

Greg Milano SAI Group, LLC 12 Industrial Way Salem, NH 03079 860-707-9001 gmilano@saigrp.com

October 18, 2019

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Notice of Exempt Modification – New Cingular Wireless PCS, LLC (AT&T) CT1288 38 Maple Street, Kent, CT 06757 N 41.721902 W -73.474963

Dear Ms. Bachman:

AT&T currently maintains nine (9) antennas at the 140-foot level of the existing 150-foot monopole at 38 Maple Street, Kent, CT. The tower is owned by American Tower Corporation and the property is owned by the Town of Kent. AT&T now intends to remove three (3) Powerwave antennas and replace them with two (2) DMP65R-BU4DA CCI antennas and one (1) DMP65R-BU6DA CCI antennas. These antennas would be installed at the 185-foot level of the tower. AT&T also intends to remove three (3) Ericsson RRUS-11 remote radio units and install three (3) Ericsson 4449 B5/B12 RRUS and three (3) Ericsson B14 4478 RRUS.

This facility was approved by the Siting Council in docket #353 on April 24, 2008. This approval included the condition that the tower height be limited to 150 ft. Since no change to the existing tower height is proposed, therefore this modification complies with the aforementioned condition.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Bruce K. Adams, First Selectman for the Town of Kent, Kent Land Use Department, as well as the property and tower owner. The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing structure.

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure with mount modifications and its foundation can support the proposed loading.

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

23 Miles

SAI Group, LLC 12 Industrial Way Salem, NH 03079 860-707-9001 gmilano@saigrp.com

Attachments

cc: Bruce K. Adams - First Selectman Donna Hayes – Land Use Administrator, Kent Land Use Department Town of Kent- Property Owner American Tower Corporation - Tower Owner (via e-mail: Ryan.Tierney@americantower.com)

Power Density

Existing Loading on Tower

	# of	ERP/Ch	Antenna Centerline	Power Density	Freq. Band	Limit S (mW	
Carrier	Channels	(W)	Height (ft)	(mW/cm^2)	(MHz**)	/cm^2)	%MPE
Other Carriers*							9.06%
AT&T GSM	1	325	140	0.0065	880	0.5867	0.22%
AT&T UMTS	2	325	140	0.0130	880	0.5867	0.20%
AT&T UMTS	1	425	140	0.0085	1900	1.0000	0.05%
AT&T LTE	1	1476	140	0.0296	700	0.4667	0.24%
AT&T LTE	1	2421	140	0.0485	1900	1.0000	0.37%
Site Total							10.60%

*Per CSC Records (available upon request, includes calculation formulas)

** If a range of frequencies are used, such as 880-894, enter the lowest value, i.e. 880

Carrier	# of Channels	ERP/Ch (W)	Antenna Centerline Height (ft)	Power Density (mW/cm^2)	Freq. Band (MHz**)	Limit S (mW /cm^2)	%MPE
Other Carriers*							9.06%
AT&T UMTS	1	333	140	0.0067	850	0.5667	0.12%
AT&T LTE	2	4842	140	0.1939	1900	1.0000	1.94%
AT&T LTE	1	2951	140	0.0591	700	0.4667	1.27%
AT&T LTE	1	1476	140	0.0296	700	0.4667	0.63%
AT&T LTE	1	1000	140	0.0200	850	0.5667	0.35%
AT&T 5G	1	1000	140	0.0200	850	0.5667	0.35%
Site Total							13.73%

Proposed Loading on Tower

*Per CSC Records (available upon request, includes calculation formulas)

** If a range of frequencies are used, such as 880-894, enter the lowest value, i.e. 880

		PROJECT INFORMATION			
SCOPE OF V	WORK:	ITEMS TO BE MOUNTED ON THE EXISTING MONOPOLE: •INSTALL NEW HANDRAIL KIT, SITEPRO1 P/N HRK14-3HD (OR AP •NEW AT&T ANTENNA (DMP65R-BU6DA) @ POS. 4 (TYP. OF ALPI]	
		•NEW AT&T ANTENNA (DMP65R-BU4DA) @ POS. 4 (TYP. OF BET/			
		TOTAL OF 2) • NEW AT&T RRUS: B14 4478 (700) (TYP. OF 1 PER SECTOR, TO • NEW AT&T RRUS: 4449 B5/B12 (700/850) (TYP. OF 1 PER SE • PROPOSED AT&T SURGE ARRESTOR (TOTAL OF 1) WITH (2) DC & (1) FIBER IN 2" FLEX CONDUIT (TO FOLLOW EXISTING ROUTE).	ECTOR, TOTAL OF 3). POWER CABLES		
		ITEMS TO BE MOUNTED AT EQUIPMENT LOCATION: • SWAP DUS FOR RBS 6630. • ADD IDLE. • ADD 5G RBS 6630. • ADD NETSURE 7100 POWER PLANT WITH BATTERY RACK (TO REFLACE EVENUE UNFACE INFINITY DOWER SYSTEM)			
		(TO REPLACE EXISTING LINEAGE INFINITY POWER SYSTEM)			
		 (3) P90-14-XLH-RR POWERWAVE ANTENNAS (3) RRUS-11 B12 (6) POWERWAVE CM1007-DBPXBC-003 DIPLEXERS (3) TT19-08BP111-001 TMAS RELOCATE (2) ANTENNAS (SBNHH-1D65A) FROM POSITION 4 TO (TYP. OF BETA & GAMMA SECTORS) 	D POSITION 3		
		• RELOCATE (1) ANTENNA (HPA-65R-BUU-H6) FROM POSITION 4 (TYP. OF ALPHA SECTOR, TOTAL OF 1)	TO POSITION 3		PACE ID
SITE ADDRES	SS:	38 MAPLE STREET KENT, CT 06757			
LATITUDE:		41.721902°N, 41°43′18.85″N			
_ONGITUDE:		73.474963 W, 73 28 29.87 W			
TYPE OF SIT	TE:	MONOPOLE / INDOOR EQUIPMENT		DIRECTIONS TO SITE:	VICINITY M/
MONOPOLE I	HEIGHT:	150'-0"±		START OUT GOING NORTHEAST ON	ENTERPRISE DR TOW
RAD CENTER	र:	140'-0"±		CAPITAL BLVD 0.3 MI. TURN LEF TOWARD NEW HAVEN 1.8 MI. TAKE TAKE EXIT 28 ON THE LEFT TO M	EXIT 22N TO MERGE
CURRENT US	SE:	TELECOMMUNICATIONS FACILITY		W 0.5 MI. TAKE EXIT 33 TO MER CT-177/NORTH WASHINGTON STR	RGE ONTO CT-72 W
PROPOSED (USE:	TELECOMMUNICATIONS FACILITY		CONTINUE TO FOLLOW CT-177 N FOLLOW US-6 W 10.4 MI. CON	2.0 MI. TURN LEFT ON NTINUE ONTO E MAIN
		DRAWING INDEX		N/NORTHFIELD RD 7.3 MI. TURN L MI. CONTINUE ONTO US-202 W/V ONTO CT-341 W/WARREN RD/WOO	WEST ST CONTINUE TO
SHEET NO.	DESCRIF	PTION	REV.	ONTO CT-341 W/IS KENT RD DEST	
Γ—1	TITLE S	HEET	1		1.0.0
GN-1	GENERA	L NOTES	1		RA
A—1	СОМРОЦ	JND & EQUIPMENT PLANS	1		
4-2	ANTENN	A LAYOUTS & ELEVATION	1	and the second	PROJ
A-3	DETAILS		1	1 and the	SIT
SN-1	STRUCT	URAL NOTES	1	a sin a	ET
5-1	MOUNT	MODIFICATIOIN DESIGN	1		
G—1	GROUNE	DING DETAILS	1	13	1
RF-1	RF PLU	MBING DIAGRAM	1		
				NUMBER: CT1288 KENT CT MAPLE STREET	
	Des	JDSON sign Group LLC	_		

SITE NUMBER: CT1288

SITE NAME: KENT CT MAPLE STREET

FA CODE: 10141334

MRCTB040475, MRCTB040573, MRTCB040810

PROJECT: LTE 3C_4C 2020 UPGRADE

			DIRECTIONS TO SITE:			
MONOPOLE H	HEIGHT: 150'-0"±					1. THIS DOCUMENT IS THE DUPLICATION OR USE WI
RAD CENTER	: 140'-0"±		CAPITAL BLVD 0.3 ML TURN LEFT	ENTERPRISE DR TOWARD CAPITAL BLVD 0.3 T ONTO WEST ST 0.3 MI .TURN LEFT TO EXIT 22N TO MERGE ONTO CT-9 N TOWAR	MERGE ONTO 1-91 S	AND USE BY GOVERNME AUTHORIZED REGULATOR
CURRENT US	E: TELECOMMUNICATIONS FACILITY		TAKE EXIT 28 ON THE LEFT TO MI	ERGE ONTO CT-72 W TOWARD BRISTOL 3.2 RGE ONTO CT-72 W TOWARD BRISTOL 1.9	MI. MERGE ONTO I-84	2. THE FACILITY IS AN UNM ACCESSED BY TRAINED T
PROPOSED U	JSE: TELECOMMUNICATIONS FACILITY		CONTINUE TO FOLLOW CT-177 N 2	EET 0.2 MI. TURN RIGHT ONTO CT-177 2.0 MI. TURN LEFT ONTO US-6 W/SCOTT SI	WAMP RD CONTINUE TO	NOT REQUIRE ANY WATER REGULATIONS REQUIRING
	DRAWING INDEX		N/NORTHFIELD RD 7.3 MI. TURN L	NTINUE ONTO E MAIN ST 0.8 MI. TURN LEFT ONTO CT—118 W/EAST ST CONTINUE TO WEST ST CONTINUE TO FOLLOW US—202 W	O FOLLOW EAST ST 1.1	3. CONTRACTOR SHALL VER AND SHALL IMMEDIATELY
SHEET NO.	DESCRIPTION	REV.		DOVILLE RD CONTINUE TO FOLLOW CT-341 W	V 12.6 MI. TURN RIGHT	BEFORE PROCEEDING WI
T-1 GN-1	TITLE SHEET GENERAL NOTES	1		52.	a here	 CONSTRUCTION DRAWING SIGNED SUBMITTAL DATE
A-1	COMPOUND & EQUIPMENT PLANS	1		a)		
A-2	ANTENNA LAYOUTS & ELEVATION	1	and the second	PROJECT	As a	
A-3	DETAILS	1			02	
SN-1	STRUCTURAL NOTES	1	O TELEST	Exs		CALL TOLL
S-1	MOUNT MODIFICATIOIN DESIGN	1			T	CALL TOLL
G—1	GROUNDING DETAILS	1			A series and the	
RF-1	RF PLUMBING DIAGRAM	1		LA Main	ines of	L
HDG	HUDSON Design Group LLC	SITE NAME: 1	NUMBER: CT1288 KENT CT MAPLE STREET MAPLE STREET ENT, CT 06757	500 ENTERPRISE DRIVE, SUITE 3A	1 10/16/19 ISSUED 0 10/10/19 ISSUED A 08/30/19 ISSUED NO. DATE	
45 BEECHWOOD I NORTH ANDOVER	DRIVE TEL: (978) 557-5553		CHFIELD COUNTY	ROCKY HILL, CT 06067	SCALE: AS SHOWN	DESIGNED BY: AT DRAWN B

GENERAL NOTES

HE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF AT&T. ANY WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED. DUPLICATION MENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY DRY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED.

INMANNED PRIVATE AND SECURED EQUIPMENT INSTALLATION. IT IS ONLY D TECHNICIANS FOR PERIODIC ROUTINE MAINTENANCE AND THEREFORE DOES TER OR SANITARY SEWER SERVICE. THE FACILITY IS NOT GOVERNED BY NG PUBLIC ACCESS PER ADA REQUIREMENTS.

VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON THE JOB SITE CLY NOTIFY THE AT&T MOBILITY REPRESENTATIVE IN WRITING OF DISCREPANCIES WITH THE WORK OR BE RESPONSIBLE FOR SAME.

NGS ARE VALID FOR SIX MONTHS AFTER ENGINEER OF RECORD'S STAMPED AND TE LISTED HEREIN.

72 HOURS CALL BEFORE YOU DIG IL FREE 1-800-922-4455 or call 811 NIN CE CONNE UNDERGROUND SERVICE ALERT AT&T mm TITLE SHEET VP AT DF AM AT DPH (LTE 3C_4C) BY CHK APP SITE NUMBE DRAWING NUMBE DRAWN BY: AM CT1288 T-1

GROUNDING NOTES

- 1. THE SUBCONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM AND LIGHTNING PROTECTION SYSTEM (AS DESIGNED AND INSTALLED) FOR STRICT COMPLIANCE WITH THE NEC (AS ADOPTED BY THE AHJ), THE SITE-SPECIFIC (UL, LPI, OR NFPA) LIGHTING PROTECTION CODE, AND GENERAL COMPLIANCE WITH TELCORDIA AND TIA GROUNDING STANDARDS. THE SUBCONTRACTOR SHALL REPORT ANY VIOLATIONS OR ADVERSE FINDINGS TO THE CONTRACTOR FOR RESOLUTION.
- 2. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION, AND AC POWER GES'S) SHALL BE BONDED TOGETHER, AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 3. THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81 STANDARDS) FOR NEW GROUND ELECTRODE SYSTEMS. THE SUBCONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- 4. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS FOUIPMENT
- 5. EACH BTS CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 AWG STRANDED COPPER OR LARGER FOR INDOOR BTS AND #2 AWG STRANDED COPPER FOR OUTDOOR BTS.
- 6. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 7. APPROVED ANTIOXIDANT COATINGS (I.E., CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 8. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO GROUND BAR.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 11. METAL CONDUIT SHALL BE MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 AWG COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS
- 12. ALL NEW STRUCTURES WITH A FOUNDATION AND/OR FOOTING HAVING 20 FT. OR MORE OF 1/2 IN. OR GREATER ELECTRICALLY CONDUCTIVE REINFORCING STEEL MUST HAVE IT BONDED TO THE GROUND RING USING AN EXOTHERMIC WELD CONNECTION USING #2 AWG SOLID BARE TINNED COPPER GROUND WIRE, PER NEC 250.50

GENERAL NOTES

1. FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR - SAI SUBCONTRACTOR - GENERAL CONTRACTOR (CONSTRUCTION) OWNER - AT&T MOBILITY

- 2. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CONTRACTOR.
- 3. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES. SUBCONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE **REGULATIONS**
- 4. DRAWINGS PROVIDED HERE ARE NOT TO BE SCALED AND ARE INTENDED TO SHOW OUTLINE ONLY.
- 5. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS
- "KITTING LIST" SUPPLIED WITH THE BID PACKAGE IDENTIFIES ITEMS THAT WILL BE SUPPLIED BY 6. CONTRACTOR. ITEMS NOT INCLUDED IN THE BILL OF MATERIALS AND KITTING LIST SHALL BE SUPPLIED BY THE SUBCONTRACTOR.
- 7. THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION SPACE FOR APPROVAL BY THE CONTRACTOR
- 9. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT. POWER AND T1 CABLES. GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING. SUBCONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING WITH THE CONTRACTOR
- 10. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 11. SUBCONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY, ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 12 SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION
- 13. ALL CONCRETE REPAIR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN CONCRETE INSTITUTE (ACI) 301.

14. ANY NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL BE AIR-ENTRAINED AND SHALL HAVE 4000 PSI STRENGTH AT 28 DAYS. ALL CONCRETE WORK SHALL BE DONE IN ACCORDANCE WITH ACI 318 CODE REQUIREMENTS.

15. ALL STRUCTURAL STEEL WORK SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH AISC SPECIFICATIONS. ALL STRUCTURAL STEEL SHALL BE ASTM A36 (Fy = 36 ksi) UNLESS OTHERWISE NOTED. PIPES SHALL BE ASTM A53 TYPE E (Fy = 36 ksi). ALL STEEL EXPOSED TO WEATHER SHALL BE HOT DIPPED GALVANIZED. TOUCH UP ALL SCRATCHES AND OTHER MARKS IN THE FIELD AFTER STEEL IS ERECTED USING A COMPATIBLE ZINC RICH PAINT.

- FOR CONSTRUCTION OF AT&T SITES."
- AFTER MIDNIGHT
- EXPOSURE LEVELS
- 20. APPLICABLE BUILDING CODES:

STANDARDS

BUILDING CODE: IBC 2015 WITH 2018 CT STATE BUILDING CODE AMENDMENTS ELECTRICAL CODE: 2017 NATIONAL ELECTRICAL CODE (NFPA 70-2017)

AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) MANUAL OF STEEL CONSTRUCTION, ASD, FOURTEENTH EDITION:

AGL	ABOVE GRADE LEVEL
AWG	AMERICAN WIRE GAUG
BBU	BATTERY BACKUP UNI
BTCW	BARE TINNED SOLID COPPER WIRE
BGR	BURIED GROUND RING
BTS	BASE TRANSCEIVER ST
E	EXISTING
EGB	EQUIPMENT GROUND E
EGR	EQUIPMENT GROUND

HDG	HUDSON Design Group LLC
45 BEECHWOOD DRIVE	TEL: (978) 557-5553
NORTH ANDOVER, MA (1845 FAX: (978) 336-5586

NORTH ANDOVER, MA 01845

SITE NUMBER: CT1288 SITE NAME: KENT CT MAPLE STREET

> 38 MAPLE STREET KENT CT 06757 LITCHFIELD COUNTY

							71	
						0		2
1	10/16/19	ISSUED	FOR	CONSTRUCTION	I	V	Y	2
0	10/10/19	ISSUED	FOR	REVIEW			V	5
Α	08/30/19	ISSUED	FOR	REVIEW			A	v
NO.	DATE			REVISIONS	6		B,	ſ
SCA	LE: AS SH	IOWN		DESIGNED BY:	AT	DRAW	N B	Y

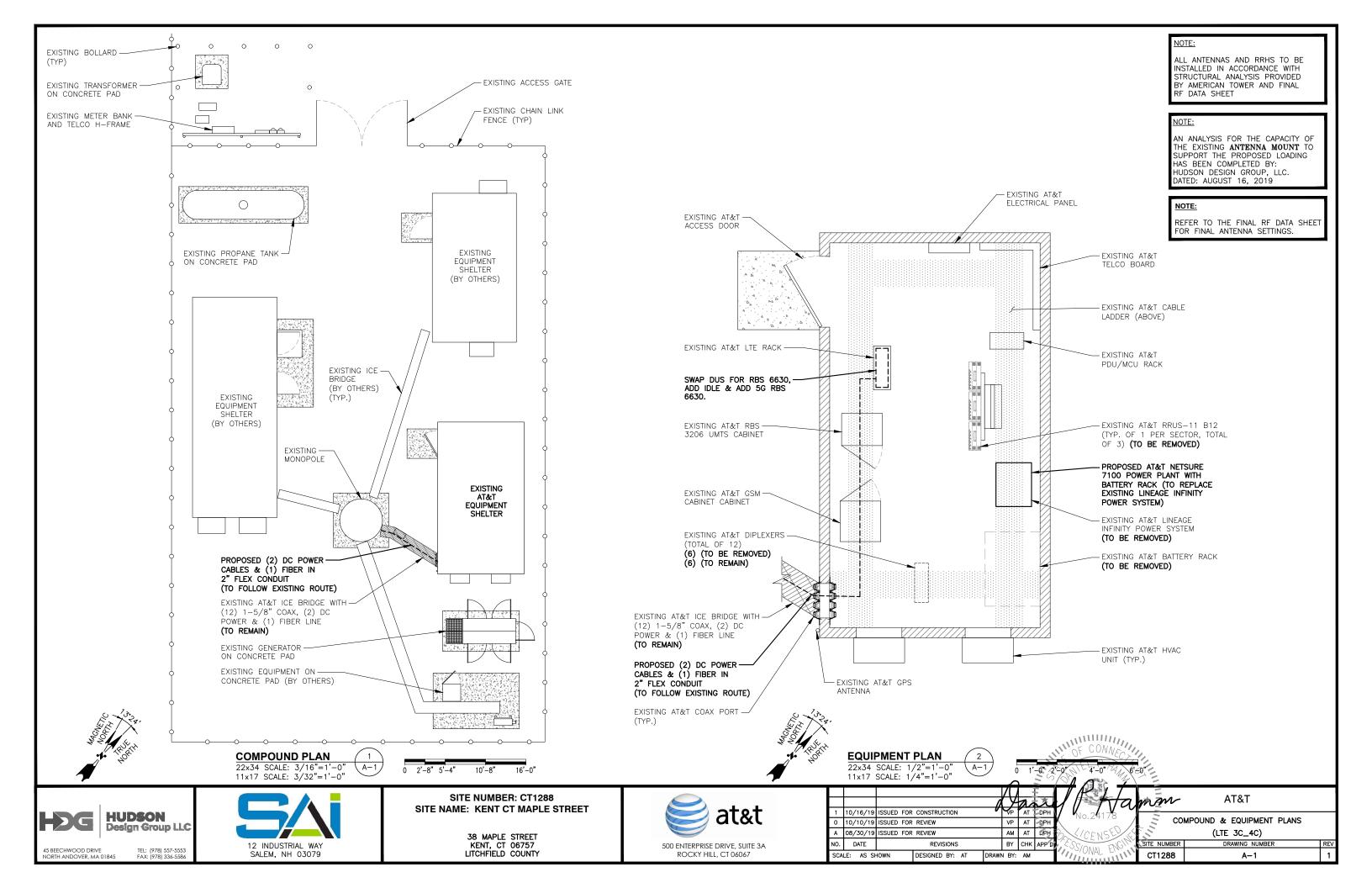
16. CONSTRUCTION SHALL COMPLY WITH SPECIFICATIONS AND "GENERAL CONSTRUCTION SERVICES

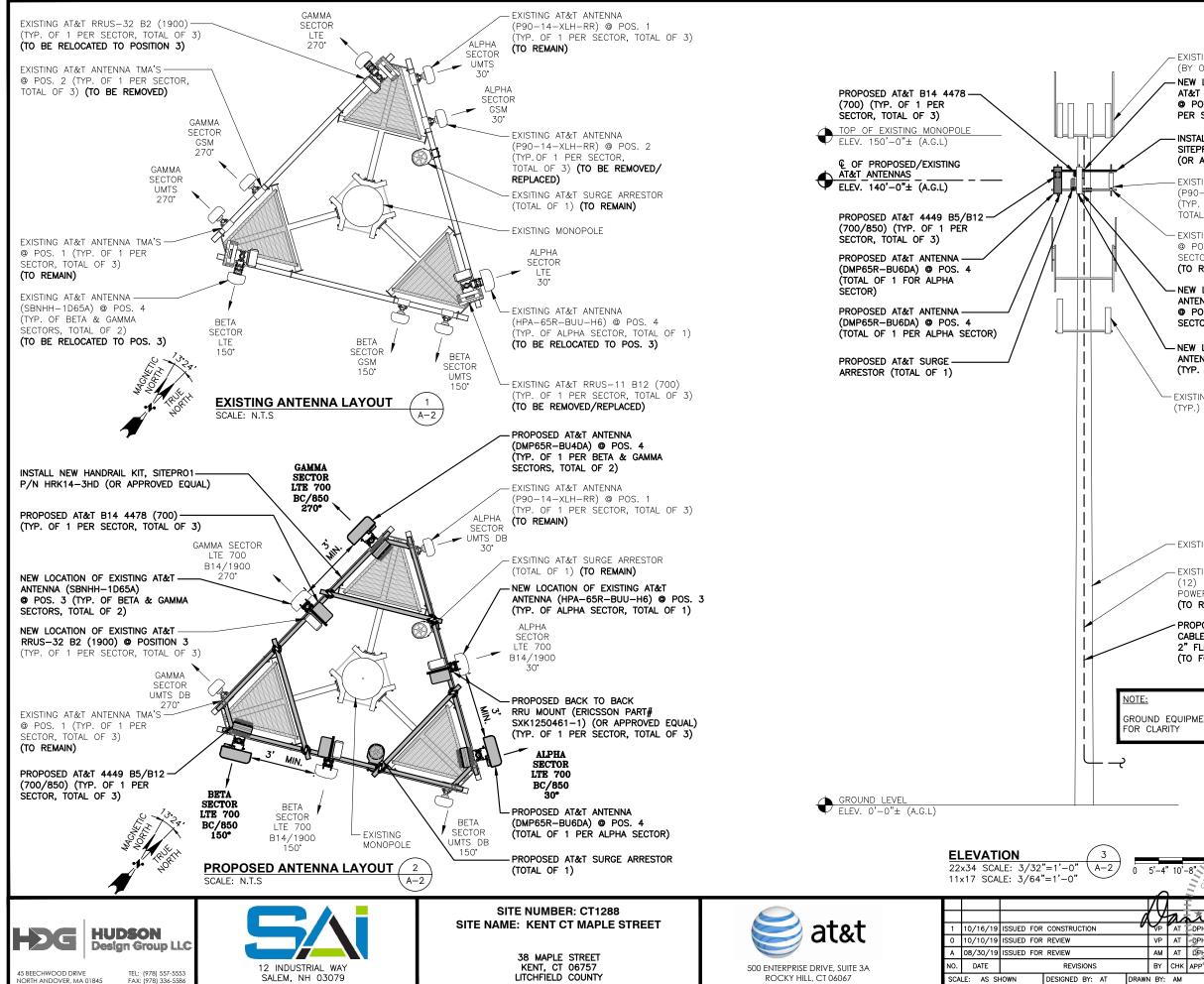
17. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. SUBCONTRACTOR SHALL NOTIFY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.

18. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION. ANY CONSTRUCTION WORK BY SUBCONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WITH CONTRACTOR. ALSO, WORK SHOULD BE SCHEDULED FOR AN APPROPRIATE MAINTENANCE WINDOW USUALLY IN LOW TRAFFIC PERIODS

19. SINCE THE CELL SITE IS ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE ADVISED TO BE WORN TO ALERT OF ANY DANGEROUS

SUBCONTRACTOR'S WORK SHALL COMPLY WITH ALL APPLICABLE NATIONAL, STATE, AND LOCAL CODES AS ADOPTED BY THE LOCAL AUTHORITY HAVING JURISDICTION (AHJ) FOR THE LOCATION. THE EDITION OF THE AHJ ADOPTED CODES AND STANDARDS IN EFFECT ON THE DATE OF CONTRACT AWARD SHALL GOVERN THE DESIGN.


SUBCONTRACTOR'S WORK SHALL COMPLY WITH THE LATEST EDITION OF THE FOLLOWING


AMERICAN CONCRETE INSTITUTE (ACI) 318; BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE:

TELECOMMUNICATIONS INDUSTRY ASSOCIATION (TIA) 222-G, STRUCTURAL STANDARDS FOR STEEL

FOR ANY CONFLICTS BETWEEN SECTIONS OF LISTED CODES AND STANDARDS REGARDING MATERIAL, METHODS OF CONSTRUCTION, OR OTHER REQUIREMENTS, THE MOST RESTRUCTIVE REQUIREMENT SHALL GOVERN. WHERE THERE IS CONFLICT BETWEEN A GENERAL REQUIREMENT AND A SPECIFIC REQUIREMENT, THE SPECIFIC REQUIREMENT SHALL GOVERN.

		ABBREVIATIONS			
	EQ	EQUAL	REQ	REQUIRED	
θE	GC	GENERAL CONTRACTOR	RF	RADIO FREQUENCY	
IT	GRC	GALVANIZED RIGID CONDUIT	TBD	TO BE DETERMINED	
	MGB	MASTER GROUND BAR	TBR	TO BE REMOVED	
3	MIN	MINIMUM	TBRR	TO BE REMOVED AND REPLACED	
TATION	Ρ	PROPOSED	TYP	TYPICAL	
	NTS	NOT ITO I SCALE	UG	UNDER GROUND	
BAR	RAD	RADIATION/CENTER LINE	VIF	VERIFY IN FIELD	
	REF	REFERENCE			
	DPH	Hamm		AT&T	
	рн	No.24178	GEI	NERAL NOTES	
	DPH ON	CENSED	(۱	TE 3C_4C)	1.00/
BY CHK A	PP'D' ()	SIONAL ENGINE SITE NUMBER		DRAWING NUMBER	REV

	NOTE:
	ALL ANTENNAS AND RRHS TO BE
	INSTALLED IN ACCORDANCE WITH
- EXISTING WHIP ANTENNA	STRUCTURAL ANALYSIS PROVIDED
(BY OTHERS) (TYP.)	BY AMERICAN TOWER AND FINAL
NEW LOCATION OF EXISTING	RF DATA SHEET
AT&T RRUS-32 B2 (1900)	
© POSITION 3 (TYP. OF 1 PER SECTOR TOTAL OF 3)	NOTE:
PER SECTOR, TOTAL OF 3)	ino i ei
	AN ANALYSIS FOR THE CAPACITY OF
SITEPRO1 P/N HRK14-3HD	THE EXISTING ANTENNA MOUNT TO
(OR APPROVED EQUAL)	SUPPORT THE PROPOSED LOADING HAS BEEN COMPLETED BY:
. , ,	HUDSON DESIGN GROUP, LLC.
EXISTING AT&T ANTENNA	DATED: AUGUST 16, 2019
(P90–14–XLH–RR) © POS. 1 (TYP. OF 1 PER SECTOR,	
TOTAL OF 3) (TO REMAIN)	NOTE:
– EXISTING AT&T ANTENNA TMA'S	REFER TO THE FINAL RF DATA SHEET
@ POS. 1 (TYP. OF 1 PER	FOR FINAL ANTENNA SETTINGS.
SECTOR, TOTAL OF 3)	
(TO REMAIN)	
NEW LOCATION OF EXISTING AT&T	
ANTENNA (SBNHH-1D65A)	
@ POS. 3 (TYP. OF BETA & GAMMA	A
SECTORS, TOTAL OF 2)	
- NEW LOCATION OF EXISTING AT&T	
ANTENNA (HPA-65R-BUU-H6) @ P (TYP OF ALPHA SECTOR TOTAL OF	
(TYP. OF ALPHA SECTOR, TOTAL OF	''
 EXISTING ANTENNAS (BY OTHERS) (TYP.) 	
(TTP.)	
- EXISTING MONOPOLE	
EXISTING WIDNOF OLL	
- EXISTING AT&T ICE BRIDGE WITH	
(12) 1-5/8" COAX, (2) DC	
POWER & (1) FIBER LINE	
(TO REMAIN)	
. ,	
PROPOSED (2) DC POWER	
CABLES & (1) FIBER IN 2" FLEX CONDUIT	
(TO FOLLOW EXISTING ROUTE)	
ND EQUIPMENT NOT SHOWN	
LARITY	
OF UNALED >	
5'-4" 10'-8" 21' 4" P32'-0"	
ES ANT AMACE	
	AT&T
VP AT DPH No.24178	ANTENNA LAYOUTS & ELEVATION
VP AT OPH	
AM AT DPH OCENSE	(LTE 3C_4C)
BY CHK APP'D	MBER DRAWING NUMBER REV

SITE NUMBER

CT1288

A-2

					Α	NTENNA	SCHEDULE				
SECTOR	EXISTING/ PROPOSED	BAND	ANTENNA	SIZE (INCHES) (L × W × D)	ANTENNA © HEIGHT	AZIMUTH	TMA/ DIPLEXER	RRU	SIZE (INCHES) (L × W × D)	FEEDER	RAYCAR
A1	EXISTING	UMTS DB	P90-14-XLH-RR	40X12X6	140'-0"±	30 °	(E)(2)(G) POWERWAVE CM1007-DBPXBC-003 (E)(1) POWERWAVE TT19-08BP111-001	_	_	(2) 1–5/8" COAX (LENGTH 175'±)	CAP 8-8C
A2	-	-	-	-	-	-	-	-	-	(2) DC, (1) FIBER	0-1 0-1
A3	EXISTING	LTE 700 B14/1900	HPA-65R-BUU-H6	72X14.8X9	140'-0"±	30 °	_	(E)(1) RRUS 32 B2 (1900) (P)(1) 4478 B14 (700)	_ 18.1x13.4x8.3	(2) 1–5/8" COAX (LENGTH 175'±) (TO BE CAPPED)	(E) (1) RAYCAP DC6-48-60-18-8C
A4	PROPOSED	LTE 700 BC/850	DMP65R-BU6DA	71.2X20.7X7.7	140'-0"±	30°	_	(P)(1) 4449 B5/B12 (700/850)	14.9X13.2X10.4	-	D D
B1	EXISTING	UMTS DB	P90-14-XLH-RR	40X12X6	140'-0"±	150°	(E)(2)(G) POWERWAVE CM1007-DBPXBC-003 (E)(1) POWERWAVE TT19-08BP111-001	_	_	(2) 1–5/8" COAX (LENGTH 175'±)	AP BC-EV
B2	-	-	-	-	-	-	-	-	-	(P) (2) DC, (1) FIBER	RAYC -18-
В3	EXISTING	LTE 700 B14/1900	SBNHH-1D65A	55X11.9X7.1	140'-0"±	150°	-	(E)(1) RRUS 32 B2 (1900) (P)(1) 4478 B14 (700)	_ 18.1x13.4x8.3	(2) 1–5/8" COAX (LENGTH 175'±) (TO BE CAPPED)	(P) (1) RAYCAP DC6-48-60-18-8C-EV
B4	PROPOSED	LTE 700 BC/850	DMP65R-BU4DA	48.0X20.7X7.7	140'-0"±	150°	_	(P)(1) 4449 B5/B12 (700/850)	14.9X13.2X10.4	_	DC6
C1	EXISTING	UMTS DB	P90-14-XLH-RR	40X12X6	140'-0"±	270 °	(E)(2)(G) POWERWAVE CM1007-DBPXBC-003 (E)(1) POWERWAVE TT19-08BP111-001	_	_	(2) 1–5/8" COAX (LENGTH 175'±)	
C2	-	-	_	-	-	-	_	-	-	_	SHARED
C3	EXISTING	LTE 700 B14/1900	SBNHH-1D65A	55X11.9X7.1	140'-0"±	270 °	_	(E)(1) RRUS 32 B2 (1900) (P)(1) 4478 B14 (700)	_ 18.1x13.4x8.3	(2) 1–5/8" COAX (LENGTH 175'±) (TO BE CAPPED)	SHAI
C4	PROPOSED	LTE 700 BC/850	DMP65R-BU4DA	48.0X20.7X7.7	140'-0"±	270°	_	(P)(1) 4449 B5/B12 (700/850)	14.9X13.2X10.4	_	1

SITEPRO1 P/N HRK14-3HD (OR APPROVED EQUAL) - PROPOSED AT&T NETSURE 7100 POWER PLANT WITH PROPOSED AT&T 4449 B5/B12 (700/850) (TYP. OF 1 PER SECTOR, TOTAL OF 3) REPLACE EXISTING LINEAGE

EXISTING PLATFORM -

22x34 SCALE: 1"=1'-0" 11x17 SCALE: 1/2"=1'-0"

							1
						0	ſ
1	10/16/19	ISSUED	FOR	CONSTRUCTION	1	V	۲
0	10/10/19	ISSUED	FOR	REVIEW			1
Α	08/30/19	ISSUED	FOR	REVIEW			1
NO.	DATE			REVISIONS	6		E
SCA	LE: AS SH	IOWN		DESIGNED BY:	AT	DRAW	N I

RRU CHART								
QUANTITY	MODEL	L	W	D				
3(E)	RRUS-32 B2 (1900)	27.2"	12.1"	7.0"				
3(P)	B14 4478 (700)	18.1"	13.4"	8.3"				
3(P) 4449 B5/B12 (700/850) 14.9" 13.2" 10.4"								
NOTE: MOUNT PER MANUFACTURER'S SPECIFICATIONS								

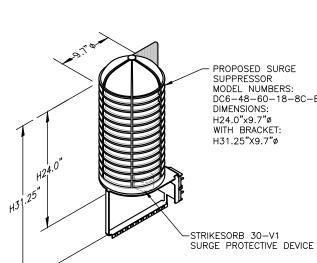
PROPOSED RRU REFER TO THE -FINAL RFDS AND CHART FOR QUANTITY, MODEL AND DIMENSIONS

NOTE: MOUNT PER MANUFACTURER'S SPECIFICATIONS.

HUDSON

>

45 BEECHWOOD DRIVE


NORTH ANDOVER, MA 01845

PROPOSED RRUS DETAIL 3 A-3 SCALE: N.T.S

NOTE:

SCALE: N.T.S

MOUNT PER MANUFACTURER'S SPECIFICATIONS.

DC SURGE SUPPRESSOR DETAIL

SITE NUMBER: CT1288

SITE NAME: KENT CT MAPLE STREET

38 MAPLE STREET KENT, CT 06757 LITCHFIELD COUNTY

FINAL ANTENNA SCHEDULE

SCALE: N.T.S

PROPOSED SURGE MODEL NUMBERS: DC6-48-60-18-8C-EV DIMENSIONS:

4

A-3/

A-3

2575

PROPOSED NETSURE 7100

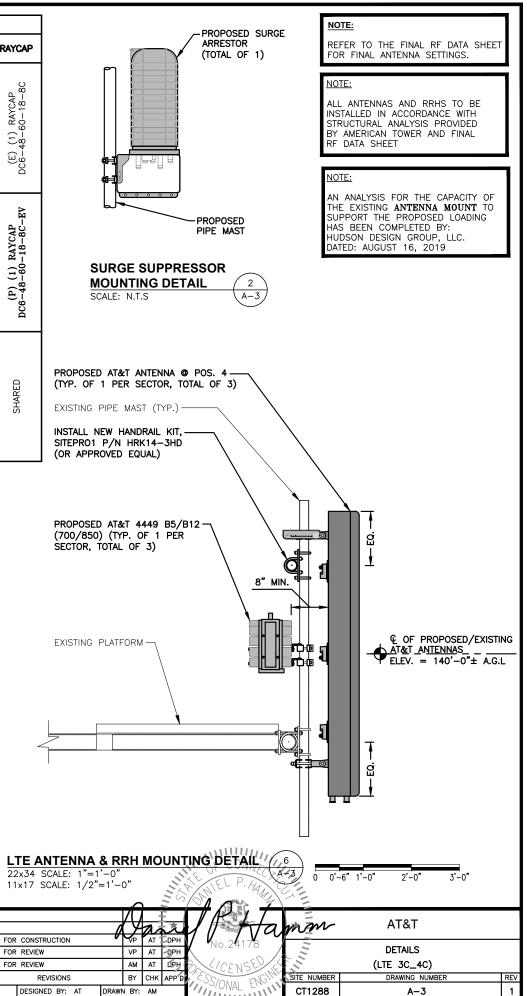
500 ENTERPRISE DRIVE, SUITE 3A

ROCKY HILL, CT 06067

at&t

POWER PLANT DETAIL

SCALE: N.T.S

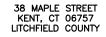

1000

BATTERY RACK (TO

5

A-3

INFINITY POWER SYSTEM)


STRUCTURAL NOTES:

- . DESIGN REQUIREMENTS ARE PER STATE BUILDING CODE AND APPLICABLE SUPPLEMENTS, INTERNATIONAL BUILDING CODE, EIA/TIA-222-G STRUCTURAL STANDARDS FOR STEEL ANTENNA, TOWERS AND ANTENNA SUPPORTING STRUCTURES.
- 2. CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND CONDITIONS IN THE FIELD PRIOR TO FABRICATION AND ERECTION OF ANY MATERIAL. ANY UNUSUAL CONDITIONS SHALL BE REPORTED TO THE ATTENTION OF THE CONSTRUCTION MANAGER AND ENGINEER OF RECORD.
- 3. DESIGN AND CONSTRUCTION OF STRUCTURAL STEEL SHALL CONFORM TO THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION "SPECIFICATION FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS".
- 4. STRUCTURAL STEEL SHALL CONFORM TO ASTM A992 (Fy=50 ksi), MISCELLANEOUS STEEL SHALL CONFORM TO ASTM A36 UNLESS OTHERWISE INDICATED.
- 5. STEEL PIPE SHALL CONFORM TO ASTM A500 "COLD-FORMED WELDED & SEAMLESS CARBON STEEL STRUCTURAL TUBING", GRADE B, OR ASTM A53 PIPE STEEL BLACK AND HOT-DIPPED ZINC-COATED WELDED AND SEAMLESS TYPE E OR S, GRADE B. PIPE SIZES INDICATED ARE NOMINAL. ACTUAL OUTSIDE DIAMETER IS LARGER.
- 6. STRUCTURAL CONNECTION BOLTS SHALL BE HIGH STRENGTH BOLTS (BEARING TYPE) AND CONFORM TO ASTM A325 TYPE-X "HIGH STRENGTH BOLTS FOR STRUCTURAL JOINTS, INCLUDING SUITABLE NUTS AND PLAIN HARDENED WASHERS". ALL BOLTS SHALL BE 3/4" DIA UON.
- ALL STEEL MATERIALS SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT-DIP GALVANIZED) COATINGS ON IRON AND STEEL PRODUCTS", UNLESS OTHERWISE NOTED.
- ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC-COATING (HOT-DIP) ON IRON AND STEEL HARDWARE", UNLESS OTHERWISE NOTED.
- 9. FIELD WELDS, DRILL HOLES, SAW CUTS AND ALL DAMAGED GALVANIZED SURFACES SHALL BE REPAIRED WITH AN ORGANIC ZINC REPAIR PAINT COMPLYING WITH REQUIREMENTS OF ASTM A780. GALVANIZING REPAIR PAINT SHALL HAVE 65 PERCENT ZINC BY WEIGHT, ZIRP BY DUNCAN GALVANIZING, GALVA BRIGHT PREMIUM BY CROWN OR EQUAL. THICKNESS OF APPLIED GALVANIZING REPAIR PAINT SHALL BE NOT NOT LESS THAN 4 COATS (ALLOW TIME TO DRY BETWEEN COATS) WITH A RESULTING COATING THICKNESS REQUIRED BY ASTM A123 OR A153 AS APPLICABLE.
- 10. CONTRACTOR SHALL COMPLY WITH AWS CODE FOR PROCEDURES, APPEARANCE AND QUALITY OF WELDS, AND FOR METHODS USED IN CORRECTING WELDING. ALL WELDERS AND WELDING PROCESSES SHALL BE QUALIFIED IN ACCORDANCE WITH AWS "STANDARD QUALIFICATION PROCEDURES". ALL WELDING SHALL BE DONE USING E70XX ELECTRODES AND WELDING SHALL CONFORM TO AISC AND DI.I. WHERE FILLET WELD SIZES ARE NOT SHOWN, PROVIDE THE MINIMUM SIZE PER TABLE J2.4 IN THE AISC "STEEL CONSTRUCTION MANUAL". 14TH EDITION.
- 11. INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NON-CONFORMING MATERIALS OR CONDITIONS SHALL BE REPORTED TO THE CONSTRUCTION MANAGER PRIOR TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE CONSTRUCTION MANAGER APPROVAL.
- 12. UNISTRUT SHALL BE FORMED STEEL CHANNEL STRUT FRAMING AS MANUFACTURED BY UNISTRUT CORP., WAYNE, MI OR EQUAL. STRUT MEMBERS SHALL BE 1 5/8"x1 5/8"x12GA, UNLESS OTHERWISE NOTED, AND SHALL BE HOT-DIP GALVANIZED AFTER FABRICATION.
- 13. EPOXY ANCHOR ASSEMBLY SHALL CONSIST OF STAINLESS STEEL ANCHOR ROD WITH NUTS & WASHERS. AN INTERNALLY THREADED INSERT, A SCREEN TUBE AND A EPOXY ADHESIVE. THE ANCHORING SYSTEM SHALL BE THE HILTI-HIT HY-270 AND OR HY-200 SYSTEMS (AS SPECIFIED IN DWG.) OR ENGINEERS APPROVED EQUAL.
- EXPANSION BOLTS SHALL CONFORM TO FEDERAL SPECIFICATION FF-S-325, GROUP II, TYPE
 CLASS I, HILTI KWIK BOLT III OR APPROVED EQUAL. INSTALLATION SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS.
- 15. LUMBER SHALL COMPLY WITH THE REQUIREMENTS OF THE AMERICAN INSTITUTE OF TIMBER CONSTRUCTION AND THE NATIONAL FOREST PRODUCTS ASSOCIATION'S NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION. ALL LUMBER SHALL BE PRESSURE TREATED AND SHALL BE STRUCTURAL GRADE NO. 2 OR BETTER.
- 16. WHERE ROOF PENETRATIONS ARE REQUIRED, THE CONTRACTOR SHALL CONTACT AND COORDINATE RELATED WORK WITH THE BUILDING OWNER AND THE EXISTING ROOF INSTALLER. WORK SHALL BE PERFORMED IN SUCH A MANNER AS TO NOT VOID THE EXISTING ROOF WARRANTY. ROOF SHALL BE WATERTIGHT.
- 17. ALL FIBERGLASS MEMBERS USED ARE AS MANUFACTURED BY STRONGWELL COMPANY OF BRISTOL, VA 24203. ALL DESIGN CRITERIA FOR THESE MEMBERS IS BASED ON INFORMATION PROVIDED IN THE DESIGN MANUAL. ALL REQUIREMENTS PUBLISHED IN SAID MANUAL MUST BE STRICTLY ADHERED TO.
- 18. NO MATERIALS TO BE ORDERED AND NO WORK TO BE COMPLETED UNTIL SHOP DRAWINGS HAVE BEEN REVIEWED AND APPROVED IN WRITING.
- 19. SUBCONTRACTOR SHALL FIREPROOF ALL STEEL TO PRE-EXISTING CONDITIONS.

