z .000287 .000287 0 %100 21 M13 X .002 .002 0 %100 22 M13 Z .004 .004 0 %100 23 M14 X .000165 .000165 0 %100 24 M14 Z .000287 .000287 0 %100 25 M15 X .001 .001 0 %100 26 M15 Z .002 .002 0 %100 27 M16 X .00061 .00061 0 %100 28 M16 Z .002 .002 0 %100 29 M17 X .001 .001 0 %100 30 M17 Z .002 .002 0 %100 31 M18 X .000961 .00961 0 %100 32 M18							
21 M13 X .004 .004 0 %100 22 M13 Z .004 .004 0 %100 23 M144 X .000165 .000165 0 %100 24 M14 Z .000287 .000287 0 %100 25 M15 X .001 .001 0 %100 26 M155 Z .002 .002 0 %100 27 M16 X .000961 .000961 0 %100 28 M16 Z .002 .002 0 %100 29 M17 X .001 .001 0 %100 30 M17 Z .002 .002 0 %100 31 M18 X .009961 .00961 0 %100 32 M18 Z .002 .002 0 %100 34 M19							
22 M13 Z .004 .004 0 %100 23 M14 X .000165 .000165 0 %100 24 M14 Z .000287 .000 %100 25 M15 X .001 .001 0 %100 26 M15 Z .002 .002 0 %1100 27 M16 X .000961 .000961 0 %1100 28 M16 Z .002 .002 0 %1100 29 M17 X .001 .001 0 %1100 30 M17 Z .002 .002 0 %1100 31 M18 X .000961 .000961 0 %100 32 M18 Z .002 .002 0 %100 33 M19 X .001 .001 0 %100 34 M19 Z							
23 M14 X .000165 .000187 0 %100 24 M14 Z .000287 .000287 0 %100 25 M15 X .001 .001 0 %100 26 M15 Z .002 .002 0 %100 27 M16 X .000961 .000961 0 %100 28 M16 Z .002 .002 0 %100 29 M17 X .001 .001 0 %100 30 M17 Z .002 .002 0 %100 31 M18 X .00961 .00961 0 %100 32 M18 Z .002 .002 0 %100 33 M19 X .001 .001 0 %100 34 M19 Z .002 .002 0 %100 36 M20							
24 M14 Z .000287 .000287 0 %100 25 M15 X .001 .001 0 %100 26 M15 Z .002 .002 0 %100 27 M16 X .009861 .000961 0 %100 28 M16 Z .002 .002 0 %100 29 M17 X .001 .001 0 %100 30 M17 Z .002 .002 0 %100 31 M18 X .009961 .000961 0 %100 32 M18 Z .002 .002 0 %100 33 M19 X .001 .001 0 %100 34 M19 Z .002 .002 0 %100 35 M20 X .001 .001 0 %100 36 M20							
25 M15 X .001 .001 0 %100 26 M15 Z .002 .002 0 %100 27 M16 X .000961 .000961 0 %100 28 M16 Z .002 .002 0 %100 29 M17 X .001 .001 0 %100 30 M17 Z .002 .002 0 %100 31 M18 X .000961 .000961 0 %100 32 M18 Z .002 .002 0 %100 33 M19 X .001 .001 0 %100 34 M19 Z .002 .002 .002 0 %100 35 M20 X .001 .001 0 %100 36 M20 Z .002 .002 0 %100 37 M							
26 M15 Z .002 .002 0 %100 27 M16 X .000961 .000961 0 %100 28 M16 Z .002 .002 0 %100 29 M17 X .001 .001 0 %100 30 M17 Z .002 .002 0 %100 31 M18 X .000961 .000961 0 %100 32 M18 Z .002 .002 0 %100 33 M19 X .001 .001 0 %100 34 M19 Z .002 .002 0 %100 35 M20 X .001 .001 0 %100 36 M20 X .001 .001 0 %100 37 M21 X .001 .001 0 %100 38 M21 Z<							
27 M16 X .000961 .000961 0 %100 28 M16 Z .002 .002 0 %100 29 M17 X .001 .001 0 %100 30 M17 Z .002 .002 0 %100 31 M18 X .000961 .000961 0 %100 32 M18 Z .002 .002 0 %100 33 M19 X .001 .001 0 %100 34 M19 Z .002 .002 0 %100 34 M19 Z .002 .002 0 %100 35 M20 X .001 .001 0 %100 36 M20 X .001 .001 0 %100 37 M21 X .001 .001 0 %100 38 M21 X<							
28 M16 Z .002 .002 0 %100 29 M17 X .001 .001 0 %100 30 M17 Z .002 .002 0 %100 31 M18 X .000961 .000961 0 %100 32 M18 Z .002 .002 0 %100 33 M19 X .001 .001 0 %100 34 M19 Z .002 .002 0 %100 35 M20 X .001 .001 0 %100 36 M20 Z .002 .002 0 %100 37 M21 X .001 .001 0 %100 38 M21 Z .002 .002 0 %100 40 M22 X .001 .001 0 %100 41 M23 X							
29 M17 X .001 .001 0 %100 30 M17 Z .002 .002 0 %100 31 M18 X .000961 .002 0 %100 32 M18 Z .002 .002 0 %100 33 M19 X .001 .001 0 %100 34 M19 Z .002 .002 0 %100 35 M20 X .001 .001 0 %100 36 M20 Z .002 .002 0 %100 37 M21 X .001 .001 0 %100 38 M21 Z .002 .002 0 %100 39 M22 X .001 .001 0 %100 40 M22 Z .002 .002 0 %100 41 M23 X							
30							
31 M18 X .000961 .000961 0 %100 32 M18 Z .002 .002 0 %100 33 M19 X .001 .001 0 %100 34 M19 Z .002 .002 0 %100 35 M20 X .001 .001 0 %100 36 M20 Z .002 .002 0 %100 37 M21 X .001 .001 0 %100 38 M21 Z .002 .002 0 %100 39 M22 X .001 .001 0 %100 40 M22 Z .002 .002 0 %100 41 M23 X .001 .001 0 %100 42 M23 Z .002 .002 0 %100 43 M24 X							
32 M18 Z .002 .002 0 %100 33 M19 X .001 .001 0 %100 34 M19 Z .002 .002 0 %100 35 M20 X .001 .001 0 %100 36 M20 Z .002 .002 0 %100 37 M21 X .001 .001 0 %100 38 M21 Z .002 .002 0 %100 39 M22 X .001 .001 0 %100 40 M22 Z .002 .002 0 %100 41 M23 X .001 .001 0 %100 42 M23 Z .002 .002 0 %100 43 M24 X .002 .002 0 %100 44 M24 Z							
33 M19 X .001 .001 0 %100 34 M19 Z .002 .002 0 %100 35 M20 X .001 .001 0 %100 36 M20 Z .002 .002 0 %100 37 M21 X .001 .001 0 %100 38 M21 Z .002 .002 0 %100 39 M22 X .001 .001 0 %100 40 M22 Z .002 .002 0 %100 41 M23 X .001 .001 0 %100 42 M23 Z .002 .002 0 %100 43 M24 X .002 .002 0 %100 45 M25 X .001 .004 0 %100 46 M25 Z			X				
34 M19 Z .002 .002 0 %100 35 M20 X .001 .001 0 %100 36 M20 Z .002 .002 0 %100 37 M21 X .001 .001 0 %100 38 M21 Z .002 .002 0 %100 39 M22 X .001 .001 0 %100 40 M22 Z .002 .002 0 %100 40 M22 Z .002 .002 0 %100 41 M23 X .001 .001 0 %100 42 M23 Z .002 .002 0 %100 43 M24 X .002 .002 0 %100 44 M24 Z .004 .004 0 %100 45 M25 X							
