

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

March 31, 2022

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application

890 Evergreen Ave, Hamden, CT 06518

Latitude: 41.406667 Longitude: -72.904722 Site #: 800529 Crown Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 890 Evergreen Ave, Hamden, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 MHz 5G antennas and six (6) RRUs, at the 66-foot level of the existing 108-foot stealth silo tower, one (1) Fiber cable will also be installed. Dish Wireless LLC equipment cabinets will be placed within a 7' x 5' lease area within the base of the stealth structure. Included are plans by Kimley Horn, dated March 1, 2022, Exhibit C. Also included is a structural analysis prepared by GPD, dated September 13, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was approved by the Connecticut Siting Council, Docket No. 195 on October 8, 1999. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Mayor Lauren Garrett and Erik Johnson, Acting Town Planner for the Town of Hamden, as well as the tower owner (Crown Castle) and property owner (Conn Agricultural Expt Station).

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

- 1. The proposed modification will not result in an increase in the height of the existing structure. The top of the existing silo tower is 108-feet and the Dish Wireless LLC antennas will be located at a centerline height of 66-feet.
- 2. The proposed modifications will not result in an increase of the site boundary as depicted on the attached site plan.

- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.
- 4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. The combined site operations will result in a total power density of 79.58% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully submits that the shared use of this facility satisfies these criteria.

- A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.
- B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this tower in Hamden. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.
- C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 66-foot level of the existing 108-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
- D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.
- E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Hamden.

Sincerely,

Denise Sabo

Denise Sabo

Mobile: 203-435-3640 Fax: 413-521-0558

Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments

Cc: Mayor Lauren Garrett Town of Hamden 2750 Dixwell Avenue Hamden, CT 06518

Erik Johnson, Acting Town Planner Town of Hamden 2750 Dixwell Avenue 3rd Floor, Government Center Hamden, CT 06518

Conn Agricultural Expt Station, Property Owner 890 Evergreen Ave, Hamden, CT 06518

Crown Castle, Tower Owner

Exhibit A

Original Facility Approval

Connecticut Siting Council (VCSC)

CT.gov Home (/) Connecticut Siting Council (/CSC) Hamden Docket No. 195 Decision

Decisions (/CSC/Decisions/Decisions)	>
Meetings and Minutes (/CSC/Common-Elements/v4-template/Council-Activity)	>
Pending Matters (/CSC/1_Applications-and-Other-Pending-Matters/Pending-Matters)	>
About Us (/CSC/Common-Elements/Common-Elements/Connecticut-Siting-Council Description)	>
Contact Us (/CSC/Common-Elements/Common-Elements/Contact-Us)	>
Search Connecticut Siting Council	
	<u>P</u> _

DOCKET NO. 195 - An application by Cellco Partnership d/b/a Bell Atlantic Mobile for a

Certificate of Environmental Compatibility and Public Need for the construction,
maintenance, and operation of a telecommunications tower disguised as an agricultural
silo located at Lockwood Farm, 890 Evergreen Avenue in Hamden, Connecticut.

} Council

October 8,
1999

Connecticut

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a telecommunications facility located at Lockwood Farm in Hamden, Connecticut, including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to Bell Atlantic Mobile (BAM) for the construction,

operation, and maintenance of a telecommunications tower, disguised as an agricultural silo, and associated equipment building located at Lockwood Farm, 890 Evergreen Avenue in Hamden, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be constructed as proposed, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of BAM, Springwich Cellular Limited Partnership (SCLP), and Nextel Communications of the Mid-Atlantic, Inc. (Nextel); and other entities, both public and private, but such tower shall not exceed a height of 108 feet above ground level (AGL). No antennas shall be mounted to the exterior of the tower, except for the Town of Hamden's public safety whip antenna(s) mounted to the top of the tower, if necessary, as approved by the Council.
- 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be submitted to and approved by the Council prior to the commencement of facility construction and shall include: a final site plan(s) for site development to include the location and specifications for the antennas, emergency generator and fuel tank, access road, utility line, and for the tower foundation and equipment building to be re-oriented north/south and relocated to maintain an appropriate set-back from residential properties; construction plans for water drainage, and erosion and sedimentation controls consistent with the Connecticut Guidelines for Soil Erosion and Sediment Control, as amended; provisions for the installation of radiofrequency transparent material; and provisions for the prevention and containment of spills and/or other discharge into surface water and groundwater bodies.
- 3. Upon the establishment of any new State or federal radiofrequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 4. The Certificate Holder shall provide the Council a recalculated report of electromagnetic radiofrequency power density if and when circumstances in operation cause a change in power density above the levels originally calculated and provided in the application.
- 5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 6. If the facility does not initially provide, or permanently ceases to provide cellular services following completion of construction, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.

- 7. Any antenna that becomes obsolete and ceases to function shall be removed within 60 days after such antenna becomes obsolete and ceases to function.
- 8. Unless otherwise approved by the Council, this Decision and Order shall be void if all construction authorized herein is not completed within three years of the effective date of this Decision and Order or within three years after all appeals to this Decision and Order have been resolved.

Pursuant to General Statutes § 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in <u>The Hartford Courant</u>, the <u>New Haven Register</u>, and the <u>Hamden Chronicle</u>.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

ITS REPRESENTATIVE

Bell Atlantic Mobile Kenneth C. Baldwin, Esq.

Robinson & Cole 280 Trumbull Street

Hartford, CT 06103-3597

David S. Malko, P.E. Sandy M. Carter

Bell Atlantic Mobile

20 Alexander Drive

Wallingford, CT 06492

INTERVENORS

Springwich Cellular Limited Partnership

ITS REPRESENTATIVE

Peter W. vanWilgen

Springwich Cellular Limited Partnership

500 Enterprise Drive

Rocky Hill, CT 06067-3900

Nextel Communications of the Mid-Atlantic,

Inc. d/b/a Nextel Communications

Christopher B. Fisher, Esq.

Daniel F. Leary, Esq.

Cuddy, Feder & Worby, Esq.

90 Maple Avenue

White Plains, NY 10601

TOWN OF HAMDEN

CONNECTICUT

BOND RELEASE RECOMMENDATION/ACTION

мемо то:	Planning & Zo	ning Commission		
FROM:	FROM: Joseph J. Venditto, Zoning Enforcement Officer			
DATE:	MARCH	7,2002		
RE:	Bond Release			
		ADDRESS	: 890 EVER	EREEN Are
		PROJECT	: SITE PLAN	00-1263
TOTAL BOT	ND AMOUNT:	PROJECT Present Amt.	Recommendation	00-/263 Amt. to Retain
TOTAL BOI	ND AMOUNT:			
TOTAL BON	ND AMOUNT:			
				Amt. to Retain

Bond total covers all items listed or not listed. Categories are for estimation purposes only.

1,473.

15,000.

Subtotal

TOTAL

Other 10%

CAN BE RECOMMENDED.

\$ 60.00

TOWN OF HANDEN APPLICATION FOR CERTIFICATE OF ZONING COMPLIANCE

profession Dienes R. 4
Property Asserts 890 KVRA GREEN ANS ZONING DISTRICT (\$150)-306-0337
Proper Come
Property Owner Address 703 HEARING ANE GLOSTON BURY, OF 06037
Type of Zoning Permit
I cornely that the work required has been completed in accordance with approved plans except as noted on anached asbuilt drawing.
dilla acces
Applicant Signature Owner/Agent
PRINTED NAME WILLIAM W WOTSON - 7M
ADDRESS 703 HARRON AVE, GLOSSONAVAY OF 06193
TELEPHONE : (860) 657-1567 FAX : (860) 677-7078
Certificate of Zoning Compliance
Zorung Enforcement Officer Findings: based upon inspection of MARCH 5, 2002
Unconditional Meets all requirements
Conditional See list below
Following is a list of requirements determined from inspection which while not yet complete do not adversely affect use occupancy of the premises and for which sufficient security is being held:

Haus in nex a Certificate of Occupancy under the Building Code TOWN OF HAMDEN

RECEIVED.

Rev 02/16/01

+ · 3 % 6 2002

PLANNING AND ZONING DEPT.

Crown Castle Atlantic LLC Northeast Region 703 Hebron Avenue, 2nd Floor Glastonbury, CT 06033 Tel 860 633.9369 Fax 860 633.7078 www.crowncastle.com

February 25, 2002

Mr. Joseph J. Venditto Town of Handen 2372 Whitney Avenue Handen, CT 06518

Re: Hamden Telecommunications Facility
CT Agricultural Station
Hamden, CT

Dear Mr. Venditto.

Please find enclosed two (2) stamped original as built drawings for the referenced Telecommunications facility.

Also enclosed is a copy of a letter dated January 11, 2002 from Mr. Roberts of URS Corporation the A&E firm of record for this project addressing the Bollard issue.

I am requesting that a Certificate of Zoning Compliance be issued for this project.

If you have any questions and/or need any additional information please do not hesitate to call. If I'm not in the office you can reach me on my cell phone (860) 306-0337.

Sincerely,

Crown Atlantic Company.LLC

William W. Watson Project Manager

WERE, W.W.W.

RECEIVED
TOWN OF HAMDEN
FEB 2 5 2002
PLANNING AND
ZONING DEET.

TOWN OF HAMBEN P12:00

CONNECTICUT

EC'D AND FILED BY

Draft Minutes subject to Commission approval

MINUTES: ZONING SECTION, Planning & Zoning Commission, Town of Hamden, held a Public Hearing and Regular Meeting on Tuesday, September 25, 2001 and the following were reviewed:

Commissioners in Attendance:

Mr. Crocco

Mr. Del Vecchio

Mr. Sims

Mr. Cesare, (for Mr. Vegliante)

Ms. Woodward, (for Ms. Benevides)

Staff in Attendance:

Mr. O'Brien, Town Planner

Mr. Lee, Town Attorney

Ms. Raccio, Stenographer

Ms. Gaiolini, Clerk

Mr. Del Vecchio opened the Regular Meeting at 7:10 p.m. He introduced the Commission, and staff and gave an overview of the procedures for the evening.

A. Regular Meeting

1. Site Plan/WS 01-1308
72 Crest Way, Lot #12
Office/Storage
Robert Massaro, Applicant
Deadline: October 18, 2001

Bernard Wright, 71 Charnes Dr., East Haven, CT. Will answer any questions the Commission may have.

Mr. O'Brien stated this had been submitted several months back. There were questions from the Town Engineer, those questions have since been answered & incorporated on the map. Mr. Savarese's letter dated 9/20/01 states the plan is now satisfactory to his department. The comments from December 18th have been addressed. RWA comments dated 9/17/01. The comment on slope stabilization has already been discussed.

Mr. Del Vecchio sald item #3 (stabilization) will be taken care of, it has already been discussed with the applicant. Mr. O'Brien noted the parking lot is not paved but crushed atome. Sometimes that is better with respect to drainage. Mr. Del Vecchio read the RWA letter Mr. Wright said there are 3 dry wells to retain and also take any water coming down the slope. Also provided pipe from dry well to dry well so if 1 fills up it drains into next one. No heavy equipment to speak of. Mr. Crocco questioned location of parking and eatch basins. 2 in the crushed stone part and 1 in the black top (the front is black top). Mr. Del Vecchio asked if Mr. Wright had reviewed the Town Planner's recommendations. Mr. Wright answered yes, noting the erosion and sediment control will be in place and from pins set at a later date. As built site plan to Al Savarese. Will post bond after permit issued. Dumpster to the rear of the building. They don't need it because all they have is office space, but if required by the Town, they will provide. Mr. Crocco questioned the warehouse itself, above the office - you're not asking for storage on top? Mr. Wright answered, not right now. Mr. Crocco also asked Mr. O'Brien for clarification on the placing of corner pins & bond releases.

Mr. Sims motions to approve 01-1308 with the recommendations of the Town Planner:

Parking location and handicapped parking to be approved by Town Planner

Dumpster location to be approved by Town Planner

Submit slope stabilization plan to Town Planner & Town Engineer

Erosion sediment controls installed prior to beginning of construction

RWA recommendations of letter dated 9/17/01 to be incorporated

Iron pins to be set

No outdoor storage

Post bond prior to zoning permit

Mr. Cesare seconds. Unanimous. APPROVED.

B. Informational

Mr. Del Vecchio noted Item B is Informational. There is actually no action being taken on either of these 2 items. These are administrative bond releases. This Commission has voted and given the Town Planner the authority to release up to \$15,000.00. Both released per Roger O'Brien.

- 1. Site Plan 00-1263
 390 Evergreen Ave./Lockwood Farms
 Administrative Bond Release \$15,000.00
 Requested by Crown Castle
- 2. Site Plan 01-1307
 88 Mulberry Hill Rd.
 Single Family Lot
 Bond Release \$2,200.00
 Requested by Joan Wagner

C Approval of Minutes

- Approve Minutes of June 20, 2001 Regular Meeting. (Mr. Sims, Mr. Crocco & Mr. Del Vecchio were present at that meeting and can vote). Mr. Crocco motions to approve as written. Mr. Sims seconds. APPROVED.
- 2. Approve Minutes of July 24, 2001 Regular Meeting. Mr. Sims motions to approve as written. Mr. Crocco seconds. APPROVED.

Ms. Woodward motions to adjourn. Mr. Cesare seconds. Closed at 7:30 p.m.

Submitted by:

Deborah Gaiolini, Clerk

Exhibit B

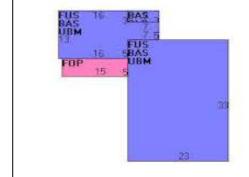
Property Card

Property Listing Report

Map Block Lot

Account

Property Information


Property Location	
Owner	
Co-Owner	
Mailing Address	
Land Use	
Land Class	
Zoning Code	
Census Tract	
Sub Lot	
Neighborhood	
Acreage	
Lot Setting/Desc	
Survey Map	
Utilities	
Additional Info	

Photo

2930-081-00-0000 04/23/2015

Sketch

Primary Construction Details

Year Built	
Stories	
Building Style	
Building Use	
Building Condition	
Floors	
Total Rooms	

Bedrooms	
Full Bathrooms	
Half Bathrooms	
Bath Style	
Kitchen Style	
Roof Style	
Roof Cover	

Exterior Walls	
Interior Walls	
Heating Type	
Heating Fuel	
AC Type	
Gross Bldg Area	
Total Living Area	

Town of Hamden, CT

Property Listing Report

Map Block Lot

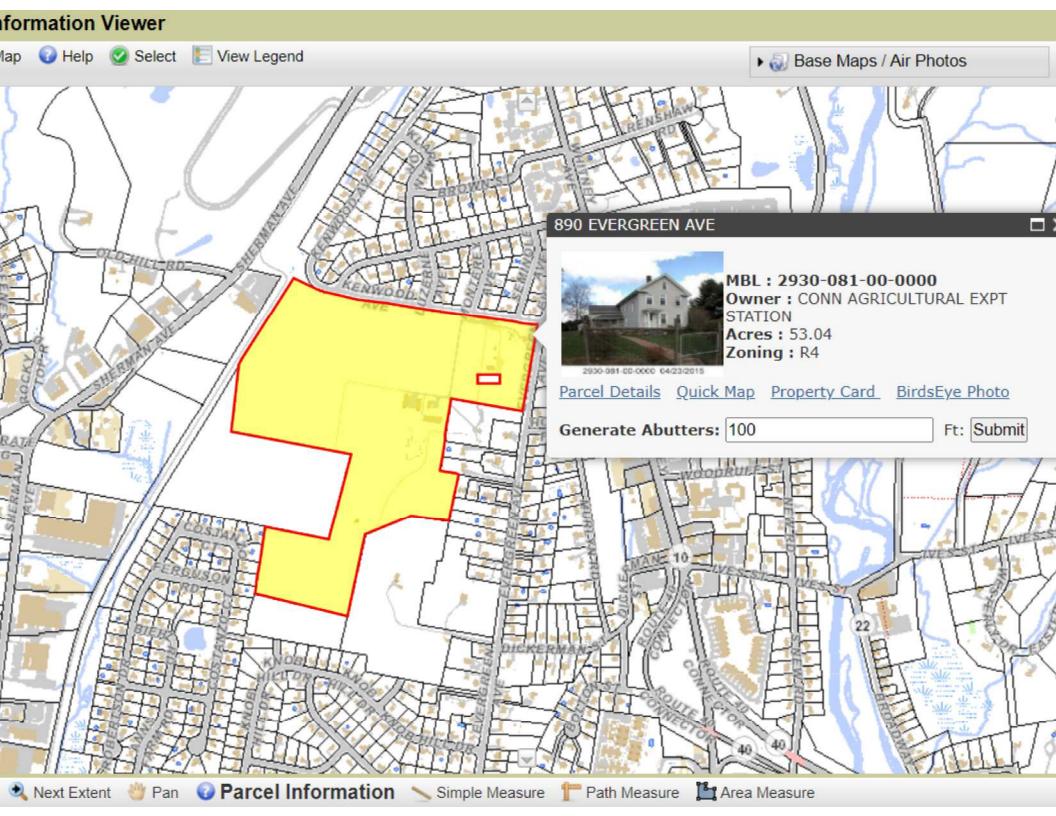
Account

Valuation	Summary	
v aiuauoii	Julilliary	

(Assessed value = 70% of Appraised Value)

Item	Appraised	Assessed
Buildings		
Extras		
Outbuildings		
Land		
Total		

Outbuilding and Extra Items


Type	1	Description

Sub Areas

Subarea Type	Gross Area (sq ft)	Living Area (sq ft)
Total Area		

Sales History

Owner of Record Book/ Page Sale Date Sale Price

Exhibit C

Construction Drawings

dish wireless...

DISH Wireless L.L.C. SITE ID:

BOHVN00153A

DISH Wireless L.L.C. SITE ADDRESS:

890 EVERGREEN AVENUE HAMDEN, CT 06518

CONNECTICUT CODE OF COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES

CODE TYPE

2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS
2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS
2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS

	SHEET INDEX
SHEET NO.	SHEET TITLE
T-1	TITLE SHEET
A-1	OVERALL AND ENLARGED SITE PLAN
A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS
A-4	EQUIPMENT DETAILS
A-5	EQUIPMENT DETAILS
A-6	EQUIPMENT DETAILS
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES
E-2 E-3	ELECTRICAL DETAILS ELECTRICAL ONE—LINE, FAULT CALCS & PANEL SCHEDULE
	ELECTRICAL CALCULATION CALCOL & FARE COMEDOE
G-1	GROUNDING PLANS AND NOTES
G-2	GROUNDING DETAILS
G-3	GROUNDING DETAILS
RF-1	RF CABLE COLOR CODE
GN-1	LEGEND AND ABBREVIATIONS
GN-1 GN-2	GENERAL NOTES
GN-3	GENERAL NOTES GENERAL NOTES
GN-4	GENERAL NOTES

SCOPE OF WORK

THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIPMENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:

- PROPOSED POWER CONDUIT
- INSTALL PROPOSED TELCO CONDUIT

- INSTALL (1) PROPOSED FIBER NID (IF REQUIRED)

SITE PHOTO

UNDERGROUND SERVICE ALERT CBYD 811 UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455

CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION

WWW.CBYD.COM

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.

11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

TOWER SCOPE OF WORK: INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR) INSTALL (3) PROPOSED PIPE MOUNTS INSTALL PROPOSED JUMPERS INSTALL (6) PROPOSED RRUS (2 PER SECTOR)

- INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP)

INSTALL (1) PROPOSED HYBRID CABLE REMOVE EXISTING ANTENNAS AT 65'-0" AGL

GROUND SCOPE OF WORK: • INSTALL (1) PROPOSED METAL PLATFORM

- INSTALL (1) PROPOSED PPC CABINET
 INSTALL (1) PROPOSED EQUIPMENT CABINET
- INSTALL (1) PROPOSED TELCO-FIBER BOX
- DISH Wireless, L.L.C. TO UTILIZE EXISTING METER SOCKET #016037389 AND DISCONNECT

SITE INFORMATION PROJECT DIRECTORY PROPERTY OWNER: CONN AGRICULTURAL EXPT DISH WIRELESS, LLC. STATION 5701 SOUTH SANTA FE DRIVE 890 EVERGREEN AVE LITTLETON, CO 80120 ADDRESS: HAMDEN, CT 06518 SELF SUPPORT TOWER OWNER: CROWN CASTLE CROWN CASTLE SITE ID: 800529 2000 CORPORATE DRIVE CANONSBURG, PA 15317 CROWN CASTLE 552718 (877) 486-9377 APP NUMBER: SITE DESIGNER: KIMLEY-HORN & ASSOCIATES COUNTY: NEW HAVEN 3875 EMBASSY PKWY, SUITE 280 AKRON, OH 44333 LATITUDE (NAD 83): 41° 24' 23.90" N 41.406639° N (216) 505-7771 COA #: PEC.0000738 LONGITUDE (NAD 83): 72° 54' 16.32" W 72 904533° W ZONING JURISDICTION: SITE ACQUISITION: VICTOR NUNEZ VICTOR.NUNEZ@CROWNCASTLE.COM ZONING DISTRICT: CONNECTICUT SITING CONSTRUCTION MANAGER: JAVIER SOTO COUNCIL JAVIER.SOTO@DISH.COM PARCEL NUMBER: 001144290 SYED ZAIDI OCCUPANCY GROUP: RF ENGINEER: SYED.ZAIDI@DISH.COM CONSTRUCTION TYPE: II-B UNITED ILLUMINATING CO 03/01/22 Exp. 01/31/23TELEPHONE COMPANY: LIGHTOWER

DIRECTIONS

DIRECTIONS FROM WATERBURY-OXFORD AIRPORT:

- X GET ON 1-84 E IN MIDDLEBURY FROM AIRPORT ROAD AND CT-188 N X FOLLOW 1-84 E TO CT-70 E IN CHESHIRE. TAKE EXIT 26 FROM 1-84 E X TURN RIGHT ONTO CT-70 E X TURN RIGHT ONTO MAIN ST X FOLLOW CT-10 S TO EVERGREEN AVE IN HAMDEN



5701 SOUTH SANTA FF DRIVE LITTLETON, CO 80120

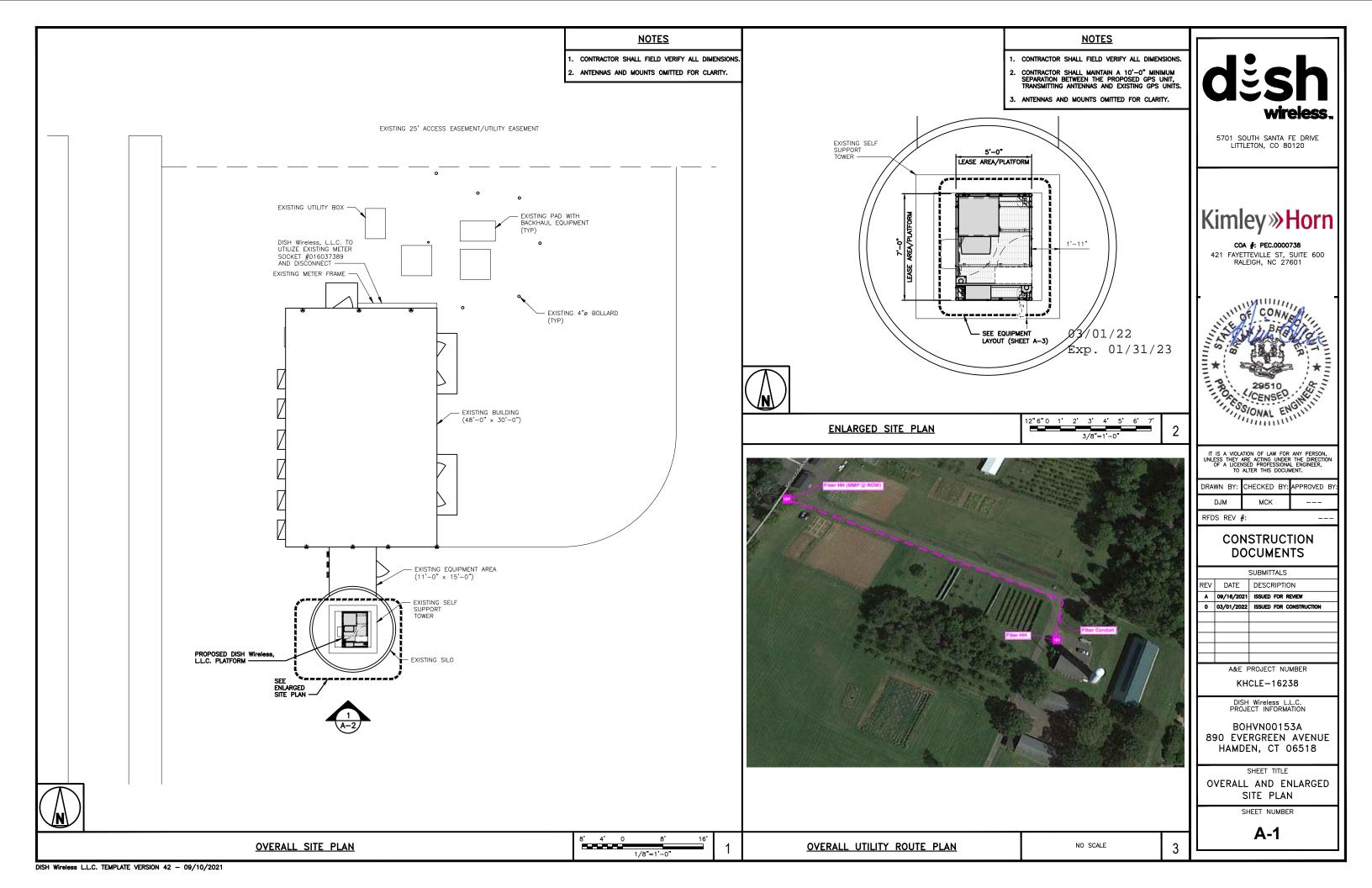
COA #: PEC.0000738

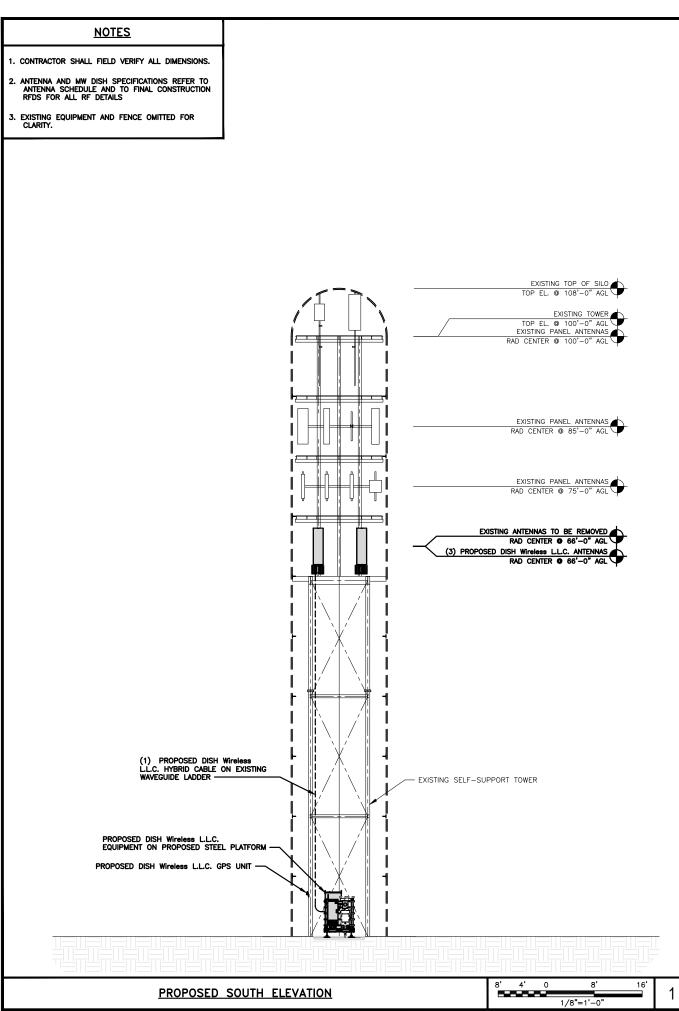
421 FAYETTEVILLE ST, SUITE 600 RALEIGH, NC 27601

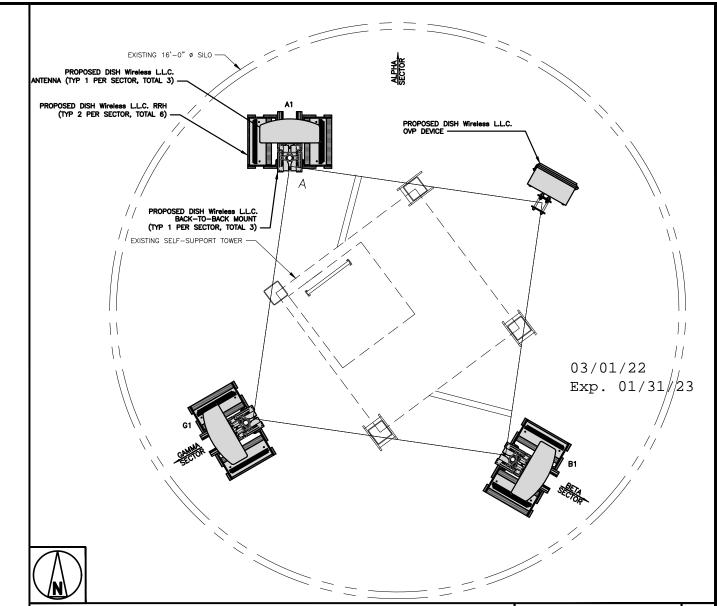
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED BY:
DJM	MCK	
DEDG DEV	"	

CONSTRUCTION **DOCUMENTS**


	SUBMITTALS					
REV	DATE	DESCRIPTION				
A	09/16/2021	ISSUED FOR REVIEW				
٥	03/01/2022	ISSUED FOR CONSTRUCTION				
	A&E PROJECT NUMBER					
	KHCLE-16238					


BOHVN00153A 890 EVERGREEN AVENUE HAMDEN, CT 06518


> SHEET TITLE TITLE SHEET

SHEET NUMBER

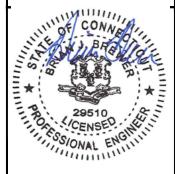
T-1

			AA	ITENNA				TRANSMISSION CABLE
SECTOR	POSITION	EXISTING OR PROPOSED	MANUFACTURER — MODEL NUMBER	TECHNOLOGY	SIZE (HxW)	AZIMUTH	RAD CENTER	FEED LINE TYPE AND LENGTH
ALPHA	A1	PROPOSED	JMA - MX08FR0665-21	5G	72.0" × 20.0"	8	66'-0"	(1) HIGH-CAPACITY
BETA	B1	PROPOSED	JMA - MX08FR0665-21	5G	72.0" x 20.0"	120°	66'-0"	(1) HIGH-CAPACITY HYBRID CABLE (90'-0" LONG)
GAMMA	G1	PROPOSED	JMA - MX08FR0665-21	5G	72.0" x 20.0"	240°	66'-0"	(30 -0 20119)

		RRH		NOTES
SECTOR	POSITION	MANUFACTURER - MODEL NUMBER	TECHNOLOGY	1. CONTRACTOR
ALPHA	A1	FUJITSU - TA08025-B604	5G	DETAILS.
ALPITA	A1	FUJITSU - TA08025-B605	5G	2. ANTENNA AI AVAILABILITY REMAIN IN
BETA	B1	FUJITSU - TA08025-B604	5G	STRUCTURAL
BEIA	B1	FUJITSU - TA08025-B605	5G	
GAMMA	G1	FUJITSU - TA08025-B604	5G	
GAMMA	G1	FUJITSU - TA08025-B605	5G	

ANTENNA LAYOUT

OR TO REFER TO FINAL CONSTRUCTION RFDS FOR ALL RF


AND RRH MODELS MAY CHANGE DUE TO EQUIPMENT ITY. ALL EQUIPMENT CHANGES MUST BE APPROVED AND N COMPLIANCE WITH THE PROPOSED DESIGN AND PAL ANALYSES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

COA #: PEC.0000738

421 FAYETTEVILLE ST, SUITE 600 RALEIGH, NC 27601

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN BY:	CHECKED BY:	APPROVED B	Υ
	DJM	MCK		
	DEDC DEV	и.		_

CONSTRUCTION **DOCUMENTS**

	SUBMITTALS					
REV	DATE	DESCRIPTION				
A	09/16/2021	ISSUED FOR REVIEW				
٥	03/01/2022	ISSUED FOR CONSTRUCTION				
	A&E PROJECT NUMBER					

KHCLE-16238

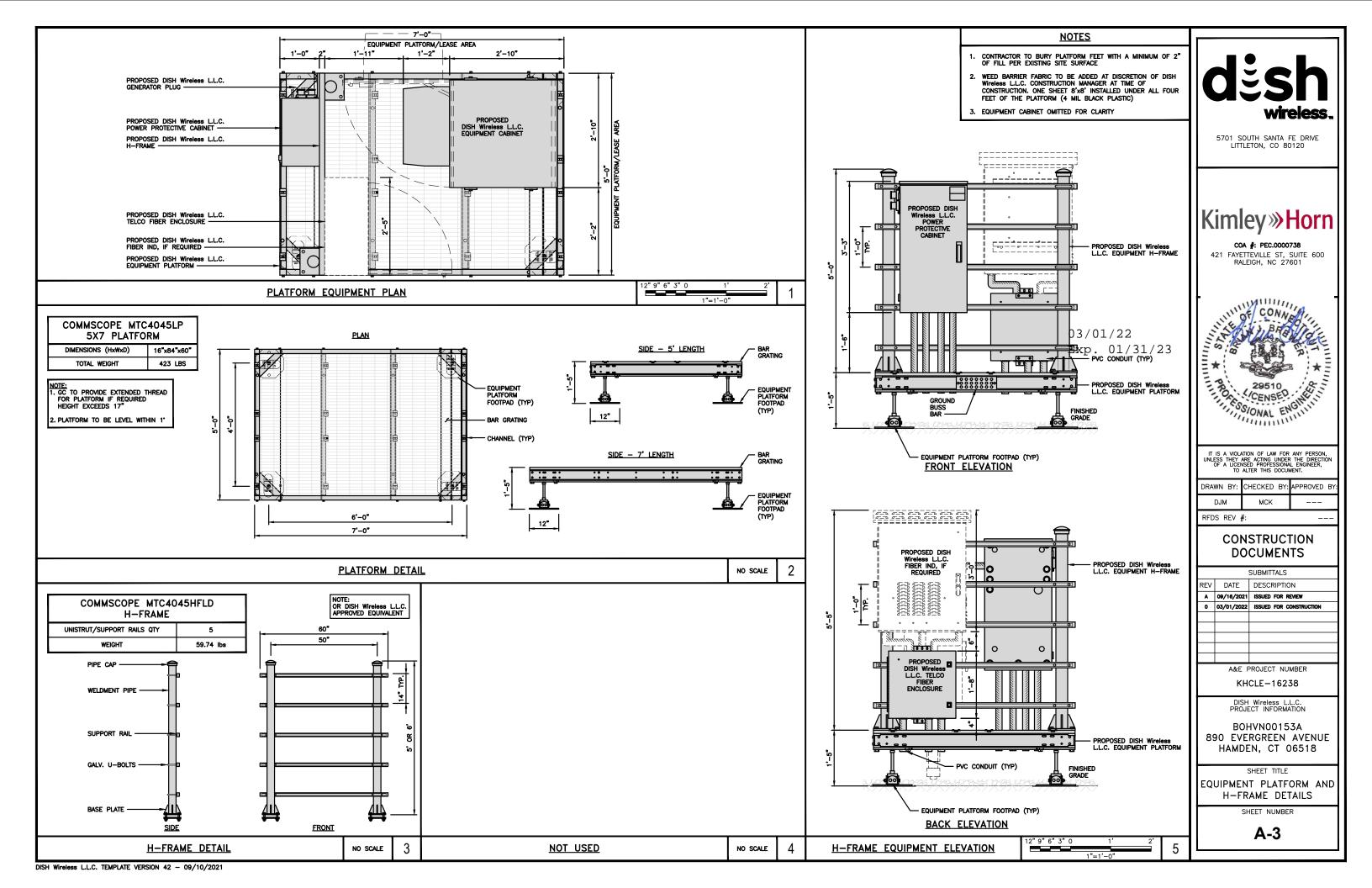
DISH Wireless L.L.C. PROJECT INFORMATION

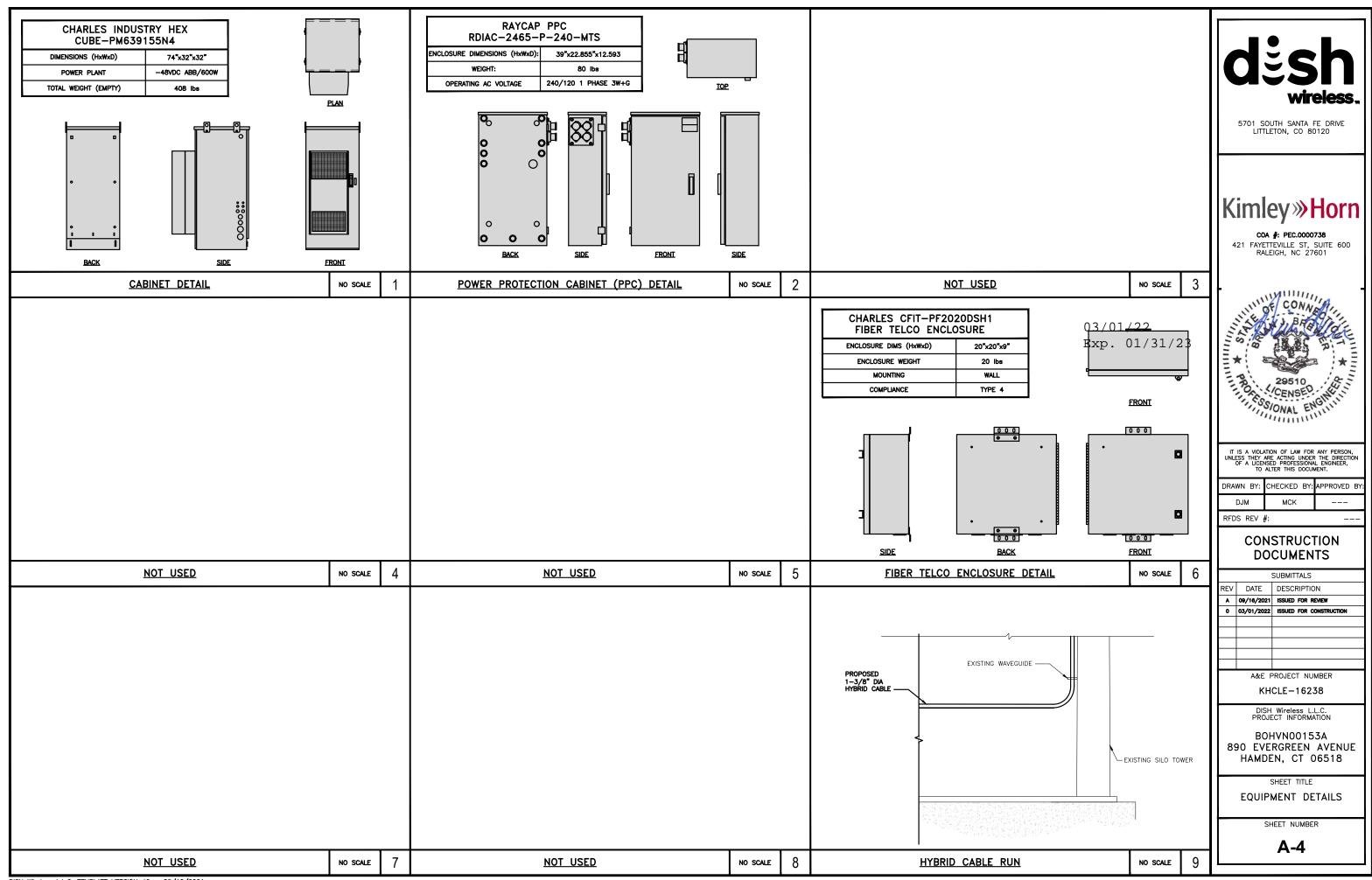
BOHVN00153A 890 EVERGREEN AVENUE HAMDEN, CT 06518

