Transcend Wireless

July 15, 2019

Members of the Siting Council
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

RE: Notice of Exempt Modification
101 Talmadge Road, Hamden, CT 06518
Latitude: 41.422862400
Longitude: -72.9511365000
T-Mobile Site\#: CT11474A - L600

Dear Ms. Bachman:

T-Mobile currently maintains six (6) antennas at the 315-foot level of the existing 765 -foot lattice tower at 101 Talmadge Road, Hamden, CT. The 765 -foot lattice tower and property are owned by LIN Television Corp. TMobile now intends to replace the six (6) existing antennas with six (6) new 600/700/1900/2100 MHz antennas. The new antennas will be installed at the same 315-foot level of the tower.

Planned Modifications:

Tower:

Remove
(12) 7/8" Coax
(3) TMA

Remove and Replace:
(3) LNX-6515DS (Remove) - APXVAARR24_43-U-NA20 Antenna (Replace) 600/700/1900 MHz
(3) APXV18-206517S-C-A20 (Remove) - APXV16DWV-16DWV-S-E-A20 (Replace) 2100 MHz

Install New:
(3) 1-3/8" Hybrid Cables
(3) Radio 4449 B71+B12
(3) Radio 4415 B25
(3) Radio 4415 B66
(1) 1.25 STD Mount Brace

Existing to Remain:
N/A

Ground:

Remove: (2) 6201 ODE Cabinets

Install: (1) 6102 Cabinet

There is no record of an original approval of this facility by the Siting Council. T-Mobile and other carriers have been approved previously for exempt modifications. T-Mobile was unable to obtain any documentation from the jurisdiction pertaining to an original approval. The proposed modification will not be violating any previous approvals.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies§ 16-SOj-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.SA. § 16-SOj-73, a copy of this letter is being sent to Mayor -Curt B. Leng, Elected Official, and Daniel Kops, Town Planner for the Town of Hamden, as well as the owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S;A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Kyle Richers

Transcend Wireless
Cell: 908-447-4716
Email: krichers@transcendwireless.com

Attachments

cc: Curt Leng - Town of Hamden Mayor
Daniel Kops- Town of Hamden Town Planner
LIN Television Corp - owner

From:

Sent:
To:
Subject:

UPS Quantum View pkginfo@ups.com
Monday, July 15, 2019 12:24 PM
krichers@transcendwireless.com
UPS Ship Notification, Reference Number 1: CT11474A CSC ZO

x

You have a package coming.

Scheduled Delivery Date: Tuesday, 07/16/2019

This message was sent to you at the request of TRANSCEND WIRELESS to notify you that the shipment information below has been transmitted to UPS. The physical package may or may not have actually been tendered to UPS for shipment. To verify the actual transit status of your shipment, click on the tracking link below.

Shipment Details

From:	TRANSCEND WIRELESS
Tracking Number:	1ZV257424295937829
Ship To:	Daniel Kops Town of Hamden 2750 DIXWELL AVENUE HAMDEN, CT 065183320 US
UPS Service:	UPS GROUND
Number of Packages:	1
Scheduled Delivery:	07/16/2019
Signature Required:	A signature is required for package delivery
Weight:	1.0 LBS
Reference Number 1:	CT11474A CSC zo
	x
x Download the UPS mobile app	

From:
Sent:
To:
Subject:

UPS Quantum View pkginfo@ups.com
Monday, July 15, 2019 12:26 PM
krichers@transcendwireless.com
UPS Ship Notification, Reference Number 1: CT11474A CSC EO

x

You have a package coming.

Scheduled Delivery Date: Tuesday, 07/16/2019

This message was sent to you at the request of TRANSCEND WIRELESS to notify you that the shipment information below has been transmitted to UPS. The physical package may or may not have actually been tendered to UPS for shipment. To verify the actual transit status of your shipment, click on the tracking link below.

Shipment Details

From:	TRANSCEND WIRELESS
Tracking Number:	1ZV257424296607835
Ship To:	Curt Leng Town of Hamden 2750 Dixwell Avenue HAMDEN, CT 065183320 US
UPS Service:	UPS GROUND
Number of Packages:	1
Scheduled Delivery:	07/16/2019
Signature Required:	A signature is required for package delivery
Weight:	1.0 LBS
Reference Number 1:	CT11474A CSC EO
Download the UPS mobile app	

From:

Sent:
To:
Subject:

UPS Quantum View pkginfo@ups.com
Monday, July 15, 2019 12:27 PM
krichers@transcendwireless.com
UPS Ship Notification, Reference Number 1: CT11474A CSC Owner

x

You have a package coming.

Scheduled Delivery Date: Wednesday, 07/17/2019

This message was sent to you at the request of TRANSCEND WIRELESS to notify you that the shipment information below has been transmitted to UPS. The physical package may or may not have actually been tendered to UPS for shipment. To verify the actual transit status of your shipment, click on the tracking link below.

Shipment Details

From:	TRANSCEND WIRELESS
Tracking Number:	1ZV257424297297848
Ship To:	LIN Television Corp 333 East Franklin Street RICHMOND, VA 232192213 US
UPS Service:	UPS GROUND
Number of Packages:	1
Scheduled Delivery:	07/17/2019
Signature Required:	A signature is required for package delivery
Weight:	1.0 LBS
Reference Number 1:	CT11474A CSC Owner
	\square
x Download the UPS mobile app	

Location 0 TALMADGE RD Mblu 3123/008///

Acct\#	Owner	L I N TELEVISION CORP	
Assessment	$\$ 373,940$	Appraisal	$\$ 534,200$
PID 100690	Building Count	1	

Current Value

Appraisal			
Valuation Year	Improvements	Land	Total
2016	\$34,500	\$499,700	\$534,200
Assessment			
Valuation Year	Improvements	Land	Total
2016	\$24,150	\$349,790	\$373,940

Owner of Record

Owner L I N TELEVISION CORP Sale Price \$0

Co-Owner

Address 333 EAST FRANKLIN ST
RICHMOND, VA 23219

Certificate
Book \& Page 1905/ 206
Sale Date $\quad 11 / 29 / 1999$

Ownership History

Ownership History				
Owner	Sale Price	Certificate	Book \& Page	Sale Date
L I N TELEVISION CORP	\$0		1905/206	11/29/1999
L W W I BROADCASTING INC	\$605,000		1470/ 283	12/29/1994
COOK INLET COMMUNICATIONS CORP	\$0		740/459	01/03/1986

Building Information

Building 1 : Section 1

Year Built:	1965			
Living Area:	812			
Building Percent	65			
Good:	Building Attributes			
Field				Description
STYLE	Warehouse			

MODEL	Ind/Comm
Grade	C
Stories:	1
Occupancy	1
Exterior Wall 1	Pre-finsh Metl
Exterior Wall 2	
Roof Structure	Flat
Roof Cover	T\&G/Rubber
Interior Wall 1	Minim/Masonry
Interior Wall 2	
Interior Floor 1	Concr-Finished
Interior Floor 2	
Heating Fuel	Gas
Heating Type	Hot Air-no Duc
AC Type	None
Bldg Use	RAD/TV TR M96
Total Rooms	
Total Bedrms	00
Total Baths	0
1st Floor Use:	4330
Heat/AC	NONE
Frame Type	StEEL
Baths/Plumbing	NONE
Ceiling/Wall	NONE
Rooms/Prtns	AVERAGE
Wall Height	10
\% Comn Wall	0

Building Photo

(http://images.vgsi.com/photos/HamdenCTPhotos//\00\02\80/12
Building Layout

(http://images.vgsi.com/photos/HamdenCTPhotos//Sketches/10C

Building Sub-Areas (sq ft)			Legend
Code	Description	Gross Area	Living Area
BAS	First Floor	812	812
CAN	Canopy	324	0
SLB	Slab	0	0
		1,136	812

Extra Features

Extra Features	Legend	
	No Data for Extra Features	

Land

Land Use

Description	RAD/TV TR M96	Frontage	0
Zone	R2	Depth	0
Neighborhood	140	Assessed Value	$\$ 349,790$
Alt Land Appr	No	Appraised Value	$\$ 499,700$
Category			

Outbuildings

Outbuildings						Legend
Code	Description	Sub Code	Sub Description	Size	Value	Bldg \#
FN3	FENCE-6' CHAIN			770 L.F.	\$3,500	1

Valuation History

Appraisal					
	Valuation Year	Improvements	Land		
2017		$\$ 34,500$	Total		
2016		$\$ 34,500$	$\$ 499,700$	$\$ 534,200$	
2015	$\$ 477,600$	$\$ 499,700$	$\$ 534,200$		

Assessment					
	Valuation Year	Improvements			
2017		$\$ 24,150$	Land	Total	
2016		$\$ 24,150$	$\$ 349,790$		
2015	$\$ 334,320$	$\$ 349,790$	$\$ 373,940$		

(c) 2019 Vision Government Solutions, Inc. All rights reserved.

Town of Hamden, Connecticut - Assessment Parcel Map
Parcel: 3123-008-00-0000

ESICN BASIS

- Desig critera:

RISK CAIEOORY: | ((Based on IBC TABE 1804.5)

GENERAL NOTES

ALL Constructon Shall 日e in compance wit the governicg buloung

- dmensions and detalls shall be checked aganst exxting felo conotions.

5. THE Contractor shal verf and coronane the siz Ano locanon of all

STRUCTURAL STEE

Lowable stress desin (as)

C.

6. NsTALL FARERCOTONS PLUMM ANO LNELL ACCURATEY FITED, AND RREE FROM

11. CoNNECTON ANGLES SHAL HANE A MNMUM THCCNEESS OF $1 / 4$ NCHES.

13. Lock washer are not pexumteo for azz5 Stel assemules.

DATE: 5/31/2019
SUFFICIENT CAPACITY - 97\%

RIGOROUS STRUCTURAL ANALYSIS
FOR A 907' G-12 GUYED TOWER
NEW HAVEN (HAMDEN), CONNECTICUT

PREPARED BY:	CD
CHECKED BY:	AP

APPROVED: KP

Date	Pages	Remarks

STAINLESS
A Business of FDH Infrastructure Services, LLC

Rev.	Date	Description

SECTION PAGE
A. AUTHORIZATION/PURPOSE 1
B. TOWER HISTORY 1
C. CONDITIONS INVESTIGATED 2
D. LOADS AND STRESSES 4
E. METHOD OF ANALYSIS 5
F. RESULTS 5
G. CONCLUSIONS AND RECOMMENDATIONS 6
H. PROVISIONS OF ANALYSIS 6
APPENDIX
GENERAL ARRANGEMENT E-1
LINEAR APPURTENANCES A-2

Rev.	Date	Description

A. AUTHORIZATION/PURPOSE

As authorized by Kyle Richers of Transcend Wireless, a structural analysis was performed to investigate the adequacy of a 907' overall height Stainless G-12 guyed tower located at 101 Talmadge Road in Hamden, Connecticut to support specified equipment.

B. TOWER HISTORY

The tower was originally designed and furnished in 1995 by Stainless. It was designed in accordance with TIA/EIA-222-E for a wind speed of 85 mph and 73.6 mph with $1 / 2$ " ice while supporting the following equipment:

1. One (1) top mounted Dielectric TCL-12A8 (S) antenna, fed by two (2) 6-1/8" rigid lines.
2. One (1) top mounted HDTV antenna, fed by one (1) WR1150 waveguide (future).
3. One (1) Dielectric TFU-28JSM Ch. 59 antenna, at the 730 ' level, fed by one (1) WR1150 waveguide.
4. One (1) Dielectric TFU-28JSM HDTV Ch. 14 antenna, at the 670 ' level, fed by one (1) WR1150 waveguide (future).
5. Two (2) ENG Super Quad antennas at the 760 ' level, fed by one (1) $1-5 / 8$ " line and one (1) $1 / 2$ " control cable (one future).
6. One (1) ERI 6-bay panel type FM antenna at the 610^{\prime} level, fed by one (1) $6-1 / 8$ " rigid line (future).
7. Two (2) Andrew MMDS wireless cable antennas at the 565^{\prime} level, fed by one (1) EW20 waveguide (future).
8. One (1) ERI SHPX-3AE FM antenna at the 545 ' level, fed by one (1) 3 " line.
9. One (1) ERI SHPX-3AE FM antenna at the 520 ' level, fed by one (1) 3 " line.
10. Three (3) whip antennas at the 750 ' level, fed by one (1) $1-5 / 8$ " line to each.
11. Three (3) whip antennas at the 500^{\prime} level, fed by one (1) $1-5 / 8^{\prime \prime}$ line to each.
12. Three (3) whip antennas at the 400^{\prime} level, fed by one (1) $1-5 / 8^{\prime \prime}$ line to each.
13. Three (3) whip antennas at the 350 ' level, fed by one (1) $1-5 / 8^{\prime \prime}$ line to each (future).
14. Three (3) whip antennas at the 325^{\prime} level, fed by one (1) $1-5 / 8$ " line to each (future).
15. Three (3) whip antennas at the 300 ' level, fed by one (1) $1-5 / 8$ " line to each (future).
16. One (1) Scala PR-450U antenna at the 339^{\prime} level, fed by one (1) $7 / 8^{\prime \prime}$ line.
17. One (1) Scala PR-450U antenna at the 247 ' level, fed by one (1) $7 / 8$ " line.
18. One (1) 6^{\prime} grid dish at the 400 ' level, fed by one (1) $1-5 / 8$ ' line.
19. Two (2) 6^{\prime} grid dishes at the 325^{\prime} level, fed by one (1) $1-5 / 8^{\prime \prime}$ line to each (future).
20. Two (2) 6^{\prime} grid dishes at the 225^{\prime} level, fed by one (1) $1-5 / 8 "$ line to each (future).
21. Two (2) 8^{\prime} dishes with radomes at the 325^{\prime} level, fed by one (1) EW63 waveguide to each (one future).

Rev.	Date	Description

22. One (1) 8^{\prime} dish with radome at the 166 ' level, fed by one (1) EW63 waveguide (future).
23. One (1) 8^{\prime} dish with radome at the 150 ' level, fed by one (1) EW63 waveguide (future).
24. One (1) inside climbing ladder with cable type safety device for the full height of the tower.
25. One (1) single car elevator with guide rails, cables, motor and elevator equipment.
26. Ice shields for all side mounted antennas, except the whip antennas.
27. One (1) red lighting system with circuits in rigid conduit for the full height of the tower.

* In 1998, the bottom stack Dielectric THP-O-2-1 antenna of the top mounted stack system was installed per Stainless Report 362006. The guy wires of all the four levels were also retensioned.
* The tower was modified in 2015 by Stainless per Report 362017. The modifications were as follows:
- Installed additional horizontal sub-bracing at the midpoints of the following bay:

Location	No of bays
$591.3^{\prime}-583.8{ }^{\prime}$	1

- Replaced existing diagonal braces with new, higher capacity members at the following bay:

Location	No of bays
$621.3^{\prime}-613.8^{\prime}$	1

* In 2018, the tower was modified per Stainless Report 362023. The modifications consisted the following:
- Installed additional horizontal sub-bracing at the midpoints of the following bay:

Location	No of bays
$553.8^{\prime}-546.3^{\prime}$	1

Stainless has no record of any other modifications to the tower structure or its foundations.