35 M20 X .001 .001 0 %100 36 M20 Z .002 .002 0 %100 37 M21 X .001 .001 0 %100 38 M21 Z .002 .002 0 %100 39 M22 X .001 .001 0 %100 40 M22 Z .002 .002 0 %100 41 M23 X .001 .001 0 %100 42 M23 Z .002 .002 0 %100 43 M24 X .002 .002 0 %100 44 M24 Z .004 .004 0 %100 45 M25 X .001 .001 0 %100 46 M25 Z .002 .002 0 %100 47 M26 X							
36 M20 Z .002 .002 0 %100 37 M21 X .001 .001 0 %100 38 M21 Z .002 .002 0 %100 39 M22 X .001 .001 0 %100 40 M22 Z .002 .002 0 %100 41 M23 X .001 .001 0 %100 42 M23 Z .002 .002 0 %100 43 M24 X .002 .002 0 %100 44 M24 Z .004 .004 0 %100 45 M25 X .001 .001 0 %100 46 M25 Z .002 .002 0 %100 48 M26 X .001 .001 0 %100 49 M27 X	34	M19		.002	.002	0	%100
36 M20 Z .002 .002 0 %100 37 M21 X .001 .001 0 %100 38 M21 Z .002 .002 0 %100 39 M22 X .001 .001 0 %100 40 M22 Z .002 .002 0 %100 41 M23 X .001 .001 0 %100 42 M23 Z .002 .002 0 %100 43 M24 X .002 .002 0 %100 44 M24 Z .004 .004 0 %100 45 M25 X .001 .001 0 %100 46 M25 Z .002 .002 0 %100 48 M26 X .001 .001 0 %100 49 M27 X	35	M20	X	.001	.001	0	%100
37 M21 X .001 .001 0 %100 38 M21 Z .002 .002 0 %100 39 M22 X .001 .001 0 %100 40 M22 Z .002 .002 0 %100 41 M23 X .001 .001 0 %100 42 M23 Z .002 .002 0 %100 43 M24 X .002 .002 0 %100 44 M24 Z .004 .004 0 %100 45 M25 X .001 .001 0 %100 46 M25 Z .002 .002 0 %100 47 M26 X .001 .001 0 %100 49 M27 X .001 .001 0 %100 50 M27 Z	36	M20	Z	.002	.002	0	%100
38 M21 Z .002 .002 0 %100 39 M22 X .001 .001 0 %100 40 M22 Z .002 .002 0 %100 41 M23 X .001 .001 0 %100 42 M23 Z .002 .002 0 %100 43 M24 X .002 .002 0 %100 44 M24 Z .004 .004 0 %100 45 M25 X .001 .001 0 %100 46 M25 Z .002 .002 0 %100 47 M26 X .001 .001 0 %100 48 M26 Z .002 .002 0 %100 49 M27 X .001 .001 0 %100 50 M27 Z	37				.001	0	
39 M22 X .001 .001 0 %100 40 M22 Z .002 .002 0 %100 41 M23 X .001 .001 0 %100 42 M23 Z .002 .002 0 %100 43 M24 X .002 .002 0 %100 44 M24 Z .004 .004 0 %100 45 M25 X .001 .001 0 %100 46 M25 Z .002 .002 0 %100 47 M26 X .001 .001 0 %100 48 M26 Z .002 .002 0 %100 49 M27 X .001 .001 0 %100 50 M27 Z .002 .002 0 %100 51 M28 X	38	M21	Z				
40 M22 Z .002 .002 0 %100 41 M23 X .001 .001 0 %100 42 M23 Z .002 .002 0 %100 43 M24 X .002 .002 0 %100 44 M24 Z .004 .004 0 %100 45 M25 X .001 .001 0 %100 46 M25 Z .002 .002 0 %100 47 M26 X .001 .001 0 %100 48 M26 Z .002 .002 0 %100 49 M27 X .001 .001 0 %100 50 M27 Z .002 .002 0 %100 51 M28 X .001 .001 0 %100 52 M28 Z .002 .002 0 %100						0	
41 M23 X .001 .001 0 %100 42 M23 Z .002 .002 0 %100 43 M24 X .002 .002 0 %100 44 M24 Z .004 .004 0 %100 45 M25 X .001 .001 0 %100 46 M25 Z .002 .002 0 %100 47 M26 X .001 .001 0 %100 48 M26 Z .002 .002 0 %100 49 M27 X .001 .001 0 %100 50 M27 Z .002 .002 0 %100 51 M28 X .001 .001 0 %100 52 M28 Z .002 .002 0 %100							
42 M23 Z .002 .002 0 %100 43 M24 X .002 .002 0 %100 44 M24 Z .004 .004 0 %100 45 M25 X .001 .001 0 %100 46 M25 Z .002 .002 0 %100 47 M26 X .001 .001 0 %100 48 M26 Z .002 .002 0 %100 49 M27 X .001 .001 0 %100 50 M27 Z .002 .002 0 %100 51 M28 X .001 .001 0 %100 52 M28 Z .002 .002 0 %100						-	
43 M24 X .002 .002 0 %100 44 M24 Z .004 .004 0 %100 45 M25 X .001 .001 0 %100 46 M25 Z .002 .002 0 %100 47 M26 X .001 .001 0 %100 48 M26 Z .002 .002 0 %100 49 M27 X .001 .001 0 %100 50 M27 Z .002 .002 0 %100 51 M28 X .001 .001 0 %100 52 M28 Z .002 .002 0 %100			7				
44 M24 Z .004 .004 0 %100 45 M25 X .001 .001 0 %100 46 M25 Z .002 .002 0 %100 47 M26 X .001 .001 0 %100 48 M26 Z .002 .002 0 %100 49 M27 X .001 .001 0 %100 50 M27 Z .002 .002 0 %100 51 M28 X .001 .001 0 %100 52 M28 Z .002 .002 0 %100							
45 M25 X .001 .001 0 %100 46 M25 Z .002 .002 0 %100 47 M26 X .001 .001 0 %100 48 M26 Z .002 .002 0 %100 49 M27 X .001 .001 0 %100 50 M27 Z .002 .002 0 %100 51 M28 X .001 .001 0 %100 52 M28 Z .002 .002 0 %100							
46 M25 Z .002 .002 0 %100 47 M26 X .001 .001 0 %100 48 M26 Z .002 .002 0 %100 49 M27 X .001 .001 0 %100 50 M27 Z .002 .002 0 %100 51 M28 X .001 .001 0 %100 52 M28 Z .002 .002 0 %100							
47 M26 X .001 .001 0 %100 48 M26 Z .002 .002 0 %100 49 M27 X .001 .001 0 %100 50 M27 Z .002 .002 0 %100 51 M28 X .001 .001 0 %100 52 M28 Z .002 .002 0 %100			7				
48 M26 Z .002 .002 0 %100 49 M27 X .001 .001 0 %100 50 M27 Z .002 .002 0 %100 51 M28 X .001 .001 0 %100 52 M28 Z .002 .002 0 %100							
49 M27 X .001 .001 0 %100 50 M27 Z .002 .002 0 %100 51 M28 X .001 .001 0 %100 52 M28 Z .002 .002 0 %100			7				
50 M27 Z .002 .002 0 %100 51 M28 X .001 .001 0 %100 52 M28 Z .002 .002 0 %100							
51 M28 X .001 .001 0 %100 52 M28 Z .002 .002 0 %100			7				
52 M28 Z .002 .002 0 %100							
			^				
53 M29 X .001 .001 0 %100			<u> </u>				
54 M29 Z .002 .002 0 %100							
55 M30 X .001 .001 0 %100			X				
56 M30 Z .002 .002 0 %100			Z				
57 M31 X .001 .001 0 %100			X				
58 M31 Z .002 .002 0 %100							
59 M32 X .001 .001 0 %100			X				
60 M32 Z .002 .002 0 %100							
61 M33 X .001 .001 0 %100			X				
62 M33 Z .002 .002 0 %100			Z		.002	0	
63 M34 X .001 .001 0 %100	63	M34	X	.001	.001	0	%100
64 M34 Z .002 .002 0 %100	64	M34	Z	.002	.002		
65 M35 X .002 .002 0 %100	65	M35		.002	.002	0	%100

