Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

May 5, 2022

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 846 Opening Hill Road, Madison, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an existing wireless telecommunications facility at the above-referenced property address (the "Property"). The facility consists of antennas and remote radio heads attached to a tower and associated equipment on the ground near the base of the tower. The tower was approved by the Town of Madison ("Town") in April of 1997. Cellco's use of the tower were approved by the Siting Council ("Council") in July of 1997. A copy of the Town's and the Council's approvals are included in <u>Attachment 1</u>.

Cellco now intends to modify its facility by removing nine (9) existing antennas and installing three (3) new Samsung MT6407-77A antennas and six (6) MX06FRO660-03 antennas on its existing antenna mounts. Cellco also intends to remove three (3) remote radio heads ("RRHs') and install six (6) new RRHs behind its antennas. A set of project plans showing Cellco's proposed facility modifications and new antenna and RRH specifications are included in <u>Attachment 2</u>.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Madison's Chief Elected Official and Land Use Officer.

Boston | Hartford | New York | Providence | Stamford | Albany | Los Angeles | Miami | New London | rc.com

Robinson & Cole LLP

Melanie A. Bachman, Esq. May 5, 2022 Page 2

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. Cellco's replacement antennas will be installed on its existing antenna platform mounts.

2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The installation of Cellco's new antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A cumulative General Power Density table for Cellco's modified facility is included in <u>Attachment 3</u>. The modified facility will be capable of providing Cellco's 5G wireless service.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. According to the attached Structural Analysis ("SA") and Mount Analysis ("MA"), the existing tower, tower foundation and antenna mounts, with certain modifications, can support Cellco's proposed modifications. Copies of the SA and MA are included in <u>Attachment 4</u>.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 6</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Melanie A. Bachman, Esq. May 5, 2022 Page 3

Sincerely,

Kunig mm

Kenneth C. Baldwin

Enclosures

Copy to:

Peggy Lyons, Madison First Selectwoman Erin Mannix, Town Planner North Madison Volunteer Fire Company Inc., Property Owner Alex Tyurin, Verizon Wireless

ATTACHMENT 1

TOWN OF MADISON CONNECTICUT LAND USE OFFICE

8 CAMPUS DRIVE MADISON, CONNECTICUT 06443-2563 (203) 245-5632 FAX (203) 245-5613

MADISON PLANNING AND ZONING COMMISSION

CERTIFICATION OF SPECIAL EXCEPTION PERMIT OR MODIFICATION OF SPECIAL EXCEPTION PERMIT

APPL. NO.: 97-5D

DATE OF APPROVAL: April 17, 1997

This certifies that on the above date a MODIFICATION OF SPECIAL EXCEPTION PERMIT was granted by the Madison Planning and Zoning Commission to:

OWNER OF RECORD: North Madison Volunteer Fire Department

under the provisions of Sec. <u>4.7</u> of the Zoning Regulations of the Town of Madison on property located at:

STREET ADDRESS OR LOCATION: 864 OPENING HILL ROAD

<u>TO ALLOW:</u> Construction of a 180 ft. communications tower to replace existing tower, installation of equipment building and emergency back-up generator waiving requirements of 1) a traffic study; 2) a waste water report and engineering study; and 3) final floor plans for the equipment building. The temporary installation of the "Cell on Wheels" was also approved. This approval is conditioned on plastic slats being placed in the chain link fence to obscure the view of the materials enclosed.

In accordance with Section 4.6 of said Regulations, this approval and permit are conditioned upon completion of all proposed improvements in accordance with approved plans within five years from date of approval, and shall become null and void in the event of failure to complete such improvements within said five year period or any extension thereof granted by the Commission.

Appl.: Owner

Received f	for Record			Zoning Commission	
at		h	m	291	
	Signature of !	Town Clerk		FRM. SEPERMI	T 6/91

INLAND WETLANDS AGENCY . PLANNING AND ZONING COMMISSION . ZONING BOARD OF APPEALS

TOWN OF MADISON CONNECTICUT LAND USE OFFICE

8 CAMPUS DRIVE MADISON, CONNECTICUT 06443-2563 (203) 245-5632 FAX (203) 245-5613

May 24, 1999

CERTIFIED MAIL

North Madison Volunteer Fire Company, Inc. 864 Opening Hill Road Madison, CT 06443

Re: Application #99-26D: 864 OPENING HILL ROAD. Request for Modification of Special Exception Permit to allow relocation of the site for emergency generator, enlarge the fenced coumpound, change the style of the fence, add landscaping and permit Nextel Communications ands Sprint PCS to install radio equipment shelters inside the enlarged compound.

Gentlemen:

At their regular meeting on May 20, 1999, the Planning and Zoning Commission approved the application above referenced as presented at the meeting.

Before this Modification of Special Exception Permit will become effective, it is necessary to file a Certificate in the Land Records of the Town for which there is a \$10.00 filing fee. At your earliest convenience, please forward this amount to our office so that we may file this Certificate in your behalf. Your check should be made payable to the Town of Madison.

When this Certificate is filed at the end of the appeal period, you may apply for building permits through normal Building Department procedures.

Very truly yours,

11. 4 mcmi

William McMinn Planning and Zoning Administrator

: drk

Copy to: Ronald C. Clark, Nextel Communications

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL 10 Franklin Square New Britain, Connecticut 06051 Phone: (860) 827-2935 Fax: (860) 827-2950

July 1, 1997

Kenneth C. Baldwin Robinson & Cole One Commercial Plaza 280 Trumbull Street Hartford, CT 06103-3597

Cellco Partnership d/b/a Bell Atlantic NYNEX Mobile notice of intent to modify an existing Re: telecommunications facility located at 864 Opening Hill Road in Madison, Connecticut.

Dear Mr. Baldwin:

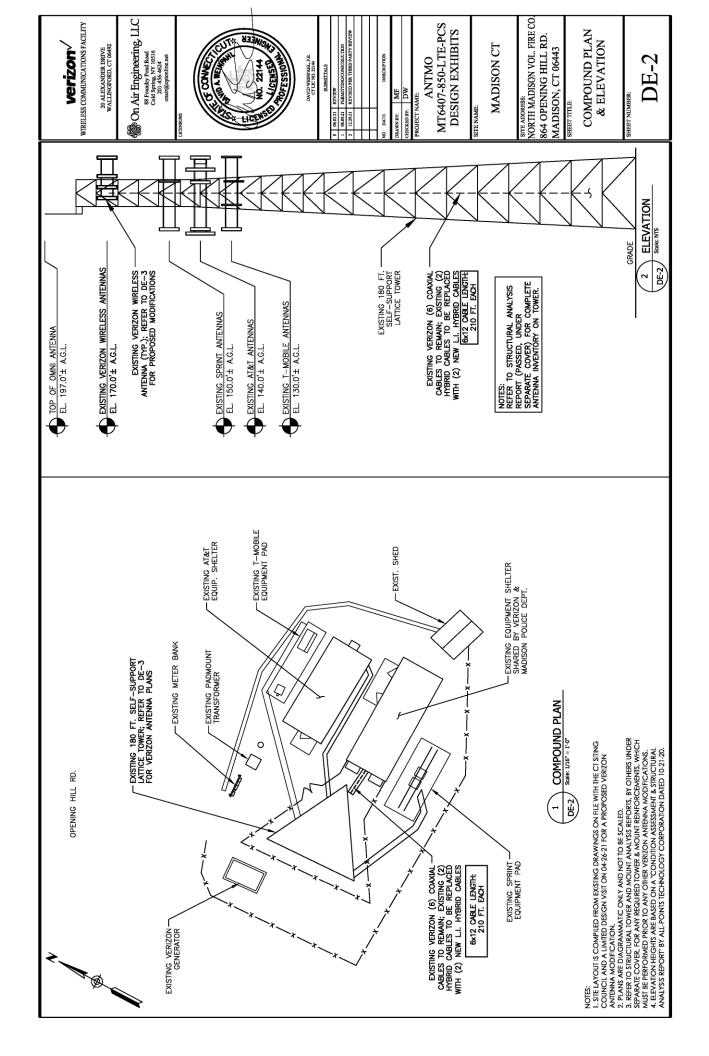
At a public meeting held on June 30, 1997, the Connecticut Siting Council (Council) acknowledged your notice of intent to modify an existing telecommunications site in Madison, Connecticut, pursuant to Section

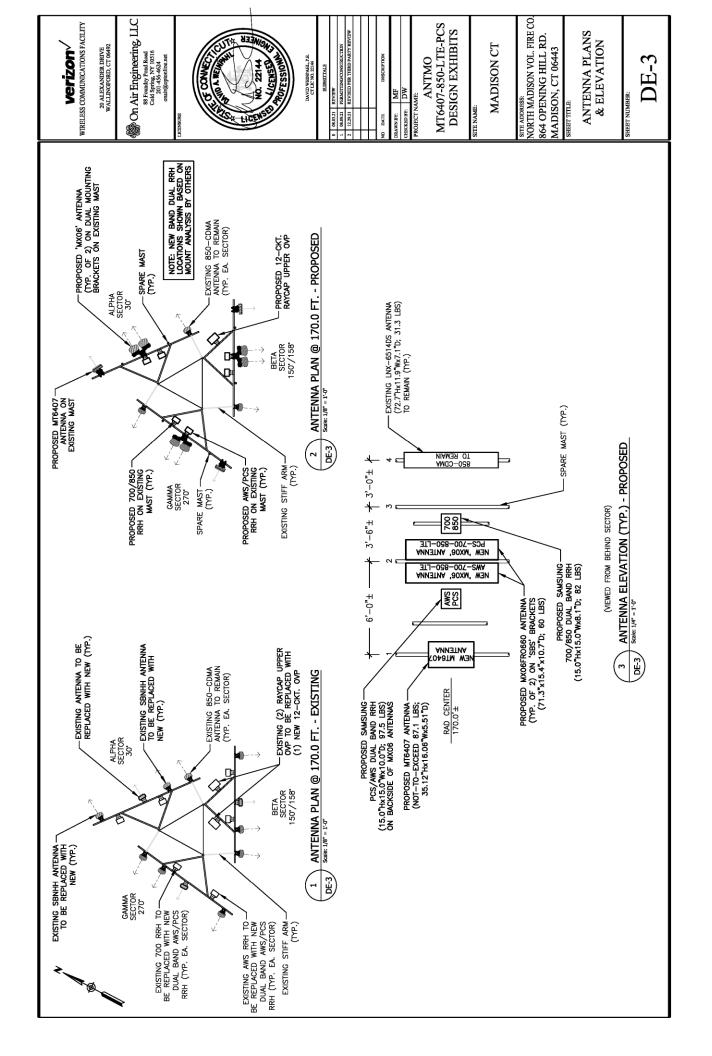
The proposed modifications are to be implemented as specified in your notice dated June 16, 1997. The modifications are in compliance with the exception criteria in Section 16-50j-72 (c)(1) of the Regulations of Connecticut State Agencies as changes to an existing non-facility site that would not cause a significant change or alteration in the physical and environmental characteristics of the site. This site has been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequency now used on this tower. Any additional change to this site will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Science and Technology, Bulletin No. 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes J 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of

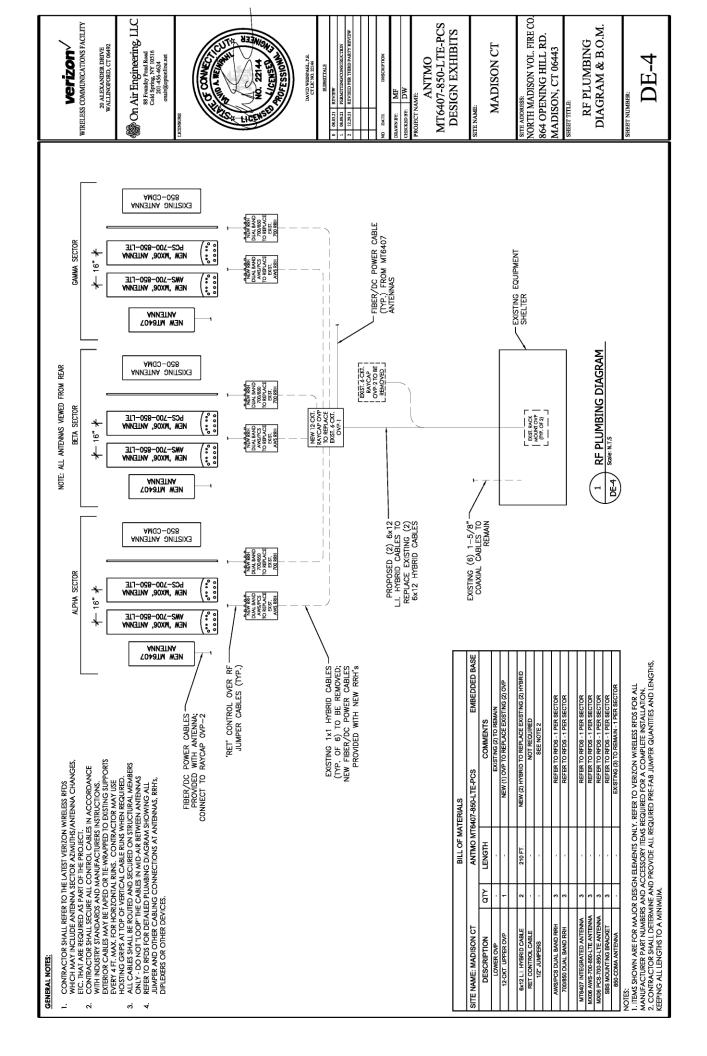
Thank you for your attention and cooperation.

Very truly yours,

Mortner A. Geleto Jun Mortimer A. Gelston


Chairman


MAG/RKE/ss


Honorable Thomas Rylander, First Selectman, Town of Madison C:

ATTACHMENT 2

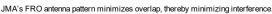
VIERLESS COMMUNCATIONS FACILITY WIRELESS COMMUNCATIONS FACILITY ZA ALEXANDER DRIVE WALLINGTORD, CT 66492 WALLINGTORD, CT 66492 WALLI	A CONTRACT OF CONTRACT	ACC 2214 ACC		DEX DEX MF MF DW	PROJECT NAME: ANTMO	MT640		NOTES MADISON CT	STTE ADDRESS:	NORTH MADISON VOL. FIRE CO. 864 OPENING HILL RD.	MADISON, CT 06443 SHERT TITLE:		SHEET NUMBER:
ACILITY		Ö		SHEET INDEX	DE-1 TITLE SHEET		DE-3 ANTENNA PLANS & ELEVATION DE-4 RF PLUMBING DIAGRAM & B.O.M.	DE-5 GENERAL CONSTRUCTION NOTES				1 AL COLOR	1
VELIZON WIRELESS COMMUNICATIONS FACILITY	SITE NAME: MADISON CT	NORTH MADISON VOL. FIRE CO. 864 OPENING HILL RD. MADISON, CT 06443	ANTENNA MODIFICATION						unamente de la constante				
WIREL				PROJECT SUMMARY	MADISON CT	864 OPENING HILL RD. MADISON, CT 06443	NORTH MADISON VOL. FIRE CO. 864 OPENING HILL RD.	MADISON, CT 06443 134-17	41° 21' 26.33" N 72° 38' 19.52" W	WALTER CHARCZYNSKI (860) 306-1806	ALEX TYURIN (860) 550-3195		
					SITE NAME:	SITE ADDRESS:	PROPERTY OWNER:	PARCEL ID:	COORDINATES:	VERIZON CONSTRUCTION:	VERIZON REAL ESTATE:		

GENERAL CONSTRUCTION NOTES:		
1. CONTRACTOR SHALL NOT COMMENCE ANY WORK UNTIL HE OBTAINS, AT HIS OWNE RYPENSE, ALLI INSURANCE REQUIRED BY CELLCO PARTNERSHIP d/b/or of the option of the o	17. ERECTION SHALL BE DONE IN A WORKMANLIKE MANNER BY COMPETENT EXPERIENCE WORKMAN IN ACCORDANCE WITH APPLICABLE CODES AND THE REST. ACTOFFETEN PRAATTICE. ALL NETMERS SHALL RELINING AND	Verizon WRELESS COMMUNICATIONS FACILITY
		20 AT FXANDER DRIVE
2. ALL WORK SHALL BE DONE IN ACCORDANCE WITH ALL AFFLOABLE CODES AND REGULATIONS AND ALL LOCAL LAWS AND REGULATIONS, CURRENT EDITIONS.	18. CONTRACTOR SHALL BE RESPONSIBLE FOR THE SAFEIY OF THE WORK AREA, ADJACENT AREAS, AND BUILDING OCCUPANTS THAT ARE LIKELY TO BE	WALLINGFORD, CT 06492
3. CONTRACTOR SHALL VISIT THE JOB SITE AND FAMILLARIZE HIMSELF WITH ALL CONDITIONS AFFECTING THE PROPOSED WORK AND MAKE PROVISIONS AS TO THE	AFFECTED BY THE WORK UNDER THIS CONTRACT. WORK SHALL CONFORM TO ALL O.S.H.A REQUIREMENTS.	🛞 On Air Engineering, LLC
COST THEREOF. CONTRACTORS VALUE REFRONDELE FOR ANNLIARIZING HIMELE MILL CONTRACT DOCUMENTS, FIELD CONDITIONS AND DIMENSIONS AND CONFIRMING THAT THE WORK MAY BE ACCOMPLISHED AS SHOWN PROR TO	19. CONTRACTOR SHALL COORDINATE HIS WORK AND SCHEDULE HIS ACTIVITIES AND WORKING HOURS IN A ACCORDANCE WITH THE REQUIREMENTS OF THE DEPORTOR ANALORE AND ACCORDANCE WITH THE REQUIREMENTS	88 Foundry Pond Road Cold Spring, NY 10516 201456-4624 ontir@optionline.net
PROCEEDING WITH CONSTRUCTION. ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER PRIOR TO THE COMMENCEMENT OF WORK.	OF ITE FROTEKI I OWNER ANUJOR FROTEKI I MANAGEMENI COMPANI. 20. O'NITE A'TOP SHALL RE PERPONSIELE FOR C'OPDINATING HIS WORK	LICENSURE
4. CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXISTING CONDITIONS AT THE SITE PRIOR TO FABRICATION AND/OR INSTALLATION	WITH THE WORK OF OTHERS AS IT MAY RELATE TO RADIO EQUIPMENT. ANTENNAS AND ANY OTHER PORTIONS OF THE WORK.	CONVERSION
OF ANY WORK IN THE CONTRACT AREA AND SUBMIT TO THE ENGINEER ANY DISCREPANCIES FROM THE DRAWINGS.	21. CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS	Contraction of the second
5. CONTRACTOR IS TO REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK	SPECIFICALLY INDICATED OR WHERE LOCAL CODES OR REGULATIONS MAY TAKE PRECEDENCE.	
SHOWN IN INE SIL OF DRAWINGS, CONIRACION SHALL ROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUB-CONIRACIONS AND ALL RELATED PARTIES, THE SUB-CONIRACIONS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.	22. CONTRACTOR SHALL MAKE NECESSARY PROVISIONS TO PROTECT EXISTING SURFACES, EQUIPMENT, IMPROVEMENTS, PIPING, ANTENNA AND ANTENNA CABLES AND REPAIR ANY DAMAGE THAT OCCURS DURING CONSTRUCTION.	NO 2214 SE
 CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL, COMPONENTS AND PROVIDE ALL TIEMS AS SHOWN OR INDICATED ON DRAWINGS OR WRITTEN IN SPECIFICATIONS. 	23. CONTRACTOR SHALL REPAIR ALL EXSTING SURFACES DAMAGED DURING CONSTRUCTION SUCH THAT THEY MATCH AND BLEND WITH ADJACENT SURFACES.	DAVID WRIGHALL PE
7. CONTRACTOR SHALL FURNISH ALL MATERIAL LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAMPLI JURISEDCTION OVER THE WORK.	24. CONTRACTOR SHALL KEEP CONTRACT AREA CLEAN, HAZARD FREE AND DISPOSE OF ALL DEBRIS AND RUBBISTE GOUINAMEN NOT SPECTIED AS REMANING ON THE FROMERY OF THE OWNER SHALL BE REMOVED. LEAVE PREMASES IN CLEAN CONDITIONS AND FREE FROM PAINT SPOTS, DUST, OR	ALIMATTALS BUDMITTALS 0 06.05.21 REVEW 1 06.09.21 PERRETTING/CONSTRUCTION 2 12.29.21 REVEILD PER TIRED PARTY REVEW
8. CONTRACTOR SHALL OBTAIN AT HIS OWN EXPENSE ALL PERMITS AND ALL INSPECTIONS REQUIRED REOM EEDERAL AND STATE GOVERNMENTS, CONNTES, MUNICIPALITIES AND OTHER REGULATORY AGENCIES WHICH MAY BE REQUIRED FOR THE READLECT.	MUDES OF ANY NAURE. CONTRECTOR STALLER RESPONDELE FOR MAINING ALL COMPETION OF CONSTRUCTION. 26. BEFORE FIAAL ACCEPTANCE OF THE WORK, CONTRACTOR SHALL REMOVE ALL EQUIMENT, TEMPORARY WORKS, UNUSED AND USELES MATERIALS.	NO DATE DESCRIPTION
10. DETAILS ARE INTENDED TO SHOW END RESULT OF DESIGN. MINOR MODIFICATIONS MAY BE REQUIRED TO SUIT JOB DIMENSIONS OR CONDITIONS, AND SUCH MODIFICATIONS SHALL BE INCLUDED AS PART OF THE WORK.		PROJECT NAME PROJECT NAME PROJECT NAME ANTIMO
11. ALL MATERIAL PROVIDED BY CELLCO PARTNERSHIP (Jb/o VERZON IS TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTIOR PRIOR TO INSTALLATION. ANY DEFICIENCIES TO PROVIDED MATERIALS SHALL BE BROUGHT TO THE CONSTRUCTION MANAGERS ATTENTION IMMEDIATELY.		9 H
12. THE MATERIALS INSTALLED IN THE WORK SHALL MEET THE REQUIREMENTS OF THE CONTRACT DOCUMENTS. NO SUBSTITUTIONS ARE ALLOWED.		SITE NAME: MADISON CT
13. CONTRACTOR IS SOLELY RESPONSIBLE FOR THE MEANS AND METHODS OF CONSTRUCTION, FOR SEQUENCES AND PROCEDURES TO BE USED, AND TO ENSURE THE SAFETY OF THE EXISTING BUILDING AND ITS COMPONENT DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPRINING, FIC, THAT MAY BE INCESSARY.		STITE ADDRESS: NORTH MADISON VOL, FIRE CO.
14. CONTRACTOR SHALL COORDNATE ALL CIVIL STRUCTURAL AND ELECTRICAL DRAWINGS FOR THE LOCATION OF ALL OPENINGS, RECESSES, BULLT-IN WORK, ETC.		MADISON, CT 06443
15. CONTRACTOR SHALL RECEIVE CLARFICATION IN WRITING AND SHALL RECEIVE IN WRITING AUTHORIZATION TO PROCEED BEFORE STARTING WORK ON ANY TIEMS NOT CLEARLY DEFINED OR IDENTIFIED BY THE CONTRACT DOCUMENTS.		
16. CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER OF ALL PRODUCTS OR ITEMS NOTED AS "EXISTING" WHICH ARE NOT FOUND TO BE IN THE FIELD.		NOT ES
		DE-5

MX06FRO660-03

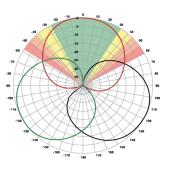
NWAV™ X-Pol Hex-Port Antenna

X-Pol Hex-Port 6 ft 60° Fast Roll Off antenna with independent tilt on 700 & 850 MHz:


2 ports 698-798, 824-894 MHz and 4 ports 1695-2180 MHz

- Fast Roll Off (FRO™) azimuth beam pattern improves Intra- and Inter-cell SINR
- Compatible with dual band 700/850 MHz radios with independent low band EDT without external diplexers
- Fully integrated (iRETs) with independent RET control for low and high bands for ease of network optimization
- SON-Ready array spacing supports beamforming capabilities
- Suitable for LTE/CDMA/PCS/UMTS/GSM air interface technologies
- Integrated Smart Bias-Ts reduce leasing costs

Fast Roll-Off antennas increase data throughput without compromising coverage


The horizontal beam produced by Fast Roll-Off (FRO) technology increases the Signal to Interference & Noise Ratio (SINR) by eliminating overlap between sectors .

Non-FRO antenna

Large traditional antenna pattern overlap creates harmful interference.

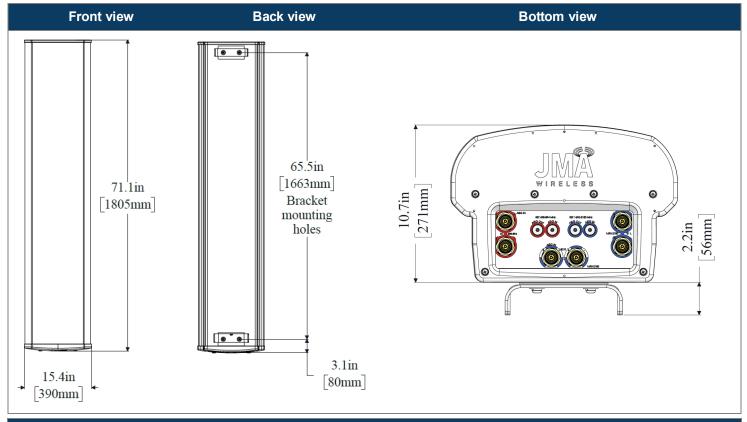
JMA FRO antenna

NWAV

The LTE radio automatically selects the best throughput based on measured SINR.

Electrical specification (minimum/maximum)	Port	s 1, 2	Ports 3, 4, 5, 6			
Frequency bands, MHz	698-798	824-894	1695-1880	1850-1990	1920-2180	
Polarization	± 4	15°		± 45°		
Average gain over all tilts, dBi	14.4	14.0	17.6	18.0	18.2	
Horizontal beamwidth (HBW), degrees	60.5	53.0	55.0	55.0	55.5	
Front-to-back ratio, co-polar power @180°± 30°, dB	>24	>24.0	>25.0	>25.0	>25.0	
X-Pol discrimination (CPR) at boresight, dB	>15.0	>14.2	>18	>18	>15	
Sector power ratio, percent	<3.5	<3.0	<3.7	<3.8	<3.6	
Vertical beamwidth (VBW), degrees ¹	13.1	11.8	6.0	5.5	5.5	
Electrical downtilt (EDT) range, degrees	2-14	2-14	0-9			
First upper side lobe (USLS) suppression, dB ¹	≤-15.0	≤-16.5	≤-16.0	≤-16.0	≤-16.0	
Cross-polar isolation, port-to-port, dB ¹	25	25	25	25	25	
Max VSWR / return loss, dB	1.5:1 / -14.0		1.5:1 / -14.0			
Max passive intermodulation (PIM), 2x20W carrier, dBc	-153		-153			
Max input power per any port, watts	300		250			
Total composite power all ports, watts	1500					

¹ Typical value over frequency and tilt


©2019 JMA Wireless. All rights reserved. This document contains proprietary information. All products, company names, brands, and logos are trademarks™ or registered® trademarks of their respective holders. All specifications are subject to change without notice. +1 315.431.7100 customerservice@jmawireless.com

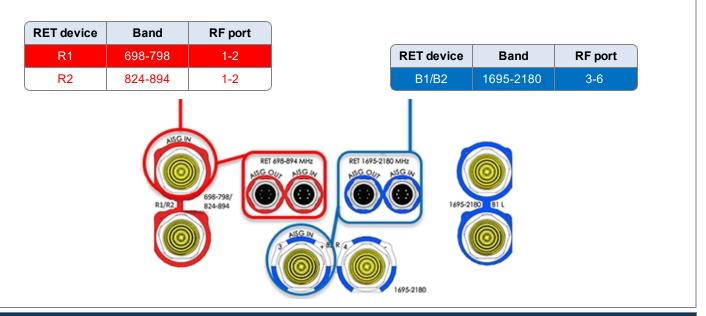
MX06FRO660-03

NWAV™ X-Pol Hex-Port Antenna

Mechanical specifications	
Dimensions height/width/depth, inches (mm)	71.3/ 15.4/ 10.7 (1811/ 392/ 273)
Shipping dimensions length/width/height, inches (mm)	82/20/15 (2083/508/381)
No. of RF input ports, connector type, and location	6 x 4.3-10 female, bottom
RF connector torque	96 lbf·in (10.85 N·m or 8 lbf·ft)
Net antenna weight, lb (kg)	60 (27.0)
Shipping weight, lb (kg)	90 (41.0)
Antenna mounting and downtilt kit included with antenna	91900318
Net weight of the mounting and downtilt kit, lb (kg)	18 (8.18)
Range of mechanical up/down tilt	-2° to 14°
Rated wind survival speed, mph (km/h)	150 (241)
Frontal, lateral, and rear wind loading @ 150 km/h, lbf (N)	154 (685), 73 (325), 158 (703)
Equivalent flat plate @ 100 mph and Cd=2, sq ft	2.6

Ordering information

Antenna model	Description					
MX06FRO660-03	6F X-Pol HEX FRO 60° independent tilt 700/850 RET, 4.3-10 & SBT					
Optional accessories						
AISG cables	M/F cables for AISG connections					
PCU-1000 RET controller	Stand-alone controller for RET control and configurations					


MX06FRO660-03

NWAV™ X-Pol Hex-Port Antenna

Remote electrical tilt (RET 1000) information				
RET location	Integrated into antenna			
RET interface connector type	8-pin AISG connector per IEC 60130-9			
RET connector torque	Min 0.5 N·m to max 1.0 N·m (hand pressure & finger tight)			
RET interface connector quantity	2 pairs of AISG male/female connectors			
RET interface connector location	Bottom of the antenna			
Total no. of internal RETs (low bands)	2			
Total no. of internal RETs (high bands)	1			
RET input operating voltage, vdc	10-30			
RET max power consumption, idle state, W	≤ 2.0			
RET max power consumption, normal operating conditions, W	≤ 13.0			
RET communication protocol	AISG 2.0 / 3GPP			

RET and RF connector topology

Each RET device can be controlled either via the designated external AISG connector or RF port as shown below:

Array topology

3 sets of radiating arrays	Band	RF port
R1/R2: 698-894 MHz	1695-2180	3-4
B1: 1695-2180 MHz B2: 1695-2180 MHz	698-894	1-2
	1695-2180	5-6

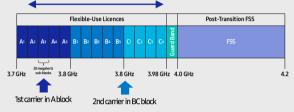
©2019 JMA Wireless. All rights reserved. This document contains proprietary information. All products, company names, brands, and logos are trademarks[™] or registered® trademarks of their respective holders. All specifications are subject to change without notice. +1 315.431.7100 customerservice@jmawireless.com

SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..

Model Code : MT6407-77A


Points of Differentiation

Wide Bandwidth

With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

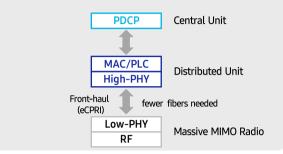
C-Band spectrum supported by Massive MIMO Radio

Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.

This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.



Technical Specifications

ltem	Specification
Tech	NR
Band	n77
Frequency Band	3700 - 3980 MHz
EIRP	78.5dBm (53.0 dBm+25.5 dBi)
IBW/OBW	280 MHz / 200 MHz
Installation	Pole/Wall
Size/ Weight	16.06 x 35.06 x 5.51 inch (50.86L)/ 79.4 lbs

Future Proof Product

Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment.

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

Dual-Band Radio Unit 700/850MHz (B13/B5) RFV01U-D2A

Samsung's RFV01U-D2A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.

The RFV01U-D2A RU targets dual-band support across Band 13 (700MHz) and Band 5 (850MHz), making it an ideal product for broad coverage footprints across multiple common low-end, long-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributed-and central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation

Key Technical Specifications

Duplex Type: FDD Operating Frequencies: B13: DL(746-756MHz)/UL(777-787MHz) B5: DL(869-894MHz)/UL(824-849MHz) Instantaneous Bandwidth: 10MHz(B13) + 25MHz(B5) RF Chain: 4T4R/2T4R/2T2R Output Power: Total 320W DU-RU Interface: CPRI (10Gbps) Dimensions: 380 x 380 x 207mm (29.9L) Weight: 31.9kg Input Power: -48V DC Operating Temp.: -40 - 55°(w/o solar load) Cooling: Natural convection

Dual-Band Radio Unit AWS/PCS (B66/B2) RFV01U-D1A

Samsung's RFV01U-D1A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.

The RFV01U-D1A RU targets dual-band support across Band 66 (AWS) and Band 2 (PCS), making it an ideal product for broad coverage footprints across multiple common mid-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributed-and central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation
- Built-in Broadcast Auxiliary Services (BAS) filter ensures compliant AWS operation without impacting footprint

Key Technical Specifications

Duplex Type: FDD Operating Frequencies: B66: DL(2,110-2,180MHz)/UL(1,710-1,780MHz) B2: DL(1,930-1,990MHz)/UL(1,850-1,910MHz) Instantaneous Bandwidth: 70MHz(B66) + 60MHz(B2) RF Chain: 4T4R/2T4R/2T2R Output Power: Total 320W DU-RU Interface: CPRI (10Gbps) Dimensions: 380 x 380 x 255mm (36.8L) Weight: 38.3kg Input Power: -48V DC Operating Temp.: -40 - 55°(w/o solar load) Cooling: Natural convection

ATTACHMENT 3

	General	Power	Density					
Site Name: Madison								
Tower Height: Verizon @ 170ft								
CARRIER	# OF CHAN.	WATTS ERP	HEIGHT	FREQ.	CALC. POWER DENS	MAX. PERMISS.EXP.	FRACTION MPE	Total
*T-Mobile	2	592	130	600	0.027691875	0.4	0.69%	
*T-Mobile	2	649	130	700	0.030358153	0.466666667	0.65%	
*T-Mobile	4	1102	130	1900	0.103096101	1	1.03%	
*T-Mobile	2	2204	130	1900	0.103096101	1	1.03%	
*T-Mobile	2	2589	130	2100	0.121105174	1	1.21%	
*Fire Company	1	100	180	46.06	0.001187806	0.2	0.06%	
*Police Dept	1	100	180	453.5	0.0012	0.3023	0.04%	
*AT&T	1	566	140	850	0.0113	0.5667	0.20%	
*AT&T	1	6311	140	1900	0.1264	1.0000	1.26%	
*AT&T	1	921	140	850	0.0184	0.5667	0.33%	
*AT&T	1	921	140	850	0.0184	0.5667	0.33%	
*AT&T	1	7114	140	2100	0.1425	1.0000	1.42%	
*AT&T	1	1423	140	737	0.0285	0.4913	0.58%	
*Sprint	1	438	150	850	0.0076	0.5667	0.13%	
*Sprint	2	438	150	850	0.0152	0.5667	0.27%	
*Sprint	5	623	150	1900	0.0540	1.0000	0.54%	
*Sprint	2	1556	150	1900	0.0540	1.0000	0.54%	
*Sprint	8	778	150	2500	0.1079	1.0000	1.08%	
*Nextel	9	100	160	851	0.0136	0.5673	0.24%	
VZW 700	4	966	170	751	0.0048	0.5007	0.96%	
VZW CDMA	2	447	170	877.26	0.0011	0.5848	0.19%	
VZW Cellular	4	944	170	874	0.0047	0.5827	0.81%	
VZW PCS	4	1476	170	1975	0.0073	1.0000	0.73%	
VZW AWS	4	2316	170	2120	0.0115	1.0000	1.15%	
VZW CBAND	2	6531	170	3730.08	0.0325	1.0000	3.25%	
								18.73%
* Source: Siting Council								

ATTACHMENT 4

Report Date:	January 13, 2022
Client:	On Air Engineering, LLC 88 Foundry Pond Road Cold Spring, NY 10516 Attn: David Weinpahl, P.E. (201) 456-4624 dweinpahl@onaireng.com
Structure: Verizon Site Name: Site Address: City, County, State: Latitude, Longitude:	Existing 180-ft Self Support Tower MADISON CT 864 Opening Hill Rd Madison, New Haven County, CT 41.3573138, -72.638756
PJF Project:	A42921-0018.003.8700

Paul J. Ford and Company is pleased to submit this "**Structural Analysis Report**" to determine the tower stress level.

Analysis Criteria:

This analysis utilizes an ultimate 3-second gust wind speed of 140 mph (converted to an equivalent 108 mph nominal 3-second gust wind speed per Section 1609.3.1 for use with TIA-222 G) as required by the 2018 Connecticut State Building Code and Appendix N. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Proposed Appurtenance Loads:

The structure was analyzed with the proposed loading configuration shown in Table 1 combined with the other considered equipment shown in Table 2 of this report.

Summary of Analysis Results:

Existing Structure:	Pass – 59.6%
Existing Foundation:	Pass – 46.0%

We at Paul J. Ford and Company appreciate the opportunity of providing our continuing professional services to you and On Air Engineering, LLC. If you have any questions or need further assistance on this or any other projects, please give us a call.

Respectfully Submitted by: Paul J. Ford and Company

John M. Farent

John Fawcett Structural Designer jfawcett@pauljford.com

250 E Broad St, Suite 600 Columbus, OH 43215 Phone 614.221.6679

www.PaulJFord.com

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) Table 5 - Tower Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 180-ft self-support tower design by Rohn per the last structural analysis by American Tower Corporation. All information regarding tower geometry and foundations were taken from this analysis as no manufacturer drawings or tower mapping were provided.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-G
Risk Category:	
Ultimate Wind Speed:	140 mph
Nominal Wind Speed:	108 mph
Exposure Category:	В
Topographic Factor:	1
Ice Thickness:	0.75 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	andrew	LNX-6514DS-A1M w/ Mount Pipe		
		3	jma wireless	91900314-02 SBS Bracket		
		6	jma wireless	MX06FRO660-03 w/ Mount Pipe		
		1	raycap	RVZDC-6627-PF-48	6	1-5/8
168.75	170.0	3	samsung telecommunications	B2/B66A RRH-BR049 (RFV01U-D1A)	2	1-1/4
		3	samsung telecommunications	B5/B13 RRH-BR04C (RFV01U- D2A)		hybrid
		3	samsung telecommunications	MT6407-77A w/ Mount Pipe		
		3	tower mounts	Rohn 6'x15' Boom Gate		

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)				
180.0	186.0	1	miscl	12' 4-Bay Dipole	1	7/8				
	187.0	1	miscl	20' x 3" omni whip						
177.0	177.0	177.0	177.0	177 0	177.0	1	tower mount	6' sidearm (Vacant Mount)	2	7/8
			1	tower mount	Side Arm Mount					
		9	ericsson	RRUS-11						
150.0	150.0	3	rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe	4	1-1/4				
		3	rfs celwave	APXVTM14-C-120 w/ Mount Pipe						
		3	tower mount	14' Sector Mount						

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	cci antennas	HPA65R-BU6AA w/ Mount Pipe		
		6	ericsson	RRUS-11		
		3	kathrein	80010965 w/ Mount Pipe		
140.0	140.0	3	powerwave technologies	7770.00 w/ Mount Pipe	2 12	3/8 1-1/4
		6	powerwave technologies	LGP1720X	4	3/4
		2	raycap	DC6-48-60-18-8F	F	
		3 tower mount 14' Sector Mount		14' Sector Mount	1	
	130.0	3	ems wireless	RR90-17-DP		
		3 ericsson KRY 112 71/2	KRY 112 71/2			
130.0		3	ericsson	RRUS-11	12	1-5/8
100.0		3	rfs celwave	APXVAARR24_43-U-NA20 w/ Mount Pipe	3	1-1/4
		3	tower mount	12' sector mount	1	
120.0	122.0	1	miscl	4' x 1-3/4" omni whip	- 1	7/8
120.0	120.0	1	tower mount	6' Side Arm Mount		1/0
108.0	108.0	1	miscl	12" x 12" x 12" Junction Box	3	1-1/4
90.0	95.0	1	miscl	10' 4-bay dipole	- 1	7/8
90.0	90.0	1	tower mount	6' Side Arm Mount		//0
86.0	88.0 1 miscl		4' x 1-3/4" omni whip	- 1	7/8	
00.0	86.0	1	tower mount	6' Side Arm Mount		//0
55.0	55.0	1	gps	GPS	- 1	1/2
55.0	55.0	1	tower mount	3' Side Arm Mount		1/2

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
Structural Analysis Report	American Tower, 7/18/2019	383660	On Air Engineering
Structural Analysis Report	All-Points Technology, 10/21/2020	CT656100	On Air Engineering
RFDS	Verizon, 11/24/2021	16092583	On Air Engineering
FAA 2-C Survey Certification	Martinez Couch and Associates, LLC, 5/12/2021	-	On Air Engineering
Construction Drawings	On Air Engineering, 12/29/2021	-	On Air Engineering
Mount Analysis Report	Maser, 1/11/2022	21777866A Rev 2	On Air Engineering

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 3) At the time of analysis, foundation information and a site-specific geotechnical report were not available. However, the structural analysis report, referenced in Table 3, referred to the original foundation design drawings and geotechnical report. Assuming the previous structural analysis is correct, we have analyzed the foundation.
- 4) Per assumption three, the original ROHN foundation design was not provided. If these documents are available, please provide them. The structural analysis by American Tower Corporation, dated 7/18/2019, specifically referenced the Rohn Foundation Drawings, hence, the foundation parameters from that analysis are assumed to be the most accurate and have been used in our analysis.
- 5) The APT Structural Analysis Report, dated 10/17/2020, only provides the tnx tower profile page, E-1 to provide member sizes. Based on that information, the tnx tower profile page, E-1, from our report utilized the same member sizes as the APT report. Any information not available in the APT report was obtained from the structural analysis from American Tower Corporation, dated 7/18/2019, which referenced the original Rohn tower drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Section No.	Elevation (ft)	Component Type	Size	Critical Element	Р (К)	SF*P_allow (K)	% Capacity	Pass / Fail
T 1	180 - 160	Leg	Pipe 3.5" x 0.216" (3 STD)	3	-7.73	75.60	10.2	Pass
T2	160 - 140	Leg	Pipe 4.5" x 0.337" (4 XS)	42	-26.63	169.40	15.7	Pass
ТЗ	140 - 120	Leg	Pipe 5.563" x 0.375" (5 EH)	80	-60.29	252.79	23.8	Pass
T4	120 - 100	Leg	Pipe 6.625" x 0.340" (6 EHS)	119	-97.36	289.63	33.6	Pass
T5	100 - 80	Leg	Pipe 8.625" x 0.375" (8 EHS)	158	-127.29	407.78	31.2	Pass
Т6	80 - 60	Leg	Pipe 8.625" x 0.500" (8 XS)	184	-162.37	533.61	30.4 33.4 (b)	Pass
Τ7	60 - 40	Leg	Pipe 8.625" x 0.500" (8 XS)	211	-197.80	533.61	37.1	Pass
Т8	40 - 20	Leg	Pipe 10.75" x 0.500" (10 XS)	238	-232.85	704.40	33.1	Pass
Т9	20 - 0	Leg	Pipe 10.75" x 0.500" (10 XS)	265	-267.30	704.40	37.9	Pass
T 1	180 - 160	Diagonal	Pipe 2.375" x 0.154" (2 STD)	11	-4.81	19.32	24.9	Pass
T2	160 - 140	Diagonal	Pipe 2.375" x 0.218" (2 XS)	47	-6.50	21.65	30.0	Pass
ТЗ	140 - 120	Diagonal	Pipe 2.375" x 0.218" (2 XS)	86	-9.80	18.50	53.0	Pass
T4	120 - 100	Diagonal	Pipe 2.875" x 0.203" (2.5 STD)	125	-9.73	27.83	35.0	Pass

Table 4 - Section Capacity (Summary)

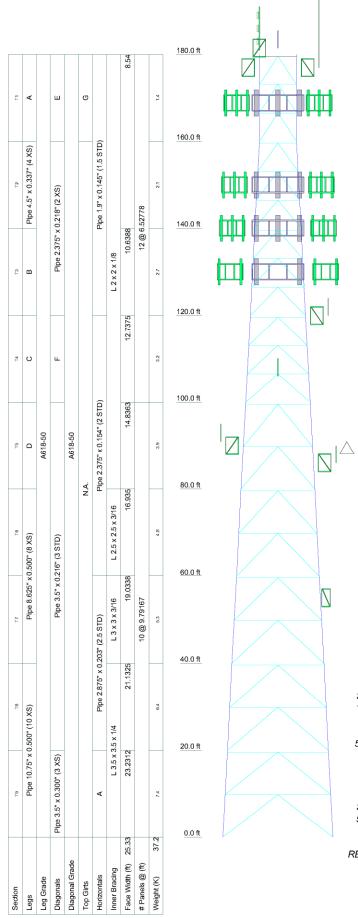
Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
T5	100 - 80	Diagonal	Pipe 3.5" x 0.216" (3 STD)	164	-12.16	32.33	37.6	Pass
Т6	80 - 60	Diagonal	Pipe 3.5" x 0.216" (3 STD)	191	-12.52	28.78	43.5	Pass
T7	60 - 40	Diagonal	Pipe 3.5" x 0.216" (3 STD)	218	-12.88	25.65	50.2	Pass
Т8	40 - 20	Diagonal	Pipe 3.5" x 0.216" (3 STD)	249	-13.20	23.29	56.7	Pass
Т9	20 - 0	Diagonal	Pipe 3.5" x 0.300" (3 XS)	276	-13.66	26.89	50.8	Pass
T 1	180 - 160	Horizontal	Pipe 1.9" x 0.145" (1.5 STD)	10	-2.71	23.80	11.4	Pass
T2	160 - 140	Horizontal	Pipe 1.9" x 0.145" (1.5 STD)	46	-4.05	20.26	20.0	Pass
Т3	140 - 120	Horizontal	Pipe 1.9" x 0.145" (1.5 STD)	85	-6.77	15.17	44.6	Pass
T4	120 - 100	Horizontal	Pipe 2.375" x 0.154" (2 STD)	124	-7.22	23.14	31.2	Pass
Т5	100 - 80	Horizontal	Pipe 2.375" x 0.154" (2 STD)	163	-8.06	19.01	42.4	Pass
Т6	80 - 60	Horizontal	Pipe 2.375" x 0.154" (2 STD)	190	-8.75	14.68	59.6	Pass
T7	60 - 40	Horizontal	Pipe 2.875" x 0.203" (2.5 STD)	217	-9.38	26.82	35.0 38.3 (b)	Pass
Т8	40 - 20	Horizontal	Pipe 2.875" x 0.203" (2.5 STD)	247	-9.94	22.20	44.8	Pass
Т9	20 - 0	Horizontal	Pipe 3.5" x 0.216" (3 STD)	274	-10.52	36.29	29.0 43.5 (b)	Pass
T 1	180 - 160	Top Girt	Pipe 1.9" x 0.145" (1.5 STD)	4	-0.16	23.80	0.7	Pass
T 1	180 - 160	Inner Bracing	L 2 x 2 x 1/8	37	-0.00	6.84	0.7	Pass
T2	160 - 140	Inner Bracing	L 2 x 2 x 1/8	54	-0.01	5.09	0.8	Pass
Т3	140 - 120	Inner Bracing	L 2 x 2 x 1/8	93	-0.01	3.47	0.9	Pass
Τ4	120 - 100	Inner Bracing	L 2 x 2 x 1/8	130	-0.01	2.52	1.0	Pass
T5	100 - 80	Inner Bracing	L 2 x 2 x 1/8	171	-0.01	1.99	1.1	Pass
T6	80 - 60	Inner Bracing	L 2.5 x 2.5 x 3/16	196	-0.01	4.49	0.8	Pass
T7	60 - 40	Inner Bracing	L 3 x 3 x 3/16	223	-0.01	6.32	0.9	Pass
Т8	40 - 20	Inner Bracing	L 3.5 x 3.5 x 1/4	250	-0.02	10.88	0.7	Pass
Т9	20 - 0	Inner Bracing	L 3.5 x 3.5 x 1/4	277	-0.02	9.08	0.7	Pass
							Summary	
						Leg (T9)	37.9	Pass
						Diagonal (T8)	56.7	Pass
						Horizontal (T6)	59.6	Pass
						Top Girt (T1)	0.7	Pass
						Inner Bracing (T5)	1.1	Pass
						Bolt Checks	41.4	Pass
						Rating =	59.6	Pass

Table 5 - Tower Component Stresses vs. Capacity

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	36.2	Pass
1	Base Foundation (Structure)	0	9.3	Pass
1	Base Foundation (Soil Interaction)	0	46.0	Pass

Structure Rating (max from all components) =	59.6%
--	-------

Notes:


1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

4.1) Recommendations

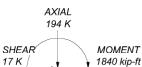
The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

		SYMBO	OL LIST			
MARK	SIZ	E	MARK	SIZI	E	
A	Pipe 3.5" x 0.216" (3 STD)		E	Pipe 2.375" x 0.154" (2 STD)	
В	Pipe 5.563" x 0.375" (5 EH	I)	F	Pipe 2.875" x 0.203" (2.5 STD)		
С	Pipe 6.625" x 0.340" (6 EH	S)	G	Pipe 1.9" x 0.145" (1.5 STD)		
D	Pipe 8.625" x 0.375" (8 EHS)					
		MATERIAL	STREM	IGTH		
GRAD	E Fy	Fu	GRAD	E Fy	Fu	
A618-50	50 ksi	70 ksi				

TOWER DESIGN NOTES


- Tower is located in New Haven County, Connecticut.
 Tower designed for Exposure B to the TIA-222-G Standard.
 Tower designed for a 108 mph basic wind in accordance with the TIA-222-G Standard.
- 4. Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.

- Deflections are based upon a 60 mph wind.
 Tower Structure Class III.
 Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 59.6%

ALL REACTIONS ARE FACTORED

MAX. CORNER REACTIONS AT BASE: DOWN: 283 K SHEAR: 34 K

UPLIFT: -246 K SHEAR: 31 K

TORQUE 12 kip-ft 50 mph WIND - 0.75 in ICE

17 K

AXIAL 67 K

TORQUE 64 kip-ft REACTIONS - 108 mph WIND

Paul J. Ford and Company 250 E. Broad St., Ste 600 Columbus, OH 43215 Phone: 614-221-6679 FAX:

^{DD} Existing 180-ft SST / Madison, CT					
Project: PSLC 469121 / PJF 42921-0018					
entra Engineering	Drawn by: JMF	App'd:			
^{Code:} TIA-222-G	Date: 01/13/22	Scale: NTS			
Path: DITOWERH29 On Ar Engineerind202142521-0018 Madison, CTV428	21-0018.003.8700 revised SAlinx\#2521-0018.002.870	Dwg No. E-			

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 180.00 ft above the ground line. The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 8.54 ft at the top and 25.33 ft at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

- Tower is located in New Haven County, Connecticut.
- ASCE 7-10 Wind Data is used (wind speeds converted to nominal values).
- Basic wind speed of 108 mph.
- Structure Class III.
- Exposure Category B.
- Topographic Category 1.
- Crest Height 0.00 ft.
- Nominal ice thickness of 0.75 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Deflections calculated using a wind speed of 60 mph.
- Pressures are calculated at each section.
- Stress ratio used in tower member design is 1.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
 √ Use Code Safety Factors Guys Escalate Ice
- Always Use Max Kz Use Special Wind Profile

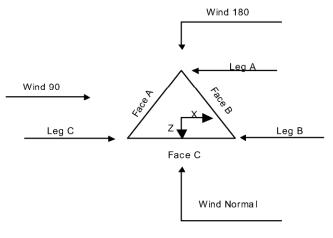
 $\sqrt{}$ Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section

 ✓ Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned Assume Rigid Index Plate Use Clear Spans For Wind Area

- $\sqrt{}$ Use Clear Spans For KL/r
- ✓ Retension Guys To Initial Tension
- Bypass Mast Stability Checks √ Use Azimuth Dish Coefficients
- - Autocalc Torque Arm Areas

Add IBC .6D+W Combination


- √ Sort Capacity Reports By Component
- ✓ Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules

- ✓ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation
- √ Consider Feed Line Torque
- Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice

Exemption Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

<u>Triangular Tower</u>

Tower Section	Geometry
----------------------	----------

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	U
	ft			ft		ft
T1	180.00-160.00			8.54	1	20.00
T2	160.00-140.00			8.54	1	20.00
Т3	140.00-120.00			10.64	1	20.00
T4	120.00-100.00			12.74	1	20.00
T5	100.00-80.00			14.84	1	20.00
T6	80.00-60.00			16.94	1	20.00
T7	60.00-40.00			19.03	1	20.00
Т8	40.00-20.00			21.13	1	20.00
Т9	20.00-0.00			23.23	1	20.00

Tower Section Geometry (cont'd)

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Type	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T1	180.00-160.00	6.53	K Brace Down	No	Yes	5.00	0.00
T2	160.00-140.00	6.53	K Brace Down	No	Yes	5.00	0.00
Т3	140.00-120.00	6.53	K Brace Down	No	Yes	5.00	0.00
T 4	120.00-100.00	6.53	K Brace Down	No	Yes	5.00	0.00
T5	100.00-80.00	9.79	K Brace Down	No	Yes	5.00	0.00
T6	80.00-60.00	9.79	K Brace Down	No	Yes	5.00	0.00
T7	60.00-40.00	9.79	K Brace Down	No	Yes	5.00	0.00
T8	40.00-20.00	9.79	K Brace Down	No	Yes	5.00	0.00
T9	20.00-0.00	9.79	K Brace Down	No	Yes	5.00	0.00

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation ft	Туре	Size	Grade	Туре	Size	Grade
T1 180.00- 160.00	Pipe	Pipe 3.5" x 0.216" (3 STD)	A618-50 (50 ksi)	Pipe	Pipe 2.375" x 0.154" (2 STD)	A618-50 (50 ksi)
T2 160.00-	Pipe	Pipe 4.5" x 0.337" (4 XS)	À618-50	Pipe	Pipe 2.375" x 0.218" (2 XS)	À618-50
140.00 T3 140.00-	Pipe	Pipe 5.563" x 0.375" (5 EH)	(50 ksi) A618-50	Pipe	Pipe 2.375" x 0.218" (2 XS)	(50 ksi) A618-50
120.00 T4 120.00-	Pipe	Pipe 6.625" x 0.340" (6	(50 ksi) A618-50	Pipe	Pipe 2.875" x 0.203" (2.5	(50 ksi) A618-50
100.00 T5 100.00-	Pipe	EHS) Pipe 8.625" x 0.375" (8	(50 ksi) A618-50	Pipe	STD) Pipe 3.5" x 0.216" (3 STD)	(50 ksi) A618-50
80.00	•	EHS)	(50 ksi)			(50 ksi)
T6 80.00-60.00	Pipe	Pipe 8.625" x 0.500" (8 XS)	A618-50 (50 ksi)	Pipe	Pipe 3.5" x 0.216" (3 STD)	A618-50 (50 ksi)
T7 60.00-40.00	Pipe	Pipe 8.625" x 0.500" (8 XS)	A618-50 (50 ksi)	Pipe	Pipe 3.5" x 0.216" (3 STD)	A618-50 (50 ksi)
T8 40.00-20.00	Pipe	Pipe 10.75" x 0.500" (10	À618-50	Pipe	Pipe 3.5" x 0.216" (3 STD)	À618-50
T9 20.00-0.00	Pipe	XS) Pipe 10.75" x 0.500" (10 XS)	(50 ksi) A618-50 (50 ksi)	Pipe	Pipe 3.5" x 0.300" (3 XS)	(50 ksi) A618-50 (50 ksi)

Tower Section Geometry (cont'd)

Tower Section Geometry (cont'd)								
Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal	
Elevation	of	Туре	Size	Grade	Type	Size	Grade	
<i>5</i> 4	Mid							
ft	Girts	D'		1010 50	D'		1010 50	
T1 180.00-	None	Pipe		A618-50	Pipe	Pipe 1.9" x 0.145"	A618-50	
160.00 T2 160.00-	None	Dine		(50 ksi) A618-50	Dine	(1.5 STD) Pipe 1.9" x 0.145"	(50 ksi) A618-50	
140.00	None	Pipe		(50 ksi)	Pipe	(1.5 STD)	(50 ksi)	
T3 140.00-	None	Bino		A618-50	Pine	(1.5 51D) Pipe 1.9" x 0.145"	A618-50	
120.00	None	Pipe		(50 ksi)	Pipe	(1.5 STD)	(50 ksi)	
T4 120.00-	None	Pipe		A618-50	Pipe	Pipe 2.375" x 0.154"	A618-50	
100.00	NONE	Fibe		(50 ksi)	Fibe	(2 STD)	(50 ksi)	
T5 100.00-	None	Pipe		A618-50	Pipe	Pipe 2.375" x 0.154"	A618-50	
80.00	None	T Ipe		(50 ksi)	T Ipe	(2 STD)	(50 ksi)	
T6 80.00-60.00	None	Pipe		A618-50	Pipe	Pipe 2.375" x 0.154"	A618-50	
10 00.00 00.00	None	1 ipe		(50 ksi)	T Ipe	(2 STD)	(50 ksi)	
T7 60.00-40.00	None	Pipe		A618-50	Pipe	Pipe 2.875" x 0.203"	A618-50	
				(50 ksi)	p.	(2.5 STD)	(50 ksi)	
T8 40.00-20.00	None	Pipe		A618-50	Pipe	Pipe 2.875" x 0.203"	A618-50	
				(50 ksi)		(2.5 STD)	(50 ksi)	
T9 20.00-0.00	None	Pipe		A618-50	Pipe	Pipe 3.5" x 0.216" (3	À618-50	
		•		(50 ksi)	•	STD)	(50 ksi)	

Tower Section Geometry (cont'd)

Tower Elevation ft	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
T1 180.00-	Pipe		A618-50	Single Angle	L 2 x 2 x 1/8	A36
160.00			(50 ksi)	en gie / mgie		(36 ksi)
T2 160.00-	Pipe		À618-50	Single Angle	L 2 x 2 x 1/8	`A36 ´
140.00			(50 ksi)			(36 ksi)
T3 140.00-	Pipe		A618-50	Single Angle	L 2 x 2 x 1/8	A36
120.00			(50 ksi)			(36 ksi)

Tower	Secondary	Secondary Horizontal	Secondary	Inner Bracing	Inner Bracing Size	Inner Bracing
Elevation	Horizontal Type	Size	Horizontal	Туре		Grade
			Grade			
ft						
T4 120.00-	Pipe		A618-50	Single Angle	L 2 x 2 x 1/8	A36
100.00			(50 ksi)			(36 ksi)
T5 100.00-	Pipe		A618-50	Single Angle	L 2 x 2 x 1/8	A36
80.00			(50 ksi)			(36 ksi)
T6 80.00-60.00	Pipe		A618-50	Single Angle	L 2.5 x 2.5 x 3/16	A36
	•		(50 ksi)	0 0		(36 ksi)
T7 60.00-40.00	Pipe		A618-50	Single Angle	L 3 x 3 x 3/16	A36
	•		(50 ksi)	0 0		(36 ksi)
T8 40.00-20.00	Pipe		A618-50	Single Angle	L 3.5 x 3.5 x 1/4	`A36 ´
	•		(50 ksi)			(36 ksi)
T9 20.00-0.00	Pipe		À618-50	Single Angle	L 3.5 x 3.5 x 1/4	`A36 ´
			(50 ksi)	5 0		(36 ksi)

Tower Section Geometry (cont'd)

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area (per face)	Thickness		A _f	Factor A _r	-	Stitch Bolt Spacing Diagonals	Stitch Bolt Spacing Horizontals	Stitch Bolt Spacing Redundants
ft	ft ²	in					in	in	in
T1 180.00- 160.00	0.00	0.38	A36 (36 ksi)	1	1	1.1	0.00	0.00	36.00
T2 160.00- 140.00	0.00	0.38	A36 (36 ksi)	1	1	1.1	36.00	36.00	36.00
T3 140.00- 120.00	0.00	0.38	A36 (36 ksi)	1	1	1.1	36.00	36.00	36.00
T4 120.00- 100.00	0.00	0.38	A36 (36 ksi)	1	1	1.1	0.00	0.00	36.00
T5 100.00- 80.00	0.00	0.38	À36 (36 ksi)	1	1	1.1	36.00	36.00	36.00
T6 80.00- 60.00	0.00	0.38	A36 (36 ksi)	1	1	1.1	36.00	36.00	36.00
T7 60.00- 40.00	0.00	0.38	`A36 ́ (36 ksi)	1	1	1.1	36.00	36.00	36.00
T8 40.00- 20.00	0.00	0.38	`A36 ́ (36 ksi)	1	1	1.1	36.00	36.00	36.00
T9 20.00-0.00	0.00	0.38	`A36 ́ (36 ksi)	1	1	1.1	36.00	36.00	36.00

Tower Section Geometry (cont'd)

						K Fac	ctors ¹			
Tower Elevation	Calc K Single Angles	Calc K Solid Rounds	Legs	X Brace Diags X	K Brace Diags X	Single Diags X	Girts X	Horiz. X	Sec. Horiz. X	Inner Brace X
ft				<u> </u>	<u> </u>	Y	<u> </u>	<u> </u>	<u> </u>	Y
T1 180.00- 160.00	Yes	No	1	1 1	1 1	1 1	1 1	1 1	1 1	1 1
T2 160.00- 140.00	Yes	No	1	1	1	1	1	1	1	1
T3 140.00-	Yes	No	1	1	1	1	1	1	1	1
120.00 T4 120.00-	Yes	No	1	1	1	1	1	1	1	1
100.00	163	140	I	1	1	1	1	1	1	1
T5 100.00- 80.00	Yes	No	1	1 1	1 1	1 1	1 1	1 1	1 1	1 1
T6 80.00- 60.00	Yes	No	1	1	1	1	1	1	1	1 1

						K Fad	ctors ¹			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
ft	Angles	Rounds		X	X	X	X		X	X
T7 60.00-	Yes	No	1	1	1	1	1	1	1	1
40.00				1	1	1	1	1	1	1
T8 40.00-	Yes	No	1	1	1	1	1	1	1	1
20.00				1	1	1	1	1	1	1
T9 20.00-	Yes	No	1	1	1	1	1	1	1	1
0.00				1	1	1	1	1	1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-ofplane direction applied to the overall length.

