May 15, 2014
Melanie A. Bachman
Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

Re: \quad Notice of Exempt Modification - Antenna Swap
 Property Address: 244 Gates Road, Lebanon, CT
 (the "Property")
 Applicant: New Cingular Wireless PCS, LLC ("AT\&T")

Dear Ms. Bachman:
AT\&T currently maintains a wireless telecommunications facility on an existing 121 -foot tower location on the Property, consisting of nine (9) wireless telecommunication antennas at an antenna center line height of 123 -feet. The tower is owned by Southern New England Telephone ("AT\&T"). The Council approved AT\&T's use of the tower in the following prior decisions; EM-CING-071-081124 and EM-CING-071-130124. AT\&T now intends to replace three (3) CSS DUO1417-8686-4-0 panel antennas and three (3) Andrew SBNH 1D6565C panel antennas with nine (9) CCI HPA - 65R-BUU H-8 panel antennas, while retaining three (3) Powerwave 7770 panel antennas (for a total of twelve (12) panel antennas) at the 123-foot level. Please refer to Tab 1 for further specifications of the replacement antennas.

Please accept this application as notification pursuant to R.C.S.A. §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. §16-50j-72(b)(2). In accordance with R.C.S.A. §16-50j-73, a copy of this letter is being sent to Joyce Okonuk, First Selectman of the Town of Lebanon, 570 Exeter Road, Lebanon, CT 06249. A copy of this letter is also being sent to Southern New England Telephone ("AT\&T Towers"), the owner of the property where the tower is located.

The planned modifications to AT\&T's facility fall squarely within those activities explicitly provided for in R.C.S.A. §16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. AT\&T's replacement antennas will be installed at the 123 -foot level of the 121 -foot tower.
2. The proposed modifications will not involve any changes to ground-mounted equipment and, therefore, will not require and extension of the site boundary.
3. The proposed modifications will not increase the noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the modified facility will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A cumulative worst-case RF emissions calculation for AT\&T's modified facility is provided in the RF Emissions Compliance Report, included in Tab 2.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The tower and its foundation can support AT\&T's proposed modifications. (See Structural Analysis Report included in Tab 3).

For the foregoing reasons, AT\&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes an exempt modification under R.C.S.A. §16-50j-72(b)(2).

Sincerely,

Kristen Smith

Enclosures

CC: Joyce Okonuk, First Selectman Town of Lebanon
Southern New England Telephone ("AT\&T")

GENERAL NOTES:

ORAMNGS PROVODE HERE ARE NOT TO SCAE UNLESS OTHERMSE NOTED AND ARE INTENOD TO SHOW OUTINE

12. Contractor Shall leane preulses in alean conomon.

 ant dangerous Exposure Lex
SITE WORK GENERAL NOTES:
THE CONTRACTOR SHALL CONTACT UTUUT LOCATNG SERVCES PRIOR TO THE START OF CONSTRUCTON

8) COMND SPAE
3. AL STE WORK SHALL be AS nNICATED ON THE DRAMNGS AND PROUECT SPEGFCCATONS.

. Contractor shall minmiz isturgance to exsting ste during consruucton
7. THE CONTRACTOR SHALL PRODOE SIE SICNAEE IN ACCORDANCE MTH THE ATET SPEGITCATION FOR SIIE SGINAC
8. THE STET SSAAL EE CRADDED TO CAUSE SURFACE WAITR TO ROW AWAY FROM THE TTRNSMISSON EQUIPMENT AN

1. THE AREAS OF FHE OMER'S PROPDRRT OISTRREED QY THE WORR AND NOT COVRED BY THE TOWER, EQUPMENT
2. RROSON CONTROL MEASURES, IF RECUIRED DURING CONSTRUCTON, SHALI BE IN CONFORMANCE WTH THE LOCML

CONCRETE AND REINFORCING STEEL NOTES

2. AL CNOCREIE SHAL HAVEA MNMMM COMPRESSVE STRENGTH OF 4000 PS AT 28 DAAS UNLESS NOTED

 CONCREIE CAST AGANST EATH, 3 IN.
 CONCETE NOT EPOOSED TO EARHO OR WEAHET SIB AND Wal

 RAMSET/REDHED OR APPROVED EUNLL

 STRUCTURAL STEEL NOTES:

SOLL COMPACTION NOTES FOR SLAB ON GRADE:

1. Excanate as recoure to remve veetaton a topsol expose unistureed natura subcrade ano place

COMPACTION EQUIPMENT:
. HAND OPERATED DOUBE
CONSTRUCTION NOTES:
FIEM VERIFCATON:
COORopMATON OF WORK

ELECTRICAL INSTALLATION NOTES:

3. ©ONDUIT ROUUNNOS ARE SCHEAATC. CONTRACTOR SHAL I ISTTAL CONDUTS SO THAT ACCESS TO EQUIPWENT IS NO
4. MRNG, RACEWMA AND SUPPort METHODS AND MATERALS SHAL COMPLY MTH THE REQUREMENTS OF THE NEC.
5. ALL CRCUITS Shall be secregate and mantan minmu cable starraton as regured by the nec.
6. CABLES SHALL Not be route through ladorr-sme cable tay rungs.

17. racemar and cabie mat
12. New raceway or cabe tray mu match the ensting instulaton wire possale

21.

 28. CABNETT, BOXES, ANO MREWMVS TO MATCH THE EXSTING INSTALATON WHERE POSSBBLE

Dewlberry
Dewberry Engineers inc.

DRAWN BY: IA REVEWED QY: PD CHECKED 日Y: CAM PRONECT NUMBER: $\quad 50063024$ JOB NUMERR: $\quad 50083031$ SITE ADDRESS:

244 GATES RD, LEBANON, CT 06249 NEW LONDON COUNTY SHEET TIIE

GENERAL NOTES
\qquad
G-1

ISOMETRIC ANTENNA DETAIL

nere:

1. CONTRACTOR SHAL SECURE RACKAS
$\frac{23^{\prime \prime} \times 23^{\prime \prime} \text { INDOOR RACK }}{\text { SCAIEE N.T.S. }} 2$

NoIF:
ATACH TMA To ANTENA PREE MAST IN ACCORDANCE WITH
MANUFACTRER RECOMMENDATONS.
TMMA DETAIL

NOIE

ANTENNA MOUNT DETAIL 6

500 ENTERPRISE DRIVE SUITE 3A
ROCKY HILL., CT 06067

smartink SAPOLS EXCHANGE PARKWAY
SUIIE 200

CT1065 LEBANON

CONSTRUCTION DRAWINGS

0 OAF 1
5 Dewberry Dewberry Engineers Inc.
\qquad

DRAMN AY: IA REveWED QY: CHECKED BY: 4. | Jos NUMEER: | 50063024 |
| :---: | :---: |
| | 50063031 | SITE ADORESS:

244 GATES RD, LEBANON, CT 06249 NEW LONDON COUNTY
SHEET TIE
CONSTRUCTION DETAILS
SHET NUMEER
$C-4$

500 ENTERPRISE DRIVE SUITE 3A
ROCKY HILL, CT 06067
Ê
smartlink ANNAPOLS EXCHANGE PARKWA SUITE 200
ANNAPOLIS, MD 21401

CT1065
LEBANON

Dewlberry Dewberty Engineers Inc.

