

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

October 13, 2021

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Exempt Modification Application

1919 Boston Post Road, Guilford CT 06437

Latitude: 41.300361 Longitude: -72.708083 Site#: 876343_ Crown_Dish

Dear Ms. Bachman:

Based on the 2020 merger between T-Mobile and Sprint, and as part of the agreement, the DOJ required T-Mobile to divest some sites to Dish in order to create an additional wireless provider. This site is part of the agreement.

Dish Wireless LLC is requesting to file an exempt modification for an existing tower located at 1919 Boston Post Road, Guilford CT 06437. Dish Wireless LLC proposes to install three (3) antennas at the 138-foot level of the existing 149-foot tower. The property is owned by DDR Guilford LLC and the tower is owned by Crown Castle. This modification includes hardware that is 5G capable.

Dish Wireless LLC Planned Modifications:

Remove:

- (3) Antenna mount
- (3) APX18

Remove and Replace: NONE

Install New:

- (1) Commscope MC-PK8-DSH platform mount
- (3) LMA MX08FRO665-20 Antenna
- (3) TA08025-B604 RRU
- (3) TA08025-B605 RRU
- (1) Raycap
- (1) 1-5/8" Hybrid (Inside Pole)

Existing to Remain:

NONE

Ground Work: (within existing compound)
New H-Frame
Equipment Cabinet
Power/Telco Cabinet
Ice Bridge
7'x5' Steel Platform

The facility was approved by the Connecticut Siting Council, Docket No. 349 on May 22, 2008. Please see attached.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § 16- SOj-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-SOj-73, a copy of this letter is being sent to Matthew T. Hoey III, First Selectman, Elected Official and George Kral, Guilford Town Planner for the Town of Guilford, as well as the property owner and the tower owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing structure.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, Dish Wireless LLC respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Denise Sabo

Denise Sabo

Mobile: 203-435-3640 Fax: 413-521-0558

Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments cc:

Matthew T. Hoey III, First Selectman Town of Guilford Selectman's Office 31 Park Street, Guilford CT 06437

George Kral, Guilford Town Planner Town of Guilford Planning & Zoning 50 Boston Street, Guilford CT 06437

DDR Guilford LLC, Property Owner 3300 Enterprise Pkwy, Beachwood OH 44122

Crown Castle, Tower Owner

Exhibit A

Original Facility Approval

DOCKET NO. 349 – Global Signal Acquisitions II application	}	Connecticut
for a Certificate of Environmental Compatibility and Public Need		g
for the construction, maintenance and operation of a telecommunications facility located at 1919 Boston Post Road,	}	Siting
Guilford, Connecticut.	}	Council
		May 22, 2008

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a telecommunications facility, including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate, either alone or cumulatively with other effects, when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to Global Signal Acquisitions II, hereinafter referred to as the Certificate Holder, for an existing telecommunications facility to be relocated to the site identified as the Alternate Site in the Findings of Fact, located at 1919 Boston Post Road, Guilford, Connecticut. The Council denies certification of the site identified as the Application Site in the Findings of Fact, located at 1919 Boston Post Road, Guilford, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be constructed as a monopole, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of the wireless carriers that utilize the existing tower and other entities, both public and private, but such tower shall not exceed a height of 150 feet above ground level.
- 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be served on the Town of Guilford for comment, and all parties and intervenors as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction and shall include:
 - a) a final site plan(s) of site development to include specifications for the tower, tower foundation, antennas, equipment compound, radio equipment, access road, utility line, and landscaping; and
 - b) construction plans for site clearing, grading, landscaping, water drainage, and erosion and sedimentation controls consistent with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, as amended.

- 3. The Certificate Holder shall, prior to the commencement of operation, provide the Council worst-case modeling of the electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of the electromagnetic radio frequency power density be submitted to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.
- 4. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 6. The Certificate Holder shall provide reasonable space on the tower for no compensation for any Town of Guilford public safety services (police, fire and medical services), provided such use can be accommodated and is compatible with the structural integrity of the tower.
- 7. Unless otherwise approved by the Council, if the facility authorized herein is not fully constructed and providing wireless services within eighteen months from the date of the mailing of the Council's Findings of Fact, Opinion, and Decision and Order (collectively called "Final Decision"), this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made. The time between the filing and resolution of any appeals of the Council's Final Decision shall not be counted in calculating this deadline.
- 8. Any request for extension of the time period referred to in Condition 7 shall be filed with the Council not later than 60 days prior to the expiration date of this Certificate and shall be served on all parties and intervenors, as listed in the service list, and the Town of Guilford. Any proposed modifications to this Decision and Order shall likewise be so served.
- 9. If the facility ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
- 10. The Certificate Holder shall remove any nonfunctioning antenna, and associated antenna mounting equipment, within 60 days of the date the antenna ceased to function.

Docket 349: Guilford Decision and Order

Page 3

11. In accordance with Section 16-50j-77 of the Regulations of Connecticut State Agencies, the Certificate Holder shall provide the Council with written notice two weeks prior to the commencement of site construction activities. In addition, the Certificate Holder shall provide the Council with written notice of the completion of site construction and the commencement of site operation.

Pursuant to General Statutes § 16-50p, the Council hereby directs that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in the New Haven Register and the Shoreline Times.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

APPLICANT

ITS REPRESENTATIVE

Global Signal Acquisitions II

Julie Kohler, Esq. Carrie Larson, Esq. Cohen and Wolf, P.C.

PARTY

Anthony Poccia William and Myung Arabolos Margaret Rose Richard and Sandra Wilson

ITS REPRESENTATIVE

John S. Bennet, Esq. Gould, Larson, Bennet, Wells & McDonnell, P.C.

INTERVENORS

Heather Fernandes Diane and Alan Sholomskas Brian Denning Daniel Capozziello Joel and Donna Zemke

THEIR REPRESENTATIVE

John S. Bennet, Esq.
Gould, Larson, Bennet, Wells & McDonnell, P.C.

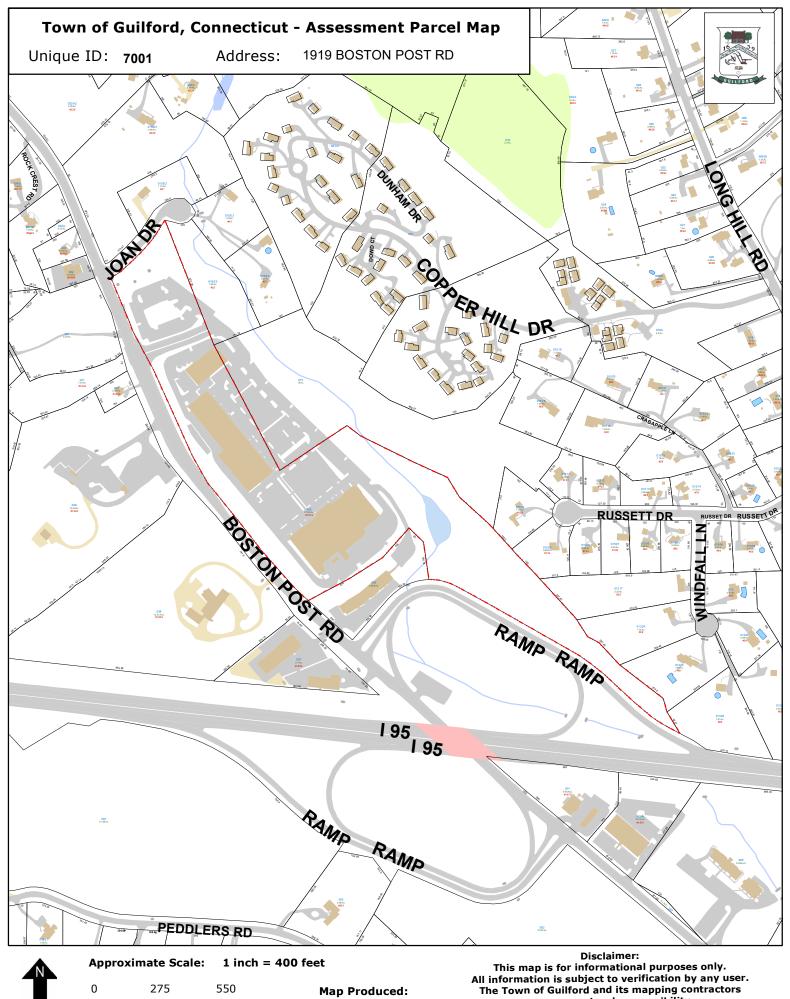
Exhibit B

Property Card

Parcel Information

Location:	1919 BOSTON POST RD	Map and Parcel:	079035	Census Tract:	1903
Zoning:	SCW	Developer's Map:	5074	Developer's Lot:	
Total Acreage:	27.83	Farm, Forest, Open Space Acres:		Unique ID:	7001

Value Information


Land 6,694,400 4,686,080 Buildings 22,716,123 15,901,280 Detached Outbuildings 695,997 487,200 Total 30,106,520 21,074,560

Owner's Information

Owner's Data	
DDR GUILFORD LLC	
3300 ENTERPRISE PKWY	
BEACHWOOD OH 44122	

Back To Search

Print View

September 2020 Feet

assume no legal responsibility for the information contained herein.

Exhibit C

Construction Drawings

wireless.

DISH Wireless L.L.C. SITE ID:

BOHVN00026A

DISH Wireless L.L.C. SITE ADDRESS:

1919 BOSTON POST RD. **GUILFORD, CT 06437**

CONNECTICUT CODE COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:

2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS MECHANICAL

	SHEET INDEX
SHEET NO.	SHEET TITLE
T-1	TITLE SHEET
A-1	OVERALL AND ENLARGED SITE PLAN
A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS
A-4	EQUIPMENT DETAILS
A-5	EQUIPMENT DETAILS
A-6	EQUIPMENT DETAILS
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES
E-2	ELECTRICAL DETAILS
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE
G-1	GROUNDING PLANS AND NOTES
G-2	GROUNDING DETAILS
G-3	GROUNDING DETAILS
RF-1	RF CABLE COLOR CODE
GN-1	LEGEND AND ABBREVIATIONS
GN-2	GENERAL NOTES
GN-3	GENERAL NOTES
GN-4	GENERAL NOTES

SCOPE OF WORK

- INSTALL (1) PROPOSED HYBRID CABLE

- PROPOSED ICE BRIDGE
- PROPOSED PPC CABINET INSTALL (PROPOSED EQUIPMENT CABINET
- INSTALL PROPOSED POWER CONDITIE
- INSTALL (1) PROPOSED TELCO CONDUIT
- INSTALL (1) PROPOSED GPS UNIT
- PROPOSED SAFETY SWITCH (IF REQUIRED)
- INSTALL (1) PROPOSED FIBER NID (IF REQUIRED)
 EXISTING METER SOCKET ON EXISTING H-FRAME TO BE UTILIZED

SITE PHOTO

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.

11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIPMENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:

TOWER SCOPE OF WORKS

- INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR)
 INSTALL (1) PROPOSED PLATFORM MOUNT
- INSTALL PROPOSED JUMPERS
 INSTALL (6) PROPOSED RRUS (2 PER SECTOR)
- INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP)
- REMOVE EXISTING ANTENNAS AT 140'-0" AGL

- GROUND SCOPE OF WORK:
 INSTALL (1) PROPOSED METAL PLATFORM
- INSTALL

- PROPOSED TELCO-FIBER BOX

DIRECTIONS

PROJECT DIRECTORY

TOWER OWNER: CROWN CASTLE

SITE DESIGNER: INFINIGY

SITE ACQUISITION:

RF ENGINEER:

DISH Wireless L.L.C.

LITTLETON, CO 80120

2000 CORPORATE DRIVE

CANONSBURG, PA 15317

2500 W. HIGGINS RD. STE. 500

HOFFMAN ESTATES, IL 60169

NICHOLAS CURRY

nicholas.curry@cro

igvier.soto@dish.com

sved.zaidi@dish.com

SYED ZAIDI

(877) 486-9377

(847) 648-4068

CONSTRUCTION MANAGER: JAVIER SOTO

5701 SOUTH SANTA FE DRIVE

DIRECTIONS FROM TWEED NEW HAVEN AIRPORT:

SITE INFORMATION

PROPERTY OWNER:

ADDRESS:

COUNTY:

TOWER TYPE:

TOWER CO SITE ID:

LATITUDE (NAD 83):

LONGITUDE (NAD 83):

ZONING JURISDICTION:

ZONING DISTRICT:

PARCEL NUMBER:

OCCUPANCY GROUP:

POWER COMPANY:

CONSTRUCTION TYPE: II-B

TELEPHONE COMPANY: AT&T

TOWER APP NUMBER: 553888

GLOBAL SIGNAL ACQUISTION

ATLANTA, GA 30384-7455

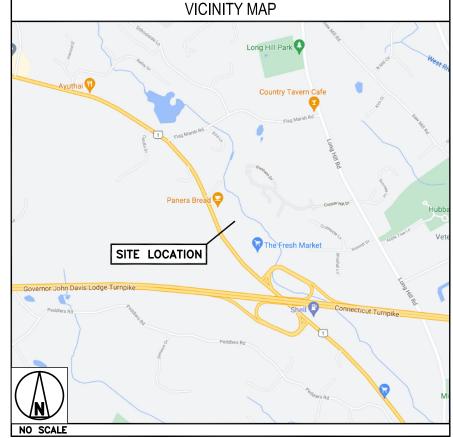
PO BOX 277455

MONOPOLE

NEW HAVEN

41' 18' 1.27" N 41.300361 N

72° 42' 29.13" W 72.708083 W


TOWN OF GUILFORD

CONNECTICUT LIGHT & POWER

079035

876343

DEPART AND HEAD (NORTHEAST), TURN LEFT, AVIS RENT A CAR ON THE CORNER, TURN RIGHT, TURN RIGHT TOWARD BURR ST, BUDGET CAR RENTAL ON THE CORNER, TURN RIGHT ONTO BURR ST, KEEP STRAIGHT TO GET ONTO DODGE AVE, TURN LEFT ONTO THOMPSON AVE, KEEP STRAIGHT TO GET ONTO CT-100 / HIGH ST, TAKE THE RAMP ON THE RIGHT FOR I-95 NORTH AND HEAD TOWARD NEW LONDON, AT EXIT 57, HEAD ON THE RAMP RIGHT AND FOLLOW SIGNS FOR US-1, TURN LEFT ONTO US-1 S / BOSTON POST RD, TURN RIGHT, ARRIVE AT 1919 BOSTON POST RD. GUILFORD, CT 06437

5701 SOUTH SANTA FF DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG PA 15317

INFINIGY8

2500 W. HIGGINS RD. SUITE 500 | HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4068 | FAX: 518-690-0793 WWW.INFINIGY.COM

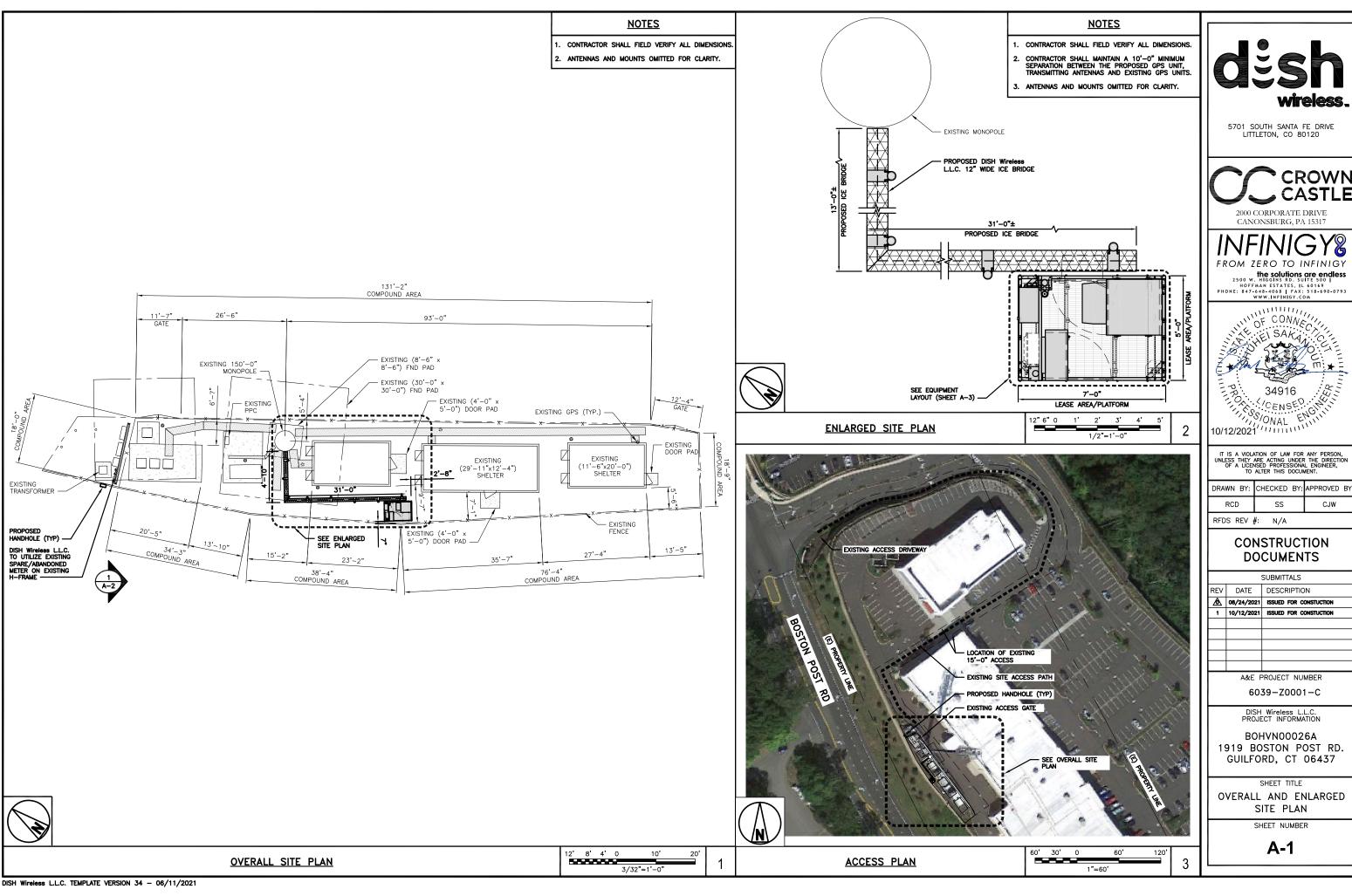
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY CJW N/A

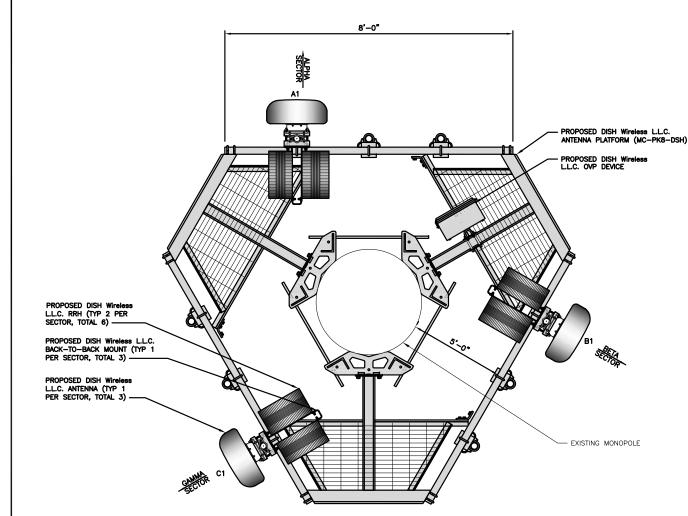
RFDS REV #:

CONSTRUCTION DOCUMENTS

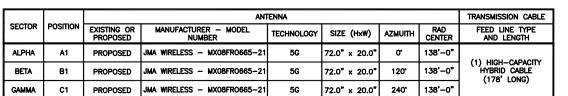
SUBMITTALS DATE DESCRIPTION ⚠ 08/24/2021 ISSUED FOR CONSTUCTION 1 10/12/2021 ISSUED FOR CONSTUCTION A&E PROJECT NUMBER


6039-Z0001-C

BOHVN00026A 1919 BOSTON POST RD. GUILFORD, CT 06437


> SHEET TITLE TITLE SHEET

SHEET NUMBER


T-1

ANTENNA LAYOUT

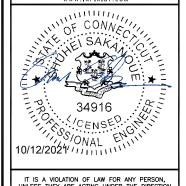
NOTES

- 1. CONTRACTOR TO REFER TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS.
- 2. ANTENNA OR RRH MODELS MAY CHANGE DUE TO EQUIPMENT AVAILABILITY. ALL EQUIPMENT CHANGES MUST BE APPROVED AND REMAIN IN COMPLIANCE WITH THE PROPOSED DESIGN AND STRUCTURAL ANALYSES.

		RRH		NOTES
SECTOR	POSITION	MANUFACTURER — MODEL NUMBER	TECHNOLOGY	1. COI
ALPHA	A1	FUJITSU - TA08025-B604	5G	DET 2. ANT
ALFIIA	A1	FUJITSU - TA08025-B605	5G	2. AN AV/ REI
BETA	B1	FUJITSU - TA08025-B604	5G	STE
BEIA	B1	FUJITSU - TA08025-B605	5G	
GAMMA	C1	FUJITSU - TA08025-B604	5G	
GAMMA	C1	FUJITSU - TA08025-B605	5G	

- CONTRACTOR TO REFER TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS.
- ANTENNA AND RRH MODELS MAY CHANGE DUE TO EQUIPMENT AVAILABILITY, ALL EQUIPMENT CHANGES MUST BE APPROVED AND REMAIN IN COMPLIANCE WITH THE PROPOSED DESIGN AND STRUCTURAL ANALYSES.

dësh wireless.


5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY FROM ZERO TO INFINIGY

the solutions are endless 2500 W. HIGGINS RD. SUITE 500 | HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4068 | FAX: 518-690-0793 WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN BY:	CHECKED BY:	APPROVED BY
	RCD	SS	CJW

RFDS REV #: N/A

CONSTRUCTION DOCUMENTS

	:	SUBMITTALS
REV	DATE	DESCRIPTION
▲	08/24/2021	ISSUED FOR CONSTUCTION
1	10/12/2021	ISSUED FOR CONSTUCTION
	A&E F	PROJECT NUMBER

6039-Z0001-C

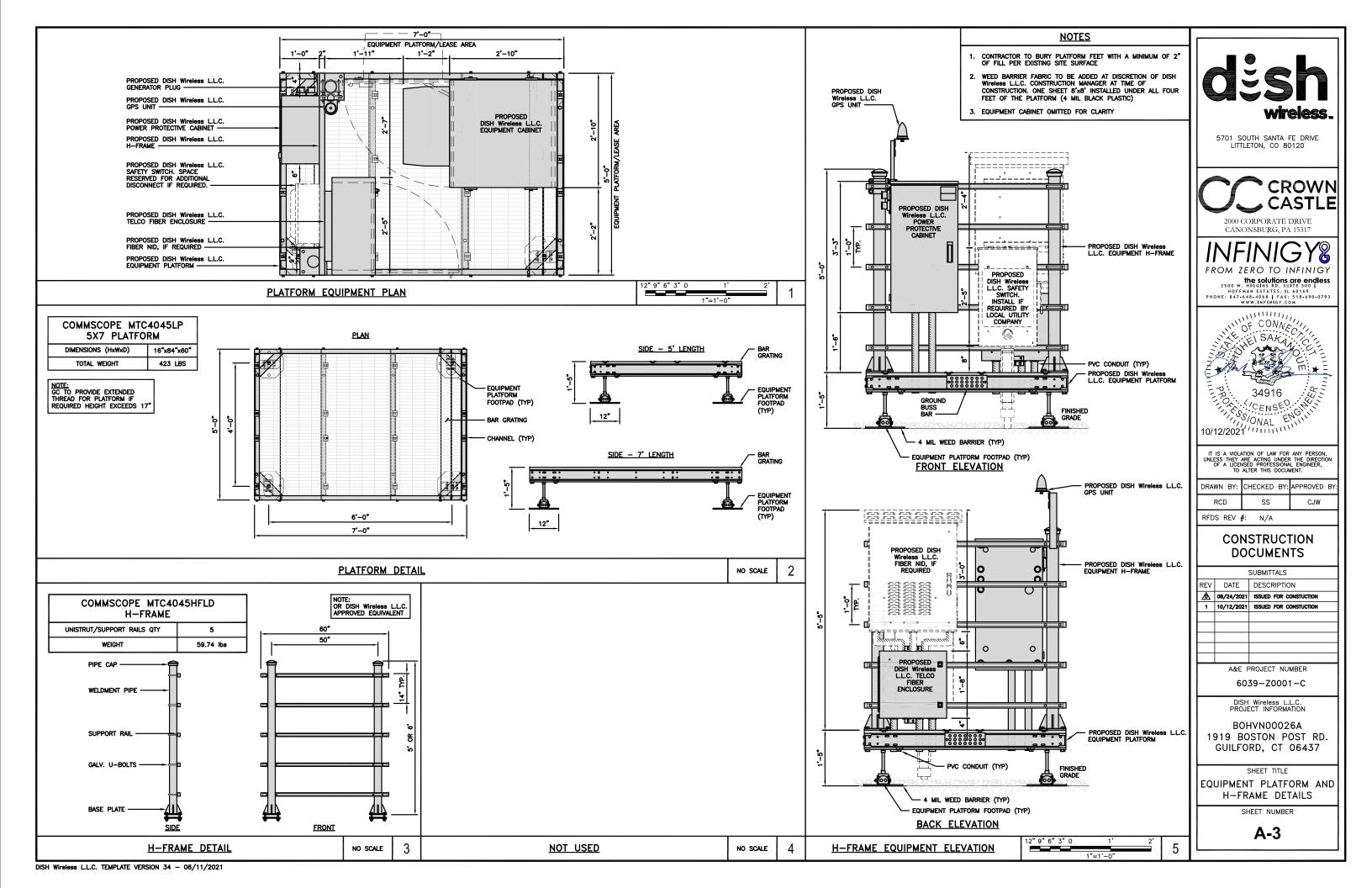
DISH Wireless L.L.C. PROJECT INFORMATION

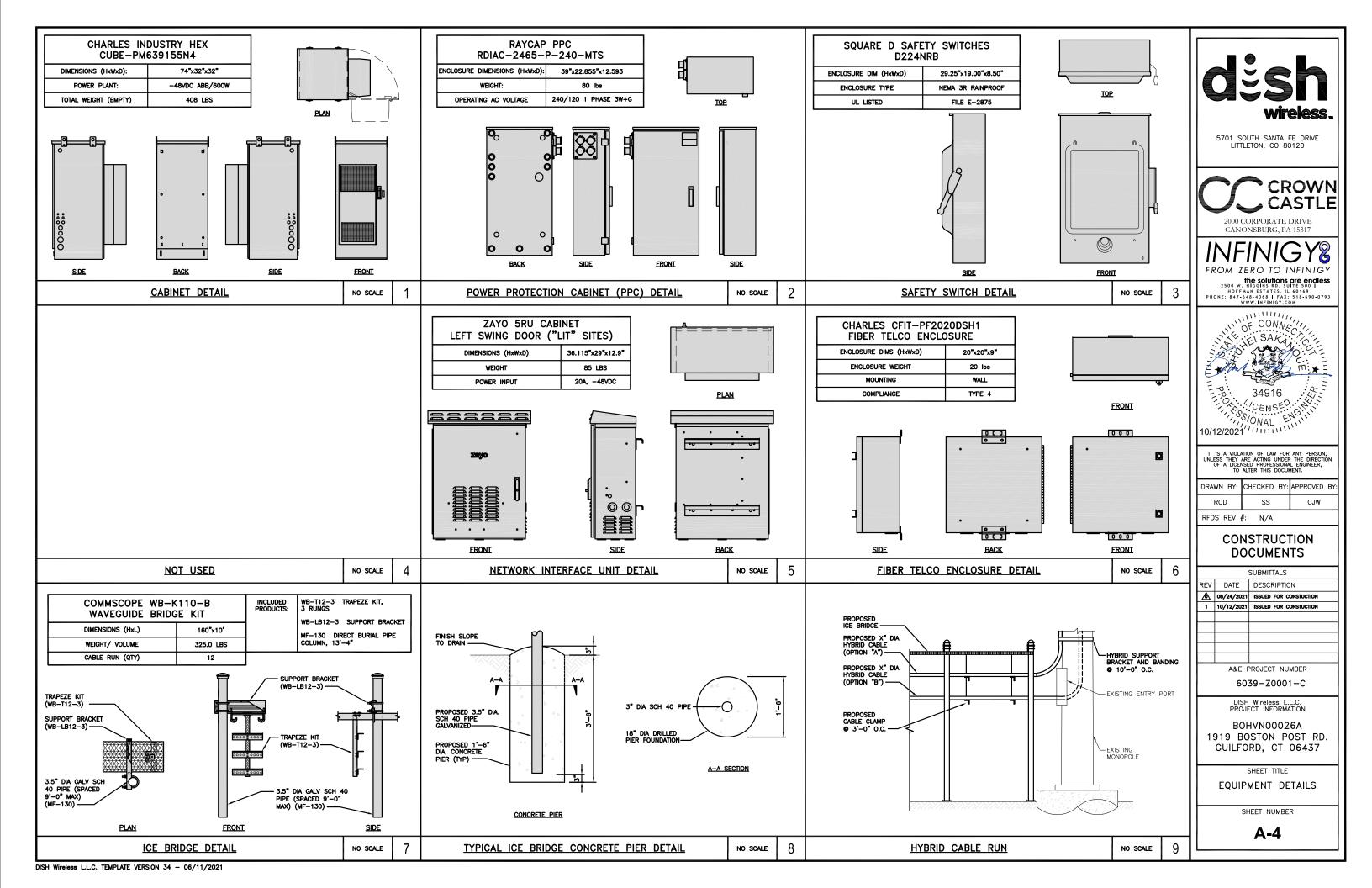
BOHVN00026A 1919 BOSTON POST RD. GUILFORD, CT 06437

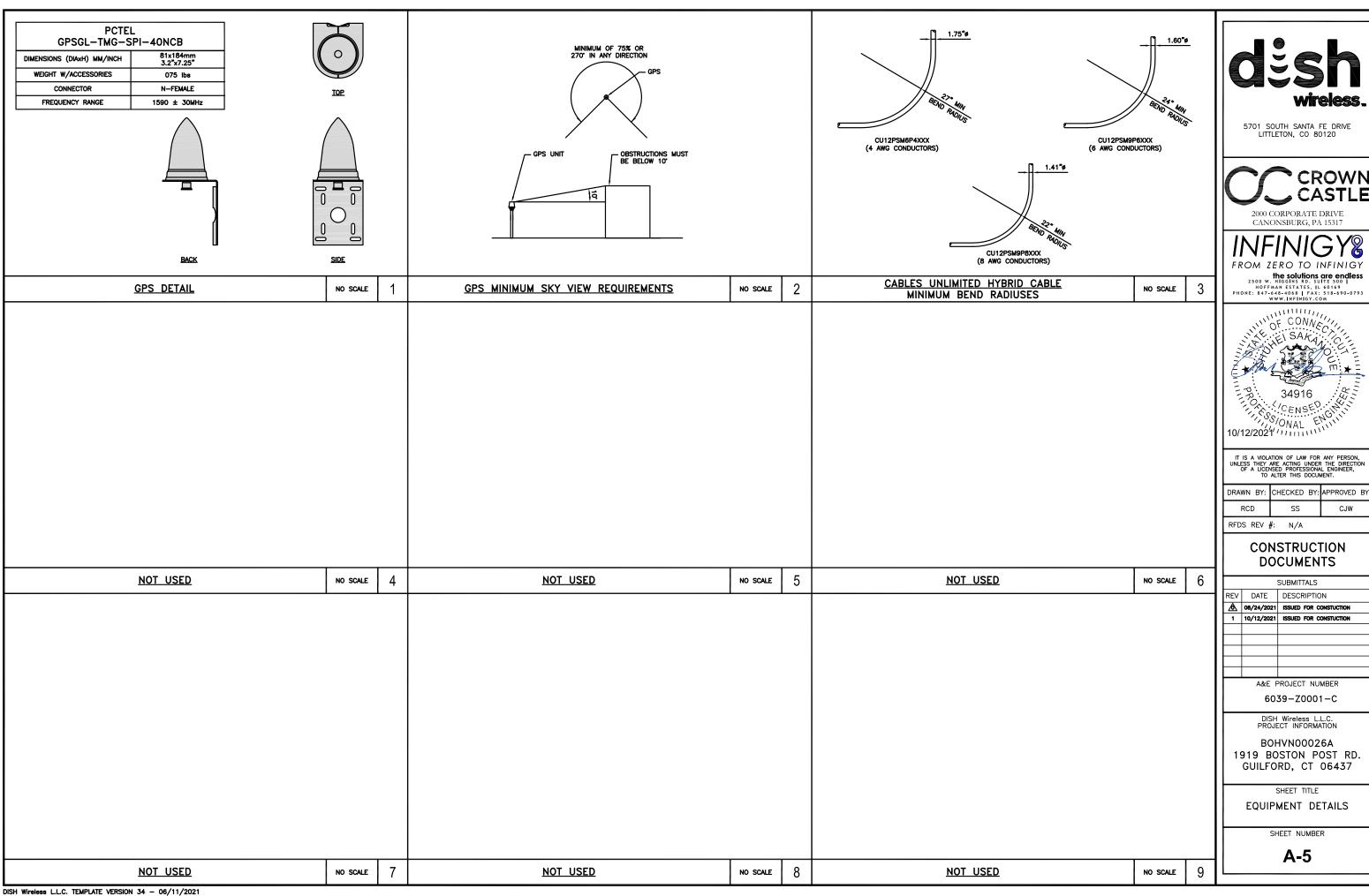
SHEET TITLE

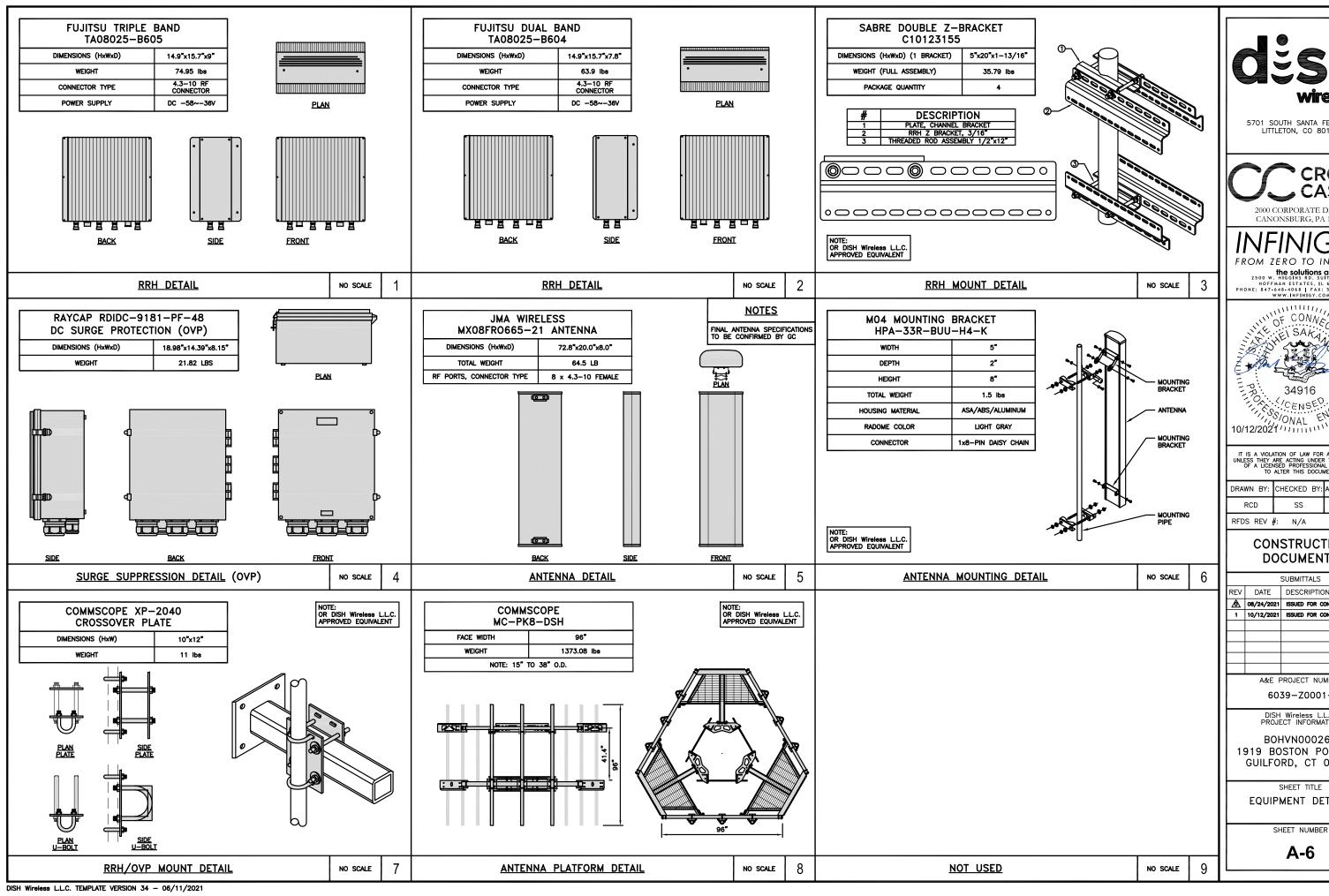
ELEVATION, ANTENNA LAYOUT AND SCHEDULE

SHEET NUMBER


A-2


ANTENNA SCHEDULE


NO SCALE


2"6"0

3/4"=1'-0'

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-408 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN BY:	CHECKED BY:	APPROVED E	3`
	RCD	SS	CJM	

CONSTRUCTION **DOCUMENTS**

		SUBMITTALS
REV	DATE	DESCRIPTION
▲	08/24/2021	ISSUED FOR CONSTUCTION
1	10/12/2021	ISSUED FOR CONSTUCTION
	A&E F	PROJECT NUMBER

6039-Z0001-C

BOHVN00026A 1919 BOSTON POST RD. GUILFORD, CT 06437

EQUIPMENT DETAILS

A-6

NOTES

- CONTRACTOR SHALL FIELD VERIFY ALL PROPOSED UNDERGROUND UTILITY CONDUIT ROUTE.
- ANTENNAS AND MOUNTS OMITTED FOR CLARITY.

DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING $\pm 24V$ and $\pm 48V$ conductors. RED MARKINGS SHALL IDENTIFY $\pm 24V$ and blue markings shall identify $\pm 48V$.

- CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
- 2. ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS.
- 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
- 4. CONDUIT ROUGH—IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS. VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
- 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
- 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
- 7. CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
- ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
- INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250.
 THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL
 DISCONNECT SWITCHES, AND EQUIPMENT CABINETS.
- 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.
- 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT.
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS.
- 13. ALL TRENCHES IN COMPOUND TO BE HAND DUG

ELECTRICAL NOTES

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED BY RFDS REV #:

CONSTRUCTION DOCUMENTS

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE

CANONSBURG, PA 15317

INFINIGY8

FROM ZERO TO INFINIGY the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

WOF CONNEY

OF CONNEC,

OF CONNEC

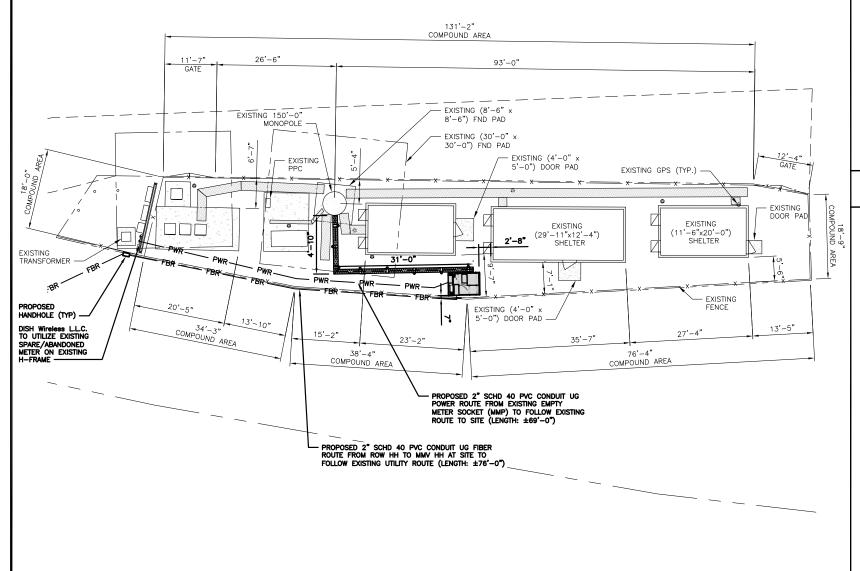
CROWN

SUBMITTALS. REV DATE DESCRIPTION 08/24/2021 ISSUED FOR CONSTUCTION 1 10/12/2021 ISSUED FOR CONSTUCTION A&E PROJECT NUMBER

6039-Z0001-C

DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00026A 1919 BOSTON POST RD. GUILFORD, CT 06437

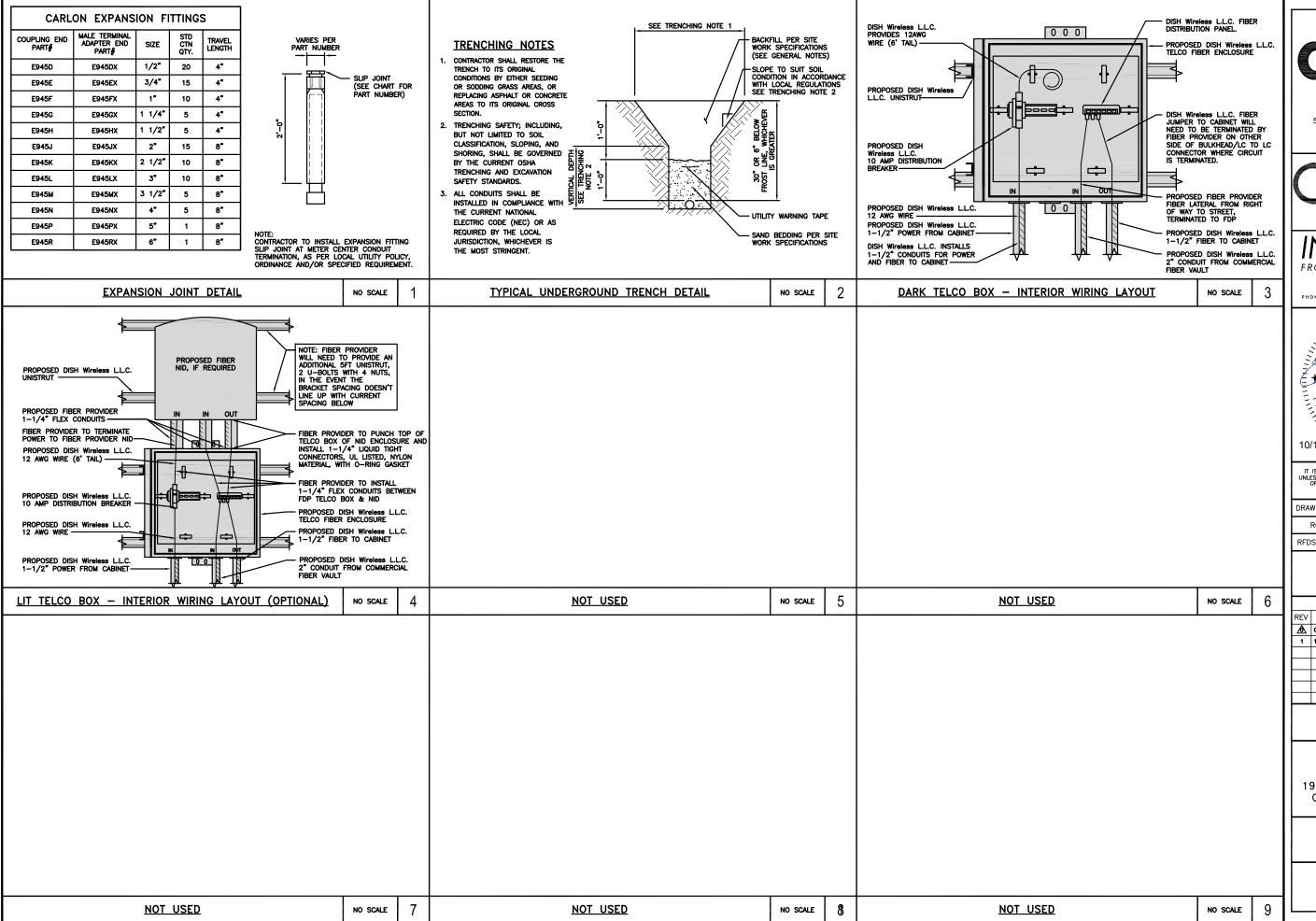

SHEET TITLE

ELECTRICAL/FIBER ROUTE PLAN AND NOTES

SHEET NUMBER

120'

E-1


UTILITY ROUTE PLAN

EXISTING ACCESS DRIVEWAY LOCATION OF EXISTING 15'-0" ACCESS EXISTING SITE ACCESS PATH PROPOSED HANDHOLE (TYP) EXISTING UTILITY POLE PROPOSED HANDHOLE (TYP) PROPOSED 2" SCHD 40 PVC CONDUIT UG FIBER ROUTE FROM ROW HH TO MMV HH AT SITE TO FOLLOW EXISTING UTILITY ROUTE (LENGTH: ±76'-0") -

1/4"=1'-0"

OVERALL UTILITY ROUTE PLAN

DISH Wireless L.L.C. TEMPLATE VERSION 34 - 06/11/2021

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY FROM ZERO TO INFINIGY

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COB

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED BY:
RCD	SS	CJW

RFDS REV #: N/A

CONSTRUCTION DOCUMENTS

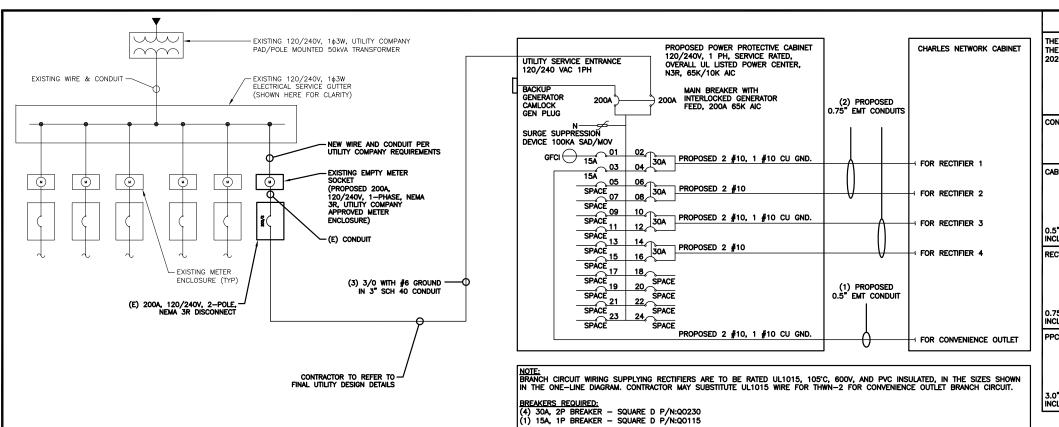
SUBMITTALS

REV	DATE	DESCRIPTION
⚠	08/24/2021	ISSUED FOR CONSTUCTION
1	10/12/2021	ISSUED FOR CONSTUCTION
	A&E F	PROJECT NUMBER

6039-Z0001-C

2000 2000.

DISH Wireless L.L.C. PROJECT INFORMATION


BOHVN00026A 1919 BOSTON POST RD. GUILFORD, CT 06437

SHEET TITLE

ELECTRICAL DETAILS

SHEET NUMBER

E-2

NOTES

THE (2) CONDUITS WITH (4) CURRENT CARRYING CONDUCTORS EACH, SHALL APPLY THE ADJUSTMENT FACTOR OF 80% PER 2014/17 NEC TABLE 310.15(B)(3)(a) OR 2020 NEC TABLE 310.15(C)(1) FOR UL1015 WIRE.

> #12 FOR 15A-20A/1P BREAKER: 0.8 x 30A = 24.0A #10 FOR 25A-30A/2P BREAKER: 0.8 x 40A = 32.0A #8 FOR 35A-40A/2P BREAKER: 0.8 x 55A = 44.0A #8 FOR 35A-40A/2P BREAKER: 0.8 x 55A = 44.0A #6 FOR 45A-60A/2P BREAKER: 0.8 x 75A = 60.0A

CONDUIT SIZING: AT 40% FILL PER NEC CHAPTER 9, TABLE 4, ARTICLE 358. 0.5" CONDUIT - 0.122 SQ. IN AREA 0.75" CONDUIT - 0.213 SQ. IN AREA

3.0" CONDUIT - 2.907 SQ. IN AREA CABINET CONVENIENCE OUTLET CONDUCTORS (1 CONDUIT): USING THWN-2, CU.

2.0" CONDUIT - 1.316 SQ. IN AREA

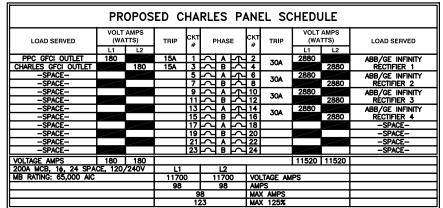
#10 - 0.0211 SQ. IN X 2 = 0.0422 SQ. IN #10 - 0.0211 SQ. IN X 1 = 0.0211 SQ. IN <GROUND = 0.0633 SQ. IN

0.5" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (3) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

RECTIFIER CONDUCTORS (2 CONDUITS): USING UL1015, CU.

#10 - 0.0266 SQ. IN X 4 = 0.1064 SQ. IN #10 - 0.0082 SQ. IN X 1 = 0.0082 SQ. IN <BARE GROUND = 0.1146 SQ. IN

0.75" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (5) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.


PPC FEED CONDUCTORS (1 CONDUIT): USING THWN, CU.

3/0 - 0.2679 SQ. IN X 3 = 0.8037 SQ. IN #6 - 0.0507 SQ. IN X 1 = 0.0507 SQ. IN <GROUND

TOTAL = 0.8544 SQ. IN

3.0" SCH 40 PVC CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (4) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC ONE-LINE DIAGRAM NO SCALE

PANEL SCHEDULE

	#	TILL (IIII)	(
			L1	L2	
Æ	2	30A	2880		ABB/GE INFINITY
	4	3		2880	RÉCTIFIER 1
Æ	6	30A	2880		ABB/GE INFINITY
	8	5		2880	RÉCTIFIER 2
玊	10	30A	2880		ABB/GE INFINITY
	12	5		2880	RÉCTIFIER 3
尹	14	30A	2880		ABB/GE INFINITY
	16	3		2880	RÉCTIFIER 4
P	18				-SPACE-
P	20				-SPACE-
7	22				-SPACE-
\sim	24				-SPACE-
			11520	11520	
	VOLTAGE AMPS		IPS		·
		AMPS			
	AM				
	AM MA	X AMPS			
	AM MA				
	AM MA	X AMPS			
	AM MA	X AMPS			
	AM MA	X AMPS			
	AM MA	X AMPS			
	AM MA	X AMPS			
	AM MA	X AMPS			
	AM MA	X AMPS			
	AM MA	X AMPS			
	AM MA	X AMPS			

2

NO SCALE

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

> DRAWN BY: CHECKED BY: APPROVED BY RCD CJW

5701 SOUTH SANTA FE DRIVE

LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG PA 15317

INFINIGY8

FROM ZERO TO INFINIGY

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

OF CONNECTION OF

34916

CROWN

RFDS REV #: N/A

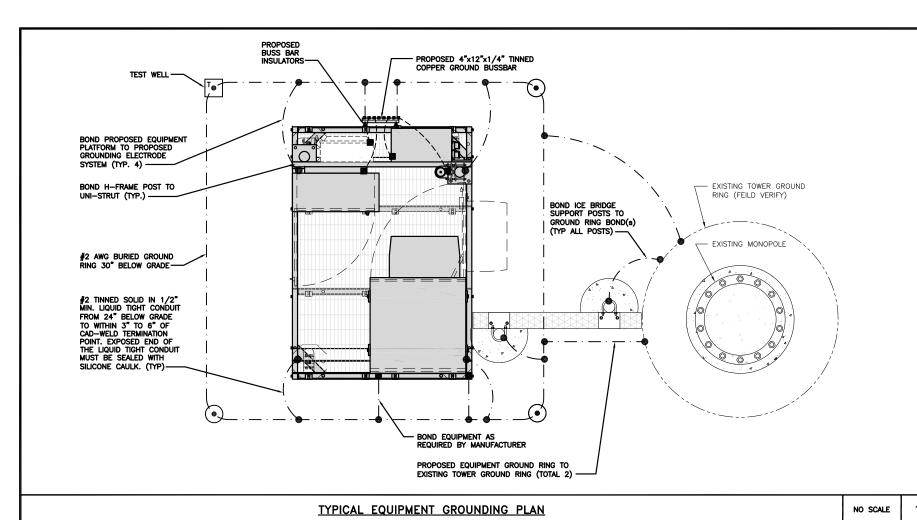
CONSTRUCTION **DOCUMENTS**

SUBMITTALS REV DATE DESCRIPTION ⚠ 08/24/2021 ISSUED FOR CONSTUCTION 1 10/12/2021 ISSUED FOR CONSTUCTION A&E PROJECT NUMBER

6039-Z0001-C

DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00026A 1919 BOSTON POST RD. GUILFORD, CT 06437


SHEET TITLE

ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE

SHEET NUMBER

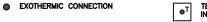
E-3

NOT USED NO SCALE

NOTES

ANTENNAS AND OVP SHOWN ARE GENERIC AND NOT REFERENCING TO A SPECIFIC MANUFACTURER. THIS LAYOUT IS FOR REFERENCE

- PROPOSED UPPER TOWER GROUND BAR


PROPOSED BUSS BAR

PROPOSED 4"x6"x1/4" TINNED

PROPOSED #2 AWG STRANDED COPPER GREEN INSULATED (TYP)

COPPER SECTOR GROUND BUSSBAR (TYP OF 3)

INSULATORS (TYP)

TEST GROUND ROD WITH INSPECTION SLEEVE

---- #6 AWG STRANDED & INSULATED

- · - #2 AWG SOLID COPPER TINNED ▲ BUSS BAR INSULATOR

GROUNDING LEGEND

1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.

MECHANICAL CONNECTION

GROUND BUS BAR

GROUND ROD

 (\bullet)

- CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM. GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH Wireless L.L.C. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS.
- 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED.

GROUNDING KEY NOTES

- (A) EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW GRADE, OR 6 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM THE EXTERIOR WALL OR FOOTING.
- B TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS, AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN BROWNER FOR THE FOUNDATION OF THE FOUNDATION AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS.
- © Interior ground ring: #2 awg stranded green insulated copper conductor extended around the perimeter of the equipment area. All non-telecommunications related metallic objects found within a site shall be grounded to the interior ground ring with #6 awg stranded green
- D BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS SHALL BE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE CORNERS OF THE
- (E) GROUND ROD: UL LISTED COPPER CLAD STEEL. MINIMUM 1/2" DIAMETER BY EIGHT FEET LONG. GROUND RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. GROUND RODS SHALL BE DRIVEN TO THE DEPTH OF GROUND RING CONDUCTOR.
- F CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GREEN INSULATED COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUCTORS.
- G HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH.
- (H) EXTERIOR CABLE ENTRY PORT GROUND BARS: LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING, BOND TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTORS WITH AN EXOTHERMIC WELD AND INSPECTION SLEEVE.
- 1 TELCO GROUND BAR: BOND TO BOTH CELL REFERENCE GROUND BAR OR EXTERIOR GROUND RING.
- J FRAME BONDING: THE BONDING POINT FOR TELECOM EQUIPMENT FRAMES SHALL BE THE GROUND BUS THAT IS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEWORK.
-) Interior unit bonds: Metal Frames, Cabinets and Individual Metallic Units Located with the Area of the Interior ground ring require a #6 awg stranded green insulated copper bond to the
- L FENCE AND GATE GROUNDING: METAL FENCES WITHIN 7 FEET OF THE EXTERIOR GROUND RING OR OBJECTS BONDED TO THE EXTERIOR GROUND RING SHALL BE BONDED TO THE GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEEDING 25 FEET. BONDS SHALL BE MADE AT EACH CAST DEPOT AND ACCROSS CAST OFFENTIAL NOT EXCEEDING 25 FEET. BONDS SHALL BE MADE AT EACH
- M <u>Exterior unit bonds:</u> Metallic objects, external to or mounted to the building, shall be bonded to the exterior ground ring. Using #2 tinned solid copper wire
- N <u>ICE BRIDGE SUPPORTS:</u> EACH ICE BRIDGE LEG SHALL BE BONDED TO THE GROUND RING WITH #2 AWG BARE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRIDGE LEG AND BURIED
- DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEMENTS AND INSTALLATIONS OR CHANGES TO DC CONNETTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICE CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPPED WITH A MASTER DC SYSTEM RETURN GROUND CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED TO THE CELL SITE REFERENCE COULDING BAR
- (P) TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICALLY BONDED TO PROPOSED ANTENNA MOUNT COLLAR.

REFER TO DISH Wireless L.L.C. GROUNDING NOTES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CROWN

2000 CORPORATE DRIVE

CANONSBURG PA 15317

INFINIGY8 FROM ZERO TO INFINIGY

the solutions are endless 2500 W. HIGGINS RD. SUITE 500 | 2500 W. HIGGINS RD. SUITE 500 | HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4068 | FAX: 518-690-0793 WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY CJW

RFDS REV #:

CONSTRUCTION **DOCUMENTS**

SUBMITTALS. DATE DESCRIPTION RFV ⚠ 08/24/2021 ISSUED FOR CONSTUCTION 1 10/12/2021 ISSUED FOR CONSTUCTION A&E PROJECT NUMBER

6039-Z0001-C

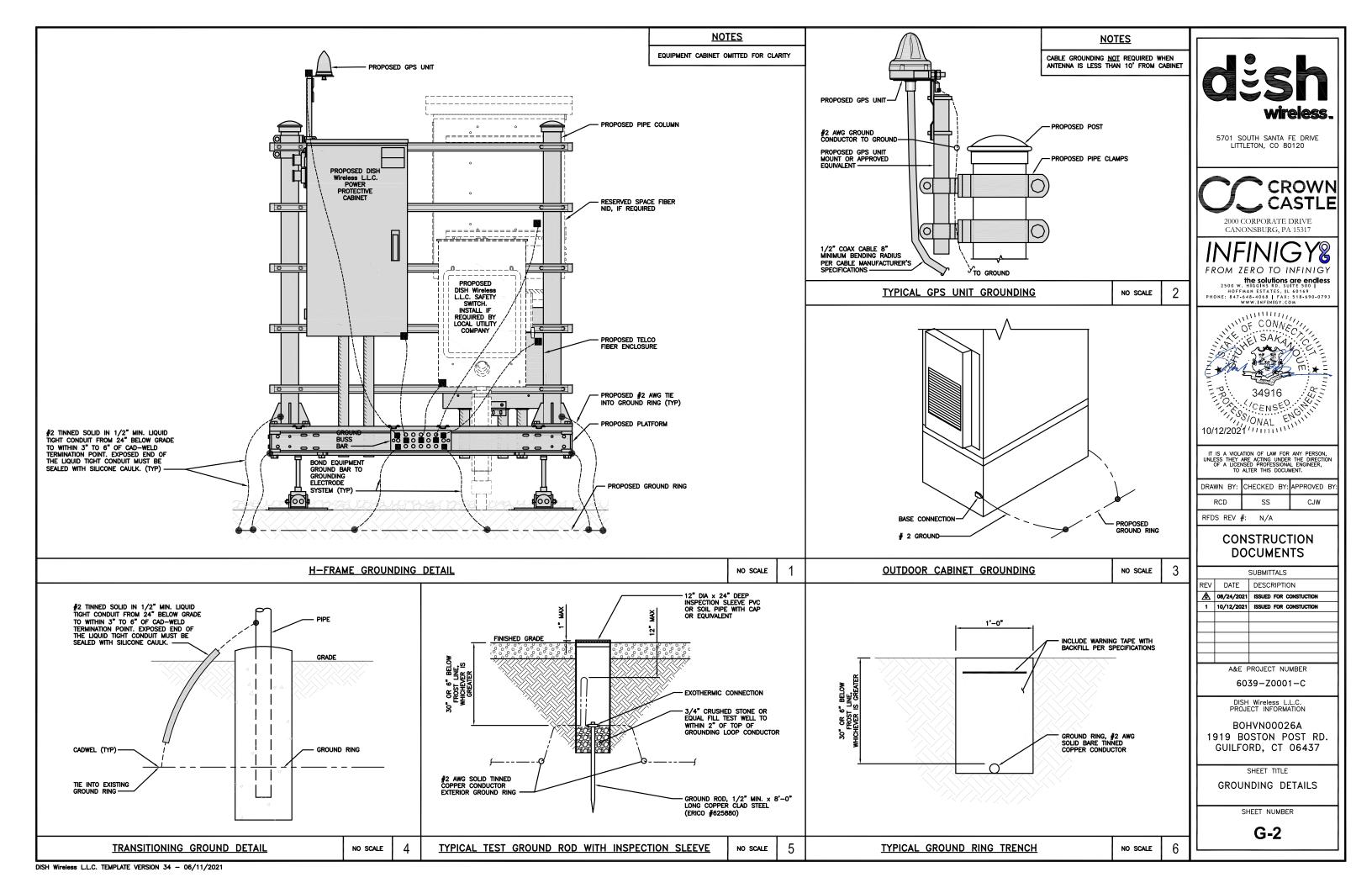
DISH Wireless L.L.C. PROJECT INFORMATION

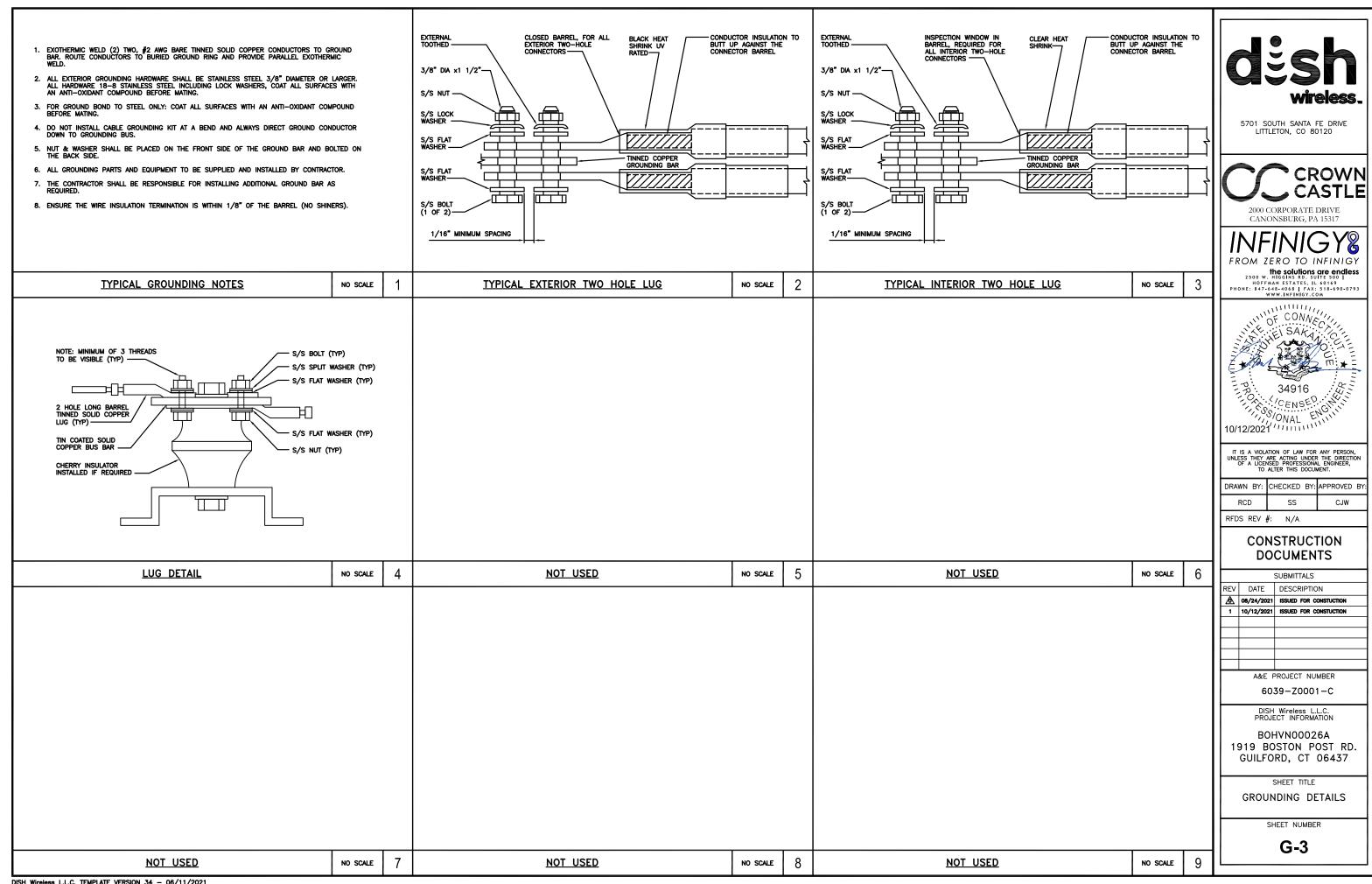
BOHVN00026A 1919 BOSTON POST RD. GUILFORD, CT 06437

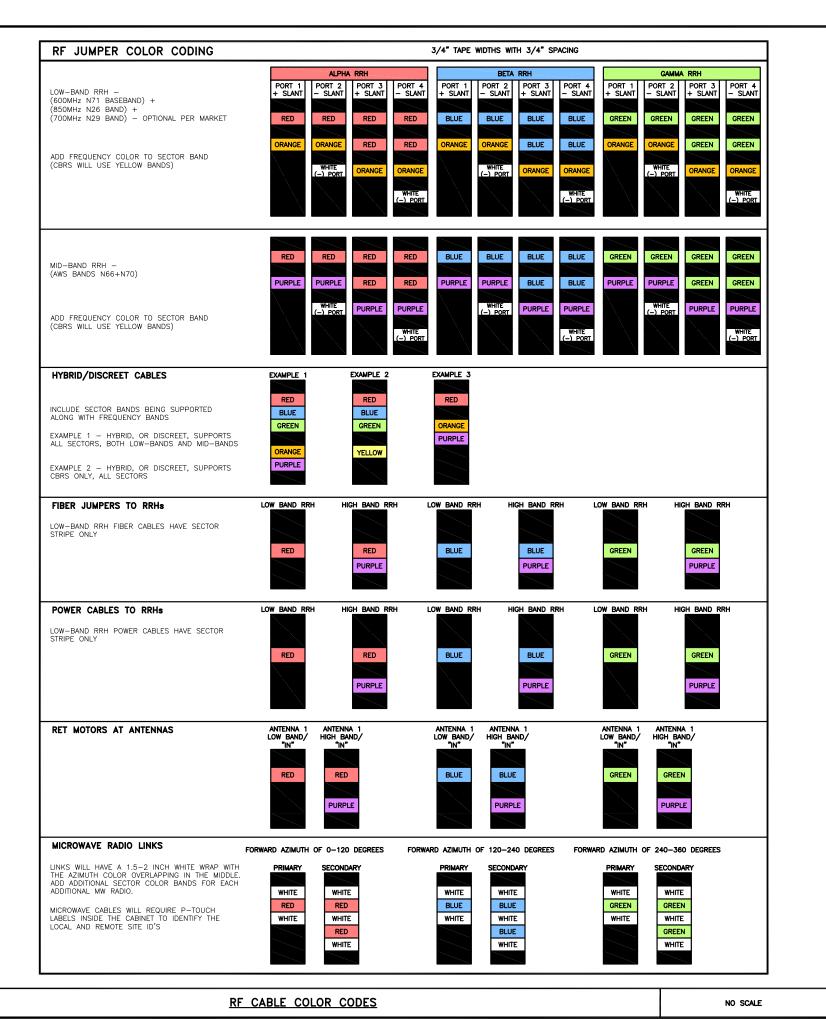
SHEET TITLE

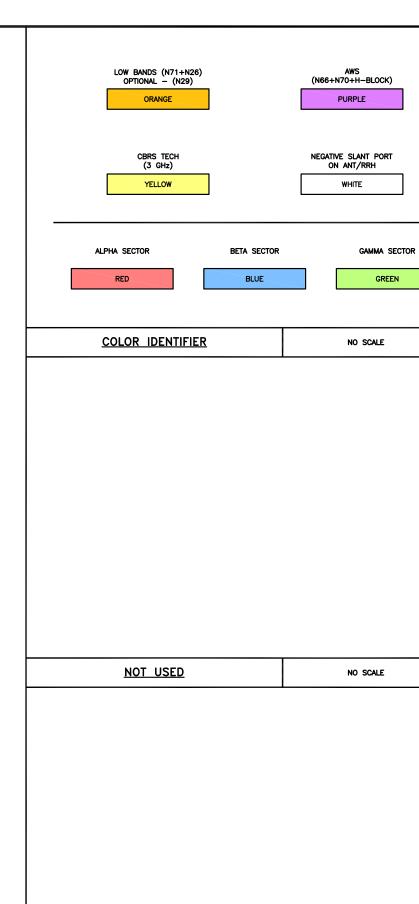
GROUNDING PLANS AND NOTES

SHEET NUMBER


G-1


TYPICAL ANTENNA GROUNDING PLAN


NO SCALE


GROUNDING KEY NOTES

NO SCALE

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CROWN CASTLE

> 2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY FROM ZERO TO INFINIGY

the solutions are endless
2500 w. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:
RCD SS CJW

