Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

May 17, 2022

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 12 (a/k/a 9) Sound Shore Drive, Greenwich, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an existing wireless telecommunications facility at the above-referenced property address (the "Property"). The facility consists of antennas and remote radio heads attached to a power-mount tower and associated equipment on the ground near the base of the power-mount. The power-mount structure was approved by the Siting Council ("Council") in June of 2000 (Petition No. 466). Cellco's use of the power-mount was approved by the Council in August of 2005 (EM-VER-157-090206). Copies of the Council's approvals are included in <u>Attachment 1</u>.

Cellco now intends to modify its facility by removing nine (9) existing antennas and installing three (3) new Samsung MT6407-77A antennas, two (2) CBRS antennas; four (4) new MX10FRO640 antennas and four (4) new MX06FRO660-03 antennas all on the existing t-arm antenna mounts. Cellco also intends to remove three (3) remote radio heads ("RRHs") and install six (6) new RRHs behind its antennas. A set of project plans showing Cellco's proposed facility modifications and new antennas and RRH specifications are included in <u>Attachment 2</u>.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Greenwich's Chief Elected Official and Land Use Officer.

Boston | Hartford | New York | Providence | Stamford | Albany | Los Angeles | Miami | New London | rc.com

Melanie A. Bachman, Esq. May 17, 2022 Page 2

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. The replacement antennas will be installed on Cellco's existing antenna mounts.

2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The installation of Cellco's new antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A cumulative General Power Density table for Cellco's modified facility is included in <u>Attachment 3</u>. The modified facility will be capable of providing Cellco's 5G wireless service.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. According to the attached Structural Analysis ("SA") and Mount Analysis ("MA"), the existing power mount tower, tower foundation and antenna mounts, with certain modifications, can support Cellco's proposed modifications. Copies of the SA and MA are included in <u>Attachment 4</u>.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and property owner is included in <u>Attachment 6</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Melanie A. Bachman, Esq. May 17, 2022 Page 3

Sincerely,

Kunie mu

Kenneth C. Baldwin

Enclosures

Copy to:

Fred Camillo, Greenwich First Selectman Katie DeLuca, Director of Planning and Zoning Connecticut Light & Power (Eversource), Property Owner Alex Tyurin, Verizon Wireless

ATTACHMENT 1

Petition No. 466 Voicestream Wireless Greenwich, Connecticut Staff Report June 20, 2000

On June 16, 2000, Connecticut Siting Council (Council) member Edward S. Wilensky, and Fred Cunliffe of Council staff met Voicestream Wireless (Voicestream) representatives J. Brendan Sharkey, Esq., Chetan Dharduk, and Haider Syed for inspection of a Connecticut Light & Power Company (CL&P) electric transmission line structure (no. 1280) located off Sound Shore Drive in Greenwich. Voicestream, with the agreement of CL&P, proposes to modify the transmission structure for telecommunications use and is petitioning the Council for a declaratory ruling that no Certificate of Environmental Compatibility and Public Need (Certificate) is required for the modification.

Voicestream proposes to attach a 7-inch diameter pipe extending the existing lattice structure height of 140 feet by 23 feet four inches for a total height of approximately 164 feet. A structural analysis concludes no additional reinforcement is necessary. Voicestream proposes to install two low profile antenna cluster mounts with centers of radiation at 161 feet and 152 feet 4 inches on the pipe and a 2-foot by 2-foot microwave antenna at the approximate 140-foot level of the structure. Voicestream proposes to place associated equipment cabinets on a concrete foundation within a 10.5-foot by 11.5-foot compound secured by a six-foot chain link fence. Since CL&P transmission line easement is limited to an aerial right-of-way, Voicestream will need to obtain a lease agreement with the Connecticut Department of Rail Transportation (ConnDOT) for underlying land use. Access to the CL&P structure would be from Sound Shore Drive over a ConnDOT easement. Utilities would be placed underground within this easement from an existing distribution pole located approximately 350 feet west of the proposed site.

Surrounding land uses include a CL&P substation and transmission lines, Town-owned water tank and abandoned power station, railroad right-of-way, and Interstate 95. Other existing transmission line structures in the area range in height from 95 feet to 140 feet AGL.

The Council approved Petition No. 399 on July 23, 1998 for Sprint to use structure no. 1281 just west of the proposed site and approved Petition No. 443 on February 2, 2000 for AT&T to use structure no. 1292 adjacent to the Cos Cob Substation. The zoning of the proposed site is Residential R-6. The nearest home is approximately 350 north across the railroad right-of-way of the site.

The worst case power density for the telecommunications operations at the site has been calculated to be less than 1.8% of the applicable standard for uncontrolled environments.

Voicestream contends that the proposed installation will not cause a substantial adverse environmental effect, and for this reason would not require a Certificate.

STATE OF CONNECTICUT CONNECTICUT SITING COUNCIL Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@po.state.ct.us

www.ct.gov/csc

August 25, 2005

Joey Lee Miranda, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597

RE: **EM-VER-057-050713** - Cellco Partnership d/b/a Verizon Wireless notice of intent to modify an existing telecommunications facility located at 9 Sound Shore Drive, Greenwich, Connecticut.

Dear Attorney Miranda:

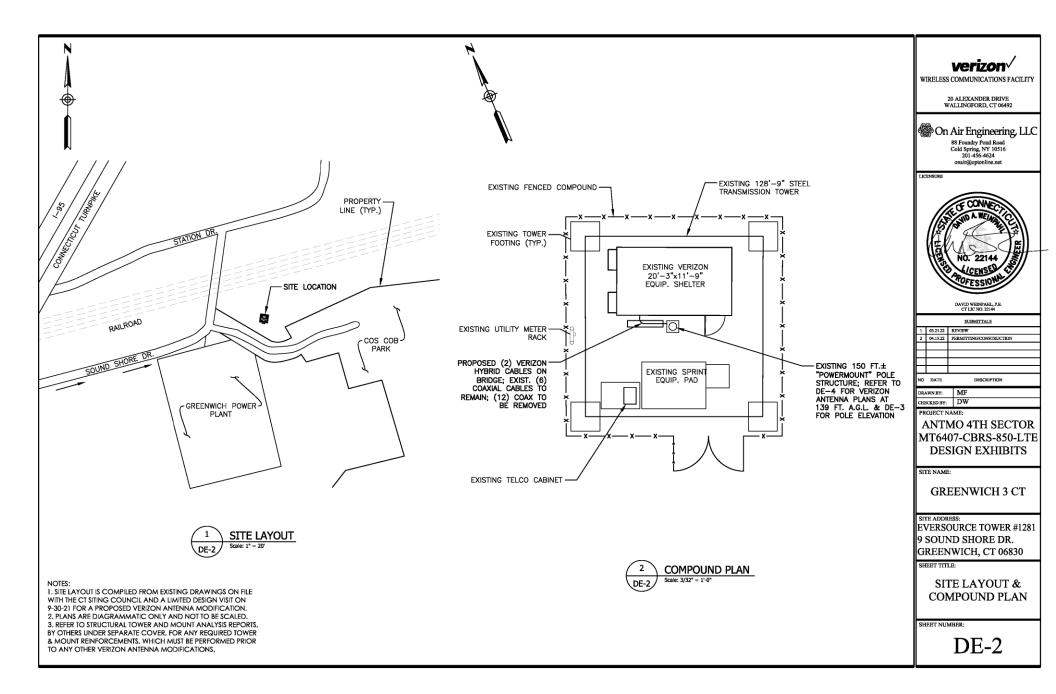
At a public meeting held on August 24, 2005, the Connecticut Siting Council (Council) acknowledged your notice to modify this existing telecommunications facility pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies with the condition that the recommendations noted on page 3 of the structural analysis report dated February 9, 2005 are implemented prior to the antenna installation.

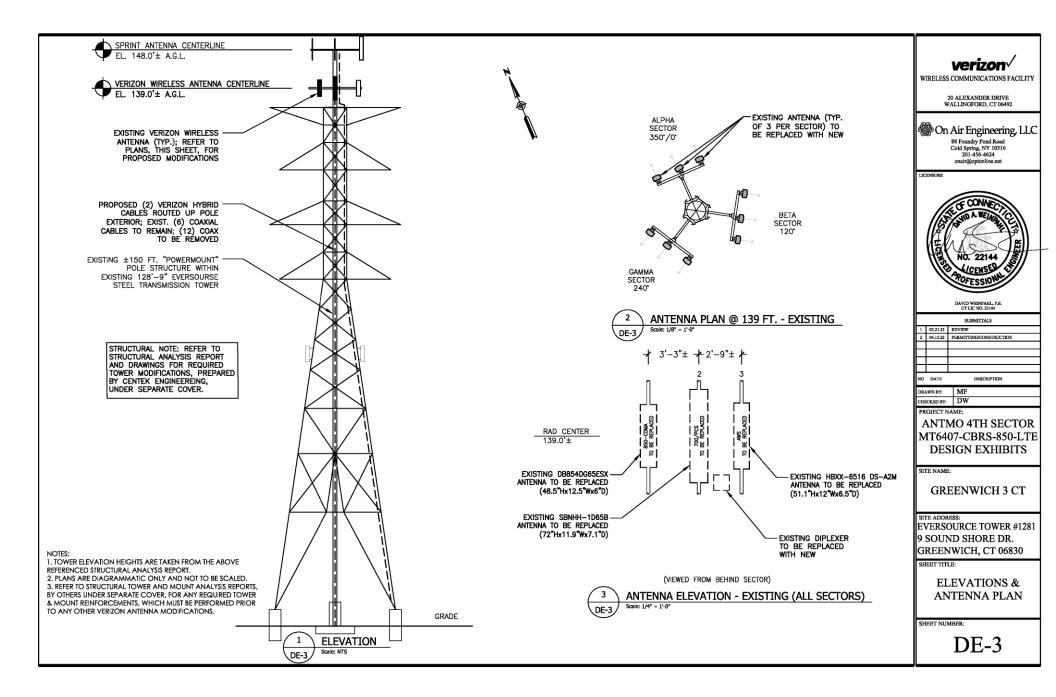
The proposed modifications are to be implemented as specified here and in your notice dated July 13, 2005, including the placement of all necessary equipment and shelters within the tower compound. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to an existing facility site that would not increase tower height, extend the boundaries of the tower site, increase noise levels at the tower site boundary by six decibels, and increase the total radio frequencies electromagnetic radiation power density measured at the tower site boundary to or above the standard adopted by the State Department of Environmental Protection pursuant to General Statutes § 22a-162. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

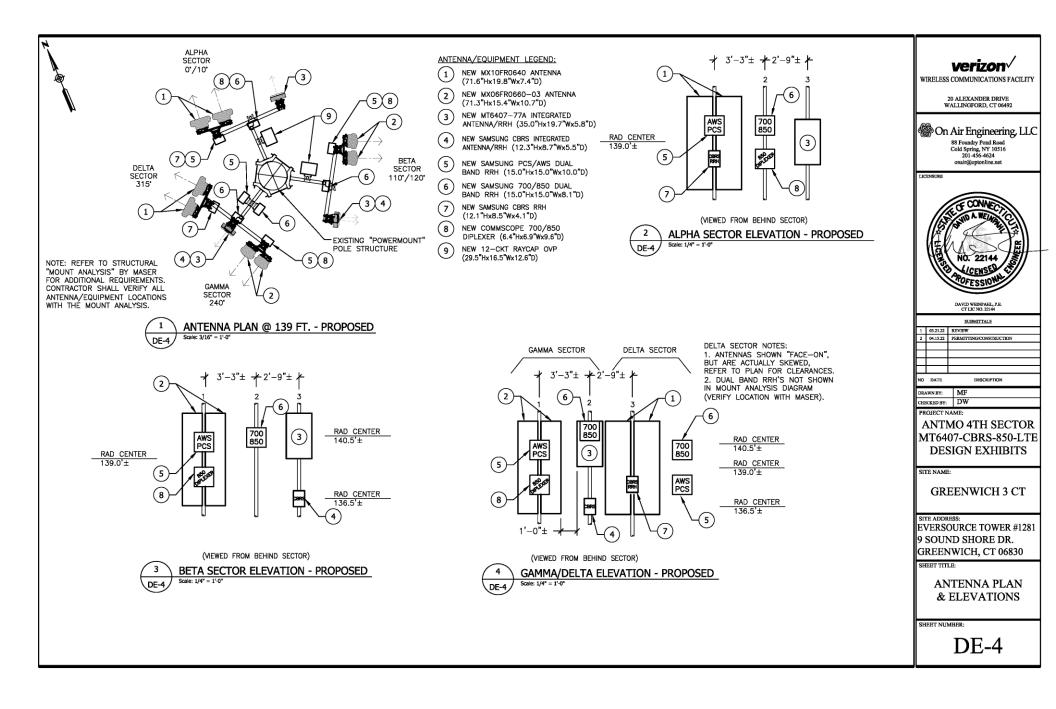
This decision is under the exclusive jurisdiction of the Council. Please be advised that the validity of this action shall expire one year from the date of this letter. Any additional change to this facility will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

Thank you for your attention and cooperation.

Very truly yours. Pamela B. Chairman


PBK/laf


c: The Honorable James A. Lash, First Selectman, Town of Greenwich Diane Fox, Planning & Zoning Director, Town of Greenwich Michael Green, Real Estate Department, Northeast Utilities Thomas J. Regan, Esq., Brown Rudnick Berlack Israels LLP




ATTACHMENT 2

GENERAL CONSTRUCTION NOTES:

1. CONTRACTOR SHALL NOT COMMENCE ANY WORK UNTIL HE OBTAINS, AT HIS OWN EXPENSE, ALL INSURANCE REQUIRED BY CELLCO PARTNERSHIP d/b/a VERIZON. THE PROPERTY OWNER AND/OR PROPERTY MANAGEMENT COMPANY,

2. ALL WORK SHALL BE DONE IN ACCORDANCE WITH ALL APPLICABLE CODES AND REGULATIONS AND ALL LOCAL LAWS AND REGULATIONS, CURRENT EDITIONS.

3. CONTRACTOR SHALL VISIT THE JOB SITE AND FAMILIARIZE HIMSELF WITH ALL CONDITIONS AFFECTING THE PROPOSED WORK AND MAKE PROVISIONS AS TO THE COST THEREOF. CONTRACT OR SHALL BE RESPONSIBLE FOR FAMILIARIZING HIMSELF WITH ALL CONTRACT DOCUMENTS, FIELD CONDITIONS AND DIMENSIONS AND CONFIRMING THAT THE WORK MAY BE ACCOMPLISHED AS SHOWN PRIOR TO PROCEEDING WITH CONSTRUCTION. ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER PRIOR TO THE COMMENCEMENT OF WORK.

4. CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXISTING CONDITIONS AT THE SITE PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA AND SUBMIT TO THE ENGINEER ANY DISCREPANCIES FROM THE DRAWINGS.

5. CONTRACTOR IS TO REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET, CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUB-CONTRACTORS AND ALL RELATED PARTIES. THE SUB-CONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.

6. CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON DRAWINGS OR WRITTEN IN SPECIFICATIONS.

7. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.

8. CONTRACTOR SHALL OBTAIN AT HIS OWN EXPENSE ALL PERMITS AND ALL INSPECTIONS REQUIRED FROM FEDERAL AND STATE GOVERNMENTS, COUNTIES, MUNICIPALITIES AND OTHER REGULATORY AGENCIES WHICH MAY BE REQUIRED FOR THE PROJECT.

10. DETAILS ARE INTENDED TO SHOW END RESULT OF DESIGN. MINOR MODIFICATIONS MAY BE REQUIRED TO SUIT JOB DIMENSIONS OR CONDITIONS, AND SUCH MODIFICATIONS SHALL BE INCLUDED AS PART OF THE WORK.

11. ALL MATERIAL PROVIDED BY CELLCO PARTNERSHIP d/b/a VERIZON IS TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTOR PRIOR TO INSTALLATION. ANY DEFICIENCIES TO PROVIDED MATERIALS SHALL BE BROUGHT TO THE CONSTRUCTION MANAGERS ATTENTION IMMEDIATELY.

12. THE MATERIALS INSTALLED IN THE WORK SHALL MEET THE REQUIREMENTS OF THE CONTRACT DOCUMENTS. NO SUBSTITUTIONS ARE ALLOWED.

13. CONTRACTOR IS SOLELY RESPONSIBLE FOR THE MEANS AND METHODS OF CONSTRUCTION, FOR SEQUENCES AND PROCEDURES TO BE USED, AND TO ENSURE THE SAFETY OF THE EXISTING BUILDING AND ITS COMPONENT DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.

14. CONTRACTOR SHALL COORDINATE ALL CIVIL, STRUCTURAL AND ELECTRICAL DRAWINGS FOR THE LOCATION OF ALL OPENINGS, RECESSES, BUILT-IN WORK, ETC.

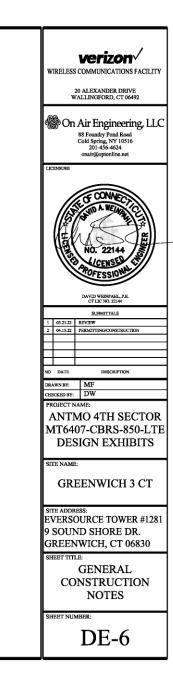
15. CONTRACTOR SHALL RECEIVE CLARIFICATION IN WRITING AND SHALL RECEIVE IN WRITING AUTHORIZATION TO PROCEED BEFORE STARTING WORK ON ANY ITEMS NOT CLEARLY DEFINED OR IDENTIFIED BY THE CONTRACT DOCUMENTS.

16. CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER OF ALL PRODUCTS OR ITEMS NOTED AS "EXISTING" WHICH ARE NOT FOUND TO BE IN THE FIELD. 17. ERECTION SHALL BE DONE IN A WORKMANLIKE MANNER BY COMPETENT EXPERIENCED WORKMEN IN ACCORDANCE WITH APPLICABLE CODES AND THE BEST-ACCEPTED PRACTICE. ALL MEMBERS SHALL BE LAID PLUMB AND TRUE AS INDICATED ON THE DRAWINGS.

18. CONTRACTOR SHALL BE RESPONSIBLE FOR THE SAFETY OF THE WORK AREA, ADJACENT AREAS, AND BUILDING OCCUPANTS THAT ARE LIKELY TO BE AFFECTED BY THE WORK UNDER THIS CONTRACT. WORK SHALL CONFORM TO ALL O.S.H.A REQUIREMENTS.

19. CONTRACTOR SHALL COORDINATE HIS WORK AND SCHEDULE HIS ACTIVITIES AND WORKING HOURS IN ACCORDANCE WITH THE REQUIREMENTS OF THE PROPERTY OWNER AND/OR PROPERTY MANAGEMENT COMPANY.

20, CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATING HIS WORK WITH THE WORK OF OTHERS AS IT MAY RELATE TO RADIO EQUIPMENT, ANTENNAS AND ANY OTHER PORTIONS OF THE WORK.


21. CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY INDICATED OR WHERE LOCAL CODES OR REGULATIONS MAY TAKE PRECEIDENCE.

22. CONTRACTOR SHALL MAKE NECESSARY PROVISIONS TO PROTECT EXISTING SURFACES, EQUIPNENT, IMPROVEMENTS, PIPING, ANTENNA AND ANTENNA CABLES AND REPAR ANY DAMAGE THAT OCCURS DURING CONSTRUCTION.

23. CONTRACTOR SHALL REPAIR ALL EXISTING SURFACES DAMAGED DURING CONSTRUCTION SUCH THAT THEY MATCH AND BLEND WITH ADJACENT SURFACES.

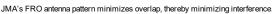
24. CONTRACTOR SHALL KEEP CONTRACT AREA CLEAN, HAZARD FREE AND DISPOSE OF ALL DEBRIS AND RUBBISH. EQUIPMENT NOT SPECIFIED AS REMAINING ON THE PROPERTY OF THE OWNER SHALL BE REMOVED. LEAVE PREMISES IN CLEAN CONDITIONS AND FREE FROM PAINT SPOTS, DUST, OR SMUDGES OF ANY NATURE. CONTRACTOR SHALL BE RESPONSIBLE FOR MAINTAINING ALL ITEMS UNTIL COMPLETION OF CONSTRUCTION.

25. BEFORE FINAL ACCEPTANCE OF THE WORK, CONTRACTOR SHALL REMOVE ALL EQUIPMENT, TEMPORARY WORKS, UNUSED AND USELESS MATERIALS, RUBBISH AND TEMPORARY STRUCTURES.

MX06FRO660-03

NWAV™ X-Pol Hex-Port Antenna

X-Pol Hex-Port 6 ft 60° Fast Roll Off antenna with independent tilt on 700 & 850 MHz:


2 ports 698-798, 824-894 MHz and 4 ports 1695-2180 MHz

- Fast Roll Off (FRO™) azimuth beam pattern improves Intra- and Inter-cell SINR
- Compatible with dual band 700/850 MHz radios with independent low band EDT without external diplexers
- Fully integrated (iRETs) with independent RET control for low and high bands for ease of network optimization
- SON-Ready array spacing supports beamforming capabilities
- Suitable for LTE/CDMA/PCS/UMTS/GSM air interface technologies
- Integrated Smart Bias-Ts reduce leasing costs

Fast Roll-Off antennas increase data throughput without compromising coverage

The horizontal beam produced by Fast Roll-Off (FRO) technology increases the Signal to Interference & Noise Ratio (SINR) by eliminating overlap between sectors .

Non-FRO antenna

Large traditional antenna pattern overlap creates harmful interference.

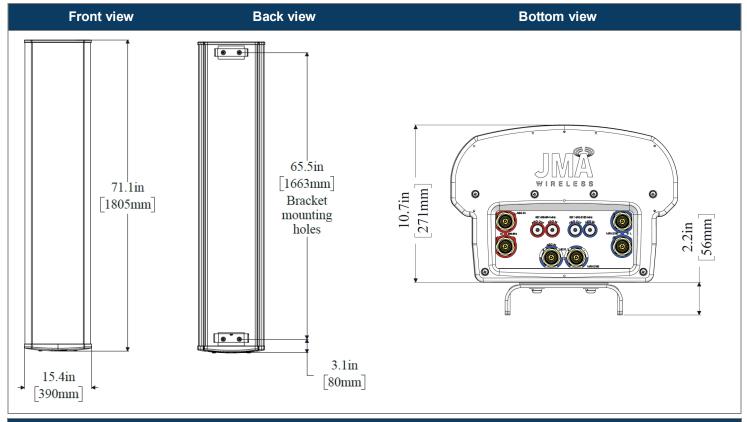
JMA FRO antenna

NWAV

The LTE radio automatically selects the best throughput based on measured SINR.

Electrical specification (minimum/maximum)	Port	s 1, 2	Ports 3, 4, 5, 6			
Frequency bands, MHz	698-798	824-894	1695-1880	1850-1990	1920-2180	
Polarization	± 4	15°		± 45°		
Average gain over all tilts, dBi	14.4	14.0	17.6	18.0	18.2	
Horizontal beamwidth (HBW), degrees	60.5	53.0	55.0	55.0	55.5	
Front-to-back ratio, co-polar power @180°± 30°, dB	>24	>24.0	>25.0	>25.0	>25.0	
X-Pol discrimination (CPR) at boresight, dB	>15.0	>14.2	>18	>18	>15	
Sector power ratio, percent	<3.5	<3.0	<3.7	<3.8	<3.6	
Vertical beamwidth (VBW), degrees ¹	13.1	11.8	6.0	5.5	5.5	
Electrical downtilt (EDT) range, degrees	2-14	2-14	0-9			
First upper side lobe (USLS) suppression, dB ¹	≤-15.0	≤-16.5	≤-16.0 ≤-16.0 ≤-16.0			
Cross-polar isolation, port-to-port, dB ¹	25	25	25	25	25	
Max VSWR / return loss, dB	1.5:1 / -14.0 1.5:1		1.5:1 / -14.0	/ -14.0		
Max passive intermodulation (PIM), 2x20W carrier, dBc	-153		-153			
Max input power per any port, watts	300		250			
Total composite power all ports, watts	1500					

¹ Typical value over frequency and tilt


©2019 JMA Wireless. All rights reserved. This document contains proprietary information. All products, company names, brands, and logos are trademarks™ or registered® trademarks of their respective holders. All specifications are subject to change without notice. +1 315.431.7100 customerservice@jmawireless.com

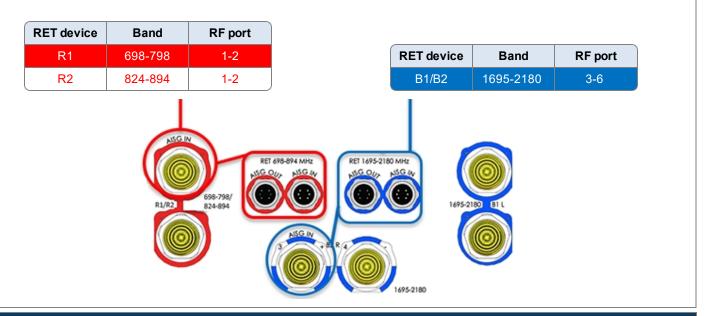
MX06FRO660-03

NWAV™ X-Pol Hex-Port Antenna

Mechanical specifications			
Dimensions height/width/depth, inches (mm)	71.3/ 15.4/ 10.7 (1811/ 392/ 273)		
Shipping dimensions length/width/height, inches (mm)	82/20/15 (2083/508/381)		
No. of RF input ports, connector type, and location	6 x 4.3-10 female, bottom		
RF connector torque	96 lbf·in (10.85 N·m or 8 lbf·ft)		
Net antenna weight, lb (kg)	60 (27.0)		
Shipping weight, lb (kg)	90 (41.0)		
Antenna mounting and downtilt kit included with antenna	91900318		
Net weight of the mounting and downtilt kit, lb (kg)	18 (8.18)		
Range of mechanical up/down tilt	-2° to 14°		
Rated wind survival speed, mph (km/h)	150 (241)		
Frontal, lateral, and rear wind loading @ 150 km/h, lbf (N)	154 (685), 73 (325), 158 (703)		
Equivalent flat plate @ 100 mph and Cd=2, sq ft	2.6		

Ordering information

Antenna model	Description		
MX06FRO660-03 6F X-Pol HEX FRO 60° independent tilt 700/850 RET, 4.3-10 & SBT			
Optional accessories			
AISG cables	M/F cables for AISG connections		
PCU-1000 RET controller	Stand-alone controller for RET control and configurations		


MX06FRO660-03

NWAV™ X-Pol Hex-Port Antenna

Remote electrical tilt (RET 1000) information			
RET location	Integrated into antenna		
RET interface connector type	8-pin AISG connector per IEC 60130-9		
RET connector torque	Min 0.5 N·m to max 1.0 N·m (hand pressure & finger tight)		
RET interface connector quantity	2 pairs of AISG male/female connectors		
RET interface connector location	Bottom of the antenna		
Total no. of internal RETs (low bands)	2		
Total no. of internal RETs (high bands)	1		
RET input operating voltage, vdc	10-30		
RET max power consumption, idle state, W	≤ 2.0		
RET max power consumption, normal operating conditions, W	≤ 13.0		
RET communication protocol	AISG 2.0 / 3GPP		

RET and RF connector topology

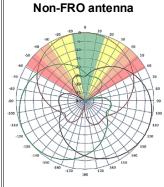
Each RET device can be controlled either via the designated external AISG connector or RF port as shown below:

Array topology

3 sets of radiating arrays	Band	RF port
R1/R2: 698-894 MHz	1695-2180	3-4
B1: 1695-2180 MHz B2: 1695-2180 MHz	698-894	1-2
	1695-2180	5-6

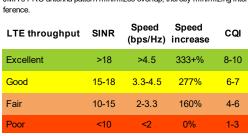
©2019 JMA Wireless. All rights reserved. This document contains proprietary information. All products, company names, brands, and logos are trademarks[™] or registered® trademarks of their respective holders. All specifications are subject to change without notice. +1 315.431.7100 customerservice@jmawireless.com

NWAV™ X-Pol Ten-Port Antenna

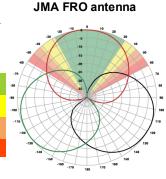

X-Pol Ten-Port 6 ft, 40° Fast Roll Off, with Smart Bias Ts, 698-4200 MHz:

2 ports 698-894 MHz, 4 ports 1695-2180 MHz, and 4 ports 3400-4200 MHz

- Fast Roll Off (FRO™) azimuth beam pattern improves Intra- and Inter-cell SINR
- Excellent passive intermodulation (PIM) performance reduces harmful interference.
- Fully integrated (iRETs) with independent RET control for low band and mid band
- FET configured with internal RET for high band & ease of future network optimization.
- SON-Ready array spacing supports beamforming capabilities
- Suitable for 3G, 4G, and 5G interface technologies
- Integrated Smart Bias-Ts reduce leasing costs


Fast Roll-Off antennas increase data throughput without compromising coverage

The horizontal beam produced by Fast Roll-Off (FRO) technology increases the Signal to Interference & Noise Ratio (SINR) by eliminating overlap between sectors .



JMA's FRO antenna pattern minimizes overlap, thereby minimizing inter-

Large traditional antenna pattern overlap creates harmful interference.

The LTE radio automatically selects the best throughput based on measured SINR.

Electrical specification (minimum/maximum)	Port	s 1, 2	Ports 3, 4, 5, 6				
Frequency bands, MHz	698-798	824-894	1695-1880	1850-1990	1920-2180		
Polarization	± 4	15°		± 45°			
Average gain over all tilts, dBi	16.3	17.2	19.3	20.1	20.4		
Horizontal beamwidth (HBW), degrees ¹	42	37	40	39	37		
Front-to-back ratio, co-polar power @180°± 30°, dB	>25.0	>25.0 >25.0		>28.0	>28.0		
X-Pol discrimination (CPR) at boresight, dB	>18.0 >15.0		>18	>18	>15		
Vertical beamwidth (VBW), degrees ¹	13.1	11.8	6.0 5.7		5.3		
Electrical downtilt (EDT) range, degrees	2.	-14	0-9				
First upper side lobe (USLS) suppression, dB ¹	≤-15.0	≤-15.0 ≤-15.0		≤-16.0	≤-16.0		
Cross-polar isolation, port-to-port, dB ¹	25	25 25		25	25		
Max VSWR / return loss, dB	1.5:1 / -14.0 1.5:1 / -14.0						
Max passive intermodulation (PIM), 2x20W carrier, dBc	-153 -153						
Max input power per any port, watts	300			250			
Total composite power all ports (1-10), watts	1500						

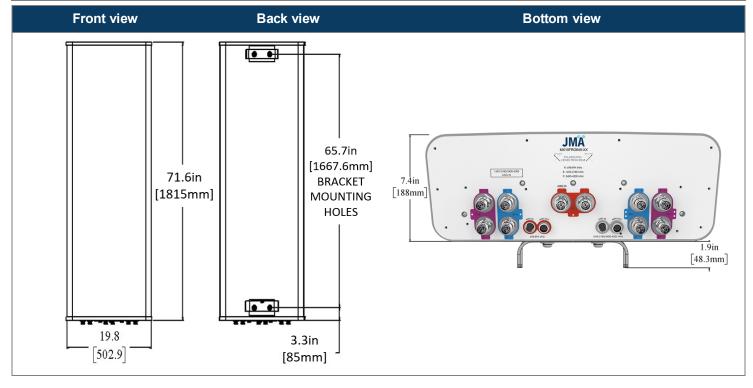
¹ Typical value over frequency and tilt

©2020 JMA Wireless. All rights reserved. This document contains proprietary information. All products, company names, brands, and logos are trademarks™ or registered® trademarks of their respective holders. All specifications are subject to change without notice. +1 315.431.7100 customerservice@jmawireless.com

NWAV™ X-Pol Ten-Port Antenna

Electrical specification (minimum/maximum)		Ports 7, 8, 9, 10				
Frequency bands, MHz	3400-3550	3550-3700	3700-3950	3950-4200		
Polarization		±	45°			
Average gain over all tilts, dBi	14.6	14.7	14.8	14.9		
Horizontal beamwidth (HBW), degrees	42	41	40	40		
Front-to-back ratio, co-polar power @180°± 30°, dB	>22	>22	>22	>22		
Vertical beamwidth (VBW), degrees ¹	20.1	19.9	19.6	19.2		
Electrical downtilt (EDT) range, degrees	2	2-12 orderable in 1 deg increments				
First upper side lobe (USLS) suppression, dB ¹	≤-15	≤-15 ≤-15 ≤-15 ≤-15				
Cross-polar isolation, port-to-port, dB ¹	25	25	25	25		
Max VSWR / return loss, dB		1.5:1 / -14.0				
Max input power per any port, watts		100				
Total composite power all ports (1-10), watts		1500				

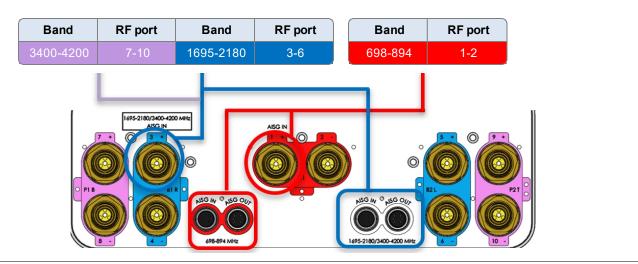
¹ Typical value over frequency and tilt


* For ports 7-10, the electrical downtilt is FET configured with internal RET, where the required electrical downtilt is defined at the time of order per the ordering information below.

Ordering information			
Antenna model	Description		
	6F X- Pol 10 Port FRO 40º 2-14º/ 0-9º/ 2-12º, 4.3-10 & SBTs		
MX10FRO640-xx (xx represents the FET in one degree increments for 3.4-4.2 GHz)	xx=02 thru 12 for each 1 degree tilt 3.4-4.2GHz Examples: MX10FRO640-02 – 2deg, MX10FRO640-09 – 9deg, MX10FRO640- 12-12deg		
Optional accessories			
AISG cables	M/F cables for AISG connections		
PCU-1000 RET controller	Stand-alone controller for RET control and configurations		
<u>91900314-02</u>	Dual Mount Bracket (see 91900314 bracket document for details)		

NWAV™ X-Pol Ten-Port Antenna

Mechanical specifications	
Dimensions height/width/depth, inches (mm)	71.6/ 19.8/ 7.4 (1815/ 503/ 188)
Shipping dimensions length/width/height, inches (mm)	76.2/23.8/14.5(1935/605/368)
No. of RF input ports, connector type, and location	10 x 4.3-10 female, bottom
RF connector torque	96 lbf·in (10.85 N·m or 8 lbf·ft)
Net antenna weight, lb (kg)	76.3 (35)
Shipping weight, lb (kg)	115.9 (53)
Antenna mounting and downtilt kit included with antenna	91900318
Net weight of the mounting and downtilt kit, lb (kg)	20.3 (9.2)
Range of mechanical up/down tilt	-2° to 12°
Rated wind survival speed, mph (km/h)	150 (241)
Frontal, lateral, and rear wind loading @ 150 km/h, lbf (N)	183.3 (815), 40.7 (181), 276.8 (1231)
Equivalent flat plate @ 100 mph and Cd=2, sq ft	3.69



NWAV™ X-Pol Ten-Port Antenna

Remote electrical tilt (RET 1000) information	
RET location	Integrated into antenna
RET interface connector type	8-pin AISG connector per IEC 60130-9 or RF port bias-t
RET connector torque	Min 0.5 N·m to max 1.0 N·m (hand pressure & finger tight)
RET interface connector quantity	2 pairs of AISG male/female connectors and 2 RF port Bias Ts
RET interface connector location	Bottom of the antenna
Total no. of internal RETs 698-894 MHz	1
Total no. of internal RETs 1695-2180 MHz	1
Total no. of internal RETs 3400-4200 MHz	1
RET input operating voltage, vdc	10-30
RET max power consumption, idle state, W	≤ 2.0
RET max power consumption, normal operating conditions, W	≤ 13.0
RET communication protocol	AISG 2.0 / 3GPP

RET and RF connector topology

Each RET device can be controlled either via the designated external AISG connector or RF smart bias-t port as shown below:

Note: The RET Device for 3400-4200 MHz is connected via the 1695-2180 Port 3 Bias T port or 1695-2180/3400-4200 MHz AISG ports.

Array topology					
5 sets of radiating arrays	Band	RF port		0 0	
R1: 698-894 MHz	698-894	1-2		420(2) 420(
1: 1695-2180 MHz 2: 1695-2180 MHz	1695-2180	3-4	(B1)	-00 -00 -00 -00	
P1: 3400-4200 MHz P2: 3400-4200 MHz	1695-2180	5-6		34(34(
2. 3400-4200 10112	3400-4200	7-8	-2180	698–894	
	3400-4200	9-10		(R1)	
			1695-		

©2020 JMA Wireless. All rights reserved. This document contains proprietary information. All products, company names, brands, and logos are trademarks[™] or registered® trademarks of their respective holders. All specifications are subject to change without notice. +1 315.431.7100 customerservice@jmawireless.com

[CBRS] Clip-on Antenna Specifications

VzW accepted IP45 in FLD, but IP55 is Samsung Spec.

Items	Clip-on Antenna, BASTA**			
Antenna Gain	12.5 \pm 0.5 dBi (Max 13 dBi)			
Horizontal BW (-3dB)	65° ± 5°			
Vertical BW (-3dB)	17° ±3°			
Electrical Tilt	8° (fixed) $\pm 2^{\circ}$			
Front-to-Back Ratio	> 25 dB			
Port-to-Port Tracking	< 3 dB			
VSWR	< 1.5			
Isolation	> 25 dB			
Ingress Protection	IP55			
Size	220(W)×313(H)×34.3(D) mm (*) (8.7 x 12.3 x 1.4 inch.)			
Weight	Weight < 2.0 kg [Typ. 1.3 kg]			
It is required that the radio should be weatherproofed properly with JMA WPS Boot with external antenna or with Weatherproof Boot for clip-on antennas.				

Antenna includes integrated cable with connector * Design is subject to minor change

** Ant. spec. follows NGMN recommendations on Base Station Antenna Standards (BASTA). For example, 'mean ± tolerance of 86.6%' is applied to double-sided specification of statistical RF parameters.

[CDDC DDL] Cooc		Item	Specification			
[CBRS RRH] Spec.		Band	Band 48 (3.5 GHz)			
		Frequency	3550~3700 MHz			
		IBW	150 MHz			
		OBW	80 MHz			
		# of Carriers	5/10/15/20 MHz x 4 carriers			
		RF Chain	4TX / 4RX			
		RF Output Power	4 path x 5 W (Total: 20 W = 43 dBm)			
		& EIRP	(EIRP: 47 dBm / 10 MHz)			
		RX Sensitivity	Typical : -101.5 dBm @ 1 Rx (3GPP 36.104, Wide Area)			
		Modulation	256-QAM support (1024-QAM with 1~2dB power back-off)			
		Input Dowor	-48 VDC (-38 to -57 VDC, 1 SKU),			
Handle		Input Power	with clip-on AC-DC converter (Option)			
		Power Consumption	About 160 Watt @ 100% RF load, typical conditions			
		Volume	Under 7L (w/o Antenna), Under 9.6L (with antenna)			
		Weight	Under 8.0 kg (18.64 lb) (w/o Antenna), Under 10.5 Kg (with ant.)			
		Operating Temperature	-40°C (-40°F) ~ 55°C (131°F) (W/o solar load)			
		Cooling	Natural convection			
		Unwanted Emission	3GPP 36.104 Category A			
			[B48] : FCC 47 CFR 96.41 e)			
		Optic Interface	20km, 2 ports (9.8Gbps x 2), SFP, single mode, duplex or Bi-Di			
		CPRI Cascade	Not supported			
Portard		# of Antenna Port	4			
Standard Gua		External Alarm (UDA)	4			
Label		RET	AISG 2.2			
		TMA & built-in Bias-T I//F	Not supported			
		and PIM cancellation				
		Mounting Options	Pole, wall, tower, back to back, side by side (for external ant),			
			3 RRH with Clip-on Antenna on the pole			
Current Size: 216 x 307 x 105.5 mm (6.99L) (8.5 x 12.1 x 4.1 inch., excluding Port Guard)		Antenna Type	Integrated (Clip-on) antenna (Option),			
			External antenna (Option)			
		NB-IoT	Not Supported (HW Resource reserved			
Design is subject to minor change		Sportnum Anglurgen	for 1 Guard Band NB-IoT per LTE carrier)			
		Spectrum Analyzer	TX/RX Support			
		External Alarm (UDA)	4 Support with SAM upgrade			
		5G NR XRAN	Support with S/W upgrade Support with S/W upgrade			
		711/401	Support with S/W upgrade			

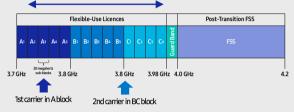
SAMSUNG

SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..

Model Code : MT6407-77A


Points of Differentiation

Wide Bandwidth

With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

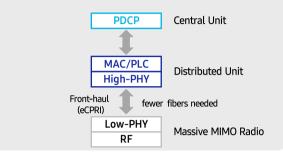
C-Band spectrum supported by Massive MIMO Radio

Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.

This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.



Technical Specifications

ltem	Specification
Tech	NR
Band	n77
Frequency Band	3700 - 3980 MHz
EIRP	78.5dBm (53.0 dBm+25.5 dBi)
IBW/OBW	280 MHz / 200 MHz
Installation	Pole/Wall
Size/ Weight	16.06 x 35.06 x 5.51 inch (50.86L)/ 79.4 lbs

Future Proof Product

Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment.

SAMSUNG

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

SAMSUNG

700/850MHZ MACRO RADIO

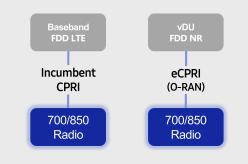
DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This 700/850MHz 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

Model Code

RF4440d-13A

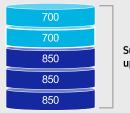
Homepage samsungnetworks.com



Youtube www.youtube.com/samsung5g

Points of Differentiation

Continuous Migration

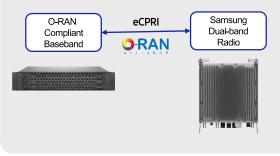

Samsung's 700/850MHz macro radio can support each incumbent CPRI interface as well as an advanced eCPRI interface. This feature provides installable options for both legacy LTE networks and added NR networks.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). The ability to support many carriers is essential for using all frequencies that the operator has available.

The new 700/850MHz dual-band radio can support up to 2 carriers in the B13 (700MHz) band and 3 carriers in the B5 (850MHz) band, respectively.

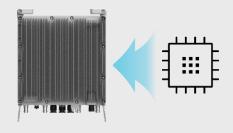
Supports up to 5 carriers


Technical Specifications

ltem	Specification		
Tech	LTE / NR		
Brand	B13(700MHz), B5(850MHz)		
Frequency Band	DL: 746 – 756MHz, UL: 777 – 787MHz DL: 869 – 894MHz, UL: 824 – 849MHz		
RF Power	(B13) 4 × 40W or 2 × 60W (B5) 4 × 40W or 2 × 60W		
IBW/OBW	(B13) 10MHz / 10MHz (B5) 25MHz / 25MHz		
Installation	Pole, Wall		
Size/ Weight	14.96 x 14.96 x 9.05inch (33.2L) / 70.33 lb		

O-RAN Compliant

A standardized O-RAN radio can help when implementing cost-effective networks because it is capable of sending more data without compromising additional investments.

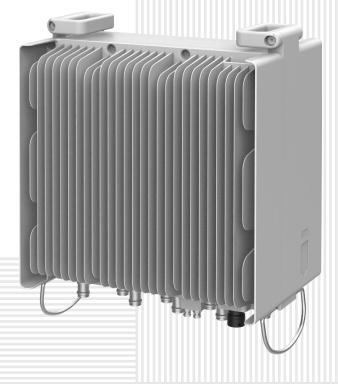

Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Secured Integrity

Access to sensitive data is allowed only to authorized software.

The Samsung radio's CPU can protect root of trust, which is credential information to verify SW integrity, and secure storage provides access control to sensitive data by using dedicated hardware (TPM).

SAMSUNG


AWS/PCS MACRO RADIO DUAL-BAND AND HIGH POWER

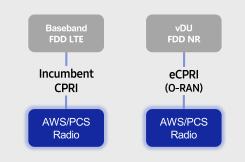
FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This AWS/PCS 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

Model Code

RF4439d-25A

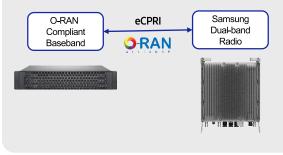
Homepage samsungnetworks.com



Youtube www.youtube.com/samsung5g

Points of Differentiation

Continuous Migration


Samsung's AWS/PCS macro radio can support each incumbent CPRI interface as well as advanced eCPRI interfaces. This feature provides installable options for both legacy LTE networks and added NR networks.

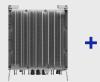
O-RAN Compliant

A standardized O-RAN radio can help in implementing costeffective networks, which are capable of sending more data without compromising additional investments.


Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). Supporting many carriers is essential for using all frequencies that the operator has available.


The new AWS/PCS dual-band radio can support up to 3 carriers in the PCS (1.9GHz) band and 4 carriers in the AWS (2.1GHz) band, respectively.

Supports up to 7 carriers

Brand New Features in a Compact Size

Samsung's AWS/PCS macro radio offers several features, such as dual connectivity for baseband for both CDU and vDU, O-RAN capability, more carriers and an enlarged PCS spectrum, combined into an incumbent radio volume of 36.8L.

Same as an incumbent radio volume

 2 FH connectivity
 O-RAN capability
 More carriers and spectrum

Technical Specifications

ltem	Specification
Tech	LTE/NR
Brand	B25(PCS), B66(AWS)
Frequency Band	DL: 1930 – 1995MHz, UL: 1850 – 1915MHz DL: 2110 – 2200MHz, UL: 1710 – 1780MHz
RF Power	(B25) 4 × 40W or 2 × 60W (B66) 4 × 60W or 2 × 80W
IBW/OBW	(B25) 65MHz / 30MHz (B66) DL 90MHz, UL 70MHz / 60MHz
Installation	Pole, Wall
Size/ Weight	14.96 x 14.96 x 10.04inch (36.8L) / 74.7lb

ATTACHMENT 3

	General	Power	Density					
Site Name: Greenwich 3								
Tower Height: Verizon @ 139ft								
CARRIER	# OF CHAN.	WATTS ERP	HEIGHT	FREQ.	CALC.	MAX. PERMISS.EXP.	FRACTION MPE	Total
*Sprint	2 # OF CHAN.	1081	148	800	0.0386	0.5333	0.72%	Total
*Sprint	4	1340	148	1900	0.0956	1.0000	0.96%	
*Sprint	8	640	148	2500	0.0913	1.0000	0.91%	
VZW 700	4	1208	139	751	0.0090	0.5007	1.80%	
VZW CDMA	2	499	139	876.03	0.0019	0.5840	0.32%	
VZW Cellular	4	1355	139	874	0.0101	0.5827	1.73%	
VZW PCS	4	1706	139	1980	0.0127	1.0000	1.27%	
VZW AWS	4	2148	139	2120	0.0160	1.0000	1.60%	
VZW CBRS	4	21	139	3625	0.0002	1.0000	0.02%	
VZW CBAND	2	14521	139	3730.08	0.0541	1.0000	5.41%	
								14.73%
* Source: Siting Council								

ATTACHMENT 4

Centered on Solutions[™]

<u>Structural Analysis of</u> <u>Antenna Mast and Tower</u>

Verizon Site Ref: Greenwich 3

Eversource Structure No. 1281 129' Electric Transmission Lattice Tower

> 9 Sound Shore Drive Greenwich, CT

CENTEK Project No. 21007.68

Date: February 15, 2022

Prepared for: Verizon Wireless 20 Alexander Drive Wallingford, CT 06492 CENTEK Engineering, Inc. Structural Analysis – 129-ft CL&P Tower # 1281 Verizon Antenna Upgrade – Greenwich 3 Greenwich, CT February 15, 2022

Table of Contents

SECTION 1 - REPORT

- INTRODUCTION
- PRIMARY ASSUMPTIONS USED IN THE ANALYSIS
- ANALYSIS
- DESIGN BASIS
- RESULTS
- CONCLUSION

SECTION 2 - CONDITIONS & SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAMS
 - RISA 3-D
 - PLS TOWER

SECTION 3 - DESIGN CRITERIA

- CRITERIA FOR DESIGN OF PCS FACILITIES ON OR EXTENDING ABOVE METAL ELECTRIC TRANSMISSON TOWERS
- EVERSOURCE DESIGN CRITERIA TABLE
- WIRE LOADS SHEET

SECTION 4 - DRAWINGS

REINFORCEMENT DRAWINGS

SECTION 5 - TIA-222-G LOAD CALCULATIONS

WIND & ICE LOAD

SECTION 6 - ANTENNA MAST ANALYSIS PER TIA-222-G

- RISA 3-D ANALYSIS REPORT
- CONNECTION TO TOWER

SECTION 7 - NECS/NU LOAD CALCULATIONS

MAST WIND LOAD

SECTION 8 - PLS TOWER RESULTS

- PLS REPORT
- ANCHOR BOLT ANALYSIS
- FOUNDATION ANALYSIS

CENTEK Engineering, Inc. Structural Analysis – 129-ft CL&P Tower # 1281 Verizon Antenna Upgrade – Greenwich 3 Greenwich, CT February 15, 2022

SECTION 9 - REFERENCE MATERIAL

- RF DATA SHEET
- EQUIPMENT CUT SHEETS

CENTEK Engineering, Inc. Structural Analysis – 129-ft CL&P Tower # 1281 Verizon Antenna Upgrade – Greenwich 3 Greenwich, CT February 15, 2022

<u>Introduction</u>

The purpose of this report is to analyze the existing 150' FWT Powermount job no. 18404 dated January 5, 1999 and 128.75' utility tower located at 9 Sound Shore Drive in Greenwich, CT for the proposed antenna and equipment upgrade by Verizon.

The loads considered in this analysis consist of the following:

SPRINT (Existing):

Antennas: Three (3) RFS APXVSPP18-C panel antennas mounted on an existing 14-ft low profile platform to the powermount with a RAD center elevation of 148-ft above grade. <u>Coax Cables:</u> Six (6) 1-5/8" Ø coax cables running on the inside of the existing powermount. Twelve (12) 1-5/8" Ø coax cables mounted on Site Pro Super Universal T-Brackets p/n T1200 running on a leg of the existing tower as indicated in section 4 of this report.

