

Northeast Site Solutions
Victoria Masse
420 Main St Unit 1 Box 2
Sturbridge, MA 01566
victoria@northeastsitesolutions.com
March 1, 2023

Members of the Siting Council
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051
RE: Tower Share Application
473 Denslow Hill Road, Hamden CT 06514
Latitude: 41.37713056 N
Longitude: -72.92914444 W
Site\#: BOHVN00194B

Dear Ms. Bachman:
This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the 200 ft guyed tower site located at 473 Denslow Hill Road, Hamden, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900/2100 5 G MHz antenna and six (6) RRUs, at the 185 -foot level of the existing 200-foot guyed tower, one (1) Fiber cable will also be installed. Dish Wireless LLC equipment cabinets will be placed within 7 x 5 lease area. Included are plans by Tectonic, dated March 1, 2023, Exhibit C. Also included is a structural analysis prepared by Vertical Bridge, dated February 28, 2023 confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. This facility was originally approved by the Planning and Zoning Commission town of Hamden, Special Permit 00-910, on December 12, 2000. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Lauren Garrett, Mayor for the Town of Hamden, Eugene Livshits, Town Planner for the Town of Hamden, as well as the property owner Vertical Bridge AM II and Vertical Bridge REIT, LLC tower owner.

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modifications will not result in an increase in the height of the existing structure. The top of the tower is 200-feet; Dish Wireless LLC proposed antennas will be located at a center line height of 185 -feet.
2.The proposed modification will not result in the increase of the site boundary as depicted on the attached site plan.
3.The proposed modification will not increase the noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.

4.The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total density of 0.74% as evidenced by Exhibit F.

Connecticut General Statutes 16-50-aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully indicates that the shared use of this facility satisfies these criteria.
A. Technical Feasibility. The existing guyed tower has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included in Exhibit D.
B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this guyed tower in Hamden. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.
C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 185 -foot level of the existing 200-foot tower would have an insignificant visual impact on the area around the guyed tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower share application.
E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Hamden.

Sincerely,

Victoria Masse
Mobile: 860-306-2326
Fax: 413-521-0558
Office: 420 Main Street, Unit 1 Box 2, Sturbridge, MA 01566
Email: victoria@northeastsitesolutions.com

Attachments
Cc:
Lauren Garrett, Mayor
Town of Hamden
Hamden Government Center
2750 Dixwell Avenue
Hamden, CT 06518
Eugene Livshits, Town Planner
Hamden Government Center
2750 Dixwell Avenue
Hamden, CT 06518
Vertical Bridge AM II, Property Owner
750 Park of Commerce Drive, Suite 200
Boca Ratan, FL 33487
Vertical Bridge, REIT, LLC, Tower Owner
750 Park of Commerce Drive, Suite 200
Boca Ratan, FL 33487

Exhibit A

Original Facility Approval

Commissioners in Attendance: Mr. Roscow
 Mr. Sims
 Mr. McDonagh
 Mr. Pappas
 Mr. DelVecchio
 Mr. DelVecchio

Mr. Crocco
Staff in Attendance: \quad Mr. O'Brien, Town Plamer
Mr. Lee, Assistant Town Attomey
Ms. Raccio, Court Reporting Monitor
Ms. Mana, Commission Clerk

Mr. Crocco called the meeting to order at 7:30 p.m. Ms. Mana read the Public Hearing announcement into the record. Mr. Crocco introduced the panel and explained the procedures for the evening.

A. PUBLIC HEARING

1. Special Permit/WS 00-908

1049-1051 Dixwell Avenue
General Repair/Used Car Sales
SLH Investors, Inc., Trustees
George Scarvales, Applicant
Continued January 9, 2000

2 Spectal Permit 00-910
473 Denslow Hill Road
Replacement of two Radio Towers.
Joseph Rubertone, Agent for Qumnipiac Umservty/Appleam
Bemard Pellegrino approaches and introduces humselt and Joseph R whentone Howard Pfrommer, Ray Andursen and Cliff Mills Mr Pellepmon states that the property is located at 473 Denslow Hill Rd. 12-acre ste whth a 40 -yr ohl antemat in disrepair, and also an operations center, where electrome equipment ts stored Project is to remove demolish two antenna and replace with brand new antenna in exact same place 205 ft . high. Also street side improvements moluding reparmy eroded curb cuts, repave etc, Mr. Pellegrino shows pictures of eroding antennata Severed metal in some places is unsafe. Bulbs camnot be replaced because no one will climb the towers. Applicant has already received wetlands approval. Zoning Board of Appeals gave four variances. Existing towers are non-conforming. Mam issue is $200-\mathrm{ft}$. high tower within 165 ft . from property line, could be a problem if they fell. The nearest home is 245 feet, so there is no problem, how can we assure they don't fall-We have added an extra guy wire in the center at 60 ft . from the ground. The added guy wire would snap the tower off at 60 ft. if it doesn thold the tower up. Height of towers is 5 ft . higher but is regulated by the FCC for transmission and licensing purposes. Application also meets special permit requirements, and is in the best interest of public safety. Metal tower poles are solid not hollow like current.

Mr. Crocco states that he was at wetlands meeting and notes the wetlands commission indicated some change in setbacks that in turn went to the Zoning Board of appeals. Howard Pfrommer of Nathan Jacobsen Engineers approaches, and states that improvements include paving in front of house. Towers are located east and west. Closest house is 220 ft . if towers failed they would not leave the property. Range fence would be erected during the work. Cliff Mills engineer for the radio station states that WQUN has a pattern to protect other stations in other states. Tower needs to be aligned and erected to 205 ft . high to accomplish the correct transmission. He compares PCS antenna to an an radio antenna. Actual tower is higher because of antenna as opposed to PCS, which is mounted onto a
structure He refers to map lmes and ponnt wre", whelo sill be reantached Ms

 is the best groundmes stem you cim have Voltage bubld op imes. hamted the ground system Mr Mchonagh asks how it is dissipated tome m he dermenf ' Ma Aulls states through the copper weres Mr Mills states that thete 1. id sa athotmen wod Mr MeDonagh asks of there is any theoretical way a charfe (an pre turter house through septic, well ete and asks if he thinks it is a concem' No Moll, IAt the Mr Croccoasks it the weres are straght? Mr Mills states yee Mo Reocopo ashs if there is fencing around the tower" Mr. Mills states no, that there are woond fences around towers, and they would like to add perpheral fenong as well Mr Roscow asks if the guy wires should be fenced to avoid trespassers" Mr Crocon states that it will be similar to WELI Mr. Pappas states that it is qumte nsolated

Mr Andrusen approaches and states that he is the operations manager, and has a radio show. States that it is an informational CBS affiliate with a weather reportme 5s stem, and has won awards in public service etc. Local communty events are a large part of station as well as having Quinnipiac student interns. The station is committed to the Town of Hamden.

Wr Pellegrno states that they have increased inspection time for 6 months as upposed to 1 year, to maintain the towers. Mr . Crocco asks if there are any comments from commissioners or public? Mr. O'Brien asks if they could tile a mantenance plan with the town along with the inspection reports. Answeryes Mr Crocco closes public Hearing for this Special Permit at 8.15 pm .

3. Special Permit 00-913
215 Sherman/Kenwood R-4
26,378 sq. ft. site.
Proposed addition to office building in a residential zone.
VIN Group, LLC, Owner/Applicant
POSTPONED (Later withdrawn)

4. Special Permit 00-916

900 Whitney Avenue
Demolition and on site crushing of existing structure.

Exhibit B

Property Card

473 DENSLOW HILL RD

Location	473 DENSLOW HILL RD	Mblu $2626 / 112 / / /$	
Acct\#	100203	Owner	VERTICAL BRIDGE AM II
Assessment	$\$ 218,890$	Appraisal	$\$ 312,700$
PID	100203	Building Count	1

Current Value

Appraisal					
Valuation Year	Building	Extra Features	Outbuildings	Land	Total
2020	\$118,300	\$0	\$1,200	\$193,200	\$312,700
Assessment					
Valuation Year	Building	Extra Features	Outbuildings	Land	Total
2020	\$82,810	\$0	\$840	\$135,240	\$218,890

Owner of Record

Owner VERTICAL BRIDGE AM I
Sale Price \$0
Certificate
Book \& Page 4763/0275
Sale Date 11/19/2020
Instrument 29

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book \& Page	Instrument	Sale Date
VERTICAL BRIDGE AM II	\$0		4763/0275	29	11/19/2020
QUINNIPIAC UNIVERSITY	\$387,500		1857/0322	00	06/17/1999
STERLING CHARLES 55\% \&	\$0		1857/0319	29	06/17/1999
STERLING CHARLES 55\%\&SACHS	\$0		1795/0319	29	11/19/1998
STERLING CHARLES $55 \%+$ SACHS	\$10,000		1604/0307	29	10/15/1996

Building Information

Building 1 : Section 1

Living Area: $\quad 1,144$
Building Percent Good:
Building Attributes

Field	Description
Style:	Office Bldg
Model	Comm/Ind
Grade	C -
Stories:	1
Occupancy	1.00
Exterior Wall 1	Vinyl Siding
Exterior Wall 2	
Roof Structure	Gable/Hip
Roof Cover	Asphalt
Interior Wall 1	Drywall
Interior Wall 2	
Interior Floor 1	Carpet
Interior Floor 2	
Heating Fuel	Oil
Heating Type	Forced Air-Duc
AC Type	Central
Struct Class	
Bldg Use	PVT UNIV M94
Total Rooms	
Total Bedrms	00
Total Baths	0
1st Floor Use:	904C
Heat/AC	HEAT/AC SPLIT
Frame Type	WOOD FRAME
Baths/Plumbing	AVERAGE
Ceiling/Wall	CEIL \& WALLS
Rooms/Prtns	AVERAGE
Wall Height	8.00
\% Comn Wall	0.00

(http://images.vgsi.com/photos/HamdenCTPhotos/N00102177\33.jpg)

Building Layout

(http://images.vgsi.com/photos/HamdenCTPhotos//Sketches/100203_2082

Building Sub-Areas (sq ft)			Legend
Code	Description	Gross Area	Living Area
BAS	First Floor	1,144	1,144
FBM	Basement, Finished	1,144	0
		2,288	1,144

Extra Features

Extra Features	Legend
No Data for Extra Features	

Land

| Land Use | | Land Line Valuation | |
| :--- | :--- | :--- | :--- | :--- |
| Use Code | 904 C | | |
| Description | PVT UNIV M94 | Size (Acres) | 12.27 |
| Zone | R3 | Frontage | |
| Neighborhood 100 Depth
 Alt Land Appr No Assessed Value $\$ 135,240$
 Category Appraised Value $\$ 193,200$ | | | |

Outbuildings

Outbuildings						Legend
Code	Description	Sub Code	Sub Description	Size	Value	Bldg \#
PAV1	PAVING-ASPHALT			1080.00 S.F.	\$1,200	1

Valuation History

Appraisal					
Valuation Year	Building	Extra Features	Outbuildings	Land	Total
2019	\$108,900	\$0	\$700	\$250,200	\$359,800
2018	\$108,900	\$0	\$700	\$250,200	\$359,800
2017	\$108,900	\$0	\$700	\$250,200	\$359,800

Assessment					
Valuation Year	Building	Extra Features	Outbuildings	Land	Total
2019	\$76,230	\$0	\$490	\$175,140	\$251,860
2018	\$76,230	\$0	\$490	\$175,140	\$251,860
2017	\$76,230	\$0	\$490	\$175,140	\$251,860

(c) 2021 Vision Government Solutions, Inc. All rights reserved.

