June 5, 2015

Melanie A. Bachman
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051
\section*{RE: T-Mobile-Exempt Modification - Crown Site BU: 857013

T-Mobile Site ID: CTNL140B

Located at: 280 Ross Road, Killingly, CT 06239}

Dear Ms. Bachman:
This letter and exhibits are submitted on behalf of T-Mobile. T-Mobile is making modifications to certain existing sites in its Connecticut system in order to implement their 700 MHz technology. Please accept this letter and exhibits as notification, pursuant to § 16-50j73 of the Regulations of Connecticut State Agencies ("R.C.S.A."), of construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In compliance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to the Honorable John Hallbergh, Council Chairman for the Town of Killingly, and Snake Meadow Club Inc., Property Owner.

T-Mobile plans to modify the existing wireless communications facility owned by Crown Castle and located at $\mathbf{2 8 0}$ Ross Road, Killingly, CT 06239. Attached are a compound plan and elevation depicting the planned changes (Exhibit-1), and documentation of the structural sufficiency of the structure to accommodate the revised antenna configuration (Exhibit-2). Also included is a power density table report reflecting the modification to T-Mobile's operations at the site (Exhibit-3).

The changes to the facility do not constitute a modification as defined in Connecticut General Statutes ("C.G.S.") § 16-50i(d) because the general physical characteristics of the facility will not be significantly changed. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for in the R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. T-Mobile's replacement antennas will be located at the same elevation on the existing tower.
2. There will be no proposed modifications to the ground and no extension of boundaries.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more.
4. The operation of the replacement antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) adopted safety standard. A cumulative General Power Density table report for T-Mobile's modified facility is included as Exhibit-3.
5. A Structural Modification Report confirming that the tower and foundation can support T-Mobile's proposed modifications is included as Exhibit-2.

For the foregoing reasons, T-Mobile respectfully submits the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Jerry Feathers
Real Estate Specialist
Enclosure
Tab 1: Exhibit-1: Compound plan and elevation depicting the planned changes
Tab 2: Exhibit-2: Structural Modification Report
Tab 3: Exhibit-3: General Power Density Table Report (RF Emissions Analysis Report)
cc: The Honorable John Hallbergh, Council Chairman
172 Main Street
Killingly, CT 06239
Snake Meadow Club Inc.
P.O. Box 236

Central Village, CT 06332

．00，691	$\phi_{\text {¢ }} 8 / \mathrm{s}-1(\mathrm{l})$	9．8／5－1（z）	WLu－SOSIS9－XN7 3dosswW00	－	OWWHO
			Nivw3y O1 9nlisix		
．0－．6S	$p_{\text {d }} 8 / \mathrm{s}-1(\mathrm{l})$	$\phi_{4} 8 / \mathrm{s}-1$（z）	WL＾－SOSIS9－XN7 Эdooswnoo	－	V139
			NITW3y O1 9nusix］	7גd9l－Adg LXdY SJy	
．0－．65	क．8／G－！（z）	$9 \times 8 / 5-1$（z）	WL＾－Sosisg－XN7 Эdosswnos	－	＊Hdר
			NIWW3y ol 9nlisix		
	03SOdOyd	9NUSIX	03SOdoyd	9NLISIX］	
	$\times 800$			SVNNEIN	
NOIL甘4ก⿹IJNOS NDISヨa					

Dewberry Engineers Inc．

Date: April 28, 2015
GPD Engineering and Architecture Professional Corporation

Darcy Tarr
Crown Castle
3530 Toringdon Way Suite 300
Charlotte, NC 28277
(704) 405-6589

Subject:

Carrier Designation:

Crown Castle Designation:

Engineering Firm Designation:
Site Data:

Structural Analysis Report

T-Mobile Co-Locate
Carrier Site Number: CTNL140B
Carrier Site Name:
Crown Castle BU Number: 857013
Crown Castle Site Name:
Crown Castle JDE Job Number: 331620
Crown Castle Work Order Number: 1048275
Crown Castle Application Number: 293312 Rev. 0
GPD Group Project Number: 2015777.857013 .03
280 Ross Road, Killingly, Windham County, CT 06239
Latitude $41^{\circ} 46^{\prime} 17.59^{\prime \prime}$, Longitude - $71^{\circ} 51^{\prime} 20.39^{\prime \prime}$
119 Foot - Monopole Tower

520 South Main Street, Suite 2531
Akron, OH 44311
(614) 859-1607
dpalkovic@gpdgroup.com
Crown Castle Designation:
Engineering Firm Designation:
Site Data:

Dear Darcy Tarr,
GPD is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 779529, in accordance with application 293312, revision 0.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

> LC7: Existing + Reserved + Proposed Equipment
> Note: See Table I and Table II for the proposed and existing/reserved loading, respectively.

Sufficient Capacity

The analysis has been performed in accordance with the TIA/EIA-222-F standard and the 2005 CT State Building Code based upon a wind speed of 85 mph fastest mile.

We at GPD appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Structural analysis prepared by: Benjamin Darkow, E.I.
Respectfully submitted by:

Christopher J. Scheks, P.E.
Connecticut \#: 0030026

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable Information
Table 2 - Existing and Reserved Antenna and Cable Information
Table 3 - Design Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided
3.1) Analysis Method
3.2) Assumptions

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)
Table 6 - Tower Components vs. Capacity
4.1) Recommendations
5) DISCLAIMER OF WARRANTIES

6) APPENDIX A

tnxTower Output
7) APPENDIX B

Base Level Drawing

8) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 119 ft Monopole tower which was mapped by GPD in January of 2009. The original tower design code, wind speed and loading are unknown.

The existing monopole tower has three major sections connected by slip joints. It has 18 sides and is evenly tapered from 50.4674 " (flat-flat) at the base to 18.9450 " (flat-flat) at the top. The structure is galvanized and has no tower lighting.

2) ANALYSIS CRITERIA

The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 85 mph with no ice, 40 mph with 0.75 inch ice thickness (in accordance with ASCE 7-05 ice conditions) and 50 mph under service loads.

