

Crown Castle 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065

January 11, 2024

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification for T-Mobile: CTNL140B

Crown Site ID# 857013

280 Ross Road, Killingly, CT 06239

Latitude: 41° 46′ 17.49" / Longitude: -71° 51′ 20.39"

Dear Ms. Bachman:

T-Mobile currently maintains six (6) antennas at the 110-foot mount on the existing 119-foot monopole tower located at 280 Ross Road, Killingly, CT. The property is owned by Snake Meadow Club Inc, and the tower is owned by Crown Castle. T-Mobile now intends to replace three (3) antennas, three (3) remote radios and ancillary equipment at the 110ft level. This modification/proposal includes hardware that is both 4G (LTE) and 5G capable through remote software configuration and either or both services may be turned on or off at various times.

Panned Modification:

Tower:

Install New:

- (3) Ericsson Air 6419 B41
- (3) Ericsson 4460 B25+B66 Radios
- (3) RF Cellwave HB158-21U6S24-xxM Hybrid Cables

Remove:

- (3) RFS APX16DWV-16DWV-S-E-A20 Antennas
- (3) Generic Twin Style 1A PCS TMAs
- (1) RFS/Celwave-HB114-U6S12-XXX-LI Hybrid Cable
- (6) Andrew LDF-50A Coaxial Cables
- (6) AVA7-50 Coaxial Cables

Ground:

Install New:

- (1) Ericsson 6160 AC V1 Enclosure
- (2) (1) Ericsson-B160 Enclosure

The Foundation for a Wireless World.

CrownCastle.com

Page 2

Remove:

- (1) RBS-6102 MUAC Enclosure
- (1.) Batter Back up Unit

The facility was approved by the Connecticut Siting Council Docket NO.283 on June 23, 2004.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Mary Calorio – Town Manager, Town of Killingly, Ann-Marie Aubrey – Director of Planning and Development, Town of Killingly. Snake Meadow Club Inc, Property Owner and Crown Castle is the tower owner.

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
- The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Jeffrey Barbadora.

Sincerely

Jeffrey Barbadora

Site Acquisition Specialist

1800 W. Park Drive Westborough, MA 01581

(781) 970-0053

Jeff.Barbadora@crowncastle.com

Page 3

STATE OF

Attachments

cc:

Mary Calorio – Town Manager Town of Killingly 172 Main Street Killingly, CT 06239 860-779-5335

Ann-Marie Aubrey – Director of Planning and Development Town of Killingly 172 Main Street Killingly, CT 06239 860-779-5313

Snake Meadow Club Inc c/o Paul Chase PO BOX 236 Central Village, CT 06332-0236

Crown Castle - Tower Owner

maintenance of records on the ownership of properties. These Technologies by scheduling an In conjunction with the 2023 assessments are computed at 70% of the estimated market notices, you may review your informal hearing. Informal value as of the 10/1/2023 hearings will be held by Revaluation prior to any revaluation assessment new assessment with a representative of Tyler The Assessor's office is responsible for the informal hearings. appointment only.

Information on the Property Records for the Municipality of Killingly was last updated on 11/30/2023.

Parcel Information

Location:	280 ROSS RD	Property Use:	Vacant Land	Primary Use:	PA490
Unique ID:	1365	Map Block Lot:	256-2	Acres:	7.8000
490 Acres:	7.30	Zone:	RD	Volume / Page:	0625/0206
Developers Map / Lot:		Census:	9041-4062		
Location:	280 ROSS RD	Property Use:	Vacant Land	Primary Use:	PA490

Jnique ID:	1365	Map Block Lot:	256-2	Acres:	7.8000
490 Acres:	7.30	Zone:	RD	Volume / Page:	0625/0206
Developers Map /		Census:	9041-4062		

Value Information

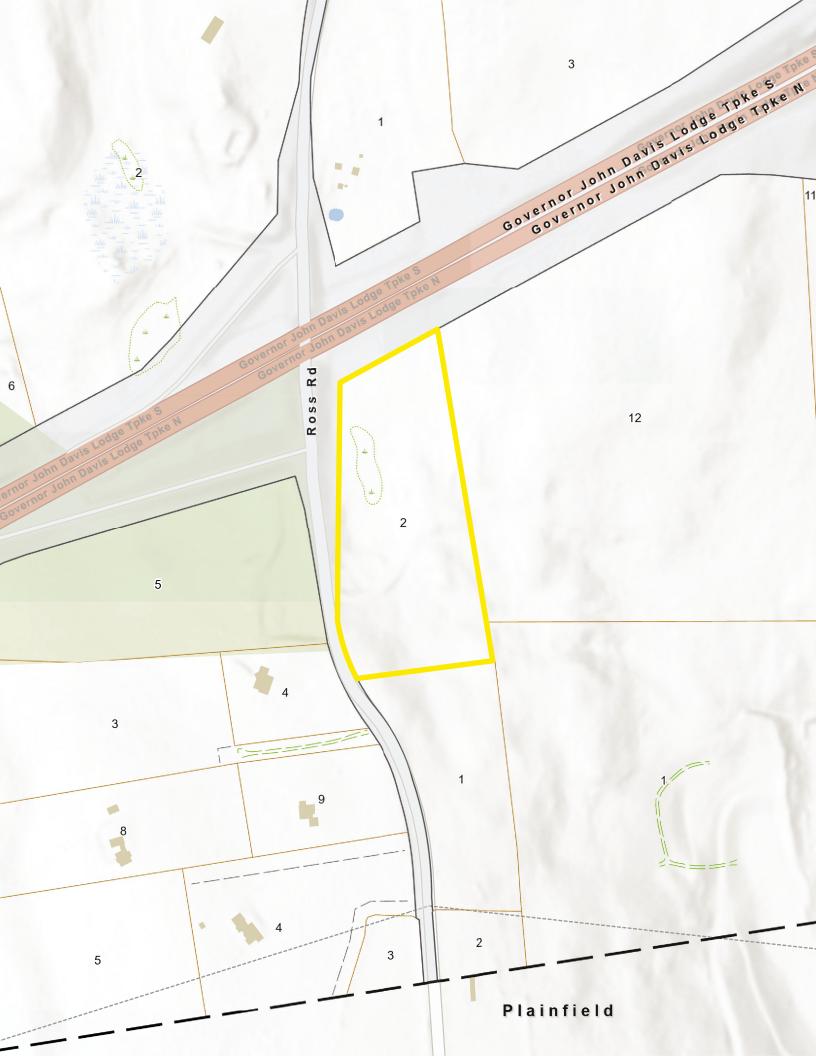
	Appraised Value	Assessed Value	
Land	70,470	39,570	
Buildings	0	0	
Detached Outbuildings	282,000	197,400	
Total	352,470	236,970	

Owner's Information

Owner's Data	SNAKE MEADOW CLUB INC	% PAUL CHASE	PO BOX 236	CENTRAL VILLAGE, CT 06332-0236	

Detached Outbuildings

Туре:	Year Built:	Length:	Width:	Area:
Chain Fence	0000	0.00	0.00	
Cell Tower	2018	300.00	1.00	300


Owner History - Sales

Building Permits

T:BUSINESS PROPERTY Generator Electrical T:BUSINESS PROPERTY T:COMMERC T:BUSINESS PROPERTY T:BUSINESS	T:BUSINESS PERSONAL PROPERTY Generator T:BUSINESS PERSONAL PROPERTY Generator T:BUSINESS PERSONAL T:COMMERCIAL REPLACT T:COMMERCIAL REPLACT T:BUSINESS PERSONAL T:BUSI	2022 2021 2017 2017 2016 2015 2015	DISH WIRELESS TO INSTALL 3 ANTENNAS & ASSOC CABINET EQUIP TO EXISTING CELL TOWER COMPOUND TMOBILE TO REMY & RPL 3 EXISTING ANTENNAS W/3 NEW ANTENNAS INSTALL DC GENERATOR ON EXISTING ANTENNAS W/3 NEW ANTENNAS CELLULAR FACILITY CABINET - 100 AMP SVC FROM EXISTING METER BANK FOR SMARTSKY NETWORKS INSTALL 2 HIGH CAPACITY SECTOR MOUNTS, 6 ANTENNAS, 6 REMOTE RADIO HEADS, SURGE PROTECTION 7/8" HYBRI VERIZON WIRELESS TO REPLAL 12 ANTENNA PANELS & ADD REMOTE RADIO HEADS TO EXISTING CELL TOWER INSTALL 3 NEW ANTENNAES, 3 NEW BIAS TEES, 6 COAX LINES & 1 CABINET AT EXIST SITE REFACE ANTENNA PANELS W/NEW MODELS & ADD REMOTE RADIO HEADS
T:BUSINESS	T:BUSINESS PERSONAL 11/30/2012	2012	AT&T SITE MODIFICATIONS-ADD 3 ANTENNAS, 6 RRH'S & SURGE ARRESTOR TO EXISTING

Permit Number	Permit Type	Date Opened	Reason
19933	Electrical	04/13/2009	NVC NEW 200 AMP SVC
19903	T:BUSINESS PERSONAL PROPERTY	03/13/2009	MODIFY TOWERS, ADD ANTENNAS, PLACE EQUIP BLDG ON CONCRETE PAD
18229	T:BUSINESS PERSONAL PROPERTY	08/17/2006	08/17/2006 CBLD WIRELESS F
17776	Commercial	02/10/2006	02/10/2006 MONOPOLE & TELECOM
17925	T:BUILDING	04/06/2003	TELE EQU NVC RE

Information Published With Permission From The Assessor

Connecticut Siting Council (VCSC)

CT.gov Home (/) Connecticut Siting Council (/CSC) DO 283 Decision Killingly

Decisions (/CSC/Decisions/Decisions)	>
Meetings and Minutes (/CSC/Common-Elements/v4-template/Council-Activity)	>
<u>Pending Matters (/CSC/1_Applications-and-Other-Pending-Matters/Pending-Matters)</u>	>
About Us (/CSC/Common-Elements/Common-Elements/Connecticut-Siting-Council Description)	>
Contact Us (/CSC/Common-Elements/Common-Elements/Contact-Us)	>
Search Connecticut Siting Council	
	٥

DOCKET NO. 283 – New Cingular Wireless PCS,LLC Certificate of
Environmental Compatibility and Public need for the construction,
maintenance and operation of a wireless telecommunications
facility at 280 Ross Road in Killingly, Connecticut.

}

} Connecticut} Siting} CouncilJune 23, 2004

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a telecommunications facility including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to AT&T Wireless PCS, LLC d/b/a AT&T Wireless for the construction, maintenance and operation of a wireless telecommunications facility at Site C, located at 280 Ross Road, Killingly, Connecticut. The Council denies certification of Site A and Site B located at 25 Klocek Road, Killingly, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be constructed as a monopole, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of AT&T Wireless and other entities, both public and private, but such tower shall not exceed a height of 120 feet above ground level. The height at the top of the antennas shall not exceed 123 feet above ground level.
- 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be served on the Town of Killingly, and all parties and intervenors as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction and shall include:
- a. comments from the Town of Killingly regarding the type of tower to be constructed;
- b. a final site plan(s) of site development to include specifications for the tower, tower foundation, antennas, equipment building, access road, utility line, and landscaping; and
- c. construction plans for site clearing, water drainage, and erosion and sedimentation control consistent with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, as amended.
- 3. The Certificate Holder shall, prior to the commencement of operation, provide the Council worst-case
 - modeling of electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of electromagnetic radio frequency power density is submitted to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.
- 4. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.

- 6. The Certificate Holder shall provide reasonable space on the tower for no compensation for any municipal antennas, provided such antennas are compatible with the structural integrity of the tower.
- 7. If the facility does not initially provide wireless services within one year of completion of construction or ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
- 8. Any antenna that becomes obsolete and ceases to function shall be removed within 60 days after such antennas become obsolete and cease to function.
- 9. Unless otherwise approved by the Council, this Decision and Order shall be void if the facility authorized herein is not operational within one year of the effective date of this Decision and Order or within one year after all appeals to this Decision and Order have been resolved. Any request for extension of this period shall be filed with the Council not later than sixty days prior to expiration date of this Certificate and shall be served on all parties and intervenors, as listed in the service list. Any proposed modifications to this Decision and Order shall likewise be so served.

Pursuant to General Statutes § 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in the Norwich Bulletin.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

Applicant

AT&T Wireless PCS, LLC d/b/a AT&T Wireless

Its Representative

Christopher B. Fisher, Esq. Lucia Chiocchio, Esq. Cuddy & Feder LLP

Barbadora, Jeff

From: TrackingUpdates@fedex.com
Sent: Friday, January 12, 2024 10:04 AM

To: Barbadora, Jeff

Subject: FedEx Shipment 774793430906: Your package has been delivered

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi. Your package was delivered Fri, 01/12/2024 at 9:56am.

Delivered to 172 MAIN ST, KILLINGLY, CT 06239 Received by A.FELL

OBTAIN PROOF OF DELIVERY

How was your delivery?

TRACKING NUMBER <u>774793430906</u>

FROM Crown Castle

1800 W. Park Drive

WESTBOROUGH, MA, US, 01581

TO Town of Killingly

Mary Calorio - Town Manager

172 Main Street

KILLINGLY, CT, US, 06239

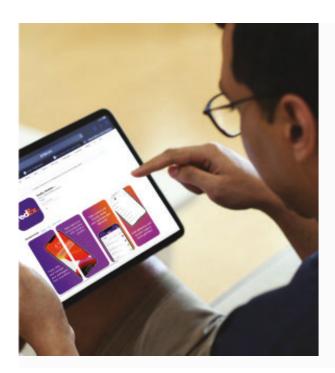
REFERENCE 799001.7680

SHIPPER REFERENCE 799001.7680

SHIP DATE Thu 1/11/2024 06:43 PM

DELIVERED TO Receptionist/Front Desk

PACKAGING TYPE FedEx Envelope


ORIGIN WESTBOROUGH, MA, US, 01581

DESTINATION KILLINGLY, CT, US, 06239

NUMBER OF PIECES 1

TOTAL SHIPMENT WEIGHT 0.50 LB

SERVICE TYPE FedEx Standard Overnight

Notifications, from start to finish

Get push notifications when you pair FedEx Delivery Manager® with the FedEx® Mobile app. You can activate alerts in the app to track your package. Then listen for the virtual doorbell chime that lets you know your package was delivered.

DOWNLOAD THE MOBILE APP

FOLLOW FEDEX

Please do not respond to this message. This email was sent from an unattended mailbox. This report was generated at approximately 9:03 AM CST 01/12/2024.

All weights are estimated.

To track the latest status of your shipment, click on the tracking number above.

Standard transit is the date and time the package is scheduled to be delivered by, based on the selected service, destination and ship date. Limitations and exceptions may apply. Please see the FedEx Service Guide for terms and conditions of service, including the FedEx Money-Back Guarantee, or contact your FedEx Customer Support representative.

© 2024 Federal Express Corporation. The content of this message is protected by copyright and trademark laws under U.S. and international law. Review our <u>privacy policy</u>. All rights reserved.

Thank you for your business.

Barbadora, Jeff

From: TrackingUpdates@fedex.com
Sent: Friday, January 12, 2024 10:07 AM

To: Barbadora, Jeff

Subject: FedEx Shipment 774793485637: Your package has been delivered

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi. Your package was delivered Fri, 01/12/2024 at 9:55am.

Delivered to 172 MAIN ST, KILLINGLY, CT 06239 Received by S.GUARI

OBTAIN PROOF OF DELIVERY

How was your delivery?

TRACKING NUMBER <u>774793485637</u>

FROM Crown Castle

1800 W. Park Drive

WESTBOROUGH, MA, US, 01581

TO Town of Killingly

Ann-Marie Aubrey - Dir of Planning

172 Main Street

KILLINGLY, CT, US, 06239

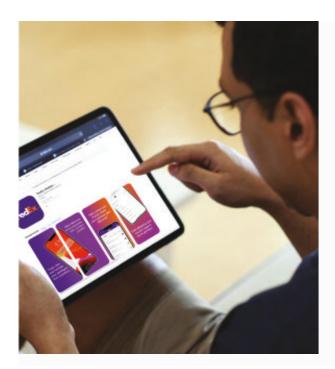
REFERENCE 799001.7680

SHIPPER REFERENCE 799001.7680

SHIP DATE Thu 1/11/2024 06:43 PM

DELIVERED TOReceptionist/Front Desk

PACKAGING TYPE FedEx Envelope


ORIGIN WESTBOROUGH, MA, US, 01581

DESTINATION KILLINGLY, CT, US, 06239

NUMBER OF PIECES 1

TOTAL SHIPMENT WEIGHT 0.50 LB

SERVICE TYPE FedEx Standard Overnight

Notifications, from start to finish

Get push notifications when you pair FedEx Delivery Manager® with the FedEx® Mobile app. You can activate alerts in the app to track your package. Then listen for the virtual doorbell chime that lets you know your package was delivered.

DOWNLOAD THE MOBILE APP

FOLLOW FEDEX

Please do not respond to this message. This email was sent from an unattended mailbox. This report was generated at approximately 9:01 AM CST 01/12/2024.

All weights are estimated.

To track the latest status of your shipment, click on the tracking number above.

Standard transit is the date and time the package is scheduled to be delivered by, based on the selected service, destination and ship date. Limitations and exceptions may apply. Please see the FedEx Service Guide for terms and conditions of service, including the FedEx Money-Back Guarantee, or contact your FedEx Customer Support representative.

© 2024 Federal Express Corporation. The content of this message is protected by copyright and trademark laws under U.S. and international law. Review our <u>privacy policy</u>. All rights reserved.

Thank you for your business.

USPS Tracking[®]

FAQs >

Remove X

Tracking Number:

EI919505570US

Copy Add to Informed Delivery (https://informeddelivery.usps.com/)

Scheduled Delivery by

FRIDAY

12 January 2024 (i)

by

6:00pm @

Your item has been delivered and is available at a PO Box at 10:22 am on January 12, 2024 in CENTRAL VILLAGE, CT 06332. Waiver of signature was exercised at time of delivery.

Feedbac

Get More Out of USPS Tracking:

USPS Tracking Plus®

DeliveredDelivered, PO Box

CENTRAL VILLAGE, CT 06332 January 12, 2024, 10:22 am

See All Tracking History

What Do USPS Tracking Statuses Mean? (https://faq.usps.com/s/article/Where-is-my-package)

Text & Email Updates	~
Proof of Delivery	~
USPS Tracking Plus®	~

Product Information

See Less ∧

Track Another Package

Enter tracking or barcode numbers

Need More Help?

Contact USPS Tracking support for further assistance.

FAQs

From: <u>Jeff Barbadora</u>

To: <u>Jeff Barbadora</u>; <u>Barbadora</u>, <u>Jeff</u>

Date: Wednesday, January 17, 2024 11:13:52 AM

[You don't often get email from jbarbadora@icloud.com. Learn why this is important at https://aka.ms/LearnAboutSenderIdentification]

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Sent from my iPhone

Date: September 12, 2023

INFINIGY8

Infinigy 500 West Office Center Drive, Suite 150 Fort Washington, PA 19034 (518) 690-0790 structural@infinigy.com

Subject: Mount Analysis Report

Carrier Designation: T-Mobile Anchor

Carrier Site Number: CTNL140B

Carrier Site Name: NL140/Cingular Ross Rd MP

Crown Castle Designation: Crown Castle BU Number: 857013

Crown Castle Site Name: KILLINGLY ROSS ROAD

Crown Castle JDE Job Number: 752564 **Crown Castle Order Number:** 655747 Rev. 0

Engineering Firm Designation: Infinigy Report Designation: 1039-Z0001-B

Site Data: 280 Ross Road, Killingly, Windham County, CT, 06239

Latitude 41°46'17.59" Longitude -71°51'20.39"

Structure Information: Tower Height & Type: 119.0 ft Monopole

Mount Elevation: 108.0 ft
Mount Type: 14.4 ft Platform

Infinigy is pleased to submit this "Mount Analysis Report" to determine the structural integrity of T-Mobile's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform Sufficient

This analysis utilizes an ultimate 3-second gust wind speed of 123 mph as required by the 2022 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Christopher H. Lee, P.E., M.S.

Respectfully Submitted by: Emmanuel Poulin, P.E.

structural@infinigy.com

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

1) INTRODUCTION

This is an existing 3 sector 14.4 ft Platform.

2) ANALYSIS CRITERIA

Building Code: 2021 IBC / 2022 Connecticut State Building Code

TIA-222 Revision: TIA-222-H

Risk Category:

Ultimate Wind Speed: 123 mph

Exposure Category: Topographic Factor at Base: 1.0 **Topographic Factor at Mount:** 1.0 Ice Thickness: 1.0 in Wind Speed with Ice: 50 mph Seismic Ss: 0.186 Seismic S₁: 0.054 Live Loading Wind Speed: 30 mph Man Live Load at Mid/End-Points: 250 lb Man Live Load at Mount Pipes: 500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
		3	Ericsson	AIR 6419 B41_TMO_CCIV2	
		3	RFS/Celwave	APXVAALL24_43-U-NA20_TMO	14.4 ft
108.0	110.0	3	Ericsson	RADIO 4449 B71 B85A_ T-MOBILE	Platform
		3	Ericsson	RADIO 4460 B2/B25 B66 TMO	

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Crown Application	T-Mobile Application	655747 Rev. 0	CCI Sites
Loading Document	T-Mobile	RFDS Version: 4	TSA
Previous Mount Analysis	Infinigy	9494793	CCI Sites

3.1) Analysis Method

RISA-3D (Version 21.0.1), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

Infinigy Mount Analysis Tool V2.3.4, a tool internally developed by Infinigy, was used to calculate wind loading on all appurtenances, dishes and mount members for various loading cases. Selected output from the analysis is included in Appendix B "Software Input Calculations".

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Mount Analysis* (Revision E).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate

HSS (Rectangular)

Pipe

ASTM A36 (GR 36)

ASTM A500 (GR B-46)

ASTM A53 (GR 35)

Connection Bolts

ASTM A325

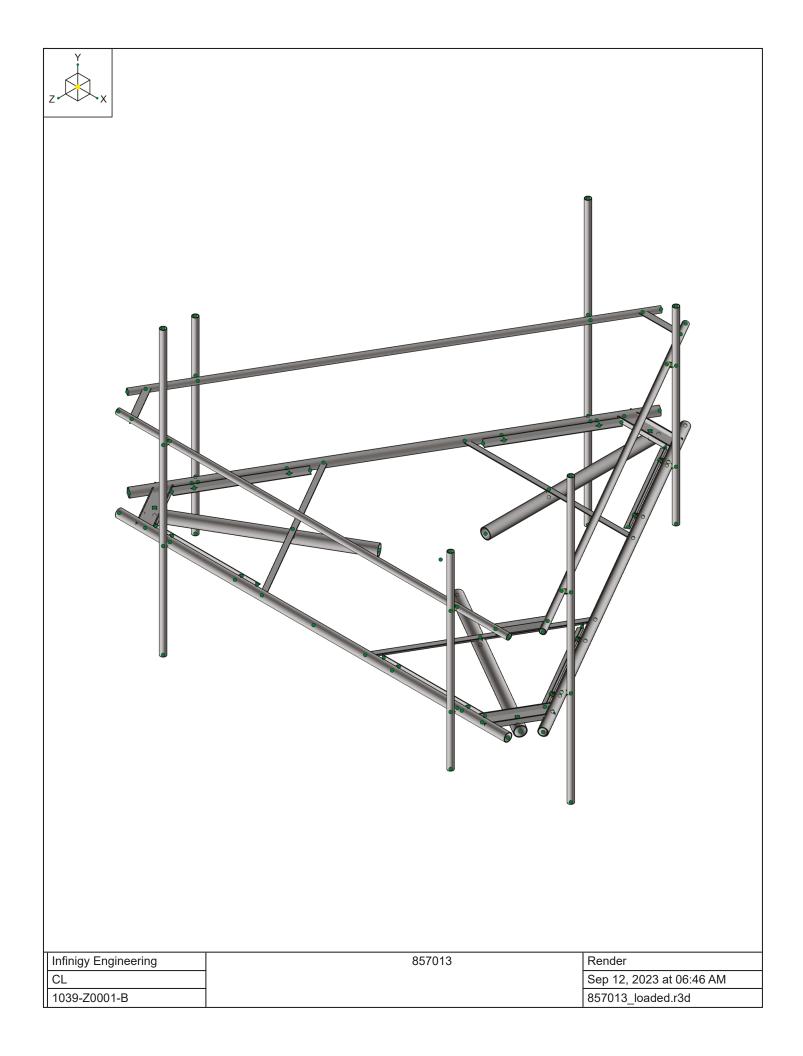
This analysis may be affected if any assumptions are not valid or have been made in error. Infinigy should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

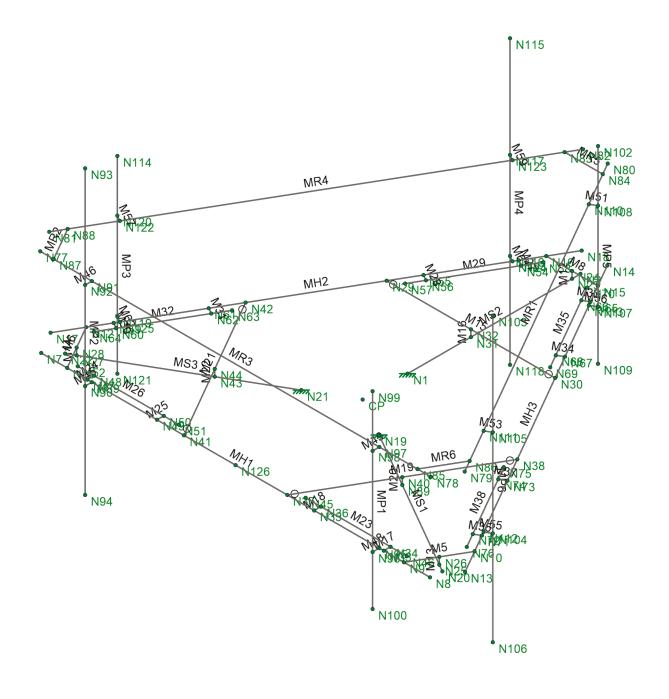
Table 3 - Mount Component Stresses vs. Capacity (Platform, All Sectors)

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
1, 2	Mount Pipe(s)	MP3	108.0	54.6	Pass
	Horizontal(s)	MH2		16.9	Pass
	Standoff(s)	MS2		75.7	Pass
	Handrail(s)	MR2		49.8	Pass
	Support Angle(s)	M19		93.2	Pass
	Mount Connection(s)	-		28.4	Pass

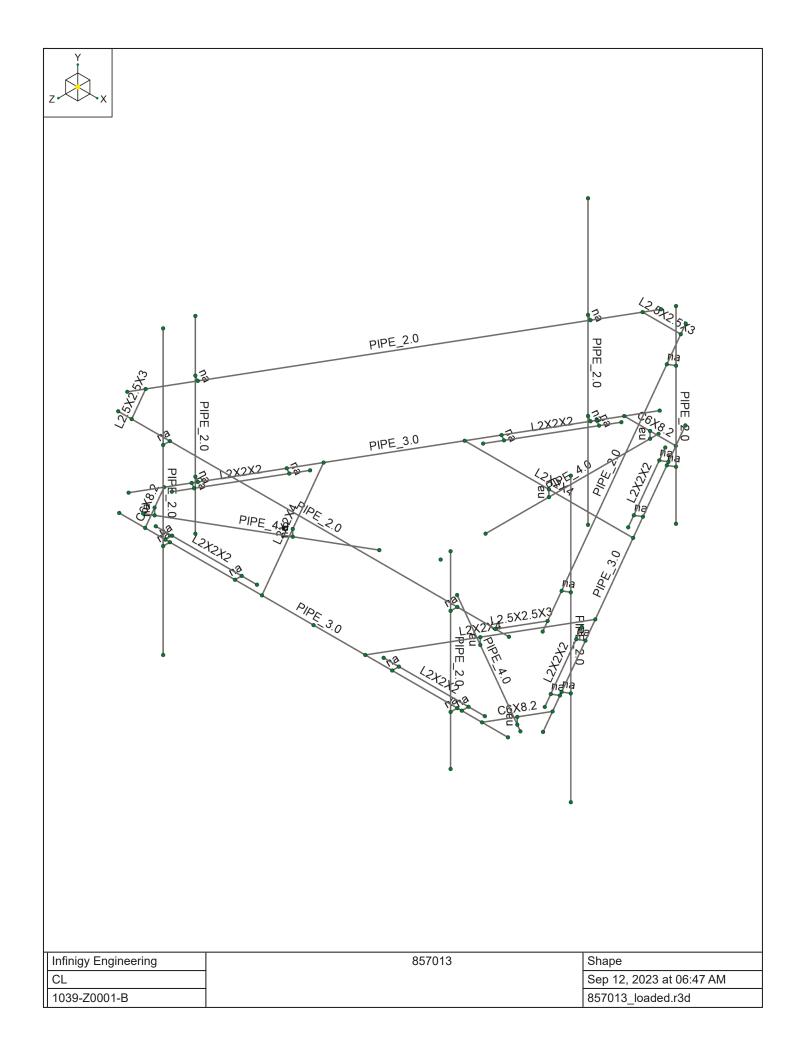
Structure Rating (max from all components) =	93.2%
--	-------

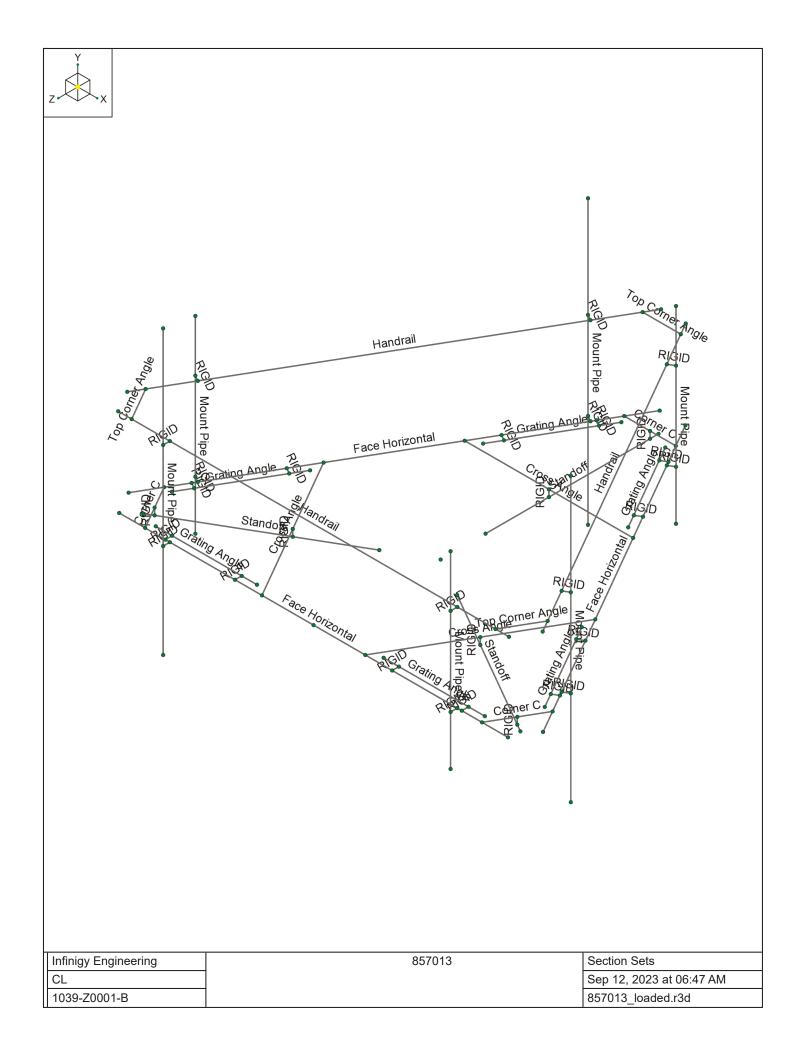

Notes:

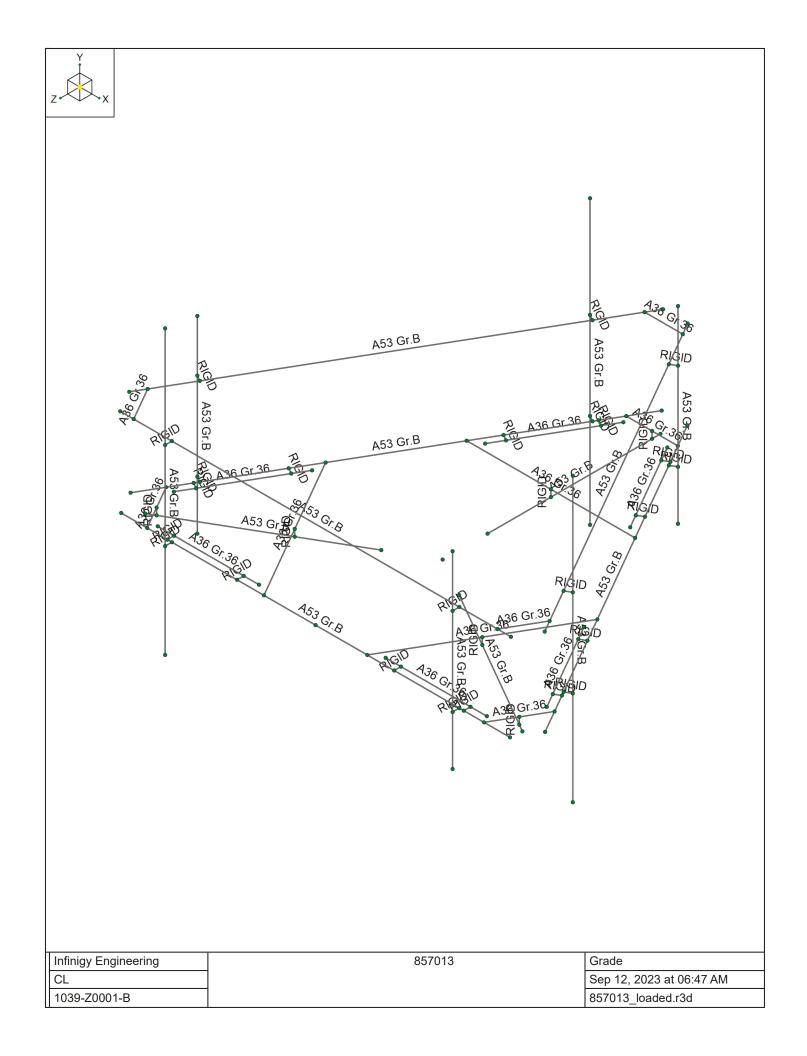
- 1) See additional documentation in "Appendix C Software Analysis Output" for calculations supporting the % capacity consumed.
- 2) See additional documentation in "Appendix D Additional Calculations" for detailed mount connection calculations.

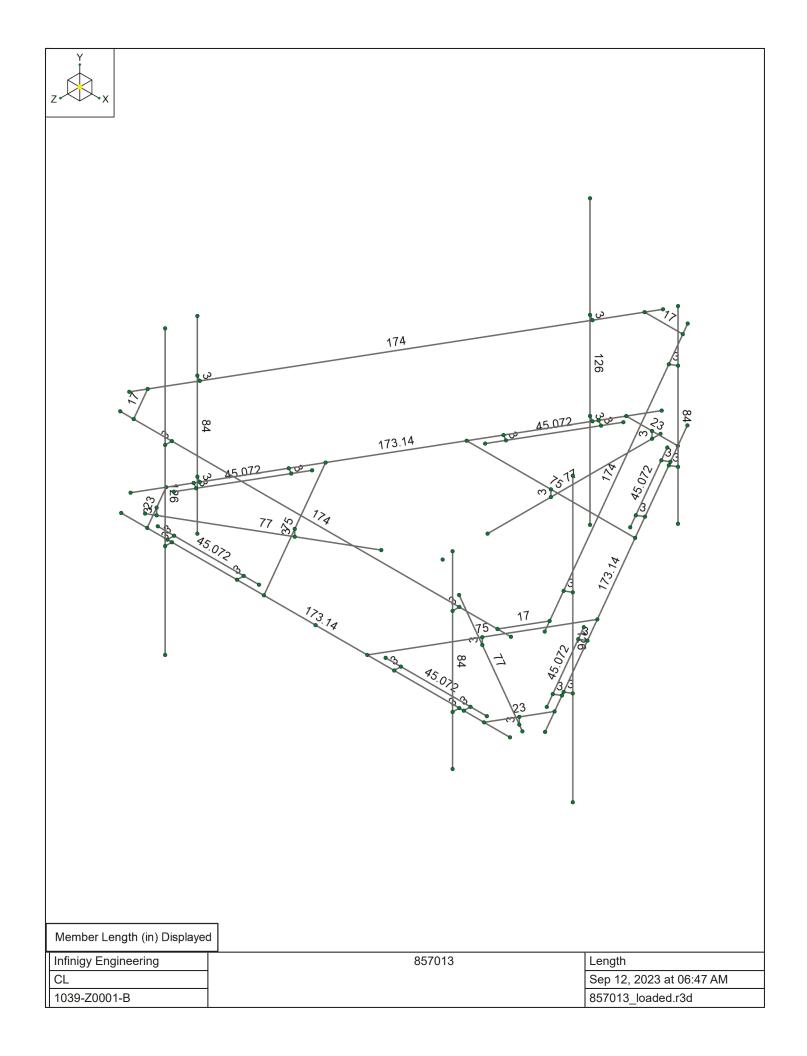

4.1) Recommendations

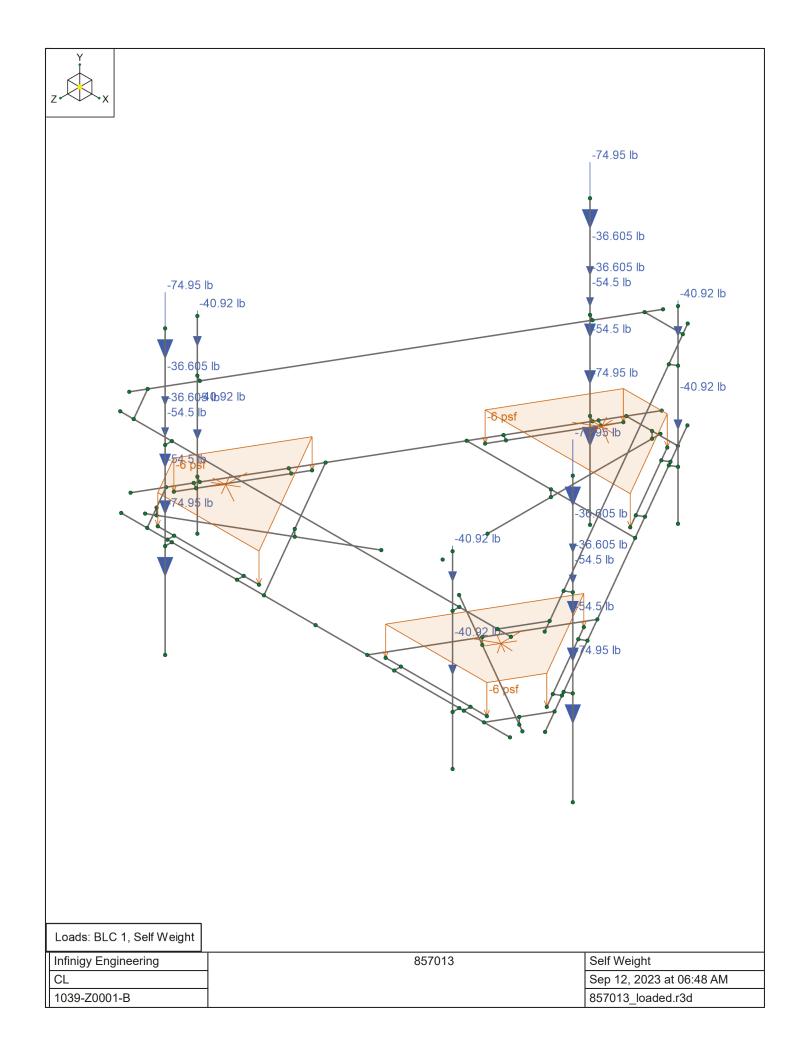
The mount has sufficient capacity to carry the proposed loading configuration. No modifications are required at this time.

