

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Tower Share Application – Dish Site 13726719

Dish Wireless Telecommunications Facility @ 289 Mountain Street, Hartford, CT 06106

Dear Ms. Bachman,

Dish Wireless ("Dish") is proposing a wireless telecommunications facility on an existing One hundred and thirteen (113) foot tall monopole tower at 289 Mountain Street, Hartford, CT 06106 (Latitude: 41.72656944 Longitude: -72.70816944) and within the existing fenced compound. The monopole tower is owned and operated by American Tower Corporation. The subject property is owned by the Metropolitan District Bureau of Public Works.

Dish proposes to install a five (5) foot by seven (7) foot metal platform within the existing fenced compound and install three (3) antennas, a single antenna mount, six (6) RRUs, and cables on the existing tower at seventy (70) feet as more particularly detailed and described on the enclosed Construction Drawings prepared by American Tower Engineering., dated 9/27/2021. The overall height of the existing tower is and will remain at 113 feet and no changes will be made to the compound dimensions.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish's intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A §16-50j-73, a copy of this letter is being sent to the following individuals: American Tower Corporation as Tower Operator/Owner; the Metropolitan District as Property Owner; the Honorable Luke Bronin as Mayor of the City of Hartford and Charles Mathews, Director of Development Services for the City of Hartford.

The applicant's proposal falls squarely within those activities explicitly provided for in R.C.S.A. §16-50j-89. Specifically:

- 1. The proposed modifications will NOT result in an increase in the height of the existing structure.
- 2. The proposed modifications will NOT require an extension of the site boundary.

- 3. The proposed modifications will NOT increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the modified facility will NOT increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. Please see the RF emissions calculation for DISH's modified facility enclosed herewith.
- 5. The proposed modifications will NOT cause an ineligible change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading. Please see the structural analysis dated October 5, 2021, prepared by American Tower Corporation enclosed herewith.

Connecticut General Statute 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish respectfully indicates that the shared use of this facility satisfies these criteria:

- A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish's proposed loading (see attached Structural Analysis).
- B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish to obtain a building permit for the proposed installation. Further, a Letter of Authorization is attached, authorizing Dish to file this application for shared use.
- C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish equipment at the 79-foot level of the existing 130-foot tower would have an insignificant visual impact on the area around the tower. Dish ground equipment would be installed within the existing facility compound. DISH shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by the attached EME study, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
- D. Economic Feasibility. Dish will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish with this tower sharing application.
- E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting the proposed loading. Dish is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish's intentions of providing new and improved wireless service

through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through East Hartford.

For the foregoing reasons, Dish respectfully requests that the Council approve this request for the shared use of this tower located at 289 Mountain Street, Hartford, CT 06106.

If you have any questions, please feel free to contact me.

Sincerely,

Jack Andrews Zoning Manager, Centerline Communications 10130 Donleigh Drive Columbia, MD 21046 443-677-0144

Enclosures: Exhibit 1 – Letter of Authorization from tower owner

Exhibit 2 – Property Card and GIS
Exhibit 3 – Construction Drawings
Exhibit 4 – Structural Analysis Report
Exhibit 5 – Antenna Mount Analysis Report

Exhibit 6 – EME Study Report

Exhibit 7 – Original Tower Approval Exhibit 8 – (4) Notice Confirmations

Cc: American Tower Corporation – Tower Operator/Owner

Metropolitan District Bureau of Public Works – Property Owner The Honorable Luke Bronin - Mayor of the City of Hartford Charles Mathews - Director of Hartford Development Services

The Honorable Luke Bronin Hartford City Hall 550 Main Street, 2nd Floor, Room 200 06103

Re: Tower Share Application – Dish Site 13726719

Dish Wireless Telecommunications Facility @ 289 Mountain Street, Hartford, CT 06106

Dear Mayor Bronin:

Dish Wireless ("Dish") is proposing a wireless telecommunications facility on an existing one hundred and thirteen (113) foot tall monopole tower at 289 Mountain Street, Hartford, CT 06106 (Latitude: 41.72656944 Longitude: -72.70816944) and within the existing fenced compound. The monopole tower is owned and operated by American Tower Corporation. The subject property is owned by the Metropolitan Bureau of Public Works.

Dish proposes to install a five (5) foot by seven (7) foot metal platform within the existing fenced compound and install three (3) antennas, a single antenna mount, six (6) RRUs, and cables on the existing tower at seventy (70) feet as more particularly detailed and described on the enclosed Construction Drawings. The overall height of the existing tower is and will remain at 113 feet and no changes will be made to the compound dimensions.

This letter is intended to serve as the required notice to the property owner. As required by Regulations of Connecticut State Agencies ("RCSA") 16- 50j-73 the Connecticut Siting Council ("CSC") has been notified of this proposal and will review this application. Please accept this letter as notification pursuant to RSCA 16-50j-73.

The enclosed letter and attachments to the CSC fully describe Dish's proposal for the site. However, if you have any questions or require any additional information concerning our plans or the CSC procedures, please contact me at 443-677-0144 or contact Melanie Bachmann, Acting Executive Director of the CSC at 860-972-2935.

Respectfully Submitted,

Jack Andrews
Zoning Manager, Centerline Communications
10130 Donleigh Drive
Columbia, MD 21046
443-677-0144

Enclosures

cc: Melanie Bachmann, Acting Executive Director, CSC

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re:

Tower Share Application - Dish Site 13726719

Dish Wireless Telecommunications Facility @ 289 Mountain Street, Hartford, CT 06106

Dear Ms. Bachman,

Dish Wireless ("Dish") is proposing a wireless telecommunications facility on an existing One hundred and thirteen (113) foot tall monopole tower at 289 Mountain Street, Hartford, CT 06106 (Latitude: 41.72656944 Longitude: -72.70816944) and within the existing fenced compound. The monopole tower is owned and operated by American Tower Corporation. The subject property is owned by the Metropolitan District Bureau of Public Works.

Dish proposes to install a five (5) foot by seven (7) foot metal platform within the existing fenced compound and install three (3) antennas, a single antenna mount, six (6) RRUs, and cables on the existing tower at seventy (70) feet as more particularly detailed and described on the enclosed Construction Drawings prepared by American Tower Engineering., dated 9/27/2021. The overall height of the existing tower is and will remain at 113 feet and no changes will be made to the compound dimensions.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish's intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A §16-50j-73, a copy of this letter is being sent to the following individuals: American Tower Corporation as Tower Operator/Owner; the Metropolitan District as Property Owner; the Honorable Luke Bronin as Mayor of the City of Hartford and Charles Mathews, Director of Development Services for the City of Hartford.

The applicant's proposal falls squarely within those activities explicitly provided for in R.C.S.A. §16-50j-89. Specifically:

- 1. The proposed modifications will NOT result in an increase in the height of the existing structure.
- 2. The proposed modifications will NOT require an extension of the site boundary.

- 3. The proposed modifications will NOT increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the modified facility will NOT increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. Please see the RF emissions calculation for DISH's modified facility enclosed herewith.
- 5. The proposed modifications will NOT cause an ineligible change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading. Please see the structural analysis dated October 5, 2021, prepared by American Tower Corporation enclosed herewith.

Connecticut General Statute 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish respectfully indicates that the shared use of this facility satisfies these criteria:

- A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish's proposed loading (see attached Structural Analysis).
- B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish to obtain a building permit for the proposed installation. Further, a Letter of Authorization is attached, authorizing Dish to file this application for shared use.
- C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish equipment at the 79-foot level of the existing 130-foot tower would have an insignificant visual impact on the area around the tower. Dish ground equipment would be installed within the existing facility compound. DISH shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by the attached EME study, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
- D. Economic Feasibility. Dish will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish with this tower sharing application.
- E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting the proposed loading. Dish is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish's intentions of providing new and improved wireless service

through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through East Hartford.

For the foregoing reasons, Dish respectfully requests that the Council approve this request for the shared use of this tower located at 289 Mountain Street, Hartford, CT 06106.

If you have any questions, please feel free to contact me.

Sincerely,

Jack Andrews

Zoning Manager, Centerline Communications

10130 Donleigh Drive Columbia, MD 21046

443-677-0144

Enclosures: Exhibit 1 – Letter of Authorization from tower owner

Exhibit 2 – Property Card and GIS
Exhibit 3 – Construction Drawings
Exhibit 4 – Structural Analysis Report

Exhibit 5 - Antenna Mount Analysis Report

Exhibit 6 - EME Study Report

Exhibit 7 – Original Tower Approval Exhibit 8 – (4) Notice Confirmations

Cc: American Tower Corporation – Tower Operator/Owner

Metropolitan District Bureau of Public Works – Property Owner The Honorable Luke Bronin - Mayor of the City of Hartford Charles Mathews - Director of Hartford Development Services

Blake Paynter Project Manager, Site Development American Tower Corporation 10 Presidential Way Woburn, MA 01801

Re: Tower Share Application – Dish Site 13726719

Dish Wireless Telecommunications Facility @ 289 Mountain Street, Hartford, CT 06106

Dear Mr. Paynter,

Dish Wireless ("Dish") is proposing a wireless telecommunications facility on an existing one hundred and thirteen (113) foot tall monopole tower at 289 Mountain Street, Hartford, CT 06106 (Latitude: 41.72656944 Longitude: -72.70816944) and within the existing fenced compound. The monopole tower is owned and operated by American Tower Corporation. The subject property is owned by the Metropolitan Bureau of Public Works.

Dish proposes to install a five (5) foot by seven (7) foot metal platform within the existing fenced compound and install three (3) antennas, a single antenna mount, six (6) RRUs, and cables on the existing tower at seventy (70) feet as more particularly detailed and described on the enclosed Construction Drawings. The overall height of the existing tower is and will remain at 113 feet and no changes will be made to the compound dimensions.

This letter is intended to serve as the required notice to the tower owner. As required by Regulations of Connecticut State Agencies ("RCSA") 16- 50j-73 the Connecticut Siting Council ("CSC") has been notified of this proposal and will review this application. Please accept this letter as notification pursuant to RSCA 16-50j-73.

The enclosed letter and attachments to the CSC fully describe Dish's proposal for the site. However, if you have any questions or require any additional information concerning our plans or the CSC procedures, please contact me at 443-677-0144 or contact Melanie Bachmann, Acting Executive Director of the CSC at 860-972-2935.

Respectfully Submitted,

Jack Andrews

Zoning Manager, Centerline Communications 10130 Donleigh Drive Columbia, MD 21046 443-677-0144

Enclosures

cc: Melanie Bachmann, Acting Executive Director, CSC

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Tower Share Application – Dish Site 13726719

Dish Wireless Telecommunications Facility @ 289 Mountain Street, Hartford, CT 06106

Dear Ms. Bachman,

Dish Wireless ("Dish") is proposing a wireless telecommunications facility on an existing One hundred and thirteen (113) foot tall monopole tower at 289 Mountain Street, Hartford, CT 06106 (Latitude: 41.72656944 Longitude: -72.70816944) and within the existing fenced compound. The monopole tower is owned and operated by American Tower Corporation. The subject property is owned by the Metropolitan District Bureau of Public Works.

Dish proposes to install a five (5) foot by seven (7) foot metal platform within the existing fenced compound and install three (3) antennas, a single antenna mount, six (6) RRUs, and cables on the existing tower at seventy (70) feet as more particularly detailed and described on the enclosed Construction Drawings prepared by American Tower Engineering., dated 9/27/2021. The overall height of the existing tower is and will remain at 113 feet and no changes will be made to the compound dimensions.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish's intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A §16-50j-73, a copy of this letter is being sent to the following individuals: American Tower Corporation as Tower Operator/Owner; the Metropolitan District as Property Owner; the Honorable Luke Bronin as Mayor of the City of Hartford and Charles Mathews, Director of Development Services for the City of Hartford.

The applicant's proposal falls squarely within those activities explicitly provided for in R.C.S.A. §16-50j-89. Specifically:

- 1. The proposed modifications will NOT result in an increase in the height of the existing structure.
- 2. The proposed modifications will NOT require an extension of the site boundary.

- 3. The proposed modifications will NOT increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the modified facility will NOT increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. Please see the RF emissions calculation for DISH's modified facility enclosed herewith.
- 5. The proposed modifications will NOT cause an ineligible change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading. Please see the structural analysis dated October 5, 2021, prepared by American Tower Corporation enclosed herewith.

Connecticut General Statute 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish respectfully indicates that the shared use of this facility satisfies these criteria:

- A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish's proposed loading (see attached Structural Analysis).
- B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish to obtain a building permit for the proposed installation. Further, a Letter of Authorization is attached, authorizing Dish to file this application for shared use.
- C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish equipment at the 79-foot level of the existing 130-foot tower would have an insignificant visual impact on the area around the tower. Dish ground equipment would be installed within the existing facility compound. DISH shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by the attached EME study, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
- D. Economic Feasibility. Dish will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish with this tower sharing application.
- E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting the proposed loading. Dish is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish's intentions of providing new and improved wireless service

through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through East Hartford.

For the foregoing reasons, Dish respectfully requests that the Council approve this request for the shared use of this tower located at 289 Mountain Street, Hartford, CT 06106.

If you have any questions, please feel free to contact me.

Sincerely,

Jack Andrews

Zoning Manager, Centerline Communications 10130 Donleigh Drive Columbia, MD 21046

443-677-0144

Enclosures:

Exhibit 1 - Letter of Authorization from tower owner

Exhibit 2 – Property Card and GIS Exhibit 3 – Construction Drawings

Exhibit 4 - Structural Analysis Report

Exhibit 5 – Antenna Mount Analysis Report

Exhibit 6 - EME Study Report

Exhibit 7 – Original Tower Approval Exhibit 8 – (4) Notice Confirmations

Cc:

American Tower Corporation – Tower Operator/Owner

Metropolitan District Bureau of Public Works – Property Owner The Honorable Luke Bronin - Mayor of the City of Hartford Charles Mathews - Director of Hartford Development Services

Scott W. Jellison Chief Executive Officer The Metropolitan District 555 Main Street Hartford, CT 06103

Re:

Tower Share Application – Dish Site 13726719

Dish Wireless Telecommunications Facility @ 289 Mountain Street, Hartford, CT 06106

Dear Mr. Jellison,

Dish Wireless ("Dish") is proposing a wireless telecommunications facility on an existing one hundred and thirteen (113) foot tall monopole tower at 289 Mountain Street, Hartford, CT 06106 (Latitude: 41.72656944 Longitude: -72.70816944) and within the existing fenced compound. The monopole tower is owned and operated by American Tower Corporation. The subject property is owned by the Metropolitan Bureau of Public Works.

Dish proposes to install a five (5) foot by seven (7) foot metal platform within the existing fenced compound and install three (3) antennas, a single antenna mount, six (6) RRUs, and cables on the existing tower at seventy (70) feet as more particularly detailed and described on the enclosed Construction Drawings. The overall height of the existing tower is and will remain at 113 feet and no changes will be made to the compound dimensions.

This letter is intended to serve as the required notice to the property owner. As required by Regulations of Connecticut State Agencies ("RCSA") 16- 50j-73 the Connecticut Siting Council ("CSC") has been notified of this proposal and will review this application. Please accept this letter as notification pursuant to RSCA 16-50j-73.

The enclosed letter and attachments to the CSC fully describe Dish's proposal for the site. However, if you have any questions or require any additional information concerning our plans or the CSC procedures, please contact me at 443-677-0144 or contact Melanie Bachmann, Acting Executive Director of the CSC at 860-972-2935.

Respectfully Submitted,

Jack Andrews

Zoning Manager, Centerline Communications 10130 Donleigh Drive Columbia, MD 21046 443-677-0144

Enclosures

cc: Melanie Bachmann, Acting Executive Director, CSC

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re:

Tower Share Application - Dish Site 13726719

Dish Wireless Telecommunications Facility @ 289 Mountain Street, Hartford, CT 06106

Dear Ms. Bachman,

Dish Wireless ("Dish") is proposing a wireless telecommunications facility on an existing One hundred and thirteen (113) foot tall monopole tower at 289 Mountain Street, Hartford, CT 06106 (Latitude: 41.72656944 Longitude: -72.70816944) and within the existing fenced compound. The monopole tower is owned and operated by American Tower Corporation. The subject property is owned by the Metropolitan District Bureau of Public Works.

Dish proposes to install a five (5) foot by seven (7) foot metal platform within the existing fenced compound and install three (3) antennas, a single antenna mount, six (6) RRUs, and cables on the existing tower at seventy (70) feet as more particularly detailed and described on the enclosed Construction Drawings prepared by American Tower Engineering., dated 9/27/2021. The overall height of the existing tower is and will remain at 113 feet and no changes will be made to the compound dimensions.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish's intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A §16-50j-73, a copy of this letter is being sent to the following individuals: American Tower Corporation as Tower Operator/Owner; the Metropolitan District as Property Owner; the Honorable Luke Bronin as Mayor of the City of Hartford and Charles Mathews, Director of Development Services for the City of Hartford.

The applicant's proposal falls squarely within those activities explicitly provided for in R.C.S.A. §16-50j-89. Specifically:

- 1. The proposed modifications will NOT result in an increase in the height of the existing structure.
- 2. The proposed modifications will NOT require an extension of the site boundary.

- 3. The proposed modifications will NOT increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the modified facility will NOT increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. Please see the RF emissions calculation for DISH's modified facility enclosed herewith.
- 5. The proposed modifications will NOT cause an ineligible change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading. Please see the structural analysis dated October 5, 2021, prepared by American Tower Corporation enclosed herewith.

Connecticut General Statute 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish respectfully indicates that the shared use of this facility satisfies these criteria:

- A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish's proposed loading (see attached Structural Analysis).
- B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish to obtain a building permit for the proposed installation. Further, a Letter of Authorization is attached, authorizing Dish to file this application for shared use.
- C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish equipment at the 79-foot level of the existing 130-foot tower would have an insignificant visual impact on the area around the tower. Dish ground equipment would be installed within the existing facility compound. DISH shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by the attached EME study, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
- D. Economic Feasibility. Dish will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish with this tower sharing application.
- E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting the proposed loading. Dish is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish's intentions of providing new and improved wireless service

through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through East Hartford.

For the foregoing reasons, Dish respectfully requests that the Council approve this request for the shared use of this tower located at 289 Mountain Street, Hartford, CT 06106.

If you have any questions, please feel free to contact me.

Sincerely,

Jack Andrews

 ${\bf Zoning\ \overline{M}anager, Centerline\ Communications}$

10130 Donleigh Drive Columbia, MD 21046

443-677-0144

Enclosures:

Exhibit 1 - Letter of Authorization from tower owner

Exhibit 2 – Property Card and GIS
Exhibit 3 – Construction Drawings
Exhibit 4 – Structural Analysis Report

Exhibit 5 - Antenna Mount Analysis Report

Exhibit 6 - EME Study Report

Exhibit 7 – Original Tower Approval Exhibit 8 – (4) Notice Confirmations

Cc:

American Tower Corporation - Tower Operator/Owner

Metropolitan District Bureau of Public Works – Property Owner The Honorable Luke Bronin - Mayor of the City of Hartford Charles Mathews - Director of Hartford Development Services

Charles Mathews Director of Development Services 260 Constitution Plaza, 1st Fl Hartford, CT 06103

Re: Tower Share Application – Dish Site 13726719
Dish Wireless Telecommunications Facility @ 289 Mountain Street, Hartford, CT 06106

Dear Mr. Mathews:

Dish Wireless ("Dish") is proposing a wireless telecommunications facility on an existing one hundred and thirteen (113) foot tall monopole tower at 289 Mountain Street, Hartford, CT 06106 (Latitude: 41.72656944 Longitude: -72.70816944) and within the existing fenced compound. The monopole tower is owned and operated by American Tower Corporation. The subject property is owned by the Metropolitan Bureau of Public Works.

Dish proposes to install a five (5) foot by seven (7) foot metal platform within the existing fenced compound and install three (3) antennas, a single antenna mount, six (6) RRUs, and cables on the existing tower at seventy (70) feet as more particularly detailed and described on the enclosed Construction Drawings. The overall height of the existing tower is and will remain at 113 feet and no changes will be made to the compound dimensions.

This letter is intended to serve as the required notice to the municipal planning agency. As required by Regulations of Connecticut State Agencies ("RCSA") 16- 50j-73 the Connecticut Siting Council ("CSC") has been notified of this proposal and will review this application. Please accept this letter as notification pursuant to RSCA 16-50j-73.

The enclosed letter and attachments to the CSC fully describe Dish's proposal for the site. However, if you have any questions or require any additional information concerning our plans or the CSC procedures, please contact me at 443-677-0144 or contact Melanie Bachmann, Acting Executive Director of the CSC at 860-972-2935.

Respectfully Submitted,

Jack Andrews
Zoning Manager, Centerline
Communications
10130 Donleigh Drive
Columbia, MD 21046
443-677-0144

Enclosures:

cc:

Melanie Bachmann, Acting Executive Director, CSC

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re:

Tower Share Application – Dish Site 13726719

Dish Wireless Telecommunications Facility @ 289 Mountain Street, Hartford, CT 06106

Dear Ms. Bachman,

Dish Wireless ("Dish") is proposing a wireless telecommunications facility on an existing One hundred and thirteen (113) foot tall monopole tower at 289 Mountain Street, Hartford, CT 06106 (Latitude: 41.72656944 Longitude: -72.70816944) and within the existing fenced compound. The monopole tower is owned and operated by American Tower Corporation. The subject property is owned by the Metropolitan District Bureau of Public Works.

Dish proposes to install a five (5) foot by seven (7) foot metal platform within the existing fenced compound and install three (3) antennas, a single antenna mount, six (6) RRUs, and cables on the existing tower at seventy (70) feet as more particularly detailed and described on the enclosed Construction Drawings prepared by American Tower Engineering., dated 9/27/2021. The overall height of the existing tower is and will remain at 113 feet and no changes will be made to the compound dimensions.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish's intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A §16-50j-73, a copy of this letter is being sent to the following individuals: American Tower Corporation as Tower Operator/Owner; the Metropolitan District as Property Owner; the Honorable Luke Bronin as Mayor of the City of Hartford and Charles Mathews, Director of Development Services for the City of Hartford.

The applicant's proposal falls squarely within those activities explicitly provided for in R.C.S.A. §16-50j-89. Specifically:

- 1. The proposed modifications will NOT result in an increase in the height of the existing structure.
- 2. The proposed modifications will NOT require an extension of the site boundary.

- 3. The proposed modifications will NOT increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the modified facility will NOT increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. Please see the RF emissions calculation for DISH's modified facility enclosed herewith.
- 5. The proposed modifications will NOT cause an ineligible change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading. Please see the structural analysis dated October 5, 2021, prepared by American Tower Corporation enclosed herewith.

Connecticut General Statute 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish respectfully indicates that the shared use of this facility satisfies these criteria:

- A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish's proposed loading (see attached Structural Analysis).
- B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish to obtain a building permit for the proposed installation. Further, a Letter of Authorization is attached, authorizing Dish to file this application for shared use.
- C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish equipment at the 79-foot level of the existing 130-foot tower would have an insignificant visual impact on the area around the tower. Dish ground equipment would be installed within the existing facility compound. DISH shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by the attached EME study, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
- D. Economic Feasibility. Dish will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish with this tower sharing application.
- E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting the proposed loading. Dish is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish's intentions of providing new and improved wireless service

through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through East Hartford.

For the foregoing reasons, Dish respectfully requests that the Council approve this request for the shared use of this tower located at 289 Mountain Street, Hartford, CT 06106.

If you have any questions, please feel free to contact me.

Sincerely,

Jack Andrews

Zoning Manager, Centerline Communications

10130 Donleigh Drive Columbia, MD 21046

443-677-0144

Enclosures: Exhibit 1 – Letter of Authorization from tower owner

Exhibit 2 – Property Card and GIS Exhibit 3 – Construction Drawings

Exhibit 4 – Structural Analysis Report Exhibit 5 – Antenna Mount Analysis Report

Exhibit 6 - EME Study Report

Exhibit 7 – Original Tower Approval Exhibit 8 – (4) Notice Confirmations

Cc: American Tower Corporation – Tower Operator/Owner

Metropolitan District Bureau of Public Works – Property Owner The Honorable Luke Bronin - Mayor of the City of Hartford Charles Mathews - Director of Hartford Development Services

AN APPLICATION SUBMITTED BY THE SOUTHERN NEW ENGLAND TELEPHONE COMPANY FOR A CERTIFICATE OF ENVIRONMENTAL COMPATIBILITY AND PUBLIC NEED FOR THE CONSTRUCTION, MAINTENANCE, AND OPERATION OF FACILITIES TO PROVIDE CELLULAR SERVICE IN THE HARTFORD AND MIDDLESEX COUNTIES.

CONNECTICUT SITING

:

COUNCIL

May 15, 1984

DECISION AND ORDER

Pursuant to the foregoing opinion, the Council hereby directs that a certificate of environmental compatibility and public need as required by section 16-50k of the General Statutes of Connecticut, revisions of 1958, revised to 1983, as amended, be issued to Southern New England Telephone for the construction, operation, and maintenance of a telecommunications tower and associated equipment to provide cellular service at each of the following sites:

Shuttle Meadow Road, Southington, Connecticut; Mountain Street, Hartford, Connecticut; Prestige Park Road, East Hartford, Connecticut; Beckley Road, Berlin, Connecticut; Slicer tract, Niederwerfer Road, South Windsor, Connecticut; and Kikapoo Road, Middlefield, Connecticut.

The facilities shall be constructed, operated, and maintained as specified in the Council's record on this matter, and subject to the following conditions.

- The towers shall be no taller than necessary to provide the proposed service and in no event shall exceed
 - a) 150 feet at the Southington site,
 - b) 100 feet at the Hartford site,
 - c) 150 feet at the East Hartford site,
 - d) 150 feet at the Berlin site,
 - e) 75 feet at the South Windsor site, and
 - f) 75 feet at the Middlefield site.
- 2. A fence not lower than eight feet shall surround each tower and its associated equipment.

- 3. The applicant or its successor shall notify the Council if and when directional antennas or any other equipment is added to any of these facilities.
- 4. The applicant or its successor shall permit in accordance with representations made by it during the proceeding public or private entities to share space on the facilities, for due consideration received, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 5. Unless necessary to comply with condition number seven, below, no lights shall be installed on any of these towers.
- 6. The facility construction shall be conducted in accordance with all applicable federal, state, and municipal laws and regulations.
- 7. The applicant shall submit a development and management plan (D&M) for the South Windsor, Southington, and Berlin sites pursuant to sections 16-50j-85 through 16-50j-87 of the regulations of state agencies, except that irrelevant items in section 16-50j-86 need only be identified as such. The D&M plans shall include appropriate evergreen screening of the sites. The applicant shall comply with the reporting requirements of section 16-50j-87 for all sites. The applicant shall consult with Mrs. Claire Aubin and the Town of South Windsor in the preparation of the South Windsor site D&M.
- 8. Construction activities shall take place during daylight working hours.
- 9. This decision and order shall be void and the towers and associated equipment approved herein shall be dismantled and removed,

or reapplication for any new use shall be made to the Connecticut Siting Council before any

such new use is made, if the towers do not provide or permanently cease to provide cellular service following completion of construction.

10. This decision and order shall be void if all construction authorized is not completed within three years of the issuance of this decision.

Pursuant to section 16-50p(c) of the General Statutes, we hereby direct that a copy of the opinion and decision and order be served on each person listed below. A notice of the issuance shall be published in the Hartford Courant, Journal Inquirer, and the Middletown Press.

The parties to this proceeding are

Southern New England
Telephone Company
Room 314
227 Church Street
New Haven, Connecticut 06506

ATTN: Mr. Peter J. Tyrrell, Esquire

Town of South Windsor

1540 Sullivan Avenue

South Windsor, Connecticut 06074

Frank Niederwerfer 260 Niederwerfer Road South Windsor, Connecticut 06074

Claire Aubin 407 Niederwerfer Road South Windsor, Connecticut 06074 (Applicant)

(its attorney)

represented by:

Mr. Richard M. Rittenband

Town Attorney

1734 Ellington Road

South Windsor, Connecticut 06074

(service waived)

(service waived)

Betty S. Kleiner Chairman Hartford Audubon Society, Inc. 5 Flintlock Ridge Simsbury, Connecticut 06070

Roger Thorpe 2916 Ellington Road South Windsor, Connecticut 06074

Intervenors in this proceeding are

Dwight A. Johnson
Murtha, Cullina, Richter
and Pinney
101 Pearl Street
P.O. Box 3197
Hartford, Connecticut 06103-0197

(service waived)

representing:

Metromedia TeleCommunications
Nutmeg Telecommunications, Inc.
CSI of New Haven
CSI of Stamford
Cellular Communications, Inc.
LIN Cellular Corp.
Cellular Mobile Services
Maxcell TeleCommunications, Inc.
Mobile Cellular Telephone, Inc.
Cellular Dynamics
Connecticut Corridor Cellular
Chase/Post Cellular

<u>CERTIFICATION</u>

The undersigned members of the Connecticut Siting Council hereby certify that they have heard this case or read the record thereof, and that we voted as follows:

Dated at New Britain, Connecticut, this 15th day of May, 1984.

Council Members	<u>Vote Cast</u>
Gloria Dibble Pond (Chairperson)	Yes
Commissioner John Downey Designee: Commissioner Peter G. Boucher	Yes
Commissioner Stanley Pac Designee: Christopher Cooper	Yes
Owen L. Clark	Yes
Fred J. Doocy	ves Alstain Al
Mortimer A. Gelston	Yes
James G. Horsfall	Absent
Janet Sitty)	Yes
Colin C. Tait	Absent

STATE OF CONNECTICUT)
: ss. New Britain, May 15, 1984
COUNTY OF HARTFORD)

I hereby certify that the foregoing is a true and correct copy of the decision and order issued by the Connecticut Siting Council, State of Connecticut.

ATTEST:

Christopher S. Wood, Executive Director Connecticut Siting Council

LETTER OF AUTHORIZATION

SITE NO: See Site List Below SITE NAME: See Site List Below

ADDRESS: See Site List Below

I, Margaret Robinson, Senior Counsel, US Tower Division on behalf of American Tower*, owner and/or operator of the tower facilities located at the addresses identified below (the "Tower Facilities"), do hereby authorize Centerline Communications LLC ("Centerline"), its agents, successors and assigns, to act as American Tower's non-exclusive agent for the purpose of filing and securing any zoning, land-use, building permit and/or electrical permit application(s) and approvals of the applicable jurisdiction for and to conduct the construction of the installation of antennas and related telecommunications equipment on the Tower Facilities located at the addresses identified below. This installation shall not affect adjoining lands and will occur only within the areas leased or owned by American Tower.

American Tower understands that the applications may be denied, modified or approved with conditions. The above authorization is limited to the acceptance by American Tower of conditions related to American Tower's installations. Any such conditions of approval or modifications will not be effective unless approved in writing by American Tower.

The above authorization does not permit Centerline to modify or alter any existing permit(s) and/or zoning or land-use conditions or impose any additional conditions unrelated to American Tower's installations of telecommunications equipment without the prior written approval of American Tower.

Site Authorized:

ATC Project #	ATC Tower #	ATC Site Name	Customer Site Name
13726411	370626	East Hartford	BOBDL00032B
13728728	383657	Atlas Container	BOBDL00095B
13733451	209280	Stafford 2	BOBDL00112A
13726719	302481	Hrfr - South	BOBDL00153B
13741553	283425	WOODSTOCK 2 CT	BOBOS00019A
13726721	302532	Hartford - Nyc	BOBOS00022A
13733429	415439	Woodstock NW PCS CT	BOBOS00027A
13733431	415484	East Woodstock, CT CT	BOBOS00028A
13733433	415784	East Putnam CT	BOBOS00029A
13733434	418609	Woodstock Relo CT	BOBOS00030A
13733436	6270	East Killingly	BOBOS00031A
13733438	6300	WOODSTOCK CT	BOBOS00032A
13746611	302503	Lisbon CT 3	BOBOS00068B
13733440	411216	CT Chaplin South CT	BOBOS00893A
13733446	10029	HAMPTON CT	BOBOS00894A
13733449	208478	Cheshire	BOHVN00033A

13729958	208205	Great Hill Road Seymour	BOHVN00035A
13729960	207941	Wolcott-Waterbury	BOHVN00036A

Signature:

Margaret Robinson, Senior Counsel

US Tower Division

NOTARY BLOCK

COMMONWEALTH OF MASSACHUSETTS County of Middlesex

This instrument was acknowledged before me by Margaret Robinson, Senior Counsel of American Tower (owner and/or operator of the above referenced Tower Facilities), personally known to me (or proved to me on the basis of satisfactory evidence) to be the person whose name is subscribed to the within instrument and acknowledged to me that he/she executed the same.

WITNESS my hand and official seal, this 3rd day of December , 2021.

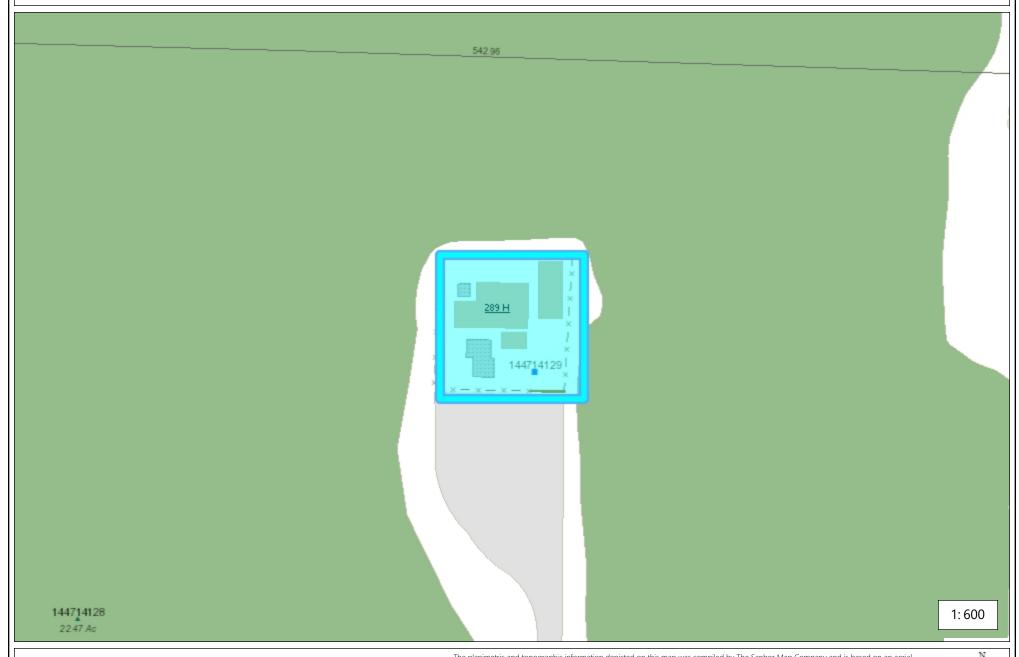
NOTARY SEAL

GERARD T. HEFFRON
Notary Public
Commonwealth of Massachusetts
My Commission Expires
August 9, 2024

Notary Public

My Commission Expires: August 9th, 2024

^{*} American Tower as used herein is defined as American Tower Corporation and any of its affiliates or subsidiaries.



100

City of Hartford GIS Services - HartfordGIS

City of Hartford - Property Map

289 Mountain Road, Hartford CT

100 Feet

Date Printed: 12/3/2021

The planimetric and topographic information depicted on this map was compiled by The Sanbor Map Company and is based on an aerial flight performed in April 2015. In addition, the City's GIS staff has been updating limited planimetric features on a yearly basis. The intent of this map is to depict a graphical representation of real property information relative to the planimetric features for the City of Hartford and is subject to change as a more accurate survey may disclose. The City of Hartford and the mapping company assume no legal responsibility for the information contained in this data. THIS MAP IS NOT TO BE USED FOR THE TRANSFER OF PROPERTY

Search...

Tool Labels

Home

Welcome to the City of Hartford Property Viewer.

This website is mobile friendly so you can access it on a Computer, Tablet or Mobile Phone.

You can use this website to locate Owner & Property information for properties in the City.

- You can zoom in and out on the map using your mouse wheel or the +/- buttons in the upper left as the Parcels become visible you can use the Identify Tool in the upper left to select a parcel. Then select the > twice in the Results window to get information about the selected property
- By using the search window in the upper right and pressing the magnifying glass you can search by Owners Last Name (ex. enter Sanchez), Parcel ID (ex. enter 152186096), or Address (ex. enter 220 blue hills). Then select the > in the Search Results to get information about the selected property.

HON ST

289 Mountain Street, Hartford, CT

Summary 12/3/21, 4:50 PM

SEARCH HOME

SUMMARY

INTERIOR

EXTERIOR

SALES

ABOUT

Printable Record Card | Previous Assessment | Condo Info | Sales | Zoning | Comments

Card 1 of 1

Location 289-H MOUNTAIN ST Property Account Number Parcel ID 144-714-128 Old Parcel ID --

Current Property Mailing Address

Owner METROPOLITAN DISTRICT BUREAU OF PUBLIC WORKS

City HARTFORD

State CT

Address 555 MAIN ST

Zip 06103-2915 **Zoning CAMP**

Current Property Sales Information

Sale Date 5/1/1990

Legal Reference 03061 0053

Sale Price 250

Grantor(Seller) PRACHNIAKEDWARD J.

Current Property Assessment

Cand 1 Value

12/3/21, 4:36 PM Summary

SEARCH HOME

SUMMARY

INTERIOR

EXTERIOR

SALES ABOUT

Printable Record Card | Previous Assessment | Condo Info | Sales | Zoning | Comments

Card 1 of 1

Location 289-H MOUNTAIN ST Property Account Number Parcel ID 144-714-129

Old Parcel ID I-E PEN 16-10835-

Current Property Mailing Address

Owner SPRINGWHICH CELLULAR TOWER HOLDINGS LLC

State MO

City ST LOUIS

Address 909 CHESTNUT, RM 36-M-1

Zip 63101

AT & T MOBILITY LLC

Zoning CAMP

Current Property Sales Information

Sale Date 7/7/2003

Legal Reference 04797-0166

Sale Price 0

Grantor(Seller) METROPOLITAN DISTRICT BUREAU OF

Current Property Assessment

Cand 1 Value

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOBDL00153B

BOBDL00153B 289 Mountain Street Hartford, Connecticut 06106

November 4, 2021

EBI Project Number: 6221006852

Site Compliance Summary		
Compliance Status:	COMPLIANT	
Site total MPE% of FCC general population allowable limit:	72.37%	

November 4, 2021

Dish Wireless

Emissions Analysis for Site: BOBDL00153B - BOBDL00153B

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **289 Mountain Street** in **Hartford, Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 289 Mountain Street in Hartford, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) 4 n66 channels (AWS Band 2190 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 5) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative

estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 6) The antennas used in this modeling are the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector A, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector B, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antenna mounting height centerline of the proposed antennas is 70 feet above ground level (AGL).
- 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 9) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	Α	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21
Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz	Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz	Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz
Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd
Height (AGL):	70 feet	Height (AGL):	70 feet	Height (AGL):	70 feet
Channel Count:	12	Channel Count:	12	Channel Count:	12
Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts
ERP (W):	5,236.31	ERP (W):	5,236.31	ERP (W):	5,236.31
Antenna A1 MPE %:	5.77%	Antenna B1 MPE %:	5.77%	Antenna CI MPE %:	5.77%

Site Composite MPE %				
Carrier	MPE %			
Dish Wireless (Max at Sector A):	5.77%			
AT&T	14.53%			
Sprint	4.86%			
Metro PCS	2.96%			
T-Mobile	28.76%			
Town of W. Hartford	0.98%			
Verizon	14.51%			
Site Total MPE %:	72.37%			

Dish Wireless MPE % Per Sector				
Dish Wireless Sector A Total:	5.77%			
Dish Wireless Sector B Total:	5.77%			
Dish Wireless Sector C Total:	5.77%			
Site Total MPE %: 72.37%				

Dish Wireless Maximum MPE Power Values (Sector A)							
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE
Dish Wireless 600 MHz n71	4	223.68	70.0	7.85	600 MHz n71	400	1.96%
Dish Wireless 1900 MHz n70	4	542.70	70.0	19.05	1900 MHz n70	1000	1.91%
Dish Wireless 2190 MHz n66	4	542.70	70.0	19.05	2190 MHz n66	1000	1.91%
						Total:	5.77%

[•] NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

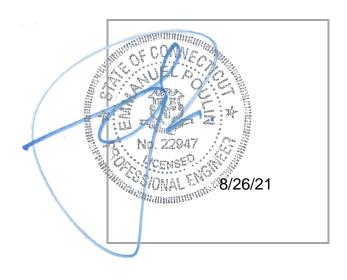
All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)		
Sector A:	5.77%		
Sector B:	5.77%		
Sector C:	5.77%		
Dish Wireless			
Maximum MPE %	5.77%		
(Sector A):			
Site Total:	72.37%		
Site Compliance Status:	COMPLIANT		

The anticipated composite MPE value for this site assuming all carriers present is **72.37**% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.


INFINIGY8

MOUNT ANALYSIS REPORT

August 26, 2021

Dish Wireless Site Name	0
Dish Wireless Site Number	BOBDL00153B
ATC Site Name	-
ATC Site Number	302481
Infinigy Job Number	1197-F0001-C
Client	ATC
Carrier	Dish Wireless
	289 Mountain Street
	Hartford, CT 06106
Site Location	Hartford County
	41.721833 N NAD83
	72.701279 W NAD83
Mount Type	8.0 ft Platform
Mount Elevation	50.0 ft AGL
Structural Usage Ratio	39.9
Overall Result	Pass

The enclosed mount structural analysis has been performed in accordance with the 2018 Connecticut State Building Code (2015 IBC) based on an ultimate 3-second gust wind speed of 125 mph. The evaluation criteria and applicable codes are presented in the next section of this report.

CONTENTS

- 1. Introduction
- 2. Design/Analysis Parameters
- 3. Proposed Loading Configuration
- 4. Supporting Documentation
- 5. Results
- 6. Recommendations
- 7. Assumptions
- 8. Liability Waiver and Limitations
- 9. Calculations

Report V1.1 Page | 2

1. INTRODUCTION

Infinigy performed a structural analysis on the Dish Wireless proposed telecommunication equipment supporting Platform mounted to the existing structure located at the aforementioned address. All referenced supporting documents have been obtained from the client and are assumed to be accurate and applicable to this site. The mount was analyzed using Risa-3D version 17.0.4 analysis software.

2. DESIGN/ANALYSIS PARAMETERS

Wind Speed	125 mph (3-Second Gust)
Wind Speed w/ ice	50 mph (3-Second Gust) w/ 2.0" ice
Code / Standard	TIA-222-H
Adopted Code	2018 Connecticut State Building Code (2015 IBC)
Risk Category	
Exposure Category	С
Topographic Category	1
Calculated Crest Height	0 ft.
Seismic Spectral Response	$S_s = 0.181 \text{ g} / S_1 = 0.064 \text{ g}$
Live Load Wind Speed	60 mph
Man Live Load at Mid/End Points	250 lbs
Man Live Load at Mount Pipes	500 lbs

3. PROPOSED LOADING CONFIGURATION - 50.0 ft. AGL Platform

Antenna Centerline (ft)	Qty.	Appurtenance Manufacturers	Appurtenance Models
, ,	3	JMA WIRELESS	MX08FRO665-21
50.0	3	FUJITSU	TA08025-B605
50.0	3	FUJITSU	TA08025-B604
	1	RAYCAP	RDIDC-9181-PF-48

4. SUPPORTING DOCUMENTATION

Proposed Loading	Dish Wireless Asset ID CT-ATC-T-302481 Rev 1, Site #BOBDL00153B, dated June 14, 2021
Mount Manufacturer Drawings	Commscope Document # MC-PK8-DSH, dated March 08, 2021

Report V1.1 Page | 3

5. RESULTS

Components	Capacity	Pass/Fail
Mount Pipes	20.7%	Pass
Horizontals	12.6%	Pass
Standoffs	32.4%	Pass
Handrails	25.1%	Pass
Connections	39.9%	Pass
MOUNT RATING =	39.9 %	Pass

Notes:

6. RECOMMENDATIONS

Infinigy recommends installing Dish Wireless's proposed equipment loading configuration on the mount at 50.0 ft. The installation shall be performed in accordance with the construction documents issued for this site.

Pradin Suinyal Magar Project Engineer II | INFINIGY

Report V1.1

^{1.} See additional documentation in Appendix for calculations supporting the capacity consumed and detailed mount connection calculations.

7. ASSUMPTIONS

The antenna mounting system was properly fabricated, installed and maintained in accordance with its original design and manufacturer's specifications.

The configuration of antennas, mounts, and other appurtenances are as specified in the proposed loading configuration table.

All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.

The analysis will require revisions if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.

Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Plate, Built-up Angle

Structural Angle

HSS (Rectangular)

HSS (Circular)

Pipe

ASTM A529 Gr. 50

ASTM A500-B GR 46

ASTM A500-B GR 42

ASTM A500-B GR 42

ASTM A500 Gr C

Connection Bolts

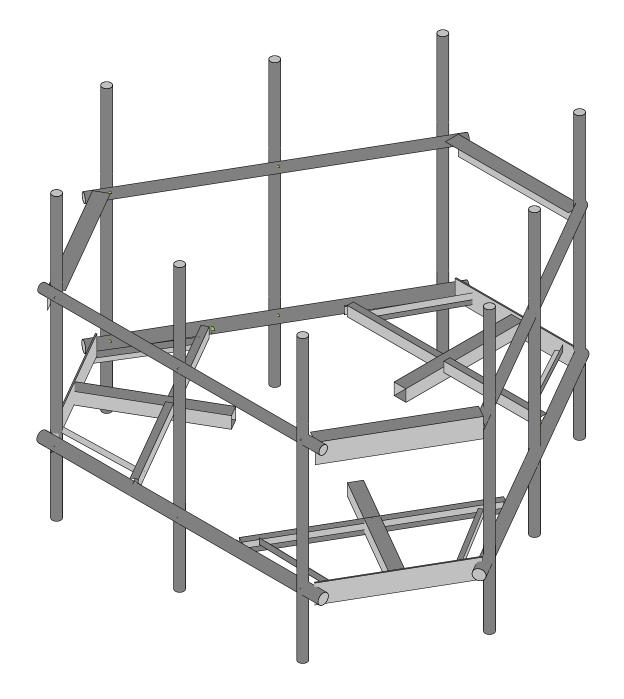
U-Bolts

ASTM A325

ASTM A307

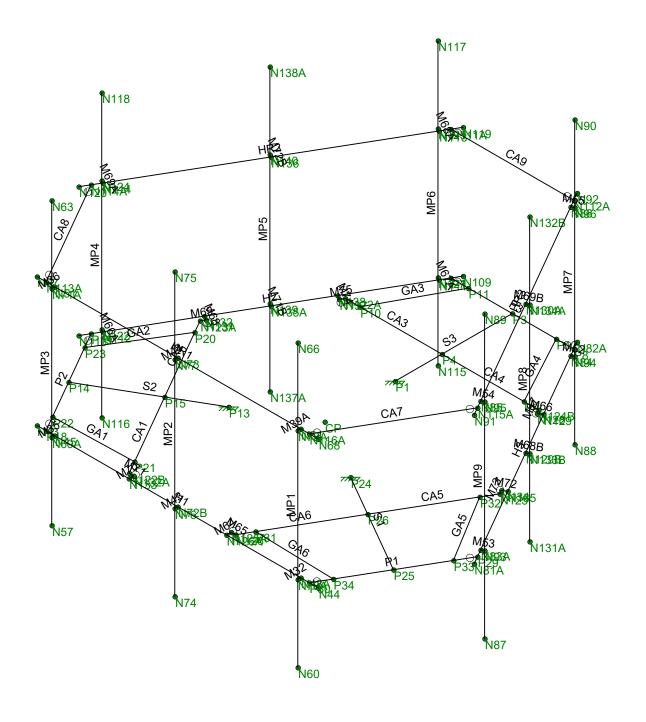
All bolted connections are pretensioned in accordance with Table 8.2 of the RCSC 2014 Standard

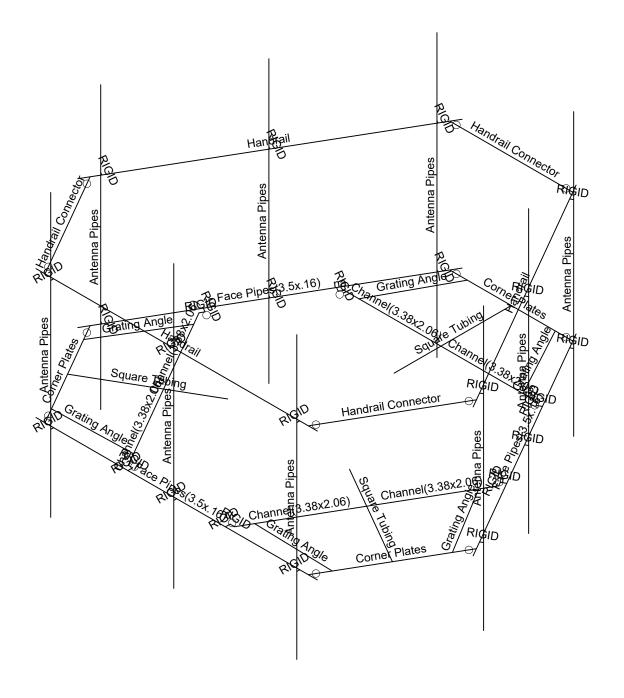
8. LIABILITY WAIVER AND LIMITATIONS

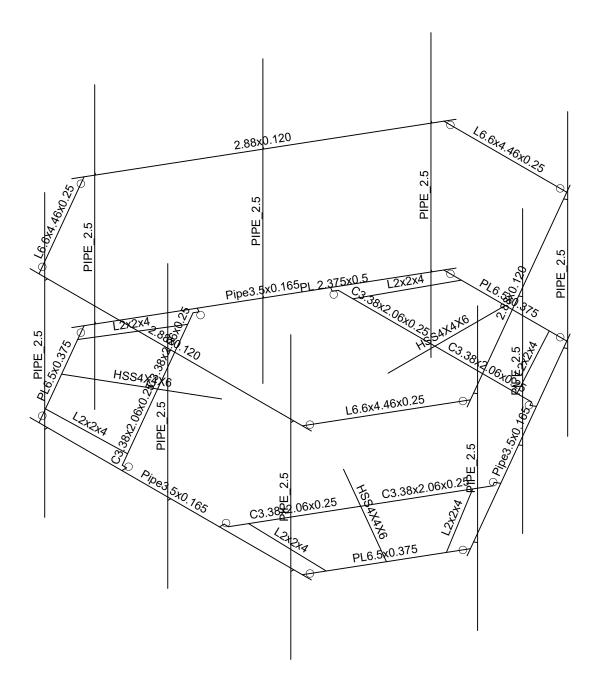

Our structural calculations are completed assuming all information provided to Infinigy is accurate and applicable to this site. For the purposes of calculations, we assume an overall structure condition as erected and all members and connections to be free of corrosion and/or structural defects. The structure owner and/or contractor shall verify the structure's condition prior to installation of any proposed equipment. If actual conditions differ from those described in this report, Infinigy should be notified immediately to assess the impact on the results of this report.