RFDS REV #: N/A

CONSTRUCTION DOCUMENTS

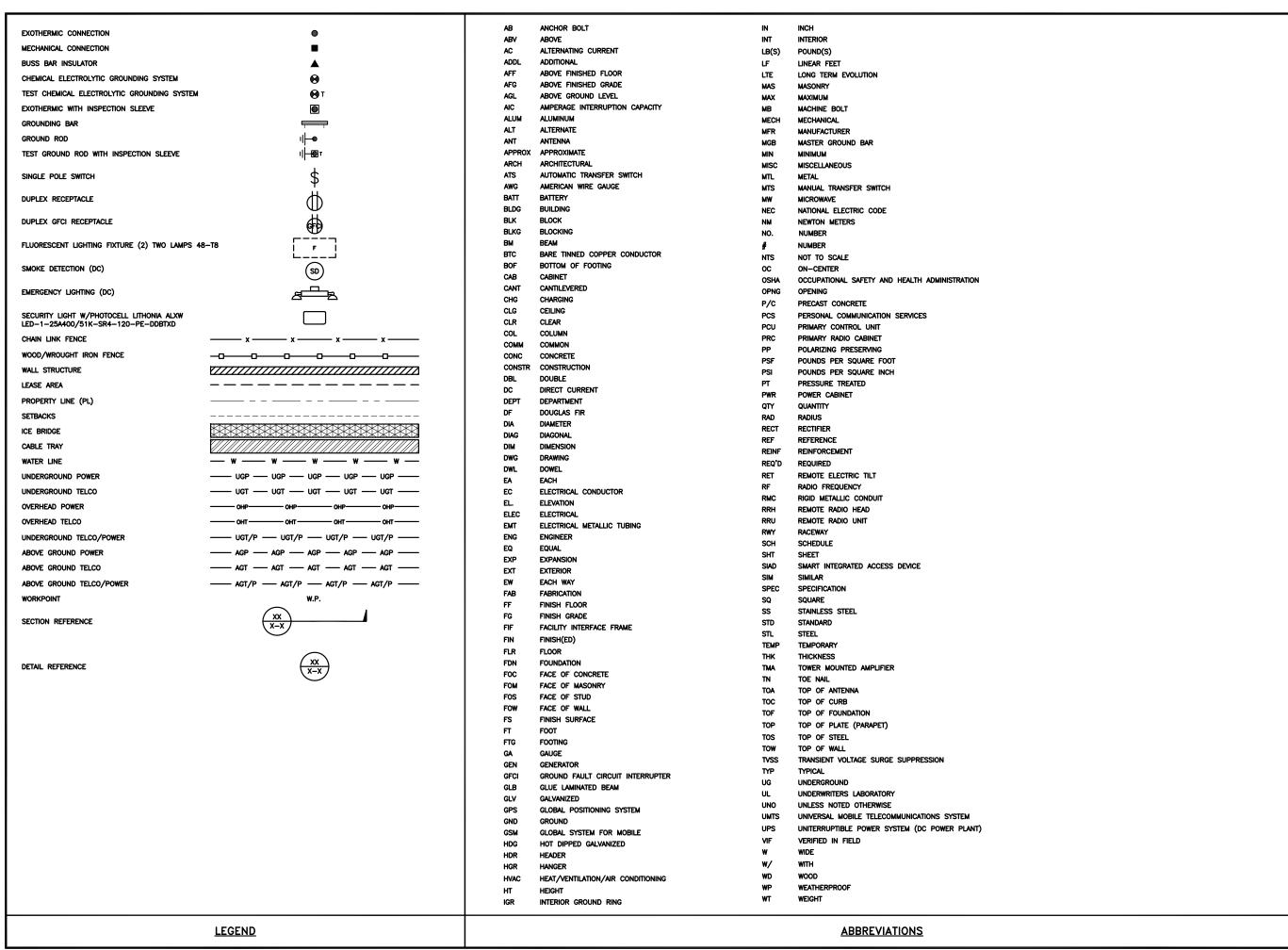
A&E PROJECT NUMBER

6039-Z0001-C

DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00026A 1919 BOSTON POST RD. GUILFORD, CT 06437

SHEET TITLE


RF

CABLE COLOR CODES

SHEET NUMBER

RF-1

NOT USED NO SCALE 4

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY&

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
RCD)	SS		CJW	

RFDS REV #: N/A

CONSTRUCTION DOCUMENTS

		SUBMITTALS
REV	DATE	DESCRIPTION
҈Ѧ	08/24/2021	ISSUED FOR CONSTUCTION
1	10/12/2021	ISSUED FOR CONSTUCTION
	∧ 9aE E	DO IECT NILIMBED

A&E PROJECT NUMBER

6039-Z0001-C

PROJECT INFORMATI

BOHVN00026A 1919 BOSTON POST RD. GUILFORD, CT 06437

SHEET TITLE

LEGEND AND ABBREVIATIONS

SHEET NUMBER

SITE ACTIVITY REQUIREMENTS:

- 1. NOTICE TO PROCEED NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER CONSTRUCTION MANAGER.
- 2. "LOOK UP" DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH WIReless L.L.C. AND DISH WIReless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

- 3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
- 4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELESS L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).
- 5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
- 6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.
- 11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
- 12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIReless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.
- 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
- 15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
- 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.
- 18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.
- 22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER:TOWER OWNER

- 2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
- 3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.
- 4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.
- 5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.
- 6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION
- 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.
- 12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH WIReless L.L.C. AND TOWER OWNER
- 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

INFINIGY&

CANONSBURG PA 15317

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINISY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN BY:	CHECKED BY	APPROVED	BY
	RCD	SS	CJW	
П	RFDS REV :	#: N/A		

CONSTRUCTION DOCUMENTS

6039-Z0001-C

DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00026A 1919 BOSTON POST RD. GUILFORD, CT 06437

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

- 1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST—IN—PLACE CONCRETE.
- 2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.
- 3. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi at 28 days, unless noted otherwise. No more than 90 minutes shall elapse from batch time to time of placement unless approved by the engineer of record. Temperature of concrete shall not exceed 90°f at time of placement.
- 4. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.
- 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

- 6. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:
- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2*
- 7. A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

- 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.
- 2. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
- 3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
- 4. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.
- 4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.
- 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.
- 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR—CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
- 6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).
- 7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.
- 8. TIE WRAPS ARE NOT ALLOWED
- 9. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.
- 12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75° C (90° C IF AVAILABLE).
- 14. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.
- 15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

- . ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.
- 18. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- 19. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.
- 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE NEC.
- 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).
- 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).
- 23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.
- 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS.
- 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY—COATED OR NON—CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- 28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.".
- 30. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CANONSBURG, PA 15317

INFINIGY FROM ZERO TO INFINIGY

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WW.INFINIGY.CO

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN BY:	CHECKED BY:	APPROVED BY
	RCD	SS	CJW

RFDS REV #: N/A

CONSTRUCTION DOCUMENTS

6039-Z0001-C

DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00026A 1919 BOSTON POST RD. GUILFORD, CT 06437

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GROUNDING NOTES:

- 1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 2. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
- 4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
- 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
- 8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.
- 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
- COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.
- 15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.
- 19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
- 21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/O COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY FROM ZERO TO INFINIGY

The solutions are endless
2500 w. HIGGINS RD. SUITE 500 |
PHORE: 847-648-4068 | FAX: 518-690-0793
WW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

П	DRAWN BY:	CHECKED	BY:	APPROVED	B,
	RCD	SS		CJW	
	RFDS REV	#: N/A			

" ",,,,,

CONSTRUCTION DOCUMENTS

SUBMITTALS

REV DATE DESCRIPTION

OB/24/2021 ISSUED FOR CONSTUCTION

1 10/12/2021 ISSUED FOR CONSTUCTION

A&E PROJECT NUMBER

6039-Z0001-C

DISH Wireless L.L PROJECT INFORMAT

BOHVN00026A 1919 BOSTON POST RD. GUILFORD, CT 06437

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

Exhibit D

Structural Analysis Report

Date: June 04, 2021

Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 724-416-2000

Subject: Structural Analysis Report

Carrier Designation: DISH Network Co-Locate

Site Number: BOHVN00026A Site Name: CT-CCI-T-876343

Crown Castle Designation: BU Number: 876343

Site Name: GUILFORD WEST STONE PROPERTY

 JDE Job Number:
 645700

 Work Order Number:
 1965499

 Order Number:
 553888 Rev. 4

Engineering Firm Designation: Crown Castle Project Number: 1965499

Site Data: 1919 Boston Post Rd., GUILFORD, NEW HAVEN County, CT

Latitude 41° 18' 1.27", Longitude -72° 42' 29.13"

149 Foot - Monopole Tower

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity-61.5%

*The structure has sufficient capacity once the loading changes, described in the Recommendations section of this report, are completed.

This analysis utilizes an ultimate 3-second gust wind speed of 130 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - "Analysis Criteria".

Structural analysis prepared by: Subhash Mandal

Respectfully submitted by:

Digitally signed by Maham Barimani

OF CONVECTION

Maham Barimani, P.E. Senior Project Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

Table 2 - Non-Carrier Equipment To Be Conditionally Removed

Table 3 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

3.1) Analysis Method

3.2) Assumptions

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Table 6 - Tower Component Stresses vs. Capacity - LC7

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 149 ft Monopole tower designed by ENGINEERED ENDEAVORS, INC.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Wind Speed: 130 mph

Exposure Category:

Topographic Factor:

Ice Thickness:

Wind Speed with Ice:

Service Wind Speed:

C

1.5 in

50 mph

60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Elovation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	fujitsu	TA08025-B604		
		3	fujitsu	TA08025-B605		
138.0	138.0	3	jma wireless	MX08FRO665-21 w/ Mount Pipe	1	1-1/2
		1	raycap	RDIDC-9181-PF-48		
		1	tower mounts	Commscope MC-PK8-DSH		

Table 2 - Non-Carrier Equipment To Be Conditionally Removed

Mounting Level (ft)	Flevation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
139.0		12	decibel	DB848H90E-XY w/ Mount Pipe		_
139.0	139.0	1	tower mounts	Sector Mount [SM 901-3]	_	_

Table 3 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	of Antenna Antenna Model		Number of Feed Lines	Feed Line Size (in)
		3	ericsson	ERICSSON AIR 21 B2A B4P w/ Mount Pipe		
	148.0	3	ericsson	ERICSSON AIR 21 B4A B2P w/ Mount Pipe	1	7/8
148.0		3	ericsson	KRY 112 144/1	1	1-1/4
		3	ericsson	RADIO 4449 B12/B71	7	1-5/8
			3	rfs celwave	APXVAARR24_43-U-NA20 w/ Mount Pipe	
		1	tower mounts	Sector Mount [SM 901-3]		
139.0	139.0	-	-	-	12	1-5/8
	129.0	1	tower mounts	Pipe Mount [PM 601-3]		
129.0	127.0	3	alcatel lucent	TME-800MHZ RRH	-	-
	123.0	3	alcatel lucent	TME-1900MHz RRH (65MHz)		

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	
		3	alcatel lucent	800 EXTERNAL NOTCH FILTER			
		3	alcatel lucent	TD-RRH8X20-25			
	130.0	9	rfs celwave	ACU-A20-N			
128.0	130.0	3	rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe	4	1-1/4	
		3	rfs celwave	APXVTM14-C-120 w/ Mount Pipe			
	128.0	1	tower mounts	Sector Mount [SM 901-3]			
	124.0	3	VZW	Sub6 Antenna - VZS01 w/ Mount Pipe			
		4	andrew	DB846F65ZAXY w/ Mount Pipe			
		3	commscope	CBC78T-DS-43-2X			
		6	commscope	JAHH-65B-R3B w/ Mount Pipe			
	122.0	2	decibel	DB846H80E-SX w/ Mount Pipe			
		122.0	1	raycap	RVZDC-6627-PF-48	1	1/2
116.0			3	samsung telecommunications	RFV01U-D1A	2 12	1-1/4 1-5/8
		3	samsung telecommunications	RFV01U-D2A			
	120.0	3	samsung telecommunications	CBRS w/ Mount Pipe			
	118.0 1 ma		maxrad	GPS-TMG-26NMS			
	116.0	1	tower mounts	Sector Mount [SM 901-3]			
110.0	110.0	3	ericsson	TME-RRUS-11	_	_]	
110.0	110.0	1	tower mounts	Pipe Mount [PM 601-3]	_	_	
		2	cci antennas	DMP65R-BU4D w/ Mount Pipe			
		4	cci antennas	DMP65R-BU6D w/ Mount Pipe			
		3	ericsson	RRUS 4449 B5/B12			
		3	ericsson	RRUS 4478 B14_CCIV2		0.40	
		3	ericsson	RRUS 8843 B2/B66A	3 2	3/8 3/4	
106.0	108.0	3	powerwave technologies	7770.00 w/ Mount Pipe	3 6	7/8 1-5/8	
		3	powerwave technologies	LGP21401	1	RC	
		1	raycap	DC6-48-60-18-8F			
		1	raycap	DC9-48-60-24-8C-EV			
	106.0	1	tower mounts	Sector Mount [SM 901-3]			
98.0	98.0	3	rfs celwave	APXV18-206517S-C w/ Mount Pipe	6	1-5/8	

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	1531881	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	2262540	CCISITES
4-TOWER MANUFACTURER DRAWINGS	8702523	CCISITES

3.1) Analysis Method

tnxTower (version 8.0.9.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

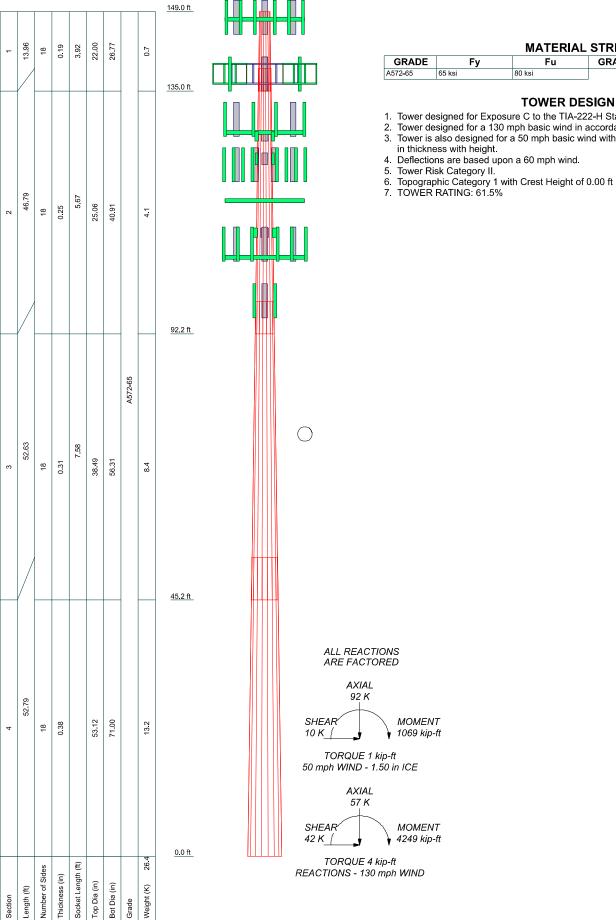
Table 5 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	149 - 135.04	Pole	TP26.77x22x0.19	1	-3.82	922.77	8.5	Pass
L2	135.04 - 92.17	Pole	TP40.91x25.06x0.25	2	-23.02	1888.15	51.0	Pass
L3	92.17 - 45.21	Pole	TP56.31x38.49x0.31	3	-35.28	3255.33	61.5	Pass
L4	45.21 - 0	Pole	TP71x53.12x0.38	4	-56.71	5023.87	59.3	Pass
							Summary	
						Pole (L3)	61.5	Pass
						Rating =	61.5	Pass

Table 6 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	35.2	Pass
1	Base Plate	0	33	Pass
1	Base Foundation (Structure)	0	46.4	Pass
1	Base Foundation (Soil Interaction)	0	27.4	Pass

Structure Rating (max from all components) =	61.5%

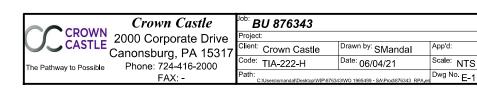

Notes:

¹⁾ See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

4.1) Recommendations

Once the equipment in Table 2 is removed, the tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A TNXTOWER OUTPUT



MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu	
A572 65	65 kei	80 kei				

TOWER DESIGN NOTES

- 1. Tower designed for Exposure C to the TIA-222-H Standard.
- Tower designed for a 130 mph basic wind in accordance with the TIA-222-H Standard.
- 3. Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower base elevation above sea level: 70.00 ft.
- Basic wind speed of 130 mph.
- Risk Category II.
- Exposure Category C.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.00 ft.
- Nominal ice thickness of 1.50 in.
- Ice thickness is considered to increase with height.
- Ice density of 56.00 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60 mph.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

Use Code Stress Ratios

Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned Assume Rigid Index Plate

Use Clear Spans For Wind Area Use Clear Spans For KL/r

Retension Guys To Initial Tension

Bypass Mast Stability Checks Use Azimuth Dish Coefficients

Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Lv Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice

Exemption

Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation	Section Length	Splice Lenath	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
L1	149.00-135.04	13.96	3.92	18	22.00	26.77	0.19	0.75	A572-65 (65 ksi)
L2	135.04-92.17	46.79	5.67	18	25.06	40.91	0.25	1.00	À572-65 (65 ksi)
L3	92.17-45.21	52.63	7.58	18	38.49	56.31	0.31	1.25	À572-65 (65 ksi)
L4	45.21-0.00	52.79		18	53.12	71.00	0.38	1.50	À572-65 (65 ksi)

Tapered	Pole	Pro	perties
---------	------	-----	---------

Section	Tip Dia.	Area	1	r	C	I/C	J	It/Q	w	w/t
	in	in²	in⁴	in	in	in ³	in⁴	in²	in	
L1	22.31	12.98	780.30	7.74	11.18	69.82	1561.63	6.49	3.54	18.891
	27.15	15.82	1412.32	9.44	13.60	103.85	2826.50	7.91	4.38	23.368
L2	26.75	19.68	1530.14	8.81	12.73	120.22	3062.30	9.84	3.97	15.879
	41.50	32.26	6738.86	14.43	20.78	324.26	13486.59	16.13	6.76	27.041
L3	40.98	37.87	6972.28	13.55	19.55	356.60	13953.73	18.94	6.22	19.917
	57.13	55.54	22003.93	19.88	28.61	769.22	44036.82	27.78	9.36	29.954
L4	56.49	62.78	22063.67	18.72	26.98	817.65	44156.37	31.39	8.69	23.17
	72.04	84.06	52972.57	25.07	36.07	1468.69	106014.84	42.04	11.84	31.563

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Factor Ar	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft ²	in				in	in	in
L1 149.00-			1	1	1			
135.04								
L2 135.04-			1	1	1			
92.17								
L3 92.17-			1	1	1			
45.21								
L4 45.21-0.00			1	1	1			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude	Componen	Placement	Total	Number	Start/En	Width or	Perimete	Weight
		From	t		Number	Per Row	d	Diamete	r	
		Torque	Type	ft			Position	r		plf
		Calculation						in	in	
PWRT-606-S(7/8)	С	No	Surface Ar	106.00 -	3	1	0.200	0.92		0.89
			(CaAa)	0.00			0.300			
RFFT-48SM-001-	С	No	Surface Ar	106.00 -	1	1	0.300	0.40		0.06
XXX(3/8) ***			(CaAa)	0.00			0.300			
LCF158-50JL(1-5/8)	Α	No	Surface Ar	98.00 -	6	6	-0.500	1.98		0.52
			(CaAa)	0.00			-0.350			

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Componen	Placement	Total Number		$C_A A_A$	Weight
	Leg	Siliela	Torque Calculation	Type	ft	Number		ft²/ft	plf
***			Carcaration	<u>'</u>					
MLE HYBRID	С	Nο	No	Inside Pole	148.00 - 0.00	1	No Ice	0.00	0.46

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Total Number		$C_A A_A$	Weight
	Leg	Ginora	Torque Calculation	Type	ft	rvambor		ft²/ft	plf
3POWER/6FIBER							1/2" Ice	0.00	0.46
RL 2 10AWG(1-							1" I ce	0.00	0.46
1/4)							2" Ice	0.00	0.46
MLE HYBR I D	С	No	No	Inside Pole	148.00 - 0.00	7	No Ice	0.00	1.07
9POWER/18FIBE							1/2" Ice	0.00	1.07
R RL 2(1-5/8)							1" Ice	0.00	1.07
							2" Ice	0.00	1.07
LDF5-50A(7/8)	С	No	No	Inside Pole	148.00 - 0.00	1	No Ice	0.00	0.33
							1/2" Ice	0.00	0.33
							1" Ice	0.00	0.33
							2" Ice	0.00	0.33

LDF7-50A(1-5/8)	С	No	No	Inside Pole	139.00 - 0.00	12	No Ice	0.00	0.82
							1/2" I ce	0.00	0.82
							1" Ice	0.00	0.82
							2" Ice	0.00	0.82

HB114-1-0813U4-	С	No	No	Inside Pole	128.00 - 0.00	4	No Ice	0.00	1.20
M5J(1-1/4)							1/2" I ce	0.00	1.20
,							1" Ice	0.00	1.20
							2" Ice	0.00	1.20

HB114-1-0813U4-	С	No	No	Inside Pole	116.00 - 0.00	2	No Ice	0.00	1.20
M5J(1-1/4)	_					_	1/2" Ice	0.00	1.20
							1" Ice	0.00	1.20
							2" Ice	0.00	1.20
LDF4-50A(1/2)	С	No	No	Inside Pole	116.00 - 0.00	1	No Ice	0.00	0.15
LD1 1 00/1(1/L)	Ū	110	110	morao i oro	110100 0100	•	1/2" Ice	0.00	0.15
							1" Ice	0.00	0.15
							2" Ice	0.00	0.15
LDF7-50A(1-5/8)	С	No	No	Incide Pole	116.00 - 0.00	12	No Ice	0.00	0.82
LDI 1-30A(1-3/0)	C	NO	NO	maide i die	110.00 - 0.00	12	1/2" I ce	0.00	0.82
							1/2 ICe	0.00	0.82
							2" Ice	0.00	0.82
***							2 Ice	0.00	0.02
LDF7-50A(1-5/8)	С	No	No	Inside Pole	106.00 - 0.00	6	No Ice	0.00	0.82
LDI 7-30A(1-3/0)	C	NO	110	maide i die	100.00 - 0.00	O	1/2" Ice	0.00	0.82
							1" Ice	0.00	0.82
							2" I ce	0.00	0.82
FB-L98B-002-	С	No	No	Incido Polo	106.00 - 0.00	2	No Ice	0.00	0.06
	C	INO	NO	mside Fole	100.00 - 0.00	2	1/2" Ice		0.06
75000(3/8)							1/2 Ice 1" Ice	0.00	
								0.00	0.06
WD VCCCT	_	NJ -	N1 -	Incide Del	100.00 0.00	^	2" Ice	0.00	0.06
WR-VG86ST-	С	No	No	mside Pole	106.00 - 0.00	2	No Ice	0.00	0.58
BRD(3/4)							1/2" Ice	0.00	0.58
							1" Ice	0.00	0.58
OU.EL 11.1 O	_				400.00 0.00		2" Ice	0.00	0.58
2" Flexible Conduit	С	No	No	inside Pole	106.00 - 0.00	1	No Ice	0.00	0.34
							1/2" Ice	0.00	0.34
							1" Ice	0.00	0.34
							2" Ice	0.00	0.34
***		.,			400.00 0.00			0.00	0.05
CU12PSM9P6XXX	Α	No	No	Inside Pole	138.00 - 0.00	1	No Ice	0.00	2.35
(1-1/2)							1/2" Ice	0.00	2.35
							1" Ice	0.00	2.35
							2" Ice	0.00	2.35

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	C _A A _A	Weight
Sectio	Elevation				In Face	Out Face	J
n	ft		ft ²	ft ²	ft ²	ft ²	K

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation				In Face	Out Face	
n	ft		ft ²	ft²	ft ²	ft²	K
L1	149.00-135.04	Α	0.000	0.000	0.000	0.000	0.01
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.15
L2	135.04-92.17	Α	0.000	0.000	6.926	0.000	0.12
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	1.826	0.000	1.37
L3	92.17-45.21	Α	0.000	0.000	55.788	0.000	0.26
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	6.199	0.000	2.09
L4	45.21-0.00	Α	0.000	0.000	53.709	0.000	0.25
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	5.968	0.000	2.02

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	
n	ft	Leg	in	ft ²	ft ²	ft ²	ft ²	K
L1	149.00-135.04	Α	1.475	0.000	0.000	0.000	0.000	0.01
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.15
L2	135.04-92.17	Α	1.441	0.000	0.000	10.808	0.000	0.23
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	9.986	0.000	1.60
L3	92.17-45.21	Α	1.370	0.000	0.000	86.654	0.000	1.14
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	33.268	0.000	2.83
L4	45.21-0.00	Α	1.228	0.000	0.000	82.624	0.000	1.05
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	30.747	0.000	2.67

Feed Line Center of Pressure

Section	Elevation	CP _X	CPz	CP _X Ice	CP _Z Ice
	ft	in	in	in	in
L1	149.00-135.04	0.00	0.00	0.00	0.00
L2	135.04-92.17	-1.59	0.85	-1.75	1.37
L3	92.17-45.21	-6.89	3.15	-6.34	3.78
L4	45.21-0.00	-7.36	3.36	-6.93	4.09

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment	No Ice	Ice
			Elev.		
L2	18	PWRT-606-S(7/8)	92.17 -	1.0000	1.0000
			106.00		
L2	19	RFFT-48SM-001-XXX(3/8)	92.17 -	1.0000	1.0000
			106.00		
L2	21	LCF158-50JL(1-5/8)		1.0000	1.0000
			98.00		
L3	18	PWRT-606-S(7/8)	45.21 -	1.0000	1.0000

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment	No Ice	Ice
			Elev.		
			92.17		
L3	19	RFFT-48SM-001-XXX(3/8)	45.21 -	1.0000	1.0000
			92.17		
L3	21	LCF158-50JL(1-5/8)	45.21 -	1.0000	1.0000
			92.17		
L4	18	PWRT-606-S(7/8)	0.00 - 45.21	1.0000	1.0000
L4	19	RFFT-48SM-001-XXX(3/8)	0.00 - 45.21	1.0000	1.0000
L4	21	LCF158-50JL(1-5/8)	0.00 - 45.21	1.0000	1.0000

	Discrete Tower Loads						
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		
			ft ft ft	0	ft		
APXVAARR24_43-U-NA20 w/ Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	148.00		
APXVAARR24_43-U-NA20 w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	148.00		
APXVAARR24_43-U-NA20 w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	148.00		
ERICSSON AIR 21 B2A B4P w/ Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	148.00		
ERICSSON AIR 21 B2A B4P w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	148.00		
ERICSSON AIR 21 B2A B4P w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	148.00		
ERICSSON AIR 21 B4A B2P w/ Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	148.00		
ERICSSON AIR 21 B4A B2P w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	148.00		
ERICSSON AIR 21 B4A B2P w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	148.00		
KRY 112 144/1	Α	From Leg	4.00 0.00 0.00	0.0000	148.00		
KRY 112 144/1	Α	From Leg	4.00 0.00 0.00	0.0000	148.00		
KRY 112 144/1	В	From Leg	4.00 0.00 0.00	0.0000	148.00		
RADIO 4449 B12/B71	Α	From Leg	4.00 0.00 0.00	0.0000	148.00		
RADIO 4449 B12/B71	В	From Leg	4.00 0.00 0.00	0.0000	148.00		
RADIO 4449 B12/B71	С	From Leg	4.00 0.00	0.0000	148.00		

Description	Face	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement
	or Leg	Type	Horz Lateral	Aujustinent	
	9		Vert		
			ft	۰	ft
			ft ft		
			0.00		
6' x 2" Mount Pipe	Α	From Leg	4.00	0.0000	148.00
			0.00		
6' x 2" Mount Pipe	В	From Leg	0.00 4.00	0.0000	148.00
o XZ Would lipe	5	1 Tom Log	0.00	0.0000	140.00
	_		0.00		
6' x 2" Mount Pipe	С	From Leg	4.00 0.00	0.0000	148.00
			0.00		
L2x2x3/16 (14' long)	Α	From Leg	4.00	0.0000	148.00
			0.00		
L2x2x3/16 (14' long)	В	From Leg	0.00 4.00	0.0000	148.00
LZXZXO/TO (T4 Tolig)	5	Trom Log	0.00	0.0000	140.00
			0.00		
L2x2x3/16 (14' long)	С	From Leg	4.00	0.0000	148.00
			0.00 0.00		
Sector Mount [SM 901-3]	С	None	0.00	0.0000	148.00

*** TME-800MHZ RRH	۸	From Log	0.50	0.0000	129.00
IME-800MHZ RRH	Α	From Leg	0.50 0.00	0.0000	129.00
			-2.00		
TME-800MHZ RRH	В	From Leg	0.50	0.0000	129.00
			0.00 -2.00		
TME-800MHZ RRH	С	From Leg	0.50	0.0000	129.00
	_		0.00		
TME 4000MU DDU (05MU)			-2.00	0.0000	100.00
TME-1900MHz RRH (65MHz)	Α	From Leg	0.50 0.00	0.0000	129.00
			-6.00		
TME-1900MHz RRH (65MHz)	В	From Leg	0.50	0.0000	129.00
			0.00		
TME-1900MHz RRH (65MHz)	С	From Leg	-6.00 0.50	0.0000	129.00
	· ·	<u>-</u> - 3	0.00	0.000	0.00
Dis. M. (FDM 004.03	_	N.	-6.00	0.0000	400.00
Pipe Mount [PM 601-3] ***	C	None		0.0000	129.00
APXVTM14-C-120 w/ Mount Pipe	Α	From Leg	4.00	0.0000	128.00
,		J	0.00		
APXVTM14-C-120 w/ Mount Pipe	P	Erom Loc	2.00	0.0000	128.00
AFAV TIVI 14-0-120 W/ MOUTH PIPE	В	From Leg	4.00 0.00	0.0000	128.00
			2.00		
APXVTM14-C-120 w/ Mount Pipe	С	From Leg	4.00	0.0000	128.00
			0.00 2.00		
APXVSPP18-C-A20 w/ Mount Pipe	Α	From Leg	4.00	0.0000	128.00
·		J	0.00		
APXVSPP18-C-A20 w/ Mount Pipe	В	From Leg	2.00 4.00	0.0000	128.00
ALAVOER 10-0-AZU W/ WOULL PIPE	Б	i ioni Leg	4.00 0.00	0.0000	120.00
			2.00		
APXVSPP18-C-A20 w/ Mount Pipe	С	From Leg	4.00	0.0000	128.00
			0.00 2.00		
	Α	From Leg	4.00	0.0000	128.00
800 EXTERNAL NOTCH FILTER					
800 EXTERNAL NOTCH FILTER		•	0.00		
800 EXTERNAL NOTCH FILTER 800 EXTERNAL NOTCH FILTER	В	From Leg	0.00 2.00 4.00	0.0000	128.00

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement
	Leg		Lateral Vert ft ft	۰	ft
800 EXTERNAL NOTCH FILTER	С	From Leg	ft 2.00 4.00	0.0000	128.00
			0.00 2.00		
TD-RRH8X20-25	Α	From Leg	4.00 0.00 2.00	0.0000	128.00
TD-RRH8X20-25	В	From Leg	4.00 0.00	0.0000	128.00
TD-RRH8X20-25	С	From Leg	2.00 4.00 0.00	0.0000	128.00
(3) ACU-A20-N	Α	From Leg	2.00 4.00 0.00	0.0000	128.00
(3) ACU-A20-N	В	From Leg	2.00 4.00 0.00	0.0000	128.00
(3) ACU-A20-N	С	From Leg	2.00 4.00 0.00	0.0000	128.00
(2) 6' x 2" Mount Pipe	Α	From Leg	2.00 4.00 0.00	0.0000	128.00
(2) 6' x 2" Mount Pipe	В	From Leg	0.00 4.00 0.00	0.0000	128.00
(2) 6' x 2" Mount Pipe	С	From Leg	0.00 4.00 0.00	0.0000	128.00
Sector Mount [SM 901-3]	С	None	0.00	0.0000	128.00
(2) JAHH-65B-R3B w/ Mount Pipe	Α	From Leg	4.00 0.00	0.0000	116.00
(2) JAHH-65B-R3B w/ Mount Pipe	В	From Leg	6.00 4.00 0.00	0.0000	116.00
(2) JAHH-65B-R3B w/ Mount Pipe	С	From Leg	6.00 4.00 0.00	0.0000	116.00
(2) DB846F65ZAXY w/ Mount Pipe	А	From Leg	6.00 4.00 0.00	0.0000	116.00
(2) DB846H80E-SX w/ Mount Pipe	В	From Leg	6.00 4.00 0.00	0.0000	116.00
(2) DB846F65ZAXY w/ Mount Pipe	С	From Leg	6.00 4.00 0.00	0.0000	116.00
Sub6 Antenna - VZS01 w/ Mount Pipe	Α	From Leg	6.00 4.00 0.00	0.0000	116.00
Sub6 Antenna - VZS01 w/ Mount Pipe	В	From Leg	8.00 4.00 0.00	0.0000	116.00
Sub6 Antenna - VZS01 w/ Mount Pipe	С	From Leg	8.00 4.00 0.00	0.0000	116.00
CBRS w/ Mount Pipe	А	From Leg	8.00 4.00 0.00	0.0000	116.00
CBRS w/ Mount Pipe	В	From Leg	4.00 4.00 0.00	0.0000	116.00