SITE NUMBER: CT1288 SITE NAME: KENT CT MAPLE STREET

500 ENTERPRISE DRIVE, SUITE 3A ROCKY HILL CT 06067

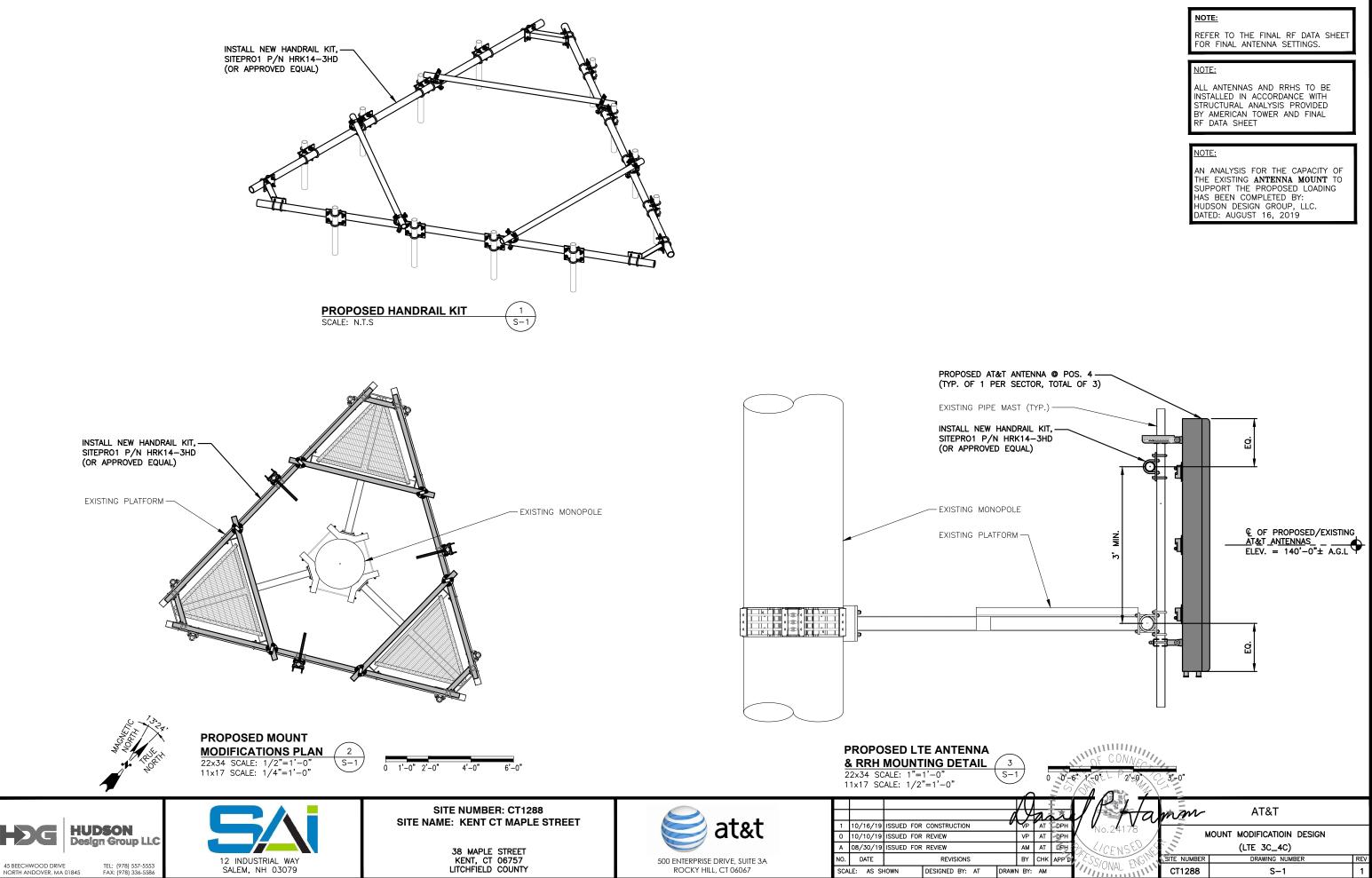
							Ζ
						1	
1	10/16/19	ISSUED	FOR	CONSTRUCTION		0	Y
0	10/10/19	ISSUED	FOR	REVIEW			`
Α	08/30/19	ISSUED	FOR	REVIEW			1
NO.	DATE			REVISIONS	;		E
SCA	LE: AS SH	HOWN		DESIGNED BY:	AT	DRAWN	1

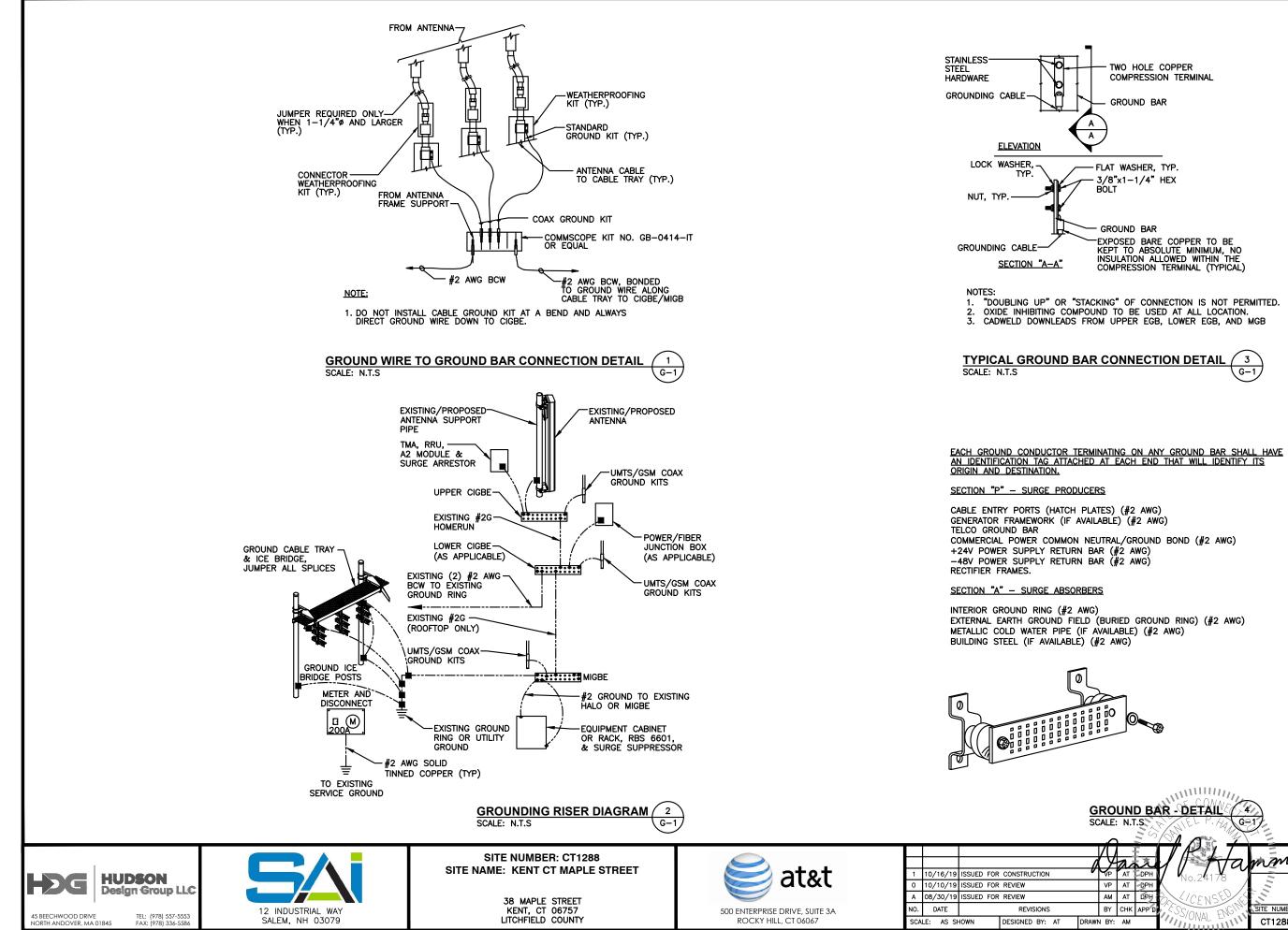
SPECIAL INSPECTIONS (REFERENCE IBC CHAPTER 17):

GENERAL: WHERE APPLICATION IS MADE FOR CONSTRUCTION, THE OWNER OR THE REGISTERED DESIGN PROFESSIONAL IN RESPONSIBLE CHARGE ACTING AS THE OWNER'S AGENT SHALL EMPLOY ONE OR MORE APPROVED AGENCIES TO PERFORM INSPECTIONS DURING CONSTRUCTION ON THE TYPES OF WORK LISTED IN THE INSPECTION CHECKLIST ABOVE.

THE REGISTERED DESIGN PROFESSIONAL IN RESPONSIBLE CHARGE AND ENGINEERS OF RECORD INVOLVED IN THE DESIGN OF THE PROJECT ARE PERMITTED TO ACT AS THE APPROVED AGENCY AND THEIR PERSONNEL ARE PERMITTED TO ACT AS THE SPECIAL INSPECTOR FOR THE WORK DESIGNED BY THEM, PROVIDED THOSE PERSONNEL MEET THE QUALIFICATION REQUIREMENTS.

STATEMENT OF SPECIAL INSPECTIONS: THE APPLICANT SHALL SUBMIT A STATEMENT OF SPECIAL INSPECTIONS PREPARED BY THE REGISTERED DESIGN PROFESSIONAL IN RESPONSIBLE CHARGE IN ACCORDANCE WITH SECTION 107.1 AS A CONDITION FOR ISSUANCE. THIS STATEMENT SHALL BE IN ACCORDANCE WITH SECTION 1705.


REPORT REQUIREMENT: SPECIAL INSPECTORS SHALL KEEP RECORDS OF INSPECTIONS. THE SPECIAL INSPECTOR SHALL FURNISH INSPECTION REPORTS TO THE BUILDING OFFICIAL, AND TO THE REGISTERED DESIGN PROFESSIONAL IN RESPONSIBLE CHARGE. REPORTS SHALL INDICATE THAT WORK INSPECTED WAS OR WAS NOT COMPLETED IN CONFORMANCE TO APPROVED CONSTRUCTION DOCUMENTS. DISCREPANCIES SHALL BE BROUGHT TO THE IMMEDIATE ATTENTION OF THE CONTRACTOR FOR CORRECTION. IF THEY ARE NOT CORRECTED, THE DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE BUILDING OFFICIAL AND TO THE REGISTERED DESIGN PROFESSIONAL IN RESPONSIBLE CHARGE. A FINAL REPORT DOCUMENTING REQUIRED SPECIAL INSPECTIONS SHALL BE SUBMITTED.


NOTES:

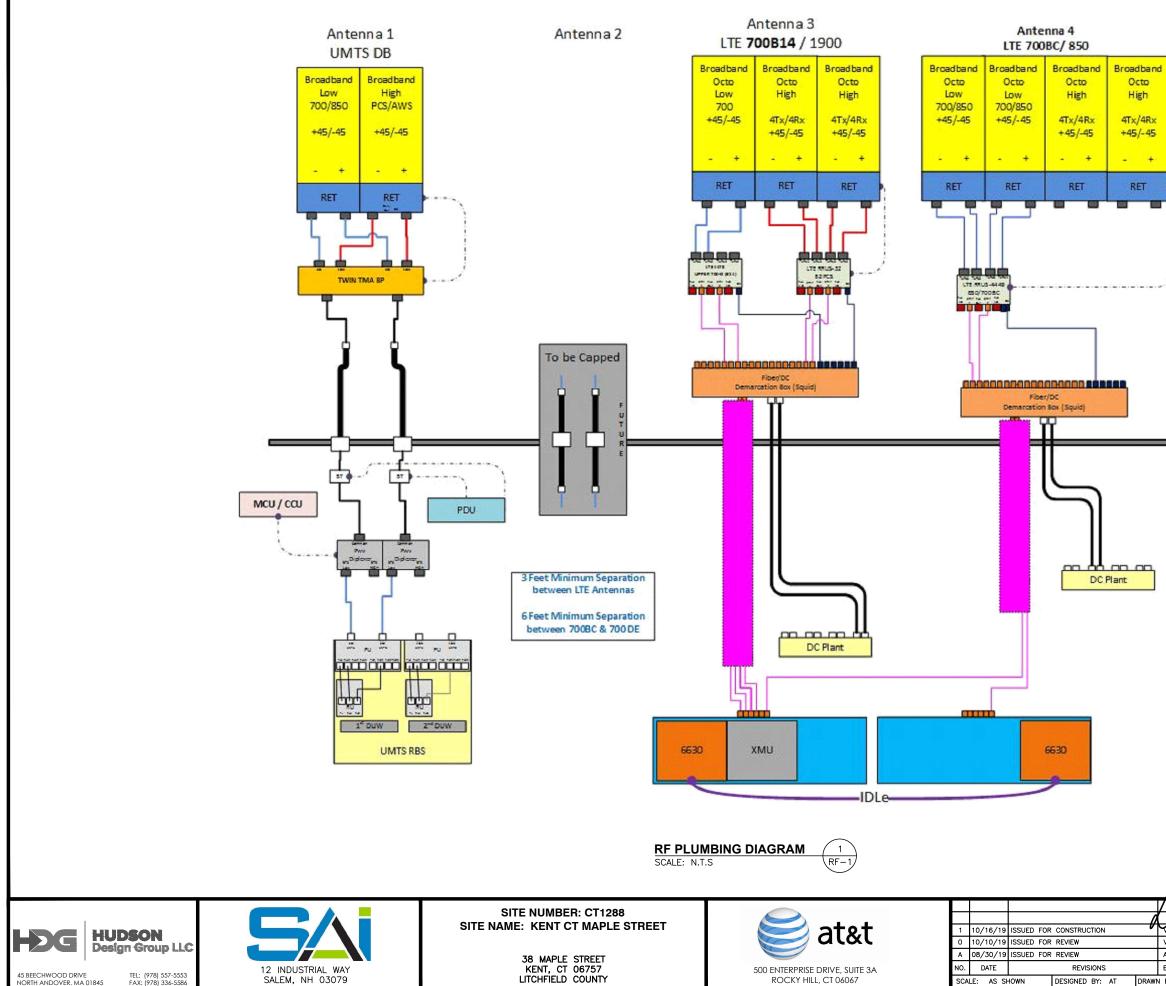
- ALL CONNECTIONS TO BE SHOP WELDED & FIELD BOLTED USING 3/4"Ø A325-X BOLTS, UNLESS OTHERWISE NOTIFIED.
 SHOP DRAWING ENGINEER REVIEW & APPROVAL REQUIRED
- BEFORE ORDERING MATERIAL. 3. SHOP DRAWING ENGINEER REVIEW & APPROVAL REQUIRED
- PRIOR TO STEEL FABRICATION. 4. VERIFICATION OF EXISTING ROOF CONSTRUCTION IS REQUIRED PRIOR TO THE INSTALLATION OF THE ROOF PLATFORM. ENGINEER OF RECORD IS TO APPROVE EXISTING
- CONDITIONS IN ORDER TO MOVE FORWARD. 5. CENTERLINE OF PROPOSED STEEL PLATFORM SUPPORT COLUMNS TO BE CENTRALLY LOCATED OVER THE EXISTING
- BUILDING COLUMNS.
 EXISTING BRICK MASONRY COLUMNS/BEARING TO BE REPAIRED/REPLACED AT ALL PROPOSED PLATFORM SUPPORT POINTS. ENGINEER OF RECORD TO REVIEW AND APPROVE.

SPECIAL INSPE	SPECIAL INSPECTION CHECKLIST			
BEFORE C	ONSTRUCTION			
CONSTRUCTION/INSTALLATION INSPECTIONS AND TESTING REQUIRED (COMPLETED BY ENGINEER OF RECORD)	REPORT ITEM			
N/A	ENGINEER OF RECORD APPROVED SHOP DRAWINGS ¹			
N/A	MATERIAL SPECIFICATIONS REPORT ²			
N/A	FABRICATOR NDE INSPECTION			
N/A	PACKING SLIPS ³			
ADDITIONAL TESTING AND INSP	ECTIONS:			
DURING C	ONSTRUCTION			
CONSTRUCTION/INSTALLATION INSPECTIONS AND TESTING REQUIRED (COMPLETED BY ENGINEER OF RECORD)	REPORT ITEM			
REQUIRED	STEEL INSPECTIONS			
N/A	HIGH STRENGTH BOLT INSPECTIONS			
N/A	HIGH WIND ZONE INSPECTIONS 4			
N/A	FOUNDATION INSPECTIONS			
N/A	CONCRETE COMP. STRENGTH, SLUMP TESTS AND PLACEMENT			
N/A	POST INSTALLED ANCHOR VERIFICATION ⁵			
N/A	GROUT VERIFICATION			
N/A	CERTIFIED WELD INSPECTION			
N/A	EARTHWORK: LIFT AND DENSITY			
N/A	ON SITE COLD GALVANIZING VERIFICATION			
N/A	GUY WIRE TENSION REPORT			
ADDITIONAL TESTING AND INSP	ECTIONS:			
AFTER CO	DNSTRUCTION			
CONSTRUCTION/INSTALLATION INSPECTIONS AND TESTING REQUIRED (COMPLETED BY ENGINEER OF RECORD)	REPORT ITEM			
REQUIRED	MODIFICATION INSPECTOR REDLINE OR RECORD DRAWINGS ⁶			
N/A	POST INSTALLED ANCHOR PULL-OUT TESTING			
REQUIRED	PHOTOGRAPHS			
ADDITIONAL TESTING AND INSP	ECTIONS:			

TWO HOLE COPPER COMPRESSION TERMINAL

GROUND BAR

- FLAT WASHER, TYP. - 3/8"x1-1/4" HEX BOLT


GROUND BAR EXPOSED BARE COPPER TO BE KEPT TO ABSOLUTE MINIMUM, NO INSULATION ALLOWED WITHIN THE COMPRESSION TERMINAL (TYPICAL)

"DOUBLING UP" OR "STACKING" OF CONNECTION IS NOT PERMITTED. 2. OXIDE INHIBITING COMPOUND TO BE USED AT ALL LOCATION. 3. CADWELD DOWNLEADS FROM UPPER EGB, LOWER EGB, AND MGB

3 G-1

Jana Hamm AT&T	
The I I I I Warden I I I I I I I I I I I I I I I I I I I	
VP AT OPH No.24178 GROUNDING DETAILS	
AM AT DPH O (LTE 3C_4C)	
BY CHK APP DE SSIONAL ENGLISHE NUMBER DRAWING NUMBER	REV
BY: AM CT1288 G-1	1

			NOTE: 1. CONTRACTOR TO CONFIRM ALL PARTS 2. INSTALL ALL EQUIPMENT TO MANUFACTURER'S RECOMMENDATIONS	5.		
	NOTE: REFER TO THE FINAL RF DATA SHEET FOR FINAL ANTENNA SETTINGS.					
Y	a	J	Atamm AT&T			
VP VP	AT AT	DPH DPH	No.24178			
AM	AT	DPH	(LTE 3C_4C)			
BY	снк	APP D	SUCALA ENGLISHE NUMBER DRAWING NUMBER	REV		
BY:	АМ		CT1288 RF-1	1		

Structural Analysis Report

Structure	:	149 ft Monopole
ATC Site Name	:	Kent Pcs CT, CT
ATC Asset Number	:	413783
Engineering Number	:	OAA751839_C3_01
Proposed Carrier	:	AT&T MOBILITY
Carrier Site Name	:	KENT CT MAPLE STREET
Carrier Site Number	:	CT1288
Site Location	:	S KENT RD Kent, CT 06757-1709 41.721900,-73.475000
County	:	Litchfield
Date	:	September 18, 2019
Max Usage	:	77%
Result	:	Pass

Prepared By: Lucas Tait Structural Engineer

y Fatt

Reviewed By:

Authorized by "EOR" 9/18/19 5:37 PM

cosign

COA: PEC.0001553

Table of Contents

Introduction	1
Supporting Documents	. 1
Analysis	1
Conclusion	1
Existing and Reserved Equipment	2
Equipment to be Removed	. 2
Proposed Equipment	2
Structure Usages	3
Foundations	3
Deflection and Sway	. 3
Standard Conditions	. 4
Calculations	Attached

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 149 ft monopole to reflect the change in loading by AT&T MOBILITY.

Supporting Documents

Tower Drawings	EEI Project #15320, dated March 18, 2008
Foundation Drawing	EEI Project #15320, dated March 14, 2008
Geotechnical Report	Dr. Clarence Welti Report #15320, dated Janury 22, 2007
Mount Analysis	CLS Engineering PLLC Project #41124-12927150-01-MR-R1, dated July 3, 2019

Analysis

The tower was analyzed using American Tower Corporation's tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

Basic Wind Speed:	90 mph (3-Second Gust Vasd) / 115 mph (3-Second Gust Vult)	
Basic Wind Speed w/ Ice:	40 mph (3-Second Gust) w/ 3/4" radial ice concurrent	
Code:	ANSI/TIA-222-G / 2015 IBC / 2018 Connecticut State Building Code	
Structure Class:		
Exposure Category:	C	
Topographic Category:	1	
Crest Height:	0 ft	
Spectral Response:	Ss = 0.19, S ₁ = 0.06	
Site Class:	D - Stiff Soil	

Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

Existing and Reserved Equipment

Elev. ¹ (ft)	Qty	Antenna	Mount Type	Lines	Carrier
154.0	1	Generic 3' Yagi	Low Profile Platform	(2) 7/8" Coox	OTHER
154.0	2	RFS Celwave PD220	Low Profile Platform	(3) 7/8" Coax	UTHER
	1	Raycap RVZDC-6627-PF-48			
	6	Commscope NHH-65B-R2B			
152.0	6	Antel LPA-80080/6CF	Low Profile Platform	(12) 1 5/8" Coax	VERIZON WIRELESS
152.0	3	Samsung PCS/AWS Dual Band RRH	Low Prome Platform	(2) 1 5/8" Hybriflex	VERIZON WIRELESS
		VZW Unused Reserve: 17440 sq in			
	3	Samsung 700+850MHZ Dual Band RRH			
	2	Andrew SBNHH-1D65A (33.5 lbs)			AT&T MOBILITY
	3	Powerwave Allgon TT08-19DB111-001	- - Platform w/ Handrails -	(1) 0.39" (10mm) Fiber Trunk (2) 0.78" (19.7mm) 8 AWG 6 (18) 1 5/8" Coax	
	1	CCI HPA-65R-BUU-H6			
140.0	3	Powerwave Allgon P90-15-XLH-RR			
140.0	1	Raycap DC6-48-60-18-8F (23.5" Height)			
	3	Ericsson RRUS A2 Module			
	1	Andrew ABT-DFDM-ADB			
	6	Powerwave Allgon TT19-08BP111-001			
124.0	2	Decibel DB222	Stand-Off	(3) 7/8" Coax	OTHER
122.0	1	Generic 3' Yagi	Stanu-On	(5) 7/8 COax	
	3	Commscope LNX-6515DS-A1M (50.3 lb)			T-MOBILE
	3	Ericsson RRUS 11 B2		()) 1 F /0" (1 C)"	
110.0	1	Symmetricom 58532A] T Arm	(2) 1 5/8" (1.63"- 41.3mm) Fiber (1) 1/2" Coax	
110.0	3	RFS APX16DWV-16DWVS-E-A20	T-Arm		
	3	Ericsson RRUS 11 B4			
	3	Ericsson RRUS 11 B12]		
90.0	1	dbSpectra DS4C06F36D-D	Side Arm	(2) 7/8" Coax	EVERSOURCE ENERGY

Equipment to be Removed

Elev. ¹ (ft)	Qty	Antenna	Mount Type	Lines	Carrier
140.0	3	Powerwave Allgon P90-15-XLH-RR			
140.0	3	Ericsson RRUS-11	-	-	AT&T MOBILITY

Proposed Equipment

Elev. ¹ (ft)	Qty	Antenna	Mount Type	Lines	Carrier
	3	Ericsson RRUS 4449 B5, B12		(1) 0.39" (10mm)	
	3	Ericsson RRUS 4478 B14		Fiber Trunk	
140.0	1	Raycap DC6-48-60-18-8C	Platform w/ Handrails ²	(2) 0.78" (19.7mm)	AT&T MOBILITY
	3	Ericsson RRUS 32 B2		8 AWG 6	
	3	CCI DMP65R-BU4D		(1) 2" conduit	

¹Contracted elevations are shown for appurtenances within contracted installation tolerances. Appurtenances outside of contract limits are shown at installed elevations. ²Includes new handrail kit, SitePro1 P/N HRK14-3HD as specified in Mount Analysis by Hudson Design Group, dated August 16, 2019.

Install proposed coax inside the pole shaft.

Structure Usages

Structural Component	Controlling Usage	Pass/Fail
Anchor Bolts	39%	Pass
Shaft	62%	Pass
Base Plate	28%	Pass

Foundations

Reaction Component	Original Design Reactions	Analysis Reactions	% of Design
Moment (Kips-Ft)	4,897.9	3,423.2	70%
Shear (Kips)	39.5	30.4	77%

The structure base reactions resulting from this analysis are acceptable when compared to those shown on the original structure drawings, therefore no modification or reinforcement of the foundation will be required.

Deflection and Sway*

Antenna Elevation (ft)	Antenna	Carrier	Deflection (ft)	Sway (Rotation) (°)		
	Ericsson RRUS 4449 B5, B12					
	Ericsson RRUS 4478 B14					
140.0	Raycap DC6-48-60-18-8C	AT&T MOBILITY	1.299	1.008		
	Ericsson RRUS 32 B2					
-	CCI DMP65R-BU4D					

*Deflection and Sway was evaluated considering a design wind speed of 60 mph (3-Second Gust) per ANSI/TIA-222-G

Standard Conditions

All engineering services performed by A.T. Engineering Service, PLLC are prepared on the basis that the information used is current and correct. This information may consist of, but is not limited to the following:

- Information supplied by the client regarding antenna, mounts and feed line loading
- Information from drawings, design and analysis documents, and field notes in the possession of A.T. Engineering Service, PLLC

It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete.

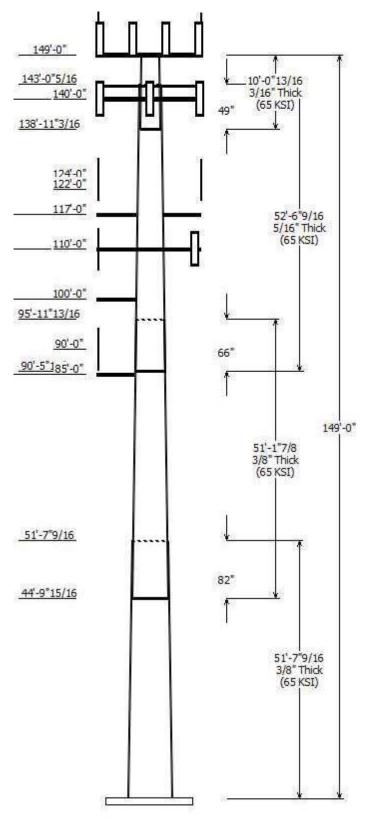
All assets of American Tower Corporation, its affiliates and subsidiaries (collectively "American Tower") are inspected at regular intervals. Based upon these inspections and in the absence of information to the contrary, American Tower assumes that all structures were constructed in accordance with the drawings and specifications.

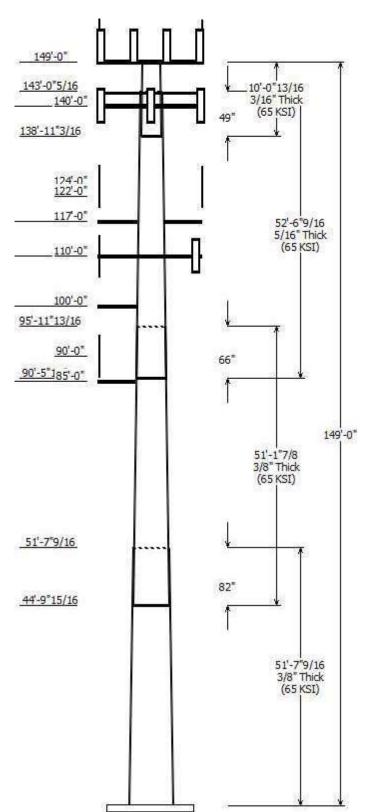
Unless explicitly agreed by both the client and A.T. Engineering Service, PLLC, all services will be performed in accordance with the current revision of ANSI/TIA-222.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information supplied herein.

Job Information

Topo: 1

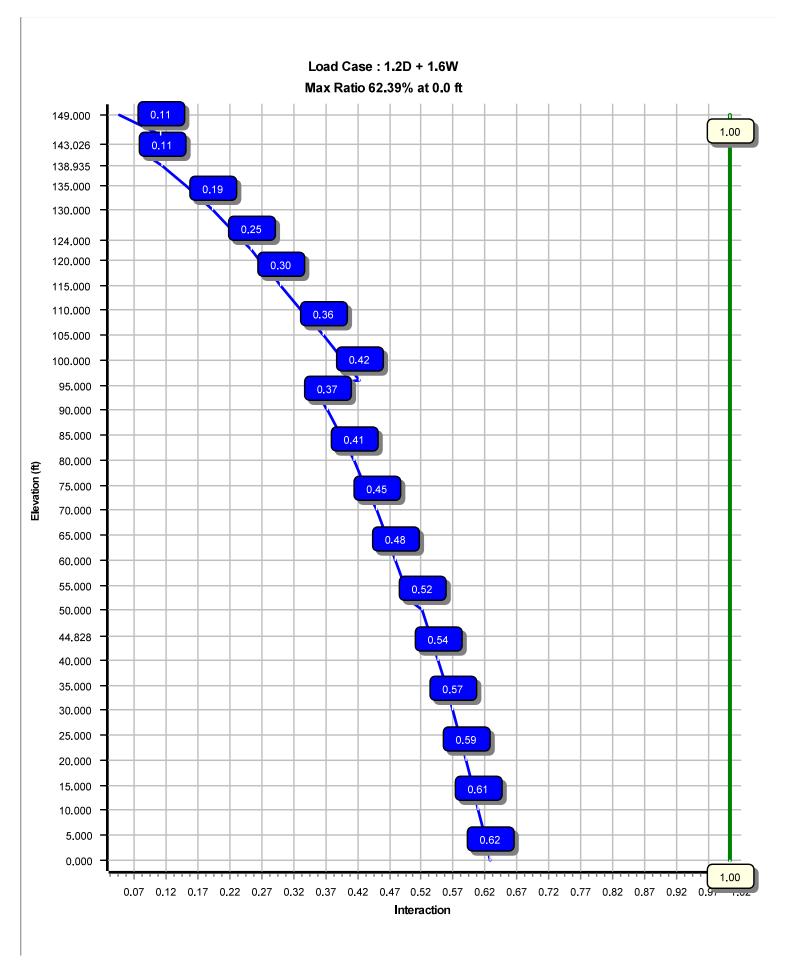

Client : AT&T MOBILITY Code: ANSI/TIA-222-G Pole: 413783 Location : Kent Pcs CT, CT Struct Class: II Description : ATC413783 Shape : 18 Sides Exposure : C Height : 149.00 (ft) Base Elev (ft): 0.00 Taper: 0.241124(in/ft)


			Secti	ons P	roperties			
Shaft Section	Length (ft)	Accros	eter (in) ss Flats Bottom	Thick (in)	Joint Type	Overlap Length (in)	Shape	Steel Grade (ksi)
1	51.633	48.05	60.50	0.375		0.000	18 Sides	65
2	51.156	38.10	50.44	0.375	Slip Joint	81.656	18 Sides	65
3	52.550	27.38	40.05	0.313	Slip Joint	66.094	18 Sides	65
4	10.065	26.32	28.74	0.188	Slip Joint	49.094	18 Sides	65

Discrete Appurtenance									
Attach	Force								
Elev (ft)	Elev (ft)	Qty	Description						
149.000	152.000	1	VZW Unused Reserve: 17440						
149.000	152.000	6	Antel LPA-80080/6CF						
149.000	152.000	6	Commscope NHH-65B-R2B						
149.000	152.000	1	Raycap RVZDC-6627-PF-48						
149.000	152.000	3	Samsung PCS/AWS Dual Band						
149.000	152.000	3	Samsung 700+850MHZ Dua						
149.000	154.000	2	RFS Celwave PD220						
149.000	154.000	1	Generic 3' Yagi						
149.000	149.000	1	Flat Low Profile Platform						
140.000	140.000	1	CCI HPA-65R-BUU-H6						
140.000	140.000	3	CCI DMP65R-BU4D						
140.000	140.000	3	Powerwave Allgon P90-15-						
140.000	140.000	2	Andrew SBNHH-1D65A (33.5						
140.000	140.000	3	Ericsson RRUS 32 B2						
140.000	140.000	1	Raycap DC6-48-60-18-8C						
140.000	140.000	3	Ericsson RRUS 4478 B14						
140.000	140.000	3	Ericsson RRUS 4449 B5, B12						
140.000	142.000	3	Ericsson RRUS A2 Module						
140.000	142.000	1	Raycap DC6-48-60-18-8F (23.5''						
140.000	142.000	3	Powerwave Allgon TT08-						
140.000	142.000	6	Powerwave Allgon TT19-						
140.000	142.000	1	Andrew ABT-DFDM-ADB						
140.000	140.000	1	Round Platform w/ Handrails						
124.000	124.000	2	Decibel DB222						
122.000	122.000	1	Generic 3' Yagi						
117.000	117.000	2	Stand Off						
110.000	110.000	3	Commscope LNX-6515DS-A1M						
110.000	110.000	3	RFS APX16DWV-16DWVS-E-A20						
110.000	110.000	3	Ericsson RRUS 11 B4						
110.000	110.000	3	Ericsson RRUS 11 B12						
110.000	110.000	3	Ericsson RRUS 11 B2						
110.000	110.000	1	Symmetricom 58532A						
110.000	110.000	3	Flat T-Arm						
100.000	100.000	1	Generic Flat Side Arm						
90.000	90.000	1	dbSpectra DS4C06F36D-D						
85.000	85.000	1	Generic Flat Side Arm						

Linear Appurtenance										
Elev	′ (ft)		Exposed							
From	То	Description	To Wind							
0.000	90.000	7/8'' Coax	No							
0.000	110.0	1 5/8" (1.63"-	Νο							

© 2007 - 2019 by ATC IP LLC. All rights reserved.


0.000	110.0	1/2'' Coax	Νο	
0.000	122.0	7/8'' Coax	Νο	
0.000	124.0	7/8'' Coax	Νο	
0.000	140.0	0.39" (10mm)	Νο	
0.000	140.0	0.39" (10mm)	Νο	
0.000	140.0	0.78'' (19.7mm) 8	Νο	
0.000	140.0	0.78'' (19.7mm) 8	Νο	
0.000	140.0	1 5/8" Coax	Νο	
0.000	140.0	2" conduit	No	
0.000	152.0	1 5/8" Coax	No	
0.000	152.0	1 5/8" Hybriflex	No	
0.000	154.0	7/8'' Coax	Νο	

Load Cases

1.2D + 1.6W	90 mph with No Ice
0.9D + 1.6W	90 mph with No Ice (Reduced DL)
1.2D + 1.0Di + 1.0Wi	40 mph with 0.75 in Radial Ice
(1.2 + 0.2Sds) * DL + E	Seismic Equivalent Lateral Forces Method
(1.2 + 0.2Sds) * DL + E	Seismic Equivalent Modal Analysis Method
(0.9 - 0.2Sds) * DL + E	Seismic (Reduced DL) Equivalent Lateral
(0.9 - 0.2Sds) * DL + E	Seismic (Reduced DL) Equivalent Modal
1.0D + 1.0W	Serviceability 60 mph

Reactions										
Load Case	Moment (kip-ft)	Shear (kip)	Axial (kip)							
1.2D + 1.6W	3423.19	30.39	50.09							
0.9D + 1.6W	3392.46	30.38	37.56							
1.2D + 1.0Di + 1.0Wi	733.23	6.60	71.49							
(1.2 + 0.2Sds) * DL + E ELFM	205.11	1.68	50.09							
(1.2 + 0.2Sds) * DL + E EMAM	395.91	3.14	50.09							
(0.9 - 0.2Sds) * DL + E ELFM	202.89	1.68	34.70							
(0.9 - 0.2Sds) * DL + E EMAM	391.28	3.14	34.70							
1.0D + 1.0W	846.22	7.55	41.77							

Dish Deflections									
Load Case	Attach Elev (ft)	Deflection (in)	Rotation (deg)						
	0.00	0.000	0.000						

Site Number: 413783 Site Name: Kent Pcs CT, CT Customer: AT&T MOBILITY		Engineerin	Code: ANSI/TIA-222-G g Number:	-	LLC. All rights reserved 18/2019 4:22:13 PM				
			Ana	lysis Parameters					
Location :		Litchfield County, CT		Height (ft) :	14	49			
Code :		ANSI/TIA-222-G		Base Diameter (in) :	60.	50			
Shape :		18 Sides		Top Diameter (in) :	26.	32			
Pole Type :		Taper		Taper (in/ft) :	0.24	41			
Pole Manfactu	urer :	EEI		Rotation (deg) :	0.	00			
			Ice &	Wind Parameters					
Structure Clas	ss:	Ш		Design Wind Speed Withou	ıt ice: 90 mp	h			
Exposure Cat	egory:	С		Design Wind Speed With Ic	:e: 40 mp	40 mph			
Topographic	Category:	1		Operational Wind Speed:	60 mp	60 mph			
Crest Height:		0 ft		Design Ice Thickness:	0.75	in			
			Seis	mic Parameters					
Analysis Met	hod:	Equivalent Modal Ana	alysis & Equiva	lent Lateral Force Methods					
Site Class:		D - Stiff Soil							
Period Based	on Rayleigh I	Method (sec):	2.07						
T _L (sec):	6		p:	1.3	C _s :	0.031			
S _s :	0.190		S ₁ :	0.060	C _s Max:	0.031			
F _a :	1.600		F _v :	2.400	C _s Min:	0.030			
	0.203		S _{d1} :	0.096					

Load Cases

1.2D + 1.6W
0.9D + 1.6W
1.2D + 1.0Di + 1.0Wi
(1.2 + 0.2Sds) * DL + E ELFM
(1.2 + 0.2Sds) * DL + E EMAM
(0.9 - 0.2Sds) * DL + E ELFM
(0.9 - 0.2Sds) * DL + E EMAM
1.0D + 1.0W

90 mph with No Ice 90 mph with No Ice (Reduced DL) 40 mph with 0.75 in Radial Ice Seismic Equivalent Lateral Forces Method Seismic Equivalent Modal Analysis Method Seismic (Reduced DL) Equivalent Lateral Forces Method Seismic (Reduced DL) Equivalent Modal Analysis Method Serviceability 60 mph

Site Name: Kent Pcs CT, CT

Customer: AT&T MOBILITY

Shaft Section Properties

Slip					Bottom				Тор										
Sect Info	Length (ft)		Fy (ksi)		Joint Len (in)	Weight (Ib)	Dia (in)	Elev (ft)	Area (in ²)	lx (in ⁴)	W/t Ratio	D/t Ratio	Dia (in)	Elev (ft)	Area (in²)	lx (in ⁴)	W/t Ratio	D/t Ratio	Taper (in/ft)
1-18	51.633	0.3750) 65		0.00	11,271	60.50	0.00	71.56	32684.4	26.68	161.33	48.05	51.63	56.74	16294.8	20.83	128.13	0.241124
2-18	51.156	0.3750	65	Slip	81.66	9,095	50.44	44.83	59.59	18871.2	21.95	134.51	38.10	95.98	44.91	8077.3	16.15	101.62	0.241124
3-18	52.549	0.3125	5 65	Slip	66.09	5,926	40.05	90.48	39.42	7868.4	20.84	128.19	27.38	143.03	26.85	2487.3	13.69	87.64	0.241124
4-18	10.065	0.1875	5 65	Slip	49.09	557	28.74	138.93	17.00	1751.9	25.27	153.33	26.32	149.00	15.55	1342.2	22.99	140.39	0.241124
Shaft Weight 26,849																			

Engineering Number:

