

David Martin and Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

> RE: Notice of Exempt Modification 370 Rockland Road Guilford, CT 06437 Sprint Site #: NV2.5_CT33XC087 N 41° 23' 48.6" W -72° 41' 19.7"

Dear Mr. Martin and Members of the Siting Council:

On behalf of Sprint Spectrum, SBA Communications is submitting an exempt modification application to the Connecticut Siting council for modification of existing equipment at a tower facility located at 370 Rockland Road, Guilford CT.

The 370 Rockland Road facility consists of a 158.5' MONOPOLE Tower owned and operated by SBA 2012 TC Assets, LLC. In order to accommodate technological changes and enhance system performance in the State of Connecticut, Sprint Spectrum plans to modify the equipment configurations at many of its existing cell sites. Please accept this letter and attachments as notification, pursuant to R.C.S.A. Section 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2). In compliance with R.C.S.A. Section 16-50j-73, a copy of this letter and attachments is being sent to the chief elected official of the municipality in which the affected cell site is located.

As part of Sprint's Network Vision modification project, Sprint desires to upgrade their equipment to meet the new standards of 4G technology. The new equipment will allow customers to download files and browse the internet at a high rate of speed while also allowing their phones to be compatible with the latest 4G technology.

Attached is a summary of the planned modifications, including power density calculations reflecting the change in Sprint's operations at the site along with the required fee of \$625.

The changes to the facility do not constitute modifications as defined in Connecticut General Statutes ("C.G.S.") Section 16-50i(d) because the general physical characteristics of the facility will not be

significantly changed or altered. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for in R.C.S.A. Section 16-50j-72(b)(2).

1. The overall height of the structure will be unaffected.

2. The proposed changes will not extend the site boundaries. There will be no effect on the site compound other than the new equipment cabinets.

3. The proposed changes will not increase the noise level at the existing facility by six decibels or more.

4. The changes in radio frequency power density will not increase the calculated "worst case" power density for the combined operations at the site to a level at or above the applicable standard for uncontrolled environments as calculated for a mixed frequency site.

For the foregoing reasons, SBA Communications on behalf of Sprint Spectrum, respectfully submits that he proposed changes at the referenced site constitute exempt modifications under R.C.S.A. Section 16-50j-72(b)(2).

Please feel free to call me at (508) 251-0720 x 3804 with any questions you may have concerning this matter.

Thank you,

Kri Pelletier SBA Communications Corporation 33 Boston Post Road West Suite 320 Marlborough, MA 01752 508-251-0720 x 3804 + T 508-251-1755 + F 203-446-7700 + C kpelletier@sbasite.com

Sprint Spectrum Equipment Modification

370 Rockland Road, Guilford CT Site number CT33XC087

Tower Owner:

SBA 2012 TC Assets, LLC

MONOPOLE Tower

Equipment Configuration:

Current and/or approved:

Sprint Equipment at 147':

- (6) Andrew 980F90T4E-M
- (3) RFS APXVSPP18-C-A20

Sprint Equipment at 145':

- · (3) 1900 RRH (25 MHz)
- · (3) 800 RRH
- (3) External Notch Filters
- (6) 1900 ACU-A20-N RETs
- · (3) 800 ACU-A20-N RETs
- (6) 1-5/8" Feeds
- (3) 1-1/4" Feeds

Planned Modifications:

Sprint Equipment at 147':

- · (6) Andrew 980F90T4E-M
- (3) RFS APXVSPP18-C-A20
- (3) RFS APXVTM14-C-I20

Sprint Equipment at 145':

- (3) ALU TD-RRH8x20-25 RRUs
- · (3) 1900 RRH (25 MHz)
- · (3) 800 RRH
- · (3) External Notch Filters
- · (6) 1900 ACU-A20-N RETs
- · (3) 800 ACU-A20-N RETs
- (6) 1-5/8" Feeds
- (4) 1-1/4" Feeds

Structural Information:

The attached structural analysis demonstrates that the tower and foundation will have adequate structural capacity to accommodate the proposed modifications.

Power Density:

The anticipated Maximum Composite contributions from the Sprint facility are 11.266% of the allowable FCC established general public limit. The anticipated composite MPE value for this site assuming all carriers present is 43.816% of the allowable FCC established general public limit sampled at the ground level.

Carrier	MPE %
Sprint	11.266%
AT&T	17.130%
Verizon Wireless	15.420%

Joe Mazza First Selectman Town of Guilford Town Hall 31 Park Street Guilford, CT 06437

RE: Telecommunications Facility @ 370 Rockland Road, Guilford CT

Dear Mr. Mazza,

In order to accommodate technological changes and enhance system performance in the State of Connecticut, Sprint Spectrum will be changing its equipment configuration at certain cell sites.

As required by Regulations of Connecticut State Agencies (R.C.S.A.) Section 16-50j-73, the Connecticut Siting Council has been notified of the changes and will review Sprint's proposal. Please accept this letter as notification under Section 16-50j-73 of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2).

The accompanying letter to the Siting Council fully describes Sprint's proposal for the referenced cell site. However, if you have any questions or require any further information on our plans or the Siting Council's procedures, please call me at (508) 251-0720 x 3804.

Thank you,

Kri Pelletier SBA Communications Company 33 Boston Post Road West, Suite 320 Marlborough, MA 01752 508-251-0720 x 3804 + T 508-251-1755 + F 203-446-7700 + C kpelletier@sbasite.com

Allan F. Chagnon 405 W Shepard Avenue Hamden CT 06514-1012

Woodbridge Sportsmen Club, Inc. 39 Rockefeller Avenue West Haven CT 06516

RE: Telecommunications Facility @ 370 Rockland Road, Guilford CT

Dear Mr. Chagnon and Woodbridge Sportsmen Club Representative,

In order to accommodate technological changes and enhance system performance in the State of Connecticut, Sprint Spectrum will be changing its equipment configuration at certain cell sites.

As required by Regulations of Connecticut State Agencies (R.C.S.A.) Section 16-50j-73, the Connecticut Siting Council has been notified of the changes and will review Sprint's proposal. Please accept this letter as notification under Section 16-50j-73 of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2).

The accompanying letter to the Siting Council fully describes Sprint's proposal for the referenced cell site. However, if you have any questions or require any further information on our plans or the Siting Council's procedures, please call me at (508) 251-0720 x 3804.

Thank you,

Kri Pelletier SBA Communications Company 33 Boston Post Road West, Suite 320 Marlborough, MA 01752 508-251-0720 x 3804 + T 508-251-1755 + F 203-446-7700 + C kpelletier@sbasite.com

Allan F. Chagnon 405 W Shepard Avenue Hamden CT 06514-1012

Woodbridge Sportsmen Club, Inc. 39 Rockefeller Avenue West Haven CT 06516

RE: Telecommunications Facility @ 370 Rockland Road, Guilford CT

Dear Mr. Chagnon and Woodbridge Sportsmen Club Representative,

In order to accommodate technological changes and enhance system performance in the State of Connecticut, Sprint Spectrum will be changing its equipment configuration at certain cell sites.

As required by Regulations of Connecticut State Agencies (R.C.S.A.) Section 16-50j-73, the Connecticut Siting Council has been notified of the changes and will review Sprint's proposal. Please accept this letter as notification under Section 16-50j-73 of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2).