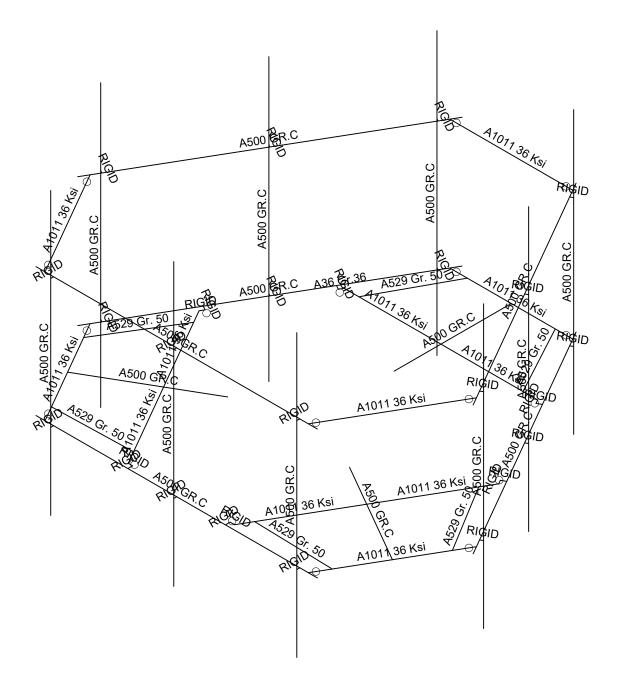
Our evaluation is completed using industry standard methods and procedures. The structural results, conclusions and recommendations contained in this report are proprietary and should not be used by others as their own. Infinigy is not responsible for decisions made by others that are or are not based on the stated assumptions and conclusions in this report.

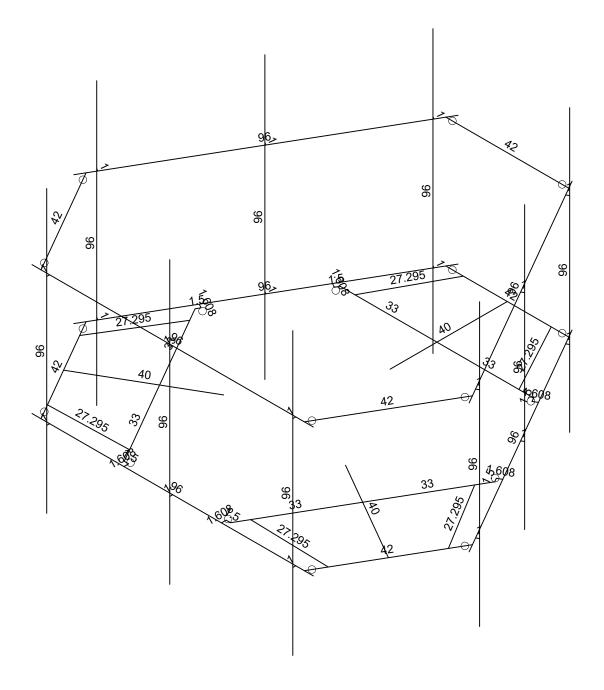
This report is an evaluation of the mount structure only and does not determine the adequacy of the supporting structure, other carrier mounts or cable mounting attachments. The analysis of these elements is outside the scope of this analysis, are assumed to be adequate for the purpose of this report and to have been installed per their manufacturer requirements. This document is not for construction purposes.


Report V1.1 Page | 5

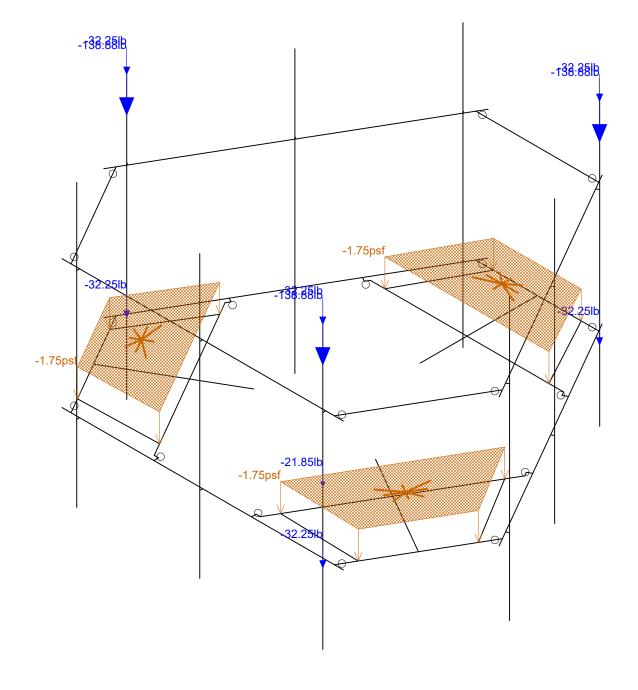

Infinigy Engineering, PLLC		Rendered
PSM	BOBDL00153B	Aug 26, 2021 at 11:40 AM
1197-F0001-C		BOBDL00153B_loaded.r3d


Infinigy Engineering, PLLC		WireFrame
PSM	BOBDL00153B	Aug 26, 2021 at 11:40 AM
1197-F0001-C		BOBDL00153B_loaded.r3d


Infinigy Engineering, PLLC		Section Sets
PSM	BOBDL00153B	Aug 26, 2021 at 11:41 AM
1197-F0001-C		BOBDL00153B_loaded.r3d

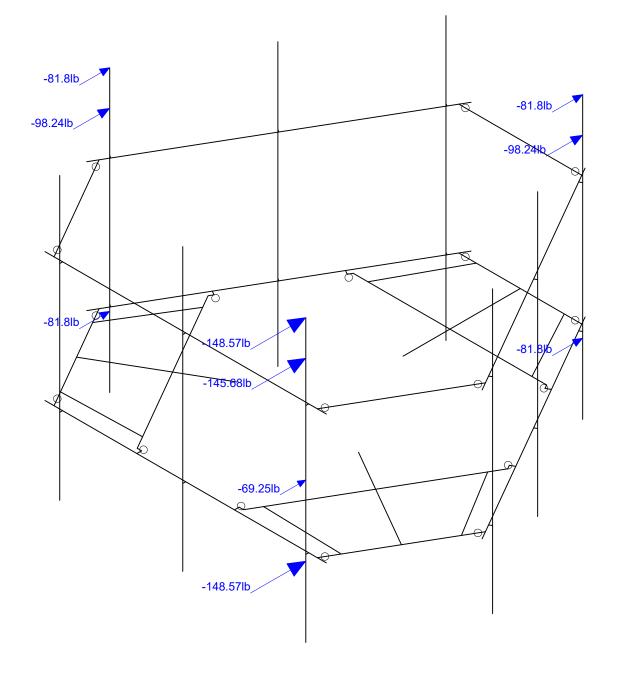

Infinigy Engineering, PLLC		Member Shapes
PSM	BOBDL00153B	Aug 26, 2021 at 11:41 AM
1197-F0001-C		BOBDL00153B_loaded.r3d

Infinigy Engineering, PLLC		Material Sets
PSM	BOBDL00153B	Aug 26, 2021 at 11:42 AM
1197-F0001-C		BOBDL00153B_loaded.r3d

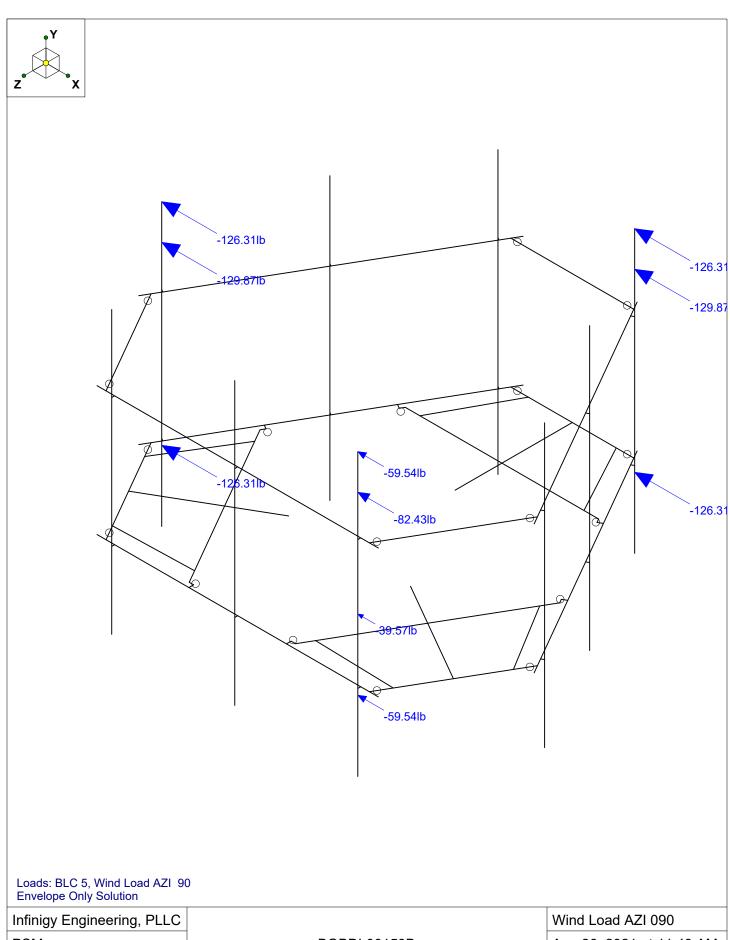


Member Length (in) Displayed Envelope Only Solution

Infinigy Engineering, PLLC		Member Lengths
PSM	BOBDL00153B	Aug 26, 2021 at 11:42 AM
1197-F0001-C		BOBDL00153B_loaded.r3d

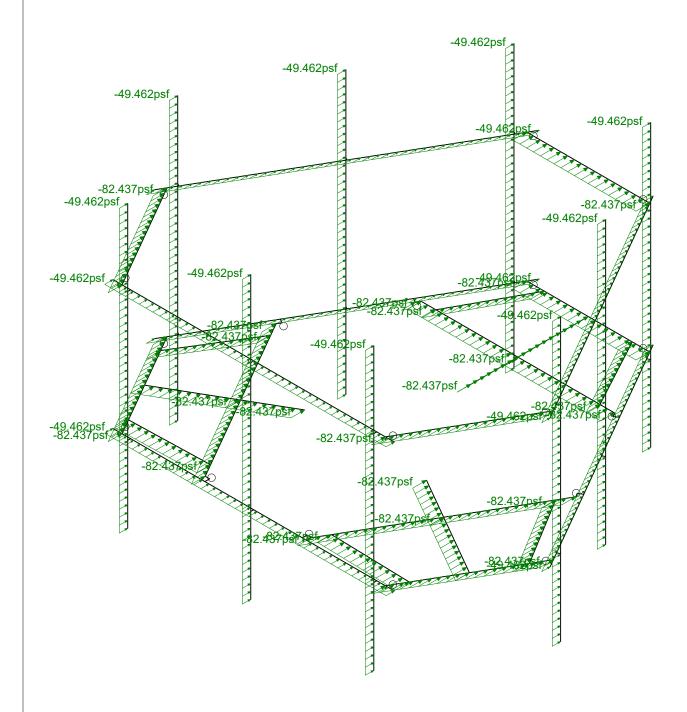


Loads: BLC 1, Self Weight Envelope Only Solution


Infinigy Engineering, PLLC		Self Weight
PSM	BOBDL00153B	Aug 26, 2021 at 11:43 AM
1197-F0001-C		BOBDL00153B_loaded.r3d

Loads: BLC 2, Wind Load AZI 0 Envelope Only Solution

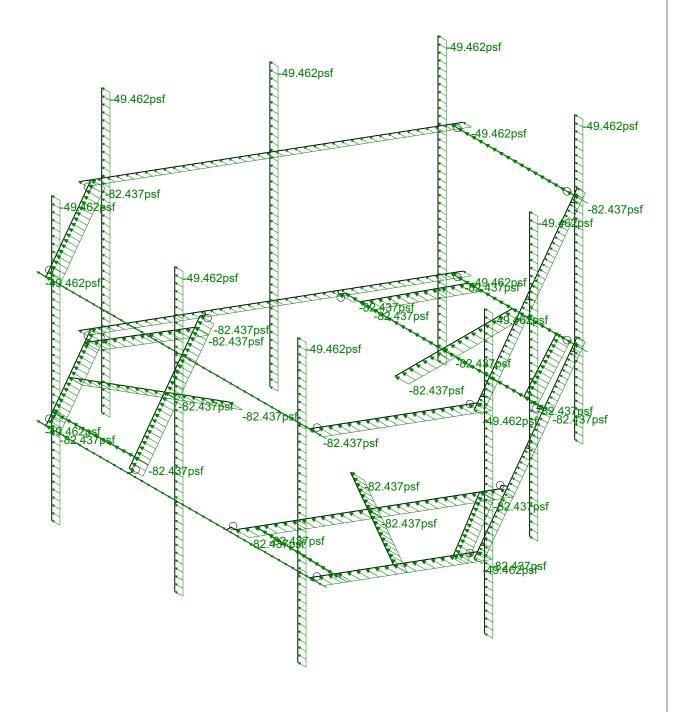
Infinigy Engineering, PLLC		Wind Load AZI 000
PSM	BOBDL00153B	Aug 26, 2021 at 11:43 AM
1197-F0001-C		BOBDL00153B_loaded.r3d



 Infinigy Engineering, PLLC
 Wind Load AZI 090

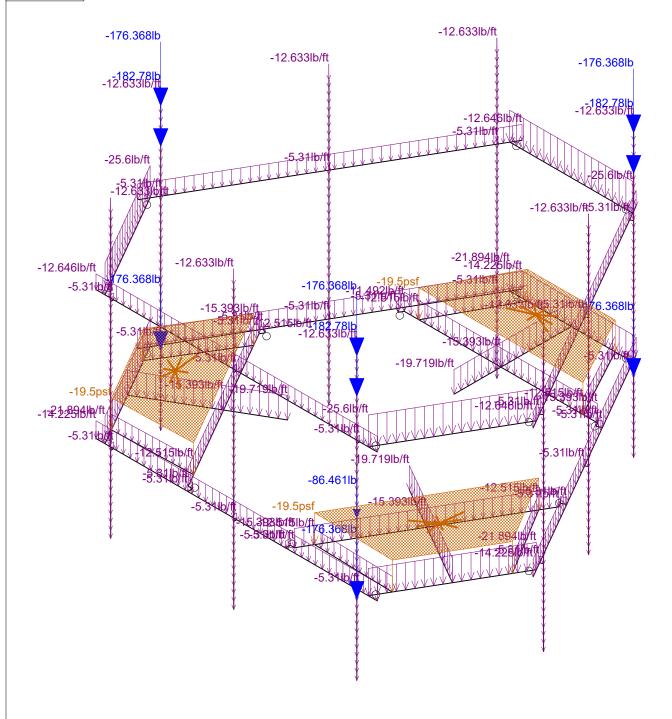
 PSM
 BOBDL00153B
 Aug 26, 2021 at 11:43 AM

 BOBDL00153B_loaded.r3d
 BOBDL00153B_loaded.r3d



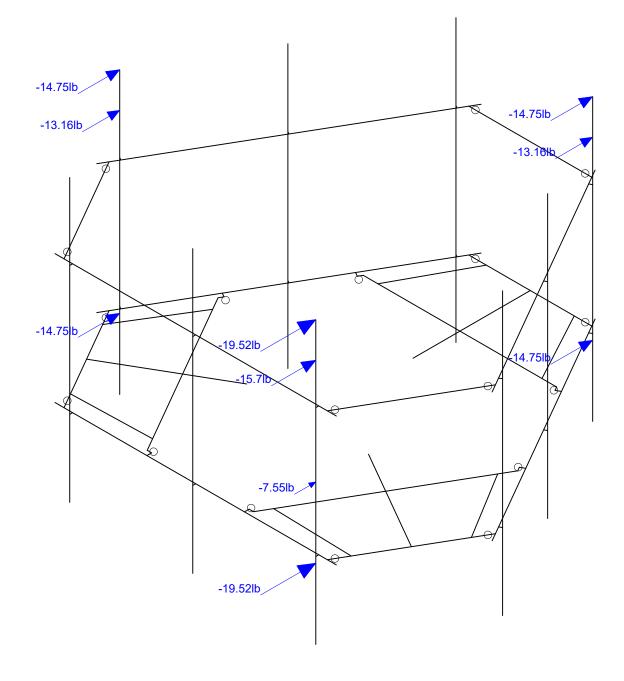
Loads: BLC 14, Distr. Wind Load Z Envelope Only Solution

Infinigy Engineering, PLLC		Distr Wind Load AZI 000
PSM	BOBDL00153B	Aug 26, 2021 at 11:43 AM
1197-F0001-C		BOBDL00153B_loaded.r3d



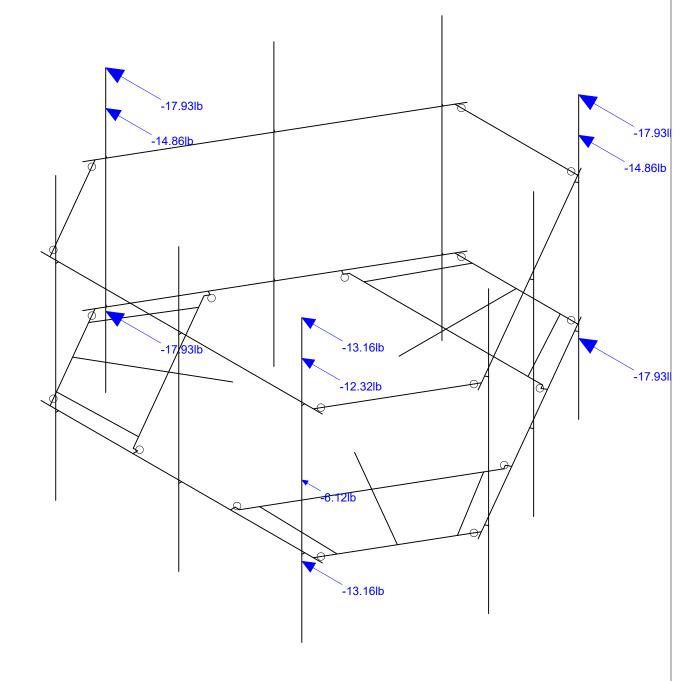
Loads: BLC 15, Distr. Wind Load X Envelope Only Solution

Infinigy Engineering, PLLC		Distr Wind Load AZI 090
PSM	BOBDL00153B	Aug 26, 2021 at 11:43 AM
1197-F0001-C		BOBDL00153B_loaded.r3d



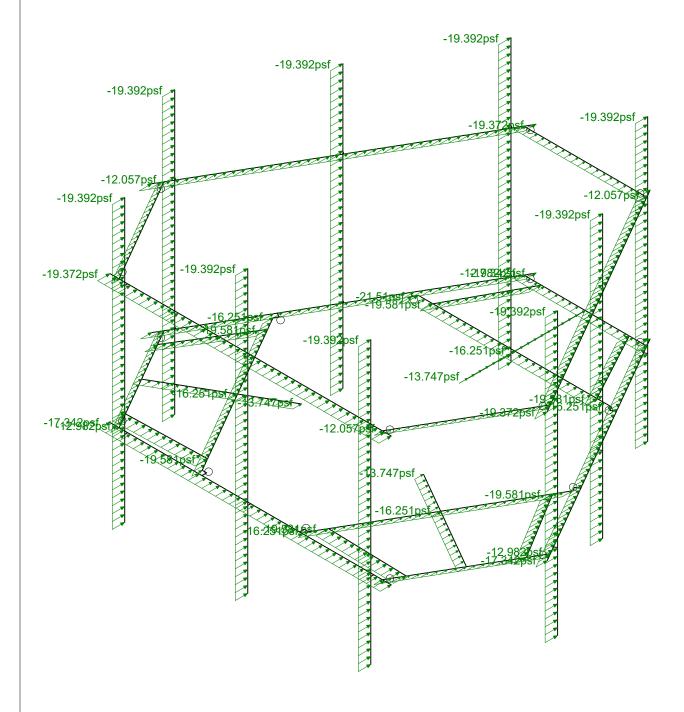
Loads: BLC 16, Ice Weight Envelope Only Solution

Infinigy Engineering, PLLC		Ice Weight
PSM	BOBDL00153B	Aug 26, 2021 at 11:44 AM
1197-F0001-C		BOBDL00153B_loaded.r3d



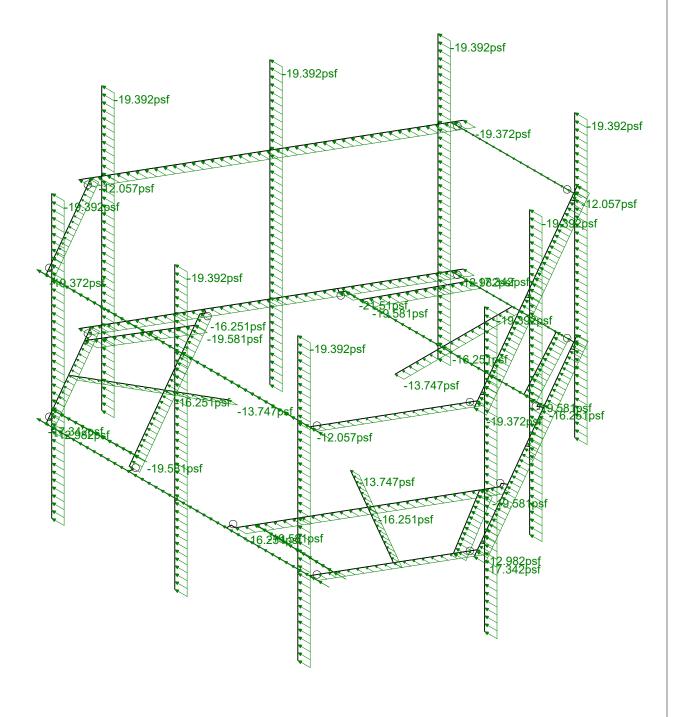
Loads: BLC 17, Ice Wind Load AZI 0 Envelope Only Solution

Infinigy Engineering, PLLC		Ice + Wind Load AZI 000
PSM	BOBDL00153B	Aug 26, 2021 at 11:45 AM
1197-F0001-C		BOBDL00153B_loaded.r3d



Loads: BLC 20, Ice Wind Load AZI 90 Envelope Only Solution

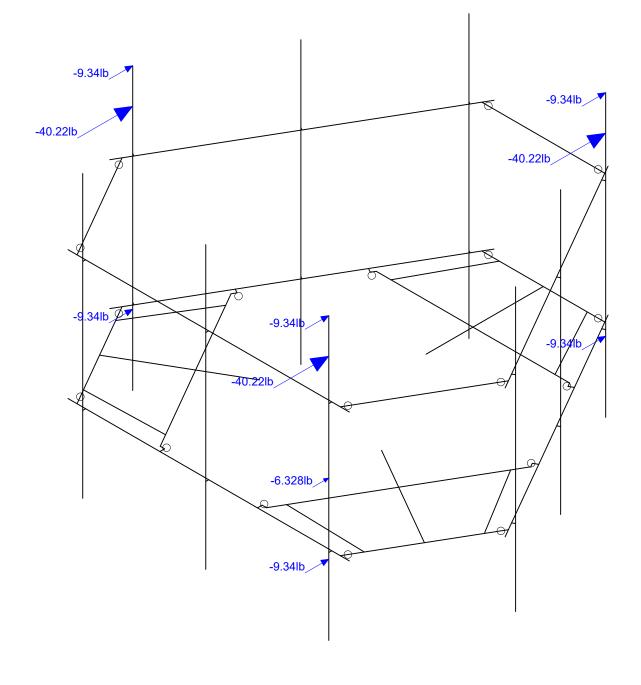
Infinigy Engineering, PLLC		Ice + Wind Load AZI 090
PSM	BOBDL00153B	Aug 26, 2021 at 11:46 AM
1197-F0001-C		BOBDL00153B_loaded.r3d


Loads: BLC 29, Distr. Ice Wind Load Z Envelope Only Solution

Infinigy Engineering, PLLC	
PSM	
1197-F0001-C	

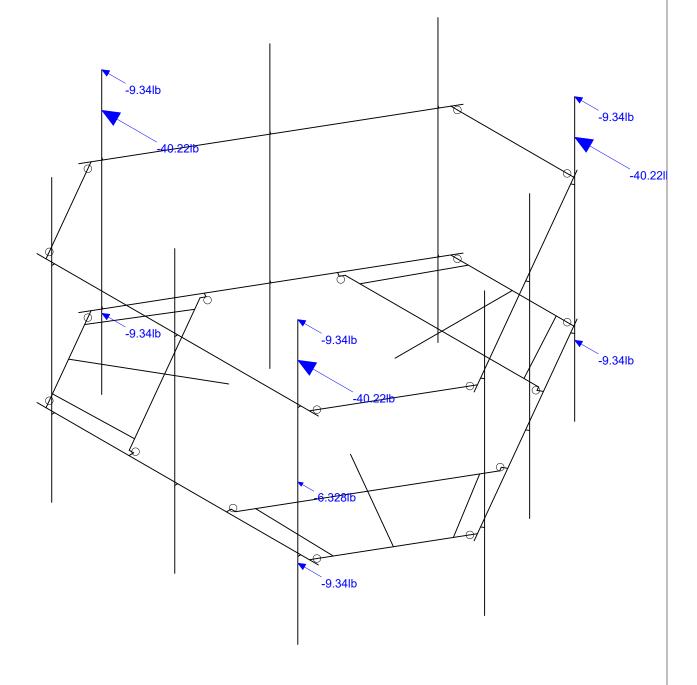
BOBDL00153B

Distr Ice + Wind Load AZI 000
Aug 26, 2021 at 11:46 AM
BOBDL00153B_loaded.r3d



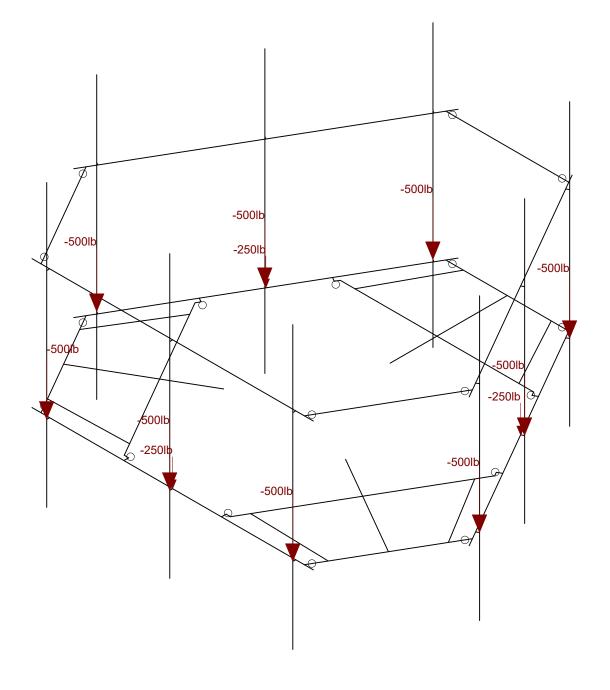
Loads: BLC 30, Distr. Ice Wind Load X Envelope Only Solution

Infinigy Engineering, PLLC		Distr Ice + Wind Load AZI 09
PSM	BOBDL00153B	Aug 26, 2021 at 11:46 AM
1197-F0001-C		BOBDL00153B_loaded.r3d

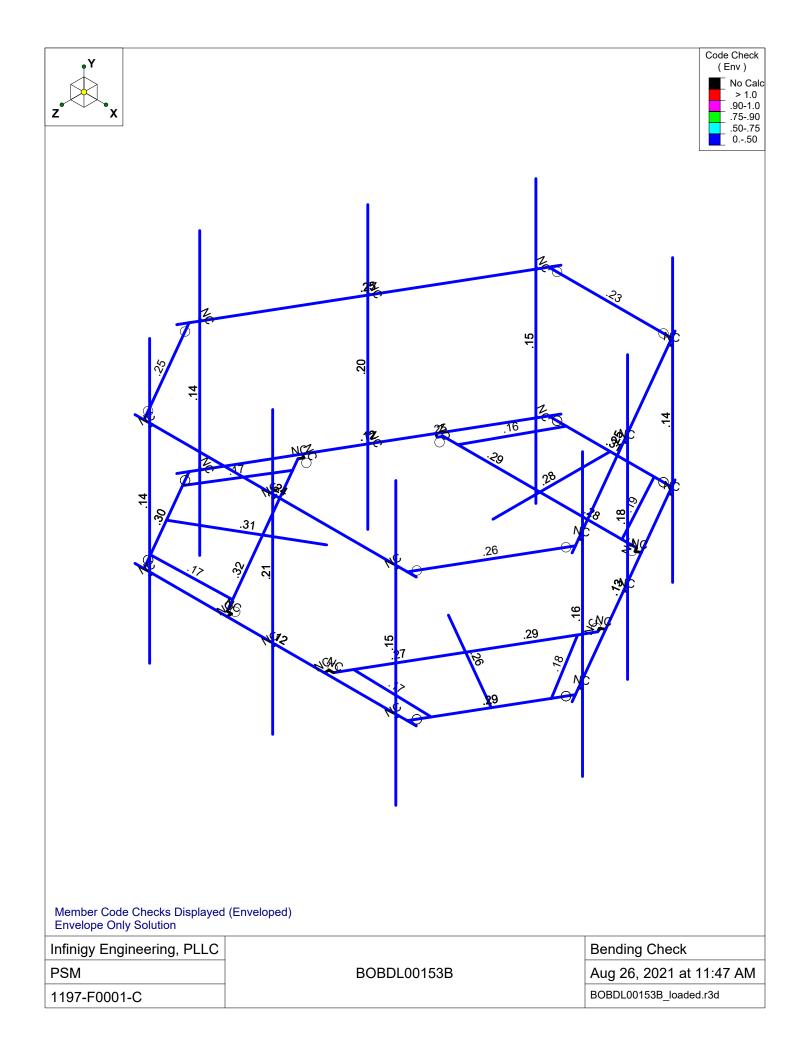


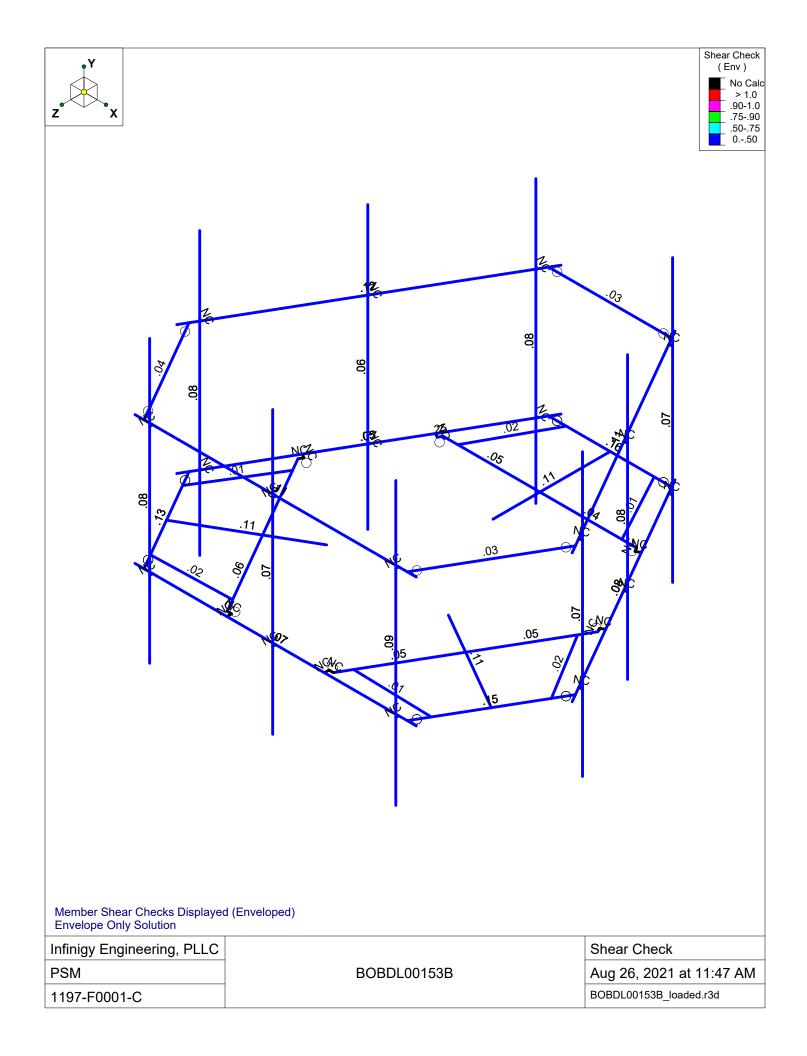
Loads: BLC 31, Seismic Load Z Envelope Only Solution

Infinigy Engineering, PLLC		Seismic Load AZI 000
PSM	BOBDL00153B	Aug 26, 2021 at 11:47 AM
1197-F0001-C		BOBDL00153B_loaded.r3d



Loads: BLC 32, Seismic Load X Envelope Only Solution


Infinigy Engineering, PLLC		Seismic Load AZI 090
PSM	BOBDL00153B	Aug 26, 2021 at 11:47 AM
1197-F0001-C		BOBDL00153B_loaded.r3d



Loads: LL - Live Load Envelope Only Solution

Infinigy Engineering, PLLC		Non-concurrent Live Loads
PSM	BOBDL00153B	Aug 26, 2021 at 11:47 AM
1197-F0001-C		BOBDL00153B_loaded.r3d

Program Inputs

PROJECT INFORMATION			
Client: ATC			
Carrier:	Dish Wireless		
Engineer:	Pradin Suinyal Magar, M.S		

SITE INFORMATION			
Risk Category:	П		
Exposure Category:	С		
Topo Factor Procedure:	: Method 1, Category 1		
Site Class:	: D - Stiff Soil (Assumed)		
Ground Elevation:	: 230.19 ft *Rev H		

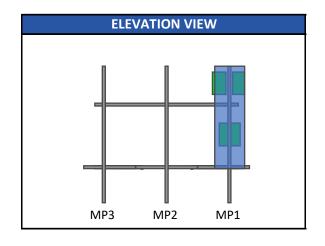
MOUNT INFORMATION			
Mount Type: Platform			
Num Sectors:	s: 3		
Centerline AGL:	50.00	ft	
Tower Height AGL:	110.00	ft	

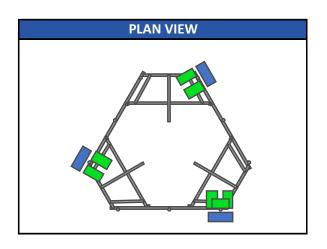
TOPOGRAPHIC DATA			
Topo Feature: N/A			
Slope Distance:	N/A	ft	
Crest Distance:	N/A	ft	
Crest Height:	N/A	ft	

FACTORS			
Directionality Fact. (K _d):	0.950		
Ground Ele. Factor (K _e):	0.992	*Rev H Only	
Rooftop Speed-Up (K _s):	1.000	*Rev H Only	
Topographic Factor (K _{zt}):	1.000		
Gust Effect Factor (G _h):	1.000		

CODE STANDARDS		
Building Code:	2015 IBC	
TIA Standard:	TIA-222-H	
ASCE Standard:	ASCE 7-10	

WIND AND ICE DATA			
Ultimate Wind (V _{ult}):	125	mph	
Design Wind (V):	N/A	mph	
Ice Wind (V _{ice}):	50	mph	
Base Ice Thickness (t _i):	2	in	
Flat Pressure:	82.437	psf	
Round Pressure:	49.462	psf	
Ice Wind Pressure:	7.914	psf	


SEISMIC DATA			
Short-Period Accel. (S _s):	0.181	g	
1-Second Accel. (S ₁):	0.064	g	
Short-Period Design (S _{DS}):	0.193		
1-Second Design (S _{D1}):	0.102		
Short-Period Coeff. (F _a):	1.600		
1-Second Coeff. (F _v):	2.400		
Amplification Factor (A _s):	3.000		
Response Mod. Coeff. (R):	2.000		



Infinigy Load Calculator V2.1.7

BOBDL00153B_0 8/26/2021

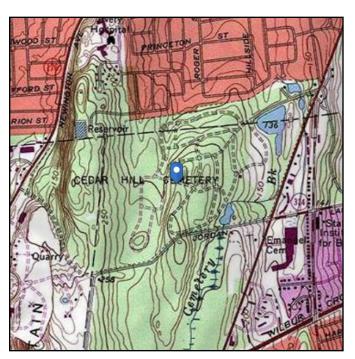
Program Inputs

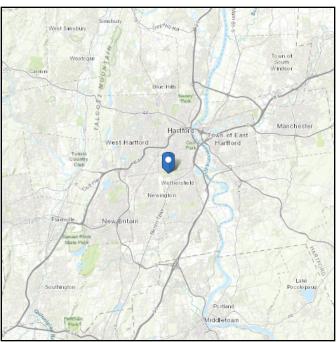
Infinigy Load Calculator V2.1.7

APPURTENANCE INFORMATION											
Appurtenance Name	Elevation	Qty.	K _a	q _z (psf)	EPA _N (ft ²)	EPA _T (ft ²)	Wind F _z	Wind F _x	Weight	Seismic	Member
	Licvation	Qty.	'`a	9 ₂ (p3.)		Li AŢ (it)	(lbs)	(lbs)	(lbs)	F (lbs)	(α sector)
JMA WIRELESS MX08FRO665-21	50.0	3	0.90	41.22	8.01	3.21	297.14	119.08	64.50	18.68	MP1
FUJITSU TA08025-B605	50.0	3	0.90	41.22	1.96	1.19	72.84	44.11	74.95	21.71	MP1
FUJITSU TA08025-B604	50.0	3	0.90	41.22	1.96	1.03	72.84	38.32	63.93	18.51	MP1
RAYCAP RDIDC-9181-PF-48	50.0	1	0.90	41.22	1.87	1.07	69.25	39.57	21.85	6.33	MP1

BOBDL00153B_0 8/26/2021

Address:


No Address at This Location


ASCE 7 Hazards Report

ASCE/SEI 7-10 Standard: Elevation: 230.19 ft (NAVD 88)

Risk Category: || Latitude: 41.721833

D - Stiff Soil Soil Class: Longitude: -72.70128

Wind

Results:

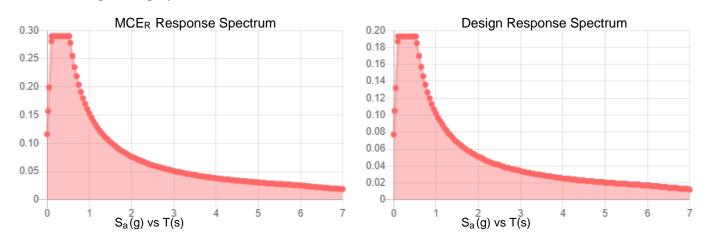
Wind Speed: 125 mph per Hartford City Requirements in WSEL

10-year MRI 77 Vmph 25-year MRI 86 Vmph 50-year MRI 93 Vmph 100-year MRI 100 Vmph

Date &ocessed: **ABCE/09E36720021**Fig. 26.5-1A and Figs. CC-1-CC-4, and Section 26.5.2,

incorporating errata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.181	S _{DS} :	0.193	
S_1 :	0.064	S_{D1} :	0.102	
F _a :	1.6	T_L :	6	
F_v :	2.4	PGA:	0.092	
S _{MS} :	0.29	PGA _M :	0.147	
S _{M1} :	0.153	F _{PGA} :	1.6	
		l _e :	1	

Seismic Design Category B

Data Accessed: Thu Aug 26 2021

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating

Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with

Thu Aug 26 2021

ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness: 1.00 in.