Description	Face	Offset Typo	Offsets:	Azimuth	Placement
	or Leg	Type	Horz Lateral	Adjustment	
	209		Vert		
			ft	۰	ft
			ft ft		
			4.00		
CBRS w/ Mount Pipe	С	From Leg	4.00	0.0000	116.00
			0.00		
GPS-TMG-26NMS	В	From Log	4.00 4.00	0.0000	116.00
GFS-TIVIG-ZOINVIS	ь	From Leg	0.00	0.0000	110.00
			2.00		
RVZDC-6627-PF-48	Α	From Leg	4.00	0.0000	116.00
			0.00 6.00		
CBC78T-DS-43-2X	Α	From Leg	4.00	0.0000	116.00
			0.00		
	_		6.00		
CBC78T-DS-43-2X	В	From Leg	4.00 0.00	0.0000	116.00
			6.00		
CBC78T-DS-43-2X	С	From Leg	4.00	0.0000	116.00
			0.00		
RFV01U-D1A	Α	From Log	6.00 4.00	0.0000	116.00
KFV010-DTA	A	From Leg	0.00	0.0000	110.00
			6.00		
RFV01U-D1A	В	From Leg	4.00	0.0000	116.00
			0.00 6.00		
RFV01U-D1A	С	From Leg	4.00	0.0000	116.00
,	J	1.10111 209	0.00	0,000	110100
	_		6.00		
RFV01U-D2A	Α	From Leg	4.00 0.00	0.0000	116.00
			6.00		
RFV01U-D2A	В	From Leg	4.00	0.0000	116.00
			0.00		
RFV01U-D2A	С	From Leg	6.00 4.00	0.0000	116.00
KFV010-DZA	C	From Leg	0.00	0.0000	110.00
			6.00		
Sector Mount [SM 901-3]	С	None		0.0000	116.00
TME-RRUS-11	٨	From Log	0.50	0.0000	110.00
LIVIE-LUCOS-11	Α	From Leg	0.00	0.0000	110.00
			0.00		
TME-RRUS-11	В	From Leg	0.50	0.0000	110.00
			0.00 0.00		
TME-RRUS-11	С	From Leg	0.50	0.0000	110.00
		ŭ	0.00		
Ding Marriet IDM 004 03	0	NI	0.00	0.0000	440.00
Pipe Mount [PM 601-3] ***	С	None		0.0000	110.00
Sector Mount [SM 901-3]	С	None		0.0000	106.00
(2) DMP65R-BU4D w/ Mount Pipe	С	From Leg	4.00	0.0000	106.00
			0.00		
(2) DMP65R-BU6D w/ Mount Pipe	Α	From Leg	2.00 4.00	0.0000	106.00
(=) Division to book with wouther the	, ,	1 Tom Log	0.00	0.0000	100.00
	_		2.00		
(2) DMP65R-BU6D w/ Mount Pipe	В	From Leg	4.00	0.0000	106.00
			0.00 2.00		
	Α	From Leg	4.00	0.0000	106.00
RRUS 4449 B5/B12	A	I TOTTI LEG	7.00		
RRUS 4449 B5/B12	A	110III Leg	0.00		
RRUS 4449 B5/B12 (2) RRUS 4449 B5/B12	В	From Leg		0.0000	106.00

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placemen
	Leg	1,400	Lateral	rajasimom	
	_		Vert	_	
			ft ft	٥	ft
			ft		
(2) RRUS 4478 B14_CCIV2	Α	From Leg	2.00 4.00	0.0000	106.00
(2)		<u>-</u> - 3	0.00	0.0000	
	_		2.00		
RRUS 4478 B14_CCIV2	В	From Leg	4.00 0.00	0.0000	106.00
			2.00		
(2) RRUS 8843 B2/B66A	Α	From Leg	4.00	0.0000	106.00
()		J	0.00		
	_		2.00		
RRUS 8843 B2/B66A	В	From Leg	4.00	0.0000	106.00
			0.00 2.00		
DC9-48-60-24-8C-EV	Α	From Leg	4.00	0.0000	106.00
200 10 00 21 00 21	, ,		0.00		
			2.00		
7770.00 w/ Mount Pipe	Α	From Leg	4.00	0.0000	106.00
			0.00 2.00		
7770.00 w/ Mount Pipe	В	From Leg	4.00	0.0000	106.00
7770.00 W Would Tipe	٥	1 Tom Log	0.00	0.0000	100,00
			2.00		
7770.00 w/ Mount Pipe	С	From Leg	4.00	0.0000	106.00
			0.00		
LGP21401	Α	From Leg	2.00 4.00	0.0000	106.00
LGF21401	A	From Leg	0.00	0.0000	100.00
			2.00		
LGP21401	В	From Leg	4.00	0.0000	106.00
			0.00		
L CD24404	0	Гиона I ол	2.00	0.0000	100.00
LGP21401	С	From Leg	4.00 0.00	0.0000	106.00
			2.00		
DC6-48-60-18-8F	Α	From Leg	4.00	0.0000	106.00
			0.00		
***			2.00		
APXV18-206517S-C w/ Mount Pipe	Α	From Leg	0.50	0.0000	98.00
7 ii 7 ii 7 ii 2000 i 7 ii 0 iii moanii 1 ipo	, ,	1 10m 20g	0.00	0,000	00100
			0.00		
APXV18-206517S-C w/ Mount Pipe	В	From Leg	0.50	0.0000	98.00
			0.00 0.00		
APXV18-206517S-C w/ Mount Pipe	С	From Leg	0.50	0.0000	98.00
7 ii 7 ii 7 ii 2 ii 3 ii 7 ii 7 ii 7 ii	G	r rom 20g	0.00	010000	00.00
			0.00		
***	•	F L	4.00	0.0000	400.00
MX08FRO665-21 w/ Mount Pipe	Α	From Leg	4.00 0.00	0.0000	138.00
			0.00		
MX08FRO665-21 w/ Mount Pipe	В	From Leg	4.00	0.0000	138.00
·			0.00		
MYODEDOCCE OF THE TE		E	0.00	0.0000	400.00
MX08FRO665-21 w/ Mount Pipe	С	From Leg	4.00 0.00	0.0000	138.00
			0.00		
TA08025-B604	Α	From Leg	4.00	0.0000	138.00
		··· — - 3	0.00		
	_	_	0.00		
TA08025-B604	В	From Leg	4.00	0.0000	138.00
			0.00		
TA08025-B604	С	From Leg	0.00 4.00	0.0000	138.00

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement
	Leg		Lateral		
			Vert	•	
			ft	· ·	ft
			ft		
			ft_		
T400005 D005	^	F	0.00	0.0000	400.00
TA08025-B605	Α	From Leg	4.00	0.0000	138.00
			0.00		
TA09025 DC05	D	Francis a	0.00	0.0000	120.00
TA08025-B605	В	From Leg	4.00	0.0000	138.00
			0.00 0.00		
TA08025-B605	С	Erom Log	4.00	0.0000	138,00
1A00025-B005	C	From Leg	4.00 0.00	0.0000	130.00
			0.00		
RDIDC-9181-PF-48	Α	From Leg	4.00	0.0000	138.00
NDIDC-9101-11 -40	^	1 Tom Leg	0.00	0.0000	130.00
			0.00		
(2) 8' x 2" Mount Pipe	Α	From Leg	4.00	0.0000	138.00
(Z) O X Z Woditt i ipc	/ \	Trom Log	0.00	0.0000	100.00
			0.00		
(2) 8' x 2" Mount Pipe	В	From Leg	4.00	0.0000	138,00
(Z) O XZ Modifi ipo	5	r rom Log	0.00	0.0000	100.00
			0.00		
(2) 8' x 2" Mount Pipe	С	From Leg	4.00	0.0000	138,00
(=) = a			0.00	5000	0,00
			0.00		
Commscope MC-PK8-DSH	С	None		0.0000	138.00

Load Combinations

Comb.	Description
No.	,
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 lce+1.0 Temp

Comb.	Description
No.	
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 lce+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Type		Load		Moment	Moment
No.				Comb.	K	kip-ft	kip-ft
L1	149 - 135.04	Pole	Max Tension	14	0.00	0.00	0.00
			Max. Compression	26	-8.51	-0.12	0.22
			Max Mx	8	-3.82	-44.14	0.06
			Max. My	2	-3.82	-0.02	44.33
			Max Vy	8	5.29	-44.14	0.06
			Max. Vx	2	-5.30	-0.02	44.33
			Max. Torque	20			-0.21
L2	135.04 - 92.17	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-46.58	-3.48	5.47
			Max Mx	8	-23.06	-796.55	2.05
			Max. My	2	-23.02	-1.64	804.74
			Max. Vy	8	28.05	796.55	2.05
			Max. Vx	2	-28.42	-1.64	804.74
			Max. Torque	22			-3.77
L3	92.17 - 45.21	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-63.82	-1.88	4.84
			Max Mx	8	-35.30	-2196.47	-1.24
			Max. My	2	-35.28	1.82	2221.44
			Max. Vy	8	34.23	-2196.47	-1.24
			Max. Vx	2	-34.59	1.82	2221.44
			Max. Torque	22			-3.77
L4	45.21 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-92.02	0.73	3.85
			Max. Mx	8	-56.71	-4204.73	-5.20
			Max. My	2	-56.71	6.04	4249.15
			Max. Vy	8	41.68	-4204.73	-5.20
			Max. Vx	2	-42.04	6.04	4249.15
			Max. Torque	22			-3.76

Maximum Reactions

Location	Condition	Gov. Load	Vertical K	Horizontal, X K	Horizontal, Z K
Pole	Max. Vert	<u>Comb.</u> 27	92.02	0.01	10.32
	Max. H	20	56.73	41.65	0.07

Location	Condition	Gov. Load	Vertical K	Horizontal, X K	Horizontal, Z K
		Comb.	, ,		
	Max. H _z	2	56.73	0.07	42.01
	Max. M _x	2	4249.15	0.07	42.01
	$Max. M_z$	8	4204.73	-41.65	-0.07
	Max. Torsion	10	3.74	-36.11	-21.07
	Min. Vert	19	42.55	36.04	-20.94
	Min. H _x	8	56.73	-41.65	-0.07
	Min. H_z	14	56.73	-0.07	-42.01
	Min. M _x	14	-4245.32	-0.07	-42.01
	Min. M _z	20	-4202.59	41.65	0.07
	Min, Torsion	22	-3.76	36,11	21.07

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	47.28	0.00	0.00	-1.51	-0.83	0.00
1.2 Dead+1.0 Wind 0 deg -	56.73	-0.07	-42.01	-4249.15	6.04	1.99
No Ice						
0.9 Dead+1.0 Wind 0 deg -	42.55	-0.07	-42.01	-4220.44	6.28	1.98
No Ice	= 0 = 0			2272 72	2222 72	
1.2 Dead+1.0 Wind 30 deg -	56.73	20.76	-36.35	-3676.59	-2096.73	0.14
No Ice	40.55	20.70	20.25	2054.00	2002 52	0.40
0.9 Dead+1.0 Wind 30 deg - No Ice	42.55	20.76	-36.35	-3651.68	-2082.53	0.13
1.2 Dead+1.0 Wind 60 deg -	56.73	36.04	-20,94	-2119.39	-3637.99	-1.75
No Ice	30.73	30.04	-20.94	-2119.59	-3037.33	-1.73
0.9 Dead+1.0 Wind 60 deg -	42,55	36.04	-20.94	-2104.83	-3613.56	-1.74
No Ice	12,00	00.01	20.01	2101.00	0010.00	
1.2 Dead+1.0 Wind 90 deg -	56.73	41.65	0.07	5.20	-4204.73	-3.17
No Ice						
0.9 Dead+1.0 Wind 90 deg -	42.55	41.65	0.07	5.66	-4176.54	-3.15
No Ice						
1.2 Dead+1.0 Wind 120 deg	56.73	36.11	21.07	2127.88	-3645.09	-3.74
- No Ice						
0.9 Dead+1.0 Wind 120 deg	42.55	36.11	21.07	2114.24	-3620.62	-3.72
- No Ice			22.12		0.400.00	
1.2 Dead+1.0 Wind 150 deg	56.73	20.89	36.42	3679.86	-2109.03	-3.32
- No Ice	40 EE	20.90	26.42	2655.04	2004.76	-3.30
0.9 Dead+1.0 Wind 150 deg - No Ice	42.55	20.89	36.42	3655 <u>.</u> 91	-2094.76	-3.30
1.2 Dead+1.0 Wind 180 deg	56.73	0.07	42.01	4245.32	-8.17	-2.01
- No Ice	30.73	0.07	42.01	4240.02	-0.17	-2.01
0.9 Dead+1.0 Wind 180 deg	42.55	0.07	42.01	4217.61	-7.85	-2.00
- No Ice	.2.00	0.01	.2.0		7.00	
1.2 Dead+1.0 Wind 210 deg	56.73	-20.76	36.35	3672.76	2094.59	-0.16
- No Ice						
0.9 Dead+1.0 Wind 210 deg	42.55	-20.76	36.35	3648.85	2080.95	-0.15
- No Ice						
1.2 Dead+1.0 Wind 240 deg	56.73	-36.04	20.94	2115.57	3635.85	1.75
- No Ice						
0.9 Dead+1.0 Wind 240 deg	42.55	-36.04	20.94	2102.00	3611.98	1.74
- No Ice	EC 70	44.05	0.07	0.01	4202 F0	2.40
1.2 Dead+1.0 Wind 270 deg - No Ice	56.73	-41.65	-0.07	-9.01	4202.59	3.19
0.9 Dead+1.0 Wind 270 deg	42.55	-41.65	-0.07	-8.48	4174.97	3.17
- No Ice	42.00	-41.03	-0.07	-0.40	4174.37	5.17
1.2 Dead+1.0 Wind 300 deg	56.73	-36.11	-21,07	-2131.70	3642,96	3.76
- No Ice	00,70	00,11	21.07	2101,70	30-£.00	0.10
0.9 Dead+1.0 Wind 300 deg	42.55	-36.11	-21.07	-2117.06	3619.05	3.74
- No Ice						_
1.2 Dead+1.0 Wind 330 deg	56.73	-20.89	-36.42	-3683.69	2106.90	3.32
- No Ice						
0.9 Dead+1.0 Wind 330 deg	42.55	-20.89	-36.42	-3658.74	2093.20	3.30
- No Ice						

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
Combination	K	K	κ	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Ice+1.0 Temp	92.02	0.00	-0.00	-3.85	0.73	0.00
1.2 Dead+1.0 Wind 0	92.02	-0.01	-10.32	-1069.38	1.83	0.43
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30	92.02	5.12	-8.93	-926.08	-527.45	0.02
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60	92.02	8.88	-5.15	-535.71	-915.22	-0.39
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90	92.02	10.26	0.01	-2.87	-1057.57	-0.70
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	92.02	8.89	5.17	529.66	-916.36	-0.82
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	92.02	5.14	8.94	919.19	-529.43	-0.72
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	92.02	0.01	10.32	1061.35	-0.45	-0.43
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	92.02	-5.12	8.93	918.05	528.83	-0.02
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	92.02	-8.88	5.15	527.68	916.60	0.39
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	92.02	-10.26	-0.01	-5.16	1058.95	0.70
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	92.02	-8.89	-5.17	-537.69	917.75	0.82
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	92.02	-5.14	-8.94	-927 22	530,81	0.72
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	47.28	-0.01	-8.43	-850.66	0.54	0.40
Dead+Wind 30 deg - Service	47.28	4.17	-7.29	-736.20	-419.83	0.02
Dead+Wind 60 deg - Service	47.28	7.23	-4.20	-424.89	-727.95	-0.36
Dead+Wind 90 deg - Service	47.28	8.36	0.01	-0.16	-841.24	-0.65
Dead+Wind 120 deg -	47.28	7.25	4.23	424.18	-729.37	-0.77
Service						
Dead+Wind 150 deg -	47.28	4.19	7.31	734.45	-422.29	-0.67
Service						
Dead+Wind 180 deg -	47.28	0.01	8.43	847.49	-2.30	-0.40
Service						
Dead+Wind 210 deg -	47.28	-4.17	7.29	733.03	418.07	-0.02
Service						
Dead+Wind 240 deg -	47.28	-7.23	4.20	421.72	726.18	0.36
Service			_			
Dead+Wind 270 deg -	47.28	-8.36	-0.01	-3.01	839.48	0.65
Service						
Dead+Wind 300 deg -	47.28	-7.25	-4.23	-427.35	727.60	0.77
Service						
Dead+Wind 330 deg -	47.28	-4.19	-7.31	-737.62	420.53	0.67
Service						

Solution Summary

	Sun	n of Applied Force	es		Sum of Reactio	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-47.28	0.00	0.00	47.28	0.00	0.000%
2	-0.07	-56.73	-42.01	0.07	56.73	42.01	0.000%
3	-0.07	-42.55	-42.01	0.07	42.55	42.01	0.000%
4	20.76	-56.73	-36.35	-20.76	56.73	36.35	0.000%
5	20.76	-42.55	-36.35	-20.76	42.55	36.35	0.000%
6	36.04	-56.73	-20.94	-36.04	56.73	20.94	0.000%
7	36.04	-42.55	-20.94	-36.04	42.55	20.94	0.000%
8	41.65	-56.73	0.07	-41.65	56.73	-0.07	0.000%
9	41.65	-42.55	0.07	-41.65	42.55	-0.07	0.000%
10	36.11	-56.73	21.07	-36.11	56.73	-21.07	0.000%
11	36.11	-42.55	21.07	-36.11	42.55	-21.07	0.000%
12	20.89	-56.73	36.42	-20.89	56.73	-36.42	0.000%
13	20.89	-42.55	36.42	-20.89	42.55	-36.42	0.000%
14	0.07	-56.73	42.01	-0.07	56.73	-42.01	0.000%
15	0.07	-42.55	42.01	-0.07	42.55	-42.01	0.000%

	Sur	n of Applied Force	es		Sum of Reactio	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
16	-20.76	-56.73	36.35	20.76	56.73	-36.35	0.000%
17	-20.76	-42.55	36.35	20.76	42.55	-36.35	0.000%
18	-36.04	-56.73	20.94	36.04	56.73	-20.94	0.000%
19	-36.04	-42.55	20.94	36.04	42.55	-20.94	0.000%
20	-41.65	-56.73	-0.07	41.65	56.73	0.07	0.000%
21	-41.65	-42.55	-0.07	41.65	42.55	0.07	0.000%
22	-36.11	-56.73	-21.07	36.11	56.73	21.07	0.000%
23	-36.11	-42.55	-21.07	36.11	42.55	21.07	0.000%
24	-20.89	-56.73	-36.42	20.89	56.73	36.42	0.000%
25	-20.89	-42.55	-36.42	20.89	42.55	36.42	0.000%
26	0.00	-92.02	0.00	-0.00	92.02	0.00	0.000%
27	-0.01	-92.02	-10.32	0.01	92.02	10.32	0.000%
28	5.12	-92.02	-8.93	-5.12	92.02	8.93	0.000%
29	8.88	-92.02	-5.15	-8.88	92.02	5.15	0.000%
30	10.26	-92.02	0.01	-10.26	92.02	-0.01	0.000%
31	8.89	-92.02	5.17	-8.89	92.02	-5.17	0.000%
32	5.14	-92.02	8.94	-5.14	92.02	-8.94	0.000%
33	0.01	-92.02	10.32	-0.01	92.02	-10.32	0.000%
34	-5.12	-92.02	8.93	5.12	92.02	-8.93	0.000%
35	-8.88	-92.02	5.15	8.88	92.02	-5.15	0.000%
36	-10.26	-92.02	-0.01	10.26	92.02	0.01	0.000%
37	-8.89	-92.02	-5.17	8.89	92.02	5.17	0.000%
38	-5.14	-92.02	-8.94	5.14	92.02	8.94	0.000%
39	-0.01	-47.28	-8.43	0.01	47.28	8.43	0.000%
40	4.17	-47.28	-7.29	-4.17	47.28	7.29	0.000%
41	7.23	-47.28	-4.20	-7.23	47.28	4.20	0.000%
42	8.36	-47.28	0.01	-8.36	47.28	-0.01	0.000%
43	7.25	-47.28	4.23	-7.25	47.28	-4.23	0.000%
44	4.19	-47.28	7.31	-4.19	47.28	-7.31	0.000%
45	0.01	-47.28	8.43	-0.01	47.28	-8.43	0.000%
46	-4.17	-47.28	7.29	4.17	47.28	-7.29	0.000%
47	-7.23	-47.28	4.20	7.23	47.28	-4.20	0.000%
48	-8.36	-47.28	-0.01	8.36	47.28	0.01	0.000%
49	-7.25	-47.28	-4.23	7.25	47.28	4.23	0.000%
50	-4.19	-47.28	-7.31	4.19	47.28	7.31	0.000%

Non-Linear Convergence Results

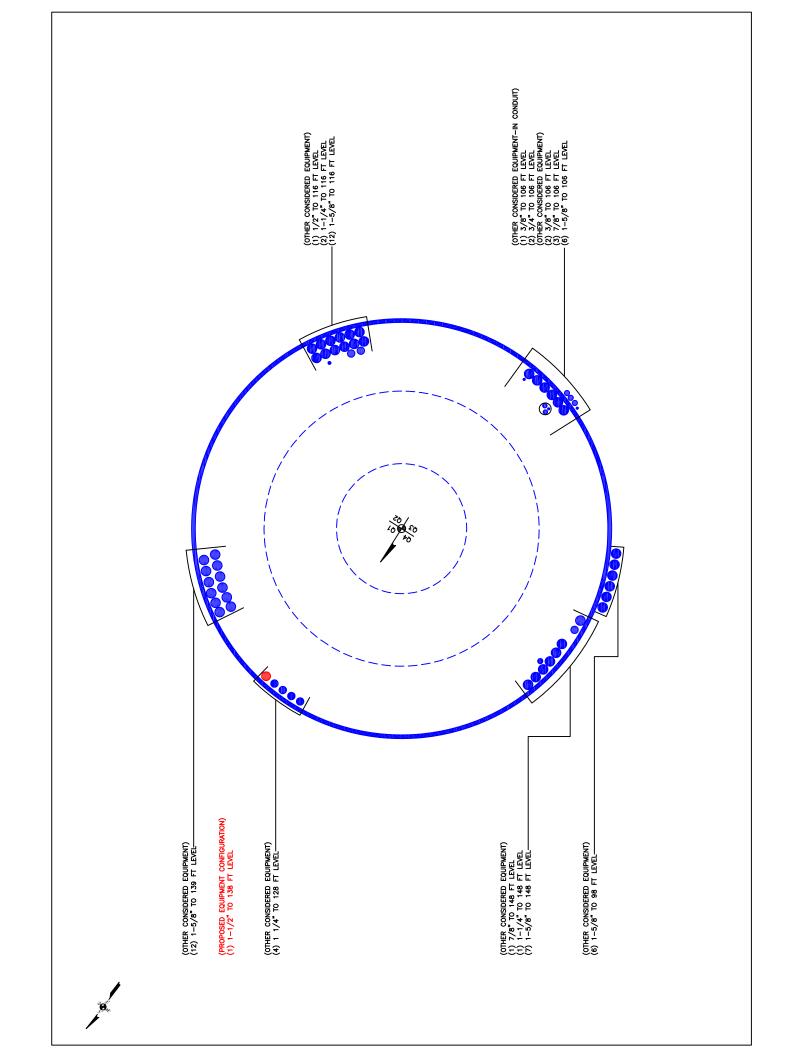
Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.0000001	0.00000001
2	Yes	4	0.0000001	0.00025120
3	Yes	4	0.0000001	0.00015553
4	Yes	5	0.0000001	0.00015562
5	Yes	5	0.0000001	0.00006991
6	Yes	5	0.0000001	0.00016107
7	Yes	5	0.0000001	0.00007263
8	Yes	4	0.0000001	0.00045920
9	Yes	4	0.0000001	0.00028988
10	Yes	5	0.0000001	0.00014708
11	Yes	5	0.0000001	0.00006594
12	Yes	5	0.0000001	0.00016519
13	Yes	5	0.0000001	0.00007458
14	Yes	4	0.0000001	0.00028158
15	Yes	4	0.0000001	0.00017502
16	Yes	5	0.0000001	0.00015504
17	Yes	5	0.0000001	0.00006984
18	Yes	5	0.0000001	0.00014961
19	Yes	5	0.0000001	0.00006728
20	Yes	4	0.0000001	0.00048984
21	Yes	4	0.0000001	0.00030939
22	Yes	5	0.0000001	0.00016660
23	Yes	5	0.0000001	0.00007531
24	Yes	5	0.0000001	0.00014847
25	Yes	5	0.0000001	0.00006650

26	Yes	4	0.0000001	0.00001098
27	Yes	5	0.0000001	0.00007274
28	Yes	5	0.0000001	0.00008377
29	Yes	5	0.0000001	0.00008386
30	Yes	5	0.00000001	0.00007197
31	Yes	5	0.0000001	0.00008181
32	Yes	5	0.0000001	0.00008278
33	Yes	5	0.0000001	0.00007125
34	Yes	5	0.0000001	0.00008147
35	Yes	5	0.00000001	0.00008107
36	Yes	5	0.0000001	0.00007137
37	Yes	5	0.0000001	0.00008366
38	Yes	5	0.0000001	0.00008300
39	Yes	4	0.0000001	0.00001780
40	Yes	4	0.0000001	0.00005158
41	Yes	4	0.0000001	0.00005859
42	Yes	4	0.0000001	0.00002574
43	Yes	4	0.0000001	0.00004646
44	Yes	4	0.0000001	0.00006313
45	Yes	4	0.0000001	0.00001784
46	Yes	4	0.0000001	0.00005081
47	Yes	4	0.0000001	0.00004624
48	Yes	4	0.0000001	0.00002583
49	Yes	4	0.00000001	0.00006559
50	Yes	4	0.0000001	0.00004654

Compression Checks

	Pole Design Data								
Section No.	Elevation	Size	L	Lu	KI/r	А	P_u	φPn	Ratio Pu
	ft		ft	ft		in²	K	K	$\frac{P_u}{\phi P_n}$
L1	149 - 135 <u>.</u> 04 (1)	TP26.77x22x0.19	13.96	0.00	0.0	15.02	-3.82	878.83	0.004
L2	135.04 - 92.17 (2)	TP40.91x25.06x0.25	46.79	0.00	0.0	30.74	-23.02	1798.24	0.013
L3	92.17 - 45.21 (3)	TP56.31x38.49x0.31	52.63	0.00	0.0	53.00	-35.28	3100.31	0.011
L4	45.21 - 0 (4)	TP71x53.12x0.38	52.79	0.00	0.0	84.06	-56.71	4784.64	0.012

		Pole	Pole Bending Design Data							
Section No.	Elevation	Size	M _{ux}	ф М пх	Ratio M _{ux}	Muy	ϕM_{ny}	Ratio M _{uy}		
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	φM _{ny}		
L1	149 - 135.04 (1)	TP26.77x22x0.19	44.33	522.10	0.085	0.00	522.10	0.000		
L2	135.04 - 92.17 (2)	TP40.91x25.06x0.25	804.74	1548.18	0.520	0.00	1548.18	0.000		
L3	92.17 - 45.21 (3)	TP56.31x38.49x0.31	2221.43	3509.52	0.633	0.00	3509.52	0.000		
L4	45.21 - 0 (4)	TP71x53.12x0.38	4249.15	6966.27	0.610	0.00	6966.27	0.000		


Pole Shear Design Data

Section No.	Elevation	Size	Actual V _u	ϕV_n	Ratio Vu	Actual T _u	ϕT_n	Ratio T _u
	ft		Κ	K	$\overline{\phi V_n}$	kip-ft	kip-ft	$\overline{\phi T_n}$
L1	149 - 135.04 (1)	TP26.77x22x0.19	5.30	260.07	0.020	0.04	582.84	0.000
L2	135.04 - 92.17 (2)	TP40.91x25.06x0.25	28.42	529.72	0.054	2.00	1830.19	0.001
L3	92.17 - 45.21 (3)	TP56.31x38.49x0.31	34.59	930.09	0.037	2.00	4352.08	0.000
L4	45.21 - 0 (4)	TP71x53.12x0.38	42.04	1475.28	0.028	1.99	9124.58	0.000

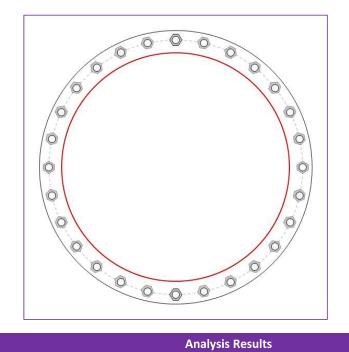
Pole Interaction Design Data									
Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio Vu	Ratio Tu	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	<u></u> φ <i>M</i> _{nx}	ϕM_{ny}	$\overline{\phi V_n}$	$\overline{\phi T_n}$	Ratio	Ratio	
L1	149 - 135.04 (1)	0.004	0.085	0.000	0.020	0.000	0.090	1.050	4.8.2
L2	135.04 - 92.17 (2)	0.013	0.520	0.000	0.054	0.001	0.536	1.050	4.8.2
L3	92.17 - 45.21 (3)	0.011	0.633	0.000	0.037	0.000	0.646	1.050	4.8.2
L4	45.21 - 0 (4)	0.012	0.610	0.000	0.028	0.000	0.623	1.050	4.8.2

Section Capacity Table								
Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L1	149 - 135.04	Pole	TP26.77x22x0.19	1	-3.82	922.77	8.5	Pass
L2	135.04 - 92.17	Pole	TP40.91x25.06x0.25	2	-23.02	1888.15	51.0	Pass
L3	92 17 - 45 21	Pole	TP56.31x38.49x0.31	3	-35.28	3255.33	61.5	Pass
L4	45.21 - 0	Pole	TP71x53.12x0.38	4	-56.71	5023.87	59.3	Pass
							Summary	
						Pole (L3)	61.5	Pass
						RATING =	61.5	Pass

APPENDIX B BASE LEVEL DRAWING

APPENDIX C ADDITIONAL CALCULATIONS

Monopole Base Plate Connection


(units of kips, kip-in)

Site Info	
BU#	876343
Site Name	ORD WEST STONE PRO
Order#	553888 Rev.4

Analysis Considerations			
TIA-222 Revision	Н		
Grout Considered:	No		
I _{ar} (in)	0.5		

Applied Loads				
Moment (kip-ft)	4249.15			
Axial Force (kips)	56.71			
Shear Force (kips)	42.04			

71" x 0.375" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Connection Properties Anchor Rod Summary (28) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 79" BC **Base Plate Data** 85" OD x 2.75" Plate (A572-50; Fy=50 ksi, Fu=65 ksi) Stiffener Data N/A Pole Data

BC	Pu_t = 90.15	φPn_t = 243.75	Stress Rating
	Vu = 1.5	φVn = 149.1	35.2%
	Mu = n/a	φMn = n/a	Pass
	Base Plate Summary		
	Max Stress (ksi):	15.57	(Flexural)
	Allowable Stress (ksi):	45	
	Stress Rating	33.0%	Pass

Analysis Date: 6/4/2021 CCIplate - Version 4.1.1

^{*}TIA-222-H Section 15.5 Applied

Pier and Pad Foundation

BU #: 876343
Site Name: GUILFORD WEST
App. Number: 553888 Rev.4

TIA-222 Revision: H
Tower Type: Monopole

Top & Bot. Pad Rein. Different?:	7
Block Foundation?:	
Rectangular Pad?:	

Superstructure Analysis Reactions					
Compression, P _{comp} :	56.73	kips			
Base Shear, Vu_comp:	42.01	kips			
Moment, M _u :	4249.15	ft-kips			
Tower Height, H:	149	ft			
BP Dist. Above Fdn, bp _{dist} :	2.75	in			

Pier Properties				
Pier Shape:	Square			
Pier Diameter, dpier :	8.5	ft		
Ext. Above Grade, E:	1	ft		
Pier Rebar Size, Sc :	9			
Pier Rebar Quantity, mc :	48			
Pier Tie/Spiral Size, St :	4			
Pier Tie/Spiral Quantity, mt :	20			
Pier Reinforcement Type:	Tie			
Pier Clear Cover, cc _{pier} :	3	in		

Pad Properties				
Depth, D:	12	ft		
Pad Width, W ₁:	30	ft		
Pad Thickness, T :	3	ft		
Pad Rebar Size (Top dir.2), Sp _{top2} :	8			
Pad Rebar Quantity (Top dir. 2), mp_{top2} :	34			
Pad Rebar Size (Bottom dir. 2), Sp ₂ :	8			
Pad Rebar Quantity (Bottom dir. 2), mp ₂ :	58			
Pad Clear Cover, cc_{pad}:	3	in		

Material Properties				
Rebar Grade, Fy: 60 ksi				
Concrete Compressive Strength, F'c:	4	ksi		
Dry Concrete Density, δ c :	150	pcf		

Soil Properties				
Total Soil Unit Weight, γ :	120	pcf		
Ultimate Net Bearing, Qnet:	21.330	ksf		
Cohesion, Cu:		ksf		
Friction Angle, $oldsymbol{arphi}$:	30	degrees		
SPT Blow Count, N _{blows} :	50			
Base Friction, μ :	0.5			
Neglected Depth, N:	4.25	ft		
Foundation Bearing on Rock?	Yes			
Groundwater Depth, gw :	N/A	ft		

Foundation Analysis Checks					
	Capacity	Demand	Rating*	Check	
Lateral (Sliding) (kips)	818.31	42.01	4.9%	Pass	
Bearing Pressure (ksf)	17.08	3.45	19.2%	Pass	
Overturning (kip*ft)	17567.56	4804.91	27.4%	Pass	
Pier Flexure (Comp.) (kip*ft)	9583.61	4669.25	46.4%	Pass	
Pier Compression (kip)	45985.68	186.78	0.4%	Pass	
Pad Flexure (kip*ft)	6263.43	1588.13	24.1%	Pass	
Pad Shear - 1-way (kips)	1075.81	215.00	19.0%	Pass	
Pad Shear - 2-way (Comp) (ksi)	0.190	0.040	19.9%	Pass	
Flexural 2-way (Comp) (kip*ft)	5814.50	2801.55	45.9%	Pass	

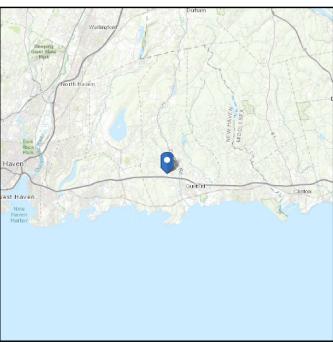
*Rating per TIA-222-H Section 15.5

Structural Rating*:	46.4%
Soil Rating*:	27.4%

<--Toggle between Gross and Net

Address:

No Address at This Location


ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 70.13 ft (NAVD 88)

Risk Category: || Latitude: 41.300353

Soil Class: D - Stiff Soil Longitude: -72.708092

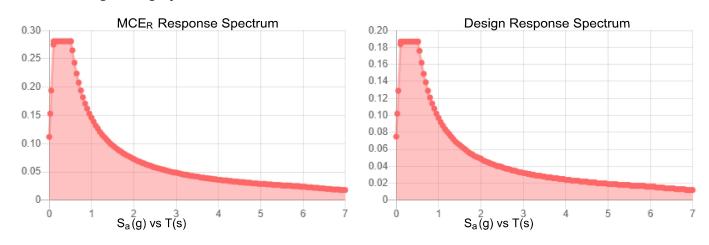
Wind

Results:

Wind Speed: 128 Vmph
10-year MRI 78 Vmph
25-year MRI 88 Vmph
50-year MRI 95 Vmph
100-year MRI 104 Vmph

Date **Somess**ed: **ASO**EMS型 **2020**, Fig. 26.5-1A and Figs. CC-1—CC-4, and Section 26.5.2, incorporating errata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _S :	0.176	S _{DS} :	0.187	
S_1 :	0.061	S _{D1} :	0.097	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA:	0.09	
S_{MS} :	0.281	PGA _M :	0.144	
S_{M1} :	0.146	F _{PGA} :	1.6	
		I. ·	1	

Seismic Design Category B

Data Accessed: Fri Jun 04 2021

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating

Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with

ASCE/SEI 7-10 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Fri Jun 04 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Date: August 2, 2021

Darcy Tarr Crown Castle 3530 Toringdon Way, Suite 300 Charlotte, NC 28277 (704) 405-6589

Trylon 1825 W. Walnut Hill Lane, Suite 302 Irving, TX 75038 214-930-1730

Subject: Mount Replacement Analysis Report

Carrier Designation: DISH Network Equipment Change-Out

Carrier Site Number:BOHVN00026ACarrier Site Name:CT-CCI-T-876343

Crown Castle Designation: Crown Castle BU Number: 876343

Crown Castle Site Name: Guilford West Stone Property

Crown Castle JDE Job Number: 645700 Crown Castle Order Number: 553888 Rev. 4

Engineering Firm Designation: Trylon Report Designation: 189203

Site Data: 1919 Boston Post Rd., Guilford, New Haven County, CT, 06437

Latitude 41°18'1.27" Longitude -72°42'29.13"

Structure Information: Tower Height & Type: 149.0 ft Monopole

Mount Elevation: 138.0 ft
Mount Type: 8.0 ft Platform

Dear Darcy Tarr,

Trylon is pleased to submit this "Mount Replacement Analysis Report" to determine the structural integrity of DISH Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform Sufficient
*Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis utilizes an ultimate 3-second gust wind speed of 130 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Trevor Leahy, E.I.T.

