

Centek Engineering, Inc. 3-2 North Branford Road Branford, Connecticut 06405 Phone: (203) 488-0580 Fax: (203) 488-8587

Steven L. Levine Real Estate Consultant

HAND DELIVERED

June 1, 2015

Attorney Melanie Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, Connecticut 06051

Re: <u>New Cingular Wireless PCS, LLC notice of intent to modify an existing</u> telecommunications facility located at 38 Maple Street, Kent

Dear Ms. Bachman:

In order to accommodate technological changes, implement Uniform Mobile Telecommunications System ("UMTS") and/or Long Term Evolution ("LTE") capabilities, and enhance system performance in the State of Connecticut, New Cingular Wireless PCS, LLC ("AT&T") plans to modify the equipment configurations at many of its existing cell sites. Please accept this letter and attachments as notification, pursuant to R.C.S.A. Section 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2). In compliance with R.C.S.A. Section 16-50j-73, copies of this letter are being sent to the chief elected official of the municipality in which the affected cell site is located, the property owner of record, and the tower owner or operator.

UMTS technology offers services to mobile computer and phone users anywhere in the world. Based on the Global System for Mobile ("GSM") communication standard, UMTS is the planned worldwide standard for mobile users. UMTS, fully implemented, gives computer and phone users high-speed access to the Internet as they travel. They have the same capabilities even when they roam, through both terrestrial wireless and satellite transmissions.

LTE is a high-performance air interface for cellular mobile communications. It is designed to increase the capacity and speed of mobile telephone networks.

Attached is a summary of the planned modifications, including power density calculations reflecting the change in AT&T's operations at the site. Also included is documentation of the structural sufficiency of the tower to accommodate the revised antenna configuration.

The changes to the facility do not constitute modifications as defined in Connecticut General

Statutes ("C.G.S.") Section 16-50i(d) because the general physical and environmental characteristics of the site will not be significantly changed or altered. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for in R.C.S.A. Section 16-50j-72(b)(2).

- 1. The height of the overall structure will not increase.
- 2. The proposed changes will not extend the site boundaries.
- 3. The proposed changes will not increase the noise level at the site boundary by six decibels or more, or to levels that exceed state and local criteria.
- 4. The changes will not add radio frequency sending or receiving capability which increases the total radio frequency electromagnetic radiation power density measured at the site boundary to or above the standards adopted by the Federal Communications Commission pursuant to Section 704 of the Telecommunications Act of 1996, as amended, and the State Department of Energy and Environmental Protection, pursuant to Section 22a-162 of the Connecticut General Statutes.
- 5. The proposed changes will not impair the structural integrity of the facility, as determined in a certification provided by a professional engineer licensed in Connecticut.

For the foregoing reasons, AT&T respectfully submits that the proposed changes at the referenced site constitute exempt modifications under R.C.S.A. Section 16-50j-72(b)(2).

Please feel free to call me at (860) 830-0380 with questions concerning this matter. Thank you for your consideration.

Sincerely,

Steven L. Levine Real Estate Consultant

cc: TownCEO – Honorable Bruce K. Adams, 1st Selectman, Town of Kent Property owner of Record - Honorable Bruce K. Adams, 1st Selectman, Town of Kent Tower Owner / Operator – Verizon & American Tower (by email)

Attachments

NEW CINGULAR WIRELESS PCS, LLC Equipment Modification

	38 Ma Site N Prior I	ple Street (aka 36 Maple Street), Kent, CT umber 1288 Decisions: Docket 353; EM 6/10 and 11/12
Tower Owner/Manager:	Verizo	on / American Tower
Land Owner of Record:	Town	of Kent
Lease Area:	The M with d altered remain Docke attache equipr structu modifi site bo	Taple Street cell site was approved by the Council in Docket 353 imensions of 50 ft x 80 ft. The site dimensions have not been I since that time, and both the present and proposed dimensions a 50 ft x 80 ft. (See the attached SC-2 sheet extracted from the t 353 "Description of Proposed Cell Site" exhibit and the ed sheet C-1 of the proposed site plans.) Since all proposed ment modifications will occur either on the existing tower are or within AT&T's existing equipment shelter, the proposed feations will not extend either AT&T's lease area or the overall undaries.
Equipment configuration:		Monopole
Current and/or app	roved:	Equipment platform @ 140 ft a.g.l. One KMW AM-X-CD-16-65-00T-RET antenna @ 140 ft c.l. One KMW AM-X-CD-14-65-00T-RET antenna @ 140 ft c.l. One Kathrein Scala 800-10764 antenna @ 140 ft c.l. Six PowerWave P90-15-XLH-RR antennas @ 140 ft Six Powerwave TT19-08DB111-001 TMA's @ 140 ft One Raycap DC6-48-60-18-8F surge arrestor @ 140 ft Three Ericcson RRUS-11 remote radio heads @ 140 ft Twelve runs 1 5/8 inch coax One fiber cable and two DC control cables Equipment shelter
Planned Modification	ons:	Remove all KMW and Kathrein Scala antennas. Install one CCI HPA-65R-BUU-H6 antenna @ 140 ft. Install two Andrew SBNHH-1D65A antennas @ 140 ft. Install three additional Ericcson RRUS-11 remote radio heads with A2 units @ 140 ft.

Power Density:

Worst-case calculations for existing wireless operations at the site indicate a radio frequency electromagnetic radiation power density, measured at ground level beside the tower, of approximately 39.4 % of the standard adopted by the FCC. As depicted in the second table below, the total radio frequency electromagnetic radiation power density following proposed modifications would be approximately 30.8 % of the standard.

Existing

Company	Centerline Ht (feet)	Frequency (MHz)	Number of Channels	Power Per Channel (Watts)	Power Density (mW/cm ²)	Standard Limits (mW/cm ²)	Percent of Limit
Other Users *							22.92
AT&T LTE *	140	700 Band	1	1313	0.0241	0.4893	4.92
AT&T GSM *	140	880 - 894	1	283	0.0052	0.5867	0.88
AT&T GSM *	140	1900 Band	4	535	0.0393	1.0000	3.93
AT&T UMTS *	140	880 - 894	2	565	0.0207	0.5867	3.53
AT&T UMTS *	140	1900 Band	2	875	0.0321	1.0000	3.21
Total							39.4%

* Per CSC records

Proposed

Company	Centerline Ht (feet)	Frequency (MHz)	Number of Channels	Power Per Channel (Watts)	Power Density (mW/cm ²)	Standard Limits (mW/cm ²)	Percent of Limit
Other Users *							22.92
AT&T LTE	140	700 Band	1	500	0.0092	0.4667	1.97
AT&T LTE	140	2100 Band	1	500	0.0092	1.0000	0.92
AT&T UMTS	140	880 - 894	2	500	0.0183	0.5867	3.13
AT&T UMTS	140	1900 Band	1	500	0.0092	1.0000	0.92
AT&T GSM	140	880 - 894	1	296	0.0054	0.5867	0.93
Total							30.8%

* Per CSC records

Structural information:

The attached structural analysis (Centek Engineering, 4/16/15) demonstrates that the tower and foundation have adequate structural capacity to accommodate the proposed equipment modifications. This structural analysis, which was produced and submitted to the Council for Verizon's recent **EM-VER-068-150430**, also incorporates AT&T's herein-proposed equipment upgrade into the analyzed tower loading.

WIRELESS COMMUNICATIONS FACILITY CT1288 KENT CT MAPLE STREET 38 MAPLE STREET **KENT, CT 06757**

GENERAL NOTES

- ALL WORK SHALL BE IN ACCORDANCE WITH THE 2003 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2005 CONNECTICUT SUPPLEMENT AND 2009 AMENDMENTS, INCLUDING THE TIA/EIA-222 REVISION "F" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2005 CONNECTICUT FIRE SAFETY CODE AND 2009 AMENDMENTS, NATIONAL ELECTRICAL CODE AND LOCAL CODES.
- THE COMPOUND, TOWER, PRIMARY GROUND RING, ELECTRICAL SERVICE TO THE METER BANK AND TELEPHONE SERVICE TO THE DEMARCATION POINT ARE PROVIDED BY SITE OWNER. AS BUILT FIELD CONDITIONS REGARDING THESE ITEMS SHALL BE CONFIRMED BY THE CONTRACTOR, SHOULD ANY FIELD CONDITIONS PRECLUDE COMPLIANCE WITH THE DRAWINGS. THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL NOT PROCEED WITH ANY AFFECTED WORK.
- CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
- CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- 5. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- 6. CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND 7. SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- 8. LOCATION OF EQUIPMENT, AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- 9. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY. MAINTAIN EXISTING BUILDING'S/PROPERTY'S OPERATIONS, COORDINATE WORK WITH BUILDING/PROPERTY OWNER.

- 10. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES. LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 11. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- 12. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MFR.'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 13. ANY AND ALL ERRORS, DISCREPANCIES, AND 'MISSED" ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE AT&T CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- 14. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 15. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 16. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- 17. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUIT AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- 18. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTORS FOR ANY CONDITION PER THE MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 19. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 20. THE CONTRACTOR SHALL CONTACT "CALL BEFORE YOU DIG" AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED PRIOR TO ANY EXCAVATION WORK. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- CONTRACTOR SHALL COMPLY WITH OWNERS ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.

SITE DIRECTIONS FROM: 500 ENTERPRISE DRIVE ROCKY HILL, CONNECTICUT TO: 38 MAPLE STREET KENT, CT 06757 1. TURN LEFT ONTO CAPITOL BLVD 2. TURN LEFT ONTO WEST STREET 3. TAKE RAMP LEFT FOR I-91 SOUTH 4. AT EXIT 18. TAKE RAMP RIGHT FOR I-691 WEST TOWARD WATERBURY/MERIDEN 5. AT EXIT 1. TAKE RAMP LEFT FOR I-84 WEST TOWARD DANBURY/WATERBURY 6. AT EXIT 7, TAKE RAMP RIGHT FOR US-202 EAST/ US-7 NORTH TOWARD BROOKFIELD/NEW MILFORD 7. ROAD NAME CHANGES TO US-7 N 8. KEEP STRAIGHT ONTO US-7 N/US 202 N/FEDERAL RD BEAR RIGHT ONTO US-7/US202/DANBURY RD 10. KEEP STRAIGHT ONTO US-7/KENT RD 11. TURN RIGHT ONTO CT-341/MAPLE ST VICINITY MAP

0.4 mi

0.2 mi

0.3 mi

9.1 mi 7.9 mi

33.1 mi

0.3 mi

6.1 mi

2.6 mi

2.8 mi

13.7 mi

AT& AT& SITE LES ENG

PR

S⊦

SHT.

PROJECT SUMMARY

1. THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING: A. REMOVE AND REPLACE EXISTING LTE ANTENNA FOR PROPOSED LTE HEXPORT ANTENNA, (1) PER SECTOR. B. INSTALL (3) NEW RRUS-11+A2, (1) PER SECTOR.

PROJECT INFORMATION

CT SITE NUMBER:	CT1288
CT SITE NAME:	KENT CT MAPLE STREET
E ADDRESS:	38 MAPLE STREET KENT, CT 06757
SSEE/APPLICANT:	AT&T MOBILITY 500 ENTERPRISE DRIVE, SUITE 3A ROCKY HILL, CT 06067
GINEER:	CENTEK ENGINEERING, INC. 63–2 NORTH BRANFORD RD. BRANFORD, CT. 06405
OJECT COORDINATES:	LATITUDE: 41°-43'-18.850"N LONGITUDE: 73°-28'-29.870"W GROUND ELEVATION: ±390'AMSL

IEET	INDEX	
NO.	DESCRIPTION	REV.
-1	TITLE SHEET	1
l—1	NOTES AND SPECIFICATIONS	0
2-1	PLANS AND ELEVATION	1
;-2	LTE EQUIPMENT DETAILS	1
E — 1	ELECTRICAL DETAILS AND NOTES	0
-2	ELECTRICAL DETAILS	0

DESIGNED BY: CAG DRAWN BY: KAW					
CHK'D	BY:		CFC		
		CONSTRUCTION - REVISED PER CLIENT'S COMMENTS	CONSTRUCTION - CLIENT REVIEW		
		HMR	CAG CHK ¹ D BN		
		26/15 CAG	'22/15 KAW ATE DRAWN B		
		1 05/	0 04/ REV. D		
PROFE	SSIONAL ENGI	ieer s	EAL		
Munite C	a	t&	t		
		ons	ring		
Center (203)	red on Solutions ** 488-0580				
(203) 63-2 N Branfo	488-8587 Fax North Branford F ord, CT 06405	Road			
www	.CentekEng.c	om			
AT&T MOBILITY	WIRELESS COMMUNICATIONS FACILITY LTE UPGRADE CT1288 VENT CT MADI E CTDEET		38 MAPLE STREET KENT, CT 06757		
DATE:	04/22/	′15 FD			
JOB NO). 15054.(000			
TITLE SHEET					
T-1 Sheet No. <u>1</u> of <u>6</u>					

BETA/GAMMA ANTENNA				
EQUIPMENT	DIMENSIONS	WEIGHT		
MAKE: ANDREW-COMMSCOPE MODEL: SBNHH-1D65A	55"L x 11.9"W x 7.1"D	40.9 LBS.		

Centered on Solutions™

Structural Analysis Report

150-ft Existing EEI Monopole

Proposed Verizon Wireless Antenna Upgrade

Verizon Site Ref: Kent

36 Maple Street Kent, CT

Centek Project No. 15001.042

Date: April 16, 2015

Prepared for: Verizon Wireless 99 East River Road, 9th Floor East Hartford, CT 06108

<u>Introduction</u>

The purpose of this report is to summarize the results of the non-linear, $P-\Delta$ structural analysis of the antenna upgrade proposed by Verizon on the existing monopole (tower) located in Kent, CT.

The host tower is a 150-ft tall extendable to 170-ft, four-section, eighteen sided, tapered monopole, originally designed and manufactured by Engineered Endeavors Incorporated (EEI); project no. 15320 dated March 13, 2008. The tower geometry, structure member sizes and foundation system information were obtained from the aforementioned EEI design documents.

Antenna and appurtenance information were obtained from a previous structural analysis report prepared by Centek project no. 15054.000 dated April 16, 2015, a tower mapping report prepared by Eastern Communications dated March 30, 2015 and a AT&T RF data sheet.

The tower is made up of four (4) tapered vertical sections consisting of A572-65 pole sections. The vertical tower sections are slip joint connected. The diameter of the pole (flat-flat) is 26.37-in at the top and 60.50-in at the base.

Verizon proposes the removal of six (6) panel antennas and the installation of six (6) panel antennas, nine (9) Remote Radio Heads and two (2) main distribution boxes mounted to the existing low profile platform. Refer to the Antenna and Appurtenance Summary below for a detailed description of the proposed antenna and appurtenance configuration.

Antenna and Appurtenance Summary

The existing, proposed and future loads considered in this analysis consist of the following:

TOWN (EXISTING):

<u>Antennas</u>: Two (2) PD220 Omni-directional whip antennas and one (1) 3' yagi antenna mounted on the Verizon 13-ft low profile platform with an elevation of 150-ft above grade level.

<u>Coax Cables:</u> Three (3) 7/8" \varnothing coax cables running on the inside of the existing tower.

• AT&T (EXISTING TO REMAIN):

Antennas: Six (6) Powerwave P90-15-XLH-RR panel antennas, one (1) CCI HPA-65R-BUU-H6 panel antenna, two (2) Andrew SBNHH-1D65A panel antennas, six (6) Powerwave TT19-08DB111-001 TMA's, six (6) Ericsson RRUS-11 remote radio heads, three (3) A2 units and one (1) Raycap DC6-48-60-18-8F surge arrestor mounted on a 13-ft low profile platform with a RAD center elevation of 140-ft above grade level.

<u>Coax Cables:</u> Twelve (12) 1-5/8" \varnothing coax cables, one (1) fiber cable and two (2) dc control cables running on the inside of the existing tower.

• TOWN (EXISTING):

<u>Antennas</u>: Two (2) DB222 dipole antennas and one (1) 3' yagi antenna mounted on two (2) 6-ft standoff mounts with an elevation of 118-ft above grade level. <u>Coax Cables:</u> Three (3) 7/8-in \emptyset coax cables running on the inside of the existing tower.

 VERIZON WIRELESS (Existing to Remain): <u>Antennas</u>: Six (6) Antel LPA-80080-6CF panel antennas mounted on a low profile platform with a RAD center elevation of 150-ft above existing grade. <u>Coax Cables</u>: Eighteen (18) 1-5/8" Ø coax cables running on the inside of the existing tower.

9

- VERIZON WIRELESS (Existing to Remove): <u>Antennas</u>: Three (3) Antel BXA-70063-6CF and three (3) Antel BXA-171085-12BF panel antennas mounted on a low profile platform with a RAD center elevation of 150-ft above existing grade.
- VERIZON (Proposed): <u>Antennas:</u> Six (6) Andrew SBNHH-1D65B panel antennas, three (3) Alcatel-Lucent RRH2x60-700 remote radio heads, three (3) Alcatel-Lucent RRH2x60-PCS remote radio heads, three (3) Alcatel-Lucent RRH2x60-AWS remote radio heads and two (2) RFS DB-T1-6Z-8AB-0Z main distribution boxes mounted on a low profile platform with a RAD center elevation of 150-ft above existing grade. <u>Coax Cables:</u> Two (2) 1-5/8" Ø fiber cables running on the inside of the existing tower.

Primary Assumptions Used in the Analysis

- The tower structure's theoretical capacity not including any assessment of the condition of the tower.
- The tower carries the horizontal and vertical loads due to the weight of antennas, ice load and wind.
- Tower is properly installed and maintained.
- Tower is in plumb condition.
- Tower loading for antennas and mounts as listed in this report.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All welds are fabricated with ER-70S-6 electrodes.
- All members are assumed to be as specified in the original tower design documents or reinforcement drawings.
- All members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.
- All member protective coatings are in good condition.
- All tower members were properly designed, detailed, fabricated, installed and have been properly maintained since erection.
- Any deviation from the analyzed antenna loading will require a new analysis for verification of structural adequacy.
- All existing coax cables to be installed as indicated in this report.

<u>Analysis</u>

The existing tower was analyzed using a comprehensive computer program entitled tnxTower. The program analyzes the tower, considering the worst case loading condition. The tower is considered as loaded by concentric forces along the tower shaft, and the model assumes that the shaft members are subjected to bending, axial, and shear forces.

The existing tower was analyzed for the controlling basic wind speed (fastest mile) with no ice and a 75% reduction of wind force with ½ inch accumulative ice to determine stresses in members as per guidelines of TIA/EIA-222-F-96 entitled "Structural Standards for Steel Antenna Towers and Antenna Supporting Structures", the American Institute of Steel Construction (AISC) and the Manual of Steel Construction; Allowable Stress Design (ASD).

The controlling wind speed is determined by evaluating the local available wind speed data as provided in Appendix K of the CSBC¹ and the wind speed data available in the TIA/EIA-222-F-96 Standard. The higher of the two wind speeds is utilized in preparation on the tower analysis.

Tower Loading

Tower loading was determined by the basic wind speed as applied to projected surface areas with modification factors per TIA/EIA-222-F, gravity loads of the tower structure and its components, and the application of 1/2" radial ice on the tower structure and its components.

Basic Wind	Litchfield; v = 80 mph (fastest mile)	[Section 16 of TIA/EIA-222-F-96]
Speed:	Kent; v = 90 mph (3 second gust) equivalent to v = 75 mph (fastest mile)	[Appendix K of the 2005 CT Building Code Supplement]
	TIA/EIA-222-F wind speed controls.	
Load Cases:	Load Case 1; 80 mph wind speed w/ no ice plus gravity load – used in calculation of tower stresses and rotation.	[Section 2.3.16 of TIA/EIA-222-F- 96]
	Load Case 2; 69 mph wind speed w/ 1⁄2" radial ice plus gravity load – used in calculation of tower stresses. The 69 mph wind speed velocity represents 75% of the wind pressure generated by the 80 mph wind speed.	[Section 2.3.16 of TIA/EIA-222-F- 96]
	Load Case 3; Seismic – not checked	[Section 1614.5 of State Bldg. Code 2005] does not control in the design of this structure type

¹ The 2005 Connecticut State Building Code as amended by the 2009 CT State Supplement. (CSBC)

Tower Capacity

Tower stresses were calculated utilizing the structural analysis software tnxTower. Allowable stresses were determined based on Table 5 of the TIA/EIA code with a 1/3 increase per Section 3.1.1.1 of the same code.

 Calculated stresses were found to be within allowable limits. In Load Case 1, per tnxTower "Section Capacity Table", this tower was found to be at 55.9% of its total capacity.

Tower Section Elevation		Stress Ratio (percentage of capacity)	Result
Pole Shaft (L4)	1.00'-46.08'	55.9%	PASS

Foundation and Anchors

The existing foundation consists of a 7.5-ft square x 4.0-ft long reinforced concrete pier on a 30.0-ft square x 3.5-ft thick reinforced concrete pad. The sub-grade conditions used in the analysis of the existing foundation were obtained from the aforementioned EEI design documents; job no; 15320, dated March 13, 2008. The base of the tower is connected to the foundation by means of (24) 2.25" \emptyset , ASTM A615-75 anchor bolts embedded approximately 7-ft into the concrete foundation structure.

 The tower base reactions developed from the governing Load Case 1 were used in the verification of the foundation and its anchors:

Location	Vector	Proposed Reactions
	Shear	23 kips
Base	Compression	37 kips
	Moment	2451 kip-ft

• The foundation was found to be within allowable limits.

Foundation	Design Limit	IBC 2003/2005 CT State Building Code Section 3108.4.2 (FS) ⁽¹⁾	Proposed Loading (FS) ⁽¹⁾	Result
Reinforced Concrete Pad and Pier	OTM ⁽²⁾	2.0	2.90	PASS

Note 1: FS denotes Factor of Safety.

Note 2: OTM denotes Overturning Moment

The anchor bolts and base plate were found to be within allowable limits.

Tower Component	Design Limit	Stress Ratio (percentage of capacity)	Result
Anchor Bolts	Combined Compression and Bending	37.3%	PASS
Base Plate	Bending	23.8%	PASS

<u>Conclusion</u>

This analysis shows that the subject tower **is adequate** to support the proposed antenna configuration.

The analysis is based, in part, on the information provided to this office by Verizon Wireless. If the existing conditions are different than the information in this report, Centek Engineering, Inc. must be contacted for resolution of any potential issues.

Please feel free to call with any questions or comments.