Concurrent Temperature: 5 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Thu Aug 26 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Company : Infinigy Enginee Designer : PSM Job Number : 1197-F0001-C Model Name : BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Member Primary Data

2 GA4 P9 P12 270 Grating Angle Beam None A529 Gr. 50 Typical		Label	I Joint		K Joint	Rotate(Section/Shape		Design List		Design Rules
GA3	1	S3	P1	P3		070	Square Tubing	Beam	None	A500 GR.C	Typical
P3			_			270					
5 S2 P13 P14 Square Tubing Beam None A500 GR.C Typical 6 GA2 P20 P23 270 Grating Angle Beam None A529 Gr. 50 Typical 7 GA1 P21 P22 Grating Angle Beam None A529 Gr. 50 Typical 8 P2 P18 P19 Corner Plates Beam None A529 Gr. 50 Typical 9 S1 P24 P25 Square Tubing Beam None A500 GR.C Typical 10 GA6 P31 P34 270 Grating Angle Beam None A529 Gr. 50 Typical 11 GA5 P32 P33 Grating Angle Beam None A529 Gr. 50 Typical 12 P1 P29 P30 Corner Plates Beam None A529 Gr. 50 Typical 13 H1 N43 N44 N44 N44 N44 N											
Fig. 20											
To GA1											
Sear						270					
9 S1 P24 P25 Square Tubing Beam None A500 GR.C Typical 10 GA6 P31 P34 270 Grating Angle Beam None A529 Gr. 50 Typical 11 GA5 P32 P33 Grating Angle Beam None A529 Gr. 50 Typical 12 P1 P29 P30 Corner Plates Beam None A529 Gr. 50 Typical 13 H1 N43 N44 Face Pipes(3.5x.16) Beam None A500 GR.C Typical 14 MP1 N66 N60 Antenna Pipes Beam None A500 GR.C Typical 14 MP1 N66 N60 Antenna Pipes Beam None A500 GR.C Typical 15 MP3 N63 N57 Antenna Pipes Beam None A500 GR.C Typical 16 HR1 N67 N68 Handrail Connector Beam None A500 GR.C Typical 17 CA8 N114A N113A 180 Handrail Connector Beam None A500 GR.C Typical 18 CA9 N112A N111A 180 Handrail Connector Beam None A500 GR.C Typical 19 CA7 N116A N115A 180 Handrail Connector Beam None A1011 36 Ksi Typical 19 CA7 N116A N15A 180 Handrail Connector Beam None A1011 36 Ksi Typical 19 CA7 N116A N115A 180 Handrail Connector Beam None A1011 36 Ksi Typical 19 CA7 N116A N115A 180 Handrail Connector Beam None A1011 36 Ksi Typical 19 CA7 N116A N115A 180 Handrail Connector Beam None RIGID Typical 10 M35 N45 N69A RIGID None None RIGID Typical 10 M35 N45 N69A RIGID None None RIGID Typical 10 M35 N45 N69A RIGID None None RIGID Typical 10 M35 N45 N72A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M36 N51 N71A RIGID None None RIGID Typical 10 M71 N7128 N7134 RIGID None None RIGID Typical 10 N											
10 GA6 P31 P34 270 Grating Angle Beam None A529 Gr. 50 Typical Radial P32 P33 Corner Plates Beam None A529 Gr. 50 Typical P33 Corner Plates Beam None A529 Gr. 50 Typical P33 H1 N43 N44 Face Pipes(3.5x.16) Beam None A500 GR.C Typical A500 GR.C Typical P34 N65 N65 Antenna Pipes Beam None A500 GR.C Typical P4 MP1 N66 N60 Antenna Pipes Beam None A500 GR.C Typical N66 N60 Antenna Pipes Beam None A500 GR.C Typical P4 N65 N65 Antenna Pipes Beam None A500 GR.C Typical N66 N60 Antenna Pipes Beam None A500 GR.C Typical N66 N60 Antenna Pipes Beam None A500 GR.C Typical N66 N67 N68 Handrail Connector B64 N00 A011136 Ksi Typical N66 N60 A1114 N113 N113 N113 N113 N113 N113 N00 N000 N000 N000 N000 N000 N000 N0											Typical
11 GA5								_			Typical
12						270	Grating Angle				Typical
13							Grating Angle	Beam			Typical
14 MP1 N66 N60	12	P1	P29	P30						A1011 36 Ksi	Typical
15 MP3 N63 N57	13	H1	N43	N44			Face Pipes(3.5x.16)		None	A500 GR.C	Typical
16	14	MP1	N66	N60			Antenna Pipes	Beam	None	A500 GR.C	Typical
17	15	MP3	N63	N57			Antenna Pipes	Beam	None	A500 GR.C	Typical
18	16	HR1	N67	N68				Beam	None		Typical
19	17	CA8	N114A	N113A		180		Beam	None		Typical
M32	18	CA9	N112A	N111A		180	Handrail Connector	Beam	None		Typical
20 M32 N48A N70A RIGID None None RIGID Typical 21 M35 N45 N69A RIGID None None RIGID Typical 22 M36 N51 N71A RIGID None None RIGID Typical 23 M39A N54 N72A RIGID None None RIGID Typical 24 CA3 P4 N122A Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 25 CA4 N124B P4 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 26 CA1 P15 N122B Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 27 CA2 N123A P15 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 28 CA5 P26 N125 Channel(3.38x2.06) Beam None A1011 36 Ksi T	19	CA7	N116A	N115A		180	Handrail Connector	Beam	None	A1011 36 Ksi	Typical
21 M35 N45 N69A RIGID None None RIGID Typical 22 M36 N51 N71A RIGID None None RIGID Typical 23 M39A N54 N72A RIGID None None RIGID Typical 24 CA3 P4 N122A Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 25 CA4 N124B P4 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 26 CA1 P15 N122B Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 27 CA2 N123A P15 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 28 CA5 P26 N125 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 30 M64 N126A N125A RIGID None None RIGID <td< td=""><td>20</td><td>M32</td><td>N48A</td><td>N70A</td><td></td><td></td><td>RIGID</td><td>None</td><td></td><td>RIGID</td><td></td></td<>	20	M32	N48A	N70A			RIGID	None		RIGID	
22 M36 N51 N71A RIGID None None RIGID Typical 23 M39A N54 N72A RIGID None None RIGID Typical 24 CA3 P4 N122A Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 25 CA4 N124B P4 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 26 CA1 P15 N122B Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 27 CA2 N123A P15 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 28 CA5 P26 N125 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 29 CA6 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 30 M64 N126A N126A RIGID None None RI	21	M35	N45	N69A			RIGID	None		RIGID	Typical
23 M39A N54 N72A RIGID None None RIGID Typical 24 CA3 P4 N122A Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 25 CA4 N124B P4 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 26 CA1 P15 N122B Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 27 CA2 N123A P15 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 28 CA5 P26 N125 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 29 CA6 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 30 M64 N126A N125A RIGID None None RIGID Typical 31 M65 N126 N125A RIGID None None	22	M36	N51	N71A			RIGID	None		RIGID	
24 CA3 P4 N122A Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 25 CA4 N124B P4 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 26 CA1 P15 N122B Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 27 CA2 N123A P15 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 28 CA5 P26 N125 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 29 CA6 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 30 M64 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 31 M65 N126 P26 Channel(3.38x2.06) Beam None RIGID Typical 32 M66 N129 N128 RIGID None		M39A	N54	N72A			RIGID	None		RIGID	
25 CA4 N124B P4 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 26 CA1 P15 N122B Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 27 CA2 N123A P15 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 28 CA5 P26 N125 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 29 CA6 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 30 M64 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 31 M65 N126 N125A RIGID None None RIGID Typical 32 M66 N129 N128 RIGID None None RIGID Typical 33 M67 N124B N128 RIGID None None R		CA3	P4	N122A			Channel(3.38x2.06)	Beam		A1011 36 Ksi	
26 CA1 P15 N122B Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 27 CA2 N123A P15 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 28 CA5 P26 N125 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 29 CA6 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 30 M64 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 30 M64 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 31 M65 N126 P26 RIGID None None RIGID Typical 31 M65 N126 N125A RIGID None None RIGID Typical 32 M66 N129 N128 RIGID None None RIGID Typical 34 M		CA4	N124B	P4			Channel(3.38x2.06)	Beam		A1011 36 Ksi	
27 CA2 N123A P15 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 28 CA5 P26 N125 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 29 CA6 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 30 M64 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 30 M64 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 31 M65 N126 N125A RIGID None None RIGID Typical 31 M65 N126 N125A RIGID None None RIGID Typical 32 M66 N129 N128 RIGID None None RIGID Typical 34 M68 N132 N131 RIGID None None RIGID <t< td=""><td></td><td></td><td>P15</td><td>N122B</td><td></td><td></td><td>Channel(3.38x2.06)</td><td>Beam</td><td></td><td>A1011 36 Ksi</td><td></td></t<>			P15	N122B			Channel(3.38x2.06)	Beam		A1011 36 Ksi	
28 CA5 P26 N125 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 29 CA6 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 30 M64 N126A N125A RIGID None None RIGID Typical 31 M65 N126 N125A RIGID None None RIGID Typical 32 M66 N129 N128 RIGID None None RIGID Typical 33 M67 N124B N128 RIGID None None RIGID Typical 34 M68 N132 N131 RIGID None None RIGID Typical 35 M69 N123A N131 RIGID None None RIGID Typical 36 M70 N133 N132A RIGID None None RIGID Typical 38	27	CA2	N123A	P15			Channel(3.38x2.06)	Beam	None	A1011 36 Ksi	
29 CA6 N126 P26 Channel(3.38x2.06) Beam None A1011 36 Ksi Typical 30 M64 N126A N125A RIGID None None RIGID Typical 31 M65 N126 N125A RIGID None None RIGID Typical 32 M66 N129 N128 RIGID None None RIGID Typical 33 M67 N124B N128 RIGID None None RIGID Typical 34 M68 N132 N131 RIGID None None RIGID Typical 35 M69 N123A N131 RIGID None None RIGID Typical 36 M70 N133 N132A RIGID None None RIGID Typical 37 M71 N122B N132A RIGID None None RIGID Typical 38 M72 </td <td></td> <td></td> <td>P26</td> <td></td> <td></td> <td></td> <td>Channel(3.38x2.06)</td> <td>Beam</td> <td></td> <td>A1011 36 Ksi</td> <td></td>			P26				Channel(3.38x2.06)	Beam		A1011 36 Ksi	
30 M64 N126A N125A RIGID None None RIGID Typical 31 M65 N126 N126A RIGID None None RIGID Typical 32 M66 N129 N128 RIGID None None RIGID Typical 33 M67 N124B N128 RIGID None None RIGID Typical 34 M68 N132 N131 RIGID None None RIGID Typical 35 M69 N123A N131 RIGID None None RIGID Typical 36 M70 N133 N132A RIGID None None RIGID Typical 37 M71 N122B N132A RIGID None None RIGID Typical 38 M72 N135 N134 RIGID None None RIGID Typical							Channel(3.38x2.06)	Beam		A1011 36 Ksi	
31 M65 N126 N125A RIGID None None RIGID Typical 32 M66 N129 N128 RIGID None None RIGID Typical 33 M67 N124B N128 RIGID None None RIGID Typical 34 M68 N132 N131 RIGID None None RIGID Typical 35 M69 N123A N131 RIGID None None RIGID Typical 36 M70 N133 N132A RIGID None None RIGID Typical 37 M71 N122B N132A RIGID None None RIGID Typical 38 M72 N135 N134 RIGID None None RIGID Typical			N126A	N125A			RIGID	None		RIGID	
32 M66 N129 N128 RIGID None None RIGID Typical 33 M67 N124B N128 RIGID None None RIGID Typical 34 M68 N132 N131 RIGID None None RIGID Typical 35 M69 N123A N131 RIGID None None RIGID Typical 36 M70 N133 N132A RIGID None None RIGID Typical 37 M71 N122B N132A RIGID None None RIGID Typical 38 M72 N135 N134 RIGID None None RIGID Typical			N126	N125A				None			
33 M67 N124B N128 RIGID None None RIGID Typical 34 M68 N132 N131 RIGID None None RIGID Typical 35 M69 N123A N131 RIGID None None RIGID Typical 36 M70 N133 N132A RIGID None None RIGID Typical 37 M71 N122B N132A RIGID None None RIGID Typical 38 M72 N135 N134 RIGID None None RIGID Typical								None			
34 M68 N132 N131 RIGID None None RIGID Typical 35 M69 N123A N131 RIGID None None RIGID Typical 36 M70 N133 N132A RIGID None None RIGID Typical 37 M71 N122B N132A RIGID None None RIGID Typical 38 M72 N135 N134 RIGID None None RIGID Typical								None			
35 M69 N123A N131 RIGID None None RIGID Typical 36 M70 N133 N132A RIGID None None RIGID Typical 37 M71 N122B N132A RIGID None None RIGID Typical 38 M72 N135 N134 RIGID None None RIGID Typical								None			
36 M70 N133 N132A RIGID None None RIGID Typical								None			
37 M71 N122B N132A RIGID None RIGID Typical RIGID None RIGID Typical RIGID None RIGID Typical								None			
38 M72 N135 N134 RIGID None RIGID Typical											
THE THE THE TYPICAL											
- 1.02 MI.O. MI.V.O. MI.O.	39	M73					RIGID	None	None	RIGID	Typical
40 M74 N138 N137 RIGID None RIGID Typical											
41 M75 N122A N137 PL 2.375x0.5 None None A36 Gr.36 Typical											

Company : Infinigy Engineering, PLLC
Designer : PSM
Job Number : 1197-F0001-C
Model Name : BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(. Section/Shape	Type	Design List	Material	Design Rules
42	MP2	N75	N74			Antenna Pipes	Beam	None	A500 GR.C	Typical
43	M43	N72B	N76			RIGID	None	None	RIGID	Typical
44	M44	N73	N77			RIGID	None	None	RIGID	Typical
45	H3	N81A	N82A			Face Pipes(3.5x.16)	Beam	None	A500 GR.C	Typical
46	MP7	N90	N88			Antenna Pipes	Beam	None	A500 GR.C	Typical
47	MP9	N89	N87			Antenna Pipes	Beam	None	A500 GR.C	Typical
48	HR3	N91	N92			Handrail	Beam	None	A500 GR.C	Typical
49	M52	N84	N94			RIGID	None	None	RIGID	Typical
50	M53	N83A	N93			RIGID	None	None	RIGID	Typical
51	M54	N85	N95			RIGID	None	None	RIGID	Typical
52	M55	N86	N96			RIGID	None	None	RIGID	Typical
53	H2	N109	N110			Face Pipes(3.5x.16)	Beam	None	A500 GR.C	Typical
54	MP4	N118	N116			Antenna Pipes	Beam	None	A500 GR.C	Typical
55	MP6	N117	N115			Antenna Pipes	Beam	None	A500 GR.C	Typical
56	HR2	N119	N120			Handrail	Beam	None	A500 GR.C	Typical
57	M66A	N112	N122			RIGID	None	None	RIGID	Typical
58	M67A	N111	N121			RIGID	None	None	RIGID	Typical
59	M68A	N113	N123			RIGID	None	None	RIGID	Typical
60	M69A	N114	N124			RIGID	None	None	RIGID	Typical
61	MP8	N132B	N131A			Antenna Pipes	Beam	None	A500 GR.C	Typical
62	M68B	N129B	N133B			RIGID	None	None	RIGID	Typical
63	M69B	N130A	N134A			RIGID	None	None	RIGID	Typical
64	MP5	N138A	N137A			Antenna Pipes	Beam	None	A500 GR.C	Typical
65	M71B	N135A	N139			RIGID	None	None	RIGID	Typical
66	M72B	N136	N140			RIGID	None	None	RIGID	Typical

Hot Rolled Steel Design Parameters

	Label	Shape	Lenat	Lbyy[in]	Lbzzſinl	Lcomp t	Lcomp b	L-tor	Kvv	Kzz	Cb	Func
1	S3	Square Tubing	40	77.		Lbyy						Late
2	GA4	Grating Angle	27.295			Lbyy						Late
3	GA3	Grating Angle	27.295			Lbyy						Late
4	P3	Corner Plates	42			Lbyy						Late
5	S2	Square Tubing	40			Lbyy						Late
6	GA2	Grating Angle	27.295			Lbyy						Late
7	GA1	Grating Angle	27.295			Lbyy						Late
8	P2	Corner Plates	42			Lbyy						Late
9	S1	Square Tubing	40			Lbyy						Late
10	GA6	Grating Angle	27.295			Lbyy						Late
11	GA5	Grating Angle	27.295			Lbyy						Late
12	P1	Corner Plates	42			Lbyy						Late
13	H1	Face Pipes(3.5x.16)	96			Lbyy						Late

Company : Infinigy Enginee
Designer : PSM
Job Number : 1197-F0001-C
Model Name : BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Hot Rolled Steel Design Parameters (Continued)

	Label	Shape	Lengt	Lbyy[in]	Lbzz[in]	Lcomp t	Lcomp b	L-tor	. Kyy	Kzz	Cb	Func
14	MP1	Antenna Pipes	96			Lbyy						Late
15	MP3	Antenna Pipes	96			Lbyy						Late
16	HR1	Handrail	96			Lbyy						Late
17	CA8	Handrail Connector	42			Lbyy						Late
18	CA9	Handrail Connector	42			Lbyy						Late
19	CA7	Handrail Connector	42			Lbyy						Late
20	CA3	Channel(3.38x2.06)	33			Lbyy						Late
21	CA4	Channel(3.38x2.06)	33			Lbyy						Late
22	CA1	Channel(3.38x2.06)	33			Lbyy						Late
23	CA2	Channel(3.38x2.06)	33			Lbyy						Late
24	CA5	Channel(3.38x2.06)	33			Lbyy						Late
25	CA6	Channel(3.38x2.06)	33			Lbyy						Late
26	M75	PL 2.375x0.5	1.5			Lbyy						Late
27	MP2	Antenna Pipes	96			Lbyy						Late
28	H3	Face Pipes(3.5x.16)	96			Lbyy						Late
29	MP7	Antenna Pipes	96			Lbyy						Late
30	MP9	Antenna Pipes	96			Lbyy						Late
31	HR3	Handrail	96			Lbyy						Late
32	H2	Face Pipes(3.5x.16)	96			Lbyy						Late
33	MP4	Antenna Pipes	96			Lbyy						Late
34	MP6	Antenna Pipes	96			Lbyy						Late
35	HR2	Handrail	96			Lbyy						Late
36	MP8	Antenna Pipes	96			Lbyy						Late
37	MP5	Antenna Pipes	96			Lbyy						Late

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Ra	Analysis	. Inactive	Seismi
1	S3						Yes		•		None
2	GA4						Yes				None
3	GA3						Yes				None
4	P3	BenPIN	BenPIN				Yes	Default			None
5	S2						Yes				None
6	GA2						Yes				None
7	GA1						Yes				None
8	P2	BenPIN	BenPIN				Yes	Default			None
9	S1						Yes	Default			None
10	GA6						Yes				None
11	GA5						Yes				None
12	P1	BenPIN	BenPIN				Yes	Default			None
13	H1						Yes				None
14	MP1						Yes		+y+3		None

Company : Infinigy Enginee Designer : PSM Job Number : 1197-F0001-C Model Name : BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Ra	Analysis	. Inactive	Seismi
15	MP3						Yes		+y+3		None
16	HR1						Yes				None
17	CA8	00000X	00000X				Yes				None
18	CA9	00000X	00000X				Yes				None
19	CA7	00000X	00000X				Yes	Default			None
20	M32						Yes	** NA **			None
21	M35						Yes	** NA **			None
22	M36						Yes	** NA **			None
23	M39A						Yes	** NA **			None
24	CA3						Yes	Default			None
25	CA4						Yes	Default			None
26	CA1						Yes	Default			None
27	CA2						Yes	Default			None
28	CA5						Yes	Default			None
29	CA6						Yes	Default			None
30	M64	BenPIN					Yes	** NA **			None
31	M65						Yes	** NA **			None
32	M66	BenPIN					Yes	** NA **			None
33	M67						Yes	** NA **			None
34	M68	BenPIN					Yes	** NA **			None
35	M69						Yes	** NA **			None
36	M70	BenPIN					Yes	** NA **			None
37	M71						Yes	** NA **			None
38	M72	BenPIN					Yes	** NA **			None
39	M73						Yes	** NA **			None
40	M74	BenPIN					Yes	** NA **			None
41	M75						Yes	** NA **			None
42	MP2						Yes		+y+3		None
43	M43						Yes	** NA **			None
44	M44						Yes	** NA **			None
45	H3						Yes				None
46	MP7						Yes		+y+3		None
47	MP9						Yes		+y+3		None
48	HR3						Yes				None
49	M52						Yes	** NA **			None
50	M53						Yes	** NA **			None
51	M54						Yes	** NA **			None
52	M55						Yes	** NA **			None
53	H2						Yes				None
54	MP4						Yes		+y+3		None
55	MP6						Yes		+y+3		None
56	HR2						Yes				None

Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-C Model Name: BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Ra	Analysis	. Inactive	Seismi
57	M66A						Yes	** NA **	·		None
58	M67A						Yes	** NA **			None
59	M68A						Yes	** NA **			None
60	M69A						Yes	** NA **			None
61	MP8						Yes		+y+3		None
62	M68B						Yes	** NA **			None
63	M69B						Yes	** NA **			None
64	MP5						Yes		+y+3		None
65	M71B						Yes	** NA **			None
66	M72B						Yes	** NA **			None

Material Takeoff

	Material	Size	Pieces	Length[in]	Weight[LB]
1	General				5 1 1
2	RIGID		29	35.1	0
3	Total General		29	35.1	0
4					
5	Hot Rolled Steel				
6	A1011 36 Ksi	C3.38x2.06x0.25	6	198	98.255
7	A1011 36 Ksi	PL6.5x0.375	3	126	87.09
8	A1011 36 Ksi	L6.6x4.46x0.25	3	126	96.558
9	A36 Gr.36	PL 2.375x0.5	1	1.5	.505
10	A500 GR.C	2.88x0.120	3	288	84.974
11	A500 GR.C	HSS4X4X6	3	120	162.653
12	A500 GR.C	Pipe3.5x0.165	3	288	141.202
13	A500 GR.C	PIPE_2.5	9	864	394.45
14	A529 Gr. 50	L2x2x4	6	163.8	43.838
15	Total HR Steel		37	2175.3	1109.525

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design	. A [in2]	lyy [in	.lzz [in	J [in4]
1	Corner Plates	PL6.5x0.375	Beam	None	A1011	Typical		.029		.11
2	6"x0.37" Plate	Plate 6x.37	Beam	None	A1011	Typical	2.22	.025	6.66	.097
3	Grating Angle	L2x2x4	Beam	None	A529 G	Typical	.944	.346	.346	.021
4	Face Pipes(3.5x.1	Pipe3.5x0.165	Beam	None	A500 G	Typical	1.729	2.409	2.409	4.819
5	Antenna Pipes	PIPE 2.5	Beam	None	A500 G	Typical	1.61	1.45	1.45	2.89
6	Channel(3.38x2.06)	C3.38x2.06x0.25	Beam	None	A1011	Typical	1.75	.715	3.026	.034
7	Square Tubing	HSS4X4X6	Beam	None	A500 G	Typical	4.78	10.3	10.3	17.5
8	Handrail Connector	L6.6x4.46x0.25	Beam	None	A1011	Typical	2.703	4.759	12.473	.055

Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-C Model Name: BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Hot Rolled Steel Section Sets (Continued)

	Label	Shape	Type	Design List	Material D	Design	A [in2]	lyy [in	.lzz [in	. J [in4]
9	Handrail	2.88x0.120	Beam	None	A500 G	Typical	1.04	.993	.993	1.985

Basic Load Cases

		Category	X Gr		Z Gr	Joint		Distributed	Area(Memb	Surface(Plate/Wall)
1	Self Weight	DL		-1			13		3	
2	Wind Load AZI 0	WLZ					26			
3	Wind Load AZI 30	None					26			
4	Wind Load AZI 60	None					26			
5	Wind Load AZI 90	WLX					26			
6	Wind Load AZI 1	None					26			
7	Wind Load AZI 1	None					26			
8	Wind Load AZI 1	None					26			
9	Wind Load AZI 2	None					26			
10	Wind Load AZI 2	110110					26			
11	Wind Load AZI 2	140110					26			
12	Wind Load AZI 3	110110					26			
13	Wind Load AZI 3	None					26			
14	Distr. Wind Load Z	WLZ						66		
15	Distr. Wind Load X	WLX						66		
16	Ice Weight	OL1					13	66	3	
17	Ice Wind Load A	OL2					26			
18	Ice Wind Load A	None					26			
19	Ice Wind Load A	None					26			
20	Ice Wind Load A	OL3					26			
21	Ice Wind Load A	None					26			
22	Ice Wind Load A	None					26			
23	Ice Wind Load A	None					26			
24	Ice Wind Load A	None					26			
25	Ice Wind Load A	None					26			
26	Ice Wind Load A	None					26			
27	Ice Wind Load A	None					26			
28	Ice Wind Load A	None					26			
29	Distr. Ice Wind L	OL2						66		
30	Distr. Ice Wind L	OL3						66		
31	Seismic Load Z	ELZ			29		13	- · ·		
32	Seismic Load X	ELX	29				13			_
33	Service Live Loa	LL				3				
34	Maintenance Loa	LL				1				
35	Maintenance Loa	LL				1				
36	Maintenance Loa	LL		_		1				
37	Maintenance Loa	LL				1				
<u> </u>										

Company : Infinigy Enginee Designer : PSM Job Number : 1197-F0001-C Model Name : BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Basic Load Cases (Continued)

	BLC Description	Category	X Gr	Y Gr	.Z Gr	Joint	Point	Distributed	Area(Memb	Surface(Plate/Wall)
38	Maintenance Loa	· LL				1				
39	Maintenance Loa	· LL				1				
40	Maintenance Loa	· LL				1				
41	Maintenance Loa	· LL				1				
42	Maintenance Loa	· LL				1				
43	BLC 1 Transient	None						9		
44	BLC 16 Transien	None						9		

Load Combinations

		SP				Fa	В	Fa	В	Fa	В	Fa	ВІ	Fa	B,I	Fa	В	Fa	В	Fa	В	Fa
1	1.100	ΥΥ	1																			
2	1.2DL + 1WL AZI 0				2			1														
3	1.2DL + 1WL AZI 30	Υ Υ	1	_	3			.866													_	
4	1.2DL + 1WL AZI 60		1	_	•	1				.866												
5	1.2DL + 1WL AZI 90		1		_	1	14		15													
6	1.2DL + 1WL AZI 120		1			1				.866												
7	1.2DL + 1WL AZI 150		1			1		8														
8	1.2DL + 1WL AZI 180	Y Y	1		8			-1														
9	1.2DL + 1WL AZI 210	Y Y	1		_	1		8														
10	1.2DL + 1WL AZI 240	Y Y	1		10	1	14	5														
11	1.2DL + 1WL AZI 270	Υ Υ	1		11	1	14			-1												
12	1.2DL + 1WL AZI 300	Υ Υ	1	1.2	12			.5														
13	1.2DL + 1WL AZI 330	Υ Υ	1	1.2	13	1	14	.866	15	5												
14	0.9DL + 1WL AZI 0	Y Y	1	.9	2	1	14	1	15													
15	0.9DL + 1WL AZI 30	Υ Υ	1	.9	3	1	14	.866	15	.5												
16	0.9DL + 1WL AZI 60	Y Y	1	.9	4	1	14	.5	15	.866												
17	0.9DL + 1WL AZI 90		1	.9	5	1	14		15	1												
18	0.9DL + 1WL AZI 120	Υ Υ	1	.9	6	1				.866												
19	0.9DL + 1WL AZI 150	Y Y	1		7	1	14	8	15	.5												
20	0.9DL + 1WL AZI 180	Y Y	1		8	1		-1	15													
21	0.9DL + 1WL AZI 210		1	.9	9	1	14	8	15	5												
22	0.9DL + 1WL AZI 240	Y Y	1		10		14	5	15	8												
23	0.9DL + 1WL AZI 270		1		11	1	14		15	7												
24	0.9DL + 1WL AZI 300	Υ Υ	1	.9	12	1	14	.5	15	8												
25	0.9DL + 1WL AZI 330	Y Y	1		13		14	.866	15	5												
26		Υ Υ	1	1.2	16	1																
27	1.2D + 1.0Di +1.0Wi AZI 0	Y Y	1	1.2	16		17	1	29	1	30											
28	1.2D + 1.0Di +1.0Wi AZI 30	Y Y	1	1.2	16		18	1	29	.866	30	.5										
29	1.2D + 1.0Di +1.0Wi AZI 60	Υ Υ	1	1.2	16	1	19			.5												
30		Y Y	1	1.2	16	1	20	1	29		30	1										
31	1.2D + 1.0Di +1.0Wi AZI 120	Y Y	1	1.2	16	1	21	1	29	5	30	.866										

Company : Infinigy Enginee Designer : PSM Job Number : 1197-F0001-C Model Name : BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Load Combinations (Continued)

Description SPSBFaFaBFaBFaBFaBFaBFaBFa		
33 1.2D + 1.0Di +1.0Wi AZI 180 Y Y 1 1.2 16 1 23 1 29 -1 30 34 1.2D + 1.0Di +1.0Wi AZI 210 Y Y 1 1.2 16 1 24 1 29 -8 30 5		
34 1.2D + 1.0Di +1.0Wi AZI 210 Y Y 1 1.2 16 1 24 1 29 -8 30 5		
35 1.2D + 1.0Di +1.0Wi AZI 240 Y Y 1 1.2 16 1 25 1 29 5 30 8		
36 1.2D + 1.0Di +1.0Wi AZI 270 Y Y 1 1.2 16 1 26 1 29 30 -1		
37 1.2D + 1.0Di +1.0Wi AZI 300 Y Y 1 1.2 16 1 27 1 29 .5 30 8		
38 1.2D + 1.0Di +1.0Wi AZI 330 Y Y 1 1.2 16 1 28 1 29 866 30 5		
39 (1.2 + 0.2Sds)DL + 1.0E AZI 0 YY 1 1.231 1 32		
40 (1.2 + 0.2Sds)DL + 1.0E AZI 30 Y Y 1 1.231 .866 32 .5		
41 (1.2 + 0.2Sds)DL + 1.0E AZI 60 Y Y 1 1.231 .5 32 866		
42 (1.2 + 0.2Sds)DL + 1.0E AZI 90 Y Y 1 1.231 32 1		
43 (1.2 + 0.2Sds)DL + 1.0E AZI 1YY 1 1.2315 32 866		
44 (1.2 + 0.2Sds)DL + 1.0E AZI 1YY 1 1.231832 .5		
45 (1.2 + 0.2Sds)DL + 1.0E AZI 1YY 1 1.231 -1 32		
46 (1.2 + 0.2Sds)DL + 1.0E AZI 2YY 1 1.2318325		
47 (1.2 + 0.2Sds)DL + 1.0E AZI 2YY 1 1.2315 328		
48 (1.2 + 0.2Sds)DL + 1.0E AZI 2YY 1 1.231 32 -1		
49 (1.2 + 0.2Sds)DL + 1.0E AZI 3YY 1 1.231 .5 328		
50 (1.2 + 0.2Sds)DL + 1.0E AZI 3ΥΥ 1 1.231 .866 325		
51 (0.9 - 0.2Sds)DL + 1.0E AZI 0 YY 1 861 31 1 32		
52 (0.9 - 0.2Sds)DL + 1.0E AZI 30 Y Y 1 861 31 866 32 .5		
53 (0.9 - 0.2Sds)DL + 1.0E AZI 60 Y Y 1 .861 31 .5 32 .866		
54 (0.9 - 0.2Sds)DL + 1.0E AZI 90 Y Υ 1 861 31 32 1		
55 (0.9 - 0.2Sds)DL + 1.0E AZI 1ΥΥ 1 .861 315 32 .866		
56 (0.9 - 0.2Sds)DL + 1.0E AZI 1YY 1 861 31832 .5		
57 (0.9 - 0.2Sds)DL + 1.0E AZI 1YY 1 861 31 -1 32		
58 (0.9 - 0.2Sds)DL + 1.0E AZI 2YY 1 861 318325		
59 (0.9 - 0.2Sds)DL + 1.0E AZI 2 Y Y 1 861 31 5 32 8		
60 (0.9 - 0.2Sds)DL + 1.0E AZI 2YY 1 861 31 32 -1		
61 (0.9 - 0.2Sds)DL + 1.0E AZI 3YY 1 861 31 .5 328		
62 (0.9 - 0.2Sds)DL + 1.0E AZI 3YY 1 861 31 866 325		
63 1.0DL + 1.5LL + 1.0SWL (60 Y Y 1 1 2 .23 14 .23 15 33 1.5		
64 1.0DL + 1.5LL + 1.0SWL (60 Y Y 1 1 3 .23 14 .2 15 115 33 1.5		
65 1.0DL + 1.5LL + 1.0SWL (60 Y Y 1 1 4 .23 14 .115 15 .2 33 1.5		
66 1.0DL + 1.5LL + 1.0SWL (60 Y Y 1 1 5 .23 14 15 .23 33 1.5		
67 1.0DL + 1.5LL + 1.0SWL (60 Y Y 1 1 6 .23 141 15 .2 33 1.5		
68 1.0DL + 1.5LL + 1.0SWL (60 Y Y 1 1 7 .23 142 15 115 33 1.5		
69 1.0DL + 1.5LL + 1.0SWL (60 Y Y 1 1 8 .23 1423 15 33 1.5		
70 1.0DL + 1.5LL + 1.0SWL (60 Y Y 1 1 9 .23 14 2 151 33 1.5		
71 1.0DL + 1.5LL + 1.0SWL (60 Y Y 1 1 1 10 .23 141 152 33 1.5		
72 1.0DL + 1.5LL + 1.0SWL (60 Y Y 1 1 1 11 .23 14 1523 33 1.5		
73 1.0DL + 1.5LL + 1.0SWL (60 Y Y 1 1 1 12 .23 14 .115 152 33 1.5		

Company : Infinigy Enginee Designer : PSM Job Number : 1197-F0001-C Model Name : BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Load Combinations (Continued)

	Description S	P	.SB	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
74	1.0DL + 1.5LL + 1.0SWL (60 Y		1	1						1												
75	1.2DL + 1.5LL	Y	1	1.2	33	1.5																
76	1.2DL + 1.5LM-MP1 + 1SWL (Y	Y	1	1.2	34	1.5	2	.058	14	.058	15											
77	1.2DL + 1.5LM-MP1 + 1SWL (Y	Y	1	1.2	34	1.5	3	.058	14	.05	15	.029										
78	1.2DL + 1.5LM-MP1 + 1SWL (Y	Y	1	1.2	34	1.5	4	.058	14	.029	15	.05										
79	1.2DL + 1.5LM-MP1 + 1SWL (Y	Y	1	1.2	34	1.5	5	.058	14		15	.058										
80	1.2DL + 1.5LM-MP1 + 1SWL (Y	Y	1	1.2	34	1.5	6	.058	14	0	15	.05										
81	1.2DL + 1.5LM-MP1 + 1SWL (Y	Y	1	1.2	34	1.5	7	.058	14	05	15	.029										
82	1.2DL + 1.5LM-MP1 + 1SWL (Y	Y	1	1.2	34	1.5		.058														
83	1.2DL + 1.5LM-MP1 + 1SWL ()	Y	1	1.2	34	1.5	9	.058	14	05	15	0										
84	1.2DL + 1.5LM-MP1 + 1SWL (Y	Y	1	1.2	34	1.5	10	.058	14	0	15	05										
85	1.2DL + 1.5LM-MP1 + 1SWL (Y	Y	1	1.2	34	1.5	11	.058	14		15	0										
86	1.2DL + 1.5LM-MP1 + 1SWL (Y	Y	1	1.2	34	1.5	12	.058	14	.029	15	05										
87	1.2DL + 1.5LM-MP1 + 1SWL (Y	Y	1					.058														
88			1				Į	.058														
	1.2DL + 1.5LM-MP2 + 1SWL (Y		1				•	.058														
90	1.2DL + 1.5LM-MP2 + 1SWL (Y	Y	1	1.2	35	1.5	4	.058	14	.029	15	.05										
91	1.2DL + 1.5LM-MP2 + 1SWL (Y	Y	1)	.058				.058										
92	1.2DL + 1.5LM-MP2 + 1SWL (Y		1		_		_	.058														
	1.2DL + 1.5LM-MP2 + 1SWL (Y		1					.058														
	1.2DL + 1.5LM-MP2 + 1SWL (1					.058														
	1.2DL + 1.5LM-MP2 + 1SWL (Y		1		_		_	.058														
96	1.2DL + 1.5LM-MP2 + 1SWL (_	1		_			.058														
97	1.2DL + 1.5LM-MP2 + 1SWL (Y		1		_			.058				0										
98	1.2DL + 1.5LM-MP2 + 1SWL (Y		1					.058														
	1.2DL + 1.5LM-MP2 + 1SWL (Y		1					.058														
	1.2DL + 1.5LM-MP3 + 1SWL (Y		1					.058														
	1.2DL + 1.5LM-MP3 + 1SWL (Y		1					.058														
	1.2DL + 1.5LM-MP3 + 1SWL (Y		1					.058														
	1.2DL + 1.5LM-MP3 + 1SWL (Y					1.5		.058				.058										
	1.2DL + 1.5LM-MP3 + 1SWL (Y							.058														
	1.2DL + 1.5LM-MP3 + 1SWL (Y				_			.058														
	1.2DL + 1.5LM-MP3 + 1SWL (Y)	.058														
	1.2DL + 1.5LM-MP3 + 1SWL (Y		1)	.058														
	1.2DL + 1.5LM-MP3 + 1SWL (Y		1					.058														
	1.2DL + 1.5LM-MP3 + 1SWL (Y		1					.058				0										
	1.2DL + 1.5LM-MP3 + 1SWL (Y		1					.058														
	1.2DL + 1.5LM-MP3 + 1SWL (Y		1					.058														
	1.2DL + 1.5LM-MP4 + 1SWL (Y				1		_	.058			l											
	1.2DL + 1.5LM-MP4 + 1SWL (Y		1					.058														
	1.2DL + 1.5LM-MP4 + 1SWL (Y		1					.058														
115	1.2DL + 1.5LM-MP4 + 1SWL (Y	Y	1	1.2	37	1.5	5	.058	14		15	.058										

Company : Infinigy Enginee Designer : PSM Job Number : 1197-F0001-C Model Name : BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Page 10

Load Combinations (Continued)

Description SP	S B	F	. R	Fa	B	Fa	R	Fa	R	Fa	R	Fa	R	Fa	B	Fa	B	Fa	B	Fa
116 1.2DL + 1.5LM-MP4 + 1SWL (ΥΥ			2 37								D	ı a	.D	.ı a		ı a	D	1 a	D	ı a.
117 1.2DL + 1.5LM-MP4 + 1SWL (Y Y	1	-	2 37						_											
118 1.2DL + 1.5LM-MP4 + 1SWL (Y Y	1		2 37																	
119 1.2DL + 1.5LM-MP4 + 1SWL (Y Y			2 37			_			_											
120 1.2DL + 1.5LM-MP4 + 1SWL (Y Y			2 37		_				_											
121 1.2DL + 1.5LM-MP4 + 1SWL (Y Y	1		2 37							0										
122 1.2DL + 1.5LM-MP4 + 1SWL (Y Y	1	•	2 37						15	05										
123 1.2DL + 1.5LM-MP4 + 1SWL (Υ Υ	1	1 1.	2 37	1.5	13	.058	14	.05	15	0										
124 1.2DL + 1.5LM-MP5 + 1SWL (Y Y	1	•	2 38	1.5	2	.058	14	.058	15											
125 1.2DL + 1.5LM-MP5 + 1SWL (Y Y	1		2 38																	
126 1.2DL + 1.5LM-MP5 + 1SWL (Y Y	1		.2 38																	
127 1.2DL + 1.5LM-MP5 + 1SWL (Y Y	1		2 38							.058										
128 1.2DL + 1.5LM-MP5 + 1SWL (Y Y	1		2 38						15	.05										
129 1.2DL + 1.5LM-MP5 + 1SWL (Y Y	1		2 38																	
130 1.2DL + 1.5LM-MP5 + 1SWL (Y Y	1		2 38						_											
131 1.2DL + 1.5LM-MP5 + 1SWL (Υ Υ	1	•	2 38																	
132 1.2DL + 1.5LM-MP5 + 1SWL (Υ γ	1	-	.2 38		_															
133 1.2DL + 1.5LM-MP5 + 1SWL (Y Y	1		2 38	1.5	11	.058	14		15	0										
134 1.2DL + 1.5LM-MP5 + 1SWL (YY	1	1 1.	.2 38	1.5	12	.058	14	.029	15	05										
135 1.2DL + 1.5LM-MP5 + 1SWL (YY	1	1 1.	2 38	1.5	13	.058	14	.05	15	0										
136 1.2DL + 1.5LM-MP6 + 1SWL (YY	1	1 1.	2 39	1.5	2	.058	14	.058	15											
137 1.2DL + 1.5LM-MP6 + 1SWL (Y Y	1	1 1.	2 39	1.5	3	.058	14	.05	15	.029										
138 1.2DL + 1.5LM-MP6 + 1SWL (YY	1	1 1.	2 39	1.5	4	.058	14	.029	15	.05										
139 1.2DL + 1.5LM-MP6 + 1SWL (Y Y	1	1 1.	2 39	1.5	5	.058	14		15	.058										
140 1.2DL + 1.5LM-MP6 + 1SWL (YY	1	1 1.	.2 39	1.5	6	.058	14	0	.15	.05										
141 1.2DL + 1.5LM-MP6 + 1SWL (Y Y	1	1 1.	.2 39	1.5	7	.058	14	05	15	.029										
142 1.2DL + 1.5LM-MP6 + 1SWL (Y Y	1	1 1.	.2 39	1.5	8	.058	14	0	15											
143 1.2DL + 1.5LM-MP6 + 1SWL (Y Y	1	1 1.	.2 39	1.5	9	.058	14	05	15	0										
144 1.2DL + 1.5LM-MP6 + 1SWL (Y Y	1	1 1.	.2 39	1.5	10	.058	14	0	15	05										
145 1.2DL + 1.5LM-MP6 + 1SWL (Y Y	1		.2 39			1 1			1	0										
146 1.2DL + 1.5LM-MP6 + 1SWL (Y Y	1	1 1.	.2 39	1.5	12	.058	14	.029	15	05										
147 1.2DL + 1.5LM-MP6 + 1SWL (Υ γ	1	•	.2 39																	
148 1.2DL + 1.5LM-MP7 + 1SWL (Y Y	1	-	.2 40		_				1											
149 1.2DL + 1.5LM-MP7 + 1SWL (Y Y	1		2 40																	
150 1.2DL + 1.5LM-MP7 + 1SWL (Y Y	1	_	.2 40																	
151 1.2DL + 1.5LM-MP7 + 1SWL (Y Y	1	- 1	2 40	1	_				1	.058										
152 1.2DL + 1.5LM-MP7 + 1SWL (Y Y	1		2 40																	
153 1.2DL + 1.5LM-MP7 + 1SWL (Υ γ	1		2 40			1 1				l .										
154 1.2DL + 1.5LM-MP7 + 1SWL (Y Y	1	- 1	2 40		_				1											
155 1.2DL + 1.5LM-MP7 + 1SWL (Y Y	1		2 40																	
156 1.2DL + 1.5LM-MP7 + 1SWL (Y Y	1	•	.2 40						15	05										
157 1.2DL + 1.5LM-MP7 + 1SWL (Y Y	1	1 1.	2 40	1.5	11	.058	14		15	0										

Company : Infinigy Enginee
Designer : PSM
Job Number : 1197-F0001-C
Model Name : BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Load Combinations (Continued)

Description S.	P	.SI	BI	Fa	В	Fa	В	.Fa	В	Fa	В	Fa	В	Fa	В	.Fa	.B	.Fa	.B	.Fa	.B	.Fa
158 1.2DL + 1.5LM-MP7 + 1SWL (Y.	. Y		1	1.2	40	1.5	12	.058	14	.029	15	05										
159 1.2DL + 1.5LM-MP7 + 1SWL (Y.	. Y		1	1.2	40	1.5	13	.058	14	.05	15	0										
160 1.2DL + 1.5LM-MP8 + 1SWL (Y.	. Y		1	1.2	41	1.5	2	.058	14	.058	15											
161 1.2DL + 1.5LM-MP8 + 1SWL (Y.	. Y		1	1.2	41	1.5	3	.058	14	.05	15	.029										
162 1.2DL + 1.5LM-MP8 + 1SWL (Y.	. Y		1	1.2	41	1.5	4	.058	14	.029	15	.05										
163 1.2DL + 1.5LM-MP8 + 1SWL (Y.	. Y		1	1.2	41	1.5	5	.058	14		15	.058										
164 1.2DL + 1.5LM-MP8 + 1SWL (Y.			1	1.2	41	1.5	6	.058	14	0	15	.05										
165 1.2DL + 1.5LM-MP8 + 1SWL (Y.	. Y		1	1.2	41	1.5	7	.058	14	05	15	.029										
166 1.2DL + 1.5LM-MP8 + 1SWL (Y.			1	1.2	41	1.5	8	.058	14	0	15											
167 1.2DL + 1.5LM-MP8 + 1SWL (Y.			1	1.2	41	1.5	9	.058	14	05	15	0										
168 1.2DL + 1.5LM-MP8 + 1SWL (Y.			1	1.2	41	1.5	10	.058	14	0	15	05										
169 1.2DL + 1.5LM-MP8 + 1SWL (Y.			1	1.2	41	1.5	11	.058	14		15	0										
170 1.2DL + 1.5LM-MP8 + 1SWL (Y.	Y		1	1.2	41	1.5	12	.058	14	.029	15	05										
171 1.2DL + 1.5LM-MP8 + 1SWL (Y.	. Y		1	1.2	41	1.5	13	.058	14	.05	15	0										
172 1.2DL + 1.5LM-MP9 + 1SWL (Y.	. Y		1	1.2	42	1.5	2	.058	14	.058	15											
173 1.2DL + 1.5LM-MP9 + 1SWL (Y.	. Y		1	1.2	42	1.5	3	.058	14	.05	15	.029										
174 1.2DL + 1.5LM-MP9 + 1SWL (Y.	. Y		1	1.2	42	1.5	4	.058	14	.029	15	.05										
175 1.2DL + 1.5LM-MP9 + 1SWL (Y.	. Y		1	1.2	42	1.5	5	.058	14		15	.058										
176 1.2DL + 1.5LM-MP9 + 1SWL (Y.	Y		1	1.2	42	1.5	6	.058	14	0	15	.05										
177 1.2DL + 1.5LM-MP9 + 1SWL (Y.	. Y		1	1.2	42	1.5	7	.058	14	05	15	.029										
178 1.2DL + 1.5LM-MP9 + 1SWL (Y.	Y		1	1.2	42	1.5	8	.058	14	0	15											
179 1.2DL + 1.5LM-MP9 + 1SWL (Y.			_	1.2	_			.058														
180 1.2DL + 1.5LM-MP9 + 1SWL (Y.			1	1.2	42	1.5		.058														
181 1.2DL + 1.5LM-MP9 + 1SWL (Y.			1	1.2	42	1.5	11	.058	14		15	0										
182 1.2DL + 1.5LM-MP9 + 1SWL (Y.			1	1.2	42	1.5	12	.058	14	.029	15	05										

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	P24	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	P13	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	P1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Envelope Joint Reactions

	Joint	X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	P24	 938.028	6	2439.6	35	1441.7	13	861.291	16	1840.052	19	4341.346	35
2		 -921.114	24	-466.6	16	-1433.8	19	-3884.7	35	-1856.68	13	-1575.625	16
3	P13	 1094.324	4	2681.1	31	1430.8	15	878.315	24	1946.642	15	1410.551	24
4		 -1092.675	22	-408.8	24	-1438.0	. 9	-2807.31	92	-1993.016	9	-6135.16	31
5	P1	 1427.921	17	2484.2	27	744.851	2	5969.5	27	1622.081	11	1578.916	115

Company : Infinigy Enginee
Designer : PSM
Job Number : 1197-F0001-C
Model Name : BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Envelope Joint Reactions (Continued)

	Joint	X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
6		1446.558	11	-481.3	20	-750.078	8	-1837.4	- 20	-1571.31	17	-860.736	157
7	Totals:	. 3285.388	5	6939.2	34	3479.7	14						
8		-3285.38	23	1532.4	53	-3479.7	8						

Member Point Loads (BLC 1 : Self Weight)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Υ	-32.25	0
2	MP1	Υ	-32.25	72
3	MP1	Υ	-74.95	12
4	MP1	Υ	-63.93	12
5	MP1	Υ	-21.85	48
6	MP4	Υ	-32.25	0
7	MP4	Υ	-32.25	72
8	MP4	Υ	-74.95	12
9	MP4	Υ	-63.93	12
10	MP7	Υ	-32.25	0
11	MP7	Υ	-32.25	72
12	MP7	Υ	-74.95	12
13	MP7	Υ	-63.93	12

Member Point Loads (BLC 2: Wind Load AZI 0)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	0	0
2	MP1	Z	-148.57	0
3	MP1	X	0	72
4	MP1	Z	-148.57	72
5	MP1	X	0	12
6	MP1	Z	-72.84	12
7	MP1	X	0	12
8	MP1	Z	-72.84	12
9	MP1	X	0	48
10	MP1	Z	-69.25	48
11	MP4	X	0	0
12	MP4	Z	-81.8	0
13	MP4	X	0	72
14	MP4	Z	-81.8	72
15	MP4	X	0	12
16	MP4	Z	-51.29	12
17	MP4	X	0	12
18	MP4	Z	-46.95	12

Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-C Model Name: BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Member Point Loads (BLC 2: Wind Load AZI 0) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
19	MP7	X	0	0
20	MP7	Z	-81.8	0
21	MP7	X	0	72
22	MP7	Z	-81.8	72
23	MP7	X	0	12
24	MP7	Z	-51.29	12
25	MP7	X	0	12
26	MP7	Z	-46.95	12

Member Point Loads (BLC 3: Wind Load AZI 30)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-63.16	0
2	MP1	Z	-109.39	0
3	MP1	X Z	-63.16	72
4	MP1		-109.39	72
5	MP1	X	-32.83	12
6	MP1	Z	-56.86	12
7	MP1	X	-32.1	12
8	MP1	Z	-55.61	12
9	MP1	X	-30.91	48
10	MP1	Z	-53.54	48
11	MP4	X	-63.16	0
12	MP4	Z	-109.39	0
13	MP4	X	-63.16	72
14	MP4	Z	-109.39	72
15	MP4	X Z	-32.83	12
16	MP4		-56.86	12
17	MP4	X	-32.1	12
18	MP4	Z	-55.61	12
19	MP7	X	-29.77	0
20	MP7	Z	-51.56	0
21	MP7	X	-29.77	72
22	MP7	Z	-51.56	72
23	MP7	X	-22.06	12
24	MP7	Z	-38.2	12
25	MP7	X	-19.16	12
26	MP7	Z	-33.18	12

Member Point Loads (BLC 4: Wind Load AZI 60)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-70.84	0

Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-C Model Name: BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Member Point Loads (BLC 4: Wind Load AZI 60) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
2	MP1	Z	-40.9	0
3	MP1	X	-70.84	72
4	MP1	Z	-40.9	72
5	MP1	X	-44.42	12
6	MP1	Z	-25.65	12
7	MP1	X	-40.66	12
8	MP1	Z	-23.47	12
9	MP1	X	-40.69	48
10	MP1	Z	-23.49	48
11	MP4	X	-128.67	0
12	MP4	Z	-74.29	0
13	MP4	X	-128.67	72
14	MP4	Z	-74.29	72
15	MP4	X	-63.08	12
16	MP4	Z	-36.42	12
17	MP4	X	-63.08	12
18	MP4	Z	-36.42	12
19	MP7	X	-70.84	0
20	MP7	Z	-40.9	0
21	MP7	X	-70.84	72
22	MP7	Z	-40.9	72
23	MP7	X	-44.42	12
24	MP7	Z	-25.65	12
25	MP7	X	-40.66	12
26	MP7	Z	-23.47	12

Member Point Loads (BLC 5: Wind Load AZI 90)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-59.54	0
2	MP1	Z	0	0
3	MP1	X	-59.54	72
4	MP1	Z	0	72
5	MP1	X	-44.11	12
6	MP1	Z	0	12
7	MP1	X	-38.32	12
8	MP1	Z	0	12
9	MP1	X	-39.57	48
10	MP1	Z	0	48
11	MP4	X	-126.31	0
12	MP4	Z	0	0
13	MP4	X	-126.31	72
14	MP4	Z	0	72

Company : Infinigy Enginee
Designer : PSM
Job Number : 1197-F0001-C
Model Name : BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Member Point Loads (BLC 5: Wind Load AZI 90) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
15	MP4	X	-65.66	12
16	MP4	Z	0	12
17	MP4	X	-64.21	12
18	MP4	Z	0	12
19	MP7	X	-126.31	0
20	MP7	Z	0	0
21	MP7	X	-126.31	72
22	MP7	Z	0	72
23	MP7	X	-65.66	12
24	MP7	Z	0	12
25	MP7	X	-64.21	12
26	MP7	Z	0	12

Member Point Loads (BLC 6: Wind Load AZI 120)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-70.84	0
2	MP1	Z	40.9	0
3	MP1	X	-70.84	72
4	MP1	Z	40.9	72
5	MP1	X	-44.42	12
6	MP1	Z	25.65	12
7	MP1	X	-40.66	12
8	MP1	Z	23.47	12
9	MP1	X	-40.69	48
10	MP1	Z	23.49	48
11	MP4	X	-70.84	0
12	MP4	Z	40.9	0
13	MP4	X	-70.84	72
14	MP4	Z	40.9	72
15	MP4	X	-44.42	12
16	MP4	Z	25.65	12
17	MP4	X	-40.66	12
18	MP4	Z	23.47	12
19	MP7	X Z	-128.67	0
20	MP7		74.29	0
21	MP7	X	-128.67	72
22	MP7	Z	74.29	72
23	MP7	X	-63.08	12
24	MP7	Z	36.42	12
25	MP7	X	-63.08	12
26	MP7	Z	36.42	12

Company : Infinigy Enginee
Designer : PSM
Job Number : 1197-F0001-C
Model Name : BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Member Point Loads (BLC 7: Wind Load AZI 150)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-63.16	0
2	MP1	Z	109.39	0
3	MP1	X	-63.16	72
4	MP1	Z	109.39	72
5	MP1	X	-32.83	12
6	MP1	Z	56.86	12
7	MP1	X	-32.1	12
8	MP1	Z	55.61	12
9	MP1	X	-30.91	48
10	MP1	Z	53.54	48
11	MP4	X	-29.77	0
12	MP4	Z	51.56	0
13	MP4	X	-29.77	72
14	MP4	Z	51.56	72
15	MP4	X	-22.06	12
16	MP4	Z	38.2	12
17	MP4	X	-19.16	12
18	MP4	Z	33.18	12
19	MP7	X	-63.16	0
20	MP7	Z	109.39	0
21	MP7	X	-63.16	72
22	MP7	Z	109.39	72
23	MP7	X	-32.83	12
24	MP7	Z	56.86	12
25	MP7	X	-32.1	12
26	MP7	Z	55.61	12

Member Point Loads (BLC 8: Wind Load AZI 180)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	0	0
2	MP1	Z	148.57	0
3	MP1	X	0	72
4	MP1	Z	148.57	72
5	MP1	X	0	12
6	MP1	Z	72.84	12
7	MP1	X	0	12
8	MP1	Z	72.84	12
9	MP1	X	0	48
10	MP1	Z	69.25	48
11	MP4	X	0	0
12	MP4	Z	81.8	0
13	MP4	X	0	72

Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-C Model Name: BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Member Point Loads (BLC 8: Wind Load AZI 180) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
14	MP4	Z	81.8	72
15	MP4	X	0	12
16	MP4	Z	51.29	12
17	MP4	X	0	12
18	MP4	Z	46.95	12
19	MP7	X	0	0
20	MP7	Z	81.8	0
21	MP7	X	0	72
22	MP7	Z	81.8	72
23	MP7	X	0	12
24	MP7	Z	51.29	12
25	MP7	X	0	12
26	MP7	Z	46.95	12

Member Point Loads (BLC 9: Wind Load AZI 210)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	63.16	0
2	MP1	Z	109.39	0
3	MP1	X	63.16	72
4	MP1	Z	109.39	72
5	MP1	X	32.83	12
6	MP1	Z	56.86	12
7	MP1	X	32.1	12
8	MP1	Z	55.61	12
9	MP1	X	30.91	48
10	MP1	Z	53.54	48
11	MP4	X	63.16	0
12	MP4	Z	109.39	0
13	MP4	X	63.16	72
14	MP4	Z	109.39	72
15	MP4	X	32.83	12
16	MP4	Z	56.86	12
17	MP4	X	32.1	12
18	MP4	Z	55.61	12
19	MP7	X	29.77	0
20	MP7	Z	51.56	0
21	MP7	X	29.77	72
22	MP7	Z	51.56	72
23	MP7	X	22.06	12
24	MP7	Z	38.2	12
25	MP7	X	19.16	12
26	MP7	Z	33.18	12

Company : Infinigy Enginee
Designer : PSM
Job Number : 1197-F0001-C
Model Name : BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Member Point Loads (BLC 10: Wind Load AZI 240)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	70.84	0
2	MP1	Z	40.9	0
3	MP1	X	70.84	72
4	MP1	Z	40.9	72
5	MP1	X	44.42	12
6	MP1	Z	25.65	12
7	MP1	X	40.66	12
8	MP1	Z	23.47	12
9	MP1	X	40.69	48
10	MP1	Z	23.49	48
11	MP4	X	128.67	0
12	MP4	Z	74.29	0
13	MP4	X	128.67	72
14	MP4	Z	74.29	72
15	MP4	X	63.08	12
16	MP4	Z	36.42	12
17	MP4	X	63.08	12
18	MP4	Z	36.42	12
19	MP7	X	70.84	0
20	MP7	Z	40.9	0
21	MP7	X	70.84	72
22	MP7	Z	40.9	72
23	MP7	X	44.42	12
24	MP7	Z	25.65	12
25	MP7	X	40.66	12
26	MP7	Z	23.47	12

Member Point Loads (BLC 11: Wind Load AZI 270)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	59.54	0
2	MP1	Z	0	0
3	MP1	X	59.54	72
4	MP1	Z	0	72
5	MP1	X	44.11	12
6	MP1	Z	0	12
7	MP1	X	38.32	12
8	MP1	Z	0	12
9	MP1	X	39.57	48
10	MP1	Z	0	48
11	MP4	X	126.31	0
12	MP4	Z	0	0
13	MP4	X	126.31	72

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-C
Model Name : BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Member Point Loads (BLC 11: Wind Load AZI 270) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
14	MP4	Z	0	72
15	MP4	X	65.66	12
16	MP4	Z	0	12
17	MP4	X	64.21	12
18	MP4	Z	0	12
19	MP7	X	126.31	0
20	MP7	Z	0	0
21	MP7	X	126.31	72
22	MP7	Z	0	72
23	MP7	X	65.66	12
24	MP7	Z	0	12
25	MP7	X	64.21	12
26	MP7	Z	0	12

Member Point Loads (BLC 12: Wind Load AZI 300)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	70.84	0
2	MP1	Z	-40.9	0
3	MP1	X	70.84	72
4	MP1	Z	-40.9	72
5	MP1	X	44.42	12
6	MP1	Z	-25.65	12
7	MP1	X	40.66	12
8	MP1	Z	-23.47	12
9	MP1	X	40.69	48
10	MP1	Z	-23.49	48
11	MP4	X	70.84	0
12	MP4	Z	-40.9	0
13	MP4	X	70.84	72
14	MP4	Z	-40.9	72
15	MP4	X	44.42	12
16	MP4	Z	-25.65	12
17	MP4	X	40.66	12
18	MP4	Z	-23.47	12
19	MP7	X	128.67	0
20	MP7	Z	-74.29	0
21	MP7	X	128.67	72
22	MP7	Z	-74.29	72
23	MP7	X	63.08	12
24	MP7	Z	-36.42	12
25	MP7	X	63.08	12
26	MP7	Z	-36.42	12

Company : Infinigy Enginee
Designer : PSM
Job Number : 1197-F0001-C
Model Name : BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Member Point Loads (BLC 13: Wind Load AZI 330)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	63.16	0
2	MP1	Z	-109.39	0
3	MP1	X	63.16	72
4	MP1	Z	-109.39	72
5	MP1	X	32.83	12
6	MP1	Z	-56.86	12
7	MP1	X	32.1	12
8	MP1	Z	-55.61	12
9	MP1	X	30.91	48
10	MP1	Z	-53.54	48
11	MP4	X	29.77	0
12	MP4	Z	-51.56	0
13	MP4	X	29.77	72
14	MP4	Z	-51.56	72
15	MP4	X	22.06	12
16	MP4	Z	-38.2	12
17	MP4	X	19.16	12
18	MP4	Z	-33.18	12
19	MP7	X	63.16	0
20	MP7	Z	-109.39	0
21	MP7	X	63.16	72
22	MP7	Z	-109.39	72
23	MP7	X	32.83	12
24	MP7	Z	-56.86	12
25	MP7	X	32.1	12
26	MP7	Z	-55.61	12

Member Point Loads (BLC 16 : Ice Weight)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Υ	-176.368	0
2	MP1	Υ	-176.368	72
3	MP1	Υ	-94.194	12
4	MP1	Υ	-88.586	12
5	MP1	Υ	-86.461	48
6	MP4	Υ	-176.368	0
7	MP4	Υ	-176.368	72
8	MP4	Υ	-94.194	12
9	MP4	Υ	-88.586	12
10	MP7	Υ	-176.368	0
11	MP7	Υ	-176.368	72
12	MP7	Υ	-94.194	12
13	MP7	Υ	-88.586	12

Company : Infinigy Engined
Designer : PSM
Job Number : 1197-F0001-C Model Name: BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Member Point Loads (BLC 17 : Ice Wind Load AZI 0)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	0	0
2	MP1	Z	-19.52	0
3	MP1	X	0	72
4	MP1	Z	-19.52	72
5	MP1	X	0	12
6	MP1	Z	-7.85	12
7	MP1	X	0	12
8	MP1	Z	-7.85	12
9	MP1	X	0	48
10	MP1	Z	-7.55	48
11	MP4	X	0	0
12	MP4	Z	-14.75	0
13	MP4	X	0	72
14	MP4	Z	-14.75	72
15	MP4	X	0	12
16	MP4	Z	-6.69	12
17	MP4	X	0	12
18	MP4	Z	-6.47	12
19	MP7	X	0	0
20	MP7	Z	-14.75	0
21	MP7	X	0	72
22	MP7	Z	-14.75	72
23	MP7	X	0	12
24	MP7	Z	-6.69	12
25	MP7	X	0	12
26	MP7	Z	-6.47	12

Member Point Loads (BLC 18 : Ice Wind Load AZI 30)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-8.97	0
2	MP1	Z	-15.53	0
3	MP1	X	-8.97	72
4	MP1	Z	-15.53	72
5	MP1	X	-3.73	12
6	MP1	Z	-6.47	12
7	MP1	X	-3.7	12
8	MP1	Z	-6.4	12
9	MP1	X	-3.6	48
10	MP1	Z	-6.23	48
11	MP4	X	-8.97	0
12	MP4	Z	-15.53	0
13	MP4	X	-8.97	72

Company : Infinigy Engineer
Designer : PSM
Job Number : 1197-F0001-C
Model Name : BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Member Point Loads (BLC 18 : Ice Wind Load AZI 30) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
14	MP4	Z	-15.53	72
15	MP4	X	-3.73	12
16	MP4	Z	-6.47	12
17	MP4	X	-3.7	12
18	MP4	Z	-6.4	12
19	MP7	X	-6.58	0
20	MP7	Z	-11.4	0
21	MP7	X	-6.58	72
22	MP7	Z	-11.4	72
23	MP7	X	-3.15	12
24	MP7	Ζ	-5.46	12
25	MP7	X	-3	12
26	MP7	Z	-5.2	12

Member Point Loads (BLC 19 : Ice Wind Load AZI 60)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-12.78	0
2	MP1	Z	-7.38	0
3	MP1	X	-12.78	72
4	MP1	Z	-7.38	72
5	MP1	X	-5.8	12
6	MP1	Z	-3.35	12
7	MP1	X	-5.6	12
8	MP1	Z	-3.23	12
9	MP1	X	-5.61	48
10	MP1	Z	-3.24	48
11	MP4	X	-16.9	0
12	MP4	Z	-9.76	0
13	MP4	X	-16.9	72
14	MP4	Z	-9.76	72
15	MP4	X	-6.8	12
16	MP4	Z	-3.93	12
17	MP4	X	-6.8	12
18	MP4	Z	-3.93	12
19	MP7	X	-12.78	0
20	MP7	Z	-7.38	0
21	MP7	X	-12.78	72
22	MP7	Z	-7.38	72
23	MP7	X	-5.8	12
24	MP7	Z	-3.35	12
25	MP7	X	-5.6	12
26	MP7	Z	-3.23	12

Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-C Model Name: BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Member Point Loads (BLC 20 : Ice Wind Load AZI 90)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-13.16	0
2	MP1	Z	0	0
3	MP1	X	-13.16	72
4	MP1	Z	0	72
5	MP1	X	-6.31	12
6	MP1	Z	0	12
7	MP1	X	-6.01	12
8	MP1	Z	0	12
9	MP1	X	-6.12	48
10	MP1	Z	0	48
11	MP4	X	-17.93	0
12	MP4	Z	0	0
13	MP4	X	-17.93	72
14	MP4	Z	0	72
15	MP4	X	-7.47	12
16	MP4	Z	0	12
17	MP4	X	-7.39	12
18	MP4	Z	0	12
19	MP7	X	-17.93	0
20	MP7	Z	0	0
21	MP7	X	-17.93	72
22	MP7	Z	0	72
23	MP7	X	-7.47	12
24	MP7	Z	0	12
25	MP7	X	-7.39	12
26	MP7	Z	0	12

Member Point Loads (BLC 21 : Ice Wind Load AZI 120)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-12.78	0
2	MP1	Z	7.38	0
3	MP1	X	-12.78	72
4	MP1	Z	7.38	72
5	MP1	X	-5.8	12
6	MP1	Z	3.35	12
7	MP1	X	-5.6	12
8	MP1	Z	3.23	12
9	MP1	X	-5.61	48
10	MP1	Z	3.24	48
11	MP4	X	-12.78	0
12	MP4	Z	7.38	0
13	MP4	Χ	-12.78	72

Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-C Model Name: BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Member Point Loads (BLC 21 : Ice Wind Load AZI 120) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
14	MP4	Z	7.38	72
15	MP4	X	-5.8	12
16	MP4	Z	3.35	12
17	MP4	X	-5.6	12
18	MP4	Z	3.23	12
19	MP7	X	-16.9	0
20	MP7	Z	9.76	0
21	MP7	X	-16.9	72
22	MP7	Z	9.76	72
23	MP7	X	-6.8	12
24	MP7	Z	3.93	12
25	MP7	X	-6.8	12
26	MP7	Z	3.93	12

Member Point Loads (BLC 22 : Ice Wind Load AZI 150)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-8.97	0
2	MP1	Z	15.53	0
3	MP1	X	-8.97	72
4	MP1	Z	15.53	72
5	MP1	X	-3.73	12
6	MP1	Z	6.47	12
7	MP1	X Z	-3.7	12
8	MP1		6.4	12
9	MP1	X	-3.6	48
10	MP1	Z	6.23	48
11	MP4	X	-6.58	0
12	MP4	Z	11.4	0
13	MP4	X	-6.58	72
14	MP4	Z	11.4	72
15	MP4	X	-3.15	12
16	MP4	Z	5.46	12
17	MP4	X	-3	12
18	MP4	Z	5.2	12
19	MP7	X	-8.97	0
20	MP7	Z	15.53	0
21	MP7	X	-8.97	72
22	MP7	Z	15.53	72
23	MP7	X	-3.73	12
24	MP7	Z	6.47	12
25	MP7	X	-3.7	12
26	MP7	Z	6.4	12

Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-C Model Name: BOBDL00153B Aug 26, 2021 11:39 AM Checked By:_

Member Point Loads (BLC 23 : Ice Wind Load AZI 180)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	0	0
2	MP1	Z	19.52	0
3	MP1	X	0	72
4	MP1	Z	19.52	72
5	MP1	X	0	12
6	MP1	Z	7.85	12
7	MP1	X	0	12
8	MP1	Z	7.85	12
9	MP1	X	0	48
10	MP1	Z	7.55	48
11	MP4	X	0	0
12	MP4	Z	14.75	0
13	MP4	X	0	72
14	MP4	Z	14.75	72
15	MP4	X	0	12
16	MP4	Z	6.69	12
17	MP4	X	0	12
18	MP4	Z	6.47	12
19	MP7	X	0	0
20	MP7	Z	14.75	0
21	MP7	X	0	72
22	MP7	Z	14.75	72
23	MP7	X	0	12
24	MP7	Z	6.69	12
25	MP7	X	0	12
26	MP7	Z	6.47	12

Member Point Loads (BLC 24 : Ice Wind Load AZI 210)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	8.97	0
2	MP1	Z	15.53	0
3	MP1	X	8.97	72
4	MP1	Z	15.53	72
5	MP1	X	3.73	12
6	MP1	Z	6.47	12
7	MP1	X	3.7	12
8	MP1	Z	6.4	12
9	MP1	X	3.6	48
10	MP1	Z	6.23	48
11	MP4	X	8.97	0
12	MP4	Z	15.53	0
13	MP4	X	8.97	72

Company : Infinigy Engined
Designer : PSM
Job Number : 1197-F0001-C Model Name: BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Member Point Loads (BLC 24 : Ice Wind Load AZI 210) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
14	MP4	Z	15.53	72
15	MP4	X	3.73	12
16	MP4	Z	6.47	12
17	MP4	X	3.7	12
18	MP4	Z	6.4	12
19	MP7	X	6.58	0
20	MP7	Z	11.4	0
21	MP7	X	6.58	72
22	MP7	Z	11.4	72
23	MP7	X	3.15	12
24	MP7	Z	5.46	12
25	MP7	X	3	12
26	MP7	Z	5.2	12

Member Point Loads (BLC 25 : Ice Wind Load AZI 240)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	12.78	0
2	MP1	Z	7.38	0
3	MP1	X	12.78	72
4	MP1	Z	7.38	72
5	MP1	X	5.8	12
6	MP1	Z	3.35	12
7	MP1	X	5.6	12
8	MP1	Z	3.23	12
9	MP1	X	5.61	48
10	MP1	Z	3.24	48
11	MP4	X	16.9	0
12	MP4	Z	9.76	0
13	MP4	X	16.9	72
14	MP4	Z	9.76	72
15	MP4	X	6.8	12
16	MP4	Z	3.93	12
17	MP4	X	6.8	12
18	MP4	Z	3.93	12
19	MP7	X	12.78	0
20	MP7	Z	7.38	0
21	MP7	X	12.78	72
22	MP7	Z	7.38	72
23	MP7	X	5.8	12
24	MP7	Z	3.35	12
25	MP7	X	5.6	12
26	MP7	Z	3.23	12

Company : Infinigy Engined Designer : PSM Job Number : 1197-F0001-C Model Name: BOBDL00153B

: Infinigy Engineering, PLLC : PSM Aug 26, 2021 11:39 AM Checked By:_

Member Point Loads (BLC 26 : Ice Wind Load AZI 270)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	13.16	0
2	MP1	Z	0	0
3	MP1	X	13.16	72
4	MP1	Z	0	72
5	MP1	X	6.31	12
6	MP1	Z	0	12
7	MP1	X	6.01	12
8	MP1	Z	0	12
9	MP1	X	6.12	48
10	MP1	Z	0	48
11	MP4	X	17.93	0
12	MP4	Z	0	0
13	MP4	X	17.93	72
14	MP4	Z	0	72
15	MP4	X	7.47	12
16	MP4	Z	0	12
17	MP4	X	7.39	12
18	MP4	Z	0	12
19	MP7	X	17.93	0
20	MP7	Z	0	0
21	MP7	X	17.93	72
22	MP7	Z	0	72
23	MP7	X	7.47	12
24	MP7	Z	0	12
25	MP7	X	7.39	12
26	MP7	Z	0	12

Member Point Loads (BLC 27 : Ice Wind Load AZI 300)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	12.78	0
2	MP1	Z	-7.38	0
3	MP1	X	12.78	72
4	MP1	Z	-7.38	72
5	MP1	X	5.8	12
6	MP1	Z	-3.35	12
7	MP1	X	5.6	12
8	MP1	Z	-3.23	12
9	MP1	X	5.61	48
10	MP1	Z	-3.24	48
11	MP4	X	12.78	0
12	MP4	Z	-7.38	0
13	MP4	X	12.78	72

Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-C Model Name: BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Member Point Loads (BLC 27: Ice Wind Load AZI 300) (Continued)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
14	MP4	Z	-7.38	72
15	MP4	X	5.8	12
16	MP4	Z	-3.35	12
17	MP4	X	5.6	12
18	MP4	Z	-3.23	12
19	MP7	X	16.9	0
20	MP7	Z	-9.76	0
21	MP7	X	16.9	72
22	MP7	Z	-9.76	72
23	MP7	X	6.8	12
24	MP7	Z	-3.93	12
25	MP7	X	6.8	12
26	MP7	Z	-3.93	12

Member Point Loads (BLC 28 : Ice Wind Load AZI 330)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	8.97	0
2	MP1	Z	-15.53	0
3	MP1	X	8.97	72
4	MP1	Z	-15.53	72
5	MP1	X	3.73	12
6	MP1	Z	-6.47	12
7	MP1	X Z	3.7	12
8	MP1		-6.4	12
9	MP1	X	3.6	48
10	MP1	Z	-6.23	48
11	MP4	X	6.58	0
12	MP4	Z	-11.4	0
13	MP4	X	6.58	72
14	MP4	Z	-11.4	72
15	MP4	X	3.15	12
16	MP4	Z	-5.46	12
17	MP4	X	3	12
18	MP4	Z	-5.2	12
19	MP7	X	8.97	0
20	MP7	Z	-15.53	0
21	MP7	X	8.97	72
22	MP7	Z	-15.53	72
23	MP7	X	3.73	12
24	MP7	Z	-6.47	12
25	MP7	X	3.7	12
26	MP7	Z	-6.4	12

Company : Infinigy Enginee
Designer : PSM
Job Number : 1197-F0001-C
Model Name : BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:

Page 29

Member Point Loads (BLC 31 : Seismic Load Z)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Z	-9.34	0
2	MP1	Z	-9.34	72
3	MP1	Z	-21.706	12
4	MP1	Z	-18.514	12
5	MP1	Z	-6.328	48
6	MP4	Z	-9.34	0
7	MP4	Z	-9.34	72
8	MP4	Z	-21.706	12
9	MP4	Z	-18.514	12
10	MP7	Z	-9.34	0
11	MP7	Z	-9.34	72
12	MP7	Z	-21.706	12
13	MP7	Z	-18.514	12

Member Point Loads (BLC 32 : Seismic Load X)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	X	-9.34	0
2	MP1	X	-9.34	72
3	MP1	X	-21.706	12
4	MP1	X	-18.514	12
5	MP1	X	-6.328	48
6	MP4	X	-9.34	0
7	MP4	X	-9.34	72
8	MP4	X	-21.706	12
9	MP4	X	-18.514	12
10	MP7	X	-9.34	0
11	MP7	X	-9.34	72
12	MP7	X	-21.706	12
13	MP7	X	-18.514	12

Joint Loads and Enforced Displacements (BLC 33 : Service Live Loads)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N72B	L	Υ	-250
2	N135A	L	Υ	-250
3	N129B	L	Υ	-250

Joint Loads and Enforced Displacements (BLC 34 : Maintenance Load 1)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N70A	L	Υ	-500

Company

: Infinigy Engineering, PLLC

Job Number : 1197-F0001-C Model Name: BOBDL00153B Aug 26, 2021 11:39 AM Checked By:

Joint Loads and Enforced Displacements (BLC 35 : Maintenance Load 2)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N69A	L	Υ	-500

Joint Loads and Enforced Displacements (BLC 36 : Maintenance Load 3)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N76	L	Υ	-500

Joint Loads and Enforced Displacements (BLC 37 : Maintenance Load 4)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N94	L	Υ	-500

Joint Loads and Enforced Displacements (BLC 38 : Maintenance Load 5)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N93	L	Υ	-500

Joint Loads and Enforced Displacements (BLC 39 : Maintenance Load 6)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N122	L	Υ	-500

Joint Loads and Enforced Displacements (BLC 40 : Maintenance Load 7)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N121	L	Υ	-500

Joint Loads and Enforced Displacements (BLC 41 : Maintenance Load 8)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N133B	L	Υ	-500

Joint Loads and Enforced Displacements (BLC 42 : Maintenance Load 9)

	Joint Label	L,D,M	Direction	Magnitude[(lb,lb-ft), (in,rad), (lb*s^2/in, lb*s^2*in)]
1	N139	L	Υ	-500

Member Distributed Loads (BLC 14 : Distr. Wind Load Z)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magn	Start Location.	End Location[in,%]
1	S3	SZ	-82.437	-82.437	0	%100
2	GA4	SZ	-82.437	-82.437	0	%100
3	GA3	SZ	-82.437	-82.437	0	%100
4	P3	SZ	-82.437	-82.437	0	%100
5	S2	SZ	-82.437	-82.437	0	%100
6	GA2	SZ	-82.437	-82.437	0	%100

Company : Infinigy Enginee
Designer : PSM
Job Number : 1197-F0001-C
Model Name : BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Member Distributed Loads (BLC 14 : Distr. Wind Load Z) (Continued)

7 GA1 SZ -82.437 -82.437 0 9 S1 SZ -82.437 -82.437 0 10 GA6 SZ -82.437 -82.437 0 11 GA5 SZ -82.437 -82.437 0 12 P1 SZ -82.437 -82.437 0 13 H1 SZ -49.462 -49.462 0 14 MP1 SZ -49.462 -49.462 0 15 MP3 SZ -49.462 -49.462 0 16 HR1 SZ -49.462 -49.462 0 17 CA8 SZ -82.437 -82.437 0 18 CA9 SZ -82.437 -82.437 0 19 CA7 SZ -82.437 -82.437 0 20 M32 SZ 0 0 0 21 M36 SZ 0 0 0 <th>_ocation[in,%]</th>	_ocation[in,%]
9 S1 SZ -82.437 -82.437 0 10 GA6 SZ -82.437 -82.437 0 11 GA5 SZ -82.437 -82.437 0 12 P1 SZ -82.437 -82.437 0 13 H1 SZ -49.462 -49.462 0 14 MP1 SZ -49.462 -49.462 0 15 MP3 SZ -49.462 -49.462 0 16 HR1 SZ -49.462 -49.462 0 17 CA8 SZ -82.437 -82.437 0 18 CA9 SZ -82.437 -82.437 0 19 CA7 SZ -82.437 -82.437 0 20 M32 SZ 0 0 0 21 M35 SZ 0 0 0 22 M36 SZ 0 0 0 <td>%100</td>	%100
10	%100
10 GA6 SZ -82.437 -82.437 0 11 GA5 SZ -82.437 -82.437 0 12 P1 SZ -82.437 -82.437 0 13 H1 SZ -49.462 -49.462 0 14 MP1 SZ -49.462 -49.462 0 15 MP3 SZ -49.462 -49.462 0 16 HR1 SZ -49.462 -49.462 0 17 CA8 SZ -82.437 -82.437 0 18 CA9 SZ -82.437 -82.437 0 19 CA7 SZ -82.437 -82.437 0 20 M32 SZ 0 0 0 21 M35 SZ 0 0 0 21 M36 SZ 0 0 0 23 M39A SZ 0 0 0 <tr< td=""><td>%100</td></tr<>	%100
11 GA5 SZ -82.437 -82.437 0 12 P1 SZ -82.437 -82.437 0 13 H1 SZ -49.462 -49.462 0 14 MP1 SZ -49.462 -49.462 0 15 MP3 SZ -49.462 -49.462 0 16 HR1 SZ -49.462 -49.462 0 16 HR1 SZ -49.462 0 0 17 CA8 SZ -82.437 -82.437 0 18 CA9 SZ -82.437 -82.437 0 19 CA7 SZ -82.437 -82.437 0 20 M32 SZ 0 0 0 21 M35 SZ 0 0 0 22 M36 SZ 0 0 0 23 M39A SZ 0 0 0	%100
12 P1 SZ -82.437 -82.437 0 13 H1 SZ -49.462 -49.462 0 14 MP1 SZ -49.462 -49.462 0 15 MP3 SZ -49.462 -49.462 0 16 HR1 SZ -49.462 -49.462 0 17 CA8 SZ -82.437 -82.437 0 18 CA9 SZ -82.437 -82.437 0 19 CA7 SZ -82.437 -82.437 0 20 M32 SZ 0 0 0 21 M35 SZ 0 0 0 21 M36 SZ 0 0 0 23 M39A SZ 0 0 0 24 CA3 SZ -82.437 -82.437 0 25 CA4 SZ -82.437 -82.437 0 <tr< td=""><td>%100</td></tr<>	%100
13 H1 SZ -49.462 -49.462 0 14 MP1 SZ -49.462 -49.462 0 15 MP3 SZ -49.462 -49.462 0 16 HR1 SZ -49.462 -49.462 0 17 CA8 SZ -82.437 -82.437 0 18 CA9 SZ -82.437 -82.437 0 19 CA7 SZ -82.437 -82.437 0 20 M32 SZ 0 0 0 21 M35 SZ 0 0 0 21 M35 SZ 0 0 0 23 M36 SZ 0 0 0 24 CA3 SZ -82.437 -82.437 0 25 CA4 SZ -82.437 -82.437 0 26 CA1 SZ -82.437 -82.437 0 <tr< td=""><td>%100</td></tr<>	%100
14 MP1 SZ -49.462 -49.462 0 15 MP3 SZ -49.462 -49.462 0 16 HR1 SZ -49.462 -49.462 0 17 CA8 SZ -82.437 -82.437 0 18 CA9 SZ -82.437 -82.437 0 19 CA7 SZ -82.437 -82.437 0 20 M32 SZ 0 0 0 21 M35 SZ 0 0 0 21 M35 SZ 0 0 0 23 M36 SZ 0 0 0 24 CA3 SZ -82.437 -82.437 0 25 CA4 SZ -82.437 -82.437 0 26 CA1 SZ -82.437 -82.437 0 27 CA2 SZ -82.437 -82.437 0 <t< td=""><td>%100</td></t<>	%100
15 MP3 SZ -49.462 -49.462 0 16 HR1 SZ -49.462 -49.462 0 17 CA8 SZ -82.437 -82.437 0 18 CA9 SZ -82.437 -82.437 0 19 CA7 SZ -82.437 -82.437 0 20 M32 SZ 0 0 0 21 M35 SZ 0 0 0 21 M36 SZ 0 0 0 23 M39A SZ 0 0 0 24 CA3 SZ -82.437 -82.437 0 25 CA4 SZ -82.437 -82.437 0 26 CA1 SZ -82.437 -82.437 0 27 CA2 SZ -82.437 -82.437 0 28 CA5 SZ -82.437 -82.437 0 <	%100
16 HR1 SZ -49.462 -49.462 0 17 CA8 SZ -82.437 -82.437 0 18 CA9 SZ -82.437 -82.437 0 19 CA7 SZ -82.437 -82.437 0 20 M32 SZ 0 0 0 21 M35 SZ 0 0 0 22 M36 SZ 0 0 0 23 M39A SZ 0 0 0 24 CA3 SZ -82.437 -82.437 0 25 CA4 SZ -82.437 -82.437 0 26 CA1 SZ -82.437 -82.437 0 27 CA2 SZ -82.437 -82.437 0 28 CA5 SZ -82.437 -82.437 0 29 CA6 SZ -82.437 -82.437 0 <	%100
17 CA8 SZ -82.437 -82.437 0 18 CA9 SZ -82.437 -82.437 0 19 CA7 SZ -82.437 -82.437 0 20 M32 SZ 0 0 0 21 M35 SZ 0 0 0 22 M36 SZ 0 0 0 23 M39A SZ 0 0 0 24 CA3 SZ -82.437 -82.437 0 25 CA4 SZ -82.437 -82.437 0 26 CA1 SZ -82.437 -82.437 0 26 CA1 SZ -82.437 -82.437 0 27 CA2 SZ -82.437 -82.437 0 28 CA5 SZ -82.437 -82.437 0 29 CA6 SZ -82.437 -82.437 0 <	%100
18 CA9 SZ -82.437 -82.437 0 19 CA7 SZ -82.437 -82.437 0 20 M32 SZ 0 0 0 21 M35 SZ 0 0 0 22 M36 SZ 0 0 0 23 M39A SZ 0 0 0 24 CA3 SZ -82.437 -82.437 0 25 CA4 SZ -82.437 -82.437 0 26 CA1 SZ -82.437 -82.437 0 27 CA2 SZ -82.437 -82.437 0 28 CA5 SZ -82.437 -82.437 0 29 CA6 SZ -82.437 -82.437 0 30 M64 SZ 0 0 0 31 M65 SZ 0 0 0 32	%100
19 CA7 SZ -82.437 -82.437 0 20 M32 SZ 0 0 0 21 M35 SZ 0 0 0 22 M36 SZ 0 0 0 23 M39A SZ 0 0 0 24 CA3 SZ -82.437 -82.437 0 25 CA4 SZ -82.437 -82.437 0 26 CA1 SZ -82.437 -82.437 0 27 CA2 SZ -82.437 -82.437 0 28 CA5 SZ -82.437 -82.437 0 29 CA6 SZ -82.437 -82.437 0 30 M64 SZ 0 0 0 31 M65 SZ 0 0 0 32 M66 SZ 0 0 0 34	%100
20 M32 SZ 0 0 0 21 M35 SZ 0 0 0 22 M36 SZ 0 0 0 23 M39A SZ 0 0 0 24 CA3 SZ -82.437 -82.437 0 25 CA4 SZ -82.437 -82.437 0 26 CA1 SZ -82.437 -82.437 0 27 CA2 SZ -82.437 -82.437 0 28 CA5 SZ -82.437 -82.437 0 29 CA6 SZ -82.437 -82.437 0 30 M64 SZ 0 0 0 31 M65 SZ 0 0 0 32 M66 SZ 0 0 0 33 M67 SZ 0 0 0 34 M68	%100
21 M35 SZ 0 0 0 22 M36 SZ 0 0 0 23 M39A SZ 0 0 0 24 CA3 SZ -82.437 -82.437 0 25 CA4 SZ -82.437 -82.437 0 26 CA1 SZ -82.437 -82.437 0 27 CA2 SZ -82.437 -82.437 0 28 CA5 SZ -82.437 -82.437 0 29 CA6 SZ -82.437 -82.437 0 30 M64 SZ 0 0 0 31 M65 SZ 0 0 0 32 M66 SZ 0 0 0 33 M67 SZ 0 0 0 34 M68 SZ 0 0 0 35 M69	%100
22 M36 SZ 0 0 0 23 M39A SZ 0 0 0 24 CA3 SZ -82.437 -82.437 0 25 CA4 SZ -82.437 -82.437 0 26 CA1 SZ -82.437 -82.437 0 27 CA2 SZ -82.437 -82.437 0 28 CA5 SZ -82.437 -82.437 0 29 CA6 SZ -82.437 -82.437 0 30 M64 SZ 0 0 0 31 M65 SZ 0 0 0 32 M66 SZ 0 0 0 33 M67 SZ 0 0 0 34 M68 SZ 0 0 0 35 M69 SZ 0 0 0 36 M70	%100
23 M39A SZ 0 0 0 24 CA3 SZ -82.437 -82.437 0 25 CA4 SZ -82.437 -82.437 0 26 CA1 SZ -82.437 -82.437 0 27 CA2 SZ -82.437 -82.437 0 28 CA5 SZ -82.437 -82.437 0 29 CA6 SZ -82.437 -82.437 0 30 M64 SZ 0 0 0 31 M65 SZ 0 0 0 32 M66 SZ 0 0 0 33 M67 SZ 0 0 0 34 M68 SZ 0 0 0 35 M69 SZ 0 0 0 36 M70 SZ 0 0 0 37 M71	%100
24 CA3 SZ -82.437 -82.437 0 25 CA4 SZ -82.437 -82.437 0 26 CA1 SZ -82.437 -82.437 0 27 CA2 SZ -82.437 -82.437 0 28 CA5 SZ -82.437 -82.437 0 29 CA6 SZ -82.437 -82.437 0 30 M64 SZ 0 0 0 31 M65 SZ 0 0 0 32 M66 SZ 0 0 0 33 M67 SZ 0 0 0 34 M68 SZ 0 0 0 35 M69 SZ 0 0 0 36 M70 SZ 0 0 0 37 M71 SZ 0 0 0	%100
25 CA4 SZ -82.437 -82.437 0 26 CA1 SZ -82.437 -82.437 0 27 CA2 SZ -82.437 -82.437 0 28 CA5 SZ -82.437 -82.437 0 29 CA6 SZ -82.437 -82.437 0 30 M64 SZ 0 0 0 31 M65 SZ 0 0 0 32 M66 SZ 0 0 0 33 M67 SZ 0 0 0 34 M68 SZ 0 0 0 35 M69 SZ 0 0 0 36 M70 SZ 0 0 0 37 M71 SZ 0 0 0	%100
26 CA1 SZ -82.437 -82.437 0 27 CA2 SZ -82.437 -82.437 0 28 CA5 SZ -82.437 -82.437 0 29 CA6 SZ -82.437 0 0 30 M64 SZ 0 0 0 31 M65 SZ 0 0 0 32 M66 SZ 0 0 0 33 M67 SZ 0 0 0 34 M68 SZ 0 0 0 35 M69 SZ 0 0 0 36 M70 SZ 0 0 0 37 M71 SZ 0 0 0	%100
27 CA2 SZ -82.437 -82.437 0 28 CA5 SZ -82.437 -82.437 0 29 CA6 SZ -82.437 -82.437 0 30 M64 SZ 0 0 0 31 M65 SZ 0 0 0 32 M66 SZ 0 0 0 33 M67 SZ 0 0 0 34 M68 SZ 0 0 0 35 M69 SZ 0 0 0 36 M70 SZ 0 0 0 37 M71 SZ 0 0 0	%100
28 CA5 SZ -82.437 -82.437 0 29 CA6 SZ -82.437 -82.437 0 30 M64 SZ 0 0 0 31 M65 SZ 0 0 0 32 M66 SZ 0 0 0 33 M67 SZ 0 0 0 34 M68 SZ 0 0 0 35 M69 SZ 0 0 0 36 M70 SZ 0 0 0 37 M71 SZ 0 0 0	%100
29 CA6 SZ -82.437 -82.437 0 30 M64 SZ 0 0 0 31 M65 SZ 0 0 0 32 M66 SZ 0 0 0 33 M67 SZ 0 0 0 34 M68 SZ 0 0 0 35 M69 SZ 0 0 0 36 M70 SZ 0 0 0 37 M71 SZ 0 0 0	%100
30 M64 SZ 0 0 0 31 M65 SZ 0 0 0 32 M66 SZ 0 0 0 33 M67 SZ 0 0 0 34 M68 SZ 0 0 0 35 M69 SZ 0 0 0 36 M70 SZ 0 0 0 37 M71 SZ 0 0 0	%100
31 M65 SZ 0 0 0 32 M66 SZ 0 0 0 33 M67 SZ 0 0 0 34 M68 SZ 0 0 0 35 M69 SZ 0 0 0 36 M70 SZ 0 0 0 37 M71 SZ 0 0 0	%100
32 M66 SZ 0 0 0 33 M67 SZ 0 0 0 34 M68 SZ 0 0 0 35 M69 SZ 0 0 0 36 M70 SZ 0 0 0 37 M71 SZ 0 0 0	%100
33 M67 SZ 0 0 0 34 M68 SZ 0 0 0 35 M69 SZ 0 0 0 36 M70 SZ 0 0 0 37 M71 SZ 0 0 0	%100
34 M68 SZ 0 0 0 35 M69 SZ 0 0 0 36 M70 SZ 0 0 0 37 M71 SZ 0 0 0	%100
35 M69 SZ 0 0 0 36 M70 SZ 0 0 0 37 M71 SZ 0 0 0	%100
36 M70 SZ 0 0 0 37 M71 SZ 0 0 0	%100
37 M71 SZ 0 0 0	%100
	%100
	%100
39 M73 SZ 0 0 0	%100
40 M74 SZ 0 0 0	%100
41 M75 SZ -82.437 -82.437 0	%100
42 MP2 SZ -49.462 -49.462 0	%100
43 M43 SZ 0 0 0	%100
44 M44 SZ 0 0 0	%100
45 H3 SZ -49.462 -49.462 0	%100
46 MP7 SZ -49.462 -49.462 0	%100
47 MP9 SZ -49.462 -49.462 0	%100 %100
48 HR3 SZ -49.462 -49.462 0	%100

Company : Infinigy Enginee
Designer : PSM
Job Number : 1197-F0001-C
Model Name : BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Member Distributed Loads (BLC 14: Distr. Wind Load Z) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magn	Start Location.	End Location[in,%]
49	M52	SZ	0	0	0	%100
50	M53	SZ	0	0	0	%100
51	M54	SZ	0	0	0	%100
52	M55	SZ	0	0	0	%100
53	H2	SZ	-49.462	-49.462	0	%100
54	MP4	SZ	-49.462	-49.462	0	%100
55	MP6	SZ	-49.462	-49.462	0	%100
56	HR2	SZ	-49.462	-49.462	0	%100
57	M66A	SZ	0	0	0	%100
58	M67A	SZ	0	0	0	%100
59	M68A	SZ	0	0	0	%100
60	M69A	SZ	0	0	0	%100
61	MP8	SZ	-49.462	-49.462	0	%100
62	M68B	SZ	0	0	0	%100
63	M69B	SZ	0	0	0	%100
64	MP5	SZ	-49.462	-49.462	0	%100
65	M71B	SZ	0	0	0	%100
66	M72B	SZ	0	0	0	%100

Member Distributed Loads (BLC 15 : Distr. Wind Load X)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magn	Start Location	End Location[in,%]
1	S3	SX	-82.437	-82.437	0	%100
2	GA4	SX	-82.437	-82.437	0	%100
3	GA3	SX	-82.437	-82.437	0	%100
4	P3	SX	-82.437	-82.437	0	%100
5	S2	SX	-82.437	-82.437	0	%100
6	GA2	SX	-82.437	-82.437	0	%100
7	GA1	SX	-82.437	-82.437	0	%100
8	P2	SX	-82.437	-82.437	0	%100
9	S 1	SX	-82.437	-82.437	0	%100
10	GA6	SX	-82.437	-82.437	0	%100
11	GA5	SX	-82.437	-82.437	0	%100
12	P1	SX	-82.437	-82.437	0	%100
13	H1	SX	-49.462	-49.462	0	%100
14	MP1	SX	-49.462	-49.462	0	%100
15	MP3	SX	-49.462	-49.462	0	%100
16	HR1	SX	-49.462	-49.462	0	%100
17	CA8	SX	-82.437	-82.437	0	%100
18	CA9	SX	-82.437	-82.437	0	%100
19	CA7	SX	-82.437	-82.437	0	%100
20	M32	SX	0	0	0	%100
21	M35	SX	0	0	0	%100

Company : Infinigy Enginee
Designer : PSM
Job Number : 1197-F0001-C
Model Name : BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Member Distributed Loads (BLC 15 : Distr. Wind Load X) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magn	Start Location	End Location[in,%]
22	M36	SX	0	0	0	%100
23	M39A	SX	0	0	0	%100
24	CA3	SX	-82.437	-82.437	0	%100
25	CA4	SX	-82.437	-82.437	0	%100
26	CA1	SX	-82.437	-82.437	0	%100
27	CA2	SX	-82.437	-82.437	0	%100
28	CA5	SX	-82.437	-82.437	0	%100
29	CA6	SX	-82.437	-82.437	0	%100
30	M64	SX	0	0	0	%100
31	M65	SX	0	0	0	%100
32	M66	SX	0	0	0	%100
33	M67	SX	0	0	0	%100
34	M68	SX	0	0	0	%100
35	M69	SX	0	0	0	%100
36	M70	SX	0	0	0	%100
37	M71	SX	0	0	0	%100
38	M72	SX	0	0	0	%100
39	M73	SX	0	0	0	%100
40	M74	SX	0	0	0	%100
41	M75	SX	-82.437	-82.437	0	%100
42	MP2	SX	-49.462	-49.462	0	%100
43	M43	SX	0	0	0	%100
44	M44	SX	0	0	0	%100
45	H3	SX	-49.462	-49.462	0	%100
46	MP7	SX	-49.462	-49.462	0	%100
47	MP9	SX	-49.462	-49.462	0	%100
48	HR3	SX	-49.462	-49.462	0	%100
49	M52	SX	0	0	0	%100
50	M53	SX	0	0	0	%100
51	M54	SX	0	0	0	%100
52	M55	SX	0	0	0	%100
53	H2	SX	-49.462	-49.462	0	%100
54	MP4	SX	-49.462	-49.462	0	%100
55	MP6	SX	-49.462	-49.462	0	%100
56	HR2	SX	-49.462	-49.462	0	%100
57	M66A	SX	0	0	0	%100
58	M67A	SX	0	0	0	%100
59	M68A	SX	0	0	0	%100
60	M69A	SX	0	0	0	%100
61	MP8	SX	-49.462	-49.462	0	%100 %100
62	M68B	SX	0	0	0	%100 %100
63	M69B	SX	0	0	0	%100

Company : Infinigy Enginee
Designer : PSM
Job Number : 1197-F0001-C
Model Name : BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Member Distributed Loads (BLC 15 : Distr. Wind Load X) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magn	Start Location	End Location[in,%]
64	MP5	SX	-49.462	-49.462	0	%100
65	M71B	SX	0	0	0	%100
66	M72B	SX	0	0	0	%100

Member Distributed Loads (BLC 16 : Ice Weight)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magn	Start Location	End Location[in,%]
1	S3	Υ	-19.719	-19.719	0	%100
2	GA4	Υ	-12.515	-12.515	0	%100
3	GA3	Υ	-12.515	-12.515	0	%100
4	P3	Υ	-21.894	-21.894	0	%100
5	S2	Υ	-19.719	-19.719	0	%100
6	GA2	Υ	-12.515	-12.515	0	%100
7	GA1	Υ	-12.515	-12.515	0	%100
8	P2	Υ	-21.894	-21.894	0	%100
9	S 1	Υ	-19.719	-19.719	0	%100
10	GA6	Υ	-12.515	-12.515	0	%100
11	GA5	Υ	-12.515	-12.515	0	%100
12	P1	Υ	-21.894	-21.894	0	%100
13	H1	Υ	-14.225	-14.225	0	%100
14	MP1	Υ	-12.633	-12.633	0	%100
15	MP3	Υ	-12.633	-12.633	0	%100
16	HR1	Υ	-12.646	-12.646	0	%100
17	CA8	Υ	-25.6	-25.6	0	%100
18	CA9	Υ	-25.6	-25.6	0	%100
19	CA7	Υ	-25.6	-25.6	0	%100
20	M32	Υ	-5.31	-5.31	0	%100
21	M35	Υ	-5.31	-5.31	0	%100
22	M36	Υ	-5.31	-5.31	0	%100
23	M39A	Υ	-5.31	-5.31	0	%100
24	CA3	Υ	-15.393	-15.393	0	%100
25	CA4	Υ	-15.393	-15.393	0	%100
26	CA1	Υ	-15.393	-15.393	0	%100
27	CA2	Υ	-15.393	-15.393	0	%100
28	CA5	Υ	-15.393	-15.393	0	%100
29	CA6	Υ	-15.393	-15.393	0	%100
30	M64	Υ	-5.31	-5.31	0	%100
31	M65	Υ	-5.31	-5.31	0	%100
32	M66	Υ	-5.31	-5.31	0	%100
33	M67	Υ	-5.31	-5.31	0	%100
34	M68	Υ	-5.31	-5.31	0	%100
35	M69	Υ	-5.31	-5.31	0	%100
36	M70	Υ	-5.31	-5.31	0	%100

Company : Infinigy Enginee
Designer : PSM
Job Number : 1197-F0001-C
Model Name : BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Member Distributed Loads (BLC 16 : Ice Weight) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magn	Start Location	End Location[in,%]
37	M71	Υ	-5.31	-5.31	0	%100
38	M72	Υ	-5.31	-5.31	0	%100
39	M73	Υ	-5.31	-5.31	0	%100
40	M74	Υ	-5.31	-5.31	0	%100
41	M75	Υ	-11.492	-11.492	0	%100
42	MP2	Υ	-12.633	-12.633	0	%100
43	M43	Υ	-5.31	-5.31	0	%100
44	M44	Υ	-5.31	-5.31	0	%100
45	H3	Υ	-14.225	-14.225	0	%100
46	MP7	Υ	-12.633	-12.633	0	%100
47	MP9	Υ	-12.633	-12.633	0	%100
48	HR3	Υ	-12.646	-12.646	0	%100
49	M52	Υ	-5.31	-5.31	0	%100
50	M53	Υ	-5.31	-5.31	0	%100
51	M54	Υ	-5.31	-5.31	0	%100
52	M55	Υ	-5.31	-5.31	0	%100
53	H2	Υ	-14.225	-14.225	0	%100
54	MP4	Υ	-12.633	-12.633	0	%100
55	MP6	Υ	-12.633	-12.633	0	%100
56	HR2	Υ	-12.646	-12.646	0	%100
57	M66A	Υ	-5.31	-5.31	0	%100
58	M67A	Υ	-5.31	-5.31	0	%100
59	M68A	Υ	-5.31	-5.31	0	%100
60	M69A	Υ	-5.31	-5.31	0	%100
61	MP8	Υ	-12.633	-12.633	0	%100
62	M68B	Υ	-5.31	-5.31	0	%100
63	M69B	Υ	-5.31	-5.31	0	%100
64	MP5	Υ	-12.633	-12.633	0	%100
65	M71B	Υ	-5.31	-5.31	0	%100
66	M72B	Υ	-5.31	-5.31	0	%100

Member Distributed Loads (BLC 29 : Distr. Ice Wind Load Z)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magn	Start Location	End Location[in,%]
1	S3	SZ	-13.747	-13.747	0	%100
2	GA4	SZ	-19.581	-19.581	0	%100
3	GA3	SZ	-19.581	-19.581	0	%100
4	P3	SZ	-12.982	-12.982	0	%100
5	S2	SZ	-13.747	-13.747	0	%100
6	GA2	SZ	-19.581	-19.581	0	%100
7	GA1	SZ	-19.581	-19.581	0	%100
8	P2	SZ	-12.982	-12.982	0	%100
9	S1	SZ	-13.747	-13.747	0	%100

: Infinigy Engineering, PLLC: PSM

Company : Infinigy Enginee
Designer : PSM
Job Number : 1197-F0001-C
Model Name : BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Member Distributed Loads (BLC 29 : Distr. Ice Wind Load Z) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magn	Start Location	End Location[in,%]
10	GA6	SZ	-19.581	-19.581	0	%100
11	GA5	SZ	-19.581	-19.581	0	%100
12	P1	SZ	-12.982	-12.982	0	%100
13	H1	SZ	-17.342	-17.342	0	%100
14	MP1	SZ	-19.392	-19.392	0	%100
15	MP3	SZ	-19.392	-19.392	0	%100
16	HR1	SZ	-19.372	-19.372	0	%100
17	CA8	SZ	-12.057	-12.057	0	%100
18	CA9	SZ	-12.057	-12.057	0	%100
19	CA7	SZ	-12.057	-12.057	0	%100
20	M32	SZ	0	0	0	%100
21	M35	SZ	0	0	0	%100
22	M36	SZ	0	0	0	%100
23	M39A	SZ	0	0	0	%100
24	CA3	SZ	-16.251	-16.251	0	%100
25	CA4	SZ	-16.251	-16.251	0	%100
26	CA1	SZ	-16.251	-16.251	0	%100
27	CA2	SZ	-16.251	-16.251	0	%100
28	CA5	SZ	-16.251	-16.251	0	%100
29	CA6	SZ	-16.251	-16.251	0	%100
30	M64	SZ	0	0	0	%100
31	M65	SZ	0	0	0	%100
32	M66	SZ	0	0	0	%100
33	M67	SZ	0	0	0	%100
34	M68	SZ	0	0	0	%100
35	M69	SZ	0	0	0	%100
36	M70	SZ	0	0	0	%100
37	M71	SZ	0	0	0	%100
38	M72	SZ	0	0	0	%100
39	M73	SZ	0	0	0	%100
40	M74	SZ	0	0	0	%100
41	M75	SZ	-21.51	-21.51	0	%100
42	MP2	SZ	-19.392	-19.392	0	%100
43	M43	SZ	0	0	0	%100
44	M44	SZ	0	0	0	%100
45	H3	SZ	-17.342	-17.342	0	%100
46	MP7	SZ	-19.392	-19.392	0	%100
47	MP9	SZ	-19.392	-19.392	0	%100
48	HR3	SZ	-19.372	-19.372	0	%100
49	M52	SZ	0	0	0	%100
50	M53	SZ	0	0	0	%100
51	M54	SZ	0	0	0	%100

Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-C

: Infinigy Engineering, PLLC: PSM

Model Name: BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Member Distributed Loads (BLC 29 : Distr. Ice Wind Load Z) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magn	Start Location	End Location[in,%]
52	M55	SZ	0	0	0	%100
53	H2	SZ	-17.342	-17.342	0	%100
54	MP4	SZ	-19.392	-19.392	0	%100
55	MP6	SZ	-19.392	-19.392	0	%100
56	HR2	SZ	-19.372	-19.372	0	%100
57	M66A	SZ	0	0	0	%100
58	M67A	SZ	0	0	0	%100
59	M68A	SZ	0	0	0	%100
60	M69A	SZ	0	0	0	%100
61	MP8	SZ	-19.392	-19.392	0	%100
62	M68B	SZ	0	0	0	%100
63	M69B	SZ	0	0	0	%100
64	MP5	SZ	-19.392	-19.392	0	%100
65	M71B	SZ	0	0	0	%100
66	M72B	SZ	0	0	0	%100

Member Distributed Loads (BLC 30 : Distr. Ice Wind Load X)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magn	Start Location	End Location[in,%]
1	S3	SX	-13.747	-13.747	0	%100
2	GA4	SX	-19.581	-19.581	0	%100
3	GA3	SX	-19.581	-19.581	0	%100
4	P3	SX	-12.982	-12.982	0	%100
5	S2	SX	-13.747	-13.747	0	%100
6	GA2	SX	-19.581	-19.581	0	%100
7	GA1	SX	-19.581	-19.581	0	%100
8	P2	SX	-12.982	-12.982	0	%100
9	S 1	SX	-13.747	-13.747	0	%100
10	GA6	SX	-19.581	-19.581	0	%100
11	GA5	SX	-19.581	-19.581	0	%100
12	P1	SX	-12.982	-12.982	0	%100
13	H1	SX	-17.342	-17.342	0	%100
14	MP1	SX	-19.392	-19.392	0	%100
15	MP3	SX	-19.392	-19.392	0	%100
16	HR1	SX	-19.372	-19.372	0	%100
17	CA8	SX	-12.057	-12.057	0	%100
18	CA9	SX	-12.057	-12.057	0	%100
19	CA7	SX	-12.057	-12.057	0	%100
20	M32	SX	0	0	0	%100
21	M35	SX	0	0	0	%100
22	M36	SX	0	0	0	%100
23	M39A	SX	0	0	0	%100
24	CA3	SX	-16.251	-16.251	0	%100

: Infinigy Engineering, PLLC: PSM

Company : Infinigy Enginee
Designer : PSM
Job Number : 1197-F0001-C
Model Name : BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

Member Distributed Loads (BLC 30 : Distr. Ice Wind Load X) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magn	Start Location.	
25	CA4	SX	-16.251	-16.251	0	%100
26	CA1	SX	-16.251	-16.251	0	%100
27	CA2	SX	-16.251	-16.251	0	%100
28	CA5	SX	-16.251	-16.251	0	%100
29	CA6	SX	-16.251	-16.251	0	%100
30	M64	SX	0	0	0	%100
31	M65	SX	0	0	0	%100
32	M66	SX	0	0	0	%100
33	M67	SX	0	0	0	%100
34	M68	SX	0	0	0	%100
35	M69	SX	0	0	0	%100
36	M70	SX	0	0	0	%100
37	M71	SX	0	0	0	%100
38	M72	SX	0	0	0	%100
39	M73	SX	0	0	0	%100
40	M74	SX	0	0	0	%100
41	M75	SX	-21.51	-21.51	0	%100
42	MP2	SX	-19.392	-19.392	0	%100
43	M43	SX	0	0	0	%100
44	M44	SX	0	0	0	%100
45	H3	SX	-17.342	-17.342	0	%100
46	MP7	SX	-19.392	-19.392	0	%100
47	MP9	SX	-19.392	-19.392	0	%100
48	HR3	SX	-19.372	-19.372	0	%100
49	M52	SX	0	0	0	%100
50	M53	SX	0	0	0	%100
51	M54	SX	0	0	0	%100
52	M55	SX	0	0	0	%100
53	H2	SX	-17.342	-17.342	0	%100
54	MP4	SX	-19.392	-19.392	0	%100
55	MP6	SX	-19.392	-19.392	0	%100
56	HR2	SX	-19.372	-19.372	0	%100
57	M66A	SX	0	0	0	%100
58	M67A	SX	0	0	0	%100
59	M68A	SX	0	0	0	%100
60	M69A	SX	0	0	0	%100 %100
61	MP8	SX	-19.392	-19.392	0	%100 %100
62	M68B	SX	0	0	0	%100 %100
63	M69B	SX	0	0	0	%100 %100
64	MP5	SX	-19.392	-19.392	0	%100 %100
65	M71B	SX	0	0	0	%100 %100
66	M72B	SX	0	0	0	%100 %100
UU	IVITZU		U	0	U	70100

: Infinigy Engineering, PLLC

Company : Infinigy Engine Designer : PSM Job Number : 1197-F0001-C Model Name: BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:

Member Distributed Loads (BLC 43 : BLC 1 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magn	Start Location	End Location[in,%]
1	S2	Υ	-3.185	-3.185	16.404	40
2	GA2	Υ	-1.605	-1.605	3.828	27.295
3	GA1	Υ	-1.605	-1.605	3.828	27.295
4	S3	Υ	-3.185	-3.185	16.404	40
5	GA4	Υ	-1.605	-1.605	3.828	27.295
6	GA3	Υ	-1.605	-1.605	3.828	27.295
7	S1	Υ	-3.185	-3.185	16.404	40
8	GA6	Υ	-1.605	-1.605	3.828	27.295
9	GA5	Y	-1.605	-1.605	3.828	27.295

Member Distributed Loads (BLC 44 : BLC 16 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magn	Start Location	End Location[in,%]
1	S2	Υ	-35.493	-35.493	16.404	40
2	GA2	Υ	-17.887	-17.887	3.828	27.295
3	GA1	Υ	-17.887	-17.887	3.828	27.295
4	S3	Υ	-35.493	-35.493	16.404	40
5	GA4	Υ	-17.887	-17.887	3.828	27.295
6	GA3	Υ	-17.887	-17.887	3.828	27.295
7	S 1	Υ	-35.493	-35.493	16.404	40
8	GA6	Υ	-17.887	-17.887	3.828	27.295
9	GA5	Υ	-17.887	-17.887	3.828	27.295

Member Area Loads (BLC 1 : Self Weight)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[psf]
1	P22	P21	P20	P23	Υ	Two Way	-1.75
2	P10	P11	P12	P9	Υ	Two Way	-1.75
3	P31	P34	P33	P32	Υ	Two Way	-1.75

Member Area Loads (BLC 16 : Ice Weight)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[psf]
1	P22	P21	P20	P23	Υ	Two Way	-19.5
2	P10	P11	P12	P9	Υ	Two Way	-19.5
3	P31	P34	P33	P32	Υ	Two Way	-19.5

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[in]	LC	She	.Loc[in]	Dir	LC	phi*P	phi*P	.phi*M	.phi*Mn z-z [lb	.Cb E	∃qn
1	CA1	C3.38x2.06	.324	0	31	.056	28.188	у	36	4776	56700	2202	5751.945	1H1	1-1b
2	P3	PL6.5x0.375	.307	21	2	.158	36.312	у	30	3658	78975	616.9	7967.595	1H1	1-1b
3	S2	HSS4X4X6	.306	0	32	.110	0	У	142	1882	1978	2204	22045.5	1 H1	1-1b

: Infinigy Engineering, PLLC: PSM

Company : Infinigy Enginee Designer : PSM Job Number : 1197-F0001-C Model Name : BOBDL00153B

Aug 26, 2021 11:39 AM Checked By:_

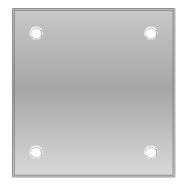
Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)

	Member	Shape	Code Check	Loc[in]	LC	She	.Loc[in]	Dir	LC	phi*P	phi*P	.phi*M	phi*Mn z-z [lb.	Cb Eqn
4	P2	PL6.5x0.375	.298	21	6	.131	36.312	у	10	3658	78975	616.9	7935.78	1H1-1b
5	CA5	C3.38x2.06	.294	0	35	.053	28.187	У	28	4776	56700		5751.945	1 H1-1b
6	CA3	C3.38x2.06	.287	0	27	.053	28.188	у	32	4776	56700		5751.945	1 H1-1b
7	P1	PL6.5x0.375	.285	21	10	.148	36.312	y	2	3658	78975	616.9	7998.957	1 H1-1b
8	S3	HSS4X4X6	.282	0	38	.111	0	У	114	1882	1978	2204	22045.5	1 H1-1b
9	CA4	C3.38x2.06	.281	33	2	.044	33	y	31	4776	56700	2202	5751.945	1 H1-1b
10	CA6	C3.38x2.06	.267	33	10	.046	33	у	38	4776	56700	2202	5751.945	1 H1-1b
11	CA2	C3.38x2.06	.265	33	6	.045	33	У	34	4776	56700		5751.945	1 H1-1b
12	S1	HSS4X4X6	.265	0	36	.111	0	у	37	1882	1978	2204	22045.5	1 H1-1b
13	CA7	L6.6x4.46x0	.256	41.562	3	.034	42	Z	8	5117	87561	2464	7125.374	1 H2-1
14	HR3	2.88x0.120	.251	6	2	.114	92		6	2249	4307		3155.674	1 H1-1b
15	CA8	L6.6x4.46x0	.250	41.562	22	.036	42	Z	4	5117	87561	2464	7125.374	1 H2-1
16	M75	PL 2.375x0.5	.249	1.5	12	.251	0	у	28	3825	38475	400.7	1903.711	2 H1-1b
17	HR2	2.88x0.120	.246	90	3	.122	92		4	2249			3155.674	1 H1-1b
18	HR1	2.88x0.120	.235	6	4	.107	6		4	2249	4307	3155	3155.674	1 H1-1b
19	CA9	L6.6x4.46x0	.226	41.562	6	.031	42	Z	12	5117			7125.374	1 H2-1
20	MP2	PIPE_2.5	.207	70	5	.074	70		5	3348	66654	4726.5	4726.5	4 H1-1b
21	MP5	PIPE 2.5	.201	70	7	.062	70		7	3348	66654	4726.5	4726.5	4 H1-1b
22	GA4	L2x2x4	.190	0	2	.013	27.295	у	9	2952		959.63	2100.000	2 H2-1
23	MP8	PIPE_2.5	.181	70	9	.078	70		3	3348	66654	4726.5	4726.5	4H1-1b
24	GA5	L2x2x4	.178	0	9	.025	27.295	у	38	2952		959.63	2100.000	2 H2-1
25	GA2	L2x2x4	.174	0	12	.014	0	y	12	2952	42480	959.63	2190.068	2 H2-1
26	GA6	L2x2x4	.166	0	4	.014	0	У	4	2952	42480	959.63	2190.068	2 H2-1
27	GA1	L2x2x4	.165	0	5	.025	27.295	y	34	2952		959.63	2100.000	2 H2-1
28	MP9	PIPE_2.5	.163	70	2	.074	70		7	3348	66654	4726.5	4726.5	3 H1-1b
29	GA3	L2x2x4	.161	0	7	.025	27.295	У	30	2952	42480	959.63	2190.068	2 H2-1
30	MP1	PIPE 2.5	.148	70	11	.089	26		8	3348	66654	4726.5	4726.5	2 H1-1b
31	MP6	PIPE 2.5	.146	70	7	.078	70		6	3348	66654	4726.5	4726.5	4 H1-1b
32	MP3	PIPE_2.5	.142	70	5	.081	70		3	3348		4726.5	7720.0	4.41H1-1b
33	MP4	PIPE 2.5	.138	70	7	.079	26		4	3348	66654	4726.5	4726.5	1 H1-1b
34	MP7	PIPE 2.5	.136	70	9	.072	26		6	3348		4726.5	4726.5	3 H1-1b
35	Н3	Pipe3.5x0.1	.126	31	2	.078	90		2	4587	7158	6337	6337.65	1 H1-1b
36	H1	Pipe3.5x0.1	.121	31	10	.068	48		4	4587	7158	6337	6337.65	2 H1-1b
37	H2	Pipe3.5x0.1	.117	31	6	.054	48		12	4587	7158	6337	6337.65	1 H1-1b

Bolt Calculation Tool, V1.5.1

Doit Calculation 1001, VI.J.	Boit Calculation 1001, VI.3.1								
PROJECT DATA									
Site Name:									
Site Number:	BOBDL00153B								
Connection Description:	Platform to Monopole								

MAXIMUM BOLT LOADS									
Bolt Tension:	8122.56	lbs							
Bolt Shear:	1630.03	lbs							


WORST CASE BOLT LOADS ¹					
Bolt Tension: 8122.56 lbs					
Bolt Shear:	1417.93	lbs			

BOLT PROPERTIES				
Bolt Type:	Bolt	-		
Bolt Diameter:	0.625	in		
Bolt Grade:	A325	-		
# of Bolts:	4	-		
Threads Excluded?	No	-		

 $^{^{1}}$ Worst case bolt loads correspond to Load combination #32 on member S2 in RISA-3D, which causes the maximum demand on the bolts.

Member Information I nodes of S3, S2, S1

BOLT CHECK		
Tensile Strength	20340.15	
Shear Strength	13805.83	
Max Tensile Usage	39.9%	
Max Shear Usage	11.8%	
Interaction Check (Worst Case)	0.17	≤1.05
Result	Pass	

Structural Analysis Report

Structure : 110 ft Monopole

ATC Site Name : Hrfr - South,CT

ATC Site Number : 302481

Engineering Number : 13726719_C3_03

Proposed Carrier : DISH WIRELESS L.L.C.

Carrier Site Name : BOBDL00153B

Carrier Site Number : BOBDL00153B

Site Location : 289 Mountain Street

Hartford, CT 06106-4121

41.7266, -72.7082

County : Hartford

Date : October 5, 2021

Max Usage : 97%

Result : Pass

Prepared By: Reviewed By:

Ryan Ciamillo Structural Engineer

COA: PEC.0001553

Table of Contents

Introduction	3
Supporting Documents	3
Analysis	
Conclusion	
Existing and Reserved Equipment	
Equipment to be Removed	
Proposed Equipment	
Structure Usages	6
Foundations	6
Deflection and Sway*	6
Standard Conditions	
CalculationsAttached	

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 110 ft Monopole to reflect the change in loading by DISH WIRELESS L.L.C..

Supporting Documents

Tower Drawings	Mapped by Smith Cullum Site #CT-0017(A), dated June 6, 2001	
Foundation Drawing	Girard & Co Engineering Job #39902, dated April 29, 1988	
Geotechnical Report	DOP TEP Project #071162.01, dated July 23, 2007	
Modifications	ATC Project #42719232, dated January 12, 2009	
	ATC Project #43595333, dated July 1, 2009	
	ATC Project #43930034, dated September 15, 2009	
	ATC Project #44662232, dated March 30, 2010	
	ATC Project #OAA739695_C6_06, dated February 25, 2019	
	ATC Project #13251341_C6_06, dated September 4, 2020	
Site Specific Study	ICE Wind Study for Site 302481, dated May 22, 2020	

Analysis

The tower was analyzed using American Tower Corporation's tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

considers an clastic times dimensional model and second order cheets per Ansi, the 222.			
Basic Wind Speed:	118 mph (3-second gust)		
Basic Wind Speed w/ Ice:	50 mph (3-second gust) w/ 1.50" radial ice concurrent		
Code:	ANSI/TIA-222-H / 2015 IBC / 2018 Connecticut State Building Code		
Exposure Category:	В		
Risk Category:			
Topographic Factor Procedure:	Method 3		
Topographic Category:	4		
Crest Height (H):	148 ft		
Crest Length (L):	0 ft		
Spectral Response:	$Ss = 0.19, S_1 = 0.06$		
Site Class:	D - Stiff Soil - Default		

^{**}Wind load and Ice thickness have been reduced by applicable existing structure load modification factors in accordance with TIA-222-H, Annex S.

Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

Existing and Reserved Equipment

Elev.1 (ft)	Qty	Equipment	Mount Type	Lines	Carrier
	3	Argus LLPX310R			
110.0	1	DragonWave A-ANT-11G-2.5-C		(2) 1/2" Coax	
	3	NextNet BTS-2500	Cido Ames	(1) 2" conduit	CLEARWIRE
110.0	1	DragonWave A-ANT-23G-1-C	Side Arm	(6) 5/16" (0.31"-	CORPORATION
	1	Generic 12" x 12" Junction Box		7.9mm) Coax	
	2	DragonWave Horizon Compact			
	3	Ericsson RRUS-32 (77 lbs)			
	3	Ericsson RRUS-11 (50 lbs.)			
	2	Quintel QS66512-2		(1)	
	2	CCI OPA-65R-LCUU-H6		(4) 0.39" (10mm)	
	1	CCI OPA-65R-LCUU-H8 (92.7")	Taisas and a Distformantial	Fiber Trunk	
100.0	1	CCI TPA-65R-LCUUUU-H8	Triangular Platform with Handrails	(10) 0.78" (19.7mm) 8 AWG 6	AT&T MOBILITY
	3	Powerwave Allgon 7770.00	Hallulalis	(24) 1 5/8" Coax	
	2	Raycap DC6-48-60-18-8F(32.8 lbs)		(1) 3" conduit	
	3	Powerwave Allgon LGP21401		(1) 3 Conduit	
	6	CCI TPX-070821			
	3	Ericsson RRUS 32 B2			
	3	RFS APXVAARR24_43-U-NA20	(4) 1 1/4" (1.25"- Triangular Low Profile 31.8mm) Fiber		
	3	Ericsson Air 3246 B66			
90.0	3	Ericsson AIR32 B66Aa/B2a		31.8mm) Fiber	T-MOBILE
90.0	3	Ericsson Air6449 B41	Platform	(6) 1 5/8" Coax	
	3	Ericsson RRUS 4415 B25		(18) 7/8" Coax	
	3	Ericsson Radio 4449 B71 B85A			
	3	Samsung MT6407-77A			
	6	Commscope JAHH-65B-R3B (63.3 lb)			
	3	Samsung B2/B66A RRH-BR049			
	3	Commscope CBC78T-DS-43-2X	Triangular Law Drafila	/12\ 1 E /0" Coox	
80.0	3	Samsung Outdoor CBRS 20W RRH –Clip-on	Triangular Low Profile Platform	(12) 1 5/8" Coax (2) 1 5/8" Hybriflex	VERIZON WIRELESS
	3	Antenna	Platioiiii	(2) 1 5/6 Hybrillex	
	1	Raycap RVZDC-6627-PF-48			
	3	Samsung B5/B13 RRH-BR04C			
	3	Samsung RT4401-48A			
	1	Radio Waves SP2-4.7		(2) 0.41" (10.3mm)	TOWN OF WEST
60.0	1	Scala 840 10212	Stand-Off LMR-400		TOWN OF WEST HARTFORD
	1	Generic Radio/ODU		(1) 7/8" Coax	HANTOND

Equipment to be Removed

Elev.1 (ft)	Qty	Equipment	Mount Type	Lines	Carrier
75.0	1	Scala 840 10212	Stand Off	(1) 7/9" Coox	TOWN OF WEST HARTFORD
75.0	1	TX RX Systems 421-86A-10-18-12-N	Stand Off	(1) 7/8" Coax	
70.0	1	RFS APXV18-206517S-C	Side Arm	(6) 1 5/8" Coax	METRO PCS INC

Proposed Equipment

Elev.1 (ft)	Qty	Equipment	Mount Type	Lines	Carrier
	1	Raycap RDIDC-9181-PF-48			
70.0	3	Fujitsu TA08025-B605	Triangular Platform with	(1) 1.60" (40.6mm)	DISH WIRELESS L.L.C.
70.0	3	Fujitsu TA08025-B604	Handrails	Hybrid	DISH WIKELESS L.L.C.
	3	JMA Wireless MX08FRO665-21			

¹Contracted elevations are shown for appurtenances within contracted installation tolerances. Appurtenances outside of contract limits are shown at installed elevations.

Install proposed lines inside the pole shaft.

Structure Usages

Structural Component	Controlling Usage	Pass/Fail
Anchor Bolts	61%	Pass
Shaft	73%	Pass
Base Plate	95%	Pass
Flanges	28%	Pass
Reinforcement	97%	Pass

Foundations

Reaction Component	Analysis Reactions	% of Usage
Moment (Kips-Ft)	2461.0	85%
Axial (Kips)	51.7	6%
Shear (Kips)	34.5	51%

The structure base reactions resulting from this analysis were found to be acceptable through analysis based on geotechnical and foundation information, therefore no modification or reinforcement of the foundation will be required.

Deflection and Sway*

Antenna Elevation (ft)	Antenna	Carrier	Deflection (ft)	Sway (Rotation) (°)
110.0	DragonWave A-ANT-11G-2.5-C	CLEARWIRE CORPORATION	1 275	1.160
110.0	DragonWave A-ANT-23G-1-C	CLLANWINE CONFORMATION		1.100
	JMA Wireless MX08FRO665-21			
70.0	Fujitsu TA08025-B605	DISH WIRELESS L.L.C.	0.636 0.936	0.020
70.0	Raycap RDIDC-9181-PF-48	DISH WIKELESS L.L.C.		0.930
	Fujitsu TA08025-B604			
60.0	Radio Waves SP2-4.7	TOWN OF WEST HARTFORD	0.481	0.840

^{*}Deflection and Sway was evaluated considering a design wind speed of 60 mph (3-Second Gust) per ANSI/TIA-222-H

Standard Conditions

All engineering services performed by A.T. Engineering Service, PLLC are prepared on the basis that the information used is current and correct. This information may consist of, but is not limited to the following:

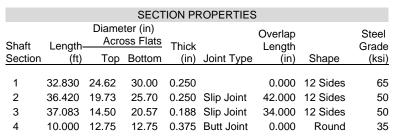
- Information supplied by the client regarding antenna, mounts and feed line loading
- Information from drawings, design and analysis documents, and field notes in the possession of A.T. Engineering Service, PLLC

It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete.

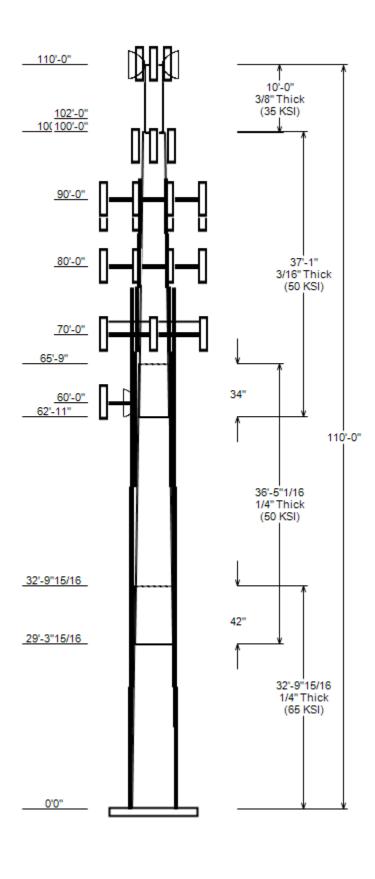
All assets of American Tower Corporation, its affiliates, and subsidiaries (collectively "American Tower") are inspected at regular intervals. Based upon these inspections and in the absence of information to the contrary, American Tower assumes that all structures were constructed in accordance with the drawings and specifications.

Unless explicitly agreed by both the client and A.T. Engineering Service, PLLC, all services will be performed in accordance with the current revision of ANSI/TIA-222.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information supplied herein.


Asset: 302481, Hrfr - South
Client: DISH WIRELESS L.L.C.
Code: ANSI/TIA-222-H

Height: 110 ft
Base Width: 30
Shape: 12 Sides


SITE PARAMETERS

Base Elev (ft): 0.00 Structure Class: II
Taper: 0.16400 (In/ft) Exposure: B
Topographic Category: 4 Topographic Feature:

Topo Method : Method 3

DISCRETE APPURTENANCE Force Attach Elev (ft) Elev (ft) Qty Description 110.0 110.0 2 DragonWave Horizon Compact 110.0 110.0 1 Generic 12" x 12" Junction Box 110.0 110.0 1 DragonWave A-ANT-23G-1-C 110.0 110.0 3 NextNet BTS-2500 Argus LLPX310R 110.0 110.0 3 110.0 110.0 1 Clearwirre Side Arm 110.0 110.0 DragonWave A-ANT-11G-2.5-C 102.0 102.0 Small Platform with Handrails 100.0 98.0 CCI TPX-070821 100.0 98.0 3 Powerwave Allgon LGP21401 100.0 98.0 2 Raycap DC6-48-60-18-8F(32.8 lb 100.0 98.0 Ericsson RRUS-11 (50 lbs.) 3 98.0 100.0 3 Ericsson RRUS 32 B2 98.0 100.0 Ericsson RRUS-32 (77 lbs) 3 100.0 98.0 Powerwave Allgon 7770.00 3 100.0 98.0 2 Quintel QS66512-2 100.0 98.0 2 CCI OPA-65R-LCUU-H6 100.0 98.0 CCI OPA-65R-LCUU-H8 (92.7") 100.0 98.0 CCI TPA-65R-LCUUUU-H8 90.0 Ericsson Radio 4449 B71 B85A 90.0 3 Ericsson RRUS 4415 B25 90.0 90.0 3 90.0 90.0 3 Ericsson Air6449 B41 Ericsson AIR32 B66Aa/B2a 90.0 87.0 3 90.0 3 Ericsson Air 3246 B66 90.0 90.0 90.0 3 RFS APXVAARR24_43-U-NA20 90.0 90.0 1 Generic Flat Low Profile Platf 0.08 80.0 3 Commscope CBC78T-DS-43-2X 0.08 80.0 3 Samsung Outdoor CBRS 20W RRH -0.08 80.0 3 Samsung RT4401-48A 80.0 80.0 3 Samsung B2/B66A RRH-BR049 80.0 80.0 3 Samsung B5/B13 RRH-BR04C 80.0 80.0 1 Raycap RVZDC-6627-PF-48 80.0 80.0 3 Samsung MT6407-77A 80.0 80.0 Commscope JAHH-65B-R3B (63.3 I 80.0 80.0 1 Generic Round Low Profile Plat 70.0 70.0 1 Raycap RDIDC-9181-PF-48 70.0 70.0 3 Fujitsu TA08025-B604 70.0 70.0 3 Fujitsu TA08025-B605 70.0 70.0 JMA Wireless MX08FRO665-21 70.0 70.0 Generic Round Platform with Ha 60.0 60.0 Generic Radio/ODU Scala 840 10212 60.0 60.0 1 60.0 60.0 Stand Off 60.0 60.0 Radio Waves SP2-4.7

JOB INFORMATION

Asset : 302481, Hrfr - South
Client : DISH WIRELESS L.L.C.
Code : ANSI/TIA-222-H

Height: 110 ft
Base Width: 30
Shape: 12 Sides

			LINEAR APPURTENANCE	
	Elev	Elev		Exp To
_	From (ft)	To (ft)	Description	Wind
			-/	
	0.0	110.0	5/16" (0.31"-7.9mm) Coax	No
	0.0	110.0	2" conduit	Yes
	0.0	110.0	1/2" Coax	Yes
	0.0	102.0	1 5/8" Coax	Yes
	0.0	102.0	1 5/8" Coax	No
	0.0	102.0	0.78" (19.7mm) 8 AWG 6	Yes
	0.0	102.0	0.78" (19.7mm) 8 AWG 6	No
	0.0	102.0	0.39" (10mm) Fiber Trunk	No
	0.0	102.0	0.39" (10mm) Fiber Trunk	Yes
	0.0	100.0	3" conduit	No
	0.0	100.0	1 5/8" Coax	No
	0.0	100.0	0.78" (19.7mm) 8 AWG 6	No
	0.0	100.0	0.39" (10mm) Fiber Trunk	No
	0.0	90.0	1 5/8" Coax	No
	0.0	90.0	1 1/4" (1.25"- 31.8mm) Fiber	No
	75.0	87.0	1.25" Thick Flat Plate	Yes
	75.0	87.0	1.25" Thick Flat Plate	Yes
	75.0	87.0	1.25" Thick Flat Plate	Yes
	75.0	87.0	1.25" Thick Flat Plate	Yes
	0.0	87.0	7/8" Coax	No
	0.0	81.0	#20 DYWIDAG	Yes
	0.0	81.0	#20 DYWIDAG	Yes
	0.0	81.0	#20 DYWIDAG	Yes
	0.0	81.0	#20 DYWIDAG	Yes
	0.0	80.0	1 5/8" Hybriflex	Yes
	0.0	80.0	1 5/8" Coax	No
	0.0	70.0	1.60" (40.6mm) Hybrid	No
	0.0	60.0	7/8" Coax	Yes
	0.0	60.0	0.41" (10.3mm) LMR-400	Yes
	0.0	20.0	1.25" Thick Flat Plate	Yes
	0.0	20.0	1.25" Thick Flat Plate	Yes
	0.0	20.0	1.25" Thick Flat Plate	Yes
	0.0	20.0	1.25" Thick Flat Plate	Yes

LOAD CASES

1.2D + 1.0W Normal 115.01 mph wind with no ice 0.9D + 1.0W Normal 115.01 mph wind with no ice 1.2D + 1.0Di + 1.0Wi Nor 48.73 mph wind with 1.275" radial

1.2D + 1.0Ev + 1.0Eh Nor Seismic

0.9D - 1.0Ev + 1.0Eh Nor Seismic (Reduced DL)
1.0D + 1.0W Service Norm 60 mph Wind with No Ice

	REACTIONS		
Load Case	Moment (kip-ft)	Shear (Kip)	Axial (Kip)
1.2D + 1.0W Normal	2460.99	34.51	51.70
0.9D + 1.0W Normal	2429.72	34.47	38.75
1.2D + 1.0Di + 1.0Wi Normal	707.17	9.26	80.75
1.2D + 1.0Ev + 1.0Eh Normal	109.04	1.30	51.49
0.9D - 1.0Ev + 1.0Eh Normal	107.31	1.30	35.65
1.0D + 1.0W Service Normal	598.95	8.50	43.17

	DISH DEFLEC	TIONS	
Load Case	Attach Elev (ft)	Deflection (in)	Rotation (deg)
1.0D + 1.0W Service Normal	60.00	5.773	0.842
1.0D + 1.0W Service Normal	110.00	16.497	1.156
1.0D + 1.0W	110.00	16.497	1.156

JOB INFORMATION

Asset: 302481, Hrfr - South
Client: DISH WIRELESS L.L.C.
Code: ANSI/TIA-222-H

Height: 110 ft
Base Width: 30
Shape: 12 Sides

	DISH DEFLECTIONS								
	Attach	Deflection	Rotation						
Load Case	Elev (ft)	(in)	(deg)						

Service Normal

Model ID: 17872

ANALYSIS PARAMETERS

Hartford County,CT 110 ft Location: Height: Type and Shape: Custom, Round 30.00 in Base Diameter: Top Diameter: 12.75 in Manufacturer: **ITT Meyer** K_d (non-service): 0.95 Taper: 0.1640 in/ft K_e: 0.99 Rotation: 0.000°

ICE & WIND PARAMETERS

Exposure Category: В Design Wind Speed w/o Ice: 115 mph Risk Category: Ш Design Wind Speed w/Ice: 49 mph Topo Factor Procedure: Method 3 Operational Wind Speed: 60 mph Topographic Category: 4 Design Ice Thickness: 1.28 in Crest Height: 148 ft HMSL: 286.00 ft

SEISMIC PARAMETERS

Analysis Method: Equivalent Lateral Force Method

D - Stiff Soil Site Class: Period Based on Rayleigh Method (sec): 2.04 T_L (sec): P: 1 $C_{s:}$ 0.030 0.192 S_{1:} 0.055 C_s Max: 0.030 $S_{s:}$ Fa: 1.600 $F_{v:}$ 2.400 C_s Min: 0.030

 $S_{ds:}$ 0.205 $S_{d1:}$ 0.088

LOAD CASES

 1.2D + 1.0W Normal
 115.01 mph wind with no ice

 0.9D + 1.0W Normal
 115.01 mph wind with no ice

1.2D + 1.0Di + 1.0Wi Normal 48.73 mph wind with 1.275" radial ice

1.2D + 1.0Ev + 1.0Eh Normal Seismic

0.9D - 1.0Ev + 1.0Eh Normal Seismic (Reduced DL)
1.0D + 1.0W Service Normal 60 mph Wind with No Ice

								SHA		TION PR Bottom	OPERT	IES		_		Тор			
					Slip											•			
Sect L Info	ength (ft)	Thick (in)	-	Joint Type		Weigh (Ib			v Area) (in²)	lx (in ⁴)	W/t Ratio	D/t Ratio	Dia (in)	Elev /	Area (in²)	lx (in ⁴)	W/t Ratio	D/t Ratio	Taper (in/ft)
1-12	32.83	0.2500	65		0.00	2,43	4 30.00	0.000	23.95	2,705.5	29.47	120.00	24.62	32.83	19.62	1,488.2	23.71	98.50	0.1637
2-12 3-12		0.2500	50	Slip	42.00		1 25.7		20.49	1,693.5				65.75		760.3			0.1637
3-12 4-R		0.1875 0.3750	50 35	Slip Butt	34.00 0.00		2 20.5 6 12.7		7 12.31 0 14.58	653.1 279.3	0.00		14.50 12.75	100.00 110.00	8.64 14.58	226.2 279.3			0.1637 0.0000
				Ch -44	. \	0.40	2												
				Shaft	Weight	6,49		DISCRETE	E APPUR	RTENANO	CE PRO	PERTIE	ES						
Atta	ch									Ve	rt		No I	ce			Ice		
Ele	ev							_		Ed	c V	/eight	EPAa	Orienta		Weight	EPAa		ntation
((ft) Des	cription						Qty	K	a (1	t)	(lb)	(sf)	Fa	actor	(lb)	(sf)		Factor
110.00		arwirre S		rm				1	1.0			60.00	8.500		0.67	928.97	14.100		0.67
110.00 110.00		ıs LLPX tNet BT		Λ				3				28.60 35.00	4.292 1.817		0.63 0.50	113.83 78.86	5.856 2.684		0.63 0.50
110.00		gonWav			3-1-C			1	1.0			15.00	1.610		1.00	48.42	2.326		1.00
110.00	•	eric 12"						1	0.8			10.00	1.200		0.50	49.39	1.886		0.50
110.00	,	gonWav						2				10.60	0.721		0.50	31.87	1.259		0.50
110.00		gonWav						1	1.0			47.60	8.670		1.00	215.17	10.304		1.00
102.00		all Platfo						1	1.0			00.00	34.800		1.00	3320.72	57.780		1.00
100.00		OPA-65			` ,			1	0.7 0.7			88.00 81.60	12.746 13.298		0.67 0.69	323.64 344.29	16.159 16.841		0.67 0.69
100.00		OPA-6						2				73.00	9.658		0.66	266.16	12.289		0.66
100.00		ntel QS6						2	0.7			11.00	8.133		0.74	300.13	10.779		0.74
100.00		erwave			00			3		5 -2.00	0	35.00	5.508		0.65	142.88	7.526		0.65
100.00		sson RF			os)			3				77.00	3.314		0.50	169.30	4.532		0.50
100.00		sson RF			,			3				53.00	2.743		0.50	122.80	3.853		0.50
100.00		sson RF						3	0.7			50.00	2.566		0.50	114.70	3.560		0.50
100.00		TPX-07		0-10-0	F(32.8 lb)		2	0.7 0.7			32.80 7.50	1.470 0.469		0.50 0.50	91.35 19.01	2.133 0.924		0.50 0.50
100.00		erwave		LGP2	1401			3	0.7			14.10	1.104		0.50	37.78	1.781		0.50
90.00			_		U-NA20			3	0.8			27.90	20.243		0.63	501.81	23.775		0.63
90.00	Gen	eric Fla	t Low I	Profile	Platf			1	1.0	0.00	0 18	75.00	26.100		1.00	2646.34	44.284		1.00
90.00		sson Ai			_			3	0.8			80.00	7.939		0.69	2755.45	10.099		0.69
90.00		sson Al	-		32a			3				32.20	6.510		0.71	284.21	8.596		0.71
90.00		sson Aiı sson RF			5			3				04.00 46.00	5.682 1.842		0.63 0.50	233.80 92.70	7.194 2.696		0.63 0.50
90.00		sson Ra						3				75.00	1.650		0.50	132.28	2.459		0.50
80.00					R3B (63.	.3 I		6	0.8			63.30	9.113		0.69	256.59	11.764		0.69
80.00		eric Ro						1	1.0			75.00	21.700		1.00	2648.72	40.042		1.00
80.00					S-43-2X			3	0.8			20.70	0.552		0.50	41.81	1.037		0.50
80.00					20W RF	RH –		3				4.40	0.892		0.50	21.60	1.502		0.50
80.00		sung M			20040			3				81.60	4.709		0.61	178.98	6.160		0.61
80.00 80.00		nsung B			-BR049			3				70.30 84.40	1.875 1.875		0.50 0.50	124.95 145.35	2.737 2.737		0.50 0.50
80.00		cap RV						1	0.8			32.00	3.781		0.50	136.77	5.044		0.50
80.00		nsung R						3				18.60	0.996		0.50	44.40	1.650		0.50
70.00	JMA	Wirele	ss MX	08FRO				3	0.7	5 0.00	0	64.50	12.489		0.64	310.79	15.182		0.64
70.00					with Ha			1	1.0			00.00	27.200		1.00	4052.10	50.624		1.00
70.00	,	cap RD			-48			1	0.7			21.90	1.867		0.50	76.43	2.729		0.50
70.00 70.00		su TA0						3	0.7 0.7			75.00 63.90	1.962 1.962		0.50 0.50	135.03 119.78	2.843 2.843		0.50 0.50
60.00		la 840 1		JUU4				3 1	1.0			6.70	2.175		0.50 0.50	54.95	3.211		0.50
60.00		nd Off	-					1	1.0			75.00	2.500		1.00	110.13	3.755		1.00
60.00	Rad	io Wave						1	1.0	0.00	0	22.00	5.228		1.00	75.22	6.715		1.00
60.00	Gen	eric Ra	dio/OD	U				1	1.0	0.00	0	30.00	1.600		0.50	79.13	2.408		0.50
Totals	Nun	n Loadir	ngs: 44					102		LENIVNO		43.00	<u> </u>		3	35,852.28			
	LINEAR APPURTENANCE PROPERTIES																		
Load (Case Azin	nuth (de	eg): _												Dist	t			
Elev							Coax	Coax		Max		ist	Dist		From				
From (ft)		Otv. F)ocorin	tion			Dia	Wt	Flot	Coax/	Betwee		etween	Azimuth		Exposed			
(ft)					Qmm\ C		(in) 0.31	(lb/ft)	Flat	Row	Rows(i		Cols(in)	(deg)	,	To Wind N		/IDE C	∩P
0.00	110.00	ъ 5	v 10 (C	J.31 -/.	.9mm) C		0.31	0.05	N	0		0	0	C) 0	ı IN	CLEARV	VIKE CO	UK
©2007 - 2020 by ATC LLC. All rights reserved. Page 2 of 14 Model Id: 17872 10/5/2021									0/5/2021	9:25:31									

											Dist		
Elev	Elev			Coax	Coax		Max	Dist	Dist		From		
From	To			Dia	Wt		Coax/	Between	Between	Azimuth		Exposed	
(ft)	(ft)	Qty	Description	(in)	(lb/ft)	Flat	Row	Rows(in)	Cols(in)	(deg)	(in)	To Wind	Carrier
0.00	110.00	2	1/2" Coax	0.63	0.15	N	1	0	Ó	290	0.5	Υ	CLEARWIRE COR
0.00	110.00	1	2" conduit	2.38	3.65	Ν	1	0	0	280	0	Υ	CLEARWIRE COR
0.00	102.00	6	1 5/8" Coax	1.98	0.82	Ν	0	0	0	0	0	N	AT&T MOBILITY
0.00	102.00	6	1 5/8" Coax	1.98	0.82	Ν	3	0	0	218	0.5	Υ	AT&T MOBILITY
0.00	102.00		0.78" (19.7mm) 8 AWG	0.78	0.59	Ν	0	0	0	0	0	N	AT&T MOBILITY
0.00	102.00		0.78" (19.7mm) 8 AWG	0.78	0.59	Ν	2	0.5	0.5	13	0.5	Υ	AT&T MOBILITY
0.00	102.00		0.39" (10mm) Fiber Tr	0.39	0.06	N	1	0	0	8	0.5	Υ	AT&T MOBILITY
0.00	102.00		0.39" (10mm) Fiber Tr	0.39	0.06	N	0	0	0	0	0	N	AT&T MOBILITY
0.00	100.00		1 5/8" Coax	1.98	0.82	N	0	0	0	0	0	N	AT&T MOBILITY
0.00	100.00		0.78" (19.7mm) 8 AWG	0.78	0.59	N	0	0	0	0	0	N	AT&T MOBILITY
0.00	100.00		0.39" (10mm) Fiber Tr	0.39	0.06	N	0	0	0	0	0	N	AT&T MOBILITY
0.00	100.00		3" conduit	3.5	7.58	N	1	0	0	0	0	N	AT&T MOBILITY
0.00	90.00	_	1 5/8" Coax	1.98	0.82	N	0	0	0	0	0	N	T-MOBILE
0.00	90.00		1 1/4" (1.25"- 31.8mm	1.25	1.05	N	0	0	0	0	0	N	T-MOBILE
0.00	87.00	_	7/8" Coax	1.09	0.33	N	0	0	0	0	0	N	T-MOBILE
75.00	87.00		1.25" Thick Flat Plat	1.25	0	Y	1	0	0	30	0	Υ	
75.00	87.00		1.25" Thick Flat Plat	1.25	0	Y	1	0	0	300	0	Υ	
75.00	87.00		1.25" Thick Flat Plat	1.25	0	Υ	1	0	0	120	0	Υ	
75.00	87.00		1.25" Thick Flat Plat	1.25	0	Y	1	0	0	210	0	Υ	
0.00	81.00	1		4	4.68	N	1	0	0	180	0	Υ	
0.00	81.00	1		4	4.68	N	1	0	0	90	0	Y	
0.00	81.00	1		4	4.68	N	1	0	0	270	0	Y	
0.00	81.00		#20 DYWIDAG	4	4.68	N	1	0	0	0	0	Y	
0.00	80.00		1 5/8" Coax	1.98	0.82	N	0	0	0	0	0	N	VERIZON WIREL
0.00	80.00		1 5/8" Hybriflex	1.98	1.3	N	2	0.25	0.25	65	0.5	Y	VERIZON WIREL
0.00	70.00		1.60" (40.6mm) Hybrid	1.6	2.34	N	0	0	0	0	0	N	DISH WIRELESS
0.00	60.00		0.41" (10.3mm) LMR-40	0.41	0.07	N	2	0.25	0.25	73	0.5	Y	TOWN OF WEST
0.00	60.00		7/8" Coax	1.09	0.33	N	1	0	0	69	0.5	Y	TOWN OF WEST
0.00	20.00		1.25" Thick Flat Plat	1.25	0	Y	1	0	0	210	0	Υ	
0.00	20.00		1.25" Thick Flat Plat	1.25	0	Y	1	0	0	30	0	Y	
0.00	20.00		1.25" Thick Flat Plat	1.25	0	Y	1	0	0	120	0	Y	
0.00	20.00	1	1.25" Thick Flat Plat	1.25	0	Υ	1	0	0	300	0	Υ	

ADDITIONAL STEEL

Elev From (ft)	Elev To (ft)	Qty	Description	Fy (ksi)	Offset (in)	Description	Spacing (in)	Len (in)	Connectors	Continuation?
0.00	18.00	4	PL PL 6 x 1.25	65	0.00	AJAX M20 Class 8.8	24.00	3.00	AJAX M20 Class 8.8	N
0.00	12.00	4	SOL #20 All Thread Bar	80	2.31	6" Angle Bracket	39.00	3.31	5/8" A36 U-Bolt	N
12.00	47.50	4	SOL #20 All Thread Bar	80	2.31	6" Angle Bracket	30.00	3.31	5/8" A36 U-Bolt	Υ
18.00	77.00	4	PL PL 6 x 1.25	65	0.00	AJAX M20 Class 8.8	24.00		AJAX M20 Class 8.8	Υ
47.50	67.50	4	SOL #20 All Thread Bar	80	2.31	6" Angle Bracket	30.00	3.31	5/8" A36 U-Bolt	Υ
67.50	77.04	4	SOL #20 All Thread Bar	80	2.31	6" Angle Bracket	30.00	3.31	5/8" A36 U-Bolt	Υ
77.00	85.00	4	PL PL 5" x 1.25"	65	0.00	AJAX M20 Class 8.8	24.00	3.00	AJAX M20 Class 8.8	N
85.00	93.00	4	PL PL 5" x 1.25"	65	0.00	AJAX M20 Class 8.8	24.00	3.00	AJAX M20 Class 8.8	Υ

	SEGMENT PROPERTIES													
		(Max	Len: 5.1		GIVIENT PRO	JPERIIE	.5					Additional Reinforcing		
		`		,										
Seg Top	Description	Thick	Flat Dia	Area	lx ('-4)	W/t	D/t	F'y	S (:-3)		Weight	Area	lx	Weight
Elev (ft)		(in)	(in)	(in²)	(in ⁴)	Ratio	Ratio	. ,	(in³)	(in³)	(lb)	(in²)	(in ⁴)	(lb)
0.00		0.2500	30.000	23.949	2,705.50	29.47	120.00		174.2	0.0	0.0	49.640	7,171.70	0.0
5.00		0.2500	29.182	23.290	2,488.30	28.60	116.73		164.7	0.0	401.9	49.640	6,828.10	844.0
10.00		0.2500	28.363	22.631	2,283.00	27.72	113.45		155.5	0.0	390.6	49.640	6,493.00	844.0
12.00	Reinf. Top Reinf Bottom	0.2500	28.036	22.367	2,204.20	27.37	112.14		151.9	0.0	153.1	49.640	6,361.40	337.6
15.00		0.2500	27.545	21.972	2,089.30	26.84	110.18		146.5	0.0	226.3	49.640	6,166.50	506.4
18.00	Reinf. Top Reinf Bottom	0.2500	27.053	21.577	1,978.60	26.32	108.21	76	141.3	0.0	222.3	49.640	5,974.60	506.4
20.00		0.2500	26.726	21.313	1,906.90	25.97	106.90		137.8	0.0	145.9	49.640	5,848.50	337.6
25.00		0.2500	25.908	20.654	1,735.50	25.09	103.63		129.4	0.0	357.0	49.640	5,539.00	844.0
29.33	Bot - Section 2	0.2500	25.199	20.084	1,595.60	24.33	100.79		122.3	0.0	300.1	49.640	5,278.00	730.9
30.00		0.2500	25.089	19.995	1,574.70	24.21	100.36		121.2	0.0	92.3	49.640	5,420.90	113.1
32.83	Top - Section 1	0.2500	25.126	20.025	1,581.60	24.25	100.50		121.6	0.0	385.4	49.640	5,251.40	477.7
35.00		0.2500	24.771	19.739	1,514.90	23.87	99.08	63	118.1	0.0	146.8	49.640	5,123.30	366.3
40.00		0.2500	23.952	19.080	1,368.20	22.99	95.81	63	110.3	0.0	330.2	49.640	4,834.30	844.0
45.00		0.2500	23.134	18.421	1,231.30	22.11	92.53	63	102.8	0.0	319.0	49.640	4,553.90	844.0
47.50	Reinf. Top Reinf Bottom	0.2500	22.724	18.092	1,166.40	21.68	90.90	63	99.2	0.0	155.3	49.640	4,416.80	422.0
50.00		0.2500	22.315	17.762	1,103.80	21.24	89.26	63	95.6	0.0	152.5	49.640	4,282.00	422.0
55.00		0.2500	21.497	17.103	985.50	20.36	85.99	63	88.6	0.0	296.6	49.640	4,018.60	844.0
60.00		0.2500	20.678	16.445	875.90	19.48	82.71	63	81.8	0.0	285.4	49.640	3,763.80	844.0
62.92	Bot - Section 3	0.2500	20.201	16.060	815.90	18.97	80.80	63	78.0	0.0	161.3	49.640	3,619.10	492.3
65.00		0.2500	19.860	15.786	774.80	18.61	79.44	63	75.4	0.0	199.4	49.640	3,629.30	351.7
65.75	Top - Section 2	0.1875	20.112	12.029	609.50	26.06	107.26		58.5	0.0	70.9	49.640	3,592.50	126.6
67.50	Reinf. Top Reinf Bottom	0.1875	19.825	11.856	583.60	25.65	105.73	-	56.9	0.0	71.1	49.640	3,507.40	295.4
70.00		0.1875	19.416	11.609	547.90	25.07	103.55		54.5	0.0	99.8	49.640	3,387.60	422.0
75.00		0.1875	18.598	11.115	480.80	23.90	99.19	63	49.9	0.0	193.3	49.640	3,154.60	844.0
77.00	Reinf. Top Reinf Bottom	0.1875	18.270	10.917	455.60	23.43	97.44	63	48.2	0.0	75.0	49.640	3,063.70	337.6
77.04	Reinf. Top	0.1875	18.264	10.913	455.10	23.42	97.41	63	48.1	0.0	1.5	44.640	2,804.60	6.1
80.00		0.1875	17.779	10.621	419.50	22.73	94.82	63	45.6	0.0	108.4	25.000	1,159.20	252.2
85.00	Reinf. Top Reinf Bottom	0.1875	16.961	10.127	363.60	21.56	90.46	63	41.4	0.0	176.5	25.000	1,064.00	426.0
90.00		0.1875	16.142	9.633	313.00	20.39	86.09	63	37.5	0.0	168.1	25.000	972.90	426.0
93.00	Reinf. Top	0.1875	15.651	9.336	284.90	19.69	83.47	63	35.2	0.0	96.8	25.000	920.30	255.6
95.00		0.1875	15.324	9.138	267.20	19.22	81.73	63	33.7	0.0	62.9			
100.00	Top - Section 3	0.1875	14.505	8.644	226.20	18.05	77.36	63	30.1	0.0	151.3			
100.00	Bot - Section 4	0.3750	12.750	14.579	279.30	0.00	34.00	35	43.8	57.4				
102.00		0.3750	12.750	14.579	279.30	0.00	34.00	35	43.8	57.4	99.2			
105.00		0.3750	12.750	14.579	279.30	0.00	34.00	35	43.8	57.4	148.8			
110.00		0.3750	12.750	14.579	279.30	0.00	34.00	35	43.8	57.4	248.0			

Totals: 6,493.0 14,363.5

Load Case: 1.2D + 1.0W Normal 115.01 mph wind with no ice 22 Iterations

Gust Response Factor: 1.10
Dead load Factor: 1.20
Wind Load Factor: 1.00

CALCULATED FORCES

0 0 0. 19 -0.34 0. 73 -0.68 0. 04 -0.81 0. 62 -1.01 0. 33 -1.21 0.	728 690 652 636 614
Act (deg) Rotation (deg) R 0 0 0 19 -0.34 0 73 -0.68 0 04 -0.81 0 62 -1.01 0 33 -1.21 0	728 690 652 636 614
n) (deg) R 0 0 0. 19 -0.34 0. 73 -0.68 0. 04 -0.81 0. 62 -1.01 0. 33 -1.21 0.	728 690 652 636 614
0 0 0. 19 -0.34 0. 73 -0.68 0. 04 -0.81 0. 62 -1.01 0. 33 -1.21 0.	728 690 652 636 614
19 -0.34 0. 73 -0.68 0. 04 -0.81 0. 62 -1.01 0. 33 -1.21 0.	690 652 636 614
73 -0.68 0. 04 -0.81 0. 62 -1.01 0. 33 -1.21 0.	652 636 614
04 -0.81 0. 62 -1.01 0. 33 -1.21 0.	636 614
52 -1.01 0. 33 -1.21 0.	614
33 -1.21 0.	
124 0	591
	575
14 -1.66 0.	537
07 -1.92 0.	504
	486
	590
	570
	528
	484
	462
	439
	392
	343
	315
	287
	311
	290
	255
	205
	186
	199
	199
	370
	304
	227
	138
	109
	448
	373
	150
	158
J3 -4.72 0.	.091
	055
	.000
1. 6 1. 2 0	1.1 -4.25 0. 63 -4.38 0. 1.4 -4.44 0. 1.4 -4.44 0. 26 -4.47 0. 07 -4.68 0. 07 -4.68 0. 03 -4.72 0. 01 -4.75 0.