Exhibit C

Construction Drawings

1. hazard of electrical shock or burn. turn off power supplying this equipment before working inside.
2. 100 OR 200 AMP, 240 VOLTS, SIIGGLE PHASE ALTERNATING CURRENT CIRCUIT ONLY
3. GENERATOR SHORT CIRCUIT RATING: $10,000 / 20,000$ AMPS RMS SYMMETRICAL, AMPERES AT 240 VOLTS
4. UTLLTY SHORT CIRCUIT RATING: 65,000 AMPS RMS SYMMETRICAL, AMPERES AT 240 VOLTS
5. SUITAble for use as service equipment
6. SUITABLE FOR USE IN ACCORDANCE with ARTICLE 702 of the national electric code ansi/nfpa 70
7. bonded neutral when installed as shown in wiring dagram
8. RAIN PROOF TTPE 3R
9. USE CU-AL WIRE $60-75{ }^{\circ} \mathrm{C}$
10. EQUIPPED WITH SLIDE BAR MECHANICAL INTERLOCK
11. Interlock prohibits both power sources from being in the on position simultaneously
12. EQUIPPED With square D breakers or alternative manufacturer equivalent
13. When replace load center breakers, use only square d (oo tipe) of the same rating or equivalent
14. When resetting breakers turn to off position, then to on position
15. WARNING: MAKE CONTINUITY CHECK WTH OHM METER TO VERIF CORRECT PHASING AND GROUNDING CONNECTIONS BEFORE POWER
16. VERIFY PIN OUt CONFIGURATION OF GENERATOR PRIOR to USE.
17. RISK of electric shock, both ends of disconnecting means may be energized. test before servicing
18. THIS SWITCH BOARD MAY CONTAIN A TAP ON THE SERVICE SIDE OF THE MAIN POWER DISCONNECT FOR REMOTE MONITORING OF
UTLITANDBY POWER
19. THE NORMAL AC POWER MONTORING CIRCCIT MUST UTLLIZE A DISCONNECTING MEANS WITH A SHORT CIRCUIT RATING GREATER
20. A RED PUSH-TO-TRIP BUTTON PROVIDES A MEANS TT MECHANICALY TRIP THE CIRCUIT BREAKER. THIS ACTION EXERCISES THE
TRIPPING PORTION OF THE MECHANISM AND ALLOWS MAITENANCE CHECK ON THE BREAKER

saution:

THE REREAKR CAN BE RESET BY OPERATING THE HANDLE TO THE EXTREME OfF
POSTITON ANO THEN TO

 	2004 UTLUTM FEED									
	LoAd SIIE CIIRCUT PREAKERS				LINE SIDE MAIN CIRCUIT Breaker					
	MFR.	TPE	PoLes	${ }_{\text {Rating }}^{\text {AMP }}$	MFR.	TPE	${ }_{\text {RAATING }}^{\text {Am }}$	STMM AMP RUS	${ }_{\text {vac }}^{\text {vors }}$	PHASES
	sa-d	-	$\frac{1}{2}$	15-100A	sa-d	act	2008	65,000	240 V	2
 	200A Generator feed									
	LoAd SIIE CIIRCUT PREAKERS				LINE SIDE MAN ClRCUIT BREaker					
	MFR.	TPE	poles	$\underset{\text { RATN }}{\text { AM }}$	MFR.	TPE	${ }_{\text {Rating }}^{\text {AM }}$	SMM SMME.	${ }_{\text {vors }}^{\text {vac }}$	PHASES
	sa-d	∞	$\frac{1}{2}$	15-100A	sa-d	agL	2004	65,000	240 V	2

DANGER:

HAZARD OF ELECTRICAL SHOCK OR BURN.
TURN OFF POWER SUPPYYNG THIS
EQUPMENT BEFORE WORKING INSIDE.
RAYCAP CUSTOMER SERVICE
(800) $890-2569$

d ${ }^{2}$ sh
wireless.
5701 SOUTH SANTA FEE DRVE
LTTLTEN, $C O$ 80 80 20
Tectonic ${ }^{-1}$

((生) $)^{\text {) }}$

$\frac{\text { Turntey Wireless Development }}{}$

DRAWN BY:	CHECKED BY:				
APPRROVED BY:					
Y			VM	JQ	EI
:---:	:---:	---:			
RFDS REV \#:		1			

CONSTRUCTION
DOCUMENTS

A\&E PROJECT NUMBER
1839.BOHVNOO194

BOHVNOO194B 473 DENSLOW HILL ROAD

HAMDEN, CT 06514 \begin{tabular}{|c|}
\hline SHEET TTLE

\hline PRC

\hline

PPC $\begin{array}{c}\text { NEUTRAL-TO-GROUND } \\
\text { SCHEMATIC }\end{array}$

\hline
\end{tabular} SCHEMATIC

SHEET NUMBER

 3. For grouno bond to steel only coat all surfaces wit an antl-oxidant compouno
4. Do not Instal cable grouning kit at a bend and alwars direct ground conoctor
5. Nut de masher shall be placed on the front side of the ground bar and bolted on
. AlL Grounoing parts and equipment to be suppled and instaled by contracte
7. THE CONTTAACTOR SHALL EE RESPONSIBLE FOR INSTALIIG ADODTIONAL GROUND BAR AS
8. ENSURE THE WRE INSULATON TERMNATON IS WTHIN $1 / 8$ " of THE BARREL (no shiners).

IMAL GROUNDING NOTES
LUG DETAIL


```
#T\_lol
    *)
    \allol
```



```
    NM,
    IGN PlacemeNT:
        pr SIGNage Placement Shall follow the recommenoatons of an exstmg eme report, created by a thrd part pregousir authorized by oish
        Na/m,
        EME REDORT II NOT AVALLABLE AT THE TIME OF CREGTION OF CONSTRUCTON DOCUMENT; PLEASE CONTACT OISH Wireless LLL.C.CONSTRUCTON MANAGER FOR
NOTES:
        . FOR DISH Wreless LL.C. LOCO, SEE DISH Wreless L.L.C. DESIGN SPECIFCCATONS (PRoVDDED BY DISH Wireless L.L.C.)
```



```
    3. TEXT FOR SIGNAGE SHALL NOICATE CORRECT STE NAME AND NUMBER AS PER DISH Wireless L.L.C. CONSTruCTTON MANAGER RECOMMENDATONS.
    4. cabine/Sheliter mounting applcaton requres another plate appled to the face of the cabinet wth water proof polvurtrtane adhesne
    5. alL sinNs wLL ee secured wth emter stanless steel zip ties or stamless steel tech screws
    6. ALL SICNS TO be 8.5" }\times1\mp@subsup{1}{}{\prime\prime}\mathrm{ AND MADE WTH 0.04" OF ALUMMUMM MATRRIL
6. ALL SIINS TO EE \(8.5 \times 111^{\circ}\) AND MADE WTH 0.04 " OF ALUMINUM MATERML
```


INFORMATION

This is an access point to an area with transmitting antennas.

Obey all signs and barriers beyond this point. Call the DISH Wireless L.L.C. NOC at 1-866-624-6874

Site ID: \qquad

NOTICE ($(1 \cdot 1))$
 Transmitting Antenna(s)

Radio frequency fields beyond this point MAY EXCEED the FCC Occupational exposure limit

Obey all posted signs and site guidelines for
working in radio frequency environments.
Call the DISH Wireless L.L.C. NOC at 1-866-624-6874 prior to working beyond this point.

Site ID:
dish

A CAUTION

Radio frequency fields beyond this point MAY EXCEED the FCC Occupational exposure limit.

Obey all posted signs and site guidelines for
working in radio frequency environments.
Call the DISH Wireless L.L.C. NOC at 1-866-624-6874 prior to working beyond this point.
Site ID:
ID:
dish

AWARNING

Radio frequency fields beyond this point EXCEED the FCC Occupational exposure limit.

Obey all posted signs and site guidelines for
working in radio frequency environments.
Call the DISH Wireless L.L.C. NOC at 1-866-624-6874 prior to working beyond this point.
Site ID:
dish
d́sh
wireless.
5701 SOUTH SANTA FE DRVE
LITLETON, CO 80120
Tectonic ${ }^{-1}$

((($\left.\left.\left.\psi^{\phi}\right)\right)\right)$

DRAWN BY:	CHECKED Br:	APPRRVED BY
$\mathbf{y y}$		

CONSTRUCTIO
DOCUMENTS
\qquad
\qquad

1839 вонvN0019

вонVN00194B 473 DENSLOW HILL ROAD

SITE ACTVITY REQUREMENTS:

NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEVING A WRITEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORLER. PRIOR TO ACCESSING/ENTERING THE STIE YO MUST COM
LL.C. AND TOWER OWNER NOC \& THE DISH Wireles LLL.C. AND TOWER OWNER CONSTRUCTON MANAGER.
2. "LOOK UP" - DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRTT OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACLITY SHALL BE CONSIDRED DURING ALL STAGES
OF DESIGN, INSTALATION, AND INSPECTION. TOWER MODFICATON, MOUNT REINFORCEMENTS, AND/OR EQUPMENT INSTALLATIONS SHALL OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUPMENT INSTALALTONS SHAL
NOT COMPROMISE THE INTEGRITY OR FUNCTONAL USE OF THE SAEETY CLIMB OR ANY COMPONENTS OF THE CLIMBBG FACLITT ON

PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISICTIONAL PERMITS SHALL BE OBTAANED. THIS INCLUDES, BUT
IS NOT LIMTED TO, BULLING, ELECTRICAL, MECHANLCAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTVIVIES

4. ALA CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGING PLANS, CLIMBING
PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBLITTO OF THE GENERAL CONTRACTOR RESPONIBLE FOR THE EXECUUTION OF

 THE REQURED INVOLVEMENT OF A QUALIFIED ENGINE
ACCORDANCE WTTH ANSI/TIA-322 (LATEST EDITION).
5. ALL SITE WORK TO COMPLY WTH DISH Wireless L.L.C. AND TOWER OWNER INSTALATION STANDARDS FOR CONSTRUCTION
ACTVITIEL ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TAA-1019-A-2012 "STANDARD FOR

6. IF THE SPECIIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE
AN ALTERNATVE NSTALATON FRR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDNG WTH ANY SUCH
CHANGE OF INSTALATION AN ALTERNATIE INSTALLAT
CHANGE OF INTALLATOO
ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLCABLE CODES, REGLATIONS
7ND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WTTH ALL LAWS, ORDINANCES, RULESS, AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WTHH ALL LALSE, ORDINANCES, RULEES,
REGULTIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED

8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS
9. THE CONTRACTOR SHALL CONTACT UTLITY LOCATNG SERVICES INCLUDING PRINATE LOCATES SERVICES PRIOR TO THE START
OF CONSTRUCTION.

