

August 20, 2021

Melanie A. Bachman Executive Director Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modifications – AT&T Site CTL01289

AT&T Telecommunications Facility @ 1375 North Road, Dayville, CT 06241

Dear Ms. Bachman,

New Cingular Wireless, PCS, LLC ("AT&T") currently maintains a wireless telecommunications facility on an existing +/- 287 feet self-support lattice tower at the above referenced address (Latitude = 41.871500, Longitude = -71.821500) with an irregular shaped fenced compound of approximately 8,300 SF with 2 buildings (601' SF and 3,893 SF). Said self-support tower is owned and operated by American Tower Corporation.

AT&T desires to modify its existing telecommunications facility at 246' by: swapping six (6) antennas, adding nine (9) remote radio units, removing three (3) remote radio units, removing two (2) tower mounted amplifiers, adding six (6) Y-Cables, and adding one (1) OVP and mount modifications as more particularly detailed and described on the enclosed Construction Drawings prepared by Infinigy Engineering, PLLC, dated August 25, 2021. The groundwork will consist of: removing (1) BB6601 and installing (2) BB6630, (1) iXRE Router and (1) XMU. The overall height of the existing tower is and will remain at +/- 306 feet and no changes will be made to the compound dimensions.

Please accept this letter as notification pursuant to R.C.S.A §16-50j-73 for construction that constitutes an exempt modification pursuant to R.C.S.A §16-50j-72(b)(2). In accordance with R.C.S.A §16-50j-73, a copy of this letter is being sent to the following individuals: American Tower Corporation as Tower Operator/Owner and Property Owner; Jason Anderson, Chairman of the Town of Killingly Town Council as Chief Elected Official and Ann-Marie L. Aubrey, Director of Planning & Development of the Town of Killingly.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. §16-50j-72(b)(2). Specifically:

- 1. The proposed modifications will NOT result in an increase in the height of the existing structure.
- 2. The proposed modifications will NOT require an extension of the site boundary.

- 3. The proposed modifications will NOT increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the modified facility will NOT increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. *Please see the RF emissions calculation for AT&T's modified facility enclosed herewith*.
- 5. The proposed modifications will NOT cause an ineligible change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading. Please see the structural analysis dated December 22, 2020 prepared by American Tower Corporation enclosed herewith.

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A §16-50j-72(b)(2).

If you have any questions, please feel free to contact me.

Sincerely,

Kimberly Revak

krevak@clinellc.com

Site Acquisition Consultant – Agent for AT&T Centerline Communications, LLC 38 Treeline Court Fishkill, NY 12524 Phone: (845) 242-6152

Enclosures: Exhibit 1 – Property Card and GIS

Exhibit 2 – Construction Drawings dated 08/25/21

Exhibit 3 – Structural Analysis Report Exhibit 4 – Mount Reinforcement Drawings

Exhibit 5 – Post Modification Antenna Mount Analysis Report

Exhibit 6 – NIER Study Report Exhibit 7 – Original Tower Approval Exhibit 8 – (4) Notice Confirmations

Cc: American Tower Corporation, Tower Operator/Owner

American Tower Corporation, Property Owner

Jason Anderson, Chairman of the Town of Killingly Town Council as Chief Elected Official Ann-Marie L. Aubrey, Director of Planning & Development of the Town of Killingly

Exhibit 1 Property Card and GIS

TOWN OF KILLINGLY

Situs: 1375 NORTH RD

Map ID: 000072

Class: Communication Towers

Card: 1 of 1

Printed: June 4, 2020

CURRENT OWNER

AMERICAN TOWERS INC PO BOX 723597 ATLANTA GA 31139 GENERAL INFORMATION

Living Units
Neighborhood 117
Alternate Id 50-3
Vol / Pg 772/5

District 4

Zoning RURAL DEVELOPMENT Class COMMERCIAL

Property Notes

AT&T TRANSFER STATION

			Land Information		
Туре		Size	Influence Factors	Influence %	Value
Primary	AC	2.0700			67,870

Total Acres: 2.07

Spot:

Location:

	As	ssessment Info	rm ation		
	Assessed	Appraised	Cost	Income	Market
Land	47,530	67,900	67,900	0	0
Building	193,130	275,900	275,900	0	0
Total	240,660	343,800	343,800	0	0

Base Date

Value Flag COST APPROACH Gross Building:

Base Date of Value 10/01/2019 Effective Date of Value 10/01/2020

Manual Override Reason

		Entrance Infor	nation	
Date	ID	Entry Code	Source	
05/17/12	DB	View ed	Other	
05/16/12	DB	View ed	Other	
12/11/06	DH	Exterior	Other	

			Permit Info	ormation	
Date Issued	Number	Price	Purpose		% Complete
09/18/19	27112	20,000	97 BPP	Install 6 Repl Antennas, Rrus & Ot	995
08/21/18	26263	20,000	73 CREP	Replace Existing Antennas With N	997
07/09/18	26159	80,000	51 BLDG	Install Tmobile Cabinets On Concre	995
11/15/17	25690	15,000	97 BPP	Repl 6 Antennae Panels & Add 6 I	995
08/09/17	25460	55,000	72 CREN	Structural Modifications To Existin	997

		Sales/Owner	ship History	
Transfer Date	Price Type	Validity	Deed Reference Deed Type	Grantee
02/16/00	186,528 Land & Bldg	Love And Affection Sale	772/5	AMERICAN TOWERS INC

COMMERCIAL PROPERTY RECORD CARD

Interior/Exterior Valuation Detail

2020

TOWN OF KILLINGLY

Outbuilding Data

Situs: 1375 NORTH RD Parcel Id: 000072 Class: Communication Towers Card: 1 of 1 Printed: June 4, 2020

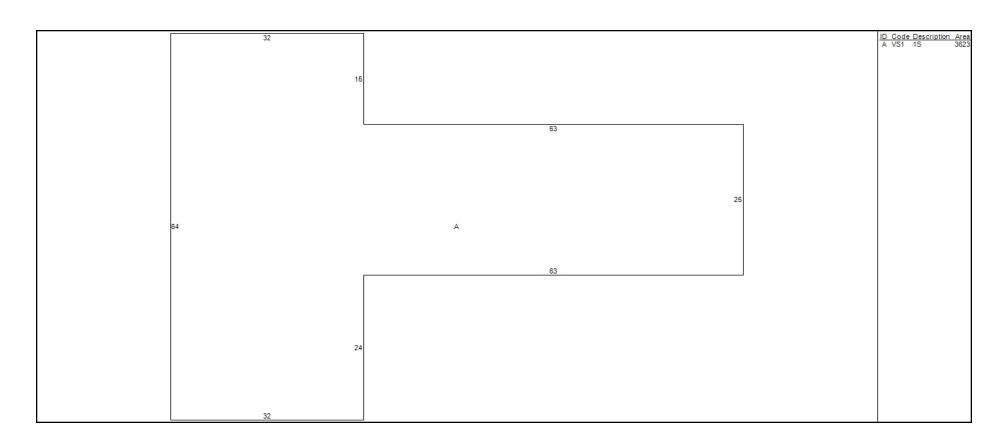
Building Information

Year Built/Eff Year 1960 /
Building # 1
Structure Type | Radio/Tv Transmitter |
Identical Units | Total Units |
Grade | B# Covered Parking

Uncovered Parking
DBA AMERICAN TOWER

		Building Ot	her Features	
	Line Type +/-	Meas1 Meas2 # Stops Ident Units	Line Type +/- Meas1	Meas 2 # Stops Ident Units
эΙ				
,				

							Inter	ior/Exterior	Inform ation						
Line	Level Fro	om - To	Int Fin	Area	Perim	Use Type	Wall Height	Ext Walls	Construction	Partitions	Heating	Cooling	Plumbing	Physical	Functional
1	01	01	100	2,048	158	Light Manufactur	rin 16	Concrete BI	Wood Frame/Joist/B	Normal	None	None	Normal	4	4
2	01	01	100	1,575	151	Light Manufactur	rin 12	Concrete BI	Wood Frame/Joist/B	Normal	None	None	Normal	4	4


Line	Area Use Type	% Good % Complete	Use Value/RCNLD	Line	Type	Yr Blt	Meas1	Meas2	Qty	Area	Grade	Phy	Fun	Value
1	2,048 Light Manufacturing	60	77,300	1	Fence Chai	1960	6	240	1	1,440	С	3	3	1,780
2	1,575 Light Manufacturing	60	57,830	2	Asph Pav	1960	1	3,700	1	3,700	С	3	3	4,000
				3	Tow er Cell	1960	1	300	1	300	С	3	3	135,000

Situs: 1375 NORTH RD

COMMERCIAL PROPERTY RECORD CARD 2020

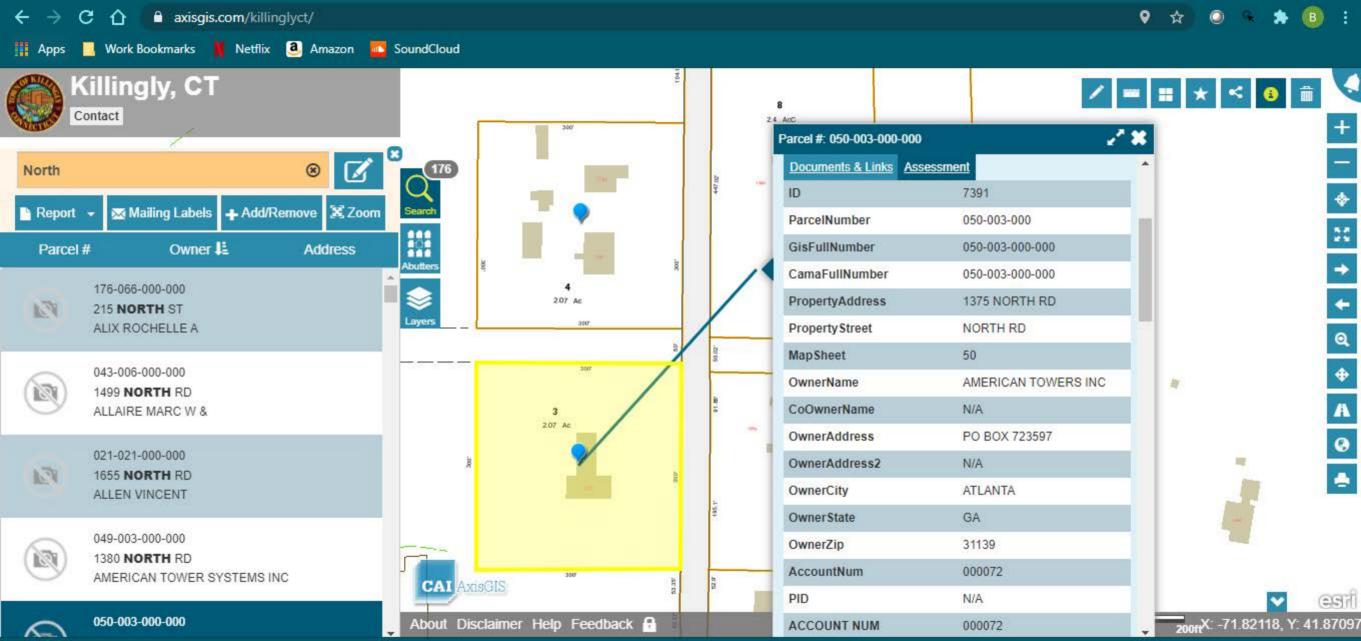
TOWN OF KILLINGLY

Card: 1 of 1 Printed: June 4, 2020 Parcel Id: 000072 Class: Communication Towers

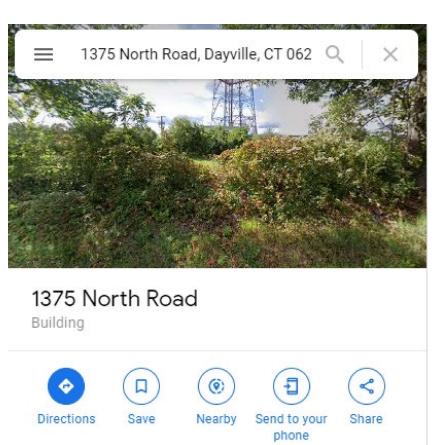
Addtional Property Photos

COMMERCIAL PROPERTY RECORD CARD 2020

TOWN OF KILLINGLY


Situs: 1375 NORTH RD Parcel Id: 000072 Class: Communication Towers Card: 1 of 1 Printed: June 4, 2020

						Inco	ome Detail (li	ncludes al	ll Build	dings on Pa	rcel)			
		nc Model ModDescription	Units	Net Area	Incom e Rate	Econ Adjust	Potential Gross M Income		/ac <i>A</i> Adj	Additional Income	Effective Expense Gross Model % Income	•	Total Expenses	Net Operating Income
07	S	Light Manuf/Warehouse	0	3,623						0				


		Apartment	Detail - Bu	uilding 1 of 1			Building Cost Detail - Building	ng 1 of 1
Line	Use Type Per Blo	g Beds	Baths	Units	Rent	Income		
							Total Gross Building Area	3,623
							Replace, Cost New Less Depr Percent Complete Number of Identical Units Economic Condition Factor Final Building Value	135,130 100 1 1 135,130
							Value per SF	37.30

Notes - Building 1 of 1

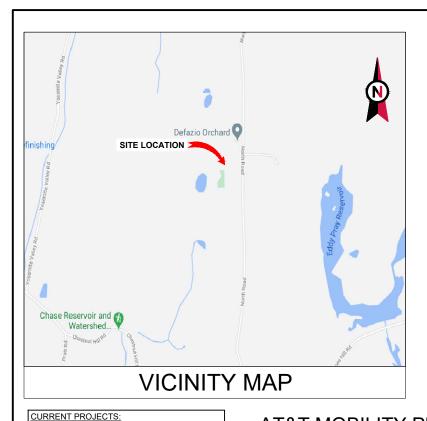

Income Summary (Includes all Build	ing on Parcel)
Total Net Income Capitalization Rate Sub total Residual Land Value Final Income Value	0.000000
Total Gross Rent Area Total Gross Building Area	3,623 3,623

Exhibit 2 Construction Drawings

AMERICAN TOWER®

ATC SITE NAME: EAST KILLINGLY NORTH

ATC SITE NUMBER: 88011

AT&T PACE NUMBER: MRCTB048458

AT&T SITE ID: CTL01289 AT&T FA CODE:10141309

AT&T SITE NAME: KILLINGLY CT NORTH ROAD DAS ISE

SITE ADDRESS: 1375 NORTH ROAD DAYVILLE, CT 06241

LOCATION MAP

LTE 2C - MRCTB048458 LTE 3C - MRCTB048536

LTE 3C - MRCTB048536 LTE 4C - MRCTB048628 5G NR 1DR-1 - MRCTB048559 4TX4RX SOFTWARE RETROFIT - MRCTB048517 AT&T MOBILITY PLAN: LTE 2C, LTE 3C, LTE 4C, 5G NR 1DR-1, 4TX4RX SOFTWARE RETROFIT

AT&T MOBILITY
ANTENNA AMENDMENT PLAN

41X4KX SOFTWARE RETROFIT - MRCTB048517		/ \li \	TENNA AMENDMENT FLAN					
COMPLIANCE CODE	PROJECT SU	JMMARY	PROJECT DESCRIPTION		SHEET INDEX			
ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED ACCORDANCE WITH THE CURRENT EDITIONS OF THE	SITE ADDR		THE PROPOSED PROJECT INCLUDES MODIFYING GROUND BASED AND TOWER MOUNTED EQUIPMENT AS INDICATED PER BELOW:	SHEET NO:	DESCRIPTION:	REV:	DATE:	BY:
OLLOWING CODES AS ADOPTED BY THE LOCAL OVERNMENT AUTHORITIES. NOTHING IN THESE PLANS IS	1375 NORTH		TOWER WORK: REMOVE (6) ANTENNA(s), (2) TMAs AND (3) RRH(s)	G-001	TITLE SHEET	1	8/25/2021	NL
D BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO HESE CODES. 2018 INTERNATIONAL BUILDING CODE (IBC)	COUNTY: WINDHA	AM COUNTY	INSTALL (6) ANTENNA(s), (9) RRH(s), (6) Y CABLES, (1) OVP AND MOUNT MODIFICATIONS	G-002 C-001	GENERAL NOTES OVERALL SITE PLAN	1	8/25/2021 8/25/2021	NL NL
2017 NATIONAL ELECTRIC CODE (NEC) LOCAL BUILDING CODE	GEOGRAPHIC CO		EXISTING (4) ANTENNA(s), (4) TMA(s), (12) DIPLEXER(s) AND (6) COAX CABLE(s) TO REMAIN	C-101	DETAILED SITE PLAN	1	8/25/2021	NL
CITY/COUNTY ORDINANCES	LONGITUDE: 71°	49' 17.6" W	GROUND WORK:	C-102	EQUIPMENT PLAN	1	8/25/2021	NL
	GROUND ELEVATION	DN: 745' AMSL	REMOVE (1) BB6601	C-201	TOWER ELEVATION	1	8/25/2021	NL
			INSTALL (2) BB6630, (1) iXRE ROUTER AND (1) XMU	C-401	ANTENNA INFORMATION & SCHEDULE	1	8/25/2021	NL
			EXISTING (1) RBS 3206 TO REMAIN	C-501	MOUNT DETAILS	1	8/25/2021	NL
	PROJECT TEAM TOWER OWNER: APPLICANT:		C-502	EQUIPMENT SPECIFICATIONS	1	8/25/2021	NI	
		PROJECT NOTES		GROUNDING DETAILS	1	8/25/2021	NL	
	TOWER OWNER:	APPLICANT:	THE FACILITY IS UNMANNED. A TECHNICIAN WILL VISIT THE SITE APPROXIMATELY ONCE	R-601	SUPPLEMENTAL	1	8/25/2021	NL
	AMERICAN TOWER 10 PRESIDENTIAL WAY	AT&T MOBILITY	A MONTH FOR ROUTINE INSPECTION AND MAINTENANCE. 3. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT LAND	R-602	SUPPLEMENTAL	1	8/25/2021	NL
UTILITY COMPANIES	- WOBURN, MA 01801		DISTURBANCE OR EFFECT OF STORM WATER DRAINAGE. 4. NO SANITARY SEWER, POTABLE WATER OR TRASH	R-603 R-604	SUPPLEMENTAL SUPPLEMENTAL	1	8/25/2021 8/25/2021	NL NL
POWER COMPANY: CT LIGHT & POWER	ENGINEER: INFINIGY ENGINEERING, PLLC		DISPOSAL IS REQUIRED. 5. HANDICAP ACCESS IS NOT REQUIRED.	R-605	SUPPLEMENTAL	1	8/25/2021	NL
PHONE: (800) 286-2000 TELEPHONE COMPANY: FRONTIER COMMUNICATIONS	1033 WATERVLIET SHAKER RD ALBANY, NY 12205		PROJECT LOCATION DIRECTIONS	R-606	SUPPLEMENTAL	1	5/15/2021	ED
PHONE: (800) 921-8102			TROSECT ECOATION BIRECTIONS	R-607	SUPPLEMENTAL	1	8/25/2021	NL
	PROPERTY OWNER:			R-608	SUPPLEMENTAL	1	8/25/2021	NI
N/A 1375 NORTH ROAD KILLINGLY, CT 06241		TAKE ROUTE 395 TO EXIT 97. AT END OF THE RAMP, TAKE A LEFT ONTO 44 EAST. AFTER YOU CROSS FIVE MILE RIVER, GO ABOUT ANOTHER .5 MILES AND TAKE A RIGHT ONTO EAST PUTNUM ROAD. AT THE 3RD STOP SIGN, TAKE A LEFT. LOOK	R-609	SUPPLEMENTAL	1	8/25/2021	NI	
Know what's below. Call before you dig.	N/A 1375 NORTH ROAD KILLINGLY, CT 06241 Know what's below.		FOR NORTH ROAD ON YOUR RIGHT. TAKE NORTH ROAD. TOWER IS ON THE RIGHT.					

INFINIGY& ENGINEERING, PLLC 1033 WATERVLIET SHAKER ROAD

 REV.
 DESCRIPTION
 BY
 DATE

 0
 PRELIM
 BHE
 01/21/21

 0
 FOR CONSTRUCTION
 EDZ
 05/15/21

 1
 FOR CONSTRUCTION
 NL
 08/25/21

ATC SITE NUMBER:

88011

ATC SITE NAME:

EAST KILLINGLY NORTH

AT&T MOBILITY SITE NAME:

MRCTB048458

SITE ADDRESS: 1375 NORTH ROAD DAYVILLE, CT 06241

SEAL:

OF CONNEC ON A STATE OF

DATE DRAWN:	01/21/21
ATC JOB NO:	13320909
CUSTOMER ID:	MRCTB048458
CUSTOMER #:	CTL01289

TITLE SHEET

SHEET NUMBER:

G-001

1

REVISION:

GENERAL CONSTRUCTION NOTES:

- OWNER FURNISHED MATERIALS, AT&T MOBILITY "THE COMPANY" WILL PROVIDE AND THE 22. CONTRACTOR WILL INSTALL
 - A. BTS EQUIPMENT FRAME (PLATFORM) AND ICEBRIDGE SHELTER (GROUND BUILD/CO-LOCATE ONLY)
 - AC/TELCO INTERFACE BOX (PPC)
 - ICE BRIDGE (CABLE TRAY WITH COVER) (GROUND BUILD/CO-LOCATE ONLY, GC TO FURNISH AND INSTALL FOR ROOFTOP INSTALLATION)

 - D. TOWERS, MONOPOLES
 - TOWER LIGHTING GENERATORS & LIQUID PROPANE TANK
 - ANTENNA STANDARD BRACKETS, FRAMES AND PIPES FOR MOUNTING
 - ANTENNAS (INSTALLED BY OTHERS)
 - TRANSMISSION LINE
 - TRANSMISSION LINE JUMPERS
 - TRANSMISSION LINE CONNECTORS WITH WEATHERPROOFING KITS
 - TRANSMISSION LINE GROUND KITS
 - HANGERS
 - HOISTING GRIPS
 - O. BTS EQUIPMENT
- THE CONTRACTOR IS RESPONSIBLE TO PROVIDE ALL OTHER MATERIALS FOR THE COMPLETE INSTALLATION OF THE SITE INCLUDING, BUT NOT LIMITED TO, SUCH
 MATERIALS AS FENCING, STRUCTURAL STEEL SUPPORTING SUB-FRAME FOR PLATFORM ROOFING LABOR AND MATERIALS GROUNDING RINGS GROUNDING WIRES COPPER-CLAD OR XIT CHEMICAL GROUND ROD(S), BUSS BARS, TRANSFORMERS AND DISCONNECT SWITCHES WHERE APPLICABLE, TEMPORARY ELECTRICAL POWER, CONDUIT, LANDSCAPING COMPOUND STONE, CRANES, CORE DRILLING, SLEEPERS AND RUBBER MATTING, REBAR, CONCRETE CAISSONS, PADS AND/OR AUGER MOUNTS,
 MISCELLANEOUS FASTENERS, CABLE TRAYS, NON-STANDARD ANTENNA FRAMES AND ALL OTHER MATERIAL AND LABOR REQUIRED TO COMPLETE THE JOB ACCORDING TO THE DRAWINGS AND SPECIFICATIONS. IT IS THE POSITION OF AT&T MOBILITY TO APPLY FOR PERMITTING AND CONTRACTOR RESPONSIBLE FOR PICKUP AND PAYMENT OF
- ALL WORK SHALL CONFORM TO ALL CURRENT APPLICABLE FEDERAL, STATE, AND LOCAL CODES, INCLUDING ANSI/EIA/TIA-222, AND COMPLY WITH ATC CONSTRUCTION
- CONTRACTOR SHALL CONTACT LOCAL 811 FOR IDENTIFICATION OF UNDERGROUND
- CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATING ALL REQUIRED INSPECTIONS.
- ALL DIMENSIONS TO, OF, AND ON EXISTING BUILDINGS, DRAINAGE STRUCTURES, AND SITE IMPROVEMENTS SHALL BE VERIFIED IN FIELD BY CONTRACTOR WITH ALL DISCREPANCIES REPORTED TO THE ENGINEER.
- DO NOT CHANGE SIZE OR SPACING OF STRUCTURAL ELEMENTS
- DETAILS SHOWN ARE TYPICAL; SIMILAR DETAILS APPLY TO SIMILAR CONDITIONS UNLESS 32.
- THESE DRAWINGS DO NOT INCLUDE NECESSARY COMPONENTS FOR CONSTRUCTION SAFETY WHICH SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR
- CONTRACTOR SHALL BRACE STRUCTURES UNTIL ALL STRUCTURAL ELEMENTS NEEDED 33. FOR STABILITY ARE INSTALLED. THESE ELEMENTS ARE AS FOLLOWS: LATERAL BRACING,
- CONTRACTOR SHALL DETERMINE EXACT LOCATION OF EXISTING UTILITIES, GROUNDS DRAINS, DRAIN PIPES, VENTS, ETC, BEFORE COMMENCING WORK
- INCORRECTLY FABRICATED, DAMAGED, OR OTHERWISE MISFITTING OR NONCONFORMING MATERIALS OR CONDITIONS SHALL BE REPORTED TO THE AT&T MOBILITY REP PRIOR TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH REMEDIAL ACTION SHALL REQUIRE WRITTEN APPROVAL BY THE AT&T MOBILITY REP PRIOR TO
- EACH CONTRACTOR SHALL COOPERATE WITH THE AT&T MOBILITY REP, AND COORDINATE HIS WORK WITH THE WORK OF OTHERS
- CONTRACTOR SHALL REPAIR ANY DAMAGE CAUSED BY CONSTRUCTION OF THIS PROJECT TO MATCH EXISTING PRE-CONSTRUCTION CONDITIONS TO THE SATISFACTION OF THE AT&T MOBILITY CONSTRUCTION MANAGER
- ALL CABLE/CONDUIT ENTRY/EXIT PORTS SHALL BE WEATHERPROOFED DURING
- WHERE EXISTING CONDITIONS DO NOT MATCH THOSE SHOWN IN THIS PLAN SET, CONTRACTOR SHALL NOTIFY THE AT&T MOBILITY REP AND ENGINEER OF RECORD
- CONTRACTOR SHALL ENSURE ALL SUBCONTRACTORS ARE PROVIDED WITH A COMPLETE AND CURRENT SET OF DRAWINGS AND SPECIFICATIONS FOR THIS PROJECT.
- CONTRACTOR SHALL REMOVE ALL RUBBISH AND DEBRIS FROM THE SITE AT THE END OF
- CONTRACTOR SHALL COORDINATE WORK SCHEDULE WITH AMERICAN TOWER CORPORATION (ATC) AND TAKE PRECAUTIONS TO MINIMIZE IMPACT AND DISRUPTION OF OTHER OCCUPANTS OF THE FACILITY.
- CONTRACTOR SHALL FURNISH AT&T MOBILITY AND AMERICAN TOWER CORPORATION (ATC) WITH A PDF MARKED UP AS-BUILT SET OF DRAWINGS UPON COMPLETION OF
- PRIOR TO SUBMISSION OF BID, CONTRACTOR SHALL COORDINATE WITH AT&T MOBILITY REP TO DETERMINE WHAT, IF ANY, ITEMS WILL BE PROVIDED. ALL ITEMS NOT PROVIDED SHALL BE PROVIDED AND INSTALLED BY THE CONTRACTOR. CONTRACTOR WILL INSTALL

- ALL ITEMS PROVIDED.
- PRIOR TO SUBMISSION OF BID. CONTRACTOR SHALL COORDINATE WITH AT&T MOBILITY REP TO DETERMINE IF ANY PERMITS WILL BE OBTAINED BY CONTRACTOR. ALL
 REQUIRED PERMITS NOT OBTAINED BY AT&T MOBILITY MUST BE OBTAINED, AND PAID FOR, BY THE CONTRACTOR
- 23. CONTRACTOR SHALL INSTALL ALL SITE SIGNAGE IN ACCORDANCE WITH AT&T MOBILITY
- CONTRACTOR SHALL SUBMIT ALL SHOP DRAWINGS TO AT&T MOBILITY FOR REVIEW AND APPROVAL PRIOR TO FABRICATION.
- 25. ALL EQUIPMENT SHALL BE INSTALLED ACCORDING TO MANUFACTURER'S SPECIFICATIONS AND LOCATED ACCORDING TO AT&T MOBILITY SPECIFICATIONS, AND AS SHOWN IN THESE PLANS.
- THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES AND PROCEDURES AND FOR COORDINATING ALL PORTIONS OF THE WORK UNDER THE CONTRACT
- 27. CONTRACTOR SHALL NOTIFY AT&T MOBILITY REP A MINIMUM OF 48 HOURS IN ADVANCE OF POURING CONCRETE OR BACKFILLING ANY UNDERGROUND UTILITIES, FOUNDATIONS OR SEALING ANY WALL, FLOOR OR ROOF PENETRATIONS FOR ENGINEERING REVIEW
- CONTRACTOR SHALL BE RESPONSIBLE FOR SITE SAFETY INCLUDING COMPLIANCE WITH ALL APPLICABLE OSHA STANDARDS AND RECOMMENDATIONS AND SHALL PROVIDE ALL NECESSARY SAFETY DEVICES INCLUDING PPE AND PPM AND CONSTRUCTION DEVICES SUCH AS WELDING AND FIRE PREVENTION, TEMPORARY SHORING, SCAFFOLDING RENCH BOXES/SLOPING, BARRIERS, ETC.
- THE CONTRACTOR SHALL PROTECT AT HIS OWN EXPENSE, ALL EXISTING FACILITIES AND SUCH OF HIS NEW WORK LIABLE TO INJURY DURING THE CONSTRUCTION PERIOD. ANY DAMAGE CAUSED BY NEGLECT ON THE PART OF THIS CONTRACTOR OR HIS REPRESENTATIVES, OR BY THE ELEMENTS DUE TO NEGLECT ON THE PART OF THIS CONTRACTOR OR HIS REPRESENTATIVES. FITHER TO THE EXISTING WORK, OR TO HIS WORK OR THE WORK OF ANY OTHER CONTRACTOR, SHALL BE REPAIRED AT HIS EXPENSE TO THE OWNER'S SATISFACTION.
- 30. ALL WORK SHALL BE INSTALLED IN A FIRST CLASS, NEAT AND WORKMANLIKE MANNER BY MECHANICS SKILLED IN THE TRADE INVOLVED. THE QUALITY OF WORKMANSHIP SHALL BE SUBJECT TO THE APPROVAL OF THE AT&T MOBILITY REP. ANY WORK FOUND BY THE AT&T MOBILITY, REP TO BE OF INFERIOR QUALITY AND/OR WORKMANSHIP SHALL BE REPLACED AND/OR REWORKED AT CONTRACTOR EXPENSE UNTIL APPROVAL IS
- IN ORDER TO ESTABLISH STANDARDS OF QUALITY AND PERFORMANCE, ALL TYPES OF MATERIALS LISTED HEREINAETER BY MANUFACTURER'S NAMES AND/OF MANUFACTURER'S CATALOG NUMBER SHALL BE PROVIDED BY THESE MANUFACTURERS
- AT&T MOBILITY FURNISHED EQUIPMENT SHALL BE PICKED-UP AT THE AT&T MOBILITY WAREHOUSE, NO LATER THAN 48HR AFTER BEING NOTIFIED INSURED, STORED, UNCRATE, PROTECTED AND INSTALLED BY THE CONTRACTOR WITH ALL APPURTENANCES REQUIRED TO PLACE THE EQUIPMENT IN OPERATION. READY FOR USE. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE EQUIPMENT AFTER PICKING IT
- AT&T MOBILITY OR HIS ARCHITECT/ENGINEER RESERVES THE RIGHT TO REJECT ANY FOLIPMENT OR MATERIALS WHICH, IN HIS OWN OPINION ARE NOT IN COMPLIANCE WITH THE CONTRACT DOCUMENTS, EITHER BEFORE OR AFTER INSTALLATION AND THE EQUIPMENT SHALL BE REPLACED WITH EQUIPMENT CONFORMING TO THE REQUIREMENTS OF THE CONTRACT DOCUMENTS BY THE CONTRACTOR AT NO COST TO AT&T MOBILITY OR THEIR ARCHITECT/ENGINEER

SPECIAL CONSTRUCTION ANTENNA INSTALLATION NOTES:

- WORK INCLUDED
 - A. ANTENNA AND COAXIAL CABLES ARE FURNISHED BY AT&T MOBILITY UNDER A SEPARATE CONTRACT. THE CONTRACTOR SHALL ASSIST ANTENNA INSTALLATION CONTRACTOR IN TERMS OD COORDINATION AND SITE ACCESS. ERECTION SUBCONTRACTOR SHALL BE RESPONSIBLE FOR THE PROTECTION OF PERSONNEL AND EQUIPMENT.
 - INSTALL ANTENNA AS INDICATE ON DRAWINGS AND AT&T MOBILITY
 - C. INSTALL GALVANIZED STEEL ANTENNA MOUNTS AS INDICATED ON DRAWINGS
 - D. INSTALL FURNISHED GALVANIZED STEEL OR ALUMINUM WAVEGUIDE AND
 - CONTRACTOR SHALL PROVIDE FOUR (4) SETS OF SWEEP TESTS USING ANRITZU-PACKARD 8713B RF SCALAR NETWORK ANALYZER, SUBMIT FREQUENCY DOMAIN REFLECTOMETER(EDR) TESTS RESULTS TO THE PROJECT MANAGER SWEEP TESTS SHALL BE AS PER ATTACHED RFS "MINIMUM FIELD TESTING RECOMMENDED FOR ANTENNA AND HELIAX COAXIAL CABLE SYSTEMS" DATED 10/5/93. TESTING SHALL BE PERFORMED BY AN INDEPENDENT TESTING SERVICE AND BE BOUND AND SUBMITTED WITHIN ONE WEEK OF WORK COMPLETION.
 - INSTALL COAXIAL CABLES AND TERMINATING BETWEEN ANTENNAS AND EQUIPMENT PER MANUFACTURER'S RECOMMENDATIONS. WEATHERPROOF ALL CONNECTIONS BETWEEN THE ANTENNA AND EQUIPMENT PER MANUFACTURER'S REQUIREMENTS. TERMINATE ALL COAXIAL CABLE THREE (3) FEET IN EXCESS OF ENTRY PORT LOCATION UNLESS OTHERWISE STATED.
 - G. ANTENNA AND COAXIAL CABLE GROUNDING.

- ALL EXTERIOR #6 GREED GROUND WIRE "DAISY CHAIN" CONNECTIONS ARE TO BE WEATHER SEALED WITH RFS CONNECTORS/SPLICE WEATHERPROOFING KIT #221213 OR
- ALL COAXIAL CABLE GROUNDING KITS ARE TO BE INSTALLED ON STRAIGHT RUNS OF

ELECTRICAL NOTES:

- ELECTRICAL DESIGN SHALL BE PERFORMED BY ELECTRICAL CONTRACTOR. STRUCTURAL DESIGN SHALL BE PERFORMED BY GENERAL CONTRACTOR. ELECTRICAL CONTRACTOR SHALL ENSURE THAT ALL WORK COMPLIES WITH ALL APPLICABLE LOCAL AND STATE CODES AND NATIONAL ELECTRICAL CODE.
- ALL SUGGESTED ELECTRICAL ELEMENTS (SUCH AS BREAKER SIZES, WIRE SIZES, CONDUITS SIZES ARE FOR ZONING PURPOSES ONLY. IT IS THE RESPONSIBILITY TO OF THE ELECTRICAL CONTRACTOR TO CONFIRM COMPLIANCE WITH LOCAL ELECTRICAL CODES AND PASS ALL APPLICABLE AND NECESSARY INSPECTIONS. IN SOME EVENTS, IT MAY BE NECESSARY TO PERFORM AN ELECTRICAL LOAD STUDY TO VERIFY THE CAPACITY OF THE EXISTING SERVICE. THIS IS NOT THE RESPONSIBILITY OF CONCORDIA T IS THE RESPONSIBILITY OF THE ELECTRICAL CONTRACTOR
- CONTRACTOR SHALL FIELD LOCATE ALL BELOW GRADE GROUND LINES AND UTILITY LINES PRIOR TO CONSTRUCTION. CONTRACTOR IS RESPONSIBLE FOR RELOCATION OF ALL UTILITIES AND GROUND LINES THAT MAY BECOME DISTURBED OR CONFLICTING IN THE COURSE OF CONSTRUCTION.

ALL DISCREPANCIES FROM WHAT IS SHOWN ON THESE CONSTRUCTION DRAWINGS SHALL BE COMMUNICATED TO ATC ENGINEERING IMMEDIATELY FOR CORRECTION OR RE-DESIGN. FAILURE TO COMMUNICATE DIRECTLY WITH ATC ENGINEERING OR ANY CHANGES FROM THE DESIGN CONDUCTED WITHOUT PRIOR APPROVAL FROM ATC ENGINEERING SHALL BE THE SOLE RESPONSIBILITY OF THE GENERAL CONTRACTOR.