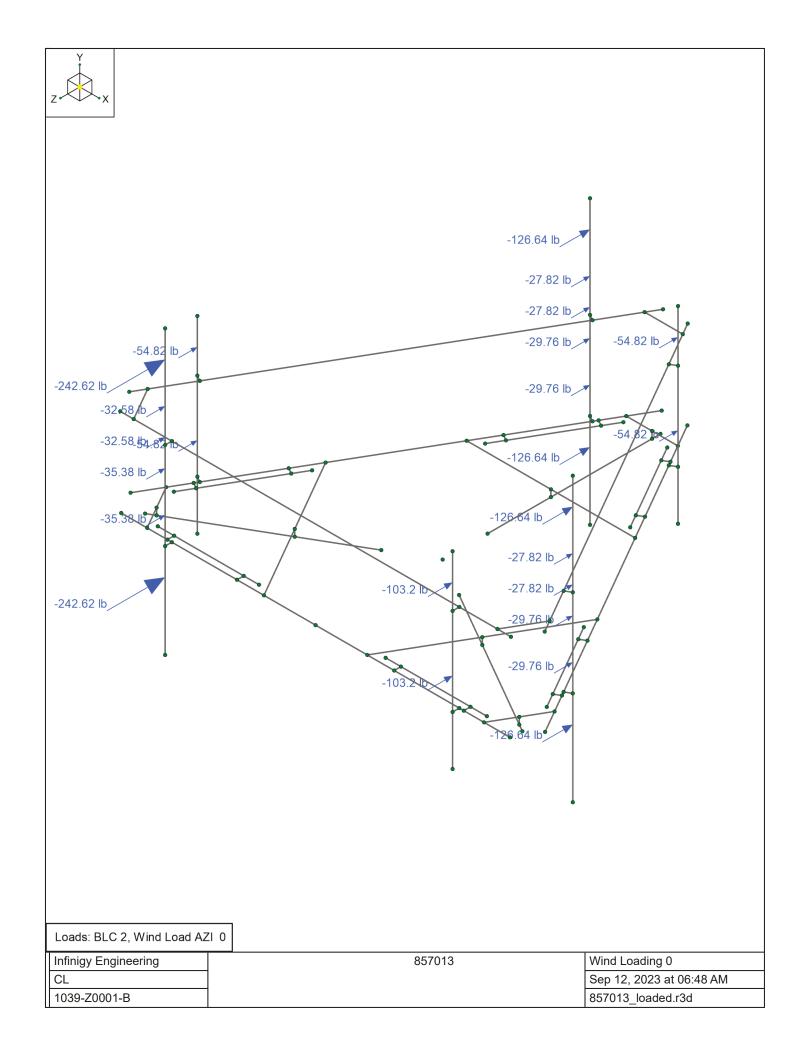

APPENDIX A WIRE FRAME AND RENDERED MODELS

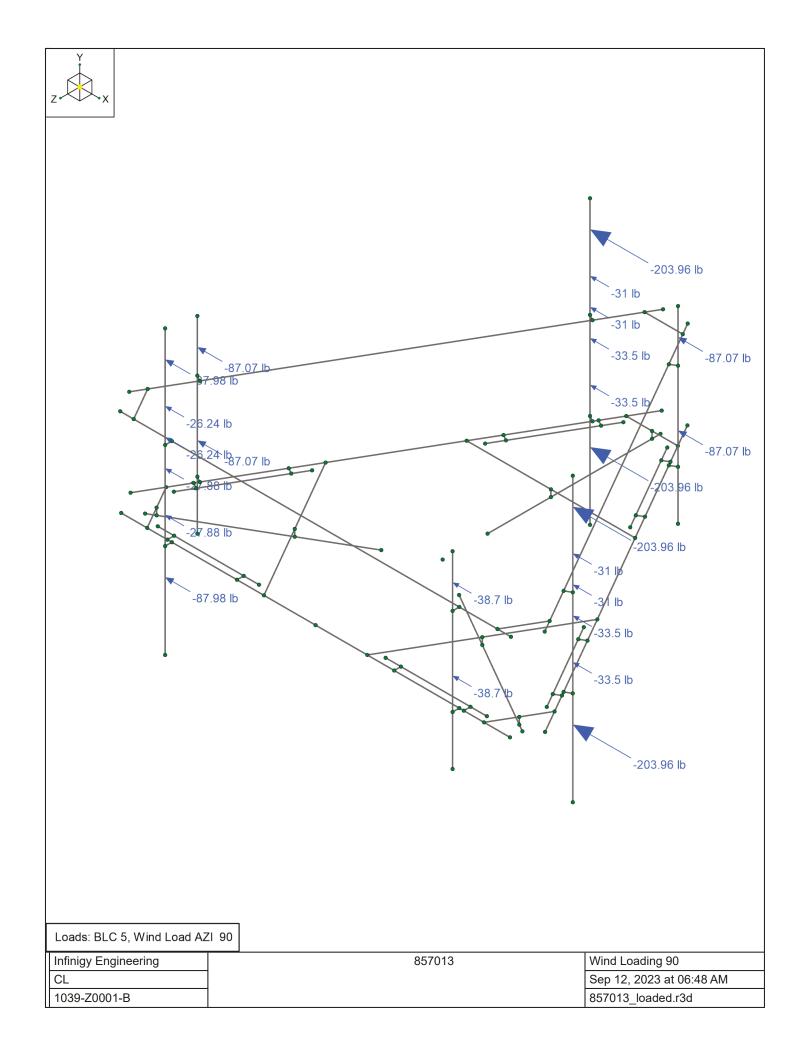


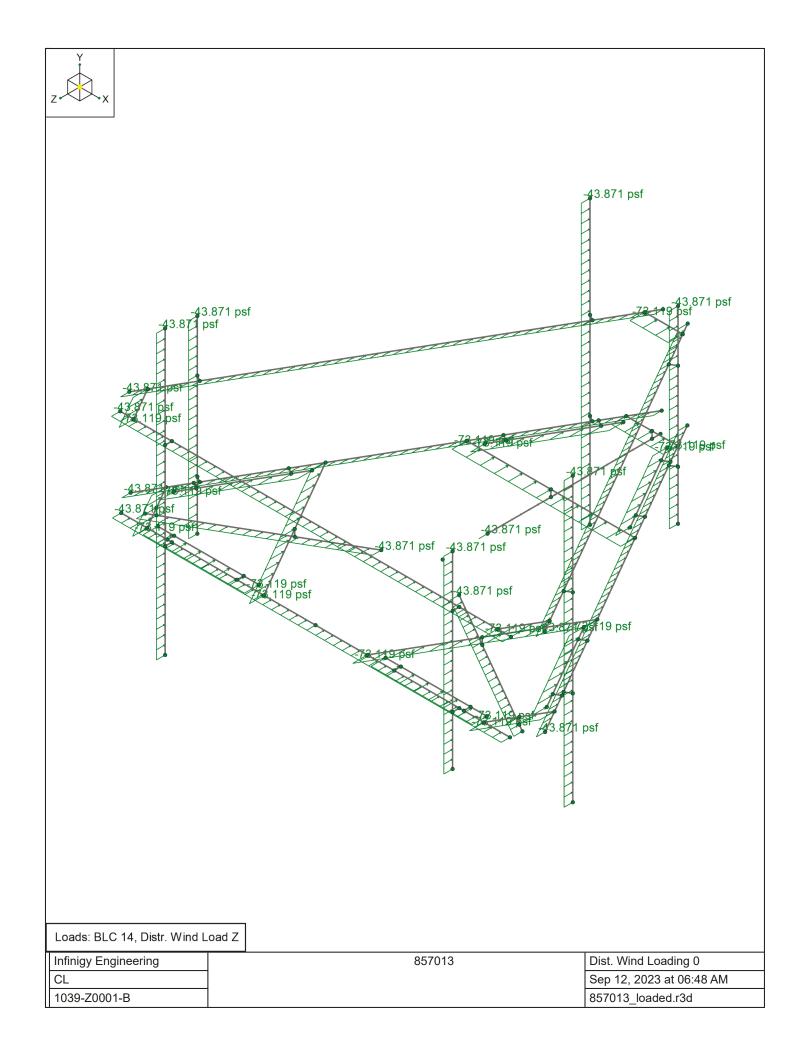


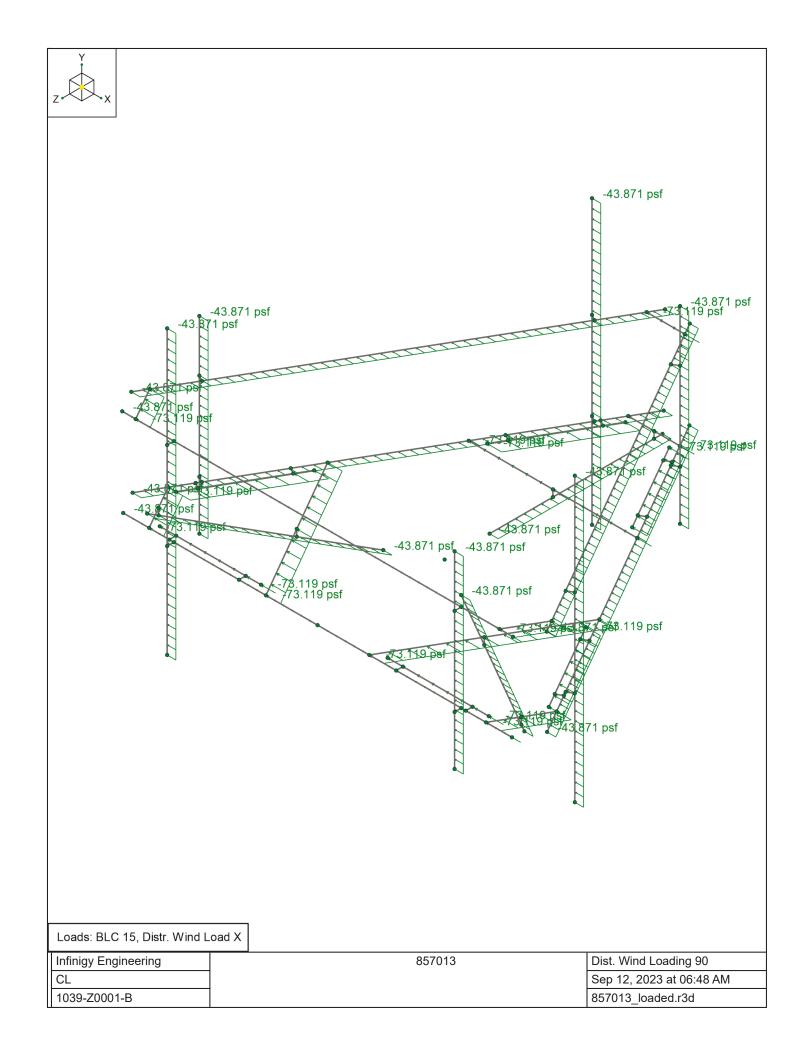


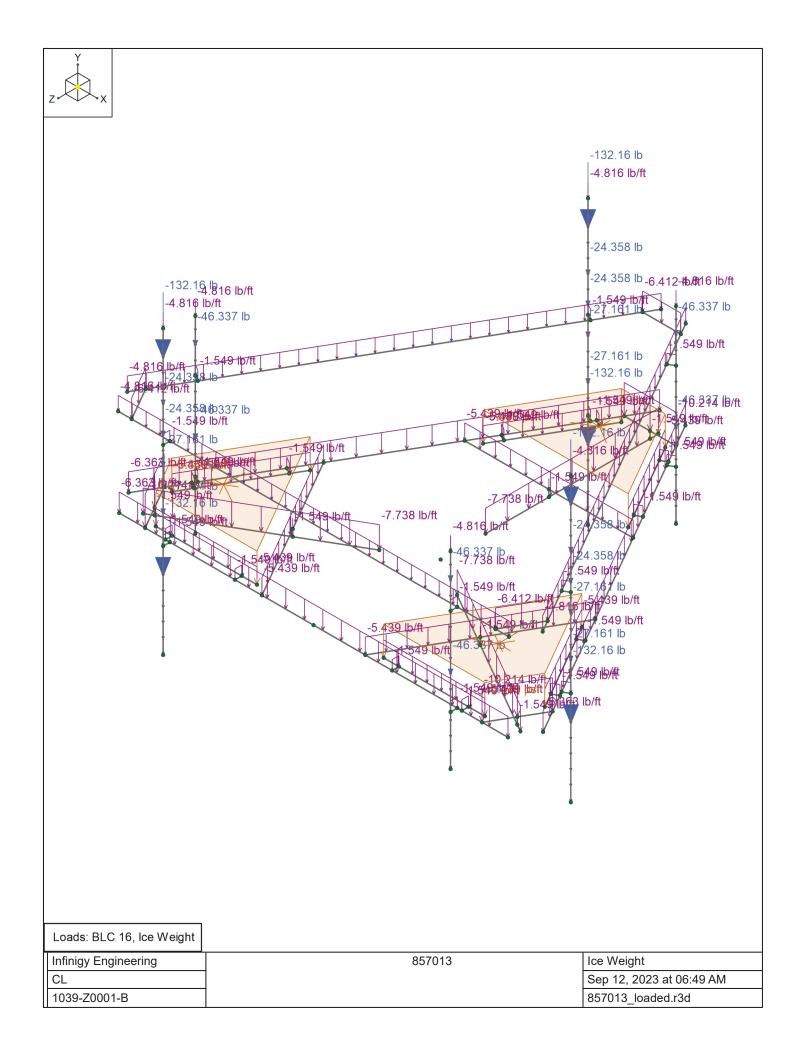

Infinigy Engineering	857013	Wireframe
CL		Sep 12, 2023 at 06:46 AM
1039-Z0001-B		857013_loaded.r3d

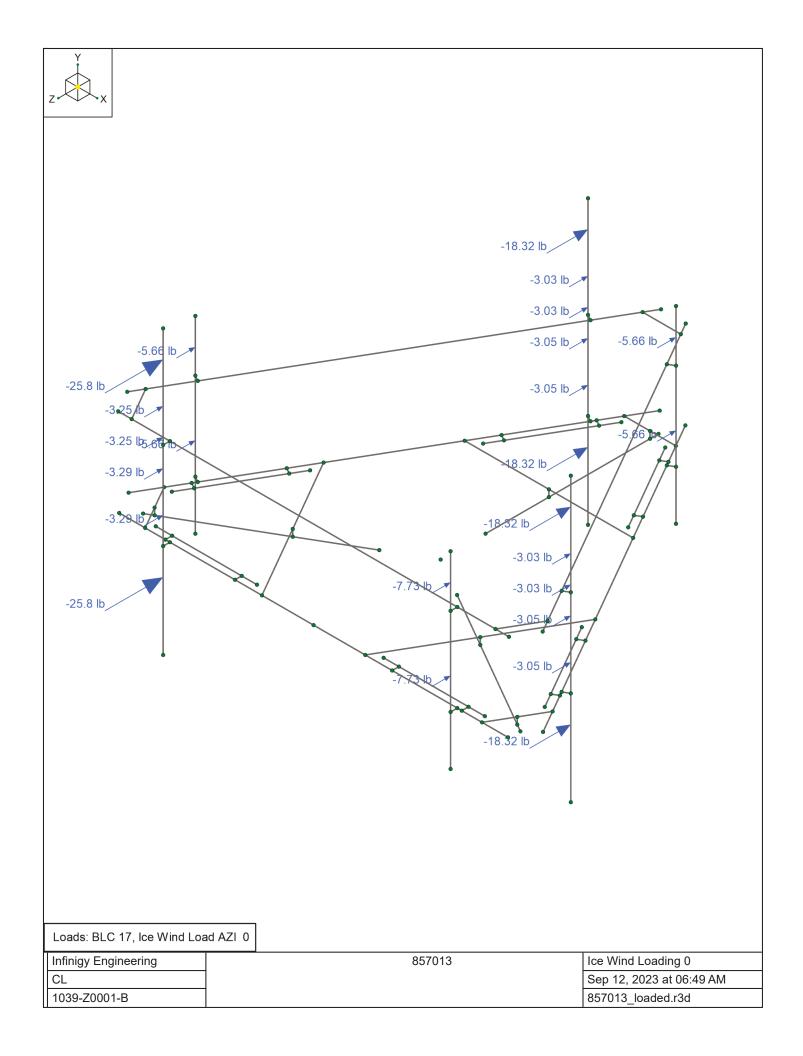


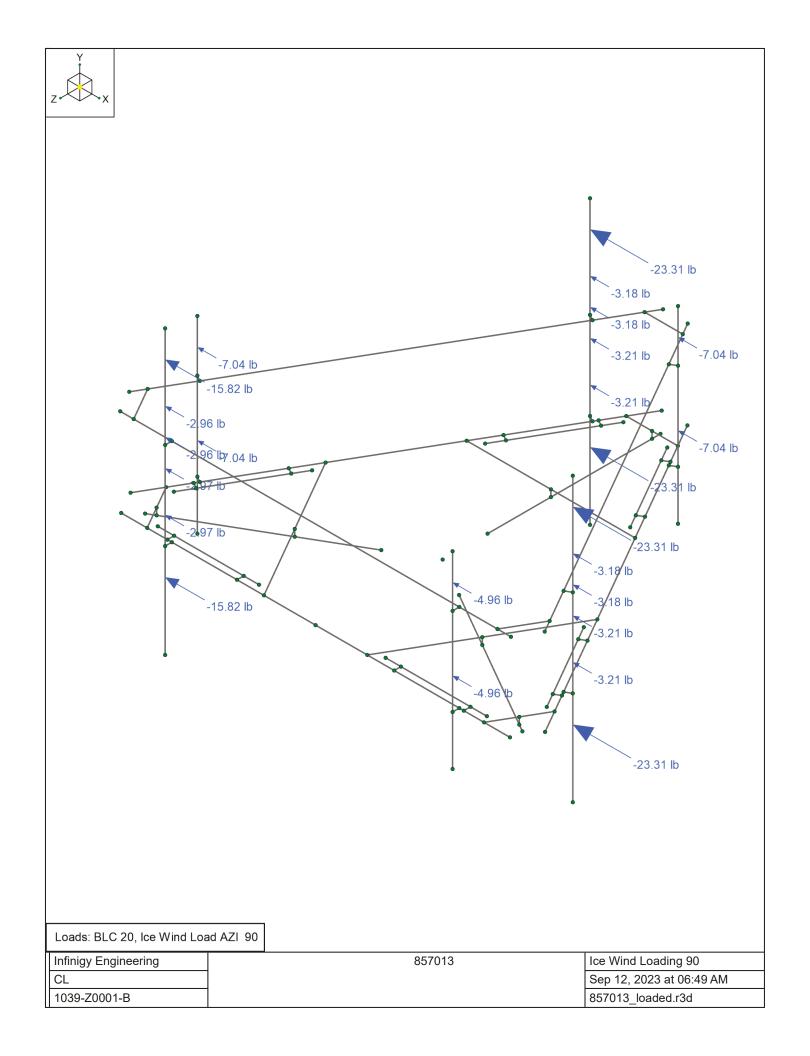


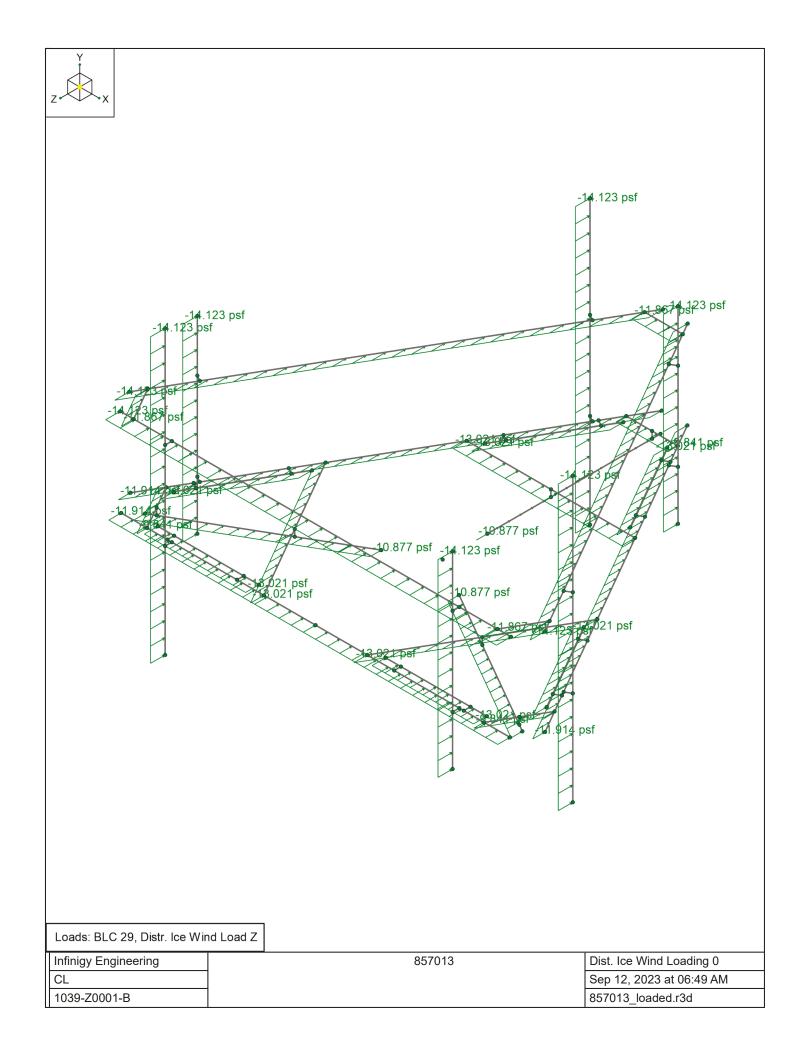


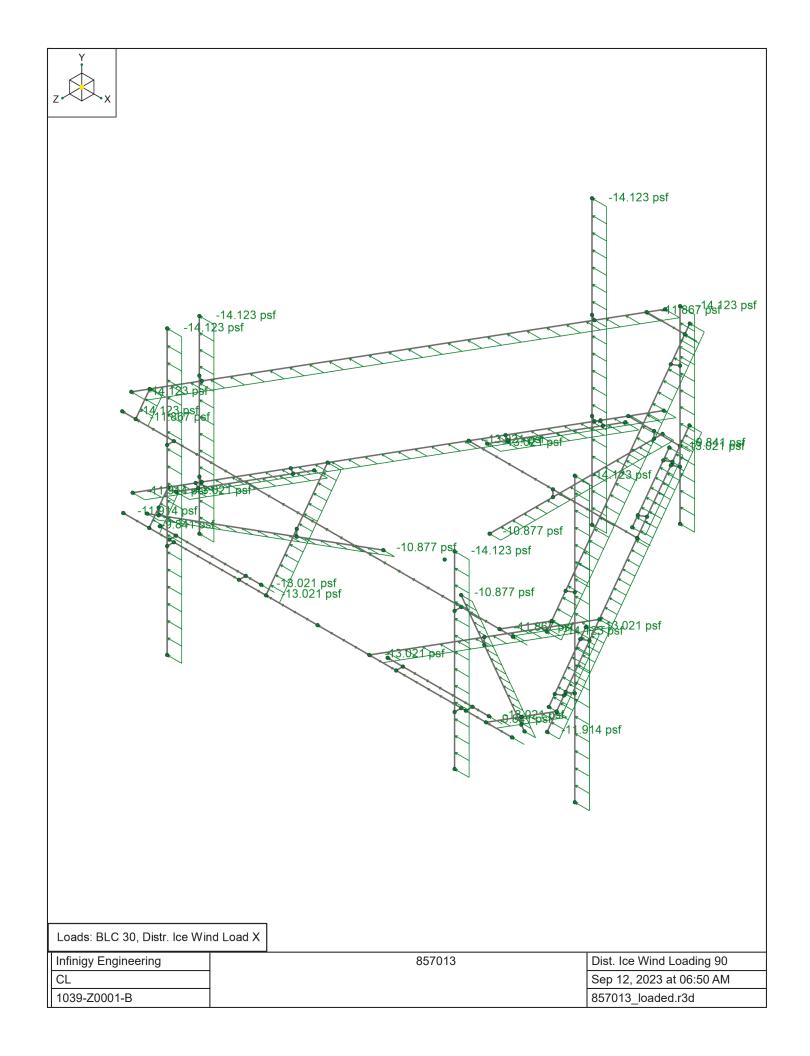


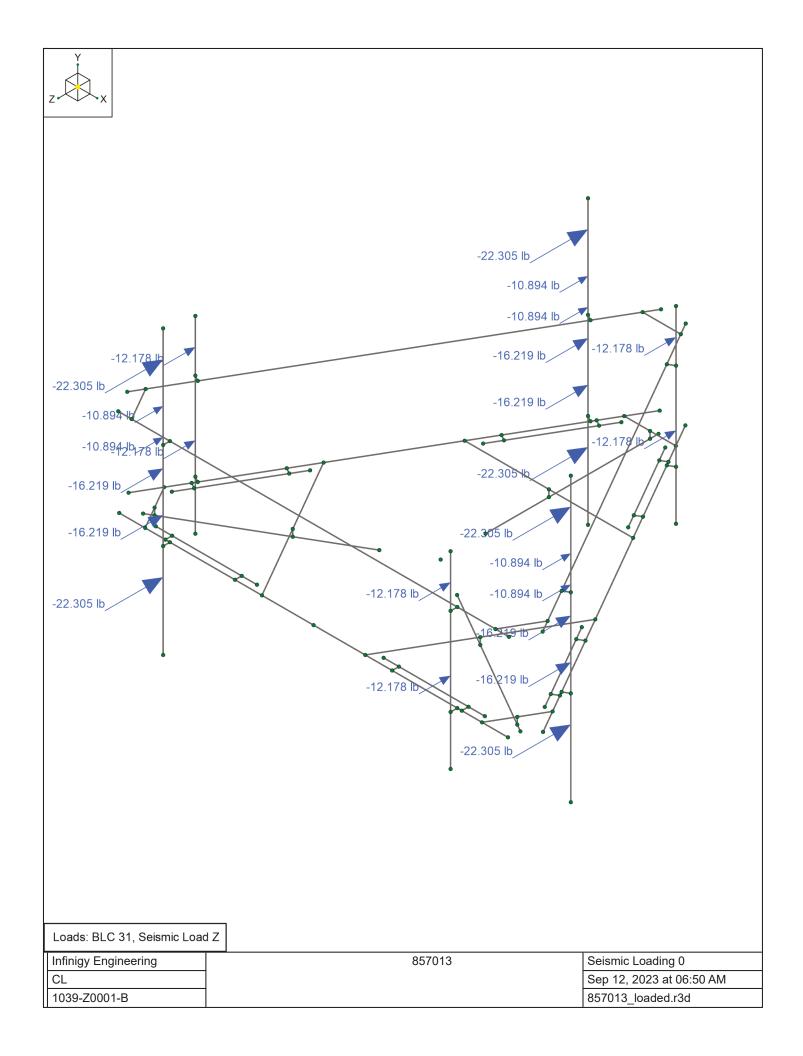


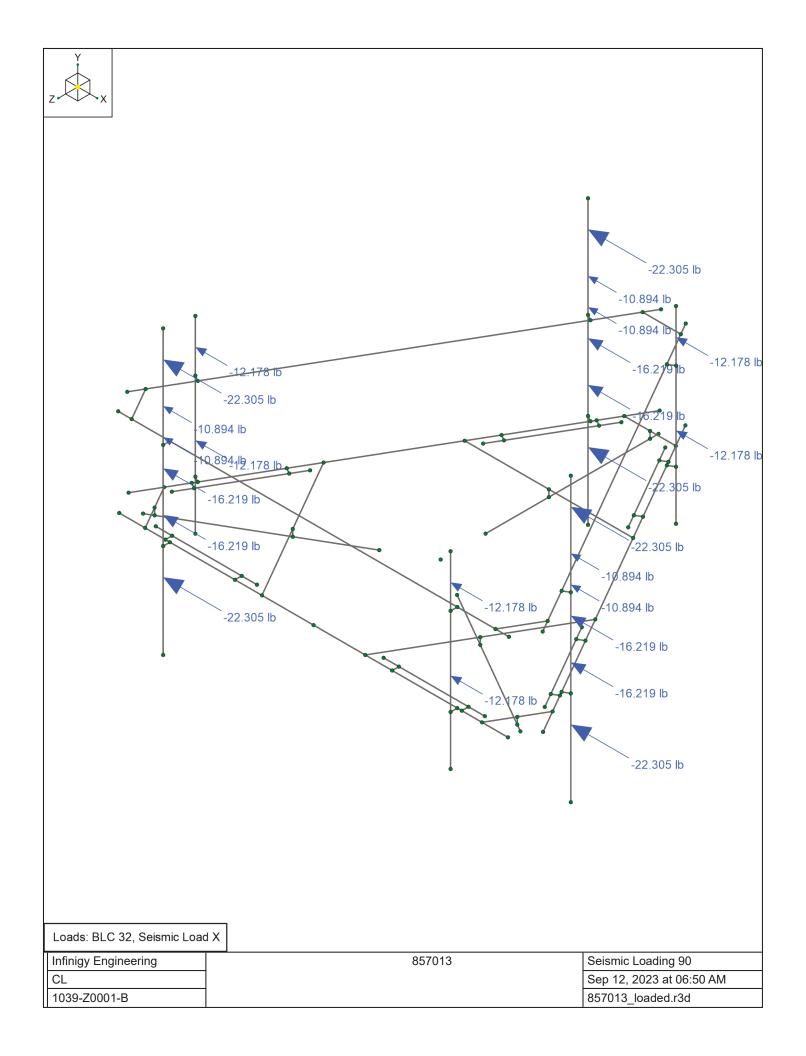


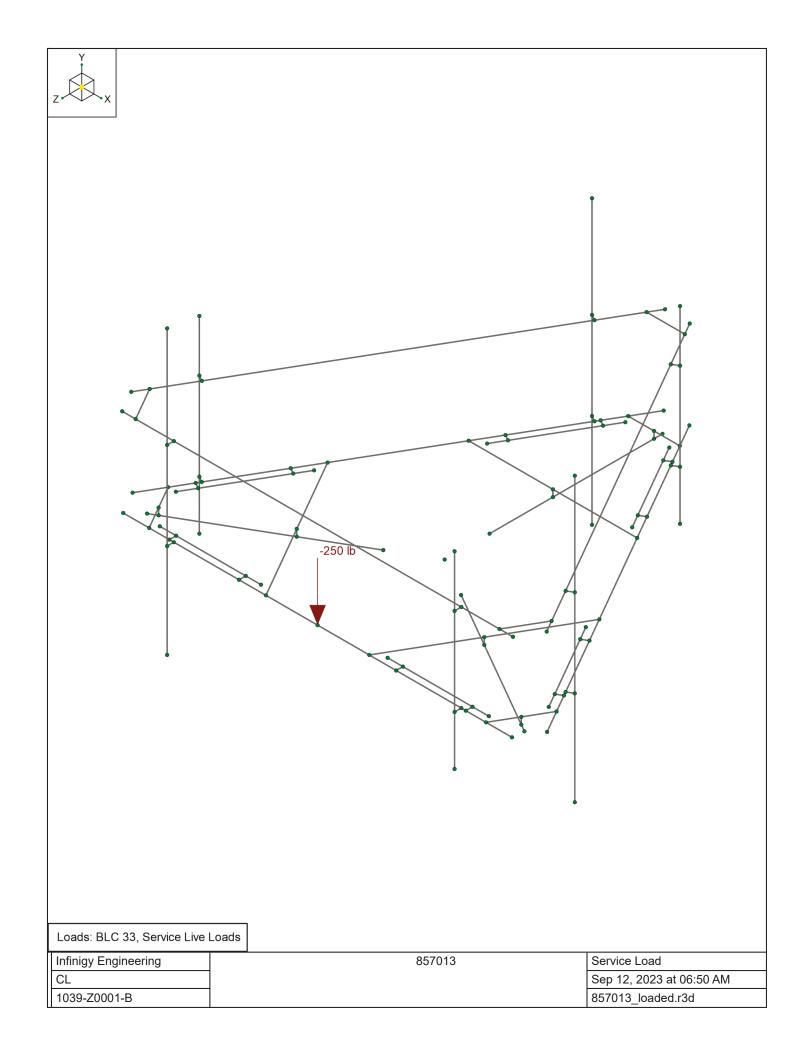


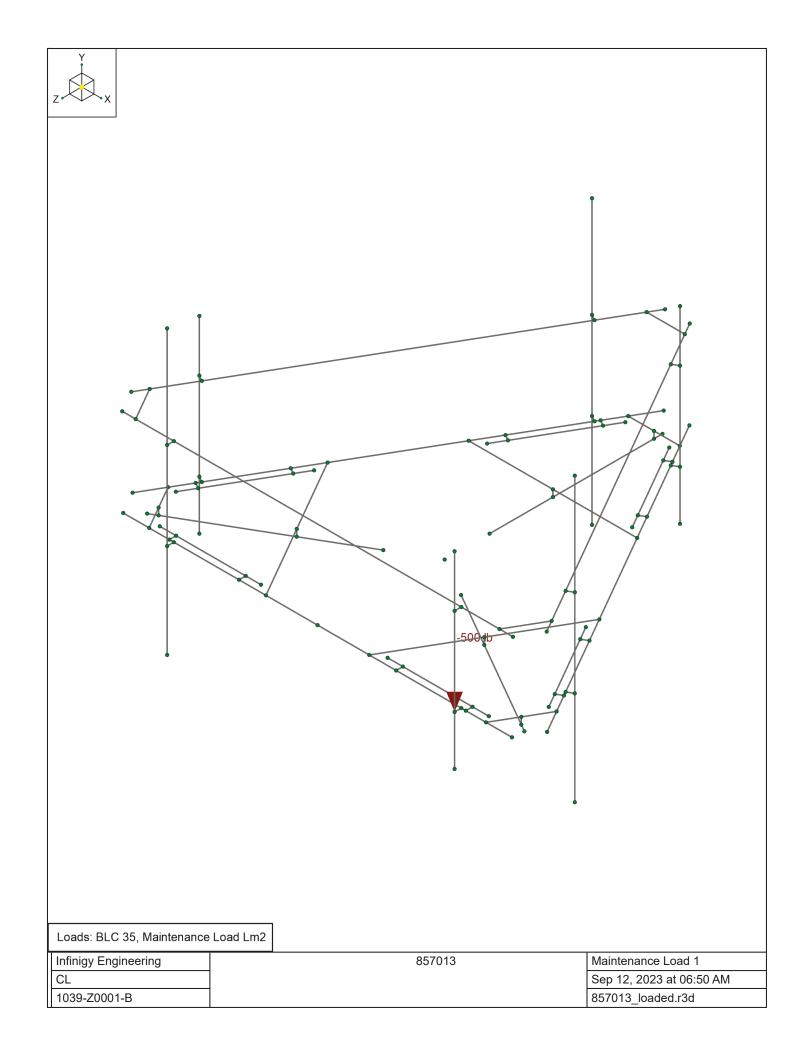


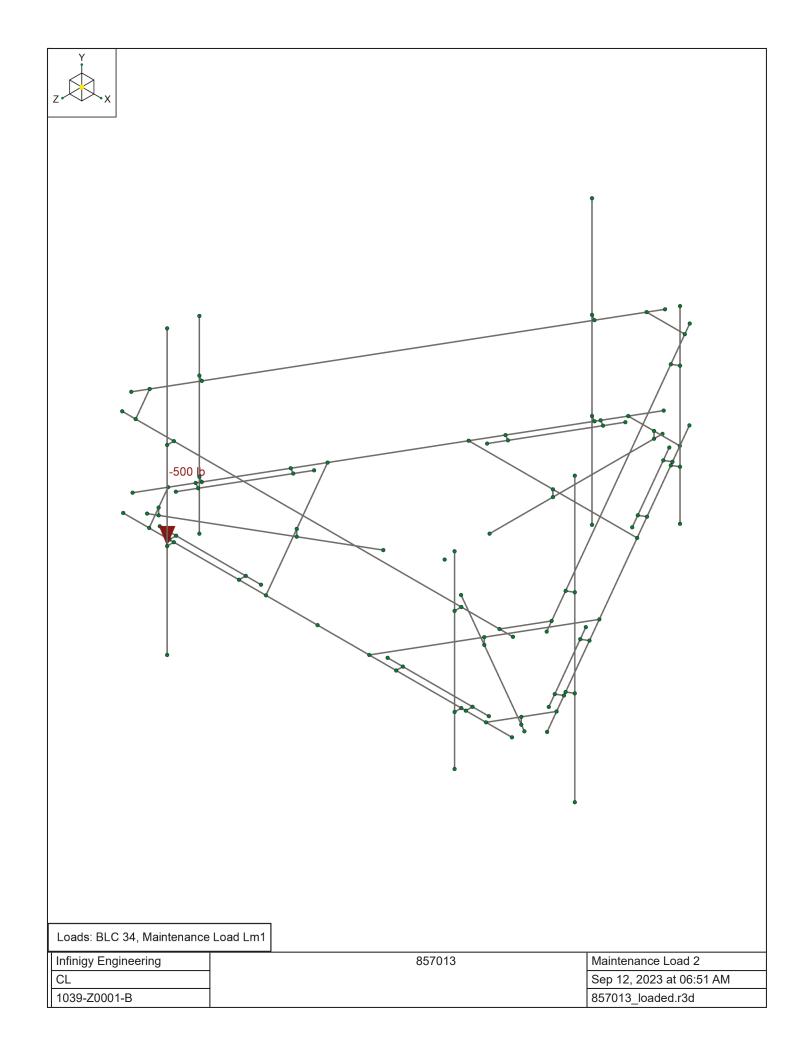












APPENDIX B SOFTWARE INPUT CALCULATIONS

Program Inputs

PROJECT IN	FORMATION
Site Name:	KILLINGLY ROSS ROAD
Carrier:	T-Mobile
Engineer:	Chris Lee, PE

SITE INFORMATION							
Risk Category:	: II						
Exposure Category:	В						
Topo Factor Procedure:	Method 1, Category 1						
Site Class:	D - Stiff Soil (Assumed)						
Ground Elevation:	456.76	ft *Rev H					
· · · · · · · · · · · · · · · · · · ·							

MOUNT INFORMATION						
Mount Type: Platform						
Num Sectors:	3					
Centerline AGL:	108.00	ft				
Tower Height AGL:	119.00	ft				

TOPOGRAPHIC DATA						
Topo Feature:						
Slope Distance:	N/A	ft				
Crest Distance:	N/A	ft				
Crest Height:	N/A	ft				

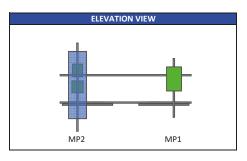
FACTORS							
Directionality Fact. (K _d):	0.950						
Ground Ele. Factor (K _e):	0.984	*Rev H Only					
Rooftop Speed-Up (K _s):	1.000	*Rev H Only					
Topographic Factor (Kzt):	1.000						
Height Esc. Fact. (K _{iz}):	1.126						
Gust Effect Factor (G _h):	1.000						
Shielding Factor (K _a):	0.900						
Velocity Pressure Co.(K _z):	1.010	(Mount Elev)					

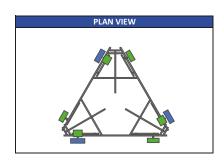
CODE STANDARDS							
Building Code: 2021 IBC							
TIA Standard:	TIA-222-H						
ASCE Standard:	ASCE 7-16						

NIW WIT	ND AND	ICE DATA	
Ultimate Win	d (V _{ult}):	123	mph
Design W	ind (V):	N/A	mph
Ice Win	d (V _{ice}):	50	mph
Base Ice Thickn	ess (t _i):	1.0	in
Radial Ice Thickne	ess (t _{iz}):	1.126	in
Flat Pr	essure:	73.119	psf
Round Pr	essure:	43.871	psf
Ice Wind Pr	essure:	7.250	psf

SEISMIC	DATA	
Short-Period Accel. (S _s):	0.186	g
1-Second Accel. (S ₁):	0.054	g
Short-Period Design (S _{DS}):	0.198	
1-Second Design (S _{D1}):	0.086	
Short-Period Coeff. (Fa):	1.600	
1-Second Coeff. (F _v):	2.400	
Amplification Factor (A _s):	3.000	
Response Mod. Coeff. (R):	2.000	
Seismic Importance (I _e):	1.000	
Seismic Response Co. (C _s):	0.099	
Total App. Weight:	413.950	lb
Total Shear Force (V _s):	41.064	lb
Hor. Seismic Load (E _h):	41.064	lb
Vert. Seismic Load (E _v):	16.426	lb *

^{*}For reference only. Per TIA rev H section 16.7, Ev is not applicable to mounts


INFINIGY8


Infinigy Load Calculator V2.3.4

857013_KILLINGLY ROSS ROAD 9/12/2023

Program Inputs

APPURTENANCE INFORMATION									
Appurtenance Name	Elevation	Qty.	Height (in)	Width (in)	Depth (in)	Weight (lbs)	EPA _N (ft ²)	EPA _T (ft ²)	Member (α sector)
ERICSSON AIR 6419 B41_TMO_CCIV2	110.0	3	34.49	19.92	7.99	81.84	6.24	2.34	MP1
RFS/CELWAVE APXVAALL24_43-U-NA20_TMO	110.0	3	95.90	24.00	8.50	149.90	14.67	5.32	MP2
ERICSSON RADIO 4449 B71 B85A_T-MOBILE	110.0	3	17.91	13.20	10.63	73.21	1.97	1.59	MP2
ERICSSON RADIO 4460 B2/B25 B66_TMO	110.0	3	17.00	15.10	11.90	109.00	2.14	1.69	MP2

857013_KILLINGLY ROSS ROAD 9/12/2023

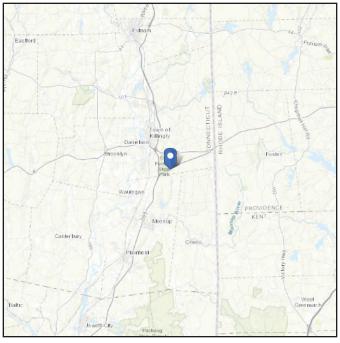
ASCE 7 Hazards Report

Address:

No Address at This Location

Standard: ASCE/SEI 7-16

Risk Category: **□**


Soil Class:

D - Default (see Section 11.4.3) **Latitude:** 41.771553 **Longitude:** -71.855664

Elevation: 456.758999360382 ft (NAVD

88)

Wind

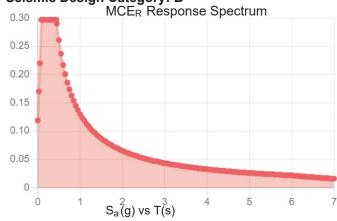
Results:

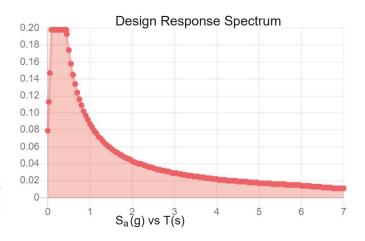
Wind Speed 123 Vmph
10-year MRI 75 Vmph
25-year MRI 85 Vmph
50-year MRI 95 Vmph
100-year MRI 100 Vmph

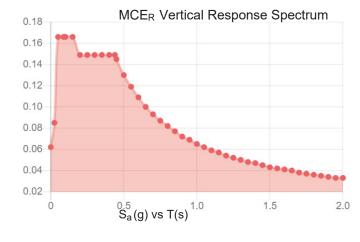
Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2

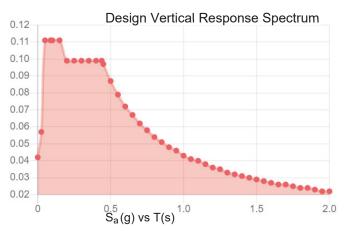
Date Accessed: Mon Sep 11 2023

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.