			Т	ow	er Sec	tio	n Geo	meti	'y (col	nťď)				
	1		Diama		Ter O	1.4	Detter	014		014	1		01	
Tower Elevation ft	Leg		Diagoi	nal	Top G	irt	Botton	n Girt	Mid	Girt	Long Ho	rizontal	Short Ho	prizontal
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 180.00- 160.00	0.00	1	0.00	1	0.00	1	0.00	1	0.00	0.75	0.00	1	0.00	0.75
T2 160.00- 140.00	0.00	1	0.00	1	0.00	1	0.00	1	0.00	0.75	0.00	1	0.00	0.75
T3 140.00- 120.00	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1
T4 120.00- 100.00	0.00	1	0.00	1	0.00	1	0.00	1	0.00	0.75	0.00	1	0.00	0.75
T5 100.00- 80.00	0.00	1	0.00	1	0.00	1	0.00	1	0.00	0.75	0.00	1	0.00	0.75
T6 80.00- 60.00	0.00	1	0.00	1	0.00	1	0.00	1	0.00	0.75	0.00	1	0.00	0.75
T7 60.00- 40.00	0.00	1	0.00	1	0.00	1	0.00	1	0.00	0.75	0.00	1	0.00	0.75
T8 40.00- 20.00	0.00	1	0.00	1	0.00	1	0.00	1	0.00	0.75	0.00	1	0.00	0.75
T9 20.00-0.00	0.00	1	0.00	1	0.00	1	0.00	1	0.00	0.75	0.00	1	0.00	0.75

Tower Elevation ft	Reduno Horizo		Redun Diago		Redundant Sub- Diagonal		Redundant Sub- Horizontal		Redundant Vertical		Redundant Hip		Redund Diag	
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 180.00- 160.00	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T2 160.00- 140.00	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T3 140.00- 120.00	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T4 120.00- 100.00	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T5 100.00- 80.00	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T6 80.00- 60.00	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T7 60.00- 40.00	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T8 40.00- 20.00	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75
T9 20.00-0.00	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75	0.00	0.75

tnxTower Report - version 8.1.1.0

								ometry	10						
Tower Elevation ft	Leg Connection Type	Leg		Diagor	nal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Shor Horizor	
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No						
		in		in		in		in		in		in		in	
T1 180.00-	Flange	0.88	4	0.63	3	0.00	0	0.00	0	0.00	0	0.63	2	0.00	0
160.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T2 160.00-	Flange	1.00	4	0.63	3	0.00	0	0.00	0	0.63	0	0.63	2	0.63	0
140.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T3 140.00-	Flange	1.00	6	0.63	3	0.00	0	0.00	0	0.00	0	0.63	2	0.00	0
120.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T4 120.00-	Flange	1.00	8	0.63	3	0.00	0	0.00	0	0.00	0	0.63	2	0.00	0
100.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T5 100.00-	Flange	1.00	8	0.63	3	0.00	0	0.00	0	0.63	0	0.63	2	0.63	0
80.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T6 80.00-	Flange	1.00	8	0.63	3	0.00	0	0.00	0	0.63	0	0.63	2	0.63	0
60.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T7 60.00-	Flange	1.00	12	0.63	3	0.00	0	0.00	0	0.63	0	0.63	2	0.63	0
40.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T8 40.00-	Flange	1.00	12	0.63	3	0.00	0	0.00	0	0.63	0	0.63	2	0.63	0
20.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T 9 20.00-0.00	Flange	1.00	0	0.63	3	0.00	0	0.00	0	0.63	0	0.63	2	0.63	0
		A354-BC		A325N		A325N		A325N		A325N		A325N		A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or Leg	Allow Shield	Exclude From Torque Calculation	Componen t Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacin g in	Width or Diameter in	Perimete r in	Weight plf
First SA loading ***													
1.5" flat Cable Ladder Rail	А	No	No	Af (CaAa)	173.30 - 0.00	0.00	0.4	2	2	24.00 1.50	1.50		1.80
LDF7-50A (1 5/8" foam)	А	No	No	Ar (CaAa)	170.00 - 0.00	0.00	0.4	6	6	0.50 1.98	1.98		0.92
HYBRID(1- 1/4)	A	No	No	Ar (CaAa)	170.00 - 0.00	0.00	0.4	2	2	1.25	1.25		1.00
*** ***													
1.5" flat Cable Ladder Rail ***	A	No	No	Af (CaAa)	131.00 - 0.00	0.00	-0.4	2	2	24.00 1.50	1.50		1.80
1.5" flat Cable Ladder Rail ***	В	No	No	Af (CaAa)	166.70 - 0.00	0.00	0.35	2	2	24.00 1.50	1.50		1.80
1.5" flat Cable Ladder Rail ***	В	No	No	Af (CaAa)	166.70 - 0.00	0.00	-0.4	2	2	24.00 1.50	1.50		1.80
1.5" flat Cable Ladder Rail	С	No	No	Af (CaAa)	160.00 - 0.00	0.00	-0.4	2	2	24.00 1.50	1.50		1.80

Description	Face or Leg	Allow Shield	Exclude From Torque	Componen t Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	•	Width or Diameter in	Perimete r	Weight plf
	Leg		Calculation	туре	п		(FIAC FVV)		ROW	g in		in	pii
second SA loading*													
Safety Line 3/8	С	No	No	Ar (CaAa)	180.00 - 5.00	0.00	-0.5	1	1	0.38	0.38		0.22
LDF7-50A (1 5/8" foam)	В	No	No	Ar (CaAa)	130.00 - 5.00	0.00	-0.38	12	6	0.50	1.98		0.92
LDF6-50 (1 1/4" foam)	В	No	No	Ar (CaAa)	130.00 - 5.00	0.00	-0.42	3	3	0.75 1.55	1.55		0.66
LDF6-50 (1 1/4" foam)	В	No	No	Ar (CaAa)	140.00 - 5.00	0.00	0.3	12	12	0.75 1.55	1.55		0.66
3/4" power	В	No	No	Ar (CaAa)	140.00 - 5.00	0.00	0.36	4	4	0.71	0.71		0.30
LDF2-50 (3/8'' foam)	В	No	No	Ar (CaAa)	140.00 - 5.00	6.00	0.36	2	2	0.44	0.44		0.08
LDF5-50A (7/8" foam)	А	No	No	Ar (CaAa)	86.00 - 5.00	0.00	-0.27	1	1	1.09	1.09		0.33
LDF5-50A (7/8" foam)	А	No	No	Ar (CaAa)	90.00 - 5.00	0.00	-0.29	1	1	1.09	1.09		0.33
LDF5-50A (7/8" foam)	А	No	No	Ar (CaAa)	120.00 - 5.00	0.00	-0.31	1	1	1.09	1.09		0.33
LDF5-50A (7/8" foam)	А	No	No	Ar (CaAa)	177.00 - 5.00	0.00	-0.37	2	2	1.09	1.09		0.33
LDF4-50A (1/2" foam)	А	No	No	Ar (CaAa)	55.00 - 5.00	3.00	-0.34	1	1	0.63	0.63		0.15
LDF5-50A (7/8" foam)	А	No	No	Ar (CaAa)	180.00 - 5.00	0.00	-0.4	1	1	1.09	1.09		0.33
LDF6-50 (1 1/4" foam)	А	No	No	Ar (CaAa)	150.00 - 5.00	0.00	-0.34	3	3	0.75 1.55	1.55		0.66
LDF6-50 (1 1/4" foam)	A	No	No	Ar (CaAa)	150.00 - 5.00	0.00	-0.25	1	1	0.75 1.55	1.55		0.66

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
2.375" x 7' Safety Climb Extension	A	From Leg	0.00 0.00 3.50	0.000	180.00	No Ice 1/2" Ice 1" Ice	1.72 2.48 2.96	1.72 2.48 2.96	0.02 0.04 0.05
.375" OD x 3' Mount Pipe	С	From Leg	0.00 0.00 1.50	0.000	180.00	No Ice 1/2" Ice 1" Ice	0.58 0.77 0.97	0.58 0.77 0.97	0.03 0.03 0.04
12' 4-Bay Dipole	С	From Leg	0.00 0.00 6.00	0.000	180.00	No Ice 1/2" Ice 1" Ice	4.00 6.00 8.00	4.00 6.00 8.00	0.06 0.10 0.14
Side Arm Mount	В	From Leg	3.00 0.00 0.00	0.000	177.00	No Ice 1/2" Ice 1" Ice	0.41 0.81 1.23	3.06 5.10 7.20	0.05 0.08 0.12
20' x 3" omni whip	В	From Leg	6.00 0.00 10.00	0.000	177.00	No Ice 1/2" Ice 1" Ice	3.56 7.13 10.70	3.56 7.13 10.70	0.02 0.05 0.07
' sidearm (Vacant Mount)	С	From Leg	3.00 0.00 0.00	0.000	177.00	No Ice 1/2" Ice	0.41 0.81 1.23	3.06 5.10 7.20	0.05 0.08 0.12

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft²	ft²	К
***						1" Ice			
Rohn 6'x15' Boom Gate	A	From Leg	2.00 0.00 0.00	0.000	168.75	No Ice 1/2" Ice 1" Ice	19.20 27.70 36.20	14.80 22.00 29.20	0.36 0.54 0.71
Rohn 6'x15' Boom Gate	В	From Leg	2.00 0.00 0.00	0.000	168.75	No Ice 1/2" Ice 1" Ice	19.20 27.70 36.20	14.80 22.00 29.20	0.36 0.54 0.71
Rohn 6'x15' Boom Gate	С	From Leg	2.00 0.00 0.00	0.000	168.75	No Ice 1/2'' Ice	19.20 27.70 36.20	14.80 22.00 29.20	0.36 0.54 0.71
(2) MX06FRO660-03 w/ Mount Pipe	A	From Leg	4.00 0.00 1.25	0.000	168.75	1" Ice No Ice 1/2" Ice	10.11 10.68 11.22	8.99 10.15 11.03	0.10 0.19 0.29
(2) MX06FRO660-03 w/ Mount Pipe	В	From Leg	4.00 0.00 1.25	0.000	168.75	1" Ice No Ice 1/2" Ice	10.11 10.68 11.22	8.99 10.15 11.03	0.10 0.19 0.29
(2) MX06FRO660-03 w/ Mount Pipe	С	From Leg	4.00 0.00 1.25	0.000	168.75	1" Ice No Ice 1/2" Ice	10.11 10.68 11.22	8.99 10.15 11.03	0.10 0.19 0.29
MT6407-77A w/ Mount Pipe	A	From Leg	4.00 0.00 1.25	0.000	168.75	1" Ice No Ice 1/2" Ice	4.91 5.26 5.61	2.68 3.14 3.62	0.10 0.14 0.18
MT6407-77A w/ Mount Pipe	В	From Leg	4.00 0.00 1.25	0.000	168.75	1" Ice No Ice 1/2" Ice	4.91 5.26 5.61	2.68 3.14 3.62	0.10 0.14 0.18
MT6407-77A w/ Mount Pipe	С	From Leg	4.00 0.00 1.25	0.000	168.75	1" Ice No Ice 1/2" Ice	4.91 5.26 5.61	2.68 3.14 3.62	0.10 0.14 0.18
LNX-6514DS-A1M w/ Mount Pipe	A	From Leg	4.00 0.00 1.25	0.000	168.75	1" Ice No Ice 1/2" Ice	8.41 8.97 9.50	7.08 8.27 9.18	0.06 0.13 0.21
LNX-6514DS-A1M w/ Mount Pipe	В	From Leg	4.00 0.00 1.25	0.000	168.75	1" Ice No Ice 1/2" Ice	8.41 8.97 9.50	7.08 8.27 9.18	0.06 0.13 0.21
LNX-6514DS-A1M w/ Mount Pipe	С	From Leg	4.00 0.00 1.25	0.000	168.75	1" Ice No Ice 1/2" Ice	8.41 8.97 9.50	7.08 8.27 9.18	0.06 0.13 0.21
91900314-02 SBS Bracket	A	From Leg	4.00 0.00 1.25	0.000	168.75	1" Ice No Ice 1/2" Ice	0.00 0.00 0.00	0.00 0.00 0.00	0.03 0.05 0.07
91900314-02 SBS Bracket	В	From Leg	4.00 0.00 1.25	0.000	168.75	1" Ice No Ice 1/2" Ice	0.00 0.00 0.00	0.00 0.00 0.00	0.03 0.05 0.07
91900314-02 SBS Bracket	С	From Leg	4.00 0.00 1.25	0.000	168.75	1" Ice No Ice 1/2" Ice	0.00 0.00 0.00	0.00 0.00 0.00	0.03 0.05 0.07
RVZDC-6627-PF-48	A	From Leg	4.00 0.00 1.25	0.000	168.75	1" Ice No Ice 1/2" Ice	3.79 4.04 4.30	2.51 2.73 2.95	0.03 0.06 0.10

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft²	ft²	К
B2/B66A RRH-BR049	A	From Log	4.00	0.000	168.75	1" Ice No Ice	1.88	1.25	0.08
(RFV01U-D1A)	A	From Leg	4.00 0.00	0.000	100.75	1/2"	2.05	1.25	0.08
			1.25			lce	2.22	1.54	0.12
						1" Ice			0.11
B2/B66A RRH-BR049	В	From Leg	4.00	0.000	168.75	No Ice	1.88	1.25	0.08
(RFV01U-D1A)			0.00			1/2"	2.05	1.39	0.10
			1.25			Ice	2.22	1.54	0.12
	0	F	4.00	0.000	400 75	1" Ice	1.00	4.05	0.00
B2/B66A RRH-BR049	С	From Leg	4.00 0.00	0.000	168.75	No Ice 1/2''	1.88	1.25 1.39	0.08 0.10
(RFV01U-D1A)			1.25			lce	2.05 2.22	1.59	0.10
			1.20			1" Ice	2.22	1.54	0.12
B5/B13 RRH-BR04C	А	From Leg	4.00	0.000	168.75	No Ice	1.88	1.01	0.07
(RFV01U-D2A)			0.00			1/2"	2.05	1.14	0.09
			1.25			Ice	2.22	1.28	0.11
	_					1" Ice			
B5/B13 RRH-BR04C	В	From Leg	4.00	0.000	168.75	No Ice	1.88	1.01	0.07
(RFV01U-D2A)			0.00			1/2"	2.05	1.14	0.09
			1.25			lce 1" lce	2.22	1.28	0.11
B5/B13 RRH-BR04C	С	From Leg	4.00	0.000	168.75	No Ice	1.88	1.01	0.07
(RFV01U-D2A)	0	110m Leg	0.00	0.000	100.75	1/2"	2.05	1.14	0.09
			1.25			lce	2.22	1.28	0.00
						1" Ice			

APXVSPP18-C-A20 w/	Α	From Leg	4.00	0.000	150.00	No Ice	8.26	7.47	0.09
Mount Pipe			0.00			1/2"	8.82	8.66	0.16
			0.00			lce	9.35	9.56	0.24
APXVSPP18-C-A20 w/	В	From Leg	4.00	0.000	150.00	1" lce No lce	8.26	7.47	0.09
Mount Pipe	Б	FIOIII Leg	0.00	0.000	150.00	1/2"	8.82	8.66	0.09
Mount ipe			0.00			lce	9.35	9.56	0.24
						1" Ice			
APXVSPP18-C-A20 w/	С	From Leg	4.00	0.000	150.00	No Ice	8.26	7.47	0.09
Mount Pipe			0.00			1/2"	8.82	8.66	0.16
			0.00			lce	9.35	9.56	0.24
	^	Energy Law	4.00	0.000	450.00	1" Ice	0.50	4.00	0.00
APXVTM14-C-120 w/ Mount Pipe	A	From Leg	4.00 0.00	0.000	150.00	No Ice 1/2''	6.58 7.03	4.96 5.75	0.08 0.13
Mount ipe			0.00			lce	7.47	6.47	0.19
			0.00			1" Ice		0.11	0.10
APXVTM14-C-120 w/	В	From Leg	4.00	0.000	150.00	No Ice	6.58	4.96	0.08
Mount Pipe		-	0.00			1/2"	7.03	5.75	0.13
			0.00			Ice	7.47	6.47	0.19
	0	- ·	4.00	0.000	150.00	1" Ice	0.50	1.00	0.00
APXVTM14-C-120 w/	С	From Leg	4.00	0.000	150.00	No Ice	6.58	4.96	0.08
Mount Pipe			0.00 0.00			1/2'' Ice	7.03 7.47	5.75 6.47	0.13 0.19
			0.00			1" Ice	1.47	0.47	0.15
(3) RRUS-11	А	From Leg	4.00	0.000	150.00	No Ice	2.79	1.19	0.05
		1 09	0.00	01000	100100	1/2"	3.00	1.34	0.07
			0.00			Ice	3.21	1.50	0.09
						1" Ice			
(3) RRUS-11	в	From Leg	4.00	0.000	150.00	No Ice	2.79	1.19	0.05
			0.00			1/2"	3.00	1.34	0.07
			0.00			lce 1" lce	3.21	1.50	0.09
(3) RRUS-11	С	From Leg	4.00	0.000	150.00	No Ice	2.79	1.19	0.05
	0	i ioni Ley	0.00	0.000	100.00	1/2"	3.00	1.34	0.03
			0.00			lce	3.21	1.50	0.09
						1" Ice			
14' Sector Mount	А	From Leg	2.00	0.000	150.00	No Ice	17.35	13.30	0.35
14' Sector Mount	А	From Leg	2.00 0.00 0.00	0.000	150.00	No Ice 1/2'' Ice	17.35 25.55 33.75	13.30 20.35 27.40	0.35 0.50 0.65

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
14' Sector Mount	В	From Leg	2.00 0.00 0.00	0.000	150.00	1" Ice No Ice 1/2" Ice	17.35 25.55 33.75	13.30 20.35 27.40	0.35 0.50 0.65
14' Sector Mount	С	From Leg	2.00 0.00 0.00	0.000	150.00	1" Ice No Ice 1/2" Ice 1" Ice	17.35 25.55 33.75	13.30 20.35 27.40	0.35 0.50 0.65
*** 80010965 w/ Mount Pipe	А	From Leg	4.00 0.00 0.00	0.000	140.00	No Ice 1/2" Ice	14.05 14.69 15.30	7.63 8.90 9.96	0.14 0.23 0.34
80010965 w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.000	140.00	1" Ice No Ice 1/2" Ice 1" Ice	14.05 14.69 15.30	7.63 8.90 9.96	0.14 0.23 0.34
80010965 w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.000	140.00	No Ice 1/2" Ice 1" Ice	14.05 14.69 15.30	7.63 8.90 9.96	0.14 0.23 0.34
cci antennas HPA65R- BU6AA w/ Mount Pipe	A	From Leg	4.00 0.00 0.00	0.000	140.00	No Ice 1/2" Ice 1" Ice	8.09 8.64 9.16	7.19 8.36 9.24	0.08 0.15 0.22
cci antennas HPA65R- BU6AA w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.000	140.00	No Ice 1/2" Ice 1" Ice	8.09 8.64 9.16	7.19 8.36 9.24	0.08 0.15 0.22
cci antennas HPA65R- BU6AA w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.000	140.00	No Ice 1/2" Ice 1" Ice	8.09 8.64 9.16	7.19 8.36 9.24	0.08 0.15 0.23
7770.00 w/ Mount Pipe	A	From Leg	4.00 0.00 0.00	0.000	140.00	No Ice 1/2" Ice 1" Ice	5.75 6.18 6.61	4.25 5.01 5.71	0.06 0.10 0.16
7770.00 w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.000	140.00	No Ice 1/2" Ice 1" Ice	5.75 6.18 6.61	4.25 5.01 5.71	0.06 0.10 0.16
7770.00 w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.000	140.00	No Ice 1/2" Ice 1" Ice	5.75 6.18 6.61	4.25 5.01 5.71	0.06 0.10 0.16
(2) LGP1720X	A	From Leg	4.00 0.00 0.00	0.000	140.00	No Ice 1/2" Ice 1" Ice	1.67 1.83 2.00	0.45 0.55 0.65	0.03 0.04 0.06
(2) LGP1720X	В	From Leg	4.00 0.00 0.00	0.000	140.00	No Ice 1/2" Ice 1" Ice	1.67 1.83 2.00	0.45 0.55 0.65	0.03 0.04 0.06
(2) LGP1720X	С	From Leg	4.00 0.00 0.00	0.000	140.00	No Ice 1/2" Ice 1" Ice	1.67 1.83 2.00	0.45 0.55 0.65	0.03 0.04 0.06
(2) RRUS-11	A	From Leg	4.00 0.00 0.00	0.000	140.00	No Ice 1/2" Ice 1" Ice	2.79 3.00 3.21	1.19 1.34 1.50	0.05 0.07 0.09
(2) RRUS-11	В	From Leg	4.00 0.00 0.00	0.000	140.00	No Ice 1/2" Ice	2.79 3.00 3.21	1.19 1.34 1.50	0.05 0.07 0.09

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	K
						1" Ice			
(2) RRUS-11	С	From Leg	4.00	0.000	140.00	No Ice	2.79	1.19	0.05
			0.00			1/2"	3.00	1.34	0.07
			0.00			lce 1'' lce	3.21	1.50	0.09
DC6-48-60-18-8F	А	From Leg	4.00	0.000	140.00	No Ice	1.21	1.21	0.03
		1 tom Log	0.00	0.000	110.00	1/2"	1.89	1.89	0.05
			0.00			lce 1" lce	2.11	2.11	0.08
DC6-48-60-18-8F	С	From Leg	4.00	0.000	140.00	No Ice	1.21	1.21	0.03
		U U	0.00			1/2"	1.89	1.89	0.05
			0.00			lce	2.11	2.11	0.08
						1" Ice			
14' Sector Mount	А	From Leg	2.00	0.000	140.00	No Ice	17.35	13.30	0.35
			0.00			1/2"	25.55	20.35	0.50
			0.00			lce 1" lce	33.75	27.40	0.65
14' Sector Mount	в	From Leg	2.00	0.000	140.00	No Ice	17.35	13.30	0.35
14 Sector Mount	В	FIOIILEG	0.00	0.000	140.00	1/2"	25.55	20.35	0.50
			0.00			lce	33.75	27.40	0.65
			0.00			1" Ice	00110	2000	0.00
14' Sector Mount	С	From Leg	2.00	0.000	140.00	No Ice	17.35	13.30	0.35
		5	0.00			1/2"	25.55	20.35	0.50
			0.00			Ice	33.75	27.40	0.65
***						1" Ice			
APXVAARR24_43-U-NA20	А	From Leg	4.00	0.000	130.00	No Ice	20.48	11.02	0.19
w/ Mount Pipe	<i>,</i> ,	r tom Log	0.00	0.000	100.00	1/2"	21.23	12.55	0.32
			0.00			Ice	21.99	14.10	0.47
						1" Ice			
APXVAARR24_43-U-NA20	В	From Leg	4.00	0.000	130.00	No Ice	20.48	11.02	0.19
w/ Mount Pipe			0.00			1/2"	21.23	12.55	0.32
			0.00			Ice	21.99	14.10	0.47
	~	F	1.00	0.000	100.00	1" Ice	00.40	11.00	0.40
APXVAARR24_43-U-NA20 w/ Mount Pipe	С	From Leg	4.00 0.00	0.000	130.00	No Ice 1/2"	20.48 21.23	11.02 12.55	0.19 0.32
w/ would ripe			0.00			lce	21.23	14.10	0.32
			0.00			1" Ice	21.33	14.10	0.47
RR90-17-DP	А	From Leg	4.00	0.000	130.00	No Ice	4.36	1.97	0.02
		_ og	0.00	0.000	100.00	1/2"	4.70	2.31	0.04
			0.00			Ice	5.06	2.66	0.07
						1" Ice			
RR90-17-DP	в	From Leg	4.00	0.000	130.00	No Ice	4.36	1.97	0.02
			0.00			1/2"	4.70	2.31	0.04
			0.00			lce 1" lce	5.06	2.66	0.07
RR90-17-DP	С	From Leg	4.00	0.000	130.00	No Ice	4.36	1.97	0.02
			0.00			1/2"	4.70	2.31	0.04
			0.00			Ice	5.06	2.66	0.07
			4.00		100.00	1" Ice	0 70	4.40	o o -
RRUS-11	A	From Leg	4.00	0.000	130.00	No Ice	2.79	1.19	0.05
			0.00			1/2"	3.00	1.34	0.07
			0.00			lce 1" lce	3.21	1.50	0.09
RRUS-11	в	From Leg	4.00	0.000	130.00	No Ice	2.79	1.19	0.05
		Log	0.00	0.000	.00.00	1/2"	3.00	1.34	0.03
			0.00			Ice	3.21	1.50	0.09
	С	From	4.00	0.000	120.00	1" Ice	2 70	1.19	0.05
RRUS-11	U	From Leg	4.00 0.00	0.000	130.00	No Ice 1/2"	2.79 3.00	1.19	0.05
			0.00			lce	3.00	1.50	0.07
			0.00			1" Ice	0.21	1.00	0.03
KRY 112 71/2	А	From Leg	4.00	0.000	130.00	No Ice	0.58	0.45	0.01
			0.00	0.000		1/2"	0.69	0.54	0.02
			0.00			1/2	0.09	0.04	0.02

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
KRY 112 71/2	В	From Leg	4.00 0.00	0.000	130.00	1" Ice No Ice 1/2"	0.58 0.69	0.45 0.54	0.01 0.02
			0.00			lce 1" lce	0.80	0.64	0.02
KRY 112 71/2	С	From Leg	4.00 0.00 0.00	0.000	130.00	No Ice 1/2" Ice 1" Ice	0.58 0.69 0.80	0.45 0.54 0.64	0.01 0.02 0.03
12' T-frame sector mount	A	From Leg	2.00 0.00 0.00	0.000	130.00	No Ice 1/2" Ice 1" Ice	13.20 19.50 25.80	9.20 14.60 19.50	0.66 0.80 1.01
12' T-frame sector mount	В	From Leg	2.00 0.00 0.00	0.000	130.00	No Ice 1/2" Ice 1" Ice	13.20 19.50 25.80	9.20 14.60 19.50	0.66 0.80 1.01
12' T-frame sector mount	С	From Leg	2.00 0.00 0.00	0.000	130.00	No Ice 1/2" Ice 1" Ice	13.20 19.50 25.80	9.20 14.60 19.50	0.66 0.80 1.01
2.375" OD x 8' Mount Pipe	A	From Leg	4.00 0.00 0.00	0.000	130.00	No Ice 1/2" Ice 1" Ice	1.90 2.73 3.40	1.90 2.73 3.40	0.03 0.04 0.06
2.375" OD x 8' Mount Pipe	В	From Leg	4.00 0.00 0.00	0.000	130.00	No Ice 1/2" Ice 1" Ice	1.90 2.73 3.40	1.90 2.73 3.40	0.03 0.04 0.06
2.375" OD x 8' Mount Pipe	С	From Leg	4.00 0.00 0.00	0.000	130.00	No Ice 1/2" Ice 1" Ice	1.90 2.73 3.40	1.90 2.73 3.40	0.03 0.04 0.06
*** 6' Sid e Arm Mount	В	From Leg	3.00 0.00 0.00	0.000	120.00	No Ice 1/2" Ice 1" Ice	0.41 0.81 1.23	3.06 5.10 7.20	0.05 0.08 0.12
4' x 1-3/4" omni whip	В	From Leg	6.00 0.00 2.00	0.000	120.00	No Ice 1/2" Ice 1" Ice	0.79 1.03 1.28	0.79 1.03 1.28	0.01 0.01 0.02
*** 12" x 12" x 12" Junction Box ***	В	None		0.000	108.00	No Ice 1/2" Ice 1" Ice	1.20 1.34 1.48	0.80 0.91 1.04	0.02 0.03 0.05
6' Side Arm Mount	С	From Leg	3.00 0.00 0.00	0.000	90.00	No Ice 1/2" Ice 1" Ice	0.41 0.81 1.23	3.06 5.10 7.20	0.05 0.08 0.12
10' 4-bay dipole	С	From Leg	6.00 0.00 3.00	0.000	90.00	No Ice 1/2" Ice 1" Ice	0.79 1.03 1.28	0.79 1.03 1.28	0.02 0.03 0.04
*** 6' Side Arm Mount	В	From Leg	3.00 0.00 0.00	0.000	86.00	No Ice 1/2" Ice 1" Ice	0.41 0.81 1.23	3.06 5.10 7.20	0.05 0.08 0.12
4' x 1-3/4" omni whip	В	From Leg	6.00 0.00 2.00	0.000	86.00	No Ice 1/2" Ice 1" Ice	1.13 1.65 1.99	1.13 1.65 1.99	0.01 0.02 0.03

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
			ft ft ft	o	ft		ft²	ft²	К
***	_								
3' Side Arm Mount	В	From Leg	1.50	0.000	55.00	No Ice	0.85	1.67	0.07
			0.00			1/2"	1.14	2.34	0.08
			0.00			lce 1" lce	1.43	3.01	0.09
GPS	В	From Leg	3.00	0.000	55.00	No Ice	0.14	0.14	0.02
		0	0.00			1/2"	0.24	0.24	0.02
			0.00			lce 1" lce	0.31	0.31	0.02

Load Combinations

Comb.	Description	
No.		
1	Dead Only	
2	1.2 Dead+1.6 Wind 0 deg - No Ice	
3	0.9 Dead+1.6 Wind 0 deg - No Ice	
4	1.2 Dead+1.6 Wind 30 deg - No Ice	
5	0.9 Dead+1.6 Wind 30 deg - No Ice	
6	1.2 Dead+1.6 Wind 60 deg - No Ice	
7	0.9 Dead+1.6 Wind 60 deg - No Ice	
8	1.2 Dead+1.6 Wind 90 deg - No Ice	
9	0.9 Dead+1.6 Wind 90 deg - No Ice	
10	1.2 Dead+1.6 Wind 120 deg - No Ice	
11	0.9 Dead+1.6 Wind 120 deg - No Ice	
12	1.2 Dead+1.6 Wind 150 deg - No Ice	
13	0.9 Dead+1.6 Wind 150 deg - No Ice	
14	1.2 Dead+1.6 Wind 180 deg - No Ice	
15	0.9 Dead+1.6 Wind 180 deg - No Ice	
16	1.2 Dead+1.6 Wind 210 deg - No Ice	
17	0.9 Dead+1.6 Wind 210 deg - No Ice	
18	1.2 Dead+1.6 Wind 240 deg - No Ice	
19	0.9 Dead+1.6 Wind 240 deg - No Ice	
20	1.2 Dead+1.6 Wind 270 deg - No Ice	
21	0.9 Dead+1.6 Wind 270 deg - No Ice	
22	1.2 Dead+1.6 Wind 200 deg - No Ice	
23	0.9 Dead+1.6 Wind 300 deg - No Ice	
24	1.2 Dead+1.6 Wind 330 deg - No Ice	
25	0.9 Dead+1.6 Wind 330 deg - No Ice	
26	1.2 Dead+1.0 lce	
20	1.2 Dead+1.0 lice	
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice	
29	1.2 Dead+1.0 Wind 50 deg+1.0 lce	
30	1.2 Dead+1.0 Wind 80 deg+1.0 Ice	
31	1.2 Dead+1.0 Wind 30 deg+1.0 Ice	
32		
32 33	1.2 Dead+1.0 Wind 150 deg+1.0 lce	
33 34	1.2 Dead+1.0 Wind 180 deg+1.0 Ice	
	1.2 Dead+1.0 Wind 210 deg+1.0 Ice	
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice	
36 37	1.2 Dead+1.0 Wind 270 deg+1.0 Ice	
	1.2 Dead+1.0 Wind 300 deg+1.0 Ice	
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice	
39	Dead+Wind 0 deg - Service	
40	Dead+Wind 30 deg - Service	
41	Dead+Wind 60 deg - Service	
42	Dead+Wind 90 deg - Service	
43	Dead+Wind 120 deg - Service	
44	Dead+Wind 150 deg - Service	
45	Dead+Wind 180 deg - Service	
46	Dead+Wind 210 deg - Service	
47	Dead+Wind 240 deg - Service	

Comb.	
No.	
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Description

Maximum React	tions
---------------	-------

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	ĸ	K	K
		Comb.			
Leg C	Max. Vert	18	282.84	29.50	-17.78
-	Max. H _x	18	282.84	29.50	-17.78
	Max. H _z	7	-245.96	-26.80	16.20
	Min. Vert	7	-245.96	-26.80	16.20
	Min. H _x	7	-245.96	-26.80	16.20
	Min. H _z	18	282.84	29.50	-17.78
Leg B	Max. Vert	10	277.14	-28.08	-17.55
Ū	Max. H _x	23	-238.50	25.36	15.94
	Max. H _z	23	-238.50	25.36	15.94
	Min. Vert	23	-238.50	25.36	15.94
	Min. H _x	10	277.14	-28.08	-17.55
	Min. H _z	10	277.14	-28.08	-17.55
Leg A	Max. Vert	2	271.08	0.38	32.03
-	Max. H _x	20	23.15	7.43	1.79
	Max. H _z	2	271.08	0.38	32.03
	Min. Vert	15	-230.15	-0.37	-28.84
	Min. H _x	9	17.78	-7.41	1.40
	Min. H _z	15	-230.15	-0.37	-28.84

Tower Mast Reaction Summary								
Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque		
	K	K	ĸ	kip-ft	kip-ft	kip-ft		
Dead Only	55.45	0.00	0.00	-22	-11	0		
1.2 Dead+1.6 Wind 0 deg - No Ice	66.54	0.05	-53.31	-5460	-18	17		
0.9 Dead+1.6 Wind 0 deg - No Ice	49.91	0.05	-53.31	-5453	-15	17		
1.2 Dead+1.6 Wind 30 deg - No Ice	66.54	26.61	-46.30	-4696	-2692	25		
0.9 Dead+1.6 Wind 30 deg - No Ice	49.91	26.61	-46.30	-4690	-2689	25		
1.2 Dead+1.6 Wind 60 deg - No Ice	66.54	50.02	-29.06	-2915	-4976	-28		
0.9 Dead+1.6 Wind 60 deg - No Ice	49.91	50.02	-29.06	-2908	-4972	-28		
1.2 Dead+1.6 Wind 90 deg - No Ice	66.54	58.33	-0.05	-32	-5811	-64		
0.9 Dead+1.6 Wind 90 deg - No Ice	49.91	58.33	-0.05	-25	-5808	-64		
1.2 Dead+1.6 Wind 120 deg - No Ice	66.54	47.83	27.73	2784	-4851	-50		
0.9 Dead+1.6 Wind 120 deg - No Ice	49.91	47.83	27.73	2790	-4848	-50		
1.2 Dead+1.6 Wind 150 deg - No Ice	66.54	24.91	43.45	4487	-2595	-9		
0.9 Dead+1.6 Wind 150 deg	49.91	24.91	43.45	4493	-2592	-9		
1.2 Dead+1.6 Wind 180 deg - No Ice	66.54	-0.05	53.31	5407	-7	-17		
0.9 Dead+1.6 Wind 180 deg - No Ice	49.91	-0.05	53.31	5414	-4	-17		

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	<u> </u>	<u>K</u>	<u> </u>	kip-ft	kip-ft	kip-ft
1.2 Dead+1.6 Wind 210 deg	66.54	-26.61	46.30	4643	2667	-25
- No Ice 0.9 Dead+1.6 Wind 210 deg	49.91	-26.61	46.30	4650	2670	-25
- No Ice	10.01	20.01	10.00	1000	2010	20
1.2 Dead+1.6 Wind 240 deg	66.54	-50.02	29.06	2862	4950	28
- No Ice						
0.9 Dead+1.6 Wind 240 deg	49.91	-50.02	29.06	2868	4953	28
- No Ice						
1.2 Dead+1.6 Wind 270 deg	66.54	-58.33	0.05	-21	5785	64
	10.01	50.00	0.05	45	5700	
0.9 Dead+1.6 Wind 270 deg - No Ice	49.91	-58.33	0.05	-15	5789	64
1.2 Dead+1.6 Wind 300 deg	66.54	-47.83	-27.73	-2837	4826	50
- No Ice	00.04	-47.00	-21.10	-2007	4020	00
0.9 Dead+1.6 Wind 300 deg	49.91	-47.83	-27.73	-2830	4829	50
- No Ice						
1.2 Dead+1.6 Wind 330 deg	66.54	-24.91	-43.45	-4540	2570	9
- No Ice						
0.9 Dead+1.6 Wind 330 deg	49.91	-24.91	-43.45	-4533	2573	9
- No Ice						-
1.2 Dead+1.0 Ice	194.38	0.00	0.00	-120	-56	0
1.2 Dead+1.0 Wind 0	194.38	0.03	-16.00	-1763	-59	4
deg+1.0 Ice 1.2 Dead+1.0 Wind 30	194.38	8.03	-14.00	-1546	-872	7
deg+1.0 lce	194.30	0.03	-14.00	-1340	-072	7
1.2 Dead+1.0 Wind 60	194.38	14.92	-8.70	-993	-1549	-2
deg+1.0 Ice	101.00	11.02	0.10	000	1010	-
1.2 Dead+1.0 Wind 90	194.38	17.08	-0.03	-122	-1775	-12
deg+1.0 lce						
1.2 Dead+1.0 Wind 120	194.38	14.46	8.41	738	-1527	-10
deg+1.0 Ice						
1.2 Dead+1.0 Wind 150	194.38	7.70	13.49	1278	-852	-2
deg+1.0 lce	101.00	0.00	10.00	1504	- /	
1.2 Dead+1.0 Wind 180	194.38	-0.03	16.00	1524	-54	-4
deg+1.0 lce 1.2 Dead+1.0 Wind 210	194.38	-8.03	14.00	1307	759	-7
deg+1.0 lce	194.30	-0.03	14.00	1307	759	-7
1.2 Dead+1.0 Wind 240	194.38	-14.92	8.70	754	1437	2
deg+1.0 Ice	104.00	14.02	0.70	704	1407	2
1.2 Dead+1.0 Wind 270	194.38	-17.08	0.03	-117	1663	12
deg+1.0 Ice						
1.2 Dead+1.0 Wind 300	194.38	-14.46	-8.41	-977	1415	10
deg+1.0 Ice						
1.2 Dead+1.0 Wind 330	194.38	-7.70	-13.49	-1517	739	2
deg+1.0 Ice		0.04	10.00	1005	10	•
Dead+Wind 0 deg - Service	55.45	0.01	-10.63	-1095	-12	3
Dead+Wind 30 deg - Service Dead+Wind 60 deg - Service	55.45	5.31 9.95	-9.23	-945 -592	-540 -990	5 -5
Dead+Wind 90 deg - Service	55.45 55.45	11.60	-5.78 -0.01	-23	-1154	-12
Dead+Wind 120 deg - Service	55.45	9.53	5.52	533	-966	-10
Service	00.10	0.00	0.02	000	000	10
Dead+Wind 150 deg -	55.45	4.98	8.68	870	-521	-2
Service						
Dead+Wind 180 deg -	55.45	-0.01	10.63	1051	-10	-3
Service						
Dead+Wind 210 deg -	55.45	-5.31	9.23	900	519	-5
Service				- / -		_
Dead+Wind 240 deg -	55.45	-9.95	5.78	548	968	5
Service	EE AE	11 60	0.01	24	1100	10
Dead+Wind 270 deg - Service	55.45	-11.60	0.01	-21	1133	12
Dead+Wind 300 deg -	55.45	-9.53	-5.52	-577	944	10
Service	00.10	0.00	0.02	011	0-11	10
Dead+Wind 330 deg -	55.45	-4.98	-8.68	-914	500	2
Service			-		-	_

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	o	0
T1	180 - 160	1.55	42	0.063	0.023
T2	160 - 140	1.28	42	0.062	0.023
Т3	140 - 120	1.01	42	0.058	0.021
T4	120 - 100	0.75	42	0.051	0.018
T5	100 - 80	0.53	42	0.041	0.015
T6	80 - 60	0.36	42	0.032	0.012
T7	60 - 40	0.21	42	0.024	0.008
Т8	40 - 20	0.11	42	0.016	0.005
Т9	20 - 0	0.04	48	0.008	0.002

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
180.00	2.375" x 7' Safety Climb Extension	42	1.55	0.063	0.023	Inf
177.00	Side Arm Mount	42	1.51	0.063	0.023	Inf
168.75	Rohn 6'x15' Boom Gate	42	1.39	0.063	0.023	860156
150.00	APXVSPP18-C-A20 w/ Mount Pipe	42	1.14	0.061	0.022	742748
140.00	80010965 w/ Mount Pipe	42	1.01	0.058	0.021	936516
130.00	APXVAARR24_43-U-NA20 w/ Mount Pipe	42	0.88	0.055	0.020	193540
120.00	6' Side Arm Mount	42	0.75	0.051	0.018	106967
108.00	12" x 12" x 12" Junction Box	42	0.61	0.045	0.016	98881
90.00	6' Side Arm Mount	42	0.44	0.036	0.013	131600
86.00	6' Side Arm Mount	42	0.41	0.035	0.013	154911
55.00	3' Side Arm Mount	42	0.19	0.022	0.008	119672

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	0
T1	180 - 160	7.86	8	0.323	0.119
T2	160 - 140	6.46	8	0.318	0.119
T3	140 - 120	5.10	8	0.295	0.110
T4	120 - 100	3.80	8	0.261	0.095
T5	100 - 80	2.69	8	0.208	0.078
T6	80 - 60	1.81	8	0.163	0.061
T7	60 - 40	1.08	8	0.123	0.044
Т8	40 - 20	0.55	8	0.078	0.028
Т9	20 - 0	0.18	20	0.041	0.012

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	٥	٥	ft
180.00	2.375" x 7' Safety Climb Extension	8	7.86	0.323	0.119	375890
177.00 168.75	Side Arm Mount Rohn 6'x15' Boom Gate	8 8	7.65 7.07	0.323 0.321	0.119 0.120	375890 167063

tnxTower Report - version 8.1.1.0

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
150.00	APXVSPP18-C-A20 w/ Mount Pipe	8	5.78	0.308	0.116	152890
140.00	80010965 w/ Mount Pipe	8	5.10	0.295	0.110	199625
130.00	APXVAARR24_43-U-NA20 w/ Mount Pipe	8	4.44	0.280	0.103	38054
120.00	6' Side Arm Mount	8	3.80	0.261	0.095	20848
108.00	12" x 12" x 12" Junction Box	8	3.10	0.230	0.085	19333
90.00	6' Side Arm Mount	8	2.22	0.184	0.070	25805
86.00	6' Side Arm Mount	8	2.05	0.175	0.067	30398
55.00	3' Side Arm Mount	8	0.93	0.112	0.040	23594

Bolt Design Data

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Of	Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft			in	Bolts	per Bolt K	per Bolt K	Allowable		
T 1	180	Leg	A325N	0.88	4	0.65	40.59	0.016	1.05	Bolt Tension
		Diagonal	A325N	0.63	3	1.60	12.43	0.129	1.05	Bolt Shear
		Horizontal	A325N	0.63	2	1.37	12.43	0.111	1.05	Bolt Shear
T2	160	Leg	A325N	1.00	4	5.15	53.01	0.097	1.05	Bolt Tension
		Diagonal	A325N	0.63	3	2.17	12.43	0.174	1.05	Bolt Shear
		Horizontal	A325N	0.63	2	2.03	12.43	0.163	1.05	Bolt Shear
Т3	140	Leg	A325N	1.00	6	8.07	53.01	0.152	1.05	Bolt Tension
		Diagonal	A325N	0.63	3	3.27	12.43	0.263	1.05	Bolt Shear
		Horizontal	A325N	0.63	2	3.39	12.43	0.273	1.05	Bolt Shear
T4	120	Leg	A325N	1.00	8	10.32	53.01	0.195	1.05	Bolt Tension
		Diagonal	A325N	0.63	3	3.28	12.43	0.264	1.05	Bolt Shear
		Horizontal	A325N	0.63	2	3.65	12.43	0.294	1.05	Bolt Shear
T5	100	Leg	A325N	1.00	8	13.68	53.01	0.258	1.05	Bolt Tension
		Diagonal	A325N	0.63	3	4.05	12.43	0.326	1.05	Bolt Shear
		Horizontal	A325N	0.63	2	4.05	12.43	0.326	1.05	Bolt Shear
T6	80	Leg	A325N	1.00	8	17.71	53.01	0.334	1.05	Bolt Tension
		Diagonal	A325N	0.63	3	4.17	12.43	0.336	1.05	Bolt Shear
		Horizontal	A325N	0.63	2	4.41	12.43	0.355	1.05	Bolt Shear
T7	60	Leg	A325N	1.00	12	14.42	53.01	0.272	1.05	Bolt Tension
		Diagonal	A325N	0.63	3	4.30	12.43	0.346	1.05	Bolt Shear
		Horizontal	A325N	0.63	2	4.76	12.43	0.383	1.05	Bolt Shear
T8	40	Leg	A325N	1.00	12	16.94	53.01	0.320	1.05	Bolt Tension
		Diagonal	A325N	0.63	3	4.43	12.43	0.356	1.05	Bolt Shear
		Horizontal	A325N	0.63	2	5.06	12.43	0.407	1.05	Bolt Shear
T 9	20	Diagonal	A325N	0.63	3	4.61	12.43	0.371	1.05	Bolt Shear
		Horizontal	A325N	0.63	2	5.41	12.43	0.435	1.05	Bolt Shear

Compression Checks

	Leg Design Data (Compression)										
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φ Ρ _n	Ratio P _u		
	ft		ft	ft		in²	ĸ	ĸ	ϕP_n		
T 1	180 - 160	Pipe 3.5" x 0.216" (3 STD)	20.00	6.53	67.3 K=1.00	2.23	-7.73	72.00	0.107 ¹		
T2	160 - 140	Pipe 4.5" x 0.337" (4 XS)	20.04	6.54	53.1 K=1.00	4.41	-26.63	161.33	0.165 ¹		
Т3	140 - 120	Pipe 5.563" x 0.375" (5 EH)	20.04	6.54	42.7 K=1.00	6.11	-60.29	240.75	0.250 ¹		

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	K	ĸ	ϕP_n
T 4	120 - 100	Pipe 6.625" x 0.340" (6 EHS)	20.04	6.54	35.3 K=1.00	6.71	-97.36	275.84	0.353 ¹
Т5	100 - 80	Pipe 8.625" x 0.375" (8 EHS)	20.04	9.81	40.3 K=1.00	9.72	-127.29	388.36	0.328 ¹
Т6	80 - 60	Pipe 8.625" x 0.500" (8 XS)	20.04	9.81	40.9 K=1.00	12.76	-162.37	508.20	0.319 ¹
Τ7	60 - 40	Pipe 8.625" x 0.500" (8 XS)	20.04	9.81	40.9 K=1.00	12.76	-197.80	508.20	0.389 1
Т8	40 - 20	Pipe 10.75" x 0.500" (10 XS)	20.04	9.81	32.4 K=1.00	16.10	-232.85	670.86	0.347 1
Т9	20 - 0	Pipe 10.75" x 0.500" (10 XS)	20.04	9.81	32.4 K=1.00	16.10	-267.30	670.86	0.398 1

		Diagonal	Desig	in Dat	ta (Coi	mpres	ssion)		
Section No.	Elevation	Size	L	Lu	Kl/r	Α	Pu	ϕP_n	Ratio P _u
	ft		ft	ft		in²	ĸ	ĸ	ϕP_n
T 1	180 - 160	Pipe 2.375" x 0.154" (2 STD)	7.80	7.53	114.9 K=1.00	1.07	-4.81	18.40	0.261 1
T2	160 - 140	Pipe 2.375" x 0.218" (2 XS)	8.42	8.13	127.2 K=1.00	1.48	-6.50	20.62	0.315 ¹
Т3	140 - 120	Pipe 2.375" x 0.218" (2 XS)	9.12	8.79	137.6 K=1.00	1.48	-9.80	17.62	0.556 ¹
T4	120 - 100	Pipe 2.875" x 0.203" (2.5 STD)	9.88	9.52	120.5 K=1.00	1.70	-9.73	26.50	0.367 1
T5	100 - 80	Pipe 3.5" x 0.216" (3 STD)	12.95	12.40	127.9 K=1.00	2.23	-12.16	30.79	0.395 1
Т6	80 - 60	Pipe 3.5" x 0.216" (3 STD)	13.66	13.14	135.5 K=1.00	2.23	-12.52	27.41	0.457 ¹
T7	60 - 40	Pipe 3.5" x 0.216" (3 STD)	14.41	13.92	143.5 K=1.00	2.23	-12.88	24.43	0.527 ¹
Т8	40 - 20	Pipe 3.5" x 0́.216" (3 STD)	15.19	14.61	150.7 K=1.00	2.23	-13.20	22.18	0.595 ¹
Т9	20 - 0	Pipe 3.5" x 0.300" (3 XS)	16.01	15.45	163.1 K=1.00	3.02	-13.66	25.61	0.533 ¹

¹ P_u / ϕP_n controls

Horizontal Design Data (Compression)

Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	K	ĸ	ϕP_n
T1	180 - 160	Pipe 1.9" x 0.145" (1.5 STD)	8.54	4.12	79.5 K=1.00	0.80	-2.71	22.67	0.120 ¹
T2	160 - 140	Pipe 1.9" x 0.́145" (1.5 STD)	9.95	4.79	92.3 K=1.00	0.80	-4.05	19.29	0.210 ¹
Т3	140 - 120	Pipe 1.9" x 0.́145" (1.5 STD)	12.05	5.79	111.7 K=1.00	0.80	-6.77	14.45	0.468 ¹
T4	120 - 100	Pipe 2.375" x 0.154" (2 STD)	14.15	6.80	103.7 K=1.00	1.07	-7.22	22.04	0.328 ¹
Т5	100 - 80	Pipe 2.375" x 0.154" (2 STD)	15.91	7.59	115.8 K=1.00	1.07	-8.06	18.11	0.445 ¹
T6	80 - 60	Pipe 2.375" x 0.154" (2 STD)	18.01	8.64	131.8 K=1.00	1.07	-8.75	13.98	0.626 ¹
Τ7	60 - 40	Pipe 2.875" x 0.203" (2.5 STD)	20.10	9.69	122.8 K=1.00	1.70	-9.38	25.54	0.367 ¹

tnxTower Report - version 8.1.1.0

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	K	K	ϕP_n
Т8	40 - 20	Pipe 2.875" x 0.203" (2.5 STD)	22.20	10.65	134.9 K=1.00	1.70	-9.94	21.14	0.470 ¹
Т9	20 - 0	Pipe 3.5" x 0.216" (3 STD)	24.30	11.70	120.7 K=1.00	2.23	-10.52	34.56	0.304 ¹

	Top Girt Design Data (Compression)									
Section No.	Elevation	Size	L	Lu	Kl/r	Α	Pu	ϕP_n	Ratio P _u	
	ft		ft	ft		in ²	К	K	$\frac{1}{\phi P_n}$	
T 1	180 - 160	Pipe 1.9" x 0.145" (1.5 STD)	8.54	4.12	79.5 K=1.00	0.80	-0.16	22.67	0.007 1	

¹ P_u / ϕP_n controls

		Inner Brac		Sign	Butu [oomp		·/	
Section No.	Elevation	Size	L	L_u	Kl/r	А	P_u	φ Ρ _n	Ratio P _u
	ft		ft	ft		in²	K	ĸ	ϕP_n
T1	180 - 160	L 2 x 2 x 1/8	4.27	4.27	128.9 K=1.00	0.48	-0.00	6.51	0.001 ¹
T2	160 - 140	L 2 x 2 x 1/8	4.98	4.98	150.2 K=1.00	0.48	-0.01	4.85	0.001 ¹
Т3	140 - 120	L 2 x 2 x 1/8	6.03	6.03	181.9 K=1.00	0.48	-0.01	3.31	0.002 1
T 4	120 - 100	L 2 x 2 x 1/8	7.08	7.08	213.6 K=1.00	0.48	-0.01	2.40	0.004 1
T5	100 - 80	L 2 x 2 x 1/8	7.95	7.95	240.1 K=1.00	0.48	-0.01	1.90	0.006 1
T6	80 - 60	L 2.5 x 2.5 x 3/16	9.00	9.00	218.3 K=1.00	0.90	-0.01	4.28	0.003 1
T7	60 - 40	L 3 x 3 x 3/16	10.05	10.05	202.3 K=1.00	1.09	-0.01	6.02	0.002 1
Т8	40 - 20	L 3.5 x 3.5 x 1/4	11.10	11.10	192.0 K=1.00	1.69	-0.02	10.36	0.002 1
Т9	20 - 0	L 3.5 x 3.5 x 1/4	12.15	12.15	210.1 K=1.00	1.69	-0.02	8.65	0.002 1

¹ P_u / ϕP_n controls

Tension Checks

		Leg	Desig	n Dat	a (Te	nsion			
Section No.	Elevation	Size	L	Lu	Kl/r	Α	Pu	φ P _n	Ratio P _u
	ft		ft	ft		in ²	К	K	$\frac{1}{\phi P_n}$
T 1	180 - 160	Pipe 3.5" x 0.216" (3 STD)	20.00	6.53	67.3	2.23	2.62	100.28	0.026 1
T2	160 - 140	Pipe 4.5" x 0.337" (4 XS)	20.04	6.54	53.1	4.41	20.59	198.34	0.104 ¹

tnxTower Report - version 8.1.1.0

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in²	K	ĸ	ϕP_n
Т3	140 - 120	Pipe 5.563" x 0.375" (5 EH)	20.04	6.54	42.7	6.11	48.43	275.04	0.176
T4	120 - 100	Pipe 6.625" x 0.340" (6 EHS)	20.04	6.54	35.3	6.71	82.52	302.10	0.273
T 5	100 - 80	Pipe 8.625" x 0.375" (8 EHS)	20.04	9.81	40.3	9.72	109.44	437.37	0.250
T 6	80 - 60	Pipe 8.625" x 0.500" (8 XS)	20.04	9.81	40.9	12.76	141.68	574.32	0.247
Τ7	60 - 40	Pipe 8.625" x 0.500" (8 XS)	20.04	9.81	40.9	12.76	173.04	574.32	0.301
Т8	40 - 20	Pipe 10.75" x 0.500" (10 XS)	20.04	9.81	32.4	16.10	203.33	724.53	0.281
Т9	20 - 0	Pipe 10.75" x 0.500" (10 XS)	20.04	9.81	32.4	16.10	232.39	724.53	0.321

	Diagonal Design Data (Tension)								
Section No.	Elevation	Size	L	Lu	Kl/r	Α	Pu	ϕP_n	Ratio P _u
	ft		ft	ft		in²	ĸ	ĸ	ϕP_n
T1	180 - 160	Pipe 2.375" x 0.154" (2 STD)	7.80	7.53	114.9	1.07	4.73	48.35	0.098 1
T2	160 - 140	Pipe 2.375" x 0.218" (2 XS)	8.42	8.13	127.2	1.48	6.39	66.48	0.096 ¹
Т3	140 - 120	Pipe 2.375" x 0.218" (2 XS)	9.12	8.79	137.6	1.48	9.67	66.48	0.145 ¹
T4	120 - 100	Pipe 2.875" x 0.203" (2.5 STD)	9.38	9.01	114.2	1.70	9.68	76.68	0.126 ¹
T5	100 - 80	Pipe 3.5" x 0.216" (3 STD)	12.95	12.40	127.9	2.23	11.92	100.28	0.119 ¹
T6	80 - 60	Pipe 3.5" x 0.216" (3 STD)	13.66	13.14	135.5	2.23	12.23	100.28	0.122 ¹
Τ7	60 - 40	Pipe 3.5" x 0.216" (3 STD)	14.04	13.55	139.7	2.23	12.52	100.28	0.125 ¹
Т8	40 - 20	Pipe 3.5" x 0.216" (3 STD)	14.81	14.22	146.7	2.23	12.82	100.28	0.128 ¹
Т9	20 - 0	Pipe 3.5" x 0.300" (3 XS)	15.61	15.04	158.8	3.02	13.19	135.72	0.097 1

¹ P_u / ϕP_n controls

	Horizontal Design Data (Tension)								
Section No.	Elevation	Size	L	L _u	Kl/r	Α	P _u	φPn	Ratio P _u
	ft		ft	ft		in²	K	K	ϕP_n
T 1	180 - 160	Pipe 1.9" x 0.145" (1.5 STD)	8.54	4.12	79.5	0.80	2.75	35.98	0.076 1
T2	160 - 140	Pipe 1.9" x 0.145" (1.5 STD)	9.95	4.79	92.3	0.80	4.06	35.98	0.113 ¹
Т3	140 - 120	Pipe 1.9" x 0.145" (1.5 STD)	12.05	5.79	111.7	0.80	6.78	35.98	0.189 ¹
T 4	120 - 100	Pipe 2.375" x 0.154" (2 STD)	14.15	6.80	103.7	1.07	7.30	48.35	0.151 ¹
Т5	100 - 80	Pipe 2.375" x 0.154" (2 STD)	15.91	7.59	115.8	1.07	8.11	48.35	0.168 ¹
Т6	80 - 60	Pipe 2.375" x 0.154" (2 STD)	18.01	8.64	131.8	1.07	8.83	48.35	0.183 ¹

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	ĸ	ĸ	ϕP_{n}
T7	60 - 40	Pipe 2.875" x 0.203" (2.5 STD)	20.10	9.69	122.8	1.70	9.53	76.68	0.124 ¹
Т8	40 - 20	Pipe 2.875" x 0.203" (2.5 STD)	22.20	10.65	134.9	1.70	10.11	76.68	0.132 ¹
Т9	20 - 0	Pipe 3.5'' x 0.216'' (3 STD)	23.27	11.19	115.4	2.23	10.81	100.28	0.108 ¹

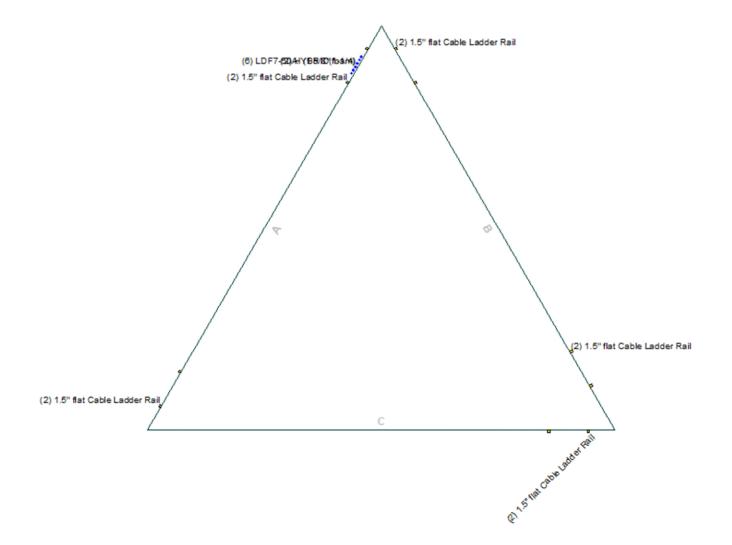
Top Girt Design Data (Tension)									
Section No.	Elevation	Size	L	Lu	Kl/r	А	Pu	φPn	Ratio P _u
	ft		ft	ft		in ²	K	ĸ	$\frac{1}{\Phi P_n}$
T 1	180 - 160	Pipe 1.9" x 0.145" (1.5 STD)	8.54	4.12	79.5	0.80	0.16	35.98	0.004 ¹

¹ P_u / ϕP_n controls

	Inner Bracing Design Data (Tension)								
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	ϕP_n	Ratio P _u
	ft		ft	ft		in²	K	ĸ	ϕP_n
T1	180 - 160	L 2 x 2 x 1/8	4.27	4.27	81.8	0.48	0.00	15.69	0.000
T2	160 - 140	L 2 x 2 x 1/8	4.98	4.98	95.4	0.48	0.00	15.69	0.000 1
Т3	140 - 120	L 2 x 2 x 1/8	5.34	5.34	102.3	0.48	0.00	15.69	0.000 1
T 4	120 - 100	L 2 x 2 x 1/8	6.39	6.39	122.5	0.48	0.00	15.69	0.000
T5	100 - 80	L 2 x 2 x 1/8	7.44	7.44	142.6	0.48	0.00	15.69	0.000^{-1}
T6	80 - 60	L 2.5 x 2.5 x 3/16	8.49	8.49	130.8	0.90	0.00	29.22	0.000
T7	60 - 40	L 3 x 3 x 3/16	9.54	9.54	121.9	1.09	0.00	35.31	0.000

¹ P_u / ϕP_n controls

Section Capacity Table


Section	Elevation	Component	Size	Critical	Р		%	Pass
No.	ft	Type		Element	K	K	Capacity	Fail
T 1	180 - 160	Leg	Pipe 3.5" x 0.216" (3 STD)	3	-7.73	75.60	10.2	Pass
T2	160 - 140	Leg	Pipe 4.5" x 0.337" (4 XS)	42	-26.63	169.40	15.7	Pass
Т3	140 - 120	Leg	Pipe 5.563" x 0.375" (5 EH)	80	-60.29	252.79	23.8	Pass
T 4	120 - 100	Leg	Pipe 6.625" x 0.340" (6 EHS)	119	-97.36	289.63	33.6	Pass
T5	100 - 80	Leg	Pipe 8.625" x 0.375" (8 EHS)	158	-127.29	407.78	31.2	Pass
T6	80 - 60	Leg	Pipe 8.625" x 0.500" (8 XS)	184	-162.37	533.61	30.4	Pass
		-					33.4 (b)	
T7	60 - 40	Leg	Pipe 8.625" x 0.500" (8 XS)	211	-197.80	533.61	37.1	Pass
T8	40 - 20	Leg	Pipe 10.75" x 0.500" (10 XS)	238	-232.85	704.40	33.1	Pass
T9	20 - 0	Leg	Pipe 10.75" x 0.500" (10 XS)	265	-267.30	704.40	37.9	Pass
T 1	180 - 160	Diagonal	Pipe 2.375" x 0.154" (2 STD)	11	-4.81	19.32	24.9	Pass
T2	160 - 140	Diagonal	Pipe 2.375" x 0.218" (2 XS)	47	-6.50	21.65	30.0	Pass
Т3	140 - 120	Diagonal	Pipe 2.375" x 0.218" (2 XS)	86	-9.80	18.50	53.0	Pass
T 4	120 - 100	Diagonal	Pipe 2.875" x 0.203" (2.5	125	-9.73	27.83	35.0	Pass
		-	STD)					
T5	100 - 80	Diagonal	Pipe 3.5" x 0.216" (3 STD)	164	-12.16	32.33	37.6	Pass
T6	80 - 60	Diagonal	Pipe 3.5" x 0.216" (3 STD)	191	-12.52	28.78	43.5	Pass

tnxTower Report - version 8.1.1.0

Section	Elevation	Component	Size	Critical	Р		%	Pass
No.	ft	Type		Element	K	ĸ	Capacity	Fail
T7	60 - 40	Diagonal	Pipe 3.5" x 0.216" (3 STD)	218	-12.88	25.65	50.2	Pass
T8	40 - 20	Diagonal	Pipe 3.5" x 0.216" (3 STD)	249	-13.20	23.29	56.7	Pass
T 9	20 - 0	Diagonal	Pipe 3.5" x 0.300" (3 XS)	276	-13.66	26.89	50.8	Pass
T 1	180 - 160	Horizontal	Pipe 1.9" x 0.145" (1.5 STD)	10	-2.71	23.80	11.4	Pass
T2	160 - 140	Horizontal	Pipe 1.9" x 0.145" (1.5 STD)	46	-4.05	20.26	20.0	Pass
Т3	140 - 120	Horizontal	Pipe 1.9" x 0.145" (1.5 STD)	85	-6.77	15.17	44.6	Pass
T 4	120 - 100	Horizontal	Pipe 2.375" x 0.154" (2 STD)	124	-7.22	23.14	31.2	Pass
T5	100 - 80	Horizontal	Pipe 2.375" x 0.154" (2 STD)	163	-8.06	19.01	42.4	Pass
T6	80 - 60	Horizontal	Pipe 2.375" x 0.154" (2 STD)	190	-8.75	14.68	59.6	Pass
T7	60 - 40	Horizontal	Pipe 2.875" x 0.203" (2.5	217	-9.38	26.82	35.0	Pass
			STD)				38.3 (b)	
Т8	40 - 20	Horizontal	Pipe 2.875" x 0.203" (2.5 STD)	247	-9.94	22.20	44.8	Pass
Т9	20 - 0	Horizontal	Pipe 3.5" x 0.216" (3 STD)	274	-10.52	36.29	29.0	Pass
							43.5 (b)	
T1	180 - 160	Top Girt	Pipe 1.9" x 0.145" (1.5 STD)	4	-0.16	23.80	0.7	Pass
T 1	180 - 160	Inner Bracing	L 2 x 2 x 1/8	37	-0.00	6.84	0.7	Pass
T2	160 - 140	Inner Bracing	L 2 x 2 x 1/8	54	-0.01	5.09	0.8	Pass
Т3	140 - 120	Inner Bracing	L 2 x 2 x 1/8	93	-0.01	3.47	0.9	Pass
T4	120 - 100	Inner Bracing	L 2 x 2 x 1/8	130	-0.01	2.52	1.0	Pass
T5	100 - 80	Inner Bracing	L 2 x 2 x 1/8	171	-0.01	1.99	1.1	Pass
T6	80 - 60	Inner Bracing	L 2.5 x 2.5 x 3/16	196	-0.01	4.49	0.8	Pass
T7	60 - 40	Inner Bracing	L 3 x 3 x 3/16	223	-0.01	6.32	0.9	Pass
T8	40 - 20	Inner Bracing	L 3.5 x 3.5 x 1/4	250	-0.02	10.88	0.7	Pass
Т9	20 - 0	Inner Bracing	L 3.5 x 3.5 x 1/4	277	-0.02	9.08	0.7	Pass
							Summary	
						Leg (T9)	37.9	Pass
						Diagonal (T8)	56.7	Pass
						Horizontal (T6)	59.6	Pass
						Top Girt (T1)	0.7	Pass
						Inner Bracing	1.1	Pass
						(T5) Bolt Checks	41.4	Pass
						RATING =	59.6	Pass

APPENDIX B

BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS

DF PAUL J. FORD & COMPANY 250 E Broad St Ste 600 : Columbus OH 43215

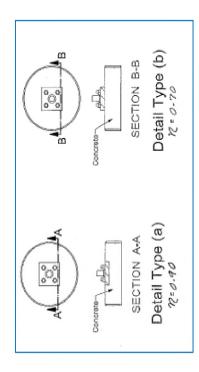
 Page
 1
 of
 1

 By
 JMF
 Date
 1/13/2022

 Project #
 42921-0018.003.8700

250 E Broad St, Ste 600 • Columbus, OH 43215 Phone 614.221.6679 www.pauljford.com

	0
	400
	· • • •
	100
linno	JI C C

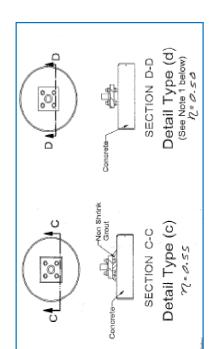

_
D-P-C
+
_
_
1
≥
0
σ
ð
$\tilde{\omega}$
J
g
9
L
2
Ĕ
Ū
\leq
٩,
5
ž
6
_
Ļ
5
ă
đ
2
Self-Support Lower Anchor Rod Capacity - 1
E
S.

