December 10, 2018

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Notice of Exempt Modification for Verizon Wireless: 876363
 Verizon Site ID: 79283
 219 New Park Ave. Hartford, CT 06141-0270
 Latitude: $41^{\circ}-45^{\prime}-2.79^{\prime \prime} /$ Longitude: $\mathbf{7 2}^{\circ}-42^{\prime} 43.23^{\prime \prime}$

Dear Ms. Bachman:

Verizon currently maintains twelve (12) antennas at the 105 -foot level of the existing 108 -foot monopole tower at 219 New park Ave. Hartford, CT 06141-0270. The tower is owned by Crown Castle. The Connecticut Light and Power Company own the property. Verizon now intends to remove three (3) RRH's, replace six (6) RRH's. Verizon also intends to replace one (1) OVP and one (1) hybrid cable and remove six (6) coaxial cables.

This facility was approved by the City of Hartford in the mid-2000 and an email was sent to the town on 12/06/2018 in an effort to ascertain the original zoning documents.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § 16-50j73 , for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.S.C.A. § 16-50j-73, a copy of this letter is being sent to Mayor Luke Bronin, City of Hartford, John Collins, Building Official, City of Hartford, the property owner, and Crown Castle is the tower owner.

1. The proposed modifications will not result in an increase in the height of the existing tower.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, Verizon respectfully submits that the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § $16-$ $50 \mathrm{j}-72(\mathrm{~b})(2)$. Please send approval/rejection letter to Attn: Jeffrey Barbadora.

Real Estate Specialist
12 Gill Street, Suite 5800, Woburn, MA 01801
781-729-0053
Jeff.Barbadora@crowncastle.com
Attachments:
Tab 1: Exhibit-1: Compound plan and elevation depicting the planned changes
Tab 2: Exhibit-2: Structural Modification Report
Tab 3: Exhibit-3: General Power Density Table Report (RF Emissions Analysis Report)
cc: City Mayor Luke Bronin
550 Main St \#1, Hartford, CT 06103

Building Official John Collins
550 Main St \#1,
Hartford, CT 06103
Connecticut Light and Power 107 Selden St.
C/O corporate Property
Management Department
Berlin, CT 06037

Unofficial Property Record Card - City of Hartford, CT
 General Property Data

Parcel ID 138-472-001
Prior Parcel ID
Property Owner CONN LIGHT \& POWER CO
Mailing Address PO BOX 270
Account Number
Property Location 219 NEW PARK AVE HARTFORD Property Use OTHER UTILTY
Most Recent Sale Date 7/2/1982
Legal Reference 019770129
City HARTFORD
Mailing State CT Zip 06141-0270
Grantor
Sale Price 0
Land Area 311,018.000 square feet

Current Property Assessment

Card 1 Value Building Value 12,460 | Xtra Features |
| :---: |
| Value | 10,570 Land Value 1,094,870 Total Value 1,117,900

Building Description

Building Style WAREHSE
\# of Living Units 0
Year Built 1978
Building Grade Economy
Building Condition N/A
Finished Area (SF) 1632
Number Rooms 0
\# of 3/4 Baths 0

Foundation Type Concrete Frame Type Steel Light
Roof Structure GABLE/HIP Roof Cover Metal Siding Metal Interior Walls DRYWALL
\# of Bedrooms 0
\# of $1 / 2$ Baths 0

Flooring Type COMBINATION
Basement Floor N/A
Heating Type Electric
Heating Fuel Electric
Air Conditioning 0\%
\# of Bsmt Garages 0
\# of Full Baths 0
\# of Other Fixtures 0

Legal Description

Narrative Description of Property

This property contains $311,018.000$ square feet of land mainly classified as OTHER UTILTY with a(n) WAREHSE style building, built about 1978 , having Metal exterior and Metal roof cover, with 0 commercial unit(s) and 0 residential unit(s), 0 room(s), 0 bedroom(s), 0 bath(s), 0 half bath(s).

Property Images

Disclaimer: This information is believed to be correct but is subject to change and is not warranteed. The Property Use designation depicted on this website is for assessment purposes only, it does not guarantee or imply rights to such
use or approval of the premises for such use. Any questions regarding the approved or allowed use of a property should be confirmed with the Planning \& Economic Development Division of the City of Hartford.

McKay, Kristian
 Thursday, December 6, 2018 4:52 PM 'vanessa.walton@hartford.gov' Original zoning docs

$\Sigma_{\text {Paremom }}$
B+T Group
1717 S. Boulder, Suite 300
Tulsa, OK 74119
(918) 587-4630

Structural Analysis Report
Verizon Wireless Co-Locate Carrier Site Number: 79283
Carrier Site Name:
Crown Castle BU Number: Crown Castle Site Name:
Crown Castle JDE Job Number:
Crown Castle Work Order Number:
Crown Castle Order Number:
B+T Group Project Number:
West Hartford 4 CT
876363
Hartford - NU (SSUSA)
528518
1626542
457785 Rev. 0
85565.009 .01

219 New Park Rd., HARTFORD, Hartford County, CT Latitude $41^{\circ} 45^{\prime} 2.79^{\prime \prime}$, Longitude $-72^{\circ} 42^{\prime} 49.23^{\prime \prime}$
108 Foot - Monopole Tower

Dear Amanda D Brown,
$B+T$ Group is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration
Sufficient Capacity
The analysis has been performed in accordance with the TIA-222-H Standard. This analysis utilizes an ultimate 3 -second gust wind speed of 125 mph as required by the 2012 International Building Code. Exposure Category C and Risk Category II were used in this analysis.

Structural analysis prepared by: Xavier Jones
Respectfully submitted by: B+T Engineering, Inc.
COA: PEC. 0001564 Expires: 02/10/2019

Scott S. Vance, P.E.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
Table 2 - Other Considered Equipment
3) ANALYSIS PROCEDURE

Table 3 -Documents Provided
3.1) Analysis Method
3.2) Assumptions
4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity
4.1) Recommendations
5) APPENDIX A
tnxTower Output
6) APPENDIX B

Base Level Drawing
7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 108 ft . Monopole designed by Summit in October of 2000. The tower was originally designed for a wind speed of 90 mph per TIA/EIA-222-F. This tower has been modified multiple times and those modifications were incorporated in this analysis.
2) ANALYSIS CRITERIA

Building Code:	2012 IBC
TIA-222 Revision:	TIA-222-H
Risk Category:	II
Wind Speed:	125 mph
Exposure Category:	C
Topographic Factor:	1
Ice Thickness:	1.7 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	$\left\lvert\, \begin{gathered} \text { Number } \\ \text { of } \\ \text { Antennas } \end{gathered}\right.$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	$\begin{gathered} \text { Feed } \\ \text { Line Size } \\ \text { (in) } \end{gathered}$
105.0	105.0	3	Alcatel Lucent	B13 RRH 4X30	$\begin{aligned} & 1 \\ & 7 \end{aligned}$	$\begin{aligned} & 1-5 / 8 \\ & 1-1 / 4 \end{aligned}$
		3	Alcatel Lucent	B25 RRH4X30		
		3	Alcatel Lucent	RRH4X45-AWS4 B66		
		6	Antel	BXA-70063/6CF		
		6	Commscope	SBNHH-1D65B		
		1	Raycap	RVZDC-6627-PF-48		
		1	Rfs Celwave	DB-T1-6Z-8AB-0Z		
		3	Samsung Tele.	RFV01U-D1A		
		3	Samsung Tele.	RFV01U-D2A		
		1	Rfs Celwave	DB-T1-6Z-8AB-0Z		
		1	--	Sector Mount [SM 402-3]		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Antennas } \end{aligned}$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
98.0	99.0	3	Nokia	AAHC	$\begin{aligned} & 4 \\ & 2 \\ & 3 \end{aligned}$	1-1/4
		1	Rfs Celwave	APXV9ERR18-C-A20		
		2	Rfs Celwave	APXVSPP18-C-A20		
	98.0	3	Rfs Celwave	IBC1900BB-1		
		3	Rfs Celwave	IBC1900HG-2A		
		1	--	Platform Mount [LP 1201-1]		
96.0	96.0	3	Alcatel Lucent	$800 \mathrm{MHz} 2 \times 50 \mathrm{~W}$ RRH W/FILTER	--	--
		3	Alcatel Lucent	PCS $1900 \mathrm{MHz} 4 \times 45 \mathrm{~W}-65 \mathrm{MHz}$		
		1	--	Side Arm Mount [SO 102-3]		
	95.0	3	Alcatel Lucent	PCS $1900 \mathrm{MHz} 4 \times 45 \mathrm{~W}-65 \mathrm{MHz}$		

Mounting Level (ft)	Center Line Elivation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
81.0	81.0	1	--	T-Arm Mount [TA 602-3]	6	$7 / 8$
	80.0	3	Andrew	HBX-6516DS-VTM	1	$5 / 16$
	76.0	1	Lucent	KS24019-L112A	1	$1 / 2$

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
Online Order Information	Verizon Wireless Co-Locate, Rev. 0	457785	CCI Sites
Tower Manufacturer Drawing	Summit, Job No. 11049	1947570	CCI Sites
Tower Modification Drawings	Vertical Solutions, Date: 01/28/2009	2445633	CCI Sites
Post Modification Inspection	PJF, Date: $10 / 25 / 2010$	2445631	CCI Sites
Tower Modification Drawings	B+T Group, Date: $10 / 15 / 2012$	3348853	CCI Sites
Post Modification Inspection	TEP, Date: $12 / 20 / 2013$	4424435	CCI Sites
Tower Modification Drawings	B+T Group, Date: $05 / 16 / 2017$	6859034	CCI Sites
Post Modification Inspection	ETS, Date: $12 / 07 / 2017$	7243678	CCI Sites
Foundation Drawings	Summit, Job No. 11049	1613616	CCI Sites
Geotech Report	FDH, Project No. 08-10012E G1	2337384	CCI Sites
Antenna Configuration	Crown CAD Package	Date: $08 / 30 / 2018$	CCI Sites

3.1) Analysis Method

tnxTower (version 8.0.4.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

1) Tower and structures were built in accordance with the manufacturer's specifications.
2) The tower and structures have been maintained in accordance with the manufacturer's specification.
3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
4) Mount areas and weights are assumed based on photographs provided.
5) The existing base plate grout was not considered in this analysis.
6) The existing base plate grout was considered in this analysis. Grout must be maintained and

This analysis may be affected if any assumptions are not valid or have been made in error. $\mathrm{B}+\mathrm{T}$ Group should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	$\mathbf{P (K)}$	SF*P_allow (K)	\% Capacity	Pass / Fail
L1	$108-103$	Pole	TP8.625x8.625x0.313	1	-2.346	269.918	24.4%	Pass

$\begin{gathered} \text { Section } \\ \text { No. } \\ \hline \end{gathered}$	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)		Pass / Fail
L2	103-98.5	Pole	TP8.625×8.625 $\times 0.313$	2	-2.563	269.918	74.3\%	Pass
L3	98.5-98	Pole	TP16.5 $\times 16.5 \times 0.313$	3	-2.609	525.629	21.3\%	Pass
L4	98-93	Pole	TP17.3×16.5 $\times 0.188$	4	-6.988	794.471	36.9\%	Pass
L5	93-88	Pole	TP18.101×17.3×0.188	5	-7.367	830.635	52.2\%	Pass
L6	88-83	Pole	TP18.901×18.101×0.188	6	-7.789	858.446	65.7\%	Pass
L7	83-82.33	Pole	TP19.008×18.901×0.188	7	-7.851	862.113	67.4\%	Pass
L8	82.33-82.08	Pole	TP19.048×19.008×0.325	8	-7.886	1506.666	57.4\%	Pass
L9	82.08-77.08	Pole	TP19.848×19.048×0.319	9	-9.465	1541.347	69.0\%	Pass
L10	77.08-76.25	Pole	TP19.981×19.84880.319	10	-9.566	1551.837	70.8\%	Pass
L11	76.25-76	Pole	TP20.021×19.981×0.456	11	-9.614	2210.239	55.8\%	Pass
L12	76-74.5	Pole	TP20.261×20.021×0.45	12	-9.847	2207.415	58.5\%	Pass
L13	74.5-74.25	Pole	TP20.301 $\times 20.261 \times 0.588$	13	-9.902	2867.718	51.3\%	Pass
L14	74.25-69.25	Pole	TP21.102×20.301×0.575	14	-10.84	2922.423	59.1\%	Pass
L15	69.25-64.25	Pole	TP21.902x21.102×0.55	15	-11.729	2907.744	66.6\%	Pass
L16	64.25-59.25	Pole	TP22.702x21.902×0.544	16	-12.64	2983.291	73.7\%	Pass
L17	59.25-58.08	Pole	TP22.89×22.702×0.538	17	-12.856	2974.755	75.3\%	Pass
L18	58.08-57.73	Pole	TP22.946x22.89×0.713	18	-12.942	3922.296	56.3\%	Pass
L19	57.73-57.5	Pole	TP22.982x22.946x0.713	19	-12.994	3928.785	56.6\%	Pass
L20	57.5-52.5	Pole	TP23.783×22.982x0.688	20	-14.096	3931.42	61.8\%	Pass
L21	52.5-47	Pole	TP24.663×23.783×0.688	21	-14.603	3992.73	64.0\%	Pass
122	47-45.25	Pole	TP24.568×23.768×0.75	22	-16.43	4423.062	64.3\%	Pass
L23	45.25-40.5	Pole	TP25.328×24.568×0.725	23	-17.617	4416.583	68.4\%	Pass
L24	40.5-40.25	Pole	TP25.368×25.328x0.725	24	-17.69	4423.765	68.6\%	Pass
L25	40.25-35.25	Pole	TP26.168×25.368×0.7	25	-18.951	4414.242	72.7\%	Pass
L26	35.25-30.25	Pole	TP26.969 26.168×0.688	26	-20.241	4473.766	76.6\%	Pass
L27	30.25-27.75	Pole	TP27.369×26.969x0.675	27	-20.893	4461.387	78.4\%	Pass
L28	27.75-27.5	Pole	TP27.409×27.369×0.725	28	-20.974	4790.068	69.5\%	Pass
L29	27.5-22.5	Pole	TP28.209x27.409x0.7	29	-22.35	4767.924	72.7\%	Pass
L30	22.5-19.5	Pole	TP28.689×28.209x0.688	30	-23.192	4766.643	74.6\%	Pass
L31	19.5-19.25	Pole	TP28.729×28.689×0.8	31	-23.276	5532.271	69.6\%	Pass
L32	19.25-14.25	Pole	TP29.529x28.729x0.775	32	-24.763	5517.739	72.5\%	Pass
L33	14.25-14	Pole	TP29.569×29.529x0.775	33	-24.847	5525.425	72.7\%	Pass
L34	14-13.75	Pole	TP29.609×29.569x0.775	34	-24.927	5533.101	73.2\%	Pass
L35	13.75-12.98	Pole	TP29.733×29.609x0.8	35	-25.176	5731.047	69.2\%	Pass
L36	12.98-12.73	Pole	TP29.773x29.733x0.8	36	-25.263	5738.974	69.3\%	Pass
L37	12.73-7.73	Pole	TP30.573×29.773×0.788	37	-26.904	5807.77	72.0\%	Pass
L38	7.73-2.73	Pole	TP31.373 30.573×0.775	38	-28.571	5871.537	74.6\%	Pass
L39	2.73-0	Pole	TP31.81×31.373×0.763	39	-29.489	5861.688	75.9\%	Pass
							Summary	
						Pole (L2)	74.3\%	Pass
						Reinforcement	78.4\%	Pass
						Rating =	78.4\%	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	$\%$ Capacity	Pass / Fail
1	Flange Connection	Base	86.6	Pass
1	Anchor Rods	Base	68.8	Pass
1	Base Plate	Base	56.9	Pass
1	Base Foundation (Structure)	Base	82.3	Pass
1	Base Foundation (Soil Interaction)	Base	46.8	Pass

Structure Rating (max from all components) $=$	86.6%

Notes:

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the \% capacity
consumed.
2) Rating per TIA-222-H Section 15.5

4.1) Recommendations

The tower and its foundations have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

Section	39	38	37	防碞 $32=$	30	29	限27	26	252	43	22	21	20 隹7	16	15	14	18120	$9 \quad 7$	7	6	5	43	2	1
Length（tt）	2.730	5.000	5.000000	Whatim 5.0000 .2	46.000	5.0000 .2	450500	5.000	5.0000 .2	504.750		， 500		5.000	5.000	5.0000.	Heareco	5.000 cop	po	5.000	5.000	5.0000 .50	04.500	5.000
Number of Sides	18	18	18	暆 18	限 18	18	18	18	18	18	18	18	18 ， 1818	18	18	18	8188	18	8	18	18	18	0	0
Thickness（in）	0.762	0.775	0.787008		\＄00．688	0.7000 .7	126675	0.688	0.7000 .7	250.725		0.688	0.688 的敉如	0.544	0．550	0.5750 .4	4808189	0，319 oufe		0.188	0.188	0.1880 .3	30.313	0.313
Socket Length（ft）												3.250												
Top Dia（in）	31.373	30.573	29.773288	［ 1 （1）	289． 209	27．40¢87．	．paper	23.168	25，36®5．	2204.568		23.783		21.902	21.102	20.301200	prsaig	19．048198p		18.101	17.300	16．50016	008.625	8.625
Bot Dla（in）	31.810	31.373	30.573298		29.689	28.20977	48936	26.969	26.16855	6®25．328	24.568	24.663		22.702	21.902	21.10200	ramelig	119.848188		18.901	18.101	17．30016	08．625	8.625
Grade												07－65											A53－B－35	
Weight（K） 15.5	0.7	1.2	1.20	\％atin 1.1	｜h 0.6	1.0	100.5	0.9	0.9 O｜｜	0.8	0.9	0.9		0.6	0.6	0.6	de．201	0.3 op	\％	0.2	0.2	0.2	0.1	0.1

TYPE	ELEVATION	TYPE	ELEVATION
BXA－70063／6CF w／Mount Pipe（E）	105	APXVSPP18－C－A20 w／Mount Pipe（E）	98
BXA－70063／6CF w／Mount Pipe（E）	105	JBC1900BE－1（E）	98
BXA－70063／6CF w／Mount Pipe（E）	105	IBC1900日B－1（E）	98
DE－T1－6Z－8AB－02（E）	105	IEC1900日B－1（E）	98
（2）SBNHH－1D65B（P）	105	IBC1900HG－2A（E）	98
（2）S8NHH－1065B（P）	105	IBC1900HG－2A（E）	98
（2）SBNHH－1D65B（P）	105	IBC1900HG－2A（E）	98
BXA－70063／6CF w／Mount Pipe（P）	105	AAHC w／Mount Pipe（R）	98
BXA－70063／6CF w／Mount Pipe（P）	105	AAHC w／Mount Pipe（R）	98
EXA．70063／BCF w／Mount Pipe（P）	105	AAHC wl Mount Pipe（R）	98
（2）RFV01U－D1A（P）	105	Flatform Mount［LP 1201－1］（E）	98
RFV01U－D1A（P）	105	PCS 1900MHz 4x45W－65MHz（E）	96
RFV01U－D2A（P）	105		96
（2）RFV01U－D2A（P）	105	PCS $1900 \mathrm{MHz} 4 \times 45 \mathrm{~W}-65 \mathrm{MHz}$（E）	96
RVZDC－6627－PF－48（P）	105	PCS 1900MHz 4x45W－65MHz（E）	96
B13 RRH 4X30（P－previous App）	105	PCS $1900 \mathrm{MHz} 4 \times 45 \mathrm{~W}-65 \mathrm{MHz}$（E）	96
B13 RRH 4X30（P－previous App）	105	PCS $1900 \mathrm{MHz} 4 \times 45 \mathrm{~W}-65 \mathrm{MHz}$（E）	96
B13 RRH 4X30（P－previous App）	105	$800 \mathrm{MHz} 2 \times 50 \mathrm{~W}$ RRH W／FILTER（E）	96
RRH4X45－AWS4 B66（P－previous App）	105	800MHz 2X50W RRH WIFILTER（E）	96
		800MHz 2X50W RRH W／FILTER（E）	96
RRH4X45－AWS4 B66（P－previousApp）RR	105	$4^{4} \times 2^{\prime \prime}$ Pipe Mount（E）	96
		4：$\times 2$ 2＂Pipe Mount（E）	96
RRH4X45－AWS4 B66（P－previous App）	105	$4^{4} \times 2^{\prime \prime}$ Pipe Mount（E）	96
		Side Arm Mount［SO 102－3］（E）	90
B25 RRH4X30（P－previous App）	105	HBX－6516DS－VTM w／Mount Pipe（E）	81
B25 RRH4X30（P－previous App）	105	HBX－6516DS－VTM w／Mount Pipe（E）	81
B25 RRH4X30（P－previous App）	105	HBX－6516DS－VTM w／Mount Pipe（E）	81
DB－T1－6Z－8AB－0Z（P－previous App）	105	$6^{\prime} \times 2^{\prime \prime}$ Mount Pipe（E）	81
Sector Mount［SM 402－3］ （E－2M．P／sector）	105	$6^{6} \times 2^{\prime \prime}$ Mount Pipe（E）	81
APXVGERR18－C－A20 w／Mouni Pipe （E）	98	6＇x ${ }^{\prime \prime}$ Mount Pipe（E）	81
		T－Arm Mount［TA 602－3］（E）	81
APXVSPP18－C－A20 w／Mount Pipe（E）	98	KS24019－L112A（E）	74
		Side Arm Mount［SO 701－1］（E）	74

GRADE	Fy	Fu	GRADE	Fy	Fu
A53－B－35	35 ksi	63 ksi	A607－65	65 ksi	80 ksi

TOWER DESIGN NOTES

1．Tower is located in Hartford County，Connecticut．
2．Tower designed for Exposure C to the TIA－222－H Standard．
3．Tower designed for a 125 mph basic wind in accordance with the TlA－222－H Standard．
4．Tower is also designed for a 50 mph basic wind with 1.70 in ice．Ice is considered to increase in thickness with height．
5．Deflections are based upon a 60 mph wind．
6．Tower Risk Category II．
7．Topographic Category 1 with Crest Height of 0.000 ft
8．TIA－222－H Annex S
9．TOWER RATING： 83.6%

TORQUE 0 kip－ft
50 mph WIND－ 1.700 in ICE

TORQUE $0 \mathrm{kip-ft}$
REACTIONS－ 125 mph WIND

	Pob：85565．009．01－HARTFORD－NU（SSUSA），CT（BU\＃ 87636		
	Project：－－		
	Client：Crown Castle	Drawn by xjones	App＇d：
$37-4630$	Code：TIA－222－H	Date：09／21／18	Scale：NTS
FAX：（918）295－0265	Path：		Dwg No．E－1

B+T Group B+T GRN 1717 S. Boulder, Suite 300 Tulsa, OK 7419 74 Phone: (918) 587-4630 FAX: $\{918) 295-0265$		${ }^{\text {Pob: } 85565.009 .01-H A R T F O R D ~-~ N U ~(S S U S A), ~ C T ~(B U \# ~} 87636$.		
		Project: Client: Crown Castle Drawn by xjones		
		Code: Tl A-222-H	Date: 09/21/18	Scale: NTS
		Path:		Dwg No. E-4

B+T Group B+T GF:F 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265		Frob: 85565.009 .01 - HARTFORD - NU (SSUSA), CT (BU\# 87636		
		Project: Client: Crown Castle Drawn by x xjones App'd:		
		Code: TIA-222-H	Date: 09/21/18	Scale: NTS
		Path:		Dwg No. E-5

Feed Line Distribution Chart 0' - 108'
\qquad
\qquad App In Face \qquad App Out Faca \qquad Truss Leg

B+T Group B+T GN: 1717 S. Boulder, Suite 300 Tuls, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265		Pob: 85565.009.01 - HARTFORD - NU (SSUSA),CT (BU\# 87636		
		${ }^{\text {Client }}$ Crown Castle	Drawn by xjones	App
		Code: $\mathrm{T} \mid \mathrm{A}-222-\mathrm{H}$	Date: 09/21/18	Scale: NTS
				Wg No. E-7

tnxTower

B+TGroup
1717 S. Boulder, Suite 300
Tulsa, OK 74119
Phone: (918) 587-4630
FAX: (918) 295-0265

$\text { Job } 85565.009 .01 \text { - HARTFORD - NU (SSUSA),CT (BU\# } 876363 \text {) }$	$\begin{array}{ll} \text { Page } \\ & \\ & \\ \end{array}$
Project	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$
Client Crown Castle	Designed by xjones

Tower Input Data

The tower is a monopole.
This tower is designed using the TLA-222-H standard.
The following design criteria apply:
Tower is located in Hartford County, Connecticut.
Tower base elevation above sea level: 71.000 ft .
Basic wind speed of 125 mph .
Risk Category II.
Exposure Category C.
Simplified Topographic Factor Procedure for wind speed-up calculations is used.
Topographic Category: 1.
Crest Height 0.000 ft .
Nominal ice thickness of 1.700 in .
Ice thickness is considered to increase with height.
Ice density of 56.000 pcf .
A wind speed of 50 mph is used in combination with ice.
Temperature drop of $50.000^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
TLA-222-H Annex S.
TOWER RATING: 83.6\%.
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1.05 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
Use Code Stress Ratios
$\sqrt{ }$ Use Code Safety Factors - Guys
Escalate Ice
Always Use Max Kz
Use Special Wind Profile
Include Bolts In Member Capacity
Leg Bolts Are At Top Of Section
Secondary Horizontal Braces Leg
Use Diamond Inner Bracing (4 Sided)
SR Members Have Cut Ends
SR Members Are Concentric

Distribute Leg Loads As Uniform
Assume Legs Pinned
$\sqrt{ }$ Assume Rigid Index Plate
$\sqrt{ }$ Use Clear Spans For Wind Area
Use Clear Spans For KL/r
Retension Guys To Initial Tension
$\sqrt{ }$ Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
\checkmark Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules
Calculate Redundant Bracing Forces
Ignore Redundant Members in FEA
SR Leg Bolts Resist Compression
All Leg Panels Have Same Allowable
Offset Girt At Foundation
\checkmark Consider Feed Line Torque
Include Angle Block Shear Check
Use TIA-222-H Bracing Resist. Exemption
Use TIA-222-H Tension Splice Exemption Poles
\checkmark Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets
Pole Without Linear Attachments
Pole With Shroud Or No Appurtenances
Outside and Inside Corner Radii Are
Known

thxTower B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	$\begin{array}{\|l\|} \hline \text { Job } \\ 85565 . \end{array}$	ORD - NU (SS	$\begin{aligned} & \text { Page } \\ & 2 \text { of } 42 \end{aligned}$
	Project		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$
	Client	Crown Castle	Designed by xjones

Section	Elevation $f t$	Section Length $f t$	Splice Length $f t$	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	$\begin{gathered} 108.000-103.00 \\ 0 \end{gathered}$	5.000	0.000	Round	8.625	8.625	0.313		$\begin{gathered} \text { A53-B-35 } \\ (35 \mathrm{ksi}) \end{gathered}$
L2	103.000-98.500	4.500	0.000	Round	8.625	8.625	0.313		$\begin{gathered} \text { A53-B-35 } \\ (35 \mathrm{ksi}) \end{gathered}$
L3	98.500-98.000	0.500	0.000	Round	16.500	16.500	0.313		$\begin{gathered} \text { A53-B- } 35 \\ (35 \mathrm{ksi}) \end{gathered}$
L4	98.000-93.000	5.000	0.000	18	16.500	17.300	0.188	0.750	$\begin{gathered} \text { A607-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L5	93.000-88.000	5.000	0.000	18	17.300	18.101	0.188	0.750	$\begin{aligned} & \text { A607-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L6	88.000-83.000	5.000	0.000	18	18.101	18.901	0.188	0.750	$\begin{aligned} & \text { A607-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L7	83.000-82.330	0.670	0.000	18	18.901	19.008	0.188	0.750	$\begin{gathered} \mathrm{A} 607-65 \\ (65 \mathrm{ksi}) \end{gathered}$
L8	82.330-82.080	0.250	0.000	18	19.008	19.048	0.325	1.300	$\begin{gathered} \text { A607-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L9	82.080-77.080	5.000	0.000	18	19.048	19.848	0.319	1.275	$\begin{aligned} & \text { A607-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L10	$77.080-76.250$	0.830	0.000	18	19.848	19.981	0.319	1.275	A607-65 (65 ksi)
L11	76.250-76.000	0.250	0.000	18	19.981	20.021	0.456	1.825	$\begin{aligned} & \text { A607-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L12	$76.000-74.500$	1.500	0.000	18	20.021	20.261	0.450	1.800	$\begin{gathered} \text { A607-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L13	$74.500-74.250$	0.250	0.000	18	20.261	20.301	0.588	2.350	$\begin{aligned} & \text { A607-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L14	74.250-69.250	5.000	0.000	18	20.301	21.102	0.575	2.300	$\begin{gathered} \text { A607-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L15	69.250-64.250	5.000	0.000	18	21.102	21.902	0.550	2.200	$\begin{aligned} & \text { A607-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L16	64.250-59.250	5.000	0.000	18	21.902	22.702	0.544	2.175	$\begin{aligned} & \text { A607-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L17	59.250-58.080	1.170	0.000	18	22.702	22.890	0.537	2.150	$\begin{aligned} & \text { A607-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L18	58.080-57.730	0.350	0.000	18	22.890	22.946	0.713	2.850	$\begin{aligned} & \text { A607-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L19	$57.730-57.500$	0.230	0.000	18	22.946	22.982	0.713	2.850	$\begin{aligned} & \text { A607-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L20	57.500-52.500	5.000	0.000	18	22.982	23.783	0.688	2.750	$\begin{aligned} & \text { A607-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L21	$52.500-47.000$	5.500	3.250	18	23.783	24.663	0.688	2.750	$\begin{aligned} & \text { A607-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L22	47.000-45.250	5.000	0.000	18	23.768	24.568	0.750	3.000	$\begin{aligned} & \text { A607-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L23	45.250-40.500	4.750	0.000	18	24.568	25.328	0.725	2.900	$\begin{aligned} & \mathrm{A} 607-65 \\ & (65 \mathrm{ksi}) \end{aligned}$
L24	40.500-40.250	0.250	0.000	18	25.328	25.368	0.725	2.900	$\begin{gathered} \text { A607-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L25	40.250-35.250	5.000	0.000	18	25.368	26.168	0.700	2.800	$\begin{gathered} \text { A607-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L26	$35.250-30.250$	5.000	0.000	18	26.168	26.969	0.688	2.750	$\begin{aligned} & \text { A607-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L27	30.250-27.750	2.500	0.000	18	26.969	27.369	0.675	2.700	$\begin{aligned} & \text { A607-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L28	27.750-27.500	0.250	0.000	18	27.369	27.409	0.725	2.900	$\begin{aligned} & \text { A607-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L29	27.500-22.500	5.000	0.000	18	27.409	28.209	0.700	2.800	$\begin{aligned} & \text { A607-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L30	22.500-19.500	3.000	0.000	18	28.209	28.689	0.688	2.750	$\begin{aligned} & \text { A607-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$

Section	Elevation $f t$	Section Length $f t$	Splice Length $f t$	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thiclness in	Bend Radius in	Pole Grade
L31	19.500-19.250	0.250	0.000	18	28.689	28.729	0.800	3.200	$\begin{gathered} \text { A607-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L32	19.250-14.250	5.000	0.000	18	28.729	29.529	0.775	3.100	$\begin{aligned} & \text { A607-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L33	14.250-14.000	0.250	0.000	18	29.529	29.569	0.775	3.100	$\begin{gathered} \text { A607-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L34	14.000-13.750	0.250	0.000	18	29.569	29.609	0.775	3.100	$\begin{gathered} \text { A607-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L35	13.750-12.980	0.770	0.000	18	29.609	29.733	0.800	3.200	$\begin{gathered} \text { A607-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L36	12.980-12.730	0.250	0.000	18	29.733	29.773	0.800	3.200	$\begin{gathered} \mathrm{A} 607-65 \\ (65 \mathrm{ksi}) \end{gathered}$
L37	12.730-7.730	5.000	0.000	18	29.773	30.573	0.787	3.150	$\begin{gathered} \text { A607-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L38	7.730-2.730	5.000	0.000	18	30.573	31.373	0.775	3.100	$\begin{aligned} & \text { A607-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L39	$2.730-0.000$	2.730		18	31.373	31.810	0.762	3.050	$\begin{aligned} & \text { A } 607-65 \\ & (65 \mathrm{ksi}) \end{aligned}$

