

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

October 26, 2021

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application 201 Granite Road, Guilford CT 06437 Latitude: 41.291972 Longitude: 72.732661 Site# 842864 Crown Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 201 Granite Road in Guilford, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 5G MHz antenna and six (6) RRUs, at the 77-foot level of the existing 110-foot monopole tower, one (1) Fiber cables will also be installed. Dish Wireless LLC equipment cabinets will be placed within 7x5 lease area. Included are plans by Infinigy, dated August 24, 2021 Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated May 29, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was approved by the Town of Guilford Planning and Zoning on December 10, 2003. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Matthew T. Hoey III, First Selectman, and George Kral Town Planner for the Town of Guilford, as well as the tower owner (Crown Castle) and property owner (Gables Winterfell)

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

- 1. The proposed modification will not result in an increase in the height of the existing structure. The top of the tower is 110-feet; Dish Wireless LLC proposed antennas will be located at a center line height of 77-feet.
- 2. The proposed modifications will not result in the increase of the site boundary as depicted on the attached site plan.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.

4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total power density of 29.38% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully indicates that the shared use of this facility satisfies these criteria.

A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.

- B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this monopole in Guilford. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.
- C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 77-foot level of the existing 110-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
- D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.
- E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing guyed tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Guilford.

Sincerely,

Denise Sabo

Denise Sabo

Mobile: 203-435-3640 Fax: 413-521-0558

Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments cc:

Matthew T. Hoey III, First Selectman Town of Guilford Selectman's Office 31 Park Street, Guilford CT 06437

George Kral, Guilford Town Planner Town of Guilford Planning & Zoning 50 Boston Street, Guilford CT 06437

Gables Winterfell, Property Owner 590 Madison Ave 34the Fl, New York NY 10022

Crown Castle, Tower Owner

Exhibit A

Original Facility Approval

Town of Guilford Building Permit - Zoning Compliance Permit

Permit No. 03-2511

(BP) (EF)

\$1,400.00

\$22.40

INLAND WETLANDS PERM	/IIT	Total F	ee Paid	\$1,422.40
		Date Is	ssued:	12/10/2003
This building permit is issue	d pursuant to the Cor	nnecticut Building codes and is subject	ct to the provisions there	of.
it is issued on the basis of t	ne application submitt	ted and approved and is valid only for	r the work indicated in Ite	em 4.
1. Location Street:	Granite Road		Street No	201
Assessor's Map No:	71	Assessor's Lot No.	11	
Subdivision Name:		Lot No.		
2. Owner Name:		nt Residence Ltd. Partnership		
	c/o Deloitte/Touch			
Mailing Address:	925 4th Avenue, 8	Suite 3300, Seattle, WA 98104-1126		
3. TYPE OF CONSTRUCT! 1:2:3:4:5:	ON:	NATURE OF WORK:		
OCCUPANCY LOAD		X New Construction	Moving of S	Structure
USE GROUP		Addition	Demolition	
		Alteration	Rehabilitati	on
		Repair	Other	
4. TYPE OF WORK: (This p Structural Electrical Heating and Ventilation Plumbing Swimming Pool Other	<u>X</u>	Insulation Oil Burner Sewage Disposal* Gal. Septic Tank Required Sq. ft. leaching area required** Water Conditioning * In accordance with CT State Pu ** Reserve seepage are equal to		
Cell Tower			,	
Permit valid one year. Permit Upon written request and pay of the Building Officials. Req electrical, HVAC, plumbing an CALL 453-8029 Monday-Frie REQUIRED. There is a chair PROPERTY OWNER IS REST The following special conditional 1. Approved by CT Siting Court 2. Per Site Plan LLC, A. Rafael 3. Acceptance report by Engin	ment of \$15.00 fee, puired building inspect and framing 4) insulated day 8:30 A.M 4:30 fee for certificate of PONSIBLE TO SCHI tions must be met: noil - Regina Reid, Zon Martinez, L.S. 10/18/01 feer of record at project of Statutes, Codes, Codes, Statutes, Codes, Codes, Codes, Codes, Statutes, Codes, Code	EDULE A FINAL INSPECTION.	s at the discretion 2)footing 3) rough 24 HOUR ADVANCE No was Engineer 3 Official II	OTICE IS
		st be conspicuously posted on the sit consibility for the construction or main		uilt

G

William Thody Building Official II Regina Reid

Mark Damiani

Dennis Johnson

Zoning Enforcement Officer Inland Wetlands Officer

Asst. Town Engineer

Director of Health

1-Origina! *

2-File*

3-Fire Marshal*

4-Contractor*

5-Assessor's Office*

6-Planning & Zoning *

Exhibit B

Property Card

All information is for assessment purposes only. Assessments are calculated at 70% of the estimated October 1, 2017 market value which was the date of the last revaluation as completed by eQuality Valuation Services, LLC.

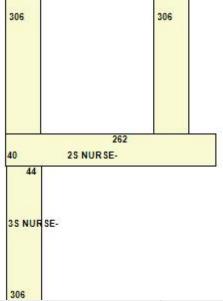
Information on the Property Records for the Municipality of Guilford was last updated on 10/28/2021.

Parcel Information

Location:	201 GRANITE RD	Map and Parcel:	071011	Census Tract:	1902
Zoning:	R-8	Developer's Map:		Developer's Lot:	
Total Acreage:	58.31	Farm, Forest, Open Space Acres:		Unique ID:	6477

Value Information

	Appraised Value	Assessed Value
Land	1,008,000	705,600
Buildings	15,192,510	10,634,760
Detached Outbuildings	311,200	217,840
Total	16,511,710	11,558,200


Owner's Information

Owner's Data

WINTERFELL GABLES (CT) OWNER LLC 590 MADISON AVE 34TH FL NEW YORK NY 10022

Building 1

Photo Not Available

Category:	ELDERLY	Use:	NURSING HOME	GLA:	142,136
Stories:	2.00	Construction:	AVERAGE	Year Built:	1993
Condition:	AVERAGE	Heating:	FHA	Fuel:	GAS
Cooling Percent:	100%	Siding:	STUCCO	Roof Material:	METAL

Special Features

WET SPRINKLERS	142136
----------------	--------

Attached Components

Detached Outbuildings

Туре:	Year Built:	Length:	Width:	Area:
PAVING	1993			8,000

Owner History - Sales

Owner Name	Volume	Page	Sale Date	Deed Type	Sale Price
WINTERFELL GABLES (CT) OWNER LLC	0884	0672	05/26/2015	Warranty Deed	\$32,535,600
HARVEST GUILFORD RET RES LLC	0741	1146	03/23/2007	Warranty Deed	\$15,751,149

Information Published With Permission From The Assessor

Exhibit C

Construction Drawings

wireless.

DISH Wireless L.L.C. SITE ID:

BOHVN00016A

DISH Wireless L.L.C. SITE ADDRESS:

201 GRANITE ROAD GUILFORD, CT 06437

CONNECTICUT CODE COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:

2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS MECHANICAL ELECTRICAL 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS
2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS

	SHEET INDEX
SHEET NO.	SHEET TITLE
T-1	TITLE SHEET
A-1	OVERALL AND ENLARGED SITE PLAN
A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS
A-4	EQUIPMENT DETAILS
A-5	EQUIPMENT DETAILS
A-6	EQUIPMENT DETAILS
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES
E-2	ELECTRICAL DETAILS
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE
G-1	GROUNDING PLANS AND NOTES
G-2	GROUNDING DETAILS
G-3	GROUNDING DETAILS
RF-1	RF CABLE COLOR CODE
GN-1	LEGEND AND ABBREVIATIONS
GN-2	GENERAL NOTES
GN-3	GENERAL NOTES
GN-4	GENERAL NOTES
	

SCOPE OF WORK

THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIPMENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:

- TOWER SCOPE OF WORK:

 INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR)

 INSTALL (1) PROPOSED PLATFORM MOUNT

 INSTALL PROPOSED JUMPERS

- INSTALL (6) PROPOSED RRUS (2 PER SECTOR)
 INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP)
- INSTALL (1) PROPOSED HYBRID CABLE

- GROUND SCOPE OF WORK:
 INSTALL (1) PROPOSED METAL PLATFORM
- INSTALL (1) PROPOSED ICE BRIDGE INSTALL (1) PROPOSED PPC CABINET
- INSTALL (1) PROPOSED EQUIPMENT CABINET
- INSTALL (1) PROPOSED POWER CONDUIT INSTALL (1) PROPOSED TELCO CONDUIT
- PROPOSED TELCO-FIBER BOX
- INSTALL (1) PROPOSED GPS UNIT
- INSTALL (1) PROPOSED SAFETY SWITCH (IF REQUIRED)
- INSTALL (1) PROPOSED FIBER NID (IF REQUIRED)
 EXISTING METER SOCKET ON EXISTING H-FRAME TO BE UTILIZED

SITE PHOTO

UNDERGROUND SERVICE ALERT CBYD 811 UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455 WWW.CBYD.COM

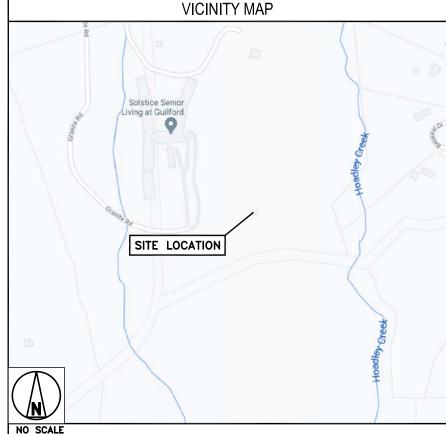
CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.

11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.


SITE INFORMATION PROJECT DIRECTORY PROPERTY OWNER: WINTERFELL GABLES DISH Wireless L.L.C. ADDRESS: 590 MADISON AVENUE 5701 SOUTH SANTA FE DRIVE NEW YORK, NY 10022 LITTLETON, CO 80120 TOWER TYPE: MONOPOLE TOWER OWNER: CROWN CASTLE TOWER CO SITE ID: 842864 2000 CORPORATE DRIVE CANONSBURG, PA 15317 TOWER APP NUMBER: 553360 (877) 486-9377 COUNTY: NEW HAVEN SITE DESIGNER: INFINIGY 2500 W. HIGGINS RD. STE. 500 41° 17' 31.14" N HOFFMAN ESTATES, IL 60169 LATITUDE (NAD 83): 41.291972 N (847) 648-4068 LONGITUDE (NAD 83): 72° 43' 58.28" W 72.732861 W SITE ACQUISITION: NICHOLAS CURRY ZONING JURISDICTION: TOWN OF GUILFORD NICHOLAS.CURRY@CROWNCASTLE.COM ZONING DISTRICT: CONSTRUCTION MANAGER: JAVIER SOTO PARCEL NUMBER: 071011 JAVIER SOTO@DISH COM OCCUPANCY GROUP: SYED ZAIDI RF ENGINEER: SYED.ZAIDI@DISH.COM CONSTRUCTION TYPE: II-B NORTHEAST UTILITIES

DIRECTIONS

DIRECTIONS FROM TWEED NEW HAVEN AIRPORTS

TELEPHONE COMPANY: AT&T

DEPART AND HEAD (NORTHEAST), TURN LEFT, AVIS RENT A CAR ON THE CORNER, TURN RIGHT, TURN RIGHT TOWARD BURR ST, BUDGET CAR RENTAL ON THE CORNER, TURN RIGHT ONTO BURR ST, KEEP STRAIGHT TO GET ONTO DODGE AVE, TURN LEFT ONTO THOMPSON AVE, KEEP STRAIGHT TO GET ONTO CT-100 / HIGH ST, TAKE THE RAMP ON THE RIGHT FOR 1-95 NORTH AND HEAD TOWARD NEW LONDON, AT EXIT 56, HEAD RIGHT ON THE RAMP FOR LEFTES ISLAND RD TOWARD STONY CREEK, TURN LEFT ONTO LEETES ISLAND RD, TURN RIGHT ONTO US-1 N / E MAIN ST, TURN RIGHT ONTO MOOSE HILL RD, KEEP STRAIGHT TO GET ONTO TOWNER SWAMP RD, ARRIVE AT 201 GRANITE ROAD GUILFORD, CT 06437

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY8

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4088 | FAX: 518-690-0793
WWW.INFINIGY.COM

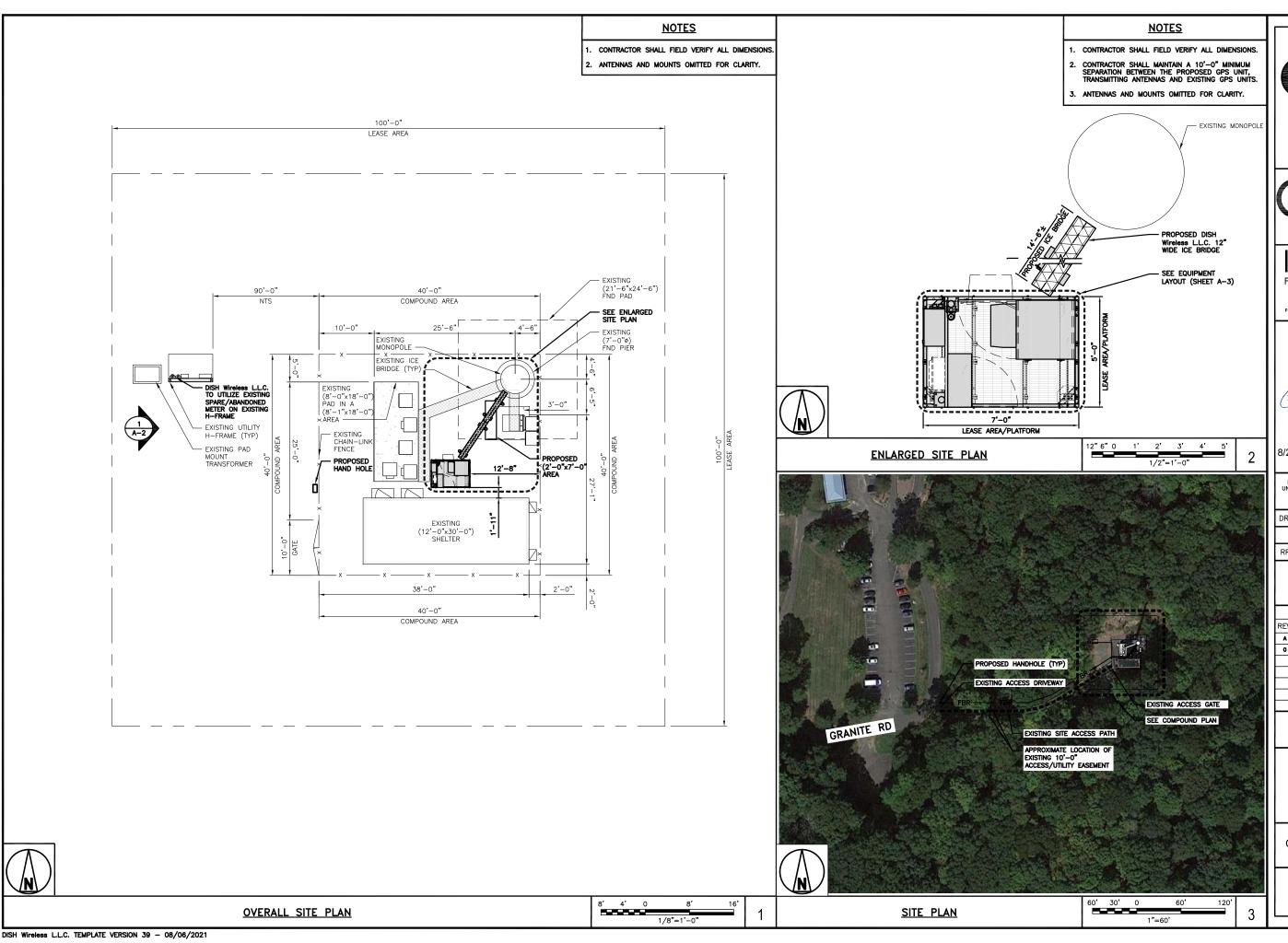
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED BY:
RCD	SS	CJW

DOCUMENTS

RFDS REV #: N/A CONSTRUCTION

	:	SUBMITTALS		
REV	DATE	DESCRIPTION		
A	06/23/2021 ISSUED FOR REVIEW			
0	08/24/2021 ISSUED FOR CONSTRUCTION			
	∧ 9°E E	DO IECT NILIMBED		


A&E PROJECT NUMBER 6039-Z0001-C

BOHVN00016A 201 GRANITE ROAD GUILFORD, CT 06437

> SHEET TITLE TITLE SHEET

SHEET NUMBER

T-1

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY8 FROM ZERO TO INFINIGY

the solutions are endless
2500 w. HIGGINS RD. SUITE 500 |
HOFFANN ESTATES, IL 60169
PHONE: 847-648-4086 | FAX: 518-690-0793
www.infinigy.com

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

ı					
	RCD	SS		CJW	
	DRAWN BY:	CHECKED	BY:	APPROVED	В

RFDS REV #: N/A

CONSTRUCTION **DOCUMENTS**

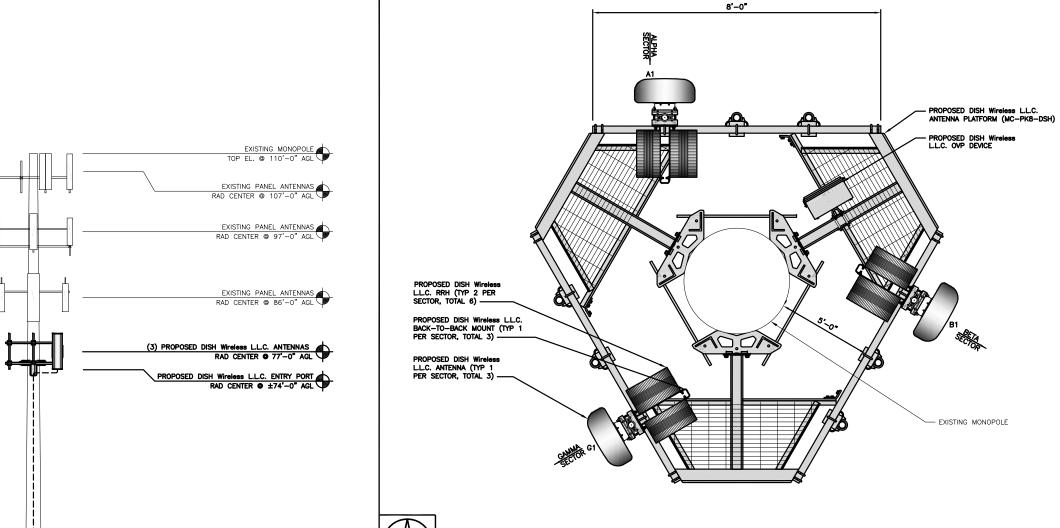
	SUBMITTALS					
REV	DATE	DESCRIPTION				
A	06/23/2021	ISSUED FOR REVIEW				
0	08/24/2021	ISSUED FOR CONSTRUCTION				
	A&E F	PROJECT NUMBER				

6039-Z0001-C

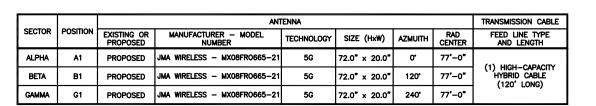
DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00016A 201 GRANITE ROAD GUILFORD, CT 06437

SHEET TITLE


OVERALL AND ENLARGED SITE PLAN

SHEET NUMBER


A-1

- CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS.
- 2. ANTENNA SPECIFICATIONS REFER TO ANTENNA SCHEDULE AND TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS
- EXISTING EQUIPMENT AND FENCE OMITTED FOR CLARITY.
- . INFINIGY HAS NOT EVALUATED THE TOWER OR MOUNT STRUCTURE AND ASSUMES NO RESPONSIBILITY FOR THEIR STRUCTURAL INTEGRITY REGARDING PROPOSED LOADINGS. FINAL INSTALLATION SHALL COMPLY WITH RESULTS OF PASSING STRUCTURAL ANALYSES PERFORMED BY OTHERS.

		RRH				
SECTOR	POSITION	MANUFACTURER — MODEL NUMBER	TECHNOLOGY			
ALPHA	A1	FUJITSU - TA08025-B604	5G			
ALPHA	A1	FUJITSU - TA08025-B605	5G			
BETA	B1	FUJITSU - TA08025-B604	5G			
	B1	FUJITSU - TA08025-B605	5G			
GAMMA	G1	FUJITSU - TA08025-B604	5G			
	G1	FUJITSU - TA08025-B605	5G			

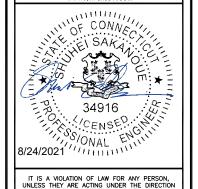
NOTES

1. CONTRACTOR TO REFER TO FINAL CONSTRUCTION RFDS FOR ALL RF

2" 6" 0

3/4"=1'-0'

ANTENNA AND RRH MODELS MAY CHANGE DUE TO EQUIPMENT AVAILABILITY. ALL EQUIPMENT CHANGES MUST BE APPROVED AND REMAIN IN COMPLIANCE WITH THE PROPOSED DESIGN AND STRUCTURAL ANALYSES.


5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY 8 FROM ZERO TO INFINIGY

the solutions are endless
2500 w. HIGGINS RD. SUITE 500 |
HOFFANN ESTATES, IL 60169
PHONE: 847-648-4086 | FAX: 518-690-0793
www.infinigy.com

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	BY: APPROVED BY	BY:	CHECKED	DRAWN BY:	ı
RCD SS CJV	CJM		SS	RCD	

RFDS REV #: N/A

CONSTRUCTION **DOCUMENTS**

SUBMITTALS							
REV	DATE	DESCRIPTION					
Α	06/23/2021	ISSUED FOR REVIEW					
0	08/24/2021	ISSUED FOR CONSTRUCTION					
	A&E F	PROJECT NUMBER					

6039-Z0001-C

DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00016A 201 GRANITE ROAD GUILFORD, CT 06437

SHEET TITLE

ELEVATION, ANTENNA LAYOUT AND SCHEDULE

SHEET NUMBER

A-2

1/8"=1'-0"

EXISTING MONOPOLE BOTTOM EL. @ 6" AGL

- EXISTING MONOPOLE

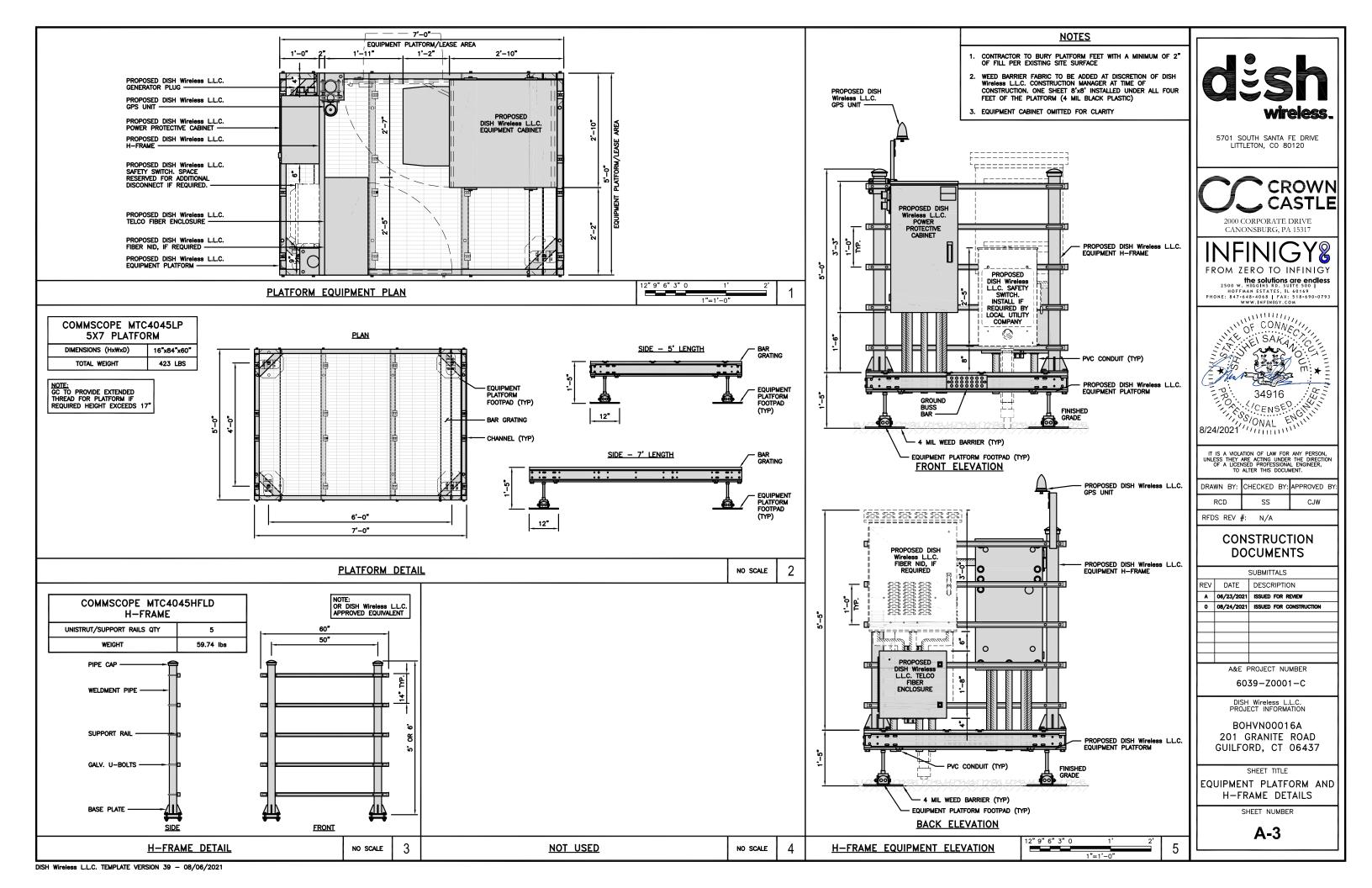
(1) PROPOSED DISH Wireless L.L.C. HYBRID CABLE ROUTED INSIDE POLE

