

Centek Engineering, Inc. 3-2 North Branford Road Branford, Connecticut 06405 Phone: (203) 488-0580 Fax: (203) 488-8587

Steven L. Levine Real Estate Consultant

HAND DELIVERED

May 13, 2016

Attorney Melanie Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, Connecticut 06051

Notice of Exempt Modification: Existing Telecommunications Facility at 136 Vinegar Hill Road, Ledyard

Dear Ms. Bachman:

In order to accommodate technological changes, implement Uniform Mobile Telecommunications System ("UMTS") and/or Long Term Evolution ("LTE") capabilities, and enhance system performance in the State of Connecticut, New Cingular Wireless PCS, LLC ("AT&T") plans to modify the equipment configurations at many of its existing cell sites. Please accept this letter and attachments as notification, pursuant to R.C.S.A. Section 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2). In compliance with R.C.S.A. Section 16-50j-73, copies of this letter are being sent to the chief elected official of the municipality in which the affected cell site is located, the property owner of record, and the tower owner or operator.

UMTS technology offers services to mobile computer and phone users anywhere in the world. Based on the Global System for Mobile ("GSM") communication standard, UMTS is the planned worldwide standard for mobile users. UMTS, fully implemented, gives computer and phone users high-speed access to the Internet as they travel. They have the same capabilities even when they roam, through both terrestrial wireless and satellite transmissions.

LTE is a high-performance air interface for cellular mobile communications. It is designed to increase the capacity and speed of mobile telephone networks.

Attached is a summary of the planned modifications, including power density calculations reflecting the change in AT&T's operations at the site. Also included is documentation of the structural sufficiency of the tower to accommodate the revised antenna configuration.

The changes to the facility do not constitute modifications as defined in Connecticut General Statutes ("C.G.S.") Section 16-50i(d) because the general physical and environmental characteristics of the site will not be significantly changed or altered. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for in R.C.S.A. Section 16-50j-72(b)(2).

- 1. The height of the overall structure will not increase.
- 2. The proposed changes will not extend the site boundaries.
- 3. The proposed changes will not increase the noise level at the site boundary by six decibels or more, or to levels that exceed state and local criteria.
- 4. The changes will not add radio frequency sending or receiving capability which increases the total radio frequency electromagnetic radiation power density measured at the site boundary to or above the standards adopted by the Federal Communications Commission pursuant to Section 704 of the Telecommunications Act of 1996, as amended, and the State Department of Energy and Environmental Protection, pursuant to Section 22a-162 of the Connecticut General Statutes.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. With recommended modifications to the structure, the proposed equipment changes will not impair the structural integrity of the facility, as determined in a certification provided by a professional engineer licensed in Connecticut.

For the foregoing reasons, AT&T respectfully submits that the proposed changes at the referenced site constitute exempt modifications under R.C.S.A. Section 16-50j-72(b)(2).

Please feel free to call me at (860) 830-0380 with questions concerning this matter. Thank you for your consideration.

Sincerely,

Steven L. Levine Real Estate Consultant

cc: Honorable Michael Finkelstein, Town of Ledyard
Property Owner of Record – State of Connecticut – Dept. of Pub. Safety (by email)
Tower Owner / Operator – State of Connecticut – Dept. of Pub. Safety (by email)

Attachments

NEW CINGULAR WIRELESS PCS, LLC Equipment Modification

136 Vinegar Hill Road, Ledyard, CT

Geographic Coordinates: N 41-25-31.7 W 72-03-21.7

Site Number 2283

Prior Decisions: Petition 774

EM 4/13 (Expired)

Tower Owner/Manager: State of Connecticut – Department of Public Safety

Land Owner of Record: State of Connecticut – Department of Public Safety

Please refer to the attached Assessor's property record and map.

Original Permitting: There are no prior approval conditions that would be violated by the proposed modifications.

• 1980 - Petition 55. The Council originally approved the 136 Vinegar Hill Road tower facility as a 180-ft self-supporting lattice tower for use by the State Police and Coastal Cable TV.

- 1985 State Police Petition 141. Microwave dishes added.
- 1989 State Police Notice of Exempt Modification for replacement of the existing tower with a new 180-ft SSL, installation of new equipment, construction of an equipment building, and installation of a fence.
- 1998 State Police Notice of Exempt Modification for the first use of the tower for cellular communications (Omnipoint).
- 2006 Petition 774. Jointly filed by Omnipoint and AT&T for installation of a powermount in the existing SSL, thereby extending the structure to 199 feet a.g.l. overall height; for addition of AT&T cellular communications capability at the facility; and for construction of new equipment areas for Omnipoint and AT&T.
- 2013 EM-CING-072-130328. Installation of equipment by AT&T for UMTS and LTE frequencies.
- 2014 The 2013 approval expired without installation of the approved equipment by AT&T.

Lease Area:

The attached site plan exhibit from the 1998 Notice of Exempt Modification shows the overall facility compound layout approved in 1998 to be substantially as it appears today. The 2006 Petition 774 site plan, attached, shows addition of the AT&T and Omnipoint equipment areas within the previously-approved facility footprint. Comparison of the 1998 and 2006 site plan exhibits with the attached proposed Construction Drawings confirms that all proposed equipment modifications will occur either on the existing tower structure or within AT&T's existing equipment shelter. Accordingly, the proposed modifications will extend neither AT&T's lease area nor the overall site boundaries.

Equipment configuration: 180-ft. SSL Tower with a power mount extension,

total height, 199 ft a.g.l.

Note: The approval for EM-CING-072-130328 expired without

installation of the equipment modifications.

Current and/or approved: Three PowerWave 7770 antennas @ 197 ft c.l. (flush-mounted)

Six Powerwave TMA's @ 197 ft

Six runs 1 5/8 inch coax Equipment shelter

Planned Modifications: Remove all AT&T equipment from the power mount pole.

Perform structural modifications per structural analysis.

Install a SitePro Triple T-Arm Mount @ 196 ft. Install one Valmont Universal Ring Mount @ 196 ft. Re-install three PowerWave 7770 antennas @ 196 ft c.l.

Re-install six Powerwave TMA's @ 196 ft.

Install one Andrew SBNH-1D6565C antenna @ 196 ft c.l. Install two Powerwave P65-17-XLH-RR antennas @ 196 ft c.l. Install one Raycap DC6-48-60-18-8F surge arrestor @ 196 ft.

Install three RRUS-11 remote radio heads @ 196 ft. Install three RRUS-12 remote radio heads @ 196 ft. Install one fiber cable and two DC control cables.

Power Density:

Worst-case calculations with 10 dB reduction for existing wireless operations at the site indicate a radio frequency electromagnetic radiation power density, measured at six feet above ground level beside the tower, of approximately 0.8 % of the standard adopted by the FCC. As depicted in the second table below, the total radio frequency electromagnetic radiation power density following proposed modifications would be approximately 1.1 % of the standard.

Existing

Company	Frequency (MHz)	Centerline Ht (feet)	Number of Channels	Power Per Channel (Watts)	Power Density (mW/cm²)	Standard Limits (mW/cm²)	Percent of Limit
Other Users *							0.36
AT&T GSM	880	196.6	6	296	0.0176	0.5867	0.30
AT&T GSM	1900	196.6	3	427	0.0127	1.0000	0.13
Total							0.8%

^{*} Per CSC records. The approval for EM-CING-072-130328 expired without installation of the approved equipment modifications. AT&T data are taken from Petition 774.

Proposed

Company	Frequency (MHz)	Antenna (Total for all sectors)	Centerline Ht (feet)	Number of Channels	Power Per Channel (Watts)	Power Density (mW/cm²)	Standard Limits (mW/cm²)	Percent of Limit
Other Users *								0.36
AT&T LTE	740	P65-17-XLH 2 antennas Andrew 1 antenna	196	1	1476	0.0147	0.4933	0.30
AT&T LTE	1900	P65-17-XLH 2 antennas Andrew 1 antenna	196	1	2421	0.0241	1.0000	0.24
AT&T UMTS	880	PW 7770 3 antennas	196	2	273	0.0054	0.5867	0.09
AT&T UMTS	1900	PW 7770 3 antennas	196	2	425	0.0085	1.0000	0.08
AT&T GSM	880	PW 7770 3 antennas	196	1	123	0.0012	0.5867	0.02
Total								1.1%

^{*} Per CSC records

Structural information:

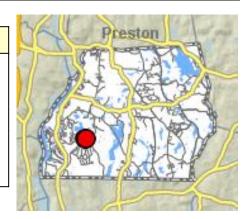
The attached structural analysis (AECOM, 8/1/16) demonstrates that the tower and foundation will have adequate structural capacity to accommodate the proposed equipment modifications upon completion of the recommended structural modifications.

Town of Ledyard Property Summary Report

136 VINEGAR HILL RD

PARCEL ID: 93-2540-136

LOCATION: 136 VINEGAR HILL RD


OWNER NAME: H STATE OF CONNECTICUT / RE: POLICE CALL TOWER

OWNER OF RECORD

H STATE OF CONNECTICUT
RE: POLICE CALL TOWER

HARTFORD, CT -

LIVING AREA: 900 ZONING: R40 ACREAGE: 0.52 AC

SALES HISTORY					
OWNER	BOOK / PAGE	SALE DATE	SALE PRICE		
H STATE OF CONNECTICUT RE: POLICE CALL TOWER	00014/0282	04-Apr-1941	\$0.00		

CURRENT APPRAISED VALUE					
TOTAL:	\$144,830.00	IMPROVEMENTS:	\$102,270.00	LAND:	\$42,560.00

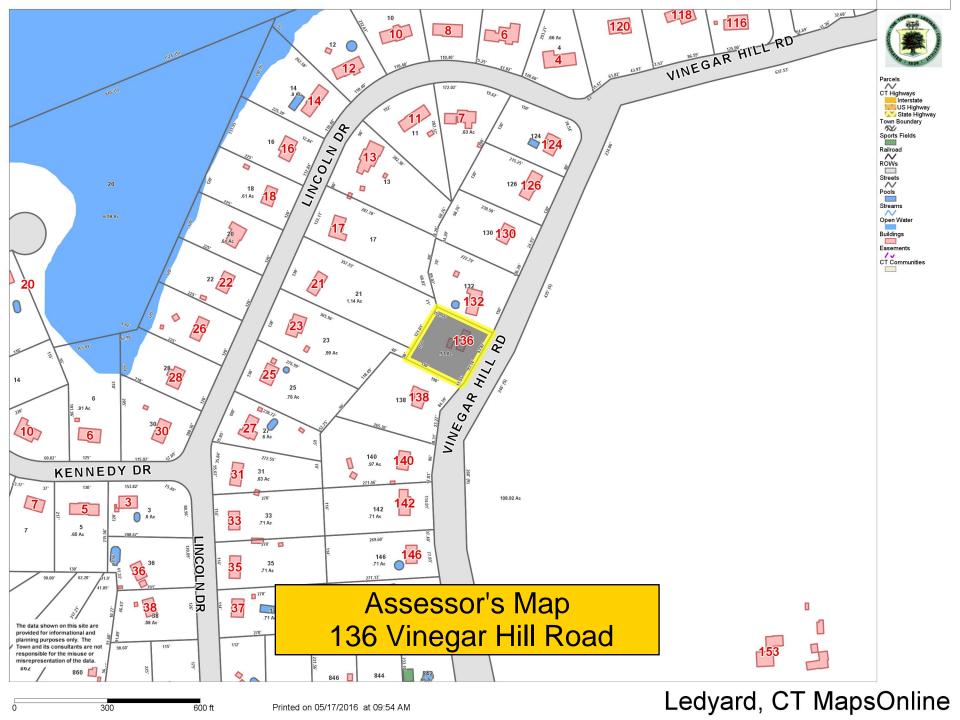
ASSESSING HISTORY				
FISCAL YEAR	TOTAL VALUE	IMPROVEMENT VALUE	LAND VALUE	
2015	\$144,830.00	\$102,270.00	\$42,560.00	
2014	\$147,070.00	\$102,270.00	\$44,800.00	
2013	\$147,070.00	\$102,270.00	\$44,800.00	
2012	\$147,070.00	\$102,270.00	\$44,800.00	
2011	\$147,070.00	\$102,270.00	\$44,800.00	

Town of Ledyard Property Summary Report

136 VINEGAR HILL RD

PARCEL ID:	93-2540-136
LOCATION:	136 VINEGAR HILL RD

H STATE OF CONNECTICUT / RE: POLICE CALL TOWER


BUILDING #1

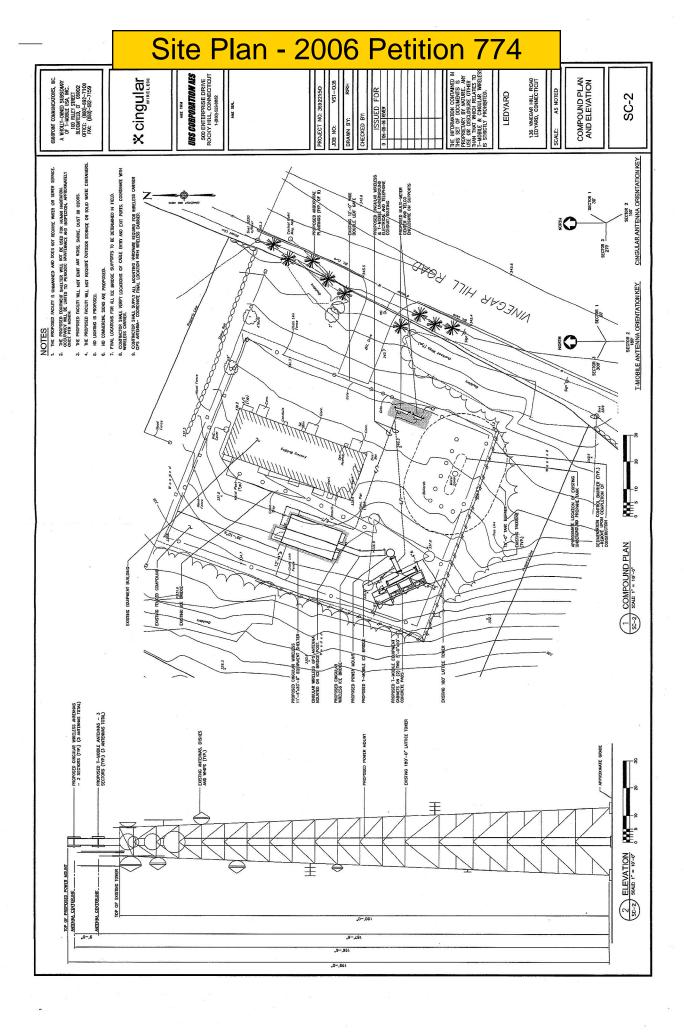
YEAR BUILT	1995	ROOF STRUCTURE	Reinforc Concr
STYLE	Other State	ROOF COVER	Concrete Tile
MODEL	Ind or Comm	FLOOR COVER 1	Concr-Finished
GRADE	Average	FLOOR COVER 2	
STORIES	1	HEAT FUEL	Electric
OCCUPANCY	State M96	HEAT TYPE	None
EXT WALL 1	Concr/Cinder	AC TYPE	None
EXT WALL 2		BEDROOMS	
INT WALLS 1	Minim/Masonry	FULL BATHS	0
INT WALLS 2		HALF BATHS	
		TOT ROOMS	

OUTBUILDINGS			
DESCRIPTION	CODE	UNITS	
RADIO TOWER		180	
Fence- 8ft Chn	FN4	346 L.F.	

OWNER NAME:

Site Plan - 1998 Exempt Mod Notice 86 STATE OF CONNECTICUT 3. CONTRUES AND FLEVATIONS REPER TO APPROXIMATE MATIGMA, GEOCETIC VER DATUM OF 1929 BASED UPON U.S. GEOLOGICAL SUPPLY MAPPING. 4. ALL DISTURBLE ANDLE CUTSIDE OF THE CHOLMS COVER SHALL BE TOPORESS ACCORDING TO THE SPECIFICATIONS. 11. SUPCY INFORMATION SHOWN MERCH REPERBEZS A MAP ENTITIED "TOPOG SAPPLY, VINCOLA HILL STIT 54, TOWN OF LEDVARD" BY ANGLE MEDONALD SAMPLE & ASSCRIMES, INC., 213 BOSTOM POST RD, QLD SAYBROOK, CT, SEPT. 14, 1889. 5. GROUND HOSS AND WIRE SALL BE LOCATED A WINIALM OF 2" FROM ALL FOUNDATION STREETWIES, GROUND ADDS SMALL BE GATCH VERTICALLY WITH THE TOP OF THE MOD LOCATED A WINIALM DISTANCE OF 2" BELOW THINSACE GALOE. 12. MORIZONTAL CONTROL. IS BASED ON WLOWETER BEARINGS.
13. CONTRONS AND SHOT ELEVATIONS AND RASED ON ASSAURD ELEVATION 340
FACE FOR ORGANIS BAD DAP OF UNCASVILLE, ET, DATED 1938 AND
PROJECTIVED 1970. 11. THE EFFERIOR FINISH OF THE SHELTER SMLL BE AN EASTHONE EXPRAGREDATE FINISH. SEE "SATE TOWER BATA SHEET" FOR TOWER DATA. CONSTRUCTION ENTRANCE SEE DETAIL, DRAWING NO 5-28 .12' WIDE BIT ACCESS DRIVE TO GATE SEE SECTION, DRAWING NO 5-28 SURVEY BASELINE POINT A COORDINATES ASSARED PM WAIL H = 4,573.31 E = 10,089.31 BURIED TELEPHONE CONDUITS (2) - BURIED ELECTRICAL CONDUIT (1) SURVEY BASELINE POINT #2 PK MAIL N = 3,034,91 C = 10,083,25 APPROX LOCATION OF BURIED 1.850 GAL PROPANE TANK LEW CATE STAKEOUT POINT NUMBER (TYP) RAOSIEV - 2/0 AWG COPPER CABLE 2'-6"
BELOW FINISHED GRADE (TYP) GROUNDING ROD. 5/8" DIA 8" LONG (TYP) CHAIN LINK FENCE (TYP) 0 USE CHARGE INFORMATION
USE CHARGE
USE CHARGE
UNE CANADAM

UNE CANADAM THIS SALTER NOT FOR STE PLAN PROTECT EXISTING WOOD FENCE -EL - 338.5 (SEE NOTE 7) CONCRETE SHELTER TYPE BU, -GROUNDING WELL-A/C UNIT (TIP OF 3) -SUNVEY BASELINE POINT #3


DRILL HOLE

N = 3,000.00

E = 10.000.00 OIL TANK DURING CONSTRUCTION (SEE NOTE 2) ä, TELECOMACNICATIONS TOWER-TOWER GROUND BAR -SEDIMENTATION BARRIER (TYP)-COMPECT GROUND ING --TOWER AZ - 86 CONSTRUCTION BASELINE —

EGB (77 OF 7) DISMANTE TOWER -DENOL ISH CONC TOWER BASE (TYP OF 3) (SEE NOTE 2) GROUND COVER INSIDE
FENCED COMPOUND (TYP)
DELOCUSE COMPOUND (SEE NOTE 2) 2' BEYOND FENCE (TYP) ş

THEORITA

PROJECT INFORMATION

SCOPE OF WORK: TELECOMMUNICATIONS FACILITY UPGRADE (LTE 1C/2C 2017 UPGRADE):

SITE ADDRESS: 136 VINEGAR HILL ROAD

GALES FERRY, CT 06335

LATITUDE: 41.425546° N, 41° 25′ 31.96″ N

LONGITUDE: 72.056943° W, 72° 3′ 24.99" W

TYPE OF SITE: MONOPOLE TOWER / INDOOR EQUIPMENT

TOWER HEIGHT: 199'

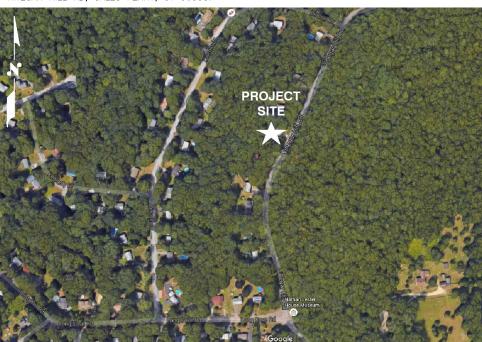
RAD CENTER: 196'±

CURRENT USE: TELECOMMUNICATIONS FACILITY

PROPOSED USE: TELECOMMUNICATIONS FACILITY

SITE NUMBER: CT2283

SITE NAME: LEDYARD - VINEGAR HILL ROAD


PROJECT: LTE 1C/2C 2017 UPGRADE

DRAWING INDEX				
SHEET NO.	DESCRIPTION	REV.		
T-1	TITLE SHEET	1		
GN-1	GENERAL NOTES	1		
A-1	COMPOUND & EQUIPMENT PLANS	1		
A-2	ANTENNA LAYOUTS & ELEVATION	1		
A-3	DETAILS	1		
RF-1	RF PLUMBING DIAGRAM	1		
G-1	GROUNDING DETAILS	1		

DIRECTIONS TO SITE:

START OUT GOING NORTHEAST ON ENTERPRISE DR TOWARD CAPITOL BLVD. 0.4 MI TURN LEFT ONTO CAPITOL BLVD. 0.2 MI TURN LEFT ONTO WEST ST. 0.2 MI TAKE RAMP LEFT FOR I-91 N. 4.5 MI AT EXIT 25, TAKE RAMP RIGHT FOR CT-3 NORTH TOWARD GLASTONBURY. 2.4 MI TAKE RAMP RIGHT FOR CT-2 EAST TOWARD NORWICH. 31.9 MI KEEP STRAIGHT ONTO CT-2 E / CT-32 S. 0.6 MI AT EXIT 28S, TAKE RAMP RIGHT FOR I-395 SOUTH TOWARD NEW HAVEN. 3.9 MI AT EXIT 79A, TAKE RAMP RIGHT FOR CT-2A EAST TOWARD PRESTON / LEDYARD. 2.6 MI ROAD NAME CHANGES TO CT-2A. 0.6 MI TURN RIGHT ONTO CT-12 / MILITARY HWY. 4.4 MI TURN LEFT ONTO CHRISTY HILL RD. 1.3 MI BEAR LEFT ONTO LONG COVE RD. 0.2 MI TURN LEFT ONTO VINEGAR HILL RD. 0.2 MI ARRIVE AT 136 VINEGAR HILL RD, GALES FERRY, CT 06335.

VICINITY MAP

- GENERAL NOTES

 THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF AT&T. ANY
- DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED. DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED.
- 2. THE FACILITY IS AN UNMANNED PRIVATE AND SECURED EQUIPMENT INSTALLATION. IT IS ONLY ACCESSED BY TRAINED TECHNICIANS FOR PERIODIC ROUTINE MAINTENANCE AND THEREFORE DOES NOT REQUIRE ANY WATER OR SANITARY SEWER SERVICE. THE FACILITY IS NOT GOVERNED BY REGULATIONS REQUIRING PUBLIC ACCESS PER ADA REQUIREMENTS.
- . CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON THE JOB SITE AND SHALL IMMEDIATELY NOTIFY THE AT&T MOBILITY REPRESENTATIVE IN WRITING OF DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME.

72 HOURS

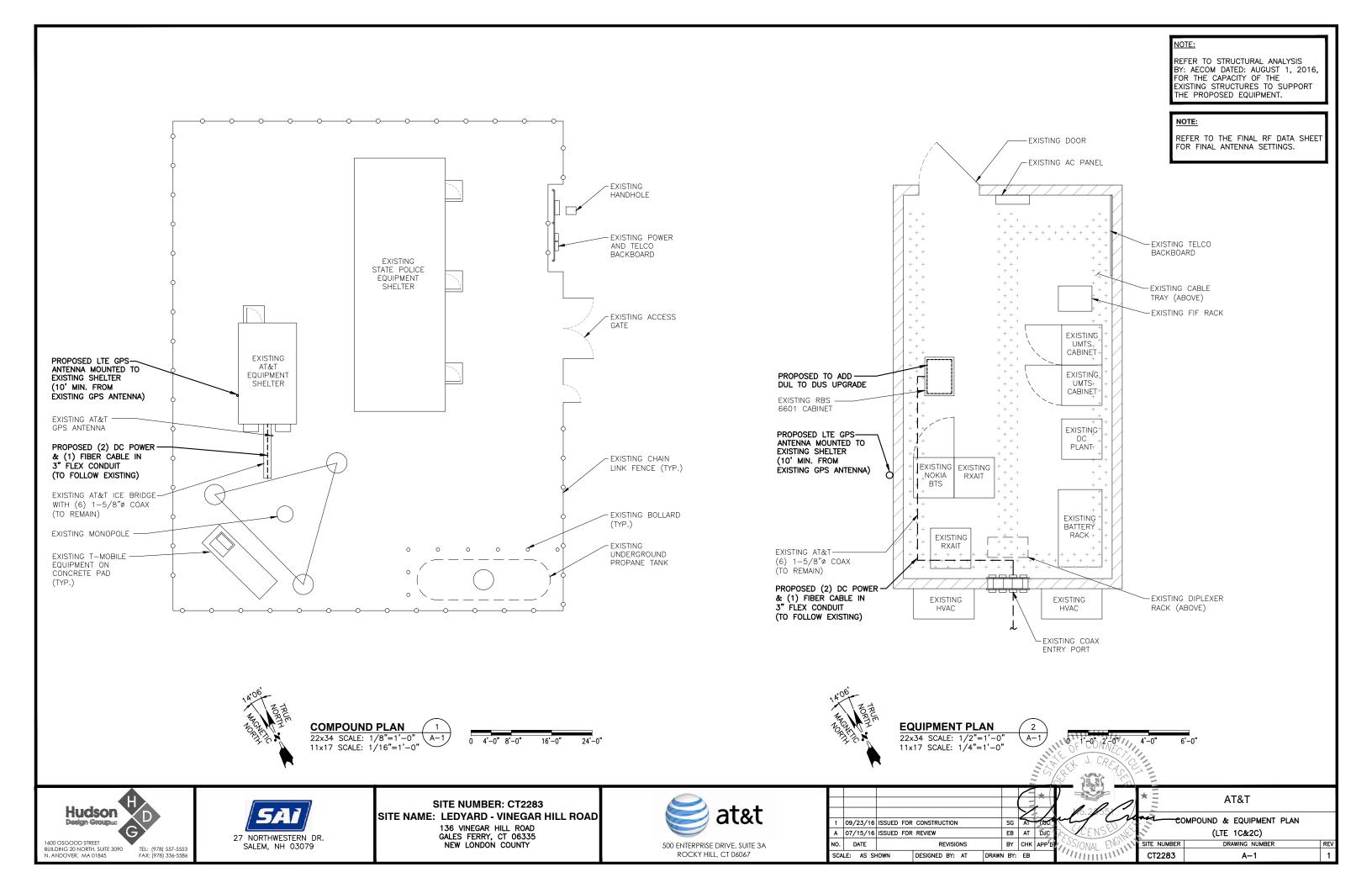
CALL BEFORE YOU DIG

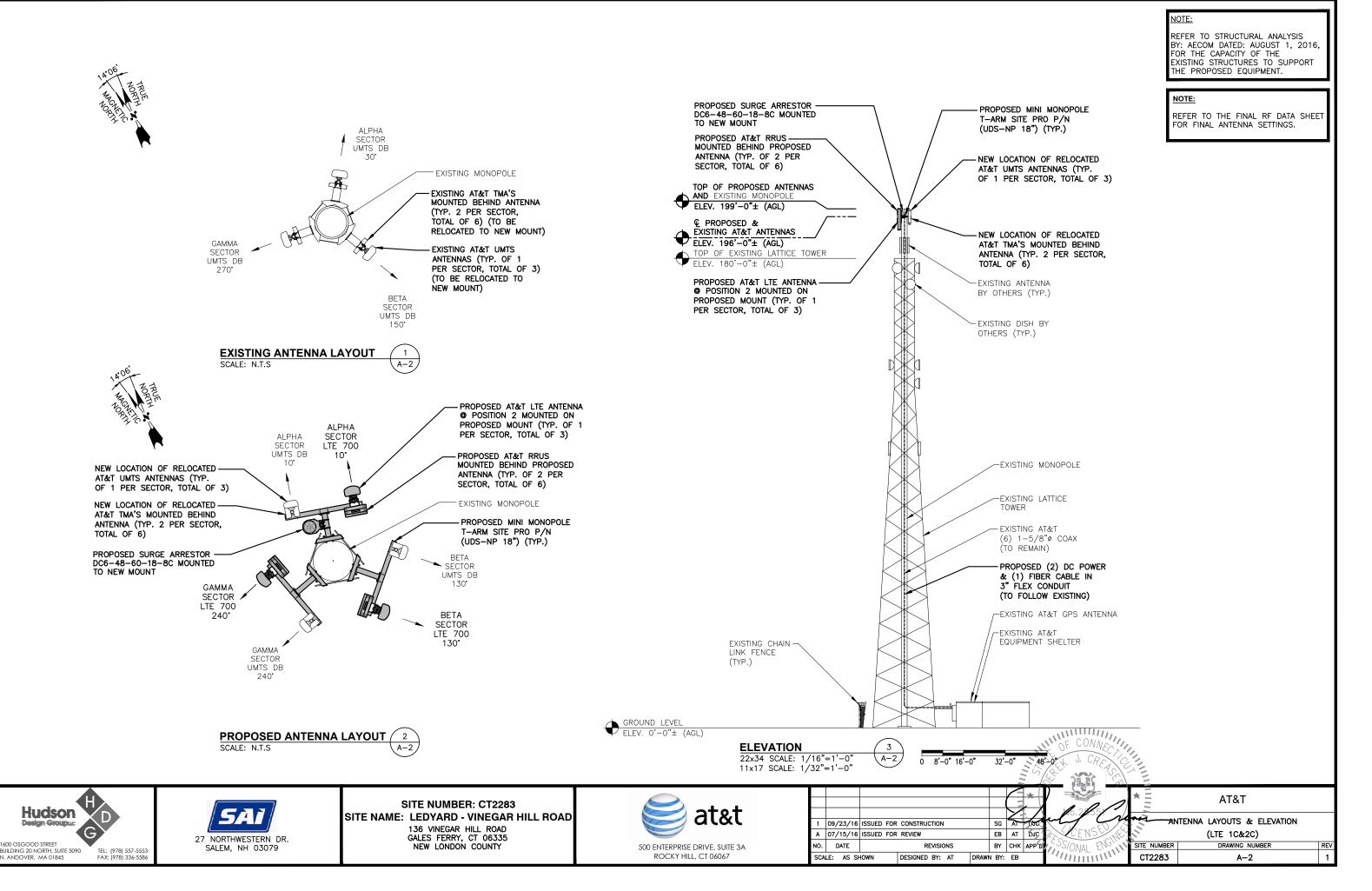
call toll free 1-800-922-4455

OR CALL 811

UNDERGROUND SERVICE ALERT

SITE NUMBER: CT2283 SITE NAME: LEDYARD - VINEGAR HILL ROAD


> 136 VINEGAR HILL ROAD GALES FERRY, CT 06335 NEW LONDON COUNTY



ROCKY HILL, CT 06067

ij							-	- 14	J.
								*)
								,~ \	ľ
							\nearrow	- /	
	09/23/16	ISSUED FOR	ISSUED FOR CONSTRUCTION			SG	7	Date	
	07/15/16	ISSUED FOR	ISSUED FOR REVIEW EB AT DOC					9/2	
	DATE		REVISIO	ONS		BY	СНК	APP'D	1/1
٩	LE: AS SI	HOWN	DESIGNED BY:	AT	DRAWN	BY:	EB		<i>"</i>

Submitted to AT&T 500 Enterprise Drive Suite 3A Rocky Hill, CT 06067 Submitted by AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 August 1, 2016

DETAILED STRUCTURAL ANALYSIS AND MODIFICATION OF AN EXISTING 180' LATTICE TOWER WITH AN EXISTING 199' POWERMOUNT FOR PROPOSED ANTENNA ARRANGEMENT

AT&T Site I.D. #: CSP Site #: Site Address:

CT2283
Connecticut State Police Tower #54
136 Vinegar Hill Road
Ledyard, CT

60492554 SAI-088

1. EXECUTIVE SUMMARY

This report summarizes the structural analysis and reinforcement of the existing outer 180' self-supporting lattice tower and the existing inner 199' Powermount located at 136 Vinegar Hill Road in Ledyard, Connecticut. The analysis was conducted in accordance with the 2009 amendment to the 2005 Connecticut State Building Code, the TIA/EIA-222-F standard, and the Connecticut State Police Requirements for a wind velocity of 95 mph (fastest mile) and 90 mph (fastest mile) concurrent with ½" ice. The loading considered in the analysis consists of all existing and proposed antennas, transmission lines, and ancillary items as outlined in the Introduction Section of this report. The proposed AT&T modification is as follows:

Proposed Antenna and Mount	Carrier	Antenna Center Elevation
Remove: (1) Valmont Flush Mount (P/N 840502)	AT&T (Existing)	@ 198'-0"
Relocate to Proposed Antenna Mount: (3) Powerwave 7770.00 antennas and (6) Powerwave LGP21401 TMA's	AT&T (Existing)	@ 198'-0"
Install: (1) SitePro 1 UDS-NP Triple T-Arm Mount (1) Valmont LWRM Universal Ring Mount (1) SBNH-1D6565C panel antenna (Alpha Sector) (2) AM-X-CD-17-65-00T-RET panel antennas (Beta and Gamma Sectors) (3) Ericsson RRUS-11 RRU units (3) Ericsson RRUS-12 RRU units (1) Surge Arrestor (2) DC Cables (1) Optic Fiber Line	AT&T (Proposed)	@ 198'-0"

Note: All AT&T antennas and appurtenances shall be located on the existing Powermount.

The results of an initial analysis indicated that the existing outer tower did NOT have sufficient capacity to support the proposed loading conditions without modification. The required modifications are shown in SK-1 through SK-4. Once the modifications are performed, the outer tower and foundation are considered structurally adequate for the wind load classifications specified above. The tower anchor bolts and foundation are considered structurally adequate for the proposed antenna loading with the wind classification specified above without modification. The existing interior Powermount has the capacity to support the proposed loading without modification.

The tower deflection (sway) is 0.6057 degrees, and the tower rotation (twist) is 0.1155 degrees. These figures are within the Connecticut State Police specification of 0.75 degrees for combined deflection (sway) and rotation (twist).

1. **EXECUTIVE SUMMARY** (continued)

This analysis is based on:

- The tower structures' theoretical capacity, not including any assessment of the condition of the tower.
- 2) Tower geometry, member sizes, and foundation taken from original construction drawings prepared by Stainless, Inc., (project number 358814) signed and sealed November 9, 1995.
- 3) Powermount (Pipe Riser) geometry and dimensions taken from Structural Report prepared by FWT, Inc., (job number J060324002) signed and sealed June 12, 2006.
- 4) Geotechnical information taken from Geotechnical Study performed by Dr. Clarence Welti, P.E., P.C. dated June 27, 2006.
- 5) Previous structural analysis performed by URS Corporation on behalf of T-Mobile and Cingular, project number VS1-038 / 36922158, signed and sealed July 24, 2006.
- 6) Proposed AT&T installation taken from Construction Drawings prepared by Hudson Design Group, job number 2283.01, Revision 0, dated August 29, 2012.
- 7) Proposed AT&T antennas taken from RFDS, revision V0.1, dated March 28, 2013.
- 8) Tower Mapping and Inventory performed by D&K Nationwide Communications, Inc., dated April 10, 2016.
- 9) Connecticut State Police updates to existing antenna inventory obtained vie e-mails dated May 12, 2016 and June 21, 2016.
- 10) Antenna and mount configuration as specified in Section 2 and 6 of this report.
- 11) Coax cable orientation as specified in Section 6 of this report.

This report is only valid as per the assumptions and data utilized in this report for antenna inventory, mounts and associated cables. The user of this report shall field verify the antenna, cabling and mount configuration used as well as the physical condition of the tower members, connections and foundation. Notify the engineer in writing immediately if any of the information in this report is found to be other than specified.

If you should have any questions, please call.

Sincerely,

AECOM, contracting as URS Corporation AES

Richard A. Sambor, P.E. Senior Structural Engineer

RAS/mcd

cc: ICA – URS CF/Book

60492554 SAI-088 No. 2057 CONSES SIGNAL EXPENSES

2. INTRODUCTION

The subject tower is located at 136 Vinegar Hill Road in Ledyard, Connecticut. The structure is a 180' self-supporting three-legged steel tapered lattice tower with a 199' Powermount. The tower is designed and manufactured by Stainless, Inc and the Powermount is designed and manufactured by FWT, Inc.

The inventory on the existing Powermount is summarized in the table below:

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
(1) SBNH-1D6565C panel antenna (Alpha Sector) (2) AM-X-CD-17-65-00T-RET panel antennas (Beta and Gamma Sectors) (3) Ericsson RRUS-11 RRU units (3) Ericsson RRUS-12 RRU units (1) Surge Arrestor	AT&T (proposed)	(1) SitePro 1 UDS- NP Triple T-Arm Mount (1) Valmont LWRM Universal Ring Mount	198'-0"	(2) DC Cables (1) Fiber Line
(3) Powerwave 7770.00 antennas (6) Powerwave LGP21401 TMA's	AT&T (existing)	Antennas Relocated to Above Mount	198'-0"	(6) 1 5/8" coax cables (within Powermount)
(3) RFS APX16PV- 16PVL-E antennas, (6) Remec G20057A1 TMA's	T-Mobile (existing)	(1) Valmont Flush Mount (P/N 840502)	187'-3"	(6) 1 5/8" coax cables

The inventory on the existing lattice tower is summarized in the table below:

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
(1) Lightning Rod	Tower (existing)	Top of Tower Flange	180'	N/A
(1) Scala OGT9-806 Whip Antenna	#24 CSP-18 (existing)	Shared Mount with Antenna # 23 (below)	180'	(1) LDF7-50A
(1) Telewave VHF-150 2 Bay Dipole Antenna	#29 CSP-1 (existing)	2' Stand-off	180'	(1) LDF5-50A
(3) (windload) 6' Dish Antennas	CSP- 60,61,62 (existing)	(3) Pipe Leg Mounted (windload)	180'	(3) WEP65 (windload)
(1) Decibel DB-809 Whip Antenna	#25 CSP-17 (existing)	(2) 6' Stand-off Mounts @ 170'	180'	(1) LDF7-50A
(1) 4' Grid Dish Antenna	#22 (existing)	Pipe Leg Mounted	175′	(1) LDF5-50A

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
(1) 4' Grid Dish Antenna	#22 (existing)	Pipe Leg Mounted	175'	(1) LDF5-50A
(1) RFS 6' PA6-65 Dish w/ Radome		Pipe Leg Mounted	170'	(1) WEP65
(1) (inverted) Decibel DB-809 Whip Antenna	#23 CSP-19 (existing)	(2) 6' Stand-off Mounts @ 170'	168'	(1) LDF7-50A
(1) RFS 6' PA6-65 Dish w/ Radome	#19 CSP-13 (existing)	Pipe Leg Mount	162.5'	(1) WEP65
(2) (inverted) Sinclair SC479-HF1LDF (DO2I- E5765) (1) Sinclair SC479- HF1LDF (DO2-E5765) (1) Sinclair 432-831- 01T TTA Unit	#26, 27, 28 CSP- 55,56,58,59 (existing)	(2) 6' Stand-off Mounts @ 160'	160'	(3) AVA7-50A (1) LDF4-50A
(1) Celwave PD-458 Omni Antenna	#17 CTT-9 (existing)	(2) 6' Stand-off Mounts @ 150'	160'	(1) LDF5-50A
(1) RFS 8' PA8-65 Dish w/ Radome	#16 CSP-15 (existing)	Pipe Leg Mount	158'	(1) WEP65
(1) Telewave VHF-150 21' 4 Dipole Array Antenna	#15 CSP-2 (existing)	(2) 4' Stand-off Mounts	158'	(1) LDF5-50A
(1) (inverted) Sinclair SC479-HF1LDF Whip Antenna	#18 CSP-54 (existing)	Shared Mount with Antenna # 17 (above)	153'	(1) LDF7-50A
(1) RFS 6' PA6-65 Dish w/ Radome w/ Ice Shield mounted above	#14 CSP-14 (existing)	Pipe Leg Mount	150'	(1) WEP65
(1) Celwave PD-320 12' Dipole Antenna	#13 DEP-21 (existing)	3' Stand-off	146'	(1) LDF5-50A
(1) RFS 6' PA6-65 Dish w/ Radome w/ Ice Shield mounted above	#12 CSP-23 (existing)	Pipe Leg Mount	135'	(1) WEP65
(1) Decibel DB-212 Dipole Antenna	#11 CSP-8 (existing)	3' Stand-off	133'	(1) LDF5-50A
(1) Decibel DB-222 Dual Dipole Antenna	#10 FBI-22 (existing)	Shared with below Mount	135'	(1) LDF5-50A
(1) Decibel DB-432 Yagi Antenna	FBI-24 (existing)	Shared with below Mount	125'	(1) LDF4-50A
(1) Comprod 531-70 10' Dipole Antenna	#9 DOT-52 (existing)	(2) 4' Stand-off Mounts	115'	(1) LDF5-50A
(1) Dish Antenna Ice Shield	#8 (existing)	Pipe Leg Mount	113'	N/A

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
(1) Decibel PD-220 Omni Antenna	#6 DHS-3 (existing)	Shared with below Mount	113'	(1) LDF5-50A
(1) Decibel DB-264 22'- 4 Dipole Array Antenna	#5 FBI-11 (existing)	2' Stand-off	92'	(1) LDF5-50A
(1) Decibel 12' - 4 Dipole Array Antenna	#4 FBI-53 (existing)	3' Stand-off	87.5'	(1) LDF5-50A
(1) Celwave PD-156S Yagi Antenna	#3 NEC-4 (existing)	2' Stand-off	62.5'	(1) LDF5-50A
(1) Decibel DB803-XT Omni Antenna	#2 CSP-25 (existing)	Shared with below Mount	53'	(1) LDF4-50A
(1) Sinclair SY-203 Yagi Antenna	#1 DEHMS-26 (existing)	3' Stand-off	48'	(1) LDF4-50A

Notes: Antenna elevations and ID numbering obtained from Tower Mapping and Existing Inventory via tower climb, performed by D&K Nationwide Communications, Inc. on April 10, 2016.

This structural analysis of the communications tower was performed by AECOM on behalf of AT&T. The purpose of this analysis was to investigate the structural integrity of the modified tower and Powermount with their existing and proposed antenna loads. This analysis was conducted to evaluate stress on the towers and the effect of forces to the foundation of the towers resulting from existing and proposed antenna arrangements.

3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS

The structural analysis was done in accordance with the 2009 amendment to the 2005 Connecticut State Building Code, TIA/EIA-222-F—Structural Standard for Steel Antenna Towers and Antenna Supporting Structures, the Connecticut State Police Requirements, and the American Institute of Steel Construction (AISC) Manual of Steel Construction—Allowable Stress Design (ASD).

The analysis of the Powermount was conducted using STAAD Pro V8i. Two load conditions were evaluated as shown below which were compared to allowable stresses according to AISC and TIA/EIA.

Load Condition 1 = 95 mph (fastest mile) Wind Load (without ice) + Tower Dead Load Load Condition 2 = 90 mph (fastest mile) Wind Load (with ice) + Ice Load + Tower Dead Load

The support reactions from the STAAD analysis were applied to the lattice tower using TNX-Tower as "User Forces". Note: the Powermount is designed to support the vertical reactions of the antenna and coaxial cable loading and transfer the lateral loading to the lattice tower.

The analysis of the lattice tower was conducted using TNX-Tower 7.0.5.1. Two load conditions were evaluated as shown below which were compared to allowable stresses according to AISC and TIA/EIA.

Load Condition 1 = 95 mph (fastest mile) Wind Load (without ice) + Tower Dead Load Load Condition 2 = 90 mph (fastest mile) Wind Load (with ice) + Ice Load + Tower Dead Load

The TIA/EIA standard permits a one-third increase in allowable stresses for towers and monopoles less than 700 feet tall. For the purposes of this analysis, in computing the load capacity the allowable stresses of the tower members were increased by one-third.

4. FINDINGS AND EVALUATION

Stresses on the modified tower structure were evaluated to compare with the allowable stress in accordance with AISC. The results of an initial analysis indicated that the existing tower structure did not have enough capacity to support the proposed loading conditions. The tower structure require modifications shown on SK-1 through SK-4. Once the modifications indicated on sheets SK-1 through SK-4 are performed, the modified structure and existing foundation are considered structurally adequate with the wind load classification specified with the existing and proposed antenna loading noted herein.

See the below tower capacity and the tower deflection (sway) and rotation (twist) figures:

TABLE 1: Tower Deflection (Sway) and Twist at the top of the tower (in degrees):

Description	Current	Allowable		
Tower Sway (degrees)	0.6057	NI/A		
Tower Twist (degrees)	0.1155	N/A		
Total (degrees)	0.7212	0.750		

TABLE 2: Tower Base Reactions:

Base Reactions	Proposed Tower Reactions
Axial Load (kips)	48
Shear per Leg (kips)	49
Total Shear (kips)	87
Uplift per Leg (kips)	386
Comp.per Leg (kips)	456
O.T. Moment (ft-kips)	9520

For detailed proposed tower reactions, see drawing no. E-1 in section 6 of this report.

TABLE 3: Tower Component Stress vs. Capacity Summary:

Component/ (Section No.)	Existing Component Size	Controlling Component/Elevation	Stress (% capacity)	Pass/Fail
Powermount	18" Dia x 0.375" Pipe	Bending / 187'-3"	55.5 %	Pass
Tower Leg (T10)	HSS6.875x0.5 w/ ½ HSS 7.5x0.3125	Compression/0' – 25'	87.4 %	Pass
Diagonal (T5)	2L2 1/2x2 1/2x1/4	Compression/125' - 150'	88.4 %	Pass
Horizontal (T6)	L3x3x1/4	Compression/100' - 125'	91.2 %	Pass
Top Girt (T1)	L3x3x1/4	Compression/175'-180'	77.8 %	Pass
Red. Horizontal Bracing (T10)	L2 1/2x2 1/2x3/16	Compression/0-25'	77.4 %	Pass
Red. Diagonal Bracing (T10)	L3x3x1/4	Compression/0-25'	47.9 %	Pass
Inner Bracing (T9)	L2 1/2x2 1/2x3/16	Compression/25'-50'	0.8 %	Pass
Bolt Checks	(1) ¾" A325X Diagonal	Compression / 180'	99.2 %	Pass
Anchor Bolts	1 3/4" dia.	Tension & Shear	74 %	Pass
Existing Foundation	Pad & Pier	Overturning Moment Factor of Safety (2.0 min)	2.07 / 96.5 %	Pass

5. CONCLUSIONS

The results of an initial analysis indicated that the existing outer tower did NOT have sufficient capacity to support the proposed loading conditions without modification. The required modifications are shown in SK-1 through SK-4. Once the modifications are performed, the outer tower and foundation are considered structurally adequate for the wind load classifications specified herein. The tower anchor bolts and foundation are considered structurally adequate for the proposed antenna loading with the wind classification specified above without modification. The existing interior Powermount has the capacity to support the proposed loading without modification.

The tower deflection (sway) is 0.6057 degrees, and the tower rotation (twist) is 0.1155 degrees. These figures are within the Connecticut State Police specification of 0.75 degrees for combined deflection (sway) and rotation (twist).

Limitations/Assumptions:

This report is based on the following:

- 1. Tower inventory as listed in this report.
- 2. Tower is properly installed and maintained.
- 3. All members and their geometry are as specified in the original design documents and are in good condition.
- 4. All required members are in place.
- 5. All bolts are in place and are properly tightened.
- 6. Tower is in plumb condition.
- 7. All member protective coatings are in good condition.
- 8. All tower members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
- 9. Foundations are in good condition without defect and were properly constructed to support original design loads as specified in the original design documents.

AECOM is not responsible for any modifications completed prior to or hereafter in which AECOM is not or was not directly involved. Modifications include but are not limited to:

- A. Adding antennas
- B. Removing/replacing antennas
- C. Adding coaxial cables

AECOM hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations, and conclusions are based upon information contained and set forth herein. If you are aware of any information which conflicts with that which is contained herein, or you are aware of any defects arising from original design, material, fabrication, or erection deficiencies, you should disregard this report and immediately contact AECOM. AECOM disclaims all liability for any representation, recommendation, or conclusion not expressly stated herein.

Ongoing and Periodic Inspection and Maintenance:

After the Contractor has successfully completed the installation and the work has been accepted, the owner will be responsible for the ongoing and periodic inspection and maintenance of the tower.

The owner shall refer to TIA/EIA-222-F for recommendations for maintenance and inspection. The frequency of the inspection and maintenance intervals is to be determined by the owner based upon actual site and environmental conditions. It is recommended that a complete and thorough inspection of the entire tower structural system be performed at least yearly and more frequently as conditions warrant. According to TIA/EIA-222-F section 14.1, Note 1: It is recommended that the structure be inspected after severe wind and/or ice storms or other extreme loading conditions.