The accompanying letter to the Siting Council fully describes Sprint's proposal for the referenced cell site. However, if you have any questions or require any further information on our plans or the Siting Council's procedures, please call me at (508) 251-0720 x 3804.

Thank you,

Kri Pelletier SBA Communications Company 33 Boston Post Road West, Suite 320 Marlborough, MA 01752 508-251-0720 x 3804 + T 508-251-1755 + F 203-446-7700 + C kpelletier@sbasite.com

RADIO FREQUENCY FCC REGULATORY COMPLIANCE MAXIMUM PERMISSIBLE EXPOSURE (MPE) ASSESSMENT

Sprint Existing Facility

Site ID: CT33XC087

West Haven / Route 15 Woodbridge

370 Rockland Road Guilford, CT 06437

May 21, 2014

EBI Project Number: 62143086

May 21, 2014

Sprint Attn: RF Engineering Manager 1 International Boulevard, Suite 800 Mahwah, NJ 07495

Re: Radio Frequency Maximum Permissible Exposure (MPE) Assessment for Site: CT33XC087 - West Haven / Route 15 Woodbridge

Site Total: <u>41.931%</u> - MPE% in full compliance

EBI Consulting was directed to analyze the proposed upgrades to the existing Sprint facility located at 370 Rockland Road, Guilford, CT, for the purpose of determining whether the radio frequency (RF) exposure levels from the proposed Sprint equipment upgrades on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm2 calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limit for the cellular band (850 MHz Band) is approximately 567 μ W/cm², and the general population exposure limit for the 1900 MHz and 2500 MHz bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over their exposure and can exercise control over the potential for exposure and can exercise control over the potentia

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed upgrades to the existing Sprint Wireless antenna facility located at 370 Rockland Road, Guilford, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. All calculations were performed assuming the main lobe of the antenna was focused at the base of the tower to present a worst case scenario. Actual values seen from this site will be dramatically less than those shown in this report. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all emissions were calculated using the following assumptions:

- 1) 2 channels in the 1900 MHz Band were considered for each sector of the proposed installation.
- 2) 1 channel in the 800 MHz Band was considered for each sector of the proposed installation
- 3) 2 channels in the 2500 MHz Band were considered for each sector of the proposed installation.
- 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 5) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications was used in this direction.

- 6) The antennas used in this modeling are the RFS APXVSPP18-C-A20 and the RFS APXVTMM-C-120. This is based on feedback from the carrier with regards to anticipated antenna selection. The RFS APXVSPP18-C-A20 has a 15.9 dBd gain value at its main lobe at 1900 MHz and 13.4 dBd at its main lobe for 850 MHz. The RFS APXVTMM-C-120 has a 15.9 dBd gain value at its main lobe at 2500 MHz. All calculations were performed assuming the main lobe of the antenna was focused at the base of the tower to present a worst case scenario.
- 7) The antenna mounting height centerline for the proposed antennas is**147 feet** above ground level (AGL).
- 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculation were done with respect to uncontrolled / general public threshold limits