- <u>VERIZON WIRELESS (Existing to Remain):</u> <u>Coax Cables</u>: Six (6) 1-5/8" Ø coax cables running on the outside of the powermount as indicated in section 4 of this report
- <u>VERIZON WIRELESS (Existing to Remove):</u> <u>Antennas</u>: Six (6) Decibel DB854DG65ESX panel antennas, three (3) Andrew HBXX-6516DS panel antennas, three (3) Andrew SBNHH-1D65B panel antennas mounted on a (3) T-Arms with a RAD center elevation of 139-ft above grade.
 <u>Coax Cables</u>: Twelve (12) 1-5/8" Ø coax cables running on the outside of the powermount as indicated in section 4 of this report
- VERIZON WIRELESS (Existing):

Antennas: Four (4) JMA MX10FRO640 panel antennas, four (4) JMA MX06FRO660-03 panel antennas, three (3) Samsung MT6407-77A panel antennas, two (2) XXDWMM12.5-65 panel antennas, four (4) Samsung B2/B66A RRHs, four (4) Samsung B5/B13 RRHs, four (4) CBRS RRH RT4401-48A, three (3) Commscope TD-850B-LTE78-43 diplexers and two (2) RFS DB-C1-12C-24AB-0Z OVP Boxes mounted on a (3) T-Arms with a RAD center elevation of 139-ft above grade.

<u>Coax Cables</u>: Two (2) 1-5/8" hybrid cables running on the outside of the powermount as indicated in section 4 of this report

<u>Mount:</u> Install handrail consisting of three (3) 2 Std. horizontal pipes and angle corner plate kit (SitePro p/n AHCP).

<u>Primary assumptions used in the analysis</u>

- Design steel stresses are defined by AISC-LRFD 14th edition for design of the antenna Mast and antenna supporting elements.
- ASCE Manual No. 10-15, "Design of Latticed Steel Transmission Structures", defines allowable steel stresses for evaluation of the utility tower.
- All utility tower members are adequately protected to prevent corrosion of steel members.
- All proposed antenna mounts are modeled as listed above.
- All coaxial cable will be installed within the antenna mast unless specified otherwise.
- Antenna mast will be properly installed and maintained.
- No residual stresses exist due to incorrect tower erection.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All welds conform to the requirements of AWS D1.1.
- Antenna mast and utility tower will be in plumb condition.
- Utility tower was properly installed and maintained and all members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
- Any deviation from the analyzed loading will require a new analysis for verification of structural adequacy.

<u>Analysis</u>

Structural analysis of the existing powermount was independently completed using the current version of RISA-3D computer program licensed to CENTEK Engineering, Inc. The RISA-3D program contains a library of all AISC shapes and corresponding section properties are computed and applied directly within the program. The program's Steel Code Check option was also utilized.

The existing FWT powermount consisting of a 12-in SCH. 40 pipe (O.D. = 12.75") connected at six points to the existing tower was analyzed for its ability to resist loads prescribed by the TIA/EIA standard. Section 5 of this report details these gravity and lateral wind loads. Load cases and combinations used in RISA-3D for TIA/EIA loading are listed in report Section 6.

Structural analysis of the existing tower structure was completed using the current version of PLS-Tower computer program licensed to CENTEK Engineering, Inc. The NESC program contains a library of all AISC angle shapes and corresponding section properties are computed and applied directly within the program. The program's Steel Code Check option was also utilized.

The existing 129-ft tall lattice tower was analyzed for its ability to resist loads prescribed by the NESC standard. Maximum usage for the tower was calculated considering the additional forces from the powermount and associated appurtenances. Section 7 of this report details these gravity and lateral wind loads.

<u>Design Basis</u>

Our analysis was performed in accordance with TIA-222-G, ASCE Manual No. 10-15, "Design of Latticed Steel Transmission Structures", NESC C2-2017 and Eversource Design Criteria.

The utility tower structure, considering existing and future conductor and shield wire loading, with the proposed antenna mast was analyzed under two conditions:

UTILITY TOWER ANALYSIS

The purpose of this analysis is to determine the adequacy of the existing utility structure to support the proposed antenna loads. The loading and design requirements were analyzed in accordance with the EVERSOURCE Design Criteria Table, NESC C2-2017 ~ Construction Grade B, and ASCE Manual No. 10-15, "Design of Latticed Steel Transmission Structures".

Load cases considered:

Load Case 1: NESC Heavy	
Wind Pressure	4.0 psf
Radial Ice Thickness	0.5"
Vertical Overload Capacity Factor	1.50
Wind Overload Capacity Factor	2.50
Wire Tension Overload Capacity Factor	1.65
Load Case 2: NESC Extreme Wind Speed 1 Radial Ice Thickness	10 mph ⁽¹⁾ 0"
Note 1: NESC C2-2017, Section25, Rule 250C: Extre	

MAST ASSEMBLY ANALYSIS

Mast, appurtenances and connections to the utility tower were analyzed and designed in accordance with the Eversource Design Criteria Table, TIA-222-G and AISC standards.

Load cases considered:

<u>Load Case 1</u> : Wind Speed Radial Ice Thickness	
Load Case 2: Wind Pressure Radial Ice Thickness	50 mph wind pressure 0.75"

<u>Results</u>

ANTENNA MAST

The existing antenna mast was determined to be structurally adequate.

FWT Powermount	Stress Ratio (% of capacity)	Result
12" Sch. 40 Pipe	55.6%	PASS
L2.5x2.5x1/4 Brace	46.0%	PASS
Connection	96.8%	PASS

UTILITY TOWER

This analysis finds that the subject utility structure is adequate to support the proposed antenna mast and related appurtenances. The tower stresses meet the requirements set forth by the ASCE Manual No. 10-15, "Design of Latticed Steel Transmission Structures", for the applied NESC Heavy and Hi-Wind load cases. The detailed analysis results are provided in Section 8 of this report. The analysis results are summarized as follows:

A maximum usage of **98.99%** occurs in the utility structure under the **NESC Heavy** loading condition.

TOWER SECTION:

The utility structure **with the reinforcements detailed in section 4** was determined to be structurally adequate.

Tower Member	Stress Ratio (% of capacity)	Result
Angle 25AP	98.99%	PASS

FOUNDATION AND ANCHORS

The existing foundation consists of a 5-ft square x 8.5-ft long reinforced concrete pier with eight (8) rock anchor groups embedded 12-ft into rock The base of the tower is connected to the foundation by four (4) 2.00" \emptyset A36 bolts per leg. Foundation information was obtained from NUSCO drawing no. 01037-60010.

BASE REACTIONS:

From PLS-Tower analysis of utility tower based on NESC/EVERSOURCE prescribed loads.

Load Case	Shear	Uplift	Compression
NESC Heavy Wind	45.66 kips	167.73 kips	192.54 kips
NESC Extreme Wind	51.15 kips	185.44 kips	203.54 kips

Note 1 – 10% increase to be applied to the above tower base reactions for foundation verification per OTRM 051

ANCHOR BOLTS:

The anchor bolts were found to be within allowable limits.

Component	Design Check	Stress Ratio (percentage of capacity)	Result
Anchor Bolts	Tension	85.9%	PASS

FOUNDATION:

The foundation was found to be within allowable limits.

Foundation	Design Check	Design Limit	Proposed Loading	Result
Reinf. Conc. Pier w/ Rock Anchors	Uplift	1.0 FS ⁽²⁾	1.31 FS ⁽²⁾	PASS
	OTM ⁽¹⁾	1.0 FS ⁽²⁾	1.14 FS ⁽²⁾	PASS
	Soil Bearing	50 ksf	29.9 ksf	PASS

Note 1: OTM denote overturning moment. Note 2: FS denotes Factor of Safety.

<u>Conclu</u>sion

This analysis shows that the subject utility tower and antenna mast with the reinforcements detailed in section 4 are adequate to support the proposed equipment installation.

The analysis is based, in part on the information provided to this office by Eversource and Verizon. If the existing conditions are different than the information in this report, CENTEK engineering, Inc. must be contacted for resolution of any potential issues.

Please feel free to call with any questions or comments.

Respectfully Submitted by: In the second se BROTISSIONALE Timothy J. Lynn, PE Structural Engineer

<u>STANDARD CONDITIONS FOR FURNISHING OF</u> <u>PROFESSIONAL ENGINEERING SERVICES ON</u> <u>EXISTING STRUCTURES</u>

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil conditions, the
 antenna and feed line loading on the structure and its components, or other relevant information.
- Information from the field and/or drawings in the possession of CENTEK engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to CENTEK engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an un-corroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to meet any
 other codes or requirements unless explicitly agreed in writing. If wind and ice loads or other relevant
 parameters are to be different from the minimum values recommended by the codes, the client shall
 specify the exact requirement. In the absence of information to the contrary, all work will be
 performed in accordance with the latest revision of ANSI/ASCE10 & ANSI/EIA-222.
- All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. CENTEK engineering, Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

<u>GENERAL DESCRIPTION OF STRUCTURAL</u> ANALYSIS PROGRAM~RISA-3D

RISA-3D Structural Analysis Program is an integrated structural analysis and design software package for buildings, bridges, tower structures, etc.

Modeling Features:

- Comprehensive CAD-like graphic drawing/editing capabilities that let you draw, modify and load elements as well as snap, move, rotate, copy, mirror, scale, split, merge, mesh, delete, apply, etc.
- Versatile drawing grids (orthogonal, radial, skewed)
- Universal snaps and object snaps allow drawing without grids
- Versatile general truss generator
- Powerful graphic select/unselect tools including box, line, polygon, invert, criteria, spreadsheet selection, with locking
- Saved selections to quickly recall desired selections
- Modification tools that modify single items or entire selections
- Real spreadsheets with cut, paste, fill, math, sort, find, etc.
- Dynamic synchronization between spreadsheets and views so you can edit or view any data in the plotted views or in the spreadsheets
- Simultaneous view of multiple spreadsheets
- Constant in-stream error checking and data validation
- Unlimited undo/redo capability
- Generation templates for grids, disks, cylinders, cones, arcs, trusses, tanks, hydrostatic loads, etc.
- Support for all units systems & conversions at any time
- Automatic interaction with RISASection libraries
- Import DXF, RISA-2D, STAAD and ProSteel 3D files
- Export DXF, SDNF and ProSteel 3D files

Analysis Features:

- Static analysis and P-Delta effects
- Multiple simultaneous dynamic and response spectra analysis using Gupta, CQC or SRSS mode combinations
- Automatic inclusion of mass offset (5% or user defined) for dynamic analysis
- Physical member modeling that does not require members to be broken up at intermediate joints
- State of the art 3 or 4 node plate/shell elements
- High-end automatic mesh generation draw a polygon with any number of sides to create a mesh of well-formed quadrilateral (NOT triangular) elements.
- Accurate analysis of tapered wide flanges web, top and bottom flanges may all taper independently
- Automatic rigid diaphragm modeling
- Area loads with one-way or two-way distributions
- Multiple simultaneous moving loads with standard AASHTO loads and custom moving loads for bridges, cranes, etc.
- Torsional warping calculations for stiffness, stress and design
- Automatic Top of Member offset modeling
- Member end releases & rigid end offsets
- Joint master-slave assignments
- Joints detachable from diaphragms
- Enforced joint displacements
- 1-Way members, for tension only bracing, slipping, etc.

- 1-Way springs, for modeling soils and other effects
- Euler members that take compression up to their buckling load, then turn off.
- Stress calculations on any arbitrary shape
- Inactive members, plates, and diaphragms allows you to quickly remove parts of structures from consideration
- Story drift calculations provide relative drift and ratio to height
- Automatic self-weight calculations for members and plates
- Automatic subgrade soil spring generator

Graphics Features:

- Unlimited simultaneous model view windows
- Extraordinary "true to scale" rendering, even when drawing
- High-speed redraw algorithm for instant refreshing
- Dynamic scrolling stops right where you want
- Plot & print virtually everything with color coding & labeling
- Rotate, zoom, pan, scroll and snap views
- Saved views to quickly restore frequent or desired views
- Full render or wire-frame animations of deflected model and dynamic mode shapes with frame and speed control
- Animation of moving loads with speed control
- High quality customizable graphics printing

Design Features:

- Designs concrete, hot rolled steel, cold formed steel and wood
- ACI 1999/2002, BS 8110-97, CSA A23.3-94, IS456:2000, EC 2-1992 with consistent bar sizes through adjacent spans
- Exact integration of concrete stress distributions using parabolic or rectangular stress blocks
- Concrete beam detailing (Rectangular, T and L)
- Concrete column interaction diagrams
- Steel Design Codes: AISC ASD 9th, LRFD 2nd & 3rd, HSS Specification, CAN/CSA-S16.1-1994 & 2004, BS 5950-1-2000, IS 800-1984, Euro 3-1993 including local shape databases
- AISI 1999 cold formed steel design
- NDS 1991/1997/2001 wood design, including Structural Composite Lumber, multi-ply, full sawn
- Automatic spectra generation for UBC 1997, IBC 2000/2003
- Generation of load combinations: ASCE, UBC, IBC, BOCA, SBC, ACI
- Unbraced lengths for physical members that recognize connecting elements and full lengths of members
- Automatic approximation of K factors
- Tapered wide flange design with either ASD or LRFD codes
- Optimization of member sizes for all materials and all design codes, controlled by standard or user-defined lists of available sizes and criteria such as maximum depths
- Automatic calculation of custom shape properties
- Steel Shapes: AISC, HSS, CAN, ARBED, British, Euro, Indian, Chilean
- Light Gage Shapes: AISI, SSMA, Dale / Incor, Dietrich, Marino\WARE
- Wood Shapes: Complete NDS species/grade database
- Full seamless integration with RISAFoot (Ver 2 or better) for advanced footing design and detailing
- Plate force summation tool

Results Features:

- Graphic presentation of color-coded results and plotted designs
- Color contours of plate stresses and forces with quadratic smoothing, the contours may also be animated
- Spreadsheet results with sorting and filtering of: reactions, member & joint deflections, beam & plate forces/stresses, optimized sizes, code designs, concrete reinforcing, material takeoffs, frequencies and mode shapes
- Standard and user-defined reports
- Graphic member detail reports with force/stress/deflection diagrams and detailed design calculations and expanded diagrams that display magnitudes at any dialed location
- Saved solutions quickly restore analysis and design results.

<u>GENERAL DESCRIPTION OF STRUCTURAL</u> <u>ANALYSIS PROGRAM~PLS-TOWER</u>

PLS-TOWER is a Microsoft Windows program for the analysis and design of steel latticed towers used in electric power lines or communication facilities. Both self-supporting and guyed towers can be modeled. The program performs design checks of structures under user specified loads. For electric power structures it can also calculate maximum allowable wind and weight spans and interaction diagrams between different ratios of allowable wind and weight spans.

Modeling Features:

- Powerful graphics module (stress usages shown in different colors)
- Graphical selection of joints and members allows graphical editing and checking
- Towers can be shown as lines, wire frames or can be rendered as 3-d polygon surfaces
- Can extract geometry and connectivity information from a DXF CAD drawing
- CAD design drawings, title blocks, drawing borders or photos can be tied to structure model
- XML based post processor interface
- Steel Detailing Neutral File (SDNF) export to link with detailing packages
- Can link directly to line design program PLS-CADD
- Automatic generation of structure files for PLS-CADD
- Databases of steel angles, rounds, bolts, guys, etc.
- Automatic generation of joints and members by symmetries and interpolations
- Automated mast generation (quickly builds model for towers that have regular repeating sections) via graphical copy/paste
- Steel angles and rounds modeled either as truss, beam or tension-only elements
- Guys are easily handled (can be modeled as exact cable elements)

Analysis Features:

- Automatic handling of tension-only members
- Automatic distribution of loads in 2-part suspension insulators (v-strings, horizontal vees, etc.)
- Automatic calculation of tower dead, ice, and wind loads as well as drag coefficients according to:
 - ASCE 74-1991
 - NESC 2002
 - NESC 2007
 - IEC 60826:2003
 - EN50341-1:2001 (CENELEC)
 - EN50341-3-9:2001 (UK NNA)
 - EN50341-3-17:2001 (Portugal NNA)
 - ESAA C(b)1-2003 (Australia)
 - TPNZ (New Zealand)
 - REE (Spain)
 - EIA/TIA 222-F
 - ANSI/TIA 222-G
 - CSA S37-01
- Automated microwave antenna loading as per EIA/TIA 222-F and ANSI/TIA 222-G
- Minimization of problems caused by unstable joints and mechanisms
- Automatic bandwidth minimization and ability to solve large problems
- Design checks according to (other standards can be added easily):
 - ASCE Standard 10-90

- AS 3995 (Australian Standard 3995)
- BS 8100 (British Standard 8100)
- EN50341-1 (CENELEC, both empirical and analytical methods are available)
- ECCS 1985
- NGT-ECCS
- PN-90/B-03200
- EIA/TIA 222-F
- ANSI/TIA 222-G
- CSA S37-01
- EDF/RTE Resal
- IS 802 (India Standard 802)

Results Features:

- Design summaries printed for each group of members
- Easy to interpret text, spreadsheet and graphics design summaries
- Automatic determination of allowable wind and weight spans
- Automatic determination of interaction diagrams between allowable wind and weight spans
- Capability to batch run multiple tower configurations and consolidate the results
- Automated optimum angle member size selection and bolt quantity determination

Tool for interactive angle member sizing and bolt quantity determination.

<u>Criteria for Design of PCS Facilities On or</u> <u>Extending Above Metal Electric Transmission</u> <u>Towers & Analysis of Transmission Towers</u> <u>Supporting PCS Masts</u>⁽¹⁾

<u>Introduction</u>

This criteria is the result from an evaluation of the methods and loadings specified by the separate standards, which are used in designing telecommunications towers and electric transmission towers. That evaluation is detailed elsewhere, but in summary; the methods and loadings are significantly different. This criteria specifies the manner in which the appropriate standard is used to design PCS facilities including masts and brackets (hereafter referred to as "masts"), and to evaluate the electric transmission towers to support PCS masts. The intent is to achieve an equivalent level of safety and security under the extreme design conditions expected in Connecticut and Massachusetts.

ANSI Standard TIA/EIA-222 covering the design of telecommunications structures specifies a working strength/allowable stress design approach. This approach applies the loads from extreme weather loading conditions, and designs the structure so that it does not exceed some defined percentage of failure strength (allowable stress).

ANSI Standard C2-2007 (National Electrical Safety Code) covering the design of electric transmission metal structures is based upon an ultimate strength/yield stress design approach. This approach applies a multiplier (overload capacity factor) to the loads possible from extreme weather loading conditions, and designs the structure so that it does not exceed its ultimate strength (yield stress).

Each standard defines the details of how loads are to be calculated differently. Most of the NU effort in "unifying" both codes was to establish what level of strength each approach would provide, and then increasing the appropriate elements of each to achieve a similar level of security under extreme weather loadings.

Two extreme weather conditions are considered. The first is an extreme wind condition (hurricane) based upon a 50-year recurrence (2% annual probability). The second is a winter condition combining wind and ice loadings.

The following sections describe the design criteria for any PCS mast extending above the top of an electric transmission tower, and the analysis criteria for evaluating the loads on the transmission tower from such a mast from the lower portions of such a mast, and loads on the pre-existing electric lower portions of such a mast, and loads on the pre-existing electric transmission tower and the conductors it supports.

<u>Note 1</u>: Prepared from documentation provide from Northeast Utilities.

<u>PCS Mast</u>

The PCS facility (mast, external cable/trays, including the initial and any planned future support platforms, antennas, etc. extending the full height above the top level of the electric transmission structure) shall be designed in accordance with the provisions of TIA/EIA Standard 222 with two exceptions:

- 1. An 85 mph extreme wind speed shall be used for locations in all counties throughout the NU system.
- The stress increase of TIA Section 3.1.1.1 is disallowed. The combined wind and ice condition shall consider ½" radial ice in combination with the wind load (0.75 Wi) as specified in TIA section 2.3.16.

ELECTRIC TRANSMISSION TOWER

The electric transmission tower shall be analyzed using yield stress theory in accordance with the attached table titled "NU Design Criteria". This specifies uniform loadings (different from the TIA loadings) on the each of the following components of the installed facility:

- PCS mast for its total height above ground level, including the initial and planned future support platforms, antennas, etc. above the top of an electric transmission structure.
- Conductors are related devices and hardware.
- Electric transmission structure. The loads from the PCS facility and from the electric conductors shall be applied to the structure at conductor and PCS mast attachment points, where those load transfer to the tower.

The uniform loadings and factors specified for the above components in the table are based upon the National Electrical Safety Code 2007 Edition Extreme Wind (Rule 250C) and Combined Ice and Wind (Rule 250B-Heavy) Loadings. These provide equivalent loadings compared to TIA and its loads and factors with the exceptions noted above. (Note that the NESC does not require the projected wind surfaces of structures and equipment to be increased by the ice covering.)

In the event that the electric transmission tower is not sufficient to support the additional loadings of the PCS mast, reinforcement will be necessary to upgrade the strength of the overstressed members.

Eversource

Overhead Transmission Standards

								_
		Attachment A ES Design Criteria	Basic Wind Speed	Pressure	Height Factor	Gust Factor	Load or Stress Factor	Force Coef Shape Factor
			V (MPH)	Q (PSF)	Kz	Gh		
	TIA/EIA	Antenna Mount	TIA	TIA (0.75Wi)	TIA	TIA	TIA, Section 3.1.1.1 disallowed for connection design	TIA
Ice Condition	NESC Heavy	Tower/Pole Analysis with antennas extending above top of Tower/Pole (Yield Stress)		4	1	1	2.5	1.6 Flat Surfaces 1.3 Round Surfaces
	NESC	Tower/Pole Analysis with antennas below top of Tower/Pole (on two faces)		4	1	1	2.5	1.6 Flat Surfaces 1.3 Round Surfaces
		Conductors:			Cond	uctor Load	ds Provided by ES	
	TIA/EIA	Antenna Mount	85	TIA	TIA	TIA	TIA, Section 3.1.1.1 disallowed for connection design	TIA
High Wind Condition	NESC Extreme Wind	Tower/Pole Analysis with antennas extending above top of Tower/Pole	telecor	Rule 2 Apply a 1.2 nmunicati ole and ap	50C: Extre 25 x Gust F on equipr oply a 1.0 >	nent proje	Loading Factor to all ected above top of ponse Factor to the	1.6 Flat Surfaces 1.3 Round Surfaces
High	NESC Ext	Tower/Pole Analysis with antennas below top of Tower/Pole	Height a	Rule 2	50C: Extre Ind is base	e OTRM 0 me Wind l ed on over r/pole		1.6 Flat Surfaces 1.3 Round Surfaces
		Conductors:					ds Provided by ES	
NESC Extreme Ice with Wind Condition*		Tower/Pole Analysis with antennas extending above top of Tower/Pole	For wind speed use OTRM 060 Map 1, Rule 250D: Extreme Ice with Wind Loading 4 PSF Wind Load 1.25 x Gust Response Factor Apply a 1.25 x Gust Response Factor to all telecommunication equipment projected above top of tower/pole and apply a 1.0 x Gust Response Factor to the tower/pole structure				1.6 Flat Surfaces 1.3 Round Surfaces	
	SC EXTREME ICE WI	Tower/Pole Analysis with antennas below top of Tower/Pole	For wind speed use OTRM 060 Map 1,ower/Pole Analysis withRule 250D: Extreme Ice with Wind Loadingantennas below top of4 PSF Wind LoadTower/PoleHeight above ground is based on overall height to top of tower/pole			1.6 Flat Surfaces 1.3 Round Surfaces		
	z	Conductors:	d after 20	07	Cond	uctor Load	ds Provided by ES	
		*Only for structures installed after 2007						

Attachment A Eversource Design Criteria

Communication Antennas on Transmission Structures				
Eversource Design OTRM 059 R				
Approved by: CPS (CT/WMA) JCC (NH/EMA)		Page 8 of 10	11/19/2018	

Γ

Overhead Transmission Standards

determined from NESC applied loading conditions (not TIA Loads) on the structure and mount as specified below, and shall include the wireless communication mast and antenna loads per NESC criteria)

The strength reduction factor obtained from the field investigation shall be applied to the members or connections that are showing signs of deterioration from their original condition With the written approval of Eversource Transmission Line Engineering on a case by case the existing structures may be analyzed initially using the current NESC code, then it is permitted to use the original design code with the original conductor load should the existing tower fail the current NESC code.

The structure shall be analyzed using yield stress theory in accordance with Attachment A, "Eversource Design Criteria." This specifies uniform loadings (different from the TIA loadings) on each of the following components of the installed facility:

- a) Wireless communication mast for its total height above ground level, including the initial and any planned future equipment (Support Platforms, Antennas, TMA's etc.) above the top of an electric transmission structure.
- b) Conductors and related devices and hardware (wire loads will be provided by Eversource).
- c) Electric Transmission Structure
 - i) The loads from the wireless communication equipment components based on NESC and Eversource Criteria in Attachment A, and from the electric conductors shall be applied to the structure at conductor and wireless communication mast attachment points, where those loads transfer to the tower. ii)
 - ii) Shape Factor Multiplier:

NESC Structure Shape	Cd
Polyround (for polygonal steel poles)	1.3
Flat	1.6
Open Lattice	3.2
Pole with Coaxial Cable	See Below Table

iii) When Coaxial Cables are mounted alongside the pole structure, the shape multiplier shall be:

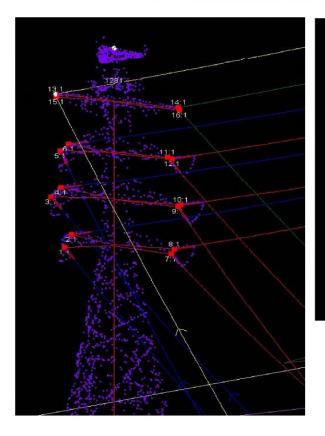
Mount Type	Cable Cd	Pole Cd
Coaxial Cables on outside periphery (One layer)	1.45	1.45
Coaxial Cables mounted on stand offs	1.6	1.6

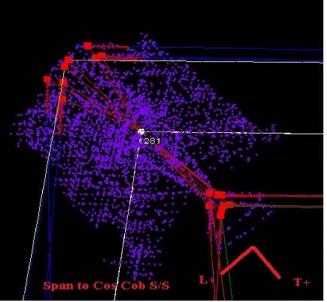
d) The uniform loadings and factors specified for the above components in Attachment A, "Eversource Design Criteria" are based upon the National Electric Safety Code 2007 Edition Extreme Wind (Rule 250C) and Combined Ice and Wind (Rule 250B-Heavy) Loadings. These provide equivalent loadings compared to the TIA and its loads and factors with the exceptions noted above.

Communication Antennas on Transmission Structures			
EversourceDesignOTRM 059Rev. 1Approved by: CPS (CT/WMA) JCCPage 3 of 1011/19/2018			
(NH/EMA)			

Project: 1740/1750 Lines, Structure 1281 Date: 11/26/18 Engineer: JS Purpose: Recalculate wire loads for Sprint/Verizon site.

Shield Wires:


1740: Linnet 336 ACSR, sagged in PLS-CADD 1750: AFL DNO-8363 OPGW, sagged in PLS-CADD


Conductors:

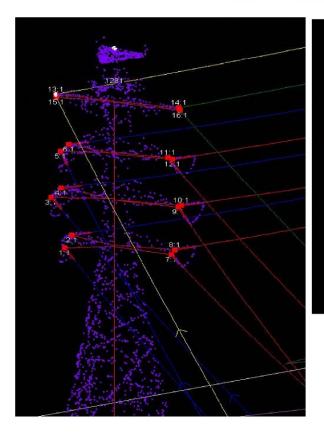
1740/1750: 1272 ACSR, sagged in PLS-CADD

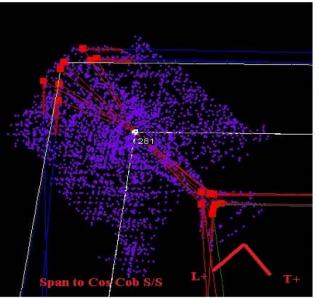
NESC 250B

1610	1610	1610
1298	8213	-2807
2332	7785	7437
438	7124	-7493
3241	9292	7457
573	5259	-5419
2933	5363	5970
520	5739	-5969
2393	10693	-4869
2366	9228	-2072
1702	12051	-5996
	1298 2332 438 3241 573 2933 2933 520 2393 2366	1298 8213 1298 8213 2332 7785 438 7124 3241 9292 573 5259 2933 5363 520 5739 2393 10693 2366 9228

Project: 1740/1750 Lines, Structure 1281 Date: 11/26/18 Engineer: JS Purpose: Recalculate wire loads for Sprint/Verizon site.

Shield Wires:

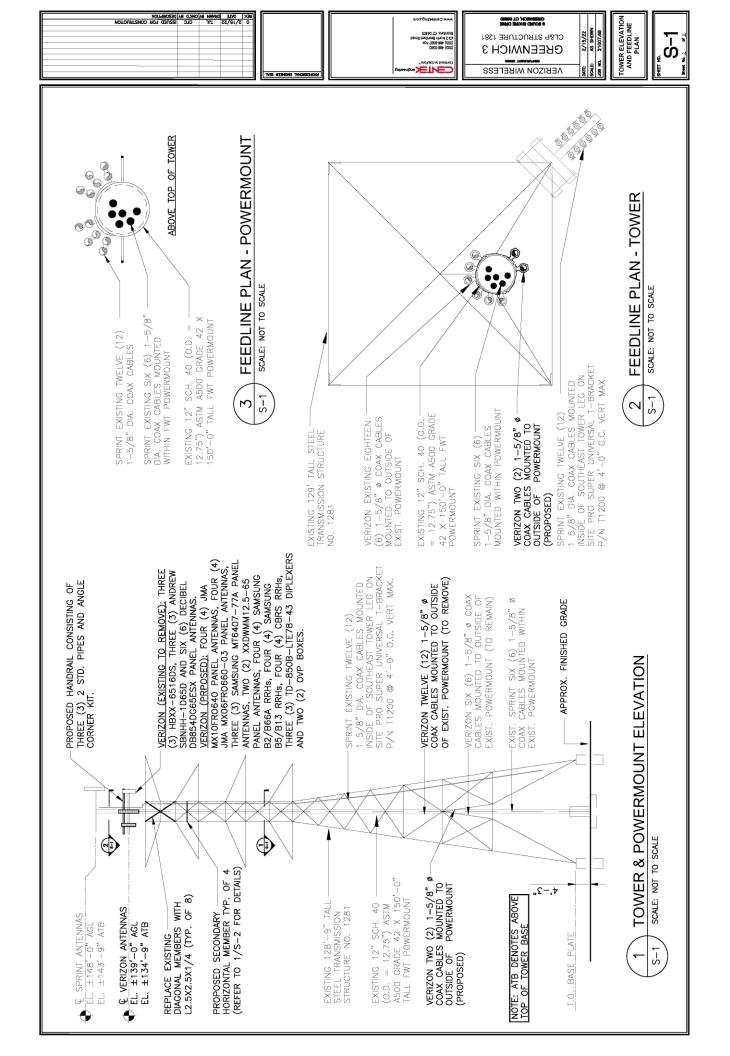

1740: Linnet 336 ACSR, sagged in PLS-CADD 1750: AFL DNO-8363 OPGW, sagged in PLS-CADD

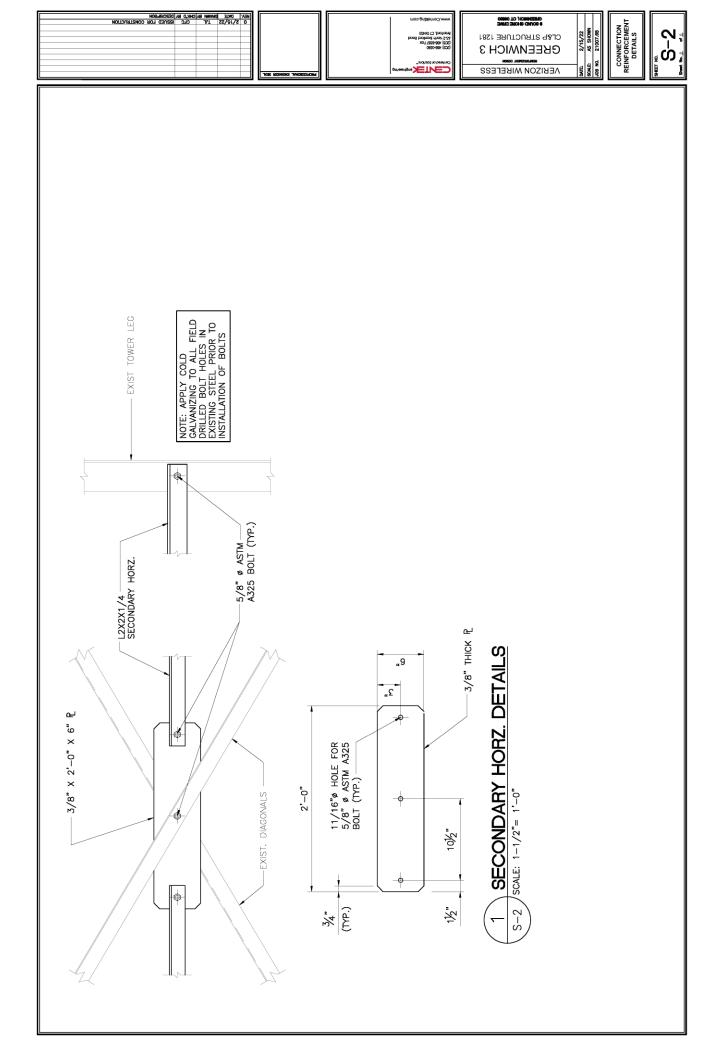

Conductors:

1740/1750: 1272 ACSR, sagged in PLS-CADD

NESC 250C

Linnet	876	5036	-1015
OPGW	681	5012	-2032
1740 Set 1	1333	4079	3425
1740 Set 2	95	4777	-4362
1740 Set 3	1811	4637	3263
1740 Set 4	163	4024	-3498
1750 Set 5	1835	3229	3049
1740 Set 6	124	4322	-3823
1750 Top Phase (Sets 11+12)	1463	7489	-3001
1750 Middle Phase (Sets 9+10)	1390	6685	-1521
1750 Bottom Phase (Sets 7+8)	969	7820	-3146


			ARY		
	SITE ADDRESS: PROJECT COOF	site address: Project coordinates:	9 SOUND SHORE DRIVE GREENWICH CT, 06830 LAT: 41'-01'-47.00N LON: 73'-55'-54.11W ELEV: ±22' AMSL		ASTRUCTION
REINFORCEMENT DESIGN	EVERSOUR	EVERSOURCE CONTACT:	RICH BADON 860.728.4852		Socialion Sned Lok Co
	EVERSOUR	EVERSOURCE STRCT NO .:	1281		
	VERIZON	VERIZON SITE REF .:	GREENWICH 3		
SOURCE STRUCT. NO. 1281	VERIZON	VERIZON CONTACT:	COREY VACCARO 781.227.1314		
9 SOUND SHORE DRIVE	ENGINEER	ENGINEER OF RECORD:	CENTEK ENGINEERING, INC. 63-2 NORTH BRANFORD ROAD BRANFORD, CT 06405		
GREENWICH, CT 06830	CENTEK CONTACT:	CONTACT:	TIMOTHY J. LYNN, PE 203.433.7507		EZHENA THIOSELICI
	SHEET INDEX	INDEX			
	SHT. NO.	DESCRIPTION		REV.	
	T-1	TITLE SHEET		0	Centered of (203) 486- (203) 486- 63-2 North 60-footh
	N 1	DESIGN BASIS	& GENERAL NOTES	0	13
	N-2	STRUCTURAL S	STEEL NOTES	0	INBE J NICH
PROJECT					
	MI-1	MODIFICATION	MODIFICATION INSPECTION REQUIREMENTS	0	orse CBE
	S-1	TOWER ELEVATI	ELEVATION AND FEEDLINE PLAN	0	SOME: AS SHOWN JOB NO. 21007.68
	S-2	CONNECTION R	CONNECTION REINFORCEMENT DETAILS	0	
					TITLE SHEET


	ſ	
DESIGN BASIS	GENERAL NOTES	
1. GOVERNING CODE: 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CT STATE SUPPLIEMENT	1. REFER TO STRUCTURAL ANALYSIS REPORT PREPARED BY CENTEK ENGINEERING, INC., FOR VERIZON, DATED 2/15/22.	
	2. ALL CONSTRUCTION SHALL BE IN ACCORDANCE WITH THE GOVERNING BUILDING CODE.	виспои
AND EVERSOURCE DESIGN STRUCTURES , NESC CZ-ZUTY AND EVERSOURCE DESIGN CRITERIA. 3. DESIGN CRITERIA	3. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS	Cirgalion ned Lok Con21
WIND LOAD: (ANTENNA MAST) NOMINAL DESIGN WIND SPEED (V) = 93 MPH (2018 CSBC: APPENDIX 'N')	BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS SCOPE OF WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.	MINH BLICHKO BLIOD
WIND LOAD: (UTILITY POLE & FOUNDATION) BASIC WIND SPEED (V) =110 MPH (3-SECOND GUST) BASED ON NESC C2-2017, SECTION 25 RULE 250C.	4. BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH INVESTIGATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE AND SUBSURFACE) AT OR CONTICUOUS TO THE SITE WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK. THIS INCLUDES VERIFYING ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONTIGONS THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA. CONTRACTOR SHALL TAKE FIELD	
	MEASUREMENTS NECESSARY TO ASSURE PROPER FIT OF ALL FINISHED WORK.	
	5. PCS MAST INSTALLATION SHALL BE CONDUCTED BY FIELD CREWS EXPERIENCED IN THE ASSEMBLY AND ERECTION OF TRANSMISSION STRUCTURES. ALL SAFETY PROCEDURES, RIGGING AND ERECTION METHODS SHALL BE STANDARD TO THE INDUSTRY AND IN COMPLANCE WITH OSHA.	Bu
	6. IF ANY FIELD CONDITIONS EXIST WHICH PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL PROCEED WITH AFFECTED WORK AFTER CONFLICT IS SATISFACTORILY RESOLVED.	www.Contelling.com contend on Subora for an india of the for for an india of the for an india of the for for an india of the for an india of the for for an india of the for an india of the for for an india of the for an india of the for for an india of the for an india of the for for an india of the for an india of the for an india of the for for an india of the for an india of the for an india of the for for an india of the for an india of the for an india of the for for an india of the for an in
	7. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.	.пве 1581 \ICH 3 ***
	8. NO DRILLING WELDING OR TAPING IS PERMITTED ON EVERSOURCE OWNED EQUIPMENT.	
		DATE: 2/15/22 SCALE: AS SHOWN JUB NO. 21007.69
		DESIGN BASIS AND GENERAL NOTES
		SPET NO. N-1 Sheet No. 2 of <u>0</u>

	INT OUL DAMAN BUCKUD BUCKORALION OL STUDY		פ אן פססק איז		MEGY CL COME LANCLINE J38J		STRUCTURAL NOTES
ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE".	CONTRACTOR SHALL COMPLY WITH AWS CODE FOR PROCEDURES APPEARANCE AND QUALITY OF WELDS, AND WELDING PROCESSES SHALL BE QUALIFIED IN ACCORDANCE WITH AWS "STANDARD QUALIFICATION PROCEDURES" ALL WELDING SHALL BE DONE USING THE SCHEDULED ELECTRODES AND WELDING SHALL CONFORM TO AISC AND D1.1 WHERE FILLET WELD SIZES ARE NOT SHOWN, PROVIDE THE MINIMUM SIZE PER TABLET J2.4 IN THE AISC "MANUAL OF STEEL CONSTRUCTION" 14TH EDITION. AT THE COMPLETION OF WELDING, ALL DAMAGE TO GALVANIZED COATING SHALL BE REPAIRED.	THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW. CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF 1/4 INCHES.	STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325. ALL BOLTS SHALL BE 3,4" DIAMETER MINIMUM AND SHALL HAVE A MINIMUM OF TWO BOLTS, UNLESS OTHERWISE ON THE DRAWINGS. LOCK WASHER ARE NOT PERMITTED FOR A325 BOLTED STEEL ASSEMBLIES.	SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BOLTED. MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND		EXCEED 1/4" IN COMMENCEMENT NOTIFYING THE E BE CONSIDERED	
STRUCTURAL STEEL 1. ALL STRUCTURAL STEEL IS DESIGNED BY LOAD 1. RESISTANCE FACTOR DESIGN (LRFD). 2. MATERIAL SPECIFICATIONS	 A. STRUCTURAL STEEL (W SHAPES)ASTM A992 12. (FY = 50 KSI) B. STRUCTURAL STEEL (OTHER SHAPES)ASTM A36 (FY = 36 KSI). C. STRUCTURAL HSS (RECTANGULAR SHAPES)ASTM A500 GRADE B, (FY = 46 KSI) D. STRUCTURAL HSS (ROUND SHAPES)ASTM A500 GRADE B, (FY = 42 KSI) E. PIPEASTM A53 GRADE B (FY = 35 KSI) 3. FASTENER SPECIFICATIONS 	 A. CONNECTION BOLTSASTM A325-N, UNLESS 13. OTHERWISE SCHEDULED. B. U-BOLTSASTM A307 C. ANCHOR RODSASTM F1554 D. WELDIOG ELECTRODESASTM ETOXX FOR A36 & A572_GR65 A572_GR50 STEELS, ASTM EBOXX FOR A572_GR65 A572_GR50 STEELS, ASTM EBOXX FOR A572_GR65 A572_GR50 STEELS, ASTM EBOXX FOR A572_GR65 A CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND 	 SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE ENGINEER FOR REVIEW. SHOP DRAWINGS SHALL INCLUDE THE FOLLOWING: SECTION PROFILES, SIZES, CONNECTION ATTACHMENTS, PROFILES, SIZES, CONNECTION ATTACHMENTS, REINFORCING, ANCHORAGE, SIZE AND TYPE OF FASITERS AND ACCESSORIES. INCLUDE ERECTION DRAWINGS, ELEVATIONS AND DETAILS. 		 PROVIDE ALL PLATES, CLIP ANGLES, CLOSURE PIECES, STRAP ANCHORS, MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE THE STRUCTURE. 19. 7. FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST 20. 	 INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, AND FREE FROM DISTORTIONS OR DEFECTS. AFTER ERECTION OF STRUCTURES, TOUCHUP ALL WELDS, ABRASIONS AND NON-GALVANIZED SUFFACES WITH A 95% ORGANIC ZINC RICH PAINT IN ACCORDANCE WITH ASTM 780. 	10. ALL STEEL MATERIAL (EXPOSED TO WEATHER) SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT DIPPED GALVANIZED) COATINGS" ON IRONS AND STEEL PRODUCTS.

	Σ	ODIFICAT	MODIFICATION INSPECTION REPORT REQUIREMENTS	ПS		
	PHE-CONSTUCTION		DURING CONSTRUCTION		POST-CONSTRUCTION	
SCHEDULED				SCHEDULED TEM	REPORT ITEM	
×	EOR MODIFICATION INSPECTION DRAWING	I	FOUNDATIONS	×	MODIFICATION INSPECTOR RECORD REDLINE DRAWING	ICLION
×	EOR APPROVED SHOP DRAWINGS	I	EARTHWORK: BACKFILL MATERIAL & COMPACTION	I	POST-INSTALLED ANCHOR ROD PULL-OUT TEST	
I	EOR APPROVED POST-INSTALLED ANCHOR MPII	I	REBAR & FORMWORK GEOMETRY VERIFICATION	×	PHOTOGRAPHS	
1	FABRICATION INSPECTION	1	CONCRETE TESTING			
ı	FABRICATOR CERTIFIED WELDER INSPECTION	×	STEEL INSPECTION			
×	MATERIAL CERTIFICATIONS	1	POST INSTALLED ANCHOR ROD VERIFICATION			
		1	BASE PLATE GROUT VERIFICATION			
		1	CONTRACTOR'S CERTIFIED WELD INSPECTION			
		×	ON-SITE COLD GALVANIZING VERIFICATION			
		×	CONTRACTOR AS-BUILT REDLINE DRAWINGS			Ma
NOTES:	 REFER TO MODIFICATION INSPECTION NOTES FOR ADDITIONAL REQUIREMENTS "X" DENOTES DOCUMENT REQUIRED FOR INCLUSION IN MODIFICATION INSPECTION FINAL REPORT. "="DENOTES DOCUMENT NOT REQUIRED FOR INCLUSION IN MODIFICATION INSPECTION FINAL REPORT. "ED ENOTES DOCUMENT ON REQUIRED FOR INCLUSION IN MODIFICATION INSPECTION FINAL REPORT. "MANUFACTURER OF REQUIRED INSTALLATION CUIDELINES" "MANUFACTURER S PRIVIED INSTALLATION CUIDELINES" 	L REQUIREMENTS DIFICATION INSPEC M MODIFICATION IN	stion filmal report. Uspection filmal report.			: HEENING THIORSEADING
GENERAL	AL	MODI	MODIFICATION INSPECTOR (MI)	Ö	CORRECTION OF FAILING MODIFICATION	
1. THF MC	DDIFICATION INSPECTION IS A VISUAL INSPECTION	1. THE	MI SHALL CONTACT THE GC UPON AUTHORIZATION BY	I SN	INSPECTION	
	OF STRUCTURAL MODIFICATIONS, TO INCLUDE A REVIEW AND COMPLIATION OF SPECIFIED SUBMITTALS AND CONSTICUTION INSEFECTIONS AS AN ASSURANCE OF		THE CLIENT TO: - BEVIEW THE MODIFICATION INSPECTION REPORT	- 4 SI	SHOULD THE STRUCTURAL MODIFICATION NOT COMPLY WITH THE REQUIREMENTS OF THE CONSTRUCTION	
COMPL	ANDER THE CONSTRUCTION DOCUMENTS	REQ(ŏŽŸ	DOCUMENTS, THE GC SHALL WORK WITH THE MODIFICATION INSPECTOR IN A VIABLE REMEDIATION PLAN AS FOLLOWS.	Dupoeujduc
	RECORD (EOR). The modification inspection is to confirm		FOR UN-SITE INSPECTIONS. - DISCUSS CRITICAL INSPECTIONS AND PROJECT CONCENS.)	1 CL 09402 14 BEN LOX 9 4980 LOX 9 4980 LOX 9 4980 9 4990 9 4990 9 4990 9 4990 9 4990 9 4990 9 4990 9 4990 9 4990 9 4900 9 4000 9 400 9 4000 9 40000000000
	INSTALLATION CONFIGURATION AND GENERAL				CONTRACT DOCUMENTS AND COORDINATE WITH THE MI FOR A FOLLOW LID INSPECTION	Constant
WORKIN MODIFIC	Workmanship and is not a review of the Modification design. Ownership of the modification design fefectiveness and initent resides with the	2. THE INSPI	THE MI IS RESPONSIBLE FOR COLLECTION OF ALL INSPECTION AND TEST REPORTS, REVIENING REPORTS FOR ADHERENCE TO THE CONTRACT DOCUMENTS, CONDUCTING	I		
ENGINE	ER OF RECORD.	ON- OF 1	SITE INSPECTIONS AND COMPILATION & SUBMISSION THE MODIFICATION INSPECTION REPORT TO THE		THE AS-BUILT CONDITION.	€⊢
3. TO ENS	TO ENSURE COMPLIANCE WITH THE MODIFICATION INSPECTION PEOLINEEMENTS THE CENERAL CONTRACTOR	CLIE	CLIENT AND THE FOR.		REQUIRED PHOTOGRAPHS	
(GC) A	NICATION NEW DIFFERENCE CONTRACTON	GENE	GENERAL CONTRACTOR (GC)	≓≓ 	THE GC AND MI SHALL AT MINIMUM PHOTO DOCUMENT THE FOILOWING FOR INCLUSION IN THE MODIFICATION	ΛNΞ
THE CLIENT. CONTACTING IF SPECIFIC AVAILARI F	THE CLENT, EACH PARTY SHALL BE PROACTIVE IN THE CONTACTING THE OTHER. THE EOR SHALL BE CONTACTED CONTACTING THE OTHER. THE EOR SHALL BE CONTACTED IF SPECIFIC GC/MI CONTACT INFORMATION IS NOT MADE AVAILABLE.	1. THE AUTH CLIER	THE GC IS REQUIRED TO CONTACT THE GC UPON AUTHORIZATION TO PROCEED WITH CONSTRUCTION BY THE CLIENT TO:	:≧ ।	INSPECTION REPORT: INCLUDENT AND A THE MOUTH AND A THE POLY AND A	
4. THE GC BUSINES	THE GC SHALL PROVIDE THE MI WITH A MINIMUM OF 5 BUSINESS DAYS NOTICE OF IMPENDING INSPECTIONS.	I REQU	- Review the modification inspection report Requirements. - Work with the ML in development of a schedule	I	DURING CONSTRUCTION: RAW MATERIALS, CRITICAL DETAILS, WELD PREPARATION, BOLT INSTALLATION & TORQUE, FINAL INSTALLED CONDITION & SURFACE	DATE: 2/15/22 SOME: AS SHOWN JOB NO. 21007.68
5. WHEN DURING	WHEN POSSIBLE, THE GC AND MI SHALL BE ON SITE DURING THE MODIFICATION INSPECTION TO HAVE ANY MOTED DEFICIENCIES ADDRESSED DURING THE INITIAL	CON(I	COALING REPARS. POST-CONSTRUCTION: FINAL CONDITION OF THE SITE	MODIFICATION INSPECTION REQUIREMENTS
MODIFIC	CATION INSPECTION.	2. THE SCHE	THE GC IS RESPONSIBLE FOR COORDINATING AND SCHEDULING IN ADVANCE ALL REQUIRED INSPECTIONS			SHEFT NO. M-1
		22	IEDID WIIT THE MI.			