Discrete Appurtenance Properties

Elev Ecc Weight EPAA Orientation Weight EPAA Orientation Weight EPAA Orientation 149.00 Samsung 700+850MHZ Dual 3 0.80 3.000 84.40 1.880 0.50 139.24 2.782 0.50 149.00 Samsung PCS/AWS Dual Band 3 0.80 3.000 84.40 1.880 0.50 148.32 2.782 0.50 149.00 Reprint PCS/AWS Dual Band 1.00 5.000 10.00 2.980 1.00 99.84 9.246 1.00 149.00 Reprint PCS/AWS Dual Band 0.80 3.000 32.00 3.780 1.00 144.66 5.102 1.00 149.00 Commscope NHH-65B-R2B 6 0.80 3.000 150.00 10.00 2.15.47 5.508 0.62 149.00 Andrey Profile Platform 1 0.00 1.500.00 2.6100 1.00 2.661.77 2.046 0.650 1.50 3.609 1.668 0.50 1.400 0.755 2.000 1.600 <th>Attach</th> <th></th> <th></th> <th></th> <th>Vert</th> <th></th> <th>No Ice 🗕</th> <th></th> <th></th> <th>lce —</th> <th></th>	Attach				Vert		No Ice 🗕			lce —	
149.00 Samsung 700+850MHZ Dual 3 0.80 3.000 82.00 1.880 0.50 139.24 2.782 0.50 149.00 Samsung PCS/AWS Dual Band 3 0.80 3.000 84.40 1.880 0.50 148.32 2.782 0.50 149.00 Raycap RVZDC-6627-PF-48 1 0.80 3.000 32.00 3.780 1.00 141.66 5.102 1.00 149.00 Commscope NHH-65B-R2B 6 0.80 3.000 43.70 8.080 0.69 218.06 10.866 0.69 149.00 Commscope NHH-65B-R2B 6 0.80 3.000 21.00 8.630 0.62 215.47 5.508 0.62 149.00 Flat Low Profile Platform 1 0.00 0.00 1.500.00 2.6100 1.00 2.681.77 205.485 0.90 140.00 Powerwave Allgon TT19- 6 0.75 2.000 1.60 0.550 3.60 1.56 0.50 140.00 Powerwave Allgon TT08-<		-	•	14							
149.00 Sameurig PCS/AWS Dual Band 3 0.80 3.000 84.0 1.880 0.50 148.32 2.782 0.50 149.00 Raycap RVZDC-6627-PF-48 1 0.00 5.000 2.980 1.00 141.66 5.102 1.00 149.00 RFS Celwave PD220 2 1.00 5.000 2.500 5.400 1.00 144.66 5.102 1.00 149.00 Commscope NHH-65B-R2B 6 0.80 3.000 21.00 8.630 0.62 215.47 5.508 0.62 149.00 Falt Low Profile Platform 1 0.00 0.000 1.500.00 26.100 1.00 2.481.77 205.485 0.90 140.00 Andrew ABT-DFDM-ADB 0.75 2.000 1.60 0.550 36.09 1.056 0.50 140.00 Powerwave Aligon TT08- 3 0.75 2.000 2.00 0.50 36.09 1.056 0.50 36.09 1.056 0.50 140.00 Powerwave Aligon TT08- 3 0.75 2.000 2.00 0.50 36.19 1.056	(ft)	Description	Qty	Ка	(ft)	(ID)	(st)	Factor	(dl)	(st) F	actor
149.00 Generic 3' Yagi 1 1.00 5.000 1.00 2.980 1.00 99.84 9.246 1.00 149.00 Rsycap RV2DC-6627-PF-48 1.08 3.000 32.00 3.780 1.00 164.56 12.349 1.00 149.00 Commscope NHH-65B-R2B 6 0.80 3.000 43.70 8.080 0.69 218.06 10.866 0.62 149.00 Chatel LPA-80080/6CF 6 0.80 3.000 1.50.00 26.100 1.00 2.147.91 45.192 1.00 149.00 VZW Unused Reserve: 17440 sq 1 0.80 3.000 15.80.60 1.00 3.31 0.241 1.00 140.00 Andrew ABT-DFDMADB 1 0.75 2.000 16.00 0.50 36.09 1.056 0.50 140.00 Paverave Aligon TT08- 3 0.75 2.000 12.00 1.600 0.50 7.05 2.432 0.50 140.00 Ericsson RUS 4449 B5, B12 3 0.75 0.000 71.00 1.97 0.50 135.11 2.898 0.50	149.00		3	0.80	3.000	82.00		0.50	139.24		0.50
149.00 Raycap RVZDC-6627-PF-48 1 0.80 3.000 32.00 3.780 1.00 141.66 5.102 1.00 149.00 Commscope NHH-65B-R2B 6 0.80 3.000 43.70 8.080 0.69 218.06 10.086 0.69 149.00 Antel LPA-80080/6CF 6 0.80 3.000 21.00 8.630 0.62 215.47 5.508 0.62 149.00 Antel LPA-80080/6CF 6 0.80 3.000 1.500.00 26.100 1.00 2.147.91 45.192 1.00 149.00 VZW Unused Reserve: 17440 sq 1 0.80 3.000 1.500.00 26.610 1.00 3.31 0.241 1.00 140.00 Powerwave Aligon TT19- 6 0.75 2.000 1.00 0.50 48.42 1.420 0.50 140.00 Ericsson RUS A24 Module 3 0.75 2.000 21.00 1.800 0.50 57.05 2.432 0.50 140.00 Ericsson RUS A24 B5.12 3 0.75 0.000 53.00 2.700 0.55 1.01.0			-								
149.00 RFS Celwave PD220 2 1.00 5.000 25.00 5.400 1.00 144.56 12.349 1.00 149.00 Antel LPA-80080/6CF 6 0.80 3.000 43.70 8.080 0.69 218.06 10.866 0.69 149.00 Antel LPA-80080/6CF 6 0.80 3.000 21.00 8.630 0.62 215.47 5.508 0.62 149.00 VZW Unused Reserve: 17440 sg 1 0.75 2.000 121.11 0.90 2,681.77 205.485 0.90 140.00 Powerwave Allgon TT08- 6 0.75 2.000 14.00 0.550 48.42 1.420 0.50 140.00 Powerwave Allgon TT08- 3 0.75 2.000 22.00 0.790 0.55 48.42 1.420 0.50 140.00 Ericsson RRUS A449 B5, B12 3 0.75 0.000 1.00 7.238 1.915 1.00 140.00 Ericsson RRUS 4449 B5, B12 3 0.75 0.000 53.40 2.020 6.67 120.45 2.958 0.67			-								
149.00 Commscope NHH-65B-R2B 6 0.80 3.000 43.70 8.080 0.69 218.06 10.866 0.69 149.00 Antel LPA-80080/6CF 6 0.80 3.000 21.00 8.630 0.62 215.47 5.508 0.62 149.00 Flat Low Profile Platform 1 1.00 0.000 1.500.00 2.601 1.00 2.147.91 45.192 1.00 140.00 Andrew ABT-DFDM-ADB 1 0.75 2.000 1.10 0.50 3.01 0.241 1.00 140.00 Powerwave Allgon TT19- 6 0.75 2.000 16.00 0.550 0.50 36.09 1.056 0.50 140.00 Powerwave Allgon TT08- 3 0.75 2.000 22.00 0.790 0.50 48.42 1.420 0.50 140.00 Ericsson RRUS 442 B5.B12 3 0.75 2.000 71.00 1.970 0.50 135.11 2.898 0.50 140.00 Ericsson RRUS 4449 B5.B12 3 0.75 0.000 53.00 2.700 710.01 770 <t< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			-								
149:00 Antel LPA-80080/6CF 6 0.80 3.000 21:00 8.630 0.62 21:5.47 5.508 0.62 149:00 Flat Low Profile Platform 1 1.00 0.000 1,500.00 26:100 1.00 2,147.91 45.192 1.00 149:00 Andrew ABT-DFDM-ADB 1 0.75 2.000 1.10 0.050 1.00 3.31 0.241 1.00 140:00 Powerwave Aligon TT19- 6 0.75 2.000 16.00 0.550 0.50 36.09 1.0656 0.50 140:00 Powerwave Aligon TT08- 3 0.75 2.000 22.00 0.790 0.50 48.42 1.420 0.50 140:00 Ericsson RRUS A2 Module 3 0.75 2.000 21.00 1.60 0.50 15.01 2.838 0.50 140:00 Ericsson RRUS A2 Module 3 0.75 0.000 71.00 1.970 0.50 135.11 2.898 0.50 140:00 Ericsson RRUS A2 Module 3 0.75 0.000 53.00 2.740 0.67 <td< td=""><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			_								
148:00 Flat Low Profile Platform 1.00 0.000 1,550.00 26.100 1.00 2.147.91 45.192 1.00 149:00 VZW Unused Reserve: 17440 sq 1 0.80 3.000 1,580.60 121.110 0.90 2,681.77 205.485 0.90 140:00 Andrew ABT-DFDM-ADB 1 0.75 2.000 16.00 0.550 0.50 36.09 1.056 0.50 140:00 Powerwave Allgon TT08- 3 0.75 2.000 22.00 0.790 0.50 48.42 1.420 0.50 140:00 Raycap DC6-48-60-18-8F (23.5" 1 0.75 2.000 21.00 1.600 0.50 7.238 1.915 1.00 140:00 Ericsson RRUS 4449 B5, B12 3 0.75 0.000 71.00 1.970 0.50 135.11 2.888 0.50 140:00 Ericsson RRUS 4449 B5, B12 3 0.75 0.000 53.00 2.740 0.67 126.17 3.902 0.67 140:00 Ericsson RRUS 3429 3 0.75 0.000 33.00 5.880 0.77 <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			-								
149.00 VZW Unused Reserve: 17440 sq 1 0.80 3.000 1,580.60 121.110 0.90 2,681.77 20.5485 0.90 140.00 Andrew ABT-DFDM-ADB 1 0.75 2.000 1.10 0.050 1.00 3.6.09 1.056 0.50 140.00 Powerwave Aligon TT19- 6 0.75 2.000 12.00 0.50 48.42 1.420 0.50 140.00 Powerwave Aligon TT08- 3 0.75 2.000 21.00 1.600 0.50 57.05 2.432 0.50 140.00 Ericsson RRUS 4449 B5, B12 3 0.75 0.000 71.00 1.970 0.50 135.11 2.888 0.50 140.00 Ericsson RRUS 4478 B14 3 0.75 0.000 53.00 2.030 1.00 73.91 2.785 1.00 140.00 Raycap DC6-48-60-18-8C 1 0.75 0.000 53.00 2.740 0.67 126.17 3.902 0.67 140.00 Raycap DC6-48-60-18-8C 1 0.75 0.000 53.00 8.130 0.67 126.17 <td></td> <td></td> <td>6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			6								
140.00Andrew ABT-DFDM-ADB10.752.0001.100.0501.003.310.2411.00140.00Powerwave Allgon TT9-60.752.00016.000.5500.5036.091.0560.50140.00Powerwave Allgon TT0-30.752.00022.000.7900.5048.421.4200.50140.00Ericsson RRUS A48 B5, B1230.752.00021.201.6000.5057.052.4320.50140.00Ericsson RRUS 4448 B5, B1230.750.00071.001.9700.50135.112.8880.50140.00Ericsson RRUS 4478 B1430.750.00059.402.0200.67120.452.9580.67140.00Raycap DC6-48-60-18-8C10.750.00016.002.0301.0073.912.7851.00140.00Ericsson RRUS 32 B230.750.00053.002.7400.67126.173.9920.67140.00Powerwave Allgon P90-15-XLH-30.750.00053.008.1300.67216.8510.9020.67140.00CCI DMP65R-BU4D30.750.00051.009.6601.00259.2512.4181.00140.00CCI DMP65R-BU4D30.750.00051.002.72001.003.289.0251.5171.00140.00CCI DMP65R-BU4D30.750.00051.009.6601.00 <t< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			1								
140.00Powerwave Allgon TT19-60.752.00016.000.5500.5036.091.0560.50140.00Raycap DC6-48-60-18-8F (23.5"10.752.00022.000.7900.5048.421.4200.50140.00Ericsson RRUS A2 Module30.752.00021.201.6000.5057.052.4320.50140.00Ericsson RRUS 4449 B5, B1230.750.00071.001.9700.50135.112.8980.50140.00Ericsson RRUS 4478 B1430.750.00079.002.0200.67120.452.9580.67140.00Raycap DC6-48-60-18-8C10.750.00053.002.7400.67126.173.9020.67140.00Ericsson RRUS 4478 B1430.750.00053.002.7400.67126.173.9020.67140.00Raycap DC6-48-60-18-8C10.750.00053.002.7400.67126.173.9020.67140.00Powerwave Allgon P90-15-XLH-30.750.00053.008.1300.67216.8510.9020.67140.00CCI DMP65R-BUU-H610.750.00051.009.6601.00269.2512.4181.00140.00CCI DMP65R-BUU-H610.750.00051.0027.2001.003.289.0251.5171.00140.00Roure d'Argin11.000.00010.002.500<			1								
140.00Powerwave Aligon TT08- Raycap DC6-48-60-18-8F (23.5"30.752.00022.000.7900.5048.421.4200.50140.00Ericsson RRUS A2 Module30.752.00021.201.6000.5057.052.4320.50140.00Ericsson RRUS 449 B5, B1230.750.00071.001.9700.50135.112.9880.50140.00Ericsson RRUS 4478 B1430.750.00059.402.0200.67120.452.9580.67140.00Raycap DC6-48-60-18-8C10.750.00016.002.0301.0073.912.7851.00140.00Ericsson RRUS 32 B230.750.00053.002.7400.67126.173.9020.67140.00Powerwave Aligon P90-15-XLH-30.750.00053.008.1300.67216.8510.0220.67140.00CCI DMP65R-BUAD30.750.00051.009.6601.00269.2512.4181.00140.00CCI HPA-65R-BUJ-H610.750.00027.0001.003.289.0251.5171.00124.00Round Platform w/ Handrails11.000.0002.000.0027.2001.003.289.0251.5171.00124.00Decibel DB22221.000.0007.5002.5000.67126.034.2010.67110.00Stand Off21.000.0007.00			1								
140.00 Raycap DC6-48-60-18-8F (23.5" 1 0.75 2.000 20.00 1.260 1.00 72.38 1.915 1.00 140.00 Ericsson RRUS A2 Module 3 0.75 2.000 21.20 1.600 0.50 57.05 2.432 0.50 140.00 Ericsson RRUS 4449 B5, B12 3 0.75 0.000 59.40 2.020 0.67 120.45 2.958 0.67 140.00 Raycap DC6-48-60-18-8C 1 0.75 0.000 53.00 2.740 0.67 126.17 3.902 0.67 140.00 Andrew SBNHH-1D65A (33.5 lbs) 2 0.75 0.000 53.00 2.740 0.67 126.17 3.902 0.67 140.00 Andrew SBNHH-1D65A (33.5 lbs) 2 0.75 0.000 53.00 8.130 0.67 126.85 10.902 0.67 140.00 CCI DMP65R-BU4D 3 0.75 0.000 51.00 9.660 1.00 2.825 12.18 1.00 140.00 CCI DMP65R-BU4D 3 0.75 0.000 51.00 9.660 1.00			-								
140.00Ericsson RRUS A2 Module30.752.00021.201.6000.5057.052.4320.50140.00Ericsson RRUS 4449 B5, B1230.750.00071.001.9700.50135.112.8980.50140.00Ericsson RRUS 4478 B1430.750.00059.402.0200.67120.452.9580.67140.00Raycap DC6-48-60-18-8C10.750.00016.002.0301.0073.912.7851.00140.00Ericsson RRUS 32 B230.750.00053.002.7400.67126.173.9020.67140.00Powerwave Allgon P90-15-XLH-30.750.00053.008.1300.67216.8510.9020.67140.00CCI DMP65R-BU4D30.750.00067.908.2800.62247.5610.2940.62140.00CCI HPA-65R-BUU-H610.750.00051.009.6601.00269.2512.4181.00140.00CCI HPA-65R-BUU-H610.750.00016.002.2501.0083.948.1921.00122.00Generic 3' Yagi11.000.00016.002.2501.0083.948.1921.00122.00Generic 3' Yagi11.000.00075.002.5000.67126.034.2010.67110.00Symmetricom 58532A10.800.00050.702.7900.67120.88<											
140.00 Ericsson RRUS 4449 B5, B12 3 0.75 0.000 71.00 1.970 0.50 135.11 2.898 0.50 140.00 Ericsson RRUS 4478 B14 3 0.75 0.000 59.40 2.020 0.67 120.45 2.958 0.67 140.00 Ericsson RRUS 32 B2 3 0.75 0.000 53.00 2.740 0.67 126.47 3.902 0.67 140.00 Andrew SBNHH-1D65A (33.5 lbs) 2 0.75 0.000 53.00 8.130 0.67 168.15 7.995 0.77 140.00 CCI DMP65R-BUU-H6 1 0.75 0.000 53.00 8.130 0.67 216.85 10.902 0.67 140.00 CCI MP65R-BUU-H6 1 0.75 0.000 51.00 9.660 1.00 269.25 12.418 1.00 140.00 Cound Platform w/ Handrails 1 1.00 0.000 27.200 1.00 3.289.02 51.517 1.00 122.00 Generic 3' Yagi 1 1.00 0.000 75.00 2.550 1.00 8.192			-								
140.00 Ericsson RRUS 4478 B14 3 0.75 0.000 59.40 2.020 0.67 120.45 2.958 0.67 140.00 Raycap DC6-48-60-18-8C 1 0.75 0.000 16.00 2.030 1.00 73.91 2.785 1.00 140.00 Ericsson RRUS 32 B2 3 0.75 0.000 53.00 2.740 0.67 126.17 3.902 0.67 140.00 Andrew SBNHH-1D65A (33.5 lbs) 2 0.75 0.000 53.00 8.130 0.67 216.85 10.902 0.67 140.00 Col DMP65R-BU4D 3 0.75 0.000 53.00 8.130 0.67 216.85 10.902 0.67 140.00 COL DMP65R-BU4D 3 0.75 0.000 51.00 9.660 1.00 269.25 12.418 1.00 140.00 Round Platform w/ Handrails 1 1.00 0.000 27.00 1.00 3.289.02 51.517 1.00 124.00 Decibel DB222 2 1.00 0.000 10.00 2.980 1.00 98.10 9.125			-								
140.00Raycap DC6-48-60-18-8C10.750.00016.002.0301.0073.912.7851.00140.00Ericsson RRUS 32 B230.750.00053.002.7400.67126.173.9020.67140.00Andrew SBNHH-1D65A (33.5 lbs)20.750.00033.505.8800.77168.157.9950.77140.00Powerwave Allgon P90-15-XLH-30.750.00053.008.1300.67216.8510.0920.67140.00CCI DMP65R-BU4D30.750.00067.908.2800.62247.5610.2940.62140.00CCI HPA-65R-BUU-H610.750.000200.0027.2001.003.8948.1921.00124.00Round Platform w/ Handrails11.000.00016.002.9801.003.948.1921.00122.00Generic 3' Yagi11.000.00016.002.9801.0098.109.1251.0017.00Stand Off21.000.00075.002.5000.67126.034.2010.67110.00Symmetricom 58532A10.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B230.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B430.800.00050.702.7900.67120.88 <td></td>											
140.00Ericsson RRUS 32 B230.750.00053.002.7400.67126.173.9020.67140.00Andrew SBNHH-1D65A (33.5 lbs)20.750.00033.505.8800.77168.157.9950.77140.00Powerwave Allgon P90-15-XLH-30.750.00053.008.1300.67216.8510.2940.62140.00CCI DMP65R-BU4D30.750.00051.009.6601.00269.2512.4181.00140.00CCI HPA-65R-BUU-H610.750.00051.009.6601.00269.2512.4181.00140.00Round Platform w/ Handrails11.000.0002,000.0027.2001.003,289.0251.5171.00122.00Generic 3' Yagi11.000.00016.002.2501.0083.948.1921.00122.00Generic 3' Yagi11.000.00075.002.5000.67126.034.2010.67110.00Symmetricom 58532A10.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B1230.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B430.800.00050.702.7900.67120.883.8520.67110.00RFS APX16DWV-16DWVS-E-A2030.800.00050.702.7900			-								
140.00Andrew SBNHH-1D65A (33.5 lbs)20.750.00033.505.8800.77168.157.9950.77140.00Powerwave Allgon P90-15-XLH-30.750.00053.008.1300.67216.8510.9020.67140.00CCI DMP65R-BU4D30.750.00067.908.2800.62247.5610.2940.62140.00CCI HPA-65R-BUU-H610.750.00051.009.6601.00269.2512.4181.00140.00Round Platform w/ Handrails11.000.0002,000.0027.2001.003,28.0251.5171.00124.00Decibel DB22221.000.00016.002.2501.0083.948.1921.00122.00Generic 3' Yagi11.000.00010.002.9801.0098.109.1251.00117.00Stand Off21.000.00075.002.5000.67126.034.2010.67110.00Ericsson RRUS 11 B230.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B430.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B430.800.00050.702.7900.67120.883.8520.67110.00FIS APX16DWV-16DWVS-E-A2030.800.00050.702.7900.6712			-								
140.00Powerwave Allgon P90-15-XLH-30.750.00053.008.1300.67216.8510.9020.67140.00CCI DMP65R-BU4D30.750.00067.908.2800.62247.5610.2940.62140.00CCI HPA-65R-BUU-H610.750.00051.009.6601.00269.2512.4181.00140.00Round Platform w/ Handrails11.000.0002,000.0027.2001.003,289.0251.5171.00124.00Decibel DB22221.000.00016.002.2501.0088.1921.00122.00Generic 3' Yagi11.000.00075.002.5000.67126.034.2010.67117.00Stand Off21.000.00075.002.5000.67126.034.2010.67110.00Symmetricom 58532A10.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B1230.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B430.800.00050.702.7900.67120.883.8520.67110.00RFS APX16DWV-16DWVS-E-A2030.800.00050.702.7900.67120.883.8520.67110.00Generic Flat Side Arm30.800.00050.702.7900.67120.883.852<			-								
140.00CCI DMP65R-BU4D30.750.00067.908.2800.62247.5610.2940.62140.00CCI HPA-65R-BUU-H610.750.00051.009.6601.00269.2512.4181.00140.00Round Platform w/ Handrails11.000.0002,000.0027.2001.003,289.0251.5171.00124.00Decibel DB222211.000.00016.002.2501.0083.948.1921.00122.00Generic 3' Yagi11.000.00075.002.9801.0098.109.1251.00117.00Stand Off21.000.00075.000.67126.034.2010.67110.00Symmetricom 58532A10.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B230.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B430.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B430.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B430.800.00050.702.7900.67120.883.8520.67110.00Fiat T-Arm30.750.00050.0011.4400.70274.5614.5920.70<											
140.00CCI HPA-65R-BUU-H610.750.00051.009.6601.00269.2512.4181.00140.00Round Platform w/ Handrails11.000.0002,000.0027.2001.003,289.0251.5171.00124.00Decibel DB22221.000.00016.002.2501.0083.948.1921.00122.00Generic 3' Yagi11.000.00010.002.9801.0098.109.1251.00117.00Stand Off21.000.00075.002.5000.67126.034.2010.67110.00Symmetricom 58532A10.800.0000.400.1901.008.140.4991.00110.00Ericsson RRUS 11 B230.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B430.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B430.800.00050.702.7900.67120.883.8520.67110.00Commscope LNX-6515DS-A1M30.800.00050.3011.4400.70274.5614.5920.70110.00Flat T-Arm30.750.000250.0012.9000.67452.5620.8260.67100.00Generic Flat Side Arm11.000.000187.506.3001.00313.269.241 <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			-								
140.00Round Platform w/ Handrails11.000.0002,000.0027.2001.003,289.0251.5171.00124.00Decibel DB22221.000.00016.002.2501.0083.948.1921.00122.00Generic 3' Yagi11.000.00010.002.9801.0098.109.1251.00117.00Stand Off21.000.00075.002.5000.67126.034.2010.67110.00Symmetricom 58532A10.800.0000.400.1901.008.140.4991.00110.00Ericsson RRUS 11 B230.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B430.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B430.800.00050.702.7900.67120.883.8520.67110.00RFS APX16DWV-16DWVS-E-A2030.800.00050.702.7900.67120.883.8520.67110.00Commscope LNX-6515DS-A1M30.800.00050.3011.4400.70274.5614.5920.70110.00Flat T-Arm30.750.000250.0012.9000.67452.5620.8260.67100.00Generic Flat Side Arm11.000.000187.506.3001.00313.269.2			3								
124.00Decibel DB22221.000.00016.002.2501.0083.948.1921.00122.00Generic 3' Yagi11.000.00010.002.9801.0098.109.1251.00117.00Stand Off21.000.00075.002.5000.67126.034.2010.67110.00Symmetricom 58532A10.800.0000.400.1901.008.140.4991.00110.00Ericsson RRUS 11 B230.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B1230.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B430.800.00050.702.7900.67120.883.8520.67110.00RFS APX16DWV-16DWVS-E-A2030.800.00050.702.7900.67120.883.8520.67110.00Commscope LNX-6515DS-A1M30.800.00050.3011.4400.70274.5614.5920.70110.00Flat T-Arm30.750.000250.0012.9000.67452.5620.8260.67100.00Generic Flat Side Arm11.000.000187.506.3001.00313.269.2411.0085.00Generic Flat Side Arm11.000.000187.506.3001.00313.269.2411			1								
122.00Generic 3' Yagi11.000.00010.002.9801.0098.109.1251.00117.00Stand Off21.000.00075.002.5000.67126.034.2010.67110.00Symmetricom 58532A10.800.0000.400.1901.008.140.4991.00110.00Ericsson RRUS 11 B230.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B1230.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B430.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B430.800.00050.702.7900.67120.883.8520.67110.00RFS APX16DWV-16DWVS-E-A2030.800.00040.706.5900.60153.928.6900.60110.00Commscope LNX-6515DS-A1M30.800.00050.3011.4400.70274.5614.5920.70110.00Flat T-Arm30.750.000250.0012.9000.67452.5620.8260.67100.00Generic Flat Side Arm11.000.000187.506.3001.00315.449.2921.0090.00dbSpectra DS4C06F36D-D11.000.00050.006.2101.00313.269.241 <td></td> <td></td> <td>י 2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			י 2								
117.00Stand Off21.000.00075.002.5000.67126.034.2010.67110.00Symmetricom 58532A10.800.0000.400.1901.008.140.4991.00110.00Ericsson RRUS 11 B230.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B1230.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B430.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B430.800.00050.702.7900.67120.883.8520.67110.00RFS APX16DWV-16DWVS-E-A2030.800.00040.706.5900.60153.928.6900.60110.00Commscope LNX-6515DS-A1M30.800.00050.3011.4400.70274.5614.5920.70110.00Flat T-Arm30.750.000250.0012.9000.67452.5620.8260.67100.00Generic Flat Side Arm11.000.000187.506.3001.00315.449.2921.0090.00dbSpectra DS4C06F36D-D11.000.00050.006.2101.00196.5112.7451.0085.00Generic Flat Side Arm11.000.000187.506.3001.00313.26											
110.00Symmetricom 58532A10.800.0000.400.1901.008.140.4991.00110.00Ericsson RRUS 11 B230.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B1230.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B430.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B430.800.00050.702.7900.67120.883.8520.67110.00RFS APX16DWV-16DWVS-E-A2030.800.00040.706.5900.60153.928.6900.60110.00Commscope LNX-6515DS-A1M30.800.00050.3011.4400.70274.5614.5920.70110.00Flat T-Arm30.750.000250.0012.9000.67452.5620.8260.67100.00Generic Flat Side Arm11.000.000187.506.3001.00315.449.2921.0090.00dbSpectra DS4C06F36D-D11.000.000187.506.3001.00313.269.2411.0085.00Generic Flat Side Arm11.000.000187.506.3001.00313.269.2411.00			-								
110.00Éricsson RRUS 11 B230.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B1230.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B430.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B430.800.00050.702.7900.67120.883.8520.67110.00RFS APX16DWV-16DWVS-E-A2030.800.00040.706.5900.60153.928.6900.60110.00Commscope LNX-6515DS-A1M30.800.00050.3011.4400.70274.5614.5920.70110.00Flat T-Arm30.750.000250.0012.9000.67452.5620.8260.67100.00Generic Flat Side Arm11.000.000187.506.3001.00315.449.2921.0090.00dbSpectra DS4C06F36D-D11.000.000187.506.3001.00313.269.2411.0085.00Generic Flat Side Arm11.000.000187.506.3001.00313.269.2411.00											
110.00Ericsson RRUS 11 B1230.800.00050.702.7900.67120.883.8520.67110.00Ericsson RRUS 11 B430.800.00050.702.7900.67120.883.8520.67110.00RFS APX16DWV-16DWVS-E-A2030.800.00040.706.5900.60153.928.6900.60110.00Commscope LNX-6515DS-A1M30.800.00050.3011.4400.70274.5614.5920.70110.00Flat T-Arm30.750.000250.0012.9000.67452.5620.8260.67100.00Generic Flat Side Arm11.000.000187.506.3001.00315.449.2921.0090.00dbSpectra DS4C06F36D-D11.000.000187.506.3001.00313.269.2411.0085.00Generic Flat Side Arm11.000.000187.506.3001.00313.269.2411.00			-								
110.00Ericsson RRUS 11 B430.800.00050.702.7900.67120.883.8520.67110.00RFS APX16DWV-16DWVS-E-A2030.800.00040.706.5900.60153.928.6900.60110.00Commscope LNX-6515DS-A1M30.800.00050.3011.4400.70274.5614.5920.70110.00Flat T-Arm30.750.000250.0012.9000.67452.5620.8260.67100.00Generic Flat Side Arm11.000.000187.506.3001.00315.449.2921.0090.00dbSpectra DS4C06F36D-D11.000.00050.006.2101.00196.5112.7451.0085.00Generic Flat Side Arm11.000.000187.506.3001.00313.269.2411.00											
110.00RFS APX16DWV-16DWVS-E-A2030.800.00040.706.5900.60153.928.6900.60110.00Commscope LNX-6515DS-A1M30.800.00050.3011.4400.70274.5614.5920.70110.00Flat T-Arm30.750.000250.0012.9000.67452.5620.8260.67100.00Generic Flat Side Arm11.000.000187.506.3001.00315.449.2921.0090.00dbSpectra DS4C06F36D-D11.000.00050.006.2101.00196.5112.7451.0085.00Generic Flat Side Arm11.000.000187.506.3001.00313.269.2411.00			-								
110.00Commscope LNX-6515DS-A1M30.800.00050.3011.4400.70274.5614.5920.70110.00Flat T-Arm30.750.000250.0012.9000.67452.5620.8260.67100.00Generic Flat Side Arm11.000.000187.506.3001.00315.449.2921.0090.00dbSpectra DS4C06F36D-D11.000.00050.006.2101.00196.5112.7451.0085.00Generic Flat Side Arm11.000.000187.506.3001.00313.269.2411.00											
110.00Flat T-Arm30.750.000250.0012.9000.67452.5620.8260.67100.00Generic Flat Side Arm11.000.000187.506.3001.00315.449.2921.0090.00dbSpectra DS4C06F36D-D11.000.00050.006.2101.00196.5112.7451.0085.00Generic Flat Side Arm11.000.000187.506.3001.00313.269.2411.00			-								
100.00Generic Flat Side Arm11.000.000187.506.3001.00315.449.2921.0090.00dbSpectra DS4C06F36D-D11.000.00050.006.2101.00196.5112.7451.0085.00Generic Flat Side Arm11.000.000187.506.3001.00313.269.2411.00			-								
90.00 dbSpectra DS4C06F36D-D 1 1.00 0.000 50.00 6.210 1.00 196.51 12.745 1.00 85.00 Generic Flat Side Arm 1 1.00 0.000 187.50 6.300 1.00 313.26 9.241 1.00			-								
85.00 Generic Flat Side Arm 1 1.00 0.000 187.50 6.300 1.00 313.26 9.241 1.00			•								
			1								
······································	Totals	Num Loadings:36	85			9,450.30			21,062.14		

Linear Appurtenance Properties Load Case Azimuth (deg) :

Elev From	Elev To		Coax Dia	Coax Wt		Max Coax /	Dist Between	Dist Between	Azimuth	Dist E From	Expose To	ed	
(ft)	(ft)	Qty Description	(in)	(lb/ft) F	lat	Row	Rows (in)	Cols (in)	(deg)	Face (in)	Wind	Carrier	
0.00	154.00	3 7/8" Coax	1.09	0.33	Ν	0	0.00	0.00	0	0.00	N	OTHER	

© 2007 - 2019 by ATC IP LLC. All rights reserved.

9/18/2019 4:22:13 PM

Code: ANSI/TIA-222-G

ite Number: 413783				Code:	ANSI/TIA-2	222-G	© 2007 ·	- 2019 DY /	4101	P LLC. All rights reserved
Site Name: Kent Pcs CT, CT	Er	nginee	ring N	lumber:						9/18/2019 4:22:13 PM
Customer: AT&T MOBILITY										
0.00 152.00 12 1 5/8'' Coax	1.98	0.82	N	0	0.00	0.00	0	0.00	Ν	VERIZON WIRELES
0.00 152.00 2 1 5/8" Hybriflex	1.98	1.30	Ν	0	0.00	0.00	0	0.00	Ν	VERIZON WIRELES
0.00 140.00 1 0.39" (10mm) Fiber	0.39	0.06	Ν	0	0.00	0.00	0	0.00	Ν	AT&T MOBILITY
0.00 140.00 1 0.39" (10mm) Fiber	0.39	0.06	Ν	0	0.00	0.00	0	0.00	Ν	AT&T MOBILITY
0.00 140.00 2 0.78" (19.7mm) 8 AWG	0.78	0.59	Ν	0	0.00	0.00	0	0.00	Ν	AT&T MOBILITY
0.00 140.00 2 0.78" (19.7mm) 8 AWG	0.78	0.59	Ν	0	0.00	0.00	0	0.00	Ν	AT&T MOBILITY
0.00 140.00 18 1 5/8'' Coax	1.98	0.82	Ν	0	0.00	0.00	0	0.00	Ν	AT&T MOBILITY
0.00 140.00 1 2" conduit	2.38	3.65	Ν	0	0.00	0.00	0	0.00	Ν	AT&T MOBILITY
0.00 124.00 2 7/8'' Coax	1.09	0.33	Ν	0	0.00	0.00	0	0.00	Ν	Other
0.00 122.00 1 7/8" Coax	1.09	0.33	Ν	0	0.00	0.00	0	0.00	Ν	Other
0.00 110.00 2 1 5/8" (1.63"-41.3mm)	1.63	1.61	Ν	0	0.00	0.00	0	0.00	Ν	T-MOBILE
0.00 110.00	0.63	0.15	Ν	0	0.00	0.00	0	0.00	Ν	T-MOBILE
0.00 90.00 2 7/8'' Coax	1.09	0.33	Ν	0	0.00	0.00	0	0.00	Ν	EVERSOURCE

Site Name: Kent Pcs CT, CT

Customer: AT&T MOBILITY

Engineering Number:

Code: ANSI/TIA-222-G

© 2007 - 2019 by ATC IP LLC. All rights reserved.

9/18/2019 4:22:13 PM

Segment Properties (Max Len : 5.ft)

oogn		(,								
Seg T	ор		Flat									
Elev	•	Thick	Dia	Area	Ix	W/t	D/t	F'y	S	Z	Weight	
(ft)	Description	(in)	(in)	(in ²)	(in ⁴)	Ratio	Ratio			(in³)	(lb)	
	2000.000											
0.00			60.500	71.561		26.68	161.33			0.0	0.0	
5.00			59.294	70.126	30,757.4	26.12	158.12				1,205.3	
10.00			58.089	68.691	28,907.7	25.55	154.90				1,180.9	
15.00			56.883		27,133.7	24.98	151.69				1,156.5	
20.00			55.678		25,433.7	24.42	148.47				1,132.1	
25.00			54.472		23,806.3	23.85	145.26				1,107.7	
30.00			53.266		22,249.9	23.28	142.04				1,083.3	
35.00			52.061		20,762.8	22.72	138.83				1,058.8	
40.00			50.855		19,343.5	22.15	135.61				1,034.4	
44.83	Bot - Section 2		49.691		18,035.8	21.60	132.51				975.7	
45.00			49.649		17,990.4	21.58	132.40			0.0	69.2	
50.00	Ton Soction 1		48.444		16,701.9	21.02 21.18				0.0	1,986.4 638.1	
51.63	Top - Section 1		48.800 47.988		17,076.0 16,231.4	20.80	130.13 127.97			0.0	654.8	
55.00 60.00			46.783			20.80	124.75			0.0	952.0	
65.00			46.763		15,029.4 13,888.2	20.23 19.67	124.75			0.0	952.0 927.5	
70.00			45.577		12,806.3	19.07	121.54			0.0	927.5	
75.00			43.166		11,782.1	18.53				0.0	878.7	
80.00			41.960		10,814.0	17.97	111.89			0.0	854.3	
85.00			40.754	48.060	9,900.5	17.40	108.68			0.0	829.9	
90.00			39.549	46.625	9,039.9	16.83	105.46			0.0	805.5	
90.48	Bot - Section 3		39.434	46.488	8,960.6	16.78	105.16			0.0	75.5	
95.00	201 0000000		38.343	45.190	8,230.7	16.27	102.25				1,304.0	
95.98	Top - Section 2		38.731	38.105	7,105.8	20.09	123.94			0.0	278.9	
100.0	•		37.763	37.144	6,581.9	19.54	120.84			0.0	514.1	
105.0			36.557	35.949	5,966.5	18.86	116.98			0.0	621.8	
110.0			35.351	34.753	5,390.7	18.18	113.12			0.0	601.5	
115.0		0.3125	34.146	33.557	4,853.2	17.50	109.27	80.8	279.9	0.0	581.1	
117.0		0.3125	33.663	33.079	4,648.6	17.23	107.72	81.1	272.0	0.0	226.7	
120.0		0.3125	32.940	32.361	4,352.6	16.82	105.41			0.0	334.0	
122.0			32.458	31.883	4,162.4	16.55	103.87			0.0	218.6	
124.0			31.976	31.405	3,977.9	16.28	102.32			0.0	215.4	
125.0		0.3125	31.734	31.166	3,887.7	16.14	101.55			0.0	106.5	
130.0			30.529	29.970	3,457.2	15.46	97.69			0.0	520.1	
135.0			29.323	28.774	3,059.6	14.78	93.83			0.0	499.7	
138.9	Bot - Section 4		28.374	27.833	2,769.2	14.25	90.80			0.0	379.0	
140.0			28.118	27.578	2,693.8	14.10	89.98			0.0	161.7	
143.0	Top - Section 3		27.763	16.410	1,576.6	24.35	148.07			0.0	451.5	
145.0			27.287	16.127	1,496.3	23.90	145.53			0.0	109.3	
149.0		0.18/5	26.322	15.553	1,342.2	22.99	140.39	/4.4	100.4	0.0	215.6	
										2	6,849.2	

 Site Number: 413783
 Code: ANSI/TIA-222-G
 © 2007 - 2019 by ATC IP LLC. All rights reserved.

 Site Name: Kent Pcs CT, CT
 Engineering Number:
 9/18/2019 4:22:13 PM

 Customer: AT&T MOBILITY
 22 Iterations

 Load Case: 1.2D + 1.6W
 90 mph with No Ice
 22 Iterations

 Gust Response Factor :1.10
 Wind Importance Factor 1.00

 Dead Load Factor :1.20
 Wind Load Factor :1.60

Applied Segment Forces Summary

	Shaft Forces				Discret	e Forces		Linear F	orces		Sum o	f Forces	
Seg			Dead		Torsion	Moment	Dead		Dead		Dead	Torsion	Moment
Elev		Wind FX	Load	Wind FX	MY	MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ
(ft)	Description	(I b)	(lb)	(lb)	(lb-ft)	(lb-ft)	(lb)	(lb)	(lb)	(lb)	(lb)	(lb-ft)	(lb)
0.00		242.7	0.0					0.0	0.0	242.7	0.0	0.0	0.0
5.00		480.6	1,446.4					0.0	236.0	480.6	1,682.4	0.0	
10.00		470.8	1,417.1					0.0	236.0	470.8	1,653.1	0.0	
15.00		468.2	1,387.8					0.0	236.0	468.2	1,623.8	0.0	
20.00		478.0	1,358.5					0.0	236.0	478.0	1,594.5	0.0	
25.00		490.4	1,329.2					0.0	236.0	490.4	1,565.2	0.0	
30.00 35.00		498.5 503.4	1,299.9 1,270.6					0.0 0.0	236.0 236.0	498.5 503.4	1,535.9 1,506.7	0.0 0.0	
40.00		497 <u>.</u> 1	1,270.8					0.0	236.0	503.4 497.1	1,506.7	0.0	
40.00	Bot - Section 2	253.4	1,241.3					0.0	230.0	253.4	1,398.8	0.0	
45.00		265.7	83.0					0.0	8.1	265.7	91.1	0.0	
50.00		340.6	2,383.7					0.0	236.0	340.6	2,619.7	0.0	
51.63	Top - Section 1	256.0	765.7					0.0	77.1	256.0	842.8	0.0	
55.00		426.7	785.8					0.0	159.0	426.7	944.8	0.0	
60.00		506.9	1.142.4					0.0	236.0	506.9	1,378.4	0.0	
65.00		502.2	1,113.1					0.0	236.0	502.2	1,349.1	0.0	
70.00		496.6	1,083.8					0.0	236.0	496.6	1,319.8	0.0	
75.00		490.2	1,054.5					0.0	236.0	490.2	1,290.5	0.0	
80.00		483.0	1,025.2					0.0	236.0	483.0	1,261.2	0.0	0.0
85.00	Appurtenance(s)	475.2	995.9	267.1	0.	0.0	225.0	0.0	236.0	742.3	1,456.9	0.0	0.0
90.00	Appurtenance(s)	257.8	966.6	266.5	0.	0.0	60.0	0.0	236.0	524.3	1,262.6	0.0	0.0
90.48	Bot - Section 3	234.5	90.6					0.0	22.1	234.5	112.7	0.0	0.0
95.00		258.0	1,564.8					0.0	210.0	258.0	1,774.8	0.0	0.0
95.98	Top - Section 2	230.3	334.7					0.0	45.7	230.3	380.4	0.0	0.0
100.00	Appurtenance(s)	409.9	616.9	276.4	0.	0.0	225.0	0.0	186.4	686.4	1,028.3	0.0	0.0
105.00		445.6	746.2					0.0	232.1	445.6	978.2	0.0	0.0
110.00	Appurtenance(s)	435.2	721.7	2,765.2	0.	0.0	1,775.6	0.0	232.1	3,200.4	2,729.5	0.0	0.0
115.00		299.4	697.3					0.0	211.9	299.4	909.2	0.0	
117.00	Appurtenance(s)	209.4	272 <u>.</u> 1		0.	0.0	180.0		84.7	361.3	536.8	0.0	
120.00		207.1	400.8					0.0	127.1	207.1	527.9	0.0	
122.00	Appurtenance(s)	163.4	262.3		0.		12.0	0.0	84.7	299.7	359.1	0.0	
124.00	Appurtenance(s)	121.5	258.4		0.	0.0	38.4	0.0	84.0		380.8	0.0	
125.00		238.0	127.7					0.0	41.2		168.9	0.0	
130.00		389.3	624.1					0.0	205.9	389.3	830.0	0.0	
135.00	Dat Castian 4	338.0	599.7					0.0	205.9	338.0	805.6	0.0	
138.93	Bot - Section 4 Appurtenance(s)	185.8	454.8		0.	0 463.8	20522	0.0	162.1	185.8	616.8	0.0	
140.00	Top - Section 3	150.0	194.1		0.0	J 403.8	3,952.3	0.0	43.9	3,959.5	4,190.3 590.5	0.0	
143.03	Top = Section 3	181.3	541.7					0.0	48.8	181.3		0.0	
145.00 149.00	Appurtenance(s)	211.1 140.3	131.1 258.7		0	0 24,470,9	4,872,0	0.0 0.0	31.8 64.5	211 <u>.</u> 1 9,101.4	162.9 5,195.2	0.0	
143.00	Appuncenance(S)	140.3	200./	0,901.1	0.	· 24,4/0.9	4,072.0	0.0	04.5	5,101.4	5,195.2		
								Тс	otals:	30,572.5	50,132.8	0.00	0.00

Code: ANSI/TIA-222-G

© 2007 - 2019 by ATC IP LLC. All rights reserved.