 FALL PROTECTI
PROCEDURES.
11. ALL SIEE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS,
LATEST APPROVED REVIION.
12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF
THE WORK. IF NECESARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
13. ALL EXISTNG INACTVE SEWER, WATER, gAS, ELECTRIC AND OTHER UTLLTIES, WHICH INTERFERE WITH THE EXECUTION OF THE
 THE EXECUTON OF THE WORK, SUBJECT TO THE APPROVAL OF DISH Wireless LLL.C. AND TOWER OWNER, AND/OR LOCAL UTLLTIES. T4. THE CONTRACTOR SHALL PROVIDE SITE SIISNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE
REQUIED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIIDUAL PIECES OF EQUPMENT, ROOMS, AND SHELTERS.
15. THE SIte SHALL be graded to CAUSE surface water to flow away from the carrier's equipment and tower areas. 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE
APPLCATON.
17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUPMENT OR
DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILZED TO PREVENT EROSION AS SPECIFED ON THE CONSTRUCTION DREWAY, SAALL BE GRAEED TO A UNIFORN
18. CONRACTOR SHALL MINIIZE DISTURBANCE TT EXIISTING SITE DURING CONSTTUCTION. EROSION CONTROL MEASURES, IF
REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUDELINES FOR EROSION AND SEDMENS CONTROL 19. THE CONTRACTOR SHALL PROTECT EXIITTNG IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY

ROPRIY DISPOSE OF All SCPAP materins such as coaxial cables and other 20. CONTRACTOR SHALL LEGALLY AND PRORERLY DISPOSE OF ALL SCRAA MATERIALL SUCH AS COAXIAL CABLES AND OTHE
REMOVED FROM THE EXASTING FACLLITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIINATED
21. CONtractor shall leave premises in clean condition. trash and debris should be removed from site on a dally
basis.
22. NO FILL OR EMBANKMENT MATERILL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT
BE PLACED IN ANY FILL OR EMBANKMENT.
general notes
1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINTIONS SHALL APPLY CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTIO

SH Wireless L.L.C.

TOWER OWNER:TOWER OWNER
2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY
EXERISED UNDER SIMLAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITES. IT IS ASSUMED THAT THE WORK DEPICTED WLL BE PERFORMED BY AN EXPERENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OONDITION OR ELEMENT IS (OR CAN BE) EXPLLCTLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED CONDITON OR ELEMENT II (OR CAN BE EXELCITLY SHOON ON THES DRAWWG
STANDARD GOOD PRACTICE FOR MISCELLAEEOUS WORK NOT EXPLCICLLY SHOWN.
THESE DRAWINGS REPRESENT THE FINSHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF
CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHOOS, TECHNIQ
SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LQF AND
 SITE VIITTS BY THE ENGINEER OR HIS REPRESENT
OBSERVATON OF THE FINIHED STRUCTURE ONLY.

NOTES AND DETALLS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DEEAALLS

 GREATER,
RECORD.
SUBSTANTAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST
IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SELE RESPONSIBILTT OF THE CONTRACTOR TO IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELLEMENTS BUT IT IS THE SOLE RESPONSIBLITY OF THE CON
FIELD VRRIF THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOW NIN THE CONSTRUCTION DRAWNGS PRIOR TO
FABRICATION OR CUTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE
 Possible.
 EXIITING CONDITIONS AND TO CONFRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE
DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATEETION OF CARRER POC AND TOWER OWNER.
7. AL MATERIALS FURNSHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLCABLE CODES, REGLLATIONS
AND ORDINANCES. CONTRACTOR SHALL ISUE ALL APPROPRATE NOTICES AND COMPLY WTH ALL LAWS, ORDINANCES, RULES, AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WTH ALL LAWS, ORDINANCES, RULES,
REGULATONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED
 UNLESS NOTED OTHERWISE, THE WORK SHALL INCLLDE FURNISHING MAA
SECESSARY TO COMPLLETE ALL INSTALATIONS AS INDICATED ON THE DRAWINGS.
9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS
10. IF TEE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOW ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE
AN ALTERNTVE
OF INSTALLATION.
 DRAWINGS.
12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY 13. CONTRACTOR SHALL LECHLY AND PROPERIY DISPOSE OF AL SCRAP MATERIALS SUCH AS COAXIAL CABES AND OTHER ITE 13. CONTRACTOR SHALL LEGALY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXILL CABLLES AND
REMOVED FROM THE EXISTIIG FACIITTY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESGACTED LOCATON. $\underset{\text { basis. }}{14 .}$ CONTRActor shall leave premises in clean condition. trash and debris should be removed from site on a dall

5701 SOUTH SANTA RE DRVE
LITLETN, $C O$ 80 80 20

Tectonic

((栜))
NSSS

CONCREIE, FOUNDATIONS, AND RENFORCING STEE

ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN
AND CONSTRCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE.
2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000
pst.
 MORE THAN 90 MINTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACN
TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90 'f AT TIME OF PLACEMENT.
4. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAN AIR ENTRANING ADMIXTURES. AMOUNT OF AIR ENTRANMENT TO BE
BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CENENT USED TO AASED ON SIZE OF AGGREGAAE AND F3 CLASS EXPOSURE (VERY SEVERE) CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH
5. all steel reinforcing shall conform to astm a615. all welded wire fabric (wwf) shall conform to astm alis. SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLOOWS
\#4 BARS AND SMALLER 40 ks
\#5 BARS AND LARGER 60 ksi
${ }_{\text {6 }}^{\text {6. }}{ }^{\text {DRAWING: }}$ THE
LIOWING MINMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON

- concrete cast against and permanently exposed to earth 3^{n}

CONCRETE EXPOSED TO EARTH OR WEATHER:

- \#f bars and larger 2^{n}
- \#5 bars and smaller 1-1/2"
- CONCRETE Not Exposed to earth or weather:
- slab and walls $3 / 4^{\prime \prime}$
beams and columns $1-1 / 2^{\prime \prime}$

7. A tooled edee or a $3 / 4^{" \prime}$ chamfer shall be provided at all exposed edges of concrete, unless noted otherwise

ELECTRICAL INSTALATION NOTES:

${ }^{1}$. ederal all electrical work shall be performed in accordance with the prouect specifications, nec and all applicable
2. CONDUIT ROUTINGS ARE SCHEMATC. CONTRACTOR SHALL INSTALL CONDUTS sO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED
AND TRIP HAZARDS ARE ELIMINTED.

WIRIng, raceway and support methods and materals shall comply with the requirements of the nec.
all circuits shall be segregated and maintain minimum cable separation as required by the nec.
4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF
THE NATIONAL ELECTRICAL CODE.
 CURRENT TO WHHCH THEY ARE SUBJECTED, 22,000 AIC MNINUM. VERYIF AVALABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED TVI
RATING OF ELECTIIAL EQUPMENT IN ACCORDANCE WTH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.
5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE
LABELED WTH COLOR-COOED INSULATION OR ELECTRICAL TAPE (3M BRAND, $1 / 2^{2}$ " PLASTIC ELECTRICAL TAPE WTTH UV PROTECTON, OR LABELLED WTH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3 M BRAND
EQUAL). THE IDETTFICATON METHOD SHALL CONFORM WTH NEC AND OSHA.
 CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID's).
7. PANEL boards (ID NUMBERS) Shall be Cleariy labeled with plastic Labels.
8. TIE WRAPS ARE NOT ALLOWED.
 10. SUPPLEMENTAL EQUIPMEN GROUND WIRING LOCATED INDOORS SHAL BE SIINGLE COPPER CONDUCTOR (\#G OR LARGER) WTH
TPE THW, THN 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (\#14 OR LARGER) UNLESS 11. PPWER AND
OTHERWISE SPECFIED.

POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TTPE TC CABLE (\#14 OR LARGER), WITH
12.
TTPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATON UNLLESS OTHERWISE SPECIFED.

14. RAceway and cable tray shall be listed or labeled for electrical use in accordance with nema, ul, ans//ieee and 15. ELECTRICAL METALLIC
EXPOSED INDOOR LOCATONS.
(RSOSED INDOOR LOCATIONS.

ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
18. LIQUID-TIGHT FLEXXBLE METALLIC CONDUIT (LIQUID-TTEE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VBRATION 19. CONDUUT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TTPE AND APPROVED FOR THE LOCATION USED. SET 20. CABinets, boxes and wire ways shall be labeled for electrical use in accordance with nema, ul, ansi/iee and the 21. WIREWAYS SHALL be metal with an enamel finish and include a hinged cover, designed to swing open downward (WIREMOLD SPECMATE WIREWAY).
22. SLOTtEd Wiring duct shall be pvc and include cover (pandut trpe e or equal).
23. CONDUTS SHALL BE FASTENED SECURELY IN PLACE WTTH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANCERS TO STRUCTURE WILL NOT BE PERMITED. CLOSELY FOLLOW THE LINES OF
THE STRUCTURE, MAINTAN CLOSE PROXIMITH TO THE STRUCTURE AND KEEP CONDUTS

 MALLEABLE IRON LOCKNUT ON OUTSIE AND INSIDE.
24. EQUPMEN CABNETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET
STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETER) FOR STEEL. SHALL MEET OR
EXTERIOR LOCATINS.
25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR
EXCEED UL $514 A$ AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR EXCEED UL 514 IA AND NEMA OS
BETER) FOR EXTERIO
OCATIONS
26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHAL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED (
27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECEESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND
28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRBUTION PANELS IN ACCORDANCE LIFE AND PROPERTY.
30. All emptr/spare conduts that are installed are to have a metered mule tape pull cord installed.