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
66	M35	Z	.004	.004	0	%100
67	M36	X	.001	.001	0	%100
68	M36	Z	.002	.002	0	%100
69	MP6A	X	.003	.003	0	%100
70	MP6A	Z	.005	.005	0	%100
71	MP5A	X	.003	.003	0	%100
72	MP5A	Z	.005	.005	0	%100
73	MP3A	X	.003	.003	0	%100
74	MP3A	Z	.006	.006	0	%100
75	MP1A	X	.003	.003	0	%100
76	MP1A	Z	.005	.005	0	%100
77	MP4A	X	.003	.003	0	%100
78	MP4A	Z	.005	.005	0	%100
79	MP2A	X	.003	.003	0	%100
80	MP2A	Z	.005	.005	0	%100
81	M55	X	.000208	.000208	0	%100
82	M55	Z	.00036	.00036	0	%100

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
1	M1	X	0	0	0	%100
2	M1	Z	.007	.007	0	%100
3	M3	X	0	0	0	%100
4	M3	Z	.007	.007	0	%100
5	M5	X	0	0	0	%100
6	M5	Z	.000411	.000411	0	%100
7	M6	X	0	0	0	%100
8	M6	Z	.000411	.000411	0	%100
9	M7	X	0	0	0	%100
10	M7	Z	.006	.006	0	%100
11	M8	X	0	0	0	%100
12	M8	Z	.000411	.000411	0	%100
13	M9	X	0	0	0	%100
14	M9	Z	.000411	.000411	0	%100
15	M10	X	0	0	0	%100
16	M10	Z	.006	.006	0	%100
17	OVP	X	0	0	0	%100
18	OVP	Z	.003	.003	0	%100
19	M12	X	0	0	0	%100
20	M12	Z	.003	.003	0	%100
21	M13	X	0	0	0	%100
22	M13	Z	.003	.003	0	%100
23	M14	X	0	0	0	%100
24	M14	Z	.003	.003	0	%100
25	M15	X	0	0	0	%100
26	M15	Z	.000885	.000885	0	%100
27	M16	X	0	0	0	%100
28	M16	Z	.002	.002	0	%100
29	M17	X	0	0	0	%100
30	M17	Z	.000885	.000885	0	%100
31	M18	X	0	0	0	%100
32	M18	Z	.002	.002	0	%100
33	M19	X	0	0	0	%100
34	M19	Z	.001	.001	0	%100
35	M20	X	0	0	0	%100
36	M20	Z	.000885	.000885	0	%100

Company Designer : NL

Job Number 21777866A Model Name : Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 71: Structure Wm (180 Deg)) (Continued)