		_
		 _
	ession	hear
s	bres	p. S
oad	Som	Som
	0	0

kips	kips
246	
Tension :	Ten.Shear :
kips	kips
283	34

Existing Anchor Rods

0.5	1 in	16	A354 Gr. BC (1/4 to 2-1/2 incl.)	109 ksi	125 ksi	8	0.61 in ²	0.80	969.19 kip	0.362
Anchor Rod Condition (n) :	Anchor Rod ø :	Anchor Rod Quantity :	Anchor Rod Grade :	F _y :	F _u :	Threads per Inch	Net Tensile Area	ϕ_t :	$\phi_t \mathbf{R}_{nt}$:	Anchor Rod Ratio :



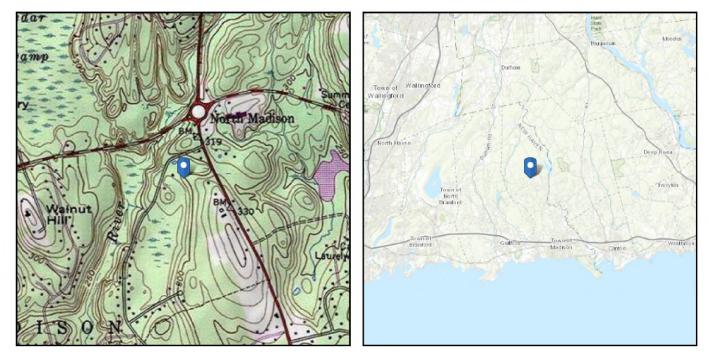
1.00	Γ
Maximum Ratio:	

Code: TIA-G

inches	k-in	
1	22.10	0 76
lar:	Comp. M _u :	

		kips	k-in
0.75	0.90	530.14	167.00
φ ^v :	φ _f :	$\phi_v R_{nv}$:	∳rR _{nm} :

250 E Broad S Phone 614.22	& COMF St, Ste 600 • Colu	J. FORD ANY umbus, OH 43215 w.pauljford.com		Job Number: Site Number: Site Name:	42921-0018.003.87 469141 MADISON CT	00		Page: By: Date:	1 JMF 1/13/2022
		DRIL	LED PIER SO	IL AND ST	EEL ANALY	SIS - TIA-2	22-G		
Factored Base	Reactions from R	ISA				Safety Factors /	Load Factors / Q	D Factors	
Moment, Mu = Shear, Vu = Axial Load, Pu = OTMu =		Comp. (+) 0.0 34.0 283.0 17.0	31.0 -246.0] k-ft] kips] kips] kips] k-ft @ Ground		Tower Type = ACI Code = Seismic Design Cate Reference Standarc Utilize Shear-Frictic Use 1.3 Load Factor Load Factor =	l = n Methodology?	Self-Supported ACI 318-08 B TIA-222-G Yes No 1.00	
Drilled Pier Pai	rameters				_	Soil Lateral Resista	nce =	Safety Factor 2.00	
Diameter = Height Above Gra Depth Below Grac fc' = εc = L / D Ratio = Mat Ftdn. Cap Wi Mat Ftdn. Cap Ler Depth Below Grac	de = dth = ngth =		ft ft ksi			Son Lateral Resistance = Skin Friction = End Bearing = Concrete Wt. Resist Uplift = Load Combinations Checked per TIA-222 1. (0.75) Ult. Skin Friction + (0.75) Ult. En + (0.75) Effective Soil Wt (1.2) Buoyant 2. (0.75) Ult. Skin Friction + (0.9) Buoyant		nd Bearing at Conc. Wt. ≥ Comp.	
Soil Parameter	s								
	oil = esion = rts at?* on Lateral Resistance	2.50 3.33 0 Ground = 4(Cohesion)(Dia)(H) = 8(Cohesion)(Dia)(H)	ft	newer, by Power L using 8CD indepen the recommendati	ine Systems, Inc.). Pe dent of the depth of t	r the methods in PLS- the soil layer. The de c geotechnical report	-Caisson, the soil rea pth of soil to be igno . In the absence of a	ftware 'PLS-Caisson' (actions of cohesive so ored at the top of the any recommendation ored.	ils are calculated drilled pier is based
Steel Paramete	ers					Direct Embed Po	ole Shaft Parame	eters	
Number of Bars = Size = Fy = MOE = Side Clear Cover to Tie Upper Spacing Tie Lower Spacing Upper Tie Spacing	o Ties = o Ties = g = g =	Rebar 26 #9 60 29000	2900/ : :) ksi 3 in 3 in in in 2 in ft Below Grade		Dia @ Grade = Dia @ Depth Below Number of Sides = Thickness = Fy = Backfill Condition = <u>Maximum Capa</u> Maximum Soil Rati Maximum Steel Rat	c <i>ity Ratios</i> o = tio =	110.0% 105.0%	
Define Soil Lay			1 0 H (0			Apply 1.05 Normali	zation =		
Layer	Thickness ft	ngh = Unconfined Com Unit Weight pcf	Cohesion psf	Friction Angle degrees	Soil Type	Ultimate End Bearing psf	Comp. Ult. Skin Friction psf	Tension Ult. Skin Friction psf	Depth ft
1 2	2 8	125 125	0 625	0	Clay Clay		0 313	0 313	2 10
3	4	135 145	6250 8000	0	Clay Clay	36719	3125 5000	3125 5000	14 19
5	5	145	8000	0	Ciay	30715	5000	5000	19
6									
8									
9 10									
11 12									
Soil Results: Ov	verturning				Soil Results: Up	lift & Compression	1		
Depth to COR =		14.78	ft, from Grade		Uplift, Tu =		246.00	0 kips	
Shear, Vu =		34.00	kips		Uplift Capacity, ΦΤ	'n =	534.96		
Resisting Shear, 4 Bending Moment		346.84 519.49	kips k-ft, from COR		UPLIFT RATIC) =	46.0%	ОК	
Resisting Momen			k-ft, from COR		Compression, Cu =	Cn -	283.00		
MOMENT/SI	HEAR RATIO =	9.8%	ОК		Comp. Capacity, Φ COMPRESSIO		1236.02 22.9%	2_кірs ОК	
Steel Results (A	ACI 318-08): Sheai	•							
Minimum Tie Size		#4			Shear, Vu =			0 kips	
Maximum Tie Spa Maximum Shear F		18.05 N/A			Shear, ΦVn =		367.2		
Minimum Tranvei		N/A			SHEAR RATIO	. =	8.4%	ОК	
	ACI 318-08): Mom								
Minimum Steel A Actual Steel Area		13.66 26.00			Axial Load, Pu = Moment, Mu =			4 kips @ 10.75 ft Bel 5 k-ft @ 10.75 ft Belo	
				<i>L</i>	Moment, ØMn =		3112.10		-
Axial, ΦPn (min) = Axial, ΦPn (max)			kips, Where ΦMn = 0 k- kips, Where ΦMn = 0 k-		MOMENT RA	TIO =	9.3%	ОК	


Location

ASCE 7 Hazards Report

Standard: No Address at This

ASCE/SEI 7-10 Risk Category: III Soil Class: D - Stiff Soil

Elevation: 297.61 ft (NAVD 88) 41.356126 Latitude: Longitude: -72.63908

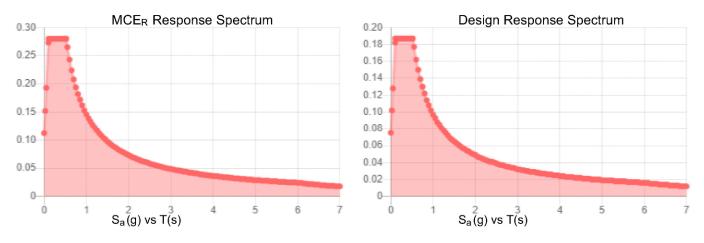
Wind

Results:

Wind Speed:	139 Vmph
10-year MRI	78 Vmph
25-year MRI	88 Vmph
50-year MRI	95 Vmph
100-year MRI	105 Vmph

Date Socressed:

XAGGE08E137-2002 Fig. 26.5-1B and Figs. CC-1-CC-4, and Section 26.5.2, incorporating errata of March 12, 2014


Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 3% probability of exceedance in 50 years (annual exceedance probability = 0.000588, MRI = 1,700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class: Results:	D - Stiff Soil			
Ss :	0.175	S _{DS} :	0.187	
S ₁ :	0.061	S _{D1} :	0.097	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA :	0.089	
S _{MS} :	0.28	PGA M :	0.142	
S _{M1} :	0.146	F _{PGA} :	1.6	
		l _e :	1.25	

Seismic Design Category B

Data Accessed: Date Source:

Wed Oct 13 2021

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:	0.75 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Wed Oct 13 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

STANDARD CONDITIONS FOR FURNISHING OF PROFESSIONAL ENGINEERING SERVICES ON EXISTING STRUCTURES BY PAUL J. FORD AND COMPANY

- 1) Paul J. Ford and Company has not made a field inspection to verify the tower member sizes or the antenna/coax loading. If the existing conditions are not as represented on these drawings, we should be contacted immediately to evaluate the significance of the deviation.
- 2) No allowance was made for any damaged, missing, or rusted members. The analysis of this tower assumes that no physical deterioration has occurred in any of the structural components of the tower and that all the tower members have the same load carrying capacity as the day the tower was erected.
- 3) It is not possible to have all the detailed information to perform a thorough analysis of every structural subcomponent of an existing tower. The structural analysis by Paul J. Ford and Company verifies the adequacy of the main structural members of the tower. Paul J. Ford and Company provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc.
- 4) The structural integrity of the existing tower foundation can only be verified if exact foundation sizes and soil conditions are known. Paul J. Ford and Company will not accept any responsibility for the adequacy of the existing foundations unless the foundation sizes and a soils report are provided.
- 5) This tower has been analyzed according to the minimum design wind loads recommended by the Telecommunications Industry Association Standard ANSI/TIA-222-G. If the owner or local or state agencies require a higher design wind load, Paul J. Ford and Company should be made aware of this requirement.
- 6) The enclosed sketches are a schematic representation of the tower that we have analyzed. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions and for the proper fit and clearance in the field.
- 7) Miscellaneous items such as antenna mounts etc. have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

Maser Consulting Connecticut 1055 Washington Boulevard Stamford, CT 06901 203.324.0800 peter.albano@colliersengineering.com

Antenna Mount Analysis Report with Hardware Upgrades and PMI Requirements

Mount ReAnalysis-VZW

SMART Tool Project #: 10126890 Maser Consulting Connecticut Project #: 21777866A (Rev. 2)

January 11, 2022

Site Information

Site ID: Site Name: Carrier Name: Address: 469141-VZW / MADISON CT MADISON CT Verizon Wireless 864 Opening Hill Rd. Madison, Connecticut 06443 New Haven County 41.356126° -72.639080°

Latitude: Longitude:

Tower Type:

Mount Type:

Structure Information

180-Ft Self Support 15.00-Ft Sector Frame

FUZE ID # 16092583

Analysis Results

Sector Frame: 62.7% Pass w/ Hardware Upgrades*

* Antennas and equipment to be installed in compliance with PMI Requirements of this mount analysis.

<u>***Contractor PMI Requirements:</u> Included at the end of this MA report Available & Submitted via portal at https://pmi.vzwsmart.com For additional questions and support, please reach out to: pmisupport@colliersengineering.com

Report Prepared By: Nathan LaPorte

Executive Summary:

The objective of this report is to determine the capacity of the antenna support mount at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards. Any modification listed under Sources of Information was assumed completed and was included in this analysis.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

Sources of Information:

Document Type	Remarks
Radio Frequency Data Sheet (RFDS)	Verizon RFDS, Site ID: 324276, dated November 24, 2021
Mount Mapping Report	Hudson Design Group, LLC, Site ID: 469141, dated May 3, 2021
Construction Drawings	On Air Engineering, LLC Site Name: Madison CT, dated December 29, 2021
Previous Mount Analysis	Maser Consulting Connecticut Project #: 21777866A, dated November 29, 2021

Analysis Criteria:

Codes and Standards:	ANSI/TIA-222-H	
Wind Parameters:	Basic Wind Speed (Ultimate 3-sec. Gust), V _{ULT} : Ice Wind Speed (3-sec. Gust): Design Ice Thickness: Risk Category: Exposure Category: Topographic Category: Topographic Feature Considered: Topographic Method: Ground Elevation Factor, K _e :	122 mph 50 mph 1.00 in II B 1 N/A N/A 0.989
Seismic Parameters:	Ss: S ₁ :	0.21 g 0.05 g
Maintenance Parameters:	Wind Speed (3-sec. Gust): Maintenance Live Load, Lv: Maintenance Live Load, Lm:	3 mph 250 lbs. 500 lbs.
Analysis Software:	RISA-3D (V17)	

Final Loading Configuration:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status
		6	JMA Wireless	MX06FRO660-03	
		3	Samsung	MT6407-77A	
168.75 170.00		3	Samsung	B2/B66A RRH-BR049	Added
		3	Samsung	B5/B13 RRH-BR04C	
		1	Raycap	RVZDC-6627-PF-48	
		3	CommScope	LNX-6514DS-A1M	Retained

The following equipment has been considered for the analysis of the mounts:

The recent mount mapping reported existing OVP units. It is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required unless replacing an existing OVP.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

Standard Conditions:

- All engineering services are performed on the basis that the information provided to Maser Consulting Connecticut and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation. Any deviation from the loading locations specified in this report shall be communicated to Maser Consulting Connecticut to verify deviation will not adversely impact the analysis.
- 2. Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

- 3. For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped in accordance with the NSTD-446 Standard, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- 4. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.

62.7%

- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Maser Consulting Connecticut is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.
- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

0	Channel, Solid Round, Angle, I	Plate
---	--------------------------------	-------

- HSS (Rectangular)
- o Pipe
- o Threaded Rod
- o Bolts

ASTM A36 (Gr. 36) ASTM 500 (Gr. B-46) ASTM A53 (Gr. B-35) F1554 (Gr. 36) ASTM A325

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Maser Consulting Connecticut.

Analysis Results:

Component	Utilization %	Pass/Fail
Tie Back	4.7%	Pass
Antenna Pipe	24.9%	Pass
Dual Mounted Pipe	18.6%	Pass
Standoff Bar	62.7%	Pass
Standoff Vertical	59.9%	Pass
Standoff Diagonal	27.7%	Pass
Standoff Horizontal	30.0%	Pass
Face Horizontal	20.8%	Pass
Mount Connection	26.0%	Pass

Structure Rating – (Controlling Utilization of all Components)

* Results valid after hardware upgrades noted in the PMI Requirements are installed.

Mount Steel (EPA)a per ANSI/TIA-222-H Section 2.6.11.2:

Ice	Mount Pipes Excluded		Mount Pipes Included	
Thickness (In)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)
0	22.5	14.4	34.9	26.9
0.5	32.8	21.6	50.3	39.1
1	42.6	28.2	65.1	50.7

Notes:

- (EPA)a values listed above may be used in the absence of more precise information

- (EPA)a values in the table above include 1 sector(s).

- Ka factors included in (EPA)a calculations

Requirements:

The existing mounts will be **SUFFICIENT** for the final loading configuration shown in attachment 2 upon the completion of the requirements listed below.

Replace existing mount pipe in position 3 on all sectors (Position 1 being on the left side of mount when looking from behind) with new 84" long P2 1/2 STD mount pipe. Connect to all existing face horizontal members using new crossover plates (VZWSMART-MSK1).

Proposed OVP to be placed on upper right-hand side of the standoff horizontal facing the tower, 48" from the face horizontal connection.

ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other, if required. Separate review fees will apply.

Attachments:

- 1. Contractor Required Post Installation Inspection (PMI) Report Deliverables
- 2. Antenna Placement Diagrams
- 3. Mount Photos
- 4. Mount Mapping Report (for reference only)
- 5. Analysis Calculations
- 6. TIA Adoption and Wind Speed Usage Letter

Mount Desktop – Post Modification Inspection (PMI) Report Requirements

Documents & Photos Required from Contractor – Passing Mount Analysis

Passing Mount Analysis requires a PMI due to a modification in loading. Electronic pdf version of this can be downloaded at <u>https://pmi.vzwsmart.com</u>. For additional questions and support, please reach out to pmisupport@colliersengineering.com

PSLC #: 469141 SMART Project #: 10126890 Fuze Project ID: 16092583

<u>Purpose</u> – to provide SMART Tool structural vendor the proper documentation in order to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the installation was completed in accordance with this Passing Mount Analysis.
- Contractor shall relay any data that can impact the performance of the mount, this includes safety issues.

Base Requirements:

- If installation will cause damage to the structure, the climbing facility, or safety climb if present or any installed system, SMART Tool vendor to be notified prior to install. Any special photos outside of the standard requirements will be indicated on the drawings.
- Provide "as built mount drawings" showing contractor's name, contact information, preparer's signature, and date. Any deviations from the drawings (Proposed modification) shall be shown. NOTE: If loading is different than what is conveyed in the passing mount analysis (MA) contact the SMART Tool vendor immediately.
- Each photo should be time and date stamped
- Photos should be high resolution.
- Contractor shall ensure that the safety climb wire rope is supported and not adversely impacted by the install of the modification components. This may involve the install of wire rope guides, or other items to protect the wire rope. If there is conflict, contact the SMART Tool engineer for recommendations.
- The PMI can be accessed at the following portal: *https://pmi.vzwsmart.com*

Photo Requirements:

- Photos taken at ground level
 - Photo of Gate Signs showing the tower owner, site name, and number.
 - o Overall tower structure after installation.
 - Photos of the mount after installation; if the mounts are at different rad elevations, pictures must be provided for all elevations that equipment was installed.
- Photos taken at Mount Elevation
 - Photos showing the safety climb wire rope above and below the mount prior to installation.
 - Photos showing the climbing facility and safety climb if present.
 - Photos showing each individual sector after installation. Each entire sector shall be in one photo to show the interconnection of members.

- These photos shall also certify that the placement and geometry of the equipment on the mount is as depicted in the antenna placement diagram in this form.
- Photos that show the model number of each antenna and piece of equipment installed per sector.

Antenna & equipment placement and Geometry Confirmation:

• The contractor shall certify that the antenna & equipment placement and geometry is in accordance with the sketch and table as included in the mount analysis and noted below.

□ The contractor certifies that the photos support and the equipment on the mount is as depicted on the sketch and table included in this form and with the mount analysis provided.

OR

□ The contractor notes that the equipment on the mount is not in accordance with the sketch and has noted the differences below and provided photo documentation of any alterations.

<u>Special Instructions / Validation as required from the MA or any other information the contractor</u> deems necessary to share that was identified:

lssue:

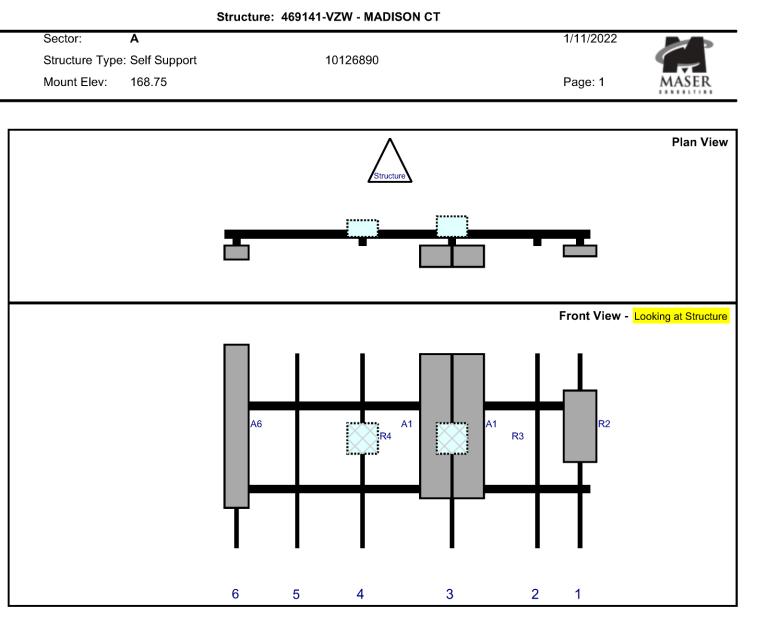
Replace existing mount pipe in position 3 on all sectors (Position 1 being on the left side of mount when looking from behind) with new 84" long P2 1/2 STD mount pipe. Connect to all existing face horizontal members using new crossover plates (VZWSMART-MSK1).

Proposed OVP to be placed on upper right-hand side of the standoff horizontal facing the tower, 48" from the face horizontal connection.

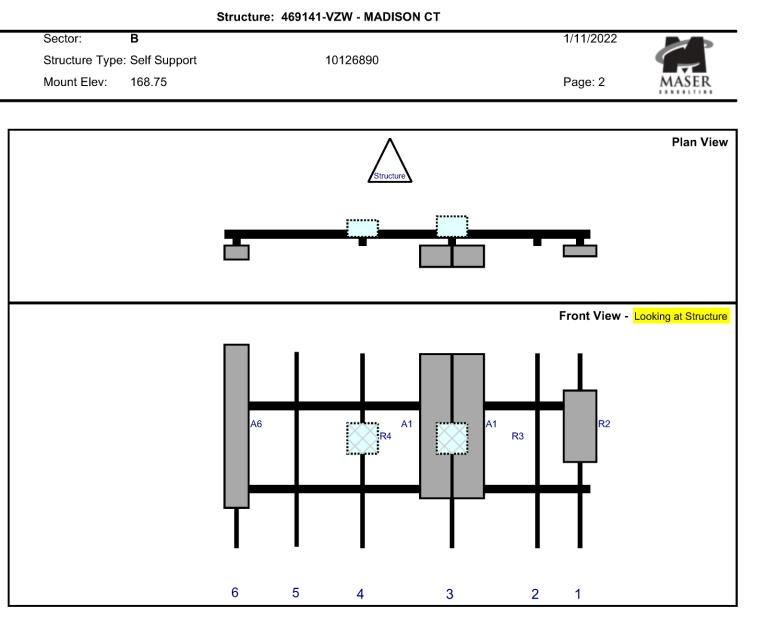
Response:

Special Instruction Confirmation:

 \Box The contractor has read and acknowledges the above special instructions.


□ All hardware listed in the Special Instructions above (if applicable) has been properly installed, and the existing hardware was inspected.

□ The material utilized was as specified in the SMART Tool engineering vendor Special Instructions above (if applicable) and included in the material certification folder is a packing list or invoice for these materials.


OR

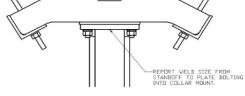
□ The material utilized was approved by a SMART Tool engineering vendor as an "equivalent" and this approval is included as part of the contractor submission.


Comments:					
Contractor certifies that	the climbing facility / safety climb was not damaged prior to starting work:				
🗆 Yes 🛛	No				
Contractor certifies no n	ew damage created during the current installation:				
	N -				
□ Yes □	NO				
Contractor to certify the	condition of the safety climb and verify no damage when leaving the site:				
Safety Climb in	Good Condition 🛛 Safety Climb Damaged				
· ····					
Certifying Individual:					
Company:					
Employee Name:					
Contact Phone:					
Email:					
Date:					

	Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
MT6407-77A	35.1	16.1	175	1	а	Front	36	0	Added	
RVZDC-6627-PF-48	29.5	16.5	175	1	а	Front	36	0	Added	
MX06FRO660-03	71.3	15.4	112	3	а	Front	36	8	Added	
MX06FRO660-03	71.3	15.4	112	3	b	Front	36	-8	Added	
B2/B66A RRH-BR049 (RFV01U-D1A)	15	15	112	3	а	Behind	42	0	Added	
B5/B13 RRH-BR04C (RFV01U-D2A)	15	15	68	4	а	Behind	42	0	Added	
LNX-6514DS-A1M	80.6	11.9	6	6	а	Front	36	0	Retained	05/04/2021
RVZDC-6627-PF-48	29.5	16.5		Memb	er				Added	
W R W B B	AT6407-77A RVZDC-6627-PF-48 AX06FRO660-03 AX06FRO660-03 B2/B66A RRH-BR049 (RFV01U-D1A) B5/B13 RRH-BR04C (RFV01U-D2A) NX-6514DS-A1M	Model (in) AT6407-77A 35.1 RVZDC-6627-PF-48 29.5 AX06FRO660-03 71.3 AX06FRO660-03 71.3 AX06FRO660-03 71.3 B2/B66A RRH-BR049 (RFV01U-D1A) 15 B5/B13 RRH-BR04C (RFV01U-D2A) 15 NX-6514DS-A1M 80.6	Model (in) (in) ATG6407-77A 35.1 16.1 RVZDC-6627-PF-48 29.5 16.5 AX06FRO660-03 71.3 15.4 AX06FRO660-03 71.3 15.4 AX06FRO660-03 71.3 15.4 B2/B66A RRH-BR049 (RFV01U-D1A) 15 15 B5/B13 RRH-BR04C (RFV01U-D2A) 15 15 NX-6514DS-A1M 80.6 11.9	Model (in) Frm L. MT6407-77A 35.1 16.1 175 RVZDC-6627-PF-48 29.5 16.5 175 MX06FRO660-03 71.3 15.4 112 MX06FRO660-03 71.3 15.4 112 MX06FRO660-03 71.3 15.4 112 MX06FRO660-03 71.3 15.4 112 MX06FRO660-03 71.5 15 112 MX06FRO660-03 15 15 112 MX06FRO660-03 15 5 68 MX06FRO660-03 15 15 68 MX06FRO660-03 11.9 6	Model (in) Frm L. # MT6407-77A 35.1 16.1 175 1 RVZDC-6627-PF-48 29.5 16.5 175 1 MX06FRO660-03 71.3 15.4 112 3 MX06FRO660-03 15 15 68 4 MX06FRO660-03 15 15 68 4 NX-6514DS-A1M 80.6 11.9 6 6	Model (in) Frm L. # Pos V ATG407-77A 35.1 16.1 175 1 a RVZDC-6627-PF-48 29.5 16.5 175 1 a AX06FRO660-03 71.3 15.4 112 3 a AX06FRO660-03 71.3 15.4 112 3 b 32/B66A RRH-BR049 (RFV01U-D1A) 15 15 112 3 a 35/B13 RRH-BR04C (RFV01U-D2A) 15 15 68 4 a NX-6514DS-A1M 80.6 11.9 6 6 a	Model (in) Frm L. # Pos V Pos ATG407-77A 35.1 16.1 175 1 a Front RVZDC-6627-PF-48 29.5 16.5 175 1 a Front AX06FRO660-03 71.3 15.4 112 3 a Front AX06FRO660-03 71.3 15.4 112 3 b Front AX06FRO660-03 71.3 15.4 112 3 a Behind B2/B66A RRH-BR049 (RFV01U-D1A) 15 15 112 3 a Behind NX-6514DS-A1M 80.6 11.9 6 6 a Front	Model (in) Frm L. # Pos V Pos Frm T. ATG407-77A 35.1 16.1 175 1 a Front 36 RVZDC-6627-PF-48 29.5 16.5 175 1 a Front 36 AX06FRO660-03 71.3 15.4 112 3 a Front 36 AX06FRO660-03 71.3 15.4 112 3 a Front 36 AX06FRO660-03 71.3 15.4 112 3 a Behind 42 B2/B66A RRH-BR049 (RFV01U-D1A) 15 15 112 3 a Behind 42 B5/B13 RRH-BR04C (RFV01U-D2A) 15 15 68 4 a Behind 42 NX-6514DS-A1M 80.6 11.9 6 6 a Front 36	Model (in) Frm L. # Pos V Pos Frm T. H Off MT6407-77A 35.1 16.1 175 1 a Front 36 0 RVZDC-6627-PF-48 29.5 16.5 175 1 a Front 36 0 MX06FR0660-03 71.3 15.4 112 3 a Front 36 8 MX06FR0660-03 71.3 15.4 112 3 b Front 36 8 MX06FR0660-03 71.3 15.4 112 3 a Behind 42 0 MX06FR0660-03 15 15 112 3 a Behind 42 0 MX06FR0660-03 15 15 68 4 a Behind 42 0 MX6513 RRH-BR049 (RFV01U-D2A) 15 15 68 4 a Behind 42 0 NX-6514DS-A1M 80.6 11.9 6 6 <td>Model (in) Frm L. # Pos V Pos Frm T. H Off Status ATG407-77A 35.1 16.1 175 1 a Front 36 0 Added AVZDC-6627-PF-48 29.5 16.5 175 1 a Front 36 0 Added AX06FR0660-03 71.3 15.4 112 3 a Front 36 8 Added AX06FR0660-03 71.3 15.4 112 3 a Front 36 8 Added AX06FR0660-03 71.3 15.4 112 3 a Behind 42 0 Added B2/B66A RRH-BR049 (RFV01U-D1A) 15 15 112 3 a Behind 42 0 Added Added B5/B13 RRH-BR04C (RFV01U-D2A) 15 15 68 4 a Behind 42 0 Added NX-6514DS-A1M 80.6 11.9 6 6 a Front 36 0 Retained</td>	Model (in) Frm L. # Pos V Pos Frm T. H Off Status ATG407-77A 35.1 16.1 175 1 a Front 36 0 Added AVZDC-6627-PF-48 29.5 16.5 175 1 a Front 36 0 Added AX06FR0660-03 71.3 15.4 112 3 a Front 36 8 Added AX06FR0660-03 71.3 15.4 112 3 a Front 36 8 Added AX06FR0660-03 71.3 15.4 112 3 a Behind 42 0 Added B2/B66A RRH-BR049 (RFV01U-D1A) 15 15 112 3 a Behind 42 0 Added Added B5/B13 RRH-BR04C (RFV01U-D2A) 15 15 68 4 a Behind 42 0 Added NX-6514DS-A1M 80.6 11.9 6 6 a Front 36 0 Retained

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
R2	MT6407-77A	35.1	16.1	175	1	а	Front	36	0	Added	
A1	MX06FRO660-03	71.3	15.4	112	3	а	Front	36	8	Added	
A1	MX06FRO660-03	71.3	15.4	112	3	b	Front	36	-8	Added	
R3	B2/B66A RRH-BR049 (RFV01U-D1A)	15	15	112	3	а	Behind	42	0	Added	
R4	B5/B13 RRH-BR04C (RFV01U-D2A)	15	15	68	4	а	Behind	42	0	Added	
A6	LNX-6514DS-A1M	80.6	11.9	6	6	а	Front	36	0	Retained	05/04/2021

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
R2	MT6407-77A	35.1	16.1	175	1	а	Front	36	0	Added	
A1	MX06FRO660-03	71.3	15.4	112	3	а	Front	36	8	Added	
A1	MX06FRO660-03	71.3	15.4	112	3	b	Front	36	-8	Added	
R3	B2/B66A RRH-BR049 (RFV01U-D1A)	15	15	112	3	а	Behind	42	0	Added	
R4	B5/B13 RRH-BR04C (RFV01U-D2A)	15	15	68	4	а	Behind	42	0	Added	
A6	LNX-6514DS-A1M	80.6	11.9	6	6	а	Front	36	0	Retained	05/04/2021



		Ante	enna Mount Mapping	Form (PATEN	T PENI		Updated on 3-3	FCC #
MASER	Tower Owner:	AMERICA	N TOWER CO.			Mapping I	Date:	5/3/2	2021
CONSULTING P.A.	Site Name:	MADISON	ICT			Tower Typ	pe:	Self S	upport
	Site Number or ID:	469141				Tower Hei	ight (Ft.):	18	30
	Mapping Contractor:	HUDSON	DESIGN GROUP, LLC			Mount Ele	vation (Ft.):	172	.41
	rohibited except by express written permission of antying the usability of the safety climb as it must b					ork shall be (compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA	and other safe	ety.
				Mount Pip	e Configura	tion and Ge	ometries [Unit = Inches]		
		Sector / Position	Mount Pipe Size & Length	Vertical Offset Dimension "u"	Horizontal Offset "C1, C2, C3, etc."	Sector / Position	Mount Pipe Size & Length	Vertical Offset Dimension "u"	Horizontal Offset "C1, C2, C3, etc."
		A1	2" STD PIPE X 96" LONG	67.00	6.00	C1	2" STD PIPE X 96" LONG	67.00	6.00

At 2 2500 PHX 861 0066 5200 28.00 C 2750 PHX 861 0066 57.00 28.00 100 100.00			A1	2" STD PIPE X 96" LONG	ì	67.00	6.00	C1	2" STD PIP	E X 96" LONG		67.00	6.00	
Action 10 12 con 6 2 25 con pre x 67 (100c) 57 con 13 con Action 12 12 con 6 2 25 con pre x 67 (100c) 12 con 6 2 25 con pre x 67 (100c) 12 con 6 2 25 con pre x 67 (100c) 12 con 6 2 25 con pre x 67 (100c) 12 con 6 2 25 con pre x 67 (100c) 12 con 6 2 25 con pre x 67 (100c) 12 con 6 2 25 con pre x 67 (100c) 12 con 6 2 25 con <			A2											
Action 2 50 PF 85 90 1006 0 200 3 500 C5 2" 50 PF 85 90 1000 47.00 32.00 32.00 32.00 32.00 47.00 32.00 32.00 32.00 47.00 32.00 32.00 47.00 32.00 32.00 47.00 32.00 32.00 47.00 32.00 32.00 47.00 32.00 32.00 47.00 32.00														
Add 2 Store how X 96* 1096 67.00 17.00 67.00 17.00														
Place hadd the addeneration from the "Sackda" tab with dimensions and members here. Bit 2*35 PPR 545° (1086 57.00 kg 7.20 kg 0.20 kg 0.2														
"Sketche" tab with diversions and members here. III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII									2" STD PIP	E X 96" LONG		67.00	175.00	
Bit 2 (37) PIPE Visit (1) No. Critical Crital Crital Critical														
SECTOR # SECTOR # SECTOR # SECTOR # SECTOR # SECTOR # Mask #	"Sketches" tab with dimensions and members here	L.												
SECTOR Price 67:00 13:00 0.5 Blance Between bottom rail and moutt 1. Sected to (find 0). Unit inches. See "Mount Bev Ref" tab (Arf 4: 10 fi. 1). 17:00 75:														
SECTOR # Final Additional of the sector is the														
Distance between bottom alland mount (Levisation (Elm d), Unit's incluse. See "Mount Elevisation (Elm d), Unit's incluse. See "Mount Elevisation (Elm d), Unit's incluses. See "Mount Elevisation (Elevisation (El														
Bitstance from top of bottom support rail to lowest if got ant./eqpt. of Carrier above. (MA JF > 0.17.): Distance from top of bottom support rail to lowest if got ant./eqpt. of Carrier above. (MA JF > 0.17.): Piese enter additional infomation or comments below. SECTOR +			B6											
SECTOR B Enter antenna model. If not labeled, enter "Unknown". Mounting Locations [Units are inches and degree]. Photos of antenna SECTOR B Enter antenna model. If not labeled, enter "Unknown". Mounting Locations [Units are inches and degree]. Photos of antenna SECTOR A Enter antenna model. If not labeled, enter "Unknown". Mounting Locations [Units are inches and degree]. Photos of antennas 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9													17.50	
Please enter additional infomation or comments below. Please enter additional infomation or comments below. Tower Face With at Mount Elev. (1): 8.8.3 Tower face With at Mount Elev. (1): 3.5 For Larrow/Platforms on monopoles, report the weld size from the main standed for the plate boltrg into the collar mount. Mount Elev. (1): Mount Elev. (1): Mount Elev. (1): Mount Elev. (1): Sector All the collar mount. Sector All the fact anterna model. If not labeled, enter "Unknown". Mount Elev. (1):				Distan	ce from t	op of botto	m support	rail to low	est tip of a	nt./eqpt. of Carrier a	bove. (N/A	if > 10 ft.) :		
SECTOR B SECTOR C Tower Face Width at Mount Elev. (h.): 8.83 Tower Leg Size or Pole Shaft Diameter at Mount Elev. (m.): 3.5 SECTOR B Face Midth at Mount Elev. (h.): 8.83 Tower Leg Size or Pole Shaft Diameter at Mount Elev. (m.): 3.5 FOT T-Xms/Platforms on monopoles, report the weld size from the main standoff to the glate bolting into the collar mount. Mounting Locations Photos of antennas SECTOR B Lip A Lip A Antenna Models if Width Depth Height Cost Cost Antennas Photos of antennas SECTOR A Lip A Lip A Antenna Models if Width Depth Height Cost Distance "b, up, bootoding" Antennas Photos of antennas SECTOR A Lip A Lip A Lip A Lip A Lip A Antennas Photos of antennas Mounting Locations Photos of antennas SECTOR A Lip A Lip A Lip A Mount Elev. (h.): SEctor A Mounting Locations Photos of antennas Matus SINHH-10658 12.00 7.00 73.00 173.868 32.00 8.00 40.00 5.60<				Distanc	e from to	op of botto	m support r	ail to high	est tip of a	nt./eqpt. of Carrier b	elow. (N/A	if > 10 ft.) :		
SECTOR B Mounting Locations Photos of antennas SECTOR B Vertical Distances"bas, bas, bas, dimentas Mounting Locations Photos of antennas SECTOR B Coast Antenna Models II (II) Mounting Locations Photos of antennas SECTOR B Coast Antenna Models II (II) Depth Height Coast Antenna Models II (III) Mounting Locations Photos of antennas SECTOR B Coast Antenna Models II (III) Depth Height Coast Antenna Models II (III) Mounting Locations Photos of antennas SECTOR B Coast Antenna Models II (IIII) Depth Height Coast Antenna Models II (IIII) Mounting Locations Photos of antennas Antenna Models II (IIIIIII) Depth Height Coast Antenna Models II (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII						Please ent	er additiona	al infomati	on or com	ments below.				
SECTOR B Mounting Locations Photos of antennas SECTOR B Vertical Distances"bas, bas, bas, dimentas Mounting Locations Photos of antennas SECTOR B Coast Antenna Models II (II) Mounting Locations Photos of antennas SECTOR B Coast Antenna Models II (II) Depth Height Coast Antenna Models II (III) Mounting Locations Photos of antennas SECTOR B Coast Antenna Models II (III) Depth Height Coast Antenna Models II (III) Mounting Locations Photos of antennas SECTOR B Coast Antenna Models II (IIII) Depth Height Coast Antenna Models II (IIII) Mounting Locations Photos of antennas Antenna Models II (IIIIIII) Depth Height Coast Antenna Models II (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII														
SECTOR B Mounting Locations Photos of antennas SECTOR B Vertical Distances"bas, bas, bas, dimentas Mounting Locations Photos of antennas SECTOR B Coast Antenna Models II (II) Mounting Locations Photos of antennas SECTOR B Coast Antenna Models II (II) Depth Height Coast Antenna Models II (III) Mounting Locations Photos of antennas SECTOR B Coast Antenna Models II (III) Depth Height Coast Antenna Models II (III) Mounting Locations Photos of antennas SECTOR B Coast Antenna Models II (IIII) Depth Height Coast Antenna Models II (IIII) Mounting Locations Photos of antennas Antenna Models II (IIIIIII) Depth Height Coast Antenna Models II (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII														
SECTOR B Mounting Locations Photos of antennas SECTOR B Mounting Locations Photos of antennas SECTOR B Mounting Locations Photos of antennas SECTOR B Coas Antenna Models II Width Depth Height (n.) Mounting Locations Photos of antennas SECTOR / Coas Antenna Models II Width Depth Height (n.) Mounting Locations Photos of antennas SECTOR / Coas Antenna Models II Width Depth Height (n.) Mounting Locations Photos of antennas Antenna Models II Width Depth Height (n.) Or 70 Antenna Models II Width Depth Height (n.) Mounting Locations <th colspan<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td>													
SECTOR B FACE B SECTOR C International content of the sector A Pintos of antenna LED B LED C Enter antenna model. If not labeled, enter "Unknown". Runnita contents and degrees) Pintos of antenna SECTOR A LED C Mathinal contents Mathinal contents Mathinal contents Antenna Models if (in.) Unit are inchean addregrees) Antenna addregrees) Antenna addregrees) Antenna addregrees) Antenna addregrees) Antenna addregrees)<													3.5	
Image: constraints Antenna Constraints Mounting Locations Photos of antenna Image: constraints Image: co	Z X		For T-Arms	s/Platforms on monopole	es, report	the weld siz	e from the n	nain stando	ff to the pl	ate bolting into the col	lar mount.			
Image: constraints Antenna Constraints Mounting Locations Photos of antenna Image: constraints Image: co														
Image: constraints Antenna Constraints Mounting Locations Photos of antenna Image: constraints Image: co	SECTOR B 🧹 🚺 SECTOR C												Dhataa	
LG B LG C B Antenna Models if With Depth Height Coax Antenna Models if Muth Interna Models if Muth				Enter antenn	a model.	If not label	ed, enter "I	Jnknown"			-			
Barbon Antenna Models if Wildth Depth Heighth Size and Burger Antenna Ormer burger Antenna Photo Degrees SECTOR A LEO A LEO A Antenna Models if Wildth Depth Heighth Size and Durger Contract Sharbs, burger Antenna Photo Degrees Antenna Photo Degrees Antenna Photo Degrees Antenna Photo Degrees Antenna Photo Degrees Photo Degrees Photo Degrees Antenna Photo Degrees Antenna Photo Degrees Photo Degre	FACE B									[Units are incl	nes and deg	grees]	antennas	
Barbon Antenna Models if Wildth Depth Heighth Size and Burger Antenna Ormer burger Antenna Photo Degrees SECTOR A LEO A LEO A Antenna Models if Wildth Depth Heighth Size and Durger Contract Sharbs, burger Antenna Photo Degrees Antenna Photo Degrees Antenna Photo Degrees Antenna Photo Degrees Antenna Photo Degrees Photo Degrees Photo Degrees Antenna Photo Degrees Antenna Photo Degrees Photo Degre														
SECTOR A LEG A Image: Constraint of the sector a Sector A Image: Constraint of the sector a Image: Consector a Image: Constrainton a <td>LEG B</td> <td></td> <td>ms</td> <td></td> <td></td> <td></td> <td></td> <td>Coax</td> <td>Antonna</td> <td>Vertical</td> <td></td> <td>Antonna</td> <td></td>	LEG B		ms					Coax	Antonna	Vertical		Antonna		
SECTOR A LEG A Image: Constraint of the sector a Sector A Image: Constraint of the sector a Image: Consector a Image: Constrainton a <td>1 FR 0 1</td> <td></td> <td>Ite</td> <td>Antenna Models if</td> <td>Width</td> <td>Depth</td> <td>Height</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Photo</td>	1 FR 0 1		Ite	Antenna Models if	Width	Depth	Height						Photo	
SECTOR A LEG A Image: Constraint of the sector a Sector A Image: Constraint of the sector a Image: Consector a Image: Constrainton a <td>IF I I I</td> <td></td> <td>ts.</td> <td>Known</td> <td>(in.)</td> <td>(in.)</td> <td>(in.)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Numbers</td>	IF I I I		ts.	Known	(in.)	(in.)	(in.)						Numbers	
SECTOR A LEG A Antua Antua I.2.00 7.00 73.00 173.868 32.00 8.00 40.00 5,60 Antua Antua I.2.00 7.00 73.00 173.868 32.00 8.00 40.00 5,60 Antua I.2.00 7.00 5.50 36.00 173.952 21.00 -7.00 5.60 Antua BXA-70063/6CF 11.00 5.00 71.00 173.035 32.00 8.00 40.00 6,61 Antua BXA-70063/6CF 11.00 5.00 71.00 173.868 32.00 8.00 40.00 7,62 Antua Antua I.2.00 7.00 73.00 173.868 32.00 8.00 40.00 7,62 Antua Antua I.2.00 7.00 73.00 173.868 32.00 8.00 40.00 7,62 Antua Antua I.2.00 7.00 73.00 173.868 32.00 8.00 40.00 7,62 Antua B13 RRH 4X30 12.00 7.00 73.00 173.035 32.00			Ar					QUY	inte (r.c.)	osa, orb (menes)	behind)	(DeBrees)		
SECTOR A LEG A Antua Antua I.2.00 7.00 73.00 173.868 32.00 8.00 40.00 5,60 Antua Antua I.2.00 7.00 73.00 173.868 32.00 8.00 40.00 5,60 Antua I.2.00 7.00 5.50 36.00 173.952 21.00 -7.00 5.60 Antua BXA-70063/6CF 11.00 5.00 71.00 173.035 32.00 8.00 40.00 6,61 Antua BXA-70063/6CF 11.00 5.00 71.00 173.868 32.00 8.00 40.00 7,62 Antua Antua I.2.00 7.00 73.00 173.868 32.00 8.00 40.00 7,62 Antua Antua I.2.00 7.00 73.00 173.868 32.00 8.00 40.00 7,62 Antua Antua I.2.00 7.00 73.00 173.868 32.00 8.00 40.00 7,62 Antua B13 RRH 4X30 12.00 7.00 73.00 173.035 32.00								Sector A						
SECTOR A LEG A Image: Ant_best of the sector of the s			Antia											
Antic Interview Antic Interview Interview <t< td=""><td>SECTOR A- LEG A</td><td></td><td></td><td></td><td>40.00</td><td>= 00</td><td>70.00</td><td></td><td>170.000</td><td></td><td></td><td>10.00</td><td></td></t<>	SECTOR A- LEG A				40.00	= 00	70.00		170.000			10.00		
Antza B4 RRH 4X45 11.00 5.50 36.00 173.952 21.00 -7.00 5.60 Antza B4 RRH 4X45 11.00 5.00 71.00 173.952 21.00 -7.00 5.60 Antza B4 RRH 4X45 11.00 5.00 71.00 173.952 21.00 -7.00 5.60 Antza Antza Image: Antza Antza Image: Antza				SBNHH-ID928	12.00	7.00	73.00		1/3.868	32.00	8.00	40.00	5,60	
Antis Antis <td< td=""><td>φ</td><td>1</td><td>Ant_{1c}</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	φ	1	Ant _{1c}											
Antis Antis <td< td=""><td></td><td></td><td>Ant_{2a}</td><td>B4 RRH 4X45</td><td>11.00</td><td>5.50</td><td>36.00</td><td></td><td>173.952</td><td>21.00</td><td>-7.00</td><td></td><td>5,60</td></td<>			Ant _{2a}	B4 RRH 4X45	11.00	5.50	36.00		173.952	21.00	-7.00		5,60	
Antx ntx		<u> </u>	Antas	BXA-70063/6CF	11.00	5.00	71.00		173.035	32.00	8.00	40.00	6.61	
Anti- B13 RH 4X30 12.00 7.00 73.00 173.035 32.00 8.00 40.00 7,62 Anti- B13 RH 4X30 12.00 7.00 73.00 173.035 32.00 8.00 40.00 7,62 Anti- Anti- SBNHH-1D65B 12.00 7.00 73.00 173.035 32.00 8.00 40.00 7,62 Anti- Anti- Anti- Anti- Inti- Inti-														
Antise B13 RRH 4X30 12.00 7.50 20.50 174.868 10.00 -7.00 7.62 Antise Antise Antise B13 RRH 4X30 12.00 7.00 73.00 173.035 32.00 8.00 40.00 7,62 Antise Antise B13 RRH 4X30 12.00 7.00 73.00 173.035 32.00 8.00 40.00 7,62 Antise Antise B13 RRH 4X30 12.00 7.00 73.00 173.035 32.00 8.00 40.00 7,62 Antise Antise B13 RRH 4X30 12.00 7.00 73.00 173.035 32.00 8.00 40.00 7,62 <						-								
Antis B13 RRH 4X30 12.00 7.50 20.50 174.868 10.00 -7.00 7,62 Antis Antis B13 RRH 4X30 12.00 7.00 73.00 173.035 32.00 8.00 40.00 7,62 Antis Antis B13 RRH 4X30 12.00 7.00 73.00 173.035 32.00 8.00 40.00 7,63 Antis Antis B13 RRH 4X30 12.00 7.00 73.00 173.035 32.00 8.00 40.00 7,63 Antis Antis B13 RRH 4X30 I.00			Ant _{3a}											
Antise B13 RRH 4X30 12.00 7.50 20.50 174.868 10.00 -7.00 Model 7,62 Antise Antise Antise B13 RRH 4X30 12.00 7.00 73.00 173.035 32.00 8.00 40.00 7,62 Antise Antise SBNH-1D65B 12.00 7.00 73.00 173.035 32.00 8.00 40.00 7,62 Antise Antise Antise Antise Interviewed	日 Antio 1 日 Antzo 1 日 Antzo 1 日 Antzo 1 日 Antio	Antsa 1	Ant _{3b}	SBNHH-1D65B	12.00	7.00	73.00		173.868	32.00	8.00	40.00	7,62	
Anten Intervent			Ant _{3c}											
Ante Ante SBNHH-1D65B 12.00 7.00 73.00 173.035 32.00 8.00 40.00 7,63 Ante An	Antib 🔄 Antzb 😤 Antab 😤 Antab :	Antsb	Ant _{4a}	B13 RRH 4X30	12.00	7.50	20.50		174.868	10.00	-7.00		7,62	
Anternal layout (looking Out From Tower) Anton Anton Image: Constraint of the co												40.00		
Ante Ante Image: Constraint of the stand			-	201411-10020	12.00	7.00	73.00		113.033	52.00	0.00	40.00	7,03	
Antre Antse Antse <td< td=""><td></td><td></td><td>Ant_{4c}</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			Ant _{4c}											
Antre			Ant _{5a}								11			
Antre			Antsb								0			
Antre Ante Image:														
C1 Antice Antice Antice Antice Standoff Antice						-								
C2 Ant on Standoff Ant on Tower Ant on T	Antic Antze Antse Ante	Antsc												
C3 Standoff Image: C3 Image: C3 <td>C2</td> <td></td>	C2													
C4 Anton Anton Anton Anton Anton Anton Image: C5 Image: C5 <td>C3</td> <td></td>	C3													
Antenna Layout (Looking Out From Tower)														
Antenna Layout (Looking Out From Tower)	C5													
Antenna Lavout (Looking Out From Tower)	E.													
Iower	Antenna Layout (Looking Out From Towe	er)												
			lower											

Mou	unt Azimuth (Degree)	Tower Leg Azimuth (Degr	ee)						Sector B	i i				
	for Each Sector	for Each Sector		Ant _{1a}										
Sector A:	40.00 Deg Leg A	0.00	Deg	Ant _{1b}	SBNHH-1D65B	12.00	7.00	73.00		173.868	32.00	8.00	170.00	9,64
Sector B:	170.00 Deg Leg B		Deg	Ant _{1c}										
Sector C:	280.00 Deg Leg C	240.00	0	Ant _{2a}	B4 RRH 4X45	11.00	5.50	36.00		173.952	21.00	-7.00		9,64
Sector D:	Deg Leg D	:	0	Ant _{zb}	BXA-70063/6CF	11.00	5.00	71.00		173.035	32.00	8.00	170.00	10,65
		cility Information		Ant _{2c}										
Location:	120.00 Deg	Sector B		Ant _{3a}										
Climbing	Corrosion Type:	Minor corrosion observed.		Ant _{3b}	SBNHH-1D65B	12.00	7.00	73.00		173.868	32.00	8.00	170.00	11,66
Facility	Access:	Climbing path was unobstructed		Ant _{3c}		12.00	7.50	20.50		174.000	10.00	7.00		11.00
	Condition:	Good condition.		Ant _{4a}	B13 RRH 4X30	12.00 12.00	7.50 7.00	20.50 73.00		174.868 173.035	10.00	-7.00	170.00	11,66 12,67
				Ant _{4b} Ant _{4c}	SBNHH-1D65B	12.00	7.00	75.00		175.055	32.00	8.00	170.00	12,67
				Ant _{5a}										
				Ant _{5b}										
				Antsc										
				Ant on										
				tandoff										
				Ant on tandoff										
	a a a a a a	1	4	Ant on										
Plea	ase insert a photo of the m	ount centerline measurement he		Tower										
				Ant on Tower										
				. ower					Sector C					
				Ant_{1a}										
				Ant _{1b}	SBNHH-1D65B	12.00	7.00	73.00		173.868	32.00	8.00	280.00	18,68
				Ant _{1c}										
				Ant _{2a}	B4 RRH 4X45	11.00	5.50	36.00		173.952	21.00	-7.00		18,68
				Ant _{zb}	BXA-70063/6CF	11.00	5.00	71.00		173.035	32.00	8.00	280.00	19,69
				Ant _{zc}										
		0		Ant _{3a} Ant _{3b}	SBNHH-1D65B	12.00	7.00	73.00		173.868	32.00	8.00	280.00	20,69
[Ant _{3c}	5514111-12055	12.00	7.00	75.00		175.000	32.00	0.00	200.00	20,05
				Ant _{4a}	B13 RRH 4X30	12.00	7.50	20.50		174.868	10.00	-7.00		20,69
1	┰╴╴╴╴╴┎╶║╴┠╿╟╺╸	TIP OF EQUIPMENT		Ant _{4b}	SBNHH-1D65B	12.00	7.00	73.00		173.035	32.00	8.00	280.00	20,69
				Ant _{4c}										
Γ		DISTANCE FROM TO PLATORM MEMORY OF ANT/DDT. OF (N/A IF > 10 FT)	TO LOWEST TIP	Ant _{5a}										
<u> </u>		(N/A IF > 10 FT.)		Antsb										
				Ant _{5c}										
EXETING PLATFORM-		USTANCE FROM TO PLATORM MEMORY OF ANT/COPT. OF (N/A IF > 10 FL)	TO HIGHEST TIP CARRIER BELOW.	Ant on tandoff										
	بالالم م			Ant on										
				tandoff										
				Ant on Tower										
1				Ant on										
			1	Tower					factor D					
L		r"		Ant _{1a}					Sector D					
		1		Ant _{1b}										
]				Ant _{1c}										
e	┍═╸╷═╬			Ant _{2a}										
5				Ant _{2b}										
-		DISTANCE FROM 1	OP OF BOTTOM	Ant _{zc}										
		DISTANCE FROM 1 Suprement RALL TO ANT/SEPT. OF C (N/A IF > 10 FT	ARRIER ABOVE.	Ant _{3a}										
4				Ant _{3b}										
-				Ant _{3c}										
EXISTING SECTOR FRA		DISTANCE FROM T SUPPORT RAIL TO ANT_EOST. OF C (N/A IF > 10 FT	HIGHEST TIP OF	Ant _{4a} Ant _{4b}										
				Ant _{4c}										
L.	ן הן א	l 🗂		Ant _{5a}										
c				Ant _{5b}										
		· La · · · · · · ·		Ant _{5c}										
Ļ		_l ↓		Ant on										
For T A	/Distforms	cord the wold in free the set		tandoff										
		cord the weld size from the main sta llar. See below for reference.		Ant on tandoff										
11		<u> </u>	Ļ	Ant on			· · · · · · · · · · · · · · · · · · ·					1		
//				Tower Ant on										
T				Ant on Tower										
//														

	Observed Safety and Structural Issues During the Mount Mapping	
Issue #	Description of Issue	Photo #
1	Miner corrosion observed	65
2		
3		
4		
5		
6		
7		
8		

		Obse	rved Obstructions to Tower Lighting System							
If the tower lighting system is being obst	ructed by the carrier's equipment (for exam	ole: a light ne	ested by the antennas), please provide photos and fill in the information below.	Photo #						
Description of Obstruction:										
Type of Light: Photo # Additional Comments:										
Lighting Technology:	Photo #									
Elevation (AGL) at base of light (Ft.):	Photo #									
Is a service loop available? Photo # Photo #										
Is beacon installed on an extension?	Is beacon installed on an extension? Photo # Photo #									

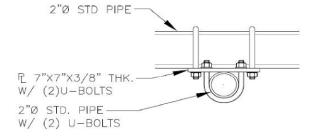
Mapping Notes

1. Please report any visible structural or safety issues observed on the antenna mounts (Damaged members, loose connections, tilting mounts, safety climb issues, etc.)

2. If the thickness of the existing pipes or tubing can't be obtained from a general tool (such as Caliper), please use an ultrasonic measurement tool (thickness gauge) to measure the thickness.

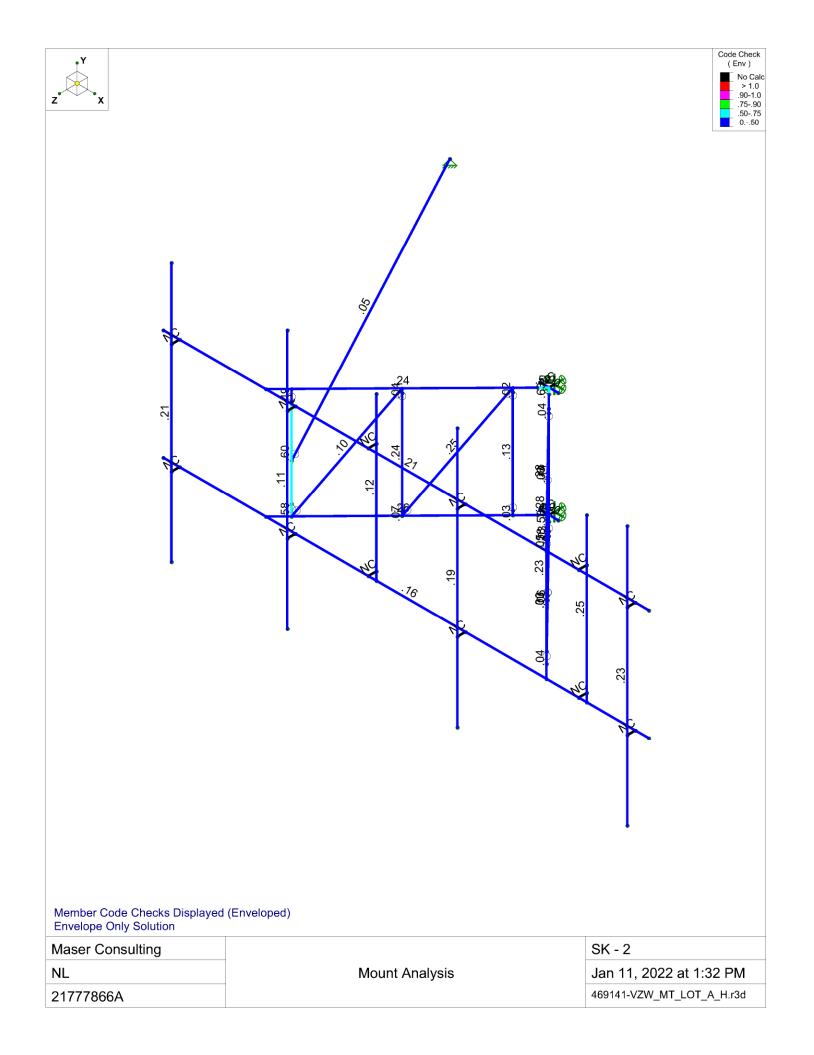
3. Please create all required detail sketches of the mounts and insert them into the "Sketches" tab.