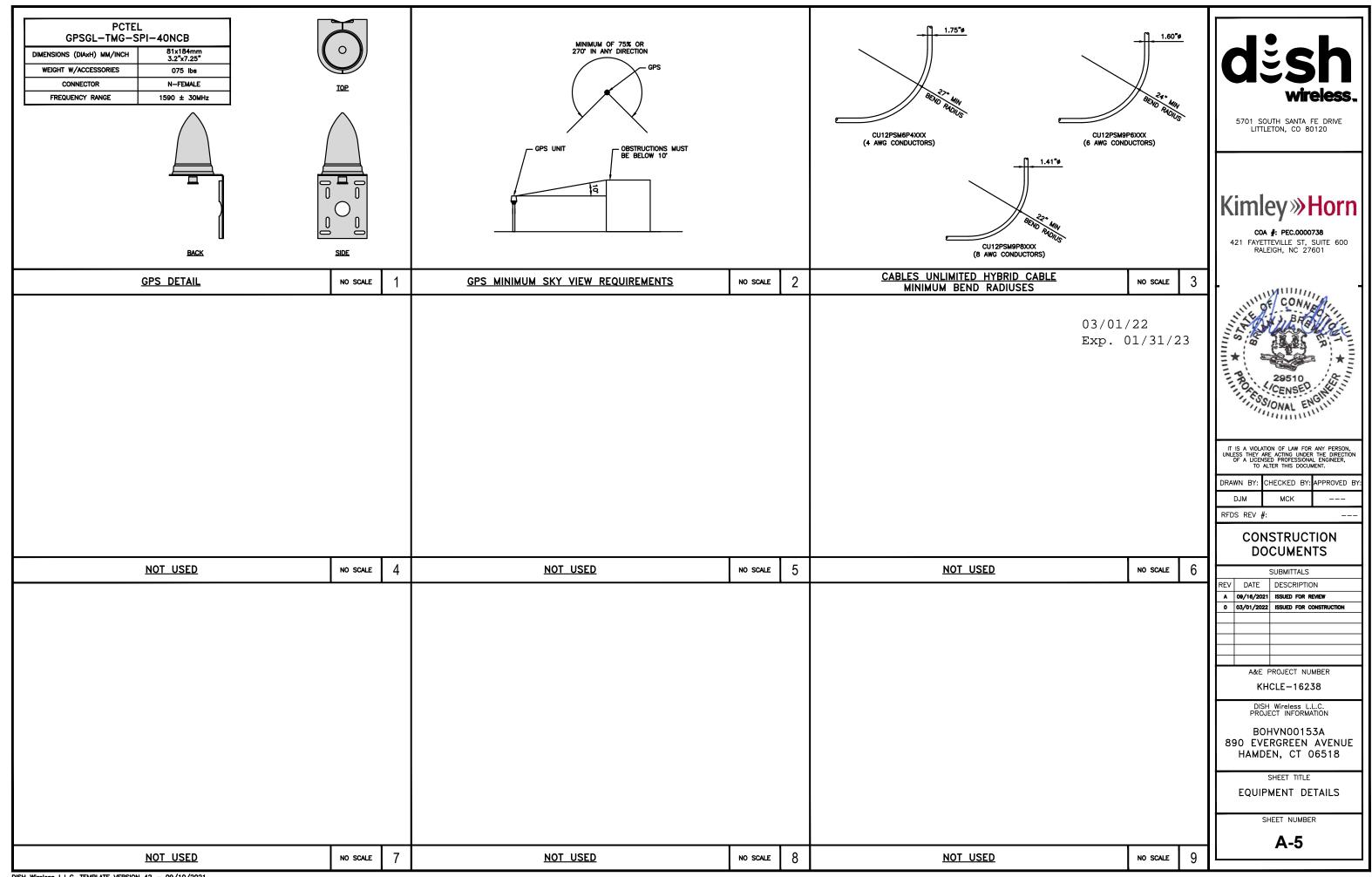
SHEET TITLE

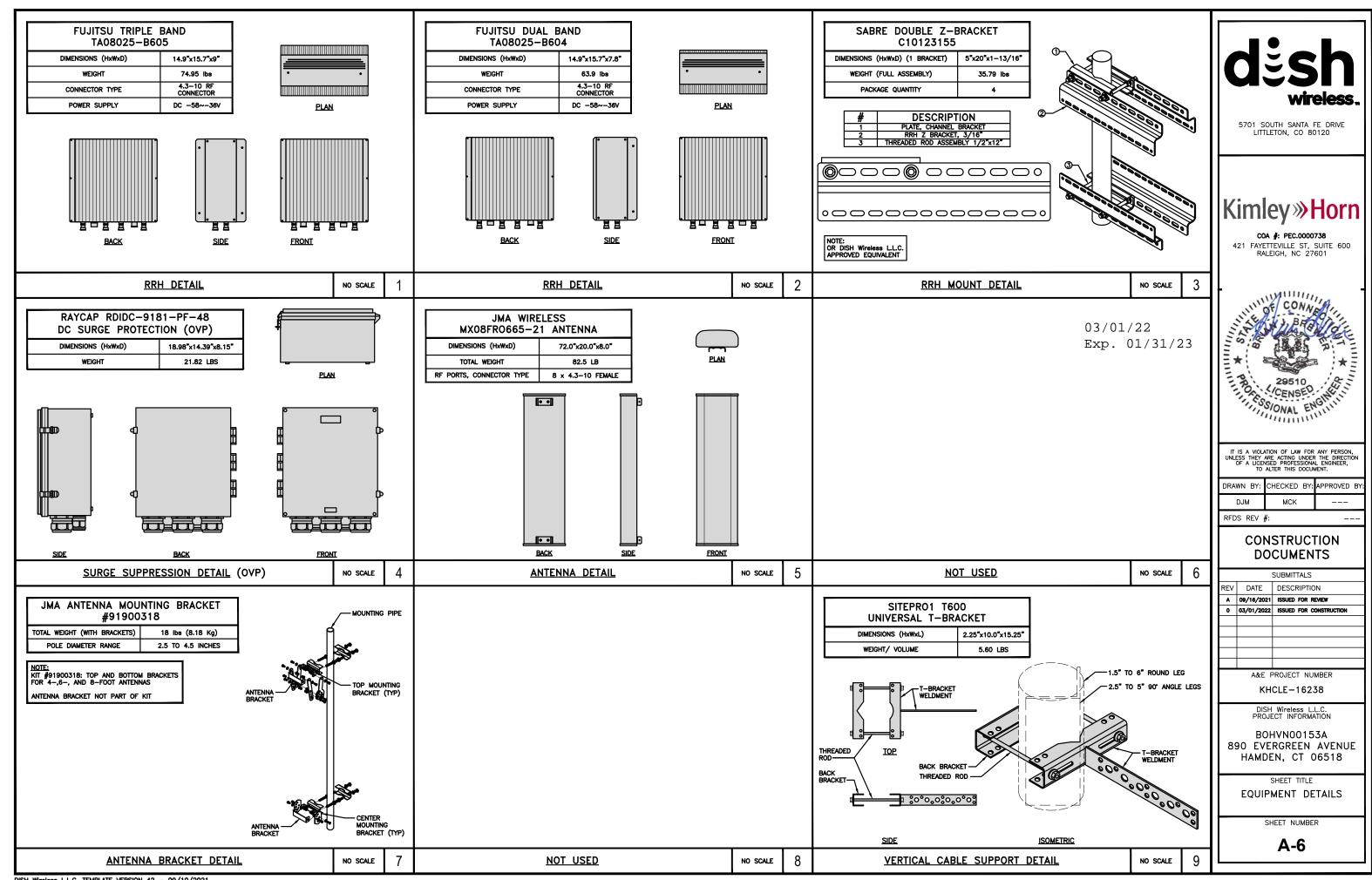
ELEVATION, ANTENNA LAYOUT AND SCHEDULE

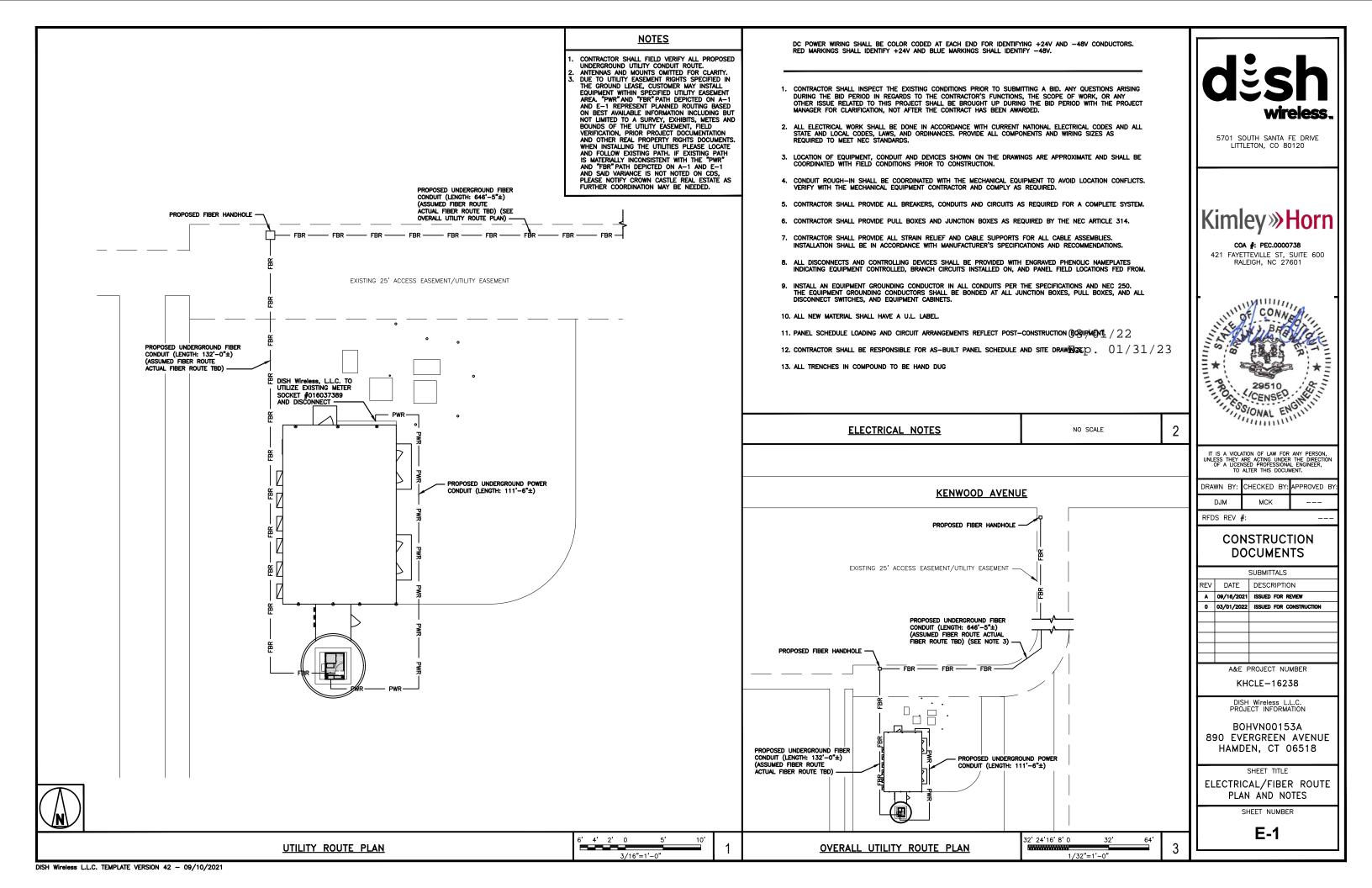
SHEET NUMBER

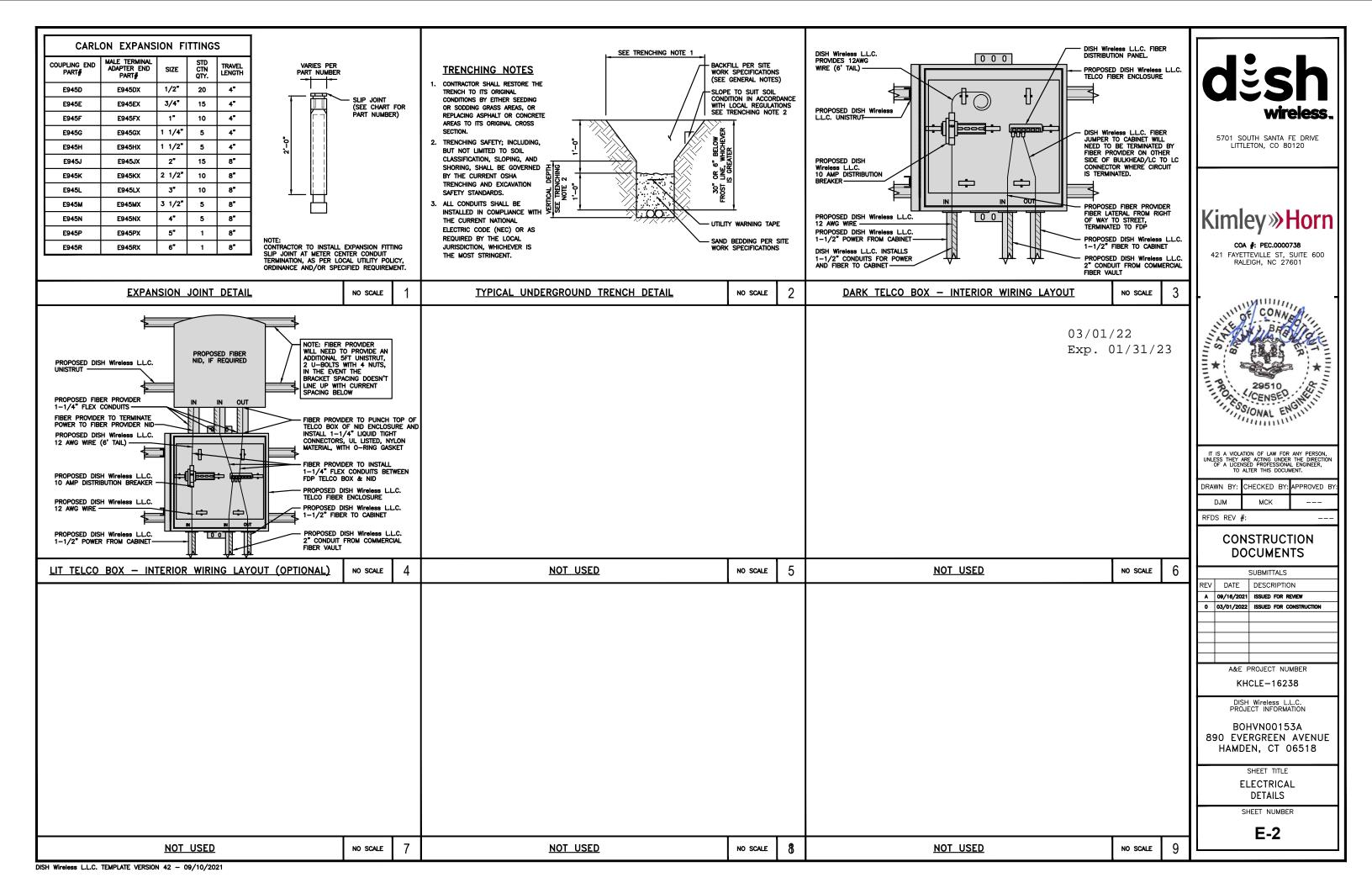

A-2

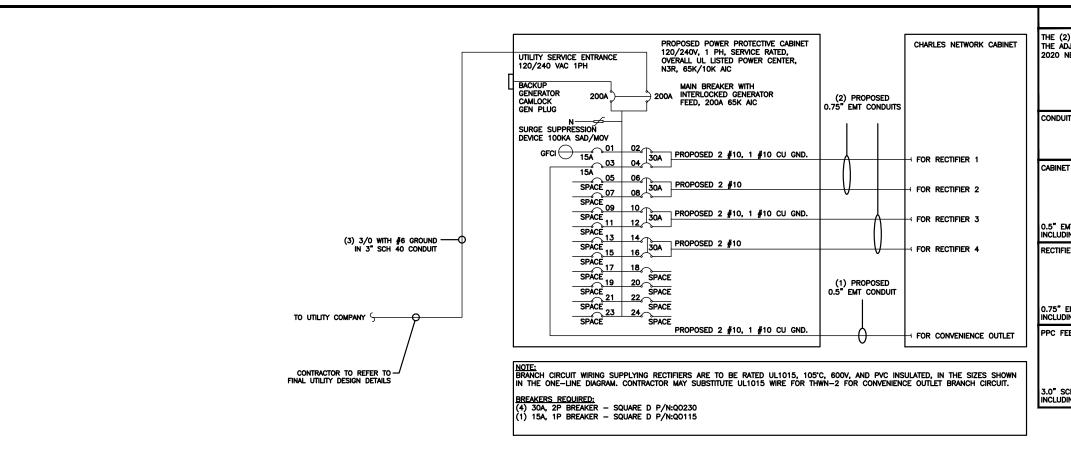

ANTENNA SCHEDULE


NO SCALE


3/4"=1'-0"


DISH Wireless L.L.C. TEMPLATE VERSION 42 - 09/10/2021





<u>NOTES</u>

THE (2) CONDUITS WITH (4) CURRENT CARRYING CONDUCTORS EACH, SHALL APPLY THE ADJUSTMENT FACTOR OF 80% PER 2014/17 NEC TABLE 310.15(B)(3)(a) OR 2020 NEC TABLE 310.15(C)(1) FOR UL1015 WIRE.

#12 FOR 15A-20A/1P BREAKER: 0.8 x 30A = 24.0A #10 FOR 25A-30A/2P BREAKER: 0.8 x 40A = 32.0A #8 FOR 35A-40A/2P BREAKER: 0.8 x 55A = 44.0A #6 FOR 45A-60A/2P BREAKER: 0.8 x 75A = 60.0A

CONDUIT SIZING: AT 40% FILL PER NEC CHAPTER 9, TABLE 4, ARTICLE 358.

0.5" CONDUIT - 0.122 SQ. IN AREA
0.75" CONDUIT - 0.213 SQ. IN AREA
2.0" CONDUIT - 1.316 SQ. IN AREA

CABINET CONVENIENCE OUTLET CONDUCTORS (1 CONDUIT): USING THWN-2, CU.

#10 - 0.0211 SQ. IN X 2 = 0.0422 SQ. IN #10 - 0.0211 SQ. IN X 1 = 0.0211 SQ. IN <GROUND TOTAL = 0.0633 SQ. IN

O.5" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (3) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

RECTIFIER CONDUCTORS (2 CONDUITS): USING UL1015, CU.

3.0" CONDUIT - 2.907 SQ. IN AREA

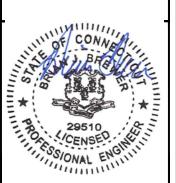
#10 - 0.0266 SQ. IN X 4 = 0.1064 SQ. IN #10 - 0.0082 SQ. IN X 1 = 0.0082 SQ. IN <BARE GROUND TOTAL = 0.1146 SQ. IN

0.75" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (5) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC FEED CONDUCTORS (1 CONDUIT): USING THWN, CU.

3/0 - 0.2679 SQ. IN X 3 = 0.8037 SQ. IN #6 - 0.0507 SQ. IN X 1 = 0.0507 SQ. IN <GROUND TOTAL - 0.6544 SQ. 4N

3.0" sch 40 pvc conduit is adequate to handle the total lof (3) lwikes, 3 including ground wire, as indicated above.


dish

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

COA #: PEC.0000738

421 FAYETTEVILLE ST, SUITE 600 RALEIGH, NC 27601

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:

DJM MCK --
RFDS REV #: ---

CONSTRUCTION DOCUMENTS

	SUBMITTALS				
REV	DATE	DESCRIPTION			
A	09/16/2021	ISSUED FOR REVIEW			
٥	03/01/2022	ISSUED FOR CONSTRUCTION			
	4055	DO IFOT AUUTED			

A&E PROJECT NUMBER

KHCLE-16238

DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00153A 890 EVERGREEN AVENUE HAMDEN, CT 06518

SHFFT TITLE

ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE

SHEET NUMBER

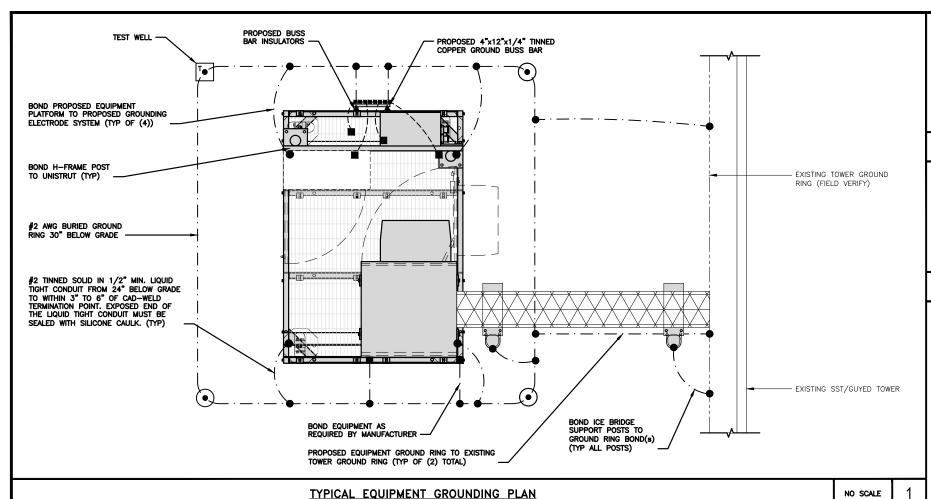
E-3

	PROPOSED CHARLES PANEL SCHEDULE											
LOAD SERVED		AMPS TTS)	TRIP	СКТ #	PI	HASI	E	СКТ #	TRIP	VOLT (WA		LOAD SERVED
PPC GFCI OUTLET	180	LZ	15A	1	$\overline{}$	A	囨	2		2880	LZ	ABB/GE INFINITY
CHARLES GFCI OUTLET	100	180	15A	1 3		Ê	殹	4	30A	2000	2880	RECTIFIER 1
-SPACE-		100		5	ᅜ	Ā	모	6		2880		ABB/GE INFINITY
-SPACE-				1 7	ᅜ	В	ᅥ	8	30A		2880	RÉCTIFIER 2
-SPACE-				9	ᅜ	Ā	云	10		2880		ABB/GE INFINITY
-SPACE-				11	\Box	В	乙	12	30A		2880	RÉCTIFIER 3
-SPACE-				13	\overline{A}	Α	된	14	704	2880		ABB/GE INFINITY
-SPACE-				15	\overline{A}	В	$\overline{}$	16	30A		2880	RÉCTIFIER 4
-SPACE-				17	\overline{A}	A	Z	18				-SPACE-
-SPACE-				19	\sim	В	Σ	20				-SPACE-
-SPACE-				21	7	A	ζ	22				-SPACE-
-SPACE-				23	Σ	Φ	ζ	24				-SPACE-
VOLTAGE AMPS	180	180								11520	11520	
200A MCB, 16, 24 SPA	CE, 120,	240V	L1			L2						
MB RATING: 65,000 AIC			1170	11700 11700		0	VOLTAGE AMPS		PS			
			98			98		AMPS				
				9	8			MAX AMPS				
•	,			1:	23			MA	125%			

PANEL SCHEDULE

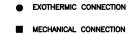
NO SCALE

CALE


2

PPC ONE-LINE DIAGRAM

NOT USED


NO SCALE

NO SCALE

NOTES

ANTENNAS AND OVP SHOWN ARE GENERIC AND NOT REFERENCING TO A SPECIFIC MANUFACTURER. THIS LAYOUT IS FOR REFERENCE PURPOSES ONLY

GROUND BUS BAR

GROUND ROD

 (\bullet)

TEST GROUND ROD WITH INSPECTION SLEEVE

- · - #2 AWG SOLID COPPER TINNED ▲ BUSS BAR INSULATOR

GROUNDING LEGEND

- 1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.
- CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM. GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH Wireless L.L.C. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS.
- 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED.

GROUNDING KEY NOTES

- (A) EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW GRADE, OR 6 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM THE EXTERIOR WALL OR FOOTING.
- B TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS, AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN BROWNER FOR THE FORMAL TOWER'S LEGS, AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS: $\sqrt{22}$
- INTERIOR GROUND RING: #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTOR EXTENDED AROUND THE PERIMETER OF THE EQUIPMENT AREA. ALL NON-TELECOMMUNICATIONS RELATED METALLIC OBJECTS FOUND WITHIN A SITE SHALL BE GROUNDED TO THE INTERIOR GROUND RING WITH #6 AWG STRANDED GREEN INSULATED CONDUCTOR.
- D BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS SHALL BE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE CORNERS OF THE
- (E) GROUND ROD: UL LISTED COPPER CLAD STEEL. MINIMUM 1/2" DIAMETER BY EIGHT FEET LONG. GROUND RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. GROUND RODS SHALL BE DRIVEN TO THE DEPTH OF GROUND RING CONDUCTOR.
- F CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GREEN INSULATED COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUCTORS.
- G HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH.
- (H) EXTERIOR CABLE ENTRY PORT GROUND BARS; LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING, BOND TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTORS WITH AN EXOTHERMIC WELD AND INSPECTION SLEEVE.
- () TELCO GROUND BAR: BOND TO BOTH CELL REFERENCE GROUND BAR OR EXTERIOR GROUND RING.
- J FRAME BONDING: THE BONDING POINT FOR TELECOM EQUIPMENT FRAMES SHALL BE THE GROUND BUS THAT IS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEWORK.
- K Interior unit Bonds: Metal Frames, Cabinets and Individual Metallic units located with the area of the interior ground ring require a #6 awg stranded green insulated copper bond to the
- L FENCE AND GATE GROUNDING: METAL FENCES WITHIN 7 FEET OF THE EXTERIOR GROUND RING OR OBJECTS BONDED TO THE EXTERIOR GROUND RING SHALL BE BONDED TO THE GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEEDING 25 FEET. BONDS SHALL BE MADE AT EACH CAST DOCT AND ACCROSS CAST OFFICE AND ACCROSS CAST OFFI AND ACCROSS GATE POST AND ACROSS GATE OPENINGS.
- (M) <u>Exterior unit bonds</u>: Metallic objects, external to or mounted to the building, shall be bonded to the exterior ground ring. Using #2 tinned solid copper wire
- N ICE BRIDGE SUPPORTS: EACH ICE BRIDGE LEG SHALL BE BONDED TO THE GROUND RING WITH #2 AWG BARE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRIDGE LEG AND BURIED
- DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEMENTS AND INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICE CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPPED WITH A MASTER DC SYSTEM RETURN GROUND CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED TO THE CELL SITE REFERENCE GROUND BAR
- (P) TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICALLY BONDED TO TOWER STEEL.

REFER TO DISH Wireless L.L.C. GROUNDING NOTES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

COA #: PEC.0000738

421 FAYETTEVILLE ST, SUITE 600 RALEIGH, NC 27601

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

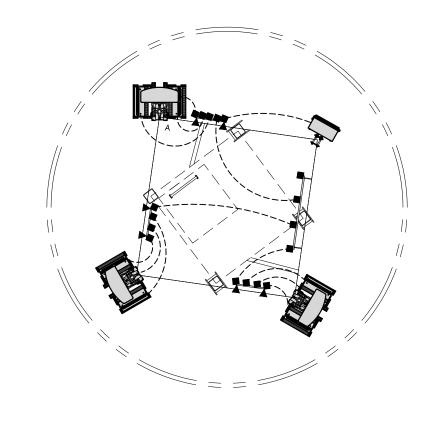
DRAWN BY:	CHECKED BY:	APPROVED BY:
DJM	MCK	
2522 251	"	

CONSTRUCTION **DOCUMENTS**

	SUBMITTALS				
REV	DATE	DESCRIPTION			
A	09/16/2021	ISSUED FOR REVIEW			
٥	03/01/2022	ISSUED FOR CONSTRUCTION			
	A&E PROJECT NUMBER				

KHCLE-16238

DISH Wireless L.L.C. PROJECT INFORMATION

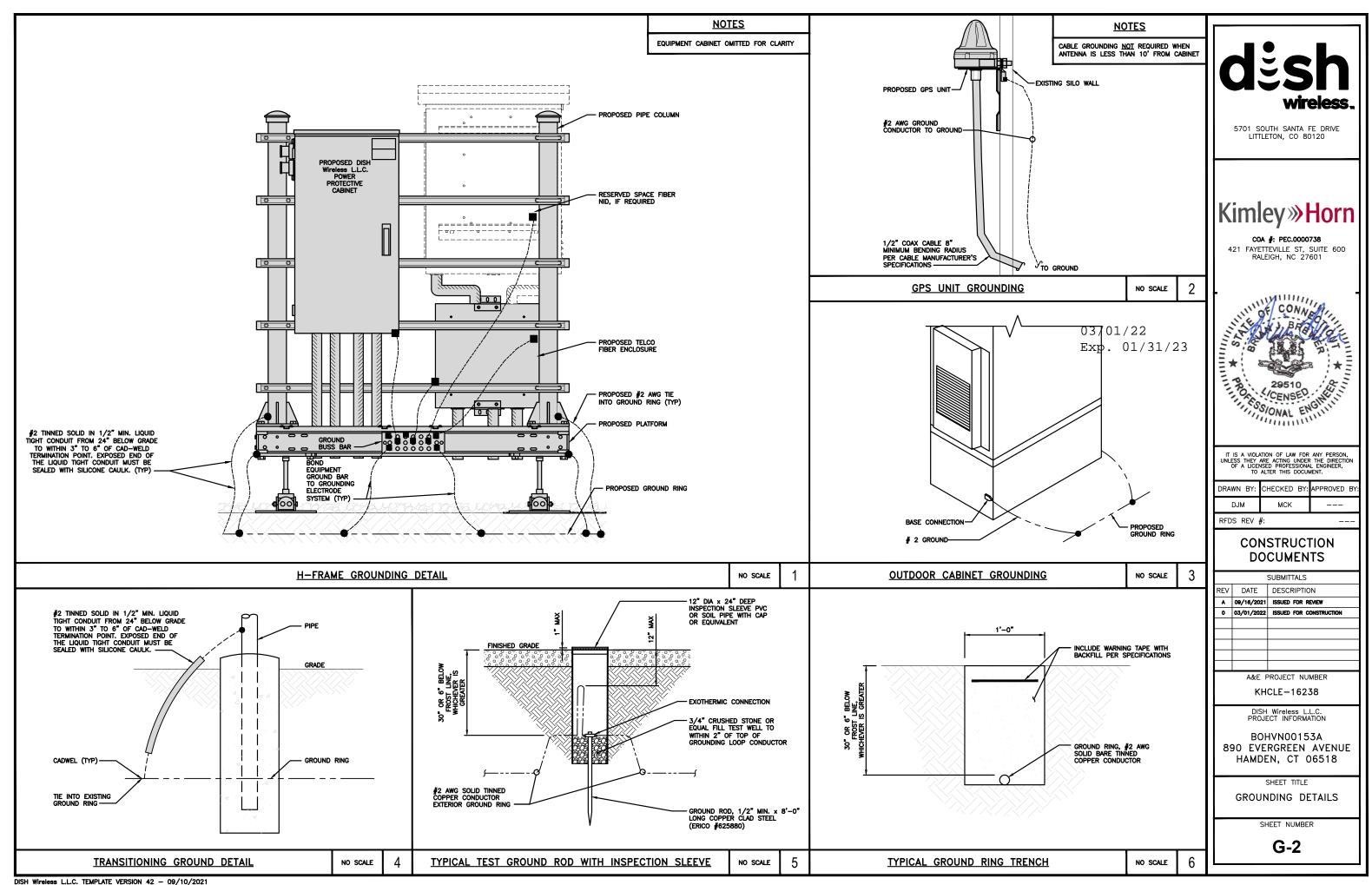

BOHVN00153A 890 EVERGREEN AVENUE HAMDEN, CT 06518

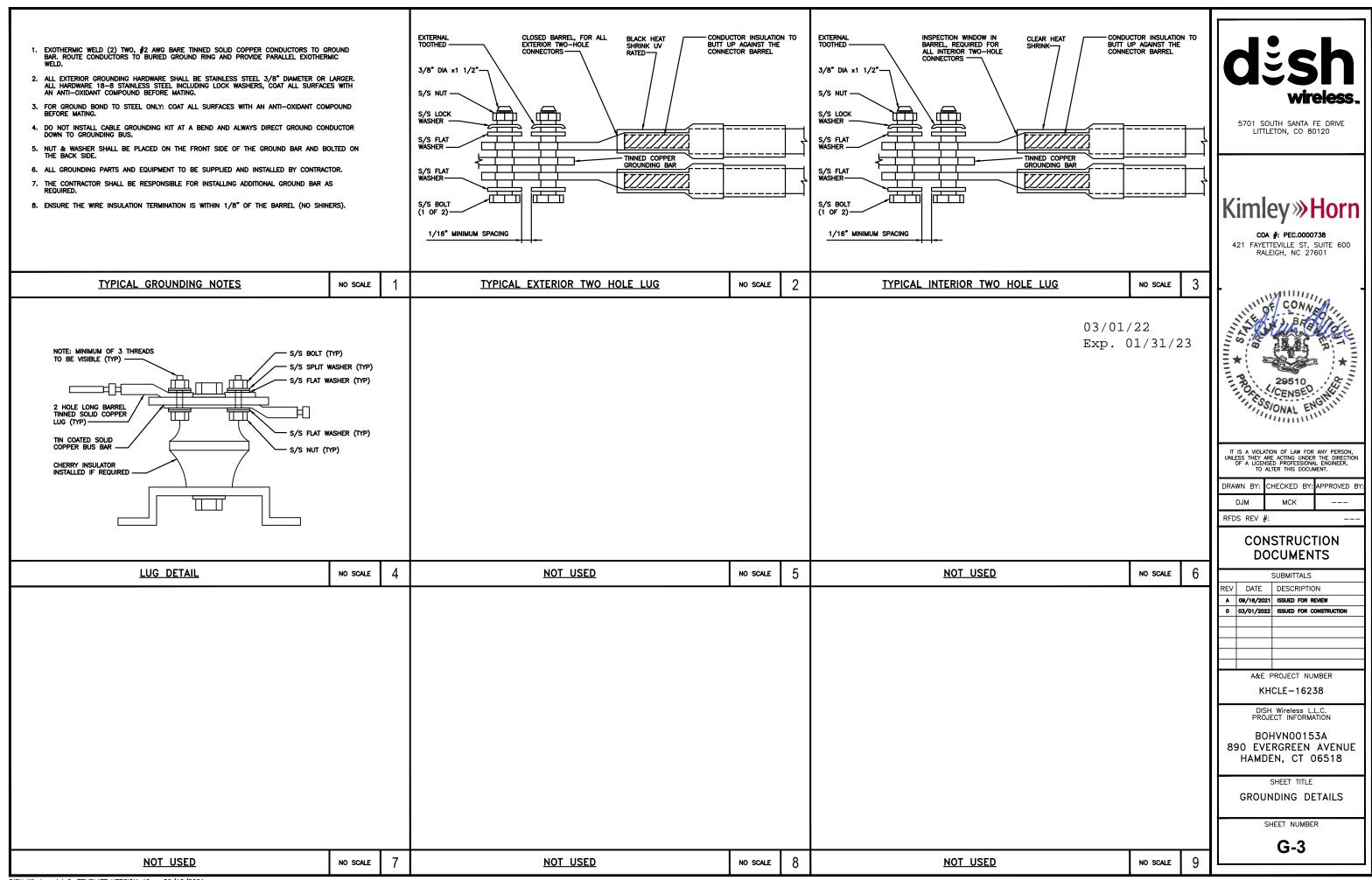
SHEET TITLE

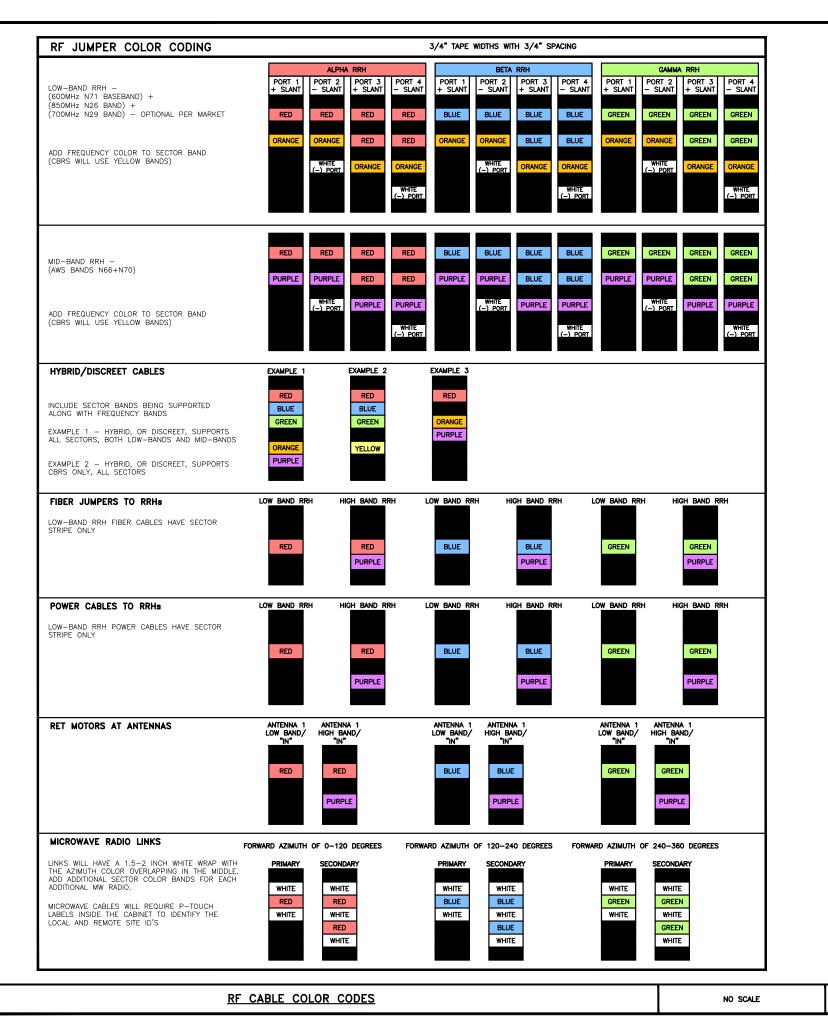
GROUNDING PLANS AND NOTES

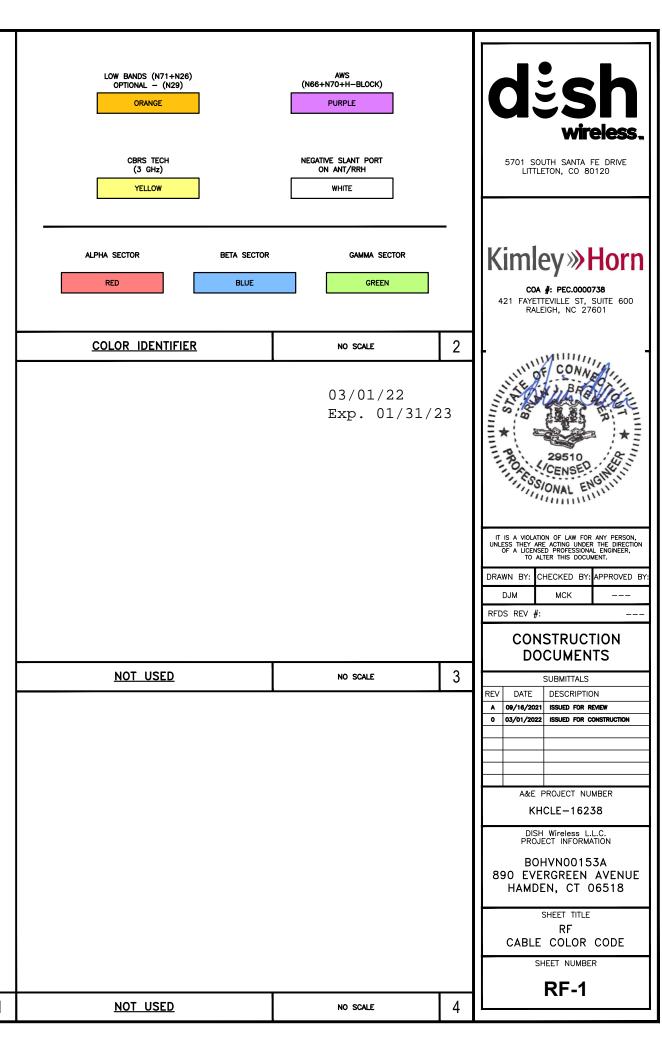
SHEET NUMBER

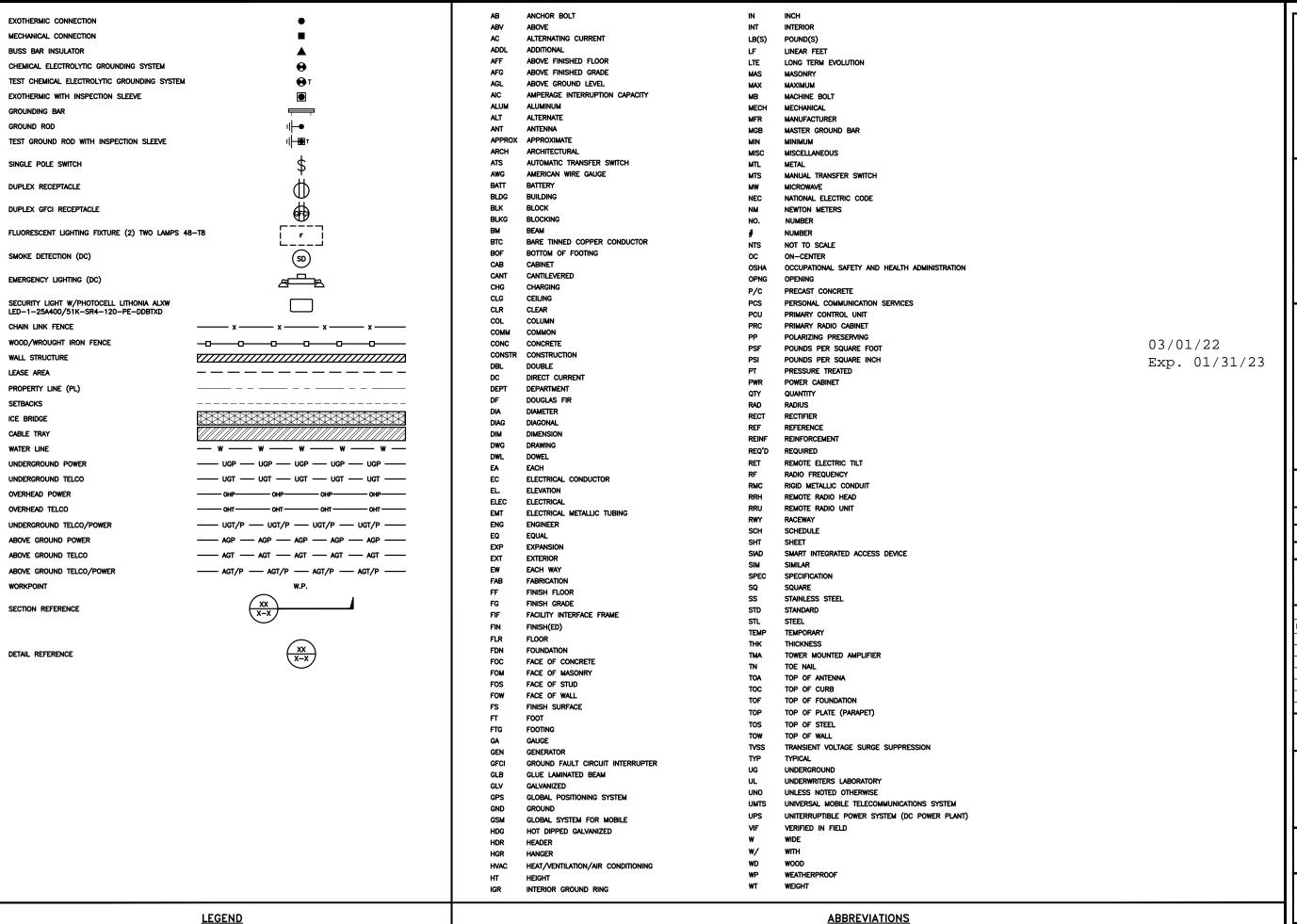
G-1

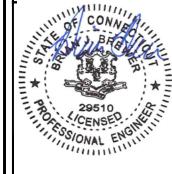



TYPICAL ANTENNA GROUNDING PLAN


NO SCALE


GROUNDING KEY NOTES


NO SCALE



5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

COA #: PEC.0000738

421 FAYETTEVILLE ST, SUITE 600 RALEIGH, NC 27601

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DIM MCK	DRAWN BY:	CHECKED BY:	APPROVED BY
Belli	DJM	MCK	