REINFORCEMENT DRAWINGS SK-1 THROUGH SK-4

GENERAL CONSTRUCTION NOTES

- ALL WORK SHALL COMPLY WITH THE CONNECTICUT STATE BUILDING AND LIFE SAFETY CODES, SUPPLEMENTS AND AMENDMENTS.
- CONTRACTOR IS TO REVIEW ALL DRAWINGS AND NOTES IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUB—CONTRACTORS AND ALL RELATED PARTIES, THE SUB—CONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK,
- CONTRACTOR SHALL PROVIDE A COMPLETE BUILD—OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON DRAWINGS OR WRITTEN IN SPECIFICATIONS.
- CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION AND ELECTRICAL SUB-CONTRACTORS SHALL PAY FOR THEIR
- CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS ON SITE AT ALL TIMES AND ENSURE THE DISTRIBUTION OF NEW DRAWINGS TO SUB-CONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE, ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA, CONTRACTOR SHALL FURNISH 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- 7. INSTALLATION OF THIS WIRELESS COMMUNICATIONS EQUIPMENT SITE REQUIRES WORK IN THE IMMEDIATE VICINITY OF EXISTING OPERATING TELECOMMUNICATION SYSTEMS. THE CONTRACTOR SHALL PROVIDE AND COORDINATE THE METHODS O PROTECTION WITH THE VARIOUS TELECOMMUNICATION CARRIERS AND THE TOWER OWNER, THERE SHALL BE NO INTERRUPTION OF OPERATION WITHOUT TIMELY COORDINATION WITH AND APPROVAL BY THE VARIOUS COMMUNICATIONS OPERATORS INCLUDING THE CONNECTICUT STATE POLICE.
- THE REINFORCEMENT OF PORTIONS OF THIS TOWER STRUCTURE WILL AFFECT THE REINFORCEMENT OF PORTIONS OF HIS TOWER STRUCTURE WILL AFFECT CRITICAL CONNECTICUT STATE POLICE ANTENNAS, NO MOVEMENT, ALTERATION, OR DISCONNECTION OF CONNECTICUT STATE POLICE ANTENNAS MAY OCCUR WITHOUT THE NOTHFICATION AND APPROVAL OF THE CONNECTICUT STATE POLICE. CONTACT THE NETWORK CONTROL CENTER AT 860-865-8008.
- TOWER REINFORCING WORK AFFECTING CRITICAL CONNECTICUT STATE POLICE ANTENNAS MAY BE REQUIRED TO BE CONDUCTED AT TIMES AS DETERMINED BY THE REQUIREMENTS OF THE CONNECTICUT STATE POLICE.

- 11. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTORS FOR ANY CONDITION PER MFR'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR ARCHITECT
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON—SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 13. SHOP DRAWINGS ARE REQUIRED. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS ON THE TOWER AND INCLUDE THE GATHERED INFORMATION ON THE SHOP DRAWINGS, INCLUDE ANY DISCREPANCIES ENCOUNTERED WITH THE SHOP DRAWINGS, NO FABRICATION OF STEEL SHALL OCCUR PRIOR TO THE RECEIPT OF APPROVED SHOP
- 14. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ARCHITECT FOR REVIEW. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTAL TO THE ARCHITECT FOR REVIEW.
- 15. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURE AND ITS COMPONENT PARTS DURING CONSTRUCTION, THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY
- 16, CONTRACTOR TO CONTACT "CALL BEFORE YOU DIG" AT 1-800-922-4455 TO VERIFY AND IDENTIFY THE EXACT LOCATIONS OF ALL UNDERGROUND UTILITIES AND OBSTRUCTIONS IDENTIFIED PRIOR TO COMMENCING WORK IN THE CONTRACT AREA.
- 17. CONTRACTOR SHALL COMPLY WITH OWNER ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL, ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.
- 18. DIMENSIONS OF EXISTING TOWER ARE BASED ON MANUFACTURER'S DRAWINGS PREPARED BY STAINLESS INC, DATED JUNE 1994, AND ARE NOT GUARANTEED, CONTRACTOR SHALL TAKE FIELD DIMENSIONS AS NECESSARY TO ASSURE PROPER FIT OF ALL FINISHED WORK AND SHALL ASSUME FULL RESPONSIBILITY FOR THEIR ACCURACY, WHEN SHOP DRAWINGS BASED ON FIELD MEASUREMENT ARE SUBMITTED FOR REVIEW, DIMENSIONS ARE PROVIDED FOR THE ENGINEER'S REFERENCE ONLY
- 19, TOWER INVENTORY IS BASED ON INFORMATION OBTAINED BY CONNECTICUT STATE POLICE DATED MAY 12, 2016, TOWER MAPPING AND EXISTING INVENTORY OBTAINED FROM D&K NATIONWIDE COMMUNICATIONS, INC. DATED APRIL 10,
- 20. CONTRACTOR TO VERIFY REQUIRED CLEARANCES INCLUDING BUT NOT LIMITED TO EXISTING BUILDINGS, EQUIPMENT PADS AND SHELTERS PRIOR TO COMMENCING WORK.
- 21. THE CONTRACTOR IS RESPONSIBLE FOR THE STABILITY OF THE STRUCTURE DURING CONSTRUCTION, NO MEMBER OF THE TOWER SHALL BE LEFT DISCONNECTED FOR THE NEXT WORKING DAY, THE CONTRACTOR SHALL BE AWARE OF WEATHER AND WIND CONDITIONS AND NOT PERFORM MEMBER REPLACEMENT IN A WIND.

STRUCTURAL NOTES

STRUCTURAL STEEL MATERIAL

PIPE/TUBE LEG, HSS5x0.375 AND LARGERASTM A572-60 A325X & A490N

STRUCTURAL STEEL SHALL CONFORM TO ALL THE REQUIREMENTS OF THE ASTM SPECIFICATION, AS REFERENCED IN THE CODE.

UNLESS OTHERWISE NOTED, ALL STEEL WILL BE GALVANIZED IN ACCORDANCE WITH ASTM 123 AFTER FABRICATION. TOUCH UP ALL DAMAGED GALVANIZED STEEL WITH APPROVED COLD ZINC, "GALVANOX", "DRY GALV", "ZINC—IT", OR APPROVED EQUIVALENT, IN ACCORDANCE WITH MANUFACTURERS GUIDELINES, TOUCH—UP DAMAGED NON GALVANIZED STEEL WITH SAME PAINT APPLIED IN SHOP OR FIELD.

SHOP AND ERECTION DRAWINGS SHALL BE SUBMITTED FOR ALL STRUCTURAL STEEL WORK IN ACCORDANCE WITH THE CONTRACT DOCUMENTS. SUBMIT 2 SETS OF PRINTS FOR THE ENGINEER REVIEW.

MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION.

THE OMISSION OF ANY MATERIAL THAT WAS SHOWN ON THE CONTRACT DRAWINGS SHALL NOT RELIEVE THE CONTRACTOR OF PROVIDING THE SAME.

CONNECTIONS / FIELD ASSEMBLY:

BOLTED CONNECTIONS: UNLESS OTHERWISE NOTED, ALL JOINTS ARE SLIP CRITICAL TYPE, REQUIRING 5/8", 3/4" & 1" DIA. A325X & A490—N BOLTS, A563 NUTS AND F436 WASHERS, ALL GALVANIZED. BEVELED WASHERS SHALL BE USED ON BEAM FLANGES HAVING A SLOPE GREATER THAN 1:20...

STRUCTURE IS DESIGNED TO BE LEVEL AND PLUMB, SELF-SUPPORTING AND STABLE AFTER WORK IS COMPLETED.

COMMENCEMENT OF WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK.

SPECIAL INSPECTIONS ARE REQUIRED PER THE CODE FOR STRUCTURAL STEEL WORK

OWNER WILL SUPPLY THE SERVICES OF A SPECIAL INSPECTOR AND TESTING AGENTS AS REQUIRED. CONTRACTOR SHALL COORDINATE INSPECTIONS OF FABRICATOR'S AND ERECTOR'S WORK AND MATERIALS TO MEET THE REQUIREMENTS OF THE STATEMENT OF SPECIAL INSPECTIONS FOR THIS PROJECT.

COPIES OF TESTING AND INSPECTION REPORTS WILL BE PROVIDED TO THE OWNER, BUILDING OFFICIAL, ENGINEER OF RECORD AND CONTRACTOR AIND CONTRACTOR SSIONAL ENGINEER WONAL ENGLISHED

PROJECT NO.

Designed by: MCD KAP

Checked by: KAB proved by: RAS

A=COM

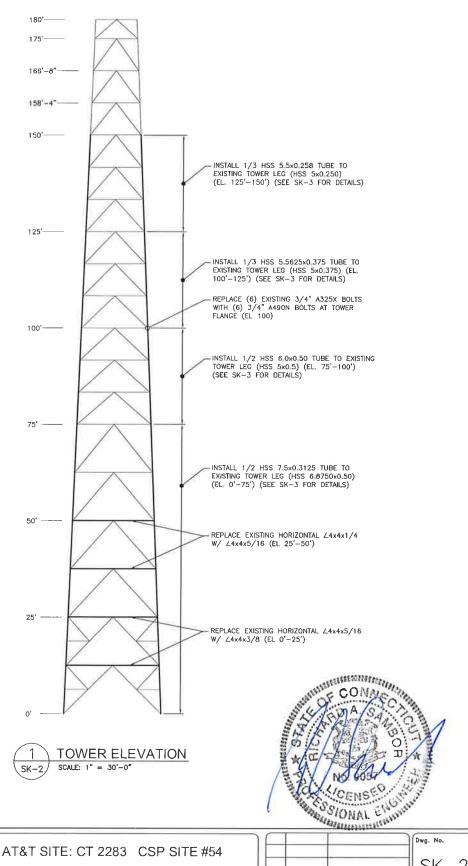
500 ENTERPRISE DRIVE ROCKY HILL, CONNECTICUT (860)-529-8882

AT&T SITE: CT 2283 CSP SITE #54

136 VINEGAR HILL ROAD SITE ADDRESS: LEDYARD, CONNECTICUT 06335 REV. DATE: DESCRIPTION

SK-1

Dwg. No.


Scale: AS NOTED Date: 06/29/16

Job No. SAI-088 File No.

(Dwg. 1 of 4

STRUCTURAL NOTES

SEE SHEET SK-2 FOR STRUCTURAL NOTES

PROJECT NO. Designed by: MCD

Orown by: KAP Checked by: KAB oroved by: RAS

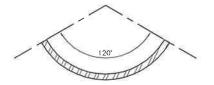
500 ENTERPRISE DRIVE ROCKY HILL, CONNECTICUT (860)-529-8882

AECOM

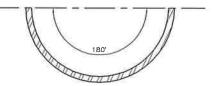
136 VINEGAR HILL ROAD SITE ADDRESS: LEDYARD, CONNECTICUT 06335 DATE: DESCRIPTION

SK-2

Scale: AS NOTED Date: 06/29/16

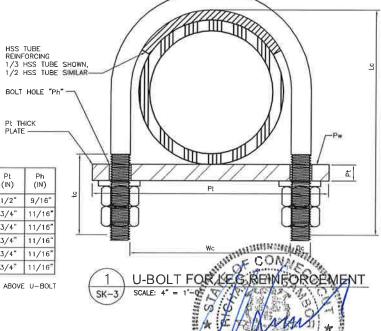

Dwg. 2 of 4

Job No. SAI-088 File No.


ELEVATION	HSS TUBE EXISTING LEG SIZE (IN)	HSS TUBE REINFORCING DIMENSIONS (IN)	MINIMUM # U-BOLTS AT ENDS OF 25' SECTION SPACED @ 3" C-TO-C	MINIMUM U-BOLTS REMAIN PER LEG	MAXIMUM SPACING REMAINING U-BOLTS C-TO-C (IN)	INSTALLING PRETENSION FORCE ON BOLT (KIPS)
150' - 125'	5x0.250	1/3-5.5x0.258	13	21	10	2.7
125' - 100'	5x0_3750	1/3-5,5625x0,375	10	23	10	4,25
100' - 75'	5×0,50	1/2-6.0x0.50	23	13	12	4,25
75' - 50'	6.875x0.50	1/2-7.5x0.3125	17	17	11	4.25
50' - 25'	6.875×0.50	1/2-7 5x0 3125	17	17	11	4.25
25' - 0"	6.875x0.50	1/2-7.5x0.3125	17	17	11	4.25

- NOTES:

 U—BOLTS SHALL BE ASTM A449, BASIS OF DESIGN IS PORTLAND BOLT OF PORTLAND, OREGON, USA, ALTERNATIVE SUPPLIER SHALL MATCH OR EXCEED QUALITY OF PORTLAND BOLT
 CONTRACTOR SHALL TAKE SPECIFIC CARE WHEN INSTALLING U—BOLTS AND NOT ALLOW ANY VISUAL DEFORMATION OF THE EXISTING TOWER LEGS,
 1/3 (ONE THIRD) AND 1/2 (ONE HALF) OF HSS TUBE REFER TO THE REQUIRED PORTION OF HSS TUBING TO BE INSTALLED FOR REINFORCING,
 SPACINC DIMENSIONS FOR U—BOLTS ARE MAXIMUM ALLOWABLE DISTANCE, ADDITIONAL U—BOLTS MAY BE REQUIRED DUE TO INTERRUPTION CAUSED BY EXISTING TOWER COMPONENTS. SHOP DRAWINGS SHALL ILLUSTRATE ACTUAL BOLT SPACING REQUIRED BASED ON VERIFIED FIELD CONDITIONS,
 TOWER LEGS HAVE STEP BOLTS, 1/2 HSS TUBE REINFORCING SHALL BE NOTCHED TO ALLOW THE REINFORCING TO FIT AROUND STEP BOLTS, SHOP DRAWINGS SHALL ILLUSTRATE VERIFIED STEP BOLT LOCATIONS AND NOTCHES,
 1/3 AND 1/2 HSS TUBES SHALL BE CONTINUOUS, SINGLE PIECE MEMBERS APPROXIMATELY 25' LONG.



PLAN VIEW OF 1/2 HSS TUBE

TOWER LEG DIAMETER (IN)	HSS REINFORCED O.D. (IN)	ELEVATION	Dc (IN)	Lc (IN)	Wc (IN)	tc (IN)	PI (IN)	Pw (IN)	Pt (IN)	Ph (IN)
5x0.250	5.5	150'-125'	1/2"	7 ½"	5 1	3*	8*	2"	1/2"	9/16"
5x0.3750	5.5625	125'-100'	5/8"	8"	5 🔒"	3"	8 1"	2 1"	3/4"	11/16
5x0,50	6	100'-75'	5/8"	8 ‡"	6*	3"	8 3"	2 1 **	3/4"	11/16"
6.875x0,50	7.5	75'-50'	5/8"	9 3,"	7 ½"	3"	10 1	2 ½"	3/4"	11/16"
6.875x0.50	7.5	50'-25'	5/8	9 3"	7 ½"	3	10 ‡"	2 ½"	3/4"	11/16
6.875x0.50	7.5	25'-0'	5/8	9 ¾"	7 ∮"	3	10 ‡"	2 ½"	3/4*	11/16

NOTE: U-BOLT ATTACHMENT PLATE MATERIAL SHALL BE MINIMUM 50 KSI. COORDINATE WITH ABOVE U-BOLT TABLE FOR QUANTITIES AND SPACING OF U-BOLT FOR ASSEMBLY.

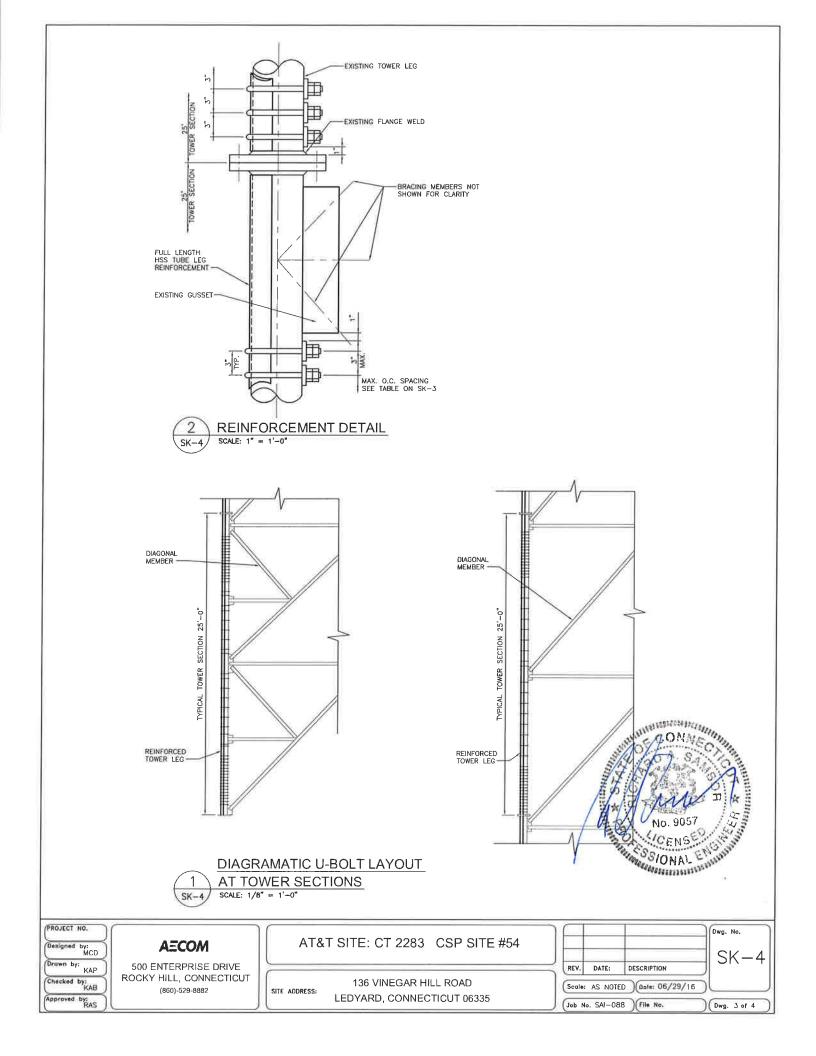
PROJECT NO.

Designed by: MCD KAP

Checked by: wed by: RAS **AECOM**

500 ENTERPRISE DRIVE ROCKY HILL, CONNECTICUT (860)-529-8882

AT&T SITE: CT 2283 CSP SITE #54


136 VINEGAR HILL ROAD SITE ADDRESS: LEDYARD, CONNECTICUT 06335 No. 900. DATE: DESCRIPTION

SK-3

Scale: AS NOTED Dale: 06/29/16

(Job No. SAI-088)(File No.

Dwg. 3 of 4

Centek Engineering, Inc.

3-2 North Branford Road Branford, Connecticut 06405

Phone: (203) 488-0580 Fax: (203) 488-8587

Steven L. Levine
Real Estate Consultant

September 27, 2016

Mayor Michael Finkelstein
Town of Ledyard
Town Hall
741 Colonel Ledyard Hwy
Ledyard, CT 06339

Re: Existing Telecommunications Facility – 136 Vinegar Hill Road, Ledyard

Dear Mayor Finkelstein:

In order to accommodate technological changes, implement Uniform Mobile Telecommunications System ("UMTS") and Long Term Evolution ("LTE") capabilities, and enhance system performance in the State of Connecticut, New Cingular Wireless PCS, LLC ("AT&T") will be changing its equipment configuration at certain cell sites.

As required by Regulations of Connecticut State Agencies ("R.C.S.A.") Section 16-50j-73, the Connecticut Siting Council has been notified of the changes and will review AT&T's proposal. Please accept this letter as notification under Section 16-50j-73 of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2).

The enclosed Notice fully sets forth the AT&T proposal. However, if you have any questions or require any further information on the plans for the site or the Siting Council's procedures, please contact the undersigned at 860-830-0380 or Ms. Melanie Bachman, Acting Executive Director, Connecticut Siting Council at (860) 827-2935.

Sincerely,

Steven L. Levine

Real Estate Consultant

Enclosure

Submitted to AT&T 500 Enterprise Drive Suite 3A Rocky Hill, CT 06067 Submitted by AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 August 1, 2016

DETAILED STRUCTURAL ANALYSIS AND MODIFICATION OF AN EXISTING 180' LATTICE TOWER WITH AN EXISTING 199' POWERMOUNT FOR PROPOSED ANTENNA ARRANGEMENT

AT&T Site I.D. #: CSP Site #: Site Address:

CT2283
Connecticut State Police Tower #54
136 Vinegar Hill Road
Ledyard, CT

60492554 SAI-088

TABLE OF CONTENTS

- 1. EXECUTIVE SUMMARY
- 2. INTRODUCTION
- 3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS
- 4. FINDINGS AND EVALUATION
- 5. CONCLUSIONS
- 6. DRAWINGS AND DATA
 - REINFORCEMENT DRAWINGS SK-1 THROUGH SK-4
 - POWERMOUNT LOADING CALCULATIONS
 - STAAD ANALYSIS OF POWERMOUNT
 - TNX-TOWER INPUT / OUTPUT SUMMARY
 - TNX-TOWER FEEDLINE DISTRIBUTION CHART
 - TNX-TOWER FEEDLINE PLAN
 - TNX-TOWER DETAILED OUTPUT
 - ANCHOR BOLT ANALYSIS
 - FOUNDATION ANALYSIS

1. EXECUTIVE SUMMARY

This report summarizes the structural analysis and reinforcement of the existing outer 180' self-supporting lattice tower and the existing inner 199' Powermount located at 136 Vinegar Hill Road in Ledyard, Connecticut. The analysis was conducted in accordance with the 2009 amendment to the 2005 Connecticut State Building Code, the TIA/EIA-222-F standard, and the Connecticut State Police Requirements for a wind velocity of 95 mph (fastest mile) and 90 mph (fastest mile) concurrent with ½" ice. The loading considered in the analysis consists of all existing and proposed antennas, transmission lines, and ancillary items as outlined in the Introduction Section of this report. The proposed AT&T modification is as follows:

Proposed Antenna and Mount	Carrier	Antenna Center Elevation
Remove: (1) Valmont Flush Mount (P/N 840502)	AT&T (Existing)	@ 198'-0"
Relocate to Proposed Antenna Mount: (3) Powerwave 7770.00 antennas and (6) Powerwave LGP21401 TMA's	AT&T (Existing)	@ 198'-0"
Install: (1) SitePro 1 UDS-NP Triple T-Arm Mount (1) Valmont LWRM Universal Ring Mount (1) SBNH-1D6565C panel antenna (Alpha Sector) (2) AM-X-CD-17-65-00T-RET panel antennas (Beta and Gamma Sectors) (3) Ericsson RRUS-11 RRU units (3) Ericsson RRUS-12 RRU units (1) Surge Arrestor (2) DC Cables (1) Optic Fiber Line	AT&T (Proposed)	@ 198'-0"

Note: All AT&T antennas and appurtenances shall be located on the existing Powermount.

The results of an initial analysis indicated that the existing outer tower did NOT have sufficient capacity to support the proposed loading conditions without modification. The required modifications are shown in SK-1 through SK-4. Once the modifications are performed, the outer tower and foundation are considered structurally adequate for the wind load classifications specified above. The tower anchor bolts and foundation are considered structurally adequate for the proposed antenna loading with the wind classification specified above without modification. The existing interior Powermount has the capacity to support the proposed loading without modification.

The tower deflection (sway) is 0.6057 degrees, and the tower rotation (twist) is 0.1155 degrees. These figures are within the Connecticut State Police specification of 0.75 degrees for combined deflection (sway) and rotation (twist).

1. **EXECUTIVE SUMMARY** (continued)

This analysis is based on:

- The tower structures' theoretical capacity, not including any assessment of the condition of the tower.
- 2) Tower geometry, member sizes, and foundation taken from original construction drawings prepared by Stainless, Inc., (project number 358814) signed and sealed November 9, 1995.
- 3) Powermount (Pipe Riser) geometry and dimensions taken from Structural Report prepared by FWT, Inc., (job number J060324002) signed and sealed June 12, 2006.
- 4) Geotechnical information taken from Geotechnical Study performed by Dr. Clarence Welti, P.E., P.C. dated June 27, 2006.
- 5) Previous structural analysis performed by URS Corporation on behalf of T-Mobile and Cingular, project number VS1-038 / 36922158, signed and sealed July 24, 2006.
- 6) Proposed AT&T installation taken from Construction Drawings prepared by Hudson Design Group, job number 2283.01, Revision 0, dated August 29, 2012.
- 7) Proposed AT&T antennas taken from RFDS, revision V0.1, dated March 28, 2013.
- 8) Tower Mapping and Inventory performed by D&K Nationwide Communications, Inc., dated April 10, 2016.
- 9) Connecticut State Police updates to existing antenna inventory obtained vie e-mails dated May 12, 2016 and June 21, 2016.
- 10) Antenna and mount configuration as specified in Section 2 and 6 of this report.
- 11) Coax cable orientation as specified in Section 6 of this report.

This report is only valid as per the assumptions and data utilized in this report for antenna inventory, mounts and associated cables. The user of this report shall field verify the antenna, cabling and mount configuration used as well as the physical condition of the tower members, connections and foundation. Notify the engineer in writing immediately if any of the information in this report is found to be other than specified.

If you should have any questions, please call.

Sincerely,

AECOM, contracting as URS Corporation AES

Richard A. Sambor, P.E. Senior Structural Engineer

RAS/mcd

cc: ICA – URS CF/Book

60492554 SAI-088 No. 2057 CONSES SIGNAL EXPENSES

2. INTRODUCTION

The subject tower is located at 136 Vinegar Hill Road in Ledyard, Connecticut. The structure is a 180' self-supporting three-legged steel tapered lattice tower with a 199' Powermount. The tower is designed and manufactured by Stainless, Inc and the Powermount is designed and manufactured by FWT, Inc.

The inventory on the existing Powermount is summarized in the table below:

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
(1) SBNH-1D6565C panel antenna (Alpha Sector) (2) AM-X-CD-17-65-00T-RET panel antennas (Beta and Gamma Sectors) (3) Ericsson RRUS-11 RRU units (3) Ericsson RRUS-12 RRU units (1) Surge Arrestor	AT&T (proposed)	(1) SitePro 1 UDS- NP Triple T-Arm Mount (1) Valmont LWRM Universal Ring Mount	198'-0"	(2) DC Cables (1) Fiber Line
(3) Powerwave 7770.00 antennas (6) Powerwave LGP21401 TMA's	AT&T (existing)	Antennas Relocated to Above Mount	198'-0"	(6) 1 5/8" coax cables (within Powermount)
(3) RFS APX16PV- 16PVL-E antennas, (6) Remec G20057A1 TMA's	T-Mobile (existing)	(1) Valmont Flush Mount (P/N 840502)	187'-3"	(6) 1 5/8" coax cables

The inventory on the existing lattice tower is summarized in the table below:

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
(1) Lightning Rod	Tower (existing)	Top of Tower Flange	180'	N/A
(1) Scala OGT9-806 Whip Antenna	#24 CSP-18 (existing)	Shared Mount with Antenna # 23 (below)	180'	(1) LDF7-50A
(1) Telewave VHF-150 2 Bay Dipole Antenna	#29 CSP-1 (existing)	2' Stand-off	180'	(1) LDF5-50A
(3) (windload) 6' Dish Antennas	CSP- 60,61,62 (existing)	(3) Pipe Leg Mounted (windload)	180'	(3) WEP65 (windload)
(1) Decibel DB-809 Whip Antenna	#25 CSP-17 (existing)	(2) 6' Stand-off Mounts @ 170'	180'	(1) LDF7-50A
(1) 4' Grid Dish Antenna	#22 (existing)	Pipe Leg Mounted	175′	(1) LDF5-50A

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
(1) 4' Grid Dish Antenna	#22 (existing)	Pipe Leg Mounted	175'	(1) LDF5-50A
(1) RFS 6' PA6-65 Dish w/ Radome		Pipe Leg Mounted	170'	(1) WEP65
(1) (inverted) Decibel DB-809 Whip Antenna	#23 CSP-19 (existing)	(2) 6' Stand-off Mounts @ 170'	168'	(1) LDF7-50A
(1) RFS 6' PA6-65 Dish w/ Radome	#19 CSP-13 (existing)	Pipe Leg Mount	162.5'	(1) WEP65
(2) (inverted) Sinclair SC479-HF1LDF (DO2I- E5765) (1) Sinclair SC479- HF1LDF (DO2-E5765) (1) Sinclair 432-831- 01T TTA Unit	#26, 27, 28 CSP- 55,56,58,59 (existing)	(2) 6' Stand-off Mounts @ 160'	160'	(3) AVA7-50A (1) LDF4-50A
(1) Celwave PD-458 Omni Antenna	#17 CTT-9 (existing)	(2) 6' Stand-off Mounts @ 150'	160'	(1) LDF5-50A
(1) RFS 8' PA8-65 Dish w/ Radome	#16 CSP-15 (existing)	Pipe Leg Mount	158'	(1) WEP65
(1) Telewave VHF-150 21' 4 Dipole Array Antenna	#15 CSP-2 (existing)	(2) 4' Stand-off Mounts	158'	(1) LDF5-50A
(1) (inverted) Sinclair SC479-HF1LDF Whip Antenna	#18 CSP-54 (existing)	Shared Mount with Antenna # 17 (above)	153'	(1) LDF7-50A
(1) RFS 6' PA6-65 Dish w/ Radome w/ Ice Shield mounted above	#14 CSP-14 (existing)	Pipe Leg Mount	150'	(1) WEP65
(1) Celwave PD-320 12' Dipole Antenna	#13 DEP-21 (existing)	3' Stand-off	146'	(1) LDF5-50A
(1) RFS 6' PA6-65 Dish w/ Radome w/ Ice Shield mounted above	#12 CSP-23 (existing)	Pipe Leg Mount	135'	(1) WEP65
(1) Decibel DB-212 Dipole Antenna	#11 CSP-8 (existing)	3' Stand-off	133'	(1) LDF5-50A
(1) Decibel DB-222 Dual Dipole Antenna	#10 FBI-22 (existing)	Shared with below Mount	135'	(1) LDF5-50A
(1) Decibel DB-432 Yagi Antenna	FBI-24 (existing)	Shared with below Mount	125'	(1) LDF4-50A
(1) Comprod 531-70 10' Dipole Antenna	#9 DOT-52 (existing)	(2) 4' Stand-off Mounts	115'	(1) LDF5-50A
(1) Dish Antenna Ice Shield	#8 (existing)	Pipe Leg Mount	113'	N/A

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
(1) Decibel PD-220 Omni Antenna	#6 DHS-3 (existing)	Shared with below Mount	113'	(1) LDF5-50A
(1) Decibel DB-264 22'- 4 Dipole Array Antenna	#5 FBI-11 (existing)	2' Stand-off	92'	(1) LDF5-50A
(1) Decibel 12' - 4 Dipole Array Antenna	#4 FBI-53 (existing)	3' Stand-off	87.5'	(1) LDF5-50A
(1) Celwave PD-156S Yagi Antenna	#3 NEC-4 (existing)	2' Stand-off	62.5'	(1) LDF5-50A
(1) Decibel DB803-XT Omni Antenna	#2 CSP-25 (existing)	Shared with below Mount	53'	(1) LDF4-50A
(1) Sinclair SY-203 Yagi Antenna	#1 DEHMS-26 (existing)	3' Stand-off	48'	(1) LDF4-50A

Notes: Antenna elevations and ID numbering obtained from Tower Mapping and Existing Inventory via tower climb, performed by D&K Nationwide Communications, Inc. on April 10, 2016.

This structural analysis of the communications tower was performed by AECOM on behalf of AT&T. The purpose of this analysis was to investigate the structural integrity of the modified tower and Powermount with their existing and proposed antenna loads. This analysis was conducted to evaluate stress on the towers and the effect of forces to the foundation of the towers resulting from existing and proposed antenna arrangements.

3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS

The structural analysis was done in accordance with the 2009 amendment to the 2005 Connecticut State Building Code, TIA/EIA-222-F—Structural Standard for Steel Antenna Towers and Antenna Supporting Structures, the Connecticut State Police Requirements, and the American Institute of Steel Construction (AISC) Manual of Steel Construction—Allowable Stress Design (ASD).

The analysis of the Powermount was conducted using STAAD Pro V8i. Two load conditions were evaluated as shown below which were compared to allowable stresses according to AISC and TIA/EIA.

Load Condition 1 = 95 mph (fastest mile) Wind Load (without ice) + Tower Dead Load Load Condition 2 = 90 mph (fastest mile) Wind Load (with ice) + Ice Load + Tower Dead Load

The support reactions from the STAAD analysis were applied to the lattice tower using TNX-Tower as "User Forces". Note: the Powermount is designed to support the vertical reactions of the antenna and coaxial cable loading and transfer the lateral loading to the lattice tower.

The analysis of the lattice tower was conducted using TNX-Tower 7.0.5.1. Two load conditions were evaluated as shown below which were compared to allowable stresses according to AISC and TIA/EIA.

Load Condition 1 = 95 mph (fastest mile) Wind Load (without ice) + Tower Dead Load Load Condition 2 = 90 mph (fastest mile) Wind Load (with ice) + Ice Load + Tower Dead Load

The TIA/EIA standard permits a one-third increase in allowable stresses for towers and monopoles less than 700 feet tall. For the purposes of this analysis, in computing the load capacity the allowable stresses of the tower members were increased by one-third.

4. FINDINGS AND EVALUATION

Stresses on the modified tower structure were evaluated to compare with the allowable stress in accordance with AISC. The results of an initial analysis indicated that the existing tower structure did not have enough capacity to support the proposed loading conditions. The tower structure require modifications shown on SK-1 through SK-4. Once the modifications indicated on sheets SK-1 through SK-4 are performed, the modified structure and existing foundation are considered structurally adequate with the wind load classification specified with the existing and proposed antenna loading noted herein.

See the below tower capacity and the tower deflection (sway) and rotation (twist) figures:

TABLE 1: Tower Deflection (Sway) and Twist at the top of the tower (in degrees):

Description	Current	Allowable	
Tower Sway (degrees)	0.6057	N/A	
Tower Twist (degrees)	0.1155	IN/A	
Total (degrees)	0.7212	0.750	

TABLE 2: Tower Base Reactions:

Base Reactions	Proposed Tower Reactions		
Axial Load (kips)	48		
Shear per Leg (kips)	49		
Total Shear (kips)	87		
Uplift per Leg (kips)	386		
Comp.per Leg (kips)	456		
O.T. Moment (ft-kips)	9520		

For detailed proposed tower reactions, see drawing no. E-1 in section 6 of this report.

TABLE 3: Tower Component Stress vs. Capacity Summary:

Component/ (Section No.)	Existing Component Size	Controlling Component/Elevation	Stress (% capacity)	Pass/Fail
Powermount	18" Dia x 0.375" Pipe	Bending / 187'-3"	55.5 %	Pass
Tower Leg (T10)	HSS6.875x0.5 w/ ½ HSS 7.5x0.3125	Compression/0' – 25'	87.4 %	Pass
Diagonal (T5)	2L2 1/2x2 1/2x1/4	Compression/125' - 150'	88.4 %	Pass
Horizontal (T6)	L3x3x1/4	Compression/100' - 125'	91.2 %	Pass
Top Girt (T1)	L3x3x1/4	Compression/175'-180'	77.8 %	Pass
Red. Horizontal Bracing (T10)	L2 1/2x2 1/2x3/16	Compression/0-25'	77.4 %	Pass
Red. Diagonal Bracing (T10)	L3x3x1/4	Compression/0-25'	47.9 %	Pass
Inner Bracing (T9)	L2 1/2x2 1/2x3/16	Compression/25'-50'	0.8 %	Pass
Bolt Checks	(1) ¾" A325X Diagonal	Compression / 180'	99.2 %	Pass
Anchor Bolts	1 3/4" dia.	Tension & Shear	74 %	Pass
Existing Foundation	Pad & Pier	Overturning Moment Factor of Safety (2.0 min)	2.07 / 96.5 %	Pass

5. CONCLUSIONS

The results of an initial analysis indicated that the existing outer tower did NOT have sufficient capacity to support the proposed loading conditions without modification. The required modifications are shown in SK-1 through SK-4. Once the modifications are performed, the outer tower and foundation are considered structurally adequate for the wind load classifications specified herein. The tower anchor bolts and foundation are considered structurally adequate for the proposed antenna loading with the wind classification specified above without modification. The existing interior Powermount has the capacity to support the proposed loading without modification.

The tower deflection (sway) is 0.6057 degrees, and the tower rotation (twist) is 0.1155 degrees. These figures are within the Connecticut State Police specification of 0.75 degrees for combined deflection (sway) and rotation (twist).

Limitations/Assumptions:

This report is based on the following:

- 1. Tower inventory as listed in this report.
- 2. Tower is properly installed and maintained.
- 3. All members and their geometry are as specified in the original design documents and are in good condition.
- 4. All required members are in place.
- 5. All bolts are in place and are properly tightened.
- 6. Tower is in plumb condition.
- 7. All member protective coatings are in good condition.
- 8. All tower members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
- 9. Foundations are in good condition without defect and were properly constructed to support original design loads as specified in the original design documents.

AECOM is not responsible for any modifications completed prior to or hereafter in which AECOM is not or was not directly involved. Modifications include but are not limited to:

- A. Adding antennas
- B. Removing/replacing antennas
- C. Adding coaxial cables

AECOM hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations, and conclusions are based upon information contained and set forth herein. If you are aware of any information which conflicts with that which is contained herein, or you are aware of any defects arising from original design, material, fabrication, or erection deficiencies, you should disregard this report and immediately contact AECOM. AECOM disclaims all liability for any representation, recommendation, or conclusion not expressly stated herein.

Ongoing and Periodic Inspection and Maintenance:

After the Contractor has successfully completed the installation and the work has been accepted, the owner will be responsible for the ongoing and periodic inspection and maintenance of the tower.

The owner shall refer to TIA/EIA-222-F for recommendations for maintenance and inspection. The frequency of the inspection and maintenance intervals is to be determined by the owner based upon actual site and environmental conditions. It is recommended that a complete and thorough inspection of the entire tower structural system be performed at least yearly and more frequently as conditions warrant. According to TIA/EIA-222-F section 14.1, Note 1: It is recommended that the structure be inspected after severe wind and/or ice storms or other extreme loading conditions.

6. DRAWINGS AND DATA

REINFORCEMENT DRAWINGS SK-1 THROUGH SK-4

GENERAL CONSTRUCTION NOTES

- ALL WORK SHALL COMPLY WITH THE CONNECTICUT STATE BUILDING AND LIFE SAFETY CODES, SUPPLEMENTS AND AMENDMENTS.
- CONTRACTOR IS TO REVIEW ALL DRAWINGS AND NOTES IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUB—CONTRACTORS AND ALL RELATED PARTIES, THE SUB—CONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK,
- CONTRACTOR SHALL PROVIDE A COMPLETE BUILD—OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON DRAWINGS OR WRITTEN IN SPECIFICATIONS.
- CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION AND ELECTRICAL SUB-CONTRACTORS SHALL PAY FOR THEIR
- CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS ON SITE AT ALL TIMES AND ENSURE THE DISTRIBUTION OF NEW DRAWINGS TO SUB-CONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE, ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA, CONTRACTOR SHALL FURNISH 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- 7. INSTALLATION OF THIS WIRELESS COMMUNICATIONS EQUIPMENT SITE REQUIRES WORK IN THE IMMEDIATE VICINITY OF EXISTING OPERATING TELECOMMUNICATION SYSTEMS. THE CONTRACTOR SHALL PROVIDE AND COORDINATE THE METHODS O PROTECTION WITH THE VARIOUS TELECOMMUNICATION CARRIERS AND THE TOWER OWNER, THERE SHALL BE NO INTERRUPTION OF OPERATION WITHOUT TIMELY COORDINATION WITH AND APPROVAL BY THE VARIOUS COMMUNICATIONS OPERATORS INCLUDING THE CONNECTICUT STATE POLICE.
- THE REINFORCEMENT OF PORTIONS OF THIS TOWER STRUCTURE WILL AFFECT THE REINFORCEMENT OF PORTIONS OF HIS TOWER STRUCTURE WILL AFFECT CRITICAL CONNECTICUT STATE POLICE ANTENNAS, NO MOVEMENT, ALTERATION, OR DISCONNECTION OF CONNECTICUT STATE POLICE ANTENNAS MAY OCCUR WITHOUT THE NOTHFICATION AND APPROVAL OF THE CONNECTICUT STATE POLICE. CONTACT THE NETWORK CONTROL CENTER AT 860-865-8008.
- TOWER REINFORCING WORK AFFECTING CRITICAL CONNECTICUT STATE POLICE ANTENNAS MAY BE REQUIRED TO BE CONDUCTED AT TIMES AS DETERMINED BY THE REQUIREMENTS OF THE CONNECTICUT STATE POLICE.

- 11. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTORS FOR ANY CONDITION PER MFR'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR ARCHITECT
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON—SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 13. SHOP DRAWINGS ARE REQUIRED. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS ON THE TOWER AND INCLUDE THE GATHERED INFORMATION ON THE SHOP DRAWINGS, INCLUDE ANY DISCREPANCIES ENCOUNTERED WITH THE SHOP DRAWINGS, NO FABRICATION OF STEEL SHALL OCCUR PRIOR TO THE RECEIPT OF APPROVED SHOP
- 14. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ARCHITECT FOR REVIEW. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTAL TO THE ARCHITECT FOR REVIEW.
- 15. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURE AND ITS COMPONENT PARTS DURING CONSTRUCTION, THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY
- 16, CONTRACTOR TO CONTACT "CALL BEFORE YOU DIG" AT 1-800-922-4455 TO VERIFY AND IDENTIFY THE EXACT LOCATIONS OF ALL UNDERGROUND UTILITIES AND OBSTRUCTIONS IDENTIFIED PRIOR TO COMMENCING WORK IN THE CONTRACT AREA.
- 17. CONTRACTOR SHALL COMPLY WITH OWNER ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL, ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.
- 18. DIMENSIONS OF EXISTING TOWER ARE BASED ON MANUFACTURER'S DRAWINGS PREPARED BY STAINLESS INC, DATED JUNE 1994, AND ARE NOT GUARANTEED, CONTRACTOR SHALL TAKE FIELD DIMENSIONS AS NECESSARY TO ASSURE PROPER FIT OF ALL FINISHED WORK AND SHALL ASSUME FULL RESPONSIBILITY FOR THEIR ACCURACY, WHEN SHOP DRAWINGS BASED ON FIELD MEASUREMENT ARE SUBMITTED FOR REVIEW, DIMENSIONS ARE PROVIDED FOR THE ENGINEER'S REFERENCE ONLY
- 19, TOWER INVENTORY IS BASED ON INFORMATION OBTAINED BY CONNECTICUT STATE POLICE DATED MAY 12, 2016, TOWER MAPPING AND EXISTING INVENTORY OBTAINED FROM D&K NATIONWIDE COMMUNICATIONS, INC. DATED APRIL 10,
- 20. CONTRACTOR TO VERIFY REQUIRED CLEARANCES INCLUDING BUT NOT LIMITED TO EXISTING BUILDINGS, EQUIPMENT PADS AND SHELTERS PRIOR TO COMMENCING WORK.
- 21. THE CONTRACTOR IS RESPONSIBLE FOR THE STABILITY OF THE STRUCTURE DURING CONSTRUCTION, NO MEMBER OF THE TOWER SHALL BE LEFT DISCONNECTED FOR THE NEXT WORKING DAY, THE CONTRACTOR SHALL BE AWARE OF WEATHER AND WIND CONDITIONS AND NOT PERFORM MEMBER REPLACEMENT IN A WIND.

STRUCTURAL NOTES

STRUCTURAL STEEL MATERIAL

PIPE/TUBE LEG, HSS5x0.375 AND LARGERASTM A572-60 A325X & A490N

STRUCTURAL STEEL SHALL CONFORM TO ALL THE REQUIREMENTS OF THE ASTM SPECIFICATION, AS REFERENCED IN THE CODE.

UNLESS OTHERWISE NOTED, ALL STEEL WILL BE GALVANIZED IN ACCORDANCE WITH ASTM 123 AFTER FABRICATION. TOUCH UP ALL DAMAGED GALVANIZED STEEL WITH APPROVED COLD ZINC, "GALVANOX", "DRY GALV", "ZINC—IT", OR APPROVED EQUIVALENT, IN ACCORDANCE WITH MANUFACTURERS GUIDELINES, TOUCH—UP DAMAGED NON GALVANIZED STEEL WITH SAME PAINT APPLIED IN SHOP OR FIELD.

SHOP AND ERECTION DRAWINGS SHALL BE SUBMITTED FOR ALL STRUCTURAL STEEL WORK IN ACCORDANCE WITH THE CONTRACT DOCUMENTS. SUBMIT 2 SETS OF PRINTS FOR THE ENGINEER REVIEW.

MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION.

THE OMISSION OF ANY MATERIAL THAT WAS SHOWN ON THE CONTRACT DRAWINGS SHALL NOT RELIEVE THE CONTRACTOR OF PROVIDING THE SAME.

CONNECTIONS / FIELD ASSEMBLY:

BOLTED CONNECTIONS: UNLESS OTHERWISE NOTED, ALL JOINTS ARE SLIP CRITICAL TYPE, REQUIRING 5/8", 3/4" & 1" DIA. A325X & A490—N BOLTS, A563 NUTS AND F436 WASHERS, ALL GALVANIZED. BEVELED WASHERS SHALL BE USED ON BEAM FLANGES HAVING A SLOPE GREATER THAN 1:20...

STRUCTURE IS DESIGNED TO BE LEVEL AND PLUMB, SELF-SUPPORTING AND STABLE AFTER WORK IS COMPLETED.

COMMENCEMENT OF WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK.

SPECIAL INSPECTIONS ARE REQUIRED PER THE CODE FOR STRUCTURAL STEEL WORK

OWNER WILL SUPPLY THE SERVICES OF A SPECIAL INSPECTOR AND TESTING AGENTS AS REQUIRED. CONTRACTOR SHALL COORDINATE INSPECTIONS OF FABRICATOR'S AND ERECTOR'S WORK AND MATERIALS TO MEET THE REQUIREMENTS OF THE STATEMENT OF SPECIAL INSPECTIONS FOR THIS PROJECT.

COPIES OF TESTING AND INSPECTION REPORTS WILL BE PROVIDED TO THE OWNER, BUILDING OFFICIAL, ENGINEER OF RECORD AND CONTRACTOR AIND CONTRACTOR SSIONAL ENGINEER WONAL ENGLISHED

PROJECT NO.

Designed by: MCD KAP

Checked by: KAB proved by: RAS

A=COM

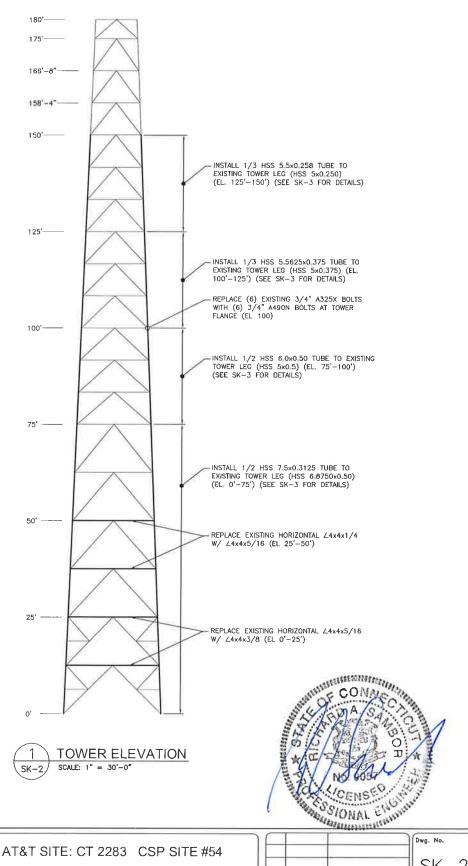
500 ENTERPRISE DRIVE ROCKY HILL, CONNECTICUT (860)-529-8882

AT&T SITE: CT 2283 CSP SITE #54

136 VINEGAR HILL ROAD SITE ADDRESS: LEDYARD, CONNECTICUT 06335 REV. DATE: DESCRIPTION

SK-1

Dwg. No.


Scale: AS NOTED Date: 06/29/16

Job No. SAI-088 File No.

(Dwg. 1 of 4

STRUCTURAL NOTES

SEE SHEET SK-2 FOR STRUCTURAL NOTES

PROJECT NO. Designed by: MCD

Orown by: KAP Checked by: KAB oroved by: RAS **AECOM**

500 ENTERPRISE DRIVE ROCKY HILL, CONNECTICUT (860)-529-8882

136 VINEGAR HILL ROAD SITE ADDRESS: LEDYARD, CONNECTICUT 06335 DATE: DESCRIPTION

SK-2

Scale: AS NOTED Date: 06/29/16

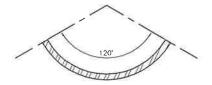
Job No. SAI-088 File No.

