STATE OF CONNECTICUT CONNECTICUT SITING COUNCIL Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov www.ct.gov/csc May 1, 2012 Jennifer Young Gaudet HPC Wireless Services 46 Mill Plain Road, Floor 2 Danbury, CT 06811 RE: EM-CING-064-120413 - New Cingular Wireless PCS, LLC notice of intent to modify an existing telecommunications facility located at 439-455 Homestead Avenue, Hartford, Connecticut. Dear Ms. Gaudet: The Connecticut Siting Council (Council) hereby acknowledges your notice to modify this existing telecommunications facility, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies with the following conditions: - Any deviation from the proposed modification as specified in this notice and supporting materials with Council shall render this acknowledgement invalid; - Any material changes to this modification as proposed shall require the filing of a new notice with the Council; - Not less than 45 days after completion of construction, the Council shall be notified in writing that construction has been completed; - The validity of this action shall expire one year from the date of this letter; and - The applicant may file a request for an extension of time beyond the one year deadline provided that such request is submitted to the Council not less than 60 days prior to the expiration; The proposed modifications including the placement of all necessary equipment and shelters within the tower compound are to be implemented as specified here and in your notice dated April 12, 2012. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to an existing facility site that would not increase tower height, extend the boundaries of the tower site, increase noise levels at the tower site boundary by six decibels, and increase the total radio frequencies electromagnetic radiation power density measured at the tower site boundary to or above the standard adopted by the State Department of Environmental Protection pursuant to General Statutes § 22a-162. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower. This decision is under the exclusive jurisdiction of the Council. Please be advised that the validity of this action shall expire one year from the date of this letter. Any additional change to this facility will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Thank you for your attention and cooperation. Very truly yours, Linda Roberts **Executive Director** LR/CDM/laf c: The Honorable Pedro E. Segarra, Mayor, City of Hartford David B. Panagore, Chief Operating Officer, City of Hartford Roger J. O'Brien, Director of Planning, City of Hartford Crown Castle USA, Inc. ### STATE OF CONNECTICUT #### CONNECTICUT SITING COUNCIL Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov www.ct.gov/csc April 17, 2012 The Honorable Pedro E. Segarra Mayor City of Hartford Municipal Building 550 Main Street Hartford, CT 06103 RE: EM-CING-064-120413 - New Cingular Wireless PCS, LLC notice of intent to modify an existing telecommunications facility located at 439-455 Homestead Avenue, Hartford, Connecticut. Dear Mayor Segarra: The Connecticut Siting Council (Council) received this request to modify an existing telecommunications facility, pursuant to Regulations of Connecticut State Agencies Section 16-50j-72. If you have any questions or comments regarding this proposal, please call me or inform the Council by May 1, 2012. Thank you for your cooperation and consideration. Very truly yours, Linda Roberts **Executive Director** LR/jbw Enclosure: Notice of Intent c: David B. Panagore, Chief Operating Officer, City of Hartford Roger J. O'Brien, Director of Planning, City of Hartford HPC Wireless Services 46 Mill Plain Rd. Floor 2 Danbury, CT 06811 P.: 203.797.1112 ## ORIGINAL April 12, 2012 