

Northeast Site Solutions
Denise Sabo
4 Angela's Way, Burlington CT 06013
203-435-3640
denise@northeastsitesolutions.com

June 15, 2022

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application

31 Yurechko Drive, Griswold, CT 06351

Latitude: 41.594083 Longitude: -71.933194 Site #: 842863 Crown Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 31 Yurechko Drive, Griswold, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 MHz 5G antennas and six (6) RRUs, at the 109-foot level of the existing 118-foot monopole tower, one (1) Fiber cable will also be installed. Dish Wireless LLC equipment cabinets will be placed within a 7' x 5' lease area within the existing fenced compound. Included are plans by Hudson Design Group, dated June 9, 2022, Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated December 20, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was approved by the Connecticut Siting Council, Docket No. 246 on July 22, 2003. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Dana Bennet, First Selectman, and Mario Tristany Jr., Town Planner for the Town of Griswold, as well as the tower owner (Crown Castle) and property owner (Philip Yurechko Jr.).

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

- 1. The proposed modification will not result in an increase in the height of the existing structure. The top of the existing tower is 118-feet and the Dish Wireless LLC antennas will be located at a centerline height of 109-feet.
- 2. The proposed modifications will not result in an increase of the site boundary as depicted on the attached site plan.

- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.
- 4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. The combined site operations will result in a total power density of 10.98% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully submits that the shared use of this facility satisfies these criteria.

- A. Technical Feasibility. The existing tower has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.
- B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this tower in Griswold. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.
- C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 109-foot level of the existing 118-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
- D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.
- E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Griswold.

Sincerely,

Denise Sabo

Denise Sabo

Mobile: 203-435-3640 Fax: 413-521-0558

Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments

Cc: Dana Bennet, First Selectman Griswold Town Hall 28 Main Street Jewett City, CT 06351

Mario Tristany Jr., Town Planner Griswold Town Hall 28 Main Street Jewett City, CT 06351

Philip Yurechko Jr. - Property Owner 31 Yurechko Drive Griswold, CT 06351

Crown Castle, Tower Owner

Exhibit A

Original Facility Approval

Connecticut Siting Council

CT.gov Home (/) Connecticut Siting Council (/CSC) DO 246 Decision

DOCKET NO. 246 – AT&T Wireless PCS, LLC d/b/a AT&T Wireless application for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance and operation of a telecommunications facility at 31 Yurechko Drive, Griswold, Connecticut.

- } Connecticut
- } Siting
- } Council

July 22, 2003

FEEDBACK+

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a telecommunications facility including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to AT&T Wireless PCS, LLC (AT&T) for the construction, maintenance and operation of a wireless telecommunications facility at proposed Site A located at 31 Yurechko Drive, Griswold, Connecticut. We deny certification of proposed Site B located on the same property in Griswold.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be constructed as a monopole not exceed a height of 120 feet above ground level in order to provide the proposed telecommunications services, sufficient to accommodate the antennas of AT&T and other entities, both public and private. The Council may allow said tower to be extended to a height of not more than 160 feet, upon petition to the Council, if it can be demonstrated that such an extension of height would be necessary the co-location of other wireless carriers.
- 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be submitted to and approved by the Council prior to the commencement of any facility construction and shall include:
- a. a detailed site development plan depicting the location of the access road, compound, tower, and underground utility line;
- b. specifications for the tower, tower foundation, antennas, equipment building, and security fence;
- c. construction plans for site clearing, water drainage, and erosion and sedimentation control consistent with the <u>2002 Connecticut</u> <u>Guidelines for Soil Erosion and Sediment Control</u>, as amended.
- 3. The Certificate Holder shall, prior to the commencement of operation, provide the Council worst-case modeling of electromagnetic radio frequency power densities of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall provide a recalculated report of electromagnetic radio frequency power density if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.
- 4. Upon the establishment of any new state or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.

- 5. The Certificate Holder shall permit private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 6. If the facility does not initially provide wireless services within one year of completion of construction or ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
- 7. Any antenna that becomes obsolete and ceases to function shall be removed within 60 days after such antennas become obsolete and cease to function.
- 8. Unless otherwise approved by the Council, this Decision and Order shall be void if the facility authorized herein is not operationa within one year of the effective date of this Decision and Order or within one year after all appeals to this Decision and Order have been resolved.

Pursuant to General Statutes § 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be serve on each person listed below, and notice of issuance shall be published in <u>The Hartford Courant</u> and the <u>Norwich Bulletin</u>.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

Applicant

AT&T Wireless PCS, LLC d/b/a AT&T Wireless

Its Representative

Christopher B. Fisher, Esq. Cuddy & Feder LLP 90 Maple Avenue White Plains, NY 10601 (914) 761-1300 (914) 761-6405 - fax

Exhibit B

Property Card

Summary

Parcelld 101378 Y0453201 Account Number **Location Address** 31 A YURECHKO DR Map-Block-Lot 48/100/110.1A

Use Class/Description Assessing Neighborhood 0050A

Census Tract

Acreage Utilities

4310 TEL REL TW

Owner

YURECHKO PHILIP JR 55 YURECHKO DR GRISWOLD, CT 06351

Current Appraised Value

	2017	2015
+ Building Value	\$ O	\$0
+ XF Value	\$ O	\$0
+ OB Value	\$98,600	\$98,600
+ Land Value	\$156,500	\$150,000
+ Special Land Value		
+ Total Appraised Value	\$255,100	\$248,600
+ Net Appraised Value	\$255,100	\$248,600
+ Current Assessment	\$178,570	\$174,020

Assessment History

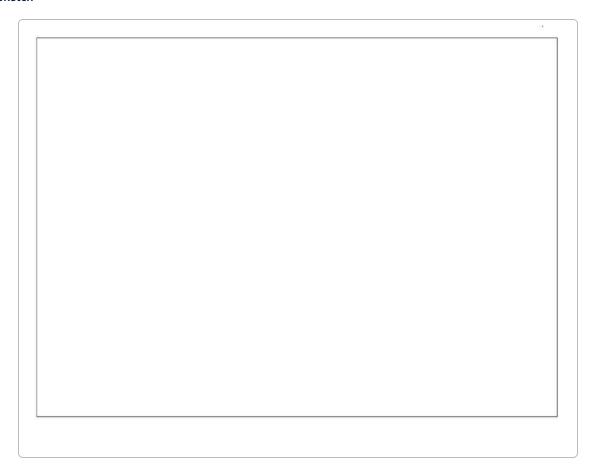
	2017	2015
+ Building Value	\$0	\$0
+ OB/Misc	\$69,020	\$69,020
+ Land	\$109,550	\$105,000
+ Total Assessment	\$178 570	\$174 020

Land

Use	Class	Zoning	Area	Value	
4310 TEL DEL TW	1	P/IO	4608 SE	\$156 500	

Out Buildings\Extra Features

Description	Sub Description	Area	Year Built	Value	
CELL TOWER		160HEIGHT	2004	\$93,600	
FENCE-6' CHAIN		272L.F.	2004	\$4,800	
CONC PAD/CELL SITES		126S.F.	2004	\$200	


Sales History

Sales Date	Type of Document	Grantee	Vacant/Improved	Book/Page	Amount
04-18-2016		YURECHKO PHILIP JR	Vacant	367/705	\$0
01-09-2008		YURECHKO PHILIP & PHILIP JR	Improved	310/131	\$0

Permit Information

Permit ID	Issue Date	Type	Description	Amount	Inspection Date	% Complete	Date Complete	Comments
145-13	03-11-2013	AD	3ANT/6REMOTE RADIO	\$25,000		100	07-23-2013	
106-04	10-22-2003		TOWER	\$0	2/23/2004 12:00:00 AM	100	02-23-2004	131-04 CO

Sketch

Photos

No data available for the following modules: Building Data, Building Data, Commercial Building.

The Town of Griswold Assessor makes every effort to produce the most accurate information possible. No warranties, expressed or implied are provided for the data herein, its use or interpretation. The assessment information is from the last certified tax roll. All other data is subject to change.

<u>User Privacy Policy</u> GDPR Privacy Notice

Last Data Upload: 3/23/2021, 8:37:47 PM

Version 2.3.112

Exhibit C

Construction Drawings

wireless...

DISH Wireless L.L.C. SITE ID:

BOBOS01001A

DISH Wireless L.L.C. SITE ADDRESS:

31 YURECHKO DRIVE JEWETT CITY, CT 06351

CONNECTICUT CODE OF COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES

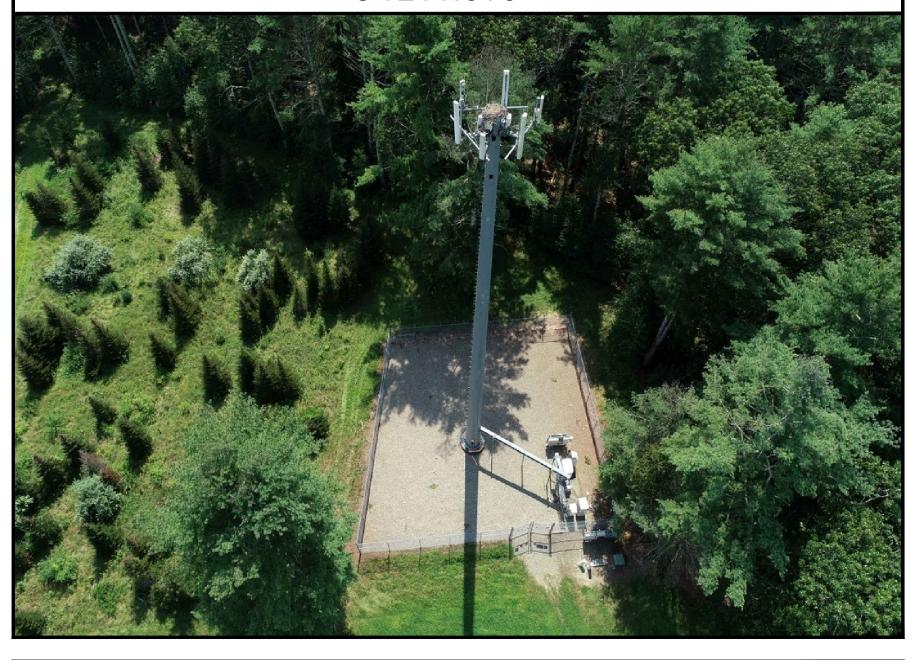
CODE TYPE

2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS

	SHEET INDEX
SHEET NO.	SHEET TITLE
T-1	TITLE SHEET
A-1	OVERALL AND ENLARGED SITE PLAN
A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS
A-4	EQUIPMENT DETAILS
A-5	EQUIPMENT DETAILS
A-6	EQUIPMENT DETAILS
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES
E-2	ELECTRICAL DETAILS
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE
G-1	GROUNDING PLANS AND NOTES
G-2	GROUNDING DETAILS
G-3	GROUNDING DETAILS
RF-1	RF CABLE COLOR CODE
GN-1	LEGEND AND ABBREVIATIONS
GN-2	RF SIGNAGE
GN-3	GENERAL NOTES
GN-4	GENERAL NOTES
GN-5	GENERAL NOTES

SCOPE OF WORK

THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIVALENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:


TOWER SCOPE OF WORK:

- INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR)
- INSTALL (1) PROPOSED ANTENNA PLATFORM MOUNT
- INSTALL PROPOSED JUMPERS
- INSTALL (6) PROPOSED RRUS (2 PER SECTOR)
- INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP)
- INSTALL (1) PROPOSED HYBRID CABLE INSTALL (1) PROPOSED CABLE ENTRY PORT

GROUND SCOPE OF WORK:

- INSTALL (1) PROPOSED METAL PLATFORM
- INSTALL (1) PROPOSED ICE BRIDGE
- INSTALL (1) PROPOSED PPC CABINET INSTALL (1) PROPOSED EQUIPMENT CABINET
- INSTALL (1) PROPOSED POWER CONDUIT
- INSTALL (1) PROPOSED TELCO CONDUIT
- INSTALL (1) PROPOSED TELCO-FIBER BOX
- INSTALL (1) PROPOSED GPS UNIT
- INSTALL (1) PROPOSED SAFETY SWITCH (IF REQUIRED) INSTALL (1) PROPOSED FIBER NID (IF REQUIRED)
- INSTALL (1) PROPOSED 200A METER IN EXISTING SOCKET

SITE PHOTO

UNDERGROUND SERVICE ALERT CBYD 811 UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455 WWW.CBYD.COM

CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.

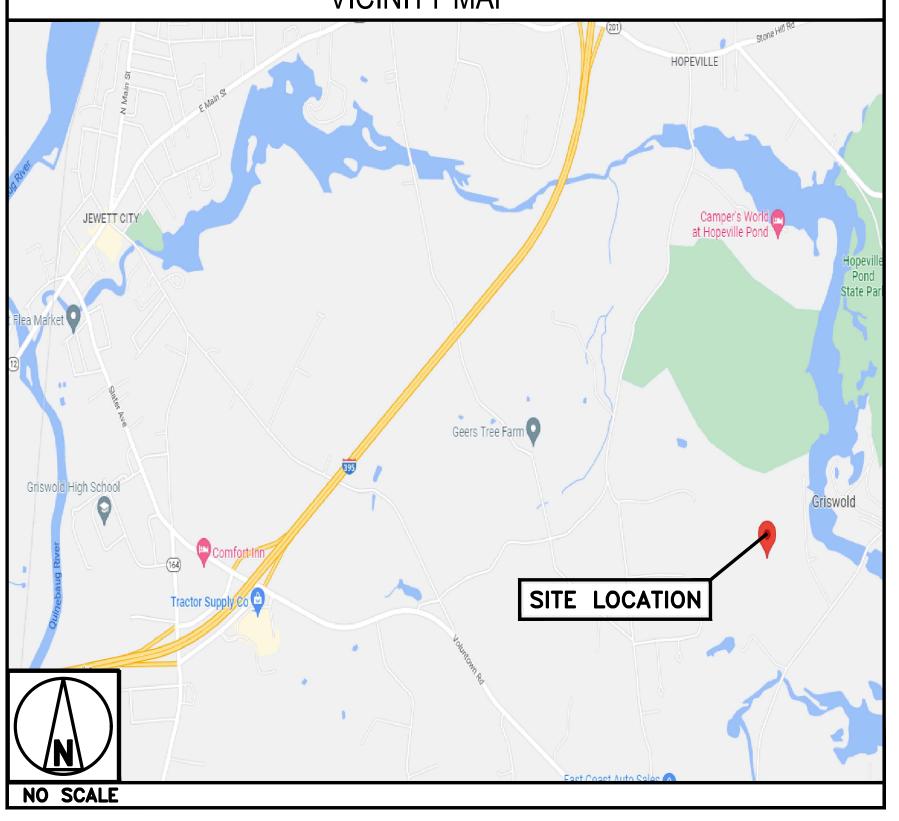
11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

DISH Wireless L.L.C. PROPERTY OWNER: YURECHKO PHILIP JR APPLICANT: 5701 SOUTH SANTA FE DRIVE PROPERTY OWNER 55 YURECHKO DRIVE LITTLETON, CO 80120 ADDRESS: GRISWOLD, CT 06351 **TOWER TYPE:** MONOPOLE TOWER OWNER: CROWN CASTLE 2000 CORPORATE DRIVE TOWER CO SITE ID: 842863 CANONSBURG, PA 15317 TOWER APP NUMBER: (877) 486-9377 COUNTY: **NEW LONDON** SITE DESIGNER: HUDSON DESIGN GROUP, LLC. 45 BEECHWOOD DRIVE NORTH ANDOVER, MA 01845 LATITUDE (NAD 83): 41° 35′ 38.58″ N 41.59405 (978) 557-5553 LONGITUDE (NAD 83): 71° 55' 59.37" W -71.93316 SITE ACQUISITION: COURTNEY PRESTON ZONING JURISDICTION: BOROUGH OF JEWETT CITY-CT **COURTNEY.PRESTON.CONTRACTOR OCROWNCASTLE.COM ZONING DISTRICT:** PARCEL NUMBER: 48-100-110.1A CONSTRUCTION JAVIER SOTO **MANAGER:** JAVIER.SOTO DISH.COM OCCUPANCY GROUP: ARVIN SEBASTIAN RF ENGINEER: CONSTRUCTION TYPE: ARVIN.SEBASTIANODISH.COM POWER COMPANY: **EVERSOURCE**

PROJECT DIRECTORY

DIRECTIONS


DIRECTIONS FROM BRADLEY INTERNATIONAL AIRPORT:

TELEPHONE COMPANY: TBD

SITE INFORMATION

GET ON BRADLEY INTERNATIONAL AIRPORT CON IN EAST GRANBY FROM BRADLEY INTERNATIONAL AIRPORT. HEAD NORTH TOWARD BRADLEY INTERNATIONAL AIRPORT. SLIGHT LEFT ONTO BRADLEY INTERNATIONAL AIRPORT. CONTINUE STRAIGHT. KEEP RIGHT TO CONTINUE TOWARD BRADLEY INTERNATIONAL AIRPORT CON. TAKE I-91 S, CT-2 E AND I-395 N TO GRISWOLD EXPY IN GRISWOLD. TAKE EXIT 22 FROM I-395 N. CONTINUE ONTO BRADLEY INTERNATIONAL AIRPORT CON. CONTINUE ONTO CT-20 E/BRADLEY INTERNATIONAL AIRPORT CON. TAKE THE EXIT ONTO I-91 S TOWARD HARTFORD. TAKE EXIT 30 ON THE LEFT TO MERGE ONTO I-84 E. TAKE EXIT 55 FOR CT-2 E TOWARD NORWICH/NEW LONDON/I-84 E. CONTINUE ONTO CT-2 E. KEEP LEFT AT THE FORK TO STAY ON CT-2 E, FOLLOW SIGNS FOR 2 E. TAKE EXIT 28N TO MERGE ONTO I-395 N TOWARD PROVIDENCE. TAKE EXIT 22 FOR CT-164 TOWARD CT-138/PRESTON CITY/PACHAUG. TAKE CT-138 E TO YURECHKO DR. CONTINUE STRAIGHT ONTO GRISWOLD EXPY. TURN RIGHT ONTO CT-138 E. TURN LEFT ONTO BITGOOD RD. TURN LEFT ONTO YURECHKO DR. TURN RIGHT TO STAY ON YURECHKO DR. YURECHKO'S TREE FARM. 55 YURECHKO DR, GRISWOLD, CT 06351.

VICINITY MAP

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

45 BEECHWOOD DRIVE N. ANDOVER, MA 01845 FAX: (978) 336-5586

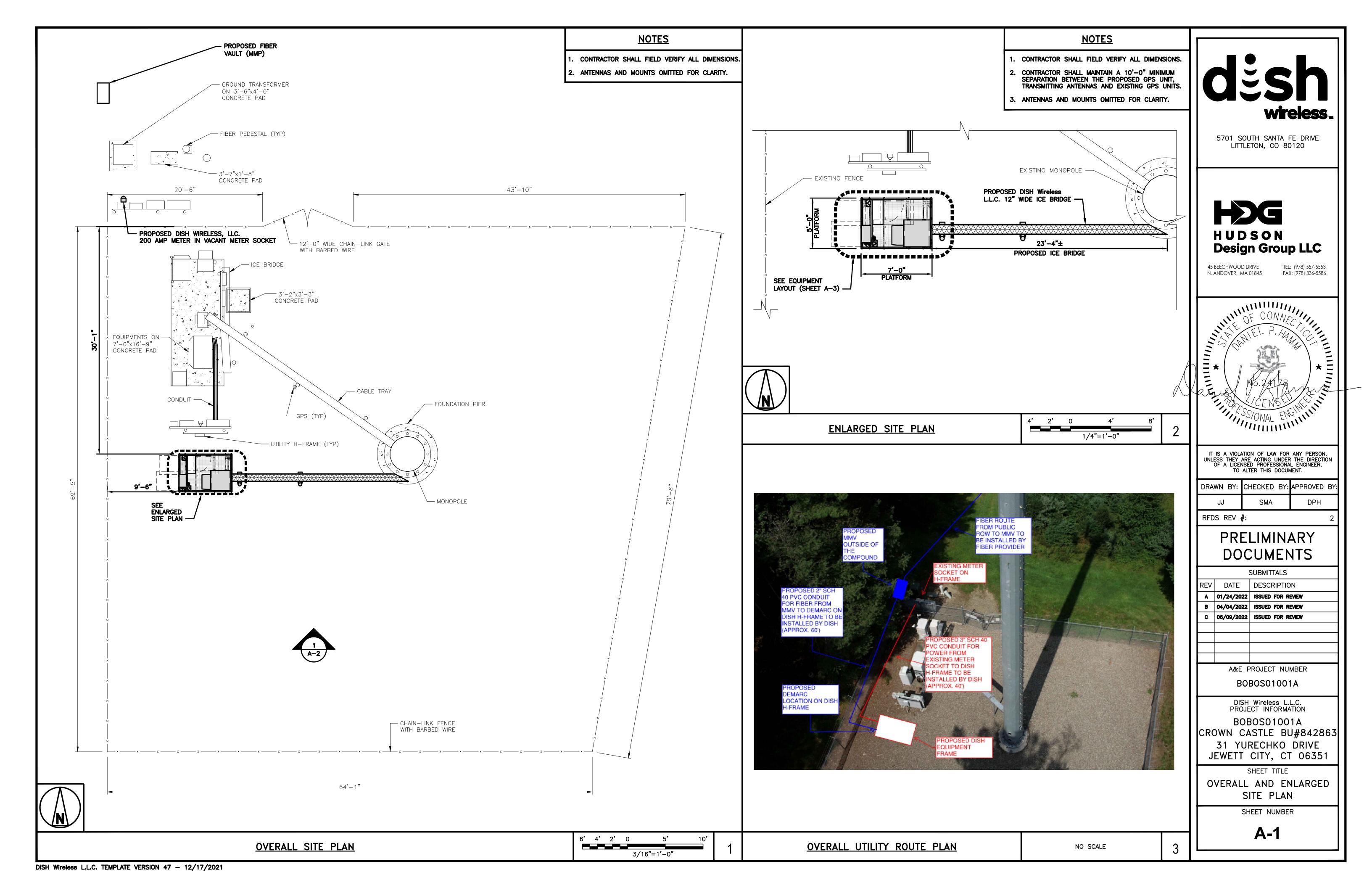
THESSIONAL ENGINE

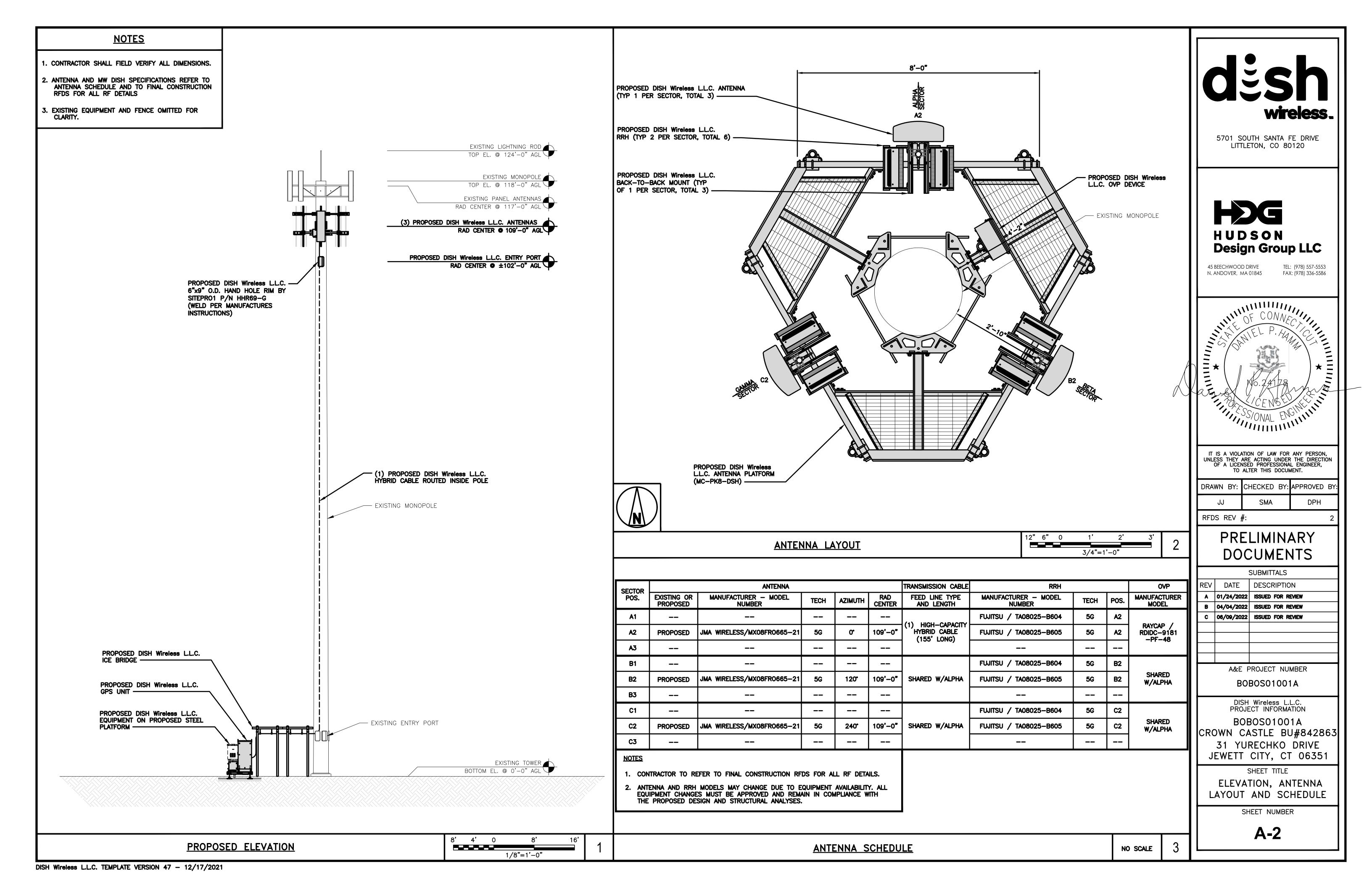
UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

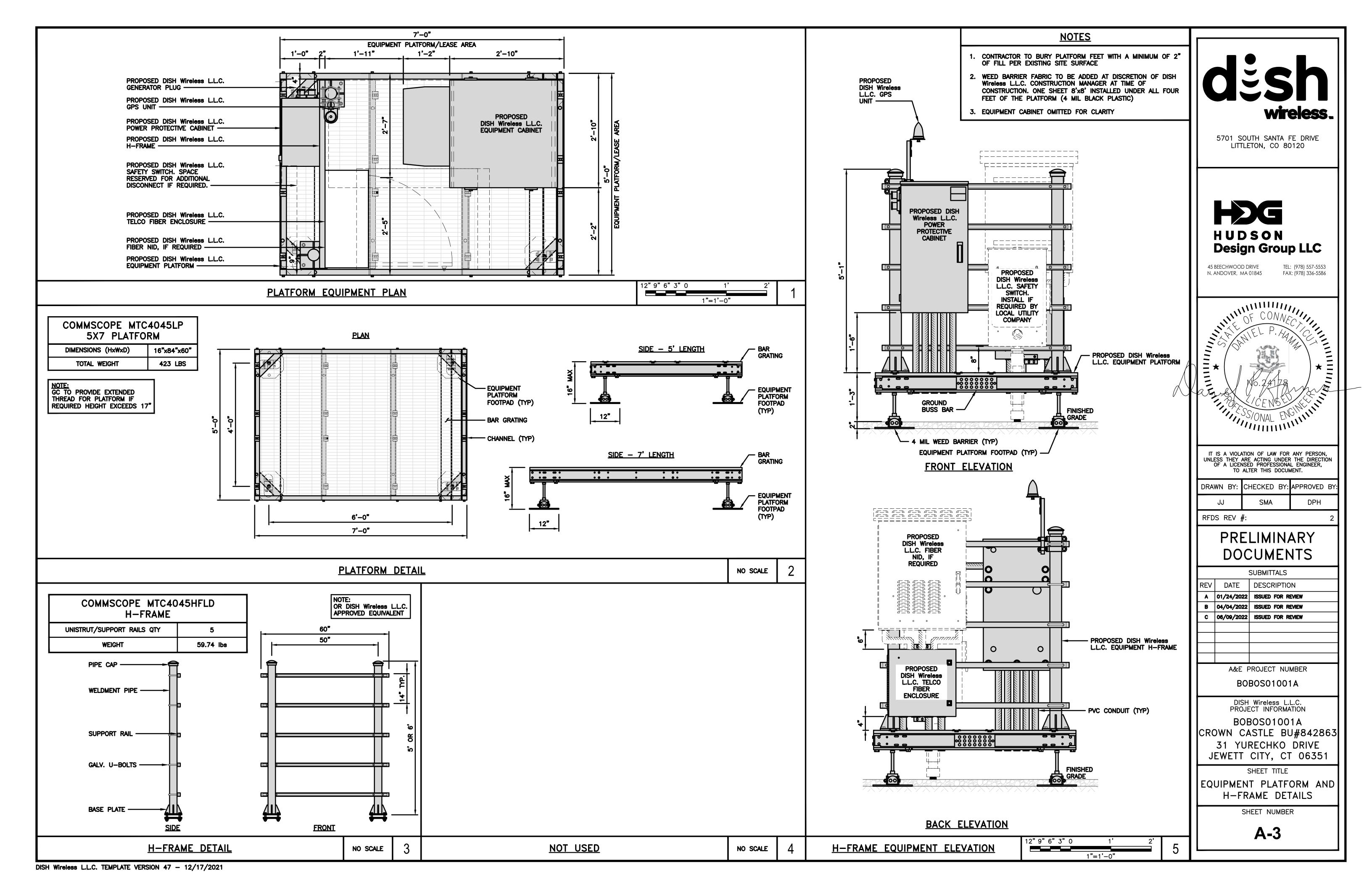
DRAWN BY: CHECKED BY: APPROVED BY RFDS REV #:

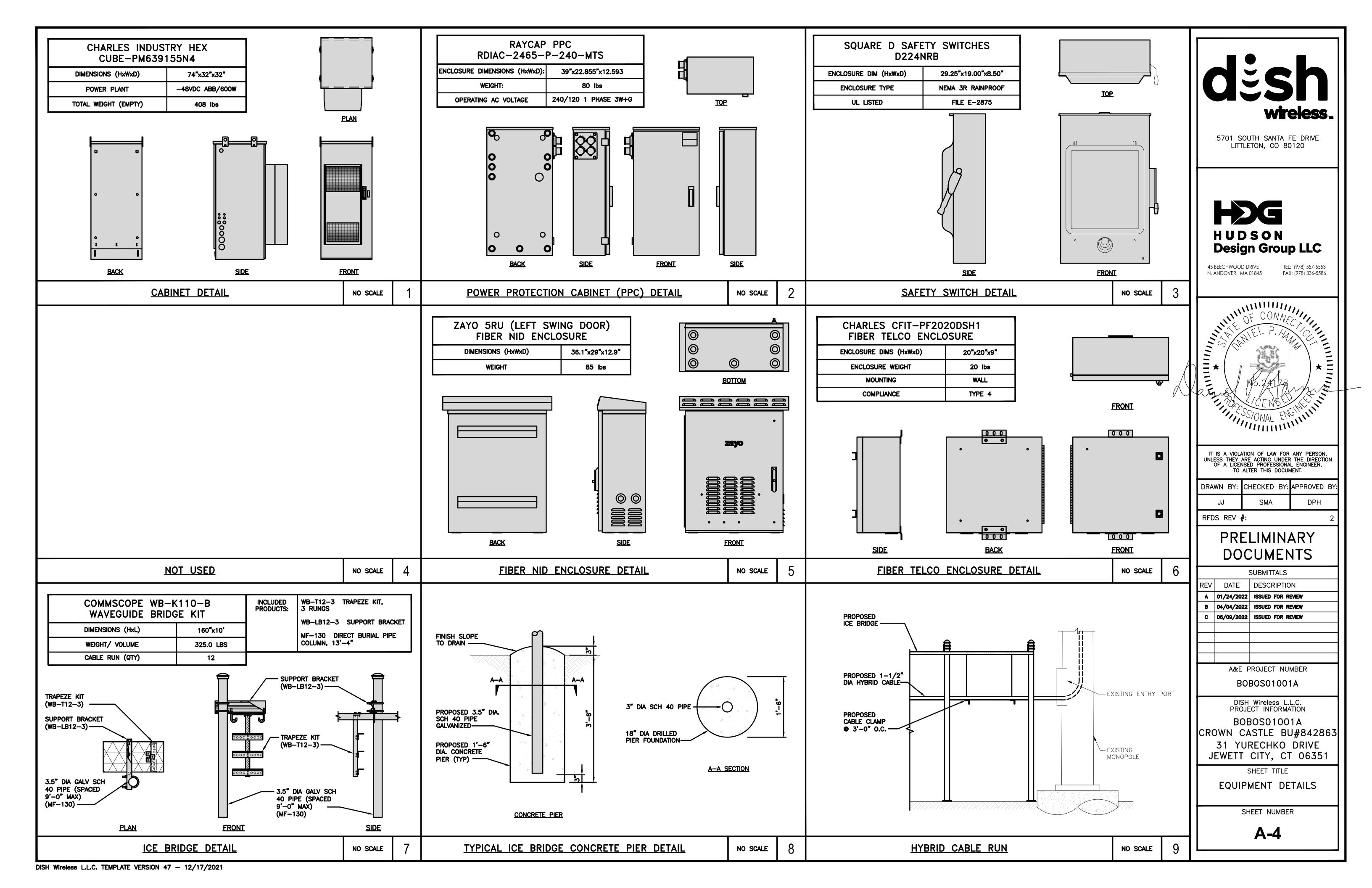
PRELIMINARY **DOCUMENTS**

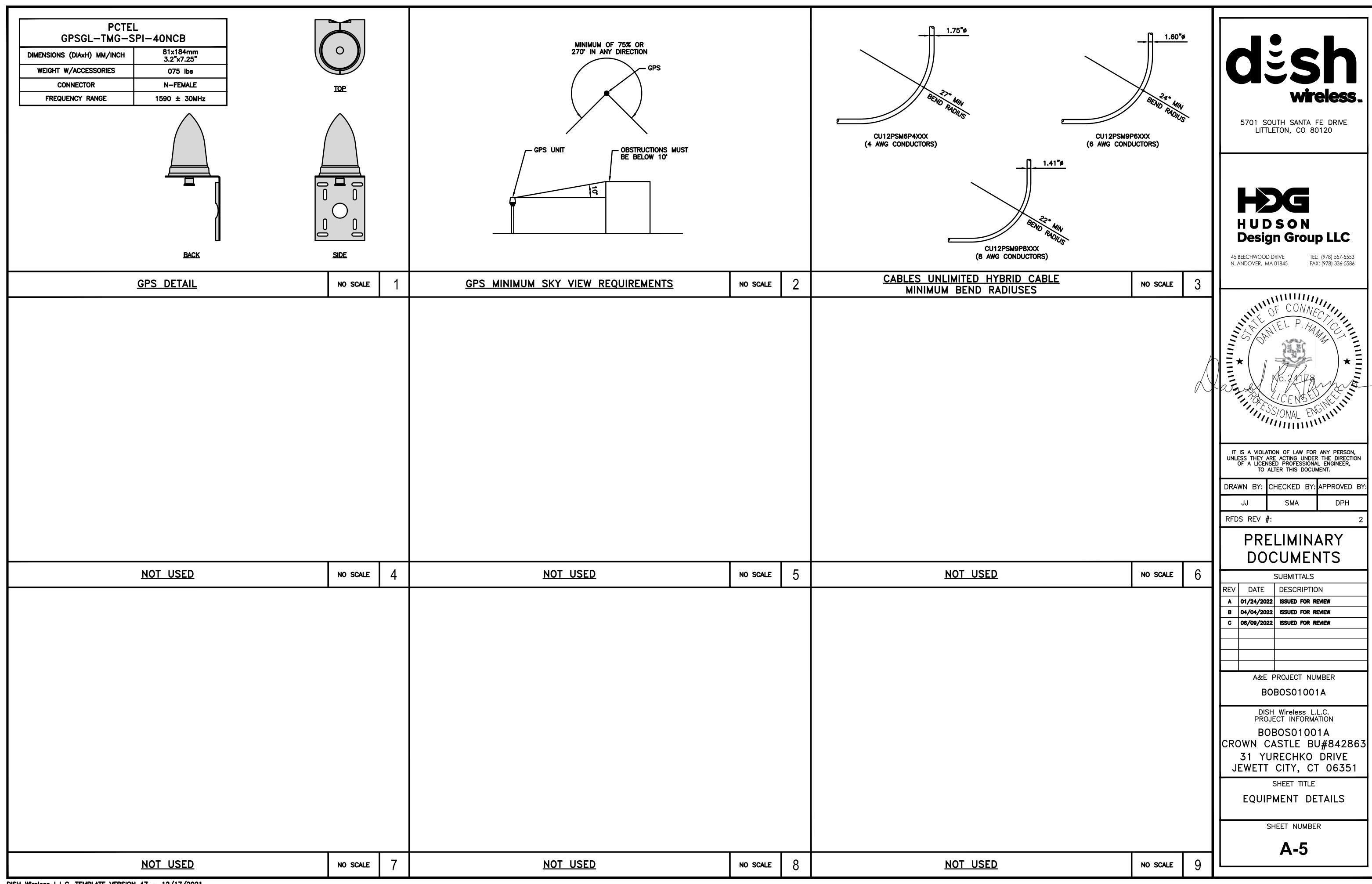
SUBMITTALS DATE DESCRIPTION A 01/24/2022 ISSUED FOR REVIEW B 04/04/2022 ISSUED FOR REVIEW C 06/09/2022 ISSUED FOR REVIEW A&E PROJECT NUMBER BOBOS01001A

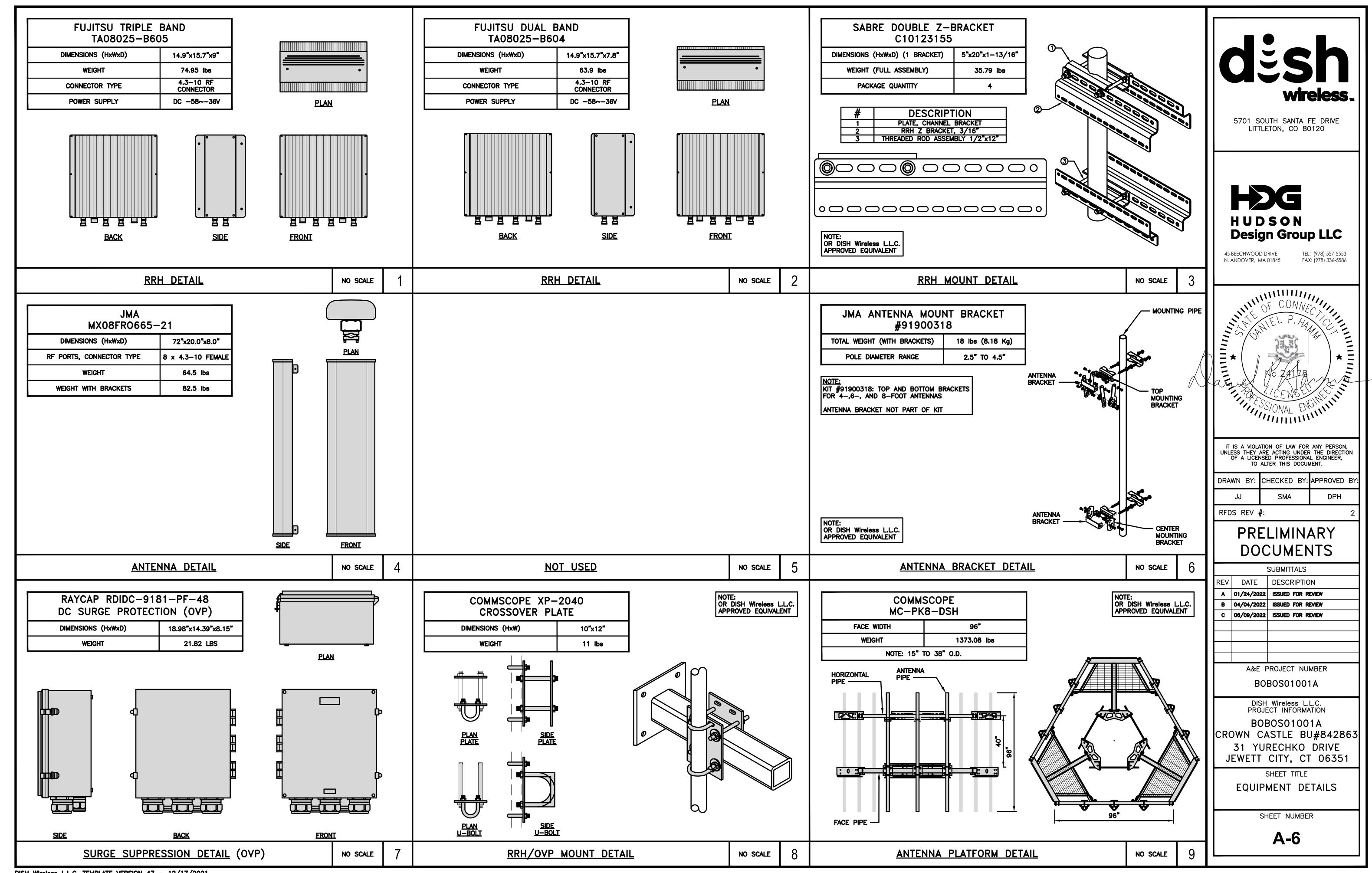

> DISH Wireless L.L.C. PROJECT INFORMATION

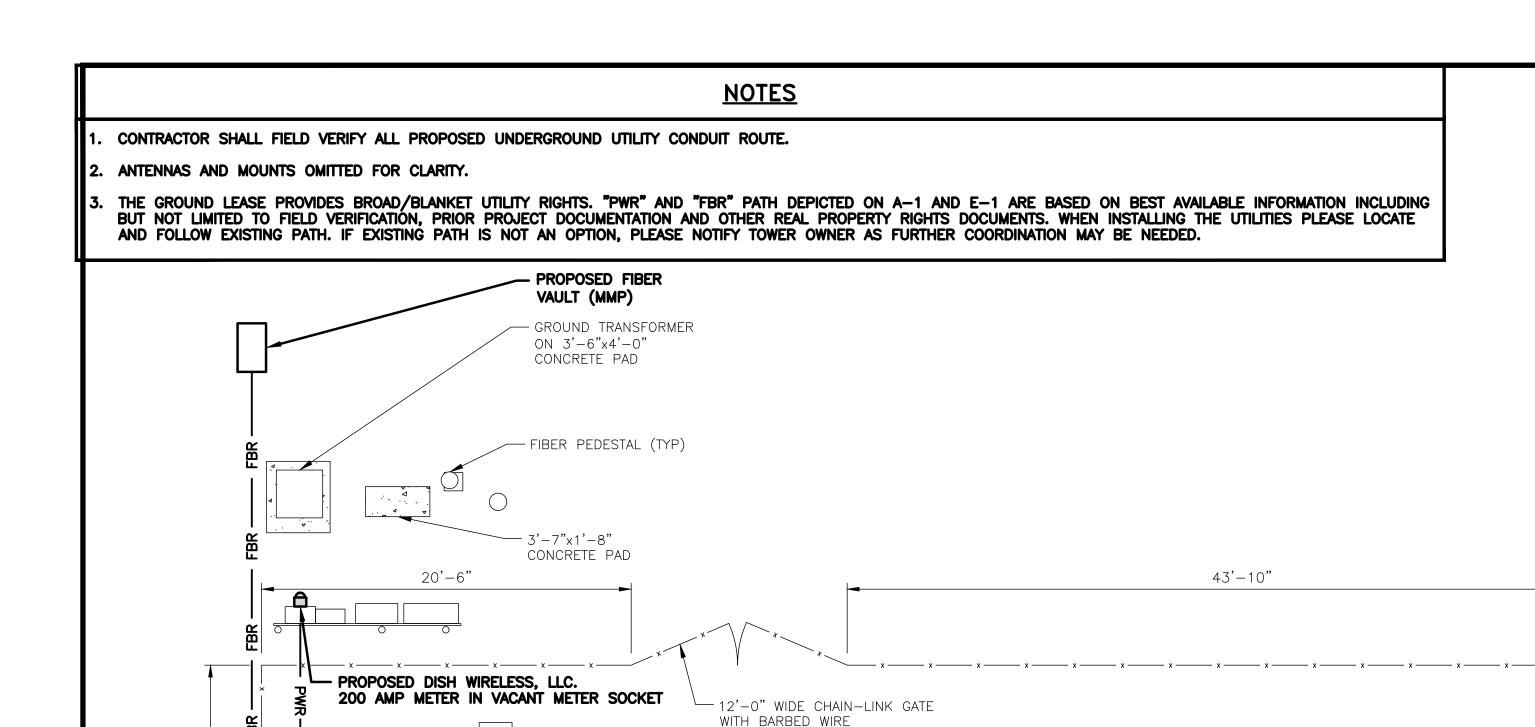

BOBOS01001A CROWN CASTLE BU#842863 31 YURECHKO DRIVE JEWETT CITY, CT 06351


> SHEET TITLE TITLE SHEET


SHEET NUMBER


T-1





3'-2"x3'-3"

CONCRETE PAD

- GPS (TYP)

64'-1"

UTILITY ROUTE PLAN

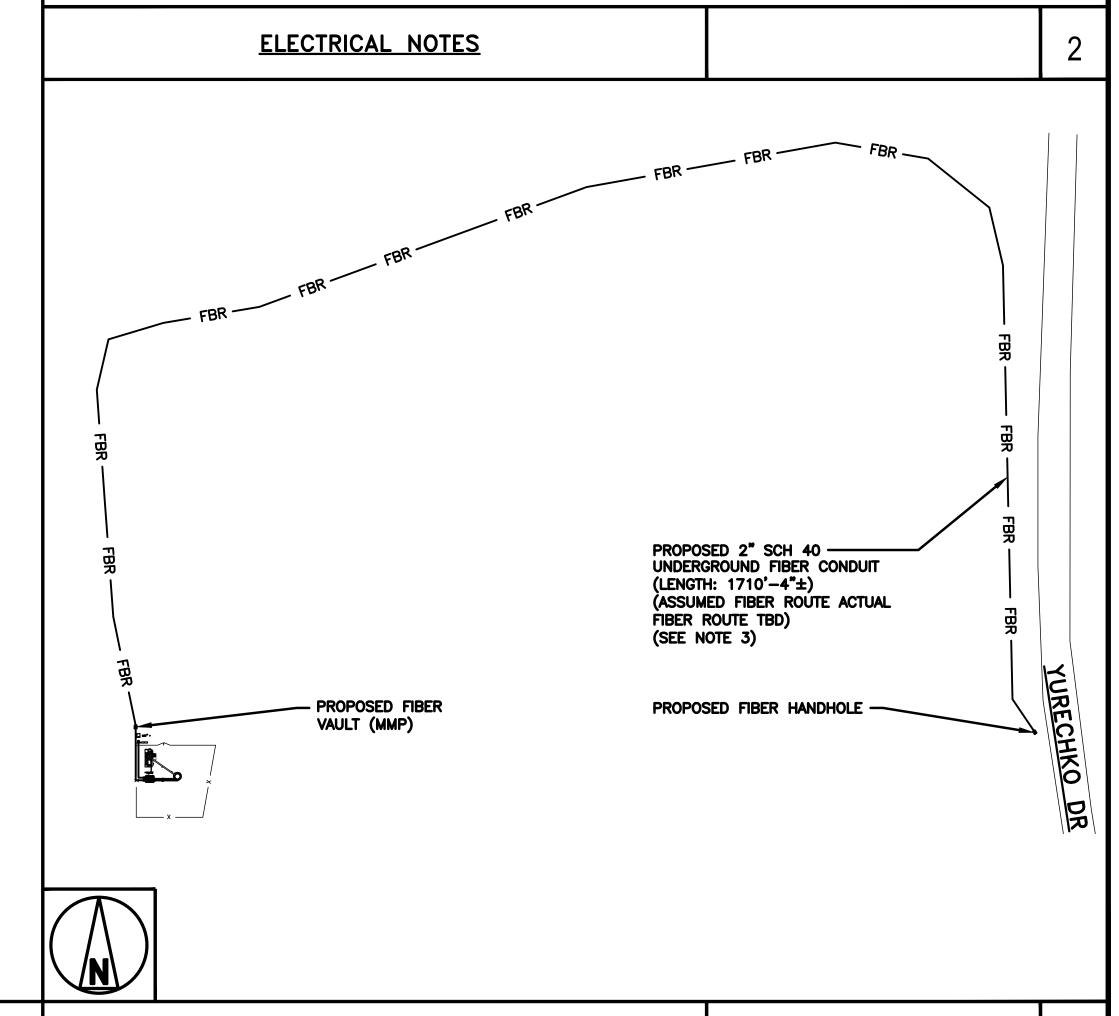
- UTILITY H-FRAME (TYP)

PROPOSED 3" SCH 40 UNDERGROUND POWER CONDUIT (LENGTH: 40'-0"±) FROM

THE EXISTING METER SOCKET TO THE

PROPOSED DISH PLATFORM

UNDERGROUND FIBER CONDUIT


(LENGTH: 60'-0"±) FROM THE PROPOSED MMP TO THE PROPOSED DISH PLATFORM

PROPOSED 2" SCH 40

CABLE TRAY

DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING +24V AND -48V CONDUCTORS. RED MARKINGS SHALL IDENTIFY +24V AND BLUE MARKINGS SHALL IDENTIFY -48V.

- CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
- 2. ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS.
- 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
- 4. CONDUIT ROUGH-IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS. VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
- 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
- 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
- 7. CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
- 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
- 9. INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250. THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL DISCONNECT SWITCHES, AND EQUIPMENT CABINETS.
- 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.
- 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT.
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS.
- 13. ALL TRENCHES IN COMPOUND TO BE HAND DUG

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

45 BEECHWOOD DRIVE N. ANDOVER, MA 01845

TEL: (978) 557-5553 FAX: (978) 336-5586

I SSIONAL ENGINE

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY

RFDS REV #:

PRELIMINARY **DOCUMENTS**

SUBMITTALS DATE DESCRIPTION A 01/24/2022 ISSUED FOR REVIEW B 04/04/2022 ISSUED FOR REVIEW C 06/09/2022 ISSUED FOR REVIEW A&E PROJECT NUMBER BOBOS01001A

DISH Wireless L.L.C. PROJECT INFORMATION

BOBOS01001A CROWN CASTLE BU#842863 31 YURECHKO DRIVE JEWETT CITY, CT 06351

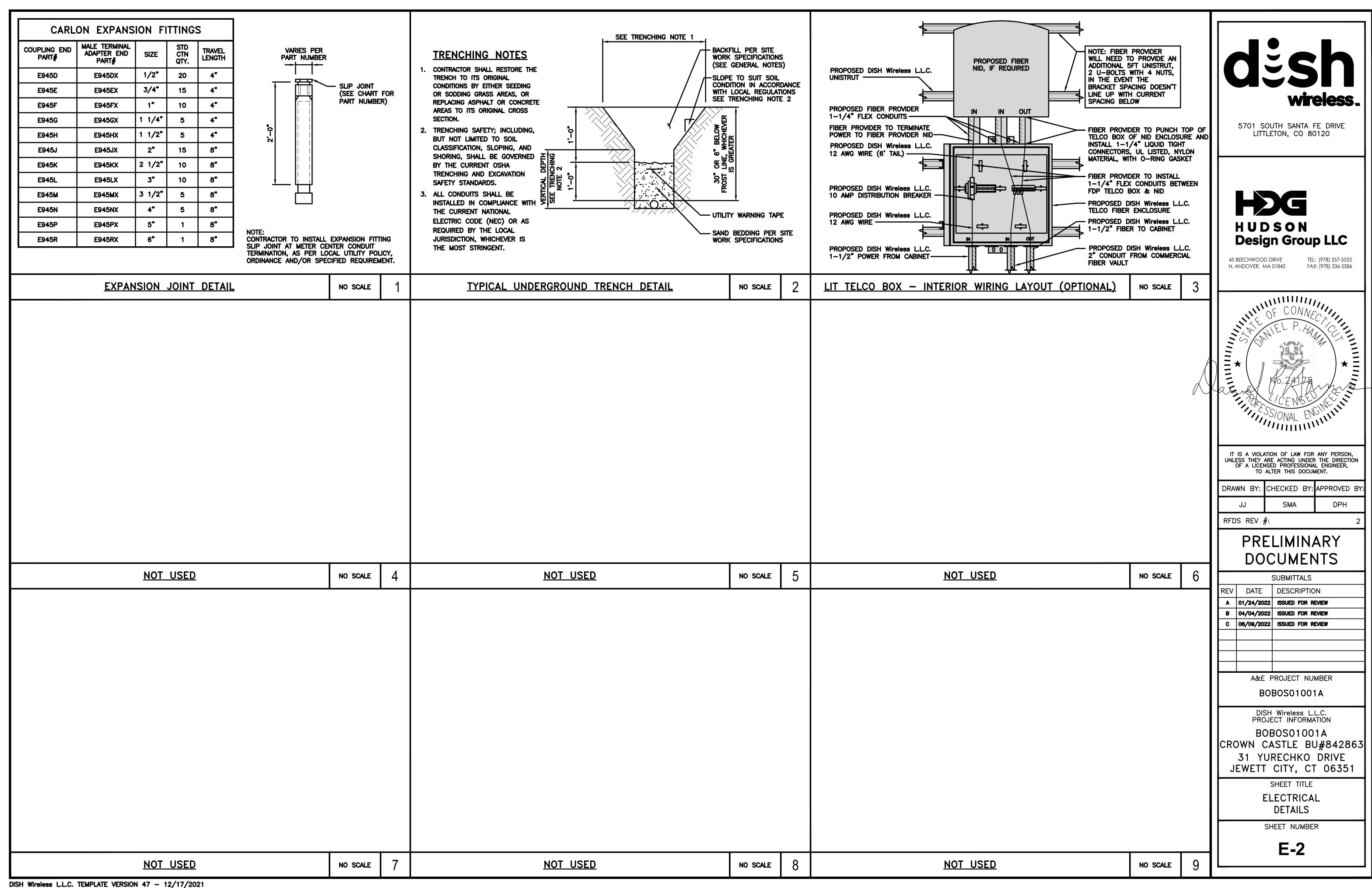
SHEET TITLE ELECTRICAL/FIBER ROUTE PLAN AND NOTES

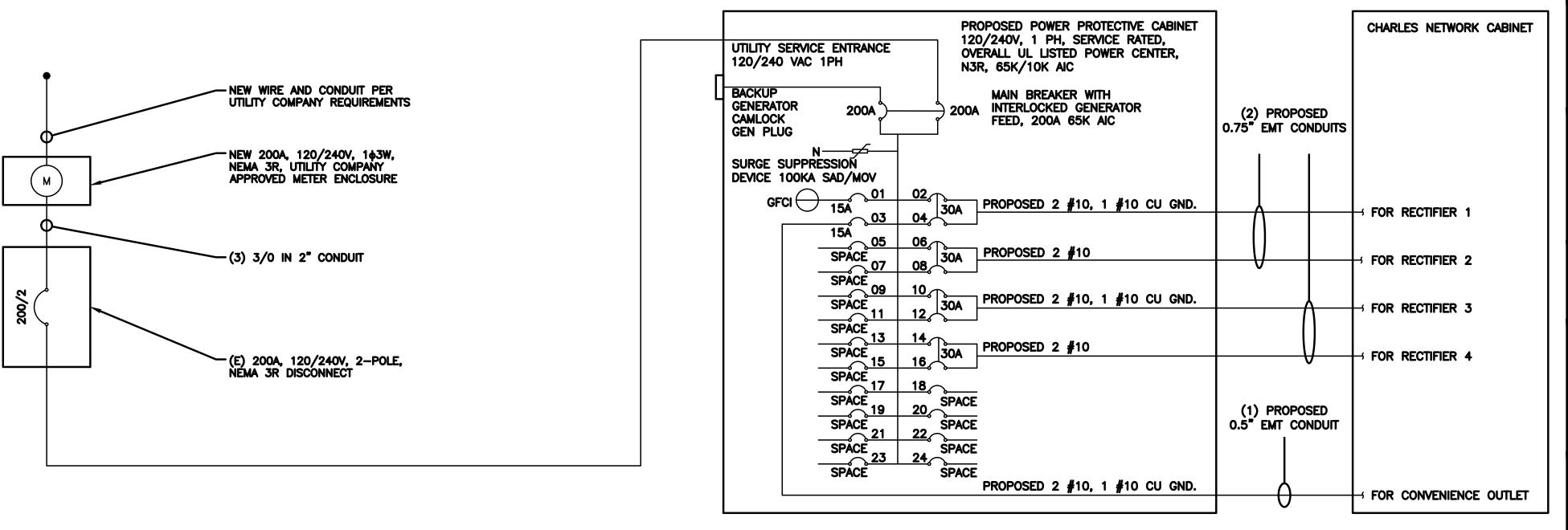
SHEET NUMBER

E-1

CHAIN—LINK FENCE

WITH BARBED WIRE


- FOUNDATION PIER


- MONOPOLE

EQUIPMENTS ON 7'-0"x16'-9"

CONCRETE PAD

CONDUIT —

BREAKERS REQUIRED:

(4) 30A, 2P BREAKER - SQUARE D P/N:Q0230 (1) 15A, 1P BREAKER - SQUARE D P/N:Q0115 **NOTES**

THE ENGINEER OF RECORD HAS PERFORMED ALL REQUIRED SHORT CIRCUIT CALCULATIONS AND THE AIC RATINGS FOR EACH DEVICE IS ADEQUATE TO PROTECT THE EQUIPMENT AND THE ELECTRICAL SYSTEM.

THE ENGINEER OF RECORD HAS PERFORMED ALL REQUIRED VOLTAGE DROP CALCULATIONS AND ALL BRANCH CIRCUIT AND FEEDERS COMPLY WITH THE NEC (LISTED ON T-1) ARTICLE 210.19(A)(1) FPN NO. 4.

THE (2) CONDUITS WITH (4) CURRENT CARRYING CONDUCTORS EACH, SHALL APPLY THE ADJUSTMENT FACTOR OF 80% PER 2014/17 NEC TABLE 310.15(B)(3)(a) OR 2020 NEC TABLE 310.15(C)(1) FOR UL1015 WIRE.

> #12 FOR 15A-20A/1P BREAKER: $0.8 \times 30A = 24.0A$ #10 FOR 25A-30A/2P BREAKER: $0.8 \times 40A = 32.0A$ #8 FOR 35A-40A/2P BREAKER: $0.8 \times 55A = 44.0A$ #6 FOR 45A-60A/2P BREAKER: $0.8 \times 75A = 60.0A$

CONDUIT SIZING: AT 40% FILL PER NEC CHAPTER 9, TABLE 4, ARTICLE 358. 0.5" CONDUIT - 0.122 SQ. IN AREA

0.75" CONDUIT - 0.213 SQ. IN AREA 2.0" CONDUIT - 1.316 SQ. IN AREA 3.0" CONDUIT - 2.907 SQ. IN AREA

CABINET CONVENIENCE OUTLET CONDUCTORS (1 CONDUIT): USING THWN-2, CU.