Dwg. 2 of 4

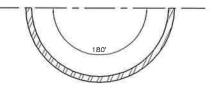
ELEVATION	HSS TUBE EXISTING LEG SIZE (IN)	HSS TUBE REINFORCING DIMENSIONS (IN)	MINIMUM # U-BOLTS AT ENDS OF 25' SECTION SPACED @ 3" C-TO-C	MINIMUM U-BOLTS REMAIN PER LEG	MAXIMUM SPACING REMAINING U-BOLTS C-TO-C (IN)	INSTALLING PRETENSION FORCE ON BOLT (KIPS)
150' - 125'	5x0.250	1/3-5.5x0.258	13	21	10	2.7
125' - 100'	5x0_3750	1/3-5,5625x0,375	10	23	10	4,25
100' - 75'	5×0,50	1/2-6.0x0.50	23	13	12	4,25
75' - 50'	6.875x0.50	1/2-7.5x0.3125	17	17	11	4.25
50' - 25'	6.875×0.50	1/2-7 5x0 3125	17	17	11	4.25
25' - 0"	6.875x0.50	1/2-7.5x0.3125	17	17	11	4.25

- NOTES:

 U—BOLTS SHALL BE ASTM A449, BASIS OF DESIGN IS PORTLAND BOLT OF PORTLAND, OREGON, USA, ALTERNATIVE SUPPLIER SHALL MATCH OR EXCEED QUALITY OF PORTLAND BOLT

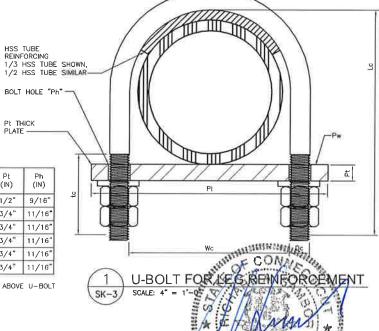

 CONTRACTOR SHALL TAKE SPECIFIC CARE WHEN INSTALLING U—BOLTS AND NOT ALLOW ANY VISUAL DEFORMATION OF THE EXISTING TOWER LEGS,

 1/3 (ONE THIRD) AND 1/2 (ONE HALF) OF HSS TUBE REFER TO THE REQUIRED PORTION OF HSS TUBING TO BE INSTALLED FOR REINFORCING,


 SPACINC DIMENSIONS FOR U—BOLTS ARE MAXIMUM ALLOWABLE DISTANCE, ADDITIONAL U—BOLTS MAY BE REQUIRED DUE TO INTERRUPTION CAUSED BY EXISTING TOWER COMPONENTS. SHOP DRAWINGS SHALL ILLUSTRATE ACTUAL BOLT SPACING REQUIRED BASED ON VERIFIED FIELD CONDITIONS,

 TOWER LEGS HAVE STEP BOLTS, 1/2 HSS TUBE REINFORCING SHALL BE NOTCHED TO ALLOW THE REINFORCING TO FIT AROUND STEP BOLTS, SHOP DRAWINGS SHALL ILLUSTRATE VERIFIED STEP BOLT LOCATIONS AND NOTCHES,

 1/3 AND 1/2 HSS TUBES SHALL BE CONTINUOUS, SINGLE PIECE MEMBERS APPROXIMATELY 25' LONG.



PLAN VIEW OF 1/2 HSS TUBE

TOWER LEG DIAMETER (IN)	HSS REINFORCED O.D. (IN)	ELEVATION	Dc (IN)	Lc (IN)	Wc (IN)	tc (IN)	PI (IN)	Pw (IN)	Pt (IN)	Ph (IN)
5x0.250	5.5	150'-125'	1/2"	7 ½"	5 1	3*	8*	2"	1/2"	9/16"
5x0.3750	5.5625	125'-100'	5/8"	8"	5 🔒"	3"	8]"	2 1"	3/4"	11/16
5x0,50	6	100'-75'	5/8"	8 ‡"	6*	3"	8 }"	2 1 **	3/4"	11/16
6.875×0.50	7.5	75'-50'	5/8"	9 3,"	7 ½"	3"	10 ‡	2 ½"	3/4"	11/16
6.875x0.50	7.5	50'-25'	5/8	9 3"	7 ½"	3	10 ‡"	2 ½"	3/4"	11/16
6.875x0.50	7.5	25'-0'	5/8*	9 3,"	7 ∮"	3	10 ‡"	2 ½"	3/4*	11/16

NOTE: U-BOLT ATTACHMENT PLATE MATERIAL SHALL BE MINIMUM 50 KSI. COORDINATE WITH ABOVE U-BOLT TABLE FOR QUANTITIES AND SPACING OF U-BOLT FOR ASSEMBLY.

PROJECT NO.

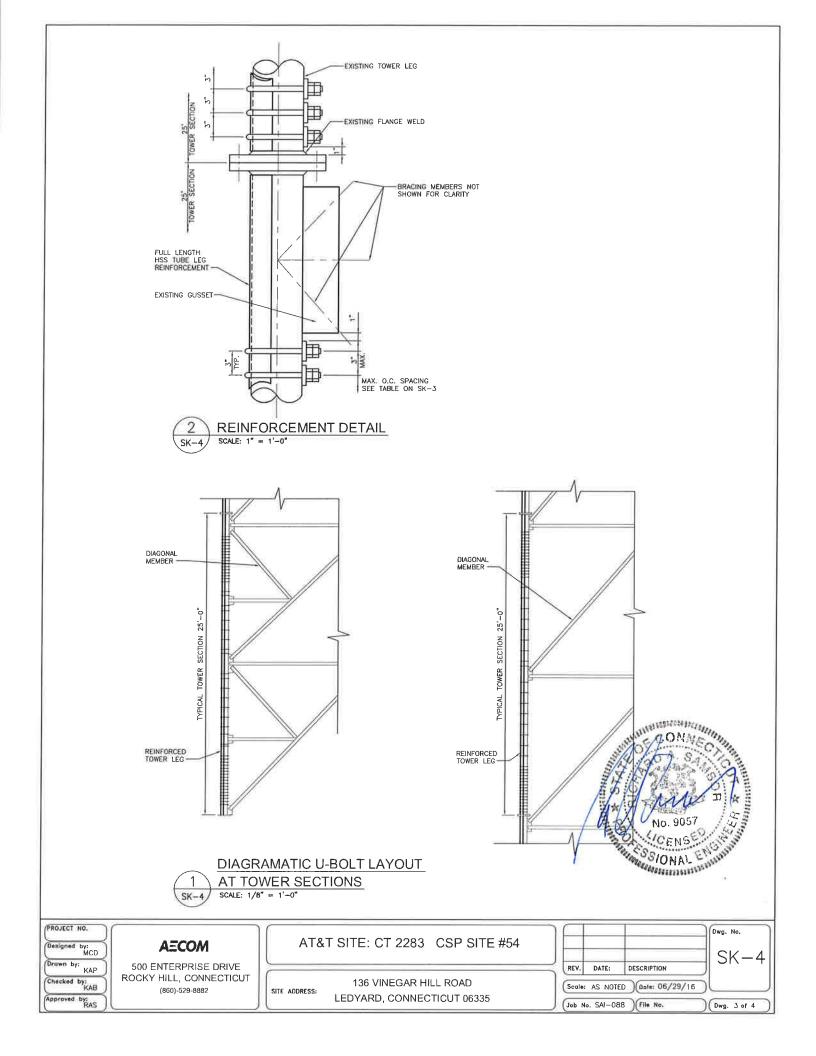
Designed by: MCD KAP Checked by:

wed by: RAS

AECOM

500 ENTERPRISE DRIVE ROCKY HILL, CONNECTICUT (860)-529-8882

AT&T SITE: CT 2283 CSP SITE #54

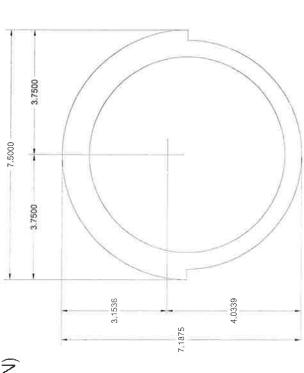

136 VINEGAR HILL ROAD SITE ADDRESS: LEDYARD, CONNECTICUT 06335 No. 900. DATE: DESCRIPTION

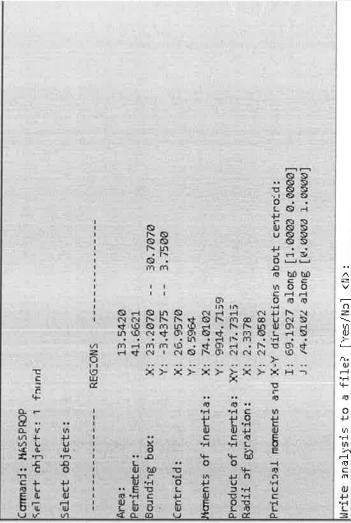
SK-3

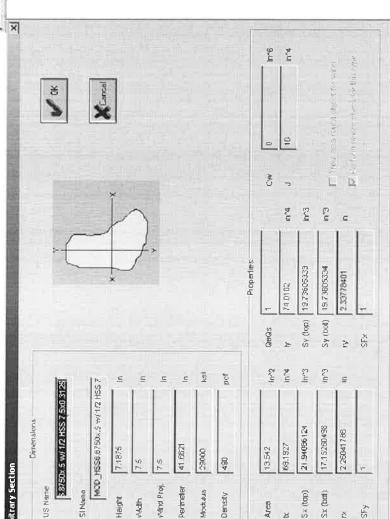
Scale: AS NOTED Dale: 06/29/16

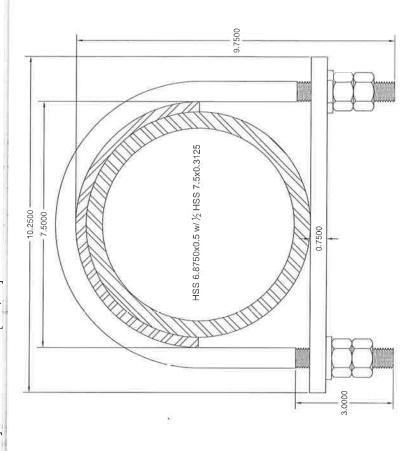
(Job No. SAI-088)(File No.

Dwg. 3 of 4






マニー


🛵 mutucho teat nitiuon - eeujari ta bata tu bata iui

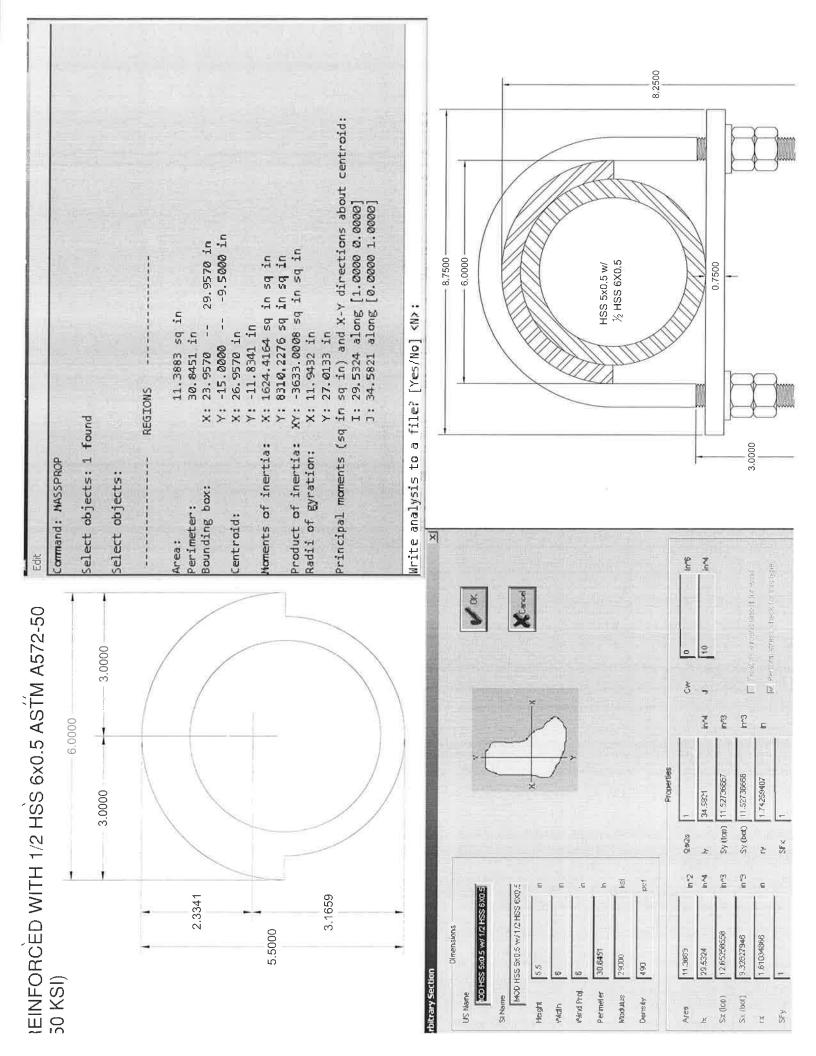
Description Elevations 0'-25,25'- HSS 618750 x Ois 4/2 HSS 7.5xc.	Project No Solvey Computed by MCD Checked by	Sheet of Date Date
(a) culations to determine m reinforcing pipe (using Bolt	laximum HCFClampsrequir tsoftype Astm A 449) - 2 At	Reference Al Fordevelopment of SC"GROUPABOH"
Ub max: mum = 25ft/4bays = 6.25f4 = 75.10 ((ons) K = I (exist = 2.27.11	- Because existing leg LHAPTER-E (144 Ed.)	
Aexist = 9136in2	· Check it member is Sle, 0.11 = 0.11 (60) = 53.16	D=68750 13,75
AISC [EQ3-2]	NOT-Slander i. Apply Sec	•
40-1875-33 64.71 x FF = 4.71	te=+12 (kg	115 EU=24.419 pt.
Allow= FCT xA9 = 54.52 x 9.36	= 305,572 lbs = 305.6KY	<u> </u>
freinforced = 2,3377in (17) Areinforced = 13.542cin +able 4 (1)(75) = 32 -3 27.8	1-2 /ACN	
O(Preinf - Pexist)= 376 467		
· Consider use of V-Rolter		Uby Portland Bolt)
AJSC FriAb = 90ks, 1/ = x 5k	8)2: 138 tup/Bolt	

AECUM	®	Page of
Job	Project No.	Sheet of
Description	Computed by MCD	Date
·	Checked by	Date

· Check existing Las capacity for Pile clush capacity

Reference

- The value above is indicating the makinum point load allowable that can be applied to leg.
- · Check U-golt Connection Plant


429416 BOITCONNER FORCE (ASD FERTIVE)

- · Assime Plate to go "P · ASSIME Plate +080 1/Plasmic 1 2= 4
- Mapplifed = PL 4294x7.5 = 8051,25 165 xin

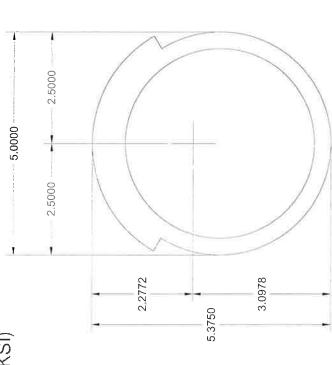
AECOM		Page of
Job	Project No	Sheet of
Description	Computed by	Date
	Checked by	Date
clamps pacing (per 25' sect	(ON)	Reference
(alculate effect. Lue distance developed Section.	of clamps for Reinco	chedles after
- For the region 0'-75'		
- Use 1/2 HSS 7,5 x 0,3/25' Matrial soks, (m,n) Area = 3,5282in' Ix = 4,3356 - (x = J Iy = 22,8262- [y = J]	= 1/4 = 1,1085;n E-Gov	erns)
consider Leg effective Length	225 F+/4F+bay=6,2	15Fx=75.11
- (cm pare Proporty of existing	o Leg asalust reinf	-orcing materilal
1=1,0 kL 1x L=75:11	75_33,2	
r= 226in	0	(K, 37)
consider weaker radius of gyration HCIamps: KL/(Hclamp	-1) LKL Tevist	
	33,2	
1,1085		max spacing Allon od.
4 clamps per 6,25 frbay = 6,	ltx12: 1.6>=2 - 2	.11. 2.
, –	4 Say m	INFSPACING 11/1/ Between
,		Bays
Qty pur Leon = 25'x12= 300"-2"	"ennd-) "end-16x3"x	<i>ξ</i> = 200"
11"/BH = 188045-217	Boits Additional perceg	

La Contra of		Page of
Job Ledyard, Ct (Sotomer	Project No.	Sheet of
Description Elevation 75/1001	Computed by MCA	Date
HSS SXC. + Who HSS EXC. 5	Checked by	Date
Calculations to determine making reinforcing Pipe (Using bolts of ty	n # clamps reactived for dev De Astm Aura) -> Atsc &	Reference elapment of
Lb maximum = 25F+ /3 bixs = 8,33 f+= 100/11 H = 1 fexist=1.61.17 Aexist=6,62in ²	-Because existing leg ALSC CHAPTER-E(Checkifmamber is slead OILE C. 11 (25,000) = 53,16 Fy (60)	14th-Ed.) Idor-table 4.1.a
AFSC (EQ3-S)	Mon-Slender: ApplySect:	n [E-3]
KL_1100 621 4 4,7/x JE = 4,7/	Fe= 47 2900 (Ky)	8 FY/FE]FY
PAIRW = FCr Ag 427 1x 6.62 =	Fcr= 42.7 169,546 165= 169,5 h	ip
Treinforced = 1,7426in Due to Areinforced 11,3883; 12 Rection	to reinforcing being 50 , is assumed to lebare	ics; remorceed as to ks;
KL= (1)(100) = 57.4 table 4-22(45)	11,3883:1 = 267,625 16.	f = 267,625 kip
S(Preins-Pexist)=263625-1	169,546 = 98,079 165=	98 KiP
· Consider use of V-Bolt of AISC		lied by fortland But
[3-1] Fn.Ab 90 tsi (4 /8)2 = 1	\$8 K-0/BoH	

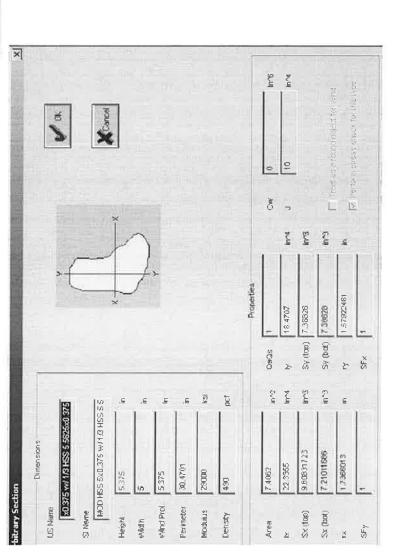
AECOM		Page of
Job	Project No	Sheet of
Description	Computed by MCD	Date
	Checked by	Date
		Reference
AFSC RA=MAUNEThas	= (0,3)(1,13)(1,0)(19)(1) = 4,	294 K.19/Bolt
D2-41 V	1.50 = 42	1941158/104
98,079 - 1248 -2 5ay 23 B	oft @ ends to Develop conn	
4294 Slipfi	a lare	
· Check existing Lascapacity	for Pile clush rapacity	
	¥	
(AFSC) RA=5.5x FYXEX (1+1)	Oils \$) Qq , where Fy=Leg	Smel=60Ksi
15-57	t = legi	thi(knoss
	VA 6	cusorvatine Approxim)
0 0 7 1 1 1 1 1	D=O.D.L	es - existing
RA=5.5x60x0.53 1x0.4 = 1	9.76 kip QF = 1-0.3	(U)(1+U) -ASSLMO V=1
1.67		Leso ful capi.
	. PF=0,4	
- The value above is ind that can be applied to	icating the maximum por	nt load allowable
· Check U-Bolt Connec	ction pigt l	
458419	Boltconnectore (ASDEGETVAL)	
	774"	
	- ASSIME Plate +	10.50 1/P/9571611 2=4
75"	2.5" Platematerial+ch	+ 401CS!
<i>it i</i>		

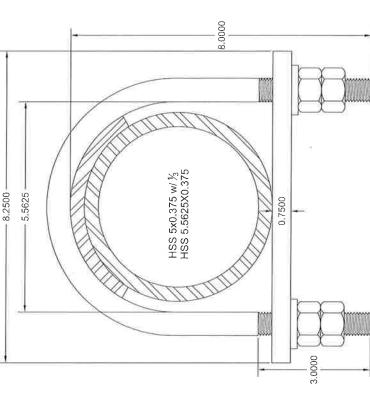
Mapplifed = PL 4294x7.5 = 8051,25 165 rin

8051,251bin = 28,626 ps.1


10,000 PS; 30,000 PS; > 58,626PS;

AECONI		Page of _	
Job	Project No	Sheet of _	
Description	Computed by	Date	
	Checked by	Date	
Clamp Per25 Section		Referenc	се
Calculate effective distance developed section	f Clampsfor reinfor	irel Les After	
-fortheregica 75'-100'			
-Use 1/2 HSS 6 XC15" MUTTIAL TOKS, (M,11) A/PU = 413197 IX = 31561 -> (x = 5= 1/4 = ty = 164688 -> (Y = 5= 1/4 =	= 0.85 47.19 = Fa	orns)	
Consider Leg effective Lengthcompare Property of existing Legar K = 1 L= 100: T=1.61: L=1.61: L=1.61:		7.33c=100:17	
Consider weaker ladius of gyra	at, m fol Analysis		
Holamps: KU/(Holamp-1)	1 the (6211)		
try 3 Clamps - 1x109/3-	-1) 58.5 L 621-	Makspacines Allowed.	
3 clamps Der 8.33ftbay = 8.	33412:1.67=2	Say 12"max Stacins	z/labl L
@+yperlog= 25 x 2=300"-2"end = 164:11	1-2"12nd - 22x3"x2	Jag to mak material	•
1211/8017 =14 buys > 13 Add	Ithernal Blisper L	25	


EINFORCED WITH 1/3 HSS 5.5625x0.375 ASTM (572-50 (50 KSI)


Command: MASSPROP

EG

Principal moments (sq in sq in) and X-Y directions about centroid: I: 22.3355 along [1.0000 0.0000] J: 18.4707 along [0.0000 1.0000] -18.1887 in Select objects: Specify opposite corner: 1 found 17.8896 in XY: -2332.6851 sq in sq in X: 3124.4683 sq in sq in Y: 1772.5606 sq in sq in Write analysis to a file? [Yes/No] <N>: 7.4062 sq in Y: -20.4659 in X: 15.3896 in X: 20,5395 in 15.4704 in X: 12.8896 Y: -23.5637 REGIONS Noments of inertia: Product of inertia: Radii of gyration: Select objects: Sounding box: erimeter: :entroid: 4rea:

AECUNI		Page of
Job Ledyard CTCSPTONer	Project No.	Sheet of
Description Flevation 10al-125	Computed by MCD	Date
HSS 5 KC 374 M 13 2,285 x 0,375	Checked by	Date
	onecked by	
Colored Hood And A to Compa O many land	we clam Dreak hal con	Reference
Calculations todetermine maximum	H CMM PSTEEDING FO	1 decement
of Reinforcins Pipelusins boits of ty	PEASTM AGUATE 4+3C	"Group ABOUT"
11		Co
Lbmaximum = 25FX/3bays - 18	eauce existing les is tsc CHAPTER-E (14+	60 KSi, Mel
= 8.33ft=100.10 A	ISC CHAPIER-E (14+	$h \models D_1$
k=1		
	heck; fuembori's slender	
Aerst = 5.10 in		
0.1	1 E = 0,11 (19,000) = +3,16	D-5-132
	Fy (60)=	70,17
	-Slender: APPly section	
(Ea > 2)	PSICIAL I. HILLYS	
KI 1XICO 6000/47100 117100	= 103+ > F C- [Q]	S. FY/Fe] FJ
HU = 1x100 = 60,60 & 4,71 Fg 4,71 JE	=103,5 -3 -61 = 10,6	58 117
1 1.65	١٥	()
	re= 172	9,000 = 77,42C
	(5)	9,000 = 77,922
	• •	,
D/	FC = 434697	tsi
Pallow = For Ag = 43.469x5,10 = 132,	751.8/65= 132,8 trip	
SZ=1.67 1.67		
		,
Treinforced = 1.7366 (rx) - One to	reinforcing being 50 h	(5) ramporcad
Areinfolood = 7,4062in Dection	is assumed to behave	- LAS OKS:
Table 4-22(ASD) (1) (100) = 57.58 - > 23.5 HS.1 X 7.		
KL- (1) (100) 5758-3 >2 5 + 51 × 7	4067 W= 174,045,7/hf	= 174/19
C 1.786614	1 (· · · C) / · · · · · · · · · · · · · · · · · ·	14
1130 550		
1 (Presne-Pexist) = 174,045,7-134,75	18-41202916	412 1-10
1 (110 th 16 m) 1 - 17 (10 t) (1 - 1) - 1)	11/2 11/2021 =	1113 1/1/
· Concilor con Cli Din Series	Law de Consil	1 DO 1 10 11
· Consider use of U-Bolt of 5/8"0	X o Wets (156+" 20 bould	by revaluablest
Atsc		
ar 1 T I		
7+30		
(53-1) FAAb 90Ks: (\$150) 13.8	& hiP/Bolt.	
AFSC [JSH] Frab goksi (trail) 13.8	& hiP/Bolt.	

AECOM Page ____ of ___ Job = Project No. _ _ Sheet ____ of ___ Computed by MCD Checked by _ Date __ Reference AFSC Ra= MDuhfthns (6.3)(1.13)(1.0)(19)(1) 4.294 k.10/Bat = 4294165/604 41293.9 - 9.6 - 2504 10 Boit @ ends to Develop connection Against · Checkexisting Leg capacity For Pipe Clush capacity [AISC] RA= t.5 x Fy xt2x (170,25 fb) Ps, where Fy= Lagstrel=60ksi t=Les thickness (b=0 (concorrention) RA= 5.5 x60x(0.375)2 x 1x0,4 = 11,11 KID D=0,0 Les existing Pt= 1-Cs(U)(1+U)-Assume 98=0.4

- The value above is indicating the maximum point load allowable that can be applied to leg.

· Check U-BOIT Connection PIGHT

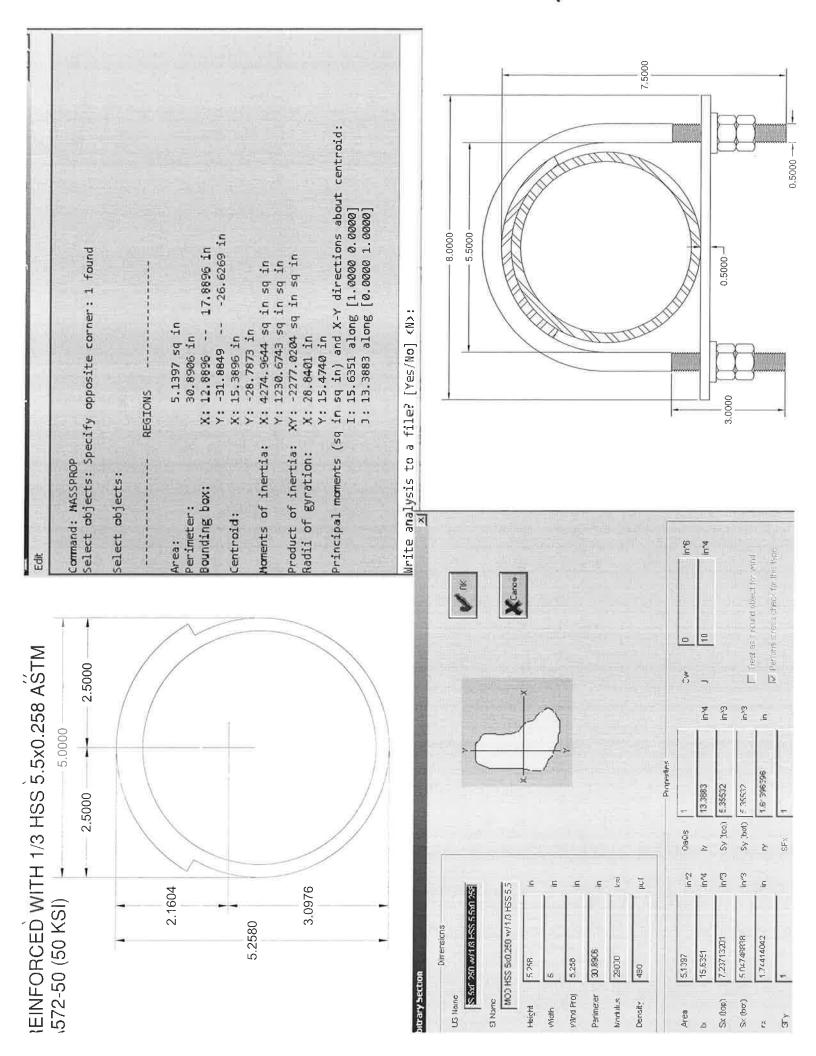
425416 Bolt connectore (ASDEGGENEL)

1425416 Bolt connectore (ASDEGGENEL)

1514 17

1514 17

1514 18 Platematerial + 1


· ASSUME Plate to Go "Plassic" 2= 4

Mapplifed = PL 4294x75 8051,25/65 rin

8051,251Pin = 58,656 bs.

1000 PS; 30,000 PS; > 58,626PS;

AECUM		Page of
Job	Project No.	Sheet of
Description	Computed by	Date
	Checked by	
Clamp Por 251 Section		Reference
		4.0
Calculate effective distance developed section	clamps for icenvitoria	d Les Atter
- forthe region 1001/251		
-Use 1/5 HSS 5,562+x0,3 Material: 50 KS; (min) Area = 2,0371; n2 IX = 0,3508; n4 = (x = 54,0 IY = 4,0400; n4 = (y = 54,0	1, = 0,40297; n Earles	
Consider Legeffertive Length - Compara property of existing Le	-225 ft/3 bay = 8.23 ft=10 5 against reinf. Morteria	CFU
K=1 L=100:17 C=1.65:17	= 60.6	
Consider weaker ladius of 31	gradien for Analysis	
HCIGMPS = KL/CHCKMP- Theats	1) L KL (60,6)	
try 6 Clamps - 1x/co/	16-1 49.6 60.6 >6	by determine Max spacing Allowed
6 clamps per fissfrbay=	8.33 KIZ - 1.6> \$ 10 in m	nax spacing
Gty Per Leg = 25'x12 =300!- = 242	-2"end -2"end - 9 X3" X &	T.
944 Per Leon = 25'x12 =300!- = 242" = 242" 10"/Bat 246a45-2 23	Additional Bolts Per L	es ,

Job Ledyard, CTCSP tower		Page of
Description Elevation (252150)	Project No.	Sheet of
HSS 5 KG, 250 4/3 HSS 5.5 xC, 258	Computed by	Date
1172 2 Kri 200 112 113 11) Kri 18	Checked by	Date
Calculations to determine makinum reinforcins Pipelusing botts of typ	NH (19 mPsrequired for Pe AstMA449) -> Atso	Reference Aevelopment of - "GroupABelt"
Lb maximum = 25 ft/3 bays = 5.33 ft = 100; 1		
$ \begin{aligned} & K = 1 & K \\ & \text{Ceristal 1.69 in} & T \\ & \text{Aexistal 3.59 in} \\ \end{aligned} $, 2ts, 'x 3,59,112 50) 13,288 lbs
Preinforced = 1.614in HL Areinforced = 5.1397in T	$= \frac{100}{1.614} = 62 \Rightarrow 22.6$ $= 116$ $= 116$	K51 K 5,1397) 157 K:P 157 165
1 (Preinf-Pexist) = 116,157165-8		
e consider use of 12" dia. U-Bolt	(Ref. Supplied by Par	tland & (+)
Atsc Frab = 90ks:(生成) 「アラーリ アーン = ではい	_ 8,835 kip/Bolt.	
ALSC RA= MUhsThas = (CA) JS-4] RA=1.50)(1.13)(10)(12)(1) - 2	1712 kip/Boit
	= 2	712165/Boit
32869 - 12,11 - 259413 BOH @ ents	tcdevelop connection	Agains+51.18
· Check existing Leg capacity fo	or Pipeciush capaci	+~/
AISC) RA=5.5 Fy t2 (1+6.25 51-2)	0 6=	-leg Steel=SOKS; leg Chickness - C (Cons.)
RA= 5.5 x 50x0.35 x1x,4 = 4,116 for	D=	CA Les (HU) - Assump v=1, es=

7-50/11		Page of
ob	Project No.	Sheet of
Description	Computed by	Date
	Checked by	Date
- The calculated walne a collowable was Lan be	is indicating the man	Chur point 6
E=bd2 = 2x/21/2 - Oil25in	P= 27/21/ APP1,1ed. PL-27/2X 4	6-5/80/t - 37/832 Psi
50,000851 = 30,00085; >2		ar v
Determine Clamp di Stance	e on Leg Afterdeveloped s	ect,'M
-Fortheresian 1251-150'		
VSE 13 HS 5.5 x 0,259 Material 50 KS 1 Min Area = 1,4163 inz Ty = 0,2250 iny -2 Cy = Jy = 2,800 iny -2 Cy =	0,4012 5-9a0115	
ionsider Les effective Le	115th >225F4/364=8,330	= (cc,(V)

- committeriorerty of existing Lesquainst reinf. Material

$$k = 1$$
 $L = 100 \text{ in}$
 $C = 1.69 \text{ in}$

7-00//		Page	of
Job	Project No	Sheet	_ of
Description	Computed by	Date	
	Checked by	Date	
		R	eference
CONSIDOR WEAKER radius of Gyr	9+190 FOR Analysis		
# Clamps = 4 L/H-1	L tr (59,2)		
try 6 Clamps - 1x100/16	-1) = 49,8 L 59,2 -2(0	Ex John	SPACING
		Allow	11.00
6 Clamps PP/ 8, 33 FT bory = 8,33 x1	2 - 167 = loin Max SA	acing	
9typer Lag = 25/x12=300:1 - = 224:11			
224" 2 22 baxs = 21 Add	ditional BoltsperLe	う ∙	

POWERMOUNT LOADING CALCULATIONS

Date 6/25/2016

MCD

Computed by Checked by

Date

AECOMAntenna and Appurtenances

Jecoription	Manufacture Manufacturer	()	Appl	Appurtenance		Area	Area w/ Ice	Weight	Weight w/ Ice	Ollantity
TO T		i Nogel	Height (in)	Width (in)	Depth (in)	(SE)	(SF)	(H)	(III)	
Antenna	Andrew	SNBH-1D6565C	96.4	11.9	7.1	11 445	12.064	60 B	126.67	-
RRU	Ericsson	RRUS-11	17.8	17	7.2	2.942	3.172	55.0	74.32	- 4
Antenna	KMW	P65-17-XLH-RR	96	12	9	11.311	11 927	62.0	124 00	0
Antenna	Powerwave		55	11	ıc	5 882	6.314	35.0	67.63	7 6
RET	Powerwave	7070	1.732	0,	8 15	0.320	0.459	5 L	12.53	2 6

AT&T Total

Description	Manufacturer	Model	Area	Area w/ Ice	Weight	Weight w/ Ice
			(SF)	(SF)	(ql)	(lb)
Antenna	Andrew	SNBH-1D6565C	11,445	12.064	60,800	126.668
RRU	Ericsson	RRUS-11	17,652	19.031	330,000	445,920
Antenna	KMW	P65-17-XLH-RR	22,622	23.853	124,000	248.000
Antenna	Powerwave	7770	17.646	18.942	105.000	202,903
RET	Powerwave	7070	096.0	1.376	15.000	37,532
TMA	Powerwave	LGP21401	2.800	3.370	33.000	51.083

667.800 1112,106

73.125 78.636

T-Mobile - Per Antenna

Manifacture	TO TO	Area	Area w/ Ice	Weight	Weight w/ Ice	(
	٠	(SF)	(SF)	(qI)	(lb)	Quantity
RFS	APX16PV-16PVL-E	6.65	7.08	40	7.1	m
Unknown	Unknown	0.77	6.0	15	21	m

T-Mobile Total

Description Manufacturer	loboM	Area	Area w/ Ice	Weight	Weight w/ Ice
_		(SF)	(SF)	(qI)	(q))
Antenna RFS	APX16PV-16PVL-E	19,95	21.24	120	213
TMA Unknown	Unknown	2.31	2.7	45	63

Job

Ledyard CSP#54 - 136 Vinegar Hill Road Description TIA/EIA-222-F Loading for STAAD Analysis

Project No. Computed by **SAI-088** MCD

Sheet 06/29/16 Date

Date

Page

Tower MODification - Analysis

Checked by

AT&T PANEL ANTENNA & MOUNT LOADING

Antenna Information - AT&T @ 198' A.G.L.

Antenna RAD Centerline

Ant RAD CL ATT:= 198ft

Antenna CaAa

 $CaAa_{antenna,ATT} := 73.125 ft^2$

Antenna Weight

 $Wt_{Ant ATT} := 667.8001b$

Antenna CaAa & Ice

 $CaAa_{antenna.ice,ATT} := 78.636ft^2$

Antenna Weight & Ice

 $Wt_{Ant.Ice.ATT} := 1112.106lb$

Antenna Mount Information

Mount Area

 $Area_{Platfonn,ATT} := 8.8 ft^2$

Mount Weight

Wtplatform.ATT := 1613lb

Note: Antenna mount consists of Valmont (SitePro Part # RMV5-296) T-Arm assembly with Universal Ring, Valmont

Part # LWRM

Mount Area w/ Ice

Area_{Platform.ice.ATT} := 11.3ft²

Mount Weight w/ Ice

Wtplatform.ice ATT := 2000lb

Wind Pressure

Wind Velocity

 $V_{\text{full}} := 95 \text{mph}$

2005 Connecticut State **Building Code converted** to 3-Second Gust

Height Factor

 $kz_{ATT} := \left(\frac{Ant_RAD_CL_ATT}{22}\right)^{\left(\frac{2}{7}\right)} = 1.67$

TIA/EIA-222 F Section 2.3.3

Gust Response Factor

 $G_H := 1.69$

TIA/EIA-222 F Section 2.3.4.2

Extreme Wind Pressure

 $q_{z,full,ATT} := 0.00256 \frac{psf}{mph^2} \cdot V_{full}^2 \cdot kz_{ATT} G_H = 65 \cdot \frac{lb}{ft^2}$

Wind Pressure with Ice

 $q_{z,ice,ATT} := 0.75 \cdot q_{z,full,ATT} = 49 \cdot \frac{lb}{c^2}$

TIA/EIA-222 F Section 2.3.3

Structural Loads - No Ice

Horizontal Load

 $P_{Ant\ Hor\ ATT} := q_{z,full,ATT} \left(CaAa_{antenna,ATT} + Area_{Platform,ATT} \right) \cdot 0.9 = 4804 \text{ lb}$

Use 90% to account for projection

TIA/EIA-222 F Section 2.3.2

Vertical Load

 $P_{Ant\ Vert\ ATT} := Wt_{Ant\ ATT} + Wt_{Platform\ ATT} = 2281 lb$

Structural Loads - With Ice

Horizontal Load

 $P_{Ant Hor ATT, ice} := q_{z,ice,ATT} \cdot (CaAa_{antenna,ice,ATT} + Area_{Platform,ice,ATT}) \cdot 0.9 = 3955 \cdot lb$

Use 90% to account for projection

TIA/EIA-222 F Section 2.3.2

Vertical Load

PAnt Vert ATT.ice := WtAnt.Ice.ATT + WtPlatform.ice.ATT = 3112·lb

Ledyard CSP#54 - 136 Vinegar Hill Road Project No. SAI-088 Sheet 2 of 5

TIA/EIA-222-F Loading for STAAD Analysis Computed by MCD Date 06/29/16

Tower MODification - Analysis Checked by Date

Page

COAXIAL CABLE STRUCTURAL LOADING

(6) 1-5/8" Coax, (2) DC Cables & (1) Fiber Line

Cable Weight (no ice)

 $Wt_{cable.ATT} := 6 \cdot 1.04 \frac{lb}{ft} + 2 \cdot 0.4 \frac{lb}{ft} + 0.4 \frac{lb}{ft}$

Number of Supports

 $N_{support} := 1$

Length of Cable

 $L_{cable,ATT} := Ant_RAD_CL_ATT = 198 \cdot ft$

$$P_{cable,vert,ATT,pole} := \frac{L_{cable,ATT} \cdot Wt_{cable,ATT}}{N_{support}} = 1473 \cdot lb$$

Coaxial cable to be located within pole --> No horizontal loads from coax

T-MOBILE PANEL ANTENNA & MOUNT LOADING

Antenna Information - T-Mobile @ 187'-3" A.G.L.

Antenna RAD Centerline

Ant_RAD_CL_TM:= 187.25ft

Antenna CaAa

 $CaAa_{antenna.TM} := 22.26 ft^2$

Antenna Weight

 $Wt_{Ant.TM} := 165lb$

Antenna CaAa & Ice

CaAa_{antenna.ice.TM} := 23.94ft²

Antenna Weight & Ice

 $Wt_{Ant,Ice,TM} := 276lb$

Antenna Mount Information - Cluster Mount

Mount Area

 $Area_{Platform.TM} := 0.5ft^2$

Mount Weight

 $Wt_{Platform.TM} := 50lb$

Mount Area w/ Ice

Area_{Platform ice TM} := 1 ft²

Mount Weight w/ Ice

 $Wt_{Platform.ice.TM} := 75lb$

Page Sheet 3 Ledyard CSP#54 - 136 Vinegar Hill Road Project No. SAI-088 TIA/EIA-222-F Loading for STAAD Analysis Computed by Date 06/29/16 Tower MODification - Analysis Checked by Date

Wind Pressure

Height Factor

 $kz_{TM} := \left(\frac{Ant_RAD_CL_TM}{33}\right)^{\left(\frac{2}{7}\right)} = 1.64$ TIA/EIA-222 F Section 2.3.3

Extreme Wind Pressure

 $q_{z_s \text{full_TM}} := 0.00256 \, \frac{\text{psf}}{\text{mph}^2} \cdot V_{\text{full}}^2 \cdot kz_{\text{TM}} \cdot G_H = 64 \cdot \frac{\text{lb}}{\text{ft}^2}$

Wind Pressure with Ice

 $q_{z,ice,TM} := 0.75 \cdot q_{z,full,TM} = 48 \cdot \frac{lb}{\epsilon^2}$ TIA/EIA-222 F Section 2.3.3

Structural Loads - No Ice

Horizontal Load

 $P_{Ant Hor TM} := q_{z,full,TM} (CaAa_{antenna,TM} + Area_{platform,TM}) \cdot 0.9 = 1313 \cdot lb$

Use 90% to account for projection

TIA/EIA-222 F Section 2.3.2

Vertical Load

 $P_{Ant\ Vert\ TM} := Wt_{Ant,TM} + Wt_{Platform,TM} = 215 \cdot lb$

Structural Loads - With Ice

Horizontal Load

P_{Ant Hor TM,ice} := q_{z,ice,TM} (CaAa_{antenna,ice,TM} + Area_{Platform,ice,TM}) · 0.9 = 1079 · lb

Use 90% to account for projection

TIA/EIA-222 F Section 2.3.2

Vertical Load

 $P_{Ant_Vert_TM_ice} := Wt_{Ant_Ice_TM} + Wt_{Platform_ice_TM} = 351 \cdot lb$

COAXIAL CABLE STRUCTURAL LOADING

(6) 1-5/8" Coax

Cable Weight (no ice)

 $Wt_{cable.TM} := 6.1.04 \frac{lb}{\Omega}$

Length of Cable

 $L_{cable,TM} := Ant_RAD_CL_TM = 187 \cdot ft$

$$P_{cable.vert.TM.pole} := \frac{L_{cable.TM} \cdot Wt_{cable.TM}}{N_{support}} = 1168 \cdot lb$$

Coaxial cable to be located within pole --> No horizontal loads from coax

Ledyard CSP#54 - 136 Vinegar Hill Road TIA/EIA-222-F Loading for STAAD Analysis

Project No. SAI-088 Computed by

MCD

Page Sheet 4 06/29/16 Date

Tower MODification - Analysis

Checked by

Date

POWERMOUNT STRUCTURAL LOADING

Shape Factor

C_{d.Powermount} := 1.2 TIA/EIA-222 F Section 2.3.7

Powermount Diameter

Diapowermount := 18in = 1.5 ft

PCS Mast Area per Foot

 $Area_{Mast} := \frac{\left(Dia_{Powermount} \cdot 1 \, ft \cdot C_{d,Powermount}\right)}{1 \, ft} = 1.8 \cdot \frac{ft^2}{ft} \qquad TIA/EIA-222 \, F \, Section \, 2.3.8$

187.5ft

$$Area_{Mast,ice} := \frac{\boxed{\left(Dia_{Powermount} + 1in\right) \cdot 1 \text{ ft } C_{d,Powermount}}}{1 \text{ ft}} = 1.9 \cdot \frac{\text{ft}^2}{\text{ft}}$$

Powermount Section Center Elevations

Elevation_{CL.Mast} :=
$$\begin{bmatrix} 162.5 ft \\ 137.5 ft \\ 112.5 ft \\ 87.5 ft \\ 62.5 ft \\ 37.5 ft \\ 12.5 ft \end{bmatrix}$$

Height Factor

$$kz_{Mast} := \left(\frac{Elevation_{CL,Mast}}{33}\right)^{\left(\frac{2}{7}\right)}$$

TIA/EIA-222 F Section 2.3.3

Extreme Wind Pressure

$$q_{z.full.PM} := 0.00256 \frac{psf}{mph^2} \cdot V_{full}^{2} \cdot kz_{Mast} \cdot G_{H}$$

Wind Pressure with Ice

 $q_{z,ice} := 0.75 \cdot q_{z,full,PM}$

Powermount Wind Force

 $P_{horizontal.powermount.full} := Area_{Mast} \cdot q_{z.full.PM}$

per Foot

 $P_{horizontal.powermount,ice} := Area_{Mast,ice} \cdot q_{z,ice}$

Additional Area from Ice (1/2" Each Side)

Area_{ice} :=
$$\frac{\pi \cdot \left[\left(\text{Dia}_{\text{Powermount}} + 1 \text{ in} \right)^2 - \text{Dia}_{\text{Powermount}}^2 \right]}{4} = 29.1 \cdot \text{in}^2$$

Unit Weight of Ice

$$\gamma_{\text{ice}} := 56 \frac{\text{lb}}{\text{ft}^3}$$

Additional Weight from Ice

$$Wt_{addl.ice} := Area_{ice} \cdot \gamma_{ice} = 11 \cdot \frac{lb}{ft}$$

Ledyard CSP#54 - 136 Vinegar Hill Road Project No. SAI-088 Sheet 5 of 5

TIA/EIA-222-F Loading for STAAD Analysis Computed by MCD Date 06/29/16

Tower MODification - Analysis Checked by Date

SUMMARY OF LOADING FOR STAAD ANALYSIS

AT&T - EL 198'

T-Mobile - EL 187'-3"

Antenna Loads - No Ice

Horizontal Load

 $P_{Ant_Hor_ATT} = 4804 \, lbf$

 $P_{Ant\ Hor\ TM} = 1313 \, lbf$

Vertical Load

 $P_{Ant_Vert_ATT} = 2281 lbf$

 $P_{Ant_Vert_TM} = 215 \, lbf$

Antenna Loads - With Ice

Horizontal Load

P_{Ant Hor ATT, ice} = 3955 lbf

P_{Ant_Hor_TM.ice} = 1079 lbf

Vertical Load

P_{Ant Vert ATT ice} = 3112 lbf

P_{Ant Vert TM,ice} = 351 lbf

Coaxial Cable Loads

Vertical Load

 $P_{cable,vert,ATT,pole} = 1473 \, lbf$

 $P_{cable.vert.TM.pole} = 1168 lbf$

Wind Loading on Powermount by Section CL Elevation

$$Elevation_{CL.Mast} = \begin{pmatrix} 187.5 \\ 162.5 \\ 137.5 \\ 112.5 \\ 87.5 \\ 62.5 \\ 37.5 \\ 12.5 \end{pmatrix} \text{ ft } P_{\text{horizontal.powermount.full}} = \begin{pmatrix} 115 \\ 111 \\ 106 \\ 100 \\ 93 \\ 84 \\ 73 \\ 53 \end{pmatrix} P_{\text{horizontal.powermount.ice}} = \begin{pmatrix} 91 \\ 88 \\ 84 \\ 79 \\ 74 \\ 67 \\ 58 \\ 42 \end{pmatrix}$$

Additional Weight on Powermount from Ice

$$Wt_{addl,ice} = 11 \cdot \frac{lb}{ft}$$

STAAD ANALYSIS OF POWERMOUNT

```
1. STAAD SPACE 199' POWERMOUNT
INPUT FILE: 9-22-13 Update - 199' Powermount.STD
    2 START JOB INFORMATION
    3 ENGINEER DATE 08/14/13
    4 ENGINEER NAME MCD
    5 END JOB INFORMATION
    6 INPUT WIDTH 79
    7 UNIT FEET KIP
    8 JOINT COORDINATES
    9, 1 0 199 0; 2 0 198 0; 3 0 187.25 0; 4 0 180 0; 5 0 175 0; 6 0 150 0; 7 0 125 0
   10.8 8 0 100 0; 9 0 75 0; 10 0 50 0; 11 0 25 0; 12 0 0 0
   11. MEMBER INCIDENCES
   12. 1 1 2; 2 2 3; 3 3 4; 4 4 5; 5 5 6; 6 6 7; 7 7 8; 8 8 9; 9 9 10; 10 10 11
   13 11 11 12
   14 DEFINE MATERIAL START
   15 ISOTROPIC STEEL
   16 E 4.176E+006
   17 POISSON 0.3
   18 DENSITY 0 489024
   19 ALPHA 6.5E-006
   20 DAMP 0.03
   21. END DEFINE MATERIAL
   22 MEMBER PROPERTY AMERICAN
   23, 1 TO 11 TABLE ST HSSP18X0,375
   24 CONSTANTS
   25. MATERIAL STEEL ALL
   26 SUPPORTS
   27, 12 PINNED
   28 4 TO 11 FIXED BUT FY MX MY MZ
   30 LOAD 1 LOADTYPE DEAD TITLE SELF
   31 SELFWEIGHT Y -1
   32. LOAD 2 LOADTYPE LIVE TITLE ICE ON POWERMOUNT
   33 MEMBER LOAD
   34. 1 TO 11 UNI GY -0.011
   35, LOAD 3 LOADTYPE WIND TITLE FULL WIND ON POWERMOUNT
   36 MEMBER LOAD
   37, 1 TO 4 UNI GZ 0,115
   38. 5 UNI GZ 0.111
   39. 6 UNI GZ 0.106
```