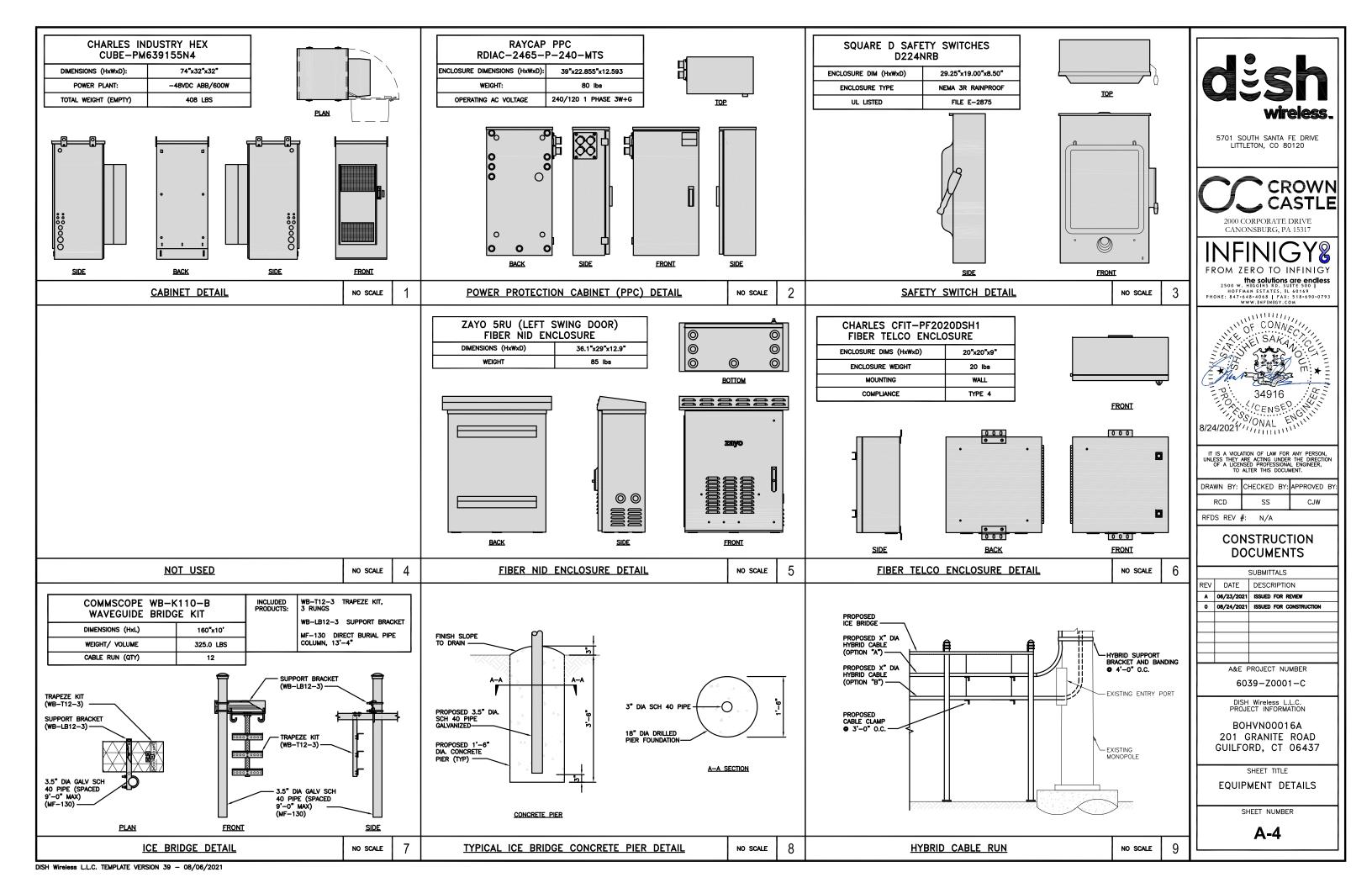
PROPOSED DISH Wireless L.L.C. ICE BRIDGE

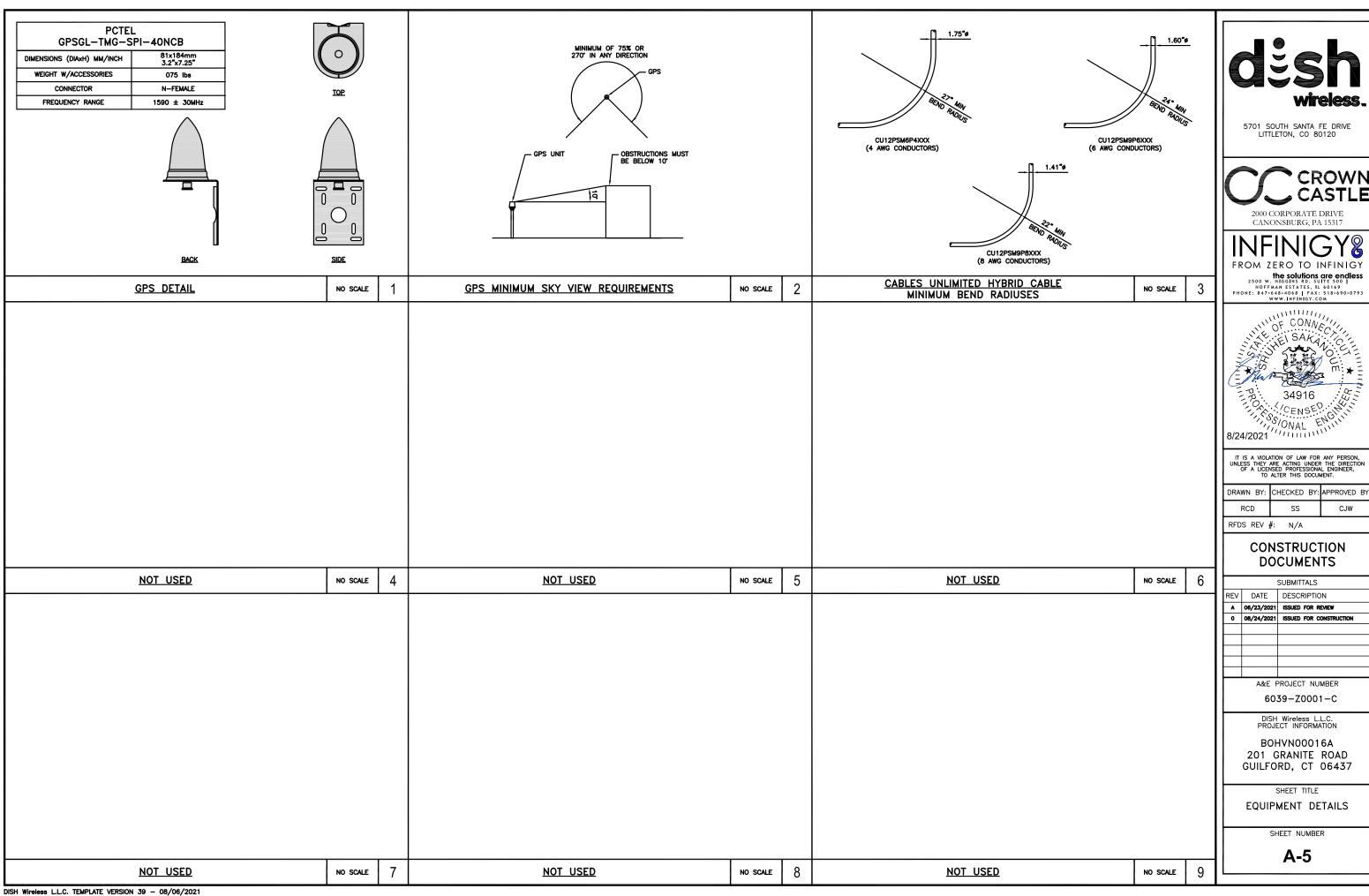
ireless L.L.C. GPS UNIT

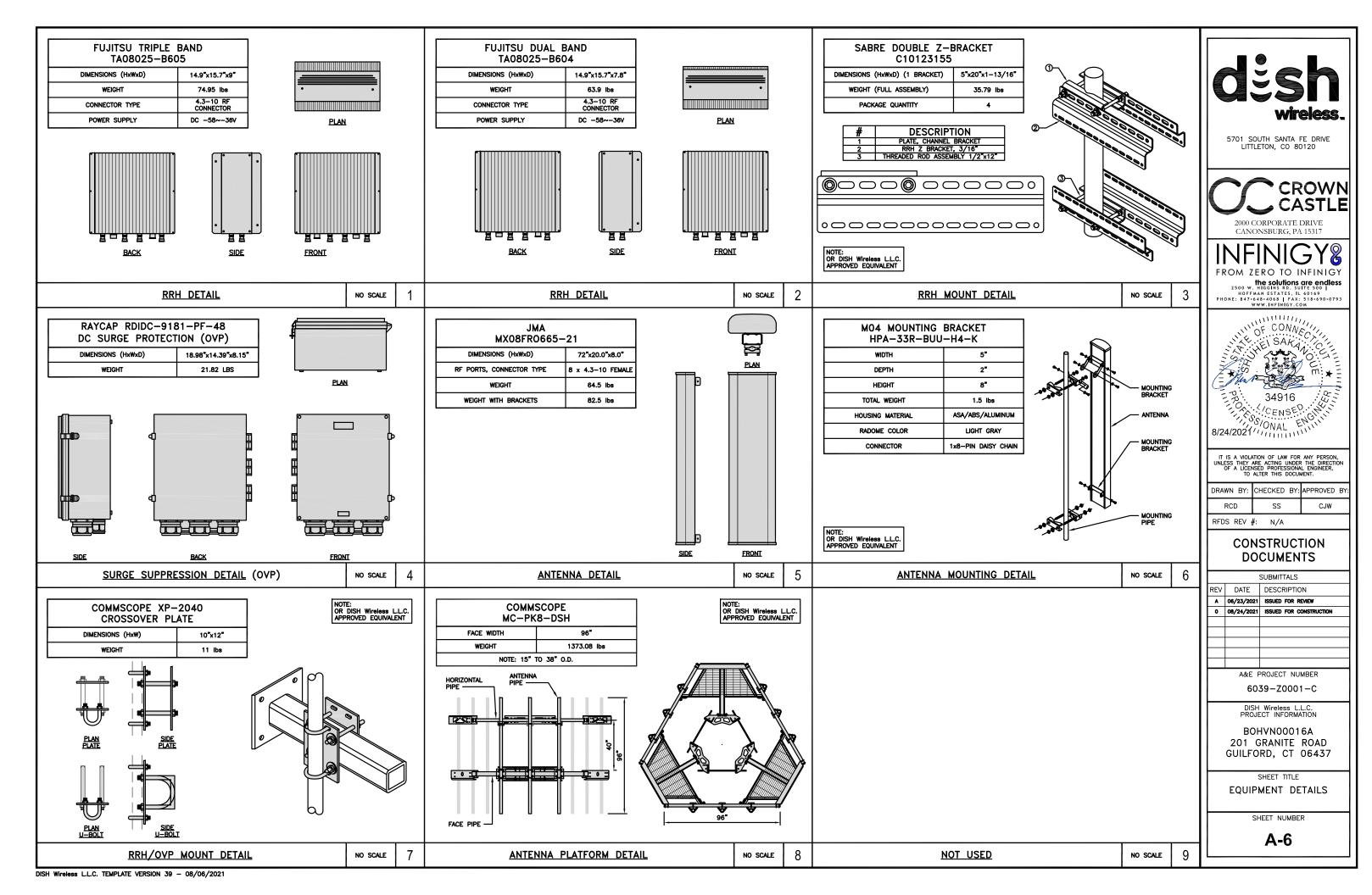
PROPOSED DISH Wireless L.L.C. EQUIPMENT ON PROPOSED STEEL PLATFORM

PROPOSED DISH

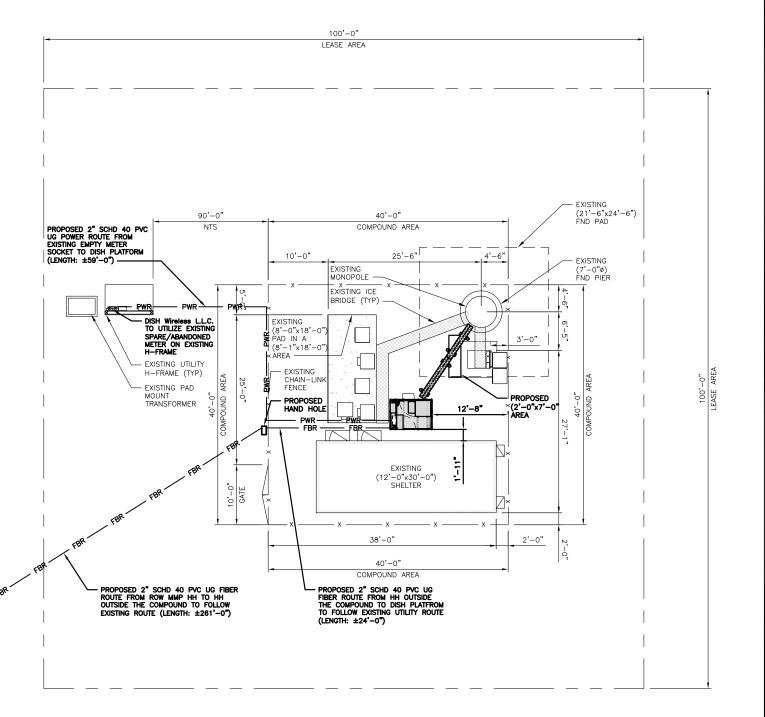

ANTENNA SCHEDULE


DISH Wireless L.L.C. TEMPLATE VERSION 39 - 08/06/2021


EXISTING ENTRY PORT


PROPOSED WEST ELEVATION

NO SCALE



- CONTRACTOR SHALL FIELD VERIFY ALL PROPOSED UNDERGROUND UTILITY CONDUIT ROUTE.
- ANTENNAS AND MOUNTS OMITTED FOR CLARITY.

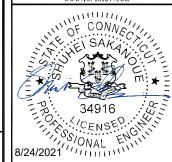
UTILITY ROUTE PLAN

DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING $\pm 24V$ and $\pm 48V$ conductors. RED MARKINGS SHALL IDENTIFY $\pm 24V$ and blue markings shall identify $\pm 48V$.

- CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
- ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS.
- 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
- CONDUIT ROUGH—IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS.
 VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
- 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
- 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
- 7. CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
- 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
- INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250.
 THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL
 DISCONNECT SWITCHES, AND EQUIPMENT CABINETS.
- 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.
- 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT.
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS.
- 13. ALL TRENCHES IN COMPOUND TO BE HAND DUG

ELECTRICAL NOTES

PROPOSED 2" SCHD 40 PVC UG FIBER ROUTE FROM HH OUTSIDE THE COMPOUND TO DISH PLATFROM TO FOLLOW EXISTING UTILITY ROUTE PROPOSED 2" SCHD 40 PVC UG POWER ROUTE FROM EXISTING EMPTY METER SOCKET TO DISH PLATFORM 910 LENGTH: ±24'-0") PROPOSED HANDHOLE (TYP) EXISTING ACCESS DRIVEWAY EXISTING ACCESS GATE SEE COMPOUND PLAN GRANITE RD EXISTING SITE ACCESS PATH ACCESS/UTILITY EASEMENT PROPOSED 2" SCHD 40 PVC UG FIBER ROUTE FROM ROW MMP HH TO HH OUTSIDE THE COMPOUND TO FOLLOW ISTING ROUTE (LENGTH: ±261'-0")


5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY 8 FROM ZERO TO INFINIGY

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

ı	DRAWN BY:	CHECKED BY:	APPROVED E
	RCD	SS	CJW

RFDS REV #: N/A

CONSTRUCTION DOCUMENTS

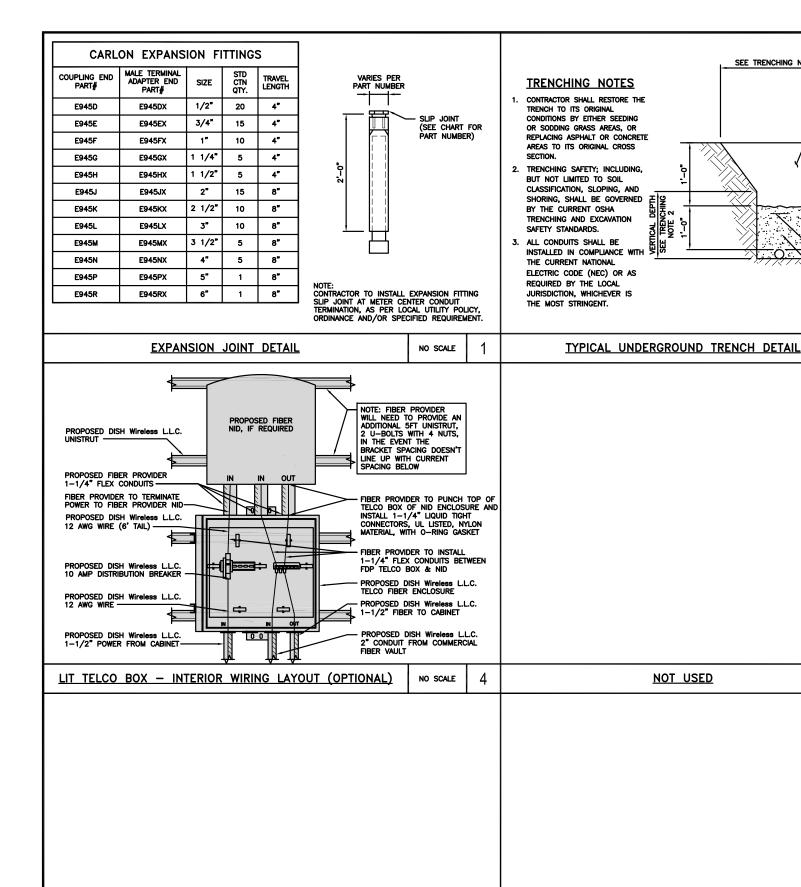
SUBMITTALS							
REV	DATE	DESCRIPTION					
A	06/23/2021	ISSUED FOR REVIEW					
0	08/24/2021	ISSUED FOR CONSTRUCTION					
	A&E F	PROJECT NUMBER					

6039-Z0001-C

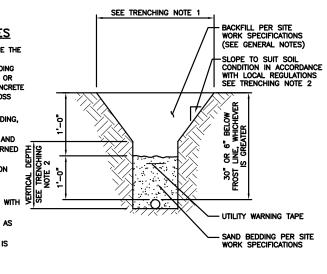
DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00016A 201 GRANITE ROAD GUILFORD, CT 06437

SHEET TITLE


ELECTRICAL/FIBER ROUTE PLAN AND NOTES

SHEET NUMBER


E-1

1/8"=1'-0

ELECTRICAL NOTES

NO SCALE

NOT USED

2

5

NO SCALE

NO SCALE

NO SCALE

NOT USED

NOT USED

NOT USED

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG PA 15317

INFINIGY8 FROM ZERO TO INFINIGY

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, 1L 60169
PHONE: 847-648-4088 | FAX: 518-690-0793
WWW.INFINIGY.COM

3

NO SCALE

NO SCALE

9

NO SCALE

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY	: APPROVED BY:
RCD	SS	CJW

RFDS REV #: N/A

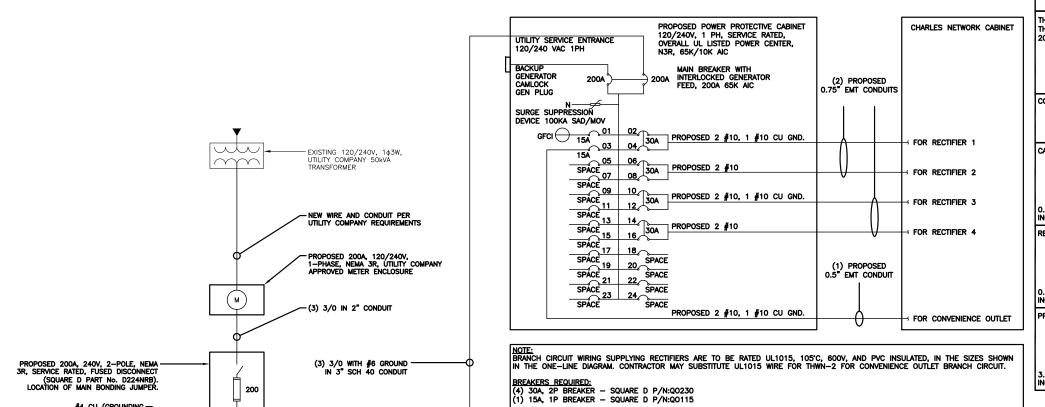
CONSTRUCTION **DOCUMENTS**

	SUBMITTALS						
REV	DATE	DESCRIPTION					
A	06/23/2021	ISSUED FOR REVIEW					
٥	08/24/2021	ISSUED FOR CONSTRUCTION					
	A&E F	PROJECT NUMBER					
ı							

6039-Z0001-C

DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00016A 201 GRANITE ROAD GUILFORD, CT 06437


SHEET TITLE

ELECTRICAL DETAILS

SHEET NUMBER

E-2

NOT USED

NOTES

THE (2) CONDUITS WITH (4) CURRENT CARRYING CONDUCTORS EACH, SHALL APPLY THE ADJUSTMENT FACTOR OF 80% PER 2014/17 NEC TABLE 310.15(B)(3)(σ) OR 2020 NEC TABLE 310.15(C)(1) FOR UL1015 WIRE.

#12 FOR 15A-20A/1P BREAKER: 0.8 x 30A = 24.0A #10 FOR 25A-30A/2P BREAKER: 0.8 x 40A = 32.0A #8 FOR 35A-40A/2P BREAKER: 0.8 x 55A = 44.0A #6 FOR 45A-60A/2P BREAKER: 0.8 x 75A = 60.0A

CONDUIT SIZING: AT 40% FILL PER NEC CHAPTER 9, TABLE 4, ARTICLE 358. 0.5" CONDUIT - 0.122 SQ. IN AREA

0.75" CONDUIT - 0.213 SQ. IN AREA 2.0" CONDUIT - 1.316 SQ. IN AREA 3.0" CONDUIT - 2.907 SQ. IN AREA

CABINET CONVENIENCE OUTLET CONDUCTORS (1 CONDUIT): USING THWN-2, CU.

#10 - 0.0211 SQ. IN X 2 = 0.0422 SQ. IN #10 - 0.0211 SQ. IN X 1 = 0.0211 SQ. IN <GROUND = 0.0633 SQ. IN

0.5" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (3) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

RECTIFIER CONDUCTORS (2 CONDUITS): USING UL1015, CU.

#10 - 0.0266 SQ. IN X 4 = 0.1064 SQ. IN #10 - 0.0082 SQ. IN X 1 = 0.0082 SQ. IN <BARE GROUND = 0.1146 SQ. IN

0.75" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (5) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC FEED CONDUCTORS (1 CONDUIT): USING THWN, CU.

3/0 - 0.2679 SQ. IN X 3 = 0.8037 SQ. IN #6 - 0.0507 SQ. IN X 1 = 0.0507 SQ. IN <GROUND

TOTAL = 0.8544 SQ. IN

3.0" SCH 40 PVC CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (4) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC ONE-LINE DIAGRAM

NO SCALE

PROPOSED CHARLES PANEL SCHEDULE (WATTS) (WATTS) LOAD SERVED ABB/GE INFINITY RECTIFIER 1 ABB/GE INFINITY RECTIFIER 2 30A 30A ABB/GE INFINITY 30A ABB/GE INFINIT 30A RECTIFIER 4
-SPACE-SPACE-VOLTAGE AMPS 180 180 200A MCB, 1¢, 24 SPACE, 120/240V MB RATING: 65,000 AIC 11700 11700 VOLTAGE AMPS 98 98 AMPS

CONTRACTOR TO REFER TO -

200

NO SCALE

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

34916 (CENSED ONL)
8/24/2021 (CENSED ONL)

5701 SOUTH SANTA FE DRIVE

LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG PA 15317

INFINIGY 8

FROM ZERO TO INFINIGY the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, 1L 60169
PHONE: 847-648-4088 | FAX: 518-690-0793
WWW.INFINIGY.COM

OF CONNECTION OF SAKANOON

CROWN

DRAWN BY: CHECKED BY: APPROVED BY CJW RCD

RFDS REV #: N/A

CONSTRUCTION **DOCUMENTS**

	SUBMITTALS						
REV	DATE DESCRIPTION						
A	06/23/2021	ISSUED FOR REVIEW					
0	08/24/2021	ISSUED FOR CONSTRUCTION					
	405.5	DO IEST MUMBER					

A&E PROJECT NUMBER

6039-Z0001-C

BOHVN00016A 201 GRANITE ROAD GUILFORD, CT 06437

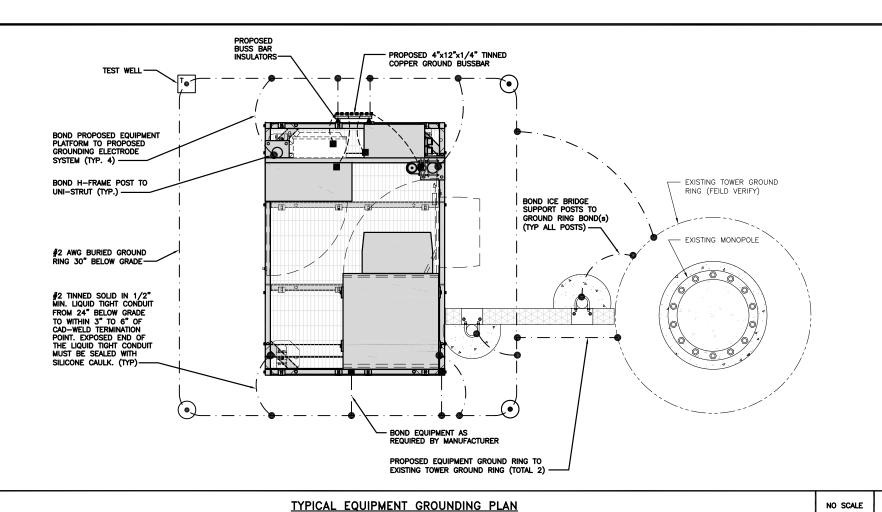
SHEET TITLE

ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE

SHEET NUMBER

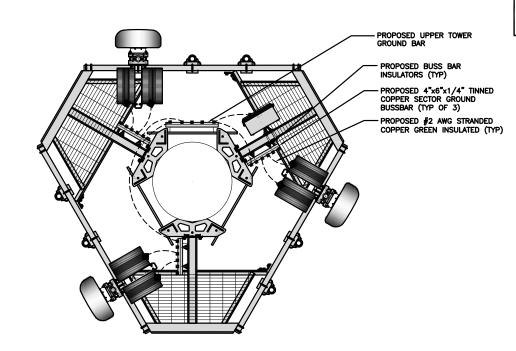
E-3

PANEL SCHEDULE


NOT USED

NO SCALE

DISH Wireless L.L.C. TEMPLATE VERSION 39 - 08/06/2021


#4 CU (GROUNDING ELECTRODE CONDUCTOR)

GROUNDING ELECTRODE SHALL BE (2) 5/8*ø X 10' LONG GROUND ROD SPACED MINIMUM 6' APART

NOTES

ANTENNAS AND OVP SHOWN ARE GENERIC AND NOT REFERENCING TO A SPECIFIC MANUFACTURER. THIS LAYOUT IS FOR REFERENCE

TYPICAL ANTENNA GROUNDING PLAN

EXOTHERMIC CONNECTION MECHANICAL CONNECTION

🖶 GROUND BUS BAR

GROUND ROD

1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.