Site Soil Class:


Results:


S _s :	0.186	S _{D1} :	0.087
S ₁ :	0.054	T_L :	6
F _a :	1.6	PGA:	0.101
F _v :	2.4	PGA _M :	0.161
S _{MS} :	0.297	F _{PGA} :	1.599
S _{M1} :	0.13	l _e :	1
S _{DS} :	0.198	C _v :	0.7

Seismic Design Category: B

Data Accessed: Mon Sep 11 2023

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness: 1.00 in.
Concurrent Temperature: 15 F
Gust Speed 50 mph

Data Source: Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed: Mon Sep 11 2023

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

APPENDIX C SOFTWARE ANALYSIS OUTPUT

9/12/2023 5:23:34 AM

Checked By : ___

Member Primary Data

	Label	I Node	J Node	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rule
1	MS2	N1	N2	(g)	Standoff	Beam	Pipe	A53 Gr.B	Typical
2	MH1	N7	N8		Face Horizontal	Beam	Pipe	A53 Gr.B	Typical
3	M5	N9	N10	270	Corner C	Beam	Channel	A36 Gr.36	Typical
4	M6	N11	N12	270	Corner C	Beam	Channel	A36 Gr.36	Typical
5	MH3	N13	N14		Face Horizontal	Beam	Pipe	A53 Gr.B	Typical
6	M8	N15	N16	270	Corner C	Beam	Channel	A36 Gr.36	Typical
7	MH2	N17	N18		Face Horizontal	Beam	Pipe	A53 Gr.B	Typical
8	MS1	N19	N20		Standoff	Beam	Pipe	A53 Gr.B	Typical
9	MS3	N21	N22		Standoff	Beam	Pipe	A53 Gr.B	Typical
10	M12	N23	N24		RIGID	None	None	RIGID	Typical
11	M13	N25	N26		RIGID	None	None	RIGID	Typical
12	M14	N27	N28		RIGID	None	None	RIGID	Typical
13	M15	N29	N30	90	Cross Angle	Beam	Single Angle	A36 Gr.36	Typical
14	M16	N31	N32		RIGID	None	None	RIGID	Typical
15	M17	N33	N34		RIGID	None	None	RIGID	Typical
16	M18	N35	N36		RIGID	None	None	RIGID	Typical
17	M19	N37	N38	90	Cross Angle	Beam	Single Angle	A36 Gr.36	Typical
18	M20	N39	N40		RIGID	None	None	RIGID	Typical
19	M21	N41	N42	90	Cross Angle	Beam	Single Angle	A36 Gr.36	Typical
20	M22	N43	N44		RIGID	None	None	RIGID	Typical
21	M23	N46	N45		Grating Angle	Beam	Single Angle	A36 Gr.36	Typical
22	M24	N47	N48		RIGID	None	None	RIGID	Typical
23	M25	N49	N50		RIGID	None	None	RIGID	Typical
24	M26	N51	N52		Grating Angle	Beam	Single Angle	A36 Gr.36	Typical
25	M27	N53	N54		RIGID	None	None	RIGID	Typical
26	M28	N55	N56		RIGID	None	None	RIGID	Typical
27	M29	N57	N58		Grating Angle	Beam	Single Angle	A36 Gr.36	Typical
28	M30	N59	N60		RIGID	None	None	RIGID	Typical
29	M31	N61	N62		RIGID	None	None	RIGID	Typical
30	M32	N64	N63		Grating Angle	Beam	Single Angle	A36 Gr.36	Typical
31	M33	N65	N66		RIGID	None	None	RIGID	Typical
32	M34	N67	N68		RIGID	None	None	RIGID	Typical
33	M35	N70	N69		Grating Angle	Beam	Single Angle	A36 Gr.36	Typical
34	M36	N71	N72		RIGID	None	None	RIGID	Typical
35	M37	N73	N74		RIGID	None	None	RIGID	Typical
36	M38	N75	N76		Grating Angle	Beam	Single Angle	A36 Gr.36	Typical
37	MR3	N77	N78		Handrail	Beam	Pipe	A53 Gr.B	Typical
38	MR1	N79	N80		Handrail	Beam	Pipe	A53 Gr.B	Typical
39	MR4	N81	N82		Handrail	Beam	Pipe	A53 Gr.B	Typical
40	MR5	N83	N84	90	Top Corner Angle	Beam	Single Angle	A36 Gr.36	Typical
41	MR6	N85	N86	180	Top Corner Angle	Beam	Single Angle		Typical
42	MR2	N87	N88	90	Top Corner Angle	Beam	Single Angle		Typical
43	M45	N89	N90		RIGID	None	None	RIGID	Typical
44	M46	N91	N92		RIGID	None	None	RIGID	Typical
45	MP2	N93	N94		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
46	M48	N95	N96		RIGID	None	None	RIGID	Typical
47	M49	N97	N98		RIGID	None	None	RIGID	Typical
48	MP1	N99	N100		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
49	M51	N110	N108		RIGID Mount Pine	None	None	RIGID	Typical
50	MP6	N103	N106		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
51	M53	N111	N105		RIGID Mount Pine	None	None	RIGID	Typical
52 53	MP5 M55	N102 N112	N109 N104		Mount Pipe RIGID	Column None	Pipe	A53 Gr.B RIGID	Typical Typical
54	M56	N112 N113	N104 N107		RIGID	None	None None	RIGID	Typical
55	M57	N122	N120		RIGID			RIGID	
55	IVI37	INIZZ	IN IZU		עוטוא	None	None	KIGID	Typical

Model Name: 857013

9/12/2023 5:23:34 AM Checked By : ___

Member Primary Data (Continued)

	Label	I Node	J Node	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rule
56	MP4	N115	N118		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
57	M59	N123	N117		RIGID	None	None	RIGID	Typical
58	MP3	N114	N121		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
59	M61	N124	N116		RIGID	None	None	RIGID	Typical
60	M62	N125	N119		RIGID	None	None	RIGID	Typical

Material Take-Off

	Material	Size	Pieces	Length[in]	Weight[LB]
0	General Members				
1	RIGID		30	90	0
2	Total General		30	90	0
3					
4	Hot Rolled Steel				
5	A36 Gr.36	L2.5X2.5X3	3	51	13.03
6	A36 Gr.36	L2X2X2	6	270.4	37.652
7	A36 Gr.36	L2X2X4	3	225	60.229
8	A36 Gr.36	C6X8.2	3	69	46.763
9	A53 Gr.B	PIPE 2.0	9	1152	333.2
10	A53 Gr.B	PIPE 3.0	3	519.4	304.889
11	A53 Gr.B	PIPE 4.0	3	231	193.89
12	Total HR Steel		30	2517.9	989.654

Basic Load Cases

1 Self Weight DL -1 24 3 2 Wind Load AZI 0 WLZ 48 3 3 Wind Load AZI 30 None 48 48 48 4 Wind Load AZI 60 None 48 <th>Du</th> <th>SIC LOUG CUSES</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Du	SIC LOUG CUSES								
2 Wind Load AZI 0 WLZ 48 3 Wind Load AZI 30 None 48 4 Wind Load AZI 60 None 48 5 Wind Load AZI 90 WLX 48 6 Wind Load AZI 120 None 48 7 Wind Load AZI 150 None 48 8 Wind Load AZI 180 None 48 9 Wind Load AZI 210 None 48 10 Wind Load AZI 240 None 48 11 Wind Load AZI 300 None 48 12 Wind Load AZI 300 None 48 13 Wind Load AZI 330 None 48 14 Distr. Wind Load Z WLZ 60 15 Distr. Wind Load Z WLX 60 16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 OL2 48 18 Ice Wind Load AZI 30 None 48 20 Ice Wind Load AZI 60 None 48 21 Ice Wind Load AZI 120 <		BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Nodal	Point	Distributed	Area(Member)
3 Wind Load AZI 30 None 48 4 Wind Load AZI 60 None 48 5 Wind Load AZI 90 WLX 48 6 Wind Load AZI 120 None 48 7 Wind Load AZI 150 None 48 8 Wind Load AZI 180 None 48 9 Wind Load AZI 210 None 48 10 Wind Load AZI 240 None 48 11 Wind Load AZI 300 None 48 12 Wind Load AZI 300 None 48 13 Wind Load AZI 330 None 48 14 Distr. Wind Load Z WLZ 60 15 Distr. Wind Load X WLX 60 16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 OL2 48 1 18 Ice Wind Load AZI 30 None 48 1 19 Ice Wind Load AZI 10 None 48 48 <td></td> <td>Self Weight</td> <td>DL</td> <td></td> <td>-1</td> <td></td> <td></td> <td>24</td> <td></td> <td>3</td>		Self Weight	DL		-1			24		3
4 Wind Load AZI 60 None 48 5 Wind Load AZI 120 None 48 6 Wind Load AZI 120 None 48 7 Wind Load AZI 150 None 48 8 Wind Load AZI 180 None 48 9 Wind Load AZI 210 None 48 10 Wind Load AZI 240 None 48 11 Wind Load AZI 300 None 48 12 Wind Load AZI 330 None 48 13 Wind Load AZI 330 None 48 14 Distr. Wind Load X WLZ 60 15 Distr. Wind Load X WLX 60 16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 OL2 48 18 Ice Wind Load AZI 30 None 48 20 Ice Wind Load AZI 60 None 48 21 Ice Wind Load AZI 120 None 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI		Wind Load AZI 0	WLZ					48		
5 Wind Load AZI 90 WLX 48 6 Wind Load AZI 120 None 48 7 Wind Load AZI 150 None 48 8 Wind Load AZI 180 None 48 9 Wind Load AZI 210 None 48 10 Wind Load AZI 240 None 48 11 Wind Load AZI 270 None 48 12 Wind Load AZI 330 None 48 13 Wind Load AZI 330 None 48 14 Distr. Wind Load X WLX 60 15 Distr. Wind Load X WLX 60 16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 OL2 48 48 18 Ice Wind Load AZI 30 None 48 48 20 Ice Wind Load AZI 60 None 48 48 21 Ice Wind Load AZI 120 None 48 21 Ice Wind Load AZI 150 None	3	Wind Load AZI 30	None					48		
6 Wind Load AZI 120 None 48 7 Wind Load AZI 150 None 48 8 Wind Load AZI 180 None 48 9 Wind Load AZI 210 None 48 10 Wind Load AZI 240 None 48 11 Wind Load AZI 270 None 48 12 Wind Load AZI 300 None 48 13 Wind Load AZI 330 None 48 14 Distr. Wind Load Z WLZ 60 15 Distr. Wind Load X WLX 60 16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 OL2 48 18 Ice Wind Load AZI 30 None 48 19 Ice Wind Load AZI 60 None 48 20 Ice Wind Load AZI 90 OL3 48 21 Ice Wind Load AZI 120 None 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	4	Wind Load AZI 60	None					48		
7 Wind Load AZI 150 None 48 8 Wind Load AZI 180 None 48 9 Wind Load AZI 210 None 48 10 Wind Load AZI 240 None 48 11 Wind Load AZI 300 None 48 12 Wind Load AZI 330 None 48 13 Wind Load AZI 330 None 48 14 Distr. Wind Load Z WLZ 60 15 Distr. Wind Load X WLX 60 16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 OL2 48 8 18 Ice Wind Load AZI 30 None 48 8 19 Ice Wind Load AZI 60 None 48 8 20 Ice Wind Load AZI 90 OL3 48 21 Ice Wind Load AZI 120 None 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48		Wind Load AZI 90	WLX					48		
8 Wind Load AZI 180 None 48 9 Wind Load AZI 210 None 48 10 Wind Load AZI 240 None 48 11 Wind Load AZI 270 None 48 12 Wind Load AZI 300 None 48 13 Wind Load AZI 330 None 48 14 Distr. Wind Load Z WLZ 60 15 Distr. Wind Load X WLX 60 16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 OL2 48 48 18 Ice Wind Load AZI 30 None 48 48 19 Ice Wind Load AZI 60 None 48 48 20 Ice Wind Load AZI 90 OL3 48 21 Ice Wind Load AZI 120 None 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	6	Wind Load AZI 120	None					48		
9 Wind Load AZI 210 None 48 10 Wind Load AZI 240 None 48 11 Wind Load AZI 270 None 48 12 Wind Load AZI 300 None 48 13 Wind Load AZI 330 None 48 14 Distr. Wind Load Z WLZ 60 15 Distr. Wind Load X WLX 60 16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 OL2 48 18 Ice Wind Load AZI 30 None 48 19 Ice Wind Load AZI 60 None 48 20 Ice Wind Load AZI 90 OL3 48 21 Ice Wind Load AZI 120 None 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	7	Wind Load AZI 150	None					48		
10 Wind Load AZI 240 None 48	8	Wind Load AZI 180	None					48		
11 Wind Load AZI 270 None 48 12 Wind Load AZI 300 None 48 13 Wind Load AZI 330 None 48 14 Distr. Wind Load Z WLZ 60 15 Distr. Wind Load X WLX 60 16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 OL2 48 18 Ice Wind Load AZI 30 None 48 19 Ice Wind Load AZI 60 None 48 20 Ice Wind Load AZI 90 OL3 48 21 Ice Wind Load AZI 120 None 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	9	Wind Load AZI 210	None					48		
12 Wind Load AZI 300 None 48 13 Wind Load AZI 330 None 48 14 Distr. Wind Load Z WLZ 60 15 Distr. Wind Load X WLX 60 16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 OL2 48 48 18 Ice Wind Load AZI 30 None 48 48 19 Ice Wind Load AZI 60 None 48 48 20 Ice Wind Load AZI 90 OL3 48 21 Ice Wind Load AZI 120 None 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	10	Wind Load AZI 240	None					48		
13 Wind Load AZI 330 None 48 14 Distr. Wind Load Z WLZ 60 15 Distr. Wind Load X WLX 60 16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 OL2 48 60 3 18 Ice Wind Load AZI 30 None 48 48 19 Ice Wind Load AZI 60 None 48 48 20 Ice Wind Load AZI 90 OL3 48 48 21 Ice Wind Load AZI 120 None 48 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	11	Wind Load AZI 270	None					48		
14 Distr. Wind Load Z WLZ 60 15 Distr. Wind Load X WLX 60 16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 OL2 48 48 18 Ice Wind Load AZI 30 None 48 48 19 Ice Wind Load AZI 60 None 48 48 20 Ice Wind Load AZI 90 OL3 48 48 21 Ice Wind Load AZI 120 None 48 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	12	Wind Load AZI 300	None					48		
15 Distr. Wind Load X WLX 60 16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 OL2 48 60 3 18 Ice Wind Load AZI 30 None 48 60 48 60 48 60 48 60 </td <td>13</td> <td>Wind Load AZI 330</td> <td>None</td> <td></td> <td></td> <td></td> <td></td> <td>48</td> <td></td> <td></td>	13	Wind Load AZI 330	None					48		
16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 0L2 48 18 Ice Wind Load AZI 30 None 48 19 Ice Wind Load AZI 60 None 48 20 Ice Wind Load AZI 90 OL3 48 21 Ice Wind Load AZI 120 None 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	14	Distr. Wind Load Z	WLZ						60	
17 Ice Wind Load AZI 0 OL2 48 18 Ice Wind Load AZI 30 None 48 19 Ice Wind Load AZI 60 None 48 20 Ice Wind Load AZI 90 OL3 48 21 Ice Wind Load AZI 120 None 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	15	Distr. Wind Load X	WLX						60	
18 Ice Wind Load AZI 30 None 48 19 Ice Wind Load AZI 60 None 48 20 Ice Wind Load AZI 90 OL3 48 21 Ice Wind Load AZI 120 None 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	16	Ice Weight	OL1					24	60	3
19 Ice Wind Load AZI 60 None 48 20 Ice Wind Load AZI 90 OL3 48 21 Ice Wind Load AZI 120 None 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	17	Ice Wind Load AZI 0	OL2					48		
20 Ice Wind Load AZI 90 OL3 48 21 Ice Wind Load AZI 120 None 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	18	Ice Wind Load AZI 30	None					48		
21 Ice Wind Load AZI 120 None 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	19	Ice Wind Load AZI 60	None					48		
22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	20	Ice Wind Load AZI 90	OL3					48		
23 Ice Wind Load AZI 180 None 48	21	Ice Wind Load AZI 120	None					48		
		Ice Wind Load AZI 150	None					48		
	23	Ice Wind Load AZI 180	None					48		
	24	Ice Wind Load AZI 210	None					48		
25 Ice Wind Load AZI 240 None 48	25	Ice Wind Load AZI 240	None					48		
26 Ice Wind Load AZI 270 None 48		Ice Wind Load AZI 270	None					48		
27 Ice Wind Load AZI 300 None 48	27	Ice Wind Load AZI 300	None					48		
28 Ice Wind Load AZI 330 None 48	28	Ice Wind Load AZI 330	None					48		
29 Distr. Ice Wind Load Z OL2 60		Distr. Ice Wind Load Z	OL2						60	

9/12/2023 5:23:34 AM

Checked By : ___

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Nodal	Point	Distributed	Area(Member)
30	Distr. Ice Wind Load X	OL3						60	
31	Seismic Load Z	ELZ			-0.298		24		
32	Seismic Load X	ELX	-0.298				24		
33	Service Live Loads	LL				1			
34	Maintenance Load Lm1	LL				1			
35	Maintenance Load Lm2	LL				1			
36	Maintenance Load Lm3	LL				1			
37	Maintenance Load Lm4	LL				1			
38	Maintenance Load Lm5	LL				1			
39	Maintenance Load Lm6	LL				1			
40	BLC 1 Transient Area Loads	None						93	
41	BLC 16 Transient Area Loads	None						93	

Load Combinations

Loud	Combinations	0 1	D D II	DI O		DI O		DI O		DI O	- .	DI O	
	Description		P-Delta		_	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
1	1.4DL	Yes	Y	1	1.4	_							
2	1.2DL + 1WL AZI 0	Yes	Y	1	1.2	2	1	14	1	15		_	
3	1.2DL + 1WL AZI 30	Yes	Y	1	1.2	3	1	14	0.866	15	0.5		
4	1.2DL + 1WL AZI 60	Yes	Υ	1	1.2	4	1	14	0.5	15	0.866		
5	1.2DL + 1WL AZI 90	Yes	Υ	1	1.2	_ 5	1	14		15	1	_	
6	1.2DL + 1WL AZI 120	Yes	Υ	1	1.2	6	1	14	-0.5	15	0.866		
7	1.2DL + 1WL AZI 150	Yes	Υ	1	1.2	_ 7	1	14	-0.866	15	0.5	_	_
8	1.2DL + 1WL AZI 180	Yes	Υ	1	1.2	8	1	14	-1	15			
9	1.2DL + 1WL AZI 210	Yes	Υ	1	1.2	9	1	14	-0.866	15	-0.5		
10	1.2DL + 1WL AZI 240	Yes	Υ	1	1.2	10	1	14	-0.5	15	-0.866		
11	1.2DL + 1WL AZI 270	Yes	Υ	1	1.2	11	1	14		15	-1		
12	1.2DL + 1WL AZI 300	Yes	Υ	1	1.2	12	1	14	0.5	15	-0.866		
13	1.2DL + 1WL AZI 330	Yes	Υ	1	1.2	13	1	14	0.866	15	-0.5		
14	0.9DL + 1WL AZI 0	Yes	Υ	1	0.9	2	1	14	1	15			
15	0.9DL + 1WL AZI 30	Yes	Υ	1	0.9	3	1	14	0.866	15	0.5		
16	0.9DL + 1WL AZI 60	Yes	Υ	1	0.9	4	1	14	0.5	15	0.866		
17	0.9DL + 1WL AZI 90	Yes	Υ	1	0.9	_ 5	1	14		15	1	_	
18	0.9DL + 1WL AZI 120	Yes	Υ	1	0.9	6	1	14	-0.5	15	0.866		
19	0.9DL + 1WL AZI 150	Yes	Υ	1	0.9	7	1	14	-0.866	15	0.5		
20	0.9DL + 1WL AZI 180	Yes	Υ	1	0.9	8	1	14	1	15		_	
21	0.9DL + 1WL AZI 210	Yes	Υ	1	0.9	9	1	14	-0.866	15	-0.5		
22	0.9DL + 1WL AZI 240	Yes	Y	11	0.9	10	1	14	-0.5	15	-0.866	_	
23	0.9DL + 1WL AZI 270	Yes	Υ	1	0.9	11	1	14		15	-1		
24	0.9DL + 1WL AZI 300	Yes	Υ	1	0.9	12	1	14	0.5	15	-0.866		
25	0.9DL + 1WL AZI 330	Yes	Υ	1	0.9	13	_ 1	14	0.866	15	-0.5		
26	1.2D + 1.0Di	Yes	Υ	1	1.2	16	1						
27	1.2D + 1.0Di +1.0Wi AZI 0	Yes	Υ	1	1.2	_ 16	_ 1	17	_ 1	_ 29	1	30	
28	1.2D + 1.0Di +1.0Wi AZI 30	Yes	Υ	11	1.2	16	1	18	1	29	0.866	30	0.5
29	1.2D + 1.0Di +1.0Wi AZI 60	Yes	Υ	1	1.2	16	1	19	_ 1	29	0.5	30	0.866
30	1.2D + 1.0Di +1.0Wi AZI 90	Yes	Υ	1	1.2	16	1	20	1	29		30	1
31	1.2D + 1.0Di +1.0Wi AZI 120	Yes	Υ	1	1.2	16	1	21	1	29	-0.5	30	0.866
32	1.2D + 1.0Di +1.0Wi AZI 150	Yes	Y	1	1.2	16	1	_ 22	1	29	-0.866		0.5
33	1.2D + 1.0Di +1.0Wi AZI 180	Yes	Υ	1	1.2	16	1	23	1	29	-1	30	
34	1.2D + 1.0Di +1.0Wi AZI 210	Yes	Υ	1	1.2	16	1	24	1	29	-0.866		-0.5
35	1.2D + 1.0Di +1.0Wi AZI 240	Yes	Υ	1	1.2	16	_ 1	25	_ 1	_ 29	-0.5	30	-0.866
36	1.2D + 1.0Di +1.0Wi AZI 270	Yes	Υ	1	1.2	16	1	26	1	29		30	-1
37	1.2D + 1.0Di +1.0Wi AZI 300	Yes	Υ	1	1.2	_ 16	1	27	1	29	0.5	30	-0.866
38	1.2D + 1.0Di +1.0Wi AZI 330	Yes	Υ	1	1.2	16	1	28	1	29	0.866	30	-0.5
39	(1.2 + 0.2Sds)DL + 1.0E AZI 0	Yes	Υ	1	1.24	31	1	32					
40	(1.2 + 0.2Sds)DL + 1.0E AZI 30	Yes	Υ	1	1.24	31	0.866	32	0.5				

9/12/2023 5:23:34 AM Checked By : ___

Load Combinations (Continued)

LUC	du Combinations (Continueu)												
	Description	Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
41	(1.2 + 0.2Sds)DL + 1.0E AZI 60	Yes	Υ	1	1.24	31	0.5	32	0.866				
42	(1.2 + 0.2Sds)DL + 1.0E AZI 90	Yes	Y	1	1.24	31	0.0	32	1				
43	(1.2 + 0.2Sds)DL + 1.0E AZI 120	Yes	Y	1	1.24	31	-0.5	32	0.866				
44	(1.2 + 0.2Sds)DL + 1.0E AZI 150	Yes	Y	1	1.24	31	-0.866	32	0.5				
45	(1.2 + 0.2Sds)DL + 1.0E AZI 180	Yes	Y	1	1.24	31	-1	32	0.0	_		_	
46	(1.2 + 0.2Sds)DL + 1.0E AZI 100	Yes	Y	1	1.24	31	-0.866	32	-0.5				
47	(1.2 + 0.2Sds)DL + 1.0E AZI 240	Yes	Y	1	1.24	31	-0.5	32	-0.866				
48	(1.2 + 0.2Sds)DL + 1.0E AZI 240	Yes	Y	1	1.24	31	-0.5	32	-1				
49	(1.2 + 0.2Sds)DL + 1.0E AZI 270 (1.2 + 0.2Sds)DL + 1.0E AZI 300	Yes	Y	1	1.24	31	0.5	32	-0.866				
_	, ,	_	Y	1				_	-0.5				
50	(1.2 + 0.2Sds)DL + 1.0E AZI 330	Yes			1.24	31	0.866	32	-0.5				
51	(0.9 - 0.2Sds)DL + 1.0E AZI 0	Yes	Y	1	0.86	31	1	32	0.5				
52	(0.9 - 0.2Sds)DL + 1.0E AZI 30	Yes	Y	1	0.86	31	0.866	32	0.5				
53	(0.9 - 0.2Sds)DL + 1.0E AZI 60	Yes	Y	1	0.86	31	0.5	32	0.866				
54	(0.9 - 0.2Sds)DL + 1.0E AZI 90	Yes	Y	1	0.86	31	0.5	32	1	_			
55	(0.9 - 0.2Sds)DL + 1.0E AZI 120	Yes	Y	1	0.86	31	-0.5	32	0.866				
56	(0.9 - 0.2Sds)DL + 1.0E AZI 150	Yes	Y		0.86	31	-0.866	32	0.5				
57	(0.9 - 0.2Sds)DL + 1.0E AZI 180	Yes	Y	1	0.86	31	-1	32					
58	(0.9 - 0.2Sds)DL + 1.0E AZI 210	Yes	Y	1	0.86	31	-0.866	32	-0.5				
59	(0.9 - 0.2Sds)DL + 1.0E AZI 240	Yes	Υ	1	0.86	31	-0.5	32	-0.866				
60	(0.9 - 0.2Sds)DL + 1.0E AZI 270	Yes	Υ	1	0.86	31		32	-1				
61	(0.9 - 0.2Sds)DL + 1.0E AZI 300	Yes	Υ	1	0.86	31	0.5	32	-0.866			_	
62	(0.9 - 0.2Sds)DL + 1.0E AZI 330	Yes	Υ	1_	0.86	31	0.866	32	-0.5	_		_	\perp
63	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 0	Yes	Υ	1	_ 1	2	0.238	14	0.238	15		_ 33	1.5
_64	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 30	Yes	Υ	1	_ 1	3	0.238	14	0.206	15	0.119	33	1.5
65	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 60	Yes	Υ	1	1	4	0.238	14	0.119	15	0.206	33	1.5
_66	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 90	Yes	Υ	1	_ 1	5	0.238	14		15	0.238	_ 33	1.5
67	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 120	Yes	Υ	1	1	6	0.238	14	-0.119	15	0.206	33	1.5
68	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 150	Yes	Υ	1	1	7	0.238	14	-0.206	15	0.119	33	1.5
69	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 180	Yes	Υ	1	1	8	0.238	14	-0.238	15		33	1.5
70	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 210	Yes	Υ	1	1	9	0.238	14	-0.206	15	-0.119	33	1.5
71	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 240	Yes	Υ	1	1	10	0.238	14	-0.119	15	-0.206	33	1.5
72	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 270	Yes	Υ	1	1	11	0.238	14		15	-0.238	33	1.5
73	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 300	Yes	Υ	1	1	12	0.238	14	0.119	15	-0.206		1.5
74	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 330	Yes	Υ	1	1	13	0.238	14	0.206	15	-0.119		1.5
75	1.2DL + 1.5LL	Yes	Υ	1	1.2	33	1.5						
76	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 0	Yes	Υ	1	1.2	34	1.5	2	0.059	14	0.059	15	
77	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 30	Yes	Υ	1	1.2	34	1.5	3	0.059	14	0.052	_	0.03
78	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 60	Yes	Y	1	1.2	34	1.5	4	0.059	14	0.03	15	0.052
79	` ' '	Yes	Υ	1	1.2	34	1.5	5	0.059	14	0.00	15	0.059
80	\ ' '		Y	1	1.2	34	1.5	6	0.059	14	-0.03	15	0.052
	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 150		Y	1	1.2	34	1.5	7	0.059	14	-0.052		0.03
	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 180		Y	1	1.2	34	1.5		0.059		-0.059		0.00
	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 210		Y	1	1.2	34	1.5	9	0.059		-0.052		-0.03
	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 240		Ý	1	1.2	34	1.5	10	0.059	14	-0.03	15	-0.052
	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 270		Y	1	1.2	34	1.5	11	0.059	14	-0.00	15	-0.059
	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 300		Y	1	1.2	34	1.5	12	0.059	14	0.03	15	-0.052
	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 330		Y	1	1.2	34	1.5	13	0.059	14	0.052	15	-0.032
88	, ,	Yes	Y	1	1.2	35	1.5	2	0.059	14	0.052	15	-0.03
89	• • • •	Yes	Y	1	1.2	35	1.5	3	0.059	14	0.059	15	0.03
		_	Y		1.2					_			
	1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 60	Yes		11		35	1.5	4	0.059	14	0.03	15	0.052
	1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 90	Yes	Y	1	1.2	35	1.5	5	0.059	14	0.02	15	0.059
	1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 120		Y	1	1.2	35	1.5	6	0.059	14	-0.03	15	0.052
	1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 150		Y	1	1.2	35	1.5	7	0.059	14	-0.052		0.03
_	1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 180		Y	1	1.2	35	1.5	8	0.059	14	-0.059		0.00
95	1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 210	Yes	Υ	1	1.2	35	1.5	9	0.059	14	-0.052	15	-0.03

9/12/2023 5:23:34 AM Checked By : ___

Load Combinations (Continued)

Load Combinations (Continued)												
Description	Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
96 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 240		Υ	1	1.2	35	1.5	10	0.059	14	-0.03	15	-0.052
97 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 270		Υ	1	1.2	35	1.5	11	0.059	14	0.00	15	-0.059
98 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 300		Υ	1	1.2	35	1.5	12	0.059	14	0.03	15	-0.052
99 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 330		Υ	1	1.2	35	1.5	13	0.059	14	0.052	15	-0.03
100 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 0	Yes	Υ	1	1.2	36	1.5	2	0.059	14	0.059	15	
101 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 30	Yes	Υ	1	1.2	36	1.5	3	0.059	14	0.052	15	0.03
102 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 60		Υ	1	1.2	36	1.5	4	0.059	14	0.03	15	0.052
103 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 90		Υ	1	1.2	36	1.5	5	0.059	14		15	0.059
104 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 120		Υ	1	1.2	36	1.5	6	0.059	14	-0.03	15	0.052
105 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 150) Yes	Υ	1	1.2	36	1.5	7	0.059	14	-0.052	15	0.03
106 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 180		Υ	1	1.2	36	1.5	8	0.059	14	-0.059	15	
107 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 210		Υ	1	1.2	36	1.5	9	0.059	14	-0.052	15	-0.03
108 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 240		Υ	1	1.2	36	1.5	10	0.059	14	-0.03	15	-0.052
109 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 270	Yes	Υ	1	1.2	36	1.5	11	0.059	14		15	-0.059
110 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 300		Υ	1	1.2	36	1.5	12	0.059	14	0.03	15	-0.052
111 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 330	Yes	Υ	1	1.2	36	1.5	13	0.059	14	0.052	15	-0.03
112 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 0	Yes	Υ	1	1.2	37	1.5	2	0.059	14	0.059	15	
113 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 30	Yes	Υ	1	1.2	37	1.5	3	0.059	14	0.052	15	0.03
114 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 60		Υ	1	1.2	37	1.5	4	0.059	14	0.03	15	0.052
115 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 90	Yes	Υ	1	1.2	37	1.5	5	0.059	14		15	0.059
116 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 120) Yes	Υ	1	1.2	37	1.5	6	0.059	14	-0.03	15	0.052
117 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 150	Yes	Υ	1	1.2	37	1.5	7	0.059	14	-0.052	15	0.03
118 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 180) Yes	Υ	1	1.2	37	1.5	8	0.059	14	-0.059	15	
119 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 210	Yes	Υ	1	1.2	37	1.5	9	0.059	14	-0.052	15	-0.03
120 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 240	Yes	Υ	1	1.2	37	1.5	10	0.059	14	-0.03	15	-0.052
121 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 270	Yes	Υ	1	1.2	37	1.5	11	0.059	14		15	-0.059
122 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 300) Yes	Υ	1	1.2	37	1.5	12	0.059	14	0.03	15	-0.052
123 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 330	Yes	Υ	1	1.2	37	1.5	13	0.059	14	0.052	15	-0.03
124 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 0	Yes	Υ	1	1.2	38	1.5	2	0.059	14	0.059	15	
125 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 30	Yes	Υ	1	1.2	38	1.5	3	0.059	14	0.052	15	0.03
126 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 60	Yes	Υ	1	1.2	38	1.5	4	0.059	14	0.03	15	0.052
127 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 90	Yes	Υ	1	1.2	38	1.5	5	0.059	14		15	0.059
128 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 120) Yes	Υ	1	1.2	38	1.5	6	0.059	14	-0.03	15	0.052
129 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 150	Yes	Υ	1	1.2	38	1.5	7	0.059	14	-0.052	15	0.03
130 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 180) Yes	Υ	1	1.2	38	1.5	8	0.059	14	-0.059	15	
131 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 210	Yes Yes	Υ	1	1.2	_ 38	1.5	9	0.059	14	-0.052	15	-0.03
132 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 240) Yes	Υ	1	1.2	38	1.5	10	0.059	14	-0.03	15	-0.052
133 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 270	Yes_	Υ	1	1.2	38	1.5	11	0.059	14		15	-0.059
134 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 300		Υ	1	1.2	_ 38	1.5	12	0.059	14	0.03	15	-0.052
135 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 330) Yes	Υ	1	1.2	38	1.5	13	0.059	14	0.052	15	-0.03
136 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 0	Yes	Υ	1	1.2	_ 39	1.5	2	0.059	14	0.059	15	
137 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 30		Υ	1	1.2	39	1.5	3	0.059	14	0.052	15	0.03
138 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 60		Υ	1	1.2	39	1.5	4	0.059	_14_	0.03	_ 15	0.052
139 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 90		Υ	1	1.2	39	1.5	5	0.059	14		15	0.059
140 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 120		Υ	11	1.2	39	1.5	6	0.059	14	-0.03	15	0.052
141 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 150		Υ	1	1.2	39	1.5	7	0.059	14	-0.052	_ 15	0.03
142 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 180		Υ	1	1.2	39	1.5	8	0.059	14	-0.059	15	\perp
143 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 210		Υ	1	1.2	39	1.5	9	0.059	14	-0.052		-0.03
144 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 240		Υ	1	1.2	39	1.5	10	0.059	_14_	-0.03	15	-0.052
145 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 270		Υ	1	1.2	39	1.5	11	0.059	14		15	-0.059
146 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 300		Υ	1	1.2	39	1.5	12	0.059	_14_	0.03	15	-0.052
147 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 330	1 Vaa	Υ	1	1.2	39	1.5	13	0.059	14	0.052	15	-0.03

Company : Infinigy Engineering Designer : CL Job Number : 1039-Z0001-B Model Name : 857013 9/12/2023 5:23:34 AM Checked By : ___

Envelope Node Reactions

	Node Label		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
0	N1	max	884.923	17	1959.907	27	-1557.163	14	7492.849	27	1580.597	11	1513.24	23
1		min	-888.741	11	316.815	20	-9146.696	33	11.456	20	-1565.093	17	-1740.29	5
2	N21	max	-1417.65	18	1958.13	31	4616.047	38	538.756	14	1202.642	15	-59.122	23
3		min	-7904.911	37	323.342	24	592.766	20	-4112.749	82	-1219.225	9	-6348.677	30
4	N19	max	7907.295	29	1972.063	35	4609.657	28	439.79	14	1278.867	7	6573.355	36
5		min	1479.761	22	334.525	16	717.086	22	-3864.966	94	-1277.297	13	10.636	17
6	Totals:	max	3355.219	5	5695.962	29	3466.906	14						
7		min	-3355.215	23	2096.371	59	-3466.909	8						

Envelope AISC 15TH (360-16): LRFD Member Steel Code Checks

	Member	Shape	Code Check	Loc[in] LCS	hear Check	Loc[in]	Dir	LC	phi*Pnc [lb]	phi*Pnt [lb]	phi*Mn y-y [lb-ft]	phi*Mn z-z [lb-ft] Cb	Eqn
0	M19	L2X2X4	0.932	37.5 33	0.06	37.5	z	38	18657.095	30585.6	690.934	1501.793	1	H2-1
1	M21	L2X2X4	0.925	37.5 29	0.06	37.5	z	34	18657.095	30585.6	690.934	1501.793	1	H2-1
2	M15	L2X2X4	0.922	37.5 28	0.059	37.5	z	30	18657.095	30585.6	690.934	1501.793	1	H2-1
3	MS2	PIPE 4.0	0.757	0 27	0.23	0		5	81734.03	93240	10631.25	10631.25	1	H1-1b
4	MS3	PIPE_4.0	0.756	0 31	0.224	0		9	81734.03	93240	10631.25	10631.25	1	H1-1b
5	MS1	PIPE 4.0	0.751	0 35	0.219	0		13	81734.03	93240	10631.25	10631.25	1	H1-1b
6	M6	C6X8.2	0.691	11.5 33	0.443	11.5	У	34	70285.703	77436	2107.841	13932	1.366	H1-1b
7	M8	C6X8.2	0.689	11.5 29	0.441	11.5	У	30	70285.703	77436	2107.841	13932		H1-1b
8	M5	C6X8.2	0.67	11.5 37	0.435	11.5	У	38	70285.703	77436	2107.841	13932	1.367	H1-1b
9	MP3	PIPE 2.0	0.546	61.25 8	0.178	61.25		3	17855.085	32130	1871.625	1871.625	1	H1-1b
10	MP5	PIPE_2.0	0.545	61.25 4	0.182	61.25		11	17855.085	32130	1871.625	1871.625	_	H1-1b
11	MP1	PIPE 2.0	0.529	61.25 12	0.183	61.25		7	17855.085	32130	1871.625	1871.625	1	H1-1b
12	MP4	PIPE_2.0	0.508	84 12	0.192	84		4	00	32130	1871.625	1871.625		H1-1b
13	MP6	PIPE 2.0	0.502	84 8	0.192	84		12	8922.084	32130	1871.625	1871.625	1	H1-1b
14	MR2	L2.5X2.5X3	0.498	17 8	0.159	17	Z	2	27173.99	29192.4	872.574	1971.83	1.028	H2-1
15	MR6	L2.5X2.5X3	0.49	0 12	0.158	0	У	6	27173.99	29192.4	872.574	1971.83	1.008	
16	MP2	PIPE 2.0	0.489	84 4	0.196	84		8	8922.084	32130	1871.625	1871.625		H1-1b
17	MR5	L2.5X2.5X3	0.476	17 4	0.159	17	Z	10	27173.99	29192.4	872.574	1971.83	1.039	
18	MR1	PIPE 2.0	0.358	21.75 13	0.228	7.25		6	4678.524	32130	1871.625	1871.625		H1-1b
19	MR3	PIPE 2.0	0.358	21.75 9	0.234	7.25		2	4678.524	32130	1871.625	1871.625	1	H1-1b
20	MR4	PIPE_2.0	0.356	152.25 5	0.23	166.75		10	4678.524	32130	1871.625	1871.625		H1-1b
21	MH2	PIPE 3.0	0.169	149.694 7	0.116	12.625		3	21477.804	65205	5748.75	5748.75	1	H1-1b
22	MH3	PIPE_3.0	0.169	23.446 3	0.117	160.515		11	21477.804	65205	5748.75	5748.75	1	H1-1b
23	MH1	PIPE 3.0	0.166	23.446 11	0.119	160.515		7	21477.804	65205	5748.75	5748.75	1	H1-1b
24	M23	L2X2X2	0.164	38.029 12	0.008	38.029	У	37	7903.562	15908.4	402.563	742.322	1.5	H2-1
25	M32	L2X2X2	0.163	38.029 8	0.008	38.029	У	32	7903.562	15908.4	402.563	742.322	1.5	H2-1
26	M38	L2X2X2	0.162	25.822 4	0.009	7.042	У	30	7903.562	15908.4	396.008	675.933	1.077	H2-1
27	M35	L2X2X2	0.161	38.029 4	0.008	38.029	У	29	7903.562	15908.4	402.563	742.322	1.5	H2-1
28	M29	L2X2X2	0.157	25.353 8	0.009	7.042		_	7903.562	15908.4	396.008	676.201	1.078	
29	M26	L2X2X2	0.15	26.292 12	0.009	7.042	У	37	7903.562	15908.4	396.008	680.659	1.1	H2-1

APPENDIX D ADDITIONAL CALCUATIONS

INFINIGY8

Bolt Calculation Tool, V1.6.5

Boil Calculation 1001, VII.0.5									
PROJECT DATA									
Site Name:	KILLINGLY ROSS ROAD								
Site Number:	857013								
Connection Description:	Standoff to Collar								

ENVELOPE BOLT LOADS									
(LC124 MS2) Bolt Tension:	5766.84	lbs							
(LC5 MS2) Bolt Shear:	1563.12	lbs							


MAX BOLT USAGE LOADS ¹									
Bolt Tension:	5766.84	lbs							
Bolt Shear:	800.91	lbs							

BOLT PROPERTIES										
Bolt Type:	Bolt	-								
Bolt Diameter:	0.625	in								
Bolt Grade:	A325	-								
# of Bolts:	4	-								
Threads Excluded?	No	-								

 $^1\,$ Max bolt usage loads correspond to Load combination #124 on member MS2 in RISA-3D, which causes the maximum demand on the bolts.

