August 7, 2018

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Notice of Exempt Modification for Sprint DO Macro: 806387 Sprint Site ID: CT33XC547
 14 Route 80, Killingworth, CT 06419
 Latitude: 41° 21' 26.43"/ Longitude: $-72^{\circ} 31$ ' $11.83^{\prime \prime}$

Dear Ms. Bachman:

Sprint currently maintains six (6) antennas at the 144 -foot level of the existing 160 -foot selfsupport tower located at 14 Route 80, Killingworth, CT. The tower is owned by Crown Castle. The property is owned by 14 Route 80 LLC. Sprint now intends to replace six (6) antennas with six (6) new antennas. These antennas would be installed at the 144 -foot level of the tower. Sprint also intends to install twelve (12) RRH's, add four (4) Hybrid cables and remove six (6) existing coaxial cables

On August $7^{\text {th }}$, an email was sent to the Land Use Department inquiring on the original zoning or planning approval of the tower in the town of Killingworth, CT.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § 16-50j73 , for construction that constitutes an exempt modification pursuant to R.C.S.A. § $16-50 \mathrm{j}-72(\mathrm{~b})(2)$. In accordance with R.S.C.A. § 16-50j-73, a copy of this letter is being sent to the First Selectwomen, Ms. Catherine Lino, Zoning Enforcement Officer, Ms. Cathie Jefferson, the land owner, 14 Route 80 LLC. Crown Castle is the tower owner.

1. The proposed modifications will not result in an increase in the height of the existing tower.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, Sprint respectfully submits that the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § $16-$ $50 \mathrm{j}-72(\mathrm{~b})(2)$.please send approval/rejection letter to Attn: Jeffrey Barbadora.

Jeffrey Barbadora
Real Estate Specialist
12 Gill Street, Suite 5800, Woburn, MA 01801
781-729-0053
Jeff.Barbadora@crowncastle.com
Attachments:
Tab 1: Exhibit-1: Compound plan and elevation depicting the planned changes
Tab 2: Exhibit-2: Structural Modification Report
Tab 3: Exhibit-3: General Power Density Table Report (RF Emissions Analysis Report)
cc: Ms. Catherine Lino
Town of Killingworth-First Selectwomen
323 Route 81
Killingworth, CT 06419
(860) 663-1765

Ms. Cathie Jefferson
Zoning Enforcement Officer
323 Route 81
Killingworth, CT 06419
(860) 663-1765 ext. 505

14 Route 80 LLC
93A Glenwood Road
Clinton, CT 06413

Barbadora, Jeff

From:	Barbadora, Jeff
Sent:	Tuesday, August 7, 2018 3:09 PM
To:	'cjefferson@townofkillingworth.com'
Subject:	14 Route 80 - Cell Tower

Good Afternoon Ms. Jefferson,

I have an inquiry regarding original zoning documents for a tower and I am hoping you can provide more information.
We are applying for CSC Zoning Approval for tower modifications and new requirements ask that we procure original zoning documents from the jurisdiction, if possible. However, if these documents are not available, please let me know.

The tower is located at 14 Route 80 and according to lease documents this may have been approved around 1999-The property is owned by 14 Route 80 LLC, Map/Block 34-36A.

If you have any questions, please don't hesitate to call or e-mail me.
Thank you for your time,

Thanks,

Jeffrey Barbadora

781-970-0053
12 Gill Street, Suite 5800, Woburn, MA 01801
CrownCastle.com

The Assessor's office is responsible for the maintenance of records on the ownership of properties. Assessments are computed at 70% of the estimated market value of real property at the time of the last revaluation which was 2016.

Information on the Property Records for the Municipality of Killingworth was last updated on 8/4/2018.

Parcel Information

Location:	14 ROUTE 80	Property Use:	Industrial	Primary Use:	Light Industrial
Unique ID:	00218500	Map Block	34-36A	Acres:	2.00
		Lot:			
490 Acres:	0.00	Zone:	ID	Volume /	0225/0110
				Page:	
Developers	DEV MP 312	Census:	6401		
Map / Lot:					

Value Information

	Appraised Value	Assessed Value
Land	200,000	
Buildings	252,719	140,000
\ldots	\ldots	176,900
Detached Outbuildings	251,459	176,020
Total	704,178	

Owner's Information

Owner's Data

14 ROUTE 80 LLC
93A GLENWOOD RD
CLINTON CT 06413

Building 1

Category:	Industrial	Use:	Light Industrial	GLA:	7,508
Stories:	1.00	Construction:	Average	Year Built:	1969
Heating:	Susp. Space	Fuel:	Oil	Cooling	0\%
				Percent:	
Siding:	Metal	Roof Material:	Arch Shingles	Beds/Units:	0

Special Features

Attached Components

Detached Outbuildings

Type:	Year Built:	Length:	Width:	Area:
Fencing	1999	9	234	2,106
Concrete/Masonry Patio	1999			432
Concrete/Masonry Patio	1999	8	20	160
Cell Tower	2000			1

Owner History - Sales

Owner Name	Volume	Page	Sale Date	Deed Type	Valid Sale	Sale Price
14 ROUTE 80 LLC	0225	0110	$06 / 14 / 2007$	Quit Claim	No	$\$ 0$

Building Permits

$\left.\begin{array}{|l|l|l|l|l|l|l|}\begin{array}{l}\text { Permit } \\ \text { Number }\end{array} & \text { Permit Type } & \begin{array}{l}\text { Date } \\ \text { Opened }\end{array} & \begin{array}{l}\text { Date } \\ \text { Closed }\end{array} & \begin{array}{l}\text { Permit } \\ \text { Status }\end{array} & \text { Reason } \\ \hline 12-410 & \text { Commercial } & 04 / 12 / 2013 & & \text { Closed } & \text { CELL TOWER MAINTENANCE }\end{array}\right]$.

Permit Number	Permit Type	Date Opened	Date Closed	Permit Status	Reason
$08-$ E018		$04 / 13 / 2008$		Closed	ELECTRICAL SERVICE PANEL INSTALLATION; ELECTRICAL SERVICE PANEL INSTALLATION;
$99-099$					

Information Published With Permission From The Assessor

14 Route 80

8/7/2018 2:59:35 PM

Scale: 1"=100'
Scale is approximate

The information depicted on this map is for planning purposes only. It is not adequate for legal boundary definition, regulatory interpretation, or parcel-level analyses.

 \& COMPANY

Date: June 15, 2018

Rebecca Klein
Crown Castle
3530 Toringdon Way, Suite 300
Charlotte, NC 28277
1-704-405-6525

Paul J. Ford and Company
250 East Broad st., Suite 600
Columbus, OH 43215
(614) 221-6679
jjacobs@pjfweb.com

Subject: Structural Analysis Report

Carrier Designation:

Crown Castle Designation:

Engineering Firm Designation:

Site Data:

Sprint PCS Co-Locate
Carrier Site Number: CT33XC547
Carrier Site Name:
Crown Castle BU Number: 806387
Crown Castle Site Name: HRT 088943629
Crown Castle JDE Job Number:
Crown Castle Work Order Number:
Crown Castle Order Number:
CT33XC547

505982
1589524
441482 Rev. 0

Paul J. Ford and Company Project Number: 37518-2158-002-8700
\#14 Route 80, KILLINGWORTH, Middlesex County, CT
Latitude 41° 21' $26.43^{\prime \prime}$, Longitude -72 $^{\circ} 31^{\prime} 11.83^{\prime \prime}$
160 Foot - Self Support Tower

Dear Ms. Klein,
Paul J. Ford and Company is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 1204283, in accordance with order 441482, revision 0.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC4.7: Modified Structure: Existing + Reserved + Proposed Equipment Note: See Table I and Table II for the proposed and existing/reserved loading, respectively.

Sufficient Capacity

This analysis has been performed In accordance with the 2016 Connecticut State Building Code based upon an ultimate 3 -second gust wind speed of 130 mph converted to a nominal 3 -second gust wind speed of 101 mph per section 1609.3 and Appendix N as required for use in the TIA-222-G Standard per Exception \#5 of Section 1609.1.1. Exposure Category B with a topographic category 1 and crest height of 0 feet, and Risk Category II were used in this analysis.

All modifications and equipment proposed in this report shall be installed in accordance with the drawings stated in Table 3, for the determined available structural capacity to be effective.

We at Paul J. Ford and Company appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have ansyufugtions or need further assistance on this or any other projects please give us a call.

Structural analysis prepared

Project Manager
tnxTower Report - version 7.0.5.1

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable Information
Table 2 - Existing and Reserved Antenna and Cable Information
3) ANALYSIS PROCEDURE

Table 4 - Documents Provided
3.1) Analysis Method
3.2) Assumptions
4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)
Table 6 - Tower Components vs. Capacity
4.1) Recommendations
5) APPENDIX A
tnxTower Output
6) APPENDIX B

Base Level Drawing
7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 160 ft Self Support tower designed by ROHN The tower was originally designed for a wind speed of 85 mph per TIA/EIA-222-F.

2). ANALYSIS CRITERIA

The structural analysis was performed for this tower in accordance with the requirements of TIA-222-G Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a 3 -second gust wind speed of 100.7 mph with no ice, 50 mph with 0.75 inch ice thickness and 60 mph under service loads, exposure category B with topographic category 1 and crest height of 0 feet.

Table 1 - Proposed Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	$\left\lvert\, \begin{gathered} \text { Number } \\ \text { of } \\ \text { Antennas } \end{gathered}\right.$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	
144.0	144.0	3	alcatel lucent	$\begin{gathered} \text { PCS 1900MHZ 4X45W- } \\ 65 \mathrm{MHZ} \end{gathered}$	13	$\begin{gathered} 7 / 8 \\ 11 / 4 \end{gathered}$
		6	alcatel lucent	RRH2X50-800		
		3	alcatel lucent	TD-RRH8X20-25		
		3	commscope	NNVV-65B-R4 w/ Mount Pipe		
		3	rfs celwave	APXVTM14-ALU-I20 w/ Mount Pipe		

Table 2 - Existing and Reserved Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	$\left\lvert\, \begin{gathered} \text { Number } \\ \text { of } \\ \text { Antennas } \end{gathered}\right.$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	$\begin{array}{\|c\|} \text { Feed } \\ \text { Line } \\ \text { Size (in) } \end{array}$	Note
157.0	157.0	3		B13 RRH 4X30	2	$15 / 8$	2
		3		B5 4T4R RRH4X40 AIRSCALE			
		3		B66A RRH4X45			
		6	antel	LPA-80080/6CF w/ Mount Pipe	10	$15 / 8$	1
		6	commscope	JAHH-65B-R3B w/ Mount Pipe			2
		2	raycap	RC3DC-3315-PF-48			
		1	tower mounts	Sector Mount [SM 508-3]			1
144.0	144.0	6	decibel	DB978H90T2E-M w/ Mount Pipe	6	$15 / 8$	3
		1	tower mounts	Sector Mount [SM 506-3]			1
118.0	118.0	12	decibel	$\underset{\text { DB844H90E-XY w/ Mount }}{\text { Pipe }}$	-	-	1
		1	tower mounts	Sector Mount [SM 404-3]			
109.0	115.0	1	celwave	PD1110			1
	109.0	1	tower mounts	Side Arm Mount [SO 308-	1	$11 / 4$	1

tnxTower Report - version 7.0.5.1

Mounting Level (ft)	Center Line Elevation (ft)	$\left\lvert\, \begin{gathered} \text { Number } \\ \text { of } \\ \text { Antennas } \end{gathered}\right.$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
				1]			
90.0	90.0	6	ericsson	RRUS-11	$\begin{gathered} 12 \\ 1 \\ 2 \end{gathered}$	$\begin{gathered} 7 / 8 \\ 3 / 8 \\ 7 / 16 \end{gathered}$	1
		2	kmw communications	$\begin{gathered} \text { AM-X-CD-16-65-00T-RET } \\ \text { w/ Mount Pipe } \end{gathered}$			
		6	powerwave technologies	7770.00 w/ Mount Pipe			
		6	powerwave technologies	LGP21401			
		6	powerwave technologies	LGP21901			
		1	powerwave technologies	$\underset{\text { Pipe }}{\text { P45-16-XLH-RR w/ Mount }}$			
		1	raycap	DC6-48-60-18-8F			
		1	tower mounts	Pipe Mount [PM 601-3]			
		1	tower mounts	Sector Mount [SM 802-3]			
50.0	50.0	1	lucent	KS24019-L112A	1	1/2	1
		1	tower mounts	Side Arm Mount [SO 306-			

Notes:

1) Existing Equipment
2) Reserved Equipment
3) Equipment To Be Removed

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
4-GEOTECHNICAL REPORTS	JGI Eastern 05204G March 25, 2005	1237256	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	Rohn/ HEB Civil Engineers	821498	CCISITES
Tower manufacturer drawing	PJF 41706-0238 Dec 18, 2006 As built Drawing Phase 1	2281721	CCISITES
Partial PMI	PJF 41706-0238 Dec 18, 2006 As built Drawing Phase 1	1296500	CCISITES
PMI	PJF 37518-0397 Dated June 22, 2009	2340021	CCISITES
Reinforcement Drawing	PJF 37517-3262-003-8800 $12-4-2017$	7235023	CCISITES

3.1) Analysis Method

tnxTower (version 7.0.5.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases.
Selected output from the analysis is included in Appendix A.