Table 1 - Proposed Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Size (in)	Note
107.0	109.0	3	Commscope	ATBT-BOTTOM-24V	6	$1-5 / 8$	1
	3	Commscope	LNX-6515DS-VTM				

Notes:

1) See Appendix B for the proposed coax layout

Table 2 - Existing and Reserved Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	$\left\|\begin{array}{c} \text { Number } \\ \text { of } \\ \text { Antennas } \end{array}\right\|$	Antenna Manufacturer	Antenna Model	Number of Feed Lines		Note
119.0	121.0	6	Andrew	E15S08P77	$\begin{gathered} 1 \\ 2 \\ 12 \end{gathered}$	$\begin{gathered} 1 / 2 \\ 7 / 8 \\ 1-5 / 8 \end{gathered}$	
		6	Ericsson	RBS 6601			
		3	KMW	AM-X-CD-17-65-00T-RET			
		6	Nextnet Wireless	BTS-2500			
		6	Powerwave	7770.00			
		6	Powerwave	LGP21401			
		1	Raycap	DC6-48-60-18-8F			
	119.0	1		20' Low Profile Platform			
107.0	109.0				6	1-5/8	2
		3	Allgon	LGP 13903	6	1-5/8	
		3	RFS Celwave	APX16PV-16PVL			
	107.0	1		Platform Mount [LP 304-1]			
100.0	100.0	3	Alcatel Lucent	RRH2X60-AWS	1	1-5/8	1
		3	Alcatel Lucent	RRH2X60-1900A-4R			
		3	Antel	BXA-70080-6CF-EDIN-X			
		3	Antel	BXA-70063-6CF-EDIN-0			
		6	Commscope	HBXX-6517DS-A2M			
		1	RFS Celwave	DB-T1-6Z-8AB-0Z			
		1		Platform Mount [LP 303-1]	18	1-5/8	

Notes:

1) Reserved equipment; considered in this analysis
2) Existing equipment to be removed; not considered in this analysis

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
GEOTECHNICAL REPORTS	WEI Project No. 2009-872, dated 8/7/2009	4908007	CCISITES
TOWER FOUNDATION DRAWINGS	WEI Project No. 2009-872, dated 8/7/2009	4908012	CCISITES
TOWER MAPPING REPORT	GPD, dated 1/19/2009	4908008	CCISITES

3.1) Analysis Method

tnxTower (version 6.1.4.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

1) Tower and structures were built in accordance with the manufacturer's specifications.
2) The tower and structures have been maintained in accordance with the manufacturer's specification.
3) When applicable, transmission cables are considered as structural components for calculating wind loads as allowed by TIA/EIA-222-F.

This analysis may be affected if any assumptions are not valid or have been made in error. GPD Group should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	\% Capacity	Pass / Fail
L1	$119-84.33$	Pole	TP28.7844x18.945x0.5	1	-11.09	1723.00	36.7	Pass
L2	$84.33-45.5$	Pole	TP38.8044x26.6492x0.625	2	-21.36	2916.20	46.5	Pass
L3	$45.5-0$	Pole	TP50.4674x36.1354x0.6875	3	-33.19	3869.50	47.0	Pass
							Summary	
						Pole (L3)	47.0	Pass
					Rating $=$	47.0	Pass	

Table 5 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	\% Capacity	Pass / Fail
1	Anchor Rods	0	52.1	Pass
1	Base Plate	0	78.9	Pass
1	Base Foundation	0	40.7	Pass
1	Base Foundation Soil Interaction	0	31.5	Pass

Structure Rating (max from all components) $=$	78.9%

Notes:

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the \% capacity consumed.

4.1) Recommendations

The existing tower and its foundation are sufficient for the proposed loading and do not require modifications.

5) DISCLAIMER OF WARRANTIES

GPD has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD in connection with this Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

This analysis is limited to the designated maximum wind and seismic conditions per the governing tower standards and code. Wind forces resulting in tower vibrations near the structure's resonant frequencies were not considered in this analysis and are outside the scope of this analysis. Lateral loading from any dynamic response was not evaluated under a time-domain based fatigue analysis.

GPD does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the capability of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the code specified amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

Towers are designed to carry gravity, wind, and ice loads. All members, legs, diagonals, struts, and redundant members provide structural stability to the tower with little redundancy. Absence or removal of a member can trigger catastrophic failure unless a substitute is provided before any removal. Legs carry axial loads and derive their strength from shorter unbraced lengths by the presence of redundant members and their connection to the diagonals with bolts or welds. If the bolts or welds are removed without providing any substitute to the frame, the leg is subjected to a higher unbraced length that immediately reduces its load carrying capacity. If a diagonal is also removed in addition to the connection, the unbraced length of the leg is greatly increased, jeopardizing its load carrying capacity. Failure of one leg can result in a tower collapse because there is no redundancy. Redundant members and diagonals are critical to the stability of the tower.

GPD makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD pursuant to this report will be limited to the total fee received for preparation of this report.

APPENDIX A

TNXTOWER OUTPUT

TYPE	ELEVATION	TYPE	ELEVATION
(2) 7770.00 w/ Mount Pipe	119	LGP 13903	107
(2) $7770.00 \mathrm{w} /$ Mount Pipe	119	LGP 13903	107
(2) 7770.00 w/ Mount Pipe	119	LGP 13903	107
AM-X-CD-17-65-00T-RET w/ Mount	119	ATBT-BOTTOM-24V	107
		ATBT-BOTTOM-24V	107
AM-X-CD-17-65-00T-RET w/ Mount	119	ATBT-BOTTOM-24V	107
		Platform Mount [LP 304-1]	107
AM-X-CD-17-65-00T-RET w/ Mount Pipe	119	BXA-70063-6CF-EDIN-0 w/ Mount Pipe	100
(3) LGP21401	119	BXA-70063-6CF-EDIN-0 w/ Mount	100
(3) LGP21401	119	Pipe	
(3) E15S08P77	119	BXA-70063-6CF-EDIN-0 w/ Mount	100
(3) E15S08P77	119	Pipe	
(2) RBS 6601	119	BXA-70080-6CF-EDIN-X w/ Mount	100
(2) RBS 6601	119	Pipe	
(2) RBS 6601	119	BXA-70080-6CF-EDIN-X w/ Mount	100
(3) BTS-2500	119		
(3) BTS-2500	119	BXA-70080-6CF-EDIN-X w/ Mount Pipe	100
DC6-48-60-18-8F Surge Suppression Unit	119	(2) HBXX-6517DS-A2M w/ Mount Pipe	100
Pipe Mount 8'x2.375"	119	(2) HBXX-6517DS-A2M w/ Mount Pipe	100
Pipe Mount $\mathbf{8 ' x}^{\prime} \times 2.375{ }^{\prime \prime}$	119	(2) HBXX-6517DS-A2M w/ Mount Pipe	100
Pipe Mount 8'x2.375'	119	RRH2X60-1900A-4R	100
20' Low Profile Platform	119	RRH2X60-1900A-4R	100
APX16PV-16PVL w/ Mount Pipe	107	RRH2X60-1900A-4R	100
APX16PV-16PVL w/ Mount Pipe	107	RRH2X60-AWS	100
APX16PV-16PVL w/ Mount Pipe	107	RRH2X60-AWS	100
LNX-6515DS-VTM w/ Mount Pipe	107	RRH2X60-AWS	100
LNX-6515DS-VTM w/ Mount Pipe	107	DB-T1-6Z-8AB-0Z	100
LNX-6515DS-VTM w/ Mount Pipe	107	Platform Mount [LP 303-1]	100

| MATERIAL STRENGTH |
| :---: | :---: | :---: | :---: | :---: | :---: |
| GRADE Fy Fu GRADE Fy Fu
 A572-50 50 ksi 65 ksi |

TOWER DESIGN NOTES

1. Tower is located in Windham County, Connecticut.
2. Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F Standard.
3. Tower is also designed for a 40 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
4. Deflections are based upon a 50 mph wind.
5. TOWER RATING: 47\%