Member Information				
I nodes of MS2, MS1, MS3,				

BOLT CHECK		
Tensile Strength	20340.15	
Shear Strength	13805.83	
Max Tensile Usage	28.4%	
Max Shear Usage	11.3%	
Interaction Check (Max Usage)	0.08	≤1.05
Result	Pass	

LC	Axial	y Shear	Z Shear	Torque	y-y Moment	z-z Moment
	lb	lb	lb	lb-ft	lb-ft	lb-ft
(LC124 MS2)	5645.99	1731.41	-17.46	616.38	78.21	7100.13
(LC5 MS2)	4292.84	992.50	888.07	1740.29	-1563.35	7100.13

Date: September 15, 2023

Morrison Hershfield 1455 Lincoln Parkway, Suite 500 Atlanta, GA 30346 (770) 379-8500

Subject: Structural Analysis Report

Carrier Designation: T-Mobile Co-Locate

Site Number: CTNL140B

Site Name: NL140/Cingular Ross Rd MP

Crown Castle Designation: BU Number: 857013

Site Name: Killingly Ross Road

 JDE Job Number:
 752564

 Work Order Number:
 2256441

 Order Number:
 655747 Rev. 0

Engineering Firm Designation: Morrison Hershfield Project Number: CN6-958R5 / 2300001

Site Data: 280 Ross Road, Killingly, Windham County, CT 06239

Latitude 41° 46′ 17.59″, Longitude -71° 51′ 20.39″

119 Foot - Monopole Tower

Morrison Hershfield is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2022 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Respectfully submitted by:

No. 28133

No. 28133

EXP 1/31/2024

Digitally signed by G. Lance Cooke Date: 2023.09.15

17:43:13+05'30'

G. Lance Cooke, P.E. (CT License No. PEN.0028133) Senior Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Table 5 - Tower Component Stresses vs. Capacity - LC7

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 119 ft monopole tower, and the original drawings are not available. A tower mapping was performed by GPD Group, in January of 2009. The tower geometry and member sizes have been obtained from the above-mentioned report and are considered to be accurate.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Wind Speed: 125 mph

Exposure Category: B
Topographic Factor: 1
Ice Thickness: 1 in
Wind Speed with Ice: 50 mph
Service Wind Speed: 60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Flevation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	
	110.0		3	ericsson	AIR 6419 B41_TMO_CCIV2 w/ Mount Pipe		
108.0		3	rfs/celwave	APXVAALL24_43-U-NA20_TMO w/ Mount Pipe	3	1-5/8	
		3	ericsson	RADIO 4449 B71 B85A_T-MOBILE			
		3 ericsson RADIO 4460 B2/B25 B66_TMO					
	108.0	1	-	Platform Mount [LP 304-1_HR-1]			

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)			
		3	kmw communications	AM-X-CD-17-65-00T-RET w/ Mount Pipe					
		6	powerwave technologies	7770.00 w/ Mount Pipe					
	121.0	6	ericsson	RRUS 11 B12	12	1-5/8			
119.0	121.0	121.0	121.0	121.0	6	powerwave technologies	LGP21401	2 1	7/8 1/2
					6	powerwave technologies	LGP21901		
		1 raycap DC6-48-60-18-8F							
	119.0	1	-	Platform Mount [LP 1202-1]					
		6	antel	LPA-80080/6CF w/ Mount Pipe					
100.0	100.0	100.0	3	samsung telecommunications	MT6407-77A w/ Mount Pipe	40	4.5/0		
			6	commscope	JAHH-65B-R3B	13	1-5/8		
		3	commscope	CBC78T-DS-43-2X					
		2	raycap	RXXDC-3315-PF-48					

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)			
		3	samsung telecommunications	RF4439D-25A					
100.0	100.0	3	samsung telecommunications	RF4440D-13A	_	-			
		3	-	Dual Antenna Mounting Kit					
					1	-	Platform Mount [LP 303-1_KCKR-HR-1]		
	85.0	85.0	6	cci antennas	BFA8F-A5A W/RRH w/ Mount Pipe				
85.0			85.0	85.0	1	raycap	RHCDC-1390-PF-48	1	7/8
			6	raycap	RHCDC-3441-P-48-NA				
		2	-	Sector Mount [SM 502-1]					
		3	jma wireless	MX08FRO665-21 w/ Mount Pipe					
75.0	75.0	3	fujitsu	TA08025-B604		4.0/0			
	75.0	3	fujitsu	TA08025-B605	1	1-3/8			
		1	raycap	RDIDC-9181-PF-48					
		1	-	Commscope MC-PK8-DSH					

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	4908007	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	4908012	CCISITES
4-TOWER MANUFACTURER DRAWINGS	4908008	CCISITES

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Morrison Hershfield should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

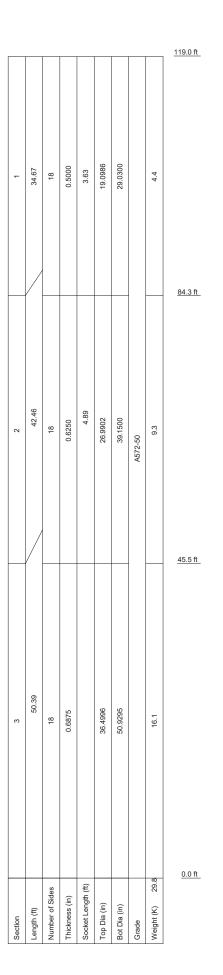
Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	119 - 84.33	Pole	TP29.03x19.0986x0.5	1	-18.59	2061.37	18.1	Pass
L2	84.33 - 45.5	Pole	TP39.15x26.9902x0.625	2	-36.45	3479.77	30.0	Pass
L3	45.5 - 0	Pole	TP50.9295x36.4996x0.6875	3	-59.62	5180.22	32.6	Pass
							Summary	
						Pole (L3)	32.6	Pass
						Rating =	32.6	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	40.7	Pass
1	Base Plate	0	58.4	Pass
1	Base Foundation (Structure)	0	37.2	Pass
1	Base Foundation (Soil Interaction)	U	31.3	Pass

Structure Rating (max from all components) =	58.4%*
--	--------

Notes

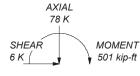

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

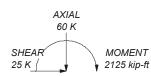
See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

^{2) *}Rating per TIA-222-H, Section 15.5.

APPENDIX A TNXTOWER OUTPUT


MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu	
A572-50	50 ksi	65 ksi				


TOWER DESIGN NOTES

- 1. Tower is located in Windham County, Connecticut.
- 2. Tower designed for Exposure B to the TIA-222-H Standard.
- 3. Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard.
- Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
- 5. Deflections are based upon a 60 mph wind.
- Tower Risk Category II.
 Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 32.6%

TORQUE 1 kip-ft 50 mph WIND - 1.0000 in ICE

TORQUE 5 kip-ft REACTIONS - 125 mph WIND

Consulting Engineers

Morrison Hershfield

1455 Lincoln Parkway, Suite 500 Atlanta, GA 30346 Phone: (770) 379-8500

FAX: (770) 379-8501

^{ob:} CN6-958R5 / 2300001					
Project: 857013 / Killingly Ross	Road				
Client: Crown Castle USA	Drawn by: KCM	App'd:			
Code: TIA-222-H	Date: 09/15/23	Scale: NTS			
Path:		Dwg No. ⊏_			

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower is located in Windham County, Connecticut.

Tower base elevation above sea level: 457.00 ft.

Basic wind speed of 125 mph.

Risk Category II.

Exposure Category B.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1.

Crest Height: 0.00 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Tower analysis based on target reliabilities in accordance with Annex S.

Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.

Maximum demand-capacity ratio is: 1.05.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

Use Code Stress Ratios

Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends

SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned

Assume Rigid Index Plate

- Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
- Bypass Mast Stability Checks
- Use Azimuth Dish Coefficients
- Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	119.00-84.33	34.67	3.63	18	19.0986	29.0300	0.5000	2.0000	A572-50 (50 ksi)
L2	84.33-45.50	42.46	4.89	18	26.9902	39.1500	0.6250	2.5000	A572-50 (50 ksi)
L3	45.50-0.00	50.39		18	36.4996	50.9295	0.6875	2.7500	A572-50 (50 ksi)

Tapered	Pole	Properties	

Section	Tip Dia.	Area	1	r	С	I/C	J	It/Q	W	w/t
	in	in²	in⁴	in	in	in ³	in⁴	in²	in	
L1	19.3161	29.5160	1289.8952	6.6025	9.7021	132.9503	2581.4878	14.7608	2.4814	4.963
	29.4007	45.2771	4656.0720	10.1282	14.7472	315.7250	9318.2707	22.6429	4.2293	8.459
L2	28.3657	52.3019	4593.2064	9.3596	13.7110	335.0014	9192.4566	26.1559	3.6503	5.84
	39.6575	76.4240	14330.2027	13.6764	19.8882	720.5379	28679.2614	38.2192	5.7904	9.265
L3	38.3785	78.1464	12662.1055	12.7133	18.5418	682.8955	25340.8720	39.0806	5.2139	7.584
	51.6091	109.6343	34963.7360	17.8359	25.8722	1351.4025	69973.4782	54.8276	7.7536	11.278

Tower	Gusset	Gusset	Gusset Grade Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness	\mathcal{A}_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)			A_r		Spacing	Spacing	Spacing
						Diagonals	Horizontals	Redundants
ft	ft²	in				in	in	in
L1 119.00-84.33			1	1	1			
L2 84.33-45.50			1	1	1			
L3 45.50-0.00			1	1	1			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude	Componen	Placement	Total	Number	Start/En		Perimete	Weight
		From	t Turns	£	Number	Per Row	d Danitian	Diamete	r	15
		Torque	Type	ft			Position	r		plf
		Calculation						in	in	

Safety Line 3/8"	С	No	Surface Ar	119.00 -	1	1	0.000	0.3750		0.22
•			(CaAa)	12.50			0.000			
Step Pegs	С	No	Surface Ar	119.00 -	1	1	-0.050	0.7050		1.80
			(CaAa)	12.50			0.050			
*****			,							
EUCAHYBRID 78-	Α	No	Surface Ar	85.00 -	1	1	-0.500	1.1000		0.73
12C6-24MM5(7/8)			(CaAa)	5.00			-0.500			
*****			()							

Feed Line/Linear Appurtenances - Entered As Area

****** LDF4-50A(1/2)	Leg C	No	Torque Calculation	Туре	ft			ft²/ft	plf
	С	No						16 / 16	ριι
LDF4-50A(1/2)	С	Nο							
			No	Inside Pole	119.00 - 3.00	1	No Ice 1/2" Ice	0.00	0.15 0.15
LDF5-50A(7/8)	С	No	No	Inside Pole	119.00 - 3.00	2	1" Ice No Ice 1/2" Ice	0.00 0.00 0.00	0.15 0.33 0.33
LDF7-50A(1-5/8)	С	No	No	Inside Pole	119.00 - 3.00	12	1" Ice No Ice	0.00 0.00 0.00	0.33 0.82
LDF7-30A(1-3/6)	C	INO	NO	Iliside Fole	119.00 - 3.00	12	1/2" Ice 1" Ice	0.00 0.00 0.00	0.82 0.82 0.82

HB158-21U6S24- xxM_TMO(1-5/8)	С	No	No	Inside Pole	108.00 - 0.00	3	No Ice 1/2" Ice 1" Ice	0.00 0.00 0.00	2.50 2.50 2.50
HJ7-50A(1-5/8)	В	No	No	Inside Pole	100.00 - 7.00	12	No Ice 1/2" Ice 1" Ice	0.00 0.00 0.00	1.04 1.04 1.04
HB158-1-08U8- S8J18(1-5/8)	В	No	No	Inside Pole	100.00 - 7.00	1	No Ice 1/2" Ice 1" Ice	0.00 0.00 0.00 0.00	1.30 1.30 1.30

Description	Face	Allow	Exclude	Componen	Placement	Total		$C_A A_A$	Weight
	or	Shield	From	_ t	_	Number			
	Leg		Torque	Type	ft			ft²/ft	plf
			Calculation)					
CU12PSM9P8XXX	Α	No	No	Inside Pole	75.00 - 0.00	1	No Ice	0.00	1.66
(1-3/8)							1/2" Ice	0.00	1.66
, ,							1" Ice	0.00	1.66

Feed Line/Linear Appurtenances Section Areas

Tower Sectio	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft		ft ²	ft ²	ft ²	ft ²	K
L1	119.00-84.33	Α	0.000	0.000	0.074	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.22
		С	0.000	0.000	3.744	0.000	0.62
L2	84.33-45.50	Α	0.000	0.000	4.271	0.000	0.08
		В	0.000	0.000	0.000	0.000	0.54
		С	0.000	0.000	4.194	0.000	0.78
L3	45.50-0.00	Α	0.000	0.000	4.455	0.000	0.11
		В	0.000	0.000	0.000	0.000	0.53
		С	0.000	0.000	3.564	0.000	0.86

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Sectio	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft	Leg	in	ft ²	ft ²	ft ²	ft ²	K
L1	119.00-84.33	Α	0.950	0.000	0.000	0.201	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.22
		С		0.000	0.000	16.923	0.000	0.74
L2	84.33-45.50	Α	0.909	0.000	0.000	11.651	0.000	0.17
		В		0.000	0.000	0.000	0.000	0.54
		С		0.000	0.000	18.954	0.000	0.92
L3	45.50-0.00	Α	0.816	0.000	0.000	11.814	0.000	0.20
		В		0.000	0.000	0.000	0.000	0.53
		С		0.000	0.000	15.557	0.000	0.97

Feed Line Center of Pressure

Section	Elevation	CP _X	CPz	CP _X	CPz
	ff	in	in	Ice in	Ice
11	119.00-84.33	-0.0174	0.8463	-0.0242	
L2	84.33-45.50	-0.7225	1 2242	-1.0312	2.5016
L3	45.50-0.00	-0.6519	0.9573	-0.9569	1.9547

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
L1	2	Safety Line 3/8"	84.33 - 119.00	1.0000	1.0000
L1	3	Step Pegs	84.33 - 119.00	1.0000	1.0000
L1	19	EUCAHYBRID 78-12C6-24MM5(7/8)	84.33 - 85.00	1.0000	1.0000
L2	2	Safety Line 3/8"	45.50 - 84.33	1.0000	1.0000
L2	3	Step Pegs	45.50 - 84.33	1.0000	1.0000
L2	19	EUCAHYBRID 78-12C6-24MM5(7/8)	45.50 - 84.33	1.0000	1.0000
L3	2	Safety Line 3/8"	12.50 - 45.50	1.0000	1.0000
L3	3	Step Pegs	12.50 - 45.50	1.0000	1.0000
L3	19	EUCAHYBRID 78-12C6-24MM5(7/8)	5.00 - 45.50	1.0000	1.0000

Discrete Tower Loads Face Offset Offsets: $C_A A_A$ Weight Description Azimuth Placement $C_A A_A$ Туре Horz Adjustmen Front Side or Leg Lateral t Vert ft² ft² ft Κ ft ft ft ***** (2) 7770.00 w/ Mount Pipe Α From Leg 4.00 0.0000 119.00 No Ice 3.39 2.32 0.06 0.00 1/2" Ice 3.75 2.66 0.10 2.00 1" Ice 4.12 3.02 0.15 0.0000 3.39 0.06 (2) 7770.00 w/ Mount Pipe В From Leg 4 00 119.00 No Ice 2 32 0.00 1/2" Ice 3.75 2.66 0.10 1" Ice 3.02 0.15 2.00 4.12 0.0000 (2) 7770.00 w/ Mount Pipe С From Leg 4.00 119.00 No Ice 3.39 2.32 0.06 0.00 1/2" Ice 3.75 2.66 0.10 2.00 1" Ice 4.12 3.02 0.15 AM-X-CD-17-65-00T-RET 4.00 0.0000 119.00 No Ice 6.09 4.31 0.09 Α From Leg 1/2" Ice w/ Mount Pipe 0.00 6.66 4.86 0.17 2.00 1" Ice 7.24 5.42 0.26 6.09 AM-X-CD-17-65-00T-RET В 0.0000 119.00 0.09 From Leg 4.00 No Ice 4.31 w/ Mount Pipe 0.00 1/2" Ice 6.66 4.86 0.17 1" Ice 7.24 5.42 0.26 2.00 AM-X-CD-17-65-00T-RET 0.0000 6.09 0.09 С From Leg 4.00 119.00 No Ice 4.31 w/ Mount Pipe 0.00 1/2" Ice 6.66 4.86 0.17 2.00 1" Ice 7.24 5.42 0.26 0.0000 0.01 (2) LGP21401 Α 119.00 No Ice 1.10 0.21 From Leg 4.00 1/2" Ice 0.02 0.00 1.24 0.27 1" Ice 0.35 0.03 2.00 1.38 (2) LGP21401 В 0.0000 119.00 0.21 0.01 From Leg 4.00 No Ice 1.10 1/2" Ice 1.24 0.27 0.02 0.00 1" Ice 0.03 2.00 1.38 0.35 (2) LGP21401 С From Leg 4.00 0.0000 119.00 No Ice 1.10 0.01 0.21 1/2" Ice 0.27 0.02 0.00 1.24 1" Ice 2.00 1.38 0.35 0.03 (2) RRUS 11 B12 Α From Leg 4.00 0.0000 119.00 No Ice 2.83 1.18 0.05 1/2" Ice 3.04 0.00 1.33 0.07

2.00 1" Ice 3.26 1.48 0.10 (2) RRUS 11 B12 0.0000 В 119.00 No Ice 2.83 1.18 0.05 From Leg 4.00 0.00 1/2" Ice 3.04 1.33 0.07 1" Ice 0.10 2.00 3.26 1.48 (2) RRUS 11 B12 С From Leg 4.00 0.0000 119.00 No Ice 2.83 1.18 0.05 0.00 1/2" Ice 3.04 1.33 0.07 2.00 1" Ice 3.26 1.48 0.10 (2) LGP21901 0.0000 119.00 0.23 0.16 0.01 Α From Leg 4.00 No Ice 1/2" Ice 0.00 0.29 0.21 0.01 1" Ice 2.00 0.36 0.28 0.01 (2) LGP21901 В 0.0000 119.00 From Leg 4.00 No Ice 0.23 0.16 0.01 0.00 1/2" Ice 0.29 0.21 0.01 1" Ice 2.00 0.36 0.28 0.01 (2) LGP21901 С From Leg 4.00 0.0000 119.00 No Ice 0.23 0.16 0.01 0.00 1/2" Ice 0.29 0.21 0.01 2.00 1" Ice 0.36 0.28 0.01 DC6-48-60-18-8F С 0.0000 119.00 From Leg 4.00 No Ice 0.92 0.92 0.02 0.00 1/2" Ice 1.46 1.46 0.04 2.00 1" Ice 1.64 1.64 0.06 8' x 2" Mount Pipe Α From Leg 4.00 0.0000 119.00 No Ice 1.90 1.90 0.03 1/2" Ice 2.73 0.04 0.00 2.73 1" Ice 0.00 3.40 3.40 0.06 8' x 2" Mount Pipe В 0.0000 119.00 1.90 0.03 From Leg 4.00 No Ice 1.90 1/2" Ice 0.04 0.00 2.73 2.73 1" Ice 3.40 3 40 0.06 0.00 8' x 2" Mount Pipe 0.0000 1.90 1.90 0.03 С From Leg 4.00 119.00 No Ice 0.00 1/2" Ice 2.73 2.73 0.04 0.00 1" Ice 3.40 3.40 0.06 Platform Mount [LP 1202-С 0.0000 None 119.00 No Ice 23.61 23.61 3.40 1/2" Ice 28.39 28.39 4.08 1] 1" Ice 33.20 33.20 4.83

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft		ft		ft²	ft²	K
			ft	٥	п		TL.	п	٨
Diatform Mount II D 204	С	None	ft	0.0000	108.00	No loo	21.41	21.41	1.60
Platform Mount [LP 304- 1_HR-1]	C	None		0.0000	100.00	No Ice 1/2" Ice 1" Ice	21.41 26.62 31.66	21.41 26.62 31.66	2.06 2.60

AIR 6419 B41_TMO_CCIV2 w/	Α	From Leg	4.00 0.00	0.0000	108.00	No Ice 1/2" Ice	5.79 6.24	2.97 3.34	0.10 0.14
Mount Pipe			2.00			1" Ice	6.71	3.73	0.19
AIR 6419	В	From Leg	4.00	0.0000	108.00	No Ice	5.79	2.97	0.10
B41_TMO_CCIV2 w/			0.00 2.00			1/2" Ice 1" Ice	6.24	3.34	0.14
Mount Pipe AIR 6419	С	From Leg	4.00	0.0000	108.00	No Ice	6.71 5.79	3.73 2.97	0.19 0.10
B41 TMO CCIV2 w/	O	1 Tolli Log	0.00	0.0000	100.00	1/2" Ice	6.24	3.34	0.14
Mount Pipe			2.00			1" Ice	6.71	3.73	0.19
APXVAALL24_43-U-	Α	From Leg	4.00	0.0000	108.00	No Ice	14.69	6.87	0.18
NA20_TMO w/ Mount Pipe			0.00			1/2" Ice	15.46	7.55	0.31
ADV(/AALLO4 40.LL	_	F	2.00	0.0000	400.00	1" Ice	16.23	8.25	0.45
APXVAALL24_43-U- NA20 TMO w/ Mount Pipe	В	From Leg	4.00 0.00	0.0000	108.00	No Ice 1/2" Ice	14.69 15.46	6.87 7.55	0.18 0.31
14A20_TWO W/ Would Tipe			2.00			1" Ice	16.23	8.25	0.45
APXVAALL24 43-U-	С	From Leg	4.00	0.0000	108.00	No Ice	14.69	6.87	0.18
NA20_TMO w/ Mount Pipe		Ü	0.00			1/2" Ice	15.46	7.55	0.31
			2.00			1" Ice	16.23	8.25	0.45
RADIO 4449 B71 B85A_T-	Α	From Leg	4.00	0.0000	108.00	No Ice	1.97	1.59	0.07
MOBILE			0.00			1/2" Ice 1" Ice	2.15 2.33	1.75	0.09
RADIO 4449 B71 B85A T-	В	From Leg	2.00 4.00	0.0000	108.00	No Ice	2.33 1.97	1.92 1.59	0.12 0.07
MOBILE	Ь	1 Tolli Leg	0.00	0.0000	100.00	1/2" Ice	2.15	1.75	0.07
			2.00			1" Ice	2.33	1.92	0.12
RADIO 4449 B71 B85A_T-	С	From Leg	4.00	0.0000	108.00	No Ice	1.97	1.59	0.07
MOBILE			0.00			1/2" Ice	2.15	1.75	0.09
DADIO 4400 DO/DOS		F	2.00	0.0000	400.00	1" Ice	2.33	1.92	0.12
RADIO 4460 B2/B25	Α	From Leg	4.00 0.00	0.0000	108.00	No Ice 1/2" Ice	2.14 2.32	1.69 1.85	0.11 0.13
B66_TMO			2.00			1" Ice	2.52	2.02	0.13
RADIO 4460 B2/B25	В	From Leg	4.00	0.0000	108.00	No Ice	2.14	1.69	0.11
B66_TMO		Ü	0.00			1/2" Ice	2.32	1.85	0.13
		_	2.00			1" Ice	2.51	2.02	0.16
RADIO 4460 B2/B25	С	From Leg	4.00	0.0000	108.00	No Ice	2.14	1.69	0.11
B66_TMO			0.00 2.00			1/2" Ice 1" Ice	2.32 2.51	1.85 2.02	0.13 0.16
****			2.00			i ice	2.31	2.02	0.10
(2) LPA-80080/6CF w/	Α	From Leg	4.00	0.0000	100.00	No Ice	3.02	7.80	0.06
Mount Pipe			0.00			1/2" Ice	3.57	8.42	0.12
			0.00			1" Ice	4.14	9.06	0.19
(2) LPA-80080/6CF w/	В	From Leg	4.00	0.0000	100.00	No Ice	3.02	7.80	0.06
Mount Pipe			0.00			1/2" Ice	3.57	8.42	0.12
(2) LPA-80080/6CF w/	С	From Leg	0.00 4.00	0.0000	100.00	1" Ice No Ice	4.14 3.02	9.06 7.80	0.19 0.06
Mount Pipe	C	Fioni Leg	0.00	0.0000	100.00	1/2" Ice	3.57	8.42	0.00
			0.00			1" Ice	4.14	9.06	0.19
RXXDC-3315-PF-48	В	From Leg	4.00	0.0000	100.00	No Ice	3.71	2.19	0.02
			0.00			1/2" Ice	3.95	2.39	0.05
DI-# M II D 000	0	Niema	0.00	0.0000	400.00	1" Ice	4.20	2.61	0.09
Platform Mount [LP 303- 1 KCKR-HR-1]	С	None		0.0000	100.00	No Ice 1/2" Ice	28.31 35.69	28.31 35.69	1.77 2.30
1_I/OVIV-UIV-1]						1" Ice	43.11	43.11	2.30
***						. 150		.0.71	
MT6407-77A w/ Mount	Α	From Leg	4.00	0.0000	100.00	No Ice	5.94	3.10	0.10
Pipe		,	0.00			1/2" Ice	6.47	3.55	0.13
MT0407 == 4	_		0.00			1" Ice	7.02	4.02	0.18
MT6407-77A w/ Mount	В	From Leg	4.00	0.0000	100.00	No Ice	5.94	3.10	0.10
Pipe			0.00 0.00			1/2" Ice 1" Ice	6.47 7.02	3.55 4.02	0.13 0.18
			0.00			1 100	1.02	4.02	0.10
MT6407-77A w/ Mount	С	From Leg	4.00	0.0000	100.00	No Ice	5.94	3.10	0.10

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft	0	ft		ft²	ft²	K
			ft						
(2) JAHH-65B-R3B	Α	From Leg	0.00 4.00 0.00	0.0000	100.00	1" Ice No Ice 1/2" Ice	7.02 5.29 5.75	4.02 3.05 3.48	0.18 0.06 0.12
(2) JAHH-65B-R3B	В	From Leg	0.00 4.00 0.00	0.0000	100.00	1" Ice No Ice 1/2" Ice	6.22 5.29 5.75	3.93 3.05 3.48	0.19 0.06 0.12
(2) JAHH-65B-R3B	С	From Leg	0.00 4.00 0.00	0.0000	100.00	1" Ice No Ice 1/2" Ice	6.22 5.29 5.75	3.93 3.05 3.48	0.19 0.06 0.12
RF4439D-25A	Α	From Leg	0.00 4.00 0.00	0.0000	100.00	1" Ice No Ice 1/2" Ice	6.22 1.87 2.03	3.93 1.25 1.39	0.19 0.07 0.09
(2) RF4439D-25A	В	From Leg	0.00 4.00 0.00	0.0000	100.00	1" Ice No Ice 1/2" Ice	2.21 1.87 2.03	1.54 1.25 1.39	0.11 0.07 0.09
CBC78T-DS-43-2X	Α	From Leg	0.00 4.00 0.00	0.0000	100.00	1" Ice No Ice 1/2" Ice	2.21 0.37 0.45	1.54 0.51 0.60	0.11 0.02 0.03
CBC78T-DS-43-2X	В	From Leg	0.00 4.00 0.00	0.0000	100.00	1" Ice No Ice 1/2" Ice	0.53 0.37 0.45	0.70 0.51 0.60	0.04 0.02 0.03
CBC78T-DS-43-2X	С	From Leg	0.00 4.00 0.00	0.0000	100.00	1" Ice No Ice 1/2" Ice	0.53 0.37 0.45	0.70 0.51 0.60	0.04 0.02 0.03
(2) RF4440D-13A	Α	From Leg	0.00 4.00 0.00	0.0000	100.00	1" Ice No Ice 1/2" Ice	0.53 1.87 2.03	0.70 1.13 1.27	0.04 0.07 0.09
RF4440D-13A	С	From Leg	0.00 4.00 0.00	0.0000	100.00	1" Ice No Ice 1/2" Ice	2.21 1.87 2.03	1.41 1.13 1.27	0.11 0.07 0.09
RXXDC-3315-PF-48	Α	From Leg	0.00 4.00 0.00	0.0000	100.00	1" Ice No Ice 1/2" Ice 1" Ice	2.21 3.71 3.95	1.41 2.19 2.39	0.11 0.02 0.05
(2) 8' x 2" Mount Pipe	Α	From Leg	0.00 4.00 0.00	0.0000	100.00	No Ice 1/2" Ice 1" Ice	4.20 1.90 2.73	2.61 1.90 2.73	0.09 0.03 0.04
(2) 8' x 2" Mount Pipe	В	From Leg	0.00 4.00 0.00 0.00	0.0000	100.00	No Ice 1/2" Ice 1" Ice	3.40 1.90 2.73 3.40	3.40 1.90 2.73 3.40	0.06 0.03 0.04 0.06
(2) 8' x 2" Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	100.00	No Ice 1/2" Ice 1" Ice	1.90 2.73 3.40	1.90 2.73 3.40	0.00 0.03 0.04 0.06
Dual Antenna Mounting Kit	Α	From Leg	4.00 0.00 0.00	0.0000	100.00	No Ice 1/2" Ice 1" Ice	1.32 1.58 1.84	1.32 1.58 1.84	0.07 0.08 0.09
Dual Antenna Mounting Kit	В	From Leg	4.00 0.00 0.00	0.0000	100.00	No Ice 1/2" Ice 1" Ice	1.32 1.58 1.84	1.32 1.58 1.84	0.03 0.07 0.08 0.09
Dual Antenna Mounting Kit	С	From Leg	4.00 0.00 0.00	0.0000	100.00	No Ice 1/2" Ice 1" Ice	1.32 1.58 1.84	1.32 1.58 1.84	0.07 0.08 0.09
****** (2) DEAGE ASA \M/DDU \//	٨	Erom I	4.00	0.0000	05.00	No les	1F 0F	F 60	0.40
(3) BFA8F-A5A W/RRH w/ Mount Pipe	A	From Leg	4.00 0.00 0.00	0.0000	85.00	No Ice 1/2" Ice 1" Ice	15.85 16.62 17.40	5.69 6.28 6.88	0.16 0.27 0.39
(3) BFA8F-A5A W/RRH w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	85.00	No Ice 1/2" Ice 1" Ice	15.85 16.62 17.40	5.69 6.28 6.88	0.16 0.27 0.39
(3) RHCDC-3441-P-48-NA	Α	From Leg	4.00 0.00 0.00	0.0000	85.00	No Ice 1/2" Ice 1" Ice	0.49 0.57 0.67	0.19 0.25 0.33	0.00 0.01 0.01
(3) RHCDC-3441-P-48-NA	В	From Leg	4.00 0.00 0.00	0.0000	85.00	No Ice 1/2" Ice 1" Ice	0.49 0.57 0.67	0.19 0.25 0.33	0.00 0.01 0.01

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	٥	ft		ft²	ft²	К
RHCDC-1390-PF-48	А	From Leg	4.00 0.00 0.00	0.0000	85.00	No Ice 1/2" Ice 1" Ice	3.18 3.41 3.63	1.20 1.35 1.50	0.02 0.04 0.07
Sector Mount [SM 502-1]	Α	From Leg	2.00 0.00 0.00	0.0000	85.00	No Ice 1/2" Ice 1" Ice	15.40 21.17 26.86	11.11 16.35 21.52	0.56 0.76 1.02
Sector Mount [SM 502-1]	В	From Leg	2.00 0.00 0.00	0.0000	85.00	No Ice 1/2" Ice 1" Ice	15.40 21.17 26.86	11.11 16.35 21.52	0.56 0.76 1.02
Pipe Mount [PM 601-3]	С	None	0.00	0.0000	85.00	No Ice 1/2" Ice 1" Ice	3.17 3.79 4.42	3.17 3.79 4.42	0.20 0.23 0.28
*****						1 100	7.72	7.72	0.20
MX08FRO665-21 w/ Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	75.00	No Ice 1/2" Ice 1" Ice	8.01 8.52 9.04	4.23 4.69 5.16	0.11 0.19 0.29
MX08FRO665-21 w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	75.00	No Ice 1/2" Ice 1" Ice	8.01 8.52 9.04	4.23 4.69 5.16	0.11 0.19 0.29
MX08FRO665-21 w/ Mount Pipe	С	From Leg	4.00 0.00	0.0000	75.00	No Ice 1/2" Ice	8.01 8.52	4.23 4.69	0.11 0.19
TA08025-B604	Α	From Leg	0.00 4.00 0.00	0.0000	75.00	1" Ice No Ice 1/2" Ice	9.04 1.96 2.14	5.16 0.98 1.11	0.29 0.06 0.08
TA08025-B604	В	From Leg	0.00 4.00 0.00	0.0000	75.00	1" Ice No Ice 1/2" Ice	2.32 1.96 2.14	1.25 0.98 1.11	0.10 0.06 0.08
TA08025-B604	С	From Leg	0.00 4.00 0.00	0.0000	75.00	1" Ice No Ice 1/2" Ice	2.32 1.96 2.14	1.25 0.98 1.11	0.10 0.06 0.08
TA08025-B605	Α	From Leg	0.00 4.00 0.00	0.0000	75.00	1" Ice No Ice 1/2" Ice	2.32 1.96 2.14	1.25 1.13 1.27	0.10 0.08 0.09
TA08025-B605	В	From Leg	0.00 4.00 0.00	0.0000	75.00	1" Ice No Ice 1/2" Ice	2.32 1.96 2.14	1.41 1.13 1.27	0.11 0.08 0.09
TA08025-B605	С	From Leg	0.00 4.00 0.00	0.0000	75.00	1" Ice No Ice 1/2" Ice	2.32 1.96 2.14	1.41 1.13 1.27	0.11 0.08 0.09
RDIDC-9181-PF-48	Α	From Leg	0.00 4.00 0.00	0.0000	75.00	1" Ice No Ice 1/2" Ice	2.32 2.01 2.19	1.41 1.17 1.31	0.11 0.02 0.04
(2) 8' x 2" Mount Pipe	Α	From Leg	0.00 4.00 0.00	0.0000	75.00	1" Ice No Ice 1/2" Ice	2.37 1.90 2.73	1.46 1.90 2.73	0.06 0.03 0.04
(2) 8' x 2" Mount Pipe	В	From Leg	0.00 4.00 0.00	0.0000	75.00	1" Ice No Ice 1/2" Ice	3.40 1.90 2.73	3.40 1.90 2.73	0.06 0.03 0.04
(2) 8' x 2" Mount Pipe	С	From Leg	0.00 4.00 0.00	0.0000	75.00	1" Ice No Ice 1/2" Ice	3.40 1.90 2.73	3.40 1.90 2.73	0.06 0.03 0.04
Commscope MC-PK8-DSH	С	None	0.00	0.0000	75.00	1" Ice No Ice 1/2" Ice	3.40 34.24 62.95	3.40 34.24 62.95	0.06 1.75 2.10
*****						1" Ice	91.66	91.66	2.45

Load Combinations

Comb.	Description
No.	Decid Octo
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6 7	1.2 Dead+1.0 Wind 60 deg - No Ice
8	0.9 Dead+1.0 Wind 60 deg - No Ice
9	1.2 Dead+1.0 Wind 90 deg - No Ice
9 10	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
12	0.9 Dead+1.0 Wind 120 deg - No Ice 1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 lce+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43 44	Dead+Wind 150 deg - Service
44 45	Dead+Wind 150 deg - Service Dead+Wind 180 deg - Service
45 46	Dead+Wind 180 deg - Service Dead+Wind 210 deg - Service
40 47	Dead+Wind 240 deg - Service Dead+Wind 240 deg - Service
47 48	Dead+Wind 270 deg - Service Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service Dead+Wind 330 deg - Service
	Bodd Frind Coo dog Convice

Maximum Member Forces

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L1	119 - 84.33	Pole	Max Tension	1	0.00	0.00	0.00
	110 01.00	1 010	Max. Compression	26	-28.64	-0.88	0.93
			Max. Mx	8	-18.60	-250.18	0.09
			Max. My	2	-18.59	0.07	251.32
			Max. Vy	8	12.41	-250.18	0.09
			Max. Vx	2	-12.48	0.07	251.32
			Max. Torque	24			- 4.15
L2	84.33 - 45.5	Pole	Max Tension	1	0.00	0.00	0.00

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	K	kip-ft	kip-ft
			Max. Compression	26	-52.18	-9.75	6.62
			Max. Mx	8	-36.48	-932.20	-16.40
			Max. My	2	-36.46	14.84	957.80
			Max. Vy	8	20.36	-932.20	-16.40
			Max. Vx	2	-21.12	14.84	957.80
			Max. Torque	25			-4.87
L3	45.5 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-77.72	-9.58	6.41
			Max. Mx	8	-59.62	-2039.87	-44.04
			Max. My	2	-59.62	42.41	2103.17
			Max. Vy	8	23.63	-2039.87	-44.04
			Max. Vx	2	-24.37	42.41	2103.17
			Max. Torque	25			-4.86

Maximum	Reactions
IVIAXIIIIUIII	Reactions

Location	Condition	Gov. Load	Vertical K	Horizontal, X K	Horizontal, Z K
		Comb.			
Pole	Max. Vert	26	77.72	-0.00	0.00
	Max. H _x	20	59.63	23.61	0.54
	Max. H _z	2	59.63	0.54	24.35
	Max. M _x	2	2103.17	0.54	24.35
	$Max. M_z$	8	2039.87	-23.61	-0.54
	Max. Torsion	13	4.86	-12.27	-21.36
	Min. Vert	19	44.72	20.18	-11.71
	Min. H _x	8	59.63	-23.61	-0.54
	Min. H _z	14	59.63	-0.54	-24.35
	Min. M _x	14	-2096.57	-0.54	-24.35
	Min. M _z	20	-2029.99	23.61	0.54
	Min. Torsion	25	-4.86	12.27	21.36

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	49.69	0.00	0.00	-2.68	-4.01	0.00
1.2 Dead+1.0 Wind 0 deg - No Ice	59.63	-0.54	-24.35	-2103.17	42.41	3.98
0.9 Dead+1.0 Wind 0 deg - No Ice	44.72	-0.54	-24.35	-2088.27	43.39	3.98
1.2 Dead+1.0 Wind 30 deg - No Ice	59.63	11.34	-20.82	-1798.18	-981.40	2.03
0.9 Dead+1.0 Wind 30 deg - No Ice	44.72	11.34	-20.82	-1785.31	-973.55	2.03
1.2 Dead+1.0 Wind 60 deg - No Ice	59.63	20.18	-11.71	-1012.25	-1743.58	-0.46
0.9 Dead+1.0 Wind 60 deg - No Ice	44.72	20.18	-11.71	-1004.62	-1730.63	-0.46
1.2 Dead+1.0 Wind 90 deg - No Ice	59.63	23.61	0.54	44.04	-2039.87	-2.83
0.9 Dead+1.0 Wind 90 deg - No Ice	44.72	23.61	0.54	44.61	-2024.95	-2.83
1.2 Dead+1.0 Wind 120 deg - No Ice	59.63	20.72	12.64	1087.64	-1790.89	-4.44
0.9 Dead+1.0 Wind 120 deg - No Ice	44.72	20.72	12.64	1081.22	-1777.65	-4.44
1.2 Dead+1.0 Wind 150 deg - No Ice	59.63	12.27	21.36	1838.91	-1063.38	-4.86
0.9 Dead+1.0 Wind 150 deg - No Ice	44.72	12.27	21.36	1827.45	-1055.03	-4.86
1.2 Dead+1.0 Wind 180 deg - No Ice	59.63	0.54	24.35	2096.57	-52.27	-3.98
0.9 Dead+1.0 Wind 180 deg - No Ice	44.72	0.54	24.35	2083.38	-50.70	-3.98
1.2 Dead+1.0 Wind 210 deg - No Ice	59.63	-11.34	20.82	1791.59	971.53	-2.03
0.9 Dead+1.0 Wind 210 deg - No Ice	44.72	-11.34	20.82	1780.42	966.24	-2.03
1.2 Dead+1.0 Wind 240 deg - No Ice	59.63	-20.18	11.71	1005.65	1733.70	0.46
0.9 Dead+1.0 Wind 240 deg - No Ice	44.72	-20.18	11.71	999.74	1723.31	0.46
1.2 Dead+1.0 Wind 270 deg - No Ice	59.63	-23.61	-0.54	-50.63	2029.99	2.83
0.9 Dead+1.0 Wind 270 deg - No Ice	44.72	-23.61	-0.54	-49.49	2017.63	2.83
1.2 Dead+1.0 Wind 300 deg - No Ice	59.63	-20.72	-12.64	-1094.23	1781.02	4.44
0.9 Dead+1.0 Wind 300 deg - No Ice	44.72	-20.72	-12.64	-1086.10	1770.34	4.44
1.2 Dead+1.0 Wind 330 deg - No Ice	59.63	-12.27	-21.36	-1845.50	1053.52	4.86

Load	Vertical	Shear _x	Shearz	Overturning	Overturning	Torque
Combination				Moment, M_x	Moment, M _z	
	K	K	K	kip-ft	kip-ft	kip-ft
0.9 Dead+1.0 Wind 330 deg - No Ice	44.72	-12.27	-21.36	-1832.33	1047.72	4.86
1.2 Dead+1.0 Ice+1.0 Temp	77.72	0.00	-0.00	-6.41	-9.58	0.00
1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	77.72	-0.09	-5.88	-501.18	-1.56	0.86
1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	77.72	2.80	-5.04	-430.84	-244.42	0.45
1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	77.72	4.93	-2.86	-246.80	-424.38	-0.09
1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	77.72	5.75	0.09	1.64	-493.22	-0.61
1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	77.72	5.03	3.02	247.90	-432.49	-0.96
1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	77.72	2.95	5.13	426.00	-258.48	-1.05
1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	77.72	0.09	5.88	488.22	-17.79	-0.86
1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	77.72	-2.80	5.04	417.89	225.07	-0.45
1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	77.72	-4.93	2.86	233.85	405.03	0.09
1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	77.72	- 5.75	-0.09	-14.59	473.87	0.61
1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	77.72	-5.03	-3.02	-260.85	413.14	0.96
1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	77.72	-2.95	-5.13	-438.95	239.12	1.05
Dead+Wind 0 deg - Service	49.69	-0.12	-5.28	-456.60	6.15	0.86
Dead+Wind 30 deg - Service	49.69	2.46	-4.52	-390.68	-215.14	0.44
Dead+Wind 60 deg - Service	49.69	4.38	-2.54	-220.80	-379.88	-0.10
Dead+Wind 90 deg - Service	49.69	5.12	0.12	7.50	-443.92	-0.61
Dead+Wind 120 deg - Service	49.69	4.50	2.74	233.07	-390.11	-0.96
Dead+Wind 150 deg - Service	49.69	2.66	4.64	395.45	-232.86	-1.05
Dead+Wind 180 deg - Service	49.69	0.12	5.28	451.14	-14.32	-0.86
Dead+Wind 210 deg - Service	49.69	-2.46	4.52	385.22	206.97	-0.44
Dead+Wind 240 deg - Service	49.69	-4.38	2.54	215.35	371.71	0.10
Dead+Wind 270 deg - Service	49.69	-5.12	-0.12	-12.96	435.75	0.61
Dead+Wind 300 deg - Service	49.69	-4.50	-2.74	-238.52	381.94	0.96
Dead+Wind 330 deg - Service	49.69	-2.66	-4.64	-400.91	224.69	1.05