Site Name: Kent Pcs CT, CT

Customer: AT&T MOBILITY

Engineering Number:

9/18/2019 4:22:17 PM

Load Case: 1.2D + 1.6W	90 mph with No Ice	22 Iterations
Gust Response Factor :1.10		Wind Importance Factor 1.00

Gust Response Factor :1.10 Dead Load Factor :1.20 Wind Load Factor :1.60

Calculated Forces

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
0.00	-50.09	-30.39	0.00	-3,423.19	0.00	3,423.19	4,509.35	2,254.68	11,158.5	5,587.56	0.00	0.00	0.624
5.00	-48.33	-30.04	0.00	-3,271.22	0.00	3,271.22	•	•	10,816.2	•	0.08	-0.15	0.615
10.00	-46.61	-29.68	0.00	-3,121.05	0.00	3,121.05	4,410.95	2,205.48	10,474.5	5,245.08	0.31	-0.29	0.606
15.00	-44.91	-29.32	0.00	-2,972.65	0.00	2,972.65			10,133.9		0.70	-0.44	0.596
20.00	-43.24	-28.94	0.00	-2,826.06	0.00	2,826.06	4,305.66	2,152.83	9,794.63	4,904.59	1.25	-0.60	0.586
25.00	-41.60	-28.55	0.00	-2,681.35	0.00	2,681.35	4,250.43	2,125.22	9,456.78	4,735.42	1.95	-0.75	0.576
30.00	-40.00	-28.14	0.00	-2,538.63	0.00	2,538.63	4,193.48	2,096.74	9,120.71	4,567.13	2.82	-0.91	0.566
35.00	-38.42	-27.71	0.00	-2,397.95	0.00	2,397.95	4,134.81	2,067.40	8,786.66	4,399.86	3.85	-1.06	0.554
40.00	-36.88	-27.29	0.00	-2,259.39	0.00	2,259.39	4,074.41	2,037.21	8,454.90	4,233.73	5.05	-1.22	0.543
44.83	-35.45	-27.05	0.00	-2,127.65	0.00	2,127.65	4,014.46	2,007.23	8,136.95	4,074.52	6.37	-1.38	0.531
45.00	-35.33	-26.84	0.00	-2,123.00	0.00	2,123.00	4,012.29	2,006.15	8,125.68	4,068.88	6.42	-1.38	0.531
50.00	-32.67	-26.49	0.00	-1,988.82	0.00	1,988.82	3,948.45	1,974.23	7,799.26	3,905.43	7.96	-1.55	0.518
51.63	-31.79	-26.26	0.00	-1,945.57	0.00	1,945.57	3,967.50	1,983.75	7,895.42	3,953.58	8.50	-1.60	0.500
55.00	-30.80	-25.88	0.00	-1,857.15	0.00	1,857.15	3,923.88	1,961.94	7,676.69	3,844.05	9.67	-1.71	0.491
60.00	-29.37	-25.41	0.00	-1,727.77	0.00	1,727.77	3,857.67	1,928.83	7,354.55	3,682.74	11.55	-1.87	0.477
65.00	-27.97	-24.94	0.00	-1,600.73	0.00	1,600.73	3,789.73	1,894.87	7,035.83	3,523.15	13.59	-2.03	0.462
70.00	-26.60	-24.47	0.00	-1,476.05	0.00	1,476.05	3,720.08	1,860.04	6,720.79	3,365.39	15.80	-2.19	0.446
75.00	-25.27	-23.99	0.00	-1,353.73	0.00	1,353.73	3,648.70	1,824.35	6,409.67	3,209.60	18.17	-2.34	0.429
80.00	-23.96	-23.52	0.00	-1,233.76	0.00	1,233.76	3,575.60	1,787.80	6,102.74	3,055.91	20.71	-2.50	0.411
85.00	-22.48	-22.78	0.00	-1,116.15	0.00	1,116.15	3,500.77	1,750.39	5,800.26	2,904.44	23.41	-2.65	0.391
90.00	-21.21	-22.22	0.00	-1,002.27	0.00	1,002.27	3,424.23	1,712.11	5,502.49	2,755.33	26.27	-2.81	0.370
90.48	-21.08	-22.01	0.00	-991.68	0.00	991.68	3,416.84	1,708.42	5,474.36	2,741.25	26.55	-2.82	0.368
95.00	-19.29	-21.69	0.00	-892.12	0.00	892.12	3,345.96	1,672.98	5,209.67	2,608.71	29.29	-2.96	0.348
95.98	-18.90	-21.47	0.00	-870.77	0.00	870.77	2,667.09	1,333.55	4,209.17	2,107.71	29.90	-2.99	0.420
100.00	-17.86	-20.77	0.00	-784.57	0.00	784.57	2,621.36	1,310.68	4,031.88	2,018.94	32.46	-3.10	0.396
105.00	-16.85	-20.32	0.00	-680.72	0.00	680.72	2,562.85	1,281.43	3,813.95	1,909.81	35.80	-3.26	0.363
110.00	-14.27	-17.00	0.00	-579.14	0.00	579.14	2,502.63	1,251.31	3,599.38	1,802.37	39.30	-3.41	0.327
115.00	-13.35	-16.67	0.00	-494.16	0.00	494.16	2,440.68	1,220.34	3,388.44	1,696.74	42.94	-3.55	0.297
117.00	-12.82	-16.29	0.00	-460.82	0.00	460.82	2,415.42	1,207.71	3,305.13	1,655.02	44.44	-3.61	0.284
120.00	-12.28	-16.06	0.00	-411.96	0.00	411.96	,		3,181.38		46.74	-3.69	0.264
122.00	-11.93	-15.75	0.00	-379.84	0.00	379.84	2,351.06	1,175.53	3,099.69	1,552.15	48.29	-3.74	0.250
124.00	-11.56	-15.41	0.00	-348.34	0.00	348.34	2,324.84	1,162.42	3,018.69	1,511.59	49.87	-3.79	0.236
125.00	-11.39	-15.17	0.00	-332.93	0.00	332.93	2,311.62	1,155.81	2,978.45	1,491.44	50.67	-3.82	0.228
130.00	-10.57	-14.74	0.00	-257.08	0.00	257.08	2,226.60	1,113.30	2,757.75	1,380.92	54.72	-3.92	0.191
135.00	-9.77	-14.36	0.00	-183.36	0.00	183.36	2,137.76	1,068.88	2,540.99	1,272.38	58.88	-4.01	0.149
138.93	-9.16	-14.14	0.00	-126.85	0.00	126.85	2,067.85	1,033.92	2,376.65	1,190.09	62.21	-4.07	0.111
140.00	-5.25	-9.89	0.00	-111.32	0.00	111.32	2,048.92	1,024.46	2,333.11	1,168.29	63.12	-4.08	0.098
143.03	-4.67	-9.67	0.00	-81.38	0.00	81.38	1,074.70	537.35	1,219.01	610.41	65.71	-4.11	0.138
145.00	-4.52	-9.45	0.00	-62.28	0.00	62.28	1,063.79	531.90	1,185.67	593.71	67.42	-4.13	0.109
149.00	0.00	-9.10	0.00	-24.47	0.00	24.47	1,040.86	520.43	1,118.54	560.10	70.89	-4.16	0.044

Site Number: 413783	Code: ANSI/TIA-222-G	© 2007 - 2019 by ATC IP LLC. All rights reserved
Site Name: Kent Pcs CT, CT Customer: AT&T MOBILITY	Engineering Number:	9/18/2019 4:22:17 PM
Load Case: 0.9D + 1.6W	90 mph with No Ice (Reduced DL)	22 Iterations
Load Case: 0.9D + 1.6W Gust Response Factor :1.10 Dead Load Factor :0.90	90 mph with No Ice (Reduced DL)	22 Iterations Wind Importance Factor 1.00

Applied Segment Forces Summary

	Shaft Forces				Discret	e Forces		Linear F	orces		Sum o	f Forces	
Seg			Dead		Torsion	Moment	Dead		Dead		Dead	Torsion	Momen
Elev		Wind FX	Load	Wind FX	MY	MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ
(ft)	Description	(lb)	(lb)	(lb)	(lb-ft)	(lb-ft)	(lb)	(lb)	(lb)	(lb)	(lb)	(lb-ft)	(lb)
0.00		242.7	0.0					0.0	0.0	242.7	0.0	0.0	
5.00		480.6	1,084.8					0.0	177.0	480.6	1,261.8	0.0	
10.00		470.8	1,062.8					0.0	177.0	470.8	1,239.9	0.0	
15.00		468.2	1,040.8					0.0	177.0	468.2	1,217.9	0.0	
20.00		478.0	1,018.9					0.0	177.0	478.0	1,195.9	0.0	
25.00		490.4	996.9					0.0	177.0	490.4	1,173.9	0.0	
30.00		498.5	974.9					0.0	177.0	498.5	1,152.0	0.0	
35.00		503.4	953.0					0.0	177.0	503.4	1,130.0	0.0	
40.00	B (497.1	931.0					0.0	177.0	497.1	1,108.0	0.0	
44.83	Bot - Section 2	253.4	878.1					0.0	170.9	253.4	1,049.1	0.0	
45.00		265.7	62.2					0.0	6.1	265.7	68.3	0.0	
50.00		340.6	1,787.8					0.0	177.0	340.6	1,964.8	0.0	
51.63	Top - Section 1	256.0	574.3					0.0	57.8	256.0	632.1	0.0	
55.00		426.7	589.4					0.0	119.2	426.7	708.6	0.0	
60.00		506.9	856.8					0.0	177.0	506.9	1,033.8	0.0	
65.00		502.2	834.8					0.0	177.0	502.2	1,011.8	0.0	
70.00		496.6	812.8					0.0	177.0	496.6	989.9	0.0	
75.00		490.2	790.8					0.0	177.0	490.2	967.9	0.0	
80.00		483.0	768.9					0.0	177.0	483.0	945.9	0.0	
85.00	Appurtenance(s)	475.2	746.9	267.1			168.8		177.0	742.3	1,092.7	0.0	
90.00	Appurtenance(s)	257.8	724.9	266.5	0.	0.0	45.0	0.0	177.0	524.3	947.0	0.0	
90.48	Bot - Section 3	234.5	67.9					0.0	16.6	234.5	84.5	0.0	
95.00		258.0	1,173.6					0.0	157.5	258.0	1,331.1	0.0	
95.98	Top - Section 2	230.3	251.0					0.0	34.3	230.3	285.3	0.0	
100.00	Appurtenance(s)	409.9	462.7	276.4	0.	0.0	168.8	0.0	139.8	686.4	771.2	0.0	
05.00	• • • • • • •	445.6	559.6					0.0	174.1	445.6	733.7	0.0	
110.00	Appurtenance(s)	435.2	541.3		. 0.	0.0	1,331.7	0.0	174.1	3,200.4	2,047.1	0.0	
115.00		299.4	523.0					0.0	158.9	299.4	681.9	0.0	
117.00	Appurtenance(s)	209.4	204.1	151.9	0.	0.0	135.0		63.6	361.3	402.6	0.0	
120.00	• • • • • • •	207.1	300.6					0.0	95.3	207.1	396.0	0.0	
22.00	Appurtenance(s)	163.4	196.7	136.4			9.0		63.6	299.7	269.3	0.0	
124.00	Appurtenance(s)	121.5	193.8	206.6	0.	0.0	28.8	0.0	63.0	328.1	285.6	0.0	
125.00		238.0	95.8					0.0	30.9	238.0	126.7	0.0	
30.00		389.3	468.1					0.0	154.4	389.3	622.5	0.0	
135.00		338.0	449.8					0.0	154.4	338.0	604.2	0.0	
138.93	Bot - Section 4	185.8	341.1					0.0	121.5	185.8	462.6	0.0	
140.00	Appurtenance(s)	150.0	145.6		0 .	0 463.8	2,964.2		32.9	3,959.5	3,142.7	0.0	
143.03	Top - Section 3	181.3	406.3					0.0	36.6	181.3	442.9	0.0	
145.00		211.1	98.3					0.0	23.9	211.1	122.2	0.0	
149.00	Appurtenance(s)	140.3	194.0	8,961.1	0.	0 24,470.9	3,654.0	0.0	48.3	9,101.4	3,896.4	0.0	0.
								Тс	otals:	30,572.5	37,599.6	0.00	0.0

Code: ANSI/TIA-222-G

90 mph with No Ice (Reduced DL)

© 2007 - 2019 by ATC IP LLC. All rights reserved.

Wind Importance Factor 1.00

Site Name: Kent Pcs CT, CT

Customer: AT&T MOBILITY

Engineering Number:

9/18/2019 4:22:20 PM

22 Iterations

Load Case: 0.9D + 1.6W

Gust Response Factor :1.10 Dead Load Factor :0.90

Wind Load Factor :1.60

Calculated Forces

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
0.00	-37.56	-30.38	0.00	-3,392.46	0.00	3,392.46	4,509.35	2,254.68	11,158.5	5,587.56	0.00	0.00	0.616
5.00	-36.22	-29.99	0.00	-3,240.57	0.00	3,240.57			10,816.2		0.08	-0.14	0.607
10.00	-34.91	-29.60	0.00	-3,090.64	0.00	3,090.64	4,410.95	2,205.48	10,474.5	5,245.08	0.31	-0.29	0.597
15.00	-33.62	-29.21	0.00	-2,942.63	0.00	2,942.63	4,359.17	2,179.58	10,133.9	5,074.52	0.69	-0.44	0.588
20.00	-32.35	-28.81	0.00	-2,796.57	0.00	2,796.57	4,305.66	2,152.83	9,794.63	4,904.59	1.23	-0.59	0.578
25.00	-31.11	-28.39	0.00	-2,652.52	0.00	2,652.52	4,250.43	2,125.22	9,456.78	4,735.42	1.93	-0.74	0.568
30.00	-29.89	-27.96	0.00	-2,510.57	0.00	2,510.57	4,193.48	2,096.74	9,120.71	4,567.13	2.79	-0.90	0.557
35.00	-28.69	-27.51	0.00	-2,370.80	0.00	2,370.80	4,134.81	2,067.40	8,786.66	4,399.86	3.82	-1.05	0.546
40.00	-27.52	-27.07	0.00	-2,233.24	0.00	2,233.24	4,074.41	2,037.21	8,454.90	4,233.73	5.00	-1.21	0.534
44.83	-26.44	-26.83	0.00	-2,102.55	0.00	2,102.55	4,014.46	2,007.23	8,136.95	4,074.52	6.31	-1.36	0.523
45.00	-26.34	-26.60	0.00	-2,097.94	0.00	2,097.94	4,012.29	2,006.15	8,125.68	4,068.88	6.36	-1.37	0.522
50.00	-24.33	-26.25	0.00	-1,964.95	0.00	1,964.95	3,948.45	1,974.23	7,799.26	3,905.43	7.88	-1.53	0.509
51.63	-23.67	-26.02	0.00	-1,922.08	0.00	1,922.08	3,967.50	1,983.75	7,895.42	3,953.58	8.41	-1.58	0.492
55.00	-22.91	-25.62	0.00	-1,834.49	0.00	1,834.49	3,923.88	1,961.94	7,676.69	3,844.05	9.57	-1.69	0.483
60.00	-21.83	-25.14	0.00	-1,706.38	0.00	1,706.38	3,857.67	1,928.83	7,354.55	3,682.74	11.43	-1.85	0.469
65.00	-20.77	-24.66	0.00	-1,580.67	0.00	1,580.67	3,789.73	1,894.87	7,035.83	3,523.15	13.45	-2.01	0.454
70.00	-19.73	-24.18	0.00	-1,457.36	0.00	1,457.36	3,720.08	1,860.04	6,720.79	3,365.39	15.63	-2.16	0.439
75.00	-18.72	-23.71	0.00	-1,336.44	0.00	1,336.44	3,648.70	1,824.35	6,409.67	3,209.60	17.98	-2.32	0.422
80.00	-17.73	-23.23	0.00	-1,217.91	0.00	1,217.91	3,575.60	1,787.80	6,102.74	3,055.91	20.49	-2.47	0.404
85.00	-16.61	-22.49	0.00	-1,101.75	0.00	1,101.75	3,500.77	1,750.39	5,800.26	2,904.44	23.16	-2.62	0.384
90.00	-15.66	-21.94	0.00	-989.32	0.00	989.32			5,502.49		25.99	-2.77	0.364
90.48	-15.56	-21.72	0.00	-978.86	0.00	978.86			5,474.36		26.26	-2.79	0.362
95.00	-14.21	-21.42	0.00	-880.60	0.00	880.60			5,209.67		28.97	-2.92	0.342
95.98	-13.91	-21.19	0.00	-859.52	0.00	859.52	2,667.09	1,333.55	4,209.17	2,107.71	29.57	-2.95	0.413
100.00	-13.13	-20.50	0.00	-774.42	0.00	774.42			4,031.88		32.11	-3.07	0.389
105.00	-12.37	-20.05	0.00	-671.94	0.00	671.94	,		3,813.95		35.40	-3.22	0.357
110.00	-10.47	-16.76	0.00	-571.71	0.00	571.71			3,599.38		38.86	-3.37	0.322
115.00	-9.78	-16.44	0.00	-487.92	0.00	487.92	,		3,388.44		42.46	-3.51	0.292
117.00	-9.38	-16.06	0.00	-455.05	0.00	455.05			3,305.13		43.95	-3.57	0.279
120.00	-8.98	-15.84	0.00	-406.87	0.00	406.87			3,181.38		46.21	-3.65	0.259
122.00	-8.72	-15.53	0.00	-375.19	0.00	375.19	•	•	3,099.69	-	47.75	-3.70	0.246
124.00	-8.44	-15.19	0.00	-344.13	0.00	344.13	,		3,018.69		49.31	-3.75	0.231
125.00	-8.31	-14.95	0.00	-328.94	0.00	328.94	•		2,978.45	•	50.09	-3.77	0.224
130.00	-7.69	-14.54	0.00	-254.17	0.00	254.17			2,757.75		54.10	-3.88	0.188
135.00	-7.10	-14.17	0.00	-181.48	0.00	181.48			2,540.99		58.21	-3.97	0.146
138.93	-6.64	-13.95	0.00	-125.73	0.00	125.73			2,376.65		61.50	-4.02	0.109
140.00	-3.78	-9.79	0.00	-110.41	0.00	110.41			2,333.11		62.40	-4.04	0.096
143.03	-3.35	-9.57	0.00	-80.80	0.00	80.80	1,074.70		1,219.01	610.41	64.96	-4.07	0.136
145.00	-3.24	-9.36	0.00	-61.90	0.00	61.90	1,063.79		1,185.67	593.71	66.65	-4.08	0.108
149.00	0.00	-9.10	0.00	-24.47	0.00	24.47	1,040.86	520.43	1,118.54	560.10	70.08	-4.11	0.044

Code: ANSI/TIA-222-G

© 2007 - 2019 by ATC IP LLC. All rights reserved.

9/18/2019 4:22:21 PM

Site Name: Kent Pcs CT, CT

Customer: AT&T MOBILITY

Load Case: 1.2D + 1.0Di + 1.0Wi	40 mph with 0.75 in Radial Ice	21 Iterations
Gust Response Factor :1.10	Ice Dead Load Factor :1.00	Wind Importance Factor 1.00
Dead Load Factor :1.20		Ice Importance Factor :1.00
Wind Load Factor :1.00		

Engineering Number:

Applied Segment Forces Summary

		Shaft	Forces	_	Discret	e Forces		Linear F	orces		Sum o	f Forces	
Seg			Dead		Torsion	Moment	Dead		Dead		Dead	Torsion	Moment
Elev		Wind FX	Load	Wind FX	MY	MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ
(ft)	Description	(lb)	(lb)	(lb)	(lb-ft)	(lb-ft)	(lb)	(l b)	(lb)	(lb)	(lb)	(lb-ft)	(l b)
0.00		57.4	0.0					0.0	0.0	57.4	0.0	0.0	0.0
5.00		114.0	1,885.3					0.0	236.0	114.0	2,121.3	0.0	0.0
10.00		112.1	1,898.3					0.0	236.0	112.1	2,134.3	0.0	0.0
15.00		111.8	1,884.5					0.0	236.0	111.8	2,120.5	0.0	0.0
20.00		114.5	1,861.9					0.0	236.0	114.5	2,098.0	0.0	0.0
25.00		117.7	1,834.9					0.0	236.0	117.7	2,070.9	0.0	0.0
30.00		119.9	1,805.0					0.0	236.0	119.9	2,041.0	0.0	0.0
35.00		121.3	1,773.1					0.0	236.0	121.3	2,009.1	0.0	0.0
40.00		120.0	1,739.7					0.0	236.0	120.0	1,975.8	0.0	0.0
44.83	Bot - Section 2	61.2	1,647.4					0.0	227.9	61.2	1,875.4	0.0	0.0
45.00		64.3	100.3					0.0	8.1	64.3	108.4	0.0	0.0
50.00		82.4	2,878.2					0.0	236.0	82.4	3,114.2	0.0	0.0
51.63	Top - Section 1	62.1	927.1					0.0	77.1	62.1	1,004.2	0.0	
55.00	•	103.6	1,114.8					0.0	159.0	103.6	1,273.8	0.0	0.0
60.00		123.3	1.622.7					0.0	236.0	123.3	1,858.8	0.0	
65.00		122.4	1,585.5					0.0	236.0	122.4	1,821.6	0.0	
70.00		121.3	1,547.8					0.0	236.0	121.3	1,783.9	0.0	
75.00		120.0	1,509.7					0.0	236.0	120.0	1,745.7	0.0	
80.00		118.6	1,471.2					0.0	236.0	118.6	1,707.3	0.0	
85.00	Appurtenance(s)	116.9	1,432.4	48.4	0.0	0.0	313.3	0.0	236.0	165.3	1,981.7	0.0	
90.00	Appurtenance(s)	63.5	1.393.3	67.5			162.5	0.0	236.0	131.1	1.791.8	0.0	
90.48	Bot - Section 3	57.9	131.3	0.10				0.0	22.1	57.9	153.4	0.0	
95.00		63.7	1,947.7					0.0	210.0	63.7	2,157.7	0.0	
95.98	Top - Section 2	57.0	417.8					0.0	45.7	57.0	463.5	0.0	
100.00	Appurtenance(s)	101.6	948.7	50.3	0.0	0.0	315.4	0.0	186.4	152.0	1,450.5	0.0	
105.00		110.8	1,148.5		•••		• • • • • •	0.0	232.1	110.8	1,380.5	0.0	
110.00	Appurtenance(s)	108.5	1,113.3	483.1	0.0	0.0	3,397.1	0.0	232.1	591.6	4,742.5	0.0	
115.00	· · · · · · · · · · · · · · · · · · ·	74.8	1,077.9				0,00711	0.0	211.9	74.8	1,289.8	0.0	
117.00	Appurtenance(s)	52.5	422.8	31.5	0.0	0.0	252.1	0.0	84.7	84.0	759.6	0.0	
120.00	, (ppullonulloo(o)	52.0	622.7	01.0	0.	0.0	202.1	0.0	127.1	52.0	749.8	0.0	
122.00	Appurtenance(s)	41.1	408.5	51.5	0.0	0.0	48.6	0.0	84.7	92.6	541.9	0.0	
124.00	Appurtenance(s)	30.6	402.8	92.9			167.9	0.0	84.0	123.5	654.6	0.0	
125.00		60.1	199.5	0210	01	010	10/10	0.0	41.2	60.1	240.7	0.0	
130.00		98.6	970.8					0.0	205.9	98.6	1,176,7	0.0	
135.00		85.9	934.8					0.0	205.9	85.9	1,140.7	0.0	
138.93	Bot - Section 4	47.4	711.3					0.0	162.1	47.4	873.4	0.0	
140.00	Appurtenance(s)	38.3	263.9	726.3	0.0	97.1	6,634.2	0.0	43.9	764.6	6,942.0	0.0	
143.03	Top - Section 3	46.4	735.7				0,004.2	0.0	48.8	46.4	784.5	0.0	
145.00		40.4 54.2	255.8					0.0	40.0 31.8	40.4 54.2	287.6	0.0	
145.00	Appurtenance(s)	54.2 36.1	255.0	1,716.5	0.0	0 4,753,6	8,494,0	0.0	64.5	54.2 1,752.6	9,062.0	0.0	
140.00	Appartenance(5)	50.1	000.0	1,710.0		-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5,454.0						
								Тс	otals:	6,633.86	71,488.8	0.00	0.00

Code: ANSI/TIA-222-G

© 2007 - 2019 by ATC IP LLC. All rights reserved.

Site Name: Kent Pcs CT, CT

Customer: AT&T MOBILITY

Engineering Number:

9/18/2019 4:22:24 PM

Load Case: 1.2D + 1.0Di + 1.0Wi	40 mph with 0.75 in Radial Ice	21 Iterations
Gust Response Factor :1.10 Dead Load Factor :1.20	Ice Dead Load Factor 1.00	Wind Importance Factor 1.00 Ice Importance Factor :1.00
Wind Load Factor :1.00		ice importance Factor

Calculated Forces

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
0.00	-71.49	-6.60	0.00	-733.23	0.00	733.23	4,509.35	5 2,254.68	11,158.5	5,587.56	0.00	0.00	0.147
5.00	-69.36	-6.52	0.00	-700.26	0.00	700.26	4,461.01	2,230.51	10,816.2	5,416.14	0.02	-0.03	0.145
10.00	-67.22	-6.44	0.00	-667.66	0.00	667.66	4,410.95	5 2,205.48	10,474.5	5,245.08	0.07	-0.06	0.143
15.00	-65.10	-6.36	0.00	-635.45	0.00	635.45		2,179.58			0.15	-0.09	0.140
20.00	-63.00	-6.28	0.00	-603.63	0.00	603.63	4,305.66	2,152.83	9,794.63	4,904.59	0.27	-0.13	0.138
25.00	-60.92	-6.19	0.00	-572.23	0.00	572.23	4,250.43	2,125.22	9,456.78	4,735.42	0.42	-0.16	0.135
30.00	-58.88	-6.10	0.00	-541.26	0.00	541.26	4,193.48	3 2,096.74	9,120.71	4,567.13	0.60	-0.19	0.133
35.00	-56.87	-6.01	0.00	-510.75	0.00	510.75	4,134.81	2,067.40	8,786.66	4,399.86	0.82	-0.23	0.130
40.00	-54.89	-5.91	0.00	-480.71	0.00	480.71	4,074.41	2,037.21	8,454.90	4,233.73	1.08	-0.26	0.127
44.83	-53.01	-5.86	0.00	-452.18	0.00	452.18	4,014.46	5 2,007.23	8,136.95	4,074.52	1.36	-0.29	0.124
45.00	-52.90	-5.81	0.00	-451.17	0.00	451.17	4,012.29	2,006.15	8,125.68	4,068.88	1.37	-0.30	0.124
50.00	-49.79	-5.73	0.00	-422.13	0.00	422.13	3,948.45	5 1,974.23	7,799.26	3,905.43	1.70	-0.33	0.121
51.63	-48.78	-5.68	0.00	-412.78	0.00	412.78	,	1,983.75		,	1.82	-0.34	0.117
55.00	-47.51	-5.59	0.00	-393.67	0.00	393.67	3,923.88	8 1,961.94	7,676.69	3,844.05	2.07	-0.37	0.115
60.00	-45.64	-5.48	0.00	-365.73	0.00	365.73	,	1,928.83	,	,	2.47	-0.40	0.111
65.00	-43.82	-5.37	0.00	-338.34	0.00	338.34	•	3 1,894.87			2.90	-0.43	0.108
70.00	-42.04	-5.26	0.00	-311.50	0.00	311.50	3,720.08	1,860.04	6,720.79	3,365.39	3.37	-0.47	0.104
75.00	-40.29	-5.15	0.00	-285.21	0.00	285.21	3,648.70	1,824.35	6,409.67	3,209.60	3.88	-0.50	0.100
80.00	-38.58	-5.03	0.00	-259.48	0.00	259.48	3,575.60	1,787.80	6,102.74	3,055.91	4.42	-0.53	0.096
85.00	-36.60	-4.87	0.00	-234.31	0.00	234.31	3,500.77	1,750.39	5,800.26	2,904.44	4.99	-0.56	0.091
90.00	-34.80	-4.73	0.00	-209.95	0.00	209.95	3,424.23	3 1,712.11	5,502.49	2,755.33	5.60	-0.60	0.086
90.48	-34.65	-4.68	0.00	-207.70	0.00	207.70	,	1,708.42			5.66	-0.60	0.086
95.00	-32.49	-4.61	0.00	-186.52	0.00	186.52	3,345.96	5 1,672.98	5,209.67	2,608.71	6.24	-0.63	0.081
95.98	-32.03	-4.55	0.00	-181.99	0.00	181.99	2,667.09	1,333.55	4,209.17	2,107.71	6.37	-0.63	0.098
100.00	-30.58	-4.40	0.00	-163.71	0.00	163.71	2,621.36	6 1,310.68	4,031.88	2,018.94	6.91	-0.66	0.093
105.00	-29.19	-4.29	0.00	-141.72	0.00	141.72	,	5 1,281.43			7.62	-0.69	0.086
110.00	-24.46	-3.65	0.00	-120.28	0.00	120.28		3 1,251.31			8.36	-0.72	0.077
115.00	-23.17	-3.57	0.00	-102.02	0.00	102.02		3 1,220.34			9.13	-0.75	0.070
117.00	-22.41	-3.48	0.00	-94.89	0.00	94.89		2 1,207.71			9.45	-0.76	0.067
120.00	-21.66	-3.42	0.00	-84.45	0.00	84.45		1,188.51			9.93	-0.78	0.062
122.00	-21.12	-3.33	0.00	-77.60	0.00	77.60		5 1,175.53			10.26	-0.79	0.059
124.00	-20.46	-3.20	0.00	-70.95	0.00	70.95		1,162.42			10.60	-0.80	0.056
125.00	-20.22	-3.14	0.00	-67.75	0.00	67.75	2,311.62	1,155.81	2,978.45	1,491.44	10.76	-0.81	0.054
130.00	-19.05	-3.03	0.00	-52.07	0.00	52.07	,	1,113.30		,	11.62	-0.83	0.046
135.00	-17.91	-2.93	0.00	-36.92	0.00	36.92		6 1,068.88			12.50	-0.85	0.037
138.93	-17.03	-2.87	0.00	-25.39	0.00	25.39		5 1,033.92			13.20	-0.86	0.030
140.00	-10.10	-2.01	0.00	-22.23	0.00	22.23	2,048.92	2 1,024.46		1,168.29	13.39	-0.86	0.024
143.03	-9.32	-1.95	0.00	-16.16	0.00	16.16	1,074.70		1,219.01	610.41	13.94	-0.87	0.035
145.00	-9.03	-1.89	0.00	-12.31	0.00	12.31	1,063.79		1,185.67	593.71	14.30	-0.87	0.029
149.00	0.00	-1.75	0.00	-4.75	0.00	4.75	1,040.86	520.43	1,118.54	560.10	15.03	-0.88	800.0

Site Number: 413783	Code: ANSI/TIA-222-G	© 2007 - 2019 by ATC IP LLC. All rights reserved		
Site Name: Kent Pcs CT, CT	Engineering Number:	9/18/2019 4:22:25 F		
Customer: AT&T MOBILITY				
Load Case: 1.0D + 1.0W	Serviceability 60 mph	21 Iterations		
Load Case: 1.0D + 1.0W Gust Response Factor :1.10	Serviceability 60 mph	21 Iterations Wind Importance Factor :1.00		
	Serviceability 60 mph			

Applied Segment Forces Summary

		Shaft	Forces		Discret	e Forces		Linear F	orces	Sum of Forces			
Seg			Dead			Moment	Dead		Dead		Dead	Torsion	Moment
Elev		Wind FX	Load	Wind FX	MY	MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ
(ft)	Description	(lb)	(lb)	(lb)	(lb-ft)	(lb-ft)	(lb)	(l b)	(lb)	(lb)	(lb)	(lb-ft)	(lb)
0.00		60.3	0.0					0.0	0.0	60.3	0.0	0.0	0.
5.00		119.4	1,205.3					0.0	196.7	119.4	1,402.0	0.0	0.
10.00		117.0	1,180.9					0.0	196.7	117.0	1,377.6	0.0	0.
15.00		116.4	1,156.5					0.0	196.7	116.4	1,353.2	0.0	0.
20.00		118.8	1,132.1					0.0	196.7	118.8	1,328.8	0.0	0.
25.00		121.9	1,107.7					0.0	196.7	121.9	1,304.4	0.0	0.
30.00		123.9	1,083.3					0.0	196.7	123.9	1,280.0	0.0	0.
35.00		125.1	1,058.8					0.0	196.7	125.1	1,255.5	0.0	0.
40.00	Bot - Section 2	123.5	1,034.4					0.0	196.7 189.9	123.5	1,231.1	0.0	0.
44.83 45.00	Dot - Section 2	63.0 66.0	975.7 69.2					0.0	6.8	63.0 66 0	1,165.6	0.0	0. 0.
								0.0		66.0	75.9	0.0	
50.00 51.63	Top - Section 1	84.7 63.6	1,986.4 638.1					0.0 0.0	196.7 64.2	84.7 63.6	2,183.1 702.3	0.0 0.0	0. 0.
55.00	Top - Section T	106.1	654.8					0.0	132.5	106.1	787.3	0.0	0
60.00		126.0	952.0					0.0	196.7	126.0	1,148.7	0.0	0
65.00		124.8	952.0					0.0	196.7	120.0	1,146.7	0.0	0
70.00		123.4	903.1					0.0	196.7	123.4	1,099.8	0.0	0
75.00		121.8	878.7					0.0	196.7	121.8	1,035.0	0.0	Ő
80.00		120,1	854.3					0.0	196.7	120,1	1,051.0	0.0	Ő
85.00	Appurtenance(s)	118.1	829.9	66.4	0.	0.0	187.5	0.0	196.7	184.5	1,214.1	0.0	Ő
90.00	Appurtenance(s)	64.1	805.5				50.0	0.0	196.7	130.3	1,052.2	0.0	0
90.48	Bot - Section 3	58.3	75.5	00.2		0.0	50.0	0.0	18.4	58.3	93.9	0.0	0
95.00	Bot bootion o	64.1	1,304.0					0.0	175.0	64.1	1,479.0	0.0	Ő
95,98	Top - Section 2	57.2	278.9					0.0	38.1	57.2	317.0	0.0	0
100.00	Appurtenance(s)	101.9	514.1	68.7	0.	0.0	187.5	0.0	155.3	170.6	856.9	0.0	0
105.00	,	110.8	621.8		••			0.0	193.4	110.8	815.2	0.0	0
110.00	Appurtenance(s)	108.2	601.5		0.	0.0	1,479.7	0.0	193.4	795.4	2,274.6	0.0	Ő
115.00		74.4	581.1				,	0.0	176.6	74.4	757.7	0.0	0
117.00	Appurtenance(s)	52.0	226.7	37.8	0.	0.0	150.0	0.0	70.6	89.8	447.4	0.0	0
120.00	•• • • •	51.5	334.0					0.0	105.9	51.5	439.9	0.0	Ō
122.00	Appurtenance(s)	40.6	218.6	33.9	0.	0.0	10.0	0.0	70.6	74.5	299.2	0.0	0
124.00	Appurtenance(s)	30.2	215.4	51.3	0.	0.0	32.0	0.0	70.0	81.5	317.3	0.0	0
125.00		59.1	106.5					0.0	34.3	59.1	140.8	0.0	0
130.00		96.8	520.1					0.0	171.6	96.8	691.7	0.0	0
135.00		84.0	499.7					0.0	171.6	84.0	671.3	0.0	0
138.93	Bot - Section 4	46.2	379.0					0.0	135.0	46.2	514.0	0.0	0
140.00	Appurtenance(s)	37.3	161.7	946.8	0.	0 115.3	3,293.6	0.0	36.6	984.1	3,491.9	0.0	0
143.03	Top - Section 3	45.1	451.5					0.0	40.6	45.1	492.1	0.0	0
145.00		52.5	109.3					0.0	26.5	52.5	135.8	0.0	0
149.00	Appurtenance(s)	34.9	215.6	2,227.2	. 0.	0 6,082.0	4,060.0	0.0	53.7	2,262.0	4,329.3	0.0	0,
								Тс	otals:	7,598.45	41,777.4	0.00	0.0

Code: ANSI/TIA-222-G

© 2007 - 2019 by ATC IP LLC. All rights reserved.

Site Name: Kent Pcs CT, CT

Customer: AT&T MOBILITY

Engineering Number:

9/18/2019 4:22:28 PM

Load Case:1.0D + 1.0WServiceability 60 mph21 IterationsGust Response Factor :1.10Wind Importance Factor :1.00

Dead Load Factor :1.00 Wind Load Factor :1.00

Calculated Forces

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
0.00	-41.77	-7.55	0.00	-846.22	0.00	846.22	4,509.35	2,254.68	11,158.5	5,587.56	0.00	0.00	0.161
5.00	-40.37	-7.46	0.00	-808.47	0.00	808.47			10,816.2		0.02	-0.04	0.158
10.00	-38.99	-7.36	0.00	-771.19	0.00	771.19			10,474.5		0.08	-0.07	0.156
15.00	-37.63	-7.27	0.00	-734.38	0.00	734.38	4,359.17	2,179.58	10,133.9	5,074.52	0.17	-0.11	0.153
20.00	-36.30	-7.17	0.00	-698.03	0.00	698.03	4,305.66	2,152.83	9,794.63	4,904.59	0.31	-0.15	0.151
25.00	-34.99	-7.07	0.00	-662.18	0.00	662.18	4,250.43	2,125.22	9,456.78	4,735.42	0.48	-0.19	0.148
30.00	-33.70	-6.96	0.00	-626.84	0.00	626.84	4,193.48	2,096.74	9,120.71	4,567.13	0.70	-0.22	0.145
35.00	-32.44	-6.85	0.00	-592.02	0.00	592.02	4,134.81	2,067.40	8,786.66	4,399.86	0.95	-0.26	0.142
40.00	-31.21	-6.75	0.00	-557.75	0.00	557.75	4,074.41	2,037.21	8,454.90	4,233.73	1.25	-0.30	0.139
44.83	-30.04	-6.69	0.00	-525.18	0.00	525.18	4,014.46	2,007.23	8,136.95	4,074.52	1.57	-0.34	0.136
45.00	-29.96	-6.63	0.00	-524.03	0.00	524.03	4,012.29	2,006.15	8,125.68	4,068.88	1.59	-0.34	0.136
50.00	-27.78	-6.55	0.00	-490.87	0.00	490.87	3,948.45	1,974.23	7,799.26	3,905.43	1.97	-0.38	0.133
51.63	-27.07	-6.49	0.00	-480.18	0.00	480.18	3,967.50	1,983.75	7,895.42	3,953.58	2.10	-0.40	0.128
55.00	-26.28	-6.39	0.00	-458.34	0.00	458.34	3,923.88	1,961.94	7,676.69	3,844.05	2.39	-0.42	0.126
60.00	-25.13	-6.27	0.00	-426.38	0.00	426.38	3,857.67	1,928.83	7,354.55	3,682.74	2.85	-0.46	0.122
65.00	-24.00	-6.16	0.00	-395.01	0.00	395.01	3,789.73	1,894.87	7,035.83	3,523.15	3.36	-0.50	0.118
70.00	-22.90	-6.04	0.00	-364.24	0.00	364.24	3,720.08	1,860.04	6,720.79	3,365.39	3.90	-0.54	0.114
75.00	-21.82	-5.92	0.00	-334.05	0.00	334.05	3,648.70	1,824.35	6,409.67	3,209.60	4.49	-0.58	0.110
80.00	-20.77	-5.80	0.00	-304.45	0.00	304.45	3,575.60	1,787.80	6,102.74	3,055.91	5.12	-0.62	0.105
85.00	-19.55	-5.62	0.00	-275.44	0.00	275.44	3,500.77	1,750.39	5,800.26	2,904.44	5.78	-0.66	0.100
90.00	-18.50	-5.48	0.00	-247.35	0.00	247.35	3,424.23	1,712.11	5,502.49	2,755.33	6.49	-0.69	0.095
90.48	-18.40	-5.43	0.00	-244.74	0.00	244.74	3,416.84	1,708.42	5,474.36	2,741.25	6.56	-0.70	0.095
95.00	-16.92	-5.35	0.00	-220.18	0.00	220.18	3,345.96	1,672.98	5,209.67	2,608.71	7.23	-0.73	0.089
95.98	-16.61	-5.30	0.00	-214.91	0.00	214.91	2,667.09	1,333.55	4,209.17	2,107.71	7.39	-0.74	0.108
100.00	-15.75	-5.12	0.00	-193.65	0.00	193.65	2,621.36	1,310.68	4,031.88	2,018.94	8.02	-0.77	0.102
105.00	-14.93	-5.01	0.00	-168.03	0.00	168.03	2,562.85	1,281.43	3,813.95	1,909.81	8.84	-0.81	0.094
110.00	-12.67	-4.19	0.00	-142.97	0.00	142.97	2,502.63	1,251.31	3,599.38	1,802.37	9.71	-0.84	0.084
115.00	-11.91	-4.11	0.00	-122.02	0.00	122.02	2,440.68	1,220.34	3,388.44	1,696.74	10.61	-0.88	0.077
117.00	-11.46	-4.02	0.00	-113.80	0.00	113.80	2,415.42	1,207.71	3,305.13	1,655.02	10.98	-0.89	0.074
120.00	-11.02	-3.96	0.00	-101.74	0.00	101.74	2,377.01	1,188.51	3,181.38	1,593.05	11.54	-0.91	0.069
122.00	-10.72	-3.89	0.00	-93.82	0.00	93.82	2,351.06	1,175.53	3,099.69	1,552.15	11.93	-0.92	0.065
124.00	-10.41	-3.80	0.00	-86.05	0.00	86.05	2,324.84	1,162.42	3,018.69	1,511.59	12.32	-0.94	0.061
125.00	-10.27	-3.74	0.00	-82.25	0.00	82.25	2,311.62	1,155.81	2,978.45	1,491.44	12.51	-0.94	0.060
130.00	-9.57	-3.64	0.00	-63.54	0.00	63.54	2,226.60	1,113.30	2,757.75	1,380.92	13.52	-0.97	0.050
135.00	-8.90	-3.55	0.00	-45.35	0.00	45.35	2,137.76	1,068.88	2,540.99	1,272.38	14.54	-0.99	0.040
138.93	-8.39	-3.49	0.00	-31.40	0.00	31.40	2,067.85	1,033.92	2,376.65	1,190.09	15.37	-1.00	0.030
140.00	-4.91	-2.45	0.00	-27.57	0.00	27.57	2,048.92	1,024.46	2,333.11	1,168.29	15.59	-1.01	0.026
143.03	-4.42	-2.39	0.00	-20.16	0.00	20.16	1,074.70	537.35	1,219.01	610.41	16.23	-1.02	0.037
145.00	-4.29	-2.34	0.00	-15.44	0.00	15.44	1,063.79	531.90	1,185.67	593.71	16.65	-1.02	0.030
149.00	0.00	-2.26	0.00	-6.08	0.00	6.08	1,040.86	520.43	1,118.54	560.10	17.51	-1.03	0.011

Site Number: 413783 Site Name: Kent Pcs CT, CT Customer: AT&T MOBILITY

Code: ANSI/TIA-222-G Engineering Number:

© 2007 - 2019 by ATC IP LLC. All rights reserved. 9/18/2019 4:22:28 PM

Equivalent Lateral Forces Method Analysis

(Based on ASCE7-10 Chapters 11, 12, 15)

Spectral Response Acceleration for Short Period (S _s):	0.19
Spectral Response Acceleration at 1.0 Second Period (S $_1$):	0.06
Long-Period Transition Period (T _):	6
Importance Factor (I _E):	1.00
Site Coefficient F _a :	1.60
Site Coeffiecient F _v :	2.40
Response Modification Coefficient (R):	1.50
Design Spectral Response Acceleration at Short Period (S _{ds}):	0.20
Design Spectral Response Acceleration at 1.0 Second Period (S _{d1}):	0.10
Seismic Response Coefficient (C _s):	0.03
Upper Limit C _s	0.03
Lower Limit C _s	0.03
Period based on Rayleigh Method (sec):	2.07
Redundancy Factor (p):	1.30
Seismic Force Distribution Exponent (k):	1.79
Total Unfactored Dead Load:	41.78 k
Seismic Base Shear (E):	1.68 k

Load Case (1.2 + 0.2Sds) * DL + E ELFM

Seismic Equivalent Lateral Forces Method

	Height Above Base	Weight	Wz		Horizontal Force	Vertical Force	
Segment	(ft)	(I b)	(lb-ft)	C _{vx}	(lb)	(lb)	
39	147.00	269	2,000	0.015	26	334	
38	144.01	136	972	0.007	12	168	
37	141 <u>.</u> 51	492	3,414	0.026	44	610	
36	139.47	198	1,340	0.010	17	246	
35	136.97	514	3,364	0.026	43	638	
34	132.50	671	4,141	0.032	53	833	
33	127.50	692	3,983	0.030	51	858	
32	124.50	141	777	0.006	10	175	
31	123.00	285	1,541	0.012	20	354	
30	121 <u>.</u> 00	289	1,517	0.012	19	359	
29	118.50	440	2,223	0.017	28	546	
28	116.00	297	1,446	0.011	19	369	
27	112.50	758	3,489	0.027	45	940	
26	107.50	795	3,375	0.026	43	986	
25	102.50	815	3,179	0.024	41	1,011	
24	97.99	669	2,409	0.018	31	830	
23	95.49	317	1,089	0.008	14	393	
22	92.74	1,479	4,823	0.037	62	1,835	
21	90.24	94	292	0.002	4	117	
20	87.50	1,002	2,946	0.022	38	1,243	
19	82.50	1,027	2,717	0.021	35	1,274	
18	77.50	1,051	2,488	0.019	32	1,304	
17	72.50	1,075	2,259	0.017	29	1,334	

Site Number:	413783
--------------	--------

Site Name: Kent Pcs CT, CT

Code: ANSI/TIA-222-G

© 2007 - 2019 by ATC IP LLC. All rights reserved.