INFINIGY8

1033 WATERVLIET SHAKER ROAD

DESCRIPTION REV. BY DATE **PRELIM** BHE 01/21/21 FOR CONSTRUCTION EDZ 05/15/21 FOR CONSTRUCTION

ATC SITE NUMBER:

88011

ATC SITE NAME:

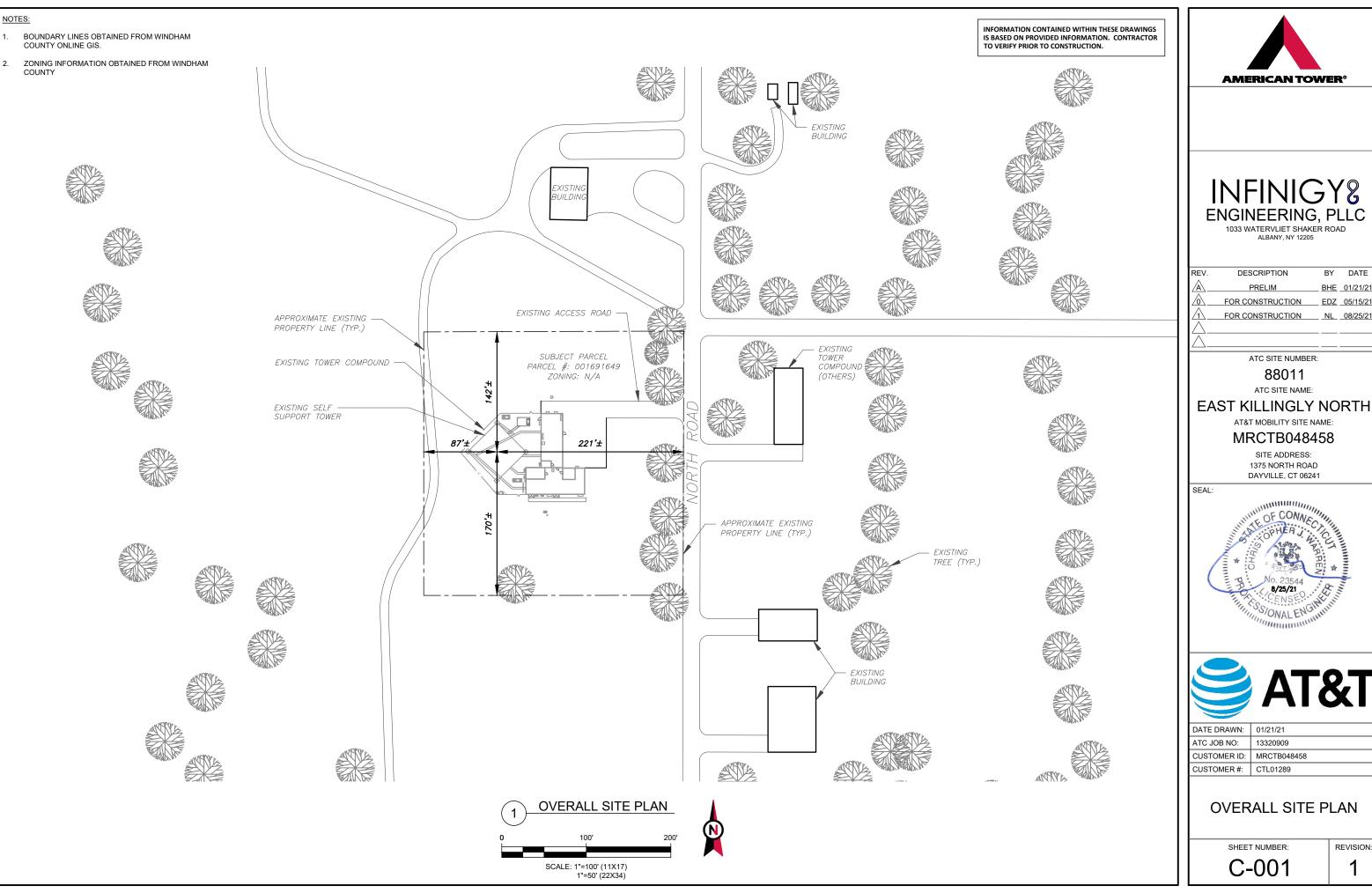
EAST KILLINGLY NORTH

AT&T MOBILITY SITE NAME:

MRCTB048458

SITE ADDRESS: 1375 NORTH ROAD DAYVILLE, CT 06241

SEAL


DATE DRAWN: | 01/21/21 ATC JOB NO: 13320909 CUSTOMER ID: MRCTB048458 CUSTOMER #: CTL01289

GENERAL NOTES

SHEET NUMBER

REVISION

G-002

INFINIGY8

	REV.	DESCRIPTION	BY	DATE
	Â.	PRELIM	BHE	01/21/21
	<u> </u>	FOR CONSTRUCTION	EDZ	05/15/21
	<u> </u>	FOR CONSTRUCTION	NL_	08/25/21
	\triangle			
ı	Λ			

MRCTB048458

1375 NORTH ROAD DAYVILLE, CT 06241

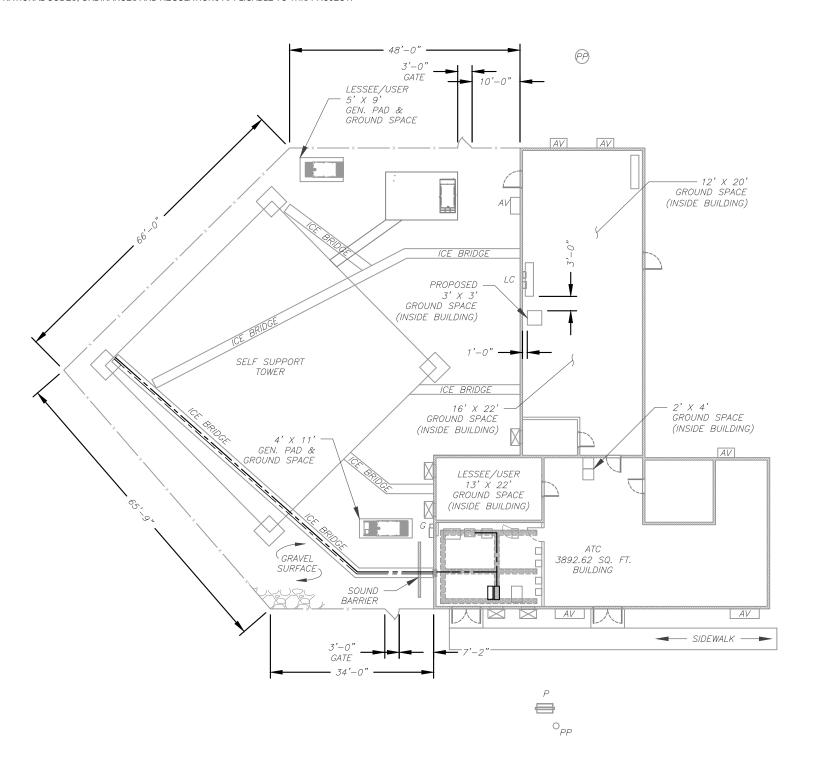
DATE DRAWN:	01/21/21
ATC JOB NO:	13320909
CUSTOMER ID:	MRCTB048458
CUSTOMER #:	CTL01289

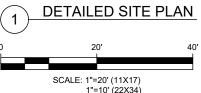
REVISION:

SITE PLAN NOTES:

TRN

- 1. THIS SITE PLAN REPRESENTS THE BEST CURRENT KNOWLEDGE AVAILABLE TO THE ENGINEER AT THE TIME OF THIS DESIGN. THE CONTRACTOR SHALL VISIT THE SITE PRIOR TO CONSTRUCTION AND VERIFY ALL EXISTING CONDITIONS RELATED TO THE SCOPE OF WORK FOR THIS PROJECT.
- 2. ICE BRIDGE, CABLE LADDER, COAX PORT, AND COAX CABLES ARE SHOWN FOR REFERENCE ONLY. CONTRACTOR SHALL CONFIRM THE EXACT LOCATION OF ALL PROPOSED AND EXISTING EQUIPMENT AND STRUCTURES DEPICTED ON THIS PLAN. BEFORE UTILIZING EXISTING CABLE SUPPORTS, COAX PORTS, INSTALLING NEW PORTS OR ANY OTHER EQUIPMENT, CONTRACTOR SHALL VERIFY ALL ASPECTS OF THE COMPONENTS MEET THE ATC SPECIFICATIONS.
- 3. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO COORDINATE WITH THE AT&T MOBILITY REPRESENTATIVE AND LOCAL UTILITY COMPANY FOR THE INSTALLATION OF CONDUITS, CONDUCTORS, BREAKERS, DISCONNECTS, OR ANY OTHER EQUIPMENT REQUIRED FOR ELECTRICAL SERVICE. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH LATEST EDITION OF THE STATE AND NATIONAL CODES, ORDINANCES AND REGULATIONS APPLICABLE TO THIS PROJECT.


LEGEND ⊗ GROUNDING TEST WELL AUTOMATIC TRANSFER SWITCH ATS **BOLLARD** CSC CELL SITE CABINET D DISCONNECT ELECTRICAL **FIBER** GEN **GENERATOR** GENERATOR RECEPTACLE HH, V HAND HOLE, VAULT ΙB ICE BRIDGE KENTROX BOX LC LIGHTING CONTROL M METER PB PULL BOX PΡ POWER POLE TELCO.


TRANSFORMER

CHAINLINK FENCE

PROPOSED CABLE LENGTH:

- ESTIMATED LENGTH OF PROPOSED CABLE IS 338'.
 ESTIMATED LENGTH OF CABLE WAS PROVIDED BY
 CUSTOMER OR CALCULATED BY ADDING THE RAD
 CENTER AND THE DISTANCE FROM THE SHELTER
 ENTRY PLATE TO THE TOWER (ALONG THE ICE
 BRIDGE) AND A SAFETY FACTOR MEASUREMENT OF
 15% (OF THE TWO PREVIOUS VALUES), CDS DEFER
 TO GREATEST CABLE LENGTH.
- 2. ROUTE PROPOSED CABLES ALONG SAME PATH AS EXISTING CABLES AND IN ACCORDANCE WITH STRUCTURAL ANALYSIS. WHERE POSSIBLE UTILIZE EXISTING CABLE SUPPORT STRUCTURES AS PROVIDED FOR CARRIER TO ADEQUATELY SECURE CABLES, USING EITHER APPROPRIATELY SIZED STAINLESS STEEL SNAP-INS OR MOUNTING HARDWARE AND BRACKETS AS SPECIFIED BY CABLE MANUFACTURER. OTHERWISE, ATTACH CABLES TO HORIZONTAL OR DIAGONAL TOWER MEMBERS USING PROPOSED STAINLESS STEEL ADAPTERS (DO NOT ATTACH TO TOWER LEG).

INFORMATION CONTAINED WITHIN THESE DRAWINGS
IS BASED ON PROVIDED INFORMATION. CONTRACTOR
TO VERIFY PRIOR TO CONSTRUCTION.

INFINIGY8 ENGINEERING, PLLC

1033 WATERVLIET SHAKER ROAD ALBANY, NY 12205

REV.	DESCRIPTION	BY	DATE
<u> </u>	PRELIM	BHE	01/21/21
$\overline{\mathbb{A}}$	FOR CONSTRUCTION	EDZ	05/15/21
$\overline{\Lambda}$	FOR CONSTRUCTION	NL	08/25/21
$\overline{\wedge}$			
$\overline{\wedge}$			
ı <i>—</i> .—			

ATC SITE NUMBER:

88011

ATC SITE NAME:

EAST KILLINGLY NORTH

AT&T MOBILITY SITE NAME:

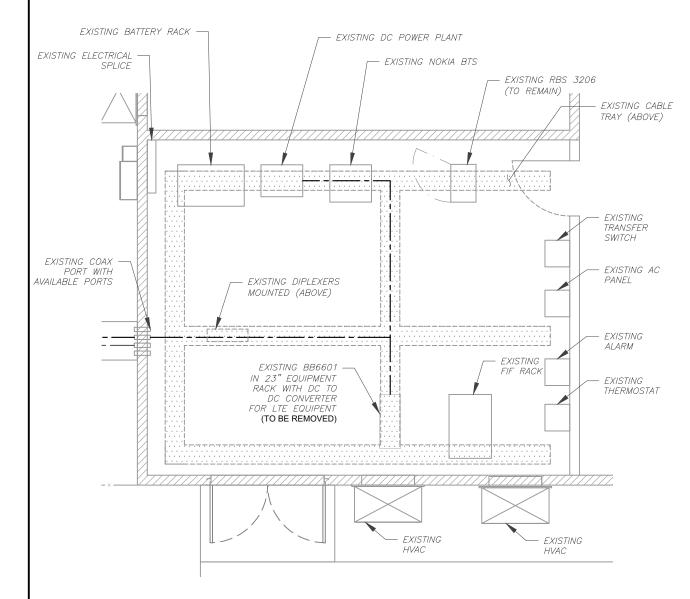
MRCTB048458

SITE ADDRESS: 1375 NORTH ROAD DAYVILLE. CT 06241

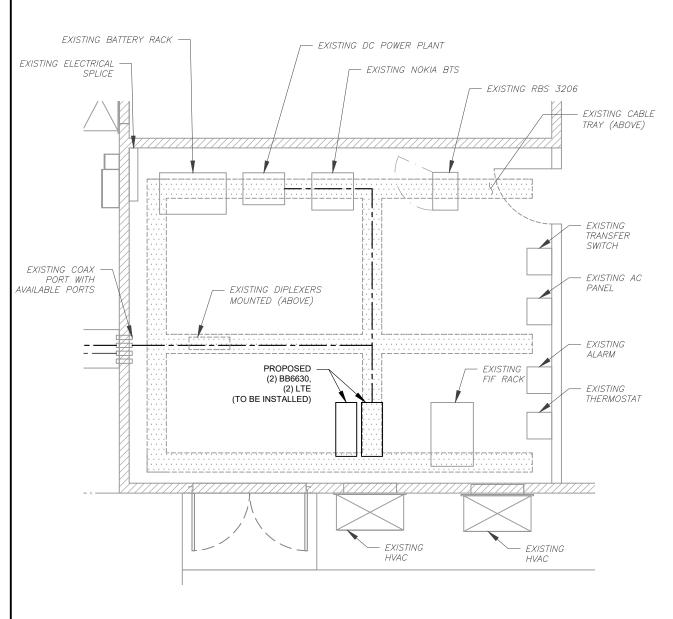
SEAL

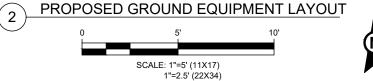
	DATE DRAWN:	01/21/21
	ATC JOB NO:	13320909
	CUSTOMER ID:	MRCTB048458
	CUSTOMER #:	CTL01289

DETAILED SITE PLAN


SHEET NUMBER:

C-101


REVISION


SITE PLAN NOTES:

- CONTRACTOR TO VERIFY THERE IS NO LIVE AAV FIBER RUNNING THROUGH EXISTING DEAD EQUIPMENT. IF SO, THIS WILL NEED TO BE RERUN THROUGH CONDUIT PRIOR TO REMOVING DEAD 2G (6201 CABS) EQUIPMENT.
- 2. REMOVE EXISTING 2G CABINETS, AND POWER / TELCO WHIPS ASSOCIATED WITH THE DEAD EQUIPMENT IF APPLICABLE.
- 3. ALL OPEN PORTS NEED TO BE SEALED / WEATHERPROOFED PROPERLY
- 4. ALL UNNEEDED / EXCESS EQUIPMENT AND GARBAGE TO BE REMOVED FROM EQUIPMENT AREA. DISPOSE OF MATERIALS PROPERLY OFF SITE.

SCALE: 1"=5' (11X17) 1"=2.5' (22X34)

INFORMATION CONTAINED WITHIN THESE DRAWINGS

IS BASED ON PROVIDED INFORMATION. CONTRACTOR

TO VERIFY PRIOR TO CONSTRUCTION.

INFINIGY8

1033 WATERVLIET SHAKER ROAD ALBANY, NY 12205

REV.	DESCRIPTION	BY	DATE
\mathbb{A}_{-}	PRELIM	BHE	01/21/21
<u> </u>	FOR CONSTRUCTION	EDZ	05/15/21
<u>/1</u> \	FOR CONSTRUCTION	NL	08/25/21
$\overline{\wedge}$			
$\overline{\wedge}$			

ATC SITE NUMBER:

88011

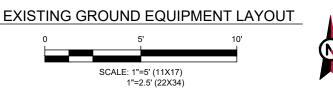
ATC SITE NAME:

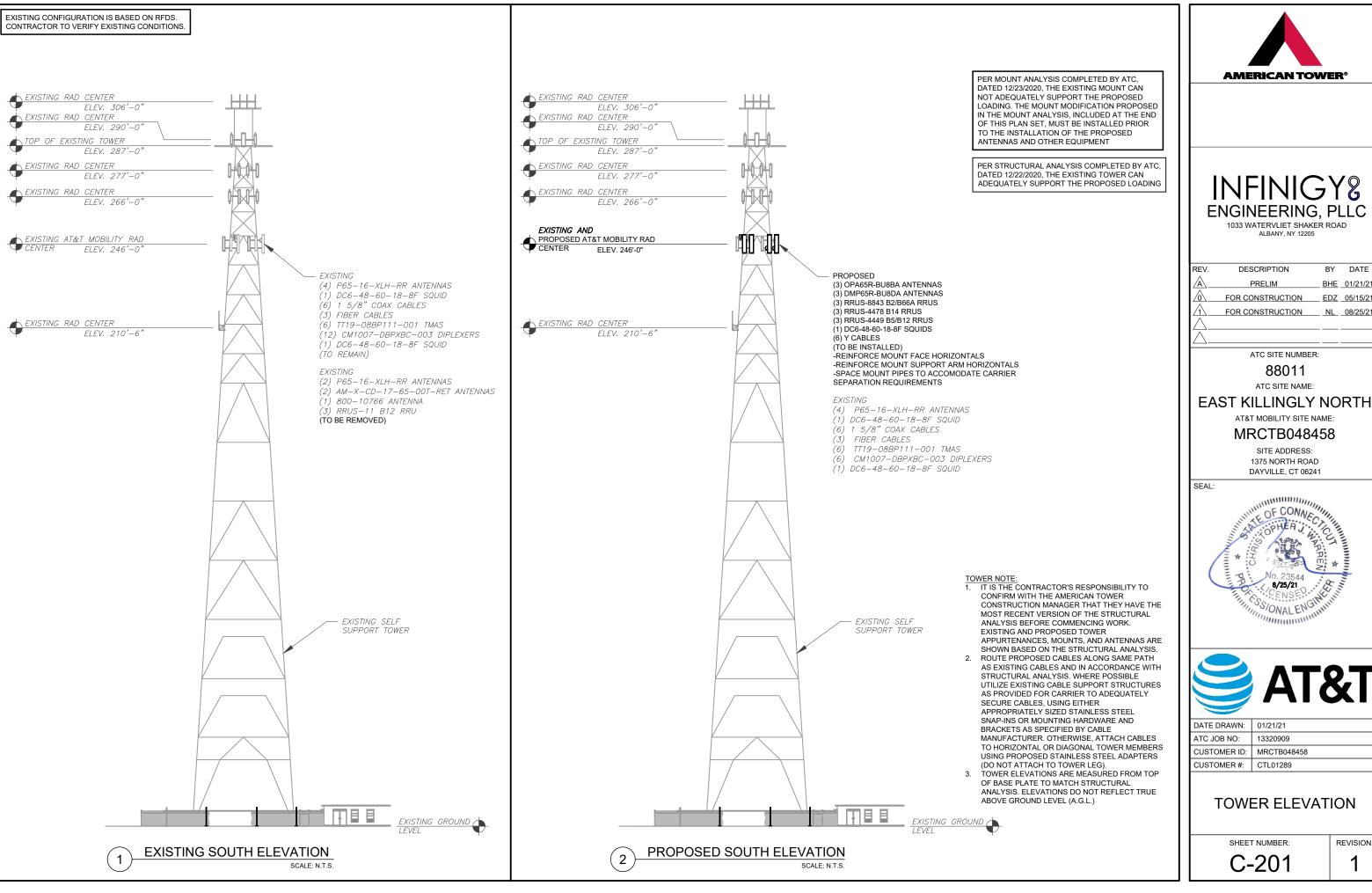
EAST KILLINGLY NORTH

AT&T MOBILITY SITE NAME:

MRCTB048458

SITE ADDRESS: 1375 NORTH ROAD DAYVILLE, CT 06241




EQUIPMENT PLAN

SHEET NUMBER:

REVISION

C-102

INFINIGY 8 ENGINEERING, PLLC

1033 WATERVLIET SHAKER ROAD ALBANY, NY 12205

REV.	DESCRIPTION	BY	DATE
<u> </u>	PRELIM	BHE	01/21/21
<u> </u>	FOR CONSTRUCTION	EDZ	05/15/21
1	FOR CONSTRUCTION	NL	08/25/21
$\overline{\wedge}$			

ATC SITE NUMBER:

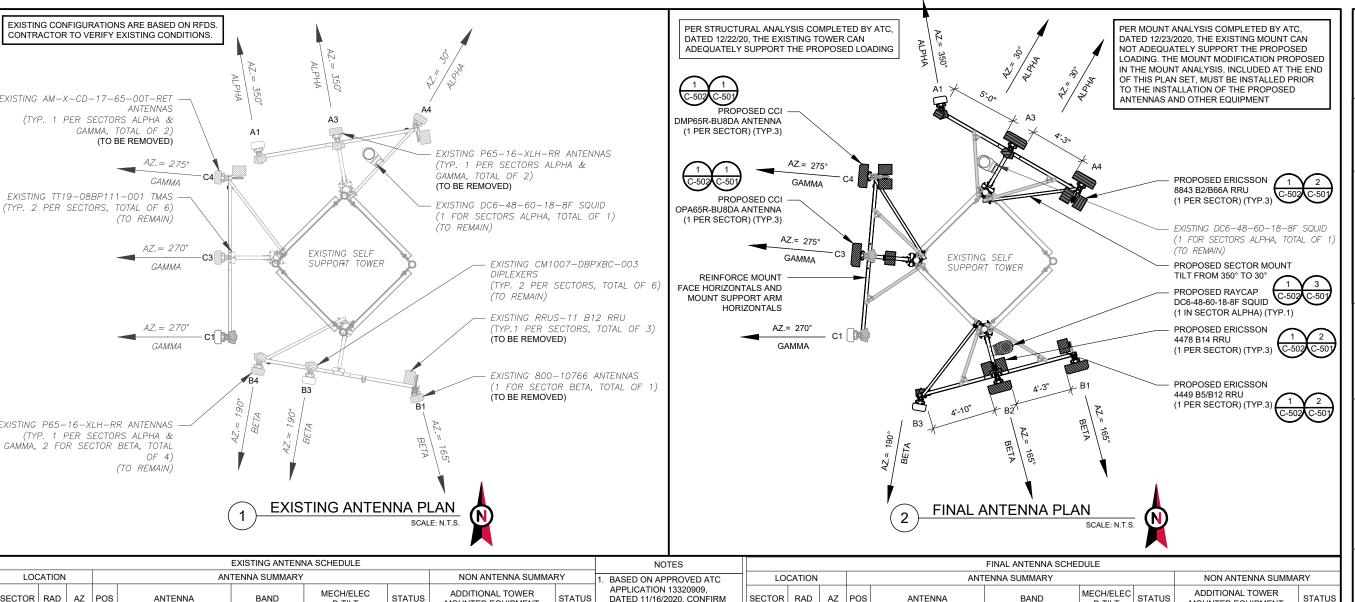
88011

ATC SITE NAME:

AT&T MOBILITY SITE NAME:

MRCTB048458

SITE ADDRESS: 1375 NORTH ROAD DAYVILLE, CT 06241



DATE DRAWN:	01/21/21
ATC JOB NO:	13320909
CUSTOMER ID:	MRCTB048458
CUSTOMER #:	CTL01289

TOWER ELEVATION

REVISION

	EXISTING ANTENNA SCHEDULE						NOTES	FINAL ANTENNA SCHEDULE									
LOCATION		AN	ΓENNA SUMMARY		_	NON ANTENNA SUMMA	ARY	1. BASED ON APPROVED ATC	LO	CATION		AN	TENNA SUMMARY			NON ANTENNA SUMMA	RY
SECTOR RAD	AZ POS	ANTENNA	BAND	MECH/ELEC D-TILT	STATUS	ADDITIONAL TOWER MOUNTED EQUIPMENT	STATUS	APPLICATION 13320909, DATED 11/16/2020. CONFIRM WITH AT&T MOBILITY REP FOR	SECTOR	RAD	AZ POS	ANTENNA	BAND	MECH/ELEC D-TILT	STATUS	ADDITIONAL TOWER MOUNTED EQUIPMENT	STATUS
	A1	POWERWAVE P65-16-XLH-RR	UMTS 850	0°/2	RMN	(2)CM1007-DBPXBC-003 (1) TT19-08BP111-001	RMN	APPLICABLE UPDATES/REVISIONS AND MOST RECENT RFDS FOR NSN			350° A1	POWERWAVE P65-16-XLH-RR	UMTS 850	2*	RMN	(2) CM1007-DBPXBC-003 (1) TT19-08BP111-001	RMN
ALPHA 246'	350° A3	POWERWAVE P65-16-XLH-RR	GSM 850	0°/2°	RMV	(2)CM1007-DBPXBC-003 (1) TT19-08BP111-001	RMN	CONFIGURATION (CONFIG). GC TO CAP ALL UNUSED PORTS. 2. CONFIRM SPACING OF	ALPHA	246'	A3	CCI OPA65R-BU8DA	LTE 700, LTE 1900	5°/5°/5°	ADD	(1) CM1007-DBPXBC-003 (1) TT19-08BP111-001	RMN RMN
	30° A4	KMW AM-X-CD-17-65-00T-RET	LTE 700	0°/10°	RMV	(1) DC6-48-60-18-8F (1) RRUS-11 B12	RMN RMV	PROPOSED EQUIP DOES NOT CAUSE TOWER CONFLICTS	ALFHA	240	30°					(1) RADIO 4478 B14	ADD
	165° B1	KATHREIN 800-10766	LTE 700	0°/0°	RMV	(1) RRUS-11 B12	RMV	NOR IMPEDE TOWER CLIMBING PEGS.			A4	CCI DMP65R-BU8DA	LTE 700, LTE 850, LTE AWS, 5G 850	5°/5°/5°/ 5°	ADD	(1) RADIO 4449 B5/B12 (1) RADIO 8843 B2/B66A	ADD ADD
BETA 246'	B3	POWERWAVE P65-16-XLH-RR	UMTS 850	0°/9°	RMN	(2)CM1007-DBPXBC-003 (1) TT19-08BP111-001	RMN	STATUS ABBREVIATIONS RMV: TO BE REMOVED			B1	CCI DMP65R-BU8DA	LTE 700, LTE 850, LTE AWS, 5G 850	10°/10°/8°/1 0°	ADD	(1) RADIO 4449 B5/B12	ADD
	190° B4	POWERWAVE P65-16-XLH-RR	GSM 850	0°/9°	RMV	(2)CM1007-DBPXBC-003 (1) TT19-08BP111-001	RMV	RMV: TO BE REMOVED RMN: TO REMAIN REL: TO BE RELOCATED	BETA 2	246'	B2	CCI OPA65R-BU8DA	LTE 700, LTE 1900	10°/8°/8°	ADD	(1) RADIO 8843 B2/B66A (1) RADIO 4478 B14	ADD
	C1	POWERWAVE P65-16-XLH-RR	UMTS 850	0°/2°	RMN	(2)CM1007-DBPXBC-003 (1) TT19-08BP111-001	RMN	ADD: TO BE ADDED		240	190° B3	POWERWAVE P65-16-XLH-RR	UMTS 850	9°	RMN	(2) CM1007-DBPXBC-003 (1) TT19-08BP111-001	RMN
GAMMA 246'	270° C3	POWERWAVE P65-16-XLH-RR	GSM 850	0°/2°	RMV	(2)CM1007-DBPXBC-003 (1) TT19-08BP111-001	RMN	CABLE LENGTHS FOR JUMPERS SQUID TO RRU: 15'			B4	-	-	_	-	-	_
	275° C4	KMW AM-X-CD-17-65-00T-RET	LTE 700	0°/5°	RMV	(1) RRUS-11 B12	RMV	RRU TO ANTENNA: 10'			270° C1	POWERWAVE P65-16-XLH-RR	UMTS 850	2°	RMN	(2) CM1007-DBPXBC-003 (1) TT19-08BP111-001	RMN
•								-	GAMMA	246'	C3	CCI OPA65R-BU8DA	LTE 700, LTE 1900	10°/8°/8°	ADD	(2) CM1007-DBPXBC-003 (1) TT19-08BP111-001 (1) RADIO 4478 B14	RMN RMN ADD
											C4	CCI DMP65R-BU8DA	LTE 700, LTE 850, LTE AWS, 5G 850	12°/10°/8°/1 0°	ADD	(1) RADIO 4449 B5/B12 (1) RADIO 8843 B2/B66A	ADD ADD
											FINA	L FIBER DISTRIBUTION / SQ	QUID	FINA	AL CABLIN	IG SUMMARY	

EQUIPMENT SCHEDULES

EXISTING FIBER DISTRIBUTION/SQUID

STATUS

RMN

COAX

(6) 1 5/8'

STATUS

RMN

MODEL NUMBER

(1) DC6-48-60-18-8F

EXISTING CABLING SUMMARY

STATUS

FIBER

(3) FIBER CABLEs STATUS

RMN

STATUS MODEL NUMBER STATUS COAX STATUS STATUS **FIBER** DC (3) FIBER CABLES (1) DC6-48-60-18-8F (6) 1 5/8 RMN RMN (1) DC6-48-60-18-8F ADD (6) Y CABLES ADD

INFINIGY & ENGINEERING, PLLC

1033 WATERVLIET SHAKER ROAD ALBANY, NY 12205

REV.	DESCRIPTION	BY	DATE
<u> </u>	PRELIM	BHE	01/21/21
$\overline{\mathbb{A}}$	FOR CONSTRUCTION	EDZ	05/15/21
<u> </u>	FOR CONSTRUCTION	_NL_	08/25/21
$\overline{\wedge}$			
$\overline{\wedge}$			

ATC SITE NUMBER:

88011

ATC SITE NAME:

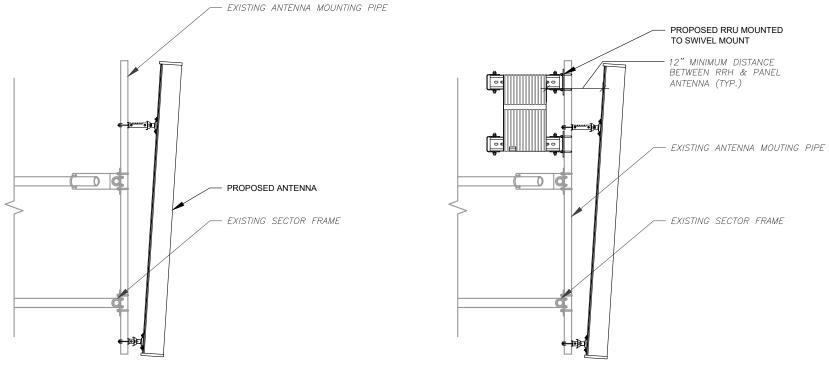
EAST KILLINGLY NORTH

AT&T MOBILITY SITE NAME:

MRCTB048458

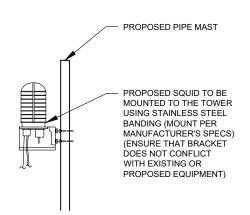
SITE ADDRESS: 1375 NORTH ROAD DAYVILLE. CT 06241

SEAL:



	DATE DRAWN:	01/21/21
	ATC JOB NO:	13320909
	CUSTOMER ID:	MRCTB048458
	CUSTOMER #:	CTL01289

ANTENNA INFORMATION & SCHEDULE


C-401

REVISION:

ANTENNA DETAIL

SCALE: N.T.S.

PROPOSED RRU MOUNTING DETAIL - TYPICAL

PROPOSED SQUID MOUNTING

INFINIGY8 ENGINEERING, PLLC 1033 WATERVLIET SHAKER ROAD ALBANY, NY 12205

REV	DESCRIPTION	BY	DATE
A	PRELIM	BHE	01/21/21
\triangle	FOR CONSTRUCTION	EDZ	05/15/21
\triangle	FOR CONSTRUCTION	NL_	08/25/21
\wedge			
\triangle			

ATC SITE NUMBER:

88011

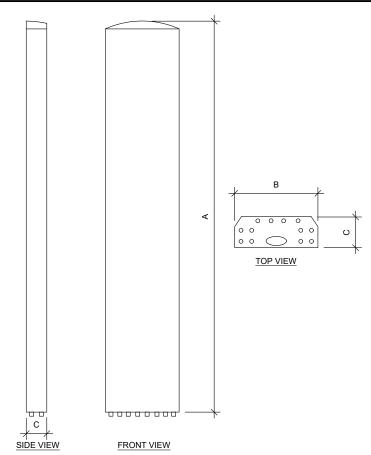
ATC SITE NAME:

EAST KILLINGLY NORTH

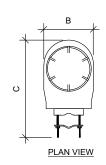
AT&T MOBILITY SITE NAME:

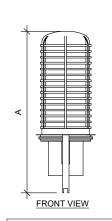
MRCTB048458

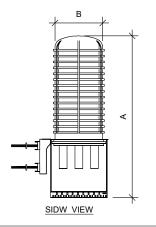
SITE ADDRESS: 1375 NORTH ROAD DAYVILLE, CT 06241


	DATE DRAWN:	01/21/21
	ATC JOB NO:	13320909
	CUSTOMER ID:	MRCTB048458
	CUSTOMER #:	CTL01289

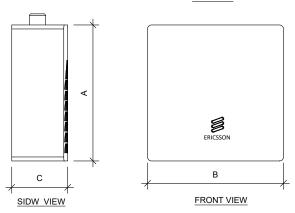
MOUNT DETAILS


SHEET NUMBER:


C-501


REVISION:

ANTENNA SPECIFICATIONS					
ANTENN	IA OF LOIF IO	ATIONS			
ANTENNA MODEL	A	В	С	WEIGHT (LBS)	
CCI OPA65R-BU8DA	96.0"	21"	7.8"	76.5	
CCI DMP65R-BU8DA	96.0"	20.7"	7.7"	95.7	



RAYCAP SPECIFICATIONS				
RAYCAP MODEL	А	В	С	WEIGHT (LBS)
DC6-48-60-18-8F	24.0"	11.0"	11.0"	31.8

TOP VIEW

RRU SPECIFICATIONS				
RRU MODEL	А	В	С	WEIGHT (LBS)
4478 B14	18.1"	13.4"	8.3"	59.4
8843 B2, B66A	14.9"	13.2"	10.9"	72.0
4449 B5, B12	17.9"	13.2"	9.4"	71.0

INFINIGY8 ENGINEERING, PLLC 1033 WATERVLIET SHAKER ROAD ALBANY, NY 12205

REV.	DESCRIPTION	BY	DATE
<u> </u>	PRELIM	BHE	01/21/21
<u> </u>	FOR CONSTRUCTION	EDZ	05/15/21
<u> </u>	FOR CONSTRUCTION	NL	08/25/21
$\overline{\wedge}$			
Δ			

ATC SITE NUMBER:

88011

ATC SITE NAME:

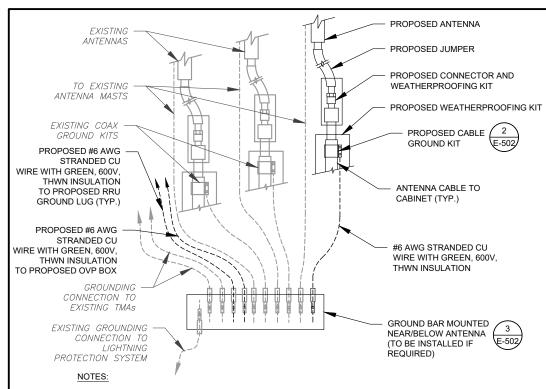
EAST KILLINGLY NORTH

AT&T MOBILITY SITE NAME:

MRCTB048458

SITE ADDRESS: 1375 NORTH ROAD DAYVILLE, CT 06241

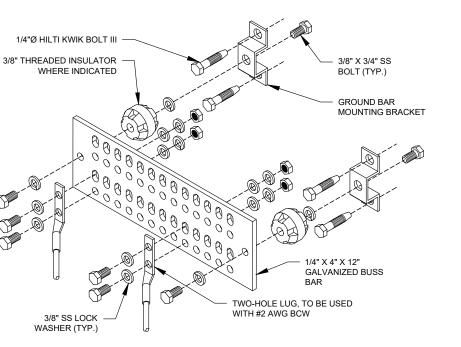
		DATE DRAWN:	01/21/21
		ATC JOB NO:	13320909
	П	CUSTOMER ID:	MRCTB048458
	П	CUSTOMER #:	CTL01289


EQUIPMENT SPECIFICATIONS

SHEET NUMBER:

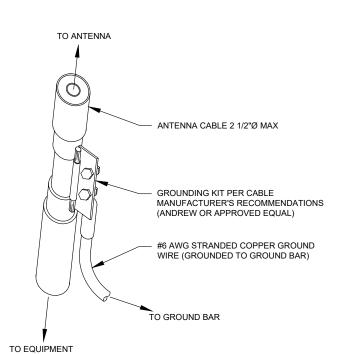
C-502

REVISION:


EQUIPMENT SPECIFICATIONS SCALE: N.T.S.