Smatting of B

	Subject:			Loads on Equipmnet Structure 1281
Centered on Solutions www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	Location:			Greenwich, CT
	Rev. 0: 2/15/22			Prepared by: T.J.L. Checked by: C.F.C. Job No. 21007.68
Development of Design Heights, Exposure Coe and Velocity Pressures Per				
	Wind Speeds			
Bas	sic Wind Speed	V := 93	mph	(User Input-2018 CSBC Appendix N)
Basic Wind S	speed with Ice Input	V _i := 50	mph	(User Input per Ann ex B of TIA-222-G)
		o		() least least ()
	Structure Type =	Structure_Type :=	Lattice	(User Input)
Structu	ire Category =	SC := III		(User Input)
Exposu	ure Category =	Exp := C		(User Input)
Stru	ucture Height =	h:= 129	ft	(User Input)
Height to Center of	fAntennas=	^z Sprint ^{:=} 148	ft	(User Input)
Height to Center of	fAntennas=	z _{VZ} := 139	ft	(User Input)
Height to Cer	nter of Mast =	z _{Mast5} ≔ 135	ft	(User Input)
Height to Cer	nter of Mast =	z _{Mast4} ≔ 105	ft	(User Input)
Height to Cer	nter of Mast =	^z Mast3 ≔ 75	ft	(User Input)
Height to Cer	nter of Mast =	z _{Mast2} ≔ 45	ft	(User Input)
Height to Cer	nter of Mast =	z _{Mast1} ≔ 15	ft	(User Input)
Radial Io	ce Thickness =	t _i := 0.75	in	(User Input per Ann ex B of TIA-222-G)
Radia	al Ice Density =	ld := 56.00	pcf	(User Input)
Τορος	grapic Factor =	K _{zt} := 1.0		(User Input)
		K _a := 1.0		(User Input)
Gust Rest	ponse Factor =	G _H := 1.35		(User Input)
		n		

Output

Wind Direction Probability Factor = $K_d :=$ 0.95 if Structure_Type = Pole= 0.85(Per Table 2-2 of TIA-222-G)Importance Factors = $I_{Wind} :=$ 0.87 if SC = 1= 1.15(Per Table 2-3 of TIA-222-G) $I_{Wind} :=$ 0.87 if SC = 21.00 if SC = 2TIA-222-G1.15 if SC = 3 $I_{Wind_w_lce} :=$ 0 if SC = 1= 1 $I_{ice} :=$ 0 if SC = 1= 11.00 if SC = 2 $I_{ice} :=$ 0 if SC = 1= 1.25 $I_{ice} :=$ 0 if SC = 21.00 if SC = 21.00 if SC = 31.25 if SC = 3

Subject:

63-2 North Branford Road Branford, CT 06405

Location:

Rev. 0: 2/15/22

Loads on Equipmnet Structure 1281

Greenwich, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 21007.68

$$K_{iz} := \left(\frac{z_{Sprint}}{33}\right)^{0.1} = 1.162$$

Velocity Pressure CoefficientAntemas =

Velocity Pressure with Ice Antennas =

$$K_{iz} := \left(\frac{z_{VZ}}{33}\right)^{0.1} = 1.155$$

Velocity Pressure w/o Ice Antennas =

Velocity Pressure with Ice Antennas =

$$K_{izMast5} := \left(\frac{z_{Mast5}}{33}\right)^{0.1} = 1.151$$

Velocity Pressure Coefficient Mast =

$$K_{izMast4} := \left(\frac{z_{Mast4}}{33}\right)^{0.1} = 1.123$$

$$Kz_{Sprint} := 2.01 \left(\left(\frac{z_{Sprint}}{zg} \right) \right)^{\frac{2}{\alpha}} = 1.375$$

 $t_{izSprint} := 2.0 \cdot t_i \cdot I_{ice} \cdot K_{iz} \cdot K_{zt}^{0.35} = 2.179$

 $qz_{Sprint} := 0.00256 \cdot K_d \cdot Kz_{Sprint} \cdot V^2 \cdot I_{Wind} = 29.749$ ~

$$q_{\text{ce.Sprint}} = 0.00256 \cdot K_{\text{d}} \cdot K_{\text{Sprint}} \cdot V_{\text{i}}^{2} \cdot I_{\text{Wind}w_{\text{lce}}} = 7.477$$

$$t_{izVZ} \coloneqq 2.0 \cdot t_i \cdot l_{ice} \cdot K_{iz} \cdot K_{zt}^{0.35} = 2.165$$

$$Kz_{VZ} \coloneqq 2.01 \left(\left(\frac{z_{VZ}}{zg} \right) \right)^{\frac{2}{\alpha}} = 1.356$$

 $qz_{VZ} := 0.00256 \cdot K_{d'} K z_{VZ} \cdot V^2 \cdot I_{Wind} = 29.359$ $qz_{ice,VZ} := 0.00256 \cdot K_{d'} \cdot Kz_{VZ} \cdot V_{i}^{2} \cdot I_{Wind w lce} = 7.379$

$$t_{izMast5} = 2.0 \cdot t_i \cdot l_{ice} \cdot \kappa_{izMast5} \cdot \kappa_{zt}^{0.35} = 2.159$$

$$Kz_{Mast5} := 2.01 \left(\left(\frac{z_{Mast5}}{zg} \right) \right)^{\alpha} = 1.348$$

 $qz_{Mast5} = 0.00256 \cdot K_{d} \cdot Kz_{Mast5} \cdot V^2 \cdot I_{Wind} = 29.179$

 $qz_{ice.Mast5} \approx 0.00256 \cdot K_d \cdot Kz_{Mast5} \cdot V_i^2 \cdot I_{Wind w Ice} = 7.334$

2

$$t_{izMast4} := 2.0 \cdot t_i \cdot l_{ice} \cdot K_{izMast4} \cdot K_{zt}^{0.35} = 2.105$$

$$Kz_{Mast4} := 2.01 \left(\left(\frac{z_{Mast4}}{zg} \right) \right)^{\frac{2}{\alpha}} = 1.279$$

 $qz_{Mast4} := 0.00256 \cdot K_{d} \cdot Kz_{Mast4} \cdot V^2 \cdot I_{Wind} = 27.675$

$$qz_{ice.Mast4} := 0.00256 \cdot K_d \cdot Kz_{Mast4} \cdot V_i^2 \cdot I_{Wind_w_lce} = 6.956$$

Velocity Pressure Coefficient Mast =

Velocity Pressure w/o lce Mast=

Subject:

Loads on Equipmnet Structure 1281

Location:

Rev. 0: 2/15/22

Greenwich, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 21007.68

$$K_{izMast3} := \left(\frac{z_{Mast3}}{33}\right)^{0.1} = 1.086$$

Velocity Pressure Coefficient Mast =

$$K_{izMast2} := \left(\frac{z_{Mast2}}{33}\right)^{0.1} = 1.032$$

$$t_{izMast2} \coloneqq 2.0 \cdot t_{j} \cdot I_{ice} \cdot K_{izMast2} \cdot K_{zt}^{0.35} = 1.934$$

 $t_{izMast3} \coloneqq 2.0 \cdot t_i \cdot l_{ice} \cdot K_{izMast3} \cdot K_{zt}^{0.35} = 2.035$

 $qz_{Mast3} := 0.00256 \cdot K_{d} \cdot Kz_{Mast3} \cdot V^2 \cdot I_{Wind} = 25.782$

 $Kz_{Mast3} := 2.01 \left(\left(\frac{z_{Mast3}}{zg} \right) \right)^{\frac{-\alpha}{\alpha}} = 1.191$

2

$$Kz_{Mast2} := 2.01 \left(\left(\frac{z_{Mast2}}{zg} \right) \right)^{\alpha} = 1.07$$

 $qz_{Mast2} \coloneqq 0.00256 \cdot K_d \cdot Kz_{Mast2} \cdot V^2 \cdot I_{Wind} = 23.154$

2

 $qz_{ice.Mast2} \approx 0.00256 \cdot K_d \cdot K_z_{Mast2} \cdot V_i^2 \cdot I_{Wind w Ice} = 5.82$

$$K_{izMast1} := \left(\frac{z_{Mast1}}{33}\right)^{0.1} = 0.924$$

$$t_{izMast1} := 2.0 \cdot t_{i} \cdot l_{ice} \cdot K_{izMast1} \cdot K_{zt}^{0.35} = 1.733$$

$$Kz_{Mast1} \coloneqq 2.01 \left(\left(\frac{z_{Mast1}}{zg} \right) \right)^{\alpha} = 0.849$$

$$qz_{Mast1} := 0.00256 \cdot K_{d} \cdot Kz_{Mast1} \cdot V^{2} \cdot I_{Wind} = 18.373$$

$$qz_{ice.Mast1} \coloneqq 0.00256 \cdot K_d \cdot K_z_{Mast1} \cdot V_i^2 \cdot I_{Wind_w_Ice} = 4.618$$

~

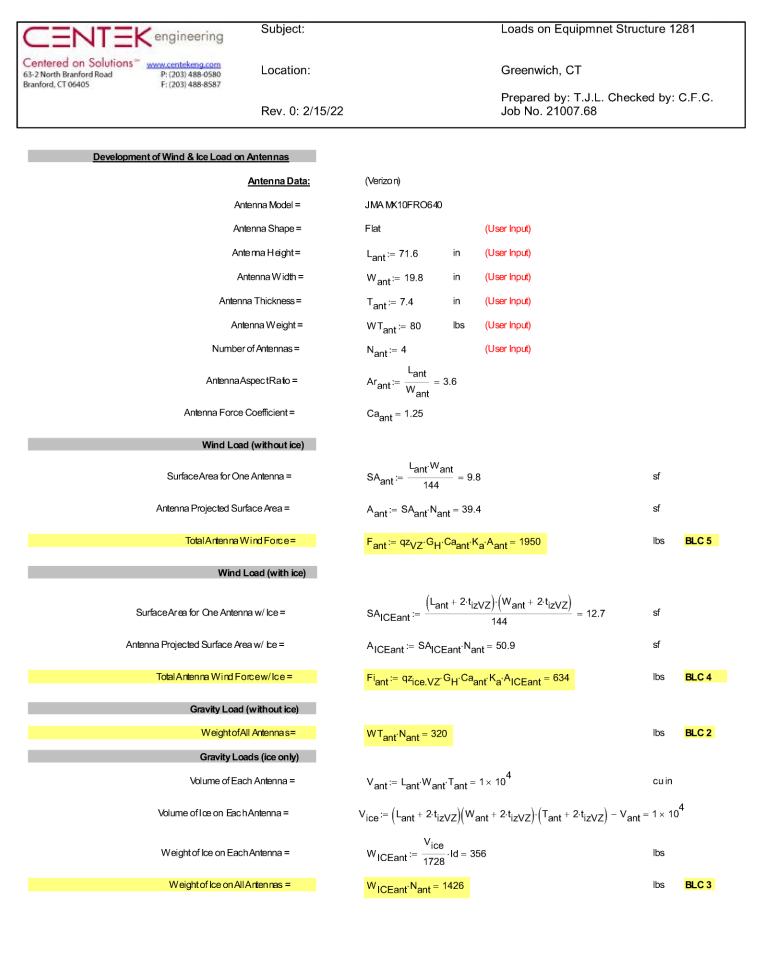
Velocity Pressure Coefficient Mast =

Velocity Pressure w/o Ice Mast=

Velocity Pressure with Ice Mast =

Velocity Pressure Coefficient Mast =

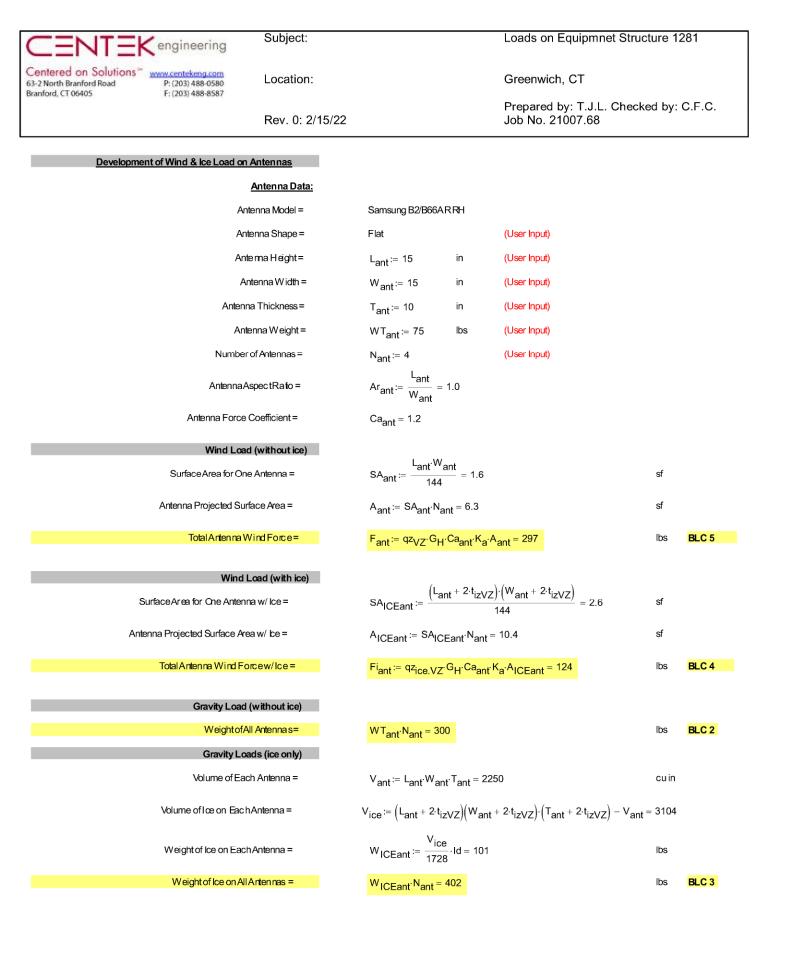
Velocity Pressure w/o Ice Mast=

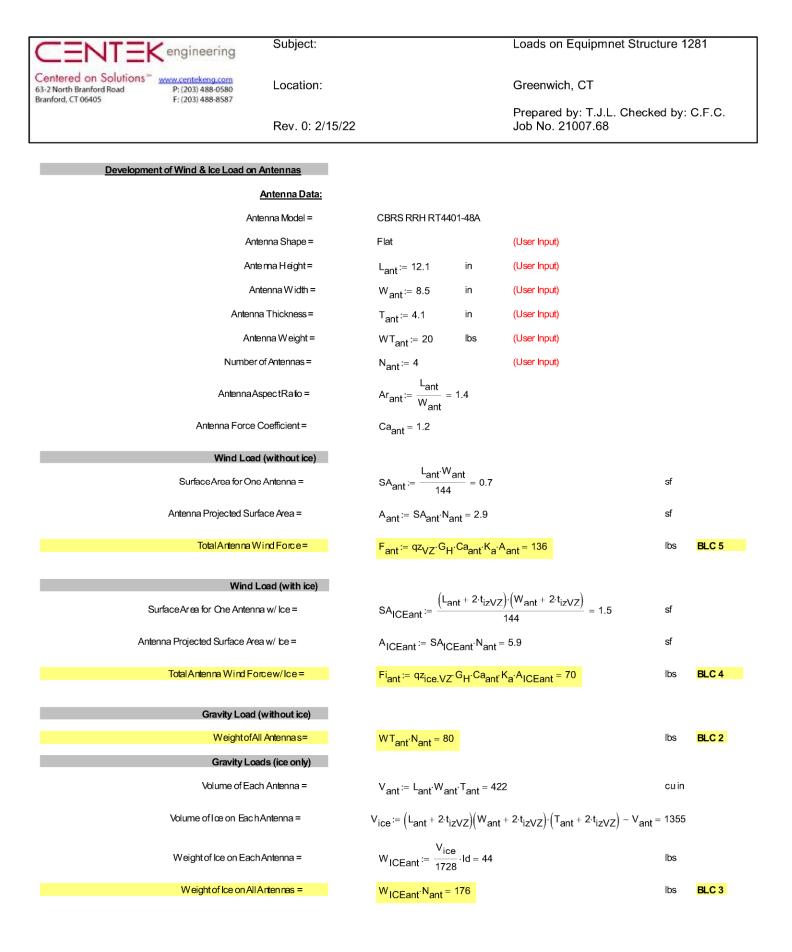

Velocity Pressure with Ice Mast =

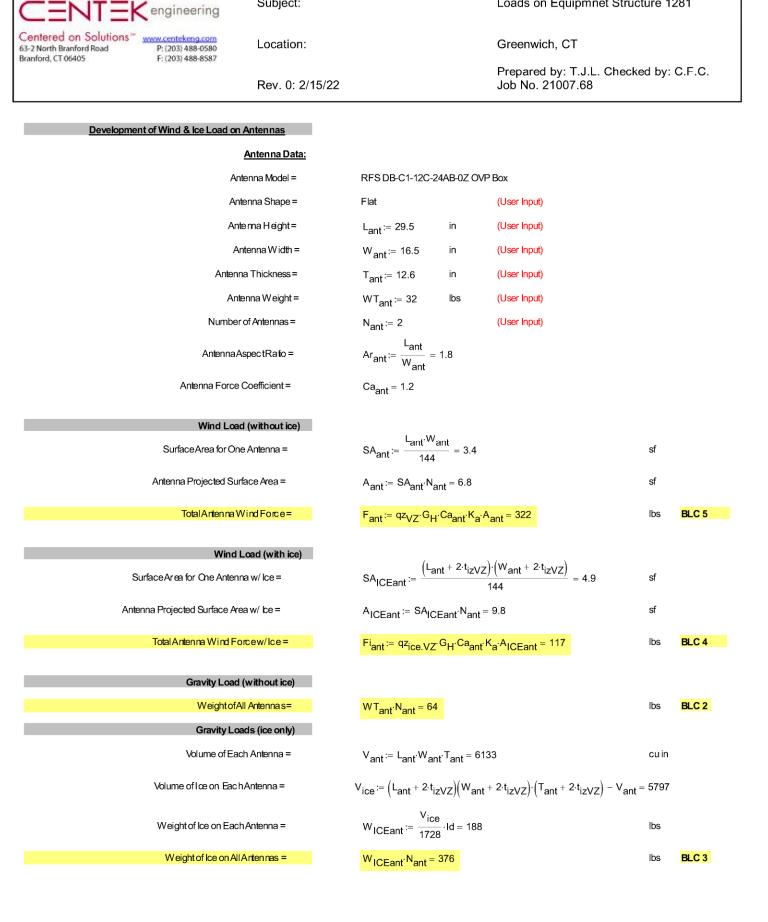
	Subject:		Loads on Equipmnet Struc	ture 1281
Centered on Solutions www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	Location:		Greenwich, CT	
	Rev. 0: 2/15/22		Prepared by: T.J.L. Check Job No. 21007.68	ed by: C.F.C.
Development of Wind & Ice	Load on Mast			
	<u>Mast Data:</u>	(12" Sch. 40 Pipe)	(User Input)	
	Mast Shape =	Round	(User Input)	
	Mast Diameter =	D _{mast} := 12.75 in	(User Input)	
	Mast Length =	L _{mast} ∶= 150 ft	(User Input)	
	Mast Thickness =	t _{mast} ≔ 0.375 in	(User Input)	
Vel	ocity Coefficient =	$C := \sqrt{I \cdot K z_{Mast1}} \cdot V \cdot \frac{D_{mast}}{12}$	= 91	
Mast F	orce Coefficient =	$CF_{mast} = 0.6$		
Wind	Load (without ice)			
Mast Projecte	d Surface Area =	$A_{mast} := \frac{D_{mast}}{12} = 1.063$		sf/ft
Total N	fast Wind Force =	qz _{Mast5} .G _H .CF _{mast} .A _{mast}	= 25	plf BLC 5
Total N	fast Wind Force =	qz _{Mast4} ·G _H ·CF _{mast} ·A _{mast}	= 24	plf BLC 5
Total N	fast Wind Force =	qz _{Mast3} .G _H .CF _{mast} .A _{mast}	= 22	plf BLC 5
Total N	fast Wind Force =	qz _{Mast2} .GH.CFmast.Amast	= 20	plf BLC 5
Total N	fast Wind Force =	qz _{Mast1} .G _H .CF _{mast} .A _{mast}	= 16	plf BLC 5
Win	d Load (with ice)			
Mast Projected Surface	ceArea w/ lc e=	$AICE_{mast} := \frac{\left(D_{mast} + 2 \cdot t_{iz}\right)}{12}$	<u>Mast5)</u> = 1.422	sf/ft
Total Mast Wir	nd Force w/ Ice =	qz _{ice.Mast5} ·G _H ·CF _{mast} ·Alo	CE _{mast} = 8	plf BLC 4
Mast Projected Surface	ceArea w/ lc e=	$AICE_{mast} := \frac{\left(D_{mast} + 2 \cdot t_{iz}\right)}{12}$	$\frac{Mast4}{} = 1.413$	sf/ft
Total Mast Wir	nd Force w/ Ice =	qz _{ice.Mast4} ·GH·CF _{mast} ·Alo	CE _{mast} = 8	plf BLC 4
Mast Projected Surfac	ceArea w/ lc e=	AICE _{mast} := $\frac{\left(D_{mast} + 2 \cdot t_{iz}\right)}{12}$		sf/t
Total Mast Wir	nd Force w/ Ice =	qz _{ice.Mast3} ·G _H ·CF _{mast} ·Al		plf BLC 4
Mast Projected Surfac	ceArea w/ lc e=	$AICE_{mast} := \frac{\left(D_{mast} + 2 \cdot t_{iz}\right)}{12}$		sf/ft
Total Mast Wir	nd Force w/ Ice =	qz _{ice.Mast2} ·G _H ·CF _{mast} ·Alo	CE _{mast} = 7	plf BLC 4
Mast Projected Surface	ceArea w/ lc e=	$AICE_{mast} := \frac{\left(D_{mast} + 2 \cdot t_{iz}\right)}{12}$	<u>Mast1)</u> = 1.351	sf/ft
Total Mast Wir	nd Force w/ Ice =	qz _{ice.Mast1} .G _H .CF _{mast} .Al	CE _{mast} = 5	plf BLC 4

	Subject:		Loads on Equipmnet	Structure 1	281
Centered on Solutions www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	Location:		Greenwich, CT		
	Rev. 0: 2/15/22		Prepared by: T.J.L. C Job No. 21007.68	hecked by:	C.F.C.
Gravity Loads	(without ice)				
Weigt	nt of the mast =	SelfWeight	(Computed internally by Risa-3D)	plf	BLC 1
Gravity Lo	ads (ice only)				
lceAreaper	Linear Foot =	Ai _{mast} := $\frac{\pi}{4} \left[\left(\Box \right) \right]$	$D_{\text{mast}} + t_{\text{izMast5}}^{2} = D_{\text{mast}}^{2} = 101.1$	sqin	
Weight of	f <mark>lce on Mast =</mark>	W _{ICEmast5} ≔	$Id \frac{Ai_{mast}}{144} = 39$	plf	BLC 3
lceAreaper	Linear Foot =	$Ai_{mast} \coloneqq \frac{\pi}{4} \bigg[(D_{mast})^2 \bigg]$	$D_{\text{mast}} + t_{\text{izMast4}}^2 + 2 \Big)^2 - D_{\text{mast}}^2 = 98.2$	sqin	
Weight of	f <mark>lce on Mast =</mark>	W _{ICEmast4} ≔	$Id \cdot \frac{Ai_{\text{mast}}}{144} = 38$	plf	BLC 3
lceAreaper	Linear Foot =	$Ai_{mast} \coloneqq \frac{\pi}{4} \bigg[(D_{mast})^2 \bigg] \bigg]$	$D_{\text{mast}} + t_{\text{izMast3}}^2 = D_{\text{mast}}^2 = 94.5$	sqin	
Weight of	f <mark>lce on Mast =</mark>	W _{ICEmast3} ≔	$Id \frac{Ai_{mast}}{144} = 37$	plf	BLC 3
lceAreaper	Linear Foot =	$Ai_{mast} \coloneqq \frac{\pi}{4} \bigg[(D_{mast})^2 \bigg] \bigg]$	$D_{\text{mast}} + t_{\text{izMast2'}}^2 - D_{\text{mast}}^2 = 89.2$	sqin	
Weight of	f <mark>lce on Mast =</mark>	W _{ICEmast2} ≔	$Id \cdot \frac{Ai_{\text{mast}}}{144} = 35$	plf	BLC 3
lceAreaper	Linear Foot =	_	$D_{\text{mast}} + t_{\text{izMast1}}^2 - D_{\text{mast}}^2 = 78.8$	sqin	
Weight of	fice on Mast =	W _{ICEmast1} ≔	$Id \cdot \frac{Ai_{mast}}{144} = 31$	plf	BLC 3

	engineering	Subject:			Loads on Equipmnet Struct	ure 12	281
Centered on Solutions= 63-2 North Branford Road Branford, CT 06405		Location:			Greenwich, CT		
		Rev. 0: 2/15/22			Prepared by: T.J.L. Checke Job No. 21007.68	d by:	C.F.C.
Developme	nt of Wind & Ice Load on /	Antennas					
		Antenna Data:	(Sprint)				
	Ante	enna Model =	RFSAPXVSPP1&0	5			
	Ante	enna Shape =	Flat		(User Input)		
	Ante	maHeight=	L _{ant} := 72	in	(User Input)		
	Ant	enna Width =	W _{ant} := 11.8	in	(User Input)		
	Antenna	a Thickness =	T _{ant} := 7	in	(User Input)		
	Ante	nna Weight =	WT _{ant} := 57	lbs	(User Input)		
	Number	of Antennas =	N _{ant} := 3		(User Input)		
	AntennaAs	pectRato=	$Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 0$	6.1			
	Antenna Force C	Coefficient =	Ca _{ant} = 1.36				
	Wind Load	(without ice)					
	Surface Area for One	Antenna =	SA _{ant} := ^L ant ^{⋅W} a	int — = 5.9		sf	
	Antenna Projected Surfa	ace Area =	A _{ant} := SA _{ant} ⋅N _{ar}	nt ⁼ 17.7		sf	
	Total Anten na W	ind Force=	F _{ant} := qz _{Sprint} .G	H ^{.Ca} ant ^{.K}	a ^{·A} ant ^{= 967}	lbs	BLC 5
	Wind L	oad (with ice)					
s	urfaceAr æ for One Antenna	a w/ lce =	SA _{ICEant} :=	ıt ^{+ 2⋅t} izSpr	$\frac{\operatorname{int} \cdot \left(W_{ant} + 2 \cdot t_{iz} Sprint \right)}{144} = 8.6$	sf	
Ante	enna Projected Surface Area	aw/be=	A _{ICEant} := SA _{ICE}	Eant ^{·N} ant =	25.7	sf	
	Total Anten na Wind For	cew/lce=	Fiant ^{:= qz} ice.Spri	nt [.] G _H .Ca _{ar}	nt ^{·K} a ^{·A} ICEant ^{= 353}	lbs	BLC 4
	Gravity Load (without ice)					
	WeightofAll	Antenna s=	$WT_{ant} \cdot N_{ant} = 17$	1		lbs	BLC 2
	Gravity Load	ds (ice only)					
	Volume of Each	n Antenna =	V _{ant} := L _{ant} .W _{ant}	t ^{-T} ant = 594	17	cuin	
	Volume of Ice on Each	Antenna =	$V_{ice} := \left(L_{ant} + 2 \cdot t_{iz}\right)$	Sprint)(Wa	$t^{+2 \cdot t}$ izSprint) $\cdot (T_{ant} + 2 \cdot t_{izSprint})$	– V _{ant}	= 8064
	Weight of Ice on Each.	Antenna =	W _{ICEant} ∺ V _{ice}	·ld = 261		lbs	
	Weight of Ice on AIIA	ntennas =	WICEant ^{-N} ant =	784		lbs	BLC 3


	Subject:			Loads on Equipmnet Struct	ure 12	281
Centered on Solutions www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	ocation:			Greenwich, CT		
F	Rev. 0: 2/15/22			Prepared by: T.J.L. Checke Job No. 21007.68	d by:	C.F.C.
Development of Wind & Ice Load on Antenna Mo	unts .					
M	bunt Data:	(Sprint)				
Μ	bunt Type:	FWT 14' Low Profile Pla	tform			
Moun	t Shape =	Flat				
Mount Projected Surface.	Area =	CaAa := 14.2	sf	(User Input from FWT Design Calcs)		
Mount Projected Surface Area w/	lce=	CaAa _{ice} := 15.8	sf	(User Input from FWT Design Calcs)		
Mount	:Weight =	WT _{mnt} := 3020	lbs	(User Input from FWT Design Calcs)		
MountWeigh	tw/lce=	WT _{mnt.ice} := 4300	lbs	(User Input from FWT Design Calcs)		
Wind Load (with	ioutice)					
Total Mount Wind	Force =	F _{mnt} ≔ qz _{Sprint} G _H .	CaAa =	570	lbs	BLC 5
Wind Load (with ice)					
Total Mount Wind	Force =	^{Fi} mnt [≔] qz _{ice.Sprint}	GurCaA	a = 159	lbs	BLC 4
		"mnt " "lce.Sprint	H our		100	
Gravity Loads (with	out ice)					
Weight of All N	/bunts =	WT _{mnt} = 3020			lbs	BLC 2
					.00	
Gravity Loads (i	ce only)					
Weight of Ice on All Ma	ounts =	WT _{mnt.ice} - WT _{mnt}	= 1280		lbs	BLC 3


C=NT=k	engineering	Subject:			Loads on Equipmnet Struc	ture 1	281
Centered on Solutions= 63-2 North Branford Road Branford, CT 06405	a second to second second	Location:			Greenwich, CT		
Braniolo, CT 00403	. F: \203) 460*0307	Rev. 0: 2/15/22			Prepared by: T.J.L. Checke Job No. 21007.68	ed by:	C.F.C.
Developmen	t of Wind & Ice Load or	Antennas					
		Antenna Data:	(Verizon)				
	Ar	ntenna Model =	JMAMX06FRO660	-03			
	Ar	itenna Shape =	Flat		(User Input)		
	An	tenna Height =	L _{ant} := 71.3	in	(User Input)		
	А	ntenna Width =	W _{ant} := 15.4	in	(User Input)		
	Anten	na Thickness =	T _{ant} := 10.7	in	(User Input)		
	An	tenna Weight =	WT _{ant} := 65	lbs	(User Input)		
	Numbe	r of Antennas =	N _{ant} := 4		(User Input)		
	Antenna <i>i</i>	AspectRa i o =	$Ar_{ant} := \frac{L_{ant}}{W_{ant}} = \frac{L_{ant}}{W_{ant}}$	4.6			
	Antenna Force	Coefficient =	Ca _{ant} = 1.29				
	Wind Loa	d (without ice)					
	Surface Area for Or	ne Antenna =	SA _{ant} := L _{ant} ·W _a 144	$\frac{1}{2}$ = 7.	6	sf	
	Antenna Projected Su	rface Area =	A _{ant} := SA _{ant} ⋅N _a	nt = 30.	5	sf	
	Total Anten na V	Wind Force =	F _{ant} ≔ qz _{VZ} .G _H .	Ca _{ant} .k	[≺] a [·] A _{ant} = 1565	lbs	BLC 5
	Wind	Load (with ice)					
Su	IrfaceArea for One Anten	na w/ Ice =	SA _{ICEant} ≔ (L _{ar}	nt + 2·t _{iz}	$\frac{(W_{ant} + 2 \cdot t_{izVZ})}{144} = 10.4$	sf	
Anter	nna Projected Surface Ar	eaw/ be =	A _{ICEant} := SA _{ICE}			sf	
	Total Anten na Wind Fo	orcew/lce=	Fi _{ant} := qz _{ice.VZ} .	G _H ·Ca	ant ^K a ^{. A} ICEant ^{= 535}	lbs	BLC 4
	Gravity Load	(without ice)					
	Weightof/	All Antenna s=	WT _{ant} ·N _{ant} = 260	D		lbs	BLC 2
	Gravity Lo	ads (ice only)					
	Volume of Ea	ch Antenna =	V _{ant} := L _{ant} W _{ant}	t ^{-T} ant =	= 1 × 10 ⁴	cuin	
	Volume of I ce on Eac	hAntenna =	$V_{ice} := (L_{ant} + 2 \cdot t_{iz})$	wz)(w	ant + 2·t _{izVZ})· $(T_{ant} + 2·t_{izVZ}) - V_{ant} =$	= 1 × 10	4
	Weight of Ice on Eac	h Antenna =	W _{ICEant} ∶= V _{ice} 1728	∙ld = 3	46	lbs	
	Weight of Ice on Al	IAntennas =	W _{ICEant} N _{ant} =	1384		lbs	BLC 3


	Subject:			Loads on Equipmnet Struct	ure 12	281
Centered on Solutions www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	Location:			Greenwich, CT		
	Rev. 0: 2/15/22	Prepared by: T.J.L. Checked by: C Job No. 21007.68			C.F.C.	
Development of Wind & Ice Load of	n Antennas					
	Antenna Data:	(Verizon)				
,	Antenna Model =	Samsung MT6407-7	7A			
A	ntenna Shape =	Flat		(User Input)		
A	nterna Height =	L _{ant} := 35.1	in	(User Input)		
	Antenna Width =	W _{ant} := 16.1	in	(User Input)		
Ante	nna Thickness=	T _{ant} := 5.5	in	(User Input)		
A	ntenna Weight =	WT _{ant} := 87	lbs	(User Input)		
Numb	er of Antennas =	N _{ant} :- 3		(User Input)		
Antenna	AspectRa í o=	$Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 2$	2.2			
Antenna Forc	e Coefficient =	Ca _{ant} = 1.2				
Wind Lo	ad (without ice)					
Surface Area for C	one Antenna =	SA _{ant} :⊨ ^L ant [·] Wa 144	nt = 3.9	9	sf	
Antenna Projected S	urface Area =	$A_{ant} := SA_{ant} \cdot N_{ant} = 11.8$		sf		
Total Antenna	WindForce=	Fant ^{:= qz} VZ ^{·G} H ^{·Ca} ant ^{·K} a ^{·A} ant = 560			lbs	BLC 5
Wind	d Load (with ice)					
Surface Area for One Ante	nna w/ Ice =	SA _{ICEant} :=	t ⁺ 2⋅t _{iz}	$\frac{(VZ)\cdot(W_{ant} + 2\cdot t_{izVZ})}{144} = 5.6$	sf	
Antenna Projected Surface A	bjected Surface Area w/ be = AICEant ^{:=} SAICEant ^{·N} ant ⁼ 16.8		nt ^{= 16.8}	sf		
Total Antenna Wind F	Forcew/lce=	Fi _{ant} := qz _{ice.VZ} ·G _H ·Ca _{ant} ·K _a ·A _{ICEant} = 201			lbs	BLC 4
Gravity Loa	d (without ice)					
Weighto	fAll Antenna s=	$WT_{ant} \cdot N_{ant} = 261$			lbs	BLC 2
Gravity L	oads (ice only)					
Volume of E	ach Antenna =	V _{ant} := L _{ant} ·W _{ant}	Tant =	3108	cuin	
Volume of I ce on Ea	chAntenna =	$V_{ice} := \left(L_{ant} + 2 \cdot t_{iz}\right)$	vz)(wa	$ant + 2 \cdot t_{izVZ} \cdot (T_{ant} + 2 \cdot t_{izVZ}) - V_{ant} =$	4810	
Weight of Ice on Ea	chAntenna =	W _{ICEant} ≔ ^V ice 1728	•Id = 1	56	lbs	
Weight of Ice on A	NIAntennas =	W _{ICEant} ·N _{ant} = 4	168		lbs	BLC 3

	Subject:			Loads on Equipmnet Struct	ure 12	281
Centered on Solutions" www.centekeng.com						
63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	Location:	Greenwich, CT				
	Rev. 0: 2/15/22	Prepared by: T.J.L. Checked Job No. 21007.68			d by:	C.F.C.
Development of Wind & Ice Load of	on Antennas					
	Antenna Data:	(Verizon)				
/	Antenna Model =	Samsung XXDW M	/112.5-65	i i		
F	Antenna Shape =	Flat		(User Input)		
А	ntenna Height =	L _{ant} := 12.3	in	(User Input)		
	Antenna W idth =	W _{ant} := 8.7	in	(User Input)		
Ante	nna Thickness =	T _{ant} ≔ 1.4	in	(User Input)		
А	ntenna Weight =	WT _{ant} := 3	lbs	(User Input)		
Numb	er of Antennas =	N _{ant} := 2		(User Input)		
Antenna	aAspectRa t o=	$Ar_{ant} := \frac{L_{ant}}{W_{ant}} = \frac{1}{2}$	1.4			
Antenna Ford	e Coefficient =	Ca _{ant} = 1.2				
Wind Lo	ad (without ice)					
Surface Area for C)ne Antenna =	SA _{ant} :⊨ ^L ant [·] Wa 144	nt = 0.7	7	sf	
Antenna Projected S	urface Area =	$A_{ant} := SA_{ant} \cdot N_{ant} = 1.5$		sf		
Total Antenna	Wind Force=	$F_{ant} := qz_{VZ} \cdot G_{H} \cdot Ca_{ant} \cdot K_a \cdot A_{ant} = 71$		lbs	BLC 5	
Wind	d Load (with ice)					
SurfaceArea for One Ante	nna w/ Ice =	SA _{ICEant} :=	ıt ⁺ 2⋅t _{iz}	$\frac{VZ}{144} = 1.5$	sf	
Antenna Projected Surface Area w/ be =		A _{ICEant} := SA _{ICEant} ·N _{ant} = 3			sf	
Total Anten na Wind F	Forcew/lce=	Fi _{ant} := qz _{ice.VZ}	G _H ·Ca _a	nt ^K a AICEant ^{= 36}	lbs	BLC 4
Gravity Loa	d (without ice)					
Weighto	fAll Antenna s=	$WT_{ant} \cdot N_{ant} = 6$			lbs	BLC 2
Gravity L	oads (ice only)					
Volume of E	ach Antenna =	V _{ant} := L _{ant} ·W _{ant}	Tant =	150	cuin	
Volume of Ice on Ea	chAntenna =	$V_{ice} := \left(L_{ant} + 2 \cdot t_{iz}\right)$	vz)(wa	$\operatorname{Ant} + 2 \cdot t_{izVZ} \left(T_{ant} + 2 \cdot t_{izVZ} \right) - V_{ant} =$	1092	
Weight of Ice on Ea	ich Antenna =	W _{ICEant} ≔ V _{ice} 1728	·ld = 3	5	lbs	
Weight of Ice on A	NIAntennas =	W _{ICEant} ·N _{ant} = 7	71		lbs	BLC 3