CONNECTICUT SITING COUNCIL #### VIA UPS Connecticut Siting Council 10 Franklin Square New Britain, Connecticut 06051 Attn: Ms. Linda Roberts, Executive Director Re: New Cingular Wireless PCS, LLC – exempt modification 439-455 Homestead Ave., Hartford, Connecticut Dear Ms. Roberts: AT&T plans to modify the existing wireless communications facility located at 439-455 Homestead Avenue in the City of Hartford (coordinates 41-47-01.6 N, 72-42-13.63 W). The facility is owned by Crown Castle. Attached are a compound plan and elevation depicting the planned changes, and documentation of the structural sufficiency of the structure to accommodate the revised antenna configuration. Also included is a power density report reflecting the modification to AT&T's operations at the site. The changes to the facility do not constitute a modification as defined in Connecticut General Statutes ("C.G.S.") Section 16-50i(d) because the general physical characteristics of the facility will not be significantly changed. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for in R.C.S.A. Section 16-50j-72(b)(2). Boston Albany Buffalo Danbury Philadelphia Raleigh Atlanta - 1. AT&T will add three (3) antennas, six (6) RRHs (remote radio heads) and a surge arrestor to its existing platform; the antennas and RRHs will be installed with a 117' centerline. AT&T will also place a DC power and fiber run from the equipment up the tower along the existing coaxial cable run. The proposed modifications will not extend the height of the 140' monopole. - 2. The proposed changes will not extend the site boundaries. AT&T will install one additional cabinet on an H-frame adjacent to its existing concrete pad and will add a GPS antenna to the existing ice bridge. These changes will be within the existing compound and will have no effect on the site boundaries. - 3. The proposed changes will not increase the noise level at the existing facility by six decibels or more. The incremental effect of the proposed changes will be negligible. - 4. The changes to the facility will not increase the calculated "worst case" power density for the combined operations at the site to a level at or above the applicable standard for uncontrolled environments as calculated for a mixed frequency site. As indicated on the attached report prepared by C Squared Systems, LLC, AT&T's operations at the site will result in a power density of 27.06%; the combined site operations will result in a total power density of 55.25% Please feel free to contact me by phone at (860) 798-7454 or by e-mail at <u>jgaudet@hpcwireless.com</u> with questions concerning this matter. Thank you for your consideration. Respectfully yours, Jennifer Young Gaudet cc: Honorable Pedro Segarra, Mayor City of Hartford Hudson Associates (underlying property owner) Attachments SOO ENTERPRISE DRIVE, SUITE 3A ROCKY HILL, CT 06067 TEL: 1978) 557-5555 FAC: (978) 236-5586 BURDING 20 NORTH, SLITE 2-101 N. ANDOVER, MA. 01845 Date: March 20, 2012 Cheryl Schultz Crown Castle 3530 Toringdon Way, Suite 300 Charlotte, NC 28277 CASTLE Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 (724) 416-2000 Subject: Structural Analysis Report Carrier Designation: **AT&T Mobility Co-Locate** Carrier Site Number: Carrier Site Name: CT5131 **AWE-NW HARTFORD** Crown Castle Designation: Crown Castle BU Number: 806369 180774 **Crown Castle Site Name:** HRT 094 943225 Crown Castle JDE Job Number: Crown Castle Work Order Number: Crown Castle Application Number: 475187 141082 Rev. 1 Engineering Firm Designation: Crown Castle Project Number: 475187 Site Data: 439-455 HOMESTEAD AVE, HARTFORD, Hartford County, CT Latitude 41° 47' 1.61", Longitude -72° 42' 13.66" 140 Foot - Monopole Tower Dear Cheryl