Engineering Number:

9/18/2019 4:22:28 PM

Customer: AT&T MOBILITY						
16	67.50	1,100	2,034	0.016	26	1,364
15	62.50	1,124	1,812	0.014	23	1,395
14	57.50	1,149	1,595	0.012	20	1,425
13	53.32	787	955	0.007	12	977
12	50.82	702	782	0.006	10	871
11	47.50	2,183	2,155	0.016	28	2,708
10	44.91	76	68	0.001	1	94
9	42 <u>.</u> 41	1,166	940	0.007	12	1,446
8	37.50	1,231	797	0.006	10	1,527
7	32.50	1,256	629	0.005	8	1,558
6	27.50	1,280	476	0.004	6	1,588
5	22.50	1,304	339	0.003	4	1,618
4	17.50	1,329	221	0.002	3	1,648
3	12.50	1,353	123	0.001	2	1,679
2	7.50	1,378	50	0.000	1	1,709
1	2.50	1,402	7	0.000	0	1,739
Samsung 700+850MHZ D	149.00	246	1,871	0.014	24	305
Samsung PCS/AWS Dual	149.00	253	1,926	0.015	25	314
Generic 3' Yagi	149.00	10	76	0.001	1	12
Raycap RVZDC-6627-PF	149.00	32	243	0.002	3	40
RFS Celwave PD220	149.00	50	380	0.003	5	62
Commscope NHH-65B-R2	149.00	262	1,994	0.015	26	325
Antel LPA-80080/6CF	149.00	126	958	0.007	12	156
Flat Low Profile Pla	149.00	1,500	11,409	0.087	146	1,861
VZW Unused Reserve:	149.00	1,581	12,022	0.092	154	1,961
Andrew ABT-DFDM-ADB	140.00	1	7	0.000	0	1
Powerwave Allgon TT1	140.00	96	653	0.005	8	119
Powerwave Allgon TT0	140.00	66	449	0.003	6	82
Raycap DC6-48-60-18-	140.00	20	136	0.001	2	25
Ericsson RRUS A2 Mod	140.00	64	433	0.003	6	79
Ericsson RRUS 4449 B	140.00	213	1,449	0.011	19	264
Ericsson RRUS 4478 B	140.00	178	1,213	0.009	16	221
Raycap DC6-48-60-18-	140.00	16	109	0.001	1	20
Ericsson RRUS 32 B2	140.00	159	1,082	0.008	14	197
Andrew SBNHH-1D65A(140.00	67	456	0.003	6	83
Powerwave Allgon P90	140.00	159	1,082	0.008	14	197
CCI DMP65R-BU4D	140.00	204	1,386	0.011	18	253
CCI HPA-65R-BUU-H6	140.00	51	347	0.003	4	63
Round Platform w/ Ha	140.00	2,000	13,610	0.104	174	2,481
Decibel DB222	124.00	32	175	0.001	2	40
Generic 3' Yagi	122.00	10	53	0.000	1	12
Stand Off	117.00	150	741	0.006	9	186
Symmetricom 58532A	110.00	0	2	0.000	0	0
Ericsson RRUS 11 B2	110 <u>.</u> 00	152	673	0.005	9	189
Ericsson RRUS 11 B12	110.00	152	673	0.005	9	189
Ericsson RRUS 11 B4	110.00	152	673	0.005	9	189
RFS APX16DWV-16DWVS-	110.00	122	540	0.004	7	151
Commscope LNX-6515DS	110 <u>.</u> 00	151	668	0.005	9	187
Flat T-Arm	110.00	750	3,318	0.025	43	930
Generic Flat Side Ar	100.00	188	700	0.005	9	233
dbSpectra DS4C06F36D	90.00	50	155	0.001	2	62
Generic Flat Side Ar	85.00	188	523	0.004	7	233
		41,777	130,953	1.000	1,678	51,826

Load Case (0.9 - 0.2Sds) * DL + E ELFM

Seismic (Reduced DL) Equivalent Lateral Forces Method

	Height Above Base	Weight	Wz		Horizontal Force	Vertical Force
Segment	(ft)	(I b)	(lb-ft)	C _{vx}	(lb)	(lb)
39 38	147.00 144.01	269 136	2,000 972	0.015 0.007	26 12	231 117

Site	Number:	413783
0.00	1101110011	

Site Name: Kent Pcs CT, CT

Customer: AT&T MOBILITY

© 2007 - 2019 by ATC IP LLC. All rights reserved.

Engineering Number:

9/18/2019 4:22:28 PM

Customer. After MODIEIT						
37	141.51	492	3,414	0.026	44	423
36	139.47	198	1,340	0.010	17	170
35	136.97	514	3,364	0.026	43	442
34	132.50	671	4,141	0.032	53	577
33	127 <u>.</u> 50	692	3,983	0.030	51	594
32	124.50	141	777	0.006	10	121
31	123.00	285	1,541	0.012	20	245
30	121.00	289	1,517	0.012	19	249
29	118.50	440	2,223	0.017	28	378
28	116.00	297	1,446	0.011	19	256
27	112.50	758	3,489	0.027	45	651
26	107.50	795	3,375	0.026	43	683
25	102.50	815	3,179	0.024	41	701
24	97.99	669	2,409	0.018	31	575
23	95.49	317	1,089	0.008	14	272
22	92.74	1,479	4,823	0.037	62	1,271
21	90.24	94	292	0.002	4	81
20	87.50	1,002	2,946	0.022	38	861
19	82.50	1,027	2,717	0.021	35	882
18	77.50	1,051	2,488	0.019	32	903
17	72.50	1,075	2,259	0.017	29	924
16	67.50	1,100	2,034	0.016	26	945
15 14	62.50 57.50	1,124 1,149	1,812	0.014 0.012	23 20	966 987
13	53.32	787	1,595 955	0.007	12	677
12	50.82	702	782	0.006	12	604
11	47.50	2,183	2,155	0.016	28	1,876
10	44.91	76	2,155	0.001	1	65
9	42.41	1,166	940	0.007	12	1,002
8	37.50	1,231	797	0.006	10	1,058
7	32.50	1,256	629	0.005	8	1,079
6	27.50	1,280	476	0.004	6	1,100
5	22.50	1,304	339	0.003	4	1,121
4	17.50	1,329	221	0.002	3	1,142
3	12.50	1,353	123	0.001	2	1,163
2	7.50	1,378	50	0.000	1	1,184
1	2.50	1,402	7	0.000	0	1,205
Samsung 700+850MHZ D	149.00	246	1,871	0.014	24	211
Samsung PCS/AWS Dual	149.00	253	1,926	0.015	25	218
Generic 3' Yagi	149.00	10	76	0.001	1	9
Raycap RVZDC-6627-PF	149.00	32	243	0.002	3	28
RFS Celwave PD220	149.00	50	380	0.003	5	43
Commscope NHH-65B-R2	149.00	262	1,994	0.015	26	225
Antel LPA-80080/6CF	149.00	126	958	0.007	12	108
Flat Low Profile Pla	149.00	1,500	11,409	0.087	146	1,289
VZW Unused Reserve:	149.00	1,581	12,022	0.092	154	1,358
Andrew ABT-DFDM-ADB	140.00	1 96	7	0.000	0 8	1
Powerwave Allgon TT1 Powerwave Allgon TT0	140.00 140.00	66	653	0.005 0.003	6	83 57
Raycap DC6-48-60-18-	140.00	20	449 136	0.003	2	17
Ericsson RRUS A2 Mod	140.00	64	433	0.003	6	55
Ericsson RRUS 4449 B	140.00	213	433 1,449	0.011	19	183
Ericsson RRUS 4478 B	140.00	178	1,213	0.009	16	153
Raycap DC6-48-60-18-	140.00	16	109	0.001	1	14
Ericsson RRUS 32 B2	140.00	159	1,082	0.008	14	137
Andrew SBNHH-1D65A (140.00	67	456	0.003	6	58
Powerwave Allgon P90	140.00	159	1,082	0.008	14	137
CCI DMP65R-BU4D	140.00	204	1,386	0.011	18	175
CCI HPA-65R-BUU-H6	140.00	51	347	0.003	4	44
Round Platform w/ Ha	140.00	2,000	13,610	0.104	174	1,719
Decibel DB222	124.00	32	175	0.001	2	28
Generic 3' Yagi	122.00	10	53	0.000	1	9
Stand Off	117.00	150	741	0.006	9	129
Symmetricom 58532A	110.00	0	2	0.000	0	0

Code: ANSI/TIA-222-G

© 2007 - 2019 by ATC IP LLC. All rights reserved.

9/18/2019 4:22:28 PM

Site Name: Kent Pcs CT, CT

Ericsson RRUS 11 B2	110.00	152	673	0.005	9	13
Ericsson RRUS 11 B12	110.00	152	673	0.005	9	13
Ericsson RRUS 11 B4	110.00	152	673	0.005	9	13
RFS APX16DWV-16DWVS-	110.00	122	540	0.004	7	10
Commscope LNX-6515DS	110.00	151	668	0.005	9	13
Flat T-Arm	110.00	750	3,318	0.025	43	64
Generic Flat Side Ar	100.00	188	700	0.005	9	16
dbSpectra DS4C06F36D	90.00	50	155	0.001	2	4
Generic Flat Side Ar	85.00	188	523	0.004	7	16

Engineering Number:

Code: ANSI/TIA-222-G

© 2007 - 2019 by ATC IP LLC. All rights reserved.

Site Name: Kent Pcs CT, CT

Engineering Number:

9/18/2019 4:22:28 PM

Customer: AT&T MOBILITY

Load Case (1.2 + 0.2Sds) * DL + E ELFM Seismic Equivalent Lateral Forces Method

Calculated Forces

l	Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect⊺ (in)	Rotation (deg)	Ratio
	0.00	-50.09	-1.68	0.00	-205.11	0.00	205.11	4 509 35		11,158,5	5 587 56	0.00	0.00	0.048
		-48.38	-1.69	0.00	-196.71	0.00	196.71	,	· ·	10,816.2	,	0.00	-0.01	0.047
		-46.70	-1.69	0.00	-188.27	0.00	188.27		•	10,474.5		0.02	-0.02	0.046
		-45.05	-1.70	0.00	179.81	0.00	179.81			10,133.9	-	0.04	-0.03	0.046
		-43.43	-1.70	0.00	-171.33	0.00	171.33	•	,	9.794.63	•	0.07	-0.04	0.045
		-41.84	-1.70	0.00	-162.84	0.00	162.84	,	,	9,456.78		0.12	-0.05	0.044
		-40.29	-1.69	0.00	-154.35	0.00	154.35	-		9.120.71	-	0.17	-0.05	0.043
		-38.76	-1.69	0.00	-145.88	0.00	145.88	,	,	8,786.66	,	0.23	-0.06	0.043
		-37.31	-1.68	0.00	-137.43	0.00	137.43			8,454.90		0.31	-0.07	0.042
	44.83	-37.22	-1.68	0.00	-129.31	0.00	129.31			8,136.95		0.38	-0.08	0.041
	45.00	-34.51	-1.66	0.00	-129.02	0.00	129.02			8,125.68		0.39	-0.08	0.040
	50.00	-33.64	-1.65	0.00	-120.74	0.00	120.74	3,948.45	1,974.23	7,799.26	3,905.43	0.48	-0.09	0.039
	51.63	-32.66	-1.64	0.00	-118.05	0.00	118.05	3,967.50	1,983.75	7,895.42	3,953.58	0.51	-0.10	0.038
	55.00	-31.24	-1.62	0.00	-112.53	0.00	112.53	3,923.88	1,961.94	7,676.69	3,844.05	0.58	-0.10	0.037
	60.00	-29.84	-1.60	0.00	-104.44	0.00	104.44	3,857.67	1,928.83	7,354.55	3,682.74	0.70	-0.11	0.036
	65.00	-28.48	-1.57	0.00	-96.45	0.00	96.45	3,789.73	1,894.87	7,035.83	3,523.15	0.82	-0.12	0.035
	70.00	-27.14	-1.55	0.00	-88.58	0.00	88.58	3,720.08	1,860.04	6,720.79	3,365.39	0.96	-0.13	0.034
	75.00	-25.84	-1.52	0.00	-80.85	0.00	80.85	3,648.70	1,824.35	6,409.67	3,209.60	1.10	-0.14	0.032
	80.00	-24.56	-1.48	0.00	-73.27	0.00	73.27	3,575.60	1,787.80	6,102.74	3,055.91	1.25	-0.15	0.031
	85.00	-23.09	-1.44	0.00	-65.86	0.00	65.86	3,500.77	1,750.39	5,800.26	2,904.44	1.42	-0.16	0.029
		-22.91	-1.43	0.00	-58.68	0.00	58.68			5,502.49		1.59	-0.17	0.028
		-21.08	-1.37	0.00	-58.00	0.00	58.00	3,416.84	1,708.42	5,474.36	2,741.25	1.61	-0.17	0.027
	95.00	-20.68	-1.35	0.00	-51.81	0.00	51.81	3,345.96	1,672.98	5,209.67	2,608.71	1.77	-0.18	0.026
	95.98	-19.85	-1.32	0.00	-50.48	0.00	50.48	•		4,209.17		1.81	-0.18	0.031
1	00.00	-18.61	-1.27	0.00	-45.17	0.00	45.17	2,621.36	1,310.68	4,031.88	2,018.94	1.96	-0.19	0.029
		-17.62	-1.23	0.00	-38.82	0.00	38.82	2,562.85	1,281.43	3,813.95	1,909.81	2.16	-0.20	0.027
1	10.00	-14.85	-1.09	0.00	-32.69	0.00	32.69	•		3,599.38		2.37	-0.20	0.024
		-14.48	-1.07	0.00	-27.23	0.00	27.23			3,388.44		2.59	-0.21	0.022
		-13.75	-1.03	0.00	-25.09	0.00	25.09			3,305.13		2.68	-0.21	0.021
		-13.39	-1.01	0.00	-21.99	0.00	21.99			3,181.38		2.82	-0.22	0.019
		-13.02	-0.99	0.00	-19.96	0.00	19.96			3,099.69		2.91	-0.22	0.018
		-12.81	-0.98	0.00	-17.98	0.00	17.98			3,018.69		3.00	-0.22	0.017
		-11.95	-0.93	0.00	-17.00	0.00	17.00			2,978.45		3.05	-0.23	0.017
		-11.12	-0.87	0.00	-12.38	0.00	12.38		•	2,757.75		3.29	-0.23	0.014
		-10.48	-0.82	0.00	-8.03	0.00	8.03			2,540.99		3.53	-0.24	0.011
		-10.23	-0.81	0.00	-4.78	0.00	4.78			2,376.65		3.73	-0.24	0.009
	40.00	-5.54	-0.46	0.00	-3.92	0.00	3.92			2,333.11		3.78	-0.24	0.006
	43.03	-5.37	-0.44	0.00	-2.54		2.54	,		1,219.01	610.41	3.93	-0.24	0.009
	45.00	-5.03	-0.42	0.00	-1.67	0.00	1.67	1,063.79		1,185.67	593.71	4.03	-0.24	0.008
1	49.00	0.00	-0.40	0.00	0.00	0.00	0.00	1,040.86	520.43	1,118.54	560.10	4.23	-0.24	0.000

Code: ANSI/TIA-222-G

© 2007 - 2019 by ATC IP LLC. All rights reserved.

Site Name: Kent Pcs CT, CT

Engineering Number:

9/18/2019 4:22:29 PM

Customer: AT&T MOBILITY

Load Case (0.9 - 0.2Sds) * DL + E ELFM

Seismic (Reduced DL) Equivalent Lateral Forces Method

Calculated Forces

Seg Elev		Vu FX (-)	Tu MY	Mu MZ	Mu MX	Resultant Moment	phi Pn	phi Vn	phi Tn	phi Mn	Total Deflect	Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	Ratio
0.00	-34,70	-1.68	0.00	-202.89	0.00	202.89	4,509,35	2,254,68	11,158,5	5,587,56	0.00	0.00	0.044
5.00	-33.52	-1.68	0.00	-194.49	0.00	194.49	,	,	10,816.2	,	0.00	-0.01	0.043
	-32.35	-1.69	0.00	-186.07	0.00	186.07			10,474.5		0.02	-0.02	0.043
15.00	-31.21	-1.69	0.00	-177.64	0.00	177.64	4,359.17	2,179.58	10,133.9	5,074.52	0.04	-0.03	0.042
20.00	-30.09	-1.69	0.00	-169.20	0.00	169.20	4,305.66	2,152.83	9,794.63	4,904.59	0.07	-0.04	0.041
25.00	-28.99	-1.69	0.00	-160.75	0.00	160.75	4,250.43	2,125.22	9,456.78	4,735.42	0.12	-0.04	0.041
30.00	-27.91	-1.68	0.00	-152.32	0.00	152.32	4,193.48	2,096.74	9,120.71	4,567.13	0.17	-0.05	0.040
35.00	-26.85	-1.67	0.00	-143.92	0.00	143.92	4,134.81	2,067.40	8,786.66	4,399.86	0.23	-0.06	0.039
40.00	-25.85	-1.67	0.00	-135.54	0.00	135.54	4,074.41	2,037.21	8,454.90	4,233.73	0.30	-0.07	0.038
44.83	-25.78	-1.67	0.00	-127.50	0.00	127.50	4,014.46	2,007.23	8,136.95	4,074.52	0.38	-0.08	0.038
	-23.91	-1.64	0.00	-127.21	0.00	127.21	4,012.29	2,006.15	8,125.68	4,068.88	0.38	-0.08	0.037
	-23.30	-1.63	0.00	-119.02	0.00	119.02	3,948.45	1,974.23	7,799.26	3,905.43	0.48	-0.09	0.036
	-22.63	-1.62	0.00	-116.35	0.00	116.35	•	,	7,895.42		0.51	-0.10	0.035
55.00	-21.64	-1.60	0.00	-110.90	0.00	110.90			7,676.69		0.58	-0.10	0.034
	-20.67	-1.58	0.00	-102.90	0.00	102.90	•		7,354.55		0.69	-0.11	0.033
	-19.73	-1.55	0.00	-95.01	0.00	95.01	•		7,035.83	•	0.81	-0.12	0.032
	-18.80	-1.53	0.00	-87.24	0.00	87.24	•	,	6,720.79	,	0.94	-0.13	0.031
	-17.90	-1.49	0.00	-79.61	0.00	79.61			6,409.67		1.09	-0.14	0.030
	-17.02	-1.46	0.00	-72.13	0.00	72.13	•		6,102.74		1.24	-0.15	0.028
	-16.00	-1.42	0.00	-64.83	0.00	64.83	•		5,800.26	•	1.40	-0.16	0.027
	-15.87	-1.41	0.00	-57.75	0.00	57.75	•	,	5,502.49	,	1.57	-0.17	0.026
	-14.60	-1.35	0.00	-57.08	0.00	57.08			5,474.36		1.59	-0.17	0.025
	-14.33	-1.33	0.00	-50.99	0.00	50.99			5,209.67	•	1.75	-0.18	0.024
	-13.75	-1.30	0.00	-49.68	0.00	49.68	•		4,209.17	•	1.78	-0.18	0.029
100.00		-1.25	0.00	-44.45	0.00	44.45			4,031.88		1.94	-0.18	0.027
105.00		-1.21	0.00	-38.19	0.00	38.19	•	,	3,813.95	,	2.13	-0.19	0.025
110.00		-1.07	0.00	-32.16	0.00	32.16			3,599.38		2.34	-0.20	0.022
115.00		-1.06	0.00	-26.79	0.00	26.79			3,388.44		2.56	-0.21	0.020
117.00	-9.52	-1.02	0.00	-24.68	0.00	24.68			3,305.13		2.64	-0.21	0.019
120.00	-9.27	-1.00	0.00	-21.63	0.00	21.63	,	,	3,181.38	· ·	2.78	-0.22	0.017
122.00	-9.02	-0.98	0.00	-19.64	0.00	19.64	-	-	3,099.69	-	2.87	-0.22	0.016
124.00	-8.87	-0.96	0.00	-17.69	0.00	17.69	•		3,018.69		2.96	-0.22	0.016
125.00	-8.28	-0.91	0.00	-16.72	0.00	16.72			2,978.45		3.01	-0.22	0.015
130.00	-7.70	-0.86	0.00	-12.17	0.00	12.17			2,757.75		3.24	-0.23	0.012
135.00	-7.26	-0.81	0.00	-7.90		7.90			2,540.99		3.49	-0.23	0.010
138.93 140.00	-7.09 -3.84	-0.79 -0.45	0.00 0.00	_4.71 _3.86	0.00 0.00	4.71 3.86			2,376.65 2,333.11		3.68 3.73	-0.23 -0.23	0.007 0.005
143.03	-3.72	-0.44	0.00	-2.50		2.50	1,074.70 1,063.79		1,219.01	610.41	3.88	-0.24	0.008
145.00	-3.49	-0.41	0.00	-1.64		1.64	-		1,185.67	593.71	3.98	-0.24	0.006
149.00	0.00	-0.40	0.00	0.00	0.00	0.00	1,040.86	520.43	1,118.54	560.10	4.17	-0.24	0.000

Code: ANSI/TIA-222-G Engineering Number:

© 2007 - 2019 by ATC IP LLC. All rights reserved. 9/18/2019 4:22:29 PM

Equivalent Modal Analysis Method

(Based on ASCE7-10 Chapters 11, 12 & 15 and ANSI/TIA-G, section 2.7)

Spectral Response Acceleration for Short Period (S _s):	0.19
Spectral Response Acceleration at 1.0 Second Period (S 1):	0.06
Importance Factor (I _E):	1.00
Site Coefficient F _a :	1.60
Site Coefficient F 🗸	2.40
Response Modification Coefficient (R):	1.50
Design Spectral Response Acceleration at Short Period (S _{ds}):	0.20
Desing Spectral Response Acceleration at 1.0 Second Period (S $_{d1}$):	0.10
Period Based on Rayleigh Method (sec):	2.07
Redundancy Factor (p):	1.30

Load Case (1.2 + 0.2Sds) * DL + E EMAM

Seismic Equivalent Modal Analysis Method

	Height Above							
	Base	Weight					Horizontal	Vertical
Commont		-	-	b		Saz	Force	Force
Segment	(ft)	(lb)	а	b	C	Saz	(lb)	(lb)
39	147.00	269	1.840	1.725	1.047	0.352	82	334
38	144.01	136	1.766	1.387	0.919	0.304	36	168
37	141.51	492	1.705	1.141	0.822	0.267	114	610
36	139 <u>.</u> 47	198	1.656	0.962	0.749	0.237	41	246
35	136.97	514	1.597	0.769	0.666	0.204	91	638
34	132.50	671	1.495	0.488	0.536	0.150	87	833
33	127.50	692	1.384	0.254	0.415	0.097	58	858
32	124.50	141	1.320	0.149	0.354	0.069	8	175
31	123.00	285	1.288	0.104	0.326	0.057	14	354
30	121.00	289	1.246	0.053	0.291	0.041	10	359
29	118.50	440	1.195	0.000	0.251	0.023	9	546
28	116.00	297	1.146	-0.041	0.216	0.008	2	369
27	112 <u>.</u> 50	758	1.077	-0.082	0.173	-0.011	-7	940
26	107.50	795	0.984	-0.114	0.123	-0.030	-21	986
25	102.50	815	0.894	-0.122	0.085	-0.041	-29	1,011
24	97.99	669	0.817	-0.115	0.059	-0.044	-25	830
23	95.49	317	0.776	-0.107	0.047	-0.043	-12	393
22	92.74	1,479	0.732	-0.096	0.037	-0.039	-50	1,835
21	90.24	94	0.693	-0.085	0.029	-0.035	-3	117
20	87.50	1,002	0.652	-0.071	0.021	-0.028	-24	1,243
19	82.50	1,027	0.579	-0.045	0.012	-0.012	-11	1,274
18	77.50	1,051	0.511	-0.020	0.008	0.005	5	1,304
17	72.50	1,075	0.447	0.002	0.006	0.022	20	1,334
16	67.50	1,100	0.388	0.022	0.007	0.035	33	1,364
15	62.50	1,124	0.333	0.037	0.010	0.045	43	1,395
14	57.50	1,149	0.281	0.049	0.014	0.050	50	1,425
13	53.32	787	0.242	0.057	0.018	0.053	36	977
12	50.82	702	0.220	0.060	0.021	0.054	33	871
11	47.50	2,183	0.192	0.064	0.024	0.054	102	2,708
10	44.91	76	0.172	0.066	0.027	0.054	4	94
9	42.41	1,166	0.153	0.068	0.030	0.054	54	1,446
8	37.50	1,231	0.120	0.070	0.034	0.052	56	1,527
7	32.50	1,256	0.090	0.071	0.038	0.051	56	1,558
6	27.50	1,280	0.064	0.072	0.041	0.050	55	1,588

Code: ANSI/TIA-222-G

© 2007 - 2019 by ATC IP LLC. All rights reserved.

Site Name: Kent Pcs CT, CT Customer: AT&T MOBILITY Engineering Number:

9/18/2019 4:22:29 PM

5	22.50	1,304	0.043	0.071	0.042	0.048	54	1.618
4	17.50	1,329	0.026	0.067	0.040	0.046	53	1,648
3	12,50	1,353	0.013	0.059	0.034	0.041	48	1,679
2	7,50	1,378	0.005	0.044	0.025	0.032	39	1,709
1	2,50	1,402	0.001	0.018	0.010	0.015	18	1,739
Samsung 700+850MHZ	149.00	246	1.890	1.980	1.140	0.386	82	305
Samsung PCS/AWS	149.00	253	1.890	1.980	1.140	0.386	85	314
Generic 3' Yaqi	149.00	10	1,890	1,980	1.140	0.386	3	12
Raycap RVZDC-6627-PF	149.00	32	1.890	1.980	1.140	0.386	11	40
RFS Celwave PD220	149.00	50	1.890	1,980	1.140	0.386	17	62
Commscope NHH-65B-	149.00	262	1.890	1,980	1,140	0.386	88	325
Antel LPA-80080/6CF	149.00	126	1.890	1.980	1.140	0.386	42	156
Flat Low Profile Pla	149.00	1,500	1.890	1.980	1.140	0.386	502	1,861
VZW Unused Reserve:	149.00	1,581	1.890	1.980	1,140	0.386	529	1,961
Andrew ABT-DFDM-ADB	140.00	1,001	1.669	1.007	0.767	0.245	0	1,001
Powerwave Allgon TT1	140.00	96	1.669	1.007	0.767	0.245	20	119
Powerwave Allgon TT0	140.00	66	1.669	1.007	0.767	0.245	14	82
Raycap DC6-48-60-18-	140.00	20	1,669	1.007	0.767	0.245	4	25
Ericsson RRUS A2 Mod	140.00	64	1,669	1.007	0.767	0.245	13	79
Ericsson RRUS 4449 B	140.00	213	1.669	1.007	0.767	0.245	45	264
Ericsson RRUS 4478 B	140.00	178	1.669	1.007	0.767	0.245	38	221
Raycap DC6-48-60-18-	140.00	16	1,669	1.007	0.767	0.245	3	20
Ericsson RRUS 32 B2	140.00	159	1.669	1.007	0.767	0.245	34	197
Andrew SBNHH-1D65A (140.00	67	1.669	1.007	0.767	0.245	14	83
Powerwave Allgon P90	140.00	159	1.669	1.007	0.767	0.245	34	197
CCI DMP65R-BU4D	140.00	204	1.669	1.007	0.767	0.245	43	253
CCI HPA-65R-BUU-H6	140.00	51	1.669	1.007	0.767	0.245	11	63
Round Platform w/ Ha	140.00	2,000	1.669	1.007	0.767	0.245	424	2,481
Decibel DB222	124.00	32	1.309	0.133	0.344	0.065	2	40
Generic 3' Yagi	122.00	10	1.267	0.077	0.308	0.049	0	12
Stand Off	117.00	150	1.165	-0.025	0.230	0.014	2	186
Symmetricom 58532A	110.00	0	1.030	-0.101	0.147	-0.021	0	0
Ericsson RRUS 11 B2	110.00	152	1.030	0.101	0.147	-0.021	-3	189
Ericsson RRUS 11 B12	110.00	152	1.030	-0.101	0.147	-0.021	-3	189
Ericsson RRUS 11 B4	110.00	152	1.030	0.101	0.147	-0.021	-3	189
RFS APX16DWV-	110.00	122	1.030	-0.101	0.147	-0.021	-2	151
Commscope LNX-	110.00	151	1.030	0.101	0.147	-0.021	-3	187
Flat T-Arm	110.00	750	1.030	-0.101	0.147	-0.021	-14	930
Generic Flat Side Ar	100.00	188	0.851	-0.119	0.070	-0.043	-7	233
dbSpectra DS4C06F36D	90.00	50	0.690	-0.084	0.028	-0.034	- <i>1</i>	62
Generic Flat Side Ar	85.00	188	0.615	-0.058	0.016	-0.020	-3	233
	00.00						-	
		41,777	81.622	38.160	30.632	9.066	3,150	51,826

Load Case (0.9 - 0.2Sds) * DL + E EMAM

Seismic (Reduced DL) Equivalent Modal Analysis Method

	Height Above Base	Weight					Horizontal Force	Vertical Force
Segment	(ft)	(lb)	а	b	с	Saz	(Ib)	(I b)
39	147.00	269	1.840	1.725	1.047	0.352	82	231
38	144.01	136	1,766	1.387	0.919	0.304	36	117
37	141.51	492	1,705	1,141	0.822	0,267	114	423
36	139.47	198	1.656	0.962	0.749	0.237	41	170
35	136.97	514	1.597	0.769	0.666	0.204	91	442
34	132.50	671	1.495	0.488	0.536	0.150	87	577
33	127,50	692	1.384	0.254	0.415	0.097	58	594
32	124.50	141	1.320	0.149	0.354	0.069	8	121
31	123.00	285	1.288	0.104	0.326	0.057	14	245
30	121.00	289	1.246	0.053	0.291	0.041	10	249
29	118,50	440	1,195	0.000	0.251	0.023	9	378
28	116.00	297	1,146	-0.041	0.216	0.008	2	256

s CT, CT Engineering Number:

Site Name: Kent Pcs CT, CT Customer: AT&T MOBILITY Code: ANSI/TIA-222-G

© 2007 - 2019 by ATC IP LLC. All rights reserved.

9/	18/2019	4:22:29	РМ
•,			

27	112.50	758	1.077	-0.082	0.173	-0.011	-7	651
26	107.50	795	0.984	-0.114	0.123	-0.030	-21	683
25	102.50	815	0.894	-0.122	0.085	-0.041	-29	701
24	97.99	669	0.817	-0.115	0.059	-0.044	-25	575
23	95.49	317	0.776	-0.107	0.047	-0.043	-12	272
22	92.74	1,479	0.732	-0.096	0.037	-0.039	-50	1,271
21	90.24	94	0.693	-0.085	0.029 0.021	-0.035	-3	81
20 19	87.50 82.50	1,002	0.652 0.579	-0.071 -0.045	0.021	-0.028 -0.012	-24 -11	861
18	82.50 77.50	1,027 1,051	0.579	-0.045	0.008	0.005	-11 5	882 903
17	72.50	1,075	0.447	0.020	0.006	0.022	20	924
16	67.50	1,100	0.388	0.022	0.007	0.035	33	945
15	62.50	1,124	0.333	0.037	0.010	0.045	43	966
14	57.50	1,149	0.281	0.049	0.014	0.050	50	987
13	53.32	787	0.242	0.057	0.018	0.053	36	677
12	50.82	702	0.220	0.060	0.021	0.054	33	604
11	47.50	2,183	0.192	0.064	0.024	0.054	102	1,876
10	44.91	76	0.172	0.066	0.027	0.054	4	65
9	42.41	1,166	0.153	0.068	0.030	0.054	54	1,002
8 7	37.50 32.50	1,231	0.120 0.090	0.070 0.071	0.034 0.038	0.052 0.051	56 56	1,058
6	32.50 27.50	1,256 1,280	0.090	0.071	0.038	0.051	55	1,079 1,100
5	22.50	1,304	0.043	0.072	0.042	0.048	55	1,121
4	17.50	1,329	0.045	0.067	0.040	0.046	53	1,142
3	12.50	1,353	0.013	0.059	0.034	0.041	48	1,163
2	7.50	1,378	0.005	0.044	0.025	0.032	39	1,184
1	2.50	1,402	0.001	0.018	0.010	0.015	18	1,205
Samsung 700+850MHZ	149.00	246	1.890	1.980	1.140	0.386	82	211
Samsung PCS/AWS	149.00	253	1.890	1.980	1.140	0.386	85	218
Generic 3' Yagi	149.00	10	1.890	1.980	1.140	0.386	3	9
Raycap RVZDC-6627-PF	149.00	32	1.890	1.980	1.140	0.386	11	28
RFS Celwave PD220	149.00	50	1.890	1.980	1.140	0.386	17	43
Commscope NHH-65B-	149.00	262 126	1.890	1.980	1.140 1.140	0.386	88 42	225 108
Antel LPA-80080/6CF Flat Low Profile Pla	149.00 149.00	126	1.890 1.890	1.980 1.980	1.140	0.386 0.386	42 502	1,289
VZW Unused Reserve:	149.00	1,581	1.890	1.980	1.140	0.386	529	1,358
Andrew ABT-DFDM-ADB	140.00	1,001	1.669	1.007	0.767	0.245	0	1,000
Powerwave Allgon TT1	140.00	96	1.669	1.007	0.767	0.245	20	83
Powerwave Allgon TT0	140.00	66	1.669	1.007	0.767	0.245	14	57
Raycap DC6-48-60-18-	140.00	20	1.669	1.007	0.767	0.245	4	17
Ericsson RRUS A2 Mod	140.00	64	1.669	1.007	0.767	0.245	13	55
Ericsson RRUS 4449 B	140.00	213	1.669	1.007	0.767	0.245	45	183
Ericsson RRUS 4478 B	140.00	178	1.669	1.007	0.767	0.245	38	153
Raycap DC6-48-60-18-	140.00	16	1.669	1.007	0.767	0.245	3	14
Ericsson RRUS 32 B2 Andrew SBNHH-1D65A(140.00	159 67	1.669 1.669	1.007 1.007	0.767 0.767	0.245 0.245	34	137
Powerwave Allgon P90	140.00 140.00	159	1.669	1.007	0.767	0.245	14 34	58 137
CCI DMP65R-BU4D	140.00	204	1.669	1.007	0.767	0.245	43	175
CCI HPA-65R-BUU-H6	140.00	51	1.669	1.007	0.767	0.245	11	44
Round Platform w/ Ha	140.00	2,000	1.669	1.007	0.767	0.245	424	1,719
Decibel DB222	124.00	32	1.309	0.133	0.344	0.065	2	28
Generic 3' Yagi	122.00	10	1.267	0.077	0.308	0.049	0	9
Stand Off	117.00	150	1.165	-0.025	0.230	0.014	2	129
Symmetricom 58532A	110.00	0	1.030	-0.101	0.147	-0.021	0	0
Ericsson RRUS 11 B2	110.00	152	1.030	-0.101	0.147	-0.021	-3	131
Ericsson RRUS 11 B12	110.00	152	1.030	-0.101	0.147	-0.021	-3	131
Ericsson RRUS 11 B4	110.00	152	1.030	-0.101	0.147	-0.021	-3	131
RFS APX16DWV-	110.00 110.00	122	1.030	-0.101	0.147 0.147	-0.021	-2 -3	105 130
Commscope LNX- Flat T-Arm	110.00 110.00	151 750	1.030 1.030	-0.101 -0.101	0.147	-0.021 -0.021	-3 -14	130 645
Generic Flat Side Ar	100.00	188	0.851	-0.101	0.070	-0.021	-14 -7	645 161
dbSpectra DS4C06F36D	90.00	50	0.690	0.084	0.028	-0.034	- <i>1</i>	43
Generic Flat Side Ar	85.00	188	0.615	-0.058	0.016	-0.020	-3	161
							-	

Site Number: 413783			Code: AN	ISI/TIA-222-	G © 20	© 2007 - 2019 by ATC IP LLC. All rights reserved.			
Site Name: Kent Pcs CT, CT Customer: AT&T MOBILITY	E	Engineering Number:				9/18/2019 4:22:29 PM			
	41,777	81.622	38.160	30.632	9.066	3,150	35,906		

Code: ANSI/TIA-222-G

Engineering Number:

© 2007 - 2019 by ATC IP LLC. All rights reserved.

9/18/2019 4:22:29 PM

Site Name: Kent Pcs CT, CT

Customer: AT&T MOBILITY

Load Case (1.2 + 0.2Sds) * DL + E EMAM Seismic Equivalent Modal Analysis Method

Calculated Forces

Seg Elev	Ри FY (-)	Vu FX (-)	Tu MY	Mu MZ	Mu MX	Resultant Moment	phi Pn	phi Vn	phi Tn	phi Mn	Total Deflect	Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)		(ft-kips)	(kips)			(ft-kips)	(in)	(deg)	Ratio
0.00	-50.09	-3.14	0.00	-395.91	0.00	395.91	4,509,35	2.254.68	11,158,54	5.587.56	0.00	0.00	0.082
5.00	-48.38	-3.11	0.00	-380.21	0.00	380.21	,	,	10,816.20	,	0.01	-0.02	0.081
10.00	-46.70	-3.08	0.00	-364.64	0.00	364.64			10,474.59		0.04	-0.03	0.080
15.00	-45.05	-3.04	0.00	-349.24	0.00	349.24	4,359.17	2,179.58	10,133.98	5,074.52	0.08	-0.05	0.079
20.00	-43.43	-3.00	0.00	-334.04	0.00	334.04	4,305.66	2,152.83	9,794.63	4,904.59	0.14	-0.07	0.078
25.00	-41.84	-2.95	0.00	-319.05	0.00	319.05	4,250.43	2,125.22	9,456.78	4,735.42	0.23	-0.09	0.077
30.00	-40.28	-2.91	0.00	-304.27	0.00	304.27	4,193.48	2,096.74	9,120.71	4,567.13	0.33	-0.11	0.076
35.00	-38.75	-2.86	0.00	-289.73	0.00	289.73	4,134.81	2,067.40	8,786.66	4,399.86	0.45	-0.13	0.075
40.00	-37.31	-2.82	0.00	-275.42	0.00	275.42	4,074.41	2,037.21	8,454.90	4,233.73	0.59	-0.14	0.074
44.83	-37.21	-2.82	0.00	-261.81	0.00	261.81	4,014.46	2,007.23	8,136.95	4,074.52	0.75	-0.16	0.074
45.00	-34.50	-2.72	0.00	-261.33	0.00	261.33	4,012.29	2,006.15	8,125.68	4,068.88	0.76	-0.16	0.073
50.00	-33.63	-2.69	0.00	-247.74	0.00	247.74	3,948.45	1,974.23	7,799.26	3,905.43	0.94	-0.18	0.072
51.63	-32.65	-2.66	0.00	-243.35	0.00	243.35	3,967.50	1,983.75	7,895.42	3,953.58	1.00	-0.19	0.070
55.00	-31.23	-2.61	0.00	-234.41	0.00	234.41	3,923.88	1,961.94	7,676.69	3,844.05	1.14	-0.21	0.069
60.00	-29.83	-2.57	0.00	-221.36	0.00	221.36	3,857.67	1,928.83	7,354.55	3,682.74	1.37	-0.23	0.068
65.00	-28.47	-2.54	0.00	-208.50	0.00	208.50	3,789.73	1,894.87	7,035.83	3,523.15	1.62	-0.25	0.067
70.00	-27.13	-2.53	0.00	-195.78	0.00	195.78	3,720.08	1,860.04	6,720.79	3,365.39	1.89	-0.27	0.065
75.00	-25.83	-2.53	0.00	-183.15	0.00	183.15	3,648.70	1,824.35	6,409.67	3,209.60	2.18	-0.29	0.064
80.00	-24.55	-2.54	0.00	-170.53	0.00	170.53	3,575.60	1,787.80	6,102.74	3,055.91	2.49	-0.31	0.063
85.00	-23.08	-2.57	0.00	-157.83	0.00	157.83	3,500.77	1,750.39	5,800.26	2,904.44	2.82	-0.33	0.061
90.00	-22.90	-2.57	0.00	-145.00	0.00	145.00	3,424.23	1,712.11	5,502.49	2,755.33	3.18	-0.35	0.059
90.48	-21.06	-2.62	0.00	-143.78	0.00	143.78	3,416.84	1,708.42	5,474.36	2,741.25	3.22	-0.35	0.059
95.00	-20.67	-2.63	0.00	-131.94	0.00	131.94	3,345.96	1,672.98	5,209.67	2,608.71	3.56	-0.37	0.057
95.98	-19.84	-2.65	0.00	-129.35	0.00	129.35	2,667.09	1,333.55	4,209.17	2,107.71	3.64	-0.38	0.069
100.00	-18.59	-2.69	0.00	-118.69	0.00	118.69	2,621.36	1,310.68	4,031.88	2,018.94	3.97	-0.40	0.066
105.00	-17.61	-2.71	0.00	-105.24	0.00	105.24	2,562.85	1,281.43	3,813.95	1,909.81	4.39	-0.42	0.062
110.00	-14.83	-2.73	0.00	-91.69	0.00	91.69	2,502.63	1,251.31	3,599.38	1,802.37	4.85	-0.44	0.057
115.00	-14.46	-2.73	0.00	-78.04	0.00	78.04	2,440.68	1,220.34	3,388.44	1,696.74	5.33	-0.47	0.052
117.00	-13.73	-2.72	0.00	-72.58	0.00	72.58	2,415.42	1,207.71	3,305.13	1,655.02	5.52	-0.48	0.050
120.00	-13.37	-2.70	0.00	-64.43	0.00	64.43	•		3,181.38		5.83	-0.49	0.046
122.00	-13.00	-2.69	0.00	-59.03	0.00	59.03	2,351.06	1,175.53	3,099.69	1,552.15	6.03	-0.50	0.044
124.00	-12.79	-2.68	0.00	-53.65	0.00	53.65	2,324.84	1,162.42	3,018.69	1,511.59	6.24	-0.50	0.041
125.00	-11.93	-2.61	0.00	-50.97	0.00	50.97	2,311.62	1,155.81	2,978.45	1,491.44	6.35	-0.51	0.039
130.00	-11.10	-2.52	0.00	-37.90	0.00	37.90	2,226.60	1,113.30	2,757.75	1,380.92	6.89	-0.52	0.032
135.00	-10.46	-2.43	0.00	-25.29	0.00	25.29	2,137.76	1,068.88	2,540.99	1,272.38	7.44	-0.54	0.025
138.93	-10.21	-2.39	0.00	-15.73	0.00	15.73			2,376.65		7.89	-0.54	0.018
140.00	-5.52	-1.53	0.00	-13.19	0.00	13.19			2,333.11		8.01	-0.55	0.014
143.03	-5.36	-1.49	0.00	-8.57	0.00	8.57	1,074.70		1,219.01		8.36	-0.55	0.019
145.00	-5.02	-1.41	0.00	-5.62	0.00	5.62	1,063.79		1,185.67		8.59	-0.55	0.014
149.00	0.00	-1.36	0.00	0.00	0.00	0.00	1,040.86	520.43	1,118.54	560.10	9.05	-0.55	0.000

Code: ANSI/TIA-222-G

© 2007 - 2019 by ATC IP LLC. All rights reserved.