TORQUE 0 kip-ft
40 mph WIND - 0.7500 in ICE

TORQUE 1 kip-ft REACTIONS - 85 mph WIND

GPD

GPD
520 South Main Street, Suite 2531
Akron, OH 44311
Phone: (330) 572-2100
FAX: (330) 572-2101

BU \#: 857013, KILLINGLY ROSS ROAD
Project: 2015777.857013.03
Client: Crown Castle USA, Inc. ${ }^{\text {Drawn by: B Darkow }}$ App'd:

Code: TIA/EIA-222-F	Date: 04/28/15	Scale: NTS
Path: ${ }_{\text {VAKRN05.gpdco.comITELECOMICrowni857013103ITNX1857013.eri }}$	Dwg No. E-1	

Feed Line Distribution Chart 0' - 119'
\qquad ound Flai \qquad App In Face \qquad App Out Face \qquad Truss Leg

Tower Input Data

There is a pole section.
This tower is designed using the TIA/EIA-222-F standard.
The following design criteria apply:

1) Tower is located in Windham County, Connecticut.
2) Basic wind speed of 85 mph .
3) Nominal ice thickness of 0.7500 in.
4) Ice thickness is considered to increase with height.
5) Ice density of 56 pcf .
6) A wind speed of 40 mph is used in combination with ice.
7) Temperature drop of $50{ }^{\circ} \mathrm{F}$.
8) Deflections calculated using a wind speed of 50 mph .
9) A non-linear (P-delta) analysis was used.
10) Pressures are calculated at each section.
11) Stress ratio used in pole design is 1.333 .
12) Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals Use Moment Magnification
\checkmark Use Code Stress Ratios
$\sqrt{ }$ Use Code Safety Factors - Guys
\checkmark Escalate Ice
Always Use Max Kz
Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) Add IBC .6D+W Combination

Distribute Leg Loads As Uniform Assume Legs Pinned
\checkmark Assume Rigid Index Plate
$\sqrt{ }$ Use Clear Spans For Wind Area
\checkmark Use Clear Spans For KL/r Retension Guys To Initial Tension
\checkmark Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
\checkmark Project Wind Area of Appurt. Autocalc Torque Arm Areas SR Members Have Cut Ends
\checkmark Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Use TIA-222-G Tension Splice Capacity Exemption

Treat Feedline Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation
$\sqrt{ }$ Consider Feedline Torque Include Angle Block Shear Check Poles
$\sqrt{ }$ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

Tapered Pole Section Geometry

Section	Elevation	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	$119.00-84.33$	34.67	4.00	18	18.9450	28.7844	0.5000	2.0000	A572-50 (50 ksi)
L2	$84.33-45.50$	42.83	5.00	18	26.6492	38.8044	0.6250	2.5000	A572-50 (50 ksi)
L3	$45.50-0.00$	50.50		18	36.1354	50.4674	0.6875	2.7500	A572-50 (50 ksi)

Tapered Pole Properties

Section	Tip Dia. in	Area $i n^{2}$	l $i n^{4}$	r $i n$	C $i n$	l / C $i n^{3}$	J $i n^{4}$	$I t / Q$ $i n^{2}$	w $i n$	
L1	19.2373	29.2722	1258.2020	6.5480	9.6241	130.7350	2518.0595	14.6389	2.4543	
	29.2284	44.8873	4536.8610	10.0410	14.6225	310.2662	9079.6917	22.4479	4.1861	
L2	28.2130	51.6255	4417.2955	9.2386	13.5378	326.2936	8840.4034	25.8177	3.5909	8.372
	39.4030	75.7384	13948.018	13.5537	19.7126	707.5670	27914.389	37.8764	5.7296	9.744
				2				6		

tnxTower Report - version 6.1.4.1

Feed Line/Linear Appurtenances - Entered As Area

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Component Type	Placement ft	Total Number		$C_{A} A_{A}$ $f t^{2} / \mathrm{ft}$	Weight plf
Climbing Pegs	B	No	$\begin{aligned} & \text { CaAa (Out Of } \\ & \text { Face) } \end{aligned}$	119.00-11.00	1	No Ice	0.01	0.31
						1/2" Ice	0.12	0.71
						1 " Ice	0.22	1.71
						2" Ice	0.41	5.56
						4 " Ice	0.82	20.59
Safety Line (3/8")	B	No	CaAa (Out Of Face)	119.00-11.00	1	No Ice	0.04	0.22
						1/2" Ice	0.14	0.75
						1 ' Ice	0.24	1.28
						2 " Ice	0.44	2.34
						4 " Ice	0.84	4.46
LDF4-50A(1/2")	C	No	Inside Pole	119.00-11.00	1	No Ice	0.00	0.15
						1/2" Ice	0.00	0.15
						1 " Ice	0.00	0.15
						2 " Ice	0.00	0.15
						4 " Ice	0.00	0.15
LDF5-50A(7/8")	C	No	Inside Pole	119.00-11.00	2	No Ice	0.00	0.33
						1/2" Ice	0.00	0.33
						1 " Ice	0.00	0.33
						2 " Ice	0.00	0.33
						4 " Ice	0.00	0.33
LDF7-50A(1-5/8")	C	No	Inside Pole	119.00-11.00	12	No Ice	0.00	0.82
						1/2" Ice	0.00	0.82
						1" Ice	0.00	0.82
						2 " Ice	0.00	0.82
						4" Ice	0.00	0.82
LDF7-50A(1-5/8")	B	No	Inside Pole	107.00-2.50	6	No Ice	0.00	0.82
						1/2" Ice	0.00	0.82
						1" Ice	0.00	0.82
						2 " Ice	0.00	0.82
						4" Ice	0.00	0.82
AVA7-50(1-5/8)	B	No	Inside Pole	107.00-2.50	6	No Ice	0.00	0.70
						1/2" Ice	0.00	0.70
						1 " Ice	0.00	0.70
						2 " Ice	0.00	0.70
						4" Ice	0.00	0.70
HJ7-50A(1-5/8')	B	No	Inside Pole	100.00-8.00	18	No Ice	0.00	1.04
						1/2" Ice	0.00	1.04
						1 " Ice	0.00	1.04
						2 " Ice	0.00	1.04
						4" Ice	0.00	1.04
$\begin{aligned} & \text { HB158-1-08U8-S8J18(} \\ & 1-5 / 8) \end{aligned}$	B	No	Inside Pole	100.00-8.00	1	No Ice	0.00	1.30
						1/2" Ice	0.00	1.30
						1 ' Ice	0.00	1.30
						2 " Ice	0.00	1.30
						4" Ice	0.00	1.30