#10 - 0.0211 SQ. IN X 2 = 0.0422 SQ. IN #10 - 0.0211 SQ. IN X 1 = 0.0211 SQ. IN <GROUND

= 0.0633 SQ. IN

0.5" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (3) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

RECTIFIER CONDUCTORS (2 CONDUITS): USING UL1015, CU.

#10 - 0.0266 SQ. IN X 4 = 0.1064 SQ. IN #10 - 0.0082 SQ. IN X 1 = 0.0082 SQ. IN <BARE GROUND TOTAL = 0.1146 SQ. IN

0.75" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (5) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC FEED CONDUCTORS (1 CONDUIT): USING THWN, CU.

3/0 - 0.2679 SQ. IN X 3 = 0.8037 SQ. IN - 0.0507 SQ. IN X 1 = 0.0507 SQ. IN <GROUND

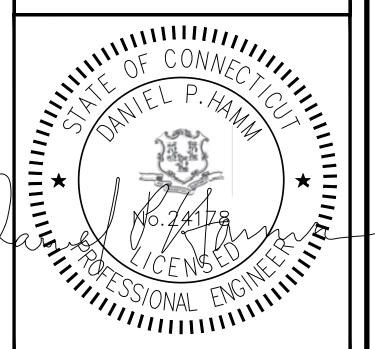
= 0.8544 SQ. IN

3.0" SCH 40 PVC CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (4) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC ONE-LINE DIAGRAM

NOTE:
BRANCH CIRCUIT WIRING SUPPLYING RECTIFIERS ARE TO BE RATED UL1015, 105°C, 600V, AND PVC INSULATED, IN THE SIZES SHOWN

IN THE ONE—LINE DIAGRAM. CONTRACTOR MAY SUBSTITUTE UL1015 WIRE FOR THWN—2 FOR CONVENIENCE OUTLET BRANCH CIRCUIT.


PROPOSED CHARLES PANEL SCHEDULE (WATTS) (WATTS) LOAD SERVED LOAD SERVED L1 L2 PPC GFCI OUTLET 180 ABB/GE INFINITY CHARLES GFCI OUTLET RECTIFIER 1 -SPACE-5 A A 6 7 A B A 8 ABB/GE INFINITY RECTIFIER 2 -SPACE-ABB/GE INFINITY
RECTIFIER 3 ABB/GE INFINITY -SPACE-RÉCTIFIER 4 -SPACE-19 - B - 20 -SPACE--SPACE--SPACE-21 A - 22 -SPACE--SPACE-23 A B A 24 -SPACE-VOLTAGE AMPS 180 180 200A MCB, 1φ, 24 SPACE, 120/240V MB RATING: 65,000 AIC 11520 11520 11700 11700 VOLTAGE AMPS

NO SCALE

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

45 BEECHWOOD DRIVE TEL: (978) 557-5553 N. ANDOVER, MA 01845 FAX: (978) 336-5586

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED	B,
JJ	SMA	DPH	

RFDS REV #:

PRELIMINARY **DOCUMENTS**

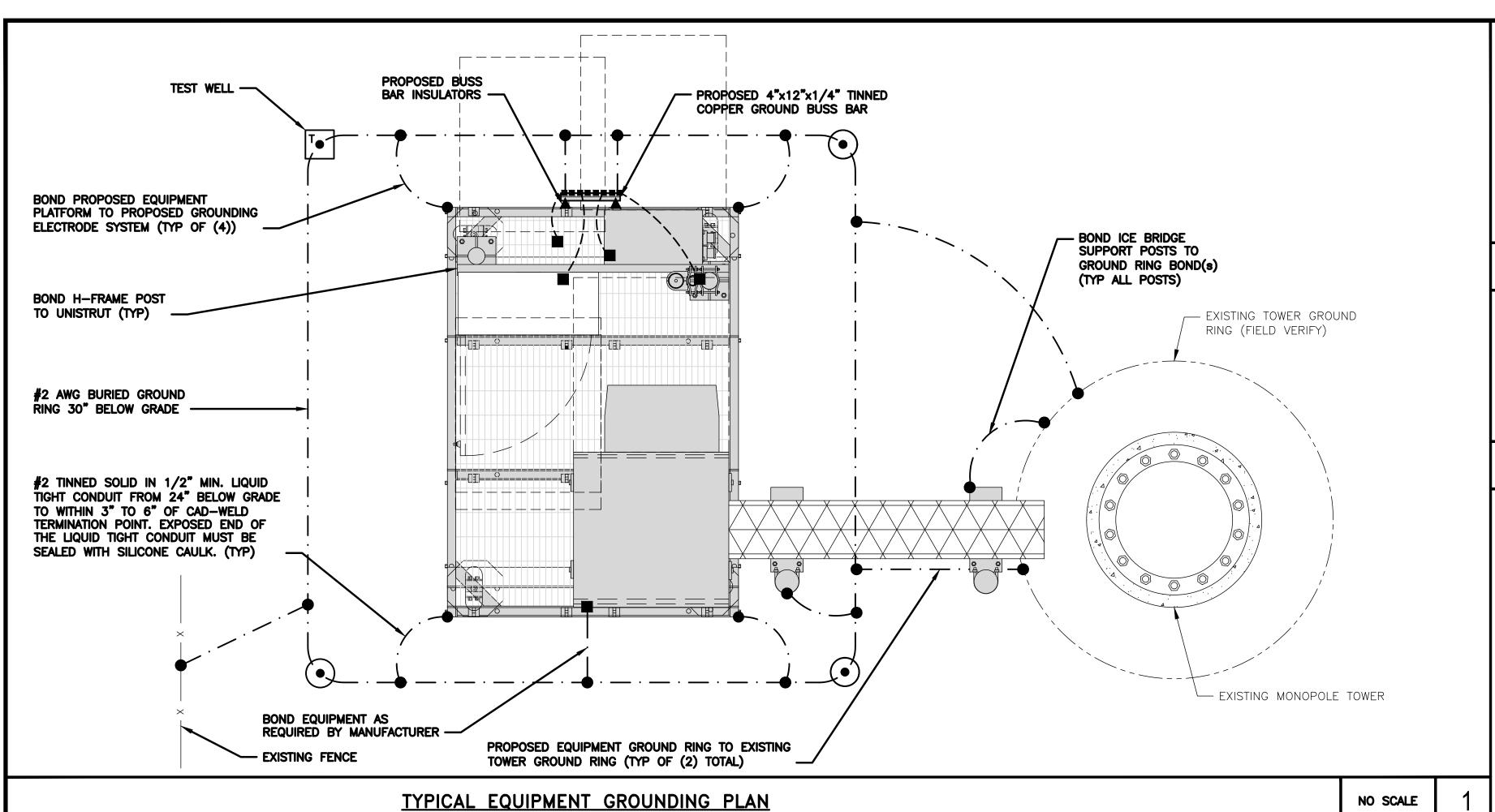
	SUBMITTALS							
REV	DATE	DESCRIPTION						
A	01/24/2022	ISSUED FOR REVIEW						
В	04/04/2022	ISSUED FOR REVIEW						
С	06/09/2022	ISSUED FOR REVIEW						
	A&E F	PROJECT NUMBER						

BOBOS01001A

DISH Wireless L.L.C. PROJECT INFORMATION BOBOS01001A CROWN CASTLE BU#842863

31 YURECHKO DRIVE JEWETT CITY, CT 06351

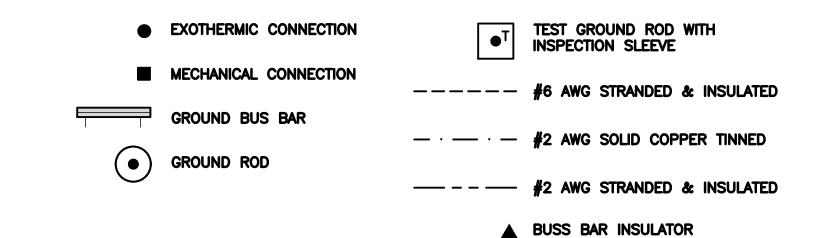
SHEET TITLE | ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE


SHEET NUMBER

E-3

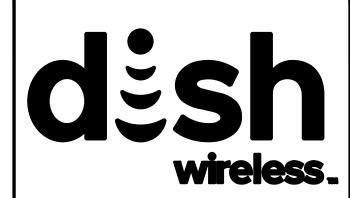
MAX AMPS MAX 125%

PANEL SCHEDULE


NOT USED NO SCALE NO SCALE

ANTENNAS AND OVP SHOWN ARE GENERIC AND NOT REFERENCING TO A SPECIFIC MANUFACTURER. THIS LAYOUT IS FOR REFERENCE PURPOSES ONLY

NO SCALE

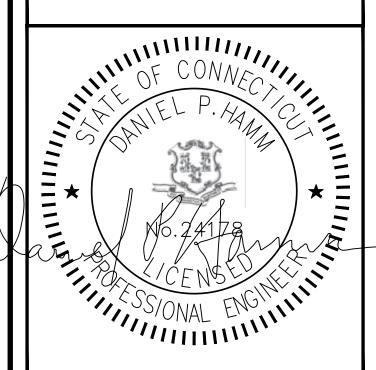

GROUNDING LEGEND

- 1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.
- 2. CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM. GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH Wireless L.L.C. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS.
- 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED.

GROUNDING KEY NOTES

- A EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW GRADE, OR 6 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM THE EXTERIOR WALL OR FOOTING.
- <u>TOWER GROUND RING:</u> THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS, AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS.
- INTERIOR GROUND RING: #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTOR EXTENDED AROUND THE PERIMETER OF THE EQUIPMENT AREA. ALL NON-TELECOMMUNICATIONS RELATED METALLIC OBJECTS FOUND WITHIN A SITE SHALL BE GROUNDED TO THE INTERIOR GROUND RING WITH #6 AWG STRANDED GREEN INSULATED CONDUCTOR.
- BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS SHALL BE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE CORNERS OF THE
- E GROUND ROD: UL LISTED COPPER CLAD STEEL. MINIMUM 1/2" DIAMETER BY EIGHT FEET LONG. GROUND RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. GROUND RODS SHALL BE DRIVEN TO THE DEPTH OF GROUND ROD: UL LISTED COPPER CLAD STEEL. MINIMUM 1/2" DIAMETER BY EIGHT FEET LONG. GROUND GROUND RING CONDUCTOR.
- F CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GREEN INSULATED COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUCTORS.
- G HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH.
- EXTERIOR CABLE ENTRY PORT GROUND BARS: LUCATED AT THE ENTRANCE TO THE CELL SITE DOILDING. SO TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTORS WITH AN EXOTHERMIC WELD AND EXTERIOR CABLE ENTRY PORT GROUND BARS: LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING. BOND INSPECTION SLEEVE.
- 1 TELCO GROUND BAR: BOND TO BOTH CELL REFERENCE GROUND BAR OR EXTERIOR GROUND RING.
- FRAME BONDING: THE BONDING POINT FOR TELECOM EQUIPMENT FRAMES SHALL BE THE GROUND BUS THAT IS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEWORK.
- K INTERIOR UNIT BONDS: METAL FRAMES, CABINETS AND INDIVIDUAL METALLIC UNITS LOCATED WITH THE AREA OF THE INTERIOR GROUND RING REQUIRE A #6 AWG STRANDED GREEN INSULATED COPPER BOND TO THE INTERIOR GROUND RING.
- FENCE AND GATE GROUNDING: METAL FENCES WITHIN 7 FEET OF THE EXTERIOR GROUND RING OR OBJECTS BONDED TO THE EXTERIOR GROUND RING SHALL BE BONDED TO THE GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEEDING 25 FEET. BONDS SHALL BE MADE AT EACH GATE POST AND ACROSS GATE OPENINGS.
- EXTERIOR UNIT BONDS: METALLIC OBJECTS, EXTERNAL TO OR MOUNTED TO THE BUILDING, SHALL BE BONDED TO THE EXTERIOR GROUND RING. USING #2 TINNED SOLID COPPER WIRE
- N ICE BRIDGE SUPPORTS: EACH ICE BRIDGE LEG SHALL BE BONDED TO THE GROUND RING WITH #2 AWG BARE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRIDGE LEG AND BURIED GROUND RING.
- DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEMENTS AND INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICE CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPPED WITH A MASTER DC SYSTEM RETURN GROUND CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED TO THE CELL SITE REFERENCE GROUND BAR
- (P) TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICALLY BONDED TO PROPOSED ANTENNA MOUNT COLLAR.

REFER TO DISH Wireless L.L.C. GROUNDING NOTES.



5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

45 BEECHWOOD DRIVE N. ANDOVER, MA 01845

TEL: (978) 557-5553 FAX: (978) 336-5586

UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
JJ		SMA		DPH	

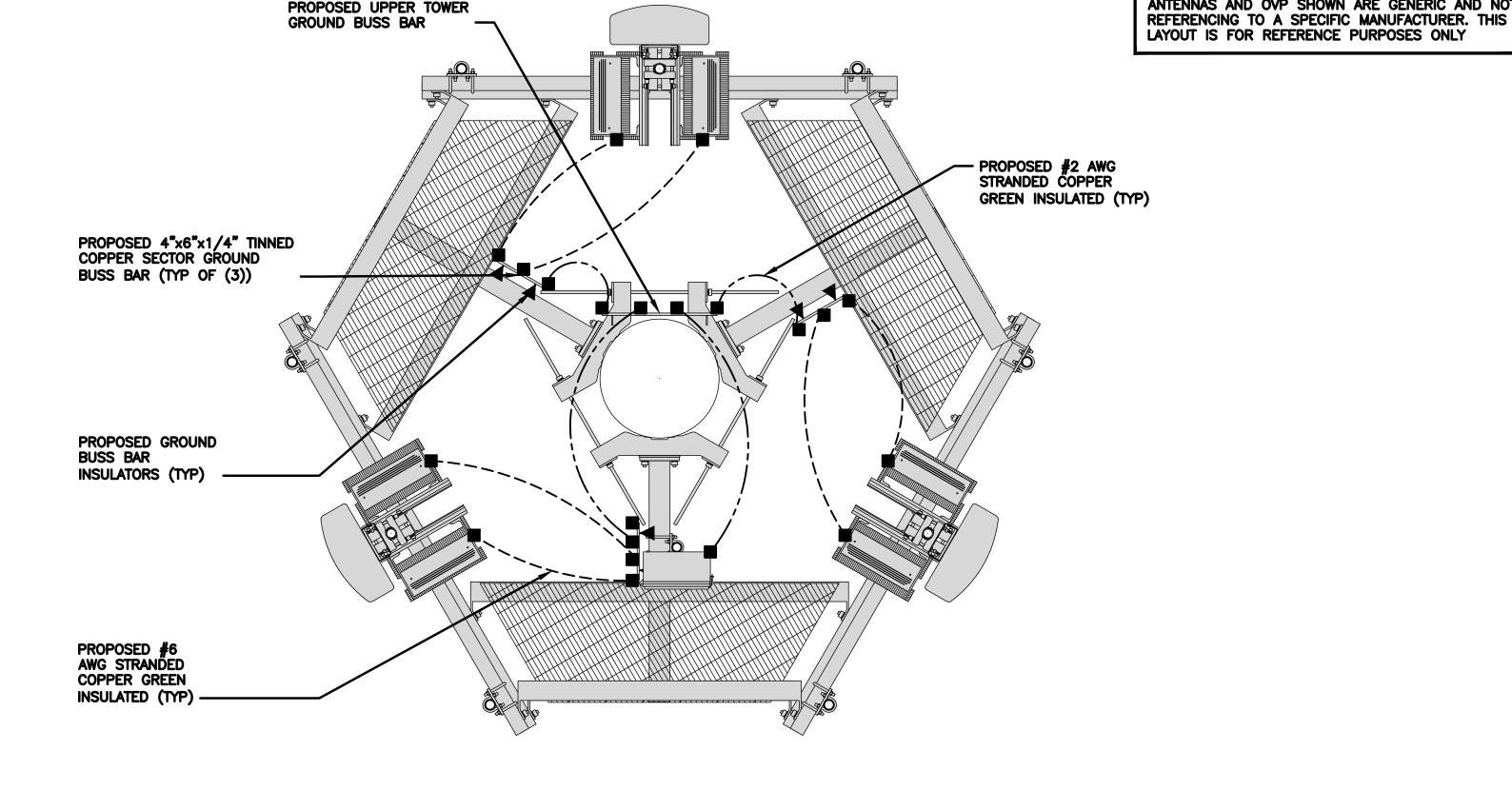
RFDS REV #:

PRELIMINARY DOCUMENTS

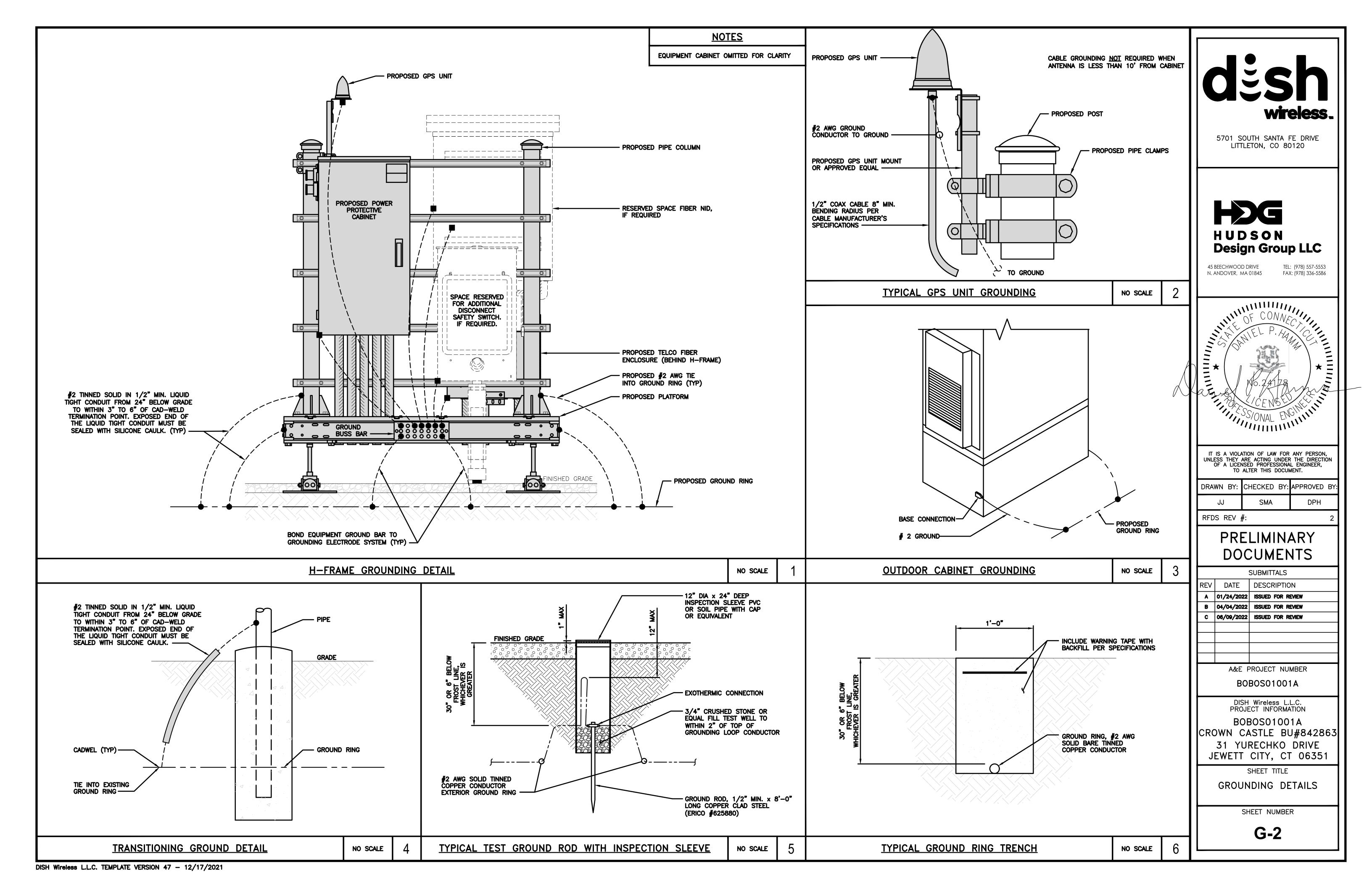
	SUBMITTALS							
REV	REV DATE DESCRIPTION							
A	01/24/2022	ISSUED FOR REVIEW						
В	04/04/2022	ISSUED FOR REVIEW						
С	06/09/2022	ISSUED FOR REVIEW						
	A&E F	PROJECT NUMBER						

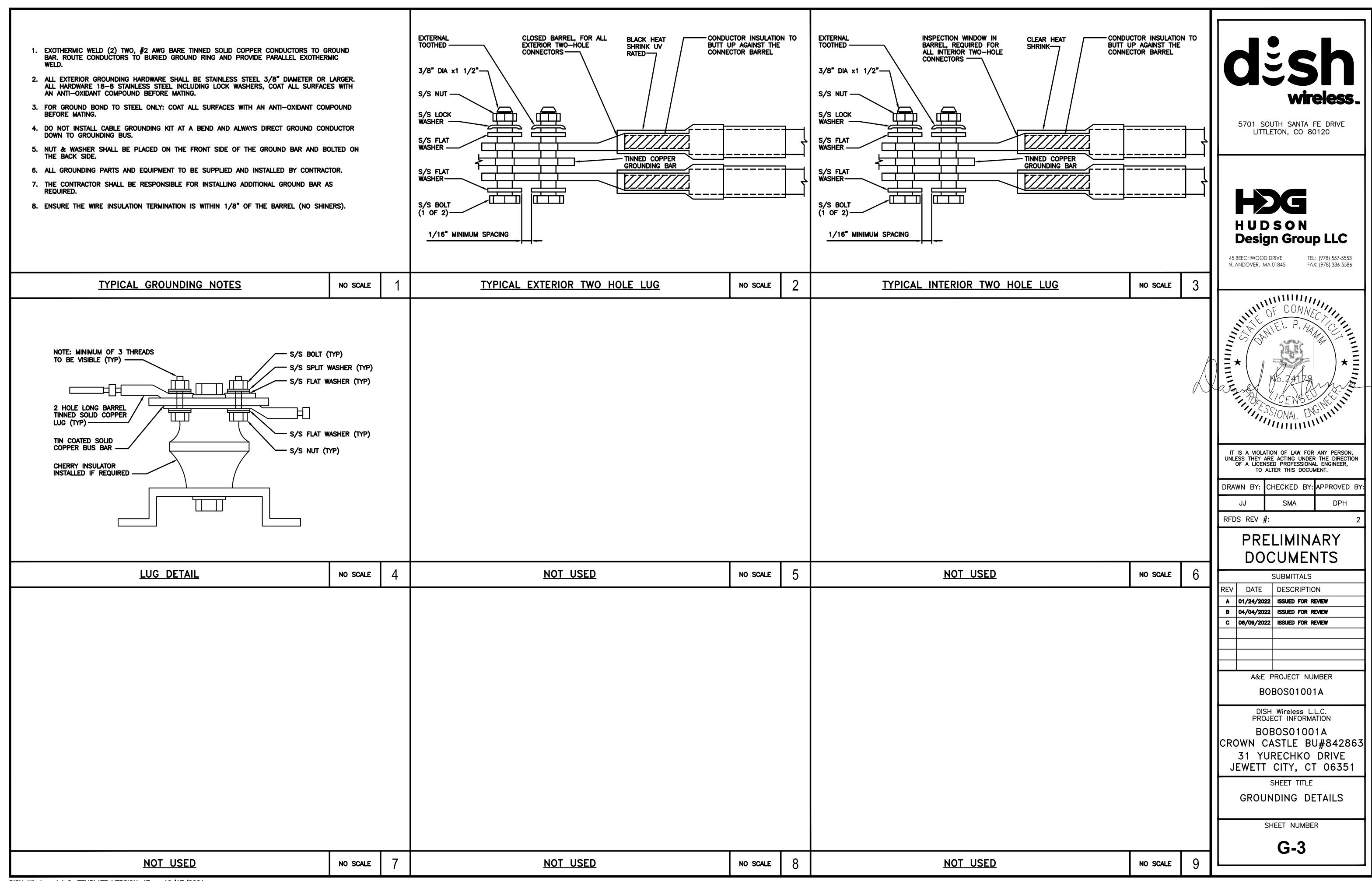
B0B0S01001A

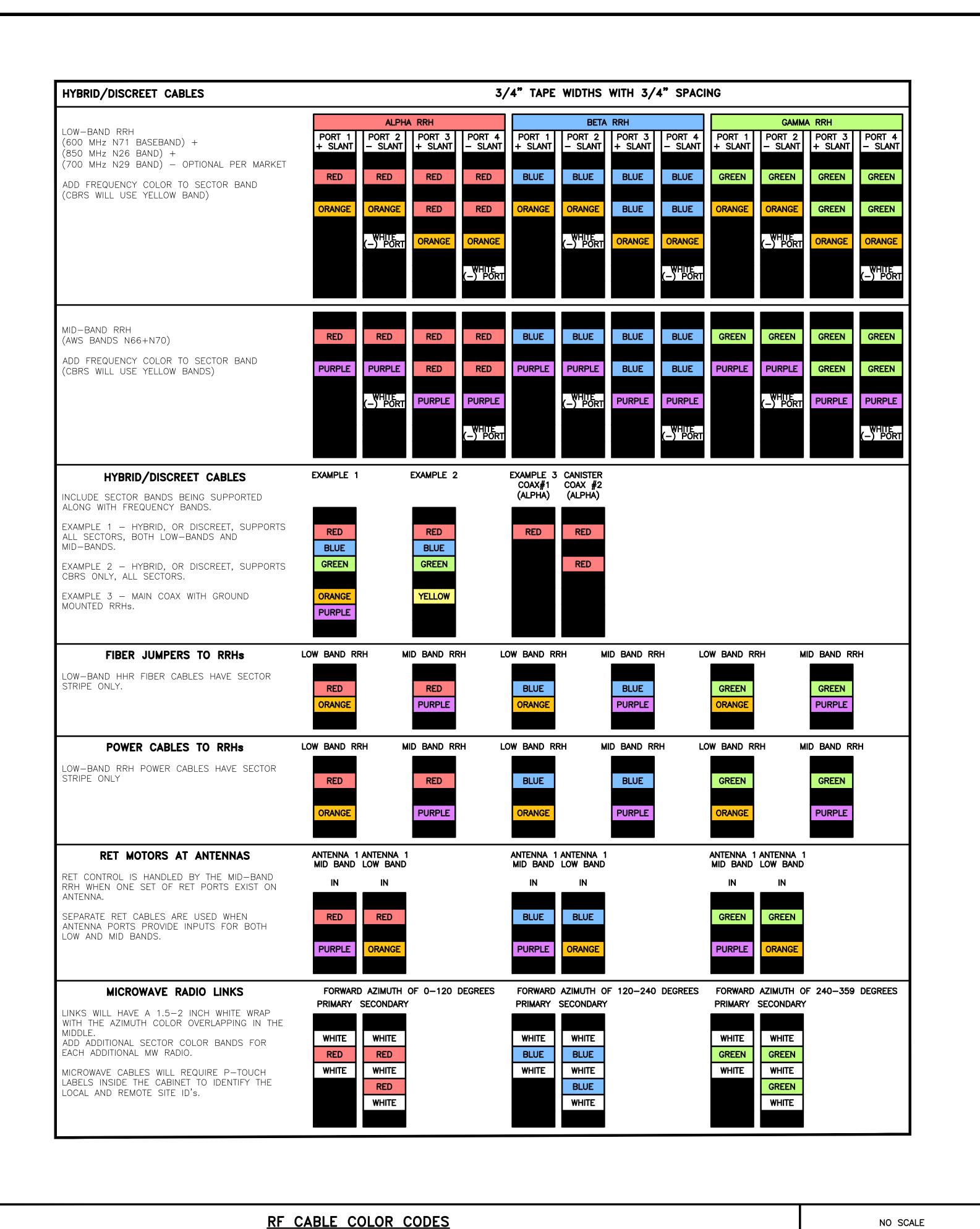
DISH Wireless L.L.C. PROJECT INFORMATION BOBOS01001A