RFDS REV #:

CONSTRUCTION DOCUMENTS

		SUBMITTALS
REV	DATE	DESCRIPTION
A	09/16/2021	ISSUED FOR REVIEW
٥	03/01/2022	ISSUED FOR CONSTRUCTION
	A&E F	PROJECT NUMBER

KHCLE-16238

DISH Wireless L.L.C. PROJECT INFORMATION

PROJECT INFORMATION

BOHVN00153A 890 EVERGREEN AVENUE HAMDEN, CT 06518

SHEET TITLE

LEGEND AND ABBREVIATIONS

SHEET NUMBER

GN-1

SITE ACTIVITY REQUIREMENTS:

- 1. NOTICE TO PROCEED NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER CONSTRUCTION MANAGER.
- 2. "LOOK UP" DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH WIReless L.L.C. AND DISH WIReless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

- 3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
- 4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND AHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIFELESS L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA—322 (LATEST EDITION).
- 5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
- 6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.
- 11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
- 12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH Wireless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.
- 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
- 15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
- 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.
- 18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION, TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.
- 22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

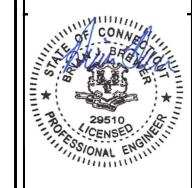
1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER:TOWER OWNER

- 2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
- 3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.
- 4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.
- 6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION
- 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.
- 12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER
- 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.



5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

COA #: PEC.0000738

421 FAYETTEVILLE ST, SUITE 600 RAI FIGH. NC 27601

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
DJM		MCK			

CONSTRUCTION DOCUMENTS

KHCLE-16238

DISH Wireless L.L.C.
PROJECT INFORMATION

BOHVN00153A 890 EVERGREEN AVENUE HAMDEN, CT 06518

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GN-2

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

- 1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST—IN—PLACE CONCRETE.
- 2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.
- 3. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi at 28 days, unless noted otherwise. No more than 90 minutes shall elapse from batch time to time of placement unless approved by the engineer of record. Temperature of concrete shall not exceed 90°f at time of placement.
- 4. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.
- 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

- 6. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:
- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2"
- 7. A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

- 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.
- 2. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
- WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
- 4. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.
- 4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.
- 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.
- 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR—CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
- 6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).
- 7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.
- 8. TIE WRAPS ARE NOT ALLOWED.
- 9. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.
- 12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75° C (90° C IF AVAILABLE).
- 14. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.
- 15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

- . ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.
- 18. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- 19. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.
- 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE NEC.
- 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).
- 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).
- 23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CELLING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.
- 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS.
- 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS. 03/01/22
- 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWESTEREDISION)) AND 38 RAZED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- 28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.".
- 30. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.



5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

COA #: PEC.0000738

421 FAYETTEVILLE ST, SUITE 600 RALEIGH, NC 27601

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

 DRAWN
 BY:
 CHECKED
 BY:
 APPROVED
 BY

 DJM
 MCK
 --

 RFDS
 REV
 #:
 --

CONSTRUCTION DOCUMENTS

SUBMITTALS

REV DATE DESCRIPTION

A 09/16/2021 ISSUED FOR REVIEW

0 03/01/2022 ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER

KHCLE—16238

DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00153A 890 EVERGREEN AVENUE HAMDEN, CT 06518

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GN-3

GROUNDING NOTES:

- 1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 2. THE CONTRACTOR SHALL PERFORM IEEE FALL—OF—POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
- 4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
- 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
- 8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.
- 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
- COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.
- 15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.
- 19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
- 21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/O COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

COA #: PEC.0000738

421 FAYETTEVILLE ST, SUITE 600 RALEIGH, NC 27601

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

 DRAWN BY:
 CHECKED BY:
 APPROVED BY:

 DJM
 MCK
 --

 RFDS REV #:
 --

CONSTRUCTION DOCUMENTS

SUBMITTALS

REV DATE DESCRIPTION

A 09/16/2021 ISSUED FOR REVIEW

0 03/01/2022 ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER

KHCLE—16238

DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00153A 890 EVERGREEN AVENUE HAMDEN, CT 06518

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GN-4

Exp. 01/31/23

03/01/22

Exhibit D

Structural Analysis Report

Date: September 13, 2021

520 South Main Street Suite 2531 Akron, Ohio 44311 (216) 927-8663

Subject: Structural Analysis Report

Carrier Designation: Dish Wireless Co-Locate

Site Number:BOHVN00153ASite Name:CT-CCI-T-800529

Crown Castle Designation: BU Number: 800529

Site Name: CT HAMDEN NORTH CAC

JDE Job Number:644583Work Order Number:1967614Order Number:552718 Rev. 3

Engineering Firm Designation: GPD Project Number: 2021777.800529.12

Site Data: 890 Evergreen Avenue, Hamden, New Haven County, CT 06518

Latitude 41° 24′ 23.9″, Longitude -72° 54′ 16.32″

100 Foot - Stealth Self Support Tower

We are pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity – 49.5%

This analysis utilizes an ultimate 3-second gust wind speed of 119 mph as required by the 2012/2015 International Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Krisli Mocka

Respectfully submitted by:

Christopher J. Scheks, P.E. Connecticut # 0030026

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 – Proposed Equipment Configuration Table 2 – Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 – Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 – Section Capacity (Summary)
Table 5 – Tower Component Stresses vs. Capacity
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 100 ft Self Support tower designed by Stealth Network Technologies Inc. in December of 2000.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Wind Speed: 119 mph

Exposure Category: C
Topographic Factor: 1
Ice Thickness: 1.0 in
Wind Speed with Ice: 50 mph
Service Wind Speed: 60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Flovation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
	67.0	1	Raycap	RDIDC-9181-PF-48		
65.0 66.0		3	JMA Wireless	MX08FRO665-21	1	1-3/8
05.0	3	Fujitsu	TA08025-B605			
	64.0	3	Fujitsu	TA08025-B604		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	RFS/Celwave	APXVAA4L18_43-U- NA20_TMO	-	
		3	Ericsson	AIR6449 B41_T-MOBILE		
	104.0	3	Ericsson	RADIO 4415 B66A_CCIV3		
100.0		6	Ericsson	RADIO 2212 B2	6	1 5/0
100.0		3	Ericsson	RADIO 4449 B71 B85A_T- MOBILE	0	1-5/8
		3	Site Pro 1	USF-2U Standoff Frame		
	100.0	3	Site Pro 1	P360 Horizontal Pipe		
		6	Site Pro 1	P272 Mount Pipe		
	98.0	3	Samsung Telecommunications	RFV01U-D2A	6 2	1-5/8 1-1/4
	95.0	3	Antel	BXA-80080/4CF		
		6	Commscope	JAHH-65B-R3B		
		3	VZW	Sub6 Antenna - VZS01		
95.0		3	Commscope	CBC78TDS-43-2X		
		2	RFS Celwave	DB-T1-6Z-8AB-0Z		
		3	Samsung Telecommunications	RFV01U-D1A		
		3	Samsung Telecommunications	RFV01U-D2A		
		3	CCI Antennas	HPA-65R-BUU-H6		
		3	CCI Antennas	DMP65R-BU6D		
		3	CCI Antennas	OPA65R-BU6BA-K		
		1	Raycap	DC6-48-60-18-8F	6	7/8
85.0	85.0	1	Raycap	DC9-48-60-24-8C-EV	2	3/8
		3	Ericsson	RRUS 32 B2	5	3/4
		3	Ericsson	RADIO 4415 B30		
		3	Ericsson	RRUS 4426 B66		
		3	Ericsson	RRUS 4449 B5/B12		
75.0	75.0	2	CSA Wireless	A-18A24N-U	11	1-1/4
7 3.0	/5.0	10	Decibel	DB844H90E-XY	''	1=1/4

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
Geotechnical Reports	6400183	CCISITES
Tower Foundation Drawings/Design/Specs	671923	CCISITES
Tower Manufacturer Drawings	605026	CCISITES
Tower Structural Analysis Letter	6316916	CCISITES
Tower Structural Analysis	9669177	CCISITES

3.1) Analysis Method

tnxTower (version 8.1.1.0) and RISA 3D (Version 17.0.2), commercially available analysis software packages, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions or items in Table 3 are not valid or have been made in error. GPD should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

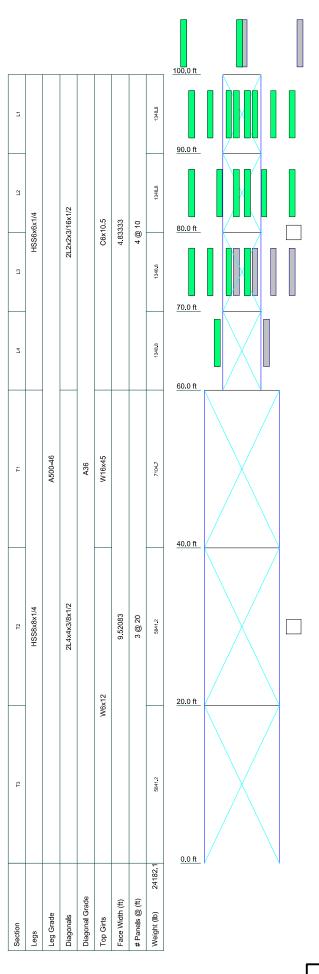
Section No.	Elevation (ft)	Component Type	Size	% Capacity	Pass / Fail
L1	100 - 90	Leg	HSS6x6x1/4	5.8	Pass
		Diagonal	2L2x2x3/16x1/2	7.0	Pass
		Top Girt	C6x10.5	5.0	Pass
L2	90 - 80	Leg	HSS6x6x1/4	7.3	Pass
		Diagonal	2L2x2x3/16x1/2	14.9	Pass
		Top Girt	C6x10.5	5.8	Pass
L3	80 - 70	Leg	HSS6x6x1/4	12.5	Pass
		Diagonal	2L2x2x3/16x1/2	22.5	Pass
		Top Girt	C6x10.5	5.9	Pass
L4	70 - 60	Leg	HSS6x6x1/4	27.4	Pass
Ī		Diagonal	2L2x2x3/16x1/2	30.8	Pass
		Top Girt	C6x10.5	6.1	Pass
L5	60 - 40	Leg	HSS8x8x1/4	14.4	Pass
		Diagonal	2L4x4x3/8x1/2	14.0	Pass
Ī		Top Girt	W16x45	46.7	Pass
Ī		Inner Bracing	W10x33	49.5	Pass
L6	40 - 20	Leg	HSS8x8x1/4	28.4	Pass
		Diagonal	2L4x4x3/8x1/2	20.9	Pass
Ī		Top Girt	W6x12		Pass
L7	20 - 0	Leg	HSS8x8x1/4	37.8	Pass
		Diagonal	2L4x4x3/8x1/2	29.6	Pass
Ī		Top Girt	W6x12		Pass
Ī				Summary	
İ			Leg	37.8	Pass
i			Diagonal	308	Pass
			Top Girt	46.7	Pass
İ			Inner Bracing	49.5	Pass
			Bolt Checks	49.0	Pass
			Rating =	49.5	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1,2	Anchor Rods	0.0	30.1	Pass
1,2	Base Foundation Reinforcement	0.0	11.2	Pass
1,2	Base Foundation Soil Interaction	0.0	32.0	Pass

Structure Rating (max from all components) =	49.5%
--	-------

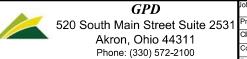
Notes:


4.1) Recommendations

The tower has sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

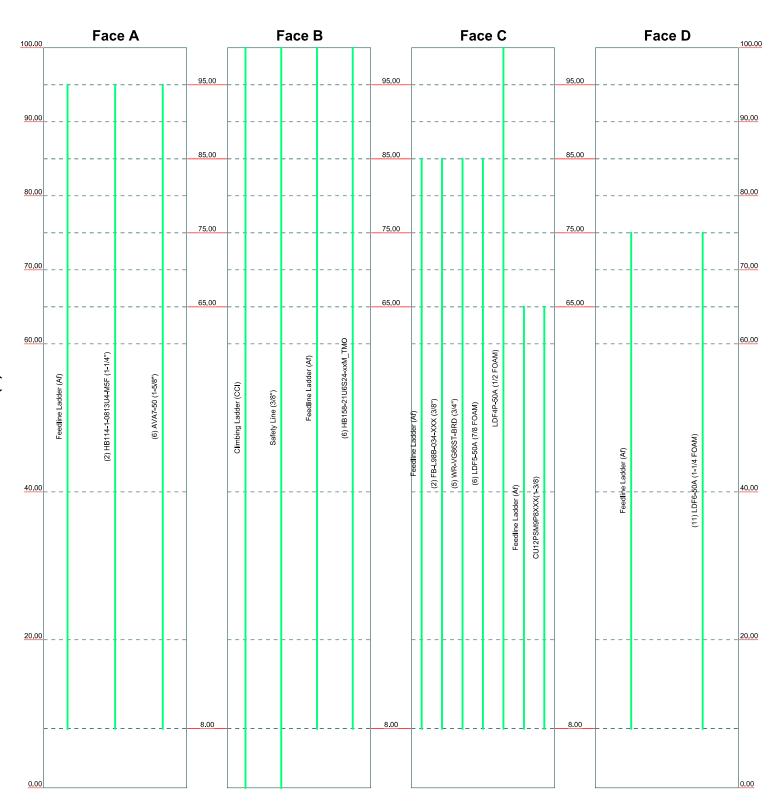
¹⁾ See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

²⁾ Rating per TIA-222-H Section 15.5


APPENDIX A PROGRAM OUTPUT

TOWER DESIGN NOTES

- 1. Tower is located in New Haven County, Connecticut.
 2. Tower designed for Exposure C to the TIA-222-H Standard.
 3. Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard.
 4. Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.
 5. Deflections are based upon a 60 mph wind.
 6. Tower Risk Category II.
 7. Topographic Category I with Crest Height of 0.00 ft.


- 7. Topographic Category 1 with Crest Height of 0.00 ft

FAX: (330) 572-2101

^b BU #: 800529, CT HAMDEN NORTH CAC					
roject: 2021777.800529.12					
^{llient:} Crown Castle	^{Drawn by:} kmocka	App'd:			
^{code:} TIA-222-H	Date: 09/09/21	Scale: NTS			
toth:		Dwg No -			

Round ______ Flat _____ App In Face _____ App Out Face _____ Truss Leg

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311

AKION, ONO 443 I I
Phone: (330) 572-2100
FAX: (330) 572-2101

ob: BU#	800529.	CT HA	MDFN	NORTH	CAC

BO #. 000025, OT HAMBEN NORTH GAO					
Project: 2021777.800529.12					
^{Client:} Crown Castle	Drawn by: kmocka	App'd:			
^{Code:} TIA-222-H	Date: 09/09/21	Scale: NTS			
Doth:		Dura Na -			

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	BU #: 800529, CT HAMDEN NORTH CAC	1 of 14
Project		Date
	2021777.800529.12	12:31:31 09/13/21
Client	Crown Castle	Designed by kmocka

Tower Input Data

The main tower is a 4x free standing tower with an overall height of 100.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 9.52 ft at the top and 9.52 ft at the base.

An index plate is provided at the 4 sided -tower connection.

There is a 4 sided latticed pole with a face width of 4.83 ft.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower is located in New Haven County, Connecticut.

Tower base elevation above sea level: 199.00 ft.

Basic wind speed of 119 mph.

Risk Category II.

Exposure Category C.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1.

Crest Height: 0.00 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in latticed pole member design is 1.

Stress ratio used in tower member design is 1.

Tower analysis based on target reliabilities in accordance with Annex S.

Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.

Maximum demand-capacity ratio is: 1.05.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- ✓ Use Code Safety Factors Guys
 Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile
 Include Bolts In Member Capacity
 Leg Bolts Are At Top Of Section
 Secondary Horizontal Braces Leg

Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric

- Distribute Leg Loads As Uniform Assume Legs Pinned
- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
- ✓ Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- Project Wind Area of Appurt.

 Autocalc Torque Arm Areas

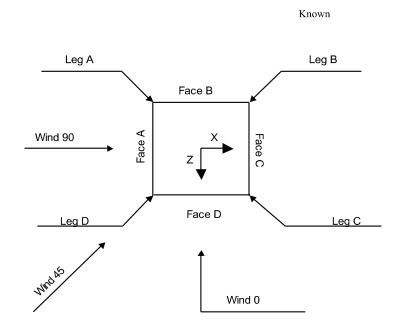
 Add IBC .6D+W Combination

 Sort Capacity Reports By Component

 Triangulate Diamond Inner Bracing

 Treat Feed Line Bundles As Cylinder

 Ignore KL/ry For 60 Deg. Angle Legs
- Use ASCE 10 X-Brace Ly Rules
- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression
- √ All Leg Panels Have Same Allowable Offset Girt At Foundation
- √ Consider Feed Line Torque
- √ Include Angle Block Shear Check
 Use TIA-222-H Bracing Resist. Exemption
 Use TIA-222-H Tension Splice Exemption
 Poles


 √
 Include Angle Block Shear Check
 From Property P

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	BU #: 800529, CT HAMDEN NORTH CAC	2 of 14
Project		Date
	2021777.800529.12	12:31:31 09/13/21
Client		Designed by
	Crown Castle	kmocka

Square Tower

		4 Sided La	tticed Pole Sec	tion Geo	metry	
T	T	4 1-1	D	C4:	λ7 1	C4'

Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of	Section Length
					Sections	
	ft			ft		ft
L1	100.00-90.00			4.83	1	10.00
L2	90.00-80.00			4.83	1	10.00
L3	80.00-70.00			4.83	1	10.00
L4	70.00-60.00			4.83	1	10.00

4 Sided Latticed Pole Section Geometry (cont'd)

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Туре	KBrace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
L1	100.00-90.00	10.00	X Brace	No	Yes	0.0000	0.0000
L2	90.00-80.00	10.00	X Brace	No	Yes	0.0000	0.0000
L3	80.00-70.00	10.00	X Brace	No	Yes	0.0000	0.0000
L4	70.00-60.00	10.00	X Brace	No	Yes	0.0000	0.0000

4 Sided Latticed Pole Section Geometry (cont'd)

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	BU #: 800529, CT HAMDEN NORTH CAC	3 of 14
Project		Date
	2021777.800529.12	12:31:31 09/13/21
Client	2 2 4	Designed by
	Crown Castle	kmocka

Tower Elevation	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
<u>ft</u> L1 100.00-90.00	Tube	HSS6x6x1/4	A500-46	Double Equal	2L2x2x3/16x1/2	A36
L1 100.00-90.00	Tube	113303031/4	(46 ksi)	Angle	2L2X2X3/10X1/2	(36 ksi)
L2 90.00-80.00	Tube	HSS6x6x1/4	A500-46	Double Equal	2L2x2x3/16x1/2	A36
			(46 ksi)	Angle		(36 ksi)
L3 80.00-70.00	Tube	HSS6x6x1/4	A500-46	Double Equal	2L2x2x3/16x1/2	A36
			(46 ksi)	Angle		(36 ksi)
L4 70.00-60.00	Tube	HSS6x6x1/4	A500-46	Double Equal	2L2x2x3/16x1/2	A36
			(46 ksi)	Angle		(36 ksi)

4 Sided Latticed Pole Section Geometry (cont'd)

Tower	Top Girt	Top Girt	Top Girt	Bottom Girt	Bottom Girt	Bottom Girt
Elevation	Туре	Size	Grade	Туре	Size	Grade
ft						
L1 100.00-90.00	Channel	C6x10.5	A36	Flat Bar		A36
			(36 ksi)			(36 ksi)
L2 90.00-80.00	Channel	C6x10.5	A36	Flat Bar		A36
			(36 ksi)			(36 ksi)
L3 80.00-70.00	Channel	C6x10.5	A36	Flat Bar		A36
			(36 ksi)			(36 ksi)
L4 70.00-60.00	Channel	C6x10.5	A36	Flat Bar		A36
			(36 ksi)			(36 ksi)

4 Sided Latticed Pole Section Geometry (cont'd)

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft ²	in					in	in	in
L1	0.00	0.0000	A36	0	0	1	Mid-Pt	36.0000	36.0000
100.00-90.00			(36 ksi)						
L2 90.00-80.00	0.00	0.0000	A36	0	0	1	Mid-Pt	36.0000	36.0000
			(36 ksi)						
L3 80.00-70.00	0.00	0.0000	A36	0	0	1	Mid-Pt	36.0000	36.0000
			(36 ksi)						
L4 70.00-60.00	0.00	0.0000	A36	0	0	1	Mid-Pt	36.0000	36.0000
			(36 ksi)						

4 Sided Latticed Pole Section Geometry (cont'd)

						K Fac	ctors ¹			
Tower	Calc	Calc	Legs	X	K	Single	Girts	Horiz.	Sec.	Inner
Elevation	K	K	_	Brace	Brace	Diags			Horiz.	Brace
	Single	Solid		Diags	Diags					
	Angles	Rounds		X	X	X	X	X	X	X
ft				Y	Y	Y	Y	Y	Y	Y
L1	Yes	No	1	1	1	1	1	1	1	1

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	BU #: 800529, CT HAMDEN NORTH CAC	4 of 14
Project		Date
	2021777.800529.12	12:31:31 09/13/21
Client	Crown Castle	Designed by kmocka

				K Factors ¹									
Tower	Calc	Calc	Legs	X	K	Single	Girts	Horiz.	Sec.	Inner			
Elevation	K	K		Brace	Brace	Diags			Horiz.	Brace			
	Single	Solid		Diags	Diags								
	Angles	Rounds		X	X	X	X	X	X	X			
ft				Y	Y	Y	Y	Y	Y	Y			
100.00-90.00				1	1	1	1	1	1	1			
L2	Yes	No	1	1	1	1	1	1	1	1			
90.00-80.00				1	1	1	1	1	1	1			
L3	Yes	No	1	1	1	1	1	1	1	1			
80.00-70.00				1	1	1	1	1	1	1			
L4	Yes	No	1	1	1	1	1	1	1	1			
70.00-60.00				1	1	1	1	1	1	1			

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

4 Sided Latticed Pole Section Geometry (cont'd)

Tower	Leg		Diago	nal	Top G	irt	Botton	ı Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontal
Elevation														
ft														
	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U
	Deduct		Deduct		Deduct		Width		Width		Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
							in		in		in		in	
L1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
100.00-90.00														
L2 90.00-80.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
L3 80.00-70.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
L4 70.00-60.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower	Reduna		Reduna		Redund		Redun		Redundan	t Vertical	Redunda	ınt Hip	Redundo	
Elevation	Horizoi	ntal	Diago	nal	Sub-Diagonal		Sub-Horizontal						Diagonal	
ft														
	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U
	Deduct		Deduct		Deduct		Width		Width		Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
							in		in		in		in	
L1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
100.00-90.00														
L2 90.00-80.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
L3 80.00-70.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
L4 70.00-60.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

4 Sided Latticed Pole Section Geometry (cont'd)

Tower	Leg	Leg		Diagor	ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hori	zontal
Elevation	Connection														
ft	Туре														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
		in		in		in		in		in		in		in	
L1	Flange	0.7500	0	0.8750	2	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
100.00-90.00	_	A325N		A325N		A325N		A325N		A325N		A325N		A325N	

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

T3

20.00-0.00

Job		Page
	BU #: 800529, CT HAMDEN NORTH CAC	5 of 14
Project		Date
	2021777.800529.12	12:31:31 09/13/21
Client		Designed by
	Crown Castle	kmocka

9.52

20.00

Tower Elevation	Leg Connection	Leg		Diagon	ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hori	izontal
ft	Type														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
		in		in		in		in		in		in		in	
L2 90.00-80.00	Flange	0.7500	0	0.8750	2	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
L3 80.00-70.00	Flange	0.7500	0	0.8750	2	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
L4 70.00-60.00	Flange	0.8750	4	0.8750	2	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	

Tower Section Geometry										
Tower	Tower	Assembly	Description	Section	Number	Section				
Section	Elevation	Database	1	Width	of	Length				
					Sections					
	ft			ft		ft				
T1	60.00-40.00			9.52	1	20.00				
T2	40.00-20.00			9.52	1	20.00				

Tower Section Geometry (cont'd)										
Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt			
Section	Elevation	Spacing	Туре	KBrace	Horizontals	Offset	Offset			
				End						
	ft	ft		Panels		in	in			
T1	60.00-40.00	20.00	X Brace	No	Yes	0.0000	0.0000			
T2	40.00-20.00	20.00	X Brace	No	Yes	0.0000	0.0000			
T3	20.00-0.00	20.00	X Brace	No	Yes	0.0000	0.0000			

Tower Section Geometry (cont'd) Leg Grade Tower Leg Leg Diagonal Diagonal Diagonal ElevationTypeSizeTypeSizeGradeT1 60.00-40.00 Tube HSS8x8x1/4 A500-46 Double Equal 2L4x4x3/8x1/2 A36 (36 ksi) (46 ksi) Angle T2 40.00-20.00 Tube HSS8x8x1/4A500-46 Double Equal 2L4x4x3/8x1/2 A36 (36 ksi) (46 ksi) Angle T3 20.00-0.00 Tube HSS8x8x1/4 A500-46 Double Equal 2L4x4x3/8x1/2 A36 (46 ksi) Angle (36 ksi)

tnx7	<i>ower</i>

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	BU #: 800529, CT HAMDEN NORTH CAC	6 of 14
Project		Date
	2021777.800529.12	12:31:31 09/13/21
Client		Designed by
	Crown Castle	kmocka

Tower Section Geometry	, ((cont'd)

Tower Elevation	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
ft	V 1			71		
T1 60.00-40.00	Wide Flange	W16x45	A36	Flat Bar		A36
	-		(36 ksi)			(36 ksi)
T2 40.00-20.00	Wide Flange	W6x12	A36	Flat Bar		A36
			(36 ksi)			(36 ksi)
T3 20.00-0.00	Wide Flange	W6x12	A36	Flat Bar		A36
			(36 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A_f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing	Stitch Bolt Spacing	Stitch Bolt Spacing
ft	ft²	in					Diagonals in	Horizontals in	Redundants in
T1 60.00-40.00	0.00	0.0000	A36 (36 ksi)	0	0	1	Mid-Pt	36.0000	36.0000
T2 40.00-20.00	0.00	0.0000	A36 (36 ksi)	0	0	1	Mid-Pt	36.0000	36.0000
T3 20.00-0.00	0.00	0.0000	A36 (36 ksi)	0	0	1	Mid-Pt	36.0000	36.0000

Tower Section Geometry (cont'd)

				K Factors ¹						
Tower	Calc	Calc	Legs	X	K	Single	Girts	Horiz.	Sec.	Inner
Elevation	K	K		Brace	Brace	Diags			Horiz.	Brace
	Single	Solid		Diags	Diags					
	Angles	Rounds		X	X	X	X	X	X	X
ft				Y	Y	Y	Y	Y	Y	Y
T1	Yes	No	1	1	1	1	1	1	1	1
60.00-40.00				1	1	1	1	1	1	1
T2	Yes	No	1	1	1	1	1	1	1	1
40.00-20.00				1	1	1	1	1	1	1
ГЗ 20.00-0.00	Yes	No	1	1	1	1	1	1	1	1
				1	1	1	1	1	1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	BU #: 800529, CT HAMDEN NORTH CAC	7 of 14
Project		Date
	2021777.800529.12	12:31:31 09/13/21
Client		Designed by
	Crown Castle	kmocka

Tower Elevation	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
ft	M W. J.L	T T	M. a W. Id.	7.7	M. a HV: La	7.7	NT.4	7.7	37.4	7.7	37.4	7.7	M	7.7
	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U
	Deduct		Deduct		Deduct		Width		Width		Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
							in		in		in		in	
T1 60.00-40.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T2 40.00-20.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T3 20.00-0.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Elevation ft	Reduna Horizoi		Reduna Diago		Redund Sub-Diaş		Redur Sub-Hor		Redundant Vertical		Redundo	Redundant Hip		ant Hip onal
	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	\overline{U}
	Deduct		Deduct		Deduct		Width		Width		Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
							in		in		in		in	
T1 60.00-40.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T2 40.00-20.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T3 20.00-0.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Section Geometry (cont'd)

Tower	Leg	Leg		Diagor	ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hori	izontal
Elevation	Connection														
ft	Туре														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
		in		in		in		in		in		in		in	
T1 60.00-40.00	Flange	0.7500	0	0.8750	2	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T2 40.00-20.00	Flange	0.7500	0	0.8750	2	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T3 20.00-0.00	Flange	0.7500	0	0.8750	2	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A325N		A325N		A325N	

Feed Line/Linear Appurtenances - Entered As Area

Description	Face	Allow	Exclude	Component	Placement	Face	Lateral	#		$C_A A_A$	Weight
	or	Shield	From	Type		Offset	Offset				
	Leg		Torque		ft	in	(Frac FW)			ft²/ft	plf
			Calculation								
Climbing	В	No	No	CaAa (Out	100.00 - 0.00	0.0000	0.45	1	No	0.00	4.81
Ladder (CCI)				Of Face)					Ice	0.00	6.97
									1/2"	0.00	9.48
									Ice		
									1" Ice		
Safety Line	В	No	No	CaAa (Out	100.00 - 0.00	0.0000	0.45	1	No	0.00	0.22
(3/8")				Of Face)					Ice	0.00	0.75
									1/2"	0.00	1.28
									Ice		
									1" Ice		
Feedline	В	No	No	CaAa (Out	100.00 - 8.00	0.0000	0	1	No	0.00	8.40

GPD

Job		Page
	BU #: 800529, CT HAMDEN NORTH CAC	8 of 14
Project		Date
	2021777.800529.12	12:31:31 09/13/21
Client		Designed by
	Crown Castle	kmocka

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Face Offset	Lateral Offset	#		C_AA_A	Weight
	Leg	Silicia	Torque Calculation	Турс	ft	in	(Frac FW)			ft²/ft	plf
Ladder (Af)				Of Face)					Ice	0.00	13.50
(,				,					1/2" Ice	0.00	18.60
	_								1" Ice		
HB158-21U6S	В	No	No	CaAa (Out	100.00 - 8.00	0.0000	0	6	No	0.00	1.90
24-xxM_TMO				Of Face)					Ice	0.00	3.42
									1/2" Ice 1" Ice	0.00	5.55
Feedline	Α	No	No	CaAa (Out	95.00 - 8.00	0.0000	0	1	No	0.00	8.40
Ladder (Af)		110	110	Of Face)	33.00 0.00	0.0000	ÿ	•	Ice	0.00	13.50
(/				,					1/2" Ice 1" Ice	0.00	18.60
HB114-1-081	Α	No	No	CaAa (Out	95.00 - 8.00	0.0000	0	2	No	0.00	1.20
3U4-M5F				Of Face)					Ice	0.00	2.45
(1-1/4")				,					1/2" Ice 1" Ice	0.00	4.30
AVA7-50	Α	No	No	CaAa (Out	95.00 - 8.00	0.0000	0	6	No	0.00	0.70
(1-5/8")		1.0	1.0	Of Face)	30,00	0,000			Ice	0.00	2.23
(=)				,					1/2" Ice 1" Ice	0.00	4.38
Feedline	C	No	No	CaAa (Out	85.00 - 8.00	0.0000	0	1	No	0.00	8.40
Ladder (Af)				Of Face)					Ice	0.00	13.50
, ,				,					1/2" Ice 1" Ice	0.00	18.60
FB-L98B-034-	С	No	No	CaAa (Out	85.00 - 8.00	0.0000	0	2	No	0.00	0.06
XXX (3/8")		110	1.0	Of Face)	02.00 0.00	0.0000	Ŭ	_	Ice	0.00	0.60
()				,					1/2" Ice 1" Ice	0.00	1.76
WR-VG86ST-	C	No	No	CaAa (Out	85.00 - 8.00	0.0000	0	5	No	0.00	0.60
BRD (3/4")				Of Face)					Ice	0.00	1.39
, ,				•					1/2" Ice 1" Ice	0.00	2.79
LDF5-50A	C	No	No	CaAa (Out	85.00 - 8.00	0.0000	0	6	No	0.00	0.33
(7/8 FOAM)				Of Face)					Ice 1/2" Ice 1" Ice	0.00 0.00	1.30 2.88
LDF4P-50A	C	No	No	CaAa (Out	100.00 - 8.00	0.0000	0.3	1	No	0.00	0.15
(1/2 FOAM)		140	110	Of Face)	100.00 - 0.00	0.0000	0.5	1	Ice	0.00	0.13
(1/2 1 0/11/1)				Of Face)					1/2" Ice 1" Ice	0.00	2.14
Feedline	С	No	No	CaAa (Out	65.00 - 8.00	0.0000	0.45	1	No	0.00	8.40
Ladder (Af)	C	110	110	Of Face)	05.00	0.0000	0.15		Ice 1/2" Ice	0.00	13.50 18.60
									1" Ice		
CU12PSM9P8	C	No	No	CaAa (Out	65.00 - 8.00	0.0000	0.45	1	No	0.00	1.66
XXX(1-3/8)				Of Face)					Ice 1/2" Ice	0.00	2.83 4.61
									1" Ice		
Feedline	D	No	No	CaAa (Out	75.00 - 8.00	0.0000	0	1	No	0.00	8.40

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Job		Page
	BU #: 800529, CT HAMDEN NORTH CAC	9 of 14
Project		Date
	2021777.800529.12	12:31:31 09/13/21
Client		Designed by
	Crown Castle	kmocka

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Face Offset	Lateral Offset	#		C_AA_A	Weight
	Leg		Torque Calculation	-7F-	ft	in	(Frac FW)			ft²/ft	plf
Ladder (Af)				Of Face)					Ice	0.00	13.50
` ′				Í					1/2"	0.00	18.60
									Ice		
									1" Ice		
LDF6-50A	D	No	No	CaAa (Out	75.00 - 8.00	0.0000	0	11	No	0.00	0.66
(1-1/4 FOAM)				Of Face)					Ice	0.00	1.91
									1/2"	0.00	3.78
									Ice		
									1" Ice		