40. 7 UNI GZ 0.1

63 LOAD 7 LOADTYPE LIVE TITLE COAX WEIGHT

64 JOINT LOAD

65 2 FY -1 473

66 3 FY -1 168

 $67 \sim \text{LOAD}$ COMB 8 COMBINATION FULL WIND

68 . 1 1.0 3 1 . 0 5 1.0 7 1 . 0

69. LOAD COMB 9 COMBINATION WIND WITH ICE

70 7 1 170 2 1.0 4 1.0 6 1.0 7 1.0

72 PERFORM ANALYSIS

PROBLEM STATISTICS

NUMBER OF JOINTS/MEMBER+ELEMENTS/SUPPORTS = 12/ 11/ 9

SOLVER USED IS THE OUT-OF-CORE BASIC SOLVER

ORIGINAL/FINAL BAND-WIDTH= 1/ 1/ 12 DOF

TOTAL PRIMARY LOAD CASES = 7, TOTAL DEGREES OF FREEDOM = 53

SIZE OF STIFFNESS MATRIX = 1 DOUBLE KILO-WORDS

REQRD/AVAIL. DISK SPACE = 12.0/******* MB

***WARNING - INSTABILITY AT JOINT 12 DIRECTION = MY
PROBABLE CAUSE SINGULAR-ADDING WEAK SPRING
K-MATRIX DIAG= 5.6066664E+04 L-MATRIX DIAG= -2.1827873E-11 EQN NO 52
***NOTE - VERY WEAK SPRING ADDED FOR STABILITY

NOTE STAAD DETECTS INSTABILITIES AS EXCESSIVE LOSS OF SIGNIFICANT DIGITS
DURING DECOMPOSITION WHEN A DECOMPOSED DIAGONAL IS LESS THAN THE
BUILT-IN REDUCTION FACTOR TIMES THE ORIGINAL STIFFNESS MATRIX DIAGONAL,
STAAD PRINTS A SINGULARITY NOTICE: THE BUILT-IN REDUCTION FACTOR
IS 1.000E-09

THE ABOVE CONDITIONS COULD ALSO BE CAUSED BY VERY STIFF OR VERY WEAK ELEMENTS AS WELL AS TRUE SINGULARITIES. \Box

- 73. LOAD LIST 8 9
- 74. UNIT INCHES KIP
- 75 PARAMETER 1
- 76 CODE AISC
- 77, * 35KSI STEEL WITH 1/3 INCREASE IN STRENGTH PER TIA
- 78 FYLD 46.655 ALL
- 79 CHECK CODE ALL

TABLE

MEMBER

LOADING/

STAAD.Pro CODE CHECKING - (AISC 9TH EDITION) v1.0

RATIO/

CRITICAL COND/

ALL UNITS ARE - KIP INCH (UNLESS OTHERWISE NOTED)

RESULT/

MEMBER	TABLE	FX	M	Č.	MZ	r usanu	LOCATION
) ======							
	NOTE: DES						PIPES
1	ST HSSP18X	0 . 375	(A)	ISC SECT	TIONS)		
		PASS			0.00		8
		0.07 C	0 .	69	0.00	Э	12.00
	NOTE: DES						PIPES
2	ST HSSP18X	0.375					
		PASS			0 28		8
		4.53 C	714.	98	0.00)	129.00
	NOTE: DES						PIPES
3	ST HSSP18X	0.375	(A)	SC SECT	TIONS)		
		PASS	AISC-	H1-3	0 55	55	8
		6.39 C	1400	98	0.00)	87.00
	***NOTE: DES						
4	ST HSSP18X	0.375	(A)	SC SECT	TIONS)		
		PASS			0 - 55	55	8
		6.39 C	1400	98	0.00)	0.00
	NOTE: DES	IGN IN ACCO	RDANCE WIT	H ASD F	ROVISIONS	FOR	PIPES
5	ST HSSP18X	0.375	(Al	SC SECT	'IONS)		
		PASS	AISC-	H1-3	0.05	55	8
		8.37 C	93.	77	0.00)	300.00
	NOTE: DES	IGN IN ACCO	RDANCE WIT	H ASD F	ROVISIONS	FOR	PIPES
6	ST HSSP18X	0.375	(AI	SC SECT	'IONS)		
		PASS	AISC-	H1 - 3	0.05	55	8
		8 37 C	93.	77	0 0 0)	0 0 0
	NOTE: DES	IGN IN ACCO				FOR	PIPES
7	ST HSSP18X	0.375	(AI	SC SECT	'IONS)		
					0.05	50	8
		11.66 C	62.	15	0.00)	300.00
	NOTE: DES	IGN IN ACCO	RDANCE WIT	H ASD P	ROVISIONS	FOR	PIPES
8	ST HSSP18X	0.375	(AI	SC SECT	'IONS)		
		PASS			0.05		9
		15.64 C	44.				300.00
	NOTE: DES	IGN IN ACCO	RDANCE WIT	H ASD P	ROVISIONS	FOR	PIPES
9	ST HSSP18X	375	(AI	SC SECT	IONS)		
				H1-3	0.05	54	9
		17.56 C	38.				300-00
	***NOTE: DES						
10	ST HSSP18X				IONS)		
					0.05		9
		19.48 C					
	***NOTE: DES						
11	ST HSSP18X				IONS)		
Т.Т	21 11221 1070		ATSC-	H1-3	0.05	.8	9
					0.00		_
		10 10 C	ی ای	4.7	0.00		0.00

MEMBER END FORCES STRUCTURE TYPE = SPACE

ALL UNITS ARE -- KIP INCH (LOCAL)

MEMBER	LOAD	JT	AXIAL	SHEAR-Y	SHEAR-Z	TORSION	MOM-Y	MOM-Z
1	8	1	0.00	0.00	0.00	0.00	0.00	0.00
		2	-0.07	0.00	-0.12	0.00	-0.69	0.00
	9	1	0.00	0.00	0.00	0.00	0.00	0.00
		2	-0.08	0.00	-0 -0 9	0.00	-0.55	0.00
2	8	2	3, 82	0 0 0	4.92	0,00	0.69	0.00
		3	-4.53	0 - 0 0	-6.16	0.00	-714 98	0.00
	9	2	4.66	0 = 00	4.05	0.00	0.55	0.00
		3	-5.49	0.00	-5.02	0.00	-585, 58	0.00
3	8	3	5.91	0.00	7.47	0.00	714, 98	0 00
		4	-6.39	0.00	-8.30	0.00	-1400.98	0.00
	9	3	7,, 01	0.00	6.10	0.00	585 58	0.00
		4	-7,56	0 0 0	-6.76	0.00	~1145,26	0.00
4	8	4	6.39	0.00	-24,10	0.00	1400.98	0.00
		5	-6.72	0.00	23.53	0 - 0 0	28.03	0.00
	9	4	7 _: 56	0.00	-19.72	0 - 00	1145 26	0.00
		5	-7.95	0 - 00	19.27	0.00	24, 31	0.00
5	8	5	6.72	0.00	-0.98	0.00	-28.03	000
		6	-8 . 37	0 - 00	-1.79	000	-93 77	000
	9	5	7.95	0 _ 0 0	-0.77	0.00	-24 ₅ 31	0 0 0
		6	-9.87	0.00	-1.43	0.00	-74.90	0.00
6	8	6	8 . 37	0 . 0 0	-1.45	000	93,77	0.00
		7	-10.01	0.00	-1.20	0,00	-57 72	0.00
	9	6	9.87	0 . 0 0	-1.15	0.00	74.90	0 00
		7	-11.79	0 v 0 0	-0.95	0.00	-45 47	0 = 00
7	8	7	10.01	0.00	-1, 24	0,00	57.72	0.00
		8	-11.66	0.00	-1 26	0.00	-62.15	0.00
	9	7	11.79	0.00	-0.97	0.00	45.47	0.00
		8	-13 ⊚72	0.00	-1.00	0.00	-49-27	0 , , 0 0
8	8	8	11.66	0.00	-1.18	0 0 0	62.15	0.00
		9	-13:31	0.00	-1.14	0.00	-55.42	0 = 0 0
	9	8	13.72	0.00	-0.94	0 0 0	49 27	0.00
		9	-15.64	0.00	-0-91	0 - 0 0	-44.21	0.00
9	8	9	13,31	0.00	-1107	0.00	55.42	0.00
		10	-14-95	0.00	-1.03	0 . 0 0	-48 :03	0 0 0
	9	9	15.64	0.00	-0.86	0 0 0	44,21	0 0 0
		10	-17,56	0 - 00	-0 - 82	0 , 0 0	-38.26	0 0 0

MEMBER END FORCES

0.00

0.00

0.00

-----ALL UNITS ARE -- KIP INCH (LOCAL) MEMBER LOAD JT AXIAL SHEAR-Y SHEAR-Z MOM-Y MOM-Z TORSION 10 8 10 14.95 0.00 -0.92 0.00 48.03 0.00 -16.60 0,00 -0.91 0.00 -46.90 0.00 11 9 10 17.56 0 0 0 -0 -73 0 0.00 38.26 0.00 -37.19 -19.48 11 0,00 -0.72 0.00 0.00 11 16.60 -0.82 8 0.00 0.00 46.90 0.00 1.1

-0 > 51

-0.65

-0.40

0.00

0.00

0.00

0.00

0.00

37.19

STRUCTURE TYPE = SPACE

****** END OF LATEST ANALYSIS RESULT *********

0 ... 00

0.00

0.00

9

11

12

12 -18.25

19,48

-21,40

⁸¹ UNIT FEET KIP

⁸² PRINT SUPPORT REACTION ALL

199' POWERMOUNT

-- PAGE NO

SUPPORT REACTIONS -UNIT KIP FEET STRUCTURE TYPE = SPACE

JOINT	LOAD	FORCE-X	FORCE-Y	FORCE-Z	MOM-X	MOM-Y	MOM Z
12	8	0.00	18.25	-0.51	0.00	0.00	0.00
	9	0.00	21.40	-0.40	0.00	0.00	0.00
4	8	0 2:00	0.00	-32.41	0 - 00	0 = 0 0	0.00
	9	0.00	0.00	-26.48	0.00	0 0 0	0 = 00
5	8	0.00	0.00	22.55	0.00	0.00	0 0 0
	9	0 0 0	0.00	18,50	0 0 0	0.00	0.00
6	8	0.00	0.00	-3.24	0.00	0 0 0	0.00
	9	0.00	0.00	-2.58	0.00	0.00	0.00
7	8	0.00	0.00	-2.44	0 = 00	0 0 0	0.00
	9	0.00	0.00	-1.93	0.00	0.00	0.00
8	8	0 = 0 0	0 . 00	-2 45	0.00	0 0 0	0.00
	9	0.00	0.00	-1.94	0.00	0 . 0 0	0.00
9	8	0.00	0.00	-2 21	0.00	0 0 0	0.00
	9	0.00	0.00	-1.77	0.00	0.00	0.00
10	8	0.00	0 00	-1.94	0.00	0 0 0 0	0.00
	9	0.00	0.00	-1.55	0.00	0.00	0.00
11	8	0.00	0.00	-1.73	0.00	0.00	0.00
	9	0.00	0.00	-1 - 37	0.,00	0.00	0,00

****** END OF LATEST ANALYSIS RESULT *********

83 PERFORM DIRECT ANALYSIS ASD

**ERROR-NO DEFINE DIRECT DATA ENTERED

****** END OF THE STAAD.Pro RUN ********

**** DATE= JUN 25,2016 TIME= 13: 9:10 ****

No Load Combination	Fx	Fy	F	z Mx	My	Mz	
4 8 COMBINATION FULL WIND		0	0	-32.41	0	0	0
9 COMBINATION WIND WITH ICE		0	0	-26.48	0	0	0
5 8 COMBINATION FULL WIND		0	0	22.55	0	0	0
9 COMBINATION WIND WITH ICE		0	0	18.5	0	0	0
6 8 COMBINATION FULL WIND		0	0	-3.24	.0	0	0
9 COMBINATION WIND WITH ICE		0	0	-2.58	0	0	0
7 8 COMBINATION FULL WIND		0	0	-2.44	0	0	0
9 COMBINATION WIND WITH ICE		0	0	-1.93	0	0	0
8 8 COMBINATION FULL WIND		0	0	-2.45	0	0	0
9 COMBINATION WIND WITH ICE		0	0	-1.94	0	0	0
9 8 COMBINATION FULL WIND		0	0	-2.21	- 0	0	0
9 COMBINATION WIND WITH ICE		0	0	-1.77	0	0	0
10 8 COMBINATION FULL WIND		0	0	-1.94	0	0	0
9 COMBINATION WIND WITH ICE		0	0	-1.55	0	0	0
11 8 COMBINATION FULL WIND		0	0	-1.73	0	0	0
9 COMBINATION WIND WITH ICE		0	0	-1.37	0	0	0
12 8 COMBINATION FULL WIND		0	18.25	-0.51	0	0	0
9 COMBINATION WIND WITH ICE		0	21.4	-0.4	0	0	0

From STAAD output

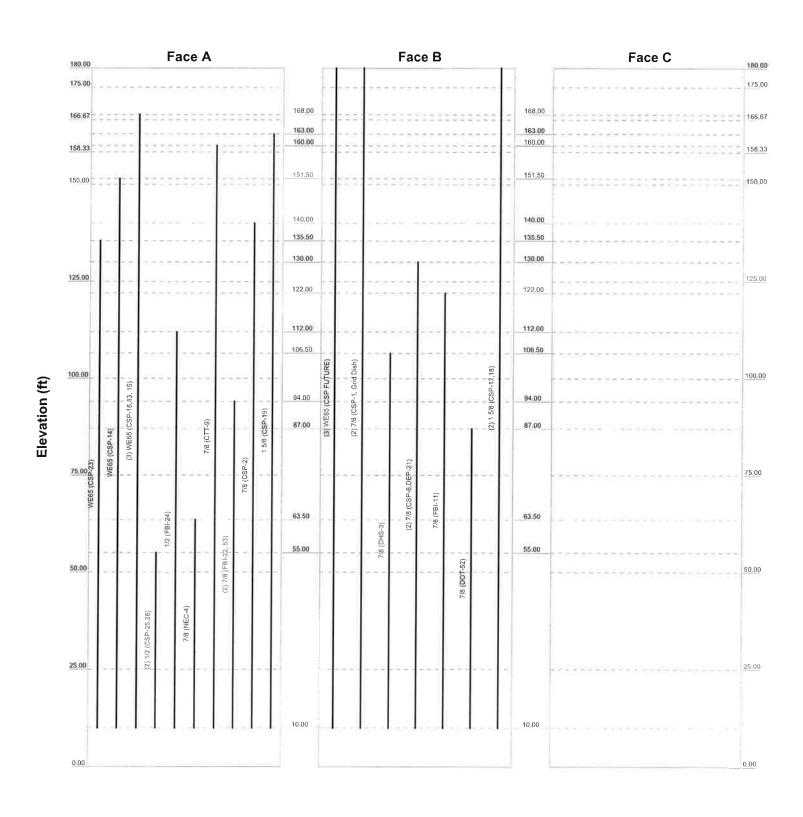
	No Ice	Ice
	Shear	Shear
180ft A.G.L.	32410	26480
175	-22550	-18500
150	3240	2580
125	2440	1930
100	2450	1940
75	2210	1770
50	1940	1550
25	1730	1370
0	510	400

TNX-TOWER INPUT / OUTPUT SUMMARY

ELEVATION	æ					
LO LO	125 1113 1113 1113 1113 1113 1113 1113 1					
	HS-3)					
FTPE Ice Shield (DNK-14 / CSP-14) (FT DISH (DNK-14 / CSP-14) (gined) 6' Side Mount Standoff (DNK-17,18 / CT-9,CSP-24) (goned) 6' Side Mount Standoff (DNK-17,18 / CT-9,CSP-24) (inverted) 5'C4P4 Mount Standoff (DNK-17,18 / CT-9,CSP-24) (inverted) 5'C4P4 Mount Standoff (DNK-18 / CSP-24) Powermount Reaction at 150 2' Side Mount Standoff (DNK-18 / CSP-21) DISH Mount (DNK-12 / CSP-23) 6' FT DISH (DNK-12 / CSP-23) 6 FT DISH (DNK-12 / CSP-23) DISH Mount (DNK-17 / CSP-23) BB432-A (FBH24) (gined) 6' Side Mount Standoff (DNK-9,10 / DD-12,2, FBH22) (gined) 6' Side Mount Standoff (DNK-9,10 / DD-12,2, FBH22)	Tograd F Side Mount Standoff (DNK-9,10) DOT-52, TBH-22,24) Powermount Reaction at 125 S31-70 Dipoie (DNK-9 / DOT-52) Dish Mount (DNK-8) Tosh Mount (DNK-8) Tosh Mount (DNK-7 / CSP-6) Toe Shield (DNK-7 / EBL-33) To Side Mount Standoff (DNK-4 / FBL-33) DB212-1 (DNK-4 / FBL-33) TS Gle Mount Standoff (DNK-12 / FBL-42) POWERMOUNT Reaction at 50 TS Gle Mount Standoff (DNK-12 / FBL-43) DB803-AT (DNK-2 / CSP-25) TS Gle Mount Standoff (DNK-12 / FBL-44) DB803-AT (DNK-2 / CSP-25) TS Gle Mount Standoff (DNK-11 / DEHMS-26) TS Gle Mount Standoff (DNK-11 / DEHMS-26) TS Gle Mount Standoff (DNK-12 / FBL-44) TS Gle Mount Standoff (DNK-11 / DEHMS-26) TS Gle Mount Standoff (DNK-1 / DEHMS-26) TS Gle Mount Standoff (DNK	dard.		9		
-14) mdoff (D mdoff (D mdoff (D mdoff (D -23) P-23) MK-13 / MK-11 / 8) mdoff (D	(gined) F Side Mount Standoff (DNR ODT-52, FBL-22.24) Powermount Readtion at 125 \$31-70 Dipole (DNK-6) FPD20 (DNK-6) FPD20 (DNK-6) FPD20 (DNK-6) FPD20 (DNK-6) FPD20 (DNK-7 / CSP-6) FPD20 (DNK-7 / FBL-33) FPD20 (DNK-7 / FBL-33) FPD20 (DNK-7 / FBL-32) FPD20 (DNK-7 / CSP-25) FPD20 (DN	Tower is located in New London County, Connecticut. Tower assigned for a 95 mph basic wind in accordance with the TIA/EIA-222-F Standard. Tower is also designed for a 90 mph basic wind with 0.50 in ice. Deflections are based upon a 90 mph wind. TOWER RATING: 99.2%				
TOTAL TO	(grined) Stoke Mount Blando DOT-52, FBI-22,24) Powermount Reaction at 128 531-70 Dipole (DNK-8) PD220 (DNK-7) POSE-6) POWERMOUNT (DNK-7 / CSP-8) POWERMOUNT Standoff (DNK-9) POWERMOUNT STANDOFF (CSP-25) POWERMOUNT STANDOFF (DNK-2 / CSP-25) P	222-F				
(DNK-1 (DNK-1 (DNK-1 (DNK-1 (DNK-1 (DNK-1 (DNK-1 (DNK-1 (DNK-1 (DNK-1 (DNK-1 (DNK-1 (DNK-1 (DNK-1	(Uned) F Side Mount (Unived) P Side Mount (DUK-8) Powermount Readion 531-70 Dippie (DUK-8) PD220 (DUK-6 / DHS-6) PD220 (DUK-6 / DHS-6) PD220 (DUK-7 / OS Powermount Readion PD826-A (DKK-7 / CS) Powermount Readion PD826-A (DKK-4 / FB) 2 Side Mount Standoff Powermount Readion PD156S (DNK-7 / ICK-4 / FB) 2 Side Mount Standoff Powermount Readion PD156S (DNK-3 / NEC) Side Mount Standoff Powermount Readion PD156S (DNK-3 / NEC) Side Mount Standoff Powermount Readion PD156S (DNK-2 / CS) Powermount Readion PD156S (DNK-2 / CS) POWERMOUNT (DNK-2 / DNK-2 / DNK-2 / DNK-2 / DNK-2 / DNK-2 / DNK-3 /	.∕E IA -:				
ice Shield (DNIK) (Ginned) 6' Side h (CTT-9, CSP-54) (Ginned) 6' Side h (CTT-9, CSP-54) (Ginned) 6' Side h (CTT-9, CSP-54) (Ginned) 6' Side h (Gin	med) 5' Sid wermount if the Amount (Dinks) Shield (Dinks) Shield (Dinks) Shield (Dinks) Side Mount Wermount if wermount if GRADI 6	e T				
2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3		with the O in ic				
TYPE	Uguneal F Side Mount, DOT-52, Rel-22,24) Powermount Readion 531-70 Dipole (DNK-8) Dish Mount (DNK-8) Dish Mount (DNK-8) Dish Mount (DNK-7) / CE Dish Mount (DNK-7) / CE Disheld (DNK-5) / CE Powermount Readion DB224-4 (DNK-5) / FB DB224-4 (DNK-5) / CE POWER DB225-1 (DNK-1) / CE DB224-4 (DNK-5) / FB DB224-4 (DNK-7) / CE POWERMOUNT Shandoff DB224-4 (DNK-7) / CE DB244-4 (DNK-7) / CE DB244-	ut. h 0.50				
NAME OF THE PROPERTY OF THE PR	WAT Fu	coords and with				
	- L	d in ad sic wii ind.	×	20		
185 186 180 180 180 180 180 180 175 175 175 175 175 175 175 175	175 175 175 175 175 171 168 168 168 168 168 168 168 168 168 16	c wind		BASE		
TYPE	(Joined) 5 Side Mount Standoff (DNK-23,24 J CSP-19,18) (Joined) 5 Side Mount Standoff (DNK-23,24 J CSP-19,18) (Joined) 5 Side Mount (DNK-22 / CSP-58) Dish Mount (DNK-22 / CSP-58) A FT DISH (DNK-22 / CSP-58) Powermount Reaction at 175 Dish Mount (CSP-16) (Invertiad) DB80913-Y (DNK-28 / CSP-58) (ET DISH (DNK-17 / CTT-9) 6 FT DISH (DNK-17 / CTT-9) 6 FT DISH (DNK-16 / CSP-13) Dish Mount (DNK-16 / CSP-13) Dish Mount (DNK-16 / CSP-15) Dish Mount (DNK-16 / CSP-15) Dish Mount (DNK-16 / CSP-15) (Joined) 6 Side Mount Standoff (DNK-15 / CSP-2) (Joined) 6 Side Mount Standoff (DNK-15 / CSP-2) (Joined) 6 Side Mount Standoff (DNK-15 / CSP-2)	don C 1 basi 90 ml a 90 m		MAX. CORNER REACTIONS AT BASE: DOWN: 455619 lb SHEAR: 49078 lb UPLIFT: -386516 lb SHEAR: 42492 lb		
FIYPE Ground Rod wiExtension VHF-160 10 Dipole (DINK-29 CSP-1) OGT9-840 (DINK-24 CSP-18) Dish Mount (CSP-62) Dish Mount (CSP-62) Dish Mount (CSP-63) DB8073-Y (DINK-25 CSP-17) SG478-HF LLD-F (DQ2-E5765) (DINK-28 CSP-66) DB4 Mount (CSP-63) E FT DISH (CSP Windload - CSP-60) 6 FT DISH (CSP Windload - CSP-63) 6 FT DISH (CSP-63) 6 FT D	ide Mount Standoff (DNK-23,24 / ide Mount Standoff (DNK-24 / ide Mount Standoff (DNK-15 / i	v Lon		TION	MOMENT 9296 kip-ft p-ft 00 in ICE	MOMENT 9520 kip-ft ip-ft ph WIND
d WExtension O Upole (DNK-29 CSP-1) (DNK-24 (CSP-62) (CSP-62) (CSP-62) (CSP-63) (CSP-63) (CSP-64) (CS	doff (DP) 5A) 5A) 5A) 5A) 5A) 5A) 5A) 5A) 5A) 13 13) 13) 15) 15) 15) 15) 15)	or a 9 igned igned ased (; 99.2):		VER REACT 455619 lb 49078 lb -386516 lb 42492 lb	68919 lb MOME 197 lb 9296 k TORQUE 89 kip-ft 90 mph WIND - 0.5000 in ICE AXIAL 47799 lb	EAR MOME 1931b 19520 k TORQUE 73 kip-ft REACTIONS - 95 mph WIND
1 YPE nation (CDNK-29-18) (CDNK-29-18) (SP-18-19) (SP-18-19-19-19-19-19-19-19-19-19-19-19-19-19-	(Gined) 6' Side Mount Standoff (D CSP-19, 18) (Gined) 6' Side Mount Standoff (D CSP-19, 18) (Gined) 6' Side Mount Standoff (D CSP-19, 18) (Gined) 6' Side Mount (DNK-21 / CSP-5A) Dish Mount (DNK-22 / CSP-5B) Powermount Reaction at 175 Dish Mount (DNK-22 / CSP-78) (FT DISH (DNE-16) FT DISH (DNK-19 / CSP-19) FT DISH (DNK-19 / CSP-13) Dish Mount (DNK-19 / CSP-13) Dish Mount (DNK-19 / CSP-15) Dish Mount (DNK-14 / CSP-15) Dish Mount (DNK-14 / CSP-15) (Gined) 6' Side Mount Standoff (D (Gined) 6' Side Mount Standoff (D (Gined) 6' Side Mount Standoff (D (Gined) 6' Side Mount Standoff (D	ated i		IER R 4556: 4907 -386: 4249	b kip-1 5000	3 kip-1 mph
Ground Rod w/Extens VHF-155 10 Dipole (C OGT9-840 (DNK-24 / Dish Mount (CSP-62) Dish Mount (CSP-63) Dish Mount (CSP-61) Dish Mount (CSP-61) E FT DISH (CSP Winc F FT DISH (CSP Winc (Gined) F Side Mount CSP 5,56,58,59) (Gined) F Side Mount CSP 5,56,58,69) (Gined) F Side Mount CSP 5,56,58,69)	de Mou JONK-22 JONK-22 JONK-27 JONK-11 JONK-11 JONK-11 JONK-11 JONK-11 JONK-11 JONK-11 JONK-11 JONK-11	design size local design size local size local size also size libraria. R.R.R.R.R.R.R.R.R.R.R.R.R.R.R.R.R.R.R		X. CORN DOWN: ' SHEAR: UPLIFT: SHEAR:	68919 lb RQUE 89 k ANIMD - 0.50 AXIAL 47799 lb	UE 7: S - 95
and Rod wiExt 160 10 Dipol 9-8-40 (DNK-2 Mount (CSP-4	(Gined) 5' Side M (CSP-19,18) (Goined) 5' Side M (GSP-19,18) Dish Mount (DNK DISH Mount (DNK A FT DISH (DNK A FT DISH (DNK Powermount Rea DISH Mount (CSP (Inverted) DB803 SC479-HF1LDF 6 FT DISH (DNK-1 6 FT DISH (DNK-1 DISH Mount (DNK DISH Mount (DNK B FT DISH (DNK-1	ower ower Ower OWE		JAX. C DOO SHI UPU	ORO WIN 'A	ORQ
Ground VHF-urt OGT9- Dish M Dish M Dish M F FT D 6 FT D 7	Clohe Cish Dish FTI D	- 0 0 4 0		\$	AR 7 lb 7 0 mpl	SHEAR 86693 lb 7 REAC
		\triangleleft			SHEAR 85797 lb 90 mp	SHE 8669
				7	· · · · · · · · · · · · · · · · · · ·	
					. / 1	
		1 1 1	1 1 1 m			
				12 4		
				* K	, /	
		7 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
				The state of the s	- X.	
	•					
75.0 ft 56.7 ft 58.3 ft 50.0 ft	44	75.0 ft	3.0 ft	S O A		0.0 ft
1756	, ž	57.7	Ω	N		
0.088 6.657 8.745 8.80T	C 101C \$ 619b	8199.2	ruu	û 80 1 1	£1008	b) 40626,8
88.01 11 788.91 EEEE.S1 E1	15 @ 8,33333	žt 6	V	53 6 @ 12.5		@ (u) IIP (u) Se
A.V 688.01 ft 5888.11 5555.51 Et	31	L2 1/2x2 1/2x3/16			4/f×6×6.J	Bujos
	'V'N			F3×3×1/4 1/5×2 1/5×9/16		slsinozi slsinog
AN 61/2x21/2x3/14 L2 1/2x3/166 AA	A/N	ρ/L×p×	ליס	91/SX4X41	8/£x4x4J	SI
b/lxexe1:		AN				
		0011				20010
2L2 1/2x2x3/16	5/1/4 SL2 1/2×2 1/2×1/4	V342 4/	2L3 1/2x5/16	\$/1xx3 12xx 1/4	STS	
	SX1 d STS 1 5X3 5X3 5X3		5F3 1/5×3 1/5×2/16	\$215,0x3,7 25H S\f \w 2,x50,378,8X6,3175 HSS \f \x2\f \$17.x5\f \text{\$17.x5\f \text{\$17.x5	SF3	al s s Seade

	ELEVATION	<u>_</u>	FLEVALION
Ground Rod w/Extension	185	Ice Shield (DNK-14 / CSP-14)	150
VHF-150 10' Dipole (DNK-29 / CSP-1)	185	6 FT DISH (DNK-14 / CSP-14)	150
OGT9-840 (DNK-24 / CSP-18)	185	(joined) 6' Side Mount Standoff (DNK-17,18/	150
Dish Mount (CSP-62)	180	CTT-9,CSP-54)	
Dish Mount (CSP-50)	180	(joined) 5' Side Mount Standoff (DNK-17,18 /	150
DB809T3-Y (DNK-25 / CSP-17)	180	(T-10,001-04)	
SC479-HF1LDF (D02-E5765) (DNK-28 / CSP-55)	180	(inverted) SC479-HF1LDF (DNK-18 / CSP-54)	150
Dish Mount (CSP-61)	180	Powermount Reaction at 150	150
6 FT DISH (CSP Windload - CSP-60)	180	2' Side Mount Standoff (DNK-13 / DEP-21)	146
6 FT DISH (CSP Windload - CSP-61)	180	PD320 (DNK-13 / DEP-21)	146
6 FT DISH (CSP Windload - CSP-62)	180	foe Shield (DNK-12 / CSP-23)	138
Powermount Reaction at 180	180	Dish Mount (DNK-12 / CSP-23)	138
(joined) 6' Side Mount Standoff (DNK-25 / CSP-17)	175	6 FT DISH (DNK-12 / CSP-22)	135.5
TMA 432-83H-01T (DNK-27 / CSP-59)	175	DB264-A (DNK-10/ FBI-22)	135
(joined) 6' Side Mount Standoff (DNK-26,27,28 /	175	2' Side Mount Standoff (DNK-11 / CSP-8)	133
CSP 55,56,58,59)		DB212-1 (DNK-11 / CSP-8)	133
(joined) 6' Side Mount Standoff (DNK-23,24 / CSP-19,18)	175	(ioined) 6' Side Mount Standoff (DNK-9.10 /	125
(joined) 6' Side Mount Standoff (DNK-25 / CSP-17)	175	DOT-52, FBI-22,24)	
(joined) 6' Side Mount Standoff (DNK-23,24 / CSP-19,18)	175	(joined) 6' Side Mount Standoff (DNK-9,10 / DOT-52, FBI-22,24)	125
(joined) 6' Side Mount Standoff (DNK-23,24 /	175	Powermount Reaction at 125	125
(21-13, 10)		531-70 Dipole (DNK-9 / DOT-52)	115
Dish Mount (DNK-22 / CSP-5B)	175	Dish Mount (DNK-8)	113
Dish Mount (DNK-21 / CSP-5A)	175	PD220 (DNK-6 / DHS-3)	113
Dish Mount (DNK-20 / CSP-7)	175	Ice Shield (DNK-8)	113
4 FT DISH (DNK-22 / CSP-5B)	175	Dish Mount (DNK-7 / CSP-6)	100
Powermount Reaction at 175	175	Ice Shield (DNK-7 / CSP-6)	100
Dish Mount (CSP-16)	171	Powermount Reaction at 100	100
(inverted) DB809T3-Y (DNK-23 / CSP-19)	168	DB264-A (DNK-5 / FBI-11)	: 76
SC479-HF1LDF (D02I-E5765) (DNK-26 / CSP-56)	168	2' Side Mount Standoff (DNK-4 / FBI-53)	87
SC479-HF1LDF (D021-E5765) (CSP-58)	168	DB212-1 (DNK4 / FBI-53)	87
6 FT DISH (CSP-16)	168	2' Side Mount Standoff (DNK-56 / FBI-11, DHS-3)	87
PD458-1 (DNK-17 / CTT-9)	167	Powermount Reaction at 75	75
6 FT DISH (DNK-19 / CSP-13)	162.5	PD156S (DNK-3 / NEC-4)	63.5
Dish Mount (DNK-19 / CSP-13)	162.5	Side Arm Mount (DNK-3 / NEC-4)	63.5
VHF-150-6 (DNK-15 / CSP-2)	158	DB803Q-XT (DNK-2 / CSP-25)	53
8 FT DISH (DNK-16 / CSP-15)	158	2' Side Mount Standoff (DNK-12/	20
Dish Mount (DNK-16 / CSP-15)	158	DEHMS-26,CSP-25)	
Dish Mount (DNK-14 / CSP-14)	150	Powermount Reaction at 50	20
(joined) 6' Side Mount Standoff (DNK-15 / CSP-2)	150	SY203(C) - YAGI Antenna (DNK-1 / DEHMS-26)	49
(ioined) 6' Side Mount Standoff (DNK-15 / CSP-2)	150	Powermount Reaction at 25	25

 AECOM
 Job 180' Stainless Lattice, Ledyard, CT

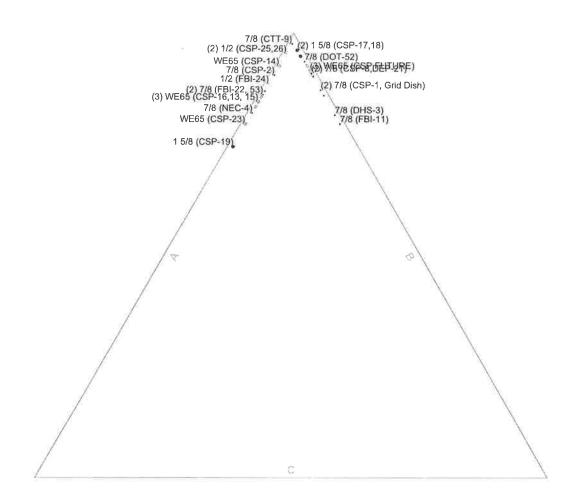

 500 Enterprise Drive, Suite 3B Rocky Hill, CT
 Project AT&T Site CT2283

 Rocky Hill, CT
 Code: TIA/EIA-222-F

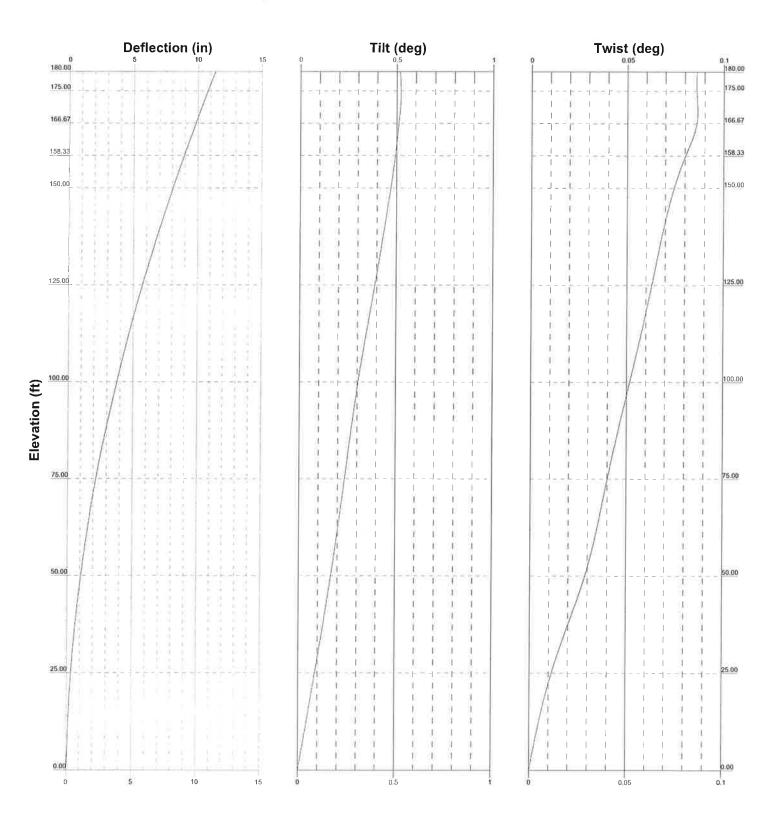
 Phone: 860-529-3891
 Path: Date: 06/29/16 Scale: NTS Path: 06/29/16 Scale: NTS Pat

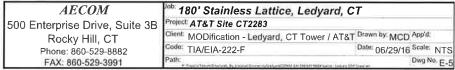
TNX-TOWER FEEDLINE DISTRIBUTION CHART

______ Round _____ Flat ____ App In Face ____ App Out Face ____ Truss L



AECOM	lob: 180' Stainless Lattice, Ledyard, C	T
500 Enterprise Drive, Suite 3B	Project: AT&T Site CT2283	
Rocky Hill, CT	Glient: MODification - Ledyard, CT Tower / AT&1	Drawn by: MCD App'd:
	Code: TIA/EIA-222-F	Date: 06/29/16 Scale: NTS
FAX: 860-529-3991	Path: * Perchantages & Uses Service belong the Supplementages and Company Com	Dwg No. E-7


TNX TOWER FEEDLINE PLAN


Feed Line Plan

Round Flat App In Face App Out Face

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991 ROCKY HILL CT Phone: 860-529-3991 ROCKY HILL CT Phone: 860-529-3991 ROCKY HILL CT Project: AT&T Site CT2283 Client: MODification - Ledyard, CT Tower / AT&T Drawn by: MCD App'd: Code: TIA/EIA-222-F Path: Dwg No. E-7

TNX-TOWER DETAILED OUTPUT

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	180' Stainless Lattice, Ledyard, CT	1 of 43
Project		Date
	AT&T Site CT2283	15:30:26 06/29/16
Client		Designed by
	MODification - Ledyard, CT Tower / AT&T	MCD

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 180.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 10.60 ft at the top and 25.00 ft at the base.

This tower is designed using the TIA/EIA-222-F standard.

The following design criteria apply:

Tower is located in New London County, Connecticut.

Basic wind speed of 95 mph.

Nominal ice thickness of 0.5000 in.

Ice density of 56 pcf.

A wind speed of 90 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 90 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.333.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

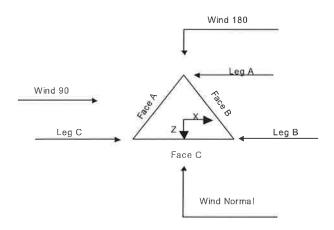
Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- ✓ Use Code Safety Factors Guys Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile
- √ Include Bolts In Member Capacity
- ✓ Leg Bolts Are At Top Of Section
 ✓ Secondary Horizontal Braces Leg
- √ Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)
- √ SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
 Retension Guys To Initial Tension
 Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC 6D+W Combination
- ✓ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder

Use ASCE 10 X-Brace Ly Rules


- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression
- √ All Leg Panels Have Same Allowable Offset Girt At Foundation
- √ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	180' Stainless Lattice, Ledyard, CT	2 of 43
Project		Date
	AT&T Site CT2283	15:30:26 06/29/16
Client		Designed by
	MODification - Ledyard, CT Tower / AT&T	MCD

Triangular Tower

To	wer	Se	ctio	n Ge	om	etry
			OLIO		. •	CLIV

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	_
	fl			ft		ft
T1	180.00-175.00			10.60	1	5.00
T2	175.00-166.67			11.00	1	8,33
T3	166.67-158.33			11.67	1	8.33
T4	158.33-150.00			12.33	1	8.33
T5	150.00-125.00			13.00	1	25.00
T6	125.00-100.00			15,00	1.	25.00
T7	100,00-75.00			17.00	1	25.00
T8	75,00-50.00			19.00	1	25.00
T9	50.00-25.00			21.00	1	25.00
T10	25.00-0.00			23.00	1	25.00

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Gir
Section	Elevation	Spacing	Туре	K Brace	Horizontals	Offset	Offset
				End			
	fl	ft		Panels		in	in
Tl	180,00-175,00	5.00	K Brace Down	No	Yes	0.0000	0.0000
T2	175.00-166.67	8.33	K Brace Down	No	Yes	0.0000	0.0000
T3	166.67-158:33	8.33	K Brace Down	No	Yes	0.0000	0.0000
T4	158,33-150.00	8.33	K Brace Down	No	Yes	0.0000	0.0000
T5	150.00-125.00	8.33	K Brace Down	No	Yes	0.0000	0.0000

AECOM
500 Enterprise Drive, Suite 3B
Rocky Hill, CT

Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	180' Stainless Lattice, Ledyard, CT	3 of 43
Project		Date
	AT&T Site CT2283	15:30:26 06/29/16
Client	NODE III III III III III III III III III I	Designed by
	MODification - Ledyard, CT Tower / AT&T	MCD

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Giri
Section	Elevation	Spacing	Туре	K Brace End	Horizontals	Offset	Offset
	ſì	ft		Panels		in	in
T6	125.00-100.00	8.33	K Brace Down	No	Yes	0.0000	0.0000
T7	100.00-75.00	8.33	K Brace Down	No	Yes	0.0000	0.0000
T8	75.00-50.00	12.50	K Brace Down	No	Yes	0.0000	0.0000
T9	50.00-25.00	12.50	K1 Down	No	Yes	0.0000	0.0000
T10	25.00-0.00	12.50	K1 Down	No	Yes	0.0000	0.0000

Tower Sec	ction Ge	eometry	(cont'd)
-----------	----------	---------	----------

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation	Туре	Size	Grade	Туре	Size	Grade
ſi						
Γ1 180 00-175 00	Pipe	HSS5x,25	A572-50	Double Angle	2L2 1/2x2x3/16	A36
			(50 ksi)			(36 ksi)
T2 175.00-166.67	Pipe	HSS5x.25	A572-50	Double Angle	2L2 1/2x2x3/16	A36
			(50 ksi)			(36 ksi)
73 166,67-158,33	Pipe	HSS5x,25	A572-50	Double Angle	2L2 1/2x2x3/16	A36
			(50 ksi)			(36 ksi)
Γ4 158.33-150.00	Pipe	HSS5x.25	A572-50	Double Angle	2L2 1/2x2x3/16	A36
			(50 ksi)			(36 ksi)
Γ5 150,00-125,00	Arbitrary Shape	MOD HSS 5x0.250 w/ 1/3	A572-50	Double Angle	2L2 1/2x2 1/2x1/4	A36
		HSS 5,5x0.258	(50 ksi)			(36 ksi)
Γ6 125.00-100.00	Arbitrary Shape	MOD HSS 5x0.375 w/ 1/3	A572-50	Double Angle	2L3x2 1/2x1/4	A36
		HSS 5,5625x0,375	(50 ksi)			(36 ksi)
T7 100.00-75.00	Arbitrary Shape	MOD HSS 5x0.5 w/ 1/2 HSS	A572-50	Double Angle	2L3x2 1/2x1/4	A36
		6X0.5	(50 ksi)			(36 ksi)
T8 75.00-50.00	Arbitrary Shape	MOD_HSS6.8750x.5 w/ 1/2	A572-50	Double Angle	2L3 1/2x3 1/2x5/16	A36
		HSS 7.5x0.3125	(50 ksi)			(36 ksi)
T9 50.00-25.00	Arbitrary Shape	MOD_HSS6.8750x.5 w/ 1/2	A572-50	Double Angle	2L3 1/2x3 1/2x1/4	A36
		HSS 7.5x0.3125	(50 ksi)			(36 ksi)
T10 25.00-0.00	Arbitrary Shape	MOD_HSS6.8750x.5 w/ 1/2	A572-50	Double Angle	2L3 1/2x3 1/2x1/4	A36
		HSS 7.5x0.3125	(50 ksi)			(36 ksi)

No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal
of	Туре	Size	Grade	Туре	Size	Grade
Mid						
Girts						
None	Flat Bar		A36	Equal Angle	L3x3x1/4	A36
			(36 ksi)			(36 ksi)
None	Flat Bar		A36	Equal Angle	L2 1/2x2 1/2x3/16	A36
			(36 ksi)			(36 ksi)
None	Flat Bar		A36	Equal Angle	L2 1/2x2 1/2x3/16	A36
			(36 ksi)			(36 ksi)
None	Flat Bar		A36	Equal Angle	L2 1/2x2 1/2x1/4	A36
			(36 ksi)			(36 ksi)
None	Flat Bar		A36	Equal Angle	L3x3x1/4	A36
			(36 ksi)			(36 ksi)
None	Flat Bar		A36	Equal Angle	L3x3x1/4	A36
			(36 ksi)			(36 ksi)
None	Flat Bar		A36	Equal Angle	L4x4x1/4	A36
			(36 ksi)	-		(36 ksi)
	of Mid Girts None None None None None None	of Mid Girts None Flat Bar None Flat Bar	of Type Size Mid Girts None Flat Bar None Flat Bar	of Mid Mid Girts Type Size Grade None Flat Bar A36 (36 ksi) None Flat Bar A36	of Mid Mid Girts Type Size Grade Type None Flat Bar A36 Equal Angle (36 ksi) None Flat Bar A36 Equal Angle (36 ksi)	of Mid Mid Girts Type Size Grade Type Size None Flat Bar A36 Equal Angle (36 ksi) L3x3x1/4 (36 ksi) None Flat Bar A36 Equal Angle L2 1/2x2 1/2x3/16 (36 ksi) None Flat Bar A36 Equal Angle L2 1/2x2 1/2x3/16 (36 ksi) None Flat Bar A36 Equal Angle L2 1/2x2 1/2x1/4 (36 ksi) None Flat Bar A36 Equal Angle L3x3x1/4 (36 ksi) None Flat Bar A36 Equal Angle L3x3x1/4 (36 ksi) None Flat Bar A36 Equal Angle L4x4x1/4

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Ī	Job		Page
		180' Stainless Lattice, Ledyard, CT	4 of 43
ľ	Project		Date
		AT&T Site CT2283	15:30:26 06/29/16
	Client	MODYS II I I OTT LATOT	Designed by
		MODification - Ledyard, CT Tower / AT&T	MCD

Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal
Elevation	of	Type	Size	Grade	Туре	Size	Grade
	Mid						
ft	Girts						
T8 75,00-50,00	None	Flat Bar		A36	Equal Angle	L4x4x1/4	A36
				(36 ksi)	-		(36 ksi)
T9 50.00-25.00	None	Flat Bar		A36	Equal Angle	L4x4x5/16	A36
				(36 ksi)			(36 ksi)
T10 25 00-0 00	None	Flat Bar		A36	Equal Angle	L4x4x3/8	A36
				(36 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
fi						
T5 150,00-125.00	Equal Angle		A36	Equal Angle	L2 1/2x2 1/2x3/16	A36
			(36 ksi)			(36 ksi)
T6 125.00-100.00	Equal Angle		A36	Equal Angle	L2 1/2x2 1/2x3/16	A36
			(36 ksi)			(36 ksi)
T7 100,00-75.00	Equal Angle		A36	Equal Angle	L2 1/2x2 1/2x3/16	A36
			(36 ksi)			(36 ksi)
T8 75.00-50,00	Equal Angle		A36	Equal Angle	L2 1/2x2 1/2x3/16	A36
			(36 ksi)			(36 ksi)
T9 50.00-25.00	Equal Angle		A36	Equal Angle	L2 1/2x2 1/2x3/16	A36
	_		(36 ksi)			(36 ksi)
T10 25.00-0.00	Equal Angle		A36	Equal Angle	L3x3x1/4	A36
			(36 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation	Redundant Bracing Grade		Redundant Type	Redundant Size	K Factor
ft					
Т9	A36	Horizontal (1)	Equal Angle	L2 1/2x2 1/2x3/16	1
50.00-25.00	(36 ksi)	Diagonal (1)	Equal Angle	L3x3x1/4	1
T10	A36	Horizontal (1)	Equal Angle	L2 1/2x2 1/2x3/16	1
25,00-0.00	(36 ksi)	Diagonal (1)	Equal Angle	L3x3x1/4	1