Schultz, Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 475187, in accordance with application 141082, revision 1. The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be: LC5: Existing + Proposed Equipment Note: See Table I and Table II for the proposed and existing/reserved loading, respectively. **Sufficient Capacity** This analysis has been performed in accordance with the TIA/EIA-222-F standard and local code requirements based upon a wind speed of 80 mph fastest mile. All modifications and equipment proposed in this report shall be installed in accordance with the attached drawings for the determined available structural capacity to be effective. We at *Crown Castle* appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call. Structural analysis prepared by: Tylens Respectfully submitted by: Douglas K. Pineo, P.E. Manager Structural Design No. 21110 tnxTower Report - version 6.0.4.0 #### **TABLE OF CONTENTS** #### 1) INTRODUCTION #### 2) ANALYSIS CRITERIA Table 1 - Proposed Antenna and Cable Information Table 2 - Existing and Reserved Antenna and Cable Information Table 3 - Design Antenna and Cable Information #### 3) ANALYSIS PROCEDURE Table 4 - Documents Provided 3.1) Analysis Method 3.2) Assumptions #### 4) ANALYSIS RESULTS Table 5 - Section Capacity (Summary) Table 6 - Tower Components vs. Capacity 4.1) Recommendations #### 5) APPENDIX A tnxTower Output #### 6) APPENDIX B **Base Level Drawing** #### 7) APPENDIX C **Additional Calculations** #### 1) INTRODUCTION This tower is a 140 ft Monopole tower designed by VALMONT in August of 1999. The tower was originally designed for a wind speed of 125 mph per TIA/EIA-222-F. #### 2) ANALYSIS CRITERIA The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 80 mph with no ice, 37.6 mph with 1 inch ice thickness and 50 mph under service loads. Table 1 - Proposed Antenna and Cable Information | Mounting
Level (ft) | Center
Line
Elevation
(ft) | Number
of
Antennas | Antenna
Manufacturer | Antenna Model | Number
of Feed
Lines | Feed
Line
Size (in) | Note | |------------------------|-------------------------------------|--------------------------|---------------------------|--|----------------------------|---------------------------|------| | | | 1 | kmw
communications | AM-X-CD-16-65-00T-RET
w/ Mount Pipe | | | | | 115.0 | 117.0 | 2 | powerwave
technologies | P65-17-XLH-RR w/ Mount
Pipe | 2 | 3/4 | | | | | 1 | raycap | DC6-48-60-18-8F | 1 | 3/8 | - | | | 115.0 | 6 | ericsson | RRUS-11 | | | | | 113.0 | 113.0 | 1 | tower mounts | Side Arm Mount
[SO 702-3] | | | | Table 2 - Existing and Reserved Antenna and Cable Information | Mounting
Level (ft) | Center
Line
Elevation
(ft) | Number
of
Antennas | Antenna
Manufacturer | Antenna Model | Number
of Feed
Lines | Feed
Line
Size (in) | Note | |------------------------|-------------------------------------|--------------------------|--------------------------------|--|----------------------------|---------------------------|---| | | | 3 | antel | BXA-185090/8CF w/
Mount Pipe | | | | | | | 3 | antel | BXA-70063/6CF w/ Mount
Pipe | | 7/8 | *************************************** | | 140.0 | 140.0 140.0 | 2 | antel | LPA-80063/4CF w/ Mount
Pipe | 12 | | 1 | | | 4 | antel | LPA-80080/4CF w/ Mount
Pipe | | | | | | | | 6 | rfs celwave | FD9R6004/1C-3L | | | | | | | 1 | tower mounts | Platform Mount
(LP 101-1) | | | | | | 128.0 | 8 | rfs celwave | APX16DWV-16DWV-S-E-
A20 w/ Mount Pipe | | | | | 126.0 | | 6 | siemens | DTMA GSM 1900 | 24 | 1-5/8 | 1 | | | 126.0 | 1 | tower mounts | Platform Mount
[LP 1001-1] | | | | | | 117.0 | 6 | powerwave
technologies | 7770.00 w/ Mount Pipe | | | | | 115.0 | | 1 | tower mounts | Platform Mount [LP 712-1] | 12 | 1-5/8 | 1 | | | 115.0 | 12 | powerwave