Respectfully Submitted by: Cliff Abernathy, P.E.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

9) APPENDIX E

Supplemental Drawings

1) INTRODUCTION

This is a proposed 3 sector 8.0 ft Platform Mount, designed by Commscope.

2) ANALYSIS CRITERIA

Building Code: 2015 IBC / 2018 CTSBC

TIA-222 Revision: TIA-222-H

Risk Category:

Ultimate Wind Speed: 130 mph

Exposure Category: С Topographic Factor at Base: 1.0 Topographic Factor at Mount: 1.0 Ice Thickness: 1.50 in Wind Speed with Ice: 50 mph Seismic S_s: 0.176 Seismic S₁: 0.061 Live Loading Wind Speed: 30 mph Man Live Load at Mid/End-Points: 250 lb Man Live Load at Mount Pipes: 500 lb

Table 1 - Proposed Equipment Configuration

	Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details
	138.0	138.0 3 3	3	JMA Wireless	MX08FRO665-21	O of Dietform
			3	Fujitsu	TA08025-B604	8.0 ft Platform Commscope MC-
			3	Fujitsu	TA08025-B605	PK8-DSH1
			1	Raycap	RDIDC-9181-PF-48	F KO-DSH]

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Crown Application	DISH Network Application	553888 Rev. 4	CCI Sites
Mount Manufacturer Drawings	Commscope	MC-PK8-DSH	Trylon
Tower Analysis	Tower Engineering Professionals	9833383	CCI Sites

3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed, using Microsoft Excel, by Trylon was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate

HSS (Rectangular)

Pipe

ASTM A36 (GR 36)

ASTM A500 (GR B-46)

ASTM A53 (GR 35)

ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Trylon should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Platform, All Sectors)

	meant compensation careers to capacity (Figure 1111) 7 th contains				
Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
	Mount Pipe(s)	MP3		49.7	Pass
1, 2	Horizontal(s)	H1	138.0	14.8	Pass
	Standoff(s)	M2		49.2	Pass
	Bracing(s)	M11		44.0	Pass
	Handrail(s)	M21		29.2	Pass
	Plate(s)	M15		35.0	Pass
	Mount Connection(s)	-		27.7	Pass

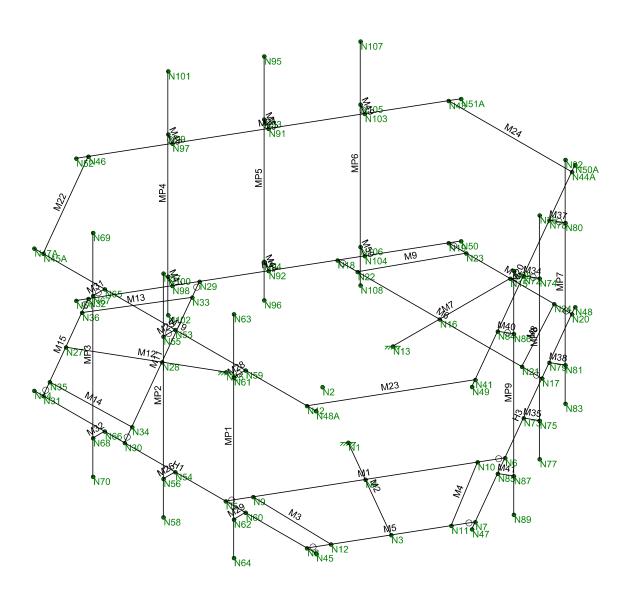
Structure Rating (max from all components) = 49.7%
--

Notes:

4.1) Recommendations

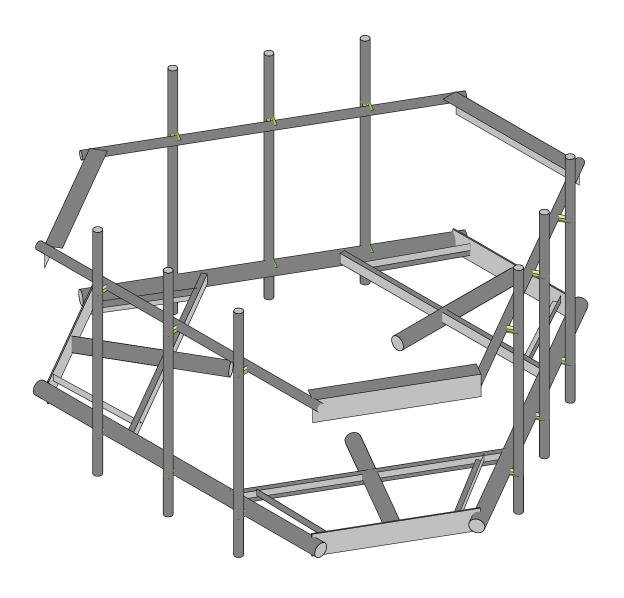
The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed.

1. Commscope MC-PK8-DSH.


No structural modifications are required at this time, provided that the above-listed changes are implemented.

¹⁾ See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.

²⁾ Rating per TIA-222-H, Section 15.5

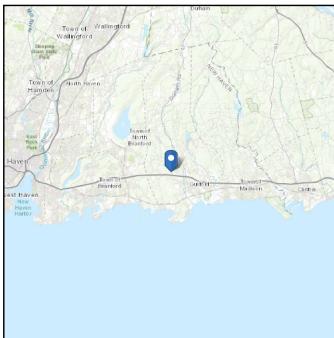

APPENDIX A WIRE FRAME AND RENDERED MODELS

Trylon		SK - 1
TL	Guilford West Stone Property (BU 876343 Order 5538	Aug 2, 2021 at 12:00 PM
189203		MC-PK8-C_loaded.r3d

Trylon		SK - 2
TL	Guilford West Stone Property (BU 876343 Order 5538	Aug 2, 2021 at 12:01 PM
189203		MC-PK8-C_loaded.r3d

APPENDIX B SOFTWARE INPUT CALCULATIONS

Address:


No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 70.13 ft (NAVD 88)

Risk Category: || Latitude: 41.300353 Soil Class: B - Rock Longitude: -72.708092

Ice

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Mon Aug 02 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

TIA LOAD CALCULATOR 2.0

PROJEC1	DATA
Job Code:	189203
Carrier Site ID:	BOHVN00026A
Carrier Site Name:	CT-CCI-T-876343

CODES AND S	TANDARDS
Building Code:	2015 IBC
Local Building Code:	18 Connecticut Building Co
Design Standard:	TIA-222-H

STRUCTURE	DETAILS	
		1
Mount Type:	Platform	
Mount Elevation:	138.0	ft.
Number of Sectors:	3	
Structure Type:	Monopole	
Structure Height:	149.0	ft.

ANALYSIS CRITERIA		
Structure Risk Category:	=	
Exposure Category:	С	
Site Class:	B - Rock	
Ground Elevation:	70.13	ft.

TOPOGRAPHIC DATA		
Topographic Category:	1.00	-
Topographic Feature:	N/A	-
Crest Point Elevation:	0.00	ft.
Base Point Elevation:	0.00	ft.
Crest to Mid-Height (L/2):	0.00	ft.
Distance from Crest (x):	0.00	ft.
Base Topo Factor (K _{zt}):	1.00	
Mount Topo Factor (K _{zt}):	1.00	

WIND PARAN	IETERS	
Design Wind Speed:	130	mph
Wind Escalation Factor (K _s):	1.00	
Velocity Coefficient (K _z):	1.35	
Directionality Factor (K _d):	0.95	
Gust Effect Factor (Gh):	1.00	
Shielding Factor (K _a):	0.90	
Velocity Pressure (q_z) :	55.53	psf

ICE PARAMETERS		
Design Ice Wind Speed:	50	mph
Design Ice Thickness (t _i):	1.50	in
Importance Factor (I _i):	1.00	
Ice Velocity Pressure (q _{zi}):	55.53	psf
Mount Ice Thickness (t _{iz}):	1.73	in

WIND STRUCTURE C	ALCULATIONS	
Flat Member Pressure:	99.95	psf
Round Member Pressure:	59.97	psf
Ice Wind Pressure:	7.56	psf

SEISMIC PARA	METERS	
Importance Factor (I _e):	1.00	
Short Period Accel .(S _s):	0.18	g
1 Second Accel (S ₁):	0.06	g
Short Period Des. (S _{DS}):	0.11	g
1 Second Des. (S _{D1}):	0.03	g
Short Period Coeff. (F _a):	0.90	
1 Second Coeff. (F _v):	0.80	
Response Coefficient (Cs):	0.05	
Amplification Factor (A _S):	1.20	

LOAD COMBINATIONS [LRFD]

#	Description
1	1.4DL
2	1.2DL + 1WL 0 AZI
3	1.2DL + 1WL 30 AZI
4	1.2DL + 1WL 45 AZI
5	1.2DL + 1WL 60 AZI
6	1.2DL + 1WL 90 AZI
7	1.2DL + 1WL 120 AZI
8	1.2DL + 1WL 135 AZI
9	1.2DL + 1WL 150 AZI
10	1.2DL + 1WL 180 AZI
11	1.2DL + 1WL 210 AZI
12	1.2DL + 1WL 225 AZI
13	1.2DL + 1WL 240 AZI
14	1.2DL + 1WL 270 AZI
15	1.2DL + 1WL 300 AZI
16	1.2DL + 1WL 315 AZI
17	1.2DL + 1WL 330 AZI
18	0.9DL + 1WL 0 AZI
19	0.9DL + 1WL 30 AZI
20	0.9DL + 1WL 45 AZI
21	0.9DL + 1WL 60 AZI
22	0.9DL + 1WL 90 AZI
23	0.9DL + 1WL 120 AZI
24	0.9DL + 1WL 135 AZI
25	0.9DL + 1WL 150 AZI
26	0.9DL + 1WL 180 AZI
27	0.9DL + 1WL 210 AZI
28	0.9DL + 1WL 225 AZI 0.9DL + 1WL 240 AZI
29 30	0.9DL + 1WL 240 AZI 0.9DL + 1WL 270 AZI
31	0.9DL + 1WL 270 AZI
32	0.9DL + 1WL 300 AZI 0.9DL + 1WL 315 AZI
33	0.9DL + 1WL 313 AZI 0.9DL + 1WL 330 AZI
34	1,2DL + 1DLi + 1WLi 0 AZI
35	1.2DL + 1DLi + 1WLi 30 AZI
36	1.2DL + 1DLi + 1WLi 30 AZI
37	1.2DL + 1DLi + 1WLi 60 AZI
38	1.2DL + 1DLi + 1WLi 90 AZI
39	1.2DL + 1DLi + 1WLi 120 AZI
40	1.2DL + 1DLi + 1WLi 135 AZI
41	1.2DL + 1DLi + 1WLi 150 AZI

42
44 1.2DL + 1DLi + 1WLi 225 AZI 45 1.2DL + 1DLi + 1WLi 240 AZI 46 1.2DL + 1DLi + 1WLi 270 AZI 47 1.2DL + 1DLi + 1WLi 300 AZI 48 1.2DL + 1DLi + 1WLi 315 AZI 49 1.2DL + 1DLi + 1WLi 330 AZI 50 (1.2+0.2Sds) + 1.0E 0 AZI 51 (1.2+0.2Sds) + 1.0E 30 AZI 52 (1.2+0.2Sds) + 1.0E 45 AZI 53 (1.2+0.2Sds) + 1.0E 60 AZI 54 (1.2+0.2Sds) + 1.0E 90 AZI 55 (1.2+0.2Sds) + 1.0E 120 AZI 56 (1.2+0.2Sds) + 1.0E 135 AZI 57 (1.2+0.2Sds) + 1.0E 150 AZI 58 (1.2+0.2Sds) + 1.0E 180 AZI 59 (1.2+0.2Sds) + 1.0E 210 AZI
45
46
47 1.2DL + 1DLi + 1WLi 300 AZI 48 1.2DL + 1DLi + 1WLi 315 AZI 49 1.2DL + 1DLi + 1WLi 330 AZI 50 (1.2+0.2Sds) + 1.0E 0 AZI 51 (1.2+0.2Sds) + 1.0E 30 AZI 52 (1.2+0.2Sds) + 1.0E 45 AZI 53 (1.2+0.2Sds) + 1.0E 60 AZI 54 (1.2+0.2Sds) + 1.0E 90 AZI 55 (1.2+0.2Sds) + 1.0E 120 AZI 56 (1.2+0.2Sds) + 1.0E 135 AZI 57 (1.2+0.2Sds) + 1.0E 180 AZI 58 (1.2+0.2Sds) + 1.0E 180 AZI 59 (1.2+0.2Sds) + 1.0E 210 AZI
48
49
50
51 (1.2+0.2Sds) + 1.0E 30 AZI 52 (1.2+0.2Sds) + 1.0E 45 AZI 53 (1.2+0.2Sds) + 1.0E 60 AZI 54 (1.2+0.2Sds) + 1.0E 90 AZI 55 (1.2+0.2Sds) + 1.0E 120 AZI 56 (1.2+0.2Sds) + 1.0E 135 AZI 57 (1.2+0.2Sds) + 1.0E 150 AZI 58 (1.2+0.2Sds) + 1.0E 180 AZI 59 (1.2+0.2Sds) + 1.0E 210 AZI
52
53
54 (1.2+0.2Sds) + 1.0E 90 AZI 55 (1.2+0.2Sds) + 1.0E 120 AZI 56 (1.2+0.2Sds) + 1.0E 135 AZI 57 (1.2+0.2Sds) + 1.0E 150 AZI 58 (1.2+0.2Sds) + 1.0E 180 AZI 59 (1.2+0.2Sds) + 1.0E 210 AZI
55 (1.2+0.2Sds) + 1.0E 120 AZI 56 (1.2+0.2Sds) + 1.0E 135 AZI 57 (1.2+0.2Sds) + 1.0E 150 AZI 58 (1.2+0.2Sds) + 1.0E 180 AZI 59 (1.2+0.2Sds) + 1.0E 210 AZI
56 (1.2+0.2Sds) + 1.0E 135 AZI 57 (1.2+0.2Sds) + 1.0E 150 AZI 58 (1.2+0.2Sds) + 1.0E 180 AZI 59 (1.2+0.2Sds) + 1.0E 210 AZI
57 (1.2+0.2Sds) + 1.0E 150 AZI 58 (1.2+0.2Sds) + 1.0E 180 AZI 59 (1.2+0.2Sds) + 1.0E 210 AZI
58 (1.2+0.2Sds) + 1.0E 180 AZI 59 (1.2+0.2Sds) + 1.0E 210 AZI
59 (1.2+0.2Sds) + 1.0E 210 AZI
60 (1.2+0.2Sds) + 1.0E 225 AZI
61 (1.2+0.2Sds) + 1.0E 240 AZI
62 (1.2+0.2Sds) + 1.0E 270 AZI
63 (1.2+0.2Sds) + 1.0E 300 AZI
64 (1.2+0.2Sds) + 1.0E 315 AZI
65 (1.2+0.2Sds) + 1.0E 330 AZI
66 (0.9-0.2Sds) + 1.0E 0 AZI
67 (0.9-0.2Sds) + 1.0E 30 AZI
68 (0.9-0.2Sds) + 1.0E 45 AZI
69 (0.9-0.2Sds) + 1.0E 60 AZI
70 (0.9-0.2Sds) + 1.0E 90 AZI
71 (0.9-0.2Sds) + 1.0E 120 AZI
72 (0.9-0.2Sds) + 1.0E 135 AZI
73 (0.9-0.2Sds) + 1.0E 150 AZI
74 (0.9-0.2Sds) + 1.0E 180 AZI
75 (0.9-0.2Sds) + 1.0E 210 AZI
76 (0.9-0.2Sds) + 1.0E 225 AZI
77 (0.9-0.2Sds) + 1.0E 240 AZI
78 (0.9-0.2Sds) + 1.0E 270 AZI
79 (0.9-0.2Sds) + 1.0E 300 AZI
80 (0.9-0.2Sds) + 1.0E 315 AZI
81 (0.9-0.2Sds) + 1.0E 330 AZI
82-88 1.2D + 1.5 Lv1

#	Description
89	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP1
90	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP1
91	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP1
92	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP1
93	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP1
94	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP1
95	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP1
96	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP1
97	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP1
98	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP1
99	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP1
100	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP1
101	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP1
102	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1
103	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1
104	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP1
105	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2
106	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2
107	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2
108	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2
109	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2
110	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2
111	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2
112	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2
113	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP2
114	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2
115	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2
116	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2
117	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2
118	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2
119	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2
120	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2

#	Description
121	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3
122	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3
123	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3
124	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3
125	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3
126	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3
127	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3
128	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3
129	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3
130	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3
131	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3
132	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3
133	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3
134	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3
135	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3
136	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP3
137	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP4
138	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP4
139	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP4
140	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP4
141	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP4
142	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP4
143	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP4
144	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP4
145	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP4
146	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP4
147	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP4
148	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP4
149	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP4
150	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP4
151	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP4
152	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP4

^{*}This page shows an example of maintenance loads for (4) pipes, the number of mount pipe LCs may vary per site

EQUIPMENT LOADING

Appurtenance Name/Location	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
MX08FRO665-21	3	138	No Ice	12.49	5.87	82.50
MP1/MP4/MP7, 0/120/240			w/ Ice	13.71	6.99	284.27
TA08025-B604	3	138	No Ice	1.96	0.98	63.90
MP1/MP4/MP7, 0/120/240			w/ Ice	2.39	1.31	69.87
TA08025-B605	3	138	No Ice	1.96	1.13	75.00
MP1/MP4/MP7, 0/120/240			w/ Ice	2.39	1.47	74.43
RDIDC-9181-PF-48	1	138	No Ice	2.01	1.17	21.85
MP1, 0			w/ Ice	2.44	1.53	73.35
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
	-		w/ Ice			
			No Ice			
	-		w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

EQUIPMENT LOADING [CONT.]

Appurtenance Name/Location	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _⊤ (ft2)	Weight (lbs)
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

EQUIPMENT WIND CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	K _{zt}	Kz	K _d	t _d	q _z [psf]	q _{zi} [psf]
MX08FRO665-21	3	138	1.00	1.35	0.95	1.73	55.53	8.21
TA08025-B604	3	138	1.00	1.35	0.95	1.73	55.53	8.21
TA08025-B605	3	138	1.00	1.35	0.95	1.73	55.53	8.21
RDIDC-9181-PF-48	1	138	1.00	1.35	0.95	1.73	55.53	8.21

EQUIPMENT LATERAL WIND FORCE CALCULATIONS

Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
MX08FRO665-21	3	No Ice	624.12	375.91	541.38	293.18	541.38	375.91
MP1/MP4/MP7, 0/120/240		w/ Ice	101.39	64.11	88.96	51.69	88.96	64.11
TA08025-B604	3	No Ice	98.12	61.30	85.85	49.03	85.85	61.30
MP1/MP4/MP7, 0/120/240		w/ Ice	17.65	11.68	15.66	9.69	15.66	11.68
TA08025-B605	3	No Ice	98.12	66.86	87.70	56.44	87.70	66.86
MP1/MP4/MP7, 0/120/240		w/ Ice	17.65	12.58	15.96	10.89	15.96	12.58
RDIDC-9181-PF-48	1	No Ice	100.54	68.92	90.00	58.38	90.00	68.92
MP1, 0		w/ Ice	18.06	12.97	16.36	11.28	16.36	12.97
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		I W/ ICE			L			l

EQUIPMENT LATERAL WIND FORCE CALCULATIONS [CONT.]

Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						

EQUIPMENT SEISMIC FORCE CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	Weight [lbs]	F _p [lbs]
MX08FRO665-21	3	138	82.5	5.23
TA08025-B604	3	138	63.9	4.05
TA08025-B605	3	138	75	4.75
RDIDC-9181-PF-48	1	138	21.85	1.38

APPENDIX C SOFTWARE ANALYSIS OUTPUT

: Trylon : TL : 189203

: Guilford West Stone Property (BU 876343 Order 553888)

Aug 2, 2021 12:00 PM Checked By:____

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (in/sec^2)	386.4
Wall Mesh Size (in)	24
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Υ
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 15th(360-16): LRFD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 15th(360-16): LRFD
Cold Formed Steel Code	AISI S100-12: LRFD
Wood Code	AWC NDS-15: ASD
Wood Temperature	< 100F
Concrete Code	ACI 318-14
Masonry Code	ACI 530-13: Strength
Aluminum Code	AA ADM1-10: LRFD - Building
Stainless Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

: Trylon : TL : 189203

: Guilford West Stone Property (BU 876343 Order 553888)

Aug 2, 2021 12:00 PM Checked By:___

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (in)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
TX (sec)	Not Entered
T Z (sec)	Not Entered
RX	3
RZ	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	l or II
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	1
Cd X	1
Rho Z	1
Rho X	1

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E	.Density[k/ft	Yield[psi]	Ry	Fu[psi]	Rt
1	A992	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36000	1.5	58000	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42000	1.4	58000	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46000	1.4	58000	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35000	1.6	60000	1.2
7	A1085	29000	11154	.3	.65	.49	50000	1.4	65000	1.3

Cold Formed Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5 F)	Density[k/ft^3]	Yield[psi]	Fu[psi]
1	A653 SS Gr33	29500	11346	.3	.65	.49	33000	45000
2	A653 SS Gr50/1	29500	11346	.3	.65	.49	50000	65000

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	Plates	6.5"x0.37" Plate	Beam	RECT	A53 Gr.B	Typical	2.405	.027	8.468	.106
2	Grating Bracing	L2x2x3	Beam	Single Angle	A36 Gr.36	Typical	.722	.271	.271	.009
3	Standoffs	PIPE 3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04
4	Standoff Bracing	C3X5	Beam	Channel	A36 Gr.36	Typical	1.47	.241	1.85	.043
5	Handrails	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
6	Handrail Corners	L6 5/8x4 7/16x	Beam	Single Angle	A36 Gr.36	Typical	2.039	3.593	9.575	.023
7	Horizontals	PIPE 3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04
8	Mount Pipes	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25

: Trylon : TL : 189203

: Guilford West Stone Property (BU 876343 Order 553888)

Aug 2, 2021 12:00 PM Checked By:____

Cold Formed Steel Section Sets

	Label	Shape	Type	Design List	Material	Design Rul	A [in2]	lyy [in4]	Izz [in4]	J [in4]	
1	CF1A	8CU1.25X057	Beam	None	A653 SS Gr33	Typical	581	.057	4.41	00063	ı

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot [k-ft/rad]	Z Rot.[k-ft/rad]
1	N25	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N13	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me.	.Surface(
1	Self Weight	DĹ		-1			15		3	
2	Structure Wind Z	WLZ						51		
3	Structure Wind X	WLX						51		
4	Wind Load 0 AZI	WLZ					30			
5	Wind Load 30 AZI	None					30			
6	Wind Load 45 AZI	None					30			
7	Wind Load 60 AZI	None					30			
8	Wind Load 90 AZI	WLX					30			
9	Wind Load 120 AZI	None					30			
10	Wind Load 135 AZI	None					30			
11	Wind Load 150 AZI	None					30			
12	Ice Weight	OL1					15	51	3	
13	Ice Structure Wind Z	OL2						51		
14	Ice Structure Wind X	OL3						51		
15	Ice Wind Load 0 AZI	OL2					30			
16	Ice Wind Load 30 AZI	None					30			
17	Ice Wind Load 45 AZI	None					30			
18	Ice Wind Load 60 AZI	None					30			
19	Ice Wind Load 90 AZI	OL3					30			
20	Ice Wind Load 120 AZI	None					30			
21	Ice Wind Load 135 AZI	None					30			
22	Ice Wind Load 150 AZI	None					30			
23	Seismic Load Z	ELZ			063		15			
24	Seismic Load X	ELX	063		.000		15			
25	Live Load 1 (Lv)	None	1.000				1			
26	Live Load 2 (Lv)	None					1			
27	Live Load 3 (Lv)	None					1			
28	Live Load 4 (Lv)	None					1			
29	Live Load 5 (Lv)	None					1			
30	Live Load 6 (Lv)	None					1			
31	Live Load 7 (Lv)	None					1			
32	Live Load 8 (Lv)	None					1			
33	Live Load 9 (Lv)	None					1			
	Maintenance Load 1 (Lm)	None					1			
	Maintenance Load 2 (Lm)	None					1			
	Maintenance Load 3 (Lm)	None					1			
	Maintenance Load 4 (Lm)	None					1			
	Maintenance Load 5 (Lm)	None					1			
	Maintenance Load 6 (Lm)	None					1			
	Maintenance Load 7 (Lm)	None					1			
	Maintenance Load 8 (Lm)	None					1			
	Maintenance Load 9 (Lm)	None					1			
43	BLC 1 Transient Area Loads	None						9		

: Trylon : TL : 189203

: Guilford West Stone Property (BU 876343 Order 553888)

Aug 2, 2021 12:00 PM Checked By:__

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(
44	BLC 12 Transient Area Loads	None						9		

Load Combinations

1		Description	S D	S B	Ea	R	Ea	R	Ea	R	Ea	R	Fa	R	Ea	R	Fa	R	Fa	В	Ea	B	Fa
2 1.2DL + 1WL 0 AZI	1						1 a	D	1 a	D	ı a	D	1 a	D	<u> га</u>	D	та	<u>ان</u>	1 a	J	1 a	ا	1 a
3 1.2DL + 1WL 30 AZI Yes Y DL 1.2 2 .866 3 .5 5 1 1							1	3		4	1												
4 1.2DL + 1WL 45 AZI Yes Y DL 1.2 2 707 3 707 6 1									.5														
5											1												
6	_								.866		1												
Table			Yes Y						1	8	1												
8							5				1												
10	8		Yes Y						.707	10	1												
11	9	1.2DL + 1WL 150 AZI	Yes Y	DL	1.2	2	8	3	.5	11	1												
12	10	1.2DL + 1WL 180 AZI	Yes Y								-1												
13	11	1.2DL + 1WL 210 AZI	Yes Y						5	5	-1												
14	12	1.2DL + 1WL 225 AZI	Yes Y	DL	1.2	2	7	3	7	6	-1												
15	13									7	-1												
16	14	1.2DL + 1WL 270 AZI	Yes Y	DL	1.2	2			-1	8	-1												
17						2																	
18																							
19									5														
20 0.9DL + 1WL 45 AZI																							
21											_												
22 0.9DL + 1WL 90 AZI Yes Y DL .9 2 .3 1 8 1																							
23							.5																
24 0.9DL + 1WL 135 AZI Yes Y DL .9 27 3 .707 10 1							_																
25																							
26 0.9DL + 1WL 180 AZI Yes Y																							
27									.5														
28																							
29																							
30 0.9DL + 1WL 270 AZI Yes Y											_											\vdash	
31 0.9DL + 1WL 300 AZ Yes Y DL .9 2 .5 3 -8 9 -1							5																
32 0.9DL + 1WL 315 AZI Yes Y							5																
33																							
34																							
35												15	1										
36 1.2DL + 1DLi + 1WLi 45 AZI Yes Y DL 1.2 O 1 13 .707 14 .707 17 1 37 1.2DL + 1DLi + 1WLi 60 AZI Yes Y DL 1.2 O 1 13 .5 14 .866 18 1 38 1.2DL + 1DLi + 1WLi 90 AZI Yes Y DL 1.2 O 1 13 14 1 19 1 39 1.2DL + 1DLi + 1WLi 120 AZI Yes Y DL 1.2 O 1 135 14 .866 20 1 40 1.2DL + 1DLi + 1WLi 135 AZI Yes Y DL 1.2 O 1 137 14 .707 21 1																							
37 1.2DL + 1DLi + 1WLi 60 AZI Yes Y DL 1.2 O 1 13 .5 14 .866 18 1 38 1.2DL + 1DLi + 1WLi 90 AZI Yes Y DL 1.2 O 1 13 .14 1 19 1 39 1.2DL + 1DLi + 1WLi 120 AZI Yes Y DL 1.2 O 1 135 14 .866 20 1 40 1.2DL + 1DLi + 1WLi 135 AZI Yes Y DL 1.2 O 1 137 14 .707 21 1																							
38 1.2DL + 1DLi + 1WLi 90 AZI Yes Y DL 1.2 O 1 13 14 1 19 1 39 1.2DL + 1DLi + 1WLi 120 AZI Yes Y DL 1.2 O 1 135 14 .866 20 1 40 1.2DL + 1DLi + 1WLi 135 AZI Yes Y DL 1.2 O 1 137 14 .707 21 1																							
39 1.2DL + 1DLi + 1WLi 120 AZI Yes Y DL 1.2 O 1 135 14 .866 20 1 40 1.2DL + 1DLi + 1WLi 135 AZI Yes Y DL 1.2 O 1 137 14 .707 21 1		1.2DL + 1DLi + 1WLi 90 AZI		DL																			
40 1.2DL + 1DLi + 1WLi 135 AZI Yes Y DL 1.2 O 1 13 -7 14 .707 21 1	39				1.2	O						20	1										
		1.2DL + 1DLi + 1WLi 135 AZI	Yes Y																				
41 1.2DL + 1DLi + 1WLi 150 AZI Yes Y DL 1.2 O 1 13 -8 14 .5 22 1	41	1.2DL + 1DLi + 1WLi 150 AZI	Yes Y																				
42 1.2DL + 1DLi + 1WLi 180 AZI Yes Y DL 1.2 O 1 13 -1 14 15 -1																							
43 1.2DL + 1DLi + 1WLi 210 AZI Yes Y DL 1.2 O 1 13 -8 14 5 16 -1	43			DL	1.2	O	1																
44 1.2DL + 1DLi + 1WLi 225 AZI Yes Y DL 1.2 O 1 13 -7 14 -7 17 -1	44			DL	1.2	O	1																
45 1.2DL + 1DLi + 1WLi 240 AZI Yes Y DL 1.2 O 1 13 5 14 8 18 -1	45			DL	1.2	O	1	13	5														
46 1.2DL + 1DLi + 1WLi 270 AZI Yes Y DL 1.2 O 1 13 14 -1 19 -1				DL	1.2	O	1																
47 1.2DL + 1DLi + 1WLi 300 AZI Yes Y DL 1.2 O 1 13 .5 14 -8 20 -1	47																						
48 1.2DL + 1DLi + 1WLi 315 AZI Yes Y DL 1.2 O 1 13 .707 14 .7 21 -1	48																						
49 1.2DL + 1DLi + 1WLi 330 AZI Yes Y DL 1.2 O 1 13 866 14 5 22 -1										14	5	22	-1										
50 (1.2+0.2Sds)DL + 1E 0 AZI Yes Y DL 1.223 1 24																							
51 (1.2+0.2Sds)DL + 1E 30 AZI Yes Y DL 1.2 23 .866 24 .5	51	(1.2+0.2Sds)DL + 1E 30 AZI	Yes Y	DL	. 1.2	23	.866	24	5														

: Trylon : TL : 189203

: Guilford West Stone Property (BU 876343 Order 553888)

Aug 2, 2021 12:00 PM Checked By:___

Load Combinations (Continued)