Greenwich, CTPropried by: T.J.L. Chackad by: C.F.C.Propried by: T.J.L. Chackad by: C.F.C.Joint State Load on AntennasAntenna Date:Antenna Date:Antenna Date:Simaang BSB/3 RPHAntenna Date:User incudAntenna Date:User incudAntenna Date:User incudAntenna Date:User incudAntenna Tricknoss:FaitUser incudAntenna HidjikUart = 15inUser incudAntenna Tricknoss:Tart = 9.1inUser incudAntenna AspectRatio:Antenna AspectRatio:Samat = 4(User incudNumber of Antenna =Antenna AspectRatio:Canti = 1.2Wind Load (velta too)Safet = 6.3ofBLC 5SuthonAreas fride Coefficient:Fait: = art = art = 2/(art = art = art = 2/(art = 1.2)bitsWind Load (velta too)Safet = 6.3ofBLC 5SuthonAreas fride Antenna =Fait: = art = art = art = art = 2/(art = art	CENTEK engineering Subject:	Loads on Equipmnet Structure 1281						
Prepared by: T.J.L. Checked by: C.F.C. Job No. 21007.68Development of Wind & ka Load on AntennasAntenna Data:Antenna Data:Antenna Stape=Fild(User fixual)Antenna Stape=Fild(User fixual)Antenna Width =Wagnt= 15in(User fixual)Antenna ThicoseaTark = 0.1in(User fixual)Antenna Width =Wagnt= 15in(User fixual)Antenna Width =Wagnt= 15in(User fixual)Antenna Napoci RatoAntenna Angeci RatoAntenna Final ColarAntenna Final ColarAntenna Aspeci RatoAntenna Final ColarCanget = 1.2MintWind Laad (without bo)Surface Ana for One Antenna =SAnget = 1.2disWind Laad (with Colar)Surface Ana for One Antenna =SAnget = 1.2disWind Laad (with Colar)Surface Ana for One Antenna =SAnget = 1.2disWind Laad (with Colar)Surface Ana for One Antenna =SAnget = 1.2Mint = 2.5disWind Laad (with Colar)Surface Ana for One Antenna =SAnget = 1.2Mint = 2.6disBLC 2Wind Laad (with Colar)Surface Ana for One Antenna =SAnget = 2.6disBLC 2Wind Laad (with Colar)Wind FocceFinal = 4ard Name = 10.4disBLC 2Orange Laad (with Colar)Wind Tocce =Wind Tocce = 1.2Mint = 1.2Is aBLC 2Wind Coda (with Colar)Wind Tocce =Final = 4ard Nama = 10.4disBLC 2 <th< th=""><th>63-2 North Branford Road P: (203) 488-0580 LOCATION:</th><th></th><th colspan="4">Greenwich, CT</th></th<>	63-2 North Branford Road P: (203) 488-0580 LOCATION:		Greenwich, CT					
Alterna Data:Anterna Model =Semsung BSB13 RRHAnterna Model =Semsung BSB13 RRHAnterna Hight = $L_{ant} = 15$ in (User hpu)Anterna Hight = $L_{ant} = 15$ in (User hpu)Anterna Widh = $W_{ant} = 55$ in (User hpu)Anterna Widh = $W_{ant} = 51$ in (User hpu)Anterna Widh = $W_{ant} = 51$ in (User hpu)Anterna Widh = $W_{ant} = 70.3$ is (User hpu)Anterna Wide = $W_{ant} = 70.3$ is (User hpu)Number of Anternas = $N_{ant} = 70.3$ is (User hpu)Number of Anternas = $N_{ant} = 1.0$ Anterna Force Coefficien = $Ca_{ant} = \frac{L_{ant} W_{ant}}{1.44} = 1.6$ Surface Area for One Anterna = $SA_{ant} = \frac{L_{ant} V a_{ant} - 1.6}{1.44} = 1.6$ Wind Load (with ice) $S_{ant} = CA_{ant} - SA_{ant} - SA_{an$	Rev. 0: 2/15/22							
Artenna ModelSamsung BSB13 RRHArtenna MiaghtLant = 15in(Uaer Irput)Artenna HidghtLant = 15in(Uaer Irput)Artenna WidhWagnt = 15in(Uaer Irput)Artenna WidhWagnt = 0.3bs(Uaer Irput)Artenna WidhWagnt = 0.3bs(Uaer Irput)Artenna WidhWagnt = 0.3bs(Uaer Irput)Artenna WidhWagnt = 1.2in(Uaer Irput)Artenna AspeciRato = $A_{rant} = \frac{Lant}{Wagnt} = 1.0$ ifArtenna Force Coefficient = $Cagnt = 1.2$ ifWind Load (without loo)Surface Area env / be = $A_{rant} = Cagnt Namt = 6.3$ ifSurface Area for One Antenna = $SA_{ant} = SA_{ant} Namt = 6.3$ ifWind Load (without loo)Surface Area wi / be = $A_{ICE ant} Vagnt = 1.4$ ifWind Load (without loo)Surface Area wi / be = $A_{Anten = Cagnt Namt = 1.4$ ifWind Load (without loo)Surface Area wi / be = $A_{Anten = Cagnt Namt = 1.4$ ifSurface Area wi / be = $A_{ICE ant} = (L_{ant} + 2I_{LOVZ}) (Want + 2I_{LOVZ}) = 2.6$ ififMind Load (without loo)Surface Area wi / be = $A_{ICE ant} = (L_{ant} + 2I_{LOVZ}) (Want + 2I_{LOVZ}) = 2.6$ ifWind Load (without loo)Surface Area wi / be = $A_{ICE ant} = Cagnt Namt = 1.4$ ifWagnt of Altenna Wind Forcewilce =Fant = 24_{LOVZ} (Want + 2I_{LOVZ}) (Want + 2I_{LOVZ}) = 2.6ifWagnt of Altenna Wind Forcewilce =Fant = 24_{LOVZ} (Vagnt Namt Alt = 1.6, Alt = 1.6, Alt = 1.6,	Development of Wind & Ice Load on Antennas							
Aritema ShapeFilt(User hput)Aritema Hagit $L_{gatt} = 15$ in(User hput)Aritema Widh $W_{gatt} = 15$ in(User hput)Aritema Widh $W_{gatt} = 70.3$ ibs(User hput)Aritema Thickness $T_{art} = 9.1$ in(User hput)Aritema Thickness $T_{art} = 70.3$ ibs(User hput)Aritema Aritema Aritema $N_{art} = 4$ (User hput)Aritema Aritema Aritema $N_{art} = 4$ (User hput)Aritema Force Coefficient $Ca_{art} = \frac{L_{art} W_{art}}{W_{art}} = 1.0$ Aritema Force Coefficient $Ca_{art} = \frac{L_{art} W_{art}}{144} = 1.6$ efAritema Projected Surface Area $A_{art} = 5.3$ and $N_{art} = 6.3$ efAritema Projected Surface Area $A_{art} = CV_{VZ} CH_C Ca_{art} K_a A_{art} = 297$ bsBLC 5Wind Lead (with ice) $Surface Area withe = A_{1CEant} = \frac{L_{art} W_{art}}{144} = 1.0$ efSurface Area withe E $A_{art} = SA_{ort} SA_{ort} R_{art} = 10.4$ efAntenna Projected Surface Area withe E $SA_{iCEant} = \frac{L_{art} W_{art}}{144} = 1.6$ efSurface Area withe E $SA_{iCEant} = 6.3$ efgfAntenna Projected Surface Area withe E $SA_{iCEant} = 10.4$ efgfSurface Area withe E $SA_{iCEant} = 20$ ($W_{art} + 2t_{zVZ}$)efgfAntenna Projected Surface Area withe E $SA_{iCEant} = 20$ ($W_{art} + 2t_{zVZ}$)gfgfAntenna Projected Surface Area withe E $SA_{iCEant} = 20$ ($W_{art} + 2t_{zVZ}$)gfgfUse of Construction $W_{iT} T_{art} = 201$ </th <th>Antenna Data:</th> <th></th> <th></th> <th></th> <th></th>	Antenna Data:							
Anterna Height L_{ant} := 15in(User hout)Anterna WidhWant;= 15in(User hout)Anterna Thickness T_{ant} := 5.1in(User hout)Anterna Thickness T_{ant} := 0.1is(User hout)Anterna AspectRato Ar_{ant} := 70.3iss(User hout)Anterna AspectRato Ar_{ant} := 70.3iss(User hout)Anterna Force Coefficient R_{ant} := 4(User hout)Anterna Force Coefficient C_{ant} := 1.2ississWind Load (without koo)Surface Area for One Anterna SA_{ant} := $\frac{L_{ant}W_{ant}}{1.44}$ = 1.6ofSurface Area for One Anterna SA_{ant} := $CA_{ant}W_{ant}$ = 6.3ofAnterna Projected Surface Area = A_{ant} := SA_{ant} := $CA_{ant}K_{a}A_{ant}$ = 297tis<BLC 5Wind Load (with ico)Surface Area wir be = A_{ant} := $CA_{ant}K_{a}A_{ant}$ = 297tisBLC 5Surface Area for One Anterna wir ke= SA_{ICEant} := $\left(\frac{L_{ant} + 2L_{IZVZ}\right)(W_{ant} + 2L_{IZVZ})$ $= 2.6$ ofSurface Area for One Anterna wir ke= SA_{ICEant} := A_{Ant} := $SA_{CEant}N_{ant}$ = 10.4ofBLC 4Surface Area wir De conserve kee = A_{ICEant} := $CA_{ant}K_{a}A_{ant}$ = 214tisBLC 4Gravity Load (without kice)Wart Nant = 281keBLC 2Gravity Load (without kice)Wart Nant = 281keBLC 2Gravity Load (without kice)Wart Nant = 281keBLC 2Gravity Load (insthemas= V_{ice} := $(L_{ant} + 2L_{iZVZ})/(W_{ant} + 2L_{iZV$	Antenna Model =	Samsung B5/B13 RRH						
Antenna WidhWartWartUser hputAntenna MicitaTanti = 5.1in(User hput)Antenna WeightWTanti = 70.3ibs(User hput)Antenna WeightWTanti = 70.3ibs(User hput)Number of Antennas =Nant = 4(User hput)Antenna AspectRato =Aranti = $\frac{Lant}{Want} = 1.0$ Image: Aranti = 1.2Antenna Force Coefficient =Ceant = 1.2Image: Aranti = $\frac{Lant}{144} = -1.6$ Image: Aranti = $\frac{Lant}{144} = -1.6$ SurfaceArea for One Antenna =SA _{ant} := $\frac{Lant}{144} = -1.6$ Image: Aranti = $\frac{Lant}{144} = -1.6$ Image: Aranti = $\frac{Lant}{144} = -1.6$ Wind Load (with cole)SurfaceArea for One Antenna =SA _{ant} := $\frac{Lant}{144} = -1.6$ Image: Aranti = $\frac{Lant}{144} = -1.6$ Image: Aranti = $\frac{Lant}{144} = -1.6$ Wind Load (with cole)SurfaceArea for One Antenna w/ice =SA _{ant} := $\frac{Lant}{24} = 2.6$ Image: Aranti = $\frac{Lant}{144} = -1.6$ Image: Aranti = $\frac{Lant}{144} = -1.6$ Wind Load (with cole)SurfaceArea w/ice =SA _{ICEEnt} := $\frac{Lant}{24} = 2.6$ Image: Aranti = $\frac{Lant}{144} = -1.6$ Image: Arantice Arantice Area w/ice =Arantic advitace Area w/ice =SA _{ICEEnt} := $\frac{Lant}{24} = 2.6$ Image: Arantice Arantice Area w/ice =SA _{ICEEnt} := $\frac{Lant}{144} = -1.6$ Image: Arantice Arantice Area w/ice =Arantic advitace Area w/ice =SA _{ICEEnt} := $\frac{Lant}{Rantice} = \frac{Lant}{Rantice} = \frac{Lant}{Rantic$	Antenna Shape =	Flat	(User Input)					
Antenna WidhWartWartUser hputAntenna MicitaTanti = 5.1in(User hput)Antenna WeightWTanti = 70.3ibs(User hput)Antenna WeightWTanti = 70.3ibs(User hput)Number of Antennas =Nant = 4(User hput)Antenna AspectRato =Aranti = $\frac{Lant}{Want} = 1.0$ Image: Aranti = 1.2Antenna Force Coefficient =Ceant = 1.2Image: Aranti = $\frac{Lant}{144} = -1.6$ Image: Aranti = $\frac{Lant}{144} = -1.6$ SurfaceArea for One Antenna =SA _{ant} := $\frac{Lant}{144} = -1.6$ Image: Aranti = $\frac{Lant}{144} = -1.6$ Image: Aranti = $\frac{Lant}{144} = -1.6$ Wind Load (with cole)SurfaceArea for One Antenna =SA _{ant} := $\frac{Lant}{144} = -1.6$ Image: Aranti = $\frac{Lant}{144} = -1.6$ Image: Aranti = $\frac{Lant}{144} = -1.6$ Wind Load (with cole)SurfaceArea for One Antenna w/ice =SA _{ant} := $\frac{Lant}{24} = 2.6$ Image: Aranti = $\frac{Lant}{144} = -1.6$ Image: Aranti = $\frac{Lant}{144} = -1.6$ Wind Load (with cole)SurfaceArea w/ice =SA _{ICEEnt} := $\frac{Lant}{24} = 2.6$ Image: Aranti = $\frac{Lant}{144} = -1.6$ Image: Arantice Arantice Area w/ice =Arantic advitace Area w/ice =SA _{ICEEnt} := $\frac{Lant}{24} = 2.6$ Image: Arantice Arantice Area w/ice =SA _{ICEEnt} := $\frac{Lant}{144} = -1.6$ Image: Arantice Arantice Area w/ice =Arantic advitace Area w/ice =SA _{ICEEnt} := $\frac{Lant}{Rantice} = \frac{Lant}{Rantice} = \frac{Lant}{Rantic$	Ante ma Height =	L _{ant} := 15 in	(User Input)					
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Antenna Width =	W _{ant} := 15 in	(User Input)					
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Antenna Thickness =		(User Input)					
Antenna AspectRato = $Ar_{ant}: = \frac{L_{ant}}{W_{ant}} = 1.0$ Antenna Force Coefficient = $Ca_{ant} = 1.2$ Wind Load (without ice)Surface Area for One Antenna = $SA_{ant}: = \frac{L_{ant}W_{ant}}{144} = 1.6$ efSurface Area for One Antenna = $SA_{ant}: = \frac{L_{ant}W_{ant}}{144} = 0.3$ efAntenna Projected Surface Area = $A_{ant}: = SA_{ant}(R_a A_{ant} = 297)$ lbsBLC 5Wind Load (with ice)Surface Area for One Antenna w/ ice = $SA_{ICEant}: = (\frac{L_{ant} + 2t_{I2VZ})}{144} = 2.6$ efSurface Area for One Antenna w/ ice = $SA_{ICEant}: = SA_{ICEant} N_{ant} = 10.4$ efefAntenna Projected Surface Area w/ be = $A_{ICEant}: = SA_{ICEant} N_{ant} = 10.4$ efefGravity Load (with out ice) $W_{ant} N_{ant} = 281$ lbsBLC 4Use glitof Antenna Wind Forcew/ice = $F_{ant}: = a_{ant} W_{ant} T_{ant} = 2048$ cuinCaravity Load (without ice) $W_{ant} N_{ant} = 281$ lbsBLC 2Weight of Lean Antenna = $V_{ant}: = L_{ant} W_{ant} T_{ant} = 2048$ cuinWourne of Ice on Each Antenna = $V_{ice}:=(L_{ant} + 2t_{i2VZ})(W_{ant} + 2t_{i2VZ}) - V_{ant} = 2871$ isWeight of Ice on EachAntenna = $V_{ice}:=(L_{ant} + 2t_{i2VZ})(W_{ant} + 2t_{i2VZ}) - V_{ant} = 2871$ isWeight of Ice on EachAntenna = $V_{ice}:=(L_{ant} + 2t_{i2VZ})(W_{ant} + 2t_{i2VZ}) - V_{ant} = 2871$ isWeight of Ice on EachAntenna = $V_{ice}:=(L_{ant} + 2t_{i2VZ})(W_{ant} + 2t_{i2VZ}) - V_{ant} = 2871$ is	Antenna Weight =	WT _{ant} := 70.3 lbs	(User Input)					
Antenna Force Coefficient = $Ca_{ant} = 1.2$ Wind Lead (without ice) $SA_{ant} := Lant^Want = 1.6$ efSurface Area for One Antenna = $SA_{ant} := SA_{ant} \cdot N_{ant} = 6.3$ efAntenna Projected Surface Area = $A_{ant} := SA_{ant} \cdot N_{ant} = 6.3$ efTotal Antenna Wind Force = $F_{ant} := q2_{VZ} \circ G_H Ca_{ant} \cdot K_a A_{ant} = 297$ lbsBLC 5Wind Lead (with ice) $SA_{1CEant} := (\frac{L_{ant} + 2t_{1ZVZ}) \cdot (Want + 2t_{1ZVZ})}{144} = 2.6$ efefSurface Area for One Antenna wi lee = $A_{1CEant} := SA_{1CEant} \cdot N_{ant} = 10.4$ efefAntenna Projected Surface Area w/ lee = $A_{1CEant} := A_{1CEant} \cdot SA_{1CEant} \cdot A_{1CEant} = 124$ lbsBLC 4Gravity Load (without ice) $Wa_{ant} := q_{2ice, VZ} \cdot G_H Ca_{ant} \cdot K_a \cdot A_{1CEant} = 124$ lbsBLC 4Weight of All Antenna S $WT_{ant} \cdot R_{ant} = 281$ lbsBLC 2Weight of All Antenna = $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 2048$ cu inWeight of Ice on Each Antenna = $V_{ice} := (L_{ant} + 2t_{1ZVZ}) \cdot (T_{ant} + 2t_{1ZVZ}) - V_{ant} = 2971$ isWeight of Ice on Each Antenna = $V_{ice} := (L_{ant} + 2t_{1ZVZ}) \cdot (W_{ant} + 2t_{1ZVZ}) - V_{ant} = 2971$ isWeight of Ice on Each Antenna = $W_{iCEant} := \frac{V_{ica}}{1728} \cdot Id = 96$ lbsis	Number of Antennas =	N _{ant} := 4	(User Input)					
Wind Lead (without ice)SA ant: = $Lant^Want$ 144= 1.6ofSurface Area for One Antenna =SA ant := SA ant Nant = 6.3ofAntenna Projected Surface Area =A ant := SA ant Nant = 6.3ofTotal Antenna Wind Force =Fant := $qZ_VZ_C G_H Ca_{ant} K_a A_{ant} = 297$ bsBLC 5Wind Lead (with ice)Surface Area in Creative Area w/ be =SA ICEant := $(Lant + 2t_{12VZ})(Want + 2t_{12VZ})$ 144= 2.6ofSurface Area in Creative Area w/ be =AICEant := SA ICEant := SA ICEant Nant = 10.4ofBLC 4Total Antenna Projected Surface Area w/ be =AICEant := SA ICEant := SA CEant Nant = 10.4ofBLC 4Creative Load (without ice)Weight of All AntennasWT IATL Nant = 281bsBLC 2Weight of All Antenna =V ant := Lant Want Tant = 2048cuinImVolume of Ice on Each Antenna =V Ice := (Lant + 2t_{IZVZ})(Want + 2t_{IZVZ}) - Vant = 2971V Weight of Ice on Each Antenna =WICEant := $\frac{Vice}{1728} \cdot Id = 96$ bs	AntennaAspectRatio =	$Ar_{ant} \coloneqq \frac{L_{ant}}{W_{ant}} = 1.0$						
SurfaceArea for One Antenna = $SA_{ant} := \frac{L_{ant} W_{ant}}{144} = 1.6$ sfAntenna Projected Surface Area = $A_{ant} := SA_{ant} \cdot a_{ant} = 6.3$ sfTotel Antenna Wind Force = $F_{ant} := q_{2VZ} G_{H} \cdot Ca_{ant} K_a \cdot A_{ant} = 297$ lbsBLC 5Wind Load (with ice) $SurfaceArea$ for One Antenna W/loce $SA_{ICEant} := \frac{(L_{ant} + 2t_{IZVZ})(W_{ant} + 2t_{IZVZ})}{144} = 2.6$ sfSurfaceArea for One Antenna W/loce $SA_{ICEant} := GA_{ICEant} \cdot a_{AICEant} \cdot$	Antenna Force Coefficient =	Ca _{ant} = 1.2						
Antenna Projected Surface Area = $A_{ant} := SA_{ant} N_{ant} = 6.3$ ofTotal Antenna Wind Force = $F_{ant} := qz_{VZ} \cdot G_H \cdot Ca_{ant} K_a \cdot A_{ant} = 297$ UbsBLC 5Wind Load (with ice) $Surface Area for One Antenna w/ ice =$ $SA_{ICEant} := \frac{(L_{ant} + 2 \cdot I_{1ZVZ}) \cdot (W_{ant} + 2 \cdot I_{1ZVZ})}{144} = 2.6$ ofSurface Area for One Antenna w/ ice = $SA_{ICEant} := SA_{ICEant} \cdot SA_{ICEant} = 10.4$ ofAntenna Projected Surface Area w/ ice = $A_{ICEant} := SA_{ICEant} \cdot SA_{ICEant} \cdot SA_{ICEant} = 10.4$ ofGravity Load (without ice) $WT_{ant} := qz_{ICE} \cdot VZ \cdot G_H \cdot Ca_{ant} K_a \cdot A_{ICEant} = 124$ ibsBLC 4Gravity Load (without ice) $WT_{ant} := qz_{ICE} \cdot VZ \cdot G_H \cdot Ca_{ant} K_a \cdot A_{ICEant} = 124$ ibsBLC 2Gravity Load (without ice) $WT_{ant} = 281$ ibsBLC 2Weight of All Antenna s= $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 2048$ cu inVolume of Ice on Each Antenna = $V_{Ice} := (L_{ant} + 2 \cdot I_{IZVZ}) \cdot (T_{ant} + 2 \cdot I_{IZVZ}) - V_{ant} = 2971$ Weight of Ice on Each Antenna = $W_{ICEant} := \frac{V_{Icea}}{1728} \cdot Id = 96$ ibs	Wind Load (without ice)							
Antenna Projected Surface Area = $A_{ant} := SA_{ant} N_{ant} = 6.3$ ofTotal Antenna Wind Force = $F_{ant} := qz_{VZ} \cdot G_H \cdot Ca_{ant} K_a \cdot A_{ant} = 297$ UbsBLC 5Wind Load (with ice) $Surface Area for One Antenna w/ ice =$ $SA_{ICEant} := \frac{(L_{ant} + 2 \cdot I_{1ZVZ}) \cdot (W_{ant} + 2 \cdot I_{1ZVZ})}{144} = 2.6$ ofSurface Area for One Antenna w/ ice = $SA_{ICEant} := SA_{ICEant} \cdot SA_{ICEant} = 10.4$ ofAntenna Projected Surface Area w/ ice = $A_{ICEant} := SA_{ICEant} \cdot SA_{ICEant} \cdot SA_{ICEant} = 10.4$ ofGravity Load (without ice) $WT_{ant} := qz_{ICE} \cdot VZ \cdot G_H \cdot Ca_{ant} K_a \cdot A_{ICEant} = 124$ ibsBLC 4Gravity Load (without ice) $WT_{ant} := qz_{ICE} \cdot VZ \cdot G_H \cdot Ca_{ant} K_a \cdot A_{ICEant} = 124$ ibsBLC 2Gravity Load (without ice) $WT_{ant} = 281$ ibsBLC 2Weight of All Antenna s= $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 2048$ cu inVolume of Ice on Each Antenna = $V_{Ice} := (L_{ant} + 2 \cdot I_{IZVZ}) \cdot (T_{ant} + 2 \cdot I_{IZVZ}) - V_{ant} = 2971$ Weight of Ice on Each Antenna = $W_{ICEant} := \frac{V_{Icea}}{1728} \cdot Id = 96$ ibs		SA _{ant} := Lant ^{·W} ant = 1.6		sf				
Total Antenna Wind Force= $F_{ant} := qz_{VZ} \cdot G_{H} \cdot Ga_{ant} \cdot K_{a} \cdot A_{ant} = 297$ bsBLC 5Wind Load (with ice) $Surface Area for One Antenna w/ loe =$ $SA_{ICEant} := \frac{(L_{ant} + 2 \cdot t_{iZVZ}) \cdot (W_{ant} + 2 \cdot t_{iZVZ})}{144} = 2.6$ sfAntenna Projected Surface Area w/ be = $A_{ICEant} := SA_{ICEant} \cdot N_{ant} = 10.4$ sfTotal Antenna Wind Forcew/ loe = $F_{iant} := qz_{ice.VZ} \cdot G_{H} \cdot Ca_{ant} \cdot K_{a} \cdot A_{ICEant} = 124$ lbsBLC 4Gravity Load (without ice) $W_{ant} := qz_{ice.VZ} \cdot G_{H} \cdot Ca_{ant} \cdot K_{a} \cdot A_{ICEant} = 124$ lbsBLC 2Weightof All Antenna = $WT_{ant} \cdot N_{ant} = 281$ lbsBLC 2Gravity Load (without ice) $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 2048$ cu inVolume of Each Antenna = $V_{ice} := (L_{ant} + 2 \cdot t_{iZVZ}) \cdot (T_{ant} + 2 \cdot t_{iZVZ}) - V_{ant} = 2971$ Weightof loe on Each Antenna = $W_{ICEant} := \frac{V_{ice}}{1728} \cdot d = 96$ lbs								
Wind Load (with ice)SurfaceArea for One Antenna w/ ice = $SA_{ICEant} := \frac{(L_{ant} + 2 \cdot t_{I2VZ}) \cdot (W_{ant} + 2 \cdot t_{I2VZ})}{144} = 2.6$ sfAntenna Projected Surface Area w/ be = $A_{ICEant} := SA_{ICEant} \cdot N_{ant} = 10.4$ sfTotal Antenna Wind Forcew/ Ice = $F_{iant} := q_{Zice, VZ} \cdot G_{H} \cdot Ca_{ant} \cdot K_a \cdot A_{ICEant} = 124$ lbsBLC 4Gravity Load (without ice)Weight of All Antenna s= $WT_{ant} \cdot N_{ant} = 281$ lbsBLC 2Gravity Loads (ice only)Volume of Each Antenna = $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 2048$ cu inVeight of Ice on Each Antenna = $V_{ice} := (L_{ant} + 2 \cdot t_{izVZ}) \cdot (T_{ant} + 2 \cdot t_{izVZ}) - V_{ant} = 2971$ Weight of Ice on Each Antenna = $W_{ICEant} := \frac{V_{Ice}}{1728} \cdot Id = 96$ lbs	Antenna Projected Surface Area =	$A_{ant} := SA_{ant} \cdot N_{ant} = 6.3$		st				
Surface Area for One Antenna w/ Ice = $SA_{ICEant} := \frac{(L_{ant} + 2 \cdot t_{I2VZ}) \cdot (W_{ant} + 2 \cdot t_{I2VZ})}{144} = 2.6$ sfAntenna Projected Surface Area w/ be = $A_{ICEant} := SA_{ICEant} \cdot N_{ant} = 10.4$ sfTotal Antenna Wind Forcew/Ice = $Fi_{ant} := qz_{ice,VZ'} \cdot G_{H'} \cdot Ca_{ant} \cdot K_{a'} \cdot A_{ICEant} = 124$ lbs BLC 4Gravity Load (without ice) Weight of All Antenna s= $WT_{ant} \cdot N_{ant} = 281$ lbs BLC 2Gravity Loads (ice only) Volume of Each Antenna = $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 2048$ cu inVolume of Ice on Each Antenna = $V_{ice} := (L_{ant} + 2 \cdot t_{izVZ}) \cdot (T_{ant} + 2 \cdot t_{izVZ}) - V_{ant} = 2971$ Weight of Ice on Each Antenna = $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 96$ lbs	Total Anten na Wind Force =	F _{ant} := qz _{VZ} ·G _H ·Ca _{ant} ·K _a ·A	lbs	BLC 5				
Surface Area for One Antenna w/ Ice = $SA_{ICEant} := \frac{(L_{ant} + 2 \cdot t_{I2VZ}) \cdot (W_{ant} + 2 \cdot t_{I2VZ})}{144} = 2.6$ sfAntenna Projected Surface Area w/ be = $A_{ICEant} := SA_{ICEant} \cdot N_{ant} = 10.4$ sfTotal Antenna Wind Forcew/Ice = $Fi_{ant} := qz_{ice,VZ'} \cdot G_{H'} \cdot Ca_{ant} \cdot K_{a'} \cdot A_{ICEant} = 124$ lbs BLC 4Gravity Load (without ice) Weight of All Antenna s= $WT_{ant} \cdot N_{ant} = 281$ lbs BLC 2Gravity Loads (ice only) Volume of Each Antenna = $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 2048$ cu inVolume of Ice on Each Antenna = $V_{ice} := (L_{ant} + 2 \cdot t_{izVZ}) \cdot (T_{ant} + 2 \cdot t_{izVZ}) - V_{ant} = 2971$ Weight of Ice on Each Antenna = $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 96$ lbs	Wind Load (with ios)							
Antenna Projected Surface Area w/ be = $A_{ICEant} := SA_{ICEant} \cdot N_{ant} = 10.4$ sfTotal Antenna Wind Forcew/Ice = $F_{iant} := qz_{ice.VZ} \cdot G_{H} \cdot Ca_{ant} \cdot K_{a} \cdot A_{ICEant} = 124$ IbsBLC 4Gravity Load (without ice) $W = q_{int} \cdot M_{ant} = 281$ IbsBLC 2Gravity Load (ice only) $V = T_{ant} \cdot M_{ant} = 281$ IbsBLC 2Volume of Each Antenna = $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 2048$ cu inVolume of Ice on Each Antenna = $V_{ice} := (L_{ant} + 2 \cdot t_{izVZ}) (W_{ant} + 2 \cdot t_{izVZ}) - V_{ant} = 2971$ IbsWeight of Ice on Each Antenna = $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 96$ Ibs		$\left(L_{ant} + 2 \cdot t_{izVZ}\right)$)·(W _{ant} + 2·t _{izVZ}) _ − 2 e	ef				
Total Antenna Wind Forcew/Ice =Fiant = $qz_{ice,VZ}$ ·G _H ·Ca _{ant} ·K _a ·A _{ICEant} = 124IbsBLC 4Gravity Load (without ice)Weight of All Antenna s=WT _{ant} ·N _{ant} = 281IbsBLC 2Gravity Loads (ice only)Volume of Each Antenna =V _{ant} := L _{ant} ·W _{ant} ·T _{ant} = 2048cu inVolume of Ice on Each Antenna =V _{ice} := (L _{ant} + 2·t _{iZVZ})(W _{ant} + 2·t _{iZVZ})·(T _{ant} + 2·t _{iZVZ}) - V _{ant} = 2971Wice into the second sec		SAICEant := 144 = 2.6						
Gravity Load (without ice)Weight of All Antenna s= $WT_{ant} \cdot N_{ant} = 281$ lbsBLC 2Gravity Loads (ice only)Volume of Each Antenna = $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 2048$ cu inVolume of Ice on Each Antenna = $V_{ice} := (L_{ant} + 2 \cdot t_{izVZ})(W_{ant} + 2 \cdot t_{izVZ}) \cdot (T_{ant} + 2 \cdot t_{izVZ}) - V_{ant} = 2971$ Wilce in Each Antenna = $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 96$ Ibs	Antenna Projected Surface Area w/ be =	A _{ICEant} := SA _{ICEant} ·N _{ant} =	10.4	sf				
Weight of All Antenna s= Gravity Loads (ice only)WTant Nant = 281IbsBLC 2Volume of Each Antenna = $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 2048$ cu inVolume of Ice on Each Antenna = $V_{ice} := (L_{ant} + 2 \cdot t_{izVZ})(W_{ant} + 2 \cdot t_{izVZ}) \cdot (T_{ant} + 2 \cdot t_{izVZ}) - V_{ant} = 2971$ Weight of Ice on Each Antenna = $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 96$ Ibs	Total Anten na Wind Forcew/Ice =	Fi _{ant} := qz _{ice.VZ} ·G _H ·Ca _{ant} Ka ^{·A} ICEant = 124			BLC 4			
Weight of All Antenna s= Gravity Loads (ice only)WTant Nant = 281IbsBLC 2Volume of Each Antenna = $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 2048$ cu inVolume of Ice on Each Antenna = $V_{ice} := (L_{ant} + 2 \cdot t_{izVZ})(W_{ant} + 2 \cdot t_{izVZ}) \cdot (T_{ant} + 2 \cdot t_{izVZ}) - V_{ant} = 2971$ Weight of Ice on Each Antenna = $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 96$ Ibs	Gravity Load (without ice)							
Gravity Loads (ice only)Volume of Each Antenna = $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 2048$ cu inVolume of Ice on Each Antenna = $V_{ice} := (L_{ant} + 2 \cdot t_{izVZ})(W_{ant} + 2 \cdot t_{izVZ}) \cdot (T_{ant} + 2 \cdot t_{izVZ}) - V_{ant} = 2971$ Weight of Ice on Each Antenna = $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 96$ Ibs		$WT_{ant} \cdot N_{ant} = 281$		lbs	BLC 2			
Volume of Ice on EachAntenna = $V_{ice} := (L_{ant} + 2 \cdot t_{izVZ})(W_{ant} + 2 \cdot t_{izVZ}) \cdot (T_{ant} + 2 \cdot t_{izVZ}) - V_{ant} = 2971$ Weight of Ice on EachAntenna = $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 96$ Ibs	Gravity Loads (ice only)	antant						
Volume of Ice on EachAntenna = $V_{ice} := (L_{ant} + 2 \cdot t_{izVZ})(W_{ant} + 2 \cdot t_{izVZ}) \cdot (T_{ant} + 2 \cdot t_{izVZ}) - V_{ant} = 2971$ Weight of Ice on EachAntenna = $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 96$ Ibs	Volume of Each Antenna =	V _{ant} := L _{ant} ·W _{ant} ·T _{ant} = 204	18	cuin				
	Volume of Ice on EachAntenna =			= 2971				
	Weight of Ice on EachAntenna =	$W_{\text{ICEant}} := \frac{V_{\text{ice}}}{1728} \cdot \text{Id} = 96$		lbs				
	Weight of Ice on All Anten mas =			lbs	BLC 3			

Loads on Equipmnet Structure 1281

Subject:

Subject:

Location:

Rev. 0: 2/15/22

Loads on Equipmnet Structure 1281

Greenwich, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 21007.68

Development of Wind & Ice Load on Antennas

Antenna Data:	(Verizon)				
Antenna Model =	Commscope TD-850B-LTE78-43 Diplexer				
Antenna Shape =	Flat		(User Input)		
Antema Height =	L _{ant} := 15.433	in	(User Input)		
Antenna Width =	W _{ant} := 6.378	in	(User Input)		
Antenna Thickness =	T _{ant} := 3.3	in	(User Input)		
Antenna Weight =	WT _{ant} := 53	lbs	(User Input)		
Number of Antennas =	N _{ant} := 3		(User Input)		
AntennaAspectRato =	$Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 2$.4			
Antenna Force Coefficient =	Ca _{ant} = 1.2				

Wind Load (without ice)

SurfaceArea for One Antenna =	$SA_{ant} := \frac{L_{ant} W_{ant}}{144} = 0.7$	sf
-------------------------------	---	----

Antenna Projected Surface Area =

Total Anten na Wind Force=

Wind Load (with ice)

Surface Area for One Antenna w/ Ice =

Antenna Projected Surface Area w/ be =

Total Antenna Wind Forcew/Ice =

Gravity Load (without ice)

Weight of All Antenna s=

Gravity Loads (ice only)

Volume of Each Antenna =

Volume of Ice on EachAntenna =

Weight of Ice on Each Antenna =

Weight of Ice on All Anten nas =

$A_{ant} := SA_{ant} \cdot N_{ant} = 2.1$	sf	
F _{ant} := qz _{VZ} ·G _H ·Ca _{ant} ·K _a ·A _{ant} = 98	lbs	BLC 5

- $SA_{ICEant} \coloneqq \frac{\left(L_{ant} + 2 \cdot t_{izVZ}\right) \cdot \left(W_{ant} + 2 \cdot t_{izVZ}\right)}{144} = 1.5$ sf A_{ICEant} := SA_{ICEant}·N_{ant} = 4.4 sf
- $Fi_{ant} := qz_{ice,VZ} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot A_{ICEant} = 53$ lbs BLC 4
- $WT_{ant} \cdot N_{ant} = 159$

lbs BLC 2

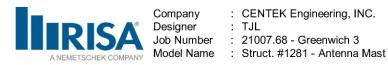
cuin

- $V_{ant} := L_{ant} W_{ant} T_{ant} = 325$
- $V_{ice} \coloneqq \left(L_{ant} + 2 \cdot t_{izVZ}\right) \left(W_{ant} + 2 \cdot t_{izVZ}\right) \cdot \left(T_{ant} + 2 \cdot t_{izVZ}\right) V_{ant} = 1290$ $W_{\text{ICEant}} := \frac{V_{\text{ice}}}{1728} \cdot \text{Id} = 42$
- lbs
- W_{ICEant}·N_{ant} = 125 lbs BLC 3

	Subject:			Loads on Equipmnet Stru	cture 1	281
Centered on Solutions** www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	Location:			Greenwich, CT		
	Rev. 0: 2/15/22			Prepared by: T.J.L. Chec Job No. 21007.68	ked by:	C.F.C.
Development of Wind & Ice Load on Antenna	Mounts					
	Mount Data:	(Verizon)				
	Mount Type:	T-Arm Colocation Mount	:			
Ma	ount Shape =	Flat				
Mount Projected Surfa	ceArea =	CaAa := 15	sf	(User Input)		
Mount Projected Surface Area	w/lce=	CaAa _{ice} := 26	sf	(User Input)		
Мо	untWeight =	WT _{mnt} := 1000	lbs	(User Input)		
MountWei	ght w/ Ice =	WT _{mnt.ice} := 1300	lbs	(User Input)		
Wind Load (w	ithout ice)					
Total Mount Wi	nd Force =	F _{mnt} ≔ qz _{VZ} ·G _H ·Ca/	Aa = 59	95	lbs	BLC 5
Wind Load	l (with ice)					
Total Mount Wi	nd Force =	Fi _{mnt} ≔ qz _{ice.VZ} .G _H	·CaAa _{ic}	ce = 259	lbs	BLC 4
Gravity Loads (w	ithout ice)					
WeightofA	Il Mounts =	WT _{mnt} = 1000			lbs	BLC 2
Gravity Loads	s (ice only)					
Weight of Ice on All	Mounts =	WT _{mnt.ice} - WT _{mnt}	= 300		lbs	BLC 3

	Subject:			Loads on E	Equipmnet Stru	cture 1	281
Centered on Solutions www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	Location:			Greenwich			
	Rev. 0: 2/15/22			Prepared b Job No. 21	oy: T.J.L. Chec 007.68	ked by:	C.F.C.
Development of Wind & Ice Load on C	oax Cables						
<u>c</u>	oax Cable Data:						
	Coax Type =	HELIAX 1-5/8"					
	Shape =	Round		(User Input)			
Coax Outs	ide Diameter =	D _{coax} := 1.98	in	(User Input)			
Соах	Cable Length =	L _{coax} := 139	ft	(User Input)			
Weight of	Coax per foot =	Wt _{coax} := 1.04	plf	(User Input)			
Total Nu	mber of Coax =	N _{coax} := 14		(User Input)	(6 Sprint Coax, 6 V and 2 Verizon Hyb		
Total Number of Ex	terior Coax =	Ne _{coax} :– 8		(User Input)	(6 Sprint Coax with	nin mast)	
No. of Coax Projecting Outside Face	e of Mast =	NP _{coax} := 2		(User Input)			
Ca	oax aspect ratio,	$Ar_{coax} := \frac{\left(L_{coax}\right)}{D_{coax}}$	$\frac{12}{4x} = 8$	42.4			
Coax Cable Force Factor	Coefficient =	Ca _{coax} = 1.2					
Wind Lo	ad (without ice)						
Coax projected	surface area =	$A_{coax} := \frac{(NP_{coa})}{1}$	z ^D coax)	= 0.3		sf/ft	
Total Coa	x Wind Force =	F _{coax} := Ca _{coax} o	^{qz} Mast5 [.]	G _H ·A _{coax} = 16		plf	BLC 5,7
Total Coa	x Wind Force =	F _{coax} := Ca _{coax} o	^{qz} Mast4 [.]	G _H ·A _{coax} = 15		plf	BLC 5,7
Total Coa	x Wind Force =	F _{coax} := Ca _{coax} o	qz _{Mast3} .	G _H ·A _{coax} = 14		plf	BLC 5,7
Total Coa	x Wind Force =	F _{coax} := Ca _{coax} o	^{qz} Mast2 [.]	G _H ·A _{coax} = 12		plf	BLC 5,7
Total Coa	x Wind Force =	F _{coax} := Ca _{coax} o	^{qz} Mast1 [:]	G _H ·A _{coax} = 10		plf	BLC 5,7
Wind	Load (with ice)						,
Coax projected surface	area w/ lce =	AICE _{coax} := (NP	coax ^D co	pax ^{+ 2·t} izMast5) 12		sf/ft	
Total Coax Wind F	Force w/ Ice =	Fi _{coax} := Ca _{coax} .	^{qz} ice.Ma	ast5 [.] GH [.] AICE _{coax}	<mark>c = 8</mark>	plf	BLC 4,6
Coax projected surface	area w/ Ice =	AICE _{coax} :=				sf/ft	
Total Coax Wind F	Force w/ Ice =	Fi _{coax} := Ca _{coax} .	^{qz} ice.Ma	ast4 · GH·AICE _{coax}	x = 8	plf	BLC 4,6
Coax projected surface		AICE _{coax} := (NP			7	sf/ft	
		Fi _{coax} := Ca _{coax} .	^{qz} ice.Ma	ast3 ^{.G} H ^{.AICE} coax	(= <i>1</i>	plf	BLC 4,6

CENTEK engineering Subject:	Loads on Equipmnet S	Structure 1281
Centered on Solutions www.centekena.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-6587	: Greenwich, CT	
Rev. 0: 2	2/15/22 Prepared by: T.J.L. Ch Job No. 21007.68	ecked by: C.F.C.
Coax projected surface area w/ Ice =	$AICE_{coax} := \frac{\left(NP_{coax}D_{coax} + 2 \cdot t_{izMast2}\right)}{12}$	sf/ft
Total Coax Wind Force w/ Ice =	Fi _{coax} := Ca _{coax} ·qz _{ice.Mast2} ·G _H ·AICE _{coax} = 6	plf BLC 4,6
Coax projected surface area w/ Ice =	$AICE_{coax} \coloneqq \frac{\left(NP_{coax}D_{coax} + 2 \cdot t_{izMast1}\right)}{12}$	sf/ft
Total Coax Wind Force w/ Ice =	Fi _{coax} := Ca _{coax} ·qz _{ice.Mast1} · G _H ·AICE _{coax} = 5	plf BLC 4,6
Gravity Loads (without ice)		
Weight of all cables w/o ice	$WT_{coax} := Wt_{coax} \cdot N_{coax} = 15$	plf BLC 2
Gravity Loads (ice only)		
IceAreaper Linear Foot =	$\operatorname{Ai}_{\operatorname{coax}} \coloneqq \frac{\pi}{4} \left[\left(D_{\operatorname{coax}} + 2 \cdot t_{iz\operatorname{Mast5}} \right)^2 - D_{\operatorname{coax}}^2 \right] = 28.1$	sqin
Ice Weight All Coax per foot =	WTi _{coax} := Ne _{coax} ·Id· $\frac{Ai_{coax}}{144} = 87$	plf BLC 3
IceArea per Linear Foot =	$Ai_{coax} \coloneqq \frac{\pi}{4} \left[\left(D_{coax} + 2 \cdot t_{izMast4} \right)^2 - D_{coax}^2 \right] = 27$	sqin
Ice WeightAll Coax per foot =	WTi _{coax} := Ne _{coax} ·Id· $\frac{Ai_{coax}}{144} = 84$	plf BLC 3
IceAreaper Linear Foot =	$\operatorname{Ai}_{\operatorname{coax}} \coloneqq \frac{\pi}{4} \left[\left(D_{\operatorname{coax}} + 2 \cdot t_{iz\operatorname{Mast3}} \right)^2 - D_{\operatorname{coax}}^2 \right] = 25.7$	sqin
Ice WeightAll Coax per foot =	WTi _{coax} := Ne _{coax} ·Id· $\frac{Ai_{coax}}{144} = 80$	plf BLC 3
lceAreaper Linear Foot =	$\operatorname{Ai}_{\operatorname{coax}} \coloneqq \frac{\pi}{4} \left[\left(D_{\operatorname{coax}} + 2 \cdot t_{izMast2} \right)^2 - D_{\operatorname{coax}}^2 \right] = 23.8$	sqin
Ice WeightAll Coax per foot =	WTi _{coax} := Ne _{coax} ·Id· $\frac{Ai_{coax}}{144} = 74$	plf BLC 3
lceAreaper Linear Foot =	$\operatorname{Ai}_{\operatorname{coax}} := \frac{\pi}{4} \left[\left(D_{\operatorname{coax}} + 2 \cdot t_{iz\operatorname{Mast1}} \right)^2 - D_{\operatorname{coax}}^2 \right] = 20.2$	sqin
Ice WeightAll Coax per foot =	$WTi_{coax} := Ne_{coax} \cdot Id \cdot \frac{Ai_{coax}}{144} = 63$	plf BLC 3


CENTEK engineering Subject:		Loads on Equipmnet Struct	ture 12	281
Centered on Solutions www.centekena.com 63-2 North Branford Road Branford, CT 06405 F: (203) 488-0580 F: (203) 488-8587		Greenwich, CT		
Rev. 0: 2/15/22		Prepared by: T.J.L. Checke Job No. 21007.68	ed by:	C.F.C.
Development of Wind & Ice Load on Brace Member				
Member Data:	L2x2x3/16			
Antenna Shape =	Flat	(User Input)		
Height=	H _{mem} ≔ 2 in	(User Input)		
Width =	W _{mem} := 2 in	(User Input)		
Thickness =	t _{mem} := 0.1875 in	(User Input)		
Length =	L _{mem} := 18 in	(User Input)		
Member Aspec tRa to =	Ar _{mem} := $\frac{L_{mem}}{W_{mem}}$ = 9.0			
Member Force Coefficient =	Ca _{mem} = 1.47			
Wind Load (without ice)				
Member Projected Surface Area =	$A_{mem} \coloneqq \frac{H_{mem}}{12} = 0.2$		sf/ft	
Total Member Wind Force =	F _{mem} ≔ qz _{Mast5} .G _H .Ca _{me}	m ^{.A} mem ⁼ 10	plf	BLC 5,7
Wind Load (with ice)				
Member Projected Surface Area w/ be =	$A_{\text{ICEmem}} := \frac{\left(H_{\text{mem}} + 2 \cdot t_{iz}\right)}{12}$	$\frac{Mast5}{} = 0.5$	sf/ft	
Total Member Wind Force w/ Ice =	Fi _{mem} := qz _{ice.Mast5} ·G _H ·C	^a mem ^{·A} ICEmem ^{= 8}	plf	BLC 4,6
Gravity Load (without ice)				
Weight of Member =	SelfWeight		plf	BLC 1
Gravity Loads (ice only)			·	
Ice Are aper Linear foot =				
$Ai_{mem} := \left[\left(H_{mem} + 2 \cdot t_{izMast5} \right) + \left(W_{mem} - t_{mem} \right) \right] \cdot \left(t_{mem} \right)$	+ 2·t _{izMast5}) – $\left[H_{mem} + \left(W_{m}\right)\right]$	m m m + t mem	sqin	
Weight of Ice on Member =	$W_{ICE.mem} \coloneqq Id \frac{Ai_{mem}}{144} =$	14	plf	BLC 3

Subject:		Loads on Equipmnet Struc	ture 12	281
Centered on Solutions www.centekena.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587		Greenwich, CT		
Rev. 0: 2/15/22		Prepared by: T.J.L. Checke Job No. 21007.68	ed by:	C.F.C.
Development of Wind & Ice Load on Brace Member				
Member Data:	L2.5x2.5x3/16			
Antenna Shape =	Flat	(User Input)		
Height=	H _{mem} := 2.5 in	(User Input)		
Width =	W _{mem} ≔ 2.5 in	(User Input)		
Thickness =	t _{mem} := 0.1875 in	(User Input)		
Length =	L _{mem} := 40 in	(User Input)		
MemberAspectRato =	Ar _{mem} := $\frac{L_{mem}}{W_{mem}}$ = 16.0			
Member Force Coefficient =	Ca _{mem} = 1.7			
Wind Load (without ice)				
Member Projected Surface Area =	A _{mem} := $\frac{H_{mem}}{12}$ = 0.2		sf/ft	
Total Member Wind Force =	F _{mem} ≔ qz _{Mast5} .G _H .Ca _{me}	m ^{-A} mem ^{= 14}	plf	BLC 5,7
Wind Load (with ice)				
Member Projected Surface Area w/ be =	$A_{\text{ICEmem}} \coloneqq \frac{\left(H_{\text{mem}} + 2 \cdot t_{jz}\right)}{12}$	<u>Mast5</u>) = 0.6	sf/ft	
Total Member Wind Force w/ Ice =	^{Fi} mem ^{:=} q ^z ice.Mast5 [⋅] G _H ⋅Ci	^a mem ^{·A} ICEmem ^{= 10}	plf	BLC 4,6
Gravity Load (without ice)				
Weight of Member =	SelfWeight		plf	BLC 1
Gravity Loads (ice only)			·	
Ice Are aper Linear foot =				
$Ai_{mem} := \left[\left(H_{mem} + 2 \cdot t_{izMast5} \right) + \left(W_{mem} - t_{mem} \right) \right] \left(t_{mem} + 2 \cdot t_{izMast5} \right)$	+ 2·t _{izMast5}) – $\left[H_{mem} + \left(W_{m}\right)\right]$	$em + tmem$] $\cdot tmem = 40$	sqin	
Weight of Ice on Member =	$W_{ICE.mem} \coloneqq Id \cdot \frac{Ai_{mem}}{144} = 1$	16	plf	BLC 3

	Subject:			Loads on Equipn	nnet Structure 1	281
Centered on Solutions www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	Location:			Greenwich, CT		
	Rev. 0: 2/15/22			Prepared by: T.J Job No. 21007.6		C.F.C.
Development of Wind & Ice Load on Brad	ce Member					
	Member Data:	L3x3x3/16				
٩	ntenna Shape =	Flat		(User Input)		
	Height=	H _{mem} := 3	in	(User Input)		
	Width =	W _{mem} := 3	in	(User Input)		
	Thickness =	t _{mem} := 0.1875	in	(User Input)		
	Length =	L _{mem} := 96	in	(User Input)		
Membe	rAspectRa t o=	Ar _{mem} := $\frac{L_{mem}}{W_{mem}}$	- = 32.0 n			
Member Ford	e Coefficient =	Ca _{mem} = 2				
Wind Lo	ad (without ice)					
Member Projected S	urface Area =	A _{mem} ≔ $\frac{H_{mem}}{12}$	= 0.3		sf/ft	
Total Member	Wind Force =	F _{mem} := qz _{Mast5}	G _H .Ca _{mer}	m ^{·A} mem = 20	plf	BLC 5,7
Wind	d Load (with ice)					
	,	(11	. 24)		
Member Projected Surface A	Area w/ be =	A _{ICEmem} ≔ (H _n	nem ^{+ 2•t} izl 12	<u>Mast5)</u> = 0.6	sf/ft	
Total Member Wind	Force w/ Ice =	Fimem := qz _{ice.Ma}	ast5 [.] G _H .Ca	^a mem ^{·A} ICEmem ^{= 12}	plf	BLC 4,6
	d (without ice)					
	ght of Member =	SelfWeight			plf	BLC 1
	oads (ice only)					
	er Linear foct =	、 -	,			
$Ai_{mem} := \left[\left(H_{mem} + 2 \cdot t_{izMast5} \right) + \right]$	(Wmem ⁻ tmem)]·(tmem	n ^{+ 2·t} izMast5) [–] [^H m	em ⁺ (Wm	em ^{+ t} mem) <u></u> · ^t mem ⁼	44 sqin	
Weight of Ice	e on Member =	W _{ICE.mem} := Id.	$\frac{\text{Ai}_{\text{mem}}}{144} = 1$	17	plf	BLC 3

	ct:			Loads on Equipm	net Structure	1281
Centered on Solutions www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	ion:			Greenwich, CT		
Rev. (): 2/15/22			Prepared by: T.J. Job No. 21007.68		: C.F.C.
Development of Wind & Ice Load on Brace Member						
MemberD	ata:	L3.5x3.5x1/4				
Antenna Shape)=	Flat		(User Input)		
Heig	ght=	H _{mem} := 3.5	in	(User Input)		
Wi	dth =	W _{mem} := 3.5	in	(User Input)		
Thickne	ess =	t _{mem} := 0.25	in	(User Input)		
Leng	gth =	L _{mem} := 133	in	(User Input)		
Member Aspect Rato	=	$Ar_{mem} \coloneqq \frac{L_{mem}}{W_{mem}}$	= 38.0			
Member Force Coefficient	=	Ca _{mem} = 2				
Wind Load (without i	ce)					
Member Projected Surface Area =		$A_{mem} \coloneqq \frac{H_{mem}}{12}$	= 0.3		sf/ft	
Total Member Wind Force	-	Fmem := qzMast5	G _H Ca _{mem}	·A _{mem} = 23	plf	BLC 5,7
Wind Load (with	ice)					
		(11	. 24			
Member Projected Surface Area w/ be =		A _{ICEmem} ≔ (H _m	iem ^{+ 2•t} izN 12	$\frac{ast5)}{2} = 0.7$	sf/ft	
Total Member Wind Force w/ Ice =		Fi _{mem} := qz _{ice.Ma}	ast5 [.] G _H .Ca _r	nem ^{·A} ICEmem ^{= 13}	plf	BLC 4,6
	•					
Gravity Load (without ic	•					
Weight of Member		<mark>SelfWeight</mark>			plf	BLC 1
Gravity Loads (ice on l						
		2.t\ _ [H	+ (\\	+t)].t - 4	19 sqin	
$A^{i}_{mem} := \left[\left(H_{mem} + 2 \cdot t_{izMast5} \right) + \left(W_{mem} - t_{izMast5} \right) \right]$	mem/] ('mem +	- 'izMast5/ - [''me	em ' (**me	m ˈ 'mem/jˈ'mem ⁼ "	-o oqiii	
Weight of Ice on Member =	-	W _{ICE.mem} := Id	Ai <mark>mem</mark> = 19	9	plf	BLC 3

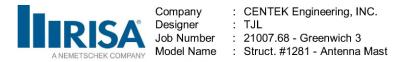
	Subject:		Loads on Equipmnet Strue	cture 12	281
Centered on Solutions** www.centekeng.com 63-2 North Branford Road P: (203) 488-0590 Branford, CT 06405 F: (203) 488-8587	Location:		Greenwich, CT		
	Rev. 0: 2/15/22		Prepared by: T.J.L. Check Job No. 21007.68	ed by:	C.F.C.
Development of Wind & Ice Load on Brace M	ember				
M	ember Data:	L4x4x1/4			
Anter	ina Shape =	Flat	(User Input)		
	Height=	H _{mem} := 4 in	(User Input)		
	Width =	W _{mem} := 4 in	(User Input)		
	Thickness =	t _{mem} ≔ 0.25 in	(User Input)		
	Length =	L _{mem} := 159 in	(User Input)		
Member As	ectRa i o=	Ar _{mem} := $rac{L_{mem}}{W_{mem}}$ = 39.8			
Member Force C	pefficient =	Ca _{mem} = 2			
Wind Load (without ice)				
Member Projected Surfa	ce Area =	$A_{mem} \coloneqq \frac{H_{mem}}{12} = 0.3$		sf/ft	
Total Member Wi	nd Force =	F _{mem} ≔ qz _{Mast5} .G _H .Ca _{me}	em ^{·A} mem ^{= 26}	plf	BLC 5,7
Wind Lo	ad (with ice)				
Member Projected Surface Area	w/ be=	$A_{ICEmem} \coloneqq \frac{\left(H_{mem} + 2 \cdot t_{iz}\right)}{12}$	2Mast5) = 0.7	sf/ft	
Total Member Wind Ford	e w/ Ice =	Fi _{mem} := qz _{ice.Mast5} ·G _H ·C	^a mem ^{·A} ICEmem ^{= 14}	plf	BLC 4,6
Gravity Load (v	vithout ice)				
	f Member =	SelfWeight		plf	BLC 1
Gravity Load		odivroight		P	DECT
iceAreaper Li					
$A_{imem} := \left[\left(H_{mem} + 2 \cdot t_{izMast5} \right) + \left(W_{mem} \right) \right]$		+ 2·t _{izMast5}) – $\left[H_{mem} + \left(W_{m}\right)\right]$	nem ^{+ t} mem)] ^{.t} mem ^{= 53}	sqin	
Weight of Ice on	Member =	W _{ICE.mem} := Id $\frac{Ai_{mem}}{144}$ =	21	plf	BLC 3

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in ²)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	No
Max Iterations for Wall Stiffness	3
Gravity Acceleration (ft/sec^2)	32.2
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver
	·
Hot Rolled Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 14th(360-10): ASD
Cold Formed Steel Code	AISI 1999: ASD

AISC 14th(360-10): ASD
AISI 1999: ASD
AF&PA NDS-91/97: ASD
< 100F
ACI 318-02
ACI 530-05: ASD
AA ADM1-05: ASD - Building
AISC 14th(360-10): ASD
Yes(Iterative)

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	PCA Load Contour
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8



(Global) Model Settings, Continued

Seismic Code	UBC 1997
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	No
Ct X	.035
Ct Z	.035
T X (sec)	Not Entered
TZ (sec)	Not Entered
RX	8.5
RZ	8.5
Са	.36
Cv	.54
Nv	1
Occupancy Category	4
Seismic Zone	3
Om Z	1
Om X	1
Rho Z	1
Rho X	1
Footing Overturning Safety Factor	1.5
Optimize for OTM/Sliding	No
Check Concrete Bearing	No
Footing Concrete Weight (k/ft^3)	0
Footing Concrete f'c (ksi)	3
Footing Concrete Ec (ksi)	4000
Lambda	1
Footing Steel fy (ksi)	60
Minimum Steel	0.0018
Maximum Steel	0.0075
Footing Top Bar	#3
Footing Top Bar Cover (in)	3.5
Footing Bottom Bar	#3
Footing Bottom Bar Cover (in)	3.5
Pedestal Bar	#3
Pedestal Bar Cover (in)	1.5
Pedestal Ties	#3

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\	. Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	58	1.2
3	A992	29000	11154	.3	.65	.49	50	1.1	58	1.2
4	A500 Gr.42	29000	11154	.3	.65	.49	42	1.3	58	1.1
5	A500 Gr.46	29000	11154	.3	.65	.49	46	1.2	58	1.1
6	A53 Gr. B	29000	11154	.3	.65	.49	35	1.5	58	1.2
7	A500 Gr. 50	29000	11154	.3	.65	.49	50	1.1	58	1.2

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design Ru	. A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Powermount	12" FWT Powermou	.Column	Pipe	A500 Gr.42	Typical	14.579	279.3	279.3	.558.67
2	Brace 1	L2x2x3	Beam	Single Angle	A36 Gr.36	Typical	.722	.271	.271	.009
3	Brace 2	L2.5x2.5x3	Beam	Single Angle	A36 Gr.36	Typical	.901	.535	.535	.011
4	Brace 3	L3X3X3	Beam	Single Angle	A36 Gr.36	Typical	1.09	.948	.948	.014
5	Brace 4	L3.5X3.5X4	Beam	Single Angle	A36 Gr.36	Typical	1.7	2	2	.039
6	Brace 5	L4X4X4	Beam	Single Angle	A36 Gr.36	Typical	1.93	3	3	.044
7	6"x3/4" Plate	6"X3/4" PL	Beam	Single Angle	A36 Gr.36	Typical	4.5	.211	13.5	.777
8	L2.5x2.5x1/4	L2.5x2.5x4	Beam	Single Angle	A36 Gr.36	Typical	1.19	.692	.692	.026

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[.Lcomp bot[L-torq	Куу	Kzz	Cb	Functi
1	M1	Powermount	148	Segment	Segment	Lbyy						Lateral
2	M2	Brace 4	10.25			Lbyy						Lateral
3	M3	Brace 5	13.25			Lbyy						Lateral
4	M4	Brace 3	8.083			Lbyy						Lateral
5	M5	Brace 4	11.083			Lbyy						Lateral
6	M6	Brace 5	11.845			Lbyy						Lateral
7	M7	Brace 5	11.845			Lbyy						Lateral
8	M8	Brace 4	9.7			Lbyy						Lateral
9	M9	Brace 4	9.7			Lbyy						Lateral
10	M10	Brace 2	3.354			Lbyy						Lateral
11	M11	Brace 2	3.354			Lbyy						Lateral
12	M12	Brace 1	1.5			Lbyy						Lateral
13	M13	Brace 2	3.354			Lbyy						Lateral
14	M14	Brace 2	3.354			Lbyy						Lateral
15	M15	Brace 1	1.5			Lbyy						Lateral
16	M16	Brace 2	3.354			Lbyy						Lateral
17	M17	Brace 2	3.354			Lbyy						Lateral
18	M18	Brace 1	1.5			Lbyy						Lateral
19	M19	6"x3/4" Plate	1.5			Lbyy						Lateral
20	M20	L2.5x2.5x1/4	3.354			Lbyy						Lateral
21	M21	L2.5x2.5x1/4	3.354			Lbyy						Lateral

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(Section/Shape	Туре	Design List	Material	Design
1	M1	N1	N8		,	Powermount		Pipe	A500 Gr.42	Typical
2	M2	N9	N2			Brace 4	Beam	Single An	A36 Gr.36	Typical
3	M3	N2	N10			Brace 5	Beam	Single An	A36 Gr.36	Typical
4	M4	N13	N3			Brace 3	Beam	Single An	A36 Gr.36	Typical
5	M5	N3	N14			Brace 4	Beam	Single An	A36 Gr.36	Typical
6	M6	N11	N2			Brace 5	Beam	Single An	A36 Gr.36	Typical
7	M7	N2	N12			Brace 5	Beam	Single An	A36 Gr.36	Typical
8	M8	N15	N3			Brace 4	Beam	Single An	A36 Gr.36	Typical
9	M9	N3	N16			Brace 4	Beam	Single An	A36 Gr.36	Typical
10	M10	N18	N4			Brace 2	Beam	Single An	A36 Gr.36	Typical
11	M11	N4	N19			Brace 2	Beam	Single An	A36 Gr.36	Typical
12	M12	N4	N17			Brace 1	Beam	Single An	A36 Gr.36	Typical
13	M13	N21	N5			Brace 2	Beam	Single An	A36 Gr.36	Typical

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint R	otate(Section/Shape	Туре	Design List	Material	Design
14	M14	N5	N22			Brace 2	Beam	Single An	A36 Gr.36	Typical
15	M15	N5	N20			Brace 1	Beam	Single An	A36 Gr.36	Typical
16	M16	N24	N6			Brace 2	Beam	Single An	A36 Gr.36	Typical
17	M17	N6	N25			Brace 2	Beam	Single An	A36 Gr.36	Typical
18	M18	N6	N23			Brace 1	Beam	Single An	A36 Gr.36	Typical
19	M19	N26	N7			6"x3/4" Plate	Beam	Single An	A36 Gr.36	Typical
20	M20	N27	N7			L2.5x2.5x1/4	Beam	Single An	A36 Gr.36	Typical
21	M21	N28	N7			L2.5x2.5x1/4	Beam	Single An	A36 Gr.36	Typical