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C_AA_A Front	C₄A₄ Side	Weight
			ft ft ft	0	ft		ft²	ft²	lb
APXVAA4L18 43-U-NA20	A	From Leg	2.00	0.0000	100.00	No Ice	0.00	0.00	156.85
TMO w/ Mount Pipe			0.00			1/2" Ice	0.00	0.00	261.21
•			4.00			1" Ice	0.00	0.00	374.41
APXVAA4L18 43-U-NA20	В	From Leg	2.00	0.0000	100.00	No Ice	0.00	0.00	156.85
TMO w/ Mount Pipe		C	0.00			1/2" Ice	0.00	0.00	261.21
•			4.00			1" Ice	0.00	0.00	374.41
APXVAA4L18 43-U-NA20	D	From Leg	2.00	0.0000	100.00	No Ice	0.00	0.00	156.85
TMO w/ Mount Pipe			0.00			1/2" Ice	0.00	0.00	261.21
<u> </u>			4.00			1" Ice	0.00	0.00	374.41
AIR6449 B41 T-MOBILE	Α	From Leg	2.00	0.0000	100.00	No Ice	0.00	0.00	136.53
w/ Mount Pipe			0.00			1/2" Ice	0.00	0.00	191.31
			4.00			1" Ice	0.00	0.00	251.99
AIR6449 B41 T-MOBILE	В	From Leg	2.00	0.0000	100.00	No Ice	0.00	0.00	136.53
w/ Mount Pipe			0.00			1/2" Ice	0.00	0.00	191.31
····			4.00			1" Ice	0.00	0.00	251.99
AIR6449 B41 T-MOBILE	D	From Leg	2.00	0.0000	100.00	No Ice	0.00	0.00	136.53
w/ Mount Pipe			0.00			1/2" Ice	0.00	0.00	191.31
			4.00			1" Ice	0.00	0.00	251.99
RADIO 4449 B71	Α	From Leg	2.00	0.0000	100.00	No Ice	0.00	0.00	73.21
B85A T-MOBILE		υ	0.00			1/2" Ice	0.00	0.00	92.97
-			4.00			1" Ice	0.00	0.00	115.64
RADIO 4449 B71	В	From Leg	2.00	0.0000	100.00	No Ice	0.00	0.00	73.21
B85A T-MOBILE			0.00			1/2" Ice	0.00	0.00	92.97
			4.00			1" Ice	0.00	0.00	115.64
RADIO 4449 B71	D	From Leg	2.00	0.0000	100.00	No Ice	0.00	0.00	73.21
B85A T-MOBILE			0.00			1/2" Ice	0.00	0.00	92.97
			4.00			1" Ice	0.00	0.00	115.64
RADIO 4415 B66A CCIV3	Α	From Leg	2.00	0.0000	100.00	No Ice	0.00	0.00	46.30
			0.00			1/2" Ice	0.00	0.00	58.71
			4.00			1" Ice	0.00	0.00	73.48
RADIO 4415 B66A CCIV3	В	From Leg	2.00	0.0000	100.00	No Ice	0.00	0.00	46.30
-		υ	0.00			1/2" Ice	0.00	0.00	58.71
			4.00			1" Ice	0.00	0.00	73.48
RADIO 4415 B66A CCIV3	D	From Leg	2.00	0.0000	100.00	No Ice	0.00	0.00	46.30
			0.00			1/2" Ice	0.00	0.00	58.71
			4.00			1" Ice	0.00	0.00	73.48
(2) RADIO 2212 B2	A	From Leg	2.00	0.0000	100.00	No Ice	0.00	0.00	40.80
			0.00			1/2" Ice	0.00	0.00	55.35

GPD

Job	BU #: 800529, CT HAMDEN NORTH CAC	Page 10 of 14
Project	2021777.800529.12	Date 12:31:31 09/13/21
Client	Crown Castle	Designed by kmocka

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weigh
	Leg		Lateral Vert						
			ft	۰	ft		ft^2	ft^2	lb
			ft ft						
			4.00			1" Ice	0.00	0.00	72.44
(2) RADIO 2212 B2	В	From Leg	2.00	0.0000	100.00	No Ice	0.00	0.00	40.80
			0.00			1/2" Ice	0.00	0.00	55.35
(2) PADIO 2212 D2	Ъ	F	4.00 2.00	0.0000	100.00	1" Ice No Ice	0.00	0.00	72.44
(2) RADIO 2212 B2	D	From Leg	0.00	0.0000	100.00	1/2" Ice	$0.00 \\ 0.00$	$0.00 \\ 0.00$	40.80 55.35
			4.00			1" Ice	0.00	0.00	72.44
Site Pro 1 P360 Horizontal	Α	From Leg	2.00	0.0000	100.00	No Ice	0.00	0.00	38.00
			0.00			1/2" Ice	0.00	0.00	47.60
			4.00			1" Ice	0.00	0.00	62.00
Site Pro 1 P360 Horizontal	В	From Leg	2.00	0.0000	100.00	No Ice	0.00	0.00	38.00
			0.00			1/2" Ice	0.00	0.00	47.60
	_		4.00		40000	1" Ice	0.00	0.00	62.00
Site Pro 1 P360 Horizontal	D	From Leg	2.00	0.0000	100.00	No Ice	0.00	0.00	38.00
			0.00 4.00			1/2" Ice 1" Ice	$0.00 \\ 0.00$	0.00 0.00	47.60 62.00
Site Pro 1 USF-2U Standoff	Α	From Leg	1.00	0.0000	100.00	No Ice	0.00	0.00	128.2:
Frame	А	110m Leg	0.00	0.0000	100.00	1/2" Ice	0.00	0.00	160.30
Tame			4.00			1" Ice	0.00	0.00	192.3
Site Pro 1 USF-2U Standoff	В	From Leg	1.00	0.0000	100.00	No Ice	0.00	0.00	128.2
Frame		Č	0.00			1/2" Ice	0.00	0.00	160.30
			4.00			1" Ice	0.00	0.00	192.3
Site Pro 1 USF-2U Standoff	D	From Leg	1.00	0.0000	100.00	No Ice	0.00	0.00	128.2
Frame			0.00			1/2" Ice	0.00	0.00	160.3
DTT . 00000/4GE . /3.5			4.00	0.0000	0.5.00	1" Ice	0.00	0.00	192.3
BXA-80080/4CF w/ Mount	Α	From	4.00	0.0000	95.00	No Ice	0.00	0.00	39.85
Pipe		Centroid-Le	$0.00 \\ 0.00$			1/2" Ice 1" Ice	$0.00 \\ 0.00$	$0.00 \\ 0.00$	89.34 145.1
BXA-80080/4CF w/ Mount	С	g From	4.00	0.0000	95.00	No Ice	0.00	0.00	39.85
Pipe		Centroid-Le	0.00	0.0000	75.00	1/2" Ice	0.00	0.00	89.34
1.00		g	0.00			1" Ice	0.00	0.00	145.1
BXA-80080/4CF w/ Mount	D	From	4.00	0.0000	95.00	No Ice	0.00	0.00	39.85
Pipe		Centroid-Le	0.00			1/2" Ice	0.00	0.00	89.34
		g	0.00			1" Ice	0.00	0.00	145.1
(2) JAHH-65B-R3B w/	Α	From	4.00	0.0000	95.00	No Ice	0.00	0.00	86.15
Mount Pipe		Centroid-Le	0.00			1/2" Ice	0.00	0.00	162.7
(2) IA IIII (5D D2D /	C	g	0.00	0.0000	05.00	1" Ice	0.00	0.00	247.4
(2) JAHH-65B-R3B w/	С	From	4.00	0.0000	95.00	No Ice 1/2" Ice	0.00	0.00	86.15
Mount Pipe		Centroid-Le	$0.00 \\ 0.00$			1/2 Tee	$0.00 \\ 0.00$	$0.00 \\ 0.00$	162.7 247.4
(2) JAHH-65B-R3B w/	D	g From	4.00	0.0000	95.00	No Ice	0.00	0.00	86.15
Mount Pipe	Ь	Centroid-Le	0.00	0.0000	75.00	1/2" Ice	0.00	0.00	162.7
mount ipe		g	0.00			1" Ice	0.00	0.00	247.4
Sub6 Antenna - VZS01 w/	Α	From	4.00	0.0000	95.00	No Ice	0.00	0.00	87.10
Mount Pipe		Centroid-Le	0.00			1/2" Ice	0.00	0.00	108.8
		g	0.00			1" Ice	0.00	0.00	130.6
Sub6 Antenna - VZS01 w/	С	From	4.00	0.0000	95.00	No Ice	0.00	0.00	87.10
Mount Pipe		Centroid-Le	0.00			1/2" Ice	0.00	0.00	108.8
0.164	ъ.	g	0.00	0.0000	05.00	1" Ice	0.00	0.00	130.6
Sub6 Antenna - VZS01 w/	D	From	4.00	0.0000	95.00	No Ice	0.00	0.00	87.10
Mount Pipe		Centroid-Le	$0.00 \\ 0.00$			1/2" Ice 1" Ice	$0.00 \\ 0.00$	0.00 0.00	108.8 130.6
CBC78T-DS-43-2X	Α	g From	4.00	0.0000	95.00	No Ice	0.00	0.00	20.70
CDC/01 DD-TJ-2A	А	Centroid-Le	0.00	0.0000	75.00	1/2" Ice	0.00	0.00	25.88
		g	0.00			1" Ice	0.00	0.00	31.05
CBC78T-DS-43-2X	С	From	4.00	0.0000	95.00	No Ice	0.00	0.00	20.70
	-	Centroid-Le	0.00			1/2" Ice	0.00	0.00	25.88

GPD

Job		Page
	BU #: 800529, CT HAMDEN NORTH CAC	11 of 14
Project		Date
	2021777.800529.12	12:31:31 09/13/21
Client		Designed by
	Crown Castle	kmocka

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weigh
	Leg	**	Lateral Vert						
			ft	0	ft		ft^2	ft^2	lb
			ft ft						
		_ g	0.00			1" Ice	0.00	0.00	31.05
CBC78T-DS-43-2X	D	From	4.00	0.0000	95.00	No Ice	0.00	0.00	20.70
		Centroid-Le	$0.00 \\ 0.00$			1/2" Ice 1" Ice	$0.00 \\ 0.00$	$0.00 \\ 0.00$	25.88 31.05
RFV01U-D1A	Α	g From	4.00	0.0000	95.00	No Ice	0.00	0.00	84.40
Ki voro-Din	11	Centroid-Le	0.00	0.0000	75.00	1/2" Ice	0.00	0.00	105.5
		g	0.00			1" Ice	0.00	0.00	126.6
RFV01U-D1A	C	From	4.00	0.0000	95.00	No Ice	0.00	0.00	84.40
		Centroid-Le	0.00			1/2" Ice	0.00	0.00	105.5
		g	0.00			1" Ice	0.00	0.00	126.6
RFV01U-D1A	D	From	4.00	0.0000	95.00	No Ice	0.00	0.00	84.40
		Centroid-Le	0.00			1/2" Ice	0.00	0.00	105.5
RFV01U-D2A	٨	g From	0.00 4.00	0.0000	95.00	1" Ice No Ice	$0.00 \\ 0.00$	$0.00 \\ 0.00$	126.6 70.30
KF VUIU-D2A	A	Centroid-Le	0.00	0.0000	93.00	1/2" Ice	0.00	0.00	87.88
		g	0.00			1" Ice	0.00	0.00	105.4
RFV01U-D2A	С	From	4.00	0.0000	95.00	No Ice	0.00	0.00	70.30
14 / 010 221		Centroid-Le	0.00	0,000	30.00	1/2" Ice	0.00	0.00	87.88
		g	0.00			1" Ice	0.00	0.00	105.4
RFV01U-D2A	D	From	4.00	0.0000	95.00	No Ice	0.00	0.00	70.30
		Centroid-Le	0.00			1/2" Ice	0.00	0.00	87.88
		g	0.00			1" Ice	0.00	0.00	105.4
RFV01U-D2A	Α	From	4.00	0.0000	95.00	No Ice	0.00	0.00	73.00
		Centroid-Le	0.00			1/2" Ice	0.00	0.00	89.43
RFV01U-D2A	С	g From	3.00 4.00	0.0000	95.00	1" Ice No Ice	$0.00 \\ 0.00$	$0.00 \\ 0.00$	108.5 73.00
KI VOIO-DZA	C	Centroid-Le	0.00	0.0000	93.00	1/2" Ice	0.00	0.00	89.43
		g g	3.00			1" Ice	0.00	0.00	108.5
RFV01U-D2A	D	From	4.00	0.0000	95.00	No Ice	0.00	0.00	73.00
		Centroid-Le	0.00			1/2" Ice	0.00	0.00	89.43
		g	3.00			1" Ice	0.00	0.00	108.5
DB-T1-6Z-8AB-0Z	Α	From	4.00	0.0000	95.00	No Ice	0.00	0.00	44.00
		Centroid-Le	0.00			1/2" Ice	0.00	0.00	80.13
	~	_ g	0.00			1" Ice	0.00	0.00	120.2
DB-T1-6Z-8AB-0Z	C	From	4.00	0.0000	95.00	No Ice	0.00	0.00	44.00
		Centroid-Le	$0.00 \\ 0.00$			1/2" Ice 1" Ice	$0.00 \\ 0.00$	$0.00 \\ 0.00$	80.13 120.2
HPA-65R-BUU-H6 w/	Α	g From	4.00	0.0000	85.00	No Ice	0.00	0.00	76.5
Mount Pipe	А	Centroid-Le	0.00	0.0000	83.00	1/2" Ice	0.00	0.00	158.0
Would Tipe		g	0.00			1" Ice	0.00	0.00	247.7
HPA-65R-BUU-H6 w/	C	From	4.00	0.0000	85.00	No Ice	0.00	0.00	76.55
Mount Pipe		Centroid-Le	0.00			1/2" Ice	0.00	0.00	158.0
		g	0.00			1" Ice	0.00	0.00	247.7
HPA-65R-BUU-H6 w/	D	From	4.00	0.0000	85.00	No Ice	0.00	0.00	76.55
Mount Pipe		Centroid-Le	0.00			1/2" Ice	0.00	0.00	158.0
ODA CED DILICHA IV		g	0.00	0.0000	07.00	1" Ice	0.00	0.00	247.7
OPA65R-BU6BA-K w/	A	From	4.00	0.0000	85.00	No Ice	0.00	0.00	55.00
Mount Pipe		Centroid-Le	$0.00 \\ 0.00$			1/2" Ice 1" Ice	$0.00 \\ 0.00$	$0.00 \\ 0.00$	107.4 166.0
OPA65R-BU6BA-K w/	С	g From	4.00	0.0000	85.00	No Ice	0.00	0.00	55.00
Mount Pipe	C	Centroid-Le	0.00	0.0000	05.00	1/2" Ice	0.00	0.00	107.4
mount i pe		g	0.00			1" Ice	0.00	0.00	166.0
OPA65R-BU6BA-K w/	D	From	4.00	0.0000	85.00	No Ice	0.00	0.00	55.00
Mount Pipe		Centroid-Le	0.00			1/2" Ice	0.00	0.00	107.4
•		g	0.00			1" Ice	0.00	0.00	166.0
MP65R-BU6D w/ Mount	Α	From	4.00	0.0000	85.00	No Ice	0.00	0.00	104.7
Pipe		Centroid-Le	0.00			1/2" Ice	0.00	0.00	196.9

GPD

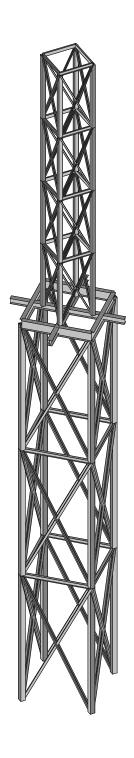
Job		Page
	BU #: 800529, CT HAMDEN NORTH CAC	12 of 14
Project		Date
	2021777.800529.12	12:31:31 09/13/21
Client		Designed by
	Crown Castle	kmocka

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weigh
	Leg		Lateral Vert						
			ft ft	0	ft		ft²	ft²	lb
			ft						
		g	0.00			1" Ice	0.00	0.00	297.77
DMP65R-BU6D w/ Mount	C	From	4.00	0.0000	85.00	No Ice	0.00	0.00	104.7
Pipe		Centroid-Le	0.00			1/2" Ice	0.00	0.00	196.98
-1454	_	g	0.00		0.00	1" Ice	0.00	0.00	297.7
DMP65R-BU6D w/ Mount	D	From	4.00	0.0000	85.00	No Ice	0.00	0.00	104.7
Pipe		Centroid-Le	0.00			1/2" Ice	0.00	0.00	196.98 297.7
RRUS 32 B2	A	g From	0.00 4.00	0.0000	85.00	1" Ice No Ice	$0.00 \\ 0.00$	0.00 0.00	52.90
KKUS 32 B2	Α	Centroid-Le	0.00	0.0000	83.00	1/2" Ice	0.00	0.00	73.96
		g	0.00			1" Ice	0.00	0.00	98.21
RRUS 32 B2	С	From	4.00	0.0000	85.00	No Ice	0.00	0.00	52.90
1410002222		Centroid-Le	0.00	0.0000	02.00	1/2" Ice	0.00	0.00	73.96
		g	0.00			1" Ice	0.00	0.00	98.21
RRUS 32 B2	D	From	4.00	0.0000	85.00	No Ice	0.00	0.00	52.90
		Centroid-Le	0.00			1/2" Ice	0.00	0.00	73.96
		g	0.00			1" Ice	0.00	0.00	98.21
RADIO 4415 B30	Α	From	4.00	0.0000	85.00	No Ice	0.00	0.00	42.90
		Centroid-Le	0.00			1/2" Ice	0.00	0.00	54.99
		g	0.00			1" Ice	0.00	0.00	69.43
RADIO 4415 B30	C	From	4.00	0.0000	85.00	No Ice	0.00	0.00	42.90
		Centroid-Le	0.00			1/2" Ice	0.00	0.00	54.99
		g	0.00			1" Ice	0.00	0.00	69.43
RADIO 4415 B30	D	From	4.00	0.0000	85.00	No Ice	0.00	0.00	42.90
		Centroid-Le	0.00			1/2" Ice	0.00	0.00	54.99
DD1/G 4440 D5/D10		g	0.00	0.0000	0.5.00	1" Ice	0.00	0.00	69.43
RRUS 4449 B5/B12	Α	From	4.00	0.0000	85.00	No Ice	0.00	0.00	71.00
		Centroid-Le	0.00			1/2" Ice	0.00	0.00	89.51
DDIIC 4440 D5/D12	C	g	0.00	0.0000	95.00	1" Ice	0.00	0.00	110.8 71.00
RRUS 4449 B5/B12	С	From	4.00 0.00	0.0000	85.00	No Ice 1/2" Ice	$0.00 \\ 0.00$	0.00 0.00	71.00 89.51
		Centroid-Le	0.00			1" Ice	0.00	0.00	110.8
RRUS 4449 B5/B12	D	g From	4.00	0.0000	85.00	No Ice	0.00	0.00	71.00
KKUS 4449 B3/B12	D	Centroid-Le	0.00	0.0000	83.00	1/2" Ice	0.00	0.00	89.51
			0.00			1" Ice	0.00	0.00	110.8
RRUS 4426 B66	A	g From	4.00	0.0000	85.00	No Ice	0.00	0.00	48.40
RCC5 4420 B00	7.1	Centroid-Le	0.00	0.0000	03.00	1/2" Ice	0.00	0.00	61.22
		g	0.00			1" Ice	0.00	0.00	76.43
RRUS 4426 B66	С	From	4.00	0.0000	85.00	No Ice	0.00	0.00	48.40
14100 1120 200		Centroid-Le	0.00	0,000	02.00	1/2" Ice	0.00	0.00	61.22
		g	0.00			1" Ice	0.00	0.00	76.43
RRUS 4426 B66	D	From	4.00	0.0000	85.00	No Ice	0.00	0.00	48.40
		Centroid-Le	0.00			1/2" Ice	0.00	0.00	61.22
		g	0.00			1" Ice	0.00	0.00	76.43
DC6-48-60-18-8F Surge	A	From	4.00	0.0000	85.00	No Ice	0.00	0.00	18.90
Suppression Unit		Centroid-Le	0.00			1/2" Ice	0.00	0.00	36.62
		g	0.00			1" Ice	0.00	0.00	56.82
DC9-48-60-24-8C-EV	D	From	4.00	0.0000	85.00	No Ice	0.00	0.00	26.20
		Centroid-Le	0.00			1/2" Ice	0.00	0.00	63.2
		g	0.00			1" Ice	0.00	0.00	104.4
-18A24N-U w/ Mount pipe	Α	From	4.00	0.0000	75.00	No Ice	0.00	0.00	43.55
		Centroid-Le	0.00			1/2" Ice	0.00	0.00	88.76
		g	0.00			1" Ice	0.00	0.00	139.5
-18A24N-U w/ Mount pipe	D	From	4.00	0.0000	75.00	No Ice	0.00	0.00	43.55
		Centroid-Le	0.00			1/2" Ice	0.00	0.00	88.76
(2) DD044H00E 477		g	0.00	0.0000	75.00	1" Ice	0.00	0.00	139.5
(3) DB844H90E-XY w/	A	From	4.00	0.0000	75.00	No Ice	0.00	0.00	43.20
Mount Pipe		Centroid-Le	0.00			1/2" Ice	0.00	0.00	90.60

GPD

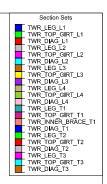
Job		Page
	BU #: 800529, CT HAMDEN NORTH CAC	13 of 14
Project		Date
	2021777.800529.12	12:31:31 09/13/21
Client	0 0 4	Designed by
	Crown Castle	kmocka

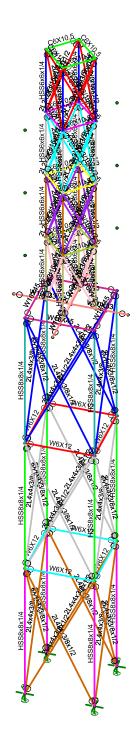
Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
	Leg		Lateral Vert						
			ft ft	٥	ft		ft²	ft²	lb
			ft						
(A) DD0.443300 3773 /	-	g	0.00	0.0000	77. 00	1" Ice	0.00	0.00	144.32
(4) DB844H90E-XY w/	В	From	4.00	0.0000	75.00	No Ice 1/2" Ice	$0.00 \\ 0.00$	0.00	43.20 90.60
Mount Pipe		Centroid-Le	$0.00 \\ 0.00$			1/2 Ice	0.00	$0.00 \\ 0.00$	144.32
(3) DB844H90E-XY w/	D	g From	4.00	0.0000	75.00	No Ice	0.00	0.00	43.20
Mount Pipe	D	Centroid-Le	0.00	0.0000	75.00	1/2" Ice	0.00	0.00	90.60
		g	0.00			1" Ice	0.00	0.00	144.32
MX08FRO665-21 w/ Mount	Α	From Leg	1.00	0.0000	65.00	No Ice	0.00	0.00	86.40
Pipe			0.00			1/2" Ice	0.00	0.00	176.08
			1.00			1" Ice	0.00	0.00	274.11
MX08FRO665-21 w/ Mount	В	From Leg	1.00	0.0000	65.00	No Ice	0.00	0.00	86.40
Pipe			0.00			1/2" Ice	0.00	0.00	176.08
ANYONE DOCCE OF ANYONE DOCCE	ъ	г т	1.00	0.0000	65.00	1" Ice	0.00	0.00	274.11
MX08FRO665-21 w/ Mount	D	From Leg	1.00	0.0000	65.00	No Ice 1/2" Ice	$0.00 \\ 0.00$	$0.00 \\ 0.00$	86.40 176.08
Pipe			0.00 1.00			1/2 Ice 1" Ice	0.00	0.00	274.11
TA08025-B604	Α	From Leg	1.00	0.0000	65.00	No Ice	0.00	0.00	63.90
1A00025-B004	А	110m Leg	0.00	0.0000	03.00	1/2" Ice	0.00	0.00	80.65
			-1.00			1" Ice	0.00	0.00	100.10
TA08025-B604	В	From Leg	1.00	0.0000	65.00	No Ice	0.00	0.00	63.90
			0.00			1/2" Ice	0.00	0.00	80.65
			-1.00			1" Ice	0.00	0.00	100.10
TA08025-B604	D	From Leg	1.00	0.0000	65.00	No Ice	0.00	0.00	63.90
			0.00			1/2" Ice	0.00	0.00	80.65
			-1.00			1" Ice	0.00	0.00	100.10
TA08025-B605	Α	From Leg	1.00	0.0000	65.00	No Ice	0.00	0.00	75.00
			0.00			1/2" Ice	0.00	0.00	92.97
E400005 D605	Б	Б. т	1.00	0.0000	65.00	1" Ice	0.00	0.00	113.72
TA08025-B605	В	From Leg	1.00	0.0000	65.00	No Ice	0.00	0.00	75.00
			0.00			1/2" Ice 1" Ice	$0.00 \\ 0.00$	0.00	92.97
TA08025-B605	D	From Leg	1.00 1.00	0.0000	65.00	No Ice	0.00	$0.00 \\ 0.00$	113.72 75.00
1A08023-B003	D	rioni Leg	0.00	0.0000	03.00	1/2" Ice	0.00	0.00	92.97
			1.00			1" Ice	0.00	0.00	113.72
RDIDC-9181-PF-48	Α	From Leg	1.00	0.0000	65.00	No Ice	0.00	0.00	21.85
100000000000000000000000000000000000000	7.1	Trom Eeg	0.00	0.0000	02.00	1/2" Ice	0.00	0.00	42.90
			2.00			1" Ice	0.00	0.00	66.97
Тор Сар	C	None		0.0000	103.40	No Ice	50.27	50.27	116.00
• •						1/2" Ice	50.27	50.27	145.00
						1" Ice	50.27	50.27	174.00
Tower Silo 90' - 100'	C	None		0.0000	95.00	No Ice	80.00	80.00	146.70
						1/2" Ice	80.00	80.00	183.38
						1" Ice	80.00	80.00	220.06
Tower Silo 80' - 90'	C	None		0.0000	85.00	No Ice	80.00	80.00	146.70
						1/2" Ice	80.00	80.00	183.38
T. G'I TOL OOL		3.7		0.0000	55.00	1" Ice	80.00	80.00	220.06
Tower Silo 70' - 80'	C	None		0.0000	75.00	No Ice	80.00	80.00	146.70
						1/2" Ice 1" Ice	80.00	80.00	183.38
Tower Silo 60' - 70'	С	None		0.0000	65.00	No Ice	80.00 80.00	80.00 80.00	220.06 146.70
TOWEL SHO OU - /U	C	None		0.0000	05.00	1/2" Ice	80.00	80.00	183.38
						1" Ice	80.00	80.00	220.06
Tower Silo 40' - 60'	С	None		0.0000	50.00	No Ice	160.00	160.00	293.40
10,001 5110 40 00		1,0110		0.0000	20.00	1/2" Ice	160.00	160.00	366.75
						1" Ice	160.00	160.00	440.10
Tower Silo 20' - 40'	C	None		0.0000	30.00	No Ice	160.00	160.00	293.40
2021 2110 20 10	_	1.5110		3.5000	25.00	1/2" Ice	160.00	160.00	366.75


tnyT	'ower
	UIVCI

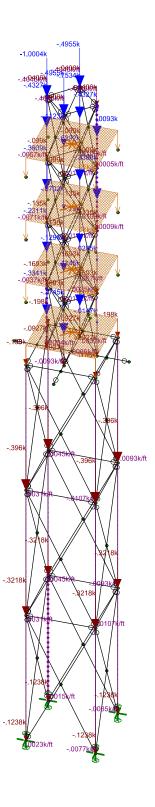
GPD

Job		Page
	BU #: 800529, CT HAMDEN NORTH CAC	14 of 14
Project		Date
	2021777.800529.12	12:31:31 09/13/21
Client		Designed by
	Crown Castle	kmocka


Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C₄A₄ Side	Weight
			ft ft ft	0	ft		ft²	ft²	lb
Tower Silo 0' - 20'	С	None		0.0000	10.00	1" Ice No Ice	160.00 160.00	160.00 160.00	440.10 293.40
						1/2" Ice 1" Ice	160.00 160.00	160.00 160.00	366.75 440.10



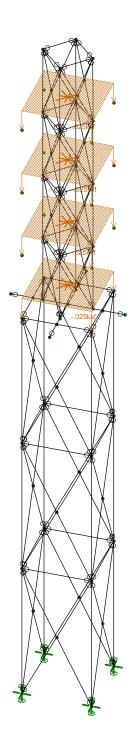
GPD		SK -
KM	BU #: 800529, CT HAMDEN NORTH CAC	Sept
2021777.800529.12	3D Rendering	80052


GPD	
KM	
2021777.800529.12	

BU #: 800529, CT HAMDEN NORTH CAC Section Sets SK - 2

Sept 9, 2021 at 1:14 PM

800529.12.rt3



Loads: BLC 1, Dead

GPD		SK - 3
KM	BU #: 800529, CT HAMDEN NORTH CAC	Sept 9, 2021 at 1:14 PM
2021777.800529.12	Dead Load	800529.12.rt3

Loads: BLC 19, Live

GPD		SK - 4
KM	BU #: 800529, CT HAMDEN NORTH CAC	Sept 9, 2021 at 1:14 PM
2021777.800529.12	Platform Live Load	800529.12.rt3

Company : GPD
Designer : KM
Job Number : 2021777.800529.12
Model Name : BU # 800529, CT HAMDEN NORTH CAC

Sept 13, 2021 1:11 P M Checked By:___

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include W arping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P - Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	No
Max Iterations for Wall Stiffness	3
G ravity Acceleration (ft/sec ^2)	32.2
Wall Mesh Size (in)	24
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Υ
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Standard Solver

Hot Rolled Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)
R ISAC onnection Code	AISC 14th(360-10): ASD
Cold Formed Steel Code	None
Wood Code	None
Wood Temperature	< 100F
Concrete Code	None
Masonry Code	ACI 530-13: ASD
Aluminum Code	AA ADM 1-10: ASD - Building
Stainless Steel Code	AISC 14th(360-10): ASD
Adjust Stiffness?	Yes(Iterative)

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

Company : GPU
Designer : KM
Job Number : 2021777.800529.12
Model Name : BU #. 800529, CT HAMDEN NORTH CAC

Sept 13, 2021 1:11 PM Checked By:___

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	Yes
CtX	.02
CtZ	.02
TX (sec)	Not Entered
TZ (sec)	Not Entered
RX	3
RZ	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	Iorll
Drift Cat	O ther
O m Z	1
Om X	1
CdZ	1
CdX	1
R ho Z	1
R ho X	1

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E5F)	Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A500-46	29000	11200	.2946	.65	.49	46	1.2	58	1.1
2	A36	29000	11200	.2946	.65	.49	36	1.5	58	1.2
3	A992-50	29000	11200	.295	.65	.49	50	1.5	65	1.2

Hot Rolled Steel Section Sets

	Labe l	Shape	Type	Design List	Material	Design Ru A [in2] lyy [i	lzz [i	J [in4]
1	TWR_LEG_L1	HSS6x6x1/4	Column	None	A500-46	Typical 5.24	28.6	28.6	45.6
2	TWR_TOP_GIRT_L1	C6X10.5	Beam	None	A36	Typical 3.07	.86	15.1	.128
3	TWR_DIAG_L1	2L2x2x3/16x1/2	Column	None	A36	Typical 1.429	71.5042	.5448	.0168
4	TWR LEG L2	HSS6x6x1/4	Column	None	A500-46	Typical 5.24	28.6	28.6	45.6
5	TWR TOP GIRT L2	C6X10.5	Beam	None	A36	Typical 3.07	' .86	15.1	.128
6	TWR_DIAG_L2	2L2x2x3/16x1/2	Column	None	A36	Typical 1.429	71.5042	.5448	.0168
7	TWR LEG L3	HSS6x6x1/4	Column	None	A500-46	Typical 5.24	28.6	28.6	45.6
8	TWR TOP GIRT L3	C6X10.5	Beam	None	A36	Typical 3.07	' .86	15.1	.128
9	TWR DIAG L3	2L2x2x3/16x1/2	Column	None	A36	Typical 1.429	71.5042	.5448	.0168
10	TWR LEG L4	HSS6x6x1/4	Column	None	A500-46	Typical 5.24	28.6	28.6	45.6
11	TWR TOP GIRT L4	C6X10.5	Beam	None	A36	Typical 3.07	' .86	15.1	.128
12	TWR_DIAG_L4	2L2x2x3/16x1/2	Column	None	A36	Typical 1.429	71.5042	.5448	.0168
13	TWR_LEG_T1	HSS8x8x1/4	Column	None	A500-46	Typical 7.1	70.7	70.7	111
14	TWR_TOP_GIRT_T1	W16X45	Beam	None	A992-50	Typical 13.3	32.8	586	1.11
15	TWR_INNER_BRACE_T1	W10X33	Beam	None	A992-50	Typical 9.71	36.6	171	.583
16	TWR_DIAG_T1	2L4x4x3/8x1/2	Column	None	A36	Typical 5.718	8 19.7	8.7172	.2681
17	TWR_LEG_T2	HSS8x8x1/4	Column	None	A500-46	Typical 7.1	70.7	70.7	111
18	TWR_TOP_GIRT_T2	W6X12	Beam	None	A992-50	Typical 3.55	2.99	22.1	.0903

 Company
 : GPD

 Designer
 : KM

 Job Number
 : 2021777.800529.12

: BU #. 800529, CT HAMDEN NORTH CAC

Sept 13, 2021 1:11 PM Checked By:__

Hot Rolled Steel Section Sets (Continued)

	Label	Shape	Type	Design List	Material	Design Ru.	.A [in2]	lyy [i	lzz [i	J [in4]
19	TWR DIAG T2	2L4x4x3/8x1/2	Column	None	A36	Typical	5.7188	19.7	8.7172	.2681
20	TWR LEG T3	HSS8x8x1/4	Column	None	A500-46	Typical	7.1	70.7	70.7	111
21	TWR TOP GIRT T3	W6X12	Beam	None	A992-50	Typical	3.55	2.99	22.1	.0903
22	TWR DIAG T3	2L4x4x3/8x1/2	Column	None	A36	Typical	5.7188	19.7	8.7172	.2681

Member Primary Data

	Label	I J oint	J Joint	K Joint	Rotate(. Section/Shape	Туре	Design List	Material	Des ign
1	M9	N2	N3			TWR_DIAG_L1	Column	None	A36	Typical
2	M10	N4	N1			TWR_DIAG_L1	Column	None	A36	Typical
3	M11	N4	N5			TWR_DIAG_L1	Column	None	A36	Typical
4	M12	N6	N3			TWR_DIAG_L1	Column	None	A36	Typical
5	M13	N6	N7			TWR_DIAG_L1	Column	None	A36	Typical
6	M14	N8	N5			TWR_DIAG_L1	Column	None	A36	Typical
7	M15	N8	N1			TWR_DIAG_L1	Column	None	A36	Typical
8	M16	N2	N7			TWR_DIAG_L1	Column	None	A36	Typical
9	M25	N13	N4			TWR_DIAG_L2	Column	None	A36	Typical
10	M26	N14	N2			TWR_DIAG_L2	Column	None	A36	Typical
11	M27	N14	N6			TWR_DIAG_L2		None	A36	Typical
12	M28	N15	N4			TWR_DIAG_L2		None	A36	Typical
13	M29	N15	N8			TWR_DIAG_L2	Column	None	A36	Typical
14	M30	N16	N6			TWR_DIAG_L2	Column	None	A36	Typical
15	M31	N16	N2			TWR_DIAG_L2	Column	None	A36	Typical
16	M32	N13	N8			TWR_DIAG_L2	Column	None	A36	Typical
17	M41	N21	N 14			TWR_DIAG_L3	Column	None	A36	Typical
18	M42	N22	N13			TWR_DIAG_L3	Column	None	A36	Typical
19	M43	N22	N15			TWR_DIAG_L3	Column	None	A36	Typical
20	M44	N23	N14			TWR_DIAG_L3	Column	None	A36	Typical
21	M45	N23	N16			TWR_DIAG_L3		None	A36	Typical
22	M46	N24	N15			TWR_DIAG_L3	Column	None	A36	Typical
23	M47	N24	N13			TWR_DIAG_L3	Column	None	A36	Typical
24	M48	N21	N16			TWR_DIAG_L3	Column	None	A36	Typical
25	M57	N29	N22			TWR_DIAG_L4	Column	None	A36	Typical
26	M58	N30	N21			TWR_DIAG_L4	Column	None	A36	Typical
27	M59	N30	N23			TWR_DIAG_L4	Column	None	A36	Typical
28	M60	N31	N22			TWR_DIAG_L4	Column	None	A36	Typical
29	M61	N31	N24			TWR_DIAG_L4	Column	None	A36	Typical
30	M62	N32	N23			TWR_DIAG_L4	Column	None	A36	Typical
31	M63	N32	N21			TWR_DIAG_L4	Column	None	A36	Typical
32	M64	N29	N24			TWR_DIAG_L4	Column	None	A36	Typical
33	M73	N38	N39			TWR_DIAG_T1	Column	None	A36	Typical
34	M74	N40	N37			TWR_DIAG_T1	Column	None	A36	Typical
35	M75	N40	N41			TWR_DIAG_T1	Column	None	A36	Typical
36	M76	N42	N39			TWR_DIAG_T1	Column	None	A36	Typical
37	M77	N42	N43			TWR_DIAG_T1	Column	None	A36	Typical
38	M78	N44	N41			TWR_DIAG_T1	Column	None	A36	Typical
39	M79	N44	N37			TWR_DIAG_T1	Column	None	A36	Typical
40	M80	N38	N43			TWR_DIAG_T1		None	A36	Typical
41	M89	N49	N40			TWR_DIAG_T2		None	A36	Typical
42	M90	N50	N38		360	TWR_DIAG_T2		None	A36	Typical
43	M91	N50	N42			TWR_DIAG_T2	Column	None	A36	Typical

Company : GPD
Designer : KM
Job Number : 2021777.800529.12
Model Name : BU #. 800529, CT HAMDEN NORTH CAC

Sept 13, 2021 1:11 P M Checked By:___

Member Primary Data (Continued)

	Label	I J oint	J Joint	K Joint	Rotate(.	Section/Shape	Type	Design List	Material	Des ign
44	M92	N51	N40		360	TWR_DIAG_T2	Column	None	A36	Typical
45	M93	N51	N44			TWR_DIAG_T2		None	A36	Typical
46	M94	N52	N42		360	TWR_DIAG_T2	Column	None	A36	Typical
47	M95	N52	N38			TWR_DIAG_T2	Column	None	A36	Typical
48	M96	N49	N44		360	TWR_DIAG_T2	Column	None	A36	Typical
49	M105	N57	N50			TWR_DIAG_T3		None	A36	Typical
50	M106	N58	N49			TWR_DIAG_T3	Column	None	A36	Typical
51	M107	N58	N51			TWR_DIAG_T3	Column	None	A36	Typical
52	M108	N59	N50			TWR_DIAG_T3	Column	None	A36	Typical
53	M109	N59	N52			TWR_DIAG_T3	Column	None	A36	Typical
54	M110	N60	N51			TWR_DIAG_T3		None	A36	Typical
55	M111	N60	N49			TWR_DIAG_T3		None	A36	Typical
56	M112	N57	N52			TWR_DIAG_T3		None	A36	Typical
57	M1	N2	N1		45	TWR_LEG_L1		None	A500-46	
58	M2	N4	N3		135	TWR_LEG_L1		None	A500-46	
59	М3	N6	N5		225	TWR LEG L1		None	A500-46	
60	M4	N8	N7		315	TWR_LEG_L1		None	A500-46	
61	M17	N 13	N2		45		Column	None	A500-46	
62	M18	N 14	N4		135	TWR LEG L2		None	A500-46	
63	M19	N 15	N6		225	TWR LEG L2		None	A500-46	
64	M20	N16	N8		315	TWR_LEG_L2		None	A500-46	
65	M33	N21	N13		45	TWR_LEG_L3		None	A500-46	
66	M34	N22	N14		135	TWR_LEG_L3		None	A500-46	
67	M35	N23	N15		225	TWR_LEG_L3		None	A500-46	
68	M36	N24	N16		315	TWR_LEG_L3		None	A500-46	
69	M49	N29	N21		45	TWR_LEG_L4		None	A500-46	
70	M50	N30	N22		135	TWR_LEG_L4	Column	None	A500-46	
71	M51	N31	N23		225	TWR_LEG_L4		None	A500-46	
72	M52	N32	N24		315	TWR_LEG_L4	Column	None	A500-46	
73	M65	N38	N37		45		Column	None	A500-46	
74	M66	N40	N39		135		Column	None	A500-46	
75	M67	N42	N41		225	TWR_LEG_T1		None	A500-46	
76	M68	N44	N43		315		Column	None	A500-46	
77	M81	N49	N38		45		Column	None	A500-46	
78	M82	N50	N40		135		Column	None	A500-46	
79	M83	N51	N42		225		Column	None	A500-46	
80	M84	N52	N44		315	TWR_LEG_T2		None	A500-46	
81	M97	N57	N49		45	TWR_LEG_T3		None	A500-46	
82	M98	N58	N 50		135	TWR_LEG_T3		None	A500-46	
83	M99	N59	N51		225	TWR_LEG_T3		None	A500-46	
84	M100	N60	N52		315	TWR_LEG_T3		None	A500-46	
85	M5	N1	N3		180	TWR_TOP_GIR		None	A36	Typical
86	<u>M6</u>	N3	N5		180	TWR_TOP_GIR		None	A36	Typical
87	M7	N5	N7		180	TWR_TOP_GIR		None	A36	Typical
88	M8	N7	N1		180	TWR_TOP_GIR	Beam	None	A36	Typical
89	M21	N2	N4		180	TWR_TOP_GIR	Beam	None	A36	Typical
90	M22	N4	N6		180	TWR_TOP_GIR	Beam	None	A36	Typical
91	M23	N6	N8		180	TWR_TOP_GIR	Beam	None	A36	Typical
92	M24	N8	N2		180	TWR_TOP_GIR	Beam	None	A36	Typical
93	M37	N13	N14		180	TWR_TOP_GIR		None	A36	Typical
94	M38	N14	N15		180	TWR_TOP_GIR		None	A36	Typical
95	M39	N 15	N16		180	TWR_TOP_GIR	Beam	None	A36	Typical