 (\bullet)

TEST GROUND ROD WITH INSPECTION SLEEVE

---- #6 AWG STRANDED & INSULATED

— · — · — #2 AWG SOLID COPPER TINNED

▲ BUSS BAR INSULATOR

GROUNDING LEGEND

CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM. GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH Wireless L.L.C. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS.

GROUNDING KEY NOTES

(A) EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM THE EXTERIOR WALL

B TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS, AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN BROWNER FOR THE FOUNDATION OF THE FOUNDATION

AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE

C Interior ground Ring: #2 awg stranded green insulated copper conductor extended around the perimeter of the equipment area. All non-telecommunications related metallic objects found within a site shall be grounded to the interior ground ring with #6 awg stranded green

D BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS SHALL BE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE CORNERS OF THE

(E) GROUND ROD: UL LISTED COPPER CLAD STEEL. MINIMUM 1/2" DIAMETER BY EIGHT FEET LONG, GROUND RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. GROUND RODS SHALL BE DRIVEN TO THE DEPTH OF GROUND RING CONDUCTOR.

F CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GREEN INSULATED

COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUCTORS.

USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH.

G HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING

(H) EXTERIOR CABLE ENTRY PORT GROUND BARS; LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING, BOND TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTORS WITH AN EXOTHERMIC WELD AND INSPECTION SLEEVE.

FRAME BONDING: THE BONDING POINT FOR TELECOM EQUIPMENT FRAMES SHALL BE THE GROUND BUS THAT IS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEWORK.

K Interior unit bonds: Metal Frames, Cabinets and Individual Metallic units located with the area of the interior ground ring require a #6 awg stranded green insulated copper bond to the

L FENCE AND GATE GROUNDING: METAL FENCES WITHIN 7 FEET OF THE EXTERIOR GROUND RING OR OBJECTS BONDED TO THE EXTERIOR GROUND RING SHALL BE BONDED TO THE GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEEDING 25 FEET. BONDS SHALL BE MADE AT EACH ORDER OF AN ACCOUNT OF THE COPPER OF

(M) <u>Exterior unit bonds</u>: Metallic objects, external to or mounted to the building, shall be bonded to the exterior ground ring. Using #2 tinned solid copper wire

N ICE BRIDGE SUPPORTS: EACH ICE BRIDGE LEG SHALL BE BONDED TO THE GROUND RING WITH #2 AWG BARE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRIDGE LEG AND BURIED

DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEMENTS AND INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICE CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPPED WITH A MASTER DC SYSTEM RETURN GROUND CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED TO THE CELL SITE REFERENCE (COLUMN) BAR

(P) TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICALLY BONDED TO PROPOSED ANTENNA MOUNT COLLAR.

1 TELCO GROUND BAR: BOND TO BOTH CELL REFERENCE GROUND BAR OR EXTERIOR GROUND RING.

BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS.

3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CROWN

2000 CORPORATE DRIVE CANONSBURG PA 15317

INFINIGY8 FROM ZERO TO INFINIGY

the solutions are endless 2500 W. HIGGINS RD. SUITE 500 | HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY CJW

RFDS REV #:

CONSTRUCTION **DOCUMENTS**

SUBMITTALS. REV DATE DESCRIPTION A 06/23/2021 ISSUED FOR REVIEW 0 08/24/2021 ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER

6039-Z0001-C

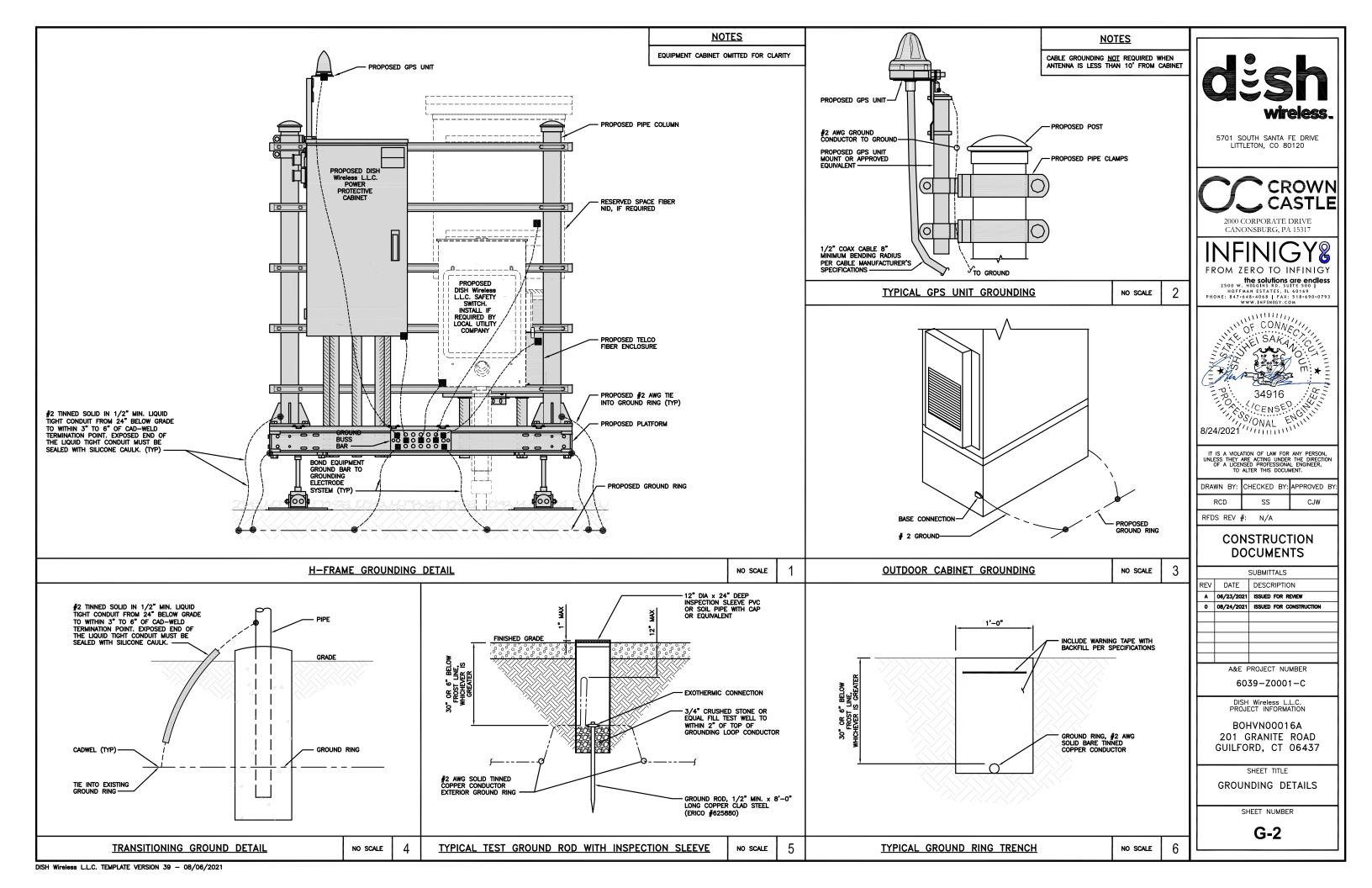
DISH Wireless L.L.C. PROJECT INFORMATION

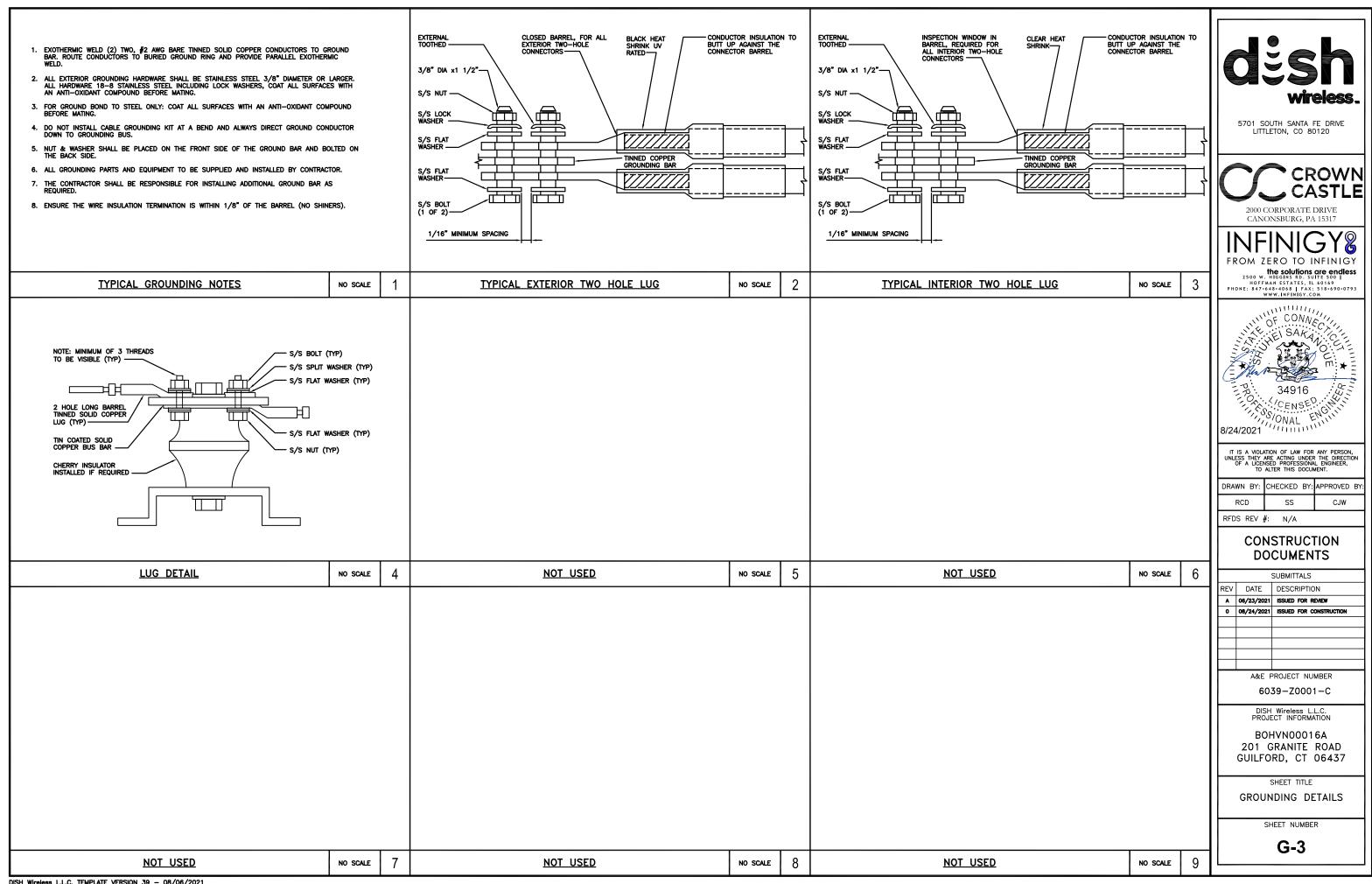
BOHVN00016A 201 GRANITE ROAD GUILFORD, CT 06437

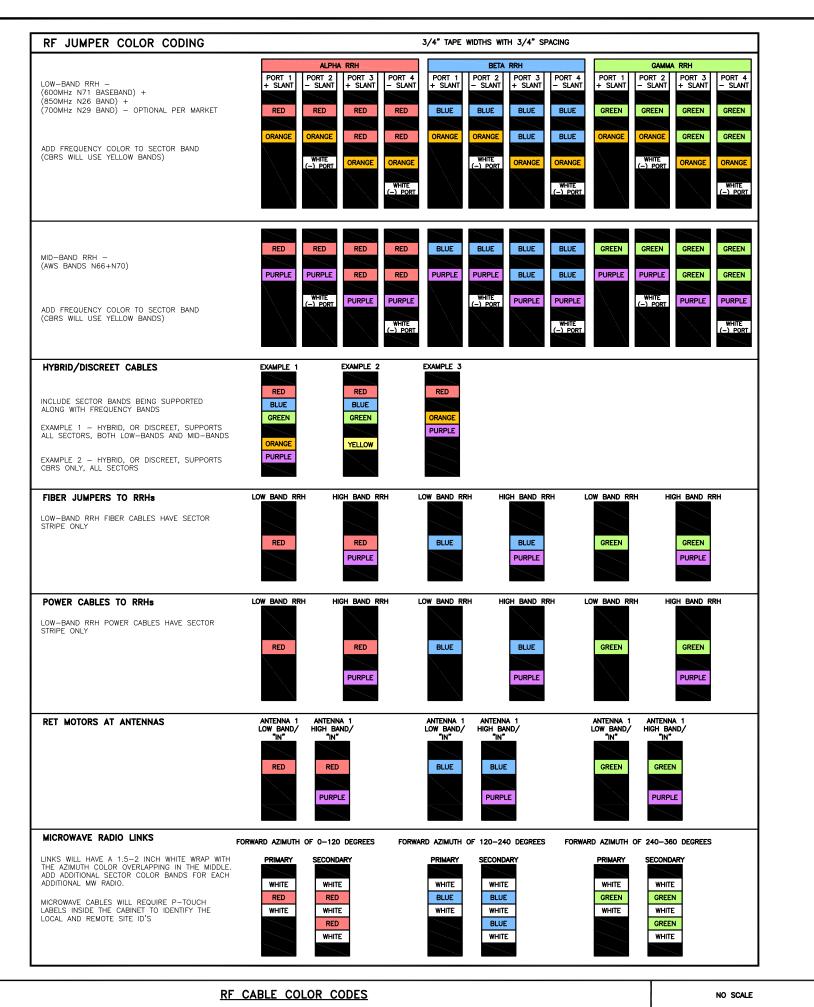
SHEET TITLE

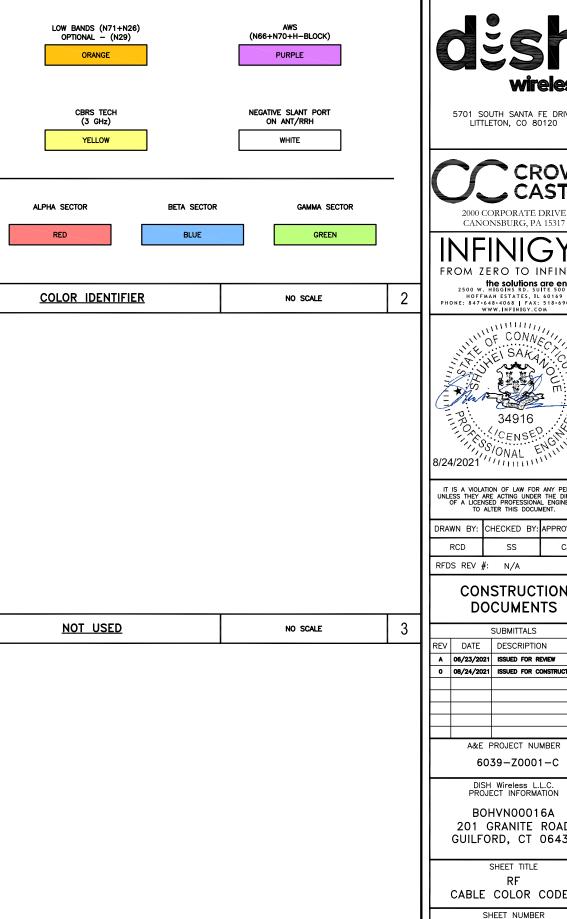
GROUNDING PLANS AND NOTES

SHEET NUMBER


G-1


NO SCALE


REFER TO DISH Wireless L.L.C. GROUNDING NOTES.


GROUNDING KEY NOTES

NO SCALE

NO SCALE

NOT USED

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CROWN

CANONSBURG, PA 15317

INFINIGY 8 FROM ZERO TO INFINIGY

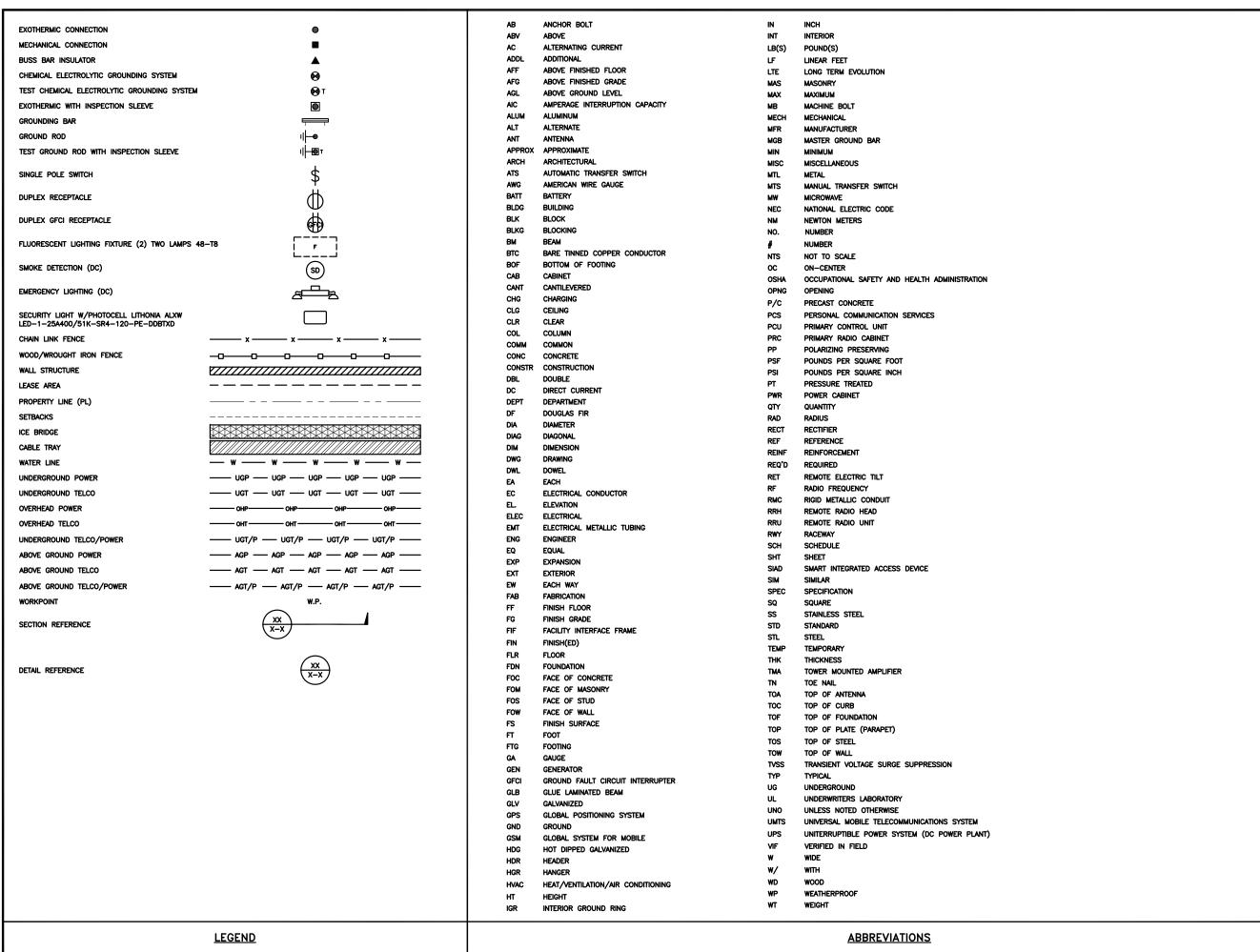
the solutions are endless
2500 w. HIGGINS RD. SUITE 500 |
HOFFANN ESTATES, IL 60169
PHONE: 847-648-4086 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY CJW

> CONSTRUCTION **DOCUMENTS**

DATE DESCRIPTION A 06/23/2021 ISSUED FOR REVIEW 0 08/24/2021 ISSUED FOR CONSTRUCTION A&E PROJECT NUMBER

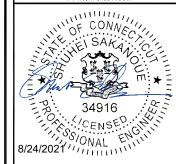

BOHVN00016A 201 GRANITE ROAD GUILFORD, CT 06437

SHEET TITLE

CABLE COLOR CODES

SHEET NUMBER

RF-1


5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY&

THE SOLUTIONS ARE ENCIRESS
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
RCE)	SS		CJW	

RFDS REV #: N/A

CONSTRUCTION DOCUMENTS

SUBMITTALS							
REV	DATE	DESCRIPTION					
A	06/23/2021	ISSUED FOR REVIEW					
0	08/24/2021	ISSUED FOR CONSTRUCTION					
	∧ 9aE E	DO IECT NUMBER					

A&E PROJECT NUMBER

6039-Z0001-C

PROJECT INFORMATIO

BOHVN00016A 201 GRANITE ROAD GUILFORD, CT 06437

SHEET TITLE

LEGEND AND ABBREVIATIONS

SHEET NUMBER

SITE ACTIVITY REQUIREMENTS:

- 1. NOTICE TO PROCEED NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER CONSTRUCTION MANAGER.
- 2. "LOOK UP" DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH Wireless L.L.C. AND DISH Wireless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

- 3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
- 4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELESS L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).
- 5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
- 6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.
- 11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
- 12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIReless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.
- 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
- 15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
- 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.
- 18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.
- 22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

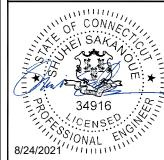
1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER:TOWER OWNER

- 2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
- 3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.
- 4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.
- 5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.
- 6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION
- 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.
- 12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER
- 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.


5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CANONSBURG, PA 15317

INFINIGY FROM ZERO TO INFINIGY

The solutions are endless 2500 W. HIGGINS RD. SUITE 500 | HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4088 | FAX: 518-690-0793 WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN BY:	CHECKED E	3Y:	APPROVED	BY
	RCD	SS		CJW	
	RFDS REV	#: N/A			

CONSTRUCTION DOCUMENTS

6039-Z0001-C

DISH Wireless L.L.C.
PROJECT INFORMATION

BOHVN00016A 201 GRANITE ROAD GUILFORD, CT 06437

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

- 1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST—IN—PLACE CONCRETE.
- 2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.
- 3. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90'f AT TIME OF PLACEMENT.
- 4. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.
- 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

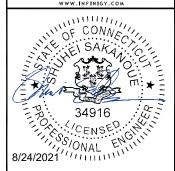
- 6. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:
- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- · CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- · CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2"
- 7. A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

- 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.
- 2. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
- 3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
- 4. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.
- 4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.
- 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.
- 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR—CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
- 6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).
- 7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.
- 8. TIE WRAPS ARE NOT ALLOWED.
- 9. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.
- 12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP—STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75° C (90° C IF AVAILABLE).
- 14. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.
- 15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

- 6. ELECTRICAL METALLIC TUBING (EMT) OR METAL—CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.
- 18. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- 19. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.
- 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE NEC.
- 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).
- 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).
- 23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.
- 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS.
- 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY—COATED OR NON—CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- 28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.".
- 50. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120



CANONSBURG, PA 15317

FROM ZERO TO INFINIGY

the solutions are endless

1500 w. HIGGINS RD. SUITE 500 I
HOFFMAN ESTATES, IL 6019
PHONE: 847-648-4068 J FAX: 518-690-0793
www.lhefinior.com

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY
RCD SS CJW

RFDS REV #:

CONSTRUCTION DOCUMENTS

6039-Z0001-C

DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00016A 201 GRANITE ROAD GUILFORD, CT 06437

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GROUNDING NOTES:

- 1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 2. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
- 4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
- 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
- 8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.
- 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
- 13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.
- 15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.
- 19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
- 21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/O COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY FROM ZERO TO INFINIGY

The solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:

RCD SS CJW

RFDS REV #: N/A

CONSTRUCTION DOCUMENTS

WE PROJECT NUMBER

6039-Z0001-C

DISH Wireless L.L.C PROJECT INFORMATION

BOHVN00016A 201 GRANITE ROAD GUILFORD, CT 06437

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

Exhibit D

Structural Analysis Report

Date: May 29, 2021

Crown Castle 2000 Corporate Drive Canonnsburg, PA 15317 (724) 416-2000

Subject: Structural Analysis Report

Carrier Designation: DISH Network Co-Locate

Site Number: BOHVN00016A Site Name: CT-CCI-T-842864

Crown Castle Designation: BU Number: 842864

Site Name: GUILFORD SW

 JDE Job Number:
 645143

 Work Order Number:
 1966128

 Order Number:
 553360 Rev. 1

Engineering Firm Designation: Crown Castle Project Number: 1966128

Site Data: 201 GRANITE ROAD, GUILFORD, NEW HAVEN County, CT

Latitude 41° 17' 31.14", Longitude -72° 43' 58.28"

109 Foot - Monopole Tower

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Proposed Equipment Configuration

Sufficient Capacity – 46.5%

This analysis has been performed in accordance with the 2018 Connecticut Building Code based upon an ultimate 3-second gust wind speed of 130 mph. Applicable Standard references and design criteria are listed in Section 2 - "Analysis Criteria".