Tower	Gusset	Gusset	Gusset Grade	Adjust Factor	Adjust	Weight Mult	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A,		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
fi	ft^2	in					in	in	in
T1	0,00	0.0000	A36	1	1	I.	36.0000	36,0000	36,0000
180.00-175.00			(36 ksi)						
T2	0.00	0.0000	A36	4	1	1	36.0000	36.0000	36.0000
175.00-166.67			(36 ksi)						

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	180' Stainless Lattice, Ledyard, CT	5 of 43
Project		Date
	AT&T Site CT2283	15:30:26 06/29/16
Client	MODification - Ledyard, CT Tower / AT&T	Designed by MCD

Tower Elevation	Gusset Area	Gusset Thickness	Gusset Grade	Adjust, Factor A_{ℓ}	Adjust. Factor	Weight Mult.	Double Angle Stitch Bolt	Double Angle Stitch Bolt	Double Angle Stitch Bolt
	(per face)			/	A_{r}		Spacing	Spacing	Spacing
	4 ,						Diagonals	Horizontals	Redundants
fl	fl^2	in					in	īn	in
T3	0.00	0.0000	A36	I/	1	1	36,0000	36.0000	36.0000
166.67-158.33			(36 ksi)						
T4	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36,0000
158.33-150.00			(36 ksi)						
T5	0.00	0.0000	A36	1	1	1	36,0000	36.0000	36.0000
150,00-125,00			(36 ksi)						
T6	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36,0000
125,00-100.00			(36 ksi)						
T7	0.00	0.0000	A36	1	1	4	36,0000	36.0000	36,0000
100.00-75.00			(36 ksi)						
T8 75.00-50.00	000	0,0000	A36	1	1	1	36.0000	36,0000	36,0000
			(36 ksi)						
T9 50.00-25.00	0.00	0.0000	A36	1	1	1	36:0000	36.0000	36,0000
			(36 ksi)						
T10 25.00-0.00	0.00	0.0000	A36	1	1	1	36,0000	36.0000	36.0000
			(36 ksi)						

Tower Section Geometry (cont'd)

						K Fa	ctors ¹			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Angles	Rounds		X	X	X	X	X	X	X
ft				Y	Y	Y	Y	Y	Y	Y
T1	Yes	No	1	1	1	1	1	1	1	1
180.00-175.00				1	1	T T	1	Î	T.	1
T2	Yes	No	1	1	1	1	1	1	1	1
175.00-166.67				1	1	1	1	1	1	1
T3	Yes	No	1	1	1	1	1	1	1	1
166.67-158.33				1	1	1	1	1	1	1
T4	Yes	No	1	1.	1	1	1	1	12	1
158.33-150.00				1	1	1	1	1	1	1
T5	Yes	No	1	1	1	1	1	1	1	1
150.00-125.00				1	1	I	1	1	1	1
T6	Yes	No	1	1	1	1	1	Ĭ	L	1
25.00-100.00				1	1	1	1	1	1	1
T7	Yes	No	1	1	1	1	1	1	1	1
100.00-75.00				1	Ī	Ī	1	1	1	1
T8	Yes	No	1	1	1	1	1	1	1	1
75.00-50.00				1	1	1	1	1	1	1
T9	Yes	No	1	1	Ĩ	1	1	1	1	1
50.00-25.00				1	1	T.	1	I	1	1
T10	Yes	No	1	1	1	1	1	1	1	1
25.00-0.00				1	1	1	1	1	1	1

Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

_			
	Job		Page
		180' Stainless Lattice, Ledyard, CT	6 of 43
	Project		Date
		AT&T Site CT2283	15:30:26 06/29/16
Ì	Client		Designed by
		MODification - Ledyard, CT Tower / AT&T	MCD

Torver Elevation ft	Leg		Diagonal		Top G	irt	Botton	ı Girt	Mid	Girt	Long Ho	rizontal	Short Horizontal	
,	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 180,00-175,00	0.0000	1	0,0000	0.75	0,0000	0.75	0.0000	0.75	0.0000	0.75	0,0000	0.75	0.0000	0.75
T2 175.00-166.67	0,0000	1	0,0000	0.75	0,0000	0.75	0.0000	0,75	0,0000	0.75	0.0000	0.75	0.0000	0.75
T3 166.67-158.33	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0,0000	0.75	0.0000	0.75	0.0000	0.75
T4 158.33-150.00	0.0000	3	0,0000	0.75	0.0000	0.75	0,0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 150.00-125.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0,0000	0.75	0.0000	0.75	0.0000	0.75
T6 125.00-100.00	0.0000	3	0,0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0,0000	0.75	0.0000	0.75
T7 100.00-75.00	0.0000	1	0.0000	0.75	0,0000	0.75	0.0000	0.75	0,0000	0.75	0.0000	0.75	0.0000	0.75
T8 75.00-50.00		1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0:0000	0.75	0.0000	0.75
T9 50.00-25.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T10 25.00-0.00	0.0000	_1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Section Geometry (cont'd)

Tower	Leg	Leg		Diagor	ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Horn	zontal	Short Hori	izontal
Elevation	Connection														
ft	Туре	D. 7. G:	3.7	D. J. G.	37	D. I. C.		D 1: 01		D 1 01					
		Bolt Size	No_*	Bolt Size	No_*	Bolt Size	No_*	Bolt Size	No_{*}	Bolt Size	No_{*}	Bolt Size	No_*	Bolt Size	No_{\circ}
		in		in		in		in		in		in		in	
T1	Flange	0.7500	6	0.7500]	0.6250	0	0.6250	0	0.6250	0	0.6250	2	0.6250	0
180.00-175.00		A325X		A325X		A325N		A325N		A325N		A325X		A325N	
T2	Flange	0.7500	6	0.7500	1	0.6250	0	0.0000	0	0.6250	0	0.6250	2	0.6250	0
175.00-166-67		A325X		A325X		A325N		A325N		A325N		A325X		A325N	
T3	Flange	0.7500	0	0,7500	1	0.6250	2	0.0000	0	0.6250	0	0.6250	2	0.6250	0
166.67-158.33		A325X		A325X		A325X		A325N		A325N		A325X		A325N	
T4	Flange	0.7500	0	0.7500	1	0.6250	2	0.6250	0	0.6250	0	0.6250	2	0.6250	0
158.33-150.00		A325X		A325X		A325X		A325N		A325N		A325X		A325N	
T5	Flange	0.7500	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	2	0.6250	0
150.00-125.00		A325X		A325X		A325N		A325N		A325N		A325X		A325N	
Т6	Flange	0.7500	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	2	0.6250	0
125-00-100-00	Ü	A325X		A325X		A325N		A325N		A325N		A325X		A325N	
T7	Flange	0.7500	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	2	0.6250	0
100.00-75.00		A490N		A325X		A325N		A325N		A325N		A325X	~	A325N	Ü
T8 75.00-50.00	Flange	1.0000	8	1.0000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	2	0.6250	0
		A325X		A325X		A325N		A325N		A325N		A325X	-	A325N	O
T9 50.00-25.00	Flange	1.0000	8	1.0000	1	0.6250	0	0.0000	0	0.6250	0	0.6250	2	0.6250	0
	8	A325X	,	A325X	-	A325N	J	A325N	~	A325N	3	A325X	-	A325N	U
T10 25 00-0 00	Flange	1.0000	8	1.0000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	2	0.6250	0
110 25:00-0:00	Tange	A325X	J	A325X	- "	A325N	U	A325N	U	A325N	U	A325X	۷	A325N	U
		AJ2JA		A323A		MJZJIN		MUZZJIN		MJZJIN		MJZJA		MOZDIN	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

_			
	Job		Page
		180' Stainless Lattice, Ledyard, CT	7 of 43
1	Project		Date
		AT&T Site CT2283	15:30:26 06/29/16
ĺ	Client		Designed by
		MODification - Ledyard, CT Tower / AT&T	MCD

Description		Allow	Component	Placement	Face	Lateral	#	#	Clear		Perimeter	Weight
	or	Shield	Туре		Offset	Offset		Per	Spacing	Diameter		
	Leg			ft	in	(Frac FW)		Row	in	in	in	plf
WE65	В	Yes	Af (CfAe)	180_00 - 10_00	-2.0000	-0.42	3	3	1,5836	1.5836	5.1284	0.53
(CSP												
FUTURE)												
WE65	Α	Yes	Af (CfAe)	135.50 - 10.00	-2.0000	0.3	1	1	1,5836	1.5836	5.1284	0.53
(CSP-23)												
WE65	Α	Yes	Af (CfAe)	151 50 - 10 00	-2.0000	0.43	1	1	1.5836	1,5836	5.1284	0.53
(CSP-14)												
WE65	Α	Yes	Af (CfAe)	168.00 - 10.00	-2,0000	0.35	3	3	1,5836	1.5836	5.1284	0.53
(CSP-16,13,												
15)												
1/2	Α	Yes	Ar (CfAe)	55.00 - 10.00	-2,0000	0.46	2	2	0,5800	0.5800		0.25
(CSP-25,26)												
1/2	Α	Yes	Ar (CfAc)	112.00 - 10.00	-2.0000	0.39	1	1	0,5800	0.5800		0.25
(FBI-24)												
7/8	В	Yes	Ar (CfAe)	180.00 - 10.00	-2.0000	-0.37	2	2	2,5000	1.1100		0.54
(CSP-1, Grid									1.1100			
Dish)												
7/8	В	Yes	Ar (CfAe)	106.50 - 10.00	-2.0000	-0.32	1	1	2,5000	1,1100		0.54
(DHS-3)									1-1100			
7/8	В	Yes	Ar (CfAe)	130.00 - 10.00	-2.0000	-0_41	2	2	1.1100	1.1100		0.54
(CSP-8,DEP-2												
1)												
7/8	Α	Yes	Ar (CfAe)	63.50 - 10.00	-2.0000	0.325	1	1	1.1100	1.1100		0.54
(NEC-4)												
7/8	Α	Yes	Ar (CfAe)	160.00 - 10.00	-2.0000	0.48	1	1	1,1100	1.1100		0.54
(CTT-9)												
7/8	Α	Yes	Ar (CfAe)	94.00 - 10.00	-2.0000	0.37	2	2	1.1100	1.1100		0.54
(FBI-22, 53)												
7/8	В	Yes	Ar (CfAe)	122.00 - 10.00	-2.0000	-0.3	1	1	2.5000	1,1100		0.54
(FBI-11)							19	Nati	1.1100			
7/8	В	Yes	Ar (CfAe)	87.00 - 10.00	-2.0000	-0.44	1	1	1:1100	1.1100		0.54
(DOT-52)												
7/8	Α	Yes	Ar (CfAe)	140.00 - 10.00	-2.0000	0.41	1	1	1.1100	1,1100		0.54
(CSP-2)								_				
1 5/8	Α	Yes	Ar (CfAe)	163.00 - 10.00	-2.0000	0.25	1	1	1.9800	1.9800		1.04
(CSP-19)	-			100.00 10.55		0.15	_	_				
I 5/8	В	Yes	Ar (CfAe)	180.00 - 10.00	-2.0000	-0.46	2	2	1,9800	1.9800		1.04
(CSP-17,18)												

Feed Line/Linear Appurtenances Section Areas

Tover	Tower	Face	A_R	A_F	$C_A A_A$	$C_{\Lambda}A_{\Lambda}$	Weight
Section	Elevation		$\int t^2$	ft^2	In Face ft²	Out Face ft²	lb
	ft				J.	J-	
Tl	180.00-175.00	Α	0.000	0.000	0.000	0.000	0.00
		В	2,575	1.979	0,000	0.000	23.75
		С	0.000	0.000	0.000	0.000	0.00
T2	175,00-166.67	Α	0.000	0.528	0.000	0.000	2.12
		В	4.292	3.299	0.000	0.000	39.58
		С	0.000	0.000	0.000	0.000	0.00
T3	166.67-158.33	Α	0,924	3,299	0.000	0.000	19.00
		В	4.292	3.299	0.000	0.000	39.58
		С	0.000	0.000	0.000	0.000	0.00
T4	158.33-150.00	A	2.146	3.497	0.000	0.000	27,21
		В	4.292	3.299	0.000	0.000	39.58
		C	0.000	0.000	0.000	0.000	0.00
T5	150.00-125.00	A	7.825	14.582	0.000	0.000	106,17

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

_			
	Job		Page
		180' Stainless Lattice, Ledyard, CT	8 of 43
ı	Project		Date
		AT&T Site CT2283	15:30:26 06/29/16
	Client		Designed by
		MODification - Ledyard, CT Tower / AT&T	MCD

Tower	Tower	Face	A_R	A_F	C_AA_A	$C_A A_A$	Weight	
Section	Elevation				In Face	Out Face		
	ft		ft ²	ft ²	$= \int t^2$	_ft²	lb	
		В	13.800	9.897	0.000	0.000	124,15	
		C	0.000	0.000	0.000	0.000	0.00	
T6	125.00-100.00	A	9.330	16,496	0.000	0.000	122.25	
		В	20.136	9.897	0.000	0.000	161,14	
		C	0.000	0.000	0.000	0.000	0.00	
T7	100,00-75,00	A	13.473	16,496	0.000	0.000	146.02	
		В	23.235	9.897	0.000	0.000	179.23	
		C	0.000	0.000	0.000	0.000	0.00	
T8	75.00-50.00	Α	16.315	16.496	0.000	0.000	162,29	
		В	24.438	9.897	0.000	0.000	186.25	
		C	0.000	0.000	0.000	0.000	0.00	
T9	50.00-25.00	Α	19.313	16.496	0.000	0.000	178.50	
		В	24.438	9.897	0.000	0.000	186.25	
		C	0.000	0,000	0.000	0.000	0.00	
T10	25,00-0,00	Α	11.588	9.897	0.000	0.000	107.10	
		В	14.663	5.938	0.000	0.000	111.75	
		C	0.000	0.000	0.000	0.000	0.00	

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_{\Lambda}A_{\Lambda}$	$C_{\Lambda}A_{\Lambda}$	Weight
Section	Elevation	or.	Thickness			In Face	Out Face	
	ft	Leg	in	ft²	ft ²	ft²	ft ²	lb
T1	180.00-175.00	Α	0.500	0.000	0.000	0.000	0.000	0.00
		В		4.242	2.813	0.000	0.000	69.21
		C		0.000	0.000	0.000	0.000	0.00
T2	175.00-166,67	A	0.500	0.000	0.750	0.000	0.000	7.58
		В		7.069	4.688	0.000	0.000	115.35
		C		0.000	0.000	0.000	0.000	0.00
T3	166.67-158.33	Α	0.500	1,452	4.688	0.000	0.000	61.84
		В		7.069	4.688	0.000	0.000	115.35
		C		0.000	0.000	0.000	0.000	0.00
T4	158.33-150.00	Α	0.500	3,535	4.969	0.000	0.000	84.21
		В		7.069	4.688	0.000	0.000	115.35
		С		0.000	0.000	0.000	0.000	0.00
T5	150.00-125.00	Α	0.500	13.242	20,721	0.000	0.000	334.24
		В		22.967	14.064	0.000	0.000	361.30
		C		0.000	0.000	0.000	0.000	0.00
T6	125.00-100.00	Α	0.500	16,580	23.440	0.000	0.000	387,87
		В		35.011	14.064	0.000	0.000	465.66
		C		0.000	0.000	0.000	0.000	0.00
T 7	100,00-75,00	Α	0.500	24,973	23,440	0.000	0.000	457.59
		В		40.902	14.064	0.000	0.000	516,69
		C		0.000	0.000	0.000	0.000	0.00
T8	75.00-50,00	Α	0.500	30.115	23.923	0.000	0.000	505.28
		B		43.188	14.064	0.000	0.000	536,50
		C		0.000	0,000	0.000	0.000	0.00
Т9	50.00-25.00	A	0.500	34.771	25.857	0.000	0,000	558.20
		В		43.188	14.064	0.000	0.000	536.50
		C		0.000	0,000	0.000	0.000	0.00
T10	25,00-0,00	Α	0.500	20.863	15,514	0.000	0.000	334.92
		В		25.913	8.438	0.000	0.000	321.90
		C		0.000	0.000	0.000	0.000	0.00

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

1	Job		Page
		180' Stainless Lattice, Ledyard, CT	9 of 43
	Project		Date
		AT&T Site CT2283	15:30:26 06/29/16
	Client	MODification - Ledyard, CT Tower / AT&T	Designed by MCD

Feed	l Li	ne	Sh	iel	dina
			\mathbf{v}		GIII M

Section	Elevation	Face	A_R	A_R	A_F	A_F
				Ice		Ice
	fl		ft^2	fl^2	$-fl^2$	$-ft^2$
T1	180.00-175.00	Α	0.000	0.000	0.000	0.000
		В	0.000	0.293	0.484	0.794
		C	0.000	0.000	0.000	0.000
T2	175,00-166.67	Α	0.000	0.024	0.036	0.059
		В	0.000	0.342	0.521	0,854
		C	0.000	0.000	0.000	0.000
T3	166.67-158.33	Α	0,000	0.183	0,283	0.458
		В	0.000	0.334	0.509	0.834
	F.	С	0.000	0.000	0.000	0.000
T4	158,33-150.00	Α	0.000	0.243	0.370	0.606
		В	0,000	0.327	0.498	0.817
		C	0.000	0,000	0.000	0.000
T5	150,00-125.00	Α	0.000	0.939	1.532	2.532
		В	0.000	0.991	1.620	2.674
		C	0.000	0.000	0.000	0.000
T6	125.00-100.00	Α	0.000	1.057	1.882	3.170
		В	0.000	1,243	2.189	3.729
		C	0.000	0.000	0.000	0.000
T7	100.00-75.00	Α	0.000	1.220	2.414	4.180
		В	0.000	1.342	2.669	4.596
		C	0.000	0.000	0.000	0.000
T8	75.00-50.00	Α	0.000	0.988	2.083	3.650
		В	0.000	1.020	2.179	3.766
		C	0.000	0.000	0.000	0.000
T9	50.00-25.00	Α	0.000	2.168	3.931	7.036
		В	0.000	2.006	3.769	6.513
		C	0.000	0.000	0,000	0.000
T10	25.00-0.00	Α	0.000	1.262	2.290	4.099
		В	0.000	1.169	2.196	3.794
		C	0.000	0.000	0.000	0.000

Feed Line Center of Pressure

Section	Elevation	CP_X	CPz	CP_X	CP_Z
				Ice	Ice
	ft	in	in	īn	in
T1	180.00-175.00	0.3164	-7.9767	0.3761	-8.8364
T2	175.00-166.67	0.3354	-10.8403	0.4180	-12.0992
T3	166,67-158.33	-0.3035	-14.6861	-0.2516	-16.0926
T4	158.33-150.00	-0,4749	-16,6788	-0.4322	-18,4196
T5	150.00-125.00	-0,6374	-19,2756	-0.6152	-21,9409
T6	125.00-100.00	-0.5146	-22.9508	-0.4019	-26.9176
T7	100.00-75.00	-0.5218	-24,7179	-0.4428	-30.0243
Т8	75,00-50.00	-0.6890	-28.5416	-0.6665	-35.5882
T9	50.00-25.00	-0,7017	-26.8224	-0.6779	-32.0724
T10	25.00-0.00	-0.4798	-18.3525	-0.4742	-22.4653

User Defined Loads

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	180' Stainless Lattice, Ledyard, CT	10 of 43
Project		Date
	AT&T Site CT2283	15:30:26 06/29/16
Client	MODification - Ledyard, CT Tower / AT&T	Designed by MCD

Description	Elevation	Offset From	Azimuth Angle		Weight	F_x	F_z	Wind Force	C_AA_C
		Centroid							
	ft	ft	0		1b	lb	lb	lb	ft ²
Powermount Reaction at 180	180.00	0.00	0,0000	No Ice	0.00	0.00	0.00	32410.00	770.79
				Ice	0.00	0.00	0.00	26480.00	701.67
				Service	0.00	0.00	0.00	26480.00	701.67
Powermount Reaction at 175	175.00	0.00	0.0000	No Ice	0.00	0,00	0.00	-22550,00	540.63
				lce	0.00	0.00	0.00	-18500.00	494.18
				Service	0.00	0.00	0.00	-18500.00	494.18
Powermount Reaction at 150	150.00	0.00	0.0000	No Ice	0.00	0,00	0.00	3240.00	81.18
				Icc	0.00	0.00	0.00	2580.00	72.02
				Service	0.00	0.00	0.00	2578,00	71.97
Powermount Reaction at 125	125.00	0.00	0.0000	No Icc	0.00	0.00	0.00	2440.00	64.40
				Ice	0.00	0.00	0.00	1930.00	56.76
				Service	0.00	0.00	0.00	1930,00	56.76
Powermount Reaction at 100	100.00	0.00	0.0000	No Ice	0.00	000	0.00	2450.00	68,92
				Ice	0.00	0.00	0.00	1940.00	60.81
				Service	0.00	0.00	0.00	1940.00	60.81
Powermount Reaction at 75	75.00	0.00	0.0000	No Icc	0.00	0,00	0.00	2210.00	67.50
				Ice	0.00	0.00	0.00	1770.00	60.23
				Service	0.00	0.00	0.00	1770.00	60.23
Powermount Reaction at 50	50.00	0.00	0.0000	No Ice	0.00	0.00	0.00	1940.00	66.53
				Ice	0.00	0.00	0.00	1550.00	59,22
				Service	0.00	0.00	0.00	1550.00	59,22
Powermount Reaction at 25	25.00	0.00	0.0000	No Ice	0.00	0.00	0.00	1730.00	66.80
				Ice	0.00	0.00	0.00	1370.00	58.94
				Service	0.00	0.00	0.00	1370.00	58,94

D:		4- T	OWer	1	4-
	SCLE	TP I	OWER	า กล	ne

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C_AA_A Front	C₁A₁ Side	Weight
			Vert fi fi fi	٥	ft		ft^2	ft²	lb
Ground Rod w/Extension	В	From Leg	0.50 0.00 0.00	0.0000	185.00	No Ice 1/2" Ice	3.00 4.03	3.00 4.03	80.00 107.00
Dish Mount (CSP-60)	Α	None		0.0000	180.00	No Icc 1/2" Ice	2.40 3.04	2.40 3.04	90.00 107.00
Dish Mount (CSP-61)	В	None		0.0000	180.00	No Ice 1/2" Ice	2.40 3.04	2.40 3.04	90.00 107.00
Dish Mount (CSP-62)	С	None		0.0000	180.00	No Ice 1/2" Ice	2.40 3.04	2.40 3.04	90.00 107.00
VHF-150 10' Dipole (DNK-29 / CSP-1)	Α	None		0.0000	185.00	No Icc 1/2" Ice	5.28 5.74	2.73 3.77	55.74 95.99
DB809T3-Y (DNK-25 / CSP-17)	С	From Face	2.00 -2.00 0.00	0.0000	180.00	No Ice 1/2" Ice	2.53 3.83	2.53 3.83	25.00 44.57
(joined) 6' Side Mount Standoff (DNK-25 / CSP-17)	В	From Leg	0.00 0.00 0.00	45.0000	175.00	No Ice 1/2" Ice	4.97 6.12	4.97 6.12	70.00 130.00
(joined) 6' Side Mount Standoff (DNK-25 / CSP-17)	C	From Leg	0.00 0.00 0.00	-45.0000	175.00	No Icc 1/2" Ice	4.97 6.12	4.97 6,12	70.00 130.00
Dish Mount	Α	None		0.0000	175.00	No Ice	2.40	2.40	90.00

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

	Job		Page
		180' Stainless Lattice, Ledyard, CT	11 of 43
j	Project		Date
		AT&T Site CT2283	15:30:26 06/29/16
Ì	Client		Designed by
		MODification - Ledyard, CT Tower / AT&T	MCD

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Lateral Vert						
			ft	0	ſŧ		ft²	ft^2	lb
			ft						
(DNK-22 / CSP-5B)						1/2" Tce	3.04	3.04	107.00
Dish Mount	Α	None		0.0000	175.00	No Ice	2.40	2.40	90.00
(DNK-21 / CSP-5A)						1/2" Icc	3.04	3.04	107,00
Dish Mount	C	None		0.0000	175.00	No Ice	2.40	2.40	90.00
(DNK-20 / CSP-7)						1/2" Ice	3.04	3.04	107.00
Dish Mount	Α	None		0.0000	171.00	No Ice	2.40	2.40	90.00
(CSP-16)						1/2" Ice	3.04	3.04	107.00
SC479-HF1LDF	С	From Face	4.00	0.0000	180.00	No Ice	5.06	5.06	34.00
(D02-E5765)			0.00			1/2" Icc	6.54	6.54	69.82
(DNK-28 / CSP-55)	-	F	0.00	0.000	1.60.00	» (5.0.6		
SC479-HF1LDF	С	From Face	4.00	0.0000	168.00	No Icc	5.06	5.06	34.00
(D02I-E5765)			0.00			1/2" Ice	6.54	6.54	69.82
(DNK-26 / CSP-56) SC479-HF1LDF	С	From Face	0.00 2.00	0.0000	168.00	No Ice	5.06	5.06	34.00
(D02I-E5765)	C	rrom race	0.00	0.0000	100.00	1/2" Ice	6.54		
(CSP-58)			0.00			1/2 100	0.34	6.54	69.82
TMA 432-83H-01T	С	From Face	2.00	0.0000	175.00	No Ice	1.63	0.95	25.00
(DNK-27 / CSP-59)	C	110m1 acc	0.00	0.0000	175.00	1/2" Ice	1.81	1.09	37.44
(BIVIC ETT COT-55)			0.00			1/2 100	1.01	1.05	27.77
(joined) 6' Side Mount	В	From Leg	0.00	45.0000	175.00	No Ice	4.97	4.97	70.00
Standoff			0.00	1010000	170100	1/2" Ice	6.12	6,12	130.00
(DNK-26,27,28 / CSP			0,00					222	10000
55,56,58,59)									
(joined) 6' Side Mount	C	From Leg	0.00	-45:0000	175.00	No Ice	4.97	4.97	70.00
Standoff			0.00			1/2" Ice	6.12	6.12	130.00
(DNK-23,24 / CSP-19,18)			0.00						
OGT9-840	В	From Face	4.50	0.0000	185,00	No Ice	2.27	2.27	18,50
(DNK-24 / CSP-18)			0.00			1/2" Ice	3.44	3.44	36.09
			0.00						
(inverted) DB809T3-Y	В	From Face	4.50	0.0000	168.00	No Ice	2,53	2.53	25.00
(DNK-23 / CSP-19)			0.00			1/2" Ice	3.83	3.83	44.57
			0.00						
(joined) 6' Side Mount	Α	From Leg	0.00	45.0000	175.00	No Ice	4.97	4.97	70.00
Standoff			0.00			1/2" Ice	6.12	6.12	130.00
(DNK-23,24 / CSP-19,18)	ъ.	T I	0.00	45 0000	155.00		4.05	4.08	5 0.00
(joined) 6' Side Mount	В	From Leg	0.00	-45_0000	175.00	No Ice	4.97	4.97	70.00
Standoff TNIV 22 24 / CSD 10 19)			0.00			1/2" Ice	6.12	6.12	130.00
DNK-23,24 / CSP-19,18) Dish Mount	С	None	0,00	0.0000	138.00	No Ice	2.40	2.40	90.00
(DNK-12 / CSP-23)	C	INOTIC		020000	136.00	1/2" Ice	3.04	3.04	107.00
Dish Mount	С	None		0.0000	162,50	No Ice	2.40	2,40	90.00
(DNK-19 / CSP-13)	0	140116		0.0000	102,30	1/2" Ice	3.04	3.04	107.00
Dish Mount	Α	None		0.0000	158.00	No Ice	2.40	2.40	90,00
(DNK-16 / CSP-15)	7.	110110		0.0000	130.00	1/2" Ice	3.04	3.04	107.00
VHF-150-6	С	From Face	4.00	0.0000	158.00	No Ice	3.16	3,16	36.00
(DNK-15 / CSP-2)			0.00	0,000	.50,55	1/2" Ice	5,69	5.69	46.80
(0.00						. 0100
(joined) 6' Side Mount	В	From Leg	0.00	45.0000	150.00	No Ice	4,97	4.97	70.00
Standoff			0.00			1/2" Ice	6.12	6.12	130.00
(DNK-15 / CSP-2)			0.00						
(joined) 6' Side Mount	С	From Leg	0.00	-45,0000	150.00	No Ice	4.97	4.97	70.00
Standoff		_	0.00			1/2" Ice	6.12	6.12	130,00
(DNK-15 / CSP-2)			0.00						
PD458-1	В	From Face	4.00	0.0000	167.00	No Ice	2.88	2.88	24.00
(DNK-17 / CTT-9)			0.00			1/2" lce	4.34	4.34	46.22
4			0.00			200			
(joined) 6' Side Mount	A	From Leg	000	45_0000	150.00	No Ice	4.97	4.97	70.00

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

_			
Ī	Job		Page
		180' Stainless Lattice, Ledyard, CT	12 of 43
	Project		Date
		AT&T Site CT2283	15:30:26 06/29/16
Ì	Client	140519	Designed by
		MODification - Ledyard, CT Tower / AT&T	MCD

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Lateral						
			Vert fl		ft		ft²	ft²	lb
			ft ft		Ji		Ji	jι	10
Standoff			0.00			1/2" Ice	6.12	6.12	130.00
(DNK-17,18 / CTT-9,CSP-54)			0.00			172 100	0.12	0.12	130.00
(joined) 6' Side Mount	В	From Leg	0.00	-45,0000	150.00	No Ice	4.97	4.97	70.00
Standoff (DNK-17,18 / CTT-9,CSP-54)			0.00 0.00			1/2" Ice	6.12	6.12	130.00
(inverted) SC479-HF1LDF	В	From Face	0.00	0.0000	150.00	No Ice	5.06	5.06	34.00
(DNK-18 / CSP-54)			0.00			1/2" Ice	6.54	6.54	69.82
Dish Mount	В	None		0.0000	150.00	No Ice	2.40	2,40	90.00
(DNK-14 / CSP-14)	-					1/2" Ice	3.04	3.04	107.00
Ice Shield	В	None		0.0000	150.00	No Ice	4.00	4.00	200,00
(DNK-14 / CSP-14)	To.			0.000		1/2" Ice	5.07	5.07	250.00
PD320	В	From Leg	2.00	0.0000	146.00	No Ice	2.03	2.03	15.00
(DNK-13 / DEP-21)			0.00			1/2" Ice	4.58	4.58	34.00
2' Side Mount Standoff	В	None		0,0000	146.00	No Ice	2.72	2.72	50.00
(DNK-13 / DEP-21)						1/2" Ice	4.91	4.91	89.00
Ice Shield	C	None		0.0000	138.00	No Ice	4.00	4.00	200.00
(DNK-12 / CSP-23)						1/2" Ice	5.07	5.07	250.00
2' Side Mount Standoff	Α	None		0.0000	133.00	No Ice	2.72	2.72	50,00
(DNK-11 / CSP-8)						1/2" Ice	4.91	4.91	89.00
DB212-1	Α	From Leg	2.00	0.0000	133.00	No Ice	4.40	4.40	31.00
(DNK-11 / CSP-8)			0.00 0.00			1/2" Ice	8.42	8.42	70.21
DB264-A	С	From Face	4.50	0.0000	135.00	No Ice	3.16	3,16	36.00
(DNK-10/ FBI-22)			0.00	0,000	155.00	1/2" Ice	5.69	5.69	46.80
DB432-A	С	From Face	0.00 4.50	0.0000	125.00	No Ice	0.30	0.20	5.00
(FBI-24)	C	rioni race	0.00	0.0000	123.00	1/2" Ice	0.54	0,30 0,54	5.00 6.50
(I DI-24)			0.00			1/2 100	0,54	0,34	0.50
531-70 Dipole	С	From Face	4.50	0.0000	115,00	No Ice	3,23	2.63	37.00
(DNK-9 / DOT-52)			0.00	0.000	110.00	1/2" Ice	5.00	4.39	56.93
(0.00				.,,,,		201,72
(joined) 6' Side Mount	В	From Leg	0.00	45.0000	125,00	No Ice	4.97	4.97	70.00
Standoff			0.00			1/2" Ice	6.12	6.12	130,00
(DNK-9,10 / DOT-52, FBI-22,24)			0.00						
(joined) 61 Side Mount	C	From Leg	0.00	-45,0000	125.00	No Ice	4.97	4.97	70.00
Standoff			0,00			1/2" Ice	6.12	6.12	130.00
(DNK-9,10 / DOT-52, FBI-22,24)			0.00						
Dish Mount	Α	None		0.0000	113.00	No Ice	2.40	2.40	90.00
(DNK-8) Ice Shield	Α	None		0.0000	113.00	1/2" Ice No Ice	3.04 4.00	3.04	107.00
(DNK-8)	Α,	None		0.0000	112400	1/2" Ice	5.07	4.00 5.07	200.00 250.00
PD220	В	From Leg	100	0.0000	113.00	No Ice	3.07	3.08	23,00
(DNK-6 / DHS-3)	В	Trom Leg	0.00	0.0000	115.00	1/2" Ice	5.30	5.30	48.68
Dish Mount	С	None	0.00	0.0000	100.00	No Ice	2.40	2.40	90.00
(DNK-7 / CSP-6)	~			0.0000	. 55.66	1/2" Ice	3.04	3.04	107.00
Ice Shield	С	None		0.0000	100.00	No Ice	4.00	4.00	200.00
(DNK-7 / CSP-6)	-					1/2" Ice	5.07	5.07	250.00
DB264-A	В	From Leg	1.00	0.0000	94.00	No Ice	3.16	3.16	36.00
(DNK-5 / FBI-11)		U	0.00			1/2" Icc	5.69	5.69	46.80
,			0.00						

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	180' Stainless Lattice, Ledyard, CT	13 of 43
Project		Date
	AT&T Site CT2283	15:30:26 06/29/16
Client	110515	Designed by
	MODification - Ledyard, CT Tower / AT&T	MCD

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	Leg		Lateral Vert fl fl ft	0	ft		ft²	ft²	lb
2' Side Mount Standoff (DNK-5&6 / FBI-11, DHS-3)	С	None		0.0000	87.00	No Ice 1/2" Ice	2.72 4.91	2.72 4.91	50.00 89.00
DB212-1 (DNK-4 / FBI-53)	С	From Leg	4.00 0.00 0.00	0.0000	87.00	No Ice 1/2" Ice	4.40 8.42	4.40 8.42	31.00 70.21
2' Side Mount Standoff (DNK-4 / FBI-53)	С	None		0.0000	87.00	No Ice 1/2" Ice	2.72 4.91	2.72 4.91	50.00 89.00
PD156S (DNK-3 / NEC-4)	В	From Leg	2,00 0,00 0,00	0.0000	63.50	No Ice 1/2" Icc	0.50 1.51	0.50 1.51	4.00 11.00
Side Ann Mount (DNK-3 / NEC-4)	В	None		0,0000	63,50	No Ice 1/2" Ice	3.00 4.50	3.00 4.50	45.00 60.00
DB803Q-XT (DNK-2 / CSP-25)	С	From Leg	2.00 0.00 0.00	0.0000	53.00	No Ice 1/2" Ice	2.05 2.55	2.05 2.55	27.00 42.01
2' Side Mount Standoff (DNK-1&2 / DEHMS-26,CSP-25)	С	None		0,0000	50,00	No Ice 1/2" Ice	2.72 4.91	2.72 4.91	50.00 89.00
SY203(C) - YAGI Antenna (DNK-1 / DEHMS-26)	С	From Leg	2.00 0.00 0.00	0.0000	49.00	No Ice 1/2" Ice	16.37 16.91	2.53 2.84	3.20 77.98

		Dishes
		Didiido

Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
7				ft		0	ft	ft		ft^2	lb
6 FT DISH	Α	Paraboloid	From	1.00	0.0000		180.00	6.00	No Ice	28.27	143.00
(CSP Windload -		w/Radome	Leg	0.00					1/2" Ice	29.05	292.13
CSP-60)				0.00							
6 FT DISH	В	Paraboloid	From	1.00	0.0000		180.00	6.00	No Ice	28.27	143.00
(CSP Windload -		w/Radome	Leg	0.00					1/2" Ice	29.05	292.13
CSP-61)				0.00							
6 FT DISH	C	Paraboloid	From	1.00	0.0000		180.00	6.00	No Ice	28.27	143.00
(CSP Windload -		w/Radome	Leg	0.00					1/2" Ice	29.05	292.13
CSP-62)				0.00							
8 FT DISH	Α	Paraboloid	From	1.00	0.0000		158,00	8.00	No Ice	50.30	251.00
(DNK-16 / CSP-15)		w/Radome	Leg	0.00					1/2" Ice	51.29	514,30
				0.00							
4 FT DISH	Α	Grid	From	1.00	45,0000		175.00	4.00	No Ice	12,56	170.00
(DNK-22 / CSP-5B)			Leg	0.00					1/2" Ice	13.09	237.19
				0.00							
6 FT DISH	В	Paraboloid	From	1.00	0.0000		150.00	6.00	No Ice	28,27	143:00
(DNK-14 / CSP-14)		w/Radome	Leg	0.00					1/2" Ice	29.05	292.13
				0.00							
6 FT DISH	C	Paraboloid	From	1.00	0.0000		162.50	6.00	No Ice	28.27	143,00
(DNK-19 / CSP-13)		w/Radome	Leg	0.00					1/2" Ice	29.05	292.13
				0.00							
6 FT DISH	C	Paraboloid	From	1.00	0.0000		135.50	6,00	No Ice	28.27	143,00

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	180' Stainless Lattice, Ledyard, CT	14 of 43
Project		Date
	AT&T Site CT2283	15:30:26 06/29/16
Client	MODification - Ledyard, CT Tower / AT&T	Designed by MCD

Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	0	ft	ft		$- ft^2$	lb
(DNK-12 / CSP-22)		w/Radome	Leg	0.00					1/2" Ice	29.05	292.13
6 FT DISH (CSP-16)	Α	Paraboloid w/Radome	From Leg	1.00 0.00 0.00	0.0000		168.00	6.00	No Ice 1/2" Ice	28.27 29.05	143.00 292.13

Tower Pressures - No Ice

 $G_H = 1.121$

Section	Z	K_Z	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation					а				%	In	Out
					c					Face	Face
ft	ft		psf	ft²	е	ft ²	ft^2	ft ²		ft²	fi ²
T1	177.50	1,617	37	56.082	Α	5.526	4.171	4.171	43.02	0.000	0.000
180.00-175.00		1.25			В	7.021	6.746		30.30	0.000	0.000
					С	5.526	4.171		43:02	0.000	0.000
T2	170.83	1.6	37	97.919	Α	6.784	6.952	6.952	50.61	0.000	0.000
175.00-166.67	10				В	9.071	11.244		34.22	0.000	0.000
					С	6.293	6.952		52.49	0.000	0.000
T3	162.50	1.577	36	103.475	Α	9,534	7.876	6.952	39.93	0.000	0.000
166.67-158.33					В	9.309	11.244		33.83	0.000	0,000
					С	6.518	6,952		51.61	0,000	0.000
T4	154,17	1.553	36	109.031	Α	9.873	9.098	6.952	36.65	0,000	0.000
158.33-150.00					В	9.547	11.244		33.44	0.000	0.000
					С	6.746	6,952		50.75	0.000	0.000
T5	137,50	1.503	35	359.009	Α	58.263	7.825	21.932	33.19	0.000	0.000
150.00-125.00					В	53.490	13,800		32.59	0.000	0.000
					С	45.213	0.000		48.51	0.000	0.000
Т6	112.50	1.42	33	409.496	Α	65,530	9.330	22.420	29.95	0.000	0.000
125.00-100.00					В	58.625	20.136		28.47	0.000	0.000
					С	50.917	0.000		44.03	0.000	0.000
T7	87.50	1.321	31	459.733	Α	74.382	13.473	25.027	28.49	0.000	0.000
100.00-75.00					В	67,529	23.235		27.57	0.000	0.000
					C	60,301	0.000		41.50	0.000	0.000
T8 75.00-50.00	62.50	1.2	28	513,151	Α	76.610	16.315	31.283	33.67	0.000	0.000
					В	69,915	24.438		33.16	0.000	0.000
					С	62.197	0.000		50.30	0.000	0.000
T9 50.00-25.00	37.50	1.037	24	563.151	Α	88.654	19,313	31,283	28.97	0.000	0.000
					В	82.218	24.438		29.33	0.000	0.000
					С	76.089	0.000		41.11	0.000	0.000
T10 25 00-0 00	12.50	1	23	613.151	Α	86.621	11.588	31,283	31.85	0.000	0.000
					В	82,756	14.663		32.11	0.000	0.000
					С	79.013	0.000		39.59	0.000	0.000

Tower Pressure - With Ice

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	180' Stainless Lattice, Ledyard, CT	15 of 43
Project		Date
	AT&T Site CT2283	15:30:26 06/29/16
Client		Designed by
	MODification - Ledyard, CT Tower / AT&T	MCD

Section	Z	K_Z	q_z	tz	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation						а				%	In	Онт
						С					Face	Face
fl	ft		psf	in	ft ²	е	ft ²	ft ²	ft ²		fl^2	ft ²
T1	177.50	1,617	34	0.5000	56,499	Α	5.526	7.046	5,005	39,81	0.000	0,000
180.00-175.00						В	7.544	10.995		27.00	0.000	0.000
						С	5.526	7,046		39.81	0.000	0.000
T2	170.83	1.6	33	0.5000	98.614	Α	6,984	10,836	8.342	46.82	0.000	0.000
175.00-166.67						В	10,127	17,587		30.10	0.000	0.000
	1					C	6.293	10,859		48.64	0.000	0.000
T3	162.50	1.577	33	0,5000	104,170	Α	10.748	12.218	8.342	36.32	0.000	0.000
166.67-158.33	- 1					В	10,372	17.685		29.73	0.000	0,000
	1					C	6.518	10.949		47,76	0.000	0.000
T4	154,17	1.553	32	0.5000	109,726	Α	11,109	14.333	8.342	32,79	0,000	0.000
158.33-150.00						В	10.617	17.783		29.37	0.000	0.000
						C	6,746	11.041		46.90	0.000	0.000
T5	137.50	1,503	31	0,5000	361,094	A	66.183	20.953	24.712	28.36	0.000	0.000
150.00-125,00						В	59,383	30.625		27.46	0.000	0.000
	- 1					C	47.994	8.650		43.63	0.000	0.000
Т6	112,50	1.42	29	0.5000	411.581	Α	73,968	25.022	25,200	25.46	0.000	0.000
125.00-100.00						В	64.033	43.267		23.49	0.000	0.000
						C	53,698	9.499		39.88	0.000	0.000
T7 100.00-75.00	87.50	1.321	27	0.5000	461.818	Α	82,342	34.078	27.807	23.89	0.000	0.000
						В	72.550	49.885		22.71	0.000	0.000
						С	63.082	10.325		37.88	0.000	0,000
T8 75.00-50.00	62.50	1.2	25	0.5000	515.236	Α	85.251	37.509	34.064	27.75	0.000	0.000
l'		- 1				В	75.276	50.550		27.07	0,000	0,000
		- 1	- 1			С	64.978	8.382		46,43	0.000	0.000
T9 50.00-25.00	37.50	1.037	22	0.5000	565,236	Α	97.691	45.751	34.064	23.75	0.000	0.000
					- 1	В	86.421	54,329		24.20	0.000	0.000
			- 1			C	78.870	13,148		37.02	0.000	0,000
T10 25.00-0.00	12.50	1	21	0.5000	615.236	Α	93.209	33.601	34.064	26.86	0.000	0.000
	8					В	86.438	38.744		27.21	0.000	0.000
						С	81.794	14.001		35.56	0.000	0.000

Tower Pressure - Service

 $G_H = 1.121$

Section	Z	Kz	q:	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation			- 10		а				%	In	Out
					С					Face	Face
ft	ft		psf	ft²	е	ft2	ft^2	$-ft^2$		ft ²	ft ²
T1	177.50	1,617	34	56.082	Α	5,526	4.171	4.171	43,02	0.000	0.000
180.00-175.00					В	7.021	6.746		30.30	0.000	0.000
					С	5,526	4.171		43.02	0.000	0,000
T2	170.83	1.6	33	97.919	Α	6,784	6.952	6.952	50,61	0.000	0.000
175.00-166.67	1				В	9.071	11,244		34,22	0.000	0.000
					С	6,293	6.952		52,49	0.000	0.000
T3	162.50	1.577	33	103.475	Α	9.534	7.876	6.952	39,93	0.000	0.000
166.67-158.33					В	9,309	11.244		33.83	0.000	0.000
					C	6.518	6,952		51.61	0.000	0.000
T4	154,17	1,553	32	109.031	Α	9,873	9.098	6.952	36.65	0.000	0.000
158.33-150.00					В	9.547	11.244		33.44	0.000	0.000
					C	6.746	6,952		50.75	0.000	0.000
T5	137.50	1,503	31	359.009	Α	58.263	7.825	21.932	33.19	0.000	0.000
150.00-125.00					В	53,490	13,800		32.59	0.000	0.000
		- 1			C	45,213	0.000		48.51	0.000	0.000
Т6	112.50	1.42	29	409.496	A	65,530	9.330	22,420	29.95	0.000	0.000

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	180' Stainless Lattice, Ledyard, CT	16 of 43
Project		Date
	AT&T Site CT2283	15:30:26 06/29/16
Client		Designed by
	MODification - Ledyard, CT Tower / AT&T	MCD

Section	Z	Kz	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_{\Lambda}A_{\Lambda}$	$C_{\Lambda}A_{\Lambda}$
Elevation					а				%	In	Out
					С			1		Face	Face
ft	ft		psf	ft ²	е	ft2	ft ²	ft^2		ft²	_ft²
125_00-100_00				72	В	58.625	20,136		28.47	0.000	0.000
					С	50,917	0.000		44.03	0.000	0.000
T7	87,50	1.321	27	459.733	Α	74,382	13,473	25.027	28,49	0.000	0.000
100.00-75.00					В	67.529	23.235		27.57	0.000	0.000
					С	60,301	0.000		41.50	0.000	0.000
T8 75 00-50 00	62.50	1.2	25	513.151	Α	76.610	16,315	31.283	33.67	0.000	0.000
					В	69,915	24.438		33.16	0000	0.000
					С	62.197	0.000		50,30	0.000	0.000
T9 50.00-25.00	37.50	1.037	22	563.151	Α	88,654	19,313	31.283	28.97	0.000	0.000
					В	82.218	24.438		29.33	0.000	0.000
					С	76.089	0.000		41.11	0.000	0.000
T10 25.00-0.00	12,50	1	21	613.151	Α	86,621	11.588	31.283	31.85	0.000	0.000
					В	82.756	14,663	5.5	32.11	0.000	0.000
					С	79.013	0.000		39,59	0.000	0.000

Tower Forces - No Ice - Wind Normal To Face

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	a									Face
			c						62			
ft	lb	lb	е						ft ²	1b	plf	
T1	23.75	579.98	Α	0.173	2.689	0,585	1	1	7.967	1136,75	227.35	В
180.00-175.00			В	0.245	2.451	0.601	1	I.	11.074			
			С	0.173	2.689	0.585	1	1	7,967			
T2	41.70	734.95	Α	0.14	2.808	0.58	1	1.	10.817	1675.12	201.01	В
175.00-166.67			В	0.207	2.571	0.592	1	1	15.727			
			С	0.135	2.826	0,579	1	1	10.320			
T3	58.59	747.53	Α	0.168	2.705	0.584	1	1	14.137	1693.23	203.19	В
166.67-158.33			В	0.199	2.601	0.59	1	1	15,944			
			С	0.13	2.846	0.579	1	1	10.541			
T4	66,80	796.60	Α	0.174	2.685	0.585	- 1	1	15.199	1708.44	205.01	В
158.33-150.00			В	0.191	2.627	0.589	1	1	16.164			
			C	0.126	2.863	0.578	1	1	10.764			
T5	230.32	3707,32	A	0.184	2.65	0.587	1	1	62.858	6485.41	259,42	Α
150.00-125.00			В	0.187	2,639	0.588	1	1	61,603			
			C	0.126	2,862	0.578	1	- 1	45.213			
Т6	283,39	4679.49	A	0.183	2.654	0.587	1	1	71.007	6929.43	277.18	Α
125.00-100.00	~		В	0.192	2.622	0.589	1	1	70,483			ii i
			C	0.124	2.868	0.578	1	1	50.917			
Т7	325.25	6199.19	Α	0.191	2,626	0.589	1	1	82.313	7396.08	295.84	Α
100.00-75.00			В	0.197	2.605	0.59	1	1	81,235			
			С	0.131	2.842	0.579	1	1	60.301			
Т8	348.54	7171-40	Ā	0.181	2,66	0.587	1	1	86.183	7126.12	285.04	Α
75.00-50.00			В	0.184	2.651	0.587	1	1 1	84.266			
			Č	0.121	2.88	0.577	1	i	62.197			
Т9	364.75	7706.04	Ā	0.192	2.624	0.589	1	1	100-024	7049.46	281.98	Α
50.00-25.00			В	0.189	2.632	0.588	1	1	96.594	1015110	201,50	
00100 20100			Č	0.135	2.827	0.579	7	i	76.089			
T10	218.85	8304.28	Ă	0.16	2,734	0.583	1	i	93,377	6612.26	264.49	Α
25.00-0.00	210.05	030,20	В	0.159	2,739	0.583	- 4	1 1	91,303	0012.20	201.77	71
25.00 0.00			c l	0.129	2,851	0,578	- 4	1	79.013			
Sum Weight	1961.93	40626.76	~	0,127	2,0001	0,576		ОТМ	4137.33	47812.29		
Batil Weight	1701.73	70020.70						OTIV	4137,33 kip-ft	4/012.29		
									Kib-II			