Site Name: Kent Pcs CT, CT

Engineering Number:

9/18/2019 4:22:29 PM

Customer: AT&T MOBILITY

Load Case (0.9 - 0.2Sds) * DL + E EMAM Seismic (Reduced DL) Equivalent Modal Analysis Method

Calculated Forces

Seg Elev	Ри FY (-)	Vu FX (-)	Tu MY	Mu MZ	Mu MX	Resultant Moment	phi Pn	phi Vn	phi Tn	phi Mn	Total Deflect	Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	Ratio
0.00	-34.70	-3.14	0.00	-391.28	0.00	391.28	4,509.35	2,254.68	11,158.54	5,587.56	0.00	0.00	0.078
5.00	-33.52	-3.11	0.00	-375.59	0.00	375.59		•	10,816.20		0.01	-0.02	0.077
10.00	-32.35	-3.07	0.00	-360.05	0.00	360.05			10,474.59		0.04	-0.03	0.076
15.00	-31.21	-3.03	0.00	-344.71	0.00	344.71	4,359.17	2,179.58	10,133.98	5,074.52	0.08	-0.05	0.075
20.00	-30.09	-2.98	0.00	-329.58	0.00	329.58	4,305.66	2,152.83	9,794.63	4,904.59	0.14	-0.07	0.074
25.00	-28.99	-2.93	0.00	-314.68	0.00	314.68	4,250.43	2,125.22	9,456.78	4,735.42	0.22	-0.09	0.073
30.00	-27.91	-2.88	0.00	-300.03	0.00	300.03	4,193.48	2,096.74	9,120.71	4,567.13	0.33	-0.11	0.072
35.00	-26.85	-2.83	0.00	-285.61	0.00	285.61	4,134.81	2,067.40	8,786.66	4,399.86	0.45	-0.12	0.071
40.00	-25.84	-2.79	0.00	-271.44	0.00	271.44	4,074.41	2,037.21	8,454.90	4,233.73	0.59	-0.14	0.070
44.83	-25.78	-2.79	0.00	-257.99	0.00	257.99	4,014.46	2,007.23	8,136.95	4,074.52	0.74	-0.16	0.070
45.00	-23.90	-2.68	0.00	-257.51	0.00	257.51	,	,	8,125.68	,	0.75	-0.16	0.069
50.00	-23.30	-2.65	0.00	-244.09	0.00	244.09			7,799.26	•	0.93	-0.18	0.068
51.63	-22.62	-2.62	0.00	-239.76	0.00	239.76			7,895.42		0.99	-0.19	0.066
55.00	-21.63	-2.57	0.00	-230.94	0.00	230.94			7,676.69		1.13	-0.20	0.066
60.00	-20.67	-2.53	0.00	-218.07	0.00	218.07		•	7,354.55		1.35	-0.22	0.065
65.00	-19.72	-2.50	0.00	-205.41	0.00	205.41	3,789.73	1,894.87	7,035.83	3,523.15	1.59	-0.24	0.064
70.00	-18.80	-2.49	0.00	-192.89	0.00	192.89	,		6,720.79		1.86	-0.26	0.062
75.00	-17.89	-2.48	0.00	-180.47	0.00	180.47	3,648.70	1,824.35	6,409.67	3,209.60	2.15	-0.28	0.061
80.00	-17.01	-2.49	0.00	-168.06	0.00	168.06	,		6,102.74	,	2.45	-0.30	0.060
85.00	-15.98	-2.52	0.00	-155.58	0.00	155.58		•	5,800.26	•	2.79	-0.33	0.058
90.00	-15.86	-2.53	0.00	-142.97	0.00	142.97	•		5,502.49		3.14	-0.35	0.057
90.48	-14.59	-2.58	0.00	-141.76	0.00	141.76			5,474.36		3.17	-0.35	0.056
95.00	-14.32	-2.59	0.00	-130.12	0.00	130.12			5,209.67		3.51	-0.37	0.054
95.98	-13.74	-2.61	0.00	-127.57	0.00	127.57	2,667.09	1,333.55	4,209.17	2,107.71	3.59	-0.37	0.066
100.00	-12.88	-2.65	0.00	-117.08	0.00	117.08			4,031.88		3.91	-0.39	0.063
105.00	-12.19	-2.67	0.00	-103.84	0.00	103.84			3,813.95		4.33	-0.41	0.059
110.00	-10.27	-2.69	0.00	-90.50	0.00	90.50			3,599.38		4.78	-0.44	0.054
115.00	-10.01	-2.69	0.00	-77.04	0.00	77.04			3,388.44		5.25	-0.46	0.050
117.00	-9.50	-2.68	0.00	-71.66	0.00	71.66			3,305.13		5.45	-0.47	0.047
120.00	-9.25	-2.67	0.00	-63.62	0.00	63.62	-		3,181.38		5.75	-0.48	0.044
122.00	-9.00	-2.65	0.00	-58.28	0.00	58.28	,		3,099.69	•	5.95	-0.49	0.041
124.00	-8.85	-2.64	0.00	-52.98	0.00	52.98	,	,	3,018.69	,	6.16	-0.50	0.039
125.00	-8.26	-2.58	0.00	-50.34	0.00	50.34	,		2,978.45		6.26	-0.50	0.037
130.00	-7.68	-2.49	0.00	-37.44	0.00	37.44			2,757.75		6.79	-0.52	0.031
135.00	-7.24	-2.40	0.00	-24.99	0.00	24.99			2,540.99		7.34	-0.53	0.023
138.93	-7.07	-2.35	0.00	-15.56	0.00	15.56		•	2,376.65		7.78	-0.54	0.016
140.00	-3.82	-1.51	0.00	-13.05	0.00	13.05			2,333.11		7.90	-0.54	0.013
143.03	-3.71	-1.47	0.00	-8.47	0.00	8.47	,		1,219.01	610.41	8.24	-0.54	0.017
145.00	-3.48	-1.39	0.00	-5.56	0.00	5.56	1,063.79		1,185.67	593.71	8.47	-0.54	0.013
149.00	0.00	-1.36	0.00	0.00	0.00	0.00	1,040.86	520.43	1,118.54	560.10	8.92	-0.55	0.000

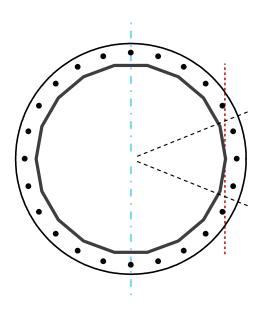
 Site Number: 413783
 Code: ANSI/TIA-222-G
 © 2007 - 2019 by ATC IP LLC. All rights reserved.

 Site Name: Kent Pcs CT, CT
 Engineering Number:
 9/18/2019 4:22:29 PM

 Customer: AT&T MOBILITY
 Output
 Output

Analysis Summary

	Reactions					Max	Usage	
Load Case	Shear FX (kips)	Shear FZ (kips)	Axial FY (kips)	Moment MX (ft-kips)	Moment MY (ft-kips)	Moment MZ (ft-kips)	Elev Ir (ft)	nteraction Ratio
1.2D + 1.6W	30.39	0.00	50.09	0.00	0.00	3423.19	0.00	0.62
0.9D + 1.6W	30.38	0.00	37.56	0.00	0.00	3392.46	0.00	0.62
1.2D + 1.0Di + 1.0Wi	6.60	0.00	71.49	0.00	0.00	733.23	0.00	0.15
(1.2 + 0.2Sds) * DL + E ELFM	1.68	0.00	50.09	0.00	0.00	205.11	0.00	0.05
(1.2 + 0.2Sds) * DL + E EMAM	3.14	0.00	50.09	0.00	0.00	395.91	0.00	0.08
(0.9 - 0.2Sds) * DL + E ELFM	1.68	0.00	34.70	0.00	0.00	202.89	0.00	0.04
(0.9 - 0.2Sds) * DL + E EMAM	3.14	0.00	34.70	0.00	0.00	391.28	0.00	0.08
1.0D + 1.0W	7.55	0.00	41.77	0.00	0.00	846.22	0.00	0.16


Pole Dimensions					
Number of Sides	18	-			
Diameter	60.5	in			
Thickness	0.375	in			
Orientation Offset	0	0			

Base Plate					
Shape	Round	-			
Diameter, ø	75	in			
Thickness	3 1/4	in			
Grade	A57	2-50			
Yield Strength, Fy	50	ksi			
Tensile Strength, Fu	65	ksi			
Clip	N/A	in			
Orientation Offset	0	0			
Anchor Rod Detail	d	η=0.5			
Clear Distance	2	in			
Applied Moment, Mu	995.2	k			
Bending Stress, φMn	3501.5	k			

Original An	Original Anchor Rods					
Arrangement	Radial	-				
Quantity	24	-				
Diameter, ø	2 1/4	in				
Bolt Circle	69	in				
Grade		5-75				
Yield Strength, Fy	75	ksi				
Tensile Strength, Fu	100	ksi				
Spacing	9.0	in				
Orientation Offset	0	0				
Applied Force, Pu	101.3	k				
Anchor Rods, ϕ Pn	259.8	k				

Base Reactions				
Moment, Mu	3423.2	k-ft		
Axial, Pu Shear, Vu	50.1	k		
Shear, Vu	30.4	k		
Neutral Axis	270	0		

Report Capacities					
Component	Capacity	Result			
Base Plate	28%	Pass			
Anchor Rods	39%	Pass			
Dwyidag	-	-			

August 16, 2019

SAI Communications 12 Industrial Way Salem NH, 03079

RE: Site Number: CT1288 (L FA Number: 10141334 PACE Number: MRCTB044 PT Number: 2051A0PC Site Name: KENT CT N Site Address: 38 Maple

CT1288 (LTE 3C/4C) 10141334 MRCTB040475 2051A0PQWZ KENT CT MAPLE STREET 38 Maple Street Kent, CT 06757

To Whom It May Concern:

Hudson Design Group LLC (HDG) has been authorized by SAI Communications to perform a mount analysis on the existing AT&T antenna/RRH mount to determine their capability of supporting the following additional loading:

- (3) P90-14-XLH-RR Antennas (52.0"x11.0"x7.0" Wt. = 41 lbs. /each)
- (1) HPA-65R-BUU-H6 Antennas (72.0"x14.8"x7.4" Wt. = 51 lbs. /each)
- (2) SBNHH-1D65A Antennas (55.6"x11.9"x7.1" Wt. = 34 lbs. /each)
- (3) RRUS-32 B2 RRH's (27.2"x12.1"x7.0" Wt. = 60 lbs. /each)
- (6) TT19-08BP111-001 TMA's (9.9"x6.7"x5.4" Wt. = 16 lbs. /each)
- (1) Squid Surge Arrestor (24.0"x9.7" Φ Wt. = 33 lbs. /each)
- (3) DMP65R-BU6DA Antennas (71.2"x20.7"x7.7" Wt. = 80 lbs. /each)
- (3) B14 4478 RRH's (18.1"x13.4"x8.3"- Wt. = 60 lbs. /each)
- (3) B5/B12 4449 RRH's (14.9"x13.2"x10.4" Wt. = 73 lbs. /each)
- (1) Squid Surge Arrestor (24.0"x9.7" Φ Wt. = 33 lbs. /each)

*Proposed equipment shown in bold

No original structural design documents or fabrication drawings were available for the existing mount. HDG's subconsultant, ProVertic LLC, conducted a survey climb and mapping of the existing AT&T antenna mount on May 29, 2019.

Mount Analysis Methods:

- This analysis was conducted in accordance with EIA/TIA-222-H, Structural Standards for Steel Antenna Towers and Antenna Supporting Structures, the International Building Code 2015 with 2018 Connecticut State Building Code, and AT&T Mount Technical Directive – R13.
- HDG considers this mount to be asymmetrical and has applied wind loads in 30 degree increments all around the mount. Per TIA-222-H and Appendix N of the Connecticut State Building Code, the max basic wind speed for this site is equal to 115 mph with a max basic wind speed with ice of 40 mph and a max ice thickness of 1.0 in. An escalated ice thickness of 1.16 in was used for this analysis.
- HDG considers this site to be exposure category C; tower is located near large, flat, open, terrain/grasslands.
- HDG considers this site to be topographic category 1; tower is located on flat terrain or the bottom of a hill or ridge.
- The mount has been analyzed with load combinations consisting of 250 lbs live load using a service wind speed of 30 mph wind on the worst-case antenna. Analysis performed on each antenna pipe to determine worst case location; worst case location was antenna position 4.
- The mount has been analyzed with load combinations consisting of a 250 lbs live load in a worstcase location on the mount.
- The existing mount is secured to the existing monopole with a ring mount. The connection is considered OK by visual inspection.

Based on our evaluation, we have determined that the existing mount <u>IS NOT CAPABLE</u> of supporting the proposed installation. HDG recommends the following modification:

Install new handrail kit, SitePro1 P/N HRK14-3HD (or approved equal).

	Component	Controlling Load Case	Stress Ratio	Pass/Fail
Existing (LTE 3C/4C) Mount Rating	54	LC1	105%	FAIL
Modified (LTE 3C/4C) Mount Rating	60	LC2	97%	PASS

Reference Documents:

• Mount mapping report prepared by ProVertic LLC.

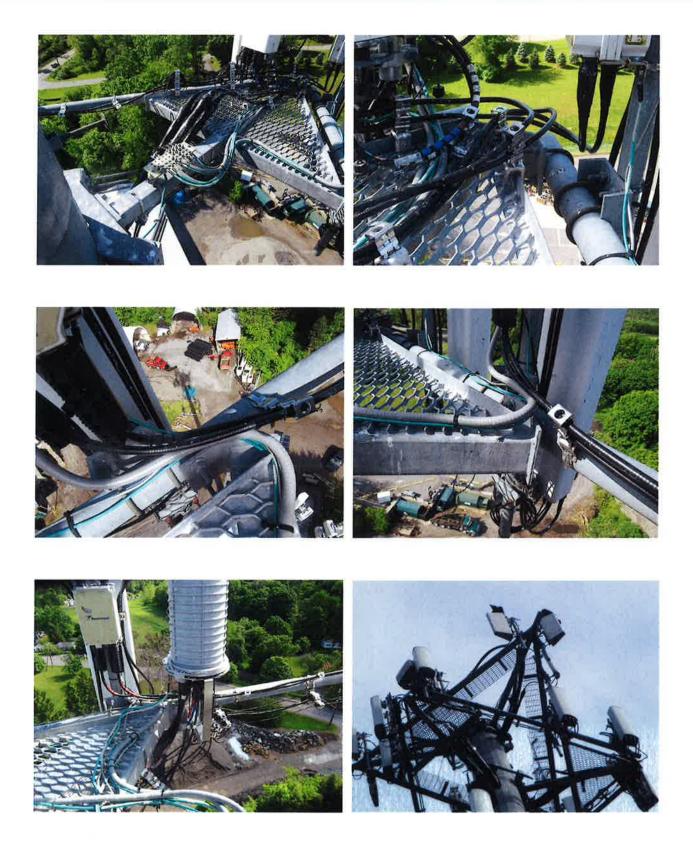
This determination was based on the following limitations and assumptions:

- 1. HDG is not responsible for any modifications completed prior to and hereafter which HDG was not directly involved.
- 2. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
- 3. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer's requirements.
- 4. The existing mount has been adequately secured to the tower structure per the mount manufacturer's specifications.
- 5. All components pertaining to AT&T's mounts must be tightened and re-plumbed prior to the installation of new appurtenances.
- 6. HDG performed a localized analysis on the mount itself and not on the supporting tower structure.

Please feel free to contact our office should you have any questions.

Respectfully Submitted, Hudson Design Group LLC

hilm Cl


Michael Cabral Vice President

Daniel P. Hamm, PE Principal

FIELD PHOTOS:

Wind & Ice Calculations
 Date:
 8/16/2019

 Project Name:
 KENT CT MAPLE STREET

 Project No.:
 CT1288

 Designed By:
 LBW
 Checked By: MSC

2.6.5.2 Velocity Pressure Coeff:

K_{z} = 2.01 (z/z _g) ^{2/α}		z=	141 (ft)
		z _g =	900 (ft)
K _z =	1.361	α=	9.5

Kzmin \leq Kz \leq 2.01

Table 2-4

Exposure	Zg	α	Kzmin	K _c
В	1200 ft	7.0	0.70	0.9
С	900 ft	9.5	0.85	1.0
D	700 ft	11.5	1.03	1.1

2.6.6.2 Topographic Factor:

Table 2-5

Topo. Category	Kt	f
2	0.43	1.25
3	0.53	2.0
4	0.72	1.5

 $K_{zt} = [1 + (K_c K_t / K_h)]^2$

K_{zt}= #DIV/0!

(If Category 1 then K zt =1.0)

Category=	1	

2.6.10 Design Ice Thickness

Max Ice Thickness = Importance Factor =

 $t_{iz} = t_i^* | K_{iz}^* (K_{zt})^{0.35}$

K _h = e	(f*z/H)
--------------------	---------

K _h =	#DIV/0!	
K _c =	1	(from Table 2-4)
K _t =	0	(from Table 2-5)
f=	0	(from Table 2-5)
z=	141	
z _s =	400	(Mean elevation of base of structure above sea level)
H=	0	(Ht. of the crest above surrounding terrain)
K _{zt} =	1.00	(from 2.6.6.2.1)
K _e =	0.99	(from 2.6.8)

t _i =	1.00 in
1=	1.0 (from Table 2-3)
K _{iz} =	1.16 (from Sec. 2.6.10)

Date:8/16/2019Project Name:KENT CT MAPLE STREETProject No.:CT1288Designed By:LBWChecked By: MSC

2.6.9 Gust Effect Factor

2.6.9.1 Self Supporting La	ttice Structures		
G _h = 1.0 Latticed Structur	es > 600 ft		
G _h = 0.85 Latticed Structu	res 450 ft or less		
G _h = 0.85 + 0.15 [h/150 - 3	3.0]	h= ht. of structur	e
h=	150	G _h =	0.85
2.6.9.2 Guyed Masts		G _h =	0.85

2.6.9.2 Guyed Masts	G _h =	0.85
2.6.9.3 Pole Structures	G _h =	1.1
2.6.9 Appurtenances	G _h =	1.0

2.6.9.4 Structures Supported on Other Structures

(Cantilivered tubular or latticed spines, pole, structures on buildings (ht. : width ratio > 5)

C -	1.25	Gh=	1.00
G _h =	1.35	Gn=	1.00

2.6.11.2 Design Wind Force on Appurtenances

F= q_z*G_h*(EPA)_A

q _z = 0.00256*K	$z^*K_{zt}^*K_s^*K_e^*K_d^*V_{max}^2$	K _z =	1.361 (from 2.6.5.2)
		K _{zt} =	1.0 (from 2.6.6.2.1)
		K _s =	1.0 (from 2.6.7)
q _z =	43.13	K _e =	0.99 (from 2.6.8)
q _{z (ice)} =	5.22	K _d =	0.95 (from Table 2-2)
q _{z (30)} =	2.94	V _{max} =	115 mph (Ultimate Wind Speed)
		V _{max (ice)} =	40 mph
		V ₃₀ =	30 mph

Table 2-2

Structure Type	Wind Direction Probability Factor, Kd
Latticed structures with triangular, square or rectangular cross sections	0.85
Tubular pole structures, latticed structures with other cross sections, appurtenances	0.95
Tubular pole structures supporting antennas enclosed within a cylindrical shroud	1.00

 Date:
 8/16/2019

 Project Name:
 KENT CT MAPLE STREET

 Project No.:
 CT1288

 Designed By:
 LBW
 Checked By: MSC

HUDSON Design Group LLC

Determine Ca:

Table 2-9

	Force Coefficients (Ca) for Appurtenances									
	Mamber Turne	Aspect Ratio ≤ 2.5	Aspect Ratio = 7	Aspect Ratio ≥ 25						
	Member Type	Ca	Ca	Ca						
	Flat	1.2	1.4	2.0						
Squ	are/Rectangular HSS	1.2 - 2.8(r _s) ≥ 0.85	1.4 - 4.0(r _s) ≥ 0.90	2.0 - 6.0(r _s) ≥ 1.25						
Round	C < 39	0.7	0.8	1.2						
	(Subcritical)	0.7	0.0	1.2						
- F	39 ≤ C ≤ 78	1 4 4 (re0.485)	a ac (co0.415)	15 9 4 9 1.9						
	(Transitional)	4.14/(C ^{0,485})	3.66/(C ^{0,415})	46.8/(C ^{.1.0})						
	C > 78	0.5	0.6							
	(Supercritical)	0.5	0.6	0.6						

Aspect Ratio is the overall length/width ratio in the plane normal to the wind direction,

(Aspect ratio is independent of the spacing between support points of a linear appurtenance,

Note: Linear interpolation may be used for aspect ratios other than those shown.

Ice Thickness =	1.16	in	Angle =	0 (deg)	Ľ	Equival	ent Angle =	180 (deg)	
Appurtenances	<u>Height</u>	<u>Width</u>	<u>Depth</u>	<u>Flat Area</u>	Aspect Ratio	<u>Ca</u>	Force (lbs)	Force (lbs) (w/ lce)	Force (lbs) (30 mph)
P90-15-XLH-RR Antenna	72.0	11.0	7.0	5.50	6.55	1.38	327	49	22
HPA-65R-BUU-H6 Antenna	72.0	14.8	7.4	7.40	4.86	1.31	417	60	28
DMP65R-BU6DA Antenna	71.2	20.7	7.7	10.24	3.44	1.24	548	76	37
RRUS-32 B2 RRH RRUS-32 B2 RRH (Shielded)	27.2 27.2	12.1 0.0	7.0 7.0	2.29 0.00	2.25 0.00	1.20 1.20	118 0	18 3	8 0
B14 4478 RRH B14 4478 RRH (Side)	18.1 18.1	13.4 8.3	8.3 13.4	1.68 1.04	1.35 2.18	1.20 1.20	87 54	14 9	6 4
B5/B12 4449 RRH B5/B12 4449 RRH (Side)	14.9 14.9	13.2 10.4	10.4 13.2	1.37 1.08	1.13 1.43	1.20 1.20	71 56	12 10	5 4
TT19-08BP111-001 TMA	9.9	5.4	6.7	0.37	1.83	1.20	19	4	1
Surge Arrestor	24.0	9.7	9.7	1.62	2.47	0.70	49	8	3
2" Pipe	2.4	12.0		0.20	0.20	1.20	10	3	1
3" Pipe	3.5	12.0		0.29	0.29	2.00	25	6	2
2x2 Angle	2.0	12.0		0.17	0.17	2.00	14	4	476.971
HSS 4x4	4.0	12.0		0.33	0.33	1.25	18	4	2121111

 Date:
 8/16/2019

 Project Name:
 KENT CT MAPLE STREET

 Project No.:
 CT1288

 Designed By:
 LBW
 Checked By: M

Angle = 30	(deg)		Ice Thick	ness =	1.16	in.		1	Equiva	lent Angle =	210	(deg)
WIND LOADS WITH NO ICE:												
Appurtenances	<u>Height</u>	<u>Width</u>	<u>Depth</u>	<u>Flat Area</u> (normal)	Flat Area (side)	<u>Aspect</u> <u>Ratio</u>	Aspect Ratio	Ca (normal)	<u>Ca</u> (side)	<u>Force (lbs)</u> (normal)	Force (lbs) (side)	Force (lbs) (angle)
P90-15-XLH-RR Antenna	72.0	11.0	7.0	5.50	3.50	6.55	10.29	1.38	1.51	327	228	302
HPA-65R-BUU-H6 Antenna	72.0	14.8	7.4	7.40	3.70	4.86	9,73	1.31	1.49	417	238	372
DMP65R-BU6DA Antenna	71.2	20.7	7.7	10.24	3.81	3.44	9.25	1.24	1,47	548	242	472
RRUS-32 B2 RRH	27.2	12.1	7.0	2.29	1.32	2.25	3.89	1.20	1.26	118	72	107
RRUS-32 B2 RRH (Shielded)	27.2	6.1	7.0	1.14	1.32	4.50	3.89	1.29	1.26	64	72	66
B14 4478 RRH	18.1	13.4	8.3	1.68	1.04	1,35	2.18	1,20	1,20	87	54	79
B14 4478 RRH (Side)	18.1	6.7	13.4	0.84	1.68	2.70	1.35	1.21	1.20	44	87	55
B5/B12 4449 RRH	14.9	13.2	10.4	1.37	1.08	1.13	1.43	1.20	1.20	71	56	67
85/812 4449 RRH (Side)	14.9	6,6	13.2	0.68	1.37	2.26	1.13	1.20	1.20	35	71	44
TT19-08BP111-001 TMA	9.9	5,4	6.7	0.37	0.46	1,83	1,48	1.20	1.20	19	24	20
WIND LOADS WITH ICE:												
P90-15-XLH-RR Antenna	74.3	13.3	9.3	6.87	4.81	5.58	7.98	1.34	1.43	48	36	45
HPA-65R-BUU-H6 Antenna	74.3	17.1	9.7	8.83	5.01	4.34	7,65	1.28	1.42	59	37	54
DMP65R-BU6DA Antenna	73.5	23.0	10.0	11.75	5.11	3.19	7.34	1.23	1.41	75	38	66
RRUS-32 B2 RRH	29.5	14.4	9.3	2.95	1.91	2.05	3.17	1.20	1.23	18	12	17
RRUS-32 BZ RRH (Shielded)	29.5	7.2	9.3	1.48	1.91	4.10	3.17	1.27	1.23	10	12	10
B14 4478 RRH	20.4	15.7	10.6	2.23	1.50	1.30	1.92	1,20	1,20	14	9	13
B14 4478 RRH (Side)	20.4	7.9	15.7	1.11	2.23	2.60	1.30	1.20	1.20	7	14	9
B5/B12 4449 RRH	17.2	15.5	12.7	1.85	1.52	1.11	1,35	1.20	1.20	12	10	11
85/812 4449 RRH (Side)	17.2	7.8	15.5	0.93	1.85	2.22	1.11	1.20	1.20	6	12	7
TT19-08BP111-001 TMA	12.2	7.7	9.0	0.65	0.76	1.58	1.36	1.20	1.20	4	5	4
WIND LOADS AT 30 MPH:												
P90-15-XLH-RR Antenna	72.0	11.0	7.0	5.50	3.50	6.55	10.29	1.38	1.51	22	16	21
HPA-65R-BUU-H6 Antenna	72.0	14.8	7.4	7.40	3.70	4.86	9.73	1,31	1.49	28	16	25
DMP65R-BU6DA Antenna	71.2	20.7	7.7	10.24	3.81	3.44	9.25	1.24	1.47	37	16	32
RRUS-32 B2 RRH	27.2	12.1	7.0	2.29	1.32	2,25	3.89	1,20	1.26	8	5	7
RRUS-32 B2 RRH (Shielded)	27.2	6.1	7.0	1.14	1.32	4.50	3.89	1.29	1.26	4	5	4
B14 4478 RRH	18.1	13.4	8.3	1.68	1.04	1,35	2.18	1.20	1.20	6	4	5
B14 4478 RRH (Side)	18.1	6.7	13.4	0.84	1.68	2.70	1.35	1.21	1.20	3	6	4
B5/B12 4449 RRH	14.9	13.2	10.4	1.37	1.08	1,13	1,43	1.20	1.20	5	4	5
B5/B12 4449 RRH (Side)	14.9	6.6	13.2	0.68	1.37	2.26	1.13	1.20	1.20	2	5	3
TT19-08BP111-001 TMA	9.9	5.4	6.7	0.37	0.46	1.83	1.48	1.20	1.20	1	2	1

8/16/2019 Date: Project Name: KENT CT MAPLE STREET Project No.: CT1288 Designed By: LBW Checked By: MSC

Angle = 60	(deg)		Ice Thick	ness =	1.16	in,		1	Equiva	lent Angle =	240	(deg)
WIND LOADS WITH NO ICE:												
Appurtenances	<u>Height</u>	<u>Width</u>	<u>Depth</u>	<u>Flat Area</u> (normal)	Flat Area (side)	<u>Ratio</u> (normal)	Ratio (side)	<u>Ca</u> (normal)	<u>Ca</u> (side)	Force (lbs) (normal)	Force (lbs) (side)	Force (lbs) (angle)
P90-15-XLH-RR Antenna	72.0	11.0	7.0	5.50	3.50	6.55	10.29	1.38	1.51	327	228	253
HPA-65R-BUU-H6 Antenna	72.0	14.8	7.4	7.40	3.70	4,86	9,73	1.31	1.49	417	238	283
DMP65R-BU6DA Antenna	71.2	20.7	7.7	10.24	3.81	3.44	9.25	1,24	1.47	548	242	319
RRUS-32 B2 RRH	27.2	12.1	7.0	2.29	1.32	2.25	3.89	1.20	1,26	118	72	84
RRUS-32 B2 RRH (Shielded)	27.2	9.1	7.0	1.71	1.32	3.00	3.89	1,22	1.26	90	72	77
B14 4478 RRH	18.1	13.4	8.3	1.68	1.04	1.35	2.18	1.20	1.20	87	54	62
B14 4478 RRH (Side)	18.1	10.1	13,4	1.26	1.68	1.80	1.35	1.20	1.20	65	87	82
85/812 4449 RRH	14.9	13.2	10.4	1.37	1.08	1.13	1.43	1.20	1.20	71	56	59
B5/B12 4449 RRH (Side)	14.9	9.9	13.2	1.02	1.37	1.51	1.13	1,20	1.20	53	71	66
TT19-08BP111-001 TMA	9.9	5.4	6.7	0.37	0.46	1.83	1.48	1.20	1.20	19	24	23
WIND LOADS WITH ICE:												
P90-15-XLH-RR Antenna	74.3	13.3	9.3	6.87	4.81	5.58	7.98	1,34	1.43	48	36	39
HPA-65R-BUU-H6 Antenna	74.3	17.1	9.7	8.83	5.01	4.34	7.65	1.28	1.42	59	37	43
DMP65R-BU6DA Antenna	73.5	23.0	10.0	11.75	5.11	3.19	7.34	1.23	1.41	75	38	47
RRUS-32 B2 RRH	29.5	14.4	9.3	2.95	1.91	2.05	3.17	1,20	1.23	18	12	14
RRUS-32 B2 RRH (Shleided)	29.5	10.8	9.3	2.22	1.91	2.73	3.17	1.21	1.23	14	12	13
B14 4478 RRH	20.4	15.7	10.6	2.23	1.50	1.30	1.92	1.20	1.20	14	9	11
B14 4478 RRH (Side)	20.4	11.8	15.7	1.67	2.23	1.73	1.30	1.20	1.20	10	14	13
B5/B12 4449 RRH	17.2	15.5	12.7	1.85	1.52	1.11	1.35	1.20	1.20	12	10	10
B5/B12 4449 RRH (Side)	17.2	11.6	15.5	1.39	1.85	1.48	1.11	1.20	1.20	9	12	11
TT19-08BP111-001 TMA	12.2	7.7	9.0	0.65	0.76	1.58	1.36	1.20	1,20	4	5	5
WIND LOADS AT 30 MPH:												
P90-15-XLH-RR Antenna	72.0	11.0	7.0	5.50	3.50	6.55	10.29	1.38	1.51	22	16	17
HPA-65R-BUU-H6 Antenna	72.0	14.8	7.4	7.40	3.70	4.86	9.73	1.31	1.49	28	16	19
DMP65R-BU6DA Antenna	71.2	20.7	7.7	10.24	3.81	3.44	9.25	1.24	1.47	37	16	22
RRUS-32 B2 RRH	27.2	12.1	7.0	2.29	1.32	2.25	3.89	1.20	1.26	8	5	6
RRUS-32 B2 RRH (Shielded)	27.2	9.1	7.0	1.71	1.32	3.00	3,89	1,22	1.26	6	5	5
B14 4478 RRH	18.1	13.4	8.3	1.68	1.04	1.35	2.18	1.20	1.20	6	4	4
B14 4478 RRH (Side)	18.1	10.1	13.4	1.26	1.68	1.80	1.35	1.20	1.20	4	6	6
B5/B12 4449 RRH	14.9	13.2	10.4	1.37	1.08	1.13	1.43	1.20	1.20	5	4	4
85/812 4449 RRH (Side)	14.9	9.9	13.2	1.02	1.37	1.51	1.13	1.20	1.20	4	5	5
TT19-088P111-001 TMA	9.9	5.4	6.7	0.37	0.46	1.83	1.48	1.20	1.20	1 100	2	2

Date: 8/16/2019 Project Name: KENT CT MAPLE STREET Project No.: CT1288 Designed By: LBW Checked By: MSC

Angle = 90	(deg)		Ice Thick	ness =	1.16	in.		[Equiva	lent Angle =	270	(deg)
WIND LOADS WITH NO ICE:												
Appurtenances	<u>Height</u>	<u>Width</u>	<u>Depth</u>	<u>Flat Area</u> (normal)	Flat Area (side)	<u>Ratio</u> (normal)	Ratio (side)	<u>Ca</u> (normal)	<u>Ca</u> (side)	Force (ibs) (normal)	Force (lbs) (side)	Force (lbs (angle)
P90-15-XLH-RR Antenna	72.0	11.0	7.0	5.50	3.50	6.55	10.29	1.38	1.51	327	228	228
HPA-65R-BUU-H6 Antenna	72.0	14.8	7.4	7.40	3.70	4.86	9.73	1.31	1.49	417	238	238
DMP65R-BU6DA Antenna	71.2	20.7	7.7	10.24	3.81	3.44	9.25	1.24	1,47	548	242	242
RRUS-32 B2 RRH RRUS-32 B2 RRH (Shielded)	27.2 27.2	12.1 0.0	7.0 7.0	2.29 0.00	1.32 1.32	2.25 0.00	3.89 3.89	1.20 1.20	1.26 1.26	118 0	72 72	72 72
B14 4478 RRH B14 4478 RRH (Side)	18.1 18.1	13.4 8.3	8.3 13.4	1.68 1.04	1.04 1.68	1.35 2.18	2,18 1.35	1.20 1.20	1,20 1,20	87 54	54 87	54 87
B5/B12 4449 RRH B5/B12 4449 RRH (Side)	14.9 14.9	13.2 10.4	10.4 13.2	1.37 1.08	1.08 1.37	1.13 1.43	1.43 1.13	1,20 1.20	1,20 1,20	71 56	56 71	56 71
TT19-08BP111-001 TMA	9.9	5.4	6.7	0.37	0.46	1,83	1.48	1.20	1,20	19	24	24
WIND LOADS WITH ICE:												
P90-15-XLH-RR Antenna	74.3	13.3	9.3	6.87	4.81	5.58	7.98	1.34	1,43	48	36	36
HPA-65R-BUU-H6 Antenna	74.3	17.1	9.7	8.83	5.01	4,34	7.65	1.28	1.42	59	37	37
DMP65R-BU6DA Antenna	73.5	23.0	10.0	11.75	5.11	3.19	7.34	1,23	1.41	75	38	38
RRUS-32 B2 RRH RRUS-32 B2 RRH (Shielded)	29.5 29.5	14.4 2.3	9.3 9.3	2.95 0.47	1.91 1.91	2.05 12.76	3.17 3.17	1.20 1.59	1.23 1.23	18 4	12 12	12 12
B14 4478 RRH B14 4478 RRH (Side)	20.4 20.4	15.7 10.6	10.6 15.7	2.23 1.50	1.50 2.23	1.30 1.92	1.92 1.30	1.20 1.20	1.20 1,20	14 9	9 14	9 14
B5/B12 4449 RRH B5/B12 4449 RRH (Side)	17.2 17.2	15.5 12.7	12.7 15.5	1.85 1.52	1.52 1.85	1.11 1.35	1.35 1.11	1.20 1.20	1.20 1.20	12 10	10 12	10 12
TT19-08BP111-001 TMA	12.2	7.7	9.0	0.65	0.76	1.58	1,36	1,20	1.20	4	5	5
WIND LOADS AT 30 MPH:												
P90-15-XLH-RR Antenna	72.0	11.0	7.0	5.50	3.50	6,55	10.29	1.38	1.51	22	16	16
HPA-65R-BUU-H6 Antenna	72.0	14.8	7.4	7.40	3.70	4.86	9.73	1.31	1.49	28	16	16
DMP65R-BU6DA Antenna	71.2	20.7	7.7	10.24	3.81	3.44	9.25	1.24	1.47	37	16	16
RRUS-32 B2 RRH RRUS-32 B2 RRH (Shielded)	27.2 27.2	12.1 0.0	7.0 7.0	2.29 0.00	1.32 1.32	2.25 0.00	3.89 3.89	1.20 1.20	1.26 1.26	8 0	5 5	5 5
B14 4478 RRH B14 4478 RRH (Side)	18.1 18.1	13.4 8.3	8.3 13.4	1.68 1.04	1.04 1.68	1.35 2.18	2.18 1.35	1.20 1.20	1.20 1.20	6 4	4 6	4
85/B12 4449 RRH 85/B12 4449 RRH (Side)	14.9 14.9	13.2 10.4	10.4 13.2	1.37 1.08	1.08 1.37	1.13 1.43	1.43 1.13	1.20 1.20	1.20 1.20	5 4	4 5	4 5
TT19-08BP111-001 TMA	9.9	5.4	6.7	0.37	0,46	1.83	1.48	1.20	1.20	1	2	2

 Date:
 8/16/2019

 Project Name:
 KENT CT MAPLE STREET

 Project No.:
 CT1288

 Designed By:
 LBW
 Checked By: MSC

ICE WEIGHT CALCULATIONS

Thickness of ice:	1.16 in.
Density of ice:	56 pcf

P90-15-XLH-RR Antenna

Weight of ice based on total radial S	SF area:	
Height (in):	72.0	
Width (in):	11.0	
Depth (in):	7.0	
Total weight of ice on object:		121 lbs
Weight of object:	49.0 lbs	
Combined weight of ice and object:	2	170 lbs

DMP65R-BU6DA Antenna

Weight of ice based on total radial SI	area:	
Height (in):	71.2	
Width (in):	20.7	
Depth (in):	7.7	
Total weight of ice on object:		195 lbs
Weight of object:	80.0 lbs	
Combined weight of ice and object:		275 lbs

B14 4478 RRH

rea:	
18.1	
13.4	
8.3	
	36 lbs
60.0 lbs	
	96 lbs
	13.4 8.3

TT19-08BP111-001 TMA

Combined weight of ice and object:		27 lbs
Weight of object:	16.0 lbs	
Total weight of ice on object:		11 lbs
Depth (in):	6.7	
Width (in):	5.4	
Height (in):	9.9	
Weight of ice based on total radial s	SF area:	
Martines of the bound on seal of the lands		

2" pipe

Per foot weight of ice:		
diameter (in):	2.38	
Per foot weight of ice on object:		5 plf

L 2x2 Angles

Per foot weight of ice on object:		6 plf
Width (in):	2	
Height (in):	2	
Weight of Ice based on total radial SF a	area:	

PL 6x3/8

Weight of ice based on total radial S	F area:	
Height (in):	6	
Width (in):	0.375	
Per foot weight of ice on object:		10 plf

HPA-65R-BUU-H6 Antenna

Weight of ice based on total radial SF	area:	
Height (in):	72.0	
Width (in):	14.8	
Depth (in):	7.4	
Total weight of ice on object:		151 lbs
Weight of object:	51.0 ll	os
Combined weight of ice and object:		202 lbs

RRUS-32 B2 RRH

Combined weight of ice and object:	109 lb
Weight of object:	60.0 lbs
Total weight of ice on object:	49 lb.
Depth (in):	7.0
Width (in):	12.1
Height (in):	27.2
Weight of ice based on total radial S	SF area:

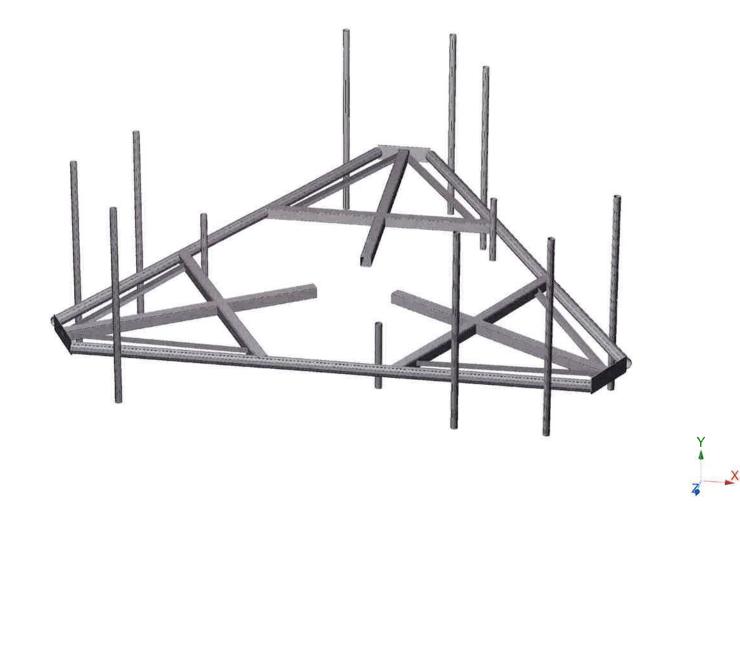
B5/B12 4449 RRH

+ 32 lbs
1
2
•

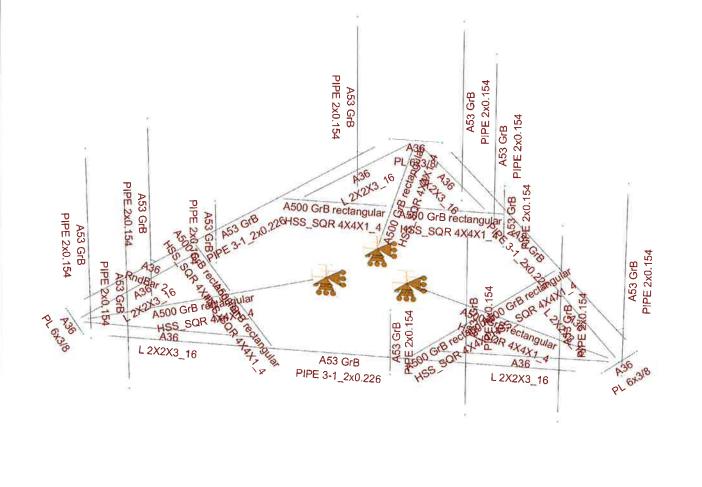
Squid Surge Arrestor

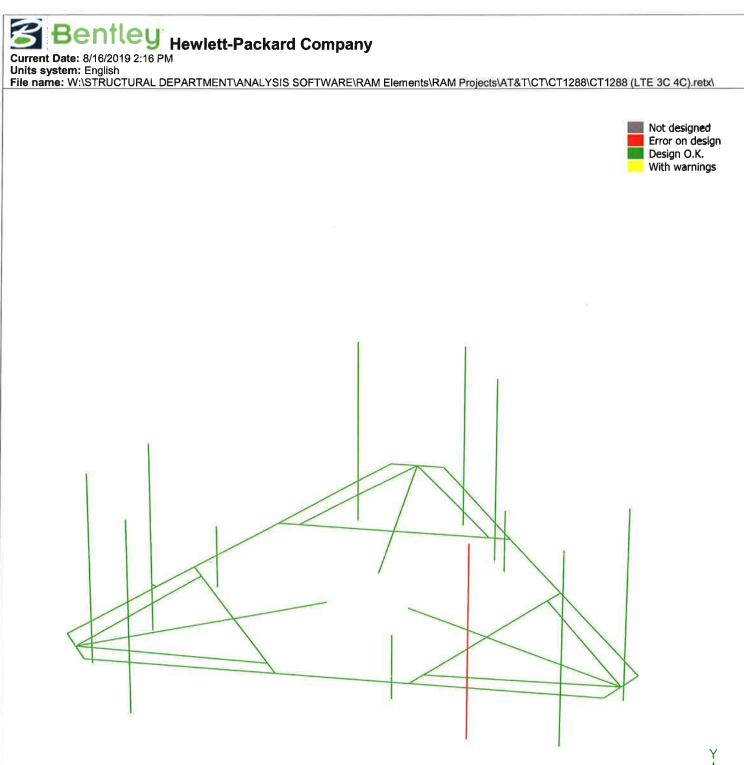
Weight of ice based on total radial SF	area:	
Depth (in):	24.0	
Diameter(in):	9.7	
Total weight of ice on object:		31 lbs
Weight of object:	33 lbs	5
Combined weight of ice and object:		64 lbs

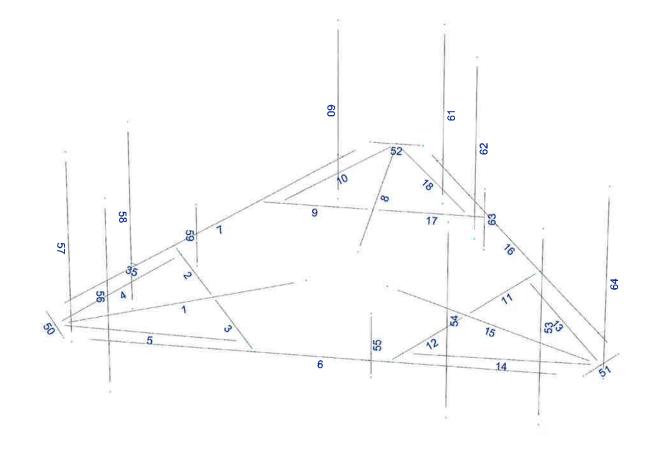
3" Pipe


Per foot weight of ice:			
diameter (in):	3.5		
Per foot weight of ice on object:	_	7 plf	