244 GATES RD, LEBANON, CT 06249 NEW LONDON COUNTY SHIET TIIE

GROUNDING NOTES \& DETAILS
SHEET NUMER
$E-1$

Todd Oliver
Smartlink, LLC
Market Manager, NE
33 Boston Post Road, Suite 210
Marlborough, MA 01752
Reference: Smartlink LLC Site, Lebanon: 244 Gates Road Lebanon CT 06249
Date: 05 May 2014

1. This letter will address the additional RF impact that adding AT\&T LTE antennas to the referenced site. Attached are two documents which cover the modeled RF emissions from the site.
2. The first report, "RF Emissions Compliance Report," for the site complied by Sitesafe, uses the antenna patterns for the antennas at the site to calculate the General Public Maximum Permissible Exposure (MPE) on the ground. The total MPE of all the carriers is 1.392\% (based on the General Public MPE) based on this modeling, with AT\&T antennas emitting a maximum of 1.213% of the General Public MPE on the ground.
3. The second attachment has the calculations, used by the Connecticut Siting Council, which assumes the maximum antenna gain transmits in a spherical pattern where the worst case results would be at the base of the tower. That calculation, based on the existing antennas, gives a result of 23.72% of the General Public MPE, with the AT\&T antennas emitting 22.35\% of the General Public MPE on the ground, using the modeling predictions used by Connecticut Siting Council.
4. In either case, the site is compliant with FCC guidelines. If you have any questions regarding this site, the compliance report, please contact me at 719-434-0700 or dcotton@sitesafe.com.

Director, RF Compliance

RF EMISSIONS COMPLIANCE REPORT

Smartlink on behalf of AT\&T Mobility, LLC

Site FA: 10035007
Site ID: CT1065
Site Name: Lebanon
Address: 244 Gates Road
Lebanon, CT 06249
5/5/2014

Report Status:

AT\&T Mobility LLC Is Compliant.

Prepared By:
Sitesafe, Inc.

Engineering Statement in Re:
Electromagnetic Energy Analysis
AT\&T Mobility LLC
Lebanon, CT 06249

My signature on the cover of this document indicates:
That I am registered as a Professional Engineer in the jurisdiction indicated; and
That I have extensive professional experience in the wireless communications engineering industry; and

That I am an employee of Sitesafe, Inc. in Arlington, Virginia; and
That I am thoroughly familiar with the Rules and Regulations of the Federal Communications Commission ("the FCC" and "the FCC Rules") both in general and specifically as they apply to the FCC's Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; and

That the technical information serving as the basis for this report was supplied by Smartlink (See attached Site Summary and Carrier documents), and that AT\&T Mobility LLC's installations involve communications equipment, antennas and associated technical equipment at a location referred to as the "Lebanon" ("the site"); and

That AT\&T Mobility LLC proposes to operate at the site with transmit antennas listed in the carrier summary and with a maximum effective radiated power as specified by AT\&T Mobility LLC and shown on the worksheet, and that worst-case 100% duty cycle have been assumed; and

That this analysis has been performed with the assumption that the ground immediately surrounding the tower is primarily flat or falling; and

That at this time, the FCC requires that certain licensees address specific levels of radiofrequency energy to which workers or members of the public might possibly be exposed (at §1.1307(b) of the FCC Rules); and

That such consideration of possible exposure of humans to radio-frequency radiation must utilize the standards set by the FCC, which is the Federal Agency having jurisdiction over communications facilities; and

That the FCC rules define two tiers of permissible exposure guidelines: 1) "uncontrolled environments," defined as situations in which persons may not be aware of (the "general public"), or may not be able to control their exposure to a transmission facility; and (2) "controlled environments," which defines situations in which persons are aware of their potential for exposure (industry personnel); and

That this statement specifically addresses the uncontrolled environment (which is more conservative than the controlled environment) and the limit set forth in the FCC rules for licensees of AT\&T Mobility LLC's operating frequency as shown on the attached antenna worksheet; and

That when applying the uncontrolled environment standards, the predicted Maximum Power Density at two meters above ground level from the proposed AT\&T Mobility LLC operation is no more than 1.213% of the maximum in any accessible area on the ground and

That it is understood per FCC Guidelines and OET65 Appendix A, that regardless of the existent radio-frequency environment, only those licenses whose contributions exceed five percent of the exposure limit pertinent to their operation(s) bear any responsibility for bringing any noncompliant area(s) into compliance; and

That when applying the uncontrolled environment standards, the cumulative predicted energy density from the proposed operation is no more than 1.392% of the maximum in any accessible area up to two meters above the ground per OET-65; and

That the calculations provided in this report are based on data provided by the client and antenna pattern data supplied by the antenna manufacturer, in accordance with FCC guidelines listed in OET-65. Horizontal and vertical antenna patterns are combined for modeling purposes to accurately reflect the energy two meters above ground level where on-axis energy refers to maximum energy two meters above the ground along the azimuth of the antenna and where area energy refers to the maximum energy anywhere two meters above the ground regardless of the antenna azimuth, accounting for cumulative energy from multiple antennas for the carrier and frequency range indicated; and

That the Occupational Safety and Health Administration has policies in place which address worker safety in and around communications sites, thus individual companies will be responsible for their employees’ training regarding Radio Frequency Safety.

In summary, it is stated here that the proposed operation at the site would not result in exposure of the Public to excessive levels of radio-frequency energy as defined in the FCC Rules and Regulations, specifically 47 CFR 1.1307 and that AT\&T Mobility LLC's proposed operation is completely compliant.

Finally, it is stated that access to the tower should be restricted to communication industry professionals, and approved contractor personnel trained in radio-frequency safety; and that the instant analysis addresses exposure levels at two meters above ground level and does not address exposure levels on the tower, or in the immediate proximity of the antennas.

Note: Sitesafe has used data obtained from the "Connecticut Siting Council" to create this report. The manufacturer antenna patterns for AT\&T Mobility, LLC were used to determine the RF emissions from the AT\&T Mobility, LLC antennas. Generic antennas were used for the other carriers on the tower, as this information was not available, or provided at the time the study was conducted. Sitesafe has conducted FCC research on this site, and was updated in this report with the appropriate FCC call signs and Maximum ERP values. Sitesafe has also referenced the AT\&T Mobility, LLC construction diagram for this site.

The following documents below were the primary sources of data used to create this report. The primary document was the "Connecticut Siting Council" document. The AT\&T Mobility, LLC construction diagram was referenced when appropriate.

Connecticut Siting Council: AlphaExMPowDens 4-16-14
AT\&T Mobility, LLC Construction Diagram: 10035007.AE201.140307 (CT1065)
Dewberry.RevA KES2 MD2 DC Comments 4-8-14.pdf

AT\&T Mobility LLC
 Lebanon
 Site Summary

Carrier	Area Maximum Percentage MPE
AT\&T Mobility LLC	0.477%
AT\&T Mobility LLC	0.32%
AT\&T Mobility LLC	0.416%
T-Mobile (VoiceStream)	0.179%
Composite Site MPE:	1.392%

Attachment 2

Control Number	Site	Carrier	\#Channels	ERP/Ch	Ant Ht	Power Der	MHz	S	\%MPE	Site Total
EM-CING-071-130124	Lebanon-244 Gates Road	AT\&T UMTS	2	565	124	0.026425	880	0.5867	4.50\%	
EM-CING-071-130124	Lebanon-244 Gates Road	AT\&T UMTS	2	875	124	0.040924	1900	1.0000	4.09\%	
EM-CING-071-130124	Lebanon-244 Gates Road	AT\&T GSM	1	283	124	0.006618	880	0.5867	1.13\%	
EM-CING-071-130124	Lebanon-244 Gates Road	AT\&T GSM	4	525	124	0.049108	1900	1.0000	4.91\%	
EM-CING-071-130124	Lebanon-244 Gates Road	AT\&T LTE	1	1615	124	0.037767	734	0.4893	7.72\%	
Omnipt Ex Mod 12/10/	Lebanon-244 Gates Road	VoiceStream	2	197	102	0.013617	1930	1.0000	1.36\%	23.72\%

STRUCTURAL ANALYSIS REPORT

AT\&T DESIGNATION:

SITE DATA:

ANALYSIS CRITERIA:
Codes:

Kevin Clements
520 S. Main Street, Suite 2531
Akron, OH 44311
(330) 572-3546
kclements@gpdgroup.com

GPD\# 2014723.21.65054.01
February 26, 2014

65054
10035007
CT1065
LEBANON
MOD LTE 01.11.14

TIA/EIA-222-F, 2003 IBC, ASCE7-05 \& 2005 CBC
$100-\mathrm{mph}$ (fastest-mile) with $0 "$ ice
$120-\mathrm{mph}$ (3 -second gust) with $0^{\prime \prime}$ ice
$38-\mathrm{mph}$ (fastest-mile) with $0.75^{\prime \prime}$ ice
244 Gates Road, Lebanon, CT 06249, New London County Latitude $41^{\circ} 40^{\prime} 58.57{ }^{\prime \prime} \mathrm{N}$, Longitude $72^{\circ}{ }^{12}$ 58.295" W Market: NEW ENGLAND
121' Self Support Tower
Mr. Jerry Bruno,
GPD is pleased to submit this Structural Analysis Report to determine the structural integrity of the aforementioned tower. The purpose of the analysis is to determine the suitability of the tower with the existing and proposed loading configuration detailed in the analysis report.

Analysis Results

Tower Stress Level with Proposed Equipment:	95.9%	Pass
Foundation Ratio with Proposed Equipment:	95.6%	Pass

We at GPD appreciate the opportunity of providing our continuing professional services to you and Smartlink, LLC. If you have any questions or need further assistance on this or any other projects please do not hesitate to call.

Respectfully submitted,

SUMMARY \& RESULTS

The purpose of this analysis was to verify whether the existing structure is capable of carrying the proposed loading configuration as specified by AT\&T Mobility to Smartlink, LLC. This report was commissioned by Mr. Jerry Bruno of Smartlink, LLC.

TOWER SUMMARY AND RESULTS

Member	Capacity	Results
Leg	58.0%	Pass
Diagonal	90.7%	Pass
Secondary Horizontal	37.2%	Pass
Top Girt	95.9%	Pass
Bolt Checks	68.3%	Pass
Anchor Rods	91.0%	Pass
Foundation	95.6%	Pass

ANALYSIS METHOD

tnxTower (Version 6.1.4.1), a commercially available software program, was used to create a three-dimensional model of the tower and calculate primary member stresses for various dead, live, wind, and ice load cases. Selected output from the analysis is included in Appendix B. The following table details the information provided to complete this structural analysis. This analysis is solely based on this information and is being completed without the benefit of a recent site visit.

DOCUMENTS PROVIDED

Document	Remarks	Source
Equipment Modification Form	Equipment Modification Form, dated 1/14/2014	Siterra
RF Data Sheet	Not Provided	N / A
Tower Design	Not Provided	N / A
Geotechnical Report	GPD Job \#: 2012832.03, dated 12/10/2012	Siterra
Tower Mapping	GPD Job \#: 2012832.03, dated 12/19/2012	Siterra
Foundation Mapping	GPD Job \#: 2012832.03, dated 12/10/2012	Siterra

ASSUMPTIONS

This structural analysis is based on the theoretical capacity of the members and is not a condition assessment of the tower. This analysis is from information supplied, and therefore, its results are based on and are as accurate as that supplied data. GPD has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural analysis.

1. The tower member sizes and shapes are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated in the materials section.
2. The antenna configuration is as supplied and/or as modeled in the analysis. It is assumed to be complete and accurate. All antennas, mounts, coax and waveguides are assumed to be properly installed and supported as per manufacturer requirements.
3. Some assumptions are made regarding antennas and mount sizes and their projected areas based on best interpretation of data supplied and of best knowledge of antenna type and industry practice.
4. All mounts, if applicable, are considered adequate to support the loading. No actual analysis of the mount(s) is performed. This analysis is limited to analyzing the tower only.
5. The soil parameters are as per data supplied or as assumed and stated in the calculations.
6. Foundations are properly designed and constructed to resist the original design loads indicated in the documents provided.
7. The tower and structures have been properly maintained in accordance with TIA Standards and/or with manufacturer's specifications.
8. All welds and connections are assumed to develop at least the member capacity unless determined otherwise and explicitly stated in this report.
9. All prior structural modifications are assumed to be as per data supplied/available and to have been properly installed.
10. Loading interpreted from photos is accurate to $\pm 5^{\prime} \mathrm{AGL}$, antenna size accurate to $\pm 3.3 \mathrm{sf}$, and coax equal to the number of existing antennas without reserve.
11. All existing loading was obtained from the Provided Equipment Modification Form, the Tower Mapping by GPD (Job \#: 2012832.03, dated 12/19/2012) and site photos and is assumed to be accurate.
12. Tower Leg A is assumed to face 0 degrees from true north based on satellite imagery.
13. Foundation steel was not able to be determined through testing. Therefore it was assumed that the foundation steel in place is equal to or in excess of the soil failure criteria in the foundation analysis.
14. The existing AT\&T loading has been modeled based on the most recent site photos.

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and GPD Group should be allowed to review any new information to determine its effect on the structural integrity of the tower.

DISCLAIMER OF WARRANTIES

GPD GROUP has not performed a recent site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD GROUP in connection with this Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. All tower components have been assumed to only resist dead loads when no other loads are applied. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

GPD GROUP does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD GROUP provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the feasibility of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the specified code recommended amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD GROUP, but are beyond the scope of this report.

Towers are designed to carry gravity, wind, and ice loads. All members, legs, diagonals, struts, and redundant members provide structural stability to the tower with little redundancy. Absence or removal of a member can trigger catastrophic failure unless a substitute is provided before any removal. Legs carry axial loads and derive their strength from shorter unbraced lengths by the presence of redundant members and their connection to the diagonals with bolts or welds. If the bolts or welds are removed without providing any substitute to the frame, the leg is subjected to a higher unbraced length that immediately reduces its load carrying capacity. If a diagonal is also removed in addition to the connection, the unbraced length of the leg is greatly increased, jeopardizing its load carrying capacity. Failure of one leg can result in a tower collapse because there is no redundancy. Redundant members and diagonals are critical to the stability of the tower.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

GPD GROUP makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD GROUP will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD GROUP pursuant to this report will be limited to the total fee received for preparation of this report.

APPENDIX A

Tower Analysis Summary Form

Tower Analysis Summary Form

General Info

Site Name	LEBANON		
Site Number	65054		
FA Number	10035007		
Date of Analysis	February 26, 2014		
Company Performing Analysis	GPD	\quad	
:---			

The information contained in this summary report is not to be used independently from the PE stamped tower analysis.