3.2) Assumptions

1) Tower and structures were built in accordance with the manufacturer's specifications.
2) The tower and structures have been maintained in accordance with the manufacturer's specification.
3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
4) The existing base plate grout was considered in this analysis. Grout must be maintained and inspected periodically, and must be replaced if damaged or cracked. Refer to crown document PRC-10012, Base Plate Grout Inspection \& Classification.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	$\underset{(\mathrm{K})}{\mathrm{SF}^{*} \mathrm{P} \text { allow }}$	$\left\lvert\, \begin{gathered} \text { \% } \\ \text { Capacity } \end{gathered}\right.$	Pass / Fail
							47.8 (b)	
T9	80-60	Leg	ROHN 4 EH (GR)	122	-134.95	192.91	70.0	Pass
		Diagonal	$2 \mathrm{~L} 3 \times 3 \times 3 / 16$ (1/4)	124	-6.14	38.73	$\begin{gathered} 15.9 \\ 49.3(\mathrm{~b}) \end{gathered}$	Pass
T10	60-40	Leg	Rohn $5.563^{\prime \prime} \times 0.375^{\prime \prime}(5$ $E H)(G R)$	143	-161.06	246.97	65.2	Pass
		Diagonal	2L $3 \times 3 \times 3 / 16$ (1/4)	145	-7.25	28.70	$\begin{array}{c\|} 25.3 \\ 47.7 \text { (b) } \\ \hline \end{array}$	Pass
T11	40-20	Leg	$\begin{gathered} \text { Rohn } 5.563^{\prime \prime} \times 0.375^{\prime \prime}(5 \\ E H)(G R) \\ \hline \end{gathered}$	158	-188.02	246.94	76.1	Pass
		Diagonal	$2 \mathrm{~L} \times 3 \times 1 / 4$ (1/4)	160	-7.31	35.24	$\begin{gathered} 20.7 \\ 48.3(\mathrm{~b}) \end{gathered}$	Pass
T12	20-0	Leg	$\begin{gathered} \text { Rohn } 6.6255^{\prime \prime} \times 0.432^{\prime \prime}(6 \\ E H)(G R) \end{gathered}$	173	-214.46	381.11	$\begin{gathered} 56.3 \\ 56.5(\mathrm{~b}) \end{gathered}$	Pass
		Diagonal	$2 \mathrm{~L} 3.5 \times 3.5 \times 1 / 4(1 / 4)$	175	-8.11	50.21	$\begin{array}{\|c\|} \hline 16.2 \\ 52.7(\mathrm{~b}) \\ \hline \end{array}$	Pass
							Summary	
						Leg (T11)	76.1	Pass
						Diagonal (T4)	76.5	Pass
						Top Girt (T1)	12.7	Pass
						Bolt Checks	76.5	Pass
						Rating =	76.5	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	\% Capacity	Pass / Fail
1	Anchor Rods	66.9	Pass
1	Base Foundation	31.3	Pass
1	Base Foundation Soil Interaction	68.1	Pass

Structure Rating (max from all components) $=$	76.5%

Notes:

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the \% capacity consumed.

4.1) Recommendations

Please see cci doc 7235023

APPENDIX A

TNXTOWER OUTPUT

Tower Input Data

The main tower is a $3 x$ free standing tower with an overall height of 160.00 ft above the ground line. The base of the tower is set at an elevation of 0.00 ft above the ground line.
The face width of the tower is 6.52 ft at the top and 20.86 ft at the base.
This tower is designed using the TIA-222-G standard.
The following design criteria apply:

1) Tower is located in Middlesex County, Connecticut.
2) ASCE 7-10 Wind Data is used (wind speeds converted to nominal values).
3) Basic wind speed of 101 mph .
4) Structure Class II.
5) Exposure Category B.
6) Topographic Category 1.
7) Crest Height 0.00 ft .
8) Nominal ice thickness of 0.7500 in.
9) Ice thickness is considered to increase with height.
10) Ice density of 56 pcf.
11) A wind speed of 50 mph is used in combination with ice.
12) Deflections calculated using a wind speed of 60 mph .
13) \quad Grouted pipe f_{c} is 7 ksi .
14) Pressures are calculated at each section.
15) Stress ratio used in tower member design is 1.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
$\sqrt{ }$ Use Code Stress Ratios
$\sqrt{\text { Use Code Safety Factors - Guys }}$
Escalate Ice
Always Use Max Kz
Use Special Wind Profile
$\sqrt{ }$ Include Bolts In Member Capacity
Leg Bolts Are At Top Of Section
$\sqrt{\text { Secondary Horizontal Braces Leg }}$ Use Diamond Inner Bracing (4 Sided)
SR Members Have Cut Ends
SR Members Are Concentric

SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned Assume Rigid Index Plate
\checkmark Use Clear Spans For Wind Area
$\sqrt{ } \sqrt{ }$ Use Clear Spans For KL/r
\checkmark Retension Guys To Initial Tension Bypass Mast Stability Checks
\checkmark Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt.
Autocalc Torque Arm Areas
Add IBC .6D+W Combination Sort Capacity Reports By Component
$\sqrt{ }$ Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder

Use ASCE 10 X -Brace Ly Rules
\checkmark Calculate Redundant Bracing Forces
Ignore Redundant Members in FEA
SR Leg Bolts Resist Compression
All Leg Panels Have Same Allowable
Offset Girt At Foundation
$\sqrt{ }$ Consider Feed Line Torque
$\sqrt{ }$ Include Angle Block Shear Check
Use TIA-222-G Bracing Resist.
Exemption
Use TIA-222-G Tension Splice
Exemption
Poles
Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets

Triangular Tower

Tower Section Geometry

Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of Sections
T1			Section Length		
T2	$160.00-156.00$	$66.00-152.00$	6.52	1	4.
T3	$152.00-148.00$	6.53	4.00		
T4	$148.00-144.00$	6.54	1	4.00	
T5	$144.00-140.00$	6.55	4.00		
T6	$140.00-120.00$	6.55	1	4.00	
T7	$120.00-100.00$	6.56	1	4.00	
T8	$100.00-80.00$	8.60	1	20.00	
T9	$80.00-60.00$	10.64	1	20.00	
T10	$60.00-40.00$	12.68	1	20.00	
T11	$40.00-20.00$	14.77	1	20.00	
T12	$20.00-0.00$	16.77	1	20.00	

Tower Section Geometry (cont'd)

Tower Section	Tower Elevation ft	Diagonal Spacing ft	Bracing Type	Has KBrace End Panels	Has Horizontals	Top Girt Offset in	Bottom Girt Offset in
T1	160.00-156.00	4.00	X Brace	No	No	0.0000	0.0000
T2	156.00-152.00	4.00	X Brace	No	No	0.0000	0.0000
T3	152.00-148.00	4.00	X Brace	No	No	0.0000	0.0000
T4	148.00-144.00	4.00	X Brace	No	No	0.0000	0.0000
T5	144.00-140.00	4.00	X Brace	No	No	0.0000	0.0000
T6	140.00-120.00	5.00	X Brace	No	No	0.0000	0.0000
T7	120.00-100.00	6.67	X Brace	No	No	0.0000	0.0000
T8	.100.00-80.00	6.67	X Brace	No	No	0.0000	0.0000
T9	80.00-60.00	6.67	X Brace	No	No	0.0000	0.0000
T10	60.00-40.00	10.00	X Brace	No	No	0.0000	0.0000
T11	40.00-20.00	10.00	X Brace	No	No	0.0000	0.0000

tnxTower Report - version 7.0.5.1

Tower Section	Tower Elevation ft	Diagonal Spacing ft	Bracing Type	Has KBrace End Panels	Has Horizontals	Top Girt Offset in	Bottom Girt Offset in
T12	20.00-0.00	10.00	X Brace	No	No	0.0000	0.0000

Tower Section Geometry (cont'd)

Tower Elevation ft	$\begin{aligned} & \text { Leg } \\ & \text { Type } \end{aligned}$	Leg Size	Leg Grade	Diagonal Type	$\begin{gathered} \text { Diagonal } \\ \text { Size } \end{gathered}$	Diagonal Grade
$\begin{gathered} \text { T1 160.00- } \\ 156.00 \end{gathered}$	Pipe	Rohn 2.375" $\times 0.218^{\prime \prime}(2$ EH)	$\begin{aligned} & \text { A572-50 } \\ & \text { (50 ksi) } \end{aligned}$	Single Angle	L $1.5 \times 1.5 \times 1 / 8$	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T2 } 156.00- \\ 152.00 \end{gathered}$	Pipe	Rohn $2.375^{\prime \prime} \times 0.218^{\prime \prime}(2$ EH)	$\begin{aligned} & \text { A572-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Single Angle	L $1.5 \times 1.5 \times 1 / 8$	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T3 } 152.00- \\ 148.00 \end{gathered}$	Pipe	Rohn $2.375^{\prime \prime} \times 0.218^{\prime \prime}(2$ EH)	$\begin{aligned} & \text { A572-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Single Angle	L $1.5 \times 1.5 \times 1 / 8$	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T4 } 148.00- \\ 144.00 \end{gathered}$	Pipe	Rohn $2.375^{\prime \prime} \times 0.218^{\prime \prime}(2$ EH)	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Single Angle	L $1.5 \times 1.5 \times 1 / 8$	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T5 } 144.00- \\ 140.00 \end{gathered}$	Pipe	$\begin{gathered} \text { Rohn } 2.375^{\prime \prime} \times 0.218^{\prime \prime}(2 \\ \text { EH) } \end{gathered}$	$\begin{aligned} & \text { A572-50 } \\ & \text { (50 ksi) } \end{aligned}$	Single Angle	L $2 \times 2 \times 1 / 4$	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T6 140.00- } \\ 120.00 \end{gathered}$	Pipe	$\begin{gathered} \text { Rohn } 2.875^{\prime \prime} \times 0.276^{\prime \prime}(2.5 \\ E H) \end{gathered}$	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Double Angle	$2 \mathrm{~L} 1.5 \times 1.5 \times 1 / 8(3 / 16)$	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T7 } 120.00- \\ 100.00 \end{gathered}$	Pipe	Rohn 4" $\times 0.318$ " (3.5 EH)	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Double Angle	$2 \mathrm{~L} 2 \times 2 \times 3 / 16$ (3/16)	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T8 } 100.00- \\ 80.00 \end{gathered}$	Grouted Pipe	Rohn 4" $\times 0.318^{\prime \prime}$ (3.5 EH)	$\begin{aligned} & \text { A572-50 } \\ & \text { (50 ksi) } \end{aligned}$	Double Angle	$2 L 2.5 \times 2.5 \times 3 / 16(3 / 16)$	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T9 80.00-60.00	Grouted Pipe	ROHN 4 EH	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Double Angle	$2 \mathrm{~L} 3 \times 3 \times 3 / 16(1 / 4)$	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T10 } 60.00- \\ 40.00 \end{gathered}$	Grouted Pipe	Rohn 5.563" x 0.375" (5 EH)	$\begin{aligned} & \text { A572-50 } \\ & \text { (50 ksi) } \end{aligned}$	Double Angle	$2 \mathrm{~L} 3 \times 3 \times 3 / 16$ (1/4)	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T11 40.00- } \\ 20.00 \end{gathered}$	Grouted Pipe	Rohn 5.563" x 0.375" (5 EH)	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Double Angle	$2 \mathrm{~L} 3 \times 3 \times 1 / 4(1 / 4)$	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T12 20.00-0.00	Grouted Pipe	Rohn 6.625" $\times 0.432^{\prime \prime}(6$ $E H)$	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \\ \hline \end{gathered}$	Double Angle	$2 \mathrm{~L} 3.5 \times 3.5 \times 1 / 4(1 / 4)$	$\begin{gathered} A 36 \\ (36 \mathrm{ksi}) \end{gathered}$