Structural analysis prepared by: Rohit Soni

Respectfully submitted by:

Bradley E. Byrom, P.E., S.E. Senior Project Engineer

Digitally signed by Bradley E Byrom Date: 2021.05.31 09:12:52 -04'00'

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity - LC5
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 109 ft Monopole tower designed by ENGINEERED ENDEAVORS, INC..

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Wind Speed: 130 mph

Exposure Category:BTopographic Factor:1Ice Thickness:1.5 inWind Speed with Ice:50 mphService Wind Speed:60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Elovation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	fujitsu	TA08025-B604		
		3	fujitsu	TA08025-B605		
77.0	77.0	3	jma wireless	MX08FRO665-21 w/ Mount Pipe	1	1-3/8
		1	raycap	RDIDC-9181-PF-48		
		1	tower mounts	Commscope MC-PK8-DSH		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Antenna Model Manufacturer		Number of Feed Lines	Feed Line Size (in)
	107.0	3	amphenol	BXA-171063-12CF-EDIN-X w/ Mount Pipe		
		3	amphenol BXA-70063-6CF-EDIN-X w/ Mount Pipe			
		6	commscope	NHH-65B-R2B w/ Mount Pipe		
106.0		2 raycap RRFDC-3315-PF-48		2	1-5/8	
		3	3 samsung telecommunications RFV01U-D1A 3 samsung telecommunications RFV01U-D2A			
		3				
	106.0	1	tower mounts	Platform Mount [LP 303-1]		
96.0		1	andrew	SBNHH-1D65A w/ Mount Pipe		1-1/4
	97.0	2	cci antennas	HPA-65R-BUU-H6 w/ Mount Pipe		
		3	ericsson	RRUS 11	12	
		3	3 ericsson RRUS 32 B2		3	1/2
		6	powerwave technologies	7770.00 w/ Mount Pipe	1 2	3/8 3/4
	96.0	6	powerwave technologies	7020.00		
		12	powerwave LGP21401			

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
			technologies			
		2	raycap	raycap DC6-48-60-18-8F		
		1	tower mounts	Miscellaneous [NA 507-3]		
		1	tower mounts	Platform Mount [LP 303-1]		
87.0	87.0	1		Perfect Vision - PV-PKBK Kicker Kit		
		1		Perfect Vision - PV-RM1240 Collar Mount		
		1		SitePro1- PRK-SFS Reinforcement kit		
		1	tower mounts	T-Arm Mount [TA 602-3]	3	1-5/8
	86.0	3	ericsson	AIR -32 B2A/B66AA w/ Mount Pipe	3	1-5/6
		3	ericsson	ERICSSON AIR 21 B2A B4P w/ Mount Pipe		
		3	ericsson	RADIO 4449 B12/B71		ĺ
		3	rfs celwave	APXVAARR24_43-U-NA20 w/ Mount Pipe		

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	4713222	CCISITES
4-POST-MODIFICATION INSPECTION	5415537	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	4492141	CCISITES
4-TOWER MANUFACTURER DRAWINGS	4492171	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	4492170	CCISITES
4-MOUNT REINFORCEMENT DESIGN DRAWING DATA	8484555	CCISITES

3.1) Analysis Method

tnxTower (version 8.0.9.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

	abio i coulon capacity (cammary)							
Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	109 - 99	Pole	TP24x24x0.375	1	-4.012	920.561	5.4	Pass
L2	99 - 79	Pole	TP30.53x26.42x0.313	2	-13.652	1841.017	15.4	Pass
L3	79 - 59	Pole	TP34.64x30.53x0.313	3	-19.929	2091.421	29.9	Pass
L4	59 - 46.93	Pole	TP37.12x34.64x0.313	4	-21.155	2178.183	34.0	Pass
L5	46.93 - 32.07	Pole	TP39.495x35.439x0.375	5	-26.215	2860.126	35.8	Pass
L6	32.07 - 12.07	Pole	TP43.552x39.495x0.375	6	-30.979	3156.709	41.7	Pass
L7	12.07 - 0	Pole	TP46x43.552x0.375	7	-33.849	3335.692	44.6	Pass
							Summary	
						Pole (L7)	44.6	Pass
						Rating =	44.6	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC5

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	38.4	Pass
1	Base Plate	0	46.5	Pass
1	Base Foundation (Structure)	0	43.6	Pass
1	Base Foundation (Soil Interaction)	0	41.5	Pass
1	Flange Bolts	99	3.0	Pass
1	Flange Plate	99	12.7	Pass

Structure Rating (max from all components) =	46.5%
--	-------

Notes:

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

¹⁾ See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

APPENDIX A TNXTOWER OUTPUT

i citoro	7	ď	и		۰	c	*
		o	- 1	+	0	N	-
Length (ft)	12.070	20.000	20:000	12.070	20.000	20.000	10.000
Number of Sides	18	18	18	18	18	18	0
Thickness (in)	0.375	0.375	0.375	0.313	0.313	0.313	0.375
Socket Length (ft)				5.140			
Top Dia (in)	43.552	39,495	35.439	34.640	30.530	26.420	24.000
Bot Dia (in)	46.000	43.552	39.495	37.120	34.640	30.530	24.000
Grade			A	A572-65		A53-B-35	
Weight (K) 15.0	2.2	3.3	3.0	1.4	2.2	1.9	6.0
TORQUE 1 kip-ft REACTIONS - 130 mph	0.0 ft 20 K ∫	ALL REACTIONS ARE FACTORED AXIAL 55 K SHEAR	32.1 ft	46.9 ft	59.0 ft_	79.0 ft	99.0 f
WIND	MOMENT 1615 kip-ft	ЛОМЕNT 116 kip-ft ICE				 Tower i Tower i Tower i Tower i Tower i Toreas Deflect Topogr TIA-22 TOWE 	GRADE A53-B-35

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A53-B-35	35 ksi	60 ksi	A572-65	65 ksi	80 ksi

TOWER DESIGN NOTES

- is located in New Haven County, Connecticut. designed for Exposure B to the TIA-222-H Standard.
- r designed for a 130 mph basic wind in accordance with the TIA-222-H Standard. r is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to ase in thickness with height.
- ctions are based upon a 60 mph wind.
- r Risk Category II. graphic Category 1 with Crest Height of 0.000 ft 22-H Annex S /ER RATING: 44.6%

Crown Castle 2000 Corporate Drive Canonnsburg, PA 15317 Phone: (724) 416-2000 FAX:

ob: 842864		
Project:		
^{Client:} Crown Castle	Drawn by: RSoni	App'd:
Code: TIA-222-H	Date: 05/29/21	Scale: NTS
Path:	1400 04)D	Dwg No. F_

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower is located in New Haven County, Connecticut.
- Tower base elevation above sea level: 106.000 ft.
- Basic wind speed of 130 mph.
- Risk Category II.
- Exposure Category B.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.000 ft.
- Nominal ice thickness of 1.500 in.
- Ice thickness is considered to increase with height.
- Ice density of 56.000 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50 000 °F.
- Deflections calculated using a wind speed of 60 mph.
- TIA-222-H Annex S.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.05.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.
- Maximum demand-capacity ratio is: 1.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
Use Code Stress Ratios
Use Code Safety Factors - Guys
Escalate Ice
Always Use Max Kz
Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
 Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
 √ Use Azimuth Dish Coefficients
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination

Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

 ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption

Poles

✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	
L1	109.000- 99.000	10.000	0.000	Round	24.000	24.000	0.375		A53-B-35 (35 ksi)
L2	99.000-79.000	20.000	0.000	18	26.420	30.530	0.313	1.250	À572-65 (65 ksi)
L3	79.000-59.000	20.000	0.000	18	30.530	34.640	0.313	1.250	À572-65 (65 ksi)
L4	59.000-46.930	12.070	5.140	18	34.640	37.120	0.313	1.250	À572-65 (65 ksi)
L5	46.930-32.070	20.000	0.000	18	35.439	39.495	0.375	1.500	À572-65 (65 ksi)
L6	32.070-12.070	20.000	0.000	18	39.495	43.552	0.375	1.500	À572-65 (65 ksi)
L7	12.070-0.000	12.070		18	43.552	46.000	0.375	1.500	A572-65 (65 ksi)

T		-I D		D	
ı aı	oere	αP	ole.	Pro	perties

Section	Tip Dia.	Area	1	r	С	I/C	J	It/Q	W	w/t
	['] in	in²	in⁴	in	in	in³	in⁴	in ²	in	
L1	24.000	27.833	1942.299	8.354	12.000	161.858	3884.597	13.908	0.000	0
	24.000	27.833	1942.299	8.354	12.000	161.858	3884.597	13.908	0.000	0
L2	26.779	25.895	2229.925	9.268	13.421	166.147	4462.784	12.950	4.100	13.12
	30.953	29.972	3457.511	10.727	15.509	222.933	6919.572	14.989	4.823	15.434
L3	30.953	29.972	3457.511	10.727	15.509	222.933	6919.572	14.989	4.823	15.434
	35.126	34.048	5068.853	12.186	17.597	288.053	10144.376	17.027	5.547	17.749
L4	35.126	34.048	5068.853	12.186	17.597	288.053	10144.376	17.027	5.547	17.749
	37.644	36.508	6248.897	13.067	18.857	331.384	12506.016	18.258	5.983	19.146
L5	36.986	41.735	6482.632	12.448	18.003	360.088	12973.795	20.871	5.577	14.873
	40.047	46.563	9002.908	13,888	20.064	448.718	18017.663	23,286	6.291	16.776
L6	40.047	46.563	9002.908	13.888	20.064	448.718	18017.663	23.286	6.291	16.776
	44.166	51.391	12104.006	15.328	22.124	547.090	24223.939	25.701	7.005	18.68
L7	44.166	51.391	12104.006	15,328	22.124	547.090	24223.939	25,701	7.005	18.68
	46.652	54.305	14281.844	16.197	23.368	611.171	28582.480	27.158	7.436	19.829

Tower Elevation	Gusset Area	Gusset Thickness	Gusset Grade Adjust. Factor Ar	Adjust. Factor	Weight Mult.	Double Angle Stitch Bolt	Double Angle Stitch Bolt	Double Angle Stitch Bolt
Elevation	(per face)	THICKHESS	At	A _r		Spacing	Spacing	Spacing
	(100, 1000)			,		Diagonals	Horizontals	Redundants
ft	ft ²	in				in	in	in
L1 109 000-			1	1	1			
99.000								
L2 99.000-			1	1	1			
79.000								
L3 79.000-			1	1	1			
59.000								
L4 59.000-			1	1	1			
46.930								
L5 46 930-			1	1	1			
32.070								
L6 32.070-			1	1	1			
12.070								
L7 12.070-			1	1	1			
0.000								

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude	Componen	Placement	Total	Number	Start/En	Width or	Perimete	Weight
·		From	t		Number	Per Row	d	Diamete	r	-
		Torque	Type	ft			Position	r		klf
		Calculation						in	in	

Description	Sector	Exclude	Componen	Placement	Total	Number	Start/En	Width or	Perimete	Weight
		From	t		Number	Per Row	d	Diamete	r	
		Torque	Type	ft			Position	r		klf
		Calculation						in	in	

Step Bolts	В	No	Surface Ar	109.000 -	1	1	0.000	0.375		0.002
•			(CaAa)	8.000			0.200			
***			,							

Feed Line/Linear Appurtenances - Entered As Area

Description	Face	Allow Shield	Exclude From	Componen	Placement	Total Number		$C_A A_A$	Weight
	or Leg	Silieia	Torque Calculation	ι Туре	ft	Number		ft²/ft	klf
****			Calculation						
HB158-1-08U8-	В	No	No	Inside Pole	106.000 -	2	No Ice	0.000	0.001
S8J18(1-5/8)		110	140	moide i die	8.000	_	1/2" Ice	0.000	0.001
00010(10/0)					0.000		1" Ice	0.000	0.001
							2" Ice	0.000	0.001
***							2 100	0.000	0.001
LDF4-50A(1/2)	С	No	No	Inside Pole	96.000 - 8.000	3	No Ice	0.000	0.000
LD1 1 00/1(1/2)	Ü	110	140	molac i olo	00.000 0.000	Ö	1/2" Ice	0.000	0.000
							1" Ice	0.000	0.000
							2" Ice	0.000	0.000
LDF6-50A(1-1/4)	С	No	No	Incide Pole	96.000 - 8.000	12	No Ice	0.000	0.001
LDF0-30A(1-1/4)	C	NO	NO	Inside Fole	30.000 - 0.000	12	1/2" Ice	0.000	0.001
							1/2 ICe	0.000	0.001
							2" Ice	0.000	0.001
FB-L98-002-	С	NI-	NI-	lasida Dala	00 000 0 000	4	No Ice	0.000	
	C	No	No	inside Pole	96.000 - 8.000	1			0.000
XXX(3/8)							1/2" Ice	0.000	0.000
							1" Ice	0.000	0.000
	_					_	2" Ice	0.000	0.000
WR-VG86ST-	С	No	No	Inside Pole	96.000 - 8.000	2	No Ice	0.000	0.001
BRD(3/4)							1/2" Ice	0.000	0.001
							1" Ice	0.000	0.001
							2" Ice	0.000	0.001
2" Rigid Conduit	С	No	No	Inside Pole	96.000 - 8.000	1	No Ice	0.000	0.003
							1/2" Ice	0.000	0.003
							1" Ice	0.000	0.003
							2" Ice	0.000	0.003

MLE HYBRID	С	No	No	Inside Pole	87.000 - 8.000	1	No Ice	0.000	0.001
9POWER/18FIBE							1/2" Ice	0.000	0.001
R RL 2(1-5/8)							1" Ice	0.000	0.001
• • •							2" Ice	0.000	0.001
HCS 6X12	С	No	No	Inside Pole	87.000 - 8.000	2	No Ice	0.000	0.002
4AWG(1-5/8)							1/2" Ice	0.000	0.002
,							1" Ice	0.000	0.002
							2" Ice	0.000	0.002

CU12PSM9P8XXX	С	No	No	Inside Pole	77.000 - 0.000	1	No Ice	0.000	0.002
(1-3/8)	•	110	140			•	1/2" Ice	0.000	0.002
(1.5/0)							1" Ice	0.000	0.002
							2" Ice	0.000	0.002
***							2 100	0.000	0.002

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation				In Face	Out Face	
n	ft		ft²	ft²	ft ²	ft ²	K
L1	109.000-99.000	Α	0.000	0.000	0.000	0.000	0.000

Tower	Tower	Face	A _R	A_F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation				In Face	Out Face	
n	ft		ft²	ft²	ft ²	ft²	K
		В	0.000	0.000	0.375	0.000	0.038
		С	0.000	0.000	0.000	0.000	0.000
L2	99.000-79.000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.750	0.000	0.092
		С	0.000	0.000	0.000	0.000	0.246
L3	79.000-59.000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.750	0.000	0.092
		С	0.000	0.000	0.000	0.000	0.381
L4	59.000-46.930	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.453	0.000	0.056
		С	0.000	0.000	0.000	0.000	0.232
L5	46.930-32.070	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.557	0.000	0.068
		С	0.000	0.000	0.000	0.000	0.285
L6	32.070-12.070	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.750	0.000	0.092
		С	0.000	0.000	0.000	0.000	0.384
L7	12.070-0.000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.153	0.000	0.019
		С	0.000	0.000	0.000	0.000	0.091

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	
n	ft	Leg	in	ft ²	ft ²	ft ²	ft²	K
L1	109.000-99.000	Α	1.430	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	3.235	0.000	0.070
		С		0.000	0.000	0.000	0.000	0.000
L2	99.000-79.000	Α	1.408	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	6.380	0.000	0.153
		С		0.000	0.000	0.000	0.000	0.246
L3	79.000-59.000	Α	1.372	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	6.239	0.000	0.151
		С		0.000	0.000	0.000	0.000	0.381
L4	59.000-46.930	Α	1.337	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	3.679	0.000	0.089
		С		0.000	0.000	0.000	0.000	0.232
L5	46.930-32.070	Α	1.298	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	4.530	0.000	0.110
		С		0.000	0.000	0.000	0.000	0.285
L6	32.070-12.070	Α	1.224	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	5.645	0.000	0.140
		С		0.000	0.000	0.000	0.000	0.384
L7	12.070-0.000	Α	1.075	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	1.028	0.000	0.026
		С		0.000	0.000	0.000	0.000	0.091

Feed Line Center of Pressure

Section	Elevation	CP _X	CPz	CP_X	CPz
				Ice	Ice
	ft	in	in	in	in
L1	109.000-99.000	0.351	-0.114	1.246	-0.405
L2	99.000-79.000	0.287	-0.093	1.255	-0.408
L3	79.000-59.000	0.287	-0.093	1.257	-0.408
L4	59.000-46.930	0.287	-0.093	1.248	-0.406
L5	46.930-32.070	0.287	-0.093	1.259	-0.409
L6	32.070-12.070	0.287	-0.093	1.187	-0.386
L7	12.070-0.000	0.096	-0.031	0.371	-0.120

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment	No Ice	Ice
			Elev.		
L1	15	Step Bolts	99.00 -	1.0000	1.0000
			109.00		
L2	15	Step Bolts	79.00 -	1.0000	1.0000
			99.00		
L3	15	Step Bolts	59.00 -	1.0000	1.0000
			79.00		
L4	15	Step Bolts	46.93 -	1.0000	1.0000
			59.00		
L5	15	Step Bolts	32.07 -	1.0000	1.0000
			46.93		
L6	15	Step Bolts	12.07 -	1.0000	1.0000
			32.07		
L7	15	Step Bolts	8.00 - 12.07	1.0000	1.0000

Discrete Tower Loads

Description	Face	Offset	Offsets:	Azimuth	Placement
	or	Type	Horz	Adjustment	
	Leg		Lateral		
			Vert	۰	_
			ft	0	ft
			ft		
***			ft		
		F	4.000	0.000	400.000
BXA-70063-6CF-EDIN-X w/ Mount Pipe	Α	From Leg	4.000	0.000	106.000
			0.000		
DVA 70000 COE EDIN V / M Dis-	Б.	Form Law	1.000	0.000	400.000
BXA-70063-6CF-EDIN-X w/ Mount Pipe	В	From Leg	4.000	0.000	106.000
			0.000		
DVA 70000 COE EDIN V/ Massart Disas	0	Form Law	1.000	0.000	400,000
BXA-70063-6CF-EDIN-X w/ Mount Pipe	С	From Leg	4.000	0.000	106.000
			0.000		
DVA 474000 400E EDINLY / M / D'		F 1	1.000	0.000	400.000
BXA-171063-12CF-EDIN-X w/ Mount Pipe	Α	From Leg	4.000	0.000	106.000
			0.000		
DVA 474000 400E EDIN V/ Massat Diag	Б.	F	1.000	0.000	400.000
BXA-171063-12CF-EDIN-X w/ Mount Pipe	В	From Leg	4.000	0.000	106.000
			0.000		
DVA 474002 420E EDIN V/ Mount Din a	0	Francia a	1.000	0.000	100.000
BXA-171063-12CF-EDIN-X w/ Mount Pipe	С	From Leg	4.000 0.000	0.000	106.000
			1.000		
(2) NHH-65B-R2B w/ Mount Pipe	Α	From Leg	4,000	0.000	106.000
(2) NHH-036-R26 W/ Mount Pipe	A	From Leg	0.000	0.000	100,000
			1.000		
(2) NULL GED DOD w/ Mount Ding	В	From Log	4,000	0.000	106.000
(2) NHH-65B-R2B w/ Mount Pipe	В	From Leg	4.000 0.000	0.000	100,000
			1.000		
(2) NHH 65P P2P w/ Mount Ding	С	From Log	4,000	0.000	106.000
(2) NHH-65B-R2B w/ Mount Pipe	C	From Leg	0.000	0.000	100.000
			1.000		
RRFDC-3315-PF-48	Α	From Leg	4,000	0.000	106.000

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement
	Leg		Lateral Vert ft	٥	ft
			ft ft		
			0.000 1.000		
RRFDC-3315-PF-48	С	From Leg	4.000 0.000 1.000	0.000	106.000
RFV01U-D2A	Α	From Leg	4.000 0.000	0.000	106.000
RFV01U-D2A	В	From Leg	1.000 4.000 0.000	0.000	106.000
RFV01U-D2A	С	From Leg	1.000 4.000 0.000	0.000	106.000
			1.000		
RFV01U-D1A	Α	From Leg	4.000 0.000 1.000	0.000	106.000
RFV01U-D1A	В	From Leg	4.000 0.000	0.000	106.000
RFV01U-D1A	С	From Leg	1.000 4.000 0.000	0.000	106.000
Platform Mount [LP 303-1]	С	None	1.000	0.000	106.000
(2) 7770.00 w/ Mount Pipe	Α	From Leg	4.000 0.000	0.000	96.000
(2) 7770.00 w/ Mount Pipe	В	From Leg	1.000 4.000 0.000	0.000	96.000
(2) 7770.00 w/ Mount Pipe	С	From Leg	1.000 4.000 0.000	0.000	96.000
HPA-65R-BUU-H6 w/ Mount Pipe	Α	From Leg	1.000 4.000 0.000	0.000	96.000
HPA-65R-BUU-H6 w/ Mount Pipe	С	From Leg	1.000 4.000 0.000	0.000	96.000
SBNHH-1D65A w/ Mount Pipe	В	From Leg	1.000 4.000 0.000	0.000	96.000
(4) LGP21401	Α	From Leg	1.000 4.000 0.000	0.000	96.000
(4) LGP21401	В	From Leg	0.000 4.000 0.000	0.000	96.000
(4) LGP21401	С	From Leg	0.000 4.000 0.000	0.000	96.000
(2) 7020.00	Α	From Leg	0.000 4.000 0.000	0.000	96.000
(2) 7020.00	В	From Leg	0.000 4.000 0.000	0.000	96.000
(2) 7020.00	С	From Leg	0.000 4.000 0.000	0.000	96.000
RRUS 32 B2	Α	From Leg	0.000 4.000 0.000	0.000	96.000
RRUS 32 B2	В	From Leg	1.000 4.000	0.000	96.000

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placemer
	Leg	туре	Lateral	Adjustinent	
	9		Vert		
			ft	۰	ft
			ft		
			ft		
			0.000 1.000		
RRUS 32 B2	С	From Leg	4.000	0.000	96.000
	•		0.000		
			1.000		
RRUS 11	Α	From Leg	4.000	0.000	96.000
			0.000 1.000		
RRUS 11	В	From Leg	4.000	0.000	96.000
14.65 11		110111 209	0.000	0.000	001000
			1.000		
RRUS 11	С	From Leg	4.000	0.000	96.000
			0.000		
DC6-48-60-18-8F	Α	From Leg	1.000 4.000	0.000	96.000
D00-40-00-10-01	^	1 Tolli Log	0.000	0.000	30.000
			0.000		
DC6-48-60-18-8F	С	From Leg	4.000	0.000	96.000
			0.000		
Platform Mount [LP 303-1]	C	None	0.000	0.000	96.000
Miscellaneous [NA 507-3]	C C	None		0.000	96.000
***	Ü	140110		0.000	001000
RICSSON AIR 21 B2A B4P w/ Mount Pipe	Α	From Leg	4.000	0.000	87.000
			0.000		
DICCCON AID 24 D2A D4D w/ Mount Ding	В	From Log	-1.000 4.000	0.000	87.000
RICSSON AIR 21 B2A B4P w/ Mount Pipe	В	From Leg	4.000 0.000	0.000	67.000
			-1.000		
RICSSON AIR 21 B2A B4P w/ Mount Pipe	С	From Leg	4.000	0.000	87.000
			0.000		
A DVV / A A D D Q 4 . 42 . U N A Q Q / M = t D :	^	F 1	-1.000	0.000	07.000
APXVAARR24_43-U-NA20 w/ Mount Pipe	Α	From Leg	4.000 0.000	0.000	87.000
			-1.000		
APXVAARR24_43-U-NA20 w/ Mount Pipe	В	From Leg	4.000	0.000	87.000
-		_	0.000		
ADVA (AADDA (AA) AA) AB	•		-1.000	2.222	07.000
APXVAARR24_43-U-NA20 w/ Mount Pipe	С	From Leg	4.000 0.000	0.000	87.000
			-1.000		
AIR -32 B2A/B66AA w/ Mount Pipe	Α	From Leg	4.000	0.000	87.000
·		· ·	0.000		
AID 00 D04/D0044 /44 / D1	_		-1.000		.=
AIR -32 B2A/B66AA w/ Mount Pipe	В	From Leg	4.000 0.000	0.000	87.000
			-1.000		
AIR -32 B2A/B66AA w/ Mount Pipe	С	From Leg	4.000	0.000	87.000
'		J	0.000		
			-1.000		
RADIO 4449 B12/B71	Α	From Leg	4.000	0.000	87.000
			0.000 -1.000		
RADIO 4449 B12/B71	В	From Leg	4.000	0.000	87.000
	_	= - g	0.000	5.555	3.1000
			-1.000		
RADIO 4449 B12/B71	С	From Leg	4.000	0.000	87.000
			0.000		
Perfect Vision - PV-PKBK Kicker Kit	С	None	-1.000	0.000	87,000
SitePro1- PRK-SFS Reinforcement kit	C	None		0.000	87.000
				2.000	
Perfect Vision - PV-RM1240 Collar Mount	C C	None		0.000	87.000