Site ID Site Type CT32002P - Vest Haven / Nouch 2500 Nonopole Site ID Site Type CT32002P - Vest Haven / Nouch 2500 Nonopole Site ID Site Type CT32002P - Vest Haven / Nouch 2500 Nonopole Site ID Site Type CT32002P - Vest Haven / Nouch 2500 Nonopole Site ID Site Type Anterna Male Anterna Male Anterna Male Ante																	
Stte Type Monopole Antenna Make Antenna Model Radio Type Frequency Band Technology Number Antenna Gain Antenna Gain Antenna Make Antenna Model Cable Loss Additional BFP Power 1a RFS Antenna Model Radio Type Frequency Band Technology 100 AV1/LT 20 1 20 13.4 147 141 1/2" 0.5 3 1902.4865 18355 1a RFS APXVTMA1A-L.20 RBH 200 MHrz COMA/LTT 20 1 20 13.4 147 141 1/2" 0.5 3 1902.4865 18357 1a RFS APXVTMA1A-L2.0 RBH 2000 MHrz COMA/LTT 20 1 20 13.4 147 141 1/2" 0.5 3 1902		Site ID	CT33XC087 - We	st Haven / Rout	e 15 Woodbridge	1											
Sector 1 Sector 1 Antenna Male Antenna Model Radio Type Frequency Band Technology Out Per Channel Antenna Gain in direction Antenna Gain in direction Antenna Gain in direction Antenna Male Antenna Model Radio Type Frequency Band Technology Out Per Channel Number of Number of Sample Antenna Gain in direction Antenna Model Radio Type Frequency Band Technology Out Per Channel Number of Sample Antenna Male Antenna Model Radio Type Frequency Band Technology Out Per Channel Number of Sample Antenna Male Antenna Model Radio Type Frequency Band Technology Out Per Channel Number of Sample Antenna Male Antenna Model Radio Type Frequency Band Power Out Per Channel Antenna Male Antenna Model Radio Type Frequency Band Power Out Per Channel Antenna Model Antenna Model Radio Type Frequency Band Technology Out Per Channel Antenna Male Antenna Model Radio Type Frequency Band Technology Out Per Channel		Site Addresss	370 Rocklan	nd Road, Guilfor	d, CT 06437												
Antenna Make Antenna Model Radio Type Frequency Band Frequency Band Power Technology (Watts) Power Chanels (Matts) Antenna Gain of sample Antenna Gain Mattenna Antenna Make Cable Size (BB) Cable Size (BB) Additional Loss (BB) EPP Power Density 1a RFS APX/SP18-C-A20 RBH BSO MH2 CDMA / LTE 20 13.4 142 141 1/2" 0.5 3 102-6053 1884 185 APX/SP18-C-A20 RBH 850 MH2 CDMA / LTE 20 13.4 147 141 1/2" 0.5 3 102-6053 8847/M2 1a RFS APX/SP18-C-A20 RBH 2500 MH2 CDMA / LTE 20 13.4 147 141 1/2" 0.5 3 102-6053/K 1a RFS APX/SP18-C-A20 RBH 2500 MH2 CDMA / LTE 20 13.4 147 141 1/2" 0.5 3 109-4605 1482 141 1/2" 0.5 3 105-44744 0.6233/K Number of		Site Type		Monopole													
Antenna Make Antenna Model Radio Type Frequency Band Frequency Band Power Technology (Watts) Power Chanels (Matts) Antenna Gain of sample Antenna Gain Mattenna Antenna Make Cable Size (BB) Cable Size (BB) Additional Loss (BB) EPP Power Density 1a RFS APX/SP18-C-A20 RBH BSO MH2 CDMA / LTE 20 13.4 142 141 1/2" 0.5 3 102-6053 1884 185 APX/SP18-C-A20 RBH 850 MH2 CDMA / LTE 20 13.4 147 141 1/2" 0.5 3 102-6053 8847/M2 1a RFS APX/SP18-C-A20 RBH 2500 MH2 CDMA / LTE 20 13.4 147 141 1/2" 0.5 3 102-6053/K 1a RFS APX/SP18-C-A20 RBH 2500 MH2 CDMA / LTE 20 13.4 147 141 1/2" 0.5 3 109-4605 1482 141 1/2" 0.5 3 105-44744 0.6233/K Number of																	
Antenna Antenna Made Antenna Made Antenna Made Andin Made Frequeny Band Technologi Our Part Channel Number Power Opmost Power Opmost Power <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Sector 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								Sector 1									
Antenna Antenna Made Antenna Made Antenna Made Andin Made Frequeny Band Technologi Our Part Channel Number Power Opmost Power Opmost Power <td></td>																	
Antenna Antenna Made Antenna Made Antenna Made Andin Made Frequeny Band Technologi Our Part Channel Number Power Opmost Power Opmost Power <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Davian</td> <td></td>							Davian										
Antenna Antenna Antenna Antenna Antenna Antenna Antenna Mandbes Cable Loss Additional EPP Percentage 1a RFS APXVSPP18-C-A20 RRH 1900 MHz CDMA / ITE 20 3 60 15.9 141 1/2 0.5 3 195.44744 0.623369 1a RFS APXVSPP18-C-A20 RRH 3500 MHz CDMA / ITE 20 12 20 13.4 147 141 1/2 0.5 3 195.44744 0.623369 Interna Made APXVSP18-C-A20 RRH 3500 MHz CDMA / ITE 20 12 40 141 142 141 1/2 0.5 3 195.44744 0.62339 INTERNA APXVTMM14-C120 RRH S00 MHz CDMA / ITE 20 13.4 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 </td <td></td> <td>Douvor</td>																	Douvor
Numbe Antenna Make Antenna Make Ration Radio Radio Type Frequency Band Technology Watts Channels Power Number Number <t< td=""><td>Antonna</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Number of</td><td>Composito</td><td></td><td>Antonna</td><td>analycic</td><td></td><td>Cable Loss</td><td>Additional</td><td></td><td></td></t<>	Antonna							Number of	Composito		Antonna	analycic		Cable Loss	Additional		
1a RFS APXVSPP18-C-A20 RRH 1900 MHz CDMA / LTE 20 3 60 15.9 147 141 1/2" 0.5 3 1092.603 188547% 1a AFS APXVSP18-C-A20 RRH 850 MHz CDMA / LTE 20 1 20 13.4 147 141 1/2" 0.5 3 195.4744 0.62333% Sector 200 MHz CDMA / LTE 20 1 20 13.4 147 141 1/2" 0.5 3 195.4744 0.62333% Sector 200 MHz CDMA / LTE 20 2 40 13.4 147 141 1/2" 0.5 3 195.4744 0.6333% Sector 200 MHz CDMA / LTE 20 Antenna Gain In direction for sample Antenna Make Antenna		Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology							Cable Size			FRP	
1a RFS APXVSP18-C-A20 RRH 850 MHz CDMA/LTE 20 1 20 13.4 147 141 1/2" 0.5 3 195.44744 0.62333% 1B RFS APXVTMM14-C-120 RRH 2500 MHz CDMA/LTE 20 2 40 13.4 147 141 1/2" 0.5 3 195.44744 0.62333% 1B RFS APXVTMM14-C-120 RRH 2500 MHz CDMA/LTE 20 2 40 13.4 147 141 1/2" 0.5 3 195.44744 0.62333% Antenna APXVTMM14-C-120 RRH 2500 MHz CDMA/LTE 20 2 40 13.4 147 141 1/2" 0.5 3 195.44744 0.62333% Antenna Antenna Make Antenna Model Radio Type Frequency Band rechnology Chanel Composite of sample Antenna analysis cale is sa Additional Lade65% Cable Size (dB)							. ,	1						. ,			-
18 RFS APXVTMM14-C-120 RRH 2500 MHz CDMA / LTE 20 2 40 13.4 147 141 1/2" 0.5 3 390.89489 1.24665% Sector 21 Sector 21 Sector 2 Sector								-							-		
Antenna Antenna Model Radio Type Frequency Band Technology Out Per (Channel Composite (Number of Cannel Antenna Gain in direction of sample Antenna dala Jac Jac Jac Jac Jac Power (Bal Power (Bal Power (Channel Power (Channel Antenna Gain in direction Antenna analysis (Bal Cable Isze (BB) Additional (BB) ERP Power (Bal Power (Channel Power (Channel Antenna Gain (Bal Antenna analysis (BB) Cable Isze (BB) Additional (BB) ERP Power (Bal Power (Channel Power (Channel Antenna Antenna Antenna analysis (Cable Isze (BB) Additional (BB) ERP Power (Bal Power (Channel Power Composite (Composite Power (Dit Ist 141 1/2" 0.5 3 195.44744 0.6233% 28 RFS APXVTPMM14-C-120 RRH 2500 MHz CDMA / LTE 20 1 20 13.4 147 141 1/2" 0.5 3 195.44744 0.6233% Number Antenna Make Anten		_					-		-	-					-		
Antenna Antenna Mumber Antenna Make Antenna Model Radio Type Frequency Band Frequency Band Power (Dut Per Channel Number of Channels Number of Power Antenna Gain n direction Point (dBd) Antenna Majsis Cable Los (ABL Additional EPP Power Percentage 2a RF5 APXVSPP18-CA20 RRH 1900 MHz CDMA/LTE 20 3 60 15.9 147 141 1/2" 0.5 3 1042.6805 1.88547% 2a RF5 APXVSP18-CA20 RRH 1900 MHz CDMA/LTE 20 1 20 13.4 147 141 1/2" 0.5 3 195.4474 0.62333% 2a RF5 APXVSP18-CA20 RRH 2500 MHz CDMA/LTE 20 1 20 13.4 147 141 1/2" 0.5 3 195.4474 0.62333% 2 RF5 APXVSP18-CA20 RRH 2500 MHz CDMA/LTE 20 1 20 13.4 147 141 1/2" 0.5 390	-	Sector total Power Density Value: 3.755%															
Antenna Antenna Mumber Antenna Make Antenna Model Radio Type Frequency Band Frequency Band Power (Dut Per Channel Number of Channels Number of Power Antenna Gain n direction Point (dBd) Antenna Majsis Cable Los (ABL Additional EPP Power Percentage 2a RF5 APXVSPP18-CA20 RRH 1900 MHz CDMA/LTE 20 3 60 15.9 147 141 1/2" 0.5 3 1042.6805 1.88547% 2a RF5 APXVSP18-CA20 RRH 1900 MHz CDMA/LTE 20 1 20 13.4 147 141 1/2" 0.5 3 195.4474 0.62333% 2a RF5 APXVSP18-CA20 RRH 2500 MHz CDMA/LTE 20 1 20 13.4 147 141 1/2" 0.5 3 195.4474 0.62333% 2 RF5 APXVSP18-CA20 RRH 2500 MHz CDMA/LTE 20 1 20 13.4 147 141 1/2" 0.5 390		forder 1															