Respectfully Submitted by:

Timothy J. Lynn, PE Structural Engineer

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
PA-80080-6CF (Verizon - Existing)	150	SBNHH-1D65A (AT1 - Existing)	140
SBNHH-1D65B (Verizon - Proposed)	150	P90-15-XLH-RR (ATT - Existing)	140
SBNHH-1D65B (Verizon - Proposed)	150	(2) TT19-08BP111-001 TMA (ATI -	140
LPA-80080-6CF (Verizon - Existing)	150	Existing)	
LPA-80080-6CF (Verizon - Exisling)	150	(2) TT19-08BP111-001 TMA (ATI -	140
SBNHH-1D65B (Verizon - Proposed)	150		140
SBNHH-1D65B (Verizon - Proposed)	150	(2) 1119-068P111-001 1MA (ATL - Existing)	140
LPA-80080-6CF (Verizon - Existing)	150	DDI IS 11 (ATT - Eviction)	140
LPA-80080-6CF (Verizon - Existing)	150	RRUS-11 (ATT - Existing)	140
SBNHH-1D65B (Verizon - Proposed)	150	PPLIS 11 (ATT - Existing)	140
SBNHH-1D65B (Verizon - Proposed)	150	DC6.48-60-18-8F Surge Arrestor (ATT -	140
LPA-80080-6CF (Verizon - Existing)	150	Existing)	
RRH2x60-PCS (Verizon - Proposed)	150	RRUS-11 (ATT - Existing)	140
RRH2x60-PCS (Verizon - Proposed)	150	RRUS-11 (ATI - Existing)	140
RRH2x60-PCS (Verizon - Proposed)	150	RRUS-11 (ATI - Existing)	140
RRH2x60-07-U (Verizon - Proposed)	150	A2 (ATT - Existing)	140
RRH2x60-07-U (Verizon - Proposed)	150	A2 (ATI - Existing)	140
RRH2x60-07-U (Verizon - Proposed)	150	A2 (ATI - Existing)	140
RRH2x60-AWS (Verizon - Proposed)	150	P90-15-XLH-RR (ATI - Existing)	140
RRH2x60-AWS (Verizon - Proposed)	150	P90-15-XLH-RR (ATI - Existing)	140
RRH2x60-AWS (Verizon - Proposed)	150	HPA-65R-BUU-H6 (ATI - Existing)	140
(2) DB-T1-6Z-8AB-0Z (Verizon - Proposed)	150	Valmont 13' Low Profile Platform (ATI - Existing)	138
PD220-1 (Town - Existing)	150	DB222-F (Town - Existing)	118
3' Yagi (Town - Existing)	150	3' Yagi (Town - Existing)	118
PD220-1 (Town - Exisling)	150	DB222-F (Town - Existing)	118
Valmont 13' Low Profile Platform (Verizon - Existing)	148	6' Extension Arm Mount (Town - Existing)	118
P90-15-XLH-RR (ATT - Existing)	140	6' Extension Arm Mount (Town -	118
SBNHH-1D65A (ATI - Existing)	140	Existing)	
P90-15-XLH-RR (ATT - Existing)	140		
P90-15-XLH-RR (ATT - Existing)	140		

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
72-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

6. Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222

Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153

Centek Engineering Inc.	^{Job:} 15001.042 - Kent		_
63-2 North Branford Rd	Project: 150' EEI Monopole - 36 Maple St., Kent	, CT	
Branford CT 06405	Client: Verizon Wireless Drawn by: TJL	App'd:	
Bhone: (203) 488-0580	Code: TIA/EIA-222-F Date: 04/16/15	Scale:	N
FAX: (203) 488-8587	Path:	Dwg No	-

Centek Engineering, Inc. 3-2 North Branford Road Branford, Connecticut 06405 Phone: (203) 488-0580 Fax: (203) 488-8587

Steven L. Levine Real Estate Consultant

June 1, 2015

Honorable Bruce K. Adams 1st Selectman, Town of Kent Town Hall, 41 Kent Green Blvd Kent, Connecticut 06757

<u>Re:</u> Existing Telecommunications Facility – 38 Maple Street (aka 36 Maple Street, aka Rte <u>341), Kent</u>

Dear Mr. Adams:

In order to accommodate technological changes, implement Uniform Mobile Telecommunications System ("UMTS") and Long Term Evolution ("LTE") capabilities, and enhance system performance in the State of Connecticut, New Cingular Wireless PCS, LLC ("AT&T") will be changing its equipment configuration at certain cell sites.

As required by Regulations of Connecticut State Agencies ("R.C.S.A.") Section 16-50j-73, the Connecticut Siting Council has been notified of the changes and will review AT&T's proposal. Please accept this letter as notification under Section 16-50j-73 of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2).

The enclosed Notice fully sets forth the AT&T proposal. However, if you have any questions or require any further information on the plans for the site or the Siting Council's procedures, please contact the undersigned at 860-830-0380 or Ms. Melanie Bachman, Acting Executive Director, Connecticut Siting Council at (860) 827-2935.

Sincerely,

Steven L. Levine Real Estate Consultant

Enclosure

Centered on Solutions™

Structural Analysis Report

150-ft Existing EEI Monopole

Proposed Verizon Wireless Antenna Upgrade

Verizon Site Ref: Kent

36 Maple Street Kent, CT

Centek Project No. 15001.042

Date: April 16, 2015

Prepared for: Verizon Wireless 99 East River Road, 9th Floor East Hartford, CT 06108

Table of Contents

SECTION 1 - REPORT

- INTRODUCTION
- ANTENNA AND APPURTENANCE SUMMARY
- PRIMARY ASSUMPTIONS USED IN THE ANALYSIS
- ANALYSIS
- TOWER LOADING
- TOWER CAPACITY
- FOUNDATION AND ANCHORS
- CONCLUSION

SECTION 2 - CONDITIONS & SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM

SECTION 3 - CALCULATIONS

- tnxTower INPUT/OUTPUT SUMMARY
- tnxTower DETAILED OUTPUT
- ANCHOR BOLT AND BASE PLATE ANALYSIS
- FOUNDATION ANALYSIS

SECTION 4 - REFERENCE MATERIAL

- RF DATA SHEET
- ANTENNA CUT SHEETS

<u>Introduction</u>

The purpose of this report is to summarize the results of the non-linear, $P-\Delta$ structural analysis of the antenna upgrade proposed by Verizon on the existing monopole (tower) located in Kent, CT.

The host tower is a 150-ft tall extendable to 170-ft, four-section, eighteen sided, tapered monopole, originally designed and manufactured by Engineered Endeavors Incorporated (EEI); project no. 15320 dated March 13, 2008. The tower geometry, structure member sizes and foundation system information were obtained from the aforementioned EEI design documents.

Antenna and appurtenance information were obtained from a previous structural analysis report prepared by Centek project no. 15054.000 dated April 16, 2015, a tower mapping report prepared by Eastern Communications dated March 30, 2015 and a AT&T RF data sheet.

The tower is made up of four (4) tapered vertical sections consisting of A572-65 pole sections. The vertical tower sections are slip joint connected. The diameter of the pole (flat-flat) is 26.37-in at the top and 60.50-in at the base.

Verizon proposes the removal of six (6) panel antennas and the installation of six (6) panel antennas, nine (9) Remote Radio Heads and two (2) main distribution boxes mounted to the existing low profile platform. Refer to the Antenna and Appurtenance Summary below for a detailed description of the proposed antenna and appurtenance configuration.

Antenna and Appurtenance Summary

The existing, proposed and future loads considered in this analysis consist of the following:

TOWN (EXISTING):

<u>Antennas</u>: Two (2) PD220 Omni-directional whip antennas and one (1) 3' yagi antenna mounted on the Verizon 13-ft low profile platform with an elevation of 150-ft above grade level.

<u>Coax Cables:</u> Three (3) 7/8" \varnothing coax cables running on the inside of the existing tower.

• AT&T (EXISTING TO REMAIN):

Antennas: Six (6) Powerwave P90-15-XLH-RR panel antennas, one (1) CCI HPA-65R-BUU-H6 panel antenna, two (2) Andrew SBNHH-1D65A panel antennas, six (6) Powerwave TT19-08DB111-001 TMA's, six (6) Ericsson RRUS-11 remote radio heads, three (3) A2 units and one (1) Raycap DC6-48-60-18-8F surge arrestor mounted on a 13-ft low profile platform with a RAD center elevation of 140-ft above grade level.

<u>Coax Cables:</u> Twelve (12) 1-5/8" \varnothing coax cables, one (1) fiber cable and two (2) dc control cables running on the inside of the existing tower.

• TOWN (EXISTING):

<u>Antennas</u>: Two (2) DB222 dipole antennas and one (1) 3' yagi antenna mounted on two (2) 6-ft standoff mounts with an elevation of 118-ft above grade level. <u>Coax Cables:</u> Three (3) 7/8-in \emptyset coax cables running on the inside of the existing tower.

 VERIZON WIRELESS (Existing to Remain): <u>Antennas</u>: Six (6) Antel LPA-80080-6CF panel antennas mounted on a low profile platform with a RAD center elevation of 150-ft above existing grade. <u>Coax Cables</u>: Eighteen (18) 1-5/8" Ø coax cables running on the inside of the existing tower.

9

- VERIZON WIRELESS (Existing to Remove): <u>Antennas</u>: Three (3) Antel BXA-70063-6CF and three (3) Antel BXA-171085-12BF panel antennas mounted on a low profile platform with a RAD center elevation of 150-ft above existing grade.
- VERIZON (Proposed): <u>Antennas:</u> Six (6) Andrew SBNHH-1D65B panel antennas, three (3) Alcatel-Lucent RRH2x60-700 remote radio heads, three (3) Alcatel-Lucent RRH2x60-PCS remote radio heads, three (3) Alcatel-Lucent RRH2x60-AWS remote radio heads and two (2) RFS DB-T1-6Z-8AB-0Z main distribution boxes mounted on a low profile platform with a RAD center elevation of 150-ft above existing grade. <u>Coax Cables:</u> Two (2) 1-5/8" Ø fiber cables running on the inside of the existing tower.

Primary Assumptions Used in the Analysis

- The tower structure's theoretical capacity not including any assessment of the condition of the tower.
- The tower carries the horizontal and vertical loads due to the weight of antennas, ice load and wind.
- Tower is properly installed and maintained.
- Tower is in plumb condition.
- Tower loading for antennas and mounts as listed in this report.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All welds are fabricated with ER-70S-6 electrodes.
- All members are assumed to be as specified in the original tower design documents or reinforcement drawings.
- All members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.
- All member protective coatings are in good condition.
- All tower members were properly designed, detailed, fabricated, installed and have been properly maintained since erection.
- Any deviation from the analyzed antenna loading will require a new analysis for verification of structural adequacy.
- All existing coax cables to be installed as indicated in this report.

<u>Analysis</u>

The existing tower was analyzed using a comprehensive computer program entitled tnxTower. The program analyzes the tower, considering the worst case loading condition. The tower is considered as loaded by concentric forces along the tower shaft, and the model assumes that the shaft members are subjected to bending, axial, and shear forces.

The existing tower was analyzed for the controlling basic wind speed (fastest mile) with no ice and a 75% reduction of wind force with ½ inch accumulative ice to determine stresses in members as per guidelines of TIA/EIA-222-F-96 entitled "Structural Standards for Steel Antenna Towers and Antenna Supporting Structures", the American Institute of Steel Construction (AISC) and the Manual of Steel Construction; Allowable Stress Design (ASD).

The controlling wind speed is determined by evaluating the local available wind speed data as provided in Appendix K of the CSBC¹ and the wind speed data available in the TIA/EIA-222-F-96 Standard. The higher of the two wind speeds is utilized in preparation on the tower analysis.

Tower Loading

Tower loading was determined by the basic wind speed as applied to projected surface areas with modification factors per TIA/EIA-222-F, gravity loads of the tower structure and its components, and the application of 1/2" radial ice on the tower structure and its components.

Basic Wind	Litchfield; v = 80 mph (fastest mile)	[Section 16 of TIA/EIA-222-F-96]
Speed:	Kent; v = 90 mph (3 second gust) equivalent to v = 75 mph (fastest mile)	[Appendix K of the 2005 CT Building Code Supplement]
	TIA/EIA-222-F wind speed controls.	
Load Cases:	Load Case 1; 80 mph wind speed w/ no ice plus gravity load – used in calculation of tower stresses and rotation.	[Section 2.3.16 of TIA/EIA-222-F- 96]
	Load Case 2; 69 mph wind speed w/ 1⁄2" radial ice plus gravity load – used in calculation of tower stresses. The 69 mph wind speed velocity represents 75% of the wind pressure generated by the 80 mph wind speed.	[Section 2.3.16 of TIA/EIA-222-F- 96]
	Load Case 3; Seismic – not checked	[Section 1614.5 of State Bldg. Code 2005] does not control in the design of this structure type

¹ The 2005 Connecticut State Building Code as amended by the 2009 CT State Supplement. (CSBC)

Tower Capacity

Tower stresses were calculated utilizing the structural analysis software tnxTower. Allowable stresses were determined based on Table 5 of the TIA/EIA code with a 1/3 increase per Section 3.1.1.1 of the same code.

 Calculated stresses were found to be within allowable limits. In Load Case 1, per tnxTower "Section Capacity Table", this tower was found to be at 55.9% of its total capacity.

Tower Section	Elevation	Stress Ratio (percentage of capacity)	Result
Pole Shaft (L4)	1.00'-46.08'	55.9%	PASS

Foundation and Anchors

The existing foundation consists of a 7.5-ft square x 4.0-ft long reinforced concrete pier on a 30.0-ft square x 3.5-ft thick reinforced concrete pad. The sub-grade conditions used in the analysis of the existing foundation were obtained from the aforementioned EEI design documents; job no; 15320, dated March 13, 2008. The base of the tower is connected to the foundation by means of (24) 2.25" \emptyset , ASTM A615-75 anchor bolts embedded approximately 7-ft into the concrete foundation structure.

 The tower base reactions developed from the governing Load Case 1 were used in the verification of the foundation and its anchors:

Location	Vector	Proposed Reactions
	Shear	23 kips
Base	Compression	37 kips
	Moment	2451 kip-ft

• The foundation was found to be within allowable limits.

Foundation	Design Limit	IBC 2003/2005 CT State Building Code Section 3108.4.2 (FS) ⁽¹⁾	Proposed Loading (FS) ⁽¹⁾	Result
Reinforced Concrete Pad and Pier	OTM ⁽²⁾	2.0	2.90	PASS

Note 1: FS denotes Factor of Safety.

Note 2: OTM denotes Overturning Moment

The anchor bolts and base plate were found to be within allowable limits.

Tower Component	Design Limit	Stress Ratio (percentage of capacity)	Result
Anchor Bolts	Combined Compression and Bending	37.3%	PASS
Base Plate	Bending	23.8%	PASS

<u>Conclusion</u>

This analysis shows that the subject tower **is adequate** to support the proposed antenna configuration.

The analysis is based, in part, on the information provided to this office by Verizon Wireless. If the existing conditions are different than the information in this report, Centek Engineering, Inc. must be contacted for resolution of any potential issues.

Please feel free to call with any questions or comments.

Respectfully Submitted by:

Timothy J. Lynn, PE Structural Engineer

<u>Standard Conditions for Furnishing of</u> <u>Professional Engineering Services on</u> <u>Existing Structures</u>

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil conditions, the antenna and feed line loading on the structure and its components, or other relevant information.
- Information from the field and/or drawings in the possession of CENTEK engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provide to CENTEK engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an uncorroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to meet any other codes or requirements unless explicitly agreed in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement. In the absence of information to the contrary, all work will be performed in accordance with the latest revision of ANSI/ASCE10 & ANSI/EIA-222
- All services performed, results obtained, and recommendations made are in accordance with generally accepted engineering principles and practices. CENTEK engineering, Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

<u>General Description of Structural</u> Analysis Program

tnxTower, is an integrated structural analysis and design software package for Designed specifically for the telecommunications industry, tnxTower, formerly ERITower, automates much of the tower analysis and design required by the TIA/EIA 222 Standard.

tnxTower Features:

- <u>tnxTower</u> can analyze and design 3- and 4-sided guyed towers, 3- and 4-sided selfsupporting towers and either round or tapered ground mounted poles with or without guys.
- The program analyzes towers using the TIA-222-G (2005) standard or any of the previous TIA/EIA standards back to RS-222 (1959). Steel design is checked using the AISC ASD 9th Edition or the AISC LRFD specifications.
- Linear and non-linear (P-delta) analyses can be used in determining displacements and forces in the structure. Wind pressures and forces are automatically calculated.
- Extensive graphics plots include material take-off, shear-moment, leg compression, displacement, twist, feed line, guy anchor and stress plots.
- <u>tnxTower</u> contains unique features such as True Cable behavior, hog rod take-up, foundation stiffness and much more.

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
PA-80080-6CF (Verizon - Existing)	150	SBNHH-1D65A (ATI - Existing)	140
SBNHH-1D65B (Verizon - Proposed)	150	P90-15-XLH-RR (ATT - Existing)	140
SBNHH-1D65B (Verizon - Proposed)	150	(2) TT19-08BP111-001 TMA (ATI -	140
LPA-80080-6CF (Verizon - Existing)	150	Existing)	
LPA-80080-6CF (Verizon - Exisling)	150	(2) TT19-08BP111-001 TMA (ATI -	140
SBNHH-1D65B (Verizon - Proposed)	150		140
SBNHH-1D65B (Verizon - Proposed)	150	(2) 1119-068P111-001 1MA (ATL - Existing)	140
LPA-80080-6CF (Verizon - Existing)	150	DDI IS 11 (ATT - Eviction)	140
LPA-80080-6CF (Verizon - Existing)	150	RRUS-11 (ATT - Existing)	140
SBNHH-1D65B (Verizon - Proposed)	150	PPLIS 11 (ATT - Existing)	140
SBNHH-1D65B (Verizon - Proposed)	150	DC6.48-60-18-8F Surge Arrestor (ATT -	140
LPA-80080-6CF (Verizon - Existing)	150	Existing)	
RRH2x60-PCS (Verizon - Proposed)	150	RRUS-11 (ATT - Existing)	140
RRH2x60-PCS (Verizon - Proposed)	150	RRUS-11 (ATI - Existing)	140
RRH2x60-PCS (Verizon - Proposed)	150	RRUS-11 (ATI - Existing)	140
RRH2x60-07-U (Verizon - Proposed)	150	A2 (ATT - Existing)	140
RRH2x60-07-U (Verizon - Proposed)	150	A2 (ATI - Existing)	140
RRH2x60-07-U (Verizon - Proposed)	150	A2 (ATI - Existing)	140
RRH2x60-AWS (Verizon - Proposed)	150	P90-15-XLH-RR (ATI - Existing)	140
RRH2x60-AWS (Verizon - Proposed)	150	P90-15-XLH-RR (ATI - Existing)	140
RRH2x60-AWS (Verizon - Proposed)	150	HPA-65R-BUU-H6 (ATI - Existing)	140
(2) DB-T1-6Z-8AB-0Z (Verizon - Proposed)	150	Valmont 13' Low Profile Platform (ATI - Existing)	138
PD220-1 (Town - Existing)	150	DB222-F (Town - Existing)	118
3' Yagi (Town - Existing)	150	3' Yagi (Town - Existing)	118
PD220-1 (Town - Exisling)	150	DB222-F (Town - Existing)	118
Valmont 13' Low Profile Platform (Verizon - Existing)	148	6' Extension Arm Mount (Town - Existing)	118
P90-15-XLH-RR (ATT - Existing)	140	6' Extension Arm Mount (Town -	118
SBNHH-1D65A (ATI - Existing)	140	Existing)	
P90-15-XLH-RR (ATT - Existing)	140		
P90-15-XLH-RR (ATT - Existing)	140		

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
72-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

6. Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222

Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153

Centek Engineering Inc.	^{Job:} 15001.042 - Kent		_
63-2 North Branford Rd	Project: 150' EEI Monopole - 36 Maple St., Kent	, CT	
Branford CT 06405	Client: Verizon Wireless Drawn by: TJL	App'd:	
Bhone: (203) 488-0580	Code: TIA/EIA-222-F Date: 04/16/15	Scale:	N
FAX: (203) 488-8587	Path:	Dwg No	-

Cen

tnxTower	Јов 15001.042 - Kent	Page 1 of 21
tek Engineering Inc. 3-2 North Branford Rd.	Project 150' EEI Monopole - 36 Maple St., Kent, CT	Date 11:43:30 04/16/15
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client Verizon Wireless	Designed by TJL

Tower Input Data

There is a pole section.

This tower is designed using the TIA/EIA-222-F standard. The following design criteria apply:

Tower is located in Litchfield County, Connecticut.

Basic wind speed of 80 mph.

Nominal ice thickness of 0.500 in.

Ice density of 56 pcf.

A wind speed of 69 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 50 mph.

Weld together tower sections have flange connections..

Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC Specifications..

Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.. Welds are fabricated with ER-70S-6 electrodes..

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.333.

Local bending stresses due to climbing loads, feedline supports, and appurtenance mounts are not considered.