Tower Section Geometry (cont'd)

Tower Elevation $f t$	Top Girt Type	Top Girt Size		Top Girt Grade	Bottom Girt Type
T1 $160.00-$	Equal Angle	$\mathrm{L} 2 \times 2 \times 1 / 8$		Bottom Girt Size	Bottom Girt Grade
156.00					
T6 $140.00-$	Equal Angle	$\mathrm{L} 2 \times 2 \times 1 / 8$	$(36 \mathrm{ksi})$	Single Angle	
120.00			A36	Single Angle	A36

Tower Section Geometry (cont'd)

tnxTower Report - version 7.0.5.1

Tower Elevation ft	Gusset Area (perface) \qquad	Gusset Thickness in	Gusset GradeAdjust. Factor A_{f}		Adjust. Factor $A_{\text {r }}$	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Boit Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
144.00			(36 ksi)						
$\begin{gathered} \text { T5 } 144.00- \\ 140.00 \end{gathered}$	0.00	0.1875	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	1.03	1	1.05	30.0000	30.0000	36.0000
$\begin{gathered} \text { T6 } 140.00- \\ 120.00 \end{gathered}$	0.00	0.1875	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	1.03	1	1.05	30.0000	30.0000	36.0000
$\begin{gathered} \text { T7 } 120.00- \\ 100.00 \end{gathered}$	0.00	0.1875	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	1.03	1	1.05	36.0000	30.0000	36.0000
$\begin{gathered} \text { T8 } 100.00- \\ 80.00 \end{gathered}$	0.00	0.4375	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	1.03	1	1.05	48.0000	30.0000	36.0000
$\begin{gathered} \text { T9 } 80.00- \\ 60.00 \end{gathered}$	0.00	0.4375	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	1.03	1	1.05	48.0000	30.0000	36.0000
$\begin{gathered} \text { T10 } 60.00- \\ 40.00 \end{gathered}$	0.00	0.2500	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	1.03	1	1.05	60.0000	30.0000	36.0000
$\begin{gathered} \text { T11 40.00 } \\ 20.00 \end{gathered}$	0.00	0.2500	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	1.03	1	1.05	60.0000	30.0000	36.0000
$\begin{gathered} \text { T12 } 20.00- \\ 0.00 \\ \hline \end{gathered}$	0.00	0.2500	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	1.03	1	1.05	60.0000	30.0000	36.0000

Tower Section Geometry (cont'd)

			K Factors ${ }^{1}$							
Tower Elevation	Calc K	Calc K	Legs	Brace	$\begin{gathered} \text { K } \\ \text { Brace } \end{gathered}$	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Single	Solid		Diags	Diags					
	Angles	Rounds		X	χ	X	X	X	X	X
ft				Y						
T1 160.00-	Yes	No	1	1	1	1	1	1	1	1
156.00				1	1	1	1	1	1	1
T2 156.00-	Yes	No	1	1	1	1	1	1	1	1
152.00				1	1	1	1	1	1	1
T3 152.00-	Yes	No	1	1	1	1	1	1	1	1
148.00				1	1	1	1	1	1	1
T4 148.00-	Yes	No	1	1	1	1	1	1	1	1
144.00				1	1	1	1	1	1	1
T5 144.00-	Yes	No	1	1	1	1	1	1	1	1
140.00				1	1	1	1	1	1	1
T6 140.00-	Yes	No	1	1	1	1	1	1	1	1
120.00				1	1	1	1	1	1	1
T7 120.00-	Yes	No	1	1	1	1	1	1	1	1
100.00				1	1	1	1	1	1	1
T8 100.00-	Yes	No	1	1	1	1	1	1	1	1
80.00				1	1	1	1	1	1	1
T9 80.00-	Yes	No	1	1	1	1	1	1	1	1
60.00				1	1	1	1	1	1	1
T10 60.00-	Yes	No	1	1	1	1	1	1	1	1
40.00				1	1	1	1	1	1	1
T11 40.00-	Yes	No	1	1	1	1	1	1	1	1
20.00				1	1	1	1	1	1	1
T12 20.00-	Yes	No	1	1	1	1	1	1	1	1
0.00				1	1	1	1	1	1	1

${ }^{1}$ Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-ofplane direction applied to the overall length.

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
	Net Width Deduct in	U	Net Width Deduct in	U	$\begin{gathered} \text { Net Width } \\ \text { Deduct } \\ \text { in } \end{gathered}$		Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
$\begin{gathered} \text { T1 160.00- } \\ 156.00 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
$\begin{gathered} \text { T2 156.00- } \\ 152.00 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
$\begin{gathered} \text { T3 } 152.00- \\ 148.00 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
$\begin{gathered} \text { T4 148.00- } \\ 144.00 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
$\begin{gathered} \text { T5 144.00- } \\ 140.00 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
$\begin{gathered} \text { T6 } 140.00- \\ 120.00 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
$\begin{gathered} \text { T7 } 120.00- \\ 100.00 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
$\begin{gathered} \text { T8 100.00- } \\ 80.00 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
$\begin{gathered} \text { T9 80.00 } \\ 60.00 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
$\begin{gathered} \text { T10 } 60.00- \\ 40.00 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
$\begin{gathered} \text { T11 40.00- } \\ 20.00 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
$\begin{gathered} \text { T12 } 20.00- \\ 0.00 \\ \hline \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Section Geometry (cont'd)

Tower Elevation	Connection Offsets							
	Diagonal				K-Bracing			
	Vert. Top in	Horiz. Top in	Vert. Bot. in	Horiz. Bot. in	Vert. Top in	Horiz. Top in	Vert. Bot. in	Horiz. Bot. in
$\begin{gathered} \text { T1 } 160.00- \\ 156.00 \end{gathered}$	2.5000	3.5000	2.5000	3.5000	0.0000	0.0000	0.0000	0.0000
$\begin{gathered} \text { T2 } 156.00- \\ 152.00 \end{gathered}$	2.5000	3.5000	2.5000	3.5000	0.0000	0.0000	0.0000	0.0000
$\begin{gathered} \text { T3 } 152.00- \\ 148.00 \end{gathered}$	2.5000	3.5000	2.5000	3.5000	0.0000	0.0000	0.0000	0.0000
$\begin{gathered} \text { T4 148.00- } \\ 144.00 \end{gathered}$	2.5000	3.5000	2.5000	3.5000	0.0000	0.0000	0.0000	0.0000
$\begin{gathered} \text { T5 } 144.00- \\ 140.00 \end{gathered}$	2.5000	3.5000	2.5000	3.5000	0.0000	0.0000	0.0000	0.0000
$\begin{gathered} \text { T6 } 140.00- \\ 120.00 \end{gathered}$	2.5000	4.4000	2.5000	4.4000	0.0000	0.0000	0.0000	0.0000
$\begin{gathered} \text { T7 } 120.00- \\ 100.00 \end{gathered}$	2.5000	4.9000	2.5000	4.9000	0.0000	0.0000	0.0000	0.0000
$\begin{gathered} \text { T8 } 100.00 \\ 80.00 \end{gathered}$	2.5000	4.9000	2.5000	4.9000	0.0000	0.0000	0.0000	0.0000
$\begin{gathered} \text { T9 } 80.00 \\ 60.00 \end{gathered}$	2.5000	4.8000	2.5000	4.8000	0.0000	0.0000	0.0000	0.0000
$\begin{gathered} \text { T10 } 60.00- \\ 40.00 \end{gathered}$	2.5000	5.3000	2.5000	5.3000	0.0000	0.0000	0.0000	0.0000
$\begin{gathered} \text { T11 } 40.00- \\ 20.00 \end{gathered}$	2.5000	5.4000	2.5000	5.4000	0.0000	0.0000	0.0000	0.0000
$\begin{gathered} \text { T12 } 20.00- \\ 0.00 \\ \hline \end{gathered}$	2.5000	5.4000	2.5000	5.4000	0.0000	0.0000	0.0000	0.0000

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg Connection Type	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
		Bolt Size in	No.	$\begin{gathered} \text { Bolt Size } \\ \text { in } \end{gathered}$		$\begin{gathered} \text { Bolt Size } \\ \text { in } \end{gathered}$	No.	$\begin{gathered} \text { Bolt Size } \\ \text { in } \\ \hline \end{gathered}$		$\begin{array}{\|c} \hline \begin{array}{c} \text { Bolt Size } \\ \text { in } \end{array} \\ \hline \end{array}$		$\begin{gathered} \text { Bolt Size } \\ \text { in } \end{gathered}$		$\begin{array}{\|c} \text { Bolt Size } \\ \text { in } \end{array}$	
T1 160.00-	Flange	0.6250	4	0.5000	1	0.5000	1	0.0000	0	0.6250	0	0.6250	0	0.6250	0
156.00		A325N													
T2 156.00-	Flange	0.6250	0	0.5000	1	0.6250	0	0.0000	0	0.6250	0	0.6250	0	0.6250	0
152.00		A325N													
T3 152.00-	Flange	0.6250	0	0.5000	1	0.6250	0	0.0000	0	0.6250	0	0.6250	0	0.6250	0
148.00		A325N		A 325 N		A325N									
T4 148.00-	Flange	0.6250	0	0.5000	1	0.6250	0	0.0000	0	0.6250	0	0.6250	0	0.6250	0
144.00		A325N													
T5 144.00-	Flange	0.6250	0	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
140.00		A325N													
T6 140.00-	Flange	0.6250	4	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0
120.00		A325N													
T7 120.00-	Flange	0.7500	4	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
100.00		A325N													
T8 100.00-	Flange	0.8750	4	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.5000	1
80.00		A325N													
T9 80.00-	Flange	1.0000	6	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.5000	1
60.00		A325N		A325N		A325N		A325N		A 325 N		A325N		A325N	
T10 60.00-	Flange	1.0000	6	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
40.00		A325N													
T11 40.00-	Flange	1.0000	6	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.5000	1
20.00		A325N		A325N		A325N		A325N		A 325 N		A 325 N		A325N	
T12 20.00-	Flange	1.0000	6	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
0.00		A449		A325N		A 325 N									

Grouted Pipe Properties

Size	$\begin{aligned} & F_{y} \\ & k s i \\ & \hline \end{aligned}$	$\begin{aligned} & A_{s} \\ & i n^{2} \end{aligned}$	$\begin{aligned} & A_{c} \\ & i n^{2} \\ & \hline \end{aligned}$	$\begin{aligned} & W / t \\ & p l f \end{aligned}$	$\begin{aligned} & E_{c} \\ & \mathrm{ksi} \end{aligned}$	$\begin{aligned} & E_{m} \\ & k s i \end{aligned}$	$\begin{aligned} & F_{y m} \\ & k s i \end{aligned}$
$\begin{gathered} \text { Rohn } 4^{\prime \prime} \times 0.318^{\prime \prime} \\ (3.5 \mathrm{EH})(\mathrm{GR}) \end{gathered}$	50	3.6784	8.8880	31.033	4769	38218	64
ROHN 4 EH (GR)	50	4.4074	11.4969	38.949	4769	38952	66
$\begin{aligned} & \text { Rohn } 5.563^{\prime \prime} \mathrm{x} \\ & 0.375^{\prime \prime}(5 \mathrm{EH}) \\ & (\mathrm{GR}) \end{aligned}$	50	6.1120	18.1937	58.701	4769	40357	68
$\begin{gathered} \text { Rohn } 6.625^{\prime \prime} \mathrm{x} \\ 0.432^{\prime \prime}(6 \mathrm{EH})(\mathrm{GR}) \end{gathered}$	50	8.4049	26.0667	82.906	4769	40832	68

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or Leg	Allow Shield	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	\#	$\begin{gathered} \# \\ \text { Per } \\ \text { Row } \end{gathered}$	Clear Spacing in	Width or Diameter in	Perimete r in	Weight plf
FACE C LDF4- 50A(1/2")	A	No	$\mathrm{Ar}(\mathrm{CaAa})$	50.00-0.00	0.0000	0.42	1	1	0.6300	0.6300		0.15
1.5" flat Cable Ladder Rail **FACE B**	A	No	$\mathrm{Af}(\mathrm{CaAa})$	150.00-0.00	0.0000	0.42	2	2	$\begin{gathered} 12.0000 \\ 1.5000 \end{gathered}$	1.5000		1.80
$\begin{aligned} & \text { LDF7-50A(1- } \\ & \left.5 / 8^{\prime \prime}\right) \\ & \text { (INCLUDING } \end{aligned}$	B	No	$\mathrm{Ar}(\mathrm{CaAa})$	157.00-0.00	0.0000	0.4	12	12	$\begin{aligned} & 1.0000 \\ & 0.5200 \end{aligned}$	1.9800		0.82