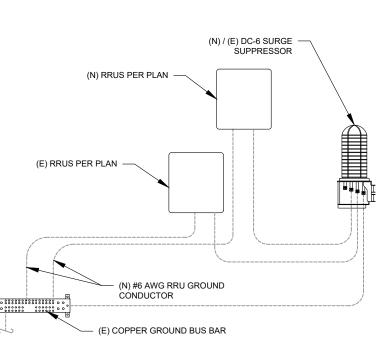
 THIS DETAIL IS INTENDED TO SHOW THE GENERAL GROUNDING REQUIREMENTS. SLIGHT ADJUSTMENTS MAY BE REQUIRED BASED ON EXISTING SITE CONDITIONS. THE CONTRACTOR SHALL MAKE FIELD ADJUSTMENTS AS NEEDED AND INFORM THE CONSTRUCTION MANAGER OF ANY CONFLICTS.

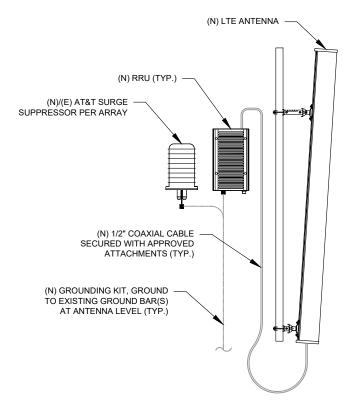
SITE GROUNDING SHALL COMPLY WITH AT&T MOBILITY GROUNDING STANDARDS, LATEST EDITION, AND COMPLY WITH AT&T MOBILITY GROUNDING CHECKLIST, LATEST VERSION. WHEN NATIONAL AND LOCAL GROUNDING CODES ARE MORE STRINGENT THEY SHALL


TYPICAL ANTENNA GROUNDING DIAGRAM

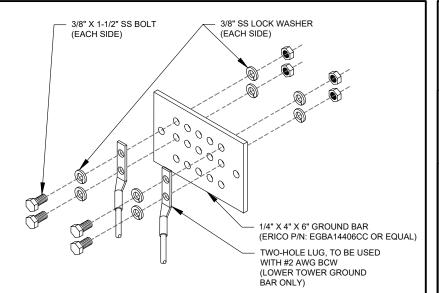
GROUND BAR NOTES

- GROUND KITS COME WITH ALL HARDWARE, NUTS, BOLTS, WASHERS, ETC. EXCEPT THE STRUCTURAL MOUNTING MEMBER(S)
- 2. GROUND BAR SHALL BE BOLTED TO STRUCTURAL MEMBER OR ANCHORED TO CONCRETE SLAB W/ HILTI KWIK BOLT III.




- GROUND KIT NOTES:

 1. DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO GROUND BAR.
- 2. CONTRACTOR SHALL PROVIDE WEATHERPROOFING KIT (ANDREW PART NUMBER 221213) AND INSTALL/TAPE PER MANUFACTURER'S SPECIFICATIONS


CABLE GROUND KIT CONNECTION DETAIL

ANTENNA/RRU GROUNDING

GROUND BAR NOTES:

- GROUND BAR KITS COME WITH ALL HARDWARE, NUTS, BOLTS, WASHERS, ETC. EXCEPT THE STRUCTURAL MOUNTING MEMBER(S).
- 2. GROUND BAR TO BE BONDED DIRECTLY TO TOWER.

ATC SITE NAME:

ATC SITE NUMBER:

EAST KILLINGLY NORTH

AT&T MOBILITY SITE NAME:

MRCTB048458

AMERICAN TOWER

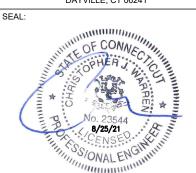
INFINIGY8

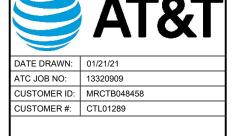
1033 WATERVLIET SHAKER ROAD

ALBANY, NY 12205

BY DATE

BHE 01/21/21


EDZ 05/15/21

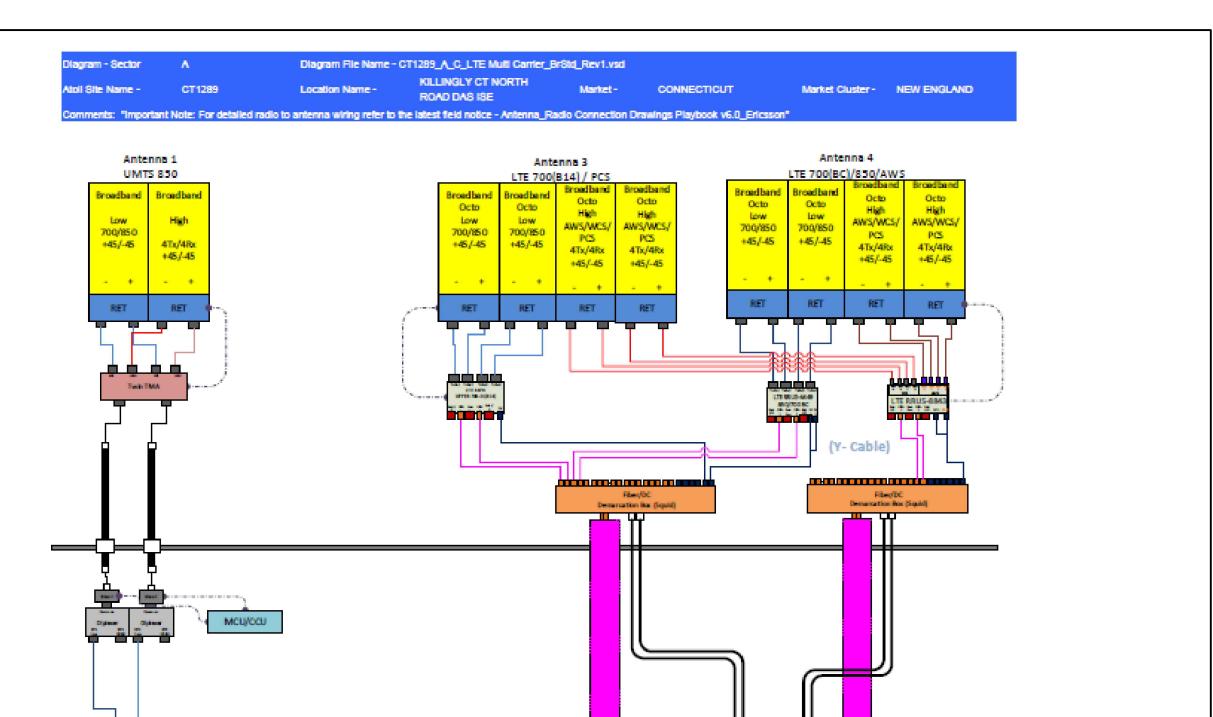

DESCRIPTION

FOR CONSTRUCTION

FOR CONSTRUCTION

SITE ADDRESS: 1375 NORTH ROAD DAYVILLE, CT 06241

GROUNDING DETAILS


SHEET NUMBER:

E-501

REVISION

MAIN GROUND BAR DETAIL

6630

PLUMBING DIAGRAM (ALPHA SECTOR)

-IDLe-

3 Feet Minimum Separation

between LTE Arbennus

between 7008C & 700 DE Use "Y Cable" for Dual band

2nd DUW

GSM 850

UMTS 1" NodeB

DB 3206

DC Plant

6630

INFINIGY8 ENGINEERING, PLLC

1033 WATERVLIET SHAKER ROAD ALBANY, NY 12205

REV.	DESCRIPTION	BY	DATE
<u> </u>	PRELIM	BHE	01/21/21
<u> </u>	FOR CONSTRUCTION	EDZ	05/15/21
<u> </u>	FOR CONSTRUCTION	NL_	08/25/21
\triangle _			
\triangle			

ATC SITE NUMBER:

88011

ATC SITE NAME:

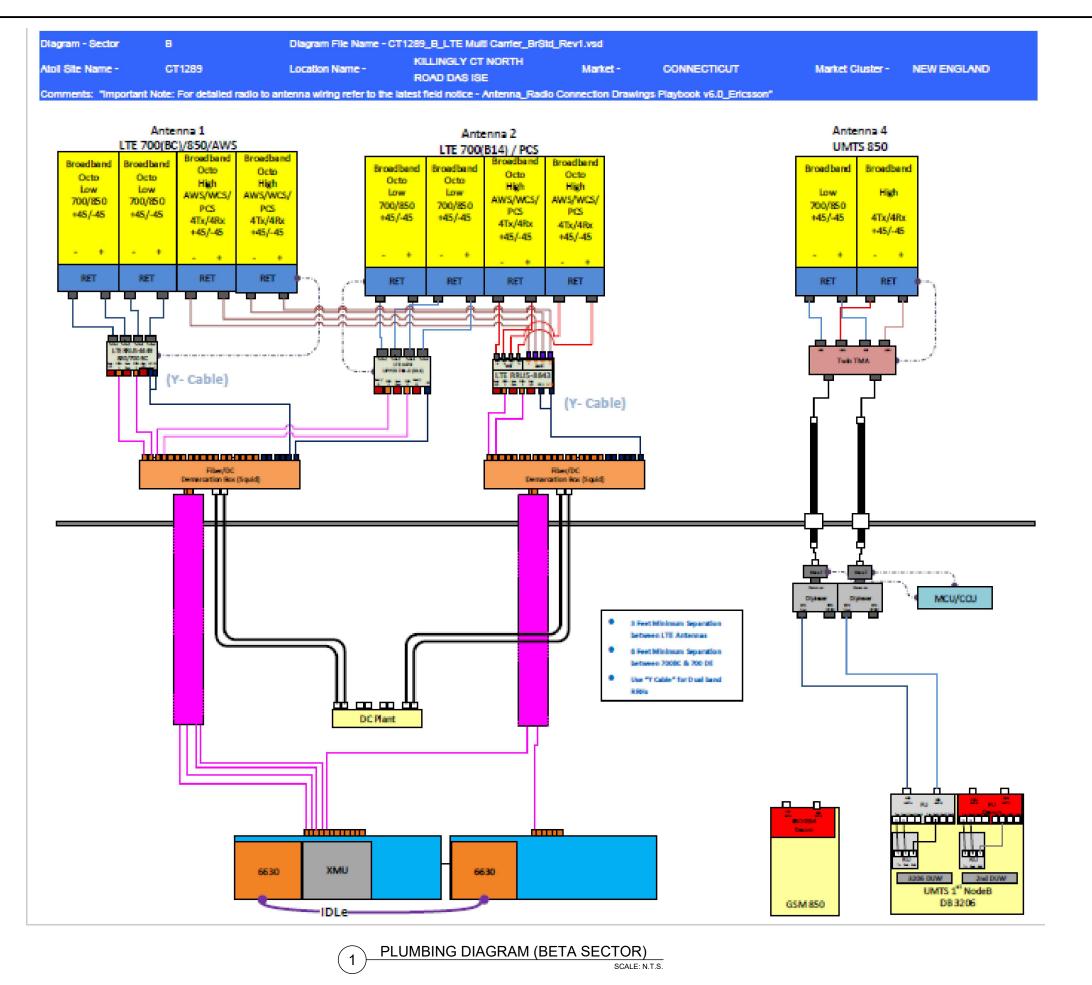
EAST KILLINGLY NORTH

AT&T MOBILITY SITE NAME:

MRCTB048458

SITE ADDRESS: 1375 NORTH ROAD DAYVILLE, CT 06241

		DATE DRAWN:	01/21/21
		ATC JOB NO:	13320909
	П	CUSTOMER ID:	MRCTB048458
	П	CUSTOMER #:	CTL01289


SUPPLEMENTAL

SHEET NUMBER:

REVISION

R-601

NOTE: THIS SHEET CREATED BY OTHERS AND PROVIDED BY REQUEST OF CUSTOMER WITHOUT EDIT.

INFINIGY8 ENGINEERING, PLLC

1033 WATERVLIET SHAKER ROAD ALBANY, NY 12205

REV.	DESCRIPTION	BY	DATE
\wedge	PRELIM	BHE	01/21/21
$\overline{\mathbb{A}}$	FOR CONSTRUCTION	EDZ	05/15/21
${1}$	FOR CONSTRUCTION	NL	08/25/21
$\overline{\wedge}$			
$\overline{\wedge}$			

ATC SITE NUMBER:

88011

ATC SITE NAME:

EAST KILLINGLY NORTH

AT&T MOBILITY SITE NAME:

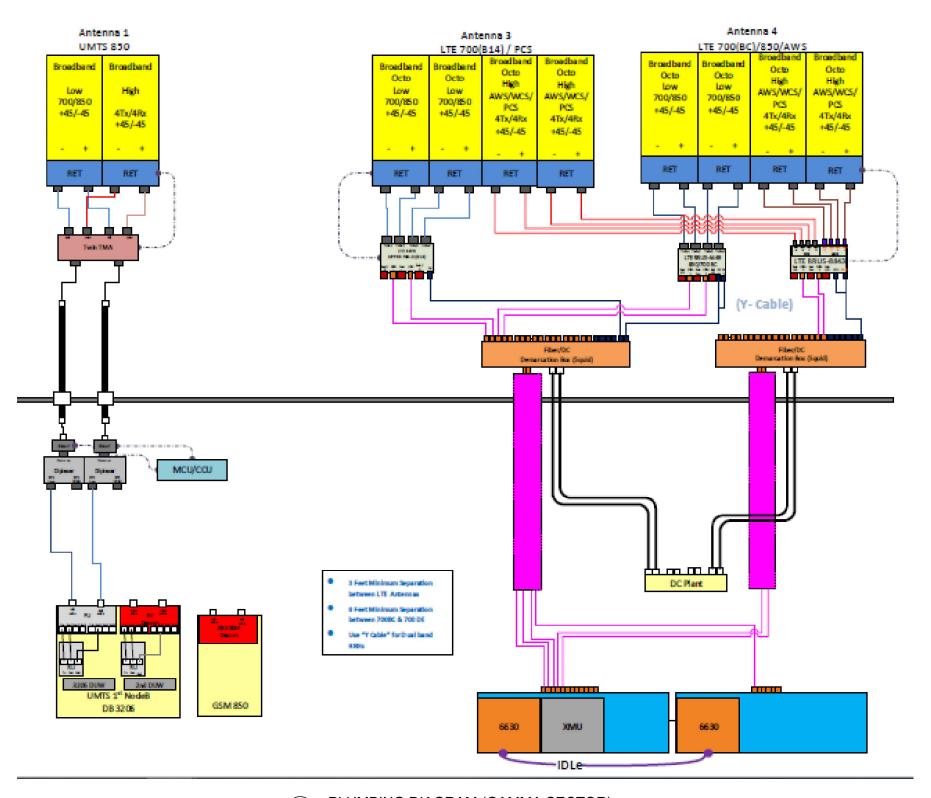
MRCTB048458

SITE ADDRESS: 1375 NORTH ROAD DAYVILLE, CT 06241

	DATE DRAWN:	01/21/21
	ATC JOB NO:	13320909
	CUSTOMER ID:	MRCTB048458
	CUSTOMER #:	CTL01289

SUPPLEMENTAL

SHEET NUMBER:


REVISION

R-602

Diagram - Sector C Diagram File Name - CT1289_A_C_LTE Multi Carrier_BrStd_Rev1.vsd

Atoli Site Name - CT1289 Location Name - KILLINGLY CT NORTH Market - CONNECTICUT Market Cluster - NEW ENGLAND
ROAD DAS ISE

Comments: "Important Note: For detailed radio to antenna wiring refer to the latest field notice - Antenna_Radio Connection Drawings Playbook v6.0_Ericsson"

1 PLUMBING DIAGRAM (GAMMA SECTOR)

SCALE: N.T.S.

INFINIGY & ENGINEERING, PLLC

1033 WATERVLIET SHAKER ROAD ALBANY, NY 12205

REV.	DESCRIPTION	BY	DATE
<u> </u>	PRELIM	BHE	01/21/21
<u> </u>	FOR CONSTRUCTION	EDZ	05/15/21
<u> </u>	FOR CONSTRUCTION	NL_	08/25/21
\wedge _			
\triangle _			

ATC SITE NUMBER:

88011

ATC SITE NAME:

EAST KILLINGLY NORTH

AT&T MOBILITY SITE NAME:

MRCTB048458

SITE ADDRESS: 1375 NORTH ROAD DAYVILLE, CT 06241

		DATE DRAWN:	01/21/21
		ATC JOB NO:	13320909
		CUSTOMER ID:	MRCTB048458
	П	CUSTOMER #:	CTL01289

SUPPLEMENTAL

SHEET NUMBER:

REVISION

R-603

Antenna Mount Analysis Report

ATC Site Name : EAST KILLINGLY NORTH, CT

ATC Site Number : 88011

Engineering Number : 13320909_C8_01

Mount Elevation : 246 ft

Carrier : AT&T Mobility

Carrier Site Name : MRCTB048458

Carrier Site Number : CTL01289

Site Location : 1375 North Road

Killingly, CT 06241-1404

41.871525 , -71.82154444

County : Windham

Date : December 23, 2020

Max Usage : 187%

Result : Fail

Prepared By: Kyle Sammarco Reviewed By:

A.T. Engineering Service, PLLC - ISSO Regency Parkway, Suite 100 - Carry, NC 27518 - 918.486.0112 Office - 918.486.5115 Fax - www.americantower.com

Structural Engineer

Kup France

* SONAL E

Authorized by "EOR" 23 Dec 2020 08:52:18 cosign

COA: PEC.0001553

Eng. Number 13320909_C8_01 December 23, 2020 Page 1

Introduction

The purpose of this report is to summarize results of the antenna mount analysis performed for AT&T Mobility at 246 ft.

Supporting Documents

Mount Mapping	ETS Project #205063.IE.01, dated October 26, 2020
Radio Frequency Data Sheet	RFDS ID #10141309, dated August 21, 2020
Reference Photos	Site photos from 2020

Analysis

This antenna mount was analyzed using American Tower Corporation's Mount Analysis Program and RISA-3D

Basic Wind Speed:	122 mph (3-Second Gust)
Basic Wind Speed w/ Ice:	50 mph (3-Second Gust) w/ 1" radial ice concurrent
Codes:	ANSI/TIA-222-H
Exposure Category:	8
Risk Category:	II .
Topographic Factor Procedure:	Method 2
Feature:	Flat
Crest Height (H):	0 ft
Crest Length (L):	0 ft
Spectral Response:	Ss = 0.186, S1 = 0.055
Site Class:	D - Stiff Soil
Live Loads:	Lm = 500 lbs, Lv = 250 lbs

Condusion

Based on the analysis results, the antenna mount does not meet the requirements per the applicable codes listed above. The mount can support the equipment as described in this report after the modifications listed below are completed:

- Reinforce mount face horizontals.
- Reinforce mount support arm horizontals.
- Space mount pipes as shown to accommodate carrier separation requirements.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

INFINIGY & ENGINEERING, PLLC

1033 WATERVLIET SHAKER ROAD ALBANY, NY 12205

REV.	DESCRIPTION	BY	DATE
<u></u>	PRELIM	BHE	01/21/21
<u> </u>	FOR CONSTRUCTION	EDZ	05/15/21
<u> </u>	FOR CONSTRUCTION	_NL_	08/25/21
\wedge _			
\triangle			

ATC SITE NUMBER:

88011

ATC SITE NAME:

EAST KILLINGLY NORTH

AT&T MOBILITY SITE NAME:

MRCTB048458

SITE ADDRESS: 1375 NORTH ROAD DAYVILLE, CT 06241

DATE DRAWN:	01/21/21
ATC JOB NO:	13320909
CUSTOMER ID:	MRCTB048458
CUSTOMER #:	CTL01289

SUPPLEMENTAL

SHEET NUMBER

REVISION

R-604

1 MC

MOUNT ANALYSIS

SITE NAME: EAST KILLINGLY NORTH

SITE NUMBER: 88011

ATC PROJECT NUMBER: 13320909_C9_08

SITE ADDRESS: 1375 NORTH ROAD

KILLINGLY, CT 06241

LOCATION MAP

MOUNT REINFORCEMENT DRAWINGS PREPARED FOR AT&T MOBILITY

PROJECT TEAM	PROJECT DESCRIPTION	SHEET	SHEET TITLE	REV.
		G-002	IBC GENERAL NOTES AND MOUNT MODIFICATION INSPECTION	0
TOWER OWNER	THE MODIFICATIONS PRESENTED ON THESE DRAWINGS ARE BASED ON THE	S-101	T-ARM SECTOR FRAME MOUNT REINFORCEMENT INSTALLATION DETAILS	0
AMERICAN TOWER	RECOMMENDATIONS OUTLINED IN THE MOUNT ANALYSIS COMPLETED UNDER ENGINEERING PROJECT NUMBER 13320909_C8_07 DATED 03/09/21.	S-102	SUPPLEMENTAL	0
10 PRESIDENTAL WAY	SATISFACTORY COMPLETION OF THE WORK INDICATED ON THESE DRAWINGS WILL RESULT IN THE MOUNT MEETING THE REQUIREMENTS OF THE	R-601	SUPPLEMENTAL	0
WOBURN, MA 01801	SPECIFICATIONS UNDER WHICH THE MOUNT ANALYSIS WAS COMPLETED.	R-602	SUPPLEMENTAL	0
		R-901	SUPPLEMENTAL	0
ENGINEERED BY	COMPLIANCE CODE	R-902	SUPPLEMENTAL	0
ATC TOWER SERVICES	COM EIANGE CODE	R-903		0
3500 REGENCY PARKWAY, SUITE 100	ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN			
CARY, NC 27518	ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNMENT AUTHORITIES, NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES.			
CARRIER INFORMATION	WOULD.			
CARRIER: AT&T MOBILITY	1. ANSI/TIA/EIA: STRUCTURAL STANDARDS (222-H EDITION)			
CARRIER SITE NAME: MRCTB048458	2. INTERNATIONAL BUILDING CODE (2015 IBC)			
CARRIER SITE NUMBER: CTL01289	3. CONNECTICUT STATE BUILDING CODE (2018)			
	PROJECT LOCATION			
QIA	11100201200711011			
	GEOGRAPHIC COORDINATES			
Know what's below.	LATITUDE: 41.871525			
Call before you dig.	LONGITUDE: -71.82154444			

COA: PEC.0001553

REV.	DESCRIPTION	BY	DATE
·	FIRST ISSUE	NG	04/22/21

ATC SITE NUMBER:

88011

ATC SITE NAME:

EAST KILLINGLY NORTH

CONNECTICUT

SITE ADDRESS: 1375 NORTH ROAD KILLINGLY, CT 06241

Authorized by "EOR" 26 Apr 2021 09:30:54

•	~	J
DRAWN BY:	NYG	
APPROVED BY:	TCR	
DATE DRAWN:	04/22/21	
ATC JOB NO:	13320909_C9_08	_

COVER

SHEET NUMBER: REVISION: G-001 0

INFINIGY8

1033 WATERVLIET SHAKER ROAD

REV.	DESCRIPTION	BY	DATE
△_	PRELIM	BHE	01/21/21
<u> </u>	FOR CONSTRUCTION	EDZ	05/15/21
<u>/1</u> \	FOR CONSTRUCTION	NL	08/25/21
$\overline{\wedge}$			
$\overline{\wedge}$			

ATC SITE NUMBER:

88011

ATC SITE NAME:

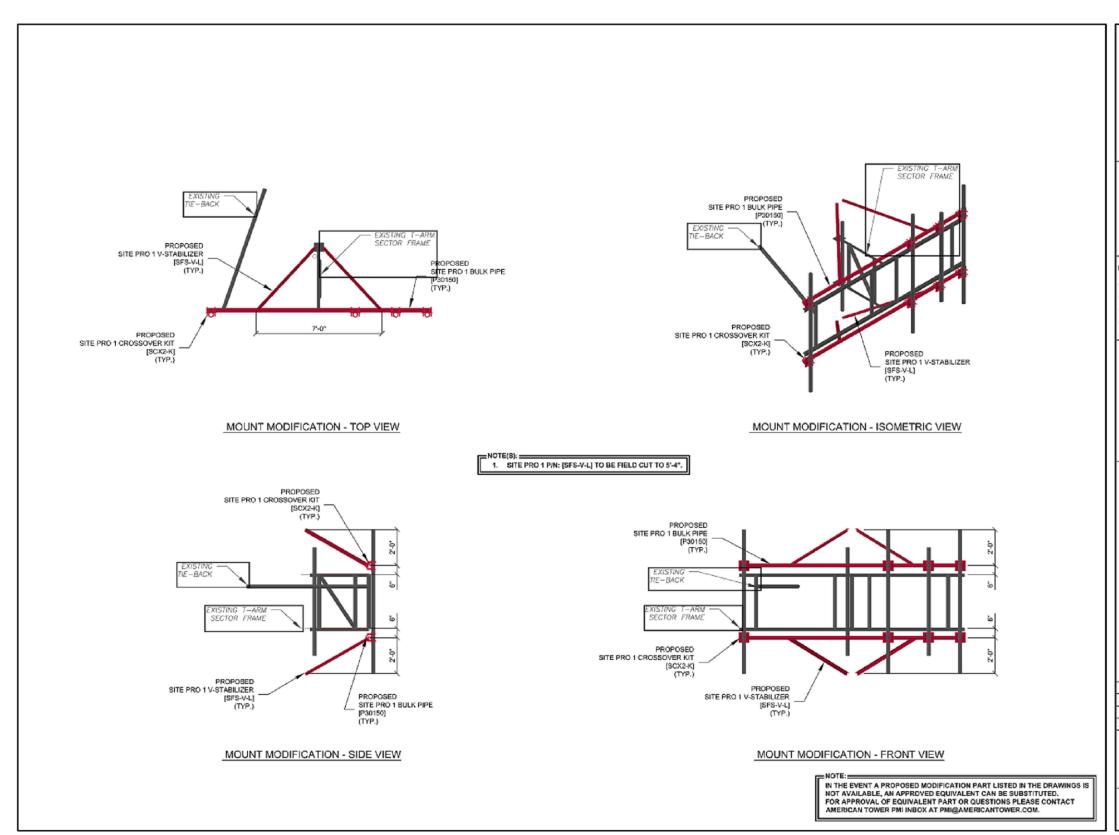
EAST KILLINGLY NORTH

AT&T MOBILITY SITE NAME:

MRCTB048458

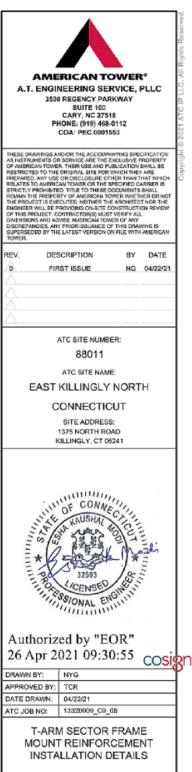
SITE ADDRESS: 1375 NORTH ROAD DAYVILLE, CT 06241

DATE DRAWN:	01/21/21
ATC JOB NO:	13320909
CUSTOMER ID:	MRCTB048458
CUSTOMER #:	CTL01289
	ATC JOB NO: CUSTOMER ID:


SUPPLEMENTAL

SHEET NUMBER:

REVISION:


R-605

MOUNT MODIFICATIONS SCALE: N.T.S.

MOUNT MODIFICATIONS

SCALE: N.T.S.

INFINIGY8

1033 WATERVLIET SHAKER ROAD ALBANY, NY 12205

REV.	DESCRIPTION	BY	DATE
<u> </u>	PRELIM	BHE	01/21/21
<u> </u>	FOR CONSTRUCTION	<u>EDZ</u>	05/15/21
<u> </u>	FOR CONSTRUCTION	_NL_	08/25/21
\triangle _			
\triangle _			

ATC SITE NUMBER:

88011

ATC SITE NAME:

EAST KILLINGLY NORTH

AT&T MOBILITY SITE NAME:

MRCTB048458

SITE ADDRESS: 1375 NORTH ROAD DAYVILLE, CT 06241

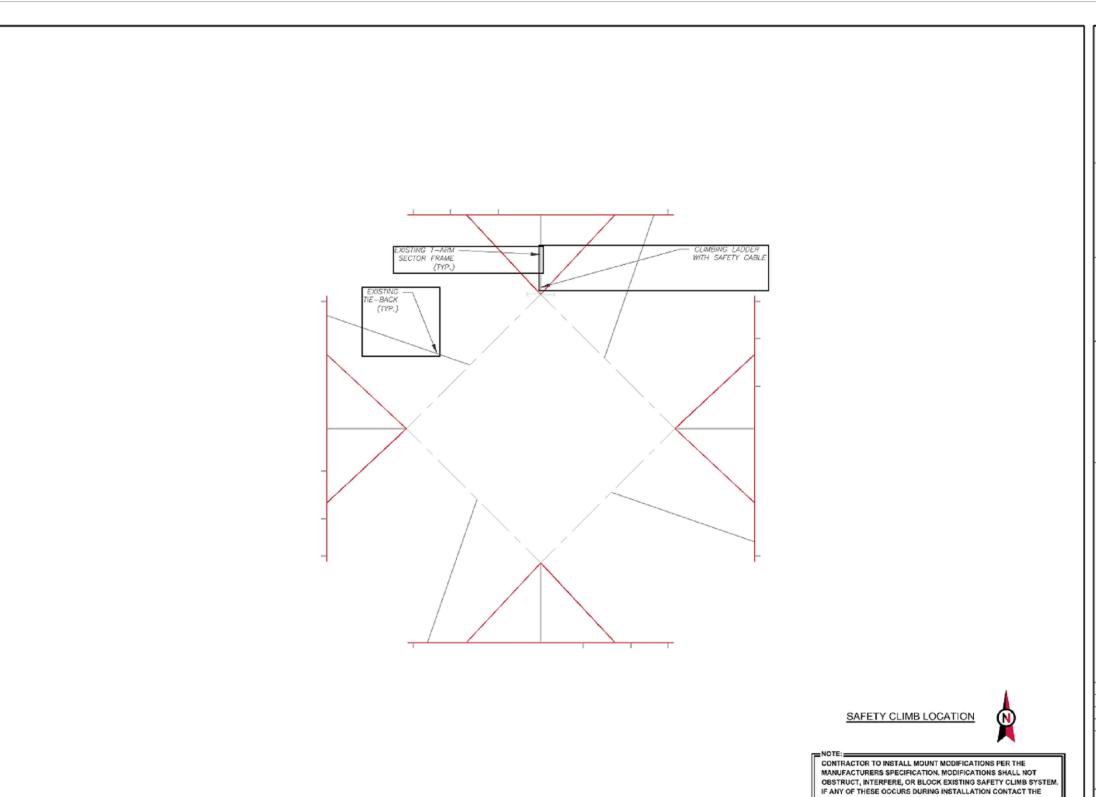
	DATE DRAWN:	01/21/21
	ATC JOB NO:	13320909
	CUSTOMER ID:	MRCTB048458
	CUSTOMER #:	CTL01289

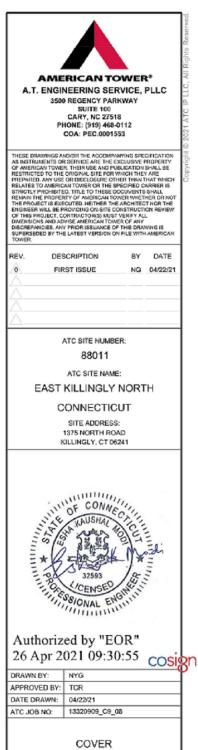
SUPPLEMENTAL

SHEET NUMBER:

REVISION

R-606


NOTE: THIS SHEET CREATED BY OTHERS AND PROVIDED


REVISION 0

SHEET NUMBER:

S-101

BY REQUEST OF CUSTOMER WITHOUT EDIT.

SHEET NUMBER: S-102

AMERICAN TOWER PMI INBOX PMI@AMERICANTOWER.COM

02 REVISION:

INFINIGY8 ENGINEERING, PLLC

1033 WATERVLIET SHAKER ROAD
ALBANY, NY 12205

REV.	DESCRIPTION	BY	DATE
<u></u>	PRELIM	BHE	01/21/21
<u> </u>	FOR CONSTRUCTION	EDZ	05/15/21
\triangle _	FOR CONSTRUCTION	NL	08/25/21
\triangle _			
\triangle _			

ATC SITE NUMBER:

88011

ATC SITE NAME:

EAST KILLINGLY NORTH

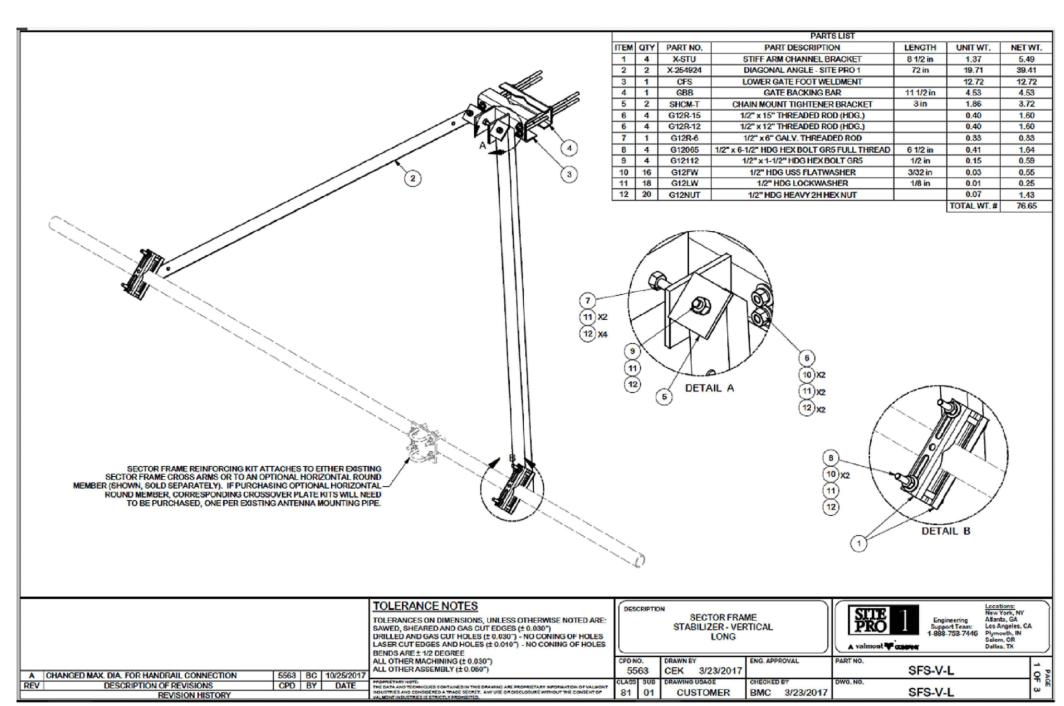
AT&T MOBILITY SITE NAME:

MRCTB048458

SITE ADDRESS: 1375 NORTH ROAD DAYVILLE, CT 06241

	DATE DRAWN:	01/21/21
	ATC JOB NO:	13320909
П	CUSTOMER ID:	MRCTB048458
П	CUSTOMER #:	CTL01289

SUPPLEMENTAL


SHEET NUMBER:

REVISION:

R-607

MOUNT MODIFICATIONS

SCALE: N.T.S.

NOTE: THIS SHEET WAS CREATED BY OTHERS AND PROVIDED AT THE REQUEST OF THE CUSTOMER WITHOUT EDIT. PLEASE REFERENCE THE MOUNT ANALYSIS REPORT FOR COMPLETE MOUNT ANALYSIS CALCULATIONS AND DETAILS. SUPPLEMENTAL PAGES INCLUDED IN THE CONSTRUCTION DRAWINGS ARE FOR REFERENCE ONLY. GENERAL CONTRACTOR IS TO VERYIFY THEY HAVE THE MOST RECENT MOUNT ANALYSIS PRIOR TO CONTRUCTION.