Options

Distribute Leg Loads As Uniform Treat Feedline Bundles As Cylinder Consider Moments - Legs Use ASCE 10 X-Brace Ly Rules Assume Legs Pinned Consider Moments - Horizontals ✓ Assume Rigid Index Plate Calculate Redundant Bracing Forces Consider Moments - Diagonals Ignore Redundant Members in FEA Use Moment Magnification Use Clear Spans For Wind Area SR Leg Bolts Resist Compression Use Clear Spans For KL/r Use Code Stress Ratios All Leg Panels Have Same Allowable Retension Guys To Initial Tension Use Code Safety Factors - Guys Offset Girt At Foundation ✓ Bypass Mast Stability Checks Escalate Ice Consider Feedline Torque Use Azimuth Dish Coefficients Always Use Max Kz Project Wind Area of Appurt. Include Angle Block Shear Check Use Special Wind Profile Include Bolts In Member Capacity Autocalc Torque Arm Areas Poles ✓ Include Shear-Torsion Interaction SR Members Have Cut Ends Leg Bolts Are At Top Of Section Always Use Sub-Critical Flow V Secondary Horizontal Braces Leg Sort Capacity Reports By Component Use Top Mounted Sockets Triangulate Diamond Inner Bracing Use Diamond Inner Bracing (4 Sided) Add IBC 6D+W Combination

Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	fi	ſl	Sides	in	in	în	in	
Ll	150.000-140.17	9.830	4.167	18	26.370	28.760	0.188	0.750	A572-65
	0								(65 ksi)
L2	140.170-91.707	52.630	5.583	18	27.372	40.050	0.313	1.250	A572-65
									(65 ksi)
L3	91.707-46.080	51.210	6.833	18	38.080	50.400	0.375	1.500	A572-65

tnxTower	Job	15001.042 - Kent	Page 2 of 21
Centek Engineering Inc. 63-2 North Branford Rd.	Project	150' EEI Monopole - 36 Maple St., Kent, CT	Date 11:43:30 04/16/15
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon Wireless	Designed by TJL

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
L4	46.080-1.000	51.913		18	48.006	60.500	0.375	1.500	(65 ksi) A572-65 (65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	1	r	С	I/C	J	II/Q	w	w/t
	in	in ²	in ⁴	in	in	in ³	in⁴	in ²	in	
L1	26.777	15.582	1349.519	9,295	13.396	100.741	2700.814	7.792	4,311	22.993
	29,204	17.004	1753.842	10,143	14.610	120.043	3509.991	8.504	4.732	25.236
L2	28.813	26.840	2482.831	9,606	13.905	178.558	4968.929	13.422	4.267	13.656
	40.668	39.415	7863.140	14.107	20.345	386.482	15736.627	19.711	6.499	20.796
L3	40.031	44.878	8060.760	13.385	19.345	416,691	16132.126	22.444	6.042	16.112
	51.178	59.542	18825.084	17,759	25.603	735.263	37674.939	29.777	8.210	21.894
L4	50,417	56.693	16249.825	16,909	24,387	666.328	32521.031	28.352	7.789	20.771
-	61 433	71.564	32684.429	21.344	30.734	1063.462	65411.866	35.789	9.988	26.635

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals
ft	ft^2	in					in	in
L1				1	1	1		
150.000-140.1								
70								
L2				1	1	1		
140.170-91.70								
7								
L3				1	1	1		
91.707-46.080								
L4				1	1	1		
46.080-1.000								

Feed Line/Linear Appurtenances - Entered As Area

Description	Face	Allow	Component	Placement	Total		$C_A A_A$	Weight
-	or	Shield	Type		Number			
	Leg			ft			ft²/ft	klf
LCF78-50J (7/8 FOAM)	В	No	Inside Pole	150.000 - 4.000	3	No Ice	0.000	0.001
(Town - Existing)						1/2" Ice	0.000	0.001
LCF78-50J (7/8 FOAM)	В	No	Inside Pole	118.000 - 4.000	3	No Ice	0.000	0.001
(Town - Existing)						1/2" lce	0.000	0.001
1 5/8	С	No	Inside Pole	140.000 - 8.670	12	No Ice	0.000	0.001
(AT&T - Existing)						1/2" Ice	0.000	0.001
LCF158-50J (1 5/8	А	No	Inside Pole	150.000 - 8.670	18	No Ice	0,000	0.001
FOAM						1/2" Ice	0.000	0.001
(Verizon - Existing)								
HYBRIFLEX 1-5/8"	С	No	Inside Pole	150.000 - 1.000	2	No Ice	0.000	0.002
(Verizon - Proposed)						1/2" Ice	0.000	0.002
Fiber Trunk	С	No	Inside Pole	140.000 - 4.000	1	No Ice	0.000	0.001
(AT&T - Existing)						1/2" Ice	0.000	0.001
DC Trunk	С	No	Inside Pole	140.000 - 4.000	2	No Ice	0.000	0.000

tnxTower	Job	15001.042 - Kent	Page 3 of 21
Centek Engineering Inc. 63-2 North Branford Rd.	Project	150' EEI Monopole - 36 Maple St., Kent, CT	Date 11:43:30 04/16/15
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon Wireless	Designed by TJL

Description	Face	Allow	Component	Placement	Total		$C_A A_A$	Weight
	or	Shield	Type		Number			
	Leg		2.	ſt			ft²/ft	klf
(AT&T - Existing)						1/2" Ice	0.000	0.000

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation			2	In Face	Out Face	
	ft		ft^2	ft	_ft²	fť	K
L1	150.000-140.170	А	0.000	0.000	0.000	0.000	0.163
		В	0.000	0.000	0.000	0.000	0.016
		С	0.000	0.000	0.000	0.000	0.037
L2	140.170-91.707	А	0.000	0.000	0.000	0.000	0.803
		В	0.000	0.000	0.000	0.000	0.119
		С	0.000	0.000	0.000	0.000	0.846
L3	91.707-46.080	А	0.000	0.000	0.000	0.000	0.756
		В	0.000	0.000	0.000	0.000	0.145
		С	0.000	0.000	0.000	0.000	0.798
L4	46.080-1.000	A	0.000	0.000	0.000	0.000	0.620
		В	0.000	0.000	0.000	0.000	0.134
		С	0.000	0.000	0.000	0.000	0.690

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ſ	Leg	in	ſr²	ſr²	ft ²	_ft ²	K
Ll	150.000-140.170	A	0.500	0.000	0.000	0.000	0.000	0.163
		В		0.000	0.000	0.000	0.000	0.016
		С		0.000	0.000	0.000	0.000	0.037
L2	140.170-91.707	А	0.500	0.000	0.000	0.000	0.000	0.803
		В		0.000	0.000	0.000	0.000	0.119
		С		0.000	0.000	0.000	0.000	0.846
L3	91,707-46,080	А	0.500	0.000	0.000	0.000	0.000	0.756
		В		0.000	0.000	0.000	0.000	0.145
		С		0.000	0.000	0.000	0.000	0.798
L4	46.080-1.000	А	0.500	0.000	0.000	0.000	0.000	0.620
		В		0.000	0.000	0,000	0.000	0.134
		С		0.000	0.000	0.000	0.000	0.690

Discrete Tower Loads

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	Leg		Luterui Vert ft ft	8 0 8	ft		ft^2	ft ²	K
LPA-80080-6CF	А	From Face	3.000	0.000	150.000	No Ice	4.326	9.088	0.021
(Verizon - Existing)		From From	-0.000 0.000	0.000	150.000	No Loo	9 220	5 242	0.009
SBNHH-1D65B	A	From Face	3.000	0.000	150.000	INO ICE	0.330	5.342	0.042

tnxTower

Centek Engineering Inc. 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Page Job 4 of 21 15001.042 - Kent Date Project 150' EEI Monopole - 36 Maple St., Kent, CT 11:43:30 04/16/15 Client Designed by Verizon Wireless TJL

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_{4}A_{4}$	$C_A A_A$	Weight
1	or	Type	Horz	Adjustment			Front	Side	-
	Leg		Lateral						
			Vert û	0	<i>ŧ</i>		fr^2	ft^2	K
			ft.		ונ		<i>J</i> 1	Ji	n -
			ft						
(Verizon - Proposed)			-4.000			1/2" Ice	8.878	5.795	0.092
			0.000		1 = 0 0 0 0		0.000	6.2.40	0.042
SBNHH-1D65B	А	From Face	3.000	0.000	150,000	No Ice	8.330	5,342	0.042
(Verizon - Proposed)			4.000			1/2 100	0.0/0	3.193	0.092
LPA-80080-6CF	А	From Face	3.000	0.000	150.000	No Ice	4.326	9.088	0.021
(Verizon - Existing)			6.000			1/2" Ice	4.764	9,637	0.069
() () () () () () () () () ()			0.000						
LPA-80080-6CF	В	From Face	3.000	0,000	150.000	No Ice	4.326	9.088	0.021
(Verizon - Existing)			-6.000			1/2" Ice	4,764	9.637	0.069
SBNHH 1D65B	в	From Face	3.000	0.000	150.000	No Ice	8 3 3 0	5.342	0.042
(Verizon - Proposed)	Б	1101111400	-4.000	0.000	1001000	1/2" Ice	8.878	5.795	0.092
(1012011 1107011)			0.000						
SBNHH-1D65B	В	From Face	3.000	0.000	150.000	No Ice	8.330	5.342	0.042
(Verizon - Proposed)			4.000			1/2" Ice	8.878	5.795	0.092
	п	Enore Enor	0.000	0.000	150,000	No Ioo	1 2 2 6	0.088	0.021
(Verizon - Existing)	В	From Face	5.000	0.000	130.000	1/2" Ice	4,520	9.088	0.069
(venzon - Existing)			0.000			1/2 100	1.701	2.057	0.000
LPA-80080-6CF	С	From Face	3.000	0.000	150.000	No Ice	4.326	9.088	0.021
(Verizon - Existing)			-6,000			1/2" Ice	4.764	9.637	0.069
	-		0.000		4 50 000		0.000	5 3 4 3	0.040
SBNHH-1D65B	С	From Face	3.000	0.000	150.000	No Ice	8.330	5.342	0.042
(Verizon - Proposed)			-4.000			1/2 100	0.0/0	3,193	0.092
SBNHH-1D65B	С	From Face	3.000	0.000	150,000	No Ice	8.330	5.342	0.042
(Verizon - Proposed)	C C		4.000			1/2" Ice	8.878	5.795	0.092
			0.000						
LPA-80080-6CF	С	From Face	3.000	0.000	150.000	No Ice	4.326	9.088	0.021
(Verizon - Existing)			6.000			1/2" Ice	4.764	9.637	0.069
DDU2v60 DCS	٨	From Face	3,000	0.000	150.000	No Ice	2 508	1-547	0.055
(Verizon - Proposed)	~	TiomTace	-4.000	0,000	100.000	1/2" Ice	2.730	1.738	0.073
(14112011 11000000)			0.000						
RRH2x60-PCS	А	From Face	3.000	0.000	150.000	No Ice	2.508	1.547	0.055
(Verizon - Proposed)			-4.000			1/2" Ice	2.730	1.738	0.073
DDUD-CO DCO		Enom Eo oo	0,000	0.000	150.000	No Ice	2 508	1 547	0.055
(Verizon - Proposed)	A	FIOTI FACE	4 000	0.000	150.000	1/2" Ice	2.730	1 738	0.073
(venzon - rroposed)			0.000						
RRH2x60-07-U	А	From Face	3.000	0.000	150.000	No Ice	2.450	1.633	0.050
(Verizon - Proposed)			0.000			1/2" Ice	2.668	1.826	0.068
	P		0.000	0.000	150.000	NI- I	2.450	1 6 2 2	0.050
RRH2x60-07-U	В	From Face	3.000	0.000	150.000	1/2" Loo	2.450	1.033	0.050
(verizon - Proposed)			0.000			1/2 100	2.000	1.020	0.000
RRH2x60-07-U	С	From Face	3.000	0.000	150.000	No Ice	2.450	1.633	0.050
(Verizon - Proposed)			0.000			1/2" Ice	2.668	1.826	0.068
			0.000						0.055
RRH2x60-AWS	A	From Face	3.000	0.000	150.000	No Ice	3.782	2.069	0.055
(Verizon - Proposed)			4.000			1/2 ⁻¹ Ice	4.093	2.349	0.078
RRH2x60-AWS	в	From Face	3.000	0.000	150.000	No Ice	3.782	2.069	0.055
(Verizon - Proposed)	2		4.000			1/2" Ice	4.093	2.349	0.078
			0.000						
RRH2x60-AWS	С	From Face	3.000	0.000	150.000	No Ice	3.782	2.069	0.055

Page Job *tnxTower* 5 of 21 15001.042 - Kent Date Project Centek Engineering Inc. 63-2 North Branford Rd. 150' EEI Monopole - 36 Maple St., Kent, CT 11:43:30 04/16/15 Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587 Client Designed by Verizon Wireless TJL

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	$C_{4}A_{4}$	Weight
-	0ľ	Туре	Horz	Adjustment			Front	Side	
	Leg		Laterat Vert						
			ft	0	ft		ft^2	ft^2	Κ
			ft ft						
(Verizon - Proposed)			4.000			1/2" Ice	4.093	2.349	0.078
(, , , , , , , , , , , , , , , , , , ,			0.000				201		
(2) DB-T1-6Z-8AB-0Z	A	From Face	3.000	0.000	150.000	No Ice	5.600	2,333	0.044
(venzon - Proposed)			0.000			1/2 100	5.715	2.550	0.000
Valmont 13' Low Profile	С	None		0.000	148.000	No Ice	15.700	15.700	1.300
Platform						1/2" Ice	20.100	20.100	1.765
P90-15-XLH-RR	А	From Face	3.000	0.000	140.000	No Ice	8.400	5.458	0.064
(AT&T - Existing)			-6.000			1/2" Ice	8.949	5.913	0.115
	٨	Erom Eago	0.000	0.000	140.000	No Ioo	10.260	6.450	0.051
(AT&T - Existing)	A	riom race	-2.000	0.000	140.000	1/2" 1ce	10.927	6.913	0.031
(1101 2.000)			0.000						
P90-15-XLH-RR	А	From Face	3.000	0.000	140.000	No Ice	8.400	5.458	0.064
(AT&T - Existing)			0.000			1/2" Jce	8.949	5.913	0.115
P90-15-XLH-RR	В	From Face	3.000	0.000	140.000	No Ice	8.400	5.458	0.064
(AT&T - Existing)			-6.000			1/2" Ice	8.949	5.913	0.115
SBNHH-1D65A	в	From Face	0.000	0.000	140.000	No lce	6.363	3.864	0.040
(AT&T - Existing)	D	110m1 acc	-2.000	0.000	110.000	1/2" Ice	6.801	4.220	0.079
			0.000	0.000	140.000	NT 1	0.400	5 450	0.064
P90-15-XLH-RR (AT&T - Existing)	В	From Face	3,000	0.000	140,000	No Ice 1/2" Ice	8.400 8.949	5.458	0.064
(AT&T - Existing)			0.000			1/2 100	0.747	5.715	0.110
P90-15-XLH-RR	С	From Face	3.000	0.000	140.000	No Ice	8.400	5.458	0.064
(AT&T - Existing)			-6.000			1/2" Ice	8.949	5.913	0.115
SBNHH-1D65A	С	From Face	3.000	0.000	140.000	No Ice	6.363	3.864	0.040
(AT&T - Existing)			-2.000			1/2" Ice	6.801	4.220	0.079
DOO 15 VI LI DD	C	From Face	0.000	0.000	140.000	No Ice	8 400	5 4 5 8	0.064
(AT&T - Existing)	C	FIOIRFace	6.000	0.000	140.000	1/2" lce	8.949	5.913	0.115
			0.000						
(2) TT19-08BP111-001 TMA	A	From Face	3.000	0.000	140,000	No Ice	0.645	0.520	0.016
$(A1 \alpha 1 - Existing)$			0.000			1/2 100	0.757	0.025	0.022
(2) TT19-08BP111-001 TMA	В	From Face	3,000	0.000	140.000	No Ice	0.645	0.520	0.016
(AT&T - Existing)			0.000			1/2" Ice	0.757	0.623	0.022
(2) TT19-08BP111-001 TMA	С	From Face	3.000	0.000	140.000	No Ice	0.645	0.520	0.016
(AT&T - Existing)			0.000			1/2" Ice	0.757	0.623	0.022
	٨	From Faco	0.000	0.000	140.000	No Ice	2 004	1.246	0.050
(AT&T - Existing)	A	riom race	2.000	0.000	140.000	1/2" Ice	3.226	1.412	0.070
(11101 2.1151.16)			0.000						
RRUS-11	В	From Face	1.000	0.000	140.000	No Ice	2.994	1.246	0.050
(AI&I - Existing)			2,000			1/2 100	3.220	1.412	0.070
RRUS-11	С	From Face	1.000	0.000	140.000	No Ice	2.994	1.246	0.050
(AT&T - Existing)			2.000			1/2" Ice	3.226	1.412	0.070
DC6-48-60-18-8F Surge	С	From Face	0.000	0.000	140.000	No Ice	2.228	2.228	0.020
Arrestor	~		0.000	0.000		1/2" Ice	2.447	2.447	0.039
(AT&T - Existing)		EE	0.000	0.000	140.000	N. T.	2.004	1.046	0.050
KKUS-H	A	From Face	1.000	0.000	140,000	ino ice	2.994	1.240	0.050

tnx

Centek E 63-2 No Braņ Phone: FAX:

cTower	Job	15001.042 - Kent	Page 6 of 21
Engineering Inc. orth Branford Rd.	Project	150' EEI Monopole - 36 Maple St., Kent, CT	Date 11:43:30 04/16/15
ford, CT 06405 : (203) 488-0580 (203) 488-8587	Client	Verizon Wireless	Designed by TJL
(200) 100 0001			

Description	Face	Offset	Offsets:	Azimuth	Placement		$C_A A_A$	C_{A_1}	Weight
	or	Туре	Horz	Adjustment			Front	Side	
	Leg		Laterat Vert						
			ft	0	ft		ft^2	n^2	K
			ft		5-		5	5	
			ft						
(AT&T - Existing)			-2.000			1/2" Ice	3.226	1.412	0.070
			0.000						
RRUS-11	В	From Face	1.000	0.000	140.000	No Ice	2.994	1.246	0.050
(AT&T - Existing)			-2.000			1/2" Ice	3.226	1.412	0.070
DDIG 11	C	Enorm En co	0,000	0.000	140.000	Nolce	2 004	1 246	0.050
KKUS-II (ATET Evicting)	C	From Face	2,000	0.000	140.000	1/2" Ice	3 226	1.240	0.030
(AI&I - Existing)			-2.000			1/2 100	5.220	1.712	0.070
Δ2	А	From Face	1.000	0.000	140.000	No Ice	2.424	0.542	0.022
(AT&T - Existing)	11	1101111400	-2.000	0.000	1.00000	1/2" Ice	2.633	0.675	0.035
(The Endering)			0.000						
A2	В	From Face	1.000	0.000	140.000	No Ice	2.424	0.542	0.022
(AT&T - Existing)			-2,000			1/2" Ice	2.633	0.675	0.035
			0.000						
A2	С	From Face	1.000	0.000	140.000	No Ice	2,424	0.542	0.022
(AT&T - Existing)			-2.000			1/2" Ice	2.633	0.675	0.035
	0		0.000	0.000	128.000	Na Isa	15 700	15 700	1 200
Valmont 13' Low Profile	C	None		0.000	138,000	1/2" Lee	20.100	20.100	1.300
Platform (AT&T Existing)						1/2 100	20.100	20.100	1.705
$PD220_1$	Δ	From Face	6.000	0.000	150.000	No Ice	5.500	5.500	0.025
(Town - Existing)	11	1101111400	0.000	0.000	100,000	1/2" Ice	7.531	7.531	0.065
(Town Existing)			10.000						
3' Yagi	А	From Face	6.000	0.000	150.000	No Ice	2,083	2.083	0.031
(Town - Existing)			0.000			1/2" Ice	3.787	3.787	0.052
			0.000						
PD220-1	В	From Face	6.000	0.000	150.000	No Ice	5,500	5.500	0.025
(Town - Existing)			0.000			1/2" Ice	7.531	7.531	0.065
DDDDD F		From From	10.000	0.000	118.000	No Ioo	1.600	1.600	0.016
DB222-F (Terring)	А	From Face	0.000	0.000	110,000	1/2" Ice	2.880	2.880	0.021
(Town - Existing)			5.000			1/2 100	2.000	2.000	0.021
3' Vagi	А	From Face	6.000	0.000	118.000	No Ice	2.083	2.083	0.031
(Town - Existing)	71	110111400	0.000	0.000	1,010,00	1/2" Ice	3.787	3.787	0.052
(10,11, 1,10,11,8)			0.000						
DB222- F	В	From Face	6.000	0.000	118.000	No Ice	1.600	1.600	0.016
(Town - Existing)			0.000			1/2" Ice	2.880	2,880	0.021
			5.000						
6' Extension Arm Mount	А	None		0.000	118.000	No Ice	5.010	5.010	0.130
(Town - Existing)	-	2.1		0.000	110 000	1/2" Ice	6.770	6.770	0.165
6' Extension Arm Mount	В	None		0.000	118.000	NO ICC 1/2" Loc	5.010	5.010	0.130
(Town - Existing)						1/2 100	0.770	0.770	0.105

Tower Pressures - No Ice

 $G_H = 1.690$

tnxTower	Job	15001.042 - Kent	Page 7 of 21
Centek Engineering Inc. 63-2 North Branford Rd.	Project	150' EEI Monopole - 36 Maple St., Kent, CT	Date 11:43:30 04/16/15
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon Wireless	Designed by TJL

Section	Z	Kz	q_{1}	A_G	F	Ap	A_R	Aleg	Leg	$C_A A_A$	$C_A A_A$
Elevation			1.		а				%	In	Out
					С					Face	Face
fi	ft		ksf	ft^2	е	$\int t^2$	ft^2	ft^2		ft ²	ft^2
L1	145.014	1.526	0.025	22.580	Α	0.000	22.580	22,580	100.00	0.000	0.000
150.000-140.1					В	0.000	22,580		100.00	0.000	0.000
70	()				С	0.000	22.580		100.00	0.000	0.000
L2	114,921	1.428	0.023	138.171	Α	0.000	138.171	138,171	100.00	0.000	0.000
140.170-91.70	(2)				В	0.000	138,171		100.00	0.000	0.000
7					С	0.000	138.171		100.00	0.000	0.000
L3	68.508	1,232	0.020	170.765	Α	0.000	170.765	170.765	100.00	0.000	0.000
91,707-46,080					В	0.000	170.765		100.00	0.000	0.000
					С	0.000	170.765		100.00	0.000	0.000
L4	22.877	1	0.016	206.900	Α	0.000	206.900	206.900	100.00	0.000	0.000
46.080-1.000					В	0.000	206.900		100.00	0.000	0.000
					С	0.000	206.900		100.00	0,000	0.000

Tower Pressure - With Ice

$G_H = 1.690$

Section	Z	Kz	q_z	tz	A_G	F	A_F	A_R	Aleg	Leg	$C_A A_A$	$C_{AA_{cl}}$
Elevation						а				%	In	Out
						С					Face	Face
ft	ft		ksf	in	ft^2	е	ft^2	ft^2	ft^2		ft^2	ft^2
L1	145.014	1.526	0.019	0.500	23.399	Α	0.000	23,399	23.399	100.00	0.000	0.000
150.000-140.170						В	0,000	23.399		100,00	0.000	0.000
~						С	0.000	23.399		100.00	0.000	0.000
L2	114.921	1.428	0.018	0.500	142.210	Α	0.000	142.210	142.210	100.00	0.000	0.000
140,170-91.707						В	0.000	142.210		100.00	0.000	0.000
						С	0.000	142.210		100.00	0.000	0.000
L3	68.508	1.232	0.015	0.500	174.567	Α	0.000	174.567	174.567	100,00	0.000	0.000
91,707-46.080						В	0.000	174.567		100.00	0.000	0.000
						C	0.000	174.567		100.00	0.000	0,000
L4 46 080-1 000	22.877	1	0.012	0.500	210.656	Α	0.000	210.656	210.656	100.00	0.000	0.000
CO 13						В	0.000	210.656		100.00	0.000	0.000
						С	0.000	210.656		100.00	0.000	0.000

Tower Pressure - Service

Section	Z	Kz	q_z	A_G	F	A_F	A_R	Aleg	Leg	$C_A A_A$	C_AA_A
Elevation					a				%	In	Out
					с					Face	Face
ft	ft		ksf	ft^2	е	ft ²	ft^2	ft^2		ft^2	ft^2
LI	145.014	1.526	0.010	22.580	Α	0.000	22.580	22.580	100.00	0.000	0.000
150.000-140.1					В	0.000	22,580		100.00	0.000	0.000
70					C	0.000	22.580		100.00	0.000	0.000
L2	114.921	1,428	0.009	138.171	A	0.000	138.171	138.171	100.00	0.000	0.000
140.170-91.70		~			В	0.000	138,171		100.00	0.000	0.000
7					С	0.000	138.171		100.00	0.000	0.000
L3	68.508	1.232	0.008	170.765	A	0.000	170.765	170.765	100.00	0.000	0.000
91.707-46.080					В	0.000	170.765		100.00	0.000	0.000
					С	0.000	170.765		100.00	0.000	0.000
L4	22.877	1	0.006	206.900	Α	0.000	206.900	206.900	100.00	0.000	0.000