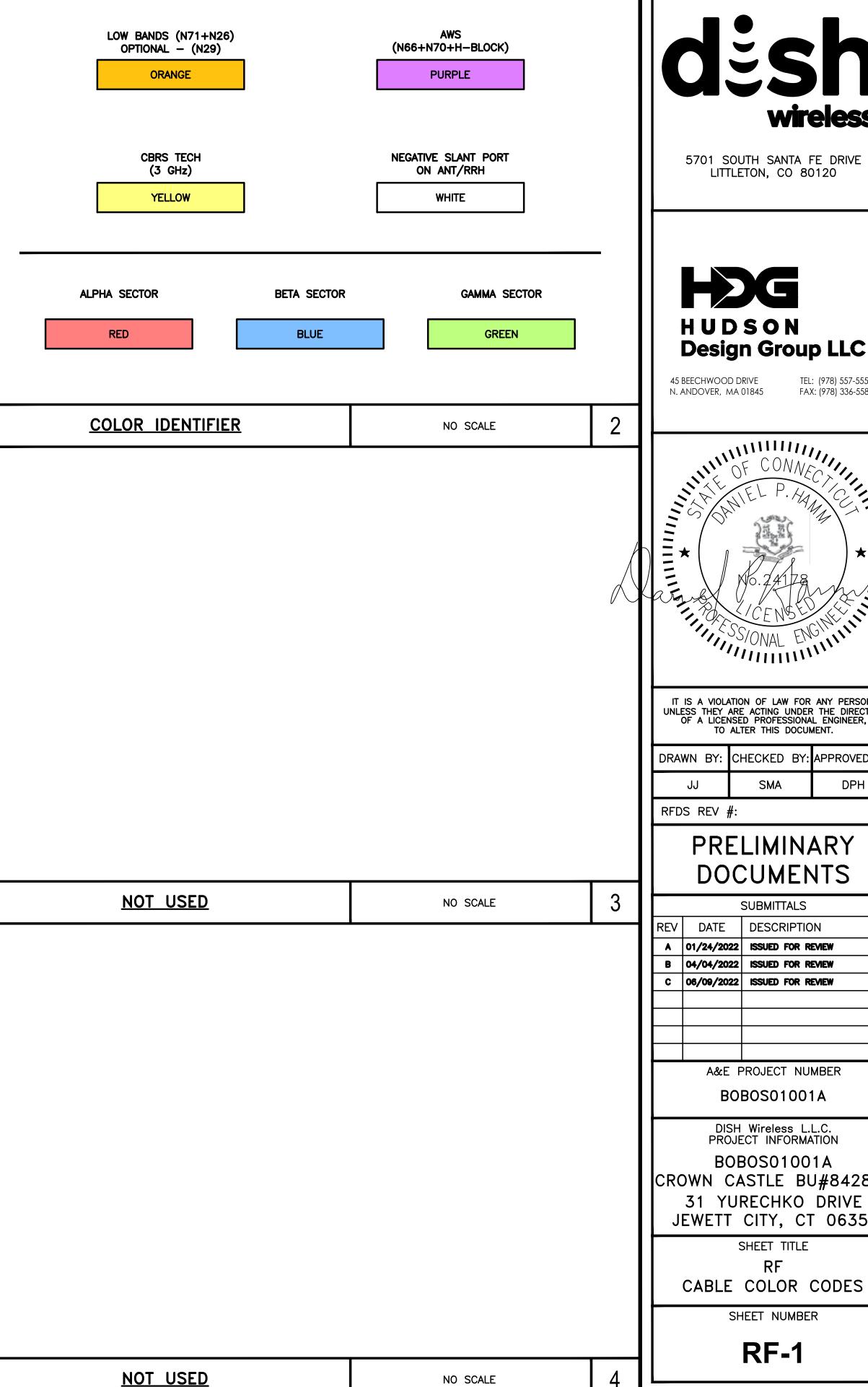

CROWN CASTLE BU#842863 31 YURECHKO DRIVE JEWETT CITY, CT 06351

> GROUNDING PLANS AND NOTES

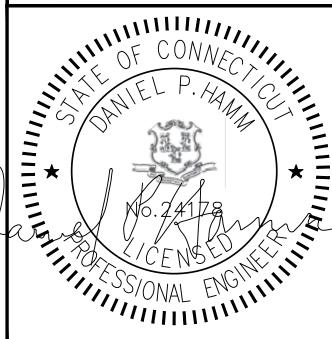

SHEET TITLE


SHEET NUMBER


G-1



TYPICAL ANTENNA GROUNDING PLAN



NO SCALE

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

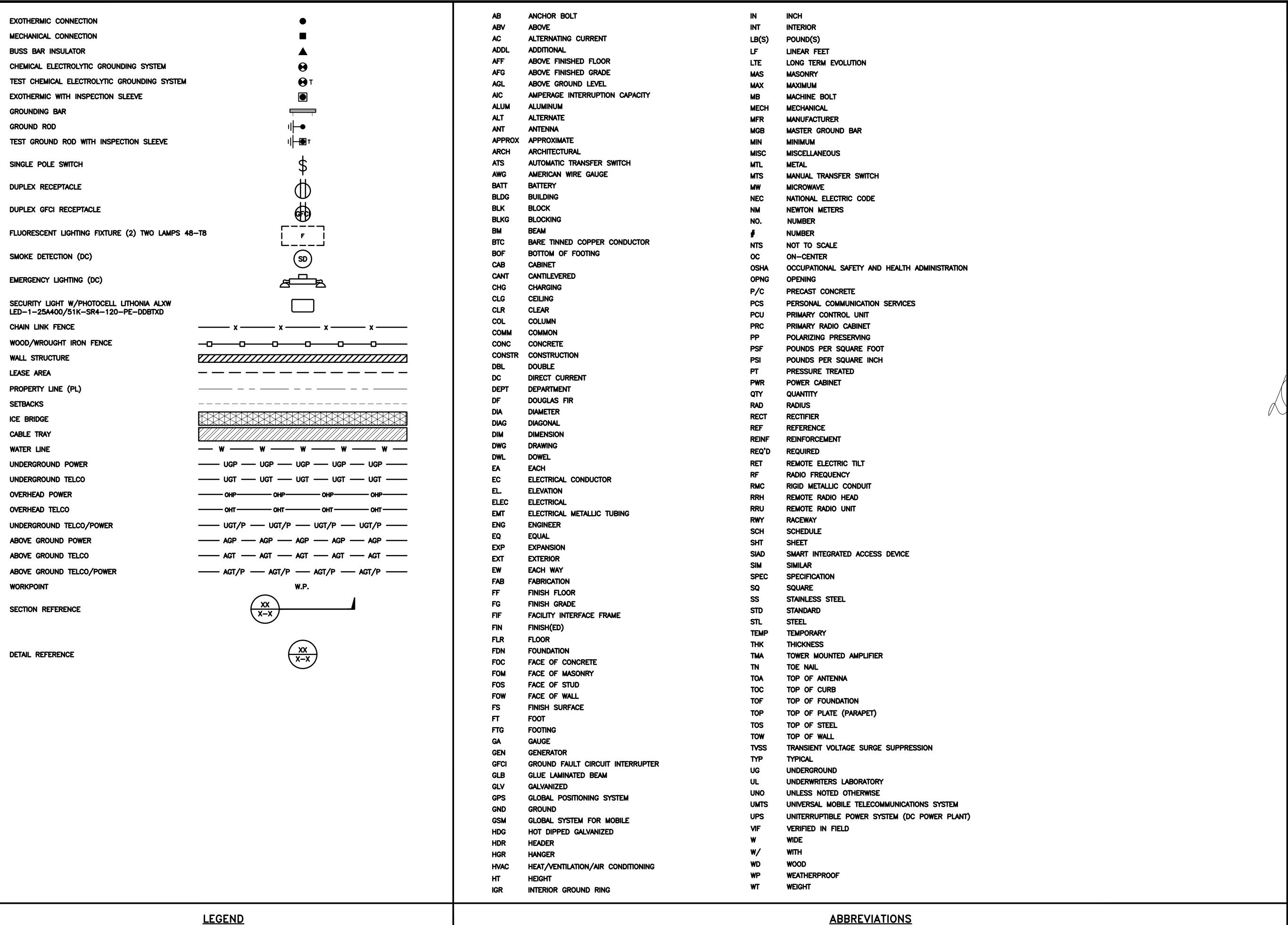
TEL: (978) 557-5553 FAX: (978) 336-5586

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED	BY
JJ	SMA	DPH	
DEDG	11		

PRELIMINARY **DOCUMENTS**

	SUBMITTALS					
REV	DATE	DESCRIPTION				
A	01/24/2022	ISSUED FOR REVIEW				
В	04/04/2022	ISSUED FOR REVIEW				
С	06/09/2022	ISSUED FOR REVIEW				
A&E PROJECT NUMBER						
	BOBOS01001A					

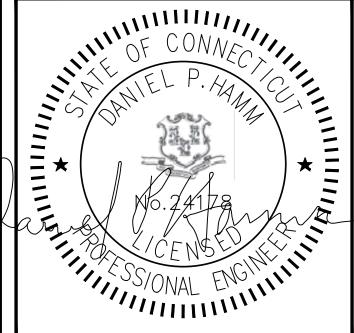

DISH Wireless L.L.C.

BOBOS01001A CROWN CASTLE BU#842863 31 YURECHKO DRIVE JEWETT CITY, CT 06351

SHEET TITLE

SHEET NUMBER

RF-1



5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

45 BEECHWOOD DRIVE N. ANDOVER, MA 01845 TEL: (978) 557-5553 FAX: (978) 336-5586

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED BY:
JJ	SMA	DPH

RFDS REV #:

PRELIMINARY DOCUMENTS

	SUBMITTALS						
REV	DATE	DESCRIPTION					
A	01/24/2022	ISSUED FOR REVIEW					
В	04/04/2022	ISSUED FOR REVIEW					
С	06/09/2022	ISSUED FOR REVIEW					

A&E PROJECT NUMBER
BOBOSO1001A

DISH Wireless L.L.C. PROJECT INFORMATION

BOBOS01001A
CROWN CASTLE BU#842863
31 YURECHKO DRIVE
JEWETT CITY, CT 06351

SHEET TITLE

LEGEND AND
ABBREVIATIONS

SHEET NUMBER

	SIGN TYPES					
TYPE	COLOR	COLOR CODE PURPOSE				
INFORMATION	GREEN	"INFORMATIONAL SIGN" TO NOTIFY OTHERS OF SITE OWNERSHIP & CONTACT NUMBER AND POTENTIAL RF EXPOSURE.				
NOTICE	BLUE	"NOTICE BEYOND THIS POINT" RF FIELDS BEYOND THIS POINT MAY EXCEED THE FCC GENERAL PUBLIC EXPOSURE LIMIT. OBEY ALL POSTED SIGNS AND SITE GUIDELINES FOR WORKING IN RF ENVIRONMENTS. IN ACCORDANCE WITH FEDERAL COMMUNICATIONS COMMISSION RULES ON RADIO FREQUENCY EMISSIONS 47 CFR-1.1307(b)				
CAUTION	YELLOW	"CAUTION BEYOND THIS POINT" RF FIELDS BEYOND THIS POINT MAY EXCEED THE FCC GENERAL PUBLIC EXPOSURE LIMIT. OBEY ALL POSTED SIGNS AND SITE GUIDELINES FOR WORKING IN RF ENVIRONMENTS. IN ACCORDANCE WITH FEDERAL COMMUNICATIONS COMMISSION RULES ON RADIO FREQUENCY EMISSIONS 47 CFR-1.1307(b)				
WARNING	ORANGE/RED	"WARNING BEYOND THIS POINT" RF FIELDS AT THIS SITE EXCEED FCC RULES FOR HUMAN EXPOSURE. FAILURE TO OBEY ALL POSTED SIGNS AND SITE GUIDELINES FOR WORKING IN RF ENVIRONMENTS COULD RESULT IN SERIOUS INJURY. IN ACCORDANCE WITH FEDERAL COMMUNICATIONS COMMISSION RULES ON RADIO FREQUENCY EMISSIONS 47 CFR-1.1307(b)				

SIGN PLACEMENT:

- RF SIGNAGE PLACEMENT SHALL FOLLOW THE RECOMMENDATIONS OF AN EXISTING EME REPORT, CREATED BY A THIRD PARTY PREVIOUSLY AUTHORIZED BY DISH Wireless L.L.C.
- INFORMATION SIGN (GREEN) SHALL BE LOCATED ON EXISTING DISH Wireless L.L.C EQUIPMENT.
 - A) IF THE INFORMATION SIGN IS A STICKER, IT SHALL BE PLACED ON EXISTING DISH Wireless L.L.C EQUIPMENT CABINET.

 B) IF THE INFORMATION SIGN IS A METAL SIGN IT SHALL BE PLACED ON EXISTING DISH WIRELESS L.L.C H-FRAME WITH A SECURE ATTACH METHOL
- IF EME REPORT IS NOT AVAILABLE AT THE TIME OF CREATION OF CONSTRUCTION DOCUMENTS; PLEASE CONTACT DISH Wireless L.L.C. CONSTRUCTION MANAGER FOR FURTHER INSTRUCTION ON HOW TO PROCEED.

NOTES:

- 1. FOR DISH Wireless L.L.C. LOGO, SEE DISH Wireless L.L.C. DESIGN SPECIFICATIONS (PROVIDED BY DISH Wireless L.L.C.)
- 2. SITE ID SHALL BE APPLIED TO SIGNS USING "LASER ENGRAVING" OR ANY OTHER WEATHER RESISTANT METHOD (DISH Wireless L.L.C. APPROVAL REQUIRED)
- 3. TEXT FOR SIGNAGE SHALL INDICATE CORRECT SITE NAME AND NUMBER AS PER DISH Wireless L.L.C. CONSTRUCTION MANAGER RECOMMENDATIONS.
- 4. CABINET/SHELTER MOUNTING APPLICATION REQUIRES ANOTHER PLATE APPLIED TO THE FACE OF THE CABINET WITH WATER PROOF POLYURETHANE ADHESIVE
- 5. ALL SIGNS WILL BE SECURED WITH EITHER STAINLESS STEEL ZIP TIES OR STAINLESS STEEL TECH SCREWS
- 6. ALL SIGNS TO BE 8.5"x11" AND MADE WITH 0.04" OF ALUMINUM MATERIAL

INFORMATION

This is an access point to an area with transmitting antennas.

Obey all signs and barriers beyond this point.

Call the DISH Wireless L.L.C. NOC at 1-866-624-6874

Site ID:

THIS SIGN IS FOR REFERENCE PURPOSES ONLY

NOTICE

Transmitting Antenna(s)

Radio frequency fields beyond this point MAY *EXCEED* the FCC Occupational exposure limit.

Obey all posted signs and site guidelines for working in radio frequency environments.

Call the DISH Wireless L.L.C. NOC at 1-866-624-6874 prior to working beyond this point.

Site ID:

dish

A CAUTION

Transmitting Antenna(s)

Radio frequency fields beyond this point MAY *EXCEED* the FCC Occupational exposure limit.

Obey all posted signs and site guidelines for working in radio frequency environments.

Call the DISH Wireless L.L.C. NOC at 1-866-624-6874 prior to working beyond this point.

Site ID:

dish

AWARNING

Transmitting Antenna(s)

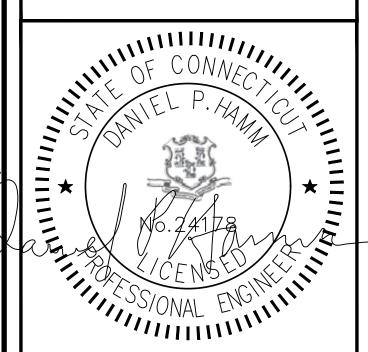
Radio frequency fields beyond this point *EXCEED* the FCC Occupational exposure limit.

Obey all posted signs and site guidelines for working in radio frequency environments.

Call the DISH Wireless L.L.C. NOC at 1-866-624-6874 prior to working beyond this point.

Site ID:

dėsh


dish wireless.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

5 BEECHWOOD DRIVE . ANDOVER. MA 01845

TEL: (978) 557-555 FAX: (978) 336-558

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY

JJ SMA DPH

RFDS REV #:

PRELIMINARY DOCUMENTS

SUBMITTALS

REV DATE DESCRIPTION

A 01/24/2022 ISSUED FOR REVIEW

B 04/04/2022 ISSUED FOR REVIEW

C 06/09/2022 ISSUED FOR REVIEW

A&E PROJECT NUMBER
BOBOS01001A

DISH Wireless L.L.C.
PROJECT INFORMATION

BOBOSO1001A

CROWN CASTLE BU#842863

31 YURECHKO DRIVE
JEWETT CITY, CT 06351

SHEET TITLE

RF

SIGNAGE

SHEET NUMBER

GN-2

RF SIGNAGE

SITE ACTIVITY REQUIREMENTS:

- 1. NOTICE TO PROCEED NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER CONSTRUCTION MANAGER.
- 2. "LOOK UP" DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH Wireless L.L.C. AND DISH Wireless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

- 3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
- 4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH Wireless L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA—322 (LATEST EDITION).
- 5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
- 6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.
- 11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
- 12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH Wireless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.
- 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
- 15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
- 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.
- 18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.
- 22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

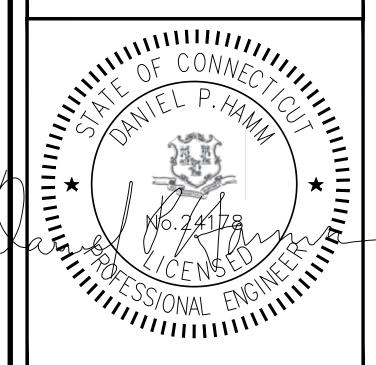
GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR: GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER:TOWER OWNER


- 2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
- 3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.
- 4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.
- 5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.
- 6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.
- 12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER
- 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

45 BEECHWOOD DRIVE TEL: (978) 557-5553 N. ANDOVER, MA 01845 FAX: (978) 336-5586

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:

JJ SMA DPH

RFDS REV #:

PRELIMINARY DOCUMENTS

SUBMITTALS

REV DATE DESCRIPTION

A 01/24/2022 ISSUED FOR REVIEW

B 04/04/2022 ISSUED FOR REVIEW

C 06/09/2022 ISSUED FOR REVIEW

A&E PROJECT NUMBER

DISH Wireless L.L.C.
PROJECT INFORMATION

BOBOS01001A

BOBOSO1001A CROWN CASTLE BU#842863 31 YURECHKO DRIVE JEWETT CITY, CT 06351

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

- 1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST—IN—PLACE CONCRETE.
- 2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.
- 3. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°F AT TIME OF PLACEMENT.
- 4. CONCRETE EXPOSED TO FREEZE—THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER—TO—CEMENT RATIO (W/C) OF 0.45.
- 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

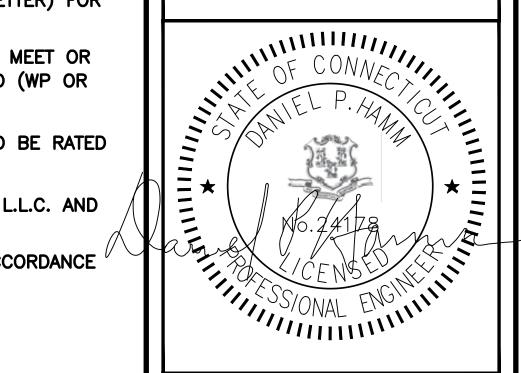
#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

- 6. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:
- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2"
- 7. A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

- 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.
- 2. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
- 3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
- 4. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.
- 4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.
- 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.
- 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR—CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
- 6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).
- 7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.
- 8. TIE WRAPS ARE NOT ALLOWED.
- 9. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.
- 12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP—STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75° C (90° C IF AVAILABLE).
- 14. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.
- 15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.


- . ELECTRICAL METALLIC TUBING (EMT) OR METAL—CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.
- 18. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- 19. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.
- 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE NEC.
- 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).
- 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).
- 23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.
- 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY—COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS.
- 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY—COATED OR NON—CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- 28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE $^{\prime}$ WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.".
- 30. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

5701 SOUTH SANTA FE DRIVE LITTLETON. CO 80120

45 BEECHWOOD DRIVE TEL: (978) 557-5553 N. ANDOVER, MA 01845 FAX: (978) 336-5586

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:

JJ SMA DPH

RFDS REV #:

PRELIMINARY DOCUMENTS

SUBMITTALS

REV DATE DESCRIPTION

A 01/24/2022 ISSUED FOR REVIEW

B 04/04/2022 ISSUED FOR REVIEW

C 06/09/2022 ISSUED FOR REVIEW

A&E PROJECT NUMBER

BOBOS01001A

DISH Wireless L.L.C.

PROJECT INFORMATION

BOBOS01001A
CROWN CASTLE BU#842863
31 YURECHKO DRIVE
JEWETT CITY, CT 06351

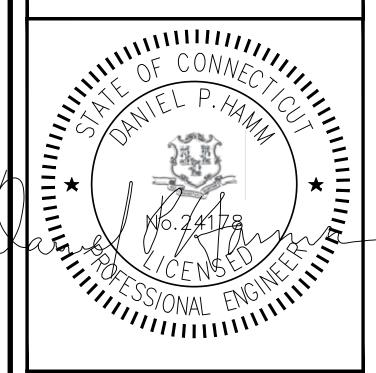
SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GROUNDING NOTES:

- ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
- METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
- CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
- ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.
- EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
- COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND
- APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING. IN ACCORDANCE WITH THE NEC.
- BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.
- GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT
- 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
- BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/0 COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.



5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

45 BEECHWOOD DRIVE N. ANDOVER. MA 01845

TEL: (978) 557-5553 FAX: (978) 336-5586

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER. TO ALTER THIS DOCUMENT.

JJ	SMA	DPH				
DRAWN BY:	CHECKED BY:	APPROVED	BY			

RFDS REV #:

PRELIMINARY DOCUMENTS

	SUBMITTALS							
REV	REV DATE DESCRIPTION							
A	01/24/2022	ISSUED FOR REVIEW						
В	04/04/2022	ISSUED FOR REVIEW						
С	06/09/2022	ISSUED FOR REVIEW						
	A&E F	PROJECT NUMBER						

BOBOS01001A

DISH Wireless L.L.C. PROJECT INFORMATION BOBOS01001A

CROWN CASTLE BU#842863 31 YURECHKO DRIVE JEWETT CITY, CT 06351

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

Exhibit D

Structural Analysis Report

Date: December 17, 2021

Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 (724) 416-2000

Subject:

Structural Analysis Report

Carrier Designation:

DISH Network Co-Locate

Site Number:

BOBOS01001A

Crown Castle Designation:

BU Number:

842863

Site Name:

GRISWOLD CENTRAL

JDE Job Number: Work Order Number: 684525

Order Number:

2013153

584378 Rev. 2

Engineering Firm Designation:

Crown Castle Project Number:

2013153

Site Data:

31 YURECHKO DRIVE, JEWETT CITY, NEW LONDON County, CT

Latitude 41° 35' 38.58", Longitude -71° 55' 59.37"

118 Foot - Monopole Tower

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Proposed Equipment Configuration

Sufficient Capacity

This analysis utilizes an ultimate 3-second gust wind speed of 135 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Abigail Ruiz

Respectfully submitted by:

Digitally signed by Maham Barimani

ate, 2021.12.20 13:43:34

Maham Barimani, P.E. Senior Project Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity - LC5
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 118 ft Monopole tower designed by Glen Martin Engineering, Inc. and mapped by FDH Velocitel, Inc., in March of 2016.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Wind Speed: 135 mph

Exposure Category: C
Topographic Factor: 1
Ice Thickness: 1.5 in
Wind Speed with Ice: 50 mph
Service Wind Speed: 60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	fujitsu	TA08025-B604		
		3	fujitsu	TA08025-B605		
109.0	109.0	3	jma wireless	MX08FRO665-21 w/ Mount Pipe	1	1-1/2
		1	raycap	RDIDC-9181-PF-48		
		1	tower mounts	Commscope MC-PK8-DSH		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antonna I		Number of Feed Lines	Feed Line Size (in)
	119.0	2	raycap	DC6-48-60-18-8F		
		3	cci antennas	DMP65R-BU8D		
		3	cci antennas	OPA65R-BU8D	6	1-5/8
	118.0	3	ericsson	RADIO 4449 B5/B12	2	3/8
117.0		3	ericsson	RADIO 4478 B14	2	3/4
		3	ericsson	RRUS 8843 B2/B66A	2	7/8
	117.0	1	site pro 1	RMQLP-4120-H10	1	Conduit
	117.0	3	powerwave tech.	7770.00		
	116.0	6	powerwave tech.	LGP21401		

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	6125333	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	5142129	CCISITES
4-TOWER MANUFACTURER DRAWINGS	6644519	CCISITES

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

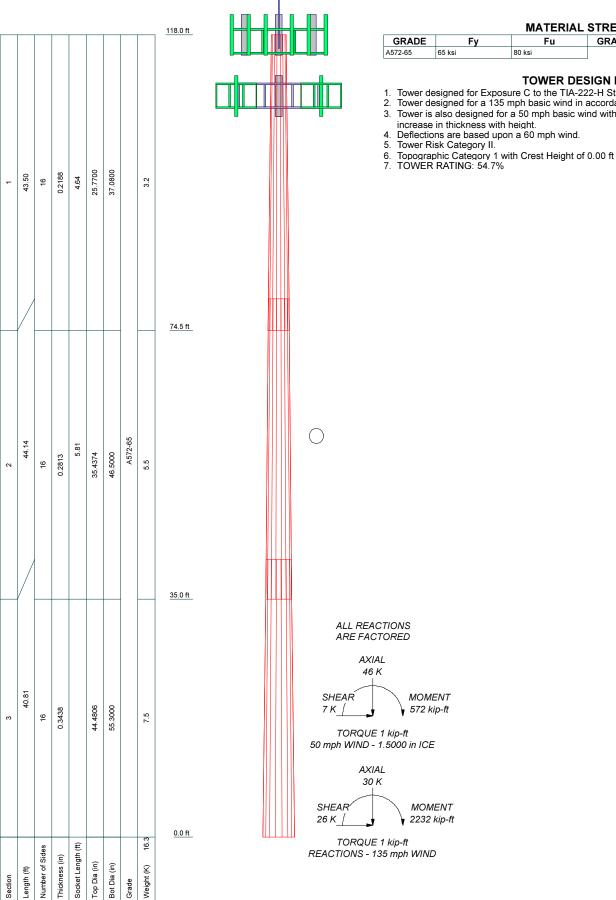
Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	118 - 74.5	Pole	TP37.08x25.77x0.2188	1	-11.99	1528.34	47.7	Pass
L2	74.5 - 35	Pole	TP46.5x35.4374x0.2813	2	-18.85	2466.82	54.7	Pass
L3	35 - 0	Pole	TP55.3x44.4806x0.3438	3	-29.73	3701.65	52.4	Pass
							Summary	
						Pole (L2)	54.7	Pass
						Rating =	54.7	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC5

	and a remainded of the confidence of the confide						
Notes	Component	Elevation (ft)	% Capacity	Pass / Fail			
1	Anchor Rods		32.1	Pass			
1	Base Plate	0	21.8	Pass			
1	Base Foundation (Structure)	U	32.2	Pass			
1	Base Foundation (Soil Interaction)		17.8	Pass			

Structure Rating (max from all components) =	54.7%
--	-------


Notes:

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

APPENDIX A TNXTOWER OUTPUT

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A E 70 G E	CE Irai	90 kai			

TOWER DESIGN NOTES

- 1. Tower designed for Exposure C to the TIA-222-H Standard.
- Tower designed for a 135 mph basic wind in accordance with the TIA-222-H Standard.
- 3. Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower base elevation above sea level: 202.00 ft.
- Basic wind speed of 135 mph.
- Risk Category II.
- Exposure Category C.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.00 ft.
- Nominal ice thickness of 1.5000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60 mph.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: Kes(Fw) = 0.95, Kes(ti) = 0.85.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

√ Use Code Stress Ratios

✓ Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
 Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

 ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption
 Use TIA-222-H Tension Splice Exemption

Poles

- ✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets
- ✓ Pole Without Linear Attachments
 Pole With Shroud Or No
 Appurtenances
 Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
L1	118.00-74.50	43.50	4.64	16	25.7700	37.0800	0.2188	0.8750	A572-65 (65 ksi)
L2	74.50-35.00	44.14	5.81	16	35.4374	46.5000	0.2813	1.1250	A572-65 (65 ksi)
L3	35.00-0.00	40.81		16	44.4806	55.3000	0.3438	1.3750	A572-65 (65 ksi)

				Taper	ed Pol	e Prop	erties			
Section	Tip Dia. in	Area in²	I in⁴	r in	C in	I/C in³	J in⁴	It/Q in²	w in	w/t
	26.2320	17.8300	1470.5831	9.0962	13.1427	111.8935	2963.4326	8.8160	4.6929	21.453
	37.7636	25.7222	4415.3312	13.1226	18.9108	233.4820	8897.5158	12.7183	6.9436	31.742
L2	37.2611	31.5417	4924.9463	12.5156	18.0731	272.5019	9924.4624	15.5957	6.4924	23.084
	47.3559	41.4669	11190.568 9	16.4539	23.7150	471.8772	22550.576 6	20.5032	8.6938	30.911
L3	46.8557	48.3988	11911.077 5	15.7127	22.6851	525.0619	24002.503 1	23.9307	8.1676	23.76
	56.3160	60.2630	22993.179 2	19.5644	28.2030	815.2742	46334.503 2	29.7969	10.3206	30.024

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft ²	in				in	in	in
L1 118.00-			1	1	1			
74.50								
L2 74.50-			1	1	1			
35.00								
L3 35.00-0.00			1	1	1			

F	eed L	_ine/	Linear	Appurt	enances	s - Ent	tered <i>i</i>	As Ro	ound (<u> Or Fla</u>	t
Description	Face	Allow	Exclude	Componen	Placement	Total	Number	Clear	Width or	Perimete	Weight
	or	Shield	From	t		Number	Per Row	Spacing	Diamete	r	
	Leg		Torque	Type	ft			in	r		plf
	_		Calculation	1					in	in	