160 Ft Self Support Tower Structural Analysis

Discrete Tower Loads

tnxTower Report - version 7.0.5.1

160 Ft Self Support Tower Structural Analysis
CCI BU No 806387
Project Number 37518-2158-002-8700, Order 441482, Revision 0

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& $$
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
$$ \& Offset Type \& Offsets: Horz Lateral Vert $f t$ ft ft \& $$
\begin{aligned}
& \text { Azimuth } \\
& \text { Adjustmen } \\
& t
\end{aligned}
$$ \& Placement

ft \& \& $C_{A} A_{A}$ Front

$$
f t^{2}
$$ \& $C_{A} A_{A}$ Side

$$
f^{2}
$$ \& Weight

K

\hline \multirow{4}{*}{(3) 4' x 2" Pipe Mount} \& \multirow{3}{*}{A} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{144.00} \& $$
\begin{gathered}
\text { Ice } \\
\text { 1" Ice }
\end{gathered}
$$ \& 65.73 \& 65.73 \& 2.95

\hline \& \& \& 4.00 \& \& \& No Ice \& 0.79 \& 0.79 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.03 \& 1.03 \& 0.04

\hline \& \multirow{4}{*}{B} \& \& 0.00 \& \& \& $$
\begin{aligned}
& \text { Ice } \\
& 1 \text { " lce }
\end{aligned}
$$ \& 1.28 \& 1.28 \& 0.04

\hline \multirow[t]{3}{*}{(3) 4' x 2" Pipe Mount} \& \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{144.00} \& No lce \& 0.79 \& 0.79 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.03 \& 1.03 \& 0.04

\hline \& \& \& 0.00 \& \& \& Ice \& 1.28 \& 1.28 \& 0.04

\hline \multirow{4}{*}{(3) $4^{\prime} \times 2$ " Pipe Mount} \& \multirow{4}{*}{C} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{144.00} \& 1" Ice \& \& \&

\hline \& \& \& 4.00 \& \& \& No Ice \& 0.79 \& 0.79 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.03 \& 1.03 \& 0.04

\hline \& \& \& 0.00 \& \& \& $$
\begin{gathered}
\text { Ice } \\
\text { 1" Jce }
\end{gathered}
$$ \& 1.28 \& 1.28 \& 0.04

\hline * \& \& \& \& \& \& \& \& \&

\hline * \& \& \& \& \& \& \& \& \&

\hline * \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(4) DB844H90E-XY w/ Mount Pipe (ABANDONED)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{118.00} \& No lce \& 3.30 \& 4.80 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" \& 3.67 \& 5.42 \& 0.07

\hline \& \& \& 0.00 \& \& \& Ice

$$
1^{11} \text { Ice }
$$ \& 4.03 \& 6.04 \& 0.12

\hline \multirow[t]{4}{*}{(4) DB844H90E-XY w/ Mount Pipe (ABANDONED)} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{3}{*}{118.00} \& No Ice \& 3.30 \& 4.80 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" \& 3.67 \& 5.42 \& 0.07

\hline \& \& \& 0.00 \& \& \& Ice \& 4.03 \& 6.04 \& 0.12

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{(4) DB844H90E-XY w/ Mount Pipe (ABANDONED)} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{118.00} \& No lce \& 3.30 \& 4.80 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" \& 3.67 \& 5.42 \& 0.07

\hline \& \& \& 0.00 \& \& \& Ice \& 4.03 \& 6.04 \& 0.12

\hline \& \& \& \& \& \& $$
1^{\prime \prime} \text { Ice }
$$ \& \& \&

\hline \multirow[t]{6}{*}{| Sector Mount [SM 404-3] |
| :--- |
| (ABANDONED) |} \& \multirow[t]{6}{*}{C} \& \multirow[t]{6}{*}{None} \& \& \multirow[t]{6}{*}{0.0000} \& \multirow[t]{6}{*}{118.00} \& No Ice \& 20.47 \& 20.47 \& 0.92

\hline \& \& \& \& \& \& 1/2" \& 28.97 \& 28.97 \& 1.34

\hline \& \& \& \& \& \& Ice \& $$
37.47
$$ \& 37.47 \& 1.75

\hline \& \& \& \& \& \& 1 I' Ice \& \& \&

\hline \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{4}{*}{(2) $7770.00 \mathrm{w} /$ Mount Pipe (x)} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{90.00} \& \& \& 4.25 \&

\hline \& \& \& 0.00 \& \& \& $$
1 / 2^{\prime \prime}
$$ \& 6.18 \& 5.01 \& 0.10

\hline \& \& \& 0.00 \& \& \& Ice \& 6.61 \& 5.71 \& 0.16

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{(2) LGP21401} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{90.00} \& No Ice \& 1.10 \& 0.35 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.24 \& 0.44 \& 0.02

\hline \& \& \& 0.00 \& \& \& Ice \& 1.38 \& 0.54 \& 0.03

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{(2) LGP21901} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{90.00} \& No Ice \& 0.23 \& 0.16 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" \& 0.29 \& 0.21 \& 0.01

\hline \& \& \& 0.00 \& \& \& Ice \& 0.36 \& 0.28 \& 0.01

\hline \& \& \& \& \& \& 1 Ice \& \& \&

\hline \multirow[t]{4}{*}{(2) $7770.00 \mathrm{w} /$ Mount Pipe (x)} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{90.00} \& No Ice \& 5.75 \& 4.25 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 6.18 \& 5.01 \& 0.10

\hline \& \& \& 0.00 \& \& \& Ice \& 6.61 \& 5.71 \& 0.16

\hline \& \& \& \& \& \& $1{ }^{1 /}$ Ice \& \& \&

\hline \multirow[t]{4}{*}{(2) LGP21401} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{90.00} \& No Ice \& 1.10 \& 0.35 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.24 \& 0.44 \& 0.02

\hline \& \& \& 0.00 \& \& \& Ice \& 1.38 \& 0.54 \& 0.03

\hline \& \& \& \& \& \& 1 ' Ice \& \& \&

\hline \multirow[t]{4}{*}{(2) LGP21901} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{90.00} \& No Ice \& 0.23 \& 0.16 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" \& 0.29 \& 0.21 \& 0.01

\hline \& \& \& 0.00 \& \& \& Ice \& 0.36 \& 0.28 \& 0.01

\hline \& \& \& \& \& \& 1 1' Ice \& \& \&

\hline \multirow[t]{4}{*}{(2) $7770.00 \mathrm{w} /$ Mount Pipe (x)} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{90.00} \& No Ice \& 5.75 \& 4.25 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 6.18 \& 5.01 \& 0.10

\hline \& \& \& 0.00 \& \& \& Ice \& 6.61 \& 5.71 \& 0.16

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline (2) LGP21401 \& C \& From Leg \& 4.00 \& 0.0000 \& 90.00 \& No lce \& 1.10 \& 0.35 \& 0.01

\hline
\end{tabular}

tnxTower Report - version 7.0.5.1

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& $$
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
$$ \& Offset Type \& Offsets: Horz Lateral Vert ft $f t$ ft \& Azimuth Adjustmen t \& Placement

ft \& \& $C_{A} A_{A}$ Front

$$
{f t^{2}}^{2}
$$ \& $C_{A} A_{A}$ Side $t t^{2}$ \& Weight

K

\hline \multirow{6}{*}{(2) LGP21901} \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Leg} \& 0.00 \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{90.00} \& $1 / 2^{\prime \prime}$ \& 1.24 \& 0.44 \& 0.02

\hline \& \& \& 0.00 \& \& \& $$
\begin{aligned}
& \text { Ice } \\
& \text { 1" Ice }
\end{aligned}
$$ \& 1.38 \& 0.54 \& 0.03

\hline \& \& \& 4.00 \& \& \& No Ice \& 0.23 \& 0.16 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" \& 0.29 \& 0.21 \& 0.01

\hline \& \& \& 0.00 \& \& \& Ice \& 0.36 \& 0.28 \& 0.01

\hline \& \multirow{4}{*}{C} \& \multirow{4}{*}{None} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{90.00} \& $1{ }^{1 \prime}$ Ice \& \& \&

\hline \multirow[t]{3}{*}{Sector Mount [SM 802-3]
*} \& \& \& \& \& \& No lce \& 24.41 \& 24.41 \& 0.93

\hline \& \& \& \& \& \& 1/2" \& 31.39 \& 31.39 \& 1.36

\hline \& \& \& \& \& \& $$
\begin{gathered}
\text { Ice } \\
\text { 1" Ice }
\end{gathered}
$$ \& 38.37 \& 38.37 \& 1.79

\hline * \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{4}{*}{| KS24019-L112A |
| :--- |
| (x) |} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{3}{*}{50.00} \& No Ice \& 0.14 \& 0.14 \& 0.01

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ \& 0.20 \& 0.20 \& 0.01

\hline \& \& \& 0.00 \& \& \& ice \& 0.26 \& 0.26 \& 0.01

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{$$
\begin{aligned}
& \text { Side Arm Mount [SO } 306- \\
& \text { 1] } \\
& (x)
\end{aligned}
$$} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 2.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{50.00} \& No Ice \& 0.98 \& 2.18 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.70 \& 3.80 \& 0.06

\hline \& \& \& 0.00 \& \& \& Ice \& 2.42 \& 5.42 \& 0.08

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{(2) RRUS-11 (Proposed)} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{90.00} \& No Ice \& 2.79 \& 1.19 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" \& 3.00 \& 1.34 \& 0.07

\hline \& \& \& 0.00 \& \& \& Ice \& 3.21 \& 1.50 \& 0.09

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{P45-16-XLH-RR w/ Mount Pipe (Proposed)} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{90.00} \& No Ice \& 8.24 \& 4.83 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1/2" \& 8.70 \& 5.57 \& 0.10

\hline \& \& \& 0.00 \& \& \& Ice \& 9.16 \& 6.27 \& 0.17

\hline \& \& \& \& \& \& 1"Ice \& \& \&

\hline \multirow[t]{4}{*}{(2) RRUS-11 (Proposed)} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{90.00} \& No lce \& 2.79 \& 1.19 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2"' \& 3.00 \& 1.34 \& 0.07

\hline \& \& \& 0.00 \& \& \& Ice \& 3.21 \& 1.50 \& 0.09

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{| AM-X-CD-16-65-00T-RET |
| :--- |
| w/ Mount Pipe (Proposed) |} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{90.00} \& No lce \& 8.26 \& 6.30 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" \& 8.82 \& 7.48 \& 0.14

\hline \& \& \& 0.00 \& \& \& Ice \& 9.35 \& 8.37 \& 0.21

\hline \& \& \& \& \& \& 1"Ice \& \& \&

\hline \multirow[t]{4}{*}{$$
\begin{aligned}
& \text { DC6-48-60-18-8F } \\
& \text { (Proposed) }
\end{aligned}
$$} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{90.00} \& No Ice \& 0.92 \& 0.92 \& 0.02

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ \& 1.46 \& 1.46 \& 0.04

\hline \& \& \& 0.00 \& \& \& Ice \& 1.64 \& 1.64 \& 0.06

\hline \& \& \& \& \& \& 1 ' Ice \& \& \&

\hline \multirow[t]{4}{*}{Pipe Mount [PM 601-3]

$$
(\mathrm{x})
$$} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{None} \& \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{90.00} \& No Ice \& 4.39 \& 4.39 \& 0.20

\hline \& \& \& \& \& \& 1/2" \& 5.48 \& 5.48 \& 0.24

\hline \& \& \& \& \& \& Ice \& 6.57 \& 6.57 \& 0.28

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{| (2) RRUS-11 |
| :--- |
| (Proposed) |} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{90.00} \& No lce \& 2.79 \& 1.19 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" \& 3.00 \& 1.34 \& 0.07

\hline \& \& \& 0.00 \& \& \& Ice \& 3.21 \& 1.50 \& 0.09

\hline \& \& \& \& \& \& 1 ' lce \& \& \&

\hline \multirow[t]{4}{*}{AM-X-CD-16-65-00T-RET w/ Mount Pipe (Proposed)} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{5}{*}{90.00} \& Nolce \& 8.26 \& 6.30 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" \& 8.82 \& 7.48 \& 0.14