Solution Summary

	Sum of Applied Forces				ns		
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-49.69	0.00	0.00	49.69	0.00	0.000%
2	-0.54	-59.63	-24.35	0.54	59.63	24.35	0.000%
3	-0.54	-44.72	-24.35	0.54	44.72	24.35	0.000%
4	11.34	-59.63	-20.82	-11.34	59.63	20.82	0.000%
5	11.34	-44.72	-20.82	-11.34	44.72	20.82	0.000%
6	20.18	-59.63	-11.71	-20.18	59.63	11.71	0.000%
7	20.18	-44.72	-11.71	-20.18	44.72	11.71	0.000%
8	23.61	-59.63	0.54	-23.61	59.63	-0.54	0.000%
9	23.61	-44.72	0.54	-23.61	44.72	-0.54	0.000%
10	20.72	-59.63	12.64	-20.72	59.63	-12.64	0.000%
11	20.72	-44.72	12.64	-20.72	44.72	-12.64	0.000%
12	12.27	-59.63	21.36	-12.27	59.63	-21.36	0.000%
13	12.27	-44.72	21.36	-12.27	44.72	-21.36	0.000%
14	0.54	-59.63	24.35	-0.54	59.63	-24.35	0.000%
15	0.54	-44.72	24.35	-0.54	44.72	-24.35	0.000%
16	-11.34	-59.63	20.82	11.34	59.63	-20.82	0.000%
17	-11.34	-44.72	20.82	11.34	44.72	-20.82	0.000%
18	-20.18	-59.63	11.71	20.18	59.63	-11.71	0.000%
19	-20.18	-44.72	11.71	20.18	44.72	-11.71	0.000%
20	-23.61	-59.63	-0.54	23.61	59.63	0.54	0.000%
21	-23.61	-44.72	-0.54	23.61	44.72	0.54	0.000%
22	-20.72	-59.63	-12.64	20.72	59.63	12.64	0.000%
23	-20.72	-44.72	-12.64	20.72	44.72	12.64	0.000%
24	-12.27	-59.63	-21.36	12.27	59.63	21.36	0.000%
25	-12.27	-44.72	-21.36	12.27	44.72	21.36	0.000%
26	0.00	-77.72	0.00	-0.00	77.72	0.00	0.000%
27	-0.09	-77.72	-5.88	0.09	77.72	5.88	0.000%
28	2.80	-77.72	-5.04	-2.80	77.72	5.04	0.000%
29	4.93	-77.72	-2.86	-4.93	77.72	2.86	0.000%
30	5.75	-77.72	0.09	- 5.75	77.72	-0.09	0.000%
31	5.03	-77.72	3.02	-5.03	77.72	-3.02	0.000%
32	2.95	-77.72	5.13	-2.95	77.72	-5.13	0.000%
33	0.09	-77.72	5.88	-0.09	77.72	-5.88	0.000%
34	-2.80	-77.72	5.04	2.80	77.72	-5.04	0.000%

	Sur	n of Applied Force	es				
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
35	-4.93	-77.72	2.86	4.93	77.72	-2.86	0.000%
36	- 5.75	-77.72	-0.09	5.75	77.72	0.09	0.000%
37	-5.03	-77.72	-3.02	5.03	77.72	3.02	0.000%
38	-2.95	-77.72	-5.13	2.95	77.72	5.13	0.000%
39	-0.12	-49.69	-5.28	0.12	49.69	5.28	0.000%
40	2.46	-49.69	-4.52	-2.46	49.69	4.52	0.000%
41	4.38	-49.69	-2.54	-4.38	49.69	2.54	0.000%
42	5.12	-49.69	0.12	-5.12	49.69	-0.12	0.000%
43	4.50	-49.69	2.74	-4.50	49.69	-2.74	0.000%
44	2.66	-49.69	4.64	-2.66	49.69	-4.64	0.000%
45	0.12	-49.69	5.28	-0.12	49.69	-5.28	0.000%
46	-2.46	-49.69	4.52	2.46	49.69	-4.52	0.000%
47	-4.38	-49.69	2.54	4.38	49.69	-2.54	0.000%
48	-5.12	-49.69	-0.12	5.12	49.69	0.12	0.000%
49	-4.50	-49.69	-2.74	4.50	49.69	2.74	0.000%
50	-2.66	-49.69	-4.64	2.66	49.69	4.64	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.0000001	0.00000001
2	Yes	4	0.0000001	0.00028868
3	Yes	4	0.0000001	0.00020042
4	Yes	4	0.0000001	0.00078316
5	Yes	4	0.0000001	0.00053476
6	Yes	4	0.0000001	0.00070232
7	Yes	4	0.0000001	0.00047840
8	Yes	4	0.0000001	0.00019285
9	Yes	4	0.0000001	0.00013420
10	Yes	4	0.0000001	0.00067025
11	Yes	4	0.0000001	0.00045599
12	Yes	5	0.0000001	0.00003509
13	Yes	4	0.0000001	0.00069316
14	Yes	4	0.0000001	0.00035821
15	Yes	4	0.0000001	0.00024858
16	Yes	4	0.0000001	0.00059640
17	Yes	4	0.0000001	0.00040771
18	Yes	4	0.0000001	0.00064327
19	Yes	4	0.0000001	0.00044129
20	Yes	4	0.0000001	0.00025892
21	Yes	4	0.0000001	0.00018027
22	Yes	4	0.0000001	0.00096257
23	Yes	4	0.0000001	0.00066191
24	Yes	4	0.00000001	0.00065596
25	Yes	4	0.00000001	0.00044644
26	Yes	4	0.00000001	0.00001867
27	Yes	4	0.0000001	0.00036301
28	Yes	4	0.00000001	0.00037474
29	Yes	4	0.00000001	0.00037209
30	Yes	4	0.00000001	0.00035960
31	Yes	4	0.00000001	0.00037117
32	Yes	4	0.00000001	0.00036945
33	Yes	4	0.00000001	0.00034469
34	Yes	4	0.00000001	0.00034403
35	Yes	4	0.0000001	0.00034003
36	Yes	4	0.0000001	0.00033493
37	Yes	4	0.0000001	0.00035222
38	Yes	4	0.0000001	0.00033893
39	Yes	4	0.0000001	0.00030820
39 40	Yes Yes	4	0.00000001	0.00001481
41	Yes	4	0.00000001	0.00001095
42	Yes	4	0.00000001	0.00001073
43	Yes	4	0.00000001	0.00001582
44	Yes	4	0.00000001	0.00002309
45	Yes	4	0.0000001	0.00001511

46	Yes	4	0.0000001	0.00000948
47	Yes	4	0.0000001	0.00000894
48	Yes	4	0.0000001	0.00001094
49	Yes	4	0.0000001	0.00002109
50	Yes	4	0.0000001	0.00001676

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	•	•
L1	119 - 84.33	5.921	50	0.4203	0.0025
L2	87.96 - 45.5	3.337	50	0.3577	0.0025
L3	50.39 - 0	1.082	50	0.2028	0.0009

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	•	0	ft
119.00	(2) 7770.00 w/ Mount Pipe	50	5.921	0.4203	0.0025	104499
108.00	Platform Mount [LP 304-1_HR-1]	50	4.970	0.4031	0.0026	47500
100.00	(2) LPA-80080/6CF w/ Mount Pipe	50	4.296	0.3882	0.0026	27500
85.00	(3) BFA8F-A5A W/RRH w/ Mount Pipe	50	3.115	0.3483	0.0024	16090
75.00	MX08FRO665-21 w/ Mount Pipe	50	2.414	0.3110	0.0020	13872

Maximum Tower Deflections - Design Wind

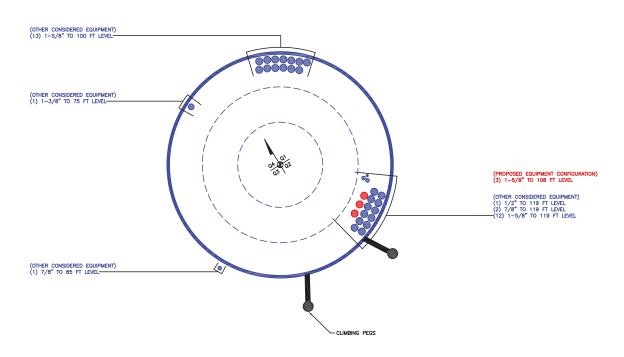
Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	٥	۰
L1	119 - 84.33	27.382	24	1.9398	0.0116
L2	87.96 - 45.5	15.436	24	1.6507	0.0116
L3	50.39 - 0	5.004	24	0.9385	0.0040

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	٥	۰	ft
119.00	(2) 7770.00 w/ Mount Pipe	24	27.382	1.9398	0.0116	23157
108.00	Platform Mount [LP 304-1_HR-1]	24	22.989	1.8598	0.0121	10526
100.00	(2) LPA-80080/6CF w/ Mount Pipe	24	19.872	1.7905	0.0123	6093
85.00	(3) BFA8F-A5A W/RRH w/ Mount Pipe	24	14.409	1.6074	0.0113	3547
75.00	MX08FRO665-21 w/ Mount Pipe	24	11.169	1.4370	0.0095	3030

Compression Checks

	Pole Design Data								
Section No.	Elevation	Size	L	Lu	KI/r	Α	Pu	φPn	Ratio P _u
	ft		ft	ft		in²	K	K	ϕP_n
L1	119 - 84.33 (1)	TP29.03x19.0986x0.5	34.67	0.00	0.0	43.6269	-18.59	1963.21	0.009
L2	84.33 - 45.5 (2)	TP39.15x26.9902x0.625	42.46	0.00	0.0	73.6459	-36.45	3314.07	0.011
L3	45.5 - 0 (3)	TP50.9295x36.4996x0.6875	50.39	0.00	0.0	109.6340	-59.62	4933.54	0.012


	Pole Bending Design Data								
Section	Elevation	Size	M _{ux}	φ M _{nx}	Ratio	M _{uy}	φ <i>M</i> _{ny}	Ratio	
No.	4		kip-ft	lein ff	$\frac{M_{ux}}{\phi M_{nx}}$	kip-ft	kin #	$\frac{M_{uy}}{\phi M_{ny}}$	
	119 - 84.33 (1)	TP29.03x19.0986x0.5	251.32	kip-ft 1395.13	φ <i>M_{nx}</i> 0.180	0.00	kip-ft 1395.13	0.000	
L2	84.33 - 45.5 (2)	TP39.15x26.9902x0.625	965.23	3184.70	0.303	0.00	3184.70	0.000	
L3	45.5 - 0 (3)	TP50.9295x36.4996x0.6875	2125.03	6436.05	0.330	0.00	6436.05	0.000	

	Pole Shear Design Data								
Section No.	Elevation	Size	Actual V _u	φV _n	Ratio V _u	Actual T _u	φ <i>T</i> _n	Ratio T _u	
	ft		K	K	ϕV_n	kip-ft	kip-ft	ϕT_n	
L1	119 - 84.33 (1)	TP29.03x19.0986x0.5	12.48	588.96	0.021	0.32	1417.90	0.000	
L2	84.33 - 45.5 (2)	TP39.15x26.9902x0.625	21.41	994.22	0.022	4.86	3232.39	0.002	
L3	45.5 - 0 (3)	TP50.9295x36.4996x0.6875	24.65	1480.06	0.017	4.86	6512.19	0.001	

	Pole Interaction Design Data								
Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	φ <i>P</i> _n	φ <i>M</i> _{nx}	φ <i>M</i> _{ny}	ϕV_n	$\overline{\phi T_n}$	Ratio	Ratio	
L1	119 - 84.33 (1)	0.009	0.180	0.000	0.021	0.000	0.190	1.050	4.8.2
L2	84.33 - 45.5 (2)	0.011	0.303	0.000	0.022	0.002	0.315	1.050	4.8.2
L3	45.5 - 0 (3)	0.012	0.330	0.000	0.017	0.001	0.343	1.050	4.8.2

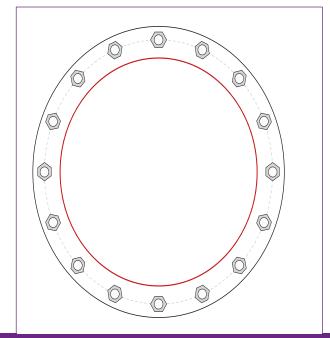
Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L1	119 - 84.33	Pole	TP29.03x19.0986x0.5	1	-18.59	2061.37	18.1	Pass
L2	84.33 - 45.5	Pole	TP39.15x26.9902x0.625	2	-36.45	3479.77	30.0	Pass
L3	45.5 - 0	Pole	TP50.9295x36.4996x0.6875	3	-59.62	5180.22	32.6	Pass
							Summary	
						Pole (L3)	32.6	Pass
						RATING =	32.6	Pass

APPENDIX B BASE LEVEL DRAWING

BUSINESS UNIT: 857013 TOWER ID: C_BASELEVEL

APPENDIX C ADDITIONAL CALCULATIONS

Monopole Base Plate Connection



Site Info	
BU#	857013
Site Name	Killingly Ross Road
Order#	655747 Rev. 0

Analysis Considerations		
TIA-222 Revision	Н	
Grout Considered:	No	
I _{ar} (in)	1	

Applied Loads			
Moment (kip-ft)	2125.03		
Axial Force (kips)	59.62		
Shear Force (kips)	24.65		

^{*}TIA-222-H Section 15.5 Applied

Connection Properties

Anchor Rod Data	
(16) 2-1/4" ø bolts (A615-75 N: Fv=75 ksi, Fu=100 ksi) on 59" BC	

Base Plate Data

65" OD x 2" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Stiffener Data

N/A

Pole Data

50.9295" x 0.6875" 18-sided pole (A572-50; Fy=50 ksi, Fu=65 ksi)

Analysis Results

Anchor Rod Summary		(units of kips, kip-in)
Pu_t = 104.26	φPn_t = 243.75	Stress Rating
Vu = 1.54	φVn = 149.1	40.7%
Mu = n/a	φMn = n/a	Pass
Base Plate Summary		
Max Stress (ksi):	27.57	(Flexural)
Allowable Stress (ksi):	45	
Stress Rating:	58.3%	Pass

CCIplate - Version 4.1.2 Analysis Date: 09/15/2023

Pier and Pad Foundation

BU #: 857013
Site Name: Killingly Ross Road
App. Number: 655747 Rev. 0

TIA-222 Revision: H
Tower Type: Monopole

Top & Bot. Pad Rein. Different?:	
Block Foundation?:	
Rectangular Pad?:	

Superstructure Analysis Reactions			
Compression, P _{comp} :	59.63	kips	
Base Shear, Vu_comp:	24.63	kips	
Moment, M _u :	2125.04	ft-kips	
Tower Height, H:	119	ft	
BP Dist. Above Fdn, bp _{dist} :	3.25	in	

Pier Properties		
Pier Shape:	Square	
Pier Diameter, dpier :	7	ft
Ext. Above Grade, E :	0.5	ft
Pier Rebar Size, Sc :	10	
Pier Rebar Quantity, mc :	39	
Pier Tie/Spiral Size, St :	3	
Pier Tie/Spiral Quantity, mt :	4	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc _{pier} :	3	in

Pad Proportion		
Pad Properties		
Depth, D :	7	ft
Pad Width, W ₁ :	25	ft
Pad Thickness, T :	3	ft
Pad Rebar Size (Bottom dir. 2), Sp ₂ :	8	
Pad Rebar Quantity (Bottom dir. 2), mp ₂ :	25	
Pad Clear Cover, cc _{pad} :	3	in

Material Properties			
Rebar Grade, Fy : 60 ksi			
Concrete Compressive Strength, F'c:	3	ksi	
Dry Concrete Density, δ c :	150	pcf	

Soil Properties			
Total Soil Unit Weight, γ :	125	pcf	
Ultimate Gross Bearing, Qult:	15.000	ksf	
Cohesion, Cu :	0.000	ksf	
Friction Angle, $oldsymbol{arphi}$:	38	degrees	
SPT Blow Count, N _{blows} :	44		
Base Friction, μ :	0.45		
Neglected Depth, N:	4.17	ft	
Foundation Bearing on Rock?	No		
Groundwater Depth, gw :	N/A	ft	

Seismic Design Category:	В
--------------------------	---

Foundation Analysis Checks				
	Capacity	Demand	Rating*	Check
Lateral (Sliding) (kips)	353.77	24.63	6.6%	Pass
Bearing Pressure (ksf)	11.25	1.87	15.9%	Pass
Overturning (kip*ft)	7405.19	2316.44	31.3%	Pass
Pier Flexure (Comp.) (kip*ft)	7576.21	2235.88	28.1%	Pass
Pier Compression (kip)	23390.64	99.32	0.4%	Pass
Pad Flexure (kip*ft)	2730.73	797.75	27.8%	Pass
Pad Shear - 1-way (kips)	776.40	123.45	15.1%	Pass
Pad Shear - 2-way (Comp) (ksi)	0.164	0.025	14.5%	Pass
Flexural 2-way (Comp) (kip*ft)	3437.16	1341.53	37.2%	Pass

*Rating per TIA-222-H Section 15.5

Structural Rating*:	37.2%
Soil Rating*:	31.3%

<--Toggle between Gross and Net

ASCE 7 Hazards Report

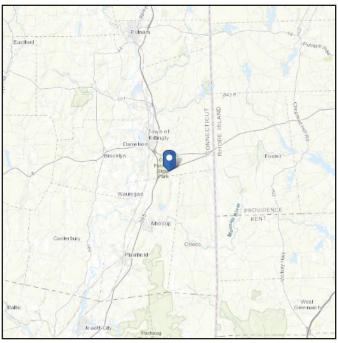
Address:

No Address at This Location

Standard: ASCE/SEI 7-16 Latitude:

Risk Category: **□**

Soil Class: D - Default (see Section 11.4.3)


Longitude: -71.855664

Elevation: 456.758999360382 ft (NAVD

41.771553

88)

125 mph Ultimate Wind Speed per Windham County Exception.

Wind

Results:

Wind Speed 123 Vmph

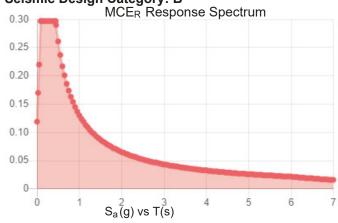
10-year MRI75 Vmph25-year MRI85 Vmph50-year MRI95 Vmph

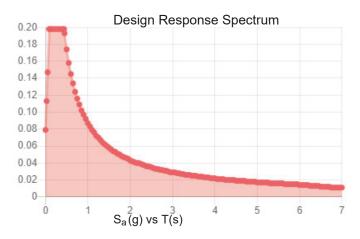
100-year MRI 100 Vmph

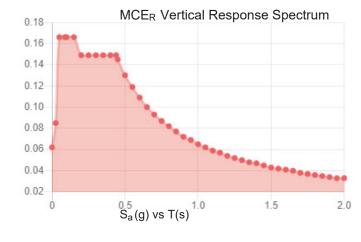
Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2

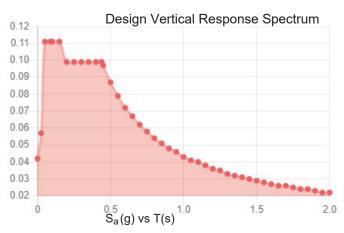
Date Accessed: Fri Sep 15 2023

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.


Site Soil Class:


Results:


S _S :	0.186	S _{D1} :	0.087
S ₁ :	0.054	T_L :	6
Fa:	1.6	PGA :	0.101
F _v :	2.4	PGA _M :	0.161
S _{MS} :	0.297	F _{PGA} :	1.599
S _{M1} :	0.13	l _e :	1
S _{DS} :	0.198	C _v :	0.7

Seismic Design Category: B

Data Accessed: Fri Sep 15 2023

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness: 1.00 in.
Concurrent Temperature: 15 F
Gust Speed 50 mph

Data Source: Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed: Fri Sep 15 2023

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Date: September 12, 2023

INFINIGY8

Infinigy 500 West Office Center Drive, Suite 150 Fort Washington, PA 19034 (518) 690-0790 structural@infinigy.com

Subject: Mount Analysis Report

Carrier Designation: T-Mobile Anchor

Carrier Site Number: CTNL140B

Carrier Site Name: NL140/Cingular Ross Rd MP

Crown Castle Designation: Crown Castle BU Number: 857013

Crown Castle Site Name: KILLINGLY ROSS ROAD

Crown Castle JDE Job Number: 752564 **Crown Castle Order Number:** 655747 Rev. 0

Engineering Firm Designation: Infinigy Report Designation: 1039-Z0001-B

Site Data: 280 Ross Road, Killingly, Windham County, CT, 06239

Latitude 41°46'17.59" Longitude -71°51'20.39"

Structure Information: Tower Height & Type: 119.0 ft Monopole

Mount Elevation: 108.0 ft
Mount Type: 14.4 ft Platform

Infinigy is pleased to submit this "Mount Analysis Report" to determine the structural integrity of T-Mobile's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform Sufficient

This analysis utilizes an ultimate 3-second gust wind speed of 123 mph as required by the 2022 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Christopher H. Lee, P.E., M.S.

Respectfully Submitted by: Emmanuel Poulin, P.E.

structural@infinigy.com

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

1) INTRODUCTION

This is an existing 3 sector 14.4 ft Platform.

2) ANALYSIS CRITERIA

Building Code: 2021 IBC / 2022 Connecticut State Building Code

TIA-222 Revision: TIA-222-H

Risk Category:

Ultimate Wind Speed: 123 mph

Exposure Category: Topographic Factor at Base: 1.0 **Topographic Factor at Mount:** 1.0 Ice Thickness: 1.0 in Wind Speed with Ice: 50 mph Seismic Ss: 0.186 Seismic S₁: 0.054 Live Loading Wind Speed: 30 mph Man Live Load at Mid/End-Points: 250 lb Man Live Load at Mount Pipes: 500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
	-	3 3	Ericsson	AIR 6419 B41_TMO_CCIV2	
			3	RFS/Celwave	APXVAALL24_43-U-NA20_TMO
108.0	110.0	3	Ericsson	RADIO 4449 B71 B85A_ T-MOBILE	Platform
		3	Ericsson	RADIO 4460 B2/B25 B66 TMO	

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document		Remarks	Reference	Source	
	Crown Application	T-Mobile Application	655747 Rev. 0	CCI Sites	
	Loading Document	T-Mobile	RFDS Version: 4	TSA	
	Previous Mount Analysis	Infinigy	9494793	CCI Sites	

3.1) Analysis Method

RISA-3D (Version 21.0.1), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

Infinigy Mount Analysis Tool V2.3.4, a tool internally developed by Infinigy, was used to calculate wind loading on all appurtenances, dishes and mount members for various loading cases. Selected output from the analysis is included in Appendix B "Software Input Calculations".

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Mount Analysis* (Revision E).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate

HSS (Rectangular)

Pipe

ASTM A36 (GR 36)

ASTM A500 (GR B-46)

ASTM A53 (GR 35)

Connection Bolts

ASTM A325

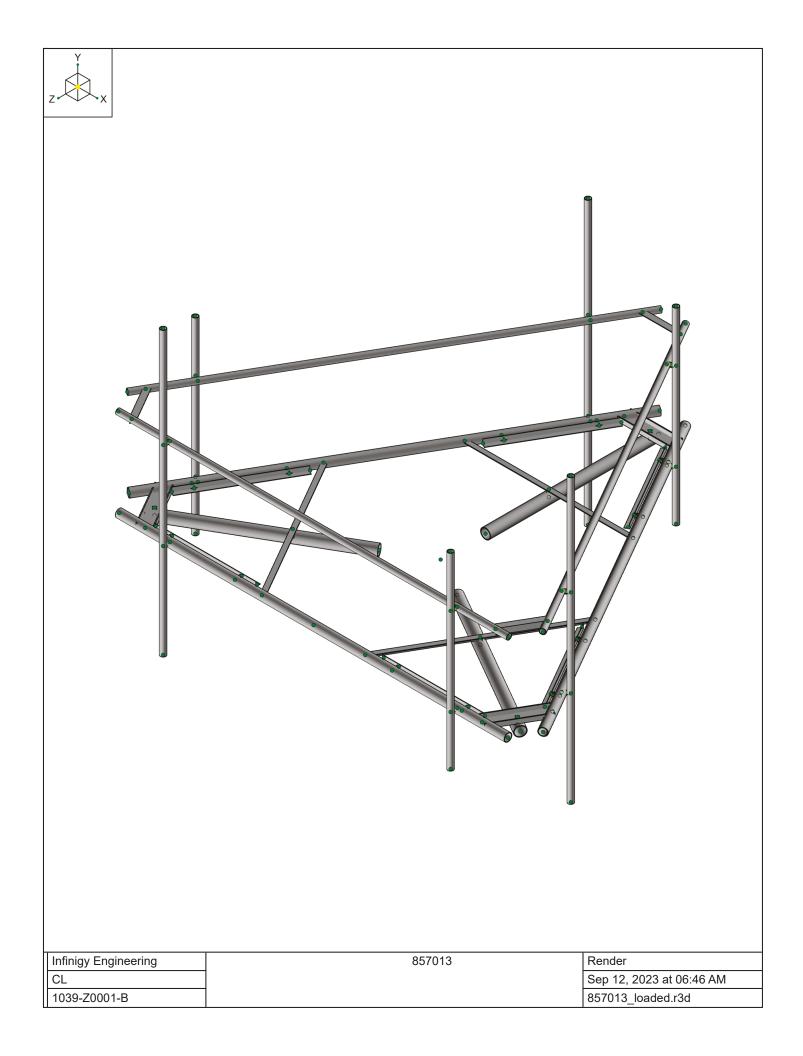
This analysis may be affected if any assumptions are not valid or have been made in error. Infinigy should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

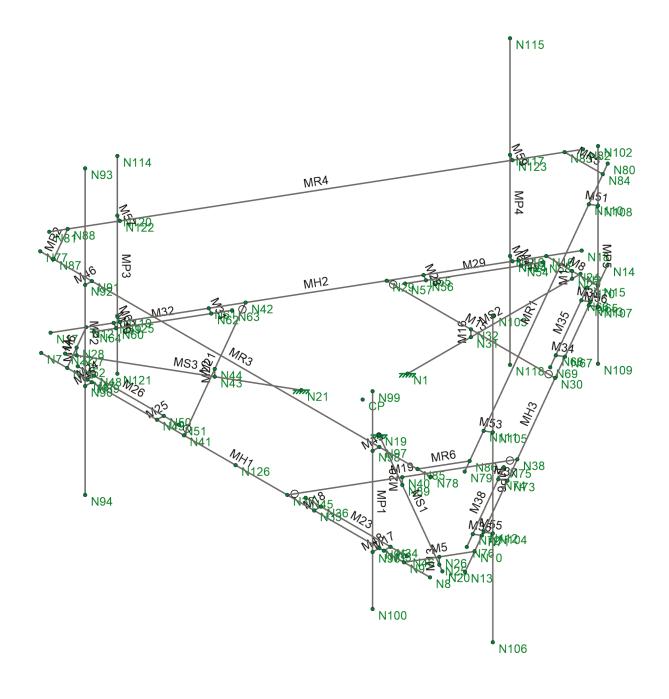
Table 3 - Mount Component Stresses vs. Capacity (Platform, All Sectors)

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
	Mount Pipe(s)	MP3		54.6	Pass
	Horizontal(s)	MH2		16.9	Pass
1 2	Standoff(s)	MS2	100.0	75.7	Pass
1, 2	Handrail(s)	MR2	108.0	49.8	Pass
	Support Angle(s)	M19		93.2	Pass
	Mount Connection(s)	-		28.4	Pass

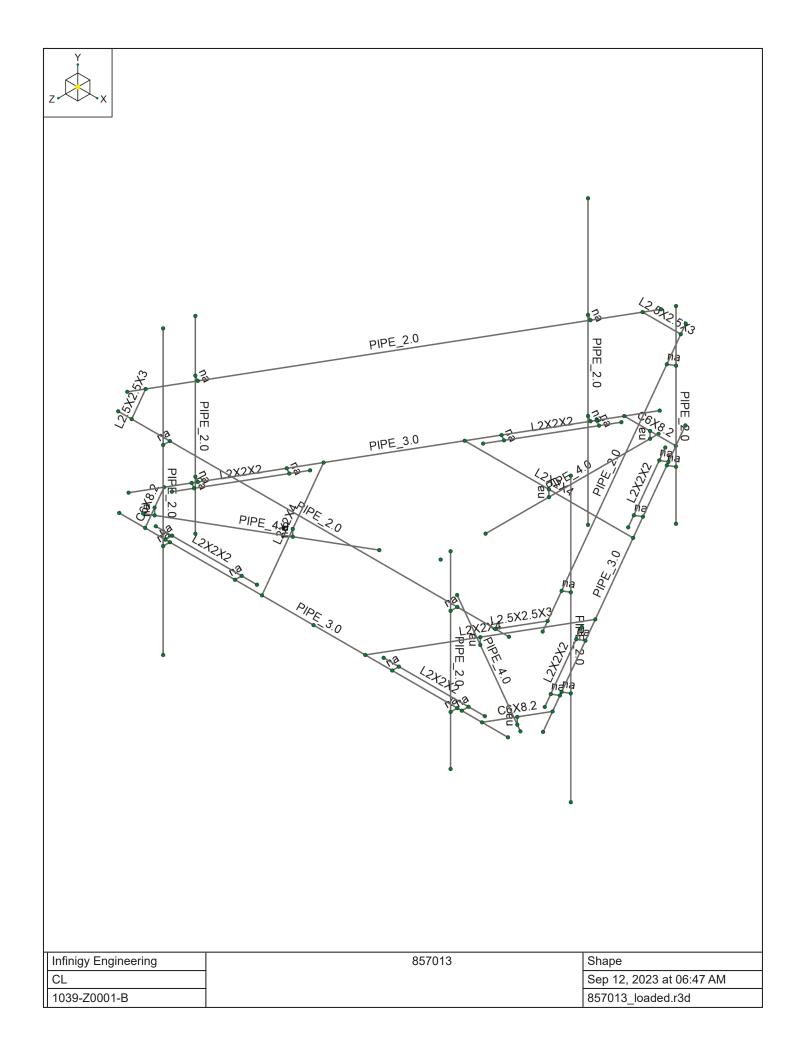
Structure Rating (max from all components) =	93.2%
--	-------

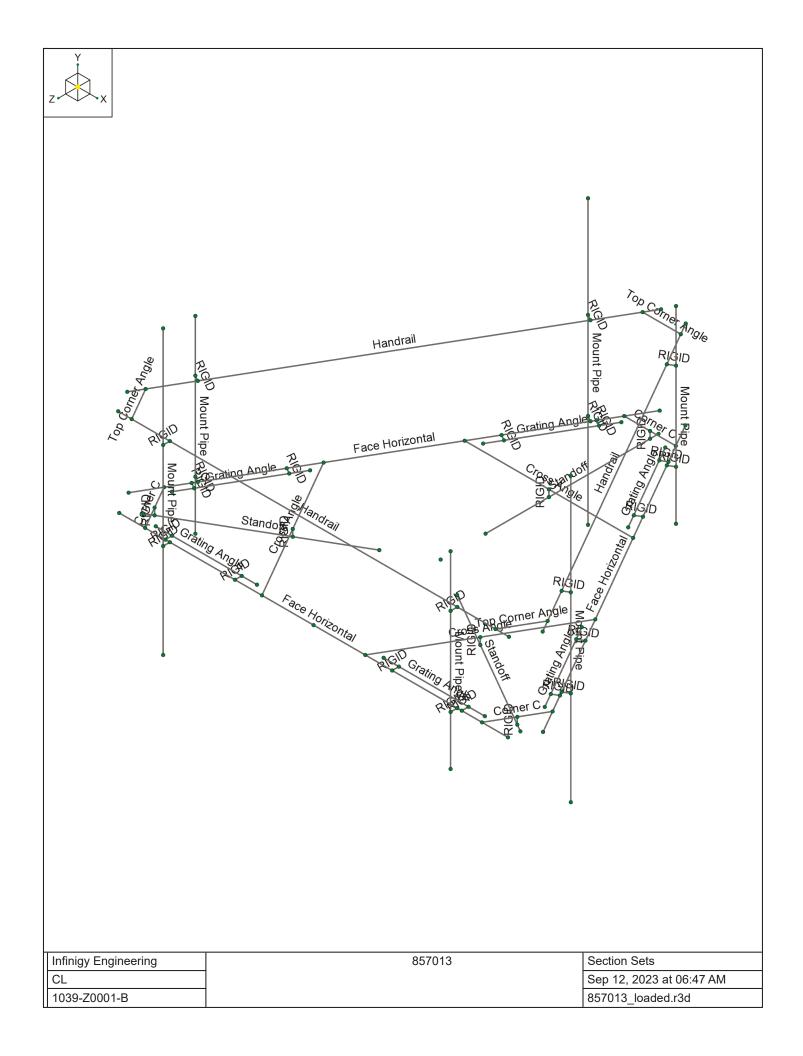

Notes:

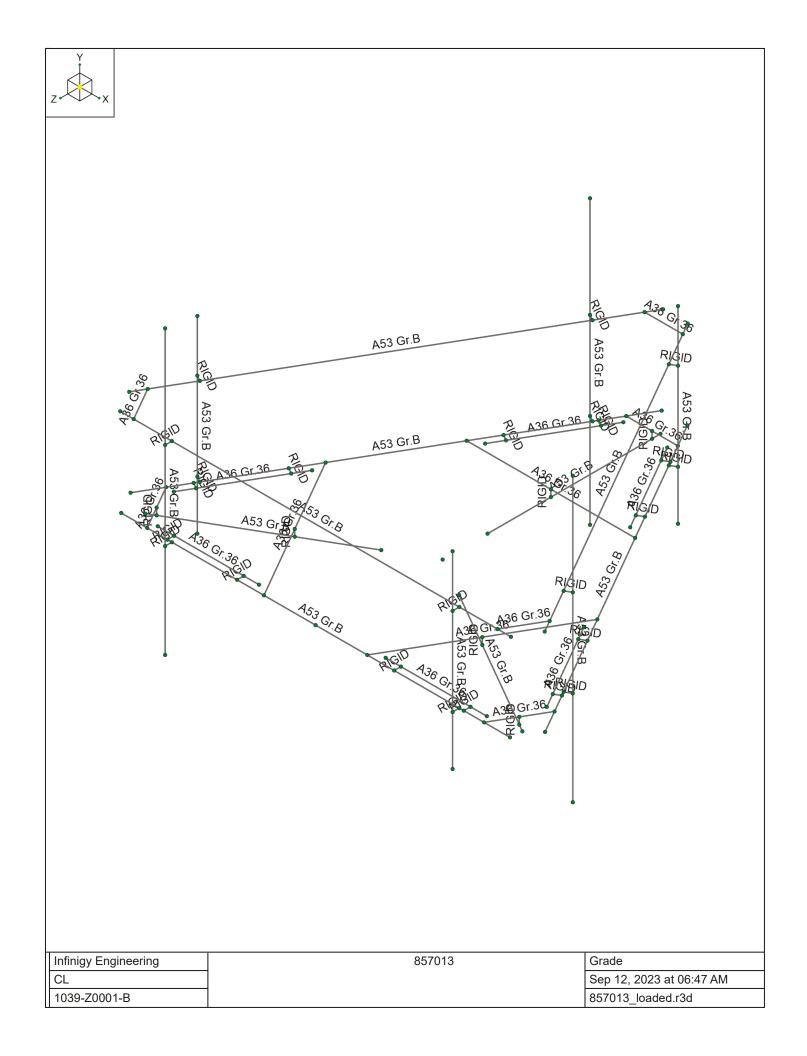
- 1) See additional documentation in "Appendix C Software Analysis Output" for calculations supporting the % capacity consumed.
- 2) See additional documentation in "Appendix D Additional Calculations" for detailed mount connection calculations.

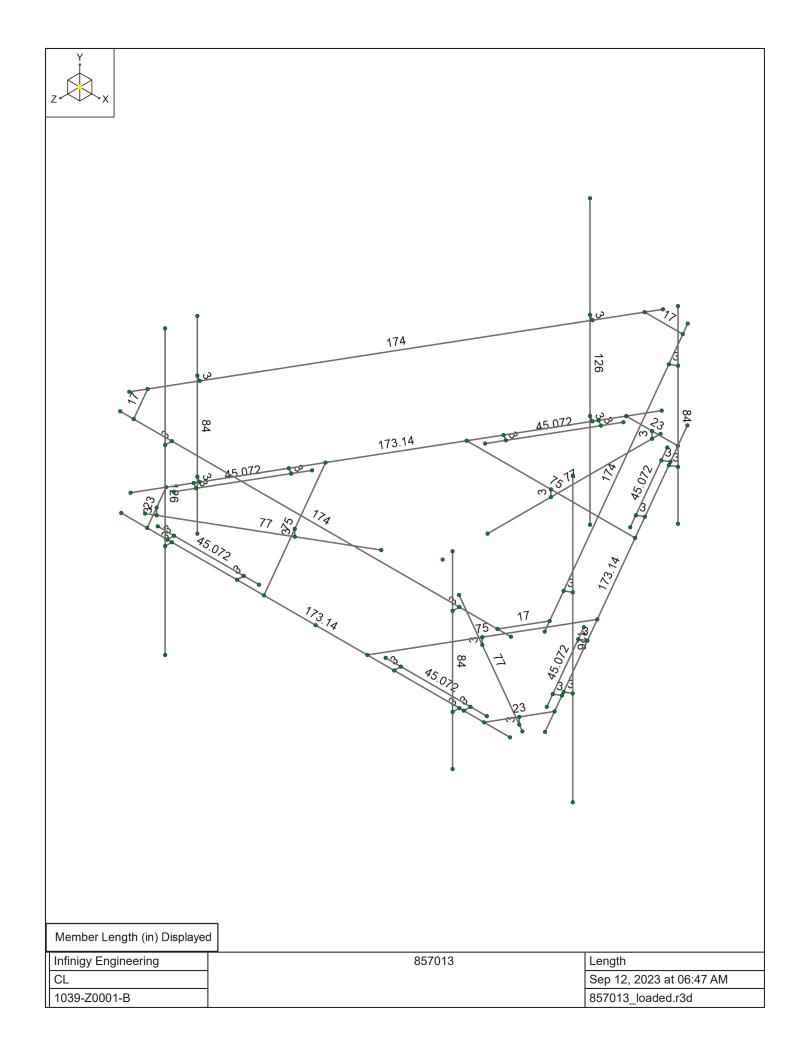

4.1) Recommendations

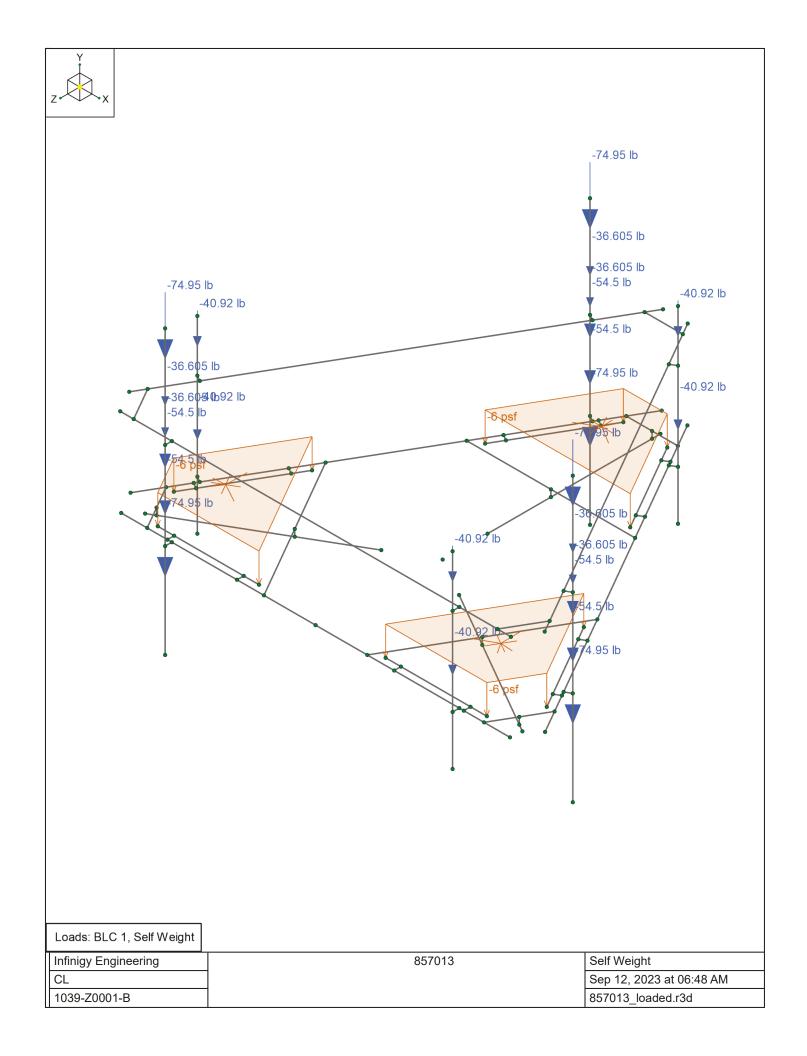
The mount has sufficient capacity to carry the proposed loading configuration. No modifications are required at this time.