Tectonic
 $\frac{1}{2 m a x}$
 ((必))
 $\frac{1}{T \text { Turkey }}$ Wireless Deveropmen

A\&E PROUECT NUMBER
11839.BOHVNOO194B

DISH WWireless LLLC.C.
PROUCT NFORMATON
BOHVNOO194B
473 DENSLOW HILL ROAD
HAMDEN, CT 06514
SHEET TTLLE
general notes

GROUNDING NOTES:

1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL
BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
2. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR

GROUND ELECTRODE SYSTEMS, THE CONTRACTOR
ACHEVE A TEST RESULT OF 5 OHMS OR LESS.
3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO
PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY
BONDING ACROSS THE DISCONTINUITY WTTH \#6 COPPER WIRE UL APPROVED GROUNDING TTPE CONDUIT CLAMPS.
5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS
WTHH GEEEN NSULTION, SIZED IN ACCORDANCE WTTH THE NEC, SHALL BE FURNISHED AND INSTALLED WTTH THE POWER CIRCUTTS TO BTS
EQUPMENT
6. EACH CABINET FRAME SHALL BE DIRECLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL
EQUPMENT GROUND WIRES, \#6 STRANDED COPPER OR LARGER FOR INDOOR BTS; \#2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE
OF THE GROUND BUS ARE PERMITED. OF THE GROUND BUS ARE PERMITIED.
8. ALL EXTERIOR GROUND CONDUCTORS Between EQUIPMENT/Ground bars and the ground ring shall be \#2 solid tinned
9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS
10. USE OF 90° bends in the protection grounding conductors shall be avoided when 45° bend can be adequately
11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
sAR. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMCALY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND
15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND
CONNECTIONS.
16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERILL
17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND
18. Bond all metallic objects within 6 ft Of main ground ring with (1) \#2 bare sold tinned copper ground
19. GROUND CONDUCTORS USED FOR THE FACILTY GROUNOING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED
THROUGH METALLC OBUCCTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLC CONDUITS, METAL SUPPORT CLIPS OR

20. ALL GROUNDS THAT TRANSTIION FROM BELOW GRADE TO ABOVE GRADE MUST BE $\# 2$ BARE SOLD TINNED COPPER $\operatorname{IN} 3 / 4^{\prime \prime}$
NON-METAUC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3^{n} TO $6^{\prime \prime}$ OF CAD-WELD TERMNATION POINT. THE EXPOSED NoN-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN $3^{\prime \prime}$ TO $6^{\prime \prime}$ OF CAD-WELD TERMINATIN POINT.
OF THE CONDUIT MUST BE SEALED WITH SLICONE CAULK. (ADD TRANSITONING GROUND STANDARD DETAIL AS WELL).
21. BULLDNGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQURED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE
 SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALER THAN $2 / 0$ COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING
(FERROUS OR NONFERROUS MEIAL PIIING ONLY). DO NOT ATACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

5701 SOUTH SANTA RE DRVE
LITLETN, $C O$ 80 20 20

Exhibit D

Structural Analysis Report

Dish Wireless

$\underline{\text { Structural Analysis Report }}$

VERTICAL BRIDGE ENGINEERING, LLC

Table of Contents

Introduction 1
Existing Structural Information 1
Final Proposed Equipment Loading for Dish Wireless 1
Design Criteria 2
Analysis Results 2
Assumptions 2
Conclusions 3
Standard Conditions 4
Disclaimer of Warranties 4
Calculations Attached
Collocation Application Attached

Introduction

We have completed our structural analysis of the proposed equipment installation on the foregoing tower to determine its ability to support the new loads proposed by Dish Wireless. The objective of the analysis was to determine if the tower meets the current structural codes and standards with the proposed equipment installation.

Existing Structural Information

The following documents for the existing structure were made available for our structural analysis.

Tower Information	PiRod Tower Drawings Job No. A-118262-1, dated April 12, 2002.
Foundation Information	PiRod Foundation Drawings Job No. A-118262-1, dated April 12, 2002.
Geotechnical Information	Geotechnical information was not available at the time of this analysis.
Equipment Information	Vertical Bridge Collocation Application Version 1.
Tower Reinforcement Information	This tower has not been previously modified.

Final Proposed Equipment Loading for Dish Wireless

The following proposed loading was obtained from the Vertical Bridge Collocation Application:

Antenna/Equipment					Coax	
Mount (Ft.)	$\begin{aligned} & \hline \text { RAD } \\ & \text { (Ft.) } \\ & \hline \end{aligned}$	Qty.	Antenna	Type	Qty.	Size/Type
185.0	-	3	Commscope P/N: MTC3975083	Mount	1	1.75" Hybrid
	185.0	3	JMA MX08FRO665-21	Panel		
		3	Fujitsu TA08025-B604	RRU		
		3	Fujitsu TA08025-B605	RRU		
		1	Raycap RDIDC-9181-PF-48	OVP		

[^0]
Design Criteria

The tower was analyzed using tnxTower (Version 8.0.9.0) tower analysis software using the following design criteria.

State	Connecticut
City/County Building Code	New Haven County 2022 Connecticut State Building Code (2021 IBC)
TIA/EIA Standard Code	TIA-222-H
Basic Wind Speed	$119 \mathrm{MPH}\left(\mathrm{V}_{\text {ult }}\right)$
Basic Wind Speed w/ Ice	$50 \mathrm{MPH} \mathrm{w} /$ "" Ice
Steel Grade	50 ksi Legs and Horizontals / 36 ksi Diagonals / A325 Bolts
Exposure Category	C
Topographic Category (height)	$1(0.0 \mathrm{Ft})$
Risk Category	II
Ground Elevation	$170.42 \mathrm{Ft}$.
S $_{\mathbf{s}}$	0.201
Seismic Design Category	B

Analysis Results

Based on the foregoing information, our structural analysis determined that the existing tower is structurally capable of supporting the proposed equipment loads without modification. The tower base and anchor foundations have also been evaluated. The foundation reactions as a result of the proposed installation are less than the original design foundation reactions and as such the existing foundation is considered to be structurally capable of supporting the proposed equipment loads. A seismic analysis has been performed on this structure and does not control.

Assumptions

The below assumptions are true, complete, and accurate.

1. The existing tower has been maintained to manufacturer's specifications and is in good condition.
2. Foundations are considered to have been properly designed for the original design loads.
3. All member connections are considered to have been designed to meet the load carrying capacity of the connected member.
4. Antenna mount loads have been estimated based on generally accepted industry standards.
5. The mounts for the proposed antennas have been analyzed and designed by others.
6. See additional assumptions contained in the report attached.
7. Due to the utilization of Annex-S reliability factors, the structure is within acceptable engineering tolerances at 100%.

Conclusions

The existing tower described above does have sufficient capacity to support the proposed loading based on the governing Building Code. The existing base and anchor foundations have also been evaluated and are acceptable. A seismic analysis has been performed on this structure and does not control.

We appreciate the opportunity of providing our continuing professional services to you. If you have any questions or need further assistance please call us anytime at 561-948-6367.

Sincerely,
Analysis by:
Nelson Figueroa, EI
Design Engineer III
Reviewed by:
Michael T. De Boer, PE
Engineer

03/17/2023

Standard Conditions

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but not necessarily limited, to:

- Information supplied by the client regarding the structure itself, the antenna and transmission line loading on the structure and it components, or relevant information.
- Information from drawings in possession of Vertical Bridge Engineering, LLC, or generated by field inspections or measurements of the structure.

It is the responsibility of the client to ensure that the information provided to Vertical Bridge Engineering, LLC and used in the performance of our engineering services is correct and complete. In the absence of information contrary, we consider that all structures were constructed in accordance with the drawings and specifications and are in a un-corroded condition and have not deteriorated; and we, therefore consider that their capacity has not significantly changed from the original design condition.

All services will be performed to the codes and standards specified by the client, and we do not imply to meet any other code and standard requirements unless explicitly agreed to in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes and standards, the client shall specify the exact requirements. In the absence of information to the contrary, all work will be performed in accordance with the revision of ANSI/TIA/EIA-222-H requested.

All services are performed, results obtained and recommendations made in accordance with the generally accepted engineering principles and practices. Vertical Bridge Engineering LLC and its affiliates are not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

Disclaimer of Warranties

The engineering services by Vertical Bridge Engineering, LLC in connection with this Structural Analysis are limited to a computer analysis of the tower structure, size and capacity of its members. Vertical Bridge Engineering, LLC does not analyze the fabrication, including welding, except as may be expressly included in this report.

The purpose of this report is to assess the feasibility of adding appurtenances usually accompanied by transmission lines. Any mention of structural modifications are reasonable estimates and should not be used a precise construction document. Precise modification drawings are obtainable from Vertical Bridge Engineering, LLC but are beyond the scope of this report.

Vertical Bridge Engineering, LLC makes no warranties, express or implied, in connection with this report and disclaims any liability arising from material, fabrication and erection of this tower, or installation and compliance with legal and permitting requirements of the proposed equipment. Vertical Bridge Engineering, LLC will not be responsible whatsoever for or on account of, punitive, special, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of Vertical Bridge Engineering, LLC pursuant to this report will be limited to the total fee received for preparation of this report.

Attachment 1:
 Calculations

TYPE	ELEVATION	TYPE	ELEVATION
Beacon	200	TA08025-B604 (15.75×14.96×7.87)(Dish)	185
Commscope P/N: MTC3975083	185		
(Dish)		$\begin{aligned} & \text { TA08025-B605 (} 15.75 \times 14.96 \times 9.06 \text {) } \\ & \text { (Dish) } \end{aligned}$	185
Commscope P/N: MTC3975083	185		
(Dish)		TA08025-B605 (15.75×14.96x9.06)(Dish)TA08025-B605 ($15.75 \times 14.9 \times 9.06$)	185
Commscope P/N: MTC3975083	185		
(Dish)		TA08025-B605 (15.75 $\times 14.96 \times 9.06$)(Dish)	185
JMA MX08FRO665-21 (EPA) (Dish)	185		
JMA MX08FRO665-21 (EPA) (Dish)	185	RAYCAP RDIDC-9181-PF-48 (Dish)	185
JMA MX08FRO665-21 (EPA) (Dish)	185	1/3 Remaining Reserve Right (Dish)	185
$\begin{aligned} & \text { TA08025-B604 (15.75x14.96x7.87) } \\ & \text { (Dish) } \end{aligned}$	185	1/3 Remaining Reserve Right (Dish)	185
		1/3 Remaining Reserve Right (Dish)	185
$\begin{aligned} & \text { TA08025-B604 (15.75x14.96x7.87) } \\ & \text { (Dish) } \end{aligned}$	185	Side Light	100
		Side Light	100

| MARK | SYMBOL LIST | | |
| :---: | :---: | :---: | :---: | :---: |
| A | SR $3 / 4$ | MARK | SIZE |

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi

TOWER DESIGN NOTES

1. Tower designed for Exposure C to the TIA-222-H Standard.
2. Tower designed for a 119 mph basic wind in accordance with the TIA-222-H Standard.
3. Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
4. Deflections are based upon a 60 mph wind.
5. Tower Risk Category II.
6. Topographic Category 1 with Crest Height of 0.000 ft
7. TOWER RATING: 78.7\%

ALL REACTIONS ARE FACTORED

Vertical Bridge	Lob: US-CT-50		
750 Park of Commerce Drive, Suite 200	Project: Guyed To	er Structural Analysis	
Boca Raton, FL 33487	${ }^{\text {ciient: }}$ DISH	Drawn by: Nelson.Figueroa	App'd:
	Code: TAA-22	Date: $02 / 28 / 23$	
FAX	Path:		$\mathrm{Dwg}^{\text {No. }}$.