INFINIGY8

1033 WATERVLIET SHAKER ROAD ALBANY, NY 12205

REV.	DESCRIPTION	BY	DATE
\triangle_{-}	PRELIM	BHE	01/21/21
△_	FOR CONSTRUCTION	_ EDZ	05/15/21
<u> </u>	FOR CONSTRUCTION	NL_	08/25/21
$\overline{\wedge}$			
Δ			

ATC SITE NUMBER:

88011

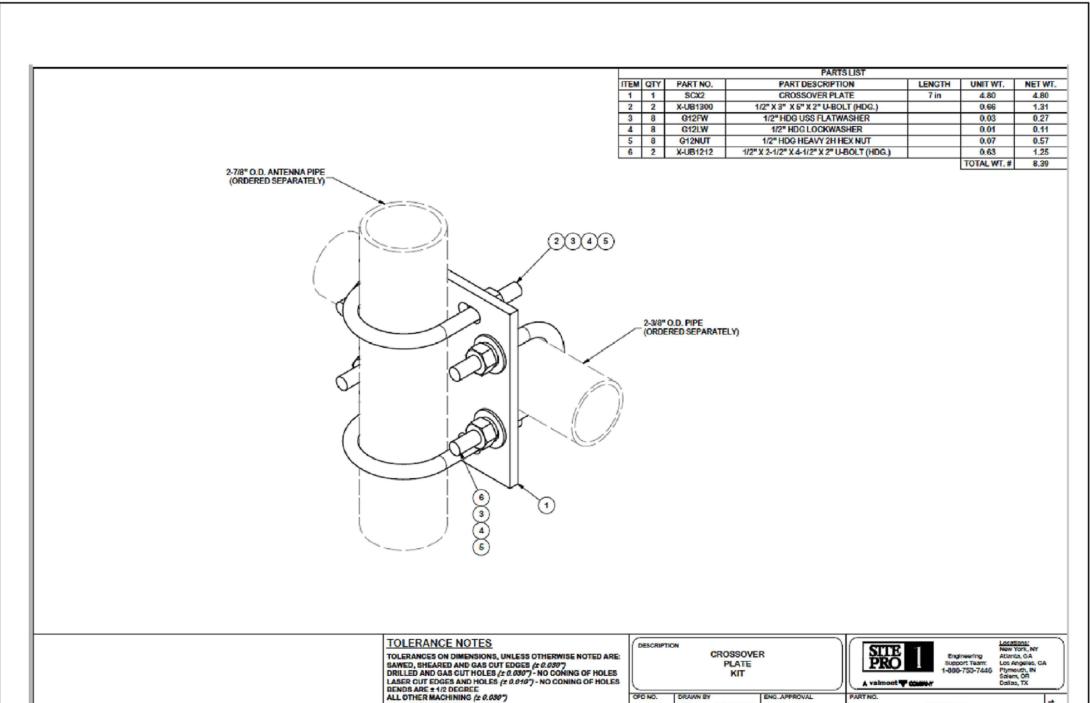
ATC SITE NAME:

EAST KILLINGLY NORTH

AT&T MOBILITY SITE NAME:

MRCTB048458

SITE ADDRESS: 1375 NORTH ROAD DAYVILLE, CT 06241


ı		
П	DATE DRAWN:	01/21/21
П	ATC JOB NO:	13320909
П	CUSTOMER ID:	MRCTB048458
П	CUSTOMER #:	CTL01289

SUPPLEMENTAL

SHEET NUMBER:

REVISION

R-608

ALL OTHER ASSEMBLY (± 0.060")

NOTE: THIS SHEET WAS CREATED BY OTHERS AND PROVIDED AT THE REQUEST OF THE CUSTOMER WITHOUT EDIT. PLEASE REFERENCE THE MOUNT ANALYSIS REPORT FOR COMPLETE MOUNT ANALYSIS CALCULATIONS AND DETAILS. SUPPLEMENTAL PAGES INCLUDED IN THE CONSTRUCTION DRAWINGS ARE FOR REFERENCE ONLY. GENERAL CONTRACTOR IS TO VERYIFY THEY HAVE THE MOST RECENT MOUNT ANALYSIS PRIOR TO CONTRUCTION.

Authorized by "EOR" 26 Apr 2021 09:30:55 cosign

REVISION:

0

SUPPLEMENTAL

R-602

SCX2-K

SCX2-K

MOUNT MODIFICATIONS SCALE: N.T.S.

CEK 6/30/2011

SHOP

BMC 7/1/2011

INFINIGY8

1033 WATERVLIET SHAKER ROAD ALBANY, NY 12205

REV.	DESCRIPTION	BY	DATE
<u> </u>	PRELIM	BHE	01/21/21
$\overline{\mathbb{A}}$	FOR CONSTRUCTION	EDZ	05/15/21
<u>/1\</u>	FOR CONSTRUCTION	NL	08/25/21
$\overline{\wedge}$			

ATC SITE NUMBER:

88011

ATC SITE NAME:

EAST KILLINGLY NORTH

AT&T MOBILITY SITE NAME:

MRCTB048458

SITE ADDRESS: 1375 NORTH ROAD DAYVILLE, CT 06241

	DATE DRAWN:	01/21/21
	ATC JOB NO:	13320909
	CUSTOMER ID:	MRCTB048458
	CUSTOMER #:	CTL01289

SUPPLEMENTAL

SHEET NUMBER:

REVISION

R-609

Exhibit 3 Structural Analysis Report

Structural Analysis Report

Structure : 287.5 ft Self Supported Tower

ATC Site Name : EAST KILLINGLY NORTH, CT

ATC Asset Number : 88011

Engineering Number : 13320909_C3_03

Proposed Carrier : AT&T MOBILITY

Carrier Site Name : MRCTB048458

Carrier Site Number : CTL01289

Site Location : 1375 North Road

Killingly, CT 06241-1404

41.871500,-71.821500

County : Windham

Date : December 22, 2020

Max Usage : 89%

Result : Pass

Prepared By:

Adam Pittman

Structural Engineer II

Odam & Pittmer

Reviewed By:

COA: PEC.0001553

Table of Contents

Introduction	1
Supporting Documents	. 1
Analysis	1
Conclusion	1
Existing and Reserved Equipment	2
Equipment to be Removed	. 2
Proposed Equipment	2
Structure Usages	3
Foundations	3
Standard Conditions	. 4
Calculations	Attached

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 287.5 ft self supported tower to reflect the change in loading by AT&T MOBILITY.

Supporting Documents

Tower Drawings	CSEI Analysis, ATC Eng. #26726321, dated September 13, 2006	
Foundation Drawing	CSEI Analysis, ATC Eng. #26726321, dated September 13, 2006	
Geotechnical Report	FDH Velocitel Project #17PXNW1600, dated February 27, 2017	
Modifications	ATC Project #45432633, dated July 9, 2010	
	ATC Project #OAA686695_C6_04, dated November 28, 2016	

Analysis

The tower was analyzed using Power Lines Systems INC., tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

Basic Wind Speed:	122 mph (3-Second Gust)
Basic Wind Speed w/ Ice:	50 mph (3-Second Gust) w/ 1" radial ice concurrent
Code:	ANSI/TIA-222-H / 2015 IBC / 2018 Connecticut State Building Code
Structure Class:	II
Exposure Category:	В
Topographic Category:	1
Crest Height:	0 ft

Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

Existing and Reserved Equipment

Elev.1 (ft)	Qty	Antenna	Mount Type	Lines	Carrier
	3	Commscope NNVV-65B-R4			
	3	Alcatel-Lucent TD-RRH8x20-25 w/ Solar Shield		(4) 4 4 (4) 11 1 1 10	
306.0	3	Alcatel-Lucent 1900 MHz 4X45 RRH	Side Arm	(4) 1 1/4" Hybriflex	
	3	RFS APXVTM14-ALU-I20		Cable	SPRINT NEXTEL
	6	Alcatel-Lucent RRH2x50-08			
291.0	-	-	-	(6) 1 5/8" Coax	
	1	Procom CXL 900-3LW			
290.0	1	Generic 5" x 3" x 2" Cavity Filter	Side Arm	(1) 7/8" Coax	SIGFOX S.A.
	1	Generic Low Noise Amplifier			
	4	RFS APXVAARR24_43-U-NA20			
	4	Ericsson AIR32 B66Aa/B2a			T-MOBILE
	1	Commscope SHP2-13		(4) 1 1/4" Hybriflex Cable (4) 1 5/8" Hybriflex (1) 1/2" Coax	
	4	Ericsson RRUS 11 B4			
277.0	4	Ericsson RRUS 11 B12	Sector Frame		
277.0	4	Ericsson RRUS 4415 B25			
	4	Ericsson Radio 4478 B71			
	4	Commscope CBC6AE7LQ-DS-43			
	4	Commscope CBC1923Q-43			
	4	Ericsson Air6449 B41			
	3	Samsung B2/B66A RRH-BR049		(1) 1 1/4" Hybriflex	
	1	Raycap RC3DC-3315-PF-48			
	6	Amphenol Antel LPA-80063-4CF-EDIN-X			
266.0	2	Commscope JAHH-65B-R3B	Sector Frame	Cable	VERIZON WIRELESS
	3	Samsung B5/B13 RRH-BR04C		(6) 1 5/8" Coax	
	4	Commscope JAHH-45B-R3B			
	3	Commscope CBC78T-DS-43-2X			
246.0	-	-	-	(1) 0.39" (10mm) Fiber Trunk (6) 2 1/4" Coax	AT&T MOBILITY
210.5	1	Andrew DB264	Leg/Flush	(1) 7/8" Coax	US DEPT OF JUSTICE
50.0	1	MicroPulse GPS-QBW-26N	Leg/Flush	(1) 1/2" Coax	VERIZON WIRELESS

Equipment to be Removed

Elev.1 (ft)	Qty	Antenna	Mount Type	Lines	Carrier	
	6	Powerwave Allgon TT19-08BP111-001	-	(2) 0.78" (19.7mm) 8 AWG 6 (6) 2 1/4" Coax (1) 3" conduit	AT&T MOBILITY	
	3	Raycap DC2-48-60-0-9E				
	1	Raycap FC12-PC6-10E (20.35 lb)				
246.0	2	KMW AM-X-CD-17-65-00T-RET (96" Height)				
	6	Powerwave Allgon P65-15-XLH-RR				
	1	Kathrein Scala 800 10766				
	3	Ericsson RRUS-11				

Eng. Number 13320909_C3_03 December 22, 2020 Page 3

Proposed Equipment

Elev.1 (ft)	Qty	Antenna	Mount Type	Lines	Carrier
	6	Powerwave Allgon LGP21901	Sector Frame	(1) 0.39" (10mm) Fiber Trunk (4) 0.82" (20.8mm) 8 AWG 6 (2) 2" conduit	AT&T MOBILITY
	2	Raycap DC6-48-60-18-8F			
	3	Ericsson RRUS 8843 B2, B66A			
246.0	3	Ericsson RRUS 4478 B14			
246.0	3	Ericsson RRUS 4449 B5, B12			
	3	Kathrein Scala 800 10122			
	3	CCI DMP65R-BU8D			
	3	CCI OPA65R-BU8D			

 $^{^1 \}text{Contracted elevations are shown for appurtenances within contracted installation tolerances.} \ Appurtenances outside of contract limits are shown at installed elevations.}$

Install proposed coax alongside of the existing AT&T Mobility lines.

Structure Usages

Structural Component	Controlling Usage	Pass/Fail
Legs	68%	Pass
Diagonals	89%	Pass
Trussed Diagonals	66%	Pass
Horizontals	56%	Pass
Trussed Horizontals	68%	Pass
Anchor Bolts	44 %	Pass

Foundations

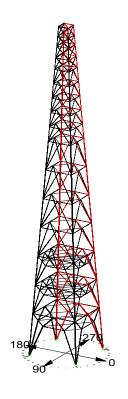
Reaction Component	Analysis Reactions	% of Usage
Uplift (Kips)	292.6	63%
Axial (Kips)	410.6	8%

The structure base reactions resulting from this analysis were found to be acceptable through analysis based on geotechnical and foundation information, therefore no modification or reinforcement of the foundation will be required.

Standard Conditions

All engineering services performed by A.T. Engineering Service, PLLC are prepared on the basis that the information used is current and correct. This information may consist of, but is not limited to the following:

- Information supplied by the client regarding antenna, mounts and feed line loading
- Information from drawings, design and analysis documents, and field notes in the possession of A.T. Engineering Service, PLLC


It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete.

All assets of American Tower Corporation, its affiliates and subsidiaries (collectively "American Tower") are inspected at regular intervals. Based upon these inspections and in the absence of information to the contrary, American Tower assumes that all structures were constructed in accordance with the drawings and specifications.

Unless explicitly agreed by both the client and A.T. Engineering Service, PLLC, all services will be performed in accordance with the current revision of ANSI/TIA-222.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information supplied herein.

American Tower Corp., Project: "13320909" Tower Version 16.01, 2:49:54 PM Tuesday, December 22, 2020 Undeformed geometry displayed

Project Name: 88011 - East Killingly North, CT
Project Notes: OAA720744_C3_02 - T-Mobile
Project File : X'\C-R'East Killingly North, CT (88011)\13320909 AT&T MOBILITY\13320909_03_CUST_STR\13320909.tow
Date run : 2:49:00 PM Tuesday, December 22, 2020
by : Tower Version 16.01
Licensed to : American Tower Corp.

Successfully performed nonlinear analysis

The model has 0 warnings.

Nember check option: ANSI/TIA 222-G-1
Connection rupture check: Not Checked
Crossing diagonal check: Fixed
Included angle check: None
Climbing load check: None
Climbing load check: None
Loads from file: X:\C-E\East Killingly North, CT (88011)\13320909 ATKT MOBILITY\13320909_03_CUST_STR\att13320909.eia

*** Analysis Results:

Maximum element usage is 89.22% for Angle "D 13X" in load case "W -90"

Foundation Design Forces For All Load Cases:

Note: loads are factored.

Load Case	Foundation Description	Force (kips)	Force (kips)	Moment	Usage %
W O	0P	296.21	42.20	3.46	0.00
w o	0x		41.53	3.27	0.00
W O			30.92	3.76	0.00
w o		-176.72	31.29	3.91	0.00
W 180	0P	-174.50	31.20	3.99	0.00
W 180 W 180		-175.06 289.73	30.80 41.50	3.83	0.00
W 180	UXY		41.50	3.33	0.00
W 45			56.14		0.00
W 45	0x		17.47	4.19	0.00
W 45		-292.61	46.89	3.95	0.00
W 45	0 Y		17.44		0.00
W -45	0P		18.21	4.38	0.00
W -45		406.74	55.78	2.43	0.00
W -45	0XY		17.07		0.00
W -45 W 90			46.95	4.01 3.47	0.00
W 90			31.30	3.47	0.00
W 90			30.91	3.76	0.00
W 90			41.52	3.26	0.00
W -90	0P	-174.51	31.21	3.99	0.00
W -90		293.37	42.08	3.52	0.00
W -90			41.50	3.32	0.00
W -90	0.4	-175.13	30.80	3.82	0.00
W 0 Ice			17.57	1.28	0.00
W 0 Ice W 0 Ice		137.55 27.49	17.28	1.17	0.00
W U Ice		30.15	2.74	2.01	0.00
W 180 Ice		33.28	3.07	2.15	0.00
W 180 Ice			3.00	2.13	0.00
W 180 Ice	0XY	134.59	17.20	1.14	0.00
W 180 Ice	0 Y	137.82	17.42	1.25	0.00
W 45 Ice	0P		21.19	0.82	0.00
W 45 Ice		83.84	10.03	1.77	0.00
W 45 Ice		0.32	2.65	2.14	0.00
W 45 Ice	0Y 0P		10.02	1.77	0.00
W -45 Ice W -45 Ice		87.19 164.94	10.40	0.76	0.00
W -45 ICE		81.09	9.97	1.72	0.00
W -45 Ice		3.07	2.53	2.21	0.00
W 90 Ice			17.57	1.28	0.00
W 90 Ice		30.23	2.80	2.08	0.00
W 90 Ice		27.49	2.74		0.00
W 90 Ice			17.28	1.17	0.00
W -90 Ice			3.08		0.00
W -90 Ice			17.42	1.25	0.00
W -90 Ice W -90 Ice			17.20		0.00
M -A0 ICE	UY	30.51	2.99	2.08	0.00

Summary of Joint Support Reactions For All Load Cases:

N O Case	Label	Force	Force	Force	Force	Moment	Moment	Moment	Moment	Usage
w o	0P	-37.44	-19.47	-296.21	42.20	-1.23	-3.24	3.46	-1.83	0.00
w o	0x	-36.53	19.74	-291.80	41.53	1.05	-3.10	3.27	1.84	0.00
w o	0XY	-27.62	-13.88	177.84	30.92	0.27	-3.75	3.76	1.68	0.00
w o	04	-28.21	13.55	176.72	31.29	-0.23	-3.91	3.91	-1.65	0.00
W 180	0P	28.21	13.33	174.50	31.20	-0.23	3.98	3.99	1.66	0.00
W 180	0X	27.61	-13.65	175.06	30.80	0.27	3.82	3.83	-1.69	0.00
W 180	0XY	36.56	19.63	-289.73	41.50	1.04	3.16	3.33	-1.84	0.00
W 180	04	37.40	-19.27	-293.29	42.07	-1.22	3.30	3.52	1.84	0.00
W 45	0.0	-39.68	-39.71	-410.60	17 47	2.70	-1.69	4.19	-0.00	0.00
W 45	0.00	-15.39	-0.20	202 61	46 90	2.70	-2.35	2.19	-0.00	0.00
W 45	071	-8 26	-15 36	-57 70	17 44	2 34	-3 47	4 18	-2.57	0.00
W _45	01	-16 11	8 49	-61 27	18 21	-3 63	-2 45	4 38	-2.56	0.00
W -45	0x	-38.98	39.89	-406.74	55.78	-1.84	-1.59	2.43	0.00	0.00
W -45	0XY	-7.86	15.15	-56.57	17.07	-2.33	-3.35	4.08	2.58	0.00
W -45	04	-33.48	32.91	291.13	46.95	-2.78	-2.90	4.01	0.02	0.00
W 90	0P	-19.45	-37.46	-296.22	42.21	3.24	1.24	3.47	1.83	0.00
W 90	0 X	13.52	-28.22	176.65	31.30	3.91	0.23	3.92	1.65	0.00
W 90	0XY	-13.90	-27.61	177.83	30.91	3.75	-0.27	3.76	-1.68	0.00
W 90	04	19.76	-36.52	-291.72	41.52	3.09	-1.04	3.26	-1.84	0.00
W -90	0P	13.32	28.23	174.51	31.21	-3.98	0.22	3.99	-1.66	0.00
W -90	0X	-19.26	37.42	-293.37	42.08	-3.30	1.23	3.52	-1.84	0.00
W -90	UXY	19.65	36.55	-289.73	41.50	-3.16	-1.03	3.32	1.84	0.00
W -90	UY OD	-13.67	27.60	1/5.13	30.80	-3.81	-0.28	3.82	1.69	0.00
W U ICE	02	-14.34	10.15	-137 55	17.57	1 14	0.23	1.20	0.42	0.00
W O Ice	011	_0 81	2 62	-27 49	2 74	0.91	-1 78	2 01	0.11	0.00
W 0 Ice	011	-0.81	-2.68	-30.15	2.80	-0.97	-1.83	2.08	-0.39	0.00
W 180 Ice	0P	0.79	-2.97	-33.28	3.07	-0.97	1.92	2.15	0.40	0.00
W 180 Ice	0x	0.83	2.88	-30.59	3.00	0.92	1.87	2.09	-0.42	0.00
W 180 Ice	0XY	13.98	10.02	-134.59	17.20	1.13	-0.17	1.14	-0.42	0.00
W 180 Ice	0Y	14.31	-9.92	-137.82	17.42	-1.24	-0.15	1.25	0.43	0.00
W 45 Ice	0P	-14.98	-14.98	-168.36	21.19	-0.58	0.58	0.82	0.00	0.00
W 45 Ice	0X	-9.33	3.67	-83.84	10.03	1.73	0.38	1.77	0.60	0.00
W 45 Ice	0XY	-1.87	-1.87	-0.32	2.65	1.51	-1.51	2.14	-0.00	0.00
W 45 Ice	04	3.67	-9.32	-83.76	10.02	-0.38	-1.73	1.77	-0.60	0.00
W -45 Ice	0P	-9.74	-3.64	-87.19	10.40	-1.84	0.35	1.87	-0.61	0.00
W -45 Ice	UX.	-14.65	15.01	-164.94	20.97	0.48	1.59	0.76	-0.01	0.00
W -45 ICE	OVI	_1 74	1 84	-81.09	2.53	-1 58	-1.69	2 21	0.62	0.00
W 90 Tce	UD	-10 14	_14 35	_141 10	17 57	-0.23	1 26	1 28	0.01	0.00
W 90 Ice	0X	-2.68	-0.81	-30.23	2.80	1.84	0.97	2.08	0.39	0.00
W 90 Ice	0XY	2.62	-0.81	-27.49	2.74	1.79	-0.91	2.01	-0.41	0.00
W 90 Ice	04	10.19	-13.95	-137.47	17.28	-0.26	-1.14	1.17	-0.41	0.00
W -90 Ice	0P	-2.97	0.79	-33.28	3.08	-1.92	0.97	2.15	-0.40	0.00
W -90 Ice	0x	-9.92	14.32	-137.90	17.42	0.15	1.24	1.25	-0.43	0.00
W -90 Ice	0XY	10.03	13.98	-134.59	17.20	0.17	-1.13	1.14	0.42	0.00
W -90 Ice	04	2.88	0.83	-30.51	2.99	-1.87	-0.92	2.08	0.42	0.00

Summary of Joint Support Reactions For All Load Cases in Direction of Leg:

Load Case					Residual Shear Perpendicular To Leg (kips)	Horizontal		Horizontal To Leg - Tran.	Long. Force (kips)	Tran. Force	Total Vert. Force (kips)
w o	0P	1P	L 1P	298.604	18.920	18.960	18.936	0.965	-37.44	-19.47	-296.21
w o	0x	1x	L 1X	294.171	18.323	18.364	18.302	-1.513	-36.53	19.74	-291.80
w o	0 XY	1XY	L 1XY	-179.728	16.700	16.743	16.512	2.771	-27.62	-13.88	177.84
w o	0Y	14	L 1Y	-178.630	17.307	17.350	17.169	-2.504	-28.21	13.55	176.72
W 180	0P	1P	L 1P	-176.410	17.436	17.480	-17.310	-2.431	28.21	13.33	174.50
W 180	0x	1X		-176.953	16.851	16.894	-16.676	2.708			175.06
W 180	0 XY	1XY	L 1XY	292.108	18.483	18.525	-18.462	-1.530	36.56	19.63	-289.73
W 180	0Y	14	L 1Y		19.057	19.098	-19.074	0.947		-19.27	
W 45	0P	1P	L 1P	413.945	19.779	19.856	14.027	14.053	-39.68	-39.71	-410.60
W 45	0x	1x			16.735	16.735	11.776				-57.77
W 45	0 XY	1XY		-295.599	20.955	21.036	14.885			-33.15	
W 45	04	14	L 1Y		16.701	16.701	11.864				-57.70
W -45	0P	1P	L 1P	61.505	17.400	17.400	12.284	-12.323			-61.27
₩ -45	0x	1X			19.768	19.845	13.572	-14.479			-406.74
₩ -45	0 XY	1XY			16.275	16.275	11.396	-11.618			-56.57
W -45	0Y	1Y		-294.128	21.141	21.223	15.287	-14.722			
W 90	0P	1P		298.613	18.935	18.976	0.944			-37.46	
W 90	0x	1x		-178.563	17.321	17.365	-2.487				176.65
W 90	0 XY	1XY		-179.720	16.690	16.733	2.787				177.83
W 90	04	14		294.088	18.312	18.354	-1.534				-291.72
W -90	0P	1P	L 1P	-176.418	17.447	17.490	-2.416	-17.322	13.32	28.23	174.51

W	-90	0x	1x	L 1X	295.762	19.068	19.109	0.926	-19.087	-19.26	37.42	-293.37
W	-90	0 XY	1XY	L 1XY	292.100	18.468	18.510	-1.551	-18.445	19.65	36.55	-289.73
W	-90	0.4	1Y	L 1Y	-177.019	16.837	16.880	2.725	-16.658	-13.67	27.60	175.13
w o	Ice	0P	1P	L 1P	142.074	5.666	5.682	5.524	1.330	-14.34	-10.15	-141.10
w o	Ice	0x	1x	L 1X	138.518	5.582	5.598	5.365	-1.598	-13.96	10.19	-137.55
w o	Ice	0 XY	1XY	L 1XY	27.494	2.685	2.687	2.532	-0.899	-0.81	2.62	-27.49
w o	Ice	04	14	L 1Y	30.152	2.802	2.804	2.690	0.793	-0.81	-2.68	-30.15
W 180	Ice	0P	1P	L 1P	33.287	3.002	3.005	-2.870	0.892	0.79	-2.97	-33.28
W 180	Ice	0x	1x	L 1X	30.597	2.906	2.908	-2.740	-0.972	0.83	2.88	-30.59
W 180	Ice	0 XY	1XY	L 1XY	135.566	5.784	5.802	-5.573	-1.613	13.98	10.02	-134.59
W 180	Ice	04	1Y	L 1Y	138.798	5.836	5.852	-5.703	1.313	14.31	-9.92	-137.82
W 45	Ice	0P	1P	L 1P	169.574	6.284	6.309	4.457	4.465	-14.98	-14.98	-168.36
W 45		0X	1x	L 1X	84.325	4.382	4.385	4.095	1.568		3.67	-83.84
W 45	Ice	0XY	1XY	L 1XY	0.084	2.666	2.676	1.893	1.892	-1.87	-1.87	-0.32
W 45		04	14	L 1Y	84.248	4.376	4.379	1.560	4.091	3.67		-83.76
W -45		0P	1P	L 1P	87.687	4.656	4.658	4.292	-1.810			-87.19
W -45		0X	1X	L 1X	166.144	6.377	6.402	4.340		-14.65		-164.94
W -45		0XY	1XY	L 1XY	81.578	4.462	4.465	1.444	-4.225			-81.09
W -45		04	14	L 1Y	2.833	2.787	2.798	1.927	-2.029		1.84	-3.07
W 90		0P	1P	L 1P	142.075	5.670	5.686	1.323			-14.35	
W 90		0 X	1x	L 1X	30.228	2.808	2.811	0.796	2.696			-30.23
W 90		0 XY	1XY	L 1XY	27.496	2.684	2.686	-0.899	2.531	2.62		-27.49
W 90		0.4	14	L 1Y	138.438	5.583	5.600	-1.605	5.365		-13.95	
W -90		0P	1P	L 1P	33.285	3.003	3.006	0.892	-2.870			-33.28
W -90		0 X	1X	L 1X		5.835	5.851	1.307	-5.704			-137.90
W -90		0 XY	1XY	L 1XY	135.564	5.781	5.798	-1.619	-5.567	10.03		-134.59
W -90	Ice	04	14	L 1Y	30.521	2.899	2.901	-0.969	-2.735	2.88	0.83	-30.51
Overtu	rning	Moment S	ummary	For Al	.1 Load Ca	ses:						

Load Case	Transverse Moment (ft-k)	Longitudinal Moment (ft-k)	Torsional Moment (ft-k)	Resultant Moment (ft-k)	Transverse Force (kips)	Longitudinal Force (kips)	Vertical Force (kips)
w o	124.202	-21172.829	47.304	21173.193	0.065	129.809	233.460
W 180	92.502	20948.778		20948.982	-0.049	-129.790	233.460
W 45	15794.399	-15797.767	-2.110	22339.035	96.493	96.493	233.460
W -45	-15570.803	-15781.664	68.836	22170.043	-96.452	96.435	233.460
W 90	21169.478	-127.576	-50.291	21169.862	129.809	0.065	233.460
W -90	-20952.145	-95.877	50.287	20952.364	-129.790	-0.049	233.460
W 0 Ice	139.554	-4964.415	10.754	4966.377	0.013	29.920	336.287
W 180 Ice	133.065	4684.670	-10.752	4686.560	-0.010	-29.916	336.287
W 45 Ice	3773.050	-3776.533	-0.460	5338.362	22.510	22.510	336.287
W -45 Ice	-3499.012	-3773.211	15.636	5145.892	-22.502	22.499	336.287
W 90 Ice	4960.934	-143.038	-11.405	4962.996	29.920	0.013	336.287
W -90 Ice	-4688.155	-136.549	11.403	4690.143	-29.916	-0.010	336.287

EIA Sections Information:

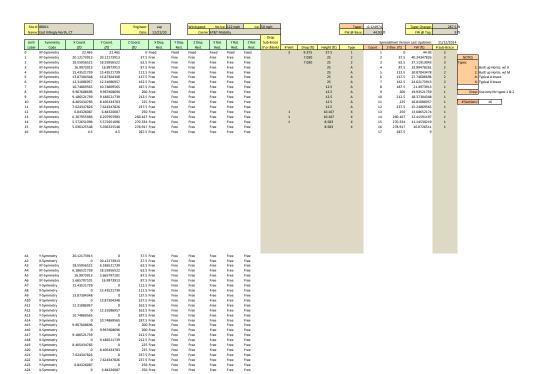
Section Top Label Z (ft)		Joint Count		Top Width (ft)	Bottom Width (ft)	Gross Area (ft^2)		Face Ar Adjust Factor	Dead Load Factor
278.9-287.5 287.500	278.917	8	20	9.00	10.07	81.85	1.1220	1.1220	1.346
270.3-278.9 278.917		8		10.07	11.15	91.06	1.2150	1.2150	1.458
260.2-270.3 270.334		8		11.15	12.42	119.77	1.1970	1.1970	1.436
250.0-260.2 260.167		12		12.42	13.69	132.69	1.2030	1.2030	1.444
237.5-250.0 250.000	237.500	16	24	13.69	15.25	180.84	1.2010	1.2010	1.441
225.0-237.5 237.500	225.000	16	24	15.25	16.81	200.36	1.2070	1.2070	1.449
212.5-225.0 225.000	212.500	16	24	16.81	18.37	219.89	1.2130	1.2130	1.456
200.0-212.5 212.500	200.000	16	24	18.37	19.93	239.41	1.2200	1.2200	1.463
187.5-200.0 200.000	187.500	16	24	19.93	21.50	258.94	1.2250	1.2250	1.471
162.5-187.5 187.500	162.500	16	24	21.50	24.62	576.45	1.2550	1.2550	1.506
137.5-162.5 162.500	137.500	16	24	24.62	27.74	654.55	1.2700	1.2700	1.524
112.5-137.5 137.500	112.500	16	24	27.74	30.87	732.65	1.2790	1.2790	1.535
87.50-112.5 112.500	87.500	20	32	30.87	33.99	810.75	1.2930	1.2930	1.552
62.50-87.50 87.500	62.500	36	76	33.99	37.12	888.85	1.2300	1.2300	1.476
37.50-62.50 62.500	37.500	32	68	37.12	40.24	966.95	1.2330	1.2330	1.480
0.000-37.50 37.500	0.000	20	40	40.24		1596.86	1.2600	1.2600	1.512

Printed capacities do not include the strength factor entered for each load case. The Group Summary reports on the member and load case that resulted in maximum usage which may not necessarily be the same as that which produces maximum force.