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	180' Stainless Lattice, Ledyard, CT	17 of 43
Project		Date
	AT&T Site CT2283	15:30:26 06/29/16
Client	MODification - Ledyard, CT Tower / AT&T	Designed by MCD

Tower Forces - No Ice - Wind 45 To Face

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl
Elevation	Weight	Weight	a						1	l l		Face
			С									
ft	Ib .	lb	е						ft^2	lb	plf	
T1	23.75	579.98	Α	0.173	2.689	0.585	0.825	1	7.000	1010.62	202.12	В
180,00-175,00			В	0.245	2.451	0.601	0.825	1	9,845			
			C	0.173	2.689	0.585	0.825	1	7.000			
T2	41.70	734,95	Α	0,14	2.808	0.58	0.825	1	9,629	1506,03	180.72	В
175.00-166.67			В	0.207	2.571	0.592	0.825	1	14.139			
			С	0,135	2.826	0.579	0,825	1	9.219			
T3	58.59	747.53	Α	0.168	2,705	0.584	0.825	1	12.469	1520.23	182,43	В
166,67-158.33			В	0.199	2.601	0.59	0.825	1	14,315			
			С	0.13	2.846	0.579	0.825	1	9.400			
T4	66,80	796,60	Α	0,174	2,685	0,585	0.825	1	13,471	1531.86	183.82	В
158.33-150.00			В	0.191	2.627	0.589	0.825	1	14.493			
			С	0.126	2,863	0.578	0.825	1	9.584			
T5	230.32	3707.32	Α	0:184	2.65	0.587	0.825	1	52.662	5433,44	217.34	Α
150.00-125.00			В	0.187	2.639	0.588	0.825	1	52.243			
			C	0,126	2.862	0.578	0.825	1	37,301			
Т6	283.39	4679.49	A.	0.183	2.654	0.587	0.825	1	59.540	5810,31	232.41	A
125.00-100.00			В	0.192	2.622	0,589	0.825	1	60.224			
1			C	0.124	2.868	0,578	0.825	1	42,007		1	
T7	325.25	6199,19	Α	0,191	2,626	0.589	0.825	1	69.296	6226.47	249.06	A
100.00-75.00			В	0.197	2.605	0.59	0.825	1	69.417			
			C	0.131	2.842	0.579	0.825	1	49.748			
T8	348.54	7171.40	Α	0.181	2.66	0.587	0.825	1	72.776	6017.56	240,70	Α
75.00-50.00			В	0.184	2.651	0.587	0.825	1	72.031			
			С	0.121	2.88	0.577	0.825	1	51.312			
T9	364.75	7706.04	Α	0.192	2.624	0.589	0.825	1	84.510	5956.03	238.24	A
50.00-25.00			В	0.189	2.632	0.588	0.825	1	82.206			
			C	0.135	2.827	0.579	0.825	1	62.774			
T10	218.85	8304.28	Α	0.16	2.734	0.583	0.825	1	78.219	5538.84	221.55	Α
25.00-0.00			В	0.159	2.739	0.583	0.825	1	76.820			
			C	0.129	2.851	0,578	0.825	1	65,186			
Sum Weight:	1961 93	40626,76						OTM	3534.12	40551.41		
									kip-ft			

Tower Forces - No Ice - Wind 60 To Face

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С									
ft	lb	1b	е						fl ²	lb .	plf	
T1	23,75	579.98	Α	0.173	2.689	0.585	0.8	1	6.862	992.61	198.52	В
180.00-175.00			В	0,245	2.451	0.601	0.8	1	9,669			
			С	0.173	2.689	0.585	0.8	1	6,862			
T2	41,70	734.95	Α	0,14	2.808	0.58	0.8	1	9,460	1481.88	177.83	В
175.00-166.67			В	0.207	2.571	0.592	0.8	1	13,913			
			С	0.135	2,826	0.579	0.8	1	9.062			
T3	58.59	747.53	Α	0,168	2.705	0.584	0.8	[1]	12.230	1495_51	179.46	В
166.67-158.33			В	0.199	2.601	0.59	0.8	1	14.082		~	
			C	0.13	2.846	0.579	0,8	1	9.237			
T4	66.80	796.60	Α	0.174	2.685	0.585	018	1	13.224	1506.63	180.80	В
158,33-150,00			В	0,191	2.627	0.589	0.8	1	14,255			
			C	0.126	2,863	0.578	0.8	1	9.415			
T5	230.32	3707.32	Α	0.184	2,65	0.587	0.8	1	51.206	5283.15	211.33	A
150.00-125.00			В	0.187	2.639	0.588	0.8	11	50.905			l l

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Ï	Job		Page
		180' Stainless Lattice, Ledyard, CT	18 of 43
	Project		Date
		AT&T Site CT2283	15:30:26 06/29/16
	Client		Designed by
		MODification - Ledyard, CT Tower / AT&T	MCD

Section Elevation	Add Weight	Self Weight	F a	e	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl. Face
fi	lb	lb	c e						ft²	lb	plf	
			С	0.126	2.862	0.578	0.8	- 1	36,170			
Т6	283.39	4679.49	Α	0.183	2.654	0.587	0.8	1	57,901	5663.55	226.54	В
125,00-100,00			В	0.192	2,622	0.589	0.8	1	58.758			
			C	0.124	2.868	0.578	0.8	1	40.734			
T7	325.25	6199.19	Α	0.191	2.626	0.589	0.8	1	67,436	6059.39	242.38	A
100.00-75.00			В	0,197	2,605	0.59	0.8	1	67,729			
- 1			С	0.131	2.842	0.579	0.8	1	48.241			
T8	348.54	7171.40	Α	0.181	2.66	0.587	0,8	1	70.861	5859.20	234.37	Α
75.00-50.00			В	0.184	2,651	0.587	0.8	1	70,283			
			С	0.121	2.88	0.577	0.8	1	49.758			
Т9	364.75	7706.04	Α	0.192	2.624	0.589	0.8	1	82,293	5799.83	231.99	A
50.00-25.00			В	0.189	2.632	0.588	0.8	1	80.151	- 10		
			C	0,135	2.827	0.579	0.8	1	60.871			
T10	218.85	8304.28	Α	0.16	2.734	0.583	0.8	1	76,053	5385.50	215,42	A
25.00-0.00			В	0.159	2.739	0.583	0.8	Ĭ	74.751			
			С	0.129	2.851	0.578	0.8	1	63.211			
Sum Weight:	1961.93	40626,76		-				OTM	3449.43	39527.25		
									kip-ft			

Tower Forces - No Ice - Wind 90 To Face

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl
Elevation	Weight	Weight	а									Face
			С									l
ft	lb	<u>lb</u>	е						ft ²	lb	plf	
T1	23,75	579.98	Α	0.173	2.689	0.585	0.85	1.	7,138	1028.64	205.73	В
180.00-175.00			В	0.245	2.451	0.601	0.85	1	10.021			
			С	0.173	2,689	0:585	0.85	1	7.138			
T2	41.70	734.95	Α	0.14	2,808	0.58	0.85	1	9.799	1530.19	183,62	В
175,00-166.67			В	0.207	2,571	0.592	0.85	1)	14.366			
			C	0.135	2.826	0.579	0.85	1	9.376			
T3	58,59	747.53	Α	0.168	2.705	0.584	0.85	1	12.707	1544.94	185.39	В
166.67-158.33			В	0.199	2.601	0.59	0.85	1	14.547			
			C	0.13	2.846	0.579	0.85	1	9.563			
T4	66.80	796.60	A	0.174	2.685	0.585	0.85	1	13,718	1557.08	186.85	В
158.33-150.00			В	0.191	2.627	0.589	0.85	L.	14.732			
			C	0.126	2.863	0.578	0.85	1	9.752			
T5	230,32	3707.32	Α	0.184	2.65	0.587	0.85	1	54.119	5583.72	223.35	Α
150.00-125.00			В	0.187	2,639	0,588	0.85	1	53,580			
			C	0.126	2.862	0.578	0.85	1.	38.431			
Т6	283,39	4679.49	A	0.183	2.654	0.587	0.85	1	61.178	5970.19	238.81	Α
125.00-100.00			В	0.192	2.622	0,589	0.85	1	61.689			
			C	0.124	2.868	0.578	0.85	1	43,280			
T7	325,25	6199.19	Α	0,191	2,626	0.589	0.85	1	71.156	6393,56	255.74	Α
100.00-75.00			В	0.197	2.605	0.59	0.85	1	71.106			
	1		C	0.131	2.842	0.579	0.85	1	51.256			
T8	348.54	7171-40	Α	0.181	2.66	0.587	0.85	1	74.691	6175.93	247.04	A
75.00-50.00			В	0.184	2.651	0.587	0.85	1	73.778			
			С	0.121	2.88	0.577	0.85	1	52,867			
T9	364.75	7706.04	Α	0.192	2.624	0.589	0.85	1	86,726	6112.24	244.49	Α
50.00-25.00			В	0.189	2.632	0.588	0.85	1	84.261			
			C	0.135	2.827	0.579	0.85	1.	64.676			
T10	218,85	8304.28	Α	0.16	2.734	0.583	0.85	1	80.384	5692,19	227,69	A
25.00-0.00			В	0.159	2.739	0.583	0.85	1	78.889			
			C	0.129	2.851	0.578	0.85	1	67.161	1		

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	180' Stainless Lattice, Ledyard, CT	19 of 43
Project		Date
	AT&T Site CT2283	15:30:26 06/29/16
Client	MODification - Ledyard, CT Tower / AT&T	Designed by MCD

Section Elevation	Add Weight	Self Weight	F a	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl. Face
ſì	lb	lb	c e						ft²	<i>lb</i>	plf	
Sum Weight:	1961.93	40626.76						ОТМ	3620.30 kip-ft	41588.68		

Tower Forces - With Ice - Wind Normal To Face

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl
Elevation	Weight	Weight	а									Face
			С			1						
ft	-lb	lb	е						ft²	- lb	plf	
Tl	69.21	849.94	Α	0.223	2.523	0.595	10	1	9.720	1204.96	240.99	В
180.00-175.00			В	0.328	2.224	0.625	1	1	14.415			
			С	0.223	2,523	0.595	10	1	9.720			
T2	122.94	1078.07	Α	0.181	2.662	0.587	1	1	13.340	1820.73	218.49	В
175.00-166.67			В	0.281	2.348	0.61	1	1	20.860			
			C	0.174	2.685	0,585	1	1	12,650			
T3	177.20	1098.79	Α	0.22	2.529	0,595	1	1	18.015	1841.72	221.01	В
166.67-158.33			В	0.269	2.381	0.607	1	1	21.106			
			С	0.168	2.707	0,584	1	1	12,916			
T4	199,56	1156.12	Α	0.232	2.493	0.597	1	1.1	19.671	1859.60	223,15	В
158.33-150.00			В	0,259	2,411	0.604	1	1	21.360			
			С	0.162	2,727	0.583	1	1	13,187			
T5	695.53	5303.21	Α	0.241	2.464	0.6	1	1	78.748	6779.73	271.19	Α
150.00-125.00			В	0.249	2.44	0.602	1	1	77.810	25		
		1	C	0.157	2.746	0.583	1	1	53.033			
Т6	853,53	6420.98	A	0.241	2,466	0.6	1	1	88,969	7240.04	289.60	Α
125,00-100.00			В	0.261	2.406	0.605	1	ĩ	90.195			
20			C	0.154	2.758	0.582	1	1	59,227			
T7	974.28	8185,90	Α	0.252	2.431	0.602	1	1	102.871	7680-66	307,23	Α
100.00-75.00			В	0.265	2,393	0.606	i	1	102,772			
			C	0.159	2,739	0.583	1	1	69.100			
Т8	1041.78	9205.54	A	0,238	2.473	0.599	1	1	107.717	7431,35	297.25	Α
75.00-50.00			В	0,244	2,455	0.6	1	1	105,626			
			C	0.142	2.8	0.58	1	î	69.842			
T9	1094.70	10245.01	Ā	0.254	2.426	0.603	1	1	125,272	7326.99	293.08	Α
50.00-25.00			В	0.249	2.44	0.602	1	1	119.107	1000		
- 0.50 20.00			Ĉ	0.163	2,725	0.584	il	1	86.542			
T10	656.82	10988.42	Ă	0.206	2.576	0.592	i	1	113.090	6770.14	270.81	Α
25.00-0.00	555,52		В	0.203	2,584	0.591	il	î	109.341	3.7.3,7	2,5.51	- 1
			C	0.156	2,751	0.582	i	i	89,948			
Sum Weight:	5885.55	54531.98		91150	2,751	01502		ОТМ	4353.51	49955.92		
Jan Worgill.	5005155	3,551,70						Ü		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
									kip-ft			

Tower Forces - With Ice - Wind 45 To Face

Γ	Section Elevation	Add Weight	Self Weight	F a	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl. Face
	fi	lb	lb	c e						fi²	lb	plf	
Γ	TI	69.21	849.94	Α	0,223	2,523	0.595	0.825	1	8.753	1094,60	218.92	В
L	180.00-175.00			В	0.328	2,224	0.625	0.825	1	13.095			
L			l) (C	0.223	2.523	0.595	0.825	1	8.753			

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	180' Stainless Lattice, Ledyard, CT	20 of 43
Project		Date
	AT&T Site CT2283	15:30:26 06/29/16
Client		Designed by
1	MODification - Ledyard, CT Tower / AT&T	MCD

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			c									
fl	lb	1b	е						fl²	lb	plf	
T2	122.94	1078.07	Α	0,181	2.662	0.587	0.825	1	12,118	1666.05	199.93	В
175,00-166.67)		В	0,281	2,348	0.61	0.825	1	19.088			
			C	0.174	2.685	0.585	0.825	1	11.549			
T3	177.20	1098.79	Α	0.22	2.529	0.595	0.825	1	16.134	1683,34	202.00	В
166.67-158.33			В	0.269	2.381	0.607	0.825	1	19,291	· ·		
			C	0.168	2,707	0.584	0.825	1	11,776			
T4	199.56	1156.12	Α	0.232	2.493	0.597	0.825	1	17.727	1697.85	203.74	В
158.33-150.00			В	0.259	2,411	0.604	0.825	1	19.503			
			С	0.162	2,727	0.583	0.825	1	12,006			
T5	695,53	5303.21	Α	0.241	2.464	0.6	0.825	1	67.166	5782.60	231.30	A
150,00-125.00			В	0.249	2.44	0.602	0.825	1	67.418			
			С	0.157	2.746	0.583	0.825	1	44.634			
Т6	853,53	6420.98	Α	0.241	2,466	0,6	0.825	1	76.024	6270.29	250,81	В
125.00-100.00			В	0.261	2,406	0.605	0.825	1	78.990			
			С	0.154	2.758	0.582	0.825	1	49.829			
T7	974.28	8185.90	Α	0.252	2.431	0.602	0.825	1	88.461	6619.40	264.78	В
100.00-75.00			В	0.265	2.393	0.606	0.825	1	90.076	1 1 1 2 2 1		
			С	0:159	2.739	0.583	0.825	1	58,061			
Т8	1041.78	9205.54	Α	0.238	2.473	0.599	0.825	1	92.798	6402.10	256.08	A
75.00-50.00			В	0.244	2,455	0.6	0.825	Ĩ	92,453			
			C	0.142	2.8	0.58	0.825	î	58.471			
Т9	1094.70	10245.01	Ā	0.254	2.426	0.603	0.825	î	108.176	6327.08	253.08	A
50.00-25.00	203 1110	10210101	В	0.249	2.44	0.602	0.825	ĵ.	103.983	0527100	200.00	- 11
20100 22100			C	0.163	2.725	0.584	0.825	î	72,740			
T10	656.82	10988.42	A	0.206	2.576	0.592	0.825	î	96.778	5793,64	231.75	A
25.00-0.00	050.02	10700.42	В	0.203	2.584	0.591	0.825	i	94.214	3733.04	231.13	, , , , , , , , , , , , , , , , , , ,
25.00-0.00			C	0.156	2.751	0.582	0.825	1	75.634			
Sum Weight:	5885.55	54531.98		0.150	2.751	0.562	0,023	ОТМ	3803.73	43336,95		
Dunt Worght,	2002.23	J7JJ1.70						OTIVI	kip-ft	73330,73		

Tower Forces - With Ice - Wind 60 To Face

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а							l,		Face
			С									
ft	lb	lb	е						fi²	lb	plf	
T1	69.21	849.94	Α	0,223	2.523	0.595	0.8	1	8.615	1078.84	215,77	В
180.00-175.00			В	0.328	2.224	0.625	0.8	1	12.906			
			C	0.223	2.523	0.595	0.8	1	8.615			
T2	122.94	1078.07	Α	0.181	2.662	0.587	0.8	- 1	11.944	1643.95	197.27	В
175.00-166.67			В	0.281	2.348	0,61	0.8	1.	18,834			
, n			C	0.174	2.685	0.585	0.8	- 1	11,391			
T3	177,20	1098.79	Α	0.22	2.529	0.595	0.8	1	15,866	1660.71	199.29	В
166.67-158.33			В	0.269	2.381	0.607	0.8	1	19.032			
			C	0.168	2,707	0.584	0.8	1	11,613			
T4	199.56	1156.12	Α	0.232	2.493	0.597	0.8	1	17,449	1674.75	200.97	В
158.33-150.00			В	0.259	2.411	0.604	0.8	1	19,237			
			C	0.162	2.727	0.583	0.8	1.	11,838			
T5	695,53	5303.21	Α	0.241	2,464	0.6	0.8	1	65.512	5640.15	225.61	A
150.00-125.00			В	0.249	2.44	0.602	0.8	1	65.934			
			С	0.157	2.746	0,583	0.8	1	43.434			
Т6	853.53	6420.98	Α	0.241	2.466	0.6	0.8	1	74.175	6143,21	245.73	В
125.00-100.00			В	0.261	2.406	0.605	0.8	1	77.389) "		
			C	0.154	2.758	0.582	0.8	1	48.487			
T7	974.28	8185.90	Α	0.252	2.431	0.602	0.8	1	86.402	6486-12	259.44	В
100.00-75.00			В	0.265	2,393	0.606	0.8	1	88,263			

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

I	Job		Page
		180' Stainless Lattice, Ledyard, CT	21 of 43
	Project		Date
		AT&T Site CT2283	15:30:26 06/29/16
	Client	10P'(' '' 1 1 07 7 / 1 1 1	Designed by
		MODification - Ledyard, CT Tower / AT&T	MCD

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а				l li					Face
			c									
ft	lb	1b	е						ft ²	lb	plf	
2.0			C	0.159	2.739	0.583	0.8	1	56,484			
T8	1041.78	9205.54	Α	0.238	2.473	0.599	0.8	1	90.666	6255.06	250,20	A
75,00-50.00			В	0.244	2.455	0.6	0.8	1	90.571			
			C	0.142	2.8	0.58	0,8	1	56,846			
T9	1094,70	10245.01	Α	0.254	2.426	0.603	08	1	105.733	6184,23	247.37	A
50.00-25.00			В	0.249	2.44	0.602	08	1	101.822			
			С	0.163	2.725	0.584	0.8	1	70.768			
T10	656.82	10988.42	Α	0.206	2.576	0,592	0.8	1	94.448	5654.14	226.17	A
25.00-0.00			В	0.203	2.584	0.591	0.8	1	92.053			
			С	0.156	2.751	0.582	0.8	1	73.589			
Sum Weight;	5885.55	54531.98						OTM	3728.08	42421.16		
									kip-ft			

Tower Forces - With Ice - Wind 90 To Face

180.00-175.00 T2 175.00-166.67 T3 166.67-158.33 T4 158.33-150.00 T5 150.00-125.00 T6 125.00-100.00 T7 100.00-75.00 T8 75.00-50.00 T9 1094	77.20 99.56	Weight 1b 849,94 1078.07 1098.79 1156.12	a c e A B C A B C A B	0,223 0,328 0,223 0,181 0,281 0,174 0,22 0,269 0,168 0,232	2.523 2.224 2.523 2.662 2.348 2.685 2.529 2.381	0.595 0.625 0.595 0.587 0.61 0.585 0.595	0.85 0.85 0.85 0.85 0.85 0.85	1 1 1 1 1 1 1 1	ft ² 8.891 13.283 8.891 12.293 19.341	<i>lb</i> 1110,37	plf 222.07 202.58	Face B
T1	22.94 27.20 29.56	849.94 1078.07 1098.79	e A B C A B C A B C A	0.328 0.223 0.181 0.281 0.174 0.22 0.269 0.168	2.224 2.523 2,662 2.348 2.685 2.529 2.381	0.625 0.595 0.587 0.61 0.585 0.595	0.85 0.85 0.85 0.85 0.85	1 1 1 1 1 1 1	8.891 13.283 8.891 12.293 19.341	1110.37	222.07	
T1	22.94 27.20 29.56	849.94 1078.07 1098.79	A B C A B C A B C	0.328 0.223 0.181 0.281 0.174 0.22 0.269 0.168	2.224 2.523 2,662 2.348 2.685 2.529 2.381	0.625 0.595 0.587 0.61 0.585 0.595	0.85 0.85 0.85 0.85 0.85	1 1 1 1	8.891 13.283 8.891 12.293 19.341	1110.37	222.07	
180.00-175.00 T2 175.00-166.67 T3 166.67-158.33 T4 158.33-150.00 T5 150.00-125.00 T6 125.00-100.00 T7 100.00-75.00 T8 75.00-50.00 T9 1094	22.94 27.20 29.56	1078.07 1098.79	B C A B C A B C	0.328 0.223 0.181 0.281 0.174 0.22 0.269 0.168	2.224 2.523 2,662 2.348 2.685 2.529 2.381	0.625 0.595 0.587 0.61 0.585 0.595	0.85 0.85 0.85 0.85 0.85	1 1 1 1	13.283 8.891 12.293 19.341			
T2 175.00-166.67 T3 166.67-158.33 T4 158.33-150.00 T5 150.00-125.00 T6 125.00-100.00 T7 100.00-75.00 T8 75.00-50.00 T9 1094	77.20 99.56	1098.79	C A B C A B C	0.223 0.181 0.281 0.174 0.22 0.269 0.168	2.523 2.662 2.348 2.685 2.529 2.381	0.595 0.587 0.61 0.585 0.595	0.85 0.85 0.85 0.85	1 1 1	8.891 12.293 19.341	1688.14	202.58	В
175.00-166.67 T3 166.67-158.33 T4 158.33-150.00 T5 150.00-125.00 T6 125.00-100.00 T7 100.00-75.00 T8 75.00-50.00 T9 1094	77.20 99.56	1098.79	A B C A B C A	0.181 0.281 0.174 0.22 0.269 0.168	2,662 2,348 2,685 2,529 2,381	0.587 0.61 0.585 0.595	0.85 0.85 0.85	1 1 1	12.293 19.341	1688,14	202.58	В
175.00-166.67 T3 166.67-158.33 T4 158.33-150.00 T5 150.00-125.00 T6 125.00-100.00 T7 100.00-75.00 T8 75.00-50.00 T9 1094	77.20 99.56	1098.79	B C A B C A	0.281 0.174 0.22 0.269 0.168	2.348 2.685 2.529 2.381	0.61 0.585 0.595	0.85 0.85	1	19.341	1688.14	202.58	В
T3 166.67-158.33 T4 158.33-150.00 T5 150.00-125.00 T6 125.00-100.00 T7 100.00-75.00 T8 75.00-50.00 T9 1094	99.56		C A B C A	0.174 0.22 0.269 0.168	2.685 2.529 2.381	0.585 0.595	0.85	1				
166.67-158.33 T4 158.33-150.00 T5 150.00-125.00 T6 125.00-100.00 T7 100.00-75.00 T8 75.00-50.00 T9 1094	99.56		A B C A	0.22 0.269 0.168	2.529 2.381	0.595		1				
166.67-158.33 T4 158.33-150.00 T5 150.00-125.00 T6 125.00-100.00 T7 100.00-75.00 T8 75.00-50.00 T9 1094	99.56		B C A	0.269 0.168	2.381		0.05	* 1	11.706			
T4 199 199 1094 158.33-150.00		1156.12	C A	0.168		0.007	0.65	1	16,403	1705.97	204.72	В
158.33-150.00 T5 150.00-125.00 T6 125.00-100.00 T7 100.00-75.00 T8 75.00-50.00 T9 1094		1156.12	Α		0.41041	0.607	0.85	1	19.551			
158.33-150.00 T5 150.00-125.00 T6 125.00-100.00 T7 100.00-75.00 T8 75.00-50.00 T9 1094		1156.12		0.222	2.707	0.584	0.85	1	11.939			
T5			1 m	0.232	2.493	0.597	0.85	I	18.005	1720.96	206.52	В
150.00-125.00 T6 125.00-100.00 T7 100.00-75.00 T8 75.00-50.00 T9 1094			В	0.259	2.411	0.604	0.85	1	19.768			
150.00-125.00 T6 125.00-100.00 T7 100.00-75.00 T8 75.00-50.00 T9 1094			C	0.162	2.727	0.583	0.85	1	12,175			
T6 85: 125.00-100.00 77 974 100.00-75.00 T8 75.00-50.00 T9 1094	5.53	5303.21	A	0.241	2.464	0.6	0.85	1	68.821	5925.04	237.00	Α
125.00-100.00 T7 100.00-75.00 T8 75.00-50.00 T9 1094			В	0.249	2.44	0.602	0.85	1	68,903			
125.00-100.00 T7 100.00-75.00 T8 75.00-50.00 T9 1094	- 1		C	0.157	2.746	0.583	0,85	1	45.834			
T7 974 100.00-75.00 T8 104 75.00-50.00 T9 1094	3.53	6420.98	A	0.241	2.466	0.6	0.85	1	77.874	6397.36	255.89	В
T8 104.75.00 T9 1094			В	0.261	2.406	0.605	0.85	Ť	80.590			
T8 104.75.00 T9 1094			c	0,154	2.758	0.582	0.85	1	51,172			
T8 104.75.00-50.00 T9 1094	4.28	8185.90	A	0.252	2.431	0.602	0.85	1	90.520	6758.48	270.34	Α
75.00-50.00 T9 1094			В	0.265	2:393	0.606	0.85	1	91.890			
75.00-50.00 T9 1094	- 1		c	0.159	2.739	0.583	0.85	1	59.638			
T9 1094	1.78	9205,54	A	0.238	2,473	0.599	0.85	1	94.929	6549.14	261.97	Α
			В	0.244	2,455	0.6	0.85	1	94,335		10.1	
			l c l	0.142	2.8	0.58	0.85	1	60.095	1		
	4.70	10245.01	l a l	0.254	2.426	0.603	0.85	i	110.618	6469-92	258.80	Α
50.00-25.00	20	88	В	0.249	2.44	0.602	0.85	1	106.144			
			l c l	0.163	2-725	0.584	0.85	i	74,712			
T10 656	6.82	10988.42	Ā	0.206	2.576	0.592	0.85	- 11	99.108	5933.14	237-33	Α
25.00-0.00			В	0.203	2.584	0.591	0.85	i i	96.375	2.00.		
31			c	0.156	2.751	0.582	0.85	il	77.678			
Sum Weight: 5885		54531.98	_	0.120	2	313 02	0,00	OTM	3879.89	44258-52		
2002	5.55	2 122120						~ · · · ·	kip-ft	1123032		

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	180' Stainless Lattice, Ledyard, CT	22 of 43
Project		Date
	AT&T Site CT2283	15:30:26 06/29/16
Client	MODification - Ledyard, CT Tower / AT&T	Designed by MCD

Tower Forces - Service - Wind Normal To Face

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С									
ft	lb	lb	е						ft ²	lb	plf	
TI	23.75	579,98	Α	0.173	2,689	0.585	1	T	7,967	1020,24	204.05	В
180,00-175,00			В	0.245	2.451	0.601	1	1	11.074			
			С	0.173	2.689	0.585	1	1	7.967			
T2	41,70	734.95	Α	0.14	2.808	0.58	1	1	10.817	1503.43	180.41	В
175,00-166.67			В	0.207	2.571	0.592	1	1	15.727			
			С	0.135	2.826	0.579	1	1	10,320			
T3	58.59	747.53	Α	0.168	2.705	0.584	1	1	14.137	1519.69	182:36	В
166.67-158.33	1		В	0.199	2,601	0.59	I	1	15.944			
			С	0,13	2.846	0.579	1	1	10,541			
T4	66.80	796.60	Α	0.174	2,685	0.585	1	1	15,199	1533,33	184.00	В
158.33-150.00			В	0.191	2.627	0.589	1.	1	16.164			
			С	0,126	2.863	0.578	1	1	10,764			
T5	230.32	3707.32	Α	0.184	2,65	0.587	1	1	62.858	5820.70	232,83	Α
150,00-125.00			В	0.187	2.639	0.588	1	1	61,603			
			С	0.126	2.862	0.578	1	1	45.213			
Т6	283,39	4679_49	Α	0,183	2,654	0.587	1	1	71.007	6219.21	248.77	A
125.00-100.00			В	0.192	2.622	0.589	1	1	70.483			
			C	0.124	2.868	0.578	1	1	50.917			
T7	325.25	6199.19	Α	0.191	2.626	0.589	1	1.	82,313	6638.03	265.52	Α
100.00-75.00			В	0,197	2,605	0.59	1	1	81.235	- "		
			C	0.131	2.842	0.579	1	1	60,301			
T8	348.54	7171.40	Α	0.181	2.66	0.587	1	1	86.183	6395.74	255.83	Α
75.00-50.00			В	0.184	2.651	0.587	1	1	84.266			
			C	0.121	2.88	0,577	1	1	62,197			
T9	364.75	7706.04	Α	0,192	2,624	0.589	1	1	100.024	6326.93	253.08	Α
50.00-25.00			В	0.189	2.632	0.588	1	1	96.594			
			C	0.135	2.827	0.579	1	10	76.089			
T10	218.85	8304.28	Α	0.16	2.734	0.583	1	1.	93.377	5934.55	237.38	Α
25.00-0.00	- 1		В	0.159	2.739	0.583	1	1	91,303			
	1		С	0.129	2.851	0.578	-1	- 1	79.013			
Sum Weight:	1961.93	40626.76						OTM	3713.28	42911.86		
									kip-ft			

Tower Forces - Service - Wind 45 To Face

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl
Elevation	Weight	Weight	а									Face
			С	n n								
fi	lb	lb .	е						ft ²	lb	plf	
T1	23.75	579.98	Α	0.173	2.689	0.585	0.825	1	7.000	907.04	181.41	В
180.00-175.00			В	0.245	2.451	0.601	0.825	1	9,845			
			С	0.173	2.689	0.585	0.825	1	7.000			
T2	41.70	734.95	Α	0.14	2.808	0.58	0.825	1	9.629	1351.68	162.20	В
175.00-166.67			В	0.207	2.571	0.592	0.825	1	14.139			
			С	0,135	2,826	0.579	0.825	1.	9.219			ľ
T3	58.59	747.53	Α	0.168	2,705	0,584	0.825	1	12,469	1364.41	163,73	В
166.67-158.33			В	0.199	2.601	0.59	0.825	1	14,315			
			С	0.13	2.846	0.579	0.825	1	9.400			
T4	66,80	796.60	Α	0.174	2.685	0.585	0.825	- 1	13.471	1374.85	164.98	В
158.33-150.00			В	0.191	2.627	0.589	0.825	1	14.493			11
			С	0.126	2.863	0.578	0.825	1	9.584			
T5	230.32	3707.32	Α	0.184	2.65	0.587	0.825	1	52.662	4876.55	195,06	Α
150.00-125.00			В	0.187	2.639	0.588	0.825	1	52.243			

tnxTower AECOM Job Project

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	180' Stainless Lattice, Ledyard, CT	23 of 43
Project		Date
	AT&T Site CT2283	15:30:26 06/29/16
Client	MODIF II I I I I I I I I I I I I I I I I I	Designed by
	MODification - Ledyard, CT Tower / AT&T	MCD

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	Λ_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
ft	lb	1b	c e						fi²	lb	plf	
			С	0.126	2.862	0.578	0.825	- 1	37.301			
T6	283.39	4679.49	Α	0.183	2.654	0.587	0.825	1	59.540	5214.80	208.59	A
125.00-100.00			В	0.192	2,622	0.589	0.825	1	60.224			1
			C	0.124	2.868	0.578	0.825	1	42,007			
T7	325,25	6199.19	Α	0.191	2,626	0.589	0.825	1	69,296	5588,30	223.53	A
100,00-75.00			В	0.197	2,605	0.59	0.825	1	69,417			
			C	0.131	2.842	0.579	0.825	1	49.748			
Т8	348,54	7171.40	Α	0,181	2.66	0.587	0.825	1	72,776	5400.80	216.03	A
75.00-50.00			В	0,184	2.651	0.587	0.825	1	72.031			
			С	0.121	2.88	0.577	0.825	1	51.312			
Т9	364.75	7706_04	A	0.192	2.624	0.589	0.825	1	84.510	5345,58	213.82	A
50.00-25.00			В	0,189	2.632	0.588	0.825	1	82.206		10	
			C	0,135	2.827	0.579	0.825	1	62_774			
T10	218.85	8304.28	Α	0.16	2.734	0.583	0.825	1	78.219	4971.15	198.85	Α
25.00-0.00			В	0.159	2.739	0,583	0.825	Ĩ	76.820			
			С	0,129	2.851	0.578	0.825	1	65.186			
Sum Weight:	1961.93	40626.76		111				OTM	3171.90	36395.17		
									kip-ft			

Tower Forces - Service - Wind 60 To Face

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	\overline{F}	w	Ctrl.
Elevation	Weight	Weight	а							i i		Face
-			c									l
ft	lb	lb .	е						ft²	lb	plf	
T1	23.75	579.98	Α	0.173	2,689	0,585	0,8	1	6.862	890.87	178.17	В
180.00-175,00			В	0.245	2.451	0.601	0.8	1	9,669			
			C	0.173	2.689	0.585	0.8	1.	6.862			
T2	41.70	734.95	Α	0.14	2.808	0.58	0.8	1	9.460	1330.00	159.60	В
175,00-166.67			В	0.207	2,571	0.592	0.8	1	13.913			
			С	0.135	2.826	0.579	0.8	1	9.062			
T3	58.59	747.53	Α	0.168	2.705	0.584	0.8	1	12.230	1342.23	161.07	В
166.67-158.33		l i	В	0.199	2,601	0.59	0.8	1	14.082			
		1	С	0.13	2.846	0.579	0.8	1	9.237			
T4	66.80	796,60	Α	0.174	2.685	0.585	0.8	1	13,224	1352.21	162.27	В
158.33-150.00		l li	В	0.191	2.627	0.589	0.8	1	14.255			
			С	0.126	2,863	0.578	0.8	1	9.415			
T5	230.32	3707.32	Α	0,184	2.65	0.587	0.8	1	51,206	4741-67	189.67	Α
150,00-125.00			В	0.187	2,639	0,588	0.8	1	50.905			
1			C	0.126	2.862	0.578	0.8	1	36.170			
Т6	283,39	4679.49	Α	0,183	2,654	0,587	0.8	1.	57,901	5083.07	203.32	В
125.00-100.00			В	0,192	2.622	0.589	0.8	1	58.758			
			С	0.124	2.868	0.578	0.8	1	40.734			
Т7	325.25	6199.19	Α	0.191	2,626	0.589	0.8	1	67.436	5438.34	217.53	Α
100.00-75.00			В	0.197	2.605	0.59	0.8	1	67.729			
^ ^			С	0.131	2.842	0,579	0.8	1	48.241			
Т8	348.54	7171.40	Α	0.181	2.66	0.587	0.8	1	70.861	5258.67	210.35	Α
75.00-50.00			В	0.184	2.651	0.587	0.8	1	70.283			
~		1	C	0.121	2.88	0.577	0.8	1	49.758			
Т9	364.75	7706.04	Α	0.192	2.624	0.589	0.8	1	82.293	5205.39	208.22	Α
50.00-25.00			В	0.189	2.632	0.588	0.8	1	80-151			
			C	0.135	2.827	0.579	0.8	1	60.871			
T10	218.85	8304.28	A	0.16	2.734	0.583	0.8	1	76.053	4833.52	193.34	Α
25.00-0.00			В	0.159	2.739	0.583	0.8	1	74.751			
	- 1		C	0.129	2.851	0.578	0.8	1	63-211			

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

		W	
Jo	b		Page
		180' Stainless Lattice, Ledyard, CT	24 of 43
Pi	roject		Date
		AT&T Site CT2283	15:30:26 06/29/16
CI	lient	MODIC II I I OTT (ATOT	Designed by
		MODification - Ledyard, CT Tower / AT&T	MCD

Section Elevation	Add Weight	Self Weight	F a	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl. Face
ſŧ	lb _	lb	e						ft²	lb	plf	
Sum Weight:	1961,93	40626.76						OTM	3095.88	35475,98	7	
									kip-ft		L)	

Tower Forces - Service - Wind 90 To Face

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С									
fi	lb	lh.	е						ft²	lb	plf	
Tl	23.75	579.98	Α	0.173	2.689	0.585	0.85	1	7.138	923.21	184.64	В
180.00-175.00			В	0,245	2.451	0.601	0.85	1	10.021			
			C	0.173	2.689	0.585	0.85	1	7.138			
T2	41.70	734.95	Α	0.14	2.808	0.58	0.85	Ĩ	9,799	1373.36	164.80	В
175.00-166.67			В	0.207	2,571	0,592	0.85	1	14.366			
		1	С	0.135	2.826	0.579	0.85	1	9.376			
T3	58.59	747.53	Α	0.168	2.705	0.584	0.85	1	12.707	1386.60	166.39	В
166.67-158.33			В	0.199	2.601	0.59	0.85	l l	14.547			
			С	0.13	2.846	0.579	0.85	1	9.563			
T4	66.80	796.60	Α	0.174	2.685	0.585	0.85	1	13,718	1397.49	167.70	В
158.33-150.00			В	0.191	2.627	0.589	0.85	1	14.732			
			С	0.126	2.863	0.578	0.85	1	9.752			
Т5	230.32	3707.32	Α	0.184	2.65	0.587	0.85	1	54.119	5011.43	200.46	A
150.00-125.00			В	0.187	2.639	0.588	0.85	1	53,580			
			С	0.126	2.862	0.578	0.85	1	38.431			
T6	283.39	4679.49	Α	0.183	2.654	0.587	0.85	T.	61.178	5358.28	214.33	Α
125.00-100.00			В	0.192	2.622	0.589	0.85	1	61,689			
			С	0.124	2.868	0.578	0.85	1	43.280			
Т7	325.25	6199.19	Α	0.191	2.626	0.589	0.85	1	71.156	5738.26	229.53	Α
100.00-75.00	-	1 1 24 1 1	В	0.197	2.605	0.59	0.85	1	71,106		155	
1.05			C	0.131	2.842	0.579	0.85	1	51.256			
Т8	348.54	7171.40	A	0.181	2,66	0.587	0:85	1	74,691	5542,94	221-72	Α
75.00-50.00			В	0.184	2.651	0.587	0.85	I	73.778			
			С	0.121	2.88	0.577	0.85	1.	52.867			
T9	364.75	7706.04	A	0.192	2,624	0.589	0.85	1	86.726	5485.78	219.43	Α
50.00-25.00			В	0.189	2.632	0.588	0.85	- 1	84.261			
			C	0.135	2.827	0.579	0.85	Ĩ	64.676			
T10	218,85	8304.28	Ā	0.16	2.734	0.583	0.85	1	80,384	5108.78	204.35	A
25.00-0.00	_10,00	110 11120	В	0.159	2.739	0.583	0.85	i ii	78.889	2.100.70	2.000	11
20.00			C	0.129	2,851	0.578	0.85	i	67.161			
Sum Weight:	1961.93	40626.76	_	027	2.031	3.575	0.03	OTM	3249.24	37326.13		
Sam e.giit.	.501,55	10020170						O X 1111	kip-ft	57520,13		
									Kip It			

Force Totals

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
		X	Z	Moments, Mx	Moments, M ₌)
	lb	lb	lb	kip-ft	kip-ft	kip-ft
Leg Weight	17563.64		10 10 10			
Bracing Weight	23063.13					
Total Member Self-Weight	40626.76			-15.74	-0.47	

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	180' Stainless Lattice, Ledyard, CT	25 of 43
Project		Date
	AT&T Site CT2283	15:30:26 06/29/16
Client		Designed by
	MODification - Ledyard, CT Tower / AT&T	MCD

Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	oum by rorques
Cubo	1 07 000	X	Z	Moments, M _x	Moments, M _z	
	lb	lb	lb	kip-ft	kip-fl	kip-ft
Total Weight	47789.13			-15.74	-0.47	
Wind 0 deg - No Ice	THE TANK OF LAND	344.98	-86426.82	-9669.85	-35.64	-1.59
Wind 30 deg - No Ice		39979.76	-69553.05	-7931.03	-4517.68	-40.31
Wind 45 deg - No Ice		55472.63	-55794.38	-6367.75	-6283.08	-51.72
Wind 60 deg - No Ice	Carrie William	66945.45	-38618.20	-4403.90	-7611.15	-59.95
Wind 90 deg - No Ice		79738.58	328.94	59.63	-9032.50	-69.15
Wind 120 deg - No Ice	C	74709.93	43036.41	4801.10	-8327.04	-71.45
Wind 135 deg - No Ice	100 100	56006.81	55642.81	6346.43	-6402,97	-52.23
Wind 150 deg - No Ice	alite (Sin')	40232.45	68947.98	7828,21	-4596.84	-37.59
Wind 180 deg - No Ice	and the least least	-177.92	77415.09	8836.13	9.71	0.78
Wind 210 deg - No Ice	The same of the same of	-40600,94	69473.72	7892.09	4622.62	39.41
Wind 225 deg - No Ice	700	-56334.25	56265.63	6417.90	6428.59	54.21
Wind 240 deg - No Ice		-74952.08	43565.78	4852.23	8346.98	73.36
Wind 270 dcg - No Icc		-79435.19	816.37	99.71	8986.68	69.45
Wind 300 deg - No Ice	WARE BY	-66160.63	-37979.57	-4336.34	7507.51	58.51
Wind 315 deg - No Ice		-54617.39	-55109.89	-6287.54	6175.55	49.77
Wind 330 deg - No Ice	WHEN THE	-39149.62	-68927.86	-7852.90	4420.21	37.90
Member Ice	13905.22	Service Control	I - A TIN	With the second		3 43 7
Total Weight Ice	68919.03	N H W WARREN		-48.56	1.01	
Wind 0 deg - Ice	THE STATE OF THE S	296.75	-85215,27	-9461.95	-27.90	1.33
Wind 30 deg - Ice	PARTY AND A TO	39667.44	-68996,93	-7800.71	-4425.47	-46.59
Wind 45 deg - Ice		55181.52	-55479.11	-6284.78	-6171.21	-62.52
Wind 60 deg - Ice	E SOUTH A FI	66648.05	-38446.22	-4359.23	-7475.50	-73,87
Wind 90 deg - Ice	THE RESERVE	79091.48	322.86	24.19	-8842.40	-86.90
Wind 120 deg - Ice	THE WOLLD'S W	73701.67	42326.18	4627.86	-8125.10	-89.15
Wind 135 deg - Ice	Woodloo T Smi	55534.22	55225.13	6176.82	-6257.03	-65.60
Wind 150 deg - Ice		39530.66	68677.72	7679.44	-4433.41	-45.68
Wind 180 deg - Ice		-673.19	77242.10	8674.56	99.71	2.24
Wind 210 deg - Ice		-40575.72	69058.85	7720.42	4583.86	48.44
Wind 225 deg - Ice	Banton 129	-56165.23	56101.98	6295.96	6341.43	66.23
Wind 240 deg - Ice		-74076.65	43289.78	4758.58	8173.13	89.29
Wind 270 deg - Ice		-79045.95 -66166.56	1260.09 -37489.37	146.93 -4232.16	8844.02 7424.99	88.50
Wind 300 deg - Ice		-54282:23	-54710.73	-4232.16	6055.27	76,65 63,53
Wind 315 deg - Ice Wind 330 deg - Ice		-38763.83	-68407.26	-7726.15	4313.94	47.84
Total Weight	47789.13	-30/03.03	-06407.20	-17.74	-0.47	47.84
Wind 0 deg - Service	47709.13	309.63	-75263.18	-8360.09	-32.38	-1.43
Wind 30 deg - Service		34729.37	-60427,73	-6840.11	-3903.44	-36.18
Wind 45 deg - Service	THE STATE OF	48156.84	-48445.61	-5485.23	-5425.10	-36.18 -46.41
Wind 60 deg - Service	STATE OF THE PARTY OF	58087.39	-33507.36	-3785.46	-6568.87	-53.81
Wind 90 deg - Service		69260.43	295.22	69.00	-7803.93	-62.06
Wind 120 deg - Service		65056.06	37472.73	4172.90	-7803.93	-64.12
Wind 120 deg - Service	B B B	48636.27	48309.58	5497.05	-5532.71	-46.87
Wind 150 deg - Service	National Lead	34956.16	59884.68	6778.78	-3974.49	-33.73
Wind 180 deg - Service	By Harry Ha	-159.69	67175.09	7642.77	8.33	0.70
Wind 210 deg - Service		-35286.88	60356.54	6836.11	3996.85	35.37
Wind 225 deg - Service	THE X THE	-48930.15	48868.57	5561.19	5554.92	48.66
Wind 240 deg - Service		-65273.39	37947.85	4218.79	7228,51	65.84
Wind 270 deg - Service	The water of	-68988.14	732.70	104.97	7762.03	62.33
Wind 300 deg - Service		-57383.01	-32934.18	-3724.82	6475.08	52.51
Wind 315 deg - Service		-47389.26	-47831-28	-5413.24	5327.82	44.66
Wind 330 deg - Service		-33984.31	-59866.62	-6769.98	3815.19	34.02
SSO deg Service		20707.31	57000.02	-0107170	3013.17	571.02

Load Combinations

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

	Job		Page
		180' Stainless Lattice, Ledyard, CT	26 of 43
	Project		Date
		AT&T Site CT2283	15:30:26 06/29/16
Ī	Client		Designed by
		MODification - Ledyard, CT Tower / AT&T	MCD

Comb. No.	Description	
1	Dead Only	
2	Dead+Wind 0 deg - No Ice	
3	Dead+Wind 30 deg - No Ice	
4	Dead+Wind 45 deg - No Ice	
5	Dead+Wind 43 deg - No Ice	
6	Dead+Wind 90 deg - No Ice	
7	Dead+Wind 120 deg - No Ice	
8	Dead+Wind 135 deg - No Ice	
9	Dead+Wind 150 deg - No Ice	
10	Dead+Wind 180 deg - No Ice	
11	Dead+Wind 180 deg - No Ice Dead+Wind 210 deg - No Ice	
12	Dead+Wind 225 deg - No Ice	
13	Dead+Wind 240 deg - No Ice	
13	Dead+Wind 270 deg - No Ice	
15	Dead+Wind 270 deg - No Ice Dead+Wind 300 deg - No Ice	
16	Dead+Wind 300 deg - No Ice Dead+Wind 315 deg - No Ice	
17	Dead+Wind 330 deg - No Ice	
18	Dead+Ice+Temp	
19	Dead+Wind 0 deg+lce+Temp	
20	Dead+Wind 30 deg+Ice+Temp	
21		
22	Dead+Wind 45 deg+Ice+Temp	
23	Dead+Wind 60 deg+Ice+Temp Dead+Wind 90 deg+Ice+Temp	
24		
25	Dead+Wind 120 deg+Ice+Temp Dead+Wind 135 deg+Ice+Temp	
26		
	Dead+Wind 150 deg+Ice+Temp	
27 28	Dead+Wind 180 deg+Ice+Temp	
28 29	Dead+Wind 210 deg+Ice+Temp	
30	Dead+Wind 225 deg+Ice+Temp	
31	Dead+Wind 240 deg+Ice+Temp	
32	Dead+Wind 270 deg+Ice+Temp	
	Dead+Wind 300 deg+Ice+Temp	
33	Dead+Wind 315 deg+Ice+Temp	
34	Dead+Wind 330 deg+Ice+Temp	
35	Dead+Wind 0 deg - Service	
36	Dead+Wind 30 deg - Service	
37	Dead+Wind 45 deg - Service	
38	Dead+Wind 60 deg - Service	
39	Dead+Wind 90 deg - Service	
40	Dead+Wind 120 deg - Service	
41	Dead+Wind 135 deg - Service	
42	Dead+Wind 150 deg - Service	
43	Dead+Wind 180 deg - Service	
44	Dead+Wind 210 deg - Service	
45	Dead+Wind 225 deg - Service	
46	Dead+Wind 240 deg - Service	
47	Dead+Wind 270 deg - Service	
48	Dead+Wind 300 deg - Service	
49	Dead+Wind 315 deg - Service	
50	Dead+Wind 330 deg - Service	