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Componen	Placement	Total Number		$C_A A_A$	Weight
	Leg	Onicia	Torque Calculation	Туре	ft	Number		ft²/ft	plf
5/8 rod/step	С	No	No	CaAa (Out Of Face)	118.00 - 0.00	1	No Ice 1/2" Ice	0.02 0.12	0.27 0.70
				Of Face)			1" Ice 1" Ice 2" Ice	0.12 0.22 0.42	1.74 5.65
Safety Line 3/8	С	No	No	CaAa (Out Of Face)	118.00 - 0.00	1	No Ice 1/2" Ice	0.04 0.14	0.22 0.75
***				ŕ			1" Ice 2" Ice	0.24 0.44	1.28 2.34

tnxTower Report - version 8.1.1.0

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Total Number		C _A A _A	Weight
	Leg	00.0	Torque Calculation	Туре	ft			ft²/ft	plf
LDF7-50A(1-5/8)	Α	No	No	Inside Pole	117.00 - 9.50	6	No Ice	0.00	0.82
2517 007 (1 0/0)	, ,	110	140	1110100 1 010	117.00 0.00	· ·	1/2" Ice	0.00	0.82
							1" Ice	0.00	0.82
							2" Ice	0.00	0.82
FB-L98B-034-	Α	No	No	Inside Pole	117.00 - 9.50	2	No Ice	0.00	0.06
XXX(3/8)	, ,	110	140	1110100 1 010	111.00 0.00	_	1/2" Ice	0.00	0.06
7001(0/0)							1" Ice	0.00	0.06
							2" Ice	0.00	0.06
WR-VG66ST-	Α	No	No	Inside Pole	117.00 - 9.50	2	No Ice	0.00	0.91
BRD(7/8)	, ,	110	140	1110100 1 010	117.00 0.00	_	1/2" Ice	0.00	0.91
DI(D(110)							1" Ice	0.00	0.91
							2" Ice	0.00	0.91
WR-VG86ST-	Α	No	No	Inside Pole	117 00 - 9 50	2	No Ice	0.00	0.58
BRD(3/4)		140	140	made i die	117.00 - 5.50	_	1/2" Ice	0.00	0.58
DIND(O/4)							1" Ice	0.00	0.58
							2" Ice	0.00	0.58
***							2 100	0.00	0.50
CU12PSM9P6XXX	Α	No	No	Inside Pole	109.00 - 0.00	1	No Ice	0.00	2.35
(1-1/2)		140	140	made i die	103.00 - 0.00	•	1/2" Ice	0.00	2.35
(1-1/2)							1" Ice	0.00	2.35
							2" Ice	0.00	2.35
****							2 100	0.00	2.00

Feed Line/Linear Appurtenances Section Areas

Tower Sectio	Tower Elevation	Face	AR	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft		ft²	ft²	ft ²	ft ²	Κ
L1	118.00-74.50	Α	0.000	0.000	0.000	0.000	0.42
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	2.501	0.02
L2	74.50-35.00	Α	0.000	0.000	0.000	0.000	0.41
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	2.271	0.02
L3	35.00-0.00	Α	0.000	0.000	0.000	0.000	0.29
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	2.013	0.02

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Sectio	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft	Leg	in	ft²	ft ²	ft ²	ft²	K
L1	118.00-74.50	Α	1.418	0.000	0.000	0.000	0.000	0.42
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	27.166	0.22
L2	74.50-35.00	Α	1.340	0.000	0.000	0.000	0.000	0.41
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	24.668	0.20
L3	35.00-0.00	Α	1.196	0.000	0.000	0.000	0.000	0.29
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	20.775	0.16

Feed Line Center of Pressure

Section	Elevation	CPx	CPz	CPx Ice	CPz Ice
	ft	in	in	in	in
L1	118.00-74.50	-0.4369	0.2523	-2.2260	1.2852
L2	74.50-35.00	-0.4404	0.2542	-2.3662	1.3661
L3	35.00-0.00	-0.4423	0.2554	-2.3497	1.3566

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

			DISC	lete 10v	ver Loa	us			
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weigh
			ft ft ft	o	ft		ft²	ft²	К
*** Lightning Rod 1" x 6'	Α	From Leg	0.00	0.0000	118.00	No Ice	0.50	0.50	0.03
Lightining Rod 1 x 0	^	1 Tolli Leg	0.00	0.0000	110.00	1/2"	1.02	1.02	0.03
			3.00			Ice	1.43	1.43	0.03
			5.00			1" Ice	2.06	2.06	0.07
***						2" Ice			
7770.00	Α	From Leg	4.00	0.0000	117.00	No Ice	5.51	2.93	0.04
			0.00			1/2"	5.87	3.27	0.07
			0.00			Ice	6.23	3.63	0.11
						1" Ice 2" Ice	6.99	4.35	0.20
7770.00	В	From Leg	4.00	0.0000	117.00	No Ice	5.51	2.93	0.04
		•	0.00			1/2"	5.87	3.27	0.07
			0.00			Ice	6.23	3.63	0.11
						1" Ice 2" Ice	6.99	4.35	0.20
7770.00	С	From Leg	4.00	0.0000	117.00	No Ice	5.51	2.93	0.04
		Ü	0.00			1/2"	5.87	3.27	0.07
			0.00			Ice	6.23	3.63	0.11
						1" Ice 2" Ice	6.99	4.35	0.20
OPA65R-BU8D	Α	From Leg	4.00	0.0000	117.00	No Ice	17.42	6.48	0.08
		J	0.00			1/2"	18.44	7.38	0.18
			1.00			Ice	19.47	8.30	0.28
						1" Ice 2" Ice	21.59	10.19	0.52
OPA65R-BU8D	В	From Leg	4.00	0.0000	117.00	No Ice	17.42	6.48	0.08
		Ü	0.00			1/2"	18.44	7.38	0.18
			1.00			Ice	19.47	8.30	0.28
						1" Ice 2" Ice	21.59	10.19	0.52
OPA65R-BU8D	С	From Leg	4.00	0.0000	117.00	No Ice	17.42	6.48	0.08
		3	0.00			1/2"	18.44	7.38	0.18
			1.00			Ice	19.47	8.30	0.28
						1" Ice 2" Ice	21.59	10.19	0.52
DMP65R-BU8D	Α	From Leg	4.00	0.0000	117.00	No Ice	15.86	5.95	0.11
		3	0.00			1/2"	16.80	6.78	0.20
			1.00			Ice	17.75	7.64	0.31
						1" Ice	19.71	9.39	0.55
DMD05D SU05	_	F	4.00	0.0000	447.00	2" Ice	45.00	F 0 5	
DMP65R-BU8D	В	From Leg	4.00	0.0000	117.00	No Ice	15.86	5.95	0.11
			0.00 1.00			1/2"	16.80	6.78	0.20
			1.00			Ice 1" Ice	17.75 19.71	7.64 9.39	0.31 0.55
						2" Ice	19.71	5.35	0.55

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	۰	ft		ft²	ft²	К
DMP65R-BU8D	С	From Leg	4.00 0.00 1.00	0.0000	117.00	No Ice 1/2" Ice 1" Ice 2" Ice	15.86 16.80 17.75 19.71	5.95 6.78 7.64 9.39	0.11 0.20 0.31 0.55
(2) LGP21401	Α	From Leg	4.00 0.00 -1.00	0.0000	117.00	No Ice 1/2" Ice 1" Ice	1.10 1.24 1.38 1.69	0.21 0.27 0.35 0.52	0.01 0.02 0.03 0.05
(2) LGP21401	В	From Leg	4.00 0.00 -1.00	0.0000	117.00	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	1.10 1.24 1.38 1.69	0.21 0.27 0.35 0.52	0.01 0.02 0.03 0.05
(2) LGP21401	С	From Leg	4.00 0.00 -1.00	0.0000	117.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.10 1.24 1.38 1.69	0.21 0.27 0.35 0.52	0.01 0.02 0.03 0.05
DC6-48-60-18-8F	Α	From Leg	4.00 0.00 2.00	0.0000	117.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.21 1.89 2.11 2.57	1.21 1.89 2.11 2.57	0.02 0.04 0.07 0.13
DC6-48-60-18-8F	С	From Leg	4.00 0.00 2.00	0.0000	117.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.21 1.89 2.11 2.57	1.21 1.89 2.11 2.57	0.02 0.04 0.07 0.13
RADIO 4478 B14	А	From Leg	4.00 0.00 1.00	0.0000	117.00	No Ice 1/2" Ice 1" Ice 2" Ice	2.02 2.20 2.39 2.78	1.25 1.40 1.55 1.89	0.06 0.08 0.10 0.15
RADIO 4478 B14	В	From Leg	4.00 0.00 1.00	0.0000	117.00	No Ice 1/2" Ice 1" Ice 2" Ice	2.02 2.20 2.39 2.78	1.25 1.40 1.55 1.89	0.06 0.08 0.10 0.15
RADIO 4478 B14	С	From Leg	4.00 0.00 1.00	0.0000	117.00	No Ice 1/2" Ice 1" Ice 2" Ice	2.02 2.20 2.39 2.78	1.25 1.40 1.55 1.89	0.06 0.08 0.10 0.15
RRUS 8843 B2/B66A	Α	From Leg	4.00 0.00 1.00	0.0000	117.00	No Ice 1/2" Ice 1" Ice	1.64 1.80 1.97 2.32	1.35 1.50 1.65 1.99	0.07 0.09 0.11 0.16
RRUS 8843 B2/B66A	В	From Leg	4.00 0.00 1.00	0.0000	117.00	2" Ice No Ice 1/2" Ice 1" Ice	1.64 1.80 1.97 2.32	1.35 1.50 1.65 1.99	0.07 0.09 0.11 0.16
RRUS 8843 B2/B66A	С	From Leg	4.00 0.00 1.00	0.0000	117.00	2" Ice No Ice 1/2" Ice 1" Ice	1.64 1.80 1.97 2.32	1.35 1.50 1.65 1.99	0.07 0.09 0.11 0.16
RADIO 4449 B5/B12	Α	From Leg	4.00 0.00 1.00	0.0000	117.00	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	1.64 1.80 1.97 2.33	1.30 1.45 1.60 1.92	0.07 0.09 0.11 0.16

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	o	ft		ft²	ft²	K
RADIO 4449 B5/B12	В	From Leg	4.00	0.0000	117.00	No Ice	1.64	1.30	0.07
		Ū	0.00			1/2"	1.80	1.45	0.09
			1.00			Ice	1.97	1.60	0.11
						1" Ice 2" Ice	2.33	1.92	0.16
RADIO 4449 B5/B12	С	From Leg	4.00	0.0000	117.00	No Ice	1.64	1.30	0.07
			0.00			1/2"	1.80	1.45	0.09
			1.00			Ice 1" Ice	1.97 2.33	1.60 1.92	0.11 0.16
oite pro 1 DMOLD 4120	_	None		0.0000	117.00	2" Ice	40.00	39.62	3.27
site pro 1 RMQLP-4120- H10	С	None		0.0000	117.00	No Ice 1/2"	42.20 51.14	39.62 48.52	3.27 3.66
піо						lce	60.14	57.81	4.18
						1" Ice	77.96	75.22	4.83
*****						2" Ice	77.90	75.22	4.03
MX08FRO665-21 w/	Α	From Leg	4.00	0.0000	109.00	No Ice	8.01	4.23	0.11
Mount Pipe			0.00			1/2"	8.52	4.69	0.19
			0.00			Ice	9.04	5.16	0.29
						1" Ice 2" Ice	10.11	6.12	0.52
MX08FRO665-21 w/	В	From Leg	4.00	0.0000	109.00	No Ice	8.01	4.23	0.11
Mount Pipe			0.00			1/2"	8.52	4.69	0.19
			0.00			Ice	9.04	5.16	0.29
						1" Ice 2" Ice	10.11	6.12	0.52
MX08FRO665-21 w/	С	From Leg	4.00	0.0000	109.00	No Ice	8.01	4.23	0.11
Mount Pipe			0.00			1/2"	8.52	4.69	0.19
			0.00			Ice	9.04	5.16	0.29
						1" Ice 2" Ice	10.11	6.12	0.52
TA08025-B604	Α	From Leg	4.00	0.0000	109.00	No Ice	1.96	0.98	0.06
			0.00			1/2"	2.14	1.11	0.08
			0.00			Ice	2.32	1.25	0.10
						1" Ice 2" Ice	2.71	1.55	0.15
TA08025-B604	В	From Leg	4.00	0.0000	109.00	No Ice	1.96	0.98	0.06
			0.00			1/2"	2.14	1.11	0.08
			0.00			Ice	2.32	1.25	0.10
						1" Ice 2" Ice	2.71	1.55	0.15
TA08025-B604	С	From Leg	4.00	0.0000	109.00	No Ice	1.96	0.98	0.06
., 100020 200 .	•		0.00	0.000		1/2"	2.14	1.11	0.08
			0.00			Ice	2.32	1.25	0.10
						1" Ice	2.71	1.55	0.15
						2" Ice			
TA08025-B605	Α	From Leg	4.00	0.0000	109.00	No Ice	1.96	1.13	80.0
			0.00			1/2"	2.14	1.27	0.09
			0.00			Ice	2.32	1.41	0.11
						1" Ice	2.71	1.72	0.16
		_				2" Ice			
TA08025-B605	В	From Leg	4.00	0.0000	109.00	No Ice	1.96	1.13	0.08
			0.00			1/2"	2.14	1.27	0.09
			0.00			Ice	2.32	1.41	0.11
						1" Ice	2.71	1.72	0.16
TA08025-B605	С	From Leg	4.00	0.0000	109.00	2" Ice No Ice	1.96	1.13	0.08
1A00023-B003	C	Fiolii Leg	0.00	0.0000	109.00	1/2"	2.14	1.13	0.08
			0.00			lce	2.14	1.41	0.09
			0.00			1" Ice	2.71	1.72	0.11
						2" Ice	۷./ ۱	1.12	0.10
RDIDC-9181-PF-48	Α	From Leg	4.00	0.0000	109.00	No Ice	2.31	1.29	0.02
110000101-11-40	^	. Tom Log	0.00	0.0000	100.00	1/2"	2.50	1.45	0.02
			0.00			Ice	2.70	1.61	0.06
						1" Ice	3.12	1.96	0.12
							-		-

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	K
(2) 8' x 2" Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	109.00	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	1.90 2.73 3.40 4.40	1.90 2.73 3.40 4.40	0.03 0.04 0.06 0.12
(2) 8' x 2" Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	109.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.90 2.73 3.40 4.40	1.90 2.73 3.40 4.40	0.03 0.04 0.06 0.12
(2) 8' x 2" Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	109.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.90 2.73 3.40 4.40	1.90 2.73 3.40 4.40	0.03 0.04 0.06 0.12
Commscope MC-PK8-DSH	С	None		0.0000	109.00	No Ice 1/2" Ice 1" Ice 2" Ice	34.24 62.95 91.66 149.08	34.24 62.95 91.66 149.08	1.75 2.10 2.45 3.15
***** ***** *****						2 106			

Load Combinations

Comb.	Description
No.	·
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp

Comb.	Description
No.	
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	K	kip-ft	kip-ft
L1	118 - 74.5	Pole	Max Tension	26	0.00	0.00	0.00
			Max. Compression	26	-22.04	0.66	0.65
			Max. Mx	20	-12.00	535.20	0.17
			Max. My	2	-11.99	0.09	536.72
			Max. Vy	20	-16.86	535.20	0.17
			Max. Vx	2	-16.91	0.09	536.72
			Max. Torque	5			0.65
L2	74.5 - 35	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-31.80	0.95	0.48
			Max. Mx	20	-18.86	1265.51	0.12
			Max. My	2	-18.85	0.10	1268.84
			Max. Vy	20	-21.26	1265.51	0.12
			Max. Vx	2	-21.31	0.10	1268.84
			Max. Torque	5			0.74
L3	35 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-46.00	1.30	0.28
			Max. Mx	20	-29.73	2227.25	0.06
			Max. My	2	-29.73	0.10	2232.46
			Max. Vy	20	-25.76	2227.25	0.06
			Max. Vx	2	-25.81	0.10	2232.46
			Max. Torque	38			0.85

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, 2 K
Pole	Max. Vert	38	46.00	3.33	5.78
	Max. H _x	20	29.74	25.75	-0.00
	Max. H _z	2	29.74	-0.00	25.79
	$Max. M_x$	2	2232.46	-0.00	25.79
	$Max. M_z$	8	2226.82	-25.75	0.00
	Max. Torsion	38	0.85	3.33	5.78
	Min. Vert	11	22.30	-22.30	-12.90
	Min. H _x	8	29.74	-25.75	0.00
	Min. H _z	14	29.74	0.00	-25.79

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
	Min. M _x	14	-2232.12	0.00	-25.79
	$Min. M_z$	20	-2227.25	25.75	-0.00
	Min. Torsion	32	-0.85	-3.33	-5.78

Tower Mast Reaction Summary

Load Combination	Vertical	Shearx	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
Combination	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	24.78	0.00	0.00	-0.14	0.17	0.00
1.2 Dead+1.0 Wind 0 deg - No Ice	29.74	0.00	-25.79	-2232.46	0.10	-0.84
0.9 Dead+1.0 Wind 0 deg - No Ice	22.30	0.00	-25.79	-2220.39	0.05	-0.84
1.2 Dead+1.0 Wind 30 deg - No Ice	29.74	12.87	-22.34	-1933.45	-1113.40	-0.84
0.9 Dead+1.0 Wind 30 deg - No Ice	22.30	12.87	-22.34	-1922.98	-1107.45	-0.84
1.2 Dead+1.0 Wind 60 deg - No Ice	29.74	22.30	-12.90	-1116.41	-1928.51	-0.62
0.9 Dead+1.0 Wind 60 deg - No Ice	22.30	22.30	-12.90	-1110.35	-1918.17	-0.62
1.2 Dead+1.0 Wind 90 deg - No Ice	29.74	25.75	-0.00	-0.28	-2226.82	-0.23
0.9 Dead+1.0 Wind 90 deg - No Ice	22.30	25.75	-0.00	-0.24	-2214.88	-0.23
1.2 Dead+1.0 Wind 120 deg - No Ice	29.74	22.30	12.90	1115.88	-1928.40	0.22
0.9 Dead+1.0 Wind 120 deg - No Ice	22.30	22.30	12.90	1109.91	-1918.07	0.22
1.2 Dead+1.0 Wind 150 deg - No Ice	29.74	12.87	22.34	1932.99	-1113.21	0.61
0.9 Dead+1.0 Wind 150 deg - No Ice	22.30	12.87	22.34	1922.62	-1107.27	0.61
1.2 Dead+1.0 Wind 180 deg - No Ice	29.74	-0.00	25.79	2232.12	0.32	0.84
0.9 Dead+1.0 Wind 180 deg - No Ice	22.30	-0.00	25.79	2220.13	0.27	0.84
1.2 Dead+1.0 Wind 210 deg - No Ice	29.74	-12.87	22.34	1933.10	1113.82	0.84
0.9 Dead+1.0 Wind 210 deg - No Ice	22.30	-12.87	22.34	1922.73	1107.77	0.84
1.2 Dead+1.0 Wind 240 deg - No Ice	29.74	-22.30	12.90	1116.07	1928.94	0.62
0.9 Dead+1.0 Wind 240 deg - No Ice	22.30	-22.30	12.90	1110.10	1918.49	0.62
1.2 Dead+1.0 Wind 270 deg - No Ice	29.74	-25.75	0.00	-0.06	2227.25	0.23
0.9 Dead+1.0 Wind 270 deg - No Ice	22.30	-25.75	0.00	-0.02	2215.20	0.23
1.2 Dead+1.0 Wind 300 deg - No Ice	29.74	-22.30	-12.90	-1116.23	1928.83	-0.22
0.9 Dead+1.0 Wind 300 deg - No Ice	22.30	-22.30	-12.90	-1110.17	1918.38	-0.22
1.2 Dead+1.0 Wind 330 deg	29.74	-12.87	-22.34	-1933.34	1113.64	-0.61
- No Ice 0.9 Dead+1.0 Wind 330 deg - No Ice	22.30	-12.87	-22.34	-1922.88	1107.58	-0.61
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0	46.00 46.00	0.00 0.00	0.00 -6.67	-0.28 -571.09	1.30 1.35	0.00 -0.80
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 30	46.00	3.33	-5.78	-494.63	-283.63	-0.55
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	46.00	5.77	-3.34	-285.72	-492.24	-0.14

Load Combination	Vertical	Shear _x	Shear₂	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 90	46.00	6.66	-0.00	-0.34	-568.60	0.30
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	46.00	5.77	3.34	285.05	-492.23	0.66
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	46.00	3.33	5.78	493.97	-283.60	0.85
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	46.00	-0.00	6.67	570.45	1.38	0.80
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	46.00	-3.33	5.78	493.99	286.36	0.55
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	46.00	- 5.77	3.34	285.08	494.98	0.14
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	46.00	-6.66	0.00	-0.30	571.33	-0.30
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	46.00	- 5.77	-3.34	-285.69	494.96	-0.66
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	46.00	-3.33	- 5.78	-494.61	286.33	-0.85
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	24.78	0.00	-4.80	-414.51	0.16	-0.16
Dead+Wind 30 deg - Service	24.78	2.40	-4.16	-359.00	-206.53	-0.17
Dead+Wind 60 deg - Service	24.78	4.15	-2.40	-207.34	-357.84	-0.12
Dead+Wind 90 deg - Service	24.78	4.79	-0.00	-0.16	-413.21	-0.05
Dead+Wind 120 deg -	24.78	4.15	2.40	207.02	-357.82	0.04
Service						
Dead+Wind 150 deg -	24.78	2.40	4.16	358.70	-206.50	0.12
Service						
Dead+Wind 180 deg -	24.78	-0.00	4.80	414.22	0.20	0.16
Service						
Dead+Wind 210 deg -	24.78	-2.40	4.16	358.72	206.89	0.16
Service						
Dead+Wind 240 deg -	24.78	-4.15	2.40	207.06	358.19	0.12
Service						
Dead+Wind 270 deg -	24.78	-4.79	0.00	-0.12	413.57	0.05
Service						
Dead+Wind 300 deg -	24.78	-4.15	-2.40	-207.31	358.17	-0.04
Service						
Dead+Wind 330 deg -	24.78	-2.40	-4.16	-358.98	206.85	-0.12
Service						

Solution Summary

	Sun	n of Applied Force	======================================				
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-24.78	0.00	0.00	24.78	0.00	0.000%
2	0.00	-29.74	-25.79	-0.00	29.74	25.79	0.000%
3	0.00	-22.30	-25.79	-0.00	22.30	25.79	0.000%
4	12.87	-29.74	-22.34	-12.87	29.74	22.34	0.000%
5	12.87	-22.30	-22.34	-12.87	22.30	22.34	0.000%
6	22.30	-29.74	-12.90	-22.30	29.74	12.90	0.000%
7	22.30	-22.30	-12.90	-22.30	22.30	12.90	0.000%
8	25.75	-29.74	-0.00	-25.75	29.74	0.00	0.000%
9	25.75	-22.30	-0.00	-25.75	22.30	0.00	0.000%
10	22.30	-29.74	12.90	-22.30	29.74	-12.90	0.000%
11	22.30	-22.30	12.90	-22.30	22.30	-12.90	0.000%
12	12.87	-29.74	22.34	-12.87	29.74	-22.34	0.000%
13	12.87	-22.30	22.34	-12.87	22.30	-22.34	0.000%
14	-0.00	-29.74	25.79	0.00	29.74	-25.79	0.000%
15	-0.00	-22.30	25.79	0.00	22.30	-25.79	0.000%
16	-12.87	-29.74	22.34	12.87	29.74	-22.34	0.000%
17	-12.87	-22.30	22.34	12.87	22.30	-22.34	0.000%
18	-22.30	-29.74	12.90	22.30	29.74	-12.90	0.000%
19	-22.30	-22.30	12.90	22.30	22.30	-12.90	0.000%
20	- 25.75	-29.74	0.00	25.75	29.74	-0.00	0.000%
21	-25.75	-22.30	0.00	25.75	22.30	-0.00	0.000%
22	-22.30	-29.74	-12.90	22.30	29.74	12.90	0.000%

	Sun	n of Applied Force	es		Sum of Reaction	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
23	-22.30	-22.30	-12.90	22.30	22.30	12.90	0.000%
24	-12.87	-29.74	-22.34	12.87	29.74	22.34	0.000%
25	-12.87	-22.30	-22.34	12.87	22.30	22.34	0.000%
26	0.00	-46.00	0.00	0.00	46.00	0.00	0.000%
27	0.00	-46.00	-6.67	-0.00	46.00	6.67	0.000%
28	3.33	-46.00	-5.78	-3.33	46.00	5.78	0.000%
29	5.77	-46.00	-3.34	-5.77	46.00	3.34	0.000%
30	6.66	-46.00	-0.00	-6.66	46.00	0.00	0.000%
31	5.77	-46.00	3.34	-5.77	46.00	-3.34	0.000%
32	3.33	-46.00	5.78	-3.33	46.00	-5.78	0.000%
33	-0.00	-46.00	6.67	0.00	46.00	-6.67	0.000%
34	-3.33	-46.00	5.78	3.33	46.00	-5.78	0.000%
35	-5.77	-46.00	3.34	5.77	46.00	-3.34	0.000%
36	-6.66	-46.00	0.00	6.66	46.00	-0.00	0.000%
37	-5.77	-46.00	-3.34	5.77	46.00	3.34	0.000%
38	-3.33	-46.00	-5.78	3.33	46.00	5.78	0.000%
39	0.00	-24.78	-4.80	-0.00	24.78	4.80	0.000%
40	2.40	-24.78	-4.16	-2.40	24.78	4.16	0.000%
41	4.15	-24.78	-2.40	-4.15	24.78	2.40	0.000%
42	4.79	-24.78	-0.00	-4.79	24.78	0.00	0.000%
43	4.15	-24.78	2.40	-4.15	24.78	-2.40	0.000%
44	2.40	-24.78	4.16	-2.40	24.78	-4.16	0.000%
45	-0.00	-24.78	4.80	0.00	24.78	-4.80	0.000%
46	-2.40	-24.78	4.16	2.40	24.78	-4.16	0.000%
47	-4.15	-24.78	2.40	4.15	24.78	-2.40	0.000%
48	-4.79	-24.78	0.00	4.79	24.78	-0.00	0.000%
49	-4.15	-24.78	-2.40	4.15	24.78	2.40	0.000%
50	-2.40	-24.78	-4.16	2.40	24.78	4.16	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination	3	of Cycles	Tolerance	Tolerance
1	Yes	4	0.0000001	0.00000001
2	Yes	4	0.0000001	0.00008293
3	Yes	4	0.0000001	0.00004987
4	Yes	5	0.0000001	0.00004437
5	Yes	4	0.0000001	0.00099705
6	Yes	5	0.0000001	0.00004675
7	Yes	5	0.0000001	0.00002064
8	Yes	4	0.0000001	0.00006063
9	Yes	4	0.0000001	0.00003523
10	Yes	5	0.0000001	0.00004547
11	Yes	5	0.0000001	0.00002004
12	Yes	5	0.0000001	0.00004497
13	Yes	5	0.0000001	0.00001980
14	Yes	4	0.0000001	0.00008330
15	Yes	4	0.0000001	0.00005011
16	Yes	5	0.0000001	0.00004693
17	Yes	5	0.0000001	0.00002072
18	Yes	5	0.0000001	0.00004447
19	Yes	4	0.0000001	0.00099959
20	Yes	4	0.0000001	0.00006030
21	Yes	4	0.0000001	0.00003501
22	Yes	5	0.0000001	0.00004565
23	Yes	5	0.0000001	0.00002012
24	Yes	5	0.0000001	0.00004621
25	Yes	5	0.0000001	0.00002038
26	Yes	4	0.0000001	0.0000001
27	Yes	4	0.0000001	0.00067442
28	Yes	4	0.0000001	0.00072144
29	Yes	4	0.0000001	0.00072155
30	Yes	4	0.0000001	0.00066828
31	Yes	4	0.0000001	0.00071993
32	Yes	4	0.0000001	0.00071816

33	Yes	4	0.0000001	0.00067110
34	Yes	4	0.0000001	0.00072463
35	Yes	4	0.0000001	0.00072268
36	Yes	4	0.0000001	0.00067317
37	Yes	4	0.0000001	0.00072486
38	Yes	4	0.0000001	0.00072854
39	Yes	4	0.0000001	0.00000775
40	Yes	4	0.0000001	0.00001777
41	Yes	4	0.0000001	0.00002047
42	Yes	4	0.0000001	0.00000726
43	Yes	4	0.0000001	0.00001872
44	Yes	4	0.0000001	0.00001820
45	Yes	4	0.0000001	0.00000774
46	Yes	4	0.0000001	0.00002072
47	Yes	4	0.0000001	0.00001784
48	Yes	4	0.0000001	0.00000727
49	Yes	4	0.0000001	0.00001898
50	Yes	4	0.0000001	0.00001970

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	۰	۰
L1	118 - 74.5	7.986	39	0.6037	0.0010
L2	79.135 - 35	3.559	39	0.4366	0.0004
L3	40.8125 - 0	0.919	39	0.2055	0.0001

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	٥	۰	ft
118.00	Lightning Rod 1" x 6'	39	7.986	0.6037	0.0010	66797
117.00	7770.00	39	7.863	0.5999	0.0010	66797
109.00	MX08FRO665-21 w/ Mount Pipe	39	6.884	0.5695	0.0008	37109

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	•	۰
L1	118 - 74.5	43.013	2	3.2509	0.0050
L2	79.135 - 35	19.175	2	2.3530	0.0019
L3	40.8125 - 0	4.950	2	1.1072	0.0007

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	۰	۰	ft
118.00	Lightning Rod 1" x 6'	2	43.013	3.2509	0.0050	12474
117.00	7770.00	2	42.351	3.2307	0.0049	12474
109.00	MX08FRO665-21 w/ Mount Pipe	2	37.079	3.0674	0.0042	6930

Compression Checks

Pole	Design	Data
------	--------	------

Section No.	Elevation	Size	L	Lu	KI/r	Α	Pu	ϕP_n	Ratio P _u
	ft		ft	ft		in²	Κ	K	φ P _n
L1	118 - 74.5 (1)	TP37.08x25.77x0.2188	43.50	0.00	0.0	24.881 3	-11.99	1455.56	0.008
L2	74.5 - 35 (2)	TP46.5x35.4374x0.2813	44.13	0.00	0.0	40.159 8	-18.85	2349.35	0.008
L3	35 - 0 (3)	TP55.3x44.4806x0.3438	40.81	0.00	0.0	60.263 0	-29.73	3525.38	0.008