Tower Info	Description	Date
Tower Type (G, SST, MP) SST Tower Height (top of steel AGL) 121' Tower Manufacturer N/A Tower Model N/A		
Tower Design	N/A	
Foundation Design	N/A	
Geotech Report	GPD Job \#: 2012832.03	$12 / 10 / 2012$
Tower Mapping	GPD Job \#: 2012832.03	$12 / 19 / 2012$
Previous Structural Analysis	N/A	
Foundation Mapping	GPD Job \#: 2012832.03	12/10/2012

Design Parameters

Design Code Used	TIA/EIA-222-F
	2003 IBC, ASCE7-05 \& 2005 CBC
Location of Tower (County, State)	New London, CT
Basic Wind Speed (mph)	100 (fastest-mile)
IIe Thickness ((m)	0.75
Structure Classification (I, II, III)	
Exposure Category (B, C, D)	
Topographic Category (1 to 5)	

Analysis Results (\% Maximum Usage)

Existing/Reserved + Future + Proposed Condition	
Tower (\%)	95.9%
Anchor Rods (\%)	91.0%
Foundation $(\%)$	95.6%
Foundation Adequate?	Yes

Legs	50
Diagonals	36
Bolts	A325N
Anchor Rods	36

Existing / Reserved Loading

Antenna								Mount			Transmission Line			
Antenna Owner	$\begin{gathered} \text { Mount } \\ \text { Height (ft) } \end{gathered}$	Antenna $\mathrm{CL}(\mathrm{ft})$	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Type	Quantity	Model	Size	Attachment Face/Leg
AT\&T Mobility	121	129	1	Dipole	Unknown	16' Dipole		4	Unknown	Star Mount	1	Unknown	1/2"	Face "B"
AT\&T Mobility	121	124	6	Panel	Powerwave	RA21.7770.00	30/150/270			on the same mounts	9	Unknown	1-5/8"	Face "A"
AT\&T Mobility	121	124	6	TMA	Powerwave	LGP21401				on the same mounts	3	Unknown	1-5/8"	Face "B"
AT\&T Mobility	121	124	6	TMA	Powerwave	LGP21901				on the same mounts	1	Unknown	1/2"	Face "A"
AT\&T Mobility	121	124	2	Panel	Powerwave	P65-17-XLH-RR	30/270			on the same mounts	2	DC Power	3/4"	Face "B"
AT\&T Mobility	121	124	1	Panel	Andrew	SBNH-1D6565C	150			on the same mounts	1	Fiber	1/2"	Face "B"
AT\&T Mobility	121	124	6	RRU	Ericsson	RRUS-11				on the same mounts				
AT\&T Mobility	121	121	1	Squid	Raycap	DC6-48-60-18-8F				on the same mounts				

Note: All existing atnennas and TMAs shall be removed prior to the installation of the proposed equipment and have not been considered for this analysis. All other equipment shall be removed

Antenna								Mount			Transmission Line			
Antenna Owner	$\begin{gathered} \text { Mount } \\ \text { Height (ft) } \end{gathered}$	Antenna CL (ft)	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Type	Quantity	Model	Size	Attachment Face/Leg
AT\&T Mobility	121	124	-	Panel	CCI	HPA-65R-BUU-H8-K	30/150/270			on the existing mounts				
AT\&T Mobility	121	124	6	TMA	CCI	Twin TMACCI-BP				on the existing mounts				
AT\&T Mobility	121	124		RRU	Ericsson	RRUS 12				on the existing mounts				
AT\&T Mobility	121	124	2	RRU	Ericsson	RRUS-11				on the existing mounts				
AT\&T Mobility	121	124	2	RRU	Ericsson	RRUS A2 MODULE				on the existing mounts				
AT\&T Mobility	121	124	1	RRU	Ericsson	RRUS-32				on the existing mounts				
AT\&T Mobility	121	124	1	RRU	Ericsson	RRUS E2				on the existing mounts				

Note: The proposed equipment shall be installed in addition to the remaining equipment at the same elevation.

Antenna								Mount			Transmission Line			
Antenna Owner	$\begin{gathered} \text { Mount } \\ \text { Height (ft) } \end{gathered}$	Antenna CL (ft)	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Type	Quantity	Model	Size	Attachment Face/Leg

APPENDIX B

tnxTower Output File

tnxTower GPD Group 520 South Main Street, Suite 2531	Job	65054 - LEBANON	$\begin{aligned} & \text { Page } \\ & \\ & \hline \end{aligned}$
	Project	2014723.21.65054.01	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:08:07 02/26/14 } \end{array}$
Akron, Ohio 44311 Phone: 330.572.2100 FAX: 330.572.2101	Client	Smartlink, LLC	Designed by jboegel

Tower Input Data

The main tower is a 4 x free standing tower with an overall height of 121.00 ft above the ground line.
The base of the tower is set at an elevation of 0.00 ft above the ground line.
The face width of the tower is 6.25 ft at the top and 11.25 ft at the base.
This tower is designed using the TIA/EIA-222-F standard.
The following design criteria apply:
Tower is located in New London County, Connecticut.
Basic wind speed of 100 mph .
Nominal ice thickness of 0.7500 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf.
A wind speed of 38 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 50 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in tower member design is 1.333 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or Leg	Allow Shield	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	\#	\# Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
Climbing	A	Yes	Af (CfAe)	121.00-8.00	1.0000	0	1	1	3.8400	3.8400	15.3600	4.81
Ladder (Af) LDF4-50A (1/2 FOAM)	A	Yes	Ar (CfAe)	121.00-8.00	0.5000	0.05	1	1	0.6300	0.6300		0.15
$\begin{aligned} & \text { LDF7-50A } \\ & (1-5 / 8 \text { FOAM }) \end{aligned}$	A	Yes	Ar (CfAe)	121.00-8.00	0.5000	0.08	3	2	0.7500	1.9800		0.82
$\begin{gathered} \text { LDF7-50A } \\ (1-5 / 8 \text { FOAM }) \end{gathered}$	A	Yes	Ar (CfAe)	121.00-8.00	0.5000	0.45	6	3	0.7500	1.9800		0.82
$\begin{gathered} \text { LDF7-50A } \\ (1-5 / 8 \text { FOAM }) \end{gathered}$	B	Yes	Ar (CfAe)	121.00-8.00	0.5000	0	3	2	0.7500	1.9800		0.82
$\begin{aligned} & \text { LDF4-50A } \\ & (1 / 2 \text { FOAM }) \end{aligned}$	B	Yes	Ar (CfAe)	121.00-8.00	0.5000	0.05	1	1	0.6300	0.6300		0.15
1/2" Fiber Cable	B	Yes	Ar (CfAe)	121.00-8.00	0.5000	0.03	1	1	0.6300	0.6300		0.15
3/4" DC	B	Yes	Ar (CfAe)	121.00-8.00	0.5000	0.05	2	2	0.7500	0.7500		0.33
Power Line Safety Line 3/8	A	Yes	Af (CfAe)	121.00-8.00	1.0000	0	1	1	0.3750	0.3750	1.1800	0.22

tnxTower GPD Group 520 South Main Street, Suite 2531 Akron, Ohio 44311 Phone: 330.572.2100 FAX: 330.572.2101	Job	65054 - LEBANON	$\begin{aligned} & \text { Page } 2 \text { of } 8 \end{aligned}$
	Project	2014723.21.65054.01	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:08:07 02/26/14 } \end{array}$
	Client	Smartlink, LLC	Designed by jboegel

tnxTower GPD Group 520 South Main Street, Suite 2531 Akron, Ohio 44311 Phone: 330.572.2100 FAX: 330.572.2101	Job	65054 - LEBANON	$\begin{aligned} & \text { Page } \\ & \\ & \end{aligned}$
	Project	2014723.21.65054.01	$\begin{array}{\|l\|l\|} \hline \text { Date } \\ \text { 15:08:07 02/26/14 } \end{array}$
	Client	Smartlink, LLC	Designed by jboegel