 $G_H = 1.690$

tnxTower

Page Job 8 of 21 15001.042 - Kent Date Project Centek Engineering Inc. 11:43:30 04/16/15 150' EEI Monopole - 36 Maple St., Kent, CT 63-2 North Branford Rd. Branford, CT 06405 Client Designed by Phone: (203) 488-0580 Verizon Wireless TJL FAX: (203) 488-8587

Leg $C_A A_A$ $C_A A_A$ K_Z A_F A_R Aleg A_G Section Z q_z F а % In Out Elevation Face ft² Face С ft2 ft² ft² ft^2 ft^2 ft ksf е ft 100.00 0.000 206.900 0.000 46.080-1.000 В 0.0000.000 100.00 0.000 С 0.000 206.900

Tower Forces - No Ice - Wind Normal To Face

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С						67		110	
ft	K	K	e						ft	K	KĮŢ	
L1	0.216	0.545	Α	1	0.65	1	1	1	22.580	0.620	0.063	С
150,000-140.1			В	1	0.65	ា	1	1	22.580			
70			C	1	0.65	1	1	1	22,580			
L.2	1.767	5.933	Α	1	0.65	1	1	1	138,171	3.545	0.073	С
140.170-91.70			В	1	0.65	1	1	1	138,171			
7			С	1	0.65	1	1	1	138,171			
L3	1.699	9.098	Α	1	0.65	1	1	1	170.765	3.767	0.083	С
91.707-46.080			В	1	0.65	1	1	- 1	170.765			
			С	1	0.65	1	1	1	170.765			
L4	1.443	11.328	Α	1	0.65	1	1	1	206.900	3.748	0.083	С
46.080-1.000			В	1	0.65	1	1	1	206.900			
			С	1	0.65	1	1	1	206.900			
Sum Weight:	5.125	26.904						OTM	829.478	11,680		
Ű									kip-ft			

		-	Γο	wer Fo	orces	5 - N	o Ice	e - W	ind 45	To Face		
											_	0.1
Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	11/	Ctrl.
Elevation	Weight	Weight	а									Face
			С						.1			
ft	K	K	е						ft	K	klf	
L1	0.216	0.545	Α	1	0.65	1	1	1	22.580	0.620	0.063	С
150.000-140.1	20	2	В	1	0.65	1	1	I.	22.580			
70			С	1	0.65	1	1	1	22.580			
L2	1.767	5.933	Α	1	0.65	1	1	1	138.171	3.545	0.073	С
140.170-91.70			В	1	0.65	1	1	1	138.171			
7			С	1	0.65	1	1	1	138.171			
1.3	1.699	9.098	A	1	0.65	1	1	1	170.765	3.767	0.083	С
91,707-46,080			В	1	0.65	1	1	1	170.765			
			С	1	0.65	1	1	1	170.765			
L4	1.443	11.328	A	1	0.65	1	1	1	206.900	3.748	0.083	С
46.080-1.000			В	1	0.65	1	1	1	206.900			
			С	1	0.65	1	1	1	206.900			
Sum Weight:	5,125	26,904			0.200		250	OTM	829.478	11.680		
Sunt A Vigiti	01120								kip-ft			

Tower Forces - No Ice - Wind 60 To Face

Се

tnxTower	Job	15001.042 - Kent	Page 9 of 21
e ntek Engineering Inc. 63-2 North Branford Rd.	Project	150' EEI Monopole - 36 Maple St., Kent, CT	Date 11:43:30 04/16/15
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon Wireless	Designed by TJL

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С									
ft	K	K	е						ft ²	K	klf	
LI	0.216	0.545	Α	1	0.65	T.	1	1	22.580	0.620	0.063	С
150.000-140.1			В	1	0.65	1	1	1	22.580			
70			C	1	0.65	E.	1	1	22.580			
L2	1.767	5.933	Α	1.	0.65	1	1	1	138.171	3.545	0.073	С
140.170-91.70			В	1	0.65	L, L	1	t,	138.171			
7			С	1	0.65	1)	1	1	138.171			
L3	1,699	9.098	A	1	0.65	1	1	1	170.765	3.767	0.083	С
91.707-46.080		0	В	L I	0.65	1	1	I.	170.765			
~			С	· 1.	0.65	1	1	1	170.765			
L4	1.443	11.328	Α	1	0.65	1	1	1	206.900	3.748	0.083	С
46.080-1.000			В	1	0.65	1	1	1	206.900			
			С	I.	0.65	1	1	1	206.900			
Sum Weight:	5.125	26.904				n .		OTM	829.478	11.680		
-								ļ	kip-ft	1		

		•	Γοι	ver Fo	orces	3 - N	o Ice	e – Wi	ind 90 [·]	To Face	•	
Section Elevation	Add Weight	Self Weight	F a	е	C_F	R _R	D_F	D_R	A_E	F	עו	Ctrl. Face
ft	K	K	с е						ft^2	K	klf	
L1	0.216	0.545	А	ŀ	0.65	1	1	Ę	22.580	0.620	0.063	С
150.000-140.1			В	1	0.65	1	j.	1	22.580			
70			С	1	0.65	1	1	1	22.580			
L2	1.767	5.933	А	1	0.65	1	1	1	138,171	3.545	0.073	С
140.170-91.70			В	1	0.65	1	1	1	138.171			
7			С	1	0.65	E		1	138.171			
L3	1,699	9.098	А	1	0.65	1	1	1	170.765	3.767	0.083	С
91.707-46.080	~		В	1. L	0.65	1	1	1	170.765			
			С	1	0.65	1	1	1	170.765			
L4	1.443	11.328	Α	1	0.65	1	1	1 I	206.900	3.748	0.083	С
46.080-1.000			В	Ť.	0.65	1	1	1	206.900	5. F		
			С	1	0.65	1	្ប	1	206.900			
Sum Weight:	5.125	26.904						OTM	829.478 kip-ft	11.680		

Tower Forces - With Ice - Wind Normal To Face

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	112	Ctrl.
Elevation	Weight	Weight	а									Face
	1.000	· · · ·	С									
ft	K	K	е						ft ²	K	klf	
L1	0.216	0.715	Α	1	0.65	1	1	1	23.399	0.482	0.049	С
150.000-140.1			В	1	0.65	1	1	1	23.399			
70			C	1	0.65	1	1	1	23.399			
L2	1.767	6.971	Α	1	0.65	1	1	1	142.210	2.736	0.056	C
140.170-91.70		· · · · ·	В	1	0.65	1	1	I	142.210			
7			C	1	0.65	1	1	1	142.210			
L3	1.699	10.377	Α	1	0.65	1	1	1	174.567	2.888	0.063	С
91.707-46.080			В	1	0.65	1	1	1	174.567			
			C	1	0.65	1	- A.,	1, 1,	174.567			

tnxTower

Centek Engineering Inc. 63-2 North Branford Rd. Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

Job		Page
	15001.042 - Kent	10 of 21
Project		Date
	150' EEI Monopole - 36 Maple St., Kent, CT	11:43:30 04/16/15
Client		Designed by
	Verizon Wireless	TJL

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	a									Face
			С									
ft	K	K	e						ft^2	K	klf	
L4	1.443	12.874	A	1	0.65	1	1	1	210,656	2.862	0.063	С
46.080-1.000			В		0.65	1	1	1	210,656			
			C	1	0.65	1	1	1	210.656	1		
Sum Weight:	5.125	30.937						OTM	638.754	8,969		
U	1.05								kip-ft	1 · · · · · · · · ·		

Tower Forces - With Ice - Wind 45 To Face

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	w	Ctrl.
Elevation	Weight	Weight	а									Face
			С					(
ft	K	K	е						fť	K	kļf	
L1	0.216	0.715	Α	1	0.65	1	1	1	23.399	0.482	0,049	С
150,000-140.1			В	1	0.65	1	1	1	23.399			
70			С	1	0.65	- 1,	1	1	23.399			
L2	1.767	6.971	Α	1	0.65	1	3	1	142.210	2.736	0.056	С
140.170-91.70			В	1	0.65	L	1	1	142.210			
7			С	1	0.65	1	1	1	142.210			
L3	1.699	10.377	Α	1	0.65	1	1	1	174,567	2.888	0.063	С
91.707-46.080			В	1	0.65	1		1	174,567			
	2		С	1	0.65	- 1	1	1	174.567			
L4	1.443	12.874	Α	1	0.65	L	1	1	210.656	2.862	0,063	С
46.080-1.000			В	1	0.65	Ē	1	1	210.656		· · · ·	
			С	1	0.65	1	1	1	210.656			
Sum Weight:	5.125	30,937				-		OTM	638.754	8.969		
Ű									kip-ft			

	Tower Forces	- With Ic	e - Wind 6	30 To Face
--	---------------------	-----------	------------	------------

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl
Elevation	Weight	Weight	а									Face
			С									
ft	K	K	е						fť	K	klf	
L1	0.216	0.715	Α	1	0.65	1	1	1	23.399	0.482	0.049	С
150.000-140.1			В	1	0.65	-1	1	1	23.399			
70			С	1	0.65	1	1	1	23.399			
L2	1.767	6.971	Α	1	0.65	1	1	1	142.210	2.736	0.056	С
140.170-91.70			В	1	0.65	1	1	1	142.210			
7			С	1	0.65	1	1	1	142.210			
L3	1.699	10.377	Α	1	0.65	1	1	1	174,567	2.888	0,063	С
91.707-46.080			В	1	0.65	1	1	1	174.567			
			С	1	0.65	I.	1	1	174.567			
L4	1.443	12.874	Α	1	0.65	I.	1	1	210.656	2.862	0.063	С
46.080-1.000			В	1	0.65	1	Ĵ.	Ľ Ľ	210.656			
			С	1	0.65	L	1	1	210.656			
Sum Weight:	5.125	30.937						OTM	638.754	8.969		
									kip-ft			
tnx

Centek E 63-2 No Bran Phone: FAX:

	Job		Page
clower		15001.042 - Kent	11 of 21
Fugingaring Inc	Project		Date
orth Branford Rd.		150' EEI Monopole - 36 Maple St., Kent, CT	11:43:30 04/16/15
ford, CT 06405	Client		Designed by
: (203) 488-0580 (203) 488-8587		Verizon Wireless	TJL

Tower Forces - With Ice - Wind 90 To Face

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С									
ft	K	K	е						ft ²	K	klf	
Ll	0.216	0.715	А	1	0.65	1	1	1	23.399	0.482	0.049	С
150.000-140.1			В	1.	0.65	- L.	1	1	23.399			
70			С	1	0.65	1	1	1	23.399			
L2	1,767	6.971	Α	1	0.65	(<u>t</u>)	1	1	142.210	2.736	0.056	С
140 170-91 70			В	1	0.65	1	1	1	142.210	1)		
7			С	-1	0.65	1	1	1	142.210			
L3	1,699	10.377	Α	1	0.65	1	1	1	174.567	2.888	0.063	C
91.707-46.080			В	1	0.65	1	1	1	174.567			
			С	1	0,65	L.	1	1	174.567			
L4	1,443	12.874	Α	1	0.65	1	1	1	210.656	2.862	0.063	С
46.080-1.000			В	1	0.65	1	- 1	1	210.656			
· · · · ·			С	1	0.65	L.	1	1	210.656			
Sum Weight:	5.125	30.937						OTM	638.754	8.969		
									kip-ft			

	Tower Forces - Service - Wind Normal To Face											
Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	19	Ctrl.
Elevation	Weight	Weight	a									Face
			С									
ft	K	K	е						ft^2	K	klf	
L1	0.216	0.545	Α	1	0.65	1	1	1	22.580	0.242	0.025	С
150.000-140.1			В	1	0.65	1	1	1	22.580			
70			C	1	0.65	1	1	1	22.580			
L2	1,767	5.933	A	1	0.65	1	1	1	138,171	1.385	0.029	С
140.170-91.70			В	1	0.65	1	1	1	138.171			
7			C	1	0.65	-1	1	1	138,171			
L3	1.699	9.098	A	1	0.65	1	1	1	170.765	1.472	0.032	С
91.707-46.080			В	1	0.65	1	1	1	170.765			
			C	1	0.65	1	1	1	170.765			
L4	1.443	11.328	A	1	0.65	1	1	1	206.900	1.464	0.032	С
46.080-1.000			В	1	0.65	1	1	1	206.900	1		
			C	1	0.65	1	1	1	206.900			
Sum Weight:	5.125	26.904						OTM	324.015	4.563		
									kip-ft			

	Tower Forces - Service - Wind 45 To Face											
Section Elevation	Add Weight	Self Weight	F a	е	C _F	R _R	D_F	D_R	A_E	F	W	Ctrl. Face
ſt	K	K	с е						ft^2	K	klf	
L1	0.216	0.545	Α	1	0.65	1	<u>j</u>	E.	22.580	0.242	0.025	С
150.000-140.1			В	1	0.65	1	1	1	22,580			
70			С	1	0.65	-1	1	1	22,580			
L2	1.767	5.933	Α	1	0.65	1	1	L.	138,171	1.385	0.029	С
140.170-91.70			В	1	0.65	1	1	1	138,171			
7			С	1	0.65	1	1	1	138.171)	

Anna Tooman	Job		Page
<i>inx1</i> ower		15001.042 - Kent	12 of 21
Contab Engine aging Ing	Project		Date
63-2 North Branford Rd.		150' EEI Monopole - 36 Maple St., Kent, CT	11:43:30 04/16/15
Branford, CT 06405	Client		Designed by
Phone: (203) 488-0580 FAX: (203) 488-8587		Verizon Wireless	TJL

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С			5			c2	V	<i>L</i> .1.6	
ft	K	K	е						JI	Λ	KIJ	
L3	1.699	9.098	Α	1	0.65	1	1	1	170.765	1.472	0.032	С
91,707-46.080			В	1	0,65	1	1	1	170.765			
			С	1	0.65	1	1	1	170.765			
L4	1,443	11.328	Α	1	0.65	1	1	1	206.900	1.464	0.032	С
46.080-1.000			В	1	0.65	1	1	1	206.900			
			С	1	0.65	1	1	1	206,900			
Sum Weight:	5,125	26,904						OTM	324.015	4,563		
U									kip-ft			

Tower Forces	- Service	Wind 60	To Face

Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	W	Ctrl.
Elevation	Weight	Weight	а									Face
			С						2			
ft	K	Κ	е						ft²	K	klf	
L1	0.216	0.545	Α	1	0.65	1	1	1	22.580	0.242	0.025	С
150.000-140.1			В	1	0.65	-1	1	1	22.580			
70			C	1	0.65	1	1	1	22.580			
L2	1.767	5.933	Α	1	0.65	1	1	1	138.171	1.385	0.029	С
140.170-91.70			В	1	0.65	1	1	1	138.171			
7			С	1	0.65	1	1	E	138.171			
L3	1.699	9,098	Α	1	0,65	1	1	1	170.765	1.472	0.032	С
91.707-46.080			В	I	0.65	1	1	1	170.765			
8			С	1	0.65	1	1	I.	170,765			
L4	1.443	11.328	Α	1	0.65	1	1	1	206,900	1.464	0,032	С
46.080-1.000			В	Ĺ.	0.65	1	1	1	206,900			
			С	1	0.65	L	1	1	206,900			
Sum Weight:	5,125	26.904					2.7	OTM	324.015	4.563		
	20200								kip-ft			

												0.1
Section	Add	Self	F	е	C_F	R_R	D_F	D_R	A_E	F	11/	Ctrl.
Elevation	Weight	Weight	a									Face
			С									
ft	K	K	е						ft^2	K	klf	
Ll	0.216	0.545	Α	1	0.65	1	1	1	22,580	0.242	0.025	С
150.000-140.1			В	1	0.65		1	1	22.580			
70			С	I	0.65	Ĩ	1	1	22.580			
L2	1.767	5.933	Α	1	0.65	1	1	1	138.171	1.385	0.029	С
140.170-91.70			В	1	0.65	Ĕ	1	1	138.171			
7			С	1	0.65	1	1	1	138.171			
L3	1.699	9.098	A	1	0.65	1	1	1	170.765	1.472	0.032	С
91.707-46.080			В	1	0.65	1	<u>1</u>	1	170.765			
\$0 		·	C	L. L.	0.65	1	1	1	170.765			
L4	1.443	11.328	A	1	0.65	1	1	1	206.900	1.464	0.032	С
46.080-1.000	26	69	В	1	0,65	1	1	1	206.900			
			С	1	0,65	1	1	1	206.900			
Sum Weight:	5,125	26,904						OTM	324.015	4,563		
	141	140							kip-ft			

tnx

Centek E 63-2 No

Branf Phone: FAX: (

Tower	Job	15001.042 - Kent	Page 13 of 21
E ngineering Inc. orth Branford Rd.	Project	150' EEI Monopole - 36 Maple St., Kent, CT	Date 11:43:30 04/16/15
ford, CT 06405 : (203) 488-0580 (203) 488-8587	Client	Verizon Wireless	Designed by TJL

Force Totals

T and	VentionI	Cum of	Saum of	Sum of	Sum of	Sum of Torques
Load	Vertical	Sum oj	Sum Oj	Overturning	Overhurning	Sum of torques
Case	Forces	rorces	Torces	Momente M	Momente M	
	V	X		Moments, M_x	woments, w _z	hin fi
	<u>K</u>	Λ	N	кір-л	кір-јі	кір-л
Leg Weight	26.904	the second second	TRATE USE AND	2 - 2 - 5 L 1		
Bracing Weight	0.000	100 million (100 m	States And	0.420	1.((0	
Total Member Self-Weight	26.904		S. VIII	-0.438	1.008	1 - 1 - 1 A
Total Weight	36.976	0.000	22.244	-0.438	1.008	2,600
Wind 0 deg - No Ice		-0.200	-22.244	-2345.975	31,133	-3.090
Wind 30 deg - No Ice	n n (2 500)	11.064	-19.104	-2010.991	-1102.309	-4.333
Wind 45 deg - No Ice	ELL PTYS TH	15.751	-15.588	-1038.133	-1000.103	-4.221
Wind 60 deg - No Ice		19.364	-10.949	-114/.0/2	-2044.309	-3.019
Wind 90 deg - No Ice	Same Provide	22.475	0.200	29.047	-2377.913	-2.279
Wind 120 deg - No Ice	States (1997)	19.563	11,295	1197,803	-2073.834	-0.129
Wind 135 deg - No Ice	A CONTRACTOR	16.033	15.870	10/8.930	-1/01.800	0.998
Wind 150 deg - No Ice	aller a la Covara	11.410	19.304	2045.599	-1213,030	2.030
Wind 180 deg - No Ice	Minster T. T. S.	0.200	22.244	2345.100	-27.810	5.090
Wind 210 deg - No Ice	and the second	-11.064	19.104	2010.115	1662 420	4.555
Wind 225 deg - No Ice	and the same of	-15.751	15.588	1037.239	1003.439	4.221
Wind 240 deg - No Ice	127.5.5.1.1.2.2.00	-19.304	0.200	1140.790	2047.700	2 270
Wind 270 deg - No Ice		-22.475	-0.200	-29,923	2301.232	0.129
Wind 300 deg - No Ice		-19.303	-11,293	-1190,741	2077.190	0.008
Wind 315 deg - No Ice	17 8 17	-10.033	-13.870	-10/9 032	1705.157	-0.996
Wind 330 deg - No Ice	4.033	-11.410	-19.304	-2040,473	1210.994	-2.050
Member Ice	4.033	Xin 11 South 191		0.056	2 500	ACCHINE NO R
Total Weight Ice	43.030	0.154	10.000	-0.930	2,390	3 605
Wind U deg - Ice	The Sunt Par	-0.134	-10.000	-1943.973	25,504	-5.005
Wind 30 deg - Ice	a that man but	12 801	-13.301	-1072.303	-302.302	4.550
Wind 45 deg - Ice	Contra Tribego (11	12.001	-12.070	-1330.017	-1601 470	-4.253
Wind 60 deg - Ice	All the set of	19,755	-0.907	-952.795	-1066 656	-7.235
Wind 90 deg - Ice		15 000	0.134	21.737	-1714 184	-0.649
Wind 120 deg - Ice	and the second second	12.010	12 803	1380 027	-1405 938	0.548
Wind 155 deg - Ice	A State of the second	0.262	15 735	1603 104	-1001 704	1.707
Wind 150 deg - Ice	A DATE THAT A	0.154	18 080	1942.063	-20 123	3 605
Wind 210 deg - Ice		-8 006	15 581	1670 390	967.543	4 537
Wind 210 deg - Ice	2 1 12 5 18	-12 801	12.676	1356 904	1378 997	4.550
Wind 240 deg Lee		-15 735	8 907	950 882	1696 651	4.253
Wind 270 deg - Ice		-18 258	-0.154	-23 670	1971 837	2 830
Wind 300 deg - Ice	10 Carlos Bartas	-15 888	-9 173	-992 136	1719.365	0.649
Wind 315 deg - Ice	A. 100 A.	-13.019	-12,893	-1390,939	1411.119	-0.548
Wind 330 deg - Ice	The start when	-9 262	-15.735	-1695.017	1006.884	-1,707
Total Weight	36.976			-0.438	1.668	Section and the
Wind 0 deg - Service	501770	-0.078	-8.689	-916.664	13.186	-1.441
Wind 30 deg - Service		4 322	-7.486	-788,154	-453,120	-1.693
Wind 45 deg - Service	TATU 11 13	6.153	-6.089	-640,163	-647.461	-1,649
Wind 60 deg - Service		7.564	-4.277	-448.576	-797.565	-1.492
Wind 90 deg - Service	19. Carlo and	8.779	0.078	11.079	-927.856	-0.890
Wind 120 deg - Service		7.642	4.412	467.649	-809.082	-0.050
Wind 135 deg - Service		6.263	6.199	655.575	-663.749	0.390
Wind 150 deg - Service	a de la color d	4.457	7.564	798.795	-473.068	0.803
Wind 180 deg - Service	2 Jup to 13	0.078	8.689	915.788	-9.849	1.441
Wind 210 deg - Service	a ser a ser a	-4.322	7.486	787.278	456.456	1.693
Wind 225 deg - Service	The state in the state	-6.153	6.089	639.287	650.798	1.649
Wind 240 deg - Service	1-12 25 3	-7.564	4.277	447 .700	800.902	1.492
Wind 270 deg - Service	Balling - Ste	-8.779	-0.078	-11.955	931.193	0.890
Wind 300 deg - Service		-7.642	-4.412	-468.525	812.419	0.050
Wind 315 deg - Service	The second second second	-6.263	-6.199	-656.451	667.086	-0.390

tnxTower	Job	15001.042 - Kent	Page 14 of 21
Centek Engineering Inc. 63-2 North Branford Rd.	Project	150' EEI Monopole - 36 Maple St., Kent, CT	Date 11:43:30 04/16/15
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon Wireless	Designed by TJL

1	Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
	Case	Forces	Forces	Forces	Overturning	Overturning	
			X	Ζ	Moments, M_x	Moments, M_z	
		Κ	K		kip-ft	kip-ft	kip-ft
	Wind 330 deg - Service		-4.457	-7.564	-799.671	476.405	-0.803