Case	97 1 997 1 997 1 997 1 997 1 997 1 49 1 49 1 49 1 49 1 07 1 16 1 16 1 1889 1 03 1	0 0 0 0 0 0 0 0 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	97 1 997 1 997 1 997 1 997 1 997 1 49 1 49 1 49 1 49 1 07 1 16 1 16 1 1889 1 03 1	0 0 0 0 0 0 0
Leg S3 L 8 * x 8 * x 1 * SAE 8XEX1 36.0 51.29 Ccmp 51.29 L 3 - 251.560 N 45 490.440 0.000 0.000 0.000 0.281 0.281 0.281 54.29 54.29 25. Leg S5 L 8 * x 8 * x 0.875 SAE 8XEX0.88 36.0 58.41 Ccmp 58.41 L 4P -242.633 N 45 415.366 0.000 0.000 0.333 0.333 0.333 0.333 6.344 6.3.94 25. Leg S5 L 8 * x 8 * x 0.875 SAE 8XEX0.88 36.0 49.82 Ccmp 49.82 L 5P -206.931 N 45 415.366 0.000 0.000 0.000 0.333 0.333 0.333 6.344 63.94 25. Leg S6 L 8 * x 8 * x 0.75 SAE 8XEX0.75 36.0 49.82 Ccmp 49.82 L 5P -206.931 N 45 415.366 0.000 0.000 0.333 0.333 0.333 0.333 6.354 63.94 25. Leg S8 L 6 * x 6 * x 0.75 SAE 8XEX0.75 36.0 49.82 Ccmp 49.82 L 5P -206.931 N 45 415.366 0.000 0.000 0.333 0.333 0.333 0.333 6.354 63.94 25. Leg S8 L 6 * x 6 * x 0.75 SAE 8XEX0.75 36.0 44.32 Ccmp 44.32 L 8P -117.271 N 45 264.577 0.000 0.000 0.500 0.500 0.500 64.35 64.35 12. Leg S9 L 6 * x 6 * x 0.75 SAE 6XEX0.75 36.0 44.32 Ccmp 44.32 L 8P -117.271 N 45 264.577 0.000 0.000 0.500 0.500 0.500 0.500 64.35 64.35 12.	97 1 997 1 997 1 997 1 997 1 449 1 449 1 449 1 449 1 4007 1 007 1 106 1 108 1 108 1	0 0 0 0 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	97 1 97 1 97 1 49 1 49 1 49 1 49 1 07 1 07 1 07 1 16 1 18 1 18 9 1	0 0 0
Leg S5 L8 "x 8" x 0.875" SAE 8X8X0.88 36.0 49.82 Comp 49.82 L5P = 206.931 M 45 415.366 0.000 0.000 0.333 0.333 0.333 0.333 63.54 63.94 25. Leg S6 L8 "x 8" x 0.75" SAE 8X8X0.75 36.0 44.91 Comp 44.91 L 7P = 135.775 M 45 359.362 0.000 0.000 0.333 0.333 0.333 63.53 63.53 25. Leg S8 L6 "x 6" x 0.75" SAE 8X8X0.63 36.0 44.91 Comp 44.91 L 7P = 135.775 M 45 302.310 0.000 0.000 0.333 0.333 0.333 63.53 63.53 25. Leg S8 L6 "x 6" x 0.75" SAE 6X6X0.75 36.0 44.32 Comp 44.32 L 8P = 117.271 M 45 264.577 0.000 0.000 0.500 0.500 0.500 64.35 64.35 12. Leg S9 L6 "x 6" x 0.75" SAE 6X6X0.75 36.0 37.24 Comp 37.24 L 9P = 98.531 M 45 264.577 0.000 0.000 0.500 0.500 0.500 0.500 64.35 64.35 12.	97 1 97 1 97 1 49 1 49 1 49 1 49 1 49 1 07 1 16 1 16 1 18 1 10 1	0 0
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	97 1 49 1 49 1 49 1 49 1 49 1 07 1 16 1 16 1 89 1	ō
Leg S8	49 1 49 1 49 1 49 1 07 1 07 1 16 1 16 1 89 1	0
Leg S9 L 6" x 6" x 0.75" SAE 6X6X0.75 36.0 37.24 Comp 37.24 L 9P -98.531 W 45 264.577 0.000 0.000 0.500 0.500 0.500 64.35 64.35 12.0	49 1 49 1 49 1 49 1 07 1 07 1 16 1 16 1 89 1	
	49 1 49 1 07 1 07 1 16 1 16 1 89 1	0
	49 1 07 1 07 1 16 1 16 1 89 1 03 1	0
Leg S11 L 6" x 6" x 0.5625" SAE 6X6X0.56 36.0 32.33 Comp 32.33 L 11P -65.361 W 45 202.141 0.000 0.000 0.500 0.500 0.500 63.81 63.81 12.	07 1 07 1 16 1 16 1 89 1 03 1	Ö
Leg S12 L 6" x 6" x 0.4375" SAE 6X6X0.44 36.0 30.41 Comp 30.41 L 12P -48.421 W 45 159.217 0.000 0.000 0.500 0.500 0.500 63.27 63.27 12.	07 1 16 1 16 1 89 1 03 1	0
Leg S13 L 5" x 5" x 0.4375" SAE 5X5X0.44 36.0 29.06 Comp 29.06 L 13P -38.482 W 45 132.416 0.000 0.000 0.500 0.500 0.500 6.501 62.11 62.11 10. Leg S14 L 5" x 5" x 0.4375" SAE 5X5X0.44 36.0 19.82 Comp 19.82 L 14P -26.244 W 45 132.416 0.000 0.000 0.500 0.500 0.500 6.211 62.11 10.	16 1 16 1 89 1 03 1	0
Leg S15 L 5 x 5 5 x 0.3125 SAE 5X5X0.31 36.0 13.34 Comp 13.34 L 15P -12.299 W 45 96.704 0.000 0.500 0.500 0.500 0.500 5.201 52.01 8.0	89 1 03 1	0
Leg S16 L5" x 5" x 0.3125" SAE 5X5X0.31 36.0 5.83 Comp 5.83 L 16P -5.639 W 45 96.704 0.000 0.000 0.500 0.500 0.500 52.01 52.01 8.	03 1	0
Diag Sl B/B L5"x5"x0.3125" DAE 5x5x0.31 36.0 30.99 Comp 30.99 D 2x -54.285 W -90 175.176 0.000 0.000 0.316 0.316 0.316 74.36 74.36 30.		0
Diag S2 B/BL2.5*x3.5*x0.25* DAS 3.5x2.5x0.25 36.0 63.10 Comp 63.10 D 4X -41.593 W -90 65.915 0.000 0.000 0.320 0.320 0.320 107.64 107.64 20. Diag S3 B/BL2.5*x3.5*x0.25* DAS 3.5x2.5x0.25 36.0 64.11 Comp 64.11 D 6X -41.459 W -90 64.682 0.000 0.000 0.320 0.320 0.320 0.320 108.60 107.64 20.		0
Diag S4 B/B L2.5"x3"x0.25" DAS 3x2.5x0.25 36.0 69.24 Comp 69.24 D 7x -27.008 W -90 39.005 0.000 0.300 0.300 0.300 1.300 1.300 1.300 0.300 1.300 0.300		0
Diag S5 B/B L2.5"x3"x0.25" DAS 3X2.5X0.25 36.0 66.43 Comp 66.43 D 9X -27.106 W -90 40.806 0.000 0.000 0.300 0.300 0.300 140.66 132.71 29.		0
Diag S6 B/B L2.5"x3"x0.25" DAS 3X2.5X0.25 36.0 68.17 Comp 68.17 D 11x -26.221 W -90 38.465 0.000 0.000 0.320 0.320 0.320 146.02 136.00 28.		0
Diag S7 B/B L2.5*x3*x0.25* DAS 3X2.5X0.25 36.0 89.22 Comp 89.22 Comp 59.56 D 15X -25.591 W -90 28.683 0.000 0.00 0.320 0.640 0.320 147.83 137.11 27. Diag S8 B/B L2.5*x2.5*x0.25* DAE 2.5X2.5X0.25 36.0 59.56 Comp 59.56 D 15X -15.150 W -90 25.438 0.000 0.00 0.00 0.50 1.000 0.50 1.001 148.55 16.		0
Diag S9 B/B L2.5*x2.5*x0.25* DAE 2.5x2.5x0.25 36.0 52.37 D 17x -14.020 W -90 26.770 0.000 0.000 0.500 1.000 0.500 16.41 145.47 16.		0
Diag S10 B/B L2.5"x2"x0.25" DAL 2.5x2x0.25 36.0 78.19 Comp 78.19 D 19x -13.396 W -90 17.132 0.000 0.000 0.500 1.000 0.500 199.34 168.79 15.		0
Diag S11 B/B L2.5"x2"x0.25" DAL 2.5x2X0.25 36.0 73.20 Comp 73.20 D21X -13.185 W -90 18.013 0.000 0.000 0.500 1.000 0.500 193.58 165.25 15.		0
Diag S12 B/B LZ.5°x2°x0.25° DAL 2.5x2X0.25° 36.0 66.77 Comp 66.77 D 23P -12.621 W 90 18.903 0.000 0.000 0.500 1.000 0.500 188.18 161.93 14.12.3 16.0 14.0 13.5°x 2.5°x 0.25° 58E 3.5X3.5X0.25° 36.0 31.37 Comp 31.37 D 26P -7.513 W 90 23.950 0.000 0.000 0.520 0.520 0.520 0.520 148.86 142.03 16.		0
Diag S14 L 3.5° x 3.5° x 0.25° SAE 3.5x3.5x0.25 36.0 28.58 Comp 28.58 D 28P -7.544 W 90 26.395 0.000 0.000 0.520 0.520 140.03 135.30 15.		0
Diag S15 L 3" x 3" x 0.25" SAE 3X3X0.25 36.0 20.82 Comp 20.82 D 29Y -4.489 W 180 21.562 0.000 0.000 0.520 0.520 0.520 143.95 138.29 13.		0
Diag S16 L 3" x 3" x 0.25" SAE 3X3X0.25 36.0 11.74 Comp 11.74 D 31Y -2.790 W 180 23.763 0.000 0.000 0.520 0.520 0.520 135.35 131.74 12.		0
Horiz 1 B/B 13.5*x2.5*x0.25* DAL 3.5x2.5x0.25 36.0 55.51 Comp 55.51 H 2Y -32.913 W -45 59.296 0.000 0.000 0.500 0.500 0.500 0.500 10.75 110.75 21.075 Horiz 2 B/B 13.5*x2.5*x0.25* DAL 3.5x2.5x0.25 36.0 55.52 Comp 55.52 H 3P -28.320 W -90 51.012 0.000 0.000 0.940 0.940 0.940 128.03 124.94 12.		0
Horiz 3 B/B L3"x2.5"x0.25" DAL 3x2.5x0.25 36.0 58.68 Comp 58.68 H 5P -26.349 W -90 44.906 0.000 0.000 0.940 0.940 0.940 135.25 129.38 11.		Ö
Horiz 4 B/B L3"x2.5"x0.25" DAL 3X2.5X0.25 36.0 48.74 Comp 48.74 H 7P -13.181 W -90 27.041 0.000 0.000 1.000 1.000 1.000 195.99 166.73 15.		0
Horiz 5 B/B L3*x2.5*x0.25* DAL 3x2.5x0.25 36.0 39.63 Comp 39.63 H 9P -12.475 W -90 31.478 0.000 0.000 1.000 1.000 1.000 1.000 176.15 154.53 13. Horiz 6 B/B L2.5*x2.5*x0.25 DAE 2.5x2.5*x0.25 36.0 43.60 Comp 43.60 H 11P -10.984 W -90 25.191 0.000 0.000 1		0
Horiz 6 B/B LZ.5*x2.5*x0.25* DAR 2.5x2.5x0.25 36.0 43.60 Comp 43.60 O H 11P -10.984 W -90 25.191 0.000 0.000 1.000 1.000 1.000 1.000 192.09 164.34 12. Horiz 7 B/B LZ.5*x2.5*x0.25* DAR 2.5x2.5*x0.25* 36.0 33.38 Comp 33.38 H 13P -10.180 W -90 30.501 0.000 0.000 1.000 1.000 1.000 1.00 16.77.2 149.35 10.		0
Horiz 8 B/B L2.5"x2.5"x0.25" DAE 2.5x2.5x0.25 36.0 26.37 Comp 26.37 H 15P -8.915 W -90 33.809 0.000 0.000 1.000 1.000 1.000 155.53 141.85 9.		Ö
Horiz 9 B/B L2.5"x2.5"x0.25" DAE 2.5x2.5x0.25 36.0 21.16 Comp 21.16 H 17P -7.973 W -90 37.685 0.000 0.000 1.000 1.000 1.000 143.34 134.36 9.		0
Horiz 10 B/B LZ.5*x2.5*x0.25* DAR 2.5x2.5x0.25 36.016.72 Comp 16.72 H 19P - 7.065 W -90 42.269 0.000 0.000 1.000 1.000 1.000 1.000 131.16 126.86 B. Horiz 11 B/B LZ.5*x2.5*x0.25* DAR 2.5x2.5*x0.25* 0.014.44 Comp 14.44 H 21P - 6.856 W -90 47.493 0.000 0.000 1.000 1.000 1.000 1.00 118.97 118.97 71.		0
HORIZ 12 B/B LZ.5"XZ.5"X0.25" DAE 2.5XZ.5XU.25 36.0 9.85 Comp 9.85 H 23X -5.403 W 90 54.881 0.000 0.000 1.000 1.000 1.000 10.00 16.78 16.79 //.		0
Horiz 13 L 3" x 2.5" x 0.25" SAU 3x2.5x0.25 36.0 8.09 Tems 4.21 H 25Y -0.852 W 0 20.261 0.000 0.500 0.500 0.500 0.500 141.09 136.11 12.		Ö
Horiz 14 B/B L3"x2.5"x0.25" DAL 3X2.5X0.25 36.0 2.45 Tens 0.37 H 27Y -0.266 W 0 72.238 0.000 0.000 0.500 0.500 0.500 70.76 70.76 11.		0
Horiz 15 L 3" x 2.5" x 0.25" SAU 3X2.5X0.25 36.0 2.94 Tems 0.00 H 30X 0.000 26.821 0.000 0.000 0.500 0.500 0.500 1.44.66 117.23 10. Horiz 16 Horiz 16 C8x11.5 CNN C8x11.5 36.0 0.71 Comp 0.71 H 32X -0.211 W 180 29.726 0.000 0.000 1.000		0
HOLE 16 COXII.5 35.0 U.11 COMP U.71 N 32A -0.21 W 100 29.120 U.00 U.000 U.000 I.000		0
LD 2 B/B L4"x4"x0.3125" DAE 4X4X0.31 36.0 52.88 Comp 52.88 LD 3X -49.150 W -90 92.955 0.000 0.000 0.920 0.920 0.920 122.54 121.56 13.		Ö
LD 4 B/B L2.5"x2"x0.25" DAL 2.5x2x0.25 36.0 66.46 Comp 66.46 LD 7x -20.221 W -45 30.424 0.000 0.000 0.920 0.920 0.920 154.95 141.49 11.		0
LD 5 B/B LZ.5*x2*x0.25* DAL 2.5x2X0.25 36.0 59.17 Comp 59.17 LD 9X -26.993 W -90 45.623 0.000 0.000 0.920 0.920 0.920 133.50 113.50 81. LD 6 B/B L3*x2*x0.25* DAL 3X2X0.25 36.0 61.59 Comp 61.59 LD IIP -28.633 W -90 46.488 0.000 0.000 0.920 0.920 0.920 10.91 116.15 116.15 9.		0
LD 7 B/B L2.5*x2*x0.25* DAL 2.5x2x0.25 36.0 63.10 Comp 63.10 LD 13x -20.597 W -45 32.642 0.000 0.000 0.920 0.920 1.920 147.01 136.61 10.		0
LD 8 B/B L2.5"x2"x0.25" DAL 2.5x2x0.25 36.0 57.36 Comp 57.36 LD 15x -26.773 W -90 46.676 0.000 0.000 0.920 0.920 0.920 111.55 111.55 7.		Ö
LD 9 B/B L3 "x3"x0.25" DAE 3x3x0.25 36.0 42.16 Comp 42.16 LD 17P -27.888 W -90 66.140 0.000 0.000 0.920 0.920 0.920 107.31 107.31 9.000 0.000 0.000 0.000 0.920 0.		0
LH 1 B/B L2.5*x2.5*x0.25* DAE 2.5x2.5x0.25 36.0 18.92 Tems 0.00 LH 2X 0.000 0.002 0.000 0.000 100.000 100.000 100.000 31396.62 19355.12 20. LH 2 B/B L2.5*x2*x0.25 DAS 322.5x0.25 36.0 67.84 Comp 67.84 LH 3X -22.575 W -45 33.279 0.000 0.000 1.000 100.00 1.000		0
LH 2 B/B LZ.5"X3"XU.25" DAS 3XZ.5XU.25 36.0 6/.84 Comp 6/.84 LH 3X -ZZ.575 W -45 33.Z/9 U.UUU U.UUU 1.UUU 1.UUU 1.UUU 1.UUU 1.0UU 1.		0
DUM 1 Dummy Bracing Member DUM 0.1x0.1x1 36.0 0.00 0.00 BR 9xY -0.936 W 45 0.324 0.000 0.000 1.000 1.000 1.000 2.35 2.35 19.		0

Group Label		Angle Type	Angle Size	Steel Strength (ksi)		rol	Use	Tension Control Member		Control	Section Capacity	Connect. Shear	Connect. Bearing Capacity	Tension Connect. Rupture Capacity (kips)	Tens. Member	Of	Of	Hole Diameter (in)
Leg S1	L 8" x 8" x 1.125"	SAE	8x8x1.13	36.0	68.71	Comp	40.97	L 1XY	222.058	W 45	542.051	0.000	0.000	0.000	37.646	0	0.000	0
Leg S2	L 8" x 8" x 1.125"	SAE	8x8x1.13	36.0	53.31	Comp	38.66	L 2XY	209.584	W 45	542.051	0.000	0.000	0.000	25.097	0	0.000	0
Leg S3	L 8" x 8" x 1"	SAE	8x8x1	36.0	51.29	Comp	37.36	L 3XY	181.558	W 45	485.999	0.000	0.000	0.000	25.097	0	0.000	0
Leg S4	L 8" x 8" x 0.875"	SAE	8x8x0.88	36.0	58.41	Comp	41.41	L 4XY	177.516	W 45	428.651	0.000	0.000	0.000	25.097	0	0.000	0
Leg S5	L 8" x 8" x 0.875"	SAE	8x8x0.88	36.0	49.82	Comp	34.89	L 5XY	149.552	W 45	428.651	0.000	0.000	0.000	25.097	0	0.000	0
Leg S6	L 8" x 8" x 0.75"	SAE	8x8x0.75	36.0	47.53	Comp	32.73	L 6XY	121.330	W 45	370.655	0.000	0.000	0.000	25.097	0	0.000	0
Leg S7	L 8" x 8" x 0.625"	SAE	8X8X0.63	36.0	44.91	Comp	29.72	L 7XY	92.541	W 45	311.364	0.000	0.000	0.000	25.097	0	0.000	0
Leg S8	L 6" x 6" x 0.75"	SAE	6X6X0.75	36.0	44.32	Comp	28.79	L 8XY	78.720	W 45	273.456	0.000	0.000	0.000	12.549	0	0.000	0

Leg S9	L 6" x 6" x 0.75"	SAE 6X6X0.75	36.0 37.24	Comp 23.69	L 9XY	64.781	W 45	273.456	0.000	0.000	0.000 12.549	0 0.000	0
Leg S10	L 6" x 6" x 0.5625"	SAE 6X6X0.56	36.0 40.51	Comp 24.38	T. 10XY	50.799	W 45	208.332	0.000	0.000	0.000 12.549	0 0.000	0
Leg S11	L 6" x 6" x 0.5625"	SAE 6X6X0.56	36.0 32.33	Comp 17.71			W 45	208.332	0.000	0.000	0.000 12.549	0 0.000	ō
										0.000		0 0.000	0
Leg S12	L 6" x 6" x 0.4375"	SAE 6X6X0.44	36.0 30.41	Comp 14.13				163.944	0.000		0.000 12.549		
Leg S13	L 5" x 5" x 0.4375"	SAE 5X5X0.44	36.0 29.06	Comp 13.05				135.432	0.000	0.000	0.000 10.207	0 0.000	0
Leg S14	L 5" x 5" x 0.4375"	SAE 5X5X0.44	36.0 19.82	Comp 5.84	L 14XY	7.912	W 45	135.432	0.000	0.000	0.000 10.207	0 0.000	0
Leg S15	L 5" x 5" x 0.3125"	SAE 5X5X0.31	36.0 13.34	Comp 2.02	L 15XY	1.980	W 45	98.172	0.000	0.000	0.000 8.616	0 0.000	0
Leg S16	L 5" x 5" x 0.3125"	SAE 5X5X0.31	36.0 5.83	Comp 0.00	L 16Y	0.000		98.172	0.000	0.000	0.000 8.616	0 0.000	0
Diag S1	B/B L5"x5"x0.3125"	DAE 5X5X0.31	36.0 30.99	Comp 23.91	D 2P	46.863	w _9n	196.020	0.000	0.000	0.000 30.789	0 0.000	0
Diag S2	B/B L2.5"x3.5"x0.25"	DAS 3.5X2.5X0.25	36.0 63.10	Comp 37.36	D 4P	34.857	W -90	93.312	0.000	0.000	0.000 20.603	0 0.000	0
Diag S3	B/B L2.5"x3.5"x0.25"	DAS 3.5X2.5X0.25	36.0 64.11	Comp 36.81	D 6P	34.349	W -90	93.312	0.000	0.000	0.000 20.250	0 0.000	0
Diag S4	B/B L2.5"x3"x0.25"	DAS 3X2.5X0.25	36.0 69.24	Comp 29.08	D 7P	24.783	W -90	85.212	0.000	0.000	0.000 30.271	0 0.000	0
Diag S5	B/B L2.5"x3"x0.25"	DAS 3X2.5X0.25	36.0 66.43	Comp 29.16	D 9P	24.851	W -90	85.212	0.000	0.000	0.000 29.422	0 0.000	0
Diag S6	B/B L2.5"x3"x0.25"	DAS 3X2.5X0.25	36.0 68.17	Comp 28.47	D 11P	24.260	W -90	85.212	0.000	0.000	0.000 28.633	0 0.000	0
Diag S7	B/B L2.5"x3"x0.25"	DAS 3X2.5X0.25	36.0 89.22	Comp 28.44	D 13P	24.231	W -90	85.212	0.000	0.000	0.000 27.910	0 0.000	0
Diag S8	B/B L2.5"x2.5"x0.25"	DAE 2.5X2.5X0.25	36.0 59.56	Comp 18.24	D 15P	14.067	W -90	77.112	0.000	0.000	0.000 16.504	0 0.000	0
Diag S9	B/B L2.5"x2.5"x0.25"	DAE 2.5X2.5X0.25	36.0 52.37	Comp 16.94	D 17P	13.064	W -90	77.112	0.000	0.000	0.000 16.006	0 0.000	0
Diag S10	B/B L2.5"x2"x0.25"	DAL 2.5X2X0.25	36.0 78.19	Comp 18.19	D 19P	12.552	W -90	69.012	0.000	0.000	0.000 15.532	0 0.000	0
Diag S11	B/B L2.5"x2"x0.25"	DAL 2.5X2X0.25	36.0 73.20	Comp 18.01	D 21P	12.426	W -90	69.012	0.000	0.000	0.000 15.083	0 0.000	ő
Diag S12	B/B L2.5"x2"x0.25"	DAL 2.5X2X0.25	36.0 66.77	Comp 17.27		11.915	W 90	69.012	0.000	0.000	0.000 14.662	0 0.000	0
	L 3.5" x 3.5" x 0.25"	SAE 3.5X3.5X0.25	36.0 31.37			5.731		54.756	0.000	0.000	0.000 14.002	0 0.000	0
				Comp 10.47	D 26X		W 90						
	L 3.5" x 3.5" x 0.25"	SAE 3.5X3.5X0.25	36.0 28.58	Comp 10.29	D 28X	5.635	W 90	54.756	0.000	0.000	0.000 15.574	0 0.000	0
Diag S15	L 3" x 3" x 0.25"	SAE 3X3X0.25	36.0 20.82	Comp 6.98	D 29Y	3.255	w o	46.656	0.000	0.000	0.000 13.657	0 0.000	0
Diag S16	L 3" x 3" x 0.25"	SAE 3X3X0.25	36.0 11.74	Comp 3.84	D 31Y	1.791	w o	46.656	0.000	0.000	0.000 12.841	0 0.000	0
	B/B L3.5"x2.5"x0.25"	DAL 3.5X2.5X0.25	36.0 55.51	Comp 37.07	H 1P	34.588	W 90	93.312	0.000	0.000	0.000 20.120	0 0.000	0
Horiz 2	B/B L3.5"x2.5"x0.25"	DAL 3.5X2.5X0.25	36.0 55.52	Comp 34.82	H 3X	32.489	W -90	93.312	0.000	0.000	0.000 12.372	0 0.000	0
Horiz 3	B/B L3"x2.5"x0.25"	DAL 3X2.5X0.25	36.0 58.68	Comp 34.31	H 5X	29.235	W -90	85.212	0.000	0.000	0.000 11.331	0 0.000	0
Horiz 4	B/B L3"x2.5"x0.25"	DAL 3X2.5X0.25	36.0 48.74	Comp 16.27	н 7х	13.865	W -90	85.212	0.000	0.000	0.000 15.434	0 0.000	0
Horiz 5	B/B L3"x2.5"x0.25"	DAL 3X2.5X0.25	36.0 39.63	Comp 15.02	н 9р	12.802	W 90	85.212	0.000	0.000	0.000 13.872	0 0.000	0
	B/B L2.5"x2.5"x0.25"	DAE 2.5X2.5X0.25	36.0 43.60	Comp 14.50		11.180	W -90	77.112	0.000	0.000	0.000 12.310	0 0.000	ő
Horiz 7		DAE 2.5X2.5X0.25	36.0 33.38	Comp 13.64	H 13P	10.514	W 90	77.112	0.000	0.000	0.000 10.748	0 0.000	ő
	B/B L2.5"x2.5"x0.25"	DAE 2.5X2.5X0.25	36.0 26.37			9.069	W -90	77.112	0.000	0.000	0.000 9.967	0 0.000	0
				Comp 11.76	H 15X								
Horiz 9		DAE 2.5X2.5X0.25	36.0 21.16	Comp 10.67	н 17Р	8.231	W 90	77.112	0.000	0.000	0.000 9.186	0 0.000	0
	B/B L2.5"x2.5"x0.25"	DAE 2.5X2.5X0.25	36.0 16.72	Comp 9.50	H 19X	7.324	W -90	77.112	0.000	0.000	0.000 8.405	0 0.000	0
	B/B L2.5"x2.5"x0.25"	DAE 2.5X2.5X0.25	36.0 14.44	Comp 9.09	H 21P	7.008	W 90	77.112	0.000	0.000	0.000 7.624	0 0.000	0
Horiz 12	B/B L2.5"x2.5"x0.25"	DAE 2.5X2.5X0.25	36.0 9.85	Comp 8.49	H 23P	6.547	W 90	77.112	0.000	0.000	0.000 6.843	0 0.000	0
Horiz 13	L 3" x 2.5" x 0.25"	SAU 3X2.5X0.25	36.0 8.09	Tens 8.09	H 25P	3.434	w o	42.444	0.000	0.000	0.000 12.416	0 0.000	0
Horiz 14	B/B L3"x2.5"x0.25"	DAL 3X2.5X0.25	36.0 2.45	Tens 2.45	H 27P	2.085	w o	85.212	0.000	0.000	0.000 11.145	0 0.000	0
Horiz 15	L 3" x 2.5" x 0.25"	SAU 3X2.5X0.25	36.0 2.94	Tens 2.94	H 29P	1.246	w o	42.444	0.000	0.000	0.000 10.073	0 0.000	0
Horiz 16	C8x11.5	CHN C8x11.5	36.0 0.71	Comp 0.40	H 32X	0.441	w o	109.512	0.000	0.000	0.000 9.000	0 0.000	0
LD 1	B/B L3.5"x3.5"x0.25"	DAE 3.5X3.5X0.25	36.0 37.18	Comp 22.73	LD 2Y	24.893	W -45	109.512	0.000	0.000	0.000 13.764	0 0.000	ő
LD 2	B/B L4"x4"x0.3125"	DAE 4X4X0.31	36.0 52.88	Comp 29.00	LD 3P	45.095	W -90	155.520	0.000	0.000	0.000 13.764	0 0.000	0
LD 4	B/B L2.5"x2"x0.25"	DAL 2.5X2X0.25	36.0 66.46	Comp 25.03		17.270	W -45	69.012	0.000	0.000	0.000 11.004	0 0.000	0
LD 5	B/B L2.5"x2"x0.25"	DAL 2.5X2X0.25	36.0 59.17	Comp 33.64		23.218	W -90	69.012	0.000	0.000	0.000 8.060	0 0.000	0
LD 6	B/B L3"x2"x0.25"	DAL 3X2X0.25	36.0 61.59	Comp 38.34	LD 11X		W -90	77.112	0.000	0.000	0.000 9.374	0 0.000	0
LD 7	B/B L2.5"x2"x0.25"	DAL 2.5X2X0.25	36.0 63.10	Comp 25.84	LD 14Y		W -45	69.012	0.000	0.000	0.000 10.440	0 0.000	0
LD 8	B/B L2.5"x2"x0.25"	DAL 2.5X2X0.25	36.0 57.36	Comp 33.16	LD 15P	22.885	W -90	69.012	0.000	0.000	0.000 7.922	0 0.000	0
LD 9	B/B L3"x3"x0.25"	DAE 3X3X0.25	36.0 42.16	Comp 30.70	LD 17X	28.645	W -90	93.312	0.000	0.000	0.000 9.039	0 0.000	0
LH 1	B/B L2.5"x2.5"x0.25"	DAE 2.5X2.5X0.25	36.0 18.92	Tens 18.92	LH 1Y	14.590	w o	77.112	0.000	0.000	0.000 20.120	0 0.000	0
LH 2	B/B L2.5"x3"x0.25"	DAS 3X2.5X0.25	36.0 67.84	Comp 21.78		18.559	W -45	85.212	0.000	0.000	0.000 10.104	0 0.000	ō
LH 3	B/B L2.5"x3"x0.25"	DAS 3X2.5X0.25	36.0 60.33			18.550	W -45	85.212	0.000	0.000	0.000 9.291	0 0.000	ō
DUM 1		DUM 0.1x0.1x1	36.0 0.00	0.00	BR 9X	0.796	W -45	0.324	0.000	0.000	0.000 19.618	0 0.000	0
DOM I	Dummy Drucing Member	DOM U.IAU.IAI	30.0 0.00	0.00	- JA	0.750	" -43	0.324	0.000	0.000	0.000 19.010	0.000	0


^{***} Maximum Stress Summary for Each Load Case

Summary of Maximum Usages by Load Case:

Load Case	Maximum	Element	Element
	Usage %	Label	Type
W 0 W 180 W 45 W -45 W 90 W -90 W 180 Ice W 45 Ice W 45 Ice W 90 Ice	88.24 89.05 68.71 69.07 88.49 89.22 24.59 24.33 29.10 28.33 24.59 24.33	D 14P D 14Y L 1P D 13X D 13P D 13X L 1P D 14Y L 1P L 1X L 1P D 13X	Angle

^{***} Weight of structure (lbs):
Weight of Angles*Section DLF: 131305.8
Weight of Equipment: 140.0
Total: 131445.8

*** End of Report

H1	XY-Symmetry	20 70755435	10.05086957	28 125 Free	Free	Free	Free	Free	Free
H2	XY-Symmetry	10.06086957	20.70755435	28.125 Free	Free	Free	Free	Free	Free
H5	XY-Symmetry	18.99884852	10.10510487	55.47 Free	Free	Free	Free	Free	Free
H6	XY-Symmetry	10.10510487	18.99884852	55.47 Free	Free	Free	Free	Free	Free
H7	Y-Symmetry	18.99884852	0	55.47 Free	Free	Free	Free	Free	Free
H8	X-Symmetry	0	18.99884852	55.47 Free	Free	Free	Free	Free	Free
H9	XY-Symmetry	17.43667461	9.291524696	80.47 Free	Free	Free	Free	Free	Free
H10	XY-Symmetry	9.291524696	17.43667461	80.47 Free	Free	Free	Free	Free	Free
H11	Y-Symmetry	17.43667461	0	80.47 Free	Free	Free	Free	Free	Free
H12	X-Symmetry	0	17.43667461	80.47 Free	Free	Free	Free	Free	Free

Legs

Site No.:	88011
Engineer:	
Date:	
Carrier:	AT&T Mobility

When inputting thickness values, include all decimal places.

		_			_
Tower	Section	Туре	Diameter	Thickness [2]	F _Y
Section #	Elevations	of Shape '-'	or Length		
#	(41)			(in)	((:)
	(ft)		(in)	(in)	(ksi)
1	0.000-37.50	L	8	1.125	36
2	37.50-62.50	L	8	1.125	36
3	62.50-87.50	L	8	1.123	36
4	87.50-112.5	L	8	0.875	36
5	112.5-137.5	L	8	0.875	36
6	137.5-162.5	L	8	0.75	36
7	162.5-187.5	L	8	0.625	36
8	187.5-200.0	L	6	0.75	36
9	200.0-212.5	L	6	0.75	36
10	212.5-225.0	L	6	0.5625	36
11	225.0-237.5	L	6	0.5625	36
12	237.5-250.0	L	6	0.4375	36
13	250.0-260.2	L	5	0.4375	36
14	260.2-270.3	L	5	0.4375	36
15	270.3-278.9	L	5	0.3125	36
16	278.9-287.5	L	5	0.3125	36

Notes:

Type of Leg Shape: \mathbf{R} = Round or \mathbf{P} = Bent Plate or \mathbf{S} = Schifflerized Angle. \mathbf{L} = Even Leg [2] For Solid Round Leg Shapes Thickness Equals Zero.

Adjust for Bent Plate Leg Shapes.

Diagonals

 Site No.:
 88011

 Engineer:
 asp

 Date:
 12/22/2020

 Carrier:
 AT&T Mobility

When inputting thickness values, include all decimal places.

Tower Section	Section Elevations	Type of Shape ^[1]	Diameter ^[2]	Web Length ^[3]	Flange Length ^[3]	Thickness	F _y	Is Diag. Tension Only?
#	(ft)	Snape	(in)	(in)	(in)	(in)	(ksi)	(Y/N)
1	0.000-37.50	2L		5	5	0.3125	36	
2	37.50-62.50	2L		2.5	3.5	0.25	36	
3	62.50-87.50	2L		2.5	3.5	0.25	36	
4	87.50-112.5	2L		2.5	3	0.25	36	
5	112.5-137.5	2L		2.5	3	0.25	36	
6	137.5-162.5	2L		2.5	3	0.25	36	
7	162.5-187.5	2L		2.5	3	0.25	36	
8	187.5-200.0	2L		2.5	2.5	0.25	36	
9	200.0-212.5 212.5-225.0	2L		2.5	2.5	0.25 0.25	36 26	
10 11	212.5-225.0 225.0-237.5	2L 2L		2.5 2.5	2 2	0.25	36 36	
12	237.5-250.0	2L 2L		2.5	2	0.25	36	
13	250.0-260.2	L		3.5	3.5	0.25	36	
14	260.2-270.3	L		3.5	3.5	0.25	36	
15	270.3-278.9	L		3	3	0.25	36	
16	278.9-287.5	L		3	3	0.25	36	

Notes:

Type of Diagonal Shape: \mathbf{R} = Round, \mathbf{L} = Single-Angle or $\mathbf{2L}$ = Double-Angle.

^[2] Applies to Pipes and Solid Round Shapes only. For Solid Round Shapes Thickness Equals Zero.

^[3] Applies to Single-Angle and Double-Angle Shapes only.

^[4] Applies to Double-Angle Shapes only.

 $^{^{\}mbox{\scriptsize [5]}}$ Applies to Single-Angle Shapes only.

Horizontals

 Site No.:
 88011

 Engineer:
 asp

 Date:
 12/22/2020

 Carrier:
 AT&T Mobility

When inputting thickness values, include all decimal places.

_		-	Diameter [2]	NAZ-II	El	- 0.1.1	-	
Tower	Section	Type	Diameter	Web Length ^[3]	Flange Length ^[3]	Thickness	F _y	
Section	Elevations	of Shape ^[1]		Length	Length			B/B Spacing
#		Snape · ·						(in.)
	(ft)		(in)	(in)	(in)	(in)	(ksi)	` ,
1	0.000-37.50	2L		3.5	2.5	0.25	36	
2	37.50-62.50	2L		3.5	2.5	0.25	36	
3	62.50-87.50	2L		3	2.5	0.25	36	
4	87.50-112.5	2L		3	2.5	0.25	36	
5	112.5-137.5	2L		3	2.5	0.25	36	
6	137.5-162.5	2L		2.5	2.5	0.25	36	
7	162.5-187.5	2L		2.5	2.5	0.25	36	
8	187.5-200.0	2L		2.5	2.5	0.25	36	
9	200.0-212.5	2L		2.5	2.5	0.25	36	
10	212.5-225.0	2L		2.5	2.5	0.25	36	
11	225.0-237.5	2L		2.5	2.5	0.25	36	
12	237.5-250.0	2L		2.5	2.5	0.25	36	
13	250.0-260.2	L		3	2.5	0.25	36	
14	260.2-270.3	2L		3	2.5	0.25	36	
15	270.3-278.9	L		3	2.5	0.25	36	
16	278.9-287.5	С		8	11.5		36	

<u>Notes</u>

 $[\]overline{}^{[1]}$ Type of Horizontal Shape: **R** = Round, **L** = Single-Angle, **2L** = Double-Angle, **C** = Channel, **W** = W Shape

^[2] Applies to Pipes and Solid Round Shapes only. For Solid Round Shapes Thickness Equals Zero.

^[3] Applies to Single-Angle and Double-Angle Shapes only.

^[4] Applies to Double-Angle Shapes only.

^[5] Applies to Single-Angle Shapes only.

Built-up Diagonals

 Site No.:
 88011

 Engineer:
 asp

 Date:
 12/22/2020

 Carrier:
 AT&T Mobility

When inputting thickness values, include all decimal places. Input diags. from left to center & from base section upward.

			. [2]				_
Tower	Section	Type	Diameter [2]	Web Length ^[3]	Flange Length ^[3]	Thickness	F _y
Built-up Diag. #	Elevations	of Shape '-'		Length	Length		
Diag. II	(ft)	•	(in)	(in)	(in)	(in)	(ksi)
	0.7		()	(,	(,	(,	()
1	0.000-37.50	2L		3.5	3.5	0.25	36
2	0.000-37.50	2L		4	4	0.3125	36
3	37.50-62.50	2L		2.5	2	0.25	36
4	37.50-62.50	2L		2.5	2	0.25	36
5	37.50-62.50	2L		3	2	0.25	36
6	62.50-87.50	2L		2.5	2	0.25	36
7	62.50-87.50	2L		2.5	2	0.25	36
8	62.50-87.50	2L		3	3	0.25	36

Notes:

 $^{^{[1]}}$ Type of Diagonal Shape: **R** = Round, **L** = Single-Angle or **2L** = Double-Angle.

 $^{^{[2]}}$ Applies to Pipes and Solid Round Shapes only. For Solid Round Shapes Thickness Equals Zero.

 $^{^{\}mbox{\scriptsize [3]}}$ Applies to Single-Angle and Double-Angle Shapes only.

 $^{^{[4]}}$ Applies to Double-Angle Shapes only.

^[5] Applies to Single-Angle Shapes only.

Built-up Horizontals

 Site No.:
 88011

 Engineer:
 asp

 Date:
 12/22/2020

 Carrier:
 AT&T Mobility

When inputting thickness values, include all decimal places.

Tower Section #	Section Elevations (ft)	Type of Shape '-'	Diameter ^[2]	Web Length ^[3] (in)	Flange Length ^[3] (in)	Thickness	F _y (ksi)	Is Horiz. Tension Only? (Y/N)
1 2 3	0.000-37.50 37.50-62.50 62.50-87.50	2L 2L 2L		2.5 2.5 2.5	2.5 3 3	0.25 0.25 0.25	36 36 36	Y

Notes:

Type of Horizontal Shape: \mathbf{R} = Round, \mathbf{L} = Single-Angle or $\mathbf{2L}$ = Double-Angle.

 $^{^{[2]} \, {\}rm Applies} \, {\rm to} \, {\rm Pipes} \, {\rm and} \, {\rm Solid} \, {\rm Round} \, {\rm Shapes} \, {\rm only}. \, \, {\rm For} \, {\rm Solid} \, {\rm Round} \, {\rm Shapes} \, {\rm Thickness} \, {\rm Equals} \, {\rm Zero}.$

^[3] Applies to Single-Angle and Double-Angle Shapes only.

^[4] Applies to Double-Angle Shapes only.

 $^{^{\}mbox{\scriptsize [5]}}$ Applies to Single-Angle Shapes only.