Feed Line/Linear Appurtenances Section Areas

Tower Sectio	Tower Elevation n	ft	Face	A_{R}	A_{F}	$C_{A} A_{A}$ $\operatorname{ln~Face~}$ $f t^{2}$	$C_{A} A_{A}$ Out Face
L1	$119.00-84.33$	A	0.000	0.000	0.000	0.000	Weight
		B	0.000	0.000	0.000	1.820	0.00
		C	0.000	0.000	0.000	0.000	0.54
L2	$84.33-45.50$	A	0.000	0.000	0.000	0.000	0.37
		B	0.000	0.000	0.000	2.039	1.15
		C	0.000	0.000	0.000	0.000	0.41
L3	$45.50-0.00$	A	0.000	0.000	0.000	0.000	0.00
		B	0.000	0.000	0.000	1.811	1.16
		C	0.000	0.000	0.000	0.000	0.37

Feed Line/Linear Appurtenances Section Areas - With Ice

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tower Sectio \\
\(n\)
\end{tabular} \& Tower Elevation ft \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Ice Thickness in \& \(A_{R}\)

$f t^{2}$ \& A_{F}

$f t^{2}$ \& $C_{A} A_{A}$ In Face $f t^{2}$ \& $$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
\mathrm{ft}^{2}
\end{gathered}
$$ \& Weight

K

\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{119.00-84.33} \& A \& \multirow[t]{3}{*}{0.857} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 13.711 \& 0.61

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.37

\hline \multirow[t]{3}{*}{L2} \& \multirow[t]{3}{*}{84.33-45.50} \& A \& \multirow[t]{3}{*}{0.812} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 15.356 \& 1.23

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.41

\hline \multirow[t]{3}{*}{L3} \& \multirow[t]{3}{*}{45.50-0.00} \& A \& \multirow[t]{3}{*}{0.750} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 13.023 \& 1.23

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.37

\hline
\end{tabular}

Feed Line Center of Pressure

Section	Elevation	$C P_{X}$	$C P_{Z}$	$C P_{X}$	$C P_{z}$ Ice Ice in
Lt	in	in	in	in	
	L1	$119.00-84.33$	0.0664	0.0384	0.4043
L2	$84.33-45.50$	0.0669	0.0386	0.4302	0.2334
L3	$45.50-0.00$	0.0493	0.0285	0.3216	0.1857

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert ft ft ft	Azimuth Adjustmen t ○	Placement ft		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight
						$\begin{aligned} & \text { 1" Ice } \\ & \text { 2" Ice } \\ & \text { 4" Ice } \end{aligned}$	$\begin{gathered} 8.38 \\ 10.69 \end{gathered}$	$\begin{gathered} 7.41 \\ 10.76 \end{gathered}$	$\begin{aligned} & 0.29 \\ & 0.68 \end{aligned}$
AM-X-CD-17-65-00T-RET w/ Mount Pipe	A	From CentroidLeg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 2.00 \end{aligned}$	0.0000	119.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 11.31 \\ & 11.93 \\ & 12.55 \\ & 13.88 \\ & 16.88 \end{aligned}$	$\begin{gathered} 8.70 \\ 10.11 \\ 11.38 \\ 13.58 \\ 18.18 \end{gathered}$	$\begin{aligned} & 0.09 \\ & 0.17 \\ & 0.26 \\ & 0.48 \\ & 1.08 \end{aligned}$
AM-X-CD-17-65-00T-RET w/ Mount Pipe	B	From CentroidLeg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 2.00 \end{aligned}$	0.0000	119.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 11.31 \\ & 11.93 \\ & 12.55 \\ & 13.88 \\ & 16.88 \end{aligned}$	$\begin{gathered} 8.70 \\ 10.11 \\ 11.38 \\ 13.58 \\ 18.18 \end{gathered}$	$\begin{aligned} & 0.09 \\ & 0.17 \\ & 0.26 \\ & 0.48 \\ & 1.08 \end{aligned}$
AM-X-CD-17-65-00T-RET w/ Mount Pipe	C	From CentroidLeg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 2.00 \end{aligned}$	0.0000	119.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 11.31 \\ & 11.93 \\ & 12.55 \\ & 13.88 \\ & 16.88 \end{aligned}$	$\begin{gathered} 8.70 \\ 10.11 \\ 11.38 \\ 13.58 \\ 18.18 \end{gathered}$	$\begin{aligned} & 0.09 \\ & 0.17 \\ & 0.26 \\ & 0.48 \\ & 1.08 \end{aligned}$
(3) LGP21401	A	From CentroidLeg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 2.00 \end{aligned}$	0.0000	119.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 1.29 \\ & 1.45 \\ & 1.61 \\ & 1.97 \\ & 2.79 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.48 \\ & 0.60 \\ & 0.87 \\ & 1.52 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.02 \\ & 0.03 \\ & 0.05 \\ & 0.14 \end{aligned}$
(3) LGP21401	B	From CentroidLeg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 2.00 \end{aligned}$	0.0000	119.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 1.29 \\ & 1.45 \\ & 1.61 \\ & 1.97 \\ & 2.79 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.48 \\ & 0.60 \\ & 0.87 \\ & 1.52 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.02 \\ & 0.03 \\ & 0.05 \\ & 0.14 \end{aligned}$
(3) E15S08P77	A	From CentroidLeg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 2.00 \end{aligned}$	0.0000	119.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 0.54 \\ & 0.64 \\ & 0.75 \\ & 0.99 \\ & 1.59 \end{aligned}$	$\begin{aligned} & 0.24 \\ & 0.31 \\ & 0.39 \\ & 0.58 \\ & 1.07 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.02 \\ & 0.03 \\ & 0.09 \end{aligned}$
(3) E15S08P77	C	From CentroidLeg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 2.00 \end{aligned}$	0.0000	119.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 0.54 \\ & 0.64 \\ & 0.75 \\ & 0.99 \\ & 1.59 \end{aligned}$	$\begin{aligned} & 0.24 \\ & 0.31 \\ & 0.39 \\ & 0.58 \\ & 1.07 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.02 \\ & 0.03 \\ & 0.09 \end{aligned}$
(2) RBS 6601	A	From CentroidLeg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 2.00 \end{aligned}$	0.0000	119.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 0.55 \\ & 0.70 \\ & 0.86 \\ & 1.19 \\ & 1.97 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.52 \\ & 0.64 \\ & 0.91 \\ & 1.55 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.03 \\ & 0.05 \\ & 0.09 \\ & 0.21 \end{aligned}$
(2) RBS 6601	B	From CentroidLeg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 2.00 \end{aligned}$	0.0000	119.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 0.55 \\ & 0.70 \\ & 0.86 \\ & 1.19 \\ & 1.97 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.52 \\ & 0.64 \\ & 0.91 \\ & 1.55 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.03 \\ & 0.05 \\ & 0.09 \\ & 0.21 \end{aligned}$
(2) RBS 6601	C	From CentroidLeg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 2.00 \end{aligned}$	0.0000	119.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 0.55 \\ & 0.70 \\ & 0.86 \\ & 1.19 \\ & 1.97 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.52 \\ & 0.64 \\ & 0.91 \\ & 1.55 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.03 \\ & 0.05 \\ & 0.09 \\ & 0.21 \end{aligned}$
(3) BTS-2500	B	From CentroidLeg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 2.00 \end{aligned}$	0.0000	119.00	No Ice 1/2" Ice	$\begin{aligned} & 2.12 \\ & 2.32 \\ & 2.53 \end{aligned}$	$\begin{aligned} & 0.96 \\ & 1.12 \\ & 1.29 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.05 \\ & 0.06 \end{aligned}$