38 M21 Z .000885 .000885 0 %6 39 M22 X 0 0 0 %6 40 M22 Z .003 .003 0 %6 41 M23 X 0 0 0 0 %6 42 M23 Z .003 .003 .003 0 %6 43 M24 X 0 0 0 %6 %6 44 M24 Z .004 .004 0 %6 %6 45 M25 X 0 0 0 %6 %6 46 M25 Z .001 .001 0 %6 %6 47 M26 X 0 0 0 %6 %6 49 M27 X 0 0 0 %6 %6 50 M27 Z .002 .002 .002 </th <th>100 100 100 100</th>	100 100 100 100
39 M22 X 0 0 0 %' 40 M22 Z .003 .003 0 %' 41 M23 X 0 0 0 0 %' 42 M23 Z .003 .003 0 %' 43 M24 X 0 0 0 %' 44 M24 X 0 0 0 %' 45 M25 X 0 0 0 %' 46 M25 Z .001 .001 0 %' 46 M25 Z .001 .001 0 %' 48 M26 X 0 0 0 %' 49 M27 X 0 0 0 %' 50 M27 Z .002 .002 0 %' 51 M28 X 0 0 0 <td>100</td>	100
40 M22 Z .003 .003 0 %' 41 M23 X 0 0 0 %' 42 M23 Z .003 .003 0 %' 43 M24 X 0 0 0 %' 44 M24 Z .004 .004 0 %' 45 M25 X 0 0 0 %' 46 M25 Z .001 .001 0 %' 47 M26 X 0 0 0 %' 48 M26 Z .000885 .000885 0 %' 49 M27 X 0 0 0 %' 50 M27 Z .002 .002 0 %' 51 M28 X 0 0 0 %' 52 M28 Z .000885 .000885 <td< td=""><td></td></td<>	
41 M23 X 0 0 0 %' 42 M23 Z .003 .003 0 %' 43 M24 X 0 0 0 0 %' 44 M24 Z .004 .004 0 %' 45 M25 X 0 0 0 %' 46 M25 Z .001 .001 0 %' 47 M26 X 0 0 0 %' 48 M26 Z .000885 .000885 0 %' 49 M27 X 0 0 0 %' 50 M27 Z .002 .002 0 %' 51 M28 X 0 0 0 %' 52 M28 Z .000885 .000885 0 %' 53 M29 X 0 0 <td>100</td>	100
42 M23 Z .003 .003 0 %' 43 M24 X 0 0 0 %' 44 M24 Z .004 .004 0 %' 45 M25 X 0 0 0 %' 46 M25 Z .001 .001 0 %' 47 M26 X 0 0 0 %' 48 M26 Z .000885 .000885 0 %' 49 M27 X 0 0 0 %' 50 M27 Z .002 .002 0 %' 51 M28 X 0 0 0 %' 52 M28 Z .000885 .000885 0 %' 53 M29 X 0 0 0 %' 54 M29 Z .002 .002 <td< td=""><td></td></td<>	
43 M24 X 0 0 0 % 44 M24 Z .004 .004 0 % 45 M25 X 0 0 0 % 46 M25 Z .001 .001 0 % 47 M26 X 0 0 0 0 % 48 M26 Z .000885 .000885 0 % 49 M27 X 0 0 0 % 50 M27 Z .002 .002 0 % 51 M28 X 0 0 0 % 52 M28 Z .000885 .000885 0 % 53 M29 X 0 0 0 % 54 M29 Z .002 .002 0 % 55 M30 X 0 0 <t< td=""><td>100</td></t<>	100
44 M24 Z .004 .004 0 %' 45 M25 X 0 0 0 %' 46 M25 Z .001 .001 0 %' 47 M26 X 0 0 0 %' 48 M26 Z .000885 .000885 0 %' 49 M27 X 0 0 0 %' 50 M27 Z .002 .002 0 %' 51 M28 X 0 0 0 %' 52 M28 Z .000885 .000885 0 %' 53 M29 X 0 0 0 %' 54 M29 Z .002 .002 0 %' 55 M30 X 0 0 0 %' 56 M30 Z .001 .001 <td< td=""><td>100</td></td<>	100
44 M24 Z .004 .004 0 %' 45 M25 X 0 0 0 %' 46 M25 Z .001 .001 0 %' 47 M26 X 0 0 0 %' 48 M26 Z .000885 .000885 0 %' 49 M27 X 0 0 0 %' 50 M27 Z .002 .002 0 %' 51 M28 X 0 0 0 %' 52 M28 Z .000885 .000885 0 %' 53 M29 X 0 0 0 %' 54 M29 Z .002 .002 0 %' 55 M30 X 0 0 0 %' 56 M30 Z .001 .001 <td< td=""><td>100</td></td<>	100
45 M25 X 0 0 0 % 46 M25 Z .001 .001 0 % 47 M26 X 0 0 0 % 48 M26 Z .000885 .000885 0 % 49 M27 X 0 0 0 % % 50 M27 Z .002 .002 .002 0 % % 51 M28 X 0 0 0 % % 52 M28 Z .000885 .000885 0 % 53 M29 X 0 0 0 % 54 M29 Z .002 .002 .002 0 % 55 M30 X 0 0 0 % % 56 M30 Z .001 .001 0 % % <td>100</td>	100
46 M25 Z .001 .001 0 % 47 M26 X 0 0 0 % 48 M26 Z .000885 .000885 0 % 49 M27 X 0 0 0 % 50 M27 Z .002 .002 0 % 51 M28 X 0 0 0 % 52 M28 Z .000885 .000885 0 % 53 M29 X 0 0 0 % 54 M29 Z .002 .002 0 % 55 M30 X 0 0 0 % 56 M30 Z .001 .001 0 % 57 M31 X 0 0 0 % 59 M32 X 0 0 0 <t< td=""><td>100</td></t<>	100
47 M26 X 0 0 0 % 48 M26 Z .000885 .000885 0 % 49 M27 X 0 0 0 % 50 M27 Z .002 .002 0 % 51 M28 X 0 0 0 % 52 M28 Z .000885 .000885 0 % 53 M29 X 0 0 0 % 54 M29 Z .002 .002 0 % 55 M30 X 0 0 0 % 56 M30 Z .001 .001 0 % 57 M31 X 0 0 0 % 58 M31 Z .000885 .000885 0 % 59 M32 X 0 0 0 % 60 M32 Z .000885 .000885 .000885 0 <td>100</td>	100
48 M26 Z .000885 .000885 0 %' 49 M27 X 0 0 0 %' 50 M27 Z .002 .002 0 %' 51 M28 X 0 0 0 %' 52 M28 Z .000885 .000885 0 %' 53 M29 X 0 0 0 %' 54 M29 Z .002 .002 0 %' 55 M30 X 0 0 0 %' 56 M30 Z .001 .001 0 %' 57 M31 X 0 0 0 %' 58 M31 Z .000885 .000885 0 %' 59 M32 X 0 0 0 %' 60 M32 Z .000885 .000885 .000885 0 %'	100
49 M27 X 0 0 0 %' 50 M27 Z .002 .002 0 %' 51 M28 X 0 0 0 0 %' 52 M28 Z .000885 .000885 0 %' 53 M29 X 0 0 0 %' 54 M29 Z .002 .002 0 %' 55 M30 X 0 0 0 %' 56 M30 Z .001 .001 0 %' 57 M31 X 0 0 0 %' 58 M31 Z .000885 .000885 0 %' 59 M32 X 0 0 0 %' 60 M32 Z .000885 .000885 .000885 0 %'	100
50 M27 Z .002 .002 0 %' 51 M28 X 0 0 0 0 %' 52 M28 Z .000885 .000885 0 %' 53 M29 X 0 0 0 %' 54 M29 Z .002 .002 0 %' 55 M30 X 0 0 0 %' 56 M30 Z .001 .001 0 %' 57 M31 X 0 0 0 %' 58 M31 Z .000885 .000885 0 %' 59 M32 X 0 0 0 %' 60 M32 Z .000885 .000885 .000885 0 %'	100
51 M28 X 0 0 0 %' 52 M28 Z .000885 .000885 0 %' 53 M29 X 0 0 0 %' 54 M29 Z .002 .002 0 %' 55 M30 X 0 0 0 %' 56 M30 Z .001 .001 0 %' 57 M31 X 0 0 0 %' 58 M31 Z .000885 .000885 0 %' 60 M32 Z .000885 .000885 0 %'	100
52 M28 Z .000885 .000885 0 %' 53 M29 X 0 0 0 %' 54 M29 Z .002 .002 0 %' 55 M30 X 0 0 0 %' 56 M30 Z .001 .001 0 %' 57 M31 X 0 0 0 %' 58 M31 Z .000885 .000885 0 %' 59 M32 X 0 0 0 %' 60 M32 Z .000885 .000885 0 %'	100
53 M29 X 0 0 0 %' 54 M29 Z .002 .002 0 %' 55 M30 X 0 0 0 0 %' 56 M30 Z .001 .001 0 %' 57 M31 X 0 0 0 %' 58 M31 Z .000885 .000885 0 %' 59 M32 X 0 0 0 %' 60 M32 Z .000885 .000885 0 %'	100
54 M29 Z .002 .002 0 %' 55 M30 X 0 0 0 0 %' 56 M30 Z .001 .001 0 %' 57 M31 X 0 0 0 %' 58 M31 Z .000885 .000885 0 %' 59 M32 X 0 0 0 %' 60 M32 Z .000885 .000885 0 %'	100
55 M30 X 0 0 0 %' 56 M30 Z .001 .001 0 %' 57 M31 X 0 0 0 0 %' 58 M31 Z .000885 .000885 0 %' 59 M32 X 0 0 0 %' 60 M32 Z .000885 .000885 0 %'	100
56 M30 Z .001 .001 0 %' 57 M31 X 0 0 0 0 %' 58 M31 Z .000885 .000885 0 %' 59 M32 X 0 0 0 %' 60 M32 Z .000885 .000885 0 %'	100
57 M31 X 0 0 0 %' 58 M31 Z .000885 .000885 0 %' 59 M32 X 0 0 0 %' 60 M32 Z .000885 .000885 0 %'	100
58 M31 Z .000885 .000885 0 %' 59 M32 X 0 0 0 %' 60 M32 Z .000885 .000885 0 %'	100
59 M32 X 0 0 0 % 60 M32 Z .000885 .000885 0 %	100
60 M32 Z .000885 .000885 0 %	100
	100
	100
62 M33 Z .003 .003 0 %	100
	100
	100
	100
	100
	100
	100
	100
70 MP6A Z .005 .005 0 %	100
	100
	100
	100
74 MP3A Z .006 .006 0 %	100
	100
	100
	100
	100
	100
	100
	100
82 M55 Z .001 .001 0 %	

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
1	M1	X	003	003	0	%100
2	M1	Z	.004	.004	0	%100
3	M3	X	003	003	0	%100
4	M3	Z	.004	.004	0	%100
5	M5	X	-2.6e-5	-2.6e-5	0	%100
6	M5	Z	4.5e-5	4.5e-5	0	%100
7	M6	X	000389	000389	0	%100

: NL

Company Designer Job Number : 21777866A Model Name : Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 72: Structure Wm (210 Deg)) (Continued)

	Member Label	Direction	1	. End Magnitude[lb/ft,F	.Start Location[in,%]	
8	M6	Z	.000674	.000674	0	%100
9	M7	X	002	002	0	%100
10	M7	Z	.004	.004	0	%100
11	<u>M8</u>	X	-2.6e-5	-2.6e-5	0	%100
12	M8	Z	4.5e-5	4.5e-5	0	%100
13	M9	X	000389	000389	0	%100
14	M9	Z	.000674	.000674	0	%100
15	M10	X	002	002	0	%100
16	M10	Z	.004	.004	0	%100
17	OVP	X	000165	000165	0	%100
18	OVP	Z	.000287	.000287	0	%100
19	M12	Χ	002	002	0	%100
20	M12	Z	.004	.004	0	%100
21	M13	X	000165	000165	0	%100
22	M13	Z	.000287	.000287	0	%100
23	M14	X	002	002	0	%100
24	M14	Z	.004	.004	0	%100
25	M15	X	001	001	0	%100
26	M15	Z	.002	.002	0	%100
27	M16	X	001	001	0	%100 %100
28	M16	Z	.002	.002	Ö	%100 %100
29	M17	X	001	001	0	%100 %100
30	M17	Z	.002	.002	0	%100 %100
31	M18	X	001	001	0	%100 %100
32	M18	Ž	.002	.002	0	%100 %100
33	M19	X	001	001	0	%100 %100
34	M19	Ž	.002	.002	0	%100 %100
35	M20	X	001	001		
		Z			0	%100 %100
36	M20		.002	.002	0	%100 %400
37	M21	X	001	001	0	%100
38	M21	Z	.002	.002	0	%100
39	M22	X	001	001	0	%100
40	M22	Z	.002	.002	0	%100
41	M23	X	001	001	0	%100
42	M23	Z	.002	.002	0	%100
43	M24	X	002	002	0	%100
44	M24	Z	.004	.004	0	%100
45	M25	X	001	001	0	%100
46	M25	Z	.002	.002	0	%100
47	M26	X	001	001	0	%100
48	M26	Z	.002	.002	0	%100
49	M27	X	000961	000961	0	%100
50	M27	Z	.002	.002	0	%100
51	M28	X	001	001	0	%100
52	M28	Z	.002	.002	0	%100
53	M29	X	000961	000961	0	%100
54	M29	Z	.002	.002	0	%100
55	M30	X	001	001	0	%100
56	M30	Z	.002	.002	0	%100
57	M31	X	001	001	0	%100
58	M31	Z	.002	.002	0	%100
59	M32	X	001	001	0	%100
60	M32	Z	.002	.002	0	%100 %100
61	M33	X	001	001	0	%100 %100
62	M33	Z	.002	.002	Ö	%100 %100
63	M34	X	001	001	0	%100 %100
64	M34	Z	.002	.002	0	%100 %100
UT	IVIVT	_	.002	.002	•	70100