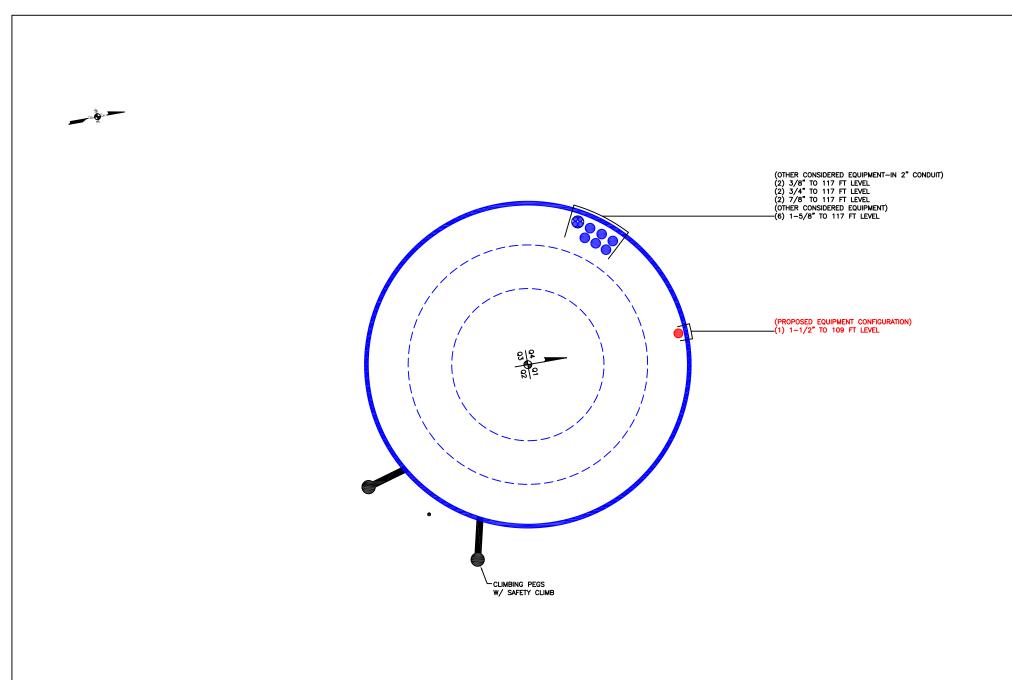
Pole Bending Design Data

Section No.	Elevation	Size	M _{ux}	фМлх	Ratio M _{ux}	Muy	ϕM_{ny}	Ratio M _{uy}
	ft		kip-ft	kip-ft	φ <i>M</i> _{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	118 - 74.5 (1)	TP37.08x25.77x0.2188	536.72	1093.80	0.491	0.00	1093.80	0.000
L2	74.5 - 35 (2)	TP46.5x35.4374x0.2813	1268.84	2244.72	0.565	0.00	2244.72	0.000
L3	35 - 0 (3)	TP55.3x44.4806x0.3438	2232.46	4125.74	0.541	0.00	4125.74	0.000

Pole Shear Design Data

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.			V_u	·	V_u	T_u	·	T_u
	ft		Κ	K	ϕV_n	kip-ft	kip-ft	<u></u> φ <i>T</i> _n
L1	118 - 74.5 (1)	TP37.08x25.77x0.2188	16.91	430.15	0.039	0.50	1365.28	0.000
L2	74.5 - 35 (2)	TP46.5x35.4374x0.2813	21.31	697.42	0.031	0.66	2766.38	0.000
L3	35 - 0 (3)	TP55.3x44.4806x0.3438	25.81	1048.22	0.025	0.84	5096.61	0.000

Pole Interaction Design Data


Section No.	Elevation	Ratio Ratio P_u M_{ux}		Ratio M _{uv}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	<u>φP</u> _n	φ <i>M</i> _{nx}	φ <i>M</i> _{ny}	φ V _n	<u> </u>	Ratio	Ratio	
L1	118 - 74.5 (1)	0.008	0.491	0.000	0.039	0.000	0.501	1.050	4.8.2
L2	74.5 - 35 (2)	0.008	0.565	0.000	0.031	0.000	0.574	1.050	4.8.2
L3	35 - 0 (3)	0.008	0.541	0.000	0.025	0.000	0.550	1.050	4.8.2

Section Capacity Table

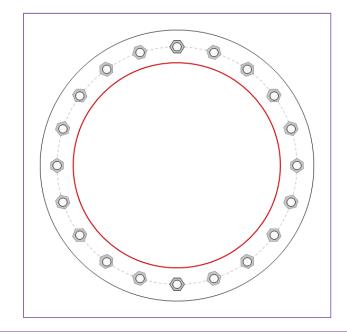
Section	Elevation	Component	Size	Critical	P	øP _{allow}	%	Pass
No.	ft	Type		Element	K	K	Capacity	Fail

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L1	118 - 74.5	Pole	TP37.08x25.77x0.2188	1	-11.99	1528.34	47.7	Pass
L2	74.5 - 35	Pole	TP46.5x35.4374x0.2813	2	-18.85	2466.82	54.7	Pass
L3	35 - 0	Pole	TP55.3x44.4806x0.3438	3	-29.73	3701.65	52.4	Pass
							Summary	
						Pole (L2)	54.7	Pass
						RATING =	54.7	Pass

APPENDIX B BASE LEVEL DRAWING

APPENDIX C ADDITIONAL CALCULATIONS

Monopole Base Plate Connection



Site Info	
BU#	842863
Site Name	GRISWOLD CENTRAL
Order #	584378 rev.2

Analysis Considerations				
TIA-222 Revision	Н			
Grout Considered:	No			
I _{ar} (in)	0			

Applied Loads			
Moment (kip-ft)	2232.46		
Axial Force (kips)	29.73		
Shear Force (kips)	25.81		

55.3" x 0.34375" 16-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Connection Properties	Analysis Results			
Anchor Rod Data	Anchor Rod Summary	(units of kips, kip-in)	
(20) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 64" BC	Pu_t = 82.19	φPn_t = 243.75	Stress Rating	
	Vu = 1.29	φVn = 149.1	32.1%	
Base Plate Data	Mu = n/a	φMn = n/a	Pass	
73" OD x 3" Plate (A572-55; Fy=55 ksi, Fu=70 ksi)				
	Base Plate Summary			
Stiffener Data	Max Stress (ksi):	11.34	(Flexural)	
N/A	Allowable Stress (ksi):	49.5		
	Stress Rating:	21.8%	Pass	
Pole Data				

CCIplate - Version 4.1.2 Analysis Date: 12/17/2021

^{*}TIA-222-H Section 15.5 Applied

Drilled Pier Foundation

BU # : 842863
Site Name: GRISWOLD CENTRAL
Order Number: 584378 rev.2
TIA-222 Revison: H
Tower Type: Monopole

Applied Loads			
Comp. Uplift			
Moment (kip-ft)	2232.46		
Axial Force (kips)	29.74		
Shear Force (kips)	25.79		

Material Properties			
Concrete Strength, f'c:	3	ksi	
Rebar Strength, Fy:	60	ksi	
Tie Yield Strength, Fyt:	40	ksi	

	Pier Design Data				
	Depth	35	ft		
	Ext. Above Grade	1	ft		
	Pier	Section 1			
	From 1' above grade to 35' below grade				
	Pier Diameter	8	ft		
	Rebar Quantity	25			
	Rebar Size	11			
	Clear Cover to Ties	3	in		
	Tie Size	4			
L	Tie Spacing	12	in		

Analysis Results				
Soil Lateral Check	Compression	Uplift		
D _{v=0} (ft from TOC)	9.95	-		
Soil Safety Factor	17.18	-		
Max Moment (kip-ft)	2451.79	-		
Rating*	7.4%	-		
Soil Vertical Check	Compression	Uplift		
Skin Friction (kips)	1203.17	-		
End Bearing (kips)	693.66	-		
Weight of Concrete (kips)	325.72	-		
Total Capacity (kips)	1896.83	-		
Axial (kips)	355.46	-		
Rating*	17.8%	-		
Reinforced Concrete Flexure	Compression	Uplift		
Critical Depth (ft from TOC)	10.06	-		
Critical Moment (kip-ft)	2451.75	-		
Critical Moment Capacity	7262.67	-		
Rating*	32.2%	-		
Reinforced Concrete Shear	Compression	Uplift		
Critical Depth (ft from TOC)	26.55	-		
Critical Shear (kip)	198.82	-		
Critical Shear Capacity	679.23	-		
Rating*	27.9%	-		

32.2%

17.8%

Check Limitation		
Apply TIA-222-H Section 15.5:	✓	
N/A		
Additional Longitudinal Reb	ar	
Input Effective Depths (else Actual):		
Shear Design Options		
Check Shear along Depth of Pier:	✓	
Utilize Shear-Friction Methodology:		
Override Critical Depth:		
0 - (- 0 - 1 0 -		

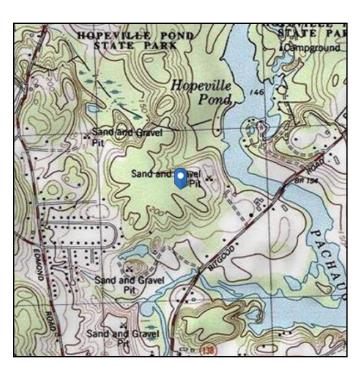
Go to Soil Calculations

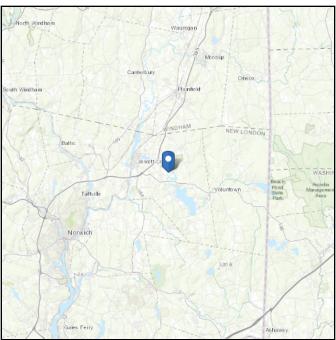
*Rating per TIA-222-H Section 15.5
Soil Profile

Groundwater Depth 39 # of Layers 9 Calculated Calculated **Ultimate Skin** Ult. Gross Angle of Ultimate Skin Top Thickness Cohesion **Ultimate Skin Ultimate Skin Friction Comp** Bearing SPT Blow γ_{soil} Bottom (ft) Friction **Friction Uplift** Soil Type Layer Friction Uplift (ft) (ft) (pcf) (pcf) (ksf) **Friction Comp** Override Capacity Count (degrees) Override (ksf) (ksf) (ksf) (ksf) (ksf) 0 135 150 0 0.000 0.000 0.00 0.00 Cohesionless 4 5 135 150 0 38 0.000 0.000 0.00 0.00 Cohesionless 8 135 38 Cohesionless 5 150 0 0.000 0.000 1.22 1.22 8 10 140 150 0 39 0.000 0.000 2.16 2.16 Cohesionless 10 0 15 130 150 36 0.000 0.000 1.89 1.89 Cohesionless 20 0 36 15 130 150 0.000 0.000 2.16 2.16 Cohesionless 20 25 125 150 0 34 0.00 0.00 1.98 1.98 Cohesionless 34 25 30 125 150 0 0.00 0.00 8 2.16 2.16 Cohesionless 30 35 130 150 0 37 0.00 0.00 2.98 18.4 Cohesionless

Structural Foundation Rating*

Soil Interaction Rating*


Address:


No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 202.05 ft (NAVD 88)

Risk Category: || Latitude: 41.59405 Soil Class: D - Stiff Soil Longitude: -71.933158

Wind

Results:

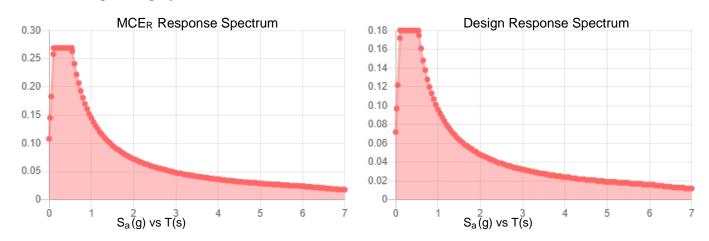
Wind Speed: 132 Vmph 135 mph per jurisdiction

10-year MRI 79 Vmph 25-year MRI 89 Vmph 50-year MRI 98 Vmph 100-year MRI 107 Vmph

Date Somessed: Was dEfet 0-202 Fig. 26.5-1A and Figs. CC-1-CC-4, and Section 26.5.2,

incorporating errata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.168	S _{DS} :	0.18	
S_1 :	0.06	S_{D1} :	0.096	
Fa:	1.6	T_L :	6	
F _v :	2.4	PGA:	0.084	
S_{MS} :	0.269	PGA _M :	0.135	
S _{M1} :	0.145	F _{PGA} :	1.6	
		1 .	1	

Seismic Design Category B

Data Accessed: Wed Feb 10 2021

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating

Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with

ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Wed Feb 10 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Date: April 4, 2022

Black & Veatch Corp. 11401 Lamar Avenue Overland Park, KS 66211 (913) 458-9263

Subject: Mount Analysis Report

Carrier Designation: DISH Wireless Equipment Change-Out

Carrier Site Number: BOBOS01001A

Crown Castle Designation: Crown Castle BU Number: 842863

Crown Castle Site Name: GRISWOLD CENTRAL

Crown Castle JDE Number: 684525

Crown Castle Order Number: 584378 Revision 2

Engineering Firm Designation: Black & Veatch Corp. Project Number: 406642

Site Data: 31 Yurechko Drive, Jewett City, New London County, CT 06351

Latitude: 41° 35′ 38.58" Longitude: -71° 55′ 59.37"

Structure Information Tower Height & Type: 118 ft Monopole

Mount Elevation: 109 ft

Mount Width & Type: 8.0 ft Platform Mount

Black & Veatch Corp. is pleased to submit this **"Mount Analysis Report"** to determine the structural integrity of DISH Wireless's antenna mounting system with the proposed appurtenance and equipment addition on the above mentioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Commscope P/N: MC-PK8-DSH Platform Mount

Sufficient - 40.1%

This analysis utilizes an ultimate 3-second gust wind speed of 135 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Jeerawadee Jirapo / Joohwan Jung

Respectfully Submitted by:

Ping Jiang, P.E. Professional Engineer

Apr 04, 2022

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Platform Mount)

4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

1) INTRODUCTION

This is a proposed 3-sector 8.0 ft Platform Mount, designed by Commscope.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Ultimate Wind Speed: 135 mph

Exposure Category:

C
Topographic Factor:

Ice Thickness:

Wind Speed with Ice:

Live Loading Wind Speed:

Live Loading at Mid/End-Points:

Man Live Loading at Mount Pipes:

1.5 in
50 mph
250 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount Details
		3	jma wireless	MX08FRO665-21	
109.0	109.0	3	fujitsu	TA08025-B604	8ft Platform Mount
109.0	109.0	3	fujitsu	TA08025-B605	(MC-PK8-DSH)
		1	raycap	RDIDC-9181-PF-48	

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
4-MOUNT MANUFACTURER DRAWING	Date 08/17/2018	-	Internal
4-MOUNT APPLICATION	APP. 584378 Rev. 2	-	CCISites

3.1) Analysis Method

RISA-3D (Version No. 17.0.4), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed, using Microsoft Excel, by Black & Veatch Corp. was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision D).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Tables 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) This analysis was performed under the assumption that all information provided to Black & Veatch is current and correct. This is to include site data, existing/proposed appurtenance loading. The existing/proposed loading on the structure is based on CAD level drawings and carrier orders provided by the owner. If any of this information is not current and correct, this report should be considered obsolete and further analysis will be required.
- 5) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 6) Commscope MC-PK8-DSH Platform members shall use steel grade and dimensions specified on mount manufacturing drawings.
- 7) Proposed Raycap RDIDC-9181-PF-48 is assumed to be installed on pos. 1 mount pipe in alpha sector.
- 8) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, PlateASTM A36 (GR 36)HSS (Rectangular)ASTM 500 (GR B-46)PipeASTM A53 (GR B-35)

Connection Bolts ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Black & Veatch should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Platform Mount)

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
	Perimeter Corner Plate	3		40.1	Pass
	Grating Angle	6		39.0	Pass
	Perimeter	11		19.1	Pass
4	Cross Arm	16		39.2	Pass
'	Arm	21	109	31.1	Pass
	Support Rail Corner	23	109	31.5	Pass
	Support Rail	25		16.3	Pass
	Mount Pipe	33		25.5	Pass
2	Bolt Connection Check	21		29.4	Pass
	Weld Connection Check	21		35.8	Pass

Structure Rating (max from all components) =	40.1%
--	-------

Notes:

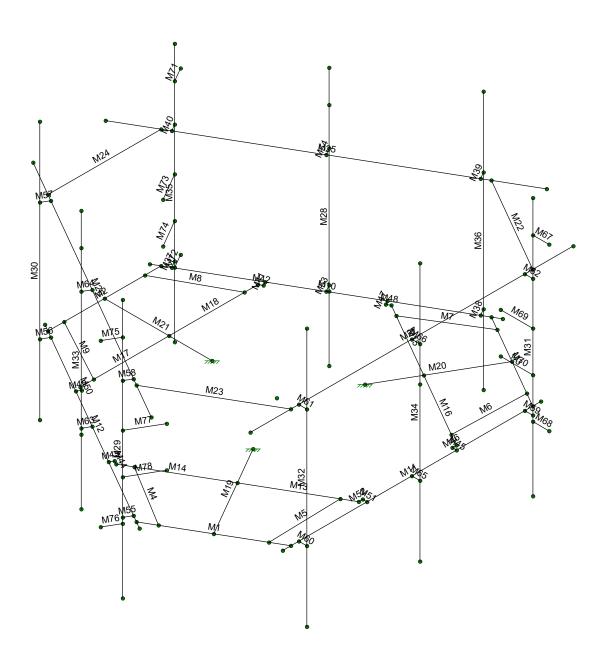
¹⁾ See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity

²⁾ See additional documentation in "Appendix D - Additional Calculations" for detailed mount connection calculations.

April 4, 2022 CCI BU No: 842863 Page 5

4.1) Recommendations

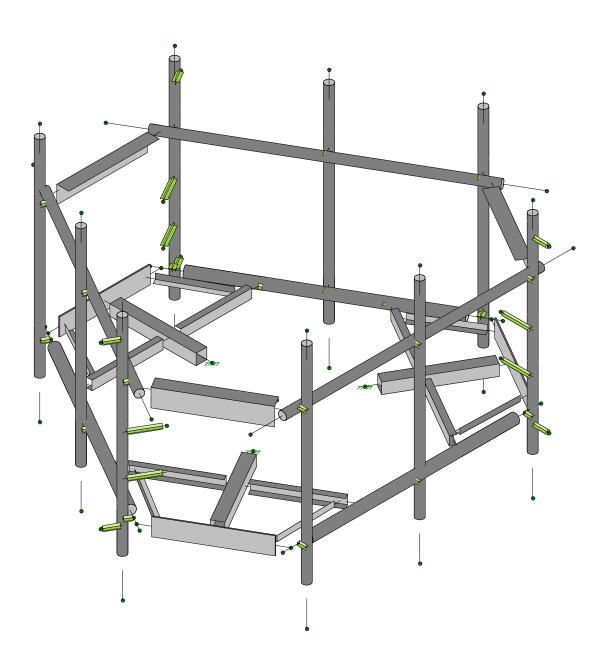
The proposed mount has sufficient capacity to support the proposed loading configuration. In order for the results of this analysis to be considered valid, the mount listed below shall be installed.


- 1. Install Commscope P/N: MC-PK8-DSH Platform Mount.
- 2. Install proposed antennas such that they are vertically centered in between the platform base and support rail.

Beyond the proposed mount installation, no structural modifications are required at this time, provided that the above- listed changes are implemented.

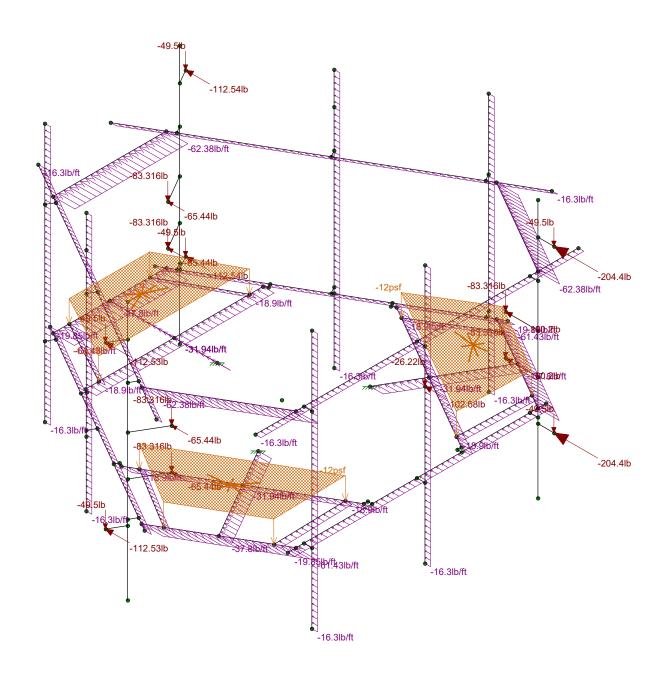
April 4, 2022 CCI BU No: 842863 Page 6

APPENDIX A WIRE FRAME AND RENDERED MODELS



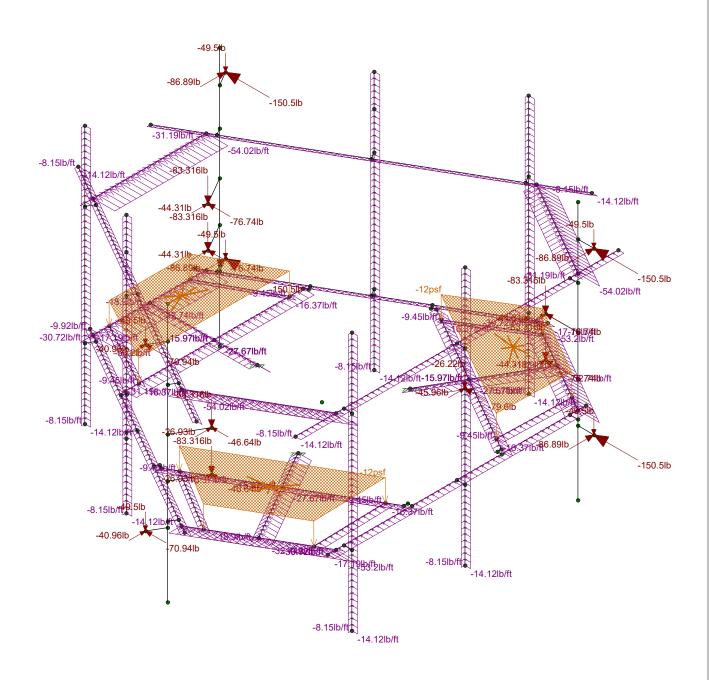
Envelope Only Solution

Black & Veatch Corp.		SK - 1
Jeerawadee Jirapo	842863 Risa Model	Apr 4, 2022 at 2:03 PM
406642.6056		842863.20220331584378 RISA M



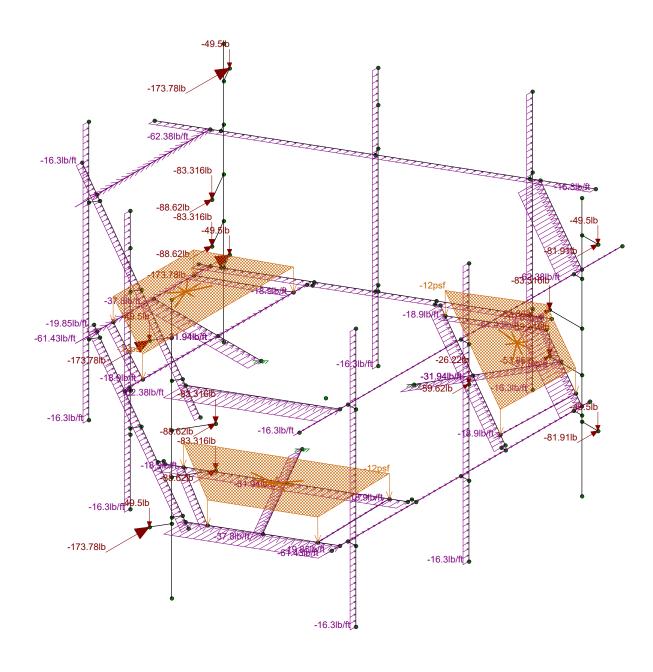
Envelope Only Solution

Black & Veatch Corp.		SK - 2	
Jeerawadee Jirapo	842863 Risa Model	Apr 4, 2022 at 2:03 PM	
406642.6056		842863.20220331584378 RISA M	



Loads: LC 2, 1.2DL + WL (0 DEG) Envelope Only Solution

Black & Veatch Corp.		SK - 3
Jeerawadee Jirapo	842863 Risa Model	Apr 4, 2022 at 2:04 PM
406642.6056		842863.20220331584378 RISA M



Loads: LC 3, 1.2DL + WL (30 DEG) Envelope Only Solution

Black & Veatch Corp.		SK - 4	
Jeerawadee Jirapo	842863 Risa Model	Apr 4, 2022 at 2:04 PM	
406642.6056		842863.20220331584378 RISA M	

Loads: LC 5, 1.2DL + WL (90 DEG) Envelope Only Solution

Black & Veatch Corp.		SK - 5
Jeerawadee Jirapo	842863 Risa Model	Apr 4, 2022 at 2:04 PM
406642.6056		842863.20220331584378 RISA M

April 4, 2022 CCI BU No: 842863 Page 7

APPENDIX B

SOFTWARE INPUT CALCULATIONS

Site Name: GRISWOLD CENTRAL (BOBOS01001A) Date: 4/4/2022

Work Order: 842863.584378 Verified By: Joohwan Jung

Title: MOUNT ANALYSIS REPORT Date: 4/4/2022

Dead and Live Loads

Appurtenance Dead Loads							
Name	Weight (lb)						
MX08FRO665-21	82.5						
TA08025-B604	63.9						
TA08025-B605	74.96						
RDIDC-9181-PF-48	21.85						

Site Name: GRISWOLD CENTRAL (BOBOS01001A) Date: 4/4/2022

Work Order: 842863.584378 Verified By: Joohwan Jung

Appurtenance Wind Loading			<u>Equations</u>	TIA-222-H
Exposure Category =	С		$K_z = 2.01 (z / z_g)^{2/\alpha}$	2.6.5.2
Risk Category =	П			
Topographic Category =	1		$K_h = e^{(f \cdot z/H)}$	2.6.6.2.1
Basic Wind Speed, V =	135	mph		
Height Above Ground, z =	109	ft	$K_{zt} = \left[1 + K_c K_t / K_h\right]^2$	2.6.6.2.1
Crest Height, H =	N/A	ft		
Velocity Pressure Coefficient, K _z =	1.29		$K_e = e^{-0.0000032^{-2}}$	2.6.8
Topographic Factor, K_{zt} =	1.00			
Wind Directionality Factor, K_d =	0.95		$q_z = 0.00256 K_z K_{zt} K_e K_d V^2$	2.6.11.6
Shielding Factor, K _a =	0.90			
Ground Elevation Factor, K_e =	0.993		$F_A = q_z G_h(EPA)$	2.6.11.2
Wind Velocity Pressure, q_z =	56.71	psf		
Gust Effect Factor, $G_h =$	1.00		$F_{M} = q_{z}G_{h}C_{f}D_{p}$	2.6.11.2

									_
Appurtenance Wind Loads									
Name	Height	Width	Depth		Norma	ı		Tangent	ial
	(ft)	(ft)	(ft)	Ca	CaAaf	F _A (lb)	C _a	CaAas	F _A (lb)
MX08FRO665-21	6.00	1.67	0.67	-	8.01	408.80	-	3.21	163.83
TA08025-B604	1.25	1.31	0.66	1.20	1.96	100.21	1.20	0.98	50.07
TA08025-B605	1.25	1.31	0.76	1.20	1.96	100.21	1.20	1.13	57.64
RDIDC-9181-PF-48	1.38	1.21	0.71	1.20	2.01	102.68	1.20	1.17	59.62

Site Name: GRISWOLD CENTRAL (BOBOS01001A) Date: 4/4/2022

Work Order: 842863.584378 Verified By: Joohwan Jung

<u>Member Wind Loading</u>			<u>Equations</u>	TIA-222-H
Exposure Category =	С		$K_z = 2.01 (z / z_g)^{2/\alpha}$	2.6.5.2
Risk Category =	Ш			
Topographic Category =	1		$K_h = e^{(f \cdot z/H)}$	2.6.6.2.1
Basic Wind Speed, V =	135	mph		
Height Above Ground, z =	109	ft	$K_{zt} = \left[1 + K_c K_t / K_h\right]^2$	2.6.6.2.1
Crest Height, H =	N/A	ft		
Velocity Pressure Coefficient, K _z =	1.29		$K_e = e^{-0.000032^{-25}}$	2.6.8
Topographic Factor, K_{zt} =	1.00			
Wind Directionality Factor, K_d =	0.95		$q_z = 0.00256 K_z K_{zt} K_e K_d V^2$	2.6.11.6
Shielding Factor, K _a =	0.90			
Ground Elevation Factor, K_e =	0.993		$F_A = q_z G_h(EPA)$	2.6.11.2
Wind Velocity Pressure, q_z =	56.71	psf		
Gust Effect Factor, G _h =	1.00		$F_{M} = q_{z}G_{h}C_{f}D_{p}$	2.6.11.2

Member Wind Loads										
Name	Depth (ft)	Width (ft)	C _f	D _p (ft)	F _M (lb/ft)					
Perimeter Corner Plate: PL6.5x0.375	0.54	0.03	2	0.54	61.43					
Grating Angle: L2x2x4	0.17	0.17	2	0.17	18.90					
Perimeter: HSS3.500x0.165	0.29		1.2	0.29	19.85					
Cross Arm: C3.38x2.06x0.25	0.28	0.17	2	0.28	31.94					
Arm: HSS4X4X6	0.33	0.33	2	0.33	37.80					
Support rail corner: L6.6x4.46x0.25	0.55	0.37	2	0.55	62.38					
Support rail: Pipe 2.5 Std	0.24		1.2	0.24	16.30					
Mount Pipes: Pipe 2.5 Std	0.24		1.2	0.24	16.30					