Load Combinations

Comt	Dagavintian	
Comb. No	Description	
1	Dead Only	
2	Dead+Wind 0 deg - No Ice	
3	Dead+Wind 30 deg - No Ice	
4	Dead+Wind 45 deg - No Ice	
5	Dead+Wind 60 deg - No Ice	
6	Dead+Wind 90 deg - No Ice	
7	Dead+Wind 120 deg - No Ice	
8	Dead+Wind 135 deg - No Ice	
9	Dead+Wind 150 deg - No Ice	
10	Dead+Wind 180 deg - No Ice	
11	Dead+Wind 210 deg - No Ice	
12	Dead+Wind 225 deg - No Ice	
13	Dead+Wind 240 deg - No Ice	
14	Dead+Wind 270 deg - No Ice	
15	Dead+Wind 300 deg - No Lee	
16	Dead+Wind 315 deg - No Ice	
17	Dead+Wind 330 deg - No Lee	
18	Dead+lcetTemn	
19	Dead+Wind 0 dee+Ice+Temp	
20	Dead+Wind 30 dest[ce+Temp	
21	Dead+Wind 45 deg+lce+Temp	
22	Dead+Wind for deg+Lee+Temp	
23	Dead+Wind 90 deg+lee+Temp	
24	Dead+Wind 120 deg+Lee+Temp	
25	Dead+Wind 135 deg+lce+Temp	
26	Dead+Wind 150 deg+lectTemp	
27	Dead+Wind 180 deg+lce+Temp	
28	Dead+Wind 210 deg+lce+Temp	
20	Dead+Wind 275 dea+lee+Temn	
30	Dead+Wind 240 deg+Lee+Temp	
31	Dead+Wind 270 deg+lce+Temp	
32	Dead+Wind 300 deg+lce+Temp	
33	Dead+Wind 315 deg+lcc+Temp	
34	Dead+Wind 330 des+Lec+Temp	
35	Dead+Wind 0 deg - Service	
36	Dead+Wind 30 deg - Service	
37	Dead+Wind 45 deg - Service	
38	Dead+Wind 60 deg - Service	
39	Dead+Wind 90 deg - Service	
40	Dead+Wind 120 deg - Service	
41	Dead+Wind 135 deg - Service	
42	Dead+Wind 150 deg - Service	
43	Dead+Wind 180 deg - Service	
44	Dead+Wind 210 deg - Service	
45	Dead+Wind 225 deg - Service	
46	Dead+Wind 240 deg - Service	
47	Dead+Wind 270 deg - Service	
48	Dead+Wind 300 deg - Service	
49	Dead+Wind 315 deg - Service	
	Dead - Hind Die deg - Service	

tnxTower	Job	15001.042 - Kent	Page 15 of 21
Centek Engineering Inc. 63-2 North Branford Rd.	Project	150' EEI Monopole - 36 Maple St., Kent, CT	Date 11:43:30 04/16/15
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon Wireless	Designed by TJL

Comb.		Description	
No.			
50	Dead+Wind 330 deg - Service		

Maximum Member Forces

Section	Elevation	Component	Condition	Gov.	Force	Major Axis	Minor Axis
No.	ft	Туре		Load		Moment	Moment
	Ţ.			Comb.	K	kip-ft	kip-ft
L1	150 - 140.17	Pole	Max Tension	18	0.000	-0.000	-0.000
			Max, Compression	18	-4.261	2.102	0.666
			Max. Mx	14	-2.436	40.588	1.151
			Max. My	2	-2.453	2,300	38.257
			Max. Vy	14	-6.518	40.588	1.151
			Max. Vx	10	6.315	0.311	-37.784
			Max, Torque	21			3.180
L2	140.17 - 91.707	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	18	-16.165	2.647	0.976
			Max. Mx	14	-11.933	622.813	10.932
			Max. My	2	-11.951	12,166	609.434
			Max. Vy	14	-14.948	622.813	10.932
			Max. Vx	2	-14.711	12.166	609.434
			Max, Torque	21			4.624
L3	91,707 - 46.08	Pole	Max Tension	1	0.000	0.000	0.000
			Max, Compression	18	-27.491	2.647	0.976
			Max. Mx	14	-22.231	1367.165	20.113
			Max. My	2	-22.241	21.381	1343.215
			Max. Vy	14	-18.575	1367.165	20.113
			Max, Vx	2	-18.338	21.381	1343.215
			Max. Torque	21			4.622
L4	46.08 - 1	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	18	-43.636	2.647	0.976
			Max. Mx	14	-36.966	2433.664	30.666
			Max. My	2	-36.966	31.945	2397.527
			Max. Vy	14	-22.491	2433.664	30.666
			Max, Vx	2	-22.260	31.945	2397.527
			Max. Torque	21			4.620

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	Κ	Κ	K
		Comb.			
Pole	Max, Vert	31	43.636	18.258	0.154
	Max. H _x	14	36.976	22.475	0.200
	Max. H _z	2	36.976	0.200	22.244
	Max. M _x	2	2397.527	0.200	22.244
	Max. Mz	6	2430.197	-22.475	-0.200
	Max. Torsion	21	4.619	-12.801	12.676
	Min. Vert	1	36.976	0.000	0.000
	Min. H.	6	36.976	-22.475	-0.200
	Min. H _z	10	36.976	-0.200	-22.244
	Min. M _x	10	-2396.618	-0.200	-22.244
	Min. M ₂	14	-2433.664	22.475	0.200
	Min. Torsion	29	-4.615	12.801	-12.676

tnxTower

Centek Engineering Inc 63-2 North Branford Rd.

Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587

ower	Job	Page 16 of 21	
neering Inc. Tranford Rd.	Project	150' EEI Monopole - 36 Maple St., Kent, CT	Date 11:43:30 04/16/15
CT 06405) 488-0580 488-8587	Client	Verizon Wireless	Designed by TJL
	<u>. </u>		

Tower Mast Reaction Summary

Load	Vertical	Shear _x	Shear _z	Overturning Moment M	Overturning Moment M	Torque
Combination	K	K	K	kin-fi	kin-fi	kip-ft
Deed Only	36.976	0.000	0.000	-0.440	1 678	0.000
Dead+Wind 0 deg No Ice	36.976	-0.200	-22 244	-2397 527	31 944	-3.744
Dead+Wind 20 deg No Ice	36.976	11.064	-19 164	-2061 282	-1188 095	-4.385
Dead+Wind 45 deg No Ice	36.076	15 751	-15-588	-1674.078	-1696 572	-4.263
Dead+Wind 60 deg No Ice	36.976	19 364	-10 949	-1172 817	-2089 304	-3.851
Dead+Wind 00 deg - No Ice	36.076	22 475	0.200	29.766	-2430 197	-2 282
Dead+Wind 120 deg No Ice	36.976	10 563	11 295	1224 227	-2119 474	-0.100
Dead Wind 125 deg No Ice	36.976	16.033	15.870	1715 866	-1739 260	1.040
Dead Wind 150 deg No Ice	36,970	11,410	10 364	2090 551	-1759.200	2 109
Dead+ Wind 190 deg - No Ice	36.970	0.200	22 244	2396.618	-78 489	3 750
Dead+Wind 210 deg No Ice	36 976	-11.064	10 164	2060 381	1191 549	4 385
Dead+Wind 215 deg No Ice	36.976	-15 751	15 588	1673 179	1700 029	4 2 5 9
Dead+ wind 225 deg - No Ice	36.970	-13.751	10.040	1171 920	2092 764	3 844
Dead+ wind 240 deg - No Ice	36.970	-19.304	-0.200	-30.666	2072.704	2 275
Dead+ wind 270 deg - No Ice	26.076	-22.473	-0.200	1225 133	2122 042	0.100
Dead+ wind 300 deg - No Ice	36,970	-15,505	-11.293	-1716 776	1742 725	-1.036
Dead+ wind 315 deg - No Ice	36.970	-10.033	-10.364	-2001.462	1743.864	-2.102
Dead+ wind 550 deg - No ice	12 626	-11,410	-0.000	-2071.402	2 647	-0.000
Dead+Ice+Temp	43.030	-0.000	18 080	-1000-654	26.167	-3.681
Dead+ wind 0 deg+ice+iemp	43.030	-0.134	-15 581	-1720 166	_989 841	-4 613
Dead+ wind 50 deg+ice+Temp	43.030	12 901	-13.561	1307 682	-1/13 107	-4 619
Dead+ wind 45 deg+ice+Temp	43.030	12.601	-12.070	-1397.082	-1739 882	-4 309
Dead+ wind 60 deg+ice+ i emp	43.030	13.733	-8.907	-980.017	-1759.882	-7.848
Dead+ wind 90 deg+ice+ iemp	43.030	10.2.30	0.134	1018 613	-1763 300	-0.623
Dead+wind 120 deg+ice+iemp	43.030	13.000	9.173	1428 815	-1446 238	0.023
Dead+ wind 155 deg+ice+Temp	43.030	0.262	15 735	1741 582	-1030 434	1 770
Dead+ Wind 190 deg+Ice+Temp	43.030	0.154	18 080	1007 6/3	-20 727	3 686
Dead+ wind 180 deg+ice+iemp	43.030	8 006	15 581	1718 164	995 279	4.613
Dead+ wind 210 deg+ice+iemp	43.030	12 801	12.501	1305 684	1418 548	4.615
Dead+ wind 225 deg+ice+iemp	43.030	-12.601	8 007	078 021	1745 326	4 303
Dead+ wind 240 deg+ice+iemp	43.030	-15,755	0.307	-24 446	2028 431	2 843
Dead+ wind 270 deg+ice+iemp	43.030	-10.230	-0.134	-1020 620	1768 754	0.623
Dead+ wind 300 deg+ice+ i emp	43.030	-13.000	-9.175	1430 825	1/51 600	-0.591
Dead+ wind 315 deg+ice+iemp	43.030	-13.019	-12.095	-1743 505	1035 882	-1.764
Dead+ wind 330 deg+ice+iemp	45.050	-9.202	-13.735	-1745.595	13 544	-1.764
Dead+wind 0 deg - Service	30.970	-0.078	-0.009	-757.117	-463 188	-1.407
Dead+wind 30 deg - Service	30.970	4.322	-7.480	-605.720	-661.878	-1.669
Dead+wind 45 deg - Service	26.076	0.133	-0.089	-054.420	-815 343	-1.507
Dead+ wind 60 deg - Service	30.970	7.304 8.770	-4.277	-458.500	048 560	-0.803
Dead+wind 90 deg - Service	30.970	0.//9	0.078	478 101	-827 148	-0.075
Dead+wind 120 deg - Service	30.970	6 262	4,412	670.214	-678 574	0.057
Dead+wind 135 deg - Service	30.970	0.205	7 564	\$16.621	-078.574	0.407
Dead+Wind 150 deg - Service	30.970	4.457	7.304 9.600	026 208	-463.039	1.468
Dead+ wind 180 deg - Service	30.970	0.078	0.009	930.208	-10.073	1.400
Dead+ wind 210 deg - Service	30.970	-4.322	/ 400 6 000	653 519	665 3/0	1.717
Dead+ wind 225 deg - Service	30.970	-0.133	0.009	457 651	919 914	1.000
Dead+ Wind 240 deg - Service	30.9/6	-7.304	4.277	437.031	010.014	1.300
Dead+ Wind 270 deg - Service	30.970	-8.//9	-0.078	-12,203	932,033	0.092
Dead+ wind 300 deg - Service	30.970	-7.042	-4.412	-4/9.012	682 046	_0.039
Dead+ wind 315 deg - Service	30.9/0	-0.203	-0.199	-0/1.124	187 110	_0.900

Solution Summary

tnxTower	Јор	15001.042 - Kent	Page 17 of 21
Centek Engineering Inc. 63-2 North Branford Rd.	Project	150' EEI Monopole - 36 Maple St., Kent, CT	Date 11:43:30 04/16/15
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon Wireless	Designed by TJL

	Su	m of Applied Forces			Sum of Reactior	15	
Load	PX	PY	PZ	PX	ΡŶ	PZ	% Error
Comb	K	K	K	K	Κ	Κ	
1	0.000	-36,976	0.000	0.000	36,976	0.000	0.000%
2	-0.200	-36,976	-22.244	0.200	36.976	22,244	0.000%
3	11.064	-36.976	-19.164	-11.064	36,976	19.164	0.000%
4	15 751	-36,976	-15.588	-15.751	36,976	15.588	0.000%
5	19 364	-36 976	-10 949	-19 364	36.976	10.949	0.000%
6	22 475	-36 976	0 200	-22.475	36,976	-0.200	0.000%
7	19 563	-36 976	11.295	-19.563	36,976	-11.295	0.000%
8	16.033	-36 976	15.870	-16.033	36.976	-15.870	0.000%
9	11 410	-36,976	19.364	-11.410	36.976	-19.364	0.000%
10	0.200	-36.976	22.244	-0.200	36,976	-22,244	0.000%
11	-11.064	-36.976	19,164	11.064	36.976	-19,164	0.000%
12	-15.751	-36.976	15.588	15.751	36.976	-15.588	0.000%
13	-19.364	-36,976	10.949	19.364	36.976	-10.949	0.000%
14	-22,475	-36.976	-0.200	22.475	36,976	0,200	0.000%
15	-19.563	-36,976	-11.295	19.563	36.976	11.295	0.000%
16	-16.033	-36.976	-15.870	16.033	36,976	15,870	0.000%
17	-11.410	-36.976	-19.364	11.410	36.976	19.364	0.000%
18	0.000	-43.636	0.000	0.000	43.636	0.000	0.000%
19	-0.154	-43.636	-18.080	0.154	43.636	18.080	0.000%
20	8.996	-43.636	-15.581	-8.996	43.636	15.581	0.000%
21	12.801	-43.636	-12.676	-12.801	43.636	12.676	0.000%
22	15.735	-43,636	-8.907	-15.735	43.636	8.907	0.000%
23	18.258	-43.636	0.154	-18.258	43.636	-0.154	0.000%
24	15.888	-43.636	9.173	-15.888	43.636	-9.173	0.000%
25	13.019	-43.636	12,893	-13.019	43.636	-12.893	0.000%
26	9.262	-43.636	15,735	-9.262	43.636	-15.735	0.000%
27	0.154	-43.636	18.080	-0.154	43.636	-18.080	0.000%
28	-8,996	-43.636	15.581	8.996	43.636	-15.581	0.000%
29	-12.801	-43.636	12.676	12.801	43.636	-12.676	0.000%
30	-15.735	-43.636	8.907	15.735	43.636	-8.907	0.000%
31	-18.258	-43.636	-0.154	18.258	43.636	0.154	0.000%
32	-15.888	-43.636	-9.173	15.888	43.636	9.173	0.000%
33	-13.019	-43.636	-12.893	13.019	43.636	12.893	0.000%
34	-9.262	-43.636	-15.735	9.262	43.636	15.735	0.000%
35	-0.078	-36.976	-8.689	0.078	36.976	8.689	0.000%
36	4.322	-36.976	-7.486	-4.322	36.976	7.486	0.000%
37	6.153	-36.976	-6.089	-6.153	36.976	6.089	0.000%
38	7.564	-36.976	-4.277	-7.564	36.976	4.277	0.000%
39	8.779	-36.976	0.078	-8.779	36.976	-0.078	0.000%
40	7.642	-36.976	4.412	-7.642	36.976	-4.412	0.000%
41	6.263	-36.976	6.199	-6.263	36.976	-6.199	0.000%
42	4.457	-36.976	7.564	-4.457	36.976	-7.564	0.000%
43	0.078	-36,976	8.689	-0.078	36.976	-8.689	0.000%
44	-4.322	-36.976	7.486	4.322	36,976	-7.486	0.000%
45	-6.153	-36.976	6.089	6.153	36,976	-6.089	0.000%
46	-7.564	-36.976	4.277	7.564	36.976	-4.277	0.000%
47	-8.779	-36.976	-0.078	8.779	36.976	0.078	0.000%
48	-7.642	-36.976	-4.412	7.642	36.976	4.412	0.000%
49	-6.263	-36.976	-6.199	6.263	36.976	6.199	0.000%
50	-4.457	-36.976	-7.564	4.457	36.976	7.564	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.0000001	0.00000001

		Job			Page
Inx	lower		15001	.042 - Kent	18 of 21
Cantak E	uninaarina Inc	Project			Date
63-2 No	rth Branford Rd.	· ·	150' EEI Monopole	- 36 Maple St., Kent, CT	11:43:30 04/16/15
Branf	ord, CT 06405	Client			Designed by
Phone: FAX:	(203) 488-0580 (203) 488-8587		Verize	on Wireless	TJL
I	2007 100 0001				
			0.0000001	0.00054010	
2	Yes	4	0.00000001	0.0003193	
3	I CS	5	0.0000001	0.00004453	
4	Ves	5	0.00000001	0.00004507	
6	Ves	4	0.00000001	0.00024139	
7	Yes	5	0.00000001	0.00003954	
8	Yes	5	0.00000001	0.00004486	
9	Yes	5	0.00000001	0.00003641	
10	Yes	4	0.00000001	0.00045012	
11	Yes	5	0.0000001	0.00004616	
12	Yes	5	0.00000001	0.00004424	
13	Yes	5	0.00000001	0.00003217	
14	Yes	4	0.00000001	0.00034271	
15	Yes	5	0.00000001	0.00003998	
16	Yes	5	0.00000001	0.00004511	
17	Yes	5	0.00000001	0.00004378	
18	Yes	4	0,0000001	0.00000479	
19	Yes	5	0.0000001	0.00004960	
20	Yes	2	0.0000001	0.00007914	
21	Yes	5	0.0000001	0.00009380	
22	Yes	5	0.0000001	0.00009295	
23	Ves	5	0.00000001	0.00008567	
25	Ves	5	0.00000001	0.00009601	
25	Yes	5	10000000.0	0.00008395	
20	Yes	5	0.00000001	0.00004820	
28	Yes	5	0.00000001	0.00009396	
29	Yes	5	0.00000001	0.00009590	
30	Yes	5	0.00000001	0.00007933	
31	Yes	5	0.00000001	0.00004768	
32	Yes	5	0.0000001	0.00008855	
33	Yes	5	0.00000001	0.00009714	
34	Yes	5	0.0000001	0.00009100	
35	Yes	4	0.00000001	0.00010138	
36	Yes	4	0.00000001	0.00011759	
37	Yes	4	0.0000001	0.00017452	
38	Yes	4	0.0000001	0.00018393	
39	Yes	1	0.0000001	0.00003429	
40	Yes	4	0.0000001	0.00012323	
41	Yes	4	0.00000001	0.00011500	
43	Yes	4	0.00000001	0.00009382	
44	Yes	4	0.00000001	0.00019682	
45	Yes	4	0.00000001	0.00017352	
46	Yes	4	0.0000001	0.00011127	
47	Yes	4	0.0000001	0.00006224	
48	Yes	4	0.0000001	0.00013291	
49	Yes	4	0.00000001	0.00015393	
50	Yes	4	0.00000001	0.00016415	

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	150 - 140.17	19.568	48	1,145	0.011
L2	144.337 - 91.707	18.216	48	1.134	0.009
L3	97.29 - 46.08	8.312	48	0.810	0.004
L4	52.913 - 1	2.445	48	0.431	0.001

tnxTower	Job	15001.042 - Kent	Page 19 of 21
Centek Engineering Inc. 63-2 North Branford Rd.	Project	150' EEI Monopole - 36 Maple St., Kent, CT	Date 11:43:30 04/16/15
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon Wireless	Designed by TJL

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	o	0

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ſt		Comb.	in	0	0	ft
150.000	LPA-80080-6CF	48	19.568	1.145	0.011	18699
148,000	Valmont 13' Low Profile Platform	48	19.089	1.142	0.010	18699
140,000	P90-15-XLH-RR	48	17.194	1,121	0.008	13417
138.000	Valmont 13' Low Profile Platform	48	16.728	1.113	0.008	12793
118.000	DB222-F	48	12,308	0.988	0.005	8748

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	150 - 140.17	49.924	15	2.915	0.029
L2	144.337 - 91.707	46.481	15	2.890	0.024
L3	97.29 - 46.08	21.230	15	2.067	0.009
L4	52.913 - 1	6.248	15	1.101	0.004

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
150.000	LPA-80080-6CF	15	49.924	2.915	0.029	7535
148.000	Valmont 13' Low Profile Platform	15	48.705	2.908	0.027	7535
140.000	P90-15-XLH-RR	15	43.879	2.858	0.021	5387
138.000	Valmont 13' Low Profile Platform	15	42.694	2.838	0.020	5127
118.000	DB222-F	15	31.427	2.522	0.013	3465

Compression Checks

Pole Design Data										
Section	Elevation	Size	L	Lu	Kl/r	Fa	Α	Actual P	Allow.	Ratio P
NO.	ft		ft	ft		ksi	in ²	K	K	Pa
L1	150 - 140.17 (1)	TP28,76x26.37x0.188	9.830	0.000	0.0	39.000	16.401	-2.428	639.649	0.004
1.2	140 17 - 91 707	TP40.05x27.372x0.313	52,630	0.000	0.0	39.000	38.081	-11.925	1485.150	0.008

tnxTower	Job	15001.042 - Kent	Page 20 of 21	
Centek Engineering Inc. 63-2 North Branford Rd.	Project	150' EEI Monopole - 36 Maple St., Kent, CT	Date 11:43:30 04/16/15	
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon Wireless	Designed by TJL	

Section No.	Elevation	Size	L	L _u	Kl/r	F_a	A	Actual P	Allow. Pa	Ratio P
	ft		ft	ft		ksi	in ²	K	K	Pa
L3	(2) 91.707 - 46.08	TP50.4x38,08x0.375	51.210	0.000	0.0	39.000	57.586	-22.226	2245.840	0.010
L4	46.08 - 1 (4)	TP60,5x48.006x0,375	51.913	0.000	0.0	37.851	71,564	-36.966	2708.780	0.014

Pole Bending Design Data

Section	Elevation	Size	Actual	Actual	Allow.	Ratio	Actual	Actual	Allow.	Ratio
No.			M_{x}	fbx	F_{bx}	f_{bx}	M_y	Joy	Fbv	Jby
	fi		kip-ft	ksi	ksi	F_{bx}	kip-ft	ksi	ksi	F_{bv}
L1	150 - 140.17	TP28.76x26.37x0.188	41.090	4.416	39.000	0.113	0.000	0.000	39.000	0.000
	(1)									
L2	140.17 -	TP40.05x27.372x0.313	628.870	20.924	39.000	0.537	0.000	0.000	39.000	0.000
	91.707 (2)									
L3	91.707 - 46.08	TP50.4x38.08x0.375	1378.50	24.059	39.000	0.617	0.000	0.000	39,000	0.000
	(3)		0							
L4	46.08 - 1 (4)	TP60.5x48.006x0.375	2451.09	27.658	37.851	0.731	0.000	0.000	37.851	0.000
L4	46,08 - 1 (4)	TP60.5x48.006x0.375	2451.09	27.658	37.851	0.731	0.000	0.000	37.8	51

