1280 Route 46 West, Suite 9, Parsippany NJ, 07054

Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051
Attn: Ms. Melanie Bachman, Executive Director
Re: Notice of Exempt Modification Application
Hamden Fish \& Game Protective Assoc. Tower
150 Willow Avenue
Hamden, CT 06010
September 12, 2017
Dear Ms. Bachman:

On behalf of Sprint Spectrum Realty Company, L.P. ("Sprint"), enclosed for filing are an original and two (2) copies of Sprint's Notice of Exempt Modification for Proposed Modifications to an Existing Telecommunications Facility located at the above-referenced site. A soft copy will also be forwarded.

I also enclose herewith a check in the amount of $\$ 625.00$ representing the fee for the Notice of Exempt Modification.

If you have any questions, please feel free to contact me.
Thank you,

By: PaulF. Sagristano

Paul F. Sagristano
Cherundolo Consulting
4 Davis Road West, Suite 5
Old Lyme, CT 06371
917.841.0247
psagristano@lrivassoc.com

1280 Route 46 West, Suite 9, Parsippany NJ, 07054

Ms. Melanie Bachman
Executive Director
CT Siting Council
10 Franklin Square
New Britain, CT 06051
September 6, 2017

Re: Notice of Exempt Modification -
Existing Sprint Telecommunication Facility
150 Willow Street, Hamden, CT 06518
Latitude: N41.44944
Longitude: W72.9047
Dear Ms. Bachman:
Sprint currently maintains three (3) existing telecommunications antennas, 3 tower mounted amplifiers and associated equipment at the 157.5^{\prime} level of an existing 157.5^{\prime} multicarrier telecommunications tower at 150 Willow Street in Hamden, Connecticut. Sprint intends to add three (3) new antennas to a new pipe mounts as well as (3) new tower mounted amplifiers. Sprint is performing a new high-performance air interface upgrade for cellular mobile communications. It is designed to increase the capacity and speed of mobile telephone networks.

The facility noted above was approved by CT Siting Council on May 1, 2007 and via building permit issuance by the Town of Hamden on August 21, 2007. A copy of this approval is attached.

Please accept this letter as notification to the Council, pursuant to R.C.S.A. Section 16-50j-73, for construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2). In compliance with R.C.S.A. Section 16-50j-73, a copy of this letter is also being sent toMr. Kurt Leng, Mayor of the Town of Hamden and to Mr. Lew Lagervall, Treasurer of the Hamden Fish \& Game Protective Association, the property owner

Attached is a summary of the planned modifications, including power density calculations reflecting the change in Sprint's operations at the site. Also included is documentation of the structural sufficiency of the tower with proposed modifications to accommodate the revised antenna configuration.

Existing Facility

The Hamden facility is located at 150 Willow Street, the Site coordinates are: 41. 44944 N, -72. 9047 W. The facility is owned by The Hamden Fish \& Game Protective Association, Hamden, CT 06518.

The existing facility consists of a 157.5^{\prime} Monopole tower. Sprint currently operates wireless communications equipment on s steel platform at the facility and has three antennas mounted on the tower at a centerline of 157.5' feet.

Statutory Considerations

The planned modifications to the facility fall within the activities explicitly provided for in R.C.S.A. 16-50j72(b)(2)

1. The height of the overall structure will be unaffected.
2. The proposed changes will not require an extension of the property boundaries.
3. The proposed additions will not increase the noise level at the existing facility by
six decibels or more, or to levels that exceed state and/or local criteria
4. The changes will not increase the calculated "worst case" power density for the combined operations at the site to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, Sprint respectfully submits that the proposed changes at the referenced site constitute exempt modifications under R.C.S.A Section §16-50j-72(b)(2).

Respectfully submitted,

Paul F. Sagristano
Charles Cherundolo Consulting
917-841-0247
psagristano@lrivassoc.com

Additional Recipients:
Town of Hamden Mayor, Mr. Kurt Leng
Property Owner, Mr. Lew Lagervall, Treasurer of the Hamden Fish \& Game Protective Association

Google Maps 150 Willow St

Imagery ©2017 Google, Map data ©2017 Google
United States
200 ft \qquad

$\frac{2}{}$ MAIN MENU
GIS HOME
GIS PROPERTY MAP SEARCH
TOWN WIDE MAP GALLERY
TOWN GRID MAPS
INTERACTIVE MAPPING
HELP

PROPERTY INFO DATA UPDATED
Nightly
CURRENT PARCEL COUNT
16,800 +/-

TOWN OF HAMDEN, CONNECTICUT
GEOGRAPHIC \& PROPERTY INFORMATION NETWORK

2750 DIXWELL AVENUE
HAMDEN, CT 06518
203-287-2500
E-MAIL: GENERAL INFORMATION

* SUMMARY PARCEL INFORMATION \& MAP DOCUMENTS

Detailed Parcel Information

Parcel No

3430-001-00-0000
Unique ID
18077
Account
Owner
HAMDEN FISH \& GAME PROTECTIVE AS

Location
150 WILLOW ST
MAILING ADDRESS
P O BOX 5619
HAMDEN CT 06518-0619

3430-001-00-0000 04/23/2015

Scroll Down For Complete Property Detail

(GoMan data ©2017 Google Imagery ©2017, CNES / Airbus, DigitalGlobe, U.S. Geological
Click on the Google logo to go to Google Maps

Parcel Documents

Full Size Assessor Maps

Full Assessor Map

Interactive GIS Maps of Property

GO TO VIRTUAL EARTH BIRDS EYE!

GO TO INTERACTIVE MAP!
Once in Interactive Map, Select Parcel and enter Abutters distance.

PARCEL VALUATIONS

	Appraised Value	Assessed Value
Buildings	164900	115430
Outbuildings	17000	11900
Improvements	187200	131040
Extra Features	5300	3710
Land	1172000	288530
TOTAL:	1359200	419570

PROPERTY INFORMATION

Land Acres	85.58
Land Use	FISH\&GAME
Land Class	C
Zoning	T1
Neighborhood	130
Lot Description	Level
Lot Setting	Suburban
Lot Utilities	Public Water,Public Sewer,Gas/Electric
Street Description	Paved

SALE INFORMATION

Sale Date	$10 / 10 / 1945$
Sale Price	0
Book / Page	$232 / 49$

BUILDING AREA

Gross Building Area 5759
Total Living Area 3081

CONSTRUCTION DETAILS

Building Use	Comm/Ind
Number of Rooms	
Number of Bedrooms	
Number of Bathrooms	
Number of Half Bathrooms Kitchen Style	
Stories	Gable/Hip
Roof Style	Asphalt
Roof Cover	Vinyl Siding
Primary Exterior Wall Type	K PINE/A WD
Secondary Exterior Wall Type	
Primary Interior Wall Type	Vinyl/Asphalt
Secondary Interior Wall Type	
Primary Floor Type	Forced Air-Duc
Secondary Floor Type	Oil
Heating Type	
Heating Fuel	
Air Conditioning Type	

Copyright® 2007 Town of Hamden, Connecticut, U.S.A. All rights reserved.
All information is intended for your general knowledge only and is not a substitute for contacting the Town Hall or other departments listed at this web site.

You should promptly consult the specific office or department with any questions. Use of this web site and any information you find through it is subject to the Disclaimer.

September 12,2017

Dear Customer:
The following is the proof-of-delivery for tracking number 770193508695.

Delivery Information:

Status:	Delivered	Delivered to:	Receptionist/Front Desk
Signed for by:	M.RAMPERSAUD	Delivery location:	2750 DIXWELL AVENUE
Service type:	FedEx Express Saver	Delivery date:	HAMDEN, CT 06518
Special Handling:	Deliver Weekday		Sep 11, 2017 13:01
	Direct Signature Required		

Shipping Information:

Tracking number:	770193508695	Ship date:	Sep 6,2017
		Weight:	$0.5 \mathrm{lbs} / 0.2 \mathrm{~kg}$

Recipient:

Kurt Leng, Mayor
Town of Hamden
2750 Dixwell Avenue
HAMDEN, CT 06518 US

Reference

Shipper:

Paul Sagristano
Charles Cherundolo Consulting
4 Davis Road West
Suite 5
OLD LYME, CT 06371 US
CT54XC773 - Notice to Mayor

Thank you for choosing FedEx.

September 11,2017

Dear Customer:
The following is the proof-of-delivery for tracking number 770193748179.

Delivery Information:

Status:	Delivered	Delivered to:	
Signed for by:	J.RUGGIERO	Delivery location:	Residence 150 WILLOW STRET HAMDEN, CT 06518
Service type:	FedEx Express Saver	Delivery date:	Sep 8, 2017 17:53
Special Handling:	Deliver Weekday		
	Residential Delivery		
	Direct Signature Required		

Shipping Information:

Tracking number:	770193748179	Ship date:	Sep 6,2017
		Weight:	$0.5 \mathrm{lbs} / 0.2 \mathrm{~kg}$

Recipient:

Mr. Lew Lagervall, Treasurer
Hamden Fish and Game Association
150 Willow Stret
HAMDEN, CT 06518 US

Reference

Shipper:

Paul Sagristano
Charles Cherundolo Consulting
4 Davis Road West
Suite 5
OLD LYME, CT 06371 US
CT54XC773 CSC Notice to Owner

Thank you for choosing FedEx.

STATE OF CONNECTICUT
 CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
Internet: ct.gov/esc

May 10, 2007
Thomas J. Regin, Esq.
Brown Nudnick Berlack Israels LLP
CityPlace I, 185 Asylum Street
Hartford, CT 06103

RE: DOCKET NO. 324 - Sprint Nextel Corporation application for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance and operation of a wireless telecommunications facility at 150 Willow Street, Hampden, Connecticut.

Dear Attorney Regan:

By its Decision and Order dated May 1, 2007, the Connecticut Siting Council (Council) granted a Certificate of Environmental Compatibility and Public Need (Certificate) for the construction, maintenance and operation of a wireless telecommunications facility at 150 Willow Street, Hampden, Connecticut.

Enclosed are the Council's Certificate, Findings of Fact, Opinion, and Decision and Order.
Very truly yours,

S. Derek Phelps

Executive Director
SDP/MP/laf
Enclosures (4)

STATE OF CONNECTICUT
CONNECTICUT SITING COUNCIL
Ten Franklin Square. New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
EMail: siting.council (euct.gov Internet: ct.gov/csc

CERTIFICATE
 OF
 ENVIRONMENTAL COMPATIBLLTY AND PUBLIC NEED

DOCKET NO. 324

Pursuant to General Statutes $\S 16-50 \mathrm{k}$, as amended, the Connecticut Siting Council hereby issues a Certificate of Environmental Compatibility and Public Need to Sprint Nextel Corporation application for the construction, maintenance and operation of a wireless telecommunications facility at 150 Willow Street, Hampden, Connecticut. This Certificate is issued in accordance with and subject to the terms and conditions set forth in the Decision and Order of the Council on May 1, 2007

By order of the Council,

May 1.2007

STATE OF CONNECTICUT
CONNECTICUT SITING COUNCIL
Ten Franklin Square, New Britain, CT 0605 I
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.councii@ct.gov
Internet: ct.gov/csc

May 10, 2007
TO: Parties and Intervenors
FROM:
RE: DOCKET NO. 324 - Sprint Nextel Corporation application for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance and operation of a wireless telecommunications facility at 150 Willow Street, Hamden, Connecticut.

By its Decision and Order dated May 1, 2007, the Connecticut Siting Council granted a Certificate of Environmental Compatibility and Public Need (Certificate) for the construction, maintenance and operation of a wireless telecommunications facility at 150 Willow Street, Hamden, Connecticut.