Tapered Pole Properties

Section	Tip Dia. in	Area in^{2}	$\begin{gathered} I \\ i n^{4} \end{gathered}$	$\begin{aligned} & r \\ & \text { in } \end{aligned}$	$\begin{aligned} & C \\ & \text { in } \end{aligned}$	$\begin{aligned} & \mathrm{I} / \mathrm{C} \\ & \mathrm{in}^{3} \\ & \hline \end{aligned}$	$\begin{gathered} J \\ i n^{4} \end{gathered}$	$\begin{gathered} I t / Q \\ i n^{2} \\ \hline \end{gathered}$	$\begin{aligned} & w \\ & \text { in } \\ & \hline \end{aligned}$	w / t
L1	8.625	8.161	70.586	2.941	4.313	16.368	141.172	4.078	0.000	0
	8.625	8.161	70.586	2.941	4.313	16.368	141.172	4.078	0.000	0
L2	8.625	8.161	70.586	2.941	4.313	16.368	141.172	4.078	0.000	0
	8.625	8.161	70.586	2.941	4.313	16.368	141.172	4.078	0.000	0
L3	16.500	15.892	520.728	5.724	8.250	63.119	1041.456	7.941	0.000	0
	16.500	15.892	520.728	5.724	8.250	63.119	1041.456	7.941	0.000	0
L4	16.726	9.708	326.368	5.791	8.382	38.937	653.165	4.855	2.574	13.728
	17.538	10.184	376.798	6.075	8.789	42.874	754.091	5.093	2.715	14.479
L5	17.538	10.184	376.798	6.075	8.789	42.874	754.091	5.093	2.715	14.479
	18.351	10.661	432.172	6.359	9.195	47.000	864.913	5.331	2.856	15.23
L6	18.351	10.661	432.172	6.359	9.195	47.000	864.913	5.331	2.856	15.23
	19.164	11.137	492.723	6.643	9.602	51.316	986.094	5.569	2.997	15.982
L7	19.164	11.137	492.723	6.643	9.602	51.316	986.094	5.569	2.997	15.982
	19.272	11.201	501.242	6.681	9.656	51.909	1003.144	5.601	3.015	16.082
L8	19.251	19.273	849.916	6.633	9.656	88.018	1700.951	9.638	2.773	8.534
	19.292	19.314	855.389	6.647	9.676	88.399	1711.903	9.659	2.780	8.555
L9	19.293	18.949	839.779	6.649	9.676	86.786	1680.664	9.476	2.791	8.758
	20.105	19.758	952.094	6.933	10.083	94.426	1905.442	9.881	2.932	9.199
L10	20.105	19.758	952.094	6.933	10.083	94.426	1905.442	9.881	2.932	9.199
	20.240	19.893	971.656	6.980	10.150	95.725	1944.591	9.948	2.956	9.273
L11	20.219	28.275	1361.828	6.931	10.150	134.164	2725.448	14.140	2.714	5.948
	20.260	28.333	1370.218	6.946	10.171	134.721	2742.239	14.169	2.721	5.963
L12	20.261	27.954	1352.744	6.948	10.171	133.002	2707.267	13.979	2.732	6.071
	20.505	28.297	1403.141	7.033	10.293	136.323	2808.128	14.151	2.774	6.164
L13	20.483	36.686	1794.000	6.984	10.293	174.297	3590.361	18.347	2.532	4.31
	20.524	36.761	1804.969	6.998	10.313	175.017	3612.313	18.384	2.539	4.322
L14	20.526	36.002	1769.928	7.003	10.313	171.619	3542.184	18.004	2.561	4.454
	21.339	37.462	1994.202	7.287	10.720	186.032	3991.027	18.735	2.702	4.699
L15	21.342	35.877	1914.475	7.296	10.720	178.595	3831.470	17.942	2.746	4.993
	22.155	37.274	2146.949	7.580	11.126	192.963	4296.724	18.641	2.887	5.249
L16	22.156	36.861	2124.417	7.582	11.126	190.938	4251.629	18.434	2.898	5.329
	22.969	38.243	2372.283	7.866	11.533	205.700	4747.687	19.125	3.039	5.588
L17	22.970	37.814	2347.000	7.868	11.533	203.507	4697.088	18.910	3.050	5.674

Section	Tip Dia. in	Area in 2	$\begin{aligned} & \bar{I} \\ & i n^{4} \end{aligned}$	in	$\begin{aligned} & \bar{C} \\ & \text { in } \end{aligned}$	$\begin{aligned} & I / C \\ & i n^{3} \end{aligned}$	$\begin{aligned} & J \\ & i n^{4} \end{aligned}$	$\begin{gathered} \text { It/Q } \\ i i^{2} \\ \hline \end{gathered}$	$\begin{aligned} & w \\ & \text { in } \\ & \hline \end{aligned}$	w / t
L18	23.160	38.133	2406.993	7.935	11.628	207.002	4817.153	19.070	3.083	5.735
	23.133	50.153	3116.309	7.873	11.628	268.003	6236.718	25.081	2.775	3.894
	23.190	50.280	3139.984	7.893	11.656	269.380	6284.100	25.145	2.784	3.908
L19	23.190	50.280	3139.984	7.893	11.656	269.380	6284.100	25.145	2.784	3.908
	23.227	50.363	3155.608	7.906	11.675	270.286	6315.367	25.186	2.791	3.917
L20	23.231	48.650	3055.151	7.915	11.675	261.682	6114.321	24.330	2.835	4.123
	24.044	50.397	3396.104	8.199	12.082	281.097	6796.676	25.203	2.976	4.328
L21	24.044	50.397	3396.104	8.199	12.082	281.097	6796.676	25.203	2.976	4.328
	24.937	52.318	3799.444	8.511	12.529	303.257	7603.888	26.164	3.131	4.554
L22	24.547	54.794	3667.732	8.171	12.074	303.770	7340.290	27.402	2.863	3.818
	24.831	56.699	4063.713	8.455	12.481	325.603	8132.772	28.355	3.004	4.005
L23	24.835	54.866	3940.638	8.464	12.481	315.742	7886.461	27.438	3.048	4.204
	25.607	56.616	4329.712	8.734	12.867	336.504	8665.120	28.313	3.182	4.389
L24	25.607	56.616	4329.712	8.734	12.867	336.504	8665.120	28.313	3.182	4.389
	25.648	56.708	4350.870	8.748	12.887	337.615	8707.464	28.359	3.189	4.398
L25	25.652	54.808	4213.638	8.757	12.887	326.966	8432.819	27.409	3.233	4.618
	26.464	56.586	4637.144	9.041	13.294	348.826	9280.391	28.298	3.374	4.819
L26	26.466	55.603	4561.047	9.046	13.294	343.102	9128.096	27.807	3.396	4.939
	27.279	57.349	5004.396	9.330	13.700	365.282	10015.378	28.680	3.536	5.144
L27	27.281	56.333	4920.422	9.334	13.700	359.153	9847.318	28.172	3.558	5.272
	27.687	57.190	5148.478	9.476	13.903	370.305	10303.731	28.600	3.629	5.376
L28	27.679	61.311	5498.831	9.459	13.903	395.504	11004.898	30.662	3.541	4.884
	27.720	61.403	5523.641	9.473	13.924	396.709	11054.551	30.708	3.548	4.894
L29	27.724	59.342	5348.175	9.482	13.924	384.107	10703.387	29.676	3.592	5.131
	28.536	61.120	5843.428	9.766	14.330	407.771	11694.546	30.566	3.733	5.333
L30	28.538	60.055	5746.908	9.770	14.330	401.035	11501.379	30.033	3.755	5.462
	29.026	61.103	6052.962	9.941	14.574	415.324	12113.889	30.557	3.839	5.584
L31	29.008	70.816	6958.894	9.901	14.574	477.484	13926.944	35.415	3.641	4.552
	29.049	70.918	6988.887	9.915	14.594	478.874	13986.970	35.466	3.648	4.56
L32	29.053	68.763	6788.682	9.924	14.594	465.156	13586.297	34.388	3.692	4.764
	29.865	70.731	7388.530	10.208	15.001	492.538	14786.782	35.372	3.833	4.946
L33	29.865	70.731	7388.530	10.208	15.001	492.538	14786.782	35.372	3.833	4.946
	29.906	70.830	749.416	10.222	15.021	493.928	14848.595	35.422	3.840	4.955
L34	29.906	70.830	7419.416	10.222	15.021	493.928	14848.595	35.422	3.840	4.955
	29.947	70.928	7450.387	10.236	15.042	495.320	14910.577	35.471	3.847	4.964
L35	29.943	73.153	7670.735	10.227	15.042	509.969	15351.564	36.583	3.803	4.754
	30.068	73.466	7769.593	10.271	15.104	514.400	15549.410	36.740	3.825	4.781
L36	30.068	73.466	7769.593	10.271	15.104	514.400	15549.410	36.740	3.825	4.781
	30.109	73.567	7801.872	10.285	15.125	515.843	15614.009	36.791	3.832	4.79
L37	30.110	72.449	7689.912	10.290	15.125	508.441	15389.942	36.231	3.854	4.894
	30.923	74.449	8344.564	10.574	15.531	537.284	16700.107	37.232	3.995	5.073
L38	30.925	73.298	8222.454	10.578	15.531	529.422	16455.727	36.656	4.017	5.183
	31.738	75.267	8902.842	10.862	15.938	558.609	17817.398	37.640	4.158	5.365
L39	31.739	74.083	8769.987	10.867	15.938	550.273	17551.513	37.049	4.180	5.482
	32.183	75.140	9150.907	11.022	16.159	566.287	18313.854	37.577	4.257	5.582

Tower Elevation ft	Gusset Area (perface)	Gusset Thickness in	Gusset Grade	$\begin{gathered} \text { Adjust. Factor } \\ A_{f} \end{gathered}$	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
L1				1	1	1			
108.000-103.0									
L2				1	1	1			
103.000-98.50									
0									
L3$98.500-98.000$									
L4				1	1	1			
98.000-93.000									

Tower Elevation $f t$	$\begin{gathered} \text { Gusset } \\ \text { Area } \\ \text { (per face) } \\ f^{2} \end{gathered}$	Gusset Thickness in	Gusset Grade Adjust. Factor	$\begin{gathered} \text { Adjust. } \\ \text { Factor } \\ A_{r} \end{gathered}$	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
L5			I	1	1			
93.000-88.000								
L6			1	1	1			
88.000-83.000								
L7			1	1	1			
83.000-82.330								
L8			1	1	1.03474			
82.330-82.080								
L9			1	1	1.03556			
82.080-77.080								
L10			1	1	1.03254			
77.080-76.250								
Ll1			1	1	1.15217			
76.250-76.000								
L12			1	1	1.1587			
76.000-74.500								
L13			1	1	0.971985			
74.500-74.250								
L14			1	1	0.966504			
74.250-69.250								
L15			1	1	0.984159			
69.250-64.250								
L16			1	1	0.971691			
64.250-59.250								
L17			1	1	0.977402			
59.250-58.080								
L18			1	1	0.932812			
58.080-57.730								
L19			1	1	0.931705			
57.730-57.500								
L20			1	1	0.940531			
57.500-52.500								
L21			1	1	0.930278			
52.500-47.000								
L22			1	1	0.928658			
47.000-45.250								
L23			1	1	0.940675			
45.250-40.500								
L24			1	1	0.939708			
40.500-40.250								
L25			1	1	0.952955			
40.250-35.250								
L26			1	1	0.951349			
35.250-30.250								
L27			1	1	0.95954			
30.250-27.750								
L28			1	1	0.947656			
27.750-27.500								
L29			1	1	0.962447			
27.500-22.500								
L30			1	1	0.968941			
22.500-19.500								
L31			1	1	0.898748			
19.500-19.250								
L32			1	1	0.910092			
19.250-14.250								
L33			1	1	0.909276			
$\underset{\text { 14.250-14.000 }}{ }$								
L34					0.971909			

Tower Elevation ft	Gusset Area (per face) $f t^{2}$	Gusset Thickness in	Gusset Grade	Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in in
14.000-13.750									
L35				1	1	0.967746			
13.750-12.980									
L36				1	1	0.966841			
12.980-12.730									
L37				1	1	0.963917			
12.730-7.730									
L38				1	1	0.961885			
7.730-2.730									
L39				1	1	0.968116			
2.730-0.000									

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From Torque Calculation	Component Type	Placement $f t$	Total Number	Number Per Row	Start/End Position	Width or Diameter in	Perimeter in	Weight $k l f$
$\begin{gathered} \hline \text { LDF6-50A(1-1/4) } \\ (6 \mathrm{E}+1 \mathrm{P}) \end{gathered}$	A	No	$\begin{aligned} & \text { Surface } \mathrm{Ar} \\ & \text { (CaAa) } \end{aligned}$	$\begin{gathered} 105.000- \\ 0.000 \end{gathered}$	7	6	$\begin{aligned} & -0.500 \\ & -0.200 \end{aligned}$	1.550		0.001
HB158-1-08U8-\$8J18(1- $5 / 8)$ (E) $* \$ \* $* \$ \*	A	No	$\begin{aligned} & \text { Surface Ar } \\ & \text { (CaAa) } \end{aligned}$	$\begin{gathered} 105.000- \\ 0.000 \end{gathered}$	1	1	$\begin{gathered} -0.300 \\ -0.200 \end{gathered}$	1.980		0.001
ATCB-B01(5/16) (E)	C	No	$\begin{aligned} & \text { Surface Ar } \\ & \text { (CaAa) } \end{aligned}$	$\begin{gathered} 81.000- \\ 0.000 \end{gathered}$	1	1	$\begin{gathered} -0.360 \\ -0.350 \end{gathered}$	0.315		0.000
FXL $780 \mathrm{PE}(7 / 8)$ (E)	C	No	$\begin{gathered} \text { Surface Ar } \\ \text { (CaAa) } \end{gathered}$	$\begin{gathered} 81.000- \\ 0.000 \end{gathered}$	6	3	$\begin{aligned} & -0.500 \\ & -0.350 \end{aligned}$	1.090		0.000
\$ Safety Line 3/8 (E)	B	No	$\begin{aligned} & \text { Surface Ar } \\ & \text { (CaAa) } \end{aligned}$	$\begin{gathered} 108.000- \\ 0.000 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	0.375		0.000
$5.25^{\prime \prime} \times 1.25^{\prime \prime}$ Plate (E-VSI Mod)	A	No	Surface Af (CaAa)	$\begin{gathered} 29.750- \\ 0.000 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	5.250	13.000	0.000
$5.25^{\prime \prime} \times 1.25^{\prime \prime} \text { Plate }$ (E-VSI Mod)	B	No	$\begin{gathered} \text { Surface Af } \\ \text { (CaAa) } \end{gathered}$	$\begin{gathered} 15.500- \\ 0.000 \end{gathered}$	2	2	$\begin{aligned} & 0.200 \\ & 0.300 \end{aligned}$	5.250	13.000	0.000
$5.25^{\prime \prime} \times 1.25^{\prime \prime}$ Plate (E-VSI Mod)	B	No	$\begin{gathered} \text { Surface Af } \\ \text { (CaAa) } \end{gathered}$	$\begin{gathered} 29.750- \\ 10.250 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	5.250	13.000	0.000
$5.25^{\prime \prime}$ x $1.25^{\prime \prime}$ Plate (E-VSI Mod) *\$*	C	No	$\begin{gathered} \text { Surface Af } \\ \text { (CaAa) } \end{gathered}$	$\begin{gathered} 29.750- \\ 0.000 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	5.250	13.000	0.000
$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate (E-VSI Mod)	A	No	$\begin{gathered} \text { Surface Af } \\ (\mathrm{CaAa}) \end{gathered}$	$\begin{gathered} 59.500- \\ 29.750 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	4.375	11.250	0.000
$\begin{aligned} & 4.375^{\circ 1} \times 1.25^{\prime \prime} \text { Plate } \\ & \text { (E-VSI Mod) } \end{aligned}$	B	No	$\begin{gathered} \text { Surface Af } \\ (\mathrm{CaAa}) \end{gathered}$	$\begin{gathered} 59.500- \\ 29.750 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	4.375	11.250	0.000
$\begin{aligned} & 4.375^{\prime \prime} \times 1.25^{\prime \prime} \text { Plate } \\ & \text { (E-VSI Mod) } \\ & * \$ \$^{*} \end{aligned}$	C	No	$\begin{gathered} \text { Surface Af } \\ \text { (CaAa) } \end{gathered}$	$\begin{gathered} 59.500- \\ 29.750 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	4.375	11.250	0.000
$4.0^{\prime \prime} \times 1.25^{\prime \prime} \text { Plate }$ (E-VSI Mod)	A	No	$\begin{aligned} & \text { Surface Af } \\ & (\mathrm{CaAa}) \end{aligned}$	$\begin{gathered} 78.000- \\ 59.500 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	4.000	10.500	0.000
$4.0^{\prime \prime} \times 1.25^{\prime \prime}$ Plate (E-VSI Mod)	B	No	Surface Af (CaAa)	$\begin{gathered} 78.000- \\ 59.500 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	4.000	10.500	0.000
$4.0^{\prime \prime}$ x I. $25^{\prime \prime}$ Plate (E-VSI Mod)	C	No	Surface Af (CaAa)	$\begin{gathered} 78.000- \\ 59.500 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	4.000	10.500	0.000

thxTower B+T Group 1717 S. Boulder, Suite 300	$\begin{array}{\|l} \text { Job } \\ 85565.009 .01 \text { - HARTFORD - NU (SSUSA),CT (BU\# 876363) } \end{array}$		$\begin{gathered} \text { Page } \\ 7 \text { of } 42 \end{gathered}$
	Project		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by xjones

Description	Sector	Exclude From Torque Calculation	Component Type	Placement ft	$\begin{gathered} \text { Total } \\ \text { Number } \end{gathered}$	Number Per Row	Start/End Position	Width or Diameter in	Perimeter in	Weight klf
\$ ${ }^{}$										
$\begin{gathered} \text { MP3-05 } \\ \text { (E-B+T Mod) } \end{gathered}$	A	No	Surface Af (CaAa)	$\begin{gathered} 40.500- \\ 0.000 \end{gathered}$	1	1	$\begin{aligned} & 0.400 \\ & 0.400 \end{aligned}$	5.330	14.840	0.000
MP3-05	B	No	Surface Af	$15.500-$	1	1	0.200	5.330	14.840	0.000
(E-B+T Mod)			(CaAa)	0.000			0.200			
MP3-05	B	No	Surface Af	$40.500-$	1	1	0.400	5.330	14.840	0.000
(E-B+T Mod)			(CaAa)	10.500			0.400			
MP3-05	C	No	Surface Af	$40.500-$	1	1	0.400	5.330	14.840	0.000
\$										
MP3-05	A	No	Surface Af	$60.500-$	1	1	0.400	5.330	14.840	0.000
(E-B+T Mod)			(CaAa)	40.500			0.400			
MP3-05	B	No	Surface Af	$60.500-$	1	1	0.400	5.330	14.840	0.000
(E-B+T Mod)			(CaAa)	40.500			0.400			
MP3-05	C	No	Surface Af	$60.500-$	1	1	0.400	5.330	14.840	0.000
(E-B+T Mod)			(СаАа)	40.500			0.400			
\$8										
MP3-03	A	No	Sufface Af	$84.050-$	1	1	0.400	4.060	11.260	0.000
(E-B+T Mod)			(CaAa)	60.500			0.400			
MP3-03	B	No	Surface Af	$84.050-$	1	1	0.400	4.060	11.260	0.000
(E-B+T Mod)			(CaAa)	60.500			0.400			
MP3-03	C	No	Surface Af	$84.050-$	1	1	0.400	4.060	11.260	0.000
(E-B+T Mod)			(CaAa)	60.500			0.400			
\$\$										
CCI 4.5"x $1^{\prime \prime}$ Plate	A	No	Surface Af	15.500-	1	1	0.000	4.500	11.000	0.000
($\mathrm{E}-\mathrm{B}+\mathrm{TMod}$)			(CaAa)	0.000			0.020			
CCI 4.5"x 1" Plate	B	No	Surface Af	21.000-	1	1	0.300	4.500	11.000	0.000
$(\mathrm{E}-\mathrm{B}+\mathrm{TMOM} \mathrm{Mod})$			(CaAa)	11.000			0.320			

Feed Line/Linear Appurtenances - Entered As Area

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Exclude From Torque Calculation	Component Type	Placement $f t$	Total Number		$C_{A} A_{A}$ $f t^{2} / f t$	Weight $k l f$
\$8 Calculation									
HB114-1-08U4-M5J	B	No	No	Inside Pole	98.000-0.000	3	No Ice	0.000	0.001
(1-1/4)							$1 / 2^{\prime \prime}$ Ice	0.000	0.001
(E-Sprint)							1" Ice	0.000	0.001
							2 Ice	0.000	0.001
3X4AWG(1-1/4)	B	No	No	Inside Pole	98.000-0.000	1	No Ice	0.000	0.001
(R)							$1 / 2^{1 /}$ Ice	0.000	0.001
							1" Ice	0.000	0.001
							2" Ice	0.000	0.001
\$									
LDF4-50A(1/2)	B	No	No	Inside Pole	74.000-0.000	1	No Ice	0.000	0.000
(E)							1/2" Ice	0.000	0.000
							1" Ice	0.000	0.000
							2 " Ice	0.000	0.000
\$8									

Feed Line/Linear Appurtenances Section Areas

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tower \\
Section
\end{tabular} \& Tower Elevation \(f t\) \& Face \& \(A_{R}\)

$f l^{2}$ \& A_{F}

f^{2} \& $C_{A} A_{A}$ In Face $f t^{2}$ \& \[
$$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
f^{2} \\
\hline
\end{gathered}
$$

\] \& | Weight |
| :---: |
| K |

\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{108.000-103.000} \& A \& 0.000 \& 0.000 \& 2.256 \& 0.000 \& 0.011

\hline \& \& B \& 0.000 \& 0.000 \& 0.188 \& 0.000 \& 0.001

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{L2} \& \multirow[t]{3}{*}{103.000-98.500} \& A \& 0.000 \& 0.000 \& 5.076 \& 0.000 \& 0.025

\hline \& \& B \& 0.000 \& 0.000 \& 0.169 \& 0.000 \& 0.001

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{L3} \& \multirow[t]{3}{*}{98.500-98.000} \& A \& 0.000 \& 0.000 \& 0.564 \& 0.000 \& 0.003

\hline \& \& B \& 0.000 \& 0.000 \& 0.019 \& 0.000 \& 0.000

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{L4} \& \multirow[t]{3}{*}{98.000-93.000} \& A \& 0.000 \& 0.000 \& 5.640 \& 0.000 \& 0.028

\hline \& \& B \& 0.000 \& 0.000 \& 0.188 \& 0.000 \& 0.022

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{L5} \& \multirow[t]{3}{*}{93.000-88.000} \& A \& 0.000 \& 0.000 \& 5.640 \& 0.000 \& 0.028

\hline \& \& B \& 0.000 \& 0.000 \& 0.188 \& 0.000 \& 0.022

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{L6} \& \multirow[t]{3}{*}{88.000-83.000} \& A \& 0.000 \& 0.000 \& 6.351 \& 0.000 \& 0.028

\hline \& \& B \& 0.000 \& 0.000 \& 0.898 \& 0.000 \& 0.022

\hline \& \& C \& 0.000 \& 0.000 \& 0.711 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{L7} \& \multirow[t]{3}{*}{83.000-82.330} \& A \& 0.000 \& 0.000 \& 1.209 \& 0.000 \& 0.004

\hline \& \& B \& 0.000 \& 0.000 \& 0.478 \& 0.000 \& 0.003

\hline \& \& C \& 0.000 \& 0.000 \& 0.453 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{L8} \& \multirow[t]{3}{*}{82.330-82.080} \& A \& 0.000 \& 0.000 \& 0.451 \& 0.000 \& 0.001

\hline \& \& B \& 0.000 \& 0.000 \& 0.179 \& 0.000 \& 0.001

\hline \& \& C \& 0.000 \& 0.000 \& 0.169 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{L9} \& \multirow[t]{3}{*}{82.080-77.080} \& A \& 0.000 \& 0.000 \& 9.637 \& 0.000 \& 0.028

\hline \& \& B \& 0.000 \& 0.000 \& 4.184 \& 0.000 \& 0.022

\hline \& \& C \& 0.000 \& 0.000 \& 5.402 \& 0.000 \& 0.006

\hline \multirow[t]{3}{*}{L10} \& \multirow[t]{3}{*}{77.080-76.250} \& A \& 0.000 \& 0.000 \& 2.051 \& 0.000 \& 0.005

\hline \& \& B \& 0.000 \& 0.000 \& 1.146 \& 0.000 \& 0.004

\hline \& \& C \& 0.000 \& 0.000 \& 1.413 \& 0.000 \& 0.001

\hline \multirow[t]{3}{*}{L11} \& \multirow[t]{3}{*}{76.250-76.000} \& A \& 0.000 \& 0.000 \& 0.618 \& 0.000 \& 0.001

\hline \& \& B \& 0.000 \& 0.000 \& 0.345 \& 0.000 \& 0.001

\hline \& \& C \& 0.000 \& 0.000 \& 0.425 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{L12} \& \multirow[t]{3}{*}{$76.000-74.500$} \& A \& 0.000 \& 0.000 \& 3.707 \& 0.000 \& 0.008

\hline \& \& B \& 0.000 \& 0.000 \& 2.071 \& 0.000 \& 0.007

\hline \& \& C \& 0.000 \& 0.000 \& 2.553 \& 0.000 \& 0.002

\hline \multirow[t]{3}{*}{L13} \& \multirow[t]{3}{*}{$74.500-74.250$} \& A \& 0.000 \& 0.000 \& 0.618 \& 0.000 \& 0.001

\hline \& \& B \& 0.000 \& 0.000 \& 0.345 \& 0.000 \& 0.001

\hline \& \& C \& 0.000 \& 0.000 \& 0.425 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{L14} \& \multirow[t]{3}{*}{$74.250-69.250$} \& A \& 0.000 \& 0.000 \& 12.357 \& 0.000 \& 0.028

\hline \& \& B \& 0.000 \& 0.000 \& 6.904 \& 0.000 \& 0.022

\hline \& \& C \& 0.000 \& 0.000 \& 8.509 \& 0.000 \& 0.008

\hline \multirow[t]{3}{*}{L15} \& \multirow[t]{3}{*}{69.250-64.250} \& A \& 0.000 \& 0.000 \& 12.357 \& 0.000 \& 0.028

\hline \& \& B \& 0.000 \& 0.000 \& 6.904 \& 0.000 \& 0.022

\hline \& \& C \& 0.000 \& 0.000 \& 8.509 \& 0.000 \& 0.008

\hline \multirow[t]{3}{*}{L16} \& \multirow[t]{3}{*}{$64.250-59.250$} \& A \& 0.000 \& 0.000 \& 12.637 \& 0.000 \& 0.028

\hline \& \& B \& 0.000 \& 0.000 \& 7.184 \& 0.000 \& 0.022

\hline \& \& C \& 0.000 \& 0.000 \& 8.789 \& 0.000 \& 0.008

\hline \multirow[t]{3}{*}{L17} \& \multirow[t]{3}{*}{59.250-58.080} \& A \& 0.000 \& 0.000 \& 3.212 \& 0.000 \& 0.006

\hline \& \& B \& 0.000 \& 0.000 \& 1.936 \& 0.000 \& 0.005

\hline \& \& C \& 0.000 \& 0.000 \& 2.312 \& 0.000 \& 0.002

\hline \multirow[t]{3}{*}{Li 8} \& \multirow[t]{3}{*}{58.080-57.730} \& A \& 0.000 \& 0.000 \& 0.961 \& 0.000 \& 0.002

\hline \& \& B \& 0.000 \& 0.000 \& 0.579 \& 0.000 \& 0.002

\hline \& \& C \& 0.000 \& 0.000 \& 0.692 \& 0.000 \& 0.001

\hline \multirow[t]{3}{*}{L19} \& \multirow[t]{3}{*}{$57.730-57.500$} \& A \& 0.000 \& 0.000 \& 0.631 \& 0.000 \& 0.001

\hline \& \& B \& 0.000 \& 0.000 \& 0.381 \& 0.000 \& 0.001

\hline \& \& C \& 0.000 \& 0.000 \& 0.454 \& 0.000 \& 0.000

\hline L20 \& 57.500-52.500 \& A \& 0.000 \& 0.000 \& 13.728 \& 0.000 \& 0.028

\hline
\end{tabular}

tnxTower B+T Group 1717 S. Boulder, Suite 300	Job 85565.009.01 - HARTFORD - NU (SSUSA), CT (BU\# 876363) Prict		$\text { Page } 9 \text { of } 42$	
	Project		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$	
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Design	ned by xjones

Tower Section	Tower Elevation $f t$	Face	$\overline{A_{R}}$ $f t^{2}$	$\begin{gathered} A_{F} \\ {f t^{2}}^{2} \end{gathered}$	$\begin{gathered} C_{A A} A_{A} \\ \text { In Face } \\ {f t^{2}}^{2} \\ \hline \end{gathered}$	$\begin{gathered} C_{A} A_{A} \\ \text { Out Face } \\ f_{1}^{2} \end{gathered}$	Weight . K
L21	52.500-47.000	B	0.000	0.000	8.275	0.000	0.022
		C	0.000	0.000	9.880	0.000	0.008
		A	0.000	0.000	15.100	0.000	0.030
		B	0.000	0.000	9.102	0.000	0.025
L22	47.000-45.250	C	0.000	0.000	10.868	0.000	0.009
		A	0.000	0.000	4.805	0.000	0.010
		B	0.000	0.000	2.896	0.000	0.008
L23	45.250-40.500	C	0.000	0.000	3.458	0.000	0.003
		A	0.000	0.000	13.041	0.000	0.026
		B	0.000	0.000	7.861	0.000	0.021
L24	40.500-40.250	C	0.000	0.000	9.386	0.000	0.007
		A	0.000	0.000	0.686	0.000	0.001
		B	0.000	0.000	0.414	0.000	0.001
L25	40.250-35.250	C	0.000	0.000	0.494	0.000	0.000
		A	0.000	0.000	13.728	0.000	0.028
		B	0.000	0.000	8.275	0.000	0.022
L26	35.250-30.250	C	0.000	0.000	9.880	0.000	0.008
		A	0.000	0.000	13.728	0.000	0.028
		B	0.000	0.000	8.275	0.000	0.022
L27	30.250-27.750	C	0.000	0.000	9.880	0.000	0.008
		A	0.000	0.000	7.155	0.000	0.014
		B	0.000	0.000	4.429	0.000	0.011
L28	27.750-27.500	C	0.000	0.000	5.232	0.000	0.004
		A	0.000	0.000	0.723	0.000	0.001
		B	0.000	0.000	0.450	0.000	0.001
L29	27.500-22.500	C	0.000	0.000	0.530	0.000	0.000
		A	0.000	0.000	14.457	0.000	0.028
		B	0.000	0.000	9.004	0.000	0.022
L30	22.500-19.500	C	0.000	0.000	10.609	0.000	0.008
		A	0.000	0.000	8.674	0.000	0.017
		B	0.000	0.000	6.527	0.000	0.013
L31	19.500-19.250	C	0.000	0.000	6.365	0.000	0.005
		A	0.000	0.000	0.723	0.000	0.001
		B	0.000	0.000	0.638	0.000	0.001
L32	19.250-14.250	C	0.000	0.000	0.530	0.000	0.000
		A	0.000	0.000	15.394	0.000	0.028
		B	0.000	0.000	16.052	0.000	0.022
L33	14.250-14.000	C	0.000	0.000	10.609	0.000	0.008
		A	0.000	0.000	0.910	0.000	0.001
		B	0.000	0.000	1.297	0.000	0.001
L34	14.000-13.750	C	0.000	0.000	0.530	0.000	0.000
		A	0.000	0.000	0.910	0.000	0.001
		B	0.000	0.000	1.297	0.000	0.001
L35	13.750-12.980	C	0.000	0.000	0.530	0.000	0.000
		A	0.000	0.000	2.804	0.000	0.004
		B	0.000	0.000	3.996	0.000	0.003
L36	12.980-12.730	C	0.000	0.000	1.634	0.000	0.001
		A	0.000	0.000	0.910	0.000	0.001
		B	0.000	0.000	1.297	0.000	0.001
L37	12.730-7.730	C	0.000	0.000	0.530	0.000	0.000
		A	0.000	0.000	18.207	0.000	0.028
		B	0.000	0.000	18.828	0.000	0.022
L38	7.730-2.730	C	0.000	0.000	10.609	0.000	0.008
		A	0.000	0.000	18.207	0.000	0.028
		B	0.000	0.000	13.379	0.000	0.022
L39	2.730-0.000	C	0.000	0.000	10.609	0.000	0.008
		A	0.000	0.000	9.941	0.000	0.015
		B	0.000	0.000	7.305	0.000	0.012
		C	0.000	0.000	5.793	0.000	0.004

Feed Line/Linear Appurtenances Section Areas - With Ice

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Tower Section \& Tower Elevation ft \& $$
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
$$ \& Ice
Thickness
in \& A_{R}

$f t^{2}$ \& A_{F}

$f t^{2}$ \& \[
$$
\begin{gathered}
C_{A} A_{A} \\
\text { In Face } \\
{f t^{2}}^{2}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
\text { ft }^{2}
\end{gathered}
$$
\] \& Weight

K

\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{108.000-103.000} \& A \& \multirow[t]{3}{*}{1.910} \& 0.000 \& 0.000 \& 4.440 \& 0.000 \& 0.077

\hline \& \& B \& \& 0.000 \& 0.000 \& 2.097 \& 0.000 \& 0.028

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{L2} \& \multirow[t]{3}{*}{103.000-98.500} \& A \& \multirow[t]{3}{*}{1.901} \& 0.000 \& 0.000 \& 9.971 \& 0.000 \& 0.173

\hline \& \& B \& \& 0.000 \& 0.000 \& 1.879 \& 0.000 \& 0.025

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{L3} \& \multirow[t]{3}{*}{98.500-98.000} \& A \& \multirow[t]{3}{*}{1.896} \& 0.000 \& 0.000 \& 1.107 \& 0.000 \& 0.019

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.208 \& 0.000 \& 0.003

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{L4} \& \multirow[t]{3}{*}{98.000-93.000} \& A \& \multirow[t]{3}{*}{1.891} \& 0.000 \& 0.000 \& 11.056 \& 0.000 \& 0.191