Site Name: GRISWOLD CENTRAL (BOBOS01001A) Date: 4/4/2022

Work Order: 842863.584378 Verified By: Joohwan Jung

Appurtenance Ice Dead Loading			<u>Equations</u>	TIA-222-H
Exposure Category =	С			
Risk Category =	П		$K_h = e^{(f \cdot z/H)}$	2.6.6.2.1
Topographic Category =	1			
Height Above Ground, z =	109	ft	$K_{zt} = \left[1 + K_c K_t / K_h\right]^2$	2.6.6.2.1
Crest Height, H =	N/A	ft		
Design Ice Thickness, $T_i =$	1.50	in	$K_{iz} = (z/33)^{0.10}$	2.6.10
Importance Factor, I =	1			
Topographic Factor, K_{zt} =	1.00		$T_{iz} = T_i I K_{iz} (K_{zt})^{0.35}$	2.6.10
Height Escalation Factor, K_{iz} =	1.13			
Factored Ice Thickness, T_{iz} =	1.69	in	$DL_{ice}=[(H_{ice}*D_{ice}*W_{ice}) - (H*W*D)]*56pcf$	
Grating Ice Dead Load, D _{Gice} =	7.89	psf		

Appurtenance Ice Dead Loads									
Name	Height w/ ice (ft)	Width w/ice (ft)	Depth w/ ice (ft)	V _{ice} (ft ³)	DL _{ice} (Ib)				
MX08FRO665-21	6.28	1.95	0.95	4.94	327.63				
TA08025-B604	1.53	1.59	0.94	1.21	67.84				
TA08025-B605	1.53	1.59	1.04	1.29	72.28				
RDIDC-9181-PF-48	1.66	1.50	0.99	1.27	71.23				

DL_{ice}=Aiz*56pcf

Site Name: GRISWOLD CENTRAL (BOBOS01001A) Date: 4/4/2022

Work Order: 842863.584378 Verified By: Joohwan Jung
BLACK & VEATCH Title: MOUNT ANALYSIS REPORT Date: 4/4/2022

Member Ice Dead Loading Equations TIA-222-H Exposure Category = C $K_h = e^{(f \cdot z/H)}$ Risk Category = Ш 2.6.6.2.1 Topographic Category = 1 Height Above Ground, z = $K_{zt} = [1 + K_c K_t / K_h]^2$ 109 ft 2.6.6.2.1 Crest Height, H = N/A ft $K_{iz} = (z/33)^{0.10}$ Design Ice Thickness, T_i = 1.50 in 2.6.10 1 Importance Factor, I = $T_{iz} = T_i I K_{iz} (K_{zt})^{0.35}$ Topographic Factor, $K_{zt} =$ 1.00 2.6.10 Height Escalation Factor, K_{iz} = 1.13 Factored Ice Thickness, T_{iz} = 1.69 Aiz = pi*Tiz*(Dc+Tiz) in 2.6.10

Member Ice Dead Loads										
Name	Dep	th w/ ice (ft)	Width w/ ice (ft)	Dc (ft)	Aiz (ft²)	DL _{ice} (lb/ft)				
Perimeter Corner Plate: PL6.5x0.375		0.82	0.31	0.54	0.30	16.94				
Grating Angle: L2x2x4		0.45	0.45	0.24	0.17	9.33				
Perimeter: HSS3.500x0.165		0.57		0.29	0.19	10.72				
Cross Arm: C3.38x2.06x0.25		0.56	0.45	0.33	0.21	11.67				
Arm: HSS4X4X6		0.62	0.62	0.47	0.27	15.17				
Support rail corner: L6.6x4.46x0.25		0.83	0.65	0.66	0.36	19.94				
Support rail: Pipe 2.5 Std		0.52		0.24	0.17	9.43				
Mount Pipes: Pipe 2.5 Std		0.52		0.24	0.17	9.43				

psf

7.89

Grating Ice Dead Load, $D_{Gice} =$

Site Name: GRISWOLD CENTRAL (BOBOS01001A) Date: 4/4/2022

Work Order: 842863.584378 Verified By: Joohwan Jung

Appurtenance Ice Wind Loading			<u>Equations</u>	TIA-222-H
Exposure Category =	С		$K_z = 2.01 (z / z_g)^{2/\alpha}$	2.6.5.2
Risk Category =	П			
Topographic Category =	1		$K_h = e^{(f \cdot z/H)}$	2.6.6.2.1
Ice Wind Speed, V _{ice} =	50	mph		
Height Above Ground, z =	109	ft	$K_{zt} = \left[1 + K_c K_t / K_h\right]^2$	2.6.6.2.1
Crest Height, H =	N/A	ft		
Velocity Pressure Coefficient, K _z =	1.29	psf	$K_e = e^{-0.000032^{+2}s}$	2.6.8
Topographic Factor, K_{zt} =	1.00			
Wind Directionality Factor, K_d =	0.95		$q_z = 0.00256 K_z K_{zt} K_e K_d V^2$	2.6.11.6
Shielding Factor, K _a =	0.90			
Ground Elevation Factory, K_e =	0.993		$F_{A(ice)} = q_{z(ice)}G_h(EPA)_{A(ice)}$	2.6.11.2
Ice Wind Velocity Pressure, $q_{z(ice)}$ =	7.779			
Factored Ice Thickness, T_{iz} =	1.69	in	$F_{M(ice)} = q_{z(ice)}G_hC_fD_{p(ice)}$	2.6.11.2
Gust Effect Factor, G_h =	1			1

Appurtenance Ice Wind Loads										
Name	Height	Width Depth		Normal				Tangential		
	w/ Ice (ft)	w/ Ice (ft)	w/ Ice (ft)	Ca	CaAaf	F _A (lb)	Ca	CaAas	F _A (lb)	
MX08FRO665-21	6.28	1.95	0.95	1	9.60	67.17	-	4.60	32.20	
TA08025-B604	1.53	1.59	0.94	1	2.52	17.67	-	1.41	9.88	
TA08025-B605	1.53	1.59	1.04	-	2.52	17.67	-	1.58	11.06	
RDIDC-9181-PF-48	1.66	1.50	0.99	-	2.58	18.06	-	1.64	11.45	

TIA-222-H

2.6.5.2

2.6.6.2.1

2.6.6.2.1

2.6.11.6

2.6.11.2

Site Name: GRISWOLD CENTRAL (BOBOS01001A) Date: 4/4/2022

Work Order: 842863.584378 Verified By: Joohwan Jung

BLACK & VEATCH Title: MOUNT ANALYSIS REPORT Date: 4/4/2022

Member Ice Wind Loading

nd LoadingEquationsExposure Category =C $K_z = 2.01 (z / z_g)^{2/\alpha}$

Risk Category = II

Topographic Category = 1 $K_h = e^{(f \cdot z/H)}$

Ice Wind Speed, V_{ice} = 50 mph

Height Above Ground, z = 109 ft $K_{zt} = [1 + K_c K_t / K_h]^2$

Crest Height, H = N/A ft

Velocity Pressure Coefficient, $K_z = 1.29$ psf $K_e = e^{-0.0000032^{-25}}$ 2.6.8

Topographic Factor, $K_{zt} = 1.00$

Wind Directionality Factor, $K_d = 0.95$ $q_z = 0.00256 K_z K_{zt} K_e K_d V^2$

Shielding Factor, $K_a = 0.90$

Ground Elevation Factory, $K_e = 0.993$ $F_{A(ice)} = q_{z(ice)}G_h(EPA)_{A(ice)}$

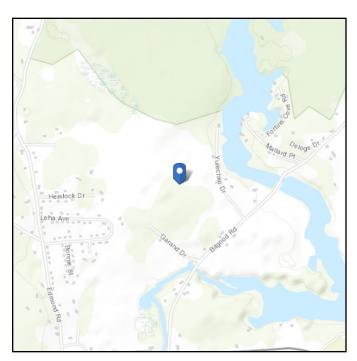
Ice Wind Velocity Pressure, $q_{z(ice)} = 7.779$

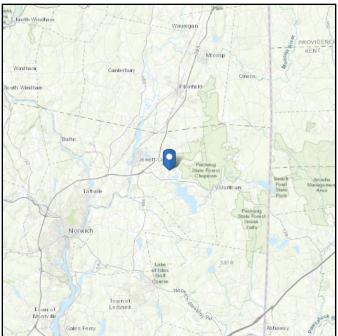
Factored Ice Thickness, $T_{iz} = 1.69$ in $F_{M(ice)} = q_{z(ice)}G_hC_fD_{p(ice)}$ 2.6.11.2

Gust Effect Factor, $G_h = 1$

Member Ice Wind Loads									
Name	Depth w/ Ice (ft)	Width w/ Ice (ft)	C _f	D _{p(ice)} (ft)	F _{M(ice)} (lb/ft)				
Perimeter Corner Plate: PL6.5x0.375	0.82	0.31	2	0.82	12.81				
Grating Angle: L2x2x4	0.45	0.45	2	0.45	6.98				
Perimeter: HSS3.500x0.165	0.57		1.2	0.57	5.35				
Cross Arm: C3.38x2.06x0.25	0.56	0.45	2	0.56	8.77				
Arm: HSS4X4X6	0.62	0.62	2	0.62	9.57				
Support rail corner: L6.6x4.46x0.25	0.83	0.65	2	0.83	12.94				
Support rail: Pipe 2.5 Std	0.52		1.2	0.52	4.87				
Mount Pipes: Pipe 2.5 Std	0.52		1.2	0.52	4.87				

Address:

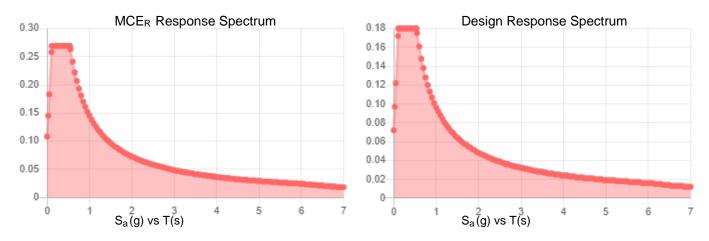

No Address at This Location


ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 202.05 ft (NAVD 88)

Risk Category: **□** Latitude: 41.59405

Soil Class: D - Stiff Soil Longitude: -71.933158


Wind

Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.168	S _{DS} :	0.18	
S_1 :	0.06	S_{D1} :	0.096	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA:	0.084	
S _{MS} :	0.269	PGA _M :	0.135	
S _{M1} :	0.145	F _{PGA} :	1.6	
		1 .	1	

Seismic Design Category B

Data Accessed: Mon Apr 04 2022

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Mon Apr 04 2022

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

April 4, 2022 CCI BU No: 842863 Page 8

APPENDIX C SOFTWARE ANALYSIS OUTPUT

: Black & Veatch Corp.: Jeerawadee Jirapo: 406642.6056 : 842863 Risa Model

Apr 4, 2022 2:04 PM Checked By: Joohwan Jung

(Global) Model Settings

5
97
Yes
Yes
Yes
Yes
144
.12
0.50%
Yes
Yes
3
32.2
24
4
Υ
XZ
Sparse Accelerated
Accelerated Solver

Hot Rolled Steel Code	AISC 15th(360-16): LRFD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	None
Cold Formed Steel Code	None
Wood Code	None
Wood Temperature	< 100F
Concrete Code	None
Masonry Code	None
Aluminum Code	None - Building
Stainless Steel Code	None

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	No
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

Model Name

Company : Black & Veatch Corp.
Designer : Jeerawadee Jirapo
Job Number : 406642.6056 : 842863 Risa Model

Apr 4, 2022 2:04 PM

Checked By: Joohwan Jung

(Global) Model Settings, Continued

Seismic Code	None
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
TZ(sec)	Not Entered
RX	3
RZ	3

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1	Density[k/f	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A529 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
3	A500 Gr. C	29000	11154	.3	.65	.49	46	1.6	60	1.2
4	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design Rul	. A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	Perimeter Corner Plate	PL6.5x0.375	Beam	None	A36 Gr.36	Typical	2.438	.029	8.582	.11
2	Grating Angle	L2x2x4	Beam	None	A36 Gr.36	Typical	.944	.346	.346	.021
3	Perimeter	HSS3.500x0.1	Beam	None	A500 Gr. C	Typical	1.729	2.409	2.409	4.819
4	Cross Arm	C3.38x2.06x0	Beam	None	A36 Gr.36	Typical	1.75	.715	3.026	.034
5	Arm	HSS4X4X6	Beam	None	A500 Gr. C	Typical	4.78	10.3	10.3	17.5
6	Support rail corner	L6.6x4.46x0.25	Beam	None	A36 Gr.36	Typical	2.703	4.759	12.473	.055
7	Support rail	PIPE 2.5	Beam	None	A500 Gr. C	Typical	1.61	1.45	1.45	2.89
8	Mount Pipes	PIPE 2.5	Column	None	A500 Gr. C	Typical	1.61	1.45	1.45	2.89

General Material Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5 F)	Density[k/ft^3]	
1	RIGID	1e+6		.3	Ò	0]

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N20	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N11	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
1	M1	N5	N6		, 0,	Perimeter Cor	Beam	None	A36 Gr.36	Typical
2	M2	N23	N24			Perimeter Cor	Beam	None	A36 Gr.36	Typical
3	M3	N14	N15			Perimeter Cor	Beam	None	A36 Gr.36	Typical
4	M4	N7	N10		270	Grating Angle	Beam	None	A36 Gr.36	Typical
5	M5	N8	N9			Grating Angle	Beam	None	A36 Gr.36	Typical
6	M6	N16	N19		270	Grating Angle	Beam	None	A36 Gr.36	Typical
7	M7	N17	N18			Grating Angle	Beam	None	A36 Gr.36	Typical
8	M8	N25	N28		270	Grating Angle	Beam	None	A36 Gr.36	Typical
9	M9	N26	N27			Grating Angle	Beam	None	A36 Gr.36	Typical
10	M10	N29	N30			Perimeter	Beam	None	A500 Gr. C	Typical

: Black & Veatch Corp.: Jeerawadee Jirapo: 406642.6056 : 842863 Risa Model

Apr 4, 2022 2:04 PM Checked By: Joohwan Jung

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
11	M11	N87	N88			Perimeter	Beam	None	A500 Gr. C	Typical
12	M12	N73	N74			Perimeter	Beam	None	A500 Gr. C	Typical
13	M13	N4	N49			Cross Arm	Beam	None	A36 Gr.36	Typical
14	M14	N4	N50		180	Cross Arm	Beam	None	A36 Gr.36	Typical
15	M15	N13	N51			Cross Arm	Beam	None	A36 Gr.36	Typical
16	M16	N13	N52		180	Cross Arm	Beam	None	A36 Gr.36	Typical
17	M17	N22	N53			Cross Arm	Beam	None	A36 Gr.36	Typical
18	M18	N22	N54		180	Cross Arm	Beam	None	A36 Gr.36	Typical
19	M19	N3	N1			Arm	Beam	None	A500 Gr. C	Typical
20	M20	N12	N11			Arm	Beam	None	A500 Gr. C	Typical
21	M21	N21	N20			Arm	Beam	None	A500 Gr. C	Typical
22	M22	N42	N41		180	Support rail co	Beam	None	A36 Gr.36	Typical
23	M23	N40	N39		180	Support rail co	Beam	None	A36 Gr.36	Typical
24	M24	N44	N43		180	Support rail co	Beam	None	A36 Gr.36	Typical
25	M25	N115	N116			Support rail	Beam	None	A500 Gr. C	Typical
26	M26	N117	N118			Support rail	Beam	None	A500 Gr. C	Typical
27	M27	N97	N98			Support rail	Beam	None	A500 Gr. C	Typical
28	M28	N69	N70			Mount Pipes		None	A500 Gr. C	Typical
29	M29	N80	N82			Mount Pipes		None	A500 Gr. C	Typical
30	M30	N79	N81			Mount Pipes		None	A500 Gr. C	Typical
31	<u>M31</u>	N94	N96			Mount Pipes		None	A500 Gr. C	. , ,
32	M32	N93	N95			Mount Pipes		None	A500 Gr. C	Typical
33	M33	N105	N106			Mount Pipes		None	A500 Gr. C	Typical
34	M34	N111	N112			Mount Pipes		None	A500 Gr. C	Typical
35	M35	N36	N38			Mount Pipes		None	A500 Gr. C	Typical
36	M36	N35	N37			Mount Pipes		None		
37	M37	N32	N46			RIGID	None	None	RIGID	Typical
38	M38	N31	N45 N47			RIGID	None	None None	RIGID	Typical
39 40	M39 M40	N33 N34	N48			RIGID RIGID	None None	None	RIGID RIGID	Typical
41	M41	N56	N55			RIGID	None	None None	RIGID	Typical Typical
42	M42	N54	N55			RIGID	None	None	RIGID	Typical
43	M43	N58	N57			RIGID	None	None	RIGID	Typical
44	M44	N50	N57			RIGID	None	None	RIGID	Typical
45	M45	N60	N59			RIGID	None	None	RIGID	Typical
46	M46	N52	N59			RIGID	None	None	RIGID	Typical
47	M47	N62	N61			RIGID	None	None	RIGID	Typical
48	M48	N51	N61			RIGID	None	None	RIGID	Typical
49	M49	N64	N63			RIGID	None	None	RIGID	Typical
50	M50	N53	N63			RIGID	None	None	RIGID	Typical
51	M51	N66	N65			RIGID	None	None	RIGID	Typical
52	M52	N49	N65			RIGID	None	None	RIGID	Typical
53	M53	N67	N71			RIGID	None	None	RIGID	Typical
54	M54	N68	N72			RIGID	None	None	RIGID	Typical
55	M55	N76	N84			RIGID	None	None	RIGID	Typical
56	M56	N75	N83			RIGID	None	None	RIGID	Typical
57	M57	N77	N85			RIGID	None	None	RIGID	Typical
58	M58	N78	N86			RIGID	None	None	RIGID	Typical
59	M59	N90	N100			RIGID	None	None	RIGID	Typical
60	M60	N89	N99			RIGID	None	None	RIGID	Typical
61	M61	N91	N101			RIGID	None	None	RIGID	Typical
62	M62	N92	N102			RIGID	None	None	RIGID	Typical
63	M63	N103	N107			RIGID	None	None	RIGID	Typical
64	M64	N104	N108			RIGID	None	None	RIGID	Typical
65	M65	N109	N113			RIGID	None	None	RIGID	Typical
66	M66	N110	N114			RIGID	None	None	RIGID	Typical
67	M67	N121	N123			RIGID	None	None	RIGID	Typical

: Black & Veatch Corp.: Jeerawadee Jirapo: 406642.6056: 842863 Risa Model

Apr 4, 2022 2:04 PM

Checked By: Joohwan Jung

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
68	M68	N120	N122			RIGID	None	None	RIGID	Typical
69	M69	N125	N119			RIGID	None	None	RIGID	Typical
70	M70	N126	N124			RIGID	None	None	RIGID	Typical
71	M71	N134	N136			RIGID	None	None	RIGID	Typical
72	M72	N133	N135			RIGID	None	None	RIGID	Typical
73	M73	N138	N132			RIGID	None	None	RIGID	Typical
74	M74	N139	N137			RIGID	None	None	RIGID	Typical
75	M75	N142	N144			RIGID	None	None	RIGID	Typical
76	M76	N141	N143			RIGID	None	None	RIGID	Typical
77	M77	N146	N140			RIGID	None	None	RIGID	Typical
78	M78	N147	N145			RIGID	None	None	RIGID	Typical

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat	Analysis	Inactive	Seismic
1	M1	BenPIN	BenPIN			_	Yes	Default	·		None
2	M2	BenPIN	BenPIN				Yes	Default			None
3	M3	BenPIN	BenPIN				Yes	Default			None
4	M4						Yes				None
5	M5						Yes				None
6	M6						Yes				None
7	M7						Yes				None
8	M8						Yes				None
9	M9						Yes				None
10	M10						Yes				None
11	M11						Yes				None
12	M12						Yes				None
13	M13						Yes	Default			None
14	M14						Yes	Default			None
15	M15						Yes	Default			None
16	M16						Yes	Default			None
17	M17						Yes	Default			None
18	M18						Yes	Default			None
19	M19						Yes				None
20	M20						Yes				None
21	M21						Yes	Default			None
22	M22	00000X	00000X				Yes				None
23	M23	00000X	00000X				Yes				None
24	M24	00000X					Yes	Default			None
25	M25						Yes				None
26	M26						Yes				None
27	M27						Yes				None
28	M28						Yes	** NA **	+y+3		None
29	M29						Yes	** NA **	+y+3		None
30	M30						Yes	** NA **	+y+3		None
31	M31						Yes	** NA **	+y+3		None
32	M32						Yes	** NA **	+y+3		None
33	M33						Yes	** NA **	+y+3		None
34	M34						Yes	** NA **	+y+3		None
35	M35						Yes	** NA **	+y+3		None
36	M36						Yes	** NA **	+y+3		None
37	M37						Yes	** NA **			None
38	M38							** NA **			None
39	M39						Yes	** NA **			None
40	M40						Yes	** NA **			None
41	M41	BenPIN					Yes	** NA **			None

: Black & Veatch Corp.: Jeerawadee Jirapo: 406642.6056: 842863 Risa Model

Apr 4, 2022 2:04 PM

Checked By: Joohwan Jung

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl RatAnalysis	Inactive	Seismic
42	M42						Yes	** NA **		None
43	M43	BenPIN					Yes	** NA **		None
44	M44							** NA **		None
45	M45	BenPIN					Yes	** NA **		None
46	M46						Yes	** NA **		None
47	M47	BenPIN					Yes	** NA **		None
48	M48						Yes	** NA **		None
49	M49	BenPIN					Yes	** NA **		None
50	M50						Yes	** NA **		None
51	M51	BenPIN					Yes	** NA **		None
52	M52						Yes	** NA **		None
53	M53						Yes	** NA **		None
54	M54						Yes	** NA **		None
55	M55						Yes	** NA **		None
56	M56						Yes	** NA **		None
57	M57						Yes	** NA **		None
58	M58						Yes	** NA **		None
59	M59						Yes	** NA **		None
60	M60						Yes	** NA **		None
61	M61						Yes	** NA **		None
62	M62						Yes	** NA **		None
63	M63						Yes	** NA **		None
64	M64						Yes	** NA **		None
65	M65						Yes	** NA **		None
66	M66						Yes	** NA **		None
67	M67						Yes	** NA **		None
68	M68						Yes	** NA **		None
69	M69						Yes	** NA **		None
70	M70						Yes	** NA **		None
71	M71						Yes	** NA **		None
72	M72						Yes	** NA **		None
73	M73						Yes	** NA **		None
74	M74						Yes	** NA **		None
75	M75						Yes	** NA **		None
76	M76						Yes	** NA **		None
77	M77						Yes	** NA **		None
78	M78						Yes	** NA **		None

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft]	Lcomp bot[ft]	L-torqu	. Kyy	Kzz	Cb	Function
1	M1	Perimeter C	3.5									Lateral
2	M2	Perimeter C	3.5									Lateral
3	M3	Perimeter C	3.5									Lateral
4	M4	Grating Angle	2.275									Lateral
5	M5	Grating Angle	2.275									Lateral
6	M6	Grating Angle										Lateral
7	M7	Grating Angle										Lateral
8	M8	Grating Angle	2.275									Lateral
9	M9	Grating Angle	2.275									Lateral
10	M10	Perimeter	8	2.773	3.5							Lateral
11	M11	Perimeter	8	2.773	3.5							Lateral
12	M12	Perimeter	8	2.773	3.5							Lateral
13	M13	Cross Arm	2.75									Lateral
14	M14	Cross Arm	2.75									Lateral
15	M15	Cross Arm	2.75									Lateral

Black & Veatch Corp.Jeerawadee Jirapo406642.6056842863 Risa Model

Apr 4, 2022 2:04 PM

Checked By: Joohwan Jung

Hot Rolled Steel Design Parameters (Continued)

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft]	Lcomp bot[ft]	L-torqu	. Kyy	Kzz	Cb	Function
16	M16	Cross Arm	2.75									Lateral
17	M17	Cross Arm	2.75									Lateral
18	M18	Cross Arm	2.75									Lateral
19	M19	Arm	3.333									Lateral
20	M20	Arm	3.333									Lateral
21	M21	Arm	3.333									Lateral
22	M22	Support rail	3.5									Lateral
23	M23	Support rail	3.5									Lateral
24	M24	Support rail	3.5									Lateral
25	M25	Support rail	10		3.5							Lateral
26	M26	Support rail	10		3.5							Lateral
27	M27	Support rail	10		3.5							Lateral
28	M28	Mount Pipes	8									Lateral
29	M29	Mount Pipes	8									Lateral
30	M30	Mount Pipes	8									Lateral
31	M31	Mount Pipes	8									Lateral
32	M32	Mount Pipes	8									Lateral
33	M33	Mount Pipes	8									Lateral
34	M34	Mount Pipes	8									Lateral
35	M35	Mount Pipes	8									Lateral
36	M36	Mount Pipes	8									Lateral

Member Area Loads (BLC 1 : DL)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[psf]
1	N17	N16	N19	N18	Υ	Two Way	-10
2	N8	N7	N10	N9	Υ	Two Way	-10
3	N26	N25	N28	N27	Υ	Two Way	-10

Member Area Loads (BLC 28 : Ice DL)

		Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[psf]
•	1	N17	N16	N19	N18	Υ	Two Way	-7.888
2	2	N8	N7	N10	N9	Υ	Two Way	-7.888
(3	N26	N25	N28	N27	Υ	Two Way	-7.888

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	DL	DĽ		-1		19			3	,
2	Maintenance LL - LV	LL				1				
3	Installation LL - LM	LL				1				
4	Wind - 0 Deg (X)	WL				19		33		
5	Wind - 30 Deg (X)	WL				19		33		
6	Wind - 60 Deg (X)	WL				19		33		
7	Wind - 90 Deg (X)	WL				19		33		
8	Wind - 120 Deg (X)	WL				19		33		
9	Wind - 150 Deg (X)	WL				19		33		
10	Wind - 180 Deg (X)	WL				19		33		
11	Wind - 210 Deg (X)	WL				19		33		
12	Wind - 240 Deg (X)	WL				19		33		
13	Wind - 270 Deg (X)	WL				19		33		
14	Wind - 300 Deg (X)	WL				19		33		
15	Wind - 330 Deg (X)	WL				19		33		
16	Wind - 0 Deg (Z)	WL				19		33		
17	Wind - 30 Deg (Z)	WL				19		33		

: Black & Veatch Corp.: Jeerawadee Jirapo: 406642.6056 : 842863 Risa Model

Apr 4, 2022 2:04 PM Checked By: Joohwan Jung

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
18	Wind - 60 Deg (Z)	WL				19		33		
19	Wind - 90 Deg (Z)	WL				19		33		
20	Wind - 120 Deg (Z)	WL				19		33		
21	Wind - 150 Deg (Z)	WL				19		33		
22	Wind - 180 Deg (Z)	WL				19		33		
23	Wind - 210 Deg (Z)	WL				19		33		
24	Wind - 240 Deg (Z)	WL				19		33		
25	Wind - 270 Deg (Z)	WL				19		33		
26	Wind - 300 Deg (Z)	WL				19		33		
27	Wind - 330 Deg (Z)	WL				19		33		
28	Ice DL	DL				19		33	3	
29	Ice Wind - 0 Deg (X)	WL				19		33		
30	Ice Wind - 30 Deg (X)	WL				19		33		
31	Ice Wind - 60 Deg (X)	WL				19		33		
32	Ice Wind - 90 Deg (X)	WL				19		33		
33	Ice Wind - 120 Deg (X)	WL				19		33		
34	Ice Wind - 150 Deg (X)	WL				19		33		
35	Ice Wind - 180 Deg (X)	WL				19		33		
36	Ice Wind - 210 Deg (X)	WL				19		33		
37	Ice Wind - 240 Deg (X)	WL				19		33		
38	Ice Wind - 270 Deg (X)	WL				19		33		
39	Ice Wind - 300 Deg (X)	WL				19		33		
40	Ice Wind - 330 Deg (X)	WL				19		33		
41	Ice Wind - 0 Deg (Z)	WL				19		33		
42	Ice Wind - 30 Deg (Z)	WL				19		33		
43	Ice Wind - 60 Deg (Z)	WL				19		33		
44	Ice Wind - 90 Deg (Z)	WL				19		33		
45	Ice Wind - 120 Deg (Z)	WL				19		33		
46	Ice Wind - 150 Deg (Z)	WL				19		33		
47	Ice Wind - 180 Deg (Z)	WL				19		33		
48	Ice Wind - 210 Deg (Z)	WL				19		33		
49	Ice Wind - 240 Deg (Z)	WL				19		33		
50	Ice Wind - 270 Deg (Z)	WL				19		33		
51	Ice Wind - 300 Deg (Z)	WL				19		33		
52		WL				19		33		
	BLC 1 Transient Area	None						9		
54	BLC 28 Transient Are	None						9		

Load Combinations

	Description	S	P	SR	.B	. Fa	В	Fa	.B	Fa	В	Fa												
1	WIND LOAD COMBOS (135 MPH)																							
2	1.2DL + WL (0 DEG)	Yes	Υ		1	1.2	4	1	16	1														
3	1.2DL + WL (30 DEG)	Yes	Υ		1	1.2	5	1	17	1														
4	1.2DL + WL (60 DEG)	Yes	Υ		1	1.2	6	1	18	1														
5	1.2DL + WL (90 DEG)	Yes	Υ		1	1.2	7	1	19	1														
6	1.2DL + WL (120 DEG)	Yes	Υ		1	1.2	8	1	20	1														
7	1.2DL + WL (150 DEG)	Yes	Υ		1	1.2	9	1	21	1														
8	1.2DL + WL (180 DEG)	Yes	Υ		1	1.2	10	1	22	1														
9	1.2DL + WL (210 DEG)	Yes	Υ		1	1.2	11	1	23	1														
10	1.2DL + WL (240 DEG)	Yes	Υ		1	1.2	12	1	24	1														
11	1.2DL + WL (270 DEG)	Yes	Υ		1	1.2	13	1	25	1														
12	1.2DL + WL (300 DEG)	Yes	Υ		1	1.2	14	1	26	1														
13	1.2DL + WL (330 DEG)	Yes	Υ		1	1.2	15	1	27	1														
14																								
15	MOUNT LOAD COMBOS (30 MPH)																							