Coax (p. 1 of 2)			Orig by	MED, Improved i	by ABL. Last updat	e 6/25/13 MED		Site No.: Engineer:	88011 asp		Coax (p. 2 of 2) Ke 0.962111 Sile No Engineer	88011 asp
								Date: Carrier:	12/22/2 AT&T Mob		Exposure s α 7 K _{rmin} 2.01 Out. Tia Code: Time Nazzari Topo Cat: 1 2π 1200 K _{rmin} 0.7 Carrier K _c 0.5 K _c	12/22/20 AT&T Mobility
Description	From	То	Quantity	Shape	Width or Diameter**	Perimeter	Unit Weight	In Face Zone?	Include in Wind Load			Include in Wind Load
	(ft)	(ft)			(in)	(in)	(b/ft)	(Yes/No)	(Yes/No)			(Yes/No)
1 Ladder	۰	17	1	Flat	1.5	6.0	6	No	Yes		Ladder 0 37 1 8 150 Flat 100 Flat 1 1 6.0 MVA No	Yes
2 COAX CAGE	8.3333	33.3333	2	Round	12	37.7	50	Yes	Yes		COAX CAGE 8.3333 33.333 2 1 12.00 led 100 Round 2 1 37.7 25 Yes	Yes
3 COAX CAGE	8.3333	33.3333	2	Round	12	37.7	50	Yes	Yes		CONCROS 8.3333 33.3333 2 3 12.00 Red 100 Round 2 1 27.7 25 Ves	Yes
4 WG1 5 WG2		266 246	1	Flat	1.5 1.5	6.0	6	Yes	Yes		WG1 5 266 1 4 130 First 100 First 1 1 6.0 av/A Yes	Yes
5 WG2 6 WG3		277	1	flat	1.5	6.0	6	Yes	Yes		WG2 5 246 1 2 130 FMz 100 FMz 1 1 6.0 RNA Vs. WG3 5 277 1 1 130 FMz 100 FMz 1 1 6.0 RNA Vs.	
7 SN1	5	287.5	1	Flat	3.06	16.3	4	Yes	Yes		986 3 889 4 3 334 Med 50 3 Med 2 2 3 453 4 76	Yes
8 SN2	5	287.5	1	Flat	4.8375	25.8	4.92	Yes	Yes		2002 3 2013 6 3 100 Med 50 1 Me 3 2 274 440 10	Yes
9 TMO1	5	277	1	Flat	3.195	17.0	6.44	Yes	Yes		TMD1 5 277 4 2 1.03 Neek 50 1 Fee 2 2 27.0 6.44 No.	Yes Fac
10 TMO2	5	277	1	Round	0.63	2.0	0.15	No	No		TM02 5 277 1 1 0.63 Ind 100 Round 1 1 2.0 0.35 Ves	Yes
11 VZW1	5	266	1	Round	1.54	4.8	1	Yes	Yes		VZW1 5 266 1 4 154 Ind 100 Round 1 1 4.8 1 Ves	
12 VZW2 13 ATT1	5	266 246	6	Round	1.98	6.2 1.2	0.82	Yes	Yes	l	V2V2 5 266 6 4 1.98 ind 100 Board 6 1 6.2 0.42 Yes	
15 ATT1 14 ATT2	5	246 246	4	Round	0.39	2.6	0.17	Yes	Yes	l	ATT2 5 266 2 2 0.39 led 300 lend 2 1 12 0.37 les ATT2 5 266 4 2 0.32 led 300 lend 4 1 2.6 0.52 les	Yes
15 ATT3		246	2	Round	2.38	7.5	3.65	Yes	Yes	l	ATT2 5 246 4 2 032 led 100 Roard 4 1 2.6 0.32 les ATT3 5 246 2 2 2.38 led 100 Roard 2 1 7.5 3.65 Ve	Yes
16 ATT4	5	246	6	Round	2.38	7.5	1.22	Yes	Yes	l	275 A 276 A 278 B	Yes
17 SIGFOX	5	287.5	1	Round	1.09	3.4	0.33	Yes	Yes		SGFOX 5 287.5 1 1 1.00 ted 100 Mound 1 1 3.4 0.33 tes	Yes
18 TMO3	5	277	4	Round	1.54	4.8	1	Yes	Yes		TMO3 5 277 4 1 1.54 led 100 Round 4 1 4.8 1 Yes	Yes
											No	No
												No
												No
											No.	No
												No
											No.	No
											No.	No
											No No	No
												No
											No.	No
												No
											No	No
											No.	No
												No.
											No.	No
												No
1										l	***	No
1											No.	No
1										l		No.
1										l	No.	No
1										l	No.	No
1											-	No
1										l	No.	No
1											No.	No
1										l	No.	No
1											100	No
1											-	No
1										l		No
1											1.00	No
1											No.	No.
1												No.
1										l	No.	No
1										l		No
											No.	No
·					**Note	Artisel hinch w	width multiplied	1 Aw 17 75 17 5 Above 18	ran factor actual disis	ided he 2 th fint		

Task: Determine Point Loads Tower Height: Gh: Wind Speed: Lee Wind Speed: Lee Density: Tower Type:	287.5 0 G.85 122 opph,Vdb 50 5		Topographic Cutegory (1- Exposure Cutegory (1- Exposure Cutegory (5- Risk Cutegory (5- Height of Creat (in) if Topo Cst Load Factor; Div Load Factor; De	0): 8 4): 2 1: 0 ft	Rooftop Speed Up Factor (Gs) Ground Elevation (AMSL) Topographic Factor Procedure	1 1067 ft Method 1	Site No. Togister Date Carrer
Commercial Com	No. No.	Alared Lower Encount Commonte Encount En	Platform on Jiff Contractly Platform on Jiff Contractly Red Platform Account Flatform Red Platform Account Flatform Account F	New New	New July		CA, Worget B. (BY) AM (BY) AM (BY) AM (BO) COO 1 (BO) COO 1
The control of the	CA. CASINI (P)	Feet	Provide Book	Newport Newp	100 Aut 100 Au	New Total New Total New Total New New	Tological Security From the Park Securit

Foundation

Design Loads (Factored)

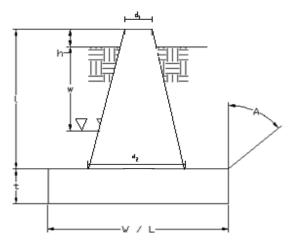
Compression/Leg:	410.60	k
Uplift/Leg:	292.61	k
Shear/Leg	56.14	k

Face Wi	3.50	ft					
Face Width	@ Bottom of	Pier (d ₂):	7.50	ft			
7	Total Length o	of Pier (I):	8.50	ft			
Height of Pede	stal Above Gr	ound (h):	0.50	ft			
	Width of	Pad (W):	14.75	ft			
	Length o	f Pad (L):	14.75	ft			
	Thickness o	of Pad (t):	3.25	ft			
V	Vater Table D	epth (w):	99.00	ft			
Un	it Weight of (Concrete:	150.0	pcf			
Unit Weight of Soi	l (Above Wate	er Table):	120.0	pcf			
Unit Weight of Soi	l (Below Wate	er Table):	57.6	pcf			
Frict	ion Angle of l	Jplift (A):	30	•			
Ultimate Compres	ssive Bearing	Pressure:	30000	٠.			
	Ultimate Skin	_	1007	psf			
Volume Pier (Total):	268.46	ft³					
Volume Pad (Total):	707.08	ft³					
Volume Soil (Total):	2747.35	ft³					
Volume Pier (Buoyant):	olume Pier (Buoyant): 0.00 ft ³						
Volume Pad (Buoyant):							
Volume Soil (Buoyant):							
Weight Pier:	k						
Weight Pad:	k						
Weight Soil:	329.68	k					
Uplift Skin Friction:	144.82	k					

Uplift Check

 φs Uplift Resistance (k)	Ratio	Result
465.62	0.63	OK

Axial Check


φs Axial Resistance (k)	Ratio	Result
4895.16	0.08	OK

Anchor Bolt Check

Bolt Diameter (in)	2.25
# of Bolts	6
Steel Grade	A36
Steel Fy	36
Steel Fu	58
Detail Type	С

Usage Ratio	Result
0.44	OK

Site No.:	88011
Engineer:	asp
Date:	12/22/20
Carrier:	AT&T Mobility

Exhibit 4 Mount Reinforcement Drawings

SITE NAME: EAST KILLINGLY NORTH

SITE NUMBER: 88011

ATC PROJECT NUMBER: 13320909_C9_08

SITE ADDRESS: 1375 NORTH ROAD

KILLINGLY, CT 06241

LOCATION MAP

MOUNT REINFORCEMENT DRAWINGS PREPARED FOR AT&T MOBILITY

PROJECT TEAM	PROJECT DESCRIPTION	SHEET	SHEET TITLE	RE\
		G-002	IBC GENERAL NOTES AND MOUNT MODIFICATION INSPECTION	0
TOWER OWNER	THE MODIFICATIONS PRESENTED ON THESE DRAWINGS ARE BASED ON THE	S-101	T-ARM SECTOR FRAME MOUNT REINFORCEMENT INSTALLATION DETAILS	0
AMERICAN TOWER	RECOMMENDATIONS OUTLINED IN THE MOUNT ANALYSIS COMPLETED UNDER ENGINEERING PROJECT NUMBER 13320909_C8_07 DATED 03/09/21.	S-102	SUPPLEMENTAL	0
10 PRESIDENTAL WAY	SATISFACTORY COMPLETION OF THE WORK INDICATED ON THESE DRAWINGS WILL RESULT IN THE MOUNT MEETING THE REQUIREMENTS OF THE	R-601	SUPPLEMENTAL	0
WOBURN, MA 01801	SPECIFICATIONS UNDER WHICH THE MOUNT ANALYSIS WAS COMPLETED.	R-602	SUPPLEMENTAL	0
		R-901	SUPPLEMENTAL	0
ENGINEERED BY	COMPLIANCE CODE	R-902	SUPPLEMENTAL	0
ATC TOWER SERVICES	COMI LIANCE CODE	R-903		0
3500 REGENCY PARKWAY, SUITE 100	ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN			
CARY, NC 27518	ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNMENT AUTHORITIES. NOTHING IN THESE			
	PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE			
CARRIER INFORMATION	CODES.			
CARRIER: AT&T MOBILITY	1. ANSI/TIA/EIA: STRUCTURAL STANDARDS (222-H EDITION)			
CARRIER SITE NAME: MRCTB048458	2. INTERNATIONAL BUILDING CODE (2015 IBC)			
CARRIER SITE NUMBER: CTL01289	3. CONNECTICUT STATE BUILDING CODE (2018)			
	PROJECT LOCATION			
044	PROJECT LOCATION			
	GEOGRAPHIC COORDINATES			
K a Law bolow	LATITUDE: 41.871525			
Know what's below. Call before you dig.	LONGITUDE: -71.82154444			
Call before you dig.				

3500 REGENCY PARKWAY SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112 COA: PEC.0001553

THESE DRAWINGS AND/OR THE ACCOMPANYING SPECIFICATION AS INSTRUMENTS OR SERVICE ARE THE EXCLUSIVE PROPERTY OF AMERICAN TOWER. THEIR USE AND PUBLICATION SHALL BE RESTRICTED TO THE ORIGINAL SITE FOR WHICH THEY ARE PREPARED. ANY USE OR DISCLOSURE OTHER THAN THAT WHICH RELATES TO AMERICAN TOWER OR THE SPECIFIED CARRIER IS STRICTLY PROHIBITED. THILE TO THESE DOCUMENTS SHALL REMAIN THE PROPERTY OF AMERICAN TOWER WHETHER OR NOT THE PROJECT IS EXECUTED. NEITHER THE ARCHITECT NOR THE ENGINEER WILL BE PROVIDING ON-SITE CONSTRUCTION REVIEW OF THIS PROJECT. CONTRACTOR(S) MUST VERIFY ALL DIMENSIONS AND ADVISE AMERICAN TOWER OF ANY DISCREPANCIES. ANY PRIOR ISSUANCE OF THIS DRAWING IS SUPERSEDED BY THE LATEST VERSION ON FILE WITH AMERICAN TOWER.

REV.	DESCRIPTION	BY	DATE
<u> </u>	FIRST ISSUE	NG	04/22/21
\triangle			
\triangle			
\triangle			
$\overline{\triangle}$			

ATC SITE NUMBER:

88011

ATC SITE NAME:

EAST KILLINGLY NORTH

CONNECTICUT

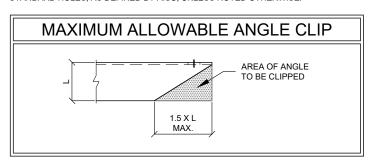
SITE ADDRESS: 1375 NORTH ROAD KILLINGLY, CT 06241

DRAWN BY:	NYG
APPROVED BY:	TCR
DATE DRAWN:	04/22/21
ATC JOB NO:	13320909_C9_08

COVER

SHEET NUMBER:

G-001


REVISION:

GENERAL

- ALL WORK TO BE COMPLETED PER APPLICABLE LOCAL STATE FEDERAL CODES AND ORDINANCES AND COMPLY WITH ATC CONSTRUCTION SPECIFICATIONS FOR WIRELESS TOWER SITES. THE CONTRACTOR IS RESPONSIBLE FOR OBTAINING AND ABIDING BY ALL REQUIRED PERMITS
- ALL WORK INDICATED ON THESE DRAWINGS SHALL BE PERFORMED BY QUALIFIED CONTRACTORS EXPERIENCED IN TOWER AND FOUNDATION CONSTRUCTION
- 3. THE CONTRACTOR SHALL NOTIFY THE ENGINEER OF RECORD IMMEDIATELY OF ANY INSTALLATION INTERFERENCES. ALL NEW WORK SHALL ACCOMMODATE EXISTING CONDITIONS DETAILS NOT SPECIFICALLY SHOWN ON THE DRAWINGS SHALL FOLLOW SIMILAR DETAILS FOR THIS JOB.
- ANY SUBSTITUTIONS SHALL CONFORM TO THE REQUIREMENTS OF THESE NOTES AND SPECIFICATIONS, AND SHOULD BE SIMILAR TO THOSE SHOWN. ALL SUBSTITUTIONS SHALL BE SUBMITTED TO THE ENGINEER OF RECORD FOR REVIEW AND APPROVAL PRIOR TO FABRICATION
- ANY MANUFACTURED DESIGN ELEMENTS SHALL CONFORM TO THE REQUIREMENTS OF THESE NOTES AND SPECIFICATIONS AND SHOULD BE SIMILAR TO THOSE SHOWN. THESE DESIGN ELEMENTS MUST BE STAMPED BY AN ENGINEER PROFESSIONALLY REGISTERED IN THE STATE OF THE PROJECT, AND SUBMITTED TO THE ENGINEER OF RECORD FOR APPROVAL PRIOR TO FABRICATION.
- 6. ALL WORK SHALL BE DONE IN ACCORDANCE WITH LOCAL CODES AND OSHA SAFETY REGULATIONS.
- THE CONTRACTOR IS RESPONSIBLE FOR THE DESIGN AND EXECUTION OF ALL MISCELLANEOUS SHORING, BRACING, TEMPORARY SUPPORTS, ETC. NECESSARY, PER ANSI/TIA-322 AND ANSI/ASSE A10.48. TO PROVIDE A COMPLETE AND STABLE STRUCTURE AS SHOWN ON THESE DRAWINGS.
- CONTRACTOR'S PROPOSED INSTALLATION SHALL NOT INTERFERE, NOR DENY ACCESS TO, ANY EXISTING OPERATIONAL AND SAFETY EQUIPMENT.

STRUCTURAL STEEL

- ALL DETAILING, FABRICATION AND ERECTION OF STRUCTURAL STEEL SHALL CONFORM TO THE AISC SPECIFICATIONS LATEST EDITION
- 2. ALL EXPOSED STRUCTURAL STEEL MEMBERS SHALL BE HOT-DIPPED GALVANIZED AFTER FABRICATION PER ASTM A123. EXPOSED STEEL HARDWARE AND ANCHOR BOLTS SHALL BE GALVANIZED PER ASTM A153 OR B695.
- ALL U-BOLTS SHALL BE ASTM A36 OR EQUIVALENT, WITH LOCKING DEVICE, UNLESS NOTED OTHERWISE
- 4. FIELD CUT EDGES, EXCEPT DRILLED HOLES, SHALL BE GROUND SMOOTH.
- ALL FIELD CUT SURFACES, FIELD DRILLED HOLES & GROUND SURFACES WHERE EXISTING PAINT OR GALVANIZATION REMOVAL WAS REQUIRED SHALL BE REPAIRED WITH (2) BRUSHED COATS OF ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURERS RECOMMENDATIONS.
- ALL STRUCTURAL STEEL EMBEDDED IN THE CONCRETE SHALL BE APPLIED WITH (2) BRUSHED COATS OF POLYGUARD CA-14 MASTIC OR FOLIVALENT. REFER TO THE MANUFACTURER SPECIFICATIONS FOR SURFACE PREPARATION AND APPLICATION. APPLICATION OF POLYGUARD 400 WRAP IS NOT ESSENTIAL
- CONTRACTOR SHALL PERFORM WORK ON ONLY ONE (1) TOWER FACE AND REPLACE/REINFORCE ONE (1) BOLT/MEMBER AT A TIME
- 8. ALL FIELD DRILLED HOLES TO BE USED FOR FIELD BOLTING INSTALLATION SHALL BE STANDARD HOLES, AS DEFINED BY AISC, UNLESS NOTED OTHERWISE.

PAINT

AS REQUIRED, CLEAN AND PAINT PROPOSED STEEL ACCORDING TO FAA ADVISORY CIRCULAR AC 70/7460-1L

WELDING

- 1. ALL WELDING TO BE PERFORMED BY AWS CERTIFIED WELDERS AND CONDUCTED IN ACCORDANCE WITH THE LATEST EDITION OF THE AWS WELDING CODE D1.1.
- 2. ALL WELDS SHALL BE INSPECTED VISUALLY. IF DIRECTED BY ENGINEER OF RECORD, 25% OF WELDS SHALL BE INSPECTED WITH DYE PENETRANT OR MAGNETIC PARTICLE (100% IF REJECTABLE DEFECTS ARE FOUND) TO MEET THE ACCEPTANCE CRITERIA OF AWS D1.1. REPAIR ALL WELDS AS NECESSARY.
- 3. INSPECTION SHALL BE PERFORMED BY AN AWS CERTIFIED WELD INSPECTOR.
- 4. ALL ELECTRODES TO BE LOW HYDROGEN, MATCHING FILLER AND/OR BASE METAL, PER AWS D1.1, UNLESS NOTED OTHERWISE
- 5. IN CASES WHERE BASE METAL GRADE IS UNKNOWN, ALL WELDING ON LATTICE TOWERS SHALL BE DONE WITH E70XX ELECTRODES; ALL WELDING ON POLE STRUCTURES SHALL BE DONE WITH E80XX FLECTRODES UNLESS NOTED OTHERWISE
- 6. PRIOR TO FIELD WELDING GALVANIZED MATERIAL, CONTRACTOR SHALL GRIND OFF GALVANIZING 1/2" BEYOND ALL FIELD WELD SURFACES. AFTER WELD AND WELD INSPECTION IS COMPLETE, REPAIR ALL GROUND AND WELDED SURFACES WITH ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURERS RECOMMENDATIONS.

BOLT TIGHTENING PROCEDURE

- 1. STRUCTURAL CONNECTIONS TO BE ASSEMBLED AND INSPECTED IN ACCORDANCE WITH RCSC SPECIFICATIONS.
- 2 FLANGE BOLTS SHALL BE INSTALLED AND TIGHTENED USING DIRECT TENSION INDICATING (DTI) SQUIRTER WASHERS. DTI SQUIRTER WASHERS ARE TO BE INSTALLED AND ORIENTED / TIGHTENED PER MANUFACTURER SPECIFICATIONS TO ACHIEVE DESIRED LEVEL OF BOLT PRE-TENSION
- 3. IN LIEU OF USING DTI SQUIRTER WASHERS, FLANGE BOLTS MAY BE TIGHTENED USING AISC / RCSC "TURN-OF-THE-NUT" METHOD, PENDING APPROVAL BY THE ENGINEER OF RECORD (EOR). TIGHTEN FLANGE BOLTS USING THE CHART BELOW:

BOLT LENGTHS UP TO AND INCLUDING FOUR DIAMETERS

1/2"	BOLTS UP TO AND INCLUDING 2.0 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
5/8"	BOLTS UP TO AND INCLUDING 2.5 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
3/4"	BOLTS UP TO AND INCLUDING 3.0 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
7/8"	BOLTS UP TO AND INCLUDING 3.5 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
1"	BOLTS UP TO AND INCLUDING 4.0 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
1-1/8"	BOLTS UP TO AND INCLUDING 4.5 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
1-1/4"	BOLTS UP TO AND INCLUDING 5.0 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
1-3/8"	BOLTS UP TO AND INCLUDING 5.5 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT
1-1/2"	BOLTS UP TO AND INCLUDING 6.0 INCH LENGTH	+1/3 TURN BEYOND SNUG TIGHT

BOLT LENGTHS OVER FOUR DIAMETERS BUT NOT EXCEEDING EIGHT DIAMETERS

1/2"	BOLTS 2.25 TO 4.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
5/8"	BOLTS 2.75 TO 5.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
3/4"	BOLTS 3.25 TO 6.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
7/8"	BOLTS 3.75 TO 7.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
1"	BOLTS 4.25 TO 8.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
1-1/8"	BOLTS 4.75 TO 9.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
1-1/4"	BOLTS 5.25 TO 10.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
1-3/8"	BOLTS 5.75 TO 11.0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT
1-1/2"	BOLTS 6 25 TO 12 0 INCH LENGTH	+1/2 TURN BEYOND SNUG TIGHT

BOLT TIGHTENING PROCEDURE (CONTINUED)

SPLICE BOLTS SUBJECT TO DIRECT TENSION SHALL BE INSTALLED AND TIGHTENED AS PER SECTION 8.2.1 OF THE AISC "SPECIFICATION FOR STRUCTURAL JOINTS USING A325 OR A490 BOLTS", LOCATED IN THE AISC MANUAL OF STEEL CONSTRUCTION. THE INSTALLATION PROCEDURE IS PARAPHRASED AS FOLLOWS:

FASTENERS SHALL BE INSTALLED IN PROPERLY ALIGNED HOLES AND TIGHTENED BY ONE OF THE METHODS DESCRIBED IN SUBSECTION 8.2.1 THROUGH 8.2.4.

8.2.1 TURN-OF-NUT PRETENSIONING

BOLTS SHALL BE INSTALLED IN ALL HOLES OF THE CONNECTION AND BROUGHT TO A SNUG TIGHT CONDITION AS DEFINED IN SECTION 8.1. UNTIL ALL THE BOLTS ARE SIMULTANEOUSLY SNUG TIGHT AND THE CONNECTION IS FULLY COMPACTED. FOLLOWING THIS INITIAL OPERATION ALL BOLTS IN THE CONNECTION SHALL BE TIGHTENED FURTHER BY THE APPLICABLE AMOUNT OF ROTATION SPECIFIED ABOVE DURING THE TIGHTENING OPERATION THERE SHALL BE NO ROTATION OF THE PART NOT TURNED BY THE WRENCH. TIGHTENING SHALL PROGRESS SYSTEMATICALLY.

ALL OTHER BOLTED CONNECTIONS SHALL BE BROUGHT TO A SNUG TIGHT CONDITION AS DEFINED IN SECTION 8.1 OF THE SPECIFICATION.

ALL BOLT HOLES SHALL BE ALIGNED TO PERMIT INSERTION OF THE BOLTS WITHOUT UNDUE DAMAGE TO THE THREADS. BOLTS SHALL BE PLACED IN ALL HOLES WITH WASHERS POSITIONED AS REQUIRED AND NUTS THREADED TO COMPLETE THE ASSEMBLY. COMPACTING THE JOINT TO THE SNUG-TIGHT CONDITION SHALL PROGRESS SYSTEMATICALLY FROM THE MOST RIGID PART OF THE JOINT. THE SNUG-TIGHTENED CONDITION IS THE TIGHTNESS THAT IS ATTAINED WITH A FEW IMPACTS OF AN IMPACT WRENCH OR THE FULL EFFORT OF AN IRONWORKER USING AN ORDINARY SPUD WRENCH TO BRING THE CONNECTED PLIES INTO FIRM CONTACT.

AMERICAN TOWER

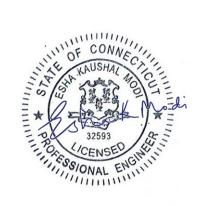
A.T. ENGINEERING SERVICE, PLLC 3500 REGENCY PARKWAY SUITE 100 **CARY, NC 27518** PHONE: (919) 468-0112

COA: PEC.0001553

THESE DRAWINGS AND/OR THE ACCOMPANYING SPECIFICATION AS INSTRUMENTS OR SERVICE ARE THE EXCLUSIVE PROPERT AS INSTRUMENTS OR SERVICE ARE THE EALLUSIVE PROPERTY
OF AMERICAN TOWER. THEIR USE AND PUBLICATION SHALL BE
RESTRICTED TO THE ORIGINAL SITE FOR WHICH THEY ARE
PREPARED. ANY USE OR DISCLOSURE OTHER THAN THAT WHICH
DELIVERS OF AMERICAN TOWERS OF THE ORDER (15) AND THE RELATES TO AMERICAN TOWER OR THE SPECIFIED CARRIER IS STRICTLY PROHIBITED. TITLE TO THESE DOCUMENTS SHALL REMAIN THE PROPERTY OF AMERICAN TOWER WHETHER OR NO THE PROJECT IS EXECUTED, NEITHER THE ARCHITECT NOR THE ENGINEER WILL BE PROVIDING ON-SITE CONSTRUCTION REVIEW OF THIS PROJECT, CONTRACTOR(S) MUST VERIEY ALL DIMENSIONS AND ADVISE AMERICAN TOWER OF ANY DISCREPANCIES. ANY PRIOR ISSUANCE OF THIS DRAWING IS SUPERSEDED BY THE LATEST VERSION ON FILE WITH AMERICAN

6 04/22/21
_

ATC SITE NUMBER:


88011

ATC SITE NAME:

EAST KILLINGLY NORTH

CONNECTICUT

SITE ADDRESS: 1375 NORTH ROAD KILLINGLY, CT 06241

DRAWN BY:	NYG
APPROVED BY:	TCR
DATE DRAWN:	04/22/21
ATC JOB NO:	13320909_C9_08

IBC GENERAL NOTES AND MOUNT MODIFICATION INSPECTION

REVISION

SHEET NUMBER:

G-002

MODIFICATION INSPECTION NOTES

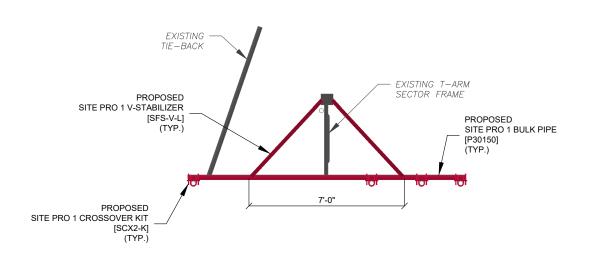
THE MOUNT MODIFICATION INSPECTION (MMI) PROCEDURE IS INTENDED TO CONFIRM THAT CONSTRUCTION AND INSTALLATION MEETS ENGINEERING DESIGN. ATC PROCEDURES AND ATC STANDARD SPECIFICATIONS FOR WIRELESS TOWER SITES.

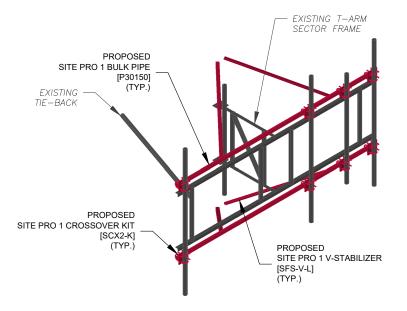
TO ENSURE THAT THE REQUIREMENTS OF THE MMI ARE MET, IT IS VITAL THAT THE GENERAL CONTRACTOR SUBMIT ALL REQUIRED PHOTOGRAPHS AND DRAWINGS TO AMERICAN TOWER CORPORATION (ATC).

GENERAL CONTRACTOR

THE GENERAL CONTRACTOR IS REQUIRED TO:

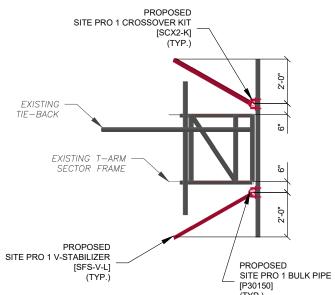
- REVIEW THE REQUIREMENTS OF THE MMI CHECKLIST.
- UNDERSTAND ALL INSPECTION REQUIREMENTS.


THE GENERAL CONTRACTOR SHALL PERFORM AND RECORD THE INSPECTION RESULTS IN ACCORDANCE WITH THE REQUIREMENTS OF THE MMI CHECKLIST.


MOUNT MODIFICATION INSPECTION CHECKLIST			
INSPECTION DOCUMENT DESCRIPTION DESCRIPTION INSPECTION TESTING RESPONSIBILITY			
ON-SITE COLD GALVANIZING VERIFICATION	PHOTOGRAPHIC EVIDENCE OF COLD GALVANIZATION TYPE AND APPLICATION IN ALL APPLICABLE LOCATIONS TO BE INCLUDED WITHIN THE MMI REPORT	•	GC
GC AS-BUILT DRAWINGS WITH CONSTRUCTION RED-LINES	"AS-BUILT" DRAWINGS INDICATING ANY APPROVED CHANGES TO ENGINEERED PLANS TO MMI FOR APPROVAL/REVIEW AND INCLUSION IN MMI REPORT	*	GC
PHOTOGRAPHS	PHOTOGRAPHIC EVIDENCE OF MOUNT MODIFICATION INSPECTION, ON SITE REMEDIATION, AND ITEMS FAILING INSPECTION & REQUIRING FOLLOW UP TO BE INCLUDED WITHIN THE MMI REPORT. COMPLETE PHOTO LOG IS TO BE SUBMITTED WITHIN MMI REPORT.	*	GC

MMI - MOUNT MODIFICATION INSPECTION

GC - GENERAL CONTRACTOR


ATC - AMERICAN TOWER CORPORATION

MOUNT MODIFICATION - TOP VIEW

MOUNT MODIFICATION - ISOMETRIC VIEW

1. SITE PRO 1 P/N: [SFS-V-L] TO BE FIELD CUT TO 5'-4".

PROPOSED SITE PRO 1 BULK PIPE [P30150] EXISTING TIE-BACK EXISTING T—ARM -SECTOR FRAME PROPOSED SITE PRO 1 CROSSOVER KIT [SCX2-K] (TYP.) PROPOSED SITE PRO 1 V-STABILIZER [SFS-V-L] (TYP.)

MOUNT MODIFICATION - SIDE VIEW

MOUNT MODIFICATION - FRONT VIEW

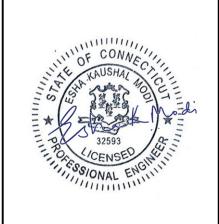
IN THE EVENT A PROPOSED MODIFICATION PART LISTED IN THE DRAWINGS IS NOT AVAILABLE, AN APPROVED EQUIVALENT CAN BE SUBSTITUTED. FOR APPROVAL OF EQUIVALENT PART OR QUESTIONS PLEASE CONTACT AMERICAN TOWER PMI INBOX AT PMI@AMERICANTOWER.COM.

3500 REGENCY PARKWAY SUITE 100 **CARY, NC 27518** PHONE: (919) 468-0112 COA: PEC.0001553

THESE DRAWINGS AND/OR THE ACCOMPANYING SPECIFICATION AS INSTRUMENTS OR SERVICE ARE THE EXCLUSIVE PROPERTY OF AMERICAN TOWER. THEIR USE AND PUBLICATION SHALL BE RESTRICTED TO THE ORIGINAL SITE FOR WHICH THEY ARE PREPARED. ANY USE OR DISCLOSURE OTHER THAN THAT WHICH RELATES TO AMERICAN TOWER OR THE SPECIFIED CARRIER IS STRICTLY PROHIBITED. TITLE TO THESE DOCUMENTS SHALL REMAIN THE PROPERTY OF AMERICAN TOWER WHETHER OR NOT THE PROJECT IS EXECUTED. NEITHER THE ARCHITECT NOR THE PROJECT WILL BE PROVIDING ON STREET CONSTRIBUTIONS OF SEVIEW. IHL PROJECT IS EXECUTED. NEITHER THE ARCHITECT NOR THE ENGINEER WILL BE PROVIDING ON-SITE CONSTRUCTION REVIEW OF THIS PROJECT. CONTRACTOR(S) MUST VERIFY ALL DIMENSIONS AND ADVISE AMERICAN TOWER OF ANY DISCREPANCIES. ANY PRIOR ISSUANCE OF THIS DRAWING IS SUPERSEDED BY THE LATEST VERSION ON FILE WITH AMERICAN TOWER.

REV.	DESCRIPTION	BY	DATE
\triangle _	FIRST ISSUE	NG	04/22/21
\wedge			
$\overline{\wedge}$			
$\overline{\wedge}$			
$\overline{\wedge}$			

ATC SITE NUMBER:

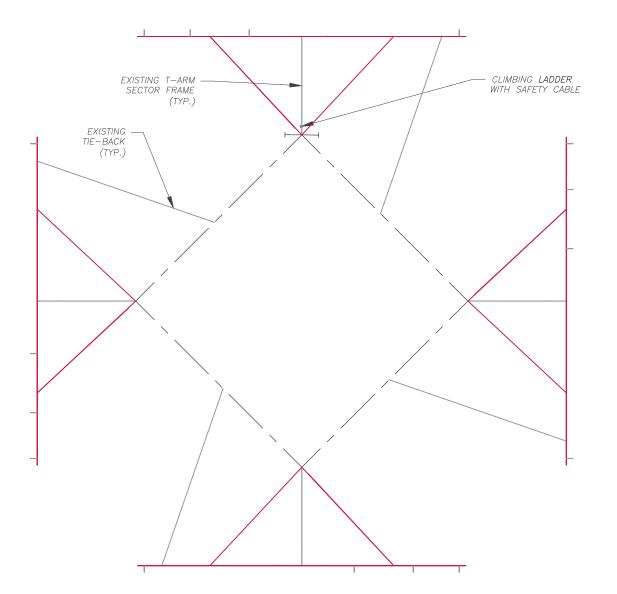

88011

ATC SITE NAME:

EAST KILLINGLY NORTH

CONNECTICUT

SITE ADDRESS: 1375 NORTH ROAD KILLINGLY, CT 06241


DRAWN BY: NYG APPROVED BY: TCR DATE DRAWN: 04/22/21 ATC JOB NO: 13320909_C9_08

> T-ARM SECTOR FRAME MOUNT REINFORCEMENT **INSTALLATION DETAILS**

> > SHEET NUMBER:

S-101

REVISION

SAFETY CLIMB LOCATION

=NOTE::

CONTRACTOR TO INSTALL MOUNT MODIFICATIONS PER THE MANUFACTURERS SPECIFICATION. MODIFICATIONS SHALL NOT OBSTRUCT, INTERFERE, OR BLOCK EXISTING SAFETY CLIMB SYSTEM. IF ANY OF THESE OCCURS DURING INSTALLATION CONTACT THE AMERICAN TOWER PMI INBOX PMI@AMERICANTOWER.COM

3500 REGENCY PARKWAY SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112 COA: PEC.0001553

THESE DRAWINGS AND/OR THE ACCOMPANYING SPECIFICATION AS INSTRUMENTS OR SERVICE ARE THE EXCLUSIVE PROPERTY OF AMERICAN TOWER. THEIR USE AND PUBLICATION SHALL BE RESTRICTED TO THE ORIGINAL SITE FOR WHICH THEY ARE PREPARED. ANY USE OR DISCLOSURE OTHER THAN THAT WHICH RELATES TO AMERICAN TOWER OR THE SPECIFIED CARRIER IS STRICTLY PROHIBITED. THILE TO THESE DOCUMENTS SHALL REMAIN THE PROPERTY OF AMERICAN TOWER WHETHER OR NOT THE PROJECT IS EXCEUTED. NEITHER THE ARCHITECT NOR THE ENGINEER WILL BE PROVIDING ON-SITE CONSTRUCTION REVIEW OF THIS PROJECT. CONTRACTOR(S) MUST VERIFY ALL DIMENSIONS AND ADVISE AMERICAN TOWER OF ANY DISCREPANCIES. ANY PRIOR ISSUANCE OF THIS DRAWING IS SUPERSEDED BY THE LATEST VERSION ON FILE WITH AMERICAN TOWER.