Pole Shear Design Data

Section	Elevation	Size	Actual	Actual	Allow.	Ratio	Actual	Actual	Allow.	Ratio
No.			V	f_{v}	F_{ν}	f_{v}	Т	f_{vt}	$F_{\prime\prime}$	fut
	ſl		K	ksi	ksi	$F_{\rm P}$	kip-fl	ksi	ksi	F_{vt}
L1	150 - 140 17	TP28.76x26.37x0.188	6.619	0.404	26.000	0.031	0.160	0.008	26.000	0.000
	(1)									
L2	140.17 -	TP40.05x27.372x0.313	15.067	0.396	26.000	0.030	0.100	0.002	26.000	0.000
	91.707 (2)									
L3	91.707 - 46.08	TP50.4x38.08x0.375	18.694	0.325	26.000	0.025	0.100	0.001	26.000	0.000
	(3)									
L4	46.08 - 1 (4)	TP60.5x48.006x0.375	22,606	0.316	26.000	0.024	0.100	0.001	26.000	0.000

Pole Interaction Design Data

Section No.	Elevation	Ratio P	Ratio f _{bx}	Ratio f_{by}	Ratio f_{ν}	$Ratio f_{vt}$	Comb. Stress	Allow. Stress	Criteria
	ft	P_{a}	Fbx	F_{br}	F_r	F_{vt}	Ratio	Ratio	
Ll	150 - 140.17 (1)	0.004	0.113	0.000	0.031	0.000	0.117	1.333	H1-3+VT 🖌
L2	140.17 - 91.707 (2)	0,008	0.537	0.000	0.030	0.000	0.545	1.333	H1-3+VT
L3	91.707 - 46.08 (3)	0.010	0.617	0.000	0.025	0.000	0.627	1.333	H1-3+VT
L4	46.08 - 1 (4)	0.014	0.731	0.000	0.024	0.000	0.744	1.333	H1-3+VT

tnxTower	Job	15001.042 - Kent	Page 21 of 21
Centek Engineering Inc. 63-2 North Branford Rd.	Project	150' EEI Monopole - 36 Maple St., Kent, CT	Date 11:43:30 04/16/15
Branford, CT 06405 Phone: (203) 488-0580 FAX: (203) 488-8587	Client	Verizon Wireless	Designed by TJL

Section	Elevation	Ratio	Ratio	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
No.		Р	fbx	$f_{b,v}$	f_{v}	fv1	Stress	Stress	
	ſl	P_a	F _{bx}	Fby	F_{v}	F_{yt}	Ratio	Ratio	

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	SF^*P_{allow} K	% Capacity	Pass Fail
LI	150 - 140.17	Pole	TP28.76x26.37x0.188	1	-2.428	852.652	8.8	Pass
L 2	140.17 - 91.707	Pole	TP40.05x27.372x0.313	2	-11.925	1979.705	40.9	Pass
L3	91.707 - 46.08	Pole	TP50.4x38.08x0.375	3	-22.226	2993.705	47.0	Pass
L4	46.08 - 1	Pole	TP60.5x48.006x0.375	4	-36.966	3610.804	55.9	Pass
							Summary	
						Pole (L4)	55.9	Pass
						RATING =	55.9	Pass

Program Version 6.0.0.8 - 9/7/2011 File:J:/Jobs/1500100.WI/042 - Kent/Backup Documentation/Calcs/ERI/150' Monopole.eri

JTEK engineering Centered on Solutions www.centekena.com 63-3 Morth Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587

Subject:

Location:

Rev. 0: 4/16/15

Anchor Bolt and Base Plate Anlaysis

150-ft EEI Monopole Kent, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 15001.042

Anchor Bolt and Base Plate Analysis:

Input Data:

Tower Reactions:		
Overturning Moment =	OM := 2451 ft kips	(Input From tnxTower)
Shear Force =	Shear := 23 kips	(Input From tnxTower)
Axial Force =	Axial := 37 kips	(Input From tnxTower)

Anchor Bolt Data:

Use ASTM A615 Grade 75

Number of Anchor Bolts =	N := 24	(User Input)
Diameter of Bolt Circle =	D _{bc} ≔ 69∙in	(User Input)
Bolt "Column" Distance =	l := 3.0·in	(User Input)
Bolt Ultimate Strength =	F _u := 100 ksi	(User Input)
Bolt Yield Strength =	F _y ≔ 75·ksi	(User Input)
Bolt Modulus =	E := 29000 ksi	(User Input)
Diameter of Anchor Bolts =	D := 2.25 in	(User Input)
Threads per Inch =	n:= 4.5	(User Input)

Base Plate Data: Use ASTM A572 50 Plate Yield Strength -

Plate Yield Strength =	Fy _{bp} ≔ 50·ksi	(User Input)
Base Plate Thickness =	t _{bp} := 3.25·in	(User Input)
Base Plate Diameter =	D _{bp} ≔ 75·in	(User Input)
Outer Pole Diameter =	D _{pole} ≔ 60.5 in	(User Input)

 Contered on Solutions
 xxxxx.centckeps.com

 63-2 North Branford Road
 P: (203) 488-0580

 Branford, CI 06405
 F: (203) 488-8597

Location:

Rev. 0: 4/16/15

Anchor Bolt and Base Plate Anlaysis

150-ft EEI Monopole Kent, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 15001.042

Geometric Layout Data:

Distance from Bolts to Centroid of Pole:

Radius of Bolt Circle =:

 $R_{bc} := \frac{D_{bc}}{2} = 34.5 \text{ in}$

Distance to Bolts =

$$i := 1.. N$$

$$d_{j} := \begin{vmatrix} \theta \leftarrow 2 \cdot \pi \cdot \left(\frac{i}{N}\right) & d_{1} = 8.93 \cdot in & d_{7} = 33.32 \cdot in \\ d \leftarrow R_{bc} \cdot sin(\theta) & d_{2} = 17.25 \cdot in & d_{8} = 29.88 \cdot in \\ d_{3} = 24.40 \cdot in & d_{9} = 24.40 \cdot in \\ d_{4} = 29.88 \cdot in & d_{10} = 17.25 \cdot in \end{vmatrix}$$

 $d_5 = 33.32 \cdot in$

d₆ = 34.50∙in

 $d_{11} = 8.93$ in

etc.

Critical Distances For Bending in Plate:

Moment Arms of Bolts about Neutral Axis =

 $MA_i := if(d_i \ge R_{pole}, d_i - R_{pole}, 0in)$

MA ₁ = 0.00∙in	MA ₇ = 3.07·in
MA ₂ = 0.00∙in	$MA_8 = 0.00 \cdot in$
MA ₃ = 0.00∙in	$MA_9 = 0.00 \cdot in$
MA ₄ = 0.00·in	MA ₁₀ = 0.00∙in
$MA_5 = 3.07 \cdot in$	MA ₁₁ = 0.00 in
MA ₆ = 4.25 in	etc

Effective Width of Baseplate for Bending =
$$B_{eff} := .8 \cdot 2 \cdot \sqrt{\left(\frac{D_{bp}}{2}\right)^2 - \left(\frac{D_{pole}}{2}\right)^2} = 35.5 \cdot in$$

Anchor Bolt and Base Plate.xmcd.xmcd

Centered on Solutions www.centekepa.cem Branford, CT 06405 F. (203) 468 8597

Location:

Rev. 0: 4/16/15

Anchor Bolt and Base Plate Anlaysis

150-ft EEI Monopole Kent, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 15001.042

Anchor Bolt Analysis:

Calculated Anchor Bolt Properties:

Polar Moment of Inertia =

Gross Area of Bolt =

Net Area of Bolt =

 $I_{p} := \sum_{i} (d_{i})^{2} = 1.428 \times 10^{4} \cdot in^{2}$ $A_{g} := \frac{\pi}{4} D^{2} = 3.976 in^{2}$

 $A_n := \frac{\pi}{4} \cdot \left(D - \frac{0.9743 \cdot in}{n} \right)^2 = 3.248 \cdot in^2$

Net Diameter =

Radius of Gyration of Bolt =

Section Modulus of Bolt =

$$D_{n} \coloneqq \frac{2 \cdot \sqrt{A_{n}}}{\sqrt{\pi}} = 2.033 \cdot \text{in}$$
$$r \coloneqq \frac{D_{n}}{4} = 0.508 \cdot \text{in}$$
$$S_{x} \coloneqq \frac{\pi \cdot D_{n}^{3}}{32} = 0.826 \cdot \text{in}^{3}$$

Check Anchor Bolt Tension Force:

Maximum Tensile Force =

Allowable Tensile Force =

$$T_{Max} := OM \cdot \frac{R_{bc}}{I_p} - \frac{Axial}{N} = 69.5 \cdot kips$$

(1.333 increase $T_{ALL.Gross} := 1.333 \cdot (0.33 \cdot A_g \cdot F_u) = 174.9 \cdot kips$ allowed per TIA/EIA)

(1.333 increase

 $T_{ALL.Net} := 1.333 \cdot (0.60 \cdot A_n \cdot F_y) = 194.812 \cdot kips$

Bolts are "upset bolts". Use net area per AISC

Bolt Tension % of Capacity =

$$\frac{T_{Max}}{T_{ALL.Net}} \cdot 100 = 36$$
 Bolts are "upset bolts". Use net are

Condition1 =

Condition1 := if
$$\frac{T_{Max}}{T_{ALL.Net}} \le 1.00, "OK", "Overstressed"$$

Condition1 = "OK"

Check Anchar Bolt Bending Stress:

Maximum Bending Moment =

Maximum Bending Stress =

Allowable Bending Stress =

$$M_{\mathbf{X}} := \left(\frac{\text{Shear}}{N}\right) \cdot \mathbf{I} = 0.24 \cdot \text{ft} \cdot \text{kips}$$
$$f_{\mathbf{b}\mathbf{X}} := \frac{M_{\mathbf{X}}}{S_{\mathbf{X}}} = 3.5 \cdot \text{ksi}$$

(1.333 increase $F_{bx} := 1.333 \cdot 0.6 \cdot F_{v} = 60 \cdot ksi$ allowed per TIA/EIA)

allowed per TIA/EIA)

Cantered on Solutions memorenickenskem Al-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F. (203) 468-8597

Location:

Rev. 0: 4/16/15

Anchor Bolt and Base Plate Anlaysis

150-ft EEI Monopole Kent, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 15001.042

Check Combined Stress Requirement:

 $f_{bx} := \begin{cases} f_{bx} & \text{if } l > 2 \cdot D_n \\ 0 & \text{otherwise} \end{cases}$

Check Anchor Bolt Compression/Combined Stress:

PerASCE Manual 72: "If the clearance between the base plate and concrete does not exceed two times the bolt diameter a bending stress analysis of the bolts is NOT

normally required.

Maximum Compressive Force =

$$C_{Max} := OM \cdot \frac{R_{bc}}{I_{p}} + \frac{Axial}{N} = 72.6 \cdot kips$$

Maximum Compressive Stress =

$$f_a := \frac{C_{Max}}{A_n} = 22.3 \cdot ksi$$

K := 0.65

$$C_{C} := \sqrt{\frac{2 \cdot \pi^{2} \cdot E}{F_{y}}} = 87.364$$

$$F_{a} := \left\{ \begin{array}{c} \left[1 - \frac{\left(\frac{K \cdot I}{r}\right)^{2}}{2 \cdot C_{C}^{2}}\right] \cdot F_{y} \\ \frac{5}{3} + \frac{3 \cdot \left(\frac{K \cdot I}{r}\right)}{8 \cdot C_{C}} - \frac{\left(\frac{K \cdot I}{r}\right)^{3}}{8 \cdot C_{C}^{3}} \end{array} \right. \text{ if } \frac{K \cdot I}{r} \leq C_{C} = 45 \cdot \text{ksi}$$

$$\frac{12 \cdot \pi^{2} \cdot E}{23 \cdot \left(\frac{K \cdot I}{r}\right)^{2}} \text{ if } \frac{K \cdot I}{r} > C_{C}$$

 $F_a := 1.333 \cdot F_a = 60 \cdot ksi$ (1.333 increase Allowable Compressive Stress = allowed per TIA/EIA) $\left(\frac{f_a}{F_a} + \frac{f_{bx}}{F_{bx}}\right) \cdot 100 = 37.3$ Combined Stress % of Capacity = Condition 2 := if $\left(\frac{f_a}{F_a} + \frac{f_{bx}}{F_{bx}} \le 1.00, "OK", "Overstressed" \right)$ Condition 2 =

Condition2 = "OK"

Anchor Bolt and Base Plate Anlaysis

150-ft EEI Monopole Kent, CT

Branford, CT 06405 F: (70)1 488-8597

Location:

Rev. 0: 4/16/15

Prepared by: T.J.L. Checked by: C.F.C. Job No. 15001.042

Base Plate Analysis:

Force from Bolts =

$C_{i} := \frac{OM \cdot d_{i}}{I_{p}} + \frac{Axial}{N}$		
F	C ₁ = 19.9 kips	C ₇ = 70.2·kips
	C ₂ = 37.1·kips	C ₈ = 63.1·kips
	$C_3 = 51.8$ kips	C ₉ = 51.8⋅kips
	$C_4 = 63.1 \cdot kips$	C ₁₀ = 37.1 kips
	$C_5 = 70.2 \cdot kips$	C ₁₁ = 19.9 kips
	C ₆ = 72.6⋅kips	etc.

Maximum Bending Stress in Plate =

$$\mathsf{f}_{bp} \coloneqq \sum_{i} \frac{6 \cdot C_i \cdot \mathsf{MA}_i}{\left(\mathsf{B}_{eff} \mathsf{t}_{bp}^2 \right)} = 11.9 \cdot \mathsf{ksi}$$

 $F_{bp} := 1.33 \cdot 0.75 \cdot Fy_{bp} = 49.9 \cdot ksi$

Allowable Bending Stress in Plate =

Plate Bending Stress % of Capacity =

Condition3 =

$$\frac{f_{bp}}{F_{bp}} \cdot 100 = 23.8$$

Condition3 := if $\left(\frac{f_{bp}}{F_{bp}} < 1.00, "Ok", "Overstressed" \right)$

Condition3 = "Ok"

Subject:

 Centered on Solutions*
 xxxxx cettlekepa.cem

 o3-2 North Branford Road
 P: (203) 488-0580

 Branford, CT 06405
 F: (203) 488-8587

Location:

Input Data:

Rev. 0: 4/16/15

Foundation Analysis

150-ft Monopole Kent, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 15001.042

Standard Monopole Foundation:

-			
Tower Data			
Overturning Moment =	OM := 2451 ft kips	(User Input from tr	nxTower)
Shear Force =	Shear := 23·kip	(User Input from tr	nxTower)
Axial Force =	Axial := 37 kip	(User Input from tr	nxTower)
Tower Height =	H _t := 150⋅ft	(User Input)	
Footing Data:			
Overall Depth of Footing =	D _f := 6.5⋅ft	(User Input)	
Length of Pier =	L _p := 4.0⋅ft	(User Input)	
Extension of Pier Above Grade =	L _{pag} ≔ 1.0·ft	(User Input)	
Diameter of Pier =	d _p := 7.5⋅ft	(User Input)	
Thickness of Footing =	T _f ≔ 3.5·ft	(User Input)	
Width of Footing =	W _f := 30.0∙ft	(User Input)	
Anchor Bolt Data:			
Length of Anchor Bolts =	L _{st} ≔ 96∙in	(User Input)	
Projection of Anchor Bolts Above Pier =	A _{BP} := 12.0·in	(User Input)	
Anchor Bolt Diameter =	d _{anchor} := 2.25 in	(User Input)	
Base Plate Bolt Circle =	MP := 69·in	(User Input)	
Material Properties:			
Concrete Compressive Strength =	$f_{C} \coloneqq 4000 \cdot psi$	(User Input)	
Steel Reinforcment Yield Strength =	f _y ≔ 60000 psi	(User Input)	
Anchor Bolt Yield Strength =	f _{ya} ≔ 75000 psi	(User Input)	
Internal Friction Angle of Soil =	$\Phi_{\mathbf{S}} \coloneqq 30 \cdot \mathbf{deg}$	(User Input)	
Allowable Soil Bearing Capacity =	q _s := 4000 ⋅ psf	(User Input)	
Unit Weight of Soil =	$\gamma_{soil} := 125 \cdot pcf$	(User Input)	
Unit Weight of Concrete =	γ _{conc} ≔ 150 pcf	(User Input)	
Foundation Bouyancy =	Bouyancy := 1	(User Input)	(Yes=1 / No=0)
Depth to Neglect =	n:= 1∙ft	(User Input)	
Cohesion of Clay Type Soil =	c:= 0·ksf	(User Input)	(Use 0 for Sandy Soil)
Seismic Zone Factor =	Z := 2	(User Input)	(UBC-1997 Fig 23-2)
Coefficient of Friction Between Concrete =	μ:= 0. 4 5	(User Input)	

CENTEK engineering

Subject:

 Contered on Solutions
 mms.settlekebas.em

 63-2 North Bianford Read
 P: (203) 468-6580

 Branford, CT 06405
 F: (203) 468-8587

See Location:

Rev. 0: 4/16/15

Foundation Analysis

150-ft Monopole Kent, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 15001.042

Pier Reinforcement:			
Bar Size =	BS _{pier} := 8	(User Input)	
Bar Diameter =	d _{bpier} := 1.0⋅in	(User Input)	
Number of Bars =	NB _{pier} := 36	(User Input)	
Clear Cover of Reinforcement =	Cvr _{pier} := 5.5 · in	(User Input)	
Reinforcement Location Factor =	$\alpha_{pier} \coloneqq 1.0$	(User Input)	(ACI-2008 12.2.4)
Coating Factor =	$\beta_{pier} \coloneqq 1.0$	(User Input)	(ACI-2008 12.2.4)
Concrete Strength Factor =	$\lambda_{pier} \approx 1.0$	(User Input)	(ACI-2008 12.2.4)
Reinforcement Size Factor =	$\gamma_{pier} = 1.0$	(User Input)	(ACI-2008 12.2.4)
Diameter of Tie =	d _{Tie} := 0.5·in	(User Input)	
Pad Reinforcement:			
Bar Size =	BS _{top} := 8	(User Input)	(Top of Pad)
Bar Diameter =	$d_{btop} := 1.0 \cdot in$	(User Input)	(Top of Pad)
Number of Bars =	NB _{top} := 34	(User Input)	(Top of Pad)
Bar Size =	BS _{bot} ≔ 8	(User Input)	(Bottom of Pad)
Bar Diameter =	d _{bbot} ≔ 1.0·in	(User Input)	(Bottom of Pad)
Number of Bars =	NB _{bot} := 34	(User Input)	(Bottom of Pad)
Clear Cover of Reinforcement =	Cvr _{pad} := 3.0·in	(User Input)	
Reinforcement Location Factor =	$\alpha_{pad} \coloneqq 1.0$	(User Input)	(ACI-2008 12.2.4)
Coating Factor =	$\beta_{pad} \coloneqq 1.0$	(User Input)	(ACI-2008 12.2.4)
Concrete Strength Factor =	$\lambda_{pad} \coloneqq 1.0$	(User Input)	(ACI-2008 12.2.4)
Reinforcement Size Factor =	$\gamma_{pad} = 1.0$	(User Input)	(ACI-2008 12.2.4)
Calculated Factors:	2 π·dhaiar	2	

Pier Reinforcement Bar Area =

Pad Top Reinforcement Bar Area =

Pad Bottom Reinforcement BarArea =

Coefficient of Lateral Soil Pressure =

Load Factor =

$$\begin{split} \mathsf{A}_{bpier} &:= \frac{\pi \cdot \mathsf{d}_{bpier}^{2}}{4} = 0.785 \cdot \mathsf{in}^{2} \\ \mathsf{A}_{btop} &:= \frac{\pi \cdot \mathsf{d}_{btop}^{2}}{4} = 0.785 \cdot \mathsf{in}^{2} \\ \mathsf{A}_{bbot} &:= \frac{\pi \cdot \mathsf{d}_{bbot}^{2}}{4} = 0.785 \cdot \mathsf{in}^{2} \\ \mathsf{K}_{p} &:= \frac{1 + \sin(\Phi_{s})}{1 - \sin(\Phi_{s})} = 3 \\ \mathsf{LF} &:= \begin{cases} 1.333 \text{ if } \mathsf{H}_{t} \leq 700 \cdot \mathsf{ft} \\ 1.7 \text{ if } \mathsf{H}_{t} \geq 1200 \cdot \mathsf{ft} \\ 1.333 + \left(\frac{\mathsf{H}_{t} - 700\mathsf{ft}}{1200\mathsf{ft} - 700\mathsf{ft}}\right) \cdot 0.4 \text{ otherwise} \end{cases}$$

VTEK engineering

 Centered on Solutions
 www.sentekepa.com

 63-2 North Branford Road
 P: (203) 488-0589

 Branford, CT 06405
 F: (203) 488-8587

Location:

Rev. 0: 4/16/15

Foundation Analysis

150-ft Monopole Kent, CT

Prepared by: T.J.L. Checked by: C.F.C, Job No. 15001.042

Stability of Footing:

Adjusted Concrete Unit Weight =
$$\gamma_{0} := it[Bouyancy = 1, \gamma_{CODC} - 62.4pcf, \gamma_{CODC}] = 67.6 pcf$$
Adjusted Sol Unit Weight = $\gamma_{0} := it[Bouyancy = 1, \gamma_{000} - 62.4pcf, \gamma_{COD}] = 62.6 pcf$ Passive Pressure = $P_{pn} := K_{p}\gamma_{0} \cdot n + 62\sqrt{K_{p}} = 0.188 \cdot kd$ $P_{pit} := K_{p}\gamma_{0} (D_{f} - Ti) + c2\sqrt{K_{p}} = 0.563 \cdot kdf$ $P_{int} := K_{p}\gamma_{0} \cdot D_{p1} \cdot P_{p1} P_{p2}] = 0.563 \cdot kdf$ $P_{int} := K_{p}\gamma_{0} \cdot D_{p1} \cdot P_{p1} P_{p2}] = 0.563 \cdot kdf$ $P_{int} := K_{p}\gamma_{0} \cdot D_{p1} \cdot P_{p1} P_{p2}] = 0.563 \cdot kdf$ $P_{int} := K_{p}\gamma_{0} \cdot D_{p1} \cdot C_{p1} \cdot D_{p1} \cdot P_{p2}] = 0.563 \cdot kdf$ $P_{int} := K_{p}\gamma_{0} \cdot D_{p1} \cdot C_{p1} \cdot D_{p1} \cdot P_{p2}] = 0.563 \cdot kdf$ $P_{int} := K_{p}\gamma_{0} \cdot D_{p1} \cdot C_{p1} \cdot D_{p1} \cdot P_{p2}] = 0.563 \cdot kdf$ $P_{int} := \frac{P_{int} \cdot P_{bot}}{2} = \frac{P_{int} \cdot P_{bot}}{2} = 0.862 \cdot kdf$ $T_{p : etf} (n < (D_{f} - T_{f}) \cdot T_{p1} \cdot (D_{p1} - 1)] = 3.5$ $A_{p} := W_{T} = 105$ Utimate Shear = $W_{T} = 105$ Weight of Soil Above Footing = $WT_{T} = \left[(W_{t}^{2} - q_{p}^{2}) \cdot \left[(D_{p} - L_{pag} - n) : 0 \right] \uparrow_{0} = 105.64 \cdot kp$ Weight of Soil Vedge at Back Face = $WT_{T} = \left[(W_{t}^{2} - q_{p}^{2}) \cdot \left[(D_{p} - L_{pag} - n) : 0 \right] \uparrow_{0} = 105.64 \cdot kp$ Weight of Soil Wedge at back face Corners = $WT_{T} = 2 \cdot \left[(D_{p}^{2} \frac{\tan(\Phi_{p})}{3} \right] \cdot n_{p} = 8.617 \cdot Mps$ Total Weight = $WT_{T} = \left[(W_{T} - W_{T} + A_{tal} = 438.288 \cdot kp$ Resisting Moment = $M_{T} = (WT_{T} + W_{T} + A_{tal} = 438.288 \cdot kp$ Coverturning Moment = $M_{T} = (WT_{T} + V_{T} + 2 \cdot \frac{T}{3} + \frac{T}{2} \left[(W_{T} + \frac{D_{T} \tan(\Phi_{p})}{3} \right] - 7606 \cdot kp$ ftFactor of Safety Actual = F_{S

CENTER	Cenginearing	Subject:
Centered on Solutions ⁺⁺ s3-2 North Branford Road Branford, CT 06405	P: (203) 488-0580 F. (203) 468-6580	Location:

Rev. 0: 4/16/15

Foundation Analysis

150-ft Monopole Kent, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 15001.042

Shear Capacity in Pier:

Shear Resistance of Pier =

$$S_p := \frac{\mu \cdot WT_{tot}}{FS_{req}} = 98.615 \cdot kips$$

Shear_Check := if(Sp > Shear, "Okay", "No Good")

Shear_Check = "Okay"

 $A_{mat} := W_f^2 = 900$

Bearing Pressure Caused by Footing:

Area of the Mat =

Section Modulus of Mat =

Maximum Pressure in Mat =

$$S := \frac{W_{f}^{3}}{6} = 4500 \cdot ft^{3}$$

$$P_{max} := \frac{WT_{tot}}{A_{mat}} + \frac{M_{ot}}{S} = 1.07 \cdot ksf$$

 $Max_Pressure_Check := if(P_{max} < q_s, "Okay", "No Good")$

Minimum Pressure in Mat =

$$\mathsf{P}_{\mathsf{min}} \coloneqq \frac{\mathsf{WT}_{\mathsf{tot}}}{\mathsf{A}_{\mathsf{mat}}} - \frac{\mathsf{M}_{\mathsf{ot}}}{\mathsf{S}} = -0.096 \cdot \mathsf{ksf}$$

 $\text{Min_Pressure_Check} \coloneqq \text{ if} \left[\left(\mathsf{P}_{min} \geq 0 \right) \cdot \left(\mathsf{P}_{min} < q_s \right), \text{"Okay"}, \text{"No Good"} \right]$

Min_Pressure_Check = "No Good"

Distance to Resultant of Pressure Distribution =

Distance to Kern =

$$X_p := \frac{\frac{P_{max}}{P_{max} - P_{min}} \cdot \frac{1}{3} = 9.177}{\frac{P_{max} - P_{min}}{W_{f}}}$$

Since Resultant Force is Not in Kern, Area to which Pressure is Applied Must be Reduced.