Load Case: 0.9D + 1.0W Normal 115.01 mph wind with no ice 22 Iterations

Gust Response Factor: 1.10
Dead load Factor: 0.90
Wind Load Factor: 1.00

CALCULATED FORCES

GALOULATED TOROLO													
Seg	Pu	Vu	Tu	Mu	Mu	Resultant	Phi	Phi	Phi	Phi	Total		
Elev	FY (-)	FX (-)	MY	MZ	MX	Moment	Pn	Vn	Tn	Mn	Deflect	Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	Ratio
0.00	-38.75	-34.47	0.00	-2,429.7	0.00	2,429.72	1,564.13	420.30	1,179.53	948.21	0	0	0.717
5.00	-37.05	-33.49	0.00	-2,257.4	0.00	2,257.37	1,541.15	408.74	1,115.53	908.36	0.18	-0.34	0.678
10.00	-35.42	-32.76	0.00	-2,089.9	0.00	2,089.91	1,517.04	397.17	1,053.33	868.64	0.72	-0.67	0.640
12.00	-34.74	-32.33	0.00	-2,024.4	0.00	2,024.39	1,507.08	392.55	1,028.94	852.79	1.03	-0.8	0.625
15.00	-33.75	-31.79	0.00	-1,927.4	0.00	1,927.41	1,491.79	385.61	992.90	829.09	1.6	-1	0.602
18.00	-32.78	-31.33	0.00	-1,832.0	0.00	1,832.03	1,476.10	378.67	957.51	805.48	2.29	-1.19	0.579
20.00	-32.08	-30.82	0.00	-1,769.4	0.00	1,769.36	1,465.41	374.05	934.26	789.78	2.82	-1.32	0.564
25.00	-30.49	-30.04	0.00	-1,615.3	0.00	1,615.26	1,437.89	362.48	877.41	750.77	4.38	-1.63	0.526
29.33	-29.16	-29.54	0.00	-1,485.2	0.00	1,485.21	1,413.15	352.47	829.62	717.27	5.99	-1.9	0.494
30.00	-28.88	-29.31	0.00	-1,465.4	0.00	1,465.41	1,409.24	350.92	822.34	712.11	6.26	-1.94	0.476
32.83	-27.83	-28.89	0.00	-1,382.5	0.00	1,382.46	1,130.12	270.34	634.44	571.92	7.46	-2.1	0.578
35.00	-27.12	-28.38	0.00	-1,319.8	0.00	1,319.77	1,119.20	266.48	616.46	558.23	8.44	-2.22	0.558
40.00	-25.59	-27.56	0.00	-1,177.9	0.00	1,177.89	1,081.84	257.58	576.00	521.40	10.92	-2.49	0.516
45.00	-24.10	-26.88	0.00	-1,040.1	0.00	1,040.09	1,044.48	248.69	536.92	485.83	13.67	-2.75	0.474
47.50	-23.35	-26.47	0.00	-972.9	0.00	972.89	1,025.80	244.24	517.89	468.51	15.14	-2.87	0.452
50.00	-22.59	-25.94	0.00	-906.7	0.00	906.71	1,007.12	239.79	499.21	451.52	16.68	-2.99	0.429
55.00	-21.12	-25.13	0.00	-777.0	0.00	777.03	969.76	230.90	462.88	418.46	19.93	-3.21	0.383
60.00	-19.60	-23.90	0.00	-651.4	0.00	651.39	932.41	222.00	427.91	386.66	23.41	-3.42	0.335
62.92	-18.78	-23.48	0.00	-581.7	0.00	581.67	910.61	216.81	408.15	368.69	25.53	-3.53	0.307
65.00	-18.12	-23.21	0.00	-532.8	0.00	532.76	895.05	213.11	394.32	356.11	27.09	-3.6	0.280
65.75	-17.87	-23.04	0.00	-515.4	0.00	515.35	664.45	162.40	305.24	269.50	27.66	-3.63	0.303
67.50	-17.40	-22.72	0.00	-475.0	0.00	475.04	658.11	160.06	296.53	263.05	29	-3.68	0.283
70.00	-14.10	-19.29	0.00	-418.2	0.00	418.23	648.89	156.72	284.30	253.91	30.95	-3.76	0.249
75.00	-12.80	-18.66	0.00	-321.8	0.00	321.78	629.88	150.05	260.62	235.88	34.96	-3.89	0.200
77.00	-12.29	-18.44	0.00	-284.5	0.00	284.47	619.01	147.38	251.44	227.65	36.61	-3.94	0.181
77.00	-12.29	-18.44	0.00	-284.5	0.00	284.47	619.01	147.38	251.44	227.65	36.61	-3.94	0.194
77.04	-12.28	-18.30	0.00	-283.7	0.00	283.73	618.79	147.33	251.26	227.48	36.64	-3.94	0.193
77.04	-12.28	-18.30	0.00	-283.7	0.00	283.73	618.79	147.33	251.26	227.48	36.64	-3.94	0.361
80.00	-9.18	-13.94	0.00	-229.6	0.00	229.57	602.20	143.38	237.97	215.39	39.11	-4.01	0.297
85.00	-8.40	-13.26	0.00	-159.9	0.00	159.89	574.18	136.71	216.35	195.71	43.4	-4.18	0.222
90.00	-4.56	-7.61	0.00	-93.6	0.00	93.60	546.16	130.04	195.76	176.97	47.86	-4.31	0.134
93.00	-4.15	-7.36	0.00	-70.8	0.00	70.79	529.35	126.04	183.90	166.19	50.58	-4.36	0.106
93.00	-4.15	-7.36	0.00	-70.8	0.00	70.79	529.35	126.04	183.90	166.19	50.58	-4.36	0.437
95.00	-4.03	-7.06	0.00	-56.1	0.00	56.07	518.15	123.37	176.19	159.18	52.42	-4.39	0.363
100.00	-2.77	-3.88	0.00	-20.8	0.00	20.78	459.24	137.77	149.89	150.79	57.14	-4.6	0.145
100.00	-2.77	-3.88	0.00	-20.8	0.00	20.78	490.13	116.70	157.66	142.33	57.14	-4.6	0.153
102.00	-1.01	-1.76	0.00	-13.0	0.00	13.02	459.24	137.77	149.89	150.79	59.07	-4.64	0.089
105.00	-0.88	-1.55	0.00	-7.7	0.00	7.74	459.24	137.77	149.89	150.79	62	-4.67	0.053
110.00	0.00	-1.47	0.00	0.0	0.00	0.00	459.24	137.77	149.89	150.79	66.9	-4.69	0.000
_	_		_	_	_	_			-	_	-	_	

ASSET: 302481, Hrfr - South CODE: ANSI/TIA-222-H
CUSTOMER: DISH WIRELESS L.L.C. ENG NO: 13726719_C3_03

Load Case: 1.2D + 1.0Di + 1.0Wi Normal 48.73 mph wind with 1.275" radial ice 21 Iterations
Gust Response Factor: 1.10 Ice Dead Load Factor 1.00
Dead load Factor: 1.20 Ice Importance Factor 1.00
Wind Load Factor: 1.00

CALCULATED FORCES Phi Seg Pu Vu Resultant Phi Phi Phi Tu Mu Mu Total Elev FY (-) FX (-) MY ΜZ MX Moment Pn Vn Tn Mn Deflect Rotation (ft-kips) (ft-kips) (ft-kips) (ft-kips) (ft) (kips) (kips) (ft-kips) (ft-kips) (kips) (kips) (in) (deg) Ratio 0.00 -80.75 -9.26 0.00 -707.2 0.00 707.17 1,564.13 420.30 1,179.53 948.21 0 0 0.222 5.00 -78.17 -9.19 0.00 -660.90.00 660.89 1,541.15 408.74 1,115.53 908.36 0.05 -0.1 0.211 10.00 -75.55 -9.09 0.00 -615.0 0.00 614.95 1,517.04 397.17 1,053.33 868.64 0.21 -0.2 0.200 12.00 -74.50 -9.04 0.00 -596.8 0.00 596.77 1,507.08 392.55 1,028.94 852.79 0.3 -0.240.196 15.00 -72.93 -8.98 0.00 -569.6 0.00 569.64 1.491.79 385.61 992.90 829.09 0.47 -0.290.189 18.00 -71.35 -8.91 0.00 -542.7 0.00 542.72 1,476.10 378.67 957.51 805.48 0.67 -0.350.183 20.00 -70.30 -8.85 0.00 -524.9 0.00 524.89 1,465.41 374.05 934.26 789.78 0.83 -0.39 0.178 25.00 -67.75-8.710.00 -480.60.00 480.65 1,437.89 362.48 877.41 750.77 1.29 -0.480.167 29.33 -65.55 -8.60 0.00 -442.9 0.00 442.93 1.413.15 352.47 829.62 717.27 1.76 -0.56 0.157 30.00 -65.15 -8.57 0.00 -437.20.00 437.17 1,409.24 350.92 822.34 712.11 1.84 -0.57 0.152 32.83 -63.48 -8.47 0.00 -412.9 0.00 412.93 1.130.12 270.34 634.44 571.92 2.19 -0.62 0.184 35.00 -62.38-8.38 0.00 -394.6 0.00 394.55 1,119.20 266.48 616.46 558.23 2.48 -0.660.178 40.00 -59.86 -8.19 0.00 -352.6 0.00 352.65 1,081.84 257.58 576.00 521.40 3.22 -0.74 0.166 45.00 -57.37-8.01 0.00 -311.70.00 311.68 1,044.48 248.69 536.92 485.83 4.03 -0.81 0.152 47.50 -56.13 -7.91 0.00 -291.6 0.00 291.64 1,025.80 244.24 517.89 468.51 -0.85 0.146 4.47 50.00 -54.90 -7.78 0.00 -271.9 0.00 271.86 1,007.12 239.79 499.21 451.52 4.93 -0.89 0.139 55.00 -52.45 -7.56 0.00 -232.9 0.00 232.94 969.76 230.90 462.88 418.46 5.89 -0.95 0.125 60.00 -49.72-7.21 0.00 -195.10.00 195.13 932.41 222.00 427.91 386.66 6.92 -1.01 0.110 62.92 -48.33 -7.08 0.00 -174.1 0.00 174.10 910.61 216.81 408.15 368.69 7.56 -1.05 0.101 65.00 -47.24 -6.98 0.00 -159.4 0.00 159.35 895.05 213.11 394.32 356.11 8.02 -1.07 0.093 -6.94 0.00 -154.1 154.12 305.24 269.50 8.19 65.75 -46.850.00 664.45 162.40 -1.080.099 67.50 -46.05-6.84 0.00 -142.00.00 141.98 658.11 160.06 296.53 263.05 8.59 -1.090.092 70.00 -38.88 -5.78 0.00 -124.90.00 124.88 648.89 156.72 284.30 253.91 9.17 -1.120.081 75.00 -36.65-5.55 0.00 -96.0 0.00 95.95 629.88 150.05 260.62 235.88 10.36 -1.160.066 77.00 -35.74 -5.46 0.00 -84.9 0.00 84.86 619.01 147.38 251.44 227.65 -1.17 0.060 10.85 77.00 -35.74 -5.46 0.00 -84.9 0.00 84.86 619.01 147.38 251.44 227.65 10.85 -1.17 0.065 -5.43 -84.6 0.00 84.64 618.79 147.33 251.26 227.48 10.86 77.04 -35.720.00 -1.170.065 77.04 -35.72-5.43 0.00 -84.6 0.00 84.64 618.79 147.33 251.26 227.48 10.86 -1.17 0.120 -28.51 -4.14 0.00 -68.6 0.00 68.58 602.20 143.38 237.97 215.39 11.59 -1.19 0.100 80.00 85.00 -27.06-3.970.00 -47.90.00 47.86 574.18 136.71 216.35 195.71 12.87 -1.240.077 90.00 -11.94 -2.28 0.00 -28.0 0.00 28.03 546.16 130.04 195.76 176.97 -1.28 0.045 14.2 93.00 -11.20 -2.19 0.00 -21.2 0.00 21.18 529.35 126.04 183.90 166.19 15.01 -1.3 0.036

93.00

95.00

100.00

100.00

102.00

105.00

110.00

-11.20

-10.91

-6.47

-6.47

-2.69

-2.39

0.00

-2.19

-2.11

-1.23

-1.23

-0.52

-0.44

-0.39

0.00

0.00

0.00

0.00

0.00

0.00

0.00

-21.2

-16.8

-6.2

-6.2

-3.8

-2.2

0.0

0.00

0.00

0.00

0.00

0.00

0.00

0.00

21.18

16.79

6.23

6.23

3.78

2.22

0.00

529.35

518.15

459.24

490.13

459.24

459.24

459.24

126.04

123.37

137.77

116.70

137.77

137.77

137.77

183.90

176.19

149.89

157.66

149.89

149.89

149.89

Model Id: 17872

166.19

159.18

150.79

142.33

150.79

150.79

150.79

15.01

15.55

16.96

16.96

17.53

18.41

19.87

-1.3

-1.31

-1.37

-1.37

-1.38

-1.39

-1.4

0.149

0.127

0.056

0.057

0.031

0.020

0.000

Load Case: 1.0D + 1.0W Service Normal 60 mph Wind with No Ice 21 Iterations

Gust Response Factor: 1.10
Dead load Factor: 1.00
Wind Load Factor: 1.00

CALCULATED FORCES

GALOGEATED TOROLO													
Seg	Pu	Vu	Tu	Mu	Mu	Resultant	Phi	Phi	Phi	Phi	Total		
Elev	FY (-)	FX (-)	MY	MZ	MX	Moment	Pn	Vn	Tn	Mn	Deflect	Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	Ratio
0.00	-43.17	-8.50	0.00	-599.0	0.00	598.95	1,564.13	420.30	1,179.53	948.21	0	0	0.182
5.00	-41.48	-8.25	0.00	-556.5	0.00	556.47	1,541.15	408.74	1,115.53	908.36	0.05	-0.08	0.173
10.00	-39.80	-8.07	0.00	-515.2	0.00	515.19	1,517.04	397.17	1,053.33	868.64	0.18	-0.17	0.163
12.00	-39.13	-7.97	0.00	-499.0	0.00	499.05	1,507.08	392.55	1,028.94	852.79	0.25	-0.2	0.159
15.00	-38.13	-7.84	0.00	-475.2	0.00	475.15	1,491.79	385.61	992.90	829.09	0.39	-0.25	0.153
18.00	-37.14	-7.72	0.00	-451.6	0.00	451.64	1,476.10	378.67	957.51	805.48	0.57	-0.29	0.148
20.00	-36.48	-7.60	0.00	-436.2	0.00	436.19	1,465.41	374.05	934.26	789.78	0.7	-0.33	0.144
25.00	-34.84	-7.41	0.00	-398.2	0.00	398.19	1,437.89	362.48	877.41	750.77	1.08	-0.4	0.134
29.33	-33.43	-7.29	0.00	-366.1	0.00	366.11	1,413.15	352.47	829.62	717.27	1.48	-0.47	0.126
30.00	-33.16	-7.23	0.00	-361.2	0.00	361.23	1,409.24	350.92	822.34	712.11	1.54	-0.48	0.121
32.83	-32.05	-7.13	0.00	-340.8	0.00	340.77	1,130.12	270.34	634.44	571.92	1.84	-0.52	0.147
35.00	-31.34	-7.00	0.00	-325.3	0.00	325.31	1,119.20	266.48	616.46	558.23	2.08	-0.55	0.142
40.00	-29.73	-6.80	0.00	-290.3	0.00	290.30	1,081.84	257.58	576.00	521.40	2.69	-0.61	0.131
45.00	-28.13	-6.63	0.00	-256.3	0.00	256.30	1,044.48	248.69	536.92	485.83	3.37	-0.68	0.120
47.50	-27.33	-6.53	0.00	-239.7	0.00	239.72	1,025.80	244.24	517.89	468.51	3.73	-0.71	0.115
50.00	-26.54	-6.40	0.00	-223.4	0.00	223.39	1,007.12	239.79	499.21	451.52	4.11	-0.74	0.109
55.00	-24.96	-6.20	0.00	-191.4	0.00	191.40	969.76	230.90	462.88	418.46	4.92	-0.79	0.097
60.00	-23.27	-5.89	0.00	-160.4	0.00	160.40	932.41	222.00	427.91	386.66	5.77	-0.84	0.085
62.92	-22.36	-5.79	0.00	-143.2	0.00	143.21	910.61	216.81	408.15	368.69	6.3	-0.87	0.078
65.00	-21.63	-5.72	0.00	-131.2	0.00	131.15	895.05	213.11	394.32	356.11	6.68	-0.89	0.071
65.75	-21.37	-5.68	0.00	-126.9	0.00	126.86	664.45	162.40	305.24	269.50	6.82	-0.89	0.076
67.50	-20.85	-5.60	0.00	-116.9	0.00	116.92	658.11	160.06	296.53	263.05	7.15	-0.91	0.071
70.00	-16.99	-4.75	0.00	-102.9	0.00	102.92	648.89	156.72	284.30	253.91	7.63	-0.93	0.062
75.00	-15.54	-4.59	0.00	-79.2	0.00	79.15	629.88	150.05	260.62	235.88	8.62	-0.96	0.050
77.00	-14.96	-4.54	0.00	-70.0	0.00	69.97	619.01	147.38	251.44	227.65	9.03	-0.97	0.045
77.00	-14.96	-4.54	0.00	-70.0	0.00	69.97	619.01	147.38	251.44	227.65	9.03	-0.97	0.049
77.04	-14.94	-4.50	0.00	-69.8	0.00	69.78	618.79	147.33	251.26	227.48	9.04	-0.97	0.049
77.04	-14.94	-4.50	0.00	-69.8	0.00	69.78	618.79	147.33	251.26	227.48	9.04	-0.97	0.092
80.00	-11.22	-3.43	0.00	-56.4	0.00	56.45	602.20	143.38	237.97	215.39	9.64	-0.99	0.076
85.00	-10.34	-3.26	0.00	-39.3	0.00	39.30	574.18	136.71	216.35	195.71	10.7	-1.03	0.057
90.00	-5.65	-1.87	0.00	-23.0	0.00	23.01	546.16	130.04	195.76	176.97	11.8	-1.06	0.035
93.00	-5.19	-1.81	0.00	-17.4	0.00	17.40	529.35	126.04	183.90	166.19	12.47	-1.08	0.028
93.00	-5.19	-1.81	0.00	-17.4	0.00	17.40	529.35	126.04	183.90	166.19	12.47	-1.08	0.115
95.00	-5.05	-1.74	0.00	-13.8	0.00	13.79	518.15	123.37	176.19	159.18	12.93	-1.08	0.097
100.00	-3.39	-0.95	0.00	-5.1	0.00	5.11	459.24	137.77	149.89	150.79	14.09	-1.13	0.041
100.00	-3.39	-0.95	0.00	-5.1	0.00	5.11	490.13	116.70	157.66	142.33	14.09	-1.13	0.043
102.00	-1.27	-0.43	0.00	-3.2	0.00	3.20	459.24	137.77	149.89	150.79	14.57	-1.14	0.024
105.00	-1.11	-0.38	0.00	-1.9	0.00	1.90	459.24	137.77	149.89	150.79	15.29	-1.15	0.015
110.00	0.00	-0.36	0.00	0.0	0.00	0.00	459.24	137.77	149.89	150.79	16.5	-1.16	0.000

ASSET: CODE: ANSI/TIA-222-H 302481, Hrfr - South CUSTOMER: DISH WIRELESS L.L.C. ENG NO: 13726719_C3_03

EQUIVALENT LATERAL FORCES METHOD ANALYSIS (Based on ASCE7-16 Chapters 11, 12 and 15) Spectral Response Acceleration for Short Period (S_S): 0.192 Spectral Response Acceleration at 1.0 Second Period (S₁): 0.055 6 Long-Period Transition Period (T_L – Seconds): Importance Factor (I_e): 1.000 Site Coefficient Fa: 1.600 Site Coefficient F_v: 2.400 1.500 Response Modification Coefficient (R): Design Spectral Response Acceleration at Short Period (S_{ds}): 0.205 Design Spectral Response Acceleration at 1.0 Second Period (S_{d1}): 0.088 Seismic Response Coefficient (C_s): 0.030 Upper Limit C_S: 0.030 0.030 Lower Limit Cs: Period based on Rayleigh Method (sec): 2.040 Redundancy Factor (p): 1.000 Seismic Force Distribution Exponent (k): 1.770 Total Unfactored Dead Load: 43.180 k Seismic Base Shear (E): 1.300 k

1.2D + 1.0Ev + 1.0Eh Normal	Seismic
1.2D + 1.0EV + 1.0EN NORMAL	Seisiiic

Segment	Height Above Base (ft)	Weight (lb)	W _z (lb-ft)	C_vx	Horizontal Force (lb)	Vertical Force (lb)
34	107.5	269	1,054	0.015	20	334
33	103.5	162	591	0.009	11	201
32	101	135	472	0.007	9	167
31	97.5	340	1,118	0.016	21	421
30	94	138	426	0.006	8	171
29	91.5	465	1,369	0.020	26	578
28	87.5	840	2,284	0.033	43	1,042
27	82.5	885	2,168	0.031	41	1,098
26	78.52	609	1,367	0.020	26	756
25	77.02	11	24	0.000	0	14
24	76	580	1,230	0.018	23	720
23	72.5	1,457	2,840	0.041	53	1,808
22	68.75	737	1,309	0.019	25	915
21	66.625	517	869	0.013	16	642
20	65.375	262	426	0.006	8	325
19	63.9583	731	1,141	0.016	21	907
18	61.4583	905	1,318	0.019	25	1,123
17	57.5	1,563	2,022	0.029	38	1,939
16	52.5	1,574	1,734	0.025	32	1,953
15	48.75	791	765	0.011	14	982
14	46.25	794	699	0.010	13	985
13	42.5	1,596	1,210	0.018	23	1,981
12	37.5	1,608	977	0.014	18	1,995
11	33.915	701	357	0.005	7	870
10	31.415	1,108	492	0.007	9	1,375
9	29.665	264	106	0.002	2	327
8	27.165	1,406	483	0.007	9	1,745
7	22.5	1,634	402	0.006	8	2,028
6	19	657	120	0.002	2	815
5	16.5	989	141	0.002	3	1,227
4	13.5	993	99	0.001	2	1,232
3	11	664	46	0.001	1	824
2	7.5	1,668	59	0.001	1	2,070
1	2.5	1,679	8	0.000	0	2,084
©2007 - 2020 by ATC LLC. All	rights reserved.	Pag	e 9 of 14	Model	ld : 17872	10/5/2021 9:25:32

Sogmont	Height Above Base (ft)	Weight (lb)	W _z (lb-ft)	C_{vx}	Horizontal Force (lb)	Vertical Force
Segment	(11)	(ID)	(ID-II)	C _{vx}	(ID)	(lb)
DragonWave Horizon Compact	110	21	86	0.001	2	26
Generic 12" x 12" Junction Box	110	10	41	0.001	1	12
DragonWave A-ANT-23G-1-C	110	15	61	0.001	1	19
NextNet BTS-2500	110	105	428	0.006	8	130
Argus LLPX310R	110	86	350	0.005	7	106
Clearwirre Side Arm	110	560	2,282	0.033	43	695
DragonWave A-ANT-11G-2.5-C	110	48	194	0.003	4	59
Small Platform with Handrails	102	2,000	7,132	0.103	134	2,482
CCI TPX-070821	100	45	155	0.002	3	56
Powerwave Allgon LGP21401	100	42	146	0.002	3	52
Raycap DC6-48-60-18-8F(32.8 lbs)	100	66	226	0.002	4	81
Ericsson RRUS-11 (50 lbs.)	100	150	517	0.003	10	186
` ,			-			
Ericsson RRUS 32 B2	100	159	547	0.008	10	197
Ericsson RRUS-32 (77 lbs)	100	231	795	0.012	15	287
Powerwave Allgon 7770.00	100	105	362	0.005	7	130
Quintel QS66512-2	100	222	764	0.011	14	275
CCI OPA-65R-LCUU-H6	100	146	503	0.007	9	181
CCI OPA-65R-LCUU-H8 (92.7")	100	88	303	0.004	6	109
CCI TPA-65R-LCUUUU-H8	100	82	281	0.004	5	101
Ericsson Radio 4449 B71 B85A	90	225	643	0.009	12	279
Ericsson RRUS 4415 B25	90	138	394	0.006	7	171
Ericsson Air6449 B41	90	312	892	0.013	17	387
Ericsson AIR32 B66Aa/B2a	90	397	1,133	0.016	21	492
Ericsson Air 3246 B66	90	540	1,543	0.022	29	670
RFS APXVAARR24_43-U-NA20	90	384	1,097	0.016	21	476
Generic Flat Low Profile Platform	90	1,875	5,359	0.078	100	2,327
Commscope CBC78T-DS-43-2X	80	62	144	0.002	3	77
Samsung Outdoor CBRS 20W RRH -Clip-on	80	13	31	0.000	1	16
Antenna						
Samsung RT4401-48A	80	56	129	0.002	2	69
Samsung B5/B13 RRH-BR04C	80	211	489	0.002	9	262
Samsung B2/B66A RRH-BR049	80	253	588	0.007	11	314
Raycap RVZDC-6627-PF-48	80	32	74	0.008	1	40
Samsung MT6407-77A	80 80	32 245	568	0.001	11	304
		_				
Commscope JAHH-65B-R3B (63.3 lb)	80	380	881	0.013	17	471
Generic Round Low Profile Platform	80	1,875	4,351	0.063	82	2,327
Raycap RDIDC-9181-PF-48	70	22	40	0.001	1	27
Fujitsu TA08025-B605	70	225	412	0.006	8	279
Fujitsu TA08025-B604	70	192	351	0.005	7_	238
JMA Wireless MX08FRO665-21	70	194	355	0.005	7	240
Generic Round Platform with Handrails	70	2,500	4,581	0.066	86	3,102
Generic Radio/ODU	60	30	42	0.001	1	37
Scala 840 10212	60	7	9	0.000	0	8
Stand Off	60	75	105	0.002	2	93
Radio Waves SP2-4.7	60	22	31	0.000	1	27
		43,175	69,143	1.000	1,295	53,579

0.9D - 1.0Ev + 1.0Eh Normal	Seismic (Reduced DL)
-----------------------------	----------------------

Segment	Height Above Base (ft)	Weight (lb)	W _z (lb-ft)	C_{vx}	Horizontal Force (lb)	Vertical Force (lb)
34	107.5	269	1,054	0.015	20	231
33	103.5	162	591	0.009	11	139
32	101	135	472	0.007	9	116
31	97.5	340	1,118	0.016	21	292
30	94	138	426	0.006	8	119
29	91.5	465	1,369	0.020	26	400
28	87.5	840	2,284	0.033	43	721
27	82.5	885	2,168	0.031	41	760
26	78.52	609	1,367	0.020	26	523
25	77.02	11	24	0.000	0	9
24	76	580	1,230	0.018	23	499
23	72.5	1,457	2,840	0.041	53	1,251

	Height					
	Above				Horizontal	Vertical
Segment	Base (ft)	Weight (lb)	W _z (lb-ft)	C_{vx}	Force (lb)	Force (lb)
	` '	· /	` '			, ,
22 21	68.75 66.625	737 517	1,309 869	0.019 0.013	25 16	633 444
20	65.375	262	426	0.013	8	225
19	63.9583	731	1,141	0.016	21	628
18 17	61.4583 57.5	905 1,563	1,318 2,022	0.019 0.029	25 38	777 1,342
16	52.5	1,574	1,734	0.025	32	1,352
15	48.75	791	765	0.011	14	680
14 13	46.25 42.5	794 1,596	699 1,210	0.010 0.018	13 23	682 1,371
12	37.5	1,608	977	0.018	18	1,381
11	33.915	701	357	0.005	7	602
10	31.415	1,108	492	0.007	9	952
9 8	29.665 27.165	264 1,406	106 483	0.002 0.007	2 9	226 1,208
7	22.5	1,634	402	0.006	8	1,404
6	19	657	120	0.002	2	564
5 4	16.5 13.5	989 993	141 99	0.002 0.001	3 2	849 853
3	11	664	46	0.001	1	570
2	7.5	1,668	59	0.001	1	1,433
1 ProgenWeye Herizen Compact	2.5	1,679	8	0.000	0	1,443
DragonWave Horizon Compact Generic 12" x 12" Junction Box	110 110	21 10	86 41	0.001 0.001	2 1	18 9
DragonWave A-ANT-23G-1-C	110	15	61	0.001	1	13
NextNet BTS-2500	110	105	428	0.006	8_	90
Argus LLPX310R Clearwirre Side Arm	110 110	86 560	350 2,282	0.005 0.033	7 43	74 481
DragonWave A-ANT-11G-2.5-C	110	48	194	0.033	43	41
Small Platform with Handrails	102	2,000	7,132	0.103	134	1,718
CCI TPX-070821	100	45	155	0.002	3	39
Powerwave Allgon LGP21401 Raycap DC6-48-60-18-8F(32.8 lbs)	100 100	42 66	146 226	0.002 0.003	3 4	36 56
Ericsson RRUS-11 (50 lbs.)	100	150	517	0.008	10	129
Ericsson RRUS 32 B2	100	159	547	0.008	10	137
Ericsson RRUS-32 (77 lbs) Powerwave Allgon 7770.00	100 100	231 105	795 362	0.012 0.005	15 7	198 90
Quintel QS66512-2	100	222	764	0.003	14	191
CCI OPA-65R-LCUU-H6	100	146	503	0.007	9	125
CCL TPA 65R-LCUU-H8 (92.7")	100	88	303	0.004	6	76 70
CCI TPA-65R-LCUUUU-H8 Ericsson Radio 4449 B71 B85A	100 90	82 225	281 643	0.004 0.009	5 12	193
Ericsson RRUS 4415 B25	90	138	394	0.006	7	119
Ericsson Air6449 B41	90	312	892	0.013	17	268
Ericsson AIR32 B66Aa/B2a Ericsson Air 3246 B66	90 90	397 540	1,133 1,543	0.016 0.022	21 29	341 464
RFS APXVAARR24_43-U-NA20	90	384	1,097	0.016	21	330
Generic Flat Low Profile Platform	90	1,875	5,359	0.078	100	1,611
Commscope CBC78T-DS-43-2X	80	62 13	144	0.002 0.000	3 1	53 11
Samsung Outdoor CBRS 20W RRH –Clip-on Antenna	80	13	31	0.000	ı	11
Samsung RT4401-48A	80	56	129	0.002	2	48
Samsung B5/B13 RRH-BR04C	80	211	489	0.007	9	181
Samsung B2/B66A RRH-BR049 Raycap RVZDC-6627-PF-48	80 80	253 32	588 74	0.008 0.001	11 1	218 27
Samsung MT6407-77A	80	32 245	568	0.001	11	210
Commscope JAHH-65B-R3B (63.3 lb)	80	380	881	0.013	17	326
Generic Round Low Profile Platform	80	1,875	4,351	0.063	82	1,611
Raycap RDIDC-9181-PF-48 Fujitsu TA08025-B605	70 70	22 225	40 412	0.001 0.006	1 8	19 193
Fujitsu TA08025-B003	70 70	192	351	0.005	7	165
JMA Wireless MX08FRO665-21	70	194	355	0.005	7	166
Generic Round Platform with Handrails Generic Radio/ODU	70 60	2,500 30	4,581 42	0.066 0.001	86 1	2,148 26
Scala 840 10212	60	7	9	0.001	0	6
Stand Off	60	75	105	0.002	2	64
Radio Waves SP2-4.7	60	22	31	0.000	1	19
_		43,175	69,143	1.000	1,295	37,089

1.2D + 1.0Ev + 1.0Eh Normal Seismic

						CALCULA	TED FORCE	S					
Seg	Pu	Vu	Tu	Mu	Mu	Resultant	Phi	Phi	Phi	Phi	Total		
Elev	FY (-)	FX (-)	MY	MZ	Mx	Moment	Pn	Vn	Tn	Mn	Deflect	Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(fr-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(kips)	(kips)	(in)	(deg)	Ratio
0.00	-51.49	-1.30	0.00	-109.04	0.00	109.04	1,564.13	420.30	1,180	948.21	0.00	0.00	0.04
5.00	-49.42	-1.31	0.00	-102.54	0.00	102.54	1,541.15	408.74	1,116	908.36	0.01	-0.02	0.04
10.00	-48.60	-1.32	0.00	-95.97	0.00	95.97	1,517.04	397.17	1,053	868.64	0.03	-0.03	0.04
12.00	-47.37	-1.32	0.00	-93.33	0.00	93.33	1,507.08	392.55	1,029	852.79	0.05	-0.04	0.04
12.00	-47.37	-1.32	0.00	-93.33	0.00	93.33	1,507.08	392.55	1,029	852.79	0.05	-0.04	0.04
15.00	-46.14	-1.33	0.00	-89.36	0.00	89.36	1,491.79	385.61	993	829.09	0.07	-0.05	0.04
18.00	-45.33	-1.33	0.00	-85.37	0.00	85.37	1,476.10	378.67	958	805.48	0.10	-0.05	0.04
18.00	-45.33	-1.33	0.00	-85.37	0.00	85.37	1,476.10	378.67	958	805.48	0.10	-0.05	0.04
20.00	-43.30	-1.33	0.00	-82.71	0.00	82.71	1,465.41	374.05	934	789.78	0.13	-0.06	0.04
25.00	-41.55	-1.33	0.00	-76.06	0.00	76.06	1,437.89	362.48	877	750.77	0.20	-0.08	0.03
29.33	-41.22	-1.33	0.00	-70.31	0.00	70.31	1,413.15	352.47	830	717.27	0.27	-0.09	0.03
30.00	-39.85	-1.32	0.00	-69.42	0.00	69.42	1,409.24	350.92	822	712.11	0.29	-0.09	0.03
32.83	-38.98	-1.32	0.00	-65.68	0.00	65.68	1,130.12	270.34	634	571.92	0.34	-0.10	0.04
35.00	-36.98	-1.30	0.00	-62.81	0.00	62.81	1,119.20	266.48	616	558.23	0.39	-0.10	0.04
40.00	-35.00	-1.28	0.00	-56.30	0.00	56.30	1,081.84	257.58	576	521.40	0.50	-0.12	0.03
45.00	-34.02	-1.27	0.00	-49.87	0.00	49.87	1,044.48	248.69	537	485.83	0.63	-0.13	0.03
47.50	-33.03	-1.26	0.00	-46.68	0.00	46.68	1,025.80	244.24	518	468.51	0.70	-0.13	0.03
47.50	-33.03	-1.26	0.00	-46.68	0.00	46.68	1,025.80	244.24	518	468.51	0.70	-0.13	0.03
50.00	-31.08	-1.23	0.00	-43.53	0.00	43.53	1,007.12	239.79	499	451.52	0.77	-0.14	0.03
55.00	-29.14	-1.19	0.00	-37.38	0.00	37.38	969.76	230.90	463	418.46	0.92	-0.15	0.03
60.00	-27.85	-1.16	0.00	-31.43	0.00	31.43	932.41	222.00	428	386.66	1.09	-0.16	0.02
62.92	-26.95	-1.14	0.00	-28.03	0.00	28.03	910.61	216.81	408	368.69	1.19	-0.17	0.02
65.00	-26.62	-1.13	0.00	-25.66	0.00	25.66	895.05	213.11	394	356.11	1.26	-0.17	0.02
65.75	-25.98	-1.12	0.00	-24.81	0.00	24.81	664.45	162.40	305	269.50	1.29	-0.17	0.02
67.50	-25.06	-1.09	0.00	-22.85	0.00	22.85	658.11	160.06	297	263.05	1.35	-0.17	0.02
67.50	-25.06	-1.09	0.00	-22.85	0.00	22.85	658.11	160.06	297	263.05	1.35	-0.17	0.02
70.00	-19.37	-0.91	0.00	-20.12	0.00	20.12	648.89	156.72	284	253.91	1.44	-0.18	0.02
75.00	-18.65	-0.89	0.00	-15.55	0.00	15.55	629.88	150.05	261	235.88	1.63	-0.18	0.01
77.00	-18.64	-0.89	0.00	-13.77	0.00	13.77	619.01	147.38	251	227.65	1.71	-0.19	0.01
77.00	-18.64	-0.89	0.00	-13.77	0.00	13.77	619.01	147.38	251	227.65	1.71	-0.19	0.01
77.04	-17.88	-0.86	0.00	-13.73	0.00	13.73	618.79	147.33	251	227.48	1.71	-0.19	0.01
77.04 80.00	-17.88 -12.90	-0.86	0.00 0.00	-13.73 -11.18	0.00 0.00	13.73 11.18	618.79 602.20	147.33 143.38	251	227.48 215.39	1.71 1.83	-0.19 -0.19	0.03 0.02
		-0.67		_					238				
85.00	-11.86	-0.63	0.00	-7.82	0.00	7.82	574.18	136.71	216	195.71	2.03	-0.20	0.02
85.00 90.00	-11.86 -6.48	-0.63 -0.38	0.00 0.00	-7.82 -4.69	0.00 0.00	7.82 4.69	574.18 546.16	136.71 130.04	216 196	195.71 176.97	2.03 2.24	-0.20 -0.20	0.02 0.01
93.00	-6.46 -6.31	-0.36 -0.37		-3.56	0.00		529.35	126.04		166.19			
93.00	-6.31	-0.37 -0.37	0.00 0.00	-3.56 -3.56	0.00	3.56 3.56	529.35 529.35	126.04	184 184	166.19	2.37 2.37	-0.21 -0.21	0.01 0.03
95.00 95.00	-6.31 -5.89	-0.37 -0.35	0.00	-3.56 -2.83	0.00	2.83	529.35 518.15	123.37	176	159.18	2.37 2.46	-0.21 -0.21	0.03
100.00	-5.69 -4.06	-0.35 -0.24	0.00	-2.63 -1.10	0.00	2.63 1.10	490.13	123.37	158	142.33	2.46	-0.21 -0.22	0.03
100.00	-4.06 -4.06	-0.24 -0.24	0.00	-1.10	0.00	1.10	490.13 459.24	137.77	150	150.79	2.68	-0.22 -0.22	0.02
100.00	-4.06 -1.38	-0.24 -0.09	0.00	-0.61	0.00	0.61	459.24 459.24	137.77	150	150.79	2.00	-0.22 -0.22	0.02
102.00	-1.36 -1.05	-0.09	0.00	-0.81	0.00	0.81	459.24 459.24	137.77	150	150.79	2.77	-0.22 -0.22	0.01
110.00	0.00	-0.06	0.00	0.00	0.00	0.00	459.24	137.77	150	150.79	3.14	-0.22	0.00
110.00	0.00	0.00	0.00	0.00	0.00	0.00	703.24	107.77	150	100.19	5.14	0.22	0.00

0.9D - 1.0Ev + 1.0Eh Normal Seismic (Reduced DL)

	CALCULATED FORCES												
Seg	Pu	Vu	Tu	Mu	Mu	Resultant	Phi	Phi	Phi	Phi	Total		
Elev	FY (-)	FX (-)	MY	MZ	Mx	Moment	Pn	Vn	Tn	Mn	Deflect	Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(fr-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(kips)	(kips)	(in)	(deg)	Ratio
0.00	-35.65	-1.30	0.00	-107.31	0.00	107.31	1,564.13	420.30	1,180	948.21	0.00	0.00	0.04
5.00	-34.21	-1.31	0.00	-100.82	0.00	100.82	1,541.15	408.74	1,116	908.36	0.01	-0.01	0.04
10.00	-33.64	-1.31	0.00	-94.28	0.00	94.28	1,517.04	397.17	1,053	868.64	0.03	-0.03	0.04
12.00	-32.79	-1.31	0.00	-91.66	0.00	91.66	1,507.08	392.55	1,029	852.79	0.05	-0.04	0.03
12.00	-32.79	-1.31	0.00	-91.66	0.00	91.66	1,507.08	392.55	1,029	852.79	0.05	-0.04	0.03
15.00	-31.94	-1.32	0.00	-87.72	0.00	87.72	1,491.79	385.61	993	829.09	0.07	-0.04	0.03
18.00	-31.38	-1.32	0.00	-83.77	0.00	83.77	1,476.10	378.67	958	805.48	0.10	-0.05	0.03
18.00	-31.38	-1.32	0.00	-83.77	0.00	83.77	1,476.10	378.67	958	805.48	0.10	-0.05	0.03
20.00	-29.97	-1.31	0.00	-81.14	0.00	81.14	1,465.41	374.05	934	789.78	0.13	-0.06	0.03
25.00	-28.76	-1.31	0.00	-74.58	0.00	74.58	1,437.89	362.48	877	750.77	0.20	-0.07	0.03
29.33	-28.54	-1.31	0.00	-68.91	0.00	68.91	1.413.15	352.47	830	717.27	0.27	-0.09	0.03
30.00	-27.58	-1.30	0.00	-68.03	0.00	68.03	1,409.24	350.92	822	712.11	0.28	-0.09	0.03
32.83	-26.98	-1.30	0.00	-64.34	0.00	64.34	1,130.12	270.34	634	571.92	0.34	-0.10	0.03
32.00		7.00	3.00	3	3.00	3	.,	3.0 .		2	3.0 .	30	3.00

Seg	Pu	Vu	Tu	Mu	Mu	Resultant	Phi	Phi	Phi	Phi	Total		
Elev	FY (-)	FX (-)	MY	MZ	Mx	Moment	Pn	Vn	Tn	Mn	Deflect	Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(fr-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(kips)	(kips)	(in)	(deg)	Ratio
35.00	-25.60	-1.28	0.00	-61.53	0.00	61.53	1,119.20	266.48	616	558.23	0.38	-0.10	0.03
40.00	-24.23	-1.26	0.00	-55.12	0.00	55.12	1,081.84	257.58	576	521.40	0.49	-0.11	0.03
45.00	-23.55	-1.25	0.00	-48.82	0.00	48.82	1,044.48	248.69	537	485.83	0.62	-0.13	0.03
47.50	-22.87	-1.24	0.00	-45.69	0.00	45.69	1,025.80	244.24	518	468.51	0.69	-0.13	0.03
47.50	-22.87	-1.24	0.00	-45.69	0.00	45.69	1,025.80	244.24	518	468.51	0.69	-0.13	0.03
50.00	-21.51	-1.20	0.00	-42.60	0.00	42.60	1,007.12	239.79	499	451.52	0.76	-0.14	0.03
55.00	-20.17	-1.17	0.00	-36.58	0.00	36.58	969.76	230.90	463	418.46	0.91	-0.15	0.02
60.00	-19.28	-1.14	0.00	-30.75	0.00	30.75	932.41	222.00	428	386.66	1.07	-0.16	0.02
62.92	-18.65	-1.12	0.00	-27.43	0.00	27.43	910.61	216.81	408	368.69	1.17	-0.16	0.02
65.00	-18.43	-1.11	0.00	-25.11	0.00	25.11	895.05	213.11	394	356.11	1.24	-0.17	0.02
65.75	-17.98	-1.09	0.00	-24.28	0.00	24.28	664.45	162.40	305	269.50	1.26	-0.17	0.02
67.50	-17.35	-1.07	0.00	-22.37	0.00	22.37	658.11	160.06	297	263.05	1.33	-0.17	0.02
67.50	-17.35	-1.07	0.00	-22.37	0.00	22.37	658.11	160.06	297	263.05	1.33	-0.17	0.02
70.00	-13.41	-0.89	0.00	-19.70	0.00	19.70	648.89	156.72	284	253.91	1.42	-0.17	0.02
75.00	-12.91	-0.87	0.00	-15.23	0.00	15.23	629.88	150.05	261	235.88	1.60	-0.18	0.01
77.00	-12.90	-0.87	0.00	-13.48	0.00	13.48	619.01	147.38	251	227.65	1.68	-0.18	0.01
77.00	-12.90	-0.87	0.00	-13.48	0.00	13.48	619.01	147.38	251	227.65	1.68	-0.18	0.01
77.04	-12.38	-0.84	0.00	-13.45	0.00	13.45	618.79	147.33	251	227.48	1.68	-0.18	0.01
77.04	-12.38	-0.84	0.00	-13.45	0.00	13.45	618.79	147.33	251	227.48	1.68	-0.18	0.02
80.00	-8.93	-0.66	0.00	-10.95	0.00	10.95	602.20	143.38	238	215.39	1.79	-0.19	0.02
85.00	-8.21	-0.61	0.00	-7.66	0.00	7.66	574.18	136.71	216	195.71	1.99	-0.19	0.01
85.00	-8.21	-0.61	0.00	-7.66	0.00	7.66	574.18	136.71	216	195.71	1.99	-0.19	0.01
90.00	-4.49	-0.37	0.00	-4.59	0.00	4.59	546.16	130.04	196	176.97	2.20	-0.20	0.01
93.00	-4.37	-0.36	0.00	-3.49	0.00	3.49	529.35	126.04	184	166.19	2.32	-0.20	0.01
93.00	-4.37	-0.36	0.00	-3.49	0.00	3.49	529.35	126.04	184	166.19	2.32	-0.20	0.03
95.00	-4.08	-0.34	0.00	-2.77	0.00	2.77	518.15	123.37	176	159.18	2.41	-0.20	0.03
100.00	-2.81	-0.24	0.00	-1.08	0.00	1.08	490.13	116.70	158	142.33	2.63	-0.21	0.01
100.00	-2.81	-0.24	0.00	-1.08	0.00	1.08	459.24	137.77	150	150.79	2.63	-0.21	0.01
102.00	-0.96	-0.09	0.00	-0.60	0.00	0.60	459.24	137.77	150	150.79	2.72	-0.22	0.01
105.00	-0.73	-0.07	0.00	-0.34	0.00	0.34	459.24	137.77	150	150.79	2.86	-0.22	0.00
110.00	0.00	-0.06	0.00	0.00	0.00	0.00	459.24	137.77	150	150.79	3.08	-0.22	0.00