\hline \& \& \& 0.00 \& \& \& Ice \& 9.35 \& 8.37 \& 0.21

\hline \& \& \& \& \& \& 1 Ice \& \& \&

\hline ** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{4}{*}{B13 RRH 4×30
(Proposed/ shielded)} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{157.00} \& No Ice \& 0.00 \& 1.32 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 0.00 \& 1.48 \& 0.07

\hline \& \& \& 0.00 \& \& \& Ice \& 0.00 \& 1.64 \& 0.09

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{B66A RRH4X45 (Proposed/ shielded)} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{157.00} \& Nolce \& 0.00 \& 1.63 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" \& 0.00 \& 1.81 \& 0.09

\hline \& \& \& 0.00 \& \& \& Ice \& 0.00 \& 2.00 \& 0.11

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{3}{*}{(2) JAHH-65B-R3B wl Mount Pipe (Proposed)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{157.00} \& No Ice \& 12.57 \& 11.82 \& 0.09

\hline \& \& \& 0.00 \& \& \& 1/2" \& 13.19 \& 13.09 \& 0.20

\hline \& \& \& 0.00 \& \& \& Ice \& 13.79 \& 14.14 \& 0.32

\hline
\end{tabular}

tnxTower Report - version 7.0.5.1

160 Ft Self Support Tower Structural Analysis
Project Number 37518-2158-002-8700, Order 441482, Revision 0

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& $$
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
$$ \& Offset Type \& Offsets: Horz Lateral Vert ft ft ft \& $$
\begin{gathered}
\text { Azimuth } \\
\text { Adjustmen } \\
t
\end{gathered}
$$ \& Placement \& \& $C_{A} A_{A}$ Front
$$
f^{2}
$$ \& $C_{A} A_{A}$ Side
$$
\tilde{\pi}^{2}
$$ \& Weight

K

\hline | B5 4T4R RRH4X40 AIRSCALE |
| :--- |
| (Proposed/shielded) | \& A \& From Leg \& \[

$$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 157.00 \& \[

$$
\begin{gathered}
\text { 1" Ice } \\
\text { No Ice } \\
1 / 2^{\prime \prime} \\
\text { Ice } \\
1^{\prime \prime} \text { Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.75 \\
& 0.86 \\
& 0.98
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.05 \\
& 0.06 \\
& 0.07
\end{aligned}
$$
\]

\hline B13 RRH 4X30 (Proposed/ shielded) \& B \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 157.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
1 / 2^{\prime \prime} \\
\text { Ice } \\
1^{\prime \prime} \text { Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.32 \\
& 1.48 \\
& 1.64
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.06 \\
& 0.07 \\
& 0.09
\end{aligned}
$$
\]

\hline B66A RRH4X45 (Proposed/ shielded) \& B \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 157.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
1 / 2^{\prime \prime} \\
\text { Ice } \\
1^{\prime \prime} \text { Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.63 \\
& 1.81 \\
& 2.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.07 \\
& 0.09 \\
& 0.11
\end{aligned}
$$
\]

\hline (2) JAHH-65B-R3B wl Mount Pipe (Proposed) \& B \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 157.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \\
& \text { Ice } \\
& 1^{\prime \prime} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 12.57 \\
& 13.19 \\
& 13.79
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 11.82 \\
& 13.09 \\
& 14.14
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.09 \\
& 0.20 \\
& 0.32
\end{aligned}
$$
\]

\hline | B5 4T4R RRH4X40 AIRSCALE |
| :--- |
| (Proposed/ shielded) | \& B \& From Leg \& \[

$$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 157.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
1 / 2^{\prime \prime} \\
\text { Ice } \\
1 " \text { Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.75 \\
& 0.86 \\
& 0.98
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.05 \\
& 0.06 \\
& 0.07
\end{aligned}
$$
\]

\hline B13 RRH 4X30 (Proposed/ shielded) \& C \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 157.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
1 / 2^{\prime \prime} \\
\text { Ice } \\
\text { 1" Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.32 \\
& 1.48 \\
& 1.64
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.06 \\
& 0.07 \\
& 0.09
\end{aligned}
$$
\]

\hline B66A RRH4X45 (Proposed/ shielded) \& C \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 157.00 \& \[

$$
\begin{gathered}
\text { No lce } \\
1 / 2^{" \prime} \\
\text { Ice } \\
\text { 1" Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.63 \\
& 1.81 \\
& 2.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.07 \\
& 0.09 \\
& 0.11
\end{aligned}
$$
\]

\hline (2) JAHH-65B-R3B w/ Mount Pipe (Proposed) \& C \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 157.00 \& \[

$$
\begin{gathered}
\text { No lce } \\
1 / 2^{\prime \prime} \\
\text { Ice } \\
1 \text { " Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 12.57 \\
& 13.19 \\
& 13.79
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 11.82 \\
& 13.09 \\
& 14.14
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.09 \\
& 0.20 \\
& 0.32
\end{aligned}
$$
\]

\hline B5 4T4R RRH4X40 AIRSCALE (Proposed/shielded) \& C \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 157.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
1 / 2^{\prime \prime} \\
\text { Ice } \\
\text { 1" Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.75 \\
& 0.86 \\
& 0.98
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.05 \\
& 0.06 \\
& 0.07
\end{aligned}
$$
\]

\hline RC3DC-3315-PF-48 (Proposed/ not shielded) \& B \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 157.00 \& \[

$$
\begin{gathered}
\text { No lce } \\
1 / 2^{\prime \prime} \\
\text { Ice } \\
1^{\prime \prime} \text { Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 3.79 \\
& 4.04 \\
& 4.30
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.51 \\
& 2.72 \\
& 2.94
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.03 \\
& 0.06 \\
& 0.10
\end{aligned}
$$
\]

\hline RC3DC-3315-PF-48 (Proposed/ not shielded) \& C \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 157.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
1 / 2^{\prime \prime} \\
\text { Ice } \\
1^{\prime \prime} \text { Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 3.79 \\
& 4.04 \\
& 4.30
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.51 \\
& 2.72 \\
& 2.94
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.03 \\
& 0.06 \\
& 0.10
\end{aligned}
$$
\]

\hline $$
\begin{gathered}
\text { PCS } 1900 \mathrm{MHZ} 4 \mathrm{X} 45 \mathrm{~W}- \\
65 \mathrm{MHZ} \\
\text { (Proposed) }
\end{gathered}
$$ \& A \& From Leg \& \[

$$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 144.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
1 / 2^{\prime \prime} \\
\text { Ice } \\
1 " \text { Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 2.32 \\
& 2.53 \\
& 2.74
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.24 \\
& 2.44 \\
& 2.65
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.06 \\
& 0.08 \\
& 0.11
\end{aligned}
$$
\]

\hline (2) RRH2X50-800 (Proposed) \& A \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 144.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
1 / 2^{\prime \prime} \\
\text { Ice } \\
1^{\prime \prime} \text { Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1.70 \\
& 1.86 \\
& 2.03
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.28 \\
& 1.43 \\
& 1.58
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.05 \\
& 0.07 \\
& 0.09
\end{aligned}
$$
\]

\hline TD-RRH8X20-25 (Proposed) \& A \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 144.00 \& \[

$$
\begin{gathered}
\text { No lce } \\
1 / 2^{\prime \prime} \\
\text { Ice } \\
1^{\prime \prime} \text { lce }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 4.05 \\
& 4.30 \\
& 4.56
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.53 \\
& 1.71 \\
& 1.90
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.07 \\
& 0.10 \\
& 0.13
\end{aligned}
$$
\]

\hline NNVV-65B-R4 w/ Mount Pipe (Proposed) \& A \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 144.00 \& \[

$$
\begin{aligned}
& \text { No lce } \\
& 1 / 2^{\prime \prime} \\
& \text { Ice } \\
& 1^{\prime \prime} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 12.51 \\
& 13.11 \\
& 13.67
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 7.41 \\
& 8.60 \\
& 9.50
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.10 \\
& 0.19 \\
& 0.29
\end{aligned}
$$
\]

\hline APXVTM14-ALU-I20 w/ Mount Pipe (Proposed) \& A \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 144.00 \& No lce 1/2" Ice \& \[

$$
\begin{aligned}
& 6.58 \\
& 7.03 \\
& 7.47
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.96 \\
& 5.75 \\
& 6.47
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.08 \\
& 0.13 \\
& 0.19
\end{aligned}
$$
\]

\hline
\end{tabular}

tnxTower Report - version 7.0.5.1

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets: Horz Lateral Vert ft ft ft \& Azimuth Adjustmen \(t\) \& Placement \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) Front \\
\(\pi^{2}\)
\end{tabular} \& \(C_{A} A_{A}\) Side
\[
f^{2}
\] \& Weight

K

\hline \multirow{5}{*}{$$
\begin{gathered}
\text { PCS } 1900 \mathrm{MHZ} 4 \mathrm{XX} 45 \mathrm{~W}- \\
65 \mathrm{MHZ} \\
\text { (Proposed) }
\end{gathered}
$$} \& \multirow{5}{*}{B} \& \multirow{4}{*}{From Leg} \& \& \& \& 1" Ice \& \& \&

\hline \& \& \& 4.00 \& 0.0000 \& 144.00 \& No lce \& 2.32 \& 2.24 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.53 \& 2.44 \& 0.08

\hline \& \& \& 0.00 \& \& \& Ice \& 2.74 \& 2.65 \& 0.11

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{(2) RRH2X50-800 (Proposed)} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& 0.0000 \& 144.00 \& No Ice \& 1.70 \& 1.28 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.86 \& 1.43 \& 0.07

\hline \& \& \& 0.00 \& \& \& Ice \& 2.03 \& 1.58 \& 0.09

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{| TD-RRH8X20-25 |
| :--- |
| (Proposed) |} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& 0.0000 \& 144.00 \& No Ice \& 4.05 \& 1.53 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" \& 4.30 \& 1.71 \& 0.10

\hline \& \& \& 0.00 \& \& \& Ice \& 4.56 \& 1.90 \& 0.13

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{NNV -65B-R4 w/ Mount Pipe (Proposed)} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& 0.0000 \& 144.00 \& No Ice \& 12.51 \& 7.41 \& 0.10

\hline \& \& \& 0.00 \& \& \& 1/2" \& 13.11 \& 8.60 \& 0.19

\hline \& \& \& 0.00 \& \& \& Ice \& 13.67 \& 9.50 \& 0.29

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{APXVTM14-ALU-I20 w/ Mount Pipe (Proposed)} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& 0.0000 \& 144.00 \& No Ice \& 6.58 \& 4.96 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" \& 7.03 \& 5.75 \& 0.13

\hline \& \& \& 0.00 \& \& \& Ice \& 7.47 \& 6.47 \& 0.19

\hline \& \& \& \& \& \& 1"Ice \& \& \&

\hline \multirow[t]{4}{*}{$$
\begin{gathered}
\text { PCS 1900MHZ } 4 \mathrm{X} 45 \mathrm{~W}- \\
65 \mathrm{MHZ} \\
\text { (Proposed) }
\end{gathered}
$$} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& 0.0000 \& 144.00 \& Nolce \& 2.32 \& 2.24 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.53 \& 2.44 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1ce \& 2.74 \& 2.65 \& 0.11

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{(2) $\mathrm{RRH} 2 \times 50-800$ (Proposed)} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& 0.0000 \& 144.00 \& No lce \& 1.70 \& 1.28 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.86 \& 1.43 \& 0.07

\hline \& \& \& 0.00 \& \& \& Ice \& 2.03 \& 1.58 \& 0.09

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{TD-RRH8X20-25 (Proposed)} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& 0.0000 \& 144.00 \& No lce \& 4.05 \& 1.53 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" \& 4.30 \& 1.71 \& 0.10

\hline \& \& \& 0.00 \& \& \& Ice \& 4.56 \& 1.90 \& 0.13

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{NNV-65B-R4 w/ Mount Pipe (Proposed)} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& 0.0000 \& 144.00 \& No Ice \& 12.51 \& 7.41 \& 0.10

\hline \& \& \& 0.00 \& \& \& 1/2" \& 13.11 \& 8.60 \& 0.19

\hline \& \& \& 0.00 \& \& \& Ice \& 13.67 \& 9.50 \& 0.29

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{3}{*}{APXVTM14-ALU-I20 w/ Mount Pipe (Proposed)} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& 0.0000 \& 144.00 \& No Ice \& 6.58 \& 4.96 \&

\hline \& \& \& 0.00 \& \& \& 1/2" \& 7.03 \& 5.75 \& 0.13

\hline \& \& \& 0.00 \& \& \& $$
\begin{gathered}
\text { Ice } \\
\text { 1" Ice }
\end{gathered}
$$ \& 7.47 \& 6.47 \& 0.19

\hline ** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{4}{*}{PD1110} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 0.00 \& 0.0000 \& 109.00 \& No Ice \& 2.50 \& 2.50 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" \& 3.84 \& 3.84 \& 0.04

\hline \& \& \& 6.00 \& \& \& Ice \& 5.20 \& 5.20 \& 0.07

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline \multirow[t]{4}{*}{Side Arm Mount [SO 3081]} \& \multirow[t]{4}{*}{c} \& \multirow[t]{4}{*}{From Leg} \& 0.00 \& 0.0000 \& 109.00 \& No lce \& 0.98 \& 3.03 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.70 \& 5.22 \& 0.08

\hline \& \& \& 0.00 \& \& \& Ice \& 2.42 \& 7.41 \& 0.10

\hline \& \& \& \& \& \& 1" Ice \& \& \&

\hline
\end{tabular}

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load	Tilt	Comb.