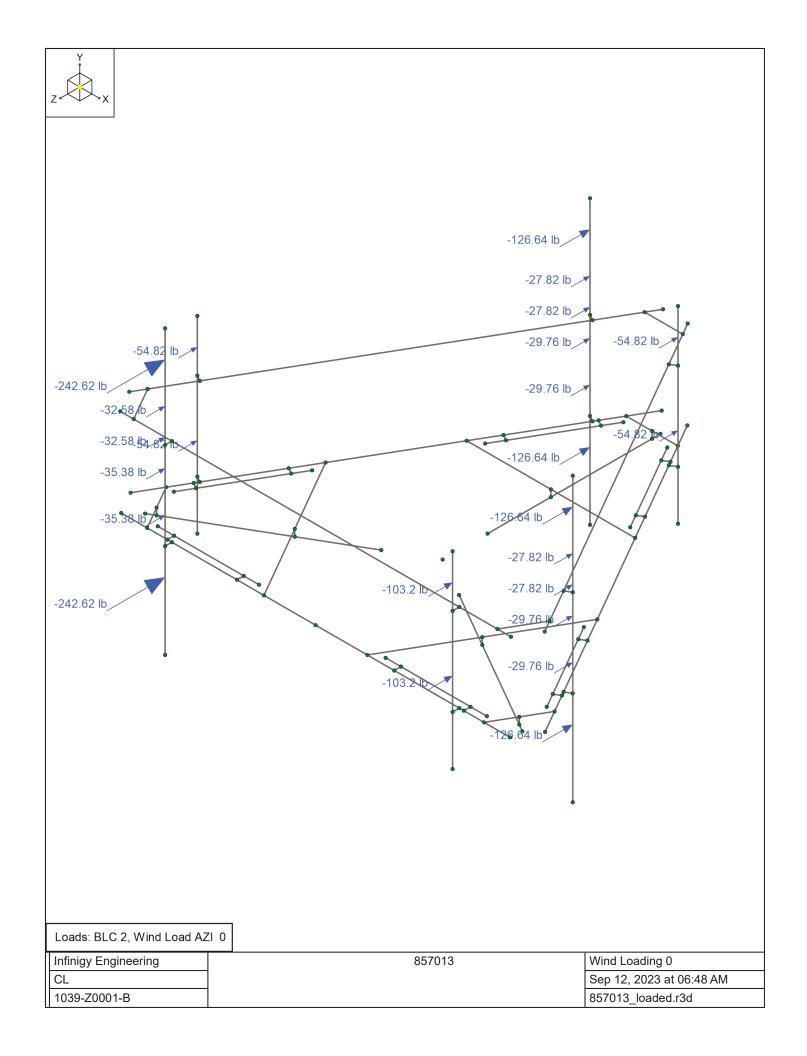

APPENDIX A WIRE FRAME AND RENDERED MODELS

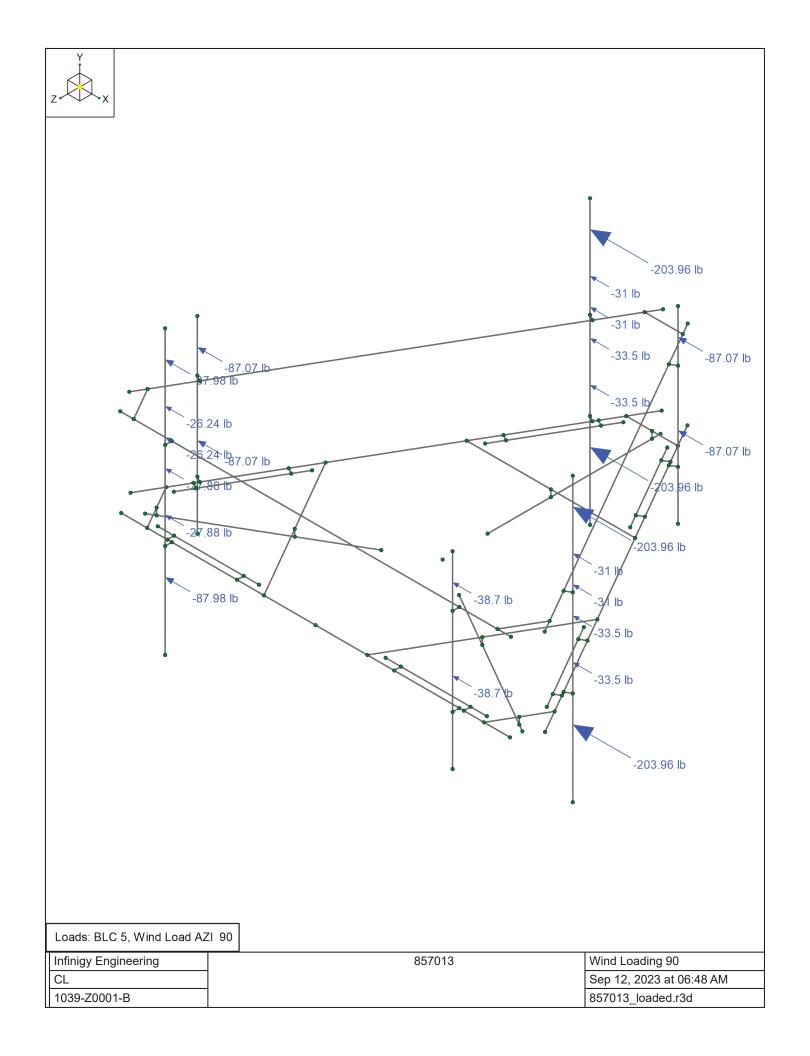


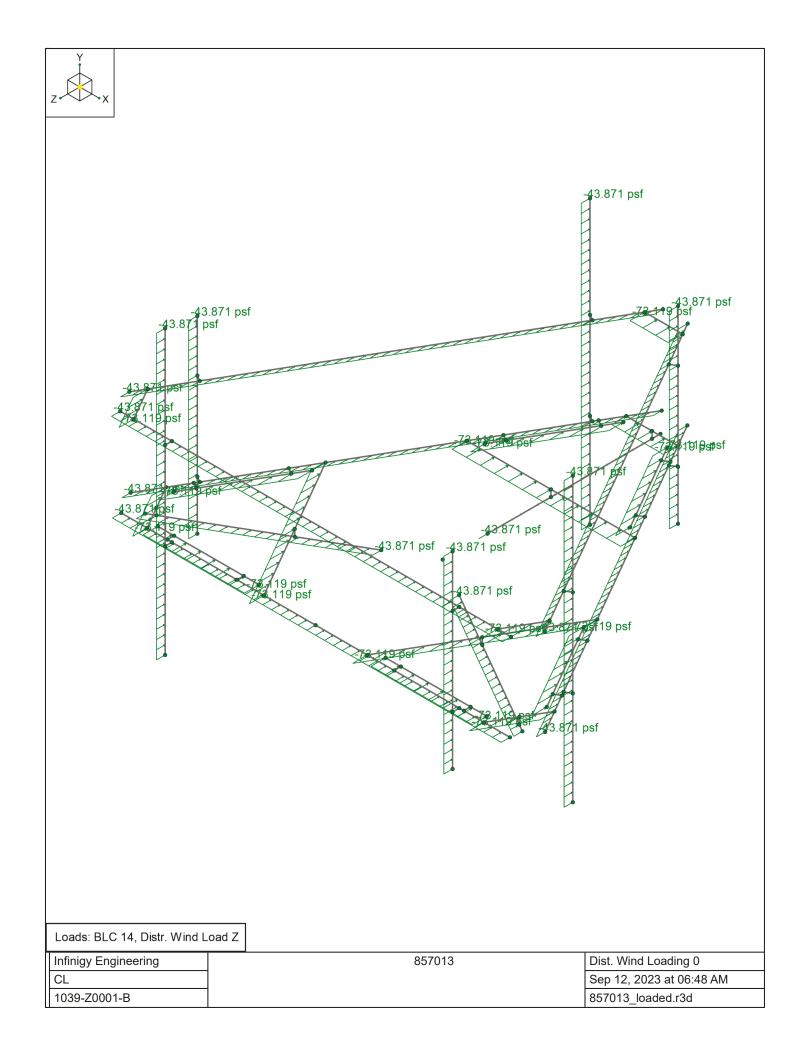




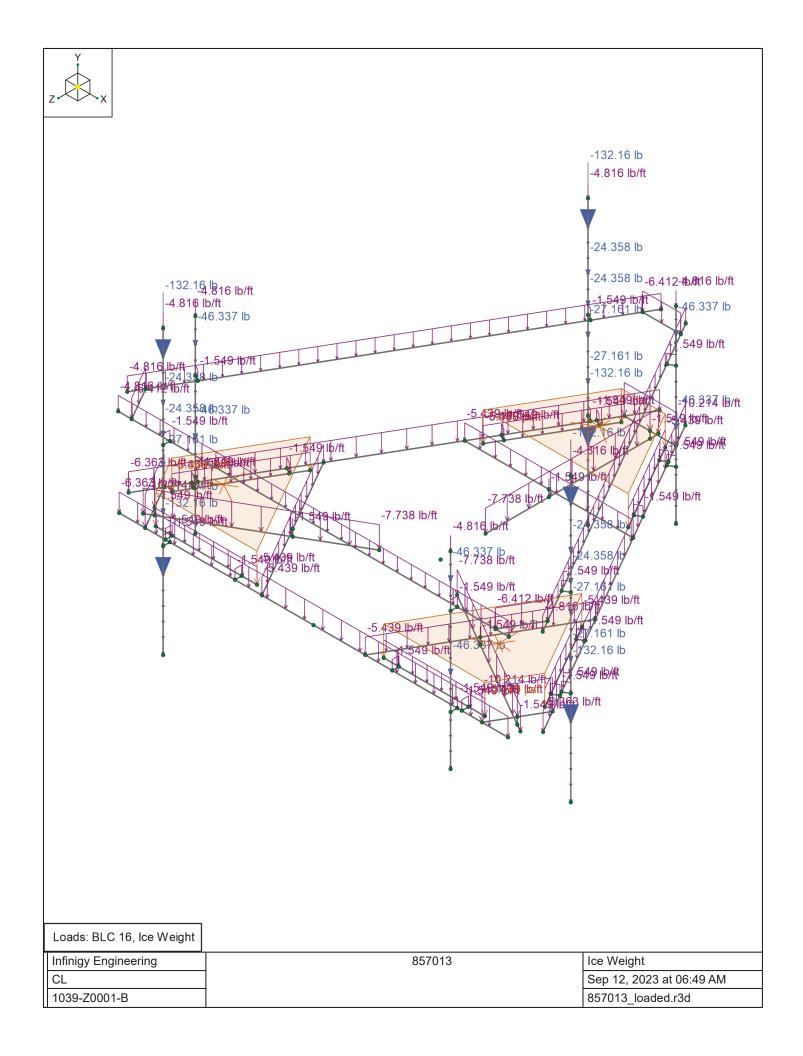

Infinigy Engineering	857013	Wireframe
CL		Sep 12, 2023 at 06:46 AM
1039-Z0001-B		857013_loaded.r3d

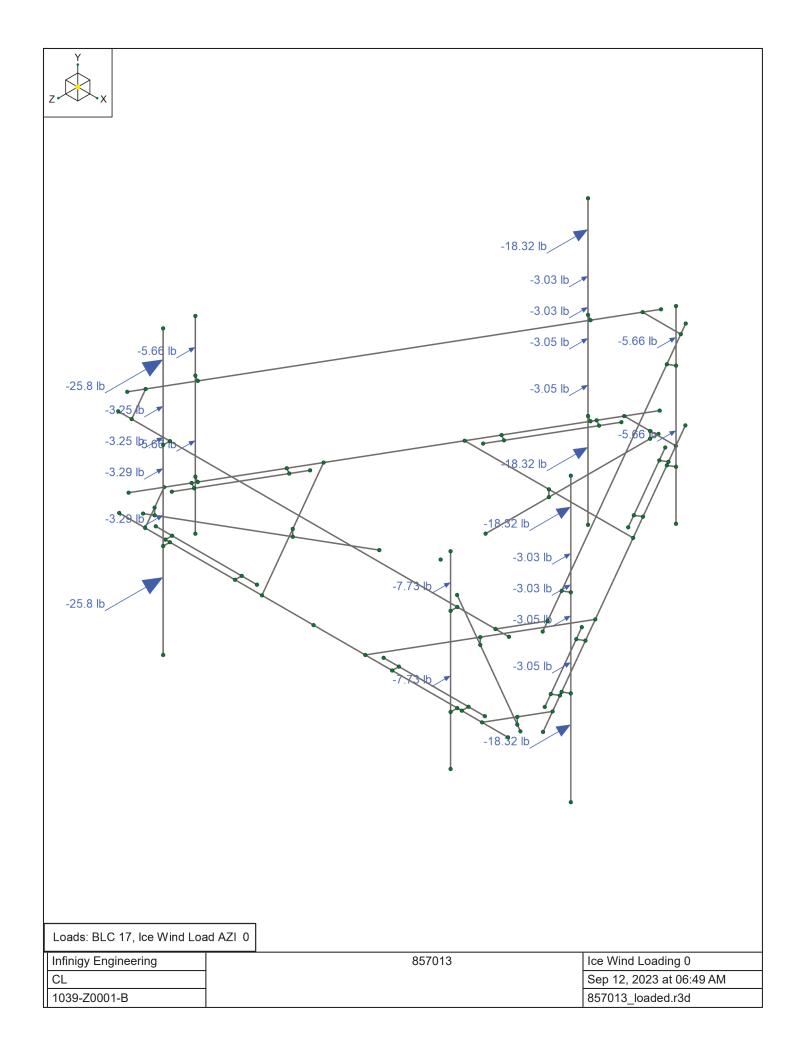


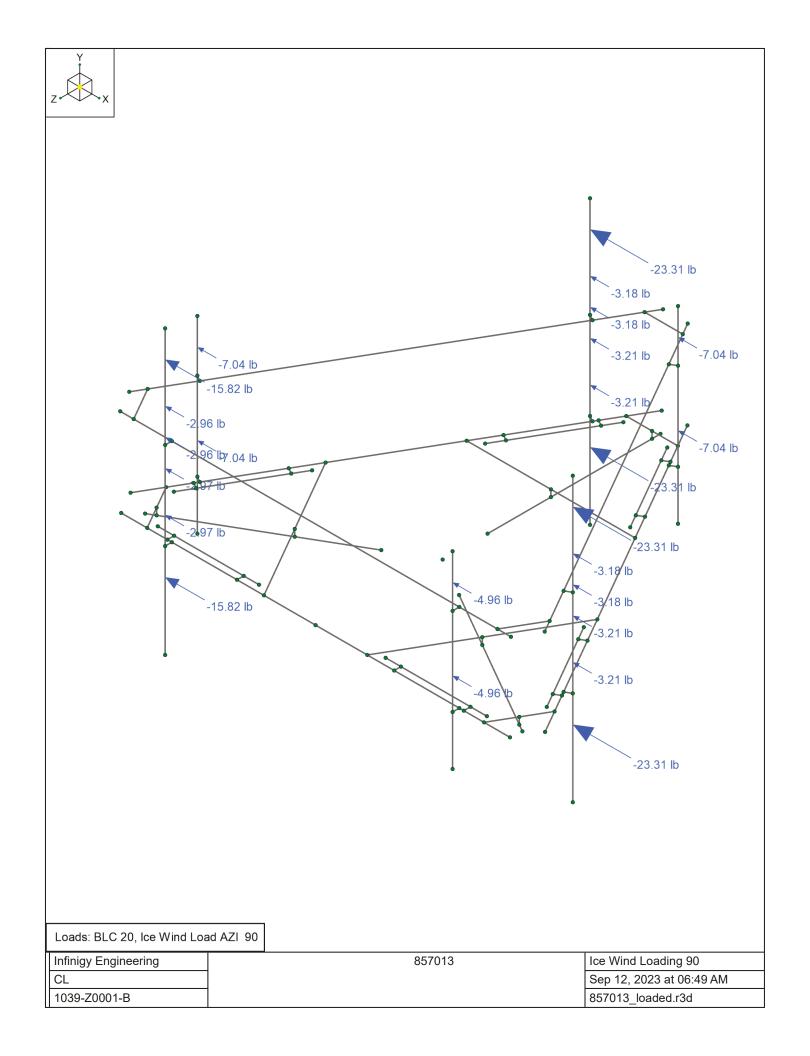


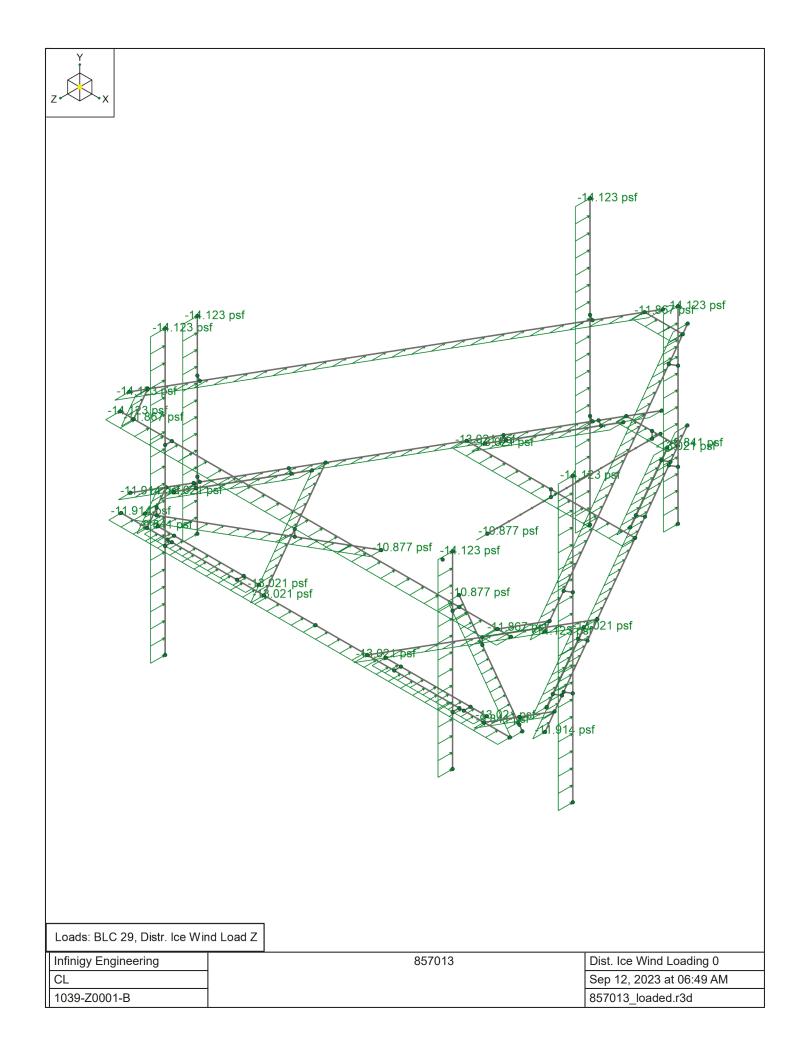


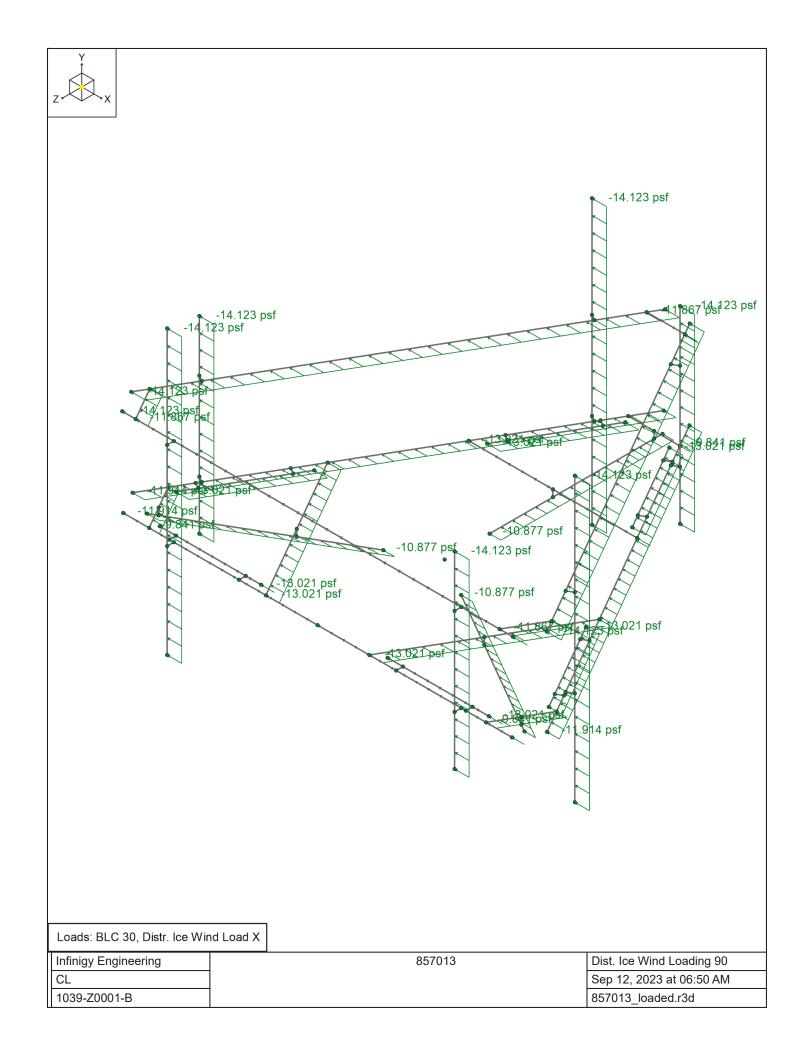


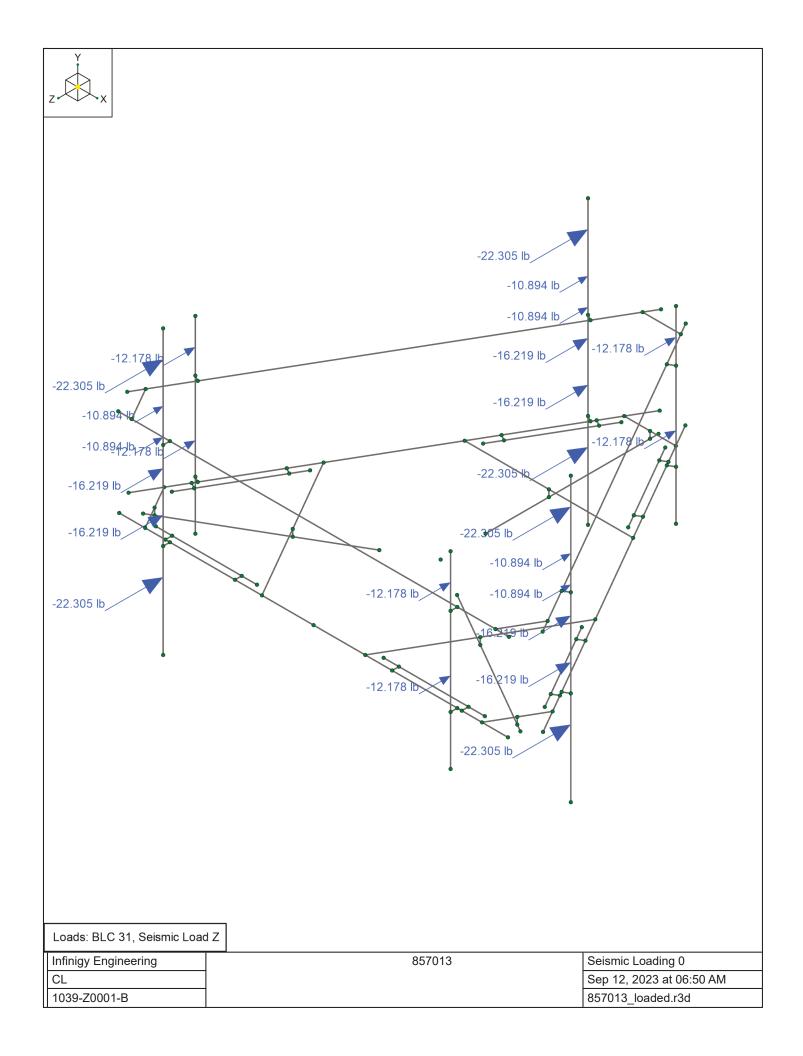


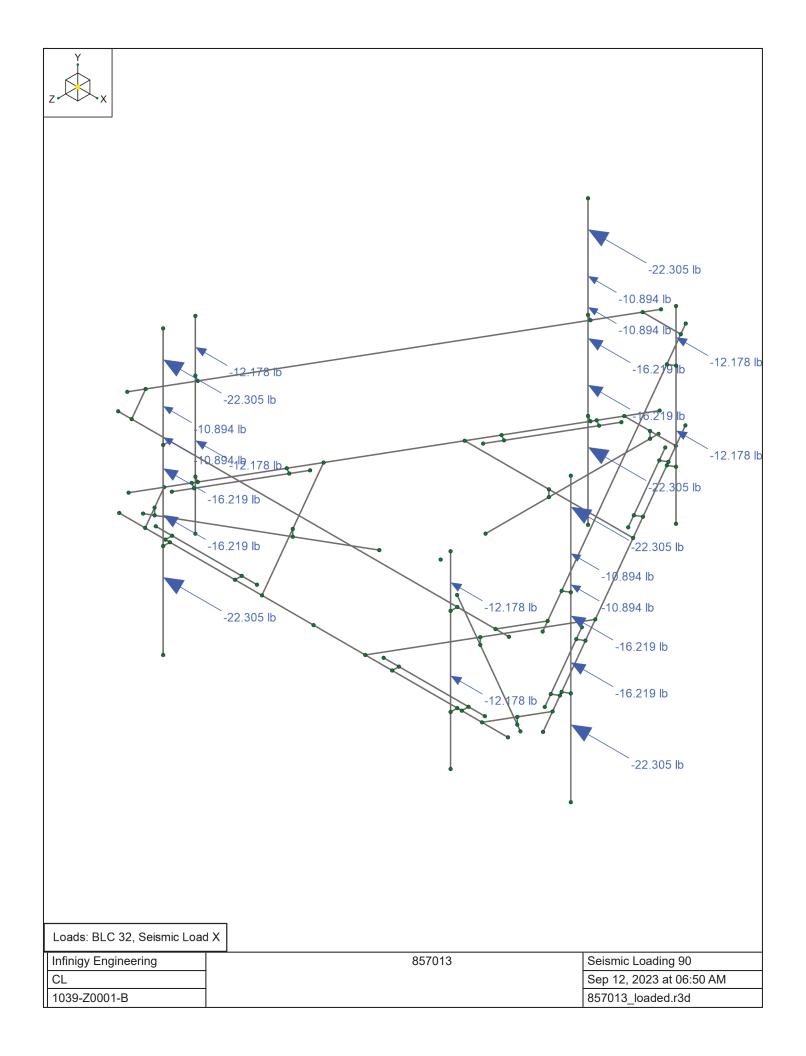


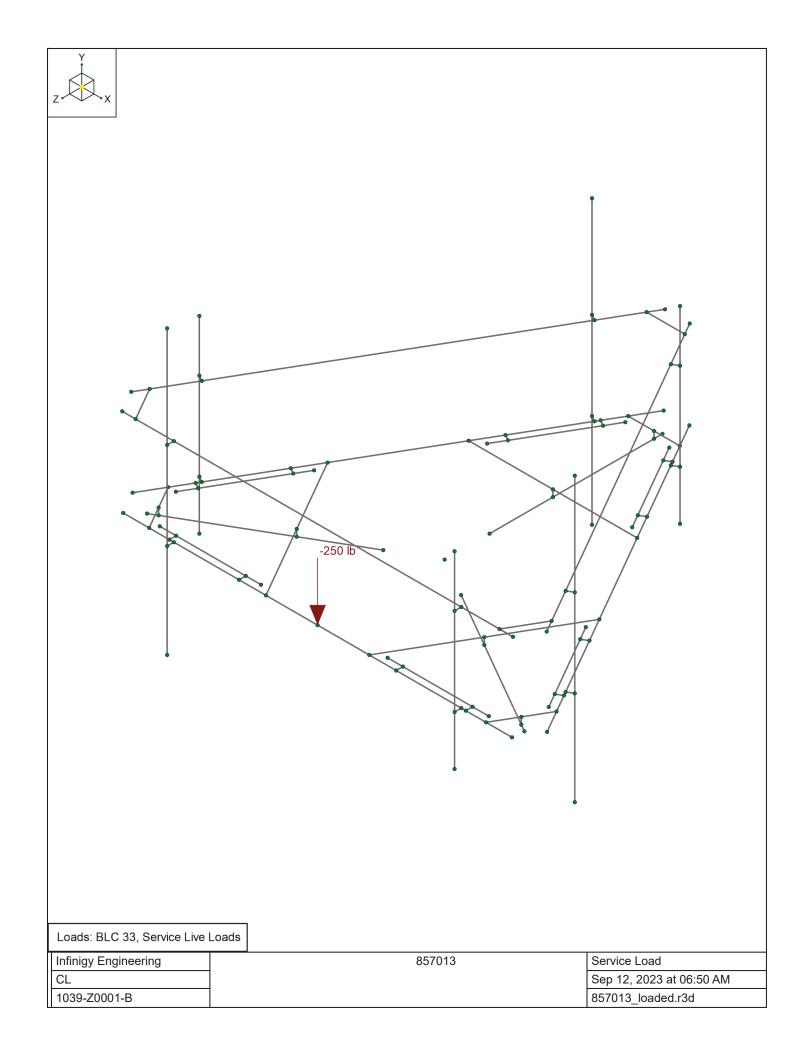




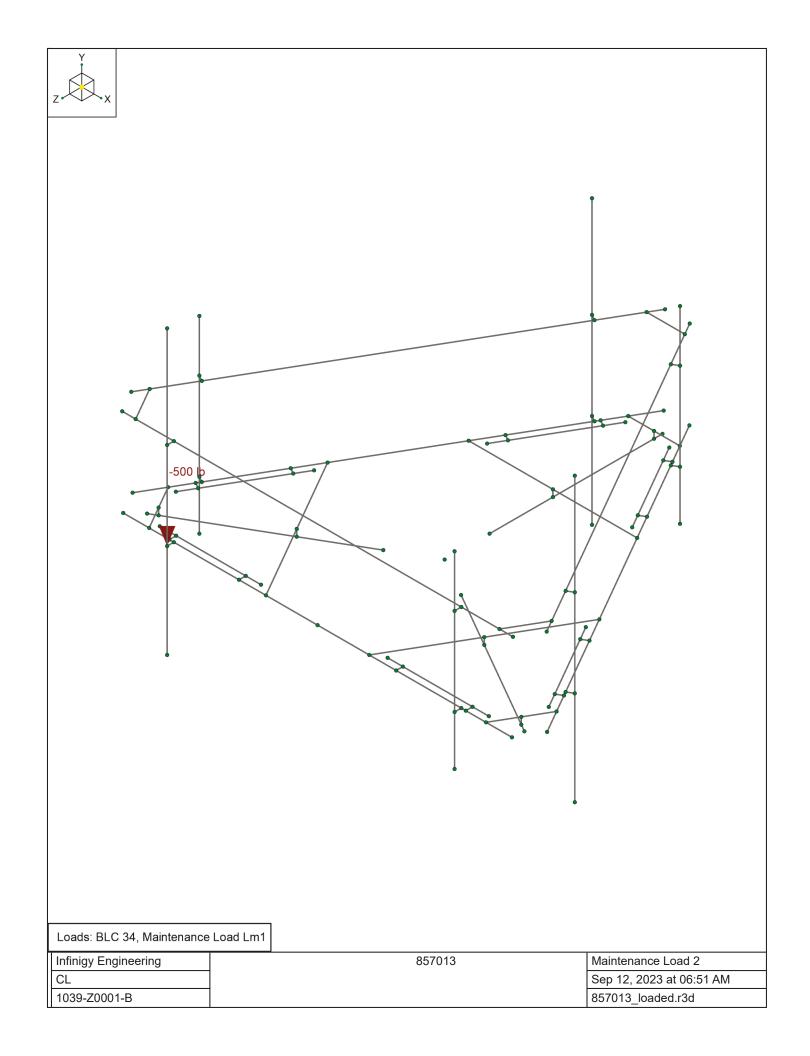












APPENDIX B SOFTWARE INPUT CALCULATIONS

Program Inputs

PROJECT IN	FORMATION
Site Name:	KILLINGLY ROSS ROAD
Carrier:	T-Mobile
Engineer:	Chris Lee, PE

SITE INFORMATION							
Risk Category:	: II						
Exposure Category:	В						
Topo Factor Procedure:	Method 1, Category 1						
Site Class:	D - Stiff Soil (Assumed)						
Ground Elevation:	456.76	ft *Rev H					
· · · · · · · · · · · · · · · · · · ·							

MOUNT INFORMATION						
Mount Type: Platform						
Num Sectors:	3					
Centerline AGL:	108.00	ft				
Tower Height AGL:	119.00	ft				

TOPOGRAPHIC DATA						
Topo Feature:						
Slope Distance:	N/A	ft				
Crest Distance:	N/A	ft				
Crest Height:	N/A	ft				

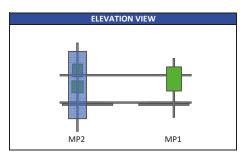
FACTORS							
Directionality Fact. (K _d):	0.950						
Ground Ele. Factor (K _e):	0.984	*Rev H Only					
Rooftop Speed-Up (K _s):	1.000	*Rev H Only					
Topographic Factor (Kzt):	1.000						
Height Esc. Fact. (K _{iz}):	1.126						
Gust Effect Factor (G _h):	1.000						
Shielding Factor (K _a):	0.900						
Velocity Pressure Co.(K _z):	1.010	(Mount Elev)					

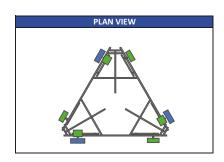
CODE STANDARDS							
Building Code: 2021 IBC							
TIA Standard:	TIA-222-H						
ASCE Standard:	ASCE 7-16						

NIW WIT	ND AND	ICE DATA	
Ultimate Win	d (V _{ult}):	123	mph
Design W	ind (V):	N/A	mph
Ice Win	d (V _{ice}):	50	mph
Base Ice Thickn	ess (t _i):	1.0	in
Radial Ice Thickne	ess (t _{iz}):	1.126	in
Flat Pr	essure:	73.119	psf
Round Pr	essure:	43.871	psf
Ice Wind Pr	essure:	7.250	psf

SEISMIC	DATA	
Short-Period Accel. (S _s):	0.186	g
1-Second Accel. (S ₁):	0.054	g
Short-Period Design (S _{DS}):	0.198	
1-Second Design (S _{D1}):	0.086	
Short-Period Coeff. (Fa):	1.600	
1-Second Coeff. (F _v):	2.400	
Amplification Factor (A _s):	3.000	
Response Mod. Coeff. (R):	2.000	
Seismic Importance (I _e):	1.000	
Seismic Response Co. (C _s):	0.099	
Total App. Weight:	413.950	lb
Total Shear Force (V _s):	41.064	lb
Hor. Seismic Load (E _h):	41.064	lb
Vert. Seismic Load (E _v):	16.426	lb *

^{*}For reference only. Per TIA rev H section 16.7, Ev is not applicable to mounts


INFINIGY8


Infinigy Load Calculator V2.3.4

857013_KILLINGLY ROSS ROAD 9/12/2023

Program Inputs

APPURTENANCE INFORMATION									
Appurtenance Name	Elevation	Qty.	Height (in)	Width (in)	Depth (in)	Weight (lbs)	EPA _N (ft ²)	EPA _T (ft ²)	Member (α sector)
ERICSSON AIR 6419 B41_TMO_CCIV2	110.0	3	34.49	19.92	7.99	81.84	6.24	2.34	MP1
RFS/CELWAVE APXVAALL24_43-U-NA20_TMO	110.0	3	95.90	24.00	8.50	149.90	14.67	5.32	MP2
ERICSSON RADIO 4449 B71 B85A_T-MOBILE	110.0	3	17.91	13.20	10.63	73.21	1.97	1.59	MP2
ERICSSON RADIO 4460 B2/B25 B66_TMO	110.0	3	17.00	15.10	11.90	109.00	2.14	1.69	MP2

857013_KILLINGLY ROSS ROAD 9/12/2023

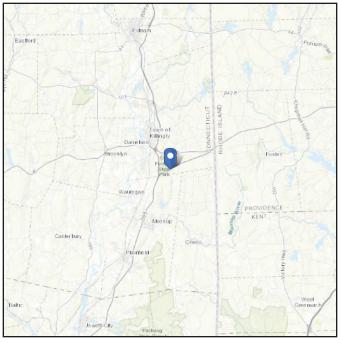
ASCE 7 Hazards Report

Address:

No Address at This Location

Standard: ASCE/SEI 7-16

Risk Category: **□**


Soil Class:

D - Default (see Section 11.4.3) **Latitude:** 41.771553 **Longitude:** -71.855664

Elevation: 456.758999360382 ft (NAVD

88)

Wind

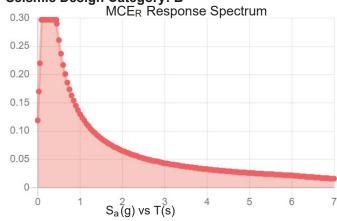
Results:

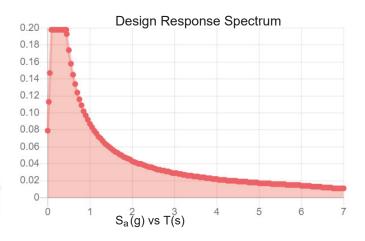
Wind Speed 123 Vmph
10-year MRI 75 Vmph
25-year MRI 85 Vmph
50-year MRI 95 Vmph
100-year MRI 100 Vmph

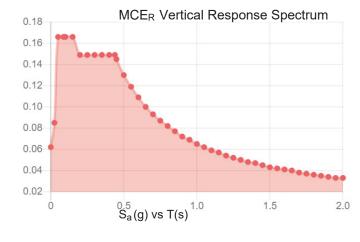
Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2

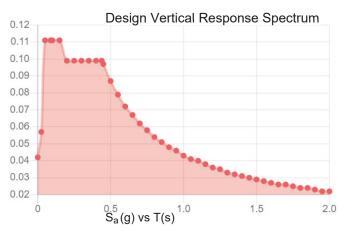
Date Accessed: Mon Sep 11 2023

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.