				Ma	x Usage			
Load Case	Shear Shear Axial Moment Moment Moment FX FZ FY MX MY MZ (kips) (kips) (ft-kips) (ft-kips) (ft-kips)							Interaction Ratio
1.2D + 1.0W Normal	34.51	0.00	51.70	0.00	0.00	2460.99	0.00	0.73
0.9D + 1.0W Normal 1.2D + 1.0Di + 1.0Wi Normal	34.47 9.26	0.00 0.00	38.75 80.75	0.00 0.00	0.00 0.00	2429.72 707.17	0.00 0.00	0.72 0.22
1.2D + 1.0Ev + 1.0Eh Normal 0.9D - 1.0Ev + 1.0Eh Normal	1.33 1.32	0.00 0.00	51.49 35.65	0.00 0.00	0.00 0.00	109.04 107.31	0.00 0.00	0.04 0.04
1.0D + 1.0W Service Normal	8.50	0.00	43.17	0.00	0.00	598.95	0.00	0.18

ADDITIONAL STEEL SUMMARY											
				Intermediate C	Connectors		Max member				
Elev From (ft)	Elev To (ft)	Member	VQ/I	Shear Applied (kips)	Shear (phiVn) (kips)	Ratio	Pu (kip)	PhiPn (kip)	Ratio		
0.00	12.00	SOL #20 All Thread Bar	330.7	12.9	16.8	0.7673	278.8	315.5	0.8838		
0.00	18.00	PL PL 6 x 1.25	421.6	10.1	38.3	0.2644	355.6	395.0	0.9004		
12.00	47.50	SOL #20 All Thread Bar	354.9	10.6	16.8	0.6334	253.9	330.5	0.7682		
18.00	77.00	PL PL 6 x 1.25	447.3	10.7	38.3	0.2805	302.6	395.0	0.7662		
47.50	67.50	SOL #20 All Thread Bar	374.9	11.2	16.8	0.6691	159.0	330.5	0.4812		
67.50	77.04	SOL #20 All Thread Bar	374.9	11.2	16.8	0.6691	95.9	330.5	0.2902		
77.00	85.00	PL PL 5" x 1.25"	679.1	16.3	38.3	0.4259	129.3	329.2	0.3929		
85.00	93.00	PL PL 5" x 1.25"	538.3	12.9	38.3	0.3376	79.9	329.2	0.2428		

			Upper Termination Connectors				Low	<u>er Termin</u>	ation Cor	nectors		
Elev From (ft)	Elev To (ft)	Member	MQ/I	phiVn (kips)	Num Reqd	Num Actual	Ratio	MQ/I (kips)	phiVn (kip)	Num Reqd	Num Actual	Ratio
0.00	12.00	SOL #20 All Thread Bar	0	12	0	0	0.0000	0	12	0	0	0.0000
0.00	18.00	PL PL 6 x 1.25	298.0091	38.27	8	8	0.9734	0	38.27	0	0	0.0000
12.00	47.50	SOL #20 All Thread Bar	0	12	0	0	0.0000	0	12	0	0	0.0000
18.00	77.00	PL PL 6 x 1.25	0	38.27	0	8	0.0000	0	38.27	0	0	0.0000
47.50	67.50	SOL #20 All Thread Bar	0	12	0	0	0.0000	0	12	0	0	0.0000
67.50	77.04	SOL #20 All Thread Bar	66.2348	12	6	7	0.7885	0	12	0	0	0.0000
77.00	85.00	PL PL 5" x 1.25"	0	38.27	0	8	0.0000	0	38.27	0	8	0.0000
85.00	93.00	PL PL 5" x 1.25"	0	38.27	0	8	0.0000	0	38.27	0	8	0.0000

Base Plate & Anchor Rod Analysis

Pole Dimensions										
Number of Sides	12	-								
Diameter	30	in								
Thickness	1/4	in								
Orientation Offset	0	•								

Base Reactions			
Moment, Mu	2461.0	k-ft	
Axial, Pu	51.7	k	
Shear, Vu	34.5	k	
Neutral Axis	45	0	

Report Capacities			
Component	Capacity	Result	
Base Plate	95%	Pass	
Anchor Rods	61%	Pass	
Dwyidag	89%	Pass	

Dywidag Reinforcement

4

#20

2.5

Angle

36.88

0

327.6

368.2

in

in

in

k

Quantity

Bar Size

Circle

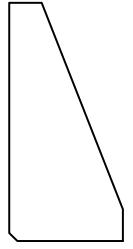
Diameter, ø

Bracket Type

Orientation Offset

Applied Force, Pu

Dywidag Bar, фРп


Base Plate			
Shape	Square	-	
Width	44	in	
Thickness	2	in	
Grade	A57	2-60	
Yield Strength, Fy	60	ksi	
Tensile Strength, Fu	75 ksi		
Clip	0	in	
Orientation Offset	0 °		
Anchor Rod Detail	С	η=0.55	
Clear Distance	N/A	in	
Applied Moment, Mu	1974.7	k	
Bending Stress, φMn	2085.6	k	
Anchor Rod Detail Clear Distance Applied Moment, Mu	c N/A 1974.7	in k	

•		4%
	0	\. •

Original Anchor Rods				
Arrangement	Cluster	-		
Quantity	8	-		
Diameter, ø	2 1/4	in		
Bolt Circle	44 in			
Grade	A615-75			
Yield Strength, Fy	75	ksi		
Tensile Strength, Fu	100	ksi		
Spacing	6.0	in		
Orientation Offset	0 °			
Applied Force, Pu	146.6	k		
Anchor Rods, φPn	243.6 k			

	<u></u>	~	_	•
• /	0	<u>\</u>	•	
	\			
	\			

Stiffeners			
Arrangement	Radial	-	
Quantity	8	-	
Height	15	in	
Width	7	in	
Effective Width	7.000	in	
Thickness	3/4	in	
Effective Thickness	0.750	in	
Notch	0.5	in	
Flat Edge	2	in	
Grade	A572-50	-	
Yield Strength, Fy	50	ksi	
Tensile Strength, Fu	65	ksi	
Horizontal Weld	Fillet		
Horizontal Fillet Size	3/8	in	
Bevel Depth		in	
Vertical Weld	Fi	llet	
Vertical Fillet Size	1/4	in	
Weld Strength	70	ksi	
Electrode Coefficient	1	-	
Orientation Offset		۰	
Vertical Weld, φRn	165.2	k	
Horz. Weld, φRn	124.1	k	
Ten. Capacity, φTn	213.9	k	
Comp. Capacity, фРп	637.3	k	

<u>Calculations for Monopole Base Plate & Anchor Rod Analysis</u>

Reaction Distribution

Reaction	Shear Vu	Moment Mu	Factor
-	k	k-ft	-
Base Forces	34.5	1065.8	0.43
Anchor Rod Forces	34.5	1065.8	0.43
Additional Bolt (Grp1) Forces	0.0	0.0	0.00
Additional Bolt (Grp2) Forces	0.0	0.0	0.00
Dywidag Forces	0.0	1395.2	0.57
Stiffener Forces	24.3	750.8	0.31

Geometric Properties

Section	Gross Area	Net Area	Individual Inertia	Threads per Inch	Moment of Inertia
-	in ²	in ²	in ⁴	#	in ⁴
Pole	23.0996	1.9250	0.0403		2556.06
Bolt	3.9761	3.2477	0.8393	4.5	6294.24
Bolt1	0.0000	0.0000	0.0000	0	0.00
Bolt2	0.0000	0.0000	0.0000	0	0.00
Dywidag	4.9087	4.9087	1.9175		3345.94
Stiffener	4.8750	4.3875	85.7500		6093.22

Base Plate		
Shape	Square	-
Width, W	44	in
Thickness, t	2	in
Yield Strength, Fy	60	ksi
Tensile Strength, Fu	75	ksi
Base Plate Chord	32.187	in
Detail Type	С	-
Detail Factor	0.55	-
Clear Distance	N/A	-

Anchor Rods		
Anchor Rod Quantity, N	8	-
Rod Diameter, d	2.25	in
Bolt Circle, BC	44	in
Yield Strength, Fy	75	ksi
Tensile Strength, Fu	100	ksi
Applied Axial, Pu	146.6	k
Applied Shear, Vu	1.0	k
Compressive Capacity, φPn	243.6	k
Tensile Capacity, φRnt	0.602	OK
Interaction Capacity	0.610	OK

Base Plate Stiffeners		
Applied Axial Force, Pu	112.9	k
Applied Horizontal Force, Vu	1.52	k

External Base Pla	ate	
Chord Length AA	32.100	in
Additional AA	6.521	in
Section Modulus, Z	38.622	in ³
Applied Moment, Mu	1974.7	k-ft
Bending Capacity, φMn	2085.6	k-ft
Capacity, Mu/φMn	0.947	ОК
Chord Length AB	31.038	in
Additional AB	5.206	in
Section Modulus, Z	36.244	in ³
Applied Moment, Mu	1818.8	k-ft
Bending Capacity, φMn	1957.2	k-ft
Capacity, Mu/фМп	0.929	ОК
Bend Line Length	0.000	in
Additional Bend Line	#N/A	in
Section Modulus, Z	#N/A	in ³
Applied Moment, Mu	0.0	k-ft
Bending Capacity,	#N/A	k-ft

0.156	-
0.050	-
3.670	-
165.2	k
0.333	-
0.050	-
2.940	-
132.3	k
0.695	ОК
	0.050 3.670 165.2 0.333 0.050 2.940 132.3

Section Modulus, Z	38.622	in ³
Applied Moment, Mu	1974.7	k-ft
Bending Capacity, φMn	2085.6	k-ft
Capacity, Mu/фМп	0.947	OK
Chord Length AB	31.038	in
Additional AB	5.206	in
Section Modulus, Z	36.244	in ³
Applied Moment, Mu	1818.8	k-ft
Bending Capacity, φMn	1957.2	k-ft
Capacity, Mu/фМп	0.929	OK
Bend Line Length	0.000	in
Additional Bend Line	#N/A	in
Section Modulus, Z	#N/A	in ³
Applied Moment, Mu	0.0	k-ft
Bending Capacity, φMn	#N/A	k-ft
Capacity, Mu/φMn		

Horizontal Weld		
Horzto-Stiffener a=e _x /I	0.167	-
Spacing Ratio, k	0.107	-
Weld Coefficient, C	3.940	-
Effective Fillet	0.375	in
Compressive Capacity, φPn	124.1	k
Horzto-Pole a=e _x /l	0.357	-
Spacing Ratio, k	0.107	-
Weld Coefficient, C	3.090	-
Shear Capacity, φVn	97.3	k
$P_u/\phi_P P_n + V_u/\phi_V V_n$	0.925	ОК

Internal Base Pla	te	
Arc Length	0.000	in
Section Modulus, Z	0.000	in ³
Moment Arm	0.000	in
Applied Moment, Mu	0.0	k-ft
Bending Capacity, φMn	0.0	k-ft
Capacity, Mu/фМп		

Dywidag Reinforceme	ent	
Dywidag Quantity, N	4	-
Dywidag Diameter, d	2.5	in
Bolt Circle, BC	36.88	in
Yield Strength, Fy	80	ksi
Tensile Strength, Fu	100	ksi
Applied Axial, Pu	327.6	k
Compressive Capacity, dPn	368.2	k

Capacity, Pu/φPn 0.890 ΟΚ

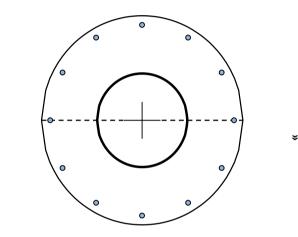
Plate Tension		
Gross Cross Section	4.875	in ²
Net Cross Section	4.388	in ²
Tensile Capacity, φTn	213.9	k
Capacity, Tu/φTn	0.264	OK

Plate Compression	1	
Radius of Gyration	0.217	in ³
kl/r	41.57	-
4.71 √(E/Fy)	113.43	-
Buckling Stress(Fe)	165.6	-
Crit. Buckling Stress(Fcr)	145.3	ksi
Compressive Capacity, φPn	637.3	k
Capacity, Pu/φPn	0.089	ОК

Flange Plate Analysis

Plate Type	Flange	100 ft
Pole Diameter	12.75	in
Pole Thickness	0.375	in
Plate Diameter	28.5	in
Plate Thickness	1.5	in
Plate Thickness Plate Fy	36	ksi
Weld Length	0.25	in
f _s Resistance	60.83	k-in
Applied	17.12	k-in

Code Rev.	Н
Moment	21.2 k-ft
Axial	3.8 k


Required Flange Thickness: 0.80 in OK

Date	10/5/2021
Engineer	RC
Site #	302481
Carrier	DISH WIRELESS L.L.C.
Carrier	DISH WIKELESS L.L.C.

#

Stiffeners

Bolt Circle (R)adial / (S)quare	26 R	in
(R)adial / (S)quare	R	
	11	
Bolt Gap		
Diameter	1	in
Hole Diameter	1.125	in
Туре	A325	
Fy	92	ksi
Fu	120	ksi
f _s Resistance	54.52	k
Applied	2.94	k

Reinforcement •

Plate Stress Ratio:
28% Pass

Bolt Stress Ratio:
5% Pass

44

extra Bolts

Site Name: HRFR - South
Site Number: 302481
Engineering Number: 13726719_C3_03
Engineer: RC

Date: 10/5/2021

Design Base Loads (Factored) - Design per TIA-222-G Standard

Length of Block:	9.0	ft
Width of Block:	13.0	ft
Thickness of Block:	6.0	ft
Block Height Above Ground:	1.0	ft
Depth Below Ground Surface to Water Table (w):	30.0	ft
Unit Weight of Concrete:	150.0	pcf
Unit Weight of Soil:	162.2	pcf
Unit Weight of Water:	62.4	pcf
Ultimate Compressive Bearing Pressure:	15000	psf
Capacity Increase (Due to Transient Loads):	1.00	
Pullout Angle:	45.0	degrees

Capacity Increase (Due to Transient Loads):	1.00	
Pullout Angle:	45.0	deg
Rod Diameter:	1.00	in
Rod Ultimate Strength:	71	ksi
Rod Net Area:	0.85	in ²
Number of Rods:	18	
Diameter of Cored Hole:	2.50	in
Ultimate Grout / Rock Interface Bond Strength:	100	psi

Ultimate Grout / Rock Anchor Interface Bond Strength: 400 psi
Overall Rod Embedment Length: 192 in
Rod Exposure Above Lock Off Nut in Foundation: 72 in
Rod Embedment Square: 78 in

Free Stress Length: 0 in Soil / Concrete Friction Coefficient: 0.45
Lock Off Load: 60 k

Rock Anchor Design Plastic or Elastic:

Ignore Pullout Weight Resistance (Y/N):

Weight of Concrete (Buoyancy Effect Considered):

105.3 k

Compressive Bearing Resistance: 954.3 k
Total Rock / Grout Bond Strength: 2714.3 k
Total Grout / Rod Bond Strength: 4342.9 k
Total Rod Mechanical Strength: 1080.0 k
Pullout Weight / Rod: 84.3 k
Rock / Grout Bond Strength / Rod: 150.8 k
Grout / Rod Bond Strength / Rod: 241.3 k

Rod Mechanical Strength / Rod: 60.0 k
Soil Strength Reduction Factor (ϕ_s) : 0.75
Factored Nominal Moment Capacity per Leg $(\phi_s M_n)$: 3155.8 k
Factored Nominal Uplift Capacity per Leg $(\phi_s T_n)$: 927.8 k
Factored Nominal Compressive Capacity per Leg $(\phi_s P_n)$: 715.7 k
Factored Nominal Shear Capacity per Leg $(\phi_s V_n)$: 486.0 k

Factored Nominal Shear Capacity per Leg $(\phi_s V_n)$: 486.0 k M_u : 2668.1 k-ft T_u : 0.0 k P_u : 42.6 k V_u : 34.5 k $T_u/\phi_s T_n + M_u/\phi_s M_n$: 0.85 Result: OK

 $P_{ij}/\phi_s P_n$: 0.06 Result: OK 0.07 Result: OK V_u/ϕ_sV_n : **Caisson Strength Capacity** Concrete Compressive Strength (f's): 3000 psi Vertical Steel Rebar Size #: 11 1.56 in² Vertical Steel Rebar Area: # of Vertical Steel Rebars: 52 Minimum # of vertical rebar met Vertical Steel Rebar Yield Strength (F_v): 60 ksi Horizontal Tie / Stirrup Size #: 4 0.20 in^2 Horizontal Tie / Stirrup Area: Horizontal Tie / Stirrup Spacing: 12.0 in Horizontal Tie / Stirrup Steel Yield Strength (F_v): 60 ksi 2.02 in Anchor Rod Nut Diameter: 108.0 in Rebar Cage Diameter: Strength Bending/Tension Reduction Factor (ϕ_B): 0.90 ACI318-05 - 9.3.2.1 Strength Shear Reduction Factor (ϕ_V): 0.75 ACI318-05 - 9.3.2.3 Strength Compression/Bearing Reduction Factor ($\phi_{P/B}$): 0.65 ACI318-05 - 9.3.2.2 Steel Elastic Modulus: 29000 ksi Design Moment (M,): 2668.1 k-ft Factored Nominal Moment Capacity ($\phi_B M_n$): 19276.7 k-ft - ACI318-05 - 10.2 $M_u/\phi_B M_n$: 0.14 Result: OK Design Shear (V_u): 308.6 k Factored Nominal Shear Capacity $(\phi_V V_p)$: 603.4 k - ACI318-05 - 11.3.1.1 or 11.5.7.2 $V_u/\phi_V V_n$: 0.51 Result: OK Design Tension (T_{...}): 0.0 kFactored Nominal Tension Capacity $(\phi_T T_n)$: 4380.5 k - ACI318-05 - 10.2 $T_{II}/\phi_T T_n$: 0.00 Result: OK Design Compression (P_{II}): 51.7 k Factored Nominal Compression Capacity $(\phi_P P_n)$: 14164.4 k - ACI318-05 - 10.3.6.2

0.00 Result: OK

 $P_u/\phi_P P_n$:

ESN wireless.

DISH WIRELESS, L.L.C. SITE ID:

BOBDL00153B

DISH WIRELESS, L.L.C. SITE ADDRESS:

289 MOUNTAIN STREET HARTFORD, CT 06106

CONNECTICUT CODE COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:

CODE TYPE BUILDING

CODE
2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS
2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS

	SHEET INDEX			
SHEET NO.	SHEET TITLE			
T-1	TITLE SHEET			
A-0	EXISTING SURVEY			
A-1	OVERALL AND ENLARGED SITE PLAN			
A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE			
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS			
A-4	EQUIPMENT DETAILS			
A-5	EQUIPMENT DETAILS			
A-6	EQUIPMENT DETAILS			
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES			
E-2	ELECTRICAL DETAILS			
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE			
G-1	GROUNDING PLANS AND NOTES			
G-2	GROUNDING DETAILS			
G-3	GROUNDING DETAILS			
RF-1	RF CABLE COLOR CODE			
GN-1	LEGEND AND ABBREVIATIONS			
GN-2	GENERAL NOTES			
GN-3	GENERAL NOTES			
GN-4	GENERAL NOTES			

SCOPE OF WORK

THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIPMENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:

- TOWER SCOPE OF WORK:

 INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR)

 INSTALL (1) PROPOSED ANTENNA PLATFORM MOUNT
- INSTALL PROPOSED JUMPERS
- INSTALL (6) PROPOSED RRUS (2 PER SECTOR)
 INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP)
- INSTALL (1) PROPOSED HYBRID CABLE

- GROUND SCOPE OF WORK:
 INSTALL (1) PROPOSED METAL PLATFORM
- (1) PROPOSED ICE BRIDGE (1) PROPOSED PPC CABINET INSTALL
- INSTALL (1) PROPOSED EQUIPMENT CABINET
- INSTALL PROPOSED POWER CONDUIT
- INSTALL (1) PROPOSED TELCO CONDUIT PROPOSED TELCO-FIBER BOX
- INSTALL (1) PROPOSED GPS UNIT
- PROPOSED SAFETY SWITCH (IF REQUIRED)
- INSTALL (1) PROPOSED CIENA BOX (IF REQUIRED)

UNDERGROUND SERVICE ALERT CBYD 811 UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455 WWW.CBYD.COM

CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL

THE PROJECT DEPICTED IN THESE PLANS QUALIFIES AS AN ELIGIBLE FACILITIES REQUEST ENTITLED TO EXPEDITED REVIEW UNDER 47 U.S.C. § 1455(A) AS A MODIFICATION OF AN EXISTING WIRELESS TOWER THAT INVOLVES THE COLLOCATION, REMOVAL, AND/OR REPLACEMENT OF TRANSMISSION EQUIPMENT THAT IS NOT A SUBSTANTIAL CHANGE UNDER CFR § 1.61000 (B)(7).

11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

HARTFORD, CT 06106 LITTLETON, CO 80120 TOWER TYPE: MONOPOLE TOWER OWNER: AMERICAN TOWER TOWER CO SITE ID: 302481 10 PRESIDENTIAL WAY WOBURN, MA 01801 TOWER APP NUMBER: 13726719_D2 ATC TOWER SERVICES, LLC COUNTY: HARTFORD **ENGINEER:** 3500 REGENCY PARKWAY SUITE 100 LATITUDE (NAD 83): CARY, NC 27518 41° 43' 35,650" N 41.72656944 LONGITUDE (NAD 83): 72° 42' 29.410" W -72,70816944 SITE ACQUISITION: DAVID GOODFELLOW ZONING JURISDICTION: TOWN OF HARTFORD DAVID.GOODFELLOW@DISH.CO ZONING DISTRICT: RESIDENTIAL CONSTRUCTION MANAGER: JAVIER SOTO HTFD-000144-000714 -000129 PARCEL NUMBER: JAVIER.SOTO@DISH.COM BOSSENER CHARLES OCCUPANCY GROUP: RF ENGINEER: BOSSENER.CHARLES@DISH.CO CONSTRUCTION TYPE: II-B POWER COMPANY: CONNECTICUT LIGHT & POWER

PROJECT DIRECTORY

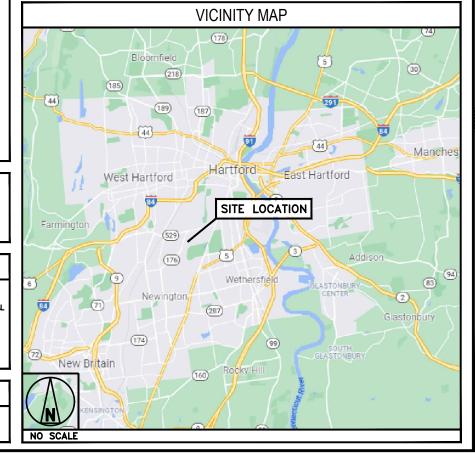
DISH WIRELESS, L.L.C.

5701 SOUTH SANTA FE DRIVE

SITE INFORMATION

PROPERTY OWNER:

TELEPHONE COMPANY: AT&T


ADDRESS:

THE METROPOLITAN DISTRICT

289 MOUNTAIN STREET

DIRECTIONS

FROM HARTFORD TAKE MAPLE AVENUE SOUTH TO WHITE STREET. TURN RIGHT ONTO WHITE STREET AND FOLLOW TO MOUNTAIN ROAD AND TURN LEFT. FOLLOW MOUNTAIN ROAD TO THE END WHERE THE ACCESS GATE WILL BE FOR THE ACCESS ROAD (METROPOLITAN DISTRICT COMMISSION SIGN ON GATE)

5701 SOUTH SANTA FF DRIVE LITTLETON, CO 80120

AMERICAN TOWER A.T. ENGINEERING SERVICE, PLLC 3500 REGENCY PARKWAY

DRAWN BY:	CHECKED BY	APPROVED BY:
JW	SRF	SRF

RFDS REV #:

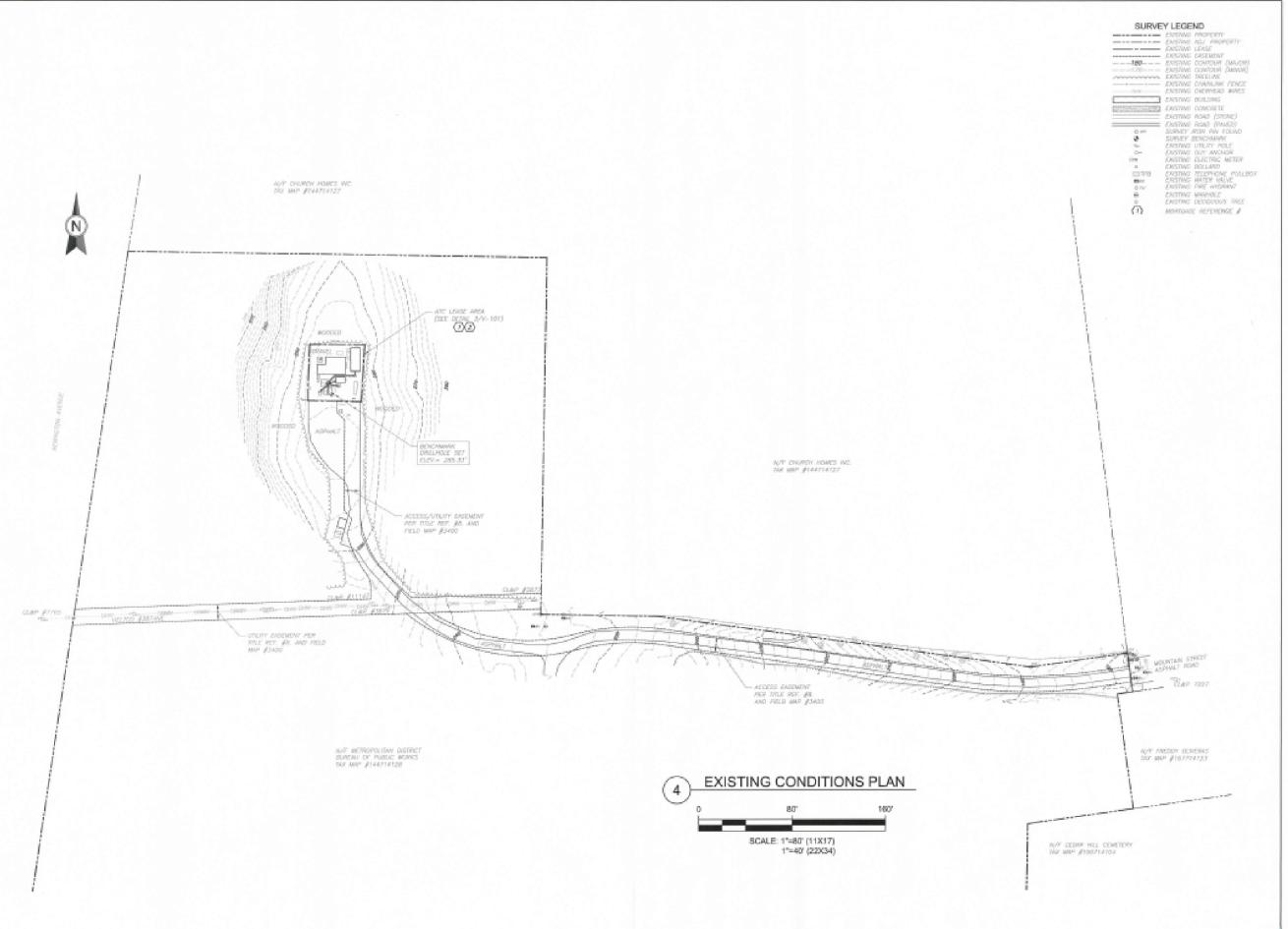
CONSTRUCTION **DOCUMENTS**

	SUBMITTALS		
REV	DATE	DESCRIPTION	
0	09/27/21	ISSUED FOR CONSTRUCTION	
\vdash			
\vdash			

IT IS A VIOLATION OF LAW FOR ANY PERSON, INLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

A&E PROJECT NUMBER

302481-13726719_D2


DISH WIRELESS, L.L.C. PROJECT INFORMATION BOBDL00153B

289 MOUNTAIN STREET HARTFORD, CT 06106

> SHEET TITLE TITLE SHEET

SHEET NUMBER

T-1

ATC TOWER SERVICES, INC

3533 REGENCY PARKWAY SUITE 133 CARY, NC 27551 PHONE: (919) 468-0145 COA: D-0204

THESE DRAWINGS AND/OR THE ACCOMPANYING SPECIFICATION AS INSTRUMENTS OR SERVICE ARE THE EXCLUSIVE PROPERTY OF AMERICAN TOWER. THERE USE AND PUBLICATION SHALL BE RESTRICTED TO THE ORIGINAL SITE OF WHICH THEY ARE PREPARED, ANY USE OR DISCLOSURE OF THE SPECIFIC ARCHITECTURY PROHERFED. TITLE TO THESE DOCUMENTS SHALL REMAIN THE PROPERTY OF THESE DOCUMENTS SHALL REMAIN THE PROPERTY OF THESE DOCUMENTS SHALL REMAIN THE PROPERTY OF THESE PROVIDED OF THE SHALL REMAIN THE PROPERTY OF THE ENGINEER WILL BE PROVIDED ON THE OWNER OF THE SHALL DIMENSIONS AND ADVISE ARCHITECTURY OF THE SHALL DIMENSIONS AND ADVISE ARCHITECTURY OF ANY DESCRIPTION OF THE SHALL DIMENSIONS AND ADVISE ARCHITECTURY OF ANY DESCRIPTION OF THE SHALL DIMENSIONS AND ADVISE ARCHITECTURY OF ANY DESCRIPTION OF THE SHALL DIMENSIONS AND ADVISE ARCHITECTURY.

REV.	DESCRIPTION	BY	DATE
<u> </u>	ISSUED FOR COMMENT	JR	05/21/18
A	ISSUED	SAA	11/20/18

ATC SITE NUMBER:

302481

ATC SITE NAME:

HRFR-SOUTH CONNECTICUT

SITE ADDRESS: 289 MOUNTAIN STREET HARTFORD, CT 06106

SURVEY CERTIFICATE:

I HEREBY DECLARE TO, AND ONLY, TO, THE INDMINDUALS LISTED BELOW THAT TO THE BEST OF MY KNOWLEDGE, INFORMATION, AND BELIEF THIS MAP SIS SUBSTANTIALLY CORRECT. THIS MAP AND SURVEY WERE PREPARED IN ACCORDANCE WITH THE STANDARDS OF A CLASS A-1 SURVEY AS DEFINED IN THE "RECONMENDED STANDARDS FOR SURVEYS AND MAPS IN THE STATE OF CONNECTICUT" AS PREPARED AND ADOPTED BY THE CONNECTICUT ASSOCIATION OF LAND SURVEYORS, INC., ON SEPT. 13 1984, EXCEPT AS NOTED.

AMERICAN TOWER COMMITTEE

SURVEY LOGO:

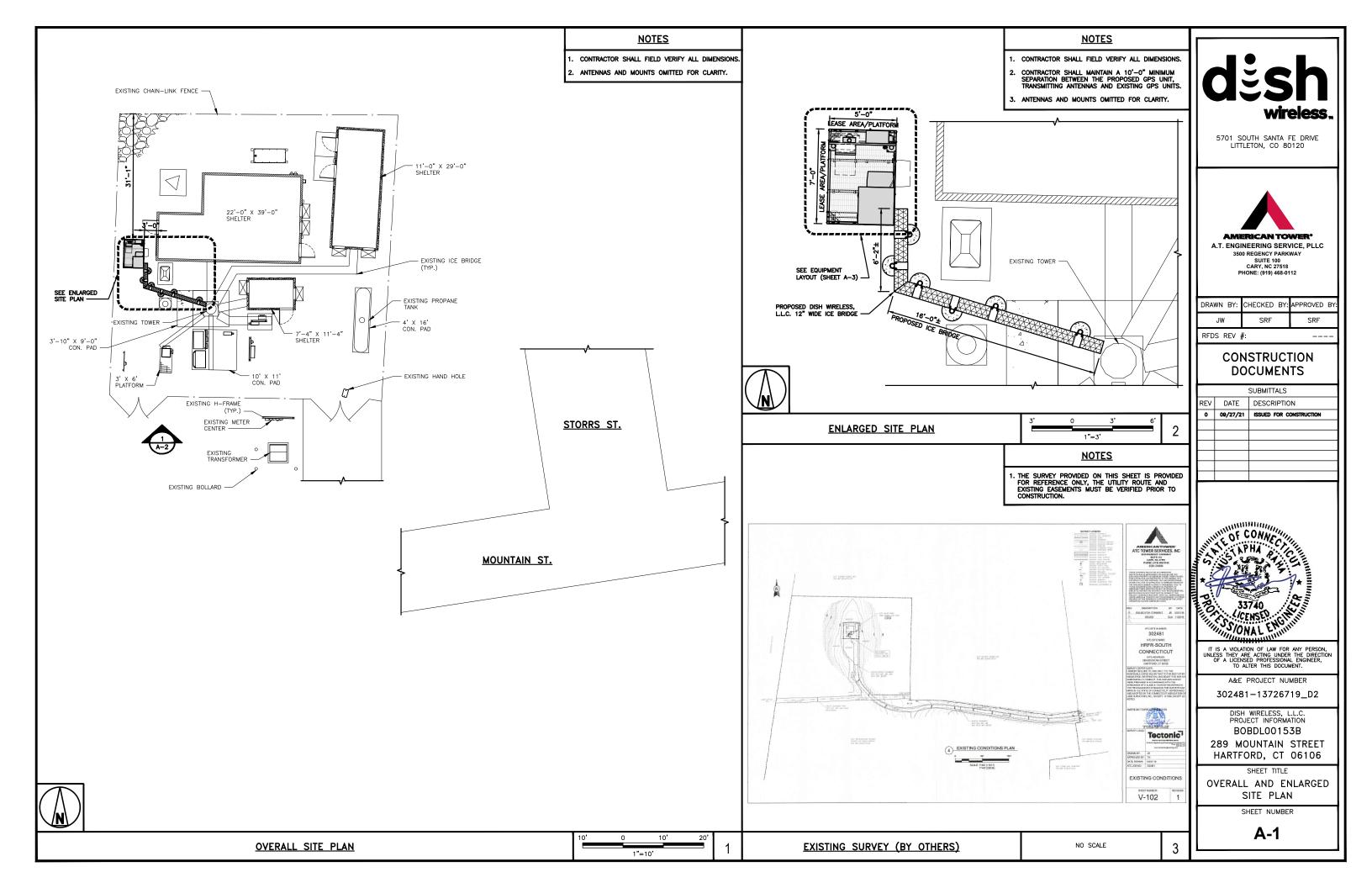
Tectonic PACTOL ISLITION. EXPENSAL ISSUES. TOCCORR. Engineering th Surveying Consultance.

DRAWN BY: JR

APPROVED BY: TH

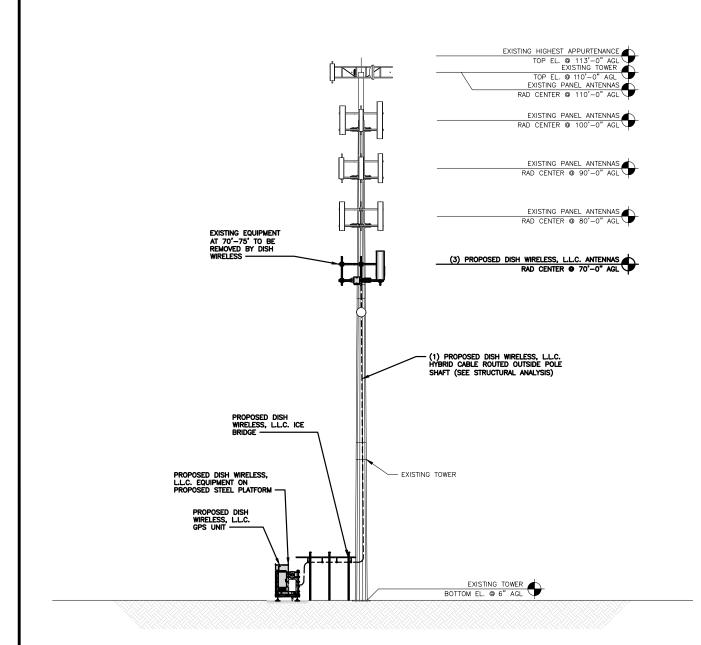
DATE DRAWN: 06/21/18

ATC JOB NO: 302481

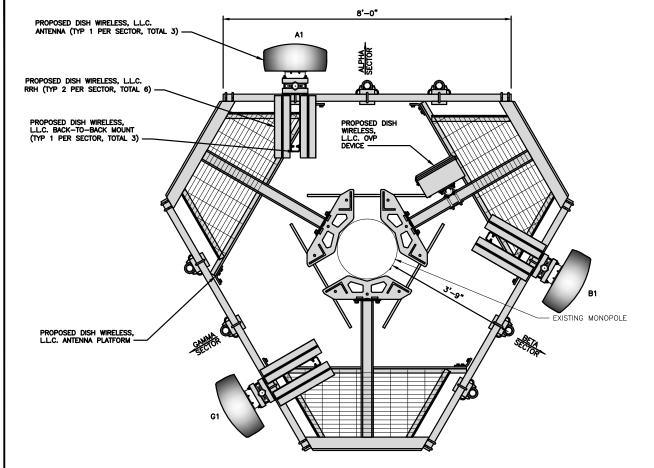

EXISTING CONDITIONS

SHEET NUMBER:

REVISION:


V-102

1



- . CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS.
- 2. ANTENNA AND MW DISH SPECIFICATIONS REFER TO ANTENNA SCHEDULE AND TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS
- . EXISTING EQUIPMENT AND FENCE OMITTED FOR CLARITY.

1"=10'

PROPOSED NORTH ELEVATION

ANTENNA LAYOUT

ANTENNA TRANSMISSION CABLE **SECTOR** POSITION MANUFACTURER - MODEL NUMBER FEED LINE TYPE AND LENGTH EXISTING OR PROPOSED TECHNOLOGY SIZE (HxW) AZIMUTH RAD CENTER ALPHA A1 PROPOSED MX08FR0665-21 72.0" x 20.0" 0. 70**'**–0" (1) HIGH-CAPACITY HYBRID CABLE (110' LONG) BETA **B**1 PROPOSED MX08FR0665-21 5G 72.0" x 20.0" 120° 70'-0" G1 MX08FR0665-21 5G 72.0" x 20.0" 240° 70'-0" PROPOSED

		RRH	
SECTOR	POSITION	MANUFACTURER — MODEL NUMBER	TECHNOLOGY
ALPHA	A1	TA08025-B604	N66 / N70
ALPHA	A1	TA08025-B605	N29 / N71
	B1	TA08025-B604	N66 / N70
BETA	B1	TA08025-B605	N29 / N71
GAMMA	G1	TA08025-B604	N66 / N70
	G1	TA08025-B605	N29 / N71

<u>NOTES</u>

CONTRACTOR TO REFER TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS.

3/4"=1'-0"

ANTENNA AND RRH MODELS MAY CHANGE DUE TO EQUIPMENT AVAILABILITY, ALL EQUIPMENT CHANGES MUST BE APPROVED AND REMAIN IN COMPLIANCE WITH THE PROPOSED DESIGN AND STRUCTURAL ANALYSES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

AMERICAN TOWER® A.T. ENGINEERING SERVICE, PLLC

3500 REGENCY PARKWAY SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
JW		SRF		SRF	

RFDS REV #:

CONSTRUCTION **DOCUMENTS**

		SUBMITTALS		
REV	DATE	DESCRIPTION		
0	09/27/21	ISSUED FOR CONSTRUCTION		

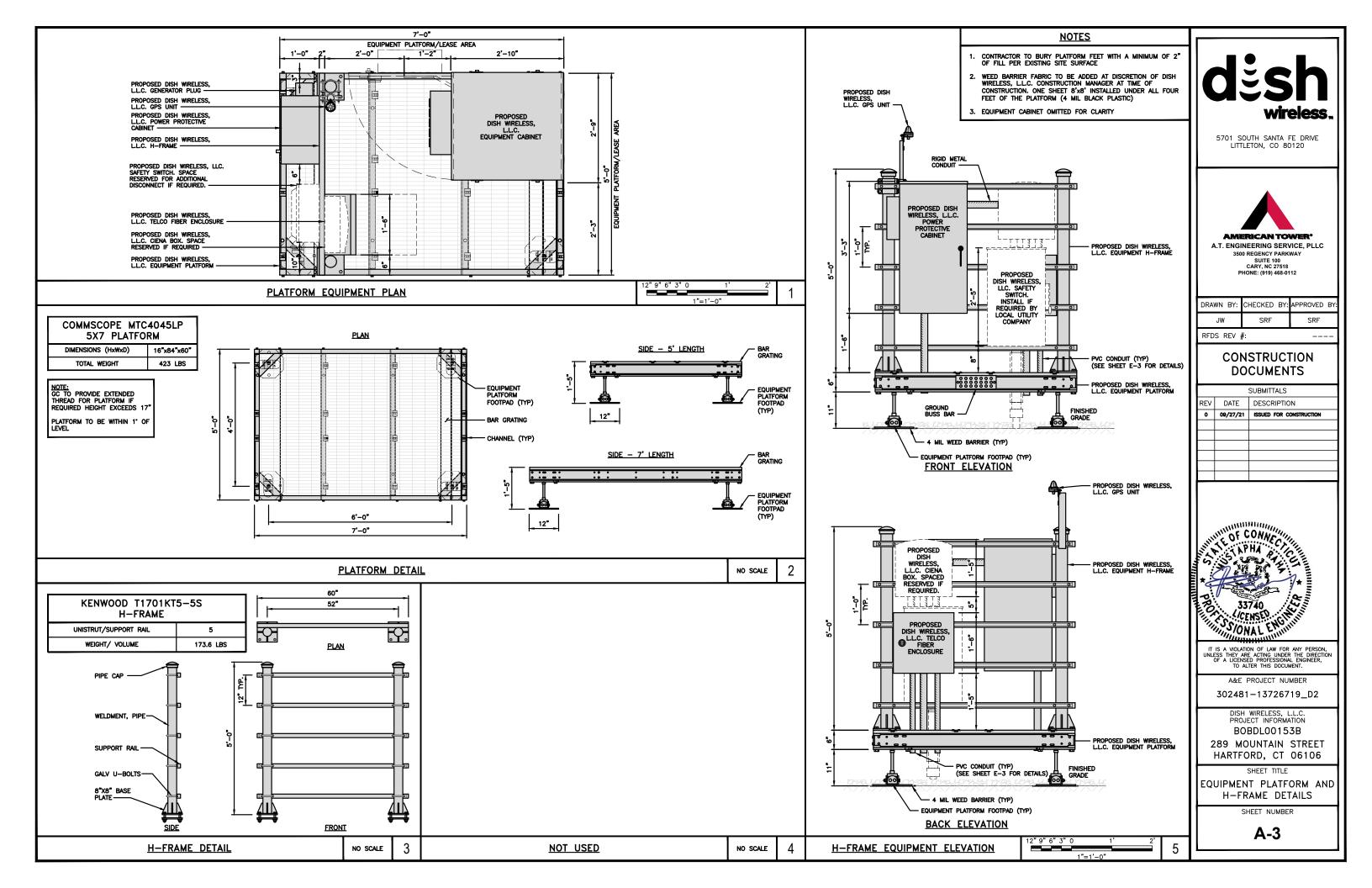
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