Section No.	Elevation	Horz. Deflection in	Gov. Load	Tilt	Comb.

Critical Deflections and Radius of Curvature - Service Wind						
Elevation ft	Appurtenance	$\begin{aligned} & \text { Gov. } \\ & \text { Load } \\ & \text { comb. } \end{aligned}$	Deflection in	Tilt	Twist	Radius of Curvature ft
157.00	(2) LPA-80080/6CF w/ Mount Pipe	43	2.784	0.1733	0.0073	52758
144.00	Sector Mount [SM 506-3]	43	2.301	0.1664	0.0059	32201
118.00	(4) DB844H90E-XY w/ Mount	43	1.470	0.1279	0.0036	34335
109.00	PD1110	43	1.233	0.1159	0.0032	38969
90.00 50.00	(2) 7770.00 w/ Mount Pipe	43 43	0.811 0.236	0.0910 0.0430	0.0025 0.0011	43844 56813

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	0

Critical Deflections and Radius of Curvature - Design Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist	Radius of Curvature ft
157.00	(2) LPA-80080/6CF w/ Mount Pipe	10	12.513	0.7763	0.0333	11745
144.00	Sector Mount [SM 506-3]	10	10.348	0.7459	0.0269	7259
118.00	(4) DB844H90E-XY w/ Mount Pipe	10	6.618	0.5744	0.0165	7668
109.00	PD1110	10	5.551	0.5210	0.0144	8698
90.00	(2) $7770.00 \mathrm{w} / \mathrm{Mount}$ Pipe	10	3.651	0.4094	0.0113	9775
50.00	KS24019-L112A	10	1.063	0.1938	0.0050	12626

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	Kl/r		P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		ft	ft		$i n^{2}$	K	K	ϕP_{n}
T1	160-156	Rohn $2.375^{\prime \prime} \times 0.218^{\prime \prime}(2$ EH)	4.00	4.00	$\begin{gathered} 62.6 \\ K=1.00 \end{gathered}$	1.4773	-4.14	49.90	$\begin{gathered} 0.083^{1} \\ \% \end{gathered}$
T2	156-152	Rohn 2.375" x 0.218" (2 EH)	4.00	4.00	$\begin{gathered} 62.6 \\ K=1.00 \end{gathered}$	1.4773	-5.46	49.90	0.109^{1}
T3	152-148	Rohn 2.375" x 0.218" (2 EH)	4.00	4.00	$\begin{gathered} 62.6 \\ K=1.00 \end{gathered}$	1.4773	-8.64	49.90	0.173^{1}
T4	148-144	Rohn 2.375" $\times 0.218^{\prime \prime}$ (2 EH)	4.00	4.00	$\begin{gathered} 62.6 \\ K=1.00 \end{gathered}$	1.4773	-12.89	49.90	$\begin{gathered} 0.258^{1} \\ 4 \end{gathered}$
T5	144-140	Rohn $2.375^{\prime \prime} \times 0.218^{\prime \prime}(2$	4.00	4.00	62.6	1.4773	-19.93	49.90	0.399^{1}

tnxTower Report - version 7.0.5.1

Section No.	Elevation	Size	L	L_{u}	KI/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	ft								ϕP_{n}
		EH)		$K=1.00$					4
T6	140-120	Rohn 2.875" $\times 0.276^{\prime \prime}(2.5$ EH)	20.03	5.01	$\begin{gathered} 65.0 \\ K=1.00 \end{gathered}$	2.2535	-48.88	74.43	$\begin{gathered} 0.657^{1} \\ 7 \end{gathered}$
T7	120-100	Rohn 4" $\times 0.318^{\prime \prime}$ (3.5 EH)	20.03	6.68	$\begin{gathered} 61.3 \\ K=1.00 \end{gathered}$	3.6784	-76.39	125.73	${ }_{0}^{0.608^{1}}$
T8	100-80	$\begin{gathered} \text { Rohn } 4 " \times 0.318^{\prime \prime}(3.5 \mathrm{EH}) \\ (\mathrm{GR}) \end{gathered}$	20.03	6.68	$\begin{gathered} 61.3 \\ K=1.00 \end{gathered}$	3.6784	-105.52	148.29	0.712^{1}
T9	80-60	ROHN 4 EH (GR)	20.04	6.68	$\begin{gathered} 54.3 \\ K=1.00 \end{gathered}$	4.4074	-134.95	192.91	0.700^{1}
T10	60-40	Rohn 5.563" x 0.375" (5 EH) (GR)	20.03	10.02	$\begin{gathered} 65.4 \\ K=1.00 \end{gathered}$	6.1120	-161.06	246.97	0.652^{1}
T11	40-20	$\begin{gathered} \text { Rohn } 5.563^{\prime \prime} \times 0.375^{\prime \prime}(5 \\ E H)(G R) \end{gathered}$	20.04	10.02	$\begin{gathered} 65.4 \\ K=1.00 \end{gathered}$	6.1120	-188.02	246.94	0.761^{1}
T12	20-0	Rohn 6.625" $\times 0.432^{\prime \prime}$ (6 EH) (GR)	20.03	10.02	$\begin{gathered} 54.8 \\ K=1.00 \end{gathered}$	8.4049	-214.46	381.11	0.563^{1}

${ }^{1} P_{u} / \phi P_{n}$ controls
Diagonal Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	$K / / r$	A	P_{u}	ϕP_{n}	Ratio P_{u}
	ft		$f t$	f		$i n^{2}$	K	K	ϕP_{n}
T1	160-156	L $1.5 \times 1.5 \times 1 / 8$	6.94	3.37	$\begin{gathered} 136.4 \\ K=1.00 \end{gathered}$	0.3594	- -0.87	4.36	$\begin{gathered} 0.200^{1} \\ 4 \end{gathered}$
T2	156-152	L $1.5 \times 1.5 \times 1 / 8$	6.95	3.37	$\begin{gathered} 136.6 \\ K=1.00 \end{gathered}$	0.3594	-2.38	4.35	0.547^{1}
T3	152-148	L $1.5 \times 1.5 \times 1 / 8$	6.95	3.37	$\begin{gathered} 136.7 \\ K=1.00 \end{gathered}$	0.3594	-2.40	4.34	0.552^{1}
T4	148-144	L $1.5 \times 1.5 \times 1 / 8$	6.96	3.38	$\begin{gathered} 136.9 \\ K=1.00 \end{gathered}$	0.3594	-2.59	4.33	0.598^{1}
T5	144-140	L $2 \times 2 \times 1 / 4$	6.97	3.38	$\begin{gathered} 107.8 \\ K=1.04 \end{gathered}$	0.9380	-4.14	16.48	0.251^{1}
T6	140-120	$2 \mathrm{~L} 1.5 \times 1.5 \times 1 / 8(3 / 16)$	8.46	4.26	$\begin{gathered} 125.3 \\ K=1.00 \end{gathered}$	0.7188	-3.62	10.20	0.355^{1}
T7	120-100	$\begin{aligned} & 2 \mathrm{~L} \text { 'a'> } 24.4215 \text { in }-61 \\ & 2 \mathrm{~L} 2 \times 2 \times 3 / 16(3 / 16) \end{aligned}$	11.36	5.76	$\begin{gathered} 119.1 \\ K=1.00 \end{gathered}$	1.4297	-4.72	21.96	0.215^{1}
T8	100-80	$\begin{gathered} 2 \mathrm{~L} ' \mathrm{a}^{\prime}>33.0734 \mathrm{in}-82 \\ 2 \mathrm{~L} 2.5 \times 2.5 \times 3 / 16(3 / 16) \end{gathered}$	13.11	6.63	$\begin{gathered} 120.7 \\ K=1.00 \end{gathered}$	1.8047	-5.98	27.16	$0^{0.220^{1}}$
T9	80-60	$\begin{gathered} 2 \mathrm{~L} \text { 'a' }>37.9460 \mathrm{in}-103 \\ 2 \mathrm{~L} 3 \times 3 \times 3 / 16(1 / 4) \end{gathered}$	14.99	7.57	$\begin{gathered} 105.5 \\ \mathrm{~K}=1.00 \end{gathered}$	2.1797	-6.14	38.73	0.159^{1}
T10	60-40	$\begin{gathered} 2 \mathrm{~L} \text { 'a' }>43.2580 \text { in }-124 \\ 2 \mathrm{~L} 3 \times 3 \times 3 / 16(1 / 4) \end{gathered}$	18.13	9.22	$\begin{gathered} 130.5 \\ K=1.00 \end{gathered}$	2.1797	-7.25	28.70	0.253^{1}
T11	40-20	$\begin{gathered} 2 L^{\prime} \mathrm{a} \text { ' }>52.6982 \mathrm{in}-145 \\ 2 \mathrm{~L} 3 \times 3 \times 1 / 4(1 / 4) \end{gathered}$	19.90	10.11	$\begin{gathered} 135.8 \\ K=1.00 \end{gathered}$	2.8750	-7.31	35.24	0.207^{1}
T12	20-0	$\begin{aligned} & \text { 2L 'a' }>57.9396 \text { in }-160 \\ & 2 \mathrm{~L} 3.5 \times 3.5 \times 1 / 4(1 / 4) \end{aligned}$	21.70	11.00	$\begin{gathered} 121.6 \\ K=1.00 \end{gathered}$	3.3750	-8.11	50.21	0.162^{1}

${ }^{1} P_{u} / \phi P_{n}$ controls
tnxTower Report - version 7.0.5.1

Top Girt Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	K//r		P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \end{gathered}$
	$f t$		ft	ft		$i n^{2}$	K	K	ϕP_{n}
T1	160-156	L2 $2 \times 1 / 8$	6.52	6.11	$\begin{gathered} 184.6 \\ K=1.00 \end{gathered}$	0.4844	-0.41	3.21	$2^{0.127^{1}}$
T6	140-120	L $2 \times 2 \times 1 / 8$	6.56	6.16	$\begin{gathered} 185.8 \\ K=1.00 \end{gathered}$	0.4844	-0.27	3.17	0.087^{1}

${ }^{1} P_{u} / \phi P_{n}$ controls

Tension Checks

Leg Design Data (Tension)									
Section No.		Size		L_{u}	KI/r		P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \end{gathered}$
	t		ft	$f t$		$i n^{2}$	K	K	ϕP_{n}
T1	160-156	$\begin{gathered} \text { Rohn } 2.375^{\prime \prime} \times 0.218^{\prime \prime}(2 \\ E H) \end{gathered}$	4.00	4.00	62.6	1.4773	0.01	66.48	0.000^{1}
T2	156-152	Rohn 2.375" $\times 0.218^{\prime \prime}(2$ EH)	4.00	4.00	62.6	1.4773	1.61	66.48	0.024^{1}
T3	152-148	Rohn 2.375" x 0.218" (2 EH)	4.00	4.00	62.6	1.4773	5.93	66.48	0.089^{1}
T4	148-144	Rohn 2.375" $\times 0.218^{\prime \prime}$ (2 EH)	4.00	4.00	62.6	1.4773	9.84	66.48	0.148^{1}
T5	144-140	Rohn $2.375^{\prime \prime} \times 0.218^{\prime \prime}(2$ EH)	4.00	4.00	62.6	1.4773	14.48	66.48	$\gamma^{0.218^{1}}$
T6	140-120	Rohn $2.875^{\prime \prime} \times 0.276^{\prime \prime}(2.5$ EH)	20.03	5.01	65.0	2.2535	41.65	101.41	0.411^{1}
T7	120-100	Rohn 4" $\times 0.318{ }^{\prime \prime}(3.5 \mathrm{EH}$)	20.03	6.68	61.3	3.6784	66.03	165.53	0.399^{1}
T8	100-80	Rohn 4" x 0.318" (3.5 EH) (GR)	20.03	6.68	61.3	3.6784	90.34	165.53	${ }^{0.546^{1}}$
T9	80-60	ROHN 4 EH (GR)	20.04	6.68	54.3	4.4074	115.54	198.34	${ }^{0.583^{1}}$
T10	60-40	Rohn 5.563" $\times 0.375^{\prime \prime}$ (5 EH) (GR)	20.03	10.02	65.4	6.1120	137.44	275.04	0.500^{1}
T11	40-20	Rohn 5.563" $\times 0.375^{\prime \prime}$ (5 EH) (GR)	20.04	10.02	65.4	6.1120	159.31	275.04	$0^{0.579^{1}}$
T12	20-0	Rohn 6.625" $\times 0.432^{\prime \prime}(6$ EH) (GR)	20.03	10.02	54.8	8.4049	179.65	378.22	0.475^{1}