Eccentricity =

 $e := \frac{M_{ot}}{WT_{tot}} = 5,986$

 $X_k := \frac{W_f}{6} = 5$

Adjusted Soil Pressure =

$$\mathsf{P}_{\mathsf{a}} \coloneqq \frac{2 \cdot \mathsf{WT}_{tot}}{3 \cdot \mathsf{W}_{\mathsf{f}} \left(\frac{\mathsf{W}_{\mathsf{f}}}{2} - \mathsf{e}\right)} = 1.08 \cdot \mathsf{ksf}$$

 $q_{adj} := if(P_{min} < 0, P_a, P_{max}) = 1.08 \cdot ksf$

 $Pressure_Check := if \left(q_{adj} < q_{s}, "Okay", "No Good"\right)$

 Contered on Solutions
 mmocremetersacom

 63-2 North Branford Road
 P. (203) 488-0580

 Branford, CT 06405
 F: (203) 483-8587

Location:

Rev. 0: 4/16/15

Foundation Analysis

150-ft Monopole Kent, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 15001.042

Concrete Bearing Capacity:

Bearing Strength Between Pier and Pad =

 $P_{b} := \Phi_{c} \cdot 0.85 \cdot f_{c} \cdot \frac{\pi \cdot d_{p}^{2}}{4} = 1.406 \times 10^{4} \cdot kips$

(ACI-2008 10.14)

(ACI-2008 9.3.2.2)

Bearing_Check := if(P_b > LF·Axial, "Okay", "No Good")

Bearing_Check = "Okay"

 $\Phi_{\mathbf{C}} \coloneqq \mathbf{0.65}$

Shear Strength of Concrete:

Beam Shear:

(Critical section located at a distance d from the face of Pier)	(ACI 11.3.1.1)
$\phi_{c} \coloneqq 0.85$	(ACI 9.3,2.5)
$d := T_f - Cvr_{pad} - d_{bbot} = 38 \cdot in$	
$d_1 \coloneqq \frac{W_f}{2} - \frac{d_p}{2}$	
$d_2 := d_1 - d$	
$L := \left(\frac{W_{f}}{2} - e\right) \cdot 3$	
Slope := if $\left(L > W_{f}, \frac{P_{max} - P_{min}}{W_{f}}, \frac{q_{adj}}{L} \right)$	
$V_{req} := LF \cdot \left[\left(q_{adj} - Slope \cdot d_1 \right) + \left(\frac{Slope \cdot d_1}{2} \right) \right] \cdot W_{f'}$	d ₁
$V_{Avail} := \phi_{C} \cdot 2 \cdot \sqrt{f_{C} \cdot psi} \cdot W_{F} d$	(ACI-2008 11.2.1.1)
Beam_Shear_Check :≕ if(V _{req} < V _{Avail} , "Okay", '	"No Good")

(Critical Section Located at a distance of d/2 from the face of pier)

(ACI 11.11.1.2)

Critical Perimeter of Punching Shear =

Area Included Inside Perimeter =

Area Outside of Perimeter =

Punching Shear:

 $A_{bc} := \frac{\pi \cdot \left(d_p + d \right)^2}{\pi \cdot \left(d_p + d \right)^2} = 80.4$

 $b_0 := (d_p + d) \cdot \pi = 33.5$

$$h_{bo} := \frac{1}{4} = 89.4$$

 $A_{out} \coloneqq A_{mat} - A_{bo} = 810.6$

	Subject:		Foundation Analysis
Contered on Solutions 63-2 North Banford Road Banford, CT 06405 F. (203) 488-0580 F. (203) 488-0580 F. (203) 488-0580	Location:		150-ft Monopole Kent, CT
	Rev. 0: 4/16/15		Prepared by: T.J.L. Checked by: C.F.C. Job No. 15001.042
(Guess Value =	v _u := 1ksf	(From "Foundation Analysis and design", By Joseph Bowles, Eq. 8-9)

Given	$d^2 + d_p \cdot d = \frac{WT_{tot}}{\pi \cdot v_u}$	Bowles, Eq. 8-9)
	$v_u := Find(v_u) = 4.1 \cdot ksf$	
	$V_u := v_u \cdot d \cdot W_f = 392.4 \cdot kips$	
Required Shear Strength =	$V_{req} := LF \cdot V_u = 523 \cdot kips$	
Available Shear Strength =	$V_{Avail} := \Phi_{c} \cdot 4 \cdot \sqrt{f_{c} \cdot psi} \cdot b_{o} \cdot d = 3285.9 \cdot kip$	(ACI-2008 11.11.2.1)
	Punching_Shear_Check := if(V _{req} < V _{Avail} , "Oka	y" ,"No Good")

Punching_Shear_Check = "Okay"

Steel Reinforcement in Pad:

Required Reinforcement for Bending:

Strength Reduction Factor =
$$\phi_m := .90$$
 (ACI-2008 9.3.2.1)

$$q_b := q_{adj} - d_1 \cdot Slope = 0.631 \cdot ksf$$

Maximum Bending at Face of Pier =

$$M_{u} \coloneqq \mathsf{LF} \cdot \left[\left(q_{adj} - q_{b} \right) \cdot \frac{d_{1}^{2}}{3} + q_{b} \cdot \frac{d_{1}^{2}}{2} \right] \cdot W_{f} = 2355.1 \cdot \mathsf{kip} \cdot \mathsf{ft}$$

$$\beta := \begin{bmatrix} 0.85 & \text{if } 2500 \cdot \text{psi} \le f_c \le 4000 \cdot \text{psi} \\ 0.65 & \text{if } f_c > 8000 \cdot \text{psi} \\ \hline \begin{bmatrix} 0.85 - \left[\frac{\left(\frac{f_c}{\text{psi}} - 4000 \right)}{1000} \right] \cdot 0.5 \end{bmatrix} \end{bmatrix} \text{ otherwise }$$
(ACI-200810.2.7.3)

$$R_{n} := \frac{M_{u}}{\phi_{m} \cdot W_{f} \cdot d^{2}} = 60.4 \cdot psi$$

$$\rho \coloneqq \frac{0.85 \cdot f_{C}}{f_{y}} \left(1 - \sqrt{1 - \frac{2 \cdot R_{n}}{0.85 \cdot f_{C}}} \right) = 0.001$$

 $\rho_{min} \coloneqq \rho = 0.00102$

Control on Solution:Foundation AnalysisControl on Solution:Exercitive Solution:150-ft MonopoleVerification:Exercitive Solution:150-ft MonopoleVerification:Fricklass Solution:Prepared by: T.J.L. Checked by: C.F.C.Realind Beinforcement for Temperature and Shirkhee:
$$p_{gh} = \begin{bmatrix} 1018 & ft f_2 & 20000 psi \\ 0.000 & discoveraCheck Bottom Base: $p_{gh} = \begin{bmatrix} 1018 & ft f_2 & 20000 psi \\ 0.000 & discoveraCheck Bottom Base: $p_{gh} = \begin{bmatrix} 1018 & ft f_2 & 20000 psi \\ 0.000 & discoveraCheck Bottom Base: $p_{sh} = \frac{1}{p_{sh}} \frac{p_{sh}}{q} \frac{1}{2}$ discoveraAs prov: A book NBpd = 20.7 a²Prad, Reinforcement, Bd: - d(Asgrow - As, Okay', The Good')Pad, Reinforcement, Bd: - d(Asgrow - As, Okay', The Good')Pad, Reinforcement, Bd: - d(Asgrow - As, Okay', The Good')Pad, Reinforcement, Top: - OkayNo Cood')Pad, Reinforcement, Top: - Okay'Developement Length Pad Reinforcement:Bar Specing = $\frac{W_1 - 2 Cw_{pad} - MB_{od'} dwot }{MB_{od'} - 1} = 9.7 inSpacing or Cover Dmission = $c \sim it (Cw_{pad} < \frac{Barad}{2}, Cw_{pad} - \frac{Bapad}{2}) = 3 inTransverse Reinforcement Length Pad $\frac{1}{W_1 + 2} = \frac{1}{2} = \frac{C_1 m_1^2 - Cw_{pad} - MB_{od'}^2 + MB_{od}^2 - MB_{od'}^2 + MB_$$$$$$$

Location:

Rev. 0: 4/16/15

Foundation Analysis

150-ft Monopole Kent, CT

Prepared by: T.J.L. Checked by: C.F.C, Job No. 15001.042

Steel Reinforcement in Pier:

Area of Pier =

$$A_p := \frac{\pi \cdot d_p^2}{4} = 6361.73 \cdot in^2$$

 $A_{smin} := 0.0033 \cdot A_p = 20.99 \cdot in^2$

 $A_{sprov} := NB_{pier} \cdot A_{bpier} = 28.27 \cdot in^2$

 $Steel_Area_Check := if(A_{sprov} > A_{smin}, "Okay", "No Good")$

Steel_Area_Check = "Okay"

Bar Spacing In Pier =

$$B_{sPier} := \frac{d_{p} \cdot \pi}{NB_{pier}} - d_{bpier} = 6.854 \cdot in$$

Diameter of Reinforcement Cage = Diam_{cage} := d_p - 2·Cvr_{pier} = 79·in

Maximum Moment in Pier =

$$M_{p} := \left[OM + Shear \left(L_{p} + \frac{A_{BP}}{2}\right)\right] \cdot LF = 40861.8 \cdot in \cdot kips$$

Pier Check evaluated from outside program and results are listed below;

$$\begin{pmatrix} D & N & n & P_u & M_{xu} \end{pmatrix} \coloneqq \begin{pmatrix} d_p \cdot 12 & NB_{pier} & BS_{pier} & \frac{Axial \cdot 1.333}{kips} & \frac{M_p}{in \cdot kips} \end{pmatrix}$$

$$\begin{pmatrix} D & N & n & P_u & M_{xu} \end{pmatrix} = \begin{pmatrix} 90 & 36 & 8 & 49.321 & 4.086 \times 10^4 \end{pmatrix}$$

$$\begin{pmatrix} \Phi P_n & \Phi M_{xn} & f_{sp} & \rho \end{pmatrix} \coloneqq \begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} \Phi P_n & \Phi M_{xn} & f_{sp} & \rho \end{pmatrix} \coloneqq \Phi P'_n (D, N, n, P_u, M_{xu})^T$$

$$\begin{pmatrix} \Phi P_n & \Phi M_{xn} & f_{sp} & \rho \end{pmatrix} = \begin{pmatrix} 73.959 & 6.127 \times 10^4 & -60 & 4.47 \times 10^{-3} \end{pmatrix}$$

$$Axial_Load_Check \coloneqq if(\Phi P_n \ge P_u, "Okay", "No \ Good")$$

$$Bending_Check \coloneqq if(\Phi M_{xn} \ge M_{xu}, "Okay", "No \ Good")$$

FI (203) 468(8587

Rev. 0: 4/16/15

Foundation Analysis

150-ft Monopole Kent, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 15001.042

Development Length Pier Reinforcement:

Available Length in Foundation:

 $L_{pier} := L_p - Cvr_{pier} = 42.5 \cdot in$ $L_{pad} := T_f - Cvr_{pad} = 39 \cdot in$

Tension:

(ACI-2008 12.2.3)

Spacing or Cover Dimension =

$$c := if\left(Cvr_{pier} < \frac{B_{s}Pier}{2}, Cvr_{pier}, \frac{B_{s}Pier}{2}\right) = 3.427 \cdot in$$

Transverse Reinforcement =

$$L_{dbt} \coloneqq \frac{3 \cdot f_{y} \alpha_{pier} \cdot \beta_{pier} \cdot \gamma_{pier} \cdot \lambda_{pier}}{40 \cdot \sqrt{f_{c} \cdot psi} \cdot \left(\frac{c + k_{tr}}{d_{bpier}}\right)} \cdot d_{bpier} = 20.76 \cdot in$$

Minimum Development Length =

Pier reinforcement bars are standard 90 degree hooks and therefore developement in the pad is computed as follows:

 $L_{dh} \coloneqq \frac{1200 \cdot d_{bpier}}{\sqrt{\frac{f_{c}}{psi}}} \cdot .7 = 13.282 \cdot in$ (ACI 12.2.1)

 $L_{db} := max(L_{dbt}, L_{dbmin})$

 $L_{tension_Check} := if(L_{pier} + L_{pad} > L_{dbt}, "Okay", "No Good")$

Ltension_Check = "Okay"

(ACI-2008 12.3.2)

$$L_{dbc1} := \frac{.02 \cdot d_{bpier} \cdot f_y}{\sqrt{f_c \cdot ps_i}} = 18.974 \cdot in$$

$$L_{dbmin} := 0.0003 \cdot \frac{in^2}{Ib} \cdot (d_{bpier} \cdot f_y) = 18 \cdot in$$

$$L_{dbc} := if(L_{dbc1} \ge L_{dbmin}, L_{dbc1}, L_{dbmin}) = 18.974 \cdot in$$

$$L_{compression_Check} := if(L_{pier} + L_{pad} > L_{dbc}, "Okay", dbc)$$

$$L_{dbc1} := \frac{100 - 000}{\sqrt{f_c \cdot p}}$$

Page 3.3-9

k_{tr} := 0

(ay" , "No Good")

Compression:

Location:

(ACI-2008 12.2.3)

Location:

Rev. 0: 4/16/15

Foundation Analysis

150-ft Monopole Kent, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 15001.042

Tie Size and Spacing in Column:

Minimum Tie Size =	$Tie_{min} := if(BS_{pier} \le 10, 3, 4) = 3$
	Used #4 Ties
Seismic Factor =	$z := if(Z \le 2, 1, 0.5) = 1 \tag{ACI-2008 21.10.5}$
	s _{lim1} := 16·d _{bpier} ·z = 16·in
	$s_{\text{lim2}} := 48 \cdot d_{\text{Tie}} \cdot z = 24 \cdot \text{in}$
	$s_{\text{lim3}} \coloneqq D_{f} z = 78 \cdot \text{in}$
	s _{lim4} := 18in
Maximum Spacing =	$s_{tie} := \min \begin{pmatrix} \begin{pmatrix} s_{lim1} \\ s_{lim2} \\ s_{lim3} \\ s_{lim4} \end{pmatrix} = 16 \cdot in$
Number of Ties Required =	$n_{\text{tie}} \coloneqq \frac{L_{\text{pier}} - 3 \cdot \text{in}}{s_{\text{tie}}} + 1 = 3.469$
Check Anchor Steel Embedment:	
Depth Available =	$D_{ab} := L_{st} - A_{BP} = 7 \cdot ft$
Length of Anchor Bolt =	$L_{anchor} := \frac{\left(0.11 \cdot f_{ya}\right) \cdot in}{\sqrt{f_{c} \cdot psi}} = 10.87 \cdot ft$

 $Depth_Check := if (D_{ab} \ge L_{anchor}, "Okay", "No Good")$

Depth_Check = "No Good"

Note: Anchor plate is provided

SITE NAME	KENT CT	ECP - CELL #	2 424	
LATITUDE	41-43-18.85 N	LONGITUDE	73-28-29.87 W	
		SAVE BUTTON	Constant Paralet	
700 azimuth change plus RET antenn	a swap outs and RRH upgrade		The second s	
60W 4 port 700 RRH will be connecte	d to the low band ports on the	AVVS		
and PCS antenna. Please note the ele	ectrical tilt for 700 is on the SBN		MONOBOLE	
antennas.		STRUCTURE TYPE		
700 Mhz - Current Config	ALPHA	BEIA	GANNA	
EQUIPMENT TYPE	einodeb			
ANTENNA TYPE	BXA-70063-6CF_2	BXA-70063-6CF_2	BXA-70063-6CF_2	
QTY OF ANTENNAS PER FACE	1	1	1	
ORIENTATION (DEG)	0	120	240	
DOWN TILT (MECH/DEG)	0	0	0	
RAD CTR (FT AGL)	147	147	14/	
TMA - QTY / MODEL				
DIPLEXER - QTY / MODEL				
700 Mhz - Future Config	ALPHA	BETA	GAMMA	
EQUIPMENT TYPE	eNodeB	eNodeB	eNodeB	
ANTENNA TYPE	BXA-70063-6CF_2	BXA-70063-6CF_2	BXA-70063-6CF_2	
QTY OF ANTENNAS PER FACE	0	0	0	
ORIENTATION (DEG)	350	120	240	
DOWN TILT (MECH/DEG)	2 elect	2 elect	2 elect	
RAD CTR (FT AGL)	147	147	147	
TMA - QTY / MODEL				
DIPLEXER - QTY / MODEL				
RRH - QTY/MODEL	1 x ALU RH_2X60-700U	1 x ALU RH_2X60-700U	1 x ALU RH_2X60-700U	
SECTOR DISTRIBUTION BOX				
MAIN DISTRIBUTION BOX		1 x DB-T1-6Z-8AB-0Z		
850 Celluar - Current Config	ALPHA	BETA	GAMMA	
EQUIPMENT TYPE	Cellular Modcell 4.0B	Cellular Modcell 4 0B	Cellular Modcell 4.0B	
ANTENNA TYPE	LPA-80080/6CF	LPA-80080/6CF	LPA-80080/6CF	
QTY OF ANTENNAS PER FACE	2	2	2	
ORIENTATION (DEG)	0	120	240	
DOWN TILT (MECH/DEG)	0	0	0	
RAD CTR (FT AGL)	147	147	147	
TMA - QTY / MODEL				
DIPLEXER - QTY / MODEL				
850 Celluar - Future Config	ALPHA	BETA	GAMMA	
EQUIPMENT TYPE	Cellular Modcell 4.0B	Cellular Modcell 4.0B	Cellular Modcell 4.0B	
ANTENNA TYPE	LPA-80080/6CF	LPA-80080/6CF	LPA-80080/6CF	
QTY OF ANTENNAS PER FACE	2	2	2	
ORIENTATION (DEG)	0	120	240	
DOWN TILT (MECH/DEG)	0	0	0	
RAD CTR (FT AGL)	147	147	147	
TMA - QTY / MODEL				
DIPLEXER - QTY / MODEL				
DIPLEX WITH LTE CABLE				
1900 PCS - Current Config	ALPHA	BETA	GAMMA	
EQUIPMENT TYPE	#N/A	#N/A	#N/A	
ANTENNA TYPE	BXA-171085-12BF_2	BXA-171085-12BF_2	BXA-171085-12BF_2	
QTY OF ANTENNAS PER FACE	1	1	1	
ORIENTATION (DEG)	0	120	240	
DOWN TILT (MECH/DEG)	0	0	0	
RAD CTR (FT AGL)	147	147	147	
TMA - QTY / MODEL				
DIPLEXER - QTY / MODEL				
1900 PCS - Future Config	ALPHA	BETA	GAMMA	
EQUIPMENT TYPE	#N/A	#N/A	#N/A	
ANTENNA TYPE	SBNHH-1D65B	SBNHH-1D65B	SBNHH-1D65B	
QTY OF ANTENNAS PER FACE	1	1	11	
ORIENTATION (DEG)	350	120	240	
DOWN TILT (MECH/DEG)	2 elect	2 elect	2 elect	
RAD CTR (FT AGL)	147	147	147	
TMA - QTY / MODEL				
DIPLEX WITH CELLULAR CABLE				
RRH - QTY/MODEL	1 x ALU RH_2X60-PCS	1 x ALU RH_2X60-PCS	1 x ALU RH_2X60-PCS	
SECTOR DISTRIBUTION BOX				
MAIN DISTRIBUTION BOX				