: Black & Veatch Corp.: Jeerawadee Jirapo: 406642.6056: 842863 Risa Model

Apr 4, 2022 2:04 PM

Checked By: Joohwan Jung

Load Combinations (Continued)

	Description	S	P S	8RB	3	Fa	В	Fa	.B	Fa	.В	Fa	В	Fa	В	Fa	В	Fa	.B	Fa	В	Fa	.B	Fa
16	1.4DL	Yes			1	1.4																		
17	1.2DL + 1.5LV	Yes	Υ		1	1.2	2	1.5																
18	1.2DL + 1.5LM + WL (0 DEG)	Yes	Υ		1	1.2	3	1.5	4	.049	16	.049												
19	1.2DL + 1.5LM + WL (30 DEG)	Yes	Υ		1	1.2	3	1.5	5	.049	17	.049												
20	1.2DL + 1.5LM + WL (60 DEG)	Yes	Υ		1	1.2	3	1.5	6	.049	18	.049												
21	1.2DL + 1.5LM + WL (90 DEG)	Yes	Υ		1	1.2	3	1.5	7	.049	19	.049												
22	1.2DL + 1.5LM + WL (120 DEG)	Yes	Υ		1	1.2	3	1.5	8	.049	20	.049												
23	1.2DL + 1.5LM + WL (150 DEG)	Yes	Υ		1	1.2	3	1.5	9	.049	21	.049												
24	1.2DL + 1.5LM + WL (180 DEG)	Yes	Υ		1	1.2	3	1.5	10	.049	22	.049												
25	1.2DL + 1.5LM + WL (210 DEG)	Yes	Υ		1	1.2	3	1.5	11	.049	23	.049												
26	1.2DL + 1.5LM + WL (240 DEG)	Yes	Υ									.049												
27	1.2DL + 1.5LM + WL (270 DEG)	Yes	Υ			1.2						.049												
28	1.2DL + 1.5LM + WL (300 DEG)	Yes	Υ		1	1.2	3	1.5	14	.049	26	.049												
29	1.2DL + 1.5LM + WL (330 DEG)	Yes	Υ		1	1.2	3	1.5	15	.049	27	.049												
30																								
31	ICE LOAD COMBOS (1", 50 MPH)																							
32	1.2DL + Ice DL + Ice WL (0 DEG)	Yes	Υ		1	1.2	28	1	29	1	41	1												
33	1.2DL + Ice DL + Ice WL (30 DEG)	Yes	Υ			1.2			30		42	1												
34	1.2DL + Ice DL + Ice WL (60 DEG)	Yes	Υ		1	1.2	28	1	31	1	43	1												
35	1.2DL + Ice DL + Ice WL (90 DEG)	Yes	Υ			1.2			32	1	44	1												
36	1.2DL + Ice DL + Ice WL (120 DEG)	Yes	Υ			1.2			33		45													
37	1.2DL + Ice DL + Ice WL (150 DEG)	Yes	Υ			1.2			34		46													
38	1.2DL + Ice DL + Ice WL (180 DEG)	Yes	Υ			1.2			35		47													
39	1.2DL + Ice DL + Ice WL (210 DEG)	Yes	Υ			1.2			36		48													
40	1.2DL + Ice DL + Ice WL (240 DEG)					1.2			37		49													
41	1.2DL + Ice DL + Ice WL (270 DEG)					1.2			38		50													
42	1.2DL + Ice DL + Ice WL (300 DEG)					1.2			39		51													
43	1.2DL + Ice DL + Ice WL (330 DEG)	Yes	Υ						40		52													

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-in]	LC	MY [k-in]	LC	MZ [k-in]	LC
1	N20	max	1209.726	2	2297.564	32	2609.383	5	12.011	41	38.685	5	22.779	8
2		min	-1218.085	8	-412.071	8	-2606.791	11	-2.697	5	-38.551	11	-70.016	2
3	N11	max	2335.444	2	2287.392	36	1523.769	4	55.734	6	39.193	9	43.613	36
4		min	-2328.872	8	-411.864	12	-1536.495	10	-21.232	12	-39.086	3	-8.317	12
5	N1	max	2259.727	13	2287.054	40	1735.688	6	18.509	4	39.062	13	29.25	10
6		min	-2262.14	7	-412.389	4	-1725.325	12	-61.487	40	-39.142	7	-13.553	4
7	Totals:	max	5634.534	2	6002.95	33	5591.431	5						
8		min	-5634.55	8	2507.168	9	-5591.421	11						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[ft]	LC	Shear	Loc[ft]	Dir	LC	phi*Pnc	phi*Pnt	.phi*Mn	phi*MnCb	Egn
1	M1	PL6.5x0.375	.381	1.75	10	.171	3.026	V	6	3658.14	78975	7.404	93.995 1	H1-1b
2	M2	PL6.5x0.375	.396	1.75	2	.165	3.026	V	10	3658.14	78975	7.404	94.305 1	H1-1b
3	M3	PL6.5x0.375	.401	1.75	6	.174	3.026	ý	2	3658.14	78975	7.404	94.788 1	H1-1b
4	M4	L2x2x4	.347	0	10	.026	0	У	4	23539	30585.6	8.291	18.922 2	H2-1
5	M5	L2x2x4	.347	0	10	.031	0	z	4	23539	30585.6	8.291	18.922 2	H2-1
6	M6	L2x2x4	.390	0	6	.028	0	У	12	23539	30585.6	8.291	18.922 2	H2-1
7	M7	L2x2x4	.310	0	12	.031	2.275	У	33	23539	30585.6	8.291	18.922 2	H2-1
8	M8	L2x2x4	.363	0	2	.026	0	У	8	23539	30585.6	8.291	18.922 2	H2-1
9	M9	L2x2x4	.323	0	8	.030	0	Z	8	23539	30585.6	8.291	18.922 2	H2-1
10	M10	HSS3.500x0.165	.180	2.583	2	.070	4		8	65728	71569	76.038	76.038 1	H1-1b
11	M11	HSS3.500x0.165	.191	2.583	6	.085	4		12	65728	71569	76.038	76.038 1	H1-1b
12	M12	HSS3.500x0.165	.176	2.583	10	.073	4		4	65728	71569	76.038	76.038 1	H1-1b

: Black & Veatch Corp.: Jeerawadee Jirapo: 406642.6056: 842863 Risa Model

Apr 4, 2022 2:04 PM

Checked By: Joohwan Jung

Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)

	Member	Shape	Code Check	Loc[ft]	LC	ShearLoc[ft]	Dir	LC	phi*Pnc	phi*Pnt	.phi*Mn .	.phi*Mn .	.Cb Eqn
13	M13	C3.38x2.06x0.25	.387	0	10	.049 2.349		34	47760	56700	26.434	69.023	1 H1-1b
14	M14	C3.38x2.06x0.25	.376	0	10	.040 2.349	Z	4	47760	56700	26.434	69.023	1H1-1b
15	M15	C3.38x2.06x0.25	.367	0	6	.047 2.349	У	42	47760	56700	26.434	69.023	1H1-1b
16	M16	C3.38x2.06x0.25	.392	0	6	.043 2.349	Z	12	47760				1H1-1b
17	M17	C3.38x2.06x0.25	.371	0	2	.047 2.349	У	38	47760	56700	26.434	69.023	1H1-1b
18	M18	C3.38x2.06x0.25	.373	0	2	.040 2.349	Z	8	47760	56700	26.434	69.023	1H1-1b
19	M19	HSS4X4X6	.304	3.333	12	.101 3.333	Z	7	188250	197892	264.546	264.546	1H1-1b
20	M20	HSS4X4X6	.306	3.333	7	.116 3.333	У	20	188250	197892	264.546	264.546	1H1-1b
21	M21	HSS4X4X6	.311	3.333	3	.099 3.333	Z	11	188250	197892	264.546	264.546	1H1-1b
22	M22	L6.6x4.46x0.25	.313	3.464	2	.035 3.5	Z	8	51170	87561	29.578	85.504	1 H2-1
23	M23	L6.6x4.46x0.25	.315	3.464	6	.036 3.5	Z	12	51170	87561	29.578	85.504	1 H2-1
24	M24	L6.6x4.46x0.25	.300	3.464	10	.035 3.5	Z	4	51170	87561	29.578	85.504	1 H2-1
25	M25	PIPE 2.5	.163	1.562	13	.078 1.458		2	22748	66654	56.718	56.718	1H1-1b
26	M26	PIPE 2.5	.156	8.437	3	.077 1.458		4	22748	66654	56.718	56.718	1H1-1b
27	M27	PIPE 2.5	.162	1.354	6	.077 8.646		3	22748	66654	56.718	56.718	1H1-1b
28	M28	PIPE 2.5	.251	2.167	7	.085 2.167		13	33487	66654	56.718	56.718	4H1-1b
29	M29	PIPE 2.5	.195	2.167	9	.092 2.167		2	33487	66654	56.718	56.718	3 H1-1b
30	M30	PIPE 2.5	.173	2.167	9	.090 2.167		10	33487	66654	56.718	56.718	4H1-1b
31	M31	PIPE 2.5	.184	2.167	5	.089 2.167		9	33487	66654	56.718	56.718	2 H1-1b
32	M32	PIPE 2.5	.191	2.167	5	.089 2.167		13	33487	66654	56.718	56.718	3 H1-1b
33	M33	PIPE 2.5	.255	2.167	3	.083 2.167		9	33487	66654	56.718	56.718	4 H1-1b
34	M34	PIPE 2.5	.239	2.167	11	.100 2.167		5	33487	66654	56.718	56.718	3 H1-1b
35	M35	PIPE 2.5	.172	2.167	13	.103 2.167		5	33487				3 H1-1b
36	M36	PIPE 2.5	.181	2.167	13	.090 2.167		2	33487				4H1-1b

: Black & Veatch Corp.: Jeerawadee Jirapo: 406642.6056 : 842863 Risa Model

Apr 4, 2022 2:02 PM Checked By: Joohwan Jung

Member End Reactions

	LC	Member Label	Me	Axial[k]	y Shear[k]	z Shear[k]	Torque[k-in]	y-y Moment[k-in]	z-z Moment[k-in]
1	3	M21	1	366	-1.354	.059	-3.415	.055	232
2			J	-1.077	-1.945	-1.184	-3.012	-17.421	64.151

April 4, 2022 CCI BU No: 842863 Page 9

APPENDIX D ADDITIONAL CALCUATIONS

Site Name: GRISWOLD CENTRAL (BOBOS01001A) Date: 4/4/2022

Work Order: 842863.584378 Verified By: Joohwan Jung

BLACK & VEATCH Title: MOUNT ANALYSIS REPORT

Rectangular Weld Analysis for Antenna Mount to Tower Connection

The forces acting on the plate are from M21 from RISA-3D Load Combination 3

Base Metal Properties:

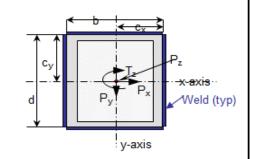
Applied Loads:								
P _x =	1.184	kip	M _x =	64.151	kip-in			
P _y =	1.945	kip	M _y =	17.421	kip-in			
P _z =	1.077	kip	$M_z =$	3.012	kip-in			
φF _w =	1.392	(^{kip} / _{in})	/(¹ / ₁₆ " weld) AISC E	- Eq. (8-2a)			

ase metal i roperties.						
d _(arm) =	4	in				
b _(arm) =		in t				
F _{y(arm)} =		ksi F _y				
F _{u(arm)} =	58	ksi F				

		_
t _(arm) =	0.25	in
t _(plate) =	0.625	in
F _{y(plate)} =	50	ksi
F _{u(plate)} =	65	ksi

Design Method: LRFD

Date: 4/4/2022


CALCULATIONS

Distance from y-axis to Edge of Weld, c_x =	2	in
Distance from x-axis to Edge of Weld, $c_y =$	2	in
Total Length of Weld in x-direction, $L_x =$	8	in
Total Length of Weld in y-direction, $L_y =$	8	in
Total Length of Weld, $L_w =$	16	in
Section Modulus of Weld About x-axis, $S_x =$	21.333	in ²
Section Modulus of Weld About y-axis, $S_y =$	21.333	in ²
Polar Moment of Inertia About z-axis, $I_z =$	85.333	in ³
Shear Stress on x-axis of Weld, f_{vx} =	0.148	kip/in
Shear Stress on y-axis of Weld, f_{vy} =	0.243	kip/in
Torsional Stress on x-axis of Weld, f_{tx} =	0.071	kip/in
Torsional Stress on y-axis of Weld, f_{ty} =	0.071	kip/in
Axial Stress on Weld, $f_a =$	0.067	kip/in
Bending Stress about x-axis of Weld, f_{bx} =	3.007	kip/in
Bending Stress about y-axis of Weld, $f_{\rm by}$ =	0.817	kip/in
Total Force Acting in x-direction, $f_1 =$	0.219	kip/in

Total Force Acting in y-direction, f_2 =

Total Force Acting in z-direction, $f_3 =$

Resultant Force on Weld, $f_r =$

Weld Strength Check

0.314

3.891

3.91

kip/in

kip/in

kip/in

Existing Weld Size, t _w =	0.5	ir
Weld Stress Ratio, SR _w =	35.11%	

Base Metal Check

Arm Tensile Rupture Strength, $\phi T_{arm} = 174$ kip

Arm Shear Rupture Strength, $\phi V_{arm} = 41.4$ kip

Plate Tensile Rupture Strength, $\phi T_{plate} = 487.5$ kip

Plate Shear Rupture Strength, $\phi V_{plate} = 112.5$ kip

Base Metal Stress Ratio, $SR_b = 35.78\%$

P _x = Majo	r axis load (x-	axis)	P _y = Minor axis load (y	-axis)	$P_z = Axi$	al Load (z-axis)	F _{EXX} = 70 ksi Assumed
$M_x = Mon$	nent about x-	axis	M _y = Moment about y	-axis	$T_z = Tor$	que about z-axis	
$c_x = b/2$	$L_y = 2d$	$f_{vy} = P_y/L_y$	$f_{by} = M_y/S_y$	$S_y = b/3($	3d + b)	$f_1 = f_{vx} + f_{tx}$	$f_r = (f_1^2 + f_2^2 + f_3^2)^{1/2}$
$c_y = d/2$	$L_w = L_x + L_y$	$f_a = P_z/L_w$	$f_{tx} = T_z(c_y/I_z)$	$S_x = d/3($	3b + d)	$f_2 = f_{vy} + f_{ty}$	$\phi T = 0.75(F_u t L_w)$
$L_x = 2b$	$f_{vx} = P_x/L_x$	$f_{bx} = M_x/S$	$f_{ty} = T_z(c_x/I_z)$	$I_z = [(b +$	d) ³]/6	$f_3 = f_a + f_{bx} + f_{by}$	$\phi V = 0.75(0.6F_y tL_x)$
	$SR_T = f_3 L_w / \phi$	T _{plate}		$SR_w = f_r /$	(φF _w t _w 16)		$SR_V = f_2 L_x / \Phi V_{plate}$

Computed By: Jeerawadee J. Client: CCI

Site Name: GRISWOLD CENTRAL (BOBOS01001A)

Verified By: Joohwan Jung Work Order: 842863.584378

Title: MOUNT ANALYSIS REPORT Date: 4/4/2022

Bolt Analysis of Antenna Mount Arm to Tower Connection

The forces acting on the plate are from M21 from RISA-3D Load Combination 3

Applied Loads:						
P _x =	1.184	kip				
P _y =	1.945	kip				
$P_z =$	1.077	kip				
M _x =	64.151	kip-in				
M _y =	17.421	kip-in				
M _z =	3.012	kip-in				

Bolt Properties:

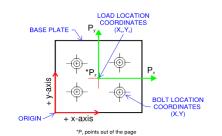
oit i roperties.						
d _b =	0.625	in				
A _b =	0.307	in ²				
N _b =	4					

Load Location Coordinates:

.oad Location Coordin					
X _o =	4.5	in			
Y _o =	4.5	in			

Design Method: LRFD

Date: 4/4/2022


Bolt Strengt	h: A:	325	AISC Table (J3.2)
F _{nt} =	90	ksi	
F _{nv} =	54	ksi	

Bolt Location Coordinates (in):

Bolt #	X_b	Y_b
#1	1	1
#2	1	8
#3	8	8
#4	8	1
#2 #3	1 8	8

CALCULATIONS

Bolt Group Centroid y-coordinate, Y_c = 4.5 Bolt Group Centroid x-coordinate, X_c = 4.5 in Load Eccentricity in x-direction, $e_x =$ 0 in Load Eccentricity in y-direction, e_v = 0 in Total Moment Including Load Eccentricity, ΣM_x = 64.15 kip-in Total Moment Including Load Eccentricity, $\Sigma M_v =$ 17.42 kip-in Total Moment Including Load Eccentricity, ΣM, = 3.01 kip-in

Bolt #	Centroid Dist. (in)		Polar Mom	ents of Inert	Force per Bolt (kip)		
	d_x	d_{y}	I _x	I_y	I_{xy}	Tension	Shear
#1	-3.5	-3.5	12.25	12.25	12.25	3.069	0.553
#2	-3.5	3.5	12.25	12.25	-12.25	6.096	0.423
#3	3.5	3.5	12.25	12.25	12.25	3.607	0.623
#4	3.5	-3.5	12.25	12.25	-12.25	5.557	0.718
	='	CLINA	40	40	Λ		

Bolt Shear Strength Check

Available Shear Strength per Bolt, $\phi V_n =$	12.43	kip	AISC Eq. (J3-1)
Bolt Shear Stress Ratio, $SR_V =$	5.78%	1	

Bolt Tensile Strength Check

Nom. Tensile Stress (Including Effects of Shear), F' _{nt} =	90	ksi	AISC Eq. (J3-3a)
Available Tensile Strength per Bolt, $\phi T_n =$	20.72	kip	AISC Eq. (J3-2)
Bolt Tension Stress Ratio, $SR_T =$	29.42%		

P _x = Major Axis Load (X-Axis)	M _x = Moment About X-Axis	d _b = Diameter of Bolt
P _y = Minor Axis Load (Y-Axis)	M _y = Moment About Y-Axis	A _b = Cross-Sectional Ar

Cross-Sectional Area of Bolt

 N_b = Number of Bolts

$$\begin{split} & P_z = \text{Axial Load } (Z-\text{Axis}) & M_z = \text{Torque About } Z-\text{Axis} & N_b = \text{Number of Bolts} \\ & d_x = Y_b - Y_c & I_{xy} = d_x d_y & SR_v = V_u/\varphi V_n & F'_{nt} = 1.3F_{nt} - (F_{nt}/\varphi F_{nv})(V_u/A_b) \leq F_{nt} \\ & d_y = X_b - X_c & \Sigma M_x = M_x + P_z(e_y) & SR_T = T_u/\varphi T_n & T_{ui} = \Sigma P_z/N_b - [(\Sigma M_x \Sigma I_y + \Sigma M_y \Sigma I_{xy})/(\Sigma I_x \Sigma I_y - \Sigma I_{xy}^2)]d_x \\ & I_x = d_y^2 & \Sigma M_y = M_y + P_z(e_x) & \varphi V_n = 0.75F_{nv}A_b & + [(\Sigma M_y \Sigma I_x + \Sigma M_x \Sigma I_{xy})/(\Sigma I_x \Sigma I_y - \Sigma I_{xy}^2)]d_y \\ & I_y = d_x^2 & \Sigma M_z = M_z + P_x(e_y) + P_y(e_x) & \varphi T_n = 0.75F'_{nt}A_b & V_{ui} = [(\Sigma P_x/N_b - \Sigma M_z d_y/(\Sigma I_x + \Sigma I_y))^2 + (\Sigma P_y/N_b - \Sigma M_z d_y/(\Sigma I_x + \Sigma I_y))^2]^{1/2} \end{split}$$

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: 842863

BOBOS01001A
31 Yurechko Drive
Jewett City, Connecticut 06351

May 25, 2022

EBI Project Number: 6222003244

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of FCC general population allowable limit:	10.98%			

May 25, 2022

Attn: Dish Wireless

Emissions Analysis for Site: 842863 - BOBOS01001A

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at 31 Yurechko Drive in Jewett City, Connecticut for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 31 Yurechko Drive in Jewett City, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 4) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 5) The antennas used in this modeling are the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector A, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector B, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 6) The antenna mounting height centerline of the proposed antennas is 109 feet above ground level (AGL).
- 7) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 8) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	Α	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21
Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz
Gain:	11.35 dBd / 15.75 dBd	Gain:	11.35 dBd / 15.75 dBd	Gain:	11.35 dBd / 15.75 dBd
Height (AGL):	109 feet	Height (AGL):	109 feet	Height (AGL):	109 feet
Channel Count:	8	Channel Count:	8	Channel Count:	8
Total TX Power (W):	280.00 Watts	Total TX Power (W):	280.00 Watts	Total TX Power (W):	280.00 Watts
ERP (W):	1,424.17	ERP (W):	1,424.17	ERP (W):	1,424.17
Antenna A1 MPE %:	0.71%	Antenna B1 MPE %:	0.71%	Antenna C1 MPE %:	0.71%

environmental | engineering | due diligence

Site Composite MPE %					
Carrier MPE %					
Dish Wireless (Max at Sector A):	0.71%				
AT&T	10.27%				
Site Total MPE % :	10.98%				

Dish Wireless MPE % Per Sector					
Dish Wireless Sector A Total:	0.71%				
Dish Wireless Sector B Total:	0.71%				
Dish Wireless Sector C Total:	0.71%				
Site Total MPE % :	10.98%				

Dish Wireless Maximum MPE Power Values (Sector A)							
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE
Dish Wireless 600 MHz n71	4	110.82	109.0	1.50	600 MHz n71	400	0.38%
Dish Wireless 1900 MHz n70	4	245.22	109.0	3.32	1900 MHz n70	1000	0.33%
						Total:	0.71%

[•] NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)
Sector A:	0.71%
Sector B:	0.71%
Sector C:	0.71%
Dish Wireless Maximum MPE % (Sector A):	0.71%
Site Total:	10.98%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **10.98**% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320 West Henrietta, NY 14586

Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Tower Share Application

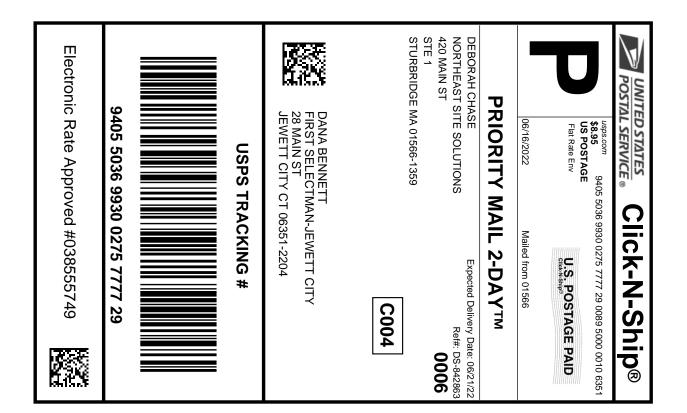
Crown Castle telecommunications site at:

31 YURECHKO DRIVE, JEWETT CITY, CT 06351

CCATT LLC ("Crown Castle") hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name: 842863/GRISWOLD CENTRAL

Customer Site ID: BOBOS01001A/


Site Address: 31 YURECHKO DRIVE, JEWETT CITY, CT 06351

By:

Richard Zajac
Site Acquisition Specialist

Exhibit H

Recipient Mailings

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0275 7777 29

565812739 06/16/2022 06/16/2022 Trans. #: Print Date: Ship Date: 06/21/2022 Delivery Date:

Priority Mail® Postage: Total:

\$8.95 \$8.95

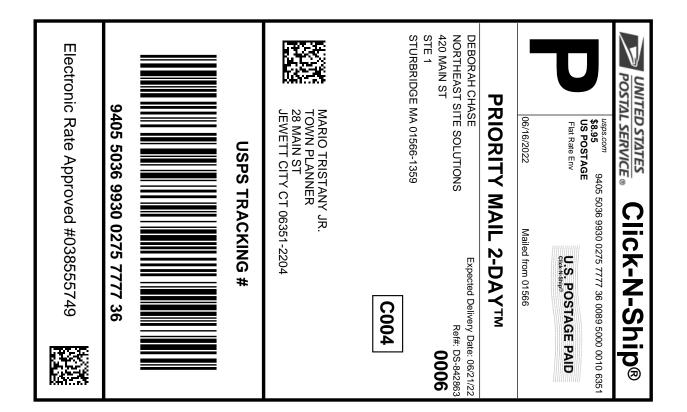
Ref#: DS-842863

From: **DEBORAH CHASE**

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1


STURBRIDGE MA 01566-1359

DANA BENNETT

FIRST SELECTMAN-JEWETT CITY

28 MAIN ST

JEWETT CITY CT 06351-2204

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0275 7777 36

565812739 06/16/2022 06/16/2022 Trans. #: Print Date: Ship Date: 06/21/2022 Delivery Date:

Priority Mail® Postage: Total:

\$8.95 \$8.95

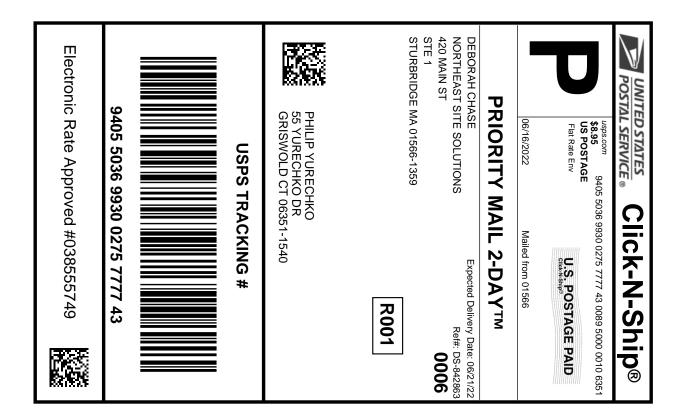
Ref#: DS-842863

From: **DEBORAH CHASE**

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1


STURBRIDGE MA 01566-1359

MARIO TRISTANY JR.

TOWN PLANNER

28 MAIN ST

JEWETT CITY CT 06351-2204

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0275 7777 43

565812739 06/16/2022 06/16/2022 Trans. #: Print Date: Ship Date: Delivery Date: 06/21/2022

Priority Mail® Postage: Total:

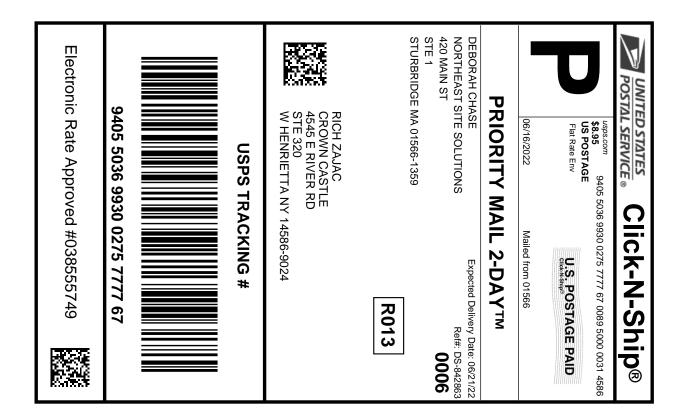
\$8.95 \$8.95

Ref#: DS-842863

From: **DEBORAH CHASE**

NORTHEAST SITE SOLUTIONS

420 MAIN ST


STE 1

STURBRIDGE MA 01566-1359

PHILIP YURECHKO

55 YURECHKO DR

GRISWOLD CT 06351-1540

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0275 7777 67

565812739 06/16/2022 06/16/2022 Trans. #: Print Date: Ship Date: 06/21/2022 Delivery Date:

Priority Mail® Postage: Total:

\$8.95 \$8.95

Ref#: DS-842863

From: **DEBORAH CHASE**

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

RICH ZAJAC

CROWN CASTLE 4545 E RIVER RD

STE 320

W HENRIETTA NY 14586-9024

FARMINGTON 210 MAIN ST FARMINGTON, CT 06032-9998 (800)275-8777

06/21/2022

09:33 AM

Product

Qty

Unit Price

\$0.00

Prepaid Mail

West Henrietta, NY 14586 Weight: 0 lb 2.00 oz

Acceptance Date: Tue 06/21/2022

Tracking #: 9405 5036 9930 0275 7777 67

Prepaid Mail

\$0.00

\$0.00

\$0.00

Jewett City, CT 06351 Weight: 0 lb 9.60 cz

Acceptance Date: Tue 06/21/2022

Tracking #: 9405 5036 9930 0275 7777 29

Prepaid Mail

Jewett City, CT 06351 Weight: 0 1b 9.70 oz

Acceptance Date:

Tue 06/21/2022

Tracking #: 9405 5036 9930 0275 7777 36

Prepaid Mail

Jewett City, CT 06351 Weight: 0 lb 11.70 oz

Acceptance Date:

Tue 06/21/2022

Tracking #: 9405 5036 9930 0275 7777 43

Grand Total:

\$0.00

Every household in the U.S. is now eligible to receive a third set of 8 free test kits.

Go to www.covidtests.gov *************

Preview your Mail Track your Packages
Sign up for FREE @
https://informeddelivery.usps.com

All sales final on stamps and postage. Refunds for guaranteed services only. Thank you for your business.

Tell us about your experience. Go to: https://postalexperience.com/Pos or scan this code with your mobile device,