Antenna Number Antenna ModeAntenna ModeRadio Type Radio TypeFrequency BandOut Per TechnologyNumber Channel View View View View PowerIndirection of sampleAntenna MethyAntenna Antenna MethyCable Loss Cable LossAdditional Loss (dbPower Power Derectage2aRFSAPXVSPP18-C-A20RRH1900 MHzCDMA/LTE20360015.91471411/2"0.531042.6651.885/402aRFSAPXVSP18-C-A20RRH1200 MHzCDMA/LTE2012013.41471411/2"0.531042.6651.885/402aRFSAPXVTM14-C-120RRH2500 MHzCDMA/LTE2012013.41471411/2"0.531042.6651.865/402bVTechnologyCDMA/LTE2012013.41471411/2"0.531042.6651.865/402bVTechnologyCDMA/LTE2012013.41471411/2"0.531042.6651.865/402bVTechnologyVCDMA/LTE2012013.41471411/2"0.531042.6651.665/40AntennaAntenna ModeRadio TypeFrequency BandTechnologyVNumberNumberNumberNumberNumberNumberNumberNumberNumberNumber <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Sector 2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								Sector 2									
Antenna Number Antenna ModeAntenna ModeRadio Type Radio TypeFrequency BandOut Per TechnologyNumber Channel View View View View PowerIndirection of sampleAntenna MethyAntenna Antenna MethyCable Loss Cable LossAdditional Loss (dbPower Power Derectage2aRFSAPXVSPP18-C-A20RRH1900 MHzCDMA/LTE20360015.91471411/2"0.531042.6651.885/402aRFSAPXVSP18-C-A20RRH1200 MHzCDMA/LTE2012013.41471411/2"0.531042.6651.885/402aRFSAPXVTM14-C-120RRH2500 MHzCDMA/LTE2012013.41471411/2"0.531042.6651.865/402bVTechnologyCDMA/LTE2012013.41471411/2"0.531042.6651.865/402bVTechnologyCDMA/LTE2012013.41471411/2"0.531042.6651.865/402bVTechnologyVCDMA/LTE2012013.41471411/2"0.531042.6651.665/40AntennaAntenna ModeRadio TypeFrequency BandTechnologyVNumberNumberNumberNumberNumberNumberNumberNumberNumberNumber <td></td>																	
Antenna Number Antenna ModeAntenna ModeRadio Type Radio TypeFrequency BandOut Per TechnologyNumber Channel View View View View PowerIndirection of sampleAntenna MethyAntenna Antenna MethyCable Loss Cable LossAdditional Loss (dbPower Power Derectage2aRFSAPXVSPP18-C-A20RRH1900 MHzCDMA/LTE20360015.91471411/2"0.531042.6651.885/402aRFSAPXVSP18-C-A20RRH1200 MHzCDMA/LTE2012013.41471411/2"0.531042.6651.885/402aRFSAPXVTM14-C-120RRH2500 MHzCDMA/LTE2012013.41471411/2"0.531042.6651.865/402bVTechnologyCDMA/LTE2012013.41471411/2"0.531042.6651.865/402bVTechnologyCDMA/LTE2012013.41471411/2"0.531042.6651.865/402bVTechnologyVCDMA/LTE2012013.41471411/2"0.531042.6651.665/40AntennaAntenna ModeRadio TypeFrequency BandTechnologyVNumberNumberNumberNumberNumberNumberNumberNumberNumberNumber <td></td>																	
Antenna Antenna Model Antenna Model Radio Type Frequency Band Channel Number Antenna Maney Antenna Model Additional ERP Percentage 2a ARFS APXVSPP18-CA20 RRH 1900 MHz CDMA / ITE 20 3 600 15.9 141 141 1/2" 0.5 3 1042.6805 1.88547% 2B RFS APXVSP18-CA20 RRH 1200 MHz CDMA / ITE 20 120 13.4 141 1/2" 0.5 3 1042.6805 1.246583 2B RFS APXVTM14-C120 RRH 2500 MHz CDMA / ITE 20 2 400 13.4 141 1/2" 0.5 3 30.89489 1.2466583 2D CD RFS APXVTM14-C120 RRH 2500 MHz CDMA / ITE 20 2 400 13.4 141 141 1/2" 0.5 3.358 1.2465833 Antenna Antenna Antenna Antenna																	Douvor
Number Antenna Make Antenna Model Radio Type Frequency Band Technology (Waths) Channels Power point (dBd) Height (fh) height	Antonna							Number of	Composito		Antonna	analycic		Cable Loss	Additional		
2a RFS APXVSPP18-C-A20 RRH 1900 MHz CDMA / LTE 20 3 60 15.9 147 141 1/2 0.5 3 1042.6805 1.88547% 2a RFS APXVSPP18-C-A20 RRH 850 MHz CDMA / LTE 20 1 20 13.4 147 141 1/2 0.5 3 195.44744 0.62333% 2B RFS APXVTMM14-C-120 RRH 2500 MHz CDMA / LTE 20 2 40 13.4 147 141 1/2 0.5 3 195.44744 0.62333% Sector 3 Sector 3 Sector 3		Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology							Cable Size			ERD	
2a RFS APXVSPP18-C-A20 RRH 850 MHz CDMA/LTE 20 1 20 13.4 147 141 1/2" 0.5 3 195.4474 0.62333% 2B RFS APXVTMM14-C120 RRH 2500 MHz CDMA/LTE 20 2 40 13.4 147 141 1/2" 0.5 3 195.4474 0.62333% 2B RFS APXVTMM14-C120 RRH 2500 MHz CDMA/LTE 20 2 40 13.4 147 141 1/2" 0.5 3 195.4474 0.62333% V <th<< td=""><td></td><td></td><td></td><td><i>.</i></td><td></td><td></td><td>. ,</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></th<<>				<i>.</i>			. ,	1									-
28 RFS APXVTMM14-C-120 RRH 2500 MHz CDMA/LTE 20 2 40 13.4 147 141 1/2" 0.5 3 390.89489 1.24665% Sector 3 Antenna Antenna Make Antenna Model Radio Type Frequency Band Technology Number of Channel Composite Out Per Channel Antenna Antenna analysis height (ft) Cable Loss Additional Loss (db) ERP Percentage 3a RFS APXVSP18-C-A20 RRH 1900 MHz CDMA/LTE 20 3 600 15.9 147 141 1/2" 0.5 3 1042.6805 1.88547% 3a RFS APXVSPP18-C-A20 RRH 2500 MHz CDMA/LTE <						- /	-	-							-		
Antenna Antenna Make Antenna Model Radio Type Frequency Band Technology Wutts Channel Antenna Indirection Out Per Composite Of sample Antenna Antenna Antenna Antenna Antenna Indirection Antenna Indirection Antenna Antenna Indirection Indindi Indindi Indirect								-	-								
Antenna NumberAntenna ModelRadio TypeFrequency BandTechnologyPower Out Per ChannelAntenna Gain in directionAntenna Gain in directionAntenna in di															Density Value:		
Antenna NumberAntenna ModelRadio TypeFrequency BandTechnologyPower Out Per ChannelAntenna Gain in directionAntenna Gain in directionAntenna in di								Sector 2									
Antenna Antenna Mode Antenna Mode Antenna Mode Radio Refu Out P Out P <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Sector 3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								Sector 3									
Antenna Antenna Mode Antenna Mode Antenna Mode Radio Refu Out P Out P <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																	
Antenna Antenna Mode Antenna Mode Antenna Mode Radio Refu Out P Out P <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																	
Antenna Antenna Model Radio Type Prequency Band Channel Number Composite of sample Antenna Bandysis Cable Los Additional Density Percentage 3a RFS APXXSPP18-C-A20 RRH 1900 MHz CDMA / LT 20 3 60 15.9 141 1/2 0.5 3 1042.680 1855.480 1263.333 1042.680 1263.333 1042.680																	Douvor
Number Antenna Model Radio Type Frequency Band Technology (Watts) Channels Power point (dBd) Height (t) height Cable Size (dB) Loss (dB) ERP Percentage 3a RFS APXVSPP18-C-A20 RRH 1900 MHz CDMA / LTE 20 3 60 15.9 147 141 1/2" 0.5 3 1042.6805 1.885478 3a RFS APXVSPP18-C-A20 RRH 850 MHz CDMA / LTE 20 1 20 141 141 1/2" 0.5 3 195.4474 0.623336 3B RFS APXVTMM14-C120 RRH 2500 MHz CDMA / LTE 20 2 40 13.4 141 1/2" 0.5 3 195.4474 0.623336 3B RFS APXVTMM14-C120 RRH 2500 MHz CDMA / LTE 20 2 40 13.4 141 1/2" 0.5 3 90.89489 1.246655	Antonro							Number of	Composito		Antonna	analysis		Cable Loss	Additional		
3a RFS APXVSPP18-C-A20 RRH 1900 MHz CDMA / LTE 20 3 60 15.9 147 141 1/2" 0.5 3 1042.6805 1.88547% 3a RFS APXVSPP18-C-A20 RRH 850 MHz CDMA / LTE 20 1 20 13.4 147 141 1/2" 0.5 3 195.4474 0.62333% 3B RFS APXVTMM14-C120 RRH 2500 MHz CDMA / LTE 20 2 400 13.4 141 1/2" 0.5 3 195.4474 0.62333% 3B RFS APXVTMM14-C120 RRH 2500 MHz CDMA / LTE 20 2 400 13.4 147 141 1/2" 0.5 3 390.89489 1.24665%		Antonna Maka	Antonna Model	Padio Turca	Froquency Pand	Tochnology							Cable Size			EDD	
3a RFS APXVSPP18-C-A20 RRH 850 MHz CDMA/LTE 20 1 20 13.4 141 1/2" 0.5 3 195.4474 0.62333% 3B RFS APXVTMM14-C120 RRH 2500 MHz CDMA/LTE 20 2 40 13.4 141 1/2" 0.5 3 195.4474 0.62333% 3B RFS APXVTMM14-C120 RRH 2500 MHz CDMA/LTE 20 2 400 13.4 141 1/2" 0.5 3 390.89489 1.24665%							. ,	1				-					_
3B RFS APXVTMM14-C-120 RRH 2500 MHz CDMA/LTE 20 2 40 13.4 147 141 1/2" 0.5 3 390.89489 1.24665%							-	-							-		
								-	-						-		
	50	NI 3	ALXV1101014-0120	NN1	2300 10112	CDIVIN/ LTE	20		40	13.4	14/	141					1.2400376