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert $f t$ $f t$ $f t$	Azimuth Adjustment 0	Placement ft		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight $l b$
HPA-65R-BUU-H8-K w/ Mount Pipe	B	From Face		-15.0000	121.00	2" Ice	16.14	9.85	411.60
						4" Ice	19.13	12.29	884.49
			3.46			No Ice	13.30	7.52	70.00
			2.00			1/2" Ice	13.99	8.09	143.77
			3.00			$1{ }^{\prime \prime}$ Ice	14.70	8.67	225.17
	B	From Face		90.0000	121.00	$2^{\prime \prime}$ Ice	16.14	9.85	411.60
HPA-65R-BUU-H8-K w/ Mount Pipe						4" Ice	19.13	12.29	884.49
			3.46			No Ice	13.30	7.52	70.00
			2.00			1/2" Ice	13.99	8.09	143.77
			3.00			$1{ }^{\prime \prime}$ Ice	14.70	8.67	225.17
	C	From Face		15.0000	121.00	2 " Ice	16.14	9.85	411.60
HPA-65R-BUU-H8-K w/ Mount Pipe						4" Ice	19.13	12.29	884.49
			3.46			No Ice	13.30	7.52	70.00
			2.00			1/2" Ice	13.99	8.09	143.77
			3.00			$1{ }^{\prime \prime}$ Ice	14.70	8.67	225.17
	D	From Face		45.0000	121.00	$2{ }^{\prime \prime}$ Ice	16.14	9.85	411.60
HPA-65R-BUU-H8-K w/ Mount Pipe						4" Ice	19.13	12.29	884.49
			3.46			No Ice	13.30	7.52	70.00
			2.00			1/2" Ice	13.99	8.09	143.77
			3.00			$1{ }^{\prime \prime}$ Ice	14.70	8.67	225.17
	B	From Face		-15.0000	121.00	2 " Ice	16.14	9.85	411.60
HPA-65R-BUU-H8-K w/ Mount Pipe						4" Ice	19.13	12.29	884.49
			3.46			No Ice	13.30	7.52	70.00
			2.00			1/2" Ice	13.99	8.09	143.77
			3.00			$1{ }^{\prime \prime}$ Ice	14.70	8.67	225.17
	C	From Leg		-30.0000	121.00	2 " Ice	16.14	9.85	411.60
HPA-65R-BUU-H8-K w/ Mount Pipe						4" Ice	19.13	12.29	884.49
			3.46			No Ice	13.30	7.52	70.00
			2.00			1/2" Ice	13.99	8.09	143.77
			3.00			$1{ }^{\prime \prime}$ Ice	14.70	8.67	225.17
	D	From Face		45.0000	121.00	$2^{\prime \prime}$ Ice	16.14	9.85	411.60
HPA-65R-BUU-H8-K w/ Mount Pipe						4" Ice	19.13	12.29	884.49
			3.46			No Ice	13.30	7.52	70.00
			2.00			1/2" Ice	13.99	8.09	143.77
			3.00			$1{ }^{\prime \prime}$ Ice	14.70	8.67	225.17
	A	From Face		75.0000	121.00	$2^{\prime \prime}$ Ice	16.14	9.85	411.60
Twin TMACCI-BP						4" Ice	19.13	12.29	884.49
			3.46			No Ice	0.64	0.35	14.00
			2.00			1/2" Ice	0.76	0.45	18.54
			3.00			$1{ }^{\prime \prime}$ Ice	0.89	0.56	24.60
Twin TMACCI-BP	A	From Face		-45.0000	121.00	$2^{\prime \prime}$ Ice	1.16	0.81	42.06
						4" Ice	1.83	1.40	103.83
			3.46			No Ice	0.64	0.35	14.00
			2.00			1/2" Ice	0.76	0.45	18.54
			3.00			$1{ }^{\prime \prime}$ Ice	0.89	0.56	24.60
Twin TMACCI-BP	B	From Face		-15.0000	121.00	2 " Ice	1.16	0.81	42.06
						4" Ice	1.83	1.40	103.83
			3.46			No Ice	0.64	0.35	14.00
			2.00			1/2" Ice	0.76	0.45	18.54
			3.00			$1^{\prime \prime}$ Ice	0.89	0.56	24.60
Twin TMACCI-BP	B	From Face		90.0000	121.00	2 " Ice	1.16	0.81	42.06
						4" Ice	1.83	1.40	103.83
			3.46			No Ice	0.64	0.35	14.00
			2.00			1/2" Ice	0.76	0.45	18.54
			3.00			1" Ice	0.89	0.56	24.60
						2" Ice	1.16	0.81	42.06
						4" Ice	1.83	1.40	103.83

tnxTower GPD Group 520 South Main Street, Suite 2531 Akron, Ohio 44311 Phone: 330.572.2100 FAX: 330.572.2101	Job	65054 - LEBANON	$\text { Page } 4 \text { of } 8$
	Project	2014723.21.65054.01	$\begin{aligned} & \text { Date } \\ & \text { 15:08:07 02/26/14 } \end{aligned}$
	Client	Smartlink, LLC	Designed by jboegel

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& $C_{A} A_{A}$

Side

$f t^{2}$ \& Weight

\hline \multirow[t]{5}{*}{Twin TMACCI-BP} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Face} \& 3.46 \& \multirow[t]{5}{*}{15.0000} \& \multirow[t]{5}{*}{121.00} \& No Ice \& 0.64 \& 0.35 \& 14.00

\hline \& \& \& 2.00 \& \& \& 1/2" Ice \& 0.76 \& 0.45 \& 18.54

\hline \& \& \& \multirow[t]{3}{*}{3.00} \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.89 \& 0.56 \& 24.60

\hline \& \& \& \& \& \& 2" Ice \& 1.16 \& 0.81 \& 42.06

\hline \& \& \& \& \& \& 4" Ice \& 1.83 \& 1.40 \& 103.83

\hline \multirow[t]{5}{*}{Twin TMACCI-BP} \& \multirow[t]{5}{*}{D} \& \multirow[t]{5}{*}{From Face} \& 3.46 \& \multirow[t]{5}{*}{45.0000} \& \multirow[t]{5}{*}{121.00} \& No Ice \& 0.64 \& 0.35 \& 14.00

\hline \& \& \& 2.00 \& \& \& 1/2" Ice \& 0.76 \& 0.45 \& 18.54

\hline \& \& \& 3.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.89 \& 0.56 \& 24.60

\hline \& \& \& \& \& \& 2" Ice \& 1.16 \& 0.81 \& 42.06

\hline \& \& \& \& \& \& 4 " Ice \& 1.83 \& 1.40 \& 103.83

\hline \multirow[t]{5}{*}{RRUS 12} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Face} \& 3.46 \& \multirow[t]{5}{*}{75.0000} \& \multirow[t]{5}{*}{121.00} \& No Ice \& 2.89 \& 1.00 \& 58.00

\hline \& \& \& 2.00 \& \& \& 1/2" Ice \& 3.11 \& 1.15 \& 75.97

\hline \& \& \& 3.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.35 \& 1.31 \& 96.77

\hline \& \& \& \& \& \& 2 " Ice \& 3.85 \& 1.66 \& 147.66

\hline \& \& \& \& \& \& 4 " Ice \& 4.95 \& 2.46 \& 292.03

\hline \multirow[t]{5}{*}{RRUS 12} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Face} \& 3.46 \& \multirow[t]{5}{*}{-45.0000} \& \multirow[t]{5}{*}{121.00} \& No Ice \& 2.89 \& 1.00 \& 58.00

\hline \& \& \& 2.00 \& \& \& 1/2" Ice \& 3.11 \& 1.15 \& 75.97

\hline \& \& \& 3.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.35 \& 1.31 \& 96.77

\hline \& \& \& \& \& \& 2" Ice \& 3.85 \& 1.66 \& 147.66

\hline \& \& \& \& \& \& 4" Ice \& 4.95 \& 2.46 \& 292.03

\hline \multirow[t]{5}{*}{RRUS-11} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Face} \& 3.46 \& \multirow[t]{5}{*}{75.0000} \& \multirow[t]{5}{*}{121.00} \& No Ice \& 3.25 \& 1.37 \& 47.62

\hline \& \& \& 2.00 \& \& \& 1/2" Ice \& 3.49 \& 1.55 \& 68.42

\hline \& \& \& 3.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.74 \& 1.74 \& 92.25

\hline \& \& \& \& \& \& 2" Ice \& 4.27 \& 2.14 \& 149.81

\hline \& \& \& \& \& \& 4 " Ice \& 5.43 \& 3.04 \& 309.89

\hline \multirow[t]{5}{*}{RRUS-11} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Face} \& 3.46 \& \multirow[t]{5}{*}{-45.0000} \& \multirow[t]{5}{*}{121.00} \& No Ice \& 3.25 \& 1.37 \& 47.62