Company : GPD
Designer : KM
Job Number : 2021777.800529.12
Model Name : BU # 800529, CT HAMDEN NORTH CAC

Sept 13, 2021 1:11 P M Checked By:___

Member Primary Data (Continued)

	Label	I J oint	J Joint	K Joint	Rotate(.	Section/Shape	Type	Design List	Material	Des ign
96	M40	N16	N13		180	TWR_TOP_GIR	Beam	None	A36	Typical
97	M53	N21	N22		180	TWR_TOP_GIR	Beam	None	A36	Typical
98	M54	N22	N23		180	TWR_TOP_GIR	Beam	None	A36	Typical
99	M55	N23	N24		180	TWR_TOP_GIR	Beam	None	A36	Typical
100	M56	N24	N21		180	TWR_TOP_GIR	Beam	None	A36	Typical
101	M69	N37	N39			TWR_TOP_GIR	Beam	None	A992-50	Typical
102	M70	N39	N41			TWR_TOP_G IR	Beam	None	A992-50	Typical
103	M71	N41	N43			TWR_TOP_GIR	Beam	None	A992-50	Typical
104	M72	N43	N37			TWR_TOP_GIR	Beam	None	A992-50	
105	M85	N38	N40		359.99	TWR_TOP_GIR	Beam	None	A992-50	Typical
106	M86	N40	N42		359.99	TWR_TOP_GIR	Beam	None	A992-50	
107	M87	N42	N44		359.99	TWR_TOP_GIR	Beam	None	A992-50	Typical
108	M88	N44	N38		359.99	TWR_TOP_GIR	Beam	None	A992-50	
109	M101	N49	N 50			TWR_TOP_G IR	Beam	None	A992-50	Typical
110	M102	N50	N51			TWR_TOP_G IR	Beam	None	A992-50	Typical
111	M103	N51	N52			TWR_TOP_G IR	Beam	None	A992-50	Typical
112	M104	N52	N49			TWR_TOP_GIR	Beam	None	A992-50	Typical
113	M113	N67	N65			TWR_INNER_B	Beam	None	A992-50	
114	M114	N65	N 69			TWR_INNER_B	Beam	None	A992-50	
115	M115	N66	N65			TWR_INNER_B	Beam	None	A992-50	
116	M116	N65	N68			TWR_INNER_B	Beam	None	A992-50	

Member Advanced Data

	Label	IR eleas e JRe le	aI Offset	.J Offse	T/C Only	P hysica l	Defl Ratio O	.Analysis Offs	. Inactive	Seismic Design Rul
1	M9	BenP IN BenP	IN			Yes	** NA **			None
2	M10	BenPIN BenP	IN			Yes	** NA **			None
3	M11	BenPIN BenP	IN			Yes	** NA **			None
4	M12	BenPIN BenP	IN			Yes	** NA **			None
5	M13	BenPIN BenP	IN			Yes	** NA **			None
6	M14	BenP IN BenP	IN			Yes	** NA **			None
7	M15	BenP IN BenP	IN			Yes	** NA **			None
8	M16	BenP IN BenP	IN			Yes	** NA **			None
9	M25	BenP IN BenP	IN			Yes	** NA **			None
10	M26	BenP IN BenP	IN			Yes	** NA **			None
11	M27	BenPIN BenP	IN			Yes	** NA **			None
12	M28	BenP IN BenP	IN			Yes	** NA **			None
13	M29	BenP IN BenP	IN			Yes	** NA **			None
14	M30	BenP IN BenP	IN			Yes	** NA **			None
15	M31	BenP IN BenP	IN			Yes	** NA **			None
16	M32	BenP IN BenP	IN			Yes	** NA **			None
17	M41	BenPIN BenP	IN			Yes	** NA **			None
18	M42	BenP IN BenP	IN			Yes	** NA **			None
19	M43	BenP IN BenP	IN			Yes	** NA **			None
20	M44	BenP IN BenP	IN			Yes	** NA **			None
21	M45	BenP IN BenP	IN			Yes	** NA **			None
22	M46	BenP IN BenP	IN			Yes	** NA **			None
23	M47	BenPIN BenP	IN			Yes	** NA **			None
24	M48	BenPIN BenP	IN			Yes	** NA **			None
25	M57	BenPIN BenP	IN			Yes	** NA **			None
26	M58	BenP IN BenP	IN			Yes	** NA **			None

Company : GPD
Designer : KM
Job Number : 2021777.800529.12
Model Name : BU #. 800529, CT HAMDEN NORTH CAC

Sept 13, 2021 1:11 P M Checked By:___

Member Advanced Data (Continued)

	Label	I R eleas e	J Relea	.I Offset	.J Offse	T/C Only	P hysica l	Defl Ratio O	.Analysis Offs	. Inactive	Seismic Design Rul
27	M59	BenP IN	BenP IN				Yes	** NA **			None
28	M60	BenP IN	BenP IN				Yes	** NA **			None
29	M61	BenP IN	BenP IN				Yes	** NA **			None
30	M62	BenP IN	BenP IN				Yes	** NA **			None
31	M63	BenP IN	BenP IN				Yes	** NA **			None
32	M64	BenP IN	BenP IN				Yes	** NA **			None
33	M73	BenP IN	BenP IN				Yes	** NA **			None
34	M74	BenP IN	BenP IN				Yes	** NA **			None
35	M75	BenP IN	BenP IN				Yes	** NA **			None
36	M76	BenP IN	BenP IN				Yes	** NA **			None
37	M77	BenP IN	BenP IN				Yes	** NA **			None
38	M78	BenP IN	BenP IN				Yes	** NA **			None
39	M79		BenP IN				Yes	** NA **			None
40	M80	BenP IN					Yes	** NA **			None
41	M89		BenP IN				Yes	** NA **			None
42	M90	BenP IN					Yes	** NA **			None
43	M91		BenP IN				Yes	** NA **			None
44	M92		BenP IN				Yes	** NA **			None
45	M93	BenP IN	BenP IN				Yes	** NA **			None
46	M94		BenP IN				Yes	** NA **			None
47	M95		BenP IN				Yes	** NA **			None
48	M96		BenP IN				Yes	** NA **			None
49	M105	BenP IN	BenP IN				Yes	** NA **			None
50	M106		BenP IN				Yes	** NA **			None
51	M107	BenP IN	BenP IN				Yes	** NA **			None
52	M108		BenP IN				Yes	** NA **			None
53	M109	BenP IN	BenP IN				Yes	** NA **			None
54	M110		BenP IN				Yes	** NA **			None
55	M111		BenP IN				Yes	** NA **			None
56	M112	BenP IN					Yes	** NA **			None
57	M1	DOIN IN	BOIN III				Yes	** NA **			None
58	M2						Yes	** NA **			None
59	M3						Yes	** NA **			None
60	M4						Yes	** NA **			None
61	M17						Yes	** NA **			None
62	M18						Yes	** NA **			None
63	M19						Yes	** NA **			None
64	M20						Yes	** NA **			None
65	M33						Yes	** NA **			None
66	M34						Yes	** NA **			None
67	M35						Yes	** NA **			None
68	M36						Yes	** NA **			None
69	M49	BenP IN					Yes	** NA **			None
70	M50	BenP IN					Yes	** NA **			None
71	M51	BenP IN					Yes	** NA **			None
72	M52	BenP IN					Yes	** NA **			None
73	M65	DOM: NV					Yes	** NA **			None
74	M66						Yes	** NA **			None
75	M67						Yes	** NA **			None
76	M68						Yes	** NA **			None
77	M81						Yes	** NA **			None
78	M82						Yes	** NA **			None
10	WOZ						169	INA			NOHE

Company : GPU
Designer : KM
Job Number : 2021777.800529.12
Model Name : BU #. 800529, CT HAMDEN NORTH CAC

Sept 13, 2021 1:11 P M Checked By:___

Member Advanced Data (Continued)

	Label	I R eleas e	J Re l ea	.I Offset	.J Offse	. T/C Only	Physical		.Analysis Offs	. Inactive	Seismic Design Rul
79	M83						Yes	** NA **			None
80	M84						Yes	** NA **			None
81	M97						Yes	** NA **			None
82	M98						Yes	** NA **			None
83	M99						Yes	** NA **			None
84	M100						Yes	** NA **			None
85	M5	BenP IN	BenP IN				Yes				None
86	M6	BenP IN	BenP IN				Yes				None
87	M7	BenP IN	BenP IN				Yes				None
88	M8	BenP IN	BenP IN				Yes				None
89	M21	BenP IN	BenP IN				Yes				None
90	M22	BenP IN	BenP IN				Yes				None
91	M23	BenP IN	BenP IN				Yes				None
92	M24	BenP IN	BenP IN				Yes				None
93	M37	BenP IN	BenP IN				Yes				None
94	M38	BenP IN	BenP IN				Yes				None
95	M39	BenP IN	BenP IN				Yes				None
96	M40	BenP IN	BenP IN				Yes				None
97	M53	BenP IN	BenP IN				Yes				None
98	M54	BenP IN	BenP IN				Yes				None
99	M55	BenP IN	BenP IN				Yes				None
100	M56	BenP IN	BenP IN				Yes				None
101	M69	BenP IN	BenP IN				Yes				None
102	M70	BenP IN	BenP IN				Yes				None
103	M71	BenP IN	BenP IN				Yes				None
104	M72	BenP IN	BenP IN				Yes				None
105	M85	BenP IN	BenP IN				Yes				None
106	M86	BenP IN	BenP IN				Yes				None
107	M87	BenP IN	BenP IN				Yes				None
108	M88	BenP IN	BenP IN				Yes				None
109	M101	BenP IN	BenP IN				Yes				None
110	M102	BenP IN	BenP IN				Yes				None
111	M103	BenP IN	BenP IN				Yes				None
112	M104	BenP IN	BenP IN				Yes				None
113	M113	BenP IN					Yes				None
114	M114		BenP IN				Yes				None
115	M115	BenP IN					Yes				None
116	M116		BenP IN				Yes				None

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft]	Lcomp bot[ft]	L-torque	Куу	Kzz	Cb Fu
1	М9	TWR DIAG L1	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
2	M10	TWR DIAG L1	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
3	M11	TWR_DIAG_L1	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
4	M12	TWR_DIAG_L1	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
5	M13	TWR_DIAG_L1	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
6	M14	TWR_DIAG_L1	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
7	M15	TWR_DIAG_L1	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
8	M16	TWR_DIAG_L1	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
9	M25	TWR_DIAG_L2	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat

Company : GPD
Designer : KM
Job Number : 2021777.800529.12
Model Name : BU #. 800529, CT HAMDEN NORTH CAC

Sept 13, 2021 1:11 P M Checked By:___

Hot Rolled Steel Design Parameters (Continued)

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft]	Lcomp bot[ft]	L-torque	Куу	Kzz	Cb Fu
10	M26	TWR DIAG L2	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
11	M27	TWR DIAG L2	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
12	M28	TWR DIAG L2	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
13	M29	TWR DIAG L2	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
14	M30	TWR DIAG L2	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
15	M31	TWR DIAG L2	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
16	M32	TWR DIAG L2	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
17	M41	TWR DIAG L3	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
18	M42	TWR DIAG L3	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
19	M43	TWR DIAG L3	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
20	M44	TWR DIAG L3	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
21	M45	TWR DIAG L3	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
22	M46	TWR DIAG L3	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
23	M47	TWR DIAG L3	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
24	M48	TWR_DIAG_L3	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
25	M57	TWR DIAG L4	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
26	M58	TWR DIAG L4	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
27	M59	TWR DIAG L4	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
28	M60	TWR DIAG L4	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
29	M61	TWR DIAG L4	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
30	M62	TWR_DIAG_L4	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
31	M63	TWR_DIAG_L4	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
32	M64	TWR_DIAG_L4	11.1068	4.7	4.7	4.7	4.7	4.7	1.3	1	Lat
33	M73	TWR_DIAG_T1	22.1505	10.02	10.02	10.02	10.02	10.02	1.25	1	Lat
34	M74	TWR_DIAG_T1	22.1505	10.02	10.02	10.02	10.02	10.02	1.25	1	Lat
35	M75	TWR_DIAG_T1	22.1505	10.02	10.02	10.02	10.02	10.02	1.25	1	Lat
36	M76	TWR_DIAG_T1	22.1505	10.02	10.02	10.02	10.02	10.02	1.25	1	Lat
37	M77	TWR_DIAG_T1	22.1505	10.02	10.02	10.02	10.02	10.02	1.25	1	Lat
38	M78	TWR_DIAG_T1	22.1505	10.02	10.02	10.02	10.02	10.02	1.25	1	Lat
39	M79	TWR_DIAG_T1	22.1505	10.02	10.02	10.02	10.02	10.02	1.25	1	Lat
40	M80	TWR_DIAG_T1	22.1505	10.02	10.02	10.02	10.02	10.02	1.25	1	Lat
41	M89	TWR_DIAG_T2	22.1505	10.02	10.02	10.02	10.02	10.02	1.25	1	Lat
42	M90	TWR DIAG T2	22.1505	10.02	10.02	10.02	10.02	10.02	1.25	1	Lat
43	M91	TWR DIAG T2	22.1505	10.02	10.02	10.02	10.02	10.02	1.25	1	Lat
44	M92	TWR DIAG T2	22.1505	10.02	10.02	10.02	10.02	10.02	1.25	1	Lat
45	M93	TWR DIAG T2	22.1505	10.02	10.02	10.02	10.02	10.02	1.25	1	Lat
46	M94	TWR DIAG T2	22.1505	10.02	10.02	10.02	10.02	10.02	1.25	1	Lat
47	M95	TWR DIAG T2	22.1505	10.02	10.02	10.02	10.02	10.02	1.25	1	Lat
48	M96	TWR DIAG T2	22.1505	10.02	10.02	10.02	10.02	10.02	1.25	1	Lat
49	M105	TWR_DIAG_T3	22.1505	10.02	10.02	10.02	10.02	10.02	1.25	1	Lat
50	M106	TWR_DIAG_T3	22.1505	10.02	10.02	10.02	10.02	10.02	1.25	1	Lat
51	M107	TWR_DIAG_T3	22.1505	10.02	10.02	10.02	10.02	10.02	1.25	1	Lat
52	M108	TWR_DIAG_T3	22.1505	10.02	10.02	10.02	10.02	10.02	1.25	1	Lat
53	M109	TWR_DIAG_T3	22.1505	10.02	10.02	10.02	10.02	10.02	1.25	1	Lat
54	M110	TWR_DIAG_T3	22.1505	10.02	10.02	10.02	10.02	10.02	1.25	1	Lat
55	M111	TWR_DIAG_T3	22.1505	10.02	10.02	10.02	10.02	10.02	1.25	1	Lat
56	M112	TWR_DIAG_T3	22.1505	10.02	10.02	10.02	10.02	10.02	1.25	1	Lat
57	M1	TWR LEG L1	10	10	10	10	10	10	1	1	Lat
58	M2	TWR LEG L1	10	10	10	10	10	10	1	1	Lat
59	M3	TWR LEG L1	10	10	10 10	10	10	10	1	1	Lat
60	M4	TWR LEG L1	10	10		10	10	10	•	1	
61	M17	TWR_LEG_L2	10	10	10	10	10	10	1	1	Lat

Company : GPD
Designer : KM
Job Number : 2021777.800529.12
Model Name : BU #. 800529, CT H/

: BU #. 800529, CT HAMDEN NORTH CAC

Sept 13, 2021 1:11 P M Checked By:___

Hot Rolled Steel Design Parameters (Continued)

	Label	S hape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft]	Lcomp bot[ft]	L-torque	Куу	Kzz	Cb Fu
62	M18	TWR LEG L2	10	10	10	10	10	10	1	1	Lat
63	M19	TWR_LEG_L2	10	10	10	10	10	10	1	1	Lat
64	M20	TWR_LEG_L2	10	10	10	10	10	10	1	1	Lat
65	M33	TWR LEG L3	10	10	10	10	10	10	1	1	Lat
66	M34	TWR_LEG_L3	10	10	10	10	10	10	1	1	Lat
67	M35	TWR_LEG_L3	10	10	10	10	10	10	1	1	Lat
68	M36	TWR_LEG_L3	10	10	10	10	10	10	1	1	Lat
69	M49	TWR_LEG_L4	10	10	10	10	10	10	1	1	Lat
70	M50	TWR_LEG_L4	10	10	10	10	10	10	1	1	Lat
71	M51	TWR_LEG_L4	10	10	10	10	10	10	1	1	Lat
72	M52	TWR_LEG_L4	10	10	10	10	10	10	1	1	Lat
73	M65	TWR_LEG_T1	20	20	20	20	20	20	1	1	Lat
74	M66	TWR_LEG_T1	20	20	20	20	20	20	1	1	Lat
75	M67	TWR_LEG_T1	20	20	20	20	20	20	1	1	Lat
76	M68	TWR_LEG_T1	20	20	20	20	20	20	1	1	Lat
77	M81	TWR LEG T2	20	20	20	20	20	20	1	1	Lat
78	M82	TWR_LEG_T2	20	20	20	20	20	20	1	1	Lat
79	M83	TWR LEG T2	20	20	20	20	20	20	1	1	Lat
80	M84	TWR LEG T2	20	20	20	20	20	20	1	1	Lat
81	M97	TWR_LEG_T3	20	20	20	20	20	20	1	1	Lat
82	M98	TWR_LEG_T3	20	20	20	20	20	20	1	1	Lat
83	M99	TWR_LEG_T3	20	20	20	20	20	20	1	1	Lat
84	M100	TWR_LEG_T3	20	20	20	20	20	20	1	1	Lat
85	M5	TWR_TOP_GIRT_L1	4.8333	4.33	4.33	4.33	4.33	4.33	1	1	Lat
86	M6	TWR_TOP_GIRT_L1	4.8333	4.33	4.33	4.33	4.33	4.33	1	1	Lat
87	M7	TWR_TOP_GIRT_L1	4.8333	4.33	4.33	4.33	4.33	4.33	1	1	Lat
88	M8	TWR_TOP_GIRT_L1	4.8333	4.33	4.33	4.33	4.33	4.33	1	1	Lat
89	M21	TWR_TOP_GIRT_L2	4.8333	4.33	4.33	4.33	4.33	4.33	1	1	Lat
90	M22	TWR_TOP_GIRT_L2	4.8333	4.33	4.33	4.33	4.33	4.33	1	1	Lat
91	M23	TWR_TOP_GIRT_L2	4.8333	4.33	4.33	4.33	4.33	4.33	1	1	Lat
92	M24	TWR_TOP_GIRT_L2	4.8333	4.33	4.33	4.33	4.33	4.33	1	1	Lat
93	M37	TWR_TOP_GIRT_L3	4.8333	4.33	4.33	4.33	4.33	4.33	1	1	Lat
94	M38	TWR_TOP_GIRT_L3	4.8333	4.33	4.33	4.33	4.33	4.33	1	1	Lat
95	M39	TWR_TOP_GIRT_L3	4.8333	4.33	4.33	4.33	4.33	4.33	1	1	Lat
96	M40	TWR_TOP_GIRT_L3	4.8333	4.33	4.33	4.33	4.33	4.33	1	1	Lat
97	M53	TWR_TOP_GIRT_L4	4.8333	4.33	4.33	4.33	4.33	4.33	1	1	Lat
98	M54	TWR_TOP_GIRT_L4	4.8333	4.33	4.33	4.33	4.33	4.33	1	1	Lat
99		TWR_TOP_GIRT_L4		4.33	4.33	4.33	4.33	4.33	1	1	Lat
100		TWR_TOP_GIRT_L4		4.33	4.33	4.33	4.33	4.33	1	1	Lat
101	M69	TWR_TOP_G IRT		8.85	8.85	8.85	8.85	8.85	1	1	Lat
102	M70	TWR_TOP_GIRT		8.85	8.85	8.85	8.85	8.85	1	1	Lat
103	M71	TWR_TOP_G IRT		8.85	8.85	8.85	8.85	8.85	1	1	Lat
104	M72	TWR_TOP_GIRT		8.85	8.85	8.85	8.85	8.85	1	1	Lat
105	M85	TWR_TOP_GIRT		8.85	8.85	8.85	8.85	8.85	1	1	Lat
106	M86	TWR_TOP_GIRT	9.5208	8.85	8.85	8.85	8.85	8.85	1	1	Lat
107	M87	TWR_TOP_G IRT	9.5208	8.85	8.85	8.85	8.85	8.85	1	1	Lat
108	M88		9.5208	8.85	8.85	8.85	8.85	8.85	1	1	Lat
109		TWR_TOP_G IRT	9.5208	8.85	8.85	8.85	8.85	8.85	1	1	Lat
110		TWR_TOP_G IRT	9.5208	8.85	8.85	8.85	8.85	8.85	1	1	Lat
111		TWR_TOP_GIRT	9.5208	8.85	8.85	8.85	8.85	8.85	1	1	Lat
112		TWR_TOP_GIRT	9.5208	8.85	8.85	8.85	8.85	8.85	1	1	Lat
113	M113	TWR_INNER_BRA	7.8125	7.813	7.813	7.813	7.813	7.813	2.1	2.1	Lat

Company : GPD
Designer : KM
Job Number : 2021777.800529.12
Model Name : BU # 800529, CT HAMDEN NORTH CAC

Sept 13, 2021 1:11 P M Checked By:___

Hot Rolled Steel Design Parameters (Continued)

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft]	Lcomp bot[ft]	L-torque	Куу	Kzz	Cb Fu
114	M114	TWR_INNER_BRA	7.8125	7.813	7.813	7.813	7.813	7.813	2.1	2.1	Lat
115	M115	TWR_INNER_BRA	7.8125	7.813	7.813	7.813	7.813	7.813	2.1	2.1	Lat
116	M116	TWR_INNER_BRA	7.8125	7.813	7.813	7.813	7.813	7.813	2.1	2.1	Lat

Basic Load Cases

	BLC Description	Category	X G.	.Y Gra.	Z G r	.Joint	P oint	Distributed	A rea (Member)	Surface(Plate W
1	Dead	DL		-1		56	360	28	4	
2	No Ice Wind 0°	None					36			
3	No Ice Wind 45°	None					66			
4	No Ice Wind 90°	None					36			
5	No Ice Wind 135°	None					66			
6	No Ice Wind 180°	None					36			
7	No Ice Wind 225°	None					66			
8	No Ice Wind 270°	None					36			
9	No Ice Wind 315°	None					66			
10	Ice Weight	IL .				56	360	140		
11	lce Wind 0°	None					36			
12	lce Wind 45°	None					66			
13	lce Wind 90°	None					66			
14	Ice Wind 135°	None					66			
15	Ice Wind 180°	None					36			
16	Ice Wind 225°	None					66			
17	Ice Wind 270°	None					36			
18	Ice Wind 315°	None					66			
19	Live	LL							4	
20	Roof Live	RLL								
21	Snow	SL								
22	BLC 1 Transient Area Loa	None						96		
23	BLC 19 Transient Area Lo	None						96		

Load Combinations

	Des cription	Solve	PD	S	BFac	t BLC	Fa	BLC	Fac	.BLC	Fac	.BLC	Fac	.BLC	F	BLC	F	F	 F	[F
1	1.4 D	Yes	Υ		DL 1.	4															
2	1.2 D + 1.6 L + 0.5 Lr				DL 1.	2 LL	1.6	RLL	.5												
3	12 D + 0.2 Di + 1.6 L +	Yes	Υ		DL 1.	2 LL	1.6	SL	.5			IL	.2								
4	12D+1L+16Lr	Yes	Υ		DL 1.	2 LL	1	RLL	1.6												
5	1.2 D + 1 L + 1.6 S	Yes	Υ		DL 1.	2 LL	1	SL	1.6												
6	1.2 D + 1.6 Lr + 0.5 W				DL 1.	2		RLL	1.6	2	.5										
7	1.2 D + 1.6 S + 0.5 W				DL 1.	2		SL	1.6	2	.5										
	1.2 D + 1 L + 0.5 Lr +1				DL 1.	2 LL	1	RLL	.5	2	1										
9	1.2 D + 1 L + 0.5 S + 1	Yes	Υ		DL 1.	2 LL	1	SL	.5	2	1										
10	0.9 D + 1 W @ 0°	Yes	Υ		DL .9					2	1										
	1.2 D + 1.6 Lr + 0.5 W				DL 1.	2		RLL	1.6	3	.5										
	1.2 D + 1.6 S + 0.5 W				DL 1.	2		SL	1.6	3	.5										
	1.2 D + 1 L + 0.5 Lr +1				DL 1.	2 LL	1	RLL	.5	3	1										
14	1.2 D + 1 L + 0.5 S + 1	Yes	Υ		DL 1.	2 LL	1	SL	.5	3	1										
15	0.9 D + 1 W @ 45°		Υ		DL .9					3	1										
	1.2 D + 1.6 Lr + 0.5 W		Υ		DL 1.	2		RLL	1.6	4	.5										
17	1.2 D + 1.6 S + 0.5 W	Yes	Υ		DL 1.	2		SL	1.6	4	.5										

Company : GPU
Designer : KM
Job Number : 2021777.800529.12
Model Name : BU #. 800529, CT HAMDEN NORTH CAC

Sept 13, 2021 1:11 P M Checked By:___

Load Combinations (Continued)

Des cription	Solve	PD	.S	B I	Fact	BLC	Fa	BLC	Fac	.BLC	Fac	.BLC	Fac	.BLC F	BLC	F	F.		F	F
18 12 D + 1 L + 0.5 Lr + 1					1.2	LL	1	RLL	.5	4	1									
19 1.2 D + 1 L + 0.5 S + 1			_		1.2	LL	1	SL	.5	4	1									
20 0.9 D + 1 W @ 90°	Yes	_		DL	.9					4	1									
21 1.2 D + 1.6 Lr + 0.5 W				DL	1.2			RLL	1.6	5	.5							T		$\neg \neg$
22 1.2 D + 1.6 S + 0.5 W			_	DL	1.2			SL	1.6	5	.5									
23 1.2 D + 1 L + 0.5 Lr +1				DL	1.2	LL	1	RLL	.5	5	1						\neg			$\neg \neg$
24 1.2 D + 1 L + 0.5 S + 1				DL	1.2	LL	1	SL	.5	5	1									
25 0.9 D + 1 W @ 135	_			DL	.9					5	1									
26 1.2 D + 1.6 Lr + 0.5 W					1.2			RLL	1.6	6	.5									
27 1.2 D + 1.6 S + 0.5 W					1.2			SL	1.6	6	.5									
28 1.2 D + 1 L + 0.5 Lr +1					1.2	LL	1	RLL	.5	6	1									
29 1.2 D + 1 L + 0.5 S + 1			_		1.2	LL	1	SL	.5	6	1									
30 0.9 D + 1 W @ 180		_		DL	.9			<u> </u>		6	1									
31 1.2 D + 1.6 Lr + 0.5 W					1.2			RLL	1.6	7	.5									
32 1.2 D + 1.6 S + 0.5 W					1.2			SL	1.6	7	.5									
33 1.2 D + 1 L + 0.5 Lr +1			_		1.2	LL	1	RLL	.5	7	1									
34 1.2 D + 1 L + 0.5 S + 1		_			1.2	LL	1	SL	.5	7	1									
35 0.9 D + 1 W @ 225		_		DL	.9					7	1									
36 1.2 D + 1.6 Lr + 0.5 W	_	_	_	$\overline{}$	1.2			RLL	1.6	8	5									
37 1.2 D + 1.6 S + 0.5 W				DL	1.2			SL	1.6	8	.5									
38 1.2 D + 1 L + 0.5 Lr +1				$\overline{}$		LL	1	RLL	.5	8	1									
39 1.2 D + 1 L + 0.5 S + 1				DL		LL	1	SL	.5	8	1						\neg			$\neg \neg$
40 0.9 D + 1 W @ 270		_		DL	.9					8	1									
41 1.2 D + 1.6 Lr + 0.5 W		Υ		DL	1.2			RLL	1.6	9	.5									\top
42 1.2 D + 1.6 S + 0.5 W	· Yes			DL	1.2			SL	1.6	9	.5									
43 1.2 D + 1 L + 0.5 Lr +1				DL	1.2	LL	1	RLL	.5	9	1									\top
44 1.2 D + 1 L + 0.5 S + 1	Yes	Υ		DL	1.2	LL	1	SL	.5	9	1									
45 0.9 D + 1 W @ 315				DL	.9					9	1									
46 1.2 D + 1 Di + 1 L + 0.5				DL	1.2	LL	1	SL	.5	11	1	IL	1		1					
47 0.9 D + 1 Di + 1 Wi @ .	Yes	Υ		DL	.9					11	1	IL	1		1					
48 1.2 D + 1 Di + 1 L + 0.5	Yes	Υ		DL	1.2	LL	1	SL	.5	12	1	IL	1		1					
49 0.9 D + 1 Di + 1 Wi @ .	. Yes	Υ		DL	.9					12	1	IL	1		1					
50 1.2 D + 1 Di + 1 L + 0.5	Yes	Υ		DL	1.2	LL	1	SL	.5	13	1	IL	1		1					
51 0.9 D + 1 Di + 1 Wi @ .				DL	.9					13	1	IL	1		1					
52 1.2 D + 1 Di + 1 L + 0.5	Yes	Υ		DL	1.2	LL	1	SL	.5	14	1	IL	1		1					
53 0.9 D + 1 Di + 1 Wi @ .	Yes	Υ		DL	.9					14	1	IL	1		1					
54 1.2 D + 1 Di + 1 L + 0.5	Yes	Υ		DL	1.2	LL	1	SL	.5	15	1	IL	1		1					
55 0.9 D + 1 Di + 1 Wi @ .	Yes	Υ		DL	.9					15		IL	1		1					
56 1.2 D + 1 Di + 1 L + 0.5					1.2	LL	1	SL	.5	16		IL	1		1					
57 0.9 D + 1 Di + 1 Wi @ .	Yes	Υ		DL	.9					16		IL	1		1					
58 1.2 D + 1 Di + 1 L + 0.5	Yes				1.2	LL	1	SL	.5	17	1	IL	1		1					
59 0.9 D + 1 Di + 1 Wi @ .	Yes	Υ		DL	.9					17	1	IL	1		1					
60 1.2 D + 1 Di + 1 L + 0.5				DL	1.2	LL	1	SL	.5	18	1	IL	1		1					
61 0.9 D + 1 Di + 1 Wi @ .	Yes	Υ		DL	.9					18		IL	1		1					

Envelope Joint Reactions

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	l LC
1	N57	max	14.413	34	131.138	34	11.673	15	0	61	.002	25	0	61
2		min	-11.613	15	-106.627	15	-14.475	33	0	1	002	45	0	1
3	N58	max	11.676	45	132.03	24	11.726	45	0	61	.002	15	0	61

Company : GPD
Designer : KM
Job Number : 2021777.800529.12
Model Name : BU #. 800529, CT HAMDEN NORTH CAC

Sept 13, 2021 1:11 P M Checked By:___

Envelope Joint Reactions (Continued)

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
4		min	-14.474	23	-107.239	45	-14.54	23	0	1	002	35	0	1
5	N59	max	11.607	35	131.322	14	14.481	14	0	61	.002	45	0	61
6		min	-14.417	13	-106.445	35	-11.664	35	0	1	002	25	0	1
7	N60	max	14.475	44	131.898	44	14.534	44	0	61	.002	35	0	61
8		min	-11.668	25	-107.317	25	-11.735	25	0	1	002	15	0	1
9	Totals:	max	25.946	40	92.866	60	25.946	10						
10		min	-25.946	18	38.747	10	-25.946	28						