${ }^{1} P_{u} / \phi P_{n}$ controls

Diagonal Design Data (Tension)

Section No.	Elevation	Size	L	L_{u}	K/I/	A	Pu K	${ }_{\phi}^{\phi} P_{n}$	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
fo. ft			f	$f t$		$i n^{2}$	K	K	${ }_{\phi} P_{n}$
T1	160-156	L $1.5 \times 1.5 \times 1 / 8$	6.94	3.37	89.6	0.2109	0.83	9.18	$\begin{gathered} 0.091^{1} \end{gathered}$
T2	156-152	L $1.5 \times 1.5 \times 1 / 8$	6.95	3.37	89.6	0.2109	2.42	9.18	$0.264{ }^{1}$
tnxTower Report - version 7-0.5.1									

Project Number 37518-2158-002-8700, Order 441482, Revision 0

Section No.	Elevation ft	Size	ft	L_{u} ft	KI/r	A $i n^{2}$	P_{u} K	ϕP_{n} K	Ratio P_{u} ϕP_{n}
								K	ϕP_{n}
T3	152-148	L $1.5 \times 1.5 \times 1 / 8$	6.95	3.37	89.7	0.2109	2.35	9.18	0.256^{\dagger}
T4	148-144	L $1.5 \times 1.5 \times 1 / 8$	6.96	3.38	89.8	0.2109	2.65	9.18	89^{1}
T5	144-140	L $2 \times 2 \times 1 / 4$	6.97	3.38	68.7	0.5863	4.04	25.50	0.158^{1}
T6	140-120	$2 \mathrm{~L} 1.5 \times 1.5 \times 1 / 8(3 / 16)$	8.03	4.05	107.2	0.4219	3.61	18.35	. $197{ }^{1}$
T7	120-100	$\begin{gathered} \text { 2L 'a' > } 23.2191 \mathrm{in}-68 \\ 2 \mathrm{~L} .2 \times 2 \times 3 / 16(3 / 16) \end{gathered}$	10.80	5.48	108.6	0.8965	4.70	39.00	$0.121{ }^{1}$
		2 L 'a' > 31.4884 in - 89							
T8	100-80	$2 \mathrm{~L} 2.5 \times 2.5 \times 3 / 16$ (3/16)	13.11	6.63	103.8	1.1777	5.93	51.23	116^{1}
T9	80-60	$\begin{gathered} \text { 2L 'a' > } 37.9460 \text { in }-104 \\ 2 \mathrm{~L} 3 \times 3 \times 3 / 16(1 / 4) \end{gathered}$	14.99	7.57	98.1	1.4590	6.11	63.47	$0.09{ }^{1}$
T10	60-40	$\begin{gathered} 2 \mathrm{~L} \text { 'a' }>43.2580 \mathrm{in}-125 \\ 2 \mathrm{~L} 3 \times 3 \times 3 / 16(1 / 4) \end{gathered}$	18.13	9.22	119.4	1.4238	7.06	61.94	0.114^{1}
		$2 L^{\prime} \mathrm{a}$ ' >52.6982 in - 146							
T11	40-20	$2 \mathrm{~L} 3 \times 3 \times 1 / 4$ (1/4)	19.90	10.11	132.0	1.8750	7.15	81.56	3.088^{1}
T12	20-0	$\begin{gathered} \text { 2L 'a' > } 57.9396 \text { in }-161 \\ 2 \mathrm{~L} 3.5 \times 3.5 \times 1 / 4(1 / 4) \end{gathered}$	21.70	11.00	122.2	2.2500	7.79	97.88	0.080^{1}

${ }^{1} P_{u} / \phi P_{n}$ controls

Top Girt Design Data (Tension)									
Section No.	Elevation	Size	L	L_{u}	$K 1 / r$	\bar{A}	P_{u}	ϕP_{n}	Ratio P_{u}
	ft		ft	$f t$		$i n^{2}$	K	K	ϕP_{n}
T1	160-156	$L 2 \times 2 \times 1 / 8$	6.52	6.11	121.2	0.3047	0.43	13.25	0.032^{1}
T6	140-120	L. $2 \times 2 \times 1 / 8$	6.56	6.16	122.0	0.3047	0.27	13.25	$\begin{gathered} 0.021^{1} \\ 4 \end{gathered}$

${ }^{1} P_{u} / \phi P_{n}$ controls

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$\begin{gathered} \emptyset P_{\text {allow }} \\ K \end{gathered}$	\% Capacity	Pass Fail
T1	160-156	Leg	Rohn $2.375^{\prime \prime} \times 0.218^{\prime \prime}$ (2 EH)	2	-4.14	49.90	8.3	Pass
		Diagonal	L $1.5 \times 1.5 \times 1 / 8$	10	-0.87	4.36	20.0	Pass
							24.1 (b)	
		Top Girt	L. $2 \times 2 \times 1 / 8$	6	-0.41	3.21	12.7	Pass
T2	156-152	Leg	Rohn $2.375^{\prime \prime} \times 0.218^{\prime \prime}(2 \mathrm{EH})$	14	-5.46	49.90	10.9	Pass
		Diagonal	L $1.5 \times 1.5 \times 1 / 8$	16	-2.38	4.35	54.7	Pass
							69.8 (b)	
T3	152-148	Leg	Rohn $2.375^{\prime \prime} \times 0.218^{\prime \prime}(2 \mathrm{EH})$	23	-8.64	49.90	17.3	Pass
		Diagonal	L $1.5 \times 1.5 \times 1 / 8$	25	-2.40	4.34	55.2	Pass
							67.8 (b)	

tnxTower Report - version 7.0.5.1

Section No.	$\begin{aligned} & \text { Elevation } \\ & \quad f t \\ & \hline \end{aligned}$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$\begin{aligned} & \emptyset P_{\text {antow }} \\ & K \end{aligned}$	\% Capacity	$\begin{gathered} \text { Pass } \\ \text { Fail } \end{gathered}$
T4	148-144	$\begin{gathered} \text { Leg } \\ \text { Diagonal } \end{gathered}$	$\begin{gathered} \text { Rohn } 2.375^{\prime \prime} \times 0.218^{\prime \prime}(2 \mathrm{EH}) \\ \mathrm{L} 1.5 \times 1.5 \times 1 / 8 \end{gathered}$	32	-12.89	49.90	25.8	Pass
				34	-2.59	4.33	59.8	Pass
							76.5 (b)	
T5	144-140	Leg Diagonal	$\begin{gathered} \text { Rohn } 2.375^{\prime \prime} \times 0.218^{\prime \prime}(2 \mathrm{EH}) \\ \mathrm{L} 2 \times 2 \times 1 / 4 \end{gathered}$	41	-19.93	49.90	39.9	Pass
				44	-4.14	16.48	25.1	Pass
							53.8 (b)	
T6	140-120	Leg	Rohn $2.875^{\prime \prime} \times 0.276^{\prime \prime}(2.5$ E.H)	50	-48.88	74.43	65.7	Pass
		Diagonal	$2 \mathrm{~L} 1.5 \times 1.5 \times 1 / 8(3 / 16)$	61	-3.62	10.20	35.5	Pass
							57.7 (b)	
		Top Girt	L $2 \times 2 \times 1 / 8$	54	-0.27	3.17	8.7	Pass
T7	120-100	Leg	Rohn 4" $\times 0.318^{\prime \prime}$ (3.5 EH)	80	-76.39	125.73	60.8	Pass
		Diagonal	$2 \mathrm{~L} 2 \times 2 \times 3 / 16(3 / 16)$	82	-4.72	21.96	21.5	Pass
							62.6 (b)	
T8	100-80	Leg	Rohn 4" x 0.318" (3.5 EH) (GR)	101	-105.52	148.29	71.2	Pass
		Diagonal	$2 \mathrm{~L} 2.5 \times 2.5 \times 3 / 16$ (3/16)	103	-5.98	27.16	22.0	Pass
							47.8 (b)	
T9	80-60	Leg	ROHN 4 EH (GR)	122	-134.95	192.91	70.0	Pass
		Diagonal	$2 \mathrm{~L} 3 \times 3 \times 3 / 16(1 / 4)$	124	-6.14	38.73	15.9	Pass
							49.3 (b)	
T10	60-40	Leg	Rohn $5.563^{\prime \prime} \times 0.375^{\prime \prime}$ (5 EH) (GR)	143	-161.06	246.97	65.2	Pass
		Diagonal	$2 \mathrm{~L} 3 \times 3 \times 3 / 16(1 / 4)$	145	-7.25	28.70	25.3	Pass
							47.7 (b)	
T11	40-20	Leg	Rohn 5.563" $\times 0.375$ " (5 EH) (GR)	158	-188.02	246.94	76.1	Pass
		Diagonal	$2 \mathrm{~L} 3 \times 3 \times 1 / 4(1 / 4)$	160	-7.31	35.24	20.7	Pass
							48.3 (b)	
T12	20-0	Leg	Rohn 6.625 " $\times 0.432 "(6 \mathrm{EH})$ (GR)	173	-214.46	381.11	$\begin{gathered} 56.3 \\ 56.5(\mathrm{~b}) \end{gathered}$	Pass
		Diagonal	$2 \mathrm{~L} 3.5 \times 3.5 \times 1 / 4(1 / 4)$	175	-8.11	50.21	16.2	Pass
							52.7 (b)	
							76.1	Pass
						Diagonal (T4)	76.5	Pass
						Top Girt (T1)	12.7	Pass
						Bolt	76.5	Pass
						Checks RATING =	76.5	Pass

APPENDIX B

BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS

Pier and Pad Foundation

TIA-222 Revision:	G
Tower Type:	Self Support

Block Foundation?:	\square

Superstructure Analysis Reactions		
Compression, $\mathbf{P}_{\text {comp: }}$	220	kips
Compression Shear, Vu_comp:	30	kips
Uplift, $\mathrm{P}_{\text {uplifi: }}$	185	kips
Uplift Shear, $\mathrm{V}_{\text {u_uplif: }}$	25	kips
Tower Height, $\mathrm{H}:$	162	ft
Base Face Width, $\mathbf{B W}:$	21	ft
BP Dist. Above Fdn, $\mathrm{bp}_{\text {dist: }}$	0	in

Foundation Analysis Checks				
	Capacity	Demand	Rating	Check
Uplift (kips)	276.24	185.00	67.0%	Pass
Lateral (Sliding) (kips)	91.37	30.00	32.8%	Pass
Bearing Pressure (ksf)	13.04	4.30	33.0%	Pass
Pier Flexure (Comp.) (kip*ft)	1095.93	315.00	$\mathbf{2 8 . 7} \%$	Pass
Pier Flexure (Tension) (kip*ft)	708.69	262.50	37.0%	Pass
Pier Compression (kip)	2214.70	238.18	10.8%	Pass
Pad Flexure (kip*ft)	564.21	103.38	18.3%	Pass
Pad Shear - 1-way (kips)	181.87	31.07	$\mathbf{1 7 . 1} \%$	Pass
Pad Shear - 2-way (ksi)	0.16	0.05	$\mathbf{3 0 . 1 \%}$	Pass

Pier Properties		
Pier Shape:	Circular	
Pier Diameter, dpier:	3.5	ft
Ext. Above Grade, E:	0.5	ft
Pier Rebar Size, Sc:	8	
Pier Rebar Quantity, mc:	16	
Pier Tie/Spiral Size, St:	3	
Pier Tie/Spiral Quantity, mt:	7	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc $\mathbf{p i e r}^{2}$	3	in

Soil Rating:	67.0%
Structural Rating:	37.0%

Pad Properties		
Depth, D:	12.0	ft
Pad Width, W:	9.4	ft
Pad Thickness, T:	2.0	ft
Pad Rebar Size, Sp:	7	
Pad Rebar Quantity, mp:	11	
Pad Clear Cover, $\mathrm{cc}_{\text {pad }}:$	3	in

Material Properties		
Rebar Grade, Fy:	60000	psi
Concrete Compressive Strength, F'c:	3000	psi
Dry Concrete Density, $\delta \mathbf{c}:$	150	pcf

Soil Properties		
Total Soil Unit Weight, $\gamma:$	115	pcf
Ultimate Net Bearing, Qnet:	16.000	ksf
Cohesion, Cu:	0.000	ksf
Friction Angle, $\varphi:$	30	degrees
SPT Blow Count, N	blows:	0
Base Friction, $\mu:$	0	
Neglected Depth, $\mathbf{N}:$	4.0	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw:	None	ft

<--Toggle between Gross and Net

Anchor Rod Check for Self Supporting Towers

TIA-222-G, Section 4.9.9

Site Data	
BU\#:	
Site Name:	
App\#:	

Reactions		
Eta Factor, η	$\mathbf{0 . 5 5}$	Detail Type
Uplift, Pu:	$\mathbf{1 8 5}$	kips
Shear, Vu:	$\mathbf{2 5}$	kips

Anchor Rod Data		
Qty:	6	
Diam:	1	in
Rod Material:	A449 (1/4 to 1 Incl.)	
Strength (Fu):	120	ksi
Yield (Fy):	92	ksi

*Rod Circle:			
* $\mathrm{e}:$	in		
*\# of Rods			
in			
Mu= Puxe:			1 or 2

* Enter rod circle, offset (e) and number of anchor rods at the extreme fiber to consider if eccentric load due to leg reinforcement exists.