Site Composite MPE %						
Carrier	MPE %					
Sprint	11.266%					
AT&T	17.130%					
Verizon Wireless	15.420%					
Total Site MPE %	43.816%					

Summary

All calculations performed for this analysis yielded results that were well within the allowable limits for general public Maximum Permissible Exposure (MPE) to radio frequency energy.

The anticipated Maximum Composite contributions from the Sprint facility are **9.381%** (**3.127% from each sector**) of the allowable FCC established general public limit considering all three sectors simultaneously sampled at the ground level.

The anticipated composite MPE value for this site assuming all carriers present is **41.931%** of the allowable FCC established general public limit sampled at 6 feet above ground level. This total composite site value is based upon MPE values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan RF Engineering Director

EBI Consulting 21 B Street Burlington, MA 01803

FDH Engineering, Inc., 6521 Meridien Drive Raleigh, NC 27616, Ph. 919.755.1012

Structural Analysis for SBA Network Services, Inc.

158.5' Monopole Tower

SBA Site Name: West Haven-Rt 15 SBA Site ID: CT46139-A-02 Sprint Site ID: CT33XC087

FDH Project Number 1462GV1400

Analysis Results

Tower Components	96.7%	Sufficient
Foundation	71.5%	Sufficient

Prepared By:

Blake A. Wilson, El Project Engineer

FDH Engineering, Inc. 6521 Meridien Drive Raleigh, NC 27616 (919) 755-1012 info@fdh-inc.com Reviewed By:

Bu

Bradley R. Newman, PE Senior Project Engineer CT PE License No. 29630

April 9, 2014

Prepared pursuant to TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures and 2005 Connecticut State Building Code

TABLE OF CONTENTS

EXECUTIVE SUMMARY	3
Conclusions	3
Recommendations	3
APPURTENANCE LISTING	3
RESULTS	5
GENERAL COMMENTS	6
LIMITATIONS	6
APPENDIX	7

EXECUTIVE SUMMARY

At the request of SBA Network Services, Inc., FDH Engineering, Inc. performed a structural analysis of the monopole located in Guilford, CT to determine whether the tower is structurally adequate to support both the existing and proposed loads pursuant to the *Structural Standards for Steel Antenna Towers and Antenna Supporting Structures, TIA/EIA-222-F* and 2005 *Connecticut State Building Code*. Information pertaining to the existing/proposed antenna loading, current tower geometry, geotechnical data, foundation dimensions, and member sizes was obtained from:

- Engineered Endeavors Incorporated (Job No. 12806-E01) original design drawings dated July 30, 2004
- Jaworski Geotech, Inc. (Project No. 04197G) Geotechnical Evaluation dated March 24, 2004
- Vertical Solutions, Inc. (Job No. 090845.04) tower extension design drawings dated August 11, 2009
- Vertical Solutions, Inc. (Job No. 122449) tower modification design drawings dated January 30, 2013
- SBA Network Services, Inc.

The basic design wind speed per the TIA/EIA-222-F standards and 2005 Connecticut State Building Code is 85 mph without ice and 38 mph with 3/4" radial ice. Ice is considered to increase in thickness with height.

Conclusions

With the existing and proposed antennas from Sprint in place at 147 ft & 145 ft, the tower meets the requirements of the *TIA/EIA-222-F* standards and *2005 Connecticut State Building Code* provided the **Recommendations** listed below are satisfied. Furthermore, provided the foundation was constructed per the original design drawings (see EEI Job No. 12806-E01), and utilizing the existing soil parameters (see JGI Project No. 04197G), the foundation should have the necessary capacity to support the existing and proposed loading. For a more detailed description of the analysis of the tower, see the **Results** section of this report.

Our structural analysis has been performed assuming all information provided to FDH Engineering, Inc. is accurate (i.e., the steel data, tower layout, existing antenna loading, and proposed antenna loading) and that the tower has been properly erected and maintained per the original design drawings.