\hline \& \& B \& \& 0.000 \& 0.000 \& 2.078 \& 0.000 \& 0.048

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{L5} \& \multirow[t]{3}{*}{93.000-88.000} \& A \& \multirow[t]{3}{*}{1.880} \& 0.000 \& 0.000 \& 11.033 \& 0.000 \& 0.190

\hline \& \& B \& \& 0.000 \& 0.000 \& 2.068 \& 0.000 \& 0.048

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000

\hline \multirow[t]{3}{*}{L6} \& \multirow[t]{3}{*}{88.000-83.000} \& A \& \multirow[t]{3}{*}{1.870} \& 0.000 \& 0.000 \& 12.113 \& 0.000 \& 0.203

\hline \& \& B \& \& 0.000 \& 0.000 \& 3.160 \& 0.000 \& 0.061

\hline \& \& C \& \& 0.000 \& 0.000 \& 1.103 \& 0.000 \& 0.014

\hline \multirow[t]{3}{*}{L7} \& \multirow[t]{3}{*}{83.000-82.330} \& A \& \multirow[t]{3}{*}{1.864} \& 0.000 \& 0.000 \& 2.176 \& 0.000 \& 0.034

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.978 \& 0.000 \& 0.015

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.703 \& 0.000 \& 0.009

\hline \multirow[t]{3}{*}{L.8} \& \multirow[t]{3}{*}{82.330-82.080} \& A \& \multirow[t]{3}{*}{1.862} \& 0.000 \& 0.000 \& 0.812 \& 0.000 \& 0.013

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.365 \& 0.000 \& 0.006

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.262 \& 0.000 \& 0.003

\hline \multirow[t]{3}{*}{L9} \& \multirow[t]{3}{*}{82.080-77.080} \& A \& \multirow[t]{3}{*}{1.856} \& 0.000 \& 0.000 \& 17.174 \& 0.000 \& 0.265

\hline \& \& B \& \& 0.000 \& 0.000 \& 8.239 \& 0.000 \& 0.125

\hline \& \& C \& \& 0.000 \& 0.000 \& 11.195 \& 0.000 \& 0.158

\hline \multirow[t]{3}{*}{L10} \& \multirow[t]{3}{*}{77.080-76.250} \& A \& \multirow[t]{3}{*}{1.850} \& 0.000 \& 0.000 \& 3.549 \& 0.000 \& 0.052

\hline \& \& B \& \& 0.000 \& 0.000 \& 2.067 \& 0.000 \& 0.029

\hline \& \& C \& \& 0.000 \& 0.000 \& 2.785 \& 0.000 \& 0.038

\hline \multirow[t]{3}{*}{L11} \& \multirow[t]{3}{*}{76.250-76.000} \& A \& \multirow[t]{3}{*}{1.848} \& 0.000 \& 0.000 \& 1.069 \& 0.000 \& 0.016

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.622 \& 0.000 \& 0.009

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.839 \& 0.000 \& 0.012

\hline \multirow[t]{3}{*}{L12} \& \multirow[t]{3}{*}{76.000-74.500} \& A \& \multirow[t]{3}{*}{1.846} \& 0.000 \& 0.000 \& 6.409 \& 0.000 \& 0.094

\hline \& \& B \& \& 0.000 \& 0.000 \& 3.733 \& 0.000 \& 0.053

\hline \& \& C \& \& 0.000 \& 0.000 \& 5.029 \& 0.000 \& 0.069

\hline \multirow[t]{3}{*}{L13} \& \multirow[t]{3}{*}{$74.500-74.250$} \& A \& \multirow[t]{3}{*}{1.844} \& 0.000 \& 0.000 \& 1.068 \& 0.000 \& 0.016

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.622 \& 0.000 \& 0.009

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.838 \& 0.000 \& 0.011

\hline \multirow[t]{3}{*}{L14} \& \multirow[t]{3}{*}{74.250-69.250} \& A \& \multirow[t]{3}{*}{1.837} \& 0.000 \& 0.000 \& 21.328 \& 0.000 \& 0.313

\hline \& \& B \& \& 0.000 \& 0.000 \& 12.416 \& 0.000 \& 0.175

\hline \& \& C \& \& 0.000 \& 0.000 \& 16.726 \& 0.000 \& 0.228

\hline \multirow[t]{3}{*}{L15} \& \multirow[t]{3}{*}{69.250-64.250} \& A \& \multirow[t]{3}{*}{1.824} \& 0.000 \& 0.000 \& 21.271 \& 0.000 \& 0.310

\hline \& \& B \& \& 0.000 \& 0.000 \& 12.376 \& 0.000 \& 0.173

\hline \& \& C \& \& 0.000 \& 0.000 \& 16.670 \& 0.000 \& 0.226

\hline \multirow[t]{3}{*}{L16} \& \multirow[t]{3}{*}{64.250-59.250} \& A \& \multirow[t]{3}{*}{1.810} \& 0.000 \& 0.000 \& 21.491 \& 0.000 \& 0.311

\hline \& \& B \& \& 0.000 \& 0.000 \& 12.614 \& 0.000 \& 0.175

\hline \& \& C \& \& 0.000 \& 0.000 \& 16.890 \& 0.000 \& 0.227

\hline \multirow[t]{3}{*}{L17} \& \multirow[t]{3}{*}{59.250-58.080} \& A \& 1.801 \& 0.000 \& 0.000 \& 5.275 \& 0.000 \& 0.075

\hline \& \& B \& \& 0.000 \& 0.000 \& 3.200 \& 0.000 \& 0.043

\hline \& \& C \& \& 0.000 \& 0.000 \& 4.198 \& 0.000 \& 0.056

\hline \multirow[t]{3}{*}{L18} \& \multirow[t]{3}{*}{58.080-57.730} \& A \& 1.798 \& 0.000 \& 0.000 \& 1.577 \& 0.000 \& 0.022

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.957 \& 0.000 \& 0.013

\hline \& \& C \& \& 0.000 \& 0.000 \& 1.255 \& 0.000 \& 0.017

\hline \multirow[t]{2}{*}{L19} \& \multirow[t]{2}{*}{57.730-57.500} \& A \& 1.797 \& 0.000 \& 0.000 \& 1.036 \& 0.000 \& 0.015

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.629 \& 0.000 \& 0.009

\hline
\end{tabular}

tnxTower B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	$\left\lvert\, \begin{array}{l\|l} \text { Job } \\ 85565 \end{array}\right.$	ORD - NU (SS	$\begin{aligned} & \text { Page } \\ & 11 \text { of } 42 \end{aligned}$
	Project		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$
	Client	Crown Castle	Designed by xjones

Tower	Tower	Face	Ice	A_{R}	A_{F}	$C_{A} A_{A}$	$C_{A} A_{A}$	Weight
Section	Elevation	or	Thickness		fl 2	$f l^{2}$	InFace	Out Face

tnxTower B+TGroup 1717 S. Boulder, Suite 300 Tulsa, OK 74119	$\begin{array}{\|l} \text { Job } \\ 85565.009 .01 \text { - HARTFORD - NU (SSUSA),CT (BU\# } 876363 \text {) } \end{array}$		$\text { Page } 12 \text { of } 42$
	Project		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by xjones

Feed Line Center of Pressure

Section	Elevation $f t$	$C P_{X}$ in	$C P_{2}$ in	$\begin{gathered} C P_{X} \\ \text { Ice } \\ \text { in } \\ \hline \end{gathered}$	$\begin{gathered} C P_{Z} \\ \text { Ice } \\ \text { in } \\ \hline \end{gathered}$
L1	108.000-103.000	-2.765	0.433	-1.276	-0.033
L2	103.000-98.500	-4.120	0.702	-2.515	0.261
L3	98.500-98.000	-5.432	0.909	-3.487	0.320
L4	98.000-93.000	-4.995	0.835	-3.514	0.322
L5	93.000-88.000	-5.076	0.848	-3.597	0.328
L6	88.000-83.000	-4.350	0.726	-3.283	0.298
L7	83.000-82.330	-2.310	0.385	-2.376	0.216
L8	82.330-82.080	-2.316	0.386	-2.383	0.216
L9	82.080-77.080	-1.674	0.680	-1.207	0.839
L10	77.080-76.250	-1.218	0.600	-0.802	0.814
L11	76.250-76.000	-1.221	0.602	-0.805	0.816
L12	76.000-74.500	-1.226	0.604	-0.809	0.820
L13	74.500-74.250	-1.232	0.607	-0.813	0.824
L14	74.250-69.250	-1.247	0.614	-0.825	0.836
L15	69.250-64.250	-1.275	0.629	-0.847	0.859
L16	64.250-59.250	-1.273	0.628	-0.859	0.871
L17	59.250-58.080	-1.186	0.585	-0.834	0.845
L18	58.080-57.730	-1.190	0.588	-0.838	0.848
L19	57.730-57.500	-1.191	0.588	-0.839	0.850
L20	57.500-52.500	-1.204	0.595	-0.851	0.860
L21	52.500-47.000	-1.231	0.608	-0.874	0.882
L22	47.000-45.250	-1.237	0.612	-0.878	0.887
L23	45.250-40.500	-1.253	0.620	-0.896	0.899
L24	40.500-40.250	-1.265	0.626	-0.907	0.909
L25	40.250-35.250	-1.278	0.632	-0.919	0.919
L26	35.250-30.250	-1.302	0.644	-0.943	0.938
L27	30.250-27.750	-1.269	0.629	-0.939	0.930
L28	27.750-27.500	-1.263	0.626	-0.940	0.929
L29	27.500-22.500	-1.275	0.632	-0.953	0.938
L30	22.500-19.500	-0.752	0.995	-0.542	1.240
L31	19.500-19.250	-0.259	1.326	-0.140	1.519
L32	19.250-14.250	0.427	1.461	-0.056	1.392
L33	14.250-14.000	1.986	1.748	0.152	1.060
L34	14.000-13.750	1.988	1.750	0.152	1.061
L35	13.750-12.980	1.993	1.754	0.152	1.063
L36	12.980-12.730	1.997	1.758	0.152	1.065
L37	12.730-7.730	0.822	1.213	-1.189	0.464
L38	7.730-2.730	-0.294	0.846	-2.470	0.034
L39	$2.730-0.000$	-0.296	0.858	-2.539	0.018

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No Ice	K_{a} Ice
L1	2	LDF6-50A(1-1/4)	$103.00-1.000$	1.0000	

thxTower	85565.009.01-HARTFORD - NU (SSUSA), CT (BU\# 876363)		$\begin{aligned} & \text { Page } \\ & 13 \text { of } 42 \end{aligned}$
B + T Group 1717 S. Boulder, Suite 300	Project		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265			Designed by xjones

Tower Section	Feed Line Record No.	Description	$\begin{gathered} \text { Feed Line } \\ \text { Segment Elev. } \end{gathered}$	$\begin{gathered} K_{a} \\ \text { No Ice } \end{gathered}$	$\begin{aligned} & \hline K_{a} \\ & \text { Ice } \\ & \hline \end{aligned}$
			105.00		
L1	3	HB158-1-08U8-S8J18(1-5/8)	$\begin{array}{r}103.00 \\ 105.00 \\ \hline\end{array}$	1.0000	1.0000
LI	18	Safety Line 3/8	103.00-	1.0000	1.0000
L2	2	LDF6-50A(1-1/4)	98.50-103.00	1.0000	1.0000
L2	3	HB158-1-08U8-S8J18(1-5/8)	98.50-103.00	1.0000	1.0000
L2	18	Safety Line 3/8	98.50-103.00	1.0000	1.0000
L3	2	LDF6-50A(1-1/4)	98.00-98.50	1.0000	1.0000
L3	3	HB158-1-08U8-S8J18(1-5/8)	98.00-98.50	1.0000	1.0000
L3	18	Safety Line 3/8	98.00-98.50	1.0000	1.0000
L4	2	LDF6-50A(1-1/4)	93.00-98.00	1.0000	1.0000
L4	3	HB158-1-08U8-S8J18(1-5/8)	93.00-98.00	1.0000	1.0000
L4	18	Safety Line 3/8	93.00-98.00	1.0000	1.0000
L5	2	LDF6-50A(1-1/4)	88.00-93.00	1.0000	1.0000
L5	3	HB158-1-08U8-S8118(1-5/8)	$88.00-93.00$	1.0000	1.0000
L5	18	Safety Line 3/8	$88.00-93.00$	1.0000	1.0000
${ }^{\text {L } 6}$	2	LDF6-50A(1-1/4)	$83.00-88.00$	1.0000	1.0000
${ }^{\text {L } 6}$	${ }_{3}$	HB158-1-08U8-S8J18(1-5/8)	$83.00-88.00$	1.0000	1.0000
L6	18	Safety Line 3/8	$83.00-88.00$	1.0000	1.0000
${ }^{2} 6$	42	MP3-03	83.00-84.05	1.0000	1.0000
L6	43	MP3-03	83.00-84.05	1.0000	1.0000
L6	44	MP3-03	83.00-84.05	1.0000	1.0000
L7	2	LDF6-50A(1-1/4)	82.33-83.00	1.0000	1.0000
L7	3	HB158-1-08U8-S8J18(1-5/8)	82.33-83.00	1.0000	1.0000
L7	18	Safety Line 3/8	82.33-83.00	1.0000	1.0000
L7	42	MP3-03	82.33-83.00	1.0000	1.0000
L7	43	MP3-03	82.33-83.00	1.0000	1.0000
L7	44	MP3-03	82.33-83.00	1.0000	1.0000
L8	2	LDF6-50A(1-1/4)	82.08-82.33	1.0000	1.0000
L8	3	HB158-1-08U8-S8J18(1-5/8)	82.08-82.33	1.0000	1.0000
L8	18	Safety Line 3/8	82.08-82.33	1.0000	1.0000
L8	42	MP3-03	82.08-82.33	1.0000	1.0000
L8	43	MP3-03	82.08-82.33	1.0000	1.0000
L8	44	MP3-03	82.08-82.33	1.0000	1.0000
L9	2	LDF6-50A(1-1/4)	77.08-82.08	1.0000	1.0000
L9	3	HB158-1-08U8-S8J18(1-5/8)	77.08-82.08	1.0000	1.0000
L9	13	ATCB-B01(5/16)	$77.08-81.00$	1.0000	1.0000
L9	14	FXL $780 \mathrm{PE}(7 / 8)$	77.08-81.00	1.0000	1.0000
L9	18	Safety Line 3/8	77.08-82.08	1.0000	1.0000
L9	29	$4.0^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	77.08-78.00	1.0000	1.0000
L9	30	$4.0^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	77.08-78.00	1.0000	1.0000
L9	31	$4.0^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	77.08-78.00	1.0000	1.0000
L9	42	MP3-03	77.08-82.08	1.0000	1.0000
L9	43	MP3-03	77.08-82.08	1.0000	1.0000
L9	44	MP3-03	77.08-82.08	1.0000	1.0000
L10	2	LDF6-50A(1-1/4)	76.25-77.08	1.0000	1.0000
L10	3	HB158-1-08U8-S8518(1-5/8)	76.25-77.08	1.0000	1.0000
L10	13	ATCB-B01(5/16)	76.25-77.08	1.0000	1.0000
L10	14	FXL $780 \mathrm{PE}(7 / 8)$	76.25-77.08	1.0000	1.0000
L10	18	Safety Line 3/8	76.25-77.08	1.0000	1.0000
L10	29	$4.0^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	76.25-77.08	1.0000	1.0000
L10	30	$4.0^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	76.25-77.08	1.0000	1.0000
L10	31	$4.0^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	76.25-77.08	1.0000	1.0000
L10	42	MP3-03	76.25-77.08	1.0000	1.0000
L10	43	MP3-03	76.25-77.08	1.0000	1.0000
L10	44	MP3-03	76.25-77.08	1.0000	1.0000
L11	2	LDF6-50A(1-1/4)	76.00-76.25	1.0000	1.0000
L11	3	HB158-1-08U8-S8J18(1-5/8)	76.00-76.25	1.0000	1.0000
L11	13	ATCB-B01(5/16)	76.00-76.25	1.0000	1.0000
L11	14	FXL $780 \mathrm{PE}(7 / 8)$	76.00-76.25	1.0000	1.0000
L11	18	Safety Line 3/8	76.00-76.25	1.0000	1.0000

tnxTower B+T Group	$\begin{aligned} & \text { Job } \\ & 85565.009 .01 \text { - HARTFORD - NU (SSUSA), CT (BU\# 876363) } \end{aligned}$		$\begin{aligned} & \text { Page } \\ & 14 \text { of } 42 \end{aligned}$
	Project		Date 15:01:04 09/21/18
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by xjones

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No Ice	$\begin{aligned} & K_{a} \\ & I c e \\ & \hline \end{aligned}$
L11	29	$4.0^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	76.00-76.25	1.0000	1.0000
L11	30	$4.00^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	76.00-76.25	1.0000	1.0000
L11	31	4.0 " $\times 1.25$ " Plate	76.00-76.25	1.0000	1.0000
L11	42	MP3-03	76.00-76.25	1.0000	1.0000
L11	43	MP3-03	76.00-76.25	1.0000	1.0000
L11	44	MP3-03	76.00-76.25	1.0000	1.0000
L12	,	LDF6-50A(1-1/4)	74.50-76.00	1.0000	1.0000
L12	3	HB158-1-08U8-S8J18(1-5/8)	74.50-76.00	1.0000	1.0000
L12	13	ATCB-B01(5/16)	74.50-76.00	1.0000	1.0000
L12	14	FXL $780 \mathrm{PE}(7 / 8)$	74.50-76.00	1.0000	1.0000
L12	18	Safety Line 3/8	74.50-76.00	1.0000	1.0000
L12	29	$4.0^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	74.50-76.00	1.0000	1.0000
L12	30	$4.0{ }^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	74.50-76.00	1.0000	1.0000
L12	31	$4.0^{\prime \prime} \times 1.25$ " Plate	74.50-76.00	1.0000	1.0000
L12	42	MP3-03	74.50-76.00	1.0000	1.0000
L.12	43	MP3-03	74.50-76.00	1.0000	1.0000
L12	44	MP3-03	74.50-76.00	1.0000	1.0000
L13	2	LDF6-50A(1-1/4)	74.25-74.50	1.0000	1.0000
L13	3	HB158-1-08U8-S8J18(1-5/8)	74.25-74.50	1.0000	1.0000
L13	13	ATCB-B01(5/16)	74.25-74.50	1.0000	1.0000
L13	14	FXL $780 \mathrm{PE}(7 / 8)$	74.25-74.50	1.0000	1.0000
L13	18	Safety Line 3/8	74.25-74.50	1.0000	1.0000
L13	29	4.01 x 1.25" Plate	74.25-74.50	1.0000	1.0000
L13	30	$4.0^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	74.25-74.50	1.0000	1.0000
L13	31	$4.0^{\prime \prime} \times 1.25$ " Plate	74.25-74.50	1.0000	1.0000
L13	42	MP3-03	74.25-74.50	1.0000	1.0000
L13	43	MP3-03	$74.25-74.50$	1.0000	1.0000
L13	44	MP3-03	$74.25-74.50$	1.0000	1.0000
L14	2	LDF6-50A(1-1/4)	69.25-74.25	1.0000	1.0000
L14	3	HB158-1-08U8-S8J18(1-5/8)	69.25-74.25	1.0000	1.0000
L14	13	ATCB-B01(5/16)	69.25-74.25	1.0000	1.0000
L14	14	FXL 780 PE(7/8)	69.25-74.25	1.0000	1.0000
L14	18	Safety Line 3/8	69.25-74.25	1.0000	1.0000
L14	29	$4.0^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	69.25-74.25	1.0000	1.0000
L14	30	$4.0^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	69.25-74.25	1.0000	1.0000
L14	31	$4.0^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	69.25-74.25	1.0000	1.0000
L14	42	MP3-03	69.25-74.25	1.0000	1.0000
L14	43	MP3-03	69.25-74.25	1.0000	1.0000
L14	44	MP3-03	69.25-74.25	1.0000	1.0000
L15	2	LDF6-50A(1-1/4)	64.25-69.25	1.0000	1.0000
L15	3	HB158-1-08U8-S8J18(1-5/8)	64.25-69.25	1.0000	1.0000
L15	13	ATCB-B01(5/16)	64.25-69.25	1.0000	1.0000
L15	14	FXL $780 \mathrm{PE}(7 / 8)$	64.25-69.25	1.0000	1.0000
L15	18	Safety Line 3/8	64.25-69.25	1.0000	1.0000
L15	29	4.01 x $1.25^{\prime \prime}$ Plate	64.25-69.25	1.0000	1.0000
L15	30	$4.0^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	64.25-69.25	1.0000	1.0000
L15	31	$4.0^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	64.25-69.25	1.0000	1.0000
L15	42	MP3-03	64.25-69.25	1.0000	1.0000
L15	43	MP3-03	64.25-69.25	1.0000	1.0000
L15	44	MP3-03	64.25-69.25	1.0000	1.0000
L16	2	LDF6-50A(1-1/4)	59.25-64.25	1.0000	1.0000
L16	3	HB158-1-08U8-S8J18(1-5/8)	59.25-64.25	1.0000	1.0000
L16	13	ATCB-B01(5/16)	59.25-64.25	1.0000	1.0000
L16	14	FXL 780 PE (7/8)	59.25-64.25	1.0000	1.0000
L16	18	Safety Line 3/8	59.25-64.25	1.0000	1.0000
L16	25	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	59.25-59.50	1.0000	1.0000
L16	26	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	59.25-59.50	1.0000	1.0000
L16	27	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	59.25-59.50	1.0000	1.0000
L16	29	$4.0^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	59.50-64.25	1.0000	1.0000
L16	30	$4.00^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	59.50-64.25	1.0000	1.0000
L16	31	$4.00^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	59.50-64.25	1.0000	1.0000
L16	38	MP3-05	-59.25-60.50	1.0000	1.0000

tnxTower B + T Group	$\begin{array}{\|l} \text { Job } \\ 85565.009 .01 \text { - HARTFORD - NU (SSUSA), CT (BU\# 876363) } \end{array}$		$\begin{aligned} & \text { Page } \\ & 15 \text { of } 42 \end{aligned}$
	Project		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by xjones

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{a} \\ \text { No Ice } \\ \hline \end{gathered}$	$\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$
L16	39	MP3-05	59.25-60.50	1.0000	1.0000
L16	40	MP3-05	59.25-60.50	1.0000	1.0000
L16	42	MP3-03	60.50-64.25	1.0000	1.0000
L16	43	MP3-03	60.50-64.25	1.0000	1.0000
L16	44	MP3-03	60.50-64.25	1.0000	1.0000
L17	2	LDF6-50A(1-1/4)	58.08-59.25	1.0000	1.0000
L17	3	HB158-1-08U8-S8J18(1-5/8)	58.08-59.25	1.0000	1.0000
L17	13	ATCB-B01(5/16)	58.08-59.25	1.0000	1.0000
L17	14	FXL $780 \mathrm{PE}(7 / 8)$	58.08-59.25	1.0000	1.0000
L17	18	Safety Line 3/8	58.08-59.25	1.0000	1.0000
L17	25	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	58.08-59.25	1.0000	1.0000
L17	26	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	58.08-59.25	1.0000	1.0000
L17	27	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	58.08-59.25	1.0000	1.0000
L17	38	MP3-05	58.08-59.25	1.0000	1.0000
L17	39	MP3-05	58.08-59.25	1.0000	1.0000
L17	40	MP3-05	58.08-59.25	1.0000	1.0000
L18	2	LDF6-50A(1-1/4)	57.73-58.08	1.0000	1.0000
L18	3	HB158-1-08U8-S8J18(1-5/8)	57.73-58.08	1.0000	1.0000
L18	13	ATCB-B01(5/16)	57.73-58.08	1.0000	1.0000
L18	14	FXL 780 PE(7/8)	57.73-58.08	1.0000	1.0000
L18	18	Safety Line 3/8	57.73-58.08	1.0000	1.0000
L18	25	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	57.73-58.08	1.0000	1.0000
L18	26	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	57.73-58.08	1.0000	1.0000
L18	27	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	57.73-58.08	1.0000	1.0000
L18	38	MP3-05	57.73-58.08	1.0000	1.0000
L18	39	MP3-05	57.73-58.08	1.0000	1.0000
L18	40	MP3-05	57.73-58.08	1.0000	1.0000
L19	2	LDF6-50A(1-1/4)	57.50-57.73	1.0000	1.0000
L19	3	HB158-1-08U8-S8J18(1-5/8)	57.50-57.73	1.0000	1.0000
L19	13	ATCB-B01(5/16)	57.50-57.73	1.0000	1.0000
L19	14	FXL $780 \mathrm{PE}(7 / 8)$	57.50-57.73	1.0000	1.0000
L19	18	Safety Line 3/8	57.50-57.73	1.0000	1.0000
L19	25	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	57.50-57.73	1.0000	1.0000
L19	26	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	57.50-57.73	1.0000	1.0000
L19	27	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	57.50-57.73	1.0000	1.0000
L19	38	MP3-05	57.50-57.73	1.0000	1.0000
L19	39	MP3-05	57.50-57.73	1.0000	1.0000
L19	40	MP3-05	57.50-57.73	1.0000	1.0000
L20	2	LDF6-50A(1-1/4)	52.50-57.50	1.0000	1.0000
L20	3	HB158-1-08U8-S8J18(1-5/8)	52.50-57.50	1.0000	1.0000
L20	13	ATCB-B01(5/16)	52.50-57.50	1.0000	1.0000
L20	14	FXL $780 \mathrm{PE}(7 / 8)$	52.50-57.50	1.0000	1.0000
L20	18	Safety Line 3/8	52.50-57.50	1.0000	1.0000
L20	25	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	52.50-57.50	1.0000	1.0000
L20	26	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	52.50-57.50	1.0000	1.0000
L20	27	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	52.50-57.50	1.0000	1.0000
L20	38	MP3-05	52.50-57.50	1.0000	1.0000
L20	39	MP3-05	52.50-57.50	1.0000	1.0000
L20	40	MP3-05	52.50-57.50	1.0000	1.0000
L21	2	LDF6-50A(1-1/4)	47.00-52.50	1.0000	1.0000
L21	3	HB158-1-08U8-S8J18(1-5/8)	47,00-52.50	1.0000	1.0000
L21	13	ATCB-B01(5/16)	47.00-52.50	1.0000	1.0000
L21	14	FXL $780 \mathrm{PE}(7 / 8)$	47.00-52.50	1.0000	1.0000
L21	18	Safety Line 3/8	47.00-52.50	1.0000	1.0000
L21	25	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	47.00-52.50	1.0000	1.0000
L21	26	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	47.00-52.50	1.0000	1.0000
L21	27	$4.375^{\prime \prime} \times 1.25$ " Plate	47.00-52.50	1.0000	1.0000
L21	38	MP3-05	47.00-52.50	1.0000	1.0000
L21	39	MP3-05	47.00-52.50	1.0000	1.0000
L21	40	MP3-05	47.00-52.50	1.0000	1.0000
L23	2	LDF6-50A(1-1/4)	40.50-45.25	1.0000	1.0000
L23	3	HB158-1-08U8-S8J18(1-5/8)	40.50-45.25	1.0000	1.0000

tnxTower B + T Group	Job85565.009 .01 - HARTFORD - NU (SSUSA),CT (BU\# 876363)		Page 16 of 42
	Project		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by xjones

Tower Section	Feed Line RecordNo.	Description	Feed Line Segment Eley.	$\begin{gathered} K_{a} \\ \text { No Ice } \end{gathered}$	$\begin{gathered} K_{a} \\ \mathrm{Ice} \\ \hline \end{gathered}$	
L23	13	ATCB-B01(5/16)	40.50-45.25	1.0000	1.0000	
L23	14	FXL $780 \mathrm{PE}(7 / 8)$	40.50-45.25	1.0000	1.0000	
L23	18	Safety Line 3/8	40.50-45.25	1.0000	1.0000	
L23	25	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	40.50-45.25	1.0000	1.0000	
L23	26	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	40.50-45.25	1.0000	1.0000	
L23	27	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	40.50-45.25	1.0000	1.0000	
L23	38	MP3-05	40.50-45.25	1.0000	1.0000	
L23	39	MP3-05	40.50-45.25	1.0000	1.0000	
L23	40	MP3-05	40.50-45.25	1.0000	1.0000	
L24	2	LDF6-50A(1-1/4)	40.25-40.50	1.0000	1.0000	
L24	3	HB158-1-08U8-S8J18(1-5/8)	40.25-40.50	1.0000	1.0000	
L24	13	ATCB-B01(5/16)	40.25-40.50	1.0000	1.0000	
L24	14	FXL $780 \mathrm{PE}(7 / 8)$	40.25-40.50	1.0000	1.0000	
L24	18	Safety Line 3/8	40.25-40.50	1.0000	1.0000	
L24	25	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	40.25-40.50	1.0000	1.0000	
L24	26	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	40.25-40.50	1.0000	1.0000	
L24	27	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	40.25-40.50	1.0000	1.0000	
L24	33	MP3-05	40.25-40.50	1.0000	1.0000	
L24	35	MP3-05	40.25-40.50	1.0000	1.0000	
L24	36	MP3-05	40.25-40.50	1.0000	1.0000	
L25	2	LDF6-50A(1-1/4)	35.25-40.25	1.0000	1.0000	
L25	3	HB158-1-08U8-S8J18(1-5/8)	35.25-40.25	1.0000	1.0000	
L25	13	ATCB-B01(5/16)	35.25-40.25	1.0000	1.0000	
L25	14	FXL $780 \mathrm{PE}(7 / 8)$	35.25-40.25	1.0000	1.0000	
L25	18	Safety Line 3/8	35.25-40.25	1.0000	1.0000	
L25	25	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	35.25-40.25	1.0000	1.0000	
L25	26	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	35.25-40.25	1.0000	1.0000	
L25	27	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	35.25-40.25	1.0000	1.0000	
L25	33	MP3-05	35.25-40.25	1.0000	1.0000	
L25	35	MP3-05	35.25-40.25	1.0000	1.0000	
L25	36	MP3-05	35.25-40.25	1.0000	1.0000	
L26	2	LDF6-50A(1-1/4)	30.25-35.25	1.0000	1.0000	
L26	3	HB158-1-08U8-S8J18(1-5/8)	30.25-35.25	1.0000	1.0000	
L26	13	ATCB-B01(5/56)	30.25-35.25	1.0000	1.0000	
L26	14	FXL $780 \mathrm{PE}(7 / 8)$	30.25-35.25	1.0000	1.0000	
L26	18	Safety Line 3/8	30.25-35.25	1.0000	1.0000	
L26	25	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	30.25-35.25	1.0000	1.0000	
L26	26	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	30.25-35.25	1.0000	1.0000	
L26	27	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	30.25-35.25	1.0000	1.0000	
L26	33	MP3-05	30.25-35.25	1.0000	1.0000	
L26	35	MP3-05	30.25-35.25	1.0000	1.0000	
L26	36	MP3-05	30.25-35.25	1.0000	1.0000	
L27	2	LDF6-50A(1-1/4)	27.75-30.25	1.0000	1.0000	
L27	3	HB158-1-08U8-S8J18(1-5/8)	27.75-30.25	1.0000	1.0000	
L27	13	ATCB-B01(5/16)	27.75-30.25	1.0000	1.0000	
L27	14	FXL $780 \mathrm{PE}(7 / 8)$	27.75-30.25	1.0000	1.0000	
L27	18	Safety Line 3/8	27.75-30.25	1.0000	1.0000	
L27	20	$5.25^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	27.75-29.75	1.0000	1.0000	
L27	22	$5.25^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	27.75-29.75	1.0000	1.0000	
L27	23	5.25 " $\times 1.25^{\prime \prime}$ Plate	27.75-29.75	1.0000	1.0000	
L27	25	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	29.75-30.25	1.0000	1.0000	
L27	26	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	29.75-30.25	1.0000	1.0000	
L27	27	$4.375^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	29.75-30.25	1.0000	1.0000	
L27	33	MP3-05	27.75-30.25	1.0000	1.0000	
L27	35	MP3-05	27.75-30.25	1.0000	1.0000	
L27	36	MP3-05	27.75-30.25	1.0000	1.0000	
L28	2	LDF6-50A(1-1/4)	27.50-27.75	1.0000	1.0000	
L28	3	HB158-1-08U8-S8J18(1-5/8)	27.50-27.75	1.0000	1.0000	
L28	13	ATCB-B01(5/16)	27.50-27.75	1.0000	1.0000	
L28	14	FXL $780 \mathrm{PE}(7 / 8)$	27.50-27.75	1.0000	1.0000	
L28	18	Safety Line 3/8	27.50-27.75	1.0000	1.0000	
L28	20	$5.25^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	\| 27.50-27.75		1.0000	1.0000

tnxTower B+T Group 1717 S. Boulder, Suite 300	$\begin{aligned} & \text { Job } \\ & 85565.009 .01 \text { - HARTFORD - NU (SSUSA), CT (BU\# 876363) } \end{aligned}$		$\begin{aligned} & \text { Page } \\ & 17 \text { of } 42 \end{aligned}$
	Project		$\begin{array}{\|l\|} \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by xjones