Figure 4-4 of TIA-222-G

Columbus, OH 43215
Phone: (614) 221-6679
FAX:

Project: PJF JOB \#37518-2158-002-8700		
Client: Crown Castle	Drawn by ${ }_{\text {jjacobs }}$	App'd:
Code: TIA-222-G	Date: 06/15/18	Scale: NTS
Path:		

MODIFIED 160' SELF SUPPORT TOWER

[^0]| TOWER MANUFACTURER: ROHN TOMER MANUFACTURER \#. 2281721 |
| :---: |
| QUALIFIED ENGINEERING SERVICES ARE AVAILABLE FR AND COMPANY TO ASSIST CONTRACTORS IN CLASS IV REVIEWS. FOR REQUESTED QUALIFIED ENGINEERING CONTACT US AT RIGGING@PJFWEB.COM. |

EBI Consulting

environmental | engineering | due diligence

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

SPRINT Existing Facility
Site ID: CT33XC547
W. Deep River

14 Route 80
Killingworth, CT 06419
August 1, 2018
EBI Project Number: 6218005231

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{7 . 5 2 \%}$

environmental | engineering | due diligence

August 1, 2018
SPRINT
Attn: RF Engineering Manager
1 International Boulevard, Suite 800
Mahwah, NJ 07495

Emissions Analysis for Site: CT33XC547 - W. Deep River

EBI Consulting was directed to analyze the proposed SPRINT facility located at $\mathbf{1 4}$ Route $\mathbf{8 0}$, Killingworth, CT, for the purpose of determining whether the emissions from the Proposed SPRINT Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(b)(1)-(b)(3)$, to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

General population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limits for the 850 MHz Band is approximately $567 \mu \mathrm{~W} / \mathrm{cm}^{2}$. The general population exposure limit for the 1900 MHz (PCS) and 2500 MHz (BRS) bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.
environmental | engineering | due diligence

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

1
Calculations were done for the proposed SPRINT Wireless antenna facility located at $\mathbf{1 4}$ Route 80, Killingworth, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65 . Since SPRINT is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was focused at the base of the tower. For this report the sample point is the top of a 6 -foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 1 CDMA channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.
2) 2 LTE channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 50 Watts per Channel.
3) 5 CDMA channels ($1900 \mathrm{MHz}(\mathrm{PCS})$) were considered for each sector of the proposed installation. These Channels have a transmit power of 16 Watts per Channel.
4) 2 LTE channels ($1900 \mathrm{MHz}(\mathrm{PCS})$) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
5) 8 LTE channels (2500 MHz (BRS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.

EBI Consulting

environmental | engineering | due diligence
6) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
7) For the following calculations, the sample point was the top of a 6 -foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
8) The antennas used in this modeling are the Commscope NNVV-65B-R4 and the RFS APXVTM14-ALU-I20 for transmission in the $850 \mathrm{MHz}, 1900 \mathrm{MHz}$ (PCS) and 2500 MHz (BRS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
9) The antenna mounting height centerlines of the proposed panel antennas are 144 feet above ground level (AGL) for Sector A, $\mathbf{1 4 4}$ feet above ground level (AGL) for Sector B and $\mathbf{1 4 4}$ feet above ground level (AGL) for Sector C.
10) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general population threshold limits.

N EBI Consulting
 environmental | engineering | due diligence

SPRINT Site Inventory and Power Data by Antenna

Sector:	A			Sector:	C
Antenna:\#:	1		1	Antenna \#\#:	1
Mâke $/$ Módel	Commscope NNVV-65B-R4	Make Módel	Commscope NNVV-65B-R4	Make Model	Commscope NNVV-65B-R4
	$12.75 / 15.05 \mathrm{dBd}$		$12.75 / 15.05 \mathrm{dBd}$		$12.75 / 15.05 \mathrm{dBd}$
	144 feet		144 feet		144 feet
Trequency Bands	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz}(\mathrm{PCS}) \end{gathered}$	Ftequency Bands	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) } \end{gathered}$	Frequency Bands	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz}(\mathrm{PCS}) \end{gathered}$
	10	KWa Channe Count	10	S- ${ }^{\text {a }}$ Chamel Count	10
	280 Watts		280 Watts		280 Watts
	7,378.61		7,378.61		7,378.61
WvivkintennaA	1.71 \%		1.71 \%		1.71 \%
, Antennai\#:	2		2	Antena \#:	2
Make $/$ Model	RFS APXVTM14-ALU- I20	Make Model	RFS APXVTM14-ALU- I20	Make: Model	RFS APXVTM14-ALU- I20
	15.9 dBd		15.9 dBd		15.9 dBd
	144 feet		144 feet	3xameligh (AGL)	144 feet
- Erequency Bands	2500 MHz (BRS)	WrFrequency Bands	2500 MHz (BRS)	Warequency Bands	2500 MHz (BRS)
\% \% \% Chamme Countu	8	W ${ }^{\text {a }}$ O- Chamel Count	8	第紬 Chanhe Count	8
	160 Watts		160 Watts		160 Watts
	6,224.72		6,224.72		6,224.72
	1.18 \%		1.18 \%		1.18 \%

Site Composite MPEO\%,	
Carrier	MPE $\%$
SPRINT - Max per sector	$\mathbf{2 . 8 9} \%$
AT\&T	1.05%
Nextel	0.65%
Verizon Wireless	2.93%
Site Total MPE \%:	$\mathbf{7 . 5 2} \%$

SPRINT Sector A Total:	2.89%
SPRINT Sector B Total:	2.89%
SPRINT Sector C Total:	2.89%
Site Total:	7.52%

SPRINT Frequency Band/ Tecbnology (All Sectors)	$\#$ Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density $\left(\mu W / \mathrm{cm}^{2}\right)$	Frequency (MHz)	Allowable MPE $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$	Calculated \% MPE
Sprint 850 MHz CDMA	1	376.73	144	0.71	850 MHz	567	0.12\%
Sprint 850 MHz LTE	2	941.82	144	3.56	850 MHz	567	0.63\%
Sprint 1900 MHz (PCS) CDMA	5	511.82	144	4.83	1900 MHz (PCS)	1000	0.48\%
Sprint 1900 MHz (PCS) LTE	2	1,279.56	144	4.83	1900 MHz (PCS)	1000	0.48\%
Sprint 2500 MHz (BRS) LTE	8	778.09	144	11.75	2500 MHz (BRS)	1000	1.18\%
YN						Total:	2.89\%

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the SPRINT facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

SPRINT Sector	Power Density Value (\%)
Sector A:	2.89%
Sector B:	2.89%
Sector C:	2.89%
SPRINT Maximum	2.89%
MPE \% (per sector):	
Site Total:	7.52%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{7 . 5 2} \%$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on
fedex.com.FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, nondelivery,misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for jtems of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

From:
Sent:
To:
Subject:

TrackingUpdates@fedex.com
Wednesday, August 8, 2018 10:39 AM
Barbadora, Jeff
FedEx Shipment 772918662444 Delivered

Your package has been delivered

Tracking \# 772918662444

Ship date:

Delivery date:
Wed, 8/8/2018 10:36
am
14 Route 80 LLC
14 Route 80 LLC
93A Glenwood Road
CLINTON, CT 06413
US

Shipment Facts

Our records indicate that the following package has been delivered.
\(\left.\begin{array}{ll}Tracking number: \& 772918662444

Status: \& Delivered: 08/08/2018 10:36

\& AM Signed for By: L.GRUM\end{array}\right\}\)| Reference: | 1766.6680 |
| :--- | :--- |
| Signed for by: | L.GRUM |
| Delivery location: | CLINTON, CT |
| Delivered to: | Receptionist/Front Desk |
| Service type: | FedEx Priority Overnight $® 8$ |
| Packaging type: | 1 |
| Number of pieces: | 1.00 lb. |
| Weight: | Deliver Weekday |
| Special handling/Services: | Residential Delivery |
| Standard transit: | $8 / 8 / 2018$ by 10:30 am |

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, nondelivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

From:
Sent:
To:
Subject:

TrackingUpdates@fedex.com
Wednesday, August 8, 2018 12:29 PM
Barbadora, Jeff
FedEx Shipment 772918561489 Delivered

Please do not respond to this message. This email was sent from an unattended mailbox. This report was generated at approximately 11:28 AM CDT on 08/08/2018.

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, nondelivery,misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

From:
Sent:
To:
Subject:

TrackingUpdates@fedex.com
Wednesday, August 8, 2018 12:28 PM
Barbadora, Jeff
FedEx Shipment 772918585648 Delivered

Your package has been delivered

Tracking \# 772918585648

Ship date:
Tue, 8/7/2018
Jeff Barbadora
Crown Castle
WOBURN, MA 01801
us

Delivered

Delivery date:
Wed, 8/8/2018 12:27
pm
Ms. Cathie Jefferon-Zoning
Officer
Town of Killingworth
323 Route 81
KILLINGWORTH, CT 06419
US

Shipment Facts

Our records indicate that the following package has been delivered.

Tracking number:	772918585648
Status:	Delivered: 08/08/2018 12:27 PM Signed for By: M.OTOOLE
Reference:	1766.6680
Signed for by:	M.OTOOLE
Delivery location:	KILLINGWORTH, CT
Delivered to:	Receptionist/Front Desk
Service type:	FedEx Priority Overnight®
Packaging type:	FedEx® Envelope
Number of pieces:	1
Weight:	1.00 lb.
Special handling/Services:	Deliver Weekday
Standard transit:	$8 / 8 / 2018$ by $12: 00$ pm

Please do not respond to this message. This email was sent from an unattended mailbox. This report was generated at approximately 11:28 AM CDT on 08/08/2018.

[^0]: ATEENTION ALLL CONTRACTORS, ANYTIME YOU ACCESS A CROWN SITE,
 FOR AN REASON YOU ARE TO CALL THE CROWN NOC UPON ARRIVAL AND
 DEPARTURE, DAILY AT (800) 788-7011.
 QUALIFIED ENGINEERING SERVICES ARE AVAILABLE FROM PAUL J. FORD
 ANO COMPANY TO ASSIST CONTRACTORS IN CLASS IV RIGGING PLAN
 REVIEWS FOR REQUESTED OUALIFIED ENGINEERING SERVICES, PLEASE AND COMPANY TO ASSIST CONTRACTORS IN CLASS IV RIGGING PLAN
 REVIEWS. FOR REQUESTED QUALIFIED ENGINEERING SERVICES, PLEASE
 CONTACT US AT RIGGING@PJFWEB.COM.

 | ATEENTION ALL CONTRACTORS, ANYTIME YOU ACCESS A CROWN SITE, |
 | :--- |
 | FOR ANY REASON YOU ARE TO CALLL THE CROWN NOG UPON ARRIVAL AND |
 | DEPARTURE, DAILY AT (800) 788-7011. |