\hline \& \& \& 2.00 \& \& \& 1/2" Ice \& 3.49 \& 1.55 \& 68.42

\hline \& \& \& 3.00 \& \& \& 1" Ice \& 3.74 \& 1.74 \& 92.25

\hline \& \& \& \& \& \& 2 " Ice \& 4.27 \& 2.14 \& 149.81

\hline \& \& \& \& \& \& 4" Ice \& 5.43 \& 3.04 \& 309.89

\hline \multirow[t]{5}{*}{RRUS A2 MODULE} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Face} \& 3.46 \& \multirow[t]{5}{*}{75.0000} \& \multirow[t]{5}{*}{121.00} \& No Ice \& 1.87 \& 0.42 \& 21.16

\hline \& \& \& 2.00 \& \& \& 1/2" Ice \& 2.05 \& 0.53 \& 31.49

\hline \& \& \& 3.00 \& \& \& 1 " Ice \& 2.24 \& 0.65 \& 44.03

\hline \& \& \& \& \& \& 2 " Ice \& 2.66 \& 0.91 \& 76.55

\hline \& \& \& \& \& \& 4 " Ice \& 3.58 \& 1.54 \& 176.75

\hline \multirow[t]{5}{*}{RRUS A2 MODULE} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Face} \& 3.46 \& \multirow[t]{5}{*}{-45.0000} \& \multirow[t]{5}{*}{121.00} \& No Ice \& 1.87 \& 0.42 \& 21.16

\hline \& \& \& 2.00 \& \& \& 1/2" Ice \& 2.05 \& 0.53 \& 31.49

\hline \& \& \& 3.00 \& \& \& 1 " Ice \& 2.24 \& 0.65 \& 44.03

\hline \& \& \& \& \& \& 2 " Ice \& 2.66 \& 0.91 \& 76.55

\hline \& \& \& \& \& \& 4" Ice \& 3.58 \& 1.54 \& 176.75

\hline \multirow[t]{5}{*}{RRUS-32} \& \multirow[t]{5}{*}{D} \& \multirow[t]{5}{*}{From Face} \& 3.46 \& \multirow[t]{5}{*}{-75.0000} \& \multirow[t]{5}{*}{121.00} \& No Ice \& 3.87 \& 2.76 \& 77.00

\hline \& \& \& 2.00 \& \& \& 1/2" Ice \& 4.15 \& 3.02 \& 104.93

\hline \& \& \& 3.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 4.44 \& 3.29 \& 136.47

\hline \& \& \& \& \& \& 2 " Ice \& 5.06 \& 3.85 \& 211.15

\hline \& \& \& \& \& \& 4" Ice \& 6.38 \& 5.08 \& 412.40

\hline \multirow[t]{5}{*}{RRUS E2} \& \multirow[t]{5}{*}{D} \& \multirow[t]{5}{*}{From Face} \& 3.46 \& \multirow[t]{5}{*}{-75.0000} \& \multirow[t]{5}{*}{121.00} \& No Ice \& 1.87 \& 0.42 \& 21.16

\hline \& \& \& 2.00 \& \& \& 1/2" Ice \& 2.05 \& 0.53 \& 31.49

\hline \& \& \& 3.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.24 \& 0.65 \& 44.03

\hline \& \& \& \& \& \& 2" Ice \& 2.66 \& 0.91 \& 76.55

\hline \& \& \& \& \& \& 4" Ice \& 3.58 \& 1.54 \& 176.75

\hline
\end{tabular}

tnxTower GPD Group 520 South Main Street, Suite 2531 Akron, Ohio 44311 Phone: 330.572.2100 FAX: 330.572.2101	Job	65054 - LEBANON	Page 5 of 8
	Project	2014723.21.65054.01	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:08:07 02/26/14 } \end{array}$
	Client	Smartlink, LLC	Designed by jboegel

Critical Deflections and Radius of Curvature - Service Wind

tnxTower GPD Group 520 South Main Street, Suite 2531 Akron, Ohio 44311 Phone: 330.572.2100 FAX: 330.572.2101	Job	65054 - LEBANON	$\begin{aligned} & \text { Page } \quad 6 \text { of } 8 \end{aligned}$
	Project	2014723.21.65054.01	$\begin{aligned} & \text { Date } \\ & \text { 15:08:07 02/26/14 } \end{aligned}$
	Client	Smartlink, LLC	Designed by jboegel

Section No.	Elevation $f t$	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Махітит Load per Bolt $l b$	Allowable Load lb	Ratio Load Allowable	Allowable Ratio	Criteria
T8	50.4167	Leg	A325N	0.7500	28	7750.45	18555.00	0.418	1.333	Shear Bolt DS
		Diagonal	A325N	0.6250	2	4582.07	6442.72	0.711	1.333	Bolt Shear
		Secondary Horizontal	A325N	0.6250	1	1628.23	5103.52	0.319	1.333	Member Block Shear
		Top Girt	A325N	0.6250	2	2667.78	6442.72	0.414	1.333	Bolt Shear
T9	40.4167	Leg	A325N	0.7500	32	7742.16	18555.00	0.417	1.333	Bolt DS
		Diagonal	A325N	0.6250	2	4771.97	6442.72		1.333	Bolt Shear
	30.4167	Secondary Horizontal	A325N	0.6250	1	1858.82	5103.52	0.364	1.333	Member Block Shear
		Top Girt	A325N	0.6250	2	2879.26	6442.72	0.447	1.333	Bolt Shear
T10		Leg	A325N	0.7500	36	7742.99	18555.00		1.333	Bolt DS
		Diagonal	A325N	0.6250	2	4884.09	6442.72	0.758	1.333	Bolt Shear
	20.4167	Secondary Horizontal	A325N	0.6250	1	2091.43	5103.52	$\begin{aligned} & 0.410 \\ & 0.469 \end{aligned}$	1.333	Member Block Shear
		Top Girt	A325N	0.6250	2	3023.27	6442.72		1.333	Bolt Shear
T11		Leg	A325N	0.7500	40	7754.80	18555.00	0.418	1.333	Bolt DS
		Diagonal	A325N	0.6250	2	5045.55	6442.72	0.783	1.333	Bolt Shear
	10.2083	Secondary Horizontal	A325N	0.6250	1	2327.28	5103.52	0.456	1.333	Member Block Shear
		Top Girt	A325N	0.6250	2	3218.53	8224.22	0.391	1.333	Member Block Shear
T12		Leg	A325N	0.7500	40	8458.52	18555.00	0.456	1.333	Bolt DS
		Diagonal	A325N	0.6250	2	5869.67	6442.72	0.911	1.333	Bolt Shear
		Secondary Horizontal	A325N	0.6250	1	2538.51	6442.72	0.394	1.333	Bolt Shear
		Top Girt	A325N	0.6250	2	3877.73	8224.22	0.472	1.333	Member Block Shear
T12	0.0000	Anchor Rods	A36	1.5000	4	41007.10	33823.20	1.212	1.333	Bolt Tension