Vertical Bridge
750 Park of Commerce Drive, Suite 200
Boca Raton, FL 33487

Phone:

FAX:

Dob: US-CT-5015
US- Project: Guyed Tower Structural Analysis Client: DISH Code: TIA-222-H Path:

Feed Line Plan

20'
\qquad Round \qquad Flat \qquad App In Face App Out Face

Section @ 20'

tnxTower Vertical Bridge 750 Park of Commerce Drive, Suite 200 Boca Raton, FL 33487 Phone: FAX:	Job	US-CT-5015	$\begin{array}{ll} \hline \text { Page } & \\ & 1 \text { of } 47 \end{array}$
	Project	Guyed Tower Structural Analysis	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:43:12 02/28/23 } \end{array}$
	Client	DISH	Designed by Nelson.Figueroa

Tower Input Data

The main tower is a $3 x$ guyed tower with an overall height of 200.000 ft above the ground line.
The base of the tower is set at an elevation of 0.000 ft above the ground line.
The face width of the tower is 2.000 ft at the top and tapered at the base.
This tower is designed using the TIA-222-H standard.
The following design criteria apply:
Tower base elevation above sea level: 170.420 ft .
Basic wind speed of 119 mph .
Risk Category II.
Exposure Category C.
Simplified Topographic Factor Procedure for wind speed-up calculations is used.
Topographic Category: 1.
Crest Height: 0.000 ft .
Nominal ice thickness of 1.0000 in.
Ice thickness is considered to increase with height.
Ice density of 56.000 pcf .
A wind speed of 50 mph is used in combination with ice.
Temperature drop of $50.000^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
Pressures are calculated at each section.
Stress ratio used in tower member design is 1 .
Safety factor used in guy design is 1 .
Tower analysis based on target reliabilities in accordance with Annex S.
Load Modification Factors used: $\mathrm{K}_{\mathrm{es}}\left(\mathrm{F}_{\mathrm{w}}\right)=0.95, \mathrm{~K}_{\mathrm{es}}\left(\mathrm{t}_{\mathrm{i}}\right)=0.85$.
Maximum demand-capacity ratio is: 1.
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

[^1]Distribute Leg Loads As Uniform Assume Legs Pinned
$\sqrt{ }$ Assume Rigid Index Plate
$\sqrt{ }$ Use Clear Spans For Wind Area
$\sqrt{ }$ Use Clear Spans For KL/r
$\sqrt{ }$ Retension Guys To Initial Tension Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt.
$\sqrt{ }$ Autocalc Torque Arm Areas Add IBC .6D+W Combination
$\sqrt{ }$ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules
$\sqrt{ }$ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
$\sqrt{ }$ SR Leg Bolts Resist Compression
All Leg Panels Have Same Allowable
Offset Girt At Foundation
$\sqrt{ }$ Consider Feed Line Torque
Include Angle Block Shear Check
Use TIA-222-H Bracing Resist. Exemption
Use TIA-222-H Tension Splice Exemption Poles
Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets
Pole Without Linear Attachments
Pole With Shroud Or No Appurtenances
Outside and Inside Corner Radii Are
Known

Vertical Bridge 750 Park of Commerce Drive, Suite 200 Boca Raton, FL 33487 Phone: FAX:	Job	US-CT-5015	$\begin{aligned} & \text { Page } \\ & \\ & 2 \text { of } 47 \end{aligned}$
	Project	Guyed Tower Structural Analysis	Date 15:43:12 02/28/23
	Client	DISH	Designed by Nelson.Figueroa

Corner \& Starmount Guyed Tower

Tower Section Geometry

Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of
	$f t$		$f t$	Sections	

Tower Section Geometry (cont'd)

verticalbridge Guyed Tower Foundation Reaction Comparison

Site\#	US-CT-5015		Date	2/28/2023
Carrier	Dish		Engineer	JB
TIA Rev	TIA-222-H			
Conversion Factor	1.35	*Use (1) if tower was designed in Rev G or H		

Original Design Reactions					Current Analysis Reactions					
	Base	Inner Anchor			Middle Anchor	Outer Anchor		Base	Inner Anchor	Middle Anchor

Foundation Reactions	Factored Original Design		Current Analysis		Percentage		
	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical	Controlling
	(kips)						
Base	1.5	43.7	0.3	33.0	0.0%	75.4%	75.4%
Inner Anchor	4.3	4.6	2.0	2.0	46.3%	43.6%	
						58.5%	
Outer Anchor	12.7	15.4	7.0	9.0	50.2%	58.5%	

Notes:

1. Original design reactions increased by 1.35 for conversion to Rev H
\square

Location

Location			
Decimal Degrees	Deg	Min	Sec
Lat: $\square+$			
Long:			
Code and Site Parameters			
Seismic Design Code: Site Soil: Risk Category:	TIA-222-H	Default	
	D (Default)		
	11		
USGS Seismic Reference			
	0.2010		
	0.0540		
	6		
Seismic Design Category Determination			
Importance Factor, $\mathrm{I}_{\mathrm{e}}:$Acceleration-based site coefficient, $\mathrm{F}_{\mathrm{a}}:$Velocity-based site coefficient, $\mathrm{F}_{\mathrm{v}}:$	1	g	
	1.6000		
	2.4000		
Design spectral response acceleration short period, S_{DS} : Design spectral response acceleration 1 s period, $\mathrm{S}_{\mathrm{D} 1}$	0.2144		
	0.0864		
$\begin{aligned} & \text { Seismic Design Category Based on } \mathrm{S}_{\mathrm{DS}} \text { : } \\ & \text { Seismic Design Category Based on } \mathrm{S}_{\mathrm{D}} \text { : } \\ & \text { Seismic Design Category Based on } \mathrm{S}_{1}: \end{aligned}$	B		
	B		
	N/A		
Controlling Seismic Design Category:	B		

\square

Tower Details

2.7.8.1

Seismic Base Shear

2.7.7.1.3.4

2.7.7.1.1
2.7.7.1.1
2.7.7.1.1
2.7 .7 .1 .1
2.7.7.1.1
Seismic Base Shear, $\mathrm{V} \square 0.510$ 2.7.7.1.1

Vertical Distribution Factors

Period Related Exponent, $\mathrm{k}:$	1.000
Sum of $\mathrm{w}_{\mathrm{i}} \mathrm{h}_{\mathrm{i}}^{\mathrm{k}}$	925.74

Section Number		Length	Top Height	Mid Height, h_{x}	Section Weight, w_{x}	$w_{x} h_{x}{ }^{k}$	$\mathbf{c}_{v x}$	$F_{x h}$
1	20.00	200.00	190.00	0.3514	66.77	0.0721	0.0368	0.0151
2	20.00	180.00	170.00	0.3514	59.74	0.0645	0.0329	0.0151
3	20.00	160.00	150.00	0.3514	52.71	0.0569	0.0291	0.0151
4	20.00	140.00	130.00	0.3514	45.68	0.0493	0.0252	0.0151
5	20.00	120.00	110.00	0.3514	38.66	0.0418	0.0213	0.0151
6	20.00	100.00	90.00	0.4441	39.97	0.0432	0.0220	0.0190
7	20.00	80.00	70.00	0.4441	31.09	0.0336	0.0171	0.0190
8	20.00	60.00	50.00	0.4441	22.21	0.0240	0.0122	0.0190
9	20.00	40.00	30.00	0.4441	13.32	0.0144	0.0073	0.0190
10	16.35	20.00	11.82	0.3605	4.26	0.0046	0.0023	0.0155
11	3.65	3.65	1.82	0.0895	0.16	0.0002	0.0001	0.0038

Guy Loads						
Guy Attachment Elevation, h_{x}	Total Guy Weight	Effective Guy Weight, wx	$w_{x} h_{x}{ }^{\text {k }}$	C_{vx}	F_{xh}	F_{xv}
179.79	0.2571	0.1286	23.11	0.0250	0.0127	0.0055
119.79	0.1034	0.0517	6.19	0.0067	0.0034	0.0022
59.79	0.0523	0.0262	1.56	0.0017	0.0009	0.0011
Sum	0.4128	0.2064	30.87			

Discrete Loads						
Name	h_{x}	w_{x}	$w_{x} h_{x}{ }^{\text {k }}$	C_{vx}	F_{xh}	F_{xv}
b\&p database_siouxcity3-pc_2 Beacon	200.00	0.0100	2.00	0.0022	0.0011	0.0004
b\&p database_siouxcity3-pc_2 Side Light	100.00	0.0100	1.00	0.0011	0.0006	0.0004
b\&p database_siouxcity3-pc_2 Side Light	100.00	0.0100	1.00	0.0011	0.0006	0.0004
Commscope P/N: MTC3975083	185.00	0.6100	112.85	0.1219	0.0622	0.0262
Commscope P/N: MTC3975083	185.00	0.6100	112.85	0.1219	0.0622	0.0262
Commscope P/N: MTC3975083	185.00	0.6100	112.85	0.1219	0.0622	0.0262
miscl JMA MX08FRO665-21 (EPA)	185.00	0.0650	12.03	0.0130	0.0066	0.0028
miscl JMA MX08FRO665-21 (EPA)	185.00	0.0650	12.03	0.0130	0.0066	0.0028
miscl JMA MX08FRO665-21 (EPA)	185.00	0.0650	12.03	0.0130	0.0066	0.0028
fujitsu TA08025-B604 (15.75x14.96x7.87)	185.00	0.0630	11.66	0.0126	0.0064	0.0027
fujitsu TA08025-B604 (15.75×14.96x7.87)	185.00	0.0630	11.66	0.0126	0.0064	0.0027
fujitsu TA08025-B604 (15.75x14.96x7.87)	185.00	0.0630	11.66	0.0126	0.0064	0.0027
fujitsu TA08025-B605 (15.75×14.96×9.06)	185.00	0.0750	13.88	0.0150	0.0076	0.0032
fujitsu TA08025-B605 (15.75x14.96x9.06)	185.00	0.0750	13.88	0.0150	0.0076	0.0032
fujitsu TA08025-B605 (15.75×14.96x9.06)	185.00	0.0750	13.88	0.0150	0.0076	0.0032
raycap tme (vb) RAYCAP RDIDC-9181-PF-48	185.00	0.0220	4.07	0.0044	0.0022	0.0009
1/3 Remaining Reserve Right	185.00	0.0620	11.47	0.0124	0.0063	0.0027
1/3 Remaining Reserve Right	185.00	0.0620	11.47	0.0124	0.0063	0.0027
1/3 Remaining Reserve Right	185.00	0.0620	11.47	0.0124	0.0063	0.0027
		2.6770	493.70			