REV.	DESCRIPTION	BY	DATE
<u> </u>	FIRST ISSUE	NG	04/22/21
\triangle _			
\wedge			
$\overline{\wedge}$			

ATC SITE NUMBER:

88011

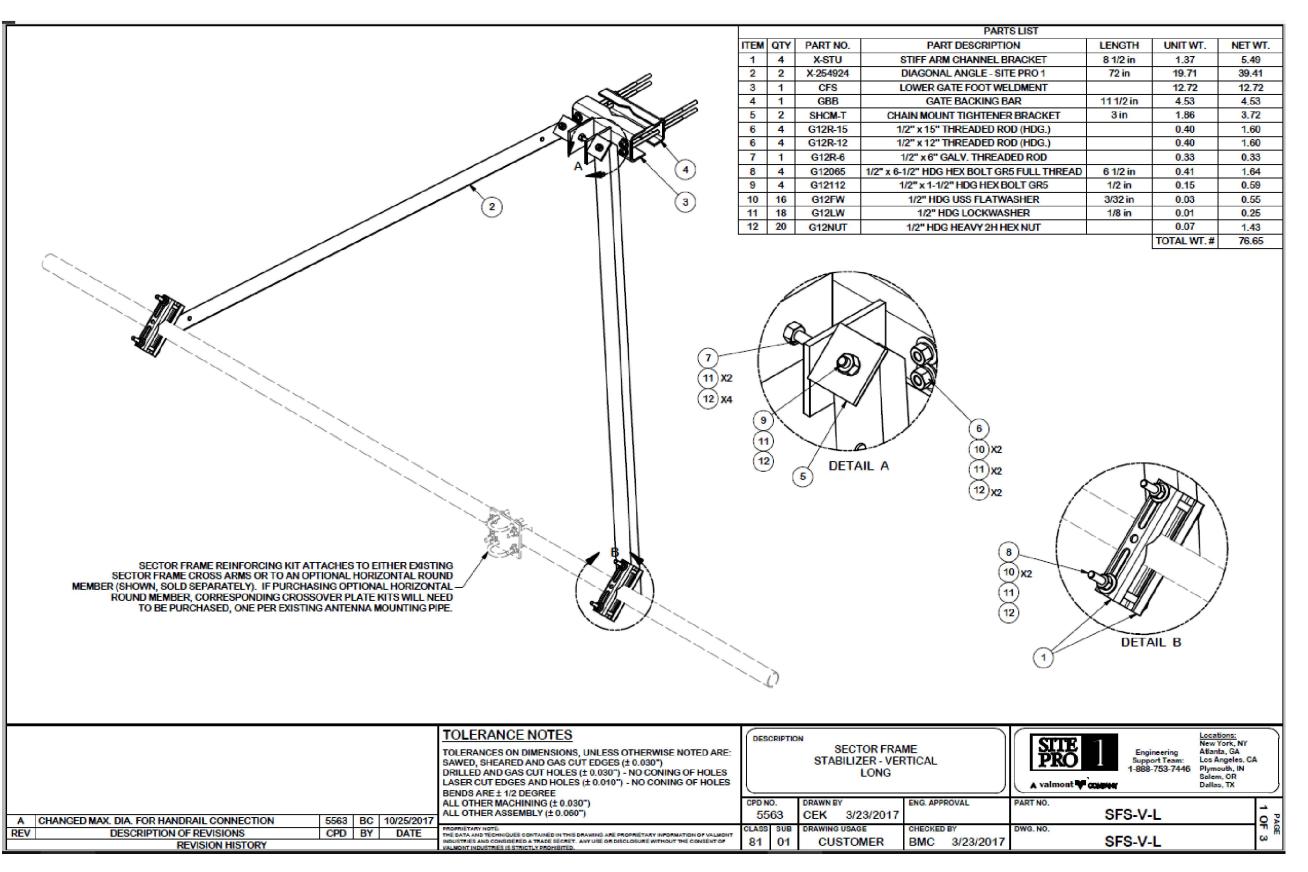
ATC SITE NAME:

EAST KILLINGLY NORTH

CONNECTICUT

SITE ADDRESS: 1375 NORTH ROAD KILLINGLY, CT 06241

DRAWN BY:	NYG
APPROVED BY:	TCR
DATE DRAWN:	04/22/21
ATC JOB NO:	13320909_C9_08


COVER

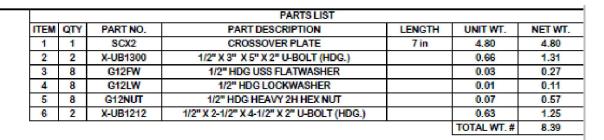
SHEET NUMBER:

S-102

U

REVISION:

NOTE: THIS SHEET WAS CREATED BY OTHERS AND PROVIDED AT THE REQUEST OF THE CUSTOMER WITHOUT EDIT. PLEASE REFERENCE THE MOUNT ANALYSIS REPORT FOR COMPLETE MOUNT ANALYSIS CALCULATIONS AND DETAILS. SUPPLEMENTAL PAGES INCLUDED IN THE CONSTRUCTION DRAWINGS ARE FOR REFERENCE ONLY. GENERAL CONTRACTOR IS TO VERYIFY THEY HAVE THE MOST RECENT MOUNT ANALYSIS PRIOR TO CONTRUCTION.


SUPPLEMENTAL

SHEET NUMBER:

REVISION:

R-601

U

2-7/8" O.D. ANTENNA PIPE (ORDERED SEPARATELY) 2 3 4 5 2-3/8" O.D. PIPE (ORDERED SEPARATELY)

> TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS OUT EDGES (± 0.030")
> DRILLED AND GAS OUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060") PROPRIETARY NOTE:
> THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALHOUT
> MODISTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSIDER.

DESCRIPTION CROSSOVER PLATE KIT

DRAWN BY

DRAWING USAGE

SHOP

CPD NO.

Locations: New York, NY Engineering Support Team: Los Angeles, CA 1-888-753-7446 Phymouth, IN Salem, OR Dallas, TX

ENG. APPROVAL CEK 6/30/2011 SCX2-K CHECKED BY DWG. NO. BMC 7/1/2011 SCX2-K

> ${\underline{\sf NOTE:}}$ THIS SHEET WAS CREATED BY OTHERS AND PROVIDED AT THE REQUEST OF THE CUSTOMER WITHOUT EDIT. PLEASE REFERENCE THE MOUNT ANALYSIS REPORT FOR COMPLETE MOUNT ANALYSIS CALCULATIONS AND DETAILS. SUPPLEMENTAL PAGES INCLUDED IN THE CONSTRUCTION DRAWINGS ARE FOR REFERENCE ONLY. GENERAL CONTRACTOR IS TO VERYIFY THEY HAVE THE MOST RECENT MOUNT ANALYSIS PRIOR TO CONTRUCTION.

SUPPLEMENTAL

SHEET NUMBER:

R-602

REVISION:

Option 1 - Modify: Estimate for AT&T Mobility @ 88011 (EAST KILLINGLY NORTH) -- 13320909_C9_08

Site Data and Design Parameters		
Asset OTM #	88011	
Asset Name	EAST KILLINGLY NORTH	
State	Connecticut	
County	Windham	
City	Dayville	
Failing Analysis Eng. #	13320909_C8_07	
Mod. Drawing Eng. #	13320909_C9_08	

Dates and Designers		
Mount Analysis Date / By	3/9/2021 /	MJJC
Design Date / By	4/21/2021 /	TCR
Checked Date / By	1	
Detailer (Prev/Current/Level)	1	1
Software	RISA	
Tower Type	Self-Support	4-sided
Mount Type	T-Frame	

Building Codes	TIA/IBC:	ANSI/TIA-22	2- H	/ 2015 IBC
	Local:	2018 Connecticut	State	Building Code
Failing Analysis % / Code		545%	/	TIA-H
Post Mod % / Controlling Memb	er	90%	/	Mount Pipes
Usage Limit % / Reason		105%	/	N/A

Carriers		
# of RADs	1	
Carrier	AT&T Mobility	

Any modification design comments or assumptions? No (including notes to the Estimator)

Modification Summary		
Item#	Scope Item	
1	1 Install Site Pro 1 SFS-V-L V Style Stabilizer on All sector(s)	
2	Install Site Pro 1 SFS-V-L V Style Stabilizer on All sector(s)	
3	3 Install Site Pro 1 P30150 Pipe w/ SCX2-K crossovers on All sector(s)	
4	Install Site Pro 1 P30150 Pipe w/ SCX2-K crossovers on All sector(s)	

Estimated Modification Cost	\$20,000	
-----------------------------	----------	--

Option 2 - Replace: Estimate for AT&T Mobility @ 88011 (EAST KILLINGLY NORTH) -- 13320909_C9_08

Tower Info		
Tower Number	88011	
Tower Name	EAST KILLINGLY NORTH	
State	Connecticut	

Additional Info	
Can modifications be Installed?	Yes
What is the post-mod capacity?	90%
<u> </u>	

	Jurisdictional Codes		
Design TIA Code	ANSI/TIA-222-H		
Current TIA Code	ANSI/TIA-222-H		
IBC	2015 IBC		
Other	2018 Connecticut State Building Code		

Project Requirements		
150	in	
3		
	150	

Project Information	
Carrier	AT&T Mobility
Structure Type	Self-Support

Recommended Mount Replacement Sabre C10857007C*

Estimated Replacement Cost \$ 36,000.00

SUPPLEMENTAL

SHEET NUMBER:

REVISION:

R-901

AMERICAN TOWER®

Post Modification Antenna Mount Analysis Report

ATC Site Name : EAST KILLINGLY NORTH, CT

ATC Site Number : 88011

Engineering Number : 13320909_C9_08

Mount Elevation : 246 ft

Carrier : AT&T Mobility
Carrier Site Name : CTL01289

Carrier Site Number : CTL01289

Site Location : 1375 North Road

Killingly, CT 06241-1404 41.871525 , -71.82154444

: Contingent Pass

County : Windham
Date : April 21, 2021

Max Usage : 90%

Result

Prepared By: Trevor Ridilla Structural Engineer II

COA+ PEC 0001553

A.T. Engineering Service, PLLC - 3500 Regency Parkway, Suite 100 - Cary, NC 27518 - 919.468.0112 Office - 919.466.5414 Fax - www.americantower.cc

AMERICAN TOW

Eng. Number 13320909_C9_08 April 21, 2021

of Contents

ntroduction	
Supporting Documents	
Analysis	
Conclusion	
Antenna Loading	
Structure Usages	
Mount Layout 3	
Equipment Layout	
Standard Conditions6	
Calculations Attached	

A.T. Engineering Service, PLLC - 3500 Regency Parkway, Suite 100 - Cary, NC 27518 - 919.468.0112 Office - 919.466.5414 Fax - www.americantower.com

ERICAN TOWER

Eng. Number 13320909_C9_08 April 21, 2021 Page 1

Introduction

The purpose of this report is to summarize results of the antenna mount analysis performed for AT&T Mobility at 246 ft.

Supporting Documents

Mount Mapping	ETS Project #205063.IE.01, dated October 26, 2020
Radio Frequency Data Sheet	RFDS ID #CTL01289, dated August 21, 2020
Reference Photos	Site photos from 2020

Analysis

This antenna mount was analyzed using American Tower Corporation's Mount Analysis Program and RISA-3D

Basic Wind Speed:	122 mph (3-Second Gust)
Basic Wind Speed w/ Ice:	50 mph (3-Second Gust) w/ 1" radial ice concurrent
Codes:	ANSI/TIA-222-H
Exposure Category:	В
Risk Category:	II
Topographic Factor Procedure:	Method 2
Feature:	Flat
Crest Height (H):	0 ft
Crest Length (L):	0 ft
Spectral Response:	Ss = 0.186, S1 = 0.055
Site Class:	D - Stiff Soil
Live Loads:	Lm = 500 lbs, Lv = 250 lbs

onclusion

Based on the analysis results, the antenna mount meets the requirements per the applicable codes listed above provided the modifications listed below are completed:

Install modification per ATC Drawing #13320909_C9_08

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

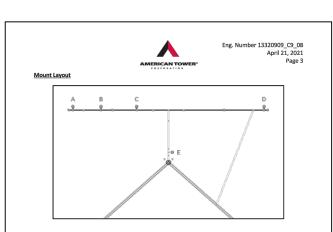
A.T. Francisco Control (1972) 2790 Francis Color 200 Control (2072) 010 400 0110 080- 010 400 7414 Francis Color (2072) 010 400 7414 Francis C

A.T. Engineering Service, PLLC - 3500 Regency Parkway, Suite 100 - Cary, NC 27518 - 919.468.0112 Office - 919.466.5414 Fax - www.americantower.com

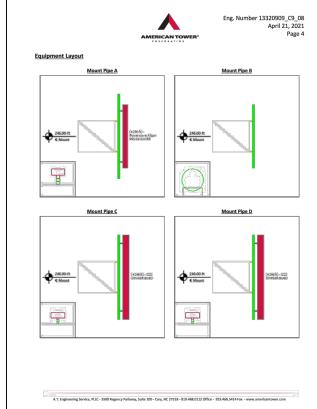
Eng. Number 13320909_C9_08 April 21, 2021 Page 2

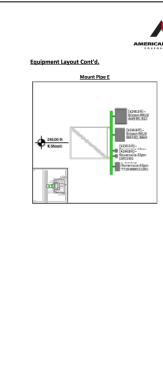
Eng. Number 13320909_C9_08

April 21, 2021


plication Loading

Mount Centerline (ft)	Antenna Centerline (ft)	Qty	Antenna Model
		3	Powerwave Allgon P65-16-XLH-RR
		3	CCI OPA65R-BU8D
		3	CCI DMP65R-BU8D
		3	Powerwave Allgon TT19-08BP111-001
246.0	246.0	6	Powerwave Allgon LGP21901
		2	Raycap DC6-48-60-18-8F
		3	Ericsson RRUS 4478 B14
		3	Ericsson RRUS 4449 B5, B12
		3	Ericsson RRUS 8843 B2, B66A


Structure Usages


Structural Component	Controlling Usage	Pass/Fail
Horizontals	78%	Pass
Verticals	57%	Pass
Diagonals	26%	Pass
Tie-Backs	6%	Pass
Mount Pipes	90%	Pass
Mod-Kit	69%	Pass

A T. Endoppine Sandra III C. 2500 Bassanzu Berkurur Suita 100. Conr. NC 27510 - 010 ASS 0112 Office - 010 ASS 5514 East - unusur semanticantricum com

A.T. Engineering Service, PLLC - 3500 Regency Parkway, Suite 100 - Cary, NC 27518 - 919.468.0112 Office - 919.466.5414 Fax - www.americantower.com

Eng. Number 13320909_C9_08 April 21, 2021 Page 5

Standard (

All engineering services performed by A.T. Engineering Service, PLLC are prepared on the basis that the information used is current and correct. This information may consist of, but is not limited to the following:

- Information supplied by the client regarding antenna, mounts and feed line loading
- Information from drawings, design and analysis documents, and field notes in the possession of A.T. Engineering Service, PLLC

It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete.

American Tower assumes that all structures were constructed in accordance with the drawings and

All connections are to be verified for condition and tightness by the installation contractor preceding any changes to the appurtenance mounting system and/or equipment attached to it.

Unless explicitly agreed by both the client and A.T. Engineering Service, PLLC, all services will be performed in accordance with the current revision of ANSI/TIA-222.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information supplied herein.

A.T. Engineering Service, PLLC - 3500 Regency Parkway, Suite 100 - Cary, NC 27518 - 919.468.0112 Office - 919.466.5414 Fax - www.americantower.com

A.T. ENGINEERING SERVICE, PLLC 3500 REGENCY PARKWAY SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112 COA: PEC.0001553

THESE DRAWINGS AND/OR THE ACCOMPANYING SPECIFICATION AS INSTRUMENTS OR SERVICE ARE THE EXCLUSIVE PROPERTY OF AMERICAN TOWER. THEIR USE AND PUBLICATION SHALL BE RESTRICTED TO THE ORIGINAL SITE FOR WHICH THEY ARE PREPARED. ANY USE OR DISCLOSURE OTHER THAN THAT WHICH RELATES TO AMERICAN TOWER OR THE SPECIFIED CARRIER IS STRICTLY PROHIBITED. TITLE TO THESE DOCUMENTS SHALL REMAIN THE PROPERTY OF AMERICAN TOWER WHETHER OR NOT THE PROJECT IS EXECUTED. NEITHER THE ARCHITECT NOR THE ENGINEER WILL BE PROVIDING ON-SITE CONSTRUCTION REVIEW OF THIS PROJECT. CONTRACTOR(S) MUST VERIFY ALL DIMENSIONS AND ADVISE AMERICAN TOWER OF ANY DISCREPANCIES. ANY PRIOR ISSUANCE OF THIS DRAWING IS SUPERSEDED BY THE LATEST VERSION ON FILE WITH AMERICAN TOWER.

TE
2/21

ATC SITE NUMBER:

88011

ATC SITE NAME:

EAST KILLINGLY NORTH

CONNECTICUT

SITE ADDRESS: 1375 NORTH ROAD KILLINGLY, CT 06241

DRAWN BY:	NYG
APPROVED BY:	TCR
DATE DRAWN:	04/22/21
ATC JOB NO:	13320909 C9 08

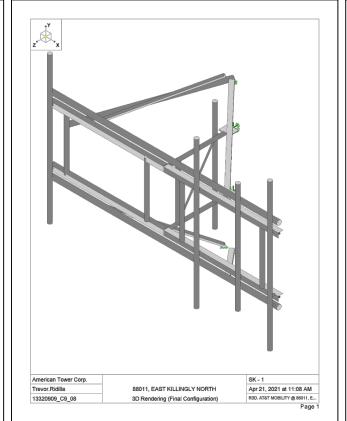
SUPPLEMENTAL

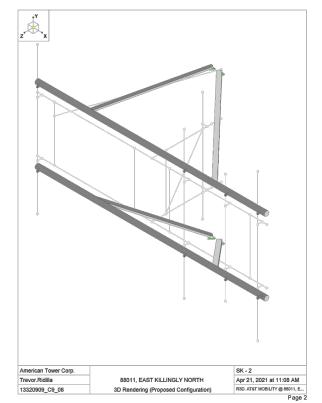
SHEET NUMBER:

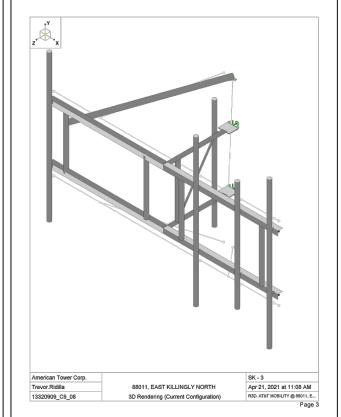
REVISION

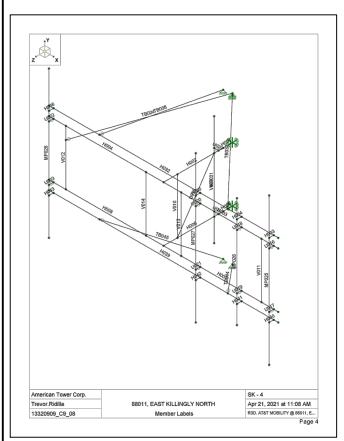
R-902

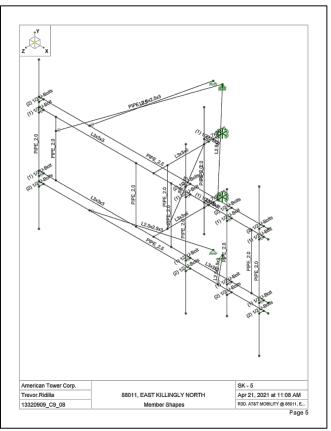
0

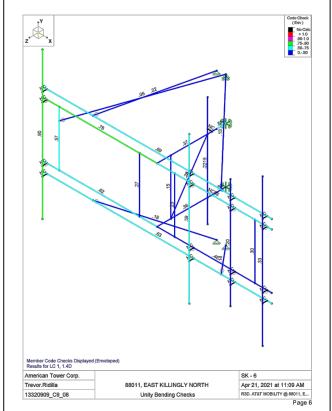

Site Number:	88011
Project Number:	13320909_C9_08
Carrier:	AT&T Mobility
Mount Elevation:	246 ft
Date:	4/21/2021


Mount Analysis Force Calculations


Wind & Ice Load Cale	culatio	ns		Seismic Load Calculations			
Velocity Pressure Coefficient	Kz	1.28		Short Period DSRAP	SDS	0.198	П
Topographic Factor	Kzt	1.00		1 Second DSRAP	S_{D1}	0.088	
Rooftop Wind Speed-up Factor	K _s	1.00		Importance Factor	1.	1.0	
Shielding Factor	Ka	0.90		Response Modification Coefficient	R	2.0	
Ground Elevation Factor	Ke	0.97		Seismic Response Coefficient	CS	0.099	
Wind Direction Probability Factor	Kd	0.95		Amplification Factor	A	1.0	
Basic Wind Speed	v	122	mph	Total Weight	w	1163.1	lb:
Velocity Pressure	q_z	45.0	psf	Total Shear Force	Vs	115.4	lb:
Height Escalation Factor	Kiz	1.22		Horizontal Seismic Load	Eh	115.4	lb:
Thickness of Radial Glaze Ice	Tiz	1.22	in	Vertical Seismic Load	Ev	46.2	lb:


Antenn	a Calculati	ons (Eleva	tions per A	Application	/RFDS)*			
Equipment	Height	Width	Depth	Weight	EPA _N	EPA _T	EPA _{Ni}	EPA _{Ti}
Model #	in	in	in	lbs	sqft	sqft	sqft	sqft
Powerwave Allgon P65-16-XLH-RR	72.0	12.0	6.0	53.0	8.13	1.95	10.12	2.84
CCI OPA65R-BU8D	96.0	21.0	7.8	76.5	18.09	3.12	20.71	4.20
CCI DMP65R-BU8D	96.0	20.7	7.7	95.7	17.87	3.08	20.49	4.16
Powerwave Allgon TT19-08BP111-001	9.9	6.7	5.4	16.0	0.55	0.45	0.94	0.81
Powerwave Allgon LGP21901	4.0	6.0	3.0	5.5	0.20	0.10	0.45	0.29
Raycap DC6-48-60-18-8F	23.5	9.7	9.7	20.0	1.90	1.90	2.63	2.63
Ericsson RRUS 4478 B14	16.5	13.4	7.7	59.9	1.84	1.06	2.50	1.60
Ericsson RRUS 4449 B5, B12	17.9	13.2	9.4	71.0	1.97	1.40	2.65	2.01
Ericsson RRUS 8843 B2, B66A	14.9	13.2	10.9	72.0	1.64	1.35	2.26	1.93


* Equipment with EPA values N/A were not considered in the mount analy

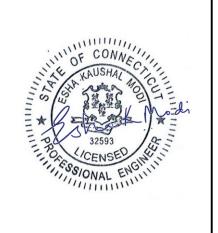


3500 REGENCY PARKWAY SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112 COA: PEC.0001553

THESE DRAWINGS AND/OR THE ACCOMPANYING SPECIFICATION AS INSTRUMENTS OR SERVICE ARE THE EXCLUSIVE PROPERTY OF AMERICAN TOWER. THEIR USE AND PUBLICATION SHALL BE RESTRICTED TO THE ORIGINAL SITE FOR WHICH THEY ARE PREPARED. ANY USE OR DISCLOSURE OTHER THAN THAT WHICH RELATES TO AMERICAN TOWER OR THE SPECIFIED CARRIER IS STRICTLY PROHIBITED. TITLE TO THESE DOCUMENTS SHALL REMAIN THE PROPERTY OF AMERICAN TOWER WHETHER OR NOT THE PROJECT IS EXECUTED. NEITHER THE ARCHITECT NOR THE ENGINEER WILL BE PROVIDING ON-SITE CONSTRUCTION REVIEW OF THIS PROJECT. CONTRACTOR(S) MUST VERIFY ALL DIMENSIONS AND ADVISE AMERICAN TOWER OF ANY DISCREPANCIES. ANY PRIOR ISSUANCE OF THIS DRAWING IS SUPERSEDED BY THE LATEST VERSION ON FILE WITH AMERICAN TOWER.

REV.	DESCRIPTION	BY	DATE
<u> </u>	FIRST ISSUE	NYG	04/22/21
\triangle			
\triangle			
$\overline{\wedge}$			

ATC SITE NUMBER:


88011

ATC SITE NAME:

EAST KILLINGLY NORTH

CONNECTICUT

SITE ADDRESS: 1375 NORTH ROAD KILLINGLY, CT 06241

DRAWN BY:	NYG
APPROVED BY:	TCR
DATE DRAWN:	04/22/21
ATC JOB NO:	13320909_C9_08

SUPPLEMENTAL

SHEET NUMBER:

R-903

REVISION:

Exhibit 5

Post Modification Antenna Mount Analysis Report

Post Modification Antenna Mount Analysis Report

ATC Site Name : EAST KILLINGLY NORTH, CT

ATC Site Number : 88011

Engineering Number : 13320909_C9_08

Mount Elevation : 246 ft

Carrier : AT&T Mobility

Carrier Site Name : CTL01289

Carrier Site Number : CTL01289

Site Location : 1375 North Road

Killingly, CT 06241-1404

41.871525, -71.82154444

County : Windham

Date : April 21, 2021

Max Usage : 90%

Result : Contingent Pass

Prepared By: Reviewed By:

Trevor Ridilla

Structural Engineer II

Trown Chille

COA: PEC.0001553

Table of Contents

Introduction	1
Supporting Documents	1
Analysis	1
Conclusion	1
Antenna Loading	2
Structure Usages	2
Mount Layout	3
Equipment Layout	4
Standard Conditions	6
Calculations	Attached

Introduction

The purpose of this report is to summarize results of the antenna mount analysis performed for AT&T Mobility at 246 ft.

Supporting Documents

Mount Mapping	ETS Project #205063.IE.01, dated October 26, 2020
Radio Frequency Data Sheet	RFDS ID #CTL01289, dated August 21, 2020
Reference Photos	Site photos from 2020

Analysis

This antenna mount was analyzed using American Tower Corporation's Mount Analysis Program and RISA-3D

Basic Wind Speed:	122 mph (3-Second Gust)
Basic Wind Speed w/ Ice:	50 mph (3-Second Gust) w/ 1" radial ice concurrent
Codes:	ANSI/TIA-222-H
Exposure Category:	В
Risk Category:	II
Topographic Factor Procedure:	Method 2
Feature:	Flat
Crest Height (H):	0 ft
Crest Length (L):	0 ft
Spectral Response:	Ss = 0.186, S1 = 0.055
Site Class:	D - Stiff Soil
Live Loads:	Lm = 500 lbs, Lv = 250 lbs

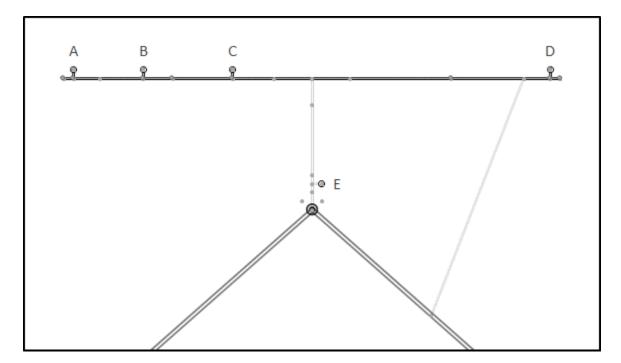
Conclusion

Based on the analysis results, the antenna mount meets the requirements per the applicable codes listed above provided the modifications listed below are completed:

Install modification per ATC Drawing #13320909_C9_08

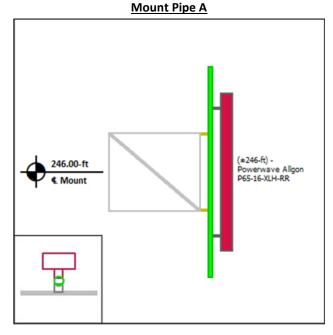
If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

Application Loading

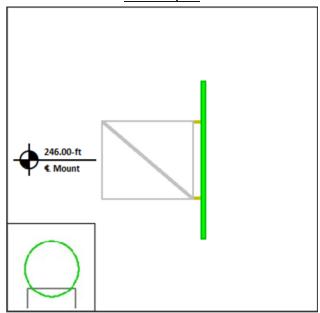

Mount Centerline (ft)	Antenna Centerline (ft)	Qty	Antenna Model
246.0 246.0		3	Powerwave Allgon P65-16-XLH-RR
	3	CCI OPA65R-BU8D	
	3	CCI DMP65R-BU8D	
	3	Powerwave Allgon TT19-08BP111-001	
	6	Powerwave Allgon LGP21901	
	2	Raycap DC6-48-60-18-8F	
		3	Ericsson RRUS 4478 B14
		3	Ericsson RRUS 4449 B5, B12
		3	Ericsson RRUS 8843 B2, B66A

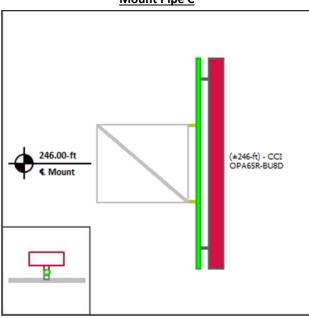
Structure Usages

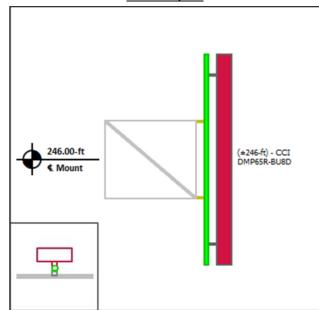
Structural Component	Controlling Usage	Pass/Fail
Horizontals	78%	Pass
Verticals	57%	Pass
Diagonals	26%	Pass
Tie-Backs	6%	Pass
Mount Pipes	90%	Pass
Mod-Kit	69%	Pass



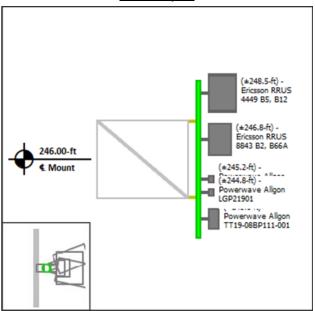
Mount Layout




Equipment Layout


Mount Pipe B

Mount Pipe C


Mount Pipe D

Equipment Layout Cont'd.

Mount Pipe E

Standard Conditions

All engineering services performed by A.T. Engineering Service, PLLC are prepared on the basis that the information used is current and correct. This information may consist of, but is not limited to the following:

- Information supplied by the client regarding antenna, mounts and feed line loading
- Information from drawings, design and analysis documents, and field notes in the possession of A.T. Engineering Service, PLLC

It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete.

American Tower assumes that all structures were constructed in accordance with the drawings and specifications.

All connections are to be verified for condition and tightness by the installation contractor preceding any changes to the appurtenance mounting system and/or equipment attached to it.

Unless explicitly agreed by both the client and A.T. Engineering Service, PLLC, all services will be performed in accordance with the current revision of ANSI/TIA-222.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information supplied herein.

Exhibit 6 NIER Study Report

NIER Study Report

SITE NAME:

88011 East Killingly North

LOCATION:

Killingly, Connecticut

COMPANY:

American Tower Corporation Woburn, Massachusetts

March 10, 2021

Contents

	OTICE	
	TON	
	ACILITY CONSIDERATIONS	
POWER DEN	NSITY CALCULATIONS	3
APPENDIX 1	EXECUTIVE SUMMARY	4
APPENDIX 2	SATELLITE PHOTO	5
APPENDIX 3	LOAD LIST	6
APPENDIX 4	COMMUNICATION SYSTEMS	7
APPENDIX 5	ANTENNA SYSTEMS	8
APPENDIX 6	TRANSMITTER FREQUENCIES	10
APPENDIX 7	MAXIMUM PERMISSIBLE EMISSION ANALYSIS	
APPENDIX 8	INFORMATION PERTAINING TO MPE STUDIES	
APPENDIX 9	MPE STANDARDS METHODOLOGY	17

DISCLAIMER NOTICE

This work is based upon our best interpretation of available information. However, these data and their interpretation are constantly changing. Therefore, we do not warrant that any undertaking based on this report will be successful, or that others will not require further research or actions in support of this proposal or future undertaking. In the event of errors, our liability is strictly limited to replacement of this document with a corrected one. Liability for consequential damages is specifically disclaimed. Any use of this document constitutes an agreement to hold Lawrence Behr Associates, Inc. and its employees harmless and indemnify it for any and all liability, claims, demands, and litigation expenses and attorney's fees arising out of such use.

Work product documents released prior to account settlement remain the sole property of Lawrence Behr Associates, Inc. and must be returned on demand. Underlying work notes and data relating to this document remain the property of Lawrence Behr Associates, Inc. This document shall not be reproduced in whole or part without permission of Lawrence Behr Associates, Inc. Any dispute hereunder shall be adjudicated in North Carolina. Any use or retention of this document constitutes acceptance of these terms, the entire work product, and all charges associated therewith.

COPYRIGHT © 2021 BY LAWRENCE BEHR ASSOCIATES, INC. GREENVILLE, NORTH CAROLINA

NIER STUDY REPORT 88011 East Killingly North

Killingly, Connecticut

INTRODUCTION

Lawrence Behr Associates, Inc. (LBA) has been retained by American Tower Corporation (ATC) of Woburn, Massachusetts to evaluate the RF emissions of an existing tower at this location.

SITE AND FACILITY CONSIDERATIONS

Site 88011 East Killingly North is located at 1375 North Road, in Killingly, Connecticut at coordinates 41.87152, -71.82154. The support structure is a 288' self-support. The installation consists of one antenna level with radiation center of 306', 291', 290', 277', 266', 246', and 210.5' above ground level. All antennae will have a radiation center as described above. All data used in this study was provided by one or more of the following sources:

- 1. ATC furnished data
- 2. Compiled from carrier and manufacturer standard configurations
- 3. Empirical data collected by LBA

A satellite view of the study area is located in Appendix 2. The load list may be seen in Appendix 3.

POWER DENSITY CALCULATIONS

Graphs of the power density at different distances from the transmitter, compared to FCC MPE general population and occupational limits, may be seen in Appendix 7. These limits are based upon the Information Relating to MPE Standards found in Appendix 8. Study methodology may be seen in Appendix 9, which describes the Non-Ionizing Radiation Prediction Models. As long as the site has perimeter fencing of at least 15 feet from the tower base, with signage in compliance with OET-65 and internal vendor compliance, this site WILL BE in compliance with FCC OET-65 MPE limits. This site IS in compliance with FCC OET-65 MPE limits.

March 10, 2021

*Jeutuanna Walston*Jeutuanna Walston

Wireless Services Coordinator

APPENDIX 1

Executive Summary

This report presents non-ionizing radio frequency (RF) emissions analysis, which predicts the Maximum Permissible Exposure (MPE) potential to humans at or near wireless communication sites. The predicted RF emissions are evaluated against acceptable MPE limits as defined by specific established standards. The analysis then determines if the communications site is in compliance with these standards or other regulations regarding safe human exposure to radio frequency radiation.

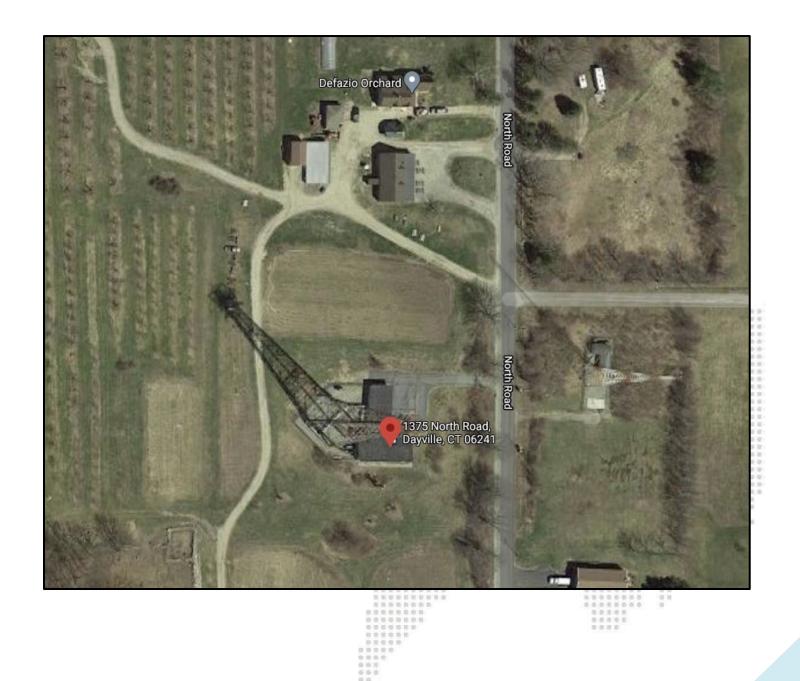
The analysis was performed on the ATC_88011 East Killingly North site/tower. The report consists of Sections that provide details of the communications site, antenna systems, operational frequencies, MPE analysis and associated Appendices.

A summary of the MPE analysis results is depicted in the following Table.

MPE Zone	Max %	Feet	% of Total	Status
Zone 1	20%	0	0	N/A
Zone 2	50%	151	34.55	Pass
Zone 3	75%	286	65.45	Pass
Zone 4	100%	0 000	0	N/A
Zone 5	150%	0.	0	N/A

The *MPE Zone* column represents the five MPE Zone classifications. The *Max* % column indicates the maximum percentage level calculated for that particular Zone.

The *Feet* column indicates the number of feet on a tower or area (square feet) on a rooftop that has MPE levels for that particular Zone. The *% of Total* column indicates the percentage of the total tower height or total area of a rooftop that has MPE levels for that particular Zone.


The *Status* column indicates a Pass or Fail of the analysis for that particular Zone.

The percentage of exposure in the above Table is a worst-case exposure for the General population.