Enclosed are the Council's Findings of Fact, Opinion, and Decision and Order.
SDP/MP/laf
Enclosures (3)
c: State Documents Librarian

STATE OF CONNECTICUT)

ss. New Britain, Connecticut : COUNTY OF HARTFORD)

I hereby certify that the foregoing is a true and correct copy of the Findings of Fact, Opinion, and Decision and Order issued by the Connecticut Siting Council, State of Connecticut.

ATTEST:

I certify that a copy of the Findings of Fact, Opinion, and Decision and Order in Docket No. 324 has been forwarded by Certified First Class Return Receipt Requested mail on May 10, 2007, to all parties and intervenors of record as listed on the attached service list, dated November 3, 2006.

ATTEST:

Administrative Assistant
Connecticut Siting Council

Date: November 3, 2006
Docket No. 324
Page 1 of 1
LIST OF PARTIES AND INTERVENORS
SERVICE LIST

Status Granted	Status Holder (name, address \& phone number)	Representative (name, address \& phone number)
	Sprint Nextel Corporation	Thomas J. Regan, Esq. Brown Rudnick Berlack Israels LLP CityPlace I, 185 Asylum Street Hartford, CT 06103 (860) 509-6522 (860) 509-6501 fax tregan@brownrudnick.com

DOCKET NO. 324 - Sprint Nextel Corporation application for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance and operation of a wireless telecommunications facility at 150 Willow Street, Hamden, Connecticut.

Connecticut
Siting
Council
May 1, 2007

Findings of Fact

Introduction

1. Sprint Nextel Corporation (Sprint) in accordance with provisions of Connecticut General Statutes (CGS) § $16-50 \mathrm{~g}$ through $16-50 \mathrm{aa}$, applied to the Connecticut Siting Council (Council) on October 27, 2006 for the construction, operation, and maintenance of a wireless telecommunications facility at 150 Willow Street, Hamden, Connecticut. (Sprint 1, p.4)
2. Sprint Nextel Corporation is a Delaware corporation. Sprint's principal business offices are located in Mahwah, New Jersey. Sprint is licensed by the Federal Communications Commission (FCC) in many major trading areas in the United States, including Connecticut. (Sprint 1, p. 4)
3. The party in this proceeding is the applicant. (Transcript 1, March 8, 2007, 3:00 p.m. [Tr. 1], p. 4)
4. The purpose of the proposed facility is to provide service to coverage gaps identified by Spriat on Route 10 and surrounding areas in Cheshire and Hamden. (Sprint 1, pp. 3, 6)
5. Pursuant to General Statutes § $16-50 \mathrm{~m}$, the Council, after giving due notice thereof, held a public hearing on March 8, 2007, beginning at 3:00 p.m. and continuing at 7:00 p.m. at the Miller Library Complex, Thornton Wilder Hall, 2901 Dixwell Avenue, Hamden, Connecticut. (Council's Hearing Notice dated January 25, 2007; Tr. 1, p. 2; Transcript 2, March 8, 2007, 7:00 p.m. [Tr. 2], p. 2)
6. The Council and its staff conducted an inspection of the proposed site on March 8, 2007, beginning at 2:00 p.m. During the field inspection, the applicant flew a red balloon at the proposed site to simulate the height of the proposed tower. Weather conditions included winds of 15 to 20 miles per hour and were not conducive to a proper balloon flight. Sprint lost three balloons between approximately $12: 30 \mathrm{pm}$ and $2: 10 \mathrm{pm}$. The balloon reached its proposed height of 160 feet above ground level for approximately two minutes during the Council's inspection. (Council's Hearing Notice dated January 25, 2007,Tr. 1, pp. 12-13)
7. Pursuant to CGS § 16-501 (b), public notice of the application was published in The New Haven Register on October 17 and 19, 2006. (Sprint 1, p. 5)
8. Pursuant to General Statute § $16-501(\mathrm{~b})$, notice of the application was provided to all abutting property owners by certified mail. Notice was unclaimed by four abutters: George L. Parente, Linus L. Darley, John Candella and Salvatore Hoo, and the State of Connecticut Nature Preserve. Sprint re-sent letters to these four abutters by first class mail. The first class letter to the State of Connecticut Nature Preserve was returned and then re-sent a final time to a different address. (Sprint 1, p. 5; Tr. 1, pp. 13-14)
9. Pursuant to CGS § $16-501$ (b), Sprint provided notice to all federal, state and local officials and agencies listed therein. (Sprint 1, Tab 5)

State Agency Comment

10. Pursuant to General Statutes § 16-50j (h), on January 25, 2007 and March 9, 2007, the following State agencies were solicited by the Council to submit written comments regarding the proposed facility; Department of Environmental Protection (DEP), Department of Public Health (DPH), Council on Environmental Quality (CEQ), Department of Public Utility Control (DPUC), Office of Policy and Management (OPM), Department of Economic and Community Development (DECD), and the Department of Transportation (DOT). (Record)
11. The Council received a response from the DOT's Bureau of Engineering and Highway Operations on March 1, 2007 with no comments on this proposal. (DOT Comments dated March 1, 2007)
i2. DPH responded with comments that are reflected in Finding of Fact \#61. (DPH Comments dated March 26, 2007 and March 29, 2007)
12. The following agencies did not respond with comment on the application: $\mathrm{DEP}, \mathrm{CEQ}$, DPUC, OPM, and the DECD. (Record)

Municipal Consultation

14. Sprint notified the Town of Hamden (Town) of the proposal on July 27, 2006 by sending a technical report to the Mayor, Craig Henrici. Sprint contacted the Town by telephone on several occasions to discuss the proposal and to inquire as to whether the Town wanted to set up a meeting or provide comments on the proposal. The Town did not respond to Sprint's offer and did not provide Sprint with any comments. (Sprint 1, p. 10)
15. Due to the proposed tower site's close proximity to the Cheshire town line, Sprint also notified the Town of Cheshire of the proposal on July 27, 2006 by sending a technical report to the Chairman of the Cheshire Town Council, Matt Hall. The Cheshire Town Planner, William S. Voelker, contacted Sprint to indicate that the Town of Cheshire did not have any comments on Sprint's notice. (Sprint 1, p. 10)
16. By letter dated August 2, 2007, the Hamden Town Planner submitted a letter to the Council recommending that the tower be disguised as a silo. (Administrative Notice Item No. 16)
17. Sprint would provide space on the tower for the Town and any emergency response system for no compensation. The Hamden Police Department expressed an interest in co-locating at the top of the tower in the future. (Sprint 1, p. 7; Tr. I, p. 65)

Public Need for Service

18. In 1996, the United States Congress recognized a nationwide need for high quality wireless telecommunications services, including cellular telephone service. Through the Federal Telecommunications Act of 1996, Congress seeks to promote competition, encourage technical innovations, and foster lower prices for telecommunications services. (Council Administrative Notice Item No. 7)
19. In issuing cellular licenses, the Federal government has preempted the determination of public need for cellular service by the states, and has established design standards to ensure technical integrity and nationwide compatibility among all systems. Sprint is licensed by the Federal Communications Commission (FCC) to provide personal wireless communication service to New Haven County, Connecticut. (Council Administrative Notice Item No. 7; Sprint 1, p. 4)
20. The Telecommunications Act of 1996 prohibits local and state entities from discriminating among providers of functionally equivalent services. (Council Administrative Notice Item No. 7)
21. The Telecommunications Act of 1996, a Federal law passed by the United States Congress, prohibits any state or local entity from regulating telecommunications towers on the basis of the environmental effects of radio frequency emissions to the extent that such towers and equipment comply with FCC's regulations concerning such emissions. This Act also blocks the Council from prohibiting or acting with the effect of prohibiting the provision of personal wireless service. (Council Administrative Notice Item No. 7)
22. In an effort to ensure the benefits of wireless technologies to all Americans, Congress enacted the Wireless Communications and Public Safety Act of 1999 (the 911 Act). The purpose of this legislation was to promote public safety through the deployment of a seamless, nationwide emergency communications infrastructure that includes wireless communications services. (Sprint 1, p. 7)
23. Sprint's facility would be in compliance with the requirements of the 911 Act. (Sprint $1, \ldots$ p. 7)

Site Selection

24. Sprint established a search ring in northern Hamden roughly centered on CL\&P's easement and located to the east of Route 10 . The search ring consisted of a six-sided area, approximately 0.5 miles wide at the widest point. The area is mostly residential with rolling hills that range in elevation from approximately 150 feet above mean sea level (amsl) to over 700 feet amsl. (Sprint 1, Tab 7; Sprint 1, p. 11)
25. Prior to selecting the proposed site, Sprint considered 15 existing structures in the Hamden, Cheshire, and Wallingford area. The sites consisted of electric transmission structures, a silo, a building, a flagpole tower, and one existing tower. All of the sites were rejected due to inadequate coverage to the target service area. (Sprint 1, p. 9)
26. Twelve existing towers are located within two miles of the search area. Sprint is not located on any of these twelve existing towers. None of these sites met Sprint's coverage objectives. The locations of the twelve existing towers are as follows:
a) NU Power Mount at 150 Willow Street, Hamden
b) NU Power Mount \#2466 at 450 Tuttle Avenue, Hamden
c) NU Power Mount \#2465 at 450 Tuttle Avenue, Hamden
d) NU Pole at Old Lane Road, Cheshire
e) Fire Department Whip at King Road, Cheshire
f).NU Pole \#1 at Brooksvale Avenue, Hamden
g)NU Pole \#3 at Cook Hill Road, Cheshire
h)NU Pole \#4 at Mansion Road, Wallingford
i) Golf Range Pole at Brooksvale Avenue, Hamden
j) NU Pole \#5 at Turte Avenue, Wallingford
k) Quinnipiac University Building at Hogan Road, Hamden
1) Cingular Flagpole at Quinnipiac University at New Road, Hamden (Sprint 1, pp. 9-10; Sprint 1, Tab 6)
27. The 120 -foot CL\&P transmission structure \#5215 was also considered by Sprint, but structurally, it can only support two carriers. New Cingular Wireless and T-Mobile already plan to locate on the pole. (Sprint 2, response 16)
28. Sprint also considered utilizing the existing CL\&P structures on the subject property with height extensions in order to meet its coverage objectives. However, CL\&P's right of way in this area does not permit the installation of telephone and telecommunications equipment within the easement area. (Tr. 1, pp. 24-25)
29. Microcells and repeaters are not viable technological alternatives for providing coverage to the identified coverage gap. Microcells and repeaters are low power sites that are limited in coverage and capacity. The coverage gap in the Hamden area is significant. Therefore, technologies such as repeaters and microcells are not viable options to cover the portions of Route 10 and the surrounding areas of Hamden and Cheshire that Sprint seeks to cover. (Sprint 1, pp. 8-9)