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
1	N1	0	0	0	0	
2	N2	0	29.25	0	0	
3	N3	0	44.25	0	0	
4	N4	0	89	0	0	
5	N5	0	103	0	0	
6	N6	0	117	0	0	
7	N7	0	133	0	0	
8	N8	0	148	0	0	
9	N9	0	29.25	10.25	0	
10	N10	0	29.25	-13.25	0	
11	N11	-11.75	29.25	-1.5	0	
12	N12	11.75	29.25	-1.5	0	
13	N13	0	44.25	8.083	0	
14	N14	0	44.25	-11.083	0	
15	N15	-9.583	44.25	-1.5	0	
16	N16	9.583	44.25	-1.5	0	
17	N17	0	89	-1.5	0	
18	N18	-3	89	1.5	0	
19	N19	3	89	1.5	0	
20	N20	0	103	-1.5	0	
21	N21	-3	103	1.5	0	
22	N22	3	103	1.5	0	
23	N23	0	117	-1.5	0	
24	N24	-3	117	1.5	0	
25	N25	3	117	1.5	0	
26	N26	0	133	-1.5	0	
27	N27	-3	133	1.5	0	
28	N28	3	133	1.5	0	

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N2						
3	N3						
4	N4						
5	N5						
6	N6						
7	N7						

Joint Boundary Conditions (Continued)

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
8	N8						
9	N9	Reaction	Reaction	Reaction			
10	N10	Reaction	Reaction	Reaction			
11	N11	Reaction	Reaction	Reaction			
12	N12	Reaction	Reaction	Reaction			
13	N13	Reaction	Reaction	Reaction			
14	N14	Reaction	Reaction	Reaction			
15	N15	Reaction	Reaction	Reaction			
16	N16	Reaction	Reaction	Reaction			
17	N17	Reaction	Reaction	Reaction			
18	N18	Reaction	Reaction	Reaction			
19	N19	Reaction	Reaction	Reaction			
20	N20	Reaction	Reaction	Reaction			
21	N21	Reaction	Reaction	Reaction			
22	N23	Reaction	Reaction	Reaction			
23	N24	Reaction	Reaction	Reaction			
24	N22	Reaction	Reaction	Reaction			
25	N25	Reaction	Reaction	Reaction			
26	N28	Reaction	Reaction	Reaction			
27	N26	Reaction	Reaction	Reaction			
28	N27	Reaction	Reaction	Reaction			

Member Point Loads (BLC 2 : Weight of Appurtenances)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M1	Y	171	148
2	M1	Y	-3.02	148
3	M1	Y	32	139
4	M1	Y	26	139
5	M1	Y	261	139
6	M1	Y	006	139
7	M1	Y	3	139
8	M1	Y	281	139
9	M1	Y	08	139
10	M1	Y	064	139
11	M1	Y	159	139
12	M1	Y	-1	139

Member Point Loads (BLC 3 : Weight of Ice Only)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M1	Y	784	148
2	M1	Y	-1.28	148
3	M1	Y	-1.426	139
4	M1	Y	-1.384	139
5	M1	Y	468	139
6	M1	Y	071	139
7	M1	Y	402	139
8	M1	Y	385	139
9	M1	Y	176	139
10	M1	Y	376	139
11	M1	Y	125	139

Member Point Loads (BLC 3 : Weight of Ice Only) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
12	M1	Y	3	139

Member Point Loads (BLC 4 : (x) TIA Wind with Ice)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M1	Х	.353	148
2	M1	Х	.159	148
3	M1	Х	.634	139
4	M1	Х	.535	139
5	M1	Х	.201	139
6	M1	Х	.036	139
7	M1	Х	.124	139
8	M1	Х	.124	139
9	M1	Х	.07	139
10	M1	Х	.117	139
11	M1	Х	.053	139
12	M1	Х	.259	139

Member Point Loads (BLC 5 : (x) TIA Wind)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M1	Х	.967	148
2	M1	Х	.57	148
3	M1	Х	1.95	139
4	M1	Х	1.565	139
5	M1	Х	.56	139
6	M1	Х	.071	139
7	M1	Х	.297	139
8	M1	Х	.297	139
9	M1	Х	.136	139
10	M1	Х	.322	139
11	M1	Х	.098	139
12	M1	Х	.595	139

Member Point Loads (BLC 6 : (z) TIA Wind with Ice)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M1	Z	.353	148
2	M1	Z	.159	148
3	M1	Z	.634	139
4	M1	Z	.535	139
5	M1	Z	.201	139
6	M1	Z	.036	139
7	M1	Z	.124	139
8	M1	Z	.124	139
9	M1	Z	.07	139
10	M1	Z	.117	139
11	M1	Z	.053	139
12	M1	Z	.259	139

Member Point Loads (BLC 7 : (z) TIA Wind)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M1	Z	.967	148

Member Point Loads (BLC 7 : (z) TIA Wind) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
2	M1	Z	.57	148
3	M1	Z	1.95	139
4	M1	Z	1.565	139
5	M1	Z	.56	139
6	M1	Z	.071	139
7	M1	Z	.297	139
8	M1	Z	.297	139
9	M1	Z	.136	139
10	M1	Z	.322	139
11	M1	Z	.098	139
12	M1	Z	.595	139

Member Distributed Loads (BLC 2 : Weight of Appurtenances)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Y	015	015	0	0

Member Distributed Loads (BLC 3 : Weight of Ice Only)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M 1	Y	039	039	120	0
2	M1	Y	038	038	90	120
3	M1	Y	037	037	60	90
4	M1	Y	035	035	30	60
5	M1	Y	031	031	0	30
6	M1	Y	087	087	120	0
7	M1	Y	084	084	90	120
8	M1	Y	08	08	60	90
9	M1	Y	074	074	30	60
10	M1	Y	063	063	0	30
11	M18	Y	014	014	0	0
12	M15	Y	014	014	0	0
13	M12	Y	014	014	0	0
14	M16	Y	016	016	0	0
15	M17	Y	016	016	0	0
16	M13	Y	016	016	0	0
17	M14	Y	016	016	0	0
18	M10	Y	016	016	0	0
19	M11	Y	016	016	0	0
20	M4	Y	017	017	0	0
21	M2	Y	019	019	0	0
22	M9	Y	019	019	0	0
23	M5	Y	019	019	0	0
24	M8	Y	019	019	0	0
25	M6	Y	021	021	0	0
26	M3	Y	021	021	0	0
27	M7	Y	021	021	0	0
28	M20	Y	016	016	0	0
29	M21	Y	016	016	0	0

Member Distributed Loads (BLC 4 : (x) TIA Wind with Ice)

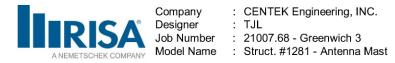
Member Distributed Loads (BLC 4 : (x) TIA Wind with Ice) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.008	.008	120	0
2	M1	Х	.008	.008	90	120
3	M1	Х	.007	.007	60	90
4	M1	Х	.007	.007	30	60
5	M1	Х	.005	.005	0	30
6	M1	Х	.008	.008	120	0
7	M1	Х	.008	.008	90	120
8	M1	Х	.007	.007	60	90
9	M1	Х	.006	.006	30	60
10	M1	Х	.005	.005	0	30
11	M18	Х	.008	.008	0	0
12	M15	Х	.008	.008	0	0
13	M12	Х	.008	.008	0	0
14	M16	Х	.01	.01	0	0
15	M17	Х	.01	.01	0	0
16	M13	Х	.01	.01	0	0
17	M14	Х	.01	.01	0	0
18	M10	Х	.01	.01	0	0
19	M11	Х	.01	.01	0	0
20	M4	Х	.012	.012	0	0
21	M2	Х	.013	.013	0	0
22	M5	Х	.013	.013	0	0
23	M3	Х	.014	.014	0	0
24	M20	Х	.01	.01	0	0
25	M21	Х	.01	.01	0	0

Member Distributed Loads (BLC 5 : (x) TIA Wind)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.025	.025	120	0
2	M1	Х	.024	.024	90	120
3	M1	Х	.022	.022	60	90
4	M1	Х	.02	.02	30	60
5	M1	Х	.016	.016	0	30
6	M1	Х	.016	.016	120	0
7	M1	Х	.015	.015	90	120
8	M1	X	.014	.014	60	90
9	M1	X	.012	.012	30	60
10	M1	X	.01	.01	0	30
11	M18	X	.01	.01	0	0
12	M15	X	.01	.01	0	0
13	M12	Х	.01	.01	0	0
14	M16	Х	.014	.014	0	0
15	M17	Х	.014	.014	0	0
16	M13	X	.014	.014	0	0
17	M14	X	.014	.014	0	0
18	M10	Х	.014	.014	0	0
19	M11	Х	.014	.014	0	0
20	M4	Х	.02	.02	0	0
21	M2	Х	.023	.023	0	0
22	M5	Х	.023	.023	0	0
23	M3	Х	.026	.026	0	0

Member Distributed Loads (BLC 5 : (x) TIA Wind) (Continued)


	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
24	M20	Х	.014	.014	0	0
25	M21	X	.014	.014	0	0

Member Distributed Loads (BLC 6 : (z) TIA Wind with Ice)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Z	.008	.008	120	0
2	M1	Z	.008	.008	90	120
3	M1	Z	.007	.007	60	90
4	M1	Z	.007	.007	30	60
5	M1	Z	.005	.005	0	30
6	M1	Z	.008	.008	120	0
7	M1	Z	.008	.008	90	120
8	M1	Z	.007	.007	60	90
9	M1	Z	.006	.006	30	60
10	M1	Z	.005	.005	0	30
11	M16	Z	.01	.01	0	0
12	M17	Z	.01	.01	0	0
13	M13	Z	.01	.01	0	0
14	M14	Z	.01	.01	0	0
15	M10	Z	.01	.01	0	0
16	M11	Z	.01	.01	0	0
17	M8	Z	.013	.013	0	0
18	M9	Z	.013	.013	0	0
19	M6	Z	.014	.014	0	0
20	M7	Z	.014	.014	0	0
21	M20	Z	.01	.01	0	0
22	M21	Z	.01	.01	0	0

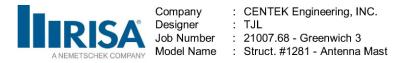
Member Distributed Loads (BLC 7 : (z) TIA Wind)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Z	.025	.025	120	0
2	M1	Z	.024	.024	90	120
3	M1	Z	.022	.022	60	90
4	M1	Z	.02	.02	30	60
5	M1	Z	.016	.016	0	30
6	M1	Z	.016	.016	120	0
7	M1	Z	.015	.015	90	120
8	M1	Z	.014	.014	60	90
9	M1	Z	.012	.012	30	60
10	M1	Z	.01	.01	0	30
11	M16	Z	.014	.014	0	0
12	M17	Z	.014	.014	0	0
13	M13	Z	.014	.014	0	0
14	M14	Z	.014	.014	0	0
15	M10	Z	.014	.014	0	0
16	M11	Z	.014	.014	0	0
17	M8	Z	.023	.023	0	0
18	M9	Z	.023	.023	0	0
19	M6	Z	.026	.026	0	0
20	M7	Z	.026	.026	0	0
21	M20	Z	.014	.014	0	0

Member Distributed Loads (BLC 7 : (z) TIA Wind) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,	End Magnitude[k/ft,F	Start Location[ft,%]	End Location[ft,%]
22	M21	Z	.014	.014	0	0

Basic Load Cases

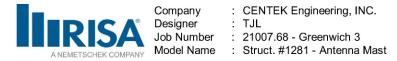

	BLC Description	Category	X GraY GraZ	Gra Joint	Point	Distrib	.Area(Surfa
1	Self Weight	None	-1					
2	Weight of Appurtenances	None			12	1		
3	Weight of Ice Only	None			12	29		
4	(x) TIA Wind with Ice	None			12	25		
5	(x) TIA Wind	None			12	25		
6	(z) TIA Wind with Ice	None			12	22		
7	(z) TIA Wind	None			12	22		

Load Combinations

	Description	So	.P	S E	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac.	BLC	Fac	BLC	Fac.	BLC	Fac.	.BLC	Fac.	.BLC	Fac.	BLC	Fac
1	1.2D + 1.6W (X-direction)	Yes	Υ		1	1.2	2	1.2	5	1.6														
2	0.9D + 1.6W (X-direction)	Yes	Υ		1	.9	2	.9	5	1.6														
3	1.2D + 1.0Di + 1.0Wi (X-d.	.Yes	Υ		1	1.2	2	1.2	3	1	4	1												
4	1.2D + 1.6W (Z-direction)	Yes	Y		1	1.2	2	1.2	7	1.6														
5	0.9D + 1.6W (Z-direction)	Yes	Υ		1	.9	2	.9	7	1.6														
6	1.2D + 1.0Di + 1.0Wi (Z-d	Yes	Υ		1	1.2	2	1.2	3	1	6	1												

Envelope Joint Reactions

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N1	max	0	6	44.014	3	0	2	0	2	0	6	4.057	1
2		min	719	2	14.175	5	719	5	-4.053	4	0	1	0	4
3	N9	max	0	6	.133	3	0	3	0	6	0	6	0	6
4		min	189	1	.027	5	472	5	0	1	0	1	0	1
5	N10	max	0	6	.191	6	0	3	0	6	0	6	0	6
6		min	276	1	.039	2	415	5	0	1	0	1	0	1
7	N11	max	017	6	.171	3	016	3	0	6	0	6	0	6
8		min	436	2	.035	5	254	5	0	1	0	1	0	1
9	N12	max	.058	5	.171	6	.056	2	0	6	0	6	0	6
10		min	436	2	.035	2	254	5	0	1	0	1	0	1
11	N13	max	0	6	.087	3	0	3	0	6	0	6	0	6
12		min	129	1	.013	5	-1.101	4	0	1	0	1	0	1
13	N14	max	0	6	.144	6	0	3	0	6	0	6	0	6
14		min	204	1	.029	2	-1.252	4	0	1	0	1	0	1
15	N15	max	058	6	.126	3	05	3	0	6	0	6	0	6
16		min	-1.199	1	.025	5	213	4	0	1	0	1	0	1
17	N16	max	.219	4	.126	6	.188	1	0	6	0	6	0	6
18		min	-1.199	1	.025	2	213	4	0	1	0	1	0	1
19	N17	max	0	6	.015	6	0	2	0	6	0	6	0	6
20		min	012	1	.002	2	-1.554	5	0	1	0	1	0	1
21	N18	max	.347	5	.034	3	.483	2	0	6	0	6	0	6
22		min	-1.005	2	.004	5	211	5	0	1	0	1	0	1
23	N19	max	09	6	.033	6	062	6	0	6	0	6	0	6
24		min	-1.005	2	.004	2	484	2	0	1	0	1	0	1

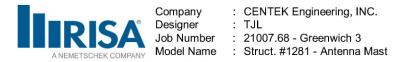


Envelope Joint Reactions (Continued)

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
25	N20	max	0	6	.017	6	0	1	0	6	0	6	0	6
26		min	012	1	.002	2	-2.504	4	0	1	0	1	0	1
27	N21	max	.559	4	.034	3	.748	1	0	6	0	6	0	6
28		min	-1.534	1	.004	5	317	4	0	1	0	1	0	1
29	N23	max	0	6	.013	3	7.546	4	0	6	0	6	0	6
30		min	012	1	022	4	0	3	0	1	0	1	0	1
31	N24	max	4.523	1	.034	6	.805	4	0	6	0	6	0	6
32		min	-1.684	4	001	1	-2.281	1	0	1	0	1	0	1
33	N22	max	131	6	.033	6	082	6	0	6	0	6	0	6
34		min	-1.533	1	.003	2	748	1	0	1	0	1	0	1
35	N25	max	4.524	1	.037	3	2.28	1	0	6	0	6	0	6
36		min	.371	6	.007	5	.169	6	0	1	0	1	0	1
37	N28	max	22	6	.034	6	127	6	0	6	0	6	0	6
38		min	-10.761	1	011	1	-5.364	1	0	1	0	1	0	1
39	N26	max	0	2	.086	4	.004	1	0	6	0	6	0	6
40		min	0	4	.01	2	-20.514	4	0	1	0	1	0	1
41	N27	max	.97	4	.045	3	5.36	1	0	6	0	6	0	6
42		min	-10.763	1	.005	5	523	4	0	1	0	1	0	1
43	Totals:	max	0	6	45.483	6	0	3						
44		min	-22.374	1	14.504	2	-22.406	4						

Envelope Joint Displacements

	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC	Y Rotation [rad]	LC	Z Rotation [rad]	LC
1	N1	max	0	6	0	6	0	6	0	6	0	6	0	6
2		min	0	1	0	1	0	1	0	1	0	1	0	1
3	N2	max	.001	2	014	5	.001	5	0	3	0	6	3.464e-04	1
4		min	0	4	043	3	0	1	-3.445e-04	4	0	1	0	4
5	N3	max	.004	1	02	5	.004	4	7.741e-04	4	0	6	0	6
6		min	0	4	063	3	0	3	0	1	0	1	-7.709e-04	1
7	N4	max	.002	2	036	5	.002	5	0	3	0	6	8.888e-04	1
8		min	0	4	112	3	0	1	-9.01e-04	4	0	1	0	4
9	N5	max	.004	1	04	5	.003	4	8.172e-04	4	0	6	0	6
10		min	0	4	124	3	0	1	0	1	0	1	-7.922e-04	1
11	N6	max	0	6	044	5	0	3	0	3	0	6	2.598e-03	1
12		min	011	1	135	3	008	4	-2.625e-03	4	0	1	0	4
13	N7	max	.02	1	048	5	.004	4	1.053e-02	4	0	6	0	6
14		min	0	4	146	3	0	1	0	1	0	1	-1.067e-02	1
15	N8	max	3.423	1	05	5	3.383	4	2.155e-02	4	0	6	0	6
16		min	0	4	152	3	0	2	0	1	0	1	-2.169e-02	1
17	N9	max	0	6	0	6	0	6	3.523e-03	2	3.359e-03	6	3.464e-04	1
18		min	0	1	0	1	0	1	-5.974e-03	6	-7.315e-03	2	0	4
19	N10	max	0	6	0	6	0	6	9.421e-03	6	1.206e-02	2	3.464e-04	1
20		min	0	1	0	1	0	1	-6.017e-03	2	-5.538e-03	6	0	4
21	N11	max	0	6	0	6	0	6	8.769e-04	3	3.957e-03	3	4.141e-03	5
22		min	0	1	0	1	0	1	-8.731e-04	5	-8.543e-03	5	-6.786e-03	3
23	N12	max	0	6	0	6	0	6	8.559e-04	3	8.543e-03	5	6.788e-03	3
24		min	0	1	0	1	0	1	-8.731e-04	5	-3.957e-03	3	-4.141e-03	5
25	N13	max	0	6	0	6	0	6	3.434e-03	2	2.951e-03	6	0	6
26		min	0	1	0	1	0	1	-5.527e-03	6	-6.859e-03	2	-7.709e-04	1
27	N14	max	0	6	0	6	0	6	7.58e-03	6	9.259e-03	2	0	6

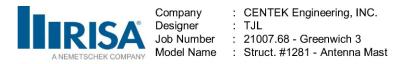


Envelope Joint Displacements (Continued)

	Joint		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [rad]	LC	Y Rotation [rad]	LC	Z Rotation [rad]	LC
28		min	0	1	0	1	0	1	-4.444e-03	2	-4.246e-03	6	-7.709e-04	1
29	N15	max	0	6	0	6	0	6	7.916e-04	3	2.848e-03	3	2.943e-03	5
30		min	0	1	0	1	0	1	5.705e-05	2	-6.145e-03	5	-5.246e-03	3
31	N16	max	0	6	0	6	0	6	8.492e-04	3	6.145e-03	5	5.237e-03	3
32		min	0	1	0	1	0	1	2.926e-04	2	-2.845e-03	3	-2.943e-03	5
33	N17	max	0	6	0	6	0	6	6.283e-03	6	2.036e-04	2	8.888e-04	1
34		min	0	1	0	1	0	1	1.98e-03	2	-5.061e-05	6	0	4
35	N18	max	0	6	0	6	0	6	-7.153e-04	2	2.104e-04	3	-1.99e-04	5
36		min	0	1	0	1	0	1	-1.597e-03	6	-5.709e-04	5	-2.88e-03	3
37	N19	max	0	6	0	6	0	6	-1.63e-04	2	5.709e-04	5	3.106e-03	3
38		min	0	1	0	1	0	1	-1.597e-03	6	-4.839e-04	3	1.99e-04	5
39	N20	max	0	6	0	6	0	6	6.973e-03	6	2.735e-04	2	0	6
40		min	0	1	0	1	0	1	2.211e-03	2	-5.061e-05	6	-7.922e-04	1
41	N21	max	0	6	0	6	0	6	3.259e-04	5	2.077e-04	3	-9.708e-04	2
42		min	0	1	0	1	0	1	-1.527e-03	3	-5.934e-04	5	-3.235e-03	3
43	N22	max	0	6	0	6	0	6	3.259e-04	5	5.934e-04	5	3.303e-03	3
44		min	0	1	0	1	0	1	-1.742e-03	3	-4.866e-04	3	9.712e-04	2
45	N23	max	0	6	0	6	0	6	7.583e-03	6	-6.603e-06	5	2.598e-03	1
46		min	0	1	0	1	0	1	2.42e-03	2	-5.377e-04	1	0	4
47	N24	max	0	6	0	6	0	6	-1.483e-03	2	2.44e-04	3	3.109e-04	5
48		min	0	1	0	1	0	1	-2.642e-03	4	-3.545e-04	5	-3.326e-03	3
49	N25	max	0	6	0	6	0	6	4.285e-04	2	3.545e-04	5	3.701e-03	3
50		min	0	1	0	1	0	1	-2.642e-03	4	-4.503e-04	3	-3.109e-04	5
51	N26	max	0	6	0	6	0	6	8.106e-03	3	1.086e-03	1	0	6
52		min	0	1	0	1	0	1	2.657e-03	5	0	4	-1.067e-02	1
53	N27	max	0	6	0	6	0	6	7.94e-03	5	1.28e-04	3	-3.145e-03	2
54		min	0	1	0	1	0	1	-8.392e-04	3	-4.735e-04	5	-5.488e-03	4
55	N28	max	0	6	0	6	0	6	7.703e-03	5	5.863e-04	4	5.962e-03	4
56		min	0	1	0	1	0	1	-4.966e-03	1	-3.902e-04	2	-1.103e-03	2

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Memb.	. Shape	Code Check	L	LC	ShL	Dir	phi*P	phi*Pn	phi*Mn y-y [k-ft]	phi*Cb Eqn
1	M1	12" FWT Po	.556	1	1	.078 1		1 489.6	551.086	180.952	1803H1
2	M2	L3.5X3.5X4	.223	5	2	.011 0	z	2 12.016	55.08	2.416	3.831 1 H2
3	M3	L4X4X4	.340	6	2	.014 0	z	2 10.574	62.532	3.138	4.514 1 H2
4	M4	L3X3X3	.223	4	2	.012 0	z	2 8.988	35.316	1.32	2.085 1 H2
5	M5	L3.5X3.5X4	.265	5	2	.012 0	z	2 10.278	55.08	2.416	3.716 1 H2
6	M6	L4X4X4	.264	5	5	.013 ()	z	5 13.23	62.532	3.138	4.749 1 H2
7	M7	L4X4X4	.264	5	5	.013 0	z	5 13.23	62.532	3.138	4.749 1 H2
8	M8	L3.5X3.5X4	.200	4	5	.010 9.7	z	5 13.418	55.08	2.416	3.908 1 H2
9	M9	L3.5X3.5X4	.200	4	5	.010 9.7	z	5 13.418	55.08	2.416	3.908 1 H2
10	M10	L2.5x2.5x3	.052	1	2	.004 3	z	5 20.016	29.192	.873	1.818 1 H2
11	M11	L2.5x2.5x3	.073	1	1	.004 0	z	5 20.016	29.192	.873	1.818 1 H2
12	M12	L2x2x3	.068	.75	4	.002 0	у	6 20.899	23.393	.558	1.239 1 H2
13	M13	L2.5x2.5x3	.072	1	2	.004 0	z	5 20.016	29.192	.873	1.818 1 H2
14	M14	L2.5x2.5x3	.103	1	1	.004 3	z	5 20.016	29.192	.873	1.818 1 H2
15	M15	L2x2x3	.109	.75	4	.002 0	у	6 20.899	23.393	.558	1.239 1 H2
16	M16	L2.5x2.5x3	.270	1	1	.004 0	z	5 20.016	29.192	.873	1.818 1 H2
17	M17	L2.5x2.5x3	.194	1	1	.004 3	z	5 20.016	29.192	.873	1.818 1 H2
18	M18	L2x2x3	.363	.75	4	.002 0	у	6 20.899	23.393	.558	1.239 1 H2



Envelope AISC 14th(360-10): LRFD Steel Code Checks (Continued)

	Memb Sha	be Code Chec	k L	LC	ShL	Dir	phi*P phi*Pn	phi*Mn y-y [k-ft]	phi*Cb Eqn
19	M19 6"X3/4	" PL .071	.75	4	.000 1.5	у	6 101.3 145.8	2.278	18 1 H1
20	M20 L2.5x2	.5x4 .322	1	2	.003 3	y	6 26.71 38.556	1.114	2.473 1 H2
21	M21 L2.5x2	.5x4 .460	1	1	.003 3	ý	6 26.71 38.556	1.114	2.473 1 H2

	LC	Joint Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	1	N1	719	18.96	0	0	0	4.057
2	1	N9	189	.036	0	0	0	0
3	1	N10	276	.052	0	0	0	0
4	1	N11	436	.047	056	0	0	0
5	1	N12	436	.047	.056	0	0	0
6	1	N13	129	.018	0	0	0	0
7	1	N14	204	.038	0	0	0	0
8	1	N15	-1.199	.034	188	0	0	0
9	1	N16	-1.199	.033	.188	0	0	0
10	1	N17	012	.002	0	0	0	0
11	1	N18	-1.003	.007	.483	0	0	0
12	1	N19	-1.003	.005	483	0	0	0
13	1	N20	012	.002	0	0	0	0
14	1	N21	-1.534	.008	.748	0	0	0
15	1	N23	012	.002	0	0	0	0
16	1	N24	4.523	001	-2.281	0	0	0
17	1	N22	-1.533	.004	748	0	0	0
18	1	N25	4.524	.014	2.28	0	0	0
19	1	N28	-10.761	011	-5.364	0	0	0
20	1	N26	0	.014	.004	0	0	0
21	1	N27	-10.763	.027	5.36	0	0	0
22	1	Totals:	-22.374	19.338	0			
23	1	COG (ft):	X: 0	Y: 98.763	Z:041			

	LC	Joint Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	2	N1	719	14.22	0	0	0	4.057
2	2	N9	189	.027	0	0	0	0
3	2	N10	276	.039	0	0	0	0
4	2	N11	436	.035	056	0	0	0
5	2	N12	436	.035	.056	0	0	0
6	2	N13	129	.013	0	0	0	0
7	2	N14	204	.029	0	0	0	0
8	2	N15	-1.199	.025	188	0	0	0
9	2	N16	-1.199	.025	.188	0	0	0
10	2	N17	012	.002	0	0	0	0
11	2	N18	-1.005	.006	.483	0	0	0
12	2	N19	-1.005	.004	484	0	0	0
13	2	N20	012	.002	0	0	0	0
14	2	N21	-1.527	.006	.745	0	0	0
15	2	N23	012	.002	0	0	0	0
16	2	N24	4.5	0	-2.269	0	0	0
17	2	N22	-1.527	.003	745	0	0	0
18	2	N25	4.501	.01	2.269	0	0	0
19	2	N28	-10.743	008	-5.356	0	0	0
20	2	N26	0	.01	.004	0	0	0
21	2	N27	-10.746	.02	5.351	0	0	0
22	2	Totals:	-22.374	14.504	0			
23	2	COG (ft):	X: 0	Y: 98.763	Z:041			

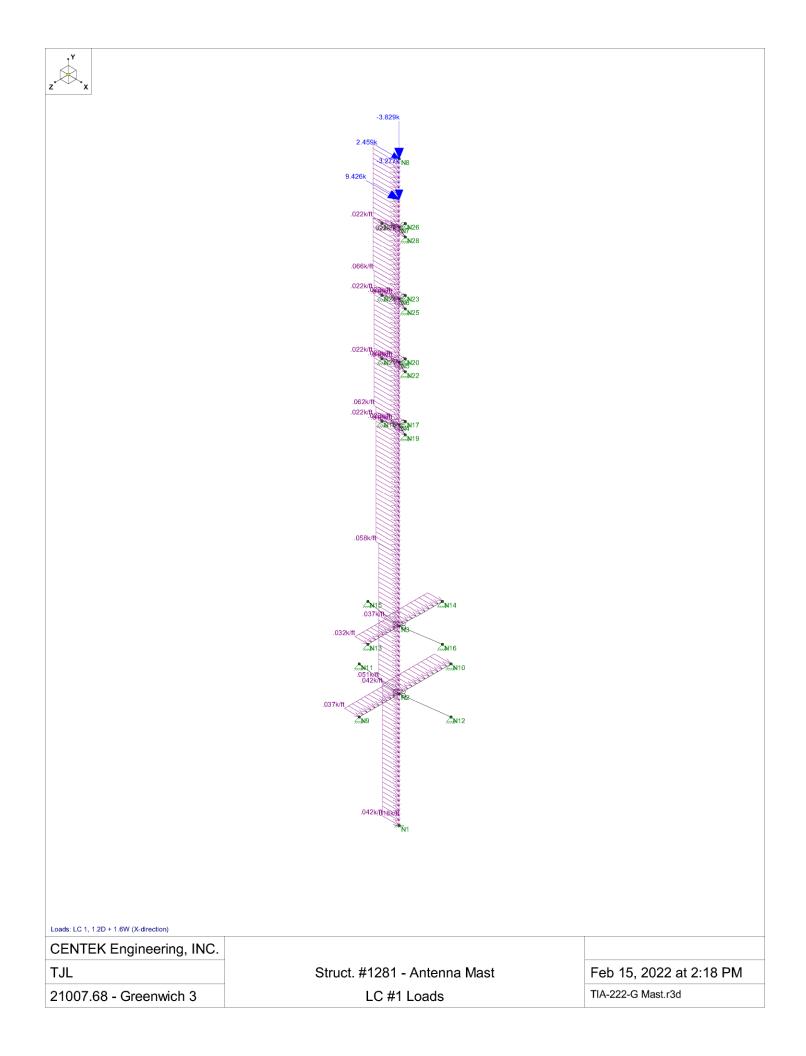
	LC	Joint Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	3	N1	173	44.014	0	0	0	.978
2	3	N9	067	.133	0	0	0	0
3	3	N10	093	.191	0	0	0	0
4	3	N11	129	.171	016	0	0	0
5	3	N12	129	.171	.016	0	0	0
6	3	N13	048	.087	0	0	0	0
7	3	N14	072	.144	0	0	0	0
8	3	N15	318	.126	05	0	0	0
9	3	N16	318	.126	.05	0	0	0
10	3	N17	006	.013	0	0	0	0
11	3	N18	268	.034	.126	0	0	0
12	3	N19	268	.032	126	0	0	0
13	3	N20	006	.013	0	0	0	0
14	3	N21	371	.034	.177	0	0	0
15	3	N23	006	.013	0	0	0	0
16	3	N24	.987	.029	502	0	0	0
17	3	N22	371	.032	177	0	0	0
18	3	N25	.987	.037	.502	0	0	0
19	3	N28	-2.449	.025	-1.216	0	0	0
20	3	N26	0	.014	0	0	0	0
21	3	N27	-2.449	.045	1.216	0	0	0
22	3	Totals:	-5.567	45.483	0			
23	3	COG (ft):	X: 0	Y: 95.638	Z:058			

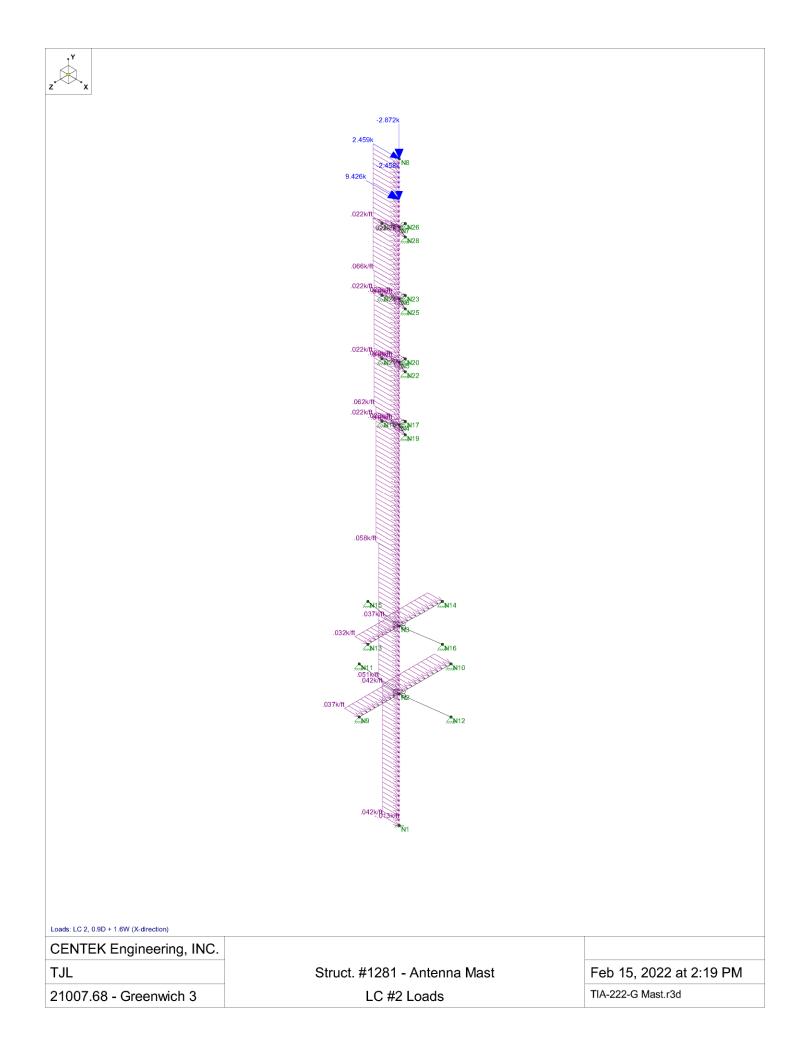
	LC	Joint Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	4	N1	0	18.9	719	-4.053	0	0
2	4	N9	0	.036	472	0	0	0
3	4	N10	0	.052	414	0	0	0
4	4	N11	058	.047	254	0	0	0
5	4	N12	.058	.047	254	0	0	0
6	4	N13	0	.018	-1.101	0	0	0
7	4	N14	0	.039	-1.252	0	0	0
8	4	N15	219	.034	213	0	0	0
9	4	N16	.219	.034	213	0	0	0
10	4	N17	0	.006	-1.552	0	0	0
11	4	N18	.346	.006	211	0	0	0
12	4	N19	346	.006	211	0	0	0
13	4	N20	0	.01	-2.504	0	0	0
14	4	N21	.559	.005	317	0	0	0
15	4	N23	0	022	7.546	0	0	0
16	4	N24	-1.684	.009	.805	0	0	0
17	4	N22	559	.005	317	0	0	0
18	4	N25	1.684	.009	.805	0	0	0
19	4	N28	97	.006	523	0	0	0
20	4	N26	0	.086	-20.514	0	0	0
21	4	N27	.97	.006	523	0	0	0
22	4	Totals:	0	19.338	-22.406			
23	4	COG (ft):	X: 0	Y: 98.763	Z:041			



	LC	Joint Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	5	N1	0	14.175	719	-4.053	0	0
2	5	N9	0	.027	472	0	0	0
3	5	N10	0	.039	415	0	0	0
4	5	N11	058	.035	254	0	0	0
5	5	N12	.058	.035	254	0	0	0
6	5	N13	0	.013	-1.101	0	0	0
7	5	N14	0	.029	-1.252	0	0	0
8	5	N15	219	.025	213	0	0	0
9	5	N16	.219	.025	213	0	0	0
10	5	N17	0	.005	-1.554	0	0	0
11	5	N18	.347	.004	211	0	0	0
12	5	N19	347	.004	211	0	0	0
13	5	N20	0	.007	-2.493	0	0	0
14	5	N21	.557	.004	316	0	0	0
15	5	N23	0	017	7.509	0	0	0
16	5	N24	-1.676	.007	.801	0	0	0
17	5	N22	557	.004	316	0	0	0
18	5	N25	1.676	.007	.801	0	0	0
19	5	N28	969	.005	522	0	0	0
20	5	N26	0	.065	-20.481	0	0	0
21	5	N27	.969	.005	522	0	0	0
22	5	Totals:	0	14.504	-22.406			
23	5	COG (ft):	X: 0	Y: 98.763	Z:041			

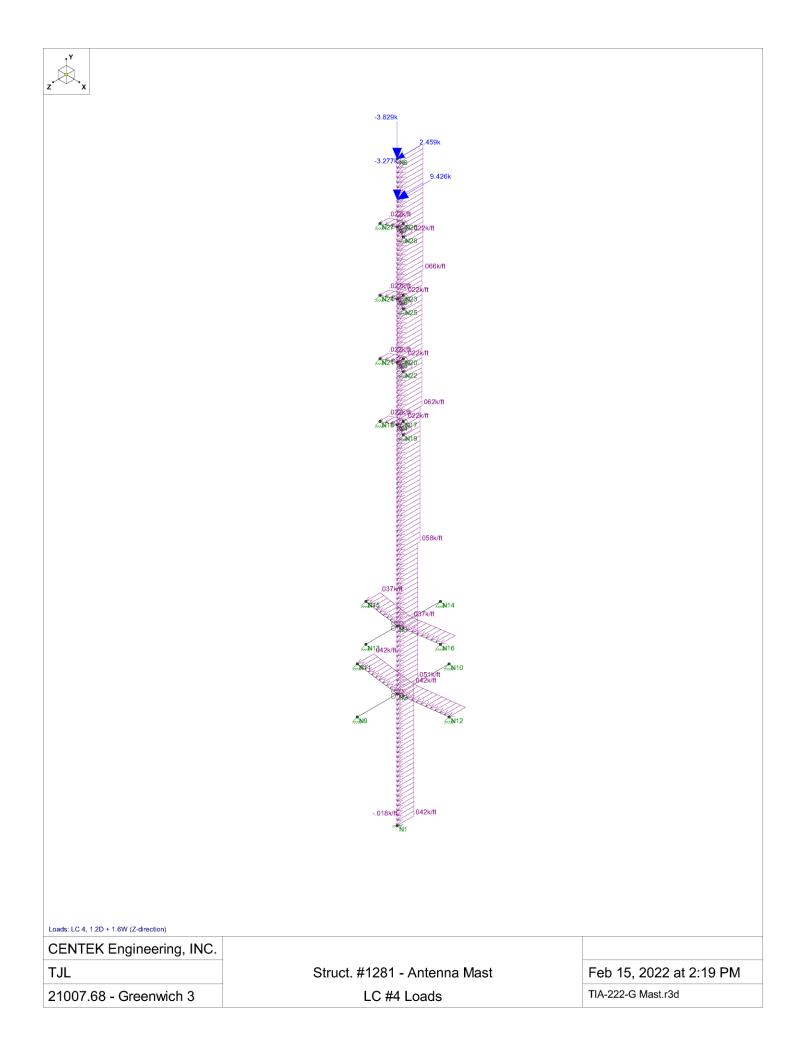
	LC	Joint Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	6	N1	0	43.983	173	977	0	0
2	6	N9	0	.133	139	0	0	0
3	6	N10	0	.191	122	0	0	0
4	6	N11	017	.171	085	0	0	0
5	6	N12	.017	.171	085	0	0	0
6	6	N13	0	.087	292	0	0	0
7	6	N14	0	.144	332	0	0	0
8	6	N15	058	.126	072	0	0	0
9	6	N16	.058	.126	072	0	0	0
10	6	N17	0	.015	403	0	0	0
11	6	N18	.09	.033	062	0	0	0
12	6	N19	09	.033	062	0	0	0
13	6	N20	0	.017	589	0	0	0
14	6	N21	.131	.033	082	0	0	0
15	6	N23	0	0	1.664	0	0	0
16	6	N24	371	.034	.169	0	0	0
17	6	N22	131	.033	082	0	0	0
18	6	N25	.371	.034	.169	0	0	0
19	6	N28	22	.034	127	0	0	0
20	6	N26	0	.051	-4.653	0	0	0
21	6	N27	.22	.034	127	0	0	0
22	6	Totals:	0	45.483	-5.555			
23	6	COG (ft):	X: 0	Y: 95.638	Z:058			

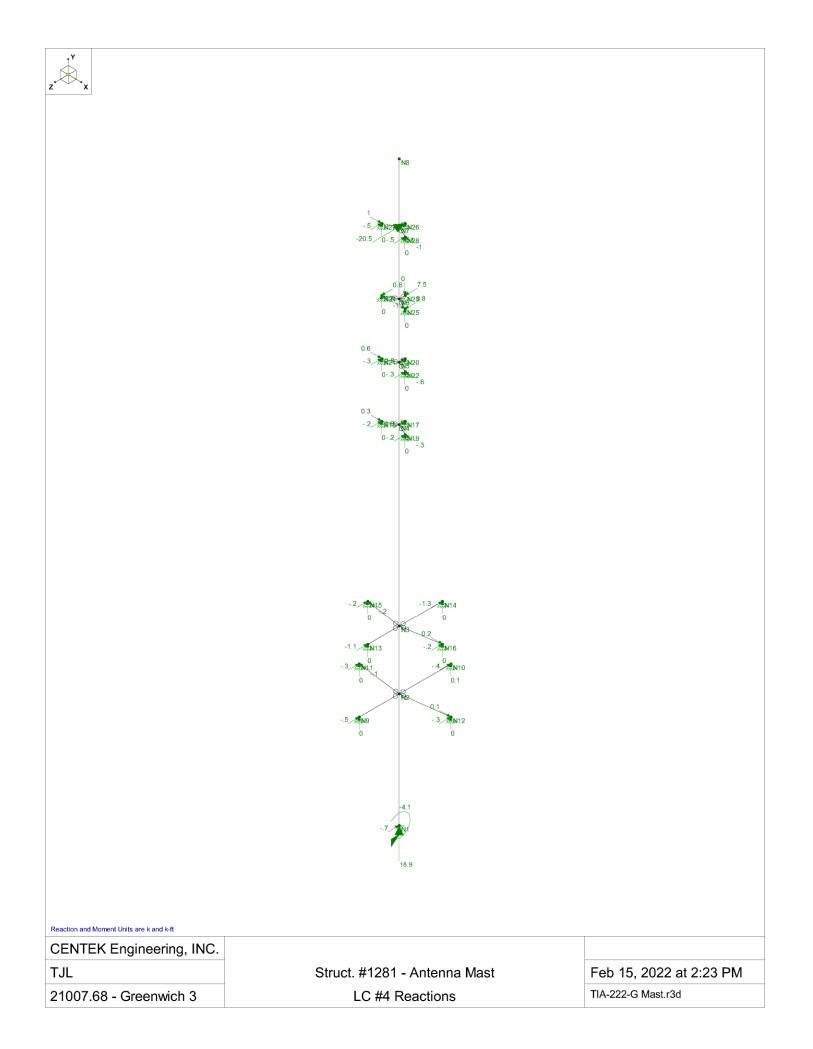


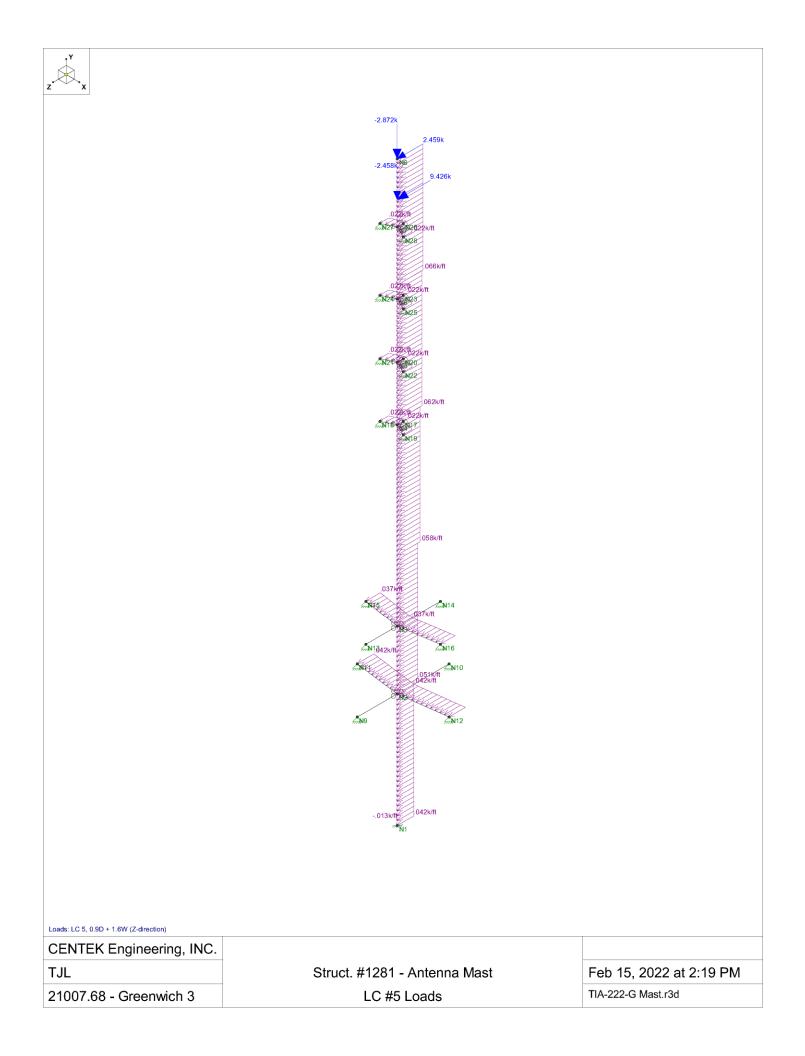

z. Y

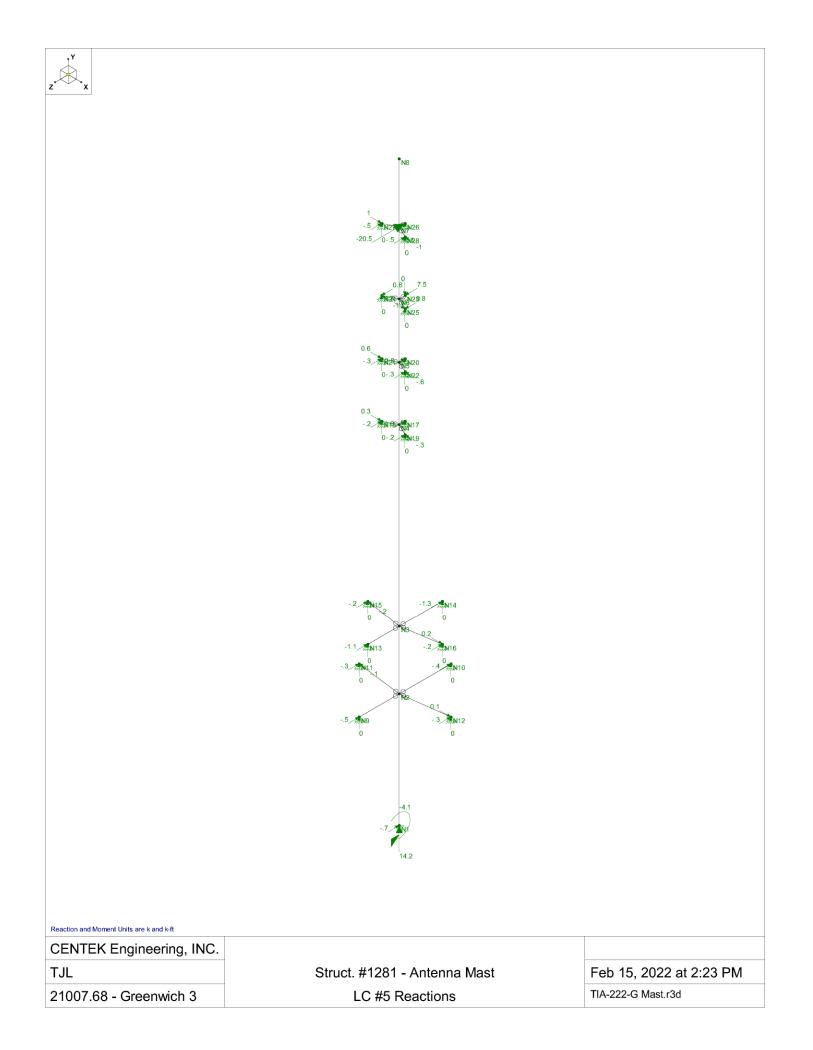
x

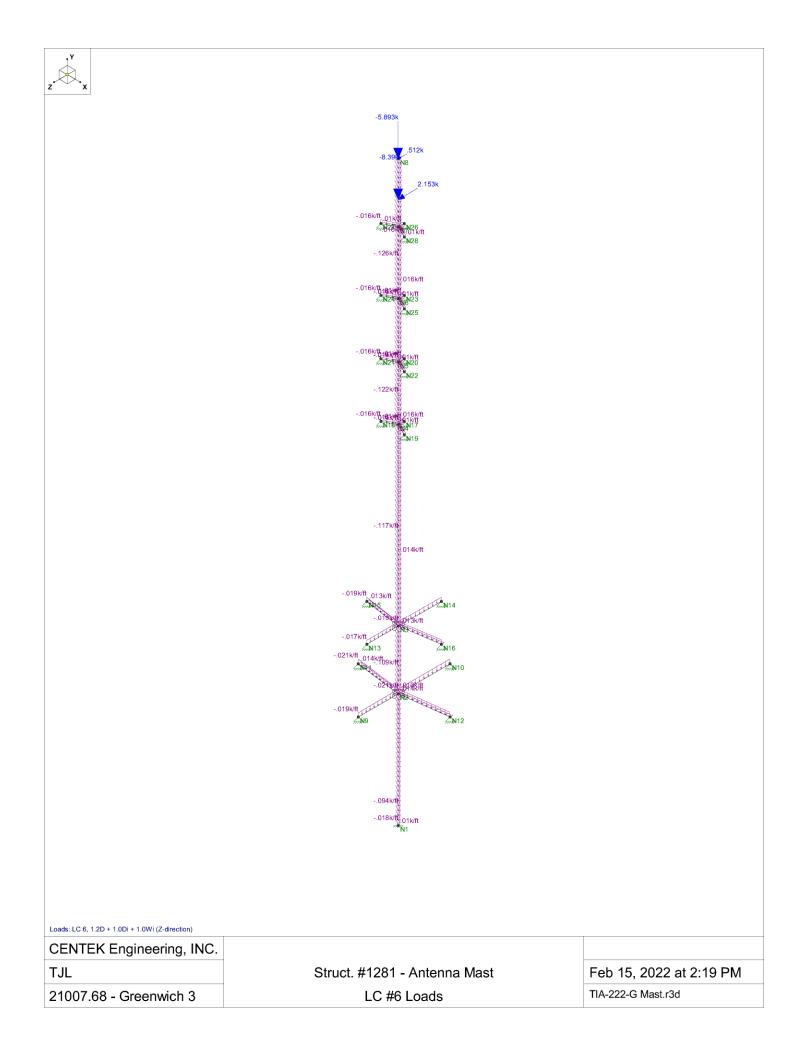
Member Code Checks Displayed (Enveloped) Envelope Only Solution		
CENTEK Engineering, INC.		
TJL	Struct. #1281 - Antenna Mast	Feb 15, 2022 at 2:20 PM
21007.68 - Greenwich 3	Unity Check	TIA-222-G Mast.r3d