	Description	0	D (S B	Εo	ь	Eo	ь	Eo	D	Eo	Ь	Eo	D	Eo	D	Eo	D	Εn	Ъ	Eo	_	Eo
52	(1.2+0.2Sds)DL + 1E 45 AZI	Yes	V		1.2						га	<u>Б</u>	га	D	га	D	га	D	_га	<u>Б</u>	га	D	га
53	(1.2+0.2Sds)DL + 1E 60 AZI	Ves	$\frac{1}{\sqrt{1}}$		1.2																		
54	(1.2+0.2Sds)DL + 1E 90 AZI				1.2			24															
	(1.2+0.2Sds)DL + 1E 120 AZI				1.2				266														
<u>55</u>	(1.2+0.2Sds)DL + 1E 120 AZI				1.2																		
56	(1.2+0.2Sds)DL + 1E 150 AZI																						
57					1.2																		
58	(1.2+0.2Sds)DL + 1E 180 AZI				1.2			24															
59	(1.2+0.2Sds)DL + 1E 210 AZI				1.2																		
60	(1.2+0.2Sds)DL + 1E 225 AZI				1.2																		
61	(1.2+0.2Sds)DL + 1E 240 AZI				1.2																		
62	(1.2+0.2Sds)DL + 1E 270 AZI				1.2			24															
63	(1.2+0.2Sds)DL + 1E 300 AZI				1.2																	_	
64	(1.2+0.2Sds)DL + 1E 315 AZI			DL	1.2	23	.707	24	7														
65	(1.2+0.2Sds)DL + 1E 330 AZI			DI	1.2	23																	
66	(0.9-0.2Sds)DL + 1E 0 AZI				.879			24															
67	(0.9-0.2Sds)DL + 1E 30 AZI			DL			.866																
68	(0.9-0.2Sds)DL + 1E 45 AZI				.879																		
69	(0.9-0.2Sds)DL + 1E 60 AZI			DL	_ .879	23	.5		.866														
70	(0.9-0.2Sds)DL + 1E 90 AZI			DL				24															
71	(0.9-0.2Sds)DL + 1E 120 AZI				.879																		
72	(0.9-0.2Sds)DL + 1E 135 AZI			DI																			
73	(0.9-0.2Sds)DL + 1E 150 AZI				.879																		
74	(0.9-0.2Sds)DL + 1E 180 AZI				.879			24															
75	(0.9-0.2Sds)DL + 1E 210 AZI				.879																		
76	(0.9-0.2Sds)DL + 1E 225 AZI				.879																		
77	(0.9-0.2Sds)DL + 1E 240 AZI				.879																		
78	(0.9-0.2Sds)DL + 1E 270 AZI	Yes	Υ		.879				-1														
79	(0.9-0.2Sds)DL + 1E 300 AZI				.879																		
80	(0.9-0.2Sds)DL + 1E 315 AZI				.879																	_	
81	(0.9-0.2Sds)DL + 1E 330 AZI				.879				5														
82	1.2DL + 1Lv1	Yes			1.2																		
83	1.2DL + 1Lv2	Yes			1.2																		
84	1.2DL + 1Lv3	Yes			1.2																		
85	1.2DL + 1Lv4	Yes			1.2																		
86	1.2DL + 1Lv5	Yes			1.2																		
87	1.2DL + 1Lv6	Yes			1.2																		
88	1.2DL + 1Lv7	Yes			1.2																		
89	1.2DL + 1Lv8	Yes			1.2																		
90	1.2DL + 1Lv9	Yes		DI					050				050										
	1.2DL + 1.5Lm + 1Wm 0 AZI -				1.2				.053		007		.053										
	1.2DL + 1.5Lm + 1Wm 30 AZI.			DI	1.2	34	1.5	2	.046	3	.027	5	.053										
	1.2DL + 1.5Lm + 1Wm 45 AZI.				1.2																		
	1.2DL + 1.5Lm + 1Wm 60 AZI.	_	_		1.2				.027		.046	_	.053										
	1.2DL + 1.5Lm + 1Wm 90 AZI.		_		1.2				0	3	.053		.053	_									
	1.2DL + 1.5Lm + 1Wm 120 A				1.2				0		_	_	.053										
	1.2DL + 1.5Lm + 1Wm 135 A				1.2				0		.038		_										
	1.2DL + 1.5Lm + 1Wm 150 A				1.2				0	3	.027		.053										
	1.2DL + 1.5Lm + 1Wm 180 A			DI	1.2	34	1.5	2	0	3	_	4	0										
	1.2DL + 1.5Lm + 1Wm 210 A			DL	1.2	34	1.5	2	0	_	0	_	0										
	1.2DL + 1.5Lm + 1Wm 225 A				1.2				0	_	0		0										
	1.2DL + 1.5Lm + 1Wm 240 A				1.2				0		0		0										
	1.2DL + 1.5Lm + 1Wm 270 A				1.2				007	3	0		0										
	1.2DL + 1.5Lm + 1Wm 300 A				1.2				.027		0	_	0										
	1.2DL + 1.5Lm + 1Wm 315 A		_	DI	1.2	34	1.5	2	.038		0		0										
	1.2DL + 1.5Lm + 1Wm 330 A				1.2				.046		0		_										
	1.2DL + 1.5Lm + 1Wm 0 AZI	-	_		1.2				.053		007		.053										
108	1.2DL + 1.5Lm + 1Wm 30 AZI.	. res	Υ	וטו	1.2	35	1.5	2	.046	3	.027	5	1.053										

: Trylon : TL : 189203

: Guilford West Stone Property (BU 876343 Order 553888)

Aug 2, 2021 12:00 PM Checked By:___

Load Combinations (Continued)