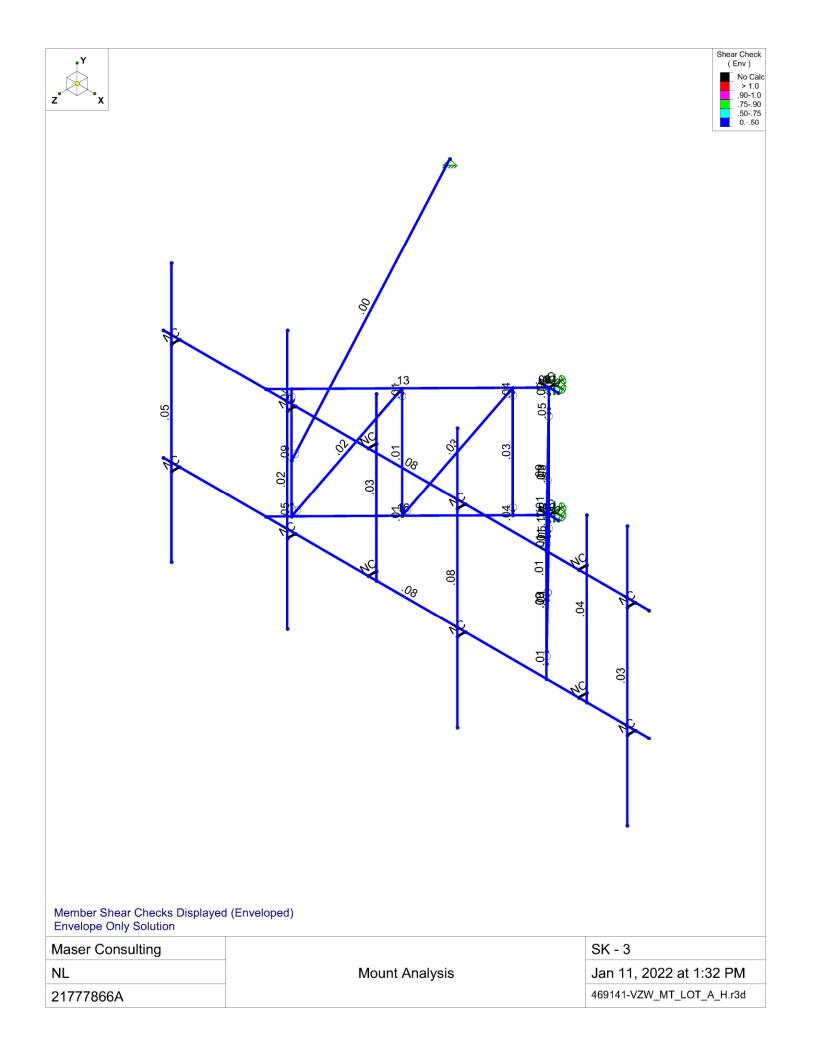
4. Please measure and enter the bolt sizes and types under the Members Box in the spreadsheet of the mount type.


5. Take and label the photos of the tower, mounts, connections, antennas and all measurements. Minimum 50 photos are required.

6. Please measure and report the size and length of all existing antenna mounting pipes.
 7. Please measure and report the antenna information for all sectors.

8. Don't delete or rearrange any sheet or contents of any sheet from this mapping form.


Standard Conditions 1. Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping are to be reported in this mapping. However, this mount mapping is not a condition assessment of the mount.


V4.0 Updated on 3-31-2021 FCC # Antenna Mount Mapping Form (PATENT PENDING) MASER AMERICAN TOWER CO. Tower Owner: Mapping Date: 5/3/2021 Site Name: MADISON CT Self Support Tower Type: Site Number or ID: 469141 Tower Height (Ft.): 180 HUDSON DESIGN GROUP, LLC Mount Elevation (Ft.): 172 41 Mapping Contractor: This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, trans ssion, publication, modification or disclosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA and other safety requirements that may apply. TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements. Please Insert Sketches of the Antenna Mount DATE: 5-3-21 HUDSON Design Group LLC ->\C Project Name: <u>Addition</u> CT Project No .: Design By: Tord Chk'd By: Page of 45 BEECHWOOD DRIVE NORTH ANDOVER, MA 01845 1EL: 19761 557-5553 FAX: 19761 338-5586 15' Masit: 2: 172' 5" Kil 6 19" 63" 37" 5 24" 24" 1-1 At Pipes: 23 Face Pipes: 23 Ubolts: mi Flenge: 5 x8 X = Dia. Supports : The Acased Tibling Hert Suggest : 12 Road though 5017: 34° Anala: 4132733 Tever Len: 35born (2) -Tower Face Bild' Tower to face : 4'9 SHIFF Arm: 35-27 SBNHH - ID65B #7 34 Rep 4x45 31-31-4 6x 35 -1 23 BXA - 700 63/6CF 23 35 35 #4 FILL P B13 ARH 4x30 132 #5 JBNHH- ID65B L:4x3 x7 x3 511 29 100 29 #6 SBNHY-1DG58 (2) OUP on B-C Face

ANTENNA PIPE MAST MOUNT CONNECTION

Envelope Only Solution Maser Consulting		SK - 1
NL	Mount Analysis	Jan 11, 2022 at 1:32 PM
21777866A		469141-VZW_MT_LOT_A_H.r3d

Basic Load Cases

	BLC Description	Category	X Grav	.Y Grav	.Z Grav	Joint	Point	Distrib	Area(M.	Surfac
1	Antenna D	None					33			
2	Antenna Di	None					33			
3	Antenna Wo (0 Deg)	None					33			
4	Antenna Wo (30 Deg)	None					33			
5	Antenna Wo (60 Deg)	None					33			
6	Antenna Wo (90 Deg)	None					33			
7	Antenna Wo (120 Deg)	None					33			
8	Antenna Wo (150 Deg)	None					33			
9	Antenna Wo (180 Deg)	None					33			
10	Antenna Wo (210 Deg)	None					33			
11	Antenna Wo (240 Deg)	None					33			
12	Antenna Wo (270 Deg)	None					33			
13	Antenna Wo (300 Deg)	None					33			
14	Antenna Wo (330 Deg)	None					33			
15	Antenna Wi (0 Deg)	None					33			
16	Antenna Wi (30 Deg)	None					33			
17	Antenna Wi (60 Deg)	None					33			
18	Antenna Wi (90 Deg)	None					33			
19	Antenna Wi (120 Deg)	None					33			
20	Antenna Wi (150 Deg)	None					33			
21	Antenna Wi (180 Deg)	None					33			
22	Antenna Wi (210 Deg)	None					33			
23	Antenna Wi (240 Deg)	None					33			
24	Antenna Wi (270 Deg)	None					33			
25	Antenna Wi (300 Deg)	None					33			
26	Antenna Wi (330 Deg)	None					33			
27	Antenna Wm (0 Deg)	None					33			
28	Antenna Wm (30 Deg)	None					33			
29	Antenna Wm (60 Deg)	None					33			
30	Antenna Wm (90 Deg)	None					33			
31	Antenna Wm (120 Deg)	None					33			
32	Antenna Wm (150 Deg)	None					33			
33	Antenna Wm (180 Deg)	None					33			
34	Antenna Wm (210 Deg)	None					33			
35	Antenna Wm (240 Deg)	None					33			
36	Antenna Wm (270 Deg)	None					33			
37	Antenna Wm (300 Deg)	None					33			
38	Antenna Wm (330 Deg)	None					33			
39	Structure D	None		-1			00			
40	Structure Di	None						41		
41	Structure Wo (0 Deg)	None						82		
42	Structure Wo (30 Deg)	None						82		
43	Structure Wo (60 Deg)	None						82		
44	Structure Wo (90 Deg)	None						82		
45	Structure Wo (120 Deg)	None						82		
46	Structure Wo (120 Deg)	None						82		
47	Structure Wo (180 Deg)	None						82		
48	Structure Wo (210 Deg)	None						82		
49	Structure Wo (240 Deg)	None						82		
50	Structure Wo (270 Deg)	None						82		
51	Structure Wo (270 Deg)	None						82		
52	Structure Wo (300 Deg)	None						82		
53	Structure Wi (0 Deg)	None						82		
54	Structure Wi (30 Deg)	None						82		
55	Structure Wi (60 Deg)	None						82		
56	Structure Wi (90 Deg)	None						82		
00	Orradiard Wr (00 Dog)	NONC						02		

Basic Load Cases (Continued)

	BLC Description	Category	X Grav	.Y Grav	Z Grav	Joint	Point	Distrib	Area(M.	Surfac
57	Structure Wi (120 Deg)	None						82		
58	Structure Wi (150 Deg)	None						82		
59	Structure Wi (180 Deg)	None						82		
60	Structure Wi (210 Deg)	None						82		
61	Structure Wi (240 Deg)	None						82		
62	Structure Wi (270 Deg)	None						82		
63	Structure Wi (300 Deg)	None						82		
64	Structure Wi (330 Deg)	None						82		
65	Structure Wm (0 Deg)	None						82		
66	Structure Wm (30 Deg)	None						82		
67	Structure Wm (60 Deg)	None						82		
68	Structure Wm (90 Deg)	None						82		
69	Structure Wm (120 Deg)	None						82		
70	Structure Wm (150 Deg)	None						82		
71	Structure Wm (180 Deg)	None						82		
72	Structure Wm (210 Deg)	None						82		
73	Structure Wm (240 Deg)	None						82		
74	Structure Wm (270 Deg)	None						82		
75	Structure Wm (300 Deg)	None						82		
76	Structure Wm (330 Deg)	None						82		
77	Lm1	None					1			
78	Lm2	None					1			
79	Lv1	None					1			
80	Lv2	None					1			
81	Antenna Ev	None					33			
82	Antenna Eh (0 Deg)	None					22			
83	Antenna Eh (90 Deg)	None					22			
84	Structure Ev	ELY		045						
85	Structure Eh (0 Deg)	ELZ			111					
86	Structure Eh (90 Deg)	ELX	.111							

Load Combinations

	Description	Solve	P	S B.	Fa	. В	Fa	BLC	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	1.2D+1.0Wo (0 Deg)	Yes	Υ	1	1.2	39	1.2	3	1	41	1												
2	1.2D+1.0Wo (30 Deg)	Yes	Υ	1	1.2	39	1.2	4	1	42	1												
3	1.2D+1.0Wo (60 Deg)	Yes	Υ	1	1.2	39	1.2	5	1	43	1												
4	1.2D+1.0Wo (90 Deg)	Yes	Υ	1	1.2	39	1.2	6	1	44	1												
5	1.2D+1.0Wo (120 Deg)	Yes	Υ	1	1.2	39	1.2	7	1	45	1												
6	1.2D+1.0Wo (150 Deg)	Yes		1	1.2	39	1.2	8	1	46	1												
7	1.2D+1.0Wo (180 Deg)	Yes	Υ	1	1.2	39	1.2	9	1	47	1												
8		Yes		1	1.2	39	1.2	10	1	48	1												
9	1.2D+1.0Wo (240 Deg)	Yes	Υ	1	1.2	39	1.2	11	1	49	1												
10		Yes		1	1.2	39	1.2	12	1	50	1												
11	1.2D+1.0Wo (300 Deg)			1	1.2	39	1.2	13	1	51	1												
12	1.2D+1.0Wo (330 Deg)			1	1.2	39	1.2	14	1	52	1												
13	1.2D + 1.0Di + 1.0Wi (0			1	1.2	39	1.2	2	1	40	1	15	1	53	1								
14	1.2D + 1.0Di + 1.0Wi (3			1	1.2	39	1.2		1	40	1	16	1	54	1								
15	1.2D + 1.0Di + 1.0Wi (6			1		39			1	40	1	17	1	55	1								
16	1.2D + 1.0Di + 1.0Wi (9			1	1.2	39	1.2	2	1	40	1	18	1	56	1								
17	1.2D + 1.0Di + 1.0Wi (1			1	1.2	39	1.2	2	1	40	1	19	1	57	1								
18	1.2D + 1.0Di + 1.0Wi (1			1	1.2	39	1.2	2	1	40	1	20	1	58	1								
19	1.2D + 1.0Di + 1.0Wi (1			1		39	-	2	1	40	1	21	1	59	1								
20	1.2D + 1.0Di + 1.0Wi (2				1.2	39	1.2	2	1	40	1	22	1	60	1								
21	1.2D + 1.0Di + 1.0Wi (2			1		39		2	1	40	1	23	1	61	1								
22	1.2D + 1.0Di + 1.0Wi (2	Yes	Y	1	1.2	39	1.2	2	1	40	1	24	1	62	1								

Load Combinations (Continued)

		0011		aoa	, 																			
	Description	Solve			3										В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
	1.2D + 1.0Di + 1.0Wi (3				1			1.2	2		40		25		63	1								
24	1.2D + 1.0Di + 1.0Wi (3	· Yes	Y		1	1.2	39	1.2	2	1	40	1	26	1	64	1								
25	1.2D + 1.5Lm1 + 1.0W	Yes	Y		1	1.2	39	1.2	77	1.5	27	1	65	1										
26	1.2D + 1.5Lm1 + 1.0W	Yes	Υ		1	1.2	39	1.2	77	1.5	28		66	1										
27	1.2D + 1.5Lm1 + 1.0W	Yes	Υ		1	1.2		1.2				1	67	1										
28	1.2D + 1.5Lm1 + 1.0W				1			1.2					68											
	1.2D + 1.5Lm1 + 1.0W				1			1.2				1	69											
	1.2D + 1.5Lm1 + 1.0W				1			1.2					70											
	1.2D + 1.5Lm1 + 1.0W				1			1.2				1	71	1							-			
32	1.2D + 1.5Lm1 + 1.0W				1			1.2					72											
	1.2D + 1.5Lm1 + 1.0W				1			1.2				1	73											
	1.2D + 1.5Lm1 + 1.0W				1			1.2					74											
	1.2D + 1.5Lm1 + 1.0W				1			1.2				1	75											
	1.2D + 1.5Lm1 + 1.0W				1			1.2					76											
	1.2D + 1.5Lm2 + 1.0W				1			1.2				1	65											
	1.2D + 1.5Lm2 + 1.0W												66											
	1.2D + 1.5Lm2 + 1.0W				1			1.2				1												
39	1.2D + 1.5Lm2 + 1.0W	Yes	I		1			1.2				1	67											
	1.2D + 1.5Lm2 + 1.0W	Yes	Y		1			1.2					68											
41	1.2D + 1.5Lm2 + 1.0W				1			1.2				1	69											
42					1			1.2				1	70											
	1.2D + 1.5Lm2 + 1.0W				1			1.2				1	71	1										
	1.2D + 1.5Lm2 + 1.0W				1			1.2					72											
	1.2D + 1.5Lm2 + 1.0W				1			1.2				1	73											
	1.2D + 1.5Lm2 + 1.0W				1			1.2					74											
47	1.2D + 1.5Lm2 + 1.0W				1			1.2					75								_			
48	1.2D + 1.5Lm2 + 1.0W				1			1.2				1	76	1										
49	1.2D + 1.5Lv1	Yes			1			1.2																
50	1.2D + 1.5Lv2	Yes			1			1.2	80	1.5														
51	1.4D	Yes			1			1.4	0.1		_				0.0				_					
					1			1.2		1			82		83		ELZ		E					
	1.2D + 1.0Ev + 1.0Eh (3.				1			1.2			E	1		.866										
	1.2D + 1.0Ev + 1.0Eh (6.				1			1.2			E			.5		.866					i			
	1.2D + 1.0Ev + 1.0Eh (9.				1			1.2			E		82		83	· ·	ELZ		E	1				
	1.2D + 1.0Ev + 1.0Eh (1.				1			1.2			E					.866					i			
	1.2D + 1.0Ev + 1.0Eh (1.				1			1.2			E					.5				.5				
	1.2D + 1.0Ev + 1.0Eh (1.				1			1.2		1	E	1		-1				-1						
	1.2D + 1.0Ev + 1.0Eh (2.				1	1.2	39	1.2	81		E					5								
	1.2D + 1.0Ev + 1.0Eh (2.				1	1.2	39	1.2	81	1	E	1	82			866			E	866	5			
61	1.2D + 1.0Ev + 1.0Eh (2.	-Yes	Y		1	1.2	39	1.2	81	1	E	1	82		83	-1	ELZ		E	-1				
	1.2D + 1.0Ev + 1.0Eh (3.				1	1.2	39	1.2	81	1	E					866					5			
	1.2D + 1.0Ev + 1.0Eh (3.				1			1.2	81	1	E	1	82	.866	83	5								
	0.9D - 1.0Ev + 1.0Eh (0.				1			.9	81	-1	E	-1	82	1	83		ELZ	1	E					
65	0.9D - 1.0Ev + 1.0Eh (3	. Yes	Υ		1		39		81		E		82	.866	83	.5								
	0.9D - 1.0Ev + 1.0Eh (6				1		39		81			-1				.866					i			
	0.9D - 1.0Ev + 1.0Eh (9				1	.9	39		81		E		82		83		ELZ		E	1				
	0.9D - 1.0Ev + 1.0Eh (1				1		39		81		E		82	5	83	.866			E		i			
	0.9D - 1.0Ev + 1.0Eh (1				1	.9	39		81		E					.5								
	0.9D - 1.0Ev + 1.0Eh (1				1		39		81			-1		-1				-1						
	0.9D - 1.0Ev + 1.0Eh (2				1		39		81		E					5				5				
	0.9D - 1.0Ev + 1.0Eh (2				1		39		81	-1		-1				866					5			
	0.9D - 1.0Ev + 1.0Eh (2				1		39		81		E		82		83				E					
	0.9D - 1.0Ev + 1.0Eh (3				1			.9	81			-1		.5		866					5			
	0.9D - 1.0Ev + 1.0Eh (3				1			.9	81			-1				5								
10		100			1	.0	50		51				52		50	.0				.0	1		<u>لــــــــــــــــــــــــــــــــــــ</u>	

Joint Coordinates and Temperatures

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Diap
1	N1	-2.	0	2.	0	Botaon From Biophi
2	N2	-5.375	0	2.	0	
3	N3	1.375	0	2.	0	
4	N4	-2.	0	0	0	
5	N5	-2.	-41.	2.	0	
6	N6	-5.375	-41.	2.	0	
7	N7	1.375	-41.	2.	0	
8	N10	-54	0	55.	0	
9	N11	50.	0	55.	0	
10	N11A	-92.	0	55.	0	
11	N12	88.	0	55.	0	
12	N14	-54	-41.	55.	0	
13	N15	50.	-41.	55.	0	
14	N16	-92.	-41.	55.	0	
15	N17	88.	-41.	55.	0	
16	N17A	-4.101022	0	4.141426	0	
17	N18	0.101022	0	4.141426	0	
18	N19	-4.101022	-41.	4.141426	0	
19	N20	0.101022	-41.	4.141426	0	
20	N21	4.653236	0	8.781183	0	
21	N22	4.653236	-41.	8.781183	0	
22	N23	24.963116	0	29.481637	0	
23	N24	24.963116	-41.	29.481637	0	
24	N25	45.272995	0	50.182091	0	
25	N26	45.272995	-41.	50.182091	0	
26	N27	4.653236	-39.5	8.781183	0	
27	N28	24.963116	-39.5	29.481637	0	
28	N29	4.653236	-1.5	8.781183	0	
29	N30	24.963116	-1.5	29.481637	0	
30	N31	45.272995	-37.	50.182091	0	
31	N32	45.272995	-4.	50.182091	0	
32	N33	-8.653236	0	8.781183	0	
33	N34	-8.653236	-41.	8.781183	0	
34	N35	-28.963116	0	29.481637	0	
35	N36	-28.963116	-41.	29.481637	0	
36	N37	-49.272995	0	50.182091	0	
37	N38	-49.272995	-41.	50.182091	0	
38	N39	-8.653236	-39.5	8.781183	0	
39	N40	-28.963116	-39.5	29.481637	0	
40	N41	-8.653236	-1.5	8.781183	0	
41	N42	-28.963116	-1.5	29.481637	0	
42	N43	-49.272995	-37.	50.182091	0	
43	N44	-49.272995	-4.	50.182091	0	
44	N65	-2.	-41.	0	0	
45	N45	-43.	0	55.	0	
46	N46	-43.	-41.	55.	0	
47	N47	-86.	0	55.	0	
48	N48	-86.	-41.	55.	0	
49	N49	-16	0	55.	0	
50	N50	-16	-41.	55.	0	
51	N51	20.	0	55.	0	
52	N52	20.	-41.	55.	0	
53	N53	62.	0	55.	0	
54	N54	62.	-41.	55.	0	
55	N55	83.	0	55.	0	
56	N56	83.	-41.	55.	0	

Joint Coordinates and Temperatures (Continued)

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Diap
57	N57	-43	0	58.	0	
58	N58	-43.	-41.	58.	0	
59	N59	-86.	0	58.	0	
60	N60	-86.	-41.	58.	0	
61	N61	-16	0	52.	0	
62	N62	-16	-41.	52.	0	
63	N63	20.	0	58.	0	
64	N64	20.	-41.	58.	0	
65	N65A	62.	0	52.	0	
66	N66	62.	-41.	52.	0	
67	N67	83.	0	58.	0	
68	N68	83.	-41.	58.	0	
69	N69	-43.	26.	58.	0	
70	N70	-86.	26.	58.	0	
71	N71	20.	26.	58.	0	
72	N72	83.	26.	58.	0	
73	N73	-43.	-70.	58.	0	
74	N74	-86.	-70.	58.	0	
75	N75	20.	-70.	58.	0	
76	N76	83.	-70.	58.	0	
77	N77	-16	16.	52.	0	
78	N78	62.	16.	52.	0	
79	N79	-16	-44.	52.	0	
80	N80	62.	-44.	52.	0	
81	N81	-49.272995	-23.	50.182091	0	
82	N84	-93.764052	0	-52.98	0	

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Antenna Pipe	PIPE 2.0	Column	Pipe	A53 Gr. B	Typical	1.02	.627	.627	1.25
2	Dual Mounted Pipe	PIPE 2.5	Column	Pipe	A53 Gr. B	Typical	1.61	1.45	1.45	2.89
3	Standoff Horizontal	PIPE 2.0	Beam	Pipe	A53 Gr. B	Typical	1.02	.627	.627	1.25
4	Standoff Vertical	PIPE 2.0	Beam	Pipe	A53 Gr. B	Typical	1.02	.627	.627	1.25
5	Standoff Diagonal	1.5" w 0.06"	Beam	Pipe	A53 Gr. B	Typical	.271	.07	.07	.141
6	Face Horizontal	PIPE 2.5	Beam	Pipe	A53 Gr. B	Typical	1.61	1.45	1.45	2.89
7	Tie Back	PIPE 3.0	Beam	Pipe	A53 Gr. B	Typical	2.07	2.85	2.85	5.69
8	Standoff Bar	PL3/8X3_HRA	Beam	RECT	A36 Gr.36	Typical	1.125	.013	.844	.049
9	Mount Angle	L4X3X6	Beam	Single Angle	A36 Gr.36	Typical	2.49	1.89	3.94	.123
10	TES Standoff Diag	SR_1.25	Beam	Single Angle	A36 Gr.36	Typical	1.227	.12	.12	.24

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1	Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A53 Gr. B	29000	11154	.3	.65	.49	35	1.5	60	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
5	A500 Gr. B 42	29000	11154	.3	.65	.49	42	1.4	58	1.3
6	A500 Gr. B 46	29000	11154	.3	.65	.49	46	1.4	58	1.3

Member Primary Data

Label Joint K-Joint Relate(deg) Section/Shape Type Design Lise Material Design Rules 2 M2 N1 N4 9 Mount Angle Beam Ningle Angle A36 A36 Typical 3 M3 N6 N7 90 Standoff Bar Beam RECT A36 G36 Typical 4 M5 N1 N17A 90 Standoff Bar Beam RECT A36 G36 Typical 5 M6 N1 N14 N12 Pace Horizontal Beam Pice A36 G36 Typical 6 M7 M8 N5 N20 90 Standoff Horiz Beam Pice A53 Gr. B Typical 10 OVP N17A N10 Standoff Horiz Beam Pice A53 Gr. B Typical 11 M12 N18 N11 Standoff Horiz Beam Pice A53	MICIII										
1 M2 N3 90 Mount Angle Beam Single Angle A88 Gr.36 Typical 3 M3 N6 N7 90 Mount Angle Beam Single Angle A88 Gr.36 Typical 4 M5 N1 N17A 90 Standoff Bar Beam Single Angle A38 Gr.36 Typical 5 M6 N1 N18 90 Standoff Bar Beam RECT A36 Gr.36 Typical 6 M7 N11A N12 Pace Horizontal Beam Pipe A53 Gr. B Typical 9 M10 N16 N17 Pace Horizontal Beam Pipe A53 Gr. B Typical 10 OVP N17A N10 Standoff Horiz Beam Pipe A53 Gr. B Typical 12 M13 N14 N20 N15 Standoff Horiz Beam Pipe A53 Gr. B Typical 13 M14 N20 N15 Standoff Horiz Beam REcct A86 Gr.36		Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
2 M2 N1 N4 RGD None None None RGD Typical 3 M3 N6 N7 90 Standoff Bar Beam RECT A36 G-36 Typical 4 M5 N1 N17A 90 Standoff Bar Beam RECT A36 G-36 Typical 6 M7 N11A N12 Pace Horizontal Beam RECT A36 G-36 Typical 7 M8 N5 N20 90 Standoff Horz Beam Pice A36 G-36 Typical 8 M9 N5 N20 90 Standoff Horz Beam Pice A53 Gr. B Typical 10 OVP N17A N10 Standoff Horz Beam Pice A53 Gr. B Typical 13 M14 N20 N15 Standoff Horz Beam RECT A36 G-36 Typical	1	M1	N2	N3		90	Mount Angle		Single Angle	A36 Gr.36	
3 M3 N6 N7 90 Mount Angle Beam Single A36 Gr.36 Typical 5 M6 N1 N18 90 Standoff Bar Beam RECT A36 Gr.36 Typical 6 M7 N11A N12 Paos Mount Angle Beam Pipe A53 Gr.8 Typical 7 M8 N5 N19 90 Standoff Bar Beam Pipe A53 Gr.8 Typical 9 M10 N16 N17 Pice Horizontal Beam Pipe A53 Gr.8 Typical 10 OVP N17A N10 Standoff Horiz. Beam Pipe A53 Gr.8 Typical 11 M12 N18 Standoff Bar. Beam Pipe A53 Gr.8 Typical 12 M13 N1 Standoff Bar. Beam Pipe A53 Gr.8 Typical 13 M14 N20 N1 Standoff Bar. Beam Pipe A53 Gr.8 Typical <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>RIGID</td> <td></td>	2									RIGID	
4 M5 N1 N17A 90 Standoff Bar Beam RECT A36 6r.36 Typical 6 M7 N11A N12 Pace Horizontal Beam Pipe A53 Gr. B Typical 7 M8 N5 N19 90 Standoff Bar Beam Pipe A53 Gr. B Typical 8 M9 N5 N20 90 Standoff Horiz. Beam Pipe A53 Gr. B Typical 11 M12 N18 N11 Standoff Horiz. Beam Pipe A53 Gr. B Typical 12 M13 N19 N14 Standoff Horiz. Beam Pipe A53 Gr. B Typical 13 M14 N20 N15 Standoff Horiz. Beam Pipe A53 Gr. B Typical 14 M15 N21 N24 90 Standoff Bar Beam Pipe A53 Gr. B Typical 15 M16 N21 N24 90 Standoff B		M3				90				A36 Gr.36	
6 M6 N1 N18 90 Standoff Bar Beam REC T A36 Gr.36 Typical 7 M8 N5 N19 90 Standoff Bar Beam RECT A36 Gr.36 Typical 8 M9 N5 N10 N16 N17 Face Horizontal Beam RECT A36 Gr.36 Typical 10 OVP N17A N10 Standoff Moz Beam Pipe A53 Gr.8 Typical 11 M12 N18 N11 Standoff Moz Beam Pipe A53 Gr.8 Typical 12 M13 N19 N14 Standoff Bar. Beam Pipe A53 Gr.8 Typical 13 M14 N20 N15 Standoff Bar. Beam Pipe A53 Gr.8 Typical 14 M17 N23 N30 N1 Standoff Bar. Beam Pipe A53 Gr.8 Typical 15 M16 N21 N2 Standoff Bar. </td <td></td> <td></td> <td></td> <td>N17A</td> <td></td> <td>90</td> <td></td> <td></td> <td></td> <td>A36 Gr.36</td> <td></td>				N17A		90				A36 Gr.36	
6 M7 N11A N12 Face Horizontal Beam Pipe A53 Gr. B Typical 8 M9 N5 N20 90 Standoff Bar. Beam RECT A36 Gr. B Typical 9 M10 N16 N17 Standoff Horz Beam Pipe A53 Gr. B Typical 10 OVP N17A N10 Standoff Horz Beam Pipe A53 Gr. B Typical 11 M12 N18 N11 Standoff Horz Beam Pipe A53 Gr. B Typical 12 M13 N19 N14 Standoff Bar. Beam Pipe A53 Gr. B Typical 13 M14 N24 90 Standoff Bar. Beam Pipe A53 Gr. B Typical 14 M15 N24 90 Standoff Bar. Beam Pipe A53 Gr. B Typical 15 M16 N24 90 Standoff Bar. Beam Pipe A53 Gr. B Typical 16 M17 N2										A36 Gr.36	
7 M8 N5 N19 90 Standoff Bar Beam RECT A36 Gr.36 Typical 9 M10 N16 N17 90 Standoff Horz Beam Pipe A53 Gr. B Typical 10 OVP N17A N10 Standoff Horz Beam Pipe A53 Gr. B Typical 11 M12 N18 N11 Standoff Horz Beam Pipe A53 Gr. B Typical 12 M13 N19 N14 Standoff Horz Beam Pipe A53 Gr. B Typical 13 M14 N20 N15 Standoff Horz Beam Pipe A53 Gr. B Typical 14 M15 N24 N2 90 Standoff Bar Beam Pipe A53 Gr. B Typical 15 M16 N21 N26 90 Standoff Bar Beam Pipe A53 Gr. B Typical 16 M17 N28 N26 N31 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></td<>									-		
8 M9 N5 N20 90 Standoff Bar. Beam Pipe A36 Gr.36 Typical 10 OVP N17A N10 Standoff Horiz Beam Pipe A53 Gr. B Typical 11 M12 N18 N11 Standoff Horiz Beam Pipe A53 Gr. B Typical 12 M13 N19 N14 Standoff Horiz Beam Pipe A53 Gr. B Typical 13 M14 N20 N15 Standoff Horiz Beam Pipe A53 Gr. B Typical 14 M15 N21 N29 N1 Standoff Bar. Beam RECT A36 Gr.36 Typical 16 M17 N23 N30 N1 Standoff Bar. Beam RECT A36 Gr.36 Typical 18 M19 N26 N31 Standoff Bar. Beam RECT A36 Gr.36 Typical 20 M27 N2 N1 Standoff Diago Beam						90					
9 M10 N16 N17 Face Hotzonal Beam Pipe A53 Gr. B. Typical 10 OVP N17A N10 Standoff Hotz Beam Pipe A53 Gr. B. Typical 11 M12 N18 N11 Standoff Hotz Beam Pipe A53 Gr. B. Typical 12 M13 N19 N14 Standoff Hotz Beam Pipe A53 Gr. B. Typical 13 M14 N20 N15 Standoff Biag Beam Pipe A53 Gr. B. Typical 15 M16 N21 N24 90 Standoff Biag Beam Pipe A53 Gr. B. Typical 16 M17 N23 N26 90 Standoff Biag Beam Pipe A53 Gr. B. Typical 17 M18 N23 N26 N31 Standoff Biag Beam Pipe A53 Gr. B. Typical 19 M20 N27 N2 N1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
10 OVP N17A N10 Standoff Horiz Beam Pipe A53 Gr. B Typical 11 M13 N19 N14 Standoff Horiz Beam Pipe A53 Gr. B Typical 13 M14 N20 N15 Standoff Horiz Beam Pipe A53 Gr. B Typical 14 M15 N21 N29 N1 Standoff Horiz Beam Pipe A53 Gr. B Typical 15 M16 N21 N29 N1 Standoff Bar Beam Pipe A53 Gr. B Typical 16 M17 N23 N30 N1 Standoff Bar Beam Pipe A53 Gr. B Typical 18 M19 N26 N31 N1 Standoff Bar Beam Pipe A53 Gr. B Typical 20 M21 N28 N24 N1 Standoff Bars Beam Pipe A53 Gr. B Typical 21 M22 N23 N27											
11 M12 N14 Standoff Hork Beam Pipe A53 Gr. B Typical 13 M14 N20 N16 Standoff Hork Beam Pipe A53 Gr. B Typical 14 M15 N21 N29 N1 Standoff Bar. Beam Pipe A53 Gr. B Typical 15 M16 N21 N24 90 Standoff Bar. Beam Pipe A53 Gr. B Typical 16 M17 N23 N26 90 Standoff Bar. Beam Pipe A53 Gr. B Typical 17 M18 N26 N31 N1 Standoff Bar. Beam Pipe A53 Gr. B Typical 20 M21 N26 N31 N1 Standoff Bar. Beam Pipe A53 Gr. B Typical 21 M22 N27 N1 Standoff Diago Beam Pipe A53 Gr. B Typical 22 M24 N31 N32 N1											
12 M13 N14 Standoff Horiz Beam Pipe A53 Gr. B Typical 13 M14 N20 N15 Standoff Horiz Beam Pipe A53 Gr. B Typical 14 M15 N21 N29 N1 Standoff Bars Beam RECT A36 Gr.36 Typical 15 M16 N21 N24 90 Standoff Bars Beam Pipe A53 Gr. B Typical 16 M17 N23 N30 N1 Standoff Bars Beam Pipe A36 Gr.36 Typical 18 M19 N26 N31 N1 Standoff Bars Beam Pipe A36 Gr.36 Typical 20 M21 N28 N24 N1 Standoff Bars Beam Pipe A53 Gr. B Typical 21 M22 N23 N34 N1 Standoff Bars Beam Pipe A53 Gr. B Typical 23 M24 N31 N32 N											
13 M14 N20 N15 Standoff Darc Beam Pipe A53 Gr. B Typical 14 M15 N21 N24 90 Standoff Diago Beam Pipe A53 Gr. B Typical 15 M16 N21 N24 90 Standoff Diago Beam Pipe A53 Gr. B Typical 16 M17 N23 N26 90 Standoff Bar Beam Pipe A53 Gr. B Typical 17 M18 N22 N21 N1 Standoff Bar Beam Pipe A53 Gr. B Typical 19 M20 N27 N21 N1 Standoff Diago Beam Pipe A53 Gr. B Typical 21 M24 N30 N28 N1 Standoff Diago Beam Pipe A53 Gr. B Typical 23 M24 N31 N32 N1 Standoff Diago Beam Pipe A53 Gr. B Typical 24 M26											
14 M15 N21 N29 N1 Standoff Bar, Beam RECT A36 Gr.36 Typical 15 M16 N21 N24 90 Standoff Diago. Beam Pipe A53 Gr.8 Typical 16 M17 N23 N30 N1 Standoff Bar Beam RECT A36 Gr.36 Typical 17 M18 N23 N26 90 Standoff Bar Beam Pipe A53 Gr.8 Typical 18 M19 N26 N31 N1 Standoff Bar Beam RECT A36 Gr.36 Typical 20 M21 N28 N4 N1 Standoff Diago. Beam Pipe A53 Gr.8 Typical 21 M22 N29 N27 N1 Standoff Diago. Beam Pipe A53 Gr.8 Typical 22 M23 N30 N28 N1 Standoff Diago. Beam Pipe A53 Gr.8 Typical 23 M24 N31											
15 M16 N21 N24 90 Standoff Diago Beam Pipe A53 Gr. B Typical 16 M17 N23 N30 N1 Standoff Bar Beam RECT A36 Gr.36 Typical 17 M18 N23 N26 90 Standoff Bar Beam RECT A36 Gr.36 Typical 18 M19 N26 N31 N1 Standoff Bar Beam RECT A36 Gr.36 Typical 20 M21 N28 N24 N1 Standoff Diago Beam Pipe A53 Gr. B Typical 21 M22 N29 N27 N1 Standoff Diago Beam Pipe A53 Gr. B Typical 23 M24 N31 N32 N2 N1 Standoff Bar Beam Pipe A53 Gr. B Typical 24 M25 N32 N25 N1 Standoff Bar Beam RECT A36 Gr.36 Typical 25					N1						
16 M17 N23 N30 N1 Standoff Bar Beam RECT A36 Gr.36 Typical 17 M18 N26 90 Standoff Bar Beam RECT A36 Gr.36 Typical 18 M19 N26 N31 N1 Standoff Bar Beam RECT A36 Gr.36 Typical 19 M20 N27 N22 N1 Standoff Bar Beam RECT A36 Gr.36 Typical 20 M21 N28 N24 N1 Standoff Bar Beam Pipe A53 Gr. B Typical 21 M22 N29 N27 N1 Standoff Bar Beam Pipe A53 Gr. B Typical 23 M24 N31 N32 N1 Standoff Bar Beam Pipe A53 Gr. B Typical 24 M25 N32 N42 N1 Standoff Bar Beam RECT A36 Gr.36 Typical 25 M26 N33 N44 N1 Standoff Bar Beam Pipe A53 Gr. B Typical </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>90</td> <td></td> <td></td> <td></td> <td></td> <td></td>						90					
17 M18 N23 N26 90 Standoff Diago Beam Pipe A53 Gr. B Typical 18 M19 N26 N31 N1 Standoff Bar Beam RECT A36 Gr.36 Typical 20 M21 N28 N24 N1 Standoff Bar Beam RECT A36 Gr.36 Typical 20 M21 N28 N24 N1 Standoff Bar Beam RECT A36 Gr.36 Typical 21 M22 N30 N28 N1 Standoff Vertical Beam Pipe A53 Gr. B Typical 23 M24 N31 N32 N1 Standoff Bar Beam Pipe A53 Gr.36 Typical 24 M25 N32 N42 N1 Standoff Bar Beam RECT A36 Gr.36 Typical 26 M27 N33 N36 90 Standoff Diago Beam RECT A36 Gr.36 Typical 27 M28<					N1						
18 M19 N26 N31 N1 Standoff Bar Beam RECT A36 Gr.36 Typical 19 M20 N27 N22 N1 Standoff Bar Beam RECT A36 Gr.36 Typical 20 M21 N28 N24 N1 Standoff Diago. Beam RECT A36 Gr.36 Typical 21 M22 N29 N27 N1 Standoff Diago. Beam Pipe A53 Gr. B Typical 23 M24 N31 N32 N1 Standoff Bar Beam Pipe A53 Gr. B Typical 24 M25 N32 N41 N1 Standoff Diago Beam Pipe A53 Gr. B Typical 25 M26 N33 N41 N1 Standoff Diago Beam Pipe A53 Gr. B Typical 26 M27 N33 N42 N1 Standoff Diago Beam Pipe A53 Gr. B Typical 27 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>90</td><td></td><td></td><td></td><td></td><td></td></t<>						90					
19 M20 N27 N22 N1 Standoff Bar Istandoff Bar Standoff Diago Beam Beam RECT A36 Gr.36 Typical Typical 20 M21 N28 N27 N1 Standoff Diago Beam Pipe A53 Gr. B Typical 21 M23 N30 N28 N1 Standoff Diago Beam Pipe A53 Gr. B Typical 23 M24 N31 N32 N1 Standoff Diago Beam Pipe A53 Gr. B Typical 24 M25 N32 N25 N1 Standoff Diago Beam RECT A36 Gr.36 Typical 26 M27 N33 N36 90 Standoff Diago Beam Pipe A53 Gr. B Typical 29 M30 N38 N43 N1 Standoff Bar Beam RECT A36 Gr.36 Typical 30 M31 N39 N34 N1 Standoff Diago Beam RECT A36 Gr.36 Typical<					N1	00					
20 M21 N28 N24 N1 Standoff Bar, Beam RECT A36 Gr.36 Typical 21 M22 N29 N27 N1 Standoff Diago Beam Pipe A53 Gr. B Typical 23 M24 N31 N32 N1 Standoff Vertical Beam Pipe A53 Gr. B Typical 24 M25 N32 N25 N1 Standoff Bar Beam Pipe A53 Gr. B Typical 25 M26 N33 N41 N1 Standoff Bar Beam RECT A36 Gr.36 Typical 26 M27 N33 N36 90 Standoff Bar Beam Pipe A53 Gr. B Typical 28 M29 N35 N42 N1 Standoff Bar Beam RECT A36 Gr.36 Typical 30 M31 N38 N34 N1 Standoff Diago Beam RECT A36 Gr.36 Typical 31 M32 N40											
21 M22 N29 N27 N1 Standoff Diago Beam Pipe A53 Gr. B Typical 23 M24 N31 N32 N1 Standoff Diago Beam Pipe A53 Gr. B Typical 24 M25 N31 N32 N1 Standoff Vertical Beam Pipe A53 Gr. B Typical 25 M26 N33 N41 N1 Standoff Bar Beam RECT A36 Gr.36 Typical 26 M27 N33 N36 90 Standoff Bar Beam RECT A36 Gr.36 Typical 28 M29 N35 N38 90 Standoff Bar Beam RECT A36 Gr.36 Typical 30 M31 N39 N34 N1 Standoff Bar Beam RECT A36 Gr.36 Typical 31 M32 N40 N36 N1 Standoff Diago Beam Pipe A53 Gr.8 Typical 32											
22 M23 N30 N28 N1 Standoff Diago Beam Pipe A53 Gr. B Typical 23 M24 N31 N32 N1 Standoff Vertical Beam Pipe A53 Gr. B Typical 24 M25 N32 N25 N1 Standoff Bar Beam RECT A36 Gr.36 Typical 25 M26 N33 N41 N1 Standoff Bar Beam RECT A36 Gr.36 Typical 26 M27 N33 N36 90 Standoff Bar Beam Pipe A53 Gr. B Typical 28 M29 N35 N42 N1 Standoff Bar Beam RECT A36 Gr.36 Typical 30 M31 N39 N34 N1 Standoff Bar Beam RECT A36 Gr.36 Typical 31 M32 N40 N36 N1 Standoff Diago Beam Pipe A53 Gr. B Typical 33 M34<											
23M24N31N32N1Standoff Bar Standoff Bar BeamPipeA53 Gr. BTypical24M25N32N25N1Standoff Bar BeamBeamRECTA36 Gr.36Typical25M26N33N3690Standoff DiagoBeamRECTA36 Gr.36Typical26M27N33N3690Standoff DiagoBeamRECTA36 Gr.36Typical27M28N35N42N1Standoff DiagoBeamPipeA53 Gr. BTypical29M30N38N43N1Standoff Bar Standoff BarBeamRECTA36 Gr.36Typical30M31N39N34N1Standoff Bar Standoff DiagoBeamRECTA36 Gr.36Typical31M32N40N36N1Standoff DiagoBeamRECTA36 Gr.36Typical33M34N42N40N1Standoff DiagoBeamPipeA53 Gr. BTypical34M35N43N44N1Standoff DiagoBeamPipeA53 Gr. BTypical35M36N44N37N1Standoff DiagoBeamPipeA53 Gr. BTypical36M46AN5N65RIGIDNoneNoneRIGIDTypical37M37N45N57RIGIDNoneNoneRIGIDTypical38M38N47N59RIGIDN											
24M25N32N25N1Standoff BarBeamRECTA36 Gr.36Typical25M26N33N41N1Standoff DiagoBeamRECTA36 Gr.36Typical26M27N33N3690Standoff DiagoBeamPipeA53 Gr. BTypical27M28N35N42N1Standoff DiagoBeamRECTA36 Gr.36Typical28M29N35N3890Standoff BarBeamRECTA36 Gr.36Typical29M30N38N1Standoff BarBeamRECTA36 Gr.36Typical30M31N39N34N1Standoff BarBeamRECTA36 Gr.36Typical31M32N40N36N1Standoff DiagoBeamPipeA53 Gr. BTypical33M34N42N40N1Standoff DiagoBeamPipeA53 Gr. BTypical34M35N43N44N1Standoff DiagoBeamPipeA53 Gr. BTypical35M36N44N37N1Standoff BarBeamRECTA36 Gr.36Typical36M46AN5N65RIGIDNoneNoneRIGIDTypical37M37N45N57RIGIDNoneNoneRIGIDTypical38M38N47N59RIGIDNoneNoneRIGIDTypical39 <td></td>											
25M26N33N41N1Standoff Bar Standoff Bar BeamRECTA36 Gr.36Typical26M27N33N3690Standoff Bar Standoff Bar BeamPipeA53 Gr. BTypical27M28N35N42N1Standoff Bar Standoff Bar BeamRECTA36 Gr.36Typical28M29N36N38N43N1Standoff Bar Standoff BarBeamRECTA36 Gr.36Typical30M31N39N34N1Standoff Bar Standoff BarBeamRECTA36 Gr.36Typical31M32N40N36N1Standoff Bar Standoff Bar BeamRECTA36 Gr.36Typical32M33N41N39N1Standoff Diago Standoff DiagoBeamRECTA36 Gr.36Typical34M35N43N44N1Standoff Diago Standoff VerticalBeamPipeA53 Gr. BTypical35M36N44N37N1Standoff Bar Standoff BarBeamRECTA36 Gr.36Typical36M46AN5N65RIGIDNoneNoneRIGIDTypical37M37N45N57RIGIDNoneNoneRIGIDTypical38M38N47N59RIGIDNoneNoneRIGIDTypical39M39N49N61RIGIDNoneNoneRIGIDTypical40M40N4											
26M27N33N3690Standoff Diago BeamPipeA53 Gr. BTypical27M28N35N42N1Standoff Diago BeamRECTA36 Gr.36Typical28M29N35N3890Standoff BarBeamPipeA53 Gr. BTypical29M30N38N43N1Standoff BarBeamRECTA36 Gr.36Typical30M31N39N34N1Standoff BarBeamRECTA36 Gr.36Typical31M32N40N36N1Standoff Diago BeamPipeA53 Gr. BTypical32M33N41N39N1Standoff Diago BeamPipeA53 Gr. BTypical33M34N42N40N1Standoff Diago BeamPipeA53 Gr. BTypical34M35N43N44N1Standoff Diago BeamPipeA53 Gr. BTypical35M36N44N37N1Standoff BarBeamRECTA36 Gr.36Typical36M46AN5N65RIGIDNoneNoneRIGIDTypical37M37N45N57RIGIDNoneNoneRIGIDTypical38M38N47N59RIGIDNoneNoneRIGIDTypical39M39N49N61RIGIDNoneNoneRIGIDTypical40M40N46N58RIGIDNon											
27 M28 N35 N42 N1 Standoff Bar Beam RECT A36 Gr.36 Typical 28 M29 N35 N38 90 Standoff Bar Beam Pipe A53 Gr.36 Typical 29 M30 N38 N43 N1 Standoff Bar Beam RECT A36 Gr.36 Typical 30 M31 N39 N34 N1 Standoff Bar Beam RECT A36 Gr.36 Typical 31 M32 N40 N36 N1 Standoff Diago Beam RECT A36 Gr.36 Typical 32 M33 N41 N39 N1 Standoff Diago Beam Pipe A53 Gr.8 Typical 33 M34 N42 N40 N1 Standoff Diago Beam Pipe A53 Gr.8 Typical 34 M35 N43 N44 N1 Standoff Diago Beam RECT A36 Gr.36 Typical 36 M						90					
28M29N35N3890Standoff DiagoBeamPipeA53 Gr. BTypical29M30N38N43N1Standoff BarBeamRECTA36 Gr.36Typical30M31N39N34N1Standoff BarBeamRECTA36 Gr.36Typical31M32N40N36N1Standoff BarBeamRECTA36 Gr.36Typical32M33N41N39N1Standoff DiagoBeamPipeA53 Gr. BTypical34M35N43N44N1Standoff VerticaBeamPipeA53 Gr. BTypical35M36N44N37N1Standoff VerticaBeamPipeA53 Gr. BTypical36M46AN5N65RIGIDNoneNoneRIGIDTypical37M37N45N57RIGIDNoneNoneRIGIDTypical39M39N49N61RIGIDNoneNoneRIGIDTypical40M40N46N58RIGIDNoneNoneRIGIDTypical41M41N48N60RIGIDNoneNoneRIGIDTypical42M42N53N65ARIGIDNoneNoneRIGIDTypical43M43N51N63RIGIDNoneNoneRIGIDTypical44M44N52N64RIGIDNoneNoneRIGID<					N1						
29M30N38N43N1Standoff BarBeamRECTA36 Gr.36Typical30M31N39N34N1Standoff BarBeamRECTA36 Gr.36Typical31M32N40N36N1Standoff BarBeamRECTA36 Gr.36Typical32M33N41N39N1Standoff DiagoBeamPipeA53 Gr. BTypical33M34N42N40N1Standoff DiagoBeamPipeA53 Gr. BTypical34M35N43N44N1Standoff VerticalBeamPipeA53 Gr. BTypical35M36N44N37N1Standoff VerticalBeamRECTA36 Gr.36Typical36M46AN5N65RIGIDNoneNoneRIGIDTypical37M37N45N57RIGIDNoneNoneRIGIDTypical38M38N47N59RIGIDNoneNoneRIGIDTypical39M39N49N61RIGIDNoneNoneRIGIDTypical41M41N48N60RIGIDNoneNoneRIGIDTypical42M42N50N62RIGIDNoneNoneRIGIDTypical43M43N51N63RIGIDNoneNoneRIGIDTypical44M44N52N64RIGIDNoneNoneRIGID						90					
30M31N39N34N1Standoff BarBeamRECTA36 Gr.36Typical31M32N40N36N1Standoff BarBeamRECTA36 Gr.36Typical32M33N41N39N1Standoff DiagoBeamPipeA53 Gr. BTypical33M34N42N40N1Standoff DiagoBeamPipeA53 Gr. BTypical34M35N43N44N1Standoff VerticalBeamPipeA53 Gr. BTypical35M36N44N37N1Standoff BarBeamRECTA36 Gr.36Typical36M46AN5N65RIGIDNoneNoneRIGIDTypical37M45N57RIGIDNoneNoneRIGIDTypical38M38N47N59RIGIDNoneNoneRIGIDTypical39M39N49N61RIGIDNoneNoneRIGIDTypical40M40N46N58RIGIDNoneNoneRIGIDTypical41M41N48N60RIGIDNoneNoneRIGIDTypical42M42N50N62RIGIDNoneNoneRIGIDTypical43M43N51N63RIGIDNoneNoneRIGIDTypical44M44N52N64RIGIDNoneNoneRIGIDTypical45					NI1	30					
31M32N40N36N1Standoff BarBeamRECTA36 Gr.36Typical32M33N41N39N1Standoff DiagoBeamPipeA53 Gr. BTypical33M34N42N40N1Standoff DiagoBeamPipeA53 Gr. BTypical34M35N43N44N1Standoff VerticalBeamPipeA53 Gr. BTypical35M36N44N37N1Standoff BarBeamRECTA36 Gr.36Typical36M46AN5N65RIGIDNoneNoneRIGIDTypical37M37N45N57RIGIDNoneNoneRIGIDTypical38M38N47N59RIGIDNoneNoneRIGIDTypical39M39N49N61RIGIDNoneNoneRIGIDTypical40M40N46N58RIGIDNoneNoneRIGIDTypical41M41N48N60RIGIDNoneNoneRIGIDTypical42M42N50N62RIGIDNoneNoneRIGIDTypical43M43N51N63RIGIDNoneNoneRIGIDTypical44M44N52N64RIGIDNoneNoneRIGIDTypical45M45N53N65ARIGIDNoneNoneRIGIDTypical46M46											
32M33N41N39N1Standoff DiagoBeamPipeA53 Gr. BTypical33M34N42N40N1Standoff DiagoBeamPipeA53 Gr. BTypical34M35N43N44N1Standoff VerticalBeamPipeA53 Gr. BTypical35M36N44N37N1Standoff BarBeamRECTA36 Gr.36Typical36M46AN5N65RIGIDNoneNoneRIGIDTypical37M37N45N57RIGIDNoneNoneRIGIDTypical38M38N47N59RIGIDNoneNoneRIGIDTypical39M39N49N61RIGIDNoneNoneRIGIDTypical40M46N58RIGIDNoneNoneRIGIDTypical41M41N48N60RIGIDNoneNoneRIGIDTypical42M42N50N62RIGIDNoneNoneRIGIDTypical43M43N51N63RIGIDNoneNoneRIGIDTypical44M44N52N64RIGIDNoneNoneRIGIDTypical45M45N53N65ARIGIDNoneNoneRIGIDTypical46M46N54N66RIGIDNoneNoneRIGIDTypical47M47N55N67R											
33M34N42N40N1Standoff DiagoBeamPipeA53 Gr. BTypical34M35N43N44N1Standoff VerticalBeamPipeA53 Gr. BTypical35M36N44N37N1Standoff VerticalBeamRECTA36 Gr. 36Typical36M46AN5N65RIGIDNoneNoneRIGIDTypical37M37N45N57RIGIDNoneNoneRIGIDTypical38M38N47N59RIGIDNoneNoneRIGIDTypical39M39N49N61RIGIDNoneNoneRIGIDTypical40M40N46N58RIGIDNoneNoneRIGIDTypical41M41N48N60RIGIDNoneNoneRIGIDTypical42M42N50N62RIGIDNoneNoneRIGIDTypical43M43N51N63RIGIDNoneNoneRIGIDTypical44M44N52N64RIGIDNoneNoneRIGIDTypical45M45N53N65ARIGIDNoneNoneRIGIDTypical46M46N54N66RIGIDNoneNoneRIGIDTypical47M47N55N67RIGIDNoneNoneRIGIDTypical48M48N56N68RIGID											
34M35N43N44N1Standoff VerticalBeamPipeA53 Gr. BTypical35M36N44N37N1Standoff BarBeamRECTA36 Gr.36Typical36M46AN5N65RIGIDNoneNoneRIGIDTypical37M37N45N57RIGIDNoneNoneRIGIDTypical38M38N47N59RIGIDNoneNoneRIGIDTypical39M39N49N61RIGIDNoneNoneRIGIDTypical40M40N46N58RIGIDNoneNoneRIGIDTypical41M41N48N60RIGIDNoneNoneRIGIDTypical42M42N50N62RIGIDNoneNoneRIGIDTypical43M43N51N63RIGIDNoneNoneRIGIDTypical44M44N52N64RIGIDNoneNoneRIGIDTypical45M45N53N65ARIGIDNoneNoneRIGIDTypical46M46N54N66RIGIDNoneNoneRIGIDTypical47M47N55N67RIGIDNoneNoneRIGIDTypical48M48N56N68RIGIDNoneNoneRIGIDTypical49MP6AN69N73Antenna PipeColumnPipe </td <td></td>											
35M36N44N37N1Standoff BarBeamRECTA36 Gr.36Typical36M46AN5N65RIGIDNoneNoneNoneRIGIDTypical37M37N45N57RIGIDNoneNoneRIGIDTypical38M38N47N59RIGIDNoneNoneRIGIDTypical39M39N49N61RIGIDNoneNoneNoneRIGIDTypical40M40N46N58RIGIDNoneNoneRIGIDTypical41M41N48N60RIGIDNoneNoneRIGIDTypical42M42N50N62RIGIDNoneNoneRIGIDTypical43M43N51N63RIGIDNoneNoneRIGIDTypical44M44N52N64RIGIDNoneNoneRIGIDTypical45M45N53N65ARIGIDNoneNoneRIGIDTypical46M46N54N66RIGIDNoneNoneRIGIDTypical48M48N56N68RIGIDNoneNoneRIGIDTypical49MP6AN69N73Antenna PipeColumnPipeA53 Gr. BTypical50MP5AN70N74Antenna PipeColumnPipeA53 Gr. BTypical51MP3AN71N75Dual Mounted <td></td>											
36M46AN5N65RIGIDNoneNoneRIGIDTypical37M37N45N57RIGIDNoneNoneNoneRIGIDTypical38M38N47N59RIGIDNoneNoneRIGIDTypical39M39N49N61RIGIDNoneNoneRIGIDTypical40M40N46N58RIGIDNoneNoneRIGIDTypical41M41N48N60RIGIDNoneNoneRIGIDTypical42M42N50N62RIGIDNoneNoneRIGIDTypical43M43N51N63RIGIDNoneNoneRIGIDTypical44M44N52N64RIGIDNoneNoneRIGIDTypical45M45N53N65ARIGIDNoneNoneRIGIDTypical46M46N54N66RIGIDNoneNoneRIGIDTypical47M47N55N67RIGIDNoneNoneRIGIDTypical48M48N56N68RIGIDNoneNoneRIGIDTypical49MP6AN69N73Antenna PipeColumnPipeA53 Gr. BTypical50MP5AN70N74Antenna PipeColumnPipeA53 Gr. BTypical51MP3AN71N75Dual MountedColumnPipeA											
37M37N45N57RIGIDNoneNoneRIGIDTypical38M38N47N59RIGIDNoneNoneNoneRIGIDTypical39M39N49N61RIGIDNoneNoneNoneRIGIDTypical40M40N46N58RIGIDNoneNoneNoneRIGIDTypical41M41N48N60RIGIDNoneNoneNoneRIGIDTypical42M42N50N62RIGIDNoneNoneRIGIDTypical43M43N51N63RIGIDNoneNoneRIGIDTypical44M44N52N64RIGIDNoneNoneRIGIDTypical45M45N53N65ARIGIDNoneNoneRIGIDTypical46M46N54N66RIGIDNoneNoneRIGIDTypical47M47N55N67RIGIDNoneNoneRIGIDTypical48M48N56N68RIGIDNoneNoneRIGIDTypical49MP6AN69N73Antenna PipeColumnPipeA53 Gr. BTypical50MP5AN70N74Antenna PipeColumnPipeA53 Gr. BTypical51MP3AN71N75Dual MountedColumnPipeA53 Gr. BTypical53MP4AN77N79Ant					INI						
38M38N47N59RIGIDNoneNoneRIGIDTypical39M39N49N61RIGIDNoneNoneNoneRIGIDTypical40M40N46N58RIGIDNoneNoneRIGIDTypical41M41N48N60RIGIDNoneNoneRIGIDTypical42M42N50N62RIGIDNoneNoneRIGIDTypical43M43N51N63RIGIDNoneNoneRIGIDTypical44M44N52N64RIGIDNoneNoneRIGIDTypical45M45N53N65ARIGIDNoneNoneRIGIDTypical46M46N54N66RIGIDNoneNoneRIGIDTypical47M47N55N67RIGIDNoneNoneRIGIDTypical48M48N56N68RIGIDNoneNoneRIGIDTypical49MP6AN69N73Antenna PipeColumnPipeA53 Gr. BTypical50MP5AN70N74Antenna PipeColumnPipeA53 Gr. BTypical51MP3AN71N75Dual MountedColumnPipeA53 Gr. BTypical52MP1AN72N76Antenna PipeColumnPipeA53 Gr. BTypical54MP2AN78N80Antenna PipeColumn<											
39M39N49N61RIGIDNoneNoneRIGIDTypical40M40N46N58RIGIDNoneNoneNoneRIGIDTypical41M41N48N60RIGIDNoneNoneNoneRIGIDTypical42M42N50N62RIGIDNoneNoneNoneRIGIDTypical43M43N51N63RIGIDNoneNoneRIGIDTypical44M44N52N64RIGIDNoneNoneRIGIDTypical45M45N53N65ARIGIDNoneNoneRIGIDTypical46M46N54N66RIGIDNoneNoneRIGIDTypical47M47N55N67RIGIDNoneNoneRIGIDTypical49MP6AN69N73Antenna PipeColumnPipeA53 Gr. BTypical50MP5AN70N74Antenna PipeColumnPipeA53 Gr. BTypical51MP3AN71N75Dual MountedColumnPipeA53 Gr. BTypical53MP4AN77N79Antenna PipeColumnPipeA53 Gr. BTypical54MP2AN78N80Antenna PipeColumnPipeA53 Gr. BTypical											
40M40N46N58RIGIDNoneNoneRIGIDTypical41M41N48N60RIGIDNoneNoneNoneRIGIDTypical42M42N50N62RIGIDNoneNoneNoneRIGIDTypical43M43N51N63RIGIDNoneNoneNoneRIGIDTypical44M44N52N64RIGIDNoneNoneRIGIDTypical45M45N53N65ARIGIDNoneNoneRIGIDTypical46M46N54N66RIGIDNoneNoneRIGIDTypical47M47N55N67RIGIDNoneNoneRIGIDTypical48M48N56N68RIGIDNoneNoneRIGIDTypical49MP6AN69N73Antenna PipeColumnPipeA53 Gr. BTypical50MP5AN70N74Antenna PipeColumnPipeA53 Gr. BTypical51MP3AN71N75Dual MountedColumnPipeA53 Gr. BTypical52MP1AN72N76Antenna PipeColumnPipeA53 Gr. BTypical54MP2AN78N80Antenna PipeColumnPipeA53 Gr. BTypical											
41M41N48N60RIGIDNoneNoneRIGIDTypical42M42N50N62RIGIDNoneNoneNoneRIGIDTypical43M43N51N63RIGIDNoneNoneNoneRIGIDTypical44M44N52N64RIGIDNoneNoneNoneRIGIDTypical45M45N53N65ARIGIDNoneNoneRIGIDTypical46M46N54N66RIGIDNoneNoneRIGIDTypical47M47N55N67RIGIDNoneNoneRIGIDTypical48M48N56N68RIGIDNoneNoneRIGIDTypical49MP6AN69N73Antenna PipeColumnPipeA53 Gr. BTypical50MP5AN70N74Antenna PipeColumnPipeA53 Gr. BTypical51MP3AN71N75Dual MountedColumnPipeA53 Gr. BTypical52MP1AN72N76Antenna PipeColumnPipeA53 Gr. BTypical53MP4AN77N79Antenna PipeColumnPipeA53 Gr. BTypical54MP2AN78N80Antenna PipeColumnPipeA53 Gr. BTypical											
42M42N50N62RIGIDRIGIDNoneNoneRIGIDTypical43M43N51N63RIGIDNoneNoneRIGIDTypical44M44N52N64RIGIDNoneNoneRIGIDTypical45M45N53N65ARIGIDNoneNoneRIGIDTypical46M46N54N66RIGIDNoneNoneRIGIDTypical47M47N55N67RIGIDNoneNoneRIGIDTypical48M48N56N68RIGIDNoneNoneRIGIDTypical49MP6AN69N73Antenna PipeColumnPipeA53 Gr. BTypical50MP5AN70N74Antenna PipeColumnPipeA53 Gr. BTypical51MP3AN71N75Dual MountedColumnPipeA53 Gr. BTypical52MP1AN72N76Antenna PipeColumnPipeA53 Gr. BTypical53MP4AN77N79Antenna PipeColumnPipeA53 Gr. BTypical54MP2AN78N80Antenna PipeColumnPipeA53 Gr. BTypical											
43M43N51N63RIGIDNoneNoneRIGIDTypical44M44N52N64RIGIDNoneNoneNoneRIGIDTypical45M45N53N65ARIGIDNoneNoneRIGIDTypical46M46N54N66RIGIDNoneNoneRIGIDTypical47M47N55N67RIGIDNoneNoneRIGIDTypical48M48N56N68RIGIDNoneNoneRIGIDTypical49MP6AN69N73Antenna PipeColumnPipeA53 Gr. BTypical50MP5AN70N74Antenna PipeColumnPipeA53 Gr. BTypical51MP3AN71N75Dual MountedColumnPipeA53 Gr. BTypical52MP1AN72N76Antenna PipeColumnPipeA53 Gr. BTypical53MP4AN77N79Antenna PipeColumnPipeA53 Gr. BTypical54MP2AN78N80Antenna PipeColumnPipeA53 Gr. BTypical											
44M44N52N64RIGIDNoneNoneRIGIDTypical45M45N53N65ARIGIDNoneNoneNoneRIGIDTypical46M46N54N66RIGIDNoneNoneNoneRIGIDTypical47M47N55N67RIGIDNoneNoneNoneRIGIDTypical48M48N56N68RIGIDNoneNoneRIGIDTypical49MP6AN69N73Antenna PipeColumnPipeA53 Gr. BTypical50MP5AN70N74Antenna PipeColumnPipeA53 Gr. BTypical51MP3AN71N75Dual MountedColumnPipeA53 Gr. BTypical52MP1AN72N76Antenna PipeColumnPipeA53 Gr. BTypical53MP4AN77N79Antenna PipeColumnPipeA53 Gr. BTypical54MP2AN78N80Antenna PipeColumnPipeA53 Gr. BTypical											
45M45N53N65ARIGIDNoneNoneRIGIDTypical46M46N54N66RIGIDNoneNoneNoneRIGIDTypical47M47N55N67RIGIDNoneNoneRIGIDTypical48M48N56N68RIGIDNoneNoneRIGIDTypical49MP6AN69N73Antenna PipeColumnPipeA53 Gr. BTypical50MP5AN70N74Antenna PipeColumnPipeA53 Gr. BTypical51MP3AN71N75Dual MountedColumnPipeA53 Gr. BTypical52MP1AN72N76Antenna PipeColumnPipeA53 Gr. BTypical53MP4AN77N79Antenna PipeColumnPipeA53 Gr. BTypical54MP2AN78N80Antenna PipeColumnPipeA53 Gr. BTypical											
46M46N54N66RIGIDNoneNoneRIGIDTypical47M47N55N67RIGIDNoneNoneNoneRIGIDTypical48M48N56N68RIGIDNoneNoneNoneRIGIDTypical49MP6AN69N73Antenna PipeColumnPipeA53 Gr. BTypical50MP5AN70N74Antenna PipeColumnPipeA53 Gr. BTypical51MP3AN71N75Dual MountedColumnPipeA53 Gr. BTypical52MP1AN72N76Antenna PipeColumnPipeA53 Gr. BTypical53MP4AN77N79Antenna PipeColumnPipeA53 Gr. BTypical54MP2AN78N80Antenna PipeColumnPipeA53 Gr. BTypical											
47M47N55N67RIGIDRIGIDNoneNoneRIGIDTypical48M48N56N68RIGIDNoneNoneRIGIDTypical49MP6AN69N73Antenna PipeColumnPipeA53 Gr. BTypical50MP5AN70N74Antenna PipeColumnPipeA53 Gr. BTypical51MP3AN71N75Dual MountedColumnPipeA53 Gr. BTypical52MP1AN72N76Antenna PipeColumnPipeA53 Gr. BTypical53MP4AN77N79Antenna PipeColumnPipeA53 Gr. BTypical54MP2AN78N80Antenna PipeColumnPipeA53 Gr. BTypical											
48M48N56N68RIGIDNoneNoneRIGIDTypical49MP6AN69N73Antenna PipeColumnPipeA53 Gr. BTypical50MP5AN70N74Antenna PipeColumnPipeA53 Gr. BTypical51MP3AN71N75Dual Mounted ColumnPipeA53 Gr. BTypical52MP1AN72N76Antenna PipeColumnPipeA53 Gr. BTypical53MP4AN77N79Antenna PipeColumnPipeA53 Gr. BTypical54MP2AN78N80Antenna PipeColumnPipeA53 Gr. BTypical											
49MP6AN69N73Antenna PipeColumnPipeA53 Gr. BTypical50MP5AN70N74Antenna PipeColumnPipeA53 Gr. BTypical51MP3AN71N75Dual Mounted ColumnPipeA53 Gr. BTypical52MP1AN72N76Antenna PipeColumnPipeA53 Gr. BTypical53MP4AN77N79Antenna PipeColumnPipeA53 Gr. BTypical54MP2AN78N80Antenna PipeColumnPipeA53 Gr. BTypical											
50MP5AN70N74Antenna PipeColumnPipeA53 Gr. BTypical51MP3AN71N75Dual MountedColumnPipeA53 Gr. BTypical52MP1AN72N76Antenna PipeColumnPipeA53 Gr. BTypical53MP4AN77N79Antenna PipeColumnPipeA53 Gr. BTypical54MP2AN78N80Antenna PipeColumnPipeA53 Gr. BTypical											
51MP3AN71N75Dual Mounted ColumnPipeA53 Gr. BTypical52MP1AN72N76Antenna PipeColumnPipeA53 Gr. BTypical53MP4AN77N79Antenna PipeColumnPipeA53 Gr. BTypical54MP2AN78N80Antenna PipeColumnPipeA53 Gr. BTypical								Column			
52MP1AN72N76Antenna PipeColumnPipeA53 Gr. BTypical53MP4AN77N79Antenna PipeColumnPipeA53 Gr. BTypical54MP2AN78N80Antenna PipeColumnPipeA53 Gr. BTypical							Antenna Pipe	Column	Pipe		
53MP4AN77N79Antenna PipeColumnPipeA53 Gr. BTypical54MP2AN78N80Antenna PipeColumnPipeA53 Gr. BTypical							Antonna Dina	Column			
54 MP2A N78 N80 Antenna Pipe Column Pipe A53 Gr. B Typical									Pipe	A53 Gr. B	Typical
									Pipe		
DO NOO NOT NOT NOT NOT NOT NOT NOT NOT NO											
	55	IVI55	INØ 1	IN84			THE BACK	веат	Pipe	ADJ Gr. B	i ypical