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 72: Structure Wm (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
65	M35	X	002	002	0	%100
66	M35	Z	.004	.004	0	%100
67	M36	X	001	001	0	%100
68	M36	Z	.002	.002	0	%100
69	MP6A	X	003	003	0	%100
70	MP6A	Z	.005	.005	0	%100
71	MP5A	X	003	003	0	%100
72	MP5A	Z	.005	.005	0	%100
73	MP3A	X	003	003	0	%100
74	MP3A	Z	.006	.006	0	%100
75	MP1A	X	003	003	0	%100
76	MP1A	Z	.005	.005	0	%100
77	MP4A	X	003	003	0	%100
78	MP4A	Z	.005	.005	0	%100
79	MP2A	X	003	003	0	%100
80	MP2A	Z	.005	.005	0	%100
81	M55	X	003	003	0	%100
82	M55	Z	.004	.004	0	%100

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	
1	<u>M1</u>	X	001	001	0	%100
2	M1	Z	.000839	.000839	0	%100
3	M3	X	001	001	0	%100
4	M3	Z	.000839	.000839	0	%100
5	M5	X	-5.2e-5	-5.2e-5	0	%100
6	M5	Z	3e-5	3e-5	0	%100
7	M6	X	000681	000681	0	%100
8	M6	Z	.000393	.000393	0	%100
9	M7	X	001	001	0	%100
10	M7	Z	.000804	.000804	0	%100
11	M8	X	-5.2e-5	-5.2e-5	0	%100
12	M8	Z	3e-5	3e-5	0	%100
13	M9	X	000681	000681	0	%100
14	M9	Z	.000393	.000393	0	%100
15	M10	X	001	001	0	%100
16	M10	Z	.000804	.000804	0	%100
17	OVP	X	00033	00033	0	%100
18	OVP	Z	.000191	.000191	0	%100
19	M12	X	004	004	0	%100
20	M12	Z	.002	.002	0	%100
21	M13	X	00033	00033	0	%100
22	M13	Z	.000191	.000191	0	%100
23	M14	X	004	004	0	%100
24	M14	Z	.002	.002	0	%100
25	M15	X	005	005	0	%100
26	M15	Z	.003	.003	0	%100
27	M16	X	002	002	0	%100
28	M16	Z	.001	.001	0	%100
29	M17	X	005	005	0	%100
30	M17	Z	.003	.003	0	%100
31	M18	X	002	002	0	%100
32	M18	Z	.001	.001	0	%100
33	M19	X Z	005	005	0	%100
34	M19	Z	.003	.003	0	%100
35	M20	X	005	005	0	%100

Company Designer : Maser Consulting Jan 11, 2022

: NL 1:33 PM Job Number : 21777866A Checked By: DH Model Name : Mount Analysis

Member Distributed Loads (BLC 73: Structure Wm (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
36	M20	Z	.003	.003	0	%100
37	M21	X	005	005	0	%100
38	M21	Z	.003	.003	0	%100
39	M22	X	002	002	0	%100
40	M22	Z	.001	.001	0	%100
41	M23	X	002	002	0	%100
42	M23	Z	.001	.001	0	%100
43	M24	X	004	004	0	%100
44	M24	Z	.002	.002	0	%100
45	M25	X	005	005	0	%100
46	M25	Z	.003	.003	0	%100
47	M26	X	005	005	0	%100
48	M26	Z	.003	.003	0	%100
49	M27	X	002	002	0	%100
50	M27	Z	.000965	.000965	Ö	%100
51	M28	X	005	005	0	%100
52	M28	Z	.003	.003	0	%100
53	M29	X	002	002	0	%100
54	M29	Z	.000965	.000965	0	%100
55	M30	X	005	005	0	%100
56	M30	Z	.003	.003	0	%100
57	M31	X	005	005	0	%100
58	M31	Z	.003	.003	0	%100
59	M32	X	005	005	0	%100
60	M32	Z	.003	.003	0	%100
61	M33	X	002	002	0	%100
62	M33	Z	.001	.001	Ö	%100
63	M34	X	002	002	0	%100
64	M34	Z	.001	.001	0	%100
65	M35	X	004	004	0	%100
66	M35	Z	.002	.002	0	%100
67	M36	X	005	005	0	%100
68	M36	Z	.003	.003	0	%100
69	MP6A	X	005	005	0	%100
70	MP6A	Z	.003	.003	0	%100
71	MP5A	X	005	005	0	%100
72	MP5A	Z	.003	.003	0	%100
73	MP3A	X	006	006	0	%100
74	MP3A	Z	.003	.003	0	%100
75	MP1A	X	005	005	0	%100
76	MP1A	Z	.003	.003	0	%100
77	MP4A	X	005	005	0	%100
78	MP4A	Z	.003	.003	0	%100
79	MP2A	X	005	005	0	%100 %100
80	MP2A	Z	.003	.003	0	%100 %100
81	M55	X	007	007	0	%100 %100
82	M55	Z	.004	.004	0	%100

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M3	X	0	0	0	%100
4	M3	Z	0	0	0	%100
5	M5	X	000427	000427	0	%100
6	M5	Z	0	0	0	%100

Company Designer Job Number : NL : 21777866A Model Name : Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 74: Structure Wm (270 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F	.Start Location[in,%]	
7	M6	X	000427	000427	0	%100
8	M6	Z	0	0	0	%100
9	M7	X	0	0	0	%100
10	M7	Z	0	0	0	%100
11	M8	X	000427	000427	0	%100
12	M8	Z	0	0	0	%100
13	M9	X	000427	000427	0	%100
14	M9	Z	0	0	0	%100
15	M10	X	0	0	0	%100
16	M10	Z	0	0	0	%100
17	OVP	X	003	003	0	%100
18	OVP	Ž	0	0	Ö	%100
19	M12	X	003	003	0	%100
20	M12	Z	0	0	0	%100 %100
21	M13	X	003	003	0	%100 %100
22	M13	Z	0	0	0	%100 %100
23	M14	X	003	003	0	%100 %100
24	M14	Z	0	0	0	%100 %100
25	M15	X	007	007	0	%100 %100
26	M15	Z	007	007	0	%100 %100
27	M16	X	002	002	0	%100 %100
28	M16	Z	002	002	0	%100 %100
29	M17	X	007	007	0	%100 %100
30	M17	Z	007	007	0	%100 %100
31	M18	X	002	002		%100 %100
		Z			0	
32	M18		0	0	0	%100
33	M19	X	007	007	0	%100
34	M19	Z	0	0	0	%100
35	M20	X	007	007	0	%100
36	M20	Z	0	0	0	%100
37	M21	X	007	007	0	%100
38	M21	Z	0	0	0	%100
39	M22	X	003	003	0	%100
40	M22	Z	0	0	0	%100
41	M23	X	003	003	0	%100
42	M23	Z	0	0	0	%100
43	M24	X	004	004	0	%100
44	M24	Z	0	0	0	%100
45	M25	X	007	007	0	%100
46	M25	Z	0	0	0	%100
47	M26	X	007	007	0	%100
48	M26	Z	0	0	0	%100
49	M27	X	002	002	0	%100
50	M27	Z	0	0	0	%100
51	M28	X	007	007	0	%100
52	M28	Z	0	0	0	%100
53	M29	X	002	002	0	%100
54	M29	Z	0	0	0	%100
55	M30	X	007	007	0	%100
56	M30	Z	0	0	0	%100
57	M31	X	007	007	0	%100
58	M31	Z	0	0	0	%100
59	M32	X	007	007	0	%100
60	M32	Z	0	0	0	%100
61	M33	Χ	003	003	0	%100
62	M33	Z	0	0	0	%100
63	M34	X	003	003	0	%100