Maximum Member Forces

Section No.	Elevation fi	Component Type	Condition	Gov. Load Comb	Force lb	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
Tl	180 - 175	Leg	Max Tension	13	516.68	0.00	-0.00
			Max. Compression	24	-928.66	0.32	0.13
			Max. Mx	10	35.29	-0.41	0.04

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone; 860-529-8882 FAX: 860-529-3991

Job		Page
	180' Stainless Lattice, Ledyard, CT	27 of 43
Project		Date
	AT&T Site CT2283	15:30:26 06/29/16
Client		Designed by
	MODification - Ledyard, CT Tower / AT&T	MCD

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Axis Moment
				Comb,	lb	kip-ft	kip-ft
			Max. My	14	-213.87	-0.02	-0.94
			Max. Vy	13	11901.73	0.00	-0.00
			Max. Vx	3	-11861,20	0.00	0.00
		Diagonal	Max Tension	6	16176.04	000	0.00
			Max, Compression	6	-16273.07	0.00	0.00
			Max. Mx	28	13118.53	0.04	0.00
			Max. My	24	-118.66	0.00	0.00
			Max. Vy	28	-23.57	0.00	0.00
			Max. Vx	24	-0.92	0.00	0.00
		Top Girt	Max Tension	5	13664.72	0.03	0.02
			Max. Compression	13	-13833.06	0.01	0.02
			Max. Mx	24	5706.40	0.04	0.01
			Max. My	14	-12016.78	0.02	0.02
			Max. Vy	24	-28.03	0.04	0.01
ma.			Max. Vx	14	4.93	0.00	0.00
T2	175 - 166.667	Leg	Max Tension	5	18144.91	-0.32	0.05
			Max. Compression	2	-20051.56	0.59	0.15
			Max. Mx	5	17972.44	-0.60	0.07
			Max. My	14	-644.81	-0.02	-0.94
			Max. Vy	27	631.07	-0.55	-0.10
		75'	Max. Vx	24	-587.04	-0.29	0,33
		Diagonal	Max Tension	9	9146.59	0.00	0.00
			Max. Compression	9	-9240.56	0.00	0.00
			Max. Mx	28	8351.68	0.06	0.00
			Max, My	30	-207.06	0.00	-0.00
			Max. Vy	28	-25.13	0.00	0.00
		11 2 4 1	Max. Vx	30	1.34	0.00	0.00
		Horizontal	Max Tension	2	6415.53	0.00	0.00
			Max. Compression	10	-6234.68	0.01	0.00
			Max. Mx	22	2666.62	0.03	0.00
			Max. My	19	5.60	0.01	0.01
			Max, Vy	22	20.14	0.03	0.00
Т3	166.667 - 158.333	Leg	Max, Vx Max Tension	19 5	-3.01 30139.37	0.00 -0.60	0.00 0.07
	130.333		Max. Compression	2	-33209.76	0.44	0.18
			Max. Mx	5	30139.37	-0.60	0.18
			Max. My	2	14721.71	-0.26	-0.59
			Max. Vy	5	-287.20	-0.60	0.07
			Max. Vx	2	-325.30	-0.26	0.59
		Diagonal	Max Tension	9	10198,64	0.00	0.00
		Diagonal	Max. Compression	9	-10299.14	0.00	0.00
			Max. Mx	28	9812,50	0.07	0.00
			Max. My	30	5.16	0.00	-0.00
			Max. Vy	28	-26,53	0.00	0.00
			Max. Vx	30	-1.35	0.00	0.00
		Horizontal	Max Tension	9	6080.64	0.00	0.00
		Horizontai	Max. Compression	9	-6082.36	0.01	0.01
			Max. Mx	27	277.48	0.04	0.00
			Max. My	32	-4506.12	0.02	0.00
			Max. Vy	27	21,92	0.04	0.00
			Max. Vx	32	-2.38	0.04	0.00
T4	158,333 - 150	Leg	Max Tension	10	43129.38	-0.38	-0.13
17	100.000	LUE	Max. Compression	2	-47864.65	0.28	-0.15
			Max, Mx	5	43032.66	-0.49	0,07
			Max, Mx Max. My	2	21629.48	-0.49 -0.26	0,07
			Max. Vy	10	-745.29	-0.26	-0.13
			Max. Vx	13	-743.29 -882.15	-0.38	-0.13
		Diagonal	Max Tension		-882.13 11859.17	0.00	0.00
		Diagonal	Max. Compression	11 11			0.00
			iviax. Compression		-11976.61	0.00	
			Max Mx	28	11629.31	0.07	0.00

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	180' Stainless Lattice, Ledyard, CT	28 of 43
Project		Date
	AT&T Site CT2283	15:30:26 06/29/16
Client		Designed by
	MODification - Ledyard, CT Tower / AT&T	MCD

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Axis Moment
TAINES	Ji	1 ype		Comb.	lb	kip-fi	kip-ft
			Max. My	24	693.93	0.00	0.00
			Max. Vy	28	-27.93	0.00	0.00
			Max. Vx	24	-1.35	0.00	0.00
		Horizontal	Max Tension	11	7322,60	0.00	0.00
		Homzomai	Max. Compression	12	-7376.95	0.03	0.00
			Max. Mx	22	385.92	0.05	0.01
			Max. My	32	-5297.70	0.03	0.01
				22		0.02	
			Max. Vy Max. Vx	32	28,15 -2,84	0.00	0.01
T5	150 - 125	Lag	Max Tension	10	92210.97	-0_57	0.00 -0.11
13	130 - 123	Leg	Max. Compression	2	-102637_86	0.26	-0.11
			Max. Mx	5	73493.24	-0.67	0.06
				2			
			Max. My	22	37624.47	-0.36	0.65
			Max. Vy Max. Vx	2	427.92	-0.65	0.07
		Diagonal	Max Tension	11	-468.15	-0.36	0.65
		Diagonal			14940.81	0.00	0.00
			Max. Compression	28	-15213.60	0.00	0.00
			Max. Mx	28	14885.01	0.12	0.00
			Max. My	30	636.36	0.00	-0.01
			Max. Vy	28	-43,37	0.00	0.00
		YY 1	Max. Vx	30	-1.82	0.00	0.00
		Horizontal	Max Tension	28	10063.33	0.00	0.00
			Max. Compression	9	-10043.21	0.03	-0.00
			Max. Mx	27	888.50	0.09	0.02
			Max. My	2	1052.45	-0.00	-0.03
			Max. Vy	27	39.91	0.09	0.02
		T 79 1	Max, Vx	30	5.13	0.01	-0.03
		Inner Bracing	Max Tension	2	9.12	0.00	0.00
			Max. Compression	33	-14.42	0.00	0.00
			Max. Mx	18	-3.13	-0,03	0.00
			Max. My	19	7.11	0.00	-0,00
			Max. Vy	18	19.33	0.00	0.00
FD (105 100		Max. Vx	30	0.16	0.00	0.00
T6	125 - 100	Leg	Max Tension	10	146506.28	-0.56	0.02
			Max. Compression	2	-164990.30	0.35	-0.00
			Max. Mx	2	-143847.69	0.59	-0.02
			Max. My	6	-3074.08	-0.02	0.57
			Max. Vy	27	-219.13	-0.54	0.02
			Max. Vx	24	244,97	-0.30	0.53
		Diagonal	Max Tension	9	16522,72	0.00	0.00
			Max. Compression	26	-16851.51	0.00	0.00
			Max. Mx	28	16436.86	0.16	0.00
			Max. My	30	919.39	0.00	-0.01
			Max. Vy	28	-53.50	000	0.00
			Max. Vx	30	2,00	0.00	0.00
		Horizontal	Max Tension	26	11893.38	0.07	-0.00
			Max. Compression	9	-11860.79	0.04	-0:00
			Max. Mx	27	1422.15	0.10	0.02
			Max. My	13	1524.87	0.00	-0.03
			Max. Vy	27	43.20	0.10	0.02
			Max. Vx	30	4.78	0.03	-0.03
		Inner Bracing	Max Tension	2	7.64	0.00	0.00
			Max. Compression	21	-13.63	0.00	0.00
			Max. Mx	18	-3.60	-0.04	0.00
			Max. My	30	5.62	0.00	-0.00
			Max. Vy	18	22.03	0.00	0.00
			Max. Vx	30	0.15	0,00	0.00
Т7	100 - 75	Leg	Max Tension	10	202088.99	-0.42	-0.04
		-0	Max. Compression	2	-230724.17	0.96	-0.01
						0	
			Max. Mx	13	-229888.25	0.96	-0.19

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

_			
	Job		Page
		180' Stainless Lattice, Ledyard, CT	29 of 43
	Project		Date
		AT&T Site CT2283	15:30:26 06/29/16
	Client		Designed by
1		MODification - Ledyard, CT Tower / AT&T	MCD

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Axi Moment
	5			Comb.	<i>lb</i>	kip-ft	kip-ft
			Max, Vy	27	-200.98	-0.62	-0.03
			Max, Vx	31	276.32	-0.06	-1,31
		Diagonal	Max Tension	28	18162_18	0.00	0.00
		Ü	Max. Compression	28	-18665.79	0.00	0,00
			Max. Mx	28	18162.18	0.19	0.00
			Max. My	30	1288.46	0.00	-0.01
			Max, Vy	28	-59,69	0.00	0.00
			Max. Vx	30	2.04	0.00	0.00
		Horizontal	Max Tension	28	13871.80	0.00	0.00
			Max. Compression	28	-13719.19	0.11	-0.00
			Max. Mx	27	1982.61	0.17	0.04
			Max. My	13	1818.87	0.00	-0.05
			Max. Vy	27	64.69	0.17	0.04
			Max. Vx	30	7.65	0.04	-0.05
		Inner Bracing	Max Tension	2	12.82	0.00	0.00
		Ŭ.	Max. Compression	21	-19.23	0.00	0.00
			Max. Mx	18	-4.27	-0.06	0.00
			Max. My	19	10.10	0.00	-0.00
			Max. Vy	18	24.73	0.00	0.00
			Max. Vx	19	0.14	0.00	0.00
Т8	75 - 50	Leg	Max Tension	10	248679,57	-1.72	-0.01
			Max. Compression	2	-286984.17	-1.40	0.04
			Max. Mx	2	-252958.91	1.91	0.02
			Max, My	31	-9282.74	-0.22	-2.37
			Max. Vy	7	455.64	1.90	0.18
			Max, Vx	31	396.59	-0.22	-2.37
		Diagonal	Max Tension	28	23911.58	0,00	0.00
		6	Max, Compression	28	-24567.99	0,00	0.00
			Max, Mx	28	23911.58	0,40	0.00
			Max, My	30	2125.98	0,00	-0.02
			Max. Vy	28	-98,88	0.00	0.00
			Max. Vx	30	3.92	0.00	0.00
		Horizontal	Max Tension	28	15530.44	0.00	0.00
			Max, Compression	28	-15482,71	0.13	-0.00
			Max, Mx	27	2461.18	0.21	0.04
			Max. My	30	2451.27	0.04	-0.06
			Max. Vy	27	71.26	0.21	0.04
			Max. Vx	30	7.27	0.04	-0.06
		Inner Bracing	Max Tension	2	9.93	0.00	0.00
			Max. Compression	21	-21-10	0.00	0.00
			Max. Mx	18	-6.46	-0.07	0.00
			Max. My	19	8.60	0.00	-0.00
			Max. Vy	18	26,98	0.00	0.00
			Max. Vx	19	0.12	0.00	0.00
Т9	50 - 25	Leg	Max Tension	10	301913.58	4.33	-0.01
		208	Max. Compression	2	-352673.97	-6.26	0.03
			Max. Mx	2	-352502.48	8.11	-0.02
			Max, My	31	-12529.09	-0.50	-4.73
			Max. Vy	2	2373.92	8.11	-0.02
			Max. Vx	31	1292.31	-0.50	-4.73
		Diagonal	Max Tension	28	25531.20	-0.16	-0.01
		2.250/101	Max. Compression	30	-27040.07	0.00	0.00
			Max. Mx	28	12165.61	-0.24	0.02
			Max. My	30	-25253.06	0.04	0.04
			Max. Vy	21	74.00	-0.24	-0.02
			Max. Vx	30	-5.90	0.00	0.00
		Horizontal	Max Tension	28	16946.25	0.00	0.00
		11011201141	Max. Compression	30	-17410.19	0.23	0.00
			Max. Mx	27	3019.29	0.23	0.04
			INTUV. IAIV				
			Max. My	30	2766.05	0.07	-0.06

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	180' Stainless Lattice, Ledyard, CT	30 of 43
Project		Date
	AT&T Site CT2283	15:30:26 06/29/16
Client		Designed by
1	MODification - Ledyard, CT Tower / AT&T	l MCD

Section No:	Elevation ft	Component Type	Condition	Gov. Load	Force	Major Axis Moment	Minor Axi Moment
		71		Comb.	lb	kip-ft	kip-ft
			Max. Vx	30	7.06	0.07	-0.06
		Redund Horz 1 Bracing	Max Tension	2	6113.37	0.00	0.00
			Max. Compression	2	-6113.37	0.00	0.00
			Max. Mx	18	349.96	-0.02	0.00
			Max, My	30	6038,63	0.00	0.00
			Max. Vy	18	14.83	0.00	0.00
			Max. Vx	30	-0.34	0.00	0.00
		Redund Diag 1 Bracing	Max Tension	2	4660.84	0.00	0.00
			Max. Compression	2	-4660.84	0.00	0.00
			Max. Mx	29	4152.81	-0.04	0.00
			Max. My	30	2414.13	0.00	0.00
			Max. Vy	29	20.05	0.00	0.00
			Max. Vx	30	-0.78	0.00	0.00
		Inner Bracing	Max Tension	2	7.61	0,00	0.00
		3	Max. Compression	21	-20.46	0.00	0.00
			Max, Mx	18	-7.17	-0.08	0.00
			Max. My	19	5.91	0.00	-0.00
			Max. Vy	18	29.68	0.00	0.00
			Max. Vx	19	0.09	0.00	0.00
T10	25 - 0	Leg	Max Tension	10	357729.73	4.79	-0.01
		8	Max. Compression	2	-421754.93	-0.00	0.00
			Max, Mx	2	-386319.86	8.56	-0.02
			Max. My	31	-14257.67	0.73	-4.92
			Max. Vy	2	2489.96	8.56	-0.02
			Max. Vx	31	1310.32	0.73	-4.92
		Diagonal	Max Tension	28	26328.64	-0.18	-0.01
		D IMBOIIM?	Max. Compression	30	-27711.69	0.00	0.00
			Max. Mx	21	14214.01	-0.27	-0.02
			Max. My	30	-26969.13	0.06	0.04
			Max. Vy	21	80.59	-0.27	-0.02
			Max. Vx	30	6.47	0.00	0.00
		Horizontal	Max Tension	28	18109.73	0.00	0.00
		170172011111	Max. Compression	30	-18625.73	0.23	0.02
			Max. Mx	27	3609.63	0.33	0.04
			Max. My	30	2952,47	0.12	-0.06
			Max. Vy	27	104.93	0.33	0.04
			Max. Vx	30	6.82	0.12	-0.06
		Redund Horz 1 Bracing	Max Tension	2	7310.85	0.00	0.00
		6	Max. Compression	2	-7310.85	0.00	0.00
			Max, Mx	27	3477.73	-0.02	0.00
			Max, My	24	-2225,28	0.00	0.00
			Max. Vy	27	-16.18	0.00	0.00
			Max. Vx	24	-0.37	0.00	0.00
		Redund Diag 1 Bracing	Max Tension	2	5293.48	0.00	0.00
		Ü	Max. Compression	2	-5293.48	0.00	0.00
			Max. Mx	30	5133,43	-0.05	0.00
			Max. My	30	1814.39	0.00	0.00
			Max. Vy	30	-21,92	0.00	000
			Max. Vx	30	-0.77	0.00	0.00
		Inner Bracing	Max Tension	2	4.60	0.00	0.00
			Max. Compression	30	-20.15	0.00	0.00
			Max, Mx	18	-8.17	-0.14	0.00
			Max. My	24	2.04	0.00	-0.00
			Max. Vy	18	-45.69	0.00	0.00
			Max Vx	24	0.08	0.00	0.00

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	180' Stainless Lattice, Ledyard, CT	31 of 43
Project		Date
	AT&T Site CT2283	15:30:26 06/29/16
Client	MODification - Ledyard, CT Tower / AT&T	Designed by MCD

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, 2
		Load	<i>lb</i>	<i>lb</i>	lb
		Comb.			
Leg C	Max. Vert	13	454932,75	41771,68	-26051,71
	Max, H _x	13	454932.75	41771.68	-26051,71
	Max. Hz	4	-376824.94	-34312.95	23814.29
	Min. Vert	5	-384538.19	-36009,45	22416.05
	$Min_x H_x$	5	-384538.19	-36009.45	22416.05
	Min. H,	30	452143,68	41433.78	-26307,22
Leg B	Max. Vert	7	452946.78	-41585.83	-25855.99
	Max. H _x	15	-378827.17	35538.13	22078.43
	Max. Hz	16	-370665.81	33804.20	23445.06
	Min. Vert	15	-378827.17	35538.13	22078.43
	Min, H_x	7	452946.78	-41585.83	-25855.99
	Min. Hz	24	447192,68	-41063.19	-26029.94
Leg A	Max, Vert	2	455619,38	-71.93	49077.47
	Max. H _x	31	16177.90	10590.11	748.16
	Max. Hz	2	455619.38	-71.93	49077.47
	Min. Vert	10	-386515.74	42.76	-42491.91
	Min_*H_x	23	21859.93	-10557.53	1289.19
	Min, H _z	10	-386515.74	42.76	-42491.91

Tower Mast Reaction Summary

Load Combination	Vertical	$Shear_x$	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	lb	lb_	lb	kip-fl	kip-ft	kip-ft
Dead Only	47797.63	-0.00	0.00	-15,65	-0.41	0.00
Dead+Wind 0 deg - No Ice	47797.61	344.98	-86425.73	-9519.50	-35.64	-1.61
Dead+Wind 30 deg - No Ice	47797.62	39979.19	-69552.15	-7819.11	-4452.86	-40.35
Dead+Wind 45 deg - No Ice	47797.62	55471.89	-55793.68	-6278.79	-6193.88	-51.75
Dead+Wind 60 deg - No Ice	47797.62	66944.59	-38617.74	-4342.49	-7504.63	-59.99
Dead+Wind 90 deg - No Ice	47797.62	79737.54	328,88	59.70	-8903.07	-69.21
Dead+Wind 120 deg - No Ice	47797.61	74709.05	43035.76	4725.89	-8196.86	-71.54
Dead+Wind 135 deg - No Ice	47797.62	56006,11	55642.00	6257,49	-6314.13	-52.31
Dead+Wind 150 deg - No Ice	47797.62	40231.96	68947.04	7716.25	-4532,31	-37.64
Dead+Wind 180 deg - No Ice	47797.62	-177.91	77414.12	8713,26	9.79	0.79
Dead+Wind 210 deg - No Ice	47797.62	-40600,40	69472.80	7780,21	4558.22	39.45
Dead+Wind 225 deg - No Ice	47798.56	-56335.84	56264.89	6329.05	6339.91	54.27
Dead+Wind 240 deg - No Ice	47797.61	-74951.20	43565.14	4777.09	8216.95	73.39
Dead+Wind 270 deg - No Ice	47797.62	-79434.16	816.31	99.84	8857.28	69.51
Dead+Wind 300 deg - No Ice	47797,62	-66159.78	-37979.12	-4274.82	7400.93	58,59
Dead+Wind 315 deg - No Ice	47797.62	-54616.66	-55109.21	-6198.45	6086.28	49.84
Dead+Wind 330 deg - No Ice	47797.62	-39149.10	-68926.95	-7740.83	4355.35	37.95
Dead+Ice+Temp	68919.03	0.00	0.00	-48.55	1.01	0.00
Dead+Wind 0 deg+Ice+Temp	68919.00	296.76	-85213.67	-9296.30	-27.96	1.31
Dead+Wind 30 deg+Ice+Temp	68919.01	39666,55	-68995.60	-7674.69	-4352,46	-46.68
Dead+Wind 45 deg+Ice+Temp	68919.01	55180.35	-55478.06	-6184.01	-6070-05	-62.63
Dead+Wind 60 deg+Ice+Temp	68919.01	66646.69	-38445.50	-4289.58	-7354.50	-74.00
Dead+Wind 90 deg+Ice+Temp	68919.01	79089.93	322.83	24.10	-8696.51	-87.07
Dead+Wind 120 deg+Ice+Temp	68919.00	73700.40	42325.26	4544.66	-7981.63	-89.33
Dead+Wind 135 deg+Ice+Temp	68919.01	55533.23	55223.93	6075.66	-6156.26	-65.75
Dead+Wind 150 deg+Icc+Temp	68919.01	39529.98	68676.29	7553.12	-4360.59	-45.79
Dead+Wind 180 deg+Ice+Temp	68919.01	-673.17	77240.57	8535.02	99,95	2.25

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

1	Job		Page
		180' Stainless Lattice, Ledyard, CT	32 of 43
	Project		Date
		AT&T Site CT2283	15:30:26 06/29/16
ĺ	Client		Designed by
1		MODification - Ledyard, CT Tower / AT&T	MCD

Load Combination	Vertical	Shear _x	Shear ₂	Overturning Moment, M_x	Overturning Moment, M _z	Torque
	1b	lb	lb	kip-ft	kip-ft	kip-ft
Dead+Wind 210 deg+Ice+Temp	68919.01	-40575.02	69057,40	7594.17	4511.38	48.54
Dead+Wind 225 deg+Ice+Temp	68919.01	-56164.22	56100.76	6195.06	6240,84	66,35
Dead+Wind 240 deg+Ice+Temp	68919.00	-74075.38	43288.83	4675.69	8029.76	89.42
Dead+Wind 270 deg+Ice+Temp	68919.01	-79044.40	1260.03	147.12	8698.14	88.68
Dead+Wind 300 deg+Ice+Temp	68919.01	-66165.21	-37488.69	-4162,25	7303.87	76.82
Dead+Wind 315 deg+Ice+Temp	68919,01	-54281,09	-54709.70	-6085,52	5953,84	63,67
Dead+Wind 330 deg+Ice+Temp	68919.01	-38762.96	-68405.95	-7599.98	4240.66	47.94
Dead+Wind 0 deg - Service	47797,62	309.62	-75262.20	-8241.76	-32.03	-1.44
Dead+Wind 30 deg - Service	47797.62	34728.90	-60426,93	-6756.32	-3844.69	-36.21
Dead+Wind 45 deg - Service	47797.63	48156.22	-48444.99	-5422.13	-5344.36	-46,44
Dead+Wind 60 deg - Service	47797.63	58086.65	-33506.95	-3747.17	-6472.51	-53.84
Dead+Wind 90 deg - Service	47797.62	69259.53	295.17	51.99	-7686.93	-62.12
Dead+Wind 120 deg - Service	47797.62	65055.26	37472.18	4088.09	-7093.79	-64.20
Dead+Wind 135 deg - Service	47797.62	48635,63	48308.89	5399.81	-5452.28	-46.94
Dead+Wind 150 deg - Service	47797.62	34955.70	59883.87	6660,80	-3915.98	-33.78
Dead+Wind 180 deg - Service	47797.63	-159.68	67174,24	7514.98	8.74	0,70
Dead+Wind 210 deg - Service	47797.62	-35286,39	60355.74	6718.21	3939.15	35,41
Dead+Wind 225 deg - Service	47797.62	-48929.48	48867.89	5464.05	5475.34	48.68
Dead+Wind 240 deg - Service	47797.62	-65272.59	37947.30	4134.05	7111.74	65.87
Dead+Wind 270 deg - Service	47797.62	-68987.24	732.64	88.01	7645.75	62,39
Dead+Wind 300 deg - Service	47797.63	-57382.28	-32933.78	-3686.43	6379.35	52.58
Dead+Wind 315 deg - Service	47797.63	-47388.64	-47830.67	-5350.02	5247.71	44.72
Dead+Wind 330 deg - Service	47797.63	-33983.87	-59865.81	-6686.07	3757.08	34.06

Solution Summary

	Sui	m of Applied Force	S		Sum of Reaction	18	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	lb	lb	lb	lb	lb	lb	
1	-0.00	-47797.63	0.00	0.00	47797.63	-0.00	0.000%
2	344.98	-47797.63	-86426.82	-344.98	47797.61	86425.73	0.001%
3	39979.76	-47797.63	-69553.05	-39979.19	47797.62	69552.15	0.001%
4	55472.63	-47797.63	-55794.38	-55471.89	47797.62	55793.68	0.001%
5	66945.45	-47797.63	-38618.20	-66944.59	47797.62	38617.74	0.001%
6	79738.58	-47797.63	328.94	-79737.54	47797.62	-328.88	0.001%
7	74709.93	-47797.63	43036.41	-74709.05	47797.61	-43035.76	0.001%
8	56006.81	-47797.63	55642.81	-56006.11	47797.62	-55642.00	0.001%
9	40232.45	-47797.63	68947.98	-40231.96	47797.62	-68947.04	0.001%
10	-177.92	-47797.63	77415.09	177.91	47797.62	-77414.12	0.001%
11	-40600.94	-47797.63	69473.72	40600.40	47797.62	-69472.80	0.001%
12	-56334,25	-47797.63	56265.63	56335.84	47798.56	-56264.89	0.002%
13	-74952.08	-47797.63	43565.78	74951.20	47797.61	-43565,14	0.001%
14	-79435.19	-47797.63	816.37	79434.16	47797.62	-816.31	0.001%
15	-66160.63	-47797.63	-37979.57	66159.78	47797.62	37979.12	0.001%
16	-54617.39	-47797.63	-55109.89	54616.66	47797.62	55109.21	0.001%
17	-39149-62	-47797,63	-68927-86	39149,10	47797-62	68926.95	0.001%
18	0.00	-68919.03	000	-0.00	68919.03	-000	0.000%
19	296.75	-68919.03	-85215.27	-296.76	68919.00	85213.67	0.001%
20	39667.44	-68919.03	-68996.93	-39666.55	68919.01	68995.60	0.002%
21	55181.52	-68919.03	-55479.11	-55180.35	68919.01	55478.06	0.002%
22	66648.05	-68919.03	-38446.22	-66646.69	68919.01	38445.50	0.001%
23	79091.48	-68919.03	322.86	-79089.93	68919.01	-322.83	0.001%
24	73701.67	-68919.03	42326.18	-73700,40	68919.00	-42325,26	0.001%
25	55534.22	-68919.03	55225.13	-55533.23	68919.01	-55223.93	0.001%
26	39530.66	-68919.03	68677.72	-39529.98	68919.01	-68676.29	0.002%
27	-673.19	-68919.03	77242.10	673.17	68919.01	-77240,57	0.001%
28	-40575.72	-68919.03	69058.85	40575.02	68919.01	-69057.40	0.002%
29	-56165;23	-68919.03	56101.98	56164.22	68919.01	-56100.76	0.002%

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	180' Stainless Lattice, Ledyard, CT	33 of 43
Project		Date
	AT&T Site CT2283	15:30:26 06/29/16
Client		Designed by
	MODification - Ledyard, CT Tower / AT&T	MCD

	Sun	n of Applied Force	S		Sum of Reaction	15	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	lb	lb	lb	lb	lb	1b	
30	-74076.65	-68919.03	43289.78	74075.38	68919,00	-43288,83	0.001%
31	-79045,95	-68919.03	1260.09	79044.40	68919.01	-1260.03	0.001%
32	-66166.56	-68919.03	-37489.37	66165,21	68919.01	37488.69	0.001%
33	-54282.23	-68919.03	-54710.73	54281.09	68919.01	54709.70	0,001%
34	-38763,83	-68919.03	-68407,26	38762,96	68919.01	68405.95	0.002%
35	309,63	-47797.63	-75263.18	-309.62	47797.62	75262.20	0.001%
36	34729.37	-47797.63	-60427.73	-34728.90	47797.62	60426.93	0.001%
37	48156_84	-47797.63	-48445,61	-48156,22	47797,63	48444.99	0.001%
38	58087,39	-47797.63	-33507,36	-58086.65	47797.63	33506,95	0.001%
39	69260.43	-47797.63	295.22	-69259.53	47797.62	-295.17	0.001%
40	65056.06	-47797.63	37472.73	-65055,26	47797.62	-37472.18	0.001%
41	48636.27	-47797.63	48309.58	-48635.63	47797.62	-48308.89	0.001%
42	34956.16	-47797.63	59884.68	-34955.70	47797.62	-59883.87	0.001%
43	-159,69	-47797.63	67175.09	159.68	47797.63	-67174.24	0.001%
44	-35286,88	-47797.63	60356.54	35286.39	47797.62	-60355.74	0.001%
45	-48930,15	-47797.63	48868.56	48929.48	47797.62	-48867.89	0.001%
46	-65273,39	-47797_63	37947.85	65272.59	47797.62	-37947,30	0.001%
47	-68988,14	-47797.63	732.70	68987.24	47797.62	-732,64	0.001%
48	-57383.01	-47797.63	-32934.18	57382.28	47797,63	32933.78	0.001%
49	-47389.26	-47797.63	-47831.28	47388.64	47797,63	47830.67	0.001%
50	-33984.31	-47797.63	-59866.62	33983.87	47797.63	59865.81	0.001%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination	8	of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00007514
3	Yes	4	0.00000001	0.00006713
4	Yes	4	0.00000001	0.00006085
5	Yes	4	0.00000001	0.00005800
6	Yes	4	0.00000001	0.00006695
7	Yes	4	0.00000001	0.00007508
8	Yes	4	0.00000001	0.00007266
9	Yes	4	0.00000001	0.00006702
10	Yes	4	0.00000001	0.00005816
11	Yes	4	0.00000001	0.00006702
12	Yes	4	0.00000001	0.00007246
13	Yes	4	0.00000001	0.00007513
14	Yes	4	0.00000001	0.00006714
15	Yes	4	0.00000001	0.00005812
16	Yes	4	0.00000001	0.00006083
17	Yes	4	0.00000001	0.00006701
18	Yes	4	0.00000001	0.00000001
19	Yes	4	0.00000001	0.00011032
20	Yes	4	0,00000001	0.00010230
21	Yes	4	0.00000001	0.00009608
22	Yes	4	0.00000001	0.00009330
23	Yes	4	0.00000001	0.00010201
24	Yes	4	0.00000001	0.00011031
25	Yes	4	0.00000001	0.00010808
26	Yes	4	0.00000001	0.00010204
27	Yes	4	0.00000001	0.00009328
28	Yes	4	0.00000001	0.00010241
29	Yes	4	0.00000001	0.00010816
30	Yes	4	0.00000001	0.00011046

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone; 860-529-8882 FAX: 860-529-3991

_			
1	Job		Page
		180' Stainless Lattice, Ledyard, CT	34 of 43
	Project		Date
		AT&T Site CT2283	15:30:26 06/29/16
	Client		Designed by
		MODification - Ledyard, CT Tower / AT&T	MCD

31	Yes	4	0.00000001	0.00010249
32	Yes	4	0.00000001	0.00009336
33	Yes	4	0.00000001	0.00009609
34	Yes	4	0.00000001	0.00010234
35	Yes	4	0.00000001	0.00007422
36	Yes	4	0.00000001	0.00006731
37	Yes	4	0.00000001	0.00006197
38	Yes	4	0.00000001	0.00005958
39	Yes	4	0.00000001	0.00006716
40	Yes	4	0.00000001	0.00007417
41	Yes	4	0.00000001	0.00007213
42	Yes	4	0.00000001	0.00006725
43	Yes	4	0.00000001	0,00005956
44	Yes	4	0.00000001	0.00006725
45	Yes	4	0.00000001	0.00007211
46	Yes	4	0,00000001	0.00007421
47	Yes	4	0.00000001	0.00006729
48	Yes	4	0.00000001	0.00005968
49	Yes	4	0.00000001	0.00006200
50	Yes	4	0.00000001	0.00006726

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov_{-}	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	(0)	۰
T1	180 - 175	11.364	35	0.5176	0.0840
T2	175 - 166.667	10.762	35	0.5190	0.0845
T3	166.667 - 158,333	9,832	35	0.5091	0.0837
T4	158.333 - 150	8,921	35	0.4921	0.0815
T5	150 - 125	8.049	35	0.4680	0.0767
T6	125 - 100	5,696	35	0.3895	0.0639
T7	100 - 75	3.757	35	0.3060	0.0514
T8	75 - 50	2,200	35	0.2363	0.0381
T9	50 - 25	1.072	46	0.1665	0.0264
T10	25 - 0	0.315	46	0.0876	0.0129

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb	in	0	o	fi
185.00	Ground Rod w/Extension	35	11.364	0.5176	0.0840	7944
180,00	6 FT DISH	35	11.364	0.5176	0,0840	7944
175.00	4 FT DISH	35	10.762	0.5190	0.0845	7944
171,00	Dish Mount	35	10.308	0.5158	0.0843	12770
168.00	6 FT DISH	35	9.978	0.5114	0.0839	54654
167.00	PD458-1	35	9.869	0.5097	0.0837	152530
162.50	6 FT DISH	35	9.375	0.5014	0.0829	47794
158.00	8 FT DISH	35	8.886	0.4913	0.0814	17667
150.00	6 FT DISH	35	8.049	0.4680	0.0767	19613
146.00	PD320	35	7.646	0.4557	0.0743	19656
138.00	Dish Mount	35	6.869	0.4311	0.0700	18634
135:50	6 FT DISH	35	6.635	0.4233	0.0688	18280
135,00	DB264-A	35	6.589	0,4217	0.0686	18211
133.00	2' Side Mount Standoff	35	6,405	0.4154	0.0676	17940

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	180' Stainless Lattice, Ledyard, CT	35 of 43
Project		Date
	AT&T Site CT2283	15:30:26 06/29/16
Client		Designed by
	MODification - Ledyard, CT Tower / AT&T	MCD

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		$Comb_*$	în	0	0	ft
125.00	DB432-A	35	5.696	0.3895	0.0639	17160
115.00	531-70 Dipole	35	4,873	0.3556	0.0591	18607
113.00	Dish Mount	35	4.716	0.3487	0.0582	18983
100,00	Dish Mount	35	3.757	0.3060	0.0514	21354
94.00	DB264-A	35	3,346	0.2880	0.0481	19897
87.00	2' Side Mount Standoff	35	2,896	0.2684	0.0442	18016
75.00	Powermount Reaction at 75	35	2,200	0.2363	0.0381	15871
63.50	PD156S	35	1.633	0.2050	0.0327	19061
53.00	DB803Q-XT	46	1.188	0.1753	0.0278	24030
50.00	2' Side Mount Standoff	46	1.072	0.1665	0.0264	24653
49.00	SY203(C) - YAGI Antenna	46	1.034	0.1635	0.0259	24328
25.00	Powermount Reaction at 25	46	0.315	0.0876	0.0129	13311

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz,	Gov_*	Tilt	Twist
No_*		Deflection	Load		
	ft	in	Comb.	0	0
T1	180 - 175	13.190	2	0.6041	0.1151
T2	175 - 166,667	12,486	2	0.6057	0.1155
T3	166.667 - 158,333	11.401	2	0.5937	0,1138
T4	158.333 - 150	10,340	2	0.5733	0.1104
T5	150 - 125	9.326	2	0.5446	0.1045
T6	125 - 100	6,592	2	0.4522	0.0881
T7	100 - 75	4,343	2	0.3547	0.0710
T8	75 - 50	2.541	2	0.2736	0,0521
T9	50 - 25	1,237	13	0.1927	0.0358
T10	25 - 0	0.362	13	0.1013	0.0175

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb	in	٥	0	Curvature fi 6445 6445 6445 10323 43563 118663 39560 14648 16651 16758 15881 15581 15522 15289
185.00	Ground Rod w/Extension	2	13,190	0.6041	0.1151	6445
180.00	6 FT DISH	2	13.190	0.6041	0.1151	6445
175.00	4 FT DISH	2	12.486	0.6057	0.1155	6445
171.00	Dish Mount	2	11.956	0.6018	0.1150	10323
168.00	6 FT DISH	2	11,571	0,5964	0.1142	43563
167.00	PD458-1	2	11,444	0.5944	0.1139	118663
162.50	6 FT DISH	2	10.868	0.5844	0.1124	39560
158.00	8 FT DISH	2	10,298	0,5723	0.1102	14648
150.00	6 FT DISH	2	9.326	0.5446	0.1045	16651
146.00	PD320	2	8.857	0.5301	0.1016	16758
138.00	Dish Mount	2	7.954	0.5010	0.0963	15881
135.50	6 FT DISH	2	7.682	0.4918	0.0947	15581
135.00	DB264-A	2	7.628	0.4900	0.0944	15522
133.00	2' Side Mount Standoff	2	7.415	0.4826	0.0931	15289
125.00	DB432-A	2	6.592	0.4522	0.0881	14623
115.00	531-70 Dipole	2	5,637	0.4126	0,0816	15892
113.00	Dish Mount	2	5.455	0.4046	0.0802	16222
100.00	Dish Mount	2	4.343	0.3547	0.0710	18324

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

T	Job		Page
		180' Stainless Lattice, Ledyard, CT	36 of 43
Ì	Project		Date
		AT&T Site CT2283	15:30:26 06/29/16
Ī	Client		Designed by
		MODification - Ledyard, CT Tower / AT&T	MCD

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	în	0	0	ft
94.00	DB264-A	2	3.868	0.3338	0.0664	17098
87:00	2' Side Mount Standoff	2	3.346	0.3110	0,0610	15501
75.00	Powermount Reaction at 75	2	2.541	0.2736	0.0521	13678
63.50	PD156S	2	1.885	0.2374	0.0445	16419
53.00	DB803Q-XT	13	1,371	0.2029	0.0378	20683
50.00	2' Side Mount Standoff	13	1,237	0.1927	0.0358	21221
49.00	SY203(C) - YAGI Antenna	13	1,193	0.1892	0.0351	20944
25.00	Powermount Reaction at 25	13	0.362	0.1013	0.0175	11504

Bolt Design Data

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load per	Allowable Load	Ratio Load	Allowable Ratio	Criteria
710	ft	1),pe	Grade	in	Bolts	Bolt Ib	lb	Allowable	Nano	
T1	180	Leg	A325X	0.7500	6	86.11	18989.00	0.005	1.333	Bolt Tension
		Diagonal	A325X	0.7500	1	16176.00	12234.40	1.322	1.333	Member Bearing
T2	175	Leg	A325X	0.7500	6	3012.44	19437.90	0.155	1.333	Bolt Tension
		Diagonal	A325X	0.7500	1	9146.59	12234.40	0.748	1,333	Member Bearing
		Horizontal	A325X	0.6250	2	3207.76	8156.25	0.393	1.333	Member Bearing
T3	166.667	Diagonal	A325X	0.7500	1	10198,60	12234.40	0.834	1,333	Member Bearing
		Horizontal	A325X	0.6250	2	3041.18	8156.25	0.373	1.333	Member Bearing
T4	158,333	Diagonal	A325X	0.7500	1	11859.20	12234.40	0.969	1,333	Member Bearing
		Horizontal	A325X	0.6250	2	3688.47	9203.88	0.401	1.333	Bolt Shear
T5	150	Leg	A325X	0.7500	6	9551,63	19438.50	0.491	1.333	Bolt Tension
		Diagonal	A325X	0.7500	1	14940.80	16312.50	0.916	1.333	Member Bearing
		Horizontal	A325X	0.6250	2	5031.67	9203.88	0.547	1.333	Bolt Shear
Т6	125	Leg	A325X	0,7500	6	18282.30	19438.60	0.941	1.333	Bolt Tension
		Diagonal	A325X	0.7500	1	16522.70	16312.50	1.013	1.333	Member Bearing
		Horizontal	A325X	0,6250	2	5946.69	9203,88	0.646	1.333	Bolt Shear
T7	100	Leg	A490N	0.7500	6	27410.60	23856.40	1.149	1,333	Bolt Tension
		Diagonal	A325X	0.7500	1	18162.20	16312.50	1,113	1,333	Member Bearing
		Horizontal	A325X	0.6250	2	6935.90	9203.88	0.754	1,333	Bolt Shear
T8	75	Leg	A325X	1.0000	8	27554,20	34557.40	0.797	1,333	Bolt Tension
		Diagonal	A325X	1.0000	1	23911.60	27187.50	0.880	1,333	Member Bearing
		Horizontal	A325X	0.6250	2	7765.22	9203.88	0.844	1.333	Bolt Shear
Т9	50	Leg	A325X	1.0000	8	34259.70	34556.30	0.991	1.333	Bolt Tension
		Diagonal	A325X	1,0000	1	25531.20	21750.00	1.174	1.333	Member Bearing
		Horizontal	A325X	0.6250	2	8705.10	9203.88	0.946	1.333	Bolt Shear
T10	25	Leg	A325X	1.0000	8	41165.40	34554.00	1.191	1.333	Bolt Tension
		Diagonal	A325X	1.0000	1	26328.60	21750.00	1.191	1,333	Member Bearing
		Horizontal	A325X	0.6250	2	9312.87	9203.88	1.012	1,333	Bolt Shear

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

_	Job	Page
	180' Stainless Lattice, Ledyard, CT	37 of 43
	Project	Date
	AT&T Site CT2283	15:30:26 06/29/16
	Client	Designed by
	 MODification - Ledyard, CT Tower / AT&T 	MCD

Compression Checks

Lea	Design	Data (Compression	1)
3		_ ~~ ,		•,

Section No.	Elevation	Size	L	L_{u}	Kl/r	F_a	A	Actual P	Allow P _a	Ratio P
	ft		ft	ft		ksi	in^2	lb	Ιb	P_{ii}
T1	180 - 175	HSS5x.25	5.01	5.01	35,6 K=1.00	26,434	3,4894	-745.14	92239.80	0.008
T2	175 - 166,667	HSS5x,25	8,34	8.34	59.3 K=1.00	22.832	3.4894	-20051,60	79670.80	0.252
T3	166,667 - 158.333	HSS5x.25	8.34	8.34	59.3 K=1.00	22.832	3.4894	-33209.80	79670.80	0.417
T4	158.333 - 150	HSS5x.25	8.34	8.34	59.3 K=1.00	22.832	3.4894	-47864.60	79670.80	0.601
T5	150 - 125	MOD HSS 5x0.250 w/ 1/3 HSS 5,5x0,258	25.03	8.34	62.0 K=1.00	22.369	5.1397	-102638.00	114969.00	0.893
Т6	125 - 100	MOD HSS 5x0.375 w/ 1/3 HSS 5.5625x0.375	25.03	8.34	63.4 K=1.00	22.131	7_4062	-164990.00	163903.00	1.007
T7	100 - 75	MOD HSS 5x0.5 w/ 1/2 HSS 6X0.5	25.03	8.34	62.2 K=1.00	22.345	11,3883	-230724.00	254467.00	0.907
T8	75 - 50	MOD_HSS6.8750x.5 w/ 1/2 HSS 7.5x0.3125	25.03	12,51	66.4 K=1.00	21.590	13.5420	-286984.00	292369.00	0.982
T9	50 - 25	MOD_HSS6.8750x.5 w/ 1/2 HSS 7.5x0.3125	25,03	6.26	33.2 K=1.00	26.746	13.5420	-352674.00	362200.00	0.974
T10	25 - 0	MOD_HSS6.8750x.5 w/ 1/2 HSS 7.5x0.3125	25.03	6.26	33.2 K=1.00	26.746	13.5420	-421755.00	362200.00	1.164

^{*} DL controls

Diagonal Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	F_a	A	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in ²	lb	lb	Pa
T1	180 - 175	2L2 1/2x2x3/16	7.43	6.88	104.5 K=1.00	12.396	1.6200	-16273,10	20081.80	0.810
T2	175 - 166 667	2L2 1/2x2x3/16	10,17	9.54	144.9 K=1.00	7.111	1.6200	-9240.56	11520.30	0.802
Т3	166,667 - 158,333	2L2 1/2x2x3/16	10.37	9.75	148.1 K=1.00	6.811	1.6200	-10299.10	11034.50	0.933
T4	158.333 - 150	2L2 1/2x2x3/16	10,57	9.96	151.3 K=1.00	6.523	1,6200	-11976,60	10567.40	1,133
T5	150 - 125	2L2 1/2x2 1/2x1/4	11,21	10,63	165 _* 9 K=1.00	5,426	2,3800	-15213,60	12914.80	1.178
Т6	125 - 100	2L3x2 1/2x1/4	11291	11.34	144.0 K=1.00	7.198	2.6300	-16851.50	18931.60	0.890

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	180' Stainless Lattice, Ledyard, CT	38 of 43
Project		Date
	AT&T Site CT2283	15:30:26 06/29/16
Client	MODification I advand OT Taver / ATOT	Designed by
	MODification - Ledyard, CT Tower / AT&T	MCD

Section No.	Elevation	Size	L	L_{μ}	Kl/r·	F_a	Α	Actual P	Allow. P_a	Ratio P
	ft		ft	ft		ksi	in ²	lb	lь	Pir
T7	100 - 75	2L3x2 1/2x1/4	12.64	12.04	152 _* 8 K=1.00	6.394	2,6300	-18665.80	16815.40	1,110
Т8	75 - 50	2L3 1/2x3 1/2x5/16	16.33	15.51	172.3 K=1.00	5.029	4.1800	-24568.00	21022.50	1.169
Т9	50 - 25	2L3 1/2x3 1/2x1/4	16,99	16.19	133.1 K=1.00	8,430	3,3800	-27040,10	28494,40	0.949
T10	25 - 0	2L3 1/2x3 1/2x1/4	17,68	16.90	138.9 K=1.00	7.735	3,3800	-27069,30	26145,10	1.035

Section No.	Elevation	Size	L	L_{u}	Kl/r	F_a	A	Actual P	Allow. P_a	Ratio P
	ft		ft	ft		ksi	in ²	lb	lb	P_{α}
T2	175 - 166,667	L2 1/2x2 1/2x3/16	11,00	10.19	142.8 K=0.91	7.319	0.9020	-6234.68	6601.99	0.944
Т3	166.667 - 158.333	L2 1/2x2 1/2x3/16	11.67	10.85	149.2 K=0.89	6.712	0.9020	-6082.36	6054.06	1.005
T4	158.333 - 150	L2 1/2x2 1/2x1/4	12.33	11.52	156.8 K=0.87	6.077	1.1900	-7376.95	7231,11	1.020
T5	150 - 125	L3x3x1/4	14.33	6,76	133.0 K=0,97	8.439	1,4400	-10043.20	12152.70	0.826
Т6	125 - 100	L3x3x1/4	16.33	7.76	148.5 K=0.94	6.775	1.4400	-11860.80	9755.60	1.216
T7	100 - 75	L4x4x1/4	18.33	8.72	128.9 K=0.98	8.990	1.9400	-13719,20	17440.90	0,787
Т8	75 - 50	L4x4x1/4	20.00	9.49	137.7 K=0.96	7_870	1.9400	-15482.70	15268.00	1.014
T9	50 - 25	L4x4x5/16	22.00	10,49	149.9 K=0.94	6.649	2.4000	-17410.20	15958.40	1.091
T10	25 - 0	L4x4x3/8	24.00	11.49	161.9 K=0.93	5.695	2.8600	-18625.70	16288.60	1.143

Top Girt Design Data (Compression)

Section	Elevation	Size	L	L_u	Kl/r	F_a	Α	Actual	Allow.	Ratio
No.								P	P_{u}	P
	ft		fi	ft		ksi	in^2	16	lb	Pa
T1	180 - 175	L3x3x1/4	10.60	10.18	127.0	9.258	1.4400	-13833.10	13332.00	1.038
					K=0.97					

Redundant Horizontal (1) Design Data (Compression)

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	180' Stainless Lattice, Ledyard, CT	39 of 43
Project		Date
	AT&T Site CT2283	15:30:26 06/29/16
Client		Designed by
	MODification - Ledyard, CT Tower / AT&T	MCD

Section No.	Elevation	Size	L	L_{u}	Kl/r	F_{σ}	А	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in^2	lb	lb	Par
Т9	50 - 25	L2 1/2x2 1/2x3/16	5.50	5.19	125.8 K=1.00	9.442	0.9020	-6113,37	8516.82	0.718
T10	25 - 0	L2 1/2x2 1/2x3/16	6.00	5.69	137.9 K=1.00	7,855	0.9020	-7310,85	7085.37	1.032

Redundant Diagonal (1) Design Data (Compression)										
Section No.	Elevation	Size	L	Lii	Kl/r	F_a	A	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in^2	16	1b	P.,
Т9	50 - 25	L3x3x1/4	8.16	7.68	155.6 K=1.00	6.165	1,4400	-4537.06	8877,80	0,511
T10	25 - 0	L3x3x1/4	8.49	8.03	162,8 K=1.00	5,633	1.4400	-5174.78	8111,57	0,638