tnxTower Report - version 6.1.4.1

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	```Offsets: Horz Lateral Vert ft ft ft```	Azimuth Adjustmen t 0	Placement ft		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight K
						$\begin{aligned} & \text { 1" Ice } \\ & \text { 2" Ice } \\ & \text { 4" Ice } \end{aligned}$	$\begin{aligned} & 14.48 \\ & 17.71 \end{aligned}$	$\begin{aligned} & 15.12 \\ & 19.94 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 1.14 \end{aligned}$
LNX-6515DS-VTM w/ Mount Pipe	C	From CentroidLeg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 2.00 \end{aligned}$	0.0000	107.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 11.64 \\ & 12.34 \\ & 13.04 \\ & 14.48 \\ & 17.71 \end{aligned}$	$\begin{gathered} 9.79 \\ 11.30 \\ 12.80 \\ 15.12 \\ 19.94 \end{gathered}$	$\begin{aligned} & 0.08 \\ & 0.17 \\ & 0.27 \\ & 0.50 \\ & 1.14 \end{aligned}$
LGP 13903	A	From CentroidLeg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 2.00 \end{aligned}$	0.0000	107.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 0.59 \\ & 0.69 \\ & 0.81 \\ & 1.06 \\ & 1.68 \end{aligned}$	$\begin{aligned} & 0.28 \\ & 0.36 \\ & 0.46 \\ & 0.67 \\ & 1.19 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.02 \\ & 0.04 \\ & 0.09 \end{aligned}$
LGP 13903	B	From CentroidLeg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 2.00 \end{aligned}$	0.0000	107.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 0.59 \\ & 0.69 \\ & 0.81 \\ & 1.06 \\ & 1.68 \end{aligned}$	$\begin{aligned} & 0.28 \\ & 0.36 \\ & 0.46 \\ & 0.67 \\ & 1.19 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.02 \\ & 0.04 \\ & 0.09 \end{aligned}$
LGP 13903	C	From CentroidLeg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 2.00 \end{aligned}$	0.0000	107.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 0.59 \\ & 0.69 \\ & 0.81 \\ & 1.06 \\ & 1.68 \end{aligned}$	$\begin{aligned} & 0.28 \\ & 0.36 \\ & 0.46 \\ & 0.67 \\ & 1.19 \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.02 \\ & 0.04 \\ & 0.09 \end{aligned}$
ATBT-BOTTOM-24V	A	From CentroidLeg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 2.00 \end{aligned}$	0.0000	107.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 0.12 \\ & 0.17 \\ & 0.23 \\ & 0.38 \\ & 0.77 \end{aligned}$	$\begin{aligned} & 0.08 \\ & 0.12 \\ & 0.17 \\ & 0.30 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.01 \\ & 0.01 \\ & 0.04 \end{aligned}$
ATBT-BOTTOM-24V	B	From CentroidLeg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 2.00 \end{aligned}$	0.0000	107.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 0.12 \\ & 0.17 \\ & 0.23 \\ & 0.38 \\ & 0.77 \end{aligned}$	$\begin{aligned} & 0.08 \\ & 0.12 \\ & 0.17 \\ & 0.30 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.01 \\ & 0.01 \\ & 0.04 \end{aligned}$
ATBT-BOTTOM-24V	C	From CentroidLeg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 2.00 \end{aligned}$	0.0000	107.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 0.12 \\ & 0.17 \\ & 0.23 \\ & 0.38 \\ & 0.77 \end{aligned}$	$\begin{aligned} & 0.08 \\ & 0.12 \\ & 0.17 \\ & 0.30 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.01 \\ & 0.01 \\ & 0.04 \end{aligned}$
Platform Mount [LP 304-1]	B	None		0.0000	107.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 17.46 \\ & 22.44 \\ & 27.42 \\ & 37.38 \\ & 57.30 \end{aligned}$	$\begin{aligned} & 17.46 \\ & 22.44 \\ & 27.42 \\ & 37.38 \\ & 57.30 \end{aligned}$	$\begin{aligned} & 1.35 \\ & 1.62 \\ & 1.90 \\ & 2.45 \\ & 3.55 \end{aligned}$
BXA-70063-6CF-EDIN-0 w/ Mount Pipe	A	From CentroidLeg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.0000	100.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{gathered} 7.75 \\ 8.29 \\ 8.85 \\ 9.97 \\ 12.34 \end{gathered}$	$\begin{gathered} 5.58 \\ 6.52 \\ 7.33 \\ 9.01 \\ 12.57 \end{gathered}$	$\begin{aligned} & 0.04 \\ & 0.10 \\ & 0.16 \\ & 0.32 \\ & 0.77 \end{aligned}$
BXA-70063-6CF-EDIN-0 w/ Mount Pipe	B	From CentroidLeg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.0000	100.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{gathered} 7.75 \\ 8.29 \\ 8.85 \\ 9.97 \\ 12.34 \end{gathered}$	$\begin{gathered} 5.58 \\ 6.52 \\ 7.33 \\ 9.01 \\ 12.57 \end{gathered}$	$\begin{aligned} & 0.04 \\ & 0.10 \\ & 0.16 \\ & 0.32 \\ & 0.77 \end{aligned}$
BXA-70063-6CF-EDIN-0 w/ Mount Pipe	C	From CentroidLeg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.0000	100.00	No Ice 1/2" Ice	$\begin{aligned} & 7.75 \\ & 8.29 \\ & 8.85 \end{aligned}$	$\begin{aligned} & 5.58 \\ & 6.52 \\ & 7.33 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.10 \\ & 0.16 \end{aligned}$

tnxTower Report - version 6.1.4.1

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& Face or Leg \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets: Horz Lateral Vert ft ft ft \& \begin{tabular}{l}
Azimuth Adjustmen \(t\) \\
0
\end{tabular} \& \begin{tabular}{l}
Placement \\
ft
\end{tabular} \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) Front \\
\(f t^{2}\)
\end{tabular} \& \(C_{A} A_{A}\)
Side

ft \& Weight

K

\hline \multirow{9}{*}{RRH2X60-AWS} \& \multirow{8}{*}{C} \& \multirow{8}{*}{From CentroidLeg} \& \& \& \& 1" Ice \& 3.07 \& 2.21 \& 0.13

\hline \& \& \& \& \& \& 2" Ice \& 4.09 \& 3.13 \& 0.26

\hline \& \& \& \& \& \& 4" Ice \& \& \&

\hline \& \& \& 4.00 \& 0.0000 \& 100.00 \& No Ice \& 2.19 \& 1.43 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.40 \& 1.61 \& 0.06