Company Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 74: Structure Wm (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
64	M34	Z	0	0	0	%100
65	M35	X	004	004	0	%100
66	M35	Z	0	0	0	%100
67	M36	X	007	007	0	%100
68	M36	Z	0	0	0	%100
69	MP6A	X	005	005	0	%100
70	MP6A	Z	0	0	0	%100
71	MP5A	X	005	005	0	%100
72	MP5A	Z	0	0	0	%100
73	MP3A	X	006	006	0	%100
74	MP3A	Z	0	0	0	%100
75	MP1A	X	005	005	0	%100
76	MP1A	Z	0	0	0	%100
77	MP4A	X	005	005	0	%100
78	MP4A	Z	0	0	0	%100
79	MP2A	X	005	005	0	%100
80	MP2A	Z	0	0	0	%100
81	M55	X	007	007	0	%100
82	M55	Z	0	0	0	%100

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	X	001	001	0	%100
2	M1	Z	000839	000839	0	%100
3	M3	X	001	001	0	%100
4	M3	Z	000839	000839	0	%100
5	M5	X	000681	000681	0	%100
6	M5	Z	000393	000393	0	%100
7	M6	X	-5.2e-5	-5.2e-5	0	%100
8	M6	Z	-3e-5	-3e-5	0	%100
9	M7	X	001	001	0	%100
10	M7	Z	000804	000804	0	%100
11	M8	X	000681	000681	0	%100
12	M8	Z	000393	000393	0	%100
13	M9	X	-5.2e-5	-5.2e-5	0	%100
14	M9	Z	-3e-5	-3e-5	0	%100
15	M10	X	001	001	0	%100
16	M10	Z	000804	000804	0	%100
17	OVP	X	004	004	0	%100
18	OVP	Z	002	002	0	%100
19	M12	X	00033	00033	0	%100
20	M12	Z	000191	000191	0	%100
21	M13	X	004	004	0	%100
22	M13	Z	002	002	0	%100
23	M14	X	00033	00033	0	%100
24	M14	Z	000191	000191	0	%100
25	M15	X	005	005	0	%100
26	M15	Z	003	003	0	%100
27	M16	X	002	002	0	%100
28	M16	Z	000965	000965	0	%100
29	M17	X	005	005	0	%100
30	M17	Z	003	003	0	%100
31	M18	X	002	002	0	%100
32	M18	Z	000965	000965	0	%100
33	M19	X	005	005	0	%100
34	M19	Z	003	003	0	%100

Company Designer : Maser Consulting

: NL

Job Number 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 75: Structure Wm (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
35	M20	X	005	005	0	%100
36	M20	Z	003	003	0	%100
37	M21	X	005	005	0	%100
38	M21	Z	003	003	0	%100
39	M22	X	002	002	0	%100
40	M22	Z	001	001	0	%100
41	M23	X	002	002	0	%100
42	M23	Z	001	001	0	%100
43	M24	X	004	004	0	%100
44	M24	Z	002	002	0	%100
45	M25	X	005	005	0	%100
46	M25	Z	003	003	0	%100
47	M26	X	005	005	0	%100
48	M26	Z	003	003	0	%100
49	M27	X	002	002	0	%100
50	M27	Z	001	001	0	%100
51	M28	X	005	005	0	%100
52	M28	Z	003	003	0	%100
53	M29	X	002	002	0	%100
54	M29	Z	001	001	0	%100
55	M30	X	005	005	0	%100
56	M30	Z	003	003	0	%100
57	M31	X	005	005	0	%100
58	M31	Z	003	003	0	%100
59	M32	X	005	005	0	%100
60	M32	Z	003	003	0	%100
61	M33	X	002	002	0	%100
62	M33	Z	001	001	0	%100
63	M34	X	002	002	0	%100
64	M34	Z	001	001	0	%100
65	M35	X	004	004	0	%100
66	M35	Z	002	002	0	%100
67	M36	X	005	005	0	%100
68	M36	Z	003	003	0	%100
69	MP6A	X	005	005	0	%100
70	MP6A	Z	003	003	0	%100
71	MP5A	X	005	005	0	%100
72	MP5A	Z	003	003	0	%100
73	MP3A	X	006	006	0	%100
74	MP3A	Z	003	003	0	%100
75	MP1A	X	005	005	0	%100
76	MP1A	Z	003	003	0	%100
77	MP4A	X	005	005	0	%100
78	MP4A	X Z	003	003	0	%100
79	MP2A	X	005	005	0	%100
80	MP2A	Z	003	003	0	%100
81	M55	X	003	003	0	%100
82	M55	Z	001	001	0	%100

Member Distributed Loads (BLC 76: Structure Wm (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	X	003	003	0	%100
2	M1	Z	004	004	0	%100
3	M3	X	003	003	0	%100
4	M3	Z	004	004	0	%100
5	M5	Χ	000389	000389	0	%100

Company Designer Job Number : NL : 21777866A Model Name : Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 76: Structure Wm (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude IIb/ft	End Magnitude[lb/ft,F		End Location[in,%]
6	M5	Z	000674	000674	0	%100
7	M6	X	-2.6e-5	-2.6e-5	0	%100 %100
8	M6	Z	-4.5e-5	-4.5e-5	0	%100
9	M7	X	002	002	0	%100
10	M7	Z	004	004	0	%100
11	M8	X	000389	000389	0	%100
12	M8	Z	000674	000674	0	%100
13	M9	X	-2.6e-5	-2.6e-5	0	%100
14	M9	Z	-4.5e-5	-4.5e-5	0	%100
15	M10	X	002	002	0	%100
16	M10	Z	004	004	0	%100
17	OVP	X	002	002	0	%100
18	OVP	Z	004	004	0	%100
19	M12	X	000165	000165	0	%100
20	M12	Z	000287	000287	0	%100
21	M13	X	002	002	0	%100
22	M13	Z	004	004	0	%100
23	M14	X	000165	000165	0	%100
24	M14	Z	000287	000287	0	%100
25	M15	X	001	001	0	%100
26	M15	Z	002	002	0	%100
27	M16	X	000961	000961	0	%100
28	M16	Z	002	002	0	%100
29	M17	X	001	001	0	%100
30	M17	Z	002	002	0	%100
31	M18	X	000961	000961	0	%100
32	M18	Z	002	002	0	%100
33	M19	X	001	001	0	%100
34	M19	Z	002	002	0	%100
35	M20	X	001	001	0	%100
36	M20	Z	002	002	0	%100 %100
37	M21	X	001	001	0	%100
38	M21	Z	002	002	0	%100 %100
39 40	M22 M22	X Z	001 002	001 002	0	%100 %100
41	M23	X	002	002	0	%100 %100
42	M23	Z	001	001	0	%100 %100
43	M24	X	002	002	0	%100 %100
44	M24	Z	002	002	0	%100 %100
45	M25	X	001	001	0	%100 %100
46	M25	Z	002	002	0	%100 %100
47	M26	X	001	001	0	%100 %100
48	M26	Z	002	002	Ö	%100 %100
49	M27	X	001	001	Ö	%100 %100
50	M27	Z	002	002	Ö	%100 %100
51	M28	X	001	001	0	%100
52	M28	Z	002	002	0	%100
53	M29	X	001	001	0	%100
54	M29	Z	002	002	0	%100
55	M30	X	001	001	0	%100
56	M30	Z	002	002	0	%100
57	M31	X	001	001	0	%100
58	M31	Z	002	002	0	%100
59	M32	X	001	001	0	%100
60	M32	Z X	002	002	0	%100
61	M33	X	001	001	0	%100
62	M33	Z	002	002	0	%100