Envelope I	AISC 14th(360-10)		er Code Ci	Tecks												
		Code Check	Code Check	Ratio				Shear Check	Ratio				phi*Mn y-y	phi*Mn z-z		_
Member 1 M9	Shape 2L2x2x3/16x1/2	0.064	Allowable 1.05	(Act./Allow.) 0.061*	Loc[in]	LC 44	Shear Check 0.003	Allowable 1.05	(Act./Allow.) 0.003*	Loc[in] 5.553	phi*Pnc [lb] 29.85	phi*Pnt [lb] 46.322	[k-ft] 2.888	[k-ft] 1.645	Cb 1	Eqn H1-1b*
2 M10	2L2x2x3/16x1/2	0.004	1.05	0.067*	0	24	0.003	1.05	0.003*	5.553	29.85	46.322	2.888	1.645	1	H1-1b*
3 M11	2L2x2x3/16x1/2	0.07	1.05	0.067*	0	14	0.003	1.05	0.003*	5.553	29.85	46.322	2.888	1.645	1	H1-1b*
4 M12	2L2x2x3/16x1/2	0.063	1.05	0.06*	0	34	0.003	1.05	0.003*	5.553	29.85	46.322	2.888	1.645	1	H1-1b*
5 M13	2L2x2x3/16x1/2	0.067	1.05	0.064*	0	24	0.003	1.05	0.003*	5.553	29.85	46.322	2.888	1.645	1	H1-1b*
6 M14	2L2x2x3/16x1/2	0.073	1.05	0.07*	0	44	0.003	1.05	0.003*	5.553	29.85	46.322	2.888	1.645	1	H1-1b*
7 M15	2L2x2x3/16x1/2	0.074	1.05	0.07*	0	34	0.003	1.05	0.003*	5.553	29.85	46.322	2.888	1.645	1	H1-1b*
8 M16	2L2x2x3/16x1/2	0.068	1.05	0.065*	0	14	0.003	1.05	0.003*	5.553	29.85	46.322	2.888	1.645	1	H1-1b*
9 M25	2L2x2x3/16x1/2	0.147	1.05	0.14*	0	44	0.003	1.05	0.003*	5.553	29.85	46.322	2.888	1.645	1	H1-1b*
10 M26	2L2x2x3/16x1/2	0.154	1.05	0.147*	0	24	0.003	1.05	0.003*	5.553	29.85	46.322	2.888	1.645	1	H1-1b*
11 M27 12 M28	2L2x2x3/16x1/2	0.152	1.05	0.145* 0.139*	0	14 34	0.003	1.05	0.003* 0.003*	5.553 5.553	29.85 29.85	46.322 46.322	2.888 2.888	1.645 1.645	1	H1-1b*
12 M28 13 M29	2L2x2x3/16x1/2 2L2x2x3/16x1/2	0.146 0.15	1.05 1.05	0.139	0	24	0.003	1.05 1.05	0.003*	5.553	29.85	46.322	2.888	1.645	1	H1-1b*
14 M30	2L2x2x3/16x1/2	0.156	1.05	0.149*	0	44	0.003	1.05	0.003*	5.553	29.85	46.322	2.888	1.645	1	H1-1b*
15 M31	2L2x2x3/16x1/2	0.158	1.05	0.15*	0	34	0.003	1.05	0.003*	5.553	29.85	46.322	2.888	1.645	1	H1-1b*
16 M32	2L2x2x3/16x1/2	0.152	1.05	0.145*	0	14	0.003	1.05	0.003*	5.553	29.85	46.322	2.888	1.645	1	H1-1b*
17 M41	2L2x2x3/16x1/2	0.222	1.05	0.211*	2.661	9	0.003	1.05	0.003*	5.553	29.85	46.322	2.888	1.645	1	H1-1a
18 M42	2L2x2x3/16x1/2	0.227	1.05	0.216*	2.661	19	0.003	1.05	0.003*	5.553	29.85	46.322	2.888	1.645	1	H1-1a
19 M43	2L2x2x3/16x1/2	0.229	1.05	0.218*	2.661	19	0.003	1.05	0.003*	5.553	29.85	46.322	2.888	1.645	1	H1-1a
20 M44	2L2x2x3/16x1/2	0.225	1.05	0.214*	2.661	29	0.003	1.05	0.003*	5.553	29.85	46.322	2.888	1.645	_1_	H1-1a
21 M45	2L2x2x3/16x1/2	0.225	1.05	0.214*	2.661	29	0.003	1.05	0.003*	5.553	29.85	46.322	2.888	1.645	1	H1-1a
22 M46 23 M47	2L2x2x3/16x1/2 2L2x2x3/16x1/2	0.23 0.236	1.05 1.05	0.219* 0.225*	2.777	39	0.003	1.05 1.05	0.003* 0.003*	5.553 5.553	29.85 29.85	46.322 46.322	2.888 2.888	1.645 1.645	1	H1-1a H1-1a
24 M48	2L2x2x3/16x1/2 2L2x2x3/16x1/2	0.231	1.05	0.22*	2.661	9	0.003	1.05	0.003*	5.553	29.85	46.322	2.888	1.645	1	H1-1a
25 M57	2L2x2x3/16x1/2	0.313	1.05	0.298*	5.553	44	0.005	1.05	0.005*	0	29.85	46.322	2.888	1.645	1	H1-1a
26 M58	2L2x2x3/16x1/2	0.318	1.05	0.303*	5.553	24	0.005	1.05	0.005*	0	29.85	46.322	2.888	1.645	1	H1-1a
27 M59	2L2x2x3/16x1/2	0.316	1.05	0.301*	4.975	14	0.005	1.05	0.005*	0	29.85	46.322	2.888	1.645	1	H1-1a
28 M60	2L2x2x3/16x1/2	0.311	1.05	0.296*	5.553	34	0.005	1.05	0.005*	0	29.85	46.322	2.888	1.645	1	H1-1a
29 M61	2L2x2x3/16x1/2	0.316	1.05	0.301*	5.553	24	0.005	1.05	0.005*	0	29.85	46.322	2.888	1.645	1	H1-1a
30 M62	2L2x2x3/16x1/2	0.323	1.05	0.308*	5.553	44	0.005	1.05	0.005*	0	29.85	46.322	2.888	1.645	1	H1-1a
31 M63	2L2x2x3/16x1/2	0.323	1.05	0.308*	5.553	34	0.005	1.05	0.005*	0	29.85	46.322	2.888	1.645	1	H1-1a
32 M64	2L2x2x3/16x1/2	0.317	1.05	0.302*	4.859	14	0.005	1.05	0.005*	0	29.85	46.322	2.888	1.645	1	H1-1a
33 M73 34 M74	2L4x4x3/8x1/2 2L4x4x3/8x1/2	0.144 0.145	1,05 1.05	0,137* 0.138*	0	34 24	0.002	1,05 1.05	0,002* 0.002*	11.08 11.08	112.46 112.46	185,287 185,287	20,065 20.065	13,16 13.16	1	H1-1b*
35 M75	2L4x4x3/8x1/2 2L4x4x3/8x1/2	0.145	1.05	0.138*	0	24	0.002	1.05	0.002*	11.08	112.46	185.287	20.065	13.16	1	H1-1b*
36 M76	2L4x4x3/8x1/2	0.144	1.05	0.137*	0	14	0.002	1.05	0.002*	11.08	112.46	185.287	20.065	13.16	1	H1-1b*
37 M77	2L4x4x3/8x1/2	0.144	1.05	0.137*	0	14	0.002	1.05	0.002*	11.08	112.46	185.287	20.065	13.16	1	H1-1b*
38 M78	2L4x4x3/8x1/2	0.145	1.05	0.138*	0	44	0.002	1.05	0.002*	11.08	112.46	185.287	20.065	13.16	1	H1-1b*
39 M79	2L4x4x3/8x1/2	0.147	1.05	0.14*	0	44	0.002	1.05	0.002*	11.08	112.46	185.287	20.065	13.16	1	H1-1b*
40 M80	2L4x4x3/8x1/2	0.146	1.05	0.139*	0	34	0.002	1.05	0.002*	11.08	112.46	185.287	20.065	13.16	1	H1-1b*
41 M89	2L4x4x3/8x1/2	0.216	1.05	0.206*	5.307	34	0.002	1.05	0.002*	11.08	112.46	185.287	20.065	13.16	1	H1-1a
42 M90	2L4x4x3/8x1/2	0.217	1.05	0.207*	5.307	24	0.002	1.05	0.002*	11.08	112.46	185.287	20.065	13.16	1	H1-1a
43 M91	2L4x4x3/8x1/2	0.218	1.05	0.208*	5.307	24	0.002	1.05	0.002*	11.08	112.46	185.287	20.065	13.16	1	H1-1a
44 M92	2L4x4x3/8x1/2	0.217	1.05	0.207*	5.307	14	0.002	1.05	0.002*	11.08	112.46	185.287	20.065	13.16	1	H1-1a
45 M93	2L4x4x3/8x1/2	0.216	1.05	0.206*	5.307	14	0.002	1.05	0.002*	11.08	112.46	185.287	20.065	13.16	1	H1-1a
46 M94 47 M95	2L4x4x3/8x1/2 2L4x4x3/8x1/2	0.217 0.219	1.05 1.05	0.207* 0.209*	5.307 5.307	44	0.002	1.05 1.05	0.002* 0.002*	11.08 11.08	112.46 112.46	185.287 185.287	20.065 20.065	13.16 13.16	1	H1-1a H1-1a
48 M96	2L4x4x3/8x1/2 2L4x4x3/8x1/2	0.219	1.05	0.209	5.307	34	0.002	1.05	0.002*	11.08	112.46	185.287	20.065	13.16	1	H1-1a
49 M105		0.308	1.05	0.293*	5.768	34	0.002	1.05	0.002*	11.08	112.46	185.287	20.065	13.16	1	H1-1a
50 M106	2L4x4x3/8x1/2	0.309	1.05	0.294*	5.768	24	0.002	1.05	0.002*	11.08	112.46	185.287	20.065	13.16	1	H1-1a
51 M107	2L4x4x3/8x1/2	0.311	1.05	0.296*	5.768	24	0.002	1.05	0.002*	11.08	112.46	185.287	20.065	13.16	1	H1-1a
52 M108	2L4x4x3/8x1/2	0.309	1.05	0.294*	5.768	14	0.002	1.05	0.002*	11.08	112.46	185.287	20.065	13.16	1	H1-1a
53 M109		0.308	1.05	0.293*	5.768	14	0.002	1.05	0.002*	11.08	112.46	185.287	20.065	13.16	1	H1-1a
54 M110		0.309	1.05	0.294*	5.768	44	0.002	1.05	0.002*	11.08	112.46	185.287	20.065	13.16	1	H1-1a
55 M111	2L4x4x3/8x1/2	0.31	1.05	0.295*	5.768	44	0.002	1.05	0.002*	11.08	112.46	185.287	20.065	13.16	<u> </u>	H1-1a
56 M112		0.309	1.05	0.294*	5.768	34	0.002	1.05	0.002*	11.08	112.46	185.287 216.936	20.065	13.16	1	H1-1a
57 M1 58 M2	HSS6x6x1/4 HSS6x6x1/4	0.057 0.058	1.05 1.05	0.054* 0.055*	4.896 5	9	0.009	1.05 1.05	0.009* 0.009*	0	181.658 181.658	216.936	38.64 38.64	38.64 38.64	1	H1-1b
59 M3	HSS6x6x1/4	0.057	1.05	0.054*	5	29	0.009	1.05	0.009*	0	181.658	216.936	38.64	38.64	1	H1-1b
60 M4	HSS6x6x1/4	0.061	1.05	0.058*	5	39	0.009	1.05	0.009*	0	181.658	216.936	38.64	38.64	1	H1-1b
61 M17	HSS6x6x1/4	0.072	1.05	0.069*	10	9	0.007	1.05	0.007*	5	181.658	216.936	38.64	38.64	1	H1-1b
62 M18	HSS6x6x1/4	0.073	1.05	0.07*	10	19	0.007	1.05	0.007*	5	181.658	216.936	38.64	38.64	1	H1-1b
63 M19	HSS6x6x1/4	0.071	1.05	0.068*	10	29	0.007	1.05	0.007*	5	181.658	216.936	38.64	38.64	1	H1-1b
64 M20	HSS6x6x1/4	0.077	1.05	0.073*	10	39	0.007	1.05	0.007*	5	181.658	216.936	38.64	38.64	1	H1-1b
65 M33	HSS6x6x1/4	0.122	1.05	0.116*	0	9	0.007	1.05	0.007*	0	181.658	216.936	38.64	38.64	1	H1-1b
66 M34 67 M35	HSS6x6x1/4 HSS6x6x1/4	0.123 0.121	1.05 1.05	0.117* 0.115*	0	19 29	0.007	1.05 1.05	0.007* 0.007*	0	181.658 181.658	216.936 216.936	38.64 38.64	38.64 38.64	1	H1-1b
68 M36	HSS6x6x1/4	0.121	1.05	0.115	0	39	0.007	1.05	0.007*	0	181.658	216.936	38.64	38.64	1	H1-1b*
69 M49	HSS6x6x1/4	0.276	1.05	0.263*	10	9	0.009	1.05	0.009*	5	181.658	216.936	38.64	38.64	1	H1-1a
70 M50	HSS6x6x1/4	0.278	1.05	0.265*	10	19	0.009	1.05	0.009*	5	181.658	216.936	38.64	38.64	1	H1-1a
71 M51	HSS6x6x1/4	0.274	1.05	0.261*	10	29	0.009	1.05	0.009*	5	181.658	216.936	38.64	38.64	1	H1-1a
72 M52	HSS6x6x1/4	0.288	1.05	0.274*	10	39	0.009	1.05	0.009*	5	181.658	216.936	38.64	38.64	1	H1-1a
73 M65	HSS8x8x1/4	0.148	1.05	0.141*	0	34	0.008	1.05	0.008*	0	199.192	293.94	66.288	66.288	1	H1-1b*
74 M66	HSS8x8x1/4	0.15	1.05	0.143*	0	24	0.008	1.05	0.008*	0	199.192	293.94	66.288	66.288	1	H1-1b*
75 M67	HSS8x8x1/4	0.147	1.05	0.14*	0	14	0.008	1.05	0.008*	0	199.192	293.94	66.288	66.288	1	H1-1b*
76 M68	HSS8x8x1/4	0.151	1.05	0.144*	0	44	0.008	1.05	0.008*	0	199.192	293.94	66.288	66.288	1	H1-1b*
77 M81	HSS8x8x1/4	0.296	1.05	0.282*	20	34	0.006	1.05	0.006*	10	199.192	293.94	66.288	66.288	1	H1-1a
78 M82 79 M83	HSS8x8x1/4 HSS8x8x1/4	0.297 0.294	1.05 1.05	0.283* 0.28*	0	24 14	0.006	1.05 1.05	0.006* 0.006*	10	199.192 199.192	293.94 293.94	66.288 66.288	66.288 66.288	1	H1-1a H1-1a
80 M84	HSS8x8x1/4 HSS8x8x1/4	0.294	1.05	0.284*	20	44	0.006	1.05	0.006*	10	199.192	293.94	66.288	66.288	1	H1-1a
81 M97	HSS8x8x1/4	0.298	1.05	0.264	20	34	0.007	1.05	0.006	10	199.192	293.94	66.288	66.288	1	H1-1a
82 M98	HSS8x8x1/4	0.397	1.05	0.378*	20	24	0.007	1.05	0.007*	10	199.192	293.94	66.288	66.288	1	H1-1a
83 M99	HSS8x8x1/4	0.394	1.05	0.375*	20	14	0.007	1.05	0.007*	10	199.192	293.94	66.288	66.288	1	H1-1a
84 M100	HSS8x8x1/4	0.397	1.05	0.378*	20	44	0.007	1.05	0.007*	10	199.192	293.94	66.288	66.288	1	H1-1a
85 M5	C6X10.5	0.004	1.05	0.004*	2.417	50	0.001	1.05	0.001*	4.833	59.887	99.468	2.428	15.224	1	H1-1b
86 M6	C6X10.5	0.004	1.05	0.004*	2.417	52	0.001	1.05	0.001*	4.833	59.887	99.468	2.428	15.224	1	H1-1b
87 M7	C6X10.5	0.005	1.05	0.005*	2.417		0.001	1.05	0.001*	4.833	59.887	99.468	2.428	15.224	1	H1-1b
88 M8	C6X10.5	0.005	1.05	0.005*	2.417	60	0.001	1.05	0.001*	0	59.887	99.468	2.428	15.224	1	H1-1b

Envelope AISC 14th(360-10): LRFD Steel Code Checks

Member	Shape	Code Check Actual	Code Check Allowable	Ratio (Act./Allow.)	Loc[in]	1.0	Shear Check	Shear Check Allowable	Ratio (Act,/Allow.)	Loc(in)	phi*Pnc [lb]	phi*Pnt [[b]	phi*Mn y-y [k-ft]	phi*Mn z-z [k-ft]	Cb	Egn
89 M21	C6X10.5	0.053	1.05	0.05*	2.417	3	0.017	1.05	0.016*	4.833	59.887	99.468	2,428	15.224	1	H1-1b
90 M22	C6X10.5	0.056	1.05	0.053*	2,417	3	0.017	1.05	0.016*	4.833	59,887	99.468	2.428	15.224	1	H1-1b
91 M23	C6X10.5	0.061	1.05	0.058*	2.417	3	0.019	1.05	0.018*	4.833	59.887	99,468	2,428	15.224	1	H1-1b
92 M24	C6X10.5	0.056	1.05	0.053*	2.467	3	0.017	1.05	0.016*	4.833	59.887	99.468	2,428	15,224	1	H1-1b
93 M37	C6X10.5	0.054	1.05	0.051*	2.417	3	0.017	1.05	0.016*	4.833	59.887	99.468	2.428	15.224	1	H1-1b
94 M38	C6X10.5	0.057	1.05	0.054*	2.417	3	0.017	1.05	0.016*	4.833	59.887	99.468	2.428	15.224	- 1	H1-1b
95 M39	C6X10.5	0.062	1.05	0.059*	2.417	3	0.019	1.05	0.018*	4.833	59.887	99.468	2.428	15.224	1	H1-1b
96 M40	C6X10.5	0.058	1.05	0.055*	2.467	3	0.017	1.05	0.016*	4.833	59.887	99.468	2.428	15.224	1	H1-1b
97 M53	C6X10.5	0.056	1.05	0.053*	2.417	3	0.017	1.05	0.016*	4.833	59.887	99.468	2.428	15.224	1	H1-1b
98 M54	C6X10.5	0.059	1.05	0.056*	2.417	3	0.017	1.05	0.016*	4.833	59.887	99.468	2.428	15.224	1	H1-1b
99 M55	C6X10.5	0.064	1.05	0.061*	2.417	3	0.019	1.05	0.018*	4.833	59.887	99.468	2.428	15.224	1	H1-1b
100 M56	C6X10.5	0.059	1.05	0.056*	2.467	3	0.017	1.05	0.016*	4.833	59.887	99.468	2.428	15.224	1	H1-1b
101 M69	W16X45	0.471	1.05	0.449*	4.76	29	0.133	1.05	0.127*	0	426.018	598.5	54.375	273.12	1	H1-1b
102 M70	W16X45	0.475	1.05	0.452*	4.76	19	0.134	1.05	0.128*	9.521	426.018	598.5	54.375	273.12	1	H1-1b
103 M71	W16X45	0.473	1.05	0.45*	4.76	9	0.133	1.05	0.127*	9.521	426.018	598.5	54.375	273.12	1	H1-1b
104 M72	W16X45	0.49	1.05	0.467*	4.76	39	0.138	1.05	0.131*	9.521	426.018	598.5	54.375	273.12	1	H1-1b
105 M85	W6X12	0.156	1.05	0.149*	0	10	0.003	1.05	0.003*	9.521	59.891	159.75	8.7	22.79	1	H1-1b*
106 M86	W6X12	0.16	1.05	0.152*	0	40	0.003	1.05	0.003*	9.521	59.891	159.75	8.7	22.79	1	H1-1b*
107 M87	W6X12	0.156	1.05	0.149*	0	30	0.003	1.05	0.003*	9.521	59.891	159.75	8.7	22.79	1	H1-1b*
108 M88	W6X12	0.158	1.05	0.15*	0	20	0.003	1.05	0.003*	9.521	59.891	159.75	8.7	22.79	1	H1-1b*
109 M101	W6X12	0.277	1.05	0.264*	4.76	10	0.003	1.05	0.003*	9.521	59.891	159.75	8.7	22.79	1	H1-1a
110 M102	W6X12	0.28	1.05	0.267*	4.76	40	0.003	1.05	0.003*	9.521	59.891	159.75	8.7	22.79	1	H1-1a
111 M103	W6X12	0.277	1.05	0.264*	4.76	30	0.003	1.05	0.003*	9.521	59.891	159.75	8.7	22.79	1	H1-1a
112 M104	W6X12	0.279	1.05	0.266*	4.76	20	0.003	1.05	0.003*	9.521	59.891	159.75	8.7	22.79	1	H1-1a
113 M113	W10X33	0.399	1.05	0.38*	4.395	29	0.497	1.05	0.473*	3.092	205.996	436.95	52.5	142.087	1	H1-1b
114 M114	W10X33	0.404	1.05	0.385*	3.418	9	0.5	1.05	0.476*	4.72	205.996	436.95	52.5	142.087	1	H1-1b
115 M115	W10X33	0.403	1.05	0.384*	4.395	19	0.502	1.05	0.478*	3.092	205.996	436.95	52.5	142.087	1	H1-1b
116 M116	W10X33	0.42	1.05	0.4*	3.418	39	0.52	1.05	0.495*	4.72	205.996	436.95	52.5	142.087	1	H1-1b

APPENDIX B BASE LEVEL DRAWING

CLIZZEL KERNON KINGER KERNGAN SERVICE STATEMENT STATEME

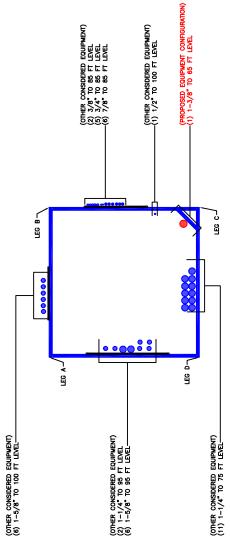
DRAWN BY: AAM CHECKED BY: DRAWING DATE: 19/05/06

SITE NUMBER: SITE NAME:

SITE NAME

CT HAMDEN NORTH CAC

BUSINESS UNIT NUMBER SITE ADDRESS 800529


890 EVERGREEN AVENUE HAMDEN, CT 06518 NEW HAVEN COUNTY USA SHEET TITLE

BASE LEVEL DRAWING SHEET NUMBER

A1-0

S L N

FILE NAME: 800529_BASELEVEL.dwg

NSA

APPENDIX C ADDITIONAL CALCULATIONS

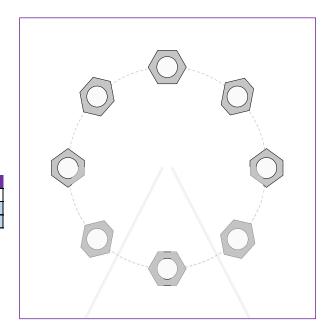
Project #: 2021777.800529.12 Bolt Checks Date: 9/13/2021

Section #	Elevation	Component Type	Bolt Grade	Bolt Size (in)	# of Bolts	Maximum Load (k)	Maximum Load per Bolt (k)	Allowable Load per Bolt (k)	Ratio	Ratio	% Capacity	Criteria
L1	100	Diagonal	A325N	0.875	2	2,214	1.107	15.588	0.071	1.050	6.8%	1
L2	90	Diagonal	A325N	0.875	2	4.719	2.36	15.588	0.151	1.050	14.4%	1
L3	80	Diagonal	A325N	0.875	2	6.897	3.448	15.588	0.221	1.050	21.1%	1
L4	70	Leg	A325N	0.875	4	42.793	21.396	41.556	0.515	1.050	49.0%	1
		Diagonal	A325N	0.875	2	9.136	4.568	15.588	0.293	1.050	27.9%	1
T1	60	Diagonal	A325N	0.875	2	16.581	8.29	41.372	0.200	1.050	19.1%	1
T2	40	Top Girt	A325N	0.875	2	13.656	6.828	24.354	0.280	1.050	26.7%	1
		Diagonal	A325N	0.875	2	23.462	11.731	41.372	0.284	1.050	27.0%	1
T3	20	Top Girt	A325N	0.875	2	21.591	10.796	24.354	0.443	1.050	42.2%	1
		Diagonal	A325N	0.875	2	33.675	16.838	41.372	0.407	1.050	38.8%	1

Maximum Capacity 49.0%

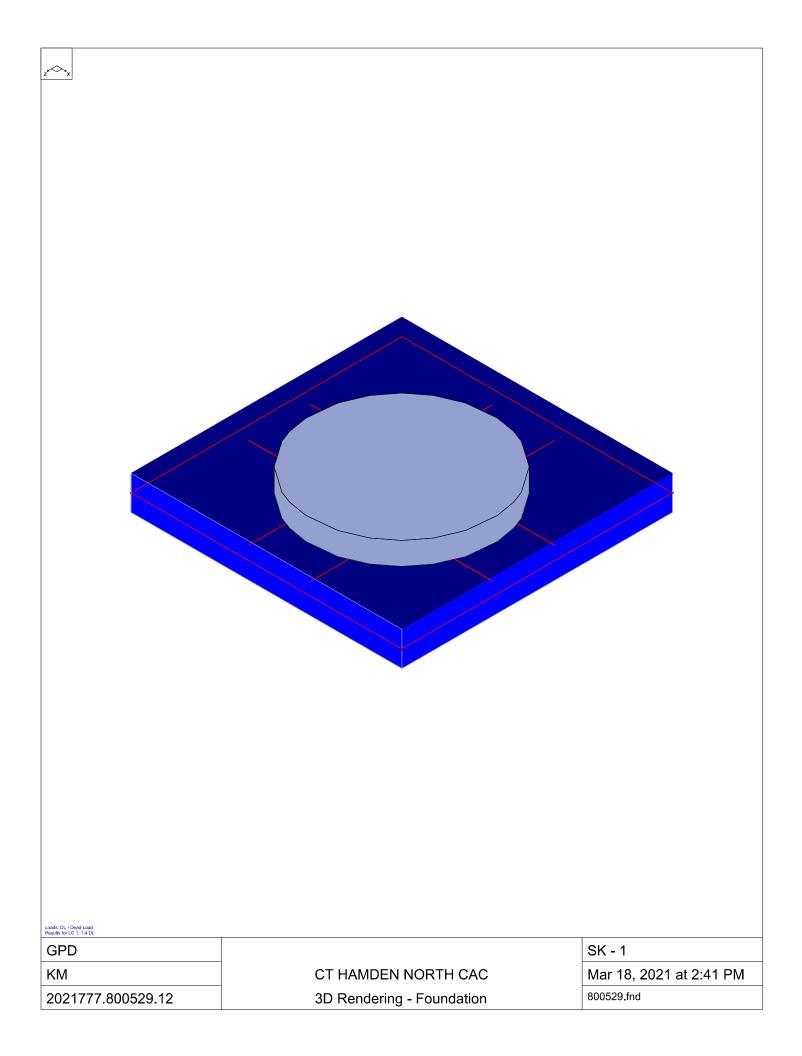
Self Support Anchor Rod Capacity

Site Info		
	BU#	800529
	Site Name	T HAMDEN NORTH CA
	Order#	552718 Rev. 3


Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	Yes
I _{ar} (in)	0

Applied Loads											
	Comp.	Uplift									
Axial Force (kips)	131.32	106.45									
Shear Force (kips)	20.43	15.55									

^{*}TIA-222-H Section 15.5 Applied


Considered Eccentricity	
Leg Mod Eccentricity (in)	0.000
Anchor Rod N.A Shift (in)	0.000
Total Eccentricity (in)	0.000

^{*}Anchor Rod Eccentricity Applied

Connection Properties	Analysis Results							
Anchor Rod Data	Anchor Rod Summary		(units of kips, kip-in)					
(8) 1-1/4" ø bolts (A36 N; Fy=36 ksi, Fu=58 ksi)	Pu_t = 13.31	φPn_t = 42.15	Stress Rating					
I _{ar} (in): 0	Vu = 1.94	φVn = 26.69	30.1%					
	Mu = n/a	φMn = n/a	Pass					

CCIplate - Version 4.1.2 Analysis Date: 9/13/2021

Company : GPD
Designer : KM
Job Number : 2021777.800529.12
Model Name : CT HAMDEN NORTH CAC

Sept 13, 2021 1:28 PM Checked By:___

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	100
Mesh Size (in)	24
Max Iterations	10
Merge Tolerance (in)	.12
Solver	Sparse Accelerated
Coefficient of Friction	.3
No. of Shear Regions	4
Shear Region Spacing Increment (in)	4
Min 1 Bar Dia Spacing for Beams?	No
Optimize footings for OTM / Sliding?	No
Parme Beta Factor	.65
Pile Safety Factor	3
Concrete Stress Block	Rectangular
Concrete Rebar Set	ASTM A615
Concrete Code	AC I 318-14
HR Steel Pile Code	AISC 14th(360-10): ASD
Wood Pile Code	AWC NDS-18: ASD

Concrete Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1	. Density[k/ft^3]	f'c[ksi]	Lambda	Flex Steel	.S hear S te
1	Conc3000NW	3156	1372	.15	.6	.145	3	1	60	60
2	Conc3500NW	3409	1482	.15	.6	<u>.</u> 145	3.5	1	60	60
3	Conc4000NW	3644	1584	.15	.6	.145	4	1	60	60
4	Conc3000LW	2085	907	.15	.6	.11	3	.75	60	60
5	Conc3500LW	2252	979	.15	.6	.11	3.5	.75	60	60
6	Conc4000LW	2408	1047	.15	.6	.11	4	.75	60	60

Slab Rebar Parameters

	Label	Top	Bottom Bar	Max Top Ba	.Min Top Bar Spacing	.Max Bot B	Min Bot Ba	.Spacing Incre	Rebar Options
1	Circular	#6	#3	9	9	999	999	2	Force Top and B
2	Square	#5	#8	9	9	9	9	2	Force Top and B

Soil Definitions

	Label	Subgrade Modulus [k/ft^3]	Allowable Bearing[ksf]	Depth Properties	Default?
1	Default	259.2	4.5	None	Yes

Slabs

	Label	Thickness [in]	Ma te rial	Local Axis Angle	.Analysis Offset [i	Passive Pressur	Soil Overburden [ksf]
1	S2	36	Conc3000NW	0	0	0	0

Pedestal Properties

	Label	Type	Shape	Height[in]	e/BL	ex[in]	ez[in]	BLx[ft]	BLz[ft]
-	Footing 1	Pedestal	CRECT12X12	24	Use ex,ez	0	0	0	0

Company : GPD
Designer : KM
Job Number : 2021777.800529.12
Model Name : CT HAMDEN NORTH CAC

Sept 13, 2021 1:28 P M Checked By:__

Load Combinations

	Label	SSA	SF					 Fa	Categ	.Fa	 Fa	۵	Fa	۵	Fa	C	Fa	C	Fa	C	Fa
1	1.4 D	Υ				0															
2	1.2 D + 1.6 L + 0.5 Lr	Υ		DL	1.2	0	1														
3	1.2 D + 0.2 Di + 1.6 L + 0.5 S	Υ		DL	1.2	0	1														
4	1.2 D + 1 L + 1.6 Lr	Υ		DL	1.2	0	1														
5	1.2 D + 1 L + 1.6 S	Υ		DL	1.2	0	1														
6		Υ		DL	1.2	0	1														
7		Υ		DL	1.2	0	1														
8	1.2 D + 1 L + 0.5 Lr + 1 W @ 0°			DL	1.2	0	1														
9	1.2 D + 1 L + 0.5 S + 1 W @ 0°	Υ		DL	1.2	0	1														
10	0.9 D + 1 W @ 0°	Υ		DL		0	1														
11	1.2 D + 1.6 Lr + 0.5 W @ 45°	Υ		DL	1.2	E	1														
12	1.2 D + 1.6 S + 0.5 W @ 45°	Υ		DL	1.2		1														
13	1.2 D + 1 L + 0.5 Lr + 1 W @ 4	Υ		DL	1.2	ELZ	1														
14	1.2 D + 1 L + 0.5 S + 1 W @ 45°	Υ		DL	1.2	W	1														
15	0.9 D + 1 W @ 45°	Υ		DL	.9	W	1														
	1.2 D + 1 Di + 1 L + 0.5 S + 1			DL	1.2	W	1														
	0.9 D + 1 Di + 1 Wi @ 0° + Te			DL	.9	W	1														
	1.2 D + 1 Di + 1 L + 0.5 S + 1			DL	1.2	W	1														
19	0.9 D + 1 Di + 1 Wi @ 45° + Te	Υ		DL	.9	W	1														
20	1.4 D	YY		DL	1.4	0	1														
21	1.2 D + 1.6 L + 0.5 Lr	YY		DL	1.2	0	1														
22	1.2 D + 0.2 Di + 1.6 L + 0.5 S	YY		DL	1.2	0	1														
23	1.2 D + 1 L + 1.6 Lr	YY		DL	1.2	0	1														
24	1.2 D + 1 L + 1.6 S	YY		DL	1.2	0	1														
25	•	YY		DL	1.2	0	1														
26		YY		DL	1.2	0	1														
27	1.2 D + 1 L + 0.5 Lr + 1 W @ 0°			DL	1.2	0	1														
28	1.2 D + 1 L + 0.5 S + 1 W @ 0°			DL		0															
29	0.0 2	YY		DL		0															
30	1.2 D + 1.6 Lr + 0.5 W @ 45°	YY				E	1														
31		YY		DL	1.2	E	1														
	1.2 D + 1 L + 0.5 Lr + 1 W @ 4					ELZ															
33	1.2 D + 1 L + 0.5 S + 1 W @ 45°			DL	1.2	W	1														
34		YY		DL		W															
	1.2 D + 1 Di + 1 L + 0.5 S + 1			DL		W															
	0.9 D + 1 Di + 1 Wi @ 0° + Te			DL		W															
	1.2 D + 1 Di + 1 L + 0.5 S + 1					W															
38	0.9 D + 1 Di + 1 Wi @ 45° + Te	YY		DL	.9	W	1														

Design Strips

	Labe l	Rebar Angle from Pl	. No. of Design Cuts	Design Rule
1	DS4	90	50	Square
2	DS2	0	50	Square
3	DS3	90	50	Square

Envelope Slab Soil Pressures (By Combination)

	Label	UC	LC	Soil Pressure [ksf]	Allowable Bearing[ksf]	Point
1	S2	.336	32	1.513	4.5	N33

Company : GPD
Designer : KM
Job Number : 2021777.800529.12
Model Name : CT HAMDEN NORTH CAC

Sept 13, 2021 1:28 PM Checked By:___

Slab Overturning Safety Factors (By Combination)

	LC	Slab	Angle[deg]	Mo-xx[k-ft]	Ms-xx[k-ft]	Mo-zz[k-ft]	Ms-zz[k-ft]	Ms-xx/Mo-xx	Ms -zz/Mo-zz
1	20	S2	0	0	5914.21	0	5911.493	9.999+	9.999+
2	21	S2	0	0	5243.011	0	5241.672	9.999+	9.999+
3	22	S2	0	0	5319.891	0	5319.558	9.999+	9.999+
4	23	S2	0	0	5177.881	0	5176.161	9.999+	9.999+
5	24	S2	0	0	5177.881	0	5176.161	9.999+	9.999+
6	25	S2	0	0	5105.771	160.778	4447.699	9.999+	9.999+
7	26	S2	0	0	5105.771	160.778	4447.699	9.999+	9.999+
8	27	S2	0	0	5250.741	833.48	4447.699	9.999+	5.336
9	28	S2	0	0	5250.741	833.48	4447.699	9.999+	5.336
10	29	S2	0	0	3874.887	1094.008	3335.774	9.999+	3.049
11	30	S2	0	0	5650.231	0	4544.63	9.999+	9.999+
12	31	S2	0	0	5650.231	0	4544.63	9.999+	9.999+
13	32	S2	0	435.811	4447.699	317.499	4447.699	9.999+	9.999+
14	33	S2	0	435.811	4447.699	317.499	4447.699	9.999+	9.999+
15	34	S2	0	696.911	3335.774	579.055	3335.774	4.787	5.761
16	35	S2	0	0	5575.083	0	5289.004	9.999+	9.999+
17	36	S2	0	0	4391.848	0	4004.907	9.999+	9.999+
18	37	S2	0	0	5768.138	0	5380.392	9.999+	9.999+
19	38	S2	0	0	4686.659	0	4708.59	9.999+	9.999+

Slab Sliding Safety Factors (By Combination)

	LC	S l ab	Angle[deg]	Va - xx [k]	Vr-xx[k]	Va-zz[k]	V r-zz [k]	SR-xx	SR-zz
1	20	S2	0	0	147.806	0	147.806	9.999+	9.999+
2	21	S2	0	0	131.042	0	131.042	9.999+	9.999+
3	22	S2	0	0	132.971	0	132.971	9.999+	9.999+
4	23	S2	0	0	129.411	0	129.411	9.999+	9.999+
5	24	S2	0	0	129.411	0	129.411	9.999+	9.999+
6	25	S2	0	0	126.691	0	113.718	9.999+	9.999+
7	26	S2	0	0	126.691	0	113.718	9.999+	9.999+
8	27	S2	0	0	129.411	7.728	111.192	9.999+	9.999+
9	28	S2	0	0	129.411	7.728	111.192	9.999+	9.999+
10	29	S2	0	0	95.018	14.322	83.394	9.999+	5.823
11	30	S2	0	0	117.517	0	117.517	9.999+	9.999+
12	31	S2	0	0	117.517	0	117.517	9.999+	9.999+
13	32	S2	0	.129	111.192	.13	111.192	9.999+	9.999+
14	33	S2	0	.129	111.192	.13	111.192	9.999+	9.999+
15	34	S2	0	6.723	83.394	6.724	83.394	9.999+	9.999+
16	35	S2	0	0	139.052	0	134.471	9.999+	9.999+
17	36	S2	0	0	101.421	0	101.422	9.999+	9.999+
18	37	S2	0	0	135.813	0	135.812	9.999+	9.999+
19	38	S2	0	0	111.496	0	111.496	9.999+	9.999+

Strip Reinforcing (Envelope)

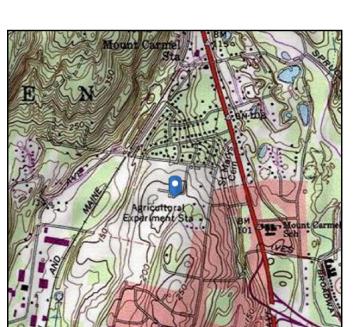
	Label	UC Top	LC	Top Bars Governin	. UC Bot	LC	Bot Bars/Mid	Governin	UC Shear	LC	Governin
1	DS4	.108	10	#5@ 9in DS 4-X17	.104	8	#8@ 9in	DS4-X34	.118	8	DS4-X25
2	DS2	.063	15	#5@ 9in DS 2-X14	.084	13	#8@ 9in	DS 2-X34	.094	13	DS 2-X25
3	DS3	.108	10	#5@ 9in DS 3-X17	.104	8	#8@ 9in	DS 3-X34	.118	8	DS 3-X25

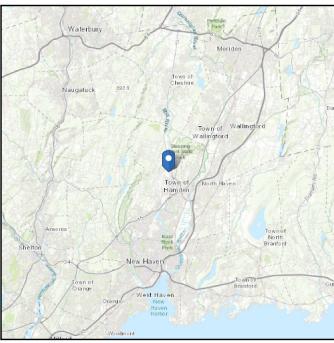
Address:

No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-16


Risk Category: **Ⅱ**


Soil Class: D - Default (see

Section 11.4.3)

Elevation: 205.84 ft (NAVD 88)

Latitude: 41.406639 **Longitude:** -72.904533

Wind

Results:

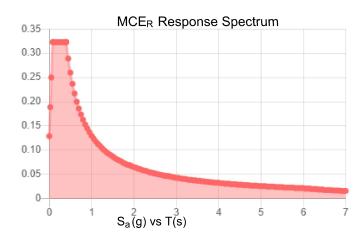
Wind Speed: 119 Vmph
10-year MRI 75 Vmph
25-year MRI 85 Vmph
50-year MRI 90 Vmph
100-year MRI 98 Vmph

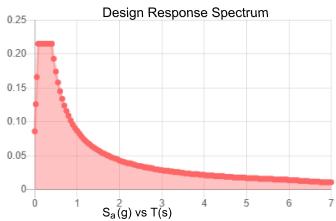
Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1—CC.2-4, and Section 26.5.2

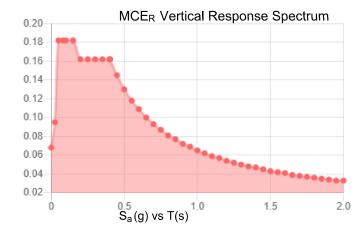
Date Accessed: Fri Sep 10 2021

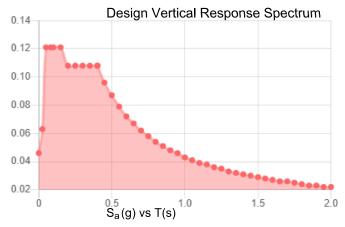
Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.


Seismic


Site Soil Class: D - Default (see Section 11.4.3)


Results:


S _s :	0.202	S _{D1} :	0.087
S ₁ :	0.054	T_L :	6
Fa:	1.6	PGA :	0.113
F _v :	2.4	PGA _M :	0.178
S _{MS} :	0.323	F _{PGA} :	1.575
S _{M1} :	0.13	l _e :	1
S _{DS} :	0,215	C _v :	0.704

Seismic Design Category B

Data Accessed: Fri Sep 10 2021

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16
Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness: 1.00 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed: Fri Sep 10 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Date: September 9, 2021

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 (918) 587-4630 towersupport@btgrp.com

Subject: Mount Analysis Report

Carrier Designation: DISH Network Equipment Co-Locate

Carrier Site Number:BOHVN00153ACarrier Site Name:CT-CCI-T-800529

Crown Castle Designation: BU Number: 800529

Site Name: CT Hamden North CAC

JDE Job Number: 644583

Order Number: 552718, Rev. 3

Engineering Firm Designation: B+T Group Report Designation: 141946.002.01

Site Data: 890 Evergreen Avenue, Hamden, CT, New Haven County, 06518

Latitude 41° 24' 23.90" Longitude -72° 54' 16.32"

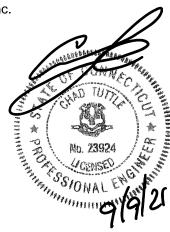
Structure Information: Tower Height & Type: 100 ft. Stealth Self Support Tower

Mount Elevation: 65 ft.

Mount Type: 8 ft. Sector Mount

B+T Group is pleased to submit this "**Mount Analysis Report**" to determine the structural integrity of DISH Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount's stress level. Based on our analysis we have determined the stress level to be:


Sector (typical) Sufficient

This analysis utilizes an ultimate 3-second gust wind speed of 119 mph as required by the 2015 International Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount structural analysis prepared by: Anne Delice

Respectfully submitted by: B&T Engineering, Inc.

COA: PEC.0001564 Expires: 02/10/2022

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

Table 2 - Documents Provided

3) ANALYSIS PROCEDURE

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Sector Mount)

Table 4 - Tieback End Reactions

4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

9) APPENDIX E

Supplemental Drawings

1) INTRODUCTION

This is a proposed 3 – sector 8' Sector Mount, designed by Commscope, (Part# MTC3975083).

2) ANALYSIS CRITERIA

Building Code: 2015 IBC TIA-222 Revision: TIA-222-H

Risk Category:

Ultimate Wind Speed: 119 mph

Exposure Category: С 1 **Topographic Factor at Base: Topographic Factor at Mount:** 1 Ice Thickness: 1 in Wind Speed with Ice: 50 mph Seismic Ss: 0.202 Seismic S₁: 0.054 **Live Loading Wind Speed:** 30 mph Man Live Load at Mid/End-Points: 250 lb Man Live Load at Mount Pipes: 500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Qty.	Manufacturer	Model / Type	Mount / Modification Details
	67	1	Raycap	RDIDC-9181-PF-48	
65	66	3	JMA	MX08FRO665-21	8 ft. Sector Mount
65	66	3	Fujitsu	TA08025-B605	o it. Sector Mourit
	64	3	Fujitsu	TA08025-B604	

Table 2 - Documents Provided

Document	Remarks	Reference	Source
CCI Order	Proposed Loading and Existing Loading	Date: 04/30/2021	Crown Castle

3) ANALYSIS PROCEDURE

3.1) Analysis Method

RISA-3D (Version 19.0.4), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed by B+T Group, was used to calculate wind loading on all appurtenances, dishes and mount members for various loading cases. Selected output from the analysis is included in Appendix B "Software Input Calculations".

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision D).

Manufactures drawing were used to create the model

3.2) Assumptions

- 1. The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design, TIA Standards, and/or manufacturer's specifications.
- 2. The configuration of antennas, mounts, and other appurtenances are as specified in Table-1.
- 3. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected members unless otherwise specified in this report.
- 4. Mount areas and weights are determined from field measurements, standard material properties, and/or manufacturer product data.
- 5. Serviceability with respect to antenna twist, tilt, roll or lateral translation is not checked and is left to the carrier or tower owner to ensure conformance.
- 6. All prior structural modifications, if any are assumed to be correctly installed and fully effective.
- 7. The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 8. The following material grades were assumed (Unless Noted Otherwise):

(a) Connection Bolts : ASTM A325

(b) Steel Pipe : ASTM A53 (GR. 35) (c) HSS (Round) : ASTM 500 (GR. B-42) (d) HSS (Rectangular) : ASTM 500 (GR. B-46) : ASTM A36 (GR. 36) (e) Channel (f) Steel Solid Rod : ASTM A36 (GR. 36) (g) Steel Plate : ASTM A36 (GR. 36) (h) Steel Angle : ASTM A36 (GR. 36) (i) UNISTRUT : ASTM A570 (GR. 33)

This analysis may be affected if any assumptions are not valid or have been made in error. B+T Group should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Sector Mount)

Notes	Component	Centerline (ft)	Critical Member	% Capacity	Pass / Fail
	Face Horizontals	65	1	9.6	Pass
	Support Horizontals	65	16	18.0	Pass
	Diagonals	65	25	25.0	Pass
1.2	Connection Plates	65	7	20.2	Pass
1,2	Verticals	65	24	39.8	Pass
	Connection Plates	65	9	6.7	Pass
	Tiebacks	65	41	2.0	Pass
	Mount Pipes	65	35	10.4	Pass
3	Connection Bolts	65	-	14.5	Pass

Structure Rating (max from all components) =	39.8%
--	-------

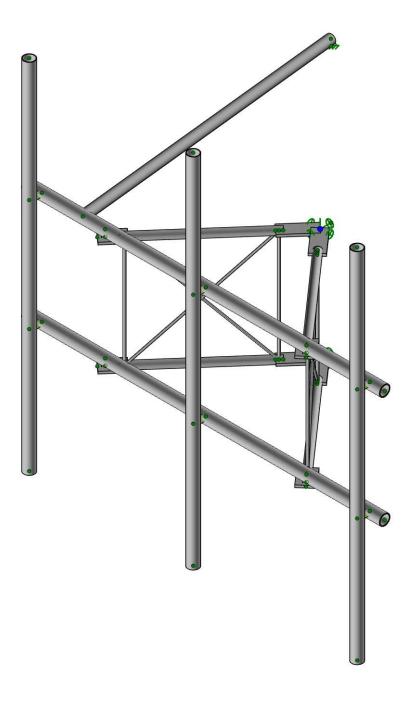
Notes:

- 1) See additional documentation in "Appendix C Software Analysis Output" for calculations supporting the % capacity consumed.
- 2) All sectors are typical
- 3) See additional documentation in "Appendix D Additional Calculations" for calculations supporting the % capacity reported.