Site Description

30. The proposed site is located on an 87 -acre parcel at 150 Willow Street in Hamden. The parcel, owned by Hamden Fish and Game Protective Association, Inc., contains mainly undeveloped, forested land with a firing range. The proposed site is depicted on Figure 1. (Sprint 1, p. 11; Tr. 1, p. 14)
31. The property is zoned residential, R-1. The Town's zoning regulations permit telecommunication towers in R-1 Zone districts, subject to issuance of a Special Permit and Site Plan Approval. (Sprint la, Town of Hamden Zoning Regulations)
32. Land use in the surrounding area is medium-density residential development, undeveloped forested lands, and overhead electric utility infrastructure and associated rights of way. (Sprint 1, p. 11)
33. The tower site is located in the western half of the property just north of CL\&P's easement, at an elevation of approximately 126 feet amsl. The wooded site is dominated by sugar maple, Norway maple, black oak, and red cedar. (Sprint 1, p. 19; Sprint 3, drawings Z2 and Z3A)
34. The proposed facility would consist of a 160 -foot monopole within a 100 -foot by 100 foot leased area. The tower would be designed to support a total of five levels of antennas with a 10 -foot vertical separation between antenna centers. The tower would be constructed of galvanized steel that would weather to a non-reflective gray finish. (Sprint 1, pp. 3, 12, 18-19; Sprint 1, Tab 9, drawing Z5)
35. Sprint would install twelve antennas on a triangular platform at a centerline height of 157 feet agl. The total height of the facility with antennas would be 160 feet agl. (Sprint 1, p. 12; Sprint 1, Tab 9, drawing 25)
36. The tower would be designed and constructed in accordance with the American National Standards Institute TIA/EIA-222-F "Structural Standards for Steel Antenna Towers and Antenna Support Structures". (Sprint I, p. 12)
37. A silo tower design is feasible from both a structural and RF standpoint, but visually may be a large, cumbersome structure. (Tr. 1, pp. 17-1.9)
38. A monopine design is possible, but visually may not blend in effectively due to the existing utility corridor. (Tr. 1, pp. 21-22)
39. A narrow "stick" tower design is possible, but the sector orientation would have to be changed in order for the antennas to fit, thereby resulting in more dropped calls. (Tr. 1, p. 37)
40. A "one-antenna-per-sector" configuration would degrade coverage similar to a decrease in height. (Tr. 1, p. 66)
41. It would be difficult for Sprint to flush-mount its antennas because the cluster of antennas = is already very close together due to the sector orientation. (Tr. 1, pp. 16, 39-41)
42. T-bars could be used to mount the antennas. (Tr. l, pp. 38-39)
43. Cellco Partnership d/b/a Verizon Wireless did not participate in this proceeding, but informed the Council of its interest in co-locating at this facility in the future by letter dated March 16, 2007. No other carriers have expressed an interest in co-locating at this facility at this time. (Cellco Letter dated March 20, 2007; Tr. 1, p. 14)
44. A 50 -foot by 50 -foot equipment compound enclosed by a six-foot high chain link fence would be established at the base of the tower. Sprint would install an equipment cabinet and a battery backup cabinet on a concrete pad within the compound. (Sprint l, pp. 1213; Sprint 1, Tab 9, drawing Z3)
45. Development of the site would require approximately 500 cubic yards of cut and 400 cubic yards of fill. (Sprint 2, response 12)
46. Access to the tower site begins at Willow Street and follows the existing access for approximately 180 feet. The access would turm to the northeast and continue along an abandoned access way for approximately 500 feet to the compound. This access way would be improved to a width of 12 feet and covered with gravel. (Sprint 3, drawings $Z 2$ and Z3A; Tr. l, pp. 19-20)
47. The new access could be shifted an additional 20 feet to save several large white pines. (Tr. 1, p 20)
48. Utilities would be installed underground and leave the compound in a southeasterly direction to reach an existing pole on the property. (Spriat 3, drawing Z2)
49. Development of the site would not require blasting. (Sprint 2, response 13)
50. The tower setback radius would not extend beyond the boundaries of the Hamden Fish and Game Protective Association, Inc. property but would overlap CL\&P's easement by 27.5 feet. (Sprint 2 , response 15 ; Sprint 3, drawing Z2)
51. Sprint is willing to engineer a break point on the monopole so that the tower setback radius would stay outside of the CL\&P easement. Alternatively, Sprint could shift the monopole and lease area slightly north to keep the tower setback radius off of the CL\&P easement. However, Sprint would prefer the break point method rather than shifting the monopole and lease area. (Sprint 2 , response 15)
52. The nearest property boundary from the proposed tower is approximately 340 feet to the north (Rubin/Corrine property). The tower setback radius would not extend onto the Rubin/Corrine property. (Sprint 3, drawing Z2)
53. There are 27 residences within 1,000 feet of the proposed tower site. The nearest residence is approximately 406 feet north of the tower site (Rubin/Corrine residence). (Sprint 2, responses 10 and 11)
54. The estimated construction cost of the proposed facility is:

Site Work	$\$ 30,500$
Monopole	$\$ 30,000$
Electrical \& Telephone	$\$ 17,500$
Foundation	$\$ 31,800$
Landscaping	$\$ 3,000$
Road	$\$ 4,000$
Total	$\$ 116,800$ (Sprint 1, Tab 10)

Environmental Considerations

55. The proposed facility would have no effect upon historic, architectural, or archaeological resources listed on or eligible for the National Register of Historic Places or upon properties of traditional cultural importance to Connecticut's Native American community. (Sprint 1, Tab 14)
56. There are no known existing populations of federal or state endangered or threatened species or state special concern species occurring at the proposed site, based on a review of the Connecticut Department of Environmental Protection Natural Diversity Database. (Sprint 1, Tab 14)
57. Vegetation at the site consists of sugar maple, Norway maple, black oak, and red cedar ranging in size from 6 to 12 inches diameter at breast height (dbh). Approximately 15 trees six inches dbh or greater would be removed to develop the site. (Sprint 1, p. 19; Sprint 2, response 9; Tr. 1, p. 20)
58. Wetlands are located to the east of the pavilion, approximately 200 feet from the proposed compound. Wetland vegetation consists of red maple, green ash, spicebush, skunk cabbage, and sensitive fern. Wetland vegetation inside the CL\&P right of way consists of multiflora rose, brambles, grape, silky dogwood, and goldenrod. (Sprint 1, Tab 14)
59. No work would be conducted within wetland resource areas. Some construction activities associated with the underground utility trench would be located within the Town's 200 -foot upland review area. These activities would be located within existing disturbed areas and are not expected to adversely impact the nearby wetlands. (Tr. 1, p. 15)
60. There are no airports within two nautical miles of the site. Lighting of the tower would not be required. (Sprint 1, Tabs 12 and 14)
61. The proposed construction is located within the Watershed Area for the Mill River System and the Level A Aquifer Protection Area of the North Sleeping Giant Well Field, sources of drinking water for the South Central Connecticut Regional Water Authority (RWA). The DPH Drinking Water Section recommends that the RWA be contacted prior to any construction and that the following Best Management Practices be followed to ensure the safety of the drinking water supply:
a) Coordinate any construction activities with the RWA.
b) Write an emergency response plan for actions to be taken in the event of an accidental fuel or chemical spill that may occur during construction.
c) Have spill response equipment available on-site at all times along with personnel trained in the proper use of such equipment.
d) Designate a person or persons for emergency response coordination on a $24 / 7$ basis.
e) Contact the RWA immediately in the event of an accidental spill.
f) Avoid the cleaning of equipment on the locations of construction due to possible contamination from equipment chemicals.
g) Avoid any storage of fuel or refueling within the watershed and acquifer protection areas.
h) Designate one area (off of the source areas) for auto parking, vehicle refueling and routine equipment maintenance. This area should be well away from exposed surfaces or storm drains.
i) Perform all major equipment repairs off site.
j) Keep pollutants off of exposed surfaces.
k) Do not bury stumps or construction debris on the job site.
1) Place sediment fences and hay bales strategically and inspect and maintain them to prevent sedimentation and erosion.
m) Inspect and maintain temporary storm water ponds and basins routinely.
n) Have additional sediment fences and hay bales available for use as needed to prevent runoff in the event that unexpected conditions occur.
o) Protect exposed stockpiles of soil to prevent runoff.
p) Use as little water as possible for dust control.
q) Clean up leaks, drips and other spills immediately to prevent or minimize soil contamination.
r) Never hose down "dirty" pavement or surfaces where materials have spilled. Use dry cleanup methods whenever possible.
s) Perform any blasting only with careful consideration to impacts to the area, including possible effects to ground water which could affect drinking water quality and quantity.
t) Remove paints, paint products and other hazardous materials from the site during non-work hours or otherwise store these materials in a secure area to prevent vandalism.
u) Place covered trashcans and recycling receptacles around the site. Cover and maintain dumpsters, check frequently for leaks, and never clean a dumpster by hosing it down on site.
v) Avoid development of slopes at 15 percent or greater. If they cannot be avoided in this project, a separate environmental consultant should be on site to ensure proper erosion and sedimentation controls are in place. This consultant would be
responsible to report to the RWA so water quality issues are avoided. (DPH Comments dated March 23 and 26, 2007)
62. The maximum power density from the radio frequency emissions of Sprint's proposed antennas would be $0.0482 \mathrm{~mW} / \mathrm{cm}^{2}$, or 4.82% of the standard for Maximum Permissible Exposure, as adopted by the FCC, at the base of the proposed tower. This calculation was based on methodology prescribed by the FCC Office of Engineering and Technology Bulletin No. 65E, Edition 97-01 (August 1997) that assumes all antennas would be pointed at the base of the tower and all channels would be operating simultaneously. (Sprint 1, p. 23)

Visibility

63. The proposed tower would be visible year-round from approximately 59 acres within a two-mile radius of the site (refer to Figure 6). The tower would be seasonally visible from approximately 97 acres within a two-mile radius of the site. (Sprint 1, Tab 12, pp. 4-5; Tr. 1, pp. 45-46)
64. Visibility of the proposed tower from roads within a two-mile radius of the site is presented in the table below:

Road	Length of Road Visibility (Seasonal)	Length of Road Visibility (Year-round)	Nearest Distance with Visibility to Site A
Route 10	0.1 miles	0.2 miles	0.3 miles west
Bittersweet Lane	0.1 miles	-	0.3 miles northwest
Still Hill Road	0.3 miles	-	0.6 miles southwest
Brooksvale Avenue	0.1 miles	0.1 miles	0.6 miles southwest
Knoll Drive	0.1 miles	-	0.1 miles north
Willow Street	0.1 miles	0.03 miles	0.1 miles southwest

(Sprint 1, Tab 12)
65. Visibility of the proposed tower from specific locations within a two-mile radius of the site is presented in the table below:

Location	Visible	Approx. Portion of Tower Visible	Approx. Distance to Tower		
Route 10 - north of Brooksvalle					
Avenue				\quad Yes $\quad 20$ feet - above trees $\left.\quad$	0.6 miles
:---:					
northeast	\right\rvert\,				

(Sprint, Tab 12)
66. A significant amount of the total visibility of the proposed facility falls on the host property and the existing utility right of way that traverses the study area. Other areas of visibility include a roadside commercial development along Route 10 located within the general vicinity, an adjacent open field located to the southwest of the site, and portions of Knoll Drive approximately 1,000 feet to the northeast. (Sprint 1, p. 21)
67. The proposed site would be visible year-round from four residences along Knoll Drive and two residences along Route 10 . There are also several small areas of potential visibility located over one mile to the northwest and approximately 900 feet northeast of the proposed facility. These areas on are private property and the views could not be verified by Sprint's visual resource consultant. However, views from these areas are expected to be limited to tree-line views and/or views of the upper 25 percent of the proposed facility. (Sprint 1, p. 22)
68. The proposed site would be seasonally visible from five properties along Knoll Drive and three properties along Willow Street. (Sprint 1, p. 22)
69. The nearest state or local recreational area is the Sleeping Giant State Park, which is approximately 0.3 miles east of the tower site at its closest point. The proposed tower may be visible from the Naugutuck Trail in Sleeping Giant State Park, but the viewer would have to pick it out from the existing trees and utility infrastructure. The proposed tower may be visible from other trails in the Sleeping Giant State Park, but the viewer would be looking down on the tower and the view would be largely lost because it would blend in with the valley. (Sprint 1, Tab 12; Tr. 1, pp. 30-32)
70. The proposed tower is not expected to be visible from the Quinnipiac Trail. (Sprint 1, Tab 12)
71. The proposed tower would be seasonally visible from a 0.2 mile long section of the Farmington Canal Linear State Park Trail, which is located approximately 0.5 miles to the west of the proposed site at its nearest point. (Sprint I, Tab 12)
72. The proposed tower may be visible from the Naugatuck State Forest but the view would be limited to a tree-top view and would also be mitigated by the distance of roughly two miles. (Tr. 1, pp. 33-34)
73. The proposed tower is not expected to be visible from Brooksvale Recreation Park. (Tr. 2, pp. 13-14; Sprint 1, Tab 12)
74. There are no state or local scenic roads within two miles of the proposed tower site. (Tr. 1, p. 15)
75. There are no historic districts within a two-mile radius of the proposed site. (Sprint 1, Tab 12)