\hline \& \& \& 0.00 \& \& \& Ice \& 2.61 \& 1.80 \& 0.08

\hline \& \& \& \& \& \& 1 " Ice \& 3.07 \& 2.21 \& 0.13

\hline \& \& \& \& \& \& 2" Ice \& 4.09 \& 3.13 \& 0.26

\hline \& \multirow{7}{*}{B} \& \multirow{7}{*}{From CentroidLeg} \& \& \& \& 4" Ice \& \& \&

\hline \multirow[t]{12}{*}{DB-T1-6Z-8AB-0Z
Platform Mount [LP 303-1]} \& \& \& 4.00 \& \multirow[t]{6}{*}{0.0000} \& \multirow[t]{6}{*}{100.00} \& No Ice \& 5.60 \& 2.33 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1/2" \& 5.92 \& 2.56 \& 0.08

\hline \& \& \& 0.00 \& \& \& Ice \& 6.24 \& 2.79 \& 0.12

\hline \& \& \& \& \& \& 1 " Ice \& 6.91 \& 3.28 \& 0.21

\hline \& \& \& \& \& \& 2" Ice \& 8.37 \& 4.37 \& 0.45

\hline \& \& \& \& \& \& 4" Ice \& \& \&

\hline \& \multirow[t]{6}{*}{B} \& \multirow[t]{6}{*}{None} \& \& \multirow[t]{6}{*}{0.0000} \& \multirow[t]{6}{*}{100.00} \& No Ice \& 14.66 \& 14.66 \& 1.25

\hline \& \& \& \& \& \& 1/2" \& 18.87 \& 18.87 \& 1.48

\hline \& \& \& \& \& \& Ice \& 23.08 \& 23.08 \& 1.71

\hline \& \& \& \& \& \& 1" Ice \& 31.50 \& 31.50 \& 2.18

\hline \& \& \& \& \& \& 2" Ice \& 48.34 \& 48.34 \& 3.10

\hline \& \& \& \& \& \& 4" Ice \& \& \&

\hline
\end{tabular}

Load Combinations

Comb. No.		Description
1	Dead Only	
2	Dead+Wind 0 deg - No lce	
3	Dead+Wind 30 deg - No Ice	
4	Dead+Wind 60 deg - No Ice	
5	Dead+Wind 90 deg - No Ice	
6	Dead+Wind 120 deg - No Ice	
7	Dead+Wind 150 deg - No Ice	
8	Dead+Wind 180 deg - No Ice	
9	Dead+Wind 210 deg - No Ice	
10	Dead+Wind 240 deg - No Ice	
11	Dead+Wind 270 deg - No Ice	
12	Dead+Wind 300 deg - No Ice	
13	Dead+Wind 330 deg - No Ice	
14	Dead+Ice+Temp	
15	Dead+Wind 0 deg+Ice+Temp	
16	Dead+Wind 30 deg+Ice+Temp	
17	Dead+Wind 60 deg+Ice+Temp	
18	Dead+Wind 90 deg+Ice+Temp	
19	Dead+Wind 120 deg+Ice+Temp	
20	Dead+Wind 150 deg+Ice+Temp	
21	Dead+Wind 180 deg+Ice+Temp	
22	Dead+Wind 210 deg+Ice+Temp	
23	Dead+Wind 240 deg+Ice+Temp	
24	Dead+Wind 270 deg+Ice+Temp	
25	Dead+Wind 300 deg+Ice+Temp	
26	Dead+Wind 330 deg+Ice+Temp	
27	Dead+Wind 0 deg - Service	
28	Dead+Wind 30 deg - Service	
29	Dead+Wind 60 deg - Service	
30	Dead+Wind 90 deg - Service	
31	Dead+Wind 120 deg - Service	
32	Dead+Wind 150 deg - Service	
33	Dead+Wind 180 deg - Service	
34	Dead+Wind 210 deg - Service	
35	Dead+Wind 240 deg - Service	
36	Dead+Wind 270 deg - Service	
37	Dead+Wind 300 deg - Service	

tnxTower Report - version 6.1.4.1

Comb.	Description	
No.		
38	Dead+Wind 330 deg - Service	

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load	Tilt	Twist
	ft	$119-84.33$	10.195	31	\circ

Critical Deflections and Radius of Curvature - Service Wind						
Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist 。	Radius of Curvature ft
119.00	(2) $7770.00 \mathrm{w} / \mathrm{Mount}$ Pipe	31	10.195	0.7776	0.0016	44763
107.00	APX16PV-16PVL w/ Mount Pipe	31	8.299	0.7249	0.0012	18651
100.00	BXA-70063-6CF-EDIN-0 w/ Mount Pipe	31	7.230	0.6910	0.0010	11779

	Maximum Tower Deflections = Design Wind				
Section	Elevation	Horz.	Gov.	Tilt	Twist
No.	Deflection	Load	\circ	0	
Lt	in	Comb.	\circ	0.0047	
L2	$119-84.33$	29.423	6	2.2433	0.0019
L3	$88.33-45.5$	16.075	6	1.8013	0.0006
	$50.5-0$	5.021	6	0.9500	

Critical Deflections and Radius of Curvature - Design Wind						
Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
$f t$		Comb.	in	\bigcirc	-	ft
119.00	(2) 7770.00 w/ Mount Pipe	6	29.423	2.2433	0.0047	15577
107.00	APX16PV-16PVL w/ Mount Pipe	6	23.955	2.0918	0.0034	6490
100.00	BXA-70063-6CF-EDIN-0 w/ Mount Pipe	6	20.871	1.9942	0.0028	4098

Compression Checks

Pole Design Data										
Section No.	Elevation	Size	L	L_{u}	Kl/r	F_{a}	A	Actual P	Allow. P_{a}	Ratio P
	ft		ft	ft		ksi	$i n^{2}$	K	K	P_{a}
L1	119-84.33 (1)	TP28.7844x18.945x0.5	34.67	0.00	0.0	30.000	43.0858	-11.09	1292.57	0.009
L2	$84.33-45.5$ (2)	TP38.8044×26.6492x0.625	42.83	0.00	0.0	30.000	72.9235	-21.36	2187.70	0.010
L3	45.5-0 (3)	TP50.4674×36.1354×0.687	50.50	0.00	0.0	30.000	96.7617	-33.19	2902.85	0.011