Recommendations

To ensure the requirements of the *TIA/EIA-222-F* standards and 2005 *Connecticut State Building Code* are met with the existing and proposed loading in place, we have the following recommendations:

- 1. The proposed feedlines should be installed as shown **Figure 1**.
- 2. RRU/RRH Stipulation: The equipment may be installed in any arrangement as determined by the client.
- 3. Modifications must be installed per the tower modification design drawings dated January 30, 2013 in order for this analysis to be valid (see VSI Job No. 122449).

APPURTENANCE LISTING

The proposed and existing antennas with their corresponding cables/coax lines are shown in **Table 1**. If the actual layout determined in the field deviates from the layout, FDH Engineering, Inc. should be contacted to perform a revised analysis.

Table 1 - Appurtenance Loading

Existing Loading:

Antenna Elevation (ft)	Description	Feedlines ¹	Carrier	Mount Elevation (ft)	Mount Type
157 ²	 (6) Decibel DB846F65ZAXY (3) Antel BXA-70063/6CF (4) Antel BXA-171063/8BF (2) Antel BXA-171063/12BF 	(18) 1-5/8"	Verizon	157	(3) T-Arms
147 ³	(6) Andrew 980F90T4E-M (3) RFS APXVSPP18-C-A20			146.5	(3) T-Arms
145	(3) 1900 RRH (25 MHz) (3) 800 RRH (3) External Notch Filters (6) 1900 ACU-A20-N RETs (3) 800 ACU-A20-N RETs	(6) 1-5/8" (3) 1-1/4"	Sprint	145	(1) Collar Mount
137	(6) Powerwave 7770 (3) KMW AM-X-CD-16-65-00T-RET (12) Powerwave LGP21401 TMAs (6) Ericsson RRUS 11 RRUs	(12) 1-5/8" (1) 3" Conduit (1) 1/2" Fiber (2) 3/4" DC Power	AT&T	137	(3) T-Arms
72 ⁴	(1) GPS	(1) 1/2"	Sprint	72	(1) Standoff

1. Feedlines installed inside the pole's shaft unless otherwise noted.

2. Verizon has (6) 1-5/8" coax installed outside the pole's shaft in a single row to 157'.

3. Sprint has (3) 1-1/4" coax installed outside the pole's shaft in a single row to 147'.

4. Sprint has (1) 1/2" coax installed outside the pole's shaft to 72'.

Proposed Loading:

Antenna Elevation (ft)	Description	Feedlines	Carrier	Mount Elevation (ft)	Mount Type
147	(6) Andrew 980F90T4E-M (3) RFS APXVSPP18-C-A20 (3) RFS APXVTM14-C-I20			146.5	(3) T-Arms
145	(3) ALU TD-RRH8x20-25 RRUs (3) 1900 RRH (25 MHz) (3) 800 RRH (3) External Notch Filters (6) 1900 ACU-A20-N RETs (3) 800 ACU-A20-N RETs	(6) 1-5/8" (4) 1-1/4"	Sprint	145	(1) Collar Mount

RESULTS

The following yield strength of steel for individual members was used for analysis:

Member Type	Yield Strength
Tower Shaft Sections	65 ksi & 42 ksi
Flange Plate	50 ksi
Flange Bolts	Fu = 120 ksi
Bypass Stiffener	36 ksi
Flat Plate Reinforcement	50 ksi
Base Plate Stiffeners	50 ksi
Base Plate	60 ksi
Anchor Bolts	75 ksi

Table 2 - Material Strength

Table 3 displays the summary of the ratio (as a percentage) of force in the member to their capacities. Values greater than 100% indicate locations where the maximum force in the member exceeds its capacity. *Note: Capacities up to 105% are considered acceptable.* **Table 4** displays the maximum foundation reactions.

If the assumptions outlined in this report differ from actual field conditions, FDH Engineering, Inc. should be contacted to perform a revised analysis. Furthermore, as no information pertaining to the allowable twist and sway requirements for the existing or proposed appurtenances was provided, deflection and rotation were not taken into consideration when performing this analysis.

See the **Appendix** for detailed modeling information

Table 3 - Summary of Working Percentage of Structural Components

Section No.	Elevation ft	Component Type	Size	% Capacity*	Pass Fail
L1	158.5 - 149	Pole	TP20x20x0.375	12.7	Pass
L2	149 - 148.5	Pole	TP20.5x20x0.375	12.9	Pass
	148.5	Flange Bolts	(18) 1"Ø on a 25" B.C.	10.4	Pass
	148.5	Flange Plate	PL 1.25" x 30"Ø	15.2	Pass
L3	148.5 - 119	Pole	TP28.2x20.5x0.1875	96.7	Pass
	119 - 94.58	Modified Pole	TP34.57x28.2x0.1875 w/ (3) PL 1.5" x 5"	82.0	Pass
L4	94.58 - 53	Pole	TP44.33x32.9338x0.3125	84.3	Pass
	53 - 46.5833	Modified Pole	TP46.59x44.33x0.3125 w/ (3) PL 1.5" x 6.5"	73.6	Pass
L5	46.5833 - 0	Modified Pole	TP58x44.3279x0.3125 w/ (3) PL 1.5" x 7.25"	79.0	Pass
		Anchor Bolts	(16) 2.25"Ø on a 66" B.C.	70.4	Pass
		Base Plate	PL 1.75" x 72"Ø w/ Stiffeners	76.6	Pass

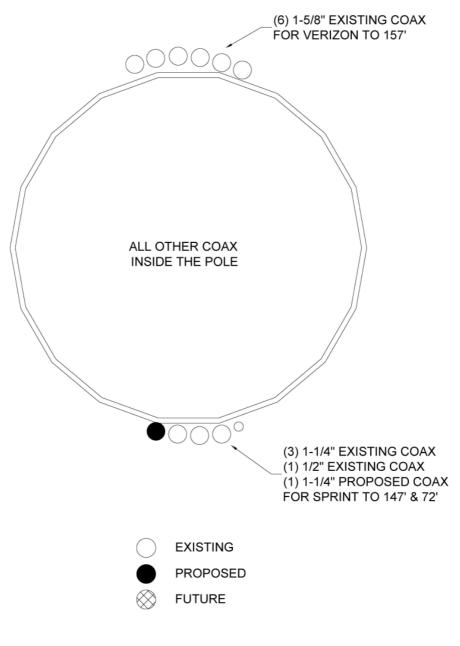
*Capacities include a 1/3 allowable stress increase for wind per TIA/EIA-222-F standards.

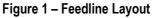
Table 4 - Maximum Base Reactions

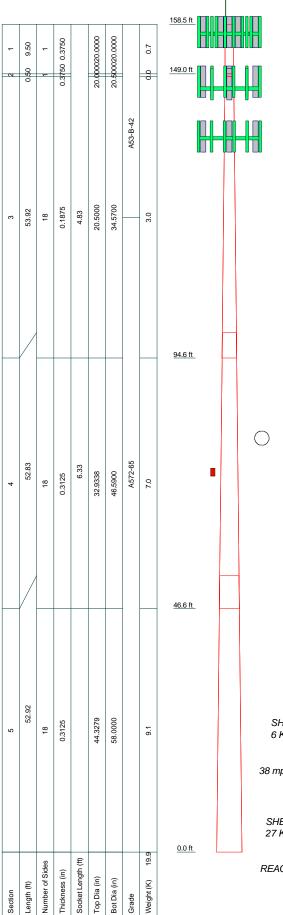
Base Reactions	Current Analysis* (TIA/EIA-222-F)	Original Design (TIA/EIA-222-F)		
Axial	37 k	25 k		
Shear	27 k	24 k		
Moment	3,070 k-ft	2,485 k-ft		

*Foundation determined adequate per independent analysis.