Linear Loads								
Name	Start Height	End Height	h_{x}	w_{x}	$w_{x} h_{x}{ }^{\text {k }}$	C_{vx}	F_{xh}	F_{xv}
b\&p database_mike-laptop_1 Safety Line 3/8 From 8 to 200	180.00	200.00	190.00	0.0044	0.84	0.0009	0.0005	0.0002
b\&p database_mike-laptop_1 Safety Line 3/8 From 8 to 200	160.00	180.00	170.00	0.0044	0.75	0.0008	0.0004	0.0002
b\&p database_mike-laptop_1 Safety Line 3/8 From 8 to 200	140.00	160.00	150.00	0.0044	0.66	0.0007	0.0004	0.0002
b\&p database_mike-laptop_1 Safety Line 3/8 From 8 to 200	120.00	140.00	130.00	0.0044	0.57	0.0006	0.0003	0.0002
b\&p database_mike-laptop_1 Safety Line 3/8 From 8 to 200	100.00	120.00	110.00	0.0044	0.48	0.0005	0.0003	0.0002
b\&p database_mike-laptop_1 Safety Line 3/8 From 8 to 200	80.00	100.00	90.00	0.0044	0.40	0.0004	0.0002	0.0002
b\&p database_mike-laptop_1 Safety Line 3/8 From 8 to 200	60.00	80.00	70.00	0.0044	0.31	0.0003	0.0002	0.0002
b\&p database_mike-laptop_1 Safety Line 3/8 From 8 to 200	40.00	60.00	50.00	0.0044	0.22	0.0002	0.0001	0.0002
b\&p database_mike-laptop_1 Safety Line 3/8 From 8 to 200	20.00	40.00	30.00	0.0044	0.13	0.0001	0.0001	0.0002
b\&p database_mike-laptop_1 Safety Line 3/8 From 8 to 200	8.00	20.00	14.00	0.0026	0.04	0.0000	0.0000	0.0001
1.75 Hybrid From 8 to 185	180.00	185.00	182.50	0.0065	1.19	0.0013	0.0007	0.0003
1.75 Hybrid From 8 to 185	160.00	180.00	170.00	0.0260	4.42	0.0048	0.0024	0.0011
1.75 Hybrid From 8 to 185	140.00	160.00	150.00	0.0260	3.90	0.0042	0.0021	0.0011
1.75 Hybrid From 8 to 185	120.00	140.00	130.00	0.0260	3.38	0.0037	0.0019	0.0011
1.75 Hybrid From 8 to 185	100.00	120.00	110.00	0.0260	2.86	0.0031	0.0016	0.0011
1.75 Hybrid From 8 to 185	80.00	100.00	90.00	0.0260	2.34	0.0025	0.0013	0.0011
1.75 Hybrid From 8 to 185	60.00	80.00	70.00	0.0260	1.82	0.0020	0.0010	0.0011
1.75 Hybrid From 8 to 185	40.00	60.00	50.00	0.0260	1.30	0.0014	0.0007	0.0011
1.75 Hybrid From 8 to 185	20.00	40.00	30.00	0.0260	0.78	0.0008	0.0004	0.0011
1.75 Hybrid From 8 to 185	8.00	20.00	14.00	0.0156	0.22	0.0002	0.0001	0.0007
				0.2723	26.60			

AMERICAN SOCIETY OF CIVIL ENGINEERS

Address:

No Address at This Location

ASCE 7 Hazards Report
Standard: ASCE/SEI 7-16 Latitude: 41.377131
Risk Category: II
Soil Class: D - Default (see
Longitude: -72.929144
Elevation: 170.42 ft (NAVD 88)
Section 11.4.3)

Wind

Results:

Wind Speed	119 Vmph
10 -year MRI	75 Vmph
25 -year MRI	85 Vmph
50 -year MRI	90 Vmph
100 -year MRI	98 Vmph

Data Source:
Date Accessed:

ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1-CC.2-4, and Section 26.5.2 Wed Dec 142022

Value provided is 3 -second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability $=$ $0.00143, \mathrm{MRI}=700$ years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.

AMERICAN SOCIETY OF CIVIL ENGINEERS
Seismic
D - Default (see Section 11.4.3)

Site Soil Class:

Results:

$\mathrm{S}_{\mathrm{S}}:$	0.201	$\mathrm{~S}_{\mathrm{D} 1}:$	0.086
$\mathrm{~S}_{1}:$	0.054	$\mathrm{~T}_{\mathrm{L}}:$	6
$\mathrm{~F}_{\mathrm{a}}:$	1.6	$\mathrm{PGA}:$	0.112
$\mathrm{~F}_{\mathrm{V}}:$	2.4	$\mathrm{PGA}_{\mathrm{M}}:$	0.177
$\mathrm{~S}_{\mathrm{MS}}:$	0.322	$\mathrm{~F}_{\mathrm{PGA}}:$	1.575
$\mathrm{~S}_{\mathrm{M} 1}:$	0.13	$\mathrm{I}_{\mathrm{e}}:$	1
$\mathrm{~S}_{\mathrm{DS}}:$	0.215	$\mathrm{C}_{\mathrm{V}}:$	0.703

Seismic Design Category: B

Data Accessed:
Wed Dec 142022

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

AMERICAN SOCIETY OF CIVIL ENGINEERS
Ice
Results:

Ice Thickness:
Concurrent Temperature:
Gust Speed
Data Source:
Date Accessed:
1.00 in .

15 F
50 mph
Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Wed Dec 142022

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3 -second gust speeds, for a 500 -year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Attachment 2: Collocation Application

verticalbridge	COLOCATION APPLICATION - P-026384 US-CT-5015 Version 1 DISH Wireless L.L.C.	Vertical Bridge REIT, LLC. 750 Park of Commerce Dr, ste 200 Boca Raton, FL 33487

SUMMARY

PRIMARY INFO		VERTICAL BRIDGE SITE INFO	
Application \#:	P-026384	VB Site \#:	US-CT-5015
Application Version:	1 (Submitted: 11/17/2022 10:23:00 PM)	VB Site Name:	Quinnipiac 2
Application Type:	Broadband	Latitude:	41.37713056
Application Name:	BOHVN00194B	Longitude:	-72.92914444
Lease Type:	New Lease	Structure Type:	Guyed Tower
ASR Number:		Structure Height:	204.0000
Description:	Dish proposes to place 3 antennas, 6 RRUs, 1 junction box(s), and 1 cable(s) at the 185 foot RAD. Dish will require a 5×7 lease area for ground equipment.	Site Address:	473 Denslow Hill Road Hamden, CT 06514

TENANT LEGAL INFO		APPLICANT	
Tenant Legal Name:	DISH Wireless L.L.C.	Name:	PhillipSipe
State of Registration:	Colorado	Address:	420 Main Street Sturbridge, MA 01566
Type of Entity:	LLC		
Carrier NOC \#:	2039274317	Phone Number:	(860) 305-3084
Tenant Site \#:	BOHVN00194B	Email Address:	phillip@northeastsitesolutions.com
Tenant Site Name:	BOHVN00194B		

FINAL LEASED RIGHTS CONFIGURATION TOTALS

This is a summary of your remaining existing equipment plus the new equipment.

FINAL EQUIPMENT	
QTY	Equipment Type
3	Panel
6	RRU

FINAL LINES	
QTY	Line Type
1	Hybrid

FREQUENCY \& TECHNOLOGY INFO

verticalbridge	COLOCATION APPLICATION - P-026384 US-CT-5015 Version 1 DISH Wireless L.L.C.	Vertical Bridge REIT, LLC. 750 Park of Commerce Dr, ste 200 Boca Raton, FL 33487

Type of Tehnology:	Broadband Wireless
Is TX Frequency Licensed:	Yes
TX Frequency:	127.9558044
Is RX Frequency Licensed:	Yes
RX Frequency:	15633.92644

MOUNT \& STRUCTURAL ANALYSIS

MOUNT ANALYSIS	
Provided by Tenant:	No
To Be Run by VB:	Yes
Include Mount Mapping:	No

STRUCTURAL HARD COPIES

Required: No
Number of Hard Copies:

CONTACTS

INVOICE CONTACT

Attention To	Name	Address	Phone Number 1	Phone Number 2	Email 1	
Real Estate	Jeanne Cottrell	5701 South Sante Fe Blvd Littleton, CO 80120	(203) 927-4317		Jean.cottrell@dish.com	

PO CONTACT	Phone	Email
Name	$(203) 927-4317$	Jean.cottrell@dish.com
Jeanne Cottrell		

LEASING CONTACT		
Name	Phone	Email
Jeanne Cottrell	(203) 927-4317	Jean.cottrell@dish.com

NOTICE CONTACT			Name
Notice To	Attention To	Jeanne Cottrell	5701 South Sante Fe Blvd Littleton, CO 80120
	Real Estate		

RF CONTACT		
Name	Phone	Email
Jared Robinson	$(978) 855-5870$	jared.robinson@dish.com

COLOCATION APPLICATION - P-026384 US-CT-5015 Version 1 DISH Wireless L.L.C.		Vertical Bridge REIT, LLC. 750 Park of Commerce Dr, ste 200 Boca Raton, FL 33487
TENANT CONSTRUCTION MANAGER CONTACT		
Name	Phone	Email
Chad Wilcox	(860) 634-9600	Chad.Wilcox@Dish.com

LINE \& EQUIPMENT

NEW LINE(S)				
Qty	Line Type	Line Diameter(In.)	Line Location	Comments
1	Hybrid	1.75	Interior	

ADDITIONAL SITE REQUIREMENTS

GROUND \& INTERIOR SPACE REQUIREMENTS						
Requirement Type	Total Lease Area (Lx W)	Cabinet Required	Cabinet Area (Lx W)	Shelter Required	Shelter Pad (Lx W)	Comments
New	5.00×7.00	Yes	32.00×74.00		\times	

GENERATOR REQUIREMENTS						
Requirement Type	Fuel Type	Kilowatt Size	Pad Dimensions (Lx D)	Generator Manufacturer	Fuel Tank Manufacturer	Comments
No Changes			x			

AC POWER REQUIREMENTS

Meter Type	Additional Details	Comments
New Tenant Meter		

	COLOCATION APPLICATION - P-026384	Vertical Bridge REIT, LLC. verticaliblidge VS-CT-5015 DISH Wireless L.L.C.

BACKHAUL REQUIREMENTS

Requirement Type	Cable Type	Number of Points of Entry	Riser Size (Inches)	Comments
New	Fiber	1	1.00	

Exhibit E

Mount Analysis

Proposed Mount Analysis Report

Project Information:
Carrier:
Site Name:
Site Data:

Dish Wireless
BOHVN00194B
473 Denslow Hill Road, Hamden, New Haven County, CT 06514
Latitude $41^{\circ} 22^{\prime} 37.56^{\prime \prime}$, Longitude $-72^{\circ} 55^{\prime} 44.76^{\prime \prime}$
Proposed 8 ft CommScope Sector Frame Mount
11839.BOHVN00194B

Tectonic Project Number:

Tectonic Engineering Consultants, Geologists \& Land Surveyors, D.P.C., Inc. is pleased to submit this "Mount Analysis Report" to determine the structural integrity of the above-mentioned proposed mount.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Sector Mount: Sufficient Capacity - 80\%

This analysis has been performed in accordance with the 2022 Connecticut State Building Code and the 2021 International Building Code based upon an ultimate 3 -second gust wind speed of 120 mph per Appendix P as required for use in the ANSI/TIA-222-H-1-2019 Standard. Exposure Category B with a maximum topographic factor, Kzt, of 1.0 and Risk Category II were used in this analysis.

All modifications and equipment proposed in this report shall be installed in accordance with drawing for the determined available structural capacity to be effective.

We at Tectonic appreciate the opportunity of providing our continuing professional services to you and Dish Wireless. If you have any questions or need further assistance on this or any other projects, please give us a call.

Structural analysis prepared by: John-Fritz Julien / Ian Marinaccio
Respectfully submitted by:
Tectonic Engineering Consultants, Geologists \& Land Surveyors, D.P.C., Inc.