Existing and Proposed Wireless Coverage

76. Sprint transmits in the 1950-1965 MHz frequency bands and has a signal-level service design of -92 dBm for this area, sufficient for in-vehicle coverage. The signal-level threshold for in-building coverage is -87 dBm . (Sprint 2 , response 4 ; Sprint 1, Tab 7)
77. Sprint's existing signal strength in the majority of the area to be covered by this proposed facility is below -92 dBm . (Sprint 2, response 3)
78. Sprint's customers are currently experiencing a high number of dropped calls (over 2 percent) in the area to be covered by the proposed facility. (Sprint 1, p. 6)
79. Sprint's existing coverage gap along Route 10 is approximately 2.8 miles. The proposed site would fill this gap. Refer to Figure 2. (Sprint 2, response 8)
80. Sprint's minimum height to meet coverage design objectives is 157 feet. Refer to Figure 3. (Sprint 1, response 2)
81. Installing the antennas at lower heights, such as 147 feet or 137 feet, would cause the coverage gap on Route 10 north of Cook Hill Road to increase in size. Refer to Figures 4 and 5. (Tr. 1, pp. 50-51)
82. The proposed tower would provide approximately 4.5 square miles of improved coverage. (Sprint 2, response 7)

Figure 1: Location Map

(Sprint 1, p. Tab 1)

Figure 2: Existing Coverage
(Sprint 1, Tab 11)

Figure 3: Coverage with Proposed Antennas at 157 feet

(Sprint 2, response 1)

Figure 4: Coverage with Proposed Antennas at 147 feet

(Sprint 2, response 1)

Figure 5: Coverage with Proposed Antennas at 137 feet

(Sprint 2, response 1)

Figure 6: Viewshed Map

Figure 6: Viewshed Map Legend

Legend Proposed Site Location (includes areas of limited visibility approximatehy 500 feet around Facility) Photographs - July 24, 2006 - Eallopn visible above trees Cxy Seesonal Visibilty (Approximately 97 acres) Approx \% of Tower Visible (Year-Round) Tree Line View - 14 Actes LTper 25\%-18 Acres: $50 \%-31$ Acres 75\%-3 Acres Eitiri Facify Velble - 3 Acres Yearorund Visiblity is Approxinately 59 acres Priptected Properties Muinicipal Cemetery Preservation Conservation Existing Preserved Open Space Recreation General Recreation \square Scheol \square Unczlegorized	Protecfed Properties (CT DEP) State Forest \square State Park \square DEP Owned Wateibody State Fark Scenic Reserve Histonio Presenve Natural Area Prieserve Fish Hatehery: Flocid Contral Oher State Park Traii Water Access Wholife Area Milolife Sanctuary DEP Boat Launcties Scenic Road (State and Local) - Quinniplac Trail (CT Blue Blaze) Town Line

DOCKET NO. 324 - Sprint Nextel Corporation application for a $\}$ Certificate of Environmental Compatibility and Public Need for the construction, maintenance and operation of a wireless telecommunications facility at 150 Willow Street, Hamden, Connecticut.

Connecticut
Siting
Council
May 1, 2007

Opinion

On October 27, 2006, Sprint Nextel Corporation (Sprint) applied to the Connecticut Siting Council (Council) for a Certificate of Environmental Compatibility and Public Need (Certificate) for the construction, maintenance and operation of a wireless telecommunications facility to be located at 150 Willow Street, Hamden, Connecticut. Sprint is seeking to develop a facility on property owned by the Hamden Fish and Game Protective Association, Inc. (Hamden Fish and Game). Sprint's objective in locating a facility at this location is to provide service on Route 10 and surrounding areas in Cheshire and Hamden.

Sprint proposes to construct a 160 -foot monopole and associated compound on an 87 -acre parcel owned by Hamden Fish and Game and consisting of mainly undeveloped, forested land with a firing range. The tower and the 50 -foot by 50 -foot compound area will be located in the western half of the property just north of The Connecticut Light and Power Company's (CL\&P) easement. The tower would be designed to support the antennas of four additional carriers.

Utilities will be installed underground to reach an existing pole on the subject property. Access to the tower site begins at Willow Street and follows the existing access for approximately 180 feet. The access would turn to the northeast and continue along an abandoned access way for approximately 500 feet to the compound. This access way would be improved to a width of 12 feet and covered with gravel.

The tower setback radius would not extend beyond the boundaries of Hamden Fish and Game property, but would overlap The Connecticut Light and Power Company's (CL\&P) easement by 27.5 feet. Sprint is willing to engineer a break point on the monopole so that the tower setback radius would stay outside of the CL\&P easement. Accordingly, the Council will order the design of the monopole to include a break point to prevent the tower from extending onto CL\&P's transmission line easement in the event of a tower failure.

The tower will be visible year-round from approximately 59 acres within a two-mile radius of the site. The tower will be seasonally visible from approximately 97 acres within a two-mile radius of the site. The proposed site would be visible year-round from four residences along Knoll Drive and two residences along Route 10 . There are also several small areas of potential visibility located over one mile to the northwest and approximately 900 feet northeast of the proposed facility. However, views from these areas are expected to be limited to tree-line views and/or views of the upper 25 percent of the proposed facility. The proposed site would be seasonally visible from five properties along Knoll Drive and three properties along Willow Street.

The nearest state or local recreational area is the Sleeping Giant State Park, which is approximately 0.3 miles east from the tower site at its closest point. The proposed tower may be visible from the Naugutuck Trail in Sleeping Giant State Park, but the viewer would have to pick
it out from the existing trees and utility infrastructure. The proposed tower may be visible from other trails in the Sleeping Giant State Park, but the viewer would be looking down on the tower, and the view would be largely lost because it would blend in with the valley. The proposed tower is not expected to be visible from the Quinnipiac Trail.

Sprint transmits in the 1950-1965 MHz frequency bands and has a signal-level service design of -92 dBm for this area, sufficient for in-vehicle coverage. The signal-level threshold for inbuilding coverage is -87 dBm . Sprint's existing signal strength in the majority of the area to be covered by this proposed facility is below -92 dBm . Sprint's customers are currently experiencing a high number of dropped calls (over 2 percent), which decreases Sprint's reliability. Sprint's existing coverage gap along Route 10 is approximately 2.8 miles. The proposed site would fill this gap. Sprint's minimum height to meet coverage design objectives is 157 feet. Installing the antennas at lower heights, such as 147 feet or 137 feet, would cause the coverage gap on Route 10 north of Cook Hill Road to increase in size. The proposed tower would provide approximately 4.5 square miles of improved coverage.

The site is wooded and is dominated by sugar maple, Norway maple, black oak, and red cedar. Development of the proposed site will require clearing of approximately 15 trees of six inches in diameter or greater at breast height (dbh). No work will be conducted within wetland resource areas. Some construction activities associated with the underground utility trenct will be located within the Town's 200 -foot upland review area. These activities will be located within existing disturbed areas and are not expected to adversely impact the nearby wetlands. Therefore, the Council will order erosion and sedimentation controls consistent with the Connecticut Guidelines for Soil Erosion and Sediment Control, May 2002, as amended.

There are no known existing populations of federal or state endangered or threatened species or state special concern species occurring at the proposed site, based on a review of the Connecticut Department of Environmental Protection Natural Diversity Database. The proposed facility will have no effect on archaeological or historic resources.

The Council is concerned, however, that the proposed tower is located within the Watershed Area for the Mill River System and the Level A Aquifer Protection Area of the North Sleeping Giant Well Field, sources of drinking water for the South Central Connecticut Regional Water Authority. To minimize the risk of contamination of drinking water during construction, the Council will order Sprint to comply with the Connecticut Department of Public Health's Best Management Practices to the extent applicable.

According to a methodology prescribed by the FCC Office of Engineering and Technology Bulletin No. 65E, Edition 97-01 (August 1997), the combined radio frequency power density levels of the antennas proposed to be installed on the tower have been calculated by Council staff to amount to 4.82% of the FCC's Maximum Permissible Exposure, as measured at the base of the tower. This percentage is well below federal and state standards established for the frequencies used by wireless companies. If federal or state standards change, the Council will require that the tower be brought into compliance with such standards. The Council will require that the power densities be recalculated in the event other carriers add antennas to the tower. The Telecommunications Act of 1996 prohibits any state or local agency from regulating telecommunications towers on the basis of the environmental effects of radio frequency emissions to the extent that such towers and equipment comply with FCC's regulations concerning such emissions.

Docket 324:
Opinion
Page 3
Based on the record in this proceeding, the Council finds that the effects associated with the construction, operation, and maintenance of the telecommunications facility at the proposed site, including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with policies of the State concerning such effects, and are not sufficient reason to deny this application. Therefore, the Council will issue a Certificate for the construction, operation, and maintenance of a 160 -foot monopole telecommunications facility at the proposed site at 150 Willow Street, Hamden, Connecticut.

DOCKET NO. 324 - Sprint Nextel Corporation application for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance and operation of a wireless telecommunications facility at 150 Willow Street, Hamden, Connecticut.

Connecticut
Siting
Council

May 1, 2007

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a telecommunications facility, including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildife are not disproportionate, either alone or cumulatively with other effects, when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes $\S 16-50 \mathrm{k}$, be issued to Sprint Nextel Corporation, hereinafter referred to as the Certificate Holder, for a telecommunications facility at 150 Willow Street, Hamden, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

1. The tower shall be constructed as a monopole, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antemnas of Sprint Nextel Corporation and other entities, both public and private, but such tower shall not exceed a height of 160 feet above ground level. The height at the top of the antennas shall not exceed 160 feet above ground level.
2. The Certificate Holder shall prepare a Development and Management (D\&M) Plan for this site in compliance with Sections $16-50 \mathrm{j}-75$ through $16-50 \mathrm{j}-77$ of the Regulations of Connecticut State Agencies. The D\&M Plan shall be served on the Town of Hamden for comment, and all parties and intervenors as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction and shall include:
a) a final site plan(s) of site development to include specifications for the tower, tower foundation, antennas, equipment compound, radio equipment, access road, utility line, and landscaping; and
b) construction plans for site clearing, water drainage, and erosion and sedimentation control consistent with the 2002 Comnecticut Guidelines for Soil Erosion and Sediment Control, as amended.
3. The Certificate Holder shall, prior to the commencement of operation, provide the Council worst-case modeling of electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of electromagnetic radio frequency power density is submitted to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.
4. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
6. The Certificate Holder shall provide reasonable space on the tower for no compensation for any Town of public safety services (police, fire and medical services), provided such use can be accommodated and is compatible with the structural integrity of the tower.
7. The Certificate Holder shall engineer a break point on the monopole to ensure that the tower setback radius remains outside of The Connecticut Light and Power Company easement.
8. The Certificate Holder shall comply with the Connecticut Department of Public Health's Best Management Practices to the extent applicable, to protect the drinking water supply.
9. Unless otherwise approved by the Council, if the facility authorized herein is not fully constructed and providing wireless services within eighteen months from the date of the mailing of the Council's Findings of Fact, Opinion, and Decision and Order (collectively called "Final Decision"), this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made. The time between the filing and resolution of any appeals of the Council's Final Decision shall not be counted in calculating this deadline.
10. Any request for extension of the time period referred to in Condition 9 shall be filed with the Council not later than 60 days prior to the expiration date of this Certificate and shall be served on all parties and intervenors, as listed in the service list, and the Town of Hamden. Any proposed modifications to this Decision and Order shall likewise be so served.
11. If the facility ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
12. The Certificate Holder shall remove any nonfunctioning antenna, and associated antenna mounting equipment, within 60 days of the date the antenna ceased to function.
13. In accordance with Section 16-50j-77 of the Regulations of Connecticut State Agencies, the Certificate Holder shall provide the Council with written notice two weeks prior to the commencement of site construction activities. In addition, the Certificate Holder shall provide the Council with written notice of the completion of site construction and the commencement of site operation.