C. CONDITIONS INVESTIGATED

The analysis was performed for the tower supporting the equipment listed below based on the following sources:

- Stainless Proposal P19_3620_001 dated 4/18/2019.
- Stainless Report 362022 dated 8/22/2018.
- Emails from Kyle Richers of Transcend Wireless dated 4/12/2019, 5/2/2019, 5/23/2019 and $5 / 24 / 2019$ with details of proposed and existing equipment.

Rev.	Date	Description

- Mount analysis by Centek Engineering per Project No. 19027.14 Rev 1 dated 4/29/2019.
- CT11474A_Mount Analysis_Rev 1_19.04.29_L600.pdf

APPURTENANCE	ELEVATION, ft.	FEED LINES
$\begin{aligned} & \text { Stacked TCL-12A8(S) Ch. } 8 \text { / THP-O- } \\ & 2-1 \mathrm{Ch} .10 \end{aligned}$	Tower top	6-1/8"/3-1/8" rigid
10' omni	758	1-5/8"*
5' omni	750	7/8"
Super Quad ENG	744	1-5/8"* \& 1/2" control cable
DB408	742	1-5/8"*
Ice shield	681	-
PL8 8' diameter dish/radome	678	EW63 \& 1/2" cable
PL6-65 6' diameter dish/radome	630	EW63 \& 1/2" cable
(2) Dualight 12004-rot-1r07-001	605	--
6015-2/3R FM	591	4-1/16" rigid
(2) DB408	529	7/8" to each
DB408	510	7/8"
6810-2R 2-bay FM	458	6-1/8" ${ }^{\text {rigid** }}$
15 " omni (unused)	420	1/2"
10' omni (unused)	420	1-5/8"
5" omni	348	7/8"
Ice shield	346	-
6' diameter grid dish	339	7/8"
(3) RFS APX16DWV-16DWV-S-EA20 (Proposed) (3) RFS APXVAARR24 43-U-NA20 (Proposed) (3) Radio 4449 B71+B12 (Proposed) (3) Radio 4415 B25 (Proposed) (3) Radio 4415 B66 (Proposed) (3) Sector mounts	315	(3) 1-3/8" hybrid cables (Proposed)
(2) Dualight 12004-rot-1r07-001	302	--
(3) APXVSPP18-C-A20 (3) APXVTM14-C-120 (3) TD-RRH8×20 (6) RRUs (3) sector mounts	200	(3) 1-1/4" Hybriflex (1) 1-1/4" Hybriflex cable
Ice shield	166	-
8' diameter dish/radome	160	(2) EW63
$15^{\prime \prime}$ omni (unused)	102	1/2"

Rev.	Date	Description

ASPG952 (unused)	100	$2-1 / 4 "$
GPS unit	75	$1 / 2^{\prime \prime}$
(2) support conduits	To 200 \& 45	$1 "$ conduit
Support conduit	To 315	$1-1 / 4 "$ conduit
(7) support conduits	To 200', 348', $2 \times 420^{\prime}, 529^{\prime}$, 758^{\prime}, top of tower	$1-1 / 2^{\prime \prime}$ conduit
Ladder with cable safety device	To top of tower	$3 / 8^{\prime \prime}$ cable
Elevator system	To top of tower	-
FAA red lighting system	To top of tower	$1 "$ ' to 45 $1-1 / 2 "$ from 45 ' to tower top

REMOVING EQUIPMENT		
(3) APXV18-206517S-C-A20 (3) LNX-6515DS-VTM	315	(12) $7 / 8 \%$

* Shared line
** This coax was cut at the $440^{\prime}-480^{\prime}$ level and a 20^{\prime} length of 3 " heliax was used to connect the $6-1 / 8^{\prime \prime}$ rigid coax to the antenna. The remaining length of the $6-1 / 8^{\prime \prime}$ rigid coax from 480^{\prime} to the top of tower was left in place

The locations of the transmission lines have been based upon the cross section from Stainless Report 362022 dated 08/22/2018 and shown on Page A-2 of this Report. Proposed transmission lines have been located to minimize the wind load on the tower. Deviating from the line arrangement as shown may invalidate the results of this analysis.

D. LOADS AND STRESSES

The analysis was performed using the following design parameters in accordance with the 2018 Connecticut Building Code, based on the 2015 IBC, and ANSI/TIA 222-G-2005, Structural Standard for Antenna Supporting Structures and Antennas, including Addenda 1 \& 2, dated 2007 and 2009 respectively.

- Risk Category II
- 125 mph ultimate design wind speed with no ice.
- 50 mph nominal design wind speed with $3 / 4$ " design ice thickness
- Exposure Category B
- Topographic Category 5 (Mad Mare Ridge, SEE wind direction, ridge, crest $=650$ ', base $=400^{\prime}, \mathrm{L} / 2=980^{\prime}, \mathrm{x}=390^{\prime}$ windward, Kzt $\max =1.546$)
- 0.187 earthquake spectral response acceleration at short periods (Ss)
- Earthquake Site Class D

Rev.	Date	Description

The ultimate design wind speed is converted to a nominal design wind speed for use in ANSI/TIA 222-G based upon the following formula:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{asd}} & =\mathrm{V}_{\mathrm{ult}} *(0.6)^{1 / 2} \\
& =125 *(0.6)^{1 / 2} \\
& =97 \mathrm{mph}
\end{aligned}
$$

Seismic effects need not be considered as the value of Ss is less than 1.0 per Section 2.7.3 of ANSI/TIA 222-G. Load and resistance factors used to evaluate the adequacy of the structure were in accordance with ANSI/TIA 222-G.

E. METHOD OF ANALYSIS

The analysis was performed using tnxTower, a computerized program which idealizes the tower as a structure consisting of finite elements, and subjected to simultaneous transverse and axial loads.

F. RESULTS

The results of the analysis show the following ratings:

COMPONENT	SPAN	\% RATING
Tower top	--	92
Leg compression	4	97
	3	97
	2	79
	1	84
Leg tension	4	80
	3	--
	2	--
	1	--
Diagonals	4	60
	3	67
	2	72
	1	76
Horizontals	4	50
	3	68
	2	51
	1	47
Guys	4	69
	3	64
	2	69
	1	79

Rev.	Date	Description

COMPONENT	SPAN	\% RATING
Foundations	Base	79
	Inner anchors	72
	Outer anchors	62

The rating is defined as the percentage of the component design capacity that is used up in supporting itself and the loading from the antennas and transmission lines under the design wind and ice loading conditions. Ratings of up to 105% for tower members, and up to 110% for foundations are considered acceptable due to tolerances in calculating the applied loads on the tower as well as member design capacities.

However the state of Connecticut mandates a maximum rating of 100%, and the tower has been reviewed based on 100% maximum rating.

The twist and sway of the dishes under a service wind load of 60 mph are as follows:

Dish	Elevation, ft.	Twist, degrees	Sway, degrees
PL8 8' diameter dish/ radome	678	0.92	0.08
PL6-65 6' diameter dish/radome	630	0.91	0.08
6' diameter grid dish	339	0.84	0.03
8' diameter dish/radome	160	0.71	0.07

G. CONCLUSIONS AND RECOMMENDATIONS

Based on the preceding results, the following conclusions may be drawn:

1. The tower supporting equipment as specified in Section C above is adequate to achieve an ultimate design wind speed of 125 mph with no ice, and a nominal design wind speed of 50 mph with $3 / 4$ " design ice thickness in accordance with the 2018 Connecticut Building Code, based on the 2015 IBC, and ANSI/TIA 222-G with the analysis parameters of Section D.
2. The existing mounts at 315 ' have been analyzed by Centek Engineering per Project No. 19027.14 Rev 1 dated 4/29/2019. Based on the recommendations of this report, the mounts are adequate after installing pipe bracing to the existing mounts.

H. PROVISIONS OF ANALYSIS

The analysis performed and the conclusions contained herein are based on the assumption that the tower has been properly installed and maintained, including, but not limited to the following:

1. Proper alignment and plumbness.
2. Correct bolt tightness.
3. Correct guy tensions.

Rev.	Date	Description

4. No significant deterioration or damage to any component.

Furthermore, the information and conclusions contained in this Report were determined by application of the current "state-of-the-arts" engineering and analysis procedures and formulae, and Stainless assumes no obligations to revise any of the information or conclusions contained in this Report in the event that such engineering and analysis procedures and formulae are hereafter modified or revised. In addition, under no circumstances will Stainless have any obligation or responsibility whatsoever for or on account of consequential or incidental damages sustained by any person, firm or organization as a result of any information or conclusions contained in the Report, and the maximum liability of Stainless, if any, pursuant to this Report shall be limited to the total funds actually received by Stainless for preparation of this Report. Customer has requested Stainless to prepare and submit to Customer an engineering analysis with respect to the Subject Tower and has further requested Stainless to make appropriate recommendations regarding suggested structural modifications and changes to the Subject Tower. In making such request of Stainless, Customer has informed Stainless that Customer will make a determination as to whether or not to implement any of the changes or modifications which may be suggested by Stainless and that Customer will have any such changes or modifications made by riggers, erectors and other subcontractors of Customer's choice.

Customer hereby agrees and acknowledges that Stainless shall have no liability whatsoever to Customer or to others for any work or services performed by any persons other than Stainless in connection with the implementation of any structural changes or modifications recommended by Stainless including but not limited to any services rendered for Customer or for others by riggers, erectors or other subcontractors. Customer acknowledges and agrees that any riggers, erectors or subcontractors retained or employed by Customer shall be solely responsible to Customer and to others for the quality of work performed by them and that Stainless shall have no liability or responsibility whatsoever as a result of any negligence or breach of contract by any such rigger, erector or subcontractor.
R=643.00 ft (-131)

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Dielectric THP-O2-1 wraparound	802.58	Radio 4415 B25 (Proposed)	315
ELEVATOR BEAMS _WEIGHT	767	Radio 4415 B25 (Proposed)	315
10' WHIP	758	Radio 4415 B25 (Proposed)	315
5' OMNI ANTENNA	750	Radio 4415 B66 (Proposed)	315
NURAD SUPERQUAD II ENG	744	Radio 4415 B66 (Proposed)	315
DB408	742	Radio 4415 B66 (Proposed)	315
ICE SHIELD	Sector mount	315	
PL8	Sector mount	315	
Andrew PL6-65	678	Sector mount	315
(2) Dualight 12004-RTO-1R07-001	630	(2) Dualight 12004-RTO-1R07-001	302
SHIVELY 6015-2/3R wraparound FM	591	APXSPP18-C-A20 w/ Mount Pipe	200
(2) DB408	529	APXSPP18-C-A20 w/ Mount Pipe	200
DB408	510	APXSPP18-C-A20 w/ Mount Pipe	200
SHVLY 6810 FW RAD _MT	458	APXVTM14-C-I20 w/ Mount Pipe	200
15' WHIP (UNUSED)	420	APXVTM14-C-I20 w/ Mount Pipe	200
10' WHIP (UNUSED)	420	APXVTM14-C-I20 w/ Mount Pipe	200
5' OMNI ANTENNA	348	TD-RRH8x20	200
ICE SHIELD	346	TD-RRH8x20	200
6' Grid Dish	339	TD-RRH8x20	200
APX16DWV-16DWVS-E-A20 w/ Mount Pipe (Proposed)	315	(2) 800 MHz RRH	200
APX16DWV-16DWVS-E-A20 w/ Mount	315	(2) 800 MHz RRH	200
Pipe (Proposed)	(2) 800 MHz RRH	200	
APX16DWV-16DWVS-E-A20 w/ Mount Pipe (Proposed)	315	Sector mount	200
APXVAARR24_43-U-NA20 (Proposed)	315	Sector mount	200
APXVAARR24_43-U-NA20 (Proposed)	315	Sector mount	200
APXVAARR24_43-U-NA20 (Proposed)	315	ICE SHIELD	166
Radio 4449 B71+B12 (Proposed)	315	8160	
Radio 4449 B71+B12 (Proposed)	315	DSiF03F36D-D on sidearm	110
Radio 4449 B71+B12 (Proposed)	315	15' WHIP (UNUSED)	102
		ASGP952 ANTENNA (UNUSED)	100
	GPS ANTENNA	75	

$\underline{906.1 \mathrm{ft}}$

TOWER DESIGN NOTES

1. Tower designed for Exposure B to the TIA-222-G Standard.
2. Tower designed for a 97 mph basic wind in accordance with the TIA-222-G Standard.
3. Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
4. Deflections are based upon a 60 mph wind.
5. Tower Structure Class II.
6. Topographic Category 5 with Crest Height of 250.00 ft
7. 129.00 ft TCL-12A8 (S) is included for load transfer only.
73.8 ft
3.8 ft
$\frac{43.8 \mathrm{tt}}{28.8 \mathrm{ft}}$
2109716
1294141 lb (Axial)
44 kip-ft (Torque)

Structural Analysis Report

Antenna Mount Analysis

$$
T-M o b i l e ~ S i t e ~ \#: ~ C T 11474 A
$$

101 Talmadge Road H a mden, CT

Centek Project No. 19027.14

Dato: April 24, 2019 Rev 1: April 29, 2019

Max Stress Ratio=92.1\%

Prepared for:
T-Mobile USA
35 Griffin Road Bloomfield, CT 06002

Table of Contents

SECTION 1 - REPORT

- ANTENNA AND APPURTENANCE SUMMARY
- STRUCTURE LOADING
- CONCLUSION

SECTION 2 - CALCULATIONS

- WIND LOAD ON APPURTENANCES
- RISA3D OUTPUT REPORT

SECTION 3 - REFERENCE MATERIALS (NOT INCLUDED WITHIN REPORT)

- T-MOBILE, RF DATA SHEET

Centered on Solutions"

April 29, 2019

Mr. Dan Reid
Transcend Wireless
10 Industrial Ave
Mahwah, NJ 07430

Re: Structural Letter ~ Antenna Mount
T-Mobile - Site Ref: CT11474A
101 Talmadge Road
Hamden, CT 06518

Centek Project No. 19027.14

Dear Mr. Reid,

Centek Engineering, Inc. has reviewed the T-Mobile antenna installation at the above referenced site. The purpose of the review is to determine the structural adequacy of the existing mount, consisting of three (3) custom-made T-Frames attached to the existing structure, to support the equipment configuration. The review considered the effects of wind load, dead load and ice load. The review considered the effects of wind load, dead load and ice load in accordance with the 2015 International Building Code as modified by the 2018 Connecticut State Building Code (CTBC) including ASCE 7-10 and ANSI/TIA-222-G Structural Standards for Steel Antenna Towers and Supporting Structures.