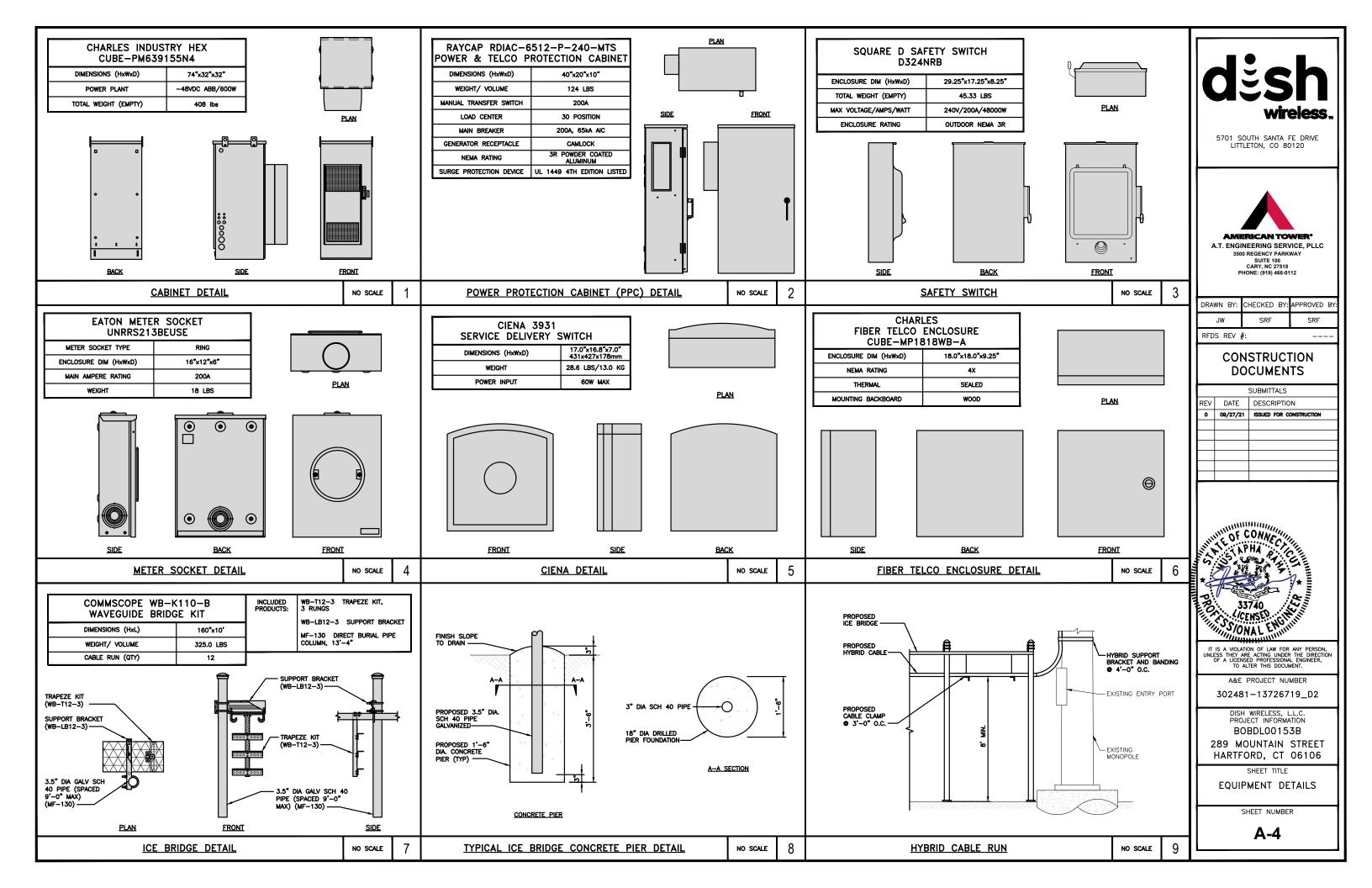
A&E PROJECT NUMBER

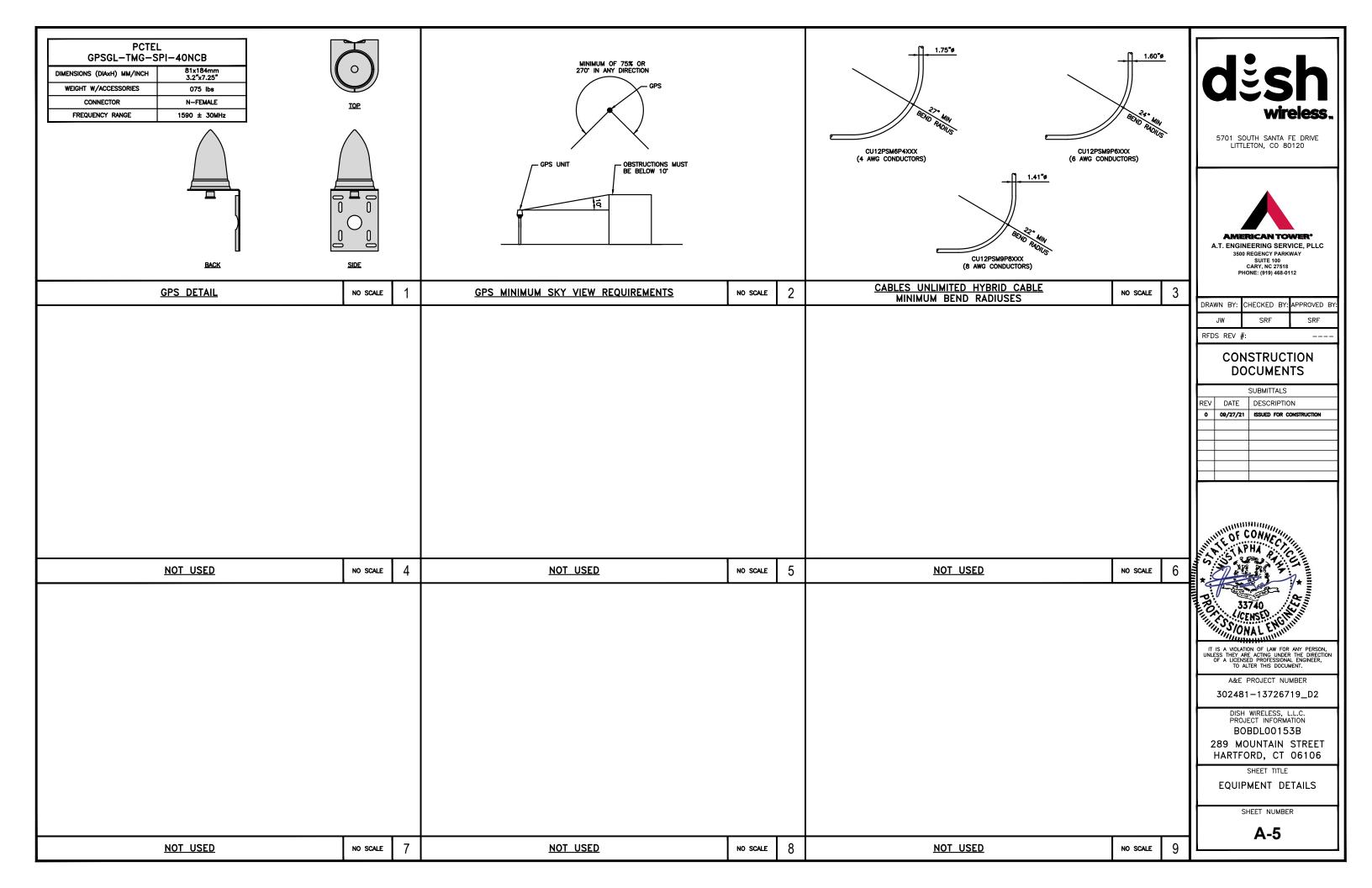
302481-13726719_D2

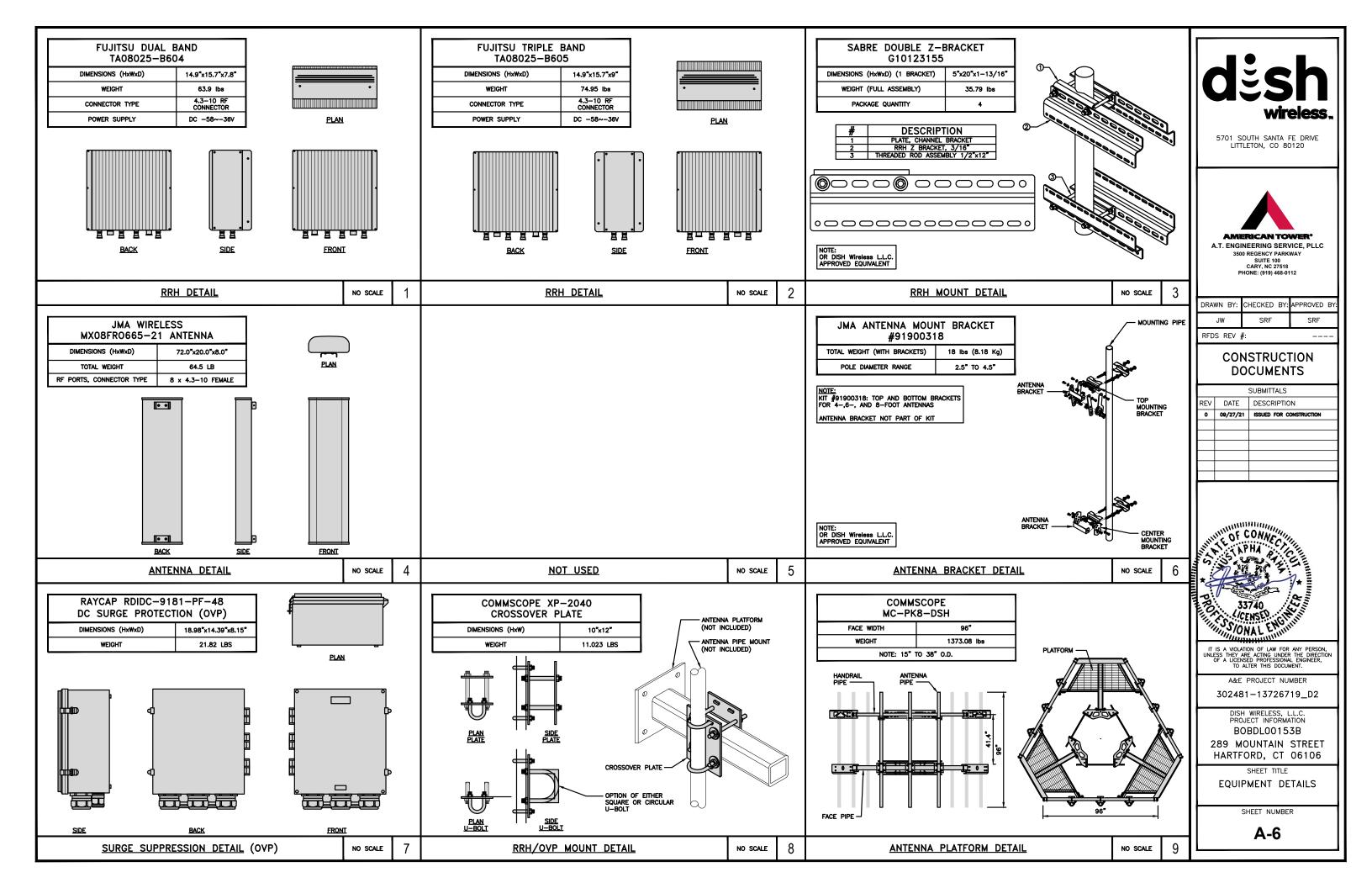
DISH WIRELESS, L.L.C. PROJECT INFORMATION BOBDL00153B

289 MOUNTAIN STREET HARTFORD, CT 06106

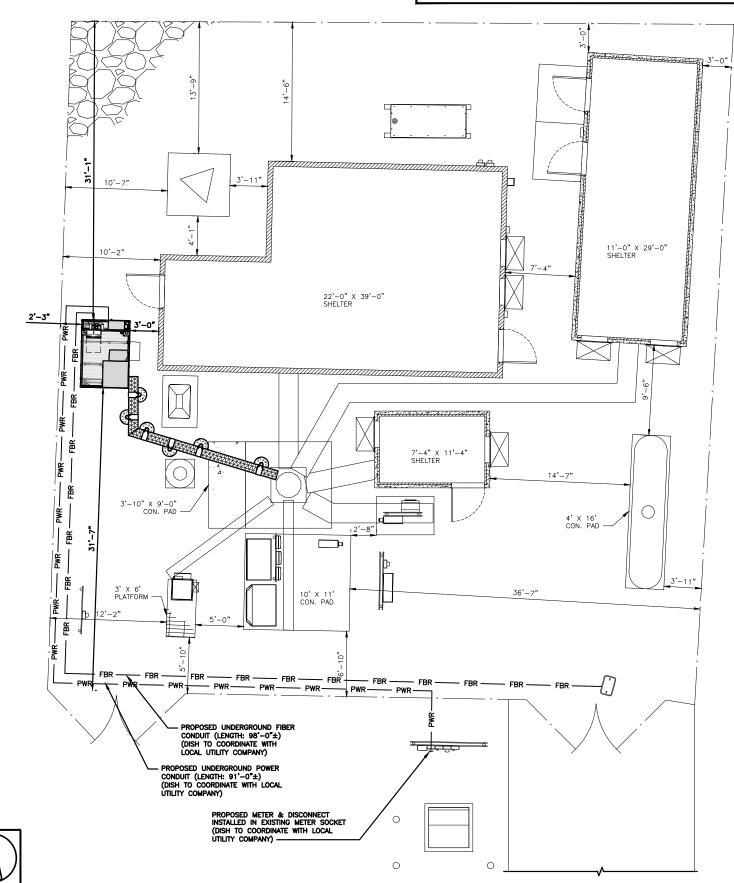

SHEET TITLE ELEVATION, ANTENNA LAYOUT AND SCHEDULE


SHEET NUMBER

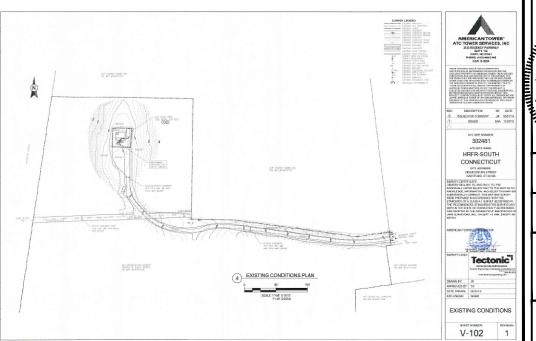

A-2


ANTENNA SCHEDULE

NO SCALE



- CONTRACTOR MUST VERIFY THAT THE PROPOSED UTILITY ROUTES ARE WITHIN AMERICAN TOWER'S EASEMENT.
- ANTENNAS AND MOUNTS OMITTED FOR CLARITY.


DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING $\pm 24V$ and $\pm 48V$ conductors. RED MARKINGS SHALL IDENTIFY $\pm 48V$.

- CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
- ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS.
- 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
- CONDUIT ROUGH-IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS. VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
- 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
- 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
- 7. CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
- 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
- 9. INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250. THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL DISCONNECT SWITCHES, AND
- 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.
- 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT.
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS.
- 13. ALL TRENCHES IN COMPOUND TO BE HAND DUG

ELECTRICAL NOTES NO SCALE

NOTES

THE SURVEY PROVIDED ON THIS SHEET IS PROVIDED FOR REFERENCE ONLY, THE UTILITY ROUTE AND EXISTING EASEMENTS MUST BE VERIFIED PRIOR TO CONSTRUCTION.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

AMERICAN TOWER® A.T. ENGINEERING SERVICE, PLLC

3500 REGENCY PARKWAY SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112

DRAWN BY:	CHECKED BY:	APPROVED BY:
JW	SRF	SRF

RFDS REV #:

CONSTRUCTION **DOCUMENTS**

	SUBMITTALS			
REV	DATE	DESCRIPTION		
0	09/27/21	ISSUED FOR CONSTRUCTION		

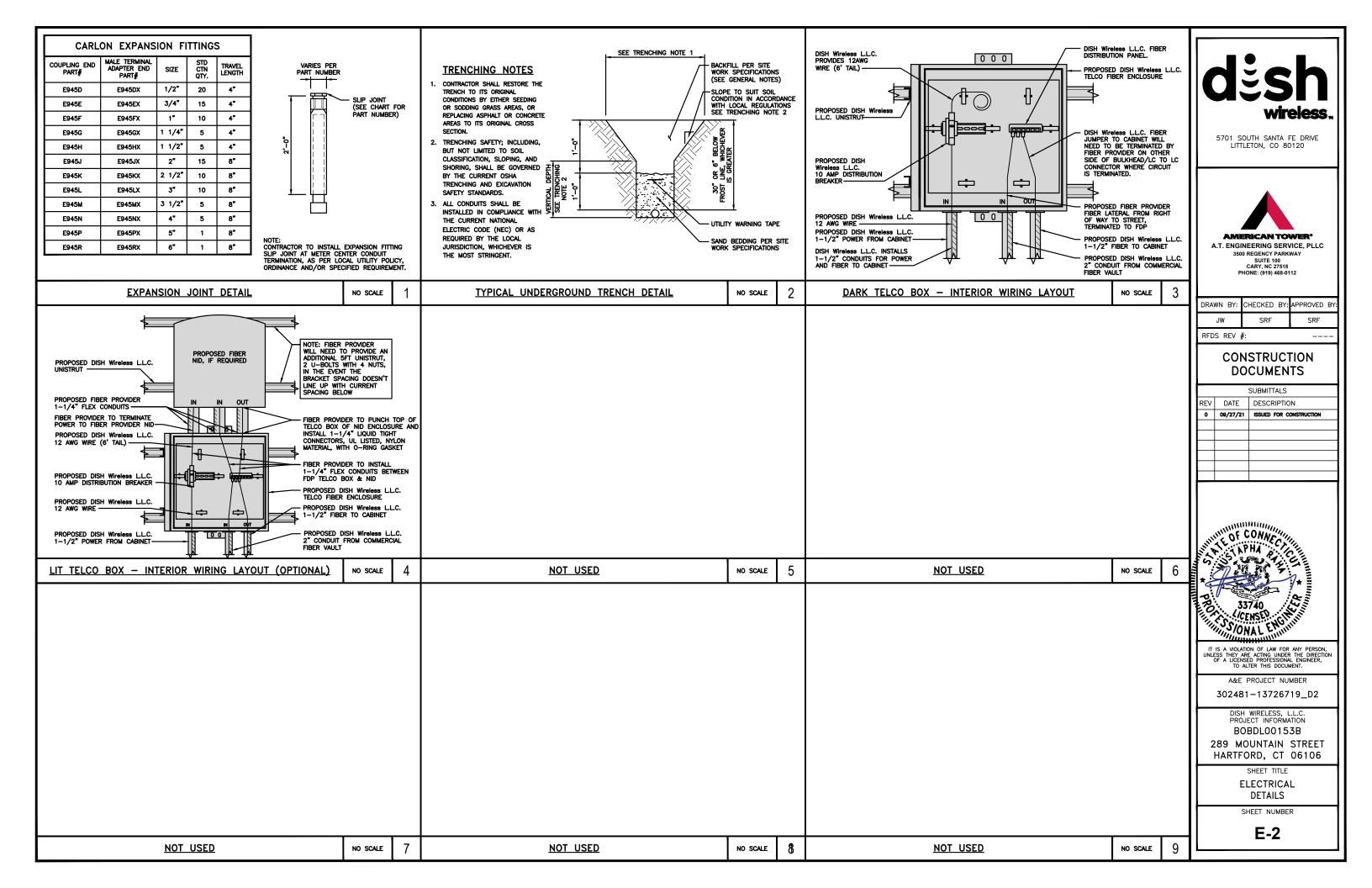
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

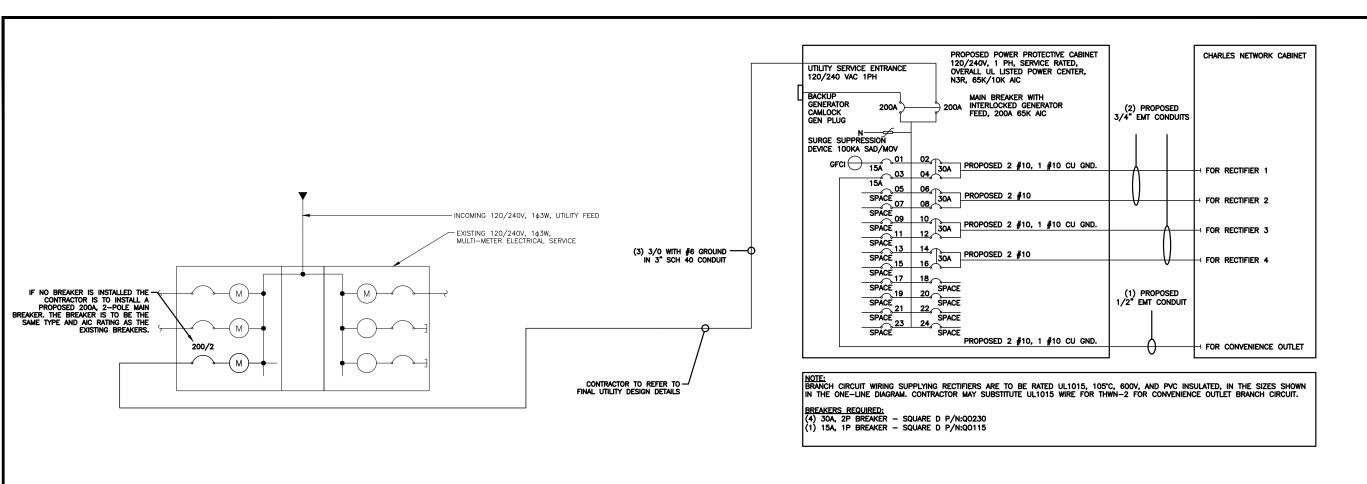
A&E PROJECT NUMBER

302481-13726719_D2

DISH WIRELESS, L.L.C. PROJECT INFORMATION BOBDL00153B

289 MOUNTAIN STREET HARTFORD, CT 06106

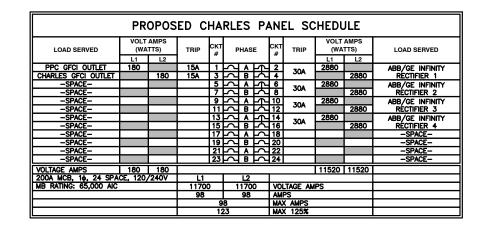

SHEET TITLE ELECTRICAL/FIBER ROUTE PLAN AND NOTES


SHEET NUMBER

E-1

3/16"=1'-0"

NO SCALE



2

NO SCALE

PPC ONE-LINE DIAGRAM NO SCALE 1

PANEL SCHEDULE

NOT USED NO SCALE 3

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

AMERICAN TOWER®

A.T. ENGINEERING SERVICE, PLLC
3500 REGENCY PARKWAY

3500 REGENCY PARKWAY SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
JW		SRF		SRF	

RFDS REV #:

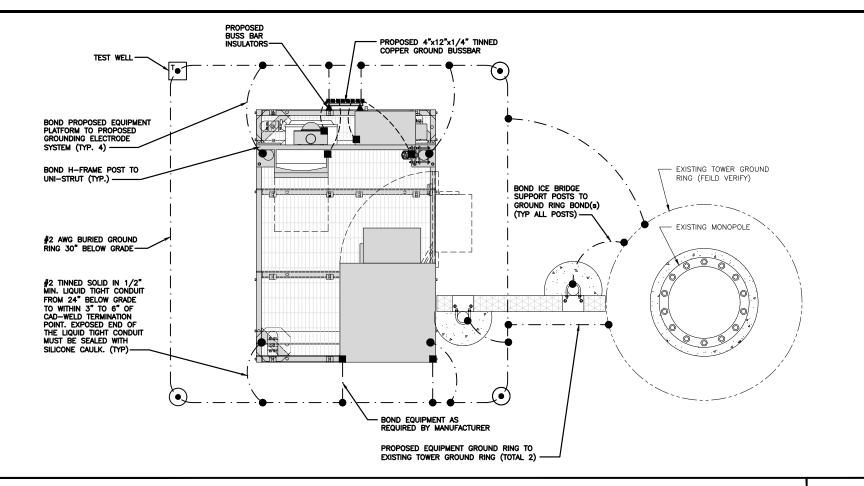
CONSTRUCTION DOCUMENTS

1		SUBMITTALS				
1	REV	DATE	DESCRIPTION			
1	0	09/27/21	ISSUED FOR CONSTRUCTION			
1						
┫						
1						
4						
- 1						

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

A&E PROJECT NUMBER

302481-13726719_D2

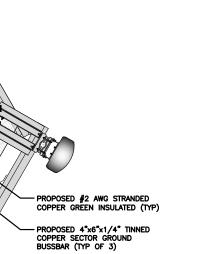

DISH WIRELESS, L.L.C.
PROJECT INFORMATION
BOBDLO0153B
289 MOUNTAIN STREET

HARTFORD, CT 06106

ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE

SHEET NUMBER

E-3



TYPICAL EQUIPMENT GROUNDING PLAN

NO SCALE

ANTENNAS AND OVP SHOWN ARE GENERIC AND NOT REFERENCING TO A SPECIFIC MANUFACTURER. THIS LAYOUT IS FOR REFERENCE ONLY

PROPOSED UPPER TOWER GROUND BAR

INSULATORS (TYP)

 EXOTHERMIC CONNECTION MECHANICAL CONNECTION

GROUND BUS BAR

GROUND ROD

(•)

TEST GROUND ROD WITH INSPECTION SLEEVE

---- #2 AWG STRANDED & INSULATED

 $-\cdot--\cdot$ #2 AWG SOLID COPPER TINNED ▲ BUSS BAR INSULATOR

GROUNDING LEGEND

- 1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.
- CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM. GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH WIRELESS, L.L.C. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS.
- 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED.

GROUNDING KEY NOTES

- A EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW GRADE, OR 6 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM THE EXTERIOR WALL OR FOOTING.
- B TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS, AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN BROWNERS FOR THE TOWER'S LEGS, AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS.
- © Interior ground ring: #2 awg stranded green insulated copper conductor extended around the perimeter of the equipment area. All non-telecommunications related metallic objects found within a site shall be grounded to the interior ground ring with #6 awg stranded green
- D BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS SHALL BE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE CORNERS OF THE
- F CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GREEN INSULATED COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUCTORS.
- G HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH.
- (H) EXTERIOR CABLE ENTRY PORT GROUND BARS; LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING, BOND TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTORS WITH AN EXOTHERMIC WELD AND INSPECTION SLEEVE.
- J TELCO GROUND BAR: BOND TO BOTH CELL REFERENCE GROUND BAR OR EXTERIOR GROUND RING.
- K FRAME BONDING: THE BONDING POINT FOR TELECOM EQUIPMENT FRAMES SHALL BE THE GROUND BUS THAT IS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEWORK.
- INTERIOR UNIT BONDS; METAL FRAMES, CABINETS AND INDIVIDUAL METALLIC UNITS LOCATED WITH THE AREA OF THE INTERIOR GROUND RING REQUIRE A #6 AWG STRANDED GREEN INSULATED COPPER BOND TO THE
- M FENCE AND GATE GROUNDING: METAL FENCES WITHIN 7 FEET OF THE EXTERIOR GROUND RING OR OBJECTS BONDED TO THE EXTERIOR GROUND RING SHALL BE BONDED TO THE GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEEDING 25 FEET. BONDS SHALL BE MADE AT EACH
- $\underbrace{\text{N}}_{\text{EXTERIOR UNIT BONDS:}} \text{ METALLIC OBJECTS, EXTERNAL TO OR MOUNTED TO THE BUILDING, SHALL BE BONDED TO THE EXTERIOR GROUND RING. USING <math>\#2$ TINNED SOLID COPPER WIRE
- (P) ICE BRIDGE SUPPORTS: EACH ICE BRIDGE LEG SHALL BE BONDED TO THE GROUND RING WITH #2 AWG BARE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRIDGE LEG AND BURIED
- (R) TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICALLY BONDED TO PROPOSED ANTENNA MOUNT COLLAR.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

MERICAN TOWER A.T. ENGINEERING SERVICE, PLLC

> 3500 REGENCY PARKWAY SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112

DRAWN BY:	CHECKED BY:	APPROVED BY:
JW	SRF	SRF

RFDS REV #

CONSTRUCTION **DOCUMENTS**

ı		SUBMITTALS			
ı	REV	DATE	DESCRIPTION		
- 1	0	09/27/21	ISSUED FOR CONSTRUCTION		
ı					
- 1					
ı					
ı					
ı					
- 1					

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

A&E PROJECT NUMBER

302481-13726719_D2

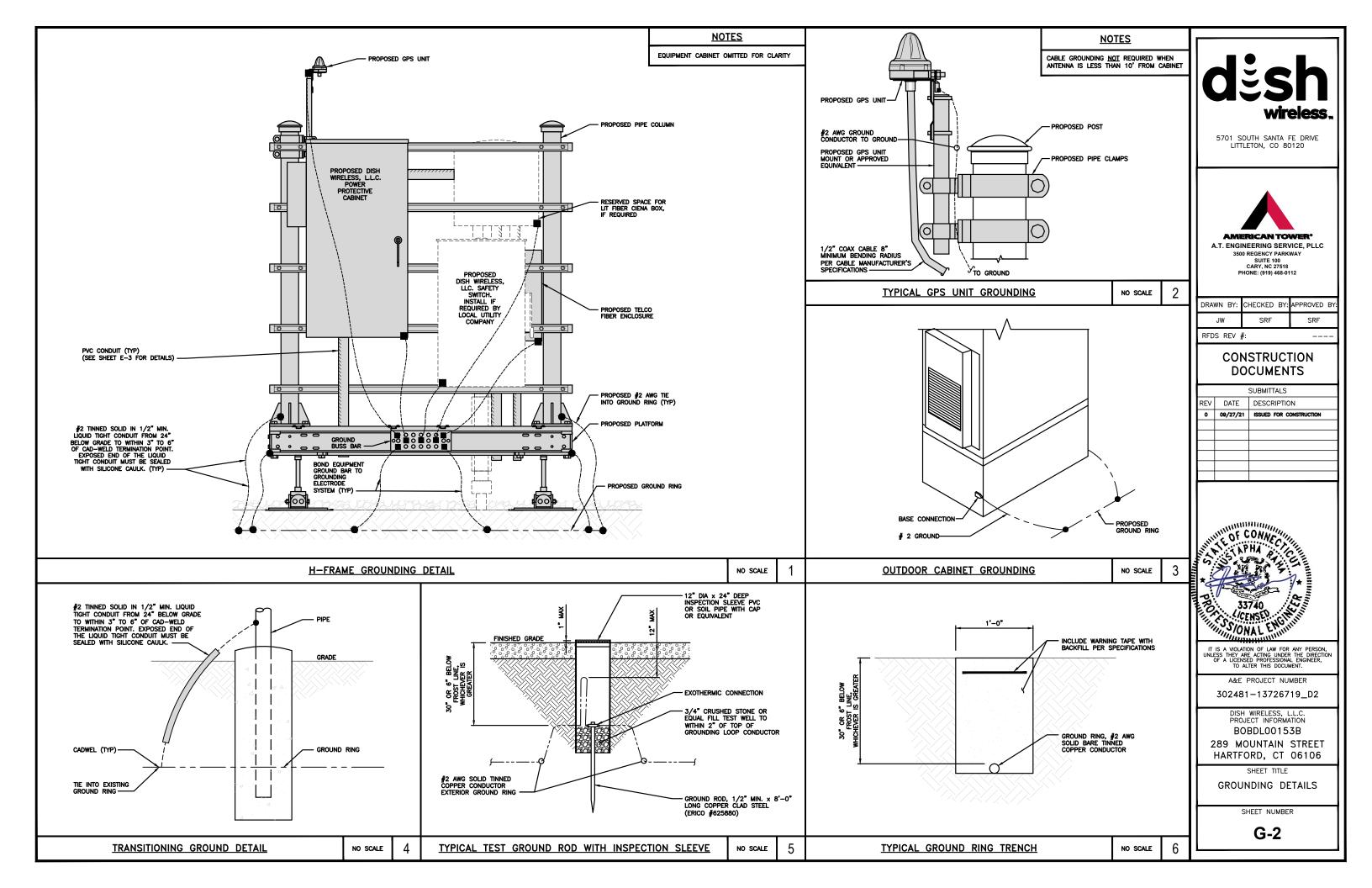
DISH WIRELESS, L.L.C. PROJECT INFORMATION BOBDL00153B

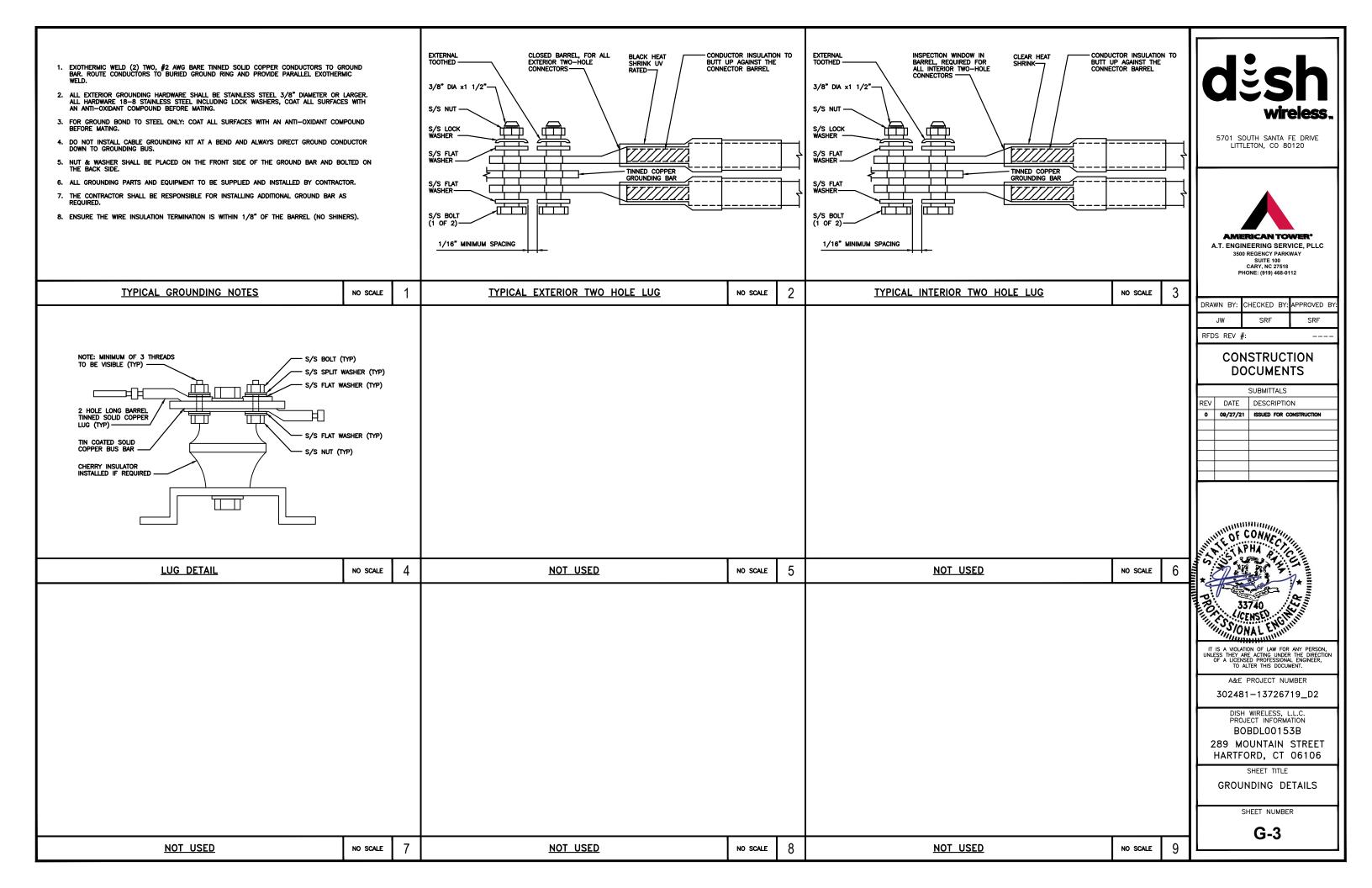
289 MOUNTAIN STREET HARTFORD, CT 06106

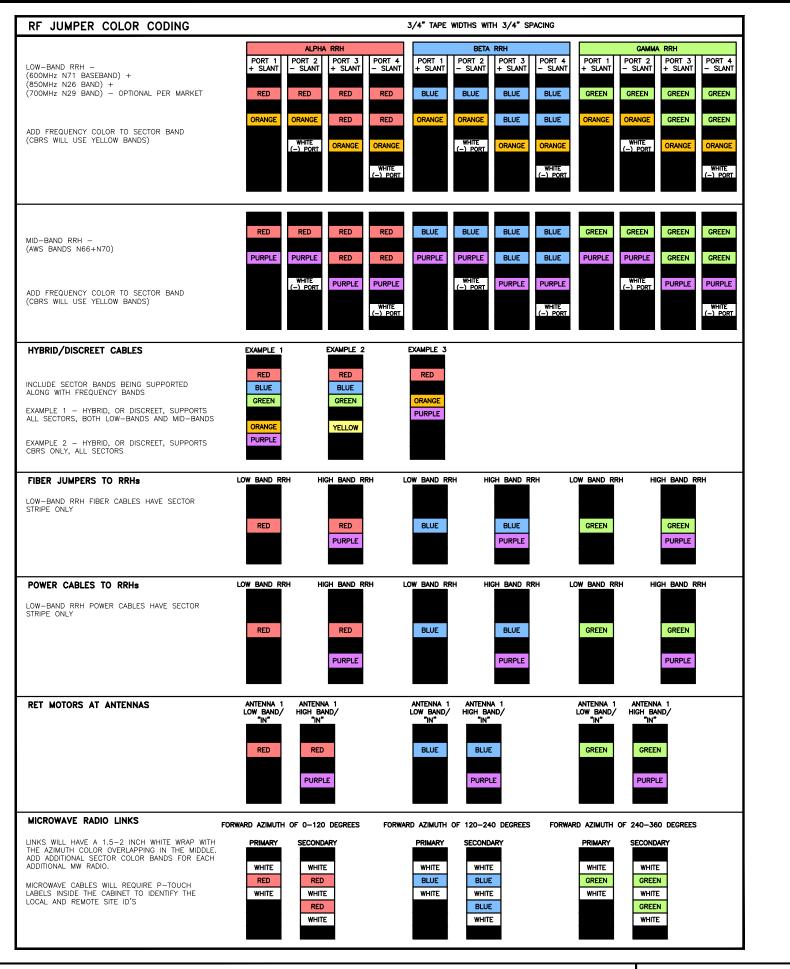
> SHEET TITLE GROUNDING PLANS AND NOTES

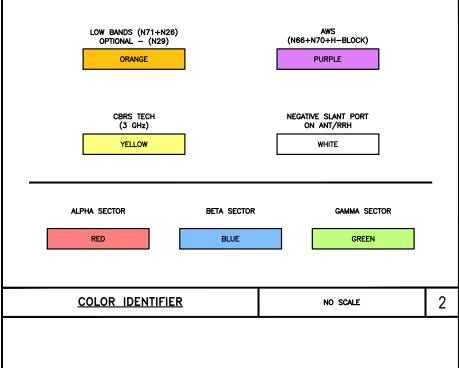
> > SHEET NUMBER

G-1


Q DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEMENTS AND INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICE CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPPED WITH A MASTER DC SYSTEM RETURN GROUND CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED TO THE CELL SITE REFERENCE (COLUMN) BAR REFER TO DISH WIRELESS, L.L.C. GROUNDING NOTES.


TYPICAL ANTENNA GROUNDING PLAN


NO SCALE


GROUNDING KEY NOTES

NO SCALE

NOT USED

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

A.T. ENGINEERING SERVICE, PLLC 3500 REGENCY PARKWAY SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112

-	DRAWN BY:	CHECKED BY:	APPROVED E	βY
	JW	SRF	SRF	

RFDS REV #:

CONSTRUCTION DOCUMENTS

		SUBMITTALS
REV	DATE	DESCRIPTION
0	09/27/21	ISSUED FOR CONSTRUCTION

3

NO SCALE

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

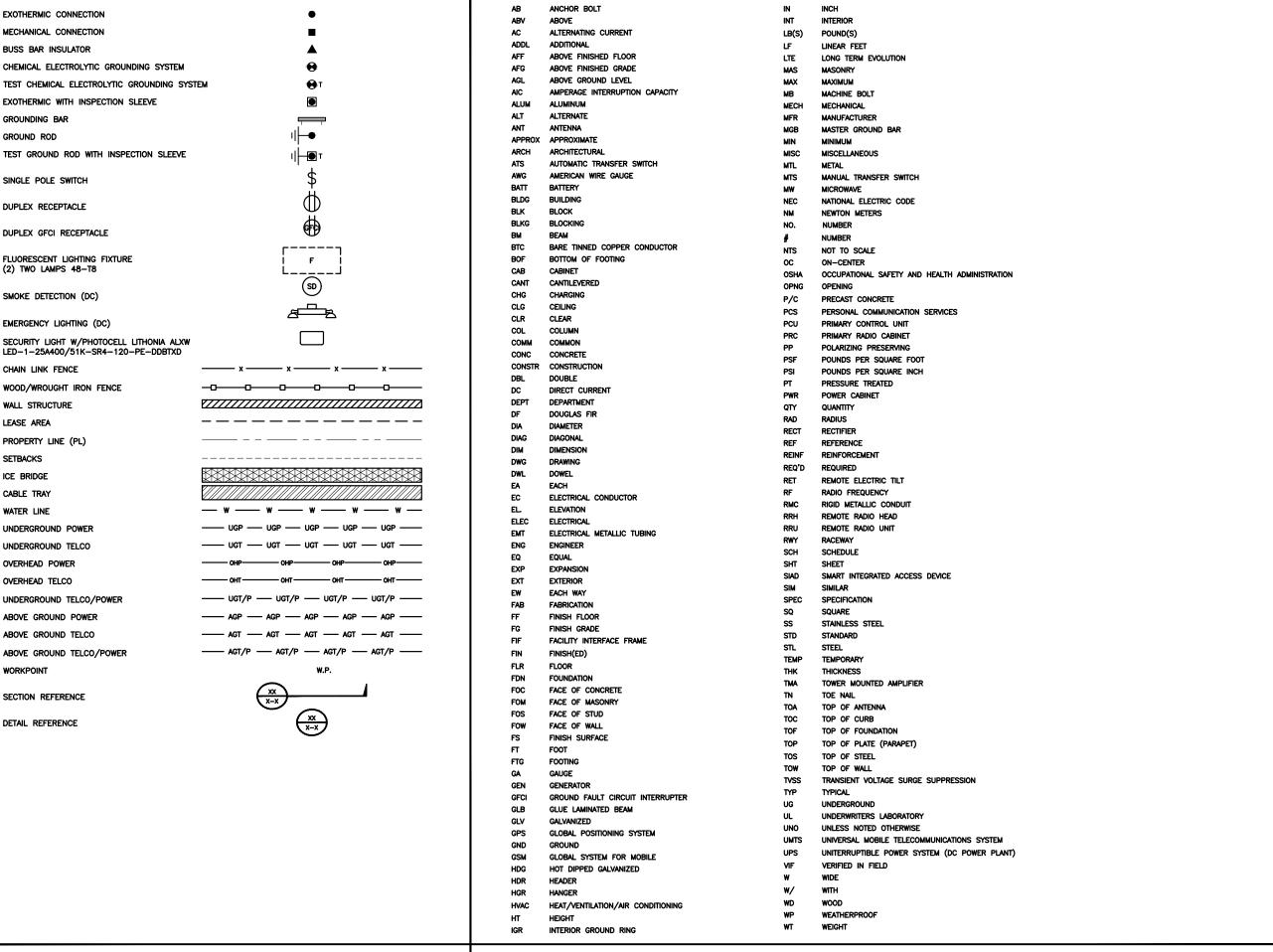
A&E PROJECT NUMBER

302481-13726719_D2

DISH WIRELESS, L.L.C. PROJECT INFORMATION BOBDLO0153B

289 MOUNTAIN STREET HARTFORD, CT 06106

SHEET TITLE


RF

CABLE COLOR CODES

SHEET NUMBER

RF-1

RF CABLE COLOR CODES NO SCALE 1 NOT USED NO SCALE 4

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

AMERICAN TOW

A.T. ENGINEERING SERVICE, PLLC 3500 REGENCY PARKWAY SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112

.1\0		CDE			
DRAWN	BY:	CHECKED	BY:	APPROVED	BY:

RFDS REV #:

CONSTRUCTION DOCUMENTS

		SUBMITTALS			
ı	REV	DATE	DESCRIPTION		
ı	0	09/27/21	ISSUED FOR CONSTRUCTION		
ı					
ı					
ı					
ı					
1					

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

A&E PROJECT NUMBER

302481-13726719_D2

DISH WIRELESS, L.L.C. PROJECT INFORMATION

BOBDL00153B 289 MOUNTAIN STREET HARTFORD, CT 06106

SHEET TITLE

LEGEND AND
ABBREVIATIONS

SHEET NUMBER

GN-1

<u>LEGEND</u>

ABBREVIATIONS

SITE ACTIVITY REQUIREMENTS:

- 1. NOTICE TO PROCEED NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH WIRELESS, L.L.C. AND TOWER OWNER NOC & THE DISH WIRELESS, L.L.C. AND TOWER CONSTRUCTION MANAGER.
- 2. "LOOK UP" DISH WIRELESS, L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH WIRELESS, L.L.C. AND DISH WIRELESS, L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

- 3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
- 4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELESS, L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).
- 5. ALL SITE WORK TO COMPLY WITH DISH WIRELESS, L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH WIRELESS, L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
- 6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH WIRELESS, L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.
- 11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
- 12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIRELESS, L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.
- 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
- 15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
- 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.
- 18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION, TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.
- 22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH WIRELESS, L.L.C.

TOWER OWNER:TOWER OWNER

- 2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
- 3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.
- 4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.
- 5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.
- 6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION
- 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.
- 12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH WIRELESS, L.L.C. AND TOWER OWNER
- 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

AMERICAN TOWER®

A.T. ENGINEERING SERVICE, PLLC

3500 REGENCY PARKWAY

3500 REGENCY PARKWAY SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112

DRAWN BY:	CHECKED BY:	APPROVED BY:	l
JW	SRF	SRF	l

RFDS REV #:

CONSTRUCTION DOCUMENTS

	SUBMITTALS		
REV	DATE	DESCRIPTION	
٥	09/27/21	ISSUED FOR CONSTRUCTION	

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

A&E PROJECT NUMBER

302481-13726719_D2

DISH WIRELESS, L.L.C. PROJECT INFORMATION BOBDLO0153B

289 MOUNTAIN STREET HARTFORD, CT 06106

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GN-2

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

- 1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST—IN—PLACE CONCRETE.
- 2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.
- 3. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi at 28 days, unless noted otherwise. No more than 90 minutes shall elapse from batch time to time of placement unless approved by the engineer of record. Temperature of concrete shall not exceed 90°f at time of placement.
- 4. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.
- 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

- 6. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:
- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- · CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2"
- 7. A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

- 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.
- 2. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
- 3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
- 4. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.
- 4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.
- 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.
- 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR—CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
- 6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).
- 7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.
- 8. TIE WRAPS ARE NOT ALLOWED.
- 9. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.
- 12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP—STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75° C (90° C IF AVAILABLE).
- 14. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.
- 15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

- 6. ELECTRICAL METALLIC TUBING (EMT) OR METAL—CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.
- 18. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- 19. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.
- 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE NEC.
- 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).
- 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).
- 23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.
- 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY—COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS.
- 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH WIRELESS, L.L.C. AND TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- 28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH WIRELESS, L.L.C.".
- 30. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

AMERICAN TOWER® A.T. ENGINEERING SERVICE, PLLC

3500 REGENCY PARKWAY SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112

DRAWN BY:	CHECKED BY:	APPROVED BY:	
JW	SRF	SRF	

RFDS REV #:

CONSTRUCTION DOCUMENTS

	SUBMITTALS		
REV	DATE	DESCRIPTION	
۰	09/27/21	ISSUED FOR CONSTRUCTION	

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

A&E PROJECT NUMBER

302481-13726719_D2

DISH WIRELESS, L.L.C. PROJECT INFORMATION BOBDLO0153B

289 MOUNTAIN STREET HARTFORD, CT 06106

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GN-3

GROUNDING NOTES:

- 1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 2. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
- 4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
- 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
- 8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.
- 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
- 13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.
- 15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.
- 19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
- 21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/O COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

STRUCTURAL STEEL NOTES:

- 1. STRUCTURAL STEEL SHALL CONFORM TO THE LATEST EDITION OF THE AISC "SPECIFICATION FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS."
- 2. STRUCTURAL STEEL ROLLED SHAPES. PLATES AND BARS SHALL CONFORM TO THE FOLLOWING ASTM DESIGNATIONS:
- A. ASTM A-572, GRADE 50 ALL W SHAPES, UNLESS NOTED OR A992 OTHERWISE
- B. ASTM A-36 ALL OTHER ROLLED SHAPES, PLATES AND BARS UNLESS NOTED OTHERWISE.
- C. ASTM A-500, GRADE B HSS SECTION (SQUARE, RECTANGULAR, AND ROUND)
- D. ASTM A-325, TYPE SC OR N ALL BOLTS FOR CONNECTING STRUCTURAL MEMBERS
- E. ASTM F-1554 07 ALL ANCHOR BOLTS, UNLESS NOTED OTHERWISE
- 3. ALL EXPOSED STRUCTURAL STEEL MEMBERS SHALL BE HOT-DIPPED GALVANIZED AFTER FABRICATION PER ASTM A123. EXPOSED STEEL HARDWARE AND ANCHOR BOLTS SHALL BE GALVANIZED PER ASTM A153 OR B695.
- 4. ALL FIELD CUT SURFACES, FIELD DRILLED HOLES AND GROUND SURFACES WHERE EXISTING PAINT OR GALVANIZATION REMOVAL WAS REQUIRED SHALL BE REPAIRED WITH (2) BRUSHED COATS OF ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURER'S RECOMMENDATIONS.
- 5. DO NOT DRILL HOLES THROUGH STRUCTURAL STEEL MEMBERS EXCEPT AS SHOWN AND DETAILED ON STRUCTURAL DRAWINGS.
- 6. CONNECTIONS:
- A. ALL WELDING TO BE PERFORMED BY AWS CERTIFIED WELDERS AND CONDUCTED IN ACCORDANCE WITH THE LATEST EDITION OF THE AWS WELDING CODE D1.1.
- B. ALL WELDS SHALL BE INSPECTED VISUALLY. 25% OF WELDS SHALL BE INSPECTED WITH DYE PENETRANT OR MAGNETIC PARTICLE TO MEET THE ACCEPTANCE CRITERIA OF AWS D1.1. REPAIR ALL WELDS AS NECESSARY.
- C. INSPECTION SHALL BE PERFORMED BY AN AWS CERTIFIED WELD INSPECTOR.
- D. IT IS THE CONTRACTORS RESPONSIBILITY TO PROVIDE BURNING/WELDING PERMITS AS REQUIRED BY LOCAL GOVERNING AUTHORITY AND IF REQUIRED SHALL HAVE FIRE DEPARTMENT DETAIL FOR ANY WELDING ACTIVITY.
- E. ALL ELECTRODES TO BE LOW HYDROGEN, MATCHING FILLER METAL, PER AWS D1.1, UNLESS NOTED OTHERWISE.
- F. MINIMUM WELD SIZE TO BE 0.1875 INCH FILLET WELDS, UNLESS NOTED OTHERWISE.
- G. PRIOR TO FIELD WELDING GALVANIZING MATERIAL, CONTRACTOR SHALL GRIND OFF GALVANIZING ½ BEYOND ALL FIELD WELD SURFACES. AFTER WELD AND WELD INSPECTION IS COMPLETE, REPAIR ALL GROUND AND WELDED SURFACES WITH ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURERS RECOMMENDATIONS.
- H. THE CONTRACTOR SHALL PROVIDE ADEQUATE SHORING AND/OR BRACING WHERE REQUIRED DURING CONSTRUCTION UNTIL ALL CONNECTIONS ARE COMPLETE.
- I. ANY FIELD CHANGES OR SUBSTITUTIONS SHALL HAVE PRIOR APPROVAL FROM THE ENGINEER, AND DISH WIRELESS L.L.C. PROJECT MANAGER IN WRITING

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

A.T. ENGINEERING SERVICE, PLLC 3500 REGENCY PARKWAY SUITE 100 CARY, NC 27518

DRAWN BY: CHECKED BY: APPROVED BY:

JW SRF SRF

RFDS REV #:

CONSTRUCTION DOCUMENTS

	SUBMITTALS		
RE	v	DATE	DESCRIPTION
Ī		09/27/21	ISSUED FOR CONSTRUCTION
L			
┕			
⊢	4		

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

A&E PROJECT NUMBER

302481-13726719_D2

DISH WIRELESS, L.L.C.
PROJECT INFORMATION
BOBDLO0153B
289 MOUNTAIN STREET

HARTFORD, CT 06106

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

_

GN-4