HSS 4x4


Weight of ice based on total radial SI	Farea:	
Height (in):	4	
Width (in):	4	
Per foot weight of Ice on object:		10 plf


Mount Calculations (Existing Conditions) Current Date: 8/16/2019 2:16 PM Units system: English File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1288\CT1288 (LTE 3C 4C).retx\



X X

× × **Bentley** Hewlett-Packard Company

Current Date: 8/16/2019 2:16 PM Units system: English File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1288\CT1288 (LTE 3C 4C).retx\

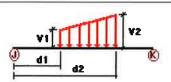
X

Bentley Hewlett-Packard Company

Current Date: 8/16/2019 2:19 PM Units system: English File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1288\CT1288 (LTE 3C 4C).retx\

Load data

GLOSSARY


Comb

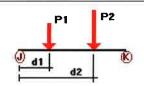
Indicates if load condition is a load combination

Load Conditions

Condition	Description	Comb.	Category
DL	Dead Load	No	DL
W0	Wind Load 0/60/120 deg	No	WIND
W30	Wind Load 30/90/150 deg	No	WIND
Di	Ice Load	No	LL
Wi0	Ice Wind Load 0/60/120 deg	No	WIND
Wi30	Ice Wind Load 30/90/150 deg	No	WIND
WL0	WL 30 mph 0/60/120 deg	No	WIND
WL30	WL 30 mph 30/90/150 deg	No	WIND
_L1	250 lb Live Load Center of Mount	No	LL
LL2	250 lb Live Load End of Mount	No	LL
LLa1	250 lb Live Load Antenna 1	No	LL
LLa2	250 lb Live Load Antenna 2	No	LL
La3	250 lb Live Load Antenna 3	No	LL
La4	250 lb Live Load Antenna 4	No	LL

Distributed force on members

Condition	Member	Dir1	Val1 [Kip/ft]	Val2 [Kip/ft]	Dist1 [ft]	%	Dist2 [ft]	%
DL	1	 у	-0.01	0.00	0.00	No	0.00	No
	2	ý	-0.01	0.00	0.00	No	0.00	No
	3	y	-0.01	0.00	0.00	No	0.00	No
	4	y	-0.01	0.00	0.00	No	0.00	No
	5	ÿ	-0.01	0.00	0.00	No	0.00	No
	8	ÿ	-0.01	0.00	0.00	No	0.00	No
	9	ý	-0.01	0.00	0.00	No	0.00	No
	10	ÿ	-0.01	0.00	0.00	No	0.00	No
	11	ý	-0.01	0.00	0.00	No	0.00	No
	12	y	-0.01	0.00	0.00	No	0.00	No
	13	ý	-0.01	0.00	0.00	No	0.00	No
	14	ÿ	-0.01	0.00	0.00	No	0.00	No
	15	y	-0.01	0.00	0.00	No	0.00	No
	17	ý	-0.01	0.00	0.00	No	0.00	No
	18	y	-0.01	0.00	0.00	No	0.00	No


wo	1	z	-0.018	0.00	0.00	No	0.00	No
	2	z	-0.018	0.00	0.00	No	0.00	No
	3	z	-0.018	0.00	0.00	No	0.00	No
	4	z	-0.014	0.00	0.00	No	0.00	No
	5	z	-0.014	0.00	0.00	No	0.00	No
	6	Z	-0.025	0.00	0.00	No	0.00	No
	7	z	-0.025	0.00	0.00	No	0.00	No
	8	z	-0.018	0.00	0.00	No	0.00	No
	9	z	-0.018	0.00	0.00	No	0.00	No
	10	z	-0.014	0.00	0.00	No	0.00	No
	11	z	-0.018	0.00	0.00	No	0.00	No
	12	z	-0.018	0.00	0.00	No	0.00	No
	13	z	-0.014	0.00	0.00	No	0.00	No
	14	z	-0.014	0.00	0.00	No	0.00	No
	15	z	-0.018	0.00	0.00	No	0.00	No
	16	z	-0.025	0.00	0.00	No	0.00	No
	17	z	-0.018	0.00	0.00	No	0.00	No
	18	z	-0.014	0.00	0.00	No	0.00	No
	55	z	-0.01	0.00	0.00	No	0.00	No
	57	z	-0.01	0.00	0.00	No	0.00	No
	58	z	-0.01	0.00	0.00	No	0.00	No
	59	z	-0.01	0.00	0.00	No	0.00	No
	60	z	-0.01	0.00	0.00	No	0.00	No
	61	z	-0.01	0.00	0.00	No	0.00	No
	62	Z	-0.01	0.00	0.00	No	0.00	No
	63	z	-0.01	0.00	0.00	No	0.00	No
	64	z	-0.01	0.00	0.00	No	0.00	No
W30	1	x	-0.018	0.00	0.00	No	0.00	No
	2	x	-0.018	0.00	0.00	No	0.00	No
	3	x	-0.018	0.00	0.00	No	0.00	No
	4	x	-0.014	0.00	0.00	No	0.00	No
	5	x	-0.014	0.00	0.00	No	0.00	No
	7	x	-0.025	0.00	0.00	No	0.00	No
	8	x	-0.018	0.00	0.00	No	0.00	No
	9	x	-0.018	0.00	0.00	No	0.00	No
	10	x	-0.014	0.00	0.00	No	0.00	No
	11	x	-0.018	0.00	0.00	No	0.00	No
	12	x	-0.018	0.00	0.00	No	0.00	No
	13	x	-0.014	0.00	0.00	No	0.00	No
	14	x	-0.014	0.00	0.00	No	0.00	No
	15	x	-0.018	0.00	0.00	No	0.00	No
	16	×	-0.025	0.00	0.00	No	0.00	No
	17 18	x	-0.018	0.00	0.00	No	0.00	No
	53	x	-0.014	0.00	0.00	No	0.00	No
	53	x	-0.01 -0.01	0.00 0.00	0.00 0.00	No	0.00	No
	55	x				No	0.00	No
	55 56	x x	-0.01 -0.01	0.00 0.00	0.00	No	0.00	No
	57	x	-0.01	0.00	0.00 0.00	No No	0.00 0.00	No
	58	x	-0.01	0.00	0.00			No
	59	x	-0.01	0.00	0.00	No No	0.00 0.00	No No
	60							
	63	x x	-0.01 -0.01	0.00 0.00	0.00 0.00	No No	0.00 0.00	No No
Di	1		-0.01	0.00	0.00	No		
	2	У	-0.01	0.00	0.00		0.00	No No
	2 3	У	-0.01	0.00	0.00	No No	0.00 0.00	No
	4	У	-0.006	0.00	0.00	No	0.00	No No
	4 5	У	-0.006	0.00	0.00		0.00	
	6	у У	-0.007	0.00	0.00	No No	0.00	No No
	7	y	-0.007	0.00	0.00	No	0.00	No
		,	0.001	0.00	0.00	140	0.00	110

W

8	у	-0.01	0.00	0.00	No	0.00	No
9	ý	-0.01	0.00	0.00	No	0.00	No
10	У	-0.006	0.00	0.00	No	0.00	No
11	У	-0.01	0.00	0.00	No	0.00	No
12	ý	-0.01	0.00	0.00	No	0.00	No
13	ý	-0.006	0.00	0.00	No	0.00	No
14	У	-0.006	0.00	0.00	No	0.00	No
15	У	-0.01	0.00	0.00	No	0.00	No
16	y	-0.007	0.00	0.00	No	0.00	No
17	y	-0.01	0.00	0.00	No	0.00	No
18	У	-0.006	0.00	0.00	No	0.00	No
50	У	-0.01	0.00	0.00	No	0.00	No
51	У	-0.01	0.00	0.00	No	0.00	No
52	У	-0.01	0.00	0.00	No	0.00	No
53	У	-0.005	0.00	0.00	No	0.00	No
54	у	-0.005	0.00	0.00	No	0.00	No
55	У	0.00	0.00	0.00	No	0.00	No
56	У	-0.005	0.00	0.00	No	0.00	No
57	у	-0.005	0.00	0.00	No	0.00	No
58	У	-0.005	0.00	0.00	No	0.00	No
59	У	0.00	0.00	0.00	No	0.00	No
60	У	-0.005	0.00	0.00	No	0.00	No
61	У	-0.005	0.00	0.00	No	0.00	No
62	у	-0.005	0.00	0.00	No	0.00	No
63	у	0.00	0.00	0.00	No	0.00	No
64	У	-0.005	0.00	0.00	No	0.00	No
 		1015003503550350505055050000					

Concentrated forces on members

Condition	Member	Dir1	Value1 [Kip]	Dist1 [ft]	%
DL	53	у	-0.025	1.00	No
		у	-0.025	4.00	No
		у	-0.032	2.50	No
	54	У	-0.04	0.50	No
		у	-0.04	5.50	No
		у	-0.133	2.50	No
	55	у	-0.033	0.50	No
	56	у	-0.026	0.50	No
		у	-0.026	5.50	No
		у	-0.06	2.50	No
	57	у	-0.025	1.00	No
		у	-0.025	4.00	No
		у	-0.032	2.50	No
	58	У	-0.04	0.50	No
		у	-0.04	5.50	No
		у	-0.133	2.50	No
	59	у	-0.033	0.50	No
	60	y	-0.026	0.50	No
		У	-0.026	5.50	No

		У	-0.06	2.50	No
	61	У	-0.025	1.00	No
		У	-0.025	4.00	No
		У	-0.032	2.50	No
	62	У	-0.04	0.50	No
		У	-0.04	5.50	No
		У	-0.133	2.50	No
	64	У	-0.026	0.50	No
		y	-0.026	5.50	No
		ý	-0.06	2.50	No
W0	53	z	-0.164	1.00	No
		z	-0.164	4.00	No
		z	-0.038	2.00	No
	54	z	-0.275	0.50	No
	V	z	-0.275	5.50	No
		z	-0.11	2.00	No
	55	z	-0.049	0.50	No
	56		-0.209	0.50	No
	50	z	-0.209	5.50	No
	67	z	-0.127	1.00	No
	57	Z			No
		z	-0.127	4.00	
		z	-0.046	2.00	No
	58	z	-0.16	0.50	No
		z	-0.16	5.50	No
	320	z	-0.082	2.00	No
	59	z	-0.049	0.50	No
	60	z	-0.142	0.50	No
		z	-0.142	5.50	No
		z	-0.077	1.50	No
	61	z	-0.127	1.00	No
		z	-0.127	4.00	No
		z	-0.046	2.00	No
	62	z	-0.16	0.50	No
		z	-0.16	5.50	No
		z	-0.082	2.00	No
	64	z	-0.142	0.50	No
		z	-0.142	5.50	No
		z	-0.077	1.50	No
W30	53	×	-0.114	1.00	No
		×	-0.114	4.00	No
		x	-0.048	2.00	No
	54	x	-0.122	0.50	No
	2010	x	-0.122	5.50	No
		x	-0.087	2.00	No
	55	×	-0.049	0.50	No
	56	x	-0.119	0.50	No
	50		-0.119	5.50	No
		x		1.50	No
	67	×	-0.072	1.00	No
	57	×	-0.152		No
		×	-0.152	4.00	
		x	-0.04	2.00	No
	58	x	-0.236	0.50	No
		x	-0.236	5.50	No
	223	x	-0.099	2.00	No
	59	×	-0.049	0.50	No
	60	×	-0.186	0.50	No
		x	-0.186	5.50	No
		x	-0.066	1.50	No
	61	×	-0.152	1.00	No
		x	-0.152	4.00	No

5 c

	x	-0.04	2.00	No
62	x	-0.236	0.50	No
an.	x	-0.236	5.50	No
	x	-0.099	2.00	No
64	x	-0.186	0.50	No
04	x	-0.186	5.50	No
	x	-0.066	1.50	No
53		-0.061	1.00	No
55	У			
	У	-0.061	4.00	No
63	У	-0.022	2.50	No
54	У	-0.098	0.50	No
	У	-0.098	5.50	No
212	У	-0.068	2.50	No
55	У	-0.031	0.50	No
56	У	-0.076	0.50	No
	У	-0.076	5.50	No
	У	-0.049	2.50	No
57	У	-0.061	1.00	No
	У	-0.061	4.00	No
	У	-0.022	2.50	No
58	У	-0.098	0.50	No
	У	-0.098	5.50	No
	У	-0.068	2.50	No
59	ý	-0.031	0.50	No
60	У	-0.076	0.50	No
	y	-0.076	5.50	No
	У	-0.049	2.50	No
61	ý	-0.061	1.00	No
120	ý	-0.061	4.00	No
	ý	-0.022	2.50	No
62	ý	-0.098	0.50	No
02		-0.098	5.50	No
	У	-0.068	2.50	No
64	У		0.50	No
04	У	-0.076		No
	У	-0.076	5.50	
50	У	-0.049	2.50	No
53	z	-0.025	1.00	No
	z	-0.025	4.00	No
04200	z	-0.008	2.00	No
54	z	-0.039	0.50	No
	z	-0.039	5.50	No
	z	-0.019	2.00	No
55	z	-0.008	0.50	No
56	z	-0.031	0.50	No
	z	-0.031	5.50	No
	z	-0.003	1.50	No
57	z	-0.02	1.00	No
	z	-0.02	4.00	No
	z	-0.01	2.00	No
58	z	-0.024	0.50	No
	z	-0.024	5.50	No
	z	-0.013	2.00	No
59	z	-0.008	0.50	No
60	z	-0.022	0.50	No
00	z	-0.022	5.50	No
		-0.022	1.50	No
61	z			No
61	z	-0.02	1.00	
	z	-0.02	4.00	No
00	z	-0.01	2.00	No
62	z	-0.024	0.50	No

		Di
--	--	----

Wi0

		z	-0.024	5.50	No
		z	-0.013	2.00	No
	64	z	-0.022	0.50	No
		Z	-0.022	5.50	No
		z	-0.013	1.50	No
Wi30	53	x	-0.018	1.00	No
		x	-0.018	4.00	No
		×	-0.01	2.00	No
	54	x	-0.019	0.50	No
		x	-0.019	5.50	No
		x	-0.014	2.00	No
	55	×	-0.008	0.50	No
	56	x	-0.019	0.50	No
		x	-0.019	5.50	No
		×	-0.012	1.50	No
	57	x	-0.023	1.00	No
		×	-0.023	4.00	No
		x	-0.008	2.00	No
	58	x	-0.034	0.50	No
		x	-0.034	5.50	No
		x	-0.016	2.00	No
	59	x	-0.008	0.50	No
	60	x	-0.027	0.50	No
		x	-0.027	5.50	No
		×	-0.01	1.50	No
	61	x	-0.023	1.00	No
	1960	x	-0.023	4.00	No
		x	-0.008	2.00	No
	62	x	-0.034	0.50	No
		x	-0.034	5.50	No
		x	-0.016	2.00	No
	64	x	-0.027	0.50	No
	U	x	-0.027	5.50	No
		x	-0.01	1.50	No
WLO	53	z	-0.012	1.00	No
TTEO	00	z	-0.012	4.00	No
	54	z	-0.019	0.50	No
	04	z	-0.019	5.50	No
		z	-0.008	2.00	No
	55	z	-0.003	0.50	No
	56	z	-0.015	0.50	No
	50		-0.015	5.50	No
		Z	-0.002	2.00	No
	57	z z	-0.002	1.00	No
	, 57	z	-0.009	4.00	No
			-0.009	2.00	No
	58	z	-0.004	0.50	No
	56	z			No
		z	-0.011	5.50	
	50	z	-0.006	2.00	No
	59	z	-0.003	0.50	No
	60	z	-0.01	0.50	No
		z	-0.01	5.50	No
	04	z	-0.005	1.50	No
	61	z	-0.009	1.00	No
		z	-0.009	4.00	No
	222.1	z	-0.004	2.00	No
	62	z	-0.011	0.50	No
		z	-0.011	5.50	No
	S.2.	z	-0.006	2.00	No
	64	z	-0.01	0.50	No

		z	-0.01	5.50	No
		z	-0.005	1.50	No
WL30	53	х	-0.008	1.00	No
		x	-0.008	4.00	No
		х	-0.004	2.00	No
	54	x	-0.009	0.50	No
		x	-0.009	5.50	No
		x	-0.006	2.00	No
	55	х	-0.003	0.50	No
	56	х	-0.009	0.50	No
		х	-0.009	5.50	No
		x	-0.005	1.50	No
	57	x	-0.011	1.00	No
		x	-0.011	4.00	No
		х	-0.002	2.00	No
	58	x	-0.017	0.50	No
		x	-0.017	5.50	No
		x	-0.007	2.00	No
	59	x	-0.003	0.50	No
	60	x	-0.013	0.50	No
		x	-0.013	5.50	No
		х	-0.004	1.50	No
	61	x	-0.011	1.00	No
		x	-0.011	4.00	No
		x	-0.002	2.00	No
	62	x	-0.017	0.50	No
		x	-0.017	5.50	No
		x	-0.007	2.00	No
	64	x	-0.013	0.50	No
		x	-0.013	5.50	No
		x	-0.004	1.50	No
LL1	6	У	-0.25	7.00	No
LL2	6	y	-0.25	0.00	No
LLa1	53	y	-0.25	3.00	No
LLa2	54	y	-0.25	3.00	No
LLa3	55	ý	-0.25	1.00	No
LLa4	56	ý	-0.25	3.00	No

Self weight multipliers for load conditions

Condition		Self weight multiplier			
	Description	Comb.	MultX	MultY	MultZ
DL	Dead Load	No	0.00	-1.00	0.00
W0	Wind Load 0/60/120 deg	No	0.00	0.00	0.00
W30	Wind Load 30/90/150 deg	No	0.00	0.00	0.00
Di	Ice Load	No	0.00	0.00	0.00
WiO	Ice Wind Load 0/60/120 deg	No	0.00	0.00	0.00
Wi30	Ice Wind Load 30/90/150 deg	No	0.00	0.00	0.00
WLO	WL 30 mph 0/60/120 deg	No	0.00	0.00	0.00
WL30	WL 30 mph 30/90/150 deg	No	0.00	0.00	0.00
LL1	250 lb Live Load Center of Mount	No	0.00	0.00	0.00
LL2	250 lb Live Load End of Mount	No	0.00	0.00	0.00
LLa1	250 lb Live Load Antenna 1	No	0.00	0.00	0.00
LLa2	250 lb Live Load Antenna 2	No	0.00	0.00	0.00
LLa3	250 lb Live Load Antenna 3	No	0.00	0.00	0.00

Earthquake (Dynamic analysis only)

Condition	a/g	Ang. [Deg]	Damp. [%]
DL	0.00	0.00	0.00
W0	0.00	0.00	0.00
W30	0.00	0.00	0.00
Di	0.00	0.00	0.00
Wi0	0.00	0.00	0.00
Wi30	0.00	0.00	0.00
WL0	0.00	0.00	0.00
WL30	0.00	0.00	0.00
LL1	0.00	0.00	0.00
LL2	0.00	0.00	0.00
LLa1	0.00	0.00	0.00
LLa2	0.00	0.00	0.00
LLa3	0.00	0.00	0.00
LLa4	0.00	0.00	0.00

Bentley Hewlett-Packard Company

Current Date: 8/16/2019 2:19 PM Units system: English File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1288\CT1288 (LTE 3C 4C).retx\

Steel Code Check

Report: Summary - Group by member

Load conditions to be included in design :

LC1=1.2DL+W0 LC2=1.2DL+W30 LC3=1.2DL-W0 LC4=1.2DL-W30 LC5=0.9DL+W0 LC6=0.9DL+W30 LC7=0.9DL-W0 LC8=0.9DL-W30 LC9=1.2DL+Di+Wi0 LC10=1.2DL+Di+Wi30 LC11=1.2DL+Di-Wi0 LC12=1.2DL+Di-Wi30 LC13=1.2DL LC15=1.2DL+1.5LL1 LC16=1.2DL+1.5LL2 LC17=1.2DL+WL0+1.5LLa1 LC18=1.2DL+WL30+1.5LLa1 LC19=1.2DL-WL0+1.5LLa1 LC20=1.2DL-WL30+1.5LLa1 LC21=1.2DL+WL0+1.5LLa2 LC22=1.2DL+WL30+1.5LLa2 LC23=1.2DL-WL0+1.5LLa2 LC24=1.2DL-WL30+1.5LLa2 LC25=1.2DL+WL0+1.5LLa3 LC26=1.2DL+WL30+1.5LLa3 LC27=1.2DL-WL0+1.5LLa3 LC28=1.2DL-WL30+1.5LLa3 LC29=1.2DL+WL0+1.5LLa4 LC30=1.2DL+WL30+1.5LLa4 LC31=1.2DL-WL0+1.5LLa4 LC32=1.2DL-WL30+1.5LLa4

Description	Section	Member	Ctrl Eq.	Ratio	Status	Reference
	HSS_SQR 4X4X1_4	1	LC10 at 100.00%	0.73	ОК	Eq. H1-1b
		2	LC2 at 100.00%	0.29	OK	Eq. H1-1b
		3	LC10 at 0.00%	0.27	OK	Eq. H1-1b
		8	LC9 at 100.00%	0.71	OK	Eq. H1-1b
		9	LC9 at 100.00%	0.26	OK	Eq. H1-1b
		11	LC12 at 100.00%	0.26	OK	Eq. H1-1b
		12	LC3 at 0.00%	0.28	ОК	Eq. H1-1b
		15	LC11 at 100.00%	0.72	OK	Eq. H1-1b
		17	LC9 at 100.00%	0.26	OK	Eq. H1-1b
	L 2X2X3_16	4	LC2 at 0.00%	0.63	ОК	Eq. H2-1
	_	5	LC3 at 100.00%	0.54	OK	Eq. H2-1
		10	LC1 at 0.00%	0.59	ОК	Eq. H2-1
		13	LC4 at 0.00%	0.62	ОК	Eq. H2-1
		14	LC3 at 100.00%	0.54	OK	Eq. H2-1
		18	LC1 at 0.00%	0.57	ОК	Eq. H2-1
	PIPE 2x0.154	53	LC3 at 71.88%	0.55	OK	Eq. H1-1b

	63 64	LC4 at 59.38% LC2 at 71.88%	0.01 0.72	OK OK	Eq. H1-1b Eq. H1-1b
		·····			
PIPE 3-1_2x0.226	6	LC10 at 37.50%	0.46	ок	Eq. H1-1b
	7	LC9 at 62.50%	0.45	OK	Eq. H1-1b
	16	LC12 at 37.50%	0.45	ОК	Eq. H1-1b
PL 6x3/8	50	LC2 at 50.00%	0.23	ок	Eq. H1-1b
	51	LC3 at 53.13%	0.20	ок	Eg. H1-1b
	52	LC1 at 46.88%	0.19	OK	Eq. H1-1b
		101 at 10100 //			
RndBar 2	35	LC2 at 0.00%	0.57	ок	Eg. H3-6

Bentley Hewlett-Packard Company

Current Date: 8/16/2019 2:19 PM Units system: English File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1288\CT1288 (LTE 3C 4C).retx\

Geometry data

GLOSSARY

Cb22, Cb33	; Moment gradient coefficients
Cm22, Cm33	Coefficients applied to bending term in interaction formula
d0	: Tapered member section depth at J end of member
DJX	Rigid end offset distance measured from J node in axis X
DJY	Rigid end offset distance measured from J node in axis Y
DJZ	: Rigid end offset distance measured from J node in axis Z
DKX	Rigid end offset distance measured from K node in axis X
DKY	Rigid end offset distance measured from K node in axis Y
DKZ	Rigid end offset distance measured from K node in axis Z
dL	Tapered member section depth at K end of member
lg factor	Inertia reduction factor (Effective Inertia/Gross Inertia) for reinforced concrete members
K22	Effective length factor about axis 2
K33	: Effective length factor about axis 3
L22	: Member length for calculation of axial capacity
L33	Member length for calculation of axial capacity
LB pos	ELateral unbraced length of the compression flange in the positive side of local axis 2
LB neg	Lateral unbraced length of the compression flange in the negative side of local axis 2
RX	Rotation about X
RY	: Rotation about Y
RZ	: Rotation about Z
то	1 = Tension only member 0 = Normal member
тх	Translation in X
TY	: Translation in Y
ΤZ	: Translation in Z

Nodes

Node	X [ft]	Y [ft]	Z [ft]	Rigid Floor
1	-1.8737	0.00	0.00	0
2	-2.1901	0.00	-0.5495	0
3	-7.25	0.00	0.00	0
4	-7.6549	0.00	-0.7018	0
5	-8.0612	0.00	-1.4049	0
7	-5.056	0.00	-5.5117	0
8	-3.6231	0.00	-3.0306	0
9	-1.1693	0.00	-4.4466	0
10	7.25	0.00	0.00	0
11	-3.50	0.00	-9.306	0
12	-2.8646	0.00	-9.306	0
13	-0.8112	0.00	-13.9622	0
14	0.00	0.00	-13.9622	0
15	0.00	0.00	-9.306	0
16	0.00	0.00	-6.4727	0
17	2.1901	0.00	-0.5495	0
18	7.6549	0.00	-0.7018	0
19	8.0612	0.00	-1.404 9	0
20	5.3724	0.00	-6.0612	0
21	5.056	0.00	-5.5117	0
22	3.6231	0.00	-3.0306	0
23	0.8112	0.00	-13.9622	0

24	1.8737	0.00	0.00	0
25	1.1693	0.00	-4.4466	0
26	3.50	0.00	-9.306	0
27	2.8646	0.00	-9.306	0
73	-5.9167	4.50	0.20	0
74	3.50	4.50	0.20	0
75	6.0833	4.50	0.20	0
76	-5.9167	-1.50	0.20	0
77	3.50	-1.50	0.20	0
78	6.0833	-1.50	0.20	0
89	-6.1838	0.00	-4.6485	0
91	-6.357	0.00	-4.7485	0
96	-7.6487	4.50	-2.5112	0
97	-6.357	4.50	-4.7485	0
98	-1.6487	4.50	-12.9035	0
99	1.5653	4.50	-13.0479	0
100	2.857	4.50	-10.8106	0
101	7.5653	4.50	-2.6556	0
102	-7.6487	-1.50	-2.5112	0
103	-6.357	-1.50	-4.7485	0
104	-1.6487	-1.50	-12.9035	0
105	1.5653	-1.50	-13.0479	0
106	2.857	-1.50	-10.8106	0
107	7.5653	-1.50	-2.6556	0
112	1.3384	1.25	-0.40	0
113	1.3384	-0.75	-0.40	0
118	3.4182	1.25	-8.6386	0
119	-4.7566	1.25	-6.3205	0
120	-4.7566	-0.75	-6.3205	0
121	3.4182	-0.75	-8.6386	0

Restraints

Node	ТХ	ΤY	ΤZ	RX	RY	RZ
9	1	1	1	 1	1	1
16	1	1	1	1	1	1
25	1	1	1	1	1	1

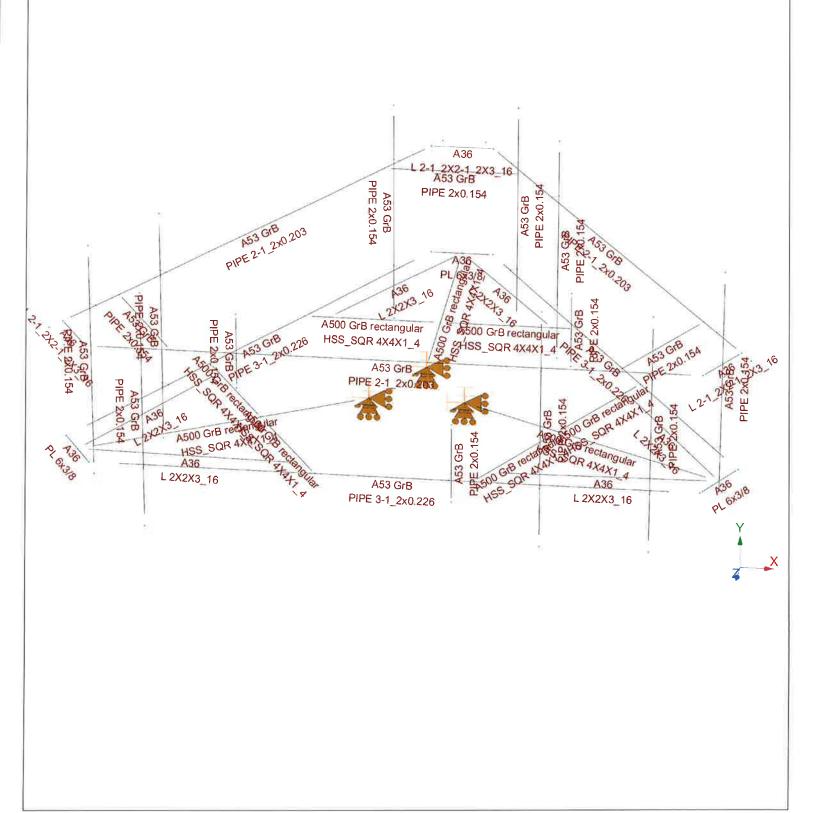
Members

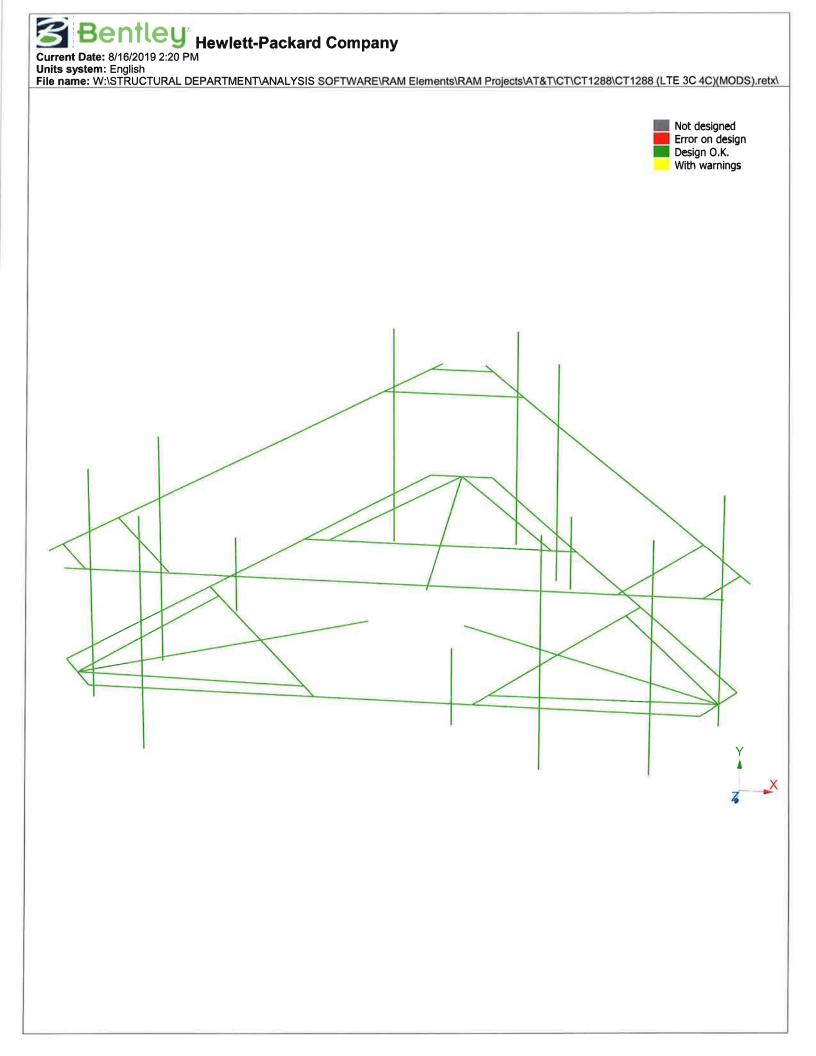
Member	NJ	NK	Description	Section	Material	d0 [in]	dL [in]	lg factor
1	4	9		HSS SQR 4X4X1 4	A500 GrB rectangular	0.00	0.00	0.00
2	6	8		HSS SQR 4X4X1 4	A500 GrB rectangular	0.00	0.00	0.00
3	8	1		HSS_SQR 4X4X1_4	A500 GrB rectangular	0.00	0.00	0.00
4	7	4		L 2X2X3_16	A36	0.00	0.00	0.00
5	4	2		L 2X2X3_16	A36	0.00	0.00	0.00
6	3	10		PIPE 3-1 2x0.226	A53 GrB	0.00	0.00	0.00
7	5	13		PIPE 3-1 2x0.226	A53 GrB	0.00	0.00	0.00
8	14	16		HSS SQR 4X4X1 4	A500 GrB rectangular	0.00	0.00	0.00
9	11	15		HSS_SQR 4X4X1_4	A500 GrB rectangular		0.00	0.00

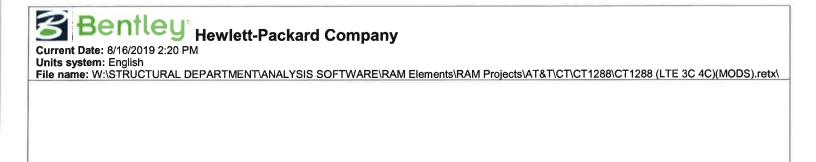
11 20 22 HSS_SQR 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 12 22 24 HSS_SQR 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 13 21 18 L 2X2X3_16 A36 0.00 0.00 0.00 14 18 17 L 2X2X3_16 A36 0.00 0.00 0.00 15 18 25 HSS_SQR 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 16 19 23 PIPE 3-1_2x0.226 A53 GrB 0.00 0.00 0.00 18 27 14 L 2X2X3_16 A36 0.00 0.00 0.00 50 5 3 PL 6x3/8 A36 0.00 0.00 0.00 51 19 10 PL 6x3/8 A36 0.00 0.00 0.00 52 23 13 PL 6x3/8 A36 0.00 0.00 0.00 54 74 77 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00	10	12	14	L 2X2X3_16 A36	0.00	0.00	0.00
132118LL $2X2X3_16$ A360.000.000.00141817L $2X2X3_16$ A360.000.000.000.00151825HSS SQR 4X4X1_4A500 GrB rectangular0.000.000.000.00161923PIPE 3-1_2x0.226A53 GrB0.000.000.000.00172615HSS SQR 4X4X1_4A500 GrB rectangular0.000.000.00182714L $2X2X3_16$ A360.000.000.00358991RndBar 2A360.000.000.005053PL 6x3/8A360.000.000.00511910PL 6x3/8A360.000.000.00522313PIPE 2x0.154A53 GrB0.000.000.00547477PIPE 2x0.154A53 GrB0.000.000.00567376PIPE 2x0.154A53 GrB0.000.000.005897103PIPE 2x0.154A53 GrB0.000.000.0059119120PIPE 2x0.154A53 GrB0.000.000.006098104PIPE 2x0.154A53 GrB0.000.000.006199105PIPE 2x0.154A53 GrB0.000.000.0062100106PIPE 2x0.154A53 GrB </td <td>11</td> <td>20</td> <td>22</td> <td></td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	11	20	22		0.00	0.00	0.00
14 18 17 L 2X2X3_16 A36 0.00 0.00 0.00 15 18 25 HSS_SQR 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 16 19 23 PIPE 3-1_2x0.226 A53 GrB 0.00 0.00 0.00 17 26 15 HSS_SQR 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 18 27 14 L 2X2X3_16 A36 0.00 0.00 0.00 50 5 3 PL 6x3/8 A36 0.00 0.00 0.00 51 19 10 PL 6x3/8 A36 0.00 0.00 0.00 52 23 13 PL 6x3/8 A36 0.00 0.00 0.00 54 74 77 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 56 73 76 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 57 96 102 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00	12	22	24	HSS_SQR 4X4X1_4 A500 GrB rectangular	0.00	0.00	0.00
15 18 25 HSS_SQR 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 16 19 23 PIPE 3-1_2x0.226 A53 GrB 0.00 0.00 0.00 17 26 15 HSS_SQR 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 18 27 14 L 2X2X3_16 A36 0.00 0.00 0.00 35 89 91 RndBar 2 A36 0.00 0.00 0.00 50 5 3 PL 6x3/8 A36 0.00 0.00 0.00 51 19 10 PL 6x3/8 A36 0.00 0.00 0.00 52 23 13 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 54 74 77 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 55 112 113 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 56 73 76 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00	13	21	18	L 2X2X3_16 A36	0.00	0.00	0.00
16 19 23 PIPE 3-1_2x0.226 A53 GrB 0.00 0.00 0.00 17 26 15 HSS_SQR 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 18 27 14 L 2X2X3_16 A36 0.00 0.00 0.00 35 89 91 RndBar 2 A36 0.00 0.00 0.00 50 5 3 PL 6x3/8 A36 0.00 0.00 0.00 51 19 10 PL 6x3/8 A36 0.00 0.00 0.00 52 23 13 PL 6x3/8 A36 0.00 0.00 0.00 54 74 77 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 55 112 113 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 56 73 76 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 58 97 103 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 59	14	18	17	L 2X2X3_16 A36	0.00	0.00	0.00
17 26 15 HSS_SQR 4X4X1_4 A500 GrB rectangular 0.00 0.00 0.00 18 27 14 L 2X2X3_16 A36 0.00 0.00 0.00 35 89 91 RndBar 2 A36 0.00 0.00 0.00 50 5 3 PL 6x3/8 A36 0.00 0.00 0.00 51 19 10 PL 6x3/8 A36 0.00 0.00 0.00 52 23 13 PL 6x3/8 A36 0.00 0.00 0.00 53 75 78 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 54 74 77 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 55 112 113 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 56 73 76 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 58 97 103 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 59	15	18	25	HSS_SQR 4X4X1_4 A500 GrB rectangular	0.00	0.00	0.00
18 27 14 L 2X2X3_16 A36 0.00 0.00 0.00 35 89 91 RndBar 2 A36 0.00 0.00 0.00 50 5 3 PL 6x3/8 A36 0.00 0.00 0.00 51 19 10 PL 6x3/8 A36 0.00 0.00 0.00 52 23 13 PL 6x3/8 A36 0.00 0.00 0.00 53 75 78 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 54 74 77 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 55 112 113 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 56 73 76 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 58 97 103 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 59 119 120 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 0.00 60 <td>16</td> <td>19</td> <td>23</td> <td>PIPE 3-1_2x0.226 A53 GrB</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	16	19	23	PIPE 3-1_2x0.226 A53 GrB	0.00	0.00	0.00
35 89 91 RndBar 2 A36 0.00 0.00 0.00 50 5 3 PL 6x3/8 A36 0.00 0.00 0.00 51 19 10 PL 6x3/8 A36 0.00 0.00 0.00 52 23 13 PL 6x3/8 A36 0.00 0.00 0.00 53 75 78 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 54 74 77 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 55 112 113 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 56 73 76 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 58 97 103 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 59 119 120 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 60 98 104 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 61 9	17	26	15	HSS_SQR 4X4X1_4 A500 GrB rectangular	0.00	0.00	0.00
50 5 3 PL 6x3/8 A36 0.00 0.00 0.00 51 19 10 PL 6x3/8 A36 0.00 0.00 0.00 52 23 13 PL 6x3/8 A36 0.00 0.00 0.00 53 75 78 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 54 74 77 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 55 112 113 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 56 73 76 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 58 97 103 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 59 119 120 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 60 98 104 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 61 99 105 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 62	18	27	14	L 2X2X3_16 A36	0.00	0.00	0.00
511910PL 6x3/8A360.000.000.00522313PL 6x3/8A360.000.000.00537578PIPE 2x0.154A53 GrB0.000.000.00547477PIPE 2x0.154A53 GrB0.000.000.0055112113PIPE 2x0.154A53 GrB0.000.000.00567376PIPE 2x0.154A53 GrB0.000.000.005796102PIPE 2x0.154A53 GrB0.000.000.005897103PIPE 2x0.154A53 GrB0.000.000.0059119120PIPE 2x0.154A53 GrB0.000.000.006098104PIPE 2x0.154A53 GrB0.000.000.006199105PIPE 2x0.154A53 GrB0.000.000.0062100106PIPE 2x0.154A53 GrB0.000.000.0063118121PIPE 2x0.154A53 GrB0.000.000.00	35	89	91	RndBar 2 A36	0.00	0.00	0.00
52 23 13 PL 6x3/8 A36 0.00 0.00 0.00 53 75 78 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 54 74 77 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 55 112 113 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 56 73 76 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 57 96 102 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 58 97 103 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 59 119 120 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 60 98 104 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 61 99 105 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 62 100 106 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00	50	5	3	PL 6x3/8 A36	0.00	0.00	0.00
53 75 78 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 54 74 77 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 55 112 113 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 56 73 76 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 57 96 102 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 58 97 103 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 59 119 120 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 60 98 104 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 61 99 105 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 62 100 106 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 63 118 121 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 <td>51</td> <td>19</td> <td>10</td> <td>PL 6x3/8 A36</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	51	19	10	PL 6x3/8 A36	0.00	0.00	0.00
54 74 77 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 55 112 113 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 56 73 76 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 57 96 102 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 58 97 103 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 59 119 120 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 60 98 104 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 61 99 105 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 62 100 106 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 63 118 121 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00	52	23	13	PL 6x3/8 A36	0.00	0.00	0.00
55 112 113 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 56 73 76 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 57 96 102 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 58 97 103 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 59 119 120 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 60 98 104 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 61 99 105 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 62 100 106 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 63 118 121 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00	53	75	78	PIPE 2x0.154 A53 GrB	0.00	0.00	0.00
56 73 76 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 57 96 102 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 58 97 103 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 59 119 120 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 60 98 104 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 61 99 105 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 62 100 106 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 63 118 121 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00	54	74	77	PIPE 2x0.154 A53 GrB	0.00	0.00	0.00
57 96 102 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 58 97 103 PIPE 2x0.154 A53 GrB 0.00	55	112	113	PIPE 2x0.154 A53 GrB	0.00	0.00	0.00
58 97 103 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 59 119 120 PIPE 2x0.154 A53 GrB 0.00	56	73	76	PIPE 2x0.154 A53 GrB	0.00	0.00	0.00
59 119 120 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 60 98 104 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 61 99 105 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 62 100 106 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00 63 118 121 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00	57	96	102	PIPE 2x0.154 A53 GrB	0.00	0.00	0.00
6098104PIPE 2x0.154A53 GrB0.000.000.006199105PIPE 2x0.154A53 GrB0.000.000.0062100106PIPE 2x0.154A53 GrB0.000.000.0063118121PIPE 2x0.154A53 GrB0.000.000.00	58	97	103	PIPE 2x0.154 A53 GrB	0.00	0.00	0.00
6199105PIPE 2x0.154A53 GrB0.000.000.0062100106PIPE 2x0.154A53 GrB0.000.000.0063118121PIPE 2x0.154A53 GrB0.000.000.00	59	119	120	PIPE 2x0.154 A53 GrB	0.00	0.00	0.00
62100106PIPE 2x0.154A53 GrB0.000.000.0063118121PIPE 2x0.154A53 GrB0.000.000.00	60	98	104	PIPE 2x0.154 A53 GrB	0.00	0.00	0.00
63 118 121 PIPE 2x0.154 A53 GrB 0.00 0.00 0.0	61	99	105	PIPE 2x0.154 A53 GrB	0.00	0.00	0.00
	62	100	106	PIPE 2x0.154 A53 GrB	0.00	0.00	0.00
64 101 107 PIPE 2x0.154 A53 GrB 0.00 0.00 0.00	63	118	121	PIPE 2x0.154 A53 GrB	0.00	0.00	0.00
	64	101	107	PIPE 2x0.154 A53 GrB	0.00	0.00	0.00