technologies | LGP21401 | | | | | Mounting
Level (ft) | Center
Line
Elevation
(ft) | Number
of
Antennas | Antenna
Manufacturer | Antenna Model | Number
of Feed
Lines | Feed
Line
Size (in) | Note | |------------------------|-------------------------------------|--------------------------|-------------------------------|------------------------------|----------------------------|-----------------------------|------| | | | 1 | andrew | VHLP2-180 | | | | | | 108.0 | 1 | andrew | VHLP2.5-11 | | | | | | | 2 | dragonwave | HORIZON COMPACT | | | | | 102.0 | 402.0 | 3 | argus technologies | LLPX310R-V1 w/ Mount
Pipe | 3 | 1-5/8
1/2
5/16
1/4 | 1 | | 104.0 | 104.0 | 6 | decibel | 950F40T4E-M w/ Mount
Pipe | | | | | | | 3 | samsung
telecommunications | WIMAX DAP HEAD | | | | | | 102.0 | 1 | tower mounts | Platform Mount [LP 602-1] | | | | | | | 3 | kathrein | 742 213 w/ Mount Pipe | | | | | 94.0 | 94.0 94.0 | | tower mounts | Side Arm Mount
[SO 102-3] | 6 | 1-5/8 | 1 | | | 80.0 | 1 | antel | BCD-87010 | | | | | 74.0 | 74.0 | 1 | tower mounts | Side Arm Mount
[SO 701-1] | 1 | 7/8 | 1 | | | 41.0 | 1 | lucent | KS24019-L112A | | | T | | 40.0 | 40.0 | 1 | tower mounts | Side Arm Mount
[SO 701-1] | 1 | 1/2 | 1 | Notes: **Table 3 - Design Antenna and Cable Information** | Mounting
Level (ft) | Center
Line
Elevation
(ft) | Number
of
Antennas | Antenna
Manufacturer | Antenna Model | Number
of Feed
Lines | Feed
Line
Size (in) | |------------------------|-------------------------------------|--------------------------|-------------------------|---------------|----------------------------|---------------------------| | 137 | 137 | 12 | swedcom | ALP 9212-N | - | - | | 124 | 124 | 6 | rfs celwave APN199015 | | - | _ | | 114 | 114 | 9 | allgon | 7184.15 | - | _ | ### 3) ANALYSIS PROCEDURE **Table 4 - Documents Provided** | Document | Remarks | Reference | Source | |---|---------------|-----------|----------| | 4-GEOTECHNICAL REPORTS | TEP | 2294838 | CCISITES | | 4-TOWER FOUNDATION
DRAWINGS/DESIGN/SPECS | TEP (mapping) | 2294380 | CCISITES | | 4-TOWER MANUFACTURER DRAWINGS | TEP (mapping) | 2294379 | CCISITES | | 4-TOWER STRUCTURAL ANALYSIS REPORTS | Valmont | 823121 | CCISITES | ¹⁾ Existing Equipment #### 3.1) Analysis Method tnxTower (version 6.0.4.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. #### 3.2) Assumptions - 1) Tower and structures were built in accordance with the manufacturer's specifications. - 2) The tower and structures have been maintained in accordance with the manufacturer's specification. - 3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings. - 4) When applicable, transmission cables are considered as structural components for calculating wind loads as allowed by TIA/EIA-222-F. - 5) The existing base plate grout was not considered in this analysis. This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower. #### 4) ANALYSIS RESULTS **Table 5 - Section Capacity (Summary)** | Section
No. | Elevation (ft) | Component
Type | Size | Critical
Element | P (K) | SF*P_allow
(K) | %
Capacity | Pass / Fail | |---|----------------|--|------------------------|---------------------|-------------------|-------------------|---------------|-------------| | L1 | 140 - 86.8333 | Pole | TP39.223x26.216x0.3125 | 1 | -15.91 | 1950.17 | 45.9 | Pass | | L2 | 86.8333 - 39 | Pole | TP50.56x36.967x0.4063 | 2 | -28.61 | 3292.00 | 65.2 | Pass | | L3 | 39 - 0 | Pole | TP59.05x48.0016x0.5 | 3 | -46.69 | 4900.57 | 66.8 | Pass | | *********** | | | | | | | Summary | | | *************************************** | | · · · · · · · · · · · · · · · · · · · | | | | Pole (L3) | 66.8 | Pass | | (неднитив тупорній живернараднера | | to the little with the last the contract of the property of the contract th | | | ***************** | Rating = | 66.8 | Pass | Table 6 - Tower Component Stresses vs. Capacity - LC5 | Notes | Component | Elevation (ft) | % Capacity | Pass / Fail | |-------|-----------------|----------------|------------|-------------| | 1 | Anchor Rods | 0 | 71.6 | Pass | | 1 | Base Plate | 0 | 33.4 | Pass | | 1 | Base Foundation | 0 | 51.5 | Pass | | | | and the second second second | |--|--------------------------|------------------------------| | | | | | Structure Rating (max from all components) = | | 71.6% | | | the second of the second | | Notes: #### 4.1) Recommendations The tower and its base and anchor foundations have sufficient capacity to carry the existing and proposed loads. No modifications are required at this time. See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed. C Squared Systems, LLC 65 Dartmouth Drive, Unit A3 Auburn, NH 03032 (603) 644-2800 support@csquaredsystems.com ## Calculated Radio Frequency Emissions CT5131 (AWE - NW Hartford) 439-455 Homestead Ave, Hartford, CT 06112 ## Table of Contents | 1. Introduction | |---| | 2. FCC Guidelines for Evaluating RF Radiation Exposure Limits | | 3. RF Exposure Prediction Methods2 | | 4. Calculation Results | | 5. Conclusion4 | | 6. Statement of Certification4 | | Attachment A: References5 | | Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)6 | | Attachment C: AT&T Antenna Data Sheets and Electrical Patterns | | List of Tables | | Table 1: Carrier Information3 | | Table 2: FCC Limits for Maximum Permissible Exposure (MPE)6 | | | | List of Figures | | Figure 1: Graph of FCC Limits for Maximum Permissible Exposure (MPE)7 | #### 1. Introduction The purpose of this report is to investigate compliance with applicable FCC regulations for the proposed modifications to the existing AT&T antenna arrays mounted on the monopole tower located at 439-455 Homestead Ave in Hartford, CT. The coordinates of the tower are 41-47-1.61 N, 72-42-13.66 W. AT&T is proposing the following modifications: 1) Install three 700 MHz LTE antennas (one per sector). #### 2. FCC Guidelines for Evaluating RF Radiation Exposure Limits In 1985, the FCC established rules to regulate radio frequency (RF) exposure from FCC licensed antenna facilities. In 1996, the FCC updated these rules, which were further amended in August 1997 by OET Bulletin 65 Edition 97-01. These new rules include Maximum Permissible Exposure (MPE) limits for transmitters operating between 300 kHz and 100 GHz. The FCC MPE limits are based upon those recommended by the National Council on Radiation Protection and Measurements (NCRP), developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI). The FCC general population/uncontrolled limits set the maximum exposure to which most people may be subjected. General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure. Public exposure to radio frequencies is regulated and enforced in units of milliwatts per square centimeter (mW/cm²). The general population exposure limits for the various frequency ranges are defined in the attached "FCC Limits for Maximum Permissible Exposure (MPE)" in Attachment B of this report. Higher exposure limits are permitted under the occupational/controlled exposure category, but only for persons who are exposed as a consequence of their employment and who have been made fully aware of the potential for exposure, and they must be able to exercise control over their exposure. General population/uncontrolled limits are five times more stringent than the levels that are acceptable for occupational, or radio frequency trained individuals. Attachment B contains excerpts from OET Bulletin 65 and defines the Maximum Exposure Limit. Finally, it should be noted that the MPE limits adopted by