The loads considered in this analysis consist of the following:

- T-Mobile:
- T-Frames: Three (3) Ericsson RFS APX16DWV-16DWV-S-E-A20 panel antennas, three (3) RFS APXVAARR24-43-NA20 panel antennas, three (3) Ericsson 4415 B66 remote radio units, three (3) Ericsson 4415 B25 remote radio units, three (3) Ericsson 4449 B71_B12 remote radio units mounted on three (3) T-Frames with a RAD center elevation of 315-ft +/- AGL. (NOTE: APXVAARR24-43 antenna must be mounted at a maximum of 3-ft away from outrigger arm.
- The antenna mount was analyzed per the requirements of the 2015 International Building Code as modified by the 2018 Connecticut State Building Code considering a nominal design wind speed of 97 mph for Hamden as required in Appendix N of the 2018 Connecticut State Building Code.

A structural analysis of tower and foundation needs to be completed prior to any work.
Based on our review of the installation, it is our opinion that the existing T-frames with the installation of one (1) Pipe 1.25 STD mount brace are structurally adequate to support the proposed antenna configuration. If there are any questions regarding this matter, please feel free to call.

Prepared by:

Fernando J. Palacios
Engineer

Structural Analysis - Mount Analysis
T-Mobile Site Ref. ~ CT11474A
Hamden, CT
Rev 1~ April 29, 2019

Section2-Calculations

Hamden, CT
Prepared by: F.J.P Checked by: C.A.G. Job No. 19027.14

Development of Design Heights, Exposure Coefficients,

and Velocity Pressures Per TIA-222-G

Wind Speeds

Basic Wind

Basic Wind Speed	$\mathrm{V}:=97$	mp
Basic Wind Speed with Ice	$\mathrm{V}_{\mathrm{i}}:=50$	mph

Input
Structure Type =
Structure Category =
Structure_Type:= Lattice
(User Input)

Exposure Category $=$
Structure Height
Height to Center of Antennas =
$\mathrm{h}:=765$
ft

Radial Ice Thickness =
Radial Ice Density =
z:= 315
ft
in
pcf
(User Input)
Topograpic Factor $=$

Gust Response Factor =
$\mathrm{t}_{\mathrm{i}}:=0.75$
(User Input - 2018 CSBC Appendix N)
(User Input per Annex B of TIA-222-G)

Structure Type =	Structure_Type:= Lattice		(User Input
Structure Category =	SC: $=11$		(User Input)
Exposure Category =	Exp : = C		(User Input
Structure Height =	$\mathrm{h}:=765$	ft	(User Input)
Height to Center of Antennas =	$\mathrm{z}:=315$	$f t$	(User Input)
Radial Ice Thickness =	$\mathrm{t}_{\mathrm{i}}=0.75$	in	(User Input
Radial Ice Density =	Id := 56.00	pcf	(User Input
Topograpic Factor $=$	$\mathrm{K}_{\text {zt }}:=1.0$		(User Input)
	$\mathrm{K}_{\mathrm{a}}:=1.0$		(User Input
Gust Response Factor =	$\mathrm{G}_{\mathrm{H}}=1.165$		(User Input)

Output

Wind Direction Probability Factor $=$

Importance Factors =

$$
\mathrm{K}_{\mathrm{iz}}:=\left(\frac{\mathrm{z}}{33}\right)^{0.1}=1.253
$$

Velocity Pressure Coefficient Antennas =

Velocity Pressure w/o Ice Antennas =
Velocity Pressure with Ice Antennas =
$\mathrm{t}_{\mathrm{iz}}:=2.0 \cdot \mathrm{t}_{\mathrm{i}} \cdot \mathrm{I}_{\text {ice }} \cdot \mathrm{K}_{\text {iz }} \cdot \mathrm{K}_{\mathrm{zt}}{ }^{0.35}=1.88$
$\mathrm{Kz}:=2.01 \cdot\left(\left(\frac{\mathrm{z}}{\mathrm{zg}}\right)\right)^{\bar{\alpha}}=1.611$

$K_{d}:=\|$| if Structure_Type $=$ Pole |
| :--- |
| $\left.\\|$$\\| .95$
 if Structure_Type $=$ Lattice
 $\\|$$\\| .85$ \right\rvert\,$=0.85$ |
| (Per Table 2-2 of |
| TIA-222-G) |

$\mathrm{I}_{\text {Wind }}:=\left|\begin{array}{c}\text { if } \mathrm{SC}=1 \\ \left.\| \begin{array}{l}\| \\ 0.87 \\ \text { if } \mathrm{SC}=2 \\ \| \\ \| .00 \\ \text { if } \mathrm{SC}=3 \\ \| 1.15\end{array} \right\rvert\,\end{array}\right|=1$

$\mathrm{I}_{\text {ice }}:=\left|\begin{array}{c}\text { if } \mathrm{SC}=1 \\ \| \mathrm{O} \\ \text { if } \mathrm{SC}=2 \\ \| 1.00 \\ \text { if } \mathrm{SC}=3 \\ \| 1.25\end{array}\right|=1$

$$
\mathrm{qz}:=0.00256 \cdot \mathrm{~K}_{\mathrm{d}} \cdot \mathrm{Kz} \cdot \mathrm{~V}^{2} \cdot \mathrm{I}_{\text {wind }}=32.992 \mathrm{psf}
$$

$q Z_{\text {ice }}:=0.00256 \cdot \mathrm{~K}_{\mathrm{d}} \cdot \mathrm{Kz} \cdot \mathrm{V}_{\mathrm{i}}{ }^{2} \cdot \mathrm{I}_{\text {Wind }}=8.766 \mathrm{psf}$

Subject:

Location:
Rev. 1: 04/29/19

Prepared by: F.J.P Checked by: C.A.G. Job No. 19027.14

Development of Wind \& Ice Load on Antennas

Antenna Data:

Antenna Model $=$	RFS APXVAARR24_43		
Antenna Shape $=$	Flat	in	(User Input)
Antenna Height $=$	$\mathrm{L}_{\mathrm{ant}}:=95.9$	(User Input)	
Antenna Width $=$	$\mathrm{W}_{\mathrm{ant}}:=19.7$	in	(User Input)
Antenna Thickness $=$	$\mathrm{T}_{\mathrm{ant}}:=8.7$	in	(User Input)
Antenna Weight	$=$	$\mathrm{WT}_{\mathrm{ant}}:=133.4$	(User Input)
Number of Antennas	$=$	$\mathrm{N}_{\mathrm{ant}}:=1$	
Antenna Aspect Ratio	$=$	$\mathrm{Ar}_{\mathrm{ant}}:=\frac{\mathrm{L}_{\mathrm{ant}}}{\mathrm{W}_{\mathrm{ant}}}=4.9$	
(User Input)			

Wind Load (without ice)

Surface Area for One Antenna $=$	$\mathrm{SA}_{\mathrm{antF}}:=\frac{\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{W}_{\mathrm{ant}}}{144}=13.1$	sf
Total Antenna Wind Force Front $=$	$\mathrm{F}_{\mathrm{ant}}:=\mathrm{qZ} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{ant}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\mathrm{antF}}=658$	lbs
Surface Area for One Antenna $=$	$\mathrm{SA}_{\mathrm{ants}}:=\frac{\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{T}_{\mathrm{ant}}}{144}=5.8$	sf
Total Antenna Wind Force Side $=$	$\mathrm{F}_{\mathrm{ant}}:=\mathrm{qZ} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{ant}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\mathrm{ants}}=291$	lbs

Wind Load (with ice)

Surface Area for One Antenna w/ Ice =	$\mathrm{SA}_{\text {ICEantF }}:=\frac{\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=16.2$	sf
Total Antenna Wind Force w/ Ice Front =	$\mathrm{Fi}_{\text {ant }}:=\mathrm{qz} \mathrm{i}_{\text {ice }} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca} \mathrm{a}_{\text {ant }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {ICEantF }}=216$	lbs
Surface Area for One Antenna w/ Ice =	$\mathrm{SA}_{\text {ICEants }}:=\frac{\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=8.6$	sf
Total Antenna Wind Force w/ Ice Side =	$\mathrm{Fi}_{\text {ant }}:=\mathrm{qz}_{\text {ice }} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {ant }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {ICEantS }}=115$	lbs

Gravity Load (without ice)

Subject:

Location: Hamden, CT
Centered on Solutions ${ }^{53}$ www.centekeng.com
63-2 North Branford Road P: (203) 488-0580
Branford, CT 06405

Loads on Equipment

Prepared by: F.J.P Checked by: C.A.G. Job No. 19027.14

Development of Wind \& Ice Load on Antennas

Antenna Data:			
Antenna Model $=$Antenna Shape $=$	RFS APX16DWV-16DWVS-E-A20		
	Flat		(User Input)
Antenna Height =	$\mathrm{L}_{\text {ant }}:=55.9$	in	(User Input)
Antenna Width =	$\mathrm{W}_{\text {ant }}:=13$	in	(User Input)
Antenna Thickness =	$\mathrm{T}_{\text {ant }}:=3.15$	in	(User Input)
Antenna Weight =	$W T_{\text {ant }}:=40.7$	Ibs	(User Input)
Number of Antennas =	$\mathrm{Nant}_{\text {a }}:=1$		(User Input)
Antenna Aspect Ratio =	$\mathrm{Ar}_{\text {ant }}:=\frac{\mathrm{L}_{\text {ant }}}{\mathrm{W}_{\text {ant }}}$		
Antenna Force Coefficient =	$\mathrm{Ca}_{\text {ant }}=1.28$		

Wind Load (without ice)

Surface Area for One Antenna $=$	$\mathrm{SA}_{\mathrm{antF}}:=\frac{\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{W}_{\mathrm{ant}}}{144}=5$	sf
Total Antenna Wind Force Front $=$	$\mathrm{F}_{\mathrm{ant}}:=\mathrm{qZ} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{ant}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\mathrm{antF}}=248$	lbs
Surface Area for One Antenna $=$	$\mathrm{SA}_{\mathrm{ants}}:=\frac{\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{T}_{\mathrm{ant}}}{144}=1.2$	sf
Total Antenna Wind Force Side $=$	$\mathrm{F}_{\mathrm{ant}}:=\mathrm{qZ} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{ant}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\mathrm{ants}}=60$	lbs

Wind Load (with ice)

Surface Area for One Antenna w/ Ice =	$\mathrm{SA}_{\text {ICEantF }}:=\frac{\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{i} \mathrm{z}}\right)}{144}=6.9$	sf
Total Antenna Wind Force w/ Ice Front =	$\mathrm{Fi}_{\text {ant }}:=\mathrm{qZ} \mathrm{i}_{\text {ice }} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca} \mathrm{antr} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA} \mathrm{IICEantF}=91$	lbs
Surface Area for One Antenna w/ Ice =	$\text { SAICEants }:=\frac{\left(\mathrm{L}_{\text {ant }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\text {ant }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=2.9$	sf
Total Antenna Wind Force w/ Ice Side =		lbs

Gravity Load (without ice)

Prepared by: F.J.P Checked by: C.A.G. Job No. 19027.14

Development of Wind \& Ice Load on RRUS's

RRUS Data:

RRUS Model = RRUS Shape = RRUS Height = RRUS Width = RRUS Thickness = RRUS Weight = Number of RRUS's =

RRUS Aspect Ratio $=\quad \operatorname{Ar}_{\text {RRUS }}:=\frac{L_{\text {RRUS }}}{W_{\text {RRUS }}}=1.1$
RRUS Force Coefficient =

Wind Load (without ice)

Surface Area for One RRUS
Total RRUS Wind Force =

Surface Area for One RRUS =
Total RRUS Wind Force =
Ericsson 4449 B71B12

Flat	
$L_{\text {RRUS }}:=14.9$	in
$W_{\text {RRUS }}:=13.2$	in
$T_{\text {RRUS }}:=10.4$	in
$W_{\text {RRUS }}:=74$	lbs
$N_{\text {RRUS }}:=1$	
Ar $_{\text {RRUS }}:=\frac{L_{\text {RRUS }}}{W_{\text {RRUS }}}=1.1$	

$C a_{\text {RRUS }}=1.2$
$\mathrm{SA}_{\text {RRUSF }}:=\frac{\mathrm{L}_{\text {RRUS }} \cdot \mathrm{W}_{\text {RRUS }}}{144}=1.4 \quad \mathrm{sf}$
$\mathrm{F}_{\text {RRUS }}:=\mathrm{qz} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {RRUS }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {RRUSF }}=63 \mathrm{lbs}$
$\mathrm{SA}_{\text {RRUSS }}:=\frac{\mathrm{L}_{\text {RRUS }} \cdot \mathrm{T}_{\text {RRUS }}}{144}=1.1 \quad \mathrm{sf}$
$\mathrm{F}_{\text {RRUS }}:=\mathrm{qz} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {RRUS }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {RRUSS }}=50 \quad \mathrm{lbs}$

Wind Load (with ice)

Surface Area for One RRUS w/ Ice =

Total RRUS Wind Force w/ Ice =

Surface Area for One RRUS w/ Ice =

Total RRUS Wind Force w/ Ice =
$\mathrm{SA}_{\text {ICERRUSF }}:=\frac{\left(\mathrm{L}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=2.2 \mathrm{sf}$
$\mathrm{Fi}_{\text {RRUS }}:=\mathrm{qZ} \mathrm{Z}_{\mathrm{ie}} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{C} \mathrm{a}_{\text {RRUS }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA} \mathrm{I}_{\text {ICERRUSF }}=27 \quad \mathrm{lbs}$
$\mathrm{SA}_{\text {ICERRUSS }}:=\frac{\left(\mathrm{L}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=1.8 \mathrm{sf}$
$\mathrm{Fi}_{\text {RRUS }}:=\mathrm{qZ} \mathrm{Z}_{\mathrm{ice}} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {RRUS }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {ICERRUSS }}=22 \quad \mathrm{lbs}$

Gravity Load (without ice)

Weight of All RRUSs $=\quad W T_{\text {RRUS }} \cdot N_{\text {RRUS }}=74 \quad \mathrm{lbs}$
Gravity Loads (ice only)
Volume of Each RRUS $=\quad V_{\text {RRUS }}:=L_{\text {RRUS }} \cdot W_{\text {RRUS }} \cdot T_{\text {RRUS }}=2045 \quad c u$ in

Volume of Ice on Each RRUS
$\mathrm{V}_{\text {ice }}:=\left(\mathrm{L}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)-\mathrm{V}_{\text {RRUS }}=2435$
cu in
Weight of Ice on Each RRUS $=\quad W_{\text {ICERrus }}:=\frac{V_{\text {ice }}}{1728} \cdot 1 d=79 \quad$ Ibs

Weight of Ice on All RRUSs =
$W_{\text {ICERRUS }} \cdot \mathrm{N}_{\text {RRUS }}=79$
lbs

Prepared by: F.J.P Checked by: C.A.G. Job No. 19027.14

Development of Wind \& Ice Load on RRUS's

RRUS Data:

RRUS Model = RRUS Shape RRUS Height = RRUS Width = RRUS Thickness = RRUS Weight = Number of RRUS's =

RRUS Aspect Ratio $=\quad \operatorname{Ar}_{\text {RRUS }}:=\frac{L_{\text {RRUS }}}{W_{\text {RRUS }}}=1.2$
RRUS Force Coefficient =

Wind Load (without ice)