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only		Defl RatAnalysis	. Inactive	Seismic
1	M1						Yes			None
2	M2						Yes	** NA **		None
3	M3						Yes			None
4	M5						Yes	Default		None
5	M6						Yes	Default		None
6	M7						Yes			None
7	M8						Yes	Default		None
8	M9						Yes	Default		None
9	M10						Yes			None
10	OVP						Yes			None
11	M12						Yes			None
12	M13						Yes			None
13	M14						Yes			None
14	M15	00000X					Yes			None
15	M16	BenPIN	BenPIN				Yes	Default		None
16	M17	00000X					Yes			None
17	M18	BenPIN	BenPIN				Yes	Default		None
18	M19	00000X					Yes			None
19	M20		000000				Yes			None
20	M21		000000				Yes			None
21	M22						Yes			None
22	M23						Yes	Default		None
23	M24						Yes	Doradit		None
24	M25		000000				Yes	Default		None
25	M26	000000					Yes	Donaut		None
26	M27	BenPIN	BenPIN				Yes			None
27	M28	00000X					Yes			None
28	M29	BenPIN	BenPIN				Yes			None
29	M30	00000X					Yes			None
30	M31	000000	000000				Yes			None
31	M32		000000				Yes			None
32	M33		000000				Yes			None
33	M34						Yes			None
34	M35						Yes			None
35	M36		000000				Yes			None
36	M46A		000000				Yes	** NA **		None
37	M37						Yes	** NA **		None
38	M38						Yes	** NA **		None
39	M39						Yes	** NA **		None
40	M40						Yes	** NA **		None
40	M40						Yes	** NA **		None
41	M42						Yes	** NA **		None
42	M43						Yes	** NA **		None
43	M44						Yes	** NA **		None
44	M44 M45						Yes	** NA **		None
45	M45						Yes	** NA **		None
40	M46						Yes	** NA **		None
47	M48						Yes	** NA **		None
48	MP6A						Yes	** NA **		None
49 50	MP6A MP5A						Yes	** NA **		
	MP3A						Yes	** NA **		None
51 52								** NA **		None
	MP1A						Yes			None
53	MP4A						Yes	** NA **		None
54	MP2A	0000270					Yes	** NA **		None
55	M55	0000X0					Yes	Default		None

Member Point Loads (BLC 1 : Antenna D)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Y	-23	6
2	MP3A	My	011	6
3	MP3A	Mz	.015	6
4	MP3A	Y	-23	66
5	MP3A	My	011	66
6	MP3A	Mz	.015	66
7	MP3A	Y	-23	6
8	MP3A	My	011	6
9	MP3A	Mz	015	6
10	MP3A	Y	-23	66
11	MP3A	My	011	66
12	MP3A	Mz	015	66
13	MP1A	Y	-43.55	24
14	MP1A	My	022	24
15	MP1A	Mz	0	24
16	MP1A	Y	-43.55	48
17	MP1A	My	022	48
18	MP1A	Mz	0	48
19	MP3A	Y	-84.4	42
20	MP3A	My	.042	42
21	MP3A	Mz	0	42
22	MP4A	Y	-70.3	42
23	MP4A	My	.035	42
24	MP4A	Mz	0	42
25	OVP	Y	-32	24
26	OVP	My	0	24
27	OVP	Mz	0	24
28	MP5A	Y	-22.95	6
29	MP5A	My	011	6
30	MP5A	Mz	0	6
31	MP5A	Y	-22.95	66
32	MP5A	My	011	66
33	MP5A	Mz	0	66

Member Point Loads (BLC 2 : Antenna Di)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Y	-84.267	6
2	MP3A	My	042	6
3	MP3A	Mz	.056	6
4	MP3A	Y	-84.267	66
5	MP3A	My	042	66
6	MP3A	Mz	.056	66
7	MP3A	Y	-84.267	6
8	MP3A	My	042	6
9	MP3A	Mz	056	6
10	MP3A	Y	-84.267	66
11	MP3A	My	042	66
12	MP3A	Mz	056	66
13	MP1A	Y	-36.415	24
14	MP1A	My	018	24
15	MP1A	Mz	0	24
16	MP1A	Y	-36.415	48
17	MP1A	My	018	48
18	MP1A	Mz	0	48
19	MP3A	Y	-45.925	42

Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
20	MP3A	My	.023	42
21	MP3A	Mz	0	42
22	MP4A	Y	-41.308	42
23	MP4A	My	.021	42
24	MP4A	Mz	0	42
25	OVP	Y	-89.857	24
26	OVP	My	0	24
27	OVP	Mz	0	24
28	MP5A	Y	-68.787	6
29	MP5A	My	034	6
30	MP5A	Mz	0	6
31	MP5A	Y	-68.787	66
32	MP5A	My	034	66
33	MP5A	Mz	0	66

Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	0	6
2	MP3A	Z	-182.524	6
3	MP3A	Mx	122	6
4	MP3A	Х	0	66
5	MP3A	Z	-182.524	66
6	MP3A	Mx	122	66
7	MP3A	Х	0	6
8	MP3A	Z	-182.524	6
9	MP3A	Mx	.122	6
10	MP3A	Х	0	66
11	MP3A	Z	-182.524	66
12	MP3A	Mx	.122	66
13	MP1A	Х	0	24
14	MP1A	Z	-86.916	24
15	MP1A	Mx	0	24
16	MP1A	Х	0	48
17	MP1A	Z	-86.916	48
18	MP1A	Mx	0	48
19	MP3A	Х	0	42
20	MP3A	Z	-69.163	42
21	MP3A	Mx	0	42
22	MP4A	Х	0	42
23	MP4A	Z	-69.163	42
24	MP4A	Mx	0	42
25	OVP	Х	0	24
26	OVP	Z	-118.727	24
27	OVP	Mx	0	24
28	MP5A	Х	0	6
29	MP5A	Z	-170.688	6
30	MP5A	Mx	0	6
31	MP5A	Х	0	66
32	MP5A	Z	-170.688	66
33	MP5A	Mx	0	66

Member Point Loads (BLC 4 : Antenna Wo (30 Deg))

=

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	85.409	6
2	MP3A	Z	-147.932	6
3	MP3A	Mx	141	6

Member Point Loads (BLC 4 : Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
4	MP3A	X	85.409	66
5	MP3A	Z	-147.932	66
6	MP3A	Mx	141	66
7	MP3A	Х	85.409	6
8	MP3A	Z	-147.932	6
9	MP3A	Mx	.056	6
10	MP3A	X	85.409	66
11	MP3A	Z	-147.932	66
12	MP3A	Mx	.056	66
13	MP1A	X	36.847	24
14	MP1A	Z	-63.821	24
15	MP1A	Mx	018	24
16	MP1A	X	36.847	48
17	MP1A	Z	-63.821	48
18	MP1A	Mx	018	48
19	MP3A	X	31.715	42
20	MP3A	Z	-54.932	42
21	MP3A	Mx	.016	42
22	MP4A	X	30.617	42
23	MP4A	Z	-53.03	42
24	MP4A	Mx	.015	42
25	OVP	X	57.818	24
26	OVP	Z	-100.144	24
27	OVP	Mx	0	24
28	MP5A	X	78.202	6
29	MP5A	Z	-135.449	6
30	MP5A	Mx	039	6
31	MP5A	X	78.202	66
32	MP5A	Z	-135.449	66
33	MP5A	Mx	039	66

Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	127.657	6
2	MP3A	Z	-73.703	6
3	MP3A	Mx	113	6
4	MP3A	Х	127.657	66
5	MP3A	Z	-73.703	66
6	MP3A	Mx	113	66
7	MP3A	Х	127.657	6
8	MP3A	Z	-73.703	6
9	MP3A	Mx	015	6
10	MP3A	Х	127.657	66
11	MP3A	Z	-73.703	66
12	MP3A	Mx	015	66
13	MP1A	Х	40.919	24
14	MP1A	Z	-23.625	24
15	MP1A	Mx	02	24
16	MP1A	Х	40.919	48
17	MP1A	Z	-23.625	48
18	MP1A	Mx	02	48
19	MP3A	Х	45.003	42
20	MP3A	Z	-25.982	42
21	MP3A	Mx	.023	42
22	MP4A	Х	39.297	42
23	MP4A	Z	-22.688	42

Member Point Loads (BLC 5 : Antenna Wo (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
24	MP4A	Mx	.02	42
25	OVP	Х	111.952	24
26	OVP	Z	-64.636	24
27	OVP	Mx	0	24
28	MP5A	Х	110.707	6
29	MP5A	Z	-63.917	6
30	MP5A	Mx	055	6
31	MP5A	Х	110.707	66
32	MP5A	Z	-63.917	66
33	MP5A	Mx	055	66

Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	135.699	6
2	MP3A	Z	0	6
3	MP3A	Mx	068	6
4	MP3A	Х	135.699	66
5	MP3A	Z	0	66
6	MP3A	Mx	068	66
7	MP3A	Х	135.699	6
8	MP3A	Z	0	6
9	MP3A	Mx	068	6
10	MP3A	Х	135.699	66
11	MP3A	Z	0	66
12	MP3A	Mx	068	66
13	MP1A	Х	34.027	24
14	MP1A	Z	0	24
15	MP1A	Mx	017	24
16	MP1A	Х	34.027	48
17	MP1A	Z	0	48
18	MP1A	Mx	017	48
19	MP3A	Х	46.232	42
20	MP3A	Z	0	42
21	MP3A	Mx	.023	42
22	MP4A	Х	37.448	42
23	MP4A	Z	0	42
24	MP4A	Mx	.019	42
25	OVP	Х	145.997	24
26	OVP	Z	0	24
27	OVP	Mx	0	24
28	MP5A	Х	113.549	6
29	MP5A	Z	0	6
30	MP5A	Mx	057	6
31	MP5A	Х	113.549	66
32	MP5A	Z	0	66
33	MP5A	Mx	057	66

Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	127.657	6
2	MP3A	Z	73.703	6
3	MP3A	Mx	015	6
4	MP3A	X	127.657	66
5	MP3A	Z	73.703	66
6	MP3A	Mx	015	66
7	MP3A	Х	127.657	6

Member Point Loads (BLC 7 : Antenna Wo (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
8	MP3A	Z	73.703	6
9	MP3A	Mx	113	6
10	MP3A	Х	127.657	66
11	MP3A	Z	73.703	66
12	MP3A	Mx	113	66
13	MP1A	Х	40.919	24
14	MP1A	Z	23.625	24
15	MP1A	Mx	02	24
16	MP1A	Х	40.919	48
17	MP1A	Z	23.625	48
18	MP1A	Mx	02	48
19	MP3A	Х	45.003	42
20	MP3A	Z	25.982	42
21	MP3A	Mx	.023	42
22	MP4A	Х	39.297	42
23	MP4A	Z	22.688	42
24	MP4A	Mx	.02	42
25	OVP	Х	129.114	24
26	OVP	Z	74.544	24
27	OVP	Mx	0	24
28	MP5A	Х	110.707	6
29	MP5A	Z	63.917	6
30	MP5A	Mx	055	6
31	MP5A	Х	110.707	66
32	MP5A	Z	63.917	66
33	MP5A	Mx	055	66

Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	85.409	6
2	MP3A	Z	147.932	6
3	MP3A	Mx	.056	6
4	MP3A	Х	85.409	66
5	MP3A	Z	147.932	66
6	MP3A	Mx	.056	66
7	MP3A	Х	85.409	6
8	MP3A	Z	147.932	6
9	MP3A	Mx	141	6
10	MP3A	Х	85.409	66
11	MP3A	Z	147.932	66
12	MP3A	Mx	141	66
13	MP1A	Х	36.847	24
14	MP1A	Z	63.821	24
15	MP1A	Mx	018	24
16	MP1A	Х	36.847	48
17	MP1A	Z	63.821	48
18	MP1A	Mx	018	48
19	MP3A	Х	31.715	42
20	MP3A	Z	54.932	42
21	MP3A	Mx	.016	42
22	MP4A	Х	30.617	42
23	MP4A	Z	53.03	42
24	MP4A	Mx	.015	42
25	OVP	Х	67.726	24
26	OVP	Z	117.306	24
27	OVP	Mx	0	24

Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
28	MP5A	X	78.202	6
29	MP5A	Z	135.449	6
30	MP5A	Mx	039	6
31	MP5A	Х	78.202	66
32	MP5A	Z	135.449	66
33	MP5A	Mx	039	66

Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	0	6
2	MP3A	Z	182.524	6
3	MP3A	Mx	.122	6
4	MP3A	Х	0	66
5	MP3A	Z	182.524	66
6	MP3A	Mx	.122	66
7	MP3A	Х	0	6
8	MP3A	Z	182.524	6
9	MP3A	Mx	122	6
10	MP3A	Х	0	66
11	MP3A	Z	182.524	66
12	MP3A	Mx	122	66
13	MP1A	Х	0	24
14	MP1A	Z	86.916	24
15	MP1A	Mx	0	24
16	MP1A	Х	0	48
17	MP1A	Z	86.916	48
18	MP1A	Mx	0	48
19	MP3A	Х	0	42
20	MP3A	Z	69.163	42
21	MP3A	Mx	0	42
22	MP4A	Х	0	42
23	MP4A	Z	69.163	42
24	MP4A	Mx	0	42
25	OVP	Х	0	24
26	OVP	Z	118.727	24
27	OVP	Mx	0	24
28	MP5A	Х	0	6
29	MP5A	Z	170.688	6
30	MP5A	Mx	0	6
31	MP5A	Х	0	66
32	MP5A	Z	170.688	66
33	MP5A	Mx	0	66

Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	-85.409	6
2	MP3A	Z	147.932	6
3	MP3A	Mx	.141	6
4	MP3A	Х	-85.409	66
5	MP3A	Z	147.932	66
6	MP3A	Mx	.141	66
7	MP3A	Х	-85.409	6
8	MP3A	Z	147.932	6
9	MP3A	Mx	056	6
10	MP3A	Х	-85.409	66
11	MP3A	Z	147.932	66

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
12	MP3A	Mx	056	66
13	MP1A	Х	-36.847	24
14	MP1A	Z	63.821	24
15	MP1A	Mx	.018	24
16	MP1A	Х	-36.847	48
17	MP1A	Z	63.821	48
18	MP1A	Mx	.018	48
19	MP3A	Х	-31.715	42
20	MP3A	Z	54.932	42
21	MP3A	Mx	016	42
22	MP4A	Х	-30.617	42
23	MP4A	Z	53.03	42
24	MP4A	Mx	015	42
25	OVP	Х	-57.818	24
26	OVP	Z	100.144	24
27	OVP	Mx	0	24
28	MP5A	Х	-78.202	6
29	MP5A	Z	135.449	6
30	MP5A	Mx	.039	6
31	MP5A	Х	-78.202	66
32	MP5A	Z	135.449	66
33	MP5A	Mx	.039	66

Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	-127.657	6
2	MP3A	Z	73.703	6
3	MP3A	Mx	.113	6
4	MP3A	Х	-127.657	66
5	MP3A	Z	73.703	66
6	MP3A	Mx	.113	66
7	MP3A	Х	-127.657	6
8	MP3A	Z	73.703	6
9	MP3A	Mx	.015	6
10	MP3A	Х	-127.657	66
11	MP3A	Z	73.703	66
12	MP3A	Mx	.015	66
13	MP1A	Х	-40.919	24
14	MP1A	Z	23.625	24
15	MP1A	Mx	.02	24
16	MP1A	Х	-40.919	48
17	MP1A	Z	23.625	48
18	MP1A	Mx	.02	48
19	MP3A	Х	-45.003	42
20	MP3A	Z	25.982	42
21	MP3A	Mx	023	42
22	MP4A	Х	-39.297	42
23	MP4A	Z	22.688	42
24	MP4A	Mx	02	42
25	OVP	Х	-111.952	24
26	OVP	Z	64.636	24
27	OVP	Mx	0	24
28	MP5A	Х	-110.707	6
29	MP5A	Z	63.917	6
30	MP5A	Mx	.055	6
31	MP5A	Х	-110.707	66

Member Point Loads (BLC 11 : Antenna Wo (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
32	MP5A	Z	63.917	66
33	MP5A	Mx	.055	66

Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	-135.699	6
2	MP3A	Z	0	6
3	MP3A	Mx	.068	6
4	MP3A	X	-135.699	66
5	MP3A	Z	0	66
6	MP3A	Mx	.068	66
7	MP3A	X	-135.699	6
8	MP3A	Z	0	6
9	MP3A	Mx	.068	6
10	MP3A	X	-135.699	66
11	MP3A	Z	0	66
12	MP3A	Mx	.068	66
13	MP1A	X	-34.027	24
14	MP1A	Z	0	24
15	MP1A	Mx	.017	24
16	MP1A	X	-34.027	48
17	MP1A	Z	0	48
18	MP1A	Mx	.017	48
19	MP3A	X	-46.232	42
20	MP3A	Z	0	42
21	MP3A	Mx	023	42
22	MP4A	X	-37.448	42
23	MP4A	Z	0	42
24	MP4A	Mx	019	42
25	OVP	X	-145.997	24
26	OVP	Z	0	24
27	OVP	Mx	0	24
28	MP5A	X	-113.549	6
29	MP5A	Z	0	6
30	MP5A	Mx	.057	6
31	MP5A	X	-113.549	66
32	MP5A	Z	0	66
33	MP5A	Mx	.057	66

Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	-127.657	6
2	MP3A	Z	-73.703	6
3	MP3A	Mx	.015	6
4	MP3A	Х	-127.657	66
5	MP3A	Z	-73.703	66
6	MP3A	Mx	.015	66
7	MP3A	Х	-127.657	6
8	MP3A	Z	-73.703	6
9	MP3A	Mx	.113	6
10	MP3A	Х	-127.657	66
11	MP3A	Z	-73.703	66
12	MP3A	Mx	.113	66
13	MP1A	Х	-40.919	24
14	MP1A	Z	-23.625	24
15	MP1A	Mx	.02	24

Member Point Loads (BLC 13 : Antenna Wo (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
16	MP1A	Х	-40.919	48
17	MP1A	Z	-23.625	48
18	MP1A	Mx	.02	48
19	MP3A	Х	-45.003	42
20	MP3A	Z	-25.982	42
21	MP3A	Mx	023	42
22	MP4A	Х	-39.297	42
23	MP4A	Z	-22.688	42
24	MP4A	Mx	02	42
25	OVP	Х	-129.114	24
26	OVP	Z	-74.544	24
27	OVP	Mx	0	24
28	MP5A	Х	-110.707	6
29	MP5A	Z	-63.917	6
30	MP5A	Mx	.055	6
31	MP5A	Х	-110.707	66
32	MP5A	Z	-63.917	66
33	MP5A	Mx	.055	66

Member Point Loads (BLC 14 : Antenna Wo (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	-85.409	6
2	MP3A	Z	-147.932	6
3	MP3A	Mx	056	6
4	MP3A	Х	-85.409	66
5	MP3A	Z	-147.932	66
6	MP3A	Mx	056	66
7	MP3A	Х	-85.409	6
8	MP3A	Z	-147.932	6
9	MP3A	Mx	.141	6
10	MP3A	Х	-85.409	66
11	MP3A	Z	-147.932	66
12	MP3A	Mx	.141	66
13	MP1A	Х	-36.847	24
14	MP1A	Z	-63.821	24
15	MP1A	Mx	.018	24
16	MP1A	Х	-36.847	48
17	MP1A	Z	-63.821	48
18	MP1A	Mx	.018	48
19	MP3A	Х	-31.715	42
20	MP3A	Z	-54.932	42
21	MP3A	Mx	016	42
22	MP4A	Х	-30.617	42
23	MP4A	Z	-53.03	42
24	MP4A	Mx	015	42
25	OVP	Х	-67.726	24
26	OVP	Z	-117.306	24
27	OVP	Mx	0	24
28	MP5A	Х	-78.202	6
29	MP5A	Z	-135.449	6
30	MP5A	Mx	.039	6
31	MP5A	Х	-78.202	66
32	MP5A	Z	-135.449	66
33	MP5A	Mx	.039	66

Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	0	6
2	MP3A	Z	-33.489	6
3	MP3A	Mx	022	6
4	MP3A	X	0	66
5	MP3A	Z	-33.489	66
6	MP3A	Mx	022	66
7	MP3A	Х	0	6
8	MP3A	Z	-33.489	6
9	MP3A	Mx	.022	6
10	MP3A	X	0	66
11	MP3A	Z	-33.489	66
12	MP3A	Mx	.022	66
13	MP1A	X	0	24
14	MP1A	Z	-16.532	24
15	MP1A	Mx	0	24
16	MP1A	X	0	48
17	MP1A	Z	-16.532	48
18	MP1A	Mx	0	48
19	MP3A	X	0	42
20	MP3A	Z	-13.949	42
21	MP3A	Mx	0	42
22	MP4A	X	0	42
23	MP4A	Z	-13.949	42
24	MP4A	Mx	0	42
25	OVP	X	0	24
26	OVP	Z	-23.133	24
27	OVP	Mx	0	24
28	MP5A	X	0	6
29	MP5A	Z	-31.607	6
30	MP5A	Mx	0	6
31	MP5A	X	0	66
32	MP5A	Z	-31.607	66
33	MP5A	Mx	0	66

Member Point Loads (BLC 16 : Antenna Wi (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	15.726	6
2	MP3A	Z	-27.239	6
3	MP3A	Mx	026	6
4	MP3A	Х	15.726	66
5	MP3A	Z	-27.239	66
6	MP3A	Mx	026	66
7	MP3A	Х	15.726	6
8	MP3A	Z	-27.239	6
9	MP3A	Mx	.01	6
10	MP3A	Х	15.726	66
11	MP3A	Z	-27.239	66
12	MP3A	Mx	.01	66
13	MP1A	Х	7.081	24
14	MP1A	Z	-12.265	24
15	MP1A	Mx	004	24
16	MP1A	Х	7.081	48
17	MP1A	Z	-12.265	48
18	MP1A	Mx	004	48
19	MP3A	Х	6.445	42
20	MP3A	Z	-11.162	42

Member Point Loads (BLC 16 : Antenna Wi (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
21	MP3A	Mx	.003	42
22	MP4A	Х	6.243	42
23	MP4A	Z	-10.814	42
24	MP4A	Mx	.003	42
25	OVP	Х	11.296	24
26	OVP	Z	-19.565	24
27	OVP	Mx	0	24
28	MP5A	Х	14.584	6
29	MP5A	Z	-25.26	6
30	MP5A	Mx	007	6
31	MP5A	Х	14.584	66
32	MP5A	Z	-25.26	66
33	MP5A	Mx	007	66

Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	23.712	6
2	MP3A	Z	-13.69	6
3	MP3A	Mx	021	6
4	MP3A	Х	23.712	66
5	MP3A	Z	-13.69	66
6	MP3A	Mx	021	66
7	MP3A	Х	23.712	6
8	MP3A	Z	-13.69	6
9	MP3A	Mx	003	6
10	MP3A	Х	23.712	66
11	MP3A	Z	-13.69	66
12	MP3A	Mx	003	66
13	MP1A	X Z	8.161	24
14	MP1A	Z	-4.712	24
15	MP1A	Mx	004	24
16	MP1A	Х	8.161	48
17	MP1A	Z	-4.712	48
18	MP1A	Mx	004	48
19	MP3A	Х	9.327	42
20	MP3A	Z	-5.385	42
21	MP3A	Mx	.005	42
22	MP4A	Х	8.281	42
23	MP4A	Z	-4.781	42
24	MP4A	Mx	.004	42
25	OVP	Х	21.632	24
26	OVP	Z	-12.489	24
27	OVP	Mx	0	24
28	MP5A	Х	21.036	6
29	MP5A	Z	-12.145	6
30	MP5A	Mx	011	6
31	MP5A	Х	21.036	66
32	MP5A	Z	-12.145	66
33	MP5A	Mx	011	66

Member Point Loads (BLC 18 : Antenna Wi (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	25.344	6
2	MP3A	Z	0	6
3	MP3A	Mx	013	6
4	MP3A	X	25.344	66

Member Label Direction Magnitude[lb,k-ft] Location[in,%] MP3A 5 Ζ 0 66 MP3A -.013 66 6 Mx MP3A 25.344 7 Х 6 Ζ 8 MP3A 0 6 9 MP3A Mx -.013 6 10 MP3A Х 25.344 66 Ζ 11 MP3A 0 66 12 MP3A Mx -.013 66 13 MP1A Х 7.054 24 Ζ 14 MP1A 0 24 15 MP1A Mx -.004 24 7.054 48 16 MP1A Х 48 MP1A Ζ 0 17 MP1A -.004 48 18 Mx MP3A 9.71 19 Х 42 Ζ 20 MP3A 0 42 21 MP3A Mx .005 42 22 MP4A Х 8.1 42 23 MP4A Ζ 0 42 24 MP4A .004 42 Mx OVP 27.908 25 Х 24 OVP Ζ 26 24 0 27 OVP 0 24 Мx 28 MP5A Х 21.851 6 29 MP5A Ζ 0 6 30 MP5A Mx -.011 6 31 21.851 MP5A Х 66 Ζ 32 MP5A 0 66 33 MP5A Mx -.011 66

Member Point Loads (BLC 18 : Antenna Wi (90 Deg)) (Continued)

Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	23.712	6
2	MP3A	Z	13.69	6
3	MP3A	Mx	003	6
4	MP3A	Х	23.712	66
5	MP3A	Z	13.69	66
6	MP3A	Mx	003	66
7	MP3A	Х	23.712	6
8	MP3A	Z	13.69	6
9	MP3A	Mx	021	6
10	MP3A	Х	23.712	66
11	MP3A	Z	13.69	66
12	MP3A	Mx	021	66
13	MP1A	Х	8.161	24
14	MP1A	Z	4.712	24
15	MP1A	Mx	004	24
16	MP1A	Х	8.161	48
17	MP1A	Z	4.712	48
18	MP1A	Mx	004	48
19	MP3A	Х	9.327	42
20	MP3A	Z	5.385	42
21	MP3A	Mx	.005	42
22	MP4A	Х	8.281	42
23	MP4A	Z	4.781	42
24	MP4A	Mx	.004	42

Member Point Loads (BLC 19 : Antenna Wi (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
25	OVP	Х	24.637	24
26	OVP	Z	14.224	24
27	OVP	Mx	0	24
28	MP5A	Х	21.036	6
29	MP5A	Z	12.145	6
30	MP5A	Mx	011	6
31	MP5A	Х	21.036	66
32	MP5A	Z	12.145	66
33	MP5A	Mx	011	66

Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	15.726	6
2	MP3A	Z	27.239	6
3	MP3A	Mx	.01	6
4	MP3A	X	15.726	66
5	MP3A	Z	27.239	66
6	MP3A	Mx	.01	66
7	MP3A	X	15.726	6
8	MP3A	Z	27.239	6
9	MP3A	Mx	026	6
10	MP3A	X	15.726	66
11	MP3A	Z	27.239	66
12	MP3A	Mx	026	66
13	MP1A	X	7.081	24
14	MP1A	Z	12.265	24
15	MP1A	Mx	004	24
16	MP1A	X	7.081	48
17	MP1A	Z	12.265	48
18	MP1A	Mx	004	48
19	MP3A	X	6.445	42
20	MP3A	Z	11.162	42
21	MP3A	Mx	.003	42
22	MP4A	X	6.243	42
23	MP4A	Z	10.814	42
24	MP4A	Mx	.003	42
25	OVP	X	13.031	24
26	OVP	Z	22.57	24
27	OVP	Mx	0	24
28	MP5A	X	14.584	6
29	MP5A	Z	25.26	6
30	MP5A	Mx	007	6
31	MP5A	X	14.584	66
32	MP5A	Z	25.26	66
33	MP5A	Mx	007	66

Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	0	6
2	MP3A	Z	33.489	6
3	MP3A	Mx	.022	6
4	MP3A	Х	0	66
5	MP3A	Z	33.489	66
6	MP3A	Mx	.022	66
7	MP3A	Х	0	6
8	MP3A	Z	33.489	6

Member Point Loads (BLC 21 : Antenna Wi (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP3A	Mx	022	6
10	MP3A	Х	0	66
11	MP3A	Z	33.489	66
12	MP3A	Mx	022	66
13	MP1A	X	0	24
14	MP1A	Z	16.532	24
15	MP1A	Mx	0	24
16	MP1A	X	0	48
17	MP1A	Z	16.532	48
18	MP1A	Mx	0	48
19	MP3A	X	0	42
20	MP3A	Z	13.949	42
21	MP3A	Mx	0	42
22	MP4A	Х	0	42
23	MP4A	Z	13.949	42
24	MP4A	Mx	0	42
25	OVP	X	0	24
26	OVP	Z	23.133	24
27	OVP	Mx	0	24
28	MP5A	X	0	6
29	MP5A	Z	31.607	6
30	MP5A	Mx	0	6
31	MP5A	X	0	66
32	MP5A	Z	31.607	66
33	MP5A	Mx	0	66

Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	-15.726	6
2	MP3A	Z	27.239	6
3	MP3A	Mx	.026	6
4	MP3A	Х	-15.726	66
5	MP3A	Z	27.239	66
6	MP3A	Mx	.026	66
7	MP3A	Х	-15.726	6
8	MP3A	Z	27.239	6
9	MP3A	Mx	01	6
10	MP3A	Х	-15.726	66
11	MP3A	Z	27.239	66
12	MP3A	Mx	01	66
13	MP1A	Х	-7.081	24
14	MP1A	Z	12.265	24
15	MP1A	Mx	.004	24
16	MP1A	Х	-7.081	48
17	MP1A	Z	12.265	48
18	MP1A	Mx	.004	48
19	MP3A	Х	-6.445	42
20	MP3A	Z	11.162	42
21	MP3A	Mx	003	42
22	MP4A	Х	-6.243	42
23	MP4A	Z	10.814	42
24	MP4A	Mx	003	42
25	OVP	Х	-11.296	24
26	OVP	Z	19.565	24
27	OVP	Mx	0	24
28	MP5A	Х	-14.584	6

Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
29	MP5A	Z	25.26	6
30	MP5A	Mx	.007	6
31	MP5A	X	-14.584	66
32	MP5A	Z	25.26	66
33	MP5A	Mx	.007	66

Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	-23.712	6
2	MP3A	Z	13.69	6
3	MP3A	Mx	.021	6
4	MP3A	Х	-23.712	66
5	MP3A	Z	13.69	66
6	MP3A	Mx	.021	66
7	MP3A	Х	-23.712	6
8	MP3A	Z	13.69	6
9	MP3A	Mx	.003	6
10	MP3A	Х	-23.712	66
11	MP3A	Z	13.69	66
12	MP3A	Mx	.003	66
13	MP1A	Х	-8.161	24
14	MP1A	Z	4.712	24
15	MP1A	Mx	.004	24
16	MP1A	Х	-8.161	48
17	MP1A	Z	4.712	48
18	MP1A	Mx	.004	48
19	MP3A	Х	-9.327	42
20	MP3A	Z	5.385	42
21	MP3A	Mx	005	42
22	MP4A	Х	-8.281	42
23	MP4A	Z	4.781	42
24	MP4A	Mx	004	42
25	OVP	Х	-21.632	24
26	OVP	Z	12.489	24
27	OVP	Mx	0	24
28	MP5A	Х	-21.036	6
29	MP5A	Z	12.145	6
30	MP5A	Mx	.011	6
31	MP5A	Х	-21.036	66
32	MP5A	Z	12.145	66
33	MP5A	Mx	.011	66

Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	-25.344	6
2	MP3A	Z	0	6
3	MP3A	Mx	.013	6
4	MP3A	Х	-25.344	66
5	MP3A	Z	0	66
6	MP3A	Mx	.013	66
7	MP3A	Х	-25.344	6
8	MP3A	Z	0	6
9	MP3A	Mx	.013	6
10	MP3A	Х	-25.344	66
11	MP3A	Z	0	66
12	MP3A	Mx	.013	66

Member Point Loads (BLC 24 : Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
13	MP1A	Х	-7.054	24
14	MP1A	Z	0	24
15	MP1A	Mx	.004	24
16	MP1A	Х	-7.054	48
17	MP1A	Z	0	48
18	MP1A	Mx	.004	48
19	MP3A	Х	-9.71	42
20	MP3A	Z	0	42
21	MP3A	Mx	005	42
22	MP4A	Х	-8.1	42
23	MP4A	Z	0	42
24	MP4A	Mx	004	42
25	OVP	Х	-27.908	24
26	OVP	Z	0	24
27	OVP	Mx	0	24
28	MP5A	Х	-21.851	6
29	MP5A	Z	0	6
30	MP5A	Mx	.011	6
31	MP5A	Х	-21.851	66
32	MP5A	Z	0	66
33	MP5A	Mx	.011	66

Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

1	MDOA		Magnitude[lb,k-ft]	Location[in,%]
	MP3A	Х	-23.712	6
2	MP3A	Z	-13.69	6
3	MP3A	Mx	.003	6
4	MP3A	Х	-23.712	66
5	MP3A	Z	-13.69	66
6	MP3A	Mx	.003	66
7	MP3A	X	-23.712	6
8	MP3A	Z	-13.69	6
9	MP3A	Mx	.021	6
10	MP3A	X	-23.712	66
11	MP3A	Z	-13.69	66
12	MP3A	Mx	.021	66
13	MP1A	X	-8.161	24
14	MP1A	Z	-4.712	24
15	MP1A	Mx	.004	24
16	MP1A	X	-8.161	48
17	MP1A	Z	-4.712	48
18	MP1A	Mx	.004	48
19	MP3A	X	-9.327	42
20	MP3A	Z	-5.385	42
21	MP3A	Mx	005	42
22	MP4A	X	-8.281	42
23	MP4A	Z	-4.781	42
24	MP4A	Mx	004	42
25	OVP	X	-24.637	24
26	OVP	Z	-14.224	24
27	OVP	Mx	0	24
28	MP5A	X	-21.036	6
29	MP5A	Z	-12.145	6
30	MP5A	Mx	.011	6
31	MP5A	X	-21.036	66
32	MP5A	Z	-12.145	66

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
33	MP5A	Mx	.011	66
embe	r Point Loads (BLC	26 : Antenna Wi (3	30 Dea))	
	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	-15.726	6
2	MP3A	Z	-27.239	6
3	MP3A	Mx	01	6
4	MP3A	X	-15.726	66
5	MP3A	Z	-27.239	66
6	MP3A	Mx	01	66
7	MP3A	Х	-15.726	6
8	MP3A	Z	-27.239	6
9	MP3A	Mx	.026	6
10	MP3A	X	-15.726	66
11	MP3A	Z	-27.239	66
12	MP3A	Mx	.026	66
13	MP1A	X	-7.081	24
14	MP1A	Z	-12.265	24
15	MP1A	Mx	.004	24
16	MP1A	X	-7.081	48
17	MP1A	Z	-12.265	48
18	MP1A	Mx	.004	48
19	MP3A	X	-6.445	42
20	MP3A	Z	-11.162	42
21	MP3A	Mx	003	42
22	MP4A	X	-6.243	42
23	MP4A	Z	-10.814	42
24	MP4A	Mx	003	42
25	OVP	Х	-13.031	24
26	OVP	Z	-22.57	24
27	OVP	Mx	0	24
28	MP5A	Х	-14.584	6
29	MP5A	Z	-25.26	6
30	MP5A	Mx	.007	6
31	MP5A	X	-14.584	66
32	MP5A	Z	-25.26	66
33	MP5A	Mx	.007	66

Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	0	6
2	MP3A	Z	11	6
3	MP3A	Mx	-7.3e-5	6
4	MP3A	Х	0	66
5	MP3A	Z	11	66
6	MP3A	Mx	-7.3e-5	66
7	MP3A	Х	0	6
8	MP3A	Z	11	6
9	MP3A	Mx	7.3e-5	6
10	MP3A	Х	0	66
11	MP3A	Z	11	66
12	MP3A	Mx	7.3e-5	66
13	MP1A	Х	0	24
14	MP1A	Z	053	24
15	MP1A	Mx	0	24
16	MP1A	Х	0	48

Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
17	MP1A	Z	053	48
18	MP1A	Mx	0	48
19	MP3A	Х	0	42
20	MP3A	Z	042	42
21	MP3A	Mx	0	42
22	MP4A	Х	0	42
23	MP4A	Z	042	42
24	MP4A	Mx	0	42
25	OVP	Х	0	24
26	OVP	Z	072	24
27	OVP	Mx	0	24
28	MP5A	Х	0	6
29	MP5A	Z	103	6
30	MP5A	Mx	0	6
31	MP5A	Х	0	66
32	MP5A	Z	103	66
33	MP5A	Mx	0	66

Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	X	.052	6
2	MP3A	Z	089	6
3	MP3A	Mx	-8.5e-5	6
4	MP3A	Х	.052	66
5	MP3A	Z	089	66
6	MP3A	Mx	-8.5e-5	66
7	MP3A	Х	.052	6
8	MP3A	Z	089	6
9	MP3A	Mx	3.3e-5	6
10	MP3A	Х	.052	66
11	MP3A	Z	089	66
12	MP3A	Mx	3.3e-5	66
13	MP1A	Х	.022	24
14	MP1A	Z	039	24
15	MP1A	Mx	-1.1e-5	24
16	MP1A	Х	.022	48
17	MP1A	Z	039	48
18	MP1A	Mx	-1.1e-5	48
19	MP3A	Х	.019	42
20	MP3A	Z	033	42
21	MP3A	Mx	9e-6	42
22	MP4A	Х	.019	42
23	MP4A	Z	032	42
24	MP4A	Mx	9e-6	42
25	OVP	Х	.035	24
26	OVP	Z	061	24
27	OVP	Mx	0	24
28	MP5A	Х	.047	6
29	MP5A	Z	082	6
30	MP5A	Mx	-2.4e-5	6
31	MP5A	Х	.047	66
32	MP5A	Z	082	66
33	MP5A	Mx	-2.4e-5	66

Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

-

Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
RISA-3D Version 17.0.4	[R:\\\\\\Rev. 2	RISA\469141-VZW_MT_LOT_A_H.r3	8d] Page 25

Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	.077	6
2	MP3A	Z	045	6
3	MP3A	Mx	-6.8e-5	6
4	MP3A	Х	.077	66
5	MP3A	Z	045	66
6	MP3A	Mx	-6.8e-5	66
7	MP3A	Х	.077	6
8	MP3A	Z	045	6
9	MP3A	Mx	-8e-6	6
10	MP3A	Х	.077	66
11	MP3A	Z	045	66
12	MP3A	Mx	-8e-6	66
13	MP1A	Х	.025	24
14	MP1A	Z	014	24
15	MP1A	Mx	-1.3e-5	24
16	MP1A	Х	.025	48
17	MP1A	Z	014	48
18	MP1A	Mx	-1.3e-5	48
19	MP3A	Х	.027	42
20	MP3A	Z	016	42
21	MP3A	Mx	1.4e-5	42
22	MP4A	Х	.024	42
23	MP4A	Z	014	42
24	MP4A	Mx	1.2e-5	42
25	OVP	X	.068	24
26	OVP	Z	039	24
27	OVP	Mx	0	24
28	MP5A	X	.067	6
29	MP5A	Z	039	6
30	MP5A	Mx	-3.4e-5	6
31	MP5A	Х	.067	66
32	MP5A	Z	039	66
33	MP5A	Mx	-3.4e-5	66

Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	.082	6
2	MP3A	Z	0	6
3	MP3A	Mx	-4.1e-5	6
4	MP3A	Х	.082	66
5	MP3A	Z	0	66
6	MP3A	Mx	-4.1e-5	66
7	MP3A	Х	.082	6
8	MP3A	Z	0	6
9	MP3A	Mx	-4.1e-5	6
10	MP3A	Х	.082	66
11	MP3A	Z	0	66
12	MP3A	Mx	-4.1e-5	66
13	MP1A	Х	.021	24
14	MP1A	Z	0	24
15	MP1A	Mx	-1e-5	24
16	MP1A	Х	.021	48
17	MP1A	Z	0	48
18	MP1A	Mx	-1e-5	48
19	MP3A	Х	.028	42
20	MP3A	Z	0	42

Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
21	MP3A	Mx	1.4e-5	42
22	MP4A	Х	.023	42
23	MP4A	Z	0	42
24	MP4A	Mx	1.2e-5	42
25	OVP	Х	.088	24
26	OVP	Z	0	24
27	OVP	Mx	0	24
28	MP5A	Х	.069	6
29	MP5A	Z	0	6
30	MP5A	Mx	-3.5e-5	6
31	MP5A	Х	.069	66
32	MP5A	Z	0	66
33	MP5A	Mx	-3.5e-5	66

Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	.077	6
2	MP3A	Z	.045	6
3	MP3A	Mx	-8e-6	6
4	MP3A	Х	.077	66
5	MP3A	Z	.045	66
6	MP3A	Mx	-8e-6	66
7	MP3A	Х	.077	6
8	MP3A	Z	.045	6
9	MP3A	Mx	-6.8e-5	6
10	MP3A	Х	.077	66
11	MP3A	Z	.045	66
12	MP3A	Mx	-6.8e-5	66
13	MP1A	Х	.025	24
14	MP1A	Z	.014	24
15	MP1A	Mx	-1.3e-5	24
16	MP1A	Х	.025	48
17	MP1A	Z	.014	48
18	MP1A	Mx	-1.3e-5	48
19	MP3A	Х	.027	42
20	MP3A	Z	.016	42
21	MP3A	Mx	1.4e-5	42
22	MP4A	Х	.024	42
23	MP4A	Z	.014	42
24	MP4A	Mx	1.2e-5	42
25	OVP	Х	.078	24
26	OVP	Z	.045	24
27	OVP	Mx	0	24
28	MP5A	Х	.067	6
29	MP5A	Z	.039	6
30	MP5A	Mx	-3.4e-5	6
31	MP5A	Х	.067	66
32	MP5A	Z	.039	66
33	MP5A	Mx	-3.4e-5	66

Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	.052	6
2	MP3A	Z	.089	6
3	MP3A	Mx	3.3e-5	6
4	MP3A	Х	.052	66

Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
5	MP3A	Z	.089	66
6	MP3A	Mx	3.3e-5	66
7	MP3A	Х	.052	6
8	MP3A	Z	.089	6
9	MP3A	Mx	-8.5e-5	6
10	MP3A	Х	.052	66
11	MP3A	Z	.089	66
12	MP3A	Mx	-8.5e-5	66
13	MP1A	Х	.022	24
14	MP1A	Z	.039	24
15	MP1A	Mx	-1.1e-5	24
16	MP1A	Х	.022	48
17	MP1A	Z	.039	48
18	MP1A	Mx	-1.1e-5	48
19	MP3A	Х	.019	42
20	MP3A	Z	.033	42
21	MP3A	Mx	9e-6	42
22	MP4A	Х	.019	42
23	MP4A	Z	.032	42
24	MP4A	Mx	9e-6	42
25	OVP	Х	.041	24
26	OVP	Z	.071	24
27	OVP	Mx	0	24
28	MP5A	Х	.047	6
29	MP5A	Z	.082	6
30	MP5A	Mx	-2.4e-5	6
31	MP5A	Х	.047	66
32	MP5A	Z	.082	66
33	MP5A	Mx	-2.4e-5	66

Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	0	6
2	MP3A	Z	.11	6
3	MP3A	Mx	7.3e-5	6
4	MP3A	Х	0	66
5	MP3A	Z	.11	66
6	MP3A	Mx	7.3e-5	66
7	MP3A	Х	0	6
8	MP3A	Z	.11	6
9	MP3A	Mx	-7.3e-5	6
10	MP3A	Х	0	66
11	MP3A	Z	.11	66
12	MP3A	Mx	-7.3e-5	66
13	MP1A	Х	0	24
14	MP1A	Z	.053	24
15	MP1A	Mx	0	24
16	MP1A	Х	0	48
17	MP1A	Z	.053	48
18	MP1A	Mx	0	48
19	MP3A	Х	0	42
20	MP3A	Z	.042	42
21	MP3A	Mx	0	42
22	MP4A	Х	0	42
23	MP4A	Z	.042	42
24	MP4A	Mx	0	42

Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
25	OVP	Х	0	24
26	OVP	Z	.072	24
27	OVP	Mx	0	24
28	MP5A	Х	0	6
29	MP5A	Z	.103	6
30	MP5A	Mx	0	6
31	MP5A	Х	0	66
32	MP5A	Z	.103	66
33	MP5A	Mx	0	66

Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	052	6
2	MP3A	Z	.089	6
3	MP3A	Mx	8.5e-5	6
4	MP3A	X	052	66
5	MP3A	Z	.089	66
6	MP3A	Mx	8.5e-5	66
7	MP3A	Х	052	6
8	MP3A	Z	.089	6
9	MP3A	Mx	-3.3e-5	6
10	MP3A	X	052	66
11	MP3A	Z	.089	66
12	MP3A	Mx	-3.3e-5	66
13	MP1A	X	022	24
14	MP1A	Z	.039	24
15	MP1A	Mx	1.1e-5	24
16	MP1A	X	022	48
17	MP1A	Z	.039	48
18	MP1A	Mx	1.1e-5	48
19	MP3A	X	019	42
20	MP3A	Z	.033	42
21	MP3A	Mx	-9e-6	42
22	MP4A	X	019	42
23	MP4A	Z	.032	42
24	MP4A	Mx	-9e-6	42
25	OVP	X	035	24
26	OVP	Z	.061	24
27	OVP	Mx	0	24
28	MP5A	Х	047	6
29	MP5A	Z	.082	6
30	MP5A	Mx	2.4e-5	6
31	MP5A	Х	047	66
32	MP5A	Z	.082	66
33	MP5A	Mx	2.4e-5	66

Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	077	6
2	MP3A	Z	.045	6
3	MP3A	Mx	6.8e-5	6
4	MP3A	Х	077	66
5	MP3A	Z	.045	66
6	MP3A	Mx	6.8e-5	66
7	MP3A	Х	077	6
8	MP3A	Z	.045	6

Member Point Loads (BLC 35 : Antenna Wm (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
9	MP3A	Mx	8e-6	6
10	MP3A	X	077	66
11	MP3A	Z	.045	66
12	MP3A	Mx	8e-6	66
13	MP1A	X	025	24
14	MP1A	Z	.014	24
15	MP1A	Mx	1.3e-5	24
16	MP1A	X	025	48
17	MP1A	Z	.014	48
18	MP1A	Mx	1.3e-5	48
19	MP3A	X	027	42
20	MP3A	Z	.016	42
21	MP3A	Mx	-1.4e-5	42
22	MP4A	X	024	42
23	MP4A	Z	.014	42
24	MP4A	Mx	-1.2e-5	42
25	OVP	X	068	24
26	OVP	Z	.039	24
27	OVP	Mx	0	24
28	MP5A	X	067	6
29	MP5A	Z	.039	6
30	MP5A	Mx	3.4e-5	6
31	MP5A	X	067	66
32	MP5A	Z	.039	66
33	MP5A	Mx	3.4e-5	66

Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	082	6
2	MP3A	Z	0	6
3	MP3A	Mx	4.1e-5	6
4	MP3A	Х	082	66
5	MP3A	Z	0	66
6	MP3A	Mx	4.1e-5	66
7	MP3A	Х	082	6
8	MP3A	Z	0	6
9	MP3A	Mx	4.1e-5	6
10	MP3A	Х	082	66
11	MP3A	Z	0	66
12	MP3A	Mx	4.1e-5	66
13	MP1A	Х	021	24
14	MP1A	Z	0	24
15	MP1A	Mx	1e-5	24
16	MP1A	Х	021	48
17	MP1A	Z	0	48
18	MP1A	Mx	1e-5	48
19	MP3A	Х	028	42
20	MP3A	Z	0	42
21	MP3A	Mx	-1.4e-5	42
22	MP4A	Х	023	42
23	MP4A	Z	0	42
24	MP4A	Mx	-1.2e-5	42
25	OVP	Х	088	24
26	OVP	Z	0	24
27	OVP	Mx	0	24
28	MP5A	Х	069	6

Member Point Loads (BLC 36 : Antenna Wm (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
29	MP5A	Z	0	6
30	MP5A	Mx	3.5e-5	6
31	MP5A	Х	069	66
32	MP5A	Z	0	66
33	MP5A	Mx	3.5e-5	66

Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	077	6
2	MP3A	Z	045	6
3	MP3A	Mx	8e-6	6
4	MP3A	Х	077	66
5	MP3A	Z	045	66
6	MP3A	Mx	8e-6	66
7	MP3A	Х	077	6
8	MP3A	Z	045	6
9	MP3A	Mx	6.8e-5	6
10	MP3A	Х	077	66
11	MP3A	Z	045	66
12	MP3A	Mx	6.8e-5	66
13	MP1A	Х	025	24
14	MP1A	Z	014	24
15	MP1A	Mx	1.3e-5	24
16	MP1A	Х	025	48
17	MP1A	Z	014	48
18	MP1A	Mx	1.3e-5	48
19	MP3A	Х	027	42
20	MP3A	Z	016	42
21	MP3A	Mx	-1.4e-5	42
22	MP4A	Х	024	42
23	MP4A	Z	014	42
24	MP4A	Mx	-1.2e-5	42
25	OVP	Х	078	24
26	OVP	Z	045	24
27	OVP	Mx	0	24
28	MP5A	Х	067	6
29	MP5A	Z	039	6
30	MP5A	Mx	3.4e-5	6
31	MP5A	Х	067	66
32	MP5A	Z	039	66
33	MP5A	Mx	3.4e-5	66

Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	052	6
2	MP3A	Z	089	6
3	MP3A	Mx	-3.3e-5	6
4	MP3A	Х	052	66
5	MP3A	Z	089	66
6	MP3A	Mx	-3.3e-5	66
7	MP3A	Х	052	6
8	MP3A	Z	089	6
9	MP3A	Mx	8.5e-5	6
10	MP3A	Х	052	66
11	MP3A	Z	089	66
12	MP3A	Mx	8.5e-5	66

Member Point Loads (BLC 38 : Antenna Wm (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
13	MP1A	Х	022	24
14	MP1A	Z	039	24
15	MP1A	Mx	1.1e-5	24
16	MP1A	X	022	48
17	MP1A	Z	039	48
18	MP1A	Mx	1.1e-5	48
19	MP3A	Х	019	42
20	MP3A	Z	033	42
21	MP3A	Mx	-9e-6	42
22	MP4A	Х	019	42
23	MP4A	Z	032	42
24	MP4A	Mx	-9e-6	42
25	OVP	Х	041	24
26	OVP	Z	071	24
27	OVP	Mx	0	24
28	MP5A	X	047	6
29	MP5A	Z	082	6
30	MP5A	Mx	2.4e-5	6
31	MP5A	Х	047	66
32	MP5A	Z	082	66
33	MP5A	Mx	2.4e-5	66

Member Point Loads (BLC 77 : Lm1)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	M10	Y	-500	%97

Member Point Loads (BLC 78 : Lm2)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	M10	Y	-500	%62

Member Point Loads (BLC 79 : Lv1)

	Member Label	Direction	Magnitude[lb.k-ft]	Location[in,%]
1	M10	Y	-250	0

Member Point Loads (BLC 80 : Lv2)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	M10	Y	-250	%50

Member Point Loads (BLC 81 : Antenna Ev)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Y	-1.025	6
2	MP3A	My	000513	6
3	MP3A	Mz	.000684	6
4	MP3A	Y	-1.025	66
5	MP3A	My	000513	66
6	MP3A	Mz	.000684	66
7	MP3A	Y	-1.025	6
8	MP3A	My	000513	6
9	MP3A	Mz	000684	6
10	MP3A	Y	-1.025	66
11	MP3A	My	000513	66
12	MP3A	Mz	000684	66
13	MP1A	Y	-1.942	24
14	MP1A	My	000971	24

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
15	MP1A	Mz	0	24
16	MP1A	Y	-1.942	48
17	MP1A	My	000971	48
18	MP1A	Mz	0	48
19	MP3A	Y	-3.763	42
20	MP3A	My	.002	42
21	MP3A	Mz	0	42
22	MP4A	Y	-3.134	42
23	MP4A	My	.002	42
24	MP4A	Mz	0	42
25	OVP	Y	-1.427	24
26	OVP	My	0	24
27	OVP	Mz	0	24
28	MP5A	Y	-1.023	6
29	MP5A	My	000512	6
30	MP5A	Mz	0	6
31	MP5A	Y	-1.023	66
32	MP5A	My	000512	66
33	MP5A	Mz	0	66

Member Point Loads (BLC 82 : Antenna Eh (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Z	-2.564	6
2	MP3A	Mx	002	6
3	MP3A	Z	-2.564	66
4	MP3A	Mx	002	66
5	MP3A	Z	-2.564	6
6	MP3A	Mx	.002	6
7	MP3A	Z	-2.564	66
8	MP3A	Mx	.002	66
9	MP1A	Z	-4.854	24
10	MP1A	Mx	0	24
11	MP1A	Z	-4.854	48
12	MP1A	Mx	0	48
13	MP3A	Z	-9.408	42
14	MP3A	Mx	0	42
15	MP4A	Z	-7.836	42
16	MP4A	Mx	0	42
17	OVP	Z	-3.567	24
18	OVP	Mx	0	24
19	MP5A	Z	-2.558	6
20	MP5A	Mx	0	6
21	MP5A	Z	-2.558	66
22	MP5A	Mx	0	66

Member Point Loads (BLC 83 : Antenna Eh (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP3A	Х	2.564	6
2	MP3A	Mx	001	6
3	MP3A	Х	2.564	66
4	MP3A	Mx	001	66
5	MP3A	Х	2.564	6
6	MP3A	Mx	001	6
7	MP3A	Х	2.564	66
8	MP3A	Mx	001	66
9	MP1A	Х	4.854	24

Member Point Loads (BLC 83 : Antenna Eh (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
10	MP1A	Mx	002	24
11	MP1A	Х	4.854	48
12	MP1A	Mx	002	48
13	MP3A	Х	9.408	42
14	MP3A	Mx	.005	42
15	MP4A	Х	7.836	42
16	MP4A	Mx	.004	42
17	OVP	Х	3.567	24
18	OVP	Mx	0	24
19	MP5A	Х	2.558	6
20	MP5A	Mx	001	6
21	MP5A	Х	2.558	66
22	MP5A	Mx	001	66

Member Distributed Loads (BLC 40 : Structure Di)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	Y	-8.885	-8.885	0	%100
2	M3	Y	-8.885	-8.885	0	%100
3	M5	Y	-6.042	-6.042	0	%100
4	M6	Y	-6.042	-6.042	0	%100
5	M7	Y	-5.828	-5.828	0	%100
6	M8	Y	-6.042	-6.042	0	%100
7	M9	Y	-6.042	-6.042	0	%100
8	M10	Y	-5.828	-5.828	0	%100
9	OVP	Y	-5.109	-5.109	0	%100
10	M12	Y	-5.109	-5.109	0	%100
11	M13	Y	-5.109	-5.109	0	%100
12	M14	Y	-5.109	-5.109	0	%100
13	M15	Y	-6.042	-6.042	0	%100
14	M16	Y	-3.491	-3.491	0	%100
15	M17	Y	-6.042	-6.042	0	%100
16	M18	Y	-3.491	-3.491	0	%100
17	M19	Y	-6.042	-6.042	0	%100
18	M20	Y	-6.042	-6.042	0	%100
19	M21	Y	-6.042	-6.042	0	%100
20	M22	Y	-3.491	-3.491	0	%100
21	M23	Y	-3.491	-3.491	0	%100
22	M24	Y	-5.109	-5.109	0	%100
23	M25	Y	-6.042	-6.042	0	%100
24	M26	Y	-6.042	-6.042	0	%100
25	M27	Y	-3.491	-3.491	0	%100
26	M28	Y	-6.042	-6.042	0	%100
27	M29	Y	-3.491	-3.491	0	%100
28	M30	Y	-6.042	-6.042	0	%100
29	M31	Y	-6.042	-6.042	0	%100
30	M32	Y	-6.042	-6.042	0	%100
31	M33	Y	-3.491	-3.491	0	%100
32	M34	Y	-3.491	-3.491	0	%100
33	M35	Y	-5.109	-5.109	0	%100
34	M36	Y	-6.042	-6.042	0	%100
35	MP6A	Y	-5.109	-5.109	0	%100
36	MP5A	Y	-5.109	-5.109	0	%100
37	MP3A	Y	-5.828	-5.828	0	%100
38	MP1A	Y	-5.109	-5.109	0	%100
39	MP4A	Y	-5.109	-5.109	0	%100

Member Distributed Loads (BLC 40 : Structure Di) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
40	MP2A	Y	-5.109	-5.109	0	%100
41	M55	Y	-6.727	-6.727	0	%100

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg))