Description	Face	Offset	Offsets:	Azimuth	Placement
	or	Type	Horz	Adjustment	
	Leg		Lateral		
			Vert		
			ft	٥	ft
			ft		
			ft		
Commscope MC-PK8-DSH	С	None		0.000	77.000
8' x 2" Mount Pipe	Α	From Leg	4.000	0.000	77.000
			0.000		
			0.000		
8' x 2" Mount Pipe	В	From Leg	4.000	0.000	77.000
			0.000		
			0.000		
8' x 2" Mount Pipe	С	From Leg	4.000	0.000	77.000
		_	0.000		
			0.000		
MX08FRO665-21 w/ Mount Pipe	Α	From Leg	4.000	0.000	77.000
·		_	0.000		
			0.000		
MX08FRO665-21 w/ Mount Pipe	В	From Leg	4.000	0.000	77.000
•			0.000		
			0.000		
MX08FRO665-21 w/ Mount Pipe	С	From Leg	4.000	0.000	77.000
'		· ·	0.000		
			0.000		
TA08025-B604	Α	From Leg	4.000	0.000	77,000
		O	0.000		
			0.000		
TA08025-B604	В	From Leg	4.000	0.000	77.000
		J	0.000		
			0.000		
TA08025-B604	С	From Leg	4.000	0.000	77,000
		3	0.000		
			0.000		
TA08025-B605	Α	From Leg	4.000	0.000	77.000
			0.000		
			0.000		
TA08025-B605	В	From Leg	4.000	0.000	77.000
	_		0.000	3.333	
			0.000		
TA08025-B605	С	From Leg	4,000	0.000	77.000
	-		0.000	000	
			0.000		
RDIDC-9181-PF-48	В	From Leg	4.000	0.000	77.000
1.5.5.5.5.1.1.1.5	5		0.000	0.000	,,,,,,,,
			0.000		
***			0.000		

Load Combinations

Comb. No.		Description
1	Dead Only	
2	1.2 Dead+1.0 Wind 0 deg - No Ice	
3	0.9 Dead+1.0 Wind 0 deg - No Ice	
4	1.2 Dead+1.0 Wind 30 deg - No Ice	
5	0.9 Dead+1.0 Wind 30 deg - No Ice	
6	1.2 Dead+1.0 Wind 60 deg - No Ice	
7	0.9 Dead+1.0 Wind 60 deg - No Ice	
8	1.2 Dead+1.0 Wind 90 deg - No Ice	
9	0.9 Dead+1.0 Wind 90 deg - No Ice	
10	1.2 Dead+1.0 Wind 120 deg - No Ice	
11	0.9 Dead+1.0 Wind 120 deg - No Ice	
12	1.2 Dead+1.0 Wind 150 deg - No Ice	
13	0.9 Dead+1.0 Wind 150 deg - No Ice	

Comb.	Description
No.	
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28 29	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1,2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Type		Load		Moment	Moment
No.				Comb.	K	kip-ft	kip-ft
L1	109 - 99	Pole	Max Tension	20	0.000	-0.000	-0.000
			Max. Compression	26	-8.601	0.527	0.362
			Max Mx	20	-4.013	27.863	-0.041
			Max. My	2	-4.012	-0.009	27.993
			Max. Vy	20	-3.770	27.863	-0.041
			Max. Vx	2	-3.791	-0.009	27.993
			Max. Torque	4			0.386
L2	99 - 79	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-27.573	1.228	0.899
			Max. Mx	20	-13.658	208.267	-0.898
			Max. My	2	-13.654	-0.865	209.540
			Max. Vy	20	-12.393	208.267	-0.898
			Max. Vx	2	-12.455	-0.865	209.540
			Max. Torque	4			1.256
L3	79 - 59	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-37.444	0.696	0.738
			Max. Mx	20	-19.934	516.848	-1.752
			Max. My	2	-19.930	-1.855	519.225
			Max. Vy	20	-16.449	516.848	-1.752
			Max. Vx	2	-16.496	-1.855	519.225
			Max. Torque	4			1.256
L4	59 - 46.93	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-39.070	0.649	0.765
			Max. Mx	20	-21.159	632.479	-2.015

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Type		Load		Moment	Moment
No.				Comb.	K	kip-ft	kip-ft
			Max. My	2	-21.156	-2.152	635.212
			Max. Vy	20	-16.942	632.479	-2.015
			Max. Vx	2	-16.988	-2.152	635.212
			Max. Torque	4			1.036
L5	46.93 - 32.07	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-45.632	0.507	0.847
			Max. Mx	20	-26.218	985.963	-2.767
			Max. My	2	-26.216	-3.008	989.721
			Max. Vy	8	18.373	-985.875	3,333
			Max. Vx	2	-18.419	-3.008	989.721
			Max. Torque	4			1.035
L6	32.07 - 12.07	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-51.543	0.362	0.931
			Max. Mx	8	-30.981	-1365.910	4.161
			Max. My	2	-30.980	-3.864	1370.632
			Max. Vy	8	19.647	-1365.910	4.161
			Max. Vx	2	-19.692	-3.864	1370.632
			Max. Torque	4			1.035
L7	12.07 - 0	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-55.022	0.334	0.947
			Max. Mx	8	-33.849	-1607.701	4.634
			Max. My	2	-33.849	-4.345	1612.953
			Max. Vy	8	20.436	-1607.701	4.634
			Max. Vx	2	-20.481	-4.345	1612.953
			Max. Torque	4			1.035

Maximum	Reactions
waxiiiiuiii	Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Pole	Max. Vert	26	55.022	0.000	0.000
	Max. H _x	20	33.855	20.427	-0.038
	Max. H _z	2	33.855	-0.038	20.471
	$Max. M_x$	2	1612.953	-0.038	20.471
	$Max. M_z$	8	1607.701	-20.427	0.038
	Max. Torsion	4	1.035	-10.247	17.747
	Min. Vert	11	25,391	-17.671	-10.202
	Min. H _x	8	33.855	-20.427	0.038
	Min. H _z	14	33.855	0.038	-20.471
	Min. M _x	14	-1612.279	0.038	-20.471
	$Min. M_z$	20	-1607.612	20.427	-0.038
	Min. Torsion	16	-1.035	10.247	-17.747

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
e e manual e n	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	28.213	0.000	0.000	-0.269	-0.040	0.000
1.2 Dead+1.0 Wind 0 deg - No Ice	33.855	0.038	-20.471	-1612.953	-4.345	-0.894
0.9 Dead+1.0 Wind 0 deg - No Ice	25.391	0.038	-20.471	-1601.063	-4.298	-0.891
1.2 Dead+1.0 Wind 30 deg - No Ice	33.855	10.247	-17.747	-1399.051	-807.596	-1.035
0.9 Dead+1.0 Wind 30 deg - No Ice	25.391	10.247	-17.747	-1388.724	-801.672	-1.031
1.2 Dead+1.0 Wind 60 deg -	33.855	17.709	-10.269	-810.367	-1394.464	-0.898

Load Combination	Vertical	Shearx	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
No Ice	K	K	K	kip-ft	kip-ft	kip-ft
0.9 Dead+1.0 Wind 60 deg -	25.391	17.709	-10.269	-804.347	-1384.249	-0.895
No Ice 1.2 Dead+1.0 Wind 90 deg -	33.855	20.427	-0.038	-4.634	-1607.701	-0.519
No Ice 0.9 Dead+1.0 Wind 90 deg -	25.391	20.427	-0.038	-4.511	-1595.930	-0.517
No Ice 1.2 Dead+1.0 Wind 120 deg	33.855	17.671	10.202	802.252	-1390.170	0.000
- No Ice 0.9 Dead+1.0 Wind 120 deg	25.391	17.671	10.202	796.469	-1379.992	0.000
- No Ice 1.2 Dead+1.0 Wind 150 deg	33.855	10.180	17.709	1394.085	-800.152	0.519
- No Ice 0.9 Dead+1.0 Wind 150 deg	25.391	10.180	17.709	1383.968	-794.292	0.518
- No Ice 1.2 Dead+1.0 Wind 180 deg	33.855	-0.038	20.471	1612.279	4.252	0.898
- No Ice 0.9 Dead+1.0 Wind 180 deg	25.391	-0.038	20.471	1600.564	4.226	0.895
- No Ice 1.2 Dead+1.0 Wind 210 deg	33.855	-10.247	17.747	1398.381	807.502	1.035
- No Ice 0.9 Dead+1.0 Wind 210 deg	25.391	-10.247	17.747	1388.226	801.601	1.031
- No Ice 1.2 Dead+1.0 Wind 240 deg - No Ice	33,855	-17.709	10.269	809.697	1394.374	0.894
0.9 Dead+1.0 Wind 240 deg - No Ice	25.391	-17.709	10.269	803.850	1384.180	0.891
1.2 Dead+1.0 Wind 270 deg - No Ice	33.855	-20.427	0.038	3.963	1607.612	0.516
0.9 Dead+1.0 Wind 270 deg - No Ice	25.391	-20.427	0.038	4.013	1595.862	0.514
1.2 Dead+1.0 Wind 300 deg - No Ice	33.855	-17.671	-10.202	-802.926	1390.081	-0.000
0.9 Dead+1.0 Wind 300 deg - No Ice	25.391	-17.671	-10.202	-796.969	1379.924	-0.000
1.2 Dead+1.0 Wind 330 deg - No Ice	33.855	-10.180	-17.709	-1394.760	800.061	-0.516
0.9 Dead+1.0 Wind 330 deg - No Ice	25.391	-10.180	-17.709	-1384.469	794.222	-0.514
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0	55.022 55.022	0.000 0.006	0.000 -5.225	-0.947 -415.768	0.334 -0.295	-0.000 -0.197
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 30	55.022	2,614	-4.528	-360.545	-207.178	-0.227
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 90	55.022 55.022	4.522	-2.617	-208.990	-358.444	-0.197
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 120	55.022	5.218 4.516	-0.006 2.607	-1.711 205.750	-413.561 -357.760	-0.114 -0.000
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	55,022	2.604	4.522	357,806	-205.994	0.114
1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	55.022	-0.006	5.225	413.712	1.073	0.197
1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	55.022	-2.614	4.528	358.490	207.957	0.227
1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	55.022	-4.522	2.617	206.935	359.223	0.197
1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	55.022	-5.218	0.006	-0.344	414.340	0.113
1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	55.022	-4.516	-2.607	-207.805	358.539	-0.000
1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	55.022	-2.604	-4.522	-359.861	206.772	-0.114
Dead+Wind 0 deg - Service	28.213	0.008	-4.110 2.562	-322.637	-0.895	-0.187
Dead+Wind 30 deg - Service Dead+Wind 60 deg - Service	28.213 28.213	2.057 3.556	-3.563 -2.062	-279.878 -162.201	-161.464 -278.778	-0.216 -0.187
Dead+Wind 90 deg - Service	28.213 28.213	4.101	-0.008	-1.137	-276.776 -321.404	-0.167 -0.108
Doga Tring of dog Oct vice	28.213	3.548	2.048	160 157	-277.920	0.000

Load Combination	Vertical	Shear _x	Shear₂	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Service						
Dead+Wind 150 deg -	28.213	2.044	3.556	278.462	-159.978	0.108
Service						
Dead+Wind 180 deg -	28.213	-0.008	4.110	322.079	0.820	0.187
Service						
Dead+Wind 210 deg -	28.213	-2.057	3.563	279.320	161.389	0.216
Service						
Dead+Wind 240 deg -	28.213	-3.556	2.062	161.643	278.704	0.187
Service						
Dead+Wind 270 deg -	28.213	-4.101	0.008	0.579	321.330	0.108
Service						
Dead+Wind 300 deg -	28.213	-3.548	-2.048	-160.715	277.846	-0.000
Service						
Dead+Wind 330 deg -	28.213	-2.044	-3.556	-279.020	159.903	-0.108
Service						

Solution Summary

	Sur	n of Applied Force			Sum of Reactio	ns	
Load	PX	'' PY	PZ	PX	PY	PZ	% Erro
Comb.	K	K	K	K	K	K	
1	0.000	-28.213	0.000	0.000	28.213	0.000	0.000%
2	0.038	-33,855	-20,471	-0.038	33,855	20,471	0.000%
3	0.038	-25.391	-20.471	-0.038	25.391	20.471	0.000%
4	10.247	-33.855	-17.747	-10,247	33,855	17.747	0.000%
5	10.247	-25.391	-17.747	-10.247	25.391	17.747	0.000%
6	17,709	-33.855	-10.269	-17,709	33.855	10.269	0.000%
7	17.709	-25.391	-10.269	-17.709	25.391	10.269	0.000%
8	20.427	-33.855	-0.038	-20.427	33.855	0.038	0.000%
9	20.427	-25.391	-0.038	-20.427	25.391	0.038	0.000%
10	17.671	-33.855	10.202	-17.671	33.855	-10.202	0.000%
11	17.671	-25.391	10.202	-17.671	25.391	-10.202	0.000%
12	10.180	-33.855	17.709	-10.180	33.855	-17.709	0.000%
13	10.180	-25.391	17.709	-10.180	25.391	-17.709	0.000%
14	-0.038	-33.855	20.471	0.038	33.855	-20.471	0.000%
15	-0.038	-25.391	20.471	0.038	25.391	-20.471	0.000%
16	-10.247	-33.855	17.747	10.247	33.855	-17.747	0.000%
17	-10.247	-25.391	17.747	10.247	25.391	-17.747	0.000%
18	-17.709	-33.855	10.269	17.709	33.855	-10.269	0.000%
19	-17.709	-25.391	10.269	17.709	25.391	-10.269	0.000%
20	-20.427	-33.855	0.038	20,427	33.855	-0.038	0.000%
21	-20.427 -20.427	-25.391	0.038	20.427	25.391	-0.038	0.000%
22	-20.427 -17.671	-33.855	-10.202	17.671	33.855	10.202	0.000%
23	-17.671	-25.391	-10.202	17.671	25.391	10.202	0.000%
24	-10.180	-33.855	-10.202	10.180	33.855	17.709	0.000%
2 4 25	-10.180	-25.391	-17.709	10.180	25.391	17.709	0.000%
26	0.000	-55.022	0.000	0.000	55.022	0.000	0.000%
20 27	0.006	-55.022	-5.225	-0.006	55.022	5.225	0.000%
28	2.614	-55.022 -55.022	-5.225 -4.528	-2.614	55.022	4.528	0.000%
20 29	4.522	-55.022 -55.022	-4.526 -2.617	-2.614 -4.522	55.022 55.022	4.526 2.617	0.000%
30	5.218	-55.022 -55.022	-2.017 -0.006	-4.522 -5.218	55.022	0.006	0.000%
30 31	4,516		-0.006 2,607		55.022 55.022	-2.607	0.000%
31 32	4.516 2.604	-55.022 -55.022	4.522	-4.516 -2.604	55.022 55.022	-2.607 -4.522	0.000%
32 33	-0.006	-55.022 -55.022	5.225	0.006	55.022 55.022	-4.522 -5.225	0.000%
33 34	-0.006 -2.614	-55.022 -55.022	5.225 4.528	2.614	55.022 55.022	-5.225 -4.528	0.000%
			4.528 2.617				0.000%
35	-4.522 5.240	-55.022		4.522	55.022	-2.617	
36	-5.218	-55.022	0.006	5.218	55.022	-0.006	0.000%
37	-4.516	-55.022	-2.607	4.516	55.022	2.607	0.000%
38	-2.604	-55.022	-4.522	2.604	55.022	4.522	0.000%
39	0.008	-28.213	-4.110	-0.008	28.213	4.110	0.000%
40	2.057	-28.213	-3.563	-2.057	28.213	3.563	0.000%
41	3.556	-28.213	-2.062	-3.556	28.213	2.062	0.000%
42	4.101	-28.213	-0.008	-4.101	28.213	0.008	0.000%
43	3.548	-28.213	2.048	-3.548	28.213	-2.048	0.000%
44	2.044	-28.213	3.556	-2.044	28.213	-3.556	0.000%
45	-0.008	-28.213	4.110	0.008	28.213	-4.110	0.000%

	Sur	n of Applied Force	s		Sum of Reaction	าร	
Load	PX	PY	PΖ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
46	-2.057	-28.213	3.563	2.057	28.213	-3.563	0.000%
47	-3.556	-28.213	2.062	3.556	28.213	-2.062	0.000%
48	-4.101	-28.213	0.008	4.101	28,213	-0.008	0.000%
49	-3.548	-28.213	-2.048	3.548	28.213	2.048	0.000%
50	-2.044	-28.213	-3.556	2.044	28.213	3.556	0.000%

Non-Linear Convergence Results

Combination 1 2 3 4 5 6	Yes Yes Yes Yes Yes	of Cycles 4 4 4 5 5	Tolerance 0.00000001 0.00000001 0.00000001	Tolerance 0.00000001 0.00072461
2 3 4 5 6	Yes Yes Yes Yes	4 4 5	0.00000001 0.00000001	0.00072461
3 4 5 6	Yes Yes Yes	4 5	0.0000001	
4 5 6	Yes Yes	5		
5	Yes			0.00047469
6		5	0.0000001	0.00022110
	Yes	ວ	0.0000001	0.00010601
7		5	0.00000001	0.00024824
7	Yes	5	0.00000001	0.00011972
8	Yes	4	0.00000001	0.00052119
9	Yes	4	0.00000001	0.00033380
10	Yes	5	0.00000001	0.00022964
11	Yes	5	0.00000001	0.00011058
12	Yes	5	0.00000001	0.00022282
13	Yes	5	0.00000001	0.00010711
14	Yes	4	0.0000001	0.00081337
15	Yes	4	0.00000001	0.00053416
16	Yes	5	0.0000001	0.00035410
17	Yes	5	0.0000001	0.00023090
18		5		
	Yes		0.00000001	0.00022232
19	Yes	5	0.00000001	0.00010668
20	Yes	4	0.0000001	0.00043873
21	Yes	4	0.00000001	0.00027700
22	Yes	5	0.00000001	0.00023020
23	Yes	5	0.00000001	0.00011078
24	Yes	5	0.00000001	0.00023854
25	Yes	5	0.0000001	0.00011497
26	Yes	4	0.00000001	0.00000001
27	Yes	5	0.00000001	0.00019518
28	Yes	5	0.00000001	0.00020836
29	Yes	5	0.00000001	0.00020838
30	Yes	5	0.00000001	0.00019313
31	Yes	5	0.00000001	0.00020581
32	Yes	5	0.0000001	0.00020586
33	Yes	5	0.0000001	0.00019347
34	Yes	5	0.0000001	0.00020837
35	Yes	5	0.00000001	0.00020785
36	Yes	5	0.00000001	0.00019447
37	Yes	5	0.0000001	0.00020845
38	Yes	5	0.00000001	0.00020890
39	Yes	4	0.00000001	0.00004925
40	Yes	4	0.00000001	0.00008028
41	Yes	4	0.00000001	0.00009887
42	Yes	4	0.00000001	0.00003007
43	Yes	4	0.0000001	0.00004207
44	Yes	4	0.0000001	0.00007857
44 45	Yes	4	0.0000001	0.00007837
		4		
46 47	Yes		0.00000001	0.00010186
47	Yes	4	0.00000001	0.00007963
48	Yes	4	0.00000001	0.00004177
49 50	Yes Yes	4 4	0.00000001 0.00000001	0.00008300 0.00009068

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	o
L1	109 - 99	6.993	40	0.492	0.002
L2	99 - 79	5.964	40	0.489	0.001
L3	79 - 59	3.981	40	0.449	0.001
L4	59 - 46.93	2.284	40	0.353	0.001
L5	52.07 - 32.07	1.802	40	0.311	0.000
L6	32.07 - 12.07	0.693	40	0.206	0.000
L7	12.07 - 0	0.098	40	0.078	0.000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	۰	0	ft
106.000	BXA-70063-6CF-EDIN-X w/	40	6.683	0.492	0.002	176010
	Mount Pipe					
96.000	(2) 7770.00 w/ Mount Pipe	40	5.658	0.486	0.001	53727
87.000	ERICSSON AIR 21 B2A B4P w/	40	4.753	0.471	0.001	24845
	Mount Pipe					
77.000	Commscope MC-PK8-DSH	40	3.795	0.442	0.001	15506

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	109 - 99	34.984	4	2.462	0.008
L2	99 - 79	29,838	4	2.447	0.007
L3	79 - 59	19.917	4	2.246	0.004
L4	59 - 46.93	11.427	4	1.769	0.002
L5	52.07 - 32.07	9.012	4	1.557	0.002
L6	32.07 - 12.07	3.467	4	1.028	0.001
L7	12.07 - 0	0.492	4	0.389	0.000

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	o	0	ft
106.000	BXA-70063-6CF-EDIN-X w/ Mount Pipe	4	33.437	2.460	0.008	36433
96.000	(2) 7770.00 w/ Mount Pipe	4	28.304	2.433	0.007	10930
87.000	ERICSSON AIR 21 B2A B4P w/ Mount Pipe	4	23.779	2.359	0.006	4996
77.000	Commscope MC-PK8-DSH	4	18.984	2.210	0.004	3108

Compression Checks

Pole Design Data

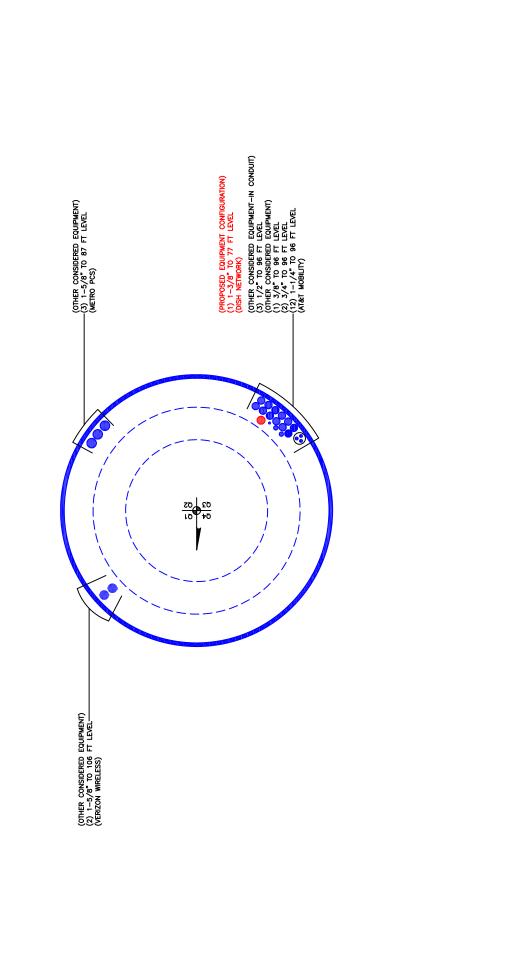
Section	Elevation	Size	L	L_u	KI/r	Α	P_u	ϕP_n	Ratio
No.	ft		ft	ft		in²	К		P_u
	π		п	п		111-	^	K	ϕP_n
L1	109 - 99 (1)	TP24x24x0.375	10.000	0.000	0.0	27.833	-4.012	876.725	0.005
L2	99 - 79 (2)	TP30.53x26.42x0.313	20.000	0.000	0.0	29.972	-13.652	1753.350	800.0
L3	79 - 59 (3)	TP34.64x30.53x0.313	20.000	0.000	0.0	34.048	-19.929	1991.830	0.010
L4	59 - 46.93 (4)	TP37.12x34.64x0.313	12.070	0.000	0.0	35.461	-21 155	2074.460	0.010
L5	46.93 - 32.07	TP39.495x35.439x0.375	20.000	0.000	0.0	46.563	-26.215	2723.930	0.010
	(5)								
L6	32.07 - 12.07	TP43.552x39.495x0.375	20.000	0.000	0.0	51.391	-30.979	3006.390	0.010
	(6)								
L7	12.07 - 0 (7)	TP46x43.552x0.375	12.070	0.000	0.0	54.305	-33.849	3176.850	0.011
	` '								