GENERAL COMMENTS


This engineering analysis is based upon the theoretical capacity of the structure. It is not a condition assessment of the tower and its foundation. It is the responsibility of SBA Network Services, Inc. to verify that the tower modeled and analyzed is the correct structure (with accurate antenna loading information) modeled. If there are substantial modifications to be made or the assumptions made in this analysis are not accurate, FDH Engineering, Inc. should be notified immediately to perform a revised analysis.


LIMITATIONS


All opinions and conclusions are considered accurate to a reasonable degree of engineering certainty based upon the evidence available at the time of this report. All opinions and conclusions are subject to revision based upon receipt of new or additional/updated information. All services are provided exercising a level of care and diligence equivalent to the standard and care of our profession. No other warranty or guarantee, expressed or implied, is offered. Our services are confidential in nature and we will not release this report to any other party without the client's consent. The use of this engineering work is limited to the express purpose for which it was commissioned and it may not be reused, copied, or distributed for any other purpose without the written consent of FDH Engineering, Inc.

APPENDIX

Document No. ENG-RPT-501S

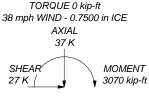
DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Lightning Rod	160	(1) Collar Mount (Sprint)	145
BXA-70063-6CF-2 w/ Mount Pipe	157	1900MHz RRH (25MHz) (Sprint)	145
(Verizon)		1900MHz RRH (25MHz) (Sprint)	145
BXA-70063-6CF-2 w/ Mount Pipe	157	1900MHz RRH (25MHz) (Sprint)	145
(Verizon)		800 MHz RRH (Sprint)	145
BXA-70063-6CF-2 w/ Mount Pipe (Verizon)	157	800 MHz RRH (Sprint)	145
(2) DB846F65ZAXY w/ Mount Pipe	157	800 MHz RRH (Sprint)	145
(Verizon)	157	EXTERNAL NOTCH FILTER (Sprint)	145
(2) DB846F65ZAXY w/ Mount Pipe	157	EXTERNAL NOTCH FILTER (Sprint)	145
(Verizon)		EXTERNAL NOTCH FILTER (Sprint)	145
(2) DB846F65ZAXY w/ Mount Pipe	157	(2) 1900 ACU-A20-N RET (Sprint)	145
(Verizon)		(2) 1900 ACU-A20-N RET (Sprint)	145
(2) BXA-171063/8BF w/ Mount Pipe	157	(2) 1900 ACU-A20-N RET (Sprint)	145
(Verizon)	457	800 ACU-A20-N RET (Sprint)	145
(2) BXA-171063/8BF w/ Mount Pipe (Verizon)	157	800 ACU-A20-N RET (Sprint)	145
(2) BXA-171063/12BF w/ Mount Pipe	157	800 ACU-A20-N RET (Sprint)	145
(Verizon)	107	TD-RRH8x20-25 (Sprint)	145
(3) T-Arms (Verizon)	157	TD-RRH8x20-25 (Sprint)	145
(2) 980F90T4E-M w/ Mount Pipe	147	TD-RRH8x20-25 (Sprint)	145
(Sprint)		(4) LGP21401 TMA (AT <u>T</u>)	137
(2) 980F90T4E-M w/ Mount Pipe	147	(4) LGP21401 TMA (ATI)	137
(Sprint)		(2) 7770.00 w/Mount Pipe (ATI)	137
(2) 980F90T4E-M w/ Mount Pipe	147	(2) 7770.00 w/Mount Pipe (ATI)	137
(Sprint)	4.47	(2) 7770.00 w/Mount Pipe (ATI)	137
APXVSPP18-C-A20 w/Mount Pipe (Sprint)	147	AM-X-CD-16-65-00T-RET w/ Mount Pipe (ATI)	137
APXVSPP18-C-A20 w/Mount Pipe	147	(2) RRUS 11 (ATI)	137
(Sprint)	4.47	(2) RRUS 11 (ATI)	137
APXVSPP18-C-A20 w/Mount Pipe (Sprint)	147	AM-X-CD-16-65-00T-RET w/ Mount Pipe (ATI)	137
APXVTM14-C-I20 w/Mount Pipe (Sprint)	147	AM-X-CD-16-65-00T-RET w/ Mount Pipe (ATI)	137
APXVTM14-C-I20 w/Mount Pipe (Sprint)	147	(4) LGP21401 TMA (ATI)	137
APXVTM14-C-I20 w/Mount Pipe	147	(2) RRUS 11 (ATI)	137
(Sprint)	····	DC6-48-60-18-8F Surge Arrestor	137
(3) T-Arms (Sprint)	146.5	(3) T-Arms (ATI)	137
X-7 - X-1 - 7	1	GPS (Sprint)	72
		(1) Standoff (Sprint)	72

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A53-B-42	42 ksi	63 ksi	A572-65	65 ksi	80 ksi