Pursuant to General Statutes $\S 16-50$ p, the Council hereby directs that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in The New Haven Register.

Docket No. 324
Decision and Order
Page 3
By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

Docket No. 324
Decision and Order
Page 4
The parties and intervenors to this proceeding are:

Applicant

Sprint Nextel Corporation

Its Representative

Thomas J. Regan, Esq.
Brown Rudnick Berlack Israels LLP
CityPlace I, $38^{\text {th }}$ Floor
185 Asylum Street
Hartford, CT 06103-3402
Phone: 860-509-6522
Fax: 860-509-6501
Email: tregan@brownrudnick.com

CERTIFICATION

The undersigned members of the Connecticut Siting Council (Council) hereby certify that they have heard this case, or read the record thereof, in DOCKET NO. 324 - Sprint Nextel Corporation application for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance and operation of a wireless telecommunications facility at 150 Willow Street, Hampden, Connecticut, and voted as follows to approve the proposed site, located at 150 Willow Street, Harden, Connecticut:

Colin C. Tais, Vice Chairman

Commissioner Donald W. De wines
Designee: Gerald J. Heffernap

Commissioner Tina McCarthy
Designee: Brian J. Emerick

Dr. Barbara Currier Bell

Dated at New Britain, Connecticut, May 1, 2007.

EBI Consulting
environmental | engineering | due diligence

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

SPRINT Existing Facility

Site ID: CT54XC773
Hamden Fish \& Game Club 150 Willow Street
Hamden, CT 06518
September 5, 2017
EBI Project Number: 6217003654

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{7 . 9 1 \%}$

EBI Consulting
environmental | engineering | due diligence

September 5, 2017
SPRINT
Attn: RF Engineering Manager
1 International Boulevard, Suite 800
Mahwah, NJ 07495

Emissions Analysis for Site: CT54XC773 - Hamden Fish \& Game Club

EBI Consulting was directed to analyze the proposed SPRINT facility located at $\mathbf{1 5 0}$ Willow Street, Hamden, CT, for the purpose of determining whether the emissions from the Proposed SPRINT Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307 (b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limits for the 850 MHz Band is approximately $567 \mu \mathrm{~W} / \mathrm{cm}^{2}$. The general population exposure limit for the 1900 MHz (PCS) and 2500 MHz (BRS) bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

EBI Consulting
environmental | engineering | due diligence

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed SPRINT Wireless antenna facility located at $\mathbf{1 5 0}$ Willow Street, Hamden, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since SPRINT is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 -foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 1 CDMA channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.
2) 2 LTE channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.
3) 5 CDMA channels ($1900 \mathrm{MHz}(\mathrm{PCS})$) were considered for each sector of the proposed installation. These Channels have a transmit power of 16 Watts per Channel.
4) 2 LTE channels ($1900 \mathrm{MHz}(\mathrm{PCS})$) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
5) 8 LTE channels ($2500 \mathrm{MHz}(\mathrm{BRS})$) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.

EBI Consulting
environmental | engineering | due diligence
6) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
7) For the following calculations, the sample point was the top of a 6 -foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
8) The antennas used in this modeling are the RFS APXV9ERR18-C-A20 and RFS APXVTM14-C-I20 for transmission in the $850 \mathrm{MHz}, 1900 \mathrm{MHz}$ (PCS) and 2500 MHz (BRS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
9) The antenna mounting height centerlines of the proposed antennas are $\mathbf{1 3 6 . 5}$ feet above ground level (AGL) for Sector A, 136.5 feet above ground level (AGL) for Sector B and 136.5 feet above ground level (AGL) for Sector C.
10) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general population threshold limits.

EBI Consulting

environmental | engineering | due diligence

SPRINT Site Inventory and Power Data by Antenna

Sector:		A	Sector:	B	Sector:	C
Antenna \#:		1	Antenna \#:	1	Antenna \#:	1
Make / Model:	APXV	$\begin{aligned} & \text { RFS } \\ & 9 \mathrm{ERR} 18-\mathrm{C}- \\ & \text { A20 } \end{aligned}$	Make / Model:	RFS APXV9ERR18-C- A20	Make / Model:	RFS APXV9ERR18-C- A20
Gain:	11.9	14.9 dBd	Gain:	11.9 / 14.9 dBd	Gain:	11.9 / 14.9 dBd
Height (AGL):		6.5 feet	Height (AGL):	136.5 feet	Height (AGL):	136.5 feet
Frequency Bands		$\begin{aligned} & \hline 0 \mathrm{MHz} / \\ & \mathrm{MHz} \text { (PCS) } \end{aligned}$	Frequency Bands	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz}(\mathrm{PCS}) \\ \hline \end{gathered}$	Frequency Bands	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) } \end{gathered}$
Channel Count		10	Channel Count	10	Channel Count	10
Total TX Power(W):		Watts	$\begin{array}{r} \text { Total TX } \\ \text { Power(W): } \end{array}$	220 Watts	Total TX Power(W):	220 Watts
ERP (W):		873.76	ERP (W):	5,873.76	ERP (W):	5,873.76
Antenna A1 MPE\%		39 \%	Antenna B1 MPE\%	1.39 \%	Antenna C1 MPE\%	1.39 \%
Antenna \#:		2	Antenna \#:	2	Antenna \#:	2
Make / Model:	APXV	$\begin{aligned} & \hline \text { RFS } \\ & \text { CM14-C-I20 } \end{aligned}$	Make / Model:	RFS APXVTM14-C-I20	Make / Model:	RFS APXVTM14-C-I20
Gain:		. 9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):		6.5 feet	Height (AGL) :	136.5 feet	Height (AGL):	136.5 feet
Frequency Bands	2500	MHz (BRS)	Frequency Bands	2500 MHz (BRS)	Frequency Bands	2500 MHz (BRS)
Channel Count		8	Channel Count	8	Channel Count	8
Total TX Power(W):		Watts	$\begin{aligned} & \text { Total TX } \\ & \text { Power(W): } \end{aligned}$	160 Watts	Total TX Power(W):	160 Watts
ERP (W):		224.72	ERP (W):	6,224.72	ERP (W):	6,224.72
Antenna A2 MPE\%		31 \%	Antenna B2 MPE\%	1.31 \%	Antenna C2 MPE\%	1.31 \%
Site Composite MPE\%				SPRINT Sector A Total:		2.70 \%
Carrier		MPE \%		SPRINT Sector B Total:		2.70 \%
SPRINT - Max per sector		2.70 \%		SPRINT Sector C Total:		2.70 \%
T-Mobile		2.68 \%				
MetroPCS		0.40 \%			Site Total:	7.91 \%

SPRINT_Max Values per Frequency Band / Technology Per Sector	\# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$	Frequency (MHz)	Allowable MPE $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$	Calculated \% MPE
Sprint 850 MHz CDMA	1	309.76	136.5	0.65	850 MHz	567	0.12\%
Sprint 850 MHz LTE	2	309.76	136.5	1.31	850 MHz	567	0.23\%
Sprint 1900 MHz (PCS) CDMA	5	494.45	136.5	5.22	1900 MHz (PCS)	1000	0.52\%
Sprint 1900 MHz (PCS) LTE	2	1,236.12	136.5	5.22	1900 MHz (PCS)	1000	0.52\%
Sprint 2500 MHz (BRS) LTE	8	778.09	136.5	13.14	2500 MHz (BRS)	1000	1.31\%
						Total:	2.70\%

EBI Consulting
environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the SPRINT facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

SPRINT Sector	Power Density Value (\%)
Sector A:	2.70%
Sector B:	2.70%
Sector C:	2.70%
SPRINT Maximum	2.70%
Total (per sector):	
Site Total:	7.91%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{7 . 9 1 \%}$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5\% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Structural Analysis Report

August 1, 2017

Sprint Site Name	Hamden Fish \& Game Club
Sprint Site Number	CT54XC773
Infinigy Job Number	$526-102$
Client	Sprint
Proposed Carrier	Sprint
	150 Willow St, Hamden, CT 06518
Site Location	New Haven County
	$41^{\circ} 26^{\prime} 57.81^{\prime \prime} \mathrm{N}$
	$72^{\circ} 54^{\prime} 16.46^{\prime \prime} \mathrm{W}$
Structure Type	158^{\prime} EEI Monopole
Structural Usage Ratio	$\mathbf{7 3 . 0 \%}$
Overall Result	Pass

Upon reviewing the results of this analysis, it is our opinion that the structure meets the specified TIA code requirements. The tower and foundation are therefore deemed adequate to support the existing and proposed loading as listed in this report.

Matt A. Nichols, P.E.
Senior Structural Engineer

Contents

Introduction 3
Supporting Documentation 3
Analysis Code Requirements 3
Conclusion. 3
Existing and Reserved Loading 4
To Be Removed Loading 4
Proposed Loading 4
Final Configuration 4
Structure Usages 5
Foundation Reactions. 5
Deflection, Twist, and Sway. 5
Assumptions and Limitations 5
CalculationsAppended

Introduction

Infinigy Engineering has been requested to perform a structural analysis on the existing 158' EEI Monopole Tower. All supporting documents have been obtained from the client and are assumed to be accurate and applicable to this site. The tower was analyzed using tnxTower version 7.0.7.0 tower analysis software.

Supporting Documentation

Tower Drawings	EEI Project No. 14977, dated July 17, 2007
Construction Drawings	Infinigy Engineering Job \# 526-102, dated May 19, 2017
Previous Analysis	Infinigy Engineering Job \# 333-000, dated June 27, 2014
Geotechnical Report	JGI Geotechnical Evaluation \#J2075344, dated June 29, 2007

Analysis Code Requirements

Wind Speed	97 mph (3-Second Gust, VASD)/ 125 mph (3-Second Gust, VULT)
Wind Speed w/ ice	50 mph (3-Second Gust) w/ $0.75 "$ ice
TIA Revision	ANSI/TIA-222-G
Adopted IBC	$2012 \mathrm{IBC} / 2016$ Connecticut State Building Code
Structure Class	II
Exposure Category	B
Topographic Category	1
Calculated Crest Height	0

Conclusion

Upon reviewing the results of this analysis, it is our opinion that the structure meets the specified TIA code requirements. The tower and foundation are therefore deemed adequate to support the existing and proposed loading as listed in this report.