2100 A	NS - Cu	- Current Config ALPHA BETA						GAM	AN					
EQUIPM	MENT T	YPE			#N//	٩			#N/A		#N/A			
ANTEN	NTENNA TYPE #N/A			٩	#N/A			#N/A						
QTY OF	ANTE	NNAS PER	FACE		#N//	4			#N/A			#N/A		
ORIENT	TATION	(DEG)			#N//	4			#N/A			#N/A		
DOWN	TILT (M	ECH/DEG)		#N//	4			#N/A			#N//	4	
RAD CT	R (FT	AGL)	e presta h		#N//	4		:	#N/A			#N//	4	
TMA - C	TY / M	ODEL				İ			_					
DIPLEX	ER - Q	TY / MODE	L											
2100 A	NS - Fu	ture Confi	g		ALPH	IA	i predi	E	BETA			GAM	AN	
EQUIPN	JENT T	YPE			#N//	4			#N/A			#N/#	4	
ANTEN	NA TYP	Έ		S	BNHH-1	D65B		SBN	HH-1D6	5B		SBNHH-1	D65B	
QTY OF	ANTE	NNAS PER	FACE		1				1			1		
ORIENT	TATION	(DEG)			350				120			240		
DOWN	TILT (N	AECH/DEG	5)		2 ele	ct		2	2 elect			2 ele	ct	
RAD CT	TR (FT	AGL)	17,000		147	2		au -	147			147		
TMA - C	TY / MO	ODEL												
DIPLEX	WITH	CELLULAR	CABLE											
RRH - C	TY/MO	DEL		1 x Al	URH_2	2X60-AWS	1	x ALU F	RH_2X60)-AWS	1:	1 x ALU RH_2X60-AWS		
SECTO	CTOR DISTRIBUTION BOX													
MAIN D	ISTRIB	UTION BO	Х											
	12.54	NU	MBER OF	CABLE	S NEE	DED			ESTIM	IATED CAR	BLE LEN	GTH		
TOTA	L # FIBE	ER LINES	2						FIB	ER LINE MODEL # HB158-1-08U8-			1-08U8-S8J18	
TOTAL	# TOP .	JUMPERS	3					. í	FIBER	TOP JUMPEF	R MODEL #	HB114-	1-08U4-S4J1	
MAINL	INE SIZ	ZE	1 5/8"	TOTAL	# OF N	MAINLINES		18	MAINL	INE (FT)				
JUMPE	ER SIZE		1/2 "	TOTAL	. # OF 1	FOP JUMPE	RS	36	TOP J	UMPER (F	-T)		12	
Equipr	nent C	able Orde	ering	MAIN C	CABLE	18	+	0	TOP J	UMPER #	24	+	12	
			TX / RX F	REQUE	ENCIES	S			TX POWER OUTPUT					
	Cellu	lar A-Bar	nd	PCS	F/AV	VS-Band	700 M	hz C - E	Cellula	ır (Watts)			20	
TX - 86	69-880,	890-891.5	MHz	TX - 19	70-197	5/2145-21	TX - 7	46-757	PCS (Watts)				16	
RX - 82	24-835,	845-846.5	5 MHz	RX - 18	390-189	5 / 1745-17	IRX - 7	76-787	7 LTE (Watts) 40			40		
ALPHA						BETA		1 10 14			GAN		ala Ord	
Ant.	Freq	Func	Color Code	Ant.	Freq.	Func	Colo	r Code	Ant,	Freq.	Func	C	DIOF CODE	
A1	800	Tx1/Rx0	RED	A7	800	Tx2/Rx0	BL	LUE	A13	800	1x3/Rx0		GREEN	
A2	1900	Tx1/Rx0	RED/ WHITE	A8	1900	Tx2/Rx0	BLUE/ WHITE		A14	1900	Tx3/Rx0	GRE	LEN/WHITE	
A3	700	Tx1/Rx0	RED/ ORANGE	A9	700	Tx2/Rx0	/Rx0 BLUE/ ORANGE A15 700 Tx3/Rx0		GREI	EN/ORANGE				
A4	700	Tx4/Rx1	RED/RED/ ORANGE	A10	700	Tx5/Rx1	BLUE OR/	/BLUE/ ANGE	A16	700	Tx6/Rx1	GREEN/G	REEN/ ORANGE	
A5	1900	Tx4/Rx1	RED/RED/ WHITE	A11	1900	Tx5/Rx1	BLUE	/BLUE/	A17	1900	Tx6/Rx1	GREEN/	GREEN/ WHITE	
A6	800	Tx4/Rx1	RED/RED	A12	800	Tx5/Rx1	BLUE	/BLUE	A18	800	Tx6/Rx1	GRE	EN/GREEN	
		RE ENGINEER RE MANAGER					finish 8	INITI	ALS		DATE			
Prepare	Prepared By: Mark Brauer					Rob Hesse	elhach			MB		3/27/2015	5	

Product Specifications

SBNHH-1D65B

Andrew® Tri-band Antenna, 698–896 and 2 x 1710–2360 MHz, 65° horizontal beamwidth, internal RET. Both high bands share the same electrical tilt.

 Interleaved dipole technology providing for attractive, low wind load mechanical package

Frequency Band, MHz	698-806	806-896	1710-1880	1850-1990	1920-2180	2300-2360
Gain, dBi	14.9	14.7	17.7	18.2	18.6	18.6
Beamwidth, Horizontal, degrees	68	66	69	66	63	58
Beamwidth, Vertical, degrees	12.1	10.7	5.6	5.2	5.0	4.5
Beam Tilt, degrees	0-14	0-14	0-7	0-7	0-7	0-7
USLS, dB	14	13	15	15	15	13
Front-to-Back Ratio at 180°, dB	27	29	28	28	28	27
CPR at Boresight, dB	20	23	20	20	17	21
CPR at Sector, dB	14	10	12	10	9	1
Isolation, dB	25	25	25	25	25	25
Isolation, Intersystem, dB	30	30	30	30	30	30
VSWR Return Loss, dB	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153	-153	-153	-153
Input Power per Port, maximum, watts	350	350	350	350	350	300
Polarization	±45°	±45°	±45°	±45°	±45°	±45°
Impedance	50 ohm					

Electrical Specifications, BASTA*

Frequency Band, MHz	698-806	806-896	1710-1880	1850-1990	1920-2180	2300-2360
Gain by all Beam Tilts, average, dBi	14.5	14.3	17.4	17.9	18.2	18.3
Gain by all Beam Tilts Tolerance, dB	±0.5	±0.8	±0.4	±0.3	±0.5	±0.3
	0° 14.6	0° 14.5	0° 17.4	0° 17.8	0° 18.1	0° 18.2
Gain by Beam Tilt, average, dBi	7° 14.6	7° 14.4	3° 17.5	3° 17.9	3° 18.3	3° 18.4
	14° 14.2	14° 13.6	7° 17.4	7° 17.9	7° 18.2	7° 18.4
Beamwidth, Horizontal Tolerance, degrees	±2.2	±3.4	±2	±4.6	±5.7	±4.3
Beamwidth, Vertical Tolerance, degrees	±0.8	±1	±0.3	±0.2	±0.3	±0.2
USLS, dB	16	14	16	16	16	15
Front-to-Back Total Power at 180° ± 30°, dB	25	26	27	26	26	26
CPR at Boresight, dB	22	23	21	20	20	22
CPR at Sector, dB	13	11	16	12	11	4

* CommScope® supports NGMN recommendations on Base Station Antenna Standards (BASTA). To learn more about the benefits of BASTA, download the whitepaper Time to Raise the Bar on BSAs.

General Specifications

Antenna Brand
Antenna Type
Band
Brand
Operating Frequency Band

Andrew® DualPol® multiband with internal RET Multiband DualPol® | Teletilt® 1710 - 2360 MHz | 698 - 896 MHz

Mechanical Specifications

Product Specifications

ANDREW

POWERED BY

SBNHH-1D65B

Color	Light gray
Lightning Protection	dc Ground
Radiator Material	Aluminum Low loss circuit board
Radome Material	Fiberglass, UV resistant
Reflector Material	Aluminum
RF Connector Interface	7-16 DIN Female
RF Connector Location	Bottom
RF Connector Quantity, total	6
Wind Loading, maximum	617.7 N @ 150 km/h 138.9 lbf @ 150 km/h
Wind Speed, maximum	241.4 km/h 150.0 mph

Dimensions

Depth	181.0 mm 7.1 in
Length	1828.0 mm 72.0 in
Width	301.0 mm 11.9 in
Net Weight	18.4 kg 40.6 lb

Remote Electrical Tilt (RET) Information

Input Voltage	10-30 Vdc
Power Consumption, idle state, maximum	2.0 W
Power Consumption, normal conditions, maximum	13.0 W
Protocol	3GPP/AISG 2.0 (Multi-RET)
RET Interface	8-pin DIN Female 8-pin DIN Male
RET Interface, quantity	1 female 1 male
RET System	Teletilt®

Regulatory Compliance/Certifications

Agency RoHS 2011/65/EU China RoHS SJ/T 11364-2006 ISO 9001:2008 Classification Compliant by Exemption

Compliant by Exemption Above Maximum Concentration Value (MCV) Designed, manufactured and/or distributed under this quality management system

Included Products

BSAMNT-1 — Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.

ALCATEL-LUCENT B13 RRH4X30-4R

Alcatel-Lucent B13 Remote Radio Head 4x30-4R is the newest addition of Remote Radio Head to the extended product line of Alcatel-Lucent's distributed Base Station solutions, aimed at facilitating smooth RF site acquisition and related civil engineering.

Supporting 2Tx/4Tx MIMO and 4-way Rx diversity, Alcatel-Lucent B13 RRH4x30-4R allows operators to have a compact radio solution to deploy LTE in the 700U band (700 MHz, 3GPP band 13), providing them with the means to achieve high capacity, high quality and high coverage with minimum site requirements.

The Alcatel-Lucent B13 RRH4x30-4R product has four transmit RF paths, offering the possibility to **select**, **via software only**, **2Tx or 4Tx MIMO configurations** with either 2x60 W or 4x30 W RF output power. It supports also 4-way Rx diversity and up to 10MHz instantaneous bandwidth.

The Alcatel-Lucent B13 RRH4x30-4R is a near zero-footprint solution and operates noise free, simplifying negotiations with site property owners and minimizing environmental impacts.

Its compactness and slim design makes the Alcatel-Lucent B13 RRH4x30-4R easy to install close to the antenna: operators can therefore locate this Remote Radio Head where RF design conditions are deemed ideal, minimizing trade-offs between available sites and RF optimum sites, together with reducing the RF feeder needs and installation costs.

FEATURES

- Supporting LTE in 700 MHz band (700U, 3GPP band 13)
- LTE 2Tx or 4Tx MIMO (SW switchable)
- Output power: Up to 2x60W or 4x30W
- 10MHz LTE carrier with 4Rx Diversity
- Convection-cooled (fan-less)
- Supports AISG 2.0 ALD devices (RET, TMA) through RS485 or RF ports

BENEFITS

- Compact to reduce additional footprint when adding LTE in 700U band
- MIMO scheme operation selection (2Tx or 4Tx) by software only
- Improves downlink spectral efficiency through MIMO4
- Increases LTE coverage thanks to 4Rx diversity capability and best in class Rx sensitivity
- Flexible mounting options: Pole or Wall

XXXX

4x30W with 4T4R or 2x60W with 2T4R

Can be switched between modes via SW w/o site visit

TECHNICAL SPECIFICATIONS

Features & performance				
Number of TX/RX paths	4 duplexed (either 4T4R or 2T4R by SW)			
Frequency band	U700 (C) (3GPP bands 13): DL: 746 - 756 MHz / UL: 777 - 787 MHz			
Instantaneous bandwidth - #carriers	10MHz – 1 LTE carrier (in 10MHz occupied bandwidth)			
LTE carrier bandwidth	10 MHz			
RF output power	2x60W or 4x30W (by SW)			
Noise figure - RX Diversity scheme	2 dB typ. (<2.5 dB max) – 2 or 4 way Rx diversity			
Sizes (HxWxD) in mm (in.) Volume in L Weight in kg (lb) (w/o mounting HW)	550 x 305 x 230 (21.6" x 12.0" x 9") (with solar shield) 38 (with solar shield) 26 (57.2) (with solar shield)			
DC voltage range DC power consumption	-40.5 to -57V at full performance, -38 to -57V with relaxation on power consumption 550W typical @100% RF load (in 2Tx or 4TX mode)			
Environmental conditions Wind load (@150km/h or 93mph)	-40°C (-40°F) /+55°C (+131°F) IP65 Frontal:<200N / Lateral :<150N			
Antenna ports	4 ports 7/16 DIN female (50 ohms) VSWR < 1.5			
CPRI ports	2 CPRI ports (HW ready for Rate7, 9.8 Gbps) SFP single mode dual fiber			
AISG interfaces	1 AISG2.0 output (RS485) Integrated Smart Bias Tees (x2)			
Misc. Interfaces	4 external alarms (1 connector) – 4 RF Tx & 4 RF Rx monitor ports - 1 DC connector (2 pins)			
Installation conditions	Pole and wall mounting			
Regulatory compliance	3GPP 36.141 / 3GPP 36.113 / GR-1089-CORE / GR-3108-CORE / UL 60950-1 / FCC Part 27			

www.alcatel-lucent.com Alcatel, Lucent, Alcatel-Lucent and the Alcatel-Lucent logo are trademarks of Alcatel-Lucent. All other trademarks are the property of their respective owners. The information presented is subject to change without notice. Alcatel-Lucent assumes no responsibility for inaccuracies contained herein. Copyright © 2014 Alcatel-Lucent. All Rights Reserved

B13 RRH4x30-4R ALCATEL-LUCENT DATA SHEET REV0.2 – JUNE 2014

NEW PCS RF MODULES FOR VZW RRH2X60 - HW CHARACTERISTICS

	KKH2X0U
RF Output Power	2x60W (4x30W HW Ready)
Instantaneous Bandwidth	60MHz
Target Reliability (Annual Return Rate)	<2%
Receiver	4 Branch Rx
Features	AISG 2.0 for RET/TMA
Power	-48VDC
	Internal Smart Bias-T
CPRI Ports	2 CPRI Rate 5 Ports
External Alarms	4 External User Alarms
Monitor Ports	TX, RX
Environmental	GR487 Compliance
RF Connectors	7/16 DIN (downward facing)
Dimensions	22"(h) x 12"(w)x 9.4" (d)**
Weight	55lb**

Alcatel-Lucent **- Includes solar shield but not mounting brackets (8 lbs.)

2

ALCATEL-LUCENT WIRELESS PRODUCT DATASHEET RRH2X60-AWS FOR BAND 4 APPLICATIONS

The Alcatel-Lucent RRH2x60-AWS is a high power, small form factor Remote Radio Head operating in the AWS frequency band (3GPP Band 4) for LTE technology. It is designed with an eco-efficient approach, providing operators with the means to achieve high quality and high capacity coverage with minimum site requirements and efficient operation.

A distributed Node B expands the deployment options by using two components, a Base Band Unit (BBU) containing the digital assets and a separate RRH containing the radio-(RF) elements. This frequency modular design optimizes available allows space and the main components of a Node B to be installed separately, within the same site or several kilometers apart.

The Alcatel-Lucent RRH2x60-AWS is linked to the BBU by an opticalfiber connection carrying downlink and uplink digital radio signals

along with operations, administration maintenance (OA&M) and information.

SUPERIOR RF PERFORMANCE

The Alcatel-Lucent RRH2x60-AWS integrates all the latest technologies. This allows to offer best-in-class characteristics.

It delivers an outstanding 120 watts of total RF power thanks to its two transmit RF paths of 60 W each.

It is ideally suited to support multipleinput multiple-output (MIMO) 2x2 operation.

It includes four RF receivers to support 4-way uplink natively reception diversity. This improves the radio uplink coverage and this can be used to extend the cell radius commensurate with 2x2MIMO 2x60 W for the downlink.

It supports multiple discontinuous LTE carriers within an instantaneous bandwidth of 45 MHz corresponding to the entire AWS B4 spectrum.

The generation latest power amplifiers (PA) used in this product achieve high efficiency (>40%), resulting in improved power consumption figures.

OPTIMIZED TCO

The Alcatel-Lucent RRH2x60-AWS is designed to make available all the benefits of a distributed Node B, with excellent RF characteristics, with low capital expenditures (CAPEX) and low operating expenditures (OPEX).

The Alcatel-Lucent RRH2x60-AWS is a very cost-effective solution to deploy LTE MIMO.

EASY INSTALLATION

The RRH2x60-AWS includes a reversible mounting bracket which allows for ease of installation behind an antenna, or on a rooftop knee wall while providing easy access to the mid body RF connectors.

The limited space available in some sites may prevent the installation of traditional single-cabinet BTS equipment. However, many of these sites can host an Alcatel-Lucent RRH2x60-AWS installation, providing more flexible site selection and improved network quality along with greatly reduced installation time and costs.

The Alcatel-Lucent RRH2x60-AWS is a zero-footprint solution and is convection cooled without fans for operation, simplifying silent negotiations with site property minimizing owners and environmental impacts.

Installation can easily be done by a single person as the Alcatel-Lucent RRH2x60-AWS is compact and weighs about 20 kg, eliminating the need for a crane to hoist the BTS cabinet to the rooftop. A site can be in operation in less than one day.

Macro

FEATURES

- RRH2x60-AWS integrates two power amplifiers of 60W rating (at each antenna connector)
- Support multiple carriers over the entire 3GPP band 4
- RRH2x60-AWS is optimized for LTE operation
- RRH2x60-AWS is a very compact and lightweight product
- Advanced power management techniques are embedded to provide power savings, such as PA bias control

RRH for space-constrained cell sites

BENEFITS

- MIMO LTE operation with only one single unit per sector
- Improved uplink coverage with builtin 4-way receive diversity capability
- RRH can be mounted close to the antenna, eliminating nearly all losses in RF cables and thus reducing power consumption by 50% compared to conventional solutions
- Distributed configurations provide easily deployable and cost-effective solutions, near zero footprint and

Distributed

silent solutions, with minimum impact on the neighborhood, which ease the deployment

RETA and TMA support without additional hardware thanks to the AISG v2.0 port and the integrated Bias-Tees. Bias-Tees support AISG DC supply and signaling.

Specifications listed are hardware capabilities. Some capabilities depend on support in a specific software release or future release.

36.7"x10.6"x5.8"

TECHNICAL SPECIFICATIONS

Dimensions and weights

- HxWxD . 510x205x100 (27 I with solar shield)
- Weight: 20 kg (44 lbs)

Electrical Data

- Power Supply : -48V DC (-40.5 to -57V)
- Power Consumption (ETSI average traffic load reference) : 250W @2x60W

RF Characteristics

- Frequency band: 1710-1755, UL / 2110-2155 MHz, DL (3GPP band 4)
- Output power: 2x60W at antenna connectors
- Technology supported: LTE
- Instantaneous bandwidth: 45 MHz
- Rx diversity: 2-way and 4-way uplink reception
- Typical sensitivity without Rx diversity: -105 dBm for LTE

Connectivity

- daisychaining and up to six RRHs per fiber
- Type of optical fiber: Single-Mode (SM) and Multi-Mode (MM) SFPs
- Optical fiber length: up to 500m using MM fiber, up to 20km using SM fiber
- TMA/RETA: AISG 2.0 (RS485 connector and internal Bias-Tee)
- Six external alarms
- Surge protection for all external ports (DC and RF)

Environmental specifications

- Operating temperature: -40°C to 55°C including solar load
- Operating relative humidity: 8% to 100%
- Environmental Conditions : ETS 300 019-1-4 class 4.1E
- Ingress Protection : IEC 60529 IP65
- Acoustic Noise : Noiseless (natural convection cooling)

Safety and Regulatory Data

- EMC: 3GPP 25113, EN 301 489-1, EN 301 489-23, GR 1089, GR 3108, OET-65
- Safety : IEC60950-1, EN 60825-1, UL, ANSI/NFPA 70, CAN/CSA-C22.2
- Regulatory : FCC Part 15 Class B, CE Mark - European Directive : 2002/95/EC (ROHS); 2002/96/EC (WEEE); 1999/5/EC (R&TTE)
- Health : EN 50385

www.alcatel-lucent.com Alcatel, Lucent, Alcatel-Lucent and the Alcatel-Lucent logo are trademarks of Alcatel-Lucent. All other trademarks are the property of their respective owners. The information presented is subject to change without notice. Alcatel-Lucent assumes no responsibility for inaccuracies contained herein.

Copyright © 2012 Alcatel-Lucent, All rights reserved. M2012XXXXXX (March)

AT THE SPEED OF IDEAS™

Two CPRI optical ports for

DC and Fiber Management Distribution Boxes for HYBRIFLEX™ Cable

Product Description

The RFS Distribution Box design comes with the option for pluggable over voltage protection (OVP) for up to 6 remote radios and the connection for 6 pairs of optical fiber with LC optical fiber cable management. There is a hybrid cable input with a jumper configuration for power and optical fiber to the remote radio heads (RRHs). A custom wall, a 2-inch pole, and an H-Frame mounting bracket are included. Both the compact and standard design are available with lightening protection.

Features/Benefits

- Designed to accommodate varying diameters of HYBRIFLEX[™] (combined power and fiber optic) cables up to 2 inches
- Supports Single- and Multi-Mode Optical fiber
- NEMA 4x rated enclosure allows flexibility for indoor or outdoor installation on a roof or tower top
- Weatherproof enclosure and ports improves system reliability
- Modular design makes replacement or addition of OVP easy without removal of other components within the box
- Strikesorb OVP technology protects equipment from damaging surges up to 60 kA on an 8/20 waveform and up to 5 kA on a 10/350 waveform (certain models only)
- Low residual voltage and high impedance ideally suited for RRH technology won't shut down the RRH the way spark gap technology does (certain models only)

Technical Specifications

1.02

Nechanical Specifications				
Model Number	DB-B1-6C-8AB-0Z	DB-T1-6Z-8AB-0Z		
Enclosure Design	Standard, 6 OVP's	Standard without OVP		
Dimensions - H x W x D, mm (in)	610 x 610 x 254	610 x 610 x 254		
	(24 x 24 x 10)	(24 x 24 x 10)		
Weight, ka (lb)	20 (44)	20 (44)		
Suppression Connection Method	Compression lug, #2-#14 AWG Copper,			
		#2-#12 Aluminum		
Fiber Connection Method		LC-LC Single- or Multi-mode duplex		
Environmental Rating		NEMA 4x		
Operating Temperature, °C (°F)		-40 to +80 (-40 to +176)		
UV Protection	ISO 4892-2 Method A Xenon-Arc 2160 hrs			

Electrical Specifications

Nominal Operating Voltage		48 VDC		
Nominal Discharge Current (In) per UL 1449 3rd Ed	20 kA 8/20 µs		N/A	
Maximum Discharge Current (Imax) per NEMA LS-1	60 kA 8/20 µs		N/A	
Maximum Impulse (Lightning) Current (I _{imp})				
per IEC 61643-1	5 kA 10/350 µs		N/A	
Maximum Continuous Operating Voltage (U_)	75 VDC		N/A	
Voltage Protection Rating per UL1449 3rd Ed	400 V		N/A	
Protection Class as per IEC 61643-1	Class 1		N/A	
Strikesorb OVP Compliance	ANSI/UL 1449-3rd Ed		N/A	
	IEEE C62.41		N/A	
	NEMA LS-1		N/A	
	IEC 61643-1		N/A	
	IEC 61643-12		N/A	
	EN 61643-11		N/A	

* This data is provisional and subject to change-

RFS The Clear Choice[®]

Rev: P1