Edward N. lamiceli, P.E.
Managing Director - Structural

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Loading Information
3) ANALYSIS PROCEDURE

Table 2 - Documents Provided
3.1) Analysis Method
3.2) Assumptions
4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity
4.1) Result / Conclusions
5) APPENDIX A

Software Input Calculations

6) APPENDIX B

Wire Frame and Rendered Models
7) APPENDIX C

Software Analysis Output

8) APPENDIX D

References

1) INTRODUCTION

Analysis of the proposed antenna mounts due to the loading of the proposed antennas, equipment, and related appurtenances. The proposed mount is an 8^{\prime} sector v-frame mount manufactured by CommScope P / N : MTC3975083.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	11
Wind Speed:	120 mph
Exposure Category:	B
Topographic Factor:	1.0
Ice Thickness:	1.0 in
Wind Speed with Ice:	50 mph
Maintenance Wind Speed:	30 mph
Seismic $\mathbf{S}_{\mathbf{s}}$ / \mathbf{S}_{1} :	$0.201 / 0.054$

Table 1 - Proposed Equipment Loading Information

Mounting Level (ft)	Carrier Designation	Number of Antennas	Antenna Manufacturer	Antenna Model	Proposed Mount Type	Note
185.0	Dish Wireless	3	JMA Wireless	MX08FR0665-21	CommScope P/N: MTC3975083	1
		3	Fujitsu	TA08025-B604 RRH		
		3	Fujitsu	TA08025-B605 RRH		
		1	Raycap	RDIDC-9181-PF-48		
Note: 1)	Proposed equip	nent to be insta	d on the proposed			

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Dated
Mount Assembly Drawings	CommScope	$07 / 14 / 2017$
RFDS	Dish Wireless	$11 / 29 / 2022$
Site Visit	Tectonic	$12 / 08 / 2022$
Tower Analysis Report	Vertical Bridge	$12 / 14 / 2022$

3.1) Analysis Method

A tool internally developed, using Microsoft Excel, was used to calculate wind loading on all appurtenances and mount members. This information was then used in conjunction with another program, RISA-3D, which is a commercially available analysis software package, used to check the antenna mounting system and calculate member stresses for various loading cases. The selected output from the analysis is included in Appendices B and C.

3.2) Assumptions

1) The antenna mounting system was properly fabricated, installed, and maintained in good condition in accordance with its original design, TIA Standards, and/or manufacturer's specifications.
2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1.
3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
4) Member length and sizes are based solely on the assembly drawing by CommScope, referenced above.
5) The existing 1 -inch dia solid round tower leg has not been evaluated as part of this analysis and is considered to have sufficient capacity to support the proposed mount.
6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate	ASTM A36 (GR 36)
HSS (Rectangular)	ASTM 500 (GR B-46)
Pipe	ASTM A53 (GR 35)
Connection Bolts	ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Tectonic should be notified to determine the effect on the structural integrity of the mount.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

Notes	Component	Mount Centerline (ft)	\% Capacity	Pass / Fail
1	Face Horizontal	185.0	40	Pass
	Standoff Horizontal		80	Pass
	Pipe Mount		25	Pass
	Standoff Brace		60	Pass
	Stiff-arm		4	Pass
	Connection		12	Pass
Structure Rating (max from all components) =				80\%
	See additional docume consumed.	"Appendix C - Analysis Outpu	culations suppo	\% capacity

4.1) Result / Conclusions

The proposed sector v-frame mount will have adequate capacity to support the proposed antenna and equipment installation as detailed in the following report.

The existing 1 -inch dia solid round tower leg has not been analyzed in this report. We recommend that the tower leg be evaluated in the tower analysis for its local effects prior to installation of the proposed mount.

This structural analysis only includes evaluation of the antenna mounts and not the self-support tower. The tower is to be analyzed under a separate structural analysis by others.

Contractor shall install the mount at the correct degree to correct to the existing tapper and field verify existing conditions and recommendations as noted on the construction drawings and notify the design engineer of any discrepancies prior to construction. Any further changes to the antenna and/or appurtenance configuration should be reviewed with respect to their effect on structural loads prior to implementation.

APPENDIX A

Tectonic ${ }^{7}$

Tectonic 3RACRICA-3OLU" avs. EXCEPTAORAL SERVSCE.										Job No. Sheet No. culated By hecked By	$\begin{gathered} \hline 11839 . \mathrm{BOH} \\ 3 \\ \mathrm{JJ} \\ \mathrm{IM} \\ \hline \end{gathered}$	$\begin{gathered} \text { VN00194B } \\ \text { of } \\ \text { Date : } \\ \text { Date: } \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ 12 / 20 / 22 \\ 12 / 20 / 22 \end{gathered}$
				Moun	ing Syst	m Infor	nation						
Mount Center Line:	185												
									Reductio	Factor $=$	0.9		tion 16.6
Mount Part	Quantity	Length (ft)	Projected Width (in)	Depth (in)	Flat or Cylindrical?	Force Coefficient	Projected Area (ft^{\wedge} 2)	Wind Force (lbs/ft)		Ice Weight (lbs/ft)	Projected Area with Ice (ft^{\wedge} 2)	Wind Force Ice (lbs/ft)	Maintenance Wind Force (lbs/ft)
Face Hanizontal 2.0' STD Ppe	2	8.00	2,38	2.38	Cylindrieal	1.2	3.80	9.7	9.94	3.4	7.60	3.4	0.6
Standoff, 1.5. STD Pipe	4	$\frac{3.25}{378}$	1.90	1.90	cylindrical	1.2	2.47	7.8	6.46	2.8	5.56	3.0	0.5
Standoft Diagonals, SR $0.55^{\prime \prime}$	4	3.78	0.50	0.50	Cylindrical	1.2	0.76	2.0	1.98	0.7	4.35	2.0	0.1
Standoff Vertical SR 5/8/8	4	2.50	0.63	0. 53	Cylindrical	1.2	0.63	2.6	1.64	0.9	3.00	2.1	0.2
MountPipe 2.01 STD	3	8.00	2.38	2.38	Cylindrical	1.2	5.70	9.7	14.92	3.4	11.40	3.4	0.6
Tie-Back 2.0' STD		8.00	2.38	2.38	Cylindrical	1.2	1.90	9.7	4.97	3.4	3.80	3.4	0.6
Note: Note: The member sizes are based	he assemb	drawing	Commscop	, date	/14/2017								

APPENDIX B

WIRE FRAME AND RENDERED MODELS
Appendix P of the 2022 CT Building Code

Municipality	Basic Design Wind Speeds, V (mph)				Allowable Stress Design Wind Speeds, $V_{\text {asd }}$ (mph)				Ground Snow Load p_{g} (psf)	MCE Ground Accelerations		Wind-Borne Debris Region ${ }^{1}$		HurricaneProne Region
	$\begin{aligned} & \text { Risk } \\ & \text { Cat. I } \end{aligned}$	$\begin{aligned} & \text { Risk } \\ & \text { Cat. II } \end{aligned}$	Risk Cat. III	Risk Cat. IV	$\begin{gathered} \text { Risk } \\ \text { Cat. I } \end{gathered}$	$\begin{gathered} \text { Risk } \\ \text { Cat. II } \end{gathered}$	Risk Cat. III	Risk Cat. IV		S_{S} (g)	$\begin{aligned} & S_{l} \\ & (\mathrm{~g}) \end{aligned}$	Risk Cat. III Occup. I-2	Risk Cat. IV	
Cornwall	105	115	125	130	81	89	97	101	40	0.172	0.054			
Coventry	110	120	130	135	85	93	101	105	30	0.188	0.055			Yes
Cromwell	110	120	130	135	85	93	101	105	30	0.207	0.056			Yes
Danbury	110	120	125	130	85	93	97	101	30	0.225	0.056			Yes
Darien	110	120	130	135	85	93	101	105	30	0.250	0.057		Type B	Yes
Deep River	115	125	135	140	89	97	105	108	30	0.210	0.054		Type B	Yes
Derby	110	120	130	135	85	93	101	105	30	0.202	0.054			Yes
Durham	110	120	130	135	85	93	101	105	30	0.211	0.055			Yes
East Granby	110	120	125	130	85	93	97	101	35	0.173	0.054			Yes
East Haddam	115	125	135	135	89	97	105	105	30	0.214	0.056			Yes
East Hampton	110	125	130	135	85	97	101	105	30	0.210	0.056			Yes
East Hartford	110	120	130	135	85	93	101	105	30	0.191	0.055			Yes
East Haven	110	125	135	135 140	85	97	105	105	30	0.200	0.053	Type B	Type B	Yes
East Windsor	110	120	130	-140	93	101	105	108	30	0.198	0.053	Type B	Type B	Yes
Eastford	110	120	130	135	85	93	101	105	30	0.177	0.055			Yes
Easton	110	120	130	135	85	93	101	105	30	0.218	0.055			Yes
Ellington	110	120	130	135	85	93	101	105	35	0.178	0.055			Yes
Enfield	110	120	125	130	85	93	97	101	35	0.172	0.055			Yes
Essex	115	125	135	140	89	97	105	108	30	0.207	0.054			Yes
Fairfield	110	120	130	135	85	93	101	105	30	0.219	0.055		Type B	Yes
Farmington	110	120	130	135	85	93	101	105	35	0.188	0.055			Yes
Franklin	115	125	135	140	89	97	105	108	30	0.195	0.054			Yes
Glastonbury	110	120	130	135	85	93	101	105	30	0.200	0.055			Yes
Goshen	110	115	125	130	85	89	97	101	40	0.172	0.054			
Granby	110	120	125	130	85	93	97	101	35	0.171	0.054			Yes
Greenwich Griswold	110	120	130	135	85	93	101	105	30	0.274	0.059		Type B	Yes
Groton	120	125	135	140	93	97	105	108	30	0.189	0.054			Yes
Guilford	120	130	140	140	93	101	108	108	30	0.190	0.052	Type B	Type A	Yes
Haddam	115	125	135	135	89	97	105	108	30	0.204	0.054	Type B	Type B	Yes
Hamden	110	120	130	135	85	93	101	105	30	0.214	0.055			Yes

Site Soil Class:

Results:

$\mathrm{S}_{\mathrm{S}}:$	0.201	$\mathrm{~S}_{\mathrm{D} 1}:$	0.086
$\mathrm{~S}_{1}:$	0.054	$\mathrm{~T}_{\mathrm{L}}:$	6
$\mathrm{~F}_{\mathrm{a}}:$	1.6	$\mathrm{PGA}:$	0.112
$\mathrm{~F}_{\mathrm{V}}:$	2.4	$\mathrm{PGA}_{\mathrm{M}}:$	0.177
$\mathrm{~S}_{\mathrm{MS}}:$	0.322	$\mathrm{~F}_{\mathrm{PGA}}:$	1.575
$\mathrm{~S}_{\mathrm{M} 1}:$	0.13	$\mathrm{I}_{\mathrm{e}}:$	1
$\mathrm{~S}_{\mathrm{DS}}:$	0.215	$\mathrm{C}_{\mathrm{V}}:$	0.703

Seismic Design Category: B

Data Accessed:
Tue Dec 132022
Date Source:
USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

AMEFICAN SOCLETY OF CMI ENGINEAS
Ice

Results:

Ice Thickness: $\quad 1.00 \mathrm{in}$.