APPENDIX 2

Satellite Photo

APPENDIX 3

Load List

Proposed	Customer	RAD Height (ft)	Equipment Quantity	Equipment Type	Manufacturer	Model Number	Line Quantity	Line size	Mount Type	Azimuths	TX Power	ERP	TX Frequency	RX Frequency
No	SPRINT NEXTEL	306	3	PANEL	RFS	APXVTM14- ALU-I20	6	1 5/8" Coax	Side Arm	0/140/240			2496-2690	2496-2690
No	SPRINT NEXTEL	306	3	PANEL	Commscope	NNVV-65B- R4				0/140/240			1850-1995, 806-869	1850-1995, 806-869
No	SPRINT NEXTEL	291	3	PANEL	Generic	72" x 8" Panel	6	1 5/8" Coax	Platform with	0/140/240				
No	SIGFOX S.A.	290	1	OMNI	Procom	CXL 900- 3LW			Side Arm	0			905.2	905.2
No	T-MOBILE	277	4	PANEL	Ericsson	AIR32 B66Aa/B2a	4	15/8" Hybriflex	Sector Frame	45/135/225/ 315			1850-1910, 2110-2155	1710-1780, 1930-1990
No	T-MOBILE	277	4	PANEL	Ericsson	Air6449 B41	0		Sector Frame	45/135/225/ 315			2496-2690	2496-2690
No	T-MOBILE	277	4	PANEL	RFS	APXVAARR2 4_43-U- NA20	0		Sector Frame	45/135/225/ 315			1850-1910, 2110-2155, 617-652,	
No	T-MOBILE	277	1	DISH-HP		SHP2-13	1	1/2"	Sector	45			2130-2155	1730-1755
No	VERIZON WIRELESS	266	4	PANEL	Commscope	JAHH-45B- R3B			Stand-Off	0/200			185-1970, 2110-2130, 746-757,	1710-1730, 1890-1905, 776-787,
No	VERIZON WIRELESS	266	2	PANEL	Commscope	JAHH-65B- R3B			Stand-Off	280			1970-1985, 2110-2130, 746-757,	
No	VERIZON WIRELESS	266	6	PANEL	Amphenol Antel	LPA-80063- 4CF-EDIN-X	6	1 5/8" Coax	Stand-Off	0/185/270			869-880, 890-892	824-835, 845-847
No	AT&T MOBILITY	246	3	PANEL	CCI	DMP65R- BU8D	0		Side Arm	30/150/270			1710-1720, 1730-1735, 704-710, 710-716, 716-722,	2135-2140, 722-728, 734-740, 740-746, 845-846.5,
No	AT&T MOBILITY	246	3	PANEL	CCI	OPA65R- BU8D	0		Side Arm	30/150/270			1850-1865, 704-710, 710-716,	1930-1945, 722-728, 734-740,
No	AT&T MOBILITY	246	3	PANEL	Kathrein Scala	800 10122	6	2 1/4" Coax	Side Arm	30/150/270			824-835, 835-845, 869-880,	845-846.5, 846.5-849, 890-891.5,
No	US DEPT OF JUSTICE	210.5	1	DIPOLE		DB264	1	7/8" Coax		Omni			163.9375, 170.500	

The Table below presents a list of the communications systems at the site.

System	Provider	Technology	Frequency Band
1	Sprint Nextel	LTE	806 - 896 MHz - Land Mobile
2	Sprint Nextel	LTE	1710 - 1990 MHz - PCS
3	Sprint Nextel	LTE	2400 - 2483.5 MHz - ISM Wireless Data
4	SIGFOX S.A.	FM Land Mobile	896 - 960 MHz - Land Mobile
5	T-Mobile	LTE	614 - 746 MHz - Broadcast
6	T-Mobile	LTE	614 - 746 MHz - Broadcast
7	T-Mobile	LTE	1710 - 1990 MHz - PCS
8	T-Mobile	EDVO	2110 - 2200 MHz - E-Technology
9	T-Mobile	LTE	2110 - 2200 MHz - E-Technology
10	T-Mobile	LTE	2400 - 2483.5 MHz - ISM Wireless Data
11	Verizon Wireless	LTE	746 - 806 MHz - 700 MHz Band
12	Verizon Wireless	LTE	896 - 960 MHz - Land Mobile
13	Verizon Wireless	LTE	1710 - 1990 MHz - PCS
14	Verizon Wireless	LTE	2110 - 2200 MHz - E-Technology
15	AT&T	LTE	614 - 746 MHz - Broadcast
16	AT&T	LTE	806 - 896 MHz - Land Mobile
17	AT&T	LTE	2110 - 2200 MHz - E-Technology
18	AT&T	LTE	2110 - 2200 MHz - E-Technology
19	US DEPT OF JUSTICE	FM Land Mobile	150 - 174 MHz - Land Mobile

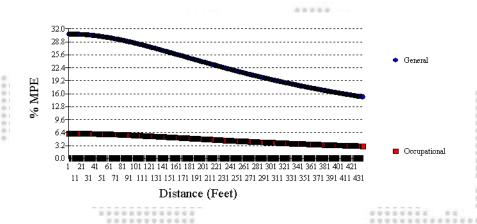
The Table below presents a list of the antenna systems at the site.

Ant #	Mfg	Antenna Model	Gain (dBd)	Hgt (ft)	Orient (deg)	Sec- tor	Ant Use	Transmission Line Type	Line Loss (dB)	Line Length (ft)
1	RFS	APXVTM14-ALU-I20	19.5	291	0	1	Dplx	1-5/8 in. Air	2.08	336
2	RFS	APXVTM14-ALU-I20	19.5	291	140	2	Dplx	1-5/8 in. Air	2.08	336
3	RFS	APXVTM14-ALU-I20	19.5	291	240	3	Dplx	1-5/8 in. Air	2.08	336
4	Commscope	NNVV-65B-R4	16	291	0	1	Dplx	1-5/8 in. Air	3.36	336
5	Commscope	NNVV-65B-R4	16	291	140	2	Dplx	1-5/8 in. Air	3.36	336
6	Commscope	NNVV-65B-R4	16	291	240	3	Dplx	1-5/8 in. Air	3.36	336
7	Commscope	NNVV-65B-R4	16	291	0	1	Dplx	1-5/8 in. Air	4.54	336
8	Commscope	NNVV-65B-R4	16	291	140	2	Dplx	1-5/8 in. Air	4.54	336
9	Commscope	NNVV-65B-R4	16	291	240	3	Dplx	1-5/8 in. Air	4.54	336
14	Procom	CXL 900-3LW	8.1	290	0	0	Dplx	1/4 in. Air	17.28	320
10	RFS	APXVAARR24_43-U-NA20	15.7	277	45	1	Dplx	1-5/8 in. Foam	2.21	307
11	RFS	APXVAARR24_43-U-NA20	15.7	277	135	2	Dplx	1-5/8 in. Air	1.9	307
12	RFS	APXVAARR24_43-U-NA20	15.7	277	225	3	Dplx	1-5/8 in. Air	1.9	307
13	RFS	APXVAARR24_43-U-NA20	15.7	277	315	4	Dplx	1-5/8 in. Air	1.9	307
15	RFS	APXVAARR24_43-U-NA20	15.7	277	45	1111	Dplx	1-5/8 in. Air	1.9	307
16	RFS	APXVAARR24_43-U-NA20	15.7	277	135	2	Dplx	1-5/8 in. Air	1.9	307
17	RFS	APXVAARR24_43-U-NA20	15.7	277	225	3	Dplx	1-5/8 in. Air	1.9	307
18	RFS	APXVAARR24_43-U-NA20	15.7	277	315	4	Dplx	1-5/8 in. Air	1.9	307
19	RFS	APXVAARR24_43-U-NA20	15.7	277	45	1	Dplx	1-5/8 in. Air	3.07	307
20	RFS	APXVAARR24_43-U-NA20	15.7	277	135	2	Dplx	1-5/8 in. Air	3.07	307
21	RFS	APXVAARR24_43-U-NA20	15.7	277	225	3	Dplx	1-5/8 in. Air	3.07	307
22	RFS	APXVAARR24_43-U-NA20	15.7	277	315	4	Dplx	1-5/8 in. Air	3.07	307
23	Ericsson	AIR32 B66Aa/B2a	18.4	277	135	2	Dplx	1-5/8 in. Air	3.68	307
24	Ericsson	AIR32 B66Aa/B2a	18.4	277	225	3	Dplx	1-5/8 in. Air	3.68	307
25	Ericsson	AIR32 B66Aa/B2a	18.4	277	315	4	Dplx	1-5/8 in. Air	3.68	307
26	Ericsson	AIR32 B66Aa/B2a	18.4	277	45	1	Dplx	1-5/8 in. Air	3.68	307
27	Ericsson	AIR32 B66Aa/B2a	18.4	277	45	1	Dplx	1-5/8 in. Air	3.68	307
28	Ericsson	AIR32 B66Aa/B2a	18.4	277	135	2	Dplx	1-5/8 in. Air	3.68	307
29	Ericsson	AIR32 B66Aa/B2a	18.4	277	225	3	Dplx	1-5/8 in. Air	3.68	307
30	Ericsson	AIR32 B66Aa/B2a	18.4	277	315	4	Dplx	1-5/8 in. Air	3.68	307
31	Ericsson	Air6449 B41	19.5	277	45	1	Dplx	1-5/8 in. Air	4.14	307
32	Ericsson	Air6449 B41	19.5	277	135	2	Dplx	1-5/8 in. Air	4.14	307
33	Ericsson	Air6449 B41	19.5	277	225	3	Dplx	1-5/8 in. Air	4.14	307
34	Ericsson	Air6449 B41	19.5	277	315	4	Dplx	1-5/8 in. Air	4.14	307
35	Amphenol	LPA-80063-4CF-EDIN-X	15.7	266	0	1	Dplx	1-5/8 in. Air	1.84	296
36	Amphenol	LPA-80063-4CF-EDIN-X	15.7	266	185	2	Dplx	1-5/8 in. Air	1.84	296
37	Amphenol	LPA-80063-4CF-EDIN-X	15.7	266	270	3	Dplx	1-5/8 in. Air	1.84	296
38	Amphenol	LPA-80063-4CF-EDIN-X	15.7	266	0	1	Dplx	1-5/8 in. Air	1.84	296
39	Amphenol	LPA-80063-4CF-EDIN-X	15.7	266	185	2	Dplx	1-5/8 in. Air	1.84	296
40	Amphenol	LPA-80063-4CF-EDIN-X	15.7	266	270	3	Dplx	1-5/8 in. Air	1.84	296
41	Commscope	JAHH-45B-R3B	17.5	266	0	1	Dplx	1-5/8 in. Air	2.96	296

42	Commscope	JAHH-45B-R3B	17.5	266	185	2	Dplx	1-5/8 in. Air	2.96	296
43	Commscope	JAHH-45B-R3B	17.5	266	270	3	Dplx	1-5/8 in. Air	2.96	296
44	Commscope	JAHH-65B-R3B	17.5	266	30	1	Dplx	1-5/8 in. Air	3.55	296
45	Commscope	JAHH-65B-R3B	17.5	266	150	2	Dplx	1-5/8 in. Air	3.55	296
46	Commscope	JAHH-65B-R3B	17.5	266	270	3	Dplx	1-5/8 in. Air	3.55	296
47	CCI	DMP65R-BU8D	15.7	246	30	1	Dplx	1-5/8 in. Air	1.71	276
48	CCI	DMP65R-BU8D	15.7	246	150	2	Dplx	1-5/8 in. Air	1.71	276
49	CCI	DMP65R-BU8D	15.7	246	270	3	Dplx	1-5/8 in. Air	1.71	276
50	CCI	OPA65R-BU8D	15.7	246	30	1	Dplx	1-5/8 in. Air	1.71	276
51	CCI	OPA65R-BU8D	15.7	246	150	2	Dplx	1-5/8 in. Air	1.71	276
52	CCI	OPA65R-BU8D	15.7	246	270	3	Dplx	1-5/8 in. Air	1.71	276
53	Kathrein	800 10122	18.4	246	30	1	Dplx	1-5/8 in. Air	3.31	276
54	Kathrein	800 10122	18.4	246	150	2	Dplx	1-5/8 in. Air	3.31	276
55	Kathrein	800 10122	18.4	246	270	3	Dplx	1-5/8 in. Air	3.31	276
56	Kathrein	800 10122	18.4	246	30	1	Dplx	1-5/8 in. Air	3.31	276
57	Kathrein	800 10122	18.4	246	150	2	Dplx	1-5/8 in. Air	3.31	276
58	Kathrein	800 10122	18.4	246	270	3	Dplx	1-5/8 in. Air	3.31	276
59	DIPOLE	DB264	8.5	211	0	0	Tx	7/8 in. Air	1.21	241

The Table below presents a list of all transmitter frequencies at the site.

Freq #	Ant #	Provider	Model	Technology	Channel Label	ID	Frequency	Power (Watts)	BW (KHz)
1	1	Sprint Nextel	Ericsson	LTE	1	A	806.000000	16	5000
2	2	Sprint Nextel	Ericsson	LTE	1	В	806.000000	16	5000
3	3	Sprint Nextel	Ericsson	LTE	1	С	806.000000	16	5000
4	4	Sprint Nextel	Ericsson	LTE	1	D	1850.00000	16	5000
5	5	Sprint Nextel	Ericsson	LTE	1	Е	1850.00000	16	5000
6	6	Sprint Nextel	Ericsson	LTE	1	F	1850.00000	16	5000
7	7	Sprint Nextel	Ericsson	LTE	1	G	2496.00000	16	5000
8	8	Sprint Nextel	Ericsson	LTE	1	Н	2496.00000	16	5000
9	9	Sprint Nextel	Ericsson	LTE	1	I	2496.00000	16	5000
10	10	SIGFOX S.A.	Ericsson	FM Land Mobile	1	N	905.00000	50	16
11	11	T-Mobile	Ericsson	LTE	1	I	663.00000	16	5000
12	12	T-Mobile	Ericsson	LTE	1	K	663.00000	16	5000
13	13	T-Mobile	Ericsson	LTE	00000010	L	663.00000	16	5000
14	14	T-Mobile	Ericsson	LTE	00000100	M	663.00000	16	5000
15	15	T-Mobile	Ericsson	LTE	1	0	728.000000	16	5000
16	16	T-Mobile	Ericsson	LTE	2 2 2 2 2 2	P	728.000000	16	5000
17	17	T-Mobile	Ericsson	LTE	0000001	0	728.000000	16	5000
18	18	T-Mobile	Ericsson	LTE	000000	R	728.000000	16	5000
19	19	T-Mobile	Ericsson	LTE	-1 -1 -1	S	1930.00000	16	5000
20	20	T-Mobile	Ericsson	LTE	1	T	1930.00000	16	5000
21	21	T-Mobile	Ericsson	LTE	1	e Ues	1930.00000	16	5000
22	22	T-Mobile	Ericsson	LTE	1	V	1930.00000	16	5000
23	26	T-Mobile	Ericsson	EDVO	1	W	2110.00000	16	5000
24	23	T-Mobile	Ericsson	EDVO	1	X	2110.00000	16	5000
25	24	T-Mobile	Ericsson	EDVO	1	Y ·	2110.00000	16	5000
26	25	T-Mobile	Ericsson	EDVO	1 221	Z	2110.00000	16	5000
27	27	T-Mobile	Ericsson	LTE	1	AA	2130.00000	16	5000
28	28	T-Mobile	Ericsson	LTE	1	AB	2130.00000	16	5000
29	29	T-Mobile	Ericsson	LTE	1 2000	AC	2130.00000	16	5000
30	30	T-Mobile	Ericsson	LTE	1 000000	AD	2130.00000	16	5000
31	31	T-Mobile	Ericsson	LTE	1 *****	AE	2496.00000	16	5000
32	32	T-Mobile	Ericsson	LTE	1	AF	2496.00000	16	5000
33	33	T-Mobile	Ericsson	LTE	1 ****	AG	2496.00000	16	5000
34	34	T-Mobile	Ericsson	LTE	1	AH	2496.00000	16	5000
35	35	Verizon Wireless	Ericsson	LTE	no 1	AI	776.000000	16	5000
36	36	Verizon Wireless	Ericsson	LTE	1	AJ	776.000000	16	5000
37	37	Verizon Wireless	Ericsson	LTE	1	AK	776.000000	16	5000
38	38	Verizon Wireless	Ericsson	LTE	1	AL	869.000000	16	5000


39	39	Verizon Wireless	Ericsson	LTE	1	AM	869.000000	16	5000
40	40	Verizon Wireless	Ericsson	LTE	1	AN	869.000000	16	5000
41	41	Verizon Wireless	Ericsson	LTE	1	AO	1970.00000	16	5000
42	42	Verizon Wireless	Ericsson	LTE	1	AP	1970.00000	16	5000
43	43	Verizon Wireless	Ericsson	LTE	1	AQ	1970.00000	16	5000
44	44	Verizon Wireless	Ericsson	LTE	1	AR	2110.00000	16	5000
45	45	Verizon Wireless	Ericsson	LTE	1	AS	2110.00000	16	5000
46	46	Verizon Wireless	Ericsson	LTE	1	AT	2110.00000	16	5000
47	47	AT&T	Ericsson	LTE	1	AU	734.000000	16	5000
48	48	AT&T	Ericsson	LTE	1	AV	734.000000	16	5000
49	49	AT&T	Ericsson	LTE	1	AW	734.000000	16	5000
50	50	AT&T	Ericsson	LTE	1	AX	890.000000	16	5000
51	51	AT&T	Ericsson	LTE	1	AY	890.000000	16	5000
52	52	AT&T	Ericsson	LTE	1	AZ	890.000000	16	5000
53	53	AT&T	Ericsson	LTE	1	BA	1930.00000	16	5000
54	54	AT&T	Ericsson	LTE	1	BB	1930.00000	16	5000
55	55	AT&T	Ericsson	LTE	1	BC	1930.00000	16	5000
56	56	AT&T	Ericsson	LTE	1	BH	2110.00000	16	5000
57	57	AT&T	Ericsson	LTE	1	BI	2110.00000	16	5000
58	58	AT&T	Ericsson	LTE	1	BJ	2110.00000	16	5000
59	59	US DEPT OF JUSTICE	Ericsson	FM Land Mobile	1	BK	170.500000	100	16
60	59	US DEPT OF JUSTICE	Ericsson	FM Land Mobile	2	BL	163.900000	100	16

The MPE analysis consists of evaluating the RF transmitter power being emitted from each active antenna at the communications site. Power density calculations are performed based on where a human (observer) would be located at the site. The power density values are then converted to MPE percentages and each antenna's MPE percentages are summed together to provide a composite MPE percentage for each observer location.

The composite graph is presented below. As shown on the graph, the MPE levels are highest where the antennas are concentrated. Any MPE levels above the 100% Limit Line exceeds the maximum permissible exposure levels for humans, based on the MPE Standard selected.

Composite Maximum Permissible Emissions Graph

Calculation details for each antenna are provided in the following Table. The Max %MPE column depicts the General Population Maximum Permissible Exposure percentage for that particular antenna.

The calculated Antenna Gain and Antenna EIRP are based on the antenna pattern gain at the location where the Maximum %MPE is determined.

Provider	Ant Nbr	Ant Hgt (feet)	Ant Lgth (feet)	Frequency (MHz)	Line Loss (dB)	Filter Loss (dB)	Tx Qty	Total Tx Pwr (watts)	Calc'd Ant Gain (dB)	Ant EIRP (watts)	Max %MPE
Sprint Nextel	1	291	6.35	806.0000	2.08	0.81	1	8.21	0	13.47	0.79
Sprint Nextel	2	291	6.35	806.0000	2.08	0.81	1	8.21	0	13.47	0.79
Sprint Nextel	3	291	6.35	806.0000	2.08	0.81	1	8.21	0	13.47	0.79
Sprint Nextel	4	291	4.83	1850.0000	3.36	0.81	1	6.12	0	10.04	0.44
Sprint Nextel	5	291	4.83	1850.0000	3.36	0.81	1	6.12	0	10.04	0.44
Sprint Nextel	6	291	4.83	1850.0000	3.36	0.81	1	6.12	0	10.04	0.44
Sprint Nextel	7	291	7	2496.0000	4.54	0.81	1	4.67	0	7.66	0.04
Sprint Nextel	8	291	7	2496.0000	4.54	0.81	1	4.67	0	7.66	0.04
Sprint Nextel	9	291	7	2496.0000	4.54	0.81	1	4.67	0	7.66	0.04
SIGFOX S.A.	10	290	11.9	905.0000	17.28	1	1	0.74	0	1.22	0.01
T-Mobile	11	277	7.95	663.0000	1.90	0.81	1	8.56	0	14.04	0.89
T-Mobile	12	277	7.95	663.0000	1.90	0.81	1	8.56	0	14.04	0.89
T-Mobile	13	277	7.95	663.0000	1.90	0.81	1	8.56	0	14.04	0.89
T-Mobile	14	277	7.95	663.0000	2.21	0.81	_ 1	7.98	0	13.08	0.89
T-Mobile	15	277	7.95	728.0000	1.90	0.81	1	8.56	0	14.04	0.81
T-Mobile	16	277	7.95	728.0000	1.90	0.81	* *1	8.56	0	14.04	0.81
T-Mobile	17	277	7.95	728.0000	1.90	0.81	1	8.56	0 0	14.04	0.81
T-Mobile	18	277	7.95	728.0000	1.90	0.81	1	8.56	0	14.04	0.81
T-Mobile	19	277	4.83	1930.0000	3.07	0.81	1	6.54	0	10.73	0.49
T-Mobile	20	277	4.83	1930.0000	3.07	0.81	1	6.54	0	10.73	0.49
T-Mobile	21	277	4.83	1930.0000	3.07	0.81	e •1	6.54	0 • • 0	10.73	0.49
T-Mobile	22	277	4.83	1930.0000	3.07	0.81	1	6.54	0	10.73	0.49
T-Mobile	23	277	276	2110.0000	3.68	0.81	1	5.68	0	9.32	0.00
T-Mobile	24	277	276	2110.0000	3.68	0.81	1	5.68	0	9.32	0.00
T-Mobile	25	277	276	2110.0000	3.68	0.81	1	5.68	0	9.32	0.00
T-Mobile	26	277	276	2110.0000	3.68	0.81	1	5.68	0	9.32	0.00
T-Mobile	27	277	276	2130.0000	3.68	0.81	1	5.68	0	9.32	0.00
T-Mobile	28	277	276	2130.0000	3.68	0.81	1	5.68	0	9.32	0.00
T-Mobile	29	277	276	2130.0000	3.68	0.81	1	5.68	0 00	9.32	0.00
T-Mobile	30	277	276	2130.0000	3.68	0.81	1	5.68	0	9.32	0.00
T-Mobile	31	277	7	2496.0000	4.14	0.81	1	5.11	0	8.38	0.05
T-Mobile	32	277	7	2496.0000	4.14	0.81	1	5.11	0	8.38	0.05
T-Mobile	33	277	7	2496.0000	4.14	0.81	10.00	5.11	0000000	8.38	0.05
T-Mobile	34	277	7	2496.0000	4.14	0.81	1	5.11	0	8.38	0.05
Verizon Wireless	35	266	7.95	776.0000	1.84	0.81	1	8.7	0	14.26	0.81
Verizon Wireless	36	266	7.95	776.0000	1.84	0.81	1	8.7	0	14.26	0.81
Verizon Wireless	37	266	7.95	776.0000	1.84	0.81	1	8.7	0000	14.26	0.81

Verizon Wireless	38	266	7.95	869.0000	1.84	0.81	1	8.7	0	14.26	0.72
Verizon Wireless	39	266	7.95	869.0000	1.84	0.81	1	8.7	0	14.26	0.72
Verizon Wireless	40	266	7.95	869.0000	1.84	0.81	1	8.7	0	14.26	0.72
Verizon Wireless	41	266	7	1970.0000	2.96	0.81	1	6.71	0	11.01	0.06
Verizon Wireless	42	266	7	1970.0000	2.96	0.81	1	6.71	0	11.01	0.06
Verizon Wireless	43	266	7	1970.0000	2.96	0.81	1	6.71	0	11.01	0.06
Verizon Wireless	44	266	276	2110.0000	3.55	0.81	1	5.86	0	9.6	0.00
Verizon Wireless	45	266	276	2110.0000	3.55	0.81	1	5.86	0	9.6	0.00
Verizon Wireless	46	266	276	2110.0000	3.55	0.81	1	5.86	0	9.6	0.00
AT&T	47	246	7.95	734.0000	1.71	0.81	1	8.95	0	14.67	0.95
AT&T	48	246	7.95	734.0000	1.71	0.81	1	8.95	0	14.67	0.95
AT&T	49	246	7.95	734.0000	1.71	0.81	1	8.95	0	14.67	0.95
AT&T	50	246	7.95	890.0000	1.71	0.81	1	8.95	0	14.67	0.79
AT&T	51	246	7.95	890.0000	1.71	0.81	1	8.95	0	14.67	0.79
AT&T	52	246	7.95	890.0000	1.71	0.81	1	8.95	0	14.67	0.79
AT&T	53	246	276	1930.0000	3.31	0.81	1	6.19	0	10.15	0.00
AT&T	54	246	276	1930.0000	3.31	0.81	1	6.19	0	10.15	0.00
AT&T	55	246	276	1930.0000	3.31	0.81	1	6.19	0	10.15	0.00
AT&T	56	246	276	2110.0000	3.31	0.81	1	6.19	0	10.15	0.00
AT&T	57	246	276	2110.0000	3.31	0.81	1	6.19	0	10.15	0.00
AT&T	58	246	276	2110.0000	3.31	0.81	1	6.19	0	10.15	0.00
US DEPT OF JUSTICE	59	211	20	170.5000	1.21	3.5	2	67.69	0	111.01	7.95

In cases where the predicted power density levels exceed MPE limits, altering the location of the antennas can lead to changing the composite power spectral density and thus bringing the tower/site into compliance. Also, reducing the transmitter output power, if possible, can lead to lowering the average power density and thus reducing the amount of RF exposure.

In 1985, the FCC first adopted guidelines to be used for evaluating human exposure to RF emissions. The FCC revised and updated these guidelines on August 1, 1996, as a result of a rule-making proceeding initiated in 1993. The new guidelines incorporate limits for Maximum Permissible Exposure (MPE) in terms of electric and magnetic field strength and power density for transmitters operating at frequencies between 300 kHz and 100 GHz.

The FCC's MPE limits are based on exposure limits recommended by the National Council on Radiation Protection and Measurements (NCRP) and, over a wide range of frequencies, the exposure limits were developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI) to replace the 1982 ANSI guidelines. Limits for localized absorption are based on recommendations of both ANSI/IEEE and NCRP.

The FCC's limits, and the NCRP and ANSI/IEEE limits on which they are based, are derived from exposure criteria quantified in terms of specific absorption rate (SAR). The basis for these limits is a whole-body averaged SAR threshold level of 4 watts per kilogram (4 W/kg), as averaged over the entire mass of the body, above which expert organizations have determined that potentially hazardous exposures may occur. The MPE limits are derived by incorporating safety factors that lead, in some cases, to limits that are more conservative than the limits originally adopted by the FCC in 1985. Where more conservative limits exist, they do not arise from a fundamental change in the RF safety criteria for whole-body averaged SAR, but from a precautionary desire to protect subgroups of the general population who, potentially, may be more at risk.

The FCC exposure limits are also based on data showing that the human body absorbs RF energy at some frequencies more efficiently than at others. The most restrictive limits occur in the frequency range of 30-300 MHz where whole-body absorption of RF energy by human beings is most efficient. At other frequencies, whole-body absorption is less efficient, and consequently, the MPE limits are less restrictive.

MPE limits are defined in terms of power density (units of milliwatts per centimeter squared: mW/cm^2), electric field strength (units of volts per meter: V/m) and magnetic field strength (units of amperes per meter: A/m). The far-field of a transmitting antenna is where the electric field vector (E), the

magnetic field vector (H), and the direction of propagation can be considered to be all mutually orthogonal ("plane-wave" conditions).

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment-related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area. Additional details can be found in FCC OET 65.

This study predicts RF field strength and power density levels that emanate from communications system antennae. It considers all transmitter power levels (less filter and line losses) delivered to each active transmitting antenna at the communications site. Calculations are performed to determine power density and MPE levels for each antenna as well as composite levels from all antennas. The calculated levels are based on where a human (Observer) would be standing at various locations at the site. The point of interest where the MPE level is predicted is based on the height of the Observer.

Compliance with the FCC limits on RF emissions are determined by spatially averaging a person's exposure over the projected area of an adult human body, that is approximately six-feet or two-meters, as defined in the ANSI/IEEE C95.1 standard. The MPE limits are specified as time-averaged exposure limits. This means that exposure is averaged over an identifiable time interval. It is 30 minutes for the general population/uncontrolled RF environment and 6 minutes for the occupational/controlled RF environment. However, in the case of the general public, time averaging should not be applied because the general public is typically not aware of RF exposure and they do not have control of their exposure time. Therefore, it should be assumed that any RF exposure to the general public will be continuous.

The FCC's limits for exposure at different frequencies are shown in the following Tables.

	Limits for Occupational/Controlled Exposure										
Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm²)	Averaging Time E ², H ² or S (minutes)							
0.3 - 3.0	614	1.63	100*	6							
3.0 - 30	1842/f	4.89/f	900/F ²	6							
30 - 300	61.4	0.163	1.0	6							
300 - 1500		600	f/300	6							
1500 - 100,000			5	6							

* = Plane-wave equivalent power density

Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

	Limits for Genera	al Population/Uncon	trolled Exposure	
Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm²)	Averaging Time E ² , H ² or S (minutes)
0.3 - 1.34	614	1.63	100*	30
1.34 - 30	824/f	2.19/f	180/F ²	30
30 -300	27.5	0.073	0.2	30
300 -1500			f/1500	30
1500 -100,000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1.0	30

f = frequency

General population/uncontrolled exposures apply in situations in which the general public may be exposed or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

It is important to understand that these limits apply cumulatively to all sources of RF emissions affecting a given area. For example, if several different communications system antennas occupy a shared facility such as a tower or rooftop, then the total exposure from all systems at the facility must be within compliance of the FCC guidelines.

The field strength emanating from an antenna can be estimated based on the characteristics of an antenna radiating in free space. There are basically two field areas associated with a radiating antenna. When close to the antenna, the region is known as the Near Field. Within this region, the characteristics of the RF fields are very complex and the wave front is extremely curved. As you move further from the antenna, the wave front has less curvature and becomes planar. The wave front still has a curvature but it appears to occupy a flat plane in space (plane-wave radiation). This region is known as the Far Field.

^{* =} Plane-wave equivalent power density

Two models are utilized to predict Near and Far field power densities. They are based on the formulae in FCC OET 65. As this study is concerned only with Near Field calculations, we will only describe the model used for this study. For additional details, refer to FCC OET Bulletin 65.

Cylindrical Model (Near Field Predictions)

Spatially averaged plane-wave equivalent power densities parallel to the antenna may be estimated by dividing the antenna input power by the surface area of an imaginary cylinder surrounding the length of the radiating antenna. While the actual power density will vary along the height of the antenna, the average value along its length will closely follow the relation given by the following equation:

$$S = P \div 2\pi RL$$

Where:

S = Power Density

P = Total Power into antenna

R = Distance from the antenna

L = Antenna aperture length

For directional-type antennas, power densities can be estimated by dividing the input power by that portion of a cylindrical surface area corresponding to the angular beam width of the antenna. For example, for the case of a 120-degree azimuthal beam width, the surface area should correspond to 1/3 that of a full cylinder. This would increase the power density near the antenna by a factor of three over that for a purely omni-directional antenna. Mathematically, this can be represented by the following formula:

$$S = (180 / \theta_{BW}) P \div \pi RL$$

Where:

S = Power Density

 θ_{BW} = Beam width of antenna in degrees (3 dB half-power point)

P = Total Power into antenna

R = Distance from the antenna

L = Antenna aperture length

If the antenna is a 360-degree omni-directional antenna, this formula would be equivalent to the previous formula.

Spherical Model (Far Field Predictions)

Spatially averaged plane-wave power densities in the Far Field of an antenna may be estimated by considering the additional factors of antenna gain and reflective waves that would contribute to exposure.

The radiation pattern of an antenna has developed in the Far Field region and the power gain needs to be considered in exposure predictions. Also, if the vertical radiation pattern of the antenna is considered, the exposure predictions would most likely be reduced significantly at ground level, resulting in a more realistic estimate of the actual exposure levels.

Additionally, to model a truly "worst case" prediction of exposure levels at or near a surface, such as at ground-level or on a rooftop, reflection off the surface of antenna radiation power can be assumed, resulting in a potential four-fold increase in power density.

These additional factors are considered and the Far Field prediction model is determined by the following equation:

$$S = EIRP \times Rc \div 4\pi R^2$$

Where:

S = Power Density EIRP = Effective Radiated Power from antenna Rc = Reflection Coefficient (2.56)

R = Distance from the antenna

The EIRP includes the antenna gain. If the antenna pattern is considered, the antenna gain is relative based on the horizontal and vertical pattern gain values at that particular location in space, on a rooftop or on the ground. However, it is recommended that the antenna radiation pattern characteristics not be considered to provide a conservative "worst case" prediction. This is the equation is utilized for the Far Field exposure predictions herein.

Exhibit 7 Original Facility Approval

Joseph Pajak Building Official (860) 779-5315 Fax (860) 779-5381

TOWN OF KILLINGLY DEPARTMENT OF BUILDING SAFETY AND INSPECTION

DATE	16.	100	:	

GIS	MAP NO		7		LOT					
Flood Hazard Yes No				Zoning Permit No				Driveway Permit No		
1. 2. 3. 4. 5.	Applicant Owner Building Contractor Elec. Cont. CRS No.				A A A				Tel: Tel: Tel:	
6. 7. 0	TYPE OF IMPROVEMENT New building Addition (If residential, enter number of new housing units added, if any, in Part 9) Renovations Repair, replacement Demolition (If multifamily residential, enter number of units in building in Part 9). Miscellaneous Moving (relocation)			8. PROPOSED USE Residential One family Two or more family – Enter number of units Garage Carport Other – Specify			Tel: Nonresidential Amusement, recreational Church, other religious Industrial Parking garage Service station, repair garage Hospital, institutional Office, bank, professional Public Utility School, library, other educational Stores, mercantile Tanks, towers Other - Specify			
9a.	OF FRAME Masonry (wall bearing) Wood frame Structural steel Reinforced concrete Other – Specify A B F			SUPPLY Private Public RINCIPAL TYPE OF HVAC RING COOLING First Central		AC JING entral leeve	NONRESIDENTIAL – Describe in detail proposed use of buildings, e.g., food processing plant, machine shop, laundry building at hospital, elementary school, secondary school, college, parochial school, parking garage for department store, rental office building, office building at industrial plant. If use of existing building is being changed, enter proposed use. The owner of this building and the undersigned agree to conform to the State of Conn. basic building Code. The Connecticut Fire Safety Code, and the laws of this jurisdiction and to notify the Building Official of any changes in plans for which this permit is requested.			
Sign	ature of Building Official		. 4		Date	e permit issue	- Charles Annual	tor's Reg. or Lic. No Expiration Date	F 199 A . 18 1	

Exhibit 8

(4) Notice Confirmations

From: UPS <pkginfo@ups.com>

Sent: Thursday, August 26, 2021 10:53 PM

To: Kimberly Revak

Subject: UPS Schedule Delivery Update, Tracking Number 1Z9Y45030310289041

Your scheduled delivery date has changed.

Scheduled Delivery Date: Monday, 08/30/2021

Important Delivery Information

From: CENTERLINE SITE ACQUISITION

Tracking Number: <u>1Z9Y45030310289041</u>

Shipment Details

Gary Waitt - Site Development

American Tower Corporation

Ship To: 10 Presidential Way

WOBURN, MA 018011053

US

Number of Packages: 1

Weight: 1.0 LBS

Reference Number 1: Killingly - ATC

It's the thought that counts

Create a Return

Download the UPS mobile app

From: UPS <pkginfo@ups.com>

Sent: Thursday, August 26, 2021 10:53 PM

To: Kimberly Revak

Subject: UPS Schedule Delivery Update, Tracking Number 1Z9Y45030331966207

Your scheduled delivery date has changed.

Scheduled Delivery Date: Monday, 08/30/2021

Important Delivery Information

From: CENTERLINE SITE ACQUISITION

Tracking Number: <u>1Z9Y45030331966207</u>

Shipment Details

Gary Waitt - Site Development

American Tower Corporation

Ship To: 10 Presidential Way

WOBURN, MA 018011053

US

Number of Packages: 1

Weight: 1.0 LBS

Reference Number 1: Killingly - LL

It's the thought that counts

Create a Return

Download the UPS mobile app

From: UPS <pkginfo@ups.com>

Sent: Thursday, August 26, 2021 10:53 PM

To: Kimberly Revak

Subject: UPS Schedule Delivery Update, Tracking Number 1Z9Y45030316345086

Your scheduled delivery date has changed.

Scheduled Delivery Date: Friday, 08/27/2021

Important Delivery Information

From: CENTERLINE SITE ACQUISITION

Tracking Number: <u>1Z9Y45030316345086</u>

Shipment Details

Jason Anderson, Chairman

Town of Killingly 172 Main Street

KILLINGLY, CT 062392822

US

Number of Packages: 1

Weight: 1.0 LBS

Reference Number 1: Killingly - Selectman

Ship To:

It's the thought that counts

Create a Return

Download the UPS mobile app

From: UPS <pkginfo@ups.com>

Sent: Thursday, August 26, 2021 10:53 PM

To: Kimberly Revak

Subject: UPS Schedule Delivery Update, Tracking Number 1Z9Y45030310728076

Your scheduled delivery date has changed.

Scheduled Delivery Date: Friday, 08/27/2021

Important Delivery Information

From: CENTERLINE SITE ACQUISITION

Tracking Number: <u>1Z9Y45030310728076</u>

Shipment Details

Ann-Marie L. Aubrey, Dir Plan & Dev

Town of Killingly 172 Main Street

KILLINGLY, CT 062392822

US

Number of Packages: 1

Weight: 1.0 LBS

Reference Number 1: Killingly - Town

Ship To:

It's the thought that counts

Create a Return

Download the UPS mobile app