Section	Elevation	Size	L	L_{u}	$K l / r$	F_{a}	A	Actual	Allow.	Ratio
No.	$f t$									

Pole Bending Design Data

Section No.	Elevation ft	Size	Actual M_{x} kip-ft	Actual $f_{b x}$ $k s i$	Allow. $F_{b x}$ ksi	$\begin{gathered} \hline \text { Ratio } \\ f_{b x} \\ \hline F_{b x} \end{gathered}$	$\begin{gathered} \text { Actual } \\ M_{y} \\ \text { kip-ft } \end{gathered}$	Actual $f_{b y}$ ksi	Allow. $F_{b y}$ ksi	$\begin{gathered} \hline \text { Ratio } \\ f_{b y} \\ \hline F_{b y} \end{gathered}$
L1	$119-84.33$ (1)	TP28.7844x18.945x0.5	343.32	14.422	30.000	0.481	0.00	0.000	30.000	0.000
L2	$84.33-45.5$ (2)	TP38.8044×26.6492×0.62 5	999.11	18.289	30.000	0.610	0.00	0.000	30.000	0.000
L3	45.5-0 (3)	TP50.4674×36.1354×0.68 75	$\begin{gathered} 1616.9 \\ 0 \end{gathered}$	18.465	30.000	0.615	0.00	0.000	30.000	0.000

Pole Shear Design Data

Section No.	Elevation ft	Size	Actual V K	Actual f_{v} ksi	Allow. F_{v} ksi	$\begin{gathered} \text { Ratio } \\ f_{v} \\ \hline F_{v} \end{gathered}$	$\begin{gathered} \text { Actual } \\ T \\ \text { kip-ft } \end{gathered}$	Actual $f_{v t}$ ksi	Allow. $F_{v t}$ ksi	$\begin{gathered} \text { Ratio } \\ f_{v t} \\ \hline F_{v t} \end{gathered}$
L1	$119-84.33$ (1)	TP28.7844x18.945x0.5	16.04	0.372	20.000	0.037	0.52	0.011	20.000	0.001
L2	$84.33-45.5$ (2)	TP38.8044×26.6492×0.62 5	18.65	0.256	20.000	0.026	0.52	0.005	20.000	0.000
L3	45.5-0 (3)	$\begin{gathered} \text { TP50.4674×36.1354×0.68 } \\ 75 \end{gathered}$	20.92	0.216	20.000	0.021	0.52	0.003	20.000	0.000

Pole Interaction Design Data

Section No.	Elevation ft	$\begin{gathered} \hline \text { Ratio } \\ P \\ \hline P_{a} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ f_{b x} \\ \hline F_{b x} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ f_{b y} \\ \hline F_{b y} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ f_{v} \\ \hline F_{v} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ f_{v t} \\ \hline F_{v t} \\ \hline \end{gathered}$	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
L1	$119-84.33$ (1)	0.009	0.481	0.000	0.037	0.001	0.490	1.333	$\mathrm{H} 1-3+\mathrm{VT}$
L2	84.33-45.5 (2)	0.010	0.610	0.000	0.026	0.000	0.620	1.333	$\mathrm{H} 1-3+\mathrm{VT}$
L3	45.5-0 (3)	0.011	0.615	0.000	0.021	0.000	0.627	1.333	$\mathrm{H} 1-3+\mathrm{VT}$

Section Capacity Table

Section No.	$\begin{aligned} & \text { Elevation } \\ & \mathrm{ft} \end{aligned}$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$\begin{gathered} S F^{*} P_{\text {allow }} \\ K \end{gathered}$	$\begin{gathered} \% \\ \text { Capacity } \end{gathered}$	$\begin{gathered} \text { Pass } \\ \text { Fail } \end{gathered}$
L1	119-84.33	Pole	TP28.7844x18.945×0.5	1	-11.09	1723.00	36.7	Pass
L2	84.33-45.5	Pole	TP38.8044×26.6492x0.625	2	-21.36	2916.20	46.5	Pass
L3	45.5-0	Pole	TP50.4674×36.1354×0.6875	3	-33.19	3869.50	47.0	Pass
						Summary	ELC:	Load Case 7
						Pole (L3)	47.0	Pass
						Rating =	47.0	Pass

APPENDIX B

BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS

Stiffened or Unstiffened, Ungrouted, Circular Base Plate - Any Rod Material

TIA Rev F

Site Data		
BU\#: 857013		
Site Name: KILLINGLY ROSS ROAD App \#: 293312 Rev. 0		
Pole Manufacturer:		Other
Anchor Rod Data		
Qty:Diam:Rod Material:Strength (Fu):Yield (Fy):Bolt Circle:	16	
	2.25	in
	A615-J	
	100	ksi
	75	ksi
	58.4674	in

Plate Data		
Diam:	64.4674	in
Thick:	2	in
Grade:	50	ksi
	Single-Rod B-eff:	10.01
		in

Reactions		
Moment:	2027	ft-kips
Axial:	41	kips
Shear:	22	kips

If No stiffeners, Criteria:	AISC ASD <-Only Applcable to Unstiffened Cases

Anchor Rod Results

Maximum Rod Tension:	101.5 Kips
Allowable Tension:	195.0 Kips
Anchor Rod Stress Ratio:	52.1% Pass

Rigid
Service, ASD
Fty ${ }^{*}$ ASIF

Anchor Rod Stress Ratio:
Flexural Check
39.5 ksi
50.0 ksi
78.9% Pass

Rigid
Service ASD
$0.75^{*} \mathrm{Fy}{ }^{*} \mathrm{ASIF}$
Y.L. Length:
29.52

n/a
Stiffener Results

Horizontal Weld:	n / a
Vertical Weld:	n / a
Plate Flex+Shear, fb/Fb+(fv/Fv)^2:	n / a
Plate Tension+Shear, ft/Ft+(fv/Fvv^2:	n / a
Plate Comp. (AISC Bracket):	n / a

Pole Results
Pole Punching Shear Check: n/a

[^0]Mat Foundation Analysis
BU \#: 857013, KILLINGLY ROSS ROAD
2015777.857013.02

Bearing Summary			Load Case
Qxmax	1.63	ksf	1.2D+1.6W
Qymax	1.63	ksf	1.2D+1.6W
Qmax @ 45	1.69	ksf	1.2D+1.6W
$\mathrm{Q}_{\text {(all) Gross }}$	11.91	ksf	
Controlling Capacity	14.2\%	Pass	

Tower Reactions	
Moment, M	$2027 \mathrm{k}-\mathrm{ft}$
Axial, P	41 k
Shear, V	22 k

Overturning Summary (Required FS=1.0)		Load Case	
FS(ot)x	3.17	≥ 1.0	$0.9 \mathrm{D}+1.6 \mathrm{~W}$
FS(ot)y	3.17	≥ 1.0	$0.9 \mathrm{D}+1.6 \mathrm{~W}$
Controlling Capacity		$\mathbf{3 1 . 5 \%}$	Pass

Pad \& Pier Geometry		
Pier Width, \varnothing	7	ft
Pad Length, L	25	ft
Pad Width, W	25	ft
Pad Thickness, t	3	ft
Depth, D	7	ft
Height Above Grade, HG	0.5	ft

Pad \& Pier Reinforcing		
Rebar Fy	60	ksi
Concrete Fc'	3	ksi
Clear Cover	3	in
Reinforced Top \& Bottom?	Yes	
Pad Reinforcing Size	$\# 9$	
Pad Quantity Per Layer	10	
Pier Rebar Size	$\# 10$	
Pier Quantity of Rebar	39	