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{a} \\ \text { No Ice } \end{gathered}$	$\begin{gathered} K_{a} \\ \text { Ice } \\ \hline \end{gathered}$
L28	22	$5.25^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	27.50-27.75	1.0000	1.0000
L28	23	5.25 ' x 1.25 " Plate	27.50-27.75	1.0000	1.0000
L28	33	MP3-05	27.50-27.75	1.0000	1.0000
L28	35	MP3-05	27.50-27.75	1.0000	1.0000
L28	36	MP3-05	27.50-27.75	1.0000	1.0000
L29	2	LDF6-50A(1-1/4)	22.50-27.50	1.0000	1.0000
L29	3	HB158-1-08U8-S8J18(1-5/8)	22.50-27.50	1.0000	1.0000
L29	13	ATCB-B01(5/16)	22.50-27.50	1.0000	1.0000
L29	14	FXL $780 \mathrm{PE}(7 / 8)$	22.50-27.50	1.0000	1.0000
L29	18	Safety Line 3/8	22.50-27.50	1.0000	1.0000
L29	20	$5.25^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	22.50-27.50	1.0000	1.0000
L29	22	$5.25{ }^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	22.50-27.50	1.0000	1.0000
L29	23	5.25 ' x $1.25^{\prime \prime}$ Plate	22.50-27.50	1.0000	1.0000
L29	33	MP3-05	22.50-27.50	1.0000	1.0000
L29	35	MP3-05	22.50-27.50	1.0000	1.0000
L29	36	MP3-05	22.50-27.50	1.0000	1.0000
L30	2	LDF6-50A(1-1/4)	19.50-22.50	1.0000	1.0000
L30	3	HB158-1-08U8-S8J18(1-5/8)	19.50-22.50	1.0000	1.0000
L30	13	ATCB-B01(5/16)	19.50-22.50	1.0000	1.0000
L30	14	FXL $780 \mathrm{PE}(7 / 8)$	19.50-22.50	1.0000	1.0000
L30	18	Safety Line 3/8	19.50-22.50	1.0000	1.0000
L30	20	5.25 ' x 1.25" Plate	19.50-22.50	1.0000	1.0000
L30	22	$5.25{ }^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	19.50-22.50	1.0000	1.0000
L30	23	5.25 " $\times 1.25^{\prime \prime}$ Plate	19.50-22.50	1.0000	1.0000
L30	33	MP3-05	19.50-22.50	1.0000	1.0000
L30	35	MP3-05	19.50-22.50	1.0000	1.0000
L30	36	MP3-05	19.50-22.50	1.0000	1.0000
L30	47	$\mathrm{CCl} 4.5^{\prime \prime} \times 1$ " Plate	19.50-21.00	1.0000	1.0000
L31	2	LDF6-50A(1-1/4)	19.25-19.50	1.0000	1.0000
L31	3	HB158-1-08U8-S8J18(1-5/8)	19.25-19.50	1.0000	1.0000
L31	13	ATCB-B01(5/16)	19.25-19.50	1.0000	1.0000
L31	14	FXL $780 \mathrm{PE}(7 / 8)$	19.25-19.50	1.0000	1.0000
L31	18	Safety Line 3/8	19.25-19.50	1.0000	1.0000
L31	20	5.25 ' x $1.25^{\prime \prime}$ Plate	19.25-19.50	1.0000	1.0000
L. 31	22	$5.25^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	19.25-19.50	1.0000	1.0000
L31	23	5.25 " x 1.25" Plate	19.25-19.50	1.0000	1.0000
L3]	33	MP3-05	19.25-19.50	1.0000	1.0000
L31	35	MP3-05	19.25-19.50	1.0000	1.0000
L31	36	MP3-05	19.25-19.50	1.0000	1.0000
L31	47	CCI 4.5" x 1" Plate	19.25-19.50	1.0000	1.0000
L32	2	LDF6-50A(1-1/4)	14.25-19.25	1.0000	1.0000
L32	3	HB158-1-08U8-S8J18(1-5/8)	14.25-19.25	1.0000	1.0000
L32	13	ATCB-B01(5/16)	$14.25-19.25$	1.0000	1.0000
L32	14	FXL $780 \mathrm{PE}(7 / 8)$	14.25-19.25	1.0000	1.0000
L32	18	Safety Line 3/8	14.25-19.25	1.0000	1.0000
L32	20	$5.25{ }^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	14.25-19.25	1.0000	1.0000
L32	21	$5.25^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	14.25-15.50	1.0000	1.0000
L32	22	$5.25{ }^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	14.25-19.25	1.0000	1.0000
L32	23	5.25 " x I. $25^{\prime \prime}$ Plate	14.25-19.25	1.0000	1.0000
L32	33	MP3-05	14.25-19.25	1.0000	1.0000
L32	34	MP3-05	14.25-15.50	1.0000	1.0000
L32	35	MP3-05	14.25-19.25	1.0000	1.0000
L32	36	MP3-05	14.25-19.25	1.0000	1.0000
L32	46	CCl $4.5{ }^{\prime \prime} \times 1^{\prime \prime}$ Plate	14.25-15.50	1.0000	1.0000
L32	47	CCI $4.5{ }^{\prime \prime} \mathrm{x} 1^{\prime \prime}$ Plate	14.25-19.25	1.0000	1.0000
L33	2	LDF6-50A(1-1/4)	14.00-14.25	1.0000	1.0000
L33	3	HB158-1-08U8-S8J18(1-5/8)	14.00-14.25	1.0000	1.0000
L33	13	ATCB-B01(5/16)	14.00-14.25	1.0000	1.0000
L33	14	FXL $780 \mathrm{PE}(7 / 8)$	14.00-14.25	1.0000	1.0000
L33	18	Safety Line 3/8	14.00-14.25	1.0000	1.0000
L33	20	$5.25^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	14.00-14.25	1.0000	1.0000
L33	21	$5.25^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	14.00-14.25	1.0000	1.0000

tnxTower B + T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119	$\begin{aligned} & \text { Job } \\ & 85565.009 .01 \text { - HARTFORD - NU (SSUSA),CT (BU\# 876363) } \end{aligned}$		$\text { Page } 18 \text { of } 42$
	Project		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by xjones

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{a} \\ \text { No Ice } \\ \hline \end{gathered}$	$\begin{aligned} & K_{a} \\ & \text { Ice } \\ & \hline \end{aligned}$
L33	22	5.25 " x $1.25{ }^{\prime \prime}$ Plate	14.00-14.25	1.0000	1.0000
L33	23	5.25 " $\times 1.25^{\prime \prime}$ Plate	14.00-14.25	1.0000	1.0000
L33	33	MP3-05	14.00-14.25	1.0000	1.0000
L33	34	MP3-05	14.00-14.25	1.0000	1.0000
L33	35	MP3-05	14.00-14.25	1.0000	1.0000
L33	36	MP3-05	14.00-14.25	1.0000	1.0000
L33	46	CCI $4.5^{\prime \prime} \times 1^{\prime \prime}$ Plate	14.00-14.25	1.0000	1.0000
L33	47	CCI $4.5^{\prime \prime} \times 1^{\prime \prime}$ Plate	14.00-14.25	1.0000	1.0000
L34	2	LDF6-50A(1-1/4)	13.75-14.00	1.0000	1.0000
L34	3	HB158-1-08U8-S8118(1-5/8)	13.75-14.00	1.0000	1.0000
L34	13	ATCB-B01(5/16)	13.75-14.00	1.0000	1.0000
L34	14	FXL $780 \mathrm{PE}(7 / 8)$	13.75-14.00	1.0000	1.0000
L34	18	Safety Line 3/8	13.75-14.00	1.0000	1.0000
L34	20	$5.25{ }^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	13.75-14.00	1.0000	1.0000
L34	21	$5.25{ }^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	13.75-14.00	1.0000	1.0000
L34	22	$5.25{ }^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	13.75-14.00	1.0000	1.0000
L34	23	$5.25{ }^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	13.75-14.00	1.0000	1.0000
L34	33	MP3-05	13.75-14.00	1.0000	1.0000
L34	34	MP3-05	13.75-14.00	1.0000	1.0000
L34	35	MP3-05	13.75-14.00	1.0000	1.0000
L34	36	MP3-05	13.75-14.00	1.0000	1.0000
L34	46	CCI $4.5^{\prime \prime} \times 1$ " Plate	13.75-14.00	1.0000	1.0000
L34	47	CCI $4.5^{\prime \prime} \times 1$ " Plate	13.75-14.00	1.0000	1.0000
L35	2	LDF6-50A(1-1/4)	12.98-13.75	1.0000	1.0000
L35	3	HB158-1-08U8-S8J18(1-5/8)	12.98-13.75	1.0000	1.0000
L35	13	ATCB-B01(5/16)	12.98-13.75	1.0000	1.0000
L35	14	FXL $780 \mathrm{PE}(7 / 8)$	12.98-13.75	1.0000	1.0000
L35	18	Safety Line 3/8	12.98-13.75	1.0000	1.0000
L35	20	5.25 ' x $1.25^{\prime \prime}$ Plate	12.98-13.75	1.0000	1.0000
L35	21	$5.25{ }^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	12.98-13.75	1.0000	1.0000
L35	22	5.25 " $\times 1.25^{\prime \prime}$ Plate	12.98-13.75	1.0000	1.0000
L35	23	$5.25{ }^{\prime \prime}$ x 1.25" Plate	12.98-13.75	1.0000	1.0000
L35	33	MP3-05	12.98-13.75	1.0000	1.0000
L35	34	MP3-05	12.98-13.75	1.0000	1.0000
L35	35	MP3-05	12.98-13.75	1.0000	1.0000
L35	36	MP3-05	12.98-13.75	1.0000	1.0000
L35	46	$\mathrm{CCl} 4.5{ }^{\prime \prime} \times 1^{\prime \prime}$ Plate	12.98-13.75	1.0000	1.0000
L35	47	CCI $4.5{ }^{\prime \prime} \times 1$ " Plate	12.98-13.75	1.0000	1.0000
L36	2	LDF6-50A(1-1/4)	12.73-12.98	1.0000	1.0000
L36	3	HB158-1-08U8-S8J18(1-5/8)	12.73-12.98	1.0000	1.0000
L36	13	ATCB-B01(5/16)	12.73-12.98	1.0000	1.0000
L36	14	FXL $780 \mathrm{PE}(7 / 8)$	12.73-12.98	1.0000	1.0000
L36	18	Safety Line 3/8	12.73-12.98	1.0000	1.0000
L36	20	5.25 " x 1.25" Plate	12.73-12.98	1.0000	1.0000
L36	21	$5.25{ }^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	12.73-12.98	1.0000	1.0000
L36	22	5.25 " x $1.255^{\prime \prime}$ Plate	12.73-12.98	1.0000	1.0000
L36	23	$5.25^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	12.73-12.98	1.0000	1.0000
L36	33	MP3-05	12.73-12.98	1.0000	1.0000
L36	34	MP3-05	12.73-12.98	1.0000	1.0000
L36	35	MP3-05	12.73-12.98	1.0000	1.0000
L36	36	MP3-05	12.73-12.98	1.0000	1.0000
L36	46	$\mathrm{CCl} 4.5{ }^{\prime \prime} \mathrm{x} 1^{\prime \prime}$ Plate	12.73-12.98	1.0000	1.0000
L36	47	CCI $4.55^{\prime \prime} \times 1$ " Plate	12.73-12.98	1.0000	1.0000
L37	2	LDF6-50A(1-1/4)	$7.73-12.73$	1.0000	1.0000
L37	3	HB158-1-08U8-S8J18(1-5/8)	7.73-12.73	1.0000	1.0000
L37	13	ATCB-B01(5/16)	7.73-12.73	1.0000	1.0000
L37	14	FXL $780 \mathrm{PE}(7 / 8)$	$7.73-12.73$	1.0000	1.0000
L37	18	Safety Line 3/8	7.73-12.73	1.0000	1.0000
L37	20	5.25 " x $1.25^{\prime \prime}$ Plate	7.73-12.73	1.0000	1.0000
L37	21	$5.25^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	7.73-12.73	1.0000	1.0000
L37	22	$5.25{ }^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	10.25-12.73	1.0000	1.0000
L37	23	5.25 ' x 1.25" Plate	7.73-12.73	1.0000	1.0000

tnxTower B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119	$\begin{aligned} & \text { Job } \\ & 85565.009 .01 \text { - HARTFORD - NU (SSUSA),CT (BU\# 876363) } \end{aligned}$		$\text { Page } 19 \text { of } 42$
	Project		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by xjones

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{a} \\ \text { NoIce } \\ \hline \end{gathered}$	$\begin{aligned} & \tilde{K}_{a} \\ & \text { Ice } \\ & \hline \end{aligned}$
L37	33	MP3-05	7.73-12.73	1.0000	1.0000
L37	34	MP3-05	7.73-12.73	1.0000	1.0000
L37	35	MP3-05	10.50-12.73	1.0000	1.0000
L37	36	MP3-05	7.73-12.73	1.0000	1.0000
L37	46	CCI 4.5" $\times 1$ 1" Plate	7.73-12.73	1.0000	1.0000
L37	47	CCI 4.5" x 1" Plate	11.00-12.73	1.0000	1.0000
L38	2	LDF6-50A(1-1/4)	2.73-7.73	1.0000	1.0000
L38	3	HB158-1-08U8-S8J18(1-5/8)	2.73-7.73	1.0000	1.0000
L38	13	ATCB-B01(5/16)	2.73-7.73	1.0000	1.0000
L38	14	FXL $780 \mathrm{PE}(7 / 8)$	2.73-7.73	1.0000	1.0000
L38	18	Safety Line 3/8	2.73-7.73	1.0000	1.0000
L38	20	$5.25^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	2.73-7.73	1.0000	1.0000
L38	21	$5.25{ }^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	2.73-7.73	1.0000	1.0000
L38	23	$5.25^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	2.73-7.73	1.0000	1.0000
L38	33	MP3-05	2.73-7.73	1.0000	1.0000
L38	34	MP3-05	2.73-7.73	1.0000	1.0000
L38	36	MP3-05	2.73-7.73	1.0000	1.0000
L38	46	CCI 4.5 " x $1^{\prime \prime}$ Plate	2.73-7.73	1.0000	1.0000
L39	2	LDF6-50A(1-1/4)	0.00-2.73	1.0000	1.0000
L39	3	HB158-1-08U8-S8J18(1-5/8)	0.00-2.73	1.0000	1.0000
L39	13	ATCB-B01(5/16)	0.00-2.73	1.0000	1.0000
L39	14	FXL $780 \mathrm{PE}(7 / 8)$	0.00-2.73	1.0000	1.0000
L39	18	Safety Line 3/8	0.00-2.73	1.0000	1.0000
L39	20	$5.25^{\prime \prime} \times 1.25^{\prime \prime}$ Plate	0.00-2.73	1.0000	1.0000
L39	21	5.25 " x 1.25" Plate	0.00-2.73	1.0000	1.0000
L39	23	5.25 " $\times 1.25^{\prime \prime}$ Plate	0.00-2.73	1.0000	1.0000
L39	33	MP3-05	0.00-2.73	1.0000	1.0000
L39	34	MP3-05	0.00-2.73	1.0000	1.0000
L39	36	MP3-05	0.00-2.73	1.0000	1.0000
L39	46	CCI $4.5{ }^{\prime \prime} \times 1^{\prime \prime}$ Plate	0.00-2.73	1.0000	1.0000

Discrete Tower Loads

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	$\begin{aligned} & \text { Offset } \\ & \text { Type } \end{aligned}$	Offsets: Horz Lateral Vert ft $f t$ $f t$	Azimuth Adjustment 0	Placement		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight
BXA-70063/6CF w/ Mount Pipe (E)	A	From Leg	4.000	0.000	105.000	No Ice	7.819	5.407	0.042
			0.000			$1 / 2^{11}$ Ice	8.370	6.558	0.101
			0.000			1" Ice	8.886	7.422	0.168
						$2^{\prime \prime}$ Ice	9.942	9.198	0.328
BXA-70063/6CF w/ Mount Pipe (E)	B	From Leg	4.000	0.000	105.000	No Ice	7.819	5.407	0.042
			0.000			$1 / 2^{\text {I }}$ Ice	8.370	6.558	0.101
			0.000			1^{11} Ice	8.886	7.422	0.168
						$2^{\prime \prime}$ Ice	9.942	9.198	0.328
BXA-70063/6CF w/ Mount Pipe (E)	C	From Leg	4.000	0.000	105.000	No Ice	7.819	5.407	0.042
			0.000			$1 / 2^{\prime \prime}$ Ice	8.370	6.558	0.101
			0.000			$1^{\prime \prime}$ Ice	8.886	7.422	0.168
						$2^{\prime \prime}$ Ice	9.942	9.198	0.328
DB-T1-6Z-8AB-0Z (E)	A	From Leg	4.000	0.000	105.000	No Ice	4.800	2.000	0.044
			0.000			$1 / 2^{\prime \prime}$ Ice	5.070	2.193	0.080
			0.000			$1^{1 \prime}$ Ice	5.348	2.393	0.120

tnxTower B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119	$\begin{aligned} & \text { Job } \\ & 85565.009 .01 \text { - HARTFORD - NU (SSUSA), CT (BU\# 876363) } \end{aligned}$		$\begin{aligned} & \text { Page } \\ & 20 \text { of } 42 \end{aligned}$
	Project		Date $15: 01: 04 \text { 09/21/18 }$
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by xjones

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \begin{tabular}{l}
Face or \\
Leg
\end{tabular} \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\)
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front $f l^{2}$ | \& $C_{A} A_{A}$

Side

$f t^{2}$ \& Weight

\hline \multirow[b]{4}{*}{| (2) SBNHH-1D65B |
| :--- |
| (P) |} \& \multirow{4}{*}{A} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.000} \& \multirow{4}{*}{105.000} \& 2"Ice \& 5.926 \& 2.815 \& 0.213

\hline \& \& \& 4.000 \& \& \& No Ice \& 8.160 \& 5.396 \& 0.041

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 8.619 \& 5.853 \& 0.091

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 9.085 \& 6.317 \& 0.148

\hline \multirow[b]{4}{*}{(2) SBNHHY-1D65B (P)} \& \multirow{4}{*}{B} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.000} \& \multirow{4}{*}{105.000} \& $2^{\prime \prime}$ Ice \& 10.039 \& 7.267 \& 0.280

\hline \& \& \& 4.000 \& \& \& No Ice \& 8.160 \& 5.396 \& 0.041

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 8.619 \& 5.853 \& 0.091

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 9.085 \& 6.317 \& 0.148

\hline \multirow{4}{*}{(2) SBNHH-1D65B (P)} \& \multirow{4}{*}{C} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.000} \& \multirow{4}{*}{105.000} \& $2^{\prime \prime}$ Ice \& 10.039 \& 7.267 \& 0.280

\hline \& \& \& 4.000 \& \& \& No Ice \& 8.160 \& 5.396 \& 0.041

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\text {" }}$ Ice \& 8.619 \& 5.853 \& 0.091

\hline \& \& \& 0.000 \& \& \& $1^{\text {" }}$ Ice \& 9.085 \& 6.317 \& 0.148

\hline \multirow[b]{5}{*}{BXA-70063/6CF w/ Mount Pipe (P)} \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.000} \& \multirow{5}{*}{105.000} \& $2^{\prime \prime}$ Ice \& 10.039 \& 7.267 \& 0.280

\hline \& \& \& 4.000 \& \& \& No Ice \& 7.819 \& 5.407 \& 0.042

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 8.370 \& 6.558 \& 0.101

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 8.886 \& 7.422 \& 0.168

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 9.942 \& 9.198 \& 0.328

\hline \multirow[t]{4}{*}{| BXA-70063/6CF w/ Mount Pipe |
| :--- |
| (P) |} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{105.000} \& No Ice \& 7.819 \& 5.407 \& 0.042

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 8.370 \& 6.558 \& 0.101

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 8.886 \& 7.422 \& 0.168

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 9.942 \& 9.198 \& 0.328

\hline \multirow[t]{4}{*}{BXA-70063/6CF w/ Mount Pipe (P)} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{105.000} \& No Ice \& 7.819 \& 5.407 \& 0.042

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 8.370 \& 6.558 \& 0.101

\hline \& \& \& 0.000 \& \& \& 1 " Ice \& 8.886 \& 7.422 \& 0.168

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 9.942 \& 9.198 \& 0.328

\hline \multirow[t]{4}{*}{| (2) RFV01U-D1A |
| :--- |
| (P) |} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{105.000} \& No Ice \& 1.875 \& 1.250 \& 0.084

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 2.045 \& 1.393 \& 0.103

\hline \& \& \& 0.000 \& \& \& ! Ice \& 2.223 \& 1.543 \& 0.124

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 2.601 \& 1.865 \& 0.175

\hline \multirow[t]{4}{*}{$$
\begin{aligned}
& \text { RFV01U-DIA } \\
& (\mathrm{P})
\end{aligned}
$$} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{105.000} \& No Ice \& 1.875 \& 1.250 \& 0.084

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\text {" }}$ Ice \& 2.045 \& 1.393 \& 0.103

\hline \& \& \& 0.000 \& \& \& $1^{1 \prime}$ Ice \& 2.223 \& 1.543 \& 0.124

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 2.601 \& 1.865 \& 0.175

\hline \multirow[t]{4}{*}{| RFV01U-D2A |
| :--- |
| (P) |} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{105.000} \& No Ice \& 1.875 \& 1.013 \& 0.070

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.045 \& 1.145 \& 0.087

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 2.223 \& 1.284 \& 0.106

\hline \& \& \& \& \& \& 2^{11} Ice \& 2.601 \& 1.585 \& 0.153

\hline \multirow[t]{4}{*}{$$
\begin{aligned}
& \text { (2) RFV01U-D2A } \\
& \text { (P) }
\end{aligned}
$$} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{105.000} \& No Ice \& 1.875 \& 1.013 \& 0.070

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 2.045 \& 1.145 \& 0.087

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 2.223 \& 1.284 \& 0.106

\hline \& \& \& \& \& \& 2" Ice \& 2.601 \& 1.585 \& 0.153

\hline \multirow[t]{4}{*}{| RVZDC-6627-PF-48 |
| :--- |
| (P) |} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{105.000} \& No Ice \& 3.792 \& 2.514 \& 0.032

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 4.044 \& 2.727 \& 0.063

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 4.303 \& 2.947 \& 0.099

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 4.844 \& 3.417 \& 0.181

\hline \multirow[t]{4}{*}{B13 RRH 4X30 (P-previous App)} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{105.000} \& No Ice \& 2.055 \& 1.320 \& 0.056

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\text {n }}$ Ice \& 2.241 \& 1.475 \& 0.073

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.433 \& 1.638 \& 0.093

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 2.841 \& 1.997 \& 0.142

\hline \multirow[t]{4}{*}{| B13 RRH 4X30 |
| :--- |
| (P-previous App) |} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{105.000} \& No Ice \& 2.055 \& 1.320 \& 0.056

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.241 \& 1.475 \& 0.073

\hline \& \& \& 0.000 \& \& \& $1^{1 \prime}$ Ice \& 2.433 \& 1.638 \& 0.093

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 2.841 \& 1.997 \& 0.142

\hline \multirow[t]{4}{*}{B13 RRH 4X30
(P-previous App)} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{105.000} \& No Ice \& 2.055 \& 1.320 \& 0.056

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 2.241 \& 1.475 \& 0.073

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 2.433 \& 1.638 \& 0.093

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 2.841 \& 1.997 \& 0.142

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \begin{tabular}{l}
Face \\
or \\
Leg
\end{tabular} \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& Offsets:
Horz
Lateral
Vert
\(f t\)
\(f t\)
\(f t\)
\(f t\) \& Azimuth Adjustment \& Placement

$f t$ \& \& | $C_{A} A_{A}$ Front |
| :--- |
| $f t^{2}$ | \& $C_{A} A_{A}$

Side \& Weight

K

\hline \multirow[t]{4}{*}{| RRH4X45-AWS4 B66 |
| :--- |
| (P-previous App) |} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{105.000} \& No Ice \& 2.660 \& 1.586 \& 0.064

\hline \& \& \& 0.000 \& \& \& $1 / 2^{11}$ Ice \& 2.878 \& 1.769 \& 0.084

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 3.104 \& 1.959 \& 0.108

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 3.577 \& 2.359 \& 0.165

\hline \multirow[t]{4}{*}{| RRH4X45-AWS4 B66 |
| :--- |
| (P-previous App) |} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{105.000} \& No Ice \& 2.660 \& 1.586 \& 0.064

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.878 \& 1.769 \& 0.084

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.104 \& 1.959 \& 0.108

\hline \& \& \& \& \& \& 2 I' Ice \& 3.577 \& 2.359 \& 0.165

\hline \multirow[t]{4}{*}{| RRH4X45-AWS4 B66 |
| :--- |
| (P-previous App) |} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{105.000} \& No Ice \& 2.660 \& 1.586 \& 0.064

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.878 \& 1.769 \& 0.084

\hline \& \& \& 0.000 \& \& \& $1^{\text {I }}$ Ice \& 3.104 \& 1.959 \& 0.108

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 3.577 \& 2.359 \& 0.165

\hline \multirow[t]{4}{*}{| B25 RRH4X30 |
| :--- |
| (P-previous App) |} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{105.000} \& No Ice \& 2.200 \& 1.742 \& 0.055

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\text {" }}$ Ice \& 2.393 \& 1.920 \& 0.075

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 2.593 \& 2.106 \& 0.099

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 3.015 \& 2.501 \& 0.156

\hline \multirow[t]{4}{*}{| B25 RRH4X30 |
| :--- |
| (P-previous App) |} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{105.000} \& No Ice \& 2.200 \& 1.742 \& 0.055

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.393 \& 1.920 \& 0.075

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 2.593 \& 2.106 \& 0.099

\hline \& \& \& \& \& \& 2"Ice \& 3.015 \& 2.501 \& 0.156

\hline \multirow[t]{4}{*}{| B25 RRH4X30 |
| :--- |
| (P-previous App) |} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{105.000} \& No Ice \& 2.200 \& 1.742 \& 0.055

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 2.393 \& 1.920 \& 0.075

\hline \& \& \& 0.000 \& \& \& $1^{1 \prime}$ Ice \& 2.593 \& 2.106 \& 0.099

\hline \& \& \& \& \& \& 2^{11} Ice \& 3.015 \& 2.501 \& 0.156

\hline \multirow[t]{4}{*}{| DB-T1-6Z-8AB-0Z |
| :--- |
| (P-previous App) |} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{105.000} \& No Ice \& 4.800 \& 2.000 \& 0.044

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\text {¹ }}$ Ice \& 5.070 \& 2.193 \& 0.080

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 5.348 \& 2.393 \& 0.120

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 5.926 \& 2.815 \& 0.213

\hline \multirow[t]{4}{*}{Sector Mount [SM 402-3] (E-2M.P/sector)} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{None} \& \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{105.000} \& No Ice \& 18.910 \& 18.910 \& 0.851

\hline \& \& \& \& \& \& $1 / 2^{\prime \prime}$ Ice \& 26.780 \& 26.780 \& 1.233

\hline \& \& \& \& \& \& 1 " Ice \& 34.650 \& 34.650 \& 1.616

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 50.390 \& 50.390 \& 2.381

\hline *\$* \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{4}{*}{| APXV9ERR18-C-A20 w/ Mount Pipe |
| :--- |
| (E) |} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{98.000} \& No Ice \& 8.262 \& 7.471 \& 0.088

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 8.822 \& 8.656 \& 0.158

\hline \& \& \& 1.000 \& \& \& 1^{11} Ice \& 9.346 \& 9.556 \& 0.237

\hline \& \& \& \& \& \& 2"Ice \& 10.418 \& 11.388 \& 0.421

\hline \multirow[t]{4}{*}{APXVSPP18-C-A20 w/ Mount Pipe (E)} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& $$
4.000
$$ \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{98.000} \& No Ice \& 8.262 \& 6.946 \& 0.083

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 8.822 \& 8.127 \& 0.151

\hline \& \& \& 1.000 \& \& \& 1" Ice \& 9.346 \& 9.021 \& 0.227

\hline \& \& \& \& \& \& 2" Ice \& 10.418 \& 10.844 \& 0.406

\hline \multirow[t]{4}{*}{APXVSPP18-C-A20 w/ Mount Pipe (E)} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{98.000} \& No Ice \& 8.262 \& 6.946 \& 0.083

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 8.822 \& 8.127 \& 0.151

\hline \& \& \& 1.000 \& \& \& 1 I' Ice \& 9.346 \& 9.021 \& 0.227

\hline \& \& \& \& \& \& 2 " Ice \& 10.418 \& 10.844 \& 0.406

\hline \multirow[t]{4}{*}{| IBC1900BB-1 |
| :--- |
| (E) |} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{98.000} \& No Ice \& 0.966 \& 0.463 \& 0.022

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 1.091 \& 0.558 \& 0.030

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.223 \& 0.660 \& 0.039

\hline \& \& \& \& \& \& 2"Ice \& 1.510 \& 0.893 \& 0.065

\hline \multirow[t]{4}{*}{| IBC1900BB-1 |
| :--- |
| (E) |} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& \[

4.000
\] \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{98.000} \& No Ice \& 0.966 \& 0.463 \& 0.022

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 1.091 \& 0.558 \& 0.030

\hline \& \& \& 0.000 \& \& \& 1^{11} Ice \& 1.223 \& 0.660 \& 0.039

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 1.510 \& 0.893 \& 0.065

\hline \multirow[t]{4}{*}{| IBC1900BB-1 |
| :--- |
| (E) |} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{98.000} \& No Ice \& 0.966 \& 0.463 \& 0.022

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 1.091 \& 0.558 \& 0.030

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 1.223 \& 0.660 \& 0.039

\hline \& \& \& \& \& \& 2 " Ice \& 1.510 \& 0.893 \& 0.065

\hline
\end{tabular}

tnxTower B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	$\begin{array}{\|l\|} \hline \text { Job } \\ 85565 \end{array}$	ORD - NU (SS	$\begin{aligned} & \text { Page } 22 \text { of } 42 \end{aligned}$
	Project		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$
	Client	Crown Castle	Designed by xjones

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& Face or Leg \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{c}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft \\
\hline
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
-
\end{tabular} \& Placement \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) \\
Front \\
\(f t^{2}\)
\end{tabular} \& \begin{tabular}{l}
\(C_{A} A_{A}\) \\
Side \\
\(f t^{2}\)
\end{tabular} \& Weight

K

\hline \multirow[t]{4}{*}{| IBC1900HG-2A |
| :--- |
| (E) |} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{98.000} \& No Ice \& 0.966 \& 0.463 \& 0.022

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 1.091 \& 0.558 \& 0.030

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 1.223 \& 0.660 \& 0.039

\hline \& \& \& \& \& \& 2"Ice \& 1.510 \& 0.893 \& 0.065

\hline \multirow[t]{4}{*}{| IBC1900HG-2A |
| :--- |
| (E) |} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{98.000} \& No Ice \& 0.966 \& 0.463 \& 0.022

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 1.091 \& 0.558 \& 0.030

\hline \& \& \& 0.000 \& \& \& $1 "$ Ice \& 1.223 \& 0.660 \& 0.039

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 1.510 \& 0.893 \& 0.065

\hline \multirow[t]{4}{*}{| IBCl900HG-2A |
| :--- |
| (E) |} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{98.000} \& No Ice \& 0.966 \& 0.463 \& 0.022

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 1.091 \& 0.558 \& 0.030

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 1.223 \& 0.660 \& 0.039

\hline \& \& \& \& \& \& 2 'Ice \& 1.510 \& 0.893 \& 0.065

\hline \multirow[t]{4}{*}{| AAHC w/ Mount Pipe |
| :--- |
| (R) |} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{98.000} \& No Ice \& 4.409 \& 2.691 \& 0.115

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\text {It }}$ Ice \& 4.727 \& 3.079 \& 0.156

\hline \& \& \& 1.000 \& \& \& 1" Ice \& 5.055 \& 3.486 \& 0.202

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 5.743 \& 4.359 \& 0.310

\hline \multirow[t]{4}{*}{| AAHC w/ Mount Pipe |
| :--- |
| (R) |} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{98.000} \& No Ice \& 4.409 \& 2.691 \& 0.115

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 4.727 \& 3.079 \& 0.156

\hline \& \& \& 1.000 \& \& \& $1^{\prime \prime}$ Ice \& 5.055 \& 3.486 \& 0.202

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 5.743 \& 4.359 \& 0.310

\hline \multirow[t]{4}{*}{| AAHC w/ Mount Pipe |
| :--- |
| (R) |} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{98.000} \& No Ice \& 4.409 \& 2.691 \& 0.115

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 4.727 \& 3.079 \& 0.156

\hline \& \& \& 1.000 \& \& \& 1 ' Ice \& 5.055 \& 3.486 \& 0.202

\hline \& \& \& \& \& \& 2^{11} Ice \& 5.743 \& 4.359 \& 0.310

\hline \multirow[t]{4}{*}{| Platform Mount [LP 1201-1] |
| :--- |
| (E) |} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{None} \& \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{98.000} \& No Ice \& 23.100 \& 23.100 \& 2.100

\hline \& \& \& \& \& \& 1/2" Ice \& 26.800 \& 26.800 \& 2.500

\hline \& \& \& \& \& \& 1" Ice \& 30.500 \& 30.500 \& 2.900

\hline \& \& \& \& \& \& 2" Ice \& 37.900 \& 37.900 \& 3.700

\hline \multicolumn{8}{|l|}{*\$\$* ${ }^{\text {* }}$} \& \&

\hline PCS 1900MHz \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 2.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{96.000} \& No Ice \& 2.322 \& 2.238 \& 0.060

\hline $4 \times 45 \mathrm{~W}-65 \mathrm{MHz}$ \& \& \& 0.000 \& \& \& 1/2 $2^{\text {I' }}$ Ice \& 2.527 \& 2.441 \& 0.083

\hline \multirow[t]{2}{*}{(E)} \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 2.739 \& 2.651 \& 0.110