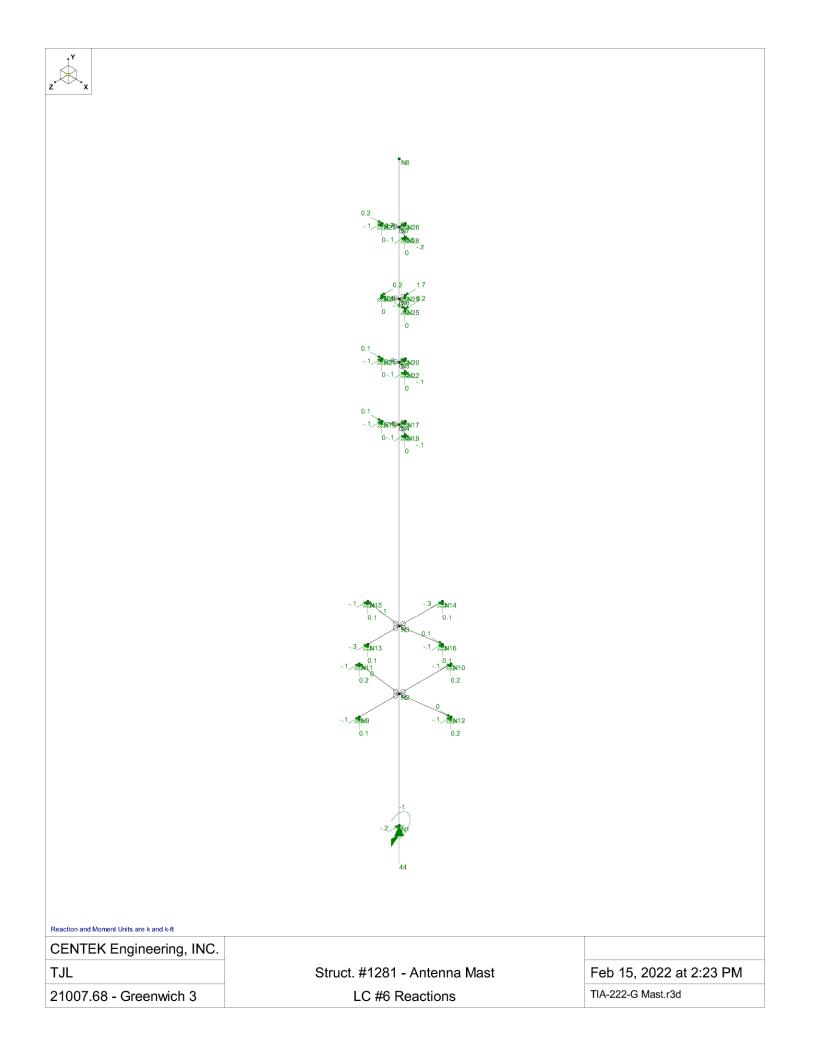

z		
	5.4 0 5.4 0 5.5 0 5.5 0 5.5 0 5.5 0 5.5 0	
	-10.8 -2.3	
	0.7 0 MZ-9 0.7 0 0.7 1 0.5 0 0.5 0 MTB-10447 0.5 0 -1.5 0 -1	
	-2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -	
	4.1 4.1	
Reaction and Moment Units are k and k-ft CENTEK Engineering, INC.	19	
TJL	Struct. #1281 - Antenna Mast	Feb 15, 2022 at 2:20 PM
21007.68 - Greenwich 3	LC #1 Reactions	TIA-222-G Mast.r3d




z, Y x		
	N8 54 0 54 0 -10.7 -2.3	
	0.7 0 1.125 0.7 0 1.13820 0.7 0 0.7 13820 0.7 13820 0.7 13822 0.7 0 0.7 0 0	
	-2, 2, 15 0, 12 0, 0, 2 0, 12 0, 0, 2 0, 2 0, 2 0, 2 0, 2 0, 2 0, 2	
	4.1 4.1 14.2	
Reaction and Moment Units are k and k-ft CENTEK Engineering, INC. TJL	Struct. #1281 - Antenna Mast	Eab 15, 2022 at 2:24 DM
21007.68 - Greenwich 3	LC #2 Reactions	Feb 15, 2022 at 2:21 PM TIA-222-G Mast.r3d
Z 1007.00 - GIEEHWICH 3	LU #Z REAUTONS	


z. x		
	-5.893k	
	.512k -8.39	
	2.153k	
	- 9748411	
	N26	
	126%	
	.016k/m	
	23 AP23	
	- 0/640,644 	
	- 122KW	
	- 95 AB	
	жите ститя м19	
	117k	
	.014k/m	
	019k/ft	
	019km	
	104120419-25-25-25-25-25-25-25-25-25-25-25-25-25-	
	021k/n -109k/n -109k/n	
	Bigking states and	
	19 19 19 19 19 19 19 19 19 19 19 19 19 1	
	₩N9 ₩N12	
	094 km	
	500 Min	
Loads: LC 3, 1.2D + 1.0Di + 1.0Wi (X-direction)		
CENTEK Engineering, INC. TJL	Struct. #1281 - Antenna Mast	Feb 15, 2022 at 2:19 PM
21007.68 - Greenwich 3	LC #3 Loads	TIA-222-G Mast.r3d


z, Y x		
	₹N8	
	01.2 01.2 01.2	
	0	
	1 0 -5 3029 5 5	
	0 0 0 0	
	02	
	0-2 mar 4	
	0	
	01 03	
	0 .1.3 0.1 ⁻¹	
	A 13 0	
	0.2 0.2 0.2 1	
	0 mno 0.1 ⁻¹ 0.2 ⁻¹	
	0.1 " 0.2 " '	
	44	
Reaction and Moment Units are k and k-ft		
CENTEK Engineering, INC.		
TJL	Struct. #1281 - Antenna Mast	Feb 15, 2022 at 2:22 PM
21007.68 - Greenwich 3	LC #3 Reactions	TIA-222-G Mast.r3d



Subject:

Location:

Rev. 0: 2/15/22

Connection of Powermount to Tower # 1281

Greenwhich, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 21007.68

Powermount Connection to CL&P Tower:

Check Pipe Collar Bolts:		
Reactions:		
Tension =	Tension := 21.5·kips (Input From Risa-3D LC #4)	
Shear =	Shear := 21.5·kips (InputFrom Risa-3D LC #1)	
Bolt Data:		
Bolt Type =	ASTMA325	(User Input)
Bolt Diameter =	D := 0.75 in	(User Input)
Number of Bolts =	N _b := 4	(User Input)
Design Tensile Strength =	F _t := 29.8 kips	(User Input)
Design Shear Strength =	F _v := 17.9⋅kips	(User Input)
Plate Data:		
Plate Width =		(User Input)
	W _{plt} := 5 in	
Plate Thickness =	t _{plt} ≔ 1 in	(User Input)
Distance from Bolt to Collar =	d _{st} := 1.75 in	(User Input)
Yield Strength =	F _y := 36⋅ksi	(User Input)
Weld Data:		
Weld Size =	sw := $\frac{5}{16}$ ·in	(User Input)
Weld Length =	16 I _w := 5·in	(User Input)
Number of Welds =	$n_{W} := 2$	(User Input)
Weld Strength =	F _w ≔ 70·ksi	(User Input)

CENTEK engineering Subject:	Connection of Powermount to Tower # 1281
Centered on Solutions www.centekeng.com Location: 63-2 North Branford Road P: (203) 488-0580 Location: Branford, CT 06405 F: (203) 488-8587 Location:	Greenwhich, CT
Rev. 0: 2/15/22	Prepared by: T.J.L. Checked by: C.F.C. Job No. 21007.68
Shear Force =	$f_v := \frac{Shear}{N_b} = 5.4 \cdot kips$
Bolt Shear % of Capacity =	$\frac{f_{V}}{F_{V}} = 30.03.\%$
Check Bolt Shear =	Bolt_Shear := if $\left(\frac{f_v}{F_v} \le 1.00, "OK", "Overstressed" \right)$
	Bolt_Shear = "OK"
Tension Force =	$f_t := \frac{\text{Tension}}{N_b} = 5.4 \cdot \text{kips}$
Bolt Tenison % of Capacity =	$\frac{f_t}{F_t} = 18.04.\%$
Check Bolt Tension =	$Bolt_Tension := if \left(\frac{f_t}{F_t} \le 1.00, "OK", "Overstressed" \right)$
	Bolt_Tension = "OK"
Check Pipe Collar Plate:	
Design Bending Strength =	F _b := 0.9F _y = 32.4 ksi
Plate Section Modulus =	$Z_{\text{plt}} \coloneqq \frac{1}{4} \cdot W_{\text{plt}} \cdot t_{\text{plt}}^2 = 1.25 \cdot \text{in}^3$
Plate Bending Moment =	$M := \frac{f_t \cdot N_b}{2} \cdot d_{st} = 18.812 \cdot in \cdot kips$
Plate Bending Stress =	$f_b := \frac{M}{Z_{plt}} = 15.05 \cdot ksi$
	$\label{eq:plate_Bending} \text{Plate}_\text{Bending} := \text{if} \Big(f_b < F_b, \text{"OK"}, \text{"Overstressed"} \Big)$
	Plate_Bending = "OK"
Check Pipe Collar Weld:	
Design Weld Strength =	F _w := 0.45 F _w = 31.5 ksi
Weld Section Modulus =	$S_{w} := \frac{1}{6} \cdot .707 \cdot s_{w} \cdot l_{w}^{2} = 0.921 \cdot in^{3}$
WeldArea =	$A_{w} := .707 \cdot sw \cdot l_{w} = 1.105 \cdot in^{2}$

Plate Stress =

$$\begin{split} f_{W} &:= \frac{\frac{f_{t} \cdot N_{b}}{2}}{A_{W} \cdot n_{W}} = 4.866 \cdot \text{ksi} \\ \text{Weld} &:= \text{if} \Big(f_{W} < F_{W}, "OK", "Overstressed" \Big) \end{split}$$

Weld = "OK"

	Subject:		Connection of Powermount to Tower # 1281
Centered on Solutions ¹⁺ www.centekma.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	Location:		Greenwhich, CT
(1, (20) 100 000	Rev. 0: 2/15/22		Prepared by: T.J.L. Checked by: C.F.C. Job No. 21007.68
Check Pipe Collar to Angle Brace	e Bolts:		
	Reactions:		
Axial Force in N	/lember =	Axial := 12·kips	(Input From Risa-3D LC #1)
	Bolt Data:		
	Bolt Type =	ASTMA325	(User Input)
Balt	Diameter =	D:= 0.75.in	(User Input)
	er of Bolts =		
		N _b := 1	(User Input)
Design Tensile S	-	F _t ≔ 29.8 kips	(User Input)
Design Shear	Strength =	F _V ≔ 17.9·kips	(User Input)
St	ear Force =	$f_v := \frac{Axial}{N_b} = 12 \cdot kips$	
Bolt Shear % of Ca	apacity =	$\frac{f_V}{F_V} = 67.04.\%$	
Check B	olt Shear =	Bolt_Shear := if $\left(\frac{f_v}{F_v} \le 1 \right)$	1.00, "OK" , "Overstressed"
		Bolt_Shear = "OK"	
Check Angle Brace to Tow	er Bolts:		
	Reactions:		
Axial Force in N	<i>f</i> ember =	Axial := 12·kips	(Input From Risa-3D LC #1)
	Bolt Data:		
	Bolt Type =	ASTMA325	(User Input)
Bolt	Diameter =	D:= 0.625.in	(User Input)
Numbe	er of Bolts =	N _b := 1	(User Input)
Design Tensile S		F _t := 20.7 kips	(User Input)
Design Shear	-	F _v := 12.4 kips	(User Input)
		· v· · · · · · · · · · · · · · · · · ·	(
St	ear Force =	$f_v := \frac{Axial}{N_b} = 12 \cdot kips$	
Bolt Shear % of Ca	apacity =	$\frac{f_{V}}{F_{V}} = 96.77.\%$	
Check B	olt Shear =	Bolt_Shear := if $\begin{pmatrix} f_V \\ F_V \end{pmatrix} \le f$	1.00, "OK" , "Overstressed")

Bolt_Shear = "OK"

	Subject:		Connection of Pow 1281	vermount to Tower #
Centered on Solutions www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	Location:		Greenwhich, CT	
	Rev. 0: 2/15/22		Prepared by: T.J.L Job No. 21007.68	Checked by: C.F.C.
Check Pipe Collar to Plate Brac	<u>e Bolts:</u>			
	Reactions:			
Axial Force in	Member =	Axial := 20.5 kips	(Input From Risa-3D LC #4)	
	Bolt Data:			
	Bolt Type =	ASTMA325	(User Input)	
Во	t Diameter =	D := 0.75 in	(User Input)	
Numb	er of Bolts =	N _b := 2	(User Input)	
Design Tensile	Strength =	F _t := 29.8⋅kips	(User Input)	
Design Shear	Strength =	F _V ≔ 17.9 kips	(User Input)	
s	hear Force =	$f_V := \frac{Axial}{N_b} = 10.3 \cdot kips$	5	
Bolt Shear % of C	Capacity =	$\frac{f_V}{F_V} = 57.26.\%$		
Check	Bolt Shear =	Bolt_Shear := if $\left(\frac{f_v}{F_v} \le Bolt_Shear = "OK" \right)$	1.00, "OK" , "Overstressed"	
Check Plate Brace to Tow	er Bolts:			
	Reactions:			
Axial Force in	Member =	Axial := 20.5 kips	(Input From Risa-3D LC #4)	
	Bolt Data:			
	Bolt Type =	ASTMA325	(User Input)	
Во	t Diameter =	D := 0.625 · in	(User Input)	
Numb	er of Bolts =	N _b := 1	(User Input)	
Design Tensile	Strength =	$F_t := 20.7 \cdot kips$	(User Input)	
Design Shear	Strength =	F _V := 24.9 kips	(User Input)	(Bolt is in Double Shear)
s	hear Force =	$f_v := \frac{Axial}{N_b} = 20.5 \cdot kips$	3	
Bolt Shear % of C	Capacity =	$\frac{f_V}{F_V} = 82.33.\%$		
Check	Bolt Shear =	Bolt_Shear := if $\left(\frac{f_v}{F_v} \le \right)$	1.00, "OK" , "Overstressed")	
		Bolt_Shear = "OK"		

CENTEK engineering Subject:	Load Analysis of Equipment on Structure #
Centered on Solutions" and entered	1281
63-2 North Branford Road P: (203) 488-0580 Location: Branford, CT 06405 F: (203) 488-8587	Greenwich, CT
Rev. 0: 12/4/18	Prepared by: T.J.L Checked by: C.A.G. Job No. 17159.07
Basic Components	
Heavy Wind Pressure = Basic Windspeed = Radial Ice Thickness = Radial Ice Density =	p := 4.00 psf (User Input NESC 2017 Figure 250-1 & Table 250-1) V := 110 mph (User Input NESC 2017 Figure 250-2(e)) Ir := 0.50 in (User Input) Id := 56.0 pcf (User Input)
Factors for Extreme Wind Calculation	
Elevation of Top of MastAbove Grade =	TME := 148 ft (User Input)
Multiplier Gust Response Factor =	m := 1.25 (User Input - Only for NESC Extreme wind case)
NESC Factor =	kv := 1.43 (User Input from NESC 2017 Table 250-3 equation)
Importance Factor =	I := 1.0 (User Input from NESC 2017 Section 250.C.2)
Velocity Pressure Coefficient =	Kz := $2.01 \cdot \left(\frac{TME}{900}\right)^{\frac{2}{9.5}} = 1.375$ (NESC 2017 Table 250-2)
Exposure Factor =	Es := $0.346 \left[\frac{33}{(0.67 \cdot \text{TME})} \right]^{\frac{1}{7}} = 0.296$ (NESC 2017 Table 250-3)
Response Term =	Bs := $\frac{1}{\left(1 + 0.375 \cdot \frac{TME}{220}\right)} = 0.799$ (NESC 2017 Table 250-3)
Gust Response Factor =	Grf:= $\frac{\left[1 + \left(\frac{1}{2.7 \cdot \text{Es} \cdot \text{Bs}^2}\right)\right]}{\text{kv}^2} = 0.838 $ (NESC 2017 Table 250-3)
Wind Pressure =	qz := 0.00256·Kz·V ² ·Grf·I = 35.7 psf (NESC 2017 Section 250.C.2)
Shape Factors	
Shape Factor for Round Members = Shape Factor for Flat Members = Shape Factor for Open Lattice =	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Shape Factor for Coax Cables Attached to Outside of Pole =	Cd _{coax} := 1.6 (User Input)
Overload Factors	
Overload Factors for Wind Loads:	
NESC Heavy Loading = NESC Extreme Loading =	2.5(User Input)Apply in Risa-3D Analysis1.0(User Input)Apply in Risa-3D Analysis
Overload Factors for Vertica I Loads:	
NESC Heavy Loading = NESC Extreme Loading =	1.5(User Input)Apply in Risa-3D Analysis1.0(User Input)Apply in Risa-3D Analysis

	engineering	Subject:			Load Analysis of Equipme 1281	nt on S	Structure #
Centered on Solutions [®] 63-2 North Branford Road Branford, CT 06405	P: (203) 488-0580	Location:			Greenwich, CT		
Islaniolo, CT 00403	F: (203) 488-8587	Rev. 0: 12/4/18			Prepared by: T.J.L Checke Job No. 17159.07	ed by: (C.A.G.
Developmer	nt of Wind & Ice Load on A	ntennas	(Sprint)				
	Ē	<u>Intenna Data:</u>					
	Ante	nna Model =	RFSAPXVSPP1&0	C			
	Ante	nna Shape =	Flat		(User Input)		
	Ante	maHeight=	L _{ant} := 72	in	(User Input)		
	Ante	enna Width =	W _{ant} := 11.8	in	(User Input)		
	Antenna	Thickness =	T _{ant} := 7	in	(User Input)		
	Anter	nna Weight =	WT _{ant} := 57	lbs	(User Input)		
	Number o	f Antennas =	N _{ant} := 3		(User Input)		
	Gravity Load (v	vithout ice)					
	WeightofAll	Antenna s=	Wt _{ant1} := WT _{ant}	N _{ant} =	171	lbs	BLC 2
	Gravity Loa	ad (ice only)					
	Volume of Each	Antenna =	V _{ant} := L _{ant} .₩ _{ant}	t ^{·T} ant =	5947	cuin	
	Volume of Ice on EachA	Antenna =	$V_{ice} := \left(L_{ant} + 2\cdot\right)$	lr)(W _{ant}	$t + 2 \cdot lr \left(T_{ant} + 2 \cdot lr \right) - V_{ant} = 1528$	cuin	
	Weight of Ice on Each A	Antenna =	W _{ICEant} ≔ V _{ice} 1728	- Id = 50)	lbs	
	Weight of Ice on All A	nten nas =	Wt _{ice.ant1} := WIC	CEant ^{-N}	ant = 149	lbs	BLC 3
	Wind Load (N	IESC Heavy)					
	Maximum Possible Wind lied to all Antennas Simuli						
Su	urfaceArea for One Antenna	w/ lce =	SA _{ICEant} ≔ (L _{ar}	$\frac{1}{1} + 2 \cdot \ln $	$\frac{\cdot \left(W_{ant} + 2 \cdot Ir \right)}{44} = 6.5$	sf	
Ante	nna Projected Surface Area	w/ be =	A _{ICEant} := SA _{ICE}	∃ant [.] Nar	nt ^{= 19.5}	sf	
	Total Anten na Wind Ford	cew/lce=	Fi _{ant1} ≔ p·Cd _F ·A	ICEant ⁼	= 125	lbs	BLC 4
	Wind Load (NES	SC Extreme)					
	Maximum Possible Wind lied to all Antennas Simuli						
	Surface Area for One	Antenna =	SA _{ant} := ^L ant ^{·W} a 144	int — = 5.9	9	sf	
	Antenna Projected Surfa	ce Area =	A _{ant} := SA _{ant} ⋅N _{ai}	nt = 17.7	7	sf	
	Total Anten na Wi	nd Force=	F _{ant1} ≔ qz·Cd _F ·A	ant ^{.m} =	= 1263	lbs	BLC 5

CENTEK engineering Subject:			oad Analysis of Equipment on Structure #
Centered on Solutions ⁺ www.centekeng.com 63-2 North Branford Road Branford, CT 06405 F: (203) 488-0580 F: (203) 488-8587			reenwich, CT
Rev. 0: 12/4/18			repared by: T.J.L Checked by: C.A.G. bb No. 17159.07
Development of Wind & Ice Load on Platform			
Platform Data:	(Sprint)		
Platform Model =	FWT 14' Low Profile Platfo	orm	
Platform Shape =	Flat		
Platform Area =	A _{plt} := 14.2 sc	qft	(User Input from FWT design calcs)
PlatformArea w/lce=	A _{ICEplt} := 15.8 so	qft	(User Input from FWT design calcs)
Platform Weight =	WT _{plt} := 3020 lbs	s	(User Input from FWT design calcs)
Platform Weight w/ Ice =	WT _{ICEplt} := 4300 lbs	S	(User Input from FWT design calcs)
Wind Load (NESC Extreme)			
Total Platform Wind Force =	F _{mnt1} ≔ qz·Cd _F ·A _{plt} .n	n = 1013	
	" mnt1 - 4- 04F / plt "		lbs
Wind Load (NESC Heavy)			
Total Platform Wind Force w/ Ice =	Fi _{mnt1} ≔ p·Cd _F ·A _{ICEp}	= 101	lbs
		oit · · · ·	
Gravity Load (without ice)			
Weight of Platform =	Wt _{mnt1} := WT _{plt} = 302	20	lbs
Constitut and (inc. and)			
Gravity Load (ice only)	Wt	– WT	= 1280
Weight of Ice on Platform =	Wt _{ice.mnt1} := WT _{ICEp}	olt v 'p	lt = 1200 lbs

	Subject:			Load Analysis of Equipm 1281	ent on Structure #
Centered on Solutions www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	Location:			Greenwich, CT	
1. (20) 40 001	Rev. 0: 12/4/18			Prepared by: T.J.L Check Job No. 17159.07	ed by: C.A.G.
Development of Wind & Ice Load or	n Antennas				
	Antenna Data:				
A	ntenna Model =	JMAMX10FRO640)	(Verizon)	
A	ntenna Shape =	Flat		(User Input)	
Ar	ntenna Height =	L _{ant} := 71.6	in	(User Input)	
, All and All a	Antenna Width =	W _{ant} := 19.8	in	(User Input)	
Anter	nna Thickness =	T _{ant} := 7.4	in	(User Input)	
Ar	ntenna Weight =	WT _{ant} := 80	lbs	(User Input)	
Numbe	er of Antennas =	N _{ant} := 4		(User Input)	
Wind Load (N	IESC Extreme)				
Assumes Maximum Possible Wir Applied to all Antennas Sin					
SurfaceArea for O	ne Antenna =	SA _{ant} :⊨ Lant [·] Wa 144	ant = 9.8		sf
Antenna Projected Su	ırface Area =	A _{ant} :⊨ SA _{ant} ·N _a	ant ⁼ 39.4		sf
Total Anten na	WindForce=	F _{ant2} := qz·Cd _F ·,	A _{ant} ·m = 2	810	lbs
Wind Load	I (NESC Heavy)				
Assumes Maximum Possible Wir Applied to all Antennas Sin					
SurfaceArea for One Anter	nna w/ Ice =	SA _{ICEant} ≔ (L _a	$\frac{\operatorname{nt}^{+1} \cdot (W_a)}{144}$	$\left(\frac{1}{1}\right) = 10.5$	sf
Antenna Projected Surface A	rea w/ be =	A _{ICEant} := SA _{IC}	Eant ^{-N} ant	= 41.9	sf
Total Antenna Wind F	orcew/lce=	Fi _{ant2} := p·Cd _F ·A	ICEant = 2	268	lbs
Gravity Load	d (without ice)				
Weightof	All Antenna s=	Wt _{ant2} := (WT _{ar}	nt ^{·N} ant) = 3	320	lbs
Gravity I	Load (ice only)				
Volume of Ea	ach Antenna =	V _{ant} := L _{ant} ⋅W _{an}	nt ^{.T} ant = 1	< 10 ⁴	cuin
Volume of Ice on Eac	hAntenna =	$V_{ice} := (L_{ant} + 1)$	(W _{ant} + 1)	$\cdot (T_{ant} + 1) - V_{ant} = 2194$	cuin
Weight of Ice on Ead	ch Antenna =	$W_{ICEant} \coloneqq \frac{V_{ice}}{1728}$	e — ∙Id = 71 8		lbs
W eight of Ice on A	II Anten nas =	Wt _{ice.ant2} := WI	CEant ^{.N} an	<mark>t = 284</mark>	lbs

	Subject:			Load Analysis of E 1281	quipment on Structure	;#
Centered on Solutions www.centekeng.com 3-2 North Branford Road P: (203) 488-0580 kranford, CT 06405 F: (203) 488-8587	Location:			Greenwich, CT		
annow, c1 00105	Rev. 0: 12/4/18			Prepared by: T.J.L Job No. 17159.07	Checked by: C.A.G.	
Development of Wind & Ice Load on A	Antennas					
-	Antenna Data:					
Ante	enna Model =	JMAMX06FRO660	-03	(Verizon)		
Ante	enna Shape =	Flat		(User Input)		
Ante	enna Height=	L _{ant} := 71.3	in	(User Input)		
Ant	tenna Width =	W _{ant} := 15.4	in	(User Input)		
Antenna	a Thickness =	T _{ant} := 10.7	in	(User Input)		
Ante	nna Weight =	WT _{ant} := 65	lbs	(User Input)		
Number o	of Antennas =	N _{ant} := 4		(User Input)		
Wind Load (NE	SC Extreme)					
Assumes Maximum Possible Wind Applied to all Antennas Simu						
Surface Area for One	Antenna =	L _{ant} ·W _a SA _{ant} ∶= 144	ant = 7.6		sf	
Antenna Projected Surfa	ace Area =	A _{ant} :⊨ SA _{ant} ·N _a	nt = 30.5		sf	
Total Anten na W	indForce=	F _{ant3} := qz·Cd _F ·/	A _{ant} ·m = 21	76	lbs	
Wind Load (I	NESC Heavy)					
Assumes Maximum Possible Wind Applied to all Antennas Simu						
Surface Area for One Antenna	a w/ Ice =	SA _{ICEant} := (L _{ai}	nt + 1)·(W _{an} 144	$\frac{t+1}{2} = 8.2$	sf	
Antenna Projected Surface Area	aw/be=	A _{ICEant} := SA _{IC}	Eant ^{·N} ant ⁼	32.9	sf	
Total Antenna Wind For	cew/lce=	Fi _{ant3} ≔ p·Cd _F ·A	ICEant = 21	1	lbs	
Gravity Load (without ice)					
WeightofAll	Antenna s=	Wt _{ant3} := (WT _{ar}	nt ^{·N} ant) = 26	0	lbs	
Gravity Lo	ad (ice only)					
Volume of Each	n Antenna =	V _{ant} := L _{ant} ⋅W _{an}	$t^{T}ant = 1 \times$	10 ⁴	cuin	
Volume of Ice on Each	Antenna =	$V_{ice} := (L_{ant} + 1)$	(W _{ant} + 1)·($(T_{ant} + 1) - V_{ant} = 2124$	4 cu in	
Weight of Ice on Each	Antenna =	W _{ICEant} := Vice	e – ∙Id = 69 3		lbs	
Weight of Ice on All A	at a second s	Wt _{ice.ant3} := W _I		075	lbs	

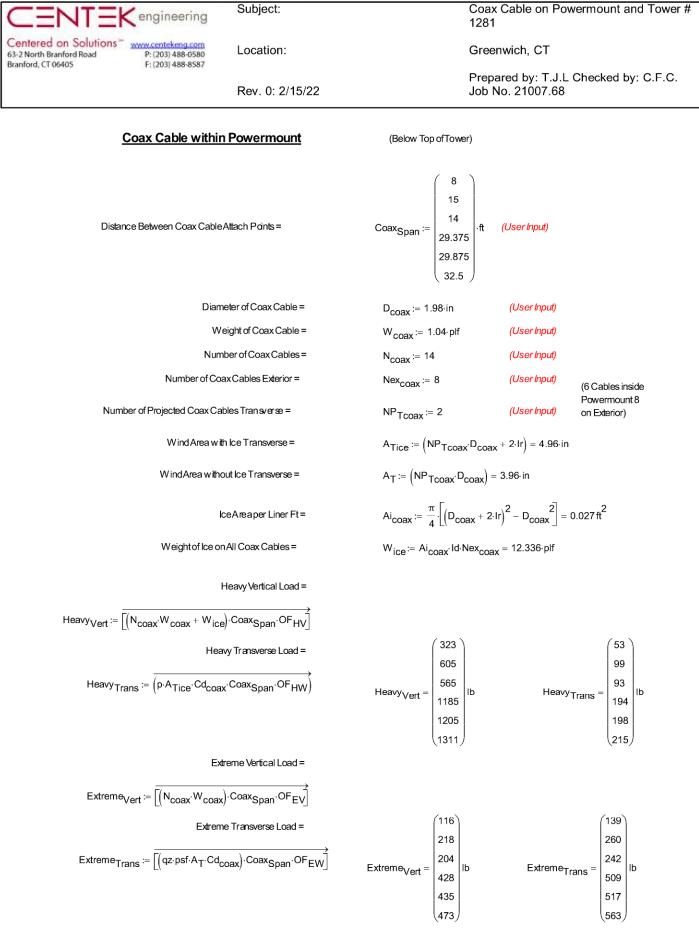
	Subject:			Load Analysis of Equipme 1281	ent on Structure #
Centered on Solutions [®] www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	Location:			Greenwich, CT	
	Rev. 0: 12/4/18			Prepared by: T.J.L Check Job No. 17159.07	ed by: C.A.G.
Development of Wind & Ice Load on	Antennas				
	Antenna Data:				
Ant	enna Model =	Samsung MT6407-	77A	(Verizon)	
Ant	enna Shape =	Flat		(User Input)	
Antr	emaHeight=	L _{ant} := 35.1	in	(User Input)	
Ar	tenna Width =	W _{ant} := 16.1	in	(User Input)	
Antenn	a Thickness=	T _{ant} := 5.5	in	(User Input)	
Ante	enna Weight =	WT _{ant} := 87	lbs	(User Input)	
Number	of Antennas =	N _{ant} := 3		(User Input)	
Wind Load (NE	ESC Extreme)				
Assumes Maximum Possible Wind Applied to all Antennas Simu					
Surface Area for One	e Antenna =	SA _{ant} ∶= L _{ant} ·W _a 144	ant = 3.9		sf
Antenna Projected Sur	ace Area =	A _{ant} := SA _{ant} ·N _a	nt = 11.8		sf
Total Antenna W	/indForce=	F _{ant4} := qz·Cd _F ·A	^A ant ^{·m} = 84	0	lbs
Wind Load (NESC Heavy)				
Assumes Maximum Possible Wind Applied to all Antennas Simu					
SurfaceArea for One Antenr	a w/ lce =	SA _{ICEant} ∶= ^{(L} ar	nt + 1)·(W _{an} 144	$\frac{(t+1)}{2} = 4.3$	sf
Antenna Projected Surface Are	aw/be=	A _{ICEant} := SA _{ICI}	Eant ^{·N} ant ⁼	12.9	sf
Total Antenna Wind Fo	rcew/lce=	Fi _{ant4} := p·Cd _F ·A	ICEant = 82	2	lbs
Gravity Load	(without ice)				
WeightofA	I Antenna s=	Wt _{ant4} := (WT _{an}	nt ^{·N} ant) = 26	1	lbs
Gravity Lo	oad (ice only)				
Volume of Eac	h Antenna =	V _{ant} ≔ L _{ant} .W _{an}	t ^{·T} ant = 310	8	cuin
Volume of Ice on Each	Antenna =	$V_{ice} = (L_{ant} + 1)$	(W _{ant} + 1)⋅($\left(T_{ant}+1 ight)-V_{ant}-904$	cuin
Weight of Ice on Each	Antenna =	$W_{ICEant} := \frac{V_{ice}}{1728}$	e - ∙Id = 29 3		lbs
W eight of Ice on All	Antennas =	Wt _{ice.ant4} := WI	CEant ^{-N} ant ⁻	= 88	lbs

CENTEK engineering Subject:	Load Analysi 1281	s of Equipment on Structure #
Centered on Solutions www.centekeng.com Location: 63-2 North Branford Road P: (203) 488-0580 Location: Branford, CT 06405 F: (203) 488-8587 Location:	Greenwich, C	СТ
Rev. 0: 12/		T.J.L Checked by: C.A.G. 9.07
Development of Wind & Ice Load on Antennas		
Antenna Data:		
Antenna Model =	Samsung XXDW MM12.5-65 (Verizo n)	
Antenna Shape =	Flat (User Input)	
Anterna Height =	L _{ant} := 12.3 in (User Input)	
Antenna Width =	W _{ant} := 8.7 in (User Input)	
Antenna Thickness =	T _{ant} := 1.4 in (User Input)	
Antenna Weight =	WT _{ant} := 3 lbs (User Input)	
Number of Antennas =	N _{ant} := 2 (User Input)	
Wind Load (NESC Extreme)		
Assumes Maximum Possible Wind Pressure Applied to all Antennas Simultaneously		
SurfaceArea for One Antenna =	$SA_{ant} \coloneqq \frac{L_{ant}W_{ant}}{144} = 0.7$	sf
Antenna Projected Surface Area =	$A_{ant} := SA_{ant} \cdot N_{ant} = 1.5$	sf
Total Anten na Wind Force =	$F_{ant5} := qz \cdot Cd_F \cdot A_{ant} \cdot m = 106$	lbs
Wind Load (NESC Heavy)		
Assumes Maximum Possible Wind Pressure Applied to all Antennas Simultaneously		
SurfaceArea for One Antenna w/ Ice =	$SA_{ICEant} := \frac{\left(L_{ant} + 1\right) \cdot \left(W_{ant} + 1\right)}{144} = 0.9$	sf
Antenna Projected Surface Area w/ be =	$A_{ICEant} := SA_{ICEant} \cdot N_{ant} = 1.8$	sf
Total Anten na Wind Forcew/Ice =	Fiant5 := p·Cd _F ·A _{ICEant} = 11	lbs
Gravity Load (without ice)		
Weight of All Antenna s=	$Wt_{ant5} := (WT_{ant}N_{ant}) = 6$	lbs
Gravity Load (ice only)		
Volume of Each Antenna =	V _{ant} := L _{ant} ·W _{ant} ·T _{ant} = 150	cuin
Volume of Ice on EachAntenna =	$V_{ice} := (L_{ant} + 1)(W_{ant} + 1) \cdot (T_{ant} + 1) - V_{ant}$	= 160 cu in
Weight of Ice on Each Antenna =	$W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 5$	lbs
Weight of Ice on All Antennas =	Wt _{ice.ant5} := WICEant [·] Nant = 10	lbs

	Subject:			Load Analysis of Equipm 1281	ent on Structure #
Centered on Solutions www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	Location:			Greenwich, CT	
	Rev. 0: 12/4/18			Prepared by: T.J.L Check Job No. 17159.07	ked by: C.A.G.
Development of Wind & Ice Load on A	Antennas				
	Antenna Data:				
Ante	enna Model =	Samsung B2/B66A	RH	(Verizo n)	
Ante	enna Shape =	Flat		(User Input)	
Ante	maHeight=	L _{ant} := 15	in	(User Input)	
Ant	enna Width =	W _{ant} ≔ 15	in	(User Input)	
Antenna	a Thickness =	T _{ant} := 10	in	(User Input)	
Ante	nna Weight =	WT _{ant} := 75	lbs	(User Input)	
Number of	of Antennas =	N _{ant} := 4		(User Input)	
Wind Load (NE	SC Extreme)				
Assumes Maximum Possible Wind Applied to all Antennas Simu					
Surface Area for One	Antenna =	SA _{ant} := ^L ant ^{⋅W} a	ant = 1.6		sf
Antenna Projected Surfa	ace Area =	A _{ant} := SA _{ant} ⋅N _{ar}	nt ^{= 6.3}		sf
Total Antenna W	indForce=	F _{ant6} ≔ qz Cd _F A	ant ^{·m} = 44	6	lbs
Wind Load (I	NESC Heavy)				
Assumes Maximum Possible Wind Applied to all Antennas Simu		,			
SurfaceArea for One Antenna	a w/ lce =	SA _{ICEant} := (L _{ar}	nt + 1)·(W _{an} 144	$\frac{(t+1)}{2} = 1.8$	sf
Antenna Projected Surface Area	aw/be=	A _{ICEant} := SA _{ICE}	Eant ^{·N} ant =	7.1	sf
Total Antenna Wind For	cew/lce=	Fi _{ant6} ≔ p·Cd _F ·A	ICEant = 46	3	lbs
Gravity Load (without ice)				
WeightofAll	Antenna s=	Wt _{ant6} := (WT _{an}	_t ·N _{ant}) = 30	0	lbs
Gravity Lo	ad (ice only)				
Volume of Each	n Antenna =	V _{ant} := L _{ant} ·W _{ant}	t ^{·T} ant = 225	0	cuin
Volume of Ice on Each	Antenna =			$(T_{ant} + 1) - V_{ant} = 566$	cuin
Weight of Ice on Each.	Antenna =	W _{ICEant} ≔ V _{ice}	- ·Id = 18		lbs
W eight of Ice on All A	unten nas =	Wt _{ice.ant6} := WIC	CEant ^{·N} ant ⁻	= 73	lbs

	Subject:			Load Analysis of Equ 1281	ipment on Structure #
Centered on Solutions www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	Location:			Greenwich, CT	
	Rev. 0: 12/4/18			Prepared by: T.J.L C Job No. 17159.07	hecked by: C.A.G.
Development of Wind & Ice Load or	Antennas				
	Antenna Data:				
Ar	ntenna Model =	Samsung B5/B13 R	RH	(Verizo n)	
Ar	tenna Shape =	Flat		(User Input)	
An	te ma Height =	L _{ant} := 15	in	(User Input)	
А	ntenna Width =	W _{ant} := 15	in	(User Input)	
Anten	na Thickness =	T _{ant} := 9.1	in	(User Input)	
An	tenna Weight =	WT _{ant} := 70.3	lbs	(User Input)	
Numbe	r of Antennas =	N _{ant} := 4		(User Input)	
Wind Load (N	ESC Extreme)				
Assumes Maximum Possible Win Applied to all Antennas Sim					
Surface Area for Or	ne Antenna =	$SA_{ant} := \frac{L_{ant} W_{a}}{144}$	ant = 1.6		Sf
Antenna Projected Su	rface Area =	A _{ant} := SA _{ant} ·N _a	nt = 6.3		sf
TotalAntenna	WindForce=	F _{ant7} ≔ qz·Cd _F ·A	A _{ant} ·m = 44	6	lbs
Wind Load	(NESC Heavy)				
Assumes Maximum Possible Win Applied to all Antennas Sim		,		<u>`</u>	
SurfaceArea for One Anten	na w/ lce =	SA _{ICEant} ≔ (L _{ar}	nt ⁺ 1)·(W _{an} 144	$\frac{(t+1)}{2} = 1.8$	sf
Antenna Projected Surface Ar	ea w/ be =	A _{ICEant} := SA _{ICI}	Eant ^{. N} ant ⁼	7.1	sf
Total Antenna Wind Fo	orcew/lce=	Fi _{ant7} := p·Cd _F ·A	ICEant = 46	i i	lbs
Gravity Load	l (without ice)				
Weightof	All Antenna s=	Wt _{ant7} := (WT _{an}	nt ^{·N} ant) = 28	1	lbs
Gravity L	.oad (ice only)				
Volume of Ea	ch Antenna =	V _{ant} := L _{ant} ⋅W _{an}	t ^{·T} ant = 204	8	cuin
Volume of I æ on Eac	hAntenna =	$V_{ice} := (L_{ant} + 1)$	(W _{ant} + 1)·($(T_{ant} + 1) - V_{ant} = 538$	cuin
Weight of Ice on Eac	h Antenna =	W _{ICEant} ≔ V_{ice} 1728	$\frac{1}{3} \cdot \text{Id} = 17$		lbs
Weight of Ice on Al	IAntennas =	Wt _{ice.ant7} := WI	CEant ^{-N} ant ⁻	= 70	lbs

	Subject:			Load Analysis of Equ 1281	ipment on Structure #	
entered on Solutions [™] www.centekeng.com -2 North Branford Road P: (203) 488-0580 anford, CT 06405 F: (203) 488-8587	Location:			Greenwich, CT		
	Rev. 0: 12/4/18			Prepared by: T.J.L C Job No. 17159.07	hecked by: C.A.G.	
Development of Wind & Ice Load on	Antennas					
	Antenna Data:					
An	tenna Model =	CBRS RRH RT44	01-48A	(Verizon)		
An	tenna Shape =	Flat		(User Input)		
Ani	enna Height=	L _{ant} := 12.1	in	(User Input)		
A	ntenna Width =	W _{ant} := 8.5	in	(User Input)		
Antenr	na Thickness =	T _{ant} := 4.1	in	(User Input)		
Ant	enna Weight =	WT _{ant} := 20	lbs	(User Input)		
Number	of Antennas =	N _{ant} := 4		(User Input)		
Wind Load (N						
Assumes Maximum Possible Win Applied to all Antennas Sim						
Surface Area for On	e Antenna =	SA _{ant} := Lant [·] ₩ 144	ant = 0.7		sf	
Antenna Projected Sur	face Area =	A _{ant} := SA _{ant} ·N _a	ant = 2.9		sf	
Total Anten na V	Vind Force =	F _{ant8} := qz⋅Cd _F ⋅,	A _{ant} m = 204	4	lbs	
Wind Load	(NESC Heavy)					
Assumes Maximum Possible Win Applied to all Antennas Sim						
SurfaceArea for One Anten	na w/ Ice =	SA _{ICEant} ≔ (L _a	int ⁺ 1)·(W _{an} 144	$\frac{t+1}{2} = 0.9$	sf	
Antenna Projected Surface Are	eaw/be=	A _{ICEant} := SA _{IC}	Eant ^{·N} ant ^{= :}	3.5	sf	
Total Antenna Wind Fo	prcew/lce=	Fi _{ant8} ≔ p·Cd _F ·A	AICEant = 22		lbs	
Gravity Load	(without ice)					
Weight of A	II Antenna s=	Wt _{ant8} := (WT _{ar}	nt [.] N _{ant}) = 80		lbs	
Gravity L	oad (ice only)					
Volume of Ead	ch Antenna =	V _{ant} := L _{ant} ·W _{ar}	nt ^{. T} ant = 422		cuin	
Volume of I æ on Eac I	nAntenna =	$V_{ice} := (L_{ant} + 1)$)(W _{ant} + 1)·($(T_{ant} + 1) - V_{ant} = 213$	cuin	
Weight of Ice on Eac	n Antenna =	$W_{\text{ICEant}} \coloneqq \frac{V_{\text{ice}}}{172}$	$\frac{e}{8} \cdot Id = 7$		lbs	


	Subject:			Load Analysis of Equip 1281	ment on Structure #
Centered on Solutions* www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	Location:			Greenwich, CT	
	Rev. 0: 12/4/18			Prepared by: T.J.L Che Job No. 17159.07	cked by: C.A.G.
Development of Wind & Ice Load on	Antennas				
	Antenna Data:				
An	tenna Model =	RFS DB-C1-12C-2	24AB-0Z OVP	Box (Verizon)	
Ani	enna Shape =	Flat		(User Input)	
Ant	ernaHeight=	L _{ant} := 29.5	in	(User Input)	
Ar	ntenna Width =	W _{ant} := 16.5	in	(User Input)	
Antenr	a Thickness =	T _{ant} := 12.6	in	(User Input)	
Ant	enna Weight =	WT _{ant} := 32	lbs	(User Input)	
Number	of Antennas =	N _{ant} := 2		(User Input)	
Wind Load (N	ESC Extreme)				
Assumes Maximum Possible Win Applied to all Antennas Simu					
SurfaceArea for On	e Antenna =	SA _{ant} :⊨ Lant [·] W 144	ant — = 3.4		sf
Antenna Projected Sur	face Area =	A _{ant} := SA _{ant} ·N _a	ant = 6.8		sf
Total Anten na V	/indFonce=	F _{ant9} ≔ qz Cd _F .	A _{ant} m = 482	2	lbs
Wind Load	(NESC Heavy)				
Assumes Maximum Possible Wind Applied to all Antennas Simu		4			
SurfaceArea for One Antenr	na w/ lce =	SA _{ICEant} ≔ (L _a	nt ^{+ 1})·(^W an 144	$\frac{(t^{+1})}{2} = 3.7$	sf
Antenna Projected Surface Are	aw/be=	A _{ICEant} := SA _{IC}	Eant ^{·N} ant ⁼	7.4	sf
Total Antenna Wind Fo	rcew/lce=	Fi _{ant9} ≔ p·Cd _F ·A	CEant = 47		lbs
Gravity Load	(without ice)				
WeightofA	Il Antenna s=	Wt _{ant9} := (WT _{ar}	nt ^{·N} ant) = 64		lbs
Gravity L	oad (ice only)				
Volume of Eac	ch Antenna =	V _{ant} := L _{ant} ·W _{ar}	nt [.] T _{ant} = 6133	3	cuin
Volume of loc on Each	Antenna =	$V_{ice} := (L_{ant} + 1)$)(W _{ant} + 1)·($(T_{ant} + 1) - V_{ant} = 1126$	cuin
Weight of Ice on Each	n Antenna =	$W_{\text{ICEant}} \coloneqq \frac{V_{\text{ice}}}{1726}$	$\frac{1}{8} \cdot \text{Id} = 36$		lbs
Weight of Ice on All	Antennes =	Wt _{ice.ant9} := W _I	N	70	lbs

	Subject:			Load Analysis of E 1281	quipment on Structure #
Centered on Solutions www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	Location:			Greenwich, CT	
	Rev. 0: 12/4/18			Prepared by: T.J.L Job No. 17159.07	Checked by: C.A.G.
Development of Wind & Ice Load on A	Antennas				
	Antenna Data:				
Ant	enna Model =	Commscope TD-8	50B-LTE78-43	3 (Verizon)	
Ante	enna Shape =	Flat		(User Input)	
Ante	enna Height=	L _{ant} := 15.433	in	(User Input)	
An	tenna Width =	W _{ant} := 6.378	in	(User Input)	
Antenna	a Thickness =	T _{ant} := 3.3	in	(User Input)	
Ante	nna Weight =	WT _{ant} := 53	lbs	(User Input)	
Number	of Antennas =	N _{ant} := 3		(User Input)	
Wind Load (NE	SC Extreme)				
Assumes Maximum Possible Wind Applied to all Antennas Simu					
Surface Area for One	Antenna =	SA _{ant} :⊨ L _{ant} ·W _a 144	ant = 0.7		sf
Antenna Projected Surf	ace Area =	A _{ant} := SA _{ant} ·N _a	nt = 2.1		sf
Total Anten na W	indForce=	F _{ant10} ≔ qz·Cd _F	··A _{ant} ·m = 14	46	lbs
Wind Load (NESC Heavy)				
Assumes Maximum Possible Wind Applied to all Antennas Simu		(.	.) (
SurfaceArea for One Antenn	a w/ lce =	SA _{ICEant} ≔ (^L a	nt ⁺ 1)·(W _{ant} 144	$\frac{t^{+1}}{2} = 0.8$	sf
Antenna Projected Surface Area	aw/be=	A _{ICEant} := SA _{IC}	Eant ^{·N} ant = 2	2.5	sf
Total Antenna Wind For	cew/lce=	Fi _{ant10} := p·Cd _F ·	A _{ICEant} = 1	6	lbs
Gravity Load (without ice)				
WeightofAl	Antenna s=	Wt _{ant10} := (WT _a	ant ^{·N} ant) = 1	59	lbs
Gravity Lo	ad (ice only)				
Volume of Eac	n Antenna =	V _{ant} := L _{ant} .W _{an}	t ^{. T} ant = 325		cuin
Volume of Ice on Each	Antenna =	$V_{ice} := (L_{ant} + 1)$	$(W_{ant} + 1) \cdot ($	$(T_{ant} + 1) - V_{ant} = 197$	cuin
Weight of Ice on Each	Antenna =	$W_{ICEant} \coloneqq \frac{V_{ICE}}{1728}$	$\frac{1}{3} \cdot \text{Id} = 6$		lbs