the FCC for both general population/uncontrolled exposure and for occupational/controlled exposure incorporate a substantial margin of safety and have been established to be well below levels generally accepted as having the potential to cause adverse health effects. #### 3. RF Exposure Prediction Methods The emission field calculation results displayed in the following figures were generated using the following formula as outlined in FCC bulletin OET 65: Power Density = $$\left(\frac{1.6^2 \times EIRP}{4\pi \times R^2}\right)$$ x Off Beam Loss Where: EIRP = Effective Isotropic Radiated Power $$R = \text{Radial Distance} = \sqrt{\left(H^2 + V^2\right)}$$ H = Horizontal Distance from antenna in meters V = Vertical Distance from radiation center of antenna in meters Ground reflection factor of 1.6 Off Beam Loss is determined by the selected antenna pattern These calculations assume that the antennas are operating at 100 percent capacity and power, and that all channels are transmitting simultaneously. Obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. The calculations assume even terrain in the area of study and do not take into account actual terrain elevations which could attenuate the signal. As a result, the predicted signal levels reported below are much higher than the actual signal levels will be from the finished modifications. #### 4. Calculation Results Table 1 below outlines the power density information for the site. Because the proposed AT&T antennas are directional in nature, the majority of the RF power is focused out towards the horizon. As a result, there will be less RF power directed below the antennas relative to the horizon, and consequently lower power density levels around the base of the tower. Please refer to Attachment C for the vertical pattern of the proposed AT&T antennas. The calculated results for AT&T in Table 1 include a nominal 10 dB off-beam pattern loss to account for the lower relative gain below the antennas. | Carrier | Antenna
Height
(Feet) | Operating
Frequency
(MHz) | Number of Trans. | ERP Per
Transmitter
(Watts) | Power
Density
(mw/cm²) | Limit | %МРЕ | |---------------|-----------------------------|---------------------------------|------------------|-----------------------------------|------------------------------|--------|--------| | Cingular UMTS | 117 | 1945 | 1 | 500 | 0.0131 | 1.0000 | 1.31% | | Cingular | 117 | 880 | 20 | 250 | 0.1313 | 0.5867 | 22.399 | | Cingular | 117 | 1945 | 3 | 427 | 0.0336 | 1.0000 | 3.36% | | Sprint | 104 | 1962.5 | 11 | 609 | 0.2227 | 1.0000 | 22.279 | | Clearwire | 104 | 2496 | 2 | 153 | 0.0102 | 1.0000 | 1.02% | | Clearwire | 108 | 11000 | 1 | 211 | 0.0065 | 1.0000 | 0.65% | | Sensus (CL&P) | 74 | 940.1125 | 1 | 200 | 0.0131 | 0.6267 | 2.10% | | Pocket | 94 | 2130 | 3 | 631 | 0.0770 | 1.0000 | 7.70% | | T-Mobile GSM | 127 | 1945 | 8 | 193 | 0.0344 | 1.0000 | 3.44% | | T-Mobile UMTS | 127 | 2100 | 2 | 770 | 0.0343 | 1.0000 | 3.43% | | Verizon | 137 | 869 | 9 | 269 | 0.0464 | 0.5793 | 8.01% | | Verizon | 137 | 1970 | 3 | 325 | 0.0187 | 1.0000 | 1.87% | | Verizon | 137 | 757 | 1 | 626 | 0.0120 | 0.5047 | 2.38% | | AT&T UMTS | 120 | 880 | 2 | 565 | 0.0282 | 0.5867 | 0.48% | | AT&T UMTS | 120 | 1900 | 2 | 875 | 0.0437 | 1.0000 | 0.44% | | AT&T LTE | 120 | 734 | 1 | 1615 | 0.0403 | 0.4893 | 0.829 | | AT&T GSM | 120 | 880 | 1 | 283 | 0.0071 | 0.5867 | 0.129 | | AT&T GSM | 120 | 1900 | 4 | 525 | 0.0524 | 1.0000 | 0.529 | | | | | | | | Total | 55.25 | **Table 1: Carrier Information** 12 2 ¹ The existing CSC filing for Cingular should be removed and replaced with the updated AT&T technologies and values provided in Table 1. The power density information for carriers other than AT&T was taken directly from