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 3.185 \& 3.093 \& 0.173

\hline \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 2.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{96.000} \& No Ice \& 2.322 \& 2.238 \& 0.060

\hline $$
4 \times 45 \mathrm{~W}-65 \mathrm{MHz}
$$ \& \& \& 0.000 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 2.527 \& 2.441 \& 0.083

\hline \multirow[t]{2}{*}{(E)} \& \& \& 0.000 \& \& \& 1^{11} Ice \& 2.739 \& 2.651 \& 0.110

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 3.185 \& 3.093 \& 0.173

\hline PCS 1900 MHz \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 2.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{96.000} \& No Ice \& 2.322 \& 2.238 \& 0.060

\hline $4 \mathrm{x} 45 \mathrm{~W}-65 \mathrm{MHz}$ \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.527 \& 2.441 \& 0.083

\hline \multirow[t]{2}{*}{} \& \& \& 0.000 \& \& \& 1 " Ice \& 2.739 \& 2.651 \& 0.110

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 3.185 \& 3.093 \& 0.173

\hline PCS 1900 MHz \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 2.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{96.000} \& No Ice \& 2.322 \& 2.238 \& 0.060

\hline $4 \times 45 \mathrm{~W}-65 \mathrm{MHz}$ \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.527 \& 2.441 \& 0.083

\hline \multirow[t]{2}{*}{(E)} \& \& \& -1.000 \& \& \& 1" Ice \& 2.739 \& 2.651 \& 0.110

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 3.185 \& 3.093 \& 0.173

\hline PCS 1900 MHz \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 2.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{96.000} \& No Ice \& 2.322 \& 2.238 \& 0.060

\hline $4 \mathrm{x} 45 \mathrm{~W}-65 \mathrm{MHz}$ \& \& \& 0.000 \& \& \& $1 / 2^{1}$ Ice \& 2.527 \& 2.441 \& 0.083

\hline \multirow[t]{2}{*}{(E)} \& \& \& -1.000 \& \& \& $1^{\prime \prime}$ Ice \& 2.739 \& 2.651 \& 0.110

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 3.185 \& 3.093 \& 0.173

\hline PCS 1900 MHz \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 2.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{96.000} \& No Ice \& 2.322 \& 2.238 \& 0.060

\hline $4 \mathrm{x} 45 \mathrm{~W}-65 \mathrm{MHz}$ \& \& \& 0.000 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 2.527 \& 2.441 \& 0.083

\hline \multirow[t]{2}{*}{} \& \& \& -1.000 \& \& \& 1 1ce \& 2.739 \& 2.651 \& 0.110

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 3.185 \& 3.093 \& 0.173

\hline 800 MHz 2 X 50 W RRH \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 2.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{96.000} \& No Ice \& 2.058 \& 1.932 \& 0.064

\hline W/FILTER \& \& \& 0.000 \& \& \& $1 / 2^{\text {1 }}$ Ice \& 2.240 \& 2.109 \& 0.086

\hline (E) \& \& \& 0.000 \& \& \& 1" Ice \& 2.429 \& 2.293 \& 0.111

\hline \& \& \& \& \& \& 2 " Ice \& 2.829 \& 2.684 \& 0.172

\hline
\end{tabular}

tnxTower B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119	Job 85565.009 .01 - HARTFORD - NU (SSUSA),CT (BU\# 876363)		$\begin{aligned} & \text { Page } \\ & 23 \text { of } 42 \end{aligned}$
	Project		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by xjones

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
-
\end{tabular} \& Placement \& \& \(C_{A} A_{A}\) Front
\[
f l^{2}
\] \& \begin{tabular}{l}
\(C_{A} A_{A}\) Side \\
\(f t^{2}\)
\end{tabular} \& Weight

K

\hline \multirow[t]{4}{*}{800MHz 2X50W RRH W/FILTER (E)} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 2.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{96.000} \& No Ice \& 2.058 \& 1.932 \& 0.064

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 2.240 \& 2.109 \& 0.086

\hline \& \& \& \multirow[t]{2}{*}{0.000} \& \& \& $1^{\prime \prime}$ Ice \& 2.429 \& 2.293 \& 0.111

\hline \& \& \& \& \& \& 2^{11} Ice \& 2.829 \& 2.684 \& 0.172

\hline \multirow[t]{4}{*}{800 MHz 2 X 50 W RRH W/FILTER (E)} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 2.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{96.000} \& No Ice \& 2.058 \& 1.932 \& 0.064

\hline \& \& \& 0.000 \& \& \& 1/2 ${ }^{\text {11 }}$ Ice \& 2.240 \& 2.109 \& 0.086

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 2.429 \& 2.293 \& 0.111

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 2.829 \& 2.684 \& 0.172

\hline \multirow[t]{4}{*}{$4^{\prime} \times 2$ 2" Pipe Mount (E)} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 1.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{96.000} \& No Ice \& 0.785 \& 0.785 \& 0.029

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 1.028 \& 1.028 \& 0.035

\hline \& \& \& 0.000 \& \& \& $1{ }^{\text {H }}$ Ice \& 1.281 \& 1.281 \& 0.044

\hline \& \& \& \& \& \& 2^{11} Ice \& 1.814 \& 1.814 \& 0.072

\hline \multirow[t]{4}{*}{| $4^{\prime} \times 2^{\prime \prime}$ Pipe Mount |
| :--- |
| (E) |} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 1.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{96.000} \& No Ice \& 0.785 \& 0.785 \& 0.029

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\text {" }}$ Ice \& 1.028 \& 1.028 \& 0.035

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 1.281 \& 1.281 \& 0.044

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 1.814 \& 1.814 \& 0.072

\hline \multirow[t]{4}{*}{| 4' x 2" Pipe Mount |
| :--- |
| (E) |} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 1.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{96.000} \& No Ice \& 0.785 \& 0.785 \& 0.029

\hline \& \& \& 0.000 \& \& \& 1/2' Ice \& 1.028 \& 1.028 \& 0.035

\hline \& \& \& 0.000 \& \& \& 1 Ice \& 1.281 \& 1.281 \& 0.044

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 1.814 \& 1.814 \& 0.072

\hline \multirow[t]{4}{*}{| Side Arm Mount [SO 102-3] |
| :--- |
| (E) |} \& \multirow[t]{6}{*}{C} \& \multirow[t]{6}{*}{None} \& \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{96.000} \& No Ice \& 3.000 \& 3.000 \& 0.081

\hline \& \& \& \& \& \& 1/2" Ice \& 3.480 \& 3.480 \& 0.111

\hline \& \& \& \& \& \& $1^{\prime \prime}$ Ice \& 3.960 \& 3.960 \& 0.141

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 4.920 \& 4.920 \& 0.201

\hline \& \& \& \& \& \& \& \& \&

\hline \multicolumn{8}{|l|}{*\$\$} \& \&

\hline \multirow[t]{4}{*}{| HBX-6516DS-VTM w/ Mount Pipe |
| :--- |
| (E) |} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{81.000} \& No Ice \& 3.598 \& 3.241 \& 0.029

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 3.998 \& 3.914 \& 0.062

\hline \& \& \& -1.000 \& \& \& $1^{\prime \prime}$ Ice \& 4.389 \& 4.564 \& 0.101

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 5.187 \& 5.914 \& 0.199

\hline \multirow[t]{4}{*}{HBX-6516DS-VTM w/ Mount Pipe (E)} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{81.000} \& No Ice \& 3.598 \& 3.241 \& 0.029

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\text {H }}$ Ice \& 3.998 \& 3.914 \& 0.062

\hline \& \& \& -1.000 \& \& \& $1^{\prime \prime}$ Ice \& 4.389 \& 4.564 \& 0.101

\hline \& \& \& \& \& \& 2" Ice \& 5.187 \& 5.914 \& 0.199

\hline \multirow[t]{4}{*}{HBX-6516DS-VTM w/ Mount Pipe (E)} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{81.000} \& No Ice \& 3.598 \& 3.241 \& 0.029

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 3.998 \& 3.914 \& 0.062

\hline \& \& \& -1.000 \& \& \& $1{ }^{1 \prime}$ Ice \& 4.389 \& 4.564 \& 0.101

\hline \& \& \& \& \& \& 2 " Ice \& 5.187 \& 5.914 \& 0.199

\hline \multirow[t]{4}{*}{$6^{\prime} \times 2^{\prime \prime}$ Mount Pipe (E)} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& $$
4.000
$$ \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{81.000} \& No Ice \& 1.425 \& 1.425 \& 0.022

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 1.925 \& 1.925 \& 0.033

\hline \& \& \& -1.000 \& \& \& 1 I' Ice \& 2.294 \& 2.294 \& 0.048

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 3.060 \& 3.060 \& 0.090

\hline \multirow[t]{4}{*}{$6^{\prime} \times 2^{\prime \prime}$ Mount Pipe (E)} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{81.000} \& No Ice \& 1.425 \& 1.425 \& 0.022

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 1.925 \& 1.925 \& 0.033

\hline \& \& \& -1.000 \& \& \& 1" Ice \& 2.294 \& 2.294 \& 0.048

\hline \& \& \& \& \& \& 2"Ice \& 3.060 \& 3.060 \& 0.090

\hline \multirow[t]{4}{*}{6×2^{11} Mount Pipe (E)} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{81.000} \& No Ice \& 1.425 \& 1.425 \& 0.022

\hline \& \& \& $$
0.000
$$ \& \& \& $1 / 2^{\prime \prime}$ Ice \& 1.925 \& 1.925 \& 0.033

\hline \& \& \& -1.000 \& \& \& $1^{\prime \prime}$ Ice \& 2.294 \& 2.294 \& 0.048

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 3.060 \& 3.060 \& 0.090

\hline \multirow[t]{4}{*}{| T-Arm Mount [TA 602-3] |
| :--- |
| (E) |} \& \multirow[t]{5}{*}{C} \& \multirow[t]{4}{*}{None} \& \& \multirow[t]{4}{*}{0.000} \& \multirow[t]{4}{*}{81.000} \& No Ice \& 11.590 \& 11.590 \& 0.774

\hline \& \& \& \& \& \& $1 / 2^{\prime \prime}$ Ice \& 15.440 \& 15.440 \& 0.990

\hline \& \& \& \& \& \& 1 1' Ice \& 19.290 \& 19.290 \& 1.206

\hline \& \& \& \& \& \& 2"Ice \& 26.990 \& 26.990 \& 1.639

\hline *\$* \& \& \& \& \& \& \& \& \&

\hline KS24019-L112A \& \multirow[t]{2}{*}{A} \& \multirow[t]{2}{*}{From Leg} \& 3.000 \& \multirow[t]{2}{*}{0.000} \& \multirow[t]{2}{*}{74.000} \& No Ice \& 0.141 \& 0.141 \& 0.005

\hline (E) \& \& \& 0.000 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 0.198 \& 0.198 \& 0.007

\hline
\end{tabular}

tnxTower B+T Group 1717 S. Boulder, Suite 300	$\begin{aligned} & \text { Job } \\ & 85565.009 .01 \text { - HARTFORD - NU (SSUSA),CT (BU\# 876363) } \end{aligned}$		$\begin{aligned} & \text { Page } \\ & 24 \text { of } 42 \end{aligned}$
	Project		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by xjones

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
-
\end{tabular} \& Placement \& \& \(C_{A} A_{A}\) Front
\[
f t^{2}
\] \& \(C_{A} A_{A}\)
Side

$f t^{2}$ \& Weight

K

\hline \multirow{6}{*}{| Side Arm Mount [SO 701-1] |
| :--- |
| (E) |} \& \multirow{6}{*}{A} \& \multirow{7}{*}{From Leg} \& 2.000 \& \multirow{7}{*}{0.000} \& \multirow{7}{*}{74.000} \& 1" Ice \& 0.262 \& 0.262 \& 0.009

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 0.415 \& 0.415 \& 0.018

\hline \& \& \& 1.500 \& \& \& No Ice \& 0.850 \& 1.670 \& 0.065

\hline \& \& \& 0.000 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 1.140 \& 2.340 \& 0.079

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 1.430 \& 3.010 \& 0.093

\hline \& \& \& \& \& \& 2 İce \& 2.010 \& 4.350 \& 0.121

\hline *\$ * \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

Dishes

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Dish Type \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\)
\end{tabular} \& Azimuth Adjustment \& \begin{tabular}{l}
\(3 d B\) \\
Beam \\
Width \\
-
\end{tabular} \& Elevation \& \begin{tabular}{l}
Outside Diameter \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Aperture Area \\
\(f t^{2}\)
\end{tabular} \& Weight

K

\hline *\$\$* \& \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

Load Combinations

Comb. No.	Description
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	$0.9 \mathrm{Dead}+1.0 \mathrm{~W}$ ind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead +1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	I.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead +1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	$1.2 \mathrm{Dead}+1.0 \mathrm{Ice}+1.0 \mathrm{Temp}$
27	1.2 Dead+1.0 Wind $0 \mathrm{deg}+1.0 \mathrm{Ice+1.0}$ Temp

tnxTower B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	$\begin{array}{\|l\|} \hline \text { Job } \\ 85565 \end{array}$	ORD - NU (SS	$\begin{aligned} & \text { Page } \\ & 25 \text { of } 42 \end{aligned}$
	Project		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$
	Client	Crown Castle	Designed by xjones

Comb. No.	Description
28	1.2 Dead+I.0 Wind $30 \mathrm{deg}+1.0$ Ice+ 1.0 Temp
29	1.2 Dead+1.0 Wind $60 \mathrm{deg}+1.0$ Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice +1.0 Temp
31	1.2 Dead+1.0 Wind $120 \mathrm{deg}+1.0$ Ice+1.0 Temp
32	1.2 Dead+1.0 Wind $150 \mathrm{deg}+1.0$ Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind $210 \mathrm{deg}+1.0$ Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead +1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind $300 \mathrm{deg}+1.0$ Ice +1.0 Temp
38	1.2 Dead+1.0 Wind $330 \mathrm{deg}+1.0 \mathrm{Ice}+1.0 \mathrm{Temp}$
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

	Maximum Member Forces						
Section No.	$\begin{gathered} \text { Elevation } \\ \mathrm{ft} \end{gathered}$	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L1	108-103	Pole	Max Tension	48	0.000	-0.000	-0.000
			Max. Compression	26	-9.569	1.499	0.268
			Max. Mx	20	-2.394	13.847	0.035
			Max. My	2	-2.395	0.620	13.264
			Max. Vy	20	-6.512	13.847	0.035
			Max. Vx	2	-6.527	0.620	13.264
			Max. Torque	2			0.352
L2	103-98.5	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-10.032	1.614	0.331
			Max. Mx	20	-2.614	43.379	-0.198
			Max. My	2	-2.615	0.398	42.860
			Max. Vy	20	-6.609	43.379	-0.198
			Max. Vx	2	-6.624	0.398	42.860
			Max. Torque	2			0.352
L3	98.5-98	Pole	Max Tension	1	0.000	0.000	0.000
			Max Compression	26	-10.108	1.631	0.342
			Max. Mx	20	-2.659	46.690	-0.223
			Max. My	2	-2.659	0.374	46.178
			Max. Vy	20	-6.629	46.690	-0.223
			Max. Vx	2	-6.644	0.374	46.178
			Max. Torque	2			0.352
L4	98-93	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-19.444	1.823	0.531
			Max. Mx	20	-6.789	100.043	-0.465
			Max. My	2	-6.792	0.132	99.498
			Max. Vy	20	-11.020	100.043	-0.465
			Max. Vx	2	-11.014	0.132	99.498
			Max. Torque	16			-0.373
L5	93-88	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-20.131	2.015	0.649

tnxTower B + T Group	$\begin{aligned} & \text { Job } \\ & 85565.009 .01 \text { - HARTFORD - NU (SSUSA),CT (BU\# 876363) } \end{aligned}$		$\begin{aligned} & \text { Page } \\ & 26 \text { of } 42 \end{aligned}$
	Project		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by xjones

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Section No. \& Elevation $f t$ \& Component Type \& Condition \& Gov. Load Comb. \& Axial

K \& \[
$$
\begin{gathered}
\text { Major Axis } \\
\text { Moment } \\
\text { kip-ft } \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\text { Minor Axis } \\
\text { Moment } \\
\text { kip-ft }
\end{gathered}
$$
\]

\hline \multirow{9}{*}{L6} \& \multirow{9}{*}{88-83} \& \multirow{8}{*}{Pole} \& Max Mx \& 20 \& -7.118 \& 155.747 \& -0.725

\hline \& \& \& Max. My \& 2 \& -7.121 \& -0.112 \& 155.161

\hline \& \& \& Max. Vy \& 20 \& -11.261 \& 155.747 \& -0.725

\hline \& \& \& Max. Vx \& 2 \& \multirow[t]{2}{*}{-11.255} \& \multirow[t]{2}{*}{-0.112} \& 155.161

\hline \& \& \& Max. Torque \& 16 \& \& \& -0.372

\hline \& \& \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -20.877 \& 2.200 \& 0.767

\hline \& \& \& Max. Mx \& 20 \& -7.484 \& 212.618 \& -0.984

\hline \& \& \multirow{8}{*}{Pole} \& Max. My \& 2 \& -7.487 \& -0.357 \& 211.991

\hline \multirow{7}{*}{L7} \& \multirow{7}{*}{83-82.33} \& \& Max. Vy \& 20 \& -11.491 \& 212.618 \& -0.984

\hline \& \& \& Max. Vx \& 2 \& \multirow[t]{2}{*}{-11.485} \& \multirow[t]{2}{*}{-0.357} \& \multirow[t]{2}{*}{$$
\begin{gathered}
211.991 \\
-0.372
\end{gathered}
$$}

\hline \& \& \& Max. Torque \& 16 \& \& \&

\hline \& \& \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -20.999 \& 2.225 \& 0.782

\hline \& \& \& Max. Mx \& 20 \& -7.537 \& 220.334 \& -1.018

\hline \& \& \& Max. My \& 2 \& -7.540 \& -0.390 \& 219.703

\hline \multirow{7}{*}{L8} \& \multirow{6}{*}{82.33-82.08} \& \multirow{6}{*}{Pole} \& Max. Vy \& 20 \& -11.547 \& 220.334 \& -1.018

\hline \& \& \& Max. Vx \& 2 \& \multirow[t]{2}{*}{-11.541} \& \multirow[t]{2}{*}{-0.390} \& 219.703

\hline \& \& \& Max. Torque \& 16 \& \& \& -0.372

\hline \& \& \& Max Tension \& 1 \& $$
0.000
$$ \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -21.054 \& 2.235 \& 0.789

\hline \& \& \& Max. Mx \& 20 \& -7.569 \& 223.224 \& -1.031

\hline \& \multirow{8}{*}{82.08-77.08} \& \multirow{8}{*}{Pole} \& Max. My \& 2 \& -7.571 \& -0.402 \& 222.590

\hline \multirow{7}{*}{L9} \& \& \& Max. Vy \& 20 \& -11.567 \& 223.224 \& -1.031

\hline \& \& \& Max. Vx \& 2 \& \multirow[t]{2}{*}{-11.561} \& \multirow[t]{2}{*}{-0.402} \& \multirow[t]{2}{*}{222.590
-0.372}

\hline \& \& \& Max. Torque \& 16 \& \& \&

\hline \& \& \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -24.838 \& 2.419 \& 0.834

\hline \& \& \& Max. Mx \& 20 \& -9.106 \& 286.418 \& -1.296

\hline \& \& \& Max. My \& 2 \& -9.109 \& -0.647 \& 285.736

\hline \multirow{6}{*}{L10} \& \multirow{6}{*}{77.08-76.25} \& \multirow{6}{*}{Pole} \& Max. Vy \& 20 \& -13.251 \& 286.418 \& -1.296

\hline \& \& \& Max. Vx \& 2 \& \multirow[t]{2}{*}{-13.245} \& \multirow[t]{2}{*}{-0.647} \& \multirow[t]{2}{*}{285.736
-0.372}

\hline \& \& \& Max. Torque \& 16 \& \& \&

\hline \& \& \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -25.070 \& 2.450 \& 0.839

\hline \& \& \& Max. Mx \& 20 \& -9.198 \& 297.449 \& -1.341

\hline \multirow{9}{*}{L11} \& \multirow{9}{*}{76.25-76} \& \multirow{9}{*}{Pole} \& Max. My \& 2 \& -9.201 \& -0.687 \& 296.759

\hline \& \& \& Max. Vy \& 20 \& -13.333 \& 297.449 \& -1.341

\hline \& \& \& Max. Vx \& 2 \& \multirow[t]{2}{*}{-13.327} \& \multirow[t]{2}{*}{-0.687} \& \multirow[t]{2}{*}{296.759
-0.372}

\hline \& \& \& Max. Torque \& 16 \& \& \&

\hline \& \& \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -25.152 \& 2.461 \& 0.840

\hline \& \& \& Max. Mx \& 20 \& -9.243 \& 300.786 \& -1.354

\hline \& \& \& Max. My \& 2 \& -9.245 \& -0.700 \& 300.093

\hline \& \& \& Max. Vy \& 20 \& -13.356 \& 300.786 \& -1.354

\hline \multirow{5}{*}{L12} \& \multirow{5}{*}{76-74.5} \& \multirow{4}{*}{Pole} \& Max. Vx \& 2 \& \multirow[t]{2}{*}{-13.350} \& \multirow[t]{2}{*}{-0.700} \& \multirow[b]{2}{*}{-0.371}

\hline \& \& \& Max. Torque \& 16 \& \& \&

\hline \& \& \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -25.647 \& 2.515 \& 0.847

\hline \& \& \multirow{12}{*}{Pole} \& Max. Mx \& 20 \& -9.463 \& 320.947 \& -1.434

\hline \multirow{11}{*}{L13} \& \multirow{11}{*}{74.5-74.25} \& \& Max. My \& 2 \& -9.466 \& -0.773 \& 320.240

\hline \& \& \& Max. Vy \& 20 \& -13.525 \& 320.947 \& -1.434

\hline \& \& \& Max. Vx \& 2 \& \multirow[t]{2}{*}{-13.518} \& \multirow[t]{2}{*}{-0.773} \& 320.240

\hline \& \& \& Max. Torque \& 16 \& \& \& \multirow[t]{2}{*}{-0.371
0.000}

\hline \& \& \& Max Tension \& 1 \& 0.000 \& 0.000 \&

\hline \& \& \& Max. Compression \& 26 \& -25.732 \& 2.527 \& 0.849

\hline \& \& \& Max. Mx \& 20 \& -9.514 \& 324.332 \& -1.447

\hline \& \& \& Max. My \& 2 \& -9.517 \& -0.785 \& 323.621

\hline \& \& \& Max. Vy \& 20 \& -13.546 \& 324.332 \& -1.447

\hline \& \& \& Max. Vx \& 2 \& -13.540 \& -0.785 \& 323.621

\hline \& \& \& Max. Torque \& 16 \& \& \& -0.371

\hline
\end{tabular}

tnxTower B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	$\begin{array}{\|l\|} \hline \text { Job } \\ 85565 . \end{array}$	ORD - NU (SSl	$\begin{aligned} & \text { Page } \\ & 27 \text { of } 42 \end{aligned}$
	Project		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$
	Client	Crown Castle	Designed by xjones

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Section No. \& $$
\begin{aligned}
& \text { Elevation } \\
& f t
\end{aligned}
$$ \& Component Type \& Condition \& Gov. Load Comb. \& Axial
K \& Major Axis Moment kip-ft \& Minor Axis Moment kip-ft

\hline \multirow[t]{8}{*}{L14

15} \& \multirow[t]{7}{*}{74.25-69.25} \& \multirow[t]{7}{*}{Pole} \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -27.587 \& 2.712 \& 1.245

\hline \& \& \& Max. Mx \& 20 \& -10.407 \& 393.904 \& -1.522

\hline \& \& \& Max. My \& 2 \& -10.412 \& -1.029 \& 393.166

\hline \& \& \& Max. Vy \& 20 \& -14.193 \& 393.904 \& -1.522

\hline \& \& \& Max. Vx \& 2 \& -14.149 \& -1.029 \& 393.166

\hline \& \& \& Max. Torque \& 16 \& \& \& -0.475

\hline \& \multirow[t]{7}{*}{69.25-64.25} \& \multirow[t]{7}{*}{Pole} \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \multirow{6}{*}{L15} \& \& \& Max. Compression \& 26 \& -29.306 \& 2.901 \& 1.269

\hline \& \& \& Max. Mx \& 20 \& -11.250 \& 466.243 \& -1.789

\hline \& \& \& Max. My \& 2 \& -11.254 \& -1.273 \& 465.260

\hline \& \& \& Max. Vy \& 20 \& -14.744 \& 466.243 \& -1.789

\hline \& \& \& Max. Vx \& 2 \& -14.699 \& -1.273 \& 465.260

\hline \& \& \& Max. Torque \& 16 \& \& \& -0.475

\hline \multirow[t]{7}{*}{L16} \& \multirow[t]{7}{*}{64.25-59.25} \& \multirow[t]{7}{*}{Pole} \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -31.044 \& 3.092 \& 1.292

\hline \& \& \& Max. Mx \& 20 \& -12.112 \& 541.333 \& -2.055

\hline \& \& \& Max. My \& 2 \& -12.117 \& -1.515 \& 540.105

\hline \& \& \& Max. Vy \& 20 \& -15.295 \& 541.333 \& -2.055

\hline \& \& \& Max. Vx \& 2 \& -15.250 \& -1.515 \& 540.105

\hline \& \& \& Max. Torque \& 16 \& \& \& -0.475

\hline \multirow[t]{7}{*}{L17} \& \multirow[t]{7}{*}{59.25-58.08} \& \multirow[t]{7}{*}{Pole} \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -31.462 \& 3.136 \& 1.297

\hline \& \& \& Max. Mx \& 20 \& -12.317 \& 559.304 \& -2.118

\hline \& \& \& Max. My \& 2 \& -12.321 \& -1.572 \& 558.019

\hline \& \& \& Max. Vy \& 20 \& -15.429 \& 559.304 \& -2.118

\hline \& \& \& Max. Vx \& 2 \& -15.384 \& -1.572 \& 558.019

\hline \& \& \& Max. Torque \& 16 \& \& \& -0.474

\hline \multirow[t]{7}{*}{L18} \& \multirow[t]{7}{*}{58.08-57.73} \& \multirow[t]{7}{*}{Pole} \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -31.601 \& 3.151 \& 1.299

\hline \& \& \& Max. Mx \& 20 \& -12.399 \& 564.711 \& -2.136

\hline \& \& \& Max. My \& 2 \& -12.403 \& -1.589 \& 563.409

\hline \& \& \& Max. Vy \& 20 \& -15.464 \& 564.711 \& -2.136

\hline \& \& \& Max. Vx \& 2 \& -15.419 \& -1.589 \& 563.409

\hline \& \& \& Max. Torque \& 16 \& \& \& -0.474

\hline \multirow[t]{7}{*}{L19} \& \multirow[t]{7}{*}{57.73-57.5} \& \multirow[t]{7}{*}{Pole} \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -31.693 \& 3.161 \& 1.300

\hline \& \& \& Max. Mx \& 20 \& -12.449 \& 568.271 \& -2.149

\hline \& \& \& Max. My \& 2 \& -12.453 \& -1.600 \& 566.958

\hline \& \& \& Max. Vy \& 20 \& -15.490 \& 568.271 \& -2.149

\hline \& \& \& Max. Vx \& 2 \& -15.445 \& -1.600 \& 566.958

\hline \& \& \& Max. Torque \& 16 \& \& \& -0.474

\hline \multirow[t]{7}{*}{L20} \& \multirow[t]{7}{*}{57.5-52.5} \& \multirow[t]{7}{*}{Pole} \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -33.671 \& 3.350 \& 1.321

\hline \& \& \& Max. Mx \& 20 \& -13.505 \& 647.201 \& -2.414

\hline \& \& \& Max. My \& 2 \& -13.509 \& -1.842 \& 645.642

\hline \& \& \& Max. Vy \& 20 \& -16.079 \& 647.201 \& -2.414

\hline \& \& \& Max. Vx \& 2 \& -16.034 \& -1.842 \& 645.642

\hline \& \& \& Max. Torque \& 16 \& \& \& -0.474

\hline \multirow[t]{7}{*}{L21} \& \multirow[t]{7}{*}{52.5-47} \& \multirow[t]{7}{*}{Pole} \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -34.566 \& 3.437 \& 1.330

\hline \& \& \& Max. Mx \& 20 \& -13.991 \& 683.670 \& -2.534

\hline \& \& \& Max. My \& 2 \& -13.995 \& -1.950 \& 681.999

\hline \& \& \& Max. Vy \& 20 \& -16.339 \& 683.670 \& -2.534

\hline \& \& \& Max. Vx \& 2 \& -16.294 \& -1.950 \& 681.999

\hline \& \& \& Max. Torque \& 16 \& \& \& -0.474

\hline \multirow[t]{5}{*}{L22} \& \multirow[t]{5}{*}{47-45.25} \& \multirow[t]{5}{*}{Pole} \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -37.471 \& 3.630 \& 1.351

\hline \& \& \& Max. Mx \& 20 \& -15.775 \& 766.989 \& -2.799

\hline \& \& \& Max. My \& 2 \& -15.779 \& -2.190 \& 765.072

\hline \& \& \& Max. Vy \& 20 \& -16.975 \& 766.989 \& -2.799

\hline
\end{tabular}

tnxTower B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Job 85565	ORD - NU (SS	$\begin{aligned} & \text { Page } \\ & 28 \text { of } 42 \end{aligned}$
	Project		Date 15:01:04 09/21/18
	Client	Crown Castle	Designed by xjones

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Section No. \& $$
\begin{aligned}
& \text { Elevation } \\
& f l
\end{aligned}
$$ \& Component Type \& Condition \& Gov. Load Comb. \& Axial

K \& Major Axis Moment kip-ft \& $$
\begin{gathered}
\text { Minor Axis } \\
\text { Moment } \\
\text { kip-ft } \\
\hline
\end{gathered}
$$

\hline \multirow{6}{*}{L23} \& \multirow{6}{*}{45.25-40.5} \& \multirow{5}{*}{Pole} \& Max. Vx \& 2 \& \multirow[t]{2}{*}{-16.931} \& \multirow[t]{2}{*}{-2.190} \& \multirow[t]{2}{*}{765.072
-0.474}

\hline \& \& \& Max. Torque \& 16 \& \& \&

\hline \& \& \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -39.453 \& 3.814 \& 1.370

\hline \& \& \& Max. Mx \& 20 \& -16.917 \& 848.855 \& -3.052

\hline \& \& \multirow{8}{*}{Pole} \& Max. My \& 2 \& -16.921 \& -2.418 \& 846.703

\hline \multirow{7}{*}{L24} \& \multirow{7}{*}{40.5-40.25} \& \& Max. Vy \& 20 \& -17.505 \& 848.855 \& -3.052

\hline \& \& \& Max. Vx \& 2 \& \multirow[t]{2}{*}{-17.461} \& \multirow[t]{2}{*}{-2.418} \& \multirow[t]{2}{*}{846.703
-0.474}

\hline \& \& \& Max. Torque \& 16 \& \& \&

\hline \& \& \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -39.557 \& 3.826 \& 1.372

\hline \& \& \& Max. Mx \& 20 \& -16.986 \& 853.235 \& -3.065

\hline \& \& \& Max. My \& 2 \& -16.989 \& -2.430 \& 851.070

\hline \multirow{7}{*}{L25} \& \multirow{7}{*}{40.25-35.25} \& \multirow{6}{*}{Pole} \& Max. Vy \& 20 \& -17.526 \& 853.235 \& -3.065

\hline \& \& \& Max. Vx \& 2 \& \multirow[t]{2}{*}{-17.481} \& \multirow[t]{2}{*}{-2.430} \& 851.070

\hline \& \& \& Max. Torque \& 16 \& \& \& \multirow[t]{2}{*}{-0.474
0.000}

\hline \& \& \& Max Tension \& 1 \& 0.000 \& 0.000 \&

\hline \& \& \& Max. Compression \& 26 \& -41.650 \& 4.017 \& 1.391

\hline \& \& \& Max. Mx \& 20 \& -18.200 \& 942.250 \& -3.330

\hline \& \& \multirow{8}{*}{Pole} \& Max. My \& 2 \& -18.203 \& -2.669 \& 939.838

\hline \multirow{8}{*}{L26} \& \multirow{8}{*}{35.25-30.25} \& \& Max. Vy \& 20 \& -18.080 \& 942.250 \& -3.330

\hline \& \& \& Max. Vx \& 2 \& \multirow[t]{2}{*}{-18.035} \& \multirow[t]{2}{*}{-2.669} \& \multirow[t]{2}{*}{939.838
-0.474}

\hline \& \& \& Max. Torque \& 16 \& \& \&

\hline \& \& \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -43.748 \& 4.209 \& 1.410

\hline \& \& \& Max. Mx \& 20 \& -19.441 \& 1033.963 \& -3.593

\hline \& \& \& Max. My \& 2 \& -19.443 \& -2.906 \& 1031.303

\hline \& \& \multirow{6}{*}{Pole} \& Max. Vy \& 20 \& -18.612 \& 1033.963 \& -3.593

\hline \multirow{6}{*}{L27} \& \multirow{6}{*}{30.25-27.75} \& \& Max. Vx \& 2 \& \multirow[t]{2}{*}{-18.567} \& -2.906 \& 1031.303

\hline \& \& \& Max. Torque \& 16 \& \& \multirow[t]{2}{*}{$$
0.000
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{gathered}
-0.474 \\
0.000
\end{gathered}
$$
\]}