		Load Analysis of Equipment on Structure # 1281
Centered on Solutions* www.centekeng.com Location: 63-2 North Branford Road P: (203) 488-0580 Location: Branford, CT 06405 F: (203) 488-8587 Location:		Greenwich, CT
Rev. 0: 12/4/18		Prepared by: T.J.L Checked by: C.A.G. Job No. 17159.07
Development of Wind & Ice Load on Platform		
Platform Data:		
Platform Model =	T-Arm Coloc ation Mount w_Handrail	(User Input)
Platform Shape =	Flat	(User Input)
Platform Area =	CdAa := 15 sf	(User Input)
Platform Area w/ lc e =	CdAa _{ice} := 26 sf	(User Input)
Platform Weight =	$WT_{plt} := 1000$ lbs	(User Input)
Platform Weight w/ Ice =	WT _{ICEplt} := 1300 lbs	(User Input)
Wind Load (NESC Extreme)		
Total Platform Wind Force =	F _{mnt2} := qz·CdAa·m = 669	
	1 mnt2 - 42 od a m = 000	lbs
Wind Load (NESC Heavy)		
Total Platform Wind Force w/ Ice =	Fi _{mnt2} := p·CdAa _{ice} = 104	lbs
Gravity Load (without ice)		
Maintain Film Farmer		lha
Weight of Platform =	Wt _{mnt2} := WT _{plt} = 1000	lbs
Gravity Load (ice only)		
Weight of Ice on Platform =	Wt _{ice.mnt2} := WT _{ICEplt} -	WT _{plt} = 300 lbs

	Subject:	Load Analysis of Equipment on Structure # 1281
Centered on Solutions www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	Location:	Greenwich, CT
1. (203) 400 0003	Rev. 0: 12/4/18	Prepared by: T.J.L Checked by: C.A.G. Job No. 17159.07
	Total Equipment Lo	oads:
	Sprint@148-ftAGL	
NESC Heavy Wind Vertical =	(Wt _{ant1} + Wt _{ice.ant1} + Wt _{mnt1} + Wt _{ice.mr}	(1.5 = 6929)
NESC Heavy Wind Trasnsverse =	$(Fi_{ant1} + Fi_{mnt1}) \cdot 2.5 = 564$	
NESC Extreme Wind Vertical =	$\left(Wt_{ant1} + Wt_{mnt1}\right) = 3191$	
NESC Extreme Wind Trasnsverse =	$(F_{ant1} + F_{mnt1}) = 2276$	
	Verizon@139-ftAGL	
NESC Heavy Wind Vertical =		
NESC_Heavy_Vert := (Wt _{ant2} + Wt _{ice.ant2} +	$Wt_{ant3} + Wt_{ice.ant3} + Wt_{ant4} + Wt_{ice.ant4} + \\$	$Wt_{ant5} + Wt_{ice.ant5} + Wt_{ant6} + Wt_{ice.ant6} + Wt_{ant7} + Wt_{ice.ant7}$
	NESC_Heavy_Vert = 5928	
NESC Heavy Wind Trasnsverse =	(Fi _{ant2} + Fi _{ant3} + Fi _{ant4} + Fi _{ant5} + Fi _{ant6} +	+ Fi _{ant7} + Fi _{ant8} + Fi _{ant9} + Fi _{ant10} + Fi _{mnt2})-2.5 = 2134
NESC Extreme Wind Vertical =	$\left(Wt_{ant2} + Wt_{ant3} + Wt_{ant4} + Wt_{ant5} + Wt_{ant5}\right)$	ant6 + Wt _{ant7} + Wt _{ant8} + Wt _{ant9} + Wt _{ant10} + Wt _{mnt2} = 2731
NESC Extreme Wind Trasnsverse =	$(F_{ant2} + F_{ant3} + F_{ant4} + F_{ant5} + F_{ant6} + F_{ant6})$	$F_{ant7} + F_{ant8} + F_{ant9} + F_{ant10} + F_{mnt2} = 8325$

	Subject:		Coax Cable on Powerr 1281	nount and Tower #
Centered on Solutions ⁺⁺ www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	Location:		Greenwich, CT	
(1. (203) 100 0007	Rev. 0: 2/15/22		Prepared by: T.J.L Che Job No. 21007.68	ecked by: C.F.C.
	Coax Cables			
Heavy W	/ind Pressure =	p := 4 psf	(User Input)	
Radial lo	ce Thickness =	Ir := 0.5·in	(User Input)	
Radia	al Ice Density =	Id := 57 · pcf	(User Input)	
Ва	asic Windspeed =	V := 110 mph	(User Input NESC 2017 Figure 250	-2(e))
Height to Top of CoaxAb	ove Grade =	TC := 148 ft	(User Input)	
Multiplier Gust Resp	onse Factor =	m := 1.25	(User Input - Only for NESC Extreme	wind case)
	NESC Factor =	kv := 1.43	(User Input from NESC 2017 Table 2	50-3 equation)
Imp	ortance Factor =	I := 1.0	(User Input from NESC 2017 Section	250.C.2)
Velocity Pressur	e Coefficient=	$Kz := 2.01 \cdot \left(\frac{0.67TC}{900}\right)$	$\frac{2}{9.5}$ = 1.263 (NESC 2	2017 Table 250-2)
E	Exposure Factor =	Es := $0.346 \left[\frac{33}{(0.67 \cdot TC)} \right]$	$\left(\frac{1}{7}\right)^{7} = 0.296$ (NESC 2)	2017 Table 250-3)
	Response Term =	$Bs \coloneqq \frac{1}{\left(1 + 0.375 \cdot \frac{TC}{220}\right)}$	(NESC 2)	2017 Table 250-3)
Gust Re	esponse Factor =	$Grf:=\frac{\left[1+\left(2.7\cdot Es\cdot B\right)k^{2}\right]}{kv^{2}}$	$\frac{1}{2} = 0.838 $ (NESC 2	2017 Table 250-3)
	Wind Pressure =	$qz := 0.00256 \cdot Kz \cdot V^2 \cdot C$	Grf-I = 32.8 psf (NESC 2	2017 Section 250.C.2)
	Shape Factor =	Cd _{coax} := 1.6	(User Input)	
Overload Factor for NESC H	eavy Wind Load =	OF _{HW} := 2.5	(User Input)	
Overload Factor for NESC Extr	eme W ind Load =	OF _{EW} := 1.0	(User Input)	
Overload Factor for NESC Hear	vy Vertical Load =	OF _{HV} := 1.5		
Overload Factor for NESC Extrem	e Vertical Load=	OF _{EV} ≔ 1.0	(User Input) (User Input)	

Subject:

Location:

Rev. 0: 2/15/22

Coax Cable on Powermount and Tower # 1281

Greenwich, CT

Prepared by: T.J.L Checked by: C.F.C. Job No. 21007.68

Coax Cable on Powermount

Coax Cable Span =

Diameter of Coax Cable =

Weight of Coax Cable =

Number of Coax Cables =

Number of Coax Cables Exterior =

Number of Projected Coax Cables Transverse =

Wind Area with Ice Transverse =

WindArea without Ice Transverse =

IceAreaper Liner Ft=

Weight of Ice on All Coax Cables =

Heavy Vertical Load =

 $Heavy_{Vert} := \left[\left(N_{coax} \cdot W_{coax} + W_{ice} \right) \cdot Coax_{Span} \cdot OF_{HV} \right]$

Heavy Transverse Load =

Heavy_{Trans} := (p·A_{Tice}·Cd_{coax}·Coax_{Span}·OF_{HW})

Extreme Vertical Load =

Extreme_{Vert} := $\left[\left(N_{coax} \cdot W_{coax} \right) \cdot Coax_{Span} \cdot OF_{EV} \right]$

Extreme Transverse Load =

Extreme_{Trans} := ((qz·psf·m·A_T·Cd_{coax})·Coax_{Span}·OF_{EW})

Coax _{Span} ≔ 15⋅ft	(User Input)	
D _{coax} := 1.98 in	(User Input)	
$W_{coax} := 1.04 \cdot plf$	(User Input)	
N _{coax} := 18	(User Input)	(6 Cables inside
Nex _{coax} := 12	(User Input)	Powermount 12 on Exterior)
NP _{Tcoax} := 2	(User Input)	

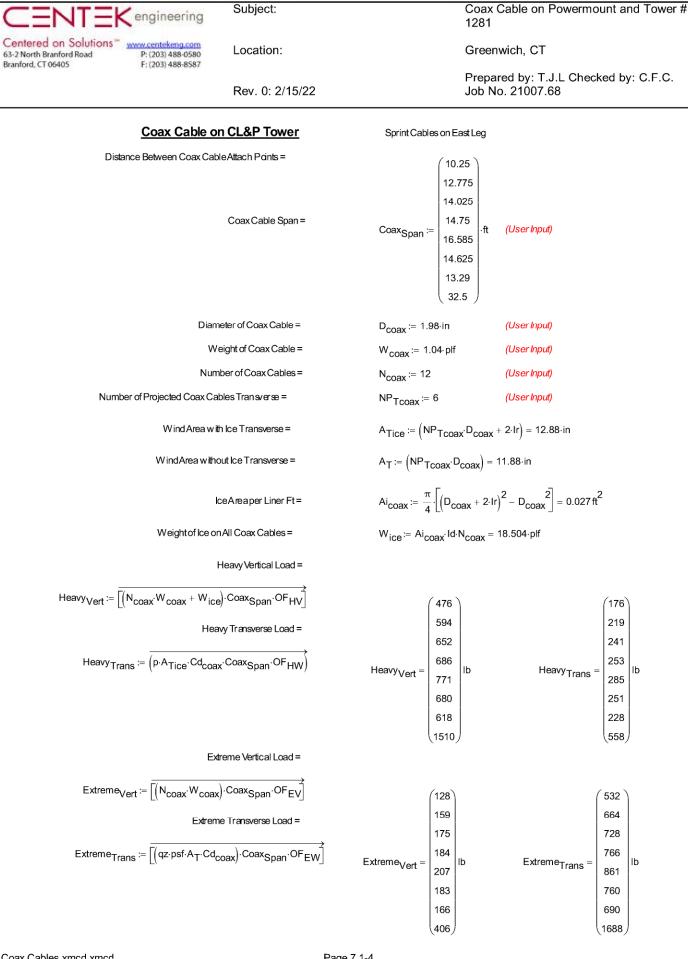
 $A_{\text{Tice}} := \left(NP_{\text{Tcoax}} \cdot D_{\text{coax}} + 2 \cdot Ir\right) = 4.96 \cdot in$

 $A_T := (NP_{Tcoax} \cdot D_{coax}) = 3.96 \cdot in$

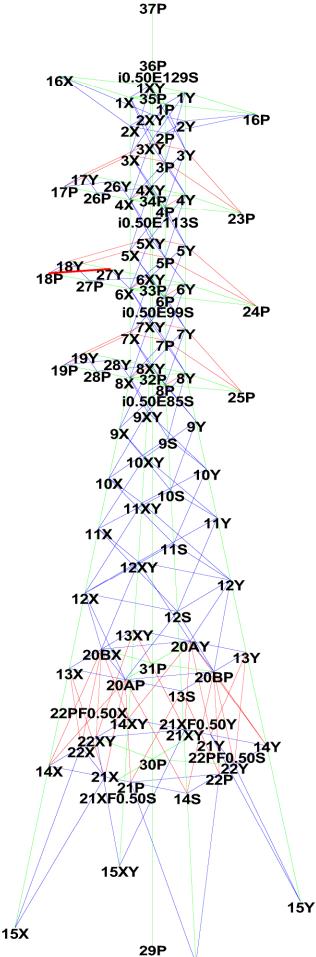
 $\operatorname{Ai}_{\operatorname{coax}} := \frac{\pi}{4} \cdot \left[\left(\mathsf{D}_{\operatorname{coax}} + 2 \cdot \mathsf{Ir} \right)^2 - \mathsf{D}_{\operatorname{coax}}^2 \right] = 0.027 \, \mathrm{ft}^2$

W_{ice}:= Ai_{coax}·Id·Nex_{coax} = 18.504·plf

Heavy_{Vert} = 838 lb


(Above Top of Tower)

 $NP_{Tcoax} = 2$


Heavy_{Trans} = 99lb

 $Extreme_{Vert} = 281 lb$

 $Extreme_{Trans} = 325 lb$

Centek Engineering Inc, Project: "CL&P # 1281" Tower Version 12.50, 1:44:54 PM Tuesday, February 15, 2022 Undeformed geometry displayed

15P

Y

Cencek Engineering Inc - CL&P # 1281

	Joint	Joint Member	Member	Leg Dir. (kips)	Perpendicular To Leg (kips)	Horizontal To Leg - Res. ¹ (kips)	Horizontal To Leg - Long. (kips)	Horizontal To Leg – Tran. (kips)	Long. Tran. Force Force (kips) (kips)	. Vert. e Force) (kips)
NESC Heavy	15P	14S	14P		3.680	3.725	-3.714	-0.281	-20.38 -23.81	1 -164.15
NESC Heavy	15X	14X	14X		11.625	11.820	-3.630	11.248	28.25 -35.8	7 167.73
NESC Heavy	15XY	14XY	14XY		6.802	6.836	6.585	-1.836	-23.68 -15.2	6 116.45
NESC Heavy	15Y	14Y	14Y	196.505	0.684	0.699	0.469	-0.518	27.79 -27.7	9 -27.74 -192.54
NESC Extreme	15P	14S	14P		1.439	1.462	-1.406	-0.400	-22.98 -23.98 -	8 -166.12
NESC Extreme	15X	14X	14X	-191.935	12.870	13.118	-6.013	11.659	33.23 -38.88 185.4	8 185.44

Total Tran Total Long Origin Leg Force In Residual Shear Residual Shear Residual Shear Joint Member Leg Dir. Perpendicular Horizontal Horizontal Load Case Support Origin Joint

Summary of Joint Support Reactions For All Load Cases in Direction of Leg:

Total

Page 1/7

= 1] Crossing diagonal check: ASCE 10 [Alternate Unsupported RLOUT Member check option: ASCE 10 Connection rupture check: ASCE 10

¢. ¢.

The model has 4 warnings.

¢.

KL/R value of 200.30 exceeds maximum of 200.00 for member "g118P" ?? Problem calculating gross area of longitudinal face for section "1": width is zero at elevation 128.80 (ft) which is not the top of the section. ?? Problem calculating gross area of longitudinal face for section "2": width is zero at elevation -4.25 (ft) which is not the top of the section. ?? Unusual number of fixed joints found: 5. Towers normally have from between 1 and 4 fixed joints. ??

Successfully performed nonlinear analysis

: Centek Engineering Inc

Licensed to Date run γd

: Tower Version 12.50

Project Name : 21007.68 - Greenwich, CT
Project Notes: Structure #1281 / Verizon Greenwich 3
Project File : J:\Jobs\2100700.WI\68_Greenwich 3 CT\05_Structural\Backup Documentation\Calcs\PLS Tower\CL&P # 1281.tow
Date run : 1:43:51 PM Tuesday, February 15, 2022

Redundant members checked with: Actual Force Included angle check: None Climbing load check: None

Loads from file: j:/jobs/2100700.wi/68_greenwich 3 ct/05_structural/backup documentation/calcs/pls tower/cl&p # 1281.lca

*** Analysis Results:

Maximum insulator usage is 27.17% for Clamp "11" in load case "NESC Heavy" Maximum element usage is 98.99% for Angle "25AP" in load case "NESC Heavy"

Summary of Joint Support Reactions For All Load Cases:

Load Case	Joint Label	Long. Force (kips)	Tran. Force (kips)	Vert. Force (kips)	Shear Force (kips)	Tran. Moment (ft-k)	Long. Moment (ft-k)	Bending Moment N (ft-k)	Vert. Moment (ft-k)	Found. Usage %
NESC Heavy		-20.38	-23.81		31.34	4.07		8.46	0.60	0.00
NESC Heavy	29P	0.17	-1.24	-31.34	1.25	13.56	5.24	14.54	-3.83	0.00
		28.25	-35.87		45.66	5.90	-0.99	5.98	-0.09	0.00
		-23.68	-15.26		28.17	-1.85	-1.04	2.12	-0.51	00.00
NESC Heavy		27.79	-27.74		39.27	-2.34	0.09	2.34	-0.56	00.00
NESC Extreme		-22.98	-23.98		33.21	0.20	6.81	6.81	0.45	00.0
NESC Extreme		0.20	-2.06		2.07	23.33	4.51	23.76	-1.84	00.00
NESC Extreme		33.23	-38.88		51.15	5.64	0.21	5.64	0.24	00.00
NESC Extreme		-26.40	-23.60		35.41	1.15	-0.76	1.38	-0.44	00.00
NESC Extreme		28.61	-33.31		43.91	-1.77	-2.52	3.08	-0.51	00.00

<pre>1 143.750 84.750 59 188 face for section "1": width is zero 2 84.750 -4.250 52 147 face for section "2": width is zero race for section portion): for group summary (compression portion): for vo. Label Member No. Of Member Bolts Comp. (ft) </pre>	84.750 59 11: width is -4.250 52 ary for all lo ties do not ir ties do not ir ary reports or necessarily be compression Poi e No. Desc. Type f ts LEG1 SAE 1 4	i ≯ e e e e e e e e e e e e e e e e e e e	0.00 1evation 128.80 (ft) 6.00 1evation -4.25 (ft) Usage = Maximum St strength factor ent r and load case the as that which produces size Strength Usage (ksi) (ksi) 31.41) which 1226. which ress / ered fc t result t result t result t result t result t result t result	150 0.00 150 0.00 150 0.00 15 not the top of th 15 not the top of th Allowable Stress or each load case. tred in maximum usage imum force. Max Comp. Com Use Control For In Member Comp. 8 (kip	<pre>28.50 81 he section. 0.00 122 e section. P. Comp. ce Control Load s)</pre>	7.275 Pr ?? Pr ?? L/R Capacity	Problem cald Problem cald R Comp. Y Connect. (Shear	calculating gross area calculating gross area p. Comp. RLX RLY it. Connect. ar Bearing ity Capacity	ч ч о	longitudinal longitudinal RLZ L/R
<pre>*** Overall summary fo Printed capacities o The Group Summary re which may not necess Group Summary (Compres Group Group KL/R Length Curve No Label Desc. Comp. No. Of Member Bolts Comp. (ft)</pre>	or all ld do not ir eports or sarily be ssion Poi Type Type	and cases - Usage nclude the strengtl n the member and lo e the same as that Angle Size Sti	<pre>= Maximum St factor ent oad case the which produ steel Man rength Usage (ksi) % 36.0 91.41</pre>	age age		 P. Comp. ce Control Load Load s) 		н	RLX		L/R
Group Summary (Compres Group Group KL/R Length Curve NG Label Desc. Comp. No. Of Member Bolts Comp. (ft)	ssion Poi Angle Type Type	۲	Steel Max rength Usage (ksi) { 36.091.43	Usage Cont- rol Co	¥ 11 C . de	Comp. : Control Load Case		ม	RLX		L/R
up Length Curv al No. C r Bol	Angle o. Type sae	Angle Size St	Steel Maa rength Usage (ksi) { 36.091.42	Usage Cont- rol Co	× 11 c	Comp. • Control Load Case		н	RLX		L/R
Lengtn Curve el Desv No. Of r Bolts	Type	Size		Cont- rol Co	n c , ao	: Control Load Case		· н	Connect. Bearing Capacity		
	SAE 2		10	rol	c , , , , , , , , , , , , , , , , , , ,			Shear	Bearing Capacity		
	E S A F C S A F		91.4						Capacity		
comp. (ft)	4 SAE		91.4			(kips)	5	Capacity (
	SAE		91.4				(kips)	(kips)	(kips)		
	SAE 4		91.4		1			1 1			1
I LEGI 60.52 7.000 1		3.5X3.5X0.25	•	3 Comp 91.4	31	-33.282NESC Ext	53.833	36.400	004.0 004.0 6/2.94	0.500	60.52
0	SAE 12	6X6X0.3125	36.0 91.18	8 Comp 91.1	8 5Y	-90.345NESC Ext	99.083	109.200	203.906 1.000 1.000	1.000	60.50
\sim	L SAE	8X8X0.5	36.0 64.31	L Tens 63.4	3 7Ү	-158.333NESC Ext	249.636	254.800	380.624 1.000 1.000	1.000	52.83
4	L ⁴ SAE	8X8X0.625	36.0 64.50	0 Comp 64.50	10Y	-187.830NESC Ext	306.646	291.200	543.749 1.000 1.000	1.000	60.12
7. YLU 5 10 121	SAE	8X8X0.75	36.0 56.4	4 Comp 56.4	4 11Y	-189.164NESC Ext	335.162	0.000	0.000 1.000 1.000	1.000	76.95
0 TOT TOT	SAE	2.5X2.5X0.1875	36.0 0.00	0.00	0	0.000	0.000	0.000	0.000 0.000 0.000	0.000	00.00
	SAU	2.5X2X0.1875	36.0 93.34	1 Comp 93.3	14 16AX	-13.349NESC Ext	14.303	18.200	20.391 0.500 0.500	0.500 12	9.55
8 4.220	2 SAU	4X3X0.25	36.0 61.50	6 Comp 61.5	6 17AX	-24.388NESC Hea	39.613	45.500	67.969 0.500 0.750	0.500 1	00.45
100.33 IU.UUU Z 9 X4 100.75 0 521 2	SAU	3.5X2.5X0.25	36.0 53.22	2 Comp 53.2:	2 18AX	-17.423NESC Hea	32.738	36.400	54.375 0.500 0.750	0.500 1	04.34
	sAU	4X3.5X0.3125	36.0 64.85	5 Tens 63.32	19AX	-38.755NESC Hea	61.204	63.700	118.945 0.500 0.750	0.500	77.55
	' SAU	5X3.5X0.25	36.0 57.13	3 Comp 57.1	.3 21BY	-25.327NESC Hea	44.335	54.600	81.562 0.580 0.580	0 0.580 9	5.79
	SAU	4X3X0.25	36.0 49.10	6 Comp 49.1	.6 22AX	-15.234NESC Hea	30.985	36.400	54.375 0.560 0.560	0.560 12	6.41
124.92 12.240 5 X8	4 SAU	3.5X3X0.25	36.0 42.65	5 Tens 41.9	2 23AX	-9.450NESC Hea	22.542	27.300	40.781 0.550 0.550	0.550 1	47.17

3.528 -26.40 -23.60 136.73 3.432 28.61 -33.31 -203.54

6.333 1.267

7.250 3.658

7.110 3.645

14XY 14XY -141.057 14Y 14Y 208.195

15XY 15Y

NESC Extreme NESC Extreme Centek Engineering Inc - CL&P # 1281

Page 2/7

1281
#:
CL&P
I
Inc
Engineering
Centek

00 40.781 0.550 0.550 0.550 173.71	00 95.156 1.000 0.500 0.500 127.63	00 20.391 0.500 0.500 0.500 256.65	00 54.375 1.000 0.500 0.500 264.74	00 67.969 0.500 1.000 0.500 205.19	00 67.969 0.250 0.250 0.250 135.61	00 10.195 1.000 1.000 1.000 209.91	00 40.781 1.000 0.500 0.500 148.70	00 20.391 1.000 1.000 1.000 192.66	00 27.187 1.000 1.000 1.000 173.07	00 27.187 1.000 1.000 1.000 233.97	00 0.000 0.000 0.000 0.000	00 20.391 1.000 1.000 1.000 129.22	00 20.391 0.750 0.500 0.500 128.22	00 27.187 1.000 1.000 1.000 110.60	00 20.391 1.000 0.500 0.500 201.94	00 20.391 1.000 0.500 0.500 205.58	00 20.391 1.000 0.500 0.500 195.77	00 27.187 0.500 0.500 0.500 142.64	00 40.781 1.000 1.000 1.000 106.97	00 67.969 1.000 1.000 1.000 103.77	00 10.195 1.000 1.000 1.000 168.62	00 20.391 1.000 1.000 1.000 134.08	00 0.000 1.000 1.000 1.000 122.32	00 10.195 1.000 1.000 1.000 45.69 well triangulated to minimize	00 10.195 1.000 1.000 1.000 81.32	00 10.195 1.000 1.000 1.000 162.44	00 13.594 1.000 1.000 1.000 167.46 well triangulated to minimize
1 27.300	9 63.700	4 18.200	0 36.400	9 45.500	2 45.500	7 9.100	1 27.300	3 18.200	0 18.200	6 18.200	000.000	7 18.200	3 18.200	7 18.200	6 18.200	6 18.200	0 18.200	7 18.200	6 27.300	0 45.500	9.100	3 16.800	6 0.000	16.80 stem is	6 16.800	3 16.800	19 16.800 system is
21.43	33.79	4.04	6.42	11.48	25.65	4.02	1 27.341	11.50	1 21.560	13.38	0.000	12.58	14.53	35.40	7.73	5.48	8.140	21.867	33.41	42.22	8.15	19.74	260.14	20.0 e your	22.12	11.82	17.24 re your
-11.391NESC Hea	-11.256NESC Hea	-0.585NESC Hea	-3.737NESC Hea	-11.320NESC Ext	-9.106NESC Ext	-0.944NESC Ext	-15.471NESC Hea	-4.231NESC Ext	-9.658NESC Hea	-2.634NESC Hea	0.000	-4.950NESC Hea	-1.849NESC Hea	0.000	-2.914NESC Hea	0.000	0.000	-2.975NESC Ext	-11.838NESC Hea	-20.364NESC Hea	-1.486NESC Ext	-10.330NESC Ext	-22.794NESC Hea	-0.780NESC Hea members (make sure	-4.738NESC Ext	-0.124NESC Hea	-1.523NESC Ext members (make su
24AX	25AY	26AX	27AXY	28AXY	29AY	32X	37AP	38BX	39AP	4 0 X		43CXY	44BP	45BP	46X	49AY	48AY	50XY	53BP	52BP	54X	36P	g101P	g108F lowing	g111P	g114P	0 g116X following
Comp 53.15	Tens 33.30	Tens 14.46	Tens 58.20	Comp 98.53	Tens 35.50	Tens 23.44	Comp 56.67	Comp 36.78	Comp 53.07	Comp 19.68	0.00	Comp 39.32	Comp 12.73	Tens 0.00	Comp 37.67	Tens 0.00	Tens 0.00	Tens 16.35	Tens 43.36	Comp 48.23	Comp 18.22	Comp 61.49	Comp 8.76	Comp 7.65 ts in the fol	Comp 46.47	Comp 1.22	in the
36.0 53.15	36.0 98.99	36.0 39.49	36.0 76.98	36.0 98.53	36.0 67.48	36.0 51.13	36.0 56.67	36.0 36.78	36.0 53.07	36.0 19.68	36.0 0.00	36.0 39.32	36.0 12.73	36.0 41.54	36.0 37.67	36.0 44.52	36.0 45.34	36.0 67.35	36.0 49.96	36.0 48.23	36.0 18.22	36.0 61.49	42.0 8.76	36.0 7.65 moment exis	36.0 46.47	36.0 1.22	36.0 11.20 Co .ng moment exists
5X3X0.25	5X3X0.25	2X2X0.1875	3X2X0.25	4X3X0.25	3.5X3X0.25	1.75X1.75X0.1875	4X3.5X0.25	3X3X0.1875	5X3X0.25	3.5X3.5X0.25	1.75X1.75X0.1875	2X2X0.1875	2.5X2X0.1875	4X3X0.25	3X2X0.1875	2.5X2X0.1875	3X3X0.1875	3X3X0.25	3.5X3X0.25	4X4X0.25	2.5X2X0.1875	1.75X1.75X0.1875	Pipe 12" Std.	U SAE 2X2X0.1875 1 A potentially damaging	2.5X2.5X0.1875	3X3X0.1875	SAE 3.5X3.5X0.25 36.0 1 A potentially damaging moment
3 SAU	1 SAU	2 SAE	3 SAU	4 SAU	5 SAU	1 SAE	2 SAU	3 SAE		2 SAE	C SAE	>	2 SAU								7 SAU	9 DAE	Рw		6 SAE	6 SAE	
140.74 14.070 5 14 X9 140 06 17 A50 5	100.30 1/.100 J 15 D1 103 E 1/ 103 E	123.00 14.103 3 16 D2 224.16.16.053 5	224.10 10.033 3 17 D3 220 22 10 101 5		205.19 15.321 4 19 D5	0		157.05 15.738 0 H3 22 H3 164.60 0 E60 6	3 4.209 3 6 6 7		у тэ.ээт 25 0 000		Pr-		0.000 10 10	102.40 14.//3 3 30 HGR1		195.// 15.319 4 32 Al Al Al		1 0.020 1 0.020 1 0.020			Pwmnt 12" Std. Pipe	× .	moments): g107P ?? PMBR2 L2.5x2.5x3/16	IUU.66 3.354 3 PMBR3 L3x3x3/16 162 44 8 068 4	4

	340	2	SAE 1 A P	SAE 4X4X0.25 1 A potentially damaging	36.0 8.17 moment exi	Comp sts in t	8.17 g120F the following	ne	-1.111NESC Ext members (make sure	16.004 16. your system	16.800 1 cem is well	3.594 triar	•	000 1.000 18 to minimize	36.27
	20a 20a			.75X1.75X0.1875		Comp	Ŀ.		2.528NESC	•	9.100	.195 0.	0.500	.500	•
	Ω.	3 x2x1/4		2X2X0.25	36.0 60.84		0.		4.919NESC	15.869	9.100	1	1.000	.000	30.21
	130.21 4.243 BraceR 12.5x2 100.99 3.354	5 x 1/ 4 3	⊧ SAE 1 A	2.5X2.5X0.25 otentially damagi	36.0 75.94 moment exi	Tens sts in	2 foll	E	NESC E (make	29.101 Your sys	800 is		6 S	20	31.98
	Plate 6"x3	g110X	Bar	6x3/4		Tens	.00	g106P		•	16.800	.781 1	1.000	.000	
Image: frequence of the stand of	. —	5 X1	L 2AE 2	2.5X2.5X0.25			.4	5AX	6.382NESC	.36	•	.187 0.	500 0.500	.500 1	
		Tension	I Portio	: (u											
Interplation Site Strength Tage Site Strength Tage Control Forme Connect.	dnor	Group	Angle	Angle		Usage	Max			Net	Tension				ło.
Image: constraint of the section of the sec	abel	Desc.	Type		trength Usage	Cont-	Use	Control						. sue	Of
Image: constant interplate inter	UT DIAMETER					rol	IJ	Member		Capacity	Shear				lts
	noies (in)					F	rens. %		Cas						.st
		LEG1	SAE	3.5X3.5X0.25	91.	1	. ۱ س	3X	.257NESC	47.340	36.400	.37	.417 7	000	4
$ \begin{array}{{ccccccccccccccccccccccccccccccccccc$	2	LEG2	SAE	6X6X0.3125	6.0 91		4.	5X	.514NESC	•	.20	.90	83.656 6	.050	12
	ŝ	LEG3	SAE	8X8X0.5			÷.		49.045NESC	31.75	54.80	.62	95.849 7	.000	14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	LEG4	SAE	8X8X0.625			• 4		9.258NESC Ex	86.89	.00	0.000	7	91	0
	ഹ	LEG5	SAE	8X8X0.75		Comp	3.4		.742NESC	30.83	0.000	0.000	.000 10	.131	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	X1	SAE	2.5X2.5X0.1875			•		0.000	0000	0.000	0.000	0	00	0
0.75 X3 SAU 4X3X0.25 36.0 61.56 Comp 60.79 17AP 26.860NESC Hea 41.185 45.500 67.969 52.912 10.000 0.75 X4 SAU 3.5X2.5X0.25 36.0 51.36 18AP 18.695NESC Hea 40.399 36.400 54.375 42.647 8.521 0.75 X5 SAU 4X3.5X0.3125 36.0 54.85 ZOAP 38.459NESC Hea 40.399 36.400 54.375 42.647 8.521 0.75 X5 SAU 4X3.5X0.3125 36.0 57.13 ZOMP 49.59NESC Hea 40.199 54.600 81.562 46.012 10.000 1 0.75 X7 SAU 4X3.5X0.255 36.0 57.13 ZOMP 49.50NESC Hea 45.178 54.600 81.562 46.012 10.507 1 0.75 X7 SAU 4X3.5X0.255 36.0 49.16 ZOMP 41.152NESC Hea 40.581 36.400 81.562 46.012 10.507<	L	Х2	SAU	2.5X2X0.1875			9.2	16AP	1.363NESC	ω.	8.20	20.391	8.125 9.	.220	7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	X3	SAU	4X3X0.25			۲.	17AP	6.860NESC He	4.18	5.50	.96	.912 10	.000	ß
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S	X4	SAU	3.5X2.5X0.25			e.	18AP	8.695NESC He	0.39	.0	.37	.647	.521	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	X5	SAU	4X3.5X0.3125			ω.	20AP	8.459NESC He	<u>б</u>	m	.94	.976	.220	L
2 0.75 X7 SAU 4X3X0.25 36.0 49.16 Comp 38.88 22BP 14.152NESC Hea 40.581 36.400 54.375 42.206 12.246 3 0.75 X8 X9 3.5X3X0.25 36.0 49.16 Zms 42.65 23AP 11.642NESC Hea 40.419 27.300 40.781 38.516 14.070 0.75 X9 SAU 5X3X0.25 36.0 42.65 Tens 42.65 23AP 11.642NESC Hea 40.419 27.300 40.781 36.250 17.450 .4 0.75 X9 SAU 5X3X0.25 36.0 98.99 Z5AP 5.903NESC Hea 40.581 27.300 40.781 36.256 17.450 .7 0.75 D1 SAU 5X3X0.25 36.0 98.99 25AP 35.903NESC Hea 36.268 63.700 95.156 72.037 14.103	1	X6	SAU	5X3.5X0.25		Comp	0.9	21BXY	.272NESC He	5.17	4	•	6.012 1	0	9
3 0.13 0.15 x8 sAU 3.5X3X0.25 36.0 42.65 Tens 42.65 23AP 11.642NESC Hea 40.419 27.300 40.781 38.516 14.070 4 0.75 X9 SAU 5X3X0.25 36.0 53.15 comp 25.34 24AP 6.918NESC Hea 40.419 27.300 40.781 36.250 17.450 6 0.75 0.75 36.0 98.99 25.34 24AP 6.918NESC Hea 40.581 27.300 40.781 36.250 17.450 6 0.75 D1 SAU 5X3X0.255 36.0 98.99 25AP 35.903NESC Hea 36.268 63.700 95.156 72.037 14.103	2	Х7	SAU	4X3X0.25			ω.	22BP	.152NESC He	<u>،</u>	.0	.37	.206 1	.246	4
14 0.10 X9 SAU 5X3X0.25 36.0 53.15 Comp 25.34 24AP 6.918NESC Hea 40.581 27.300 40.781 36.250 17.450 0.75 0.75 D1 SAU 5X3X0.25 36.0 98.99 Tens 98.99 25AP 35.903NESC Hea 36.268 63.700 95.156 72.037 14.103	m.	X8	SAU	3.5X3X0.25			2.6	23AP	.642NESC He	0.41	7.30	40.781	.516 1	.070	m
L DI SAU 5X3X0.25 36.0 98.99 Tens 98.99 25AP 35.903NESC Hea 36.268 63.700 95.156 72.037 14.103	4	6X	SAU	5X3X0.25			5.3	24AP	.918NESC He	40.581		40.781	50 17.	450	ŝ
	2	D1	SAU	5X3X0.25			°.9	25AP	5.903NESC He	6.2	.70	.15	.037 1	.103	L

1281
CL&P
Inc -
Engineering
Centek

~	4	D	10		~			~	~	~ `		~	~	~	C'	01	1				~	1 g107₽	'		1 g117P	1 g118P	
0			Ŋ	-	m	2	2	2	0	0	2	2	0	2	7	2	4	ß	1	-1	0		1	-1			H
16.853	19.194	15.321	28.523	6.000	15.738	9.569	2.208	13.531	0.000	4.243	9.125	6.000	14.775	13.250	15.022	14.073	11.643	14.073	6.000	6.000	9.000	3 1.500 moments)	3.354	8.058	9.685 oments)	12.340 moments)	6.000
18.125	48.333	60.337	50.906	6.609	36.250	18.125	24.167	25.677	0.000	12.347	18.125	24.167	12.755	12.755	18.125	18.125	42.647	48.262	9.629	14.864	0.000	195 10.343 to minimize m	11.328	11.328	15.10 4 minimize m	15.10 4 minimize m	6.609
20.391	54.375	67.969	67.969	10.195	40.781	20.391	27.187	27.187	0.000	20.391	20.391	27.187	20.391	20.391	20.391	27.187	54.375	67.969	10.195	20.391	0.000	10.195 ated to mi	10.195	10.195	13.59 4 ted to	13.594 ted to	10.195
18.200	36.400	45.500	45.500	9.100	27.300	18.200	18.200	18.200	0.000	18.200	18.200	18.200	18.200	18.200	18.200	18.200	36.400	45.500	9.100	16.800	0.000	16.800 triangula	16.800	16.800	16.800 triangula	16.800 triangula	9.100
18.448	24.381	47.101	44.469	15.532	48.519	30.760	40.581	48.681	0.000	18.448	18.650	40.581	18.529	18.650	30.760	36.997	32.886	46.393	21.688	31.823	571.199	18.827 is well	25.048	31.139	4 9.187 is well	57.287 is well	15.532
7.158NESC Ext	18.768NESC Hea	27.134NESC Hea	30.010NESC Ext	3.379NESC Hea	4.151NESC Hea	0.000	8.132NESC Ext	2.963NESC Hea	0.000	3.296NESC Hea	1.897NESC Hea	7.560NESC Hea	0.000	5.679NESC Hea	8.219NESC Hea	12.208NESC Hea	16.429NESC Hea	7.680NESC Hea	0.737NESC Ext	8.807NESC Ext	0.000	0.000 sure your system	4.158NESC Ext	0.020NESC Ext	1.358NESC Ext sure your system	1.047NESC Ext sure your system	0.554NESC Hea
2 6BX	27AX	28AP	2 9 A X	33Y	37AY	38BY	F39C2118X	40P		4 3BX	4 4 C Y	45BP	4 6 Y	47P	48P	50P	53P	52P	54P	36X	g121P	g109P ers (make	g111X	g114P	g116P ers (make	g120X ers (make	30BP
39.49	\$ 76.98	59.64	\$ 67.48	\$ 51.13	0 15.20	00.00	44.68	0 16.28	0.00	0 26.70	0.47	\$ 41.54	0.00	\$ 44.52	\$ 45.34	\$ 67.35	\$ 49.96	0 16.88	8.10	59.25	0.00	Comp 0.00 ollowing members	40.78	0.20	o 9.99 ring membe	7.70 ving membe	8.38
Tens	Tens	Comp	Tens	Tens	Comp	Comp	Comp	Comp		Comp	Comp	Tens	Comp	Tens	Tens	Tens	Tens	Comp	Comp	Comp	Comp	<u>ч</u>	Comp	Comp	Comp 9 following	Comp 7 following	Comp
39.49	76.98	98.53	67.48	51.13	56.67	36.78	53.07	19.68	0.00	39.32	12.73	41.54	37.67	44.52	45.34	67.35	49.96	48.23	18.22	61.49	8.76	7.65 n the	46.47	1.22	36.0 11.20 ts in the	8.17 n the	27.78
36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0	42.0	36.0 exists in	36.0	36.0	36.01 exists in	36.0 exists in	36.0
2X2X0.1875	3X2X0.25	4X3X0.25	3.5X3X0.25	1.75X1.75X0.1875	4X3.5X0.25	3X3X0.1875	5X3X0.25	3.5X3.5X0.25	1.75X1.75X0.1875	2X2X0.1875	2.5X2X0.1875	4X3X0.25	3X2X0.1875	2.5X2X0.1875	3X3X0.1875	3X3X0.25	3.5X3X0.25	4X4X0.25	2.5X2X0.1875	1.75X1.75X0.1875	Pipe 12" Std.	2X2X0.1875 damaging moment	2.5X2.5X0.1875	3X3X0.1875	3.5X3.5X0.25 damaging moment	4X4X0.25 damaging moment	SAE 1.75X1.75X0.1875
SAE	SAU	SAU	SAU	SAE 1	SAU	SAE	SAU	SAE	SAE 1	SAE	SAU	SAU	SAU	SAU	SAE	SAE	SAU	SAE	SAU	DAE 1	Pwmnt	SAE tially	SAE	SAE	SAE tially	SAE tially	SAE 1
D2	0.75 D3	00 D4	0.75 D5	U./S H1	0.75 H2	0.75 H3	60 H4	0.75 H5	01.X X10	U X11	X12 X12	H6	0.75 D6	HGR1	D. 75 HGR2	0.75 Al	0.75 A2	00 A#	0.75 H7	0.6975 H8	2" Std. Pipe	L2x2x3/16 SAE 0.6875 A potentially	L2.5x2.5x3/16	U.00/) L3x3x3/16 D 6075	0.6875 A potentially	L4x4x1/4 SAE 0.6875 A potentially	н1 0.75
16	1, 000 17	1.000 1.000 1.8	1.250 19 19	1.000 2020	1.000 21 21	1.000 1.000	1,000 1 23	1.000 24 24	1.000 25 25	0.000 1 000	1,000 1,000	1,000 28	1.000 1.000 29	1,000 30	1,000 1,000 1,000	1 500 1 500	1.000 33	2.240 34 34	2. / LU 35 1 000	36	÷	.000	PMBR2	R3	8	PMBR5 000	20a 1.000

Ч		duilp		2
4.243	3.354	oments):	1.501	10.817
8.812	15.104	Lnimize m	45.312	24.084
13.594	13.594	ted to m:	40.781	27.187
9.100	16.800	triangula	16.800	33.600 27.187 24.084 10.817
24.381	32.987	IIS WELL	129.094	32.987
42Y 5.361NESC Ext 24.381 9.100 13.594 8.812 4.243	10.323NESC Ext	sure your system	g106P 0.827NESC Hea 129.094 16.800 40.781 45.312 1.501	15AP 17.947NESC Ext 32.987
42Y	g110P	s (make	g106P	15AP
36.0 60.84 Tens 60.84	I2.5x2.5x1/4 SAE 2.5X2.5X0.25 36.0 75.94 Tens 75.94 g110P 10.323NESC Ext 32.987 16.800 13.594 15.104 3.354 1	n the following member	4.93 Tens 4.93	36.0 80.44 Comp 74.52
36.0	36.0	exists 1	36.0	36.0
2X2X0.25	2.5X2.5X0.25	damaging moment	6x3/4	2.5X2.5X0.25
SAE	SAE	YLLAL	Bar	SAE
L2x2x1/4 SAE 0.75	BraceR L2.5x2.5x1/4 SAE	0.6875 A potent?	Plate 6"x3/4" PL Bar .000 0.6875	X1 0.6875
AngleR 1.000	BraceR	g110X ??	Plate 6"x3 1.000 0.6875	6R 1.000 0.6875

*** Maximum Stress Summary for Each Load Case

Summary of Maximum Usages by Load Case:

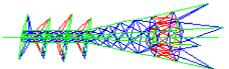
Element	Angle
Type	Angle
Element	25AP
Label	28AXY
Maximum	98.99
Usage %	98.53
Load Case	NESC Hea SC Extre

Summary of Insulator Usages:

Insulator Label	Insulator Type	Maximum Usage %	Load Case	Weight (lbs)
-	Clamp	0.8	C Ext	0.0
2	Clamp	17.61	NESC Heavy	0.0
m	Clamp	7.2	NESC Heavy	0.0
4	Clamp	6.6	NESC Heavy	0.0
Ð	Clamp	4.8	NESC Heavy	0.0
9	Clamp	5.2	NESC Heavy	0.0
L	Clamp	2.1	NESC Heavy	0.0
8	Clamp	0.7	NESC Heavy	0.0
0	Clamp	4.0	NESC Heavy	0.0
10	Clamp	9.6	NESC Heavy	0.0
	Clamp	7.1	NESC Heavy	0.0
	Clamp	.6	NESC Extreme	0.0
	Clamp	°°.	NESC Heavy	0.0
	Clamp		NESC Heavy	0.0
	Clamp	٢.	NESC Extreme	0.0
	Clamp	e.	NESC Extreme	0.0
17	Clamp	•	NESC Heavy	0.0
	Clamp	3.26	NESC Heavy	0.0
	Clamp		NESC Heavy	0.0
	Clamp	7.07	NESC Heavy	0.0
	Clamp	8.08	NESC Heavy	0.0
	Clamp	7.55	NESC Heavy	0.0
	Clamp	₽.	NESC Heavy	0.0
	Clamp		NESC Heavy	0.0
	Clamp	2.52	NESC Heavy	0.0
	Clamp	18.03	NESC Extreme	0.0
27	Clamp	6.2	NESC Heavy	0.0
28	Clamp		NESC Extreme	0.0
	Clamp	2.68	NESC Heavy	0.0

- 30
 Clamp
 2.15
 NESC Heavy
 0.0
 31
 Clamp
 3.33
 NESC Heavy
 0.0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
- *** Weight of structure (lbs):
 Weight of Angles*Section DLF: 39703.5
 Total:
 39703.5
- *** End of Report

Project Notes: Structure #1281 / Verizon Greenwich 3
Project File : J:\Jobs\2100700.WI\68 Greenwich 3 CT\05_Structural\Backup Documentation\Calcs\PLS Tower\CL&P # 1281.tow
Date run : 1:43:50 PM Tuesday, February 15, 2022
by : Tower Version 12.50 × * Copyright Power Line Systems, Inc. 1986-2011 Ð Project Name : 21007.68 - Greenwich, ı TOWER - Analysis and Design *


Successfully performed nonlinear analysis

: Centek Engineering Inc

Licensed to

Problem calculating gross area of longitudinal face for section "1": width is zero at elevation 128.80 (ft) which is not the top of the section. ?? Problem calculating gross area of longitudinal face for section "2": width is zero at elevation -4.25 (ft) which is not the top of the section. ?? Unusual number of fixed joints found: 5. Towers normally have from between 1 and 4 fixed joints. ?? KL/R value of 200.30 exceeds maximum of 200.00 for member "g118P" ??

The model has 4 warnings. ??