Company : Maser Consulting

Designer : NL

Job Number : 21777866A Model Name : Mount Analysis Jan 11, 2022 1:33 PM Checked By: DH

Member Distributed Loads (BLC 76: Structure Wm (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
63	M34	X	001	001	0	%100
64	M34	Z	002	002	0	%100
65	M35	X	002	002	0	%100
66	M35	Z	004	004	0	%100
67	M36	X	001	001	0	%100
68	M36	Z	002	002	0	%100
69	MP6A	X	003	003	0	%100
70	MP6A	Z	005	005	0	%100
71	MP5A	X	003	003	0	%100
72	MP5A	Z	005	005	0	%100
73	MP3A	X	003	003	0	%100
74	MP3A	Z	006	006	0	%100
75	MP1A	X	003	003	0	%100
76	MP1A	Z	005	005	0	%100
77	MP4A	X	003	003	0	%100
78	MP4A	Z	005	005	0	%100
79	MP2A	X	003	003	0	%100
80	MP2A	Z	005	005	0	%100
81	M55	X	000208	000208	0	%100
82	M55	Z	00036	00036	0	%100

Member Area Loads

Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[psf]
			No Data to Print			-

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N4	max	1118.145	10	1367.044	22	694.186	2	123	67	0	75	.106	28
2		min	-1575.371	28	401.926	67	-3391.893	20	416	22	0	1	051	49
3	N65	max	1574.482	29	1251.705	22	3192.457	14	114	67	0	75	.1	28
4		min	-630.138	49	372.978	67	273.982	8	385	21	0	1	049	49
5	N84	max	641.086	10	340.697	4	1367.276	10	0	75	0	75	0	75
6		min	-643.934	4	-268.723	10	-1368.825	4	0	1	0	1	0	1
7	Totals:	max	1851.01	10	2613.65	22	2509.179	1						
8		min	-1851.01	4	817.892	67	-2509.173	7						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

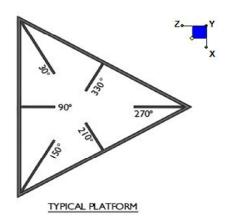
	Member	Shape	Code Check	Loc[LC	Shear Check	Loc[in]	Dir	LC	phi*Pnc	phi*Pnt	.phi*Mn	.phi*Mn	Cb Eqn
1	M1	L4X3X6	.000	3.375	18	.000	3.375	z	24	80199.0	80676	2.686	7.063	1 H2-1
2	M3	L4X3X6	.000	3.375	18	.000	3.375	z	24	80199.0	80676	2.686	7.063	1 H2-1
3	M5	PL3/8X3_H	.520	0	21	.080	0	У	5	34985.7	36450	.284	2.279	1H1-1b
4	M6	PL3/8X3_H	.627	0	29	.093	0	z	28	34985.7	36450	.284	2.279	1H1-1b
5	M7	PIPE 2.5	.208	140	7	.083	140		1	10110.2	50715	3.596	3.596	1H1-1b
6	M8	PL3/8X3_H	.482	0	21	.077	0	У	29	34985.7	36450	.284	2.279	1H1-1b
7	M9	PL3/8X3_H	.582	0	27	.096	0	Z	27	34985.7	36450	.284	2.279	1H1-1b
8	M10	PIPE 2.5	.165	140	30	.079	142.5		29	10110.2	50715	3.596	3.596	2H1-1b
9	OVP	PIPE 2.0	.239	5.937	21	.135	64.57		9	21054.34	32130	1.872	1.872	2H1-1b
10	M12	PIPE 2.0	.278	5.937	29	.092	0		28	21054.34	32130	1.872	1.872	2H1-1b
11	M13	PIPE 2.0	.257	6.68	23	.160	64.57		4	21054.34	32130	1.872	1.872	2H1-1b
12	M14	PIPE 2.0	.300	6.68	27	.087	0		28	21054.34	32130	1.872	1.872	2H1-1b
13	M15	PL3/8X3_H	.036	0	43	.045	0	У	29	36078.2	36450	.284	2.279	1 H1-1b
14	M16	1.5" w 0.06"	.277	24.5	26	.015	50.22		3	5179.054	8536.5	.325	.325	1 H1-1a

: Maser Consulting : NL : 21777866A Company Designer Job Number Model Name : Mount Analysis

Jan 11, 2022 1:33 PM Checked By: DH

Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)

	Member	Shape	Code Check	Loc[. LC	Shear Check	Loc[in]	Dir	LC	phi*Pnc	phi*Pnt	.phi*Mn	.phi*Mn	.Cb	Eqn
15	M17	PL3/8X3_H	.057	0	42	.006	0	У	8	36078.2		.284	2.279	1	H1-1b
16	M18	1.5" w 0.06"	.227	24.5	. 26	.015	50.22		8	5179.054	8536.5	.325	.325	1	H1-1a
17	M19	PL3/8X3_H	.044	0	39	.009	0	У	12	33887.6	36450	.284	2.265	1	H1-1b
18	M20	PL3/8X3_H	.035	1.5	40	.045	1.5	У	29	36078.2		.284	2.279	1	H1-1b
19	M21	PL3/8X3_H	.056	1.5	40	.006	1.5	У	8	36078.2		.284	2.279	1	H1-1b
20	M22	1.5" w 0.06"	.143	38	28	.033	0		28	6412.349			.325	1	H1-1b*
21	M23	1.5" w 0.06"	.277	0	29	.007	0		7	6412.349	8536.5	.325	.325	1	H1-1a
22	M24	PIPE_2.0	.028	0	27	.002	33		12	29344.85		1.872	1.872	1	H1-1b*
23	M25	PL3/8X3_H	.046	4	42	.009	4	У	12	33887.6	36450	.284	2.265	1	H1-1b
24	M26	PL3/8X3_H	.023	1.5	22	.043	0	У	29	36078.2	36450	.284	2.279	1	H1-1b*
25	M27	1.5" w 0.06"	.255	24.5	. 23	.027	0		5	5179.054	8536.5	.325	.325	1	H1-1a
26	M28	PL3/8X3_H	.039	1.5	22	.006	0	У	8	36078.2	36450	.284	2.279	1	H1-1b*
27	M29	1.5" w 0.06"	.099	25.11	24	.015	50.22		5	5179.054	8536.5	.325	.325	1	H1-1b
28	M30	PL3/8X3_H	.579	0	10	.048	4	z	11	33887.6	36450	.284	2.279	1	H1-1b
29	M31	PL3/8X3_H	.033	1.5	11	.043	1.5	У	29	36078.2		.284	2.279	1	H1-1b
30	M32	PL3/8X3_H	.074	1.5	11	.006	1.5	У	8	36078.2	36450	.284	2.279	1	H1-1b
31	M33	1.5" w 0.06"	.131	38	22	.031	38		5	6412.349			.325	1	H1-1b*
32	M34	1.5" w 0.06"	.235	38	23	.007	0		8	6412.349	8536.5	.325	.325	1	H1-1a
33	M35	PIPE 2.0	.599	14.0	. 4	.089	13.75		10	29344.85	32130	1.872	1.872	1	H1-1b
34	M36	PL3/8X3_H	.485	4	4	.039	0	z	11	33887.6	36450	.284	2.279	1	H1-1b
35	MP6A	PIPE 2.0	.106	26	44	.020	26		8	14916.0	32130	1.872	1.872	4	H1-1b
36	MP5A	PIPE 2.0	.213	67	49	.055	67		5	14916.0	32130	1.872	1.872	4	H1-1b
37	MP3A	PIPE 2.5	.186	26	7	.077	67		5	30038.4	50715	3.596	3.596	4	H1-1b
38	MP1A	PIPE 2.0	.232	67	33	.031	67		8	14916.0	32130	1.872	1.872	4	H1-1b
39	MP4A	PIPE 2.0	.119	56.8	. 46	.031	41.25		9	23808.54		1.872	1.872	2	H1-1b
40	MP2A	PIPE_2.0	.249	56.8	. 34	.043	16.25		31	23808.54	32130	1.872	1.872	2	H1-1b
41	M55	PIPE_3.0	.047	58.5	. 9	.004	0		22	39991.26	65205	5.749	5.749		