Pole Bending Design Data

Section No.	Elevation	Size	M _{ux}	ϕM_{nx}	Ratio M _{ux}	M _{uy}	ϕM_{ny}	Ratio M _{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	109 - 99 (1)	TP24x24x0.375	27.993	538.742	0.052	0.000	538.742	0.000
L2	99 - 79 (2)	TP30.53x26.42x0.313	210.011	1374.583	0.153	0.000	1374.583	0.000
L3	79 - 59 (3)	TP34.64x30.53x0.313	520.270	1717.283	0.303	0.000	1717.283	0.000
L4	59 - 46.93 (4)	TP37.12x34.64x0.313	636.426	1841.283	0.346	0.000	1841.283	0.000
L5	46.93 - 32.07 (5)	TP39.495x35.439x0.375	991.425	2713.625	0.365	0.000	2713.625	0.000
L6	32.07 - 12.07 (6)	TP43.552x39.495x0.375	1372.817	3216.650	0.427	0.000	3216.650	0.000
L7	12.07 - 0 (7)	TP46x43.552x0.375	1615.408	3531.475	0.457	0.000	3531.475	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual Vu	ϕV_n	Ratio Vu	Actual Tu	ϕT_n	Ratio Tu
	ft		ĸ	K	${\phi V_n}$	kip-ft	kip-ft	$\frac{1}{\phi T_n}$
L1	109 - 99 (1)	TP24x24x0.375	3.791	263.018	0.014	0.334	546.307	0.001
L2	99 - 79 (2)	TP30.53x26.42x0.313	12.486	526.006	0.024	1.256	1391.958	0.001
L3	79 - 59 (3)	TP34.64x30.53x0.313	16.519	597.548	0.028	1.036	1796.350	0.001
L4	59 - 46.93 (4)	TP37.12x34.64x0.313	17.011	622.337	0.027	1.036	1948.483	0.001
L5	46.93 - 32.07 (5)	TP39.495x35.439x0.375	18.441	817.180	0.023	1.035	2799.625	0.000
L6	32.07 - 12.07 (6)	TP43.552x39.495x0.375	19.714	901.917	0.022	1.035	3410.342	0.000
L7	12.07 - 0 (7)	TP46x43.552x0.375	20.503	953.056	0.022	1.035	3808.033	0.000


Pole Interaction Design Data

Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio Vu	Ratio Tu	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	$\overline{\phi V_n}$	ϕT_n	Ratio	Ratio	
L1	109 - 99 (1)	0.005	0.052	0.000	0.014	0.001	0.057	1.050	4.8.2
L2	99 - 79 (2)	0.008	0.153	0.000	0.024	0.001	0.161	1.050	4.8.2
L3	79 - 59 (3)	0.010	0.303	0.000	0.028	0.001	0.314	1.050	4.8.2
L4	59 - 46.93 (4)	0.010	0.346	0.000	0.027	0.001	0.357	1.050	4.8.2
L5	46.93 - 32.07	0.010	0.365	0.000	0.023	0.000	0.375	1.050	4.8.2
	(5)								
L6	32.07 - 12.07 (6)	0.010	0.427	0.000	0.022	0.000	0.438	1.050	4.8.2
L7	12.07 - 0 (7)	0.011	0.457	0.000	0.022	0.000	0.469	1.050	4.8.2

Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio Vu	Ratio Tu	Comb. Stress	Allow. Stress	Criteria
	ft	φPn	фМлх	φ <i>M</i> _{ny}	φVn	φTn	Ratio	Ratio	

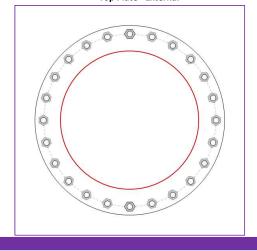
Section Capacity Table								
Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L1	109 - 99	Pole	TP24x24x0.375	1	-4.012	920.561	5.4	Pass
L2	99 - 79	Pole	TP30.53x26.42x0.313	2	-13.652	1841.017	15.4	Pass
L3	79 - 59	Pole	TP34.64x30.53x0.313	3	-19.929	2091.421	29.9	Pass
L4	59 - 46.93	Pole	TP37.12x34.64x0.313	4	-21.155	2178.183	34.0	Pass
L5	46.93 - 32.07	Pole	TP39.495x35.439x0.375	5	-26.215	2860.126	35.8	Pass
L6	32.07 - 12.07	Pole	TP43.552x39.495x0.375	6	-30.979	3156.709	41.7	Pass
L7	12.07 - 0	Pole	TP46x43.552x0.375	7	-33.849	3335.692	44.6	Pass
							Summary	
						Pole (L7)	44.6	Pass
						RATING =	44.6	Pass

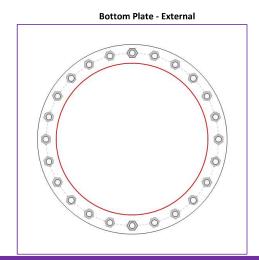
APPENDIX B BASE LEVEL DRAWING

APPENDIX C ADDITIONAL CALCULATIONS

Monopole Flange Plate Connection

BU#	842864
Site Name	GUILFORD SW
Order #	553360 Rev 1


TIA-222 Revision	Н


Elevation = 99 ft.

Applied Loads					
Moment (kip-ft)	27.99				
Axial Force (kips)	4.01				
Shear Force (kips)	3.79				

^{*}TIA-222-H Section 15.5 Applied

Top Plate - External

Connection Properties

Bolt Data

(24) 1" ø bolts (A325 N; Fy=92 ksi, Fu=120 ksi) on 30" BC

Top Plate Data

33" OD x 1" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Top Stiffener Data

N/A

Top Pole Data

24" x 0.375" round pole (A53-B-35; Fy=35 ksi, Fu=60 ksi)

Bottom Plate Data

33" OD x 1.5" Plate (A572-60; Fy=60 ksi, Fu=75 ksi)

Bottom Stiffener Data

N/A

Bottom Pole Data

26.42" x 0.3125" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results					
Bolt Capacity					
Max Load (kips)	1.70				
Allowable (kips)	54.54				
Stress Rating:	3.0%	Pass			

Top Plate Capacity

Max Stress (ksi):	4.32	(Flexural)	
Allowable Stress (ksi):	32.40		
Stress Rating:	12.7%	Pass	
Tension Side Stress Rating:	5.9%	Pass	

Bottom Plate Capacity

Max Stress (ksi):	1.14	(Flexural)	
Allowable Stress (ksi):	54.00		
Stress Rating:	2.0%	Pass	
Tension Side Stress Rating:	0.9%	Pass	

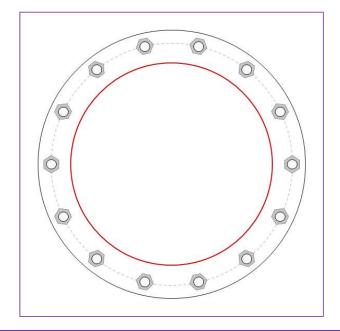
CCIplate - Version 4.1.1 Analysis Date: 5/29/2021

Monopole Base Plate Connection

(units of kips, kip-in)

Stress Rating 38.4% Pass

(Flexural)


Pass

Site Info	
BU#	842864
Site Name	GUILFORD SW
Order #	553360 Rev 1

Analysis Considerations				
TIA-222 Revision	Н			
Grout Considered:	No			
I _{ar} (in)	0.25			

Applied Loads			
Moment (kip-ft)	1615.41		
Axial Force (kips)	33.85		
Shear Force (kips)	20.50		

46" x 0.375" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Connection Properties	A	Analysis Results	
Anchor Rod Data	Anchor Rod Summary		
(14) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 55" BC	Pu_t = 98.21	φPn_t = 243.75	
	Vu = 1.46	φVn = 149.1	
Base Plate Data	Mu = n/a	φMn = n/a	
61" OD x 2" Plate (A572-60; Fy=60 ksi, Fu=75 ksi)			
	Base Plate Summary		
Stiffener Data	Max Stress (ksi):	26.35	
N/A	Allowable Stress (ksi):	54	
	Stress Rating:	46.5%	
Pole Data	_		

CCIplate - Version 4.1.1 Analysis Date: 5/29/2021

^{*}TIA-222-H Section 15.5 Applied

Pier and Pad Foundation

BU #: 842864
Site Name: GUILFORD SW
App. Number: 553360 Rev 1

TIA-222 Revision: H
Tower Type: Monopole

Top & Bot. Pad Rein. Different?:	
Block Foundation?:	
Rectangular Pad?:	

Superstructure Analysis Reactions				
Compression, P _{comp} :	33.85	kips		
Base Shear, Vu_comp:	20.49	kips		
Moment, $\mathbf{M}_{\mathbf{u}}$:	1615.41	ft-kips		
Tower Height, H :	109	ft		
BP Dist. Above Fdn, bp _{dist} :	2.5	in		

Pier Properties				
Pier Shape:	Square			
Pier Diameter, dpier :	7	ft		
Ext. Above Grade, E:	1	ft		
Pier Rebar Size, Sc:	8			
Pier Rebar Quantity, mc :	30			
Pier Tie/Spiral Size, St :	4			
Pier Tie/Spiral Quantity, mt :	10			
Pier Reinforcement Type:	Tie			
Pier Clear Cover, cc _{pier} :	4	in		

Pad Properties				
Depth, D :	7	ft		
Pad Width, W ₁:	21.5	ft		
Pad Thickness, T :	3	ft		
Pad Rebar Size (Bottom dir. 2), Sp ₂ :	8			
Pad Rebar Quantity (Bottom dir. 2), mp ₂ :	30			
Pad Clear Cover, ccpad:	3	in		

Material Properties				
Rebar Grade, Fy :	60	ksi		
Concrete Compressive Strength, F'c:	4	ksi		
Dry Concrete Density, δ c :	150	pcf		

Soil Properties				
Total Soil Unit Weight, γ :	115	pcf		
Ultimate Net Bearing, Qnet:	16.000	ksf		
Cohesion, Cu :	0.000	ksf		
Friction Angle, $oldsymbol{arphi}$:	30	degrees		
SPT Blow Count, N _{blows} :	6			
Base Friction, μ :	0.5			
Neglected Depth, N:	3.50	ft		
Foundation Bearing on Rock?	Yes			
Groundwater Depth, gw :	None	ft		

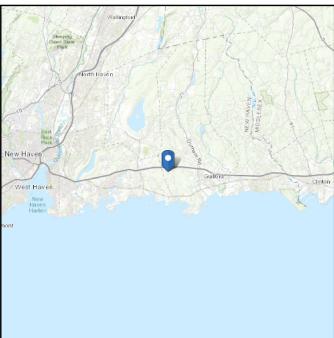
Foundation Analysis Checks				
	Capacity	Demand	Rating	Check
Lateral (Sliding) (kips)	251.47	20.49	8.1%	Pass
Bearing Pressure (ksf)	12.60	2.26	18.0%	Pass
Overturning (kip*ft)	4296.85	1783.60	41.5%	Pass
Pier Flexure (Comp.) (kip*ft)	3942.93	1717.86	43.6%	Pass
Pier Compression (kip)	31187.52	77.95	0.2%	Pass
Pad Flexure (kip*ft)	3273.03	533,88	16.3%	Pass
Pad Shear - 1-way (kips)	770.99	94.99	12.3%	Pass
Pad Shear - 2-way (Comp) (ksi)	0.190	0.019	10.2%	Pass
Flexural 2-way (Comp) (kip*ft)	4841.25	1030.72	21.3%	Pass

Structural Rating:	43.6%
Soil Rating:	41.5%

<--Toggle between Gross and Net

Address:

No Address at This Location


ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 105.75 ft (NAVD 88)

Risk Category: || Latitude: 41.291983

Soil Class: D - Stiff Soil Longitude: -72.732856

Wind

Results:

Wind Speed: 130 mph Per Jurisdiction

 10-year MRI
 78 Vmph

 25-year MRI
 88 Vmph

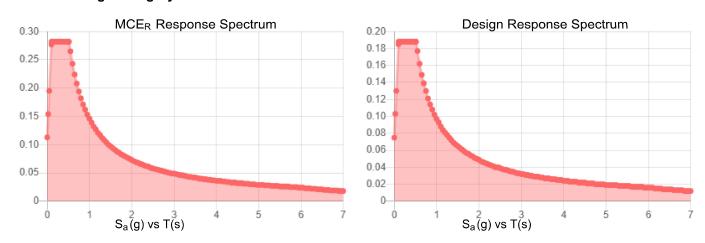
 50-year MRI
 95 Vmph

 100-year MRI
 104 Vmph

Date **Sociess**ed: **AS€M**SE25-2002 Fig. 26.5-1A and Figs. CC-1–CC-4, and Section 26.5.2, incorporating exercts of March 12, 2014

incorporating errata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.176	S _{DS} :	0.188	
S_1 :	0.061	S _{D1} :	0.097	
Fa:	1.6	T_L :	6	
F _v :	2.4	PGA:	0.09	
S _{MS} :	0.282	PGA _M :	0.145	
S _{M1} :	0.146	F _{PGA} :	1.6	
		L.	1	

Seismic Design Category B

Data Accessed: Tue May 25 2021

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating

Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with

ASCE/SEI 7-10 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Tue May 25 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Tue May 25 2021

Exhibit E

Mount Analysis

Date: July 29, 2021

Darcy Tarr Crown Castle 3530 Toringdon Way, Suite 300 Charlotte, NC 28277 704-405-6589

Trylon 1825 W. Walnut Hill Lane, Suite 302 Irving, TX 75038 214-930-1730

Subject: Mount Replacement Analysis Report

Carrier Designation: Dish Network Dish 5G

Carrier Site Number: BOHVN00016A Carrier Site Name: CT-CCI-T-842864

Crown Castle Designation: Crown Castle BU Number: 842864

Crown Castle Site Name: GUILFORD SW

Crown Castle JDE Job Number: 645143

Crown Castle Order Number: 553360 Rev. 1

Engineering Firm Designation: Trylon Report Designation: 189032

Site Data: 201 Granite Road, Guilford, New Haven County, CT, 06437

Latitude 41°17'31.14" Longitude -72°43'58.28"

Structure Information: Tower Height & Type: 109.0 ft Monopole

Mount Elevation: 77.0 ft
Mount Type: 8.0 ft Platform

Dear Darcy Tarr,

Trylon is pleased to submit this "Mount Replacement Analysis Report" to determine the structural integrity of Dish Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform Sufficient*
*Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis utilizes an ultimate 3-second gust wind speed of 130 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Marius Balan

Respectfully Submitted by: Cliff Abernathy, P.E.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

9) APPENDIX E

Supplemental Drawings

1) INTRODUCTION

This is a proposed 3 sector 8.0 ft Platform, designed by Commscope.

2) ANALYSIS CRITERIA

Building Code: 2015 IBC TIA-222 Revision: TIA-222-H

Risk Category:

Ultimate Wind Speed: 130 mph

Exposure Category: Topographic Factor at Base: 1.0 **Topographic Factor at Mount:** 1.0 Ice Thickness: 1.5 in Wind Speed with Ice: 50 mph Seismic S_s: 0.176 Seismic S₁: 0.061 **Live Loading Wind Speed:** 30 mph Man Live Load at Mid/End-Points: 250 lb Man Live Load at Mount Pipes: 500 lb

Table 1 - Proposed Equipment Configuration

	Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
	77.0	77.0	3	JMA WIRELESS	MX08FRO665-21	8.0 ft Platform
			3	FUJITSU	TA08025-B604	
			3	FUJITSU	TA08025-B605	PK8-C1
			1	RAYCAP	RDIDC-9181-PF-48	FK6-Cj

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Crown Application	Dish Network Application	553360, Rev. 1	CCI Sites
Mount Manufacturer Drawings	Commscope	MC-PK8-C	Trylon

3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed, using Microsoft Excel, by Trylon was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate

HSS (Rectangular)

Pipe

ASTM A36 (GR 36)

ASTM A500 (GR B-46)

ASTM A53 (GR 35)

ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Trylon should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Platform, All Sectors)

	or mount component curecos for capacity (i laurening i in content				
Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
	Mount Pipe(s)	MP4	77.0	22.1	Pass
	Horizontal(s)	H2		11.7	Pass
	Standoff(s)	M7		43.5	Pass
1, 2	Bracing(s)	M11		35.0	Pass
	Plate(s)	M10		18.1	Pass
	Handrail(s)	M19		9.0	Pass
	Mount Connection(s)	-		17.6	Pass

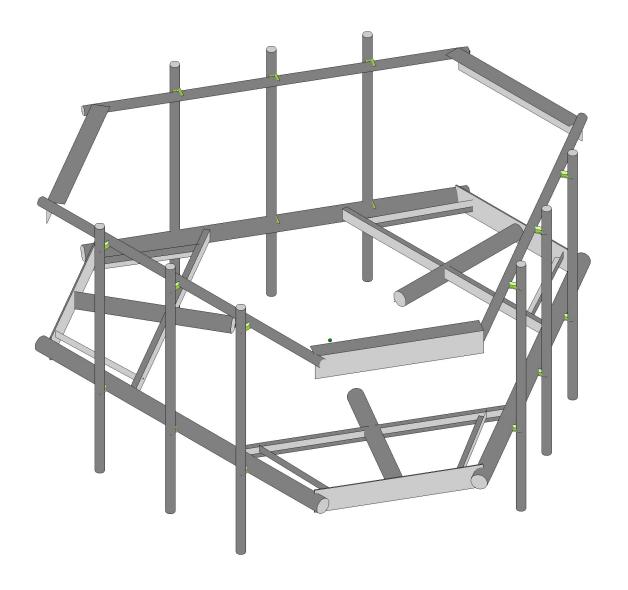
Structure Rating (max from all components) =	43.5%
--	-------

Notes:

2) Rating per TIA-222-H, Section 15.5

See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.

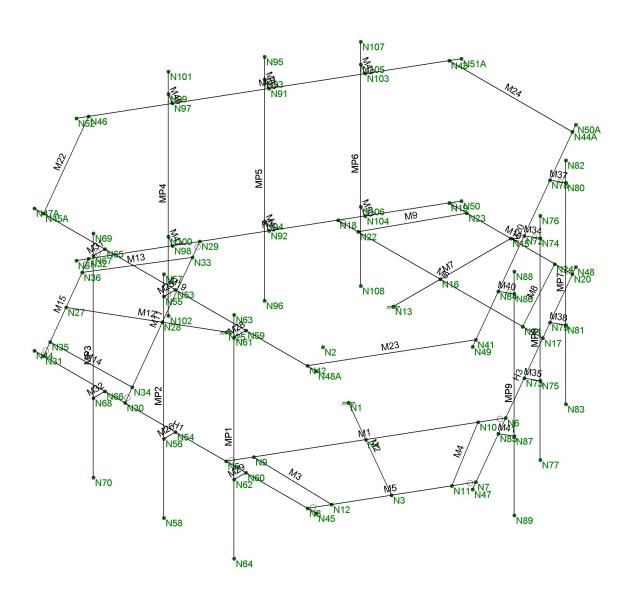
4.1) Recommendations


The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed.

1. Commscope, part no MC-PK8-C.

No structural modifications are required at this time, provided that the above-listed changes are implemented.

APPENDIX A WIRE FRAME AND RENDERED MODELS



Envelope Only Solution

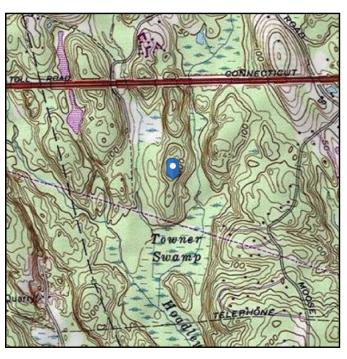
Trylon		SK - 1
MB	842864	July 28, 2021 at 1:33 PM
189032		842864.r3d

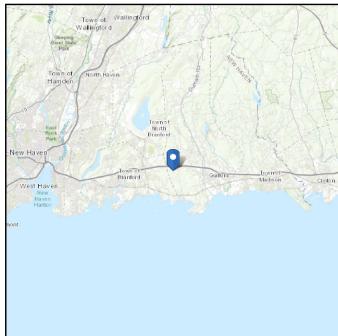
Envelope Only Solution

Trylon		SK - 2
MB	842864	July 28, 2021 at 1:33 PM
189032		842864.r3d

APPENDIX B SOFTWARE INPUT CALCULATIONS

Address:

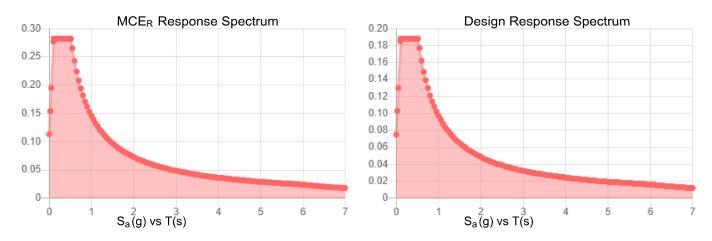

No Address at This Location


ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 105.75 ft (NAVD 88)

Risk Category: || Latitude: 41.291983

Soil Class: D - Stiff Soil Longitude: -72.732856



Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.176	S _{DS} :	0.188	
S_1 :	0.061	S _{D1} :	0.097	
Fa:	1.6	T_L :	6	
F _v :	2.4	PGA:	0.09	
S _{MS} :	0.282	PGA _M :	0.145	
S _{M1} :	0.146	F _{PGA} :	1.6	
		1 .	1	

Seismic Design Category B

Data Accessed: Wed Jul 28 2021

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating

Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with

ASCE/SEI 7-10 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Wed Jul 28 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

TIA LOAD CALCULATOR 2.0

PROJECT DATA		
Job Code:	189032	
Carrier Site ID:	BOHVN00016A	
Carrier Site Name:	CT-CCI-T-842864	

CODES AND S	TANDARDS
Building Code:	2015 IBC
Local Building Code:	2018 CSBC
Design Standard:	TIA-222-H

STRUCTURE DETAILS		
Mount Type:	Platform	
Mount Elevation:	77.0	ft.
Number of Sectors:	3	
Structure Type:	Monopole	
Structure Height:	109.0	ft.

ANALYSIS CRITERIA		
Structure Risk Category:	=	
Exposure Category:	В	
Site Class:	D - Stiff Soil	
Ground Elevation:	105.75	ft.

TOPOGRAP	HIC DATA	
Topographic Category:	1.00	
Topographic Feature:	N/A	
Crest Point Elevation:	0.00	ft.
Base Point Elevation:	0.00	ft.
Crest to Mid-Height (L/2):	0.00	ft.
Distance from Crest (x):	0.00	ft.
Base Topo Factor (K _{zt}):	1.00	
Mount Topo Factor (K _{zt}):	1.00	

WIND PARAM	ETERS	
Design Wind Speed:	130	mph
Wind Escalation Factor (K _s):	1.00	
Velocity Coefficient (Kz):	0.92	
Directionality Factor (K _d):	0.95	
Gust Effect Factor (Gh):	1.00	
Shielding Factor (K _a):	0.90	
Velocity Pressure (q_z) :	37.55	psf

ICE PARAMETERS		
Design Ice Wind Speed:	50	mph
Design Ice Thickness (t _i):	1.50	in
Importance Factor (I _i):	1.00	
Ice Velocity Pressure (q _{zi}):	37.55	psf
Mount Ice Thickness (t _{iz}):	1.63	in

WIND STRUCTURE C	ALCULATIONS	
Flat Member Pressure:	67.59	psf
Round Member Pressure:	40.55	psf
Ice Wind Pressure:	7.12	psf

SEISMIC PARA	METERS	
Importance Factor (I _e):	1.00	
Short Period Accel .(S _s):	0.176	g
1 Second Accel (S ₁):	0.061	g
Short Period Des. (S_{DS}) :	0.19	g
1 Second Des. (S _{D1}):	0.10	g
Short Period Coeff. (F _a):	1.60	
1 Second Coeff. (F _v):	2.40	
Response Coefficient (Cs):	0.09	
Amplification Factor (A _S):	1.20	

LOAD COMBINATIONS [LRFD]

#	Description
1	1.4DL
2	1.2DL + 1WL 0 AZI
3	1.2DL + 1WL 30 AZI
4	1.2DL + 1WL 45 AZI
5	1.2DL + 1WL 60 AZI
6	1.2DL + 1WL 90 AZI
7	1.2DL + 1WL 120 AZI
8	1.2DL + 1WL 135 AZI
9	1.2DL + 1WL 150 AZI
10	1.2DL + 1WL 180 AZI
11	1.2DL + 1WL 210 AZI
12	1.2DL + 1WL 225 AZI
13	1.2DL + 1WL 240 AZI
14	1.2DL + 1WL 270 AZI
15	1.2DL + 1WL 300 AZI
16	1.2DL + 1WL 315 AZI
17	1.2DL + 1WL 330 AZI
18	0.9DL + 1WL 0 AZI
19	0.9DL + 1WL 30 AZI
20	0.9DL + 1WL 45 AZI
21	0.9DL + 1WL 60 AZI
22	0.9DL + 1WL 90 AZI
23	0.9DL + 1WL 120 AZI
24	0.9DL + 1WL 135 AZI
25	0.9DL + 1WL 150 AZI
26	0.9DL + 1WL 180 AZI
27	0.9DL + 1WL 210 AZI
28	0.9DL + 1WL 225 AZI
29	0.9DL + 1WL 240 AZI
30	0.9DL + 1WL 270 AZI
31	0.9DL + 1WL 300 AZI
	0.9DL + 1WL 315 AZI
33	0.9DL + 1WL 330 AZI
34	1.2DL + 1DLi + 1WLi 0 AZI
35	1.2DL + 1DLi + 1WLi 30 AZI
36	1.2DL + 1DLi + 1WLi 45 AZI
37	1.2DL + 1DLi + 1WLi 60 AZI
38	1.2DL + 1DLi + 1WLi 90 AZI
39	1.2DL + 1DLi + 1WLi 120 AZI
40	1.2DL + 1DLi + 1WLi 135 AZI
41	1.2DL + 1DLi + 1WLi 150 AZI

#	Description
42	1.2DL + 1DLi + 1WLi 180 AZI
43	1.2DL + 1DLi + 1WLi 210 AZI
44	1.2DL + 1DLi + 1WLi 225 AZI
45	1.2DL + 1DLi + 1WLi 240 AZI
46	1.2DL + 1DLi + 1WLi 270 AZI
47	1.2DL + 1DLi + 1WLi 300 AZI
48	1.2DL + 1DLi + 1WLi 315 AZI
49	1.2DL + 1DLi + 1WLi 330 AZI
50	(1.2+0.2Sds) + 1.0E 0 AZI
51	(1.2+0.2Sds) + 1.0E 30 AZI
52	(1.2+0.2Sds) + 1.0E 45 AZI
53	(1.2+0.2Sds) + 1.0E 60 AZI
54	(1.2+0.2Sds) + 1.0E 90 AZI
55	(1.2+0.2Sds) + 1.0E 120 AZI
56	(1.2+0.2Sds) + 1.0E 135 AZI
57	(1.2+0.2Sds) + 1.0E 150 AZI
58	(1.2+0.2Sds) + 1.0E 180 AZI
59	(1.2+0.2Sds) + 1.0E 210 AZI
60	(1.2+0.2Sds) + 1.0E 225 AZI
61	(1.2+0.2Sds) + 1.0E 240 AZI
62	(1.2+0.2Sds) + 1.0E 270 AZI
63	(1.2+0.2Sds) + 1.0E 300 AZI
64	(1.2+0.2Sds) + 1.0E 315 AZI
65	(1.2+0.2Sds) + 1.0E 330 AZI
66	(0.9-0.2Sds) + 1.0E 0 AZI
67	(0.9-0.2Sds) + 1.0E 30 AZI
68	(0.9-0.2Sds) + 1.0E 45 AZI
69	(0.9-0.2Sds) + 1.0E 60 AZI
70	(0.9-0.2Sds) + 1.0E 90 AZI
71	(0.9-0.2Sds) + 1.0E 120 AZI
72	(0.9-0.2Sds) + 1.0E 135 AZI
73	(0.9-0.2Sds) + 1.0E 150 AZI
74	(0.9-0.2Sds) + 1.0E 180 AZI
75	(0.9-0.2Sds) + 1.0E 210 AZI
76	(0.9-0.2Sds) + 1.0E 225 AZI
77	(0.9-0.2Sds) + 1.0E 240 AZI
78	(0.9-0.2Sds) + 1.0E 270 AZI
79	(0.9-0.2Sds) + 1.0E 300 AZI
80	(0.9-0.2Sds) + 1.0E 315 AZI
81	(0.9-0.2Sds) + 1.0E 330 AZI
82-88	

#	Description
89	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP1
90	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP1
91	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP1
92	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP1
93	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP1
94	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP1
95	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP1
96	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP1
97	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP1
98	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP1
99	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP1
100	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP1
101	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP1
102	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1
103	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1
104	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP1
105	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2
106	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2
107	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2
108	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2
109	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2
110	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2
111	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2
112	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2
113	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP2
114	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2
115	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2
116	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2
117	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2
118	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2
119	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2
120	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2

#	Description
121	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3
122	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3
123	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3
124	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3
125	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3
126	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3
127	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3
128	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3
129	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3
130	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3
131	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3
132	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3
133	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3
134	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3
135	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3
136	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP3
137	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP4
138	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP4
139	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP4
140	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP4
141	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP4
142	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP4
143	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP4
144	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP4
145	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP4
146	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP4
147	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP4
148	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP4
149	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP4
150	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP4
151	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP4
152	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP4

^{*}This page shows an example of maintenance loads for (4) pipes, the number of mount pipe LCs may vary per site

EQUIPMENT LOADING

Appurtenance Name/Location	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
MX08FRO665-21	3	77	No Ice	8.01	3.21	82.50
MP2/MP5/MP8, 0/120/240			w/ Ice	9.62	4.62	265.94
TA08025-B604	3	77	No Ice	1.96	0.98	63.90
MP2/MP5/MP8, 0/120/240			w/ Ice	2.36	1.29	64.97
TA08025-B605	3	77	No Ice	1.96	1.13	75.00
MP2/MP5/MP8, 0/120/240			w/ Ice	2.36	1.45	69.25
RDIDC-9181-PF-48	1	77	No Ice	2.01	1.17	21.85
MP/MP5/MP, 0/120/240	-		w/ Ice	2.42	1.50	68.24
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
	-		w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

EQUIPMENT LOADING [CONT.]