\hline \& \& \& Max Tension \& 1 \& $$
0.000
$$ \& \&

\hline \& \& \& Max. Compression \& 26 \& -44.807 \& 4.299 \& 1.417

\hline \& \& \& Max. Mx \& 20 \& -20.069 \& 1080.812 \& -3.724

\hline \& \& \multirow{8}{*}{Pole} \& Max. My \& 2 \& -20.072 \& -3.024 \& 1078.028

\hline \multirow{8}{*}{L28} \& \multirow{8}{*}{27.75-27.5} \& \& Max. Vy \& 20 \& -18.876 \& 1080.812 \& -3.724

\hline \& \& \& Max. Vx \& 2 \& \multirow[t]{2}{*}{-18.831} \& -3.024 \& \multirow[t]{2}{*}{$$
\begin{gathered}
1078.028 \\
-0.473
\end{gathered}
$$}

\hline \& \& \& Max. Torque \& 16 \& \& \&

\hline \& \& \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -44.917 \& 4.310 \& 1.418

\hline \& \& \& Max. Mx \& 20 \& -20.146 \& 1085.532 \& -3.738

\hline \& \& \& Max. My \& 2 \& -20.148 \& -3.036 \& 1082.736

\hline \& \& \multirow{6}{*}{Pole} \& Max. Vy \& 20 \& -18.892 \& 1085.532 \& -3.738

\hline \multirow{5}{*}{L29} \& \multirow{5}{*}{27.5-22.5} \& \& Max. Vx \& 2 \& \multirow[t]{2}{*}{-18.847} \& \multirow[t]{2}{*}{-3.036} \& \multirow[t]{2}{*}{1082.736
-0.473}

\hline \& \& \& Max. Torque \& 16 \& \& \&

\hline \& \& \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max Compression \& 26 \& -47.100 \& 4.480 \& 1.429

\hline \& \& \& Max. Mx \& 20 \& -21.474 \& 1181.287 \& -3.999

\hline \multirow{9}{*}{L30} \& \multirow{9}{*}{22.5-19.5} \& \multirow{9}{*}{Pole} \& Max. My \& 2 \& -21.476 \& -3.270 \& 1178.244

\hline \& \& \& Max. Vy \& 20 \& -19.410 \& 1181.287 \& -3.999

\hline \& \& \& Max. Vx \& 2 \& \multirow[t]{2}{*}{-19.366} \& -3.270 \& \multirow[t]{2}{*}{$$
\begin{gathered}
1178.244 \\
-0.473
\end{gathered}
$$}

\hline \& \& \& Max. Torque \& 16 \& \& \&

\hline \& \& \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -48.428 \& 4.560 \& 1.436

\hline \& \& \& Max. Mx \& 20 \& -22.287 \& 1239.947 \& -4.155

\hline \& \& \& Max. My \& 2 \& -22.289 \& -3.410 \& 1236.767

\hline \& \& \& Max. Vy \& 20 \& -19.704 \& 1239.947 \& -4.155

\hline \multirow{5}{*}{L31} \& \multirow{5}{*}{19.5-19.25} \& \multirow{5}{*}{Pole} \& Max. Vx \& 2 \& \multirow[t]{2}{*}{-19.668} \& \multirow[t]{2}{*}{-3.410} \& $$
1236.767
$$

\hline \& \& \& Max. Torque \& 16 \& \& \& -0.473

\hline \& \& \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -48.544 \& 4.567 \& 1.437

\hline \& \& \& Max. Mx \& 20 \& -22.368 \& 1244.876 \& -4.168

\hline
\end{tabular}

tnxTower B+T Group 1717 S. Boulder, Suite 300 Tulsa OK 74119	$\begin{aligned} & \text { Job } \\ & 85565.009 .01 \text { - HARTFORD - NU (SSUSA),CT (BU\# 876363) } \end{aligned}$		$\begin{aligned} & \text { Page } \\ & 29 \text { of } 42 \end{aligned}$
	Project		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by xjones

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Section No. \& \[
\begin{aligned}
\& \text { Elevation } \\
\& f t
\end{aligned}
\] \& Component Type \& Condition \& \begin{tabular}{l}
Gov. Load \\
Comb.
\end{tabular} \& Axial

K \& \[
$$
\begin{gathered}
\text { Major Axis } \\
\text { Moment } \\
\text { kip-ft } \\
\hline
\end{gathered}
$$

\] \& | Minor Axis |
| :--- |
| Moment |
| kip-ft |

\hline \multirow{8}{*}{L32} \& \multirow{8}{*}{19.25-14.25} \& \multirow{7}{*}{Pole} \& Max. My \& 2 \& -22.369 \& -3.422 \& 1241.685

\hline \& \& \& Max. Vy \& 20 \& -19.720 \& 1244.876 \& -4.168

\hline \& \& \& Max. Vx \& 2 \& \multirow[t]{2}{*}{-19.685} \& \multirow[t]{2}{*}{-3.422} \& \multirow[t]{2}{*}{1241.685
-0.473}

\hline \& \& \& Max. Torque \& 16 \& \& \&

\hline \& \& \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -50.914 \& 4.621 \& 1.462

\hline \& \& \& Max. Mx \& 20 \& -23.808 \& 1344.705 \& -4.427

\hline \& \& \multirow{9}{*}{Pole} \& Max. My \& 2 \& -23.809 \& -3.653 \& 1341.375

\hline \multirow{8}{*}{L33} \& \multirow{8}{*}{14.25-14} \& \& Max. Vy \& 20 \& -20.211 \& 1344.705 \& -4.427

\hline \& \& \& Max. Vx \& 2 \& \multirow[t]{2}{*}{-20.201} \& \multirow[t]{2}{*}{-3.653} \& \multirow[t]{2}{*}{$$
\begin{gathered}
1341.375 \\
-0.473
\end{gathered}
$$}

\hline \& \& \& Max. Torque \& 16 \& \& \&

\hline \& \& \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -51.040 \& 4.619 \& 1.466

\hline \& \& \& Max. Mx \& 20 \& -23.888 \& 1349.760 \& -4.440

\hline \& \& \& Max. My \& 2 \& -23.889 \& -3.665 \& 1346.426

\hline \& \& \& Max. Vy \& 20 \& -20.227 \& 1349.760 \& -4.440

\hline \multirow{7}{*}{L34} \& \multirow{7}{*}{14-13.75} \& \multirow{5}{*}{Pole} \& Max. Vx \& 2 \& \multirow[t]{2}{*}{-20.219} \& \multirow[t]{2}{*}{-3.665} \& \multirow[t]{2}{*}{1346.426
-0.473}

\hline \& \& \& Max. Torque \& 16 \& \& \&

\hline \& \& \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -51.170 \& 4.616 \& 1.470

\hline \& \& \& Max. Mx \& 20 \& -23.966 \& 1354.821 \& -4.453

\hline \& \& \multirow{9}{*}{Pole} \& Max. My \& 2 \& -23.967 \& -3.676 \& 1351.484

\hline \& \& \& Max. Vy \& 20 \& -20.252 \& 1354.821 \& -4.453

\hline \multirow{7}{*}{L35} \& \multirow{7}{*}{13.75-12.98} \& \& Max. Vx \& 2 \& \multirow[t]{2}{*}{-20.245} \& \multirow[t]{2}{*}{-3.676} \& \multirow[t]{2}{*}{$$
\begin{gathered}
1351.484 \\
-0.473
\end{gathered}
$$}

\hline \& \& \& Max. Torque \& 16 \& \& \&

\hline \& \& \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -51.579 \& 4.605 \& 1.480

\hline \& \& \& Max. Mx \& 20 \& -24.208 \& 1370.448 \& -4.493

\hline \& \& \& Max. My \& 2 \& -24.208 \& -3.711 \& 1367.103

\hline \& \& \& Max. Vy \& 20 \& -20.333 \& 1370.448 \& -4.493

\hline \multirow{5}{*}{L36} \& \multirow{5}{*}{12.98-12.73} \& \multirow{5}{*}{Pole} \& Max. Vx \& 2 \& \multirow[t]{2}{*}{-20.330} \& \multirow[t]{2}{*}{-3.711} \& \multirow[t]{2}{*}{1367.103
-0.473}

\hline \& \& \& \& 16 \& \& \&

\hline \& \& \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -51.711 \& 4.603 \& 1.484

\hline \& \& \& Max. Mx \& 20 \& -24.293 \& 1375.534 \& -4.506

\hline \multirow{9}{*}{L37} \& \multirow{9}{*}{12.73-7.73} \& \multirow{10}{*}{Pole} \& Max. My \& 2 \& -24.293 \& -3.723 \& 1372.187

\hline \& \& \& Max. Vy \& 20 \& -20.352 \& 1375.534 \& -4.506

\hline \& \& \& Max. Vx \& 2 \& \multirow[t]{2}{*}{-20.351} \& \multirow[t]{2}{*}{-3.723} \& \multirow[t]{2}{*}{1372.187
-0.473}

\hline \& \& \& Max. Torque \& 16 \& \& \&

\hline \& \& \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -54.235 \& 4.681 \& 1.541

\hline \& \& \& Max. Mx \& 20 \& -25.886 \& 1478.549 \& -4.762

\hline \& \& \& Max. My \& 2 \& -25.887 \& -3.952 \& 1475.160

\hline \& \& \& Max. Vy \& 20 \& -20.853 \& 1478.549 \& -4.762

\hline \multirow{5}{*}{L38} \& \multirow{5}{*}{7.73-2.73} \& \& Max. Vx \& 2 \& \multirow[t]{2}{*}{-20.848} \& -3.952 \& \multirow[t]{2}{*}{$$
\begin{gathered}
1475.160 \\
-0.473
\end{gathered}
$$}

\hline \& \& \multirow{3}{*}{Pole} \& Max. Torque \& 16 \& \& \&

\hline \& \& \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -56.635 \& 4.853 \& 1.585

\hline \& \& \multirow{12}{*}{Pole} \& Max. Mx \& 20 \& -27.505 \& 1584.021 \& -5.017

\hline \multirow{11}{*}{L39} \& \multirow{11}{*}{2.73-0} \& \& Max. My \& 2 \& -27.505 \& -4.178 \& 1580.521

\hline \& \& \& Max. Vy \& 20 \& -21.344 \& 1584.021 \& -5.017

\hline \& \& \& Max. Vx \& 14 \& \multirow[t]{2}{*}{21.326} \& \multirow[t]{2}{*}{7.098} \& -1575.225

\hline \& \& \& Max. Torque \& 16 \& \& \& -0.473

\hline \& \& \& Max Tension \& 1 \& 0.000 \& 0.000 \& 0.000

\hline \& \& \& Max. Compression \& 26 \& -57.887 \& 4.939 \& 1.606

\hline \& \& \& Max. Mx \& 20 \& -28.396 \& 1642.642 \& -5.156

\hline \& \& \& Max. My \& 2 \& -28.396 \& -4.301 \& 1639.032

\hline \& \& \& Max. Vy \& 20 \& $$
-21.616
$$ \& 1642.642 \& -5.156

\hline \& \& \& Max. Vx \& 14 \& 21.614 \& 7.264 \& -1633.791

\hline \& \& \& Max. Torque \& 16 \& \& \& -0.473

\hline
\end{tabular}

tnxTower B+TGroup 1717 S. Boulder, Suite 300	$\begin{aligned} & \text { Job } \\ & 85565.009 .01 \text { - HARTFORD - NU (SSUSA),CT (BU\# 876363) } \end{aligned}$		$\begin{aligned} & \text { Page } \\ & 30 \text { of } 42 \end{aligned}$
	Project		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by xjones

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical K	$\begin{gathered} \text { Horizontal, } X \\ K \end{gathered}$	$\begin{gathered} \text { Horizontal, } Z \\ K \end{gathered}$
Pole	Max. Vert	36	57.887	4.686	-0.010
	Max. H_{x}	20	28.409	21.599	-0.053
	Max. H_{z}	2	28.409	-0.053	21.557
	Max. $\mathrm{M}_{\mathbf{x}}$	2	1639.032	-0.053	21.557
	Max. $\mathrm{M}_{\mathbf{z}}$	8	1639.691	-21.599	0.053
	Max. Torsion	4	0.472	-10.899	18.787
	Min. Vert	7	21.307	-18.667	10.786
	Min. H_{x}	8	28.409	-21.599	0.053
	Min. H_{z}	14	28.409	0.053	-21.596
	Min. M_{x}	14	-1633.791	0.053	-21.596
	Min. M_{z}	20	-1642.642	21.599	-0.053
	Min Torsion	16	-0.473	10.899	-18.787

Tower Mast Reaction Summary

Load Combination	Vertical K	Shear x_{x} K	Shear ${ }_{z}$ K	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-fi	Torque kip-ft
Dead Only	23.675	0.000	0.000	-0.505	1.191	-0.000
1.2 Dead+1.0 Wind 0 deg - No	28.409	0.053	-21.557	-1639.032	-4.301	-0.349
Ice						
0.9 Dead+1.0 Wind 0 deg - No	21.307	0.053	-21.557	-1623.326	-4.625	-0.327
Ice						
1.2 Dead +1.0 Wind 30 deg - No	28.409	10.899	-18.787	-1423.209	-824.841	-0.472
Ice						
0.9 Dead+1.0 Wind 30 deg - No	21.307	10.899	-18.787	-1409.552	-817.390	-0.450
Ice						
1.2 Dead+1.0 Wind 60 deg - No	28.409	18.667	-10.786	-822.311	-1418.804	-0.468
Ice						
0.9 Dead+1.0 Wind 60 deg - No	21.307	18.667	-10.786	-814.337	-1405.706	-0.453
Ice						
1.2 Dead+1.0 Wind $90 \mathrm{deg}-$ No	28.409	21.599	-0.053	-6.409	-1639.691	-0.340
Ice						
0.9 Dead+1.0 Wind 90 deg - No	21.307	21.599	-0.053	-6.180	-1624.511	-0.336
Ice						
1.2 Dead+1.0 Wind 120 deg -	28.409	18.678	10.732	813.305	-1416.941	-0.121
No Ice						
0.9 Dead+1.0 Wind 120 deg -	21.307	18.678	10.732	805.754	-1403.879	-0.128
No Ice						
1.2 Dead+1.0 Wind 150 deg -	28.409	10.836	18.784	1416.473	-814.999	0.131
No Ice						
0.9 Dead+1.0 Wind 150 deg -	21.307	10.836	18.784	1403.206	-807.657	0.114
No Ice						
1.2 Dead+1.0 Wind 180 deg -	28.409	-0.053	21.596	1633.791	7.264	0.349
No Ice						
0.9 Dead+1.0 Wind 180 deg -	21.307	-0.053	21.596	1618.445	6.811	0.326
No Ice						
I.2 Dead+1.0 Wind 210 deg -	28.409	-10.899	18.787	1421.952	827.802	0.473
No Ice						
0.9 Dead+1.0 Wind 210 deg -	21.307	-10.899	18.787	1408.624	819.574	0.452
No Ice						

tnxTower B+T Group I717 S. Boulder, Suite 300	Job85565.009 .01 - HARTFORD - NU (SSUSA),CT (BU\# 876363)		$\begin{aligned} & \text { Page } \\ & 31 \text { of } 42 \end{aligned}$
	Project		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by xjones

Load Combination	Vertical K	Shear $_{x}$ K	Shear $_{z}$ K	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque kip-ft
1.2 Dead+1.0 Wind 240 deg -	28.409	-18.825	10.877	824.035	1426.924	0.470
No Ice						
0.9 Dead+1.0 Wind 240 deg -	21.307	-18.825	10.877	816.373	1413.022	0.455
No Ice						
1.2 Dead+1.0 Wind 270 deg -	28.409	-21.599	0.053	5.156	1642.642	0.341
No Ice						
0.9 Dead+1.0 Wind 270 deg -	21.307	-21.599	0.053	5.255	1626.689	0.336
No Ice						
1.2 Dead+1.0 Wind 300 deg -	28.409	-18.708	-10.749	-813.047	1417.287	0.120
No Ice						
0.9 Dead +1.0 Wind 300 deg -	21.307	-18.708	-10.749	-805.184	1403.475	0.127
No Ice						
1.2 Dead +1.0 Wind 330 deg -	28.409	-10.836	-18.784	-1417.720	817.959	-0.133
No Ice						
0.9 Dead+1.0 Wind 330 deg -	21.307	-10.836	-18.784	-1404.127	809.841	-0.116
No Ice						
1.2 Dead+1.0 Yce+1.0 Temp	57.887	-0.000	-0.000	-1.606	4.939	-0.000
1.2 Dead +1.0 Wind 0 deg+1.0	57.887	0.010	-4.669	-411.565	3.877	-0.114
Ice+1.0 Temp						
1.2 Dead+1.0 Wind $30 \mathrm{deg}+1.0$	57.887	2.357	-4.058	-357.277	-201.681	-0.155
Ice +1.0 Temp						
1.2 Dead+1.0 Wind 60 deg+1.0	57.887	4.063	-2.343	-207.570	-351.788	-0.155
Ice +1.0 Temp						
1.2 Dead+1.0 Wind 90 deg +1.0	57.887	4.686	-0.010	-2.751	-406.335	-0.113
Ice +1.0 Temp						
1.2 Dead+1.0 Wind 120	57.887	4.054	2.326	202.369	-350.664	-0.041
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	57.887	2.341	4.048	352.900	-199.734	0.042
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	57.887	-0.010	4.669	408.312	6.127	0.114
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	57.887	-2.357	4.058	354.024	211.685	0.155
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	57.887	-4.073	2.348	204.357	361.862	0.155
deg+1.0 Ice+1.0 Temp						
1.2 Dead +1.0 Wind 270	57.887	-4.686	0.010	-0.502	416.336	0.113
deg+1.0 Ice+1.0 Temp						
1.2 Dead +1.0 Wind 300	57.887	-4.063	-2.332	-205.662	360.737	0.041
deg+1.0 Ice+1.0 Temp						
1.2 Dead +1.0 Wind 330	57.887	-2.341	-4.048	-356.152	209.737	-0.042
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	23.675	0.011	-4.470	-339.338	0.040	-0.070
Dead+Wind 30 deg - Service	23.675	2.260	-3.895	-294.704	-169.646	-0.096
Dead+Wind 60 deg - Service	23.675	3.871	-2.236	-170.438	-292.485	-0.096
Dead+Wind 90 deg - Service	23.675	4.478	-0.011	-1.705	-338.161	-0.070
Dead+Wind 120 deg - Service	23.675	3.873	2.225	167.807	-292.100	-0.026
Dead+Wind 150 deg - Service	23.675	2.247	3.895	292.534	-167.625	0.025
Dead + Wind 180 deg - Service	23.675	-0.011	4.478	337.478	2.410	0.070
Dead+Wind 210 deg - Service	23.675	-2.260	3.895	293.664	172.096	0.096
Dead+Wind 240 deg - Service	23.675	-3.903	2.255	170.012	295.998	0.096
Dead+Wind 270 deg - Service	23.675	-4.478	0.011	0.666	340.610	0.070
Dead+Wind 300 deg - Service	23.675	-3.879	-2.229	-168.537	294.013	0.026
Dead+Wind 330 deg - Service	23.675	-2.247	-3.895	-293.574	170.075	-0.026

tnxTower B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Job $85565 .$	ORD - NU (SSL	$\begin{aligned} & \text { Page } \\ & 32 \text { of } 42 \end{aligned}$
	Project		Date $15: 01: 0409 / 21 / 18$
	Client	Crown Castle	Designed by xjones

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	$P X$	PY	$P Z$	PX	PY	$P Z$	
Comb.	K	K	K	K	K	K	
1	0.000	-23.675	0.000	0.000	23.675	0.000	0.000\%
2	0.053	-28.409	-21.557	-0.053	28.409	21.557	0.000\%
3	0.053	-21.307	-21.557	-0.053	21.307	21.557	0.000\%
4	10.899	-28.409	-18.787	-10.899	28.409	18.787	0.000\%
5	10.899	-21.307	-18.787	-10.899	21.307	18.787	0.000\%
6	18.667	-28.409	-10.786	-18.667	28.409	10.786	0.000\%
7	18.667	-21.307	-10.786	-18.667	21.307	10.786	0.000\%
8	21.599	-28.409	-0.053	-21.599	28.409	0.053	0.000\%
9	21.599	-21.307	-0.053	-21.599	21.307	0.053	0.000\%
10	18.678	-28.409	10.732	-18.678	28.409	-10.732	0.000\%
11	18.678	-21.307	10.732	-18.678	21.307	-10.732	0.000\%
12	10.836	-28.409	18.784	-10.836	28.409	-18.784	0.000\%
13	10.836	-21.307	18.784	-10.836	21.307	-18.784	0.000\%
14	-0.053	-28.409	21.596	0.053	28.409	-21.596	0.000\%
15	-0.053	-21.307	21.596	0.053	21.307	-21.596	0.000\%
16	-10.899	-28.409	18.787	10.899	28.409	-18.787	0.000\%
17	-10.899	-21.307	18.787	10.899	21.307	-18.787	0.000\%
18	-18.825	-28.409	10.877	18.825	28.409	-10.877	0.000\%
19	-18.825	-21.307	10.877	18.825	21.307	-10.877	0.000\%
20	-21.599	-28.409	0.053	21.599	28.409	-0.053	0.000\%
21	-21.599	-21.307	0.053	21.599	21.307	-0.053	0.000\%
22	-18.708	-28.409	-10.749	18.708	28.409	10.749	0.000\%
23	-18.708	-21.307	-10.749	18.708	21.307	10.749	0.000\%
24	-10.836	-28.409	-18.784	10.836	28.409	18.784	0.000\%
25	-10.836	-21.307	-18.784	10.836	21.307	18.784	0.000\%
26	0.000	-57.887	0.000	0.000	57.887	0.000	0.000\%
27	0.010	-57.887	-4.669	-0.010	57.887	4.669	0.000\%
28	2.357	-57.887	-4.058	-2.357	57.887	4.058	0.000\%
29	4.063	-57.887	-2.343	-4.063	57.887	2.343	0.000\%
30	4.686	-57.887	-0.010	-4.686	57.887	0.010	0.000\%
31	4.054	-57.887	2.326	-4.054	57.887	-2.326	0.000\%
32	2.341	-57.887	4.048	-2.341	57.887	-4.048	0.000\%
33	-0.010	-57.887	4.669	0.010	57.887	-4.669	0.000\%
34	-2.357	-57.887	4.058	2.357	57.887	-4.058	0.000\%
35	-4.073	-57.887	2.348	4.073	57.887	-2.348	0.000\%
36	-4.686	-57.887	0.010	4.686	57.887	-0.010	0.000\%
37	-4.063	-57.887	-2.332	4.063	57.887	2.332	0.000\%
38	-2.341	-57.887	-4.048	2.341	57.887	4.048	0.000\%
39	0.011	-23.675	-4.470	-0.011	23.675	4.470	0.000\%
40	2.260	-23.675	-3.895	-2.260	23.675	3.895	0.000\%
41	3.871	-23.675	-2.236	-3.871	23.675	2.236	0.000\%
42	4.478	-23.675	-0.011	-4.478	23.675	0.011	0.000\%
43	3.873	-23.675	2.225	-3.873	23.675	-2.225	0.000\%
44	2.247	-23.675	3.895	-2.247	23.675	-3.895	0.000\%
45	-0.011	-23.675	4.478	0.011	23.675	-4.478	0.000\%
46	-2.260	-23.675	3.895	2.260	23.675	-3.895	0.000\%
47	-3.903	-23.675	2.255	3.903	23.675	-2.255	0.000\%
48	-4.478	-23.675	0.011	4.478	23.675	-0.011	0.000\%
49	-3.879	-23.675	-2.229	3.879	23.675	2.229	0.000\%
50	-2.247	-23.675	-3.895	2.247	23.675	3.895	0.000\%

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	4	0.00000001	0.00000001

thxTower	Job 85565	ORD - NU (SS	$\begin{aligned} & \text { Page } \\ & 33 \text { of } 42 \end{aligned}$
B+TGroup 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Project		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$
	Client	Crown Castle	Designed by xjones

2			0.00000001	0.00012702
3	Yes	5	0.00000001	0.00004883
4	Yes	5	0.00000001	0.00031467
5	Yes	6	0.0000001	0.0009576
6	Yes	6	0.00000001	0.00032480
7	Yes	6	0.00000001	0.00009926
8	Yes	6	0.00000001	0.00023716
9	Yes	5	0.00000001	0.00010321
10	Yes	5	0.00000001	0.0031371
11	Yes	6	0.0000001	0.0009602
12	Yes	6	0.0000001	0.00031323
13	Yes	6	0.00000001	0.00009594
14	Yes	6	0.00000001	0.00026238
15	Yes	5	0.00000001	0.00010962
16	Yes	5	0.00000001	0.00032673
17	Yes	6	0.00000001	0.00009964
18	Yes	6	0.00000001	0.00031562
19	Yes	6	0.00000001	0.00009591
20	Yes	6	0.00000001	0.00010467
21	Yes	Yes	5	0.00000001
22	5	0.00004298		
23	Yes	Yes	5	0.0000001

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	0

tnxTower B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	$\begin{aligned} & \hline \text { Job } \\ & 85565 \end{aligned}$	ORD - NU (SSL	$\begin{aligned} & \text { Page } \\ & \\ & 34 \text { of } 42 \end{aligned}$
	Project		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$
	Client	Crown Castle	Designed by xjones

Section No.	Elevation $f t$	Horz. Deflection in	Gov. Load Comb.	Till	Twist
L6	88-83	9.217	47	1.108	0.001
L7	83-82.33	8.118	47	0.989	0.001
L8	82.33-82.08	7.980	47	0.972	0.001
L9	82.08-77.08	7.929	47	0.968	0.001
L10	77.08-76.25	6.959	47	0.884	0.001
L11	76.25-76	6.806	47	0.869	0.001
L12	76-74.5	6.761	47	0.865	0.001
L13	74.5-74.25	6.492	47	0.846	0.001
L14	74.25-69.25	6.448	47	0.843	0.001
L15	69.25-64.25	5.595	47	0.786	0.001
L16	64.25-59.25	4.804	47	0.724	0.000
L17	59.25-58.08	4.081	47	0.657	0.000
L18	58.08-57.73	3.922	47	0.641	0.000
L19	57.73-57.5	3.875	47	0.638	0.000
L20	57.5-52.5	3.844	47	0.635	0.000
L2I	52.5-47	3.208	47	0.579	0.000
L22	50.25-45.25	2.941	47	0.554	0.000
L23	45.25-40.5	2.378	47	0.516	0.000
L24	40.5-40.25	1.891	47	0.461	0.000
L25	40.25-35.25	1.867	47	0.458	0.000
L26	35.25-30.25	1.419	47	0.398	0.000
L27	30.25-27.75	1.034	47	0.337	0.000
L28	27.75-27.5	0.865	47	0.306	0.000
L29	27.5-22.5	0.849	47	0.303	0.000
L30	22.5-19.5	0.563	47	0.243	0.000
L31	19.5-19.25	0.422	47	0.207	0.000
L32	19.25-14.25	0.411	47	0.204	0.000
L33	14.25-14	0.225	47	0.150	0.000
L.34	14-13.75	0.217	47	0.148	0.000
L35	13.75-12.98	0.210	47	0.145	0.000
L36	12.98-12.73	0.187	47	0.137	0.000
L37	12.73-7.73	0.180	47	0.135	0.000
L38	7.73-2.73	0.066	47	0.082	0.000
L39	2.73-0	0.008	47	0.029	0.000

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist 	Radius of Curvature $f t$
105.000	BXA-70063/6CF w/ Mount Pipe	47	13.698	1.409	0.004	4118
98.000	APXV9ERR18-C-A20 w/ Mount Pipe	47	11.726	1.266	0.002	3111
96.000	PCS $1900 \mathrm{MHz} 4 \times 45 \mathrm{~W}-65 \mathrm{MHz}$	47	11.200	1.249	0.002	3801
81.000	HBX-6516DS-VTM w/ Mount Pipe	47	7.712	0.952	0.001	3021
74.000	KS24019-L112A	47	6.404	0.840	0.001	4519

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.	Deflection	Load		0	
	in		Comb.	\circ	0

tnxTower B+TGroup 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	$\begin{array}{\|l\|} \hline \text { Job } \\ 85565 . \end{array}$	ORD - NU (SSL	$\begin{aligned} & \text { Page } \\ & 35 \text { of } 42 \end{aligned}$
	Project		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:01:04 09/21/18 } \\ \hline \end{array}$
	Client	Crown Castle	Designed by xjones

Section No.	Elevation \qquad	Horz. Deflection in	Gov. Load Comb.	Till	Twist
L1	108-103	70.019	18	6.669	0.018
L2	103-98.5	63.072	18	6.610	0.015
L3	98.5-98	57.066	18	6.091	0.009
LA	98-93	56.431	18	6.079	0.009
L5	93-88	50.225	18	5.783	0.007
L6	88-83	44.409	18	5.333	0.006
L7	83-82.33	39.125	18	4.765	0.004
L8	82.33-82.08	38.464	18	4.682	0.004
L9	82.08-77.08	38.220	18	4.664	0.004
L10	77.08-76.25	33.552	18	4.259	0.004
L11	76.25-76	32.819	18	4.188	0.003
L12	76-74.5	32.600	18	4.172	0.003
L13	74.5-74.25	31.306	18	4.077	0.003
L14	74.25-69.25	31.093	18	4.065	0.003
L15	69.25-64.25	26.983	18	3.792	0.003
L16	64.25-59.25	23.173	18	3.490	0.002
L17	59.25-58.08	19.688	18	3.171	0.002
L18	58.08-57.73	18.921	18	3.094	0.002
L19	57.73-57.5	18.695	18	3.076	0.002
L20	57.5-52.5	18.547	18	3.065	0.002
L21	52.5-47	15.480	18	2.796	0.002
L22	50.25-45.25	14.192	18	2.673	0.001
L23	45.25-40.5	11.474	18	2.491	0.001
L24	40.5-40.25	9.129	18	2.226	0.001
L25	40.25-35.25	9.013	18	2.212	0.001
L26	35.25-30.25	6.849	18	1.923	0.001
L27	30.25-27.75	4.990	18	1.628	0.001
L28	27.75-27.5	4.177	18	1.478	0.001
L29	27.5-22.5	4.100	18	1.464	0.001
L30	22.5-19.5	2.718	18	1.175	0.001
L31	19.5-19.25	2.035	18	1.000	0.000
L32	19.25-14.25	1.983	18	0.987	0.000
L33	14.25-14	1.086	18	0.726	0.000
L34	14-13.75	1.049	18	0.713	0.000
L35	13.75-12.98	1.012	18	0.700	0.000
L36	12.98-12.73	0.902	18	0.662	0.000
L37	12.73-7.73	0.867	18	0.649	0.000
L38	7.73-2.73	0.320	18	0.395	0.000
L39	2.73-0	0.040	18	0.140	0.000

Critical Deflections and Radius of Curvature - Design Wind

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Elevation \& Appurtenance \& Gov. Load Comb. \& Deflection in \& Tilt

\circ \& | Twist |
| :---: | \& Radius of Curvature $f t$

\hline 105.000 \& BXA-70063/6CF w/ Mount Pipe \& 18 \& 65.836 \& 6.715 \& 0.017 \& 991

\hline 98.000 \& APXV9ERR18-C-A20 w/ Mount Pipe \& 18 \& 56.431 \& 6.079 \& 0.009 \& 701

\hline 96.000 \& PCS $1900 \mathrm{MHz} 4 \times 45 \mathrm{~W}-65 \mathrm{MHz}$ \& 18 \& 53.915 \& 5.998 \& 0.008 \& 840

\hline 81.000 \& HBX-6516DS-VTM w/ Mount Pipe \& 18 \& 37.176 \& 4.587 \& 0.004 \& 641

\hline 74.000 \& KS24019-L112A \& 18 \& 30.881 \& 4.052 \& 0.003 \& 953

\hline
\end{tabular}

tnxTower B+T Group 1717 S. Boulder, Suite 300	$\begin{aligned} & \text { Job } \\ & 85565.009 .01 \text { - HARTFORD - NU (SSUSA),CT (BU\# 876363) } \end{aligned}$		Page 36 of 42
	Project		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by xjones