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			401220				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					End Magnitude[lb/ft,F	.Start Location[in,%]	
$ \begin{array}{c cccccccccccccccccccccccccccccccccc$				÷	-		
					-11.096		
	3				-		
				-11.096	-11.096		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			X				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Χ				
12 M8 Z -68 -68 0 $\%100$ 13 M9 X 0 0 0 0 $\%100$ 14 M9 Z -68 -68 0 $\%100$ 15 M10 X 0 0 0 $\%100$ 16 M10 Z -10.633 10.633 0 $\%100$ 17 OVP X 0 0 0 $\%100$ 18 OVP Z -4.308 -4.308 0 $\%100$ 20 M12 Z -4.308 -4.308 0 $\%100$ 21 M13 Z -4.308 -4.308 0 $\%100$ 23 M14 X 0 0 0 $\%100$ 24 M15 Z -1.464 -1.464 0 $\%100$ 25 M15 Z -1.464 -1.464 0 $\%100$ 28 <							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
15 M10 X 0 0 0 $\%100$ 16 M10 Z -10.633 -10.633 0 $\%100$ 17 OVP X 0 0 0 $\%100$ 18 OVP Z 4.308 4.308 0 $\%100$ 19 M12 Z 4.308 -4.308 0 $\%100$ 20 M12 Z 4.308 -4.308 0 $\%100$ 21 M13 Z -4.308 -4.308 0 $\%100$ 23 M14 X 0 0 0 $\%100$ 24 M14 Z -4.308 -4.308 0 $\%100$ 24 M14 Z -4.308 -4.308 0 $\%100$ 25 M16 X 0 0 0 $\%100$ 26 M15 Z -1.464 -1.464 0 $\%100$ 29 M17<							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Χ		-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				÷	- -		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			X	÷	- -		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			<u>X</u>				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			<u> </u>				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			X		-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
39 M22 X 0 0 0 %100 40 M22 Z -4.623 -4.623 0 %100 41 M23 X 0 0 0 %100 42 M23 Z -4.623 -4.623 0 %100 43 M24 X 0 0 0 %100 44 M24 Z -6.978 -6.978 0 %100 45 M25 X 0 0 0 %100 46 M25 Z -1.759 -1.759 0 %100 47 M26 X 0 0 0 %100 48 M26 Z -1.464 -1.464 0 %100 49 M27 X 0 0 %100 %100 50 M27 Z -3.838 -3.838 0 %100				· ·	-		
40 M22 Z -4.623 -4.623 0 %100 41 M23 X 0 0 0 %100 42 M23 Z -4.623 -4.623 0 %100 43 M24 X 0 0 0 %100 44 M24 Z -6.978 -6.978 0 %100 45 M25 X 0 0 0 %100 46 M25 Z -1.759 -1.759 0 %100 47 M26 X 0 0 0 %100 48 M26 Z -1.464 -1.464 0 %100 49 M27 X 0 0 0 %100 50 M27 Z -3.838 -3.838 0 %100							
41 M23 X 0 0 0 %100 42 M23 Z -4.623 -4.623 0 %100 43 M24 X 0 0 0 %100 44 M24 Z -6.978 -6.978 0 %100 45 M25 X 0 0 0 %100 46 M25 Z -1.759 -1.759 0 %100 47 M26 X 0 0 0 %100 48 M26 Z -1.464 -1.464 0 %100 49 M27 X 0 0 0 %100 50 M27 Z -3.838 -3.838 0 %100					-		
42 M23 Z -4.623 -4.623 0 %100 43 M24 X 0 0 0 %100 44 M24 Z -6.978 -6.978 0 %100 45 M25 X 0 0 0 %100 46 M25 Z -1.759 -1.759 0 %100 47 M26 X 0 0 0 %100 48 M26 Z -1.464 -1.464 0 %100 49 M27 X 0 0 %100 %100 50 M27 Z -3.838 -3.838 0 %100						-	
43 M24 X 0 0 0 %100 44 M24 Z -6.978 -6.978 0 %100 45 M25 X 0 0 0 %100 46 M25 Z -1.759 -1.759 0 %100 47 M26 X 0 0 0 %100 48 M26 Z -1.464 -1.464 0 %100 49 M27 X 0 0 0 %100 50 M27 Z -3.838 -3.838 0 %100			X				
44 M24 Z -6.978 -6.978 0 %100 45 M25 X 0 0 0 %100 46 M25 Z -1.759 -1.759 0 %100 47 M26 X 0 0 0 %100 48 M26 Z -1.464 -1.464 0 %100 49 M27 X 0 0 0 %100 50 M27 Z -3.838 -3.838 0 %100							
45 M25 X 0 0 0 %100 46 M25 Z -1.759 -1.759 0 %100 47 M26 X 0 0 0 %100 48 M26 Z -1.464 -1.464 0 %100 49 M27 X 0 0 0 %100 50 M27 Z -3.838 -3.838 0 %100			X				
46 M25 Z -1.759 -1.759 0 %100 47 M26 X 0 0 0 %100 48 M26 Z -1.464 -1.464 0 %100 49 M27 X 0 0 0 %100 50 M27 Z -3.838 -3.838 0 %100							
47 M26 X 0 0 %100 48 M26 Z -1.464 -1.464 0 %100 49 M27 X 0 0 0 %100 50 M27 Z -3.838 -3.838 0 %100			X				
48 M26 Z -1.464 -1.464 0 %100 49 M27 X 0 0 0 %100 50 M27 Z -3.838 -3.838 0 %100							
49 M27 X 0 0 0 %100 50 M27 Z -3.838 -3.838 0 %100			X	· ·	-		
50 M27 Z -3.838 -3.838 0 %100							
					-		
i ivi∠ð X U U U %100							
	51	IVIZð	Ā	U	U	U	% I UU

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
52	M28	Z	-1.464	-1.464	0	%100
53	M29	Х	0	0	0	%100
54	M29	Z	-3.838	-3.838	0	%100
55	M30	Х	0	0	0	%100
56	M30	Z	-1.759	-1.759	0	%100
57	M31	Х	0	0	0	%100
58	M31	Z	-1.464	-1.464	0	%100
59	M32	Х	0	0	0	%100
60	M32	Z	-1.464	-1.464	0	%100
61	M33	Х	0	0	0	%100
62	M33	Z	-4.623	-4.623	0	%100
63	M34	Х	0	0	0	%100
64	M34	Z	-4.623	-4.623	0	%100
65	M35	Х	0	0	0	%100
66	M35	Z	-6.978	-6.978	0	%100
67	M36	Х	0	0	0	%100
68	M36	Z	-1.759	-1.759	0	%100
69	MP6A	Х	0	0	0	%100
70	MP6A	Z	-8.784	-8.784	0	%100
71	MP5A	Х	0	0	0	%100
72	MP5A	Z	-8.784	-8.784	0	%100
73	MP3A	Х	0	0	0	%100
74	MP3A	Z	-10.633	-10.633	0	%100
75	MP1A	Х	0	0	0	%100
76	MP1A	Z	-8.784	-8.784	0	%100
77	MP4A	Х	0	0	0	%100
78	MP4A	Z	-8.784	-8.784	0	%100
79	MP2A	Х	0	0	0	%100
80	MP2A	Z	-8.784	-8.784	0	%100
81	M55	Х	0	0	0	%100
82	M55	Z	-2.469	-2.469	0	%100

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	Х	4.161	4.161	0	%100
2	M1	Z	-7.207	-7.207	0	%100
3	M3	Х	4.161	4.161	0	%100
4	M3	Z	-7.207	-7.207	0	%100
5	M5	Х	.043	.043	0	%100
6	M5	Z	075	075	0	%100
7	M6	Х	.644	.644	0	%100
8	M6	Z	-1.115	-1.115	0	%100
9	M7	Х	3.988	3.988	0	%100
10	M7	Z	-6.907	-6.907	0	%100
11	M8	Х	.043	.043	0	%100
12	M8	Z	075	075	0	%100
13	M9	Х	.644	.644	0	%100
14	M9	Z	-1.115	-1.115	0	%100
15	M10	Х	3.988	3.988	0	%100
16	M10	Z	-6.907	-6.907	0	%100
17	OVP	Х	.274	.274	0	%100
18	OVP	Z	474	474	0	%100
19	M12	Х	4.077	4.077	0	%100
20	M12	Z	-7.061	-7.061	0	%100
21	M13	Х	.274	.274	0	%100
22	M13	Z	474	474	0	%100

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg)) (Continued)

			Structure wo	100 = 0,977 (00000	,	
	Member Label	Direction		End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
23	M14	X	4.077	4.077	0	%100
24	M14	Z	-7.061	-7.061	0	%100
25	M15	X	1.936	1.936	0	%100
26	M15	Z	-3.353	-3.353	0	%100
27	M16	Х	2.256	2.256	0	%100
28	M16	Z	-3.908	-3.908	0	%100
29	M17	×	1.936	1.936	0	%100
30	M17	Z	-3.353	-3.353	0	%100
31	M18	X	2.256	2.256	0	%100
32	M18	Z	-3.908	-3.908	0	%100
33	M19	X	2.047	2.047	0	%100
34	M19	Z	-3.545	-3.545	0	%100
35	M20	X	1.936	1.936	0	%100
36	M20	Z	-3.353	-3.353	0	%100
37	M21	X	1.936	1.936	0	%100
38	M21	Z	-3.353	-3.353	0	%100
39	M22	X	2.312	2.312	0	%100
40	M22	Z	-4.004	-4.004	0	%100
41	M23	X	2.312	2.312	0	%100
42	M23	Z	-4.004	-4.004	0	%100
43	M24	Х	3.489	3.489	0	%100
44	M24	Z	-6.043	-6.043	0	%100
45	M25	×	2.047	2.047	ů 0	%100
46	M25	Z	-3.545	-3.545	0	%100
47	M26	X	1.936	1.936	0	%100
48	M26	Z	-3.353	-3.353	0	%100
49	M27	X	1.589	1.589	0	%100
50	M27	Z	-2.752	-2.752	0	%100
51	M28	X	1.936	1.936	0	%100
52	M28	Z	-3.353	-3.353	0	%100
53	M29	X	1.589	1.589	0	%100
54	M29	Z	-2.752	-2.752	0	%100
55	M30	X	2.047	2.047	0	%100
56	M30	Z	-3.545	-3.545	0	%100
57	M31	X	1.936	1.936	0	%100
58	M31	Z	-3.353	-3.353	0	%100
59	M32	Х	1.936	1.936	0	%100
60	M32	Z	-3.353	-3.353	Ő	%100
61	M33	X	2.312	2.312	0	%100
62	M33	Z	-4.004	-4.004	0	%100
63	M34	X	2.312	2.312	0	%100
64	M34	Z	-4.004	-4.004	0	%100
65	M35	X	3.489	3.489	0	%100
66	M35	Z	-6.043	-6.043	0	%100
67	M36	X	2.047	2.047	0	%100
68	M36	Z	-3.545	-3.545	0	%100
69	MP6A	X	4.392	4.392	0	%100
70	MP6A	Z	-7.607	-7.607	0	%100
71	MP5A	X	4.392	4.392	0	%100
72	MP5A	Z	-7.607	-7.607	0	%100
73	MP3A	Х	5.317	5.317	0	%100
74	MP3A	Z	-9.209	-9.209	Ő	%100
75	MP1A	×	4.392	4.392	0	%100
76	MP1A	Z	-7.607	-7.607	0	%100
77	MP4A	X	4.392	4.392	0	%100
78	MP4A	Z	-7.607	-7.607	0	%100
79	MP4A MP2A	X	4.392	4.392	0	<u>%100</u> %100
				4.397	U	76 1110

RISA-3D Version 17.0.4 [R:\...\...\...\Rev. 2\RISA\469141-VZW_MT_LOT_A_H.r3d]

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
80	MP2A	Z	-7.607	-7.607	0	%100
81	M55	Х	4.257	4.257	0	%100
82	M55	Z	-7.373	-7.373	0	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg))

	<u>Der Distributed Lou</u>					
	Member Label	Direction		End Magnitude[lb/ft,F		
1	M1	<u> </u>	2.402	2.402	0	%100
2	M1	Z	-1.387	-1.387	0	%100
3	M3	X	2.402	2.402	0	%100
4	M3	Z	-1.387	-1.387	0	%100
5	M5	X	.086	.086	0	%100
6	M5	Z	05	05	0	%100
7	M6	Х	1.126	1.126	0	%100
8	M6	Z	65	65	0	%100
9	M7	Х	2.302	2.302	0	%100
10	M7	Z	-1.329	-1.329	0	%100
11	M8	Х	.086	.086	0	%100
12	M8	Z	05	05	0	%100
13	M9	Х	1.126	1.126	0	%100
14	M9	Z	65	65	0	%100
15	M10	Х	2.302	2.302	0	%100
16	M10	Z	-1.329	-1.329	0	%100
17	OVP	Х	.546	.546	0	%100
18	OVP	Z	315	315	0	%100
19	M12	Х	7.133	7.133	0	%100
20	M12	Z	-4.118	-4.118	0	%100
21	M13	Х	.546	.546	0	%100
22	M13	Z	315	315	0	%100
23	M14	Х	7.133	7.133	0	%100
24	M14	Z	-4.118	-4.118	0	%100
25	M15	x	7.524	7.524	0	%100
26	M15	Z	-4.344	-4.344	0	%100
27	M16	Х	3.921	3.921	0	%100
28	M16	Z	-2.264	-2.264	0	%100
29	M17	Х	7.524	7.524	0	%100
30	M17	Z	-4.344	-4.344	0	%100
31	M18	Х	3.921	3.921	0	%100
32	M18	Z	-2.264	-2.264	0	%100
33	M19	x	7.588	7.588	0	%100
34	M19	Z	-4.381	-4.381	0	%100
35	M20	Х	7.524	7.524	0	%100
36	M20	Z	-4.344	-4.344	0	%100
37	M21	Х	7.524	7.524	0	%100
38	M21	Z	-4.344	-4.344	0	%100
39	M22	Х	4.004	4.004	0	%100
40	M22	Z	-2.312	-2.312	0	%100
41	M23	X	4.004	4.004	0	%100
42	M23	Z	-2.312	-2.312	0	%100
43	M24	Х	6.043	6.043	0	%100
44	M24	Z	-3.489	-3.489	0	%100
45	M25	Х	7.588	7.588	0	%100
46	M25	Z	-4.381	-4.381	0	%100
47	M26	X	7.524	7.524	0	%100
48	M26	Z	-4.344	-4.344	0	%100
49	M27	Х	2.765	2.765	0	%100
50	M27	Z	-1.596	-1.596	0	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
51	M28	Х	7.524	7.524	0	%100
52	M28	Z	-4.344	-4.344	0	%100
53	M29	Х	2.765	2.765	0	%100
54	M29	Z	-1.596	-1.596	0	%100
55	M30	Х	7.588	7.588	0	%100
56	M30	Z	-4.381	-4.381	0	%100
57	M31	X	7.524	7.524	0	%100
58	M31	Z	-4.344	-4.344	0	%100
59	M32	X	7.524	7.524	0	%100
60	M32	Z	-4.344	-4.344	0	%100
61	M33	X	4.004	4.004	0	%100
62	M33	Z	-2.312	-2.312	0	%100
63	M34	X	4.004	4.004	0	%100
64	M34	Z	-2.312	-2.312	0	%100
65	M35	X	6.043	6.043	0	%100
66	M35	Z	-3.489	-3.489	0	%100
67	M36	X	7.588	7.588	0	%100
68	M36	Z	-4.381	-4.381	0	%100
69	MP6A	X	7.607	7.607	0	%100
70	MP6A	Z	-4.392	-4.392	0	%100
71	MP5A	Χ	7.607	7.607	0	%100
72	MP5A	Z	-4.392	-4.392	0	%100
73	MP3A	X	9.209	9.209	0	%100
74	MP3A	Z	-5.317	-5.317	0	%100
75	MP1A	X	7.607	7.607	0	%100
76	MP1A	Z	-4.392	-4.392	0	%100
77	MP4A	X	7.607	7.607	0	%100
78	MP4A	Z	-4.392	-4.392	0	%100
79	MP2A	X	7.607	7.607	0	%100
80	MP2A	Z	-4.392	-4.392	0	%100
81	M55	X	11.065	11.065	0	%100
82	M55	Z	-6.389	-6.389	0	%100

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M3	Х	0	0	0	%100
4	M3	Z	0	0	0	%100
5	M5	Х	.707	.707	0	%100
6	M5	Z	0	0	0	%100
7	M6	X	.707	.707	0	%100
8	M6	Z	0	0	0	%100
9	M7	Χ	0	0	0	%100
10	M7	Z	0	0	0	%100
11	M8	Х	.707	.707	0	%100
12	M8	Z	0	0	0	%100
13	M9	X	.707	.707	0	%100
14	M9	Z	0	0	0	%100
15	M10	Х	0	0	0	%100
16	M10	Z	0	0	0	%100
17	OVP	Х	4.476	4.476	0	%100
18	OVP	Z	0	0	0	%100
19	M12	Х	4.476	4.476	0	%100
20	M12	Z	0	0	0	%100
21	M13	Х	4.476	4.476	0	%100

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg)) (Continued)

			Structure wo			
00	Member Label	Direction		End Magnitude[lb/ft,F		
22	M13	Z	0	0	0	%100
23	M14	X	4.476	4.476	0	%100
24	M14	Z	0	0	0	%100
25	M15	X	11.096	11.096	0	%100
26	M15	Z	0	0	0	%100
27	M16	Х	3.867	3.867	0	%100
28	M16	Z	0	0	0	%100
29	M17	Х	11.096	11.096	0	%100
30	M17	Z	0	0	0	%100
31	M18	×	3.867	3.867	0 0	%100
32	M18	Z	0	0	0	%100
33	M10	X	11.096	11.096	0	%100
34	M19	Z	0	0	0	%100
			-	-		
35	M20	X	11.096	11.096	0	%100
36	M20	Z	0	0	0	%100
37	M21	X	11.096	11.096	0	%100
38	M21	Z	0	0	0	%100
39	M22	X	4.623	4.623	0	%100
40	M22	Z	0	0	0	%100
41	M23	X	4.623	4.623	0	%100
42	M23	Z	0	0	0	%100
43	M24	X	6.978	6.978	0	%100
44	M24	Z	0	0	0	%100
45	M25	Х	11.096	11.096	0	%100
46	M25	Z	0	0	0	%100
47	M26	×	11.096	11.096	0 0	%100
48	M26	Z	0	0	0	%100
49	M20	X	3.867	3.867	0	%100
50	M27	Z	0	0	0	%100
			-	-		
51	M28	X	11.096	11.096	0	%100
52	M28	Z	0	0	0	%100
53	M29	X	3.867	3.867	0	%100
54	M29	Z	0	0	0	%100
55	M30	X	11.096	11.096	0	%100
56	M30	Z	0	0	0	%100
57	M31	X	11.096	11.096	0	%100
58	M31	Z	0	0	0	%100
59	M32	Х	11.096	11.096	0	%100
60	M32	Z	0	0	0	%100
61	M33	X	4.623	4.623	0	%100
62	M33	Z	0	0	0	%100
63	M34	×	4.623	4.623	0	%100
64	M34	Z	0	0	0	%100
65	M35	X	6.978	6.978	0	%100
66		Z	0.970	0.976	0	%100
	M35		-	-	-	
67	M36	X	11.096	11.096	0	%100
68	M36	Z	0	0	0	%100
69	MP6A	X	8.784	8.784	0	%100
70	MP6A	Z	0	0	0	%100
71	MP5A	X	8.784	8.784	0	%100
72	MP5A	Z	0	0	0	%100
73	MP3A	Х	10.633	10.633	0	%100
74	MP3A	Z	0	0	0	%100
75	MP1A	X	8.784	8.784	0	%100
76	MP1A	Z	0	0	0	%100
77	MP4A	X	8.784	8.784	0	%100
78	MP4A	Z	0	0	0	%100
10		_	V	v	v	70100

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
79	MP2A	Х	8.784	8.784	0	%100
80	MP2A	Z	0	0	0	%100
81	M55	Х	10.996	10.996	0	%100
82	M55	Z	0	0	0	%100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	
1	M1	X	2.402	2.402	0	%100
2	M1	Z	1.387	1.387	0	%100
3	M3	Х	2.402	2.402	0	%100
4	M3	Z	1.387	1.387	0	%100
5	M5	Х	1.126	1.126	0	%100
6	M5	Z	.65	.65	0	%100
7	M6	Х	.086	.086	0	%100
8	M6	Z	.05	.05	0	%100
9	M7	Х	2.302	2.302	0	%100
10	M7	Z	1.329	1.329	0	%100
11	M8	Х	1.126	1.126	0	%100
12	M8	Z	.65	.65	0	%100
13	M9	Х	.086	.086	0	%100
14	M9	Z	.05	.05	0	%100
15	M10	Х	2.302	2.302	0	%100
16	M10	Z	1.329	1.329	0	%100
17	OVP	Х	7.133	7.133	0	%100
18	OVP	Z	4.118	4.118	0	%100
19	M12	Х	.546	.546	0	%100
20	M12	Z	.315	.315	0	%100
21	M13	Х	7.133	7.133	0	%100
22	M13	Z	4.118	4.118	0	%100
23	M14	Х	.546	.546	0	%100
24	M14	Z	.315	.315	0	%100
25	M15	Х	7.524	7.524	0	%100
26	M15	Z	4.344	4.344	0	%100
27	M16	Х	2.765	2.765	0	%100
28	M16	Z	1.596	1.596	0	%100
29	M17	Х	7.524	7.524	0	%100
30	M17	Z	4.344	4.344	0	%100
31	M18	Х	2.765	2.765	0	%100
32	M18	Z	1.596	1.596	0	%100
33	M19	Х	7.588	7.588	0	%100
34	M19	Z	4.381	4.381	0	%100
35	M20	Х	7.524	7.524	0	%100
36	M20	Z	4.344	4.344	0	%100
37	M21	Х	7.524	7.524	0	%100
38	M21	Z	4.344	4.344	0	%100
39	M22	Х	4.004	4.004	0	%100
40	M22	Z	2.312	2.312	0	%100
41	M23	Х	4.004	4.004	0	%100
42	M23	Z	2.312	2.312	0	%100
43	M24	Х	6.043	6.043	0	%100
44	M24	Z	3.489	3.489	0	%100
45	M25	Х	7.588	7.588	0	%100
46	M25	Z	4.381	4.381	0	%100
47	M26	X	7.524	7.524	0	%100
48	M26	Z	4.344	4.344	0	%100
49	M27	Х	3.921	3.921	0	%100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
50	M27	Z	2.264	2.264	0	%100
51	M28	Х	7.524	7.524	0	%100
52	M28	Z	4.344	4.344	0	%100
53	M29	Х	3.921	3.921	0	%100
54	M29	Z	2.264	2.264	0	%100
55	M30	Х	7.588	7.588	0	%100
56	M30	Z	4.381	4.381	0	%100
57	M31	Х	7.524	7.524	0	%100
58	M31	Z	4.344	4.344	0	%100
59	M32	Х	7.524	7.524	0	%100
60	M32	Z	4.344	4.344	0	%100
61	M33	Х	4.004	4.004	0	%100
62	M33	Z	2.312	2.312	0	%100
63	M34	Х	4.004	4.004	0	%100
64	M34	Z	2.312	2.312	0	%100
65	M35	Х	6.043	6.043	0	%100
66	M35	Z	3.489	3.489	0	%100
67	M36	Х	7.588	7.588	0	%100
68	M36	Z	4.381	4.381	0	%100
69	MP6A	Х	7.607	7.607	0	%100
70	MP6A	Z	4.392	4.392	0	%100
71	MP5A	Х	7.607	7.607	0	%100
72	MP5A	Z	4.392	4.392	0	%100
73	MP3A	Х	9.209	9.209	0	%100
74	MP3A	Z	5.317	5.317	0	%100
75	MP1A	Х	7.607	7.607	0	%100
76	MP1A	Z	4.392	4.392	0	%100
77	MP4A	Х	7.607	7.607	0	%100
78	MP4A	Z	4.392	4.392	0	%100
79	MP2A	Х	7.607	7.607	0	%100
80	MP2A	Z	4.392	4.392	0	%100
81	M55	Х	4.289	4.289	0	%100
82	M55	Z	2.476	2.476	0	%100

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	Х	4.161	4.161	0	%100
2	M1	Z	7.207	7.207	0	%100
3	M3	Х	4.161	4.161	0	%100
4	M3	Z	7.207	7.207	0	%100
5	M5	Х	.644	.644	0	%100
6	M5	Z	1.115	1.115	0	%100
7	M6	Х	.043	.043	0	%100
8	M6	Z	.075	.075	0	%100
9	M7	Х	3.988	3.988	0	%100
10	M7	Z	6.907	6.907	0	%100
11	M8	Х	.644	.644	0	%100
12	M8	Z	1.115	1.115	0	%100
13	M9	Х	.043	.043	0	%100
14	M9	Z	.075	.075	0	%100
15	M10	Х	3.988	3.988	0	%100
16	M10	Z	6.907	6.907	0	%100
17	OVP	Х	4.077	4.077	0	%100
18	OVP	Z	7.061	7.061	0	%100
19	M12	Х	.274	.274	0	%100
20	M12	Z	.474	.474	0	%100

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg)) (Continued)

21	Member Label M13	Direction X	Start Magnitude[lb/ft, 4.077	End Magnitude[lb/ft,F 4.077	Start Location[in,%]	End Location[in,%] %100
22	M13	Z	7.061	7.061	0	%100
23	M13		.274	.274		
23		X Z	.274	.474	0	%100 %100
	M14					
25	M15	X	1.936	1.936	0	%100
26	M15	Z	3.353	3.353	0	%100
27	M16	X	1.589	1.589	0	%100
28	M16	Z	2.752	2.752	0	%100
29	M17	X	1.936	1.936	0	%100
30	M17	Z	3.353	3.353	0	%100
31	M18	X	1.589	1.589	0	%100
32	M18	Z	2.752	2.752	0	%100
33	M19	X	2.047	2.047	0	%100
34	M19	Z	3.545	3.545	0	%100
35	M20	X	1.936	1.936	0	%100
36	M20	Z	3.353	3.353	0	%100
37	M21	X	1.936	1.936	0	%100
38	M21	Z	3.353	3.353	0	%100
39	M22	X	2.312	2.312	0	%100
40	M22	Z	4.004	4.004	0	%100
41	M23	X	2.312	2.312	0	%100
42	M23	Z	4.004	4.004	0	%100
43	M24	X	3.489	3.489	0	%100
44	M24	Z	6.043	6.043	0	%100
45	M25	Х	2.047	2.047	0	%100
46	M25	Z	3.545	3.545	0	%100
47	M26	Х	1.936	1.936	0	%100
48	M26	Z	3.353	3.353	0	%100
49	M27	Х	2.256	2.256	0	%100
50	M27	Z	3.908	3.908	0	%100
51	M28	X	1.936	1.936	0	%100
52	M28	Z	3.353	3.353	0	%100
53	M29	X	2.256	2.256	0	%100
54	M29	Z	3.908	3.908	Ő	%100
55	M30	x	2.047	2.047	0	%100
56	M30	Z	3.545	3.545	0	%100
57	M31	X	1.936	1.936	0	%100
58	M31	Z	3.353	3.353	0	%100
59	M32	X	1.936	1.936	0	%100
60	M32	Z	3.353	3.353	0	%100
61	M32	X	2.312	2.312	0	%100
62	M33	Z	4.004	4.004	0	%100
63	M34	X	2.312	2.312	0	%100
64	M34	Z	4.004	4.004	0	%100
65	M34 M35	X	3.489	3.489	0	<u>%100</u> %100
66	M35	Z	6.043	6.043	0	%100
67	M36	X	2.047	2.047	0	%100
68	M36	Z	3.545	3.545	0	%100
69	MP6A	X	4.392	4.392		<u>%100</u> %100
		Z			0	
70	MP6A		7.607	7.607	0	<u>%100</u>
71	MP5A	X 7	4.392	4.392	0	<u>%100</u>
72	MP5A	Z	7.607	7.607	0	<u>%100</u>
73	MP3A	X	5.317	5.317	0	%100
74	MP3A	Z	9.209	9.209	0	%100
75	MP1A	X	4.392	4.392	0	%100
76 77	MP1A	Z	7.607	7.607	0	%100
	MP4A	X	4.392	4.392	0	%100

RISA-3D Version 17.0.4 [R:\...\...\...\...\Rev. 2\RISA\469141-VZW_MT_LOT_A_H.r3d]

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
78	MP4A	Z	7.607	7.607	0	%100
79	MP2A	Х	4.392	4.392	0	%100
80	MP2A	Z	7.607	7.607	0	%100
81	M55	Х	.344	.344	0	%100
82	M55	Z	.596	.596	0	%100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg))

			, otractare no	1.00 2.09//		
	Member Label	Direction		. End Magnitude[lb/ft,F.	.Start Location[in,%]	End Location[in,%]
1	M1	X	0	0	0	%100
2	M1	Z	11.096	11.096	0	%100
3	M3	X	0	0	0	%100
4	M3	Z	11.096	11.096	0	%100
5	M5	X	0	0	0	%100
6	M5	Z	.68	.68	0	%100
7	M6	X	0	0	0	%100
8	M6	Z	.68	.68	0	%100
9	M7	Х	0	0	0	%100
10	M7	Z	10.633	10.633	0	%100
11	M8	X	0	0	0	%100
12	M8	Z	.68	.68	0	%100
13	M9	X	0	0	0	%100
14	M9	Z	.68	.68	0	%100
15	M10	X	0	0	0	%100
16	M10	Z	10.633	10.633	0	%100
17	OVP	X	0	0	0	%100
18	OVP	Z	4.308	4.308	0	%100
19	M12	Х	0	0	0	%100
20	M12	Z	4.308	4.308	0	%100
21	M13	Х	0	0	0	%100
22	M13	Z	4.308	4.308	0	%100
23	M14	Х	0	0	0	%100
24	M14	Z	4.308	4.308	0	%100
25	M15	Х	0	0	0	%100
26	M15	Z	1.464	1.464	0	%100
27	M16	Х	0	0	0	%100
28	M16	Z	3.838	3.838	0	%100
29	M17	Х	0	0	0	%100
30	M17	Z	1.464	1.464	0	%100
31	M18	Х	0	0	0	%100
32	M18	Z	3.838	3.838	0	%100
33	M19	X	0	0	0	%100
34	M19	Z	1.759	1.759	0	%100
35	M20	Х	0	0	0	%100
36	M20	Z	1.464	1.464	0	%100
37	M21	Х	0	0	0	%100
38	M21	Z	1.464	1.464	0	%100
39	M22	Х	0	0	0	%100
40	M22	Z	4.623	4.623	0	%100
41	M23	Х	0	0	0	%100
42	M23	Z	4.623	4.623	0	%100
43	M24	Х	0	0	0	%100
44	M24	Z	6.978	6.978	0	%100
45	M25	Х	0	0	0	%100
46	M25	Z	1.759	1.759	0	%100
47	M26	Х	0	0	0	%100
48	M26	Z	1.464	1.464	0	%100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
49	M27	Х	0	0	0	%100
50	M27	Z	3.838	3.838	0	%100
51	M28	Х	0	0	0	%100
52	M28	Z	1.464	1.464	0	%100
53	M29	Х	0	0	0	%100
54	M29	Z	3.838	3.838	0	%100
55	M30	Х	0	0	0	%100
56	M30	Z	1.759	1.759	0	%100
57	M31	Х	0	0	0	%100
58	M31	Z	1.464	1.464	0	%100
59	M32	Х	0	0	0	%100
60	M32	Z	1.464	1.464	0	%100
61	M33	Х	0	0	0	%100
62	M33	Z	4.623	4.623	0	%100
63	M34	Х	0	0	0	%100
64	M34	Z	4.623	4.623	0	%100
65	M35	Х	0	0	0	%100
66	M35	Z	6.978	6.978	0	%100
67	M36	Х	0	0	0	%100
68	M36	Z	1.759	1.759	0	%100
69	MP6A	Х	0	0	0	%100
70	MP6A	Z	8.784	8.784	0	%100
71	MP5A	Х	0	0	0	%100
72	MP5A	Z	8.784	8.784	0	%100
73	MP3A	Х	0	0	0	%100
74	MP3A	Z	10.633	10.633	0	%100
75	MP1A	Х	0	0	0	%100
76	MP1A	Z	8.784	8.784	0	%100
77	MP4A	Х	0	0	0	%100
78	MP4A	Z	8.784	8.784	0	%100
79	MP2A	Х	0	0	0	%100
80	MP2A	Z	8.784	8.784	0	%100
81	M55	Х	0	0	0	%100
82	M55	Z	2.469	2.469	0	%100

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
1	M1	Х	-4.161	-4.161	0	%100
2	M1	Z	7.207	7.207	0	%100
3	M3	Х	-4.161	-4.161	0	%100
4	M3	Z	7.207	7.207	0	%100
5	M5	Х	043	043	0	%100
6	M5	Z	.075	.075	0	%100
7	M6	Х	644	644	0	%100
8	M6	Z	1.115	1.115	0	%100
9	M7	Х	-3.988	-3.988	0	%100
10	M7	Z	6.907	6.907	0	%100
11	M8	Х	043	043	0	%100
12	M8	Z	.075	.075	0	%100
13	M9	Х	644	644	0	%100
14	M9	Z	1.115	1.115	0	%100
15	M10	Х	-3.988	-3.988	0	%100
16	M10	Z	6.907	6.907	0	%100
17	OVP	Х	274	274	0	%100
18	OVP	Z	.474	.474	0	%100
19	M12	Х	-4.077	-4.077	0	%100

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

20	Member Label	Direction		End Magnitude[lb/ft,F		End Location[in,%]
20	M12	Z	7.061	7.061	0	%100
21	M13	X	274	274	0	%100
22	M13	Z	.474	.474	0	%100
23	M14	X	-4.077	-4.077	0	%100
24	M14	Z	7.061	7.061	0	%100
25	M15	X	-1.936	-1.936	0	%100
26	M15	Z	3.353	3.353	0	%100
27	M16	X	-2.256	-2.256	0	%100
28	M16	Z	3.908	3.908	0	%100
29	M17	X	-1.936	-1.936	0	%100
30	M17	Z	3.353	3.353	0	%100
31	M18	Х	-2.256	-2.256	0	%100
32	M18	Z	3.908	3.908	0	%100
33	M19	X	-2.047	-2.047	0	%100
34	M19	Z	3.545	3.545	0 0	%100
35	M20	X	-1.936	-1.936	0	%100
36	M20	Z	3.353	3.353	0	%100
37	M20	X	-1.936	-1.936	0	%100
38	M21	Z	3.353	3.353	0	%100
39	M22		-2.312	-2.312	0	%100
		X Z			0	
40	M22		4.004	4.004		%100
41	M23	X	-2.312	-2.312	0	%100
42	M23	Z	4.004	4.004	0	%100
43	M24	X	-3.489	-3.489	0	%100
44	M24	Z	6.043	6.043	0	%100
45	M25	X	-2.047	-2.047	0	%100
46	M25	Z	3.545	3.545	0	%100
47	M26	X	-1.936	-1.936	0	%100
48	M26	Z	3.353	3.353	0	%100
49	M27	X	-1.589	-1.589	0	%100
50	M27	Z	2.752	2.752	0	%100
51	M28	X	-1.936	-1.936	0	%100
52	M28	Z	3.353	3.353	0	%100
53	M29	Х	-1.589	-1.589	0	%100
54	M29	Z	2.752	2.752	0	%100
55	M30	X	-2.047	-2.047	0	%100
56	M30	Z	3.545	3.545	0	%100
57	M31	X	-1.936	-1.936	0	%100
58	M31	Z	3.353	3.353	0	%100
59	M32	X	-1.936	-1.936	0	%100
60	M32	Z	3.353	3.353	0	%100
						<u>%100</u> %100
61	M33	X Z	-2.312	-2.312	0	
62	M33		4.004	4.004	0	%100
63	M34	X	-2.312	-2.312	0	%100
64	M34	Z	4.004	4.004	0	%100
65	M35	X	-3.489	-3.489	0	%100
66	M35	Z	6.043	6.043	0	%100
67	M36	X	-2.047	-2.047	0	%100
68	M36	Z	3.545	3.545	0	%100
69	MP6A	X	-4.392	-4.392	0	%100
70	MP6A	Z	7.607	7.607	0	%100
71	MP5A	Х	-4.392	-4.392	0	%100
72	MP5A	Z	7.607	7.607	0	%100
73	MP3A	X	-5.317	-5.317	0	%100
74	MP3A	Z	9.209	9.209	0	%100
75	MP1A	X	-4.392	-4.392	0	%100
76	MP1A	Z	7.607	7.607	0	%100
10		_	1.001	1.001	V	/0100

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
77	MP4A	X	-4.392	-4.392	0	%100
78	MP4A	Z	7.607	7.607	0	%100
79	MP2A	Х	-4.392	-4.392	0	%100
80	MP2A	Z	7.607	7.607	0	%100
81	M55	Х	-4.257	-4.257	0	%100
82	M55	Z	7.373	7.373	0	%100

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	. End Magnitude[lb/ft,F	Start Location[in %]	End Location[in,%]
1	M1	X	-2.402	-2.402	0	%100
2	M1	Z	1.387	1.387	0 0	%100
3	M3	x	-2.402	-2.402	0	%100
4	M3	Z	1.387	1.387	0	%100
5	M5	x	086	086	0	%100
6	M5	Z	.05	.05	0	%100
7	M6	x	-1.126	-1.126	0 0	%100
8	M6	Z	.65	.65	0 0	%100
9	M7	x	-2.302	-2.302	0 0	%100
10	M7	Z	1.329	1.329	0 0	%100
11	M8	x	086	086	0	%100
12	M8	Z	.05	.05	0	%100
13	M9	x	-1.126	-1.126	0 0	%100
14	M9	Z	.65	.65	0 0	%100
15	M10	x	-2.302	-2.302	0	%100
16	M10	Z	1.329	1.329	0 0	%100
17	OVP	X	546	546	0	%100
18	OVP	Z	.315	.315	0	%100
19	M12	Х	-7.133	-7.133	0	%100
20	M12	Z	4.118	4.118	0	%100
21	M13	Х	546	546	0	%100
22	M13	Z	.315	.315	0	%100
23	M14	Х	-7.133	-7.133	0	%100
24	M14	Z	4.118	4.118	0	%100
25	M15	Х	-7.524	-7.524	0	%100
26	M15	Z	4.344	4.344	0	%100
27	M16	Х	-3.921	-3.921	0	%100
28	M16	Z	2.264	2.264	0	%100
29	M17	Х	-7.524	-7.524	0	%100
30	M17	Z	4.344	4.344	0	%100
31	M18	Х	-3.921	-3.921	0	%100
32	M18	Z	2.264	2.264	0	%100
33	M19	Х	-7.588	-7.588	0	%100
34	M19	Z	4.381	4.381	0	%100
35	M20	Х	-7.524	-7.524	0	%100
36	M20	Z	4.344	4.344	0	%100
37	M21	Х	-7.524	-7.524	0	%100
38	M21	Z	4.344	4.344	0	%100
39	M22	Х	-4.004	-4.004	0	%100
40	M22	Z	2.312	2.312	0	%100
41	M23	Х	-4.004	-4.004	0	%100
42	M23	Z	2.312	2.312	0	%100
43	M24	Х	-6.043	-6.043	0	%100
44	M24	Z	3.489	3.489	0	%100
45	M25	X	-7.588	-7.588	0	%100
46	M25	Z	4.381	4.381	0	%100
47	M26	X	-7.524	-7.524	0	%100

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
48	M26	Z	4.344	4.344	0	%100
49	M27	Х	-2.765	-2.765	0	%100
50	M27	Z	1.596	1.596	0	%100
51	M28	Х	-7.524	-7.524	0	%100
52	M28	Z	4.344	4.344	0	%100
53	M29	Х	-2.765	-2.765	0	%100
54	M29	Z	1.596	1.596	0	%100
55	M30	Х	-7.588	-7.588	0	%100
56	M30	Z	4.381	4.381	0	%100
57	M31	Х	-7.524	-7.524	0	%100
58	M31	Z	4.344	4.344	0	%100
59	M32	Х	-7.524	-7.524	0	%100
60	M32	Z	4.344	4.344	0	%100
61	M33	Х	-4.004	-4.004	0	%100
62	M33	Z	2.312	2.312	0	%100
63	M34	Х	-4.004	-4.004	0	%100
64	M34	Z	2.312	2.312	0	%100
65	M35	Х	-6.043	-6.043	0	%100
66	M35	Z	3.489	3.489	0	%100
67	M36	Х	-7.588	-7.588	0	%100
68	M36	Z	4.381	4.381	0	%100
69	MP6A	Х	-7.607	-7.607	0	%100
70	MP6A	Z	4.392	4.392	0	%100
71	MP5A	Х	-7.607	-7.607	0	%100
72	MP5A	Z	4.392	4.392	0	%100
73	MP3A	Х	-9.209	-9.209	0	%100
74	MP3A	Z	5.317	5.317	0	%100
75	MP1A	Х	-7.607	-7.607	0	%100
76	MP1A	Z	4.392	4.392	0	%100
77	MP4A	Х	-7.607	-7.607	0	%100
78	MP4A	Z	4.392	4.392	0	%100
79	MP2A	Х	-7.607	-7.607	0	%100
80	MP2A	Z	4.392	4.392	0	%100
81	M55	Х	-11.065	-11.065	0	%100
82	M55	Z	6.389	6.389	0	%100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M3	Х	0	0	0	%100
4	M3	Z	0	0	0	%100
5	M5	Х	707	707	0	%100
6	M5	Z	0	0	0	%100
7	M6	Х	707	707	0	%100
8	M6	Z	0	0	0	%100
9	M7	Х	0	0	0	%100
10	M7	Z	0	0	0	%100
11	M8	Х	707	707	0	%100
12	M8	Z	0	0	0	%100
13	M9	Х	707	707	0	%100
14	M9	Z	0	0	0	%100
15	M10	Х	0	0	0	%100
16	M10	Z	0	0	0	%100
17	OVP	Х	-4.476	-4.476	0	%100
18	OVP	Z	0	0	0	%100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

monno			Structure wo		illinucu/	
	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
19	M12	X	-4.476	-4.476	0	%100
20	M12	Z	0	0	0	%100
21	M13	Х	-4.476	-4.476	0	%100
22	M13	Z	0	0	0	%100
23	M14	X	-4.476	-4.476	0	%100
24	M14	Z	0	0	Ő	%100
25	M15	×	-11.096	-11.096	0	%100
26	M15	Z	0	0	0	%100
27	M16	X	-3.867	-3.867	0	%100
28	M16	Z	0	-3.807	0	%100
			-11.096	-		
29	M17	X		-11.096	0	%100
30	M17	Z	0	0	0	%100
31	M18	X	-3.867	-3.867	0	%100
32	M18	Z	0	0	0	%100
33	M19	X	-11.096	-11.096	0	%100
34	M19	Z	0	0	0	%100
35	M20	X	-11.096	-11.096	0	%100
36	M20	Z	0	0	0	%100
37	M21	X	-11.096	-11.096	0	%100
38	M21	Z	0	0	0	%100
39	M22	X	-4.623	-4.623	0	%100
40	M22	Z	0	0	0	%100
41	M23	X	-4.623	-4.623	0	%100
42	M23	Z	0	0	0	%100
43	M24	Х	-6.978	-6.978	0	%100
44	M24	Z	0	0	0	%100
45	M25	×	-11.096	-11.096	0 0	%100
46	M25	Z	0	0	0	%100
47	M26	X	-11.096	-11.096	0	%100
48	M26	Z	0	0	0	%100
49	M27	X	-3.867	-3.867	0	%100
50	M27	Z	0	-3.807	0	%100
			-	-		
51	M28	X	-11.096	-11.096	0	%100
52	M28	Z	0	0	0	%100
53	M29	X	-3.867	-3.867	0	%100
54	M29	Z	0	0	0	%100
55	M30	X	-11.096	-11.096	0	%100
56	M30	Z	0	0	0	%100
57	M31	X	-11.096	-11.096	0	%100
58	M31	Z	0	0	0	%100
59	M32	X	-11.096	-11.096	0	%100
60	M32	Z	0	0	0	%100
61	M33	X	-4.623	-4.623	0	%100
62	M33	Z	0	0	0	%100
63	M34	Х	-4.623	-4.623	0	%100
64	M34	Z	0	0	0	%100
65	M35	X	-6.978	-6.978	0	%100
66	M35	Z	0	0	0	%100
67	M36	×	-11.096	-11.096	0	%100
68	M36	Z	0	0	0	%100
69	MP6A	X	-8.784	-8.784	0	%100
70	MP6A	Z	0	0.704	0	%100
70	MP5A	X	-8.784	-8.784	0	%100
72	MP5A	Z	-0.704	-0.704	0	%100
			-	-		
73	MP3A	X	-10.633	-10.633	0	%100
74						
74 75	MP3A MP1A	ZX	-8.784	0 -8.784	0	<u>%100</u> %100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
76	MP1A	Z	0	0	0	%100
77	MP4A	Х	-8.784	-8.784	0	%100
78	MP4A	Z	0	0	0	%100
79	MP2A	Х	-8.784	-8.784	0	%100
80	MP2A	Z	0	0	0	%100
81	M55	Х	-10.996	-10.996	0	%100
82	M55	Z	0	0	0	%100

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	Х	-2.402	-2.402	0	%100
2	M1	Z	-1.387	-1.387	0	%100
3	M3	Х	-2.402	-2.402	0	%100
4	M3	Z	-1.387	-1.387	0	%100
5	M5	Х	-1.126	-1.126	0	%100
6	M5	Z	65	65	0	%100
7	M6	X	086	086	0	%100
8	M6	Z	05	05	0 0	%100
9	M7	x	-2.302	-2.302	0 0	%100
10	M7	Z	-1.329	-1.329	0 0	%100
11	M8	x	-1.126	-1.126	0	%100
12	M8	Z	65	65	0	%100
13	M9	x	086	086	0	%100
14	M9	Z	05	05	Ŭ Û	%100
15	M10	x	-2.302	-2.302	0	%100
16	M10	Z	-1.329	-1.329	0	%100
17	OVP	x	-7.133	-7.133	0	%100
18	OVP	Z	-4.118	-4.118	0	%100
19	M12	X	546	546	0	%100
20	M12	Z	315	315	0	%100
20	M12 M13	X	-7.133	-7.133	0	%100
22	M13	Ž	-4.118	-4.118	0	%100
23	M13	×	546		0	%100
23	M14	Z	315	315	0	%100
25	M14	×	-7.524	-7.524	0	%100
26	M15	Z	-4.344	-4.344	0	%100
20	M15	X	-4.344	-4.344	0	%100
27	M16	Z	-2.765	-2.765	0	%100
20	M17	X	-7.524	-7.524	0	%100
30	M17	Z	-4.344	-7.524 -4.344	0	%100
31	M17 M18	X	-4.344	-4.344 -2.765	0	%100
32	M18	Z	-1.596	-2.765	0	%100
33	M19	X 7	-7.588	-7.588	0	%100 %100
34	M19	Z	-4.381	-4.381	0	%100
35	M20	X 7	-7.524	-7.524	0	%100
36	M20	Z	-4.344	-4.344	0	%100 %100
37	M21	X 7	-7.524	-7.524	0	%100
38	M21	Z	-4.344	-4.344	0	%100 %100
39	M22	X 7	-4.004	-4.004	0	%100
40	M22	Z	-2.312	-2.312	0	%100 %100
41	M23	X	-4.004	-4.004	0	%100
42	M23	Z	-2.312	-2.312	0	%100
43	M24	<u> </u>	-6.043	-6.043	0	%100
44	M24	Z	-3.489	-3.489	0	%100
45	M25	X	-7.588	-7.588	0	%100
46	M25	Z	-4.381	-4.381	0	%100

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
47	M26	Х	-7.524	-7.524	0	%100
48	M26	Z	-4.344	-4.344	0	%100
49	M27	Х	-3.921	-3.921	0	%100
50	M27	Z	-2.264	-2.264	0	%100
51	M28	Х	-7.524	-7.524	0	%100
52	M28	Z	-4.344	-4.344	0	%100
53	M29	X	-3.921	-3.921	0	%100
54	M29	Z	-2.264	-2.264	0	%100
55	M30	Х	-7.588	-7.588	0	%100
56	M30	Z	-4.381	-4.381	0	%100
57	M31	Х	-7.524	-7.524	0	%100
58	M31	Z	-4.344	-4.344	0	%100
59	M32	Х	-7.524	-7.524	0	%100
60	M32	Z	-4.344	-4.344	0	%100
61	M33	Х	-4.004	-4.004	0	%100
62	M33	Z	-2.312	-2.312	0	%100
63	M34	Х	-4.004	-4.004	0	%100
64	M34	Z	-2.312	-2.312	0	%100
65	M35	X	-6.043	-6.043	0	%100
66	M35	Z	-3.489	-3.489	0	%100
67	M36	Х	-7.588	-7.588	0	%100
68	M36	Z	-4.381	-4.381	0	%100
69	MP6A	X	-7.607	-7.607	0	%100
70	MP6A	Z	-4.392	-4.392	0	%100
71	MP5A	Х	-7.607	-7.607	0	%100
72	MP5A	Z	-4.392	-4.392	0	%100
73	MP3A	Х	-9.209	-9.209	0	%100
74	MP3A	Z	-5.317	-5.317	0	%100
75	MP1A	Х	-7.607	-7.607	0	%100
76	MP1A	Z	-4.392	-4.392	0	%100
77	MP4A	Х	-7.607	-7.607	0	%100
78	MP4A	Z	-4.392	-4.392	0	%100
79	MP2A	Х	-7.607	-7.607	0	%100
80	MP2A	Z	-4.392	-4.392	0	%100
81	M55	Х	-4.289	-4.289	0	%100
82	M55	Z	-2.476	-2.476	0	%100

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
1	M1	Х	-4.161	-4.161	0	%100
2	M1	Z	-7.207	-7.207	0	%100
3	M3	Х	-4.161	-4.161	0	%100
4	M3	Z	-7.207	-7.207	0	%100
5	M5	Х	644	644	0	%100
6	M5	Z	-1.115	-1.115	0	%100
7	M6	Х	043	043	0	%100
8	M6	Z	075	075	0	%100
9	M7	Х	-3.988	-3.988	0	%100
10	M7	Z	-6.907	-6.907	0	%100
11	M8	Х	644	644	0	%100
12	M8	Z	-1.115	-1.115	0	%100
13	M9	Х	043	043	0	%100
14	M9	Z	075	075	0	%100
15	M10	Х	-3.988	-3.988	0	%100
16	M10	Z	-6.907	-6.907	0	%100
17	OVP	Х	-4.077	-4.077	0	%100

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg)) (Continued)

10	Member Label	Direction		End Magnitude[lb/ft,F	_	
18	OVP	Z	-7.061	-7.061	0	%100
19	M12	X	274	274	0	%100
20	M12	Z	474	474	0	%100
21	M13	X	-4.077	-4.077	0	%100
22	M13	Z	-7.061	-7.061	0	%100
23	M14	X	274	274	0	%100
24	M14	Z	474	474	0	%100
25	M15	X	-1.936	-1.936	0	%100
26	M15	Z	-3.353	-3.353	0	%100
27	M16	X	-1.589	-1.589	0	%100
28	M16	Z	-2.752	-2.752	0 0	%100
29	M17	x	-1.936	-1.936	0	%100
30	M17	Z	-3.353	-3.353	0	%100
31	M18	X	-1.589	-1.589	0	%100
32		Z	-2.752	-2.752		%100
	M18				0	
33	M19	X	-2.047	-2.047	0	%100
34	M19	Z	-3.545	-3.545	0	%100
35	M20	X	-1.936	-1.936	0	%100
36	M20	Z	-3.353	-3.353	0	%100
37	M21	X	-1.936	-1.936	0	%100
38	M21	Z	-3.353	-3.353	0	%100
39	M22	X	-2.312	-2.312	0	%100
40	M22	Z	-4.004	-4.004	0	%100
41	M23	Х	-2.312	-2.312	0	%100
42	M23	Z	-4.004	-4.004	0	%100
43	M24	X	-3.489	-3.489	0	%100
44	M24	Z	-6.043	-6.043	0	%100
45	M25	X	-2.047	-2.047	0	%100
46	M25	Z	-3.545	-3.545	0	%100
47	M26	X	-1.936	-1.936	0	%100
		Z				
48	M26		-3.353	-3.353	0	<u>%100</u>
49	M27	X	-2.256	-2.256	0	%100
50	M27	Z	-3.908	-3.908	0	%100
51	M28	X	-1.936	-1.936	0	%100
52	M28	Z	-3.353	-3.353	0	%100
53	M29	X	-2.256	-2.256	0	%100
54	M29	Z	-3.908	-3.908	0	%100
55	M30	X	-2.047	-2.047	0	%100
56	M30	Z	-3.545	-3.545	0	%100
57	M31	X	-1.936	-1.936	0	%100
58	M31	Z	-3.353	-3.353	0	%100
59	M32	x	-1.936	-1.936	0	%100
60	M32	Z	-3.353	-3.353	0	%100
61	M33	X	-2.312	-2.312	0	%100
62	M33	Z	-2.312	-2.512	0	%100
					-	
63	M34	X	-2.312	-2.312	0	%100
64	M34	Z	-4.004	-4.004	0	%100
65	M35	X	-3.489	-3.489	0	%100
66	M35	Z	-6.043	-6.043	0	%100
67	M36	X	-2.047	-2.047	0	%100
68	M36	Z	-3.545	-3.545	0	%100
69	MP6A	X	-4.392	-4.392	0	%100
70	MP6A	Z	-7.607	-7.607	0	%100
71	MP5A	Х	-4.392	-4.392	0	%100
72	MP5A	Z	-7.607	-7.607	0 0	%100
73	MP3A	x	-5.317	-5.317	0	%100
74	MP3A	Z	-9.209	-9.209	0	%100
1-1		_	-0.200	0.203	V	/0100

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
75	MP1A	Х	-4.392	-4.392	0	%100
76	MP1A	Z	-7.607	-7.607	0	%100
77	MP4A	Х	-4.392	-4.392	0	%100
78	MP4A	Z	-7.607	-7.607	0	%100
79	MP2A	Х	-4.392	-4.392	0	%100
80	MP2A	Z	-7.607	-7.607	0	%100
81	M55	Х	344	344	0	%100
82	M55	Z	596	596	0	%100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,			
1	M1	X	0	0	0	%100
2	M1	Z	-2.727	-2.727	0	%100
3	M3	X	0	0	0	%100
4	M3	Z	-2.727	-2.727	0	%100
5	M5	X	0	0	0	%100
6	M5	Z	533	533	0	%100
7	M6	X	0	0	0	%100
8	M6	Z	533	533	0	%100
9	M7	X	0	0	0	%100
10	M7	Z	-3.249	-3.249	0	%100
11	M8	X	0	0	0	%100
12	M8	Z	533	533	0	%100
13	M9	Х	0	0	0	%100
14	M9	Z	533	533	0	%100
15	M10	Х	0	0	0	%100
16	M10	Z	-3.249	-3.249	0	%100
17	OVP	Х	0	0	0	%100
18	OVP	Z	-1.441	-1.441	0	%100
19	M12	Х	0	0	0	%100
20	M12	Z	-1.441	-1.441	0	%100
21	M13	Х	0	0	0	%100
22	M13	Z	-1.441	-1.441	0	%100
23	M14	Х	0	0	0	%100
24	M14	Z	-1.441	-1.441	0	%100
25	M15	X	0	0	0	%100
26	M15	Z	-1.099	-1.099	0	%100
27	M16	X	0	0	0	%100
28	M16	Z	-1.776	-1.776	0	%100
29	M17	X	0	0	0	%100
30	M17	Z	-1.099	-1.099	0	%100
31	M18	Х	0	0	0	%100
32	M18	Z	-1.776	-1.776	0	%100
33	M19	Х	0	0	0	%100
34	M19	Z	-1.149	-1.149	0	%100
35	M20	Х	0	0	0	%100
36	M20	Z	-1.099	-1.099	0	%100
37	M21	Х	0	0	0	%100
38	M21	Z	-1.099	-1.099	0	%100
39	M22	Х	0	0	0	%100
40	M22	Z	-1.999	-1.999	0	%100
41	M23	Х	0	0	0	%100
42	M23	Z	-1.999	-1.999	0	%100
43	M24	Х	0	0	0	%100
44	M24	Z	-2.337	-2.337	0	%100
45	M25	Х	0	0	0	%100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
46	M25	Z	-1.149	-1.149	0	%100
47	M26	Х	0	0	0	%100
48	M26	Z	-1.099	-1.099	0	%100
49	M27	Х	0	0	0	%100
50	M27	Z	-1.776	-1.776	0	%100
51	M28	X	0	0	0	%100
52	M28	Z	-1.099	-1.099	0	%100
53	M29	X	0	0	0	%100
54	M29	Z	-1.776	-1.776	0	%100
55	M30	Х	0	0	0	%100
56	M30	Z	-1.149	-1.149	0	%100
57	M31	X	0	0	0	%100
58	M31	Z	-1.099	-1.099	0	%100
59	M32	Х	0	0	0	%100
60	M32	Z	-1.099	-1.099	0	%100
61	M33	X	0	0	0	%100
62	M33	Z	-1.999	-1.999	0	%100
63	M34	X	0	0	0	%100
64	M34	Z	-1.999	-1.999	0	%100
65	M35	Х	0	0	0	%100
66	M35	Z	-2.337	-2.337	0	%100
67	M36	X	0	0	0	%100
68	M36	Z	-1.149	-1.149	0	%100
69	MP6A	X	0	0	0	%100
70	MP6A	Z	-2.938	-2.938	0	%100
71	MP5A	X	0	0	0	%100
72	MP5A	Z	-2.938	-2.938	0	%100
73	MP3A	X	0	0	0	%100
74	MP3A	Z	-3.249	-3.249	0	%100
75	MP1A	X	0	0	0	%100
76	MP1A	Z	-2.938	-2.938	0	%100
77	MP4A	Х	0	0	0	%100
78	MP4A	Z	-2.938	-2.938	0	%100
79	MP2A	X	0	0	0	%100
80	MP2A	Z	-2.938	-2.938	0	%100
81	M55	X	0	0	0	%100
82	M55	Z	694	694	0	%100

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	Х	1.023	1.023	0	%100
2	M1	Z	-1.771	-1.771	0	%100
3	M3	Х	1.023	1.023	0	%100
4	M3	Z	-1.771	-1.771	0	%100
5	M5	Х	.034	.034	0	%100
6	M5	Z	059	059	0	%100
7	M6	Х	.504	.504	0	%100
8	M6	Z	873	873	0	%100
9	M7	Х	1.218	1.218	0	%100
10	M7	Z	-2.11	-2.11	0	%100
11	M8	Х	.034	.034	0	%100
12	M8	Z	059	059	0	%100
13	M9	Х	.504	.504	0	%100
14	M9	Z	873	873	0	%100
15	M10	Х	1.218	1.218	0	%100
16	M10	Z	-2.11	-2.11	0	%100

RISA-3D Version 17.0.4

Page 55

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

Wiemb	er Distributed Loa	aus (DLC 54	. Structure wi	(SU Deg)) (Conti	nueu)	
	Member Label	Direction		End Magnitude[lb/ft,F		
17	OVP	X	.092	.092	0	%100
18	OVP	Z	159	159	0	%100
19	M12	X	1.364	1.364	0	%100
20	M12	Z	-2.362	-2.362	0	%100
21	M13	Х	.092	.092	0	%100
22	M13	Z	159	159	0	%100
23	M14	Х	1.364	1.364	0	%100
24	M14	Z	-2.362	-2.362	0	%100
25	M15	X	.752	.752	0	%100
26	M15	Z	-1.302	-1.302	0	%100
27	M16	×	1.044	1.044	0	%100
28	M16	Z	-1.809	-1.809	0	%100
29	M10	X	.752	.752	0	%100
30	M17	Z	-1.302	-1.302	0	%100
31	M18	X	1.044	1.044	0	%100
32		Z				
	M18		-1.809	-1.809	0	%100
33	M19	X	.77	.77	0	%100
34	M19	Z	-1.334	-1.334	0	%100
35	M20	X	.752	.752	0	%100
36	M20	Z	-1.302	-1.302	0	%100
37	M21	X	.752	.752	0	%100
38	M21	Z	-1.302	-1.302	0	%100
39	M22	X	1	1	0	%100
40	M22	Z	-1.731	-1.731	0	%100
41	M23	X	1	1	0	%100
42	M23	Z	-1.731	-1.731	0	%100
43	M24	Х	1.169	1.169	0	%100
44	M24	Z	-2.024	-2.024	0	%100
45	M25	Х	.77	.77	0	%100
46	M25	Z	-1.334	-1.334	0	%100
47	M26	X	.752	.752	0	%100
48	M26	Z	-1.302	-1.302	0	%100
49	M27	×	.735	.735	0	%100
50	M27	Z	-1.274	-1.274	0	%100
51	M28	X	.752	.752	0	%100
52	M28	Z	-1.302	-1.302	0	%100
53	M29	X	.735	.735	0	%100
54	M29	Z	-1.274	-1.274	0	%100
55	M30	X	.77	.77	0	%100
56	M30	Z	-1.334	-1.334	0	%100
57	M31	X	.752	.752	0	<u>%100</u>
58	M31	Z	-1.302	-1.302	0	%100
59	M32	X	.752	.752	0	%100
60	M32	Z	-1.302	-1.302	0	%100
61	M33	X	1	1	0	%100
62	M33	Z	-1.731	-1.731	0	%100
63	M34	X	1	1	0	%100
64	M34	Z	-1.731	-1.731	0	%100
65	M35	X	1.169	1.169	0	%100
66	M35	Z	-2.024	-2.024	0	%100
67	M36	Х	.77	.77	0	%100
68	M36	Z	-1.334	-1.334	0	%100
69	MP6A	X	1.469	1.469	0	%100
70	MP6A	Z	-2.544	-2.544	0	%100
71	MP5A	X	1.469	1.469	0	%100
72	MP5A	Z	-2.544	-2.544	0	%100
		4	2.011	2.077	0	/0100
73	MP3A	X	1.624	1.624	0	%100

[R:\...\...\...\...\...\Rev. 2\RISA\469141-VZW_MT_LOT_A_H.r3d]