the CSC database dated 1/10/2012. ² In the case where antenna models are not uniform across all 3 sectors for the same frequency band, the antenna model with the highest gain was used for the calculations to present a worse-case scenario. #### 5. Conclusion The above analysis verifies that emissions from the existing site will be below the maximum power density levels as outlined by the FCC in the OET Bulletin 65 Ed. 97-01. Even when using conservative methods, the cumulative power density from the proposed transmit antennas at the existing facility is below the limits for the general public. The highest expected percent of Maximum Permissible Exposure at ground level is 55.25% of the FCC limit. As noted previously, obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. As a result, the predicted signal levels are more conservative (higher) than the actual signal levels will be from the finished modifications. #### 6. Statement of Certification I certify to the best of my knowledge that the statements in this report are true and accurate. The calculations follow guidelines set forth in ANSI/IEEE Std. C95.3, ANSI/IEEE Std. C95.1 and FCC OET Bulletin 65 Edition 97-01. Daniel L. Goulet- C Squared Systems, LLC April 9, 2012 Date #### **Attachment A: References** OET Bulletin 65 - Edition 97-01 - August 1997 Federal Communications Commission Office of Engineering & Technology ANSI C95.1-1982, American National Standard Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300 kHz to 100 GHz. IEEE-SA Standards Board <u>IEEE Std C95.3-1991 (Reaff 1997), IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave.</u> IEEE-SA Standards Board #### Attachment B: FCC Limits for Maximum Permissible Exposure (MPE) #### (A) Limits for Occupational/Controlled Exposure³ | Frequency
Range
(MHz) | Electric Field
Strength (E)
(V/m) | Magnetic Field
Strength (E)
(A/m) | Power Density (S) (mW/cm ²) | Averaging Time $ E ^2$, $ H ^2$ or S (minutes) | |-----------------------------|---|---|---|---| | 0.3-3.0 | 614 | 1.63 | (100)* | 6 | | 3.0-30 | 1842/f | 4.89/f | $(900/f^2)*$ | 6 | | 30-300 | 61.4 | 0.163 | 1.0 | 6 | | 300-1500 | <u>.</u> | | f/300 | 6 | | 1500-100,000 | • | - | 5 | 6 | ### (B) Limits for General Population/Uncontrolled Exposure⁴ | Frequency
Range
(MHz) | Electric Field
Strength (E)
(V/m) | Magnetic Field
Strength (E)
(A/m) | Power Density (S) (mW/cm ²) | Averaging Time $ E ^2$, $ H ^2$ or S (minutes) | |-----------------------------|---|---|---|---| | 0.3-1.34 | 614 | 1.63 | (100)* | 30 | | 1.34-30 | 824/f | 2.19/f | $(180/f^2)*$ | 30 | | 30-300 | 27.5 | 0.073 | 0.2 | 30 | | 300-1500 | | <u> -</u> | f/1500 | 30 | | 1500-100,000 | <u>-</u> | <u> -</u> | 1.0 | 30 | f = frequency in MHz * Plane-wave equivalent power density Table 2: FCC Limits for Maximum Permissible Exposure (MPE) -3 ³ Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure ⁴ General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure Figure 1: Graph of FCC Limits for Maximum Permissible Exposure (MPE) **700 MHz** #### Attachment C: AT&T Antenna Data Sheets and Electrical Patterns ## Manufacturer: Powerwave Model #: P65-17-XLH-RR Frequency Band: 698-806 MHz Gain: 14.3 dBd Vertical Beamwidth: 8.4° Horizontal Beamwidth: 70° Polarization: Dual Linear ± 45° Size L x W x D: 96.0" x 12.0" x 6.0" #### 850 MHz Manufacturer: Powerwave Model #: 7770.00 Frequency Band: 824-896 MHz Gain: 11.4 dBd Vertical Beamwidth: 15° 85° Horizontal Beamwidth: Polarization: Dual Linear ±45° Size L x W x D: 55.4" x 11.0" x 5.0" #### 1900 MHz Manufacturer: Powerwave Model #: 7770.00 Frequency Band: 1850-1990 MHz Gain: 13.4 dBd Vertical Beamwidth: 7° Horizontal Beamwidth: 90° Polarization: Dual Linear ±45° Size L x W x D: 55.4" x 11.0" x 5.0"