Pole Design Data

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Section No. \& Elevation \& Size \& \(L\) \& \(L_{u}\) \& Kl/r \& A \& \(P_{u}\) \& \(\phi P_{n}\) \& Ratio \(P_{u}\) \\
\hline \& \(f t\) \& \& \(f t\) \& \(f t\) \& \& \(i n^{2}\) \& \(K\) \& K \& \(\phi P_{n}\) \\
\hline LI \& 108-103 (1) \& TP8.625x8.625x0.313 \& 5.000 \& 0.000 \& 0.0 \& 8.161 \& -2.394 \& 257.065 \& 0.009 \\
\hline L2 \& 103-98.5 (2) \& TP8.625x8.625x0.313 \& 4.500 \& 0.000 \& 0.0 \& 8.161 \& -2.607 \& 257.065 \& 0.010 \\
\hline L3 \& 98.5-98 (3) \& TP16.5×16.5x0.313 \& 0.500 \& 0.000 \& 0.0 \& 15.892 \& -2.652 \& 500.599 \& 0.005 \\
\hline L4 \& 98-93 (4) \& TP17.3x16.5×0.188 \& 5.000 \& 0.000 \& 0.0 \& 10.184 \& -6.781 \& 756.639 \& 0.009 \\
\hline L5 \& 93-88 (5) \& TP18.101x17.3x0.188 \& 5.000 \& 0.000 \& 0.0 \& 10.660 \& -7.110 \& 791.081 \& 0.009 \\
\hline L6 \& 88-83 (6) \& TP18.901x18.101×0.188 \& 5.000 \& 0.000 \& 0.0 \& 11.137 \& -7.477 \& 817.568 \& 0.009 \\
\hline L7 \& 83-82.33 (7) \& TP19.008×18.901×0.188 \& 0.670 \& 0.000 \& 0.0 \& 11.201 \& -7.531 \& 821.060 \& 0.009 \\
\hline L8 \& \begin{tabular}{l}
\[
82.33-82.08
\] \\
(8)
\end{tabular} \& TP19.048×19.008x0.325 \& 0.250 \& 0.000 \& 0.0 \& 19.314 \& -7.562 \& 1434.920 \& 0.005 \\
\hline L9 \& \begin{tabular}{l}
\[
82.08-77.08
\] \\
(9)
\end{tabular} \& TP19.848×19.048x0.319 \& 5.000 \& 0.000 \& 0.0 \& 19.758 \& -9.100 \& 1467.950 \& 0.006 \\
\hline L10 \& \begin{tabular}{l}
\[
77.08-76.25
\] \\
(10)
\end{tabular} \& TP19.981×19.848x0.319 \& 0.830 \& 0.000
0.000 \& 0.0 \& 19.893
28.333 \& -9.192
-9.237 \& 1477.940
2104.990 \& 0.006
0.004 \\
\hline L11 \& \(76.25-76(11)\) \& TP20.021×19.981×0.456 \& 0.250 \& 0.000 \& 0.0 \& 28.333 \& -9.237 \& 2104.990 \& 0.004 \\
\hline L12 \& 76-74.5 (12) \& TP20.261x20.021x0.45 \& 1.500 \& 0.000 \& 0.0 \& 28.297 \& -9.457 \& 2102.300 \& 0.004 \\
\hline L13 \& \[
\begin{gathered}
74.5-74.25 \\
(13)
\end{gathered}
\] \& TP20.301×20.261×0.588 \& 0.250 \& 0.000 \& 0.0 \& 36.761 \& -9.508 \& 2731.160 \& 0.003 \\
\hline L14 \& \[
\begin{gathered}
74.25-69.25 \\
(14)
\end{gathered}
\] \& TP21.102x20.301x0.575 \& 5.000 \& 0.000 \& 0.0 \& 37.462 \& -10.402 \& 2783.260 \& 0.004 \\
\hline L15 \& \[
\begin{gathered}
69.25-64.25 \\
(15)
\end{gathered}
\] \& TP21.902×21.102x0.55 \& 5.000 \& 0.000 \& 0.0 \& 37.274 \& -11.245 \& 2769.280 \& 0.004 \\
\hline L16 \& \begin{tabular}{l}
\[
64.25-59.25
\] \\
(16)
\end{tabular} \& TP22.702×21.902x0.544 \& 5.000 \& 0.000 \& 0.0 \& 38.243 \& -12.108 \& 2841.230 \& 0.004 \\
\hline L17 \& \begin{tabular}{l}
59.25-58.08 \\
(17)
\end{tabular} \& TP22.89x22.702x0.538 \& 1.170 \& 0.000 \& 0.0 \& 38.133
50.279 \& -12.313
-12395 \& 2833.100
3735.520 \& 0.004
0.003 \\
\hline L18 \& \begin{tabular}{l}
\[
58.08-57.73
\] \\
(18)
\end{tabular} \& TP22.946x22.89x0.713 \& 0.350 \& 0.000 \& 0.0 \& 50.279 \& -12.395 \& 3735.520
3741.700 \& 0.003
0.003 \\
\hline L19 \& \begin{tabular}{l}
\[
57.73-57.5
\] \\
(19)
\end{tabular} \& TP22.982×22.946x0.713 \& 0.230 \& 0.000 \& 0.0 \& 50.363 \& -12.445 \& 3741.700 \& 0.003 \\
\hline L20 \& 57.5-52.5 (20) \& TP23.783x22.982x0.688 \& 5.000 \& 0.000 \& 0.0 \& 50.397 \& -13.502 \& 3744.210 \& 0.004 \\
\hline L21 \& 52.5-47 (21) \& TP24.663×23.783x0.688 \& 5.500 \& 0.000 \& 0.0 \& 51.182 \& -13.987 \& 3802.600 \& 0.004 \\
\hline L22 \& 47-45.25 (22) \& TP24.568x23.768x0.75 \& 5.000 \& 0.000 \& 0.0 \& 56.699 \& -15.772 \& 4212.440 \& 0.004 \\
\hline L23 \& \[
\begin{gathered}
45.25-40.5 \\
(23)
\end{gathered}
\] \& TP25.328x24.568x0.725 \& 4.750 \& 0.000 \& 0.0 \& 56.616 \& -16.914 \& 4206.270 \& 0.004 \\
\hline L24 \& \begin{tabular}{l}
\[
40.5-40.25
\] \\
(24)
\end{tabular} \& TP25.368x25.328x0.725 \& 0.250 \& 0.000 \& 0.0 \& 56.708
56.586 \& -16.983

18.197 \& 4213.110 \& 0.004

\hline L25 \& $$
\begin{gathered}
40.25-35.25 \\
(25)
\end{gathered}
$$ \& TP26.168x25.368x0.7 \& 5.000 \& 0.000 \& 0.0 \& 56.586 \& -18.197 \& 4204.040 \& 0.004

\hline L26 \& $$
\begin{gathered}
35.25-30.25 \\
(26)
\end{gathered}
$$ \& TP26.969x26.168x0.688 \& 5.000 \& 0.000 \& 0.0 \& 57.349 \& -19.438 \& 4260.730 \& 0.005

\hline L27 \& $$
\begin{gathered}
30.25-27.75 \\
(27)
\end{gathered}
$$ \& TP27.369x26.969x0.675 \& 2.500 \& 0.000

0.000 \& 0.0 \& 57.190
61.403 \& $\begin{array}{r}-20.067 \\ \\ \hline\end{array}$ \& 4248.940
4561.970 \& 0.005
0.004

\hline L28 \& $$
\begin{gathered}
27.75-27.5 \\
(28)
\end{gathered}
$$ \& TP27.409x27.369x0.725 \& 0.250 \& 0.000 \& 0.0 \& 61.403 \& -20.144 \& 4561.970 \& 0.004

\hline L29 \& 27.5-22.5 (29) \& TP28.209x27.409x0.7 \& 5.000 \& 0.000 \& 0.0 \& 61.119 \& -21.472 \& 4540.880 \& 0.005

\hline L30 \& 22.5-19.5 (30) \& TP28.689x28.209×0.688 \& 3.000 \& 0.000 \& 0.0 \& 61.103 \& -22.286 \& 4539.660 \& 0.005

\hline L31 \& $$
\begin{gathered}
19.5-19.25 \\
(31)
\end{gathered}
$$ \& TP28.729x28.689x0.8 \& 0.250

5 \& 0.000
0.000 \& 0.0 \& 70.918
70.731 \& -22.366
-23.806 \& 5268.830
5254.990 \& 0.004
0.005

\hline L32 \& $$
\begin{gathered}
19.25-14.25 \\
(32)
\end{gathered}
$$ \& TP29.529x28.729x0.775 \& 5.000 \& 0.000 \& 0.0 \& 70.731 \& -23.806 \& 5254.990 \& 0.005

\hline L33 \& 14.25-14 (33) \& TP29.569 29.529×0.775 \& 0.250 \& 0.000 \& 0.0 \& 70.830 \& -23.886 \& 5262.310 \& 0.005

\hline L34 \& 14-13.75 (34) \& TP29.609x29.569x0.775 \& 0.250 \& 0.000 \& 0.0 \& 70.928 \& -23.964 \& 5269.620 \& 0.005

\hline L35 \& $$
\begin{gathered}
13.75-12.98 \\
(35)
\end{gathered}
$$ \& TP29.733×29.609×0.8 \& 0.770 \& 0.000 \& 0.0 \& 73.466 \& -24.206 \& 5458.140 \& 0.004

\hline L36 \& 12.98-12.73 \& TP29.773x29.733x0.8 \& 0.250 \& 0.000 \& 0.0 \& 73.567 \& -24.291 \& 5465.690 \& 0.004

\hline
\end{tabular}

Section No.	Elevation ft	Size	\bar{L}	$\begin{aligned} & \overline{L_{u}} \\ & f t \end{aligned}$	Kl/r	A $i n^{2}$	$\begin{gathered} \hline P_{u} \\ K \end{gathered}$	$\begin{gathered} \phi P_{n} \\ K \end{gathered}$	$\begin{gathered} \hline \text { Ratio } \\ P_{u} \\ \hline \phi P_{n} \\ \hline \end{gathered}$
L37	$\begin{gathered} (36) \\ 12.73-7.73 \\ (37)) \end{gathered}$	TP30.573x29.773x0.788	5.000	0.000	0.0	74.449	-25.885	5531.210	0.005
L38	7.73-2.73 (38)	TP31.373x30.573x0.775	5.000	0.000	0.0	75.267	-27.504	5591.940	0.005
L39	2.73-0(39)	TP31.81×31.373x0.763	2.730	0.000	0.0	75.140	-28.396	5582.560	0.005

Pole Bending Design Data

Section No.	Elevation $f t$	Size	$\begin{gathered} M_{u x} \\ k i p \cdot f t \end{gathered}$	$\phi M_{n x}$ kip-ft	$\begin{gathered} \hline \text { Ratio } \\ M_{\mu x} \\ \hline \phi M \end{gathered}$	$M_{x y}$ $k i p-f t$	$\phi M_{n y}$ kip-ft	$\begin{gathered} \text { Ratio } \\ M_{x y} \\ \hline \end{gathered}$
	fir		$k i p \sim f t$	kip fft	$\phi M_{n x}$	kip-ft	kip-ft	$\phi M_{n y}$
L1	108-103 (1)	TP8.625x8.625x0.313	13.847	56.708	0.244	0.000	56.708	0.000
L2	103-98.5 (2)	TP8.625x8.625x0.313	43.528	56.708	0.768	0.000	56.708	0.000
L3	98.5-98 (3)	TP16.5x16.5x0.313	46.863	214.977	0.218	0.000	214.977	0.000
L4	98-93 (4)	TP17.3x16.5x0.188	100.418	265.442	0.378	0.000	265.442	0.000
$L 5$	93-88 (5)	TP18.101x17.3x0.188	156.343	290.644	0.538	0.000	290.644	0.000
L6	88-83 (6)	TP18.901x18.101x0.188	213.434	313.934	0.680	0.000	313.934	0.000
L7	83-82.33 (7)	TP19.008×18.901×0.188	221.180	317.100	0.698	0.000	317.100	0.000
L8	$82.33-82.08$ (8)	TP19.048x19.008x0.325	224.081	547.300	0.409	0.000	547.300	0.000
L9	$\begin{gathered} 82.08-77.08 \\ (9) \end{gathered}$	TP19.848x19.048×0.319	287.498	584.613	0.492	0.000	584.613	0.000
L10	$\begin{gathered} 77.08-76.25 \\ (10) \end{gathered}$	TP19.981x19.848x0.319	298.567	592.658	0.504	0.000	592.658	0.000
L11	76.25-76(11)	TP20.021×19.981x0.456	301.915	834.092	0.362	0.000	834.092	0.000
L12	76-74.5 (12)	TP20.261×20.021x0.45	322.143	844.008	0.382	0.000	844.008	0.000
L13	$\begin{gathered} 74.5-74.25 \\ (13) \end{gathered}$	TP20.301x20.261x0.588	325.539	1083.575	0.300	0.000	1083.575	0.000
L14	$\begin{gathered} 74.25-69.25 \\ (14) \end{gathered}$	TP21.102x20.301×0.575	395.187	1151.775	0.343	0.000	1151.775	0.000
L15	$\begin{gathered} 69.25-64.25 \\ (15) \end{gathered}$	TP21.902x21.102x0.55	467.702	1194.683	0.391	0.000	1194.683	0.000
L16	$\begin{gathered} 64.25-59.25 \\ (16) \end{gathered}$	TP22.702x21.902x0.544	542.967	1273.533	0.426	0.000	1273.533	0.000
L17	$\begin{gathered} 59.25-58.08 \\ (17) \end{gathered}$	TP22.89x22.702x0.538	560.979	1281.600	0.438	0.000	1281.600	0.000
L18	$58.08-57.73$ (18)	TP22.946x22.89x0.713	566.398	1667.800	0.340	0.000	1667.800	0.000
L19	$57.73-57.5$ (19)	TP22.982x22.946x0.713	569.967	1673.408	0.341	0.000	1673.408	0.000
L20	57.5-52.5 (20)	TP23.783x22.982x0.688	649.071	1740.342	0.373	0.000	1740.342	0.000
L21	52.5-47 (21)	TP24.663x23.783x0.688	685.618	1795.842	0.382	0.000	1795.842	0.000
L22	47-45.25 (22)	TP24.568×23.768×0.75	769.112	2015.892	0.382	0.000	2015.892	0.000
L23	$\begin{gathered} 45.25-40.5 \\ (23) \end{gathered}$	TP25.328x24.568x0.725	851.142	2083.383	0.409	0.000	2083.383	0.000
L24	$40.5-40.25$ (24)	TP25.368x25.328×0.725	855.533	2090.258	0.409	0.000	2090.258	0.000
L25	$\begin{gathered} 40.25-35.25 \\ (25) \end{gathered}$	TP26.168×25.368x0.7	944.725	2159.667	0.437	0.000	2159.667	0.000
L26	$\begin{gathered} 35.25-30.25 \\ (26) \end{gathered}$	TP26.969x26.168x0.688	1036.608	2261.550	0.458	0.000	2261.550	0.000
L27	$\begin{gathered} 30.25-27.75 \\ (27) \end{gathered}$	TP27.369x26.969x0.675	1083.542	2292.650	0.473	0.000	2292.650	0.000
L28	$\begin{gathered} 27.75-27.5 \\ (28) \end{gathered}$	TP27.409x27.369x0.725	1088.267	2456.125	0.443	0.000	2456.125	0.000
L29	27.5-22.5 (29)	TP28.209x27.409x0.7	1184.200	2524.608	0.469	0.000	2524.608	0.000

tnxTower B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	$\begin{aligned} & \text { Job } \\ & \text { 85565.009.01 - HARTFORD - NU (SSUSA), CT (BU\# } 876363 \text {) } \end{aligned}$		$\begin{aligned} & \text { Page } \\ & 38 \text { of } 42 \end{aligned}$
	Project		$\begin{array}{\|l\|} \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$
	Client	Crown Castle	Designed by xjones

Section No.	Elevation	Size	$M_{u x}$	$\phi M_{\pi x}$	$\begin{gathered} \text { Ratio } \\ M_{n x} \\ \hline \end{gathered}$	$M_{u y}$	$\phi M_{n y}$	$\begin{gathered} \text { Ratio } \\ M_{x y y} \end{gathered}$
$f t$			$k i p-f t$	kip-ft	$\phi M_{n x}$	$k i p-f t$	$k i p-f t$	$\phi M_{n j}$
L30	22.5-19.5 (30)	TP28.689×28.209×0.688	1242.967	2571.375	0.483	0.000	2571.375	0.000
L31	$\begin{gathered} 19.5-19.25 \\ \text { (31) } \end{gathered}$	TP28.729×28.689x0.8	1247.908	2964.833	0.421	0.000	2964.833	0.000
L32	$\begin{gathered} 19.25-14.25 \\ (32) \end{gathered}$	TP29.529x28.729x0.775	1348.050	3049.425	0.442	0.000	3049.425	0.000
L33	14.25-14 (33)	TP29.569×29.529x0.775	1353.125	3058.033	0.442	0.000	3058.033	0.000
L34	14-13.75 (34)	TP29.609x29.569x0.775	1358.208	3066.650	0.443	0.000	3066.650	0.000
L35	$\begin{gathered} 13.75-12.98 \\ (35) \end{gathered}$	TP29.733x29.609x0.8	1373.908	3184.783	0.431	0.000	3184.783	0.000
L36	$\begin{gathered} 12.98-12.73 \\ (36) \end{gathered}$	TP29.773x29.733x0.8	1379.017	3193.717	0.432	0.000	3193.717	0.000
L37	$\begin{gathered} 12.73-7.73 \\ (37) \end{gathered}$	TP30.573x29.773x0.788	1482.608	3326.458	0.446	0.000	3326.458	0.000
L38	7.73-2.73 (38)	TP31.373x30.573x0.775	1588.767	3458.483	0.459	0.000	3458.483	0.000
L39	2.73-0(39)	TP31.81×31.373x0.763	1647.767	3506.025	0.470	0.000	3506.025	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V_{u}	ϕV_{n}	$\begin{gathered} \text { Ratio } \\ V_{u} \\ \hline \end{gathered}$	$\begin{gathered} \text { Actual } \\ T_{u} \end{gathered}$	ϕT_{n}	$\begin{gathered} \text { Ratio } \\ T_{u} \\ \hline \end{gathered}$
	$f t$		K	K	ϕV_{n}	kip-ft	kip-ft	ϕT_{n}
L1	108-103 (1)	TP8.625x8.625x0.313	6.512	77.119	0.084	0.034	56.361	0.001
L2	103-98.5 (2)	TP8.625x8.625x0.313	6.659	77.119	0.086	0.206	56.361	0.004
L3	98.5-98 (3)	TP16.5x16.5x0.313	6.680	150.180	0.044	0.206	213.732	0.001
L4	98-93(4)	TP17.3x16.5x0.188	11.067	178.734	0.062	0.294	262.022	0.001
L5	93-88 (5)	TP18.101x17.3x0.188	11.307	187.092	0.060	0.293	287.387	0.001
L6	88-83 (6)	TP18.901x18.101×0.188	11.537	195.451	0.059	0.293	313.923	0.001
L7	83-82.33 (7)	TP19.008×18.901×0.188	11.593	196.571	0.059	0.293	317.568	0.001
L8	$82.33-82.08$ (8)	TP19.048×19.008×0.325	11.614	338.958	0.034	0.293	536.655	0.001
L9	$82.08-77.08$ (9)	TP19.848x19.048x0.319	13.297	346.760	0.038	0.293	573.867	0.001
L10	$77.08-76.25$ (10)	TP19.981x19.848x0.319	13.380	349.119	0.038	0.293	581.831 812706	0.001 0.000
L11	76.25-76(11)	TP20.021x19.981x0.456	13.404	497.242	0.027	0.293	812.706	0.000
L12	76-74.5 (12)	TP20.261×20.021x0.45	13.571	496.605	0.027	0.293	822.904	0.000
L13	$74.5-74.25$ (13)	TP20.301×20.261x0.588	13.593	645.156	0.021	0.293	1048.425	0.000
L14	$\begin{gathered} 74.25-69.25 \\ (14) \end{gathered}$	TP21.102×20.301x0.575	14.230	657.462	0.022	0.472	1116.583	0.000 0.000
L15	$\begin{gathered} 69.25-64.25 \\ (15) \end{gathered}$	TP21.902×21.102×0.55	14.781	654.162	0.023 0.023	0.472 0.472	1161.008 1239267	0.000 0.000
L16	$\begin{gathered} 64.25-59.25 \\ (16) \end{gathered}$	TP22.702x21.902×0.544	15.332	671.157	0.023	0.472	1239.267 1247.775	0.000 0.000
L17	$59.25-58.08$ (17)	TP22.89 22.702×0.538	15.465 15.501	669.237	0.023 0.018	0.472 0.472	1247.775 1609.742	0.000 0.000
L18	$58.08-57.73$ (18)	TP22.946x22.89x0.713	15.501	882.406	0.018	0.472	1609.742	0.000 0.000
L19	57.73-57.5 (19)	TP22.982×22.946x0.713	15.528	883.867	0.018 0.018	0.472 0.471	1615.258 1683.958	0.000 0.000
L20	57.5-52.5 (20)	TP23.783×22.982×0.688	16.116	884.460	0.018	0.471	1683.958	0.000
L21	52.5-47(21)	TP24.663×23.783×0.688	16.376	898.251	0.018	0.471	1738.517	0.000
L22	47-45.25 (22)	TP24.568x23.768x0.75	17.012	995.064	0.017	0.471	1946.908	0.000
L23	$\begin{gathered} 45.25-40.5 \\ (23) \end{gathered}$	TP25.328x24.568x0.725	17.542	993.606	0.018	0.471	2016.542	0.000
L24	40.5-40.25	TP25.368x25.328x0.725	17.563	995.222	0.018	0.471	2023.300	0.000

tnxTower B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	$\begin{aligned} & \text { Job } \\ & 85565 . \end{aligned}$	ORD - NU (SSL	$\begin{aligned} & \text { Page } \\ & 39 \text { of } 42 \end{aligned}$
	Project		Date 15:01:04 09/21/18
	Client	Crown Castle	Designed by xjones

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Section No. \& Elevation

$f t$ \& Size \& Actual V_{u} K \& ϕV_{n}

K \& \[
$$
\begin{gathered}
\text { Ratio } \\
V_{k} \\
\hline
\end{gathered}
$$

\] \& | Actual |
| :--- |
| T_{u} | \& ϕT_{n} \& \[

$$
\begin{gathered}
\text { Ratio } \\
T_{u} \\
\hline
\end{gathered}
$$
\]

\hline \& $f t$ \& \& K \& K \& ϕV_{n} \& $k i p-f t$ \& $k i p-f t$ \& ϕT_{n}

\hline \& (24) \& \& \& \& \& \& \&

\hline L25 \& $$
\begin{gathered}
40.25-35.25 \\
(25)
\end{gathered}
$$ \& TP26.168x25.368x0.7 \& 18.116 \& 993.081 \& 0.018 \& 0.471 \& 2094.883 \& 0.000

\hline L26 \& $$
\begin{gathered}
35.25-30.25 \\
(26)
\end{gathered}
$$ \& TP26.969x26.168×0.688 \& 18.648 \& 1006.470 \& 0.019 \& 0.471 \& 2196.858 \& 0.000

\hline L27 \& $$
\begin{gathered}
30.25-27.75 \\
(27)
\end{gathered}
$$ \& TP27.369x26.969x0.675 \& 18.912 \& 1003.690 \& 0.019 \& 0.471 \& 2229.167 \& 0.000

\hline L28 \& $$
\begin{gathered}
27.75-27.5 \\
(28)
\end{gathered}
$$ \& TP27.409x27.369x0.725 \& 18.928 \& 1077.630 \& 0.018 \& 0.470 \& 2383.258 \& 0.000

\hline L29 \& 27.5-22.5 (29) \& TP28.209x27.409x0.7 \& 19.446 \& 1072.650 \& 0.018 \& 0.470 \& 2454.275 \& 0.000

\hline L30 \& 22.5-19.5 (30) \& TP28.689x28.209x0.688 \& 19.748 \& 1072.360 \& 0.018 \& 0.470 \& 2502.142 \& 0.000

\hline L31 \& $$
\begin{gathered}
19.5-19.25 \\
(31)
\end{gathered}
$$ \& TP28.729x28.689x0.8 \& 19.765 \& 1244.610 \& 0.016 \& 0.470 \& 2872.283 \& 0.000

\hline L32 \& $$
\begin{gathered}
19.25-14.25 \\
(32)
\end{gathered}
$$ \& TP29.529x28.729x0.775 \& 20.295 \& 1241.340 \& 0.016 \& 0.470 \& 2959.658 \& 0.000

\hline L33 \& 14.25-14 (33) \& TP29.569x29.529x0.775 \& 20.314 \& 1243.060 \& 0.016 \& 0.470 \& 2968.133 \& 0.000

\hline L34 \& 14-13.75 (34) \& TP29.609x29.569x0.775 \& 20.341 \& 1244.790 \& 0.016 \& 0.470 \& 2976.617 \& 0.000

\hline L35 \& $$
\begin{gathered}
13.75-12.98 \\
(35)
\end{gathered}
$$ \& TP29.733×29.609x0.8 \& 20.430 \& 1289.320 \& 0.016 \& 0.470 \& 3088.692 \& 0.000

\hline L36 \& $$
\begin{gathered}
12.98-12.73 \\
(36)
\end{gathered}
$$ \& TP29.773x29.733x0.8 \& 20.452 \& 1291.110 \& 0.016 \& 0.470 \& 3097.483 \& 0.000

\hline L37 \& $$
\begin{gathered}
12.73-7.73 \\
(37)
\end{gathered}
$$ \& TP30.573x29.773x0.788 \& 20.990 \& 1306.580 \& 0.016 \& 0.470 \& 3230.325 \& 0.000

\hline L38 \& 7.73-2.73 (38) \& TP31.373×30.573×0.775 \& 21.485 \& 1320.930 \& 0.016 \& 0.470 \& 3362.567 \& 0.000

\hline L39 \& 2.73-0 (39) \& TP31.81×31.373×0.763 \& 21.759 \& 1318.710 \& 0.017 \& 0.470 \& 3411.608 \& 0.000

\hline
\end{tabular}

Pole Interaction Design Data

Section No.	Elevation	$\begin{gathered} \text { Ratio } \\ P_{u} \end{gathered}$	Ratio $M_{u t}$	$\begin{gathered} \text { Ratio } \\ M_{u y} \end{gathered}$	$\begin{gathered} \text { Ratio } \\ V_{u} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ T_{u} \\ \hline \end{gathered}$	Comb. Stress	Allow. Stress Ratio	Criteria
	$f t$	ϕP_{n}	$\phi M_{n x}$	$\phi M_{n v}$	ϕV_{n}	ϕT_{n}			
L1	108-103 (1)	0.009	0.244	0.000	0.084	0.001	$\begin{gathered} 0.261 \\ \end{gathered}$	1.050	4.8 .2
L2	103-98.5 (2)	0.010	0.768	0.000	0.086	0.004	$\begin{gathered} 0.786 \\ 4 \end{gathered}$	1.050	4.8 .2
L3	98.5-98(3)	0.005	0.218	0.000	0.044	0.001	0.225	1.050	4.8.2
L.4	98-93(4)	0.009	0.378	0.000	0.062	0.001	0.391	1.050	4.8 .2 ¢
L5	93-88(5)	0.009	0.538	0.000	0.060	0.001	$\begin{gathered} 0.551 \\ \end{gathered}$	1.050	4.8 .2
L6	88-83 (6)	0.009	0.680	0.000	0.059	0.001	0.693	1.050	4.8.2
L7	83-82.33(7)	0.009	0.698	0.000	0.059	0.001	$\begin{gathered} 0.710 \\ \% \end{gathered}$	1.050	4.8.2
L8	$82.33-82.08$ (8)	0.005	0.409	0.000	0.034	0.001	$\begin{gathered} 0.416 \\ \% \end{gathered}$	1.050	4.8.2
L9	$82.08-77.08$ (9)	0.006	0.492	0.000	0.038	0.001	$\begin{gathered} 0.499 \\ 8 \end{gathered}$	1.050	4.8 .2
L10	$77.08-76.25$ (10)	0.006	0.504	0.000	0.038	0.001	$\begin{gathered} 0.512 \\ \% \end{gathered}$	1.050	4.8 .2

InxTower	$\begin{array}{\|l\|} \hline \text { Job } \\ 85565 \end{array}$	ORD - NU (SS	$\begin{aligned} & \text { Page } \\ & 40 \text { of } 42 \end{aligned}$
B+T Group 1717 S. Boulder, Suite 300	Project		$\begin{array}{\|l} \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by xjones

Section No.	Elevation	$\begin{gathered} \mathrm{Ratiog}_{P_{u}} \end{gathered}$	$\begin{gathered} \hline \text { Ratio } \\ M_{u x} \end{gathered}$	$\begin{aligned} & \overline{\text { Ratio }} \\ & M_{x y} \end{aligned}$	$\begin{gathered} \text { Ratio } \\ V_{u} \end{gathered}$	$\begin{gathered} \hline \text { Ratio } \\ T_{u} \\ \hline \end{gathered}$	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
	$f t$	$\phi_{\text {P }}{ }_{n}$	$\phi M_{7 x}$	$\phi M_{n v}$	ϕV_{n}	ϕT_{n}		Ratio	
L11	76.25-76 (11)	0.004	0.362	0.000	0.027	0.000	$\overline{0.367}$	1.050	4.8.2
L12	76-74.5(12)	0.004	0.382	0.000	0.027	0.000	0.387	1.050	4.8.2
L13	$74.5-74.25$ (13)	0.003	0.300	0.000	0.021	0.000	0.304	1.050	4.8 .2
L14	$\underset{\text { (14) }}{74.25-69.25}$	0.004	0.343	0.000	0.022	0.000	0.347	1.050	4.8.2
L15	69.25-64.25 (15)	0.004	0.391	0.000	0.023	0.000	0.396	1.050	4.8.2 /
L16	$64.25-59.25$ (16)	0.004	0.426	0.000	0.023	0.000	0.431	1.050	4.8.2
L17	$59.25-58.08$ (17)	0.004	0.438	0.000	0.023	0.000	0.443	1.050	4.8.2
L18	$58.08-57.73$ (18)	0.003	0.340	0.000	0.018	0.000	0.343	1.050	4.8.2
L19	57.73-57.5 (19)	0.003	0.341	0.000	0.018	0.000		1.050	4.8.2
L20	57.5-52.5 (20)	0.004	0.373	0.000	0.018	0.000	0.377	1.050	4.8.2
L21	52.5-47 (21)	0.004	0.382	0.000	0.018	0.000	0.386	1.050	4.8.2
L22	47-45.25 (22)	0.004	0.382	0.000	0.017	0.000	0.386	1.050	4.8.2
L23	$45.25-40.5$ (23)	0.004	0.409	0.000	0.018	0.000	${ }_{0}^{7}$	1.050	4.8.2
L24	$40.5-40.25$ (24)	0.004	0.409	0.000	0.018	0.000	0.414	1.050	4.8.2
L25	$\begin{gathered} 40.25-35.25 \\ (25) \end{gathered}$	0.004	0.437	0.000	0.018	0.000	0.442	1.050	4.8.2
L26	$\begin{gathered} 35.25-30.25 \\ (26) \end{gathered}$	0.005	0.458	0.000	0.019	0.000	0.463	1.050	4.8.2
L27	$\begin{gathered} 30.25-27.75 \\ (27) \end{gathered}$	0.005	0.473	0.000	0.019	0.000	0.478	1.050	4.8.2
L28	$\begin{gathered} 27.75-27.5 \\ (28) \end{gathered}$	0.004	0.443	0.000	0.018	0.000	0.448	1.050	4.8.2
L29	27.5-22.5 (29)	0.005	0.469	0.000	0.018	0.000	0.474	1.050	4.8.2
L30	22.5-19.5 (30)	0.005	0.483	0.000	0.018	0.000	0.489	1.050	4.8 .2 ل
L31	$\begin{gathered} 19.5-19.25 \\ (31) \end{gathered}$	0.004	0.421	0.000	0.016	0.000	0.425	1.050	4.8.2
L32	$\begin{gathered} 19.25-14.25 \\ (32) \end{gathered}$	0.005	0.442	0.000	0.016	0.000	0.447	1.050	4.8.2
L33	14.25-14 (33)	0.005	0.442	0.000	0.016	0.000	0.447	1.050	4.8.2
L34	14-13.75 (34)	0.005	0.443	0.000	0.016	0.000	0.448 \downarrow	1.050	4.8 .2 V
L35	$\begin{gathered} 13.75-12.98 \\ (35) \end{gathered}$	0.004	0.431	0.000	0.016	0.000	0.436	1.050	4.8.2
L36	$\underset{(36)}{12.98-12.73}$	0.004	0.432	0.000	0.016	0.000	0.436	1.050	4.8.2

tnxTower B+T Group	$\begin{aligned} & \text { Job } \\ & 85565.009 .01 \text { - HARTFORD - NU (SSUSA),CT (BU\# 876363) } \end{aligned}$		$\begin{aligned} & \text { Page } \\ & 41 \text { of } 42 \end{aligned}$
	Project		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by xjones

Section No.	Elevation	Ratio P_{u}	$\begin{gathered} \text { Ratio } \\ M_{u x} \end{gathered}$	$\begin{aligned} & \text { Ratio } \\ & M_{t y y} \end{aligned}$	$\begin{gathered} \text { Ratio } \\ V_{u} \end{gathered}$	$\begin{gathered} \text { Ratio } \\ T_{u} \\ \hline \end{gathered}$	Comb. Stress	Allow. Stress	Criteria
$f t$		ϕP_{n}	$\phi M_{n x}$	$\phi M_{n y}$	ϕV_{n}	ϕT_{n}	Ratio	Ratio	
L37	$12.73-7.73$ (37)	0.005	0.446	0.000	0.016	0.000	$\begin{gathered} 0.451 \\ \end{gathered}$	1.050	4.8 .2
L38	7.73-2.73(38)	0.005	0.459	0.000	0.016	0.000	$\begin{gathered} 0.465 \\ \end{gathered}$	1.050	4.8 .2
L39	2.73-0 (39)	0.005	0.470	0.000	0.017	0.000	$\begin{gathered} 0.475 \\ \end{gathered}$	1.050	4.8.2

Section Capacity Table

Section No.	Elevation $f t$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$\begin{gathered} \curvearrowleft P_{\text {allow }} \\ K \end{gathered}$	$\%$ Capacity	Pass Fail
L1	108-103	Pole	TP8.625x8.625x0.313	1	-2.394	269.918	**	**
L2	103-98.5	Pole	TP8.625x8.625x0.313	2	-2.607	269.918	**	**
L3	98.5-98	Pole	TP16.5x16.5x0.313	3	-2.652	525.629	**	**
L4	98-93	Pole	TP17.3×16.5x0.188	4	-6.781	794.471	**	**
L5	93-88	Pole	TP18.101×17.3x0.188	5	-7.110	830.635	**	**
L6	88-83	Pole	TP18.901x18.101x0.188	6	-7.477	858.446	**	**
L7	83-82.33	Pole	TP19.008x18.901×0.188	7	-7.531	862.113	**	**
L8	82.33-82.08	Pole	TP19.048×19.008×0.325	8	-7.562	1506.666	**	**
L9	82.08-77.08	Pole	TP19.848x19.048x0.319	9	-9.100	1541.347	**	**
L10	77.08-76.25	Pole	TP19.981×19.848×0.319	10	-9.192	1551.837	**	**
L11	76.25-76	Pole	TP20.021x19.981x0.456	11	-9.237	2210.239	**	**
L12	76-74.5	Pole	TP20.261×20.021×0.45	12	-9.457	2207.415	**	**
L13	74.5-74.25	Pole	TP20.301x20.261×0.588	13	-9.508	2867.718	**	**
L14	74.25-69.25	Pole	TP21.102x20.301x0.575	14	-10.402	2922.423	**	**
L15	69.25-64.25	Pole	TP21.902x21.102×0.55	15	-11.245	2907.744	**	**
Li6	64.25-59.25	Pole	TP22.702x21.902x0.544	16	-12.108	2983.291	**	**
L17	59.25-58.08	Pole	TP22.89x22.702x0.538	17	-12.313	2974.755	**	**
L18	58.08-57.73	Pole	TP22.946x22.89x0.713	18	-12.395	3922.296	**	**
L19	57.73-57.5	Pole	TP22.982x22.946x0.713	19	-12.445	3928.785	**	**
L20	57.5-52.5	Pole	TP23.783x22.982x0.688	20	-13.502	3931.420	**	**
L21	52.5-47	Pole	TP24.663x23.783x0.688	21	-13.987	3992.730	**	**
L22	47-45.25	Pole	TP24.568×23.768×0.75	22	-15.772	4423.062	**	**
L23	45.25-40.5	Pole	TP25.328×24.568x0.725	23	-16.914	4416.583	**	**
L24	40.5-40.25	Pole	TP25.368x25.328x0.725	24	-16.983	4423.765	**	**
L25	40.25-35.25	Pole	TP26.168x25.368x0.7	25	-18.197	4414.242	**	**
L26	35.25-30.25	Pole	TP26.969x26.168x0.688	26	-19.438	4473.766	**	**
L27	30.25-27.75	Pole	TP27.369x26.969x0.675	27	-20.067	4461.387	**	**
L28	27.75-27.5	Pole	TP27.409x27.369x0.725	28	-20.144	4790.068	**	**
L29	27.5-22.5	Pole	TP28.209x27.409x0.7	29	-21.472	4767.924	**	**
L30	22.5-19.5	Pole	TP28.689x28.209x0.688	30	-22.286	4766.643	**	**
L31	19.5-19.25	Pole	TP28.729x28.689x0.8	31	-22.366	5532.271	**	**
L32	19.25-14.25	Pole	TP29.529x28.729x0.775	32	-23.806	5517.739	**	**
L33	14.25-14	Pole	TP29.569x29.529x0.775	33	-23.886	5525.425	**	**
L34	14-13.75	Pole	TP29.609×29.569x0.775	34	-23.964	5533.101	**	**
L35	13.75-12.98	Pole	TP29.733x29.609x0.8	35	-24.206	5731.047	**	**
L36	12.98-12.73	Pole	TP29.773x29.733×0.8	36	-24.291	5738.974	**	**
L37	12.73-7.73	Pole	TP30.573x29.773x0.788	37	-25.885	5807.770	**	**
L38	7.73-2.73	Pole	TP31.373x30.573x0.775	38	-27.504	5871.537	**	**
L39	2.73-0	Pole	TP31.81x31.373x0.763	39	-28.396	5861.688	**	**
						$\text { Pole (L2) } \begin{array}{cc} \text { Summary } \\ * * \end{array}$		**

tnxTower B+T Group	$\begin{array}{\|l} \text { Job } \\ 85565.009 .01 \text { - HARTFORD - NU (SSUSA),CT (BU\# 876363) } \end{array}$		$\begin{aligned} & \text { Page } \\ & 42 \text { of } 42 \end{aligned}$
	Project		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:01:04 09/21/18 } \end{array}$
Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265	Client	Crown Castle	Designed by xjones

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	$\begin{gathered} o P_{\text {allow }} \\ K \end{gathered}$	$\%$ Capacity	Pass Fail

** Additional Calculations in Appendix C
Program Version 8.0.4.0

APPENDIX B
BASE LEVEL DRAWING

BUSINESS UNIT: 876363

APPENDIX C
ADDITIONAL CALCULATIONS
CClpole - version 4.1.1
$\underset{\text { per } \operatorname{TA-222-H}}{\text { C(ClPO }}$

TNX Geometry Input

Increment (ft): 5

	Section Height (ft)		Section Length (ft)	Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)	Wall Thickness (in)	Tapered Pole Grade	Weight Multiplier
1	108	- 103	5		0	8.625	8.625	0.3125	A53-B-35	1.000
2	103	- 98.5	4.5	0	0	8.625	8.625	0.3125	A53-8-35	1.000
3	98.5	- 98	0.5	0	0	16.500	16.500	0.3125	A53-B-35	1.000
4	98	- 93	5		18	16.500	17.300	0.1875	A607-65	1.000
5	93	- 88	5		18	17.300	18.101	0.1875	A607-65	1.000
6	88	- 83	5		18	18.101	18.901	0.1875	A607-65	1.000
7	83	- 82.33	0.67	\therefore	18	18.901	19.008	0.1875	A607-65	1.000
8	82.33	- 82.08	0.25		18	19.008	19.048	0.325	A607-65	1.035
9	82.08	- 77.08	5		18	19.048	19.848	0.31875	A607-65	1.036
10	77.08	- 76.25	0.83	.	18	19.848	19.981	0.31875	A607-65	1.033
11	76.25	- 76	0.25		18	19.981	20.021	0.45625	A607-65	1.152
12	76	- 74.5	1.5		18	20.021	20.261	0.45	A607-65	1.159
13	74.5	- 74.25	0.25		18	20.261	20.301	0.5875	A607-65	0.972
14	74.25	- 69.25	5		18	20.301	21.102	0.575	A607-65	0.967
15	69.25	- 64.25	5	.	18	21.102	21.902	0.55	A607-65	0.984
16	64.25	- 59.25	5		18	21.902	22.702	0.54375	A607-65	0.972
17	59.25	- 58.08	1.17		18	22.702	22.890	0.5375	A607-65	0.977
18	58.08	- 57.73	0.35		18	22.890	22.946	0.7125	A607-65	0.933
19	57.73	- 57.5	0.23		18	22.946	22.982	0.7125	A607-65	0.932
20	57.5	- 52.5	5		18	22.982	23.783	0.6875	A607-65	0.941
21	52.5	- 50.25	5.5	3.25	18	23.783	24.663	0.6875	A607-65	0.930
22	50.25	- 45.25	5		18	23.768	24.568	0.75	A607-65	0.929
23	45.25	- 40.5	4.75		18	24.568	25.328	0.725	A607-65	0.941
24	40.5	- 40.25	0.25		18	25.328	25.368	0.725	A607-65	0.940
25	40.25	- 35.25	5		18	25.368	26.168	0.7	A607-65	0.953
26	35.25	- 30.25	5		18	26.168	26.969	0.6875	A607-65	0.951
27	30.25	- 27.75	2.5	.	18	26.969	27.369	0.675	A607-65	0.960
28	27.75	- 27.5	0.25		18	27.369	27.409	0.725	A607-65	0.948
29	27.5	- 22.5	5		18	27.409	28.209	0.7	A607-65	0.962
30	22.5	- 19.5	3		18	28.209	28.689	0.6875	A607-65	0.969
31	19.5	- 19.25	0.25		18	28.689	28.729	0.8	A607-65	0.899
32	19.25	- 14.25	5		18	28.729	29.529	0.775	A607-65	0.910
33	14.25	- 14	0.25		18	29.529	29.569	0.775	A607-65	0.909
34	14	- 13.75	0.25		18	29.569	29.609	0.775	A607-65	0.972
35.	13.75	- 12.98	0.77		18	29.609	29.733	0.8	A607-65	0.968
36	12.98	- 12.73	0.25		18	29.733	29.773	0.8	A607-65	0.967
37	12.73	- 7.73	5		18	29.773	30.573	0.7875	A607-65	0.964
38	7.73	- 2.73	5		18	30.573	31.373	0.775	A607-65	0.962
39	2.73	- 0	2.73		18	31.373	31.810	0.7625	A607-65	0.968

TNX Section Forces

Increment (ft):			5	TNX Output		
	Section		ght (ft)	$\mathbf{P}_{\mathbf{u}} \quad$ (K)	$\mathrm{M}_{\mathrm{ux}} \text { (kip- }$ ft)	$\mathrm{V}_{\mathrm{u}} \quad(\mathrm{K})$
1	108	-	103	2.39	13.85	6.51
2	103	-	98.5	2.61	43.53	6.66
3	98.5	-	98	2.65	46.86	6.68
4	98	-	93	6.78	100.42	11.07
5	93	-	88	7.11	156.34	11.31
6	88	-	83	7.48	213.43	11.54
7	83	-	82.33	7.53	221.18	11.59
8	82.33	-	82.08	7.56	224.08	11.61
9	82.08	-	77.08	9.10	287.50	13.30
10	77.08	-	76.25	9.19	298.57	13.38
11	76.25	-	76	9.24	301.91	13.40
12	76	-	74.5	9.46	322.14	13.57
13	74.5	-	74.25	9.51	325.54	13.59
14	74.25	-	69.25	10.40	395.19	14.23
15	69.25	-	64.25	11.24	467.70	14.78
16	64.25	-	59.25	12.11	542.97	15.33
17	59.25	-	58.08	12.31	560.98	15.47
18	58.08	-	57.73	12.39	566.40	15.50
19	57.73	-	57.5	12.44	569.97	15.53
20	57.5	-	52.5	13.50	649.07	16.12
21	52.5	-	50.25	13.99	685.62	16.38
22	50.25	-	45.25	15.77	769.11	17.01
23	45.25	-	40.5	16.91	851.14	17.54
24	40.5	-	40.25	16.98	855.53	17.56
25	40.25	-	35.25	18.20	944.72	18.12
26	35.25	-	30.25	19.44	1036.61	18.65
27	30.25	-	27.75	20.07	1083.54	18.91
28	27.75	-	27.5	20.14	1088.27	18.93
29	27.5	-	22.5	21.47	1184.20	19.45
30	22.5	-	19.5	22.29	1242.97	19.75
31	19.5	-	19.25	22.37	1247.91	19.77
32	19.25	-	14.25	23.81	1348.05	20.29
33	14.25	-	14	23.89	1353.13	20.31
34	14	-	13.75	23.96	1358.21	20.34
35	13.75	-	12.98	24.21	1373.90	20.43
36	12.98	-	12.73	24.29	1379.01	20.45
37	12.73	-	7.73	25.88	1482.61	20.99
38	7.73	-	2.73	27.50	1588.77	21.48
39	2.73	-	0	28.40	1647.77	21.76

Analysis Results

Elevation (ft)	Component Type	Size	Critical Element	\% Capacity	Pass / Fail
108-103	Pole	TP8.625x8.625x0.3125	Pole	24.4\%	Pass
103-98.5	Pole	TP8.625x8.625×0.3125	Pole	74.3\%	Pass
98.5-98	Pole	TP16.5×16.5×0.3125	Pole	21.3\%	Pass
98-93	Pole	TP17.3×16.5×0.1875	Pole	36.9\%	Pass
93-88	Pole	TP18.101×17.3x0.1875	Pole	52.2\%	Pass
88-83	Pole	TP18.901×18.101×0.1875	Pole	65.7\%	Pass
83-82.33	Pole	TP19.008×18.901×0.1875	Pole	67.4\%	Pass
82.33-82.08	Pole + Reinf.	TP19.048×19.008×0.325	Reinf. 10 Tension Rupture	57.4\%	Pass
82.08-77.08	Pole + Reinf.	TP19.848×19.048×0.3188	Reinf. 10 Tension Rupture	69.0\%	Pass
77.08-76.25	Pole + Reinf.	TP19.981×19.848×0.3188	Reinf. 10 Tension Rupture	70.8\%	Pass
76.25-76	Pole + Reinf.	TP20.021×19.981×0.4563	Reinf. 4 Tension Rupture	55.8\%	Pass
76-74.5	Pole + Reinf.	TP20.261×20.021×0.45	Reinf. 4 Tension Rupture	58.5\%	Pass
74.5-74.25	Pole + Reinf.	TP20.301×20.261×0.5875	Reinf. 4 Tension Rupture	51.3\%	Pass
74.25-69.25	Pole + Reinf.	TP21.102x20.301×0.575	Reinf. 4 Tension Rupture	59.1\%	Pass
69.25-64.25	Pole + Reinf.	TP21.902×21.102x0.55	Reinf. 4 Tension Rupture	66.6\%	Pass
64.25-59.25	Pole + Reinf.	TP22.702x21.902x0.5438	Reinf. 4 Tension Rupture	73.7\%	Pass
59.25-58.08	Pole + Reinf.	TP22.89x22.702x0.5375	Reinf. 4 Tension Rupture	75.3\%	Pass
58.08-57.73	Pole + Reinf.	TP22.946x22.89x0.7125	Reinf. 3 Tension Rupture	56.3\%	Pass
57.73-57.5	Pole + Reinf.	TP22.982x22.946×0.7125	Reinf. 3 Tension Rupture	56.6\%	Pass
57.5-52.5	Pole + Reinf.	TP23.783x22.982x0.6875	Reinf, 3 Tension Rupture	61.8\%	Pass
52.5-50.25	Pole + Reinf.	TP24.663x23.783×0.6875	Reinf. 3 Tension Rupture	64.0\%	Pass
50.25-45.25	Pole + Reinf.	TP24.568×23.768×0.75	Reinf. 3 Tension Rupture	64.3\%	Pass
45.25-40.5	Pole + Reinf.	TP25.328x24.568×0.725	Reinf. 3 Tension Rupture	68.4\%	Pass
40.5-40.25	Pole + Reinf.	TP25.368×25.328×0.725	Reinf. 3 Tension Rupture	68.6\%	Pass
40.25-35.25	Pole + Reinf.	TP26.168×25.368×0.7	Reinf. 3 Tension Rupture	72.7\%	Pass
$35.25-30.25$	Pole + Reinf.	TP26.969x26.168×0.6875	Reinf. 3 Tension Rupture	76.6\%	Pass
30.25-27.75	Pole + Reinf.	TP27.369×26.969x0.675	Reinf. 3 Tension Rupture	78.4%	Pass
27.75-27.5	Pole + Reinf.	TP27.409×27.369x0.725	Reinf, 2 Tension Rupture	69.5\%	Pass
27.5-22.5	Pole + Reinf.	TP28.209x27.409×0.7	Reinf. 2 Tension Rupture	72.7\%	Pass
22.5-19.5	Pole + Reinf.	TP28.689×28.209x0.6875	Reinf. 2 Tension Rupture	74.6\%	Pass
19.5-19.25	Pole + Reinf.	TP28.729x28.689x0.8	Reinf. 2 Tension Rupture	69.6\%	Pass
19.25-14.25	Pole + Reinf.	TP29.529x28.729x0.775	Reinf. 2 Tension Rupture	72.5\%	Pass
14.25-14	Pole + Reinf.	TP29.569×29.529x0.775	Reinf. 2 Tension Rupture	72.7\%	Pass
14-13.75	Pole + Reinf.	TP29.609×29.569x0.775	Reinf. 2 Tension Rupture	73.2\%	Pass
13.75-12.98	Pole + Reinf.	TP29.733 29.609×0.8	Reinf. 1 Tension Rupture	69.2%	Pass
12.98-12.73	Pole + Reinf.	TP29.773x29.733×0.8	Reinf. 1 Tension Rupture	69.3\%	Pass
12.73-7.73	Pole + Reinf.	TP30.573×29.773×0.7875	Reinf. 1 Tension Rupture	72.0\%	Pass
$7.73-2.73$	Pole + Reinf.	TP31.373×30.573×0.775	Reinf. 1 Tension Rupture	74.6%	Pass
2.73-0	Pole + Reinf.	TP31.81×31.373×0.7625	Reinf. 1 Tension Rupture	75.9\%	Pass
				Summary	
			Pole	74.3\%	Pass
			Reinforcement	78.4\%	Pass
			Overall	78.4\%	Pass

Additional Calculations

Site Info	
BU \#	876363
Site Name	artford -NU (SSUSA), C
Order \#	85565.009 .01

Analysis Considerations	
TIA-222 Revision	H
Grout Considered:	No
$\mathrm{I}_{\mathrm{ar} \text { (} \mathrm{in}\rangle}$	0

Applied Loads	
Moment (kip-ft)	1648.00
Axial Force (kips)	28.00
Shear Force (kips)	22.00

Connection Properties

Anchor Rod Data
GROUP 1: (8) 2-1/4" \varnothing bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 38" BC GROUP 2: (3) $2-1 / 4^{\prime \prime} \varnothing$ bolts (A615-75 $\mathrm{N} ; \mathrm{Fy}=75 \mathrm{ksi}, \mathrm{Fu}=100 \mathrm{ksi}$) on $43.8^{\prime \prime} \mathrm{BC}$ pos. (deg): 35, 135, 235

GROUP 3: (3) 2-1/4" \varnothing bolts $\left\langle\mathrm{A} 193 \mathrm{Gr}\right.$. $\mathrm{B} 7 \mathrm{~N} ; \mathrm{Fy}=105 \mathrm{ksi}, \mathrm{Fu}=125 \mathrm{ksi}$) on $43.5^{\prime \prime} \mathrm{BC}$ pos. (deg): 55, 215, 315

Base Plate Data
$36^{\prime \prime}$ OD x $2.5^{\prime \prime}$ Plate (F1554-55; Fy=55 ksi, Fu=75 ksi)
Stiffener Data
N/A
Pole Data
$31.81^{\prime \prime} \times 0.25^{\prime \prime} 18$-sided pole (A607-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results

Anchor Rod Summary GROUP 1:

$\mathrm{Pu}=155.66$	$\phi \mathrm{Pn}=243.75$	Stress Rating
$\mathrm{Vu}=2.75$	$\phi V n=73.13$	61.0%
$M u=n / a$	$\phi M n=n / a$	Pass

GROUP 2:

$\mathrm{Pu}=176.16$	$\phi \mathrm{Pn}=243.75$	Stress Rating
$\mathrm{Vu}=0$	$\phi \mathrm{Vn}=73.13$	68.8%
$\mathrm{Mu}=\mathrm{n} / \mathrm{a}$	$\phi \mathrm{Mn}=\mathrm{n} / \mathrm{a}$	Pass

GROUP 3:

$P u=175.07$	$\phi P n=341.25$	Stress Rating
$V u=0$	$\phi V n=102.38$	48.9%
$M u=n / a$	$\phi M n=n / a$	Pass

Base Plate Summary		
Max Stress (ksi):	29.58	(Flexural)
Allowable Stress $\{\mathrm{ksi}):$	49.5	
Stress Rating:	$\mathbf{5 6 . 9 \%}$	Pass

BU \#	876363
Site Name	artford - NU (SSUSA),
Order \#	85565.009 .01

TIA-222 Revision	H

Applied Loads	
Moment (kip-ft)	47.00
Axial Force (kips)	2.70
Shear Force (kips)	6.70

Top Plate - External
Bottom Plate - External

Top Plate Capacity		
Max Stress (ksi):	40.92	(Flexural)
Allowable Stress (ksi):	45.00	
Stress Rating:	$\mathbf{8 6 . 6 \%}$	Pass
Tension Side Stress Rating:	$\mathbf{7 9 . 3 \%}$	Pass

Bottom Plate Capacity		
Max Stress (ksi):	12.90	(Flexural)
Allowable Stress (ksi):	45.00	
Stress Rating:	$\mathbf{2 7 . 3 \%}$	Pass
Tension Side Stress Rating:	$\mathbf{8 . 6 \%}$	Pass

Pier and Pad Foundation

BU \# : 876363
Site Name: Hartford - NU (SSU
App. Number: 457785 Rev. 0

	Block Foundation?:

Foundation Analysis Checks				
	Capacity	Demand	Rating*	Check
Lateral (Sliding) (kips)	203.71	22.00	10.3%	Pass
Bearing Pressure (ksf)	5.18	1.91	35.2%	Pass
Overturning (kip*ft)	3888.50	1818.50	46.8%	Pass
Pier Flexure (Comp.) (kip*ft)	2022.59	1747.00	82.3%	Pass
Pier Compression (kip)	11934.00	48.25	0.4%	Pass
Pad Flexure (kip $* f)$	2323.42	655.88	26.9%	Pass
Pad Shear - 1-way (kips)	646.50	108.64	16.0%	Pass
Pad Shear - 2-way (Comp) (ksi)	0.164	0.028	16.3%	Pass
Flexural 2-way (Comp) (kip*ft)	1496.79	1048.20	66.7%	Pass

*Rating per TIA-222-H Section
15.5

Soil Rating*:	$\mathbf{4 6 . 8} \%$
	$\mathbf{8 2 . 3} \%$

Pad Properties			
Depth, $\mathrm{D}:$	7	ft	
Pad Width, $\mathrm{W}:$	21.5	ft	
Pad Thickness, $\mathrm{T}:$	3	ft	
Pad Rebar Size, $\mathrm{Sp}:$	8		
Pad Rebar Quantity, mp:	22		
Pad Clear Cover, $\mathrm{cc}_{\mathrm{pad}}:$	4	in	

Material Properties		
Rebar Grade, Fy:	60000	psi
Concrete Compressive Strength, F'c:	3000	psi
Dry Concrete Density, oc:	150	pcf

Soll Properties		
Total Soil Unit Weight, $\mathrm{Y}:$	111	pcf
Utimate Gross Bearing, Qult:	6.900	ksf
Cohesion, $\mathrm{Cu}:$	0.000	ksf
Friction Angle, $\phi:$	32	degrees
SPT Blow Count, $\mathbf{N}_{\text {blows: }}:$		
Base Friction, $\boldsymbol{\mu}:$	0.35	
Neglected Depth, $\mathrm{N}:$	3.30	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw:	10	ft

Address:

No Address at This Location

ASCE 7 Hazards Report

Standard:	ASCE/SEI 7-10	Elevation: 71.06 ft (NAVD 88)
Risk Category:	II	Latitude: 41.750775
Soil Class:	D - Stiff Soil	Longitude: -72.713675

Wind

Results:

Wind Speed:
10-year MRI
25-year MRI
50-year MRI
100-year MRI
Data Source:

122 Vmph
76 Vmph
86 Vmph
92 Vmph
100 Vmph
ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1-CC-4, incorporating errata of March 12, 2014

Wed Sep 192018

Value provided is 3 -second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability $=$ $0.00143, \mathrm{MRI}=700$ years).

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Seismic

Site Soil Class:
 D - Stiff Soil

Results:

$\mathrm{S}_{\mathrm{s}}:$	0.181	$\mathrm{~S}_{\mathrm{DS}}:$	0.193
$\mathrm{~S}_{1}:$	0.064	$\mathrm{~S}_{\mathrm{D} 1}:$	0.102
$\mathrm{~F}_{\mathrm{a}}:$	1.600	$\mathrm{~T}_{\mathrm{L}}:$	6.000
$\mathrm{~F}_{\mathrm{V}}:$	2.400	$\mathrm{PGA}:$	0.091
$\mathrm{~S}_{\mathrm{MS}}:$	0.290	$\mathrm{PGA}_{\mathrm{M}}:$	0.146
$\mathrm{~S}_{\mathrm{M} 1}:$	0.153	$\mathrm{~F}_{\text {PGA }}:$	1.600
		$\mathrm{I}_{\mathrm{e}}:$	

Seismic Design Category
 B

Data Accessed:

Date Source:

Wed Sep 192018
USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating
Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2
Additional data for site-specific ground motion procedures in accordance with
ASCE/SEI 7-10 Ch. 21 are available from USGS.

Results:

Ice Thickness: $\quad 1.00 \mathrm{in}$.
Concurrent Temperature: 5 F
Gust Speed: $\quad 50 \mathrm{mph}$
Data Source:
Date Accessed: Wed Sep 192018
Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3 -second gust speeds, for a 50 -year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.
Date: October 08, 2018
Charles McGuirt
Crown Castle
3530 Toringdon Way, Suite 300
Charlotte, NC 28277
Charles.McGuirt@crowncastle.com
Subject:
Contractor Designation:

Engineering Firm Designation:

Site Data:

Structure Information:

BOLLTIロNG, PLLC
Engineered Tower Solutions, PLLC
8120 Sheridan Blvd, Suite A-311
Westminster, CO 80003
(919) 782-2710
brandon.little@ets-pllc.com

Mount Structural Analysis	
Verizon Wireless Co-Locate	
Carrier Site Number:	79283
Carrier Site Name:	West Hartford 4 CT
Crown Castle BU Number:	876363
Crown Castle Site Name:	HARTFORD - NU (SSUSA)
Crown Castle JDE Number:	528518
Crown Castle PO Number:	1263856
Crown Castle Application Number:	457785 Rev. 0
ETS Project No.:	184431.14

219 New Park Road, Hartford, Hartford County, CT 06106-2949

Tower Height \& Type: 108.0-ft Monopole

Mount Elevation:
105.0-ft
10.0-ft Sector Mount

Dear Charles McGuirt,

Engineered Tower Solutions, PLLC is pleased to submit this "Mount Structural Analysis Report" to determine the structural integrity of Verizon Wireless antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

Based upon our analysis, we have determined the adequacy of the antenna mounting system that will support the existing and proposed loading to be for the following Load Case:

Sector Mount (Multiple) Sufficient Capacity
The analysis has been performed in accordance with the TIA-222-H Standard. This analysis utilizes an ultimate 3 -second gust wind speed of 125 mph as required by the 2016 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

We at Engineered Tower Solutions, PLLC appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects, please give us a call.

Mount structural analysis prepared by:

Helen Tesfaye, El
Structural Engineer

Respectfully Submitted by:

Frederic G. Bost, PE
Owner/President

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided
3.1) Analysis Method
3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity
4.1) Recommendations

5) APPENDIX A)

Wire Frame and Rendered Models
6) APPENDIX B)

Software Input Calculations
7) APPENDIX C)

Software Analysis Output
8) APPENDIX D)

ASCE 7 Hazards Report

1) INTRODUCTION

This mount is a 10.0 ft Sector mount installed at the 105.0 ft elevation of the 108.0 ft Monopole. Engineered Tower Solutions, PLLC, did not visit the site. A mapping and/or mount manufacturer drawings were not provided. Therefore, per direction of Crown Castle, photos of the tower were compared with other mounts within our database and a similar and comparable mount was used to perform this mount analysis
2) ANALYSIS CRITERIA

Building Code:	2012 IBC
TIA-222 Revision:	TIA-222-H
Risk Category:	II
Wind Speed:	125 mph
Exposure Category:	C
Topographic Factor:	1
Ice Thickness:	2.00 in
Wind Speed with Ice:	50 mph
Seismic Ss:	0.181
Seismic S1:	0.064
Service Wind Speed:	30 mph

Table 1 - Proposed Equipment Configuration

Mount Centerline (f)	Antenna Centerline (ft)		Antenna Manufacturer	Antenna Model	Mount/ Modification Details
105.0	105.0	6	ANTEL	BXA-70063/6CF	(3) 10.0 ft Sector Mount
		6	COMMSCOPE	SBNHH-1D65B	
		1	RAYCAP	RVZDC-6627-PF-48	
		1	RFS/CELWAVE	DB-T1-6Z-8AB-0Z	
		3	SAMSUNG TELECOMMUNICATIONS	RFV01U-D1A	
		3	SAMSUNG TELECOMMUNICATIONS	RFV01U-D2A	

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Structural Level Drawings (Installed)	Crown Castle	Rocument	$08 / 30 / 2018$
Structural Level Drawing (Proposed)	Crown Castle	$08 / 30 / 2018$	CCI Sites
Carrier Application	App\# 457785 Rev. 0	$08 / 22 / 2018$	CCI Sites
4-Structural Analysis Report	B+T Group	7861410	CCI Sites
CCI Sites			

3.1) Analysis Method

RISA-3D (version 16.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix C.

3.2) Assumptions

1) Engineered Tower Solutions, PLLC, did not visit the site. A mapping and/or mount manufacturer drawings were not provided. Therefore, per direction of Crown Castle, photos of the tower were compared with other mounts within our database and a similar and comparable mount was used to perform this mount analysis
2) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specification.
3) The configuration of antennas, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
4) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
5) This Structural Analysis is not a condition assessment of the mount and is an evaluation of the theoretical structural capacity.
6) This analysis is based from the information supplied, and therefore, this report's results are as accurate as the supplied data.
7) Engineered Tower Solutions, PLLC makes no warranties, expressed and/or implied, in connection with this report, and disclaims any liability associated with material, fabrication, or erection of the mount. Engineered Tower Solutions, PLLC will not be held responsible from any consequential or incidental damages sustained by any person, firm, or organization as a result of the contents of this report. The maximum liability of Engineered Tower Solutions, PLLC pursuant to this report will be limited to the total fee received for compilation of this report.
8) It is the tower owner's responsibility to verify that the mount modeled and analyzed is the correct structure modeled.
9) The use of this report shall be limited to the purpose for which it was commissioned and may not be used for any other purposes without the written consent of Engineered Tower Solutions, PLLC.
10) Member connections are assumed to have been designed to meet or exceed the theoretical capacity of the connected member.
11) Steel grades have been assumed as follows:

a) Channel, Solid Round, Angle, Plate	ASTM A36 (Gr 36)
b) HSS (Rectangular)	ASTM 500 (Gr B-46)
c) HSS (Round)	ASTM 500 (Gr B-42)
d) Pipe	ASTM A53 (Gr 35)
e) Connection Bolts	ASTM A325
f) U-Bolts	SAE 429 Gr.2

This analysis may be affected if any assumptions are not valid or have been made in error. Engineered Tower Solutions, PLLC should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 3a- Mount Component Stresses vs. Capacity, Alpha

Mount Centerline (ft)	Component	\% Capacity	Pass/Fail	Notes
105.0	Face Mount - Horizontal	83.5	PASS	1
	Mount Pipe - Vertical	47.9	PASS	1
	Sidearm - Horizontal	20.4	PASS	1

Table 3b-Mount Component Stresses vs. Capacity, Beta

Mount Centerline (ft)	Component	\% Capacity	Pass/Fail	Notes
105.0	Face Mount-Horizontal	90.3	PASS	1
	Mount Pipe - Vertical	44.8	PASS	1
	Sidearm-Horizontal	19.0	PASS	1

Table 3c-Mount Component Stresses vs. Capacity, Gamma

Mount Centerline (ft)	Component	\% Capacity	Pass/Fail	Notes
105.0	Face Mount - Horizontal	82.8	PASS	1
	Mount Pipe - Vertical	47.1	PASS	1
	Sidearm - Horizontal	20.2	PASS	1

Notes:

1) See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the \% capacity consumed.

Tower Mount Rating (max from all components) $=$	90.3%

4.1) Recommendations

The tower mount has sufficient capacity to carry the existing and proposed load configuration. No modifications are required at this time.

WIRE FRAME AND RENDERED MODELS

Site Name: \quad West Hartford 4, CT Cumulative Power Density

Operator	Operating Frequency	Number of Trans.	ERP Per Trans:	Total ERP	Distance to Target	Calculated Power Density	Maximum Permissablë Exposure	Fraction of MPE
	(MHz)		(watts)	(watts)	(feet)	(mW/cm^2)	($\mathrm{mW} / \mathrm{cm}^{\wedge} \mathbf{2}$)	(\%)
VZW PCS	1970	1	5000	5000	105	0.1631	1.0	16.31\%
VZW Cellular LTE	869	1	3050	3050	105	0.0995	0.579333333	17.17\%
VZW Cellular	869	3	410	1230	105	0.0401	0.579333333	6.93\%
VZW AWS	2145	1	7400	7400	105	0.2414	1.0	24.14\%
VZW 700	746	1	2200	2200	105	0.0718	0.497333333	14.43\%
Total Percentage of Maximum Permissible Exposure								

Total Percentage of Maximum Permissible Exposure

$\mathrm{MHz}=$ Megahertz
$\mathrm{mW} / \mathrm{cm}^{\wedge} 2=$ milliwatts per square centimeter ERP = Effective Radiated Power

Absolute worst case maximum values used, including the following assumptions: 1. closest accessible point is distance from antenna to base of pole;
2. continuous transmission from all available channels at full power for indefinite time period; and, 3. all RF energy is assumed to be directed solely to the base of the pole.

General Power Density
Page 2
$\stackrel{\text { N }}{\text { \% }}$

From:
Sent:
To:
Subject:

TrackingUpdates@fedex.com
Tuesday, December 11; 2018 11:50 AM
Barbadora, Jeff
FedEx Shipment 773930407784 Delivered

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

From:
Sent:
To:
Subject:

TrackingUpdates@fedex.com
Tuesday, December 11, 2018 10:46 AM
Barbadora, Jeff
FedEx Shipment 773930696634 Delivered

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

From:
Sent:
To:
Subject:

TrackingUpdates@fedex.com
Tuesday, December 11, 2018 11:29 AM
Barbadora, Jeff
FedEx Shipment 773930572998 Delivered

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