Client:	Verizon Wireless	Date:	1/11/2022
Site Name:	MADISON CT		
Project No.	21777866A (Rev. 2)		
Title:	Mount Analysis	Page:	1

Version 3.1

I. Mount-to-Tower Connection Check

RISA Model Data

Nodes (labeled per RISA)	Orientation (per graphic of typical platform)
N4	90
N65	90

Tower Connection Bolt Checks

Any moment resistance?:

Bolt Quantity per Reaction:

 d_x (in) (Delta X of typ. bolt config. sketch):

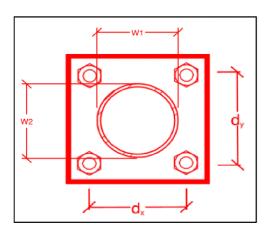
 d_y (in) (Delta Y of typ. bolt config. sketch):

Bolt Type:

Bolt Diameter (in):

Required Tensile Strength (kips):

Required Shear Strength (kips):


Tensile Strength / bolt (kips):

Shear Strength / bolt (kips):

Tensile Capacity Overall:

Shear Capacity Overall:

yes
2
3.5
2
U-Bolt
0.5
8.5
2.6
16.3
9.8
26.0%*
13.1%

*Note: Tension reduction not required if tension or shear capacity < 30%

Maser Consulting Connecticut

<u>Subject</u> TIA-222-H Usage

<u>Site Information</u> Site ID: 469141-VZW / MADISON CT

Site Name: MADISON CT
Carrier Name: Verizon Wireless
Address: 864 Opening Hill Rd.

Madison, Connecticut 06443

New Haven County

Latitude: 41.356126° Longitude: -72.639080°

<u>Structure Information</u> Tower Type: 180-Ft Self Support

Mount Type: 15.00-Ft Sector Frame

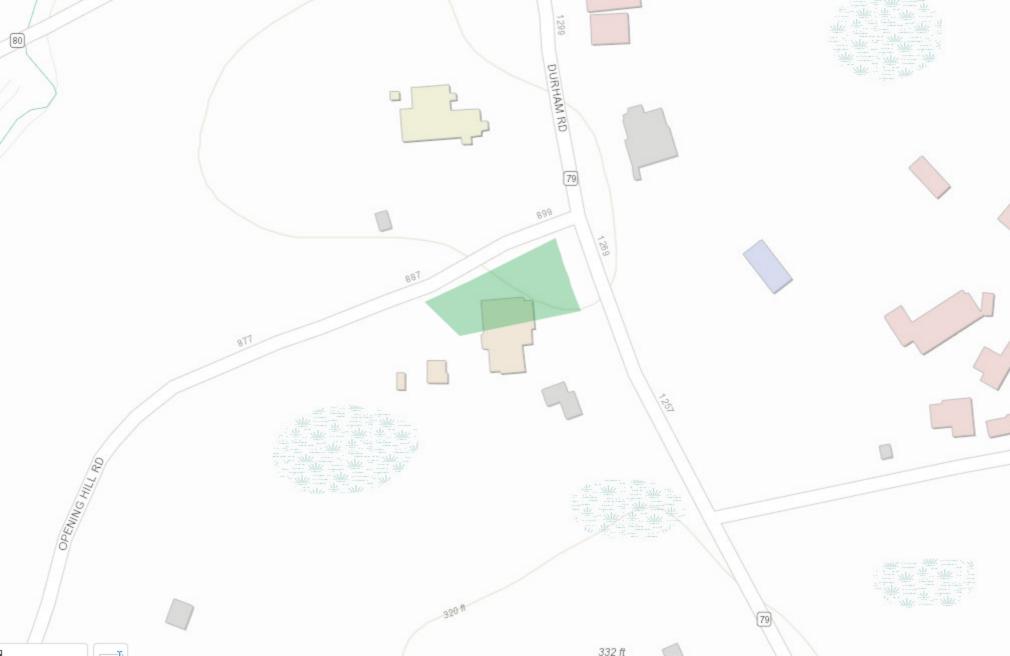
FUZE ID # 16092583

To Whom It May Concern,

We respectfully submit the above referenced Antenna Mount Structural Analysis report in conformance with ANSI/TIA-222-H, Structural Standard for Antenna Supporting Structures and Antennas and Small Wind Turbine Support Structures.

The 2015 International Building Code states that, in Section 3108, telecommunication towers shall be designed and constructed in accordance with the provisions of TIA-222. TIA-222-H is the latest revision of the TIA-222 Standard, effective as of January 01, 2018.

As with all ANSI standards and engineering best practice is to apply the most current revision of the standard. This ensures the engineer is applying all updates. As an example, the TIA-222-H Standard includes updates to bring it in line with the latest AISC and ACI standards and it also incorporates the latest wind speed maps by ASCE 7 based on updated studies of the wind data.


The TIA-222-H standard clarifies these specific requirements for the antenna mount analysis such as modeling methods, seismic analysis, 30-degree increment wind directions and maintenance loading. Therefore, it is our opinion that TIA-222-H is the most appropriate standard for antenna mount structural analysis and is acceptable for use at this site to ensure the engineer is taking into account the most current engineering standard available.

Sincerely,

Derek Hartzell, PE

Technical Specialist

ATTACHMENT 5

Street Listing Sales Search Search Back Home

864 OPENING HILL RD

Q Sales

♠ Print

Location 864 OPENING HILL RD

MBLU 134/17///

Unique ID# 00665700

Owner NORTH MADISON VOLUNTEER

FIRE COMPANY INC

Assessment \$938,700

Appraisal \$1,341,000

PID 7027

Building Count 1

Dev. Map

Current Value

	Appraisal									
	Valuation Year	Building	Extra Features	Outbuildings	Land	Total				
2021		\$1,211,400	\$0	\$7,000	\$122,600	\$1,341,000				
			Assessment							
	Valuation Year	Building	Extra Features	Outbuildings	Land	Total				
2021		\$848,000	\$0	\$4,90	\$85,800	\$938,700				

Owner of Record

Owner

NORTH MADISON VOLUNTEER FIRE COMPANY INC.

Sale Price

\$0

Co-Owner

Book & Page 0044/0130

Sale Date

Care Of

ATTACHMENT 6

Name and Address of Sender	TOTAL NO. of Pieces Listed by Sender TOTAL NO. of Pieces Received at Post	Office™ Affix Stamp He Postmark with Da			
Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	Postmaster, per (name of receiving employee)	> .	neopos 05/05/ US PO	2022 STAGE \$002	2.99º 06103 12203937
USPS® Tracking Number Firm-specific Identifier	Address (Name, Street, City, State, and ZIP Code™)	Postage	Fee	Special Handling	Parcel Airlift
1.	Peggy Lyons, First Selectwoman Town of Madison 8 Campus Drive Madison, CT 06443 Erin Mannix, Town Planner				
2.	Town of Madison 8 Campus Drive Madison, CT 06443				
3.	North Madison Volunteer Fire Company. 864 Opening Hill Road Madison, CT 06443	Inc.	Syau		
4.			S 2201 9	DSTATE	
5.	41		SO NOITAT	Sasne	
1/			-		
6.					