Surface Area for One RRUS
Total RRUS Wind Force =

Surface Area for One RRUS =
Total RRUS Wind Force =
Ericsson 4415 B66A

Flat	
$L_{\text {RRUS }}:=16.5$	in
$W_{\text {RRUS }}:=13.4$	in
$T_{\text {RRUS }}:=5.9$	in
$W_{\text {RRUS }}:=47.40$	lbs
$N_{\text {RRUS }}:=1$	
Ar RRUS $:=\frac{L_{\text {RRUS }}}{W_{\text {RRUS }}}=1.2$	

$C a_{\text {RRUS }}=1.2$
$\mathrm{SA}_{\text {RRUSF }}:=\frac{\mathrm{L}_{\text {RRUS }} \cdot \mathrm{W}_{\text {RRUS }}}{144}=1.5 \quad \mathrm{sf}$
$\mathrm{F}_{\text {RRUS }}:=\mathrm{qz} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {RRUS }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {RRUSF }}=71 \quad \mathrm{lbs}$
$\mathrm{SA}_{\text {RRUSS }}:=\frac{\mathrm{L}_{\text {RRUS }} \cdot \mathrm{T}_{\text {RRUS }}}{144}=0.7 \quad \mathrm{sf}$
$\mathrm{F}_{\text {RRUS }}:=\mathrm{qz} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {RRUS }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {RRUSS }}=31 \quad \mathrm{lbs}$

Wind Load (with ice)

Surface Area for One RRUS w/ Ice =

Total RRUS Wind Force w/ Ice =

Surface Area for One RRUS w/ Ice =

Total RRUS Wind Force w/ Ice =
$\mathrm{SA}_{\text {ICERRUSF }}:=\frac{\left(\mathrm{L}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{i} 2}\right) \cdot\left(\mathrm{W}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{i} 2}\right)}{144}=2.4 \mathrm{sf}$
$\mathrm{Fi}_{\text {RRUS }}:=\mathrm{qZ} \mathrm{i}_{\mathrm{ie}} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{C} \mathrm{a}_{\text {RRUS }} \cdot \mathrm{K}_{\mathrm{a}} \cdot S \mathrm{I}_{\text {ICERRUSF }}=30 \quad \mathrm{lbs}$
$\mathrm{SA}_{\text {ICERRUSS }}:=\frac{\left(\mathrm{L}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=1.4 \mathrm{sf}$
$\mathrm{Fi}_{\text {RRUS }}:=\mathrm{qZ} \mathrm{Z}_{\mathrm{ie}} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{C} \mathrm{a}_{\text {RRUS }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {ICERRUSS }}=17 \quad \mathrm{lbs}$

Gravity Load (without ice)

Weight of All RRUSs $=\quad W_{\text {RRUS }} \cdot N_{\text {RRUS }}=47 \quad$ lbs
Gravity Loads (ice only)
Volume of Each RRUS $=\quad V_{\text {RRUS }}:=L_{\text {RRUS }} \cdot W_{\text {RRUS }} \cdot T_{\text {RRUS }}=1304 \quad$ cu in

Volume of Ice on Each RRUS
$\mathrm{V}_{\text {ice }}:=\left(\mathrm{L}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)-\mathrm{V}_{\text {RRUS }}=2053$
cu in
Weight of Ice on Each RRUS $=\quad W_{\text {ICERRUS }}:=\frac{V_{\text {ice }}}{1728} \cdot I d=67 \quad$ Ibs

Weight of Ice on All RRUSs =
$W_{\text {ICERRUS }} \cdot N_{\text {Rrus }}=67$
lbs

Prepared by: F.J.P Checked by: C.A.G. Job No. 19027.14

Development of Wind \& Ice Load on RRUS's

RRUS Data:

RRUS Model = RRUS Shape RRUS Height RRUS Width RRUS Thickness = RRUS Weight = Number of RRUS's =

RRUS Aspect Ratio $=\quad A r_{\text {RRUS }}:=\frac{L_{\text {RRUS }}}{W_{\text {RRUS }}}=1.2$
RRUS Force Coefficient =

Wind Load (without ice)

Surface Area for One RRUS $=$	$\mathrm{SA}_{\text {RRUSF }}:=\frac{\mathrm{L}_{\text {RRUS }} \cdot \mathrm{W}_{\text {RRUS }}}{144}=1.5$	sf
Total RRUS Wind Force $=$	$\mathrm{F}_{\text {RRUS }}:=\mathrm{qz} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {RRUS }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {RRUSF }}=71$	lbs
Surface Area for One RRUS $=$	$\mathrm{SA}_{\text {RRUSS }}:=\frac{\mathrm{L}_{\text {RRUS }} \cdot \mathrm{T}_{\text {RRUS }}}{144}=0.7$	sf
Total RRUS Wind Force $=$	$\mathrm{F}_{\text {RRUS }}:=\mathrm{qZ} \cdot \mathrm{G}_{H} \cdot \mathrm{Ca}_{\text {RRUS }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {RRUSS }}=31$	lbs

Wind Load (with ice)

Surface Area for One RRUS w/ Ice =

Total RRUS Wind Force w/ Ice = Surface Area for One RRUS w/ Ice =

Total RRUS Wind Force w/ Ice =

Ericsson 4415 B25

Flat	
$L_{\text {RRUS }}:=16.5$	in
$W_{\text {RRUS }}:=13.4$	in
$T_{\text {RRUS }}:=5.9$	in
$W_{\text {RRUS }}:=46$	lb
$N_{\text {RRUS }}:=1$	
Ar $_{\text {RRUS }}:=\frac{L_{\text {RRUS }}}{W_{\text {RRUS }}}=1.2$	

$C a_{\text {RRUS }}=1.2$
lbs
sf lbs
$\mathrm{SA}_{\text {ICERRUSF }}:=\frac{\left(\mathrm{L}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=2.4 \mathrm{sf}$
$\mathrm{Fi}_{\text {RRUS }}:=\mathrm{qZ} \mathrm{Z}_{\mathrm{ie}} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{C} \mathrm{a}_{\text {RRUS }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {ICERRUSF }}=30 \quad \mathrm{lbs}$
$\mathrm{SA}_{\text {ICERRUSS }}:=\frac{\left(\mathrm{L}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=1.4 \quad \mathrm{sf}$
$\mathrm{Fi}_{\text {RRUS }}:=\mathrm{qZ}_{\mathrm{i}_{\mathrm{ce}}} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {RRUS }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {ICERRUSS }}=17 \mathrm{lbs}$

Gravity Load (without ice)

Weight of All RRUSs $=\quad W_{\text {RRUS }} \cdot N_{\text {RRUS }}=46 \quad$ lbs
Gravity Loads (ice only)
Volume of Each RRUS $=\quad V_{\text {RRUS }}:=L_{\text {RRUS }} \cdot W_{\text {RRUS }} \cdot T_{\text {RRUS }}=1304 \quad$ cu in

Volume of Ice on Each RRUS
$\mathrm{V}_{\text {ice }}:=\left(\mathrm{L}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\text {RRUS }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)-\mathrm{V}_{\text {RRUS }}=2053$
cu in
Weight of Ice on Each RRUS $=\quad W_{\text {ICERRUS }}:=\frac{V_{\text {ice }}}{1728} \cdot I d=67 \quad$ Ibs

Weight of Ice on All RRUSs =
$W_{\text {ICERRUS }} \cdot N_{\text {RRUS }}=67$
lbs

Hamden, CT
Prepared by: F.J.P Checked by: C.A.G. Job No. 19027.14

Development of Wind \& Ice Load on TMA's

TMA Data:

TMA Model =
Ericsson KRY112 TMA
TMA Shape $=\quad$ Flat \quad in \quad (User Input)
TMA Height $=\quad L_{\text {TMA }}:=6.9 \quad$ in \quad (User Input)
TMA Width $=\quad W_{\text {TMA }}:=6.1 \quad$ in \quad (User Input)
TMA Thickness $=\quad \mathrm{T}_{\text {TMA }}:=2.8 \quad$ lbs (User Input)
TMA Weight $=\quad \mathrm{WT}_{\text {тмА }}:=11 \quad$ (User Input)
Number of TMA's $=\quad \mathrm{N}_{\text {TMA }}:=1 \quad$ (User Input)
TMA Aspect Ratio $=\quad \operatorname{Ar}_{\text {TMA }}:=\frac{\mathrm{L}_{\text {TMA }}}{\mathrm{W}_{\text {TMA }}}=1.1$
TMA Force Coefficient $=\quad$ Са тм $=1.2$

Wind Load (without ice)

Surface Area for One TMA $=$	$\mathrm{SA}_{\text {TMAF }}:=\frac{\mathrm{L}_{\text {TMA }} \cdot \mathrm{W}_{\text {TMA }}}{144}=0.3$	sf
Total TMA Wind Force $=$	$\mathrm{F}_{\text {TMA }}:=\mathrm{qZ} \cdot \mathrm{G}_{H} \cdot \mathrm{Ca} \mathrm{a}_{\text {TMA }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {TMAF }}=13$	lbs
Surface Area for One TMA $=$	$\mathrm{SA}_{\text {TMAS }}:=\frac{\mathrm{L}_{\text {TMA }} \cdot \mathrm{T}_{\text {TMA }}}{144}=0.1$	sf
Total TMA Wind Force $=$	$\mathrm{F}_{\text {TMA }}:=\mathrm{qZ} \cdot \mathrm{G}_{H} \cdot \mathrm{Ca}_{\text {TMA }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {TMAS }}=6$	lbs

Wind Load (with ice)

Surface Area for One TMA w/ Ice =	$\mathrm{SA}_{\text {ICETMAF }}:=\frac{\left(\mathrm{L}_{\text {TMA }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\text {TMA }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=0.7$	sf
Total TMA Wind Force w/ Ice =	$\mathrm{Fi}_{\text {TMA }}:=\mathrm{qZ} \mathrm{i}_{\text {ce }} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{C} \mathrm{a}_{\text {TMA }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA} \mathrm{I}_{\text {ICETMAF }}=9$	lbs
Surface Area for One TMA w/ Ice =	$\mathrm{SA}_{\text {ICETMAS }}:=\frac{\left(\mathrm{L}_{\text {TMA }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\text {TMA }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=0.5$	sf
Total TMA Wind Force w/ Ice =	$F \mathrm{i}_{\text {TMA }}:=\mathrm{qZ} \mathrm{i}_{\text {ice }} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca} \mathrm{TMA} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA} \mathrm{ICETMAS}=6$	bs

Gravity Load (without ice)

$$
\text { Weight of All TMAs }=\quad W T_{T M A} \cdot N_{T M A}=11
$$

Gravity Loads (ice only)

Volume of Each TMA $=\quad \mathrm{V}_{\text {TMA }}:=\mathrm{L}_{\text {TMA }} \cdot \mathrm{W}_{\text {TMA }} \cdot \mathrm{T}_{\text {TMA }}=118 \quad$ cu in

Volume of Ice on Each TMA
$\mathrm{V}_{\text {ice }}:=\left(\mathrm{L}_{\text {TMA }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\text {TMA }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\text {TMA }}+2 \cdot \mathrm{t}_{\mathrm{iZ}}\right)-\mathrm{V}_{\text {TMA }}=\underset{\mathrm{cu}}{571}$

Weight of Ice on Each TMA $=\quad W_{\text {ICETMA }}:=\frac{V_{\text {ice }}}{1728} \cdot I d=19 \quad$ lb

Weight of Ice on All TMAs $=\quad W_{\text {ICETMA }} \cdot N_{\text {TMA }}=19 \quad$ lbs

Envelope only Solution				
Centek				
FJP	CT11474A_AMA	Member Framing		

Eqo rcp\｛＜Egpıgm
Crt＂46．＂423；
Fguk pgt＜HLR
Lqd＂Pwo dgt＜3；249036
Oqf gitPcog＜EV33696CaCOC

447＂RO
Ej gengf＂ $\mathrm{D}\{2 \mathrm{E} \mathrm{ECl}$

（Global）Model Settings

F kur re\｛＂Ugevqpu＂tat＂Ogo dgt＂Ecreu	7＂
Ocz＂｜bugtpcr゙Ugevqpu＂kqt＂Ogo dgt＂Ecreu	；9＂
Werwf g＂Uj gct＂F ghqto cvapA	［ gu
Wetgcug＂Pckppi＂Ecr cek\｛＂hat＂Y kpf A	［ gu
Kerwi g＂Y ctr lpi A	［ gu
	［ gu
Ctgc＂Nqcf＂Oguj＂＊kp 4＋	366
Ogti g＂Vqrgtcpeg＂＊p＋	C34
R／F gruc＂Cpcr\｛ uku＂Vargtcpeg	202＇
1perwf g＂R／Fgnc＂lqt＂Y cmuA	［ gu
Cmqo ckec nif＂Kgtcig＂UVłtpguu＂17qt＂Y cmuA	［ gu
Ocz＂Kgtc＊qpu＂1pt＂Y cm＂U＊łtpguu	5
1 tcxk\｛＂Ceegrgtcvap＂＊hNuge ${ }^{\text {4＋}}$	5404
Y cm＇Oguj＂UK g＂＊p＋	34
Gk gpuqrw＊qp＂Eqpxgti gpeg＂Vqı0＊30G／＋	6
Xgtvecri＇Czku	［
I radcri＇Ogo dgt＂Qtlgpvevap＂Rrepg	Z
Uvcve＂Uqugt	Ur ctug＂Ceegrgtcugf
F \｛ pco le＂Uqixgt	Ceegrgtcugf＂Uqrxgt
J qV＇T qungf＂Uvggn＂Eqf g	CKE＂36i＊582／32＋セNT HF
Cf Inuv＂UvkipguuA	［ gu＊Kgtckxg＋
TKCEqppgevap＂Eqf g	CKE＂36i＊582／32＋ゼCUF
Eqri＂Hat o gf＂Urggr＇Eqf g	CKUKU322／32＜CUF
Y qqf＂Eqf g	CY E＂PF U／34＜゙CUF
Y qqf＂Vgo r gtcutg	＞＂322H
Eqpetgıg＂Eqf g	CEK53：／33
Ocuqpt\｛＂Eqf g	CEK752／332CUF
Crwo kowo＂Eqf g	CC＂CFO3／32＜＇CUF＂／＂Dwkf lpi
Uvclprguu＂Uvggn＇Eqf g	CKE＂36i＊＊582／32＋ゼCUF
Cf Imuv＂UlkhpguuA	［ gu＊Kgtckkx ${ }^{\text {＋}}$
Pwo dgt＂qh＇Uj gct＂T gi qqpu	6
T gi kqp＂Ur celpi＂1petgo gpv＊｜p＋	6
DlczlcriEqrwo p＂Ogy qf	Gzcev＇lpogi tckqp
Rcto g＂Dgıc＂Hcevat＂＊REC＋	87
Eqpetgug＂Uvguu＂Drqem	T gevcpi wret
Wug＂Etcengf＂UgevqpuA	［ gu
Wug＂Etcengf＂Ugevapu＂Ura dA	［ gu
Dcf＂Htco hpi＂Y ctplpi uA	Pq
Wpwugf＂Hqteg＂Y ctplpi uA	［ gu
Olp＂3＂Dct＂F lco O＇Ur celpi A	Pq
Eqpetgrg＇Tgdct＂Ugv	T GDCT aUGVaCUVOC837
Opo＂＂Uvggrntqt＂Eqıo p	3
Ocz＂’＂Ulgghhtht＂Eqrwo p	