Table 4 - Tieback Connection Data Table

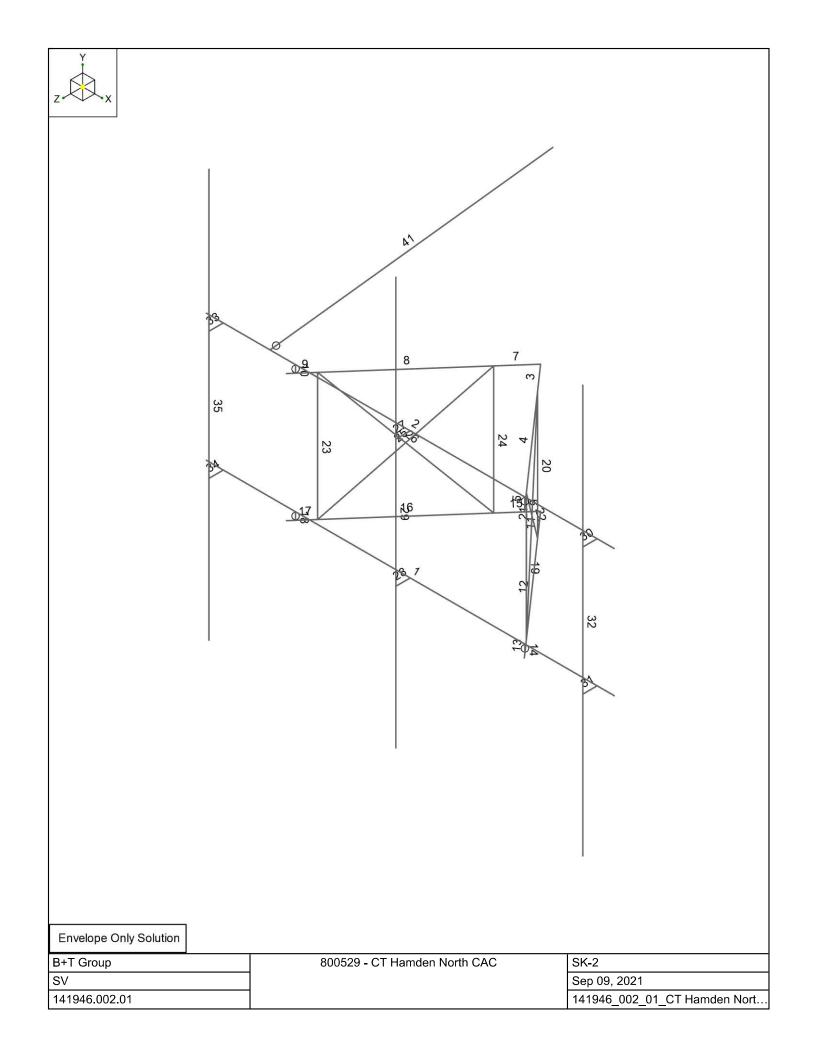
Tower Connection Node No.	Existing / Proposed	Resultant End Reaction (lb)	Connected Member Type	Connected Member Size	Member Compressive Capacity ³ (lb)	Notes
64	Existing	145.7978052	Leg	HSS6x6x1/4	-	-

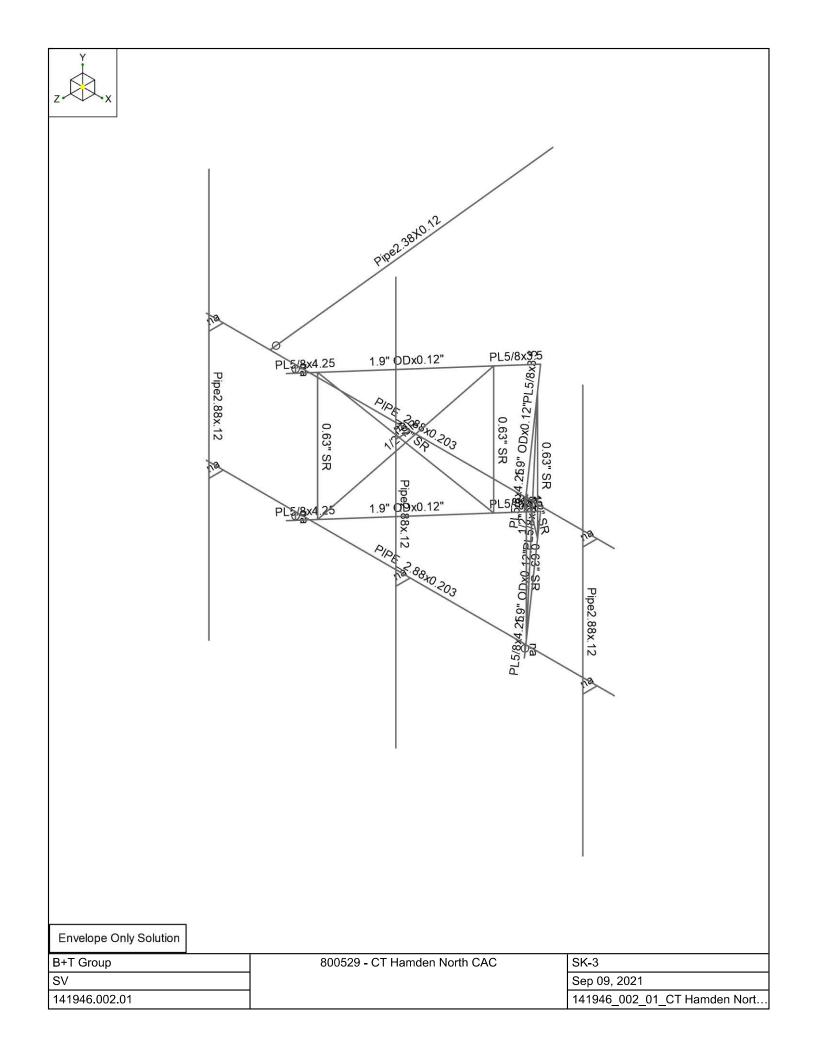
Notes:

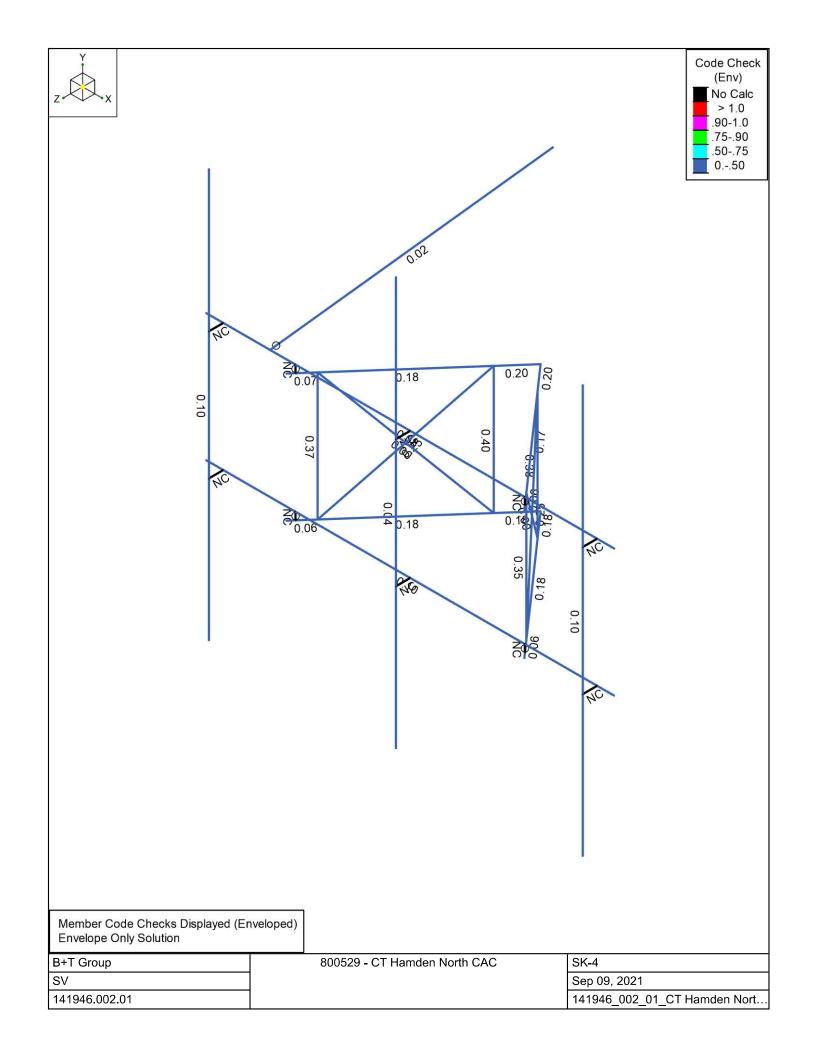

- Tieback connection point is within 25% of either end of the connected tower member
- 2) Tieback connection point is NOT within 25% of either end of the connected tower member Reduced member compressive capacity according to CED-STD-10294 Standard for Installation of Mounts and Appurtenances

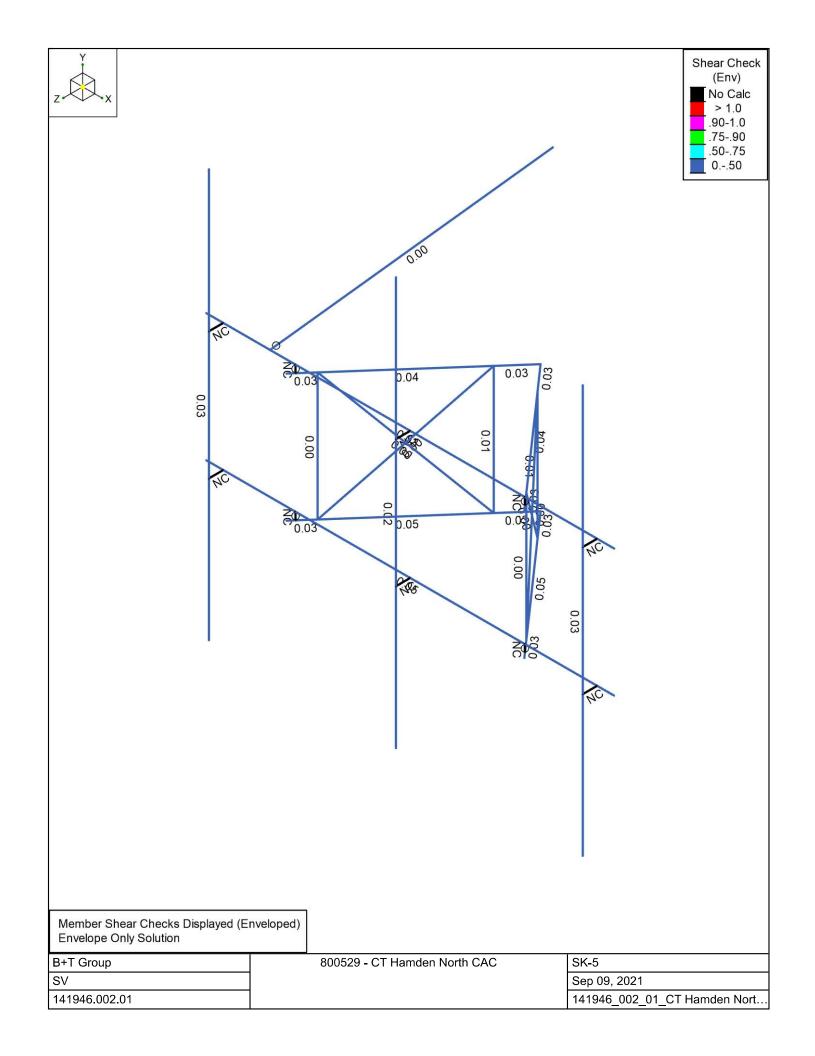
4.1) RECOMMENDATIONS

The Commscope, (Part# MTC3975083) mount has sufficient capacity to carry the proposed loading configuration. No modifications are required at this time.


APPENDIX A WIRE FRAME AND RENDERED MODELS






Envelope Only Solution

B+1 Group	800529 - CT Hamden North CAC	SK-1
SV		Sep 09, 2021
141946.002.01		141946_002_01_CT Hamden Nort

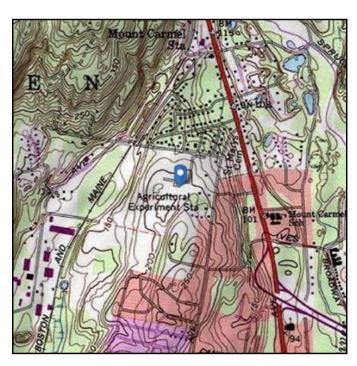
APPENDIX B SOFTWARE INPUT CALCULATIONS

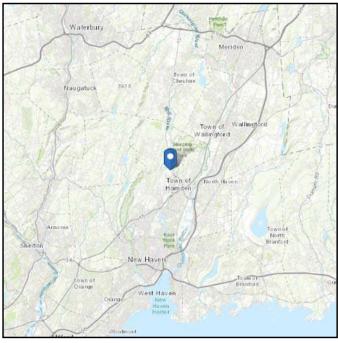
Address:

No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-16


Risk Category: ||


Soil Class: D - Default (see

Section 11.4.3)

Elevation: 205.84 ft (NAVD 88)

Latitude: 41.406639 **Longitude:** -72.904533

Wind

Results:

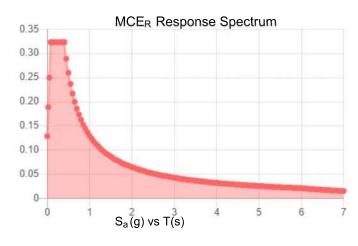
Wind Speed: 119 Vmph
10-year MRI 75 Vmph
25-year MRI 85 Vmph
50-year MRI 90 Vmph
100-year MRI 98 Vmph

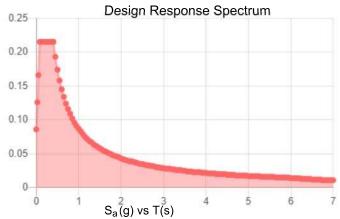
Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2

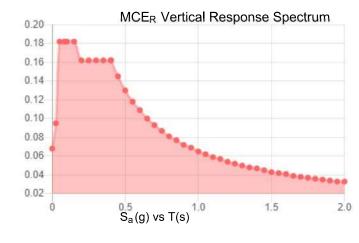
Date Accessed: Wed Sep 08 2021

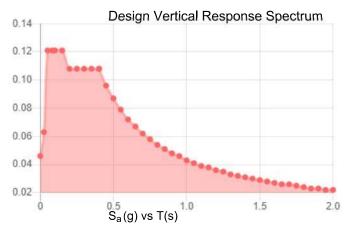
Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.


Seismic


Site Soil Class: D - Default (see Section 11.4.3)


Results:


S _S :	0.202	S _{D1} :	0.087
S ₁ :	0.054	T_L :	6
Fa:	1.6	PGA :	0.113
F _v :	2.4	PGA _M :	0.178
S _{MS} :	0.323	F _{PGA} :	1.575
S _{M1} :	0.13	l _e :	1
S _{DS} :	0.215	C _v :	0.704

Seismic Design Category B

Data Accessed: Wed Sep 08 2021

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16
Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness: 1.00 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed: Wed Sep 08 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Wed Sep 08 2021

	B+T GRP	1717 S. Boulder, Suite 300	Tulsa, OK 74159	(918) 587-4630
_			7	

KSC

141946.002.01 - CT Hamden

PROJECT SUBJECT DATE

Sector Mount Analysis

Ы

PAGE

09/08/21

	[ASCE7 Hazard Tool]					[Table 2-1]	[Sec. 2.6.5.1.2]	[Sec. 2.6.6.2]	[ASCE7 Hazard Tool]	[ASCE7 Hazard Tool]	[ASCE7 Hazard Tool]	[ASCE7 Hazard Tool]	[ASCE7 Hazard Tool]					[Sec. 16.6]	[Sec. 2.6.5.2]	[Sec. 2.6.6]	[Sec. 2.6.8]	[Sec. 16.6]	[Sec. 16.6]	[Sec. 2.6.10]	[Table 2-3]	[Sec. 2.7.7.1]	[Sec. 16.7]	
	⊭	⊭	₽	₽	₽				mph	mph	mph	.⊑												.⊑				
SST	506	100.00	65.00	00'99	0	Ħ	U	1.00	119	20	30	1.00	В	0.20	0.05	0.22	0.09	1.00	1.16	1.00	0.99	0.95	06.0	1.07		0.108	1,6	
• •	••	••	••	••	• •	••	••	• •	••	••	••	••	••	••	• •	••	• •		••	••	••	••	••	• •	••	••	••	
	\mathbf{Z}_{s}								>	>	>°	تب		လွ	δŢ	SDS	S_{D1}	ৰ্ভ	$\vec{\lambda}_{k}$	$\mathbf{z}_{\!$	₹	$\vec{\Delta}$	$\vec{\lambda}_{e}$	ţ	Γ	౮	$A_{\rm s}$	
Tower Type	Ground Elevation	Tower Height	Mount Elevation	Antenna Elevation	Crest Height	Risk Category	Exposure Category	Topography Category	Wind Velocity	Ice wind Velocity	Service Velocity	Base Ice thickness	Seismic Design Cat.					Gust Factor	Pressure Coefficient	Topography Factor	Elevation Factor	Directionality Factor	Shielding Factor	Design Ice Thickness	Importance Factor	Response Coefficient	Amplification	

psf

39.51

ď

	B+T GRP	1717 S. Boulder, Suite 300	Tulsa, OK 74159	(918) 587-4630
_			7	

KSC

141946.002.01 - CT Hamden

PROJECT SUBJECT DATE

Sector Mount Analysis

Ы

PAGE

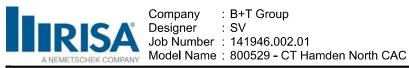
09/08/21

	F _{A Ice (T)}	0,01	0.01	0.01	0.01	0.01					
	F _{A Ice} (N)	0.03	0.03	0.01	0.01	0.01					
	FA NO ICE (N) FA NO ICE (T)	90'0	90.0	0.04	0.04	0.04					
	FA NO ICE (N)	0,16	0.16	0.07	0.07	0.07					
	EPA _{T-Ice} (ft²)	2.06	2.06	1.19	1.33	1,38					
	EPA_{N-Ice} (ft ²)	4.53	4.53	2.12	2.12	2.17					
	EPA _⊤ (ft²)	19.1	1,61	0.82	0.94	0.97					
	EPA $_{\rm N}~({\rm ft}^2)$	l	4,01			1.68					
	C _a flat/round	1.25	1.25	1.20	1.20	1.20					
	Aspect Ratio	3.60	3.60	0.95	0.95	1.14					
	Qty	0.5	0.5		н						
	Model	MX08FRO665-21	MX08FRO665-21	TA08025-B604	TA08025-B605	RDIDC-9181-PF-48					
	Manufacturer	JMA WIRELESS	JMA WIRELESS	FUJITSU	FUJITSU	RAYCAP					
L								_			

APPENDIX C SOFTWARE ANALYSIS OUTPUT

9/9/2021 8:36:25 PM Checked By:___

Hot Rolled Steel Section Sets


	Label	Shape	Type	Design List	Material	Design Rule	Area [in²]	lyy [in⁴]	Izz [in⁴]	J [in⁴]
1	MF-H1	PIPE_2.88x0.203	Beam	Pipe	A500 Gr.C	Typical	1.707	1.538	1.538	3.076
2	MF- SA1	1.9" ODx0.12"	Beam	Pipe	A500 Gr.B RND	Typical	0.671	0.267	0.267	0.534
3	MF-D1	1/2" SR	VBrace	BAR	A529 Gr.50	Typical	0.196	0.003	0.003	0.006
4	MF-CP1	PL5/8x3.5	Beam	RECT	A572 Gr.50	Typical	2.205	0.073	2.251	0.259
5	MF-V1	0.63" SR	Column	BAR	A529 Gr.50	Typical	0.312	0.008	0.008	0.015
6	MF-CP2	PL5/8x4.25	Beam	RECT	A572 Gr.50	Typical	2.656	0.086	3.998	0.314
7	Tieback	Pipe2.38X0.12	Beam	Pipe	A500 Gr.C	Typical	0.852	0.545	0.545	1.091
8	MF-P1	Pipe2.88x.12	Column	Pipe	A500 Gr.C	Typical	1.04	0.993	0.993	1.985

Cold Formed Steel Section Sets

	Label	Shape	Type	Design List	Material	Design Rule	Area [in²]	Iyy [in⁴]	Izz [in⁴]	J [in⁴]
1	CF1	8CU1.25X057	Beam	None	A653 SS Gr33	Typical	0.581	0.057	4.41	0.00063

Member Primary Data

	Label	I Node	J Node	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rule
1	1	1	2		MF-H1	Beam	Pipe	A500 Gr.C	Typical
2	2	3	4		MF-H1	Beam	Pipe	A500 Gr.C	Typica l
3	3	12	5	90	MF-CP1	Beam	RECT	A572 Gr.50	Typical
4	4	6	7		MF- SA1	Beam	Pipe	A500 Gr.B RND	Typical
5	5	8	9	90	MF-CP2	Beam	RECT	A572 Gr.50	Typical
6	6	10	11	90	RIGID	None	None	RIGID	Typical
7	7	12	13	90	MF-CP1	Beam	RECT	A572 Gr.50	Typical
8	8	14	15		MF- SA1	Beam	Pipe	A500 Gr.B RND	Typical
9	9	16	17	90	MF-CP2	Beam	RECT	A572 Gr.50	Typical
10	10	18	19	90	RIGID	None	None	RIGID	Typical
11	11	27	20	90	MF-CP1	Beam	RECT	A572 Gr.50	Typical
12	12	21	22		MF- SA1	Beam	Pipe	A500 Gr.B RND	Typical
13	13	23	24	90	MF-CP2	Beam	RECT	A572 Gr.50	Typical
14	14	25	26	90	RIGID	None	None	RIGID	Typical
15	15	27	28	90	MF-CP1	Beam	RECT	A572 Gr.50	Typical
16	16	29	30		MF- SA1	Beam	Pipe	A500 Gr.B RND	Typical
17	17	31	32	90	MF-CP2	Beam	RECT	A572 Gr.50	Typical
18	18	33	34	90	RIGID	None	None	RIGID	Typical
19	19	37	36		MF-V1	Column	BAR	A529 Gr.50	Typical
20	20	35	38		MF-V1	Column	BAR	A529 Gr.50	Typical
21	21	35	36		MF-D1	VBrace	BAR	A529 Gr.50	Typical
22	22	37	38		MF-D1	VBrace	BAR	A529 Gr.50	Typical
23	23	41	40		MF-V1	Column	BAR	A529 Gr.50	Typical
24	24	39	42		MF-V1	Column	BAR	A529 Gr.50	Typical
25	25	39	40		MF-D1	VBrace	BAR	A529 Gr.50	Typical
26	26	41	42		MF-D1	VBrace	BAR	A529 Gr.50	Typical
27	27	43	44	90	RIGID	None	None	RIGID	Typical
28	28	45	46	90	RIGID	None	None	RIGID	Typical
29	29	47	48		MF-P1	Column	Pipe	A500 Gr.C	Typical
30	30	49	50	90	RIGID	None	None	RIGID	Typical
31	31	51	52	90	RIGID	None	None	RIGID	Typical
32	32	53	54		MF-P1	Column	Pipe	A500 Gr.C	Typical
33	33	55	56	90	RIGID	None	None	RIGID	Typical
34	34	57	58	90	RIGID	None	None	RIGID	Typical
35	35	59	60		MF-P1	Column	Pipe	A500 Gr.C	Typical
36	41	63	64		Tieback	Beam	Pipe	A500 Gr.C	Typical

9/9/2021 8:36:25 PM Checked By:___

Node Boundary Conditions

	Node Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot [k-ft/rad]	Z Rot [k-ft/rad]
1	12	Reaction	Reaction	Reaction	Reaction	Reaction
2	27	Reaction	Reaction	Reaction	Reaction	Reaction
3	64	Reaction	Reaction	Reaction		

Member Point Loads (BLC 1 : Dead)

	Member Label	Direction	Magnitude [k, k-ft] -0.041	Location [(ft, %)]
1	29	Y	-0.041	%15
2	29	Y	-0.041	%85
3	29	Υ	-0.064	%15
4	29	Υ	-0.075	%50
5	29	Υ	0	0
6	8	Υ	-0.022	%50
7	8	Υ	0	0
8	8	Υ	0	0
9	8	Υ	0	0
10	8	Υ	0	0

Member Point Loads (BLC 8 : Ice)

_	Member Label	Direction	Magnitude [k, k-ft] -0.118	Location [(ft, %)]
1	29	Υ Υ	-0.118	%15
2	29	Y	-0.118	%85
3	29	Υ	-0.031	%15
4	29	Y	-0.031	%50
5	29	Υ	0	0
6	8	Υ	-0.032	%50
7	8	Y	0	0
8	8	Υ	0	0
9	8	Υ	0	0
10	8	Y	0	0

Member Point Loads (BLC 9 : 0 Seismic)

	Member Label	Direction	Magnitude [k, k-ft] -0.014	Location [(ft, %)] %15
1	29	Z	-0.014	
2	29	Z	-0.014	%85
3	29	Z	-0.011	%15
4	29	Z	-0.013	%50
5	29	Z	0	0
6	8	Z	-0.004	%50
7	8	Z	0	0
8	8	Z	0	0
9	8	Z	0	0
10	8	Z	0	0

Member Point Loads (BLC 10 : 90 Seismic)

	Member Label	Direction	Magnitude [k, k-ft]	Location [(ft, %)]
1	29	X	-0.014	%15
2	29	X	-0.014	%85
3	29	X	-0.011	%15
4	29	X	-0.013	%50
5	29	X	0	0
6	8	X	-0.004	%50
7	8	X	0	0

Company : B+T Group Designer : SV Job Number : 141946.002.01

Model Name: 800529 - CT Hamden North CAC

9/9/2021 8:36:25 PM

Checked By:___

Member Point Loads (BLC 10: 90 Seismic) (Continued)

	Member Label	Direction	Magnitude [k, k-ft]	Location [(ft, %)]
8	8	X	0	0
9	8	X	0	0
10	8	X	0	0

Member Point Loads (BLC 15 : Maint LL 1)

	Member Label	Direction	Magnitude [k, k-ft]	Location [(ft, %)]
1	16	Υ	-0.25	%50

Member Point Loads (BLC 16 : Maint LL 2)

	Member Label	Direction	Magnitude [k, k-ft]	Location [(ft, %)]
1	8	Υ	-0.25	%50

Member Point Loads (BLC 17 : Maint LL 3)

	Member Label	Direction	Magnitude [k, k-ft]	Location [(ft, %)]
1	12	Υ	-0.25	%50

Member Point Loads (BLC 18 : Maint LL 4)

	Member Label	Direction	Magnitude [k, k-ft]	Location [(ft, %)]
1	4	Υ	-0.25	%50

Member Point Loads (BLC 19 : Maint LL 5)

	Member Label	Direction	Magnitude [k, k-ft]	Location [(ft, %)]
1	1	Υ	-0.25	%95

Member Point Loads (BLC 20 : Maint LL 6)

	Member Label	Direction	Magnitude [k, k-ft]	Location [(ft, %)]
1	2	Υ	-0.25	%95

Member Distributed Loads (BLC 8 : Ice)

	Member Label	Direction	Start Magnitude [k/ft, F, ksf, k-ft/ft]	End Magnitude [k/ft, F, ksf, k-ft/ft]	Start Location [(ft, %)]	End Location [(ft, %)]
1	1	Υ	-0.005	-0.005	0	%100
2	2	Υ	-0.005	-0.005	0	%100
3	3	Υ	-0.006	-0.006	0	%100
4	4	Υ	-0.004	-0.004	0	%100
5	5	Υ	-0.013	-0.013	0	%100
6	7	Υ	-0.006	-0.006	0	%100
7	8	Υ	-0.004	-0.004	0	%100
8	9	Υ	-0.013	-0.013	0	%100
9	11	Υ	-0.006	-0.006	0	%100
10	12	Υ	-0.004	-0.004	0	%100
11	13	Υ	-0.013	-0.013	0	%100
12	15	Υ	-0.006	-0.006	0	%100
13	16	Υ	-0.004	-0.004	0	%100
14	17	Υ	-0.013	-0.013	0	%100
15	19	Υ	-0.002	-0.002	0	%100
16	20	Υ	-0.002	-0.002	0	%100
17	21	Υ	-0.002	-0.002	0	%100
18	22	Υ	-0.002	-0.002	0	%100
19	23	Υ	-0.002	-0.002	0	%100

9/9/2021 8:36:25 PM Checked By:___

Member Distributed Loads (BLC 8 : Ice) (Continued)

	Member Label	Direction	Start Magnitude [k/ft, F, ksf, k-ft/ft]	End Magnitude [k/ft, F, ksf, k-ft/ft]	Start Location [(ft, %)]	End Location [(ft, %)]
20	24	Υ	-0.002	-0.002	0	%100
21	25	Υ	-0.002	-0.002	0	%100
22	26	Υ	-0.002	-0.002	0	%100
23	29	Υ	-0.005	-0.005	0	%100
24	32	Υ	-0.005	-0.005	0	%100
25	35	Υ	-0.005	-0.005	0	%100
26	41	Υ	-0.005	-0.005	0	%100

Member Distributed Loads (BLC 9 : 0 Seismic)

	Member Label	Direction	Start Magnitude [k/ft, F, ksf, k-ft/ft]	End Magnitude [k/ft, F, ksf, k-ft/ft]	Start Location [(ft, %)]	End Location [(ft, %)]						
1	1	Z	-0.002	-0.002	0	%100						
2	2	Z	-0.002	-0.002	0	%100						
3	3	Z	-0.003	-0.003	0	%100						
4	4	Z	-0.001	-0.001	0	%100						
5	5	Z	-0.003	-0.003	0	%100						
6	7	Z	-0.003	-0.003	0	%100						
7	8	Z	-0.001	-0.001	0	%100						
8	9	Z	-0.003	-0.003	0	%100						
9	11	Z	-0.003	-0.003	0	%100						
10	12	Z	-0.001	-0.001	0	%100						
11	13	Z	-0.003	-0.003	0	%100						
12	15	Z	-0.003	-0.003	0	%100						
13	16	Z	-0.001	-0.001	0	%100						
14	17	Z	-0.003	-0.003	0	%100						
15	19	Z	-0.002	-0.002	0	%100						
16	20	Z	-0.002	-0.002	0	%100						
17	21	Ζ	-0.002	-0.002	0	%100						
18	22	Z	-0.002	-0.002	0	%100						
19	23	Ζ	-0.002	-0.002	0	%100						
20	24	Ζ	-0.002	-0.002	0	%100						
21	25	Z	-0.002	-0.002	0	%100						
22	26	Z	-0.002	-0.002	0	%100						
23	29	Z	-0.002	-0.002	0	%100						
24	32	Z	-0.002	-0.002	0	%100						
25	35	Z	-0.002	-0.002	0	%100						
26	41	Z	-0.002	-0.002	0	%100						

Member Distributed Loads (BLC 10 : 90 Seismic)

	Member Label	Direction	Start Magnitude [k/ft, F, ksf, k-ft/ft]	End Magnitude [k/ft, F, ksf, k-ft/ft]	Start Location [(ft, %)]	End Location [(ft, %)]
1	1	Χ	-0.002	-0.002	0	%100
2	2	Χ	-0.002	-0.002	0	%100
3	3	X	-0.003	-0.003	0	%100
4	4	Χ	-0.001	-0.001	0	%100
5	5	Χ	-0.003	-0.003	0	%100
6	7	Χ	-0.003	-0.003	0	%100
7	8	Χ	-0.001	-0.001	0	%100
8	9	Χ	-0.003	-0.003	0	%100
9	11	Χ	-0.003	-0.003	0	%100
10	12	Χ	-0.001	-0.001	0	%100
11	13	Χ	-0.003	-0.003	0	%100
12	15	Χ	-0.003	-0.003	0	%100
13	16	Χ	-0.001	-0.001	0	%100
14	17	Χ	-0.003	-0.003	0	%100
15	19	Χ	-0.002	-0.002	0	%100
16	20	Χ	-0.002	-0.002	0	%100
17	21	Χ	-0.002	-0.002	0	%100

9/9/2021 8:36:25 PM

Checked By:___

Member Distributed Loads (BLC 10 : 90 Seismic) (Continued)

	Member Label	Direction	Start Magnitude [k/ft, F, ksf, k-ft/ft]	End Magnitude [k/ft, F, ksf, k-ft/ft]	Start Location [(ft, %)]	End Location [(ft, %)]
18	22	X	-0.002	-0.002	0	%100
19	23	X	-0.002	-0.002	0	%100
20	24	X	-0.002	-0.002	0	%100
21	25	X	-0.002	-0.002	0	%100
22	26	X	-0.002	-0.002	0	%100
23	29	X	-0.002	-0.002	0	%100
24	32	Х	-0.002	-0.002	0	%100
25	35	X	-0.002	-0.002	0	%100
26	41	X	-0.002	-0.002	0	%100

Member Area Loads

No Data to Print...

Basic Load Cases

	BLC Description	Category	Y Gravity	Nodal	Point	Distributed
1	Dead	DĽ	-1		10	
2	0 Wind - No Ice	WLZ				
3	90 Wind - No Ice	WLX				
4	0 Wind - Ice	WLZ				
5	90 Wind - Ice	WLX				
6	0 Wind - Service	WLZ				
7	90 Wind - Service	WLX				
8	Ice	OL1			10	26
9	0 Seismic	ELZ			10	26
10	90 Seismic	ELX			10	26
11	Live Load a	LL		1		
12	Live Load b	LL		1		
13	Live Load c	LL		1		
14	Live Load d	LL				
15	Maint LL 1	LL			1	
16	Maint LL 2	LL			1	
17	Maint LL 3	LL			1	
18	Maint LL 4	LL			1	
19	Maint LL 5	LL			1	
20	Maint LL 6	LL			1	
21	Maint LL 7	LL			_	
22	Maint LL 8	LL				
23	Maint LL 9	LL				
24	Maint LL 10	LL				
25 26	Maint LL 11	LL				
26	Maint LL 12	LL				
27	Maint LL 13	LL				
28	Maint LL 14	LL				
29	Maint LL 15	LL				

Load Combinations

	Description	Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
1	1.4 Dead	Yes	Υ	1	1.4						
2	1.2 D + 1.0 - 0 W	Yes	Υ	1	1.2	2	1				
3	1.2 D + 1.0 - 30 W	Yes	Υ	1	1.2	2	0.866	3	0.5		
4	1.2 D + 1.0 - 60 W	Yes	Υ	1	1.2	3	0.866	2	0.5		
5	1.2 D + 1.0 - 90 W	Yes	Υ	1	1.2	3	1				
6	1.2 D + 1.0 - 120 W	Yes	Υ	1	1.2	3	0.866	2	-0.5		
7	1.2 D + 1.0 - 150 W	Yes	Υ	1	1.2	2	-0.866	3	0.5		
8	1.2 D + 1.0 - 180 W	Yes	Y	1	1.2	2	-1				
9	1.2 D + 1.0 - 210 W	Yes	Υ	1	1.2	2	-0.866	3	-0.5		

9/9/2021 8:36:25 PM Checked By : ___

Load Combinations (Continued)

	Description	Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
10	1.2 D + 1.0 - 240 W	Yes	Υ	1	1.2	3	-0.866	2	-0.5		
11	1.2 D + 1.0 - 270 W	Yes	Υ	1	1.2	3	-1				
12	1.2 D + 1.0 - 300 W	Yes	Υ	1	1.2	3	-0.866	2	0.5		
13	1.2 D + 1.0 - 330 W	Yes	Υ	1	1.2	2	0.866	3	-0.5		
14	1.2 D + 1.0 - 0 W/Ice	Yes	Υ	1	1.2	4	1			8	1
15	1.2 D + 1.0 - 30 W/Ice	Yes	Υ	1	1.2	4	0.866	5	0.5	8	1
16	1.2 D + 1.0 - 60 W/lce	Yes	Υ	1	1.2	5	0.866	4	0.5	8	1
17	1.2 D + 1.0 - 90 W/Ice	Yes	Υ	1	1.2	5	1			8	1
18	1.2 D + 1.0 - 120 W/Ice	Yes	Υ	1	1.2	5	0.866	4	-0.5	8	1
19	1.2 D + 1.0 - 150 W/Ice	Yes	Υ	1	1.2	4	-0.866	5	0.5	8	1
20	1.2 D + 1.0 - 180 W/Ice	Yes	Υ	1	1.2	4	-1	_		8	1
21	1.2 D + 1.0 - 210 W/Ice	Yes	Υ	1	1.2	4	-0.866	5	-0.5	8	1
22	1.2 D + 1.0 - 240 W/lce	Yes	Υ	1	1.2	5	-0.866	4	-0.5	8	1
23	1.2 D + 1.0 - 270 W/lce	Yes	Υ	1	1.2	5	-1			8	1
24	1.2 D + 1.0 - 300 W/Ice	Yes	Υ	1	1.2	5	-0.866	4	0.5	8	1
25	1.2 D + 1.0 - 330 W/lce	Yes	Y	1	1.2	4	0.866	_ 5	-0.5	8	1
26	1.2 D + 1.0 E - 0	Yes	Υ	1	1.2	9	1				
27	1.2 D + 1.0 E - 30	Yes	Υ	1	1.2	9	0.866	10	0.5		
28	1.2 D + 1.0 E - 60	Yes	Υ	1	1.2	10	0.866	9	0.5	_	
29	1.2 D + 1.0 E - 90	Yes	Υ	1	1.2	10	1				
30	1.2 D + 1.0 E - 120	Yes	Υ	1	1.2	10	0.866	9	-0.5		
31	1.2 D + 1.0 E - 150	Yes	Υ	1	1.2	9	-0.866	10	0.5		
32	1.2 D + 1.0 E - 180	Yes	Υ	1	1.2	9	-1				
33	1.2 D + 1.0 E - 210	Yes	Y	1	1.2	9	-0.866	10	-0.5		
34	1.2 D + 1.0 E - 240	Yes	Υ	1	1.2	10	-0.866	9	-0.5	_	
35	1.2 D + 1.0 E - 270	Yes	Υ	1	1.2	10	-1				
36	1.2 D + 1.0 E - 300	Yes	Υ	1	1.2	10	-0.866	9	0.5		
37	1.2 D + 1.0 E - 330	Yes	Υ	1	1.2	9	0.866	10	-0.5		
38	1.2 D + 1.5 LL a + Service - 0 W	Yes	Y	1	1.2	6	1			11	1.5
39	1.2 D + 1.5 LL a + Service - 30 W	Yes	Υ	1	1.2	6	0.866	7	0.5	11	1.5
40	1.2 D + 1.5 LL a + Service - 60 W	Yes	Υ	1	1.2	7	0.866	6	0.5	11	1.5
41	1.2 D + 1.5 LL a + Service - 90 W	Yes	Y	1	1.2	7	1			11	1.5
42	1.2 D + 1.5 LL a + Service - 120 W	Yes	Υ	1	1.2	7	0.866	6	-0.5	11	1.5
43	1.2 D + 1.5 LL a + Service - 150 W	Yes	Y	1	1.2	6	-0.866	7	0.5	11	1.5
44	1.2 D + 1.5 LL a + Service - 180 W	Yes	Y	1	1.2	6	-1			11	1.5
45	1.2 D + 1.5 LL a + Service - 210 W	Yes	Y	1	1.2	6	-0.866	7	-0.5	11	1.5
46	1.2 D + 1.5 LL a + Service - 240 W	Yes	Y	1	1.2	7	-0.866	6	-0.5	11	1.5
47	1.2 D + 1.5 LL a + Service - 270 W	Yes	Y	1	1.2	7	-1		0.5	11	1.5
48	1.2 D + 1.5 LL a + Service - 300 W	Yes	Y	1	1.2	7	-0.866	6	0.5	11	1.5
49	1.2 D + 1.5 LL a + Service - 330 W	Yes	Y	1	1.2	6	0.866	7	-0.5	11	1.5
50	1.2 D + 1.5 LL b + Service - 0 W	Yes	Y	1	1.2	6	1 0.000	7	0.5	12	1.5
	1.2 D + 1.5 LL b + Service - 30 W	Yes	Y	1	1.2	6	0.866	7	0.5	12	1.5
52	1.2 D + 1.5 LL b + Service - 60 W	Yes	Y	1	1.2	7	0.866	6	0.5	12	1.5
53	1.2 D + 1.5 LL b + Service - 90 W	Yes	Y	1	1.2	7	1 0.000	-	0.5	12	1.5
54	1.2 D + 1.5 LL b + Service - 120 W	Yes		1	1.2	7	0.866	6	-0.5	12	1.5
	1.2 D + 1.5 LL b + Service - 150 W	Yes	Y	1	1.2	6	-0.866	7	0.5	12	1.5
56		Yes		1	1.2	6	-1	7	0.5	12	1.5
	1.2 D + 1.5 LL b + Service - 210 W	Yes	Y	1	1.2	6	-0.866	7	-0.5	12	1.5
	1.2 D + 1.5 LL b + Service - 240 W	Yes		1	1.2	7	-0.866	6	-0.5	12	1.5
	1.2 D + 1.5 LL b + Service - 270 W	Yes	Y	1	1.2	7	-1	6	O.E.	12	1.5
60		Yes	Y	1	1.2	7	-0.866	6	0.5	12	1.5
61	1.2 D + 1.5 LL b + Service - 330 W	Yes	Y	1	1.2	6	0.866	7	-0.5	12	1.5
62	1.2 D + 1.5 LL c + Service - 0 W	Yes		1	1.2	6	1 0 966	7	0.5	13	1.5
63	1.2 D + 1.5 LL c + Service - 30 W	Yes	Y	1	1.2	6	0.866	7	0.5	13	1.5
64	1.2 D + 1.5 LL c + Service - 60 W	Yes	Y	1	1.2	7	0.866	6	0.5	13	1.5
65	1.2 D + 1.5 LL c + Service - 90 W	Yes	Y	1	1.2	7	0.966	G	O.F.	13	1.5
66		Yes	Y	1	1.2	7	0.866	6	-0.5	13	1.5
[67]	1.2 D + 1.5 LL c + Service - 150 W	Yes	Υ	1	1.2	6	-0.866	7	0.5	13	1.5