Tension only member maximum compression load as a percent of compression capacity: 100% Member check option: ASCE 10 [Alternate Unsupported RLOUT = 1] Nonlinear convergence parameters: Use Standard Parameters Redundant members checked with: Actual Force Crossing diagonal check: ASCE 10 Connection rupture check: ASCE 10 Included angle check: None Climbing load check: None

Joints Geometry:

Z Rot. Rest.	Free
X Rot. Y Rot. Rest. Rest.	Free
	Free
Z Disp. Rest.	Free Free
. X Disp. Y Disp.) Rest. Rest.	Free
X Disp. Rest.	Free
Z Coord. (ft)	128.8
Y Coord. (ft)	m
(ft)	n
Symmetry X Coord. Y Coord. Z Coord. X Code (ft) (ft) (ft)	1P XY-Symmetry 3 3 128.8 Free
Joint Label	1P

$\begin{array}{c} Free\\ Free\\$	$\begin{array}{c} F_{1} \\ F_{2} \\$
Free Free Free Free Free Free Free Free	$\begin{array}{c} F \\ F $
$\begin{array}{c} Free \\ Fr$	$\begin{array}{c} F \\ F $
$\begin{array}{c} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} F$	$\begin{array}{c} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} F$
Free Free Free Free Free Free Free Free	$\begin{array}{c} F_{1} \\ F_{2} \\$
$\begin{array}{c} Free \\ Fr$	$\begin{array}{c} F \\ F $
124.3 1119.8 1112.8 98.75 98.75 91.75 84.75 84.75 84.75 84.75 84.75 98.75 98.75 98.75 98.75 98.75 98.75 98.75 98.75 -4.25	22 25 26 26 26 26 26 27 28 28 28 28 28 28 28 28 28 28
11.77 1.5.44 11.77 11.77 1.55 1.55 1.55 1.55 1.55 1.	11111111111111111111111111111111111111
XY-Symmetry XY-Symmetry XY-Symmetry XY-Symmetry XY-Symmetry XY-Symmetry XY-Symmetry XY-Symmetry Y-Symmetry Y-Symmetry Y-Symmetry Y-Symmetry Y-Symmetry Y-Symmetry Y-Symmetry Y-Symmetry Y-Symmetry Y-Symmetry Y-Symmetry Y-Symmetry None None None	None None None None None None None None
25 37 37 37 37 47 55 45 157 157 157 157 157 2037 2037 2137 2137 2137 2137 2137 227 237 237 237 237 237 237 237 237 2	307 317 317 318 318 318 318 318 317 117 1177 337 337 337 337 337 42 42 42 42 47 177 777 777 777 777 777 1577 1577 15

Free	Free	Free	Free	Free	Free	Free	Free	Free	Free	Free	Free	Free	Free
Free	Free	Free	Free	Free	Free	Free	Free	Free	Free	Free	Free	Free	Free
Free	Free	Free	Free	Free	Free	Free	Free	Free	Free	Free	Free	Free	Free
Free	Free	Free	Free	Free	Free	Free	Free	Free	Free	Free	Free	Free	Free
Free	Free	Free	Free	Free	Free	Free	Free	Free	Free	Free	Free	Free	Free
Free	Free	Free	Free	Free	Free	Free	Free	Free	Free	Free	Free	Free	Free
112.8	98.75	84.75	40	40	25	25	25	25	25	25	112.8	98.75	84.75
-14.25	-16.75	-14.25	0	-9.568	-2.208	-2.208	2.208	-11.77	-11.77	11.77	-8.625	-9.875	-8.625
с -	m I	m I	-9.568	0	11.77	-11.77	-11.77	2.208	-2.208	-2.208	m I	m I	θ Γ
Y-Gen	Y-Gen	Y-Gen	Y-Gen	X-Gen	X-GenXY	XY-GenXY	Y-GenXY	X-GenXY	XY-GenXY	Y-GenXY	Y-Gen	Y-Gen	Y-Gen
17Y	18Ү	19Ү	20AY	2 0 B X	21X	21XY	21Y	22X	22XY	22Y	26Y	27Y	28Y

Secondary Joints:

(ft) XT-Symmetry 8P 15P 0 77 Free Free<	Joint Label	Symmetry Code	Origin Joint	End F. Joint	End Fraction Elevation X vint	levation	X Disp. Rest.	Y Disp. Rest.	Z Disp. Rest.	X Rot. Rest.	Y Rot. Rest.	Z Rot. Rest.
$ \begin{array}{llllllllllllllllllllllllllllllllllll$						(ft)						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	26 26	XY-Symmetry	8Р 8	15P	0	77	нсе Б	ь Бree	Free	Free	Free	Free
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	105	XY-Symmetry	8 P	15P	0	69.25	Free	Free	Free	Free	Free	Free
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	11S	XY-Symmetry	8P	15P	0	61.5	Free	Free	Free	Free	Free	Free
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	12S	XY-Symmetry	8 P	15P	0	51.58	Free	Free	Free	Free	Free	Free
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	135	XY-Symmetry	8P	15P	0	40	Free	Free	Free	Free	Free	Free
	14S	XY-Symmetry	8 P	15P	0	25	Free	Free	Free	Free	Free	Free
	i0.50E129S	None	1X	1Y	0.5	0	Free	Free	Free	Free	Free	Free
	i0.50E113S		4 X	4 X	0.5	0	Free	Free	Free	Free	Free	Free
None8X8Y0.50FreeFreeFreeFreeFreeFreeY-Symmetry21X21P0.50FreeFreeFreeFreeFreeFreeX-Symmetry21X21P0.5077FreeFreeFreeFreeFreeX-GenXY8P15P077FreeFreeFreeFreeFreeXY-GenXY8P15P077FreeFreeFreeFreeX-GenXY8P15P069.25FreeFreeFreeFreeX-GenXY8P15P069.25FreeFreeFreeFreeX-GenXY8P15P069.25FreeFreeFreeFreeX-GenXY8P15P069.25FreeFreeFreeFreeY-GenXY8P15P069.25FreeFreeFreeFreeY-GenXY8P15P061.5FreeFreeFreeFreeY-GenXY8P15P051.58FreeFreeFreeFreeY-GenXY8P15P051.58FreeFreeFreeFreeY-GenXY8P15P051.58FreeFreeFreeFreeY-GenXY8P15P051.58FreeFreeFreeFreeY-GenXY8P15P051.58FreeFree <td< td=""><td>i0.50E99S</td><td></td><td>6X</td><td>6Ү</td><td>0.5</td><td>0</td><td>Free</td><td>Free</td><td>Free</td><td>Free</td><td>Free</td><td>Free</td></td<>	i0.50E99S		6X	6Ү	0.5	0	Free	Free	Free	Free	Free	Free
Y-SymmetryZ1X21P0.50FreeFreeFreeFreeFreeX-Symmetry22P22Y0.5077FreeFreeFreeFreeFreeX-GenXY8P15P077FreeFreeFreeFreeFreeFreeX-GenXY8P15P077FreeFreeFreeFreeFreeFreeY-GenXY8P15P077FreeFreeFreeFreeFreeFreeY-GenXY8P15P069.25FreeFreeFreeFreeFreeFreeX-GenXY8P15P069.25FreeFreeFreeFreeFreeXY-GenXY8P15P069.25FreeFreeFreeFreeFreeXY-GenXY8P15P069.25FreeFreeFreeFreeFreeY-GenXY8P15P069.25FreeFreeFreeFreeFreeY-GenXY8P15P061.5FreeFreeFreeFreeFreeFreeY-GenXY8P15P051.58FreeFreeFreeFreeFreeFreeY-GenXY8P15P051.58FreeFreeFreeFreeFreeFreeY-GenXY8P15P051.58FreeFreeFreeFreeFreeFree	i0.50E85S		8X	8Y	0.5	0	Free	Free	Free	Free	Free	Free
X-Symmetry 22P 22Y 0.5 0 Free	21XF0.50S		21X	21P	0.5	0	Free	Free	Free	Free	Free	Free
X-GenXY8P15P077FreeFreeFreeFreeFreeFreeX'-GenXY8P15P077FreeFreeFreeFreeFreeY-GenXY8P15P077FreeFreeFreeFreeFreeX'-GenXY8P15P069.25FreeFreeFreeFreeFreeX'-GenXY8P15P069.25FreeFreeFreeFreeFreeX'-GenXY8P15P069.25FreeFreeFreeFreeFreeX'-GenXY8P15P069.25FreeFreeFreeFreeFreeX'-GenXY8P15P069.25FreeFreeFreeFreeFreeX'-GenXY8P15P061.5FreeFreeFreeFreeFreeX'-GenXY8P15P051.58FreeFreeFreeFreeFreeX'-GenXY8P15P051.58FreeFreeFreeFreeFreeX'-GenXY8P15P051.58FreeFreeFreeFreeFreeX'-GenXY8P15P051.58FreeFreeFreeFreeFreeX'-GenXY8P15P051.58FreeFreeFreeFreeFreeX'-GenXY8P15P051.58FreeFreeFree </td <td>22PF0.50S</td> <td></td> <td>22P</td> <td>22Y</td> <td>0.5</td> <td>0</td> <td>Free</td> <td>Free</td> <td>Free</td> <td>Free</td> <td>Free</td> <td>Free</td>	22PF0.50S		22P	22Y	0.5	0	Free	Free	Free	Free	Free	Free
XY-GenXY8P15P077FreeFreeFreeFreeFreeY-GenXY8P15P077FreeFreeFreeFreeFreeX-GenXY8P15P069.25FreeFreeFreeFreeFreeX-GenXY8P15P069.25FreeFreeFreeFreeFreeX-GenXY8P15P069.25FreeFreeFreeFreeFreeX-GenXY8P15P061.5FreeFreeFreeFreeFreeX-GenXY8P15P061.5FreeFreeFreeFreeFreeX-GenXY8P15P061.5FreeFreeFreeFreeFreeX-GenXY8P15P061.5FreeFreeFreeFreeFreeX-GenXY8P15P051.58FreeFreeFreeFreeFreeX-GenXY8P15P051.58FreeFreeFreeFreeFreeX-GenXY8P15P051.58FreeFreeFreeFreeFreeX-GenXY8P15P051.58FreeFreeFreeFreeFreeX-GenXY8P15P051.58FreeFreeFreeFreeFreeX-GenXY8P15P025FreeFreeFreeFreeFree <td>9X</td> <td></td> <td>8 P</td> <td>15P</td> <td>0</td> <td>LL</td> <td>Free</td> <td>Free</td> <td>Free</td> <td>Free</td> <td>Free</td> <td>Free</td>	9X		8 P	15P	0	LL	Free	Free	Free	Free	Free	Free
Y-GenXY8P15P077FreeFreeFreeFreeFreeFreeX-GenXY8P15P069.25FreeFreeFreeFreeFreeFreeX-GenXY8P15P069.25FreeFreeFreeFreeFreeFreeX-GenXY8P15P069.25FreeFreeFreeFreeFreeFreeX-GenXY8P15P069.25FreeFreeFreeFreeFreeFreeX-GenXY8P15P061.5FreeFreeFreeFreeFreeFreeX-GenXY8P15P061.5FreeFreeFreeFreeFreeFreeX-GenXY8P15P061.5FreeFreeFreeFreeFreeFreeX-GenXY8P15P051.58FreeFreeFreeFreeFreeFreeX-GenXY8P15P051.58FreeFreeFreeFreeFreeFreeX-GenXY8P15P051.58FreeFreeFreeFreeFreeFreeX-GenXY8P15P051.58FreeFreeFreeFreeFreeFreeX-GenXY8P15P051.58FreeFreeFreeFreeFreeFreeX-GenXY8P15P025FreeFree <td< td=""><td>9XY</td><td></td><td>8 P</td><td>15P</td><td>0</td><td>LL</td><td>Free</td><td>Free</td><td>Free</td><td>Free</td><td>Free</td><td>Free</td></td<>	9XY		8 P	15P	0	LL	Free	Free	Free	Free	Free	Free
X-GenXY8P15P069.25FreeFreeFreeFreeFreeXY-GenXY8P15P069.25FreeFreeFreeFreeFreeY-GenXY8P15P069.25FreeFreeFreeFreeFreeX-GenXY8P15P069.25FreeFreeFreeFreeFreeX-GenXY8P15P061.5FreeFreeFreeFreeFreeXY-GenXY8P15P061.5FreeFreeFreeFreeFreeXY-GenXY8P15P061.5FreeFreeFreeFreeFreeXY-GenXY8P15P061.5FreeFreeFreeFreeFreeXY-GenXY8P15P051.58FreeFreeFreeFreeFreeXY-GenXY8P15P051.58FreeFreeFreeFreeFreeXY-GenXY8P15P051.58FreeFreeFreeFreeFreeXY-GenXY8P15P051.58FreeFreeFreeFreeFreeXY-GenXY8P15P051.58FreeFreeFreeFreeFreeXY-GenXY8P15P021.68FreeFreeFreeFreeFreeXY-GenXY8P15P025FreeFreeFreeFree<	9Y	Y-GenXY	8P	15P	0	LL	Free	Free	Free	Free	Free	Free
XY-GenXY8P15P069.25FreeFreeFreeFreeFreeY-GenXY8P15P069.25FreeFreeFreeFreeFreeX-GenXY8P15P061.5FreeFreeFreeFreeFreeX-GenXY8P15P061.5FreeFreeFreeFreeFreeX-GenXY8P15P061.5FreeFreeFreeFreeFreeX-GenXY8P15P061.5FreeFreeFreeFreeFreeX-GenXY8P15P051.58FreeFreeFreeFreeFreeX-GenXY8P15P051.58FreeFreeFreeFreeFreeX-GenXY8P15P051.58FreeFreeFreeFreeFreeX-GenXY8P15P051.58FreeFreeFreeFreeFreeX-GenXY8P15P051.58FreeFreeFreeFreeFreeX-GenXY8P15P040FreeFreeFreeFreeFreeX-GenXY8P15P025FreeFreeFreeFreeFreeX-GenXY8P15P025FreeFreeFreeFreeFreeX-GenXY8P15P025FreeFreeFreeFreeFree </td <td>1 0 X</td> <td>X-GenXY</td> <td>8P</td> <td>15P</td> <td>0</td> <td>69.25</td> <td>Free</td> <td>Free</td> <td>Free</td> <td>Free</td> <td>Free</td> <td>Free</td>	1 0 X	X-GenXY	8P	15P	0	69.25	Free	Free	Free	Free	Free	Free
Y-GenXY8P15P069.25FreeFreeFreeFreeFreeX-GenXY8P15P061.5FreeFreeFreeFreeFreeX-GenXY8P15P061.5FreeFreeFreeFreeFreeX-GenXY8P15P061.5FreeFreeFreeFreeFreeX-GenXY8P15P061.5FreeFreeFreeFreeFreeX-GenXY8P15P051.58FreeFreeFreeFreeFreeX-GenXY8P15P051.58FreeFreeFreeFreeFreeX-GenXY8P15P051.58FreeFreeFreeFreeFreeX-GenXY8P15P051.58FreeFreeFreeFreeFreeX-GenXY8P15P051.58FreeFreeFreeFreeFreeX-GenXY8P15P040FreeFreeFreeFreeFreeX-GenXY8P15P025FreeFreeFreeFreeFreeFreeX-GenXY8P15P025FreeFreeFreeFreeFreeFreeX-GenXY8P15P025FreeFreeFreeFreeFreeFreeXY-GenXY8P15P025FreeFreeF	10XY	XY-GenXY	8P	15P	0	69.25	Free	Free	Free	Free	Free	Free
X-GenXY8P15P061.5FreeFreeFreeFreeFreeXY-GenXY8P15P061.5FreeFreeFreeFreeFreeY-GenXY8P15P061.5FreeFreeFreeFreeFreeXY-GenXY8P15P061.5FreeFreeFreeFreeFreeXY-GenXY8P15P051.58FreeFreeFreeFreeFreeXY-GenXY8P15P051.58FreeFreeFreeFreeFreeXY-GenXY8P15P051.58FreeFreeFreeFreeFreeX-GenXY8P15P040FreeFreeFreeFreeFreeX-GenXY8P15P025FreeFreeFreeFreeFreeX-GenXY8P15P025FreeFreeFreeFreeFreeX-GenXY8P15P025FreeFreeFreeFreeFreeX-GenXY8P15P025FreeFreeFreeFreeFreeFreeX-GenXY8P15P025FreeFreeFreeFreeFreeFreeX-GenXY8P15P025FreeFreeFreeFreeFreeFreeX-GenXY8P15P025FreeFreeFree </td <td>10Y</td> <td>Y-GenXY</td> <td>8 P</td> <td>15P</td> <td>0</td> <td>69.25</td> <td>Free</td> <td>Free</td> <td>Free</td> <td>Free</td> <td>Free</td> <td>Free</td>	10Y	Y-GenXY	8 P	15P	0	69.25	Free	Free	Free	Free	Free	Free
XY-GenXY8P15P061.5FreeFreeFreeFreeFreeY-GenXY8P15P061.5FreeFreeFreeFreeFreeX-GenXY8P15P051.58FreeFreeFreeFreeFreeX-GenXY8P15P051.58FreeFreeFreeFreeFreeX-GenXY8P15P051.58FreeFreeFreeFreeX-GenXY8P15P051.58FreeFreeFreeFreeX-GenXY8P15P040FreeFreeFreeFreeX-GenXY8P15P040FreeFreeFreeFreeX-GenXY8P15P025FreeFreeFreeFreeX-GenXY8P15P025FreeFreeFreeFreeX-GenXY8P15P025FreeFreeFreeFreeX-GenXY8P15P025FreeFreeFreeFreeX-GenXY8P15P025FreeFreeFreeFreeFreeX-GenXY8P15P025FreeFreeFreeFreeFreeX-GenXY8P15P025FreeFreeFreeFreeFreeX-GenXY8P15P025FreeFreeFreeFree <td>11X</td> <td>X-GenXY</td> <td>8P</td> <td>15P</td> <td>0</td> <td>61.5</td> <td>Free</td> <td>Free</td> <td>Free</td> <td>Free</td> <td>Free</td> <td>Free</td>	11X	X-GenXY	8P	15P	0	61.5	Free	Free	Free	Free	Free	Free
Y-GenXY 8P 15P 0 61.5 Free Free <t< td=""><td>11XY</td><td>XY-GenXY</td><td>8P</td><td>15P</td><td>0</td><td>61.5</td><td>Free</td><td>Free</td><td>Free</td><td>Free</td><td>Free</td><td>Free</td></t<>	11XY	XY-GenXY	8P	15P	0	61.5	Free	Free	Free	Free	Free	Free
X-GenXY 8P 15P 0 51.58 Free <	11Y	Y-GenXY	8 P	15P	0	61.5	Free	Free	Free	Free	Free	Free
XY-GenXY 8P 15P 0 51.58 Free	12X	X-GenXY	8 P	15P	0	51.58	Free	Free	Free	Free	Free	Free
Y-GenXY 8P 15P 0 51.58 Free <	12XY	XY-GenXY	8 P	15P	0	51.58	Free	Free	Free	Free	Free	Free
X-GenXY 8P 15P 0 40 Free	12Y	Y-GenXY	8P	15P	0	51.58	Free	Free	Free	Free	Free	Free
XY-GenXY 8P 15P 0 40 Free Free <th< td=""><td>13X</td><td>X-GenXY</td><td>8P</td><td>15P</td><td>0</td><td>40</td><td>Free</td><td>Free</td><td>Free</td><td>Free</td><td>Free</td><td>Free</td></th<>	13X	X-GenXY	8P	15P	0	40	Free	Free	Free	Free	Free	Free
Y-GenXY 8P 15P 0 40 Free	13XY	XY-GenXY	8P	15P	0	40	Free	Free	Free	Free	Free	Free
X-GenXY 8P 15P 0 25 Free	13Y	Y-GenXY	8 Р	15P	0	40	Free	Free	Free	Free	Free	Free
XY-GenXY 8P 15P 0 25 Free Fre	14X	X-GenXY	8 Р	15P	0	25	Free	Free	Free	Free	Free	Free
Y-GenXY 8P 15P 0 25 Free	14XY	XY-GenXY	8 Р	15P	0	25	Free	Free	Free	Free	Free	Free
Y-Gen 21X 21P 0.5 0 Free Free Free Free Free Free X-Gen 22P 22Y 0.5 0 Free Free Free Free Free	14Y	Y-GenXY	8 Р	15P	0	25	Free	Free	Free	Free	Free	Free
X-Gen 22P 22Y 0.5 0 Free Free Free Free	21XF0.50Y	Y-Gen	21X	21P	0.5	0	Free	Free	Free	Free	Free	Free
	22PF0.50X	X-Gen	22P	22Y	0.5	0	Free	Free	Free	Free	Free	Free

The model contains 74 primary and 32 secondary joints for a total of 106 joints.

Steel Material Properties:

.

Member Member Member Member Member Steel Modulus Yield Ultimate

Centek Engineering Inc - CL&P # 1281

earing Hyp. 2 (ksi)	00
Stress Rupture Rupture Bearing B Hyp. 2 Hyp. 1 Hyp. 2 Hyp. 1 (ksi) (ksi) (ksi) (ksi)	00
Rupture Hyp. 2 (ksi)	00
Rupture Hyp. 1 (ksi)	00
Stress Hyp. 2 (ksi)	00
. Stress All. Hyp. 1 (ksi)	00
tress All Fu (ksi)	5 8 5 8
Stress Fy (ksi)	36 42
Material of Stress S Label Elasticity Fy (ksi) (ksi)	2.9e+004 2.9e+004
Material Label 1	A 36 A500-42

Bolt Properties:

Shear Capacity Hyp. 2	(kips)	00
Shear Capacity Hyp. 1	(kips)	00
efault Default End Bolt C stance Spacing	(in)	
Hole Ultimate Default Default ameter Shear End Bolt Capacity Distance Spacing	(in)	
Hole Ultimate leter Shear Capacity	(in) (kips)	9.1 16.8
Hole Diameter		
Bolt Bolt Hole Label Diameter Diameter	(ii)	0.625 0.625
Bolt Label		5/8 A394 5/8 A325

Number Bolts Used By Type:

•	Number	Bolts	
	Bolt	T ype	

ł	1230 38
	A394 A325
	5/8 5/8

Angle Properties:

Section Modulus	(in^3)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Optimize S Cost M Factor	1000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.000.0
Long O Edge	(iin)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Short Edge		4	4	4	m	0	1.75	1.5	1.5	1.25	1.25			0.875	1.75	1.5	1.75	1.75	1.5	1.5	1.25				0	0	0
Wind	(iin)	œ	ω	œ	9	4	з . 5	ŝ	m	2.5	2.5	0	0	1.75	ഹ	ß	4	4	4	з . 5	3.5	m	m	2.5	12.75	9	3.5
Number of V Andles	en fina		1	1	1	1	Ч	1	1	1	-1	-1	-1	-1	-1		-	1	1	1	1	1	1	1	г	1	2
		1.58	1.58	1.59	1.2	0.795	0.694	0.592	0.596	0.491	0.495	0.391	0.394	0.343	0.77	0.663	0.73	0.734	0.651	0.631	0.544	0.435	0.439	0.427	4.39	1.732	0.537
Radius of Radius of Gyration Gyration Bu	(ii)	2.47	2.49	2.5	1.89	1.25	1.09	0.93	0.939	0.769	0.778	0.609	0.617	0.537	1.04	0.861	1.07	1.07	0.896	0.914	0.735	0.574	0.583	0.6	4.39	1.732	0.738
Radius of F Gyration Pv	(ii)	2.47	2.49	2.5	1.89	1.25	1.09	0.93	0.939	0.769	0.778	0.609	0.617	0.537	1.62	1.62	1.26	1.27	1.28	1.11	1.12	0.957	0.966	0.793	4.39	0.2165	0.537
w/t F Ratio		8.83	10.8	13.75	16.6	13.5	11.5	9.75	13.33	7.75	10.67	ы	ω	9	17	17	10.4	13.25	13.25	11.25	11.25	9.75	13.33	10.67		œ	L
Gross Area	(in^2)	11.44	9.61	7.75	3.65	1.94	1.69	1.44	1.09		0.902	0.94	0.71	0.62	2.06	1.94	2.25	1.81	1.69	1.56	1.44	1.19	0.9	0.81	13.6	4.5	1.24
Unit Weight	lbs/ft)	38.9	32.7	26.4	12.5	6.6	5.8	4.9	3.71	4.1	3.07	3.19	2.44	2.12	7	6.6	7.7	6.2	5.8	5.4	4.9	4.1	3.07	2.75	49.6	15.3	4.2
Thick.	(II) (UI)	0.75	0.625	0.5	0.3125	0.25	0.25	0.25	0.1875	0.25	0.1875	0.25	0.1875	0.1875	3.5 0.25	0.25	0.3125	0.25	0.25	0.25	0.25	0.25	0.1875	0.1875	0	0.75	0.1875
Long Short Thick. Leg Leg	(ii)	∞	00	œ	9	4	3.5	m	m	2.5	2.5	2	2	1.75	3.5	m	3.5	3.5	m	m	2.5	2		2	12	0.75	1.75
Long Leg	(ii)	~	8	00	9	4	3.5	m	m	2.5	2.5	0	0	1.75	ß	ß	4	4	4	3.5	3.5	m	m	2.5	12.75	9	1.75
Angle Size		8X8X0.75	8X8X0.625	8X8X0.5	6X6X0.3125	4X4X0.25	3.5X3.5X0.25	3X3X0.25	3X3X0.1875	2.5X2.5X0.25	2.5X2.5X0.1875	2X2X0.25	2X2X0.1875	75X1.75X0.1875	5X3.5X0.25	5X3X0.25	4X3.5X0.3125	4X3.5X0.25	4X3X0.25	3.5X3X0.25	3.5X2.5X0.25	3X2X0.25	3X2X0.1875	2.5X2X0.1875		6x3/4	75X1.75X0.1875
Angle Type		SAE	SAE	SAE	SAE	SAE	SAE	SAE	SAE	SAE	SAE	SAE	SAE	SAE 1	SAU	SAU	SAU	SAU	SAU	SAU	SAU	SAU	SAU	SAU	Pwmnt	Bar	DAE 1

Angle Groups:

Allow. Add. Angle Width For Optimize (in)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					10.000	10		12,000	12.000	0.000	0.000	0.000	0.000	0.000
Optimize Group F	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	Nono	ALLON	ADDA	ALLON	NONE	NONe	NONE	None	None	None	None	None	None
Group Type	Leg	Leg	Leg	Leg										Crossing Diagonal	Other	Other	Other	Other	Other	Other	Other	Other	Other	Other	Other	Other	Other	Other	Other	Other	Other	Other	Other	OCHEC CERCE	Other	Other	OCHEL Other	С стн. С + 5 0 г	Other	Other	Other	other	Other	Other		Crossing Diagonal
Element Type	Beam	Beam	Beam	Beam											Truss	T-Only	T-Only	T-Only	Truss	T-Only	Truss	Truss	Truss	Truss	Beam	Beam	Truss	Truss	Truss	T-Only	T-Only	Beam	Deam	DEGIII	meod v[n∩-T		Ream	Beam	Ream	Beam	Beam	Truss	Beam	Beam		Truss C
Angle Material Size Type	A 36		A 36	A 36					A 36		A 36		A 36			A 36			A 36									A 36					90 F		2 0			200				A 36		A 36		
Angle M Size	3.5X3.5X0.25	6X6X0.3125	8X8X0.5	8X8X0.625	8X8X0.75	2.5X2.5X0.1875	2.5X2X0.1875	4X3X0.25	3.5X2.5X0.25	4X3.5X0.3125	5X3.5X0.25		3.5X3X0.25	5X3X0.25	5X3X0.25	2X2X0.1875	3X2X0.25	4X3X0.25	3.5X3X0.25	1.75X1.75X0.1875	4X3.5X0.25	3X3X0.1875	5X3X0.25	3.5X3.5X0.25	1.75X1.75X0.1875		2.5X2X0.1875	4X3X0.25		2.5X2X0.1875	3X3X0.1875	3X3X0.25	52.UASAC.2	2 EVOVO 107E	1 75V1 75V0 1875	DINE 101 040		2 5X2 5X0 1875	2791.0X2X2	3.5X3.5X0.25	•	1.75X1.75X0.1875		2.5X2.5X0.25	6x3/4	2.5X2.5X0.25
Angle Type	SAE	SAE	SAE	SAE	SAE	SAE	SAU	SAU	SAU	SAU	SAU	SAU	SAU	SAU	SAU	SAE	SAU	SAU	SAU	SAE	SAU	SAE	SAU	SAE	SAE	SAE	SAU	SAU	SAU	SAU	SAE	SAE	DAU TAU			Dramo +	C MIIIIC	1 2 2 2 2 2 2	A A A	H A C	E A C	SAE	SAF	SAE	Bar	SAE
Group 1 Description	LEG1	LEG2	LEG3	LEG4	LEG5	X1	X2	X3	X4	X5	X6	X	X8	6X	ID	D2	D3	D4	DS	Hl	H2	H3	Ηđ	H5	X10	X11	X12	9H	D6	HGRI	HGR2	AI	AZ A	44 L	11		2 JUL FIPE	5×2 5×3/	1 3 x 3 x 3 / 5 x 5 x 5 /		T.4×4×1		L2x2x1/4	L2.5x2.5x1/4	6	X1
Group Label		2	m	4	Ω	9	L	8	0	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	3.2	0,0	τu Ο Ο	200	Durmon t	DMBR1			PMBR4	PMBR5	20a	AngleR	BraceR	Plate	6R

Aggregate Angle Information:

Note: Estimate of surface area reported for painting purposes, not wind loading.

<pre>SAE 3.5X3.5X0.25 A 36 56.00 149 SAE 6X6X0.3125 A 36 56.00 149 SAE 8X8X0.625 A 36 54.00 149 SAE 8X8X0.625 A 36 54.09 149 SAE 8X8X0.75 A 36 54.09 253 SAU 2.5X2.5X0.25 A 36 68.17 669 SAU 2.5X2.5X0.25 A 36 68.17 68 SAU 3.5X2.5X0.25 A 36 68.17 68 SAU 3.5X2.5X0.25 A 36 68.17 68 SAU 3.5X2.5X0.25 A 36 68.17 184 SAU 3.5X2.5X0.25 A 36 68.17 68 SAU 3.5X2.5X0.25 A 36 68.17 184 SAU 3.5X2.5X0.25 A 36 68.17 68 SAU 3.5X2.5X0.25 A 36 147.51 184 SAU 3.5X2.5X0.25 A 36 68.17 68 SAU 3.5X2.5X0.25 A 36 147.51 184 SAU 3.5X2.5X0.25 A 36 68.17 68 SAU 3.5X2.5X0.25 A 36 147.51 184 SAU 3.5X2.5X0.25 A 36 68.17 68 SAU 3.5X2.5X0.25 A 36 147.51 184 SAU 3.5X2.5X0.25 A 36 147.51 184 SAU 3.5X2.5X0.25 A 36 68.17 68 SAU 3.5X2.5X0.25 A 36 147.51 184 SAU 3.5X3.5X0.25 A 36 68.17 68 SAU 3.5X3.5X0.25 A 36 147.51 184 SAU 3.5X3.025 A 36 147.51 187 SAE 1.75X1.75X0.1875 A 36 145.30 145 SAE 3.73X0.25 A 36 145.30 145 SAE 3.73X0.25 A 36 16.97 49 SAE 3.73X0.25 A 36 145.30 145 SAE 3.73X0.25 A 36 68.295 145 SAE 3.73X0.25 A 36 16.97 49 SAE 7.75X1.75X0.1875 A 36 145.30 146 SAE 7.75X1.75X0.1875 A 36 145.30 145 SAE 3.73X0.25 A 36 68.295 145 SAE 3.73X0.25 A 36 16.97 49 SAE 7.75X1.75X0.1875 A 36 145.30 146 SAE 7.75X1.75X0.1875 A 36 145.30 146 SAE 7.75X1.75X0.1875 A 36 16.97 49 SAE 7.75X1.75X0.1875 A 36 105.60 140 SAE 7.75X1.75X1.75X1.75X0.1875 A 36 105.60 140 SAE 7</pre>	Angle Type	Angle Size	Material Type	Total Length (ft)	Total Surface Area (ft^2)	Total Weight (lbs)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SA	.5X3.5X0.2	m	12.9	48.4	234.9
8X8X0.55 A 36 56.00 149.3 8X8X0.625 A 36 94.98 253.2 8X8X0.555 A 36 94.98 253.2 8X8X0.55 A 36 94.98 253.2 2.5X2.5X0.25 A 36 94.98 253.2 2.5X2.5X0.1875 A 36 94.78 277.7 2.5X2.5X0.255 A 36 94.751 184.3 4X3.5X0.3125 A 36 84.78 221.5 5X3.5X0.255 A 36 84.78 221.5 5X3.5X0.255 A 36 84.78 120.1 3.5X3.5X0.255 A 36 147.51 184.3 4X3.5X0.1875 A 36 147.51 127.9 3.5X3.0225 A 36 153.55 126.8 1.75X1.75X0.1875 A 36 12.00 700 3X3X0.1875 A 36 16.97 </td <td>R</td> <td>X6X0.312</td> <td>m</td> <td>6.2</td> <td>12.4</td> <td></td>	R	X6X0.312	m	6.2	12.4	
8X8X0.625 A 36 94.98 253.2 8X8X0.625 A 36 94.98 253.2 2.55X2.5X0.255 A 36 295.39 271.6 2.55X2.0125 A 36 295.39 371.6 3.55X2.0125 A 36 147.51 184.3 4X3.5X0.3125 A 36 147.51 184.3 3.5X2.5X0.25 A 36 147.51 184.3 423.5X0.255 A 36 456.32 494.3 3.5X3.5X0.255 A 36 456.32 494.3 3.5X3.5X0.255 A 36 456.32 494.3 7.00 1.75X1.75X0.1875 A 36 190.24 120.1 2X220.1875 A 36 190.24 126.8 3.5X20.1875 A 36 190.24 126.8 7.0 1.75X1.75X0.1875 A 36 145.30 490.3 7.0 1.75X1.75X0.1875 A 36 147.51 184.3 3.5X20.255 A 36 62.95 496.3 494.00 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	SAE	хо.	m	6.0	49.3	47
8X8X0.75 A 36 251.24 669.9 2.5X2.5X0.1875 A 36 93.24 77.7 2.5X2.5X0.1875 A 36 93.24 77.7 2.5X2.5X0.1875 A 36 93.24 77.7 3.5X2.5X0.1875 A 36 93.24 77.7 3.5X2.5X0.1875 A 36 147.51 184.3 4X3.5X0.255 A 36 147.51 184.3 5X3.5X0.255 A 36 147.51 184.3 5X3.5X0.255 A 36 147.51 184.3 5X3.5X0.255 A 36 147.51 120.1 5X3.5X0.255 A 36 147.51 124.3 1.75X1.75X0.1875 A 36 126.32 494.3 1.75X1.75X0.1875 A 36 123.55 145.3 1.75X1.75X0.1875 A 36 12.00 7.0 3X2X0.1875 A 36 12.00 7.0 3X2X0.1875 A 36 145.30 145.3 1.75X1.75X0.1875 A 36 126.9 11.3 3X2X0.1875 A 36 126.9 149.3 3X2X0.255 A 36	SAE	X8X0.62	m	4.9	53.2	о.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SAE	0.7	m	51.2	69.9	773.4
$ \begin{array}{c} 2.5 \text{ $X2$} \text{ $X2$} \text{ 0} 1875 & \text{ $X3$} \text{ 295.39} & 221.5 \\ \text{ 4} 3.5 \text{ $X2$} \text{ 5} \text{ $X3$} \text{ $X3$} \text{ 231} \text{ 53} & 371.6 \\ \text{ 4} 3.5 \text{ $X2$} \text{ 5} \text{ $X3$} \text{ 25} \text{ $X3$} \text{ 36} & 318.53 & 371.6 \\ \text{ 4} 3.5 \text{ 5} \text{ 5} \text{ $X3$} \text{ 25} \text{ $X3$} \text{ 36} & 347.51 & 184.3 \\ \text{ 3} 5.5 \text{ 5} \text{ 0} 2.55 & \text{ $X3$} \text{ 84.78} & 120.1 \\ \text{ 3} 5.5 \text{ $X3$} \text{ 0} 2.55 & \text{ $X3$} \text{ 36} & 346.59 & 494.3 \\ \text{ 5} 5.3 \text{ 0} 0.25 & \text{$X3$} \text{ 36} & 346.59 & 494.3 \\ \text{ 2} 5.3 \text{ 0} 0.1875 & \text{$X3$} \text{ 36} & 346.59 & 494.3 \\ \text{ 2} 5.3 \text{ 0} 0.1875 & \text{$X3$} \text{ 36} & 346.59 & 494.3 \\ \text{ 3} 2.8 \text{ $X0$} 0.1875 & \text{$X3$} \text{ 36} & 346.59 & 126.8 \\ \text{ 1} 7.9 \text{ 0} 0.1875 & \text{$X3$} \text{ 36} & 346.59 & 127.9 \\ \text{ 4} 3.3 \text{ $X2$} 0.1875 & \text{$X3$} \text{ 36} & 346.59 & 127.9 \\ \text{ 4} 3.3 \text{ $X2$} 0.1875 & \text{$X3$} \text{ 36} & 346.59 & 127.9 \\ \text{ 4} 3.3 \text{ $X2$} 0.1875 & \text{$X3$} \text{ 36} & 346.59 & 127.9 \\ \text{ 4} 3.3 \text{ $X2$} 0.1875 & \text{$X3$} \text{ 36} & 346.59 & 127.9 \\ \text{ 4} 3.3 \text{ $X2$} 0.1875 & \text{$X3$} \text{ 36} & 12.00 & 7.0 \\ \text{ 4} 3.3 \text{ $X3$} 0.1875 & \text{$X3$} \text{ 36} & 12.00 & 7.0 \\ \text{ 4} 3.3 \text{ $X3$} 0.1875 & \text{$X3$} \text{ 36} & 145.30 & 145.3 \\ \text{ 2} 2.8 \text{ $X2$} 0.1875 & \text{$X3$} \text{ 36} & 62.95 & 145.3 \\ \text{ 2} 2.8 \text{ $X2$} 0.1875 & \text{$X3$} \text{ 36} & 62.95 & 145.3 \\ \text{ 4} 3.3 \text{ $X3$} 0.1875 & \text{$X3$} \text{ $X3$} \text{ 16} \text{ 97} & 126.9 \\ \text{ 4} 3.3 \text{ $X3$} 0.1875 & \text{$X3$} \text{ $X3$} \text{ 145} 30 & 149.2 \\ \text{ 1} 9.2 \text{ $X2$} 0.25 & \text{$X3$} \text{ $X3$} \text{ 1} \text{ 1} 0.0 & 610.5 \\ \text{6} 0.5 & 0.0 & 0.0 & 0.0 \\ \text{1} 0.5 & 0.0 & 0.0 & 0.0 & 0.0 \\ \text{1} 0.5 & 0.0 & 0.0 & 0.0 & 0.0 \\ \text{1} 0.5 & 0.0 & 0.0 & 0.0 & 0.0 \\ \text{1} 0.5 & 0.0 & 0.0 & 0.0 & 0.0 \\ \text{1} 0.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ \text{1} 0.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ \text{1} 0.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ \text{1} 0.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ \text{1} 0.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ \text{1} 0.5 & 0.0 & 0.0 & 0.0 & 0.$	SAE	.5X2.5X0.2	m	3.2	7.7	2.
4X3X0.25 A 36 318.53 371.6 3.5X2.5X0.25 A 36 68.17 68.17 4X3.5X0.3125 A 36 147.51 184.3 4X3.5X0.255 A 36 44.78 120.1 5X3.5X0.255 A 36 456.32 494.3 5X3.5X0.255 A 36 456.32 494.3 5X3.5X0.255 A 36 190.24 126.8 3.55X300.255 A 36 190.24 126.8 3.22X0.1875 A 36 190.24 126.8 1.75X1.75X0.1875 A 36 153.55 127.9 490.0 1.75X1.55X0.1875 A 36 153.55 127.9 1.75X1.55X0.1875 A 36 153.55 127.9 4X3.5X0.1875 A 36 153.30 1455.3 3X2X0.1875 A 36 165.30 1455.3 3X3X0.1875 A 36 165.30 1455.3 3X3X0.1875 A 36 165.30 1455.3 3X3X0.1875 A 36 165.30 1455.3 11.3 3X2X0.1875 A 36 105.60 149.0 8 16.7 A 36 105.60 140.8 9 1.45.30 146.0 68.2 9 1.45.30 1465.30 1	SAU	.5X2X0.187	m	95.3	21.5	12.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SAU	X3X0.2	m	18.5	71.6	47.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SAU	.5X2.5X0.2	m	8.1	8.1	34.0
5X3.5X0.25 A 36 84.78 120.1 3.5X3X0.25 A 36 456.32 494.3 5X3X0.255 A 36 456.32 494.3 5X3X0.255 A 36 190.24 126.8 1.75X1.75X0.1875 A 36 190.24 126.8 1.75X1.75X0.1875 A 36 153.55 127.9 1.75X1.75X0.1875 A 36 12.00 700 1.75X1.75X0.1875 A 36 12.00 700 1.75X1.75X0.1875 A 36 140.00 700 1.75X1.75X0.1875 A 36 146.97 111.3 3X3X0.1875 A 36 16.97 149.30 3X3X0.1875 A 36 16.97 11.3 3X3X0.25 A 36 106.97 49.2 3X3X0.25 A 36 106.97 49.2 Pipe 12" A 36 105.60 140.8 Pipe 12" A 36 105.60 140.8	SAU	X3.5X0.312	m	47.5	84.3	35.8
3.5X3X0.25 A 36 456.32 494.3 5X3X0.25 A 36 456.32 494.3 5X3X0.1875 A 36 390.24 126.8 2X2X0.1875 A 36 190.24 126.8 1.75X1.75X0.1875 A 36 153.55 1270 423.55X0.1875 A 36 12.00 7.0 7.0 423.5X0.1875 A 36 12.00 7.0 7.0 423.5X0.1875 A 36 145.30 149.3 3X3X0.1875 A 36 16.97 11.3 3X3X0.1875 A 36 16.97 11.3 3X3X0.25 A 36 16.97 11.3 3X3X0.25 A 36 16.97 11.3 474.X0.25 A 36 105.60 140.8 Pipe 12" Std. A500-42 148.00 610.5 6X374 A 36 105.60 140.8	SAU	X3.5X0.2	\sim	4.7	20.1	93.4
5X3X0.25 A 36 346.59 462.1 2X2X0.1875 A 36 190.24 126.8 1.75X1.75X0.1875 A 36 153.55 127.9 49.00 49.00 7.0 423.55 A 36 12.00 7.0 423.55 A 36 145.30 145.3 3X3X0.1875 A 36 145.30 145.3 3X2X0.1875 A 36 59.10 69.2 3X2X0.1875 A 36 59.10 68.2 3X2X0.1875 A 36 68.2 149.2 4X4X0.25 A 36 105.60 140.8 Pipe 12" Std. A56 1.50 140.8 6x374 A 36 1.50 1.6	SAU	.5X3X0.2	m	56.3	94.3	64.1
2X2X0.1875 A 36 190.24 126.8 3X2X0.255 A 36 153.55 127.9 1.75X1.75X0.1875 A 36 153.55 127.9 4X3.5X0.257 A 36 153.55 127.9 4X3.5X0.1875 A 36 153.55 127.9 4X3.5X0.1875 A 36 15.95 78.6 3X2X0.1875 A 36 62.95 78.6 3X2X0.1875 A 36 16.97 115.3 3X2X0.1875 A 36 16.97 145.3 3X2X0.1875 A 36 16.97 145.3 3X2X0.1875 A 36 16.97 145.3 3X2X0.1875 A 36 16.97 149.2 3X2X0.25 A 36 16.97 149.2 3X2X0.25 A 36 105.60 140.8 11.50 1.50 140.8 12.1 5.31/4 A 36 105.60 140.8 A 36 1.50 140.8 12.1.50 A 36 1.50 140.8	SAU	X3X0.2	m	46.5	62.1	287.4
3X2X0.25 A 36 153.55 127.9 1.75X1.75X0.1875 A 36 84.00 49.0 1.75X1.75X0.1875 A 36 12.00 70 4X3.5X0.1875 A 36 12.00 70 3X3X0.1875 A 36 16.95 78.6 3X3X0.1875 A 36 16.97 145.30 3X3X0.1875 A 36 16.97 145.33 3X3X0.1875 A 36 59.10 49.2 3X3X0.1875 A 36 59.10 49.2 3X3X0.25 A 36 16.97 149.2 3X3X0.25 A 36 10.97 49.2 11.33 3X3X0.25 A 36 105.60 140.8 12.5 A 36 105.60 140.8 68.2 11.6 A 36 105.60 140.8 68.2 12.5 A 36 105.60 140.8 10.5 13.5 A 36 105.60 140.8 10.5 140.5 A 36 1.50 610.5 1.50 1.65	SAE	X2X0.187	m	90.2	26.8	64.1
1.75X1.75X0.1875 A 36 84.00 49.0 1.75X1.5X0.1875 A 36 12.00 7.0 4X3.5X0.255 A 36 12.00 7.0 3X3X0.1875 A 36 16.97 11.3 3X2X0.1875 A 36 16.97 11.3 3X2X01875 A 36 59.10 49.2 3X3X0.25 A 36 68.29 68.2 4X4X0.25 A 36 105.60 140.8 Pipe 12" Std. A500-42 148.00 610.5 6x3/4 A 36 1.50 1.60 11.6	SAU	X0.2	m	53.5	27.9	29.5
1.75X1.75X0.1875 A 36 12.00 7.0 4X3.5X0.25 A 36 62.95 78.6 3X3X0.1875 A 36 145.30 145.3 2X2X0.25 A 36 145.30 145.3 3X3X0.25 A 36 59.10 49.2 3X3X0.25 A 36 68.29 68.2 4X4X0.25 A 36 105.60 140.8 Pipe 12" Std. A500-42 148.00 610.5	SAE	.75X1.75X0.187	m	4.0	9.0	78.0
4X3.5X0.25 A 36 62.95 78.6 3XX0.1875 A 36 145.30 145.3 2X2X0.25 A 36 145.30 1495.3 3X3X0.1875 A 36 16.97 11.3 3X3X0.25 A 36 59.10 69.2 4X4X0.25 A 36 68.29 68.2 Pipe 12" Std. A500-42 148.00 610.5	DAE	.75X1.75X0.187	m	2.0	7.0	50.40
3X3X0.1875 A 36 145.30 145.3 2X2X0.25 A 36 16.97 11.3 2X2X0.1875 A 36 59.10 49.2 3X2X0.1875 A 36 68.29 68.2 3X3X0.25 A 36 105.60 140.8 Pipe 12" Std. A500-42 148.00 610.5 Pipe 12" Std. A 36 1.50 1.6	SAU	X3.5X0.2	m	2.9	8.6	90.2
2X2X0.25 A 36 16.97 11.3 3X2X0.1875 A 36 59.10 49.2 3X3X0.25 A 36 68.29 68.2 4X4X0.25 A 36 105.60 140.8 Pipe 12" 5td. A 36 1.50 11.6	SAE	X3X0.187	m	45.3	45.3	9.0
3X2X0.1875 A 36 59.10 49.2 3X3X0.25 A 36 68.29 68.2 4X4X0.25 A 36 105.60 140.8 Pipe 12" Std. A500-42 148.00 610.5 Pipe 2" Std. A 56 1.50 1.6	SAE	X2X0.2	m	6.9	1.3	54.14
3X3X0.25 A 36 68.29 68.2 3X4X0.25 A 36 105.60 140.8 Pipe 12" 5td. A500-42 148.00 610.5 Pipe 12" 5td. A 36 1.50 1.6	SAU	X2X0.187	m	9.1	9.2	81.4
Pipe 12" 54 105.60 140.8 Pipe 12" 54d. A500-42 148.00 610.5 Pipe 12" 543/4 A 36 1.50 1.6	SAE	X3X0.2	m	8.2	8.2	34.6
Pipe 12" Std. A500-42 148.00 610.5 6x3/4 A 36 1.50 1.6	SAE	X4X0.2	m	05.6	40.8	6.9
ar 6x3/4 A 36 1.50 1.6	Pwmnt	ipe 12" Std	500-4	48.0	10.5	40.8
	Bar	6x3/	\sim	₽.	9.	2.9
AE Z.5XZ.5XU.18/5 A 36 ZU.13 16./	SAE	5X2.5X0		Ξ.	٢.	1.7

Sections: The adjustment factors below only apply to dead load and wind areas that are calculated for members in the model. They do not apply to equipment or to manually input dead load and drag areas.

Section Label	Joint Dead Defining Load Section Adjust. Bottom Factor	Adj Fa	Transverse Drag x Area Factor For Face	ongit Drag Fc	udinal Transverse * Årea Årea Factor Factor (CD From or Face Code)	Longitudinal Af Flat Ar Round Area Factor Factor Factor (CD From For Face For Face Code) EIA Only EIA Only	dinal Af Flat Ar Round actor Factor Factor From For Face For Face Code) EIA Only EIA Only	Ar Round Factor For Face EIA Only	Transverse Drag x Area Factor For All	Longitudinal Drag x Area Factor For All	SAPS Angle Drag x Area Factor	SAPS Rol Drag x A. Fac	Round Force x Area Solid Factor Face	rce lid ice
5 1	8X 29P	1.100	3.200	3.500	1.100	1.000	0.000	0.000 0.000	1.000	1.000	0.00.0	 	0.000 No	None None
Angle Mem	Angle Member Connectivity:	stivity:												
Membel Bolt Shor	Member Group Section	Section Dest	Symmetry	Origin	End Ecc.	End Ecc. Rest. Ratio Ratio Ratio	Ratio Rat	tio Bolt		# # Bolt # Shear	Connect Short Long	Short Lo		End
Eorc such Label Spacing	bott Sucar Jension Kest. Label Label Label Spacing Path Path Coef	Label Label ath Coef	Code	Joint	Joint Code Code	Code RLX	RLY	RLZ TYI	pe Bolts Hc	Type Bolts Holes Planes	Leg	Edge Edge	ge Dist.	ĭť.
											-	Dist. Dist.	نب	
лепдти лепдти	engtn											(in) (in)		(in)
(ii) (ni)	(in) (in) (in)													

Centek Engineering Inc - CL&P # 1281

Page 6/63

0 0

0 0

Both Both

 \sim \sim

1 5/8 A394 1 5/8 A394

0 0

Ч \leftarrow

0 0

Ч \vdash

 \vdash ----

4 4

- \leftarrow

2P 2X

1Ρ $1 \times$

XY-Symmetry

0

1 0 1

1P 0 1X

0

ļ

X-GenXY

0	0	0	0	0	0	1.25	1.25	1.25	1.25	0	0	0	0	1.25	1.25	1.25	1.25	0	0	0	0	1.25	1.25	1.25	1.25	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	3.125	3.125	3.125	3.125	0	0	0	0	4.75	4.75	4.75	4.75	0	0	0
0	0	0	0	0	0	1.875	1.875	1.875	1.875	0	0	0	0	1.125	1.125	1.125	1.125	0	0	0	0	1.5	1.5	1.5	1.5	0	0	0
Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both
Ч	7	7	4	1	1	1	1	1	1	1	1	Ц	7	7	7	1	1	1	1	1	1	2	2	2	2	Ч	Ч	-
2	2	2	2	2	2	2	2	2	2	4	4	4	4	4	4	4	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
0	0	0	0	0	0	4	4	4	4	0	0	0	0	12	12	12	12	0	0	0	0	14	14	14	14	0	0	0
1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394
Ч	7	1	1	1	1	0.5	0.5	0.5	0.5	1	1	1	7	7	7	1	1	1	1	1	1	1	1	Ч	1	Ч	Ч	Ч
7	Ч	Ч	Ч	Ч	Ч	0.5	0.5	0.5	0.5	1	Ч	Ч	Ч	Ч	Ч	Ч	Ц	Ц	Ч	Ц	Ц	Ц	Ч	Ч	Ч	Ч	Ч	Ч
4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
н	Ч	-1	Ч	Ч	Ч	Ч	Ч	r-1	Ч	Ч	Ч	Ч	Ч	Ч	Ч	Ч	Ч	Ч	г,	r-1	Ч	r-1	Ч	Ч	Ч	Ч	Ч	Ч
2XY	2Ү	3P	3X	3XY	3Ү	4 P	4X	4XY	4 Y	5 P	5X	5XY	5Y	6P	6X	6XY	К9	ΓP	ЛX	ХХL	λL	8P	8X	8XY	8Ү	9S	9X	ХХб
1XY	1Υ	2 P	2X	2XY	2Υ	ЗР	3X	ЗХҮ	3Ү	4 P	4 X	4XY	4 Y	5 P	5X	БХҮ	ΞY	6Р	6X	5ХУ	49	ΖĿ	ТX	ХXL	λL	8 P	8 X	ВХҮ
XY-GenXY	Y-GenXY	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	XY-Symmetry	X-GenXY	XY-GenXY
0 0							5 C	о с						5	5 0	5 0	о с	с С	о с			о с						0
0 1 0	о ⁻¹ с	o ⁻ c	o T o	о ⁻¹ с	о ⁻¹ с	, T (р. с	0	0,10	000	000	000	0	0	5	5	5	" ~ c	ი რი	ი ი ი	ი ^ი ი	о 2 7	с С 1 с с С 1 с с	с т с с С ч с с С ч с с с	с С 1 с С С 1 С С	0 7 7	о ^ф с	04
0 1XY	17	0 2 B	0 2X	2XX 2XX	0 5 K	а С С	o X c	3XY 3XY	р ж с м	4P 0	4X	4X7	₹ 7 0	10 10 10 10	12 75X	12 75 5XY	те , , , 5Y 10 7Б	с, - т 6 Б	, ex	ext	, торо С	0.		15 25 7XY	т. 25 ТГ ЛГ	о 8 р	, ×8 c	8XY 0
0 0						ш Э с	0 U	с ч с	с 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					<u>ل</u> ا م د	ם ייר ייר	ם ייר ייר	שר הרי											

0	0	0	0	0	1.25	1.25	1.25	1.25	0	0	0	0	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1	1	1	1	
0	0	0	0	0	4.75	4.75	4.75	4.75	0	0	0	0	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	0	0	0	0	0
0	0	0	0	0	1.5	1.5	1.5	1.5	0	0	0	0	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	0.875	0.875	0.875	0.875	0.875
Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Both	Long only	Long only	Long only	Long only	Long only
1	Ч	-1	Ч	Ч	7	2	7	2	Ч	Ч	7	Ч	2	2	2	2	7	2	2	2	2	2	2	2	Ч	Ч	-1	Ч	7
з . 5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	1	1	Ц	Ч	Т
0	0	0	0	0	16	16	16	16	0	0	0	0	20	20	20	20	20	20	20	20	20	20	20	20	\sim	~	~	2	7
1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.25 5/8 A394	0.25 5/8 A394	0.25 5/8 A394	0.25 5/8 A394	0.5 5/8 A325	0.5 5/8 A325	0.5 5/8 A325	0.5 5/8 A325	0.5 5/8 A325
1	Ч	Ч	Ч	Ч	1	1	1	1	1	1	1	1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.25	0.25	0.25	0.25	0.5	0.5	0.5	0.5	0.5
1	Ч	Ч	Ч	Ч	1	1	1	1	1	1	1	Ч	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.25	0.25	0.25	0.25	0.5	0.5	0.5	0.5	0.5
4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	Ŋ	Ŋ	Ŋ	Ŋ	Û
Ч	Ч	Ч	Ч	Ч	Ч	Ч	Ч	Ч	Ч	Ч	Ч	Ч	Ч	Ч	Ч	Ч	Ч	Ч	Ч	