If you have any questions, require additional information, or actual conditions differ from those as detailed in this report please contact me via the information below:

Matt A. Nichols, P.E.
Senior Structural Engineer | Infinigy
1033 Watervliet Shaker Road, Albany, NY 12205
(O) (518) 690-0790
mnichols@infinigy.com | www.infinigy.com

August 1, 2017

Existing and Reserved Loading

Mount Height (ft)	Qty.	Appurtenance	Mount Type	Coax\& Lines	Carrier
157.5	3	RFS APXV9ERR18-C-A20	Platform w/ Handrails	(3) $1-5 / 8 "$ Hyrbriflex	Sprint
	3	Sprint Legacy Antennas			
	3	Alcatel Lucent 800 MHz RRH			
	3	Alcatel Lucent 1900 MHz RRH			
147.0	12	Panel Antennas	Platform	*(12) 1-5/8"	Verizon
137.0	3	Panel Antennas	Pipe	*(12) 1-5/8"	-

*Assumed (12) 1-5/8" Coax at 137' and 147' for analysis

To Be Removed Loading

Mount Height (ft)	Qty.	Appurtenance	Mount Type	Coax\& Lines	Carrier
157.5	3	Sprint Legacy Antennas	-	-	Sprint

Proposed Loading

Mount Height (ft)	Qty.	Appurtenance	Mount Type	Coax\& Lines	Carrier
157.5	3	RFS APXVTM14-C-120	-	$(1) 1-1 / 4 "$ Fiber	Sprint
	3	Alcatel Lucent TD-RRH8x20	-		

Final Configuration

Mount Height (ft)	Qty.	Appurtenance	Mount Type	Coax\& Lines	Carrier
157.5	3	RFS APXV9ERR18-C-A20	Platform w/ Handrails	(3) $1-5 / 8^{\prime \prime}$ Hyrbriflex (1) 1-1/4" Fiber	Sprint
	3	RFS APXVTM14-C-120			
	3	Alcatel Lucent 800 MHz RRH			
	3	Alcatel Lucent 1900 MHz RRH			
	3	Alcatel Lucent TD-RRH8x20			
147.0	12	Panel Antennas	Platform	*(12) 1-5/8"	Verizon
137.0	3	Panel Antennas	Pipe	*(12) 1-5/8"	-

*Assumed (12) 1-5/8" Coax at 137’ and 147^{\prime} for analysis

Structure Usages

Pole (L1)	38.0	Pass
Pole (L2)	26.5	Pass
Pole (L3)	26.1	Pass
Pole (L4)	29.4	Pass
Base Plate	17.6	Pass
Anchor Bolts	16.3	Pass
RATING	$\mathbf{3 8 . 0}$	Pass

Foundation Reactions

Reaction Data	Design Reactions	Analysis Reactions	Result
Moment (kip-ft)	$7,151.4$	$2,332.5$	32.6%
Shear (kip)	61.2	22.3	36.4%
Axial (kip)	68.8	50.2	73.0%

Tower base reactions are acceptable when compared to the original design reactions.

Deflection, Twist, and Sway

Antenna Elevation (ft)	Deflection (in)	Twist $\left({ }^{\circ}\right)$	Sway $\left({ }^{\circ}\right)$
157.5	8.424	0.000	0.558

*Per ANSI/TIA-222-G Section 2.8.2 maximum serviceability structural deflection limit is 3% of structure height.
*Per ANSI/TIA-222-G Section 2.8.2 maximum serviceability structural twist and sway limit is 4 degrees.
*Per ANSI/TIA-222-G Section 2.8.3 deflection, Twist, and sway values were calculated using a basic 3-second gust wind speed of 60 mph .
*It is the responsibility of the client to ensure their proposed and/or existing equipment will meet ANSI/TIA-222-G Annex D or other appropriate microwave signal degradation limits based on the provided values above.

Assumptions and Limitations

Our structural calculations are completed assuming all information provided to Infinigy Engineering is accurate and applicable to this site. For the purposes of calculations, we assume an overall structure condition of "like new" and all members and connections to be free of corrosion and/or structural defects. The structure owner and/or contractor shall verify the structure's condition prior to installation of any proposed equipment. If actual conditions differ from those described in this report Infinigy Engineering should be notified immediately to complete a revised evaluation.

Our evaluation is completed using standard TIA, AISC, ACI, and ASCE methods and procedures. Our structural results are proprietary and should not be used by others as their own. Infinigy Engineering is not responsible for decisions made by others that are or are not based on our supplied assumptions and conclusions.

This report is an evaluation of the tower structure only and does not reflect adequacy of any existing antenna mounts, mount connections, or cable mounting attachments. These elements are assumed to be adequate for the purposes of this analysis and are assumed to have been installed per their manufacturer requirements.

158.0 ft

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Angle Platform w/ Handrails (Sprint)	157.5	TD-RRH8X20 (Sprint)	157.5
APXV9ERR18-C-A20 (Sprint)	157.5	TD-RRH8X20 (Sprint)	157.5
APXV9ERR18-C-A20 (Sprint)	157.5	TD-RRH8X20 (Sprint)	157.5
APXV9ERR18-C-A20 (Sprint)	157.5	Angle Low Profile Platform (Verizon)	147
APXVTM14-C-120 (Sprint)	157.5	(4) 72" $\times 12^{\prime \prime}$ Panel (Verizon)	147
APXVTM14-C-120 (Sprint)	157.5	(4) $72^{\prime \prime} \times 12^{\prime \prime}$ Panel (Verizon)	147
APXVTM14-C-120 (Sprint)	157.5	(4) 72" $\times 12^{\prime \prime}$ Panel (Verizon)	147
$800 \mathrm{MHz} \mathrm{RRH} \mathrm{(Sprint)}$	157.5	Antenna Pipe Mount	137
$800 \mathrm{MHz} \mathrm{RRH} \mathrm{(Sprint)}$	157.5	Antenna Pipe Mount	137
$800 \mathrm{MHz} \mathrm{RRH} \mathrm{(Sprint)}$	157.5	Antenna Pipe Mount	137
$1900 \mathrm{MHz} \mathrm{RRH} \mathrm{(Sprint)}$	157.5	$72^{\prime \prime} \times 12^{\prime \prime}$ Panel	137
$1900 \mathrm{MHz} \mathrm{RRH} \mathrm{(Sprint)}$	157.5	$72^{\prime \prime} \times 12^{\prime \prime}$ Panel	137
$1900 \mathrm{MHz} \mathrm{RRH} \mathrm{(Sprint)}$	157.5	$72^{\prime \prime} \times 12^{\prime \prime}$ Panel	137

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

1. Tower is located in New Haven County, Connecticut.
2. Tower designed for Exposure B to the TIA-222-G Standard.
3. Tower designed for a 97 mph basic wind in accordance with the TIA-222-G Standard.
4. Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
5. Deflections are based upon a 60 mph wind.
6. Tower Structure Class II.
7. Topographic Category 1 with Crest Height of 0.00 ft
8. TOWER RATING: 38\%

TORQUE $1203 \mathrm{lb}-\mathrm{ft}$

TORQUE 653 lb -ft
REACTIONS - 97 mph WIND

tnxTower Infinigy Engineering PLLC 1033 Watervliet Shaker Road Albany, NY 12205 Phone: (518) 690-0790 FAX: (518) 690-0793	Job	526-102	$\text { Page } \quad 1 \text { of } 9$
	Project	CT54XC773	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12:33:00 08/01/17 } \end{array}$
	Client	Sprint	Designed by Matt Nichols, P.E.

Tower Input Data

There is a pole section.
This tower is designed using the TIA-222-G standard.
The following design criteria apply:
Tower is located in New Haven County, Connecticut.
Basic wind speed of 97 mph .
Structure Class II.
Exposure Category B.
Topographic Category 1.
Crest Height 0.00 ft .
Nominal ice thickness of 0.750 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 50 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs	Distribute Leg Loads As Uniform	Use ASCE 10 X-Brace Ly Rules
Consider Moments - Horizontals	Assume Legs Pinned	Calculate Redundant Bracing Forces
Consider Moments - Diagonals	Assume Rigid Index Plate	Ignore Redundant Members in FEA
Use Moment Magnification	Use Clear Spans For Wind Area	SR Leg Bolts Resist Compression
$\sqrt{ }$ Use Code Stress Ratios	Use Clear Spans For KL/r	$\sqrt{ }$ All Leg Panels Have Same Allowable
$\sqrt{ }$ Use Code Safety Factors - Guys	Retension Guys To Initial Tension	Offset Girt At Foundation
Escalate Ice	Bypass Mast Stability Checks	\checkmark Consider Feed Line Torque
Always Use Max Kz	$\sqrt{ }$ Use Azimuth Dish Coefficients	Include Angle Block Shear Check
Use Special Wind Profile	$\sqrt{ }$ Project Wind Area of Appurt.	Use TIA-222-G Bracing Resist. Exemption
$\sqrt{ }$ Include Bolts In Member Capacity	Autocalc Torque Arm Areas	Use TIA-222-G Tension Splice Exemption
Leg Bolts Are At Top Of Section	Add IBC .6D+W Combination	Poles
Secondary Horizontal Braces Leg	Sort Capacity Reports By Component	$\sqrt{ }$ Include Shear-Torsion Interaction
Use Diamond Inner Bracing (4 Sided)	Triangulate Diamond Inner Bracing	Always Use Sub-Critical Flow
SR Members Have Cut Ends	Treat Feed Line Bundles As Cylinder	Use Top Mounted Sockets
SR Members Are Concentric		

Tapered Pole Section Geometry

$\left.\left.\begin{array}{cccccccccc}\hline \text { Section } & \text { Elevation } & \begin{array}{c}\text { Section } \\ \text { Length }\end{array} & \begin{array}{c}\text { Splice } \\ \text { Length } \\ \\ \end{array} & f t & f t & \begin{array}{c}\text { Number } \\ \text { of }\end{array} & \begin{array}{c}\text { Top } \\ \text { Diameter } \\ \text { in }\end{array} & \begin{array}{c}\text { Bottom } \\ \text { Diameter } \\ \text { in }\end{array} & \begin{array}{c}\text { Wall } \\ \text { Thickness } \\ \text { in }\end{array}\end{array} \begin{array}{c}\text { Bend } \\ \text { Radius }\end{array}\right] \begin{array}{c}\text { Pole Grade } \\ \text { in }\end{array}\right]$

tnXTOWer	Job	Page	
	Project	526-102	2 of 9
	CT54XC773	Client	Sprint

Section	Elevation	Section Length	$f t$	Splice Length f	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius
L3	$93.25-46.33$	52.42	7.33	18	36.840	54.020	0.438	1.750	A572-65
L4	$46.33-1.00$	52.66			18	50.742	68.000	0.438	1.750

Tapered Pole Properties

Section	Tip Dia. in	Area $i n^{2}$	I $i n^{4}$	r in	C in	I / C $i n^{3}$	J $i n^{4}$	$I t / Q$ $i n^{2}$	w in	
L1	18.785	10.898	461.730	6.501	9.398	49.131	924.069	5.450	2.926	15.605
	27.843	16.207	1518.477	9.668	13.929	109.013	3038.952	8.105	4.496	23.978
L2	27.450	30.171	2449.252	8.999	13.068	187.430	4901.726	15.088	3.867	10.313
	39.998	46.438	8930.391	13.850	20.010	446.294	17872.533	23.223	6.273	16.727
L3	39.238	50.549	8462.577	12.923	18.715	452.193	16936.290	25.279	5.714	13.06
	54.853	74.406	26989.283	19.022	27.442	983.497	54014.079	37.210	8.738	19.971
L4	53.965	69.853	22332.174	17.858	25.777	866.371	44693.734	34.933	8.161	18.653
	69.049	93.819	54105.269	23.985	34.544	1566.271	108281.732	46.918	11.198	25.595