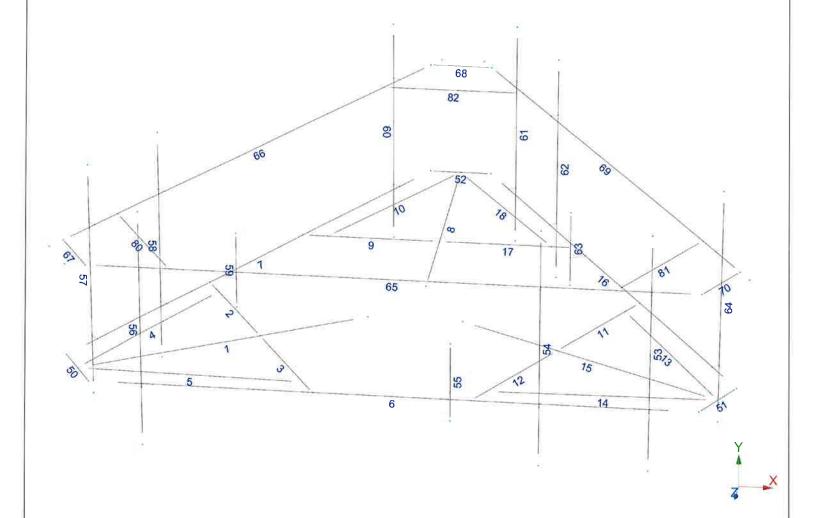
Orientation of local axes

Member	Rotation [Deg]	Axes23	NX	NY	NZ
4		0			0.00
5	270.00	0	0.00	0.00	0.00
18	90.00	0	0.00	0.00	0.00




Mount Calculations (Modified Conditions)





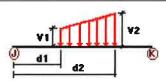
Units system: English File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1288\CT1288 (LTE 3C 4C)(MODS).retx\

Bentley Hewlett-Packard Company

Current Date: 8/16/2019 2:21 PM Units system: English File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1288\CT1288 (LTE 3C 4C)(MODS).re

Load data

GLOSSARY


Comb

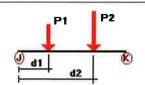
: Indicates if load condition is a load combination

Load Conditions

Condition	Description	Comb.	Category
DL	Dead Load	No	DL
WO	Wind Load 0/60/120 deg	No	WIND
W30	Wind Load 30/90/150 deg	No	WIND
Di	Ice Load	No	LL
WiO	Ice Wind Load 0/60/120 deg	No	WIND
Wi30	Ice Wind Load 30/90/150 deg	No	WIND
WLO	WL 30 mph 0/60/120 deg	No	WIND
WL30	WL 30 mph 30/90/150 deg	No	WIND
LL1	250 lb Live Load Center of Mount	No	LL
LL2	250 lb Live Load End of Mount	No	LL
LLa1	250 lb Live Load Antenna 1	No	LL
LLa2	250 lb Live Load Antenna 2	No	LL
LLa3	250 lb Live Load Antenna 3	No	LL
La4	250 lb Live Load Antenna 4	No	LL

Distributed force on members

Condition	Member	Dir1	Val1 [Kip/ft]	Val2 [Kip/ft]	Dist1 [ft]	%	Dist2 [ft]	%
DL	1	у	-0.01	0.00	0.00	No	0.00	No
	2	y	-0.01	0.00	0.00	No	0.00	No
	3	y	-0.01	0.00	0.00	No	0.00	No
	4	y	-0.01	0.00	0.00	No	0.00	No
	5	y	-0.01	0.00	0.00	No	0.00	No
	8	y	-0.01	0.00	0.00	No	0.00	No
	9	ý	-0.01	0.00	0.00	No	0.00	No
	10	ÿ	-0.01	0.00	0.00	No	0.00	No
	11	ý	-0.01	0.00	0.00	No	0.00	No
	12	y	-0.01	0.00	0.00	No	0.00	No
	13	y	-0.01	0.00	0.00	No	0.00	No
	14	y	-0.01	0.00	0.00	No	0.00	No
	15	y	-0.01	0.00	0.00	No	0.00	No
	17	y	-0.01	0.00	0.00	No	0.00	No
	18	y	-0.01	0.00	0.00	No	0.00	No


W0	1	z	-0.018	0.00	0.00	No	0.00	No
	2	z	-0.018	0.00	0.00	No	0.00	No
	3	Z	-0.018	0.00	0.00	No	0.00	No
	4	z	-0.014	0.00	0.00	No	0.00	No
	5	Z	-0.014	0.00	0.00	No	0.00	No
	6	Z	-0.025	0.00	0.00	No	0.00	No
	7	z	-0.025	0.00	0.00	No	0.00	No
	8	z	-0.018	0.00	0.00	No	0.00	No
	9	z	-0.018	0.00	0.00	No	0.00	No
	10	z	-0.014	0.00	0.00 0.00	No No	0.00 0.00	No No
	11 12	z	-0.018 -0.018	0.00 0.00	0.00	No	0.00	No
	13	z z	-0.014	0.00	0.00	No	0.00	No
	14	z	-0.014	0.00	0.00	No	0.00	No
	15	z	-0.018	0.00	0.00	No	0.00	No
	16	z	-0.025	0.00	0.00	No	0.00	No
	17	z	-0.018	0.00	0.00	No	0.00	No
	18	z	-0.014	0.00	0.00	No	0.00	No
	55	z	-0.01	0.00	0.00	No	0.00	No
	57	Z	-0.01	0.00	0.00	No	0.00	No
	58	z	-0.01	0.00	0.00	No	0.00	No
	59	z	-0.01	0.00	0.00	No	0.00	No
	60	z	-0.01	0.00	0.00	No	0.00	No
	61	z	-0.01	0.00	0.00	No	0.00	No
	62	z	-0.01	0.00	0.00	No	0.00	No
	63	Z	-0.01	0.00	0.00	No	0.00	No
	64	z	-0.01	0.00	0.00	No	0.00	No
	65	z	-0.025	0.00	0.00	No	0.00	No
	66	z	-0.025	0.00	0.00	No	0.00	No
14/00	69	z	-0.025	0.00	0.00	No	0.00	No
W30	1	x	-0.018	0.00	0.00	No	0.00	No
	2 3	×	-0.018	0.00 0.00	0.00 0.00	No No	0.00 0.00	No No
	4	×	-0.018 -0.014	0.00	0.00	No	0.00	No
	5	x x	-0.014	0.00	0.00	No	0.00	No
	7	x	-0.025	0.00	0.00	No	0.00	No
	8	x	-0.018	0.00	0.00	No	0.00	No
	9	x	-0.018	0.00	0.00	No	0.00	No
	10	x	-0.014	0.00	0.00	No	0.00	No
	11	x	-0.018	0.00	0.00	No	0.00	No
	12	x	-0.018	0.00	0.00	No	0.00	No
	13	x	-0.014	0.00	0.00	No	0.00	No
	14	х	-0.014	0.00	0.00	No	0.00	No
	15	x	-0.018	0.00	0.00	No	0.00	No
	16	×	-0.025	0.00	0.00	No	0.00	No
	17	×	-0.018	0.00	0.00	No	0.00	No
	18	x	-0.014	0.00	0.00	No	0.00	No
	53	x	-0.01	0.00	0.00	No	0.00	No
	54	x	-0.01	0.00	0.00	No	0.00	No
	55	x	-0.01	0.00	0.00	No	0.00	No No
	56 57	x	-0.01	0.00 0.00	0.00 0.00	No No	0.00 0.00	No
	58	x x	-0.01 -0.01	0.00	0.00	No	0.00	No
	59	x	-0.01	0.00	0.00	No	0.00	No
	60	x	-0.01	0.00	0.00	No	0.00	No
	63	x	-0.01	0.00	0.00	No	0.00	No
	66	x	-0.025	0.00	0.00	No	0.00	No
	69	x	-0.025	0.00	0.00	No	0.00	No
Di	1	ŷ	-0.01	0.00	0.00	No	0.00	No
	2	y	-0.01	0.00	0.00	No	0.00	No
	(77)	,	0.01	0.00	0.00	11025	5.00	1.1.2

N

D

3	У	-0.01	0.00	0.00	No	0.00	No
4	ý	-0.006	0.00	0.00	No	0.00	No
5	y	-0.006	0.00	0.00	No	0.00	No
6	У	-0.007	0.00	0.00	No	0.00	No
7	y	-0.007	0.00	0.00	No	0.00	No
8	У	-0.01	0.00	0.00	No	0.00	No
9	У	-0.01	0.00	0.00	No	0.00	No
10	У	-0.006	0.00	0.00	No	0.00	No
11	У	-0.01	0.00	0.00	No	0.00	No
12	У	-0.01	0.00	0.00	No	0.00	No
13	У	-0.006	0.00	0.00	No	0.00	No
14	У	-0.006	0.00	0.00	No	0.00	No
15	У	-0.01	0.00	0.00	No	0.00	No
16	У	-0.007	0.00	0.00	No	0.00	No
17	У	-0.01	0.00	0.00	No	0.00	No
18	У	-0.006	0.00	0.00	No	0.00	No
50	У	-0.01	0.00	0.00	No	0.00	No
51	У	-0.01	0.00	0.00	No	0.00	No
52	У	-0.01	0.00	0.00	No	0.00	No
53	У	-0.005	0.00	0.00	No	0.00	No
54	У	-0.005	0.00	0.00	No	0.00	No
55	У	0.00	0.00	0.00	No	0.00	No
56	У	-0.005	0.00	0.00	No	0.00	No
57	У	-0.005	0.00	0.00	No	0.00	No
58	У	-0.005	0.00	0.00	No	0.00	No
59	У	0.00	0.00	0.00	No	0.00	No
60	У	-0.005	0.00	0.00	No	0.00	No
61	У	-0.005	0.00	0.00	No	0.00	No
62	У	-0.005	0.00	0.00	No	0.00	No
63	У	0.00	0.00	0.00	No	0.00	No
64	У	-0.005	0.00	0.00	No	0.00	No
65	У	-0.007	0.00	0.00	No	0.00	No
66	У	-0.007	0.00	0.00	No	0.00	No
67	У	-0.01	0.00	0.00	No	0.00	No
68	У	-0.01	0.00	0.00	No	0.00	No
69	У	-0.007	0.00	0.00	No	0.00	No
70	У	-0.01	0.00	0.00	No	0.00	No

Concentrated forces on members

Condition	Member	Dir1	Value1 [Kip]	Dist1 [ft]	%
DL	53	у	-0.025	1.00	No
		ý	-0.025	4.00	No
		ý	-0.032	2.50	No
	54	ÿ	-0.04	0.50	No
		ý	-0.04	5.50	No
		ý	-0.133	2.50	No
	55	ý	-0.033	0.50	No
	56	y	-0.026	0.50	No

		У	-0.026	5.50	No
		У	-0.06	2.50	No
	57	У	-0.025	1.00	No
		У	-0.025	4.00	No
		У У У У	-0.032	2.50	No
	58	У	-0.04	0.50	No
		У	-0.04	5.50	No
		У	-0.133	2.50	No
	59	У	-0.033	0.50	No
	60	У	-0.026	0.50	No
		У	-0.026	5.50	No
	-2330	У	-0.06	2.50	No
	61	У	-0.025	1.00	No
		У	-0.025	4.00	No
		У	-0.032	2.50	No
	62	У	-0.04	0.50	No
		У	-0.04	5.50	No
	200	У	-0.133	2.50	No
	64	У	-0.026	0.50	No
		У	-0.026	5.50	No
		У	-0.06	2.50	No
	53	Z	-0.164	1.00	No
		Z	-0.164	4.00	No
	54	z	-0.038	2.00	No
	54	z	-0.275	0.50	No
		Z	-0.275	5.50	No
	66	z	-0.11	2.00	No
	55	z	-0.049	0.50	No
	56	z	-0.209	0.50	No No
	57	z	-0.209	5.50	
	57	z	-0.127 -0.127	1.00 4.00	No No
		z		2.00	No
	58	z	-0.046 -0.16	0.50	No
	50	z	-0.16	5.50	No
		z z	-0.082	2.00	No
	59	z	-0.049	0.50	No
	60	z	-0.142	0.50	No
	00	z	-0.142	5.50	No
		z	-0.077	1.50	No
	61	z	-0.127	1.00	No
		z	-0.127	4.00	No
		z	-0.046	2.00	No
	62	z	-0.16	0.50	No
		z	-0.16	5.50	No
		z	-0.082	2.00	No
	64	z	-0.142	0.50	No
		z	-0.142	5.50	No
		z	-0.077	1.50	No
C	53	x	-0.114	1.00	No
-		x	-0.114	4.00	No
		x	-0.048	2.00	No
	54	x	-0.122	0.50	No
	1797	x	-0.122	5.50	No
		x	-0.087	2.00	No
	55	x	-0.049	0.50	No
	56	x	-0.119	0.50	No
		x	-0.119	5.50	No
		x	-0.072	1.50	No
	57	x	-0.152	1.00	No
	500 MIC 10				

W0

W30

	x	-0.152	4.00	No
	x	-0.04	2.00	No
58	x	-0.236	0.50	No
	x	-0.236	5.50	No
	x	-0.099	2.00	No
59	x	-0.049	0.50	No
60	x	-0.186	0.50	No
	×	-0.186	5.50	No
	x	-0.066	1.50	No
61	x	-0.152	1.00	No
	×	-0.152	4.00	No
	×	-0.04	2.00	No
62	x	-0.236	0.50	No
	x	-0.236	5.50	No
	x	-0.099	2.00	No
64	×	-0.186	0.50	No
	×	-0.186	5.50	No
	x	-0.066	1.50	No
53	У	-0.061	1.00	No
	У	-0.061	4.00	No
	У	-0.022	2.50	No
54	У	-0.098	0.50	No
	У	-0.098	5.50	No
	У	-0.068	2.50	No
55	У	-0.031	0.50	No
56	У	-0.076	0.50	No
	У	-0.076	5.50	No
57	У	-0.049 -0.061	2.50 1.00	No No
57	У	-0.061	4.00	No
	У У	-0.022	2.50	No
58	y	-0.098	0.50	No
00	y	-0.098	5.50	No
	ý	-0.068	2.50	No
59	ý	-0.031	0.50	No
60	y	-0.076	0.50	No
	y	-0.076	5.50	No
	y	-0.049	2.50	No
61	У	-0.061	1.00	No
	У	-0.061	4.00	No
	У	-0.022	2.50	No
62	У	-0.098	0.50	No
	У	-0.098	5.50	No
	У	-0.068	2.50	No
64	У	-0.076	0.50	No
	У	-0.076	5.50	No
	У	-0.049	2.50	No
53	z	-0.025	1.00	No
	z	-0.025	4.00	No
	z	-0.008	2.00	No
54	z	-0.039	0.50	No
	z	-0.039	5.50	No
65	z	-0.019	2.00	No
55 56	z	-0.008	0.50	No No
56	Z	-0.031 -0.031	0.50 5.50	No
	z z	-0.003	1.50	No
57	z	-0.02	1.00	No
	z	-0.02	4.00	No
	z	-0.01	2.00	No
				63.72

Di

Wi0

	58	z	-0.024	0.50	No
		z	-0.024	5.50	No
		z	-0.013	2.00	No
	59	z	-0.008	0.50	No
	60			0.50	No
	00	Z	-0.022		
		z	-0.022	5.50	No
		z	-0.013	1.50	No
	61	Z	-0.02	1.00	No
		z	-0.02	4.00	No
		z	-0.01	2.00	No
	62	Z	-0.024	0.50	No
		Z	-0.024	5.50	No
		z	-0.013	2.00	No
	64	z	-0.022	0.50	No
		z	-0.022	5.50	No
		z	-0.013	1.50	No
Wi30	53	x	-0.018	1.00	No
	1.5.5.1	x	-0.018	4.00	No
		x	-0.01	2.00	No
	54	x	-0.019	0.50	No
	54		-0.019	5.50	No
		x			
	~~	×	-0.014	2.00	No
	55	x	-0.008	0.50	No
	56	x	-0.019	0.50	No
		×	-0.019	5.50	No
		×	-0.012	1.50	No
	57	x	-0.023	1.00	No
		x	-0.023	4.00	No
		×	-0.008	2.00	No
	58	x	-0.034	0.50	No
		x	-0.034	5.50	No
		x	-0.016	2.00	No
	59	x	-0.008	0.50	No
	60	x	-0.027	0.50	No
		x	-0.027	5.50	No
		x	-0.01	1.50	No
	61	x	-0.023	1.00	No
	01		-0.023	4.00	No
		x			
	00	×	-0.008	2.00	No
	62	x	-0.034	0.50	No
		x	-0.034	5.50	No
	222	x	-0.016	2.00	No
	64	×	-0.027	0.50	No
		x	-0.027	5.50	No
		x	-0.01	1.50	No
WL0	53	z	-0.012	1.00	No
		Z	-0.012	4.00	No
	54	z	-0.019	0.50	No
		z	-0.019	5.50	No
		z	-0.008	2.00	No
	55	z	-0.003	0.50	No
	56	z	-0.015	0.50	No
	142800	z	-0.015	5.50	No
		z	-0.002	2.00	No
	57	z	-0.009	1.00	No
	51		-0.009	4.00	No
		Z			
	60	z	-0.004	2.00	No
	58	z	-0.011	0.50	No
		z	-0.011	5.50	No
		Z.	-0.006	2.00	No

Page6

	59	z	-0.003	0.50	No
	60	z	-0.01	0.50	No
		z	-0.01	5.50	No
		z	-0.005	1.50	No
	61	z	-0.009	1.00	No
		z	-0.009	4.00	No
		z	-0.004	2.00	No
	62	z	-0.011	0.50	No
		z	-0.011	5.50	No
		z	-0.006	2.00	No
	64	z	-0.01	0.50	No
		z	-0.01	5.50	No
		z	-0.005	1.50	No
WL30	53	x	-0.008	1.00	No
		x	-0.008	4.00	No
		x	-0.004	2.00	No
	54	x	-0.009	0.50	No
		x	-0.009	5.50	No
		x	-0.006	2.00	No
	55	x	-0.003	0.50	No
	56	x	-0.009	0.50	No
		x	-0.009	5.50	No
		x	-0.005	1.50	No
	57	x	-0.011	1.00	No
		x	-0.011	4.00	No
		x	-0.002	2.00	No
	58	x	-0.017	0.50	No
		x	-0.017	5.50	No
		x	-0.007	2.00	No
	59	x	-0.003	0.50	No
	60	x	-0.013	0.50	No
		x	-0.013	5.50	No
		x	-0.004	1.50	No
	61	x	-0.011	1.00	No
	•	x	-0.011	4.00	No
		x	-0.002	2.00	No
	62	x	-0.017	0.50	No
	UL.	x	-0.017	5.50	No
		x	-0.007	2.00	No
	64	x	-0.013	0.50	No
	vr	x	-0.013	5.50	No
		x	-0.004	1.50	No
LL1	6		-0.25	7.00	No
LL2	6	У	-0.25	0.00	No
LL2 LLa1	53	У	-0.25	3.00	No
	53 54	У	-0.25	3.00	No
LLa2	54 55	У			No
LLa3 LLa4		У	-0.25	1.00	
LLd4	56	У	-0.25	3.00	No

Self weight multipliers for load conditions

		Self weight multiplier				
Condition	Description	Comb.	MultX	MultY	MultZ	
 DL	Dead Load	No	0.00	-1.00	0.00	
W0	Wind Load 0/60/120 deg	No	0.00	0.00	0.00	
W30	Wind Load 30/90/150 deg	No	0.00	0.00	0.00	
Di	ice Load	No	0.00	0.00	0.00	
Wi0	Ice Wind Load 0/60/120 deg	No	0.00	0.00	0.00	
Wi30	Ice Wind Load 30/90/150 deg	No	0.00	0.00	0.00	
WL0	WL 30 mph 0/60/120 deg	No	0.00	0.00	0.00	
WL30	WL 30 mph 30/90/150 deg	No	0.00	0.00	0.00	
LL1	250 lb Live Load Center of Mount	No	0.00	0.00	0.00	
LL2	250 lb Live Load End of Mount	No	0.00	0.00	0.00	
LLa1	250 lb Live Load Antenna 1	No	0.00	0.00	0.00	
LLa2	250 lb Live Load Antenna 2	No	0.00	0.00	0.0	
LLa3	250 lb Live Load Antenna 3	No	0.00	0.00	0.00	
LLa4	250 lb Live Load Antenna 4	No	0.00	0.00	0.00	

Earthquake (Dynamic analysis only)

Condition	a/g	Ang. [Deg]	Damp. [%]
DL	0.00	0.00	0.00
WO	0.00	0.00	0.00
W30	0.00	0.00	0.00
Di	0.00	0.00	0.00
Wi0	0.00	0.00	0.00
Wi30	0.00	0.00	0.00
WL0	0.00	0.00	0.00
WL30	0.00	0.00	0.00
LL1	0.00	0.00	0.00
LL2	0.00	0.00	0.00
LLa1	0.00	0.00	0.00
LLa2	0.00	0.00	0.00
LLa3	0.00	0.00	0.00
LLa4	0.00	0.00	0.00

Bentley Hewlett-Packard Company

Current Date: 8/16/2019 2:22 PM Units system: English File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1288\CT1288 (LTE 3C 4C)(MODS).ru

Steel Code Check

Report: Summary - Group by member

Load conditions to be included in design :

LC1=1.2DL+W0 LC2=1.2DL+W30 LC3=1.2DL-W0 LC4=1.2DL-W30 LC5=0.9DL+W0 LC6=0.9DL+W30 LC7=0.9DL-W0 LC8=0.9DL-W30 LC9=1.2DL+Di+Wi0 LC10=1.2DL+Di+Wi30 LC11=1.2DL+Di-Wi0 LC12=1.2DL+Di-Wi30 LC13=1.2DL LC15=1.2DL+1.5LL1 LC16=1.2DL+1.5LL2 LC17=1.2DL+WL0+1.5LLa1 LC18=1.2DL+WL30+1.5LLa1 LC19=1.2DL-WL0+1.5LLa1 LC20=1.2DL-WL30+1.5LLa1 LC21=1.2DL+WL0+1.5LLa2 LC22=1.2DL+WL30+1.5LLa2 LC23=1.2DL-WL0+1.5LLa2 LC24=1.2DL-WL30+1.5LLa2 LC25=1.2DL+WL0+1.5LLa3 LC26=1.2DL+WL30+1.5LLa3 LC27=1.2DL-WL0+1.5LLa3 LC28=1.2DL-WL30+1.5LLa3 LC29=1.2DL+WL0+1.5LLa4 LC30=1.2DL+WL30+1.5LLa4 LC31=1.2DL-WL0+1.5LLa4 LC32=1.2DL-WL30+1.5LLa4

Description	Section	Member	Ctrl Eq.	Ratio	Status	Reference
	HSS_SQR 4X4X1_4	1	LC10 at 100.00%	0.68	OK	Eq. H1-1b
		2	LC2 at 100.00%	0.35	ОК	Eq. H1-1b
		3	LC10 at 0.00%	0.31	ОК	Eq. H1-1b
		8	LC1 at 100.00%	0.72	ОК	Eq. H1-1b
		9	LC1 at 100.00%	0.31	ОК	Eq. H1-1b
		11	LC4 at 100.00%	0.31	OK	Eq. H1-1b
		12	LC3 at 0.00%	0.34	OK	Eq. H1-1b
		15	LC4 at 100.00%	0.71	OK	Eq. H1-1b
		17	LC9 at 100.00%	0.32	ОК	Eq. H1-1b
	L 2-1_2X2-1_2X3_16	67	LC4 at 0.00%	0.35	OK	Sec. F1
		68	LC2 at 0.00%	0.40	ок	Sec. F1
		70	LC1 at 100.00%	0.42	ОК	Sec. F1
	L 2X2X3_16	4	LC2 at 0.00%	0.60	ОК	Eq. H2-1
	1.55	5	LC3 at 100.00%	0.53	ок	Eq. H2-1
		10	LC1 at 0.00%	0.59	OK	Eq. H2-1
		13	LC4 at 0.00%	0.61	OK	Eq. H2-1

	14	LC3 at 100.00%	0.49	ок	Eq. H2-1
	18	LC1 at 0.00%	0.57	OK	Eq. H2-1
PIPE 2-1_	_2x0.203 65	LC11 at 72.66%	0.38	ОК	Eq. H1-1b
	66	LC9 at 72.66%	0.38	OK	Eq. H1-1b
	69	LC12 at 72.66%	0.39	ок	Eq. H1-1b
PIPE 2x0.	154 53	LC2 at 72.92%	0.61	ОК	Eq. H1-1b
	54	LC1 at 72.92%	0.86	OK	Eq. H1-1b
	55	LC4 at 59.38%	0.03	OK	Eq. H1-1b
	56	LC12 at 72.92%	0.79	OK	Eq. H1-1b
	57	LC1 at 72.92%	0.71	OK	Eq. H1-1b
	58	LC1 at 72.92%	0.90	OK	Eq. H1-1b
	59	LC1 at 59.38%	0.03	OK	Eq. H1-1b
	60	LC2 at 72.92%	0.97	ок	Eq. H1-1b
	61	LC4 at 72.92%	0.68	ОК	Eq. H1-1b
	62	LC4 at 72.92%	0.89	OK	Eq. H1-1b
	63	LC2 at 59.38%	0.01	OK	Eq. H1-1b
	64	LC1 at 72.92%	0.97	ОК	Eq. H1-1b
	80	LC1 at 100.00%	0.41	OK	Eq. H1-1b
	81	LC3 at 0.00%	0.44	OK	Eq. H1-1b
	82	LC4 at 100.00%	0.47	ОК	Eq. H1-1b
PIPE 3-1_	2x0.226 6	LC10 at 37.50%	0.38	ОК	Eq. H1-1b
	7	LC9 at 62.50%	0.37	ОК	Eq. H1-1b
	16	LC4 at 37.50%	0.41	ОК	Eq. H1-1b
PL 6x3/8	50	LC4 at 50.00%	0.18	ОК	Eq. H1-1b
	51	LC3 at 53.13%	0.15	OK	Eq. H1-1b
	52	LC1 at 50.00%	0.17	ОК	Eq. H1-1b

Bentley Hewlett-Packard Company

Current Date: 8/16/2019 2:22 PM Units system: English File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1288\CT1288 (LTE 3C 4C)(MODS).rr

Geometry data

GLOSSARY

Cb22, Cb33	: Moment gradient coefficients
Cm22, Cm33	: Coefficients applied to bending term in interaction formula
d0	Tapered member section depth at J end of member
DJX	Rigid end offset distance measured from J node in axis X
DJY	Rigid end offset distance measured from J node in axis Y
DJZ	Rigid end offset distance measured from J node in axis Z
DKX	Rigid end offset distance measured from K node in axis X
DKY	: Rigid end offset distance measured from K node in axis Y
DKZ	Rigid end offset distance measured from K node in axis Z
dL	: Tapered member section depth at K end of member
lg factor	Inertia reduction factor (Effective Inertia/Gross Inertia) for reinforced concrete members
K22	: Effective length factor about axis 2
K33	: Effective length factor about axis 3
L22	: Member length for calculation of axial capacity
L33	Member length for calculation of axial capacity
LB pos	Lateral unbraced length of the compression flange in the positive side of local axis 2
LB neg	Lateral unbraced length of the compression flange in the negative side of local axis 2
RX	Rotation about X
RY	: Rotation about Y
RZ	Rotation about Z
то	1 = Tension only member 0 = Normal member
ТХ	: Translation in X
ΤY	: Translation in Y
TZ	: Translation in Z

Nodes

Node	X [ft]	Y [ft]	Z [ft]	Rigid Floor
1	-1.8737	0.00	0.00	0
2	-2.1901	0.00	-0.5495	0
3	-7.25	0.00	0.00	0
4	-7.6549	0.00	-0.7018	0
5	-8.0612	0.00	-1.4049	0
6	-5.3724	0.00	-6.0612	0
7	-5.056	0.00	-5.5117	0
8	-3.6231	0.00	-3.0306	0
9	-1.1693	0.00	-4.4466	0
10	7.25	0.00	0.00	0
11	-3.50	0.00	-9.306	0
12	-2.8646	0.00	-9.306	0
13	-0.8112	0.00	-13.9622	0
14	0.00	0.00	-13.9622	0
15	0.00	0.00	-9.306	0
16	0.00	0.00	-6.4727	0
17	2.1901	0.00	-0.5495	0
18	7.6549	0.00	-0.7018	0
19	8.0612	0.00	-1.4049	0
20	5.3724	0.00	-6.0612	0
21	5.056	0.00	-5.5117	0
22	3.6231	0.00	-3.0306	0

~~	0.0440	0.00	40.0000	0
23	0.8112	0.00	-13.9622	0
24	1.8737	0.00	0.00	0
25	1.1693	0.00	-4.4466	0
26	3.50	0.00	-9.306	0
27	2.8646	0.00	-9.306	0
73	-5.9167	4.50	0.20	0
74	3.50	4.50	0.20	0
75	6.0833	4.50	0.20	0
76	-5.9167	-1.50	0.20	0
77	3.50	-1.50	0.20	0
78	6.0833	-1.50	0.20	0
96	-7.6487	4.50	-2.5112	0
97	-6.357	4.50	-4.7485	0
98	-1.6487	4.50	-12.9035	0
99	1.5653	4.50	-13.0479	0
100	2.857	4.50	-10.8106	0
101	7.5653	4.50	-2.6556	0
102	-7.6487	-1.50	-2.5112	0
103	-6.357	-1.50	-4.7485	0
104	-1.6487	-1.50	-12.9035	0
105	1.5653	-1.50	-13.0479	0
106	2.857	-1.50	-10.8106	0
107	7.5653	-1.50	-2.6556	0
112	1.3384	1.25	-0.40	0
113	1.3384	-0.75	-0.40	0
118	3.4182	1.25	-8.6386	0
119	-4.7566	1.25	-6.3205	0
120	-4.7566	-0.75	-6.3205	0
121	3.4182	-0.75	-8.6386	0
140	-7.25	3.00	0.00	0
141	7.25	3.00	0.00	Ő
142	-8.0612	3.00	-1.4049	ů 0
143	-0.8112	3.00	-13.9622	0
144	0.8112	3.00	-13.9622	õ
145	8.0612	3.00	-1.4049	0
146	-5.25	3.00	0.00	0
140	5.25	3.00	0.00	0
147	-1.8112	3.00	-12.2301	0
140	-7.0612	3.00	-3.137	0
149	7.0612	3.00	-3.137	0
				0
151	1.8112	3.00	-12.2301	
152	-7.75	3.00	0.00	0
153	7.75	3.00	0.00	0
154	-0.5612	3.00	-14.3952	0
155	-8.3112	3.00	-0.9719	0
156	8.3112	3.00	-0.9719	0
157	0.5612	3.00	-14.3952	0

Restraints

Node	тх	ΤY	TZ	RX	RY	RZ
9	1	1	1	1	1	1
16	1	1	1	1	1	1
25	1	1	1	1	1	1

Members

Member	NJ	NK	Description	Section	Material	d0 [in]	dL [in]	lg factor
1	4	9		HSS_SQR 4X4X1_4	A500 GrB rectangular	0.00	0.00	0.00
2	6	8		HSS_SQR 4X4X1_4	A500 GrB rectangular	0.00	0.00	0.00
3	8	1		HSS_SQR 4X4X1_4	A500 GrB rectangular	0.00	0.00	0.00
4	7	4		L 2X2X3_16	A36	0.00	0.00	0.00
5	4	2		L 2X2X3_16	A36	0.00	0.00	0.00
6	3	10		PIPE 3-1_2x0.226	A53 GrB	0.00	0.00	0.00
7	5	13		PIPE 3-1_2x0.226	A53 GrB	0.00	0.00	0.00
8	14	16		HSS_SQR 4X4X1_4	A500 GrB rectangular	0.00	0.00	0.00
9	11	15		HSS_SQR 4X4X1_4	A500 GrB rectangular	0.00	0.00	0.00
10	12	14		L 2X2X3_16	A36	0.00	0.00	0.00
11	20	22		HSS_SQR 4X4X1_4	A500 GrB rectangular	0.00	0.00	0.00
12	22	24		HSS_SQR 4X4X1_4	A500 GrB rectangular	0.00	0.00	0.00
13	21	18		L 2X2X3_16	A36	0.00	0.00	0.00
14	18	17		L 2X2X3_16	A36	0.00	0.00	0.00
15	18	25		HSS_SQR 4X4X1_4	A500 GrB rectangular	0.00	0.00	0.00
16	19	23		PIPE 3-1 2x0.226	A53 GrB	0.00	0.00	0.00
17	26	15		HSS_SQR 4X4X1_4	A500 GrB rectangular	0.00	0.00	0.00
18	27	14		L 2X2X3 16	A36	0.00	0.00	0.00
50	5	3		PL 6x3/8	A36	0.00	0.00	0.00
51	19	10		PL 6x3/8	A36	0.00	0.00	0.00
52	23	13		PL 6x3/8	A36	0.00	0.00	0.00
53	75	78		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
54	74	77		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
55	112	113		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
56	73	76		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
57	96	102		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
58	97	103		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
59	119	120		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
60	98	104		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
61	99	105		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
62	100	106		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
63	118	121		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
64	101	107		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
65	152	153		PIPE 2-1 2x0.203	A53 GrB	0.00	0.00	0.00
66	154	155		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
67	142	140		L 2-1_2X2-1_2X3_16	A36	0.00	0.00	0.00
68	144	143		L 2-1_2X2-1_2X3_16	A36	0.00	0.00	0.00
69	156	157		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
70	145	141		L 2-1_2X2-1_2X3_16	A36	0.00	0.00	0.00
80	149	146		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
81	147	150		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
82	151	148		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00

Orientation of local axes

Member	Rotation [Deg]	Axes23	NX	NY	NZ	
4	270.00	0	0.00	0.00	0.00	
5	270.00	0	0.00	0.00	0.00	
18	90.00	0	0.00	0.00	0.00	
53	0.00	2	1.00	0.00	0.00	
54	0.00	2	1.00	0.00	0.00	
55	0.00	2	1.00	0.00	0.00	
56	0.00	2	1.00	0.00	0.00	
57	0.00	2	1.00	0.00	0.00	
58	0.00	2	1.00	0.00	0.00	
59	0.00	2	1.00	0.00	0.00	
60	0.00	2	1.00	0.00	0.00	
61	0.00	2	1.00	0.00	0.00	
62	0.00	2	1.00	0.00	0.00	
63	0.00	2	1.00	0.00	0.00	
64	0.00	2	1.00	0.00	0.00	
67	90.00	0	0.00	0.00	0.00	
68	90.00	0	0.00	0.00	0.00	
70	180.00	0	0.00	0.00	0.00	

Rigid end offsets

Member	DJX	DJY	DJZ	DKX	DKY	DKZ
	[in]	[in]	[in]	(in)	[in]	[in]
80	0.00	2.00	0.00	0.00	2.00	0.00
81	0.00	2.00	0.00	0.00	2.00	0.00
82	0.00	2.00	0.00	0.00	2.00	0.00

Location	38 MAPLE ST	Mblu	4/12/4//
Acct#	00129900	Owner	KENT TOWN OF
Assessment	\$667,600	Appraisal	\$953,600
PID	246	Building Count	1

Current Value

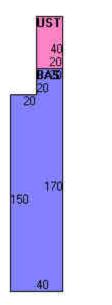
Appraisal						
Valuation YearImprovementsLandTotal						
2018	\$617,900	\$335,700	\$953,600			
	Assessment					
Valuation Year	Improvements	Land	Total			
2018	\$432,600	\$235,000	\$667,600			

Owner of Record

Owner	KENT TOWN OF	Sale Price	\$0
Co-Owner	(TOWN GARAGE)	Certificate	
		Book & Page	0061/0346
		Sale Date	01/15/1973

Ownership History					
Owner	Sale Price	Certificate	Book & Page	Sale Date	
KENT TOWN OF	\$0		0061/0346	01/15/1973	

Building Information


Building 1 : Section 1

Year Built:	1974
Living Area:	6,400
Replacement Cost:	\$274,564
Replacement Cost	
Less Depreciation:	\$214,200

\$214,200	

Building Attributes		
Field	Description	
STYLE	Warehouse	
MODEL	Commercial	
Grade	Average	
Stories:	1	
Occupancy	1.00	
Exterior Wall 1	Pre-finsh Metl	
Exterior Wall 2		
Roof Structure	Gable/Hip	
Roof Cover	Asph/F Gls/Cmp	
Interior Wall 1	Drywall/Sheet	
Interior Wall 2		

Building Layout

(http://images.vgsi.com/photos/KentCTPhotos//Sketches/246_24

Building Sub-Areas (sq ft)			<u>Legend</u>
Code	Description		Living Area
BAS	First Floor	6,400	6,400
UST	Utility, Storage, Unfinished	800	0

Interior Floor 1	Concr-Finished
Interior Floor 2	
Heating Fuel	Oil
Heating Type	Forced Air-Duc
АС Туре	None
Struct Class	
Bldg Use	Com/Res MDL96
Total Rooms	
Total Bedrms	00
Total Baths	0
Usrfld 218	
Usrfld 219	
1st Floor Use:	2-11
Heat/AC	NONE
Frame Type	STEEL
Baths/Plumbing	AVERAGE
Ceiling/Wall	NONE
Rooms/Prtns	LIGHT
Wall Height	14.00
% Comn Wall	0.00

7,200 6,400

Extra Features

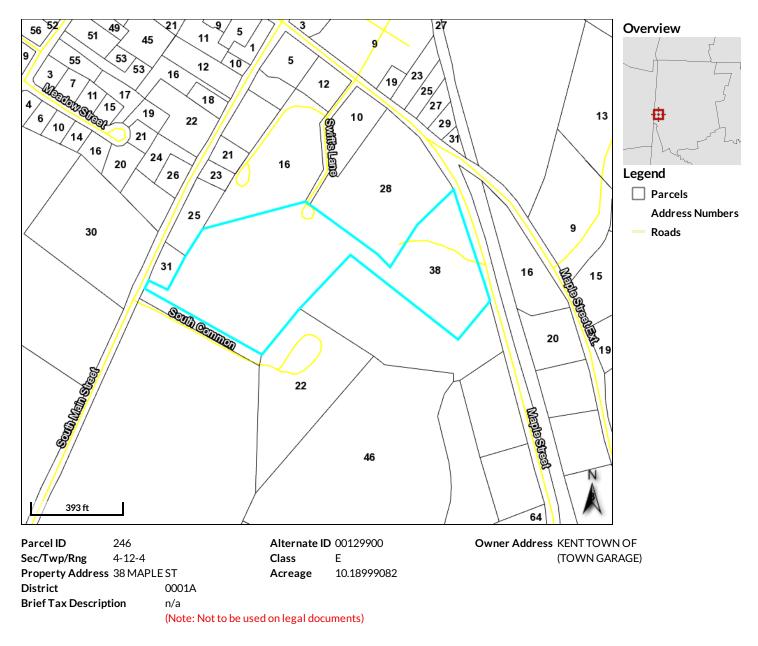
Land

Land Use		Land Line Valua	Land Line Valuation		
Use Code	920C	Size (Acres)	10.19		
Description	Town MDL94	Frontage	0		
Alt Land Appr	No	Depth	0		
Category		Assessed Value	\$235,000		
		Appraised Value	\$335,700		

Outbuildings

Outbuildings			<u>Legend</u>			
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
SHP5	WRK SHP W/IMP GD			3360.00 S.F.	\$65,500	1
TEN	TENNIS COURT			2.00 UNITS	\$45,000	1
IMP	IMPLEMENT SHED			800.00 S.F.	\$3,600	1
IMP	IMPLEMENT SHED			1650.00 S.F.	\$7,400	1
SHD1	SHED FRAME			192.00 S.F.	\$2,900	1
CB3	PreCastConcCel			240.00 S.F.	\$79,800	1
CB3	PreCastConcCel			240.00 S.F.	\$79,800	1
CB3	PreCastConcCel			360.00 S.F.	\$119,700	1

Valuation History


Appraisal

Valuation Year	Improvements	Land	Total	
2018	\$617,900	\$335,700	\$953,600	

Assessment			
Valuation Year	Improvements	Land	Total
2018	\$432,600	\$235,000	\$667,600

(c) 2019 Vision Government Solutions, Inc. All rights reserved.

Date created: 10/8/2019 Last Data Uploaded: 10/7/2019 8:21:07 PM

Developed by Schneider

DOCKET NO. 353 - Cellco Partnership d/b/a Verizon Wireless	}	Connecticut
application for a Certificate of Environmental Compatibility and		Siting
Public Need for the construction, maintenance and operation of a	}	Shing
telecommunications facility located at 38 Maple Street, Kent,		Council
Connecticut.	}	April 24, 2008

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a telecommunications facility, including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate, either alone or cumulatively with other effects, when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to Cellco Partnership d/b/a Verizon Wireless (Cellco), hereinafter referred to as the Certificate Holder, for a telecommunications facility at 38 Maple Street, Kent, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be constructed as a monopole, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of Cellco and other entities, both public and private, but such tower shall not exceed a height of 150 feet above ground level. The height at the top of the Certificate Holder's antennas shall not exceed 153 above ground level.
- 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be served on the Town of Kent for comment, and all parties and intervenors as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction and shall include:
 - a) a final site plan(s) of site development to include specifications for the tower, tower foundation, antennas, equipment compound, radio equipment, access road, utility line, and landscaping;
 - b) antenna mounting configuration; and
 - c) construction plans for site clearing, grading, landscaping, water drainage, and erosion and sedimentation controls consistent with the <u>2002 Connecticut Guidelines for Soil Erosion and Sediment Control</u>, as amended.
- 3. The Certificate Holder shall, prior to the commencement of operation, provide the Council worst-case modeling of the electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of the electromagnetic radio frequency power density be submitted to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.

Docket No. 353 Decision and Order Page 2

- 4. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 6. The Certificate Holder shall provide reasonable space on the tower for no compensation for any Town of Kent public safety services (police, fire and medical services), provided such use can be accommodated and is compatible with the structural integrity of the tower.
- 7. Unless otherwise approved by the Council, if the facility authorized herein is not fully constructed and providing wireless services within eighteen months from the date of the mailing of the Council's Findings of Fact, Opinion, and Decision and Order (collectively called "Final Decision"), this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made. The time between the filing and resolution of any appeals of the Council's Final Decision shall not be counted in calculating this deadline.
- 8. Any request for extension of the time period referred to in Condition 7 shall be filed with the Council not later than 60 days prior to the expiration date of this Certificate and shall be served on all parties and intervenors, as listed in the service list, and the Town of Kent. Any proposed modifications to this Decision and Order shall likewise be so served.
- 9. If the facility ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
- 10. The Certificate Holder shall remove any nonfunctioning antenna, and associated antenna mounting equipment, within 60 days of the date the antenna ceased to function.
- 11. In accordance with Section 16-50j-77 of the Regulations of Connecticut State Agencies, the Certificate Holder shall provide the Council with written notice two weeks prior to the commencement of site construction activities. In addition, the Certificate Holder shall provide the Council with written notice of the completion of site construction and the commencement of site operation.

Pursuant to General Statutes § 16-50p, the Council hereby directs that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in the <u>Republican-American</u> and <u>The Hartford Courant</u>.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

Docket No. 353 Decision and Order Page 3

The parties and intervenors to this proceeding are:

Applicant

Cellco Partnership d/b/a Verizon Wireless

Representative

Kenneth C. Baldwin, Esq. Robinson & Cole LLP PLEASE PRESS FIRMLY

UNITED STATES POSTAL SERVICE

Flat Rate Mailing Envelope

INTERNATIONAL RESTRICTIONS APPLY:

Customs forms are required. Consult the

or ask a retail associate for details.

International Mail Manual (IMM) at pe.usps.com

Visit us at usps.com

Schedule package pickup right from your home or office at usps.com/pickup Print postage online

UNITED STATES POSTAL SERVICE .	
USPS TRACKING #	
9114 9012 3080 3660 6525 27	

From:/Expéditeur:

SAI 12 Industrial Way Salem, NH 03079

To:/Destinataire: Town of Kent A++n: Bruce K. Adams/ Donna Hayes P.O. Box Le78 Kent, CT. 0Le757 Country of Destination:/Pays de destination:

I.U.S. Postal Service[®] and is provided solely for use in sending Priority Mal[®] shipments. law. This packaging is not for resale. EP14L © U.S. Postal Service; January 2012; All s the property of the violation of federal v January 2012 © U.S. Pos ackaging is the property of ↑ may be a violation of feat EP14L. This pa Misuse Please Recycle