109 2.0L + 1.5.Lm + 1.Wm 64 X2L, Yes Y DL 1,2 35 1.5 2 .038 3 .038 6 .053 111 10,20L + 1.5.Lm + 1.Wm 90 X2L, Yes Y DL 1,2 35 1.5 2 .027 3 .063 8 .053 111 1,20L + 1.5.Lm + 1.Wm 126 A., Yes Y DL 1,2 35 1.5 2 .0.3 .063 8 .053 111 1,20L + 1.5.Lm + 1.Wm 126 A., Yes Y DL 1,2 35 1.5 2 .0.3 .063 8 .053 111 1,20L + 1.5.Lm + 1.Wm 136 A., Yes Y DL 1,2 35 1.5 2 .0.3 .088 10 .053 111 1,20L + 1.5.Lm + 1.Wm 136 A., Yes Y DL 1,2 35 1.5 2 .0.3 .3 .038 10 .053 115 1,20L + 1.5.Lm + 1.Wm 136 A., Yes Y DL 1,2 35 1.5 2 .0.3 .3 .05 .05 .00 .	Description S P									B	Fa	B	Fa	В	Fa	В	 Fa	B	Fa
1111 120 + 1.5Lm + 1Wm 90 AZI , Yee Y Di 1.2 35 1.5 2 0.3 36 6 9 053 113 120 + 1.5Lm + 1Wm 135 A., Yee Y Di 1.2 35 1.5 2 0.3 308 10 053 114 120 + 1.5Lm + 1Wm 150 A., Yee Y Di 1.2 35 1.5 2 0.3 308 10 053 115 120 + 1.5Lm + 1Wm 150 A., Yee Y Di 1.2 35 1.5 2 0.3 30 1 10 053 115 120 + 1.5Lm + 1Wm 180 A., Yee Y Di 1.2 35 1.5 2 0.3 3 4 0 116 120 + 1.5Lm + 1Wm 20 A., Yee Y Di 1.2 35 1.5 2 0.3 3 0.5 5 0 116 120 + 1.5Lm + 1Wm 20 A., Yee Y Di 1.2 35 1.5 2 0.3 3 0 5 0 117 120 + 1.5Lm + 1Wm 20 A., Yee Y Di 1.2 35 1.5 2 0.3 3 0 6 0 118 120 + 1.5Lm + 1Wm 20 A., Yee Y Di 1.2 35 1.5 2 0.3 3 0 7 0 119 120 + 1.5Lm + 1Wm 30 A., Yee Y Di 1.2 35 1.5 2 0.3 3 0 7 0 120 120 + 1.5Lm + 1Wm 30 A., Yee Y Di 1.2 35 1.5 2 0.3 3 0 10 0 121 120 + 1.5Lm + 1Wm 30 A., Yee Y Di 1.2 35 1.5 2 0.03 3 0 10 0 122 120 + 1.5Lm + 1Wm 30 A., Yee Y Di 1.2 36 1.5 2 0.03 3 0 10 0 123 125 12																			
112 12D+ 1.5Lm + 1Wm 120 A Yes Y D. 1, 2 35 1.5 2 -0 3 0.46 9 0.53 114 12D+ 1.5Lm + 1Wm 150 A Yes Y D. 1, 2 35 1.5 2 -0 3 0.31 1.053 115 12D+ 1.5Lm + 1Wm 180 A Yes Y D. 1, 2 35 1.5 2 -0 3 0.27 1.053 115 12D+ 1.5Lm + 1Wm 220 A Yes Y D. 1, 2 35 1.5 2 -0 3 -0 5 -0 117 12D+ 1.5Lm + 1Wm 220 A Yes Y D. 1, 2 35 1.5 2 -0 3 -0 6 -0 117 12D+ 1.5Lm + 1Wm 220 A Yes Y D. 1, 2 35 1.5 2 -0 3 -0 6 -0 118 12D+ 1.5Lm + 1Wm 220 A Yes Y D. 1, 2 35 1.5 2 -0 3 -0 7 -0 119 12D+ 1.5Lm + 1Wm 300 A Yes Y D. 1, 2 35 1.5 2 -0 3 -0 7 -0 12D+ 1.5Lm + 1Wm 315 A Yes Y D. 1, 2 35 1.5 2 -0 3 -0 7 -0 12D+ 1.5Lm + 1Wm 300 A Yes Y D. 1, 2 35 1.5 2 -0.3 3 -0 10 -0 122 12D+ 1.5Lm + 1Wm 300 A Yes Y D. 1, 2 35 1.5 2 -0.3 3 -0 10 -0 123 12D+ 1.5Lm + 1Wm 30 A Yes Y D. 1, 2 36 1.5 2 -0.38 3 -0 10 -0 123 12D+ 1.5Lm + 1Wm 30 A Yes Y D. 1, 2 36 1.5 2 -0.38 3 -0 10 -0 124 12D+ 1.5Lm + 1Wm 30 A Yes Y D. 1, 2 36 1.5 2 -0.38 3 -0 10 -0 125 12		DL 1.2	35 1	.5 2															
113 1.2D. + 1.5Lm + 1Wm 136 A Yes Y D. 1,2 35 1.5 2 - 0 3 0.38 10 0.53 114 1.2D. + 1.5Lm + 1Wm 180 A Yes Y D. 1,2 35 1.5 2 - 0 3 0.4 0 116 1.2D. + 1.5Lm + 1Wm 210 A Yes Y D. 1,2 35 1.5 2 - 0 3 0 5 0 117 1.2D. + 1.5Lm + 1Wm 220 A Yes Y D. 1,2 35 1.5 2 - 0 3 0 6 0 118 1.2D. + 1.5Lm + 1Wm 200 A Yes Y D. 1,2 35 1.5 2 - 0 3 0 6 0 119 1.2D. + 1.5Lm + 1Wm 300 A Yes Y D. 1,2 35 1.5 2 0 3 0 7 0 119 1.2D. + 1.5Lm + 1Wm 300 A Yes Y D. 1,2 35 1.5 2 0.0. 3 0 7 0 120 1.2D. + 1.5Lm + 1Wm 300 A Yes Y D. 1,2 35 1.5 2 0.0. 3 0 9 0 121 1.2D. + 1.5Lm + 1Wm 300 A Yes Y D. 1,2 35 1.5 2 0.03 3 0 10 0 122 1.2D. + 1.5Lm + 1Wm 30 A.Z. I. Yes Y D. 1,2 36 1.5 2 0.06 3 0 10 0 123 1.2D. + 1.5Lm + 1Wm 30 A.Z. I. Yes Y D. 1,2 36 1.5 2 0.06 3 0 10 0 124 1.2D. + 1.5Lm + 1Wm 30 A.Z. I. Yes Y D. 1,2 36 1.5 2 0.06 3 0 10 0 125 1.2D. + 1.5Lm + 1Wm 30 A.Z. I. Yes Y D. 1,2 36 1.5 2 0.06 3 0 50 0 126 1.2D. + 1.5Lm + 1Wm 30 A.Z. I. Yes Y D. 1,2 36 1.5 2 0.06 3 0 50 0 127 1.2D. + 1.5Lm + 1Wm 30 A.Z. I. Yes Y D. 1,2 36 1.5 2 0 3 0 50 0 128 1.2D. + 1.5Lm + 1Wm 10 A.Z. I. Yes Y D. 1,2 36 1.5 2 0 3 0 50 0 129 1.2D. + 1.5Lm + 1Wm 10 A.Z. I. Yes Y D. 1,2 36 1.5 2 0 3 0 5 0 129 1.2D. + 1.5Lm + 1Wm 10 A.Z. I. Yes Y D. 1,2 36 1.5 2 0 3 0 5 0 120 1.2D. + 1.5Lm + 1Wm 10 A.Z. I. Yes Y D. 1,2 36 1.5 2 0 3 0 5 0 120 1.2D. + 1.5Lm + 1Wm 10 A.Z. I. Yes Y		DL 1.2	35 1	.5 2															
114 1.20L + 1.5Lm + 1Wm 190 A , Mes Y																			
115 1.2Du + 1.5Lm + 1Wm 180 A., Yes Y. Du 1. 12 35 1.5 2 -0 3 -0 5 -0 117 1.2Du + 1.5Lm + 1 Wm 226 A., Yes Y. Du 1. 12 35 1.5 2 -0 3 -0 6 -0. 118 1.2Du + 1.5Lm + 1 Wm 226 A., Yes Y. Du 1. 12 35 1.5 2 -0 3 -0 6 -0. 119 1.2Du + 1.5Lm + 1 Wm 270 A., Yes Y. Du 1. 12 35 1.5 2 -0 3 -0 6 -0. 119 1.2Du + 1.5Lm + 1 Wm 270 A., Yes Y. Du 1. 12 35 1.5 2 -0 3 -0 6 -0. 119 1.2Du + 1.5Lm + 1 Wm 315 A., Yes Y. Du 1. 12 35 1.5 2 -0 3 -0 6 -0. 120 1.2Du + 1.5Lm + 1 Wm 315 A., Yes Y. Du 1. 12 35 1.5 2 -0 3 -0 10 -0. 121 1.2Du + 1.5Lm + 1 Wm 315 A., Yes Y. Du 1. 12 35 1.5 2 -0 3 -0 10 -0. 122 1.2Du + 1.5Lm + 1 Wm 315 A., Yes Y. Du 1. 12 35 1.5 2 -0 3 -0 10 -0. 123 1.2Du + 1.5Lm + 1 Wm 30 AZ 1., Yes Y. Du 1. 12 36 1.5 2 -0 3 -0 10 -0. 124 1.2Du + 1.5Lm + 1 Wm 30 AZ 1., Yes Y. Du 1. 12 36 1.5 2 -0 3 -0 10 -0. 125 1.2Du + 1.5Lm + 1 Wm 30 AZ 1., Yes Y. Du 1. 12 36 1.5 2 -0 3 -0 3 -0 6 -0. 126 1.2Du + 1.5Lm + 1 Wm 60 AZ 1., Yes Y. Du 1. 12 36 1.5 2 -0 3 -0 3 -0 6 -0. 127 1.2Du + 1.5Lm + 1 Wm 60 AZ 1., Yes Y. Du 1. 12 36 1.5 2 -0 3 -0 3 -0 6 -0. 128 1.2Du + 1.5Lm + 1 Wm 180 AZ 1., Yes Y. Du 1. 12 36 1.5 2 -0 3 -0 3 -0 6 -0. 129 1.2Du + 1.5Lm + 1 Wm 180 AZ 1., Yes Y. Du 1. 12 36 1.5 2 -0 3 -0 3 -0 6 -0. 130 1.2Du + 1.5Lm + 1 Wm 180 A., Yes Y. Du 1. 12 36 1.5 2 -0 3 -0 3 -0 6 -0. 131 1.2Du + 1.5Lm + 1 Wm 180 A., Yes Y. Du 1. 12 36 1.5 2 -0 3 -0 3 -0 6 -0. 132 1.2Du + 1.5Lm + 1 Wm 180 A., Yes Y. Du 1. 12 36 1.5 2 -0 3 -0 5 -0 133 1.2Du + 1.5Lm + 1 Wm 270 A., Yes Y. Du 1. 12 36 1.5 2 -0 3 -0 5 -0 134 1.2Du + 1.5Lm + 1 Wm 270 A., Yes Y. Du 1. 12 36 1.5 2 -0 3 -0 6 -0 135 1.2Du + 1.5Lm + 1 Wm 270 A., Yes Y. Du 1. 12 36 1.5 2 -0 3 -0 6 -0 136 1.2Du + 1.5Lm + 1 Wm 270 A., Yes Y. Du 1. 12 36 1.5 2 -0 3 -0 5 -0 137 1.2Du + 1.5Lm + 1 Wm 270 A., Yes Y. Du 1. 12 36 1.5 2 -0 3 -0 5 -0 138 1.2Du + 1.5Lm + 1 Wm 270 A., Yes Y. Du 1. 12 36 1.5 2 -0 3 -0 5 -0 144						_												\vdash	
116 120L + 1.5Lm + 1VM 210 A. Nes Y DL 1.2 35 1.5 2 -0 3 -0 5 -0							.027												
117 1.20L + 1.5Ln + 1Vm 226 A., Yes Y. DL. 1.2, 25 1.5; 2 -0, 3 -0, 6 -0 118 1.20L + 1.5Ln + 1Vm 270 A., Yes Y. DL. 1.2, 25 1.5; 2 -0, 3 -0, 6 -0 119 1.20L + 1.5Ln + 1Vm 270 A., Yes Y. DL. 1.2, 25 1.5; 2 -0, 3 -0, 8 -0 120 1.20L + 1.5Ln + 1Vm 315 A., Yes Y. DL. 1.2, 25 1.5; 2 -0, 3 -0, 8 -0 121 1.20L + 1.5Ln + 1Vm 315 A., Yes Y. DL. 1.2, 25 1.5; 2 -0.2, 3 -0, 8 -0 122 1.20L + 1.5Ln + 1Vm 30 A., Yes Y. DL. 1.2, 25 1.5; 2 -0.26 3 -0 1 + 0 123 1.20L + 1.5Ln + 1Vm 0 AZL, Yes Y. DL. 1.2, 26 1.5; 2 -0.66 3 -0 1 + 0 124 1.20L + 1.5Ln + 1Vm 45 AZL, Yes Y. DL. 1.2, 26 1.5; 2 -0.66 3 -0.27 5 -0.63 125 1.20L + 1.5Ln + 1Vm 66 AZL, Yes Y. DL. 1.2, 26 1.5; 2 -0.06 3 -0.08 5 126 1.20L + 1.5Ln + 1Vm 66 AZL, Yes Y. DL. 1.2, 26 1.5; 2 -0.08 3 -0.08 6 -0.53 126 1.20L + 1.5Ln + 1Vm 106 AZL, Yes Y. DL. 1.2, 26 1.5; 2 -0.08 3 -0.08 6 -0.53 128 1.20L + 1.5Ln + 1Vm 150 A., Yes Y. DL. 1.2, 26 1.5; 2 -0 3 -0.06 9 -0.53 129 1.20L + 1.5Ln + 1Vm 150 A., Yes Y. DL. 1.2, 26 1.5; 2 -0 3 -0.06 9 -0.53 130 1.20L + 1.5Ln + 1Vm 150 A., Yes Y. DL. 1.2, 26 1.5; 2 -0 3 -0 -0 131 1.20L + 1.5Ln + 1Vm 210 A., Yes Y. DL. 1.2, 26 1.5; 2 -0 3 -0 -0 132 1.20L + 1.5Ln + 1Vm 210 A., Yes Y. DL. 1.2, 26 1.5; 2 -0 3 -0 -0 133 1.20L + 1.5Ln + 1Vm 220 A., Yes Y. DL. 1.2, 26 1.5; 2 -0 3 -0 -0 134 1.20L + 1.5Ln + 1Vm 270 A., Yes Y. DL. 1.2, 26 1.5; 2 -0 3 -0 -0 135 1.20L + 1.5Ln + 1Vm 270 A., Yes Y. DL. 1.2, 26 1.5; 2 -0 3 -0 -0 136 1.20L + 1.5Ln + 1Vm 270 A., Yes Y. DL. 1.2, 26 1.5; 2 -0 3 -0 -0 137 1.20L + 1.5Ln + 1Vm 30 A., Yes Y. DL. 1.2, 26 1.5; 2 -0 3 -0 -0 138 1.20L + 1.5Ln + 1Vm 30 A., Yes Y. DL. 1.2, 27 1.5; 2 -0 3 -0 -0																		—	
118 12DL + 1.5Lm + 1Wm 240 A Yes Y DL 1, 2, 35 1, 5 2 -0 3 -0 7 -0 12DL + 1.5Lm + 1Wm 300 A Yes Y DL 1, 2, 35 1, 5 2 -0 3 -0 8 -0																			
119 1.2DL + 1.5Lm + 1Wm 270 A Yes Y DL 1.2 35 1.5 2 0.3 3 - 0 8 -0		DL 1.2	35 1	.5 2															
120 1.20L + 1.5.Lm + 1Vm 300 A Yes Y D. 1.2 25 1.5 2 0.07 3 -0. 9 -0					U														
121 1.2DL + 1.5Lm + 1Wm 316 A/res Y DL 1.2 36 1.5 2 0.08 3 -0 1 -0					027														
122 12DL + 1.5Lm + 1Wm 30 A\res Y DL 1.2 36 1.5 2 .046 3 .0 11 · 0																			
123 1.2DL + 1.5Lm + 1Wm 30 AZIYes Y DL 1.2 36 1.5 2 0.03 3 4 0.05 3 1.2 1.2 1.2 1.2 1.5		DL 1.2	25 1	5 2															
124 1.2DL + 1.5Lm + 1 Wm 30 AZL, Yes Y DL 1.2 36 1.5 2 .046 3 .027 5 .053 125 1.2DL + 1.5Lm + 1 Wm 60 AZL, Yes Y DL 1.2 36 1.5 2 .027 3 .046 7 .053 127 1.2DL + 1.5Lm + 1 Wm 60 AZL, Yes Y DL 1.2 36 1.5 2 .027 3 .046 7 .053 128 1.2DL + 1.5Lm + 1 Wm 10 AZL, Yes Y DL 1.2 36 1.5 2 .027 3 .046 7 .053 129 1.2DL + 1.5Lm + 1 Wm 120 A Yes Y DL 1.2 36 1.5 2 .0 3 .046 9 .053 129 1.2DL + 1.5Lm + 1 Wm 130 A Yes Y DL 1.2 36 1.5 2 .0 3 .038 10 .053 130 1.2DL + 1.5Lm + 1 Wm 120 A Yes Y DL 1.2 36 1.5 2 .0 3 .038 10 .053 131 1.2DL + 1.5Lm + 1 Wm 120 A Yes Y DL 1.2 36 1.5 2 .0 3 .0 5 .0 132 1.2DL + 1.5Lm + 1 Wm 220 A Yes Y DL 1.2 36 1.5 2 .0 3 .0 5 .0 133 1.2DL + 1.5Lm + 1 Wm 225 A Yes Y DL 1.2 36 1.5 2 .0 3 .0 5 .0 134 1.2DL + 1.5Lm + 1 Wm 226 A Yes Y DL 1.2 36 1.5 2 .0 3 .0 5 .0 135 1.2DL + 1.5Lm + 1 Wm 240 A Yes Y DL 1.2 36 1.5 2 .0 3 .0 7 .0 136 1.2DL + 1.5Lm + 1 Wm 300 A Yes Y DL 1.2 36 1.5 2 .0 3 .0 7 .0 137 1.2DL + 1.5Lm + 1 Wm 315 A Yes Y DL 1.2 36 1.5 2 .007 3 .0 9 .0 138 1.2DL + 1.5Lm + 1 Wm 316 A Yes Y DL 1.2 36 1.5 2 .007 3 .0 9 .0 139 1.2DL + 1.5Lm + 1 Wm 300 A Yes Y DL 1.2 36 1.5 2 .007 3 .0 9 .0 139 1.2DL + 1.5Lm + 1 Wm 300 A Yes Y DL 1.2 36 1.5 2 .007 3 .0 9 .0 140 1.2DL + 1.5Lm + 1 Wm 300 A Yes Y DL 1.2 37 1.5 2 .003 3 .0 10 .0 141 1.2DL + 1.5Lm + 1 Wm 300 A Yes Y DL 1.2 37 1.5 2 .003 3 .0 10 .0 143 1.2DL + 1.5Lm + 1 Wm 300 A Yes Y DL 1.2 37 1.5 2 .0 3 .038 6 .053 144 1.2DL + 1.5Lm + 1 Wm 30							0												
125 1.2DL + 1.5Lm + 1Wm 45 AZL, Yes Y DL 1.2 36 1.5 2 .038 3 .038 6 .053 126 1.2DL + 1.5Lm + 1Wm 90 AZL, Yes Y DL 1.2 36 1.5 2 3 .053 8 .053 127 1.2DL + 1.5Lm + 1Wm 120 A Yes Y DL 1.2 36 1.5 2 .0 3 .046 9 .053 128 1.2DL + 1.5Lm + 1Wm 130 A Yes Y DL 1.2 36 1.5 2 .0 3 .046 9 .053 130 1.2DL + 1.5Lm + 1Wm 150 A Yes Y DL 1.2 36 1.5 2 .0 3 .027 11 .053 131 1.2DL + 1.5Lm + 1Wm 160 A Yes Y DL 1.2 36 1.5 2 .0 3 .027 11 .053 132 1.2DL + 1.5Lm + 1Wm 120 A Yes Y DL 1.2 36 1.5 2 .0 3 .0 5 .0 133 1.2DL + 1.5Lm + 1Wm 240 A Yes Y DL 1.2 36 1.5 2 .0 3 .0 5 .0 134 1.2DL + 1.5Lm + 1Wm 240 A Yes Y DL 1.2 36 1.5 2 .0 3 .0 6 .0 135 1.2DL + 1.5Lm + 1Wm 240 A Yes Y DL 1.2 36 1.5 2 .0 3 .0 6 .0 136 1.2DL + 1.5Lm + 1Wm 240 A Yes Y DL 1.2 36 1.5 2 .0 3 .0 6 .0 137 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 36 1.5 2 .0 3 .0 8 .0 138 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 36 1.5 2 .0 3 .0 10 .0 139 1.2DL + 1.5Lm + 1Wm 00 A Yes Y DL 1.2 36 1.5 2 .0.48 3 .0 11 .0 139 1.2DL + 1.5Lm + 1Wm 00 A Yes Y DL 1.2 36 1.5 2 .0.48 3 .0 11 .0 139 1.2DL + 1.5Lm + 1Wm 00 A Yes Y DL 1.2 36 1.5 2 .0.48 3 .0 11 .0 139 1.2DL + 1.5Lm + 1Wm 00 A Yes Y DL 1.2 37 1.5 2 .0.48 3 .0 11 .0 140 1.2DL + 1.5Lm + 1Wm 00 A Yes Y DL 1.2 37 1.5 2 .0.48 3 .0 10 .0 141 1.2DL + 1.5Lm + 1Wm 00 A Yes Y DL 1.2 37 1.5 2 .0 3 .0.6 6 .0 142 1.2DL + 1.5Lm + 1Wm 60 A Yes Y DL 1.2 37 1.5 2 .0 3 .							027												
126 1,2DL + 1,5Lm + 1Wm 60 AZL, Yes Y DL 1,2 36 1,5 2 027 3 0.46 7 0.53																			
127 1.2DL + 1.5Lm + 1Wm 90 AZL. Yes Y DL 1.2 36 1.5 2 .0 3 .046 9 .053 129 1.2DL + 1.5Lm + 1Wm 150 A Yes Y DL 1.2 36 1.5 2 .0 3 .038 10 .053 130 1.2DL + 1.5Lm + 1Wm 150 A Yes Y DL 1.2 36 1.5 2 .0 3 .027 11 .053 131 1.2DL + 1.5Lm + 1Wm 150 A Yes Y DL 1.2 36 1.5 2 .0 3 .027 11 .053 131 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 36 1.5 2 .0 3 4 .0 132 1.2DL + 1.5Lm + 1Wm 210 A Yes Y DL 1.2 36 1.5 2 .0 3 4 .0 133 1.2DL + 1.5Lm + 1Wm 220 A Yes Y DL 1.2 36 1.5 2 .0 3 .0 6 .0 133 1.2DL + 1.5Lm + 1Wm 240 A Yes Y DL 1.2 36 1.5 2 .0 3 .0 6 .0 135 1.2DL + 1.5Lm + 1Wm 240 A Yes Y DL 1.2 36 1.5 2 .0 3 .0 6 .0 135 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 36 1.5 2 .027 3 .0 9 .0 136 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 36 1.5 2 .027 3 .0 9 .0 137 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 36 1.5 2 .027 3 .0 9 .0 138 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 36 1.5 2 .053 3 4 .053 140 1.2DL + 1.5Lm + 1Wm 30 A Yes Y DL 1.2 36 1.5 2 .046 3 .0 11 .0 139 1.2DL + 1.5Lm + 1Wm 30 A Yes Y DL 1.2 37 1.5 2 .046 3 .027 5 .053 141 1.2DL + 1.5Lm + 1Wm 30 A.Z Yes Y DL 1.2 37 1.5 2 .046 3 .027 5 .053 141 1.2DL + 1.5Lm + 1Wm 30 A.Z Yes Y DL 1.2 37 1.5 2 .005 3 .038 6 .053 141 1.2DL + 1.5Lm + 1Wm 45 AZ Yes Y DL 1.2 37 1.5 2 .00 3 .038 6 .053 141 1.2DL + 1.5Lm + 1Wm 120 A Yes Y DL 1.2 37 1.5 2 .00 3 .046 9 .053 141 1.2DL + 1.5Lm + 1Wm 120 A Yes Y DL 1.2 37 1.5 2 .00 3 .046 9 .053 141 1.2DL + 1.5Lm + 1Wm 120 A																			
128 1.2DL + 1.5Lm + 1Wm 120 AYes Y DL 1.2 36 1.5 2 -0 3 .046 9 .053																			
129 1.2DL + 1.5Lm + 1Wm 135 AYes Y DL 1.2 36 1.5 2 -0 3 .038 10 .053		DL 1.2	36 1	.5 2	0														
130 1.2DL + 1.5Lm + 1Wm 150 A Yes Y DL 1,2 36 1,5 2 -0 3 0.27 11 0.53 13 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1,2 36 1,5 2 -0 3 -0 5 -0 133 1.2DL + 1.5Lm + 1Wm 210 A Yes Y DL 1,2 36 1,5 2 -0 3 -0 5 -0 133 1.2DL + 1.5Lm + 1Wm 225 A Yes Y DL 1,2 36 1,5 2 -0 3 -0 5 -0 133 1.2DL + 1.5Lm + 1Wm 240 A Yes Y DL 1,2 36 1,5 2 -0 3 -0 6 -0 135 1.2DL + 1.5Lm + 1Wm 270 A Yes Y DL 1,2 36 1,5 2 -0 3 -0 8 -0 136 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1,2 36 1,5 2 -0 3 -0 8 -0 136 1.2DL + 1.5Lm + 1Wm 305 A Yes Y DL 1,2 36 1,5 2 -0 3 -0 9 -0 137 1.2DL + 1.5Lm + 1Wm 305 A Yes Y DL 1,2 36 1,5 2 -0 3 -0 9 -0 138 1.2DL + 1.5Lm + 1Wm 30 A.Z. Yes Y DL 1,2 37 1,5 2 -0.46 3 -0 1 -0 139 1.2DL + 1.5Lm + 1Wm 30 A.Z. Yes Y DL 1,2 37 1,5 2 -0.46 3 -0 1 -0 141 1.2DL + 1.5Lm + 1Wm 30 A.Z. Yes Y DL 1,2 37 1,5 2 -0.46 3 -0.56 -0.53 141 1.2DL + 1.5Lm + 1Wm 46 A.Z. Yes Y DL 1,2 37 1,5 2 -0.26 3 -0.56 -0.53 141 1.2DL + 1.5Lm + 1Wm 90 A.Z. Yes Y DL 1,2 37 1,5 2 -0.26 3 -0.56 -0.53 141 1.2DL + 1.5Lm + 1Wm 190 A.Z. Yes Y DL 1,2 37 1,5 2 -0 3 -0.65 -0.53 144 1.2DL + 1.5Lm + 1Wm 190 A.Z. Yes Y DL 1,2 37 1,5 2 -0 3 -0 3 -0.56 -0 144 1.2DL + 1.5Lm + 1Wm 190 A.Z. Yes Y DL 1,2 37 1,5 2 -0 3 -0 3 -0.56 -0 144 1.2DL + 1.5Lm + 1Wm 190 A.Z. Yes Y DL 1,2 37 1,5 2 -0 3 -0 5 -0 144 1.2DL + 1.5Lm + 1Wm 190 A.Z. Yes Y DL 1,2 37 1,5 2 -0 3 -0 5 -0 144 1.2DL + 1.5Lm + 1Wm 190 A.Z. Yes Y DL 1,2 37 1,5 2 -0 3 -0 5 -0 144 1.2DL + 1.5Lm + 1Wm 190 A								_											
131 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1,2 36 1.5 2 -0 3 4 -0							.027	11	.053										
132 1.2DL + 1.5Lm + 1Wm 210 A Yes Y DL 1.2 36 1.5 2 -0 3 -0 5 -0 133 1.2DL + 1.5Lm + 1Wm 225 A Yes Y DL 1.2 36 1.5 2 -0 3 -0 6 -0 134 1.2DL + 1.5Lm + 1Wm 240 A Yes Y DL 1.2 36 1.5 2 -0 3 -0 6 -0 135 1.2DL + 1.5Lm + 1Wm 240 A Yes Y DL 1.2 36 1.5 2 -0 3 -0 9 -0 136 1.2DL + 1.5Lm + 1Wm 315 A Yes Y DL 1.2 36 1.5 2 -0.3 3 -0 9 -0 137 1.2DL + 1.5Lm + 1Wm 315 A Yes Y DL 1.2 36 1.5 2 -0.8 3 -0 1 -0 138 1.2DL + 1.5Lm + 1Wm 330 A Yes Y DL 1.2 36 1.5 2 -0.8 3 -0 1 -0 139 1.2DL + 1.5Lm + 1Wm 30 AZI Yes Y DL 1.2 37 1.5 2 -0.8 3 -0 1 -0 140 1.2DL + 1.5Lm + 1Wm 30 AZI Yes Y DL 1.2 37 1.5 2 -0.8 3 -0.8 6 -0.5 141 1.2DL + 1.5Lm + 1Wm 46 AZI Yes Y DL 1.2 37 1.5 2 -0.8 3 -0.8 6 -0.5 142 1.2DL + 1.5Lm + 1Wm 90 AZI Yes Y DL 1.2 37 1.5 2 -0 3 -0.5 6 -0.5 143 1.2DL + 1.5Lm + 1Wm 135 A Yes Y DL 1.2 37 1.5 2 -0 3 -0.5 6 -0 144 1.2DL + 1.5Lm + 1Wm 135 A Yes Y DL 1.2 37 1.5 2 -0 3 -0.5 -0 145 1.2DL + 1.5Lm + 1Wm 150 A Yes Y DL 1.2 37 1.5 2 -0 3 -0 5 -0 146 1.2DL + 1.5Lm + 1Wm 150 A Yes Y DL 1.2 37 1.5 2 -0 3 -0 5 -0 147 1.2DL + 1.5Lm + 1Wm 150 A Yes Y DL 1.2 37 1.5 2 -0 3 -0 5 -0 148 1.2DL + 1.5Lm + 1Wm 20A A Yes Y DL 1.2 37 1.5 2 -0 3 -0 5 -0 150 1.2DL + 1.5Lm + 1Wm 20A A Yes Y DL 1.2 37 1.5 2 -0 3 -0 5 -0 151 1.2DL + 1.5Lm + 1Wm 30A A Yes Y DL 1.2 37 1.5 2 -0 3 -0 5 -0 152 1.2DL + 1.5Lm + 1Wm 30A A Yes Y DL 1.2 37 1.																			
134 1.2DL + 1.5Lm + 1Wm 270 A Yes Y DL 1.2 36 1.5 2 .0 3 .0 7 .0 135 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 36 1.5 2 .0 3 .0 7 .0 136 1.2DL + 1.5Lm + 1Wm 316 A Yes Y DL 1.2 36 1.5 2 .0 3 .0 10 .0 137 1.2DL + 1.5Lm + 1Wm 315 A Yes Y DL 1.2 36 1.5 2 .046 3 .0 10 .0 138 1.2DL + 1.5Lm + 1Wm 30 A Yes Y DL 1.2 36 1.5 2 .046 3 .0 11 .0 139 1.2DL + 1.5Lm + 1Wm 0 AZI Yes Y DL 1.2 37 1.5 2 .036 3 .0 11 .0 140 1.2DL + 1.5Lm + 1Wm 30 AZI Yes Y DL 1.2 37 1.5 2 .036 3 .038 6 .053 141 1.2DL + 1.5Lm + 1Wm 45 AZI Yes Y DL 1.2 37 1.5 2 .038 3 .038 6 .053 144 1.2DL + 1.5Lm + 1Wm 60 AZI Yes Y DL 1.2 37 1.5 2 .038 3 .053 144 1.2DL + 1.5Lm + 1Wm 90 AZI Yes Y DL 1.2 37 1.5 2 .038 3 .053 144 1.2DL + 1.5Lm + 1Wm 120 A Yes Y DL 1.2 37 1.5 2 .0 3 .053 3 144 1.2DL + 1.5Lm + 1Wm 130 A Yes Y DL 1.2 37 1.5 2 .0 3 .053 3 144 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 37 1.5 2 .0 3 .053 3 144 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 37 1.5 2 .0 3 .053 3 144 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 37 1.5 2 .0 3 .027 11 .053 145 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 37 1.5 2 .0 3 .027 11 .053 147 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 37 1.5 2 .0 3 .0 6 .0 148 1.2DL + 1.5Lm + 1Wm 20A A Yes Y DL 1.2 37 1.5 2 .0 3 .0 6 .0 150 1.2DL + 1.5Lm + 1Wm 20A A Yes Y DL 1.2 37 1.5 2 .0 3 .0 6 .0 151 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 37 1.5 2 .0 3 .0 6 .0 152 1.2DL	132 1.2DL + 1.5Lm + 1Wm 210 A Yes Y						0	5	0										
134 1.2DL + 1.5Lm + 1Wm 270 A Yes Y DL 1, 2 36 1, 5 2 2 3 0 7 0 135 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1, 2 36 1, 5 2 0.27 3 0 9 0 137 1.2DL + 1.5Lm + 1Wm 310 A Yes Y DL 1, 2 36 1, 5 2 0.27 3 0 9 0 138 1.2DL + 1.5Lm + 1Wm 315 A Yes Y DL 1, 2 36 1, 5 2 0.048 3 0 10 0 138 1.2DL + 1.5Lm + 1Wm 30 A Yes Y DL 1, 2 36 1, 5 2 0.048 3 0 10 0 139 1.2DL + 1.5Lm + 1Wm 30 AZI Yes Y DL 1, 2 37 1, 5 2 0.053 3 4 0.053 140 1.2DL + 1.5Lm + 1Wm 30 AZI Yes Y DL 1, 2 37 1, 5 2 0.048 3 0.027 5 0.053 141 1.2DL + 1.5Lm + 1Wm 45 AZI Yes Y DL 1, 2 37 1, 5 2 0.048 3 0.027 5 0.053 142 1.2DL + 1.5Lm + 1Wm 60 AZI Yes Y DL 1, 2 37 1, 5 2 0.027 3 0.046 7 0.053 143 1.2DL + 1.5Lm + 1Wm 90 AZI Yes Y DL 1, 2 37 1, 5 2 0.027 3 0.046 7 0.053 144 1.2DL + 1.5Lm + 1Wm 90 AZI Yes Y DL 1, 2 37 1, 5 2 0.03 3 0.053 144 1.2DL + 1.5Lm + 1Wm 130 A Yes Y DL 1, 2 37 1, 5 2 0.0 3 0.053 144 1.2DL + 1.5Lm + 1Wm 135 A Yes Y DL 1, 2 37 1, 5 2 0.0 3 0.053 145 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1, 2 37 1, 5 2 0.0 3 0.053 146 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1, 2 37 1, 5 2 0.0 3 0.027 11 0.053 147 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1, 2 37 1, 5 2 0.0 3 0.027 11 0.053 148 1.2DL + 1.5Lm + 1Wm 200 A Yes Y DL 1, 2 37 1, 5 2 0.0 3 0.0. 6 0.0 149 1.2DL + 1.5Lm + 1Wm 200 A Yes Y DL 1, 2 37 1, 5 2 0.0 3 0.0 6 0.0 150 1.2DL + 1.5Lm + 1Wm 200 A Yes Y DL 1, 2 37 1, 5 2 0.0 3 0.0 6 0.0 151 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1, 2 37 1, 5 2 0.0 3 0.0 7 0.0 152 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1, 2 37 1, 5 2 0.0 3 0.0 9 0.0 153 1.2DL + 1.5Lm + 1Wm 300 A Yes	133 1.2DL + 1.5Lm + 1Wm 225 A Yes Y				0	3	0	6	0										
136 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 36 1.5 2 .027 3 .0 9 .0 137 1.2DL + 1.5Lm + 1Wm 315 A Yes Y DL 1.2 36 1.5 2 .038 3 .0 10 .0 138 1.2DL + 1.5Lm + 1Wm 30 A Yes Y DL 1.2 36 1.5 2 .086 3 .0 10 .0 139 1.2DL + 1.5Lm + 1Wm 0 AZI Yes Y DL 1.2 37 1.5 2 .063 3 4 .053 140 1.2DL + 1.5Lm + 1Wm 30 AZI Yes Y DL 1.2 37 1.5 2 .063 3 4 .053 140 1.2DL + 1.5Lm + 1Wm 40 AZI Yes Y DL 1.2 37 1.5 2 .063 3 .027 5 .053 141 1.2DL + 1.5Lm + 1Wm 40 AZI Yes Y DL 1.2 37 1.5 2 .027 3 .046 7 .053 142 1.2DL + 1.5Lm + 1Wm 100 AZI Yes Y DL 1.2 37 1.5 2 .027 3 .046 7 .053 143 1.2DL + 1.5Lm + 1Wm 100 AZI Yes Y DL 1.2 37 1.5 2 .027 3 .046 7 .053 144 1.2DL + 1.5Lm + 1Wm 120 A Yes Y DL 1.2 37 1.5 2 .0 3 .048 .053 145 1.2DL + 1.5Lm + 1Wm 130 A Yes Y DL 1.2 37 1.5 2 .0 3 .038 10 .053 146 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 37 1.5 2 .0 3 .027 1 .053 147 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 37 1.5 2 .0 3 .027 1 .053 148 1.2DL + 1.5Lm + 1Wm 210 A Yes Y DL 1.2 37 1.5 2 .0 3 .0 6 .0 149 1.2DL + 1.5Lm + 1Wm 226 A Yes Y DL 1.2 37 1.5 2 .0 3 .0 6 .0 150 1.2DL + 1.5Lm + 1Wm 210 A Yes Y DL 1.2 37 1.5 2 .0 3 .0 6 .0 151 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 37 1.5 2 .0 3 .0 6 .0 152 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 37 1.5 2 .0 3 .0 6 .0 153 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 37 1.5 2 .0 3 .0 6 .0 154 1.2DL + 1.5Lm + 1Wm 300 AZL Yes Y	134 1.2DL + 1.5Lm + 1Wm 240 A Yes Y				0	3	0	7	0										
137 1.2DL + 1.5Lm + 1Wm 316 A Yes Y DL 1.2 36 1.5 2 .038 3 .0 10 .0 138 1.2DL + 1.5Lm + 1Wm 330 A Yes Y DL 1.2 37 1.5 2 .046 3 .0 11 .0 140 1.2DL + 1.5Lm + 1Wm 30 AZI Yes Y DL 1.2 37 1.5 2 .046 3 .027 5 .053 141 1.2DL + 1.5Lm + 1Wm 45 AZI Yes Y DL 1.2 37 1.5 2 .046 3 .027 5 .053 141 1.2DL + 1.5Lm + 1Wm 46 AZI Yes Y DL 1.2 37 1.5 2 .038 3 .038 6 .053 142 1.2DL + 1.5Lm + 1Wm 60 AZI Yes Y DL 1.2 37 1.5 2 .027 3 .046 7 .053 143 1.2DL + 1.5Lm + 1Wm 120 A Yes Y DL 1.2 37 1.5 2 .0 3 .046 9 .053 144 1.2DL + 1.5Lm + 1Wm 120 A Yes Y DL 1.2 37 1.5 2 .0 3 .046 9 .053 145 1.2DL + 1.5Lm + 1Wm 135 A Yes Y DL 1.2 37 1.5 2 .0 3 .038 10 .053 146 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 37 1.5 2 .0 3 .027 11 .053 147 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 37 1.5 2 .0 3 .0 5 .0 148 1.2DL + 1.5Lm + 1Wm 210 A Yes Y DL 1.2 37 1.5 2 .0 3 .0 5 .0 149 1.2DL + 1.5Lm + 1Wm 224 A Yes Y DL 1.2 37 1.5 2 .0 3 .0 5 .0 150 1.2DL + 1.5Lm + 1Wm 224 A Yes Y DL 1.2 37 1.5 2 .0 3 .0 5 .0 151 1.2DL + 1.5Lm + 1Wm 30 A Yes Y DL 1.2 37 1.5 2 .0 3 .0 5 .0 151 1.2DL + 1.5Lm + 1Wm 30 A Yes Y DL 1.2 37 1.5 2 .0 3 .0 5 .0 152 1.2DL + 1.5Lm + 1Wm 30 A Yes Y DL 1.2 37 1.5 2 .0 3 .0 5 .0 153 1.2DL + 1.5Lm + 1Wm 30 A Yes Y DL 1.2 37 1.5 2 .0.3 3 .0 5 .0 154 1.2DL + 1.5Lm + 1Wm 30 A Yes Y DL 1.2 37 1.5 2 .0.3 3 .0 5 .0 155 1.2DL + 1.5Lm + 1Wm 30 A						3	0	8	0										
138 1.2DL + 1.5Lm + 1Wm 330 A Yes Y DL 1.2 36 1.5 2 0.46 3 -0 11 -0 139 1.2DL + 1.5Lm + 1Wm 0 AZI - Yes Y DL 1.2 37 1.5 2 0.53 3 4 0.53 140 1.2DL + 1.5Lm + 1Wm 30 AZI - Yes Y DL 1.2 37 1.5 2 0.46 3 0.027 5 0.53 141 1.2DL + 1.5Lm + 1Wm 45 AZI - Yes Y DL 1.2 37 1.5 2 0.38 3 0.38 6 0.53 142 1.2DL + 1.5Lm + 1Wm 90 AZI - Yes Y DL 1.2 37 1.5 2 0.27 3 0.46 7 0.53 143 1.2DL + 1.5Lm + 1Wm 90 AZI - Yes Y DL 1.2 37 1.5 2 0.07 3 0.46 7 0.53 144 1.2DL + 1.5Lm + 1Wm 100 AZI - Yes Y DL 1.2 37 1.5 2 -0 3 0.46 9 0.53 145 1.2DL + 1.5Lm + 1Wm 135 A Yes Y DL 1.2 37 1.5 2 -0 3 0.38 10 0.53 146 1.2DL + 1.5Lm + 1Wm 150 A Yes Y DL 1.2 37 1.5 2 -0 3 0.37 11 0.53 147 1.2DL + 1.5Lm + 1Wm 120 A Yes Y DL 1.2 37 1.5 2 -0 3 0.27 11 0.53 148 1.2DL + 1.5Lm + 1Wm 210 A Yes Y DL 1.2 37 1.5 2 -0 3 -0 5 -0 149 1.2DL + 1.5Lm + 1Wm 225 A Yes Y DL 1.2 37 1.5 2 -0 3 -0 5 -0 150 1.2DL + 1.5Lm + 1Wm 200 A Yes Y DL 1.2 37 1.5 2 -0 3 -0 5 -0 151 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 37 1.5 2 -0 3 -0 6 -0 152 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 37 1.5 2 -0 3 -0 6 -0 154 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 37 1.5 2 -0 3 -0 6 -0 155 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 37 1.5 2 -0 3 -0 1 -0 156 1.2DL + 1.5Lm + 1Wm 00 AZI - Yes Y DL 1.2 38 1.5 2 -0.33 3 -0 1 -0 156 1.2DL + 1.5Lm + 1Wm 00 AZI - Yes Y DL 1.2 38 1.5 2 -0 3 -0 3 -0 157 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 38 1.5 2 -0		DL 1.2	36 1			3	0	9	0										
139 1.2DL + 1.5Lm + 1Wm 0 AZIYes Y DL 1.2 37 1.5 2 0.54 3 0.27 5 0.53 3 4 0.53 140 1.2DL + 1.5Lm + 1Wm 30 AZIYes Y DL 1.2 37 1.5 2 0.046 3 0.027 5 0.53 141 1.2DL + 1.5Lm + 1Wm 40 AZIYes Y DL 1.2 37 1.5 2 0.08 3 0.036 6 0.53 142 1.2DL + 1.5Lm + 1Wm 60 AZIYes Y DL 1.2 37 1.5 2 0.027 3 0.046 7 0.53 143 1.2DL + 1.5Lm + 1Wm 90 AZIYes Y DL 1.2 37 1.5 2 0.027 3 0.046 7 0.53 144 1.2DL + 1.5Lm + 1Wm 120 AYes Y DL 1.2 37 1.5 2 0.0 3 0.046 9 0.53 145 1.2DL + 1.5Lm + 1Wm 135 AYes Y DL 1.2 37 1.5 2 0.0 3 0.038 10 0.53 146 1.2DL + 1.5Lm + 1Wm 150 A Yes Y DL 1.2 37 1.5 2 0.0 3 0.027 11 0.53 147 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 37 1.5 2 0.0 3 0.027 11 0.53 147 1.2DL + 1.5Lm + 1Wm 20 A Yes Y DL 1.2 37 1.5 2 0.0 3 0.027 11 0.053 147 1.2DL + 1.5Lm + 1Wm 20 A Yes Y DL 1.2 37 1.5 2 0.0 3 0.0 5 0.0 149 1.2DL + 1.5Lm + 1Wm 204 A Yes Y DL 1.2 37 1.5 2 0.0 3 0.0 5 0.0 150 1.2DL + 1.5Lm + 1Wm 200 A Yes Y DL 1.2 37 1.5 2 0.0 3 0.0 7 0.0 151 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 37 1.5 2 0.0 3 0.0 7 0.0 152 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 37 1.5 2 0.03 3 0.0 0 0.0 154 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 37 1.5 2 0.03 3 0.0 0 0.0 154 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 37 1.5 2 0.03 3 0.0 0 0.0 155 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 38 1.5 2 0.03 3 0.027 5 0.053 1.55 1.2DL + 1.5Lm + 1Wm 300 AZIYes Y DL 1.2 38 1.5 2 0.03 3 0.03 0.053 0.053 1.55 1.2DL + 1.5Lm + 1Wm 300 AZIYes Y DL 1.2 3																			
140 1.2DL + 1.5Lm + 1Wm 30 AZI Yes Y DL 1.2 37 1.5 2 .046 3 .027 5 .053							0												
141 1.2DL + 1.5Lm + 1Wm 45 AZIYes Y DL 1.2 37 1.5 2 .038 3 .038 6 .053 142 1.2DL + 1.5Lm + 1Wm 60 AZIYes Y DL 1.2 37 1.5 2 .027 3 .046 7 .053 143 1.2DL + 1.5Lm + 1Wm 120 AYes Y DL 1.2 37 1.5 2 -03 .046 9 .053 144 1.2DL + 1.5Lm + 1Wm 135 AYes Y DL 1.2 37 1.5 2 -03 .046 9 .053 145 1.2DL + 1.5Lm + 1Wm 150 AYes Y DL 1.2 37 1.5 2 -03 .038 10 .053 146 1.2DL + 1.5Lm + 1Wm 180 AYes Y DL 1.2 37 1.5 2 -03 .027 11 .053 147 1.2DL + 1.5Lm + 1Wm 210 AYes Y DL 1.2 37 1.5 2 -03 -05 -0 149 1.2DL + 1.5Lm + 1Wm 210 AYes Y DL 1.2 37 1.5 2 -03 -05 -0 150 1.2DL + 1.5Lm + 1Wm 300 AYes Y DL 1.2 37 1.5 2 -03 -06 -0 152																			
142 1.2DL + 1.5Lm + 1Wm 60 AZIYes Y DL 1.2 37 1.5 2 .027 3 .046 7 .053 143 1.2DL + 1.5Lm + 1Wm 90 AZIYes Y DL 1.2 37 1.5 2 3 .053 8 .053 144 1.2DL + 1.5Lm + 1Wm 120 A Yes Y DL 1.2 37 1.5 2 0 3 .046 9 .053 145 1.2DL + 1.5Lm + 1Wm 150 A Yes Y DL 1.2 37 1.5 2 0 3 .088 10 .053 146 1.2DL + 1.5Lm + 1Wm 150 A Yes Y DL 1.2 37 1.5 2 0 3 .027 11 .053 147 1.2DL + 1.5Lm + 1Wm 210 A Yes Y DL 1.2 37 1.5 2 0 3 -0 5 -0 148 1.2DL + 1.5Lm + 1Wm 210 A Yes Y DL 1.2 37 1.5 2 -0 3 -0 5 -0 150 1.2DL + 1.5Lm + 1Wm 200 A Yes Y DL 1.2 37 1.5 2 -0 3 -0 7 -0																			
143																			
144 1.2DL + 1.5Lm + 1Wm 120 A Yes Y DL 1.2 37 1.5 2 .0 3 .046 9 .053					.027	_			_										
145 1.2DL + 1.5Lm + 1Wm 135 A Yes Y DL 1.2 37 1.5 2 -0 3 .038 10 .053 146 1.2DL + 1.5Lm + 1Wm 150 A Yes Y DL 1.2 37 1.5 2 -0 3 .027 11 .053 147 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 37 1.5 2 -0 3 -4 -0 148 1.2DL + 1.5Lm + 1Wm 210 A Yes Y DL 1.2 37 1.5 2 -0 3 -0 6 -0 150 1.2DL + 1.5Lm + 1Wm 240 A Yes Y DL 1.2 37 1.5 2 -0 3 -0 6 -0 151 1.2DL + 1.5Lm + 1Wm 240 A Yes Y DL 1.2 37 1.5 2 -0 3 -0 7 -0 151 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 37 1.5 2 .027 3 -0 9 -0 1																			
146 1.2DL + 1.5Lm + 1Wm 150 A Yes Y DL 1.2 37 1.5 2 -0 3 .027 11 .053 147 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 37 1.5 2 -0 3 -0 5 -0 148 1.2DL + 1.5Lm + 1Wm 210 A Yes Y DL 1.2 37 1.5 2 -0 3 -0 5 -0 149 1.2DL + 1.5Lm + 1Wm 225 A Yes Y DL 1.2 37 1.5 2 -0 3 -0 6 -0 150 1.2DL + 1.5Lm + 1Wm 240 A Yes Y DL 1.2 37 1.5 2 -0 3 -0 6 -0 151 1.2DL + 1.5Lm + 1Wm 270 A Yes Y DL 1.2 37 1.5 2 -0 3 -0 8 -0 152 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 37 1.5 2 .0 9 -0 153 1.2DL + 1.5Lm + 1Wm 315 A Yes Y DL 1.2 37 1.5 2 .038 3 -0 10 -0 154 1.2DL + 1.5Lm + 1Wm 0 AZI Yes Y DL 1.2 38 1.5 2 .046 3 .0 11 -0							_		_										
147 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 37 1.5 2 -0 3 -0 5 -0 4 -0 148 1.2DL + 1.5Lm + 1Wm 210 A Yes Y DL 1.2 37 1.5 2 -0 3 -0 6 -0 5 -0 149 1.2DL + 1.5Lm + 1Wm 225 A Yes Y DL 1.2 37 1.5 2 -0 3 -0 6 -0 -0 150 1.2DL + 1.5Lm + 1Wm 240 A Yes Y DL 1.2 37 1.5 2 -0 3 -0 7 -0 -0 151 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 37 1.5 2 0.02 3 -0 9 -0 -0 152 1.2DL + 1.5Lm + 1Wm 315 A Yes Y DL 1.2 37 1.5 2 0.038 3 -0 10 -0 9 -0 153 1.2DL + 1.5Lm + 1Wm 330 A Yes Y DL 1.2 37 1.5 2 0.048 3 -0 11 -0 9 -0 154 1.2DL + 1.5Lm + 1Wm 30 AZI Yes Y DL 1.2 38 1.5 2 0.048 3 -0 11 -0 10 -0 155 1.2DL + 1.5Lm + 1Wm 30 AZI Yes Y DL 1.2 38 1.5 2 0.048 3 0.07 5 0.053 10 -0 156 1.2DL + 1.5Lm + 1Wm 45 AZI Yes Y DL 1.2 38 1.5 2 0.048 3 0.07 5 0.053 10 -0 157 1.2DL + 1.5Lm + 1Wm 45 AZI Yes Y DL 1.2 38 1.5 2 0.027 3 0.06 7 0.053 10 -0.03 0.053 159 1.2DL + 1.5Lm + 1W							_												
148 1.2DL + 1.5Lm + 1Wm 210 A Yes Y DL 1.2 37 1.5 2 0 3 0 5 0 149 1.2DL + 1.5Lm + 1Wm 225 A Yes Y DL 1.2 37 1.5 2 0 3 0 6 0 150 1.2DL + 1.5Lm + 1Wm 240 A Yes Y DL 1.2 37 1.5 2 0 3 0 7 0 151 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 37 1.5 2 .0 8 0 153 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 37 1.5 2 .027 3 0 9 0 154 1.2DL + 1.5Lm + 1Wm 330 A Yes Y DL 1.2 37 1.5 2 .046 3 0 11 0 155 1.2DL + 1.5Lm + 1Wm 0 AZI Yes Y DL 1.2 38 1.5 2 .046 3 .027 5 .053 157							.027												
149 1.2DL + 1.5Lm + 1Wm 225 A Yes Y DL 1.2 37 1.5 2 -0 3 -0 6 -0 150 1.2DL + 1.5Lm + 1Wm 240 A Yes Y DL 1.2 37 1.5 2 -0 3 -0 7 -0 151 1.2DL + 1.5Lm + 1Wm 270 A Yes Y DL 1.2 37 1.5 2 -0 8 -0 152 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 37 1.5 2 0.027 3 -0 9 -0 153 1.2DL + 1.5Lm + 1Wm 315 A Yes Y DL 1.2 37 1.5 2 .038 3 -0 10 -0 154 1.2DL + 1.5Lm + 1Wm 0 AZI Yes Y DL 1.2 38 1.5 2 .046 3 -0 11 -0 155 1.2DL + 1.5Lm + 1Wm 30 AZI Yes Y DL 1.2 38 1.5 2 .046 3 .027 5 .053 157 1.2DL + 1.5Lm + 1Wm 45 AZI Yes Y DL 1.2 38 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							0												
150 1.2DL + 1.5Lm + 1Wm 240 A Yes Y DL 1.2 37 1.5 2 -0 3 -0 7 -0 151 1.2DL + 1.5Lm + 1Wm 270 A Yes Y DL 1.2 37 1.5 2 3 -0 8 -0 152 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 37 1.5 2 .027 3 -0 9 -0 153 1.2DL + 1.5Lm + 1Wm 315 A Yes Y DL 1.2 37 1.5 2 .038 3 -0 10 -0 154 1.2DL + 1.5Lm + 1Wm 330 A Yes Y DL 1.2 37 1.5 2 .046 3 -0 11 -0 155 1.2DL + 1.5Lm + 1Wm 0 AZI Yes Y DL 1.2 38 1.5 2 .053 3 4 .053 156 1.2DL + 1.5Lm + 1Wm 30 AZI Yes Y DL 1.2 38 1.5 2 .046 3 .027 5 .053 157 1.2DL + 1.5Lm + 1Wm 45 AZI Yes Y DL 1.2 38 1.5 2 .038 3 .038 6 .053 158 1.2DL + 1.5Lm + 1Wm 60 AZI Yes Y DL 1.2 38 1.5 2 .027 3 .046 7 .053 159 1.2DL + 1.5Lm + 1Wm 90 AZI Yes Y DL 1.2 38 1.5 2 .027 3 .046 7 .053 160 1.2DL + 1.5Lm + 1Wm 120 A Yes Y DL 1.2 38 1.5 2 -0 3 .046 9 .053 161 1.2DL + 1.5Lm + 1Wm 135 A Yes Y DL 1.2 38 1.5 2 -0 3 .046 9 .053 162 1.2DL + 1.5Lm + 1Wm 150 A Yes Y DL 1.2 38 1.5 2 -0 3 .038 10 .053 163 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 38 1.5 2 -0 3 .027 11 .053 164 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 38 1.5 2 -0 3 .027 11 .053 165 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 38 1.5 2 -0 3 .027 11 .053 166 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 38 1.5 2 -0 3 .027 11 .053																			
151 1.2DL + 1.5Lm + 1Wm 270 A Yes Y DL 1.2 37 1.5 2 3 -0 8 -0 152 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 37 1.5 2 .027 3 -0 9 -0 153 1.2DL + 1.5Lm + 1Wm 315 A Yes Y DL 1.2 37 1.5 2 .038 3 -0 10 -0 154 1.2DL + 1.5Lm + 1Wm 330 A Yes Y DL 1.2 37 1.5 2 .046 3 -0 11 -0 155 1.2DL + 1.5Lm + 1Wm 0 AZI Yes Y DL 1.2 38 1.5 2 .053 3 4 .053 156 1.2DL + 1.5Lm + 1Wm 30 AZI Yes Y DL 1.2 38 1.5 2 .046 3 .027 5 .053 157 1.2DL + 1.5Lm + 1Wm 45 AZI Yes Y DL 1.2 38 1.5 2 .038 3 .038 6 .053 158 1.2DL + 1.5Lm + 1Wm 60 AZI Yes Y DL 1.2 38 1.5 2 .027 3 .046 7 .053 159 1.2DL + 1.5Lm + 1Wm 90 AZI Yes Y DL 1.2 38 1.5 2 .027 3 .046 7 .053 160 1.2DL + 1.5Lm + 1Wm 120 A Yes Y DL 1.2 38 1.5 2 -0 3 .046 9 .053 161 1.2DL + 1.5Lm + 1Wm 135 A Yes Y DL 1.2 38 1.5 2 -0 3 .038 10 .053 162 1.2DL + 1.5Lm + 1Wm 150 A Yes Y DL 1.2 38 1.5 2 -0 3 .027 11 .053 163 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 38 1.5 2 -0 3 .027 11 .053 164 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 38 1.5 2 -0 3 .027 11 .053 165 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 38 1.5 2 -0 3 .027 11 .053 166 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 38 1.5 2 -0 3 .027 11 .053																			
152 1.2DL + 1.5Lm + 1Wm 300 A Yes Y DL 1.2 37 1.5 2 .027 3 -0 9 -0 153 1.2DL + 1.5Lm + 1Wm 315 A Yes Y DL 1.2 37 1.5 2 .038 3 -0 10 -0 154 1.2DL + 1.5Lm + 1Wm 330 A Yes Y DL 1.2 37 1.5 2 .046 3 -0 11 -0 155 1.2DL + 1.5Lm + 1Wm 0 AZI Yes Y DL 1.2 38 1.5 2 .053 3 4 .053 156 1.2DL + 1.5Lm + 1Wm 30 AZI Yes Y DL 1.2 38 1.5 2 .038 3 .038 6 .053 157 1.2DL + 1.5Lm + 1Wm 45 AZI Yes Y DL 1.2 38 1.5 2 .027 3 .046 7 .053 158 1.2DL + 1.5Lm + 1Wm 60 AZI Yes Y DL 1.2 38 1.5 2 .027 3 .046 7 .053 159 1.2DL + 1.5Lm + 1Wm 90 AZI Yes Y DL 1.2 38 1.5 2 .027 3 .046 9 .053 160 1.2DL + 1.5Lm + 1Wm 120 A Yes Y DL 1.2 38 1.5 2 -0 3 .046 9 .053 161 1.2DL + 1.5Lm + 1Wm 135 A Yes Y DL 1.2 38 1.5 2 -0 3 .038 10 .053 162 1.2DL + 1.5Lm + 1Wm 150 A Yes Y DL 1.2 38 1.5 2 -0 3 .027 11 .053 163 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 38 1.5 2 -0 3 .027 11 .053 164 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 38 1.5 2 -0 3 .027 11 .053 165 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 38 1.5 2 -0 3 .027 11 .053 166 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 38 1.5 2 -0 3 .00 5 -0					0														
153 1.2DL + 1.5Lm + 1Wm 315 A Yes Y DL 1.2 37 1.5 2 .038 3 0 10 0 154 1.2DL + 1.5Lm + 1Wm 330 A Yes Y DL 1.2 37 1.5 2 .046 3 0 11 0 155 1.2DL + 1.5Lm + 1Wm 0 AZI Yes Y DL 1.2 38 1.5 2 .046 3 .027 5 .053 156 1.2DL + 1.5Lm + 1Wm 30 AZI Yes Y DL 1.2 38 1.5 2 .046 3 .027 5 .053 157 1.2DL + 1.5Lm + 1Wm 45 AZI Yes Y DL 1.2 38 1.5 2 .038 3 .038 6 .053 158 1.2DL + 1.5Lm + 1Wm 60 AZI Yes Y DL 1.2 38 1.5 2 .027 3 .046 7 .053 159 1.2DL + 1.5Lm + 1Wm 120 A Yes Y DL 1.2 38 1.5 2 .0 3 .046 9 .053 160 <td< td=""><td></td><td></td><td></td><td></td><td>027</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>					027														
154 1.2DL + 1.5Lm + 1Wm 330 A Yes Y DL 1.2 37 1.5 2 .046 3 0 11 -0 .053 155 1.2DL + 1.5Lm + 1Wm 0 AZI Yes Y DL 1.2 38 1.5 2 .053 3 4 .053 156 1.2DL + 1.5Lm + 1Wm 30 AZI Yes Y DL 1.2 38 1.5 2 .046 3 .027 5 .053 157 1.2DL + 1.5Lm + 1Wm 45 AZI Yes Y DL 1.2 38 1.5 2 .038 3 .038 6 .053 158 1.2DL + 1.5Lm + 1Wm 60 AZI Yes Y DL 1.2 38 1.5 2 .027 3 .046 7 .053 159 1.2DL + 1.5Lm + 1Wm 90 AZI Yes Y DL 1.2 38 1.5 2 .027 3 .046 7 .053 160 1.2DL + 1.5Lm + 1Wm 120 A Yes Y DL 1.2 38 1.5 2 .0 3 .046 9 .053 161																			
155 1.2DL + 1.5Lm + 1Wm 0 AZIYes Y DL 1.2 38 1.5 2 .053 3 4 .053 156 1.2DL + 1.5Lm + 1Wm 30 AZIYes Y DL 1.2 38 1.5 2 .046 3 .027 5 .053 157 1.2DL + 1.5Lm + 1Wm 45 AZIYes Y DL 1.2 38 1.5 2 .038 3 .038 6 .053 158 1.2DL + 1.5Lm + 1Wm 60 AZIYes Y DL 1.2 38 1.5 2 .027 3 .046 7 .053 159 1.2DL + 1.5Lm + 1Wm 90 AZIYes Y DL 1.2 38 1.5 2 .027 3 .046 7 .053 160 1.2DL + 1.5Lm + 1Wm 120 A Yes Y DL 1.2 38 1.5 2 -0 3 .046 9 .053 161 1.2DL + 1.5Lm + 1Wm 135 A Yes Y DL 1.2 38 1.5 2 -0 3 .027 11 .053 163																			
156 1.2DL + 1.5Lm + 1Wm 30 AZIYes Y DL 1.2 38 1.5 2 .046 3 .027 5 .053 157 1.2DL + 1.5Lm + 1Wm 45 AZIYes Y DL 1.2 38 1.5 2 .038 3 .038 6 .053 158 1.2DL + 1.5Lm + 1Wm 60 AZIYes Y DL 1.2 38 1.5 2 .027 3 .046 7 .053 159 1.2DL + 1.5Lm + 1Wm 90 AZIYes Y DL 1.2 38 1.5 2 .027 3 .046 7 .053 160 1.2DL + 1.5Lm + 1Wm 120 A Yes Y DL 1.2 38 1.5 2 -0 3 .046 9 .053 161 1.2DL + 1.5Lm + 1Wm 135 A Yes Y DL 1.2 38 1.5 2 -0 3 .038 10 .053 162 1.2DL + 1.5Lm + 1Wm 150 A Yes Y DL 1.2 38 1.5 2 -0 3 .027 11 .053							0												
157 1.2DL + 1.5Lm + 1Wm 45 AZIYes Y DL 1.2 38 1.5 2 .038 3 .038 6 .053 158 1.2DL + 1.5Lm + 1Wm 60 AZIYes Y DL 1.2 38 1.5 2 .027 3 .046 7 .053 159 1.2DL + 1.5Lm + 1Wm 90 AZIYes Y DL 1.2 38 1.5 2 -0 3 .046 9 .053 160 1.2DL + 1.5Lm + 1Wm 120 A Yes Y DL 1.2 38 1.5 2 -0 3 .046 9 .053 161 1.2DL + 1.5Lm + 1Wm 135 A Yes Y DL 1.2 38 1.5 2 -0 3 .038 10 .053 162 1.2DL + 1.5Lm + 1Wm 150 A Yes Y DL 1.2 38 1.5 2 -0 3 .027 11 .053 163 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 38 1.5 2 -0 3 -0 5 -0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>.027</td> <td></td> <td>$\overline{}$</td> <td></td>							.027		$\overline{}$										
158 1.2DL + 1.5Lm + 1Wm 60 AZIYes Y DL 1.2 38 1.5 2 .027 3 .046 7 .053 159 1.2DL + 1.5Lm + 1Wm 90 AZIYes Y DL 1.2 38 1.5 2 3 .053 8 .053 160 1.2DL + 1.5Lm + 1Wm 120 A Yes Y DL 1.2 38 1.5 2 0 3 .046 9 .053 161 1.2DL + 1.5Lm + 1Wm 135 A Yes Y DL 1.2 38 1.5 2 0 3 .038 10 .053 162 1.2DL + 1.5Lm + 1Wm 150 A Yes Y DL 1.2 38 1.5 2 0 3 .027 11 .053 163 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 38 1.5 2 0 3 0 5 0																			
159 1.2DL + 1.5Lm + 1Wm 90 AZIYes Y DL 1.2 38 1.5 2 3 .053 8 .053 160 1.2DL + 1.5Lm + 1Wm 120 AYes Y DL 1.2 38 1.5 2 -0 3 .046 9 .053 161 1.2DL + 1.5Lm + 1Wm 135 AYes Y DL 1.2 38 1.5 2 -0 3 .038 10 .053 162 1.2DL + 1.5Lm + 1Wm 150 AYes Y DL 1.2 38 1.5 2 -0 3 .027 11 .053 163 1.2DL + 1.5Lm + 1Wm 180 AYes Y DL 1.2 38 1.5 2 -0 3 -0 5 -0 164 1.2DL + 1.5Lm + 1Wm 210 AYes Y DL 1.2 38 1.5 2 -0 3 -0 5 -0																			
160 1.2DL + 1.5Lm + 1Wm 120 A Yes Y DL 1.2 38 1.5 20 3 .046 9 .053 161 1.2DL + 1.5Lm + 1Wm 135 A Yes Y DL 1.2 38 1.5 20 3 .038 10 .053 162 1.2DL + 1.5Lm + 1Wm 150 A Yes Y DL 1.2 38 1.5 20 3 .027 11 .053 163 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 38 1.5 20 3 .027 11 .053 164 1.2DL + 1.5Lm + 1Wm 210 A Yes Y DL 1.2 38 1.5 20 3 .0 5 .0																			
161 1.2DL + 1.5Lm + 1Wm 135 A Yes Y DL 1.2 38 1.5 2 0 3 .038 10 .053 162 1.2DL + 1.5Lm + 1Wm 150 A Yes Y DL 1.2 38 1.5 2 0 3 .027 11 .053 163 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 38 1.5 2 0 3 4 0 164 1.2DL + 1.5Lm + 1Wm 210 A Yes Y DL 1.2 38 1.5 2 0 3 0 5 0					0	_													
162 1.2DL + 1.5Lm + 1Wm 150 A Yes Y DL 1.2 38 1.5 20 3 .027 11 .053 163 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 38 1.5 20 3 40 164 1.2DL + 1.5Lm + 1Wm 210 A Yes Y DL 1.2 38 1.5 20 30 50								_											
163 1.2DL + 1.5Lm + 1Wm 180 A Yes Y DL 1.2 38 1.5 20 3 40 164 1.2DL + 1.5Lm + 1Wm 210 A Yes Y DL 1.2 38 1.5 20 30 50																			
164 1.2DL + 1.5Lm + 1Wm 210 A Yes Y DL 1.2 38 1.5 20 30 50																			
							0												