Tower Elevation ft	Gusset Area (per face)	Gusset Thickness in	Gusset Grade	Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
L1				1	1	1			
158.00-131.00									
L2				1	1	1			
131.00-93.25									
L3 93.25-46.33				1	1	1			
L4 46.33-1.00				1	1	1			

Feed Line/Linear Appurtenances - Entered As Area

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Component Type	Placement ft	Total Number		$\begin{aligned} & C_{A} A_{A} \\ & {f t^{2} / f t}^{2} \end{aligned}$	Weight plf
Step Pegs 5/8" SR, 7"w, 15 "s (Ladder)	A	No	$\begin{gathered} \text { CaAa (Out Of } \\ \text { Face) } \end{gathered}$	158.00-1.00	1	No Ice $1 / 2^{\prime \prime}$ Ice 1" Ice	$\begin{aligned} & 0.03 \\ & 0.13 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 0.49 \\ & 0.97 \\ & 2.07 \end{aligned}$
Safety Line 3/8 (Ladder)	A	No	CaAa (Out Of Face)	158.00-1.00	1	No Ice 1/2" Ice 1" Ice	$\begin{aligned} & 0.04 \\ & 0.14 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.75 \\ & 1.28 \end{aligned}$
$\begin{gathered} 15 / 8 \\ \text { (Sprint) } \end{gathered}$	A	No	Inside Pole	157.50-1.00	3	No Ice $1 / 2^{\prime \prime}$ Ice 1" Ice	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 1.04 \\ & 1.04 \\ & 1.04 \end{aligned}$
$\begin{gathered} 11 / 4 \\ \text { (Sprint) } \end{gathered}$	A	No	Inside Pole	157.50-1.00	1	No Ice $1 / 2^{\prime \prime}$ Ice 1" Ice	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.66 \\ & 0.66 \\ & 0.66 \end{aligned}$
$15 / 8$ (Verizon)	A	No	Inside Pole	147.00-1.00	12	No Ice 1/2" Ice 1" Ice	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 1.04 \\ & 1.04 \\ & 1.04 \end{aligned}$
$15 / 8$	A	No	Inside Pole	137.00-1.00	12	No Ice 1/2" Ice	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 1.04 \\ & 1.04 \end{aligned}$

tnxTower Infinigy Engineering PLLC 1033 Watervliet Shaker Road Albany, NY 12205 Phone: (518) 690-0790 FAX: (518) 690-0793	Job $526-102$		$\text { Page } \quad 3 \text { of } 9$
	Project	CT54XC773	Date 12:33:00 08/01/17
	Client	Sprint	Designed by Matt Nichols, P.E.

Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Elevation ft	Face	A_{R} $f t^{2}$	A_{F} $f t^{2}$	$C_{A} A_{A}$ In Face $f t^{2}$	$\begin{gathered} C_{A} A_{A} \\ \text { Out Face } \\ f t^{2} \end{gathered}$	Weight lb
L1	158.00-131.00	A	0.000	0.000	0.000	1.800	393.82
		B	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	0.000	0.00
L2	131.00-93.25	A	0.000	0.000	0.000	2.517	1111.63
		B	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	0.000	0.00
L3	93.25-46.33	A	0.000	0.000	0.000	3.128	1381.66
		B	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	0.000	0.00
L4	46.33-1.00	A	0.000	0.000	0.000	3.022	1334.84
		B	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	0.000	0.00

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Section	Tower Elevation ft	Face or Leg	Ice Thickness in	A_{R} $f t^{2}$	A_{F} $f t^{2}$	$C_{A} A_{A}$ In Face ft^{2}	$C_{A} A_{A}$ Out Face $f t^{2}$	Weight $l b$
L1	158.00-131.00	A	1.738	0.000	0.000	0.000	20.567	566.26
		B		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	0.00
L2	131.00-93.25	A	1.694	0.000	0.000	0.000	28.755	1352.72
		B		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	0.00
L3	93.25-46.33	A	1.615	0.000	0.000	0.000	34.916	1670.84
		B		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	0.00
L4	46.33-1.00	A	1.447	0.000	0.000	0.000	32.304	1596.08
		B		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	0.00

Feed Line Center of Pressure

Section	Elevation	$C P_{X}$	$C P_{Z}$	$C P_{X}$ $I c e$	$C P_{Z}$ $I c e$
				in	in
in	in	in			
L1	$158.00-131.00$	0.000	-0.095	0.000	-0.730
L2	$131.00-93.25$	0.000	-0.096	0.000	-0.819
L3	$93.25-46.33$	0.000	-0.097	0.000	-0.871
L4	$46.33-1.00$	0.000	-0.097	0.000	-0.883

tnXTOWer	Job	Page	
	Project	Client	CT54XC773

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No Ice	K_{a} Ice

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
ft \\
ft \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
。
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

\hline Angle Platform w/ Handrails (Sprint) \& C \& None \& \& 0.000 \& 157.50 \& No Ice 1/2" Ice 1" Ice \& $$
\begin{aligned}
& 42.40 \\
& 48.40 \\
& 54.40
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 42.40 \\
& 48.40 \\
& 54.40
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2000.00 \\
& 2450.00 \\
& 2900.00
\end{aligned}
$$
\]

\hline APXV9ERR18-C-A20 (Sprint) \& A \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.000 \& 157.50 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 5.28 \\
& 5.74 \\
& 6.20
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 8.02 \\
& 8.48 \\
& 8.94
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
60.00 \\
106.52 \\
162.12
\end{gathered}
$$
\]

\hline | APXV9ERR18-C-A20 |
| :--- |
| (Sprint) | \& B \& From Leg \& \[

$$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.000 \& 157.50 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 5.28 \\
& 5.74 \\
& 6.20
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 8.02 \\
& 8.48 \\
& 8.94
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
60.00 \\
106.52 \\
162.12
\end{gathered}
$$
\]

\hline APXV9ERR18-C-A20 (Sprint) \& C \& From Leg \& \[
$$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.000 \& 157.50 \& | No Ice 1/2" Ice |
| :--- |
| 1" Ice | \& \[

$$
\begin{aligned}
& 5.28 \\
& 5.74 \\
& 6.20
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 8.02 \\
& 8.48 \\
& 8.94
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
60.00 \\
106.52 \\
162.12
\end{gathered}
$$
\]

\hline | APXVTM14-C-120 |
| :--- |
| (Sprint) | \& A \& From Leg \& \[

$$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.000 \& 157.50 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 5.96 \\
& 6.31 \\
& 6.68
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.38 \\
& 3.72 \\
& 4.07
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
50.00 \\
90.49 \\
132.96
\end{gathered}
$$
\]

\hline | APXVTM14-C-120 |
| :--- |
| (Sprint) | \& B \& From Leg \& \[

$$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.000 \& 157.50 \& No Ice $1 / 2^{\prime \prime}$ Ice 1" Ice \& \[

$$
\begin{aligned}
& 5.96 \\
& 6.31 \\
& 6.68
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.38 \\
& 3.72 \\
& 4.07
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
50.00 \\
90.49 \\
132.96
\end{gathered}
$$
\]

\hline | APXVTM14-C-120 |
| :--- |
| (Sprint) | \& C \& From Leg \& \[

$$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.000 \& 157.50 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 5.96 \\
& 6.31 \\
& 6.68
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.38 \\
& 3.72 \\
& 4.07
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
50.00 \\
90.49 \\
132.96
\end{gathered}
$$
\]

\hline 800 MHz RRH (Sprint) \& A \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.000 \& 157.50 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 1.93 \\
& 2.11 \\
& 2.29
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.06 \\
& 2.24 \\
& 2.43
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
60.00 \\
86.12 \\
111.30
\end{gathered}
$$
\]

\hline 800 MHz RRH (Sprint) \& B \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.000 \& 157.50 \& No Ice $1 / 2^{\prime \prime}$ Ice 1" Ice \& \[

$$
\begin{aligned}
& 1.93 \\
& 2.11 \\
& 2.29
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.06 \\
& 2.24 \\
& 2.43
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
60.00 \\
86.12 \\
111.30
\end{gathered}
$$
\]

\hline | 800 MHz RRH |
| :--- |
| (Sprint) | \& C \& From Leg \& \[

$$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.000 \& 157.50 \& | No Ice $1 / 2$ " Ice |
| :--- |
| 1" Ice | \& \[

$$
\begin{aligned}
& 1.93 \\
& 2.11 \\
& 2.29
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.06 \\
& 2.24 \\
& 2.43
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
60.00 \\
86.12 \\
111.30
\end{gathered}
$$
\]

\hline 1900 MHz RRH (Sprint) \& A \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.000 \& 157.50 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 2.73 \\
& 2.96 \\
& 3.20
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.45 \\
& 1.64 \\
& 1.84
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 44.09 \\
& 62.32 \\
& 83.43
\end{aligned}
$$
\]

\hline | 1900 MHz RRH |
| :--- |
| (Sprint) | \& B \& From Leg \& \[

$$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.000 \& 157.50 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 2.73 \\
& 2.96 \\
& 3.20
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.45 \\
& 1.64 \\
& 1.84
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 44.09 \\
& 62.32 \\
& 83.43
\end{aligned}
$$
\]

\hline 1900 MHz RRH (Sprint) \& C \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.000 \& 157.50 \& No Ice $1 / 2^{\prime \prime}$ Ice 1" Ice \& \[

$$
\begin{aligned}
& 2.73 \\
& 2.96 \\
& 3.20
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.45 \\
& 1.64 \\
& 1.84
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 44.09 \\
& 62.32 \\
& 83.43
\end{aligned}
$$
\]

\hline $$
\begin{aligned}
& \text { TD-RRH8X20 } \\
& \text { (Sprint) }
\end{aligned}
$$ \& A \& From Leg \& \[

$$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.000 \& 157.50 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 3.70 \\
& 3.95 \\
& 4.20
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.29 \\
& 1.46 \\
& 1.64
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
70.00 \\
90.08 \\
117.36
\end{gathered}
$$
\]

\hline TD-RRH8X20 (Sprint) \& B \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.000 \& 157.50 \& No Ice $1 / 2^{\prime \prime}$ Ice 1" Ice \& \[

$$
\begin{aligned}
& 3.70 \\
& 3.95 \\
& 4.20
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.29 \\
& 1.46 \\
& 1.64
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
70.00 \\
90.08 \\
117.36
\end{gathered}
$$
\]

\hline TD-RRH8X20 \& C \& From Leg \& 4.00 \& 0.000 \& 157.50 \& No Ice \& 3.70 \& 1.29 \& 70.00

\hline
\end{tabular}

tnxTower Infinigy Engineering PLLC 1033 Watervliet Shaker Road Albany, NY 12205 Phone: (518) 690-0790 FAX: (518) 690-0793	Job	526-102	Page 5 of 9
	Project	CT54XC773	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12:33:00 08/01/17 } \end{array}$
	Client	Sprint	Designed by Matt Nichols, P.E.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& Face or Leg \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& | $C_{A} A_{A}$ Front |
| :--- |
| $f t^{2}$ | \& $C_{A} A_{A}$ Side

$$
f t^{2}
$$ \& Weight

lb

\hline \multirow[t]{2}{*}{(Sprint)} \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.95 \& 1.46 \& 90.08

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 4.20 \& 1.64 \& 117.36

\hline \multicolumn{10}{|l|}{***}

\hline \multirow[t]{3}{*}{Angle Low Profile Platform (Verizon)} \& C \& None \& \& 0.000 \& 147.00 \& No Ice \& 26.10 \& 26.10 \& 1500.00