9/9/2021 8:36:25 PM Checked By : ___

Load Combinations (Continued)

	Description	Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
68	1.2 D + 1.5 LL c + Service - 180 W	Yes	Y	1	1.2	6	-1			13	1.5
69	1.2 D + 1.5 LL c + Service - 210 W	Yes	Υ	1	1.2	6	-0.866	7	-0.5	13	1.5
70	1.2 D + 1.5 LL c + Service - 240 W	Yes	Υ	1	1.2	7	-0.866	6	-0.5	13	1.5
71	1.2 D + 1.5 LL c + Service - 270 W	Yes	Υ	1	1.2	7	-1			13	1.5
72	1.2 D + 1.5 LL c + Service - 300 W	Yes	Υ	1	1.2	7	-0.866	6	0.5	13	1.5
73	1.2 D + 1.5 LL c + Service - 330 W	Yes	Υ	1	1.2	6	0.866	7	-0.5	13	1.5
74	1.2 D + 1.5 LL d + Service - 0 W	Yes	Υ	1	1.2	6	1			14	1.5
75	1.2 D + 1.5 LL d + Service - 30 W	Yes	Υ	1	1.2	6	0.866	7	0.5	14	1.5
76	1.2 D + 1.5 LL d + Service - 60 W	Yes	Υ	1	1.2	7	0.866	6	0.5	14	1.5
77	1.2 D + 1.5 LL d + Service - 90 W	Yes	Υ	1	1.2	7	1			14	1.5
78	1.2 D + 1.5 LL d + Service - 120 W	Yes	Υ	1	1.2	7	0.866	6	-0.5	14	1.5
79	1.2 D + 1.5 LL d + Service - 150 W	Yes	Υ	1	1.2	6	-0.866	7	0.5	14	1.5
80	1.2 D + 1.5 LL d + Service - 180 W	Yes	Υ	1	1.2	6	-1			14	1.5
81	1.2 D + 1.5 LL d + Service - 210 W	Yes	Υ	1	1.2	6	-0.866	7	-0.5	14	1.5
82	1.2 D + 1.5 LL d + Service - 240 W	Yes	Υ	1	1.2	7	-0.866	6	-0.5	14	1.5
83	1.2 D + 1.5 LL d + Service - 270 W	Yes	Υ	1	1.2	7	-1			14	1.5
84	1.2 D + 1.5 LL d + Service - 300 W	Yes	Υ	1	1.2	7	-0.866	6	0.5	14	1.5
85	1.2 D + 1.5 LL d + Service - 330 W	Yes	Υ	1	1.2	6	0.866	7	-0.5	14	1.5
86	1.2 D + 1.5 LL Maint (1)	Yes	Υ	1	1.2					15	1.5
87	1.2 D + 1.5 LL Maint (2)	Yes	Υ	1	1.2					16	1.5
88	1.2 D + 1.5 LL Maint (3)	Yes	Υ	1	1.2					17	1.5
89	1.2 D + 1.5 LL Maint (4)	Yes	Υ	1	1.2					18	1.5
90	1.2 D + 1.5 LL Maint (5)	Yes	Υ	1	1.2			·		19	1.5
91	1.2 D + 1.5 LL Maint (6)	Yes	Υ	1	1.2					20	1.5

Envelope Node Reactions

	Node Label		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	12	max	0.992	49	0.715	61	-0.351	36	-0.078	30	0	91	0.166	73
2		min	-0.951	62	0.301	26	-1.233	62	-0.199	50	0	1	-0.175	38
3	27	max	0.951	73	0.654	73	1.233	73	-0.083	31	0	91	0.143	73
4		min	-0.992	38	0.306	34	0.472	32	-0.175	14	0	1	-0.155	38
5	64	max	0.02	29	0.026	25	0.144	29	0	91	0	91	0	91
6		min	-0.02	35	0.011	29	-0.144	35	0	1	0	1	0	1
7	Totals:	max	0.2	29	1.378	49	0.2	26						
8		min	-0.2	35	0.628	26	-0.2	32						

Envelope AISC 15TH (360-16): LRFD Member Steel Code Checks

	Member	Shape	Code Checl	kLoc[ft]LCS	hear Che	ckLoc[ft]DirLC	phi*Pnc [k]	phi*Pnt [k]	phi*Mn y-y [k-ft]	phi*Mn z-z [k-	ft] Cb Eqn
1	1	PIPE_2.88x0.203	0.096	4 61	0.05	1.75 49	35.519	70.68	5.029	5.029	1.558H1-1b
2	2	PIPE_2.88x0.203	0.083	4 61	0.032	1.75 49	35.519	70.68	5.029	5.029	1.635H1-1b
3	3	PL5/8x3.5	0.196	0 73	0.03	0 z 73	84.578	99.225	1.302	7.235	1.124H1-1b
4	4	1.9" ODx0.12"	0.168	1.29289	0.043	2.449 73	21.867	25.364	1.2	1.2	1.41 H1-1b
5	5	PL5/8x4.25	0.065	0.12773	0.03	0.362 y 73	110.629	119.531	1.556	10.583	1.641H1-1b
6	7	PL5/8x3.5	0.202	0 49	0.03	0 z 49	84.578	99.225	1.302	7.235	1.124H1-1b
7	8	1.9" ODx0.12"	0.179	1.29287	0.044	2.449 49	21.867	25.364	1.2	1.2	1.412H1-1b
8	9	PL5/8x4.25	0.067	0.12749	0.029	0.362 y 49	110.629	119.531	1.556	10.583	1.647H1-1b
9	11	PL5/8x3.5	0.175	0 73	0.034	0.583 y 73	84.578	99.225	1.302	7.235	1.329H1-1b
10	12	1.9" ODx0.12"	0.177	1.29288	0.046	2.449 73	21.867	25.364	1.2	1.2	1.42 H1-1b
11	13	PL5/8x4.25	0.058	0.127 73	0.034	0.362 y 73	110.629	119.531	1.556	10.583	1.381H1-1b
12	15	PL5/8x3.5	0.183	0 49	0.034	0.583 y 49	84.578	99.225	1.302	7.235	1.332H1-1b
13	16	1.9" ODx0.12"	0.18	1.29286	0.046	2.449 49	21.867	25.364	1.2	1.2	1.411H1-1b
14	17	PL5/8x4.25	0.057	0.12749	0.034	0.362 y 49	110.629	119.531	1.556	10.583	1.383H1-1b
15	19	0.63" SR	0.354	2.5 73	0.004	2.5 73	1.941	14.028	0.147	0.147	2.262H1-1a
16	20	0.63" SR	0.381	0 73	0.006	2.5 73		14.028	0.147	0.147	2.269H1-1a
17	21	1/2" SR	0.245	3.49973	0.002	3.499 73	0.393	8.836	0.074	0.074	2.242H1-1a
18	22	1/2" SR	0	3.49991	0.001	3.499 30	0.393	8.836	0.074	0.074	1 H1-1a

9/9/2021 8:36:25 PM Checked By : ___

Envelope AISC 15TH (360-16): LRFD Member Steel Code Checks (Continued)

N	Member	Shape	Code Check	Loc[ft]	LC:	Shear Check	Loc[ft]	DirLo	phi*Pnc [k]	phi*Pnt [k]	phi*Mn y-y [k-ft]	phi*Mn z-z [k-ft]] Cb	Eqn
19	23	0.63" SR	0.366	2.5	49	0.004	2.5	49	1.941	14.028	0.147	0.147	2.259	H1-1a
20	24	0.63" SR	0.398	0	49	0.006	2.5	49	1.941	14.028	0.147	0.147	2.268	H1-1a
21	25	1/2" SR	0.25	3.499	49	0.002	3.499	49	0.393	8.836	0.074	0.074	2.199	H1-1a
22	26	1/2" SR	0	3.499	91	0.002	0	29	0.393	8.836	0.074	0.074	2.263	H1-1a
23	29	Pipe2.88x.12	0.037	2.75	61	0.022	5.25	49	22.492	43.076	3.156	3.156	3	H1-1b
24	32	Pipe2.88x.12	0.103	5.25	73	0.028	5.25	73	22.492	43.076	3.156	3.156	3	H1-1b
25	35	Pipe2.88x.12	0.104	5.25	49	0.029	5.25	49	22.492	43.076	3.156	3.156	3	H1-1b
26	41	Pipe2.38X0.12	0.02	3.125	25	0.003	6.25	25	19.522	35.273	2.115	2.115	1.136	H1-1b

Envelope NONE Member Cold Formed Steel Code Checks

No Data to Print...

APPENDIX D ADDITIONAL CALCUATIONS

PROJECT	141946.002.01 - CT Hamden North CA AD							
SUBJECT	Sector Mou	Sector Mount Analysis						
DATE	09/09/21	PAGE	1	OF	1			

[REF: AISC 360-05]

Reactions at Bolted Connection

 Tension
 :
 1.233
 k

 Vertical Shear
 :
 0.654
 k

 Horizontal Shear
 :
 0.951
 k

 Torsion
 :
 0.143
 k.ft

 Moment from Horizontal Forces
 :
 0
 k.ft

 Moment from Vertical Forces
 :
 -0.083
 k.ft

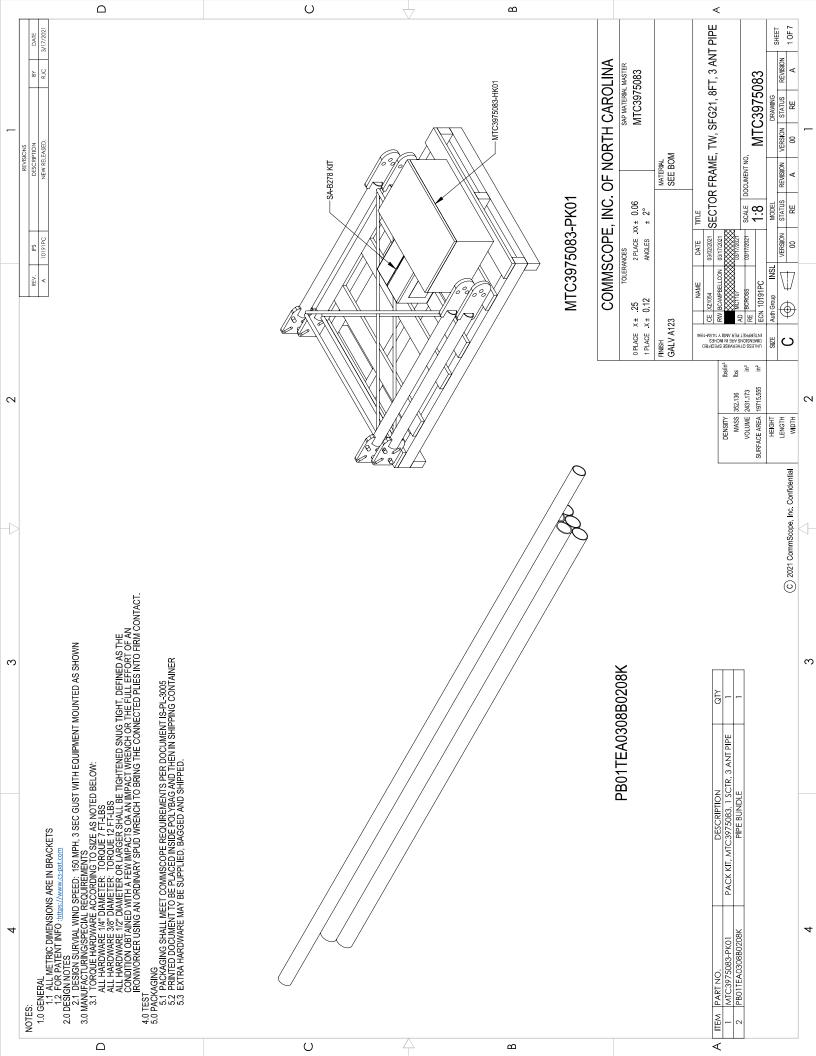
Bolt Parameters

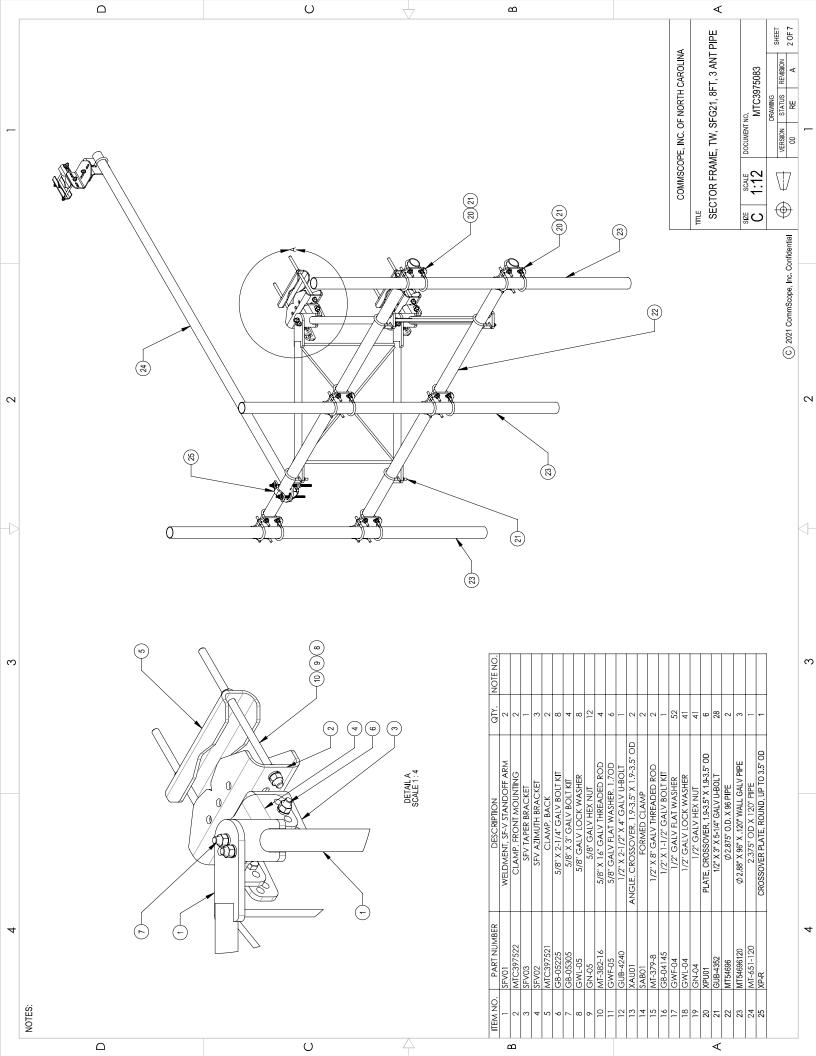
Bolt Grade : A307 0.625 **Bolt Diameter** : in 0.307 Nominal Bolt Area in² : 6 Bolt spacing, Horizontal in 6 Bolt spacing, Vertical in Bolt edge distance, plate height : 1.5 in Bolt edge distance, plate width : 1.5 in Total Number of Bolts bolts

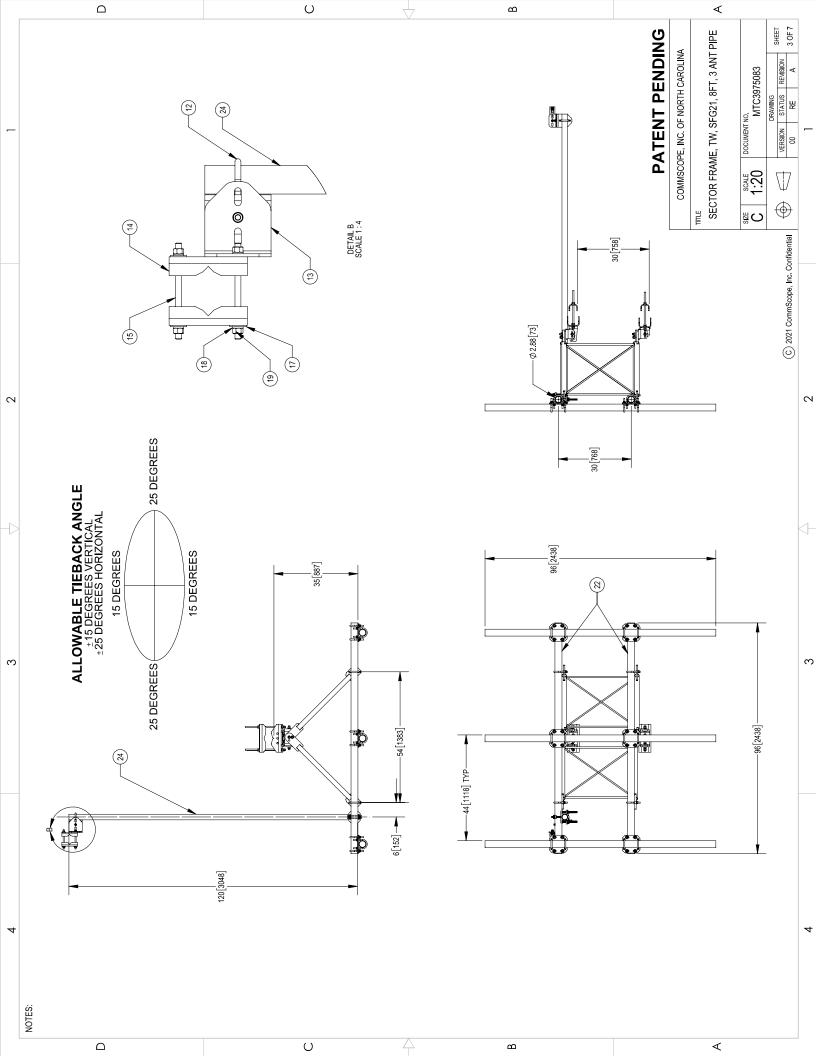
Summary of Forces

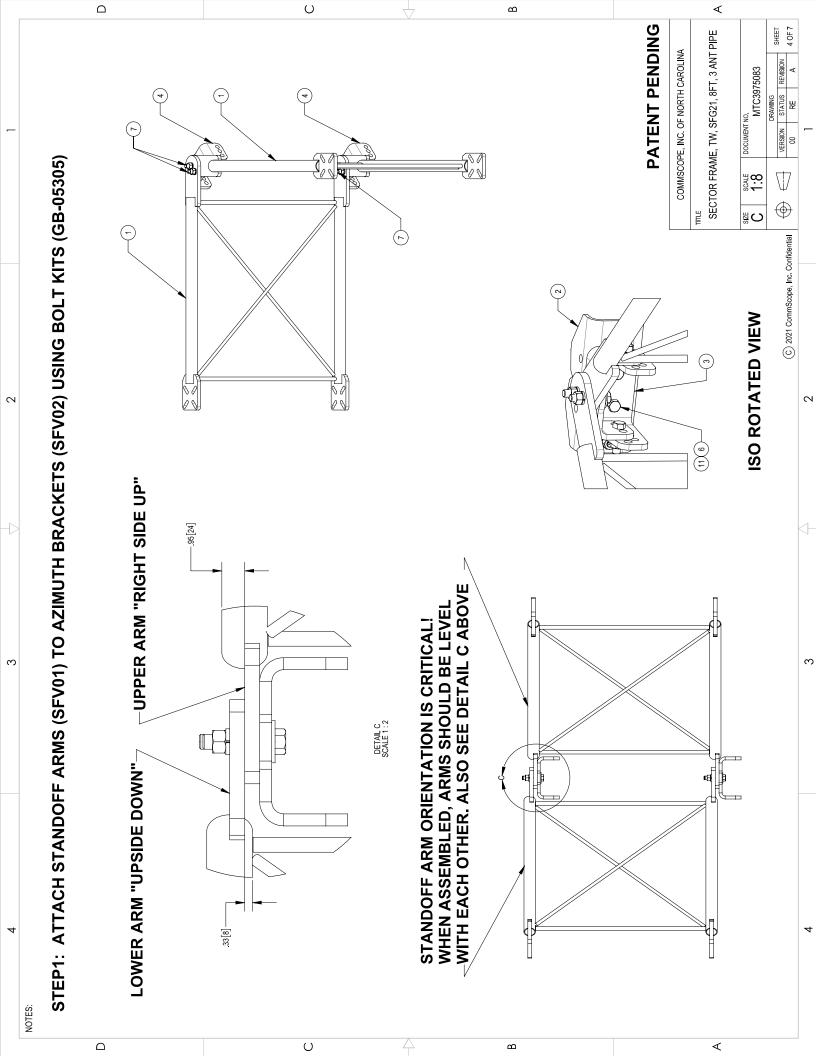
Shear Resultant Force 1.15 k Force from Horz. Moment 0.00 Force from Vert. Moment -0.15 Shear Load / Bolt 0.29 k Tension Load / Bolt 0.31 k Resultant from Moments / Bolt 0.08 k

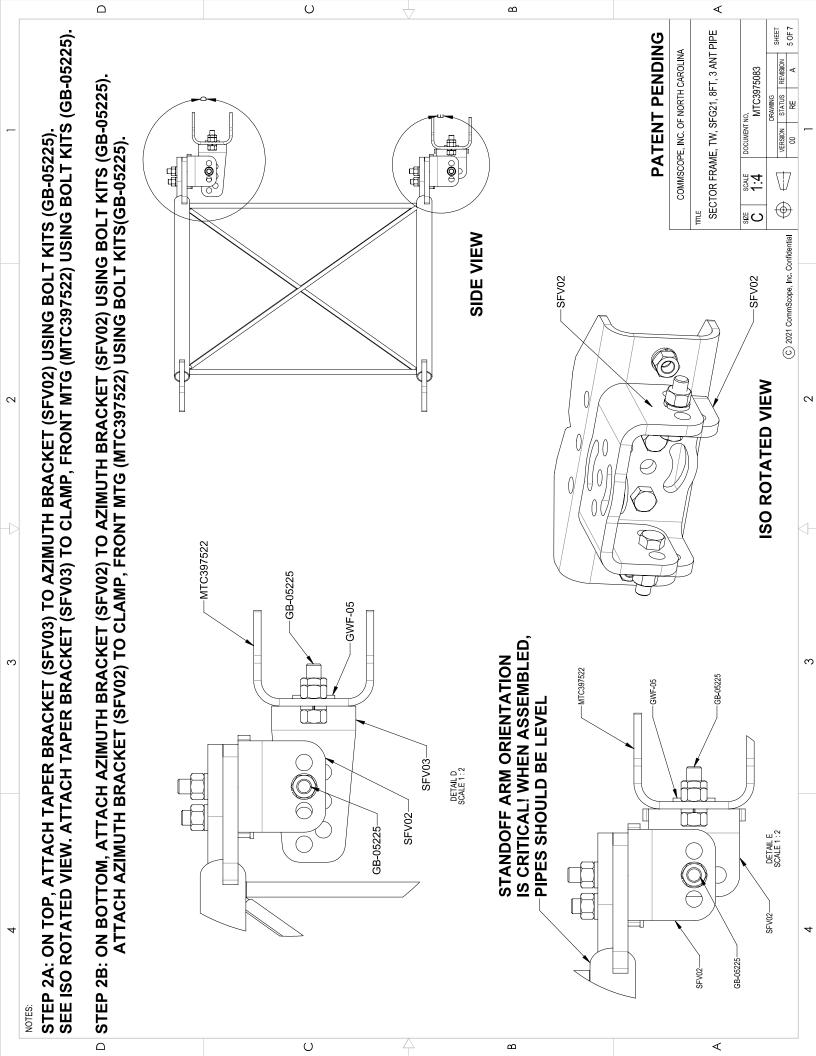
Bolt Checks

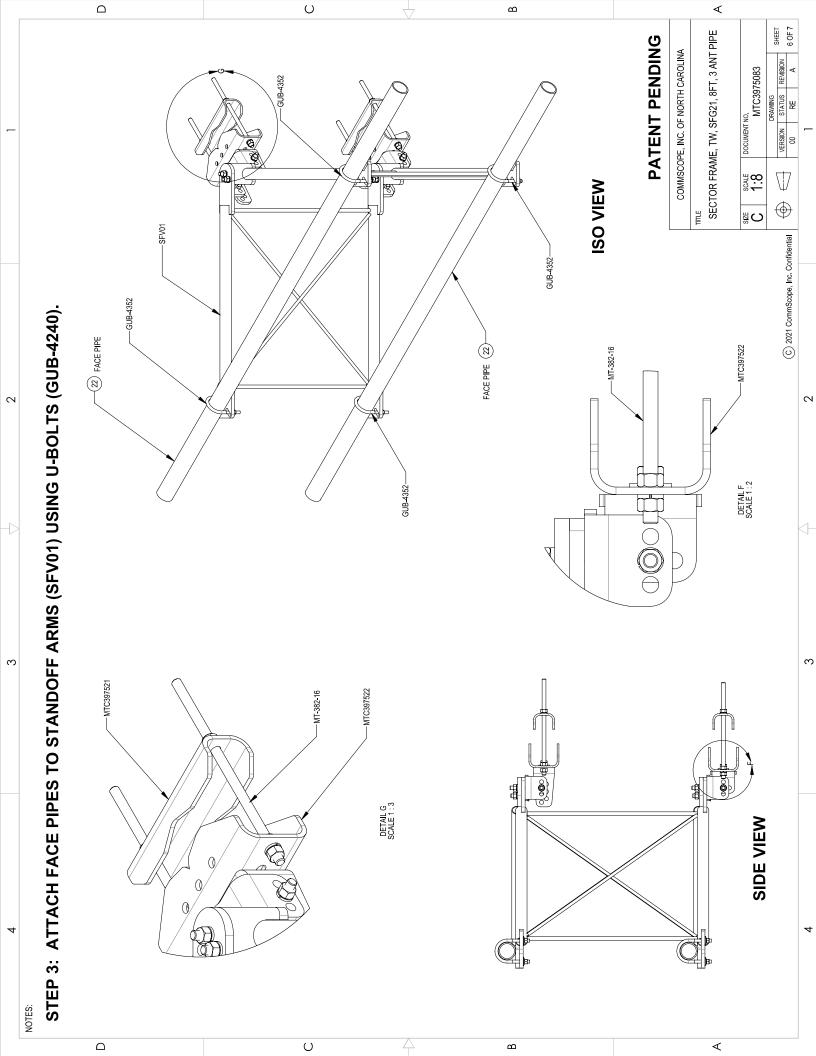

Nominal Shear Stress, F_{nv} : 24.00 ksi [AISC Table J3.2] Available Shear Stress, ΦR_{nv} : 5.53 k/bolt [Eq. J3-1] Unity Check, Bolt Shear : **10.80% OKAY**


Unity Check, Combined : 14.50% OKAY


Available Bearing Strength, ΦR_n : 34.66 k/bolt


Unity Check, Bolt Bearing : **0.83% OKAY**


APPENDIX E SUPPLEMENTAL DRAWINGS



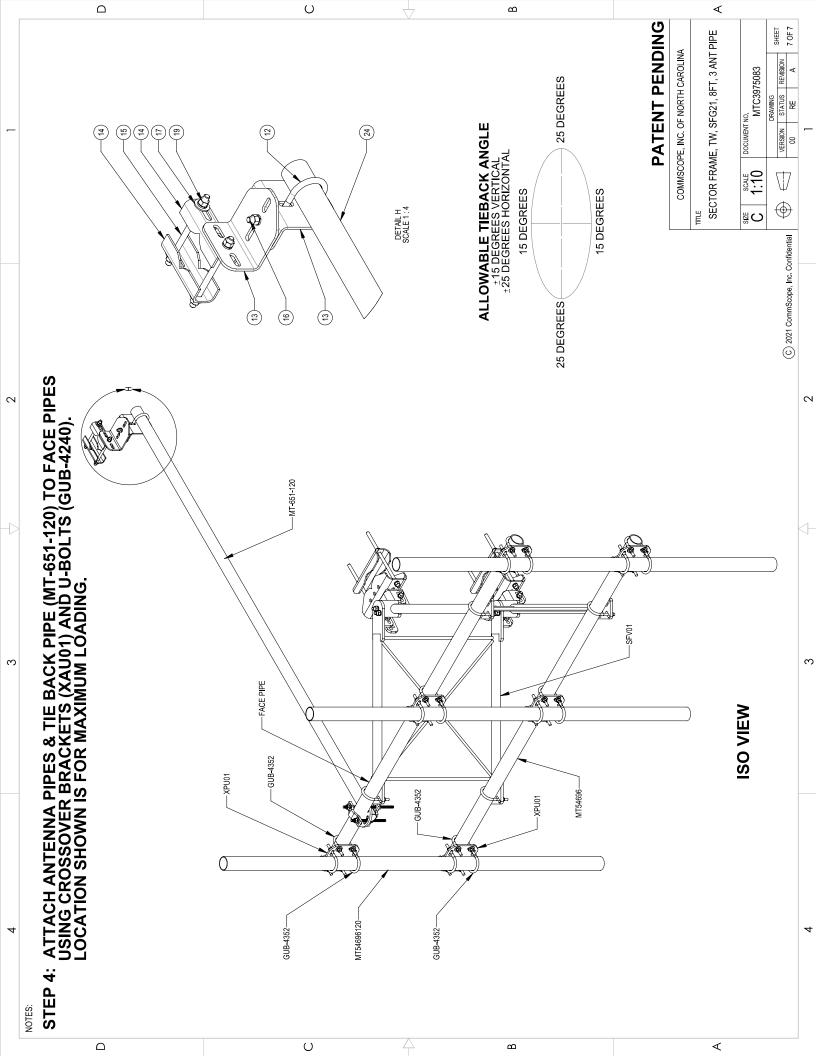


Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOHVN00153A

800529

890 Evergreen Avenue Hamden, Connecticut 06518

November 18, 2021

EBI Project Number: 6221007190

Site Compliance Summary							
Compliance Status:	COMPLIANT						
Site total MPE% of FCC general population allowable limit:	79.58%						

November 18, 2021

Dish Wireless

Emissions Analysis for Site: BOHVN00153A - 800529

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **890 Evergreen Avenue** in **Hamden, Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 890 Evergreen Avenue in Hamden, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) 4 n66 channels (AWS Band 2190 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 5) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative

estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 6) The antennas used in this modeling are the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector A, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector B, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antenna mounting height centerline of the proposed antennas is 66 feet above ground level (AGL).
- 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 9) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	Α	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	1
Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21
Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz	Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz	Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz
Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd
Height (AGL):	66 feet	Height (AGL):	66 feet	Height (AGL):	66 feet
Channel Count:	12	Channel Count:	12	Channel Count:	12
Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts
ERP (W):	5,236.31	ERP (W):	5,236.31	ERP (W):	5,236.31
Antenna A1 MPE %:	6.57%	Antenna B1 MPE %:	6.57%	Antenna C1 MPE %:	6.57%

environmental | engineering | due diligence

Site Composite MPE %								
Carrier	MPE %							
Dish Wireless (Max at Sector A):	6.57%							
AT&T	13.74%							
Metro PCS	3.49%							
Clearwire	0.4%							
Sprint	5.89%							
Verizon	36.12%							
T-Mobile	13.37%							
Site Total MPE % :	79.58%							

Dish Wireless MPE % Per Sector							
Dish Wireless Sector A Total:	6.57%						
Dish Wireless Sector B Total:	6.57%						
Dish Wireless Sector C Total:	6.57%						
Site Total MPE % :	79.58%						

Dish Wireless Maximum MPE Power Values (Sector A)											
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE				
Dish Wireless 600 MHz n71	4	223.68	66.0	8.94	600 MHz n71	400	2.23%				
Dish Wireless 1900 MHz n70	4	542.70	66.0	21.68	1900 MHz n70	1000	2.17%				
Dish Wireless 2190 MHz n66	4	542.70	66.0	21.68	2190 MHz n66	1000	2.17%				
	•		•			Total:	6.57%				

[•] NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)
Sector A:	6.57%
Sector B:	6.57%
Sector C:	6.57%
Dish Wireless Maximum MPE % (Sector A):	6.57%
Site Total:	79.58%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **79.58**% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320 West Henrietta, NY 14586

Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Tower Share Application

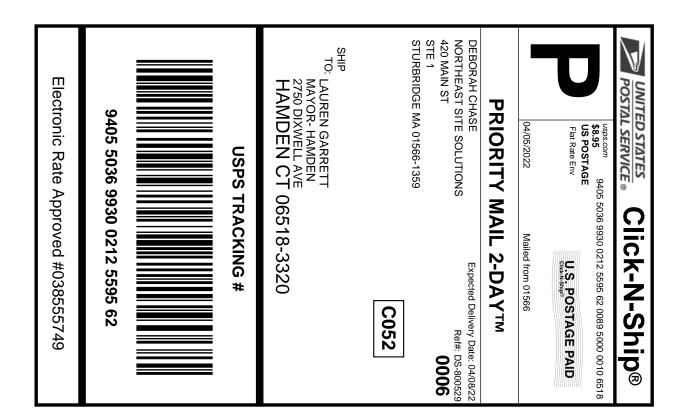
Site Acquisition Specialist

Crown Castle telecommunications site at:

890 EVERGREEN AVENUE, HAMDEN, CT 06518

CROWN ATLANTIC COMPANY LLC ("Crown Castle") hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name: 800529/CT HAMDEN NORTH CAC Customer Site ID: 80HVN00153A/CT-CCI-T-800529


Site Address: 890 EVERGREEN AVENUE, Hamden, CT 06518

By: Date: 3/29/2022

Richard Zajac

Exhibit H

Recipient Mailings

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

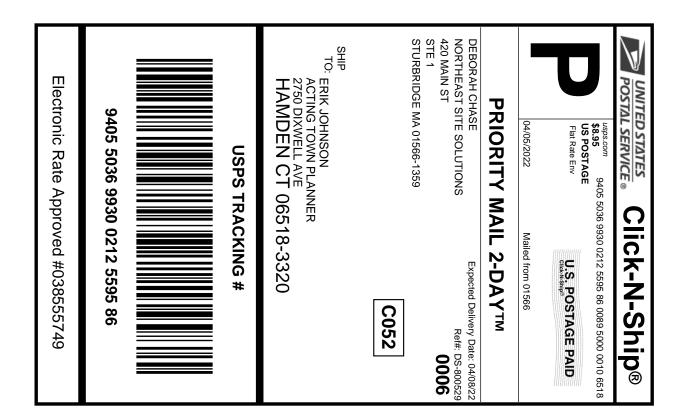
USPS TRACKING #: 9405 5036 9930 0212 5595 62

560463364 04/05/2022 04/05/2022 Trans. #: Print Date: Ship Date: Delivery Date: 04/08/2022

Priority Mail® Postage: \$8.95 \$8.95 Total:

Ref#: DS-800529 From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS


420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

LAUREN GARRETT

MAYOR- HAMDEN 2750 DIXWELL AVE HAMDEN CT 06518-3320

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0212 5595 86

560463364 04/05/2022 04/05/2022 Trans. #: Print Date: Ship Date: Delivery Date: 04/08/2022

Priority Mail® Postage: Total:

\$8.95 \$8.95

Ref#: DS-800529

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS


420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

ERIK JOHNSON

ACTING TOWN PLANNER 2750 DIXWELL AVE HAMDEN CT 06518-3320

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0212 5595 93

560463364 04/05/2022 04/05/2022 Trans. #: Print Date: Ship Date: Delivery Date: 04/08/2022

Priority Mail® Postage: Total:

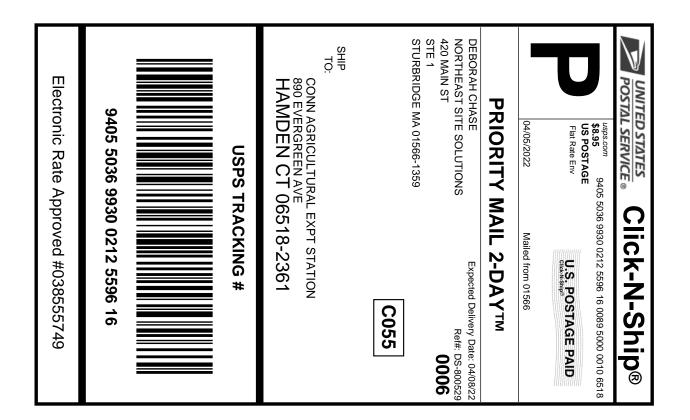
\$8.95 \$8.95

Ref#: DS-800529 From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1


STURBRIDGE MA 01566-1359

RICH ZAJAC

CROWN CASTLE 4545 E RIVER RD

STE 320

W HENRIETTA NY 14586-9024

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0212 5596 16

560463364 04/05/2022 04/05/2022 Trans. #: Print Date: Ship Date: Delivery Date: 04/08/2022

Priority Mail® Postage: Total:

\$8.95 \$8.95

Ref#: DS-800529

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

CONN AGRICULTURAL EXPT STATION

890 EVERGREEN AVE HAMDEN CT 06518-2361

SOUSZA CHOWN DISK POSTAL SERVICE.

FARMINGTON
210 MAIN ST
FARMINGTON, CT 06032-9998

04/05/2022	00) 275-8	3032-9998 37 <mark>7</mark> 7	
		· · · · · · · · · · · · · · · · · · ·	03:19 PM
rroduct	Qty	Unit Price	Price
Prepaid Mail Hamden, CT 0651 Weight: O 1b 1 Acceptance Date Tue 04/05/20 Tracking #: 9405 5036 99	8 0.70 oz : 022		\$0.00
Prensid Mail	1 NY 1458 90 oz 22	6	\$0.00
Prepaid Mail Hamden, CT 06518 Weight: 0 lb 10. Acceptance Date: Tue 04/05/202 Tracking #: 9405 5036 993	2	5596 1 6	\$0.00
Prenaid Mass	1 80 oz		\$0.00