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
74	MP3A	Z	-2.813	-2.813	0	%100
75	MP1A	Х	1.469	1.469	0	%100
76	MP1A	Z	-2.544	-2.544	0	%100
77	MP4A	Х	1.469	1.469	0	%100
78	MP4A	Z	-2.544	-2.544	0	%100
79	MP2A	Х	1.469	1.469	0	%100
80	MP2A	Z	-2.544	-2.544	0	%100
81	M55	X	1.196	1.196	0	%100
82	M55	Z	-2.072	-2.072	0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
1	M1	Х	.59	.59	0	%100
2	M1	Z	341	341	0	%100
3	M3	Х	.59	.59	0	%100
4	M3	Z	341	341	0	%100
5	M5	Х	.068	.068	0	%100
6	M5	Z	039	039	0	%100
7	M6	Х	.882	.882	0	%100
8	M6	Z	509	509	0	%100
9	M7	Х	.703	.703	0	%100
10	M7	Z	406	406	0	%100
11	M8	Х	.068	.068	0	%100
12	M8	Z	039	039	0	%100
13	M9	Х	.882	.882	0	%100
14	M9	Z	509	509	0	%100
15	M10	Х	.703	.703	0	%100
16	M10	Z	406	406	0	%100
17	OVP	Х	.183	.183	0	%100
18	OVP	Z	106	106	0	%100
19	M12	Х	2.386	2.386	0	%100
20	M12	Z	-1.378	-1.378	0	%100
21	M13	Х	.183	.183	0	%100
22	M13	Z	106	106	0	%100
23	M14	Х	2.386	2.386	0	%100
24	M14	Z	-1.378	-1.378	0	%100
25	M15	Х	2.003	2.003	0	%100
26	M15	Z	-1.156	-1.156	0	%100
27	M16	Х	1.815	1.815	0	%100
28	M16	Z	-1.048	-1.048	0	%100
29	M17	Х	2.003	2.003	0	%100
30	M17	Z	-1.156	-1.156	0	%100
31	M18	Х	1.815	1.815	0	%100
32	M18	Z	-1.048	-1.048	0	%100
33	M19	Х	2.013	2.013	0	%100
34	M19	Z	-1.162	-1.162	0	%100
35	M20	Х	2.003	2.003	0	%100
36	M20	Z	-1.156	-1.156	0	%100
37	M21	Х	2.003	2.003	0	%100
38	M21	Z	-1.156	-1.156	0	%100
39	M22	Х	1.731	1.731	0	%100
40	M22	Z	-1	-1	0	%100
41	M23	X	1.731	1.731	0	%100
42	M23	Z	-1	-1	0	%100
43	M24	X	2.024	2.024	0	%100
44	M24	Z	-1.169	-1.169	0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[in.%]	End Location[in,%]
45	M25	X	2.013	2.013	0	%100
46	M25	Z	-1.162	-1.162	0	%100
47	M26	Х	2.003	2.003	0	%100
48	M26	Z	-1.156	-1.156	0	%100
49	M27	X	1.28	1.28	0	%100
50	M27	Z	739	739	0	%100
51	M28	Х	2.003	2.003	0	%100
52	M28	Z	-1.156	-1.156	0	%100
53	M29	X	1.28	1.28	0	%100
54	M29	Z	739	739	0	%100
55	M30	X	2.013	2.013	0	%100
56	M30	Z	-1.162	-1.162	0	%100
57	M31	Х	2.003	2.003	0	%100
58	M31	Z	-1.156	-1.156	0	%100
59	M32	X	2.003	2.003	0	%100
60	M32	Z	-1.156	-1.156	0	%100
61	M33	Х	1.731	1.731	0	%100
62	M33	Z	-1	-1	0	%100
63	M34	Х	1.731	1.731	0	%100
64	M34	Z	-1	-1	0	%100
65	M35	Х	2.024	2.024	0	%100
66	M35	Z	-1.169	-1.169	0	%100
67	M36	Х	2.013	2.013	0	%100
68	M36	Z	-1.162	-1.162	0	%100
69	MP6A	Х	2.544	2.544	0	%100
70	MP6A	Z	-1.469	-1.469	0	%100
71	MP5A	Х	2.544	2.544	0	%100
72	MP5A	Z	-1.469	-1.469	0	%100
73	MP3A	X	2.813	2.813	0	%100
74	MP3A	Z	-1.624	-1.624	0	%100
75	MP1A	Х	2.544	2.544	0	%100
76	MP1A	Z	-1.469	-1.469	0	%100
77	MP4A	Х	2.544	2.544	0	%100
78	MP4A	Z	-1.469	-1.469	0	%100
79	MP2A	Х	2.544	2.544	0	%100
80	MP2A	Z	-1.469	-1.469	0	%100
81	M55	Х	3.109	3.109	0	%100
82	M55	Z	-1.795	-1.795	0	%100

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M3	Х	0	0	0	%100
4	M3	Z	0	0	0	%100
5	M5	Х	.553	.553	0	%100
6	M5	Z	0	0	0	%100
7	M6	Х	.553	.553	0	%100
8	M6	Z	0	0	0	%100
9	M7	Х	0	0	0	%100
10	M7	Z	0	0	0	%100
11	M8	Х	.553	.553	0	%100
12	M8	Z	0	0	0	%100
13	M9	Х	.553	.553	0	%100
14	M9	Z	0	0	0	%100
15	M10	Х	0	0	0	%100

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg)) (Continued)

			Structure WI			
10	Member Label	Direction		End Magnitude[lb/ft,F	_	
16	M10	Z	0	0	0	%100
17	OVP	<u> </u>	1.497	1.497	0	%100
18	OVP	Z	0	0	0	%100
19	M12	X	1.497	1.497	0	%100
20	M12	Z	0	0	0	%100
21	M13	X	1.497	1.497	0	%100
22	M13	Z	0	0	0	%100
23	M14	X	1.497	1.497	0	%100
24	M14	Z	0	0	0	%100
25	M15	Х	2.717	2.717	0	%100
26	M15	Z	0	0	0	%100
27	M16	X	1.79	1.79	0	%100
28	M16	Z	0	0	0	%100
29	M17	x	2.717	2.717	0	%100
30	M17	Z	0	0	0	%100
31	M18	X	1.79	1.79	0	%100
32	M18	Z	0	0	0	%100
33	M10	X	2.717	2.717	0	%100
34	M19	Z	0	0	0	%100
						<u>%100</u> %100
35	M20	X 7	2.717	2.717	0	
36	M20	Z	0	0	0	%100
37	M21	<u> </u>	2.717	2.717	0	%100
38	M21	Z	0	0	0	%100
39	M22	<u>X</u>	1.999	1.999	0	%100
40	M22	Z	0	0	0	%100
41	M23	X	1.999	1.999	0	%100
42	M23	Z	0	0	0	%100
43	M24	X	2.337	2.337	0	%100
44	M24	Z	0	0	0	%100
45	M25	X	2.717	2.717	0	%100
46	M25	Z	0	0	0	%100
47	M26	Х	2.717	2.717	0	%100
48	M26	Z	0	0	0	%100
49	M27	Х	1.79	1.79	0	%100
50	M27	Z	0	0	0	%100
51	M28	X	2.717	2.717	0	%100
52	M28	Z	0	0	0	%100
53	M29	X	1.79	1.79	0	%100
54	M29	Z	0	0	0	%100
55	M30	X	2.717	2.717	0	%100
56	M30	Z	0	0	0	%100
57			2.717	2.717	0	<u>%100</u> %100
	M31	Z			-	
58	M31		0	0	0	%100
59	M32	X	2.717	2.717	0	%100
60	M32	Z	0	0	0	%100
61	M33	<u> </u>	1.999	1.999	0	%100
62	M33	Z	0	0	0	%100
63	M34	X	1.999	1.999	0	%100
64	M34	Z	0	0	0	%100
65	M35	X	2.337	2.337	0	%100
66	M35	Z	0	0	0	%100
67	M36	X	2.717	2.717	0	%100
68	M36	Z	0	0	0	%100
69	MP6A	X	2.938	2.938	0	%100
70	MP6A	Z	0	0	0 0	%100
71	MP5A	x	2.938	2.938	0	%100
72	MP5A	Z	0	0	0	%100
		-	`	`	`	/0100

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
73	MP3A	Х	3.249	3.249	0	%100
74	MP3A	Z	0	0	0	%100
75	MP1A	Х	2.938	2.938	0	%100
76	MP1A	Z	0	0	0	%100
77	MP4A	Х	2.938	2.938	0	%100
78	MP4A	Z	0	0	0	%100
79	MP2A	Х	2.938	2.938	0	%100
80	MP2A	Z	0	0	0	%100
81	M55	X	3.09	3.09	0	%100
82	M55	Z	0	0	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
1	M1	Х	.59	.59	0	%100
2	M1	Z	.341	.341	0	%100
3	M3	Х	.59	.59	0	%100
4	M3	Z	.341	.341	0	%100
5	M5	Х	.882	.882	0	%100
6	M5	Z	.509	.509	0	%100
7	M6	Х	.068	.068	0	%100
8	M6	Z	.039	.039	0	%100
9	M7	Х	.703	.703	0	%100
10	M7	Z	.406	.406	0	%100
11	M8	Х	.882	.882	0	%100
12	M8	Z	.509	.509	0	%100
13	M9	Χ	.068	.068	0	%100
14	M9	Z	.039	.039	0	%100
15	M10	Х	.703	.703	0	%100
16	M10	Z	.406	.406	0	%100
17	OVP	Х	2.386	2.386	0	%100
18	OVP	Z	1.378	1.378	0	%100
19	M12	X	.183	.183	0	%100
20	M12	Z	.106	.106	0	%100
21	M13	X	2.386	2.386	0	%100
22	M13	Z	1.378	1.378	0	%100
23	M14	X	.183	.183	0	%100
24	M14	Z	.106	.106	0	%100
25	M15	X	2.003	2.003	0	%100
26	M15	Z	1.156	1.156	0	%100
27	M16	Х	1.28	1.28	0	%100
28	M16	Z	.739	.739	0	%100
29	M17	X	2.003	2.003	0	%100
30	M17	Z	1.156	1.156	0	%100
31	M18	Х	1.28	1.28	0	%100
32	M18	Z	.739	.739	0	%100
33	M19	X	2.013	2.013	0	%100
34	M19	Z	1.162	1.162	0	%100
35	M20	<u> </u>	2.003	2.003	0	%100
36	M20	Z	1.156	1.156	0	%100
37	M21	<u> </u>	2.003	2.003	0	%100
38	M21	Z	1.156	1.156	0	%100
39	M22	<u> </u>	1.731	1.731	0	%100
40	M22	Z	1	1	0	%100
41	M23	<u> </u>	1.731	1.731	0	%100
42	M23	Z	1	1	0	%100
43	M24	X	2.024	2.024	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
44	M24	Z	1.169	1.169	0	%100
45	M25	Х	2.013	2.013	0	%100
46	M25	Z	1.162	1.162	0	%100
47	M26	Х	2.003	2.003	0	%100
48	M26	Z	1.156	1.156	0	%100
49	M27	Х	1.815	1.815	0	%100
50	M27	Z	1.048	1.048	0	%100
51	M28	Х	2.003	2.003	0	%100
52	M28	Z	1.156	1.156	0	%100
53	M29	Х	1.815	1.815	0	%100
54	M29	Z	1.048	1.048	0	%100
55	M30	Х	2.013	2.013	0	%100
56	M30	Z	1.162	1.162	0	%100
57	M31	Х	2.003	2.003	0	%100
58	M31	Z	1.156	1.156	0	%100
59	M32	Х	2.003	2.003	0	%100
60	M32	Z	1.156	1.156	0	%100
61	M33	Х	1.731	1.731	0	%100
62	M33	Z	1	1	0	%100
63	M34	Х	1.731	1.731	0	%100
64	M34	Z	1	1	0	%100
65	M35	Х	2.024	2.024	0	%100
66	M35	Z	1.169	1.169	0	%100
67	M36	X	2.013	2.013	0	%100
68	M36	Z	1.162	1.162	0	%100
69	MP6A	Х	2.544	2.544	0	%100
70	MP6A	Z	1.469	1.469	0	%100
71	MP5A	Х	2.544	2.544	0	%100
72	MP5A	Z	1.469	1.469	0	%100
73	MP3A	Х	2.813	2.813	0	%100
74	MP3A	Z	1.624	1.624	0	%100
75	MP1A	Х	2.544	2.544	0	%100
76	MP1A	Z	1.469	1.469	0	%100
77	MP4A	Х	2.544	2.544	0	%100
78	MP4A	Z	1.469	1.469	0	%100
79	MP2A	Х	2.544	2.544	0	%100
80	MP2A	Z	1.469	1.469	0	%100
81	M55	Х	1.205	1.205	0	%100
82	M55	Z	.696	.696	0	%100

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
1	M1	Х	1.023	1.023	0	%100
2	M1	Z	1.771	1.771	0	%100
3	M3	Х	1.023	1.023	0	%100
4	M3	Z	1.771	1.771	0	%100
5	M5	Х	.504	.504	0	%100
6	M5	Z	.873	.873	0	%100
7	M6	Х	.034	.034	0	%100
8	M6	Z	.059	.059	0	%100
9	M7	Х	1.218	1.218	0	%100
10	M7	Z	2.11	2.11	0	%100
11	M8	Х	.504	.504	0	%100
12	M8	Z	.873	.873	0	%100
13	M9	Х	.034	.034	0	%100
14	M9	Z	.059	.059	0	%100

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg)) (Continued)

			Structure wi	100 Deg// (0011	linueu/	
	Member Label	Direction		End Magnitude[lb/ft,F		End Location[in,%]
15	M10	X	1.218	1.218	0	%100
16	M10	Z	2.11	2.11	0	%100
17	OVP	X	1.364	1.364	0	%100
18	OVP	Z	2.362	2.362	0	%100
19	M12	X	.092	.092	0	%100
20	M12	Z	.159	.159	0	%100
21	M13	x	1.364	1.364	0	%100
22	M13	Z	2.362	2.362	0	%100
23	M14	X	.092	.092	0	%100
24	M14	Z	.159	.159	0	%100
25	M15	X	.752	.752	0	%100
26	M15	Z	1.302	1.302	0	%100
27	M16	X	.735	.735	0	%100
28	M16	Z	1.274	1.274	0	%100
29	M17	Х	.752	.752	0	%100
30	M17	Z	1.302	1.302	0	%100
31	M18	X	.735	.735	0	%100
32	M18	Z	1.274	1.274	0	%100
33	M10	X	.77	.77	0	%100
		Z			0	
34	M19		1.334	1.334	-	%100
35	M20	X	.752	.752	0	%100
36	M20	Z	1.302	1.302	0	%100
37	M21	X	.752	.752	0	%100
38	M21	Z	1.302	1.302	0	%100
39	M22	X	1	1	0	%100
40	M22	Z	1.731	1.731	0	%100
41	M23	Х	1	1	0	%100
42	M23	Z	1.731	1.731	0	%100
43	M24	X	1.169	1.169	0	%100
44	M24	Z	2.024	2.024	0	%100
45	M25	X	.77	.77	0	%100
46	M25	Z			0	%100
			1.334	1.334		
47	M26	X	.752	.752	0	%100
48	M26	Z	1.302	1.302	0	%100
49	M27	X	1.044	1.044	0	%100
50	M27	Z	1.809	1.809	0	%100
51	M28	X	.752	.752	0	%100
52	M28	Z	1.302	1.302	0	%100
53	M29	Х	1.044	1.044	0	%100
54	M29	Z	1.809	1.809	0	%100
55	M30	X	.77	.77	0	%100
56	M30	Z	1.334	1.334	0	%100
57	M31	X	.752	.752	0	%100
58	M31	Z	1.302	1.302	0	%100
59	M32	X	.752	.752	0	%100
60	M32	Z	1.302	1.302	0	%100
61	M33	X	1	1	0	%100
62	M33	Z	1.731	1.731	0	%100
63	M34	X	1	1	0	%100
64	M34	Z	1.731	1.731	0	%100
65	M35	Х	1.169	1.169	0	%100
66	M35	Z	2.024	2.024	0	%100
67	M36	X	.77	.77	0	%100
68	M36	Z	1.334	1.334	0	%100
69	MP6A	X	1.469	1.469	0	%100
03						
	MDGA	7	2 5 1 1	1644		0/_ 1/ 1/ 1
70 71	MP6A MP5A	Z	2.544	2.544 1.469	0	<u>%100</u> %100

RISA-3D Version 17.0.4 [R:\...\...\...\Rev. 2\RISA\469141-VZW_MT_LOT_A_H.r3d]

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
72	MP5A	Z	2.544	2.544	0	%100
73	MP3A	Х	1.624	1.624	0	%100
74	MP3A	Z	2.813	2.813	0	%100
75	MP1A	Х	1.469	1.469	0	%100
76	MP1A	Z	2.544	2.544	0	%100
77	MP4A	X	1.469	1.469	0	%100
78	MP4A	Z	2.544	2.544	0	%100
79	MP2A	X	1.469	1.469	0	%100
80	MP2A	Z	2.544	2.544	0	%100
81	M55	Х	.097	.097	0	%100
82	M55	Z	.167	.167	0	%100

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	.Start Location[in.%]	End Location[in,%]
1	M1	X	0	0	0	%100
2	M1	Z	2.727	2.727	0	%100
3	M3	X	0	0	0	%100
4	M3	Z	2.727	2.727	0	%100
5	M5	Х	0	0	0	%100
6	M5	Z	.533	.533	0	%100
7	M6	Х	0	0	0	%100
8	M6	Z	.533	.533	0	%100
9	M7	Х	0	0	0	%100
10	M7	Z	3.249	3.249	0	%100
11	M8	Х	0	0	0	%100
12	M8	Z	.533	.533	0	%100
13	M9	Х	0	0	0	%100
14	M9	Z	.533	.533	0	%100
15	M10	Х	0	0	0	%100
16	M10	Z	3.249	3.249	0	%100
17	OVP	Х	0	0	0	%100
18	OVP	Z	1.441	1.441	0	%100
19	M12	Х	0	0	0	%100
20	M12	Z	1.441	1.441	0	%100
21	M13	Х	0	0	0	%100
22	M13	Z	1.441	1.441	0	%100
23	M14	Х	0	0	0	%100
24	M14	Z	1.441	1.441	0	%100
25	M15	Х	0	0	0	%100
26	M15	Z	1.099	1.099	0	%100
27	M16	Х	0	0	0	%100
28	M16	Z	1.776	1.776	0	%100
29	M17	X	0	0	0	%100
30	M17	Z	1.099	1.099	0	%100
31	M18	<u> </u>	0	0	0	%100
32	M18	Z	1.776	1.776	0	%100
33	M19	<u> </u>	0	0	0	%100
34	M19	Z	1.149	1.149	0	%100
35	M20	X	0	0	0	%100
36	M20	Z	1.099	1.099	0	%100
37	M21	X	0	0	0	%100
38	M21	Z	1.099	1.099	0	%100
39	M22	X	0	0	0	%100
40	M22	Z	1.999	1.999	0	%100
41	M23	X	0	0	0	%100
42	M23	Z	1.999	1.999	0	%100

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg)) (Continued)

Member LabelDirectionStart Magnitude[bit/tEnd Magnitude[bit/tStart Location[in,%]End Location[in,%]End Location[in,%]43M/24X000%10044M/24Z2.3372.3370%10045M/25X000%10046M/25Z1.1491.1490%10047M/26X000%10048M/26Z1.0991.0990%10050M/27X000%10051M/28X000%10052M/28Z1.0991.0990%10053M/29X000%10054M/29Z1.7761.7760%10055M30X000%10056M30Z1.1491.1490%10057M31X000%10058M/31Z1.0991.0990%10060M/32Z1.9991.9990%10061M/33X000%10063M/34Z1.9991.9990%10064M/34Z1.9991.9990%10065M/35X000%10066M/36Z1.1491.149	monnoc					iniucu)	
43 M24 X 0 0 0 9 9 9 44 M24 Z 2.337 2.337 0 9 9 45 M25 X 0 0 0 9 9 46 M25 Z 1.149 1.149 0 9 9 47 M26 X 0 0 0 9 9 49 M27 X 0 0 0 9 100 50 M27 Z 1.776 1.776 0 9 100 51 M28 Z 1.099 1.099 0 9 100 52 M28 Z 1.776 1.776 0 9 100 55 M30 Z 1.149 1.149 0 9 9 56 M30 Z 1.099 1.099 0 9 100 57 M31		Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
45 M25 X 0 0 0 %100 46 M25 Z 1.149 1.149 0 %100 47 M26 X 0 0 0 %100 48 M26 Z 1.099 1.099 0 %100 49 M27 X 0 0 0 %100 50 M27 Z 1.776 1.776 0 %100 51 M28 Z 1.099 1.099 0 %100 52 M28 Z 1.776 1.776 0 %100 54 M29 Z 1.776 1.776 0 %100 55 M30 X 0 0 0 %100 56 M30 Z 1.099 1.099 0 %100 58 M31 Z 1.099 1.099 0 %100 60 M32 X 0<	43	M24				0	
46 M25 Z 1.149 1.149 0 %100 47 M26 X 0 0 0 %100 48 M26 Z 1.099 1.099 0 %100 49 M27 X 0 0 0 %100 50 M27 Z 1.776 1.776 0 %100 51 M28 X 0 0 0 %100 52 M28 Z 1.099 1.099 0 %100 53 M29 X 0 0 0 %100 54 M29 Z 1.776 1.776 0 %100 56 M30 Z 1.149 1.149 0 %100 57 M31 X 0 0 0 %100 58 M31 Z 1.099 1.099 0 %100 61 M33 X 0	44	M24	Z	2.337	2.337	0	%100
46 M25 Z 1.149 1.149 0 %100 47 M26 X 0 0 0 %100 48 M26 Z 1.099 1.099 0 %100 49 M27 X 0 0 0 %100 50 M27 Z 1.776 1.776 0 %100 51 M28 X 0 0 0 %100 52 M28 Z 1.099 1.099 0 %100 53 M29 X 0 0 0 %100 54 M29 Z 1.776 1.776 0 %100 56 M30 Z 1.149 1.149 0 %100 57 M31 X 0 0 0 %100 58 M31 Z 1.099 1.099 0 %100 61 M33 X 0	45	M25	Х	0	0	0	%100
48 M26 Z 1.099 1.099 0 %100 49 M27 X 0 0 0 %100 50 M27 Z 1.776 1.776 0 %100 51 M28 X 0 0 0 %100 52 M28 Z 1.099 1.099 0 %100 53 M29 X 0 0 0 %100 54 M29 Z 1.776 1.776 0 %100 55 M30 X 0 0 %100 %100 56 M30 Z 1.149 1.149 0 %100 58 M31 Z 1.099 1.099 0 %100 59 M32 X 0 0 0 %100 61 M33 X 0 0 %100 %100 62 M33 Z 1.999	46	M25		1.149	1.149	0	%100
48 M26 Z 1.099 1.099 0 $\%100$ 49 M27 X 0 0 0 %100 50 M27 Z 1.776 1.776 0 $\%100$ 51 M28 X 0 0 0 $\%100$ 52 M28 Z 1.099 1.099 0 $\%100$ 53 M29 X 0 0 0 $\%100$ 54 M29 Z 1.776 1.776 0 $\%100$ 55 M30 X 0 0 0 $\%100$ 56 M30 Z 1.149 1.149 0 $\%100$ 58 M31 Z 1.099 1.099 0 $\%100$ 59 M32 X 0 0 0 $\%100$ 61 M33 X 0 0 0 $\%100$ 62 M33 Z	47	M26	Х	0	0	0	%100
	48	M26	Z	1.099	1.099	0	%100
50 M27 Z 1.776 1.776 0 $\%$ 100 51 M28 X 0 0 0 $\%$ 100 52 M28 Z 1.099 1.099 0 $\%$ 100 53 M29 X 0 0 0 $\%$ 100 54 M29 Z 1.776 1.776 0 $\%$ 100 55 M30 X 0 0 0 $\%$ 100 56 M30 Z 1.149 1.149 0 $\%$ 100 57 M31 X 0 0 0 $\%$ 100 58 M31 Z 1.099 1.099 0 $\%$ 100 60 M32 Z 1.099 1.099 0 $\%$ 100 61 M33 X 0 0 0 $\%$ 100 63 M34 X 0 0 $\%$ 100 $\%$ 100 64 M34 Z	49	M27	Х	0	0	0	%100
52M28Z1.0991.0990%100 53 M29X000%100 54 M29Z1.7761.7760%100 56 M30X000%100 56 M30Z1.1491.1490%100 57 M31X000%100 58 M31Z1.0991.0990%100 59 M32X000%100 60 M32Z1.0991.0990%100 61 M33X000%100 62 M33Z1.9991.9990%100 63 M34X000%100 64 M34Z1.9991.9990%100 66 M35X000%100 66 M36Z2.3372.3370%100 66 M36Z2.9382.9380%100 70 MP6AZ2.9382.9380%100 71 MP5AX000%100 72 MP5AZ2.9382.9380%100 74 MP3AZ2.9382.9380%100 75 MP1AX000%100 76 MP1AZ2.9382.9380%100 76 <	50	M27		1.776	1.776	0	%100
52M28Z1.0991.0990 $\%100$ 53M29X000%10054M29Z1.7761.7760%10055M30X000%10056M30Z1.1491.1490%10057M31X000%10058M31Z1.0991.0990%10059M32X000%10060M32Z1.0991.0990%10061M33X000%10062M33Z1.9991.9990%10063M34X000%10064M34Z1.9991.9990%10065M35Z2.3372.3370%10066M35Z2.9382.9380%10067M36X000%10068M36Z1.1491.1490%10070MP6AZ2.9382.9380%10071MP5AX000%10072MP5AZ2.9382.9380%10074MP3AX000%10075MP1AX000%10076MP1AZ2.9382.938 <td>51</td> <td>M28</td> <td>Х</td> <td>0</td> <td>0</td> <td>0</td> <td>%100</td>	51	M28	Х	0	0	0	%100
54M29Z1.7761.7760 $\%100$ 55M30X000 $\%100$ 56M30Z1.1491.1490 $\%100$ 57M31X000 $\%100$ 58M31Z1.0991.0990 $\%100$ 59M32X000 $\%100$ 60M32Z1.0991.0990 $\%100$ 61M33X000 $\%100$ 62M33Z1.9991.9990 $\%100$ 63M34X000 $\%100$ 64M34Z1.9991.9990 $\%100$ 65M35Z2.3372.3370 $\%100$ 66M35Z1.1491.1490 $\%100$ 67M36X000 $\%100$ 68M36Z1.1491.1490 $\%100$ 69MP6AX000 $\%100$ 70MP6AZ2.9382.9380 $\%100$ 71MP5AZ2.9382.9380 $\%100$ 73MP3AX000 $\%100$ 74MP4AZ2.9382.9380 $\%100$ 75MP1AZ2.9382.9380 $\%100$ 76MP4AZ2.9382.9380 $\%100$	52	M28	Z	1.099	1.099	0	%100
54M29Z1.7761.7760 $\%100$ 55M30X000 $\%100$ 56M30Z1.1491.1490 $\%100$ 57M31X000 $\%100$ 58M31Z1.0991.0990 $\%100$ 59M32X000 $\%100$ 60M32Z1.0991.0990 $\%100$ 61M33X000 $\%100$ 62M33Z1.9991.9990 $\%100$ 63M34X000 $\%100$ 64M34Z1.9991.9990 $\%100$ 65M35Z2.3372.3370 $\%100$ 66M35Z1.1491.1490 $\%100$ 67M36X000 $\%100$ 68M36Z1.1491.1490 $\%100$ 69MP6AX000 $\%100$ 70MP6AZ2.9382.9380 $\%100$ 71MP5AZ2.9382.9380 $\%100$ 73MP3AX000 $\%100$ 74MP3AZ2.9382.9380 $\%100$ 75MP1AZ2.9382.9380 $\%100$ 76MP4AZ2.9382.9380 $\%100$	53		Х			0	
55 M30 X 0 0 %100 56 M30 Z 1.149 1.149 0 %100 57 M31 X 0 0 0 %100 58 M31 Z 1.099 1.099 0 %100 59 M32 X 0 0 0 %100 60 M32 Z 1.099 1.099 0 %100 61 M33 X 0 0 0 %100 62 M33 Z 1.999 1.999 0 %100 63 M34 X 0 0 0 %100 64 M34 Z 1.999 1.999 0 %100 65 M35 X 0 0 0 %100 66 M35 Z 2.337 2.337 0 %100 68 M36 Z 1.149 1.149	54	M29		1.776	1.776	0	%100
56 M30 Z 1.149 1.149 0 %100 57 M31 X 0 0 0 %100 58 M31 Z 1.099 1.099 0 %100 59 M32 X 0 0 0 %100 60 M32 Z 1.099 1.099 0 %100 61 M33 X 0 0 0 %100 62 M33 Z 1.999 1.999 0 %100 63 M34 X 0 0 0 %100 64 M34 Z 1.999 1.999 0 %100 65 M35 X 0 0 0 %100 66 M35 Z 2.337 2.337 0 %100 67 M36 X 0 0 0 %100 68 M36 Z 1.149	55	M30	Х		0	0	%100
57 M31 X 0 0 0 %100 58 M31 Z 1.099 1.099 0 %100 59 M32 X 0 0 0 %100 60 M32 Z 1.099 1.099 0 %100 61 M33 X 0 0 0 %100 62 M33 Z 1.999 1.999 0 %100 63 M34 X 0 0 0 %100 64 M34 Z 1.999 1.999 0 %100 65 M35 X 0 0 0 %100 66 M35 Z 2.337 2.337 0 %100 68 M36 Z 1.149 1.149 0 %100 69 MP6A X 0 0 0 %100 71 MP5A Z 2.938	56	M30		1.149	1.149	0	%100
58 M31 Z 1.099 1.099 0 %100 59 M32 X 0 0 0 %100 60 M32 Z 1.099 1.099 0 %100 61 M33 X 0 0 0 %100 62 M33 Z 1.999 1.999 0 %100 63 M34 X 0 0 0 %100 64 M34 Z 1.999 1.999 0 %100 65 M35 X 0 0 0 %100 66 M35 Z 2.337 2.337 0 %100 67 M36 X 0 0 0 %100 68 M36 Z 1.149 1.149 0 %100 70 MP6A Z 2.938 2.938 0 %100 71 MP5A Z 2.938 <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td>						0	
60 M32 Z 1.099 1.099 0 %100 61 M33 X 0 0 0 %100 62 M33 Z 1.999 1.999 0 %100 63 M34 X 0 0 0 %100 64 M34 Z 1.999 1.999 0 %100 65 M35 X 0 0 0 %100 66 M35 Z 2.337 2.337 0 %100 67 M36 X 0 0 0 %100 68 M36 Z 1.149 1.149 0 %100 70 MP6A X 0 0 0 %100 71 MP5A Z 2.938 2.938 0 %100 73 MP3A X 0 0 0 %100 75 MP1A X 0	58	M31	Z	1.099	1.099	0	
61 M33 X 0 0 0 %100 62 M33 Z 1.999 1.999 0 %100 63 M34 X 0 0 0 %100 64 M34 Z 1.999 1.999 0 %100 64 M34 Z 1.999 0 %100 65 M35 X 0 0 %100 66 M35 Z 2.337 2.337 0 %100 67 M36 X 0 0 0 %100 68 M36 Z 1.149 1.149 0 %100 69 MP6A X 0 0 0 %100 71 MP5A Z 2.938 2.938 0 %100 72 MP5A Z 2.938 2.938 0 %100 73 MP3A Z 3.249 0 %100 <td>59</td> <td>M32</td> <td>Х</td> <td>0</td> <td>0</td> <td>0</td> <td>%100</td>	59	M32	Х	0	0	0	%100
61 M33 X 0 0 0 %100 62 M33 Z 1.999 1.999 0 %100 63 M34 X 0 0 0 %100 64 M34 Z 1.999 1.999 0 %100 64 M34 Z 1.999 0 %100 6 65 M35 X 0 0 0 %100 66 M35 Z 2.337 2.337 0 %100 67 M36 X 0 0 0 %100 68 M36 Z 1.149 1.149 0 %100 69 MP6A X 0 0 0 %100 71 MP5A Z 2.938 2.938 0 %100 72 MP5A Z 2.938 2.938 0 %100 73 MP3A Z 3.249	60	M32	Z	1.099	1.099	0	%100
62 M33 Z 1.999 1.999 0 %100 63 M34 X 0 0 0 0 %100 64 M34 Z 1.999 1.999 0 %100 65 M35 X 0 0 0 %100 66 M35 Z 2.337 2.337 0 %100 67 M36 X 0 0 0 %100 68 M36 Z 1.149 1.149 0 %100 69 MP6A X 0 0 0 %100 70 MP6A Z 2.938 2.938 0 %100 71 MP5A Z 2.938 0 %100 %100 73 MP3A X 0 0 0 %100 74 MP3A Z 3.249 0 %100 75 MP1A X 0	61	M33	Х	0	0	0	%100
64 M34 Z 1.999 1.999 0 %100 65 M35 X 0 0 0 %100 66 M35 Z 2.337 2.337 0 %100 67 M36 X 0 0 0 %100 67 M36 X 0 0 0 %100 68 M36 Z 1.149 1.149 0 %100 69 MP6A X 0 0 0 %100 70 MP6A Z 2.938 2.938 0 %100 71 MP5A Z 2.938 2.938 0 %100 72 MP5A Z 2.938 2.938 0 %100 73 MP3A X 0 0 0 %100 74 MP3A Z 3.249 0 %100 76 MP1A Z 2.938 2.93	62		Z	1.999	1.999	0	%100
64 M34 Z 1.999 1.999 0 %100 65 M35 X 0 0 0 %100 66 M35 Z 2.337 2.337 0 %100 67 M36 X 0 0 0 %100 67 M36 X 0 0 0 %100 68 M36 Z 1.149 1.149 0 %100 69 MP6A X 0 0 0 %100 70 MP6A Z 2.938 2.938 0 %100 71 MP5A Z 2.938 2.938 0 %100 72 MP5A Z 2.938 2.938 0 %100 73 MP3A X 0 0 0 %100 74 MP3A Z 3.249 0 %100 76 MP1A Z 2.938 2.93	63	M34	Х	0	0	0	%100
66 M35 Z 2.337 2.337 0 %100 67 M36 X 0 0 0 %100 68 M36 Z 1.149 1.149 0 %100 69 MP6A X 0 0 0 %100 70 MP6A Z 2.938 2.938 0 %100 71 MP5A Z 2.938 2.938 0 %100 72 MP5A Z 2.938 2.938 0 %100 73 MP3A Z 2.938 2.938 0 %100 74 MP3A Z 3.249 3.249 0 %100 75 MP1A X 0 0 0 %100 75 MP1A Z 2.938 2.938 0 %100 76 MP1A Z 2.938 2.938 0 %100 78 MP4A Z <td>64</td> <td>M34</td> <td></td> <td>1.999</td> <td>1.999</td> <td>0</td> <td></td>	64	M34		1.999	1.999	0	
66 M35 Z 2.337 2.337 0 %100 67 M36 X 0 0 0 %100 68 M36 Z 1.149 1.149 0 %100 69 MP6A X 0 0 0 %100 70 MP6A Z 2.938 2.938 0 %100 71 MP5A X 0 0 0 %100 72 MP5A Z 2.938 2.938 0 %100 73 MP3A Z 2.938 2.938 0 %100 74 MP3A Z 3.249 3.249 0 %100 75 MP1A X 0 0 0 %100 76 MP1A Z 2.938 2.938 0 %100 76 MP4A Z 0.938 0 %100 %100 78 MP4A Z	65	M35	Х	0	0	0	%100
68 M36 Z 1.149 1.149 0 %100 69 MP6A X 0 0 0 %100 70 MP6A Z 2.938 2.938 0 %100 71 MP5A X 0 0 0 %100 72 MP5A Z 2.938 2.938 0 %100 73 MP3A Z 2.938 2.938 0 %100 74 MP3A Z 3.249 3.249 0 %100 75 MP1A X 0 0 0 %100 76 MP1A Z 2.938 2.938 0 %100 78 MP4A Z 2.938 2.938 0 %100 79 MP2A X 0 0 0 %100 80 MP2A Z 2.938 2.938 0 %100 81 M55 X	66	M35	Z	2.337	2.337	0	%100
69MP6AX000%10070MP6AZ2.9382.9380%10071MP5AX000%10072MP5AZ2.9382.9380%10073MP3AX000%10074MP3AZ3.2493.2490%10075MP1AX000%10076MP1AZ2.9382.9380%10077MP4AX000%10078MP4AZ2.9382.9380%10079MP2AX000%10080MP2AZ2.9382.9380%10081M55X000%100	67	M36	Х	0	0	0	%100
70 MP6A Z 2.938 2.938 0 %100 71 MP5A X 0 0 0 %100 72 MP5A Z 2.938 2.938 0 %100 73 MP3A Z 2.938 2.938 0 %100 73 MP3A X 0 0 0 %100 74 MP3A Z 3.249 3.249 0 %100 75 MP1A X 0 0 0 %100 76 MP1A Z 2.938 2.938 0 %100 77 MP4A Z 2.938 2.938 0 %100 78 MP4A Z 2.938 2.938 0 %100 79 MP2A X 0 0 0 %100 80 MP2A Z 2.938 2.938 0 %100 81 M55 X	68	M36	Z	1.149	1.149	0	%100
71 MP5A X 0 0 0 %100 72 MP5A Z 2.938 2.938 0 %100 73 MP3A X 0 0 0 %100 74 MP3A Z 3.249 3.249 0 %100 75 MP1A X 0 0 0 %100 76 MP1A Z 2.938 2.938 0 %100 77 MP4A Z 2.938 2.938 0 %100 78 MP4A Z 2.938 2.938 0 %100 78 MP4A Z 2.938 2.938 0 %100 79 MP2A X 0 0 0 %100 80 MP2A Z 2.938 2.938 0 %100 81 M55 X 0 0 0 %100	69	MP6A	Х	0	0	0	%100
72MP5AZ2.9382.9380%10073MP3AX000%10074MP3AZ3.2493.2490%10075MP1AX000%10076MP1AZ2.9382.9380%10077MP4AX000%10078MP4AZ2.9382.9380%10079MP2AX000%10080MP2AZ2.9382.9380%10081M55X000%100	70	MP6A	Z	2.938	2.938	0	%100
72MP5AZ2.9382.9380%10073MP3AX000%10074MP3AZ3.2493.2490%10075MP1AX000%10076MP1AZ2.9382.9380%10077MP4AX000%10078MP4AZ2.9382.9380%10079MP2AX000%10080MP2AZ2.9382.9380%10081M55X000%100	71	MP5A	Х	0	0	0	%100
73MP3AX000%10074MP3AZ3.2493.2490%10075MP1AX000%10076MP1AZ2.9382.9380%10077MP4AX000%10078MP4AZ2.9382.9380%10079MP2AX000%10080MP2AZ2.9382.9380%10081M55X000%100		MP5A		2.938	2.938	0	
74MP3AZ3.2493.2490%10075MP1AX000%10076MP1AZ2.9382.9380%10077MP4AX000%10078MP4AZ2.9382.9380%10079MP2AX000%10080MP2AZ2.9382.9380%10081M55X000%100		MP3A				0	
76 MP1A Z 2.938 2.938 0 %100 77 MP4A X 0 0 0 %100 78 MP4A Z 2.938 2.938 0 %100 79 MP2A X 0 0 0 %100 80 MP2A Z 2.938 2.938 0 %100 81 M55 X 0 0 0 %100				3.249	3.249		
76 MP1A Z 2.938 2.938 0 %100 77 MP4A X 0 0 0 %100 78 MP4A Z 2.938 2.938 0 %100 79 MP2A X 0 0 0 %100 80 MP2A Z 2.938 2.938 0 %100 81 M55 X 0 0 0 %100	75	MP1A	X	0	0	0	%100
77MP4AX000%10078MP4AZ2.9382.9380%10079MP2AX000%10080MP2AZ2.9382.9380%10081M55X000%100		MP1A	Z	2.938	2.938	0	
78 MP4A Z 2.938 2.938 0 %100 79 MP2A X 0 0 0 %100 80 MP2A Z 2.938 2.938 0 %100 81 M55 X 0 0 0 %100			Х			0	
79 MP2A X 0 0 %100 80 MP2A Z 2.938 2.938 0 %100 81 M55 X 0 0 %100		MP4A		2.938	2.938	0	
80 MP2A Z 2.938 2.938 0 %100 81 M55 X 0 0 %100			Х			0	
81 M55 X 0 0 0 %100			Z		2.938		
			Х			0	
			Z	.694	.694	0	

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
1	M1	Х	-1.023	-1.023	0	%100
2	M1	Z	1.771	1.771	0	%100
3	M3	Х	-1.023	-1.023	0	%100
4	M3	Z	1.771	1.771	0	%100
5	M5	Х	034	034	0	%100
6	M5	Z	.059	.059	0	%100
7	M6	Х	504	504	0	%100
8	M6	Z	.873	.873	0	%100
9	M7	Х	-1.218	-1.218	0	%100
10	M7	Z	2.11	2.11	0	%100
11	M8	Х	034	034	0	%100
12	M8	Z	.059	.059	0	%100
13	M9	Х	504	504	0	%100

RISA-3D Version 17.0.4

Page 64

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

	0. 2.00.184104 20		Structure wi			
	Member Label	Direction		End Magnitude[lb/ft,F		End Location[in,%]
14	M9	Z	.873	.873	0	%100
15	M10	X	-1.218	-1.218	0	%100
16	M10	Z	2.11	2.11	0	%100
17	OVP	X	092	092	0	%100
18	OVP	Z	.159	.159	0	%100
19	M12	Х	-1.364	-1.364	0	%100
20	M12	Z	2.362	2.362	0	%100
21	M13	Х	092	092	0	%100
22	M13	Z	.159	.159	0	%100
23	M14	×	-1.364	-1.364	0	%100
24	M14	Z	2.362	2.362	0	%100
25	M15	X	752	752	0	%100
26	M15	Z	1.302	1.302	0	%100
20						
	M16	X	-1.044	-1.044	0	<u>%100</u>
28	M16	Z	1.809	1.809	0	%100
29	M17	X	752	752	0	%100
30	M17	Z	1.302	1.302	0	%100
31	M18	X	-1.044	-1.044	0	%100
32	M18	Z	1.809	1.809	0	%100
33	M19	X	77	77	0	%100
34	M19	Z	1.334	1.334	0	%100
35	M20	X	752	752	0	%100
36	M20	Z	1.302	1.302	0	%100
37	M21	Х	752	752	0	%100
38	M21	Z	1.302	1.302	0	%100
39	M22	X	-1	-1	0	%100
40	M22	Z	1.731	1.731	0 0	%100
41	M23	X	-1	-1	0	%100
42	M23	Z	1.731	1.731	0	%100
43			-1.169	-1.169	0	%100
	M24	X Z				
44	M24		2.024	2.024	0	%100
45	M25	X	77	77	0	%100
46	M25	Z	1.334	1.334	0	%100
47	M26	X	752	752	0	%100
48	M26	Z	1.302	1.302	0	%100
49	M27	X	735	735	0	%100
50	M27	Z	1.274	1.274	0	%100
51	M28	X	752	752	0	%100
52	M28	Z	1.302	1.302	0	%100
53	M29	X	735	735	0	%100
54	M29	Z	1.274	1.274	0	%100
55	M30	Х	77	77	0	%100
56	M30	Z	1.334	1.334	Ő	%100
57	M31	X	752	752	0	%100
58	M31	Z	1.302	1.302	0	%100
59	M32	X	752	752	0	%100
60	M32	Z	1.302	1.302	0	%100
61	M33	X	-1	-1	0	%100
		Z				
62	M33		1.731	1.731	0	<u>%100</u>
63	M34	X	-1	-1	0	%100
64	M34	Z	1.731	1.731	0	%100
65	M35	X	-1.169	-1.169	0	%100
66	M35	Z	2.024	2.024	0	%100
67	M36	X	77	77	0	%100
68	M36	Z	1.334	1.334	0	%100
60	MP6A	X	-1.469	-1.469	0	%100
69 70	MP6A	Z	2.544	2.544	-	%100

[R:\...\...\...\...\...\Rev. 2\RISA\469141-VZW_MT_LOT_A_H.r3d]

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
71	MP5A	Х	-1.469	-1.469	0	%100
72	MP5A	Z	2.544	2.544	0	%100
73	MP3A	Х	-1.624	-1.624	0	%100
74	MP3A	Z	2.813	2.813	0	%100
75	MP1A	Х	-1.469	-1.469	0	%100
76	MP1A	Z	2.544	2.544	0	%100
77	MP4A	Х	-1.469	-1.469	0	%100
78	MP4A	Z	2.544	2.544	0	%100
79	MP2A	Х	-1.469	-1.469	0	%100
80	MP2A	Z	2.544	2.544	0	%100
81	M55	Х	-1.196	-1.196	0	%100
82	M55	Z	2.072	2.072	0	%100

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
1	M1	Х	59	59	0	%100
2	M1	Z	.341	.341	0	%100
3	M3	Х	59	59	0	%100
4	M3	Z	.341	.341	0	%100
5	M5	Х	068	068	0	%100
6	M5	Z	.039	.039	0	%100
7	M6	Х	882	882	0	%100
8	M6	Z	.509	.509	0	%100
9	M7	Х	703	703	0	%100
10	M7	Z	.406	.406	0	%100
11	M8	Х	068	068	0	%100
12	M8	Z	.039	.039	0	%100
13	M9	Х	882	882	0	%100
14	M9	Z	.509	.509	0	%100
15	M10	Х	703	703	0	%100
16	M10	Z	.406	.406	0	%100
17	OVP	Х	183	183	0	%100
18	OVP	Z	.106	.106	0	%100
19	M12	Х	-2.386	-2.386	0	%100
20	M12	Z	1.378	1.378	0	%100
21	M13	Х	183	183	0	%100
22	M13	Z	.106	.106	0	%100
23	M14	Х	-2.386	-2.386	0	%100
24	M14	Z	1.378	1.378	0	%100
25	M15	Х	-2.003	-2.003	0	%100
26	M15	Z	1.156	1.156	0	%100
27	M16	Х	-1.815	-1.815	0	%100
28	M16	Z	1.048	1.048	0	%100
29	M17	Х	-2.003	-2.003	0	%100
30	M17	Z	1.156	1.156	0	%100
31	M18	Х	-1.815	-1.815	0	%100
32	M18	Z	1.048	1.048	0	%100
33	M19	Х	-2.013	-2.013	0	%100
34	M19	Z	1.162	1.162	0	%100
35	M20	Х	-2.003	-2.003	0	%100
36	M20	Z	1.156	1.156	0	%100
37	M21	Х	-2.003	-2.003	0	%100
38	M21	Z	1.156	1.156	0	%100
39	M22	Х	-1.731	-1.731	0	%100
40	M22	Z	1	1	0	%100
41	M23	Х	-1.731	-1.731	0	%100

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg)) (Continued)

			. On acture Mi		(mucu)	
	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
42	M23	Z	1	1	0	%100
43	M24	Х	-2.024	-2.024	0	%100
44	M24	Z	1.169	1.169	0	%100
45	M25	Х	-2.013	-2.013	0	%100
46	M25	Z	1.162	1.162	0	%100
47	M26	Х	-2.003	-2.003	0	%100
48	M26	Z	1.156	1.156	0	%100
49	M27	Х	-1.28	-1.28	0	%100
50	M27	Z	.739	.739	0	%100
51	M28	Х	-2.003	-2.003	0	%100
52	M28	Z	1.156	1.156	0	%100
53	M29	Х	-1.28	-1.28	0	%100
54	M29	Z	.739	.739	0	%100
55	M30	Х	-2.013	-2.013	0	%100
56	M30	Z	1.162	1.162	0	%100
57	M31	Х	-2.003	-2.003	0	%100
58	M31	Z	1.156	1.156	0	%100
59	M32	Х	-2.003	-2.003	0	%100
60	M32	Z	1.156	1.156	0	%100
61	M33	Х	-1.731	-1.731	0	%100
62	M33	Z	1	1	0	%100
63	M34	Х	-1.731	-1.731	0	%100
64	M34	Z	1	1	0	%100
65	M35	X	-2.024	-2.024	0	%100
66	M35	Z	1.169	1.169	0	%100
67	M36	Х	-2.013	-2.013	0	%100
68	M36	Z	1.162	1.162	0	%100
69	MP6A	X	-2.544	-2.544	0	%100
70	MP6A	Z	1.469	1.469	0	%100
71	MP5A	X	-2.544	-2.544	0	%100
72	MP5A	Z	1.469	1.469	0	%100
73	MP3A	Х	-2.813	-2.813	0	%100
74	MP3A	Z	1.624	1.624	0	%100
75	MP1A	X	-2.544	-2.544	0	%100
76	MP1A	Z	1.469	1.469	0	%100
77	MP4A	Х	-2.544	-2.544	0	%100
78	MP4A	Z	1.469	1.469	0	%100
79	MP2A	Х	-2.544	-2.544	0	%100
80	MP2A	Z	1.469	1.469	0	%100
81	M55	X	-3.109	-3.109	0	%100
82	M55	Z	1.795	1.795	0	%100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M3	Х	0	0	0	%100
4	M3	Z	0	0	0	%100
5	M5	Х	553	553	0	%100
6	M5	Z	0	0	0	%100
7	M6	Х	553	553	0	%100
8	M6	Z	0	0	0	%100
9	M7	Х	0	0	0	%100
10	M7	Z	0	0	0	%100
11	M8	Х	553	553	0	%100
12	M8	Z	0	0	0	%100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg)) (Continued)

			: Structure wi			
	Member Label	Direction		End Magnitude[lb/ft,F	.Start Location[in,%]	
13	M9	X	553	553	0	%100
14	M9	Z	0	0	0	%100
15	M10	X	0	0	0	%100
16	M10	Z	0	0	0	%100
17	OVP	X	-1.497	-1.497	0	%100
18	OVP	Z	0	0	0	%100
19	M12	X	-1.497	-1.497	0	%100
20	M12	Z	0	0	0	%100
21	M13	×	-1.497	-1.497	0	%100
22	M13	Z	0	0	0	%100
23	M10 M14	X	-1.497	-1.497	0	%100
24	M14	Z	0	0	0	%100
25	M15	X	-2.717	-2.717	0	%100
26		Z		-2.717	0	
	M15		0			<u>%100</u>
27	M16	X	-1.79	-1.79	0	%100
28	M16	Z	0	0	0	%100
29	M17	<u> </u>	-2.717	-2.717	0	%100
30	M17	Z	0	0	0	%100
31	M18	<u> </u>	-1.79	-1.79	0	%100
32	M18	Z	0	0	0	%100
33	M19	X	-2.717	-2.717	0	%100
34	M19	Z	0	0	0	%100
35	M20	X	-2.717	-2.717	0	%100
36	M20	Z	0	0	0	%100
37	M21	X	-2.717	-2.717	0	%100
38	M21	Z	0	0	0	%100
39	M22	X	-1.999	-1.999	0	%100
40	M22	Z	0	0	0	%100
41	M23	X	-1.999	-1.999	0	%100
42	M23	Z	0	0	0	%100
43	M24	X	-2.337	-2.337	0	%100
44	M24	Z	0	0	0	%100
45	M25	X	-2.717	-2.717	0	%100
46	M25	Z	0	0	0	%100
47	M25	X	-2.717	-2.717	0	%100
48		Z		-2.717		
	M26		0	· · ·	0	<u>%100</u>
49	M27	X 7	-1.79	-1.79	0	%100
50	M27	Z	0	0	0	%100
51	M28	X	-2.717	-2.717	0	%100
52	M28	Z	0	0	0	%100
53	M29	<u> </u>	-1.79	-1.79	0	%100
54	M29	Z	0	0	0	%100
55	M30	X	-2.717	-2.717	0	%100
56	M30	Z	0	0	0	%100
57	M31	X	-2.717	-2.717	0	%100
58	M31	Z	0	0	0	%100
59	M32	Х	-2.717	-2.717	0	%100
60	M32	Z	0	0	0	%100
61	M33	X	-1.999	-1.999	0	%100
62	M33	Z	0	0	0	%100
63	M34	x	-1.999	-1.999	0	%100
64	M34	Z	0	0	0	%100
65	M35	X	-2.337	-2.337	0	%100
66	M35	Z	0	0	0	%100
67	M36	X	-2.717	-2.717	0	%100
68	M36	Z	-2.717	-2.717	0	%100
69			-2.938	-2.938	0	
09	MP6A	X	-2.930	-2.930	U	%100

RISA-3D Version 17.0.4 [R:\...\...\...\Rev. 2\RISA\469141-VZW_MT_LOT_A_H.r3d]

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
70	MP6A	Z	0	0	0	%100
71	MP5A	Х	-2.938	-2.938	0	%100
72	MP5A	Z	0	0	0	%100
73	MP3A	Х	-3.249	-3.249	0	%100
74	MP3A	Z	0	0	0	%100
75	MP1A	Х	-2.938	-2.938	0	%100
76	MP1A	Z	0	0	0	%100
77	MP4A	Х	-2.938	-2.938	0	%100
78	MP4A	Z	0	0	0	%100
79	MP2A	Х	-2.938	-2.938	0	%100
80	MP2A	Z	0	0	0	%100
81	M55	X	-3.09	-3.09	0	%100
82	M55	Z	0	0	0	%100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg))

	Member Label	Direction		End Magnitude[lb/ft,F	Start Location[in,%]	
1	M1	X	59	59	0	%100
2	M1	Z	341	341	0	%100
3	M3	Х	59	59	0	%100
4	M3	Z	341	341	0	%100
5	M5	X	882	882	0	%100
6	M5	Z	509	509	0	%100
7	M6	X	068	068	0	%100
8	M6	Z	039	039	0	%100
9	M7	Χ	703	703	0	%100
10	M7	Z	406	406	0	%100
11	M8	Χ	882	882	0	%100
12	M8	Z	509	509	0	%100
13	M9	X	068	068	0	%100
14	M9	Z	039	039	0	%100
15	M10	X	- 703	703	0	%100
16	M10	Z	406	406	0	%100
17	OVP	X	-2.386	-2.386	0	%100
18	OVP	Z	-1.378	-1.378	0	%100
19	M12	X	183	183	0	%100
20	M12	Z	106	106	0	%100
21	M13	Х	-2.386	-2.386	0	%100
22	M13	Z	-1.378	-1.378	0	%100
23	M14	X	183	183	0	%100
24	M14	Z	106	106	0	%100
25	M15	Х	-2.003	-2.003	0	%100
26	M15	Z	-1.156	-1.156	0	%100
27	M16	Х	-1.28	-1.28	0	%100
28	M16	Z	739	739	0	%100
29	M17	Х	-2.003	-2.003	0	%100
30	M17	Z	-1.156	-1.156	0	%100
31	M18	Х	-1.28	-1.28	0	%100
32	M18	Z	739	739	0	%100
33	M19	Х	-2.013	-2.013	0	%100
34	M19	Z	-1.162	-1.162	0	%100
35	M20	Х	-2.003	-2.003	0	%100
36	M20	Z	-1.156	-1.156	0	%100
37	M21	Х	-2.003	-2.003	0	%100
38	M21	Z	-1.156	-1.156	0	%100
39	M22	Х	-1.731	-1.731	0	%100
40	M22	Z	-1	-1	0	%100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg)) (Continued)

Michibel			. On acture M	(300 Deg/) (001	(iiidou)	
	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
41	M23	Х	-1.731	-1.731	0	%100
42	M23	Z	-1	-1	0	%100
43	M24	Х	-2.024	-2.024	0	%100
44	M24	Z	-1.169	-1.169	0	%100
45	M25	Х	-2.013	-2.013	0	%100
46	M25	Z	-1.162	-1.162	0	%100
47	M26	X	-2.003	-2.003	0	%100
48	M26	Z	-1.156	-1.156	0	%100
49	M27	X	-1.815	-1.815	0	%100
50	M27	Z	-1.048	-1.048	0	%100
51	M28	X	-2.003	-2.003	0	%100
52	M28	Z	-1.156	-1.156	0	%100
53	M29	X	-1.815	-1.815	0	%100
54	M29	Z	-1.048	-1.048	0	%100
55	M30	X	-2.013	-2.013	0	%100
56	M30	Z	-1.162	-1.162	0	%100
57	M31	X	-2.003	-2.003	0	%100
58	M31	Z	-1.156	-1.156	0	%100
59	M32	X	-2.003	-2.003	0	%100
60	M32	Z	-1.156	-1.156	0	%100
61	M33	X	-1.731	-1.731	0	%100
62	M33	Z	-1	-1	0	%100
63	M34	X	-1.731	-1.731	0	%100
64	M34	Z	-1	-1	0	%100
65	M35	X	-2.024	-2.024	0	%100
66	M35	Z	-1.169	-1.169	0	%100
67	M36	X	-2.013	-2.013	0	%100
68	M36	Z	-1.162	-1.162	0	%100
69	MP6A	X	-2.544	-2.544	0	%100
70	MP6A	Z	-1.469	-1.469	0	%100
71	MP5A	X	-2.544	-2.544	0	%100
72	MP5A	Z	-1.469	-1.469	0	%100
73	MP3A	X	-2.813	-2.813	0	%100
74	MP3A	Z	-1.624	-1.624	0	%100
75	MP1A	X	-2.544	-2.544	0	%100
76	MP1A	Z	-1.469	-1.469	0	%100
77	MP4A	X	-2.544	-2.544	0	%100
78	MP4A	Z	-1.469	-1.469	0	%100
79	MP2A	X	-2.544	-2.544	0	%100
80	MP2A	Z	-1.469	-1.469	0	%100
81	M55	X	-1.205	-1.205	0	%100
82	M55	Z	696	696	0	%100

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
1	M1	Х	-1.023	-1.023	0	%100
2	M1	Z	-1.771	-1.771	0	%100
3	M3	Х	-1.023	-1.023	0	%100
4	M3	Z	-1.771	-1.771	0	%100
5	M5	Х	504	504	0	%100
6	M5	Z	873	873	0	%100
7	M6	Х	034	034	0	%100
8	M6	Z	059	059	0	%100
9	M7	Х	-1.218	-1.218	0	%100
10	M7	Z	-2.11	-2.11	0	%100
11	M8	Х	504	504	0	%100

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg)) (Continued)

			Structure wi		inia ou j	
	Member Label	Direction		End Magnitude[lb/ft,F	Start Location[in,%]	
12	M8	Z	873	873	0	%100
13	M9	X	034	034	0	%100
14	M9	Z	059	059	0	%100
15	M10	Х	-1.218	-1.218	0	%100
16	M10	Z	-2.11	-2.11	0 0	%100
17	OVP	X	-1.364	-1.364	0	%100
18	OVP	Z	-2.362	-2.362	0	%100
19	0vr M12					
		X	092	092	0	%100
20	M12	Z	159	159	0	%100
21	M13	X	-1.364	-1.364	0	%100
22	M13	Z	-2.362	-2.362	0	%100
23	M14	X	092	092	0	%100
24	M14	Z	159	159	0	%100
25	M15	X	752	752	0	%100
26	M15	Z	-1.302	-1.302	0	%100
27	M16	X	735	735	0	%100
28	M16	Z	-1.274	-1.274	0 0	%100
29	M10	X	752	752	0	%100
30	M17	Z	-1.302	-1.302	0	%100
31	M18	X	735	735	0	%100
32	M18	Z	-1.274	-1.274	0	%100
33	M19	X	77	77	0	%100
34	M19	Z	-1.334	-1.334	0	%100
35	M20	X	752	752	0	%100
36	M20	Z	-1.302	-1.302	0	%100
37	M21	X	752	752	0	%100
38	M21	Z	-1.302	-1.302	0	%100
39	M22	Х	-1	-1	0	%100
40	M22	Z	-1.731	-1.731	0	%100
41	M23	×	-1	-1	0	%100
42	M23	Z	-1.731	-1.731	0	%100
43	M24	X	-1.169	-1.169	0	%100
		Z			0	
44	M24		-2.024	-2.024		%100
45	M25	X	77	77	0	%100
46	M25	Z	-1.334	-1.334	0	%100
47	M26	X	752	752	0	%100
48	M26	Z	-1.302	-1.302	0	%100
49	M27	X	-1.044	-1.044	0	%100
50	M27	Z	-1.809	-1.809	0	%100
51	M28	Х	752	752	0	%100
52	M28	Z	-1.302	-1.302	0	%100
53	M29	X	-1.044	-1.044	0	%100
54	M29	Z	-1.809	-1.809	0 0	%100
55	M30	X	77	77	0	%100
56	M30	Z	-1.334	-1.334	0	%100
57	M30	X	752	752	+	%100
					0	
58	M31	Z	-1.302	-1.302	0	%100
59	M32	X	752	752	0	%100
60	M32	Z	-1.302	-1.302	0	%100
61	M33	X	-1	-1	0	%100
62	M33	Z	-1.731	-1.731	0	%100
63	M34	X	-1	-1	0	%100
64	M34	Z	-1.731	-1.731	0	%100
65	M35	Х	-1.169	-1.169	0	%100
66	M35	Z	-2.024	-2.024	0	%100
67	M36	X	77	77	0	%100
68	M36	Z	-1.334	-1.334	0	%100
00	MOO	_	1.00-	1.004	v	70100

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
69	MP6A	Х	-1.469	-1.469	0	%100
70	MP6A	Z	-2.544	-2.544	0	%100
71	MP5A	Х	-1.469	-1.469	0	%100
72	MP5A	Z	-2.544	-2.544	0	%100
73	MP3A	Х	-1.624	-1.624	0	%100
74	MP3A	Z	-2.813	-2.813	0	%100
75	MP1A	Х	-1.469	-1.469	0	%100
76	MP1A	Z	-2.544	-2.544	0	%100
77	MP4A	Х	-1.469	-1.469	0	%100
78	MP4A	Z	-2.544	-2.544	0	%100
79	MP2A	Х	-1.469	-1.469	0	%100
80	MP2A	Z	-2.544	-2.544	0	%100
81	M55	Х	097	097	0	%100
82	M55	Z	167	167	0	%100

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	
1	M1	Х	0	0	0	%100
2	M1	Z	007	007	0	%100
3	M3	Х	0	0	0	%100
4	M3	Z	007	007	0	%100
5	M5	Х	0	0	0	%100
6	M5	Z	000411	000411	0	%100
7	M6	Х	0	0	0	%100
8	M6	Z	000411	000411	0	%100
9	M7	Х	0	0	0	%100
10	M7	Z	006	006	0	%100
11	M8	Х	0	0	0	%100
12	M8	Z	000411	000411	0	%100
13	M9	Х	0	0	0	%100
14	M9	Z	000411	000411	0	%100
15	M10	Х	0	0	0	%100
16	M10	Z	006	006	0	%100
17	OVP	Х	0	0	0	%100
18	OVP	Z	003	003	0	%100
19	M12	Х	0	0	0	%100
20	M12	Z	003	003	0	%100
21	M13	Х	0	0	0	%100
22	M13	Z	003	003	0	%100
23	M14	Х	0	0	0	%100
24	M14	Z	003	003	0	%100
25	M15	Х	0	0	0	%100
26	M15	Z	000885	000885	0	%100
27	M16	Х	0	0	0	%100
28	M16	Z	002	002	0	%100
29	M17	Х	0	0	0	%100
30	M17	Z	000885	000885	0	%100
31	M18	Х	0	0	0	%100
32	M18	Z	002	002	0	%100
33	M19	Х	0	0	0	%100
34	M19	Z	001	001	0	%100
35	M20	Х	0	0	0	%100
36	M20	Z	000885	000885	0	%100
37	M21	Х	0	0	0	%100
38	M21	Z	000885	000885	0	%100
39	M22	x	0	0	0	%100
			· · · · ·	· · · ·	• • · · ·	,