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} S F^{*} P_{\text {allow }} \\ l b \end{gathered}$	\% Capacity	Pass Fail
T1	121-110	Leg	L5x5x1/2	1	-7970.86	135887.35	5.9	Pass
T2	110-100.417	Leg	L5x5x1/2	21	-19565.30	145458.29	13.5	Pass
T3	$\begin{gathered} 100.417- \\ 90.4167 \end{gathered}$	Leg	L5x5x1/2	41	-33470.70	142714.97	23.5	Pass
T4	$\begin{gathered} 90.4167- \\ 80.4167 \end{gathered}$	Leg	L5x5x1/2	61	-46719.80	139774.38	33.4	Pass
T5	$\begin{gathered} 80.4167- \\ 70.4167 \end{gathered}$	Leg	L5x5x1/2	81	-60459.60	140052.97	43.2	Pass
T6	$\begin{gathered} 70.4167- \\ 60.4167 \end{gathered}$	Leg	L6x6x3/4	101	-78424.40	268254.24	29.2	Pass
T7	$\begin{gathered} 60.4167- \\ 50.4167 \end{gathered}$	Leg	L6x6x3/4	121	-93071.20	268543.50	34.7	Pass
T8	$\begin{gathered} 50.4167- \\ 40.4167 \end{gathered}$	Leg	L6x6x3/4	141	-108506.00	268684.80	40.4	Pass
T9	$\begin{gathered} 40.4167- \\ 30.4167 \end{gathered}$	Leg	L6x6x3/4	161	-123875.00	268914.08	46.1	Pass
T10	30.4167 -	Leg	L6x6x3/4	181	-139374.00	269018.05	51.8	Pass

tnxTower GPD Group 520 South Main Street, Suite 2531 Akron, Ohio 44311 Phone: 330.572.2100 FAX: 330.572.2101	Job 65054 - LEBANON		$\begin{aligned} & \text { Page } \\ & \\ & \end{aligned}$
	Project	2014723.21.65054.01	Date 15:08:07 02/26/14
	Client	Smartlink, LLC	Designed by jboegel

Section No.	Elevation ft	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} S F^{*} P_{\text {allow }} \\ l b \end{gathered}$	\% Capacity	Pass Fail
T11	$\begin{gathered} 20.4167 \\ 20.4167- \\ 10.2083 \end{gathered}$	Leg	L6x6x3/4	201	-155096.00	267223.83	58.0	Pass
T12	10.2083-0	Leg	L6x6x3/4	221	-169170.00	297119.02	56.9	Pass
T1	121-110	Diagonal	L2 1/2x2 1/2x3/16	16	-5092.75	8764.61	58.1	Pass
T2	110-100.417	Diagonal	L2x3x1/4	36	-5862.19	10918.98	53.7	Pass
T3	$\begin{gathered} 100.417- \\ 90.4167 \end{gathered}$	Diagonal	L3x3x3/16	56	-7778.68	16590.12	46.9	Pass
T4	$\begin{gathered} 90.4167- \\ 80.4167 \end{gathered}$	Diagonal	L3x $3 \times 1 / 4$	76	-8809.69	20133.76	43.8	Pass
T5	$\begin{gathered} 80.4167- \\ 70.4167 \end{gathered}$	Diagonal	$2 \mathrm{~L} 2 \times 2 \times 3 / 16$	96	-9777.98	20457.82	47.8	Pass
T6	$\begin{gathered} 70.4167- \\ 60.4167 \end{gathered}$	Diagonal	L3x $3 \times 1 / 4$	116	-8210.35	18648.67	44.0	Pass
T7	$\begin{gathered} 60.4167- \\ 50.4167 \end{gathered}$	Diagonal	L3x $3 \times 1 / 4$	133	-8929.51	17640.52	50.6	Pass
T8	$\begin{gathered} 50.4167- \\ 40.4167 \end{gathered}$	Diagonal	L3x $3 \times 1 / 4$	153	-9164.14	16622.11	55.1	Pass
T9	$\begin{gathered} 40.4167- \\ 30.4167 \end{gathered}$	Diagonal	L3x $3 \times 1 / 4$	173	-9543.95	15699.14	60.8	Pass
T10	$\begin{gathered} 30.4167- \\ 20.4167 \end{gathered}$	Diagonal	L3x $3 \times 1 / 4$	193	-9768.18	14796.03	66.0	Pass
T11	$\begin{gathered} 20.4167- \\ 10.2083 \end{gathered}$	Diagonal	L3x $3 \times 1 / 4$	213	-10091.10	13701.11	73.7	Pass
T12	10.2083-0	Diagonal	L3x $3 \times 1 / 4$	233	-11739.30	12936.03	90.7	Pass
T1	121-110	Secondary Horizontal	L2x $2 \times 3 / 16$	17	-119.56	16381.77	0.7	Pass
T2	110-100.417	Secondary Horizontal	L2x $2 \times 3 / 16$	37	-293.48	16381.77	1.8	Pass
T3	$\begin{gathered} 100.417- \\ 90.4167 \end{gathered}$	Secondary Horizontal	L2x $2 \times 3 / 16$	57	-502.06	16381.77	3.1	Pass
T4	$\begin{gathered} 90.4167- \\ 80.4167 \end{gathered}$	Secondary Horizontal	L2x2x3/16	77	-701.07	15539.58	4.5	Pass
T5	$\begin{gathered} 80.4167- \\ 70.4167 \end{gathered}$	Secondary Horizontal	L2x2x3/16	97	-907.24	13708.97	6.6	Pass
T6	$\begin{gathered} 70.4167- \\ 60.4167 \end{gathered}$	Secondary Horizontal	L2x2x3/16	117	-1176.83	12073.41	9.7	Pass
T7	$\begin{gathered} 60.4167- \\ 50.4167 \end{gathered}$	Secondary Horizontal	L2x2x3/16	137	-1396.59	10389.68	13.4	Pass
T8	$\begin{gathered} 50.4167- \\ 40.4167 \end{gathered}$	Secondary Horizontal	L2x2x3/16	157	-1628.23	9036.77	18.0	Pass
T9	$\begin{gathered} 40.4167- \\ 30.4167 \end{gathered}$	Secondary Horizontal	L2x2x3/16	177	-1858.82	7930.87	23.4	Pass
T10	$\begin{gathered} 30.4167- \\ 20.4167 \end{gathered}$	Secondary Horizontal	L2x $2 \times 3 / 16$	197	-2091.43	7017.19	29.8	Pass
T11	$\begin{gathered} 20.4167- \\ 10.2083 \end{gathered}$	Secondary Horizontal	L2x $2 \times 3 / 16$	217	-2327.28	6252.13	37.2	Pass
T12	10.2083-0	Secondary Horizontal	L2x $2 \times 1 / 4$	237	-2538.51	7243.27	35.0	Pass
T1	121-110	Top Girt	$2 \mathrm{~L} 2 \times 2 \times 3 / 16$	6	-238.04	21353.06	1.1	Pass
T2	110-100.417	Top Girt	$2 \mathrm{~L} 2 \times 2 \times 3 / 16$	26	-1042.81	21353.06	4.9	Pass
T3	$\begin{gathered} 100.417- \\ 90.4167 \end{gathered}$	Top Girt	$2 \mathrm{~L} 2 \times 2 \times 3 / 16$	45	-2258.27	21353.06	10.6	Pass
T4	$\begin{gathered} 90.4167- \\ 80.4167 \end{gathered}$	Top Girt	$2 \mathrm{~L} 2 \times 2 \times 3 / 16$	65	-3294.71	21353.06	15.4	Pass
T5	$\begin{gathered} 80.4167- \\ 70.4167 \end{gathered}$	Top Girt	$2 \mathrm{~L} 2 \times 2 \times 3 / 16$	85	-5650.34	18397.27	30.7	Pass
T6	$\begin{gathered} 70.4167- \\ 60.4167 \end{gathered}$	Top Girt	2L2x $2 \times 3 / 16$	105	-5048.09	15609.56	32.3	Pass
T7	$\begin{gathered} 60.4167- \\ 50.4167 \end{gathered}$	Top Girt	2L2 1/2x2 1/2x3/16	125	-4402.77	26548.43	16.6	Pass
T8	$\begin{gathered} 50.4167- \\ 40.4167 \end{gathered}$	Top Girt	L3x $3 \times 1 / 4$	145	-4829.58	10982.68	44.0	Pass
T9	40.4167 -	Top Girt	L3x $3 \times 1 / 4$	165	-5200.69	9587.98	54.2	Pass

tnxTower GPD Group 520 South Main Street, Suite 2531 Akron, Ohio 44311 Phone: 330.572.2100 FAX: 330.572.2101	Job	65054 - LEBANON	$\begin{array}{ll} \text { Page } \\ & 8 \text { of } 8 \end{array}$
	Project	2014723.21.65054.01	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:08:07 02/26/14 } \end{array}$
	Client	Smartlink, LLC	Designed by jboegel