Appurtenance Name/Location	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
	-		w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

EQUIPMENT WIND CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	K _{zt}	Kz	K _d	t _d	q _z [psf]	q _{zi} [psf]
MX08FRO665-21	3	77	1.00	0.92	0.95	1.63	37.55	5.55
TA08025-B604	3	77	1.00	0.92	0.95	1.63	37.55	5.55
TA08025-B605	3	77	1.00	0.92	0.95	1.63	37.55	5.55
RDIDC-9181-PF-48	1	77	1.00	0.92	0.95	1.63	37.55	5.55

EQUIPMENT LATERAL WIND FORCE CALCULATIONS

Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
MX08FRO665-21	3	No Ice	270.70	149.04	230.15	108.48	230.15	149.04
MP2/MP5/MP8, 0/120/240		w/ Ice	48.10	29.36	41.85	23.11	41.85	29.36
TA08025-B604	3	No Ice	66.36	41.46	58.06	33.16	58.06	41.46
MP2/MP5/MP8, 0/120/240		w/ Ice	11.80	7.79	10.47	6.45	10.47	7.79
TA08025-B605	3	No Ice	66.36	45.22	59.31	38.17	59.31	45.22
MP2/MP5/MP8, 0/120/240		w/ Ice	11.80	8.39	10.67	7.26	10.67	8.39
RDIDC-9181-PF-48	1	No Ice	67.99	46.61	60.86	39.48	60.86	46.61
MP/MP5/MP, 0/120/240	-	w/ Ice	12.08	8.66	10.94	7.52	10.94	8.66
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
	-	w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		W/ ICE			l			

EQUIPMENT LATERAL WIND FORCE CALCULATIONS [CONT.]

Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
		No Ice						
		w/ Ice						
		No Ice						
-		w/ Ice						
		No Ice						
1		w/ Ice						
		No Ice						
-		w/ Ice						
		No Ice						
-		w/ Ice						
		No Ice						
1		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						

EQUIPMENT SEISMIC FORCE CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	Weight [lbs]	F p [lbs]
MX08FRO665-21	3	77	82.5	9.29
TA08025-B604	3	77	63.9	7.20
TA08025-B605	3	77	75	8.45
RDIDC-9181-PF-48	1	77	21.85	2.46

APPENDIX C SOFTWARE ANALYSIS OUTPUT

Company : Trylon Designer : MB Job Number : 189032 Model Name : 842864

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include S hear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include W arping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P - Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (in/sec ^2)	386.4
Wall Mesh Size (in)	24
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Z
Global Member Orientation Plane	XY
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 15th(360-16): LRFD
Adjust Stiffness?	Yes(Iterative)
R ISAC onnection Code	AISC 15th(360-16): LRFD
Cold Formed Steel Code	None
Wood Code	None
Wood Temperature	< 100F
Concrete Code	None
Masonry Code	None
Aluminum Code	None - Building
Stainless Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	No
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

July 28, 2021 1:34 PM Checked By: CA

(Global) Model Settings, Continued

Seismic Code	ASCE 7-16
Seismic Base Elevation (in)	Not Entered
Add Base Weight?	Yes
CtX	.02
CtZ	.02
TX (sec)	Not Entered
T Z (sec)	Not Entered
RX	3
R Z	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	l or II
Drift Cat	Other
O m Z	1
OmX	1
CdZ	1
CdX	1
R ho Z	1
R ho X	1

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E	Density[k/ft	. Yield[psi]	Ry	Fu[psi]	Rt
1	A992	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36000	1.5	58000	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42000	1.4	58000	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46000	1.4	58000	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35000	1.6	60000	1.2
7	A1085	29000	11154	.3	.65	.49	50000	1.4	65000	1.3

Cold Formed Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5F)	Density[k/ft^3]	Yield[psi]	Fu[psi]
1	A653 S S G r33	29500	11346	.3	.65	.49	33000	45000
2	A653 S S G r50/1	29500	11346	.3	.65	.49	50000	65000

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design	. A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	6.5"x0.37" Plate	6.5"x0.37" Plate	Beam	RECT	A36 Gr.36	Typical	2.405	.027	8.468	.106
2	L2x2x3	L2x2x3	Beam	Single Angle	A36 Gr.36	Typical	.722	.271	.271	.009
3	PIPE 3.5	PIPE 3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04
4	C 3X 5	C3X5	Beam	Channel	A36 Gr.36	Typical	1.47	.241	1.85	.043
5	PIPE 2.0	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
6	L6.6"X4.46"X0.25"	L6.6"X4.46"X0.25"	Beam	Single Angle	A36 Gr.36	Typical	2.703	4.759	12.473	.055

July 28, 2021 1:34 PM Checked By: CA

Cold Formed Steel Section Sets

	Label	Shape	Type	Design Li	Material	Design R	. A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	CF1A	8CU1.25X057	Beam	None	A653 S S G r33	Typical	.581	.057	4.41	.00063

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot [k-ft/rad]	Y Rot [k-ft/rad]	Z Rot.[k-ft/rad]
1	N25	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N13	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z G ravity	Joint	Point	Distributed	A rea (Me	.Surface(
1	Self Weight	DL			-1		20		3	
2	Structure Wind X	WLX						33		
3	Structure Wind Y	WLY						33		
4	Wind Load 0 AZI	WLX					20			
5	Wind Load 30 AZI	None					40			
6	Wind Load 45 AZI	None					40			
7	Wind Load 60 AZI	None					40			
8	Wind Load 90 AZI	WLY					20			
9	Wind Load 120 AZI	None					40			
10	Wind Load 135 AZI	None					40			
11	Wind Load 150 AZI	None					40			
12	lce Weight	OL1					20	33	3	
13	Structure Ice Wind X	OL2						33		
14	Structure Ice Wind Y	OL3						33		
15	Ice Wind Load 0 AZI	OL2					20			
16	Ice Wind Load 30 AZI	None					40			
17	Ice Wind Load 45 AZI	None					40			
18	Ice Wind Load 60 AZI	None					40			
19	Ice Wind Load 90 AZI	OL3					20			
20	Ice Wind Load 120 AZI	None					40			
21	Ice Wind Load 135 AZI	None					40			
22	Ice Wind Load 150 AZI	None					40			
23	Seismic Load X	ELX	113				20			
24	Seismic Load Y	ELY		113			20			
25	Live Load 1 (Lv)	LL				1				
26	Live Load 2 (Lv)	LL				1				
27	Live Load 3 (Lv)	LL				1				
28	Live Load 4 (Lv)	LL				1				
29	Live Load 5 (Lv)	LL				1				
30	Live Load 6 (Lv)	LL				1				
31	Maintenance Load 1 (Lm)	None				1				
32	Maintenance Load 2 (Lm)	None				1				
33	Maintenance Load 3 (Lm)	None				1				
34	Maintenance Load 4 (Lm)	None				1				
35	Maintenance Load 5 (Lm)	None				1				
36	Maintenance Load 6 (Lm)	None				1				
37	Maintenance Load 7 (Lm)	None				1				
38	Maintenance Load 8 (Lm)	None				1				

Company : Trylon Des igner : MB Job Number : 189032 Model Name : 842864

July 28, 2021 1:34 PM Checked By: CA

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z G ravity	Joint	Point	Distributed	A rea (Me	Surface(
39	Maintenance Load 9 (Lm)	None				1				
40	BLC 1 Transient Area Loads	None						9		
41	BLC 12 Transient Area Loa	None						9		

Load Combinations

	Des cription	S	P	S	В	Facto	rB	Fac	В	Fac	В	Fac	В	Fac	В	Fac	В	Fac	В	Fac	В	Fac	В	Fac
1	1.4DL	Yes	Υ		DL	1.4																		
2	1.2DL +1WL 0 AZI	Yes	Υ		DL	1.2	2	1	3		4	1												
3	1.2DL +1WL 30 AZI	Yes	Υ		DL	1.2	2	.866	3	.5	5	1												
4	1.2DL + 1WL 45 AZI	Yes	Υ		DL	1.2	2	.707	3	.707	6	1												
5	1.2DL +1WL 60 AZI		Υ		DL	1.2	2	.5	3	.866	7	1												
6	1.2DL + 1WL 90 AZI	Yes	Υ		DL	1.2	2		3	1	8	1												
7	1.2DL + 1WL 120 AZI	Yes	Υ		DL	1.2	2	5	3	.866	9	1												
8		Yes	Υ		DL	1.2	2	707	3	.707	10	1												
9	1.2DL + 1WL 150 AZI	Yes	Υ		DL	1.2	2	866	3	.5	11	1												
10		Yes	Υ		DL	1.2	2	-1	3		4	7												
11	1.2DL + 1WL 210 AZI	Yes	Υ		DL	1.2	2	866	3	5	5	-1												
12		Yes	Υ		DL	1.2		707	3	707	6	-1												
13		Yes	Υ		DL	1.2	2	5	3	866	7	-1												
14	1.2DL + 1WL 270 AZI	Yes	Υ		DL	1.2	2		3	-1	8	7												
15		Yes	Υ		DL	1.2	2	.5		866		-1												
16		Yes	Υ		DL	1.2	2	.707		707	10	-1												
17	1.2DL + 1WL 330 AZI	Yes	Υ		DL	1.2	2	.866	3	5	11	-1												
18	0.9DL +1WL 0 AZI		Υ		DL	.9	2	1	3		4	1												
19		_	Υ		DL	.9	2	.866		.5	5	1												
20		Yes			DL	.9	2	.707		.707		1												
21	0.000 1111 001101	_	Υ		DL	.9	2	.5	3	.866	7	1												
22	0.9DL +1WL 90 AZI			_	DL	.9	2		3	1	8	1												
23		Yes	Υ	_	DL	.9	2	5	3	.866	_	1											Ш	
24		Yes	Υ		DL	.9	2	707		.707	10	1												
25		Yes	Υ		DL	.9	2	866	_	.5	11	1											Ш	
26			Υ		DL	.9	2	-1	3		4	-1												
27			Υ	_	DL	.9	2	866		5	5	-1											Ш	
28		_	Υ		DL	.9		707		707		-1												
29		_	Υ	_	DL	.9	2	5	_	866		-1											Ш	
30		_	Υ	_	DL	.9	2		3	-1	8	-1												
31		-	Υ	_	DL	.9	2	.5		866		-1											ш	
32		Yes	Υ	_	DL	.9	2	.707		707		-1												
33	0.9DL + 1WL 330 AZI	Yes	Υ	_	DL	.9	2	.866		5		-1											ш	
	1.2DL + 1DLi + 1W Li 0 A		Υ		DL		0		13		14		15											
	1.2DL + 1DLi + 1W Li 30	_	Υ	_	DL	1.2	0	_		.866			16										ш	
	1.2DL + 1DLi + 1W Li 45				DL		0			.707				1										
	1.2DL + 1DLi + 1W Li 60	_	Υ		DL		0		13					1										
	1.2DL + 1DLi + 1W Li 90		Υ			1.2			13		14		19											
	1.2DL + 1DLi + 1W Li 12		Υ			1.2				5														
	1.2DL + 1DLi + 1W Li 13		Υ			1.2				707														
	1.2DL + 1DLi + 1W Li 15	-	Υ		DL					866		.5	22											
	1.2DL + 1DLi + 1W Li 18		Υ		DL			1		-1			15											
	1.2DL + 1DLi + 1W Li 21	_	Υ		DL	1.2				866														
44	1.2DL + 1DLi + 1W Li 22	Yes	Υ		DL	1.2	0	1	13	707	14	707	17	-1										

July 28, 2021 1:34 P M Checked By: CA

Load Combinations (Continued)

	Des cription	S	Р	s i	3	Facto	rB	Fac	В	Fac	В	Fac	В	Fac	В	Fac	В	Fac	В	Fac	В	Fac	В	Fac
45	1.2DL + 1DLi + 1W Li 24					1.2						866			<u> </u>	1 40		1 40.	T	00.	<u> </u>	1 40		<u> </u>
	1.2DL + 1DLi + 1W Li 27					1.2			13		14		19											
	1.2DL + 1DLi + 1W Li 30		_		DL					.5		866		_										
	1.2DL + 1DLi + 1W Li 31	_				1.2					_	707	_	_										
	1.2DL + 1DLi + 1W Li 33											5												
	(1.2+0.2Sds) +1.0E 0 AZI	_				1.238			E			.0												
	(1.2+0.2Sds) +1.0E 30		_			1.238				.5														
	(1.2+0.2Sds) +1.0E 45					1.238			_															
	(1.2+0.2Sds) +1.0E 60		_			1.238				.866														
	(1.2+0.2Sds) +1.0E 90					1.238			E	1														
	(1.2+0.2Sds) +1.0E 120					1.238			_	.866														
	(1.2+0.25 ds) + 1.0E 135					1.238																		
	(1.2+0.25ds) +1.0E 150					1.238				5														
	(1.2+0.25 ds) + 1.0E 180					1.238				.0														
	(1.2+0.25 ds) + 1.0E 210					1.238				5														
	(1.2+0.25 ds) + 1.0E 225	_				1.238																		
	(1.2+0.25 ds) + 1.0E 225 (1.2+0.25 ds) + 1.0E 240					1.238																		
	(1.2+0.2Sds) + 1.0E 270					1.238			E	000 -1														
	(1.2+0.25 ds) + 1.0E 270				_	1.238				- 1 866														
	(1.2+0.25 ds) + 1.0E 300					1.238																		
	(1.2+0.2Sds) + 1.0E 330					1.238																		
	(0.9-0.2Sds) + 1.0E 0 AZI					.862			E	5														
	(0.9-0.2Sds) + 1.0E 30 A	_				.862				_														
	(0.9-0.2Sds) + 1.0E 35 A					.862																		
	(0.9-0.2Sds) + 1.0E 60 A	_					_																	
	(0.9-0.2Sds) + 1.0E 90 A	_		-		.862	_	_	E	1														
	(0.9-0.25ds) + 1.0E 120					.862																		
	(0.9-0.2Sds) + 1.0E 125	_				.862				.707														
	(0.9-0.2Sds) + 1.0E 150				<u> </u>	.862																		
	(0.9-0.2Sds) + 1.0E 180	_					_	_		.5													\vdash	
	(0.9-0.25ds) + 1.0E 210				<u>) L</u>	.862 .862				E														
	(0.9-0.2Sds) + 1.0E 225					.862																		
	(0.9-0.25ds) + 1.0E 240																							
						.862																		
	(0.9-0.2Sds) + 1.0E 270 (0.9-0.2Sds) + 1.0E 300					.862			E	-1 866														
	,	_				.862																		
	(0.9-0.2Sds) + 1.0E 315 (0.9-0.2Sds) + 1.0E 330					.862																		
	,					.862			⊏	5														
82		Yes				1.2																		
83		_		_	<u>) L</u>																			
84		Yes				1.2																		
85		Yes				1.2																		
86		Yes			<u>) L</u>																			
87	1.2D + 1.5 Lv6 1.2D + 1.5Lm + 1.0Wm	Yes)L				1	OE 2	0	052	0											
					<u>) L</u>					.053		.053		027										
	1.2D + 1.5Lm + 1.0Wm				<u>) L</u>					.053		.046		.027										
	1.2D + 1.5Lm + 1.0Wm				<u>) L</u>					.053		.038	_	.038	_									
	1.2D + 1.5Lm + 1.0Wm	-			<u>)L</u>			1.5		.053		.027	_	.046										
	1.2D + 1.5Lm + 1.0Wm				<u>) L</u>		_			.053		3.2		.053	_									
	1.2D + 1.5Lm + 1.0Wm	_			<u>) L</u>			1.5		.053		027		.046										
	1.2D + 1.5Lm + 1.0Wm				<u>DL</u>		31					038		.038										
		Yes				1.2						046		.027										
96	1.2D + 1.5Lm + 1.0Wm	Yes	Υ		JL	1.2	31	1.5	4	.053	2	053	3	6.5										

July 28, 2021 1:34 PM Checked By: CA

Load Combinations (Continued)

Description SP	S B Facto	rBFacB	FacB Facl	B FacB Fac	B FacB	FacB	FacBFac.
97 1.2D + 1.5Lm + 1.0Wm Yes Y			.053 2046				
98 1.2D + 1.5Lm + 1.0Wm Yes Y		31 1.5 6					
99 1.2D + 1.5Lm + 1.0Wm Yes Y		31 1.5 7					
100 1.2D + 1.5Lm + 1.0Wm Yes Y		31 1.5 8		3053			
101 1.2D + 1.5Lm + 1.0Wm Yes Y		31 1.5 9		3046			
102 1.2D + 1.5Lm + 1.0Wm Yes Y		31 1.5 10					
103 1.2D + 1.5Lm + 1.0Wm Yes Y		31 1.5 11					
104 1.2D + 1.5Lm + 1.0Wm Yes Y		32 1.5 4		0			
105 1.2D + 1.5Lm + 1.0Wm Yes Y		32 1.5 5					
106 1.2D + 1.5Lm + 1.0Wm Yes Y		32 1.5 6					
107 1.2D + 1.5Lm + 1.0Wm Yes Y		32 1.5 7					
108 1.2D + 1.5Lm + 1.0Wm Yes Y							
109 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2		.053 2027				
110 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2		0 .053 2038				
111 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2						
112 1.2D + 1.5Lm + 1.0Wm Yes Y			.053 2053				
113 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2						
114 1.2D + 1.5Lm + 1.0Wm Yes Y							
115 1.2D + 1.5Lm + 1.0Wm Yes Y		32 1.5 6	.053 2038 .053 2027	3046			
116 1.2D + 1.5Lm + 1.0Wm Yes Y		32 1.5 7		_			
117 1.2D + 1.5Lm + 1.0Wm Yes Y							
118 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2			_			
119 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2						
120 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2						
		33 1.5 4					
121 1.2D + 1.5Lm + 1.0Wm Yes Y 122 1.2D + 1.5Lm + 1.0Wm Yes Y		33 1.5 5					
123 1.2D + 1.5Lm + 1.0Wm Yes Y		33 1.5 6		-			
124 1.2D + 1.5Lm + 1.0Wm Yes Y		33 1.5 7					
125 1.2D + 1.5Lm + 1.0Wm Yes Y		33 1.5 8					
126 1.2D + 1.5Lm + 1.0Wm Yes Y		33 1.5 9	053 2027				
127 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 DL 1.2		1 .053 2046				
128 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2		.053 2053				
129 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2						
130 1.2D + 1.5Lm + 1.0Wm Yes Y							
131 1.2D + 1.5Lm + 1.0Wm Yes Y		33 1.5 6					
132 1.2D + 1.5Lm + 1.0Wm Yes Y		33 1.5 7 33 1.5 8					
133 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2	33 1.5 9		_			
134 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2	33 1.5 9	053 2 .027				
135 1.2D + 1.5Lm + 1.0Wm Yes Y							
136 1.2D + 1.5Lm + 1.0Wm Yes Y			1 .053 2 .046 .053 2 .053				
136 1.2D + 1.5Lm + 1.0Wm Yes Y		34 1.5 4				+	
138 1.2D + 1.5Lm + 1.0Wm Yes Y		34 1.5 5 34 1.5 6					
138 1.2D + 1.5Lm + 1.0Wm Yes Y							
		34 1.5 7					
140 1.2D + 1.5Lm + 1.0Wm Yes Y		34 1.5 8					
		34 1.5 9					
142 1.2D + 1.5Lm + 1.0Wm Yes Y			053 2038	-			
143 1.2D + 1.5Lm + 1.0Wm Yes Y			1 .053 2046				
144 1.2D + 1.5Lm + 1.0Wm Yes Y		34 1.5 4				+	
145 1.2D + 1.5Lm + 1.0Wm Yes Y		34 1.5 5		_			
146 1.2D + 1.5Lm + 1.0Wm Yes Y 147 1.2D + 1.5Lm + 1.0Wm Yes Y			.053 2038			++-	
		34 1.5 7					
148 1.2D + 1.5Lm + 1.0Wm Yes Y	UL 1.2	34 1.5 8	.053 2 -9	3003			

Load Combinations (Continued)