Site Soil Class:


Results:


S _s :	0.186	S _{D1} :	0.087
S ₁ :	0.054	T_L :	6
F _a :	1.6	PGA:	0.101
F _v :	2.4	PGA _M :	0.161
S _{MS} :	0.297	F _{PGA} :	1.599
S _{M1} :	0.13	l _e :	1
S _{DS} :	0.198	C _v :	0.7

Seismic Design Category: B

Data Accessed: Mon Sep 11 2023

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness: 1.00 in.
Concurrent Temperature: 15 F
Gust Speed 50 mph

Data Source: Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed: Mon Sep 11 2023

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

APPENDIX C SOFTWARE ANALYSIS OUTPUT

9/12/2023 5:23:34 AM

Checked By : ___

Member Primary Data

	Label	I Node	J Node	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rule
1	MS2	N1	N2	(g)	Standoff	Beam	Pipe	A53 Gr.B	Typical
2	MH1	N7	N8		Face Horizontal	Beam	Pipe	A53 Gr.B	Typical
3	M5	N9	N10	270	Corner C	Beam	Channel	A36 Gr.36	Typical
4	M6	N11	N12	270	Corner C	Beam	Channel	A36 Gr.36	Typical
5	MH3	N13	N14		Face Horizontal	Beam	Pipe	A53 Gr.B	Typical
6	M8	N15	N16	270	Corner C	Beam	Channel	A36 Gr.36	Typical
7	MH2	N17	N18		Face Horizontal	Beam	Pipe	A53 Gr.B	Typical
8	MS1	N19	N20		Standoff	Beam	Pipe	A53 Gr.B	Typical
9	MS3	N21	N22		Standoff	Beam	Pipe	A53 Gr.B	Typical
10	M12	N23	N24		RIGID	None	None	RIGID	Typical
11	M13	N25	N26		RIGID	None	None	RIGID	Typical
12	M14	N27	N28		RIGID	None	None	RIGID	Typical
13	M15	N29	N30	90	Cross Angle	Beam	Single Angle	A36 Gr.36	Typical
14	M16	N31	N32		RIGID	None	None	RIGID	Typical
15	M17	N33	N34		RIGID	None	None	RIGID	Typical
16	M18	N35	N36		RIGID	None	None	RIGID	Typical
17	M19	N37	N38	90	Cross Angle	Beam	Single Angle	A36 Gr.36	Typical
18	M20	N39	N40		RIGID	None	None	RIGID	Typical
19	M21	N41	N42	90	Cross Angle	Beam	Single Angle	A36 Gr.36	Typical
20	M22	N43	N44		RIGID	None	None	RIGID	Typical
21	M23	N46	N45		Grating Angle	Beam	Single Angle	A36 Gr.36	Typical
22	M24	N47	N48		RIGID	None	None	RIGID	Typical
23	M25	N49	N50		RIGID	None	None	RIGID	Typical
24	M26	N51	N52		Grating Angle	Beam	Single Angle	A36 Gr.36	Typical
25	M27	N53	N54		RIGID	None	None	RIGID	Typical
26	M28	N55	N56		RIGID	None	None	RIGID	Typical
27	M29	N57	N58		Grating Angle	Beam	Single Angle	A36 Gr.36	Typical
28	M30	N59	N60		RIGID	None	None	RIGID	Typical
29	M31	N61	N62		RIGID	None	None	RIGID	Typical
30	M32	N64	N63		Grating Angle	Beam	Single Angle	A36 Gr.36	Typical
31	M33	N65	N66		RIGID	None	None	RIGID	Typical
32	M34	N67	N68		RIGID	None	None	RIGID	Typical
33	M35	N70	N69		Grating Angle	Beam	Single Angle	A36 Gr.36	Typical
34	M36	N71	N72		RIGID	None	None	RIGID	Typical
35	M37	N73	N74		RIGID	None	None	RIGID	Typical
36	M38	N75	N76		Grating Angle	Beam	Single Angle	A36 Gr.36	Typical
37	MR3	N77	N78		Handrail	Beam	Pipe	A53 Gr.B	Typical
38	MR1	N79	N80		Handrail	Beam	Pipe	A53 Gr.B	Typical
39	MR4	N81	N82		Handrail	Beam	Pipe	A53 Gr.B	Typical
40	MR5	N83	N84	90	Top Corner Angle	Beam	Single Angle	A36 Gr.36	Typical
41	MR6	N85	N86	180	Top Corner Angle	Beam	Single Angle		Typical
42	MR2	N87	N88	90	Top Corner Angle	Beam	Single Angle		Typical
43	M45	N89	N90		RIGID	None	None	RIGID	Typical
44	M46	N91	N92		RIGID	None	None	RIGID	Typical
45	MP2	N93	N94		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
46	M48	N95	N96		RIGID	None	None	RIGID	Typical
47	M49	N97	N98		RIGID	None	None	RIGID	Typical
48	MP1	N99	N100		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
49	M51	N110	N108		RIGID Mount Pine	None	None	RIGID	Typical
50	MP6	N103	N106		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
51	M53	N111	N105		RIGID Mount Pine	None	None	RIGID	Typical
52 53	MP5 M55	N102 N112	N109 N104		Mount Pipe RIGID	Column None	Pipe	A53 Gr.B RIGID	Typical Typical
54	M56	N112 N113	N104 N107		RIGID	None	None None	RIGID	Typical
55	M57	N122	N120		RIGID			RIGID	
55	IVI37	INIZZ	IN IZU		עוטוא	None	None	KIGID	Typical

Model Name: 857013

9/12/2023 5:23:34 AM Checked By : ___

Member Primary Data (Continued)

	Label	I Node	J Node	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rule
56	MP4	N115	N118		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
57	M59	N123	N117		RIGID	None	None	RIGID	Typical
58	MP3	N114	N121		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
59	M61	N124	N116		RIGID	None	None	RIGID	Typical
60	M62	N125	N119		RIGID	None	None	RIGID	Typical

Material Take-Off

	Material	Size	Pieces	Length[in]	Weight[LB]
0	General Members				
1	RIGID		30	90	0
2	Total General		30	90	0
3					
4	Hot Rolled Steel				
5	A36 Gr.36	L2.5X2.5X3	3	51	13.03
6	A36 Gr.36	L2X2X2	6	270.4	37.652
7	A36 Gr.36	L2X2X4	3	225	60.229
8	A36 Gr.36	C6X8.2	3	69	46.763
9	A53 Gr.B	PIPE 2.0	9	1152	333.2
10	A53 Gr.B	PIPE 3.0	3	519.4	304.889
11	A53 Gr.B	PIPE 4.0	3	231	193.89
12	Total HR Steel		30	2517.9	989.654

Basic Load Cases

1 Self Weight DL -1 24 3 2 Wind Load AZI 0 WLZ 48 3 3 Wind Load AZI 30 None 48 <	Du	SIC LOUG CUSES								
2 Wind Load AZI 0 WLZ 48 3 Wind Load AZI 30 None 48 4 Wind Load AZI 60 None 48 5 Wind Load AZI 90 WLX 48 6 Wind Load AZI 120 None 48 7 Wind Load AZI 150 None 48 8 Wind Load AZI 180 None 48 9 Wind Load AZI 210 None 48 10 Wind Load AZI 240 None 48 11 Wind Load AZI 300 None 48 12 Wind Load AZI 300 None 48 13 Wind Load AZI 330 None 48 14 Distr. Wind Load Z WLZ 60 15 Distr. Wind Load Z WLX 60 16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 OL2 48 18 Ice Wind Load AZI 30 None 48 20 Ice Wind Load AZI 60 None 48 21 Ice Wind Load AZI 120 <		BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Nodal	Point	Distributed	Area(Member)
3 Wind Load AZI 30 None 48 4 Wind Load AZI 60 None 48 5 Wind Load AZI 90 WLX 48 6 Wind Load AZI 120 None 48 7 Wind Load AZI 150 None 48 8 Wind Load AZI 180 None 48 9 Wind Load AZI 210 None 48 10 Wind Load AZI 240 None 48 11 Wind Load AZI 300 None 48 12 Wind Load AZI 300 None 48 13 Wind Load AZI 330 None 48 14 Distr. Wind Load Z WLZ 60 15 Distr. Wind Load X WLX 60 16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 OL2 48 1 18 Ice Wind Load AZI 30 None 48 1 19 Ice Wind Load AZI 10 None 48 48 <td></td> <td>Self Weight</td> <td>DL</td> <td></td> <td>-1</td> <td></td> <td></td> <td>24</td> <td></td> <td>3</td>		Self Weight	DL		-1			24		3
4 Wind Load AZI 60 None 48 5 Wind Load AZI 120 None 48 6 Wind Load AZI 120 None 48 7 Wind Load AZI 150 None 48 8 Wind Load AZI 180 None 48 9 Wind Load AZI 210 None 48 10 Wind Load AZI 240 None 48 11 Wind Load AZI 300 None 48 12 Wind Load AZI 330 None 48 13 Wind Load AZI 330 None 48 14 Distr. Wind Load X WLZ 60 15 Distr. Wind Load X WLX 60 16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 OL2 48 18 Ice Wind Load AZI 30 None 48 20 Ice Wind Load AZI 60 None 48 21 Ice Wind Load AZI 120 None 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI		Wind Load AZI 0	WLZ					48		
5 Wind Load AZI 90 WLX 48 6 Wind Load AZI 120 None 48 7 Wind Load AZI 150 None 48 8 Wind Load AZI 180 None 48 9 Wind Load AZI 210 None 48 10 Wind Load AZI 240 None 48 11 Wind Load AZI 270 None 48 12 Wind Load AZI 330 None 48 13 Wind Load AZI 330 None 48 14 Distr. Wind Load X WLX 60 15 Distr. Wind Load X WLX 60 16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 OL2 48 48 18 Ice Wind Load AZI 30 None 48 48 20 Ice Wind Load AZI 60 None 48 48 21 Ice Wind Load AZI 120 None 48 21 Ice Wind Load AZI 150 None	3	Wind Load AZI 30	None					48		
6 Wind Load AZI 120 None 48 7 Wind Load AZI 150 None 48 8 Wind Load AZI 180 None 48 9 Wind Load AZI 210 None 48 10 Wind Load AZI 240 None 48 11 Wind Load AZI 270 None 48 12 Wind Load AZI 300 None 48 13 Wind Load AZI 330 None 48 14 Distr. Wind Load Z WLZ 60 15 Distr. Wind Load X WLX 60 16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 OL2 48 18 Ice Wind Load AZI 30 None 48 19 Ice Wind Load AZI 60 None 48 20 Ice Wind Load AZI 90 OL3 48 21 Ice Wind Load AZI 120 None 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	4	Wind Load AZI 60	None					48		
7 Wind Load AZI 150 None 48 8 Wind Load AZI 180 None 48 9 Wind Load AZI 210 None 48 10 Wind Load AZI 240 None 48 11 Wind Load AZI 300 None 48 12 Wind Load AZI 330 None 48 13 Wind Load AZI 330 None 48 14 Distr. Wind Load Z WLZ 60 15 Distr. Wind Load X WLX 60 16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 OL2 48 8 18 Ice Wind Load AZI 30 None 48 8 19 Ice Wind Load AZI 60 None 48 8 20 Ice Wind Load AZI 90 OL3 48 21 Ice Wind Load AZI 120 None 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48		Wind Load AZI 90	WLX					48		
8 Wind Load AZI 180 None 48 9 Wind Load AZI 210 None 48 10 Wind Load AZI 240 None 48 11 Wind Load AZI 270 None 48 12 Wind Load AZI 300 None 48 13 Wind Load AZI 330 None 48 14 Distr. Wind Load Z WLZ 60 15 Distr. Wind Load X WLX 60 16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 OL2 48 48 18 Ice Wind Load AZI 30 None 48 48 19 Ice Wind Load AZI 60 None 48 48 20 Ice Wind Load AZI 90 OL3 48 21 Ice Wind Load AZI 120 None 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	6	Wind Load AZI 120	None					48		
9 Wind Load AZI 210 None 48 10 Wind Load AZI 240 None 48 11 Wind Load AZI 270 None 48 12 Wind Load AZI 300 None 48 13 Wind Load AZI 330 None 48 14 Distr. Wind Load Z WLZ 60 15 Distr. Wind Load X WLX 60 16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 OL2 48 18 Ice Wind Load AZI 30 None 48 19 Ice Wind Load AZI 60 None 48 20 Ice Wind Load AZI 90 OL3 48 21 Ice Wind Load AZI 120 None 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	7	Wind Load AZI 150	None					48		
10 Wind Load AZI 240 None 48	8	Wind Load AZI 180	None					48		
11 Wind Load AZI 270 None 48 12 Wind Load AZI 300 None 48 13 Wind Load AZI 330 None 48 14 Distr. Wind Load Z WLZ 60 15 Distr. Wind Load X WLX 60 16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 OL2 48 18 Ice Wind Load AZI 30 None 48 19 Ice Wind Load AZI 60 None 48 20 Ice Wind Load AZI 90 OL3 48 21 Ice Wind Load AZI 120 None 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	9	Wind Load AZI 210	None					48		
12 Wind Load AZI 300 None 48 13 Wind Load AZI 330 None 48 14 Distr. Wind Load Z WLZ 60 15 Distr. Wind Load X WLX 60 16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 OL2 48 48 18 Ice Wind Load AZI 30 None 48 48 19 Ice Wind Load AZI 60 None 48 48 20 Ice Wind Load AZI 90 OL3 48 21 Ice Wind Load AZI 120 None 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	10	Wind Load AZI 240	None					48		
13 Wind Load AZI 330 None 48 14 Distr. Wind Load Z WLZ 60 15 Distr. Wind Load X WLX 60 16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 OL2 48 60 3 18 Ice Wind Load AZI 30 None 48 48 19 Ice Wind Load AZI 60 None 48 48 20 Ice Wind Load AZI 90 OL3 48 48 21 Ice Wind Load AZI 120 None 48 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	11	Wind Load AZI 270	None					48		
14 Distr. Wind Load Z WLZ 60 15 Distr. Wind Load X WLX 60 16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 OL2 48 48 18 Ice Wind Load AZI 30 None 48 48 19 Ice Wind Load AZI 60 None 48 48 20 Ice Wind Load AZI 90 OL3 48 48 21 Ice Wind Load AZI 120 None 48 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	12	Wind Load AZI 300	None					48		
15 Distr. Wind Load X WLX 60 16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 OL2 48 60 3 18 Ice Wind Load AZI 30 None 48 60 48 60 48 60 48 60 60 10 </td <td>13</td> <td>Wind Load AZI 330</td> <td>None</td> <td></td> <td></td> <td></td> <td></td> <td>48</td> <td></td> <td></td>	13	Wind Load AZI 330	None					48		
16 Ice Weight OL1 24 60 3 17 Ice Wind Load AZI 0 0L2 48 18 Ice Wind Load AZI 30 None 48 19 Ice Wind Load AZI 60 None 48 20 Ice Wind Load AZI 90 OL3 48 21 Ice Wind Load AZI 120 None 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	14	Distr. Wind Load Z	WLZ						60	
17 Ice Wind Load AZI 0 OL2 48 18 Ice Wind Load AZI 30 None 48 19 Ice Wind Load AZI 60 None 48 20 Ice Wind Load AZI 90 OL3 48 21 Ice Wind Load AZI 120 None 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	15	Distr. Wind Load X	WLX						60	
18 Ice Wind Load AZI 30 None 48 19 Ice Wind Load AZI 60 None 48 20 Ice Wind Load AZI 90 OL3 48 21 Ice Wind Load AZI 120 None 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	16	Ice Weight	OL1					24	60	3
19 Ice Wind Load AZI 60 None 48 20 Ice Wind Load AZI 90 OL3 48 21 Ice Wind Load AZI 120 None 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	17	Ice Wind Load AZI 0	OL2					48		
20 Ice Wind Load AZI 90 OL3 48 21 Ice Wind Load AZI 120 None 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	18	Ice Wind Load AZI 30	None					48		
21 Ice Wind Load AZI 120 None 48 22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	19	Ice Wind Load AZI 60	None					48		
22 Ice Wind Load AZI 150 None 48 23 Ice Wind Load AZI 180 None 48	20	Ice Wind Load AZI 90	OL3					48		
23 Ice Wind Load AZI 180 None 48	21	Ice Wind Load AZI 120	None					48		
		Ice Wind Load AZI 150	None					48		
	23	Ice Wind Load AZI 180	None					48		
	24	Ice Wind Load AZI 210	None					48		
25 Ice Wind Load AZI 240 None 48	25	Ice Wind Load AZI 240	None					48		
26 Ice Wind Load AZI 270 None 48		Ice Wind Load AZI 270	None					48		
27 Ice Wind Load AZI 300 None 48	27	Ice Wind Load AZI 300	None					48		
28 Ice Wind Load AZI 330 None 48	28	Ice Wind Load AZI 330	None					48		
29 Distr. Ice Wind Load Z OL2 60		Distr. Ice Wind Load Z	OL2						60	

9/12/2023 5:23:34 AM

Checked By : ___

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Nodal	Point	Distributed	Area(Member)
30	Distr. Ice Wind Load X	OL3						60	
31	Seismic Load Z	ELZ			-0.298		24		
32	Seismic Load X	ELX	-0.298				24		
33	Service Live Loads	LL				1			
34	Maintenance Load Lm1	LL				1			
35	Maintenance Load Lm2	LL				1			
36	Maintenance Load Lm3	LL				1			
37	Maintenance Load Lm4	LL				1			
38	Maintenance Load Lm5	LL				1			
39	Maintenance Load Lm6	LL				1			
40	BLC 1 Transient Area Loads	None						93	
41	BLC 16 Transient Area Loads	None						93	

Load Combinations

Loud	Combinations	0 1	D D II	DI O		DI O		DI O		DI O	- .	DI O	
	Description		P-Delta		_	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
1	1.4DL	Yes	Y	1	1.4	_							
2	1.2DL + 1WL AZI 0	Yes	Y	1	1.2	2	1	14	1	15		_	
3	1.2DL + 1WL AZI 30	Yes	Y	1	1.2	3	1	14	0.866	15	0.5		
4	1.2DL + 1WL AZI 60	Yes	Υ	1	1.2	4	1	14	0.5	15	0.866		
5	1.2DL + 1WL AZI 90	Yes	Υ	1	1.2	_ 5	1	14		15	1	_	
6	1.2DL + 1WL AZI 120	Yes	Υ	1	1.2	6	1	14	-0.5	15	0.866		
7	1.2DL + 1WL AZI 150	Yes	Υ	1	1.2	_ 7	1	14	-0.866	15	0.5	_	_
8	1.2DL + 1WL AZI 180	Yes	Υ	1	1.2	8	1	14	-1	15			
9	1.2DL + 1WL AZI 210	Yes	Υ	1	1.2	9	1	14	-0.866	15	-0.5		
10	1.2DL + 1WL AZI 240	Yes	Υ	1	1.2	10	1	14	-0.5	15	-0.866		
11	1.2DL + 1WL AZI 270	Yes	Υ	1	1.2	11	1	14		15	-1		
12	1.2DL + 1WL AZI 300	Yes	Υ	1	1.2	12	1	14	0.5	15	-0.866		
13	1.2DL + 1WL AZI 330	Yes	Υ	1	1.2	13	1	14	0.866	15	-0.5		
14	0.9DL + 1WL AZI 0	Yes	Υ	1	0.9	2	1	14	1	15			
15	0.9DL + 1WL AZI 30	Yes	Υ	1	0.9	3	1	14	0.866	15	0.5		
16	0.9DL + 1WL AZI 60	Yes	Υ	1	0.9	4	1	14	0.5	15	0.866		
17	0.9DL + 1WL AZI 90	Yes	Υ	1	0.9	_ 5	1	14		15	1	_	
18	0.9DL + 1WL AZI 120	Yes	Υ	1	0.9	6	1	14	-0.5	15	0.866		
19	0.9DL + 1WL AZI 150	Yes	Υ	1	0.9	7	1	14	-0.866	15	0.5		
20	0.9DL + 1WL AZI 180	Yes	Υ	1	0.9	8	1	14	1	15		_	
21	0.9DL + 1WL AZI 210	Yes	Υ	1	0.9	9	1	14	-0.866	15	-0.5		
22	0.9DL + 1WL AZI 240	Yes	Y	11	0.9	10	1	14	-0.5	15	-0.866	_	
23	0.9DL + 1WL AZI 270	Yes	Υ	1	0.9	11	1	14		15	-1		
24	0.9DL + 1WL AZI 300	Yes	Υ	1	0.9	12	1	14	0.5	15	-0.866		
25	0.9DL + 1WL AZI 330	Yes	Υ	1	0.9	13	_ 1	14	0.866	15	-0.5		
26	1.2D + 1.0Di	Yes	Υ	1	1.2	16	1						
27	1.2D + 1.0Di +1.0Wi AZI 0	Yes	Υ	1	1.2	_ 16	_ 1	17	_ 1	_ 29	1	30	
28	1.2D + 1.0Di +1.0Wi AZI 30	Yes	Υ	11	1.2	16	1	18	1	29	0.866	30	0.5
29	1.2D + 1.0Di +1.0Wi AZI 60	Yes	Υ	1	1.2	16	1	19	_ 1	29	0.5	30	0.866
30	1.2D + 1.0Di +1.0Wi AZI 90	Yes	Υ	1	1.2	16	1	20	1	29		30	1
31	1.2D + 1.0Di +1.0Wi AZI 120	Yes	Υ	1	1.2	16	1	21	1	29	-0.5	30	0.866
32	1.2D + 1.0Di +1.0Wi AZI 150	Yes	Y	1	1.2	16	1	_ 22	1	29	-0.866		0.5
33	1.2D + 1.0Di +1.0Wi AZI 180	Yes	Υ	1	1.2	16	1	23	1	29	-1	30	
34	1.2D + 1.0Di +1.0Wi AZI 210	Yes	Υ	1	1.2	16	1	24	1	29	-0.866		-0.5
35	1.2D + 1.0Di +1.0Wi AZI 240	Yes	Υ	1	1.2	16	_ 1	25	_ 1	_ 29	-0.5	30	-0.866
36	1.2D + 1.0Di +1.0Wi AZI 270	Yes	Υ	1	1.2	16	1	26	1	29		30	-1
37	1.2D + 1.0Di +1.0Wi AZI 300	Yes	Υ	1	1.2	_ 16	1	27	1	29	0.5	30	-0.866
38	1.2D + 1.0Di +1.0Wi AZI 330	Yes	Υ	1	1.2	16	1	28	1	29	0.866	30	-0.5
39	(1.2 + 0.2Sds)DL + 1.0E AZI 0	Yes	Υ	1	1.24	31	1	32					
40	(1.2 + 0.2Sds)DL + 1.0E AZI 30	Yes	Υ	1	1.24	31	0.866	32	0.5				

9/12/2023 5:23:34 AM Checked By : ___

Load Combinations (Continued)

LUC	du Combinations (Continueu)												
	Description	Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
41	(1.2 + 0.2Sds)DL + 1.0E AZI 60	Yes	Υ	1	1.24	31	0.5	32	0.866				
42	(1.2 + 0.2Sds)DL + 1.0E AZI 90	Yes	Y	1	1.24	31	0.0	32	1				
43	(1.2 + 0.2Sds)DL + 1.0E AZI 120	Yes	Y	1	1.24	31	-0.5	32	0.866				
44	(1.2 + 0.2Sds)DL + 1.0E AZI 150	Yes	Y	1	1.24	31	-0.866	32	0.5				
45	(1.2 + 0.2Sds)DL + 1.0E AZI 180	Yes	Y	1	1.24	31	-1	32	0.0	_		_	
46	(1.2 + 0.2Sds)DL + 1.0E AZI 100	Yes	Y	1	1.24	31	-0.866	32	-0.5				
47	(1.2 + 0.2Sds)DL + 1.0E AZI 240	Yes	Y	1	1.24	31	-0.5	32	-0.866				
48	(1.2 + 0.2Sds)DL + 1.0E AZI 240	Yes	Y	1	1.24	31	-0.5	32	-1				
49	(1.2 + 0.2Sds)DL + 1.0E AZI 270 (1.2 + 0.2Sds)DL + 1.0E AZI 300	Yes	Y	1	1.24	31	0.5	32	-0.866				
_	, ,	_	Y	1				_	-0.5				
50	(1.2 + 0.2Sds)DL + 1.0E AZI 330	Yes			1.24	31	0.866	32	-0.5				
51	(0.9 - 0.2Sds)DL + 1.0E AZI 0	Yes	Y	1	0.86	31	1	32	0.5				
52	(0.9 - 0.2Sds)DL + 1.0E AZI 30	Yes	Y	1	0.86	31	0.866	32	0.5				
53	(0.9 - 0.2Sds)DL + 1.0E AZI 60	Yes	Y	1	0.86	31	0.5	32	0.866				
54	(0.9 - 0.2Sds)DL + 1.0E AZI 90	Yes	Y	1	0.86	31	0.5	32	1	_			
55	(0.9 - 0.2Sds)DL + 1.0E AZI 120	Yes	Y	1	0.86	31	-0.5	32	0.866				
56	(0.9 - 0.2Sds)DL + 1.0E AZI 150	Yes	Y		0.86	31	-0.866	32	0.5				
57	(0.9 - 0.2Sds)DL + 1.0E AZI 180	Yes	Y	1	0.86	31	-1	32					
58	(0.9 - 0.2Sds)DL + 1.0E AZI 210	Yes	Y	1	0.86	31	-0.866	32	-0.5				
59	(0.9 - 0.2Sds)DL + 1.0E AZI 240	Yes	Υ	1	0.86	31	-0.5	32	-0.866				
60	(0.9 - 0.2Sds)DL + 1.0E AZI 270	Yes	Υ	1	0.86	31		32	-1				
61	(0.9 - 0.2Sds)DL + 1.0E AZI 300	Yes	Υ	1	0.86	31	0.5	32	-0.866			_	
62	(0.9 - 0.2Sds)DL + 1.0E AZI 330	Yes	Υ	1_	0.86	31	0.866	32	-0.5	_		_	\perp
63	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 0	Yes	Υ	1	_ 1	2	0.238	14	0.238	15		_ 33	1.5
_64	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 30	Yes	Υ	1	_ 1	3	0.238	14	0.206	15	0.119	33	1.5
65	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 60	Yes	Υ	1	1	4	0.238	14	0.119	15	0.206	33	1.5
_66	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 90	Yes	Υ	1	_ 1	5	0.238	14		15	0.238	_ 33	1.5
67	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 120	Yes	Υ	1	1	6	0.238	14	-0.119	15	0.206	33	1.5
68	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 150	Yes	Υ	1	1	7	0.238	14	-0.206	15	0.119	33	1.5
69	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 180	Yes	Υ	1	1	8	0.238	14	-0.238	15		33	1.5
70	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 210	Yes	Υ	1	1	9	0.238	14	-0.206	15	-0.119	33	1.5
71	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 240	Yes	Υ	1	1	10	0.238	14	-0.119	15	-0.206	33	1.5
72	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 270	Yes	Υ	1	1	11	0.238	14		15	-0.238	33	1.5
73	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 300	Yes	Υ	1	1	12	0.238	14	0.119	15	-0.206		1.5
74	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 330	Yes	Υ	1	1	13	0.238	14	0.206	15	-0.119		1.5
75	1.2DL + 1.5LL	Yes	Υ	1	1.2	33	1.5						
76	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 0	Yes	Υ	1	1.2	34	1.5	2	0.059	14	0.059	15	
77	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 30	Yes	Υ	1	1.2	34	1.5	3	0.059	14	0.052	_	0.03
78	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 60	Yes	Y	1	1.2	34	1.5	4	0.059	14	0.03	15	0.052
79	` ' '	Yes	Υ	1	1.2	34	1.5	5	0.059	14	0.00	15	0.059
80	\ ' '		Y	1	1.2	34	1.5	6	0.059	14	-0.03	15	0.052
	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 150		Y	1	1.2	34	1.5	7	0.059	14	-0.052		0.03
	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 180		Y	1	1.2	34	1.5		0.059		-0.059		0.00
	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 210		Y	1	1.2	34	1.5	9	0.059		-0.052		-0.03
	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 240		Ý	1	1.2	34	1.5	10	0.059	14	-0.03	15	-0.052
	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 270		Y	1	1.2	34	1.5	11	0.059	14	-0.00	15	-0.059
	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 300		Y	1	1.2	34	1.5	12	0.059	14	0.03	15	-0.052
	1.2DL + 1.5LM-MP1 + 1SWL (30 mph) AZI 330		Y	1	1.2	34	1.5	13	0.059	14	0.052	15	-0.032
88	, ,	Yes	Y	1	1.2	35	1.5	2	0.059	14	0.052	15	-0.03
89	• • • •	Yes	Y	1	1.2	35	1.5	3	0.059	14	0.059	15	0.03
		_	Y		1.2					_			
	1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 60	Yes		11		35	1.5	4	0.059	14	0.03	15	0.052
	1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 90	Yes	Y	1	1.2	35	1.5	5	0.059	14	0.02	15	0.059
	1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 120		Y	1	1.2	35	1.5	6	0.059	14	-0.03	15	0.052
	1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 150		Y	1	1.2	35	1.5	7	0.059	14	-0.052		0.03
_	1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 180		Y	1	1.2	35	1.5	8	0.059	14	-0.059		0.00
95	1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 210	Yes	Υ	1	1.2	35	1.5	9	0.059	14	-0.052	15	-0.03

9/12/2023 5:23:34 AM Checked By : ____

Load Combinations (Continued)

Load Combinations (Continued)												
Description	Solve	P-Delta	BI C	Factor	BI C	Factor	BI C	Factor	BI C	Factor	BI C	Factor
96 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 240		Y	1	1.2	35	1.5	10	0.059	14	-0.03	15	-0.052
97 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 270		Y	1	1.2	35	1.5	11	0.059	14	-0.03	15	-0.059
98 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 300		Y	1	1.2	35	1.5	12	0.059	14	0.03	15	-0.052
		Y	1	1.2							_	
99 1.2DL + 1.5LM-MP2 + 1SWL (30 mph) AZI 330		Y		_	35	1.5	13	0.059	14	0.052	15	-0.03
100 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 0	Yes	Y	1	1.2	36	1.5	3	0.059	14 14	0.059	15	0.02
101 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 30 102 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 60		Y	1	1.2	36	1.5	4		14	0.052	15	0.03
	Yes				36	1.5	_	0.059		0.03	15	0.052
103 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 90	Yes	Y	1	1.2	36	1.5	5	0.059	14	0.02	15	0.059
104 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 120		Y	1	1.2	36	1.5	6	0.059	14	-0.03	15	0.052
105 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 150		-	1	1.2	36	1.5	7		14_	-0.052	15	0.03
106 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 180		Y	1	1.2	36	1.5	8	0.059	14	-0.059	15	0.00
107 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 210		Y	1	1.2	36	1.5	9	0.059	14	-0.052	15	-0.03
108 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 240		Y	1	1.2	36	1.5	10	0.059	14	-0.03	15	-0.052
109 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 270		Y	1	1.2	36	1.5	11	0.059	14	0.00	15	-0.059
110 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 300		Y	1	1.2	36	1.5	12	0.059	14	0.03	15	-0.052
111 1.2DL + 1.5LM-MP3 + 1SWL (30 mph) AZI 330		Υ	1	1.2	36	1.5	13	0.059	14	0.052	15	-0.03
112 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 0	Yes	Υ	1	1.2	37	1.5	2	0.059	14	0.059	15	
113 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 30	Yes	Υ	1	1.2	37	1.5	3	0.059	14	0.052	15	0.03
114 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 60	Yes	Υ	1	1.2	37	1.5	4	0.059	14	0.03	15	0.052
115 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 90	Yes	Υ	1	1.2	37	1.5	5	0.059	14		15	0.059
116 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 120		Υ	1	1.2	37	1.5	6	0.059	14	-0.03	15	0.052
117 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 150		Υ	1	1.2	37	1.5	7	0.059	14	-0.052	15	0.03
118 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 180		Υ	1	1.2	37	1.5	8	0.059	14	-0.059	15	
119 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 210	Yes	Υ	1	1.2	37	1.5	9	0.059	14	-0.052	15	-0.03
120 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 240	Yes	Υ	1	1.2	37	1.5	10	0.059	14	-0.03	15	-0.052
121 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 270	Yes	Υ	1	1.2	37	1.5	11	0.059	14		_ 15	-0.059
122 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 300	Yes	Υ	1	1.2	37	1.5	12	0.059	14	0.03	15	-0.052
123 1.2DL + 1.5LM-MP4 + 1SWL (30 mph) AZI 330	Yes	Υ	1	1.2	37	1.5	13	0.059	14	0.052	15	-0.03
124 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 0	Yes	Υ	1	1.2	38	1.5	2	0.059	14	0.059	15	
125 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 30	Yes	Υ	1	1.2	38	1.5	3	0.059	14	0.052	15	0.03
126 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 60	Yes	Υ	1	1.2	38	1.5	4	0.059	14	0.03	15	0.052
127 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 90	Yes	Υ	1	1.2	38	1.5	5	0.059	14		15	0.059
128 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 120	Yes	Υ	1	1.2	38	1.5	6	0.059	14	-0.03	15	0.052
129 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 150		Υ	1	1.2	38	1.5	7	0.059	14	-0.052	15	0.03
130 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 180		Υ	1	1.2	38	1.5	8	0.059	14	-0.059	15	
131 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 210		Υ	1	1.2	38	1.5	9	0.059	14	-0.052	15	-0.03
132 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 240		Υ	1	1.2	38	1.5	10	0.059	14	-0.03	15	-0.052
133 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 270		Υ	1	1.2	38	1.5	11	0.059	14		15	-0.059
134 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 300		Y	1	1.2	38	1.5	12	0.059	14	0.03	15	-0.052
135 1.2DL + 1.5LM-MP5 + 1SWL (30 mph) AZI 330	_	Υ	1	1.2	38	1.5	13	0.059	14	0.052	15	-0.03
136 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 0	Yes	Y	1	1.2	39	1.5	2	0.059	14	0.059	15	0.00
137 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 30		Y	1	1.2	39	1.5		0.059		0.052		0.03
138 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 60	Yes	Ý	1	1.2	39	1.5	4	0.059	14	0.03	15	0.052
139 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 90	Yes	Y	1	1.2	39	1.5	5	0.059	14	0.00	15	0.059
140 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 120		Y	1	1.2	39	1.5	6	0.059	14	-0.03	15	0.052
141 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 150		Y	1	1.2	39	1.5	7	0.059	14	-0.052		0.032
142 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 180		Y	1	1.2	39	1.5	8	0.059	14	-0.059		0.00
143 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 210		Y	1	1.2	39	1.5	9	0.059	14	-0.052		-0.03
144 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 240		Y	1	1.2	39	1.5	10	0.059	14	-0.032	15	-0.052
145 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 270		Y	1	1.2	39	1.5	11	0.059	14	-0.03	15	-0.052
146 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 300		Y	1	1.2	39	1.5	12	0.059	14	0.03	15	-0.059
		Y	1									
147 1.2DL + 1.5LM-MP6 + 1SWL (30 mph) AZI 330	res	ľ		1.2	39	1.5	13	0.059	14	0.052	15	-0.03

Company : Infinigy Engineering Designer : CL Job Number : 1039-Z0001-B Model Name : 857013 9/12/2023 5:23:34 AM Checked By : ___

Envelope Node Reactions

Node Label			X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
0	N1	max	884.923	17	1959.907	27	-1557.163	14	7492.849	27	1580.597	11	1513.24	23
1		min	-888.741	11	316.815	20	-9146.696	33	11.456	20	-1565.093	17	-1740.29	5
2	N21	max	-1417.65	18	1958.13	31	4616.047	38	538.756	14	1202.642	15	-59.122	23
3		min	-7904.911	37	323.342	24	592.766	20	-4112.749	82	-1219.225	9	-6348.677	30
4	N19	max	7907.295	29	1972.063	35	4609.657	28	439.79	14	1278.867	7	6573.355	36
5		min	1479.761	22	334.525	16	717.086	22	-3864.966	94	-1277.297	13	10.636	17
6	Totals:	max	3355.219	5	5695.962	29	3466.906	14						
7		min	-3355.215	23	2096.371	59	-3466.909	8						

Envelope AISC 15TH (360-16): LRFD Member Steel Code Checks

	Member	Shape	Code Check	Loc[in] LCS	hear Check	Loc[in]	Dir	LC	phi*Pnc [lb]	phi*Pnt [lb]	phi*Mn y-y [lb-ft]	phi*Mn z-z [lb-ft] Cb	Eqn
0	M19	L2X2X4	0.932	37.5 33	0.06	37.5	z	38	18657.095	30585.6	690.934	1501.793	1	H2-1
1	M21	L2X2X4	0.925	37.5 29	0.06	37.5	z	34	18657.095	30585.6	690.934	1501.793	1	H2-1
2	M15	L2X2X4	0.922	37.5 28	0.059	37.5	z	30	18657.095	30585.6	690.934	1501.793	1	H2-1
3	MS2	PIPE 4.0	0.757	0 27	0.23	0		5	81734.03	93240	10631.25	10631.25	1	H1-1b
4	MS3	PIPE_4.0	0.756	0 31	0.224	0		9	81734.03	93240	10631.25	10631.25	1	H1-1b
5	MS1	PIPE 4.0	0.751	0 35	0.219	0		13	81734.03	93240	10631.25	10631.25	1	H1-1b
6	M6	C6X8.2	0.691	11.5 33	0.443	11.5	У	34	70285.703	77436	2107.841	13932	1.366	H1-1b
7	M8	C6X8.2	0.689	11.5 29	0.441	11.5	У	30	70285.703	77436	2107.841	13932		H1-1b
8	M5	C6X8.2	0.67	11.5 37	0.435	11.5	У	38	70285.703	77436	2107.841	13932	1.367	H1-1b
9	MP3	PIPE 2.0	0.546	61.25 8	0.178	61.25		3	17855.085	32130	1871.625	1871.625	1	H1-1b
10	MP5	PIPE_2.0	0.545	61.25 4	0.182	61.25		11	17855.085	32130	1871.625	1871.625	_	H1-1b
11	MP1	PIPE 2.0	0.529	61.25 12	0.183	61.25		7	17855.085	32130	1871.625	1871.625	1	H1-1b
12	MP4	PIPE_2.0	0.508	84 12	0.192	84		4	00	32130	1871.625	1871.625		H1-1b
13	MP6	PIPE 2.0	0.502	84 8	0.192	84		12	8922.084	32130	1871.625	1871.625	1	H1-1b
14	MR2	L2.5X2.5X3	0.498	17 8	0.159	17	Z	2	27173.99	29192.4	872.574	1971.83	1.028	H2-1
15	MR6	L2.5X2.5X3	0.49	0 12	0.158	0	У	6	27173.99	29192.4	872.574	1971.83	1.008	
16	MP2	PIPE 2.0	0.489	84 4	0.196	84		8	8922.084	32130	1871.625	1871.625		H1-1b
17	MR5	L2.5X2.5X3	0.476	17 4	0.159	17	Z	10	27173.99	29192.4	872.574	1971.83	1.039	
18	MR1	PIPE 2.0	0.358	21.75 13	0.228	7.25		6	4678.524	32130	1871.625	1871.625		H1-1b
19	MR3	PIPE 2.0	0.358	21.75 9	0.234	7.25		2	4678.524	32130	1871.625	1871.625	1	H1-1b
20	MR4	PIPE_2.0	0.356	152.25 5	0.23	166.75		10	4678.524	32130	1871.625	1871.625		H1-1b
21	MH2	PIPE 3.0	0.169	149.694 7	0.116	12.625		3	21477.804	65205	5748.75	5748.75	1	H1-1b
22	MH3	PIPE_3.0	0.169	23.446 3	0.117	160.515		11	21477.804	65205	5748.75	5748.75	1	H1-1b
23	MH1	PIPE 3.0	0.166	23.446 11	0.119	160.515		7	21477.804	65205	5748.75	5748.75	1	H1-1b
24	M23	L2X2X2	0.164	38.029 12	0.008	38.029	У	37	7903.562	15908.4	402.563	742.322	1.5	H2-1
25	M32	L2X2X2	0.163	38.029 8	0.008	38.029	У	32	7903.562	15908.4	402.563	742.322	1.5	H2-1
26	M38	L2X2X2	0.162	25.822 4	0.009	7.042	У	30	7903.562	15908.4	396.008	675.933	1.077	H2-1
27	M35	L2X2X2	0.161	38.029 4	0.008	38.029	У	29	7903.562	15908.4	402.563	742.322	1.5	H2-1
28	M29	L2X2X2	0.157	25.353 8	0.009	7.042		_	7903.562	15908.4	396.008	676.201	1.078	
29	M26	L2X2X2	0.15	26.292 12	0.009	7.042	У	37	7903.562	15908.4	396.008	680.659	1.1	H2-1

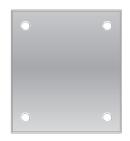
APPENDIX D ADDITIONAL CALCUATIONS

INFINIGY8

Bolt Calculation Tool, V1.6.5

Boil Calcalation 1001, VI.0.5									
PROJECT DATA									
Site Name:	KILLINGLY ROSS ROAD								
Site Number:	857013								
Connection Description:	Standoff to Collar								

ENVELOPE BOLT LOADS									
(LC124 MS2) Bolt Tension:	5766.84	lbs							
(LC5 MS2) Bolt Shear:	1563.12	lbs							


MAX BOLT USAGE LOADS ¹									
Bolt Tension:	5766.84	lbs							
Bolt Shear:	800.91	lbs							

BOLT PROPERTIES										
Bolt Type:	Bolt	-								
Bolt Diameter:	0.625	in								
Bolt Grade:	A325	-								
# of Bolts:	4	-								
Threads Excluded?	No	-								

 $^1\,$ Max bolt usage loads correspond to Load combination #124 on member MS2 in RISA-3D, which causes the maximum demand on the bolts.

Member Information				
I nodes of MS2, MS1, MS3,				

BOLT CHECK		
Tensile Strength	20340.15	
Shear Strength	13805.83	
Max Tensile Usage	28.4%	
Max Shear Usage	11.3%	
Interaction Check (Max Usage)	0.08	≤1.05
Result	Pass	

LC	Axial	y Shear	Z Shear Torque		y-y Moment	z-z Moment
	lb	lb	lb	lb-ft	lb-ft	lb-ft
(LC124 MS2)	5645.99	1731.41	-17.46	616.38	78.21	7100.13
(LC5 MS2)	4292.84	992.50	888.07	1740.29	-1563.35	7100.13

Radio Frequency Emissions Analysis Report

T Mobile

Site ID: CTNL140B

NL140/CingularRossRd_MP 280 Ross Road Killingly, CT 06239

September 29, 2023

Fox Hill Telecom Project Number: 230999

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of FCC				
general population	25.99 %			
allowable limit:				

September 29, 2023

T-MOBILE Attn: RF Manager 35 Griffin Road South Bloomfield, CT 06009

Emissions Analysis for Site: CTNL140B – NL140/CingularRossRd_MP

Fox Hill Telecom, Inc ("Fox Hill") was directed to analyze the proposed upgrades to the T-MOBILE facility located at **280 Ross Road**, **Killingly**, **CT**, for the purpose of determining whether the emissions from the Proposed T-MOBILE Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

General population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz & 700 MHz bands are approximately 400 μ W/cm² and 467 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2500 MHz (BRS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report the percentage of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were performed for the proposed upgrades to the T-MOBILE antenna facility located at **280 Ross Road, Killingly, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65 for far field modeling calculations.

In OET-65, plane wave power densities in the Far Field of an antenna are calculated by considering antenna gain and reflective waves that would contribute to exposure.

Since the radiation pattern of an antenna has developed in the **Far Field** region the power gain in specific directions needs to be considered in exposure predictions to yield an Effective Radiated Power (ERP) in each specific direction from the antenna. Also, since the vertical radiation pattern of the antenna is considered, the exposure calculations would most likely be reduced significantly at ground level, resulting in a more realistic estimate of the actual exposure levels. To determine a worst-case scenario at each point along the calculation radials, each point was calculated using the antenna gain value at each angle of incident and compared against the result using an isotropic radiator at the antenna height with the greater of the two used to yield the more pessimistic far field value for each point along the calculation radial.

Additionally, to model a truly "worst case" prediction of exposure levels at or near a surface, such as at ground-level or on a rooftop, reflection off the surface of antenna radiation power can be assumed, resulting in a potential 1.6 times increase in power density in calculating far field power density values.

With these factors Considered, the worst case **Far Field prediction model** utilized in this analysis is determined by the following equation:

Equation 9 per FCC OET65 for Far Field Modeling

$$S = \frac{33.4 \ ERP}{R^2}$$

S = Power Density (in μ w/cm²) ERP = Effective Radiated Power from antenna (watts) R = Distance from the antenna (meters)

Predicted far field power density values for all carriers identified in this report were calculated 6 feet above the ground level and are displayed as a percentage of the applicable FCC standards. All emissions values for other carriers were calculated using the same Far Field model outlined above, using industry standard radio configurations and frequency band selection based upon available licenses in this geographic area for emissions contribution estimates.

For each T-Mobile sector the following channel counts, frequency bands and power levels were utilized as shown in *Table 1*:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
LTE / 5G NR	600 MHz	2	60
LTE	700 MHz	2	20
LTE / 5G NR	1900 MHz (PCS)	4	40
GSM	1900 MHz (PCS)	1	15
LTE	2100 MHz (AWS)	4	40
LTE / 5G NR	2500 MHz (BRS)	8	20

Table 1: Channel Data Table

The following T-Mobile antennas listed in *Table 2* were used in the modeling for transmission in the 600 MHz, 700 MHz, 1900 MHz (PCS), 2100 MHz (AWS) and 2500 MHz (BRS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below.