\hline \& \& \& \& \& \& 1/2" Ice \& 31.60 \& 31.60 \& 1700.00

\hline \& \& \& \& \& \& 1" Ice \& 37.10 \& 37.10 \& 1900.00

\hline \multirow[t]{3}{*}{(4) $72^{\prime \prime}$ x 12" Panel (Verizon)} \& A \& From Leg \& 4.00 \& 0.000 \& 147.00 \& No Ice \& 8.13 \& 4.70 \& 50.00

\hline \& \& \& 0.00 \& \& \& $$
1 / 2^{\prime \prime} \text { Ice }
$$ \& 8.59 \& 5.15 \& 92.28

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 9.05 \& 5.60 \& 145.59

\hline \multirow[t]{3}{*}{(4) 72 " x 12" Panel (Verizon)} \& B \& From Leg \& 4.00 \& 0.000 \& 147.00 \& No Ice \& 8.13 \& 4.70 \& 50.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.59 \& 5.15 \& 92.28

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 9.05 \& 5.60 \& 145.59

\hline \multirow[t]{3}{*}{(4) $72^{\prime \prime}$ x 12" Panel (Verizon)} \& C \& From Leg \& 4.00 \& 0.000 \& 147.00 \& No Ice \& 8.13 \& 4.70 \& 50.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.59 \& 5.15 \& 92.28

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.05 \& 5.60 \& 145.59

\hline \multicolumn{10}{|l|}{***}

\hline \multirow[t]{3}{*}{Antenna Pipe Mount} \& A \& From Leg \& 1.00 \& 0.000 \& 137.00 \& No Ice \& 0.87 \& 0.87 \& 14.60

\hline \& \& \& 0.00 \& \& \& $$
1 / 2^{\prime \prime} \text { Ice }
$$ \& 1.12 \& 1.12 \& 25.30

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.39 \& 1.39 \& 37.43

\hline \multirow[t]{3}{*}{Antenna Pipe Mount} \& B \& From Leg \& 1.00 \& 0.000 \& 137.00 \& No Ice \& 0.87 \& 0.87 \& 14.60

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.12 \& 1.12 \& 25.30

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 1.39 \& 1.39 \& 37.43

\hline \multirow[t]{3}{*}{Antenna Pipe Mount} \& C \& From Leg \& 1.00 \& 0.000 \& 137.00 \& No Ice \& 0.87 \& 0.87 \& 14.60

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.12 \& 1.12 \& 25.30

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 1.39 \& 1.39 \& 37.43

\hline \multirow[t]{3}{*}{$72^{\prime \prime}$ x 12" Panel} \& A \& From Leg \& 1.00 \& 0.000 \& 137.00 \& No Ice \& 8.13 \& 4.70 \& 50.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.59 \& 5.15 \& 92.28

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.05 \& 5.60 \& 145.59

\hline \multirow[t]{3}{*}{72 x x 12" Panel} \& B \& From Leg \& 1.00 \& 0.000 \& 137.00 \& No Ice \& 8.13 \& 4.70 \& 50.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.59 \& 5.15 \& 92.28

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.05 \& 5.60 \& 145.59

\hline \multirow[t]{3}{*}{72 x x 12" Panel} \& C \& From Leg \& 1.00 \& 0.000 \& 137.00 \& No Ice \& 8.13 \& 4.70 \& 50.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.59 \& 5.15 \& 92.28

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 9.05 \& 5.60 \& 145.59

\hline
\end{tabular}

Load Combinations

Comb. No.		Description
1	Dead Only	
2	1.2 Dead+1.6 Wind 0 deg - No Ice	
3	0.9 Dead+1.6 Wind 0 deg - No Ice	
4	1.2 Dead+1.6 Wind 30 deg - No Ice	
5	0.9 Dead+1.6 Wind 30 deg - No Ice	
6	1.2 Dead+1.6 Wind 60 deg - No Ice	
7	0.9 Dead+1.6 Wind 60 deg - No Ice	
8	1.2 Dead+1.6 Wind 90 deg - No Ice	
9	0.9 Dead+1.6 Wind 90 deg - No Ice	
10	1.2 Dead+1.6 Wind 120 deg - No Ice	
11	0.9 Dead+1.6 Wind 120 deg - No Ice	
12	1.2 Dead+1.6 Wind 150 deg - No Ice	

tnXTOWer	Job	Page	
	Project	526-102	6 of 9
	Client	CT54XC773	Date

Comb. No.	Description
13	0.9 Dead+1.6 Wind 150 deg - No Ice
14	1.2 Dead+1.6 Wind 180 deg - No Ice
15	0.9 Dead+1.6 Wind 180 deg - No Ice
16	1.2 Dead+1.6 Wind 210 deg - No Ice
17	0.9 Dead+1.6 Wind 210 deg - No Ice
18	1.2 Dead+1.6 Wind 240 deg - No Ice
19	0.9 Dead+1.6 Wind 240 deg - No Ice
20	1.2 Dead+1.6 Wind 270 deg - No Ice
21	0.9 Dead+1.6 Wind 270 deg - No Ice
22	1.2 Dead+1.6 Wind 300 deg - No Ice
23	0.9 Dead+1.6 Wind 300 deg - No Ice
24	1.2 Dead+1.6 Wind 330 deg - No Ice
25	0.9 Dead+1.6 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind $30 \mathrm{deg}+$ 1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind $300 \mathrm{deg}+1.0$ Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	Twist
	$f t$	$158-131$	8.482	39	0.560
L1	$135-93.25$	5.936	39	0.468	0
L2	$98.75-46.33$	2.970	39	0.305	0.000
L3	$53.6633-1$	0.825	39	0.146	0.000
L4				0.000	

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of Curvature
$f t$		Load				
157.50		Comb.	in	\circ	\circ	
	Angle Platform w/ Handrails	39	8.424	0.558	0.000	44924

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	\circ

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of Curvature
$f t$		Load		in	\circ	\circ
157.50	Angle Platform w/ Handrails	2	39.522	2.621	0.002	9603
147.00	Angle Low Profile Platform	2	33.892	2.427	0.002	4365
137.00	Antenna Pipe Mount	2	28.807	2.235	0.002	2310

Compression Checks

Pole Design Data									
Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
	$f t$		$f t$	$f t$		in ${ }^{2}$	$l b$	$l b$	ϕP_{n}
L1	158-131 (1)	TP27.42x18.5x0.188	27.00	157.00	204.8	15.420	-7410.72	83041.70	0.089
L2	131-93.25 (2)	TP39.39x25.724x0.375	41.75	157.00	142.6	44.295	-14458.90	492055.00	0.029
L3	$93.25-46.33$ (3)	TP54.02x36.84x0.438	52.42	157.00	103.7	71.068	-28388.10	1493120.00	0.019
L4	46.33-1 (4)	TP68x50.742x0.438	52.66	157.00	78.6	93.819	-50231.70	3163880.00	0.016

Pole Bending Design Data

Section No.	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	$\begin{gathered} \text { Ratio } \\ M_{u x} \\ \hline \end{gathered}$	$M_{u y}$	$\phi M_{n y}$	$\begin{gathered} \text { Ratio } \\ M_{u y} \\ \hline \end{gathered}$
	$f t$		$l b-f t$	$l b-f t$	$\phi M_{n x}$	$l b-f t$	$l b-f t$	$\phi M_{n y}$
L1	158-131 (1)	TP27.42x18.5x0.188	160640.83	552396.67	0.291	0.00	552396.67	0.000

tnxTower Infinigy Engineering PLLC 1033 Watervliet Shaker Road Albany, NY 12205 Phone: (518) 690-0790 FAX: (518) 690-0793	Job	526-102	$\begin{aligned} & \text { Page } \\ & \\ & 8 \text { of } 9 \end{aligned}$
	Project	CT54XC773	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12:33:00 08/01/17 } \end{array}$
	Client	Sprint	Designed by Matt Nichols, P.E.

Section No.	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	$\begin{gathered} \text { Ratio } \\ M_{u x} \\ \hline \end{gathered}$	$M_{u y}$	$\phi M_{n y}$	$\begin{gathered} \text { Ratio } \\ M_{u y} \\ \hline \end{gathered}$
$f t$			$l b-f t$	$l b-f t$	$\phi M_{n x}$	$l b-f t$	$l b-f t$	$\phi M_{n y}$
L2	131-93.25 (2)	TP39.39x25.724x0.375	592602.50	2512833.33	0.236	0.00	2512833.33	0.000
L3	$93.25-46.33$ (3)	TP54.02x36.84x0.438	1286291.67	5317375.00	0.242	0.00	5317375.00	0.000
L4	46.33-1(4)	TP68x50.742x0.438	2332500.00	8375166.67	0.279	0.00	8375166.67	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V_{u}	ϕV_{n}	$\begin{aligned} & \text { Ratio } \\ & V_{u} \end{aligned}$	Actual T_{u}	ϕT_{n}	$\begin{aligned} & \text { Ratio } \\ & T_{u} \end{aligned}$
$f t$			$l b$	lb	ϕV_{n}	$l b-f t$	$l b-f t$	ϕT_{n}
L1	158-131 (1)	TP27.42x18.5x0.188	10565.50	518055.00	0.020	0.00	1106141.67	0.000
L2	131-93.25 (2)	TP39.39x25.724x0.375	13362.30	1645440.00	0.008	0.00	5031808.33	0.000
L3	$93.25-46.33$ (3)	TP54.02x36.84x0.438	17455.50	2528010.00	0.007	0.00	10647750.00	0.000
L4	46.33-1 (4)	TP68x50.742x0.438	22287.60	3010010.00	0.007	0.00	16770833.33	0.000

Pole Interaction Design Data

Section No.	Elevation	Ratio P_{u}	Ratio $M_{u x}$	Ratio $M_{u y}$	Ratio V_{u}	Ratio T_{u}	Comb. Stress	Allow. Stress	Criteria
	$f t$	ϕP_{n}	$\phi M_{n X}$	$\phi M_{n y}$	ϕV_{n}	ϕT_{n}	Ratio	Ratio	
L1	158-131 (1)	0.089	0.291	0.000	0.020	0.000	0.380	1.000	4.8.2
L2	131-93.25 (2)	0.029	0.236	0.000	0.008	0.000	0.265	1.000	$4.8 .2$
L3	$93.25-46.33$ (3)	0.019	0.242	0.000	0.007	0.000	0.261	1.000	4.8.2
L4	46.33-1 (4)	0.016	0.279	0.000	0.007	0.000	0.294	1.000	4.8.2

Section Capacity Table

Section No.	Elevation $f t$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} ø P_{\text {allow }} \\ l b \end{gathered}$	\% Capacity	Pass Fail
L1	158-131	Pole	TP27.42x18.5x0.188	1	-7410.72	83041.70	38.0	Pass
L2	131-93.25	Pole	TP39.39x25.724x0.375	2	-14458.90	492055.00	26.5	Pass
L3	93.25-46.33	Pole	TP54.02x36.84x0.438	3	-28388.10	1493120.00	26.1	Pass
L4	46.33-1	Pole	TP68x50.742x0.438	4	-50231.70	3163880.00	29.4	Pass
						Pole (L1) RATING =	$\begin{gathered} \text { Summary } \\ 38.0 \\ \mathbf{3 8 . 0} \end{gathered}$	$\begin{aligned} & \text { Pass } \\ & \text { Pass } \end{aligned}$

tnXTOWer	Job	Page	
	Project	Client	CT54XC773

Program Version 7.0.7.0-7/18/2016 File:C:/Users/MNichols/Desktop/Current Jobs/Subs Work/Hamden/Structural Calculations/CT54XC773final.eri

(