Des cription	S P S	S B Fa	actor B	Fac B	Fac	R	Fac	R	Fac B	Fac	R I	-ac	R	Fac	R	Fac	R	Fac
149 1.2D + 1.5Lm + 1.0Wm			1.2 34				.027		046	1					<u> </u>			
150 1.2D + 1.5Lm + 1.0Wm			1.2 34		0 .053		.038	_	038									
151 1.2D + 1.5Lm + 1.0Wm				1.5 1				_	027								\Box	
152 1.2D + 1.5Lm + 1.0Wm			1.2 35					<u> </u>										
153 1.2D + 1.5Lm + 1.0Wm			1.2 35				.046		.027									
154 1.2D + 1.5Lm + 1.0Wm			1.2 35		_		.038		.038									
155 1.2D + 1.5Lm + 1.0Wm			1.2 35				.027		.046									
156 1.2D + 1.5Lm + 1.0Wm			1.2 35				3.2	3	.053									
157 1.2D + 1.5Lm + 1.0Wm				1.5	_		027		.046									
158 1.2D + 1.5Lm + 1.0Wm					_		038		.038									
159 1.2D + 1.5Lm + 1.0Wm					0 .053		046		.027									
			1.2 35			_												
160 1.2D + 1.5Lm + 1.0Wm			1.2 35				053		6.5									
161 1.2D + 1.5Lm + 1.0Wm				1.5		_			027									
162 1.2D + 1.5Lm + 1.0Wm				1.5			038		038									
163 1.2D + 1.5Lm + 1.0Wm				1.5		_	027	<u> </u>	046									
164 1.2D + 1.5Lm + 1.0Wm			1.2 35				- 9	3	053									
165 1.2D + 1.5Lm + 1.0Wm				1.5		_	.027	3	046									
. 55	Yes Y		1.2 35		0 .053		.038		038									
167 1.2D + 1.5Lm + 1.0Wm					1 .053		.046		027									
168 1.2D + 1.5Lm + 1.0Wm	Yes Y	DL 1	1.2 36	1.5	4 .053		.053	3										
100	Yes Y	DL 1	1.2 36	1.5	5 .053	_	.046	<u> </u>	.027									
170 1.2D + 1.5Lm + 1.0Wm	Yes Y	DL 1	1.2 36	1.5	3 .053	2	.038	3	.038									
171 1.2D + 1.5Lm + 1.0Wm	Yes Y	DL 1	1.2 36	1.5	7 .053	2	.027	3	.046									
172 1.2D + 1.5Lm + 1.0Wm	Yes Y	DL 1	1.2 36	1.5 8	3 .053	2	3 . 2	3	.053									
173 1.2D + 1.5Lm + 1.0Wm	Yes Y	DL 1	1.2 36	1.5	9 .053	2	027	3	.046									
174 1.2D + 1.5Lm + 1.0Wm	Yes Y	DL 1	1.2 36	1.5 1	0 .053	2	038	3	.038									
175 1.2D + 1.5Lm + 1.0Wm	Yes Y	DL ²	1.2 36	1.5 1	1 .053	2	046	3	.027									
176 1.2D + 1.5Lm + 1.0Wm	Yes Y	DL ²	1.2 36		4 .053	2	053	3	6.5									
177 1.2D + 1.5Lm + 1.0Wm	Yes Y			1.5		2	046	3	027									
178 1.2D + 1.5Lm + 1.0Wm	Yes Y			1.5			038	3	038									
179 1.2D + 1.5Lm + 1.0Wm				1.5			027	3	046								\Box	
180 1.2D + 1.5Lm + 1.0Wm				1.5 8			- 9	3	053									
181 1.2D + 1.5Lm + 1.0Wm				1.5			.027	3	046								\Box	
182 1.2D + 1.5Lm + 1.0Wm					0 .053		.038		038									
183 1.2D + 1.5Lm + 1.0Wm					1 .053			_	027									
184 1.2D + 1.5Lm + 1.0Wm			1.2 37	1.5 4	_													
185 1.2D + 1.5Lm + 1.0Wm			1.2 37				.046		.027									
186 1.2D + 1.5Lm + 1.0Wm		DI ,	1.2 37	1.5		2		3										
187 1.2D + 1.5Lm + 1.0Wm			1.2 37						.046									
188 1.2D + 1.5Lm + 1.0Wm			1.2 37						.053									
189 1.2D + 1.5Lm + 1.0Wm			1.2 37				027		.046									
190 1.2D + 1.5Lm + 1.0Wm			1.2 37						.038									
191 1.2D + 1.5Lm + 1.0Wm									.027									
191 1.2D + 1.5Lm + 1.0Wm					1 .053		046	_										
			1.2 37				053		6.5									
193 1.2D + 1.5Lm + 1.0Wm				1.5 5			046		027									
	Yes Y			1.5			038		038									
	Yes Y			1.5			027	<u> </u>	046									
	Yes Y			1.5 8			-9	_	053									
	Yes Y			1.5			.027	<u> </u>	046									
198 1.2D + 1.5Lm + 1.0Wm			1.2 37		0 .053		.038	_	038									
199 1.2D + 1.5Lm + 1.0Wm					1 .053		.046		027									
200 1.2D + 1.5Lm + 1.0Wm	Yes Y	DL 1	1.2 38	1.5	4 .053	2	.053	3										

July 28, 2021 1:34 P M Checked By: CA

Load Combinations (Continued)

	Des cription	S P	S B	Factor	rB	Fac	В	Fac	В	Fac	В	FacB	Fac	В	Fac	В	Fac	В	Fac	В	Fac
201 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	38	1.5	5	.053	2	.046	3	.027									
202 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	38	1.5	6	.053	2	.038	3	.038									
203 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	38	1.5	7	.053	2	.027	3	.046									
204 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	38	1.5	8	.053	2	3.2	3	.053									
205 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	38	1.5	9	.053	2	027	3	.046									
206 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	38	1.5	10	.053	2	038	3	.038									
207 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	38	1.5	11	.053	2	046	3	.027									
208 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2		1.5	4	.053	2	053	3	6.5									
209 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	38	1.5	5	.053	2	046	3	027									
210 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	38	1.5	6	.053	2	038	3	038									
211 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	38	1.5	7	.053	2	027	3	046									
212 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	38	1.5	8	.053	2	- 9	3	053									
213 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	38	1.5	9	.053	2	.027	3	046									
214 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	38	1.5	10	.053	2	.038	3	038									
215 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	38	1.5	11	.053	2	.046	3	027									
216 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	39	1.5	4	.053	2	.053	3										
217 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	39	1.5	5	.053	2	.046	3	.027									
218 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	39	1.5	6	.053	2	.038	3	.038									
219 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	39	1.5	7	.053	2	.027	3	.046									
220 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	39	1.5	8	.053	2	3.2	3	.053									
221 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	39	1.5	9	.053	2	027	3	.046									
222 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	39	1.5	10	.053	2	038	3	.038									
223 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	39	1.5	11	.053	2	046	3	.027									
224 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	39	1.5	4	.053	2	053	3	6.5									
225 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	39	1.5	5	.053	2	046	3	027									
226 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	39	1.5	6	.053	2	038	3	038									
227 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	39	1.5	7	.053	2	027	3	046									
228 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	39	1.5	8	.053	2	- 9	3	053									
	1.2D + 1.5Lm + 1.0Wm		DL	1.2	39	1.5	9	.053	2	.027	3	046									
230 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	39	1.5	10	.053	2	.038	3	038									
231 1	1.2D + 1.5Lm + 1.0Wm	Yes Y	DL	1.2	39	1.5	11	.053	2	.046	3	027									

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N25	max	1312.128	3	791.209	20	1795.922	39	-137.929	31	87.771	33	1488.13	19
2		min	-1308.841	27	-797.418	12	171.489	31	-3178.645	39	-1874.187	127	-1488.684	11
3	N1	max	1264.374	17	774.818	8	1724.281	45	3010.974	46	88.916	19	1438.412	25
4		min	-1260.623	25	-768.37	32	156.147	21	95.421	21	-1861.518	95	-1438.423	33
5	N13	max	335.553	18	1354.871	22	1797.972	34	561.371	194	3633.842	34	1287.105	14
6		min	-342.789	10	-1355.178	14	155.8	26	-622.909	172	97.069	26	-1286.531	22
7	Totals:	max	2592.988	2	2465.211	22	5170.893	43						
8		min	-2592.988	26	-2465.212	14	1367.852	67						

Envelope AISC 15th (360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[in]	LC	Shear Check	Lo		. phi*P	phi*P	.phi*M	.phi*M	Eqn
1	M7	PIPE 3.5	.457	0	34	.141	0		6449	78750	7953	7953	H1 - 1b
2	M12	PIPE 3.5	.456	0	39	.141	0		. 6449	78750	7953	.7953	<mark>H1-</mark> 1b
3	M2	PIPE 3.5	.437	0	45	.137	0	9:	6449	78750	7953	.7953	H1 - 1b
4	M6	C3X5	.368	34.856	34	.129	63	y 4	3710	47628	981.2	4104	H1 - 1b

Company Designer Job Number : Trylon : MÉ

: 189032 : 842864

July 28, 2021 1:34 PM Checked By: CA

Envelope AISC 15th (360-16): LRFD Steel Code Checks (Continued)

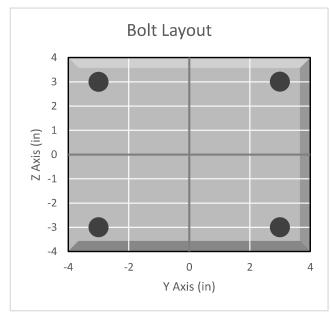
	Member	Shape	Code Check	Loc[in]	LC	Shear Check	Lo	phi*P phi*P phi*Mphi*M Eqn
5	M11	C3X5	.368	34.856	38	.130	6 . 5	.y 45 3710 47628 981.2 4104 H1-1b
6	M1	C3X5	.346	34.856	46	.125	63	.y 39 3710 47628 981.2 4104 H1-1b
7	MP4	PIPE 2.0	.233	48	10	.023	48	5 2086 32130 1871 1871 1 H1-1b
8	MP1	PIPE_2.0	.231	48	15	.027	48	11 2086 32130 1871 1871 H1-1b
9	MP5	PIPE_2.0	.231	48	10	.035	48	10 2086 32130 1871 1871 1 H1-1b
10	MP3	PIPE_2.0	.231	48	5	.028	48	9 2086 32130 1871 1871 1 H1-1b
11	MP9	PIPE 2.0	.230	48	10	.024	48	15 2086 32130 1871 1871 H1-1b
12	MP8	PIPE 2.0	.228	48	10	.034	48	10 2086 32130 1871 1871 H1-1b
13	MP2	PIPE 2.0	.228	48	15	.035	48	5 2086 32130 1871 1871 H1-1b
14	MP6	PIPE 2.0	.214	48	16	.028	48	4 2086 32130 1871 1871 H1-1b
15	MP7	PIPE 2.0	.211	48	4	.029	48	16 2086 32130 1871 1871 1 H1-1b
16	M10	6.5"x0.37" Pl	.191	21	2	.080	21	y 47 35 13 77 922 60 0.6 62 16 H1 -1 b
17	M15	6.5"x0.37" Pl	.191	21	7	.080	21	y 42 35 13 77 922 60 0.6 62 36 H1 -1 b
18	M5	6.5"x0.37" Pl	.185	21	13	.077	21	y 42 3513 77922 600.6 6245 H1-1b
19	M13	L2x2x3	.129	0	31	.028	0	z 43 2096 2339 557.7 1182 1 H2-1
20	M4	L2x2x3	.123	0	13	.027	0	y 41 2096 2339 557.7 1182 1 H2-1
21	H2	PIPE_3.5	.123	48	159	.059	72	4 6066 78750 7953 7953 1 H1-1b
22	H1	PIPE_3.5	.120	48	105	.063	24	10 6066 78750 7953 7953 1 H1-1b
23	Н3	PIPE_3.5	.120	48	207	.061	24	16 6066 78750 7953 7953 1 H1-1b
24	M9	L2x2x3	.116	0	2	.028	0	y 46 2096 2339 557.7 1182 1 H2-1
25	M8	L2x2x3	.109	0	26	.028	0	z 38 2096 2339 557.7 1182 1 H2-1
26	M14	L2x2x3	.104	0	8	.028	0	y 35 2096 2339 557.7 1182 1 H2-1
27	М3	L2x2x3	.104	0	20	.027	0	z 49 2096 2339 557.7 1182 1 H2-1
28	M19	PIPE 2.0	.095	24	10	.084	72	2 1491 32130 1871 1871 H1-1b
29	M20	PIPE 2.0	.093	24	16	.081	24	7 1491 32130 1871 1871 H1-1b
30	M21	PIPE 2.0	.093	72	4	.081	24	12 1491 32130 1871 1871 H1-1b
31	M24	L6.6"X4.46"X	.036	21	18	.025	0	y 14 51 17 87561 2464 7125 1 H2-1
32	M22	L6.6"X4.46"X	.032	2.625	22	.027	42	y 11 51 17 87561 2464 7125 1 H2-1
33	M23	L6.6"X4.46"X	.032	39.812	30	.027	0	y 9 5117 87561 2464 7125 1 H2-1

Envelope None Cold Formed Steel Code Checks

Member Shape	Code Check	Loc[in]LC SheaLoc[iDirLC	Pn[l b]	Tn[lb] Mnyy[l Mnzz[l.	Cb	Cmyy Cmzz	Eqn
		No Data to Print					

APPENDIX D ADDITIONAL CALCUATIONS

Analysis date: 7/28/2021



BOLT TOOL 1.5.2

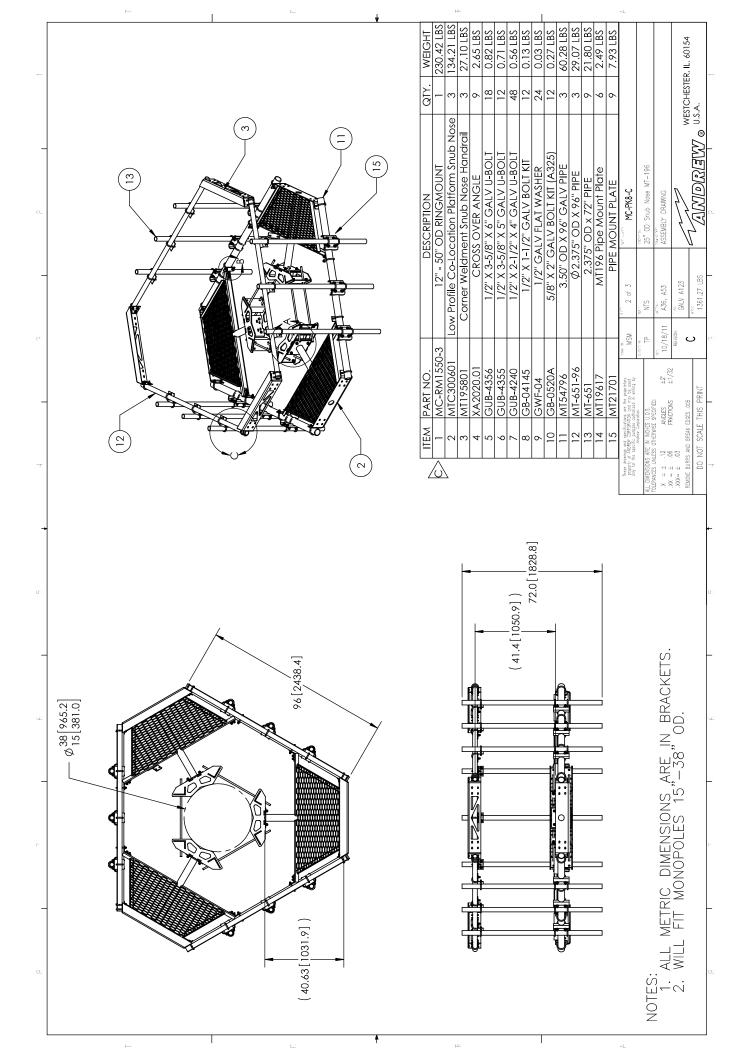
Project Data					
Job Code:	189032				
Carrier Site ID:	BOHVN00016A				
Carrier Site Name:	CT-CCI-T-842864				

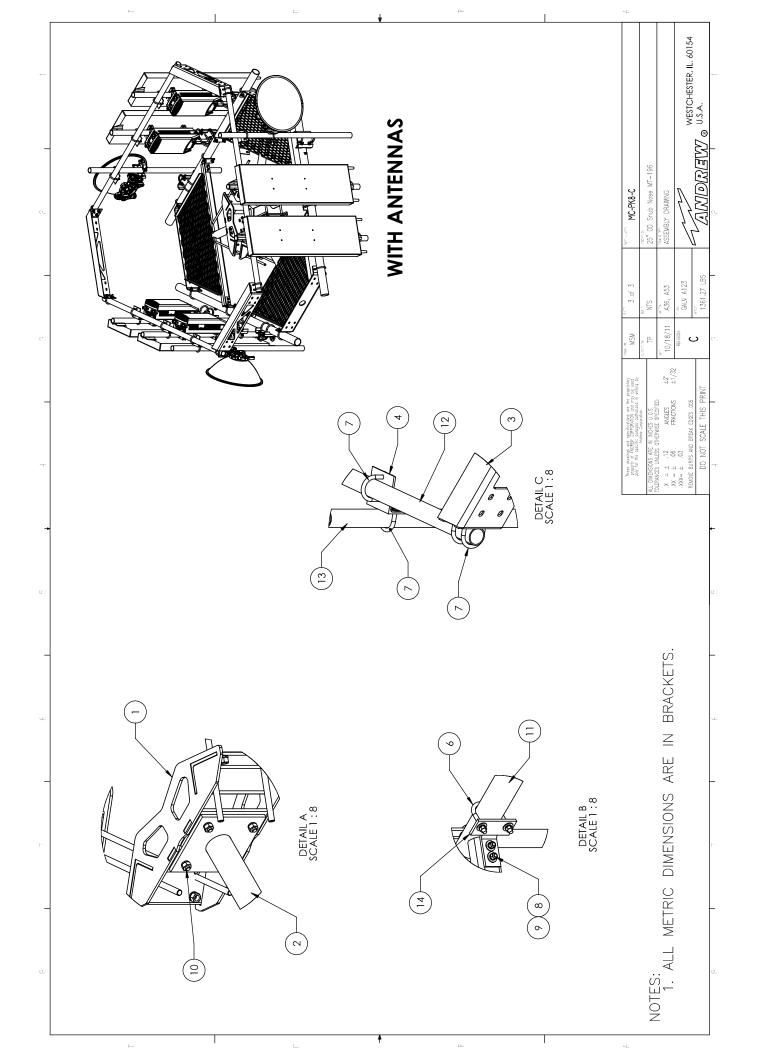
Code					
Design Standard:	TIA-222-H				
Slip Check:	No				
Pretension Standard:	AISC				

Bolt Properties						
Connection Type:	Bolt					
Diameter:	0.625	in				
Grade:	A325					
Yield Strength (Fy):	92	ksi				
Ultimate Strength (Fu):	120	ksi				
Number of Bolts:	4					
Threads Included:	Yes					
Double Shear:	No					
Connection Pipe Size:	-	in				

Connection Description	
Standoff to Collar	

Bolt Check*						
Tensile Capacity (ϕT_n):		lbs				
Shear Capacity (ϕV_n) :		lbs				
Tension Force (T _u):	3763.0	lbs				
Shear Force (V _u):	454.7	lbs				
Tension Usage:	17.6%					
Shear Usage:	3.1%					
Interaction:	17.6%	Pass				
Controlling Member:	M12					
Controlling LC:	42					


^{*}Rating per TIA-222-H Section 15.5


APPENDIX E SUPPLEMENTAL DRAWINGS

WESTCHESTER, IL. 60154

WESTCHESTER, IL. 60154

U.S.A. BY DRR MSM DESCRIPTION
INITIAL RELEASE
CHANGE NOSE CORNER BRKT, ADD GUB-4240 LOW PROFILE PLATFORM KIT 8' FACE MC-PK8-C REVISIONS ASSEMBLY DRAWING 1410.14 LBS GALV A123 1 of 3 A36, A500 10/18/11 MSM DO NOT SCALE THIS PRINT \triangle NOTE NO. 464.27 LBS 543.22 LBS FOR BOM ENTRY ONLY 402.64 LBS WEIGHT QIY. NOTES: 1. CUSTOMER ASSEMBLY SHEETS 2-3. STEEL BUNDLE FOR SNUB NOSE PLATFORM PIPE STEEL BUNDLE FOR MC-PK8-C HARDWARE KIT FOR MC-PK8-C DESCRIPTION 2 MCPK8CSB 3 MCPK8CHWK MTC3006SB ITEM PART NO.

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOHVN00016A

842864

201 Granite Road Guilford, Connecticut 06437

October 26, 2021

EBI Project Number: 6221006487

Site Compliance Summary					
Compliance Status:	COMPLIANT				
Site total MPE% of FCC general population allowable limit:	29.38%				

October 26, 2021

Dish Wireless

Emissions Analysis for Site: BOHVN00016A - 842864

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **201 Granite Road** in **Guilford, Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 201 Granite Road in Guilford, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) 4 n66 channels (AWS Band 2190 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 5) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative

estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 6) The antennas used in this modeling are the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector A, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector B, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antenna mounting height centerline of the proposed antennas is 77 feet above ground level (AGL).
- 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 9) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	Α	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665- 20	Make / Model:	JMA MX08FRO665- 20	Make / Model:	JMA MX08FRO665- 20
Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz	Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz	Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz
Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd
Height (AGL):	77 feet	Height (AGL):	77 feet	Height (AGL):	77 feet
Channel Count:	12	Channel Count:	12	Channel Count:	12
Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts
ERP (W):	5,236.31	ERP (W):	5,236.31	ERP (W):	5,236.31
Antenna A1 MPE %:	4.69%	Antenna BI MPE %:	4.69%	Antenna C1 MPE %:	4.69%

environmental | engineering | due diligence

Site Composite MPE %					
Carrier	MPE %				
Dish Wireless (Max at Sector A):	4.69%				
AT&T	5.82%				
T-Mobile	10.19%				
Verizon	8.68%				
Site Total MPE % :	29.38%				

Dish Wireless MPE % Per Sector			
Dish Wireless Sector A Total:	4.69%		
Dish Wireless Sector B Total:	4.69%		
Dish Wireless Sector C Total:	4.69%		
Site Total MPE % :	29.38%		

Dish Wireless Maximum MPE Power Values (Sector A)							
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE
Dish Wireless 600 MHz n71	4	223.68	77.0	6.38	600 MHz n71	400	1.60%
Dish Wireless 1900 MHz n70	4	542.70	77.0	15.48	1900 MHz n70	1000	1.55%
Dish Wireless 2190 MHz n66	4	542.70	77.0	15.48	2190 MHz n66	1000	1.55%
						Total:	4.69%

[•] NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)
Sector A:	4.69%
Sector B:	4.69%
Sector C:	4.69%
Dish Wireless	
Maximum MPE %	4.69%
(Sector A):	
Site Total:	29.38%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **29.38**% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320 West Henrietta, NY 14586

Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Tower Share Application

Crown Castle telecommunications site at: **201** GRANITE ROAD, GUILFORD, CT 06437

NCWPCS MPL 31- YEAR SITES TOWER HOLDING ("Crown Castle") hereby authorizes DISH Wireless, LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name: 842864/GUILFORD SW Customer Site ID: BOHVNooo16A/CT-CCI-T-842864 Site Address: 201 GRANITE ROAD, GUILFORD, CT 06437

Crown Castle		
By: Richard Zajac Site Acquisition Specialist	Date:	10/26/21

Exhibit H

Recipient Mailings

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0046 5954 08

547086410 10/28/2021 Trans. #: Print Date: Ship Date: 10/28/2021 11/01/2021 Delivery Date:

Priority Mail® Postage: Total:

\$8.70 \$8.70

Ref#: DS-842864

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


MATTHEW T HOEY III

FIRST SELECTMAN

31 PARK ST

GUILFORD CT 06437-2629

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0046 5954 15

547086410 10/28/2021 Trans. #: Print Date: Ship Date: 10/28/2021 11/01/2021 Delivery Date:

Priority Mail® Postage: Total:

\$8.70 \$8.70

Ref#: DS-842864

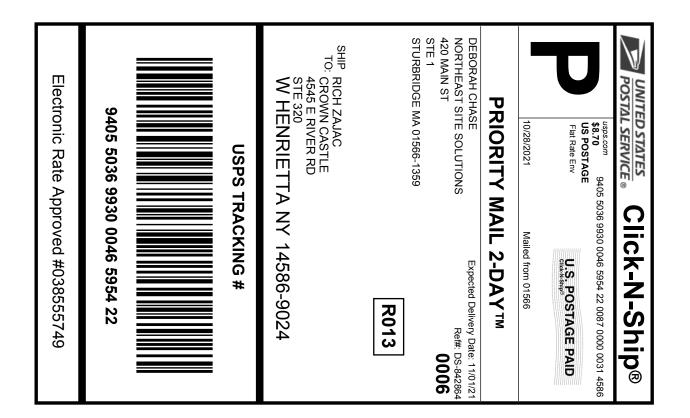
From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


GEORGE KRAL

GUILFORD PLANNING & ZONIING

50 BOSTON ST

GUILFORD CT 06437-2801

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0046 5954 22

547086410 10/28/2021 Trans. #: Print Date: Ship Date: 10/28/2021 11/01/2021 Delivery Date:

Priority Mail® Postage: \$8.70 \$8.70 Total:

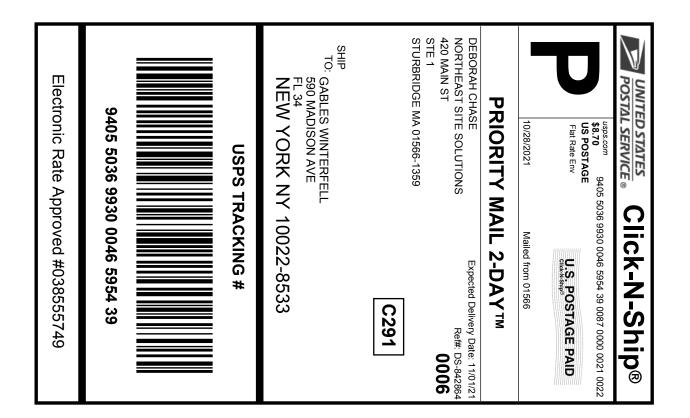
Ref#: DS-842864 From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


RICH ZAJAC CROWN CASTLE

4545 E RIVER RD

STE 320

W HENRIETTA NY 14586-9024

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0046 5954 39

547086410 10/28/2021 Trans. #: Print Date: Ship Date: 10/28/2021 11/01/2021 Delivery Date:

Priority Mail® Postage: Total:

\$8.70 \$8.70

Ref#: DS-842864

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

GABLES WINTERFELL

590 MADISON AVE

FL 34

NEW YORK NY 10022-8533

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

842864

UNITED STATES POSTAL SERVICE.

त्रा १९५ ११

UNIONVILLE 24 MILL ST UNIONVILLE, CT 06085-9998 (800)275-8777

10/29/2021	(800)2/	o-8//	1	02	:27 PM
10/29/2021 	Qt	Г	Unit rice		Price
Prepaid Mail West Henri Weight: O Acceptance	1 etta, NY lb 2.00 Date: /29/2021	14586 oz			\$0.00
Tracking #	Date: 0/29/2021		5954	39	\$0.00
Prepaid Mail Guilford, Weight: O Acceptance Fri 10 Tracking # 9405 5	CT 06437 1b 11.00 Date: 0/29/2021		5954	08	\$0.00
Tracking (Date:		5954	15	\$0.00
Grand Total:					\$0.00