TOWER DESIGN NOTES

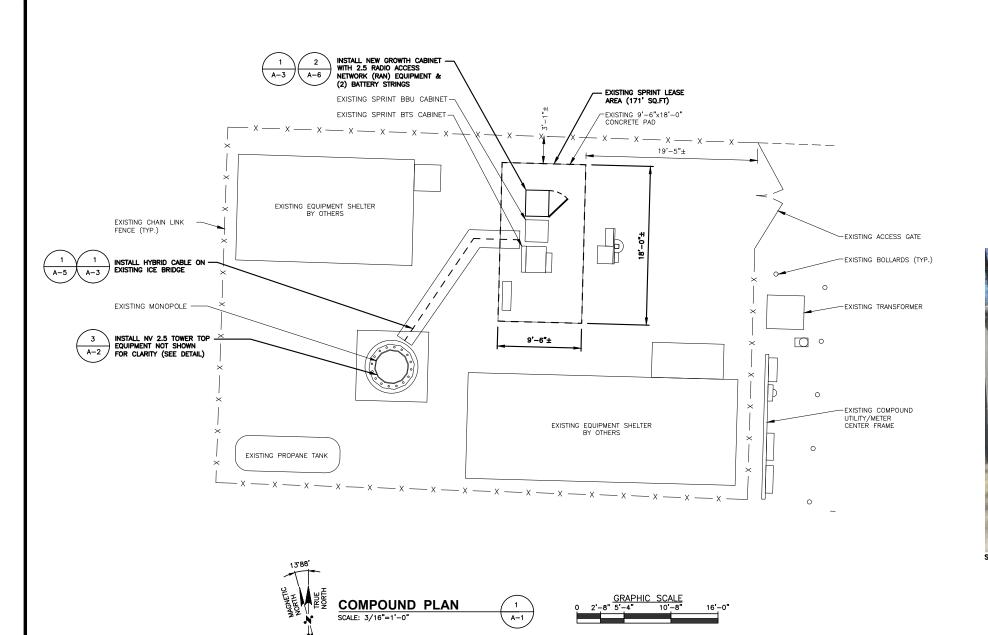

1. Tower is located in New Haven County, Connecticut.

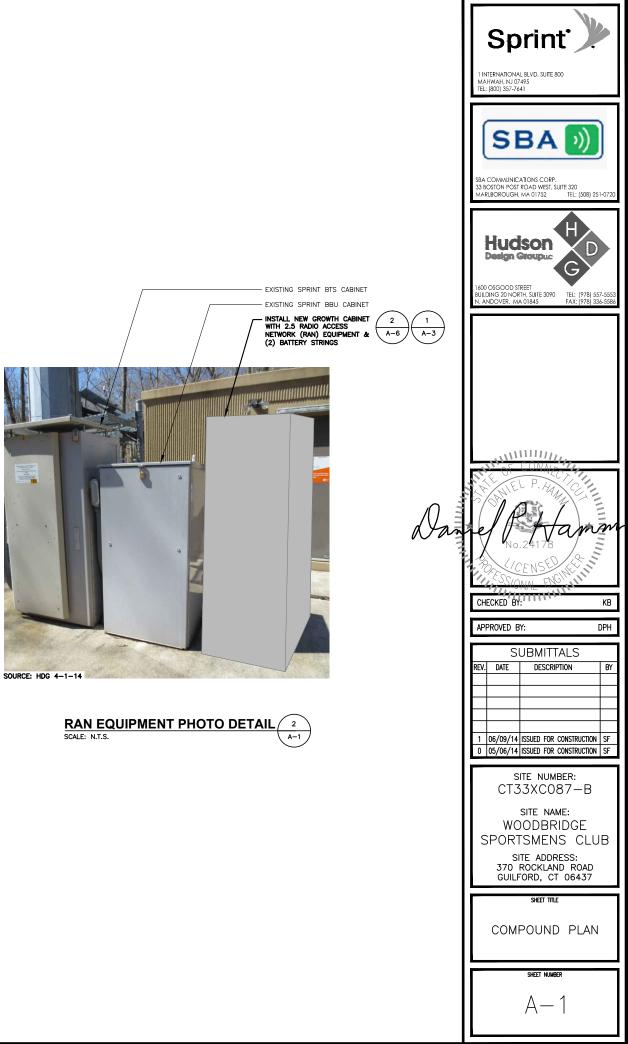
2. Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F Standard.

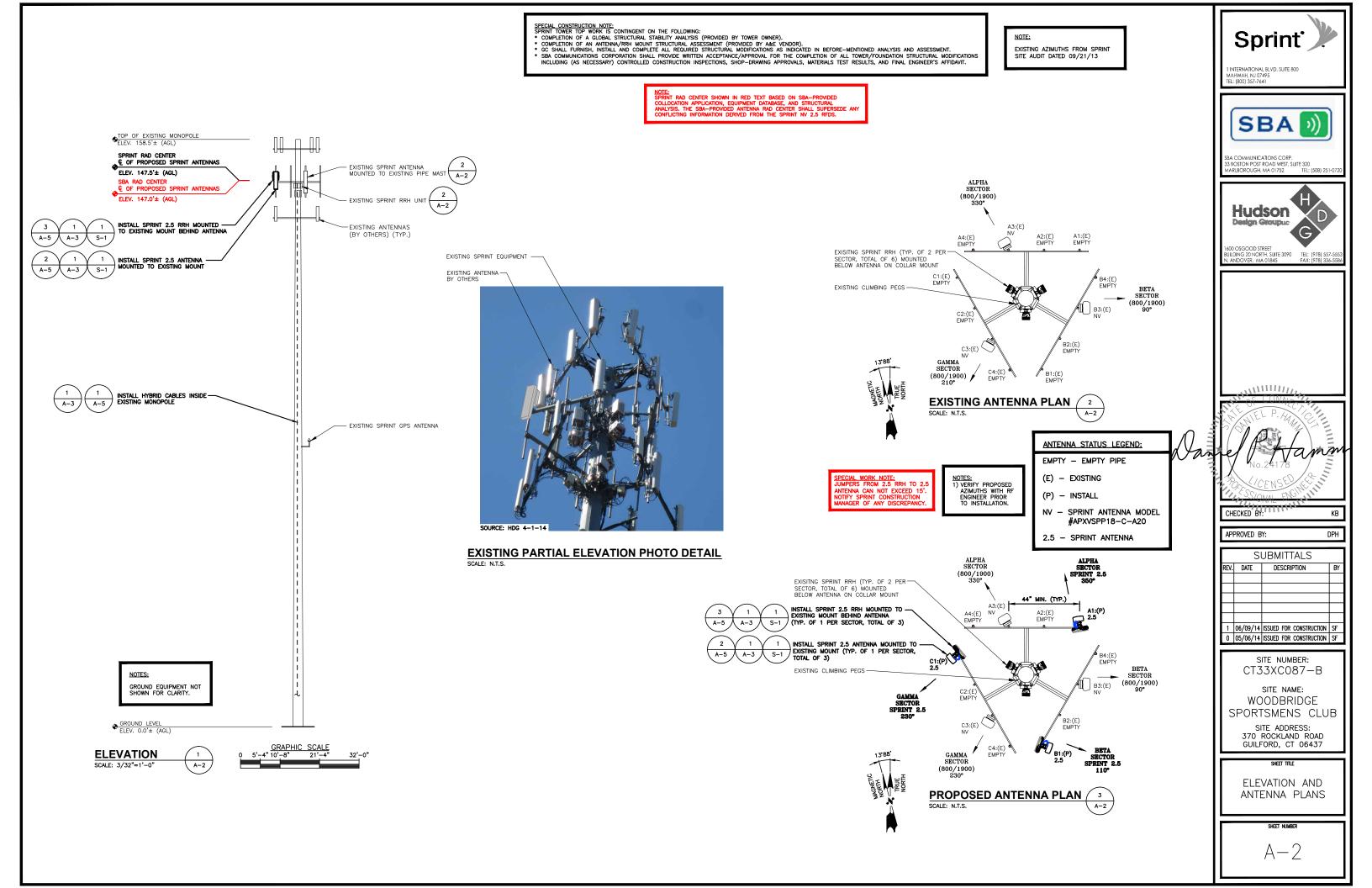
Tower is also designed for a 38 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.

Deflections are based upon a 50 mph wind.

AX	'IAL
4	5 <i>K</i>
HEAR K	MOMENT 760 kip-ft
TOPOL	E 0 kin ft




TORQUE 1 kip-ft REACTIONS - 85 mph WIND



FDH Engineering, Inc. 6521 Meridien Drive, Suite 107 Raleigh, North Carolina Phone: 9197551012 FAX: 9197551031

	^{Job:} West Haven - Rt15, CT4		
07	Project: 1462GV1400		
-	Client: SBA Network Services, Inc.	Drawn by: Blake Wilson	App'd:
	^{Code:} TIA/EIA-222-F	Date: 04/09/14	Scale: NTS
	Path: C:Users/BW/Ison/Desktop/CT46139-A_West Haven, Rt 15 - CT\1462GV1400/4	nalysisiCoax CaAa (I Used)/CT46139-A.eri	Dwg No. E-1