Section No.	Elevation	Size	L	$L_{"}$	Kl/r	F_a	A	Actual P	Allow, P_a	Ratio P
	fi		ft	fi		ksi	in ²	lb	1b	P_{μ}
T5	150 - 125	L2 1/2x2 1/2x3/16	7.17	7.17	173.7 K=1.00	4.947	0.9020	-13.06	4462.43	0.003
Т6	125 - 100	L2 1/2x2 1/2x3/16	8.17	8.17	198.0 K=1.00	3.810	0.9020	-12,72	3436.50	0.004
T7	100 - 75	L2 1/2x2 1/2x3/16	9.17	9.17	222.2 K=1.00	3.024	0.9020	-17.76	2727.61	0.007
T8	75 - 50	L2 1/2x2 1/2x3/16	10.00	10.00	242.4 K=1.00	2.541	0.9020	-19.85	2291.95	0.009
Т9	50 - 25	L2 1/2x2 1/2x3/16	11.00	11.00	266.7 K=1.00	2.100	0.9020	-19.86	1894,18	0.010
		KL/R > 250 (C) - 218								
T10	25 - 0	L3x3x1/4	12,00	12.00	243.2 K=1.00	2,524	1.4400	-19.88	3634.39	0.005

			eg Des	sign D	ata (1	ensio	n)			
Section No.	Elevation	Size	L	L	Kl/r	F_a	A	Actual	Allow.	Ratio
140.	ft		fi	fi		ksi	in^3	lb	lb =	P_{ii}
Tl	180 - 175	HSS5x.25	5.01	5.01	35.6	30.000	3.4894	516.68	104682,00	0.00

Tension Checks

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

I	Job		Page
		180' Stainless Lattice, Ledyard, CT	40 of 43
	Project		Date
		AT&T Site CT2283	15:30:26 06/29/16
ſ	Client		Designed by
1		MODification - Ledyard, CT Tower / AT&T	MCD

Section No.	Elevation	Size	L	$L_{\prime\prime}$	Kl/r	F_a	Λ	Actual P	Allow P_a	Ratio P
	ft		fi	ft		ksi	Im^2	lb	1b	P_{μ}
Т2	175 - 166.667	HSS5x,25	8.34	8.34	59.3	30,000	3.4894	18074.70	104682.00	0.173
T3	166.667 - 158.333	HSS5x.25	8.34	8.34	59.3	30,000	3,4894	30139.40	104682.00	0.288
T4	158.333 - 150	HSS5x.25	8.34	8.34	59,3	30,000	3,4894	43129,40	104682.00	0.412
T5	150 - 125	MOD HSS 5x0,250 w/ 1/3 HSS 5.5x0,258	25.03	8.34	62,0	30,000	5.1397	92211.00	154191,00	0.598
Т6	125 - 100	MOD HSS 5x0.375 w/ 1/3 HSS 5,5625x0,375	25.03	8.34	63;4	30.000	7.4062	146506.00	222186,00	0.659
T7	100 - 75	MOD HSS 5x0,5 w/ 1/2 HSS 6X0,5	25.03	8.34	62.2	30.000	11,3883	202089.00	341649,00	0.592
Т8	75 - 50	MOD_HSS6.8750x.5 w/ 1/2 HSS 7.5x0.3125	25.03	12.51	66.4	30,000	13,5420	248680.00	406260,00	0.612
Т9	50 - 25	MOD_HSS6.8750x,5 w/ 1/2 HSS 7.5x0.3125	25,03	6.26	33.2	30,000	13,5420	301914.00	406260.00	0.743
T10	25 - 0	MOD_HSS6.8750x.5 w/ 1/2 HSS 7.5x0.3125	25.03	6.26	33.2	30,000	13.5420	357730.00	406260.00	0.881

Section No.	Elevation	Size	L	L_{u}	Kl/r	F_a	A	Actual P	$Allow$ P_a	Ratio P
	fl		ft	ft		ksi	1112	lb	Ιb	P.,
Т1	180 - 175	2L2 1/2x2x3/16	7.43	6.88	108.6	29,000	0.9689	16176.00	28098.30	0.576
T2	175 - 166.667	2L2 1/2x2x3/16	10.17	9.54	149.0	29.000	0.9689	9146.59	28098.30	0.326
Т3	166,667 - 158,333	2L2 1/2x2x3/16	10.37	9.75	152,2	29,000	0.9689	10198.60	28098.30	0.363
T4	158.333 - 150	2L2 1/2x2x3/16	10,57	9.96	155.4	29.000	0,9689	11859.20	28098.30	0.422
T5	150 - 125	2L2 1/2x2 1/2x1/4	11,21	10.63	170.1	29.000	1,4569	14940,80	42249.40	0.354
Т6	125 - 100	2L3x2 1/2x1/4	11.91	11.34	147.5	29.000	1,6444	16522.70	47686.90	0.346
T7	100 - 75	2L3x2 1/2x1/4	12.64	12.04	156.3	29.000	1.6444	18162.20	47686.90	0.381
T8	75 - 50	2L3 1/2x3 1/2x5/16	16.33	15.51	176.0	29.000	2,6077	23911.60	75622.00	0.316
T9	50 - 25	2L3 1/2x3 1/2x1/4	16.99	16.19	135.8	29.000	2,1131	25531,20	61280.60	0.417
T10	25 - 0	2L3 1/2x3 1/2x1/4	17.33	16.55	138.8	29.000	2.1131	26328,60	61280.60	0.430

Horizontal Design Data (Tension)

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT

Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

Job		Page
	180' Stainless Lattice, Ledyard, CT	41 of 43
Project		Date
	AT&T Site CT2283	15:30:26 06/29/16
Client		Designed by
	MODification - Ledyard, CT Tower / AT&T	MCD

Section No.	Elevation	Size	L	$L_{\prime\prime\prime}$	Kl/r	F_a	A	Actual P	Allow. P_a	Ratio P
	ft		fi	ft		ksi	\ln^2	lb	lb	P_a
T2	175 - 166.667	L2 1/2x2 1/2x3/16	11.00	10,19	163,2	29,000	0.5710	6415.53	16559.90	0.387
Т3	166.667 - 158.333	L2 1/2x2 1/2x3/16	11.67	10.85	173,5	29.000	0.5710	6080,64	16559.90	0.367
Т4	158.333 - 150	L2 1/2x2 1/2x1/4	12.33	11.52	186.0	29.000	0.7519	7322,60	21804.40	0.336
T5	150 - 125	L3x3x1/4	14,33	6.76	89.8	29,000	0.9394	10063.30	27241.90	0.369
T6	125 - 100	L3x3x1/4	16,33	7,76	102,7	29.000	0.9394	11893.40	27241.90	0.437
T7	100 - 75	L4x4x1/4	18,33	8.72	85,6	29.000	1,3144	13871.80	38116.90	0.364
Т8	75 - 50	L4x4x1/4	20.00	9.49	93.0	29.000	1.3144	15530,40	38116.90	0.407
Т9	50 - 25	L4x4x5/16	22.00	10.49	103.4	29.000	1.6242	16946.30	47102.30	0.360
T10	25 - 0	L4x4x3/8	24.00	11.49	114.0	29.000	1,9341	18109.70	56087.80	0.323

	Top Girt Design Data (Tension)									
Section No.	Elevation	Size	L	L_{u}	Kl/r	F_a	A	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in^2	lb	lb	P.,
Tl	180 - 175	L3x3x1/4	10.60	10.18	131.4	21.600	1.4400	13664.70	31104.00	0.439

	Redundant Horizontal (1) Design Data (Tension)									
Section	Elevation	Size	L	L _u	Kl/r	F_a	A	Actual	Allow	Ratio
No_{+}	ft		ft	fi		ksi	in^2	lb	P_a lb	
Т9	50 - 25	L2 1/2x2 1/2x3/16	5.50	5.19	80.0	21.600	0.9020	6113.37	19483.20	0.314
T10	25 - 0	L2 1/2x2 1/2x3/16	6.00	5.69	87.7	21.600	0.9020	7310.85	19483.20	0.375

		Redundan	t Diago	nal (1) Desi	ign Da	ta (Tei	nsion)		
Section No.	Elevation	Size	L	Lu	Kl/r	F_a	A	Actual P	Allow.	Ratio P
740	ft		ft	fl		ksi	in^2	lb	lb s	P_{q}
Т9	50 - 25	L3x3x1/4	8.01	7,52	97.0	21.600	1,4400	4660.84	31104.00	0.150

AECOM 500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

1	Job		Page
		180' Stainless Lattice, Ledyard, CT	42 of 43
Ì	Project		Date
		AT&T Site CT2283	15:30:26 06/29/16
İ	Client		Designed by
		MODification - Ledyard, CT Tower / AT&T	MCD

Section	Elevation	Size	L	L_u	Kl/r	F_u	Α	Actual	Allow	Ratio
No								P	P_a	P
	ft		ft	ft		ksi	m^2	lb	<i>lb</i>	P_{σ}
T10	25 - 0	L3x3x1/4	8.33	7.87	101.5	21.600	1.4400	5293.48	31104.00	0.170
										1

		Inner I	3racin	g Des	ign D	ata (Te	ension)		
Section No.	Elevation	Size	L	L_u	Kl/r	F_a	А	Actual P	Allow,	Ratio P
	fi		ft	ft		ksi	in^2	lb	lb.	P.,
T5	150 - 125	L2 1/2x2 1/2x3/16	6.50	6.50	100,3	21.600	0.9020	9.12	19483.20	0.000
Т6	125 - 100	L2 1/2x2 1/2x3/16	7.50	7.50	115.7	21.600	0.9020	7.64	19483.20	0.000
Т7	100 - 75	L2 1/2x2 1/2x3/16	8,50	8,50	131.1	21,600	0.9020	12,82	19483,20	0.001
Т8	75 - 50	L2 1/2x2 1/2x3/16	9,50	9.50	146,5	21.600	0.9020	9.93	19483.20	0.001
T9	50 - 25	L2 1/2x2 1/2x3/16	10.50	10.50	162.0	21.600	0.9020	7.61	19483.20	0.000
T10	25 - 0	L3x3x1/4	11.50	11.50	148.4	21.600	1.4400	4.60	31104.00	0.000

	Section Capacity Table										
Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	SF*P _{allow} lb	% Capacity	Pass Fail			
T1	180 - 175	Leg	HSS5x.25	2	-745.14	92239.80	34.3	Pass			
T2	175 - 166.667	Leg	HSS5x.25	15	-20051.60	106201.17	18.9	Pass			
Т3	166.667 - 158,333	Leg	HSS5x.25	27	-33209.80	106201_17	31.3	Pass			
T4	158.333 - 150	Leg	HSS5x ₂ 25	39	-47864.60	106201.17	45.1	Pass			
T5	150 - 125	Leg	MOD HSS 5x0.250 w/ 1/3 HSS 5.5x0.258	51	-102638.00	153253.67	67.0	Pass			
Т6	125 - 100	Leg	MOD HSS 5x0.375 w/ 1/3 HSS 5 ₄ 5625x0.375	90	-164990.00	218482.69	75.5	Pass			
T7	100 - 75	Leg	MOD HSS 5x0.5 w/ 1/2 HSS 6X0.5	129	-230724.00	339204.50	68.0 86.2 (b)	Pass			
T8	75 = 50	Leg	MOD_HSS6.8750x.5 w/ 1/2 HSS 7.5x0.3125	168	-286984.00	389727.86	73.6	Pass			
Т9	50 - 25	Leg	MOD_HSS6.8750x.5 w/ 1/2 HSS 7.5x0.3125	195	-352674.00	482812.58	73.0 74.4 (b)	Pass			
T10	25 - 0	Leg	MOD_HSS6.8750x,5 w/ 1/2 HSS 7.5x0.3125	246	-421755,00	482812.58	87.4 89.4 (b)	Pass			
T1	180 - 175	Diagonal	2L2 1/2x2x3/16	8	-16273,10	26769.04	60.8 99.2 (b)	Pass			
T2	175 - 166,667	Diagonal	2L2 1/2x2x3/16	20	-9240.56	15356.56	60.2	Pass			
Т3	166,667 - 158.333	Diagonal	2L2 1/2x2x3/16	32	-10299.10	14708.99	70.0	Pass			
T4	158.333 - 150	Diagonal	2L2 1/2x2x3/16	48	-11976.60	14086.34	85.0	Pass			
T5	150 - 125	Diagonal	2L2 1/2x2 1/2x1/4	60	-15213.60	17215.43	88.4	Pass			
T6	125 - 100	Diagonal	2L3x2 1/2x1/4	95	-16851,50	25235.82	66.8	Pass			

AECOM

500 Enterprise Drive, Suite 3B Rocky Hill, CT Phone: 860-529-8882 FAX: 860-529-3991

		2/			
Ī	Job		Page		
		180' Stainless Lattice, Ledyard, CT	43 of 43		
	Project		Date		
		AT&T Site CT2283	15:30:26 06/29/16		
	Client		Designed by		
		MODification - Ledyard, CT Tower / AT&T	MCD		

Section	Elevation	Component	Size	Critical	P	SF^*P_{ullow}	%	Pass
No.	fi	Туре		Element	<i>lb</i>	<i>lb</i>	Capacity	Fail
Т7	100 - 75	Diagonal	2L3x2 1/2x1/4	138	-18665.80	22414.02	76.0 (b) 83.3	D
1 /	100 - 75	Diagonal	2L3X2 1/2X1/4	136	-18003.80	22414,93	83.5 (b)	Pass
Т8	75 - 50	Diagonal	2L3 1/2x3 1/2x5/16	177	-24568.00	28022.99	87.7	Pass
T9	50 - 25	Diagonal	2L3 1/2x3 1/2x1/4	214	-27040.10	37983.03	71.2	Pass
.,	30 23	Diagonai	ZES WEAS WEAT	211	27010110	31703.03	88.1 (b)	1 455
T10	25 - 0	Diagonal	2L3 1/2x3 1/2x1/4	265	-27069.30	34851.42	77.7	Pass
					_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100/	90.8 (b)	2 400
T2	175 - 166,667	Horizontal	L2 1/2x2 1/2x3/16	19	-6234.68	8800.45	70.8	Pass
T3	166.667 -	Horizontal	L2 1/2x2 1/2x3/16	31	-6082.36	8070.06	75.4	Pass
	158.333							
T4	158,333 - 150	Horizontal	L2 1/2x2 1/2x1/4	46	-7376.95	9639.07	76.5	Pass
T5	150 - 125	Horizontal	L3x3x1/4	55	-10043.20	16199.55	62.0	Pass
T6	125 - 100	Horizontal	L3x3x1/4	94	-11860.80	13004.21	91.2	Pass
T7	100 - 75	Horizontal	L4x4x1/4	136	-13719.20	23248.72	59.0	Pass
T8	75 - 50	Horizontal	L4x4x1/4	175	-15482.70	20352.24	76.1	Pass
T9	50 - 25	Horizontal	L4x4x5/16	210	-17410.20	21272.55	81.8	Pass
T10	25 - 0	Horizontal	L4x4x3/8	261	-18625.70	21712.70	85.8	Pass
T }	180 - 175	Top Girt	L3x3x1/4	4	-13833.10	17771.56	77.8	Pass
T9	50 - 25	Redund Horz 1	L2 1/2x2 1/2x3/16	212	-6113.37	11352.92	53.8	Pass
T10	25 - 0	Bracing Redund Horz 1	L2 1/2x2 1/2x3/16	263	-7310.85	9444.80	77.4	Pass
110	23 - 0	Bracing	LL 1/2x2 1/2x3/10	203	-7510.65	7777.00	/ / _{//} -	1 455
T9	50 - 25	Redund Diag 1	L3x3x1/4	213	-4537.06	11834.11	38.3	Pass
		Bracing						
T10	25 - 0	Redund Diag 1 Bracing	L3x3x1/4	264	-5174.78	10812.72	47.9	Pass
T5	150 - 125	Inner Bracing	L2 1/2x2 1/2x3/16	63	-13.06	5948.42	0.2	Pass
T6	125 - 100	Inner Bracing	L2 1/2x2 1/2x3/16	100	-13,00	4580.85	0.2	Pass
T7	100 - 75	Inner Bracing	L2 1/2x2 1/2x3/16 L2 1/2x2 1/2x3/16	141	-17.76	3635.90	0.5	
T8	75 - 50	Inner Bracing	L2 1/2x2 1/2x3/16 L2 1/2x2 1/2x3/16	180		3055.90	0.6	Pass
T9	50 - 25	Inner Bracing	L2 1/2x2 1/2x3/16 L2 1/2x2 1/2x3/16	218	-19.85	2524.94		Pass
T10	25 - 0	Inner Bracing	L3x3x1/4	269	-19.86 -19.88	4844.64	0.8 0.4	Pass
110	23 - 0	liller bracing	L3X3X1/4	209	-19.88			Pass
							Summary 89.4	D
						Leg (T10) Diagonal	99.4	Pass Pass
						(T1)	99.2	Pass
						Horizontal	91.2	Pass
						(T6)	71.2	1 455
						Top Girt	77.8	Pass
						(T1)	77.0	1 400
						Redund	77.4	Pass
						Horz 1		
						Bracing		
						(T10)		
						Redund	47.9	Pass
						Diag I	1195	_ 400
						Bracing		
						(T10)		
						Inner	0.8	Pass
						Bracing (T9)	0.0	1 1100
						Bolt Checks	99.2	Pass
						RATING =	99.2	Pass

Program Version 7.0:5.1 - 2/1/2016 File:P:/Projects/Telcom/Structurals_By_Location/Connecticut/LedyardCSP#54/SAI-088/ERI/MODification - Ledyard CSP Tower,cri

ANCHOR BOLT ANALYSIS

Job Description 180' Stainless Lattice Tower - Ledyard, CT

Project No.

Page _ Sheet

Date

of 3

Description Anchor Bolt Analysis

Computed by____

MCD

Date 06/29/16

Tower MODification - Analysis

Checked by

ANCHOR BOLT ANALYSIS

Input Data

Max Pier Reactions:

Uplift:

Uplift:= 386-kips

user input

Shear:

Shear := 49 kips

user input

Compression:

Compression := 456 kips

user input

Anchor Bolt Data:

Use ASTM A449

Number of Anchor Bolts = N

N = 6

user input

Bolt Ultimate Strength:

 $F_u := 90 \cdot ksi$

user input

Bolt Yield Strength:

Fy:= 58 ksi

user input

Bolt Modulus:

E:= 29000·ksi

user input

Thickness of Anchor Bolts

D := 1.75in

user input

Threads per Inch:

n := 5

user input

Coefficient of Friction:

 $\mu := 0.55$

user input (for baseplate with grout ASCE 10-97)

180' Stainless Lattice Tower - Ledyard, CT

Project No.

Page

Job

Description Anchor Bolt Analysis

Tower MODification - Analysis

Computed by MCD Checked by

Sheet Date

Date

Anchor Bolt Area:

Gross Area of Bolt:

$$A_g := \frac{\pi}{4} \cdot D^2$$

$$A_g = 2.405 \cdot in^2$$

Net Area of Bolt:

$$A_n := \frac{\pi}{4} \cdot \left(D - \frac{0.9743 \cdot in}{n}\right)^2 \qquad A_n = 1.899 \cdot in^2$$

$$A_n = 1.899 \text{ in}^2$$

Check Tensile Forces:

Maximum Tensile Force (Gross Area):

Allowable Tension :=
$$1.33 \cdot (0.33 \cdot A_g \cdot F_u)$$

AllowableTension = 95.0 kips

Note: 1.33 increase allowed per TIA/EIA

Maximum Tensile Force (Net Area):

$$F_{\text{net.area}} := 1.33 \cdot (0.60 \cdot A_n \cdot Fy)$$

$$F_{\text{net-area}} = 87.9 \cdot \text{kips}$$

Note: 1.33 increase allowed per TIA/EIA

Applied Tension:

$$MaxTension := \frac{Uplift}{N}$$

Check Stresses:

$$\frac{MaxTension}{F_{net,area}} = 0.73$$

$$Condition 1 := if \left(\frac{\text{MaxTension}}{F_{\text{net,area}}} \le 1.00, \text{"OK"}, \text{"Overstressed"} \right)$$

Page

Job

Project No.
Computed by MCD 180' Stainless Lattice Tower - Ledyard, CT Date Description Anchor Bolt Analysis Tower MODification - Analysis Date

Checked by

Check Anchor Bolt Area:

Based on the ASCE 10-97 Design of Latticed Steel Transmission Structures

Required Area:

$$A_{s1} := \frac{\text{Uplift}}{\text{Fy}} + \frac{\text{Shear}}{\mu \cdot 0.85 \cdot \text{Fy}} \qquad A_{s1} = 8.5 \cdot \text{in}^2$$

$$A_{s2} := \left| \frac{\text{Shear} - (0.3 \cdot \text{Compression})}{\mu \cdot 0.85 \cdot \text{Fy}} \right| \qquad A_{s2} = 3.2 \cdot \text{in}^2$$

Provided Area:

$$A_{\text{sprovided}} := A_n \cdot N$$
 $A_{\text{sprovided}} = 11.4 \cdot \text{in}^2$

Condition2 := if
$$\left(\frac{A_{s1}}{A_{sprovided}} \le 1.00, "OK", "Overstressed"\right)$$
 $\frac{A_{s1}}{A_{sprovided}} = 0.74$

$$Condition 3 := if \left(\frac{A_{s2}}{A_{sprovided}} \le 1.00, "OK", "Overstressed" \right) \frac{A_{s2}}{A_{sprovided}} = 0.28$$

FOUNDATION ANALYSIS

Job 180' Stainless Lattice w/ Powermount - Ledyard, CT Project No. Foundation Analysis with Clipped Corner

Computed by

Sheet 1 of 10

Description Tower MODification - Analysis

Checked by

06/29/16 Date

Page

PIER AND MAT W/ CLIPPED CORNER FOUNDATION ANALYSIS - 3 PIERS

TOWER FORCES:

Weight of Tower

Moment Caused by Tower $M_t := 9520 \text{ kip} \cdot \text{ft}$ Shear at Base of Tower $S_t := 86.693 \cdot kip$ Max Compressive Force $C_t := 455.619 \cdot \text{kip}$ Max Uplift $U_t := 386.516 \cdot kip$ Height of Tower $H_t := 180 \cdot ft$ Width of Tower at Base $W_t := 25 \cdot ft$

NOTE: Weight of Tower is incorporated into the other loads listed above and the weight of the Powermount is input above

 $WT_t := 21.4 \cdot kip$

MATERIAL PROPERTIES:

Compressive Strength of Concrete	fc:= 3000 psi
Yield Strength of Steel Reinforcement	fy:= 60000 psi
Internal Friction Angle of Soil	$\phi_S := 34 \cdot deg$

Allowable Bearing Capacity $q_s := 6000 \cdot psf$

Coefficient of Lateral Soil Pressure:

$$K_{\mathbf{p}} := \frac{1 + \sin(\phi_{\mathbf{s}})}{1 - \sin(\phi_{\mathbf{s}})}$$

Bouyancy:= 0

 $K_p = 3.5371$

bouyancy (Yes=1/N=0): What is Position of Center of Tower with respect to Center of Pad?

FOOTING DIMENSIONS:

Width of Footing	$W_{f} := 36.25 \cdot ft$
Width of Clipped Corner	$W_{clip} := 6.75 ft$
Length of Clipped Corner	$L_{clip} := 8.4166f$
Overall Depth of Footing	$D_f := 6ft$
Length of Pier	$L_p := 4.5 \cdot ft$
Extension of Pier Above Grade	$L_{pag} := 0 \cdot ft$

Diameter of Pier $d_n := 4 \cdot ft$ Thickness of Footing $T_f := 2.5 \cdot ft$ Reinforcement Cover: Cvr := 3in

$$A_{\text{mat}} := W_f^2 - \frac{W_{\text{clip}} \cdot L_{\text{clip}}}{2}$$
 $A_{\text{mat}} = 1286 \cdot \text{ft}^2$

 $\gamma_{soil} := 120 \cdot pcf$ Unit Weight of Soil Unit Weight of Concrete $\gamma_{\rm conc} := 150 \cdot \rm pcf$ Depth to Neglect $n := 0 \cdot ft$

Cohesion of Clay Type Soil $c = 0 \cdot ksf$ Note: Use 0 for Sandy Soil

Adjusted Unit Weights: $\gamma_c := if(Bouyancy = 1, \gamma_{conc} - 62.4pcf, \gamma_{conc})$ $\gamma_c = 150 \cdot pcf$ $\gamma_s := if(Bouyancy = 1, \gamma_{soil} - 62.4pcf, \gamma_{soil})$ $\gamma_s = 120 \cdot pcf$

STEEL REINFORCING:

PIER REINFORCEMENT:

Is foundation subject to

Bar Size	BSpier:= 9	Bar Diameter	d _{bpier} := 1.128 in
Number of Bars	NBpier:= 12	Bar Area	$A_{\text{brier}} := 1.00 \cdot \text{in}^2$

PAD REINFORCEMENT:

$$\mathsf{BS}_{\mathrm{pad}} \coloneqq 9 \qquad \qquad \mathsf{Bar\ Diameter} \qquad \mathsf{d}_{\mathrm{bpad}} \coloneqq \mathsf{1.128\ in}$$

Number of Bars
$$NB_{pad} = 55$$
 Bar Area $A_{bpad} = 1.000 \text{ in}^2$

Note: Bar size varies. Equivalent area of reinforcement.

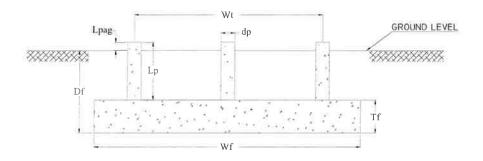
Tower MODification - Analysis

Job

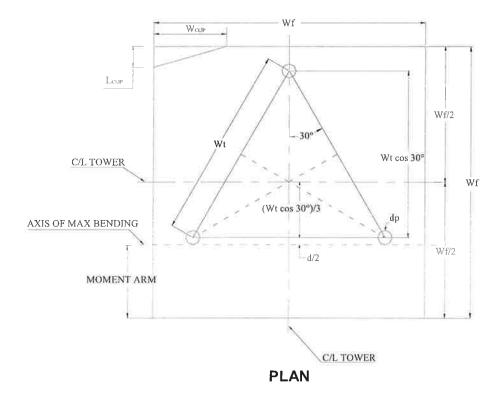
180' Stainless Lattice w/ Powermount - Ledyard, CT Project No. Description Foundation Analysis with Clipped Corner MCD Computed by

Checked by

Sheet Date Date


Page

2 06/29/16


of

of 10

FOUNDATION OVERVIEW

ELEVATION

				Page		OI	
Job	180' Stainless Lattice w/ Powermount - Ledyard	d, CT Project No.		Sheet	3	of	10
Description	Foundation Analysis with Clipped Corner	Computed by	MCD	Date	06/	29/	16
	Tower MODification - Analysis	Checked by		Date			

STABILITY OF FOOTING

Eccentricity of

Factor of Safety Req'd:	$FS_{reg} := 2.0$
-------------------------	-------------------

Passive Pressure:
$$P_{pn} := K_p \cdot \gamma_s \cdot n + c \cdot 2 \cdot \sqrt{K_p}$$

$$\begin{split} P_{pn} &:= K_p \cdot \gamma_s \cdot n + c \cdot 2 \cdot \sqrt{K_p} & P_{pn} = 0 \cdot \text{ksf} \\ P_{pt} &:= K_p \cdot \gamma_s \cdot \left(D_f - T_f\right) + c \cdot 2 \cdot \sqrt{K_p} & P_{pt} = 1.4856 \cdot \text{ksf} \\ P_{top} &:= \text{if} \left[n < \left(D_f - T_f\right), P_{pt}, P_{pn}\right] & P_{top} = 1.4856 \cdot \text{ksf} \\ P_{bot} &:= K_p \cdot \gamma_s \cdot D_f + c \cdot 2 \cdot \sqrt{K_p} & P_{bot} = 2.5467 \cdot \text{ksf} \end{split}$$

$$P_{ave} := \frac{P_{top} + P_{bot}}{2}$$

$$P_{ave} = 2.0162 \cdot ksf$$

$$A_{pp} := W_{f} T_{pp}$$
 $A_{pp} = 90.625 ft^2$

Ultimate Shear:
$$S_u := P_{ave} \cdot A_{pp}$$
 $S_u = 182.715 \cdot kip$

Weight of Concrete Pad:
$$WT_c := \left(A_{mat} \cdot T_f\right) \cdot \gamma_c \qquad WT_c = 482.1212 \cdot \text{kip}$$

Weight of Soil:
$$WT_{s1} := A_{mat}(\left|D_f - T_f - n\right|) \cdot \gamma_s$$

$$WT_{s1} = 539.9757 \cdot kip$$

$$WT_{s1} = 539.9757 \cdot kip$$

Weight of Soil Wedge at back face:
$$WT_{s2} := \left[\frac{\left(D_f - n\right)^2 \cdot tan\left(\varphi_s\right)}{2} \cdot W_f\right] \cdot \gamma_s$$

$$WT_{s2} = 52.814 \cdot kip$$

Eccentricity of Foundation Due to Clipped Corner
$$W_f = \frac{W_f}{2} - \frac{W_f^2 \cdot \frac{W_f}{2} - \frac{L_{clip} \cdot W_{clip}}{2} \cdot \left(W_f - \frac{W_{clip}}{3}\right)}{A_{mat}}$$
 Eccentricity $V_f = \frac{W_f^2 \cdot \frac{W_f}{2} - \frac{L_{clip} \cdot W_{clip}}{2}}{A_{mat}} \cdot \left(W_f - \frac{L_{clip}}{3}\right)$ Eccentricity $V_f = \frac{V_f^2 \cdot \frac{W_f}{2} - \frac{L_{clip} \cdot W_{clip}}{2}}{A_{mat}} \cdot \left(W_f - \frac{L_{clip}}{3}\right)$

$$\text{Eccentricity}_2 := \frac{W_f}{2} - \frac{W_f^2 \cdot \frac{W_f}{2} - \frac{L_{\text{clip}} \cdot W_{\text{clip}}}{2} \cdot \left(W_f - \frac{L_{\text{clip}}}{3}\right)}{A_{\text{mat}}}$$

$$\text{Eccentricity}_2 = 0.3385 \cdot \text{ft}$$

Distance to center of Tower Leg from Edge of Footing:
$$X_{t1} := \frac{W_f}{2} - \frac{W_t \cos(30 \cdot \deg)}{2} \qquad \qquad X_{t2} := \frac{W_f}{2} - \frac{W_t \cos(30 \cdot \deg)}{3}$$

$$X_t := if \left(\operatorname{Pos}_{tower} = 1, X_{t1}, X_{t2} \right) \qquad \qquad X_t = 10.9081 \cdot \mathrm{ft}$$

Additional Offset of
$$X_{off1} := \frac{W_f}{2} - \left(\frac{W_t \cdot \cos(30 \cdot \deg)}{3} + X_t\right) = X_{off2} := 0$$

Resisting Moment:
$$M_r := \left(WT_c + WT_{s1}\right) \cdot \frac{W_f}{2} + WT_t \cdot \left(\frac{W_f}{2} - X_{off}\right) + S_u \cdot \frac{T_{pp}}{3} + WT_{s2} \cdot \left(W_f + \frac{T_{pp} \cdot \tan(\varphi_s)}{3}\right)$$

Overturning Moment:
$$M_{ot} := M_t + S_t (L_p + T_f) + WT_t X_{off}$$
 $M_r = 21002.332 \text{ kip ft}$ $M_{ot} = 10134.3571 \text{ kip ft}$

Factor of Safety:
$$FS := \frac{M_r}{M_{ot}}$$
 $FS = 2.07$

SafetyCheck :=
$$if(FS > FS_{reg}, "Okay", "No Good")$$
 SafetyCheck = "Okay"

Job

180' Stainless Lattice w/ Powermount - Ledyard, CT Project No.

Page Sheet 4 of 10

Foundation Analysis with Clipped Corner

Computed by MCD

Date 06/29/16

Tower MODification - Analysis

Checked by

Date

BEARING PRESSURE CHECK:

Pressure Applied:

$$LOAD_{tot} := WT_c + WT_{s1} + WT_t$$

 $LOAD_{tot} = 1043.4969 \cdot kip$

$$I_1 := \frac{{W_f}^4}{12} + {W_f}^2 \cdot \text{Eccentricity}_1^2 - \frac{{L_{clip} \cdot W_{clip}}^3}{36} - {L_{clip} \cdot W_{clip} \cdot \left(\frac{W_f}{2} - \text{Eccentricity}_1 \right)}$$

$$S_1 := \frac{I_1}{0.5 \cdot W_f + \text{Eccentricity}_1}$$

$$I_1 = 142977 \cdot \text{ft}^4$$
 $S_1 = 7739 \cdot \text{ft}^3$

$$S_1 = 7739 \cdot ft^3$$

$$I_2 := \frac{W_f^4}{12} + W_f^2 \cdot \text{Eccentricity}_2^2 - \frac{2W_{\text{clip}} \cdot L_{\text{clip}}^3}{36} - L_{\text{clip}} \cdot W_{\text{clip}} \cdot \left(\frac{W_f}{2} - \text{Eccentricity}_2\right)$$

$$S_2 := \frac{I_2}{0.5 \cdot W_f + \text{Eccentricity}_2}$$

$$I_2 = 142813 \cdot \text{ft}^4$$
 $S_2 = 7735 \cdot \text{ft}^3$

$$S_2 = 7735 \cdot ft^3$$

$$S := \min(S_1, S_2)$$

$$S = 7735 \cdot ft^3$$

$$P_{\text{max}} := \frac{\text{LOAD}_{\text{tot}}}{A_{\text{mat}}} + \frac{M_{\text{ot}}}{S}$$

$$P_{\text{max}} = 2.1219 \cdot \text{ksf}$$

$$P_{min} := \frac{LOAD_{tot}}{A_{mat}} - \frac{M_{ot}}{S}$$

$$P_{min} = -0.4986 \cdot ksf$$

$$MaxPressure := if(P_{max} < q_s, "Okay", "No Good")$$

$$\label{eq:minPressure} \begin{aligned} \text{MinPressure} := & \text{ if} \Big[\Big(P_{\min} \geq 0 \Big) \cdot \Big(P_{\min} < q_{_{S}} \Big), \\ \text{"Okay"}, \\ \text{"No Good"} \Big] \end{aligned}$$

Distance to Resultant of Pressure Distribution:

$$X_p := \frac{P_{max}}{\frac{P_{max} - P_{min}}{W_f}} \cdot \frac{1}{3}$$

$$X_p = 9.7843 \cdot ft$$

Distance to Kern:

$$X_k := \frac{W_f}{3}$$

$$X_{l_r} = 12.0833 \cdot ft$$

Since Resultant Force is Not in Kern, Area to which Pressure is Applied Must be Reduced.

Eccentricity:

$$e = \frac{M_{ot}}{LOAD_{tot}}$$

$$e = 9.7119$$

Adjusted Soil Pressure:

$$q_{\mathbf{a}} := \frac{2 \cdot LOAD_{tot}}{3 \cdot W_{\mathbf{f}} \cdot \left(\frac{W_{\mathbf{f}}}{2} - e\right)}$$

$$q_a = 2.2811 \cdot ksf$$

Revised Maximum:

$$q_{max} := if(X_p < X_k, q_a, P_{max})$$

PressureCheck :=
$$if(q_{max} < q_s, "Okay", "No Good")$$

Job 180' Stainless Lattice w/ Powermount - Ledyard, CT Project No. Sheet 5 of 10

Description Foundation Analysis with Clipped Corner Computed by MCD Date 06/29/16

Tower MODiffication - Analysis Checked by Date

CHECK PUNCHING AND BEAM SHEAR:

$$\text{Load Factor:} \quad \text{(EIA 3.1.1)} \quad \text{LF} := \text{ if } \\ H_{t} \leq 700 \cdot \text{ft, 1.333, if } \\ H_{t} \geq 1200, 1.7, 1.333 + \\ \left(\frac{H_{t} - 700}{1200 - 700}\right) \\ 0.4 \\ \text{LF} = 1.333 \\$$

Beam Shear: (Critical section located at a distance d from the face of Pier) (ACI 11.3.1.1)

$$\phi_c := .85$$
 (ACI 9.3.2.3)

$$d := T_f - Cvr - .5 \cdot in$$
 $d = 26.5 \cdot in$

Factored load:
$$FL := LF \cdot \frac{C_t}{{W_f}^2}$$

$$FL = 0.4622 \cdot ksf$$

$$V_{req} := \frac{FL(X_t - 0.5 d_p - d) W_f}{\Phi_c}$$
 $V_{req} = 132.0584 kip$

ACI 11.3.1.1
$$V_{Avail} := 2 \cdot \sqrt{f \cdot g \cdot g} \cdot W_{f} \cdot d$$
 $V_{Avail} = 1262.7744 \cdot kip$

$$\label{eq:beamShearCheck} \begin{aligned} \text{BeamShearCheck} := & \text{ if} \Big(V_{req} < V_{Avail}, \text{"Okay"}, \text{"No Good"} \Big) \end{aligned} \\ \qquad & \text{BeamShearCheck} = \text{"Okay"} \end{aligned}$$

Punching Shear: (Critical Section Located at a distance of d/2 from the face of pier) (ACI 11.12.2.1)

$$b_0 := (d_p + d) \cdot \pi$$
 $b_0 = 19.5041 \cdot ft$

$$V_{req} = FL \cdot \frac{W_f^2 - (d_p + d)^2 \cdot \frac{\pi}{4}}{\phi_c}$$
 $V_{req} = 698.0575 \cdot kip$

$$V_{\text{Avail}} = 4 \cdot \sqrt{\text{fc psi}} \, b_{0} \cdot d$$
 $V_{\text{Avail}} = 1358.8535 \cdot \text{kip}$

$$PunchingShearCheck := if \Big(V_{req} < V_{Avail}, "Okay", "No Good" \Big) \qquad PunchingShearCheck = "Okay"$$

Job 180' Stainless Lattice w/ Powermount - Ledyard, CT Project No. Sheet 6 of 10

Description Foundation Analysis with Clipped Corner Computed by MCD Date 06/29/16

Tower MODification - Analysis Checked by Date

TENSILE REINFORCEMENT IN PAD:

 $\phi_m := .90 \text{ per ACI } 9.3.2.2$

Applied Moments:

$$M_{nT} := LF \cdot \left[U_{t^*} \left(W_{t^*} \sin(60 \cdot \deg) - \frac{d_p}{2} \right) + S_{t^*} \left(D_f + L_{pag} \right) \right] - WT_{t^*} X_{off}$$

$$M_{nS} := -1 \cdot \left[\frac{1}{2} \cdot \left(\frac{W_f}{2} + \frac{W_t}{3} \cdot \cos(30 \cdot \text{deg}) - \frac{d_p}{2} \right)^2 \cdot W_f \left[\gamma_s \cdot \left(T_{pp} - T_f \right) \right] + W T_{s2} \cdot \left[\frac{W_f}{2} + \frac{W_t}{3} \cdot \cos(30 \cdot \text{deg}) - \frac{d_p}{2} + \left(D_f - n \right) \cdot \tan(\varphi_s) \right] \right] + W T_{s2} \cdot \left[\frac{W_f}{2} + \frac{W_t}{3} \cdot \cos(30 \cdot \text{deg}) - \frac{d_p}{2} + \left(D_f - n \right) \cdot \tan(\varphi_s) \right] \right]$$

$$M_{nC} := -1 \cdot \left[\frac{1}{2} \cdot \left(\frac{W_f}{2} + \frac{W_t}{3} \cdot \cos(30 \cdot \deg) - \frac{d_p}{2} \right)^2 \cdot W_t \cdot \left(\gamma_c \cdot T_f \right) \right]$$

$$M_n := \frac{M_{nT} + M_{nS} + M_{nC}}{\phi_m}$$
 $M_n = 7566.5633 \cdot \text{kips} \cdot \text{ft}$

Required Reinforcement:

ACI 10.2.7.3
$$\beta := \text{ if } \left[\text{fc} \le 4000 \text{ psi, .85, if } \right] \text{ fc} \ge 8000 \text{ psi, .65, .85} - \left(\frac{\text{fc}}{\text{psi}} - 4000}{1000} \right) .05 \right]$$
 $\beta = 0.85$

$$b_{eff} := W_f \cos(30 \cdot \deg) + d_p$$
 $b_{eff} = 307.8076 \cdot in$

$$A_{S} := \frac{M_{n}}{\phi_{m} \cdot fy \cdot d}$$

$$A_{S} = 63.4513 \cdot in^{2}$$

$$a:=\frac{A_{S}\cdot fy}{\beta\cdot f\circ b_{eff}}$$

$$a=4.8503\cdot in$$

$$A_{s} = \frac{M_{n}}{fy\left(d - \frac{a}{2}\right)}$$

$$A_{s} = 62.8587 \cdot in^{2}$$

$$\rho := \frac{A_S}{b_{eff'} d} \qquad \qquad \rho = 0.0077$$

	-111			Page	of	
Job 180' Stainless Lattice w/ Powermount - Ledyard,		ard, CT Project No.		Sheet	7 of 10	
Description	Foundation Analysis with Clipped Corner	Computed by	MCD	Date	06/29/16	ji.
	Tower MODification - Analysis	Checked by		Date		

$$\rho_{sh} := if(fy \ge 60000 \cdot psi, 0.0018, 0.0020)$$

$$\rho_{\rm sh} = 0.0018$$

$$\mathsf{As} := \mathsf{if} \left(\rho \ge \rho_{sh}, \mathsf{A}_s, \rho_{sh} \cdot \frac{\mathsf{b}_{eff}}{2} \cdot \mathsf{d} \right)$$

$$As = 62.8587 \cdot in^2$$

$$As_{prov} := A_{bpad} NB_{pad}$$

$$As_{prov} = 55 \cdot in^2$$

$$PadReinforcement := if(As_{prov} > As, "Okay", "No Good")$$

PadReinforcement = "No Good"

DEVELOPMENT LENGTH OF PAD REINFORCEMENT:

TENSION (ACI 12.2.3)

$$B_{sPad} := \frac{W_f - 2 \cdot Cvr - NB_{pad} \cdot d_{bpad}}{NB_{pad} - 1}$$

$$B_{sPad} = 6.7956 \cdot in$$

$$\alpha := 1.0$$

$$\beta_{i} = 1.0$$

$$\lambda := 1.0$$

$$\gamma := 1.0$$

$$c := if \left(Cvr < \frac{B_{sPad}}{2}, Cvr, \frac{B_{sPad}}{2} \right)$$
 $c = 3 \cdot in$

$$k_t := 0$$

$$L_{dbt} := \frac{3}{40} \cdot \frac{fy}{\sqrt{f \cdot c \cdot psi}} \cdot \frac{c \cdot \beta \cdot \gamma \cdot \lambda}{\frac{c + k_{tr}}{d_{bpad}}} \cdot d_{bpad}$$

$$L_{dbt} = 34.8457 \cdot in$$

$$\label{eq:local_$$

$$L_{\text{dbmin}} := 12 \cdot \text{in}$$

 $L_{dbtCheck} = "Use L.dbt"$

$$L_{\text{Pad}} := \frac{W_f}{2} - \frac{W_t}{2} - \text{Cvr}$$

$$L_{Pad} = 64.5 \cdot in$$

				rage of
Job	180' Stainless Lattice w/ Powermount - Ledyar	rd, CT Project No.		Sheet 8 of 10
Description	Foundation Analysis with Clipped Corner	Computed by	MCD	Date 06/29/16
	Tower MODification - Analysis	Checked by		Date

REINFORCEMENT IN PIER:

Pier Area:
$$A_p := \frac{\pi \cdot d_p^2}{4}$$
 $A_p = 1809.5574 \cdot in^2$ (ACI 10.8.4 and 10.9.1) $A_{smin} := 0.01 \cdot 0.5 \cdot A_p$ $A_{smin} = 9.0478 \cdot in^2$ $A_{sprov} := NBpier A_{bpier}$ $A_{sprov} = 12 \cdot in^2$

SteelAreaCheck:= if(A_{sproy} > A_{smin}, "Okay", "No Good")

NOTE: Anchor Bolts are not accounted for in reinforcement calculation and will provide additional reinforcement to satisfy minimum requirement of steel.

SteelAreaCheck = "Okay"

Bar Spacing In Pier:
$$B_{sPier} := \frac{d_{p} \cdot \pi}{NBpier} - d_{bpier}$$

$$B_{sPier} = 11.4384 \cdot in$$

Diamter of Reinforcement Cage:
$$Diam_{cage} := d_p - 2 \cdot Cvr$$
 $Diam_{cage} = 42 \cdot in$

$$\text{Maximum Moment in Pier:} \qquad \qquad M_p := \left(S_{\underline{t}} \cdot L_p\right) \cdot LF \qquad \qquad M_p = 6240.3355 \cdot \text{kips} \cdot \text{in}$$

Pier Check evaluated from outside program and results are listed below;

(defined variables)
$$(f_c f_v cl Spiral) = (3 60 4 0)$$

The required input is column diameter in inches, $(D \underset{M}{N} \underset{M}{n} P_{ij} M_{xij}) := (48 \ 12 \ 9 \ 553 \ 4698)$ number of reinforcing bars, bar size number, factored axial load in kips and moment in kip inches:

Clears any previous output:
$$\left(\Phi P_n \quad \Phi M_{Xn} \quad f_{sp} \quad \wp \right) := \begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\left(\underbrace{\varphi_n^P}, \underbrace{\varphi_n^M}, \underbrace{f_n}, \varrho_n \right) := \varphi_n^P \left(D, N, n, P_u, M_{Xu} \right)^T$$

 $\left(\Phi P_n \ \Phi M_{XN} \ f_{SP} \ \rho \right) = (2245.0134 \ 19072.4646 \ -36.9447 \ 0.0066)$ The Output is given as useable axial load in kips, moment capacity in kip inches, splicing stress in ksi, and reinforcement ratio:

Column size and reinforcement may be changed to match capacity to the applied load.

$$AxialLoadCheck := if \Big(\varphi P_n \ge P_u, "Okay", "No Good" \Big)$$

$$AxialLoadCheck = "Okay"$$

$$BendingCheck := if(\phi M_{XN} \ge M_{XU}, "Okay", "No Good")$$

$$BendingCheck = "Okay"$$

				Page	Of
Job	180' Stainless Lattice w/ Powermount - Ledyar	d, CT Project No.		Sheet	9 of 10
Description	Foundation Analysis with Clipped Corner	Computed by	MCD	Date	06/29/16
	Tower MODification - Analysis	Checked by		Date	

DEVELOPMENT LENGTH OF PIER REINFORCEMENT:

TENSION (ACI 12.2.3)

Spacing and Cover:

 $Cvr = 3 \cdot in$

 $B_{sPier} = 11.4384 \cdot in$

Factors for development:

Reinforcement Location Factor

 $\alpha = 1.0$

Coating Factor

 $\beta := 1.0$

Concrete strength Factor

گڼ= 1.0

Reinforcement Size Factor

 $\chi := 1.0$

Spacing or Cover Dimension: $c = if \left(Cvr < \frac{B_sPier}{2}, Cvr, \frac{B_sPier}{2} \right) c = 3 \cdot in$

Transverse Reinforcement:

As allowed by ACI 12.2.4

$$\underset{\text{Andbet}}{\text{Lindbet}} = \frac{3}{40} \cdot \frac{\text{fy}}{\sqrt{\text{fopsi}}} \cdot \frac{\text{or } \beta \cdot \gamma \cdot \lambda}{\text{ork}_{tr}} \cdot d_{bpier}$$

 $L_{dbt} = 34.8457 \cdot in$

Minimum Development Length: (ACI 12.2.1)

Ladbruin = 12 in

Light = if (L_{dbt} \ge L_{dbmin}, "Use L.dbt", "Use L.dbmin")

L_{dbtCheck} = "Use L.dbt"

COMPRESSION: (ACI 12.3.2)

$$L_{dbc1} := \frac{.02 \cdot d_{bpier} \cdot fy}{\sqrt{f'c \cdot psi}}$$

 $L_{dbc1} = 24.7132 \cdot in$

Laboratoria =
$$0.0003 \cdot \frac{\sin^2}{\text{lb}} \cdot (d_{\text{bpier}} \cdot \text{fy})$$

 $L_{dbmin} = 20.304 \cdot in$

$$L_{dbc} := if(L_{dbc1} \ge L_{dbmin}, L_{dbc1}, L_{dbmin})$$

 $L_{dbc} = 24.7132 \cdot in$

Available Length in Pier: $L_{pier} := L_p - 3 \cdot in$ $L_{pier} = 51 \cdot in$

 $L_{piertension} := if(L_{pier} > L_{dbt}, "Okay", "No Good")$ $L_{piertension} = "Okay"$

 $L_{pier compression} := if(L_{pier} > L_{dbc}, "Okay", "No Good")$ $L_{pier compression} = "Okay"$

 $\label{eq:loss_padtension} \text{L}_{padtension} \coloneqq \text{if} \Big(\text{L}_{pad} > \text{L}_{dbt}, \text{"Okay"}, \text{"No Good"} \Big) \\ \qquad \qquad \text{L}_{padtension} \equiv \text{"No Good"}$

 $L_{pad compression} := if \Big(L_{pad} > L_{dbc}, "Okay", "No Good" \Big) \\ L_{pad compression} = "Okay"$

NOTE: Anchor bolts and plate provided, OK

About AECOM

AECOM (NYSE: ACM) is a global provider of professional technical and management support services to a broad range of markets, including transportation, facilities, environmental, energy, water and government. With approximately 45,000 employees around the world, AECOM is a leader in all of the key markets that it serves. AECOM provides a blend of global reach, local knowledge, innovation, and collaborative technical excellence in delivering solutions that enhance and sustain the world's built, natural, and social environments. A Fortune 500 company, AECOM serves clients in more than 100 countries and has annual revenue in excess of \$6 billion.

More information on AECOM and its services can be found at www.aecom.com.

500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 860-529-8882 Fax: 860-529-3991