: Trylon : TL : 189203

: Guilford West Stone Property (BU 876343 Order 553888)

Aug 2, 2021 12:00 PM Checked By:___

Load Combinations (Continued)

Description	3	P S	B	Fa	R	Fa	R	Fa	B	Fa	R	Fa	R	Fa	R	Fa	R	Fa	R	Fa	R	Fa
166 1.2DL + 1.5Lm + 1Wm 240 A						1.5		0					D	1 a	D	1 4	J	1 a	<u>ان</u>	1 a	<u> </u>	1 a
167 1.2DL + 1.5Lm + 1Wm 270 A						1.5			3													
168 1.2DL + 1.5Lm + 1Wm 300 A								.027				_										
169 1.2DL + 1.5Lm + 1Wm 315 A						1.5				0												
170 1.2DL + 1.5Lm + 1Wm 330 A						1.5		.046														
171 1.2DL + 1.5Lm + 1Wm 0 AZI						1.5				0		.053										
172 1.2DL + 1.5Lm + 1Wm 30 AZI						1.5				.027												
173 1.2DL + 1.5Lm + 1Wm 45 AZI			_			1.5		.038				.053										
174 1.2DL + 1.5Lm + 1Wm 60 AZI			DL			1.5						.053										
175 1.2DL + 1.5Lm + 1Wm 90 AZI						1.5						.053										
176 1.2DL + 1.5Lm + 1Wm 120 A									3													
177 1.2DL + 1.5Lm + 1Wm 135 A			DL			1.5		0 0				.053										
178 1.2DL + 1.5Lm + 1Wm 150 A						1.5																
179 1.2DL + 1.5Lm + 1Wm 180 A	_					1.5				.021		0										
180 1.2DL + 1.5Lm + 1Wm 180 A	_					1.5			_	0		_										
181 1.2DL + 1.5Lm + 1Wm 225 A						1.5		0	3													
182 1.2DL + 1.5Lm + 1Wm 240 A						1.5 1.5		0		0 0												
183 1.2DL + 1.5Lm + 1Wm 270 A								0	3	0		0										
184 1.2DL + 1.5Lm + 1Wm 300 A			DL			1.5 1.5		027		0												
185 1.2DL + 1.5Lm + 1Wm 300 A						1.5		.027														
186 1.2DL + 1.5Lm + 1Wm 330 A						1.5				0												
187 1.2DL + 1.5Lm + 1Wm 0 AZI						1.5				0		.053										
188 1.2DL + 1.5Lm + 1Wm 30 AZI								.046		027												
189 1.2DL + 1.5Lm + 1Wm 45 AZI						1.5																
190 1.2DL + 1.5Lm + 1Wm 60 AZI	_					1.5		.027				.053										
191 1.2DL + 1.5Lm + 1Wm 90 AZI							_	.021	3	.053		.053										
192 1.2DL + 1.5Lm + 1Wm 120 A						1.5		0		_		_										
193 1.2DL + 1.5Lm + 1Wm 135 A						1.5		0				.053										
194 1.2DL + 1.5Lm + 1Wm 150 A			DL			1.5		0				.053										
195 1.2DL + 1.5Lm + 1Wm 180 A						1.5		0		.021		0										
196 1.2DL + 1.5Lm + 1Wm 210 A						1.5		0		- 0												
197 1.2DL + 1.5Lm + 1Wm 225 A						1.5				0												
198 1.2DL + 1.5Lm + 1Wm 240 A								0		0	_											
199 1.2DL + 1.5Lm + 1Wm 270 A						1.5		0		0	_	_										
200 1.2DL + 1.5Lm + 1Wm 270 A						1.5		027	3													
201 1.2DL + 1.5Lm + 1Wm 315 A						1.5 1.5		.027		0												
202 1.2DL + 1.5Lm + 1Wm 330 A										0												
203 1.2DL + 1.5Lm + 1Wm 0 AZI						1.5				0		.053										
204 1.2DL + 1.5Lm + 1Wm 30 AZI						1.5		.053		.027												
			DL			1.5			_		_	_										
205 1.2DL + 1.5Lm + 1Wm 45 AZI\ 206 1.2DL + 1.5Lm + 1Wm 60 AZI\						1.5		.038														
206 1.2DL + 1.5Lm + 1Wm 60 AZI								.027	3													
208 1.2DL + 1.5Lm + 1Wm 90 AZI						1.5				_		.053										
209 1.2DL + 1.5Lm + 1Wm 135 A								0				.053										
	_					1.5		0	3	_		.053										
210 1.2DL + 1.5Lm + 1Wm 150 A 211 1.2DL + 1.5Lm + 1Wm 180 A						1.5			3	.027		0										
						1.5		0	_	- 0												
212 1.2DL + 1.5Lm + 1Wm 210 A\ 213 1.2DL + 1.5Lm + 1Wm 225 A\						1.5		0	3	0		0										
						1.5		0	3	0		0										
214 1.2DL + 1.5Lm + 1Wm 240 A 215 1.2DL + 1.5Lm + 1Wm 270 A						1.5		0	3	0		0										
						1.5		027	3	0		0										
216 1.2DL + 1.5Lm + 1Wm 300 A						1.5				0												
217 1.2DL + 1.5Lm + 1Wm 315 A						1.5				0												
218 1.2DL + 1.5Lm + 1Wm 330 A						1.5		.046		0												
219 1.2DL + 1.5Lm + 1Wm 0 AZI						1.5		.053		027	4	.053										
220 1.2DL + 1.5Lm + 1Wm 30 AZI 221 1.2DL + 1.5Lm + 1Wm 45 AZI						1.5						_										
	_					1.5			_	.038	_	.053										
222 1.2DL + 1.5Lm + 1Wm 60 AZI	es	Υ	UL	1.2	42	1.5	2	.027	3	.046	_/_	.053										

Company :
Designer :
Job Number :
Model Name :

: Trylon : TL : 189203

: Guilford West Stone Property (BU 876343 Order 553888)

Aug 2, 2021 12:00 PM Checked By:__

Load Combinations (Continued)

Description	S	P	S	B I	- а	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
223 1.2DL + 1.5Lm + 1Wm 90 AZI.	. Yes	Υ		DL	1.2	42	1.5	2		3	.053	8	.053										
224 1.2DL + 1.5Lm + 1Wm 120 A	. Yes	Υ		DL	1.2	42	1.5	2	0	3	.046	9	.053										
225 1.2DL + 1.5Lm + 1Wm 135 A	. Yes	Υ		DL	1.2	42	1.5	2	0	3	.038	10	.053										
226 1.2DL + 1.5Lm + 1Wm 150 A	. Yes	Υ		DL	1.2	42	1.5	2	0	3	.027	11	.053										
227 1.2DL + 1.5Lm + 1Wm 180 A	. Yes	Υ		DL	1.2	42	1.5	2	0	3		4	0										
228 1.2DL + 1.5Lm + 1Wm 210 A	. Yes	Υ		DL	1.2	42	1.5	2	0	3	0	5	0										
229 1.2DL + 1.5Lm + 1Wm 225 A	. Yes	Υ		DL	1.2	42	1.5	2	0	3	0	6	0										
230 1.2DL + 1.5Lm + 1Wm 240 A	. Yes	Υ		DL	1.2	42	1.5	2	0	3	0	7	0										
231 1.2DL + 1.5Lm + 1Wm 270 A	. Yes	Υ		DL	1.2	42	1.5	2		3	0	8	0										
232 1.2DL + 1.5Lm + 1Wm 300 A	. Yes	Υ		DL	1.2	42	1.5	2	.027	3	0	9	0										
233 1.2DL + 1.5Lm + 1Wm 315 A	. Yes	Υ		DL	1.2	42	1.5	2	.038	3	0	10	0										
234 1.2DL + 1.5Lm + 1Wm 330 A	. Yes	Υ		DL	1.2	42	1.5	2	.046	3	0	11	0										

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC			MX [lb-ft]					LC
1	N25	max	1440.916	20	1889.097	39	2159.802	3	728.395	33	2558.237	19	995 052	30
2		min	-1446.48				-2152.34							
3	N1	max	1268.073	8	1940.384	45	2272.314	17	859.276	19	2618.09	25	3412.045	45
4		min	- 1258.723	32	-283.192	21	-2270.393	25	-2359.128	43	- 2621.845	17	-838.898	21
5	N13	max	2247.57	22	1843.209	34	551.829	18	3878.515	34	2205.463	30	1021.116	14
6		min	-2251.251	14	-324.796	26	-561.722	10	-1130.382	26	-2207.484	6	-904.094	22
7	Totals:						4402.216							
8		min	-4149.845	30	1373.8	66	-4402.217	10						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code	Loc[in]	LC	Shear	.Loc[in]	Dir LC	phi*Pnc	.phi*Pnt [.	phi*Mn	phi*Mn Cl	<u>Eqn</u>
1	MP3	PIPE 2.0	.522	60	5	.049	60	10	20866.7	32130	1871.625	1871.625 1.8	⁵⁷ H1-1b
2	M2	PIPE_3.5	.517	40	45	.257	40	9	75262.68	78750		7953.75 2.09	
3	MP9	PIPE 2.0	.516	60	10	.051	60	15	20866.7	32130		1871.625 1.5	
4	MP2	PIPE 2.0	.499	60	5	.073	60	8	20866.7	32130	1871.625	1871.625 1.8	⁵⁷ H1-1b
5	M12	PIPE 3.5	.499	40	39	.254	40	4	75262.68	78750	7953.75	7953.75 2.10	01 H1-1b
6	MP8	PIPE 2.0	.497	60	10	.067	60	14	20866.7	32130	1871.625	1871.625 1.8	16 H1-1b
7	MP6	PIPE 2.0	.497	60	15	.054	60	5	20866.7	32130	1871.625	1871.625 1.9	38 H1-1b
8	M7	PIPE 3.5	.488	40	34	.242	40	14	75262.68	78750	7953.75	7953.75 2.09	99 H1-1b
9	MP5	PIPE 2.0	.486	60	16	.074	60	3	20866.7	32130	1871.625	1871.625 1.8	⁷⁶ H1-1b
10	M11	C3X5	.462	34.8	6	.135	63.1	y 35	11202.9	47628	981.263	4104 1.3	5 H1-1b
11	M1	C3X5	.461	34.8	11	.138	63.1	y 41	11202.9	47628	981.263	4104 1.3	⁵⁶ H1-1b
12	MP1	PIPE 2.0	.461	60	16	.060	60	16	20866.7	32130	1871.625	1871.625 1.40	68 H1-1b
13	MP4	PIPE 2.0	.457	60	10	.060	60	11	20866.7	32130	1871.625	1871.625 1.59	97 H1-1b
14	MP7	PIPE 2.0	.441	60	10	.052	60	6	20866.7	32130	1871.625	1871.625 1.7	58 H1-1b
15	M6	C3X5	.410	34.8	17	.131	63.1	y 46	37027.8	47628	981.263	4020.228 1	H1-1b
16	M15	6.5"x0.37" P	.367	21	7	.097	21	y 37	3513.807	75757.5	583.963	6282.986 1.10	64 H1-1b
17	M10	6.5"x0.37" P	.363	21	2	.095	21	y 47	3513.807	75757.5	583.963	6297.169 1.10	66 H1-1b
18	M5	6.5"x0.37" P	.360	21	12	.101	21	y 42	3513.807	75757.5	583.963	6520.336 1.20	⁰⁸ H1-1b
19	M21	PIPE 2.0	.307	72	13	.241	72	13	14916.0	32130	1871.625	1871.625 1.60	64 H3-6
20	M20	PIPE 2.0	.297	72	7	.239	72	8	14916.0	32130	1871.625	1871.625 1.63	38 H3-6
21	M19	PIPE 2.0	.297	72	2	.244	72	2	14916.0	32130	1871.625	1871.625 1.64	14 H3-6
22	M23	L6 5/8x4 7/1	292	0	26	.053	42	y 17	15453.0	.66065.6.	1040.591	3031.076 1.63	31 H2-1
23	M22	L6 5/8x4 7/1	292	0	21	.054	42	y 12	15453.0	.66065.6.	1040.591	3031.076 1.6	52 H2-1
24	M24	L6 5/8x4 7/1	270	0	32	.052	42	y 6	15453.0	.66065.6.	1040.591	3031.076 1.50	04 H2-1
25	M3	L2x2x3	.268	0	3	.030	0	y 2	18051.7	23392.8	557.717	1239.29 2.3	31 H2-1
26	M13	L2x2x3	.261	0	14	.028	0	y 13	18051.7	23392.8	557.717	1239.29 2.30	64 H2-1
27	M8	L2x2x3	.231	0	9	.027	0	y 8	18051.7	23392.8	557.717	1239.29 2.3	56 H2-1
28	M4	L2x2x3	.193	0	13	.029	0	y 41	18051.7	23392.8	557.717	1239.29 2.18	³⁹ H2-1

: Trylon : TL : 189203

: Guilford West Stone Property (BU 876343 Order 553888)

Aug 2, 2021 12:00 PM Checked By:___

Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)

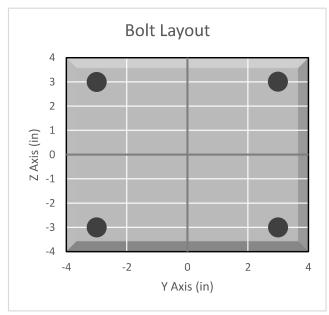
	Member	Shape	Code	Loc[in]	LC	Shear	Loc[in]	Dir L	_C	phi*Pnc	.phi*Pnt [.	phi*Mn	phi*Mn	Cb	Egn
29	M9	L2x2x3	.176	0	2	.027	0	y 4	46	18051 . 7	23392.8	557.717	1239.29	2.238	H2-1
30	M14	L2x2x3	.167	0	7	.028	0	y 3	36	18051.7	23392.8	557.717	1239.29	2.173	H2-1
31	H1	PIPE 3.5	.155	31	5	.147	24	1	10	60666.0	78750	7953.75	7953.75	1.109	H1-1b
32	H3	PIPE 3.5	.154	31	10	.153	24		16	60666.0	78750	7953.75	7953.75	1.101	H1-1b
33	H2	PIPE 3.5	.147	31	15	.144	24		5	60666.0	78750	7953.75	7953.75	1.101	H1-1b

Envelope AISI S100-12: LRFD Cold Formed Steel Code Checks

Member	Shape	Code Check	Loc[in] LC SheaLoc[iDir LC phi*Pn[phi*Tn[phi*Mnphi*Mn Cb Cmyy Cmzz Eqn	
	·		No Data to Print	٦

APPENDIX D ADDITIONAL CALCULATIONS

Analysis date: 8/2/2021



BOLT TOOL 1.5.2

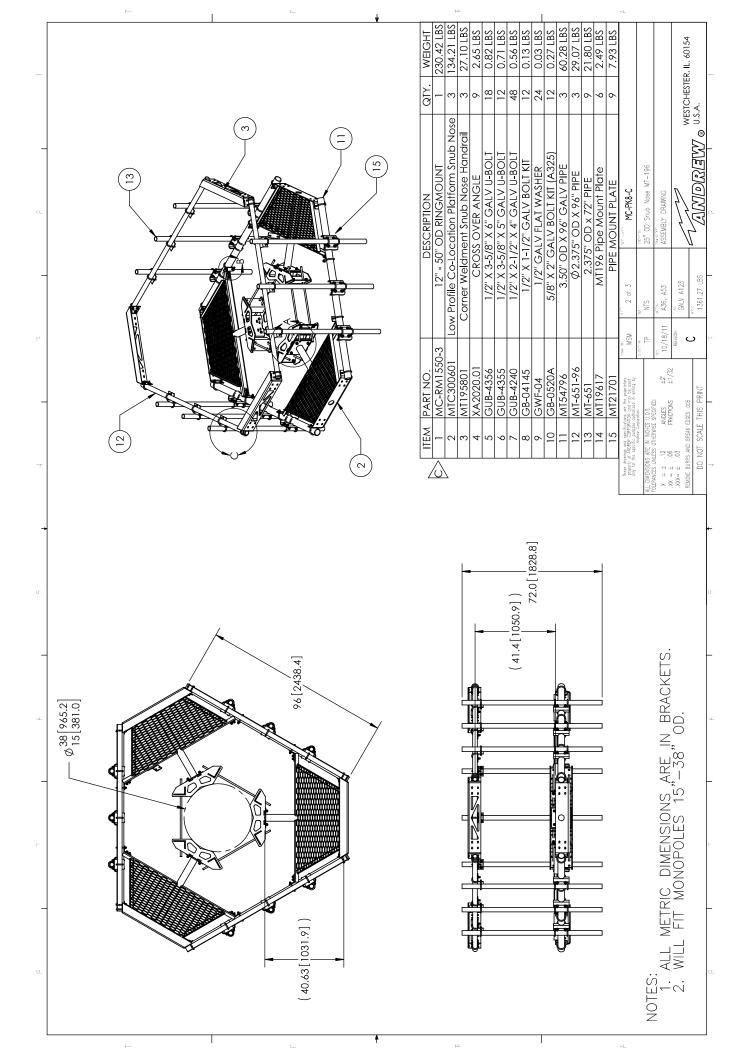
Project Data					
Job Code:	189203				
Carrier Site ID:	BOHVN00026A				
Carrier Site Name:	CT-CCI-T-876343				

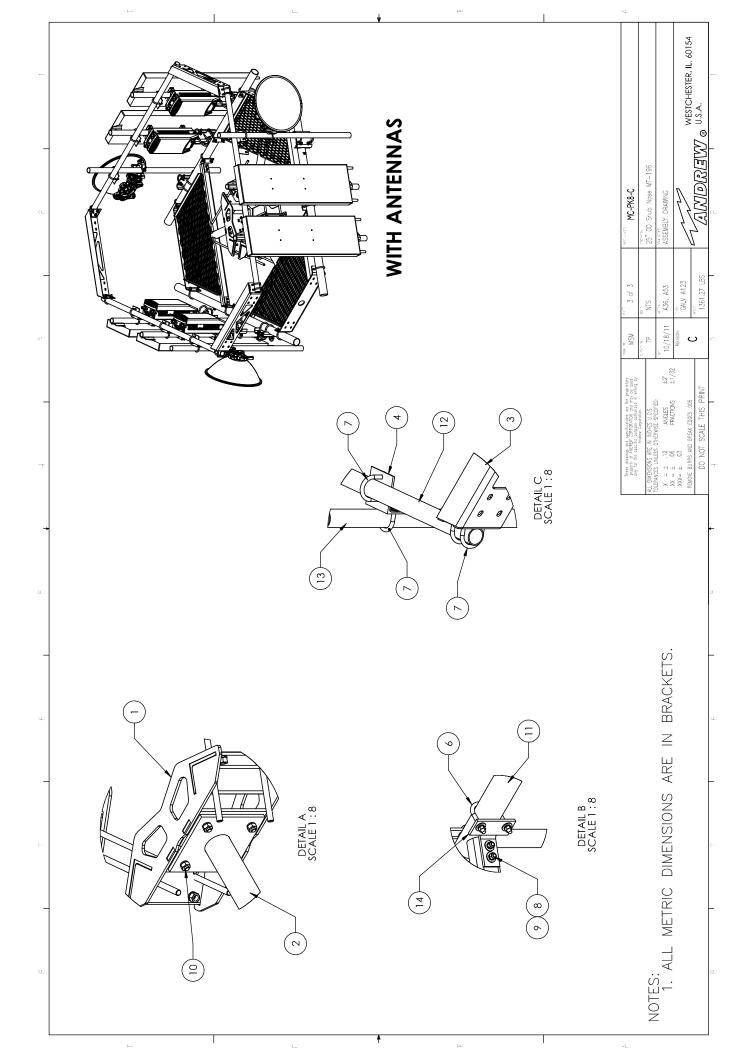
Code					
Design Standard:	TIA-222-H				
Slip Check:	No				
Pretension Standard:	TIA-222-H				

Bolt Properties					
Connection Type:	Bolt				
Diameter:	0.75	in			
Grade:	A529				
Yield Strength (Fy):	50	ksi			
Ultimate Strength (Fu):	65	ksi			
Number of Bolts:	4				
Threads Included:	Yes				
Double Shear:	No				
Connection Pipe Size:	-	in			

Connection Description	
Mount Standoff to Collar	

Bolt Check*						
Tensile Capacity (φT _n):		lbs				
Shear Capacity (φV _n):		lbs				
Tension Force (T _u):	4739.9	lbs				
Shear Force (V _u):	1272.7	lbs				
Tension Usage:	27.7%					
Shear Usage:	11.3%					
Interaction:	27.7%	Pass				
Controlling Member:	M2					
Controlling LC:	10					


^{*}Rating per TIA-222-H Section 15.5


APPENDIX E SUPPLEMENTAL DRAWINGS

WESTCHESTER, IL. 60154

MESTCHESTER, IL. 60154

U.S.A. BY DRR MSM DESCRIPTION
INITIAL RELEASE
CHANGE NOSE CORNER BRKT, ADD GUB-4240 LOW PROFILE PLATFORM KIT 8' FACE MC-PK8-C REVISIONS ASSEMBLY DRAWING 1410.14 LBS GALV A123 1 of 3 A36, A500 10/18/11 MSM DO NOT SCALE THIS PRINT \triangle NOTE NO. 464.27 LBS 543.22 LBS FOR BOM ENTRY ONLY 402.64 LBS WEIGHT QIY. NOTES: 1. CUSTOMER ASSEMBLY SHEETS 2-3. STEEL BUNDLE FOR SNUB NOSE PLATFORM PIPE STEEL BUNDLE FOR MC-PK8-C HARDWARE KIT FOR MC-PK8-C DESCRIPTION 2 MCPK8CSB 3 MCPK8CHWK MTC3006SB ITEM PART NO.

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOHVN00026A

876343
1919 Boston Post Road
Guilford, Connecticut 06437

October 6, 2021

EBI Project Number: 6221005715

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of FCC general population allowable limit:	13.32%			

October 6, 2021

Dish Wireless

Emissions Analysis for Site: BOHVN00026A - 876343

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at 1919 Boston Post Road in Guilford, Connecticut for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 1919 Boston Post Road in Guilford, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 4) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 5) The antennas used in this modeling are the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz channel(s) in Sector A, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz channel(s) in Sector B, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 6) The antenna mounting height centerline of the proposed antennas is 138 feet above ground level (AGL).
- 7) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 8) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	Α	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	1
Make / Model:	JMA MX08FRO665- 20	Make / Model:	JMA MX08FRO665- 20	Make / Model:	JMA MX08FRO665- 20
Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz
Gain:	17.45 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd
Height (AGL):	138 feet	Height (AGL):	138 feet	Height (AGL):	138 feet
Channel Count:	8	Channel Count:	8	Channel Count:	8
Total TX Power (W):	280 Watts	Total TX Power (W):	280 Watts	Total TX Power (W):	280 Watts
ERP (W):	3,065.51	ERP (W):	3,065.51	ERP (W):	3,065.51
Antenna A1 MPE %:	0.91%	Antenna B1 MPE %:	0.91%	Antenna C1 MPE %:	0.91%

environmental | engineering | due diligence

Site Composite MPE %					
Carrier	MPE %				
Dish Wireless (Max at Sector A):	0.91%				
Verizon	2.68%				
AT&T	4.78%				
Metro PCS	0.72%				
T-Mobile	3.49%				
Nextel	0.32%				
Sprint	0.42%				
Site Total MPE % :	13.32%				

Dish Wireless MPE % Per Sector						
Dish Wireless Sector A Total:	0.91%					
Dish Wireless Sector B Total:	0.91%					
Dish Wireless Sector C Total:	0.91%					
Site Total MPE % :	13.32%					

Dish Wireless Maximum MPE Power Values (Sector A)								
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (μW/cm²)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE	
Dish Wireless 600 MHz n71	4	223.68	138.0	1.85	600 MHz n71	400	0.46%	
Dish Wireless 1900 MHz n70	4	542.70	138.0	4.48	1900 MHz n70	1000	0.45%	
						Total:	0.91%	

[•] NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)		
Sector A:	0.91%		
Sector B:	0.91%		
Sector C:	0.91%		
Dish Wireless Maximum MPE % (Sector A):	0.91%		
Site Total:	13.32%		
Site Compliance Status:	COMPLIANT		

The anticipated composite MPE value for this site assuming all carriers present is 13.32% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320 West Henrietta, NY 14586

Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

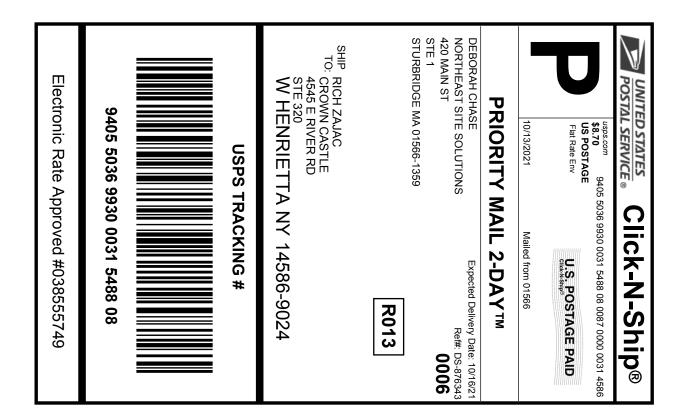
Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Tower Share Application

Crown Castle telecommunications site at: 1919 BOSTON POST RD., GUILFORD, CT 06437


GLOBAL SIGNAL ACQUISITIONS II LLC ("Crown Castle") hereby authorizes DISH Wireless, LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name: 876343/GUILFORD WEST STONE PROPERTY Customer Site ID: BOHVN00026A/CT-CCI-T-876343 Site Address: 1919 Boston Post Rd., GUILFORD, CT 06437

Crown Castle		
By: 11 3	Date:	10/11/2021
Richard Zajac		
Site Acquisition Specialist		

Exhibit H

Recipient Mailings

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0031 5488 08

545865181 10/13/2021 Trans. #: Print Date: Ship Date: 10/13/2021 10/16/2021 Delivery Date:

Priority Mail® Postage: \$8.70 \$8.70 Total:

Ref#: DS-876343 DEBORAH CHASE

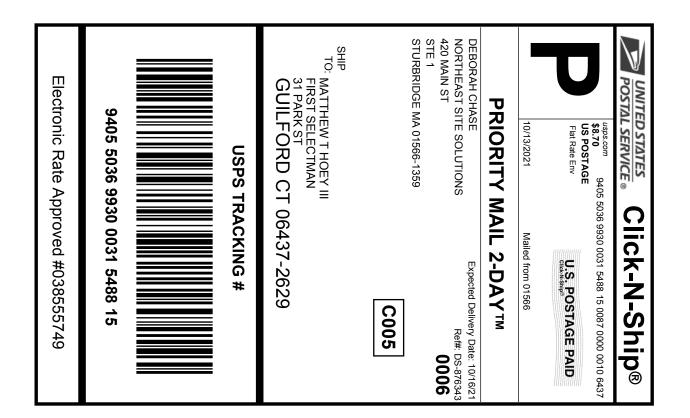
NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

From:

STURBRIDGE MA 01566-1359


RICH ZAJAC

CROWN CASTLE 4545 E RIVER RD

STE 320

W HENRIETTA NY 14586-9024

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0031 5488 15

545865181 10/13/2021 Trans. #: Print Date: Ship Date: 10/13/2021 10/16/2021 Delivery Date:

Priority Mail® Postage: Total:

\$8.70 \$8.70

Ref#: DS-876343

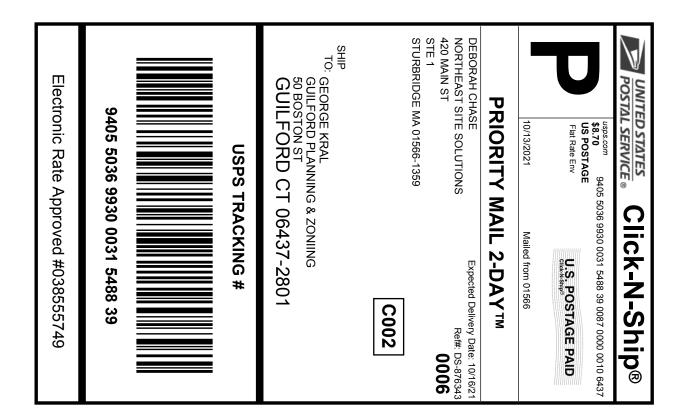
From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


MATTHEW T HOEY III

FIRST SELECTMAN

31 PARK ST

GUILFORD CT 06437-2629

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0031 5488 39

545865181 10/13/2021 Trans. #: Print Date: Ship Date: 10/13/2021 10/16/2021 Delivery Date:

Priority Mail® Postage: Total:

\$8.70 \$8.70

Ref#: DS-876343

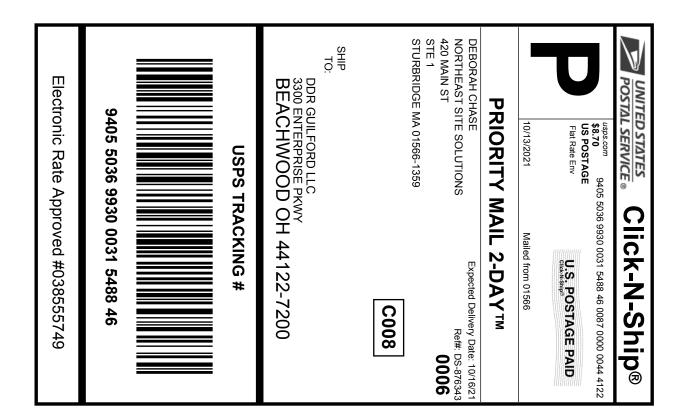
From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


GEORGE KRAL

GUILFORD PLANNING & ZONIING

50 BOSTON ST

GUILFORD CT 06437-2801

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0031 5488 46

545865181 10/13/2021 Trans. #: Print Date: Ship Date: 10/13/2021 10/16/2021 Delivery Date:

Priority Mail® Postage: \$8.70 \$8.70 Total:

Ref#: DS-876343 From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

DDR GUILFORD LLC 3300 ENTERPRISE PKWY

BEACHWOOD OH 44122-7200

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

876343

FARMINGTON 210 MAIN ST FARMINGTON, CT 06032-9998 (800)275-8777

Product	Qty	Unit	Price
Todact	,, 	Price	
Prepaid Mail West Henriet Weight: O lb Acceptance D Thu 10/1 Tracking #: 9405 503	ta, NY 145 2.00 oz ate: 4/2021	586	\$0.00
Prepaid Mail Beachwood, O Weight: O lb Acceptance D Thu 10/1 Tracking #: 9405 503) 10.70 o: late:		\$0.00 5
Prepaid Mail Guilford, Cl Weight: O lk Acceptance [Thu 10/ Tracking #: 9405 503	[06437 10.70 o Date:		\$0.00 5
	T 06437 b 10.70 d Date: 14/2021 36 9930 00	031 5488 3	
Grand Total:			\$0.00