GPD Mat Foundation Analysis - V1.02

Base Foundation Reinforcement Check BU \#: 857013, KILLINGLY ROSS ROAD

Code TIA/EIA-222-F

Tower Reactions	
Moment	$2027.355 \mathrm{k}-\mathrm{ft}$
Axial	40.642 k
Shear	22.121 k

Pad \& Pier Geometry	
Height	7 ft
Height above Grade	0.5 ft
Pad Length, L	25 ft
Pad Width, W	25 ft
Pad Thickness	3 ft
Pier Shape	Square
Square Pier Width	7 ft

Pad \& Pier Reinforcing	
Reinforcing Known	No
$\mathrm{f}_{\mathrm{c}}{ }^{\prime}$	3 ksi
Clear Cover	3 in
Rebar Fy	60 ksi
Reinforced Top \& Bottom?	Yes
Pad Rebar Size	$\# 9$
Pad Rebar Quantity	10
Pier Rebar Size	$\# 10$
Pier Rebar Quantity	39

Unit Weights	
Concrete Unit Weight	150 pcf
Soil Unit Weight	125 pcf

Orthogonal Bearing	
$\mathrm{Q}_{\max }$	2.03 ksf
$\mathrm{Q}_{\min }$	0.06 ksf

Pad Moment Capacity		
$\mathrm{M}_{\mathrm{u}}=$	22.62	
$\phi \mathrm{M}_{\mathrm{n}}=$	55.65	
Moment Capacity	40.7\%	OK
One-Way (Wide-Beam) Shear		
$\mathrm{V}_{\mathrm{u}}=$	86.79	
$\phi V_{n}=$	771.66	
Shear Capacity	11.2\%	OK
Two-Way (Punching) Shear		
$\mathrm{V}_{\mathrm{u}}=$	384.08	
$\phi \mathrm{V}_{\mathrm{n}}=$	2372.78	
Shear Capacity	16.2\%	OK
Pier Compression		
$\mathrm{P}_{\mathrm{u}}=$	52.83	
$\phi \mathrm{P}_{\mathrm{n}}=$	10835.92	
Compression Capacity	0.5\%	OK

Overall Capacities		
Reinforcement Capacity	40.7%	OK
As Min Met?	Yes	
Controlling Capacity	$\mathbf{4 0 . 7 \%}$	OK

[^1]environmental | engineering | due diligence

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CTNL140B

NL140/CingularRossRd_MP 280 Ross Road
Killingly, CT 06239
June 4, 2015
EBI Project Number: 6215003320

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general public allowable limit:	68.80%

June 4, 2015

T-Mobile USA
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 06002

Emissions Analysis for Site: CTNL140B - NL140/CingularRossRd_MP

EBI Consulting was directed to analyze the proposed T-Mobile facility located at $\mathbf{2 8 0}$ Ross Road, Killingly, CT, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The general population exposure limit for the 700 MHz Band is $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$, and the general population exposure limit for the PCS and AWS bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at $\mathbf{2 8 0}$ Ross Road, Killingly, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 2 GSM channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel
2) 2 UMTS channels (AWS Band - 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
3) 2 LTE channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
4) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts.
5) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
environmental | engineering | due diligence
6) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
7) The antennas used in this modeling are the RFS APX16PV-16PVL-C-A20 for 1900 MHz (PCS) and 2100 MHz (AWS) channels and the Commscope LNX-6515DS-VTM for 700 MHz channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The RFS APX16PV-16PVL-C-A20 has a maximum gain of $\mathbf{1 6 . 3} \mathbf{~ d B d}$ at its main lobe. The Commscope LNX-6515DS-VTM has a maximum gain of $\mathbf{1 4 . 6} \mathbf{~ d B d}$ at its main lobe. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
8) The antenna mounting height centerline of the proposed antennas is $\mathbf{1 0 9}$ feet above ground level (AGL).
9) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	1	Antenna \#:	1	Antenna \#:	1
Make / Model:	$\begin{array}{r} \text { RFS APX16PV- } \\ \text { 16PVL-C-A20 } \end{array}$	Make / Model:	$\begin{array}{r} \text { RFS APX16PV- } \\ \text { 16PVL-C-A20 } \end{array}$	Make / Model:	$\begin{array}{r} \hline \text { RFS APX16PV- } \\ \text { 16PVL-C-A20 } \end{array}$
Gain:	16.3 dBd	Gain:	16.3 dBd	Gain:	16.3 dBd
Height (AGL):	109	Height (AGL):	109	Height (AGL):	109
Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands ${ }^{\text {a }}$ (1900	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$
Channel Count	6	Channel Count	6	\# PCS Channels:	6
Total TX Power:	240	Total TX Power:	240	\# AWS Channels:	240
ERP (W):	10,237.91	ERP (W):	10,237.91	ERP (W):	10,237.91
Antenna A1 MPE\%	3.47	Antenna B1 MPE\%	3.47	Antenna C1 MPE\%	3.47
Antenna \#:	2	Antenna \#:	2	Antenna \#:	2
Make / Model:	$\begin{aligned} & \text { Commscope LNX- } \\ & \text { 6515DS-VTM } \end{aligned}$	Make / Model:	$\begin{gathered} \text { Commscope LNX- } \\ \text { 6515DS-VTM } \end{gathered}$	Make / Model:	Commscope LNX-6515DS-VTM
Gain:	14.6 dBd	Gain:	14.6 dBd	Gain:	14.6 dBd
Height (AGL):	109	Height (AGL):	109	Height (AGL):	109
Frequency Bands	700 MHz	Frequency Bands	700 MHz	Frequency Bands	700 MHz
Channel Count	1	Channel Count	1	Channel Count	1
Total TX Power:	30	Total TX Power:	30	Total TX Power:	30
ERP (W):	865.21	ERP (W):	865.21	ERP (W):	865.21
Antenna A2 MPE\%	0.63	Antenna B2 MPE\%	0.63	Antenna C2 MPE\%	0.63
	Site Composite MPE \%			T-Mobile Sector 1 Total:	: 4.10%
	Carrier	MPE\%		T-Mobile Sector 2 Total:	: 4.10%
	T-Mobile	12.29			: 4.10 \%
	AT\&T	24.26 \%		Site Total:	: 68.80 \%

MetroPCS	5.91 \%
Verizon Wireless	26.34 \%
Site Total MPE \%:	$\mathbf{6 8 . 8 0} \%$

environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (\%)
Sector 1:	4.10%
Sector 2:	4.10%
Sector 3:	4.10%
T-Mobile Total:	12.29%
Site Total:	68.80%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{6 8 . 8 0 \%}$ of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

EBI Consulting

21 B Street
Burlington, MA 01803

[^0]: * 0 = none, 1 = every bolt, 2 = every 2 bolts, $3=2$ per bolt
 ** Note: for complete joint penetration groove welds the groove depth must be exactly $1 / 2$ the stiffener thickness for calculation purposes

[^1]: Base Foundation Reinforcement - V1.09