Section No.	Elevation ft	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} S F^{*} P_{\text {allow }} \\ \quad l b \end{gathered}$	\% Capacity	Pass Fail
T10	$\begin{gathered} 30.4167 \\ 30.4167 \\ 20.4167 \end{gathered}$	Top Girt	L3x3x1/4	185	-5449.30	8461.60	64.4	Pass
T11	$\begin{gathered} 20.4167- \\ 10.2083 \end{gathered}$	Top Girt	2L2 $2 \times 3 / 16$	205	-5793.08	8097.88	71.5	Pass
T12	10.2083-0	Top Girt	2L2 $2 \times 3 / 16$	225	-6950.76	7247.31	95.9	Pass
						Summary	ELC:	Existing + Proposed
						Leg (T11)	58.0	Pass
						Diagonal (T12)	90.7	Pass
						Secondary Horizontal (T11)	37.2	Pass
						Top Girt (T12)	95.9	Pass
						Bolt Checks	91.0	Pass
						Rating =	95.9	Pass

APPENDIX C

Tower Elevation Drawing

121.0 ft咢
$\begin{array}{r} \\ \\ \\ \hline 6.25 \\ \hline\end{array}$

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
(2) Sabre 6' Sidearm C10-151-006	121	HPA-65R-BUU-H8-K w/ Mount Pipe	121
(2) Sabre 6' Sidearm C10-151-006	121	HPA-65R-BUU-H8-K w/ Mount Pipe	121
(2) Sabre 6' Sidearm C10-151-006	121	HPA-65R-BUU-H8-K w/ Mount Pipe	121
(2) Sabre 6' Sidearm C10-151-006	121	HPA-65R-BUU-H8-K w/ Mount Pipe	121
RRUS-11	121	Twin TMACCI-BP	121
RRUS-11	121	Twin TMACCI-BP	121
RRUS-11	Twin TMACCI-BP	121	
DC6-48-60-18-8F Surge Suppression Unit	121	Twin TMACCI-BP	121
Andrew Double Pipe Mount MC-DA14-B	121	Twin TMACCI-BP	121
Andrew Double Pipe Mount MC-DA14-B	Twin TMACCI-BP	121	
MTS 60" Standoff	121	RRUS 12	121
HPA-65R-BUU-H8-K w/ Mount Pipe	121	RRUS 12	121
HPA-65R-BUU-H8-K w/ Mount Pipe	121	RRUS-11	121
HPA-65R-BUU-H8-K w/ Mount Pipe	121	RRUS-11	121
HPA-65R-BUU-H8-K w/ Mount Pipe	121	RRUS A2 MODULE	121
HPA-65R-BUU-H8-K w/ Mount Pipe	121	RRUS A2 MODULE	121

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi

TOWER DESIGN NOTES

1. Tower is located in New London County, Connecticut.
2. Tower designed for a 100 mph basic wind in accordance with the TIA/EIA-222-F Standard.
3. Tower is also designed for a 38 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
4. Deflections are based upon a 50 mph wind.
5. TOWER RATING: 95.9%

MAX. CORNER REACTIONS AT BASE:

DOWN: 184130 lb

SHEAR: 18290 lb
UPLIFT: -178553 lb
SHEAR: 18183 lb

TORQUE 2286 lb -ft 38 mph WIND - 0.7500 in ICE

TORQUE 21275 lb -ft REACTIONS - 100 mph WIND

520 South Main Street, Suite 2531
Akron, Ohio 44311
Phone: 330.572.2100
FAX: 330.572.2101

65054 - LEBANON
Project: 2014723.21.65054.01

Client: Smartlink, LLC	Drawn by: jboegel	App'd:
Code: TIA/EIA-222-F	Date: 02/26/14	Scale: NTS
Path: ${ }_{\text {C:IUsersijboegelidesktopiUpdated Since on Desktopl\|65054.011TNXAAnchor Rods.eri\| }}$		Dwg No. E

Feed Line Distribution Chart
0' - 121'
\qquad _ound Flat \qquad App In Face \qquad App Out Face \qquad Truss Leg

GPD GROUP Consulting Engineer	GPD Group 520 South Main Street, Suite 2531 Akron, Ohio 44311 Phone: 330.572 .2100 FAX: 330.572.2101	$\text { Pob: } 65054 \text { - LEBANON }$		
			Drawn by j jboegel	App
		Code: TIA/EIA-222-F	Date: 02/26/14	NTS
				No. E

\qquad Flat \qquad App In Face

APPENDIX D

Foundation Analysis

Mat Foundation Analysis
65054 - LEBANON
2014723.21.65054.01

Bearing Summary		Load Case	
Qxmax	2.97	ksf	$1 \mathrm{D}+1 \mathrm{~W}$
Qymax	2.97	ksf	$1 \mathrm{D}+1 \mathrm{~W}$
Qmax @ 45 $^{\circ}$	4.01	ksf	$1 \mathrm{D}+1 \mathrm{~W}$
$\mathrm{Q}_{\text {(all) Gross }}$	25.33	ksf	
Controlling Capacity	$\mathbf{1 5 . 8 \%}$	Pass	

General Info	
Code	TIA/EIA-222-F (ASD)
Bearing On	Rock
Foundation Type	SS Pad
Pier Type	Square
Reinforcing Known	No
Max Capacity	1.05

Tower Reactions	
Moment, M	$2885.129 \mathrm{k}-\mathrm{ft}$
Axial, P	24.399 k
Shear, V	38.375 k

Overturning Summary (Required FS=1.5)		Load Case	
FS(ot)x	1.57	<1.5	$1 \mathrm{D}+1 \mathrm{~W}$
FS(ot)y	1.57	≥ 1.5	$1 \mathrm{D}+1 \mathrm{~W}$
Controlling Capacity	$\mathbf{9 5 . 6 \%}$	Pass	

Pad \& Pier Geometry		
Pier Width, \varnothing	3	ft
Pad Length, L	23	ft
Pad Width, W	23	ft
Pad Thickness, t	3	ft
Depth, D	5.5	ft
Height Above Grade, HG	1	ft

Pad \& Pier Reinforcing		
Rebar Fy	60	ksi
Concrete Fc'	3	ksi
Clear Cover	3	in
Reinforced Top \& Bottom?	Yes	
Pad Reinforcing Size	$\# 8$	
Pad Quantity Per Layer	33	
Pier Rebar Size	$\# 8$	
Pier Quantity of Rebar	16	

Soil Properties	
Soil Type	Cohesive
Soil Unit Weight	120 pcf
Cohesion, Cu	15 ksf
Bearing Type	Net
Ultimate Bearing	50 ksf
Water Table Depth	99 ft
Frost Depth	5 ft

GPD Mat Foundation Analysis - V1.02

NOTE: EOR OF RECORD MUST PROVIDE MEMO w/ LOE WHEN CURRENT ANALYSIS DEVIATES FROM PRIOR ANALYSIS OF RECORD FOR THIS SITE !!! (TO EXPLAIN CHANGES IN ENGINEERING IN CURRENT REPORT -. EXAMPLES: TOPO/EXPOSURE/K-VALUECLLASSIFICATION)