			Antenna
	Antenna		Centerline
Sector	Number	Antenna Make / Model	(ft)
A	1	RFS APXVAALL24_43-U-NA20	110
A	2	Ericsson AIR6419 B41	110
В	1	RFS APXVAALL24_43-U-NA20	110
В	2	Ericsson AIR6419 B41	110
С	1	RFS APXVAALL24_43-U-NA20	110
C	2	Ericsson AIR6419 B41	110

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

RESULTS

Per the calculations completed for the proposed T-MOBILE configurations *Table 3* shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

Antenna			Antenna Gain	Channel	Total TX Power		
ID	Antenna Make / Model	Frequency Bands	(dBd)	Count	(W)	ERP (W)	MPE %
		600 MHz / 700 MHz /					
Antenna	RFS	1900 MHz (PCS) /	13.65 / 13.85 /				
A1	APXVAALL24_43-U-NA20	2100 MHz (AWS)	16.65 / 16.95	13	495	19,770.39	2.39
Antenna	Ericsson						
A2	AIR6419 B41	2500 MHz (BRS)	21.5	8	160	22,600.60	2.12
				5	Sector A Com	posite MPE%	4.51
		600 MHz / 700 MHz /					
Antenna	RFS	1900 MHz (PCS) /	13.65 / 13.85 /				
B1	APXVAALL24 43-U-NA20	2100 MHz (AWS)	16.65 / 16.95	13	495	19,770.39	2.39
Antenna	Ericsson						
B2	AIR6419 B41	2500 MHz (BRS)	21.5	8	160	22,600.60	2.12
				S	Sector B Com	posite MPE%	4.51
		600 MHz / 700 MHz /					
Antenna	RFS	1900 MHz (PCS) /	13.65 / 13.85 /				
C1	APXVAALL24_43-U-NA20	2100 MHz (AWS)	16.65 / 16.95	13	495	19,770.39	2.39
Antenna	Ericsson						
C2	AIR6419 B41	2500 MHz (BRS)	21.5	8	160	22,600.60	2.12
					Sector C Com	posite MPE%	4.51

Table 3: T-MOBILE Emissions Levels

The Following table (*table 4*) shows all additional identified carriers on site and their emissions contribution estimates, along with the newly calculated maximum T-MOBILE MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three T-Mobile sectors have the same configuration yielding the same results for all three sectors. *Table 5* below shows a summary for each T-MOBILE Sector as well as the composite estimated MPE value for the site.

Site Composite MPE%					
Carrier	MPE%				
T-MOBILE – Max Per Sector Value	4.51 %				
AT&T	6.83 %				
Verizon Wireless	7.08 %				
Dish	7.14 %				
SmartSky	0.43 %				
Site Total MPE %:	25.99 %				

Table 4: All Carrier MPE Contributions

T-MOBILE Sector A Total:	4.51 %
T-MOBILE Sector B Total:	4.51 %
T-MOBILE Sector C Total:	4.51 %
Site Total:	25.99 %

Table 5: Site MPE Summary

Table 6 below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated T-MOBILE sector(s). For this site, all three T-Mobile sectors have the same configuration yielding the same results for all three sectors.

T-MOBILE _ Frequency Band / Technology Max Power Values (Per Sector)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
T-Mobile 600 MHz LTE / 5G NR	2	1,390.44	110	4.00	600 MHz	400	1.00%
T-Mobile 700 MHz LTE	2	485.32	110	1.31	700 MHz	467	0.28%
T-Mobile 1900 MHz (PCS) LTE / 5G NR	4	1,849.52	110	5.30	1900 MHz (PCS)	1000	0.53%
T-Mobile 1900 MHz (PCS) GSM	1	693.57	110	0.50	1900 MHz (PCS)	1000	0.05%
T-Mobile 2100 MHz (AWS) LTE	4	1,981.80	110	5.30	2100 MHz (AWS)	1000	0.53%
T-Mobile 2500 MHz (BRS) LTE / 5G NR	8	2,825.08	110	21.20	2500 MHz (BRS)	1000	2.12%
						Total:	4.51 %

Table 6: T-MOBILE Maximum Sector MPE Power Values

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-MOBILE facility as well as the site composite emissions estimates value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-MOBILE Sector	Power Density Value (%)
Sector A:	4.51 %
Sector B:	4.51 %
Sector C:	4.51 %
T-MOBILE Maximum	4.51 %
Total (per sector):	4.31 %
Site Total:	25.99 %
Site Compliance Status:	COMPLIANT

The estimated composite MPE value for this site assuming all carriers present is **25.99** % of the allowable FCC established general population limit sampled at the ground level. This is based upon the far field calculations performed for all carriers identified in this report.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite estimated values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan Principal RF Engineer

Fox Hill Telecom, Inc

Worcester, MA 01609

(978)660-3998

THE COMPOUND AUDIT WAS COMPLETED ON 09/20/2023, THE CONSTRUCTION DRAWING REFLECT CONDITIONS AT TIME OF AUDIT.

CROWN CASTLE USA INC. SITE NAME: BU NUMBER:

CARRIER/APPLICANT:

TOWER OWNER

SITE ADDRESS:

TELCO PROVIDER:

COUNTY: LATITUDE: LONGITUDE: LAT/LONG TYPE: GROUND ELEVATION:

T Mobile

T-MOBILE SITE NUMBER: CTNL140B

SITE INFORMATION

T-MOBILE SITE NAME: NL140/CINGULAR ROSS RD_MP

T-MOBILE PROJECT: ANCHOR

KILLINGLY ROSS ROAD

CROWN CASTLE 2000 CORPORATE DRIVE CANONSBURG, PA 15317

280 ROSS RD KILLINGLY, CT 06239 WINDHAM

41° 46' 17.59" / 41.771391 -71° 51' 20.39" / -71.855831 NAD83 452+/- AMSL

ASC REAL ESTATE INC P O BOX 122 ANDOVER, CT 06232

NORTHEAST UTILITIES LIGHTOWER

PROJECT TEAM

Tricia Pelon - PROJECT MANAGER Tricia.Pelon@crowncastle.com Israel Carey - CONSTRUCTION MANAGER
Israel.Carey@crowncastle.com

Jennifer Mering - AIS

Jennifer Mering - AIS

Jennife

ROWN CASTLE 1500 CORPORATE DRIVE ISA INC. DISTRICT CANONSBURG, PA 15317

T-MOBILE 1001 PINNACLE POINT DRIVE COLUMBIA SC, 29223

67D5D998E 6160 T-MOBILE RAN:

67D5998E_1xAIR+1OP+1QP T-MOBILE A&L:

BUSINESS UNIT #: 857013 SITE ADDRESS: 280 ROSS RD KILLINGLY, CT 06239

COUNTY: WINDHAM MONOPOLE SITE TYPE: TOWER HEIGHT: 119'-0"

PROJECT DESCRIPTION

THE PURPOSE OF THIS PROJECT IS TO ENHANCE BROADBAND CONNECTIVITY AND CAPACITY TO THE EXISTING ELIGIBLE WIRELESS FACILITY.

TOWER SCOPE OF WORKS
REMOWE () RES. APPLICABLY SEADI (QUAD) ANTENNAS
REMOWE () RES. APPLICABLY SEADI (QUAD) ANTENNAS
REMOWE () RES. APPLICABLY SEADING SEADING

GROUND SCOPE OF WORK:

• REMOVE (I) ERICSSON - RBS 6201 ODE ENCLOSURE
• REMOVE (I) BATTERY BACKUP UNIT
• INSTALL (I) ERICSSON - 6160 AC VI ENCLOSURE
• INSTALL (I) ERICSSON - B160 ENCLOSURE

CROWN CASTLE

T Mobile

T-MOBILE SITE NUMBER: CTNL140B

CROWN CASTLE SITE NAME:

KILLINGLY ROSS ROAD

280 ROSS RD KILLINGLY, CT 06239

EXISTING 119'-0" MONOPOLE

	ISSUED FOR:					
V	DATE	DRWN	DESCRIPTION	DES/Q		
ī	12/20/2023	SMS	FINAL	JS		
	01/02/2024	JS	REMOVED RFDS	JS		
ī						

T-1

1

T-2 ANTENNA PLANS
FINAL EQUIPMENT SCHEDULE
TOWER EQUIPMENT DETAILS & SPECIFICATIO
TOWER EQUIPMENT DETAILS & SPECIFICATIO ENCLOSURE CLEARANCES BATTERY CABINET SPECIFICATIONS GROUNDING DETAILS

DRAWING INDEX

PPC: NORTHERN TECHNOLOGIES, INC. 200A 120/240V~1PH, FAULT CURRENT RATING 65kA, 200A GENERATOR PLUG, 200A MAXIMUM BRANCH CIRCUIT SIZE & 24 AC BREAKER POSITIONS

NL140/CINGULAR ROSS RD_MP CTNL140B

LOCATION MAP

REFERENCE DOCUMENTS

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EIDTHONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES WOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE TO ODES.

CODE TYPE BUILDING

e Park 🔷

REFERENCE DOCUMENTS:
STRUCTURAL ANALYSIS: MORRISON HERSHFIELD #
CN6-95885/2300001
DATED: 09/15/2023

MOUNT ANALYSIS: INFINIGY # 1039-Z0001-B DATED: 09/12/2023

PM&A PROJECT NUMBER: 23CCTCTM-0001

EXISTING T-MOBILE ELECTRIC SERVICE: METER AND DISCONNECT: 200A 120/240V~1PH

CROWN CASTLE USA INC. SITE ACTIVITY REQUIREMENTS:

- NOTE: TO PROCEED. NOW NORK SHALL COMMENCE PRIOR TO COMEN CASTIL USA NC. WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE GREEK PRIOR TO ACCESSIVE/INSTITUTE OF THE TOWN USED THAT THE COSTS OF THE CLASSIVE CONTRACT THE COSTS OF THE CLASSIVE COSTS OF TH

- RECORD PLACE SHALL ADMERT ON MEN'ASSE, ALONG (LATEST EDITION), AND CHORM COSTILL USA INC.

 ALOSS IN CONSTRUCTION, TO CERTIFY THE SUPPORTION STRUCTURES (S) IN ACCORDANCE WITH MANIPAL ASSETTION ASSETTION, AND CONTROL OF THE MANIPAL ASSETTION ASSETT
- AUTHORITY RESIDENCE THE RESIDENCE OF THE WORK, ALL WORK OWERD DUT SHALL COMEN'S WITH COMENANTS AND PROPERTY RESIDENCE THE COMENTORS WAS AND THE WAS AND TH

- EQUIPMENT, ROOMS, AND SHELTERS.
 THE SITE SHALL BE GRADED TO CAUSE SUBFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
 THE SUBF GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED.
- SURFACE APPLICATION. THE OWNERS PROPERTY DISTURBED BY THE OWNER NO THE OWNERS PROPERTY DISTURBED BY THE OWNER OF DISTURBED OF DISTURBED BY THE OWNER PROPERTY OF DISTURBED OF DISTURBED BY THE OWNER PERSON AS SPECIFIED OF THE CONSTRUCTION OF DISTURBED OWNERS AND OWNER PROMICES SPECIFICATIONS. CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SWALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR RESIDUAL PRODUCTION OF THE CONFORMANCE WITH THE LOCAL GUIDELINES.

- THE COMMENT AND SALEHEAT OF THE COMMENT PRODUCTS PRODUCTS TO THE COMMENT COMME ONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND TURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION

- 22. PROM STE ON A DALT BASIS.

 NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

- ENERAL NOTES:

 FOR THE PURPOSE OF CONSTRUCTION SHAWNOR, THE FOLLOWING DEPINITIONS SHALL APPLY:
 CONSTRUCTION
 C

- WITH ANY SUCH CHARGE PROJUCTION FOR APPROVAL BY THE CARRIER AND CROWN CASTLE PROVIDED TO PROFICE MAN CONTRACTOR SHALL MAKE OF THE CARRIER AND CROWN CASTLE PROFICE TO PROFICE MAN THE PROFICE AND THE PROFICE AND THE PROFICE AND THE PROFICE AND THE PROFICE THE PROFILE THE PROFICE THE PROFILE THE
- DRABNIOS.

 THE CONTROL SHALL PROTECT DOSTING MERIOSIBLETS, PROTECTS, CURES, UNDSCAPPIG AND STRUCTURES. IN LICENSE AND STRUCTURES. IN LICENSE AND STRUCTURES. IN CONTROL CREATER STRUCTURES. IN CONTROL SHALL ERE RETURNED TO THE OWNER'S STRUCTURES. IN CONTROL SHALL ERE RETURNED TO THE OWNER'S STRUCTURES.
- OTHER TIEMS REMOVED FROM THE EXISTING FACILITY, ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION SHALL LEWE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

- ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONCRETION SPECIFICATION FOR CAST—IN-PLACE CONCRETI.

 VIEWERS IN OUR DIFFERENCE, SOLD ENGINE PRESSURE USED FOR DESIGN OF SLARS AND FOUNDATIONS IS ASSUMED.
- WHEN HAVE THE CONTROL OF THE CONTROL
- DPOSED TO FREEZE-T-HIM CYCLES SHALL CONTINN ARE DIFFERENCE AND AMERICAN CAMPAGE TO THE OFFICE AND THE OFFICE AN
- THE FOLLOWING UNBAUGH CONCRETE COVER SHALL BE PROVIDED FOR REPORTEDING STEEL UNLESS SHOWN OTHERWIS CONCRETE COST AGENT AND PERMANDENT OPERSON TO JUSTICE CONCRETE COST AGENT AND PERMANDENT OPERSON TO JUSTICE CONCRETE COST AGENT AND PERMANDENT OF JUSTICE CONCRETE CO

GREENFIELD GROUNDING NOTES:

- ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTINNG PROTECTION AND AC POWER GES'S) SHALL BE BE ACCORDANCE WITH THE NEC.

- ALL DROUGH ELECTRICES (INCLIDENT CHILDRAIN-CHOOK, ROOL, LIGHTHOUR PROTECTION AND AC POWER CESS) SHALL BE FORMED TO A CHILDRAIN AND RETAIL SUPPLINDING, GROUND THE CHILDRAIN AND RETAIL SUPPLINDING, GROUND AS TO PRODUCE AS RELEGIOUS AS RELEGIOUS AND RESIDENCE AND REPORT OF CONTINUES WITH LISTS OF CONTINUE 21

FLECTRICAL INSTALLATION NOTES:

- LECTRICAL INSTALLATION NOTES:

 ALL ELETTICAL ROTE SHALL BE FEFFORDED IN ACCORDANCE WITH THE PROJECT SPECHOLINGS, REC. AND ALL APPLICABLE TESTINGS, STEPL, AND COND. CODE/CORDANACES.

 BUILDINGS OF THE SHALL SHALL CONDUCT SO THAT ACCESS TO DUBPHORT IS NOT RICCORD.

 AND THE PROJECT ARE CHIMATED.

 AND THE PROJECT OF THE SHALL SHALL CONDUCT SET AND THE RECORDED BY THE REC.

 ALL CRICALLY SHALL BE ESPECIATION AND MARKES SHALL CONDUCT SHALL BE SHALL CONTION IN THE ACCORDANCE BY THE REC.

 ALL CRICALLY SHALL BE ESPECIATION AND MARKES SHALL CONDUCT SHALL BE SHALL CONTION IN THE ACCORDANCE BY THE REC.

 ALL CRICALLY SHALL BE ESPECIATION AND THE ACCORDANCE BY THE REC.

 ALL CRICALLY SHALL BE SHALL BY THE ACCORDANCE BY THE ACCORDANCE BY THE REC.

 ALL CRICALLY SHALL BE SHALL BY THE ACCORDANCE BY THE ACCORDANCE BY THE ACCORDANCE BY THE REC.

 ACCORDANCE BY THE RES. SHALL BY THE ACCORDANCE BY THE AC

- 15. ALTHOUGH AND CHOLORISE CONNECTIONS SHALL BE CHANNESSTUD, COURSESSING RIVEL LOSS, AND WERE USED BY HOUSE, AND A PROCESSION RIVEL LOSS AND WERE USED BY HOUSE, AND A PROCESSION RIVELED BY A PROCESS

APWA UNIFORM COLOR CODE:

WHITE PROPOSED EXCAVATION PINK TEMPORARY SURVEY MA RED ELECTRIC POWER LINES, CABLES,
CONDUIT, AND LIGHTING CABLES

AG OIL, STEAM, PETROLEUM, OR

YELLOW GAS, OIL, STEAM, PETROLE COMMUNICATION, ALARM OR SIGNAL LINES, CABLES, OR CONDUIT AND TRAFFIC LOOPS

GREEN SEWERS AND DRAIN LINES

PURPLE RECLAIMED WATER, IRRIGATION, AND SLURRY LINES

BLUE POTABLE WATER

CONDUCTOR COLOR CODE				
SYSTEM	CONDUCTOR	COLOR		
	A PHASE	BLACK		
120/240V, 1Ø	B PHASE	RED		
	NEUTRAL	WHITE		
	GROUND	GREEN		
120/20 6V, 3 Ø	A PHASE	BLACK		
	B PHASE	RED		
	C PHASE	BLUE		
	NEUTRAL	WHITE		
	GROUND	GREEN		
277/480V, 3Ø	A PHASE	BROWN		
	B PHASE	ORANGE OR PURPLE		
	C PHASE	YELLOW		
	NEUTRAL	GREY		
	GROUND	GREEN		
DC VOLTAGE	P0S (+)	RED**		
	NEG (-)	BLACK**		
SEE NEC 210	S/C)(1) AND	(2)		

ABBREVIATIONS:

ANTENNA
EXISTINO
FACILITY INTERFACE FRAME
GENERATOR
GLOBAL POSTITIONING SYSTEM
GLOBAL SYSTEM FOR MOBILE
MASTER (GROUND BAR
MICROWIND
NEW
MATIONAL ELECTRIC CODE
PROPEDSE
POWER PLANT
QUANTITY
QUANTITY ANT (E) HE GESSIELEGB WENN (NEW C) PROTECTION REPORT OF THE REPORT OF TH

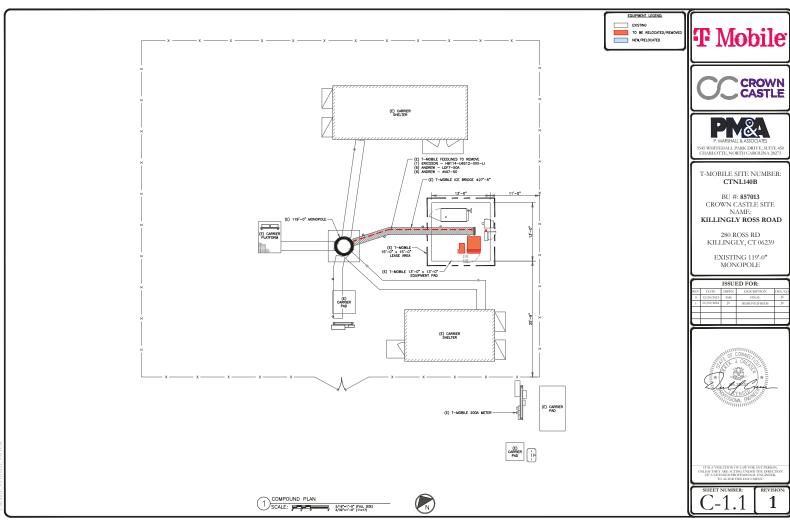
POWER PLANT
QUANTITY
RECTIFIER
RADIO BASE STATION
REMOTE ELECTRES TITS
RADIO FREQUENCY DATA SHEET
REMOTE RADIO HEAD
SMART INTEGRATED DEVICE
TOWER MOUNTED AMPLIFIER
TYPICAL
UNIVERSAL MOBILE TELECOMMUNI
WORK POINT

T Mobile

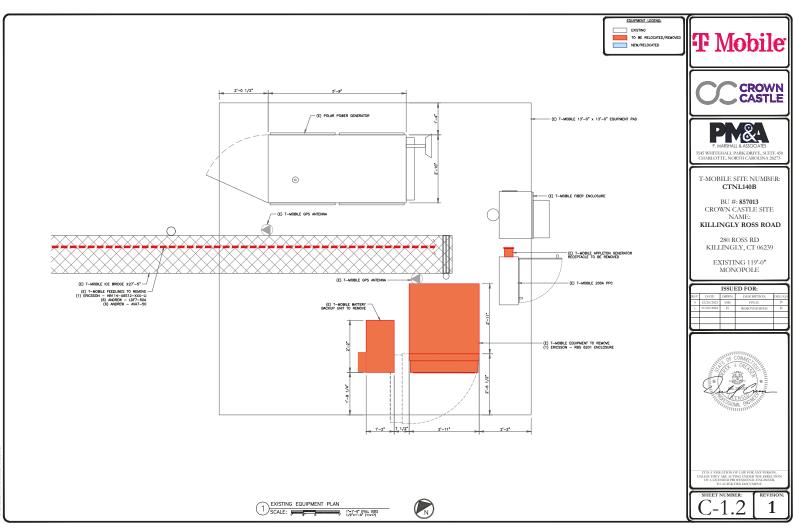
T-MORILE SITE NUMBER: CTNL140B

CROWN CASTLE SITE NAME: KILLINGLY ROSS ROAD

> 280 ROSS RD KILLINGLY, CT 06239

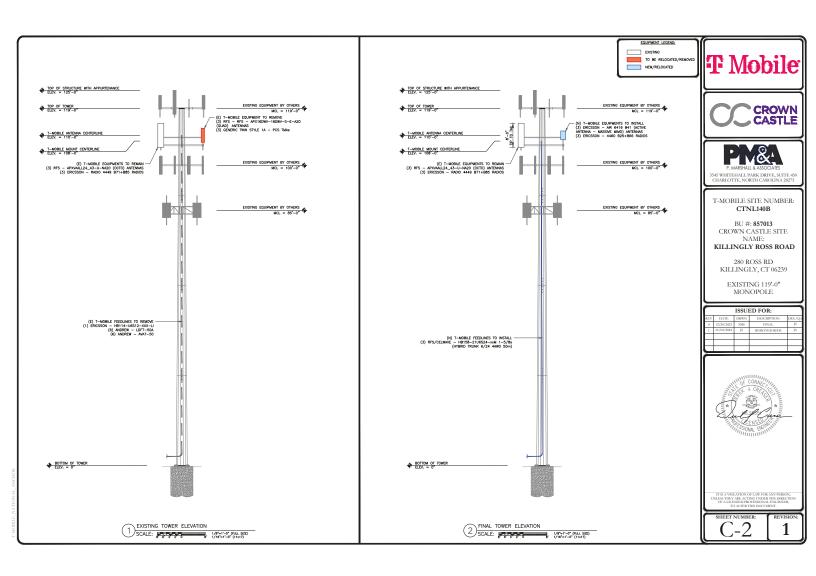

> > EXISTING 119'-0" MONOPOLE

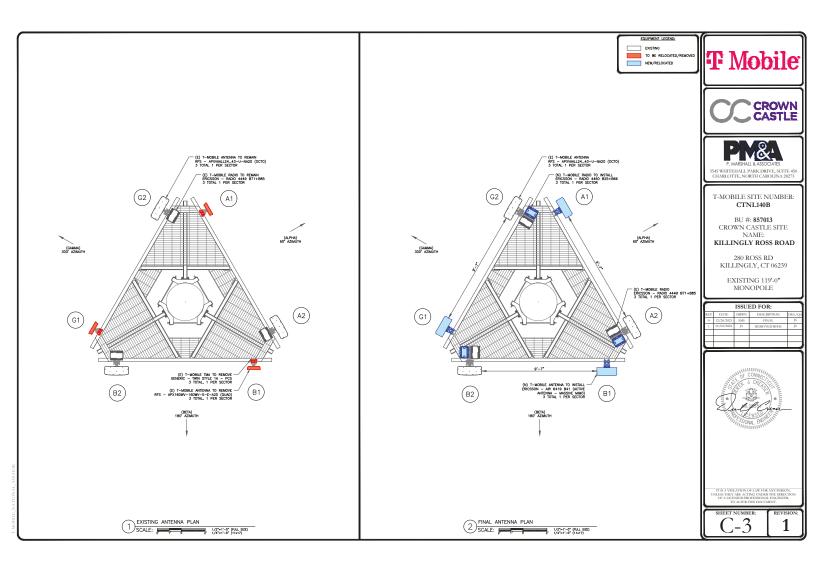
REV DATE DRWN DESCRIPTION D 12/20/2023 SMS FINAL 1 01/02/2024 JS REMOVED RFDS	ISSUED FOR:						
	ES./Q	Di	DESCRIPTION	DRWN	DATE	REV	
1 01/02/2024 JS REMOVED RFDS	JS	Т	FINAL.	SMS	12/20/2023	0	
	JS	Т	REMOVED RFDS	JS	01/02/2024	1	
		\top					
	_	\top					
	_	\top					

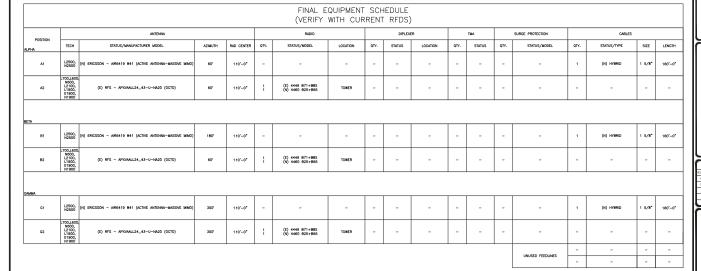


T-2

1




NATIONAL ANCHOR



S NATIONAL ANCHOR

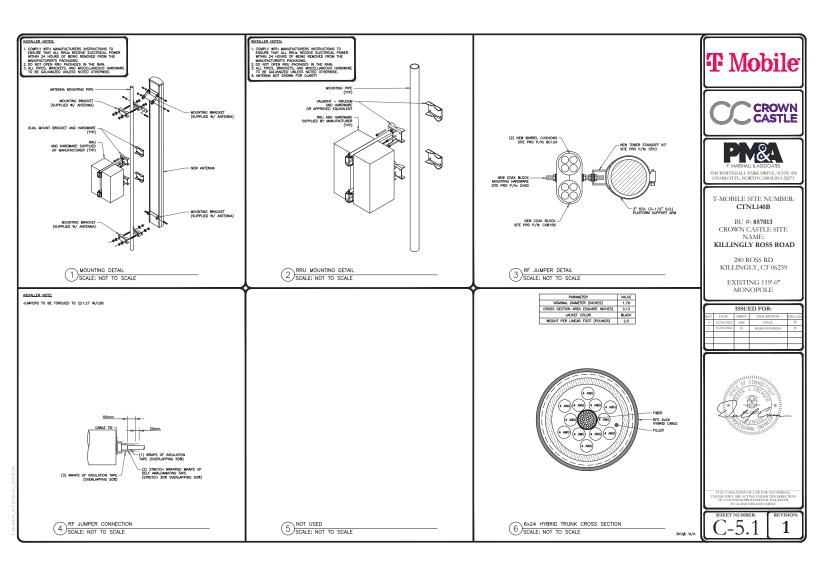
T Mobile

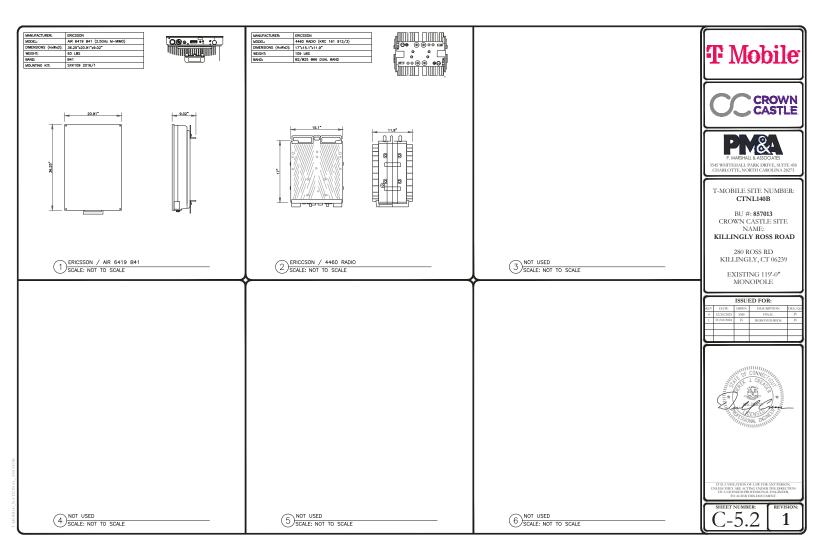
T-MOBILE SITE NUMBER: CTNL140B

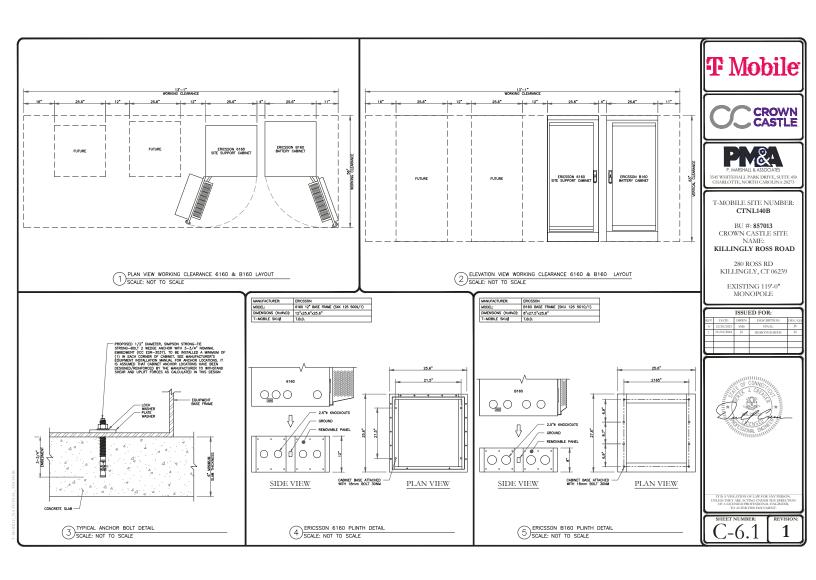
BU #: 857013 CROWN CASTLE SITE NAME: KILLINGLY ROSS ROAD

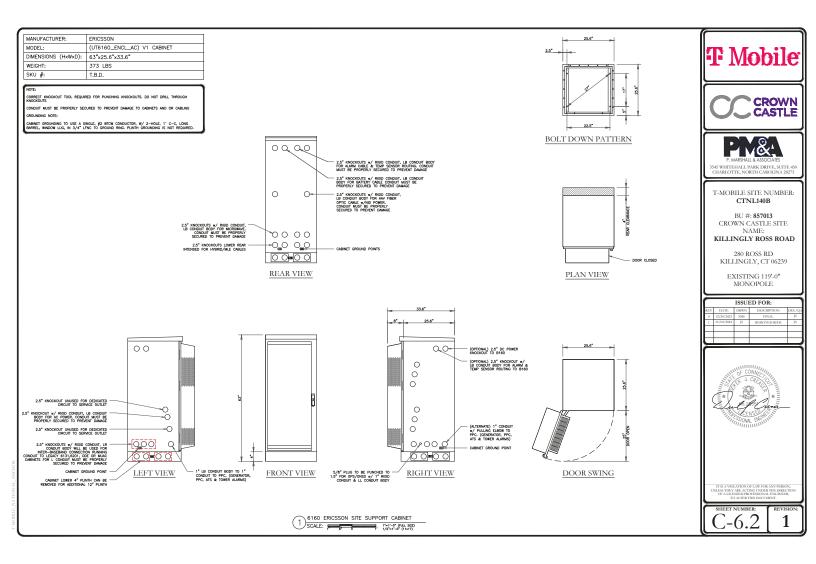
280 ROSS RD KILLINGLY, CT 06239

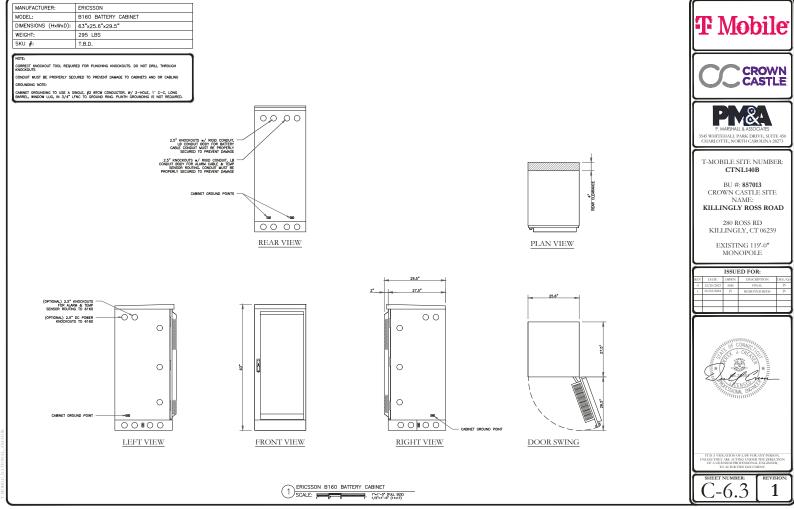
EXISTING 119'-0" MONOPOLE

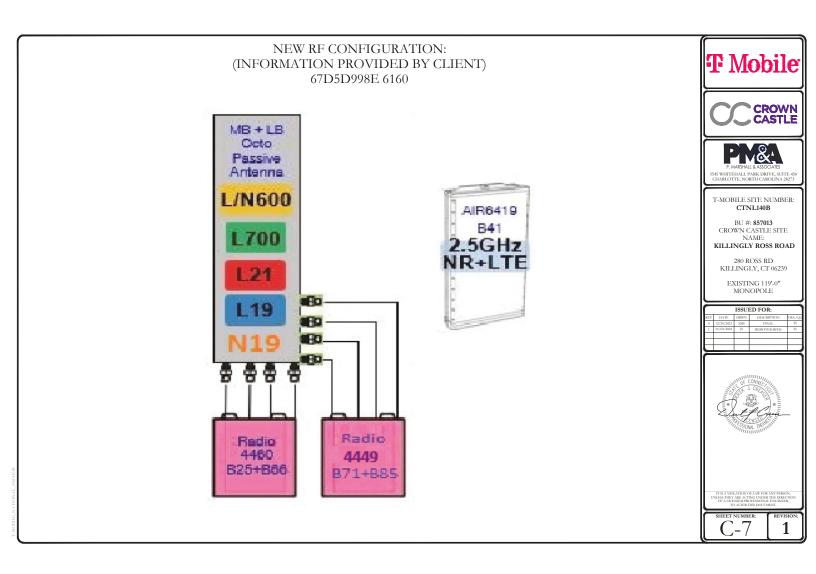

ISSUED FOR:				
EV	DATE	DRWN	DESCRIPTION	DES./QA
0	12/20/2023	SMS	FINAL.	JS
1	01/02/2024	JS	REMOVED RFDS	JS
=				-

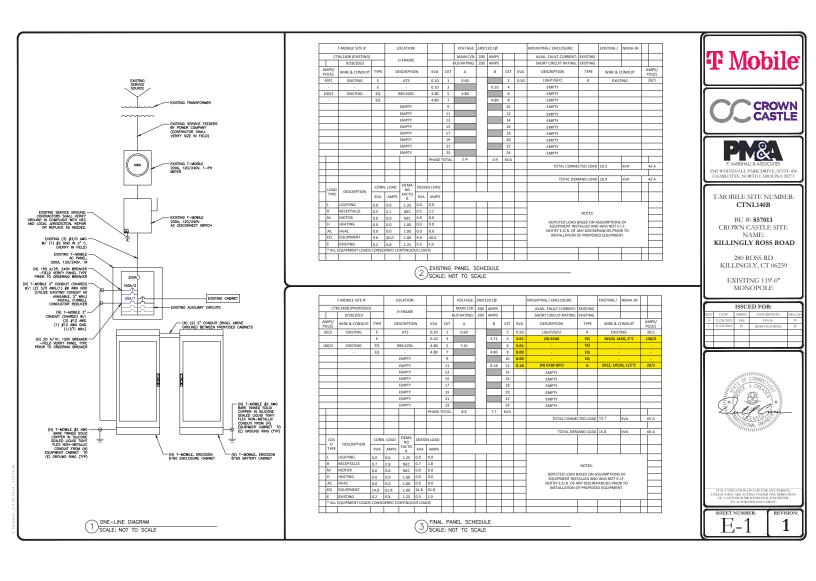


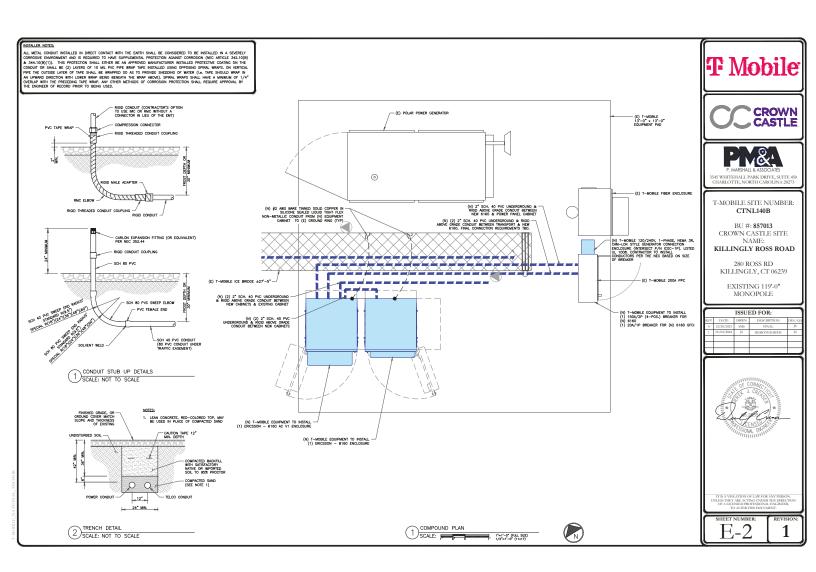

C-4

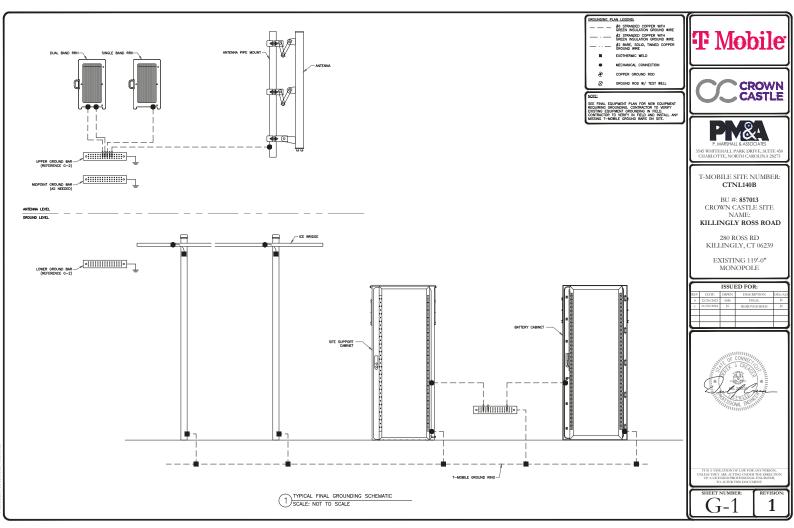

REVISIO 1

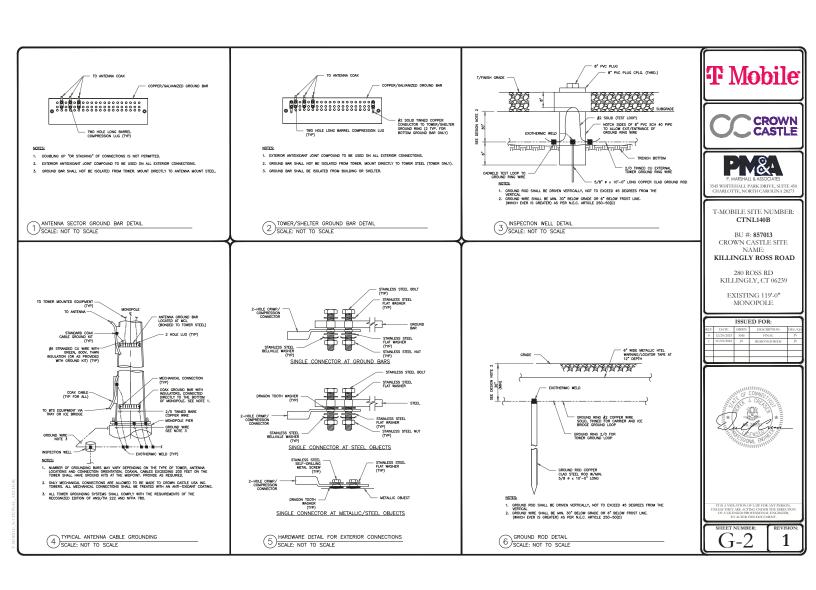

FINAL EQUIPMENT SCHEDULE SCALE: NOT TO SCALE

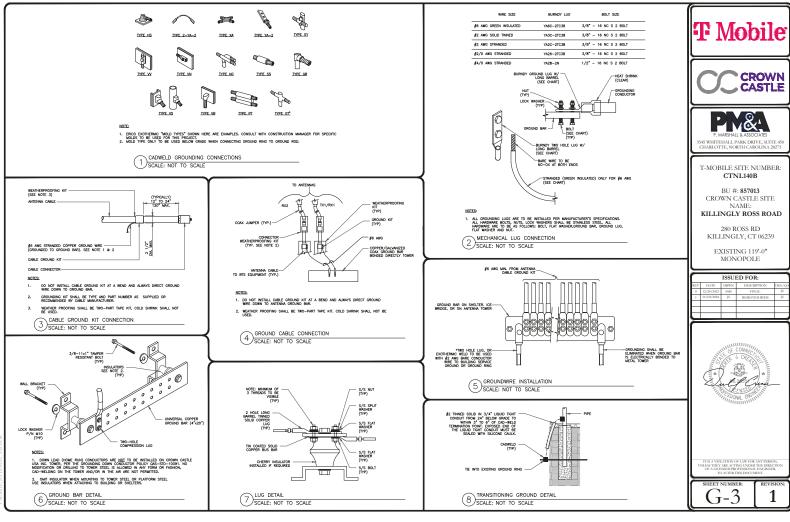












JE_NATIONAL_ANCHOR

T-MOBILE_NATIONAL_ANCHOR