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg)) (Continued)

					nuou,	
	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[in,%]	
40	M22	Z	003	003	0	%100
41	M23	X	0	0	0	%100
42	M23	Z	003	003	0	%100
43	M24	X	0	0	0	%100
44	M24	Z	004	004	0	%100
45	M25	X	0	0	0	%100
46	M25	Z	001	001	0	%100
47	M26	X	0	0	0	%100
48	M26	Z	000885	000885	0	%100
49	M27	X	0	0	0	%100
50	M27	Z	002	002	0	%100
51	M28	X	0	0	0	%100
52	M28	Z	000885	000885	0	%100
53	M29	X	0	0	0	%100
54	M29	Z	002	002	0	%100
55	M30	X	0	0	0	%100
56	M30	Z	001	001	0	%100
57	M31	Х	0	0	0	%100
58	M31	Z	000885	000885	0	%100
59	M32	X	0	0	0	%100
60	M32	Z	000885	000885	0	%100
61	M33	X	0	0	0	%100
62	M33	Z	003	003	0	%100
63	M34	X	0	0	0	%100
64	M34	Z	003	003	0	%100
65	M35	X	0	0	0	%100
66	M35	Z	004	004	0	%100
67	M36	X	0	0	0	%100
68	M36	Z	001	001	0	%100
69	MP6A	X	0	0	0	%100
70	MP6A	Z	005	005	0	%100
71	MP5A	Х	0	0	0	%100
72	MP5A	Z	005	005	0	%100
73	MP3A	Х	0	0	0	%100
74	MP3A	Z	006	006	0	%100
75	MP1A	X	0	0	0	%100
76	MP1A	Z	005	005	0	%100
77	MP4A	Х	0	0	0	%100
78	MP4A	Z	005	005	0	%100
79	MP2A	X	0	0	0	%100
80	MP2A	Z	005	005	0	%100
81	M55	Х	0	0	0	%100
82	M55	Z	001	001	0	%100

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
1	M1	Х	.003	.003	0	%100
2	M1	Z	004	004	0	%100
3	M3	Х	.003	.003	0	%100
4	M3	Z	004	004	0	%100
5	M5	Х	2.6e-5	2.6e-5	0	%100
6	M5	Z	-4.5e-5	-4.5e-5	0	%100
7	M6	Х	.000389	.000389	0	%100
8	M6	Z	000674	000674	0	%100
9	M7	Х	.002	.002	0	%100
10	M7	Z	004	004	0	%100

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)

monno			Structure win		(mucu)	
	Member Label	Direction		End Magnitude[lb/ft,F		
11	M8	X	2.6e-5	2.6e-5	0	%100
12	M8	Z	-4.5e-5	-4.5e-5	0	%100
13	M9	X	.000389	.000389	0	%100
14	M9	Z	000674	000674	0	%100
15	M10	X	.002	.002	0	%100
16	M10	Z	004	004	0	%100
17	OVP	X	.000165	.000165	0	%100
18	OVP	Z	000287	000287	0	%100
19	M12	X	.002	.002	0	%100
20	M12	Z	004	004	0	%100
21	M12	X	.0004	.0004	0	%100
22	M13	Z	000287	000287	0	%100
23	M13	X	.002	.002	0	%100
23	M14	Z	004	004	0	
						<u>%100</u>
25	M15	X	.001	.001	0	%100
26	M15	Z	002	002	0	%100
27	M16	X	.001	.001	0	%100
28	M16	Z	002	002	0	%100
29	M17	X	.001	.001	0	%100
30	M17	Z	002	002	0	%100
31	M18	X	.001	.001	0	%100
32	M18	Z	002	002	0	%100
33	M19	X	.001	.001	0	%100
34	M19	Z	002	002	0	%100
35	M20	X	.001	.001	0	%100
36	M20	Z	002	002	0	%100
37	M21	Х	.001	.001	0	%100
38	M21	Z	002	002	0	%100
39	M22	X	.001	.001	0	%100
40	M22	Z	002	002	0	%100
41	M23	X	.001	.001	0	%100
42	M23	Z	002	002	0	%100
43	M24	X	.002	.002	0	%100
44	M24	Z	002	004	0	%100
45	M25	X	.004	.004	0	%100
		Z				%100
46	M25		002	002	0	
47	M26	X	.001	.001	0	%100
48	M26	Z	002	002	0	%100
49	M27	X	.000961	.000961	0	%100
50	M27	Z	002	002	0	%100
51	M28	X	.001	.001	0	%100
52	M28	Z	002	002	0	%100
53	M29	X	.000961	.000961	0	%100
54	M29	Z	002	002	0	%100
55	M30	X	.001	.001	0	%100
56	M30	Z	002	002	0	%100
57	M31	X	.001	.001	0	%100
58	M31	Z	002	002	0	%100
59	M32	X	.001	.001	0	%100
60	M32	Z	002	002	0	%100
61	M33	X	.001	.001	0 0	%100
62	M33	Z	002	002	0	%100
63	M34	X	.001	.002	0	%100
64	M34	Z	002	002	0	%100
65	M35	X	.002	.002	0	%100
	M35	Z	002	004	0	%100
	101.323		- 004	004	U	70 100
66 67	M36	x	.001	.001	0	%100

RISA-3D Version 17.0.4 [R:\...\...\...\...\Rev. 2\RISA\469141-VZW_MT_LOT_A_H.r3d]

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
68	M36	Z	002	002	0	%100
69	MP6A	Х	.003	.003	0	%100
70	MP6A	Z	005	005	0	%100
71	MP5A	Х	.003	.003	0	%100
72	MP5A	Z	005	005	0	%100
73	MP3A	Х	.003	.003	0	%100
74	MP3A	Z	006	006	0	%100
75	MP1A	Х	.003	.003	0	%100
76	MP1A	Z	005	005	0	%100
77	MP4A	Х	.003	.003	0	%100
78	MP4A	Z	005	005	0	%100
79	MP2A	Х	.003	.003	0	%100
80	MP2A	Z	005	005	0	%100
81	M55	X	.003	.003	0	%100
82	M55	Z	004	004	0	%100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
1	M1	Х	.001	.001	0	%100
2	M1	Z	000839	000839	0	%100
3	M3	Х	.001	.001	0	%100
4	M3	Z	000839	000839	0	%100
5	M5	Х	5.2e-5	5.2e-5	0	%100
6	M5	Z	-3e-5	-3e-5	0	%100
7	M6	Х	.000681	.000681	0	%100
8	M6	Z	000393	000393	0	%100
9	M7	Х	.001	.001	0	%100
10	M7	Z	000804	000804	0	%100
11	M8	Х	5.2e-5	5.2e-5	0	%100
12	M8	Z	-3e-5	-3e-5	0	%100
13	M9	X	.000681	.000681	0	%100
14	M9	Z	000393	000393	0	%100
15	M10	Х	.001	.001	0	%100
16	M10	Z	000804	000804	0	%100
17	OVP	X	.00033	.00033	0	%100
18	OVP	Z	000191	000191	0	%100
19	M12	X	.004	.004	0	%100
20	M12	Z	002	002	0	%100
21	M13	Х	.00033	.00033	0	%100
22	M13	Z	000191	000191	0	%100
23	M14	Х	.004	.004	0	%100
24	M14	Z	002	002	0	%100
25	M15	X	.005	.005	0	%100
26	M15	Z	003	003	0	%100
27	M16	Х	.002	.002	0	%100
28	M16	Z	001	001	0	%100
29	M17	X	.005	.005	0	%100
30	M17	Z	003	003	0	%100
31	M18	X	.002	.002	0	%100
32	M18	Z	001	001	0	%100
33	M19	X	.005	.005	0	%100
34	M19	Z	003	003	0	%100
35	M20	X	.005	.005	0	%100
36	M20	Z	003	003	0	%100
37	M21	X	.005	.005	0	%100
38	M21	Z	003	003	0	%100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg)) (Continued)

			. on acture min			
	Member Label	Direction		. End Magnitude[lb/ft,F	.Start Location[in,%]	
39	M22	X	.002	.002	0	%100
40	M22	Z	001	001	0	%100
41	M23	X	.002	.002	0	%100
42	M23	Z	001	001	0	%100
43	M24	X	.004	.004	0	%100
44	M24	Z	002	002	0	%100
45	M25	X	.005	.005	0	%100
46	M25	Z	003	003	0	%100
47	M26	X	.005	.005	0	%100
48	M26	Z	003	003	0	%100
49	M27	X	.002	.002	0	%100
50	M27	Z	000965	000965	0	%100
51	M28	X	.005	.005	0	%100
52	M28	Z	003	003	0	%100
53	M29	X	.002	.002	0	%100
54	M29	Z	000965	000965	0	%100
55	M30	X	.005	.005	0	%100
56	M30	Z	003	003	0	%100
57	M31	X	.005	.005	0	%100
58	M31	Z	003	003	0	%100
59	M32	X	.005	.005	0	%100
60	M32	Z	003	003	0	%100
61	M33	X	.002	.002	0	%100
62	M33	Z	001	001	0	%100
63	M34	X	.002	.002	0	%100
64	M34	Z	001	001	0	%100
65	M35	X	.004	.004	0	%100
66	M35	Z	002	002	0	%100
67	M36	X	.005	.005	0	%100
68	M36	Z	003	003	0	%100
69	MP6A	X	.005	.005	0	%100
70	MP6A	Z	003	003	0	%100
71	MP5A	X	.005	.005	0	%100
72	MP5A	Z	003	003	0	%100
73	MP3A	X	.006	.006	0	%100
74	MP3A	Z	003	003	0	%100
75	MP1A	X	.005	.005	0	%100
76	MP1A	Z	003	003	0	%100
77	MP4A	X	.005	.005	0	%100
78	MP4A	Z	003	003	0	%100
79	MP2A	X	.005	.005	0	%100
80	MP2A	Z	003	003	0	%100
81	M55	X	.007	.007	0	%100
82	M55	Z	004	004	0	%100

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M3	Х	0	0	0	%100
4	M3	Z	0	0	0	%100
5	M5	Х	.000427	.000427	0	%100
6	M5	Z	0	0	0	%100
7	M6	Х	.000427	.000427	0	%100
8	M6	Z	0	0	0	%100
9	M7	Х	0	0	0	%100

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg)) (Continued)

10	Member Label M7	Direction Z	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,% %100
11	M8	X	.000427	.000427	0	%100
12	M8	Z	0	0	0	%100
13	M9	X	.000427	.000427	0	%100
14	M9	Z			0	%100
			0	0		
15	M10	X 7	0	0	0	%100
16	M10	Z	0	0	0	%100
17	OVP	<u> </u>	.003	.003	0	%100
18	OVP	Z	0	0	0	%100
19	M12	X	.003	.003	0	%100
20	M12	Z	0	0	0	%100
21	M13	X	.003	.003	0	%100
22	M13	Z	0	0	0	%100
23	M14	X	.003	.003	0	%100
24	M14	Z	0	0	0	%100
25	M15	X	.007	.007	0	%100
26	M15	Z	0	0	0	%100
27	M16	X	.002	.002	0	%100
28	M16	Z	0	0	0	%100
29	M17	X	.007	.007	0	%100
30	M17	Z	0	0	0	%100
31	M18	X	.002	.002	0	%100
32	M18	Z	0	0	0	%100
33			.007	.007	0	
	M19	X 7				%100
34	M19	Z	0	0	0	%100
35	M20	<u> </u>	.007	.007	0	%100
36	M20	Z	0	0	0	%100
37	M21	X	.007	.007	0	%100
38	M21	Z	0	0	0	%100
39	M22	X	.003	.003	0	%100
40	M22	Z	0	0	0	%100
41	M23	X	.003	.003	0	%100
42	M23	Z	0	0	0	%100
43	M24	X	.004	.004	0	%100
44	M24	Z	0	0	0	%100
45	M25	X	.007	.007	0	%100
46	M25	Z	0	0	0	%100
47	M26	X	.007	.007	0	%100
48	M26	Z	0	0	0	%100
40 49		X	.002	.002	0	%100
	M27	Z			0	
50	M27		0	0	-	<u>%100</u>
51	M28	X 7	.007	.007	0	%100
52	M28	Z	0	0	0	%100
53	M29	<u> </u>	.002	.002	0	%100
54	M29	Z	0	0	0	%100
55	M30	X	.007	.007	0	%100
56	M30	Z	0	0	0	%100
57	M31	X	.007	.007	0	%100
58	M31	Z	0	0	0	%100
59	M32	X	.007	.007	0	%100
60	M32	Z	0	0	0	%100
61	M33	×	.003	.003	0	%100
62	M33	Z	0	0	0	%100
63	M34	X	.003	.003	0	%100
64	M34	Z	0	0	0	%100
65	M35	X	.004	.004	0	%100
66	M35					
hh	M35	Z	0	0	0	%100

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F.	Start Location[in,%]	End Location[in,%]
67	M36	Х	.007	.007	0	%100
68	M36	Z	0	0	0	%100
69	MP6A	Х	.005	.005	0	%100
70	MP6A	Z	0	0	0	%100
71	MP5A	Х	.005	.005	0	%100
72	MP5A	Z	0	0	0	%100
73	MP3A	Х	.006	.006	0	%100
74	MP3A	Z	0	0	0	%100
75	MP1A	Х	.005	.005	0	%100
76	MP1A	Z	0	0	0	%100
77	MP4A	Х	.005	.005	0	%100
78	MP4A	Z	0	0	0	%100
79	MP2A	Х	.005	.005	0	%100
80	MP2A	Z	0	0	0	%100
81	M55	Х	.007	.007	0	%100
82	M55	Z	0	0	0	%100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg))

1 M1 X .001 .001 0 2 M1 Z .000839 .000839 0 3 M3 X .001 .001 0 4 M3 Z .000839 .000839 0 5 M5 X .000681 .000681 0 6 M5 Z .000393 .000393 0 7 M6 X 5.2e-5 5.2e-5 0 8 M6 Z 3e-5 0 0 9 M7 X .001 .001 0 10 M7 Z .000804 .000804 0 11 M8 X .000681 0 0 13 M9 X 5.2e-5 5.2e-5 0 14 M9 Z 3e-5 0 0 15 M10 X .001 .001 0 16 M10 </th <th>d Location[in,%]</th>	d Location[in,%]
3 M3 X .001 .001 0 4 M3 Z .000839 .000839 0 5 M5 X .000681 .000681 0 6 M5 Z .000393 .000393 0 7 M6 X 5.2e-5 5.2e-5 0 8 M6 Z 3e-5 3e-5 0 9 M7 X .001 .001 0 10 M7 Z .000804 .000804 0 11 M8 X .000681 .000804 0 12 M8 Z .000393 .000393 0 13 M9 X 5.2e-5 5.2e-5 0 14 M9 Z 3e-5 0 1 16 M10 Z .000804 .000804 0	%100
4 M3 Z .000839 .000839 0 5 M5 X .000681 .000681 0 6 M5 Z .000393 .000393 0 7 M6 X 5.2e-5 5.2e-5 0 8 M6 Z 3e-5 3e-5 0 9 M7 X .001 .001 0 10 M7 Z .000804 .000804 0 11 M8 X .000681 0 1 12 M8 Z .000393 .000393 0 13 M9 X 5.2e-5 5.2e-5 0 14 M9 Z 3e-5 0 1 15 M10 X .001 .001 0 16 M10 Z .000804 .000804 0 0	%100
5 M5 X .000681 .000681 0 6 M5 Z .000393 .000393 0 7 M6 X 5.2e-5 5.2e-5 0 8 M6 Z 3e-5 3e-5 0 9 M7 X .001 .001 0 10 M7 Z .000804 .000804 0 11 M8 X .000681 0 0 12 M8 Z .000393 .000393 0 13 M9 X 5.2e-5 5.2e-5 0 14 M9 Z 3e-5 0 0 15 M10 X .001 .001 0 16 M10 Z .000804 .000804 0	%100
6 M5 Z .000393 .000393 0 7 M6 X 5.2e-5 5.2e-5 0 8 M6 Z 3e-5 3e-5 0 9 M7 X .001 .001 0 10 M7 Z .000804 .000804 0 11 M8 X .000681 0 0 12 M8 Z .000393 .000393 0 13 M9 X 5.2e-5 5.2e-5 0 14 M9 Z 3e-5 0 0 15 M10 X .001 .001 0 16 M10 Z .000804 .000804 0	%100
7 M6 X 5.2e-5 5.2e-5 0 8 M6 Z 3e-5 3e-5 0 9 M7 X .001 .001 0 10 M7 Z .000804 .000804 0 11 M8 X .000681 0 0 12 M8 Z .000393 .000393 0 13 M9 X 5.2e-5 5.2e-5 0 14 M9 Z 3e-5 3e-5 0 15 M10 X .001 .001 0 16 M10 Z .000804 .000804 0	%100
8 M6 Z 3e-5 3e-5 0 9 M7 X .001 .001 0 10 M7 Z .000804 .000804 0 11 M8 X .000681 .000681 0 12 M8 Z .000393 .000393 0 13 M9 X 5.2e-5 5.2e-5 0 14 M9 Z 3e-5 3e-5 0 15 M10 X .001 .001 0 16 M10 Z .000804 .000804 0	%100
9 M7 X .001 .001 0 10 M7 Z .000804 .000804 0 11 M8 X .000681 .000681 0 12 M8 Z .000393 .000393 0 13 M9 X 5.2e-5 5.2e-5 0 14 M9 Z 3e-5 0 1 15 M10 X .001 .001 0 16 M10 Z .000804 .000804 0	%100
10 M7 Z .000804 .000804 0 11 M8 X .000681 .000681 0 12 M8 Z .000393 .000393 0 13 M9 X 5.2e-5 5.2e-5 0 14 M9 Z 3e-5 3e-5 0 15 M10 X .001 .001 0 16 M10 Z .000804 .000804 0	%100
11 M8 X .000681 .000681 0 12 M8 Z .000393 .000393 0 13 M9 X 5.2e-5 5.2e-5 0 14 M9 Z 3e-5 3e-5 0 15 M10 X .001 .001 0 16 M10 Z .000804 .000804 0	%100
12 M8 Z .000393 .000393 0 13 M9 X 5.2e-5 5.2e-5 0 14 M9 Z 3e-5 3e-5 0 15 M10 X .001 .001 0 16 M10 Z .000804 .000804 0	%100
13 M9 X 5.2e-5 5.2e-5 0 14 M9 Z 3e-5 3e-5 0 15 M10 X .001 .001 0 16 M10 Z .000804 .000804 0	%100
14 M9 Z 3e-5 3e-5 0 15 M10 X .001 .001 0 16 M10 Z .000804 .000804 0	%100
15 M10 X .001 .001 0 16 M10 Z .000804 .000804 0	%100
16 M10 Z .000804 .000804 0	%100
	%100
	%100
17 OVP A .004 0	%100
18 OVP Z .002 .002 0	%100
19 M12 X .00033 .00033 0	%100
20 M12 Z .000191 .000191 0	%100
21 M13 X .004 .004 0	%100
22 M13 Z .002 .002 0	%100
23 M14 X .00033 .00033 0	%100
24 M14 Z .000191 .000191 0	%100
25 M15 X .005 .005 0	%100
26 M15 Z .003 .003 0	%100
27 M16 X .002 .002 0	%100
28 M16 Z .000965 .000965 0	%100
29 M17 X .005 .005 0	%100
30 M17 Z .003 .003 0	%100
31 M18 X .002 .002 0	%100
32 M18 Z .000965 .000965 0	%100
33 M19 X .005 .005 0	%100
34 M19 Z .003 .003 0	%100
35 M20 X .005 .005 0	%100
36 M20 Z .003 .003 0	%100
37 M21 X .005 .005 0	%100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg)) (Continued)

			· On dotare min			
	Member Label	Direction		End Magnitude[lb/ft,F		
38	M21	Z	.003	.003	0	%100
39	M22	X	.002	.002	0	%100
40	M22	Z	.001	.001	0	%100
41	M23	X	.002	.002	0	%100
42	M23	Z	.001	.001	0	%100
43	M24	X	.004	.004	0	%100
44	M24	Z	.002	.002	0	%100
45	M25	X	.005	.005	0	%100
46	M25	Z	.003	.003	0	%100
47	M26	X	.005	.005	0	%100
48	M26	Z	.003	.003	0	%100
49	M27	X	.002	.002	0	%100
50	M27	Z	.001	.001	0	%100
51	M28	Х	.005	.005	0	%100
52	M28	Z	.003	.003	0	%100
53	M29	Х	.002	.002	0	%100
54	M29	Z	.001	.001	0	%100
55	M30	X	.005	.005	0	%100
56	M30	Z	.003	.003	0	%100
57	M31	Х	.005	.005	0	%100
58	M31	Z	.003	.003	0	%100
59	M32	X	.005	.005	0	%100
60	M32	Z	.003	.003	0	%100
61	M33	X	.002	.002	0	%100
62	M33	Z	.001	.001	0	%100
63	M34	X	.002	.002	0	%100
64	M34	Z	.001	.001	0	%100
65	M35	X	.004	.004	0	%100
66	M35	Z	.002	.002	0	%100
67	M36	X	.005	.005	0	%100
68	M36	Z	.003	.003	0	%100
69	MP6A	X	.005	.005	0	%100
70	MP6A	Z	.003	.003	0 0	%100
71	MP5A	X	.005	.005	0	%100
72	MP5A	Z	.003	.003	0	%100
73	MP3A	×	.006	.006	0	%100
74	MP3A	Z	.003	.003	0	%100
75	MP1A	X	.005	.005	0	%100
76	MP1A	Z	.003	.003	0	%100
77	MP4A	X	.005	.005	0	%100
78	MP4A	Z	.003	.003	0	%100
79	MP2A	X	.005	.005	0	%100
80	MP2A	Z	.003	.003	0	%100
81	M55	X	.003	.003	0	%100
82	M55	Z	.003	.003	0	%100
02	1000	Δ	.001	.001	U	/0100

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	Х	.003	.003	0	%100
2	M1	Z	.004	.004	0	%100
3	M3	Х	.003	.003	0	%100
4	M3	Z	.004	.004	0	%100
5	M5	Х	.000389	.000389	0	%100
6	M5	Z	.000674	.000674	0	%100
7	M6	Х	2.6e-5	2.6e-5	0	%100
8	M6	Z	4.5e-5	4.5e-5	0	%100

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

	0. 2.00.0000 200		. Structure will	(100 Deg/) (00	nanucu,	
	Member Label	Direction	· · · · ·	End Magnitude[lb/ft,F	_	
9	M7	X	.002	.002	0	%100
10	M7	Z	.004	.004	0	%100
11	M8	X	.000389	.000389	0	%100
12	M8	Z	.000674	.000674	0	%100
13	M9	X	2.6e-5	2.6e-5	0	%100
14	M9	Z	4.5e-5	4.5e-5	0	%100
15	M10	Х	.002	.002	0	%100
16	M10	Z	.004	.004	0	%100
17	OVP	X	.002	.002	0	%100
18	OVP	Z	.004	.004	Ő	%100
19	M12	x	.000165	.000165	0	%100
20	M12	Z	.000287	.000287	0	%100
20	M12	X	.002	.00207	0	%100
22	M13	Z	.002	.002	0	%100
22	M13		.004	.0004	0	%100
		X				
24	M14	Z	.000287	.000287	0	%100
25	M15	X	.001	.001	0	%100
26	M15	Z	.002	.002	0	%100
27	M16	X	.000961	.000961	0	%100
28	M16	Z	.002	.002	0	%100
29	M17	X	.001	.001	0	%100
30	M17	Z	.002	.002	0	%100
31	M18	X	.000961	.000961	0	%100
32	M18	Z	.002	.002	0	%100
33	M19	Х	.001	.001	0	%100
34	M19	Z	.002	.002	0	%100
35	M20	X	.001	.001	0	%100
36	M20	Z	.002	.002	0	%100
37	M21	x	.001	.001	0	%100
38	M21	Z	.002	.002	0	%100
39	M22	X	.002	.002	0	%100
40	M22	Z	.001	.001	0	%100
40	M23	X	.002	.002	0	%100
41		Z	.001	.001	0	
	M23					%100
43	M24	X	.002	.002	0	%100
44	M24	Z	.004	.004	0	%100
45	M25	X	.001	.001	0	%100
46	M25	Z	.002	.002	0	%100
47	M26	Х	.001	.001	0	%100
48	M26	Z	.002	.002	0	%100
49	M27	X	.001	.001	0	%100
50	M27	Z	.002	.002	0	%100
51	M28	X	.001	.001	0	%100
52	M28	Z	.002	.002	0	%100
53	M29	Х	.001	.001	0	%100
54	M29	Z	.002	.002	0	%100
55	M30	x	.001	.001	0 0	%100
56	M30	Z	.002	.002	0	%100
57	M31	×	.001	.002	0	%100
58	M31	Z	.002	.002	0	%100
59	M32	X	.002	.002	0	%100
60		Z		.001	0	%100
	M32		.002			
61	M33	X	.001	.001	0	%100
62	M33	Z	.002	.002	0	%100
	N/1-2/1	X	.001	.001	0	%100
63	<u>M34</u>					
63 64 65	M34 M35	Z	.002	.002 .002	0	%100 %100

RISA-3D Version 17.0.4 [R:\...\...\...\Rev. 2\RISA\469141-VZW_MT_LOT_A_H.r3d]

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
66	M35	Z	.004	.004	0	%100
67	M36	Х	.001	.001	0	%100
68	M36	Z	.002	.002	0	%100
69	MP6A	Х	.003	.003	0	%100
70	MP6A	Z	.005	.005	0	%100
71	MP5A	Х	.003	.003	0	%100
72	MP5A	Z	.005	.005	0	%100
73	MP3A	Х	.003	.003	0	%100
74	MP3A	Z	.006	.006	0	%100
75	MP1A	Х	.003	.003	0	%100
76	MP1A	Z	.005	.005	0	%100
77	MP4A	Х	.003	.003	0	%100
78	MP4A	Z	.005	.005	0	%100
79	MP2A	Х	.003	.003	0	%100
80	MP2A	Z	.005	.005	0	%100
81	M55	X	.000208	.000208	0	%100
82	M55	Z	.00036	.00036	0	%100

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	Х	0	0	0	%100
2	M1	Z	.007	.007	0	%100
3	M3	Х	0	0	0	%100
4	M3	Z	.007	.007	0	%100
5	M5	Х	0	0	0	%100
6	M5	Z	.000411	.000411	0	%100
7	M6	Х	0	0	0	%100
8	M6	Z	.000411	.000411	0	%100
9	M7	Х	0	0	0	%100
10	M7	Z	.006	.006	0	%100
11	M8	Х	0	0	0	%100
12	M8	Z	.000411	.000411	0	%100
13	M9	Х	0	0	0	%100
14	M9	Z	.000411	.000411	0	%100
15	M10	Х	0	0	0	%100
16	M10	Z	.006	.006	0	%100
17	OVP	Х	0	0	0	%100
18	OVP	Z	.003	.003	0	%100
19	M12	Х	0	0	0	%100
20	M12	Z	.003	.003	0	%100
21	M13	Х	0	0	0	%100
22	M13	Z	.003	.003	0	%100
23	M14	Х	0	0	0	%100
24	M14	Z	.003	.003	0	%100
25	M15	Х	0	0	0	%100
26	M15	Z	.000885	.000885	0	%100
27	M16	Х	0	0	0	%100
28	M16	Z	.002	.002	0	%100
29	M17	Х	0	0	0	%100
30	M17	Z	.000885	.000885	0	%100
31	M18	Х	0	0	0	%100
32	M18	Z	.002	.002	0	%100
33	M19	Х	0	0	0	%100
34	M19	Z	.001	.001	0	%100
35	M20	Х	0	0	0	%100
36	M20	Z	.000885	.000885	0	%100

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg)) (Continued)

	Distributed LO		. Structure Win		nuna ea,	
	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
37	M21	X	0	0	0	%100
38	M21	Z	.000885	.000885	0	%100
39	M22	X	0	0	0	%100
40	M22	Z	.003	.003	0	%100
41	M23	X	0	0	0	%100
42	M23	Z	.003	.003	0	%100
43	M24	X	0	0	0	%100
44	M24	Z	.004	.004	0	%100
45	M25	X	0	0	0	%100
46	M25	Z	.001	.001	0	%100
47	M26	X	0	0	0	%100
48	M26	Z	.000885	.000885	0	%100
49	M27	X	0	0	0	%100
50	M27	Z	.002	.002	0	%100
51	M28	X	0	0	0	%100
52	M28	Z	.000885	.000885	0	%100
53	M29	X	0	0	0	%100
54	M29	Z	.002	.002	0	%100
55	M30	X	0	0	0	%100
56	M30	Z	.001	.001	0	%100
57	M31	X	0	0	0	%100
58	M31	Z	.000885	.000885	0	%100
59	M32	X	0	0	0	%100
60	M32	Z	.000885	.000885	0	%100
61	M33	X	0	0	0	%100
62	M33	Z	.003	.003	0	%100
63	M34	X	0	0	0	%100
64	M34	Z	.003	.003	0	%100
65	M35	X	0	0	0	%100
66	M35	Z	.004	.004	0	%100
67	M36	X	0	0	0	%100
68	M36	Z	.001	.001	0	%100
69	MP6A	X	0	0	0	%100
70	MP6A	Z	.005	.005	0	%100
71	MP5A	X	0	0	0	%100
72	MP5A	Z	.005	.005	0	%100
73	MP3A	X	0	0	0	%100
74	MP3A	Z	.006	.006	0	%100
75	MP1A	X	0	0	0	%100
76	MP1A	Z	.005	.005	0	%100
77	MP4A	X	0	0	0	%100
78	MP4A	Z	.005	.005	0	%100
79	MP2A	X	0	0	0	%100
80	MP2A	Z	.005	.005	0	%100
81	M55	X	0	0	0	%100
82	M55	Z	.001	.001	0	%100

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F.	.Start Location[in,%]	End Location[in,%]
1	M1	Х	003	003	0	%100
2	M1	Z	.004	.004	0	%100
3	M3	Х	003	003	0	%100
4	M3	Z	.004	.004	0	%100
5	M5	Х	-2.6e-5	-2.6e-5	0	%100
6	M5	Z	4.5e-5	4.5e-5	0	%100
7	M6	X	000389	000389	0	%100

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

0	Member Label	Direction		End Magnitude[lb/ft,F		End Location[in,%]
8	M6	Z	.000674	.000674	0	%100
9	M7	X	002	002	0	%100
10	M7	Z	.004	.004	0	%100
11	<u>M8</u>	X	-2.6e-5	-2.6e-5	0	%100
12	M8	Z	4.5e-5	4.5e-5	0	%100
13	M9	Х	000389	000389	0	%100
14	M9	Z	.000674	.000674	0	%100
15	M10	X	002	002	0	%100
16	M10	Z	.004	.004	0	%100
17	OVP	Х	000165	000165	0	%100
18	OVP	Z	.000287	.000287	0	%100
19	M12	Х	002	002	0	%100
20	M12	Z	.004	.004	0	%100
21	M13	X	000165	000165	0	%100
22	M13	Z	.000287	.000287	0 0	%100
23	M14	x	002	002	0	%100
24	M14	Z	.004	.002	0	%100
25	M15	X	004	001	0	%100
26	M15	Z	.002	.001	0	%100
20	M15	X	001	001	0	%100
28	M16	Z	.002	.002	0	%100
29	M17	X	001	001	0	%100
30	M17	Z	.002	.002	0	%100
31	M18	X	001	001	0	%100
32	M18	Z	.002	.002	0	%100
33	M19	X	001	001	0	%100
34	M19	Z	.002	.002	0	%100
35	M20	X	001	001	0	%100
36	M20	Z	.002	.002	0	%100
37	M21	X	001	001	0	%100
38	M21	Z	.002	.002	0	%100
39	M22	Х	001	001	0	%100
40	M22	Z	.002	.002	0	%100
41	M23	Х	001	001	0	%100
42	M23	Z	.002	.002	0	%100
43	M24	x	002	002	0	%100
44	M24	Z	.004	.004	0	%100
45	M25	X	001	001	0	%100
46	M25	Z	.002	.002	0	%100
40	M25	X	001	001	0	%100
		Z			0	%100
48	M26		.002	.002		
49	M27	X	000961	000961	0	<u>%100</u>
50	M27	Z	.002	.002	0	%100
51	M28	X	001	001	0	%100
52	M28	Z	.002	.002	0	%100
53	M29	X	000961	000961	0	%100
54	M29	Z	.002	.002	0	%100
55	M30	X	001	001	0	%100
56	M30	Z	.002	.002	0	%100
57	M31	Х	001	001	0	%100
58	M31	Z	.002	.002	0	%100
59	M32	X	001	001	0	%100
60	M32	Z	.002	.002	0 0	%100
61	M33	x	001	001	0	%100
62	M33	Z	.002	.001	0	%100
63	M34	X	001	001	0	%100
64	M34	Z	.002	.001	0	%100
0+	WO4	L _	.002	.002	U	/0100

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
65	M35	Х	002	002	0	%100
66	M35	Z	.004	.004	0	%100
67	M36	Х	001	001	0	%100
68	M36	Z	.002	.002	0	%100
69	MP6A	X	003	003	0	%100
70	MP6A	Z	.005	.005	0	%100
71	MP5A	X	003	003	0	%100
72	MP5A	Z	.005	.005	0	%100
73	MP3A	X	003	003	0	%100
74	MP3A	Z	.006	.006	0	%100
75	MP1A	X	003	003	0	%100
76	MP1A	Z	.005	.005	0	%100
77	MP4A	Х	003	003	0	%100
78	MP4A	Z	.005	.005	0	%100
79	MP2A	Х	003	003	0	%100
80	MP2A	Z	.005	.005	0	%100
81	M55	Х	003	003	0	%100
82	M55	Z	.004	.004	0	%100

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	Х	001	001	0	%100
2	M1	Z	.000839	.000839	0	%100
3	M3	Х	001	001	0	%100
4	M3	Z	.000839	.000839	0	%100
5	M5	Х	-5.2e-5	-5.2e-5	0	%100
6	M5	Z	3e-5	3e-5	0	%100
7	M6	Х	000681	000681	0	%100
8	M6	Z	.000393	.000393	0	%100
9	M7	Х	001	001	0	%100
10	M7	Z	.000804	.000804	0	%100
11	M8	Х	-5.2e-5	-5.2e-5	0	%100
12	M8	Z	3e-5	3e-5	0	%100
13	M9	Х	000681	000681	0	%100
14	M9	Z	.000393	.000393	0	%100
15	M10	Х	001	001	0	%100
16	M10	Z	.000804	.000804	0	%100
17	OVP	Х	00033	00033	0	%100
18	OVP	Z	.000191	.000191	0	%100
19	M12	Х	004	004	0	%100
20	M12	Z	.002	.002	0	%100
21	M13	Х	00033	00033	0	%100
22	M13	Z	.000191	.000191	0	%100
23	M14	Х	004	004	0	%100
24	M14	Z	.002	.002	0	%100
25	M15	Х	005	005	0	%100
26	M15	Z	.003	.003	0	%100
27	M16	Х	002	002	0	%100
28	M16	Z	.001	.001	0	%100
29	M17	Х	005	005	0	%100
30	M17	Z	.003	.003	0	%100
31	M18	Х	002	002	0	%100
32	M18	Z	.001	.001	0	%100
33	M19	Х	005	005	0	%100
34	M19	Z	.003	.003	0	%100
35	M20	Х	005	005	0	%100

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg)) (Continued)

36	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[]b/ft E	Otant Lagation Fig. 0/1	
		Bildottott	Start Mayrilluuelib/it,	End Magnitude[ib/it,F	.Start Location In, %]	End Location[in,%]
	M20	Z	.003	.003	0	%100
37	M21	Х	005	005	0	%100
38	M21	Z	.003	.003	0	%100
39	M22	Х	002	002	0	%100
40	M22	Z	.001	.001	0	%100
41	M23	X	002	002	0	%100
42	M23	Z	.001	.001	0	%100
43	M24	X	004	004	0	%100
44	M24	Z	.002	.002	0	%100
45	M25	x	005	005	0 0	%100
46	M25	Z	.003	.003	0	%100
47	M26	x	005	005	0	%100
48	M26	Z	.003	.003	0	%100
49	M20	X	002	002	0	%100
50	M27	Z	.000965	.000965	0	%100
51	M28	X	005	005	0	%100
52	M28	Z	.003	.003	0	%100
53	M29	X	002	002	0	%100
54	M29	Z	.000965	.000965	0	%100
55	M30	X	005	005	0	%100
56	M30	Z	.003	.003	0	%100
57	M30	X	005	005	0	%100
58	M31	Z	.003	.003	0	%100
59	M31	X	005	005	0	%100
60	M32	Z	.003	.003	0	%100
61					0	
62	M33	X Z	002 .001	002 .001	0	%100
	M33					%100
63	M34	X	002	002	0	%100
64	M34	Z	.001	.001	0	%100
65	M35	X	004	004	0	%100
66	M35	Z	.002	.002	0	%100
67	M36	X	005	005	0	%100
68	M36	Z	.003	.003	0	%100
69	MP6A	X	005	005	0	%100
70	MP6A	Z	.003	.003	0	%100
71	MP5A	X	005	005	0	%100
72	MP5A	Z	.003	.003	0	%100
73	MP3A	X	006	006	0	%100
74	MP3A	Z	.003	.003	0	%100
75	MP1A	X	005	005	0	%100
76	MP1A	Z	.003	.003	0	%100
77	MP4A	X	005	005	0	%100
78	MP4A	Z	.003	.003	0	%100
79	MP2A	X	005	005	0	%100
80	MP2A	Z	.003	.003	0	%100
81	M55	X	007	007	0	%100
82	M55	Z	.004	.004	0	%100

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M3	Х	0	0	0	%100
4	M3	Z	0	0	0	%100
5	M5	Х	000427	000427	0	%100
6	M5	Z	0	0	0	%100

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg)) (Continued)

menno			: Structure win			
	Member Label	Direction		End Magnitude[lb/ft,F	Start Location[in,%]	
7	M6	X	000427	000427	0	%100
8	M6	Z	0	0	0	%100
9	M7	X	0	0	0	%100
10	M7	Z	0	0	0	%100
11	M8	X	000427	000427	0	%100
12	M8	Z	0	0	0	%100
13	M9	X	000427	000427	0	%100
14	M9	Z	0		0	%100
			-	0		%100
15	M10	X	0	0	0	
16	M10	Z	0	0	0	%100
17	OVP	X	003	003	0	%100
18	OVP	Z	0	0	0	%100
19	M12	X	003	003	0	%100
20	M12	Z	0	0	0	%100
21	M13	Х	003	003	0	%100
22	M13	Z	0	0	0	%100
23	M14	Х	003	003	0	%100
24	M14	Z	0	0	0	%100
25	M15	X	007	007	0	%100
26	M15	Z	0	0	0	%100
27	M15	X	002	002	0	%100
28	M16	Z			0	%100
			0	0		
29	M17	X	007	007	0	%100
30	M17	Z	0	0	0	%100
31	M18	X	002	002	0	%100
32	M18	Z	0	0	0	%100
33	M19	X	007	007	0	%100
34	M19	Z	0	0	0	%100
35	M20	X	007	007	0	%100
36	M20	Z	0	0	0	%100
37	M21	X	007	007	0	%100
38	M21	Z	0	0	0	%100
39	M22	Х	003	003	0	%100
40	M22	Z	0	0	0	%100
41	M23	X	003	003	0 0	%100
42	M23	Z	0	0	0	%100
43	M24	X	004	004	0	%100
44	M24	Z	0	0	0	%100
44		X				
	M25		007	007	0	<u>%100</u>
46	M25	Z	0	0	0	<u>%100</u>
47	M26	X	007	007	0	%100
48	M26	Z	0	0	0	%100
49	M27	X	002	002	0	%100
50	M27	Z	0	0	0	%100
51	M28	X	007	007	0	%100
52	M28	Z	0	0	0	%100
53	M29	Х	002	002	0	%100
54	M29	Z	0	0	0	%100
55	M30	X	007	007	0	%100
56	M30	Z	0	0	0 0	%100
57	M31	X	007	007	0	%100
58	M31	Z	0	0	0	%100
59	M32	X	007	007	0	%100
		Z				
60	M32		0	0	0	<u>%100</u>
61	M33	X	003	003	0	%100
62	M33	Z	0	0	0	%100
63	M34	X	003	003	0	%100
DIOA	-3D Version 17.0.4		\ \Rev 2\RISA\4	OOA AA MITAA MAT LA		Page 85

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[in,%]	End Location[in,%]
64	M34	Z	0	0	0	%100
65	M35	Х	004	004	0	%100
66	M35	Z	0	0	0	%100
67	M36	Х	007	007	0	%100
68	M36	Z	0	0	0	%100
69	MP6A	Х	005	005	0	%100
70	MP6A	Z	0	0	0	%100
71	MP5A	Х	005	005	0	%100
72	MP5A	Z	0	0	0	%100
73	MP3A	Х	006	006	0	%100
74	MP3A	Z	0	0	0	%100
75	MP1A	Х	005	005	0	%100
76	MP1A	Z	0	0	0	%100
77	MP4A	Х	005	005	0	%100
78	MP4A	Z	0	0	0	%100
79	MP2A	Х	005	005	0	%100
80	MP2A	Z	0	0	0	%100
81	M55	Х	007	007	0	%100
82	M55	Z	0	0	0	%100

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	Х	001	001	0	%100
2	M1	Z	000839	000839	0	%100
3	M3	Х	001	001	0	%100
4	M3	Z	000839	000839	0	%100
5	M5	Х	000681	000681	0	%100
6	M5	Z	000393	000393	0	%100
7	M6	Х	-5.2e-5	-5.2e-5	0	%100
8	M6	Z	-3e-5	-3e-5	0	%100
9	M7	Х	001	001	0	%100
10	M7	Z	000804	000804	0	%100
11	M8	Х	000681	000681	0	%100
12	M8	Z	000393	000393	0	%100
13	M9	Х	-5.2e-5	-5.2e-5	0	%100
14	M9	Z	-3e-5	-3e-5	0	%100
15	M10	Х	001	001	0	%100
16	M10	Z	000804	000804	0	%100
17	OVP	Х	004	004	0	%100
18	OVP	Z	002	002	0	%100
19	M12	Х	00033	00033	0	%100
20	M12	Z	000191	000191	0	%100
21	M13	Х	004	004	0	%100
22	M13	Z	002	002	0	%100
23	M14	Х	00033	00033	0	%100
24	M14	Z	000191	000191	0	%100
25	M15	Х	005	005	0	%100
26	M15	Z	003	003	0	%100
27	M16	Х	002	002	0	%100
28	M16	Z	000965	000965	0	%100
29	M17	Х	005	005	0	%100
30	M17	Z	003	003	0	%100
31	M18	Х	002	002	0	%100
32	M18	Z	000965	000965	0	%100
33	M19	Х	005	005	0	%100
34	M19	Z	003	003	0	%100

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg)) (Continued)

Wiennbe						
05	Member Label	Direction	· · · ·	. End Magnitude[lb/ft,F		End Location[in,%]
35	M20	<u> </u>	005	005	0	%100
36	M20	Z	003	003	0	%100
37	M21	X	005	005	0	%100
38	M21	Z	003	003	0	%100
39	M22	X	002	002	0	%100
40	M22	Z	001	001	0	%100
41	M23	X	002	002	0	%100
42	M23	Z	001	001	0	%100
43	M24	X	004	004	0	%100
44	M24	Z	002	002	0	%100
45	M25	X	005	005	0	%100
46	M25	Z	003	003	0	%100
47	M26	X	005	005	0	%100
48	M26	Z	003	003	0	%100
49	M27	Х	002	002	0	%100
50	M27	Z	001	001	0	%100
51	M28	X	005	005	0	%100
52	M28	Z	003	003	0	%100
53	M29	X	002	002	0	%100
54	M29	Z	001	001	0	%100
55	M30	Х	005	005	0	%100
56	M30	Z	003	003	0	%100
57	M31	X	005	005	0	%100
58	M31	Z	003	003	0	%100
59	M32	X	005	005	0	%100
60	M32	Z	003	003	0	%100
61	M33	X	002	002	0	%100
62	M33	Z	001	001	0	%100
63	M34	X	002	002	0	%100
64	M34	Z	001	001	Ő	%100
65	M35	x	004	004	0	%100
66	M35	Z	002	002	0	%100
67	M36	X	005	005	0	%100
68	M36	Z	003	003	0	%100
69	MP6A	X	005	005	0	%100
70	MP6A	Z	003	003	0	%100
71	MP5A	X	005	005	0	%100
72	MP5A	Z	003	003	0	%100
73	MP3A	X	005	006	0	%100
74	MP3A	Z	003	003	0	%100
75	MP1A	X	005	005	0	%100
76	MP1A	Z	003	003	0	%100
77	MP4A	X	005	005	0	%100
78	MP4A MP4A	Z	003	003	0	%100
78	MP4A MP2A		003	003		%100
		X	005		0	%100
80	MP2A	Z X		003		%100
81	M55	Z	003	003	0	
82	M55	Δ	001	001	U	%100

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M1	X	003	003	0	%100
2	M1	Z	004	004	0	%100
3	M3	Х	003	003	0	%100
4	M3	Z	004	004	0	%100
5	M5	X	000389	000389	0	%100

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg)) (Continued)

6	Member Label M5	Direction Z	Start Magnitude[lb/ft, 000674	End Magnitude[lb/ft,F 000674	.Start Location[in,%]	End Location[in,% %100
7	N5	X	-2.6e-5	-2.6e-5	0	%100
8	M6	Z	-2.0e-5	-4.5e-5	0	%100
9	M7	X	-4.002	002	0	%100
10		Z	002			
	M7			004	0	%100
11	M8	X	000389	000389	0	%100
12	<u>M8</u>	Z	000674	000674	0	%100
13	M9	X	-2.6e-5	-2.6e-5	0	%100
14	M9	Z	-4.5e-5	-4.5e-5	0	%100
15	M10	X	002	002	0	%100
16	M10	Z	004	004	0	%100
17	OVP	X	002	002	0	%100
18	OVP	Z	004	004	0	%100
19	M12	X	000165	000165	0	%100
20	M12	Z	000287	000287	0	%100
21	M13	X	002	002	0	%100
22	M13	Z	004	004	0	%100
23	M14	Х	000165	000165	0	%100
24	M14	Z	000287	000287	0	%100
25	M15	X	001	001	0	%100
26	M15	Z	002	002	0	%100
27	M16	X	000961	000961	0	%100
28	M16	Z	002	002	Ő	%100
29	M17	X	001	001	Ő	%100
30	M17	Z	002	002	Ő	%100
31	M18	×	000961	000961	0	%100
32	M18	Z	002	002	0	%100
33	M19	X	001	001	0	%100
34	M19	Z	002	002	0	%100
35	M20	X	002	002	0	%100
36	M20	Z	002	001	0	%100
37	M20	X	002	002	0	%100
38	M21	Z	002	001	0	%100
39	M22	X	001	001	0	%100
40	M22	Z	002	002	0	%100
41	M23	X	001	001	0	%100
42	M23	Z	002	002	0	%100
43	M24	X	002	002	0	%100
44	M24	Z	004	004	0	%100
45	M25	X	001	001	0	%100
46	M25	Z	002	002	0	%100
47	M26	X	001	001	0	%100
48	M26	Z	002	002	0	%100
49	M27	X	001	001	0	%100
50	M27	Z	002	002	0	%100
51	M28	Х	001	001	0	%100
52	M28	Z	002	002	0	%100
53	M29	Х	001	001	0	%100
54	M29	Z	002	002	0	%100
55	M30	X	001	001	0	%100
56	M30	Z	002	002	0	%100
57	M31	×	001	001	0	%100
58	M31	Z	002	002	0	%100
59	M32	X	002	002	0	%100
60	M32	Z	002	001	0	%100
61					+	
62	M33	X Z	001 002	001	0	<u>%100</u>
02	M33	L _	002	002	U	%100

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
63	M34	Х	001	001	0	%100
64	M34	Z	002	002	0	%100
65	M35	Х	002	002	0	%100
66	M35	Z	004	004	0	%100
67	M36	Х	001	001	0	%100
68	M36	Z	002	002	0	%100
69	MP6A	Х	003	003	0	%100
70	MP6A	Z	005	005	0	%100
71	MP5A	Х	003	003	0	%100
72	MP5A	Z	005	005	0	%100
73	MP3A	Х	003	003	0	%100
74	MP3A	Z	006	006	0	%100
75	MP1A	Х	003	003	0	%100
76	MP1A	Z	005	005	0	%100
77	MP4A	Х	003	003	0	%100
78	MP4A	Z	005	005	0	%100
79	MP2A	Х	003	003	0	%100
80	MP2A	Z	005	005	0	%100
81	M55	Х	000208	000208	0	%100
82	M55	Z	00036	00036	0	%100

Member Area Loads

Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[psf]
		No	Data to Print .			

Envelope Joint Reactions

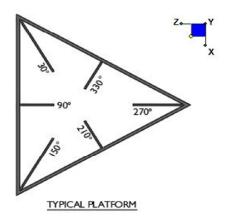
	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N4	max	1118.145	10	1367.044	22	694.186	2	123	67	0	75	.106	28
2		min	-1575.371	28	401.926	67	-3391.893	20	416	22	0	1	051	49
3	N65	max	1574.482	29	1251.705	22	3192.457	14	114	67	0	75	.1	28
4		min	-630.138	49	372.978	67	273.982	8	385	21	0	1	049	49
5	N84	max	641.086	10	340.697	4	1367.276	10	0	75	0	75	0	75
6		min	-643.934	4	-268.723	10	-1368.825	4	0	1	0	1	0	1
7	Totals:	max	1851.01	10	2613.65	22	2509.179	1						
8		min	-1851.01	4	817.892	67	-2509.173	7						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[. LC	Shear Check	Loc[in]	Dir	LC	phi*Pnc	phi*Pnt		.phi*MnCb Eqn
1	M1	L4X3X6	.000	3.375		.000				80199.0		2.686	7.063 1 H2-1
2	M3	L4X3X6	.000	3.375	18	.000	3.375	z	24	80199.0	80676	2.686	7.063 1 H2-1
3	M5	PL3/8X3_H	.520	0	21	.080	0	y	5	34985.7	36450	.284	2.279 1H1-1b
4	M6	PL3/8X3_H	.627	0	29	.093	0	z	28	34985.7	36450	.284	2.279 1H1-1b
5	M7	PIPE 2.5	.208	140	. 7	.083	140		1	10110.2	50715	3.596	3.596 ¹ H1-1b
6	M8	PL3/8X3_H	.482	0	21	.077	0	у	29	34985.7	36450	.284	2.279 1H1-1b
7	M9	PL3/8X3_H	.582	0	27	.096	0	Z	27	34985.7	36450	.284	2.279 1H1-1b
8	M10	PIPE_2.5	.165	140	. 30	.079	142.5		29	10110.2	50715	3.596	3.596 2H1-1b
9	OVP	PIPE 2.0	.239	5.937	21	.135	64.57		9	21054.34	32130	1.872	1.872 2H1-1b
10	M12	PIPE 2.0	.278	5.937	29	.092	0		28	21054.34	32130	1.872	1.872 2H1-1b
11	M13	PIPE 2.0	.257	6.68	23	.160	64.57		4	21054.34	32130	1.872	1.872 2H1-1b
12	M14	PIPE_2.0	.300	6.68	27	.087	0		28	21054.34	32130	1.872	1.872 2H1-1b
13	M15	PL3/8X3_H	.036	0	43	.045	0	У	29	36078.2	36450	.284	2.279 1 H1-1b
14	M16	1.5" w 0.06"	.277	24.5	26	.015	50.22		3	5179.054	8536.5	.325	.325 1 H1-1a

Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)

	Member	Shape	Code Check	Loc[. LC	Shear Check	<loc[in]< th=""><th>Dir</th><th>LC</th><th>phi*Pnc</th><th>phi*Pnt</th><th>phi*Mn</th><th>.phi*Mn</th><th>.Cb Eqn</th></loc[in]<>	Dir	LC	phi*Pnc	phi*Pnt	phi*Mn	.phi*Mn	.Cb Eqn
15	M17	PL3/8X3_H	.057	0	42	.006	0	y	8	36078.2	36450	.284	2.279	1 H1-1b
16	M18	1.5" w 0.06"	.227	24.5	- 26	.015	50.22		8	5179.054	8536.5	.325	.325	1 H1-1a
17	M19	PL3/8X3_H	.044	0	39	.009	0	y	12	33887.6	36450	.284	2.265	1 H1-1b
18	M20	PL3/8X3_H	.035	1.5	40	.045	1.5	V	29	36078.2	36450	.284	2.279	1 H1-1b
19	M21	PL3/8X3_H	.056	1.5	40	.006	1.5	v	8	36078.2	36450	.284	2.279	1 H1-1b
20	M22	1.5" w 0.06"	.143	38	28	.033	0		28	6412.349	8536.5	.325	.325	1 H1-1b*
21	M23	1.5" w 0.06"	.277	0	29	.007	0		7	6412.349	8536.5	.325	.325	1 H1-1a
22	M24	PIPE 2.0	.028	0	27	.002	33		12	29344.85	32130	1.872	1.872	1 H1-1b*
23	M25	PL3/8X3_H	.046	4	42	.009	4	y	12	33887.6	36450	.284	2.265	1 H1-1b
24	M26	PL3/8X3_H	.023	1.5	22	.043	0	y	29	36078.2	36450	.284	2.279	1H1-1b*
25	M27	1.5" w 0.06"	.255	24.5	. 23	.027	0		5	5179.054	8536.5	.325	.325	1H1-1a
26	M28	PL3/8X3_H	.039	1.5	22	.006	0	y	8	36078.2	36450	.284	2.279	1H1-1b*
27	M29	1.5" w 0.06"	.099	25.11	24	.015	50.22		5	5179.054	8536.5	.325	.325	1H1-1b
28	M30	PL3/8X3_H	.579	0	10	.048	4	z	11	33887.6	36450	.284	2.279	1H1-1b
29	M31	PL3/8X3_H	.033	1.5	11	.043	1.5	У	29	36078.2		.284	2.279	1H1-1b
30	M32	PL3/8X3_H	.074	1.5	11	.006	1.5	y	8	36078.2	36450	.284	2.279	1H1-1b
31	M33	1.5" w 0.06"	.131	38	22	.031	38		5	6412.349	8536.5	.325	.325	1H1-1b*
32	M34	1.5" w 0.06"	.235	38	23	.007	0		8	6412.349	8536.5	.325	.325	1H1-1a
33	M35	PIPE 2.0	.599	14.0	. 4	.089	13.75		10	29344.85	32130	1.872	1.872	1H1-1b
34	M36	PL3/8X3_H	.485	4	4	.039	0	z	11	33887.6	36450	.284	2.279	1H1-1b
35	MP6A	PIPE 2.0	.106	26	44	.020	26		8	14916.0		1.872	1.872	4H1-1b
36	MP5A	PIPE_2.0	.213	67	49	.055	67		5	14916.0	32130	1.872	1.872	4H1-1b
37	MP3A	PIPE 2.5	.186	26	7	.077	67		5	30038.4		3.596		4H1-1b
38	MP1A	PIPE_2.0	.232	67	33	.031	67		8	14916.0	32130	1.872	1.872	4H1-1b
39	MP4A	PIPE 2.0	.119	56.8	46	.031	41.25		9	23808.54	32130	1.872	1.872	2H1-1b
40	MP2A	PIPE 2.0	.249	56.8	. 34	.043	16.25		31	23808.54	32130	1.872		2H1-1b
41	M55	PIPE_3.0	.047	58.5	. 9	.004	0		22	39991.26	65205	5.749	5.749	1H1-1b


Client:	Verizon Wireless	Date: 1/11/2022
Site Name:	MADISON CT	
Project No.	21777866A (Rev. 2)	
Title:	Mount Analysis	Page: 1

Version 3.1

I. Mount-to-Tower Connection Check

<u>RISA Model Data</u>

Nodes (labeled per RISA)	Orientation (per graphic of typical platform)
N4	90
N65	90

Tower Connection Bolt Checks

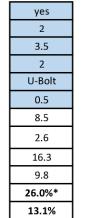
Any moment resistance?:

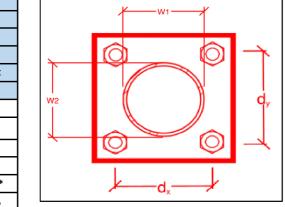
Bolt Quantity per Reaction:

d_x (in) (Delta X of typ. bolt config. sketch) : d_y (in) (Delta Y of typ. bolt config. sketch) : Bolt Type:

Bolt Diameter (in):

Required Tensile Strength (kips):


Required Shear Strength (kips):


Tensile Strength / bolt (kips):

Shear Strength / bolt (kips):

Tensile Capacity Overall:

Shear Capacity Overall:

*Note: Tension reduction not required if tension or shear capacity < 30%

Subject

Maser Consulting Connecticut

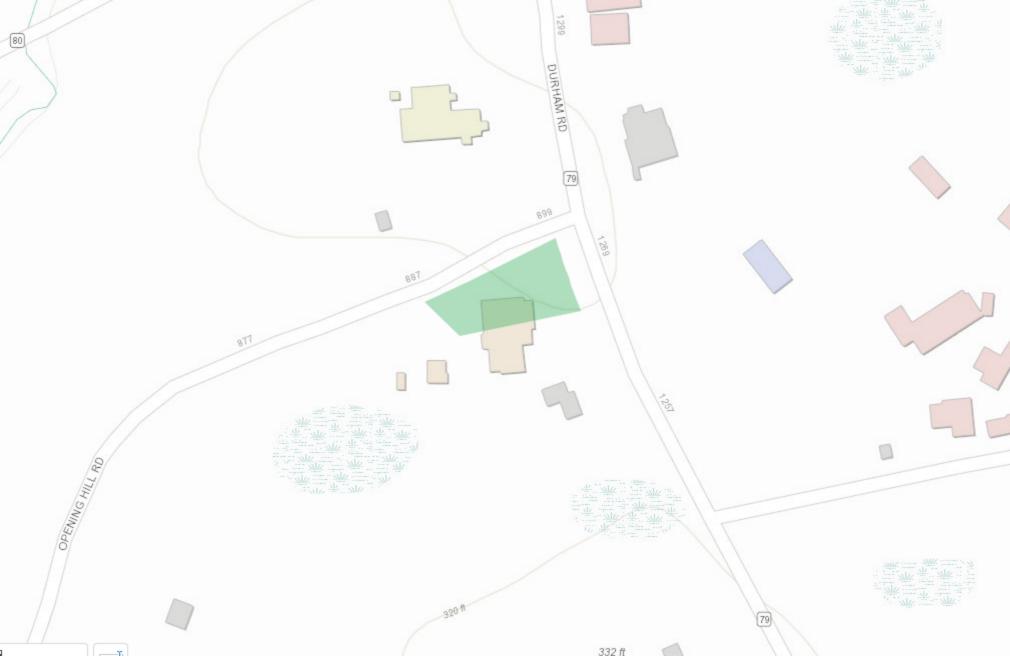
469141-VZW / MADISON CT Site Information Site ID: Site Name: MADISON CT Carrier Name: Verizon Wireless Address: 864 Opening Hill Rd. Madison, Connecticut 06443 New Haven County Latitude: 41.356126° -72.639080° Longitude: Structure Information Tower Type: 180-Ft Self Support Mount Type: 15.00-Ft Sector Frame FUZE ID # 16092583

TIA-222-H Usage

To Whom It May Concern,

We respectfully submit the above referenced Antenna Mount Structural Analysis report in conformance with ANSI/TIA-222-H, Structural Standard for Antenna Supporting Structures and Antennas and Small Wind Turbine Support Structures.

The 2015 International Building Code states that, in Section 3108, telecommunication towers shall be designed and constructed in accordance with the provisions of TIA-222. TIA-222-H is the latest revision of the TIA-222 Standard, effective as of January 01, 2018.


As with all ANSI standards and engineering best practice is to apply the most current revision of the standard. This ensures the engineer is applying all updates. As an example, the TIA-222-H Standard includes updates to bring it in line with the latest AISC and ACI standards and it also incorporates the latest wind speed maps by ASCE 7 based on updated studies of the wind data.

The TIA-222-H standard clarifies these specific requirements for the antenna mount analysis such as modeling methods, seismic analysis, 30-degree increment wind directions and maintenance loading. Therefore, it is our opinion that TIA-222-H is the most appropriate standard for antenna mount structural analysis and is acceptable for use at this site to ensure the engineer is taking into account the most current engineering standard available.

Sincerely,

Derek Hartzell, PE^V Technical Specialist

ATTACHMENT 5

🖨 Print

• Map It

Q Sales

Search Street Listing Sales Search Back Home

864 OPENING HILL RD

Location	n 864 OPENING HILL RD	MBLU	134/ 17/ / /
Unique ID	# 00665700	Owner	NORTH MADISON VOLUNTEER FIRE COMPANY INC
Assessmen	t \$938,700	Appraisal	\$1,341,000
PI	o 7027	Building Count	1
Dev. Ma	p		

Current Value

Appraisal											
Valuation Y	/ear	Building	Extra Features	Outbuildings	Land	Total					
2021		\$1,211,400	\$0	\$7,000	\$122,600	\$1,341,000					
	Assessment										
Valuation	Year	Building	Extra Features	Outbuildings	Land	Total					
2021		\$848,000	\$0	\$4,900	\$85,800	\$938,700					

Owner of Record

Owner	NORTH MADISON VOLUNTEER FIRE COMPANY INC	Sale Price	\$0
Co-Owner		Book & Page	0044/0130
Care Of		Sale Date	

ATTACHMENT 6

			- 1	MADISON	
DITED STATES POSTAL SERVICE ®				ficate of Mail	<mark>ing — Firm</mark>
Name and Address of Sender Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	TOTAL NO. of Pieces Listed by Sender 3 Postmaster, per (name of receiving amployee)	Affix Stamp Here Postmark with Date of Re	neoposi 05/05/2 US PO	2022 STAGE \$002	2.99 0 06103 12203937
USPS [®] Tracking Number Firm-specific Identifier	Address (Name, Street, City, State, and ZIP Code™)	Postage	Fee	Special Handling	Parcel Airlift
1. 2. 3. 4.	Peggy Lyons, First Selectwoman Town of Madison 8 Campus Drive Madison, CT 06443 Erin Mannix, Town Planner Town of Madison 8 Campus Drive Madison, CT 06443 North Madison Volunteer Fire Company, Inc. 864 Opening Hill Road Madison, CT 06443		Sasn ZUX S-	KIM OLD SI	
5.			NOITAT.	3 ASTON	
			¥1		