Concurrent Temperature: 15 F
Gust Speed $\quad 50 \mathrm{mph}$
Data Source: Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Date Accessed: Tue Dec 132022
Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.
V alues provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3 -second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

[^2]

ALPHA SECTOR CONSIDERED FOR ANALYSIS, CONSERVATIVE FOR BETA AND GAMMA.

APPENDIX D

REFERENCES

$$
\begin{array}{ccc}
4 & 3 & 2
\end{array}
$$

ISO VIEW

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOHVN00194B

473 Denslow Hill Road
Hamden, Connecticut 065I4
September I, 202 I
EBI Project Number: 6221004686

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{0 . 7 4 \%}$

environmental | engineering | due diligence

September I, 202I

Dish Wireless

Emissions Analysis for Site: BOHVNOOI94A

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at 473 Denslow Hill Road in Hamden, Connecticut for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-0 land ANSI/IEEE Std C95.I. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR I.I307(b)(I) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately $400 \mu \mathrm{~W} / \mathrm{cm}^{2}$ and $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$, respectively. The general population exposure limit for the $1900 \mathrm{MHz}(\mathrm{PCS}), 2100 \mathrm{MHz}(\mathrm{AWS})$ and II GHz frequency bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.
environmental | engineering | due diligence

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 473 Denslow Hill Road in Hamden, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6 -foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 4 n 7 I channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
2) 4 n 70 channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
3) 4 n 66 channels (AWS Band -2190 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
5) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative
environmental | engineering | due diligence
estimate as gain reductions for these particular antennas are typically much higher in this direction.
6) The antennas used in this modeling are the JMA MX08FRO665-2I for the $600 \mathrm{MHz} / 1900$ $\mathrm{MHz} / 2190 \mathrm{MHz}$ channel(s) in Sector A, the JMA MX08FRO665-2I for the $600 \mathrm{MHz} / 1900$ $\mathrm{MHz} / 2190 \mathrm{MHz}$ channel(s) in Sector B, the JMA MX08FRO665-2I for the $600 \mathrm{MHz} / 1900$ $\mathrm{MHz} / 2190 \mathrm{MHz}$ channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
7) The antenna mounting height centerline of the proposed antennas is 185 feet above ground level (AGL).
8) Emissions from additional carriers were not included because emissions data for the site location are not available.
9) All calculations were done with respect to uncontrolled / general population threshold limits.
environmental | engineering | due diligence

Dish Wireless Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	I	Antenna \#:	I	Antenna \#:	I
Make / Model:	$\begin{gathered} \text { JMA MX08FRO665- } \\ 21 \end{gathered}$	Make / Model:	$\begin{gathered} \text { JMA MX08FRO665- } \\ 21 \end{gathered}$	Make / Model:	$\begin{gathered} \text { JMA MX08FRO665- } \\ 21 \end{gathered}$
Frequency Bands:	$\begin{aligned} & 600 \mathrm{MHz} / 1900 \\ & \mathrm{MHz} / 2190 \mathrm{MHz} \end{aligned}$	Frequency Bands:	$\begin{aligned} & 600 \mathrm{MHz} / 1900 \\ & \mathrm{MHz} / 2190 \mathrm{MHz} \end{aligned}$	Frequency Bands:	$\begin{aligned} & 600 \mathrm{MHz} / 1900 \\ & \mathrm{MHz} / 2190 \mathrm{MHz} \end{aligned}$
Gain:	$\begin{gathered} \hline 17.45 \mathrm{dBd} / 22.65 \\ \mathrm{dBd} / 22.65 \mathrm{dBd} \end{gathered}$	Gain:	$\begin{aligned} & \hline 17.45 \mathrm{dBd} / 22.65 \\ & \mathrm{dBd} / 22.65 \mathrm{dBd} \end{aligned}$	Gain:	$\begin{aligned} & \hline 17.45 \mathrm{dBd} / 22.65 \\ & \mathrm{dBd} / 22.65 \mathrm{dBd} \end{aligned}$
Height (AGL):	185 feet	Height (AGL):	185 feet	Height (AGL):	185 feet
Channel Count:	12	Channel Count:	12	Channel Count:	12
Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts
ERP (W):	5,236.3 I	ERP (W):	5,236.3 I	ERP (W):	5,236.3 I
Antenna AI MPE \%:	0.74\%	Antenna BI MPE \%:	0.74\%	Antenna CI MPE \%:	0.74\%

environmental | engineering | due diligence

Site Composite MPE \%	
Carrier	MPE \%
Dish Wireless (Max at Sector A):	0.74%
no additional carriers	N/A
Site Total MPE \% :	0.74%

Dish Wireless MPE \% Per Sector			
Dish Wireless Sector A Total:	0.74%		
Dish Wireless Sector B Total:	0.74%		
Dish Wireless Sector C Total:	0.74%		
Site Total MPE \% :			0.74%

Dish Wireless Maximum MPE Power Values (Sector A)

Dish Wireless Frequency Band / Technology (Sector A)	\# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Frequency (MHz)	Allowable MPE ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Calculated \% MPE
Dish Wireless $600 \mathrm{MHz} \mathrm{n7I}$	4	223.68	185.0	1.00	$600 \mathrm{MHz} \mathrm{n7I}$	400	0.25\%
Dish Wireless $1900 \mathrm{MHz} \mathrm{n70}$	4	542.70	185.0	2.44	$1900 \mathrm{MHz} \mathrm{n70}$	1000	0.24\%
Dish Wireless $2190 \mathrm{MHz} \mathrm{n66}$	4	542.70	185.0	2.44	$2190 \mathrm{MHz} \mathrm{n66}$	1000	0.24\%
						Total:	0.74\%

- NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.
environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (\%)
Sector A:	0.74%
Sector B:	0.74%
Sector C:	0.74%
Dish Wireless Maximum MPE \% (Sector A):	0.74%
Site Total:	
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{0 . 7 4 \%}$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

Vertical Bridge NTCF, LLC - Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman
Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

Re: Tower Share Application
Vertical Bridge NTCF, LLC - telecommunications site at:
473 DENSLOW HILL ROAD, HAMDEN, CT 06514

Vertical Bridge NTCF, LLC a Delaware limited liability company, d/b/a Vertical Bridge ("VB") hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

VB ID/Name: US-CT-5015/Quinnipiac
Customer Site ID: BOHVN00194A / VB - Denslow Hill Road
Site Address: 473 DENSLOW HILL ROAD, HAMDEN, CT 06514

Vertical Bridge NTCF, LLC

Name: \qquad
Title: Vice President - Lease Administration

Exhibit H

Recipient Mailings

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT РНOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage $®$, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{\text {TM }}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING \# :9405503699300491589564				
		583656910	Priority Mail® Postage:	\$9.65
Print Date:		03/01/2023		\$9.65
Ship Date: Expected		03/01/2023		
Delivery Date: 03/03/2023				
From:	DEBORAH CHASE Ref\#: DS-001094BNORTHEAST SITE SOLUTIONS			
	STE 1			
	420 MAIN ST			
	STURBRIDGE MA 01566-1359			
	LAUREN GARRETT			
	MAYOR- HAMDEN			
	2750 DIXWELL AVE			
	HAMDEN CT 06518-3320			

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage $®$, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{\text {TM }}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record				
USPS TRACKING \# : 9405503699300491589618				
Trans. \#:		583656910	Priority Mail® Postage:	\$9.65
		03/01/2023	Total:	\$9.65
		03/01/2023		
Expected Delivery Date:		03/03/2023		
From:	DEBORAH CHASENORTHEAST SITE SOLUTIONS			
	STE 1			
	420 MAIN ST			
	STURBRIDGE MA 01566-1359			
	EUGENE LIVSHITS			
	TOWN PLANNER- TOWN OF HAMDEN			
	FL 3			
	2750 DIXWELL AVE			
	HAMDEN CT 06518-3320			
* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date				

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage $®$, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{\text {TM }}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record				
USPS TRACKING \# : 9405503699300491589632				
Trans. \# Ship Da Expecte Delivery		583656910	Priority Mail® Postage:	
		03/01/2023	Total:	\$9.65
		03/01/2023		
	Date:	03/04/2023		
From:	DEBORAH CHASE			Reff: DS-00194B
	NORTHEAST SITE SOLUTIONS			
	STE 1			
	420 MAIN ST			
	STURBRIDGE MA 01566-1359			
	REGIoNAL LEASING MANAGER			
	VERTICAL BRIDGE AM II			
	STE 200			
	750 PARK OF COMMERCE DR			
	BOCA RATON FL 33487-3650			
* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® serv on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.				

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT РНOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage $®$, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{\text {TM }}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

		USPS 055036	RACKING \# : 53004915896	
Trans. \#:		583656910	Priority Mail® Postage:	\$9.65
Print Date:		03/01/2023	Total:	\$9.65
Ship Date:		03/01/2023		
Delivery Date:		03/04/2023		
From:	DEB	RAH CHASE		Ref\#: DS-00194B
	NOR	HEAST SITE	OLUTIONS	
	STE			
	420 N	MAIN ST		
	STUR	BRIDGE MA	566-1359	
To:	VERTICAL BRIDGE REIT, LLC			
	STE 200			
	750 PARK OF COMMERCE DR			
	BOCA RATON FL 33487-3650			

BOHUNOO194B - DISH DIRECT \Rightarrow UNITED STATES

LINCOLN MALL

560 LINCOLN ST STE 8
WORCESTER, MA 01605-1925 (800) $275-8777$

Product	OtyUnit Price	Price
Prepaid Mail Boca Raton, FL 33487 Weight: 0 ib 15.10 oz Acceptance Date:	$\$ 0.00$	

Thu 03/02/2023
Tracking \#:
9405503699300491589632

Prepaid Mail
1
$\$ 0.00$
Boca Raton, FL 33487
Weight: 0 is 15.10 oz
Acceptance Date:
Thu 03/02/2023
Tracking \#:
9405503699300491589670

Prepaid Mail 1

Tracking \#:
9405503699300491589618
Prepaid Mail
1
$\$ 0.00$
Hamden, CT 06518
Weight: 0 1b 15.10 oz
Acceptance Date:
Thu 03/02/2023
Tracking \#:
9405503699300491589564

[^0]: Note: Proposed equipment shown in bold.
 Note: Other existing loading can be found on the tower profile attached.
 Note: The remainder of Dish's reserve rights have been considered.

[^1]: Consider Moments - Legs
 Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification
 $\sqrt{ }$ Use Code Stress Ratios
 $\sqrt{ }$ Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile
 $\sqrt{ }$ Include Bolts In Member Capacity Leg Bolts Are At Top Of Section
 $\sqrt{ }$ Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided)
 $\sqrt{ }$ SR Members Have Cut Ends SR Members Are Concentric

[^2]: The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

 ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

 In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

