

December 10, 2018

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification for Verizon Wireless: 876363

Verizon Site ID: 79283

219 New Park Ave. Hartford, CT 06141-0270

Latitude: 41° -45' -2.79"/ Longitude: 72° -42' 43.23"

Dear Ms. Bachman:

Verizon currently maintains twelve (12) antennas at the 105-foot level of the existing 108-foot monopole tower at 219 New park Ave. Hartford, CT 06141-0270. The tower is owned by Crown Castle. The Connecticut Light and Power Company own the property. Verizon now intends to remove three (3) RRH's, replace six (6) RRH's. Verizon also intends to replace one (1) OVP and one (1) hybrid cable and remove six (6) coaxial cables.

This facility was approved by the City of Hartford in the mid-2000 and an email was sent to the town on 12/06/2018 in an effort to ascertain the original zoning documents.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.S.C.A. § 16-50j-73, a copy of this letter is being sent to Mayor Luke Bronin, City of Hartford, John Collins, Building Official, City of Hartford, the property owner, and Crown Castle is the tower owner.

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

The Foundation for a Wireless World.

CrownCastle.com

- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, Verizon respectfully submits that the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Jeffrey Barbadora.

Jeffrey Barbadora

Real Estate Specialist

12 Gill Street, Suite 5800, Woburn, MA 01801

781-729-0053

incerely.

Jeff.Barbadora@crowncastle.com

Attachments:

Tab 1: Exhibit-1: Compound plan and elevation depicting the planned changes

Tab 2: Exhibit-2: Structural Modification Report

Tab 3: Exhibit-3: General Power Density Table Report (RF Emissions Analysis Report)

cc: City Mayor Luke Bronin 550 Main St #1, Hartford, CT 06103

> Building Official John Collins 550 Main St #1, Hartford, CT 06103

Connecticut Light and Power 107 Selden St. C/O corporate Property Management Department Berlin, CT 06037

Unofficial Property Record Card - City of Hartford, CT

General Property Data

Parcel ID 138-472-001

Prior Parcel ID

Property Owner CONN LIGHT & POWER CO

Mailing Address PO BOX 270

City HARTFORD

Mailing State CT

Zip 06141-0270

ParcelZoning MS-3

Account Number

Property Location 219 NEW PARK AVE HARTFORD

Property Use OTHER UTILTY

Most Recent Sale Date 7/2/1982

Legal Reference 01977 0129

Grantor

Sale Price 0

Land Area 311,018.000 square feet

Current Property Assessment

Card 1 Value Building Value 12,460

Xtra Features 10,570 Value

Land Value 1,094,870

Total Value 1,117,900

Flooring Type COMBINATION

Building Description

Building Style WAREHSE
of Living Units 0
Year Built 1978
Building Grade Economy
Building Condition N/A
Finished Area (SF) 1632
Number Rooms 0
of 3/4 Baths 0

Foundation Type Concrete
Frame Type Steel Light
Roof Structure GABLE/HIP
Roof Cover Metal
Siding Metal
Interior Walls DRYWALL
of Bedrooms 0

of 1/2 Baths 0

Basement Floor N/A
Heating Type Electric
Heating Fuel Electric
Air Conditioning 0%
of Bsmt Garages 0
of Full Baths 0

of Other Fixtures 0

Legal Description

Narrative Description of Property

This property contains 311,018.000 square feet of land mainly classified as OTHER UTILTY with a(n) WAREHSE style building, built about 1978, having Metal exterior and Metal roof cover, with 0 commercial unit(s) and 0 residential unit(s), 0 room(s), 0 bedroom(s), 0 bath(s), 0 half bath(s).

Property Images

Disclaimer: This information is believed to be correct but is subject to change and is not warranteed. The Property Use designation depicted on this website is for assessment purposes only, it does not guarantee or imply rights to such use or approval of the premises for such use. Any questions regarding the approved or allowed use of a property should be confirmed with the Planning & Economic Development Division of the City of Hartford.

McKay, Kristian

From:

Thursday, December 6, 2018 4:52 PM McKay, Kristian Sent:

'vanessa.walton@hartford.gov' Original zoning docs **Subject:**

ö

Hello Zoning Department,

I work for Crown Castle and have an inquiry regarding the original zoning documents for a tower and I am hoping your office can provide more information.

We are applying for CSC Zoning Approval for Sprint to modify their antennas and new requirements ask that we attempt to procure original zoning documents from the jurisdiction, if possible. However, if these documents are not available, please let me know. The tower is located at 219 New Park Ave. and according to lease documents I believe would have been constructed sometime in the late 2000. Connecticut light and power company owned the property at the time and continues to do so.

If you have any questions, please don't hesitate to call or e-mail me.

Thank you,

Kristian McKay

Real Estate Specialist – East Area

T: (704) 405-6612 | M: (704) 713-5728 | F: (724) 416-6496

CROWN CASTLE

3530 Toringdon Way, Suite 300, Charlotte, NC 28277

Crowncastle.com

EB+T GRP

Date: September 21, 2018

Amanda D Brown Crown Castle 3530 Toringdon Way Suite 300 Charlotte, NC 28277

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 (918) 587-4630

Subject:

Structural Analysis Report

Carrier Designation:

Verizon Wireless Co-Locate

Carrier Site Number:

79283

Carrier Site Name:

West Hartford 4 CT

Crown Castle Designation:

Crown Castle BU Number:

876363

528518

Crown Castle Site Name:

Hartford - NU (SSUSA)

Crown Castle JDE Job Number: Crown Castle Work Order Number: Crown Castle Order Number:

1626542 457785 Rev. 0

Engineering Firm Designation:

B+T Group Project Number:

85565.009.01

Site Data:

219 New Park Rd., HARTFORD, Hartford County, CT Latitude 41° 45' 2.79", Longitude -72° 42' 49.23"

108 Foot - Monopole Tower

Dear Amanda D Brown,

B+T Group is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity

The analysis has been performed in accordance with the TIA-222-H Standard. This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2012 International Building Code. Exposure Category C and Risk Category II were used in this analysis.

Structural analysis prepared by: Xavier Jones

Respectfully submitted by: B+T Engineering, Inc. COA: PEC.0001564 Expires: 02/10/2019

Scott S. Vance, P.E.

tnxTower Report - version 8.0.4.0

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 108 ft. Monopole designed by Summit in October of 2000. The tower was originally designed for a wind speed of 90 mph per TIA/EIA-222-F. This tower has been modified multiple times and those modifications were incorporated in this analysis.

2) ANALYSIS CRITERIA

Building Code: 2012 IBC TIA-222 Revision: TIA-222-H

Risk Category:

Wind Speed: 125 mph

Exposure Category: C
Topographic Factor: 1
Ice Thickness: 1.7 in
Wind Speed with Ice: 50 mph
Service Wind Speed: 60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antonna I I		Number of Feed Lines	Feed Line Size (in)
CONTROL OF THE PARTY OF THE PAR	AND THE PROPERTY OF THE PROPER	3	Alcatel Lucent	B13 RRH 4X30		
	'	3	Alcatel Lucent	B25 RRH4X30		
		3	Alcatel Lucent	RRH4X45-AWS4 B66]	
		6	Antel	BXA-70063/6CF		
		6	Commscope	SBNHH-1D65B]	4.500
105.0	105.0	1	Raycap	RVZDC-6627-PF-48	1 1 1 7	1-5/8 1-1/4
		1	Rfs Celwave	DB-T1-6Z-8AB-0Z] '	1-1/4
		3	Samsung Tele.	RFV01U-D1A		
		3	Samsung Tele.	RFV01U-D2A	1	
		1	Rfs Celwave	DB-T1-6Z-8AB-0Z		
		1		Sector Mount [SM 402-3]	1	

Table 2 - Other Considered Equipment

Mounting Level (ft)	Flevation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	Nokia	AAHC	The state of the s	
	99.0	1	Rfs Celwave	APXV9ERR18-C-A20	_	
98.0		2	Rfs Celwave	APXVSPP18-C-A20	4 2	1-1/4
96.0		3	Rfs Celwave	IBC1900BB-1	3	
	98.0	3	Rfs Celwave	IBC1900HG-2A	•	
		1		Platform Mount [LP 1201-1]		
		3	Alcatel Lucent	800MHz 2X50W RRH W/FILTER		Aberdenista de constituciones
96.0	96.0	3	Alcatel Lucent	PCS 1900MHz 4x45W-65MHz		
		1		Side Arm Mount [SO 102-3]		
	95.0	3	Alcatel Lucent	PCS 1900MHz 4x45W-65MHz		-

Mounting Level (ft)		Number of Antennas	Antenna Manufacturer	J Antanna Madel		Feed Line Size (in)
04.0	81.0	1 1		T-Arm Mount [TA 602-3]	6	7/8
81.0	80.0	3	Andrew	HBX-6516DS-VTM	1	5/16
74.0	76.0	1	Lucent	KS24019-L112A	1	1/2
74.0	74.0	1		Side Arm Mount [SO 701-1]		1/2

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
Online Order Information	Verizon Wireless Co-Locate, Rev. 0	457785	CCI Sites
Tower Manufacturer Drawing	Summit, Job No. 11049	1947570	CCI Sites
Tower Modification Drawings	Vertical Solutions, Date: 01/28/2009	2445633	CCI Sites
Post Modification Inspection	PJF, Date: 10/25/2010	2445631	CCI Sites
Tower Modification Drawings	B+T Group, Date: 10/15/2012	3348853	CCI Sites
Post Modification Inspection	TEP, Date: 12/20/2013	4424435	CCI Sites
Tower Modification Drawings	B+T Group, Date: 05/16/2017	6859034	CCI Sites
Post Modification Inspection	ETS, Date: 12/07/2017	7243678	CCI Sites
Foundation Drawings	Summit, Job No. 11049	1613616	CCI Sites
Geotech Report	FDH, Project No. 08-10012E G1	2337384	CCI Sites
Antenna Configuration	Crown CAD Package	Date: 08/30/2018	CCI Sites

3.1) Analysis Method

tnxTower (version 8.0.4.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- Tower and structures were built in accordance with the manufacturer's specifications.
- 2) The tower and structures have been maintained in accordance with the manufacturer's specification.
- The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 4) Mount areas and weights are assumed based on photographs provided.
- 5) The existing base plate grout was not considered in this analysis.
- 5) The existing base plate grout was considered in this analysis. Grout must be maintained and

This analysis may be affected if any assumptions are not valid or have been made in error. B+T Group should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

•	Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
1	L1	108 - 103	Pole	TP8.625x8.625x0.313	1	-2.346	269.918	24.4%	Pass

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L2	103 - 98.5	Pole	TP8.625x8.625x0.313	2	-2.563	269.918	74.3%	Pass
L3	98.5 - 98	Pole	TP16.5x16.5x0.313	3	-2.609	525.629	21.3%	Pass
L4	98 - 93	Pole	TP17.3x16.5x0.188	4	-6.988	794.471	36.9%	Pass
L5	93 - 88	Pole	TP18.101x17.3x0.188	5	-7.367	830.635	52.2%	Pass
L6	88 - 83	Pole	TP18.901x18.101x0.188	6	-7.789	858.446	65.7%	Pass
L7	83 - 82.33	Pole	TP19.008x18.901x0.188	7	-7.851	862.113	67.4%	Pass
L8	82.33 - 82.08	Pole	TP19.048x19.008x0.325	8	-7.886	1506.666	57.4%	Pass
L9	82.08 - 77.08	Pole	TP19.848x19.048x0.319	9	-9.465	1541,347	69.0%	Pass
L10	77.08 - 76.25	Pole	TP19.981x19.848x0.319	10	-9.566	1551.837	70.8%	Pass
L11	76.25 - 76	Pole	TP20.021x19.981x0.456	11	-9.614	2210.239	55.8%	Pass
L12	76 - 74.5	Pale	TP20.261x20.021x0.45	12	-9.847	2207.415	58.5%	Pass
L13	74.5 - 74.25	Pole	TP20.301x20.261x0.588	13	-9.902	2867.718	51.3%	Pass
L14	74.25 - 69.25	Pole	TP21.102x20.301x0.575	14	-10.84	2922.423	59.1%	Pass
L15	69.25 - 64.25	Pole	TP21.902x21.102x0.55	15	-11.729	2907.744	66.6%	Pass
L16	64.25 - 59.25	Pole	TP22.702x21.902x0.544	16	-12.64	2983,291	73.7%	Pass
L17	59.25 - 58.08	Pole	TP22.89x22.702x0.538	17	-12.856	2974.755	75.3%	Pass
L18	58.08 - 57.73	Pole	TP22.946x22.89x0.713	18	-12.942	3922.296	56.3%	Pass
L19	57.73 - 57.5	Pole	TP22.982x22.946x0.713	19	-12.994	3928.785	56.6%	Pass
L20	57.5 - 52.5	Pole	TP23.783x22.982x0.688	20	-14.096	3931.42	61.8%	Pass
L21	52.5 - 47	Pole	TP24.663x23.783x0.688	21	-14.603	3992.73	64.0%	Pass
L22	47 - 45.25	Pole	TP24.568x23.768x0.75	22	-16.43	4423.062	64.3%	Pass
L23	45.25 - 40.5	Pole	TP25.328x24.568x0.725	23	-17.617	4416.583	68.4%	Pass
L24	40.5 - 40.25	Pole	TP25.368x25.328x0.725	24	-17.69	4423.765	68.6%	Pass
L25	40.25 - 35.25	Pole	TP26.168x25.368x0.7	25	-18.951	4414.242	72.7%	Pass
L26	35.25 - 30.25	Pole	TP26.969x26.168x0.688	26	-20.241	4473.766	76.6%	Pass
L27 :	30.25 - 27.75	Pole	TP27.369x26.969x0.675	27	-20.893	4461.387	78.4%	Pass
L28	27.75 - 27.5	Pole	TP27.409x27.369x0.725	28	-20.974	4790.068	69.5%	Pass
L29	27.5 - 22.5	Pole	TP28.209x27.409x0.7	29	-22.35	4767.924	72.7%	Pass
L30	22.5 - 19.5	Pole	TP28.689x28.209x0.688	30	-2 3.192	4766.643	74.6%	Pass
L31	19.5 - 19.25	Pole	TP28.729x28.689x0.8	31	-23.276	5532.271	69.6%	Pass
L32 1	19.25 - 1 4. 25	Pole	TP29.529x28.729x0.775	32	-24.763	5517.739	72.5%	Pass
L33	14.25 - 14	Pole	TP29.569x29.529x0.775	33	-24,847	5525.425	72.7%	Pass
L34	14 - 13.75	Pole	TP29.609x29.569x0.775	34	-24.927	5533.101	73.2%	Pass
L35 1	13.75 - 12.98	Pole	TP29.733x29.609x0.8 35		-25.176	5731.047	69.2%	Pass
L36 1	12.98 - 12.73	Pole	TP29.773x29.733x0.8 36		-25.263	5738.9 7 4	69.3%	Pass
L37	12.73 - 7.73	Pole	TP30.573x29.773x0.788	37	-26.904	5807.77	72.0%	Pass
L38	7.73 - 2.73	Pole	TP31.373x30.573x0.775	38	-28.571	5871.537	74.6%	Pass
L39	2.73 - 0	Pole	TP31.81x31.373x0.763	39	-29.489	5861.688	75.9%	Pass
			***************************************				Summary	······································
						Pole (L2)	74.3%	Pass
					***************************************	Reinforcement	78.4%	Pass
						Rating =	78.4%	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Flange Connection	Base	86.6	Pass
1	Anchor Rods	Base	68.8	Pass
1	Base Plate	Base	56.9	Pass
1	Base Foundation (Structure)	Base	82.3	Pass
1	Base Foundation (Soil Interaction)	Base	46.8	Pass

Structure Rating (max from all components) =	86.6%
(max nom an components)	00,076

Notes:

4.1) Recommendations

The tower and its foundations have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

²⁾ Rating per TIA-222-H Section 15.5

APPENDIX A TNXTOWER OUTPUT

	_	_		_	_				108.0 ft
-	5.000	٥	0.313		8.625	8.625		0.1	103.0 ft
2	500 4,500	0	313 0.313		008.625	8008,625	A53-B-35	0 0.1	98.5 ft
4 3	5.000 0.5	85	0.188 0.3		16,50016	17,30016		0,2 0,	
2	2.000	æ	0.188		17,300	18.101		0.2	93.0 ft
9	5.000	18	0.188 (101			0,2	88.0 ft
14			0 38 3 0		98 1 18.	MAN 18		8	83.0 ft
6	0 5.000 o uss	18 1	0,319		225555984819.04819E0881	119.84819900008 18.901		0.3 0	77.1 ft
1210	3500380	81818	SP45		5398	, SEIDBREETS		0.201	77.1 ft 76.0 ft 74.5 ft
14	5.000 0.3	18	0.575 0.8		20.301202	21,102202		0.8 0	69.3 ft
15	5.000	18	0.550		21.102	21.902		9.0	64,3 ft_
16	5,000	18	0.544		21.902	22.702		9.0	•
7		818) SEE		2			-	59,3 ft 58,1 ft
20 1	5.000 @2	18 1	0.688 00.		22.9822228ERR 2	23.78323384		0.8	52.5 ft
23	008.800	18	0,688	3.250	8 23,783	8 24.663	A607-65	9:0	47.0 ft
22	r.	18	0.750		28.768	24.568	`	0.9	45.3 ft
23	0.250 4.750	e2 €	25 0.725		36225,32224.568	3625.328		8.0	40,5 ft
25 2	5.000 0.2	8 1	0,700 0,		25,36225,	26.16825.		0.9 0	35.3 ft
56	5,000	<u>6</u>	0.688		26.168	26.969		6.0	30.3 ft
22	00908	18	22992		6965	arr 9369		0000	27.8 ft
29 38	5,000 0.250500	20	0.700 0.7		27.40927.	28.20927.0		1.0	
98	5.000 0.250.000	18 18	0.775 0.800.688		8,529,209	8.723.689		0,1 0.6	22.5 ft 19.5 ft
32		81	0.775 C		29.773293999928,72528,839.209	30.573285998THBB29.52928.		7-	14.3 ft
8	000	1	0.00		8882	259	1	0000	13,0 ft
37	5.000	\$2	0.787		29.773	30.573		1.2	7.7 ft
38	5.000	82	2 0.775	-	3 30.573	0 31.373		1.2	2.7 ft
88	2.730	80	0.762		31.373	31,810	1_	5.0	0.0 ft
Section	Length (ft)	Number of Sides	Thickness (in)	Socket Length (ft)	Top Dia (in)	Bot Dia (in)	Grade	Weight (K) 15.5	

TYPE	ELEVATION	TYPE	ELEVATION
BXA-70063/6CF w/ Mount Pipe (E)	105	APXVSPP18-C-A20 w/ Mount Pipe (E)	98
BXA-70063/6CF w/ Mount Pipe (E)	105	JBC1900BB-1 (E)	98
BXA-70063/6CF w/ Mount Pipe (E)	105	IBC1900BB-1 (E)	98
DB-T1-6Z-8AB-0Z (E)	105	IBC1900BB-1 (E)	98
(2) SBNHH-1D65B (P)	105	IBC1900HG-2A (E)	98
(2) SBNHH-1D65B (P)	105	IBC1900HG-2A (E)	98
(2) SBNHH-1D65B (P)	105	IBC1900HG-2A (E)	98
BXA-70063/6CF w/ Mount Pipe (P)	105	AAHC w/ Mount Pipe (R)	98
BXA-70063/6CF w/ Mount Pipe (P)	105	AAHC w/ Mount Pipe (R)	98
BXA-70063/6CF w/ Mount Pipe (P)	105	AAHC w/ Mount Pipe (R)	98
(2) RFV01U-D1A (P)	105	Platform Mount [LP 1201-1] (E)	98
RFV01U-D1A (P)	105	PCS 1900MHz 4x45W-65MHz (E)	96
RFV01U-D2A (P)	105	PCS 1900MHz 4x45W-65MHz (E)	96
(2) RFV01U-D2A (P)	105	PCS 1900MHz 4x45W-65MHz (E)	96
RVZDC-6627-PF-48 (P)	105	PCS 1900MHz 4x45W-65MHz (E)	96
B13 RRH 4X30 (P-previous App)	105	PCS 1900MHz 4x45W-65MHz (E)	96
B13 RRH 4X30 (P-previous App)	105	PCS 1900MHz 4x45W-65MHz (E)	96
B13 RRH 4X30 (P-previous App)	105	800MHz 2X50W RRH W/FILTER (E)	96
RRH4X45-AWS4 B66 (P-previous	105	800MHz 2X50W RRH W/FILTER (E)	96
Арр)		800MHz 2X50W RRH W/FILTER (E)	96
RRH4X45-AWS4 B66 (P-previous	105	4' x 2" Pipe Mount (E)	96
App)		4' x 2" Pipe Mount (E)	96
RRH4X45-AWS4 B66 (P-previous App)	105	4' x 2" Pipe Mount (E)	96
117	105	Side Arm Mount [SO 102-3] (E)	96
B25 RRH4X30 (P-previous App)	105	HBX-6516DS-VTM w/ Mount Pipe (E)	81
B25 RRH4X30 (P-previous App)	105	HBX-6516DS-VTM w/ Mount Pipe (E)	81
B25 RRH4X30 (P-previous App)		HBX-6516DS-VTM w/ Mount Pipe (E)	81
DB-T1-6Z-8AB-0Z (P-previous App)	105	6' x 2" Mount Pipe (E)	81
Sector Mount [SM 402-3] (E-2M.P/sector)	105	6' x 2" Mount Pipe (E)	81
APXV9ERR18-C-A20 w/ Mount Pipe	98	6' x 2" Mount Pipe (E)	81
(E)	_	T-Arm Mount [TA 602-3] (E)	81
APXVSPP18-C-A20 w/ Mount Pipe (E)	98	KS24019-L112A (E)	74
		Side Arm Mount [SO 701-1] (E)	74

MATERIAL STRENGTH

ſ	GRADE	Fy	Fu	GRADE	Fy	Fu
	A53-B-35	35 ksi	63 ksi	A607-65		80 ksi

TOWER DESIGN NOTES

- Tower is located in Hartford County, Connecticut.
 Tower designed for Exposure C to the TIA-222-H Standard.
 Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard.
 Tower is also designed for a 50 mph basic wind with 1.70 in ice, Ice is considered to increase in thickness with height.
 Deflections are based upon a 60 mph wind.
- b. Deflections are passed upon a 60 mpn wind.
 f. Tower Risk Category II.
 7. Topographic Category 1 with Crest Height of 0.000 ft
 8. TIA-222-H Annex S
 9. TOWER RATING: 83.6%

-	B+T Group	85565.009.01 - HARTFORD	- NU (SSUSA),CT (BU# 87636
	1717 S. Boulder, Suite 300	Project: Client: Crown Castle Drawn by: xjones	App'd:
B+T GRP		Date:	Scale: NTS
	Phone: (918) 587-4630 FAX: (918) 295-0265	Path:	Dwg No. F-1

	B+T Group	^{Job:} 85565.009.01	- HARTFORD -	NU (SSUSA),CT (BU# 87636
	'17 S. Boulder, Suite 300	Project:	Drawn by: xjones	
B+T GRP	Tulsa, OK 74119		Date: 09/21/18	Scale: NTS
	Phone: (918) 587-4630 FAX: (918) 295-0265	Path:	Contraction of the second suppose of	Dwg No. F-5

Feed Line Distribution Chart 0' - 108'

______ Round _____ Flat ______ App In Face ______ App Out Face _____

108.000 Face A	7	Face B Face C	3.000
- 4 4	105.000		
103,000			3.000
98.500	98,000	<u> </u>	500
93,000		93.0	000
	i		
88.000		88.0	200
	84.050		
83.000		84,050	200
-	81.000		
77.080	78.000	77.00	ายก
74.500 	74.000	6 74.000	
74.500 FOR THE PROPERTY OF THE			<u>~~</u>
69 250 U E		89-23 (E-VS)	250
W 4250		9.26 8 9.26 8 9.26	-
		.52 .52 .52 .52 .53 .53 .53 .53 .53 .53 .53 .53 .53 .53	:50
(.0.7	22.522	.07	_
59.250	60.500 59.500		50
55.555 F. 1 - 861	4		80
52.500 (E-781 Mod) (Doom 14.000 (45.250 May 20.50 May 20	in S	25.50 (E)	
52,500 F - 88. 8. 8. 9. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1		00
47.000 HB) 1 94	(\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$)	
47.000 G - 99		17.00 18	
	7	### - - - - - - - - -	50
40.500	40.500	SOA(1/2) (E) Safety ATCR B0 (5/18) (E) ATCR B0 (5/1	
37.5°	*	�� ┡ ┈┡╚ ┡ ┈┡ ╶	<u> 10</u>
35,250	ļ	4.375° FXL 78	
	F	ATCB-80 (1/2) (6) FXL 786 (6) FXL 786 (7.375"	<u>30</u>
30.250	29,750		
27.750	29,730	30.25	
	ſ	(5 (F.B+T	<u>io</u>
22.500 go M			20
19.500	21.000	19.50t	
19.500	ľ	22.300 P	īD
14.250 12.280	15.500	52 5.50 S.	
14,250 12,980 -50 -50	Ė	14.250 12.980	0
7.730	11.000	11.000	
7.730		7.730	į
		11.25	
14.250 12.980 	ļ	14.256 12.980 13.000 14.266 12.980 14.267 12.980 14.267 12.980 14.267 12.980 14.267 12.980 14.267 12.980 14.267 12.980 14.267 12.980 14.267 14.267 15.980 16.980 17.730 17.730 18.730 19.980	
0.000	L	0,000	

Elevation (ft)

	B+T Group	Job: 85565.009.01	HARTFORD -	NU (SSUSA),CT (BU# 87636
B+T GRIP	1/1/ S. Boulder, Suite 300 Tulsa, OK 74119	Client: Crown Castle		
	Phone: (918) 587-4630 FAX: (918) 295-0265	Code: TIA-222-H Path:	Date: 09/21/18	Scale: NTS Dwg No. E-7

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Job 85565.009.01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	Page 1 of 42
Project	Date 15:01:04 09/21/18
Client Crown Castle	Designed by xjones

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower is located in Hartford County, Connecticut.

Tower base elevation above sea level: 71.000 ft.

Basic wind speed of 125 mph.

Risk Category II.

Exposure Category C.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1.

Crest Height 0.000 ft.

Nominal ice thickness of 1.700 in.

Ice thickness is considered to increase with height.

Ice density of 56.000 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50.000 °F.

Deflections calculated using a wind speed of 60 mph.

TIA-222-H Annex S.

TOWER RATING: 83.6%.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.05.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios

Use Code Safety Factors - Guys
Escalate Ice
Always Use Max Kz
Use Special Wind Profile
Include Bolts In Member Capacity
Leg Bolts Are At Top Of Section
Secondary Horizontal Braces Leg
Use Diamond Inner Bracing (4 Sided)
SR Members Have Cut Ends
SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
 Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

- ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption Poles
- √ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Job 8556	5.009.01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	Page 2 of 42
Projec	et	Date 15:01:04 09/21/18
Client	Crown Castle	Designed by xjones

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
T 1	ft 100,000,100,00	ft	<u>ft</u>	Sides	8.625	in 8.625	0.313	in	A53-B-35
L1	108.000-103.00 0	5.000	0.000	Round	8.623	8.623	0.515		(35 ksi)
L2	103.000-98.500	4.500	0.000	Round	8.625	8.625	0.313		A53-B-35
	103.000 70.000		0,000	A-1V					(35 ksi)
L3	98.500-98.000	0.500	0.000	Round	16.500	16.500	0.313		A53-B-35
								0.550	(35 ksi)
L4	98.000-93.000	5.000	0.000	18	16.500	17.300	0.188	0.750	A607-65 (65 ksi)
L5	93.000-88.000	5.000	0.000	18	17.300	18.101	0.188	0.750	A607-65
1.5	23.000-80.000	5.000	0.000	10	17.500	10.101	0.100	0.750	(65 ksi)
L6	88.000-83.000	5.000	0.000	18	18.101	18.901	0.188	0.750	À607-65
									(65 ksi)
L7	83.000-82.330	0.670	0.000	18	18.901	19.008	0.188	0.750	A607-65
L8	82.330-82.080	0.250	0.000	18	19.008	19.048	0.325	1.300	(65 ksi) A607-65
Lo	62.330-62.060	0.250	0,000	10	17.000	17.076	0.323	1.500	(65 ksi)
L9	82.080-77.080	5.000	0.000	18	19.048	19.848	0.319	1.275	À607-65
									(65 ksi)
L10	77.080-76.250	0.830	0.000	18	19.848	19.981	0.319	1.275	A607-65
T 11	76.250-76.000	0.250	0.000	18	19.981	20.021	0.456	1.825	(65 ksi) A607-65
L11	76.230-76.000	0.250	0.000	10	17.701	20.021	0,450	1.023	(65 ksi)
L12	76.000-74.500	1.500	0.000	18	20.021	20.261	0.450	1.800	A607-65
									(65 ksi)
L13	74.500-74.250	0.250	0.000	18	20.261	20.301	0.588	2.350	A607-65
T 14	74 260 60 260	5.000	0.000	10	20.201	21.102	0.575	2.300	(65 ksi) A607-65
L14	74.250-69.250	5.000	0.000	18	20.301	21.102	0.575	2.300	(65 ksi)
L15	69.250-64.250	5.000	0.000	18	21.102	21.902	0.550	2.200	A607-65
									(65 ksi)
L16	64.250-59.250	5.000	0.000	18	21.902	22.702	0.544	2.175	A607-65
7.10	50.050.50.000	1 170	0.000	1.0	20.703	22 000	0.527	2.150	(65 ksi) A607 - 65
L17	59.250-58.080	1.170	0.000	18	22.702	22.890	0.537	2.130	(65 ksi)
L18	58.080-57.730	0.350	0.000	18	22.890	22.946	0.713	2.850	A607-65
									(65 ksi)
L19	57.730-57.500	0.230	0.000	18	22.946	22.982	0.713	2.850	A607-65
1.00	57 500 50 500	5.000	0.000	1.0	22.002	22 702	0.688	2.750	(65 ksi) A607-65
L20	57.500-52.500	5.000	0.000	18	22.982	23.783	0.000	2.730	(65 ksi)
L2I	52.500-47.000	5,500	3.250	18	23.783	24.663	0.688	2.750	A607-65
									(65 ksi)
L22	47.000-45.250	5.000	0.000	18	23.768	24.568	0.750	3.000	A607-65
T 22	46 360 40 600	4.750	0.000	18	24.560	25.328	0.725	2.900	(65 ksi) A607-65
L23	45.250-40.500	4.750	0.000	10	24.568	23.320	0.723	2.900	(65 ksi)
L24	40,500-40.250	0.250	0.000	18	25.328	25,368	0.725	2.900	À607-65
									(65 ksi)
L25	40.250-35.250	5.000	0.000	18	25.368	26.168	0.700	2.800	A607-65
100	25 250 20 250	5.000	0.000	18	26.168	26.969	0.688	2.750	(65 ksi) A607-65
L26	35.250-30.250	5.000	0.000	10	20.100	20.707	0.900	2.,20	(65 ksi)
L27	30.250-27.750	2.500	0.000	18	26,969	27.369	0.675	2.700	A607-65
									(65 ksi)
L28	27.750-27.500	0.250	0.000	18	27.369	27.409	0.725	2.900	A607-65
1 20	27.500-22.500	5.000	0.000	18	27.409	28.209	0.700	2.800	(65 ksi) A607 - 65
L29	21.300-22.300	J.WU	0.000	10	41. 4 03	20.207	0.700	2.000	(65 ksi)
L30	22.500-19.500	3.000	0.000	18	28.209	28.689	0.688	2.750	A607-65
									(65 ksi)

Јоь 85565.009.01 - HARTFORD - NU (SSUSA),CT (BU# 87636	3) Page 3 of 42
Project	Date 15:01:04 09/21/18
Client Crown Castle	Designed by xiones

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L31	19.500-19.250	0.250	0.000	18	28.689	28.729	0.800	3.200	A607-65
L32	19.250-14.250	5.000	0.000	18	28.729	29.529	0.775	3.100	(65 ksi) A607-65 (65 ksi)
L33	14.250-14.000	0.250	0.000	18	29.529	29.569	0.775	3.100	A607-65 (65 ksi)
L34	14.000-13.750	0.250	0.000	18	29.569	29.609	0.775	3.100	À607-65
L35	13.750-12.980	0.770	0.000	18	29.609	29.733	0.800	3.200	(65 ksi) A607-65 (65 ksi)
L36	12,980-12,730	0.250	0.000	18	29.733	29.773	0.800	3.200	À607-65
L37	12.730-7.730	5.000	0.000	18	29.773	30.573	0.787	3.150	(65 ksi) A607-65 (65 ksi)
L38	7.730-2.730	5.000	0.000	18	30.573	31.373	0.775	3.100	A607-65 (65 ksi)
L39	2.730-0.000	2.730		18	31.373	31.810	0.762	3.050	A607-65 (65 ksi)

Tai		ed	Pol	le P	ro	nei	rties
ıα	JCI'	Gu			10	PU	11100

Section	Tip Dia.	Area	I	r	C	I/C	J	It/Q	w	w/t
	in	in^2	in⁴	in	in	in ³	in ⁴	in²	in	
L1	8.625	8.161	70.586	2.941	4.313	16.368	141.172	4.078	0.000	0
	8,625	8,161	70.586	2.941	4.313	16.368	141.172	4.078	0.000	0
L2	8.625	8.161	70.586	2.941	4.313	16.368	141.172	4.078	0.000	0 0
	8.625	8.161	70.586	2.941	4.313	16.368	141.172	4.078	0.000	
L3	16.500	15,892	520.728	5.724	8.250	63.119	1041.456	7.941	0.000	0
	16.500	15.892	520.728	5.724	8.250	63.119	1041.456	7.941	0.000	0
L4	16,726	9.708	326.368	5.791	8.382	38.937	653.165	4.855	2.574	13.728
	17.538	10.184	376.798	6.075	8.789	42.874	754.091	5.093	2.715	14.479
L5	17.538	10.184	376.798	6.075	8.789	42.874	754.091	5.093	2.715	14.479
	18.351	10.661	432,172	6.359	9.195	47.000	864.913	5.331	2.856	15.23
L6	18.351	10.661	432.172	6.359	9.195	47.000	864.913	5.331	2.856	15.23
	19.164	11.137	492,723	6.643	9.602	51.316	986.094	5.569	2.997	15.982
L7	19.164	11.137	492,723	6.643	9.602	51.316	986.094	5.569	2.997	15.982
	19.272	11.201	501.242	6.681	9.656	51.909	1003.144	5.601	3.015	16.082
L8	19.251	19,273	849.916	6.633	9.656	88.018	1700.951	9.638	2.773	8.534
	19.292	19.314	855.389	6.647	9.676	88.399	1711.903	9.659	2.780	8.555
L9	19.293	18.949	839.779	6.649	9.676	86.786	1680.664	9.476	2.791	8.758
	20.105	19.758	952.094	6.933	10.083	94.426	1905.442	9.881	2.932	9.199
L10	20.105	19.758	952.094	6.933	10.083	94.426	1905.442	9.881	2.932	9.199
	20.240	19.893	971.656	6.980	10,150	95.725	1944.591	9.948	2.956	9.273
Lll	20.219	28.275	1361.828	6.931	10.150	134.164	2725.448	14.140	2.714	5.948
	20.260	28.333	1370.218	6.946	10.171	134.721	2742,239	14.169	2,721	5.963
L12	20.261	27.954	1352.744	6.948	10.171	133.002	2707.267	13.979	2.732	6.071
	20.505	28.297	1403.141	7.033	10.293	136.323	2808.128	14.151	2.774	6.164
L13	20.483	36.686	1794.000	6.984	10.293	174.297	3590.361	18.347	2.532	4.31
	20.524	36.761	1804.969	6.998	10.313	175.017	3612.313	18.384	2.539	4.322
L14	20.526	36.002	1769.928	7.003	10.313	171.619	3542.184	18.004	2.561	4,454
	21.339	37.462	1994.202	7.287	10.720	186.032	3991.027	18.735	2.702	4.699
L15	21.342	35.877	1914.475	7.296	10.720	178.595	3831.470	17.942	2.746	4.993
2.15	22.155	37.274	2146,949	7.580	11.126	192.963	4296.724	18.641	2.887	5.249
L16	22.156	36.861	2124.417	7.582	11.126	190.938	4251.629	18.434	2.898	5.329
2.0	22.969	38.243	2372,283	7.866	11.533	205,700	4747.687	19.125	3.039	5.588
L17	22.970	37.814	2347.000	7.868	11.533	203,507	4697.088	18.910	3.050	5.674
DI,	,,,,		, , , , , ,							

Јо ь 85565.009.01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	Page 4 of 42
Project	Date 15:01:04 09/21/18
Client Crown Castle	Designed by xjones

Section	Tip Dia.	Area	Ī	r	C	I/C	J	It/Q	w	w/t
	in	in ²	in ⁴	in	in	in³	in⁴	in ²	in	
	23.160	38.133	2406.993	7.935	11.628	207.002	4817.153	19.070	3.083	5.735
L18	23.133	50.153	3116.309	7.873	11.628	268.003	6236.718	25.081	2.775	3.894
	23.190	50.280	3139.984	7.893	11.656	269.380	6284.100	25.145	2.784	3.908
L19	23.190	50.280	3139.984	7.893	11.656	269.380	6284.100	25.145	2.784	3.908
	23.227	50.363	3155.608	7.906	11.675	270.286	6315.367	25.186	2.791	3.917
L20	23.231	48.650	3055.151	7.915	11.675	261.682	6114.321	24.330	2.835	4.123
	24.044	50.397	3396.104	8.199	12.082	281.097	6796.676	25.203	2.976	4.328
L21	24.044	50.397	3396.104	8.199	12.082	281.097	6796.676	25.203	2.976	4.328
	24.937	52.318	3799.444	8.511	12.529	303.257	7603.888	26.164	3.131	4.554
L22	24.547	54.794	3667.732	8.171	12.074	303.770	7340.290	27.402	2.863	3.818
	24.831	56.699	4063.713	8.455	12.481	325.603	8132.772	28.355	3.004	4.005
L23	24,835	54.866	3940.638	8.464	12.481	315.742	7886.461	27.438	3.048	4.204
	25.607	56.616	4329.712	8.734	12.867	336.504	8665.120	28.313	3.182	4.389
L24	25.607	56.616	4329.712	8.734	12.867	336.504	8665.120	28.313	3.182	4.389
	25.648	56.708	4350.870	8.748	12.887	337.615	8707.464	28.359	3.189	4.398
L25	25.652	54.808	4213.638	8.757	12.887	326.966	8432.819	27.409	3.233	4.618
	26.464	56.586	4637.144	9.041	13.294	348.826	9280.391	28.298	3.374	4.819
L26	26.466	55.603	4561.047	9.046	13.294	343.102	9128.096	27.807	3.396	4.939
	27.279	57.349	5004.396	9.330	13.700	365.282	10015.378	28.680	3.536	5.144
L27	27.281	56.333	4920.422	9.334	13.700	359.153	9847.318	28.172	3.558	5.272
	27.687	57.190	5148.478	9.476	13.903	370.305	10303.731	28.600	3.629	5.376
L28	27.679	61.311	5498.831	9.459	13.903	395.504	11004.898	30.662	3.541	4.884
	27.720	61.403	5523.641	9.473	13.924	396.709	11054.551	30.708	3.548	4.894
L29	27.724	59.342	5348.175	9.482	13.924	384.107	10703.387	29.676	3.592	5.131
	28.536	61.120	5843.428	9.766	14.330	407.771	11694.546	30.566	3.733	5.333
L30	28.538	60.055	5746.908	9.770	14.330	401.035	11501.379	30.033	3.755	5.462
	29.026	61.103	6052.962	9.941	14.574	415.324	12113.889	30.557	3.839	5.584
L31	29.008	70.816	6958.894	9.901	14.574	477.484	13926.944	35.415	3.641	4.552
	29.049	70.918	6988.887	9.915	14.594	478.874	13986.970	35.466	3.648	4.56
L32	29.053	68.763	6788.682	9.924	14.594	465.156	13586.297	34.388	3.692	4.764
	29.865	70.731	7388.530	10.208	15.001	492.538	14786.782	35.372	3.833	4.946
L33	29,865	70.731	7388.530	10.208	15.001	492.538	14786.782	35.372	3.833	4.946
	29.906	70.830	7419.416	10.222	15.021	493.928	14848.595	35.422	3.840	4.955
L34	29.906	70.830	7419.416	10.222	15.021	493.928	14848.595	35.422	3.840	4.955
	29.947	70.928	7450.387	10.236	15.042	495.320	14910.577	35.471	3.847	4.964
L35	29.943	73.153	7670.735	10.227	15.042	509.969	15351.564	36.583	3.803	4.754
	30.068	73.466	7769.593	10.271	15.104	514.400	15549.410	36.740	3.825	4.781
L36	30.068	73.466	7769.593	10.271	15.104	514.400	15549.410	36.740	3.825	4.781
	30.109	73.567	7801.872	10.285	15.125	515.843	15614.009	36.791	3.832	4.79
L37	30.110	72.449	7689.912	10.290	15,125	508.441	15389.942	36.231	3.854	4.894
	30.923	74.449	8344.564	10.574	15.531	537.284	16700.107	37.232	3.995	5.073
L38	30.925	73.298	8222.454	10.578	15.531	529.422	16455.727	36.656	4.017	5.183
	31.738	75.267	8902.842	10.862	15.938	558.609	17817.398	37.640	4.158	5.365
L39	31.739	74.083	8769.987	10.867	15.938	550.273	17551.513	37.049	4.180	5.482
	32.183	75.140	9150.907	11.022	16.159	566.287	18313.854	37.577	4.257	5.582

Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A _f	Adjust. Factor A,	Weight Mult.	Stitch Bolt Spacing Diagonals	Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants in
Jt-	in		1	1	1	720		
			1	1	1			
			1	1	1			
			1	1	1			
			1	1	1			
	Area	Area Thickness	Area Thickness (per face)	Area Thickness A_f (per face)	Area Thickness A_f Factor (per face) A_r	Area Thickness A_f Factor (per face) A_r	$Area$ Thickness A_f Factor Stitch Bolt (per face) A_f Spacing Diagonals	Area Thickness A _f Factor Stitch Bolt Stitch Bolt (per face) A _r Spacing Spacing Diagonals Horizontals

Job 85565.	.009.01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	Page 5 of 42
Project		Date 15:01:04 09/21/18
Client	Crown Castle	Designed by xiones

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft ²	in			1		in	in	in
L5 93.000-88.000				1	1	1			
L6 88.000-83.000				1	1	1			
L7 83.000-82.330				1	1	1			
L8 82.330-82.080				1	1	1.03474			
L9 82.080-77.080				I	1	1.03556			
L10 77.080-76.250				1	1	1.03254			
L11 76.250-76.000				1	1	1.15217			
L12 76.000-74.500				1	1	1.1587			
L13 74.500-74.250				1	1	0.971985			
L14 74.250-69.250				1	1	0.966504			
L15 69.250-64.250				1	1	0.984159			
L16 64.250-59.250				1	1	0.971691			
L17 59.250-58.080				1	1	0.977402			
L18 58.080-57.730				1	1	0.932812			
L19 57.730-57.500				1	1	0.931705			
L20 57.500-52.500				1	1	0.940531			
L21 52.500-47.000				1	1	0.930278			
L22 47.000-45.250				1	1	0.928658			
L23 45.250-40.500				1	1	0.940675			
L24 40.500-40.250				1	1	0.939708			
L25 40.250-35.250				1	1	0.952955			
L26 35,250-30.250				1	1	0.951349			
L27				1	1	0.95954			
30.250-27.750 L28				1	1	0.947656			
27.750-27.500 L29				1	1	0.962447			
27.500-22.500 L30				1	1	0.968941			
22.500-19.500 L31				1	1	0.898748			
19.500-19,250 L32				1	1	0.910092			
19.250-14.250 L33				1	1	0.909276			
14.250-14.000 L34				1	1	0.971909			

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Job 85565.009.01 - HARTF	ORD - NU (SSUSA),CT (BU# 876363)	Page 6 of 42
Project		Date 15:01:04 09/21/18
Client	Crown Castle	Designed by xjones

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Factor A _f	Adjust. Factor A,	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft^2	in				in	in	in
14.000-13.750								
L35			1	1	0.967746			
13.750-12.980								
L36			1	1	0.966841			
12.980-12.730								
L37			1	1	0.963917			
12.730-7.730								
L38			1	1	0.961885			
7.730-2.730			_		0.060116			
L39			1	1	0.968116			
2.730-0.000								

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From	Component Type	Placement	Total Number	Number Per Row	Start/End Position	Width or Diameter	Perimeter	Weight
		Torque Calculation		ft				in	in	klf
LDF6-50A(1-1/4) (6E+1P)	A	No	Surface Ar (CaAa)	105.000 - 0.000	7	6	-0.500 -0.200	1.550		0.001
HB158-1-08U8-\$8J18(1-5/8) (E) *\$\$*	A	No	Surface Ar (CaAa)	105.000 - 0.000	1	1	-0.300 -0.200	1.980		0.001
\$\$ ATCB-B01(5/16) (E)	С	No	Surface Ar (CaAa)	81.000 - 0.000	1	1	-0.360 -0.350	0.315		0.000
FXL 780 PE(7/8) (E) *\$\$*	С	No	Surface Ar (CaAa)	81.000 - 0.000	6	3	-0.500 -0.350	1.090		0.000
Safety Line 3/8 (E) *S\$*	В	No	Surface Ar (CaAa)	108.000 - 0.000	1	1	0.000 0.000	0.375		0.000
5.25" x 1.25" Plate (E-VSI Mod)	A	No	Surface Af (CaAa)	29,750 - 0.000	1	1	0.000 0.000	5.250	13.000	0.000
5.25" x 1.25" Plate (E-VSI Mod)	В	No	Surface Af (CaAa)	15.500 - 0.000	2	2	0.200 0.300	5.250	13.000	0.000
5.25" x 1.25" Plate (E-VSI Mod)	В	No	Surface Af (CaAa)	29.750 - 10.250	1	1	0.000 0.000	5.250	13.000	0.000
5.25" x 1.25" Plate (E-VSI Mod) *\$\$*	С	No	Surface Af (CaAa)	29.750 - 0.000	1	1	0.000	5.250	13.000	0.000
4.375" x 1.25" Plate (E-VSI Mod)	A	No	Surface Af (CaAa)	59.500 - 29.750	1	1	0.000 0.000	4.375	11.250	0.000
4.375" x 1.25" Plate (E-VSI Mod)	В	No	Surface Af (CaAa)	59.500 - 29.750	1	1	0.000 0.000	4.375	11.250	0.000
4.375" x 1.25" Plate (E-VSI Mod) *\$\$*	С	No	Surface Af (CaAa)	59.500 - 29.750	1	1	0.000	4.375	11.250	0.000
4.0" x 1.25" Plate (E-VSI Mod)	A	No	Surface Af (CaAa)	78.000 - 59.500	1	1	0.000	4.000	10.500	0.000
4.0" x 1.25" Plate (E-VSI Mod)	В	No	Surface Af (CaAa)	78.000 - 59.500	1	1	0.000	4.000	10.500	0.000
4.0" x 1.25" Plate (E-VSI Mod)	С	No	Surface Af (CaAa)	78.000 - 59.500	1	1	0.000	4.000	10.500	0.000

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Job 85565.009.01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	Page 7 of 42
Project	Date 15:01:04 09/21/18
Client Crown Castle	Designed by Xjones

Description	Sector	Exclude From Torque	Component Type	Placement ft	Total Number	Number Per Row	Start/End Position	Width or Diameter in	Perimeter in	Weight klf
\$\$		Calculation								
MP3-05	Α	No	Surface Af	40.500 -	1	1	0.400	5.330	14.840	0.000
(E-B+T Mod)	A	NO	(CaAa)	0.000	1	1	0.400	3.330	14.040	0,000
MP3-05	В	No	Surface Af	15.500 -	1	1	0.400	5.330	14.840	0.000
(E-B+T Mod)	ע	INO .	(CaAa)	0.000	1	1	0.200	טככיכ	14,840	0.000
MP3-05	В	No	Surface Af	40.500 -	1	1	0.400	5.330	14.840	0.000
(E-B+T Mod)	D	110	(CaAa)	10.500			0.400	3.330	17.070	0.000
MP3-05	C	No	Surface Af	40.500 -	1	1	0.400	5.330	14.840	0.000
(E-B+T Mod) *\$\$*	Ü	110	(CaAa)	0.000		1	0.400	3.330	14.040	0.000
MP3-05	Α	No	Surface Af	60.500 -	1	1	0.400	5.330	14,840	0.000
(E-B+T Mod)	A	110	(CaAa)	40.500	1	1	0.400	2.250	14.040	0.000
MP3-05	В	No	Surface Af	60.500 -	1	1	0.400	5.330	14.840	0.000
(E-B+T Mod)		110	(CaAa)	40.500		1	0.400	5.550	14,040	0.000
MP3-05	С	No	Surface Af	60.500 -	1	1	0.400	5.330	14.840	0.000
(E-B+T Mod)		110	(CaAa)	40.500	•	•	0.400	5,550	11.010	0.000
\$\$			()	70.000			21.100			
MP3-03	Α	No	Surface Af	84.050 -	1	1	0.400	4.060	11.260	0.000
(E-B+T Mod)			(CaAa)	60.500	_	_	0.400			
MP3-03	В	No	Surface Af	84.050 -	1	1	0.400	4.060	11.260	0.000
(E-B+T Mod)			(CaAa)	60.500			0.400			
MP3-03	C	No	Surface Af	84.050 -	1	1	0.400	4.060	11.260	0.000
(E-B+T Mod)			(CaAa)	60.500			0.400			
\$\$			` ,							
CCI 4.5" x 1" Plate	Α	No	Surface Af	15.500 -	1	1	0.000	4.500	11.000	0.000
(E-B+T Mod)			(CaAa)	0.000			0.020			
CCI 4.5" x 1" Plate	В	No	Surface Af	21.000 -	1	1	0.300	4.500	11.000	0.000
(E-B+T Mod) *\$\$*			(CaAa)	11.000			0.320			

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg	Dillotta	Torque Calculation	1,700	fi	11 11111001		ft²/ft	klf
\$\$									
HB114-1-08U4-M5J	В	No	No	Inside Pole	98.000 - 0.000	3	No Ice	0.000	0.001
(1-1/4)							1/2" Ice	0.000	0.001
(E-Sprint)							1" Ice	0.000	0.001
• • •							2" Ice	0.000	0.001
3X4AWG(1-1/4)	В	No	No	Inside Pole	98.000 - 0.000	1	No Ice	0.000	0.001
(R)							1/2" Ice	0.000	0.001
. ,							l" Ice	0.000	0.001
\$\$							2" Ice	0.000	0.001
LDF4-50A(1/2)	В	No	No	Inside Pole	74.000 - 0.000	1	No Ice	0.000	0.000
(E)	_	- 10				-	1/2" Ice	0.000	0.000
()							1" Ice	0.000	0.000
							2" Ice	0.000	0.000
\$\$									

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Job 85565.009.01 - HARTFORD - NU (SSUSA),CT	(BU# 876363) Page 8 of 42
Project	Date 15:01:04 09/21/18
Client Crown Castle	Designed by xjones

Feed Line/Linear Appurtenances Section Areas

Tower	Tower Elevation	Face	A_R	A_F	$C_A A_A$ In Face	$C_A A_A$ Out Face	Weight
Section	Elevation ft		fî²	ft²	ft²	ft ²	K
L1	108.000-103.000	A	0.000	0.000	2.256	0.000	0.011
	******	В	0.000	0.000	0.188	0.000	0.001
		С	0.000	0.000	0.000	0.000	0.000
L2	103.000-98.500	Α	0.000	0.000	5.076	0.000	0.025
		В	0.000	0.000	0.169	0.000	0.001
		C	0.000	0.000	0.000	0.000	0.000
L3	98.500-98.000	Α	0.000	0.000	0.564	0.000	0.003
		В	0.000	0.000	0.019	0.000	0.000
		C	0.000	0.000	0.000	0.000 0.000	0.000 0.028
L4	98.000-93.000	A	0.000	0.000	5.640 0.188	0.000	0.023
		В	0.000	0.000 0.000	0.000	0.000	0.022
	02 000 80 000	C	0.000	0.000	5.640	0.000	0.028
L5	93.000-88.000	A B	0.000 0.000	0.000	0.188	0.000	0.022
		C	0.000	0.000	0.000	0.000	0.000
L6	88.000-83.000	A	0.000	0.000	6.351	0.000	0.028
LO	000.00-000.00	В	0.000	0.000	0.898	0.000	0.022
		Č	0.000	0.000	0.711	0.000	0.000
L7	83.000-82.330	Ä	0.000	0.000	1.209	0.000	0.004
ы	05.000 02.550	В	0.000	0.000	0.478	0.000	0.003
		C	0.000	0.000	0.453	0.000	0.000
L8	82,330-82,080	A	0.000	0.000	0.451	0.000	0.001
		В	0.000	0.000	0.179	0.000	0.001
		C	0.000	0.000	0.169	0.000	0.000
L9	82.080-77.080	Α	0.000	0.000	9.637	0.000	0.028
		В	0.000	0.000	4.184	0.000	0.022
		С	0.000	0.000	5.402	0.000	0.006
L10	77.080-76.250	A	0.000	0.000	2.051	0.000	0.005
		В	0.000	0.000	1.146	0.000	0.004
		C	0.000	0.000	1.413	0.000	0.001 0.001
L11	76.250 - 76.000	A	0.000	0.000	0.618	0.000 0.000	0.001
		В	0.000	0.000	0.345 0.425	0.000	0.001
	56 000 54 500	C	0.000	0.000 0.000	3.707	0.000	0.008
L12	76.000-74.500	A B	0.000 0.000	0.000	2.071	0.000	0.007
		C	0.000	0.000	2.553	0.000	0.002
L13	74.500-74.250	A	0.000	0.000	0.618	0.000	0.001
L13	74.300-74.230	В	0.000	0.000	0.345	0.000	0.001
		č	0.000	0.000	0.425	0.000	0.000
L14	74.250-69.250	Ä	0.000	0.000	12.357	0.000	0.028
LIT	74.230 07.230	В	0.000	0.000	6.904	0.000	0.022
		Ċ	0.000	0.000	8.509	0.000	0.008
L15	69.250-64.250	A	0.000	0.000	12.357	0.000	0.028
		В	0.000	0.000	6.904	0.000	0.022
		C	0.000	0.000	8.509	0.000	0.008
L16	64.250-59.250	Α	0.000	0.000	12.637	0.000	0.028
		В	0.000	0.000	7.184	0.000	0.022
		C	0.000	0.000	8.789	0.000	0.008
L17	59.250-58.080	Α	0.000	0.000	3.212	0.000	0.006
		В	0.000	0.000	1.936	0.000	0.005
		C	0.000	0.000	2.312	0.000	0.002 0.002
L18	58.080-57.730	A	0.000	0.000	0.961	0.000 0.000	0.002
		В	0.000	0.000	0.579		0.002
*	FF F00 55 50°	C	0.000	0.000	0.692	0.000 0.000	0.001
L19	57.730-57.500	A	0.000	0.000	0.631 0.381	0.000	0.001
		В	0.000	0.000	0.381	0.000	0.001
		C	0.000	0.000 0.000	13.728	0.000	0.000
L20	57.500-52.500	Α	0.000				

Јоь 85565.009.01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	Page 9 of 42
Project	Date 15:01:04 09/21/18
Client Crown Castle	Designed by xiones

Tower	Tower	Face	A_R	A_F	C ₄ A ₄ In Face	C _A A _A Out Face	Weight
Section	Elevation ft		ft^2	ft^2	ft ²	ft²	K
		В	0.000	0.000	8.275	0.000	0.022
		C	0.000	0.000	9.880	0.000	800.0
L21	52.500-47.000	Α	0.000	0.000	15.100	0.000	0.030
		В	0.000	0.000	9.102	0.000	0.025
		C	0.000	0.000	10.868	0.000	0.009
L22	47.000-45.250	A	0.000	0.000	4.805	0.000	0.010
		В	0.000	0.000	2.896	0.000 0.000	0.008 0.003
T 02	45 250 40 500	C	0.000	0.000 0.000	3.458 13.041	0.000	0.003
L23	45.250-40.500	A B	0.000 0.000	0.000	7.861	0.000	0.020
		C	0.000	0.000	9.386	0.000	0.007
L24	40.500-40.250	A	0.000	0.000	0.686	0.000	0.001
1.24	40.300-40.230	В	0.000	0.000	0.414	0.000	0.001
		Č	0.000	0.000	0.494	0.000	0.000
L25	40.250-35.250	Å	0.000	0.000	13.728	0.000	0.028
	10.200	В	0.000	0.000	8.275	0.000	0.022
		C	0.000	0.000	9.880	0.000	0.008
L26	35.250-30.250	A	0.000	0.000	13.728	0.000	0.028
		В	0.000	0.000	8.275	0.000	0.022
		C	0.000	0.000	9.880	0.000	0.008
L27	30.250-27.750	A	0.000	0.000	7.155	0.000	0.014
		В	0.000	0.000	4.429	0.000	0.011
		C	0.000	0.000	5.232	0.000	0.004
L28	27.750-27.500	A	0.000	0.000	0.723	0.000	0.001
		В	0.000	0.000	0.450	0.000 0.000	0.001 0.000
7.00	00 500 00 500	C	0.000	0.000 0.000	0.530 14.457	0.000	0.008
L29	27.500-22.500	A B	0.000 0.000	0.000	9.004	0.000	0.023
		C	0.000	0.000	10.609	0.000	0.008
L30	22.500-19.500	A	0.000	0.000	8.674	0.000	0.017
1230	22.500-17.500	В	0.000	0.000	6.527	0.000	0.013
		Č	0.000	0.000	6.365	0.000	0.005
L31	19.500-19.250	Ā	0.000	0.000	0.723	0.000	0.001
		В	0.000	0.000	0.638	0.000	0.001
		C	0.000	0.000	0.530	0.000	0.000
L32	19.250-14.250	Α	0.000	0.000	15.394	0.000	0.028
		В	0.000	0.000	16.052	0.000	0.022
		C	0.000	0.000	10.609	0.000	0.008
L33	14.250-14.000	A	0.000	0.000	0.910	0.000	0.001
		В	0.000	0.000	1.297	0.000	0.001
	14 000 12 550	C	0.000	0.000	0.530	0.000 0.000	0.000 0.001
L34	14.000-13.750	A	0.000	0.000 0.000	0,910 1.297	0.000	0.001
		B C	0.000 0.000	0.000	0.530	0.000	0.001
T 25	13.750-12.980	A	0.000	0.000	2.804	0.000	0.004
L35	13.730-12.980	В	0.000	0.000	3.996	0.000	0.003
		Č	0.000	0.000	1.634	0.000	0.001
L36	12.980-12.730	Ā	0.000	0.000	0.910	0.000	0.001
130	12.500 12.750	B	0.000	0.000	1.297	0.000	0.001
		č	0.000	0.000	0.530	0.000	0.000
L37	12,730-7.730	Ā	0.000	0.000	18.207	0.000	0.028
	-	В	0.000	0.000	18.828	0.000	0.022
		C	0.000	0.000	10.609	0.000	800.0
L38	7.730-2.730	Α	0.000	0.000	18.207	0.000	0.028
		В	0.000	0.000	13.379	0.000	0.022
		C	0.000	0.000	10.609	0.000	0.008
L39	2,730-0.000	A	0.000	0.000	9.941	0.000	0.015
		В	0.000	0.000	7.305	0.000	0.012
		C	0.000	0.000	5.793	0.000	0.004

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Јоь 85565.009.01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	Page 10 of 42
Project	Date 15:01:04 09/21/18
Client Crown Castle	Designed by xjones

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	C_AA_A	CAAA	Weight
Section	Elevation ft	or Leg	Thickness in	ft²	ft²	In Face ft²	Out Face ft²	K
L1	108.000-103.000	A	1.910	0.000	0.000	4.440	0.000	0.077
101	100.000-105.000	В	1,510	0.000	0.000	2.097	0.000	0.028
		č		0.000	0.000	0.000	0.000	0.000
L2	103.000-98.500	A	1.901	0.000	0.000	9.971	0.000	0.173
1.2	103.000-98.300	В	1.501	0.000	0.000	1.879	0.000	0.025
		Č		0.000	0.000	0,000	0.000	0.023
т э	00 500 00 000	A	1 906		0.000		0.000	0.000
L3	98.500-98.000	A	1.896	0.000		1.107		0.019
		В		0.000	0.000	0.208	0.000	0.003
		C		0.000	0.000	0.000	0.000	0.000
L4	98.000-93.000	A	1.891	0.000	0.000	11.056	0.000	0.191
		В		0.000	0.000	2.078	0.000	0.048
		C		0.000	0.000	0.000	0.000	0.000
L5	93.000-88.000	A	1.880	0.000	0.000	11.033	0.000	0.190
		В		0.000	0.000	2.068	0.000	0.048
		C		0.000	0.000	0.000	0.000	0.000
L6	88.000-83.000	Α	1.870	0.000	0.000	12.113	0.000	0.203
		В		0.000	0.000	3.160	0.000	0.061
		C		0.000	0.000	1.103	0.000	0.014
L7	83,000-82,330	Α	1.864	0.000	0.000	2.176	0.000	0.034
		В		0.000	0.000	0.978	0.000	0.015
		C		0.000	0.000	0.703	0.000	0.009
L8	82.330-82.080	Ā	1.862	0.000	0.000	0.812	0.000	0.013
LO	02.550-02.000	В	1.002	0.000	0.000	0.365	0.000	0.006
		Č		0.000	0.000	0.262	0.000	0.003
L9	82.080-77.080	A	1.856	0.000	0.000	17.174	0.000	0.265
Ly	64.U6U-77.U6U	В	1.030	0.000	0.000	8.239	0.000	0.205
		В С						0.123
T 10	55 000 57 050	C	1.050	0.000	0.000	11.195	0.000	
L10	77.080 - 76.250	A	1.850	0.000	0.000	3.549	0.000	0.052
		В		0.000	0.000	2.067	0.000	0.029
		C		0.000	0.000	2.785	0.000	0.038
L11	76.250-76.000	Α	1.848	0.000	0.000	1.069	0.000	0.016
		В		0.000	0.000	0.622	0.000	0.009
		C		0.000	0.000	0.839	0.000	0.012
L12	76.000-74.500	A	1.846	0.000	0.000	6.409	0.000	0.094
		В		0.000	0.000	3.733	0.000	0.053
		C		0.000	0.000	5.029	0.000	0.069
L13	74.500-74.250	A	1.844	0.000	0.000	1.068	0.000	0.016
		В		0.000	0.000	0.622	0.000	0.009
		C		0.000	0.000	0.838	0.000	0.011
L14	74.250-69.250	Ā	1.837	0.000	0.000	21.328	0.000	0.313
LIT	74.230-07.230	В	1.657	0.000	0.000	12.416	0.000	0.175
		č		0.000	0.000	16.726	0.000	0.228
T 16	69.250-64.250	A	1.824	0.000	0.000	21.271	0.000	0.310
L15	09.230-04.230	A.	1.624	0.000		12.376	0.000	0.173
		B C			0.000	16.670		0.173
T.1.0	(4 750 50 070	Ċ	1.010	0.000	0.000		0.000	
L16	64.250-59.250	A	1.810	0.000	0.000	21.491	0.000	0.311
		В		0.000	0.000	12.614	0.000	0.175
		С		0.000	0.000	16.890	0.000	0.227
L17	59.250-58.080	Α	1.801	0.000	0.000	5.275	0.000	0.075
		В		0.000	0.000	3.200	0.000	0.043
		C		0.000	0.000	4.198	0.000	0.056
L18	58.080-57.730	Α	1.798	0.000	0.000	1.577	0.000	0.022
		В		0.000	0.000	0.957	0.000	0.013
		c		0.000	0.000	1.255	0.000	0.017
			1.797	0.000	0.000	1.036	0.000	0.015
L19	<i>57.7</i> 30 <i>-5</i> 7.500	Α	1.191	0.000	0.000	מענט, ג		0.013

Job 85565.009.01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	Page 11 of 42	
Project	Date 15:01:04 09/21/18	
Client Crown Castle	Designed by xjones	

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation ft	or Leg	Thickness in	ft²	ft²	In Face ft²	Out Face ft²	K
		C	ın.	0.000	0.000	0.825	0.000	0.011
L20	57.500-52.500	Ä	1.789	0.000	0.000	22.493	0.000	0.319
1120	57.500 52.500	В	1.705	0.000	0.000	13.642	0.000	0.184
		č		0.000	0.000	17.892	0.000	0.235
L21	52.500-47.000	Ā	1.771	0.000	0.000	24.659	0.000	0.346
	*	В	,-	0.000	0.000	14.947	0.000	0,200
		č		0.000	0.000	19.598	0.000	0.256
L22	47.000-45.250	Ā	1.758	0.000	0.000	7.846	0.000	0.110
		В		0.000	0.000	4.756	0.000	0.064
		C		0.000	0.000	6.236	0.000	0.081
L23	45,250-40,500	A	1.745	0.000	0.000	21,191	0.000	0.294
		В		0.000	0.000	12.835	0.000	0.169
		С		0.000	0.000	16.820	0.000	0.217
L24	40.500-40.250	Α	1.735	0.000	0.000	1.113	0.000	0.015
		В		0.000	0.000	0.674	0.000	0.009
		C		0.000	0.000	0.883	0.000	0.011
L25	40.250-35.250	A	1.723	0.000	0.000	22.213	0.000	0.305
		В		0.000	0.000	13,444	0.000	0.176
		C		0.000	0.000	17.611	0.000	0.224
L26	35.250-30.250	A	1.699	0.000	0.000	22,109	0.000	0.300
		В		0.000	0.000	13.371	0.000	0.173
		C		0.000	0.000	17.508	0.000	0.220
L27	30.250-27.750	A	1.678	0.000	0.000	11,303	0.000	0.150
		В		0.000	0.000	6.946	0.000	0.087
		C		0.000	0.000	9.002	0.000	0.111
L28	27.750-27.500	A	1.670	0.000	0.000	1.136	0.000	0.015
		В		0.000	0.000	0.701	0.000	0.009
		С		0.000	0.000	0.906	0.000	0.011
L29	27.500-22.500	A	1.653	0.000	0.000	22.646	0.000	0.297
		В		0.000	0.000	13.964	0.000	0.173
		C		0.000	0.000	18.045	0.000	0.218
L30	22.500-19.500	A	1.625	0.000	0.000	13.515	0.000	0.175
		В		0.000	0.000	9.725	0.000	0.118
		C		0.000	0.000	10.754	0.000	0.128
L31	19.500-19.250	A	1.612	0.000	0.000	1.123	0.000	0.014
		В		0.000	0.000	0.925	0.000	0.011
		С		0.000	0.000	0.893	0.000	0.011
L32	19.250-14.250	A	1.588	0.000	0.000	23.699	0.000	0.297
		В		0.000	0.000	19.871	0.000	0.256
		C		0.000	0.000	17.769	0.000	0.208
L33	14.250-14.000	A	1.562	0.000	0.000	1.378	0.000	0.016
		В		0.000	0.000	1.207	0.000	0.018
		C		0.000	0.000	0.883	0.000	0.010
L34	14,000-13,750	Α	1.559	0.000	0.000	1.377	0.000	0.016
		В		0.000	0.000	1.207	0.000	0.018
		C		0.000	0.000	0.882	0.000	0.010
L35	13.750-12.980	Α	1.553	0.000	0.000	4.236	0.000	0.050
		В		0.000	0.000	3.713	0.000	0.056
		C		0.000	0.000	2.713	0.000	0.031
L36	12.980-12.730	A	1.547	0.000	0.000	1.374	0.000	0.016
		В		0.000	0.000	1.204	0.000	0.018
		C		0.000	0.000	0.880	0.000	0.010
L37	12.730-7.730	Α	1.512	0.000	0.000	27.300	0.000	0.318
		В		0.000	0.000	14.673	0.000	0.258
		C		0.000	0.000	17.444	0.000	0.195
L38	7.730-2.730	Ā	1,414	0.000	0.000	26.791	0.000	0.295
	****	В	•	0.000	0.000	7.357	0.000	0.173
		C		0.000	0.000	17.026	0.000	0.180
L39	2.730-0.000	Ä	1,236	0.000	0.000	14.118	0.000	0.139
		В		0.000	0.000	3.852	0.000	0.081
		C		0.000	0.000	8.884	0.000	0.084

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Јов 85565.009.01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	Page 12 of 42
Project	Date 15:01:04 09/21/18
Client Crown Castle	Designed by xjones

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	în
L1	108.000-103.000	-2.765	0.433	-1.276	-0.033
L2	103.000-98.500	-4.120	0.702	-2.515	0.261
L3	98.500-98.000	-5.432	0.909	-3.487	0.320
L4	98.000-93.000	-4.995	0.835	-3.514	0.322
L5	93.000-88.000	- 5.076	0.848	-3.597	0.328
L6	88.000-83.000	-4.350	0.726	-3.283	0.298
L7	83.000-82.330	-2.310	0.385	-2.376	0.216
L8	82.330-82.080	-2.316	0.386	-2.383	0.216
L9	82.080-77.080	-1.674	0.680	-1.207	0.839
L10	77.080-76.250	-1.218	0.600	-0.802	0.814
L11	76.250-76.000	-1,221	0.602	-0.805	0.816
L12	76.000-74.500	-1.226	0.604	-0.809	0.820
L13	74.500-74.250	-1,232	0.607	-0.813	0.824
L14	74.250-69.250	-1.247	0.614	-0.825	0.836
L15	69.250-64.250	-1.275	0.629	-0.847	0.859
L16	64.250-59.250	-1.273	0.628	-0.859	0.871
L17	59.250-58.080	-1.186	0.585	-0.834	0.845
L18	58.080-57.730	-1.190	0.588	-0.838	0.848
L19	57.730 - 57.500	-1.191	0.588	-0.839	0.850
L20	57.500-52.500	-1.204	0.595	-0.851	0.860
L21	52.500-47.000	-1.231	0.608	-0.874	0.882
L22	47.000-45.250	-1.237	0.612	-0.878	0.887
L23	45.250-40.500	-1.253	0.620	-0.896	0.899
L24	40.500-40.250	-1.265	0.626	-0.907	0.909
L25	40.250-35.250	-1.278	0.632	-0.919	0.919
L26	35.250-30.250	-1.302	0.644	-0.943	0.938
L27	30.250-27.750	-1.269	0.629	-0.939	0.930
L28	27.750-27.500	-1.263	0.626	-0.940	0.929
L29	27.500-22.500	-1.275	0.632	-0.953	0.938
L30	22.500-19.500	-0.752	0.995	- 0.542	1.240
L31	19.500-19.250	-0.259	1.326	-0.140	1.519
L32	19.250-14.250	0.427	1.461	- 0.056	1.392
L33	14.250-14.000	1.986	1.748	0.152	1.060
L34	14.000-13.750	1.988	1.750	0.152	1.061
L35	13.750-12.980	1.993	1.754	0.152	1.063
L36	12.980-12.730	1.997	1.758	0.152	1.065
L37	12.730-7.730	0.822	1.213	-1.189	0.464
L38	7.730-2.730	-0.294	0.846	-2.470	0.034
L39	2.730-0.000	-0.296	0.858	-2.539	0.018

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L1	2	LDF6-50A(1-1/4)	103.00 -	1.0000	1.0000

Job 85565.009.	01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	Page 13 of 42
Project		Date 15:01:04 09/21/18
Client	Crown Castle	Designed by xjones

					1
Tower	Feed Line	Description	Feed Line	K_a	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
Li	3	IID 150 1 00110 C0110/1 5/0)	105.00 103.00 -	1.0000	1.0000
L1	3	HB158-1-08U8-S8J18(1-5/8)	105.00	1.0000	1.0000
LI	18	Safety Line 3/8	103.00 -	1.0000	1.0000
	10	Safety Bille 5/6	108.00	1.0000	1.0000
L2	2	LDF6-50A(1-1/4)		1.0000	1.0000
L2	3	HB158-1-08U8-S8J18(I-5/8)		1.0000	1.0000
L2	18	Safety Line 3/8		1.0000	1.0000
L3	2	LDF6-50A(1-1/4)	98.00 - 98.50	1.0000	1.0000
L3	3	HB158-1-08U8-S8J18(1-5/8)	98.00 - 98.50	1.0000	1.0000
L3	18	Safety Line 3/8	98.00 - 98.50	1.0000	1.0000
L4	2	LDF6-50A(1-1/4)	93.00 - 98.00	1.0000	1.0000
L4	3	HB158-1-08U8-S8J18(1-5/8)	93.00 - 98.00	1.0000	1.0000
L4	18	Safety Line 3/8	93.00 - 98.00	1.0000	1.0000
L5	2	LDF6-50A(1-1/4)	88.00 - 93.00	1.0000	1.0000
L5	3	HB158-1-08U8-S8J18(1-5/8)	88.00 - 93.00	1.0000	1.0000
L5	18	Safety Line 3/8 LDF6-50A(1-1/4)	88.00 - 93.00	1.0000	1.0000
L6 L6	2	HB158-1-08U8-S8J18(1-5/8)	83.00 - 88.00 83.00 - 88.00	1.0000	1.0000 1.0000
L6	18	Safety Line 3/8	83.00 - 88.00	1.0000	1.0000
L6	42	MP3-03	83.00 - 84.05	1.0000	1.0000
L6	43	MP3-03	83.00 - 84.05	1.0000	1.0000
L6	44	MP3-03	83.00 - 84.05	1.0000	0000.1
L7	2	LDF6-50A(1-1/4)	82.33 - 83.00	1.0000	1.0000
L7	3	HB158-1-08U8-S8J18(1-5/8)	82.33 - 83.00	1.0000	1.0000
L7	18	Safety Line 3/8	82.33 - 83.00	1.0000	1.0000
L7	42	MP3-03	82.33 - 83.00	1.0000	1.0000
L7	43	MP3-03	82.33 - 83.00	1.0000	1.0000
L7	44	MP3-03	82.33 - 83.00	1.0000	1.0000
L8	. 2	LDF6-50A(1-1/4)	82.08 - 82.33	1.0000	1.0000
L8	3	HB158-1-08U8-S8J18(1-5/8)	82.08 - 82.33	1.0000	1.0000
L8	18	Safety Line 3/8	82.08 - 82.33	1.0000	1.0000
L8 L8	42 43	MP3-03 MP3-03	82.08 - 82.33 82.08 - 82.33	1.0000 1.0000	1.0000 1.0000
L8	44	MP3-03	82.08 - 82.33	1.0000	1.0000
L9	2	LDF6-50A(1-1/4)	77.08 - 82.08	1.0000	1.0000
L9	3	HB158-1-08U8-S8J18(1-5/8)	77.08 - 82.08	1.0000	1.0000
L9	13	ATCB-B01(5/16)	77.08 - 81.00	1.0000	1.0000
L9	14	FXL 780 PE(7/8)	77.08 - 81.00	1.0000	1.0000
L9	18	Safety Line 3/8	77.08 - 82.08	1.0000	1.0000
L9	29	4.0" x 1.25" Plate	77.08 - 78.00	1.0000	1.0000
L9	30	4.0" x 1.25" Plate	77.08 - 78.00	1.0000	1.0000
L9	31	4.0" x 1.25" Plate	77.08 - 78.00	1.0000	1.0000
L9	42	MP3-03	77.08 - 82.08	1.0000	1.0000
L9	43	MP3-03	77.08 - 82.08	1.0000	1.0000
L9 L10	44 2	MP3-03	77.08 - 82.08	1.0000 1.0000	1,0000
L10	3,	LDF6-50A(1-1/4) HB158-1-08U8-S8J18(1-5/8)	76.25 - 77.08 76.25 - 77.08	0000.1	1.0000 1.0000
L10	13	ATCB-B01(5/16)	76.25 - 77.08 76.25 - 77.08	1.0000	1.0000
L10	14	FXL 780 PE(7/8)		1.0000	1.0000
L10	18	Safety Line 3/8	76.25 - 77.08	0000.1	1.0000
L10	29	4.0" x 1.25" Plate	76.25 - 77.08	1.0000	1.0000
L10	30	4.0" x 1.25" Plate	76.25 - 77.08	1.0000	1,0000
L10	31	4.0" x 1.25" Plate	76.25 - 77.08	1.0000	1.0000
L10	42	MP3-03	76.25 - 77.08	1.0000	1.0000
L10	43	MP3-03	76.25 - 77.08	0000.1	1.0000
L10	44	MP3-03	76.25 - 77.08	1.0000	1.0000
L11	2	LDF6-50A(1-1/4)	76.00 - 76.25	1.0000	1.0000
Lll	3	HB158-1-08U8-S8J18(1-5/8)	76.00 - 76.25	0000.1	1.0000
L11	13	ATCB-B01(5/16)	76.00 - 76.25	1.0000	1.0000
Lll	14	FXL 780 PE(7/8)		1.0000	1,0000 1.0000
L11	18	Safety Line 3/8	76.00 - 76.25	1.0000	1.0000

	Јоь 85565.009.01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	Page 14 of 42
-	Project	Date 15:01:04 09/21/18
-	Client Crown Castle	Designed by xjones

- m	B. 775 T	Description	Feed Line	Ka	K_a
Tower Section	Feed Line Record No.	Description	Segment Elev.	No Ice	Ice
LII	29	4.0" x 1.25" Plate	76.00 - 76.25	1.0000	1.0000
Lii	30	4.0" x 1.25" Plate	76.00 - 76.25	1.0000	1.0000
L11	31	4.0" x 1.25" Plate	76.00 - 76.25	1.0000	1.0000
L11	42	MP3-03	76.00 - 76.25	1.0000	1.0000
L11	43	MP3-03	76.00 - 76.25	1.0000	1.0000
Lll	44	MP3-03	76.00 - 76.25 74.50 - 76.00	1.0000 1.0000	1.0000 1.0000
LI2	2 3	LDF6-50A(1-1/4) HB158-1-08U8-S8J18(1-5/8)	74.50 - 76.00	1.0000	1.0000
L12 L12	13	ATCB-B01(5/16)	74.50 - 76.00	1.0000	1.0000
L12 L12	14	FXL 780 PE(7/8)	74.50 - 76.00	1.0000	1.0000
L12	18	Safety Line 3/8	74.50 - 76.00	1.0000	1.0000
L12	29	4.0" x 1.25" Plate	74.50 - 76.00	1,0000	1.0000
L12	30	4.0" x 1.25" Plate	74.50 - 76.00	1.0000	1.0000
L12	31	4.0" x 1.25" Plate	74.50 - 76.00	1.0000	1.0000
L12	42	MP3-03	74.50 - 76.00	1.0000	1.0000 1.0000
L12	43	MP3-03	74,50 - 76.00 74.50 - 76.00	1.0000 1.0000	1.0000
L12	44 2	MP3-03 LDF6-50A(1-1/4)	74.25 - 74.50	1.0000	1.0000
L13' L13	3	HB158-1-08U8-S8J18(1-5/8)	74.25 - 74.50	1.0000	1.0000
L13	13	ATCB-B01(5/16)	74.25 - 74.50	1.0000	1.0000
L13	14	FXL 780 PE(7/8)	74.25 - 74.50	1.0000	1,0000
L13	18	Safety Line 3/8	74.25 - 74.50	1.0000	1.0000
L13	29	4.0" x 1.25" Plate	74.25 - 74.50	1.0000	1.0000
L13	30	4.0" x 1.25" Plate	74.25 - 74.50	1.0000	1.0000
L13	31	4.0" x 1.25" Plate	74.25 - 74.50	1.0000	1.0000
L13	42	MP3-03	74.25 - 74.50	1,0000	1,0000 1,0000
L13	43	MP3-03 MP3-03	74.25 - 74.50 74.25 - 74.50	1.0000 1.0000	1.0000
L13	44	LDF6-50A(1-1/4)	69.25 - 74.25	1,0000	1.0000
L14 L14	2 3	HB158-1-08U8-S8J18(1-5/8)	69.25 - 74.25	1.0000	1.0000
LI4	13	ATCB-B01(5/16)	69.25 - 74.25	1.0000	1.0000
L14	14	FXL 780 PE(7/8)	69.25 - 74.25	1.0000	1.0000
L14	18	Safety Line 3/8	69.25 - 74.25	1.0000	1.0000
L14	29	4.0" x 1,25" Plate	69.25 - 74.25	1.0000	1.0000
L14	30	4.0" x 1.25" Plate	69.25 - 74.25	1.0000	
L14		4.0" x 1.25" Plate	69.25 - 74.25	1.0000	1,0000 1,0000
L14	42	MP3-03 MP3-03	69.25 - 74.25 69.25 - 74.25	1.0000 1.0000	
L14	43 44	MP3-03	69.25 - 74.25	1.0000	
L14 L15	1	LDF6-50A(1-1/4)		1.0000	
L15	1	HB158-1-08U8-S8J18(1-5/8)		1.0000	
L15		ATCB-B01(5/16)	64.25 - 69.25	1.0000	1.0000
L15		FXL 780 PE(7/8)	64.25 - 69.25	1.0000	
L15	18	Safety Line 3/8	64.25 - 69.25	1,0000	
L15				1.0000	
L15		4.0" x 1.25" Plate		1,0000 1,0000	
L15				1,0000	
L15					
L15					
L15				1.0000	
L16	1	` ,			1.0000
L16		1	59.25 - 64.25	1.0000	
L16	14	FXL 780 PE(7/8)			
L16	18				
L16					
Lie					
Lle					
L16			1		1
L16		1			
Lit		: ▮		1	
• Lik	1		•	•	

Job 85565.009.0	1 - HARTFORD - NU (SSUSA),CT (BU# 876363)	Page 15 of 42
Project		Date 15:01:04 09/21/18
Client	Crown Castle	Designed by xjones

Tanan	Food Line	Description	Feed Line	K_a	K_a
Tower Section	Feed Line Record No.	Description	Segment Elev.	No Ice	Ice
L16	39	MP3-05	59.25 - 60.50	1.0000	1.0000
L16	40	MP3-05	59.25 - 60.50	1.0000	1.0000
L16	42	MP3-03	60.50 - 64.25	1.0000	1.0000
L16	43	MP3-03	60.50 - 64.25	1.0000	1.0000
L16	44	MP3-03	60.50 - 64.25	1.0000	1.0000
L17	2	LDF6-50A(1-1/4)	58.08 - 59.25	1.0000	1.0000
L17	3	HB158-1-08U8-S8J18(1-5/8)	58.08 - 59.25	1.0000	1.0000 1.0000
L17	13 14	ATCB-B01(5/16) FXL 780 PE(7/8)	58.08 - 59.25 58.08 - 59.25	1.0000 1.0000	1.0000
L17 L17	18	Safety Line 3/8	58.08 - 59.25	1.0000	1.0000
L17	25	4.375" x 1.25" Plate	58.08 - 59.25	1.0000	1.0000
L17	26	4.375" x 1.25" Plate	58.08 - 59.25	1.0000	1.0000
L17	27	4.375" x 1.25" Plate	58.08 - 59.25	1.0000	1,0000
L17	38	MP3-05	58.08 - 59.25	1.0000	1.0000
L17	39	MP3-05	58.08 - 59.25	1.0000	1.0000
L17	40	MP3-05	58.08 - 59.25	1.0000	1.0000
L18	2	LDF6-50A(1-1/4)	57.73 - 58.08	1.0000	1.0000
L18	3	HB158-1-08U8-S8J18(1-5/8)	57.73 - 58.08	1.0000	1.0000
L18	13	ATCB-B01(5/16)	57.73 - 58.08	1.0000	1.0000
L18	14	FXL 780 PE(7/8)	57.73 - 58.08	1.0000	1.0000
L18	. 18	Safety Line 3/8	57.73 - 58.08	1.0000 1.0000	1.0000 1.0000
L18	25	4.375" x 1.25" Plate 4.375" x 1.25" Plate	57.73 - 58.08 57.73 - 58.08	1.0000	1.0000
L18 L18	26 27	4.375" x 1.25" Plate	57.73 - 58.08 57.73 - 58.08	1.0000	1.0000
L18	38	4.575 X 1.25 1 late MP3-05	57.73 - 58.08	1.0000	1.0000
L18	39	MP3-05	57.73 - 58.08	1.0000	
L18	40	MP3-05	57.73 - 58.08	1.0000	1
L19	2	LDF6-50A(1-1/4)		1.0000	
L19	3	HB158-1-08U8-S8J18(1-5/8)		1,0000	1.0000
L19	13	ATCB-B01(5/16)	57.50 - 57.73	1.0000	1.0000
L19	14	FXL 780 PE(7/8)	57.50 - 57.73	1.0000	
L19	18	Safety Line 3/8	57.50 - 57.73	1.0000	
L19	25	4.375" x 1.25" Plate	57.50 - 57.73	1.0000	
L19	26	4.375" x 1.25" Plate		1,0000	
L19	27	4.375" x 1.25" Plate		1.0000 1.0000	1.0000 1.0000
L19	38 39	MP3-05 MP3-05		1.0000	
L19 L19	40	MP3-05		1.0000	li i
L20	2	LDF6-50A(1-1/4)		1.0000	
L20	3	HB158-1-08U8-S8J18(1-5/8)	1	1.0000	
L20		ATCB-B01(5/16)	h .	1.0000	1.0000
L20		FXL 780 PÈ(7/8)	52.50 - 57.50	1.0000	
L20	18	Safety Line 3/8		1.0000	
L20	25	4.375" x 1.25" Plate		1,0000	
L20	26	4.375" x 1.25" Plate		1.0000	
L20	27	4.375" x 1.25" Plate		1,0000 1,0000	
L20				1.0000	
L20	1				
L20 L21	2			1.0000	
L21 L21			47.00 - 52.50	1.0000	
L21	13			1.0000	i .
L21			47.00 - 52.50	1.0000	
L21		Safety Line 3/8	47.00 - 52.50	1.0000	
L21		4,375" x 1.25" Plate	47.00 - 52.50	1.0000	
L21	26			1.0000	
L21				1.0000	
L21					
L21				1.0000	
L21				1.0000	
L23				1.0000	
L23	ا ا	/6/6-1/01106-6000-1-0C1du	/ 40.30 - 43.23	1.0000	1.0000

Job 85565.009.	01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	Page 16 of 42
Project		Date 15:01:04 09/21/18
Client	Crown Castle	Designed by xjones

Tower	Feed Line	Description	Feed Line	K _a	K _a
Section	Record No.	ATCD D01(5/16)	Segment Elev. 40.50 - 45.25	No Ice	Ice 1.0000
L23	13	ATCB-B01(5/16) FXL 780 PE(7/8)	40.50 - 45.25	1.0000	1.0000
L23 L23	14 18	Safety Line 3/8	40.50 - 45.25	1.0000	1.0000
L23	25	4.375" x 1.25" Plate	40.50 - 45.25	1.0000	1.0000
L23	26	4.375" x 1.25" Plate	40.50 - 45.25	1.0000	1,0000
L23	27	4.375" x 1.25" Plate	40.50 - 45.25	1.0000	1.0000
L23	38	MP3-05	40.50 - 45.25	1.0000	1.0000
L23	39	MP3-05	40.50 - 45.25	1.0000	1.0000
L23	40	MP3-05	40.50 - 45.25	1.0000	1.0000
L24	2	LDF6-50A(1-1/4)	40.25 - 40.50	1.0000	1.0000
L24	3	HB158-1-08U8-S8J18(1-5/8)	40.25 - 40.50	1.0000	1.0000
L24	13	ATCB-B01(5/16)	40.25 - 40.50	1.0000	1.0000
L24	14	FXL 780 PE(7/8)	40.25 - 40.50	1.0000	1.0000
L24	18	Safety Line 3/8	40.25 - 40.50	1.0000 1.0000	1.0000 1.0000
L24	25	4.375" x 1.25" Plate	40.25 - 40.50 40.25 - 40.50	1,0000	1.0000
L24	26	4.375" x 1.25" Plate 4.375" x 1.25" Plate	40.25 - 40.50	1.0000	1.0000
L24 L24	27 33	MP3-05	40.25 - 40.50	1.0000	1.0000
L24 L24	35	MP3-05	40.25 - 40.50	1.0000	1.0000
L24 L24	36	MP3-05	40.25 - 40.50	1.0000	1.0000
L25	2	LDF6-50A(1-1/4)	35.25 - 40.25	0000.1	1.0000
L25	3	HB158-1-08U8-S8J18(1-5/8)	35.25 - 40.25	1.0000	1.0000
L25	13	ATCB-B01(5/16)	35.25 - 40.25	1.0000	1.0000
L25	14	FXL 780 PÈ(7/8)	35.25 - 40.25	1.0000	1.0000
L25	18	Safety Line 3/8	35.25 - 40.25	1.0000	1.0000
L25	25	4.375" x 1.25" Plate	35.25 - 40.25	1.0000	1.0000
L25	2.6	4.375" x 1.25" Plate	35.25 - 40.25	1.0000	1.0000
L25	27	4.375" x 1.25" Plate	35.25 - 40.25	1.0000	1.0000
L25	33	MP3-05	35.25 - 40.25	1.0000	1.0000
L25	35	MP3-05		1.0000	1.0000
L25	36	MP3-05		1,0000 1,0000	1,0000 1,0000
L26	2	LDF6-50A(1-1/4)	30.25 - 35.25 30.25 - 35.25	1.0000	1.0000
L26	3 13	HB158-1-08U8-S8J18(1-5/8) ATCB-B01(5/16)		1.0000	1.0000
L26 L26		FXL 780 PE(7/8)		1.0000	1.0000
L26		Safety Line 3/8		1.0000	1.0000
L26		4.375" x 1.25" Plate	30.25 - 35.25	1.0000	1.0000
L26		4.375" x 1.25" Plate	30.25 - 35.25	1.0000	1.0000
L26		4,375" x 1.25" Plate	30.25 - 35.25	1.0000	1.0000
L26		MP3-05	30.25 - 35.25	1,0000	1.0000
L26	35	MP3-05		1.0000	1.0000
L26		MP3-05		1.0000	
L27		LDF6-50A(1-1/4)		1.0000	1.0000
L27		HB158-1-08U8-S8J18(1-5/8)	1	1.0000	1.0000
L27		ATCB-B01(5/16)	1	1,0000	1,0000 1,0000
L27		FXL 780 PE(7/8)		1.0000 1.0000	
L27		Safety Line 3/8 5.25" x 1.25" Plate	1	1.0000	
L27		5.25" x 1.25" Plate		1.0000	
L27 L27	1	5.25" x 1.25" Plate	27.75 - 29.75	1,0000	
L27		4.375" x 1.25" Plate		1.0000	
L27		4.375" x 1.25" Plate		1.0000	
L27		4.375" x 1.25" Plate		1.0000	
L27		MP3-05		1.0000	1.0000
L27		MP3-05	27.75 - 30.25	1.0000	
L27		MP3-05		1.0000	
L28		LDF6-50A(1-1/4)		1.0000	
L28		HB158-1-08U8-S8J18(1-5/8)			
L28		ATCB-B01(5/16)			
L28					
L28		Safety Line 3/8			
L28	3 20	5.25" x 1.25" Plate	g 27.50 - 27.75	1.0000	1.0000

Јоь 85565.009.01 - HARTFORD - NU (SSUSA),СТ (ВU# 876363)	Page 17 of 42
Project	Date 15:01:04 09/21/18
Client Crown Castle	Designed by xjones

· - 1				77	7/
Tower	Feed Line Description		Feed Line	K _a	K _a Ice
Section L28	Record No. 22	5.25" x 1.25" Plate	Segment Elev. 27.50 - 27.75	No Ice 1,0000	1.0000
L28	23	5.25" x 1.25" Plate	27.50 - 27.75	1.0000	1.0000
L28	33	MP3-05	27.50 - 27.75	1,0000	1.0000
L28	35	MP3-05	27.50 - 27.75	1.0000	1,0000
L28	36	MP3-05	27.50 - 27.75	1.0000	1.0000
L29	2	LDF6-50A(1-1/4)	22.50 - 27.50	1.0000	1.0000
L29	3	HB158-1-08U8-S8J18(1-5/8)	22.50 - 27.50	1.0000	1.0000
L29	13	ATCB-B01(5/16)	22.50 - 27.50	1.0000	1.0000
L29	14	FXL 780 PE(7/8)	22.50 - 27.50	1,0000	1.0000
L29	18	Safety Line 3/8	22.50 - 27.50	1.0000	1.0000
L29	20	5.25" x 1.25" Plate	22.50 - 27.50	1.0000	1.0000
L29	22	5.25" x 1.25" Plate	22.50 - 27.50	1.0000	1.0000
L29	23	5.25" x 1.25" Plate	22.50 - 27.50	1.0000	1,0000
L29	33	MP3-05	22.50 - 27.50	1.0000	1.0000
L29	35	MP3-05	22.50 - 27.50	1.0000	1.0000 1.0000
L29	36	MP3-05 LDF6-50A(1-1/4)	22.50 - 27.50 19.50 - 22.50	1.0000 1.0000	1.0000
L30 L30	2	HB158-1-08U8-S8J18(1-5/8)	19.50 - 22.50	1.0000	1.0000
L30	13	ATCB-B01(5/16)	19.50 - 22.50	1.0000	1.0000
L30	14	FXL 780 PE(7/8)	19.50 - 22.50	1.0000	1.0000
L30	18	Safety Line 3/8	19.50 - 22.50	1,0000	1.0000
L30	20	5.25" x 1.25" Plate	19,50 - 22.50	1.0000	1.0000
L30	22	5.25" x 1.25" Plate	19.50 - 22.50	1.0000	1.0000
L30	23	5.25" x 1.25" Plate	19.50 - 22.50	1.0000	1.0000
L30	33	MP3-05	19.50 - 22.50	1.0000	1.0000
L30	35	MP3-05	19.50 - 22.50	1.0000	1.0000
L30	36	MP3-05	19.50 - 22.50	1.0000	1.0000
L30	47	CCI 4.5" x 1" Plate	19.50 - 21.00	1.0000	1.0000
L31	2	LDF6-50A(1-1/4)	19.25 - 19.50	1.0000	1.0000
L31	3	HB158-1-08U8-\$8J18(1-5/8)	19.25 - 19.50	1.0000	1.0000
L31	13	ATCB-B01(5/16)	19.25 - 19.50	1.0000 1.0000	1.0000 1.0000
L31 L31	14 18	FXL 780 PE(7/8) Safety Line 3/8	19.25 - 19.50 19.25 - 19.50	1.0000	1.0000
L31	20	5.25" x 1.25" Plate	19.25 - 19.50	1.0000	1.0000
L31	22	5.25" x 1.25" Plate	19.25 - 19.50	1.0000	1,0000
L31	23	5.25" x 1.25" Plate	19.25 - 19.50	1,0000	1.0000
L31	33	MP3-05	19.25 - 19.50	1.0000	1.0000
L31	35	MP3-05	19.25 - 19.50	1.0000	1.0000
L31	36	MP3-05	19.25 - 19.50	1.0000	1.0000
L31	47	CCI 4.5" x 1" Plate	19.25 - 19.50	1.0000	1.0000
L32	2	LDF6-50A(1-1/4)	14.25 - 19.25	1.0000	1.0000
L32	3	HB158-1-08U8-S8J18(1-5/8)	14.25 - 19.25	1.0000	1,0000
L32	13	ATCB-B01(5/16)	14.25 - 19.25	1,0000	1.0000
L32	14	FXL 780 PE(7/8)	14.25 - 19.25	1.0000	1.0000
L32	18	Safety Line 3/8 5.25" x 1.25" Plate	14.25 - 19.25	1.0000 1.0000	1.0000 1.0000
L32 L32	20 21	5.25" x 1.25" Plate 5.25" x 1.25" Plate	14.25 - 19.25 14.25 - 15.50	1.0000	1,0000
L32 L32	21	5.25" x 1.25" Plate		1.0000	
L32	23	5.25" x 1.25" Plate	14.25 - 19.25	1.0000	
L32	33	MP3-05	14.25 - 19.25	1.0000	
L32	34	MP3-05	14.25 - 15.50	1.0000	
L32	35	MP3-05	14.25 - 19.25	1.0000	
L32	36	MP3-05	14.25 - 19.25	1.0000	
L32	46	CCI 4.5" x 1" Plate	14.25 - 15.50	1.0000	
L32	47	CCI 4.5" x 1" Plate	14.25 - 19.25	1.0000	
L33	2	LDF6-50A(1-1/4)		1.0000	
L33	3	HB158-1-08U8-S8J18(1-5/8)		1.0000	1.0000
L33	13	ATCB-B01(5/16)		1.0000	1.0000
L33	14	FXL 780 PE(7/8)	14.00 - 14.25	1.0000	1.0000
L33	18	Safety Line 3/8	14.00 - 14.25 14.00 - 14.25	1.0000	1.0000 1.0000
L33	20	5.25" x 1.25" Plate 5.25" x 1.25" Plate		1,0000 1,0000	
L33	21	3.25" X 1.25" Plate	14.00 - 14.23	1.0000	1.0000

Јоь 85565.009.01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	Page 18 of 42
Project	Date 15:01:04 09/21/18
Client Crown Castle	Designed by xjones

Section Record No. Segment Rev. No. Ice Ice Loc						
L33		Feed Line	Description	Feed Line	K_a	Ka
1.33			5 25 H 1 25 H D1-4-			
L33						
1.33				:		
L33						
L33						
L33				14.00 - 14.25	1.0000	1.0000
L34		46	CCI 4.5" x 1" Plate	14.00 - 14.25	1.0000	1.0000
L34						
1.34			, ,			
Table Tabl						
1.34			` '		,	
1.34						
134			3			
L34						
L34						
1.34						
1.34						
1.34			MP3-05	13.75 - 14.00	1.0000	1.0000
L34		35	MP3-05	13.75 - 14.00	1.0000	1,0000
L34	L34	36	MP3-05	13.75 - 14.00	1.0000	
L35						
L35						
L35			` '			
L35			, ,			
L35			, ,	i 1		
L35			, ,			
L35						
L35						
L35				I		
L35						
L35				I		
1.35				12.98 - 13.75	1,0000	1.0000
1.0000	L35	35	MP3-05	12.98 - 13.75		
1.35	L35					
L36						
L36 3 HB158-1-08U8-S8J18(1-5/8) 12.73 - 12.98 1.0000 1.0000 L36 13 ATCB-B01(5/16) 12.73 - 12.98 1.0000 1.0000 L36 14 FXL 780 PE(7/8) 12.73 - 12.98 1.0000 1.0000 L36 18 Safety Line 3/8 12.73 - 12.98 1.0000 1.0000 L36 20 5.25" x 1.25" Plate 12.73 - 12.98 1.0000 1.0000 L36 21 5.25" x 1.25" Plate 12.73 - 12.98 1.0000 1.0000 L36 22 5.25" x 1.25" Plate 12.73 - 12.98 1.0000 1.0000 L36 23 5.25" x 1.25" Plate 12.73 - 12.98 1.0000 1.0000 L36 33 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 34 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 35 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 36 MP3-05 12.73 - 12.98 1.0000 1.0000						
L36 13 ATCB-B01(5/16) 12.73 - 12.98 1.0000 1.0000 L36 14 FXL 780 PE(7/8) 12.73 - 12.98 1.0000 1.0000 L36 18 Safety Line 3/8 12.73 - 12.98 1.0000 1.0000 L36 20 5.25" x 1.25" Plate 12.73 - 12.98 1.0000 1.0000 L36 21 5.25" x 1.25" Plate 12.73 - 12.98 1.0000 1.0000 L36 22 5.25" x 1.25" Plate 12.73 - 12.98 1.0000 1.0000 L36 33 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 34 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 35 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 36 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 36 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 36 CCI 4.5" x 1" Plate 12.73 - 12.98 1.0000 1.0000			, ,			
L36 14 FXL 780 PE(7/8) 12.73 - 12.98 1.0000 1.0000 L36 18 Safety Line 3/8 12.73 - 12.98 1.0000 1.0000 L36 20 5.25" x 1.25" Plate 12.73 - 12.98 1.0000 1.0000 L36 21 5.25" x 1.25" Plate 12.73 - 12.98 1.0000 1.0000 L36 22 5.25" x 1.25" Plate 12.73 - 12.98 1.0000 1.0000 L36 33 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 34 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 35 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 35 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 36 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 46 CCI 4.5" x 1" Plate 12.73 - 12.98 1.0000 1.0000 L37 2 LDF6-50A(1-1/4) 7.73 - 12.73 1.0000 1.0000						
L36 18 Safety Line 3/8 12.73 - 12.98 1.0000 1.0000 L36 20 5.25" x i.25" Plate 12.73 - 12.98 1.0000 1.0000 L36 21 5.25" x i.25" Plate 12.73 - 12.98 1.0000 1.0000 L36 22 5.25" x i.25" Plate 12.73 - 12.98 1.0000 1.0000 L36 33 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 34 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 35 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 36 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 36 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 46 CCI 4.5" x 1" Plate 12.73 - 12.98 1.0000 1.0000 L37 2 LDF6-50A(1-1/4) 7.73 - 12.73 1.0000 1.0000 L37 13 ATCB-B01(5/16) 7.73 - 12.73 1.0000 1.0000						
L36 20 5.25" x i.25" Plate 12.73 - 12.98 1.0000 1.0000 L36 21 5.25" x i.25" Plate 12.73 - 12.98 1.0000 1.0000 L36 22 5.25" x i.25" Plate 12.73 - 12.98 1.0000 1.0000 L36 33 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 34 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 35 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 36 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 36 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 36 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 46 CCI 4.5" x 1" Plate 12.73 - 12.98 1.0000 1.0000 L37 2 LDF6-50A(1-1/4) 7.73 - 12.73 1.0000 1.0000 L37 13 ATCB-B01(5/16) 7.73 - 12.73 1.0000 1.0000 L						
L36 21 5.25" x 1.25" Plate 12.73 - 12.98 1.0000 1.0000 L36 22 5.25" x 1.25" Plate 12.73 - 12.98 1.0000 1.0000 L36 23 5.25" x 1.25" Plate 12.73 - 12.98 1.0000 1.0000 L36 34 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 35 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 36 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 46 CCI 4.5" x 1" Plate 12.73 - 12.98 1.0000 1.0000 L36 47 CCI 4.5" x 1" Plate 12.73 - 12.98 1.0000 1.0000 L37 2 LDF6-50A(1-1/4) 7.73 - 12.73 1.0000 1.0000 L37 3 HB158-1-08U8-88J18(1-5/8) 7.73 - 12.73 1.0000 1.0000 L37 14 FXL 780 PE(7/8) 7.73 - 12.73 1.0000 1.0000 L37 18 Safety Line 3/8 7.73 - 12.73 1.0000 1.000						
L36 22 5.25" x 1.25" Plate 12.73 - 12.98 1.0000 1.0000 L36 23 5.25" x 1.25" Plate 12.73 - 12.98 1.0000 1.0000 L36 34 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 35 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 36 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 46 CCI 4.5" x 1" Plate 12.73 - 12.98 1.0000 1.0000 L36 47 CCI 4.5" x 1" Plate 12.73 - 12.98 1.0000 1.0000 L37 2 LDF6-50A(1-1/4) 7.73 - 12.73 1.0000 1.0000 L37 3 HB158-1-08U8-88J18(1-5/8) 7.73 - 12.73 1.0000 1.0000 L37 13 ATCB-B01(5/16) 7.73 - 12.73 1.0000 1.0000 L37 18 Safety Line 3/8 7.73 - 12.73 1.0000 1.0000 L37 20 5.25" x 1.25" Plate 7.73 - 12.73 1.0000 1.0000 L37 21 5.25" x 1.25" Plate 7.73 - 12.73						
L36 23 5.25" x 1.25" Plate 12.73 - 12.98 1.0000 1.0000 L36 33 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 34 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 35 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 36 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 46 CCI 4.5" x 1" Plate 12.73 - 12.98 1.0000 1.0000 L36 47 CCI 4.5" x 1" Plate 12.73 - 12.98 1.0000 1.0000 L37 2 LDF6-50A(1-1/4) 7.73 - 12.73 1.0000 1.0000 L37 3 HB158-1-08U8-S8J18(1-5/8) 7.73 - 12.73 1.0000 1.0000 L37 14 FXL 780 PE(7/8) 7.73 - 12.73 1.0000 1.0000 L37 18 Safety Line 3/8 7.73 - 12.73 1.0000 1.0000 L37 20 5.25" x 1.25" Plate 7.73 - 12.73 1.0000 1.0000 <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.0000</td>						1.0000
L36 33 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 34 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 35 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 36 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 46 CCI 4.5" x 1" Plate 12.73 - 12.98 1.0000 1.0000 L36 47 CCI 4.5" x 1" Plate 12.73 - 12.98 1.0000 1.0000 L37 2 LDF6-50A(1-1/4) 7.73 - 12.73 1.0000 1.0000 L37 3 HB158-1-08U8-S8J18(1-5/8) 7.73 - 12.73 1.0000 1.0000 L37 13 ATCB-B01(5/16) 7.73 - 12.73 1.0000 1.0000 L37 14 FXL 780 PE(7/8) 7.73 - 12.73 1.0000 1.0000 L37 20 5.25" x 1.25" Plate 7.73 - 12.73 1.0000 1.0000 L37 21 5.25" x 1.25" Plate 7.73 - 12.73 1.0000 1.0000 L37 21 5.25" x 1.25" Plate 7.73 - 12.73 1.0000	L36	23		12.73 - 12.98	1.0000	
L36 35 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 36 MP3-05 12.73 - 12.98 1.0000 1.0000 L36 46 CCI 4.5" x 1" Plate 12.73 - 12.98 1.0000 1.0000 L36 47 CCI 4.5" x 1" Plate 12.73 - 12.98 1.0000 1.0000 L37 2 LDF6-50A(1-1/4) 7.73 - 12.73 1.0000 1.0000 L37 3 HB158-1-08U8-S8J18(1-5/8) 7.73 - 12.73 1.0000 1.0000 L37 13 ATCB-B01(5/16) 7.73 - 12.73 1.0000 1.0000 L37 14 FXL 780 PE(7/8) 7.73 - 12.73 1.0000 1.0000 L37 18 Safety Line 3/8 7.73 - 12.73 1.0000 1.0000 L37 20 5.25" x 1.25" Plate 7.73 - 12.73 1.0000 1.0000 L37 21 5.25" x 1.25" Plate 7.73 - 12.73 1.0000 1.0000 L37 22 5.25" x 1.25" Plate 7.73 - 12.73 1.0000 1	L36	33				
L36						
L36						
L36 47 CCI 4.5" x 1" Plate LDF6-50A(1-1/4) 7.73 - 12.73 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000				1	1	
L37 2 LDF6-50A(1-1/4) 7.73 - 12.73 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000						
L37 3 HB158-1-08U8-S8J18(1-5/8) 7.73 - 12.73 1.0000 1.0000 L37 13 ATCB-B01(5/16) 7.73 - 12.73 1.0000 1.0000 L37 14 FXL 780 PE(7/8) 7.73 - 12.73 1.0000 1.0000 L37 18 Safety Line 3/8 7.73 - 12.73 1.0000 1.0000 L37 20 5.25" x 1.25" Plate 7.73 - 12.73 1.0000 1.0000 L37 21 5.25" x 1.25" Plate 7.73 - 12.73 1.0000 1.0000 L37 22 5.25" x 1.25" Plate 7.73 - 12.73 1.0000 1.0000 L37 22 5.25" x 1.25" Plate 7.73 - 12.73 1.0000 1.0000						
L37						
L37 14 FXL 780 PE(7/8) 7.73 - 12.73 1.0000 1.0000 1.0000 1.37 18 Safety Line 3/8 7.73 - 12.73 1.0000 1.0000 1.0000 1.37 20 5.25" x 1.25" Plate 7.73 - 12.73 1.0000 1.0000 1.0000 1.37 21 5.25" x 1.25" Plate 7.73 - 12.73 1.0000 1.0000 1.37 22 5.25" x 1.25" Plate 10.25 - 12.73 1.0000 1.0000 1.0000			. ,			
L37 18 Safety Line 3/8 7.73 - 12.73 1.0000 1.0000 L37 20 5.25" x 1.25" Plate 7.73 - 12.73 1.0000 1.0000 L37 21 5.25" x 1.25" Plate 7.73 - 12.73 1.0000 1.0000 L37 22 5.25" x 1.25" Plate 10.25 - 12.73 1.0000 1.0000						
L37 20 5.25" x 1.25" Plate 7.73 - 12.73 1.0000 1.0000 L37 21 5.25" x 1.25" Plate 7.73 - 12.73 1.0000 1.0000 L37 22 5.25" x 1.25" Plate 10.25 - 12.73 1.0000 1.0000						
L37 21 5.25" x 1.25" Plate 7.73 - 12.73 1.0000 1.0000 L37 22 5.25" x 1.25" Plate 10.25 - 12.73 1.0000 1.0000						
L37 22 5.25" x 1.25" Plate 10.25 - 12.73 1.0000 1.0000						
				10.25 - 12.73	1.0000	1.0000
		23	5.25" x 1.25" Plate	7.73 - 12.73	1.0000	1.0000

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Јов 85565.009.01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	Page 19 of 42
Project	Date 15:01:04 09/21/18
Client Crown Castle	Designed by xjones

Tower	Feed Line	Description	Feed Line	K_a	K _a
Section	Record No.	_	Segment Elev.	No Ice	Ice
L37	33	MP3-05	7.73 - 12.73	1.0000	1.0000
L37	34	MP3-05	7.73 - 12.73	1.0000	1.0000
L37	35	MP3-05	10.50 - 12.73	1.0000	1.0000
L37	36	MP3-05	7.73 - 12.73	1.0000	1.0000
L37	46	CCI 4.5" x 1" Plate	7.73 - 12.73	1.0000	1.0000
L37	47	CCI 4.5" x 1" Plate	11.00 - 12.73	1.0000	1.0000
L38	2	LDF6-50A(1-1/4)	2.73 - 7.73	1.0000	1.0000
L38	3	HB158-1-08U8-S8J18(1-5/8)		1.0000	1.0000
L38	13	ATCB-B01(5/16)	2.73 - 7.73	1.0000	1.0000
L38	14	FXL 780 PE(7/8)	2.73 - 7.73	1.0000	1.0000
L38	18	Safety Line 3/8	2.73 - 7.73	1.0000	1.0000
L38	20	5.25" x 1.25" Plate	2.73 - 7.73	1.0000	1.0000
L38	21	5.25" x 1.25" Plate	2.73 - 7.73	1.0000	1.0000
L38	23	5.25" x 1.25" Plate	2.73 - 7.73	1.0000	1.0000
L38	33	MP3-05	2.73 - 7.73	1.0000	1.0000
L38	34	MP3-05	2.73 - 7.73	1.0000	1.0000
L38	36	MP3-05	2.73 - 7.73	1.0000	1.0000
L38	46	CCI 4.5" x 1" Plate	2.73 - 7.73	0000.1	1.0000
L39	2	LDF6-50A(1-1/4)	0.00 - 2.73	1.0000	1.0000
L39	3	HB158-1-08U8-S8J18(1-5/8)	0.00 - 2.73	1.0000	1.0000
L39	13	ATCB-B01(5/16)	0.00 - 2.73	0000.1	1.0000
L39	14	FXL 780 PE(7/8)	0.00 - 2.73	1.0000	1.0000
L39	18	Safety Line 3/8	0.00 - 2.73	1.0000	1.0000
L39	20	5.25" x 1.25" Plate	0.00 - 2.73	1.0000	1.0000
L39	21	5.25" x 1.25" Plate	0.00 - 2.73	0000.1	1.0000
L39	23	5.25" x 1.25" Plate	0.00 - 2.73	1.0000	1.0000
L39	33	MP3-05	0.00 - 2.73	1.0000	1.0000
L39	34	MP3-05	0.00 - 2.73	1.0000	1.0000
L39	36	MP3-05	0.00 - 2.73	1.0000	1.0000
L39	46	CCI 4.5" x 1" Plate	0.00 - 2.73	1.0000	1.0000

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C_AA_A Front	C₄A₄ Side	Weight
			ft ft ft	o	ft		ft²	ft²	K
BXA-70063/6CF w/ Mount	A	From Leg	4.000	0.000	105.000	No Ice	7.819	5.407	0.042
Pipe		•	0.000			1/2" Ice	8.370	6.558	0.101
(Ė)			0.000			1" Ice	8.886	7.422	0.168
\ -7						2" Ice	9.942	9.198	0.328
BXA-70063/6CF w/ Mount	В	From Leg	4.000	0.000	105.000	No Ice	7.819	5.407	0.042
Pipe		Ü	0.000			1/2" Ice	8.370	6.558	0.101
(È)			0.000			1" Ice	8.886	7.422	0.168
(—)						2" Ice	9.942	9.198	0.328
BXA-70063/6CF w/ Mount	C	From Leg	4.000	0.000	105.000	No Ice	7.819	5.407	0.042
Pipe		V	0.000			1/2" Ice	8.370	6.558	0.101
(E)			0.000			1" Ice	8.886	7.422	0.168
(/						2" Ice	9.942	9.198	0.328
DB-T1-6Z-8AB-0Z	Α	From Leg	4.000	0.000	105.000	No Ice	4.800	2.000	0.044
(E)			0.000			1/2" Ice	5.070	2.193	0.080
(-)			0.000			1" Ice	5.348	2.393	0.120

Job 85565.009.01	- HARTFORD - NU (SSUSA),CT (BU# 876363)	Page 20 of 42
Project		Date 15:01:04 09/21/18
Client	Crown Castle	Designed by xiones

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert fi fi fi	Azimuth Adjustment	Placement ft		C_AA_A Front	C _A A _A Side ft²	Weight K
							ft²		
						2" Ice	5.926	2.815	0.213
(2) \$BNHH-1D65B	A	From Leg	4.000	0.000	105.000	No Ice	8.160	5.396	0.041
(P)			0.000			1/2" Ice	8.619	5.853	0.091 0.148
			0.000			1" Ice 2" Ice	9.085 10.039	6.317 7.267	0.280
(A) ADDITION (D.C.D.	_		4.000	0.000	105 000	No Ice	8.160	5.396	0.230
(2) SBNHH-1D65B	В	From Leg	4.000 0.000	0.000	105.000	1/2" Ice	8.619	5.853	0.091
(P)			0.000			l" Ice	9.085	6.317	0.148
			0.000			2" Ice	10.039	7.267	0.280
(2) SBNHH-1D65B (P)	С	From Leg	4.000	0.000	105.000	No Ice	8.160	5.396	0.041
	~	110111 206	0.000			1/2" Ice	8.619	5.853	0.091
			0.000			1" Ice	9.085	6.317	0.148
						2" Ice	10.039	7.267	0.280
BXA-70063/6CF w/ Mount	A	From Leg	4.000	0.000	105.000	No Ice	7.819	5.407	0.042
Pipe (P)		_	0.000			1/2" Ice	8.370	6.558	0.101
			0.000			1" Ice	8.886	7.422	0.168
					40.5.000	2" Ice	9.942	9.198	0.328 0.042
BXA-70063/6CF w/ Mount	\mathbf{B}	From Leg	4.000	0.000	105.000	No Ice	7.819	5.407 6.558	0.042
Pipe			0.000			1/2" Ice 1" Ice	8.370 8.886	7.422	0.168
(P)			0.000			2" Ice	9.942	9.198	0.108
	~		4.000	0.000	105.000	No Ice	7.819	5.407	0.042
BXA-70063/6CF w/ Mount	C	From Leg	4.000	0.000	103.000	1/2" Ice	8.370	6.558	0.101
Pipe (P)			0.000 0.000			1" Ice	8.886	7,422	0.168
			0,000			2" Ice	9.942	9.198	0.328
(2) RFV01U-D1A (P)	Α	From Leg	4.000	0.000	105.000	No Ice	1.875	1.250	0.084
		110m Log	0.000	0.000		1/2" Ice	2,045	1.393	0.103
	-		0.000			I" Ice	2.223	1.543	0.124
						2" Ice	2.601	1.865	0.175
RFV01U-D1A (P)	C	From Leg	4.000	0.000	105.000	No Ice	1.875	1.250	0.084
		_	0.000			1/2" Ice	2.045	1.393	0.103
			0.000			1" Ice	2.223	1.543	0.124
						2" Ice	2.601	1.865	0.175
RFV01U-D2A (P)	В	From Leg	4.000	0.000	105.000	No Ice	1.875	1.013 1.145	0.070 0.087
			0.000			1/2" Ice	2.045 2.223	1.143	0.007
			0.000			1" Ice 2" Ice	2.601	1.585	0.153
	C	F I	4.000	0.000	105.000	No Ice	1.875	1.013	0.070
(2) RFV01U-D2A (P)	С	From Leg	4.000 0.000	0.000	105.000	1/2" Ice	2.045	1.145	0.087
			0.000			1" Ice	2.223	1.284	0.106
			0.000			2" Ice	2.601	1.585	0.153
RVZDC-6627-PF-48	В	From Leg	4.000	0.000	105,000	No Ice	3.792	2.514	0.032
(P)		1102+6	0.000			1/2" Ice	4.044	2.727	0.063
			0.000			1" Ice	4,303	2.947	0.099
						2" Ice	4.844	3.417	0.181
B13 RRH 4X30	Α	From Leg	4.000	0.000	105.000	No Ice	2.055	1.320	0.056
(P-previous App)			0.000			1/2" Ice	2.241	1.475	0.073 0.093
			0.000			1" Ice	2.433	1.638 1.997	0.093
	_		4.000	0.000	105.000	2" Ice	2.841 2.055	1.320	0.142
B13 RRH 4X30 (P-previous App)	В	From Leg	4.000	0.000	105.000	No Ice 1/2" Ice	2.055	1.320	0.038
			0.000			1" Ice	2.433	1.638	0.073
			0.000			2" Ice	2.841	1.997	0.142
D12 DDII 4V20	С	From Leg	4,000	0.000	105.000	No Ice	2.055	1.320	0.056
B13 RRH 4X30 (P-previous App)	C	rioni reg	0.000	0.000	105.000	1/2" Ice	2.241	1.475	0.073
			0.000			1" Ice	2.433	1.638	0.093
									0.142

Job	Page
85565.009.01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	21 of 42
Project	Date 15:01:04 09/21/18
Crown Castle	Designed by xjones

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Lateral Vert						
			ft ft ft	o	ft		ft²	ft^2	K
RRH4X45-AWS4 B66	A	From Leg	4.000	0.000	105.000	No Ice	2.660	1.586	0.064
(P-previous App)			0.000			1/2" Ice	2.878	1.769	0.084
• • • • • • • • • • • • • • • • • • • •			0.000			1" Ice	3.104	1.959	0.108
						2" Ice	3.577	2.359	0.165
RRH4X45-AWS4 B66	В	From Leg	4.000	0.000	105.000	No Ice	2.660	1.586	0.064
(P-previous App)			0.000			1/2" Ice	2.878	1.769	0.084
			0.000			1" Ice	3.104	1.959	0.108
DDIIAWAE AWGADA	0	F I	4.000	0.000	105.000	2" Ice	3.577	2.359	0.165
RRH4X45-AWS4 B66	C	From Leg	4.000 0.000	0.000	105.000	No Ice	2.660	1.586	0.064
(P-previous App)			0.000			1/2" Ice 1" Ice	2.878 3.104	1.769 1.959	0.084 0.108
			0.000	•		2" Ice	3.104	2.359	0.108
B25 RRH4X30	Α	From Leg	4.000	0.000	105.000	No Ice	2.200	1.742	0.105
(P-previous App)	**	1 TOIN LOG	0.000	0.000	105.000	1/2" Ice	2.393	1.920	0.075
(r providuo ripp)			0.000			l" Ice	2.593	2.106	0.099
			0.000			2" Ice	3.015	2.501	0.156
B25 RRH4X30	В	From Leg	4.000	0.000	105.000	No Ice	2.200	1.742	0.055
(P-previous App)		Ü	0.000			1/2" Ice	2.393	1.920	0.075
			0.000			1" Ice	2.593	2.106	0.099
						2" Ice	3.015	2.501	0.156
B25 RRH4X30	C	From Leg	4.000	0.000	105.000	No Ice	2.200	1.742	0.055
(P-previous App)			0.000			1/2" Ice	2.393	1.920	0.075
			0.000			1" Ice	2.593	2.106	0.099
						2" Ice	3.015	2.501	0.156
DB-T1-6Z-8AB-0Z	C	From Leg	4.000	0.000	105.000	No Ice	4.800	2.000	0.044
(P-previous App)			0.000			1/2" Ice	5.070	2.193	0.080
			0.000			1" Ice	5.348	2.393	0.120
G . M (FBM 400.0)	~	**		0.000	105.000	2" Ice	5.926	2.815	0.213
Sector Mount [SM 402-3]	С	None		0.000	105.000	No Ice	18.910	18.910	0.851
(E-2M.P/sector)						1/2" Ice	26.780	26.780	1.233
						1" Ice 2" Ice	34.650 50.390	34.650 50.390	1.616 2.381
\$\$						2 100	30.370	30.390	2.301
APXV9ERR18-C-A20 w/	Α	From Leg	4.000	0.000	98.000	No Ice	8.262	7.471	0.088
Mount Pipe			0.000	0.000	70.000	1/2" Ice	8.822	8.656	0.158
(E)			1.000	,	•	1" Ice	9.346	9.556	0.237
. ,						2" Ice	10.418	11.388	0.421
APXVSPP18-C-A20 w/	В	From Leg	4.000	0.000	98.000	No Ice	8.262	6.946	0.083
Mount Pipe			0.000			1/2" Ice	8.822	8.127	0.151
(E)			1.000			1" Ice	9.346	9.021	0.227
						2" Ice	10.418	10.844	0.406
APXVSPP18-C-A20 w/	C	From Leg	4.000	0.000	98.000	No Ice	8.262	6.946	0.083
Mount Pipe			0.000			1/2" Ice	8.822	8.127	0.151
(E)			1.000			l" Ice	9.346	9.021	0.227
IDG1000DD 1		12 K	4.000	0.000	00.000	2" Ice	10.418	10.844	0.406
IBC1900BB-1	A	From Leg	4.000	0.000	98.000	No Ice	0.966	0.463	0.022
(E)			0.000 0.000			1/2" Ice	1.091	0.558	0.030
			0.000			1" Ice 2" Ice	1.223 1.510	0.660 0.893	0.039 0.065
IBC1900BB-1	В	From Leg	4.000	0.000	98.000	No Ice	0.966	0.893	0.003
(E)	<u>.</u>	110m Log	0.000	0.000	20.000	1/2" Ice	1.091	0.463	0.022
(-)			0.000			1" Ice	1.223	0.660	0.039
			2.200			2" Ice	1.510	0.893	0.065
IBC1900BB-1	C	From Leg	4.000	0.000	98.000	No Ice	0.966	0.463	0.022
(E)			0.000			1/2" Ice	1.091	0.558	0.030
, ,			0.000			1" Ice	1.223	0.660	0.039
						2" Ice	1.510	0.893	0.065

Job	Page
85565.009.01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	22 of 42
Project	Date
	15:01:04 09/21/18
Crown Castle	Designed by
Olowii Casile	xjones

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
	Leg	- 7	Lateral Vert	•					
			ft	٥	ft		ft²	ft^2	K
			ft ft					·	
IBC1900HG-2A	Α	From Leg	4.000	0.000	98.000	No Ice	0.966	0.463	0.022
(E)			0.000			1/2" Ice	1.091	0.558	0.030
			0.000			1" Ice	1.223	0.660	0.039
IBC1900HG-2A	В	From Leg	4.000	0.000	09.000	2" Ice	1.510	0.893	0.065
(E)	ь	rioni Leg	0.000	0.000	98.000	No Ice 1/2" Ice	0.966 1.091	0.463	0.022
(2)			0.000			l" Ice	1.091	0.558 0.660	0.030 0.039
			0.000			2" Ice	1.510	0.893	0.055
IBC1900HG-2A	C	From Leg	4.000	0.000	98.000	No Ice	0.966	0.463	0.022
(E)		J	0.000			1/2" Ice	1.091	0.558	0.030
			0.000			1" Ice	1.223	0.660	0.039
						2" Ice	1.510	0.893	0.065
AAHC w/ Mount Pipe	Α	From Leg	4.000	0.000	98.000	No Ice	4.409	2.691	0.115
(R)			0.000			1/2" Ice	4.727	3.079	0.156
			1.000			1" Ice	5.055	3.486	0.202
4 A TIC / 3 5 + D*	-					2" Ice	5.743	4.359	0.310
AAHC w/ Mount Pipe	В	From Leg	4.000	0.000	98.000	No Ice	4.409	2.691	0.115
(R)			0.000			1/2" Ice	4.727	3.079	0.156
			1.000			1" Ice	5.055	3.486	0.202
AAHC w/ Mount Pipe	С	From Leg	4.000	0.000	98.000	2" Ice No Ice	5.743 4.409	4.359	0.310
(R)	0	1 Ioni Log	0.000	0.000	20.000	1/2" Ice	4.727	2.691 3.079	0.115 0.156
(22)			1.000			1" Ice	5.055	3.486	0.130
			1.000			2" Ice	5.743	4.359	0.310
Platform Mount [LP 1201-1]	C	None		0.000	98.000	No Ice	23.100	23.100	2.100
(E)						1/2" Ice	26.800	26.800	2.500
						1" Ice	30.500	30.500	2.900
						2" Ice	37.900	37.900	3.700
\$\$									
PCS 1900MHz	Α	From Leg	2.000	0.000	96.000	No Ice	2.322	2.238	0.060
4x45W-65MHz (E)			0.000 0.000			1/2" Ice	2.527	2.441	0.083
(L)			0.000			1" Ice 2" Ice	2.739 3.185	2.651 3.093	0.110
PCS 1900MHz	В	From Leg	2.000	0.000	96.000	No Ice	2.322	2.238	0.173 0.060
4x45W-65MHz		110111 2.06	0.000	0.000	20.000	1/2" Ice	2.527	2.236	0.000
(E)			0.000			1" Ice	2.739	2.651	0.110
						2" Ice	3.185	3.093	0.173
PCS 1900MHz	C	From Leg	2.000	0.000	96.000	No Ice	2.322	2.238	0.060
4x45W-65MHz			0.000			1/2" Ice	2.527	2.441	0.083
(E)			0.000			l" Ice	2.739	2.651	0.110
DOG LOOD OF						2" Ice	3.185	3.093	0.173
PCS 1900MHz	Α	From Leg	2.000	0.000	96.000	No Ice	2.322	2.238	0.060
4x45W-65MHz			0.000			1/2" Ice	2.527	2.441	0.083
(E)			-1.000			1" Ice	2.739	2.651	0.110
PCS 1900MHz	В	From Leg	2.000	0.000	96.000	2" Ice	3.185	3.093	0.173
4x45W-65MHz	,,,	From Leg	0.000	0.000	90.000	No Ice 1/2" Ice	2.322 2.527	2.238	0.060
(E)			-1.000			1" Ice	2.739	2.441 2.651	0.083
<u> </u>			1.000			2" Ice	3.185	3.093	0.110 0.173
PCS 1900MHz	C	From Leg	2.000	0.000	96.000	No Ice	2.322	2.238	0.060
4x45W-65MHz		5	0.000	-		1/2" Ice	2.527	2.441	0.083
(E)			-1.000			1" Ice	2.739	2.651	0.110
						2" Ice	3.185	3.093	0.173
800MHz 2X50W RRH	Α	From Leg	2.000	0.000	96.000	No Ice	2.058	1.932	0.064
W/FILTER			0.000			1/2" Ice	2.240	2.109	0.086
(E)			0.000			1" Ice	2.429	2.293	0.111
						2" Ice	2.829	2.684	0.172

	Job	Page
	85565.009.01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	23 of 42
i	Project	Date
		15:01:04 09/21/18
	Client	Designed by
	Crown Castle	xiones

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C₄A₄ Side	Weight
	Leg	_	Lateral Vert	-					
			ft	۰	ft		ft²	ft^2	K
			ft ft		v		,	,	
800MHz 2X50W RRH	В	From Leg	2.000	0.000	96.000	No Ice	2.058	1.932	0.064
W/FILTER			0.000			1/2" Ice	2.240	2.109	0.086
(E)			0.000			1" Ice	2.429	2.293	0.111
						2" Ice	2.829	2.684	0.172
800MHz 2X50W RRH	C	From Leg	2.000	0.000	96.000	No Ice	2.058	1.932	0.064
W/FILTER			0.000			1/2" Ice	2.240	2.109	0.086
(E)			0.000			1" Ice	2.429	2.293	0.111
41 v 7!! Dina Manut	٨	Eugan I ac	1.000	0.000	07.000	2" Ice	2.829	2.684	0.172
4' x 2" Pipe Mount	A	From Leg	1.000	0.000	96.000	No Ice	0.785	0.785	0.029
(E)			0.000 0.000			1/2" Ice 1" Ice	1.028 1.281	1.028	0.035
			0.000			2" Ice	1.201	1.281 1.814	0.044
4' x 2" Pipe Mount	В	From Leg	1.000	0.000	96.000	No Ice	0.785	0.785	0.072 0.029
(E)	,	1 tom Leg	0.000	0.000	30.000	1/2" Ice	1.028	1.028	0.025
(2)			0.000			1" Ice	1.281	1.281	0.033
			0.000			2" Ice	1.814	1.814	0.072
4' x 2" Pipe Mount	С	From Leg	1.000	0.000	96.000	No Ice	0.785	0.785	0.029
(E)			0.000		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1/2" Ice	1.028	1.028	0.035
			0.000			1" Ice	1.281	1.281	0.044
						2" Ice	1.814	1.814	0.072
Side Arm Mount [SO 102-3]	C	None		0.000	96.000	No Ice	3.000	3.000	0.081
(E)						1/2" Ice	3.480	3.480	0.111
						1" Ice	3.960	3.960	0.141
						2" Ice	4.920	4.920	0.201
\$\$									
\$\$									
HBX-6516DS-VTM w/	A	From Leg	4.000	0.000	81.000	No Ice	3.598	3.241	0.029
Mount Pipe			0.000			1/2" Ice	3.998	3.914	0.062
(E)			-1.000			1" Ice	4.389	4.564	0.101
IDV (61(DC VTM/	ъ	F I	4.000	0.000	01.000	2" Ice	5.187	5.914	0.199
HBX-6516DS-VTM w/ Mount Pipe	В	From Leg	4.000	0.000	81.000	No Ice	3.598	3.241	0.029
			0.000			1/2" Ice 1" Ice	3.998	3.914	0.062
(E)			-1.000			2" Ice	4.389	4.564 5.914	0.101
HBX-6516DS-VTM w/	С	From Leg	4.000	0.000	81.000	No Ice	5.187 3.598	3.241	0.199 0.029
Mount Pipe	C	110m Leg	0.000	0.000	81.000	1/2" Ice	3.998	3.914	0.029
(E)			-1.000			I" Ice	4.389	4.564	0.101
(2)			-1.000			2" Ice	5.187	5.914	0.101
6' x 2" Mount Pipe	A	From Leg	4.000	0.000	81.000	No Ice	1.425	1.425	0.022
(E)	••	110208	0.000	0.000	01.000	1/2" Ice	1.925	1.925	0.033
()			-1.000			1" Ice	2.294	2.294	0.048
						2" Ice	3.060	3.060	0.090
6' x 2" Mount Pipe	В	From Leg	4.000	0.000	81.000	No Ice	1.425	1,425	0.022
(E)		_	0.000			1/2" Ice	1.925	1.925	0.033
			-1.000			1" Ice	2.294	2.294	0.048
						2" Ice	3.060	3.060	0.090
6' x 2" Mount Pipe	C	From Leg	4.000	0.000	81.000	No Ice	1.425	1.425	0.022
(E)			0.000			1/2" Ice	1.925	1.925	0.033
			-1.000			1" Ice	2.294	2.294	0.048
						2" Ice	3.060	3.060	0.090
T-Arm Mount [TA 602-3]	С	None		0.000	81.000	No Ice	11.590	11.590	0.774
(E)						1/2" Ice	15.440	15.440	0.990
						1" Ice	19.290	19.290	1.206
* \$ \$ \$ \$						2" Ice	26.990	26.990	1.639
\$\$ ¥\$24010 I t12A	٨	Erom Tac	2.000	0.000	74.000	Ma Tee	0.141	0.141	0.005
KS24019-L112A	A	From Leg	3.000	0.000	74.000	No Ice	0.141	0.141	0.005
(E)			0.000			1/2" Ice	0.198	0.198	0.007

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Job		Page
85565.009.01	- HARTFORD - NU (SSUSA),CT (BU# 876363)	24 of 42
Project		Date 15:01:04 09/21/18
Client	Crown Castle	Designed by Xjones

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C₄A₄ Side	Weight
			fi fi fi	o	ft		ft²	ft²	K
			2.000			1" Ice 2" Ice	0.262 0.415	0.262 0.415	0.009 0.018
Side Arm Mount [SO 701-1] (E)	A	From Leg	1.500 0.000 0.000	0.000	74.000	No Ice 1/2" Ice 1" Ice 2" Ice	0.850 1.140 1.430 2.010	1.670 2.340 3.010 4.350	0.065 0.079 0.093 0.121
\$\$						Z ICE	2.010	4.330	V.121

Dishes										
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter	Aperture Area	Weight
				ft	0	o	ft	ft	ft²	K

Load Combinations

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Job 85565.009.01	- HARTFORD - NU (SSUSA),CT (BU# 876363)	Page 25 of 42
Project		Date 15:01:04 09/21/18
Client	Crown Castle	Designed by xjones

Comb.	Description
No.	·
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Icc+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	\hat{Type}		Load		Moment	Moment
				Comb.	K	kip-ft	kip-ft
L1	108 - 103	Pole	Max Tension	48	0.000	-0.000	-0.000
			Max. Compression	26	-9.569	1.499	0.268
			Max. Mx	20	-2.394	13.847	0.035
			Max. My	2	-2.395	0.620	13.264
			Max. Vy	20	-6.512	13.847	0.035
			Max. Vx	2	-6.527	0.620	13.264
			Max. Torque	2			0.352
L2	103 - 98.5	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-10.032	1.614	0.331
			Max. Mx	20	-2.614	43.379	-0.198
			Max. My	2	-2.615	0.398	42.860
			Max. Vy	20	- 6.609	43.379	-0.198
			Max. Vx	2	-6,624	0.398	42.860
			Max. Torque	2			0.352
L3	98.5 - 98	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-10.108	1.631	0.342
			Max. Mx	20	-2.659	46.690	-0.223
			Max. My	2	-2.659	0.374	46.178
			Max. Vy	20	-6.629	46.690	-0.223
			Max. Vx	2	-6.644	0.374	46.178
			Max. Torque	2			0.352
L4	98 - 93	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-19.444	1.823	0.531
		•	Max. Mx	20	-6.789	100.043	-0.465
			Max. My	2	- 6.792	0.132	99.498
			Max. Vy	20	-11.020	100.043	-0.465
			Max. Vx	2	-11.014	0.132	99.498
			Max. Torque	16			-0.373
L5	93 - 88	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-20.131	2.015	0.649

Job 85565.009.01 - HARTFORD - NU (SSUSA),CT (BU# 8763	Page 26 of 42
Project	Date 15:01:04 09/21/18
Client Crown Castle	Designed by xjones

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis	
No.	ft	Туре		Load	12	Moment	Moment	
			N (N (Comb.	K 7.110	kip-ft	kip-ft	
			Max. Mx	20 2	-7.I18	155.747	-0.725	
			Max. My Max. Vy	20	-7.121 -11.261	-0.112 155,747	155.161 -0.725	
			Max. Vx	2	-11.251	-0.112	-0.723 155.161	
			Max. Torque	16	-11.233	-0.112	-0.372	
L6	88 - 83	Pole	Max Tension	1	0.000	0.000	0.000	
	50 55	1010	Max. Compression	26	-20.877	2.200	0.767	
			Max. Mx	20	-7.484	212.618	-0.984	
			Max. My	2	-7.487	-0.357	211.991	
			Max. Vy	20	-11.491	212.618	-0.984	
			Max. Vx	2	-11.485	-0.357	211.991	
			Max. Torque	16			-0.372	
L7	83 - 82.33	Pole	Max Tension	1	0.000	0.000	0.000	
			Max. Compression	26	-20.999	2.225	0.782	
			Max. Mx	20	-7.537	220.334	-1.018	
			Max. My	2	-7.540	-0.390	219.703	
			Max. Vy	20	-11.547	220.334	-1.018	
			Max. Vx	2	-11.541	-0.390	219.703	
			Max. Torque	16			-0.372	
L8	82.33 - 82.08	Pole	Max Tension	1	0.000	0.000	0.000	
			Max. Compression	26	-21.054	2.235	0.789	
			Max. Mx	20	- 7.569	223.224	-1.031	
			Max. My	2	-7.571	-0.402	222.590	
			Max. Vy	20	-11.567	223.224	-1.031	
			Max. Vx	2	-11.561	-0.402	222.590	
L9	02.00 77.00	Pole	Max. Torque	16	0.000	0.000	-0.372	
L9	82.08 - 77.08	Pole	Max Tension	1 26	0.000	0.000	0.000	
			Max. Compression Max. Mx	20	-24.838	2,419 286,418	0.834 -1.296	
			Max. My	20	-9.106 -9.109	-0.647	285.736	
			Max. Vy	20	-9.109	286.418	-1.296	
			Max. Vx	20	-13.245	-0.647	285.736	
			Max. Torque	16	-13.273	-0.047	-0.372	
L10	77.08 - 76.25	Pole	Max Tension	1	0.000	0.000	0.000	
	,,,,,	2010	Max. Compression	26	-25.070	2.450	0.839	
			Max. Mx	20	-9.198	297.449	-1.341	
			Max. My	2	-9.201	-0.687	296.759	
			Max. Vy	20	-13.333	297,449	-1.341	
			Max. Vx	2	-13.327	-0.687	296.759	
			Max. Torque	16			-0.372	
L11	76.25 - 76	Pole	Max Tension	1	0.000	0.000	0.000	
			Max. Compression	26	-25.152	2.461	0.840	
			Max. Mx	20	-9.243	300.786	-1.354	
			Max. My	2	- 9.245	-0.700	300.093	
			Max. Vy	20	-13.356	300.786	-1.354	
			Max. Vx	2	-13.350	-0.700	300.093	
			Max. Torque	16			-0.371	
L12	76 - 74.5	Pole	Max Tension	1	0.000	0.000	0.000	
			Max. Compression	26	-25.647	2.515	0.847	
			Max. Mx	20	-9.463	320.947	-1.434	
			Max. My	2	-9.466	-0.773	320.240	
			Max. Vy	20	-13.525	320.947	-1.434	
			Max. Vx	2	-13.518	-0.773	320.240	
Y 13	745 7405	D-1	Max. Torque	16	0.000	0.000	-0.371	
L13	74.5 - 74.25	Pole	Max Tension	1	0.000	0.000	0.000	
			Max. Compression	26	-25.732	2.527	0.849	
			Max. Mx	20	- 9.514	324.332	-1.447	
			Max. My	2	-9.517	-0.785	323.621	
			Max. Vy	20	-13.546	324.332	-1.447	
			Max. Vx	2 16	-13.540	-0.785	323.621	
			Max. Torque	16			-0.37	

Јоь 85565.009.01 - HARTFORD - NU (SSUSA),СТ (BU# 876363)	Page 27 of 42
Project	Date 15:01:04 09/21/18
Client Crown Castle	Designed by xjones

		Component	Can Julian	Gov.	Axial	Major Axis	Minor Axis
Section	Section Elevation Compo No. ft Typ		Condition	Gov. Load	Axiai	Moment	Moment
No.			<i>ie</i>		K	kip-ft	kip-ft
L14	74,25 - 69.25	Pole	Max Tension	Comb.	0.000	0.000	0.000
1714	74.23 - 07.23	10.0	Max. Compression	26	-27.587	2.712	1.245
			Max. Mx	20	-10.407	393.904	-1.522
			Max. My	2	-10.412	-1.029	393.166
			Max. Vy	20	-14.193	393.904	-1.522
			Max. Vx	2	-14.149	-1.029	393.166
			Max. Torque	16			-0.475
L15	69.25 - 64.25	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-29.306	2.901	1.269
			Max. Mx	20	-11.250	466.243 -1.273	-1.789 465.260
			Max. My	2 20	-11.254 -14.744	466.243	-1.789
			Max. Vy	20	-14.744	-1.273	465.260
			Max. Vx Max. Torque	16	-14.099	-1.275	-0.475
T 16	64.25 - 59.25	Pole	Max Tension	1	0.000	0.000	0.000
L16	04.23 - 39.23	role	Max. Compression	26	-31.044	3.092	1.292
			Max. Mx	20	-12.112	541.333	-2.055
			Max. My	2	-12.117	-1.515	540.105
			Max. Vy	20	-15.295	541.333	-2.055
			Max. Vx	2	-15.250	-1.515	540.105
			Max. Torque	16			-0.475
L17	59.25 - 58.08	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-31.462	3.136	1.297
			Max. Mx	20	-12.317	559.304	-2.118
			Max. My	2	-12.321	-1.572	558.019
			Max. Vy	20	-15,429	559.304	-2.118 558.019
			Max. Vx	2	-15.384	-1.572	-0.474
	-0.00 FF F0	70-1-	Max. Torque	16 1	0.000	0.000	0.000
L18	58.08 - 57.73	Pole	Max Tension Max. Compression	26	-31.601	3.151	1.299
			Max. Mx	20	-12.399	564.711	-2.136
			Max. My	2	-12.403	-1.589	563,409
			Max. Vy	20	-15.464	564.711	-2.136
			Max, Vx	2	-15.419	-1.589	563.409
			Max. Torque	16			-0.474
L19	57.73 - 57.5	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-31.693	3.161	1.300
			Max. Mx	20	-12.449	568.271	-2.149
			Max. My	2	-12.453	-1.600	566.958
			Max. Vy	20	-15.490	568.271	-2.149
			Max. Vx	2	-15.445	-1.600	566.958 -0.474
			Max. Torque	16	0.000	0.000	0.000
L20	57.5 - 52.5	Pole	Max Tension	i 26	-33.671	3.350	1.321
			Max. Compression Max. Mx	20	-13.505	647.201	-2.414
			Max. My	2	-13.509	-1.842	645.642
			Max. Vy	20	-16.079	647.201	-2.414
			Max. Vx	2	-16.034	-1.842	645.642
			Max. Torque	16			-0.474 `
L21	52,5 - 47	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-34.566	3.437	1,330
			Max. Mx	20	-13.991	683.670	-2.534
			Max. My	2	-13.995	-1.950	681.999
			Max. Vy	20	-16.339	683.670	-2.534
			Max. Vx	2	-16.294	-1.950	681.999
			Max. Torque	16	0.000	0.000	-0.474
L22	47 - 45.25	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-37.471	3.630	1.351 -2.799
			Max. Mx	20 2	-15.775 -15.779	766.989 -2,190	765.072
			Max. My Max. Vy	20	-16.975	766.989	-2.799
			iviax. v y	20	10.713	, 50.303	

Job 85565.009.01 -	HARTFORD - NU (SSUSA),CT (BU# 876363)	Page 28 of 42
Project		Date 15:01:04 09/21/18
Client	Crown Castle	Designed by xiones

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis	
No.	ft	Туре		Load		Moment	Moment	
				Comb.	K	kip-ft	kip-ft	
			Max. Vx	2	-16.931	- 2.190	765.072	
		- 1	Max. Torque	16	0.000	0.000	-0.474	
L23	45.25 - 40.5	Pole	Max Tension	1	0.000	0.000 3.814	0.000 1.370	
			Max. Compression	26 20	-39.453	3.814 848.855	-3.052	
			Max. Mx	20	-16.917 -16.921	-2.418	846.703	
			Max. My Max. Vy	20	-10.921 -17.505	848.855	-3.052	
			Max. Vx	20	-17.461	-2.418	846,703	
			Max. Torque	16	-17.401	-2.710	-0.474	
104	40.5 - 40.25	Pole	Max Tension	10	0.000	0.000	0.000	
L24	40.3 - 40.23	roic	Max. Compression	26	-39.557	3.826	1.372	
			Max, Mx	20	-16.986	853.235	-3.065	
			Max. My	2	-16.989	-2.430	851.070	
			Max. Vy	20	-17.526	853.235	-3.065	
			Max. Vx	2	-17.481	-2.430	851.070	
			Max. Torque	16	17.101	20	-0.474	
L25	40,25 - 35.25	Pole	Max Tension	1	0.000	0.000	0.000	
1223	40,23 - 33.23	1010	Max. Compression	26	-41.650	4.017	1.391	
			Max. Mx	20	-18.200	942.250	-3.330	
			Max. My	2	-18.203	-2.669	939.838	
			Max. Vy	20	-18.080	942.250	-3.330	
			Max. Vx	2	-18.035	-2.669	939.838	
			Max. Torque	16			-0.474	
L26	35.25 - 30.25	Pole	Max Tension	1	0.000	0.000	0.000	
			Max. Compression	26	-43.748	4.209	1.410	
			Max. Mx	20	-19.441	1033.963	-3.593	
			Max. My	2	-19.443	-2.906	1031.303	
			Max. Vy	20	-18.612	1033.963	-3.593	
			Max. Vx	2	-18.567	-2.906	1031.303	
			Max. Torque	16			-0.474	
L27	30.25 - 27.75	Pole	Max Tension	1	0.000	0.000	0.000	
			Max. Compression	26	-44.807	4.299	1.417	
			Max. Mx	20	-20.069	1080.812	-3.724	
			Max. My	2	-20.072	- 3.024	1078.028	
			Max. Vy	20	-18.876	1080.812	-3.724	
			Max. Vx	2	-18.831	-3.024	1078.028	
			Max. Torque	16		0.000	-0.473	
L28	27.75 - 27.5	Pole	Max Tension	1	0.000	0.000	0.000	
			Max. Compression	26	-44.917	4.310	1.418	
			Max. Mx	20	-20.146	1085.532	-3.738	
			Max. My	2	-20,148	-3.036	1082.736	
			Max. Vy	20	-18.892	1085.532	-3.738	
			Max. Vx	2	-18.847	-3.036	1082.736	
		T. (Max. Torque	16	0.000	0.000	-0.473	
L29	27.5 - 22.5	Pole	Max Tension	1	0.000	0.000	0.000	
			Max. Compression	26 20	-47.100	4.480 1181.287	1.429 -3.999	
			Max. Mx		-21.474	-3,270	1178.244	
			Max. My	2 20	-21.476 -19.410	1181.287	-3.999	
			Max. Vy	20	-19.410	-3.270	1178.244	
			Max. Vx Max. Torque	16	-19.300	-3.270	-0.473	
T 10	22.5 10.5	Pole	Max Tension	1	0.000	0.000	0.000	
L30	22.5 - 19.5	role	Max. Compression	26	-48.428	4.560	1.436	
			Max, Mx	20	-22.287	1239.947	- 4.155	
			Max. My	2	-22.289	-3.410	1236.767	
			Max. Vy	20	-19.704	1239.947	-4.155	
			Max. Vx	20	-19.668	-3.410	1236.767	
			Max. Torque	16	-17.000	5.710	-0.473	
L31	19.5 - 19.25	Pole	Max Tension	1	0.000	0.000	0.000	
T) I	17.J = 17.4J	1 016	Max. Compression	26	-48.544	4.567	1.437	
			Max. Mx	20	-22.368	1244.876	-4.168	
			1720/2. 172/2	20	500			

Job 85565.009.01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	Page 29 of 42
Project	Date 15:01:04 09/21/18
Client Crown Castle	Designed by xiones

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	No. ft Type			Load		Moment	Moment
				Comb.	K	kip-ft	kip-ft
			Max. My	2	-22.369	-3.422	1241.685
			Max. Vy	20	-19.720	1244.876	-4.168
			Max. Vx	2	-19.685	-3.422	1241.685
			Max. Torque	16	0.000	0.000	-0.473
L32	19.25 - 14.25	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26 20	-50.914	4.621	1.462 -4.427
			Max, Mx	20 2	-23.808 -23.809	1344.705 -3.653	1341.375
			Max. My Max. Vy	20	-20.211	1344.705	-4.427
			Max. Vx	20	-20.201	-3.653	1341.375
			Max. Torque	16	20.201	3.000	-0.473
L33	14.25 - 14	Pole	Max Tension	1	0.000	0.000	0.000
133	11.25 11	1 510	Max. Compression	26	-51.040	4.619	1.466
			Max. Mx	20	-23.888	1349.760	-4.440
			Max. My	2	-23.889	-3.665	1346.426
			Max. Vy	20	-20.227	1349.760	-4.440
			Max. Vx	2	-20.219	-3.665	1346,426
			Max. Torque	16			-0.473
L34	14 - 13.75	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-51.170	4.616	1.470
			Max. Mx	20	-23.966	1354.821	-4.453
			Max. My	2 20	-23.967 - 20,252	-3.676 1354.821	1351.484 -4.453
			Max. Vy Max. Vx	20	-20.232 -20.245	-3.676	1351.484
			Max. Torque	16	-20.243	-5.070	-0.473
L35	13.75 - 12.98	Pole	Max Tension	1	0.000	0.000	0.000
יניו	13.73 - 12.70	Tole	Max. Compression	26	-51.579	4.605	1.480
			Max. Mx	20	-24.208	1370.448	-4.493
			Max. My	2	-24.208	-3.711	1367.103
			Max. Vy	20	-20.333	1370.448	-4.493
			Max Vx	2	-20.330	-3.711	1367.103
			Max. Torque	16			-0.473
L36	12.98 - 12.73	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-51.711	4.603	1.484
			Max. Mx	20	-24.293	1375.534	-4,506
			Max. My	2	-24.293	-3.723	1372.187
			Max. Vy	20 2	-20.352	1375.534 -3.723	-4.506 1372.187
			Max. Vx Max. Torque	16	-20.351	-3.123	-0.473
L37	12.73 - 7.73	Pole	Max Tension	1	0.000	0.000	0.000
L37	12.73 - 7.73	1 010	Max. Compression	26	-54.235	4,681	1.541
			Max. Mx	20	-25.886	1478.549	-4.762
			Max. My	2	-25.887	-3.952	1475.160
			Max. Vy	20	-20.853	1478.549	- 4.762
			Max. Vx	2	-20.848	-3.952	1475.160
			Max. Torque	16			-0.473
L38	7.73 - 2.73	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-56.635	4.853	1.585
			Max. Mx	20	-27.505	1584.021	-5.017
			Max. My	2	-27.505	-4.178	1580.521
			Max. Vy	20	-21.344	1584.021	-5.017
		•	Max. Vx Max. Torque	14 16	21.326	7.098	-1 <i>5</i> 75.225 -0.473
7.10	172 0	Pole	Max. Torque Max Tension	10	0.000	0.000	0.000
L39	2.73 - 0	role	Max. Compression	26	-57.887	4.939	1.606
			Max. Compression Max. Mx	20	-28.396	1642,642	-5.156
			Max. My	2	-28.396	-4.301	1639.032
			Max. Vy	20	-21.616	1642.642	-5.156
			Max. Vx	14	21.614	7.264	-1633.791
			Max. Torque	16			-0.473
			•				

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Job	Page
85565.009.01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	30 of 42
Project	Date 15:01:04 09/21/18
Client Crown Castle	Designed by xjones

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, 2 K
Pole	Max. Vert	36	57.887	4.686	-0.010
	Max. H _x	20	28.409	21.599	-0.053
	Max. H _z	2	28.409	-0.053	21.557
	$Max. M_x$	2	1639.032	-0.053	21.557
	Max. M _z	8	1639.691	- 21.599	0.053
	Max. Torsion	4	0.472	-10.899	18.787
	Min. Vert	7	21.307	-18.667	10.786
	$Min. H_x$	8	28.409	-21.599	0.053
	Min. H _z	14	28.409	0.053	-21.596
	$Min. M_x$	14	-1633.791	0.053	-21.596
	$Min. M_z$	20	-1642.642	21.599	-0.053
	Min. Torsion	16	-0.473	10.899	-18.787

Tower Mast Reaction Summary

Load Combination	Vertical	Shearx	$Shear_z$	Overturning Moment, M.	Overturning Moment, M.	Torque
Jones Marion	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	23.675	0.000	0.000	-0.505	1.191	-0.000
1.2 Dead+1.0 Wind 0 deg - No	28.409	0.053	-21.557	-1639.032	-4.301	-0.349
Ice						
0.9 Dead+1.0 Wind 0 deg - No	21.307	0.053	-21.557	-1623.326	-4.625	-0.327
Ice						
1.2 Dead+1.0 Wind 30 deg - No	28.409	10.899	-18.787	-1423.209	-824.841	-0.472
Ice						
0.9 Dead+1.0 Wind 30 deg - No	21.307	10.899	-18.787	- 1409.552	-817.390	-0.450
Ice	40.400	10.668	10.706			
1.2 Dead+1.0 Wind 60 deg - No	28.409	18.667	-10.786	-822.311	-1418.804	-0.468
Ice	21 207	10.777	10.707	014 027	1406 706	0.450
0.9 Dead+1.0 Wind 60 deg - No Ice	21.307	18.667	-10.786	-814.337	-1405.706	-0.453
1.2 Dead+1.0 Wind 90 deg - No	28.409	21.599	-0.053	-6.409	-1639.691	-0.340
Ice	20.409	21.399	-0.033	-0.409	-1039.091	-0.340
0.9 Dead+1.0 Wind 90 deg - No	21.307	21.599	-0.053	-6.180	-1624.511	-0.336
Ice	21,307	21.355	-0.055	-0.100	-1024.511	-0.550
1.2 Dead+1.0 Wind 120 deg -	28,409	18.678	10.732	813.305	-1416.941	-0.121
No Ice						
0.9 Dead+1.0 Wind 120 deg -	21.307	18.678	10.732	805.754	-1403.879	-0.128
No Ice						
1.2 Dead+1.0 Wind 150 deg -	28.409	10.836	18.784	1416.473	-814.999	0.131
No Ice						
0.9 Dead+1.0 Wind 150 deg -	21.307	10.836	18.784	1403.206	- 807.657	0.114
No Ice						
1.2 Dead+1.0 Wind 180 deg -	28.409	-0.053	21.596	1633.791	7.264	0.349
No Ice	21.005	0.050				
0.9 Dead+1.0 Wind 180 deg - No Ice	21.307	- 0.053	21.596	1618.445	6.811	0.326
1.2 Dead+1.0 Wind 210 deg -	28,409	-10.899	10 707	1401.000	627 002	0.472
No Ice	28.409	-10.899	18.787	1421.952	827.802	0.473
0.9 Dead+1.0 Wind 210 deg -	21.307	-10.899	18.787	1408.624	819.574	0.452
No Ice	21.30/	-10.033	10.707	1400.024	017.3/4	0.432

Job 85565.009.01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	Page 31 of 42
Project	Date 15:01:04 09/21/18
Client Crown Castle	Designed by xiones

Load	Vertical	$Shear_x$	Shear _z	Overturning	Overturning	Torque
Combination	K	K	ν	Moment, Mx	Moment, M ₂	Lin Ci
1.2 Dead+1.0 Wind 240 deg -	28.409	-18.825	K 10.877	kip-ft 824.035	kip-fi 1426.924	kip-ft 0.470
No Ice	20.409	-10.023	10.677	824.033	1420.924	0.470
0.9 Dead+1.0 Wind 240 deg -	21.307	-18.825	10.877	816.373	1413.022	0.455
No Ice	21.507	-10.023	10.677	010.575	1415.022	0.433
1.2 Dead+1.0 Wind 270 deg -	28.409	-21.599	0.053	5.156	1642.642	0.341
No Ice	20.102	21.333	0.033	5.150	1012.012	0.5.1
0.9 Dead+1.0 Wind 270 deg -	21.307	-21.599	0.053	5,255	1626.689	0.336
No Ice						
1.2 Dead+1.0 Wind 300 deg -	28,409	-18.708	-10.749	-813.047	1417.287	0.120
No Ice						
0.9 Dead+1.0 Wind 300 deg -	21.307	-18.708	-10.749	-805.184	1403.475	0.127
No Ice						
1.2 Dead+1.0 Wind 330 deg -	28.409	-10.836	-18.784	-1417.720	817.959	-0.133
No Ice						
0.9 Dead+1.0 Wind 330 deg -	21.307	-10.836	-18.784	-1404.127	809.841	- 0.116
No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	57.887	-0.000	-0.000	-1.606	4.939	-0.000
1.2 Dead+1.0 Wind 0 deg+1.0	57.887	0.010	-4.669	-411.565	3.877	-0,114
Ice+1.0 Temp	57.007	0.267	4.050	0.00.000	201 (01	0.155
1.2 Dead+1.0 Wind 30 deg+1.0	57.887	2.357	-4.058	-357.277	-201.681	-0.155
Ice+1.0 Temp 1.2 Dead+1.0 Wind 60 deg+1.0	57.887	4.063	2 242	207 570	251 700	0.155
Ice+1.0 Temp	31.001	4.063	-2.343	-207.570	-351.788	-0.155
1.2 Dead+1.0 Wind 90 deg+1.0	57.887	4.686	-0.010	- 2.751	-406.335	-0.113
Ice+1.0 Temp	37.667	4.000	~0.010	-2.731	-400.333	-0.113
1.2 Dead+1.0 Wind 120	57.887	4.054	2.326	202.369	-350.664	-0.041
deg+1.0 Ice+1.0 Temp	07.007	1.051	2.520	202.509	330.001	0.011
1.2 Dead+1.0 Wind 150	57.887	2.341	4.048	352,900	-199.734	0.042
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	57.887	-0.010	4,669	408.312	6.127	0.114
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	57.887	-2.357	4.058	354.024	211.685	0.155
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	57.887	- 4.073	2.348	204.357	361.862	0.155
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	57.887	-4.686	0.010	-0.502	416.336	0.113
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	57.887	- 4.063	-2.332	-205.662	360.737	0.041
deg+1.0 Ice+1.0 Temp	£7.007	2 241	4.040	266.162	000 505	0.040
1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	57.887	-2.341	-4.048	-356.152	209.737	-0.042
Dead+Wind 0 deg - Service	23.675	0.011	-4,470	-339.338	0.040	-0.070
Dead+Wind 30 deg - Service	23.675	2.260	-3.895	-339.338 -294.704	-169.646	-0.076
Dead+Wind 60 deg - Service	23.675	3.871	-2.236	-170.438	-292.485	-0.096
Dead+Wind 90 deg - Service	23.675	4.478	-0.011	-1.705	-338,161	-0.070
Dead+Wind 120 deg - Service	23.675	3.873	2.225	167.807	-292.100	-0.026
Dead+Wind 150 deg - Service	23.675	2.247	3.895	292,534	-167.625	0.025
Dead+Wind 180 deg - Service	23.675	-0.011	4.478	337.478	2.410	0.070
Dead+Wind 210 deg - Service	23.675	-2.260	3.895	293.664	172.096	0.096
Dead+Wind 240 deg - Service	23.675	-3.903	2.255	170.012	295.998	0.096
Dead+Wind 270 deg - Service	23,675	-4.478	0.011	0.666	340.610	0.070
Dead+Wind 300 deg - Service	23.675	-3.879	-2.229	-168.537	294.013	0.026
Dead+Wind 330 deg - Service	23.675	-2.247	-3.895	-293.574	170.075	-0.026

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Job 85565.009.01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	Page 32 of 42
Project	Date 15:01:04 09/21/18
Crown Castle	Designed by xjones

	Sur	m of Applied Forces			Sum of Reactions		0/ E
Load	PX	PY	PZ	PX	PΥ	PZ K	% Error
Comb.	K	K	<u>K</u>	K	K	K	0.000%
1	0.000	-23.675	0,000	0.000	23.675	0.000	
2	0.053	-28.409	-21.557	-0.053	28.409	21.557	0.000% 0.000%
3	0.053	-21.307	-21.557	-0.053	21.307	21.557	0.000%
4	10.899	-28.409	-18.787	-10.899	28.409	18.787	
5	10.899	-21.307	-18.787	-10.899	21.307	18.787	0.000% 0.000%
6	18.667	- 28.409	-10.786	-18.667	28.409	10.786	0.000%
7	18.667	-21.307	-10.786	-18.667	21.307	10.786	0.000%
8	21.599	-28.409	-0.053	- 21.599	28.409	0.053	0.000%
9	21.599	-21.307	-0.053	-21.599	21.307	0.053	0.000%
10	18.678	-28.409	10.732	-18.678	28.409	-10.732	
11	18.678	- 21.307	10.732	-18.678	21.307	-10.732	0.000% 0.000%
12	10.836	-28.409	18.784	-10.836	28.409	-18.784	
13	10.836	-21.307	18.784	-10.836	21.307	-18.784	0.000% 0.000%
14	-0.053	-28.409	21.596	0.053	28.409	-21.596	
15	-0.053	-21.307	21.596	0.053	21.307	-21.596	0.000%
16	-10.899	-28.409	18.787	10.899	28.409	-18.787	0.000%
17	-10.899	-21.307	18.787	10.899	21.307	-18.787	0.000%
18	-18,825	-28.409	10.877	18.825	28.409	-10.877	0.000%
19	-18.825	-21.307	10.877	18.825	21.307	- 10.877	0.000%
20	-21.599	-28.409	0.053	21.599	28.409	-0.053	0.000%
21	-21.599	-21.307	0.053	21.599	21.307	-0.053	0.000%
22	-18.708	-28.409	-10.749	18.708	28.409	10.749	0.000%
23	-18.708	-21.307	-10.749	18.708	21.307	10.749	0.000%
24	-10.836	-28.409	-18.784	10.836	28.409	18.784	0.000%
25	-10.836	-21.307	-18.784	10.836	21.307	18.784	0.000%
26	0.000	- 57.887	0.000	0.000	57.887	0.000	0.000%
27	0.010	-57.887	-4.669	-0.010	57.887	4.669	0.000%
28	2,357	<i>-5</i> 7.887	-4,058	-2.357	57.887	4.058	0.000%
29	4.063	-57.887	-2.343	-4.063	57.887	2,343	0.000%
30	4.686	-57.887	-0.010	-4.686	57.887	0.010	0.000%
31	4.054	-57.887	2.326	-4.054	57.887	-2.326	0.000%
32	2.341	-57.887	4.048	-2.341	57.887	-4.048	0.000%
33	-0.010	-57.887	4.669	0.010	57.887	-4.669	0.000%
34	-2.357	-57.887	4.058	2.357	57.887	-4.058	0.000%
35	-4.073	-57.887	2.348	4.073	57.887	-2.348	0.000%
36	-4,686	-57.887	0.010	4.686	57.887	-0.010	0.000%
37	-4.063	-57.887	-2.332	4.063	57.887	2.332	0.000%
38	-2.341	-57.887	-4.048	2.341	57.887	4.048	0.000%
39	0.011	-23.675	-4.470	-0.011	23.675	4.470	0.000%
40	2.260	-23.675	-3.895	-2.260	23.675	3.895	0.000%
41	3.871	-23.675	-2.236	- 3.871	23.675	2.236	0.000%
42	4.478	-23.675	-0.011	-4.478	23.675	0.011	0.000%
43	3.873	-23.675	2.225	-3.873	23.675	-2.225	0.000%
44	2.247	-23.675	3.895	-2.247	23.675	-3.895	0.000%
45	-0.011	-23.675	4.478	0.011	23.675	-4.478	0.000%
46	-2.260	-23.675	3.895	2.260	23,675	-3.895	0.000%
47	-3.903	-23,675	2.255	3.903	23.675	-2.255	0.000%
48	-4.478	-23.675	0.011	4.478	23.675	-0.011	0.000%
49	-3.879	-23.675	-2.229	3.879	23.675	2.229	0.000%
50	-2.247	-23.675	-3.895	2.247	23.675	3.895	0.000%

Non-Linear Convergence Results

		A STATE OF THE STA	The second secon	
Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

1.	оь 85565.009.01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	Page 33 of 42
F	roject	Date 15:01:04 09/21/18
ſ	lient Crown Castle	Designed by xjones

2	Yes	5	0.00000001	0.00012702
3	Yes	5 5	0.00000001	0.00004883
4	Yes	6	0.00000001	0.00031467
5	Yes	6	0.00000001	0.00009576
6	Yes	6	0.00000001	0.00032480
7	Yes	6	0.00000001	0.00009926
8	Yes	5	0.00000001	0.00023716
9	Yes	5	0.00000001	0.00010321
10	Yes	6	0.00000001	0.00031371
11	Yes	6	0.00000001	0.00009602
12	Yes	6	0.00000001	0.00031323
13	Yes	6	0.00000001	0.00009594
14	Yes	5	0.00000001	0.00026238
15	Yes	5	0.0000001	0.00010962
16	Yes	6	0.00000001	0.00032673
17	Yes	6	0.00000001	0.00009964
18	Yes	6	0.00000001	0.00031562
19	Yes	6	0.00000001	0.00009591
20	Yes	5	0.00000001	0.00010467
21	Yes	5	0.00000001	0.00004298
22	Yes	6	100000001	0.00031745
23	Yes	6	0.00000001	0.00009714
24	Yes	6	0.00000001	0.00031888
25	Yes	6	0.0000001	0.00009744
26	Yes	4	0.00000001	0.00087120
27	Yes	6	0.00000001	0.00064281
28	Yes	6	0.00000001	0.00076584
29	Yes	6	0.00000001	0.00077081
30	Yes	6	0.00000001	0.00062599
31	Yes	6	0.0000001	0.00075040
32	Yes	6	0.0000001	0.00075007
33	Yes	6	0.00000001	0.00063389
34	Yes	6	0.0000001	0.00079055
35	Yes	6	0.0000001	0.00078648
36	Yes	6	0.0000001	0.00065266
37	Yes	6	0.00000001	0.00079359
38	Yes	6	0.00000001	0.00079283
39	Yes	4	0.00000001	0.00034031
40	Yes	5	0.00000001	0.00008515
41	Yes	5	0.00000001	0.00009411
42	Yes	4	0.00000001	0.00034391
43	Yes	5	0.00000001	0.00008534
44	Yes	5	0.00000001	0.00008500
45	Yes	4	0.00000001	0.00035825
46	Yes	5	0.00000001	0.00009604
47	Yes	5	0.00000001	0.00008662
48	Yes	4	0.00000001	0.00033004
49	Yes	5	0.00000001	0.00009048
50	Yes	5	0.00000001	0.00009122

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
Ll	108 - 103	14.579	47	1.401	0.004
L2	103 - 98.5	13.117	47	1.385	0.003
L3	98.5 - 98	11.858	47	1.269	0.002
L4	98 - 93	11.726	47	1.266	0.002
L5	93 - 88	10.430	47	1.203	0.001

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

_	Job	Page
	85565.009.01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	34 of 42
	Project	Date
		15:01:04 09/21/18
	Client	Designed by
	Crown Castle	xiones

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	0
L6	88 - 83	9.217	47	1.108	0.001
L7	83 - 82.33	8.118	47	0.989	0.001
L8	82.33 - 82.08	7.980	47	0.972	0.001
L9	82.08 - 77.08	7.929	47	0.968	0.001
L10	77.08 - 76.25	6.959	47	0.884	0.001
L11	76.25 - 76	6.806	47	0.869	0.001
L12	76 - 74.5	6.761	47	0.865	0.001
L13	74.5 - 74.25	6.492	47	0.846	0.001
L14	74.25 - 69.25	6.448	47	0.843	0.001
L15	69.25 - 64,25	5.595	47	0.786	0.001
L16	64.25 - 59.25	4.804	47	0.724	0.000
L17	59.25 - 58.08	4.081	47	0.657	0.000
L18	58.08 - 57.73	3.922	47	0.641	0.000
L19	57.73 - 57.5	3.875	47	0.638	0.000
L20	57.5 - 52.5	3.844	47	0.635	0.000
L21	52.5 - 47	3.208	47	0.579	0.000
L22	50.25 - 45.25	2.941	47	0.554	0.000
L23	45.25 - 40.5	2.378	47	0.516	0.000
L24	40.5 - 40.25	1.891	47	0.461	0.000
L25	40.25 - 35.25	1.867	47	0.458	0.000
L26	35.25 - 30.25	1.419	47	0.398	0.000
L27	30.25 - 27.75	1.034	47	0.337	0.000
L28	27.75 - 27.5	0.865	47	0.306	0.000
L29	27.5 - 22.5	0.849	47	0.303	0.000
L30	22.5 - 19.5	0.563	47	0.243	0.000
L31	19.5 - 19.25	0.422	47	0.207	0.000
L32	19.25 - 14.25	0.411	47	0.204	0.000
L33	14.25 - 14	0.225	47	0.150	0.000
L34	14 - 13.75	0.217	47	0.148	0.000
L35	13.75 - 12.98	0.210	47	0.145	0.000
L36	12.98 - 12.73	0.187	47	0.137	0.000
L37	12.73 - 7.73	0.180	47	0.135	0.000
L38	7.73 - 2.73	0.066	47	0.082	0.000
L39	2.73 - 0	0.008	47	0.029	0.000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	٥	o	ft
105.000	BXA-70063/6CF w/ Mount Pipe	47	13.698	1.409	0.004	4118
98.000	APXV9ERR18-C-A20 w/ Mount Pipe	47	11.726	1.266	0.002	3111
96.000	PCS 1900MHz 4x45W-65MHz	47	11.200	1.249	0.002	3801
81.000	HBX-6516DS-VTM w/ Mount Pipe	47	7.712	0.952	100.0	3021
74.000	KS24019-L112A	47	6.404	0.840	0.001	4519

Maximum Tower Deflections - Design Wind

Page 122 - 12 - 12 - 12 - 12 - 12 - 12 - 12		7 14 - 1300 137 1 17 1 17 14 17 18 1		- 2/2/22/04/24/24 2 - 1/2/24 24 - 1/2/2/24 24 24/24/24	104 - 112 -
Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	O

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

 Job		Page	
85565.009.01 - HARTF	FORD - NU (SSUSA),CT (BU# 876363)	35 of 42	
Project	Date		
		15:01:04 09/21/18	
Client		Designed by	
	Crown Castle	xjones	

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	٥
Ll	108 - 103	70.019	18	6.669	0.018
L2	103 - 98.5	63.072	18	6.610	0.015
L3	98.5 - 98	57.066	18	6.091	0.009
L4	98 - 93	56.431	18	6.079	0.009
L5	93 - 88	50.225	18	5.783	0.007
L6	88 - 83	44.409	18	5.333	0.006
L 7	83 - 82.33	39.125	18	4.765	0.004
L8	82.33 - 82.08	38.464	18	4.682	0.004
L9	82.08 - 77.08	38.220	18	4.664	0.004
L10	77.08 - 76.25	33.552	18	4.259	0.004
LII	76.25 - 76	32.819	18	4.188	0.003
L12	76 - 74.5	32.600	18	4,172	0.003
L13	74.5 - 74.25	31.306	18	4.077	0.003
L14	74.25 - 69.25	31.093	18	4.065	0.003
L15	69.25 - 64.25	26.983	18	3.792	0.003
L16	64.25 - 59.25	23.173	18	3.490	0.002
L17	59.25 - 58.08	19.688	18	3,171	0.002
L18	58.08 - 57.73	18.921	18	3.094	0.002
L19	<i>57.73 - 57.5</i>	18.695	18	3.076	0.002
L20	57.5 - 52.5	18.547	18	3.065	0.002
L21	52.5 - 47	15.480	18	2.796	0.002
L22	50.25 - 45.25	14.192	18	2.673	0.001
L23	45.25 - 40.5	11.474	18	2.491	0.001
L24	40.5 - 40.25	9.129	18	2.226	0.001
L25	40.25 - 35.25	9.013	18	2.212	0.001
L26	35.25 - 30.25	6.849	18	1.923	0.001
L27	30.25 - 27.75	4.990	18	1.628	0.001
L28	27.75 - 27.5	4.177	18	1.478	0.001
L29	27.5 - 22.5	4.100	18	1.464	0.001
L30	22.5 - 19.5	2.718	18	1.175	0.001
L31	19.5 - 19.25	2.035	18	1.000	0.000
L32	19.25 - 14.25	1.983	18	0.987	0.000
L33	14.25 - 14	1.086	18	0.726	0.000
L34	14 - 13.75	1.049	18	0.713	0.000
L35	13.75 - 12.98	1.012	18	0.700	0.000
L36	12.98 - 12.73	0.902	18	0.662	0.000
L37	12.73 - 7.73	0.867	18	0.649	0.000
L38	7.73 - 2.73	0.320	18	0.395	0.000
L39	2.73 - 0	0.040	18	0.140	0.000

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	٥	0	ft
105.000	BXA-70063/6CF w/ Mount Pipe	18	65.836	6.715	0.017	991
98.000	APXV9ERR18-C-A20 w/ Mount	18	56.431	6.079	0.009	701
	Pipe					
96.000	PCS 1900MHz 4x45W-65MHz	18	53.915	5.998	0.008	840
81.000	HBX-6516DS-VTM w/ Mount Pipe	18	37.176	4.587	0.004	641
74.000	KS24019-L112A	18	30.881	4.052	0.003	953

Compression Checks

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Јоь 85565.009.01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	96 of 42
Project	Date 15:01:04 09/21/18
Client Crown Castle	Designed by xjones

Pole Design Data

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_u	ϕP_n	Ratio P _u
140.	ft		fî	ft		in²	K	K	ϕP_n
LI	108 - 103 (1)	TP8.625x8.625x0.313	5.000	0.000	0.0	8.161	-2.394	257.065	0.009
L2	103 - 98.5 (2)	TP8.625x8.625x0.313	4.500	0.000	0.0	8.161	-2.607	257.065	0.010
L3	98.5 - 98 (3)	TP16.5x16.5x0.313	0.500	0.000	0.0	15.892	-2.652	500.599	0.005
L4	98 - 93 (4)	TP17.3x16.5x0.188	5.000	0.000	0.0	10.184	-6.781	756.639	0.009
			5.000	0.000	0.0	10.164	-7.110	791.081	0.009
L5	93 - 88 (5)	TP18.101x17.3x0.188							
L6	88 - 83 (6)	TP18.901x18.101x0.188	5.000	0.000	0.0	11,137	- 7.477	817.568	0.009
L7	83 - 82.33 (7)	TP19.008x18.901x0.188	0.670	0.000	0.0	11.201	-7.531	821.060	0.009
L8	82.33 - 82.08 (8)	TP19.048x19.008x0.325	0.250	0.000	0.0	19.314	-7.562	1434.920	0.005
L9	82.08 - 77.08 (9)	TP19.848x19.048x0.319	5.000	0.000	0.0	19.758	-9.100	1467.950	0.006
L10	77.08 - 76.25 (10)	TP19.981x19.848x0.319	0.830	0.000	0.0	19.893	-9.192	1477.940	0.006
L11	76.25 - 76 (11)	TP20.021x19.981x0.456	0.250	0.000	0.0	28.333	-9.237	2104.990	0.004
L12	76 - 74.5 (12)	TP20.261x20.021x0.45	1.500	0.000	0.0	28.297	-9.457	2102.300	0.004
			0.250	0.000	0.0	36.761	-9.508	2731.160	0.003
L13	74.5 - 74.25 (13)	TP20.301x20.261x0.588							
LI4	74.25 - 69.25 (14)	TP21.102x20.301x0.575	5.000	0.000	0.0	37.462	-10.402	2783.260	0.004
L15	69.25 - 64.25 (15)	TP21.902x21.102x0.55	5.000	0.000	0.0	37.274	-11.245	2769.280	0.004
L16	64.25 - 59.25 (16)	TP22.702x21.902x0.544	5.000	0.000	0.0	38.243	-12.108	2841.230	0.004
L17	59.25 - 58.08 (17)	TP22.89x22.702x0.538	1.170	0.000	0.0	38.133	-12.313	2833.100	0.004
L18	58.08 - 57.73 (18)	TP22.946x22.89x0.713	0.350	0.000	0.0	50.279	-12.395	3735.520	0.003
L19	57.73 - 57.5 (19)	TP22.982x22.946x0.713	0.230	0.000	0.0	50.363	-12.445	3741.700	0.003
L20	57.5 - 52.5 (20)	TP23.783x22.982x0.688	5.000	0.000	0.0	50.397	-13.502	3744.210	0.004
	` '		5.500	0.000	0.0	51.182	-13.987	3802.600	0.004
L21	52.5 - 47 (21)	TP24.663x23.783x0.688							
L22	47 - 45,25 (22)	TP24.568x23.768x0.75	5.000	0.000	0.0	56.699	-15.772	4212.440	0.004
L23	45.25 - 40.5 (23)	TP25.328x24.568x0.725	4.750	0.000	0.0	56.616	-16.914	4206.270	0.004
L24	40.5 - 40.25 (24)	TP25.368x25.328x0.725	0.250	0.000	0.0	56.708	-16.983	4213,110	0.004
L25	40.25 - 35.25 (25)	TP26.168x25.368x0.7	5.000	0.000	0.0	56.586	-18.197	4204.040	0.004
L26	35.25 - 30.25 (26)	TP26.969x26.168x0.688	5.000	0.000	0.0	57.349	-19.438	4260.730	0.005
L27	30.25 - 27.75 (27)	TP27.369x26.969x0.675	2.500	0.000	0.0	57.190	-20.067	4248.940	0.005
L28	27.75 - 27.5 (28)	TP27.409x27.369x0.725	0.250	0.000	0.0	61.403	-20.144	4561.970	0.004
L29	27.5 - 22.5 (29)	TP28.209x27.409x0.7	5.000	0.000	0.0	61.119	-21.472	4540.880	0.005
			3.000	0.000	0.0	61.103	-22,286	4539.660	0.005
L30	22.5 - 19.5 (30)	TP28.689x28.209x0.688							
L31	19.5 - 19.25 (31)	TP28.729x28.689x0.8	0.250	0.000	0.0	70.918	-22.366	5268.830	0.004
L32	19.25 - 14.25 (32)	TP29.529x28.729x0.775	5.000	0.000	0.0	70.731	-23.806	5254.990	0.005
L33	14.25 - 14 (33)	TP29.569x29.529x0.775	0.250	0.000	0.0	70.830	- 23.886	5262.310	0.005
L34	14 - 13.75 (34)	TP29.609x29.569x0.775	0.250	0.000	0.0	70.928	-23.964	5269.620	0.005
L35	13.75 - 12.98 (35)	TP29.733x29.609x0.8	0.770	0.000	0.0	73.466	-24.206	5458.140	0.004
L36	12.98 - 12.73	TP29.773x29.733x0.8	0.250	0.000	0.0	73.567	-24.291	5465.690	0.004

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Job		Page
85565.009.01 - HARTFO	RD - NU (SSUSA),CT (BU# 876363)	37 of 42
Project		Date 15:01:04 09/21/18
Client	rown Castle	Designed by xjones

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	fŧ		ft	ft		in²	K	K	ϕP_n
	(36)								
L37	12.73 - 7.73	TP30.573x29.773x0.788	5.000	0.000	0.0	74.449	-25.885	5531.210	0.005
	(37)								
L38	7.73 - 2.73 (38)	TP31.373x30.573x0.775	5.000	0.000	0.0	75.267	-27.504	5591.940	0.005
L39	2.73 - 0 (39)	TP31.81x31.373x0.763	2.730	0.000	0.0	75.140	-28.396	5582,560	0.005

Pole Bending Design Data

Section	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio	M_{uy}	ϕM_{ny}	Ratio
No.				•	M_{ux}	,	,	M_{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	108 - 103 (1)	TP8.625x8.625x0.313	13.847	56.708	0.244	0.000	56.708	0.000
L2	103 - 98.5 (2)	TP8.625x8.625x0.313	43.528	56,708	0.768	0.000	56.708	0.000
L3	98.5 - 98 (3)	TP16.5x16.5x0.313	46.863	214.977	0.218	0.000	214.977	0.000
L4	98 - 93 (4)	TP17.3x16.5x0.188	100.418	265.442	0.378	0.000	265.442	0.000
L5	93 - 88 (5)	TP18.101x17.3x0.188	156.343	290.644	0.538	0.000	290.644	0.000
L6	88 - 83 (6)	TP18.901x18.101x0.188	213.434	313.934	0.680	0.000	313.934	0.000
L7	83 - 82.33 (7)	TP19.008x18.901x0.188	221.180	317.100	0.698	0.000	317.100	0.000
L8	82.33 - 82.08	TP19.048x19.008x0.325	224.081	547.300	0.409	0.000	547.300	0.000
	(8)							
L9	82.08 - 77.08	TP19.848x19.048x0.319	287.498	584.613	0.492	0.000	584.613	0.000
	(9)							
L10	77.08 - 76.25	TP19.981x19.848x0.319	298.567	592.658	0.504	0.000	592.658	0.000
	(10)							
L11	76.25 - 76 (11)	TP20.021x19.981x0.456	301.915	834.092	0.362	0.000	834.092	0.000
L12	76 - 74.5 (12)	TP20.261x20.021x0.45	322.143	844.008	0.382	0.000	844.008	0.000
L13	74.5 - 74.25	TP20.301x20.261x0.588	325.539	1083.575	0.300	0.000	1083.575	0.000
	(13)							
L14	74.25 - 69.25	TP21.102x20.301x0.575	395.187	1151.775	0.343	0.000	1151.775	0.000
	(14)							
L15	69.25 - 64.25	TP21.902x21.102x0.55	467.702	1194.683	0.391	0.000	1194.683	0.000
	(15)							
L16	64.25 - 59.25	TP22.702x21.902x0.544	542.967	1273.533	0.426	0.000	1273.533	0.000
	(16)							
L17	59.25 - 58.08	TP22.89x22.702x0.538	560.979	1281.600	0.438	0.000	1281.600	0.000
7.40	(17)							
L18	58.08 - 57.73	TP22.946x22.89x0,713	566.398	1667.800	0.340	0.000	1667.800	0.000
Y 10	(18)	FFD00 000 00 046 0 510	540.045	1.550 400	0.041	0.000	1.70.100	0.000
L19	57.73 - 57.5	TP22.982x22.946x0.713	569.967	1673.408	0.341	0.000	1673.408	0.000
T 20	(19)	TP22 70200 0000 600	640.071	1740 242	0.050	0.000	1510 210	0.000
L20	57.5 - 52.5 (20)	TP23.783x22.982x0.688	649.071	1740.342	0.373	0.000	1740.342	0.000
L21	52.5 - 47 (21)	TP24.663x23.783x0.688	685.618	1795.842	0.382	0.000	1795.842	0.000
L22	47 - 45.25 (22)	TP24.568x23.768x0.75	769.112	2015.892	0.382	0.000	2015.892	0.000
L23	45.25 - 40.5	TP25.328x24.568x0.725	851.142	2083.383	0.409	0.000	2083.383	0.000
L24	(23)	TD05 260-26 200-0 725	055 522	2000.250	0.400	0.000	2000.250	0.000
L24	40.5 - 40.25	TP25.368x25.328x0.725	855.533	2090.258	0.409	0.000	2090.258	0.000
L25	(24) 40.25 - 35.25	TP26.168x25.368x0.7	944.725	2159.667	0.437	0.000	2159.667	0.000
1,23	(25)	TF20,108X23,306X0.7	944.723	2139.007	0.437	0.000	2139.007	0.000
L26	35.25 - 30.25	TP26.969x26.168x0.688	1036.608	2261.550	0.458	0.000	2261.550	0.000
1.20	(26)	11 20.909320.10830.088	10.50.006	2201.330	0.436	0.000	2201.530	0.000
L27	30.25 - 27.75	TP27.369x26.969x0.675	1083.542	2292.650	0.473	0.000	2292.650	0.000
144	(27)	11 27:307820:90980:073	1005.542	2272.030	0.473	0.000	2292.030	0.000
L28	27.75 - 27.5	TP27.409x27.369x0.725	1088.267	2456.125	0.443	0.000	2456.125	0.000
	(28)		1000.207	2120.123	U. 179	0.000	2750.125	0.000
L29	27.5 - 22.5 (29)	TP28.209x27.409x0.7	1184.200	2524,608	0.469	0.000	2524.608	0.000
	()							5.550

Job 85565.009.	01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	98 of 42
Project		Date 15:01:04 09/21/18
Client	Crown Castle	Designed by xjones

Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio Mux	M_{uy}	ϕM_{ny}	Ratio M _{uy}
	ft		kip-fi	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L30	22.5 - 19.5 (30)	TP28.689x28.209x0.688	1242.967	2571.375	0.483	0.000	2571.375	0.000
L31	19.5 - 19.25 (31)	TP28.729x28.689x0.8	1247.908	2964.833	0.421	0.000	2964.833	0.000
L32	19.25 - 14.25 (32)	TP29.529x28.729x0.775	1348.050	3049.425	0.442	0.000	3049.425	0.000
L33	14.25 - 14 (33)	TP29.569x29.529x0.775	1353.125	3058.033	0.442	0.000	3058.033	0.000
L34	14 - 13.75 (34)	TP29.609x29.569x0.775	1358.208	3066.650	0.443	0.000	3066.650	0.000
L35	13.75 - 12.98 (35)	TP29.733x29.609x0.8	1373.908	3184.783	0.431	0.000	3184.783	0.000
L36	12.98 - 12.73	TP29.773x29.733x0.8	1379.017	3193.717	0.432	0.000	3193.717	0.000
L37	12.73 - 7.73 (37)	TP30.573x29.773x0.788	1482.608	3326.458	0.446	0.000	3326.458	0.000
L38	7.73 - 2.73 (38)	TP31.373x30.573x0.775	1588.767	3458.483	0.459	0.000	3458.483	0.000
L39	2.73 - 0 (39)	TP31.81x31.373x0.763	1647.767	3506.025	0.470	0.000	3506.025	0.000

Pole	Shear	Design	Data
------	-------	--------	------

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.			V_u	·	V_u	T_{μ}		T_u
	fi		K	K	φ <i>V</i> _n	kip-ft	kip-ft	ϕT_n
L1	108 - 103 (1)	TP8.625x8.625x0.313	6.512	77.119	0.084	0.034	56.361	0.001
L2	103 - 98.5 (2)	TP8.625x8.625x0.313	6.659	77.119	0.086	0.206	56.361	0.004
L3	98.5 - 98 (3)	TP16.5x16.5x0.313	6.680	150.180	0.044	0.206	213.732	0.001
L4	98 - 93 (4)	TP17.3x16.5x0.188	11.067	178.734	0.062	0.294	262.022	0.001
L5	93 - 88 (5)	TP18.101x17.3x0.188	11.307	187.092	0.060	0.293	287.387	0.001
L6	88 - 83 (6)	TP18.901x18.101x0.188	11.537	195.451	0.059	0.293	313,923	0.001
L7	83 - 82.33 (7)	TP19.008x18.901x0.188	11.593	196.571	0.059	0.293	317.568	0.001
L8	82.33 - 82.08	TP19.048x19.008x0.325	11.614	338.958	0.034	0.293	536.655	0.001
	(8)							
L9	82.08 - 77.08	TP19.848x19.048x0.319	13.297	346.760	0.038	0.293	573.867	0.001
	(9)							
L10	77.08 - 76.25	TP19.981x19.848x0.319	13.380	349.119	0.038	0.293	581.831	0.001
	(10)							
L11	76.25 - 76 (11)	TP20.021x19.981x0.456	13.404	497.242	0.027	0.293	812.706	0.000
L12	76 - 74.5 (12)	TP20.261x20.021x0.45	13.571	496.605	0.027	0.293	822.904	0.000
L13	74.5 - 74.25	TP20.301x20.261x0.588	13.593	645.156	0.021	0.293	1048.425	0.000
	(13)							
L14	74.25 - 69.25	TP21.102x20.301x0.575	14.230	657.462	0.022	0.472	1116.583	0.000
	(14)							
L15	69.25 - 64.25	TP21.902x21.102x0.55	14.781	654.162	0.023	0.472	1161.008	0.000
	(15)							
L16	64.25 - 59.25	TP22.702x21.902x0.544	15.332	671.157	0.023	0.472	1239.267	0.000
	(16)							
L17	59.25 - 58.08	TP22.89x22.702x0.538	15.465	669.237	0.023	0.472	1247.775	0.000
	(17)							
L18	58.08 - 57.73	TP22.946x22.89x0.713	15.501	882.406	0.018	0.472	1609.742	0.000
	(18)						4.44.5.050	0.000
L19	57.73 - 57.5	TP22.982x22.946x0.713	15.528	883.867	0.018	0.472	1615.258	0.000
	(19)						4 400 040	0.000
L20	57.5 - 52.5 (20)	TP23.783x22.982x0.688	16.116	884,460	0.018	0.471	1683.958	0.000
L21	52.5 - 47 (21)	TP24.663x23.783x0.688	16.376	898.251	0.018	0.471	1738.517	0.000
L22	47 - 45.25 (22)	TP24.568x23.768x0.75	17.012	995.064	0.017	0.471	1946.908	0.000
L23	45.25 - 40.5	TP25.328x24.568x0.725	17.542	993,606	0.018	0.471	2016.542	0.000
	(23)		_		0.045	0.451	2022 202	0.000
L24	40.5 - 40.25	TP25.368x25.328x0.725	17.563	995.222	0.018	0.471	2023.300	0.000

Јов 85565.009.01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	99 of 42
Project	Date 15:01:04 09/21/18
Client Crown Castle	Designed by xjones

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.	ā		V_u		V_{u}	T_u		T_u
	ft		K	K	ϕV_n	kip-ft	kip-ft	ϕT_n
	(24)							
L25	40.25 - 35.25	TP26.168x25.368x0.7	18.116	993.081	0.018	0.471	2094.883	0.000
	(25)							
L26	35.25 - 30.25	TP26.969x26.168x0.688	18.648	1006,470	0.019	0.471	2196.858	0.000
	(26)							
L27	30.25 - 27.75	TP27.369x26.969x0.675	18.912	1003.690	0.019	0.471	2229.167	0.000
	(27)							
L28	27.75 - 27.5	TP27.409x27.369x0.725	18.928	1077.630	0.018	0.470	2383.258	0.000
	(28)							
L29	27.5 - 22.5 (29)	TP28,209x27.409x0.7	19.446	1072.650	0.018	0.470	2454.275	0.000
L30	22.5 - 19.5 (30)	TP28.689x28.209x0.688	19.748	1072.360	0.018	0.470	2502.142	0.000
L31	19.5 - 19.25	TP28,729x28.689x0.8	19.765	1244.610	0.016	0.470	2872.283	0.000
	(31)							
L32	19.25 - 14.25	TP29.529x28.729x0.775	20.295	1241.340	0.016	0.470	2959.658	0.000
	(32)							
L33	14.25 - 14 (33)	TP29.569x29.529x0.775	20.314	1243.060	0.016	0.470	2968.133	0.000
L34	14 - 13.75 (34)	TP29.609x29.569x0.775	20.341	1244.790	0.016	0.470	2976.617	0.000
L35	13.75 - 12.98	TP29.733x29.609x0.8	20.430	1289.320	0.016	0.470	3088.692	0.000
	(35)							
L36	12.98 - 12.73	TP29.773x29.733x0.8	20.452	1291,110	0.016	0.470	3097.483	0.000
	(36)							
L37	12.73 - 7.73	TP30.573x29.773x0.788	20.990	1306.580	0.016	0.470	3230.325	0.000
	(37)							
L38	7.73 - 2.73 (38)	TP31.373x30.573x0.775	21.485	1320.930	0.016	0.470	3362.567	0.000
L39	2.73 - 0 (39)	TP31.81x31.373x0.763	21.759	1318.710	0.017	0.470	3411.608	0.000

Pole	Interaction	Design Data	
	III LOI GOLIOII	Doolgii Data	

Section No.	Elevation	Ratio P _u	Ratio M_{ux}	Ratio M_{uy}	Ratio V_u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{nv}	${\phi V_n}$	ϕT_n	Ratio	Ratio	
L1	108 - 103 (1)	0.009	0.244	0.000	0.084	0.001	0.261	1.050	4.8.2
L2	103 - 98.5 (2)	0.010	0.768	0.000	0.086	0.004	0.786	1.050	4.8.2
L3	98.5 - 98 (3)	0.005	0.218	0.000	0.044	0.001	0.225	1.050	4.8.2
L4	98 - 93 (4)	0.009	0.378	0.000	0.062	0.001	0.391	1.050	4.8.2
L5	93 - 88 (5)	0.009	0.538	0.000	0.060	0.001	0.551	1.050	4.8.2
L6	88 - 83 (6)	0.009	0.680	0.000	0.059	0.001	0.693	1.050	4.8.2
L 7	83 - 82.33 (7)	0.009	0.698	0.000	0.059	0.001	0.710	1.050	4.8.2
L8	82.33 - 82.08 (8)	0.005	0.409	0.000	0.034	0.001	0.416	1.050	4.8.2
L9	82.08 - 77.08 (9)	0.006	0.492	0.000	0.038	0.001	0.499	1.050	4.8.2
L10	77.08 - 76.25 (10)	0.006	0.504	0.000	0.038	0.001	0.512	1.050	4.8.2

	Job	Page
Į	85565.009.01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	40 of 42
	Project	Date 15:01:04 09/21/18
	Client Crown Castle	Designed by xjones

Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Ratio V_u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	$\phi M_{n\nu}$	ϕV_n	φ <i>T_n</i>	Ratio	Ratio	
Lli	76.25 - 76 (11)	0.004	0.362	0.000	0.027	0.000	0.367	1.050	4.8.2
L12	76 - 74.5 (12)	0.004	0.382	0.000	0.027	0.000	0.387	1.050	4.8.2
L13	74.5 - 74.25 (13)	0.003	0.300	0.000	0.021	0.000	0.304	1.050	4.8.2
L14	74.25 - 69.25 (14)	0.004	0.343	0.000	0.022	0.000	0.347	1.050	4.8.2
L15	69.25 - 64.25 (15)	0.004	0.391	0.000	0.023	0.000	0.396	1.050	4.8.2
L16	64.25 - 59,25 (16)	0.004	0.426	0.000	0.023	0.000	0.431	1.050	4.8.2
L17	59.25 - 58.08 (17)	0.004	0.438	0.000	0.023	0.000	0.443	1.050	4.8.2
L18	58.08 - 57.73 (18)	0.003	0.340	0.000	0.018	0.000	0.343	1.050	4.8.2
L19	57.73 - 57.5 (19)	0.003	0.341	0.000	0.018	0.000	0.344	1.050	4.8.2
L20	57.5 - 52.5 (20)	0.004	0.373	0.000	0.018	0.000	0.377	1.050	4.8.2
L21	52.5 - 47 (21)	0.004	0.382	0.000	0.018	0.000	0.386	1.050	4.8.2
L22	47 - 45.25 (22)	0.004	0.382	0.000	0.017	0.000	0.386	1.050	4.8.2
L23	45.25 - 40.5 (23)	0.004	0.409	0.000	0.018	0.000	0.413	1.050	4.8.2
L24	40.5 - 40.25 (24)	0.004	0.409	0.000	0.018	0.000	0.414	1.050	4.8.2
L25	40.25 - 35.25 (25)	0.004	0.437	0.000	0.018	0.000	0.442	1.050	4.8.2
L26	35.25 - 30.25 (26)	0.005	0.458	0.000	0.019	0.000	0.463	1.050	4.8.2
L27	30.25 - 27.75 (27)	0.005	0.473	0.000	0.019	0.000	0.478	1.050	4.8.2
L28	27.75 - 27.5 (28)	0.004	0.443	0.000	0.018	0.000	0.448	1.050	4.8.2
L29	27.5 - 22.5 (29)	0.005	0.469	0.000	0.018	0.000	0.474	1.050	4.8.2
L30	22.5 - 19.5 (30)	0.005	0.483	0.000	0.018	0.000	0.489	1.050	4.8.2
L31	19.5 - 19.25 (31)	0.004	0.421	0.000	0.016	0.000	0.425	1.050	4.8.2
L32	19.25 - 14.25 (32)	0.005	0.442	0.000	0.016	0.000	0.447	1.050	4.8.2
L33	14.25 - 14 (33)	0.005	0.442	0.000	0.016	0.000	0.447	1.050	4.8.2
L34	14 - 13.75 (34)	0.005	0.443	0.000	0.016	0.000	0.448	1.050	4.8.2
L35	13.75 - 12.98 (35)	0.004	0.431	0.000	0.016	0.000	0.436	1.050	4.8.2
L36	12.98 - 12.73 (36)	0.004	0.432	0.000	0.016	0.000	0.436	1.050	4.8.2

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Jo 8	06 05565.009.01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	Page 41 of 42
P	roject	Date 15:01:04 09/21/18
C	Crown Castle	Designed by xjones

Section No.	Elevation	Ratio P_u	Ratio M_{ux}	Ratio M _{uy}	Ratio V_u	Ratio T_u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	$\overline{\qquad}$ ϕV_n	ϕT_n	Ratio	Ratio	
L37	12.73 - 7.73 (37)	0.005	0.446	0.000	0.016	0.000	0.451	1.050	4.8.2
L38	7.73 - 2.73 (38)	0.005	0.459	0.000	0.016	0.000	0.465	1.050	4.8.2
L39	2.73 - 0 (39)	0.005	0.470	0.000	0.017	0.000	0.475	1.050	4.8.2

Section Capacity Table

Section	Elevation	Component	Size	Critical	P	$\emptyset P_{allow}$	%	Pass
No.	ft	Туре	5126	Element	K	K	Capacity	Fail
L1	108 - 103	Pole	TP8.625x8.625x0.313	1	-2.394	269.918	**	**
L2	103 - 98.5	Pole	TP8.625x8.625x0.313	2	-2.607	269.918	**	**
L3	98.5 - 98	Pole	TP16.5x16.5x0.313	3	-2.652	525.629	**	**
L4	98 - 93	Pole	TP17.3x16.5x0.188	4	-6.781	794.471	**	**
L5	93 - 88	Pole	TP18.101x17.3x0.188	5	-7.110	830.635	**	**
L6	88 - 83	Pole	TP18.901x18.101x0.188	6	-7.477	858.446	**	**
L7	83 - 82.33	Pole	TP19.008x18.901x0.188	7	-7.531	862.113	**	**
L8	82.33 - 82.08	Pole	TP19.048x19.008x0.325	8	-7.562	1506.666	**	**
L9	82.08 - 77.08	Pole	TP19.848x19.048x0.319	9	-9.100	1541.347	**	**
L10	77.08 - 76.25	Pole	TP19.981x19.848x0.319	10	-9.192	1551.837	**	**
L11	76.25 - 76	Pole	TP20.021x19.981x0.456	11	-9.237	2210.239	**	**
L12	76 - 74.5	Pole	TP20.261x20.021x0.45	12	-9.457	2207.415	**	**
L13	74.5 - 74.25	Pole	TP20.301x20.261x0.588	13	- 9.508	2867.718	**	**
L14	74.25 - 69.25	Pole	TP21.102x20.301x0.575	14	-10.402	2922.423	水水	**
L15	69.25 - 64.25	Pole	TP21.902x21.102x0.55	15	-11.245	2907.744	**	**
LI6	64.25 - 59.25	Pole	TP22.702x21.902x0.544	16	-12.108	2983,291	**	**
L17	59.25 - 58.08	Pole	TP22.89x22.702x0.538	17	-12.313	2974.755	**	**
L18	58.08 - 57.73	Pole	TP22.946x22.89x0.713	18	-12.395	3922.296	**	**
L19	57.73 - 57.5	Pole	TP22.982x22.946x0.713	19	-12.445	3928.785	**	**
L20	57.5 - 52.5	Pole	TP23.783x22.982x0.688	20	-13.502	3931.420	**	**
L21	52.5 - 47	Pole	TP24.663x23.783x0.688	21	-13.987	3992.730	**	**
L22	47 - 45.25	Pole	TP24.568x23.768x0.75	22	-15.772	4423.062	**	**
L23	45.25 - 40.5	Pole	TP25.328x24.568x0.725	23	-16.914	4416.583	**	**
L24	40.5 - 40.25	Pole	TP25.368x25.328x0.725	24	-16.983	4423.765	**	**
L25	40.25 - 35.25	Pole	TP26.168x25.368x0.7	25	-18.197	4414.242	**	**
L26	35.25 - 30.25	Pole	TP26.969x26.168x0.688	26	-19.438	4473.766	**	**
L27	30.25 - 27.75	Pole	TP27.369x26.969x0.675	27	-20.067	4461.387	**	**
L28	27.75 - 27.5	Pole	TP27.409x27.369x0.725	28	-20.144	4790.068	**	**
L29	27.5 - 22.5	Pole	TP28.209x27.409x0.7	29	-21.472	4767.924	**	**
L30	22.5 - 19.5	Pole	TP28.689x28.209x0.688	30	-22.286	4766.643	**	**
L31	19.5 - 19.25	Pole	TP28.729x28.689x0.8	31	-22.366	5532.271	**	**
L32	19.25 - 14.25	Pole	TP29.529x28.729x0.775	32	-23.806	5517.739	**	**
L33	14.25 - 14	Pole	TP29.569x29.529x0.775	33	-23,886	5525.425	**	**
L34	14 - 13.75	Pole	TP29.609x29.569x0.775	34	- 23.964	5533.101	**	**
L35	13.75 - 12.98	Pole	TP29.733x29.609x0.8	35	-24.206	5731.047	**	**
L36	12.98 - 12.73	Pole	TP29.773x29.733x0.8	36	-24.291	5738.974	**	**
L37	12.73 - 7.73	Pole	TP30.573x29.773x0.788	37	-25.885	5807.770	**	**
L38	7.73 - 2.73	Pole	TP31.373x30.573x0.775	38	-27.504	5871.537	**	**
L39	2.73 - 0	Pole	TP31.81x31.373x0.763	39	-28.396	5861.688	**	**
							Summary	
						Pole (L2)	**	**

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Job 85565.009.01 - HARTFORD - NU (SSUSA),CT (BU# 876363)	Page 42 of 42
Project	Date 15:01:04 09/21/18
Client Crown Castle	Designed by Xjones

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	$gP_{allow} \ K$	% Capacity	Pass Fail
						RATING =	**	**

Program Version 8.0.4.0

^{**} Additional Calculations in Appendix C

APPENDIX B BASE LEVEL DRAWING

BUSINESS UNIT: 876363

APPENDIX C ADDITIONAL CALCULATIONS

Site BU: 876363 Work Order: 1626542

				•					
Pok	Pole Geometry							Copyright ©	Copyright © 2018 Crown Castle
	Pole Height Above		Lap Splice Length			Bottom Diameter			
	Base (ft)	Section Length (ft)	£	Number of Sides	Number of Sides Top Diameter (in)	(in)	Wall Thickness (in)	Bend Radius (in)	Pole Material
	108	9.5	0	0	8.625	8.625	0.3125		A53-8-35
	98.5	0.5	0	6	16.50	16.5	0.3125		A53-8-35
	86	51	3.25	18	16.50	24.663	0.1875	Auto	A607-65
ľ	4 50.25	50,25	0	18	23.77	31.81	0.25	Auto	A607-65
_									
		,							

Reinforcement Configuration

200	П	\neg	\neg	_	188	M	. 1	3.5	ġ.	ш	1	Т	-Т	П
18	24	_	_	_	ند. ا	ш	ш å	Э	ш	3	-	4	4	4
17	E	_	4	4	4	_	_	4	4	_	4	-	4	_
11 12 13 14 15 16	Ц	_	<u> </u>		4	4	4	_	_	4	_	_	_	4
- 21	Ц	ш	<u>ن</u>	3										╝
14													\perp	╝
13	u.													╝
12				Ì	E	E	3	w			l			
11	П		Ì					П		ш				1
9	П	7								٦			T	╗
σn	П										Е			٦
60	Ü	. Li	w	ш					╗	╗		7	T	ヿ
7	Н		-			_			1	1	1	1	7	┨
9	H	7	_	\exists	┪	S E	щ	, u	, E	ш	\dashv	\dashv	7	┪
un.	H				┪	9.3	, A.		:		1	\dashv	7	7
4	H	\dashv	ᅦ	-1	e e				1	-	_	\dashv	┪	┪
m	E	w	. ш	ш	T		-				1	┪	7	┪
	H			-	_	-					ᅥ	\dashv	ᅥ	┪
1 2	Н	\dashv	-	\dashv						\dashv	+	ं) 	┨
	\vdash		_		i		-				\dashv	2,2	7,11	┪
Number	4	3	m	3	3	3	3	3	2	e	1	2	H	
Model	VS-1.25X5.25	VS-1,25X5.25	VS-1.25X4.375	VS-1.25X4	MP3-05 (1.1875in)	MP3-05 (1.1875in)	MP3-05 (1.1875in)	MP3-03 (1.1875in)	MP3-03 (1,1875in)	MP3-03 (1.1875in)	CCI-SFP-045100	CCI-SFP-045100	CCI-SFP-045100	
Type	plate	plate	plate	plate	channel	channel	channel	channel	channel	channel	plate	plate	plate	
Top Effective Flevation (#)	13	27.75	57.75	76,25	13,08	40.5	58.08	74.5	76.25	82.33	13	14	19.5	
Bottom Effective	0	13	27.75	57.75	0	13.08	40.5	58.08	74.5	76.25	0	13	14	
	F	~	٣	4	2	9	7	80	ď	ដ	11	12	13	14

Reinforcement Details

Ş	Reimorcement Details	Idilis								
L	-				Bottom	Top				
				Pole Face to	Termination	Termination				Reinforcement
	B (in)	H(in)	Gross Area (in²)	Centroid (in)	Length (in)	Length (in)	L _u (in)	Net Area (in²)	Bolt Hole Size (in)	Material
	1 5.25	1,25	6.5625	0,625	24.000	24.000	18,000	4.961	1.2188	A572-65
Ľ	2 5.25	1.25	6.5625	0,625	24.000	24.000	18.000	4.961	1.2188	A572-65
	3 4,375	1.25	5.46875	0.625	n/a	24.000	21,000	3.867	1.2188	A572-65
Ĺ	4	1.25	5	0,625	n/a	21.000	21,000	3.398	1.2188	A572-65
	5 5.33	2.09	5.65	0.79	29,000	29.000	18,000	5.025	1.1875	A572-65
	5.33	2.09	5,65	0.79	29.000	29,000	18.000	5.025	1.1875	A572-65
	7 5.33	2.09	5.65	0.79	29.000	29.000	18.000	5.025	1.1875	A572-65
	8 4.06	1.57	2.92	0.59	14.000	14,000	18.000	2,545	1.1875	A572-65
		1.57	2.92	0.59	14.000	14.000	18,000	2,545	1.1875	A572-65
Ĭ	10 4,06	1.57	2:92	0.59	14,000	14.000	18,000	2.545	1,1875	A572-65
	11 4.5	1	4.5	0.5	18.000	18.000	20,000	3.250	1,1875	A572-65
_	12 4.5	1	4.5	0.5	18.000	18.000	20.000	3,250	1.1875	A572-65
	13 4,5	1	4.5	0,5	18.000	18,000	20.000	3.250	1.1875	A572-65

TNX Geometry Input

increment (ft):	5

	rement (ft): 5	1	Lap Splice Length			Bottom Diameter		Tapered Pole	Weight
	Section Height (ft)	Section Length (ft)	(ft)	Number of Sides	Top Diameter (in)	(in)	Wall Thickness (in)	Grade	Multiplier
1	108 - 103	5		0	8.625	8.625	0.3125	A53-B-35	1.000
2	103 - 98.5	4.5	0	0	8,625	8.625	0.3125	A53-B-35	1.000
3	98.5 - 98	0.5	0	. 0	16,500	16.500	0.3125	A53-B-35	1.000
4	98 - 93	5		18	16,500	17.300	0.1875	A507-65	1.000
5	93 - 88	5		18	17.300	18.101	0.1875	A607-65	1.000
6	88 - 83	5		18	18.101	18.901	0.1875	A607-65	1.000
7	83 - 82.33	0.67	1.	18	18.901	19.008	0.1875	A607-65	1.000
8	82.33 - 82.08	0.25		18	19.008	19.048	0.325	A607-65	1.035
9	82.08 - 77.08	5		18	19.048	19.848	0.31875	A607-65	1.036
10	77.08 - 76.25	0.83	4.	18	19.848	19.981	0.31875	A607-65	1.033
11	76.25 - 76	0.25		18	19.981	20.021	0.45625	A607-65	1.152
12	76 - 74.5	1.5	·	18	20.021	20.261	0.45	A607-65	1.159
13	74.5 - 74.25	0.25		18	20.261	20.301	0.5875	A607-65	0.972
14	74.25 - 69.25	5		18	20.301	21.102	0.575	A607-65	0,967
15	69.25 - 64.25	5		18	21.102	21.902	0.55	A607-65	0.984
16	64.25 - 59.25	5		18	21.902	22.702	0.54375	A607-65	0.972
17	59.25 - 58.08	1.17		18	22.702	22.890	0.5375	A607-65	0.977
18	58.08 - 57.73	0.35		18	22.890	22.946	0.7125	A607-65	0.933
19	57.73 - 57.5	0.23		18	22.946	22.982	0.7125	A607-65	0.932
20	57.5 - 52.5	5		18	22.982	23.783	0.6875	A607-65	0.941
21	52.5 - 50.25	5.5	3.25	18	23.783	24.663	0.6875	A607-65	0.930
22	50.25 - 45.25	5		18	23.768	24.568	0.75	A607-65	0.929
23	45.25 - 40.5	4.75	•	18	24,568	25.328	0.725	A607-65	0.941
24	40.5 - 40.25	0.25		18	25.328	25.368	0.725	A607-65	0.940
25	40.25 - 35.25	5		18	25.368	26.168	0.7	A607-65	0.953
26	35.25 - 30.25	5		18	26.168	26.969	0.6875	A607-55	0.951
27	30.25 - 27.75	2.5		18	26.969	27,369	0.675	A607-65	0.960
28	27.75 - 27.5	0.25		18	27.369	27.409	0.725	A607-65	0.948
29	27.5 - 22.5	5		18	27.409	28.209	0.7	A607-65	0.952
30	22.5 - 19.5	3		18	28.209	28.689	0.6875	A607-65	0.969
31	19.5 - 19.25	0.25		18	28.689	28,729	0.8	A607-65	0.899
32	19.25 - 14.25	5		18	28.729	29,529	0.775	A607-65	0.910
33	14.25 - 14	0.25		18	29.529	29.569	0.775	A607-65	0.909
34	14 - 13.75	0.25		18	29.569	29.609	0.775	A607-65	0.972
35	13.75 - 12.98	0.77		18	29.609	29.733	8.0	A607-65	0.968
36	12.98 - 12.73	0.25		18	29.733	29.773	0.8	A607-65	0.967
37	12.73 - 7.73	5		18	29.773	30.573	0.7875	A607-65	0.964
38	7.73 - 2.73	5		18	30,573	31.373	0.775	A607-65	0.962
39	2.73 - 0	2.73		18	31.373	31.810	0.7625	A607-65	0.968

TNX Section Forces

In	crement (ft):	5		1	ΓΝΧ Outpι	ıt
	T	•	• •			M _{ux} (kip-	
	Section	He	ight (ft)	P _u (K)	ft)	V _u (K)
1	108	-	103		2.39	13.85	6.51
2	103	-	98.5		2.61	43.53	6.66
3	98.5	-	98		2.65	46.86	6.68
4	98	-	93		6.78	100.42	11.07
5	93	-	88	•	7.11	156.34	11.31
6	88	-	83		7.48	213.43	11.54
7	83	-	82.33		7.53	221.18	11.59
8	82.33	-	82.08		7.56	224.08	11.61
9	82.08	-	77.08		9.10	287.50	13.30
10	77.08	-	76.25		9.19	298.57	13.38
11	76.25	-	76		9.24	301.91	13.40
12	76	_	74.5		9.46	322.14	13.57
13	74.5	-	74.25		9.51	325.54	13.59
14	74.25	-	69.25		10.40	395.19	14.23
15	69.25	-	64.25		11.24	467.70	14.78
16	64.25	-	59.25		12.11	542.97	15.33
17	59.25	-	58.08		12.31	560.98	15.47
18	58.08	-	57.73		12.39	566.40	15.50
19	57.73	-	57.5		12.44	569.97	15.53
20	57.5	-	52.5		13.50	649.07	16.12
21	52.5	-	50.25		13.99	685.62	16.38
22	50.25	_	45.25		15.77	769.11	17.01
23	45.25	-	40.5		16.91	851.14	17.54
24	40.5	-	40.25		16.98	855.53	17.56
25	40.25		35.25		18.20	944.72	18.12
26	35.25	-	30.25		19.44	1036.61	18.65
27	30.25	-	27.75		20.07	1083.54	18.91
28	27.75	-	27.5		20.14	1088.27	18.93
29	27.5	-	22.5		21.47	1184.20	19.45
30	22.5	<u>-</u>	19.5	[22.29	1242.97	19.75
31	19.5	-	19.25		22.37	1247.91	19.77
32	19.25	-	14.25	ļ	23.81	1348.05	20.29
33	14.25	-	14		23.89	1353.13	20.31
34	14	-	13.75		23.96	1358.21	20.34
35	13.75	-	12.98		24.21	1373.90	20.43
36	12.98	-	12.73		24.29	1379.01	20.45
37	12.73	-	7.73	ļ	25.88	1482.61	20.99
38	7.73	-	2.73		27.50	1588.77	21.48
39	2.73	-	.0		28.40	1647.77	21.76

Analysis Results

Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fail
108 - 103	Pole	TP8.625x8.625x0.3125	Pole	24.4%	Pass
103 - 98.5	Pole	TP8.625x8.625x0.3125	Pole	74.3%	Pass
98.5 - 98	Pole	TP16.5x16.5x0.3125	Pole	21.3%	Pass
98 - 93	Pole	TP17.3x16.5x0.1875	Pole	36.9%	Pass
93 - 88	Pole	TP18.101x17.3x0.1875	Pole	52.2%	Pass
88 - 83	Pole	TP18.901x18.101x0.1875	Pole	65.7%	Pass
83 - 82.33	Pole	TP19.008x18.901x0.1875	Pole	67.4%	Pass
82.33 - 82.08	Pole + Reinf.	TP19.048x19.008x0.325	Reinf. 10 Tension Rupture	57.4%	Pass
82.08 - 77.08	Pole + Reinf.	TP19.848x19.048x0.3188	Reinf. 10 Tension Rupture	69.0%	Pass
77.08 - 76.25	Pole + Reinf.	TP19.981x19.848x0.3188	Reinf. 10 Tension Rupture	70.8%	Pass
76.25 - 76	Pole + Reinf.	TP20.021x19.981x0.4563	Reinf. 4 Tension Rupture	55.8%	Pass
76 - 74.5	Pole + Reinf.	TP20.261x20.021x0.45	Reinf. 4 Tension Rupture	58.5%	Pass
74.5 - 74.25	Pole + Reinf.	TP20.301x20.261x0.5875	Reinf. 4 Tension Rupture	51.3%	Pass
74.25 - 69.25	Pole + Reinf.	TP21.102x20.301x0.575	Reinf. 4 Tension Rupture	59.1%	Pass
69.25 - 64.25	Pole + Reinf.	TP21.902x21.102x0.55	Reinf. 4 Tension Rupture	66.6%	Pass
64.25 - 59.25	Pole + Reinf.	TP22.702x21.902x0.5438	Reinf. 4 Tension Rupture	73.7%	Pass
59.25 - 58.08	Pole + Reinf.	TP22.89x22.702x0.5375	Reinf. 4 Tension Rupture	75.3%	Pass
58.08 - 57.73	Pole + Reinf.	TP22.946x22.89x0.7125	Reinf, 3 Tension Rupture	56.3%	Pass
57.73 - 57.5	Pole + Reinf.	TP22.982x22.946x0.7125	Reinf. 3 Tension Rupture	56.6%	Pass
57.5 - 52.5	Pole + Reinf.	TP23.783x22.982x0.6875	Reinf. 3 Tension Rupture	61.8%	Pass
52.5 - 50.25	Pole + Reinf.	TP24.663x23.783x0.6875	Reinf. 3 Tension Rupture	64.0%	Pass
50.25 - 45.25	Pole + Reinf.	TP24.568x23.768x0.75	Reinf. 3 Tension Rupture	64.3%	Pass
45.25 - 40.5	Pole + Reinf.	TP25.328x24.568x0.725	Reinf. 3 Tension Rupture	68.4%	Pass
40.5 - 40.25	Pole + Reinf.	TP25.368x25.328x0.725	Reinf. 3 Tension Rupture	68.6%	Pass
40.25 - 35.25	Pole + Reinf.	TP26.168x25.368x0.7	Reinf. 3 Tension Rupture	72.7%	Pass
35.25 - 30.25	Pole + Reinf.	TP26.969x26.168x0.6875	Reinf. 3 Tension Rupture	76.6%	Pass
30.25 - 27.75	Pole + Reinf.	TP27.369x26.969x0.675	Reinf. 3 Tension Rupture	78.4%	Pass
27.75 - 27.5	Pole + Reinf.	TP27.409x27.369x0.725	Reinf, 2 Tension Rupture	69.5%	Pass
27.5 - 22.5	Pole + Reinf.	TP28.209x27.409x0.7	Reinf. 2 Tension Rupture	72.7%	Pass
22.5 - 19.5	Pole + Reinf.	TP28.689x28.209x0.6875	Reinf. 2 Tension Rupture	74.6%	Pass
19.5 - 19.25	Pole + Reinf.	TP28.729x28.689x0.8	Reinf. 2 Tension Rupture	69.6%	Pass
19.25 - 14.25	Pole + Reinf.	TP29.529x28.729x0.775	Reinf. 2 Tension Rupture	72.5%	Pass
14.25 - 14	Pole + Reinf.	TP29.569x29.529x0.775	Reinf. 2 Tension Rupture	72.7%	Pass
14 - 13.75	Pole + Reinf.	TP29.609x29.569x0.775	Reinf. 2 Tension Rupture	73.2%	Pass
13.75 - 12.98	Pole + Reinf.	TP29.733x29.609x0.8	Reinf. 1 Tension Rupture	69.2%	Pass
12.98 - 12.73	Pole + Reinf.	TP29.773x29.733x0.8	Reinf. 1 Tension Rupture	69.3%	Pass
12.73 - 7.73	Pole + Reinf.	TP30.573x29.773x0.7875	Reinf. 1 Tension Rupture	72.0%	Pass
7.73 - 2.73	Pole + Reinf.	TP31.373x30.573x0.775	Reinf. 1 Tension Rupture	74.6%	Pass
2.73 - 0	Pole + Reinf.	TP31.81x31.373x0.7625	Reinf. 1 Tension Rupture	75.9%	Pass
***************************************		Commence of the state of the st	NONCONCERNACIONE PROPERTO DE LA CONTRACTOR DE LA CONTRACT	Summary	
			Pole	74.3%	Pass
			Reinforcement	78.4%	Pass
			Overall	78.4%	Pass

Additional Calculations

Section	Mon	ent of Inerti	a (in ⁴)		Area (in²)								% Сарас	ity*						
Elevation (ft)	Pole	Reinf.	Total	Pole	Reinf.	Total	Pole	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13
108 - 103.	71	n/a	71	8.15	n/a	8.16	24.4%					1								
103 - 98,5	71	n/ə	71	8.16	n/a	8.16	74.3%			T		i e	1	† —						
98.5 - 98	521	n/a	521	15.89	n/a	15.89	21.3%						1					_		t —
98 - 93	377	n/a	377	10.18	n/a	10.18	36.9%						†	 						
93 - 88	432	n/a	432	10.66	n/a	10.66	52.2%		ĺ								-			†
88 - 83	493	n/a	493	11,14	n/a	11.14	65.7%							· · · · ·						
83 - 82.33	501	n/a	501	11.20	n/a	11.20	87.4%						1							<u> </u>
82.33 - 82.08	506	356	863	11.22	8.76	19.98	41.5%										57.4%			<u> </u>
82.08 - 77.08	574	385	959	11.70	8.76	20.46	50,5%							<u> </u>			69.0%			
77.08 - 76.25	585	390	975	11.78	8.76	20,54	52.0%					i –		_			70.9%			†
76.25 - 76	611	787	1399	11.80	20.84	32.64	40.0%				55.8%				-	40.9%				
76 - 74.5	534	805	1439	11.95	20.84	32.79	42.1%		j		58.5%		1			42.9%				
74,5 - 74.25	514	1210	1824	11.97	23.76	35.73	30.9%				51.3%				45.8%	,0				
74.25 - 69.25	690	1300	1991	12.45	23.76	36.21	36.1%				59.1%		1		52.8%					
69.25 - 64.25	772	1394	2167	12.92	23.76	36,68	41.2%				66.6%				59.4%			_		
64.25 - 59.25	861	1515	2376	13.40	23.76	37.16	45,6%				73.7%	_			65.7%					_
59.25 - 58.08	883	1538	2421	13.51	23.76	37.27	45.7%		l —		75.3%	_			67.1%					—
58.08 - 57.73	889	2280	3169	13.54	33.36	46.90	35,9%			56.3%				50.4%						
57.73 - 57.5	893	2287	3180	13.57	33.36	46,92	38.1%			56.6%				50.6%						\vdash
57.5 - 52.5	990	2438	3428	14.04	33,36	47.40	39.9%			61.8%		<u> </u>		55.2%						
52.5 - 50.25	1036	2507	3543	14.26	33.36	47.61	41.8%			64.0%				57.2%						—
50.25 - 45.25	1445	2591	4036	19.30	33,36	52.65	38,4%			64.3%				57.0%						
45.25 - 40.5	1584	2743	4328	19.90	33.36	53.26	41.1%			68.4%				60.5%						
40.5 - 40.25	1592	2751	4343	19.93	33,36	53.29	41.3%			68.6%			60.7%							
40.25 - 35.2S	1749	2917	4665	20.57	33.36	53,92	44.1%			72.7%			64.3%							
35.25 - 30.25	1916	3087	5002	21.20	33.36	54.56	46.9%			76.6%			67.6%							
30.25 - 27.75	2003	3174	5177	21.52	33.36	54.87	48.2%			78,4%			69.3%							
27.75 - 27.5	2013	3466	5480	21.55	36.64	58.19	45.0%		69.5%				66.1%				-			_
27.5 - 22.5	2196	3660	5856	22.18	36.64	58.82	48,6%		72.7%				89.1%						1.	
22.5 - 19,5	2311	3778	6089	22.57	36.64	59.20	50.2%		74.6%				70.9%					-		$\overline{}$
19.5 - 19.25	. 2320	4614	6934	22.60	41.14	63.73	44.3%		69.6%				68,6%							64.7%
19.25 - 14.25	2521	4861	7381	23.23	41.14	64,37	46.6%		72.5%				71.4%							67.5%
14.25 - 14	2531	4873	7404	23.26	41.14	64,40	46.7%		72.7%				71.5%							67.6%
14 - 13.75	2550	4979	7529	23.30	45.64	68.93	47.1%		73.2%				66.7%					-	64.1%	U1.575
13.75 - 12.98	2570	5275	7845	23.39	47.70	71.09	44.6%	69.2%				58.5%	20 70		_			67.4%	J-1.1/Q	r. —
12.98 - 12.73	2581	5289	7870	23,43	47.70	71.13	44.7%	69.3%				58.6%						67.6%		/
12.73 - 7.73	2796	5562	8359	24.06	47.70	71.76	46,8%	72.0%				60.9%	-					70.2%		
7.73 - 2.73	3024	5843	8867	24.70	47.70	72.40	49.0%	74.6%				63.1%					—— f	72.8%		
2.73 - 0	3153	5999	9152	25.04	47.70	72.74	50.1%	75.9%				64.3%						74.1%		

Note: Section capacity checked in 5 degree increments.
Rating per TIA-222-H Section 15.5.

Monopole Base Plate Connection

Site Info	· · · · · · · · · · · · · · · · · · ·
BU#	876363
Site Name	artford - NU (SSUSA), C
Order#	85565.009.01

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	No
l _{ar} (in).	0

Applied Loads	
Moment (kip-ft)	1648.00
Axial Force (kips)	28.00
Shear Force (kips)	22.00

Connection Properties		Analysis Results	
Anchor Rod Data	Anchor Rod Summary		(units of kips, kip-in)
GROUP 1: (8) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 38" BC	GROUP 1:		
GROUP 2: (3) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 43.8" BC	Pu = 155.66	φPn = 243.75	Stress Rating
pos. (deg): 35, 135, 235	Vu = 2.75	φVn = 73.13	61.0%
	Mu = n/a	φMn = n/a	Pass
GROUP 3: (3) 2-1/4" ø bolts (A193 Gr. B7 N; Fy=105 ksi, Fu=125 ksi) on 43.5" BC			
pos. (deg): 55, 215, 315	GROUP 2:		
	Pu = 176.16	φPn = 243.75	Stress Rating
Base Plate Data	Vu = 0	φVn = 73.13	68.8%
36" OD x 2.5" Plate (F1554-55; Fy=55 ksi, Fu=75 ksi)	Mu = n/a	φMn = n/a	Pass
Stiffener Data	GROUP 3:		
N/A	Pu = 175.07	φPn = 341.25	Stress Rating
	Vu = 0	φVn = 102.38	48.9%
Pole Data	Mu = n/a	фМn = n/a	Pass
31.81" x 0.25" 18-sided pole (A607-65; Fy=65 ksi, Fu=80 ksi)	•	,	
	Base Plate Summary		
	Max Stress (ksi):	29.58	(Flexural)
	Allowable Stress (ksi):	49.5	
	Stress Rating:	56.9%	Pass

CCIplate - version 3.2.0 Analysis Date: 9/21/2018

Monopole Flange Plate Connection

BU#	876363
Site Name	artford - NU (SSUSA), (
Order#	85565.009.01

TIA-222 Revision	 Н	

Elevation = 98 ft.

Appli	ed Loads
Moment (kip-ft)	47.00
Axial Force (kips)	2.70
Shear Force (kips)	6.70

Top Plate - External

Bottom Plate - External

Connection Properties

Bolt Data

(9) 3/4" ø bolts (A325 N; Fy=92 ksi, Fu=120 ksi) on 19.5" BC

Top Plate Data

24" OD x 1" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Top Stiffener Data

N/A

Top Pole Data

8.625" x 0.3125" round pole (A53-B-35; Fy=35 ksi, Fu=60 ksi)

Bottom Plate Data

24" OD x 1" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Bottom Stiffener Data

N/A

Bottom Pole Data

16.5" x 0.1875" 18-sided pole (A607-65; Fy=65 ksi, Fu=80 ksi)

	Analy	sis Results			•	
	Bolt	Capacity				
·	Max Load (kips)	19.96		***		
	Allowable (kips)	30.04				
	Stress Rating:	63.3%	Pass			

		Stress Rating:	63.3%	Pass			
Top Plate Capacity				Bottom Plate Capacity			
Max Stress (ksi):	40.92	(Flexural)		Max Stress (ksi):	12.90	(Flexural)	
Allowable Stress (ksi):	45.00			Allowable Stress (ksi):	45.00	(
Stress Rating:	86.6%	Pass		Stress Rating:	27.3%	Pass	
Tension Side Stress Rating:	79.3%	Pass		Tension Side Stress Rating:	8.6%	Pass	

CCIplate - version 3.2.0 Analysis Date: 9/21/2018

Pier and Pad Foundation

BU # : 876363 Site Name: Hartford - NU (SSL App. Number: 457785 Rev. 0

Superstructure Analysis	Reactio	ns
Compression, P _{comp} :	28	kips
Base Shear, Vu_comp:	22	kips
Moment, M _u :	1648	ft-kips
Tower Height, H:	108	ft
BP Dist. Above Fdn, bp_{dist}	3	in_

Pier Propertie	S	
Pier Shape:	Square	
Pier Diameter, dpier:	- 5	ft
Ext. Above Grade, E:	0.5	ft
Pier Rebar Size, Sc:	11	
Pier Rebar Quantity, mc:	12	
Pier Tie/Spiral Size, St:	5	
Pier Tie/Spiral Quantity, mt:	12	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc _{pter} :	4	in

Pad Properties		
Depth, D:	7	ft
Pad Width, W :	21.5	ft
Pad Thickness, T:	3	ft
Pad Rebar Size, S p:	8	
Pad Rebar Quantity, mp:	22	
Pad Clear Cover, cc _{pad} :	4	in

Material Propert	ies	
Rebar Grade, Fy:	60000	psi
Concrete Compressive Strength, F'c:	3000	psi
Dry Concrete Density, δc:	150	pcf

Soil Properties	:	
Total Soil Unit Weight, γ:	111	pcf
Ultimate Gross Bearing, Qult:	6.900	ksf
Cohesion, Cu:	0.000	ksf
Friction Angle, φ:	32	degrees
SPT Blow Count, N _{blows} :		
Base Friction, μ:	0.35	
Neglected Depth, N:	3.30	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw:	10	ft

Block Foundation?:	L

Foundation Analysis Checks					
	Capacity	Demand	Rating*	Check	
Lateral (Clistica) (id-a)	000.74	00.00	10.07/	<u> </u>	
Lateral (Sliding) (kips)	203.71	22.00	10.3%	Pass	
Bearing Pressure (ksf)	5.18	1.91	35.2%	Pass	
Overturning (kip*ft)	3888.50	1818.50	46.8%	Pass	
Pier Flexure (Comp.) (kip*ft)	2022.59	1747.00	82.3%	Pass	
Pier Compression (kip)	11934.00	48.25	0.4%	Pass	
Pad Flexure (kip*ft)	2323.42	655.88	26.9%	Pass	
Pad Shear - 1-way (kips)	646.50	108.64	16.0%	Pass	
Pad Shear - 2-way (Comp) (ksi)	0.164	0.028	16.3%	Pass	
Flexural 2-way (Comp) (kip*ft)	1496.79	1048.20	66.7%	Pass	

*Rating per TIA-222-H Section 15.5

Soil Rating*:	46.8%
Structural Rating*:	82.3%

<--Toggle between Gross and Net

Address:

No Address at This Location

ASCE 7 Hazards Report

ASCE/SEI 7-10 Standard:

Risk Category: 11

Soil Class: D - Stiff Soil Elevation: 71.06 ft (NAVD 88)

Latitude: 41.750775 Longitude: -72.713675

Wind

Results:

Wind Speed:

122 Vmph

10-year MRI

76 Vmph

25-year MRI

86 Vmph

50-year MRI

100-year MRI

92 Vmph 100 Vmph

Data Source:

ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1-CC-4, incorporating errata of

March 12, 2014

Date Accessed:

Wed Sep 19 2018

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Site Soil Class: Results:	D - Stiff Soil		
S _s :	0.181	S _{DS} :	0.193
S ₁ :	0.064	S _{D1} :	0.102
F _a :	1.600	T _L :	6.000
F _v :	2.400	PGA:	0.091
S _{MS} :	0.290	PGA _M :	0.146
S _{M1} :	0.153	F _{PGA} :	1.600
		l _e :	1
Seismic Design Catego	ry B		
.25 .20 .15 .10	Response Spectrum	0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.08	Design Response Spectrum
o ^d o ⁿ o ⁿ o ⁿ o	T(s)	o go on	$S_a(g)$ vs $T(s)$

Data Accessed:

Wed Sep 19 2018

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness:

1.00 in.

Concurrent Temperature:

5 F

Gust Speed:

50 mph

Data Source:

Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed:

Wed Sep 19 2018

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Date: October 08, 2018

Charles McGuirt Crown Castle 3530 Toringdon Way, Suite 300 Charlotte, NC 28277 Charles.McGuirt@crowncastle.com

Engineered Tower Solutions, PLLC 8120 Sheridan Blvd, Suite A-311 Westminster, CO 80003 (919) 782-2710 brandon.little@ets-pllc.com

Subject:

Mount Structural Analysis

Contractor Designation:

Verizon Wireless Co-Locate

Carrier Site Number:

Carrier Site Name:

79283

West Hartford 4 CT

Crown Castle Designation:

Crown Castle BU Number: Crown Castle Site Name:

876363 HARTFORD - NU (SSUSA)

Crown Castle JDE Number:

528518

Crown Castle PO Number: Crown Castle Application Number:

1263856 457785 Rev. 0

Engineering Firm Designation:

ETS Project No.:

184431.14

Site Data:

219 New Park Road, Hartford, Hartford County, CT 06106-2949

Latitude: 41° 45' 2.79" Longitude: -72° 42' 49.23"

Structure Information:

Tower Height & Type:

108.0-ft Monopole

Mount Elevation:

105.0-ft

Mount Width & Type:

10.0-ft Sector Mount

Dear Charles McGuirt,

Engineered Tower Solutions, PLLC is pleased to submit this "Mount Structural Analysis Report" to determine the structural integrity of *Verizon Wireless* antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

Based upon our analysis, we have determined the adequacy of the antenna mounting system that will support the existing and proposed loading to be for the following Load Case:

Sector Mount (Multiple)

Sufficient Capacity

The analysis has been performed in accordance with the TIA-222-H Standard. This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the **2016 Connecticut State Building Code**. Applicable Standard references and design criteria are listed in Section 2 – Analysis Criteria.

We at Engineered Tower Solutions, PLLC appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects, please give us a call.

Mount structural analysis prepared by:

Helen Tesfaye, El Structural Engineer I

Respectfully Submitted by:

Frederic G. Bost, PE Owner/President

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 – Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 – Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 – Mount Component Stresses vs. Capacity 4.1) Recommendations

5) APPENDIX A)

Wire Frame and Rendered Models

6) APPENDIX B)

Software Input Calculations

7) APPENDIX C)

Software Analysis Output

8) APPENDIX D)

ASCE 7 Hazards Report

1) INTRODUCTION

This mount is a 10.0 ft Sector mount installed at the 105.0 ft elevation of the 108.0 ft Monopole. Engineered Tower Solutions, PLLC, did not visit the site. A mapping and/or mount manufacturer drawings were not provided. Therefore, per direction of Crown Castle, photos of the tower were compared with other mounts within our database and a similar and comparable mount was used to perform this mount analysis

2) ANALYSIS CRITERIA

Building Code:

2012 IBC

TIA-222 Revision:

TIA-222-H

Risk Category:

Ш

Wind Speed:

125 mph

Exposure Category:

С

Topographic Factor:

1

Ice Thickness: Wind Speed with Ice: 2.00 in

Seismic Ss:

50 mph

0.181

Seismic S1:

0.064

Service Wind Speed:

30 mph

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
}		6	ANTEL	BXA-70063/6CF	
	i	6	COMMSCOPE	SBNHH-1D65B	
		1	RAYCAP	RVZDC-6627-PF-48	
105.0	105.0	1	RFS/CELWAVE	DB-T1-6Z-8AB-0Z	(3) 10.0 ft Sector Mount
		3	SAMSUNG TELECOMMUNICATIONS	RFV01U-D1A	(3) 10.010 Sector Middlift
		3	SAMSUNG TELECOMMUNICATIONS	RFV01U-D2A	

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Structural Level Drawings (Installed)	Crown Castle	08/30/2018	CCI Sites
Structural Level Drawing (Proposed)	Crown Castle	08/30/2018	CCI Sites
Carrier Application	App # 457785 Rev. 0	08/22/2018	CCI Sites
4-Structural Analysis Report	B+T Group	7861410	CCI Sites

3.1) Analysis Method

RISA-3D (version 16.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix C.

3.2) Assumptions

- 1) Engineered Tower Solutions, PLLC, did not visit the site. A mapping and/or mount manufacturer drawings were not provided. Therefore, per direction of Crown Castle, photos of the tower were compared with other mounts within our database and a similar and comparable mount was used to perform this mount analysis
- 2) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specification.
- 3) The configuration of antennas, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 4) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 5) This Structural Analysis is not a condition assessment of the mount and is an evaluation of the theoretical structural capacity.
- 6) This analysis is based from the information supplied, and therefore, this report's results are as accurate as the supplied data.
- 7) Engineered Tower Solutions, PLLC makes no warranties, expressed and/or implied, in connection with this report, and disclaims any liability associated with material, fabrication, or erection of the mount. Engineered Tower Solutions, PLLC will not be held responsible from any consequential or incidental damages sustained by any person, firm, or organization as a result of the contents of this report. The maximum liability of Engineered Tower Solutions, PLLC pursuant to this report will be limited to the total fee received for compilation of this report.
- 8) It is the tower owner's responsibility to verify that the mount modeled and analyzed is the correct structure modeled.
- The use of this report shall be limited to the purpose for which it was commissioned and may not be used for any other purposes without the written consent of Engineered Tower Solutions, PLLC.
- Member connections are assumed to have been designed to meet or exceed the theoretical capacity of the connected member.
- 11) Steel grades have been assumed as follows:

a)	Channel, Solid Round, Angle, Plate	ASTM A36 (Gr 36)
b)	HSS (Rectangular)	ASTM 500 (Gr B-46)
c)	HSS (Round)	ASTM 500 (Gr B-42)
d)	Pipe	ASTM A53 (Gr 35)
e)	Connection Bolts	ASTM A325
f)	U-Bolts	SAE 429 Gr.2

This analysis may be affected if any assumptions are not valid or have been made in error. Engineered Tower Solutions, PLLC should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 3a- Mount Component Stresses vs. Capacity, Alpha

Mount Centerline (ft)	Component	% Capacity	Pass/Fail	Notes
	Face Mount – Horizontal	83.5	PASS	1
105.0	Mount Pipe – Vertical	47.9	PASS	1
	Sidearm – Horizontal	20.4	PASS	1

Table 3b - Mount Component Stresses vs. Capacity, Beta

Mount Centerline (ft)	Component	% Capacity	Pass/Fail	Notes
1.5	Face Mount – Horizontal	90.3	PASS	1
105.0	Mount Pipe – Vertical	44.8	PASS	1
	Sidearm – Horizontal	19.0	PASS	1

Table 3c- Mount Component Stresses vs. Capacity, Gamma

Mount Centerline (ft)	Component	% Capacity	Pass/Fail	Notes
40	Face Mount – Horizontal	82.8	PASS	1
105.0	Mount Pipe – Vertical	47.1	PASS	1
	Sidearm – Horizontal	20.2	PASS	1

Notes:

1) See additional documentation in "Appendix C – Software Analysis Output" for calculations supporting the % capacity consumed.

Tower Mount Rating (max from all components) =	90.3%

4.1) Recommendations

The tower mount has sufficient capacity to carry the existing and proposed load configuration. No modifications are required at this time.

APPENDIX A

WIRE FRAME AND RENDERED MODELS

West Hartford 4, CT Site Name: West Ha Cumulative Power Density

78.97%				cposure	ssible Ex	Maximum Permissible Exposure		lotal Percentage of
333 14.43%	0.49733333	0.0718	105	2200	2200	7-	· ·	VZW 700
24.14%	1.0	0.2414	105	7400	7400	-	2145	VZW AWS
333 6.93%	0.579333333	0.0401	105	1230	410	က	869	VZW Cellular
333 17.17%	0.57933333	0.0995	105	3050	3050	7	869	VZW Cellular LTE
16.31%	1.0	0.1631	105	5000	5000	τ-	1970	VZW PCS
l^2) (%)) (mW/cm^2)	(mW/cm^2)	(feet)	(watts)	(watts)		(MHz)	
re of MPE	Maximum Permissab Exposure	Calculated Power Density	Distance to Target	Total	ERP Per Trans.	Number of Trans.	Operating Frequency	Operator

^{*}Guidelines adopted by the FCC on August 1, 1996, 47 CFR Section 1.13101 based on NCRP Report 86, 1986 and generally on ANSI/IEEE C95.1

78.97%

MHz = Megahertz

mW/cm^2 = milliwafts per square centimeter

ERP = Effective Radiated Power

Absolute worst case maximum values used, including the following assumptions:

- 1. closest accessible point is distance from antenna to base of pole;
 2. continuous transmission from all available channels at full power for indefinite time period; and,
 - 3. all RF energy is assumed to be directed solely to the base of the pole.

Barbadora, Jeff

From:

TrackingUpdates@fedex.com

Sent:

Tuesday, December 11, 2018 11:50 AM

To:

Barbadora, Jeff

Subject:

FedEx Shipment 773930407784 Delivered

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Your package has been delivered

Tracking # 773930407784

Ship date:

Mon, 12/10/2018

Jeff Barbadora

Crown Castle

WOBURN, MA 01801

US

Delivery date:

Tue, 12/11/2018 11:47

am

Mr. Luke Bronin-Mayor

City of Hartford 550 Main Street, #1 HARTFORD, CT 06103

US

Shipment Facts

Our records indicate that the following package has been delivered.

Tracking number:

773930407784

Status:

Delivered: 12/11/2018 11:47

AM Signed for By:

D.ACOSTF

Reference:

1766.6680

Signed for by:

D.ACOSTF

Delivery location:

HARTFORD, CT

Delivered to:

Receptionist/Front Desk

Service type:

FedEx Priority Overnight®

Packaging type:

FedEx® Envelope

Number of pieces:

1

Weight:

0.50 lb.

Barbadora, Jeff

From:

TrackingUpdates@fedex.com

Sent:

Tuesday, December 11, 2018 10:46 AM

To:

Barbadora, Jeff

Subject:

FedEx Shipment 773930696634 Delivered

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Your package has been delivered

Tracking # 773930696634

Ship date:

Mon, 12/10/2018

Jeff Barbadora

Crown Castle

WOBURN, MA 01801

US

Delivery date:

Tue, 12/11/2018 10:40

am

C/O Corporate Property

CL&P

107 Selden Street BERLIN, CT 06037

US

Shipment Facts

Our records indicate that the following package has been delivered.

Tracking number:

773930696634

Status:

Delivered: 12/11/2018 10:40

AM Signed for By:

K.HADIDAZ

Reference:

1766.6680

Signed for by:

K.HADIDAZ

Delivery location:

BERLIN, CT

Delivered to:

Mailroom

Service type:

FedEx Priority Overnight®

Packaging type:

FedEx® Envelope

Number of pieces:

1

Weight:

0.50 lb.

Barbadora, Jeff

From:

TrackingUpdates@fedex.com

Sent:

Tuesday, December 11, 2018 11:29 AM

To:

Barbadora, Jeff

Subject:

FedEx Shipment 773930572998 Delivered

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Your package has been delivered

Tracking # 773930572998

Ship date:

Mon, 12/10/2018

Jeff Barbadora

Crown Castle

WOBURN, MA 01801

US

Delivery date:

Tue, 12/11/2018 11:26

am

John Collins-License &

Inspections

City of Hartford 550 Main Street, #1

HARTFORD, CT 06103

US

Shipment Facts

Our records indicate that the following package has been delivered.

Tracking number:

773930572998

Status:

Delivered: 12/11/2018 11:26

AM Signed for By: H.HILL

Reference:

1766.6680

Signed for by:

H.HILL

Delivery location:

HARTFORD, CT

Delivered to:

Mailroom

Service type:

FedEx Priority Overnight®

Packaging type:

FedEx® Envelope

Number of pieces:

1

Weight:

0.50 lb.