C=NT $=1$	engineering	Eqo rcp\{ Fguk pgt	$\begin{aligned} & \text { < Egpvgm } \\ & \text { < HLR } \end{aligned}$	$\begin{aligned} & \text { Crt"46."423; } \\ & 447 \mathrm{RO} \end{aligned}$
Centered on Solutions ${ }^{\text {m" }}$	www.centekeng.com	Lqd"Pwo dgt	< 3; 249036	Ej gengf "D $\lll \mathrm{ECl}$
63-2 North Branford Road Branford CT 06405	P: (203) 488-0580 F:(203) 488-8587	Oqf gr'Pco g	< EV33696CaCOC	

(Global) Model Settings, Continued

Ugko le"Eqf g	CUEG'9/32
Ugko le"Dcug"Grgxc*app"*h*	Pqv'Gpıgtgf
Cf f "Dcug'Y gk j vA	[gu
Ev゙Z	(2)
Evil	C24
V'Z"*uge+	Pqv'Gpugtgf
V"\ "*uge+	Pqv'Gpugtgf
T"Z	5
T"	5
Ev゙Gzr OZ	Q7
EviGzr O\	(97
UF3	3
UFU	3
U3	3
VN'*uge+	7
Tkun'Ecv	Kqt"KK
Fthv'Ecv	Qẏ gt
Qo "	3
Qo "Z	3
Ef "	3
Ef "Z	3
Tj q"	3
Tj q'Z	3

Hot Rolled Steel Properties

	N ${ }^{\text {dgn }}$	G"]muk	\| "]muk	Pw	Vj gto "*3G7"H+	Fgpuk []mill 5	[lgif]mak	T\{	Hw]muk	Tv
3	C58"I t058	4;222	33376	(5)	©87	Cb;	58	30	7:	304
4	C794"1 t072	4;222	33376	5	C87	C\%;	72	3CB	7:	304
5	C; ; 4	4;222	33376	(5)	C87	C\%;	72	3CB	7:	304
6	C722"I t064	4;222	33376	(5)	87	Cb;	64	35	7:	3CB
7	C722'l t068	4;222	33376	(5)	C87	C6;	68	304	7:	3CB
8	C75"I tcf g"D	4;222	33376	Б5	©87	Cb;	57	30	7:	304

Hot Rolled Steel Design Parameters

	N 6 dgn	Ujcrg N	Ngpi y]h		$\mathrm{Nd} \mid \mathrm{l}$] h	Neqo r "var]00	Oneqo r "dqu 00 V vat smom	M \{	M \|	Ed	Hapevem
3	O3	*G+'UVkt'Cto	80: 5			Nd\{ \{					Nugtcn
4	O4	*G+UN*H'Cto	8®2:5			Nd\{ \{					Nevgten
5	O5	*G+'J qt\|	38	Ugi o gpv	Ugi o gpv	Ugi o gpv	Ugi o gpv Ugio 0				Nevgten
6	O6	*G+'J qt\|	38	Ugi o gpv	Ugi o gpv	Ugi o gpv	Ugi o gpv Ugi o 0				Nevgten
7	O7	*G+'J qt\|	38	Ugi o gpv	Ugi o gpv	Ugi o gpv	Ugi o gpv Ugio 0				Nevgtcn
8	O8	*G+'J qt\|	38	Ugi o gpv	Ugi o gpv	Ugi o gpv	Ugi o gpv Ugi o m				Nevgten
9	O9	*G+'J qt\|	38	Ugi o gpv	Ugi o gpv	Ugi o gpv	Ugi o gpv Ugio ©				Nevgtcn
:	O:	*G+'J qt\|	38	Ugi o gpv	Ugi o gpv	Ugi o gpv	Ugi o gpv Ugi o ©				Nevgten
;	O;	*G+Cprgppom	8			Nd\{ \{					Nevgtcn
32	032	*G+Cprgppom	- 8			Nd\{ \{					Nevgten
33	033	*G+Cprgppom	8			Nd\{ \{					Nevgtcn
34	O34	*G+Cprgppom	8			Nd\{ \{					Nevgtcn
35	035	*G+Cprgppom	8			Nd\{ \{					Nevgtcn
36	O36	*G+Cprgppom	8			Nd\{ \{					Nevgten
37	O37	*G+Cpıgppom	8			Nd\{ \{					Nevgtcn

Hot Rolled Steel Design Parameters（Continued）

Hot Rolled Steel Section Sets

N ${ }^{\text {dgn }}$		Uj cr g	V 2 rg	Fguki p＂Nuı	Ocigtlen	
3	＊G＋＇J qt｜	RIRGa4\％	Dgco	Rkg	C75＂l tcf g＂D	V\｛rlecn3683 367 366740；
4	＊G＋＂Ukłh＇Cto	RIRGa4®2	Dgco	Rkg	C75＂l tcf g＂D	V r recn3C24 8849 C849 3047
5	＊G＋Cpvgppc＂O cuv	RKRGa4®2	Equmom	Rkg	C75＂l tcf g＂D	V rlecn3C24 C849 ©849 3047
6	＊R＋＂Ukth＇Cto	RKRGa3017	Dgco	Rkg	C75＂I tcf g＂D	V rlecn（847 CB： 6 CB： 6 ¢็8：

Member Primary Data

	N Cdgn	K－qhov	L＂Lqhov	M＇Lqıpv	Tqucıg＊gi＋	Ugevap 1Uj crg	V 2 rg	Fguki p＂Nav	Ocruticn	Fguk p＂Twgu
3	O3	P7	P8			＊G＋＂U＊łth＇Cto	Dgco	Rkg g	C75＂I tcf 00	V r leen
4	O4	P5；	P62			＊G＋＂U＊＊t＇Cto	Dgco	Rkg	C75＂I tcf 00	V r reen
5	O5	P3	P4			＊G＋＇J qt｜	Dgco	Rkg	C75＂I tcf 00	V r lecn
6	O6	P5	P6			＊G＋＇J qt｜	Dgco	Rkg	C75＂I tcf 00	V \｛rlecn
7	O7	P3；	P42			＊G＋＇J qt｜	Dgco	Rkg	C75＂I tcf 00	V 亿rlecn
8	O8	P43	P44			＊G＋＇J qt｜	Dgco	Rkg	C75＂I tcf 00	V r reen
9	O9	P57	P58			＊G＋＇J qt｜	Dgco	Rkg	C75＂I tcf 00	V r lecn
：	O：	P59	P5：			＊G＋＇J qt｜	Dgco	Rkg	C75＂I tcf 00	V r reen
；	O；	P：	P9		82	＊G＋Cprgppc＂Ocuv	Eqrwo p	Rk g	C75＂I tcf 00	V \｛rlecn
32	O32	P34	P33		82	＊G＋Cprgppc＂Ocuv	Eqrwo p	Rkg	C75＂I tcf 00	V $\{$ rlecn
33	033	P38	P37		82	＊G＋Cprgppc＂Ocuv	Eqrwo p	Rkg	C75＂I tcf 00	V ［rlecn
34	O34	P3：	P39		82	＊G＋Cprgppc＂Ocuv	Eqrwo p	Rkg	C75＂I tcf 00	V $\{$ rlecn
35	O35	P46	P45		82	＊G＋Cpıgppc＂Ocuv	Eqrwo p	Rk g	C75＂I tcf 00	V $\{$ rlecn
36	O36	P4：	P49		82	＊G＋Cprgppc＂Ocuv	Eqrwo p	Rkg	C75＂I tcf 00	V r reen
37	037	P54	P53		82	＊G＋Cprgppc＂Ocuv	Eqrwo p	Rkg	C75＂I tcf 00	V \｛rlecn
38	038	P56	P55		82	＊G＋Cprgppc＂Ocuv	Eqrwo p	Rkg	C75＂I tcf 00	V r reen
39	O39	P64	P63		82	＊G＋Cprgppc＂Ocuv	Eqrwo p	Rk g	C75＂I tcf 0^{0}	V r reen
3：	O3：	P68	P67		82	＊G＋Cprgppc＂Ocuv	Eqrwo p	Rkg	C75＂I tcf 00	V $\{$ rlecn
3；	O3；	P72	P6；		82	＊G＋Cprgppc＂Ocuv	Eqrwo p	Rkg	C75＂I tcf 00	V $\{$ r lecn
42	042	P74	P73		82	＊G＋Cprgppc＂Ocuv	Eqrwo p	Rkg	C75＂I tcf 0^{0}	V $\{$ rlecn
43	O43	P82	P83			＊R＋＂U＊łt＇＇Cto	Dgco	Rk g	C75＂I tcf ∞	V r reen

Joint Coordinates and Temperatures

	Ncdgn	Z＂］h／	［＂］h／	$\ \mathrm{l} \mathrm{l} \mathrm{h}$	Vgo r＂］${ }_{\text {H }}$	Fgucej＂Htqo＂Fkrj tci o
3	P3	：©236378	3	17ら429：	2	
4	P4	190：7：66	3	17ら429：	2	
5	P5	：©236378	／3	／7¢5429：	2	
6	P6	190：7：66	／3	／7ら5429：	2	
7	P7	70736378	3	／7らூ429：	2	
8	P8	4074377	3	2®36；3； 8	2	
9	P9	：©36378	5	／7Б429：	2	

C二NT二人 engineering
Centered on Solutions＂w www．centekeng．com 63－2 North Branford Road
Branford，CT 06405

Eqo rcp\｛
Fguk pgt
Lqd＂Pwo dgt
Oqf gilPcog＜EV33696CaCOC

Crt＂46．＂423；
447＂RO
Ej gengf＂D\｛2ECI

Joint Coordinates and Temperatures（Continued）

	N 6 dgn	Z＂］h／	［＂］h／	\＂ h / L	Vgo r＂］H	Fgucej＂Htqo＂Ficrj tci o
：	P ：	：©36378	15	17ら429：	2	
；	P；	5036378	3	17ら429：	2	
32	P32	5036378	／3	17ら429：	2	
33	P33	50736378	5	／7ら429：	2	
34	P34	50736378	15	17ら429：	2	
35	P35	／50 3； 399	3	／7ら429：	2	
36	P36	150 3； 399	／3	17ら429：	2	
37	P37	／50 3； 399	5	／7ら429：	2	
38	P38	／50 3； 399	／5	17ら429：	2	
39	P39	／90：7：66	5	／7ら429：	2	
3：	P3：	190：7：66	15	17ら429：	2	
3；	P3；	／：© 62328	3	1609；8855	2	
42	P42	／2622328	3	；C27； 995	2	
43	P43	／： 622328	／3	16ツ；8855	2	
44	P44	／2622328	／3	；©7； 995	2	
45	P45	／：©22328	5	16ツ；8855	2	
46	P46	1： 622328	／5	16ツ；8855	2	
47	P47	／7997328	3	／2047	2	
48	P48	／7097328	／3	／2047	2	
49	P49	／7997328	5	／2947	2	
4：	P4：	／7997328	15	1297	2	
4；	P4；	／50247328	3	$6 \% 3536$	2	
52	P52	150477328	13	$6 \square 3536$	2	
53	P53	／51247328	5	603536	2	
54	P54	150477328	15	603536	2	
55	P55	／2622328	5	；©27； 995	2	
56	P56	／2622328	15	；©27； 995	2	
57	P57	20399838	3	；C234345	2	
58	P58	：C399838	3	／60 664：5	2	
59	P59	2C399838	／3	；©334345	2	
5：	P5：	： C999838	／3	／60 664：5	2	
5；	P5；	2899838	3	：CB682；：	2	
62	P62	14094： 743	3	5®2797	2	
63	P63	2®399838	5	；©234345	2	
64	P64	20399838	15	；C234345	2	
65	P65	4049838	3	696：；： 6	2	
66	P66	4049838	13	6916：；： 6	2	
67	P67	4049838	5	6016：；： 6	2	
68	P68	4049838	／5	6016：；： 6	2	
69	P69	7649838	3	／2C2： 3365	2	
6：	P6：	7649838	13	／2®2： 3365	2	
6；	P6；	7649838	5	／2C2： 3365	2	
72	P72	7649838	15	1202： 3365	2	
73	P73	：CB99838	5	／60 664：5	2	
74	P74	：©399838	15	／60 664：5	2	
75	P75	／2C347	2	／2ら8： 65	2	
76	P76	／2C374733	3	17ら429：	2	
77	P77	／2CB74733	／3	／7ら429：	2	
78	P78	／6622328	3	4®3579	2	
79	P79	／6622328	／3	4C35379	2	
7：	P7：	60399838	3	4®：5； 4	2	
7；	P7；	6®399838	／3	4C2：5； 4	2	

	engineering	Eqo rcp\{ Fguk pgt	$\begin{aligned} & \text { < Egpvgm } \\ & \text { < HLR } \end{aligned}$	Crt"46."423; 4-47"RO
Centered on Solutions ${ }^{\text {" }}$	www.centekeng.com	Lqd"Pwo dgt	< 3; 249036	Ej gengf "D\{2ECI
63-2 North Branford Road Branford, CT 06405		Oqf griPco g	< EV33696CaCOC	

Joint Coordinates and Temperatures (Continued)

	Ncdgn	Z"]h/	["]h_	$\ \mathrm{l} \mathrm{l} \mathrm{h}$	Vgo r"]H	Fgucej "Htqo "Flcrj tci o
82	P82	/9045565;	3	14097; 29	2	
83	P83	/3C387523	3	/50427757	2	

Joint Boundary Conditions

	Lqlov"Nedgn	Z"]milp	["]mill	\ "]nulp	Z"Tqugndhatcf_	["Tqugmindtcf_	\ "Tqugnhatt cf _
3	P8	Tgcekqp	T gcekpp	Tgcekqp			
4	P62	Tgcekqp	T gcekpp	T gcekqp			
5	P76	Tgcekqp	Tgcekpp	Tgcekqp	Tgcekap	Tgcekap	Tgcevap
6	P77	Tgcekqp	T gcekpp	T gcekqp	Tgcevqp	Tgcekqp	Tgcevap
7	P78	Tgcekqp	Tgcekqp	Tgcekqp	Tgcekqp	Tgcekqp	Tgcevap
8	P79	Tgcekqp	T gcekap	Tgcekap	Tgcevap	T gcekqp	T gcevap
9	P7:	Tgcekqp	T gcekpp	Tgcekqp	Tgcekqp	T gcekqp	Tgcevap
:	P7;	Tgcekqp	T gcekpp	T gcekqp	Tgcekqp	Tgcekqp	Tgcevap
,	P83	T gcekqp	Tgcekpp	Tgcekqp			

Member Point Loads (BLC 2 : Equipment Weight)

	Ogo dgt"Nbdgn	Fig gevap	Oci plont g]mmhn	Naecvap]lv.
3	O38	[/@43	(97
4	O38	[/0243	7
5	O34	[/@43	(97)
6	O34	[/0243	7
7	O42	[/@23	Q7
8	O42	[10243	7
9	O35	[/089	Q7
:	O35	[/089	7
;	O;	-	/0889	07
32	O;	-	/0889	7
33	O39	[/089	Q7
34	O39	[/089	7
35	O38	[/@69	40
36	O34	[/0269	40
37	O42	[/@69	40
38	O35		/0269	40
39	O;		/@69	40
3:	O39	[/0269	4\%
3;	O38	[/0296	607: 5
42	O34	[/0296	607:5
43	O42	[/0296	607:5

Member Point Loads (BLC 3 : Ice Weight)

	Ogo dgt"Ncdgn	Fitgevap	Oci plenf g]mmin_	Naecvap]lv.'
3	O38	[/®297	(97)
4	O38	[10297	7
5	O34	[/@97	07
6	O34	[/0297	7
7	O42	[/0297	07
8	O42	[/0297	7
9	O35	[/0427	07

C三NT三K	ngineering	Eqo rcp\｛ Fgukipgt	$\begin{aligned} & \text { < Egpugm } \\ & \text { < HLR } \end{aligned}$	$\begin{aligned} & \text { Crt"46."423; } \\ & 4 \& 47 \text { RO } \end{aligned}$
Centered on Solutions 63－2 North Branford Road	$\frac{\text { www.centekeng.com }}{P:(203) 488-0580}$	Lqd＂Puo dgt Oaf gnt co g	$\begin{aligned} & \text { < 3; 249C36 } \\ & \text { < EV33696CaCOC } \end{aligned}$	Ej gengf＂D\｛ 2 E ECI

Member Point Loads（BLC 3 ：Ice Weight）（Continued）

	Ogo dgt＂Ncdgn	Flagevap	Oci plenf g］mmin＿	Nqeckap］lv．
：	O35	［	10427	7
；	O；	［	／0427	（97）
32	O；	［	10427	7
33	039	［	／0427	Q7
34	O39	［	10427	7
35	O38	［	／089	40
36	O34	［	／0899	40
37	O42	［	／0889	40
38	O35	［	／0889	4\％
39	O；	［	／0889	40
3：	039		／0889	4\％
3；	O38		／029；	60： 5
42	O34		／029；	6\％：5
43	O42	［	／029；	607：5

Member Point Loads（BLC 4 ：Wind w／Ice X）

	Ogo dgt＂Nedgn	Fitgevap	Oci plowi g］mmb	Naecvap］lv．
3	O38	Z	／C； 3	07
4	O38	Z	／O； 3	7
5	O34	Z	／®2：	Q7
6	O34	Z	／Q23：	7
7	O42	Z	／＠； 3	Q7
8	O42	Z	／0； 3	7
9	O35	Z	／＠2：	Q7
：	O35	Z	／032：	7
；	O；	Z	／＠7：	Q7
32	O；	Z	／＠27：	7
33	O39	Z	／＠2：	07
34	O39	Z	／032：	7
35	O38	Z	／025	48
36	O34	Z	／0239	40
37	O42	Z	／025	40
38	035	Z	1025	48
39	O；	Z	／0339	40
3：	039	Z	／025	407
3；	O38	Z	／0249	607： 5
42	O34	Z	／0244	6『7：5
43	O42	Z	／＠49	6『7： 5

Member Point Loads（BLC 5 ：Wind X）

	Ogo dgt＂Ncdgn	Fitgevap	Oci pkenf g］mmin＿	Nqecklap］lv．＇
3	O38	Z	／＠46	Q7
4	O38	Z	／0346	7
5	O34	Z	／025	Q7
6	O34	Z	／025	7
7	O42	Z	／0346	07
8	O42	Z	／0346	7
9	O35	Z	／054；	07
：	O35	Z	／054；	7
；	O；	Z	／0367	Q7
32	O；	Z	／0367	7

C三NT三	ngineering	Eqo rcp\{ Fgukipgt	$\begin{aligned} & \text { < Egpıgm } \\ & \text { < HLR } \end{aligned}$	$\begin{aligned} & \text { Crt"46."423; } \\ & 4 \& 47 " R O \end{aligned}$
Centered on Solutions 63-2 North Branford Road Brantord CTO5405	$\frac{\text { uwuw centereng.com }}{\text { P: } 2(233) 488.5580}$	Lqd"Puo dgt Oqf gHPco g	$\begin{aligned} & \text { < 3; } 249036 \\ & \text { < EV33696CaCOC } \end{aligned}$	Ej gengf "D\{2ECI

Member Point Loads (BLC 5 : Wind X) (Continued)

	Ogo dgt" lc dgn	Figevap	Oci pkan g]mmiv	Naeckap] \mathbf{l}.
33	O39	Z	/054;	(97
34	O39	Z	/064;	7
35	O38	Z	/®R93	$4{ }^{7}$
36	O34	Z	/®53	$4{ }^{4}$
37	042	Z	/®293	$4{ }^{4}$
38	O35	Z	/®293	$4{ }^{4}$
39	O;	Z	/®253	$4{ }^{4}$
3:	O39	Z	/0293	$4{ }^{4}$
3 ;	O38	Z	/@885	67: 5
42	O34	Z	1087	60: 5
43	042	Z	/@85	607:5

Member Point Loads (BLC 6 : Wind w/ Ice Z)

	Ogo dgt"NLdgn	Fitgevap	Oci phent g]mmin_	Ngecklaplv.'
3	O38	1	/@3:	© 7
4	O38	1	/®3:	7
5	O34	1	/@; 3	© 7
6	O34	1	/®; 3	7
7	042	1	/@3:	(97
8	042	1	/®3:	7
9	O35	1	/@7:	(97
:	O35	1	/127:	7
	O;	1	/032:	© 7
32	O;	1	1032 :	7
33	O39	1	/@7:	© 7
34	O39	1	/@27:	7
35	O38	1	/®39	$4{ }^{1 / 8}$
36	O34	1	/R5	$4{ }^{4}$
37	042	1	/®39	$4{ }^{4}$
38	O35	1	/Q239	$4{ }^{4}$
39	O;	1	/R5	$4{ }^{4}$
3:	O39	1	/®239	$4{ }^{1}$
3;	O38	1	/®44	607:5
42	O34	1	/®49	607:5
43	042	1	/®44	6\%:5

Member Point Loads (BLC 7: Wind Z)

	Ogo dgt"Ncdgn	Fitgevap	Oci pkenf g]mmin_	Ngeckipp]lv.'
3	O38	1	/025	©7
4	O38	1	/025	7
5	O34	1	/0346	(97)
6	O34	1	/0346	7
7	O42	1	/025	(97)
8	O42	1	/025	7
9	O35	1	/0367	Q7
:	035	1	/0367	7
;	O;	1	/054;	Q7
32	O;	1	/054;	7
33	O39	1	/0367	(97)
34	O39	1	/0367	7
35	O38	1	/0253	40

	ngineering	Eqo rcp\{ Fguk pgt	$\begin{aligned} & \text { < Egpvgm } \\ & \text { < HLR } \end{aligned}$	$\begin{aligned} & \text { Crt"46."423; } \\ & 4 \& 77 \mathrm{RO} \end{aligned}$
Centered on Solutions ${ }^{\text {" }}$	www.centekeng.com	Lqd"Pwo dgt	< 3; 249036	Ej gengf "D\{2ECI
63-2 North Branford Road Branford, CT 06405	P: (203) 488-0580 F: $2031488-8587$	Oqf gr'Pco g	< EV33696CaCOC	

Member Point Loads (BLC 7 : Wind Z) (Continued)

	Ogo dgt"Nとdgn	Fitgevap	Oci plenf g]mmin_	Nqeckap]lv
36	O34	1	/0293	40
37	O42	1	/@53	40
38	O35	1	/0253	40
39	O;	1	/0293	40
3:	O39	1	/0253	4\%
3;	O38	1	/@7	6\%:5
42	O34	1	/0285	6\%:5
43	O42	1	/@7	6\%:5

Joint Loads and Enforced Displacements
Lqłpv"Ncdgn
NF .O
Pq"Fcvc"vq"Rtpv"m

Fligevap Oci pkevi g]*mmht."* \ddagger

Member Distributed Loads (BLC 4 : Wind w/ Ice X)

	Ogo dgt"Nedgn	Flagevap	Uvctv"Oci pkewf g]mulv.H.muh	Gpf "Oci pkwf g]mlk.H.muh	Uuctv'Naecvap][v.'	Gpf 'Naec kqp]h.'
3	O7	Z	/0224	/0224	2	2
4	O8	Z	10224	/0224	2	2
5	O9	Z	/0224	/0224	2	2
6	O:	Z	/0224	/0224	2	2
7	O36	Z	/024	/024	2	2
8	O37	Z	/0224	/024	2	2
9	O3:	Z	/0224	/024	2	2
:	O3;	Z	/0224	/0224	2	2
,	O32	Z	/0224	/0224	2	2
32	O33	Z	1024	/0224	2	2
33	O;	Z	/0224	/024	2	2
34	O34	Z	/0224	/0224	2	2
35	O3	Z	/0224	/@24	2	2
36	O4	Z	/0224	/0224	2	2

Member Distributed Loads (BLC 5 : Wind X)

	Ogo dgt"NEdgn	Fitgevap	Unctv'Oci pkexf g]ndlv.H.mun	Gpf "Oci pkwf g]milk.H.muh	Usctv'Nqecvapp]lv.'	Gpf "Nqee kap]h.'
3	O7	Z	/@2:	/@2:	2	2
4	O8	Z	/®22:	/®22:	2	2
5	O9	Z	/®2:	/®2:	2	2
6	O:	Z	/®2:	/®22:	2	2
7	O36	Z	/®2:	/®2:	2	2
8	O37	Z	/022:	/®2:	2	2
9	O3:	Z	/®2:	/®2:	2	2
:	O3;	Z	/QR2:	/®2:	2	2
;	O32	Z	/®2:	/®2:	2	2
32	O33	Z	/®22:	/®22:	2	2
33	O;	Z	/®2:	/®2:	2	2
34	O34	Z	/®2:	/®2:	2	2
35	O3	Z	/@28	/028	2	2
36	O4	Z	/0228	/0228	2	2

C三NT $=$	ngineering	Eqo rcp\｛ Fgukipgt	$\begin{aligned} & \text { < Egpvgm } \\ & \text { < HLR } \end{aligned}$	$\begin{aligned} & \text { Crt"46."423; } \\ & 4 \& 77 \text { RO } \end{aligned}$
Centered on Solutions ${ }^{\text {＂}}$	www．centekeng．com	Lqd＂Puo dgt	＜3； 249036	Ej gengf＂D\｛2ECI
63－2 North Branford Road Branford CT 06405	P：（203）488－0580 F：（203） $488-8587$	Oqf grPco g	＜EV33696CaCOC	

Member Distributed Loads（BLC 6 ：Wind w／Ice Z）

Ogo dgt＂NLdgn	Fhgevap	Uketv＇Oci prexf g］niv．H．mun	Gpf＂Oci pkwf g］ndw．H．mu＿		Gpf＇Nqec＊qp］ l ．＇
O5	1	／®224	／＠24	2	2
06	1	／®24	／®24	2	2
O32	1	／＠24	／®24	2	2
O33	1	／R24	／®24	2	2
O36	1	／＠24	／＠24	2	2
O37	1	／＠24	／®24	2	2
O3：	1	／®24	／®24	2	2
O3；	1	／R24	／®24	2	2
O3	1	／®24	／®24	2	2
O4	1	／®24	／®24	2	2
043	1	／®23	／＠23	2	2

Member Distributed Loads（BLC 7 ：Wind Z）

	Ogo dgt＂NLdgn	Figevap	Uctv＇Oci phent g］nlv．H．muh	Gpf＂Oci plewt g］nlw．H．muh	Unctv＇Naeckap］｜r．＇	Gpf＇Ngec vapl．${ }^{\text {c }}$ ．
3	O5	1	／®2：	／＠2：	2	2
4	06	1	／®22：	／®2：	2	2
5	O32	1	／＠2：	／＠2：	2	2
6	O33	1	／®2：	／®2：	2	2
7	O36	1	／®2：	／＠2：	2	2
8	O37	1	／®2：	1®2：	2	2
9	O3：	1	／®2：	／＠2：	2	2
：	O3；	1	1®2：	$1 ® 22$	2	2
	O3	1	／®28	／®28	2	2
32	04	1	1 ／R28	／0228	2	2
33	O43	1	／®27	／®27	2	2

Basic Load Cases

	DNE＂F guetk vap	Ecrgi qt \｛	Z＂I tom＂1 too	＂I tomLqłp	Rqıpv	Fkuthom	
3	Ugrti＇Y gkj v	Pqpg	／3				
4	Gswk o gpvi＇gli jv	Pqpg			43		
5	Keg＂Y gk j v	Pqpg			43		
6	Y hpf＂y t＂leg＂Z	Pqpg			43	36	
7	Y lpf＂Z	Pqpg			43	36	
8	Y lpf＂y t＂｜eg＂｜	Pqpg			43	33	
9	Y lpf＂	Pqpg			43	33	

Load Combinations

	Fguetk vap	Uqıxg	ROD	UTO	DNE	HOODNE	Hcmob	ODO	OHCO	DC			com	OOH	cmom	$\mathrm{OH}_{\mathrm{Hc}} \mathrm{O}$	ODOOH	HcOm	WHCOOL	IDOOHcOm
3	304F＂－＂388Y＂XZ／f Hgevap＋	［ gu	［		3	3004	304	7	308											
4	20，F＂－＂308Y＂XZ／f Hgevap＋	［ gu			3	04	0	7	ЗС8											
5	304F＂－＂302FK－＂3＠Y к゙ZめD	［ gu	［		3	3004	304	5	3	6	3									
6	304F＂－＂3CBY＂XZ／f Hgevap＋	［ gu	［		3	3004	304	9	38											
7	20，F＂－＂388Y＂X／f Hgevap＋	［ gu	［		3	Q 4	0	9	308											
	304F＂－＂3＠FK－＂3＠Y K゙Z＠	［ gu	［		3	3004	304	5	3	8	3									

Envelope Joint Reactions

Lqłpv			Z"]m	NE	["]m	NE	\"]m	NE	OZ"]man		O["]mbu	NE	O\ "]mbu	NE
3	P8	O cz	Q25	4	C239	6	30; 6	6	2	8	2	8	2	8
4		0 lp	10,77	6	¢3	4	2	4	2	3	2	3	2	3
5	P62	O cz	03 ;	3	C234	8	3C387	3	2	8	2	8	2	8
6		0 lp	(26;	8	C229	4	(29:	8	2	3	2	3	2	3
7	P76	O cz	08	7	0987	8	C264	8	2	4	5099	7	O: ;	8
8		0 p	10769	5	0486	4	/@267	7	/08: :	6	2	4	C244	4
9	P77	O cz	034	5	065	5	C677	7	2	4	4045	6	Б5	5
:		0 lp	(2; 6	7	0495	7	2	5	/0: 3	6	2	4	(257	7
;	P78	O Cz	¢597	8	Q87	8	863	8	523	3	5¢5: :	4	¢637	4
32		0 lp	/034	4	6: :	4	/034;	4	/@43	7	/0935	7	/036:	8
33	P79	O Cz	(8; 4	4	Q5;	5	ธ553	7	¢568	3	30; 9	3	826	4
34		0 lp	10487	8	0478	4	/0665	5	/029	7	/0546	7	10377	8
35	P7:	O cz	(9) 4	3	088	5	C89:	7	/@73	7	/@;	8	9: 8	4
36		0 lp	10894	7	677;	7	/3C23	3	10479	5	15033;	4	/0324	8
37	P7;	O cz	027	4	069	8	©6	8	/0325	7	/0335	8	©: 3	4
38		0 lp	10555	8	6479	4	/0394	4	104;	3	1309	3	/CR; 8	8
39	P83	O cz	398:	3	C233	3	Q76	6	2	8	2	8	2	8
3:		0 lp	/066	6	C227	7	/0347	3	2	3	2	3	2	3
3;	Vqucru<	O cz	7075	4	687	8	655	7						
42		0 lp	2	6	3893	4	2	3						

Envelope Joint Displacements

Lqłp			$\begin{aligned} & \text { Z"l\|p } \\ & \text { C226 } \end{aligned}$	NE5	$\begin{aligned} & \text { ["]lp- } \\ & \text { /@37: } \end{aligned}$	$\begin{gathered} \mathrm{NE} \\ 7 \end{gathered}$	$\begin{aligned} & \backslash \mathrm{llp} \\ & \text { C224 } \end{aligned}$	NE5	Z"Tquckap"000NE		["Tqucuapp"]cone		\ "Tqucvap"]OONE	
3	P3	ocz							$3068 \mathrm{~g} / 24$	6	4644g/24	7		
4		0 p	2	7	/077;	5	10847	7	: 0 83g/29	4	/40, 26g/27	5	/565; ; g/25	8
5	P4	O cz	2	7	/035	7	2	5	2	5	2	5	4¢43g/25	5
6		0 p	/0R25	5	/0583	5	14043	7	/4@: 5g/25	7	/60789g/24	7	$9035 \mathrm{~g} / 26$	7
7	P5	O cz	/@23	7	/@37:	7	C224	5	48894g/24	6	40135g/24	6	/: 0988g/26	7
8		O po	/®26	5	/077;	5	/30123	6	: $074 \mathrm{~g} / 29$	4	/50263g/27	5	/508: g/25	5
9	P6	O cz	[225	8	/035	7	2	5	30174g/25	6	2	5		8
:		0 p	2	4	/0583	5	1403	6	2	3	/60779g/24	6	7Ф9:; g/26	4
;	P7	O cz	(225	5	/0327	7	C223	5	36: $7 \mathrm{~g} / 24$	6	30455g/24	7	/40453g/25	7
32		0 p	2	7	/0584	5	/022:	7	91229g/29	4	/50888g/27	5	I: $0427 \mathrm{~g} / 25$	5
33	P8	O cz	2	8	2	8	2	8	4CB84g/25	7	: $8868 \mathrm{~g} / 26$	4	/4Q 37g/25	4
34		0 p	2	3	2	3	2	3	/30795g/25	5	$56858 \mathrm{~g} / 27$	8	/3@34g/24	8
35	P9	O cz	© 217	8	/037:	7	C225	5	307:9g/24	6	46644g/24	7	3016; g/25	4
36		0 p	10247	4	/078	5	10457	7	: 0 89g/29	4	/4Q, 26g/27	5	/5062; g/25	8
37	P:	O cz	/@44	7	/@7:	7	Q24	5	5098g/24	6	40135g/24	6	/: ©8g/26	7
38		0 p	/0323	5	/078	5	13043	6	: 0 68g/29	4	/5@263g/27	5	/60475g/25	3
39	P;	O Cz	(224	5	/027:	7	CB2;	6	3CB; 7g/24	6	4CB7: g/26	7	/36548g/25	7
3:		0 p	2	7	/03; 4	5	2	4	7666g/29	4	/409; 6g/27	5	/60885g/25	5
3;	P32	O cz	2	7	/@7:	7	2	5	362; g/24	6	3¢26g/24	6	/3046: g/25	4
42		0 p	/0R25	5	/03; 4	5	1045	6	7664g/29	4	/4W5; ; g/27	5	/607; 3g/25	8
43	P33	O cz	C336	5	/@7:	7	(5) 5	6	3CB9: g/24	6	4C37: g/26	7	/36548g/25	7
44		0 p	¢253	7	/03; 4	5	2	4	7666g/29	4	/409; 6g/27	5	/60858g/25	5
45	P34	O cz	/@25	7	/@7:	7	2	5	3648g/24	6	3¢26g/24	6	/3636g/25	7
46		0 p	/0335	5	/03; 4	5	10793	6	7663g/29	4	146; ; g/27	5	/68827g/25	5
47	P35	O cz	2	7	/0274	7	2	5	2	5	2	5	501g/25	8
48		- p	/0R24	5	/0359	8	10.54	7	/90974g/26	7	/5689g/24	7	3CB7; g/25	4

＜Egpvgm
＜HLR
＜3；249036
＜EV33696CaCOC

Crt＂46．＂423；
4\＆47＂RO
Ej gengf＂D $\{2 \mathrm{ECl}$

Envelope Joint Displacements（Continued）

	Lqłpv		$\begin{aligned} & \mathrm{z}^{\prime \prime\|l\|}-1 \\ & \text { CR24 } \end{aligned}$	$\begin{gathered} \mathrm{NE} \\ 8 \end{gathered}$		NE7	$\underset{2}{\mid 11 p}$	NE5	z＂Tqu＊ap＂］00Ne		［＂Tacuap＂］mone		\＂Tquckqp＂］ 100 5434g／25	
49	P36	o cz							5675g／26	6	2	5		
4：		0 p	2	4	10359	8	104：	6	2	3	／5676g／24	6	31387g／25	7
4；	P37	0 cz	／＠4；	7	／®74	7	2	5	2	5	2	5	543；g／25	
52		0 ¢	1029；	5	10359	8	10.75	7	1：0 5：g／26	7	156589g／24	7	31387g／25	
53	P38	o cz	C29；	8	／＠274	7	2	5	7CB5：g／26	6	2	5	504g／25	8
54		0 ¢p	（248	4	10359	8	10．5；	6		3	156576g／24	6	3c246g／25	
55	P39	0 cz	／®4	7	1035	7	2	5	2	5	2	5	4『：7g／25	
56		0 p	1086	5	10583	5	140；9	7	15c559g／25	7	160789g／24	7	$904 \mathrm{~g} / 26$	
57	P3：	0 cz	Q27：	8	1035	7	2	5	4ツ：8g／25	6	2	5	4Б2：g／25	
58		0 p	C226	4	10583	5	1408 ；	6	－	3	160779g／24	6	50 33g／27	
59	P3；	0 cz	C27	7	／0386	4	967	4	4C688g／26	7	30 ；g／24	4	6C378g／25	
5：		0 p	10646	4	108	8	／＠85	6	／； $0644 \mathrm{~g} / 25$	3	160 65g／25	6	1303；3g／24	
5；	P42	o cz	C685	7	／0376	7	3679	7	46665g／25	5	：CB：7g／25	7	36665g／25	
62		0 ¢	1467	4	1065 ；	5	10489	7	34；： $\mathrm{g} / 26$	7	160387g／24	4	130723g／25	
63	P43	0 cz	O2：	6	10386	4	¢6： 7	3	40：；g／25	7	3093g／24	3	60：8g／25	
64		0 p	106	3	108	8	1033；	7	136346g／24	3	／6 $6569 \mathrm{~g} / 25$	6	130，54g／24	
65	P44	0 cz	C66；	7	／0376	7	3¢573	3	4629g／25	8	：C279g／25	6	l：©；7g／26	
66		0 ¢	14655	3	1065；	5	10483	6	8（564g／26	4	16037： $\mathrm{g} / 24$	3	140444g／25	
67	P45	0 cz	CR2；	7	／0386	4	（248	4	／；®84g／26	7	$30 ; \mathrm{g} / 24$	4	6CB8g／25	
68		0 p	103； 7	3	10823	8	MR； 9	8	／；C65g／25	3	160 65g／25	6	／；©28g／25	
69	P46	ocz	¢549	6	10386	4	（977	3	6ந5：9g／25	7	$3093 \mathrm{~g} / 24$	3	60：3g／25	
6：		0 p	／3¢5： 4	4	10823	8	10438	7	／36345g／24	3	16¢569g／25	6	14C559g／24	
6；	P47	0 cz	C285	4	／®55	4	C22：	7	14046；g／26	7	6С6：；g／26	7	4 $7 \mathrm{~g} / 25$	
72		0 p	10238	6	1033	8	／R59	3	166889g／25	3	130 84g／25	3	170197g／25	
73	P48	0 cz	C247	6	／＠55	4	（28	3	$136655 \mathrm{~g} / 26$	7	8ツ5：g／25	3	4C879g／25	6
74		Op	10325	4	1033	8	／＠26	7	170894g／25	3	130864g／25	6	1806：7g／25	
75	P49	o cz	CB： 8	4	／＠255	4	2	7	／50 57g／26	7	6С6：；g／26	7	4 $7 \mathrm{~g} / 25$	8
76		0 p	／®8：	6	1033	8	1036；	3	166889g／25	3	130 84g／25	3	170329g／25	
77	P4：	0 cz	C2：	6	／®255	4	CB； 8	3	4ه743g／27	7	8095： $\mathrm{g} / 25$	3	4C879g／25	
78		0 ¢	10484	4	1033	8	／®36	7	170894g／25	3	／30864g／25	6	188875g／25	
79	P4；	o cz	C298	6	／025	7	044	3	$4027 \mathrm{~g} / 25$	5	$6055 \mathrm{~g} / 25$	7	／30833g／26	
7：		0 ¢p	105： 3	4	／＠： 3	5	／R65	7	： $0969 \mathrm{~g} / 26$	7	／40677g／24	4	／30854g／25	
7；	P52	ocz	C294	7		7	643：	4	4 （946g／25	8	66899g／25	6	18063；g／26	
82		0 p	／069；	3	／＠： 3	5	／®64	6	：©63；g／26	4	$146667 \mathrm{~g} / 24$	3	130955g／25	
83	P53	ocz	CB	6	／Q25	7	047；	3	$4027 \mathrm{~g} / 25$	5	$6055 \mathrm{~g} / 25$	7	140763g／28	
84		0 p	105：	4	／＠： 3	5	$1 \ll 48$	7	80：；g／26	7	146677g／24	4	／38854g／25	
85	P54	0 cz	C279	7	／＠5	7	CB；	4	4ツ74g／25	8	68899g／25	6	18063；g／26	
86		0 p	10628	3	I®： 3	5	I®： 3	8	：©63：g／26	4	$140667 \mathrm{~g} / 24$	3	／3088／25	
87	P55	0 cz	¢； 5	6	10376	7	35； 8	3	4C66；g／25	5	：CB： $7 \mathrm{~g} / 25$	7	4ه；9g／25	
88		0 ¢p	1462；	4	1065 ；	5	10494	7	／40649g／26	7	160387g／24	4	130727g／25	
89	P56	0 cz	C64；	7	10376	7	3¢57	4	4076：g／25	8	：© P79g／25	6	I：© 6 ； $5 \mathrm{~g} / 26$	
8：		0 p	14638	3	1065；	5	104； 5	6	856g／26	4	16087：g／24	3	15676g／25	3
8；	P57	ocz	／＠2；	8	／＠： 6	4	／®23	8	； $\mathbb{F} 54 \mathrm{~g} / 25$	3	170，39g／26	8	3C28：g／25	8
92		0 ¢p	I®®； 3	3	10863	8	／®26：	4	4C283g／25	7	1： $8369 / 25$	3	13C38；$/ 24$	
93	P58	0 cz	10369	8	／0386	4	／＠：：	8	／36837g／25	4	6C377g／24	4	3665；g／25	
94		0 p	14ら66	4	10885	5	13¢576	4	／4C859g／25	8	$41867 \mathrm{~g} / 25$	8	1304： $6 \mathrm{~g} / 25$	8
95	P59	ocz	／C254	8	／03： 6	4	／＠245	8	3CB57g／24	3	180865g／26	8	： 0 83g／26	8
96		0 p	10729	3	10863	8	104； 5	3	6历528g／25	8	1：095g／25	3	13Q 38g／24	
97	P5：	0 cz	10369	8	10386	4	／＠： 4	8	188895／26	4	6C36：g／24	3	／36336g／26	
98		0 p	14ら58	3	10885	5	／3¢569	3	$146626 \mathrm{~g} / 25$	8	$46845 \mathrm{~g} / 25$	8	14099； $\mathrm{g} / 25$	
99	P5；	0 cz	／＠24	7	10377	4	（224	8	；9077g／25	3	160796g／26	8	5¢P： $8 \mathrm{~g} / 25$	
9：		0 p	／0229	3	10793	8	2	4	5（B9g／25	7	18073g／25	3	1；09； $9 / 25$	

Lqłov			$\begin{gathered} Z^{\prime \prime}\| \| p_{-} \\ 2 \end{gathered}$	NE8	["llo	NE8	\backslash	NE8	z"Tquikap" 100 NE$30264 \mathrm{~g} / 248$		["Tquakap"Imone		\ "Tquckqp"]CONE	
9;	P62	0 cz									70446g/26	7	90777g/26	8
:2		0 p	2	3	2		2	3	301:3g/26		1: $026 \mathrm{~g} / 26$	3	160353g/25	4
: 3	P63	0 cz	C359	4	/OB: 6	4	CB: 3	3	(\%63g/25		170 39g/26	8	3C293g/25	8
: 4		0 lp	/®57	8	/0863	8	(236	7	(2) $5 \mathrm{~g} / 26$	7	1: $8369 / 25$	3	1; @: : $\mathrm{g} / 25$	4
: 5	P64	0 cz	/®33	8	/03: 6	4	/0356	8	$3 C B 56 \mathrm{~g} / 24$	3	180365g/26	8	: 0 58g/26	8
: 6		0 lp	/3C267	4	10863	8	10787	3	60159g/25	8	1: 095g/25	3	146544g/24	4
: 7	P65	0 cz	C253	4	/®4;	4	C24	3	6C36: $\mathrm{g} / 25$	5	35588g/25	4	$3023 \mathrm{~g} / 25$	8
: 8		0 lp	C223	8	/®R; 6	8	(225	8	$30949 \mathrm{~g} / 25$	7	: CB73g/27	8	/5C563g/25	4
: 9	P66	0 cz	/@26	8	/®4;	4	/®26	8	6079: g/25	3	/4099g/26	8	3Ф; 5g/25	8
:		0 ¢p	/®295	4	/®2; 6	8	10264	3	3ツ; $4 \mathrm{~g} / 25$	7	16076;9/25	3	160699g/25	4
	P67	0 cz	C32:	4	/@4;	4	C329	3	6C36: g/25	5	3658g/25	4	$3023 \mathrm{~g} / 25$	8
; 2		0 ¢	/®66	8	/®2; 6	8	C265	7	367: g/25	7	: CB73g/27	8	150395g/25	4
; 3	P68	0 cz	Q25;	8	/®4;	4	/®279	7	60799g/25	3	14099g/26	8	$3 \oplus ; 5 \mathrm{~g} / 25$	8
; 4		0 p	103: 5	4	/®; 6	8	10374	3	$3083 \mathrm{~g} / 25$	7	16076; $\mathrm{g} / 25$	3	/68868g/25	4
5	P69	ocz	/®3;	8	/®48	4	/®235	8	/30334g/25	7	40195g/24	4	/30; ; $9 / 26$	4
; 6		0 ¢	1033:	4	/®8;	5	103: 6	3	140976g/25	5	$36646 \mathrm{~g} / 25$	8	130723g/25	8
; 7	P6:	0 cz	/®4	8	/@48	4	$1 ® 3$	8	1: ©529g/26	4	$40485 \mathrm{~g} / 24$	3	17®3: 6g/26	7
; 8		0 p	10539	3	/®8;	5	103: 4	4	1408; 5g/25	8	36; $7 \mathrm{~g} / 25$	8	/308; 3g/25	5
9	P6;	0 cz	C239	8	/@48	4	$1 ® 88$	7	/3017g/25	4	40495g/24	4	/40356g/27	4
; :		0 p	10639	4	/®8;	5	10444	3	$140076 \mathrm{~g} / 25$	5	36646g/25	8	130723g/25	8
	P72	0 cz	/@79	8	/@48	4	(276	8	1: ©528g/26	4	$40485 \mathrm{~g} / 24$	3	17®3: 5g/26	7
322		0 p	10665	3	/®8;	5	10384	4	140887g/25	8	3¢丅; 7g/25	8	13003; $\mathrm{g} / 25$	5
323	P73	0 cz	10338	8	10386	4	10376	8	/30639g/25	4	6C377g/24	4	4 $/ 75 \mathrm{~g} / 25$	4
324		- p	14624	4	10685	5	/3¢5; 5	3	140995g/25	8	$46867 \mathrm{~g} / 25$		1304: :9/25	8
325	P74	0 cz	$103:$	8	/0386	4	/®249	8	17@779/26	7	6C36: g/24	3	/30336g/26	7
326		0 p	14633	3	10685	5	/3¢553	4	14047; g/25	8	$48845 \mathrm{~g} / 25$	8	15¢\%; 5g/25	3
327	P75	0 cz	2	8	2	8	2	8	2	8	2	8	2	8
328		0 p	2	3	2	3	2	3	2	3	2	3	2	3
329	P76	0 cz	2	8	2	8	2	8	2	8	2	8	2	8
32:		0 ¢p	2	3	2	3	2	3	2	3	2	3	2	
32;	P77	0 cz	2	8	2	8	2	8	2	8	2	8	2	8
332		Op	2	3	2	3	2	3	2	3	2	3	2	
333	P78	o cz	2	8	2	8	2	8	2	8	2	8	2	8
334		0 p	2	3	2	3	2	3	2	3	2	3	2	3
335	P79	0 cz	2	8	2	8	2	8	2	8	2	8	2	8
336		0 p	2	3	2	3	2	3	2	3	2	3	2	
337	P7:	0 cz	2	8	2	8	2	8	2	8	2	8	2	8
338		0 ¢	2	3	2	3	2	3	2	3	2	3	2	3
339	P7;	o cz	2	8	2	8	2	8	2	8	2	8	2	8
33:		0 p	2	3	2	3	2	3	2	3	2	3	2	3
33;	P82	0 cz	C224	7	103	4	C227	4	1: ©3779/26	7	30293g/24	4	756: g/25	8
342		0 p	/@2;	3	/06; 4	8	$1 ® 26$	8	/; ¢; 3g/25	5	14C87; $\mathrm{g} / 25$	6	1: $0688 \mathrm{~g} / 25$	4
343	P83	0 cz	2	8	2	8	2	8	/; ©: 4g/26	7	8C28; g/27	4	$8045 \mathrm{~g} / 25$	5
344		0 p	2	3	2	3	2	3	I; ৫; 6g/25	5	/4063: $\mathrm{g} / 25$	6	4C34; g/25	7

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Og@o		Eqf g "EOCNqemone		Uj gct"EConkajh_		FH		rj kRpm	- kROO	j kOp0	00	Ed	Gsp
3	O3	RKRGa4C2	C26;	5000 6	C225	8С2: 5		3	$42 \mathrm{CB38}$	54035	3094	3094	3CB58	J 3/3d
4	O4	RKRGa4®2	C88;	802003	C225	8С2:5		3	$42 C 338$	54035	3094	3094	3CB58	J 3/3d,
5	O5	RKRGa4®	025	@@0 6	O; 3	6\%		6	670653	720937	50; 8	507; 8	40429	J 5/8

C三NT三Kengineering
Centered on Solutions ${ }^{\text {s＂}}$ www．centekeng．com $\begin{array}{ll}\text { 63－2 North Branford Road } & \text { P：（203）488－0580 } \\ \text { Branford，CT 06405 } & \text { F：（203）488－8587 }\end{array}$

Eqo rcp\｛＜Egpıgm
Fgukipgt＜HLR
Lqd＂Pwo dgt＜3； 249036
Oqf griPcog＜EV33696CaCOC

Crt＂46．＂423；
4\＆7＂RO
Ej gengf＂ $\mathrm{D}\{2 \mathrm{E} \mathrm{ECl}$

Envelope AISC 14th（360－10）：LRFD Steel Code Checks（Continued）

	Ogø	Uj cr g	Eqf g＂EONVqeOONE		Uj gct＂EComadilv＿		FH		rj kRpmom kRoor j	j kOp	mjkm	Ed	Gsp
6	O6	RIRGa407	043	：©00 6	Б525	：C389		6	6706537209375	50； 8	5\％；8	4012：	J 5／8
7	O7	RIRGa407	（962	3	0928	7ら55		3	$69 C 8947209375$	5\％； 8	50； 8	4C378	J 3／3d
8	08	RIRGa407	（95：	3	0663	：		3	$69 C 8947209375$	5\％； 8	5\％；8	3085	J 3／3d
9	O9	RIRGa407	973	3	© ； 7	3		3	6：©： 87209375	50； 8	50； 8	4C88：	J 3／3d
：	O：	RKRGa407	958	3	0446	78		3	6：©： 87209375	5\％； 8	50； 8	4®36	J 3／3d
；	O；	RKRGa4C2	\％24	66	C33：	48		6	4208954035	3094	3094	4C2； 5	J 3／3d
32	O32	RIRGa4®2	C8： 4	65	（57）	6		6	4208954035	3094	3094	60 6；	J 3／3d
33	O33	RKRGa4C2	693	45	（2； 5	4		8	4208954035	3094	3094	6077	J 3／3d
34	O34	RIRGa4®2	（55；	65	¢86	4		8	4208954035	3094	3094	68857	J 3／3d
35	O35	RIRGa4C2	67：	65	C353	40		3	4208954035	3094	3094	5＠49	J 3／3d
36	O36	RIRGa4C2	C85；	48	¢524	6		3	4208954035	3094	3094	$603 ;$	J 3／3d
37	O37	RIRGa4C2	693	65	（2； 5	4		5	4208954035	3094	3094	6964	J 3／3d
38	O38	RKRGa4®2	C628	45	（29：	4		5	4208954035	3094	3094	5®8； 8	J 3／3d
39	O39	RIRGa4C2	\％：7	65	C333	4		8	4208954035	3094	3094	6\％2；	J 3／3d
3：	O3：	RIRGa4C2	C858	68	0444	6		3	4208954035	3094	3094	6083	J 3／3d
3；	O3；	RIRGa4C2	©685	65	（2； 3	4		5	4208954035	3094	3094	608	J 3／3d
42	O42	RIRGa4C2	C645	45	®2： 3	4		5	4208954035	3094	3094	6C654	J 3／3d
43	O43	RKRGa3047	［296	5セ20 6	Q26	2		6	9＠； 7 3；©：：	023	023	3C358	J 3／3d

Member Code Checks Displayed (Enveloped)

Centek	CT11474A_AMA Member Unity Check	
FJP		Apr 24, 2019 at 2:24 PM
19027.14		CT11474A_AMA.R3D

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility
Site ID: CTII474A
WTNH Hamden
IOI Talmadge Road
Hamden, Connecticut 065I8
May 28, 2019
EBI Project Number: 6219001816

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{0 . 9 6 \%}$

environmental | engineering | due diligence

May 28, 2019
T-Mobile
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, Connecticut 06002

Emissions Analysis for Site: CTII474A - WTNH Hamden

EBI Consulting was directed to analyze the proposed T-Mobile facility located at IOI Talmadge Road in Hamden, Connecticut for the purpose of determining whether the emissions from the Proposed TMobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-Oland ANSI/IEEE Std C95.I. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR I.I307(b)(I) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately $400 \mu \mathrm{~W} / \mathrm{cm}^{2}$ and $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$, respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and II GHz frequency bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.
environmental | engineering | due diligence

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at IOI Talmadge Road in Hamden, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6 -foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 2 LTE channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
2) 2 LTE channels (700 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
3) 4 GSM channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
4) 2 LTE channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
5) 2 LTE channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
environmental | engineering | due diligence
6) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-0I recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
7) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
8) The antennas used in this modeling are the for the channel(s), the for the 2100 MHz channel(s), the RFS APXVAARR24_43-U-NA20 for the $1900 \mathrm{MHz} / 600 \mathrm{MHz} / 700 \mathrm{MHz}$ / 1900 MHz channel(s) in Sector A, , the RFS APXI6DWV-I6DWV-S-E-A20 for the 2100 MHz channel(s), the RFS APXVAARR24_43-U-NA20 for the $1900 \mathrm{MHz} / 600 \mathrm{MHz} / 700 \mathrm{MHz} /$ 1900 MHz channel(s) in Sector B, , the RFS APXI6DWV-I6DWV-S-E-A20 for the 2100 MHz channel(s), the RFS APXVAARR24_43-U-NA20 for the $1900 \mathrm{MHz} / 600 \mathrm{MHz} / 700 \mathrm{MHz} /$ 1900 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
9) The antenna mounting height centerline of the proposed antennas is feet above ground level (AGL).
10) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
11) All calculations were done with respect to uncontrolled / general population threshold limits.

EBI Consulting
environmental | engineering | due diligence

T-Mobile Site Inventory and Power Data

Antenna \#:	2	Antenna \#:	2	Antenna \#:	2
Make / Model:	$\begin{gathered} \text { RFS APXI6DWV-16DWV-S- } \\ \text { E-A20 } \end{gathered}$	Make / Model:	$\begin{gathered} \text { RFS APXI6DWV-16DWV-S- } \\ \text { E-A20 } \end{gathered}$	Make / Model:	RFS APXI6DWV-I6DWV-S- E-A20
Frequency Bands:	2100 MHz	Frequency Bands:	2100 MHz	Frequency Bands:	2100 MHz
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	315 feet	Height (AGL):	315 feet	Height (AGL):	315 feet
Channel Count:	2	Channel Count:	2	Channel Count:	2
Total TX Power (W):	120 Watts	Total TX Power (W):	120 Watts	Total TX Power (W):	120 Watts
ERP (W):	4,668.54	ERP (W):	4,668.54	ERP (W):	4,668.54
Antenna A2 MPE \%:	0.17\%	Antenna B2 MPE \%:	0.17\%	Antenna C2 MPE \%:	0.17\%
Antenna \#:	3	Antenna \#:	3	Antenna \#:	3
Make / Model:	RFS APXVAARR24_43-UNA2O	Make / Model:	RFS APXVAARR24_43-UNA20	Make / Model:	$\begin{aligned} & \text { RFS APXVAARR24_43-U- } \\ & \text { NA20 } \end{aligned}$
Frequency Bands:	$\begin{gathered} 1900 \mathrm{MHz} / 600 \mathrm{MHz} / 700 \\ \mathrm{MHz} / 1900 \mathrm{MHz} \end{gathered}$	Frequency Bands:	$\begin{gathered} 1900 \mathrm{MHz} / 600 \mathrm{MHz} / 700 \\ \mathrm{MHz} / 1900 \mathrm{MHz} \end{gathered}$	Frequency Bands:	$\begin{gathered} \hline 1900 \mathrm{MHz} / 600 \mathrm{MHz} / 700 \\ \mathrm{MHz} / 1900 \mathrm{MHz} \end{gathered}$
Gain:	$15.65 \mathrm{dBd} / 12.95 \mathrm{dBd} / 13.35$ $\mathrm{dBd} / 15.65 \mathrm{dBd}$	Gain:	$15.65 \mathrm{dBd} / 12.95 \mathrm{dBd} / 13.35$ $\mathrm{dBd} / 15.65 \mathrm{dBd}$	Gain:	$15.65 \mathrm{dBd} / 12.95 \mathrm{dBd} / 13.35$ $\mathrm{dBd} / 15.65 \mathrm{dBd}$
Height (AGL):	315 feet	Height (AGL):	315 feet	Height (AGL):	315 feet
Channel Count:	10	Channel Count:	10	Channel Count:	10
Total TX Power (W):	360 Watts	Total TX Power (W):	360 Watts	Total TX Power (W):	360 Watts
ERP (W):	11,295.86	ERP (W):	11,295.86	ERP (W):	11,295.86
Antenna A3 MPE \%:	0.53\%	Antenna B3 MPE \%:	0.53\%	Antenna C3 MPE \%:	0.53\%

environmental | engineering | due diligence

Site Composite MPE \%	
Carrier	MPE \%
T-Mobile (Max at Sector A):	0.70%
Sprint	0.26%
Site Total MPE \%:	0.96%

T-Mobile Sector A Total:	0.70%
T-Mobile Sector B Total:	0.70%
T-Mobile Sector C Total:	0.70%
Site Total:	
0.96%	

T-Mobile Maximum MPE Power Values (Sector A)

T-Mobile Frequency Band / Technology (Sector A)	\# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Frequency (MHz)	Allowable MPE ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Calculated \% MPE
T-Mobile 2100 MHz LTE	2	2334.27	315.0	1.69	2100 MHz LTE	1000	0.17\%
T-Mobile 1900 MHz GSM	4	1101.85	315.0	1.60	1900 MHz GSM	1000	0.16\%
T-Mobile 600 MHz LTE	2	591.73	315.0	0.43	600 MHz LTE	400	0.11\%
T-Mobile 700 MHz LTE	2	648.82	315.0	0.47	700 MHz LTE	467	0.10\%
T-Mobile 1900 MHz LTE	2	2203.69	315.0	1.60	1900 MHz LTE	1000	0.16\%
						Total:	0.70\%

- NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.
environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (\%)
Sector A:	0.70%
Sector B:	0.70%
Sector C:	0.70%
T-Mobile Maximum MPE \% (Sector A):	0.70%
Site Total:	
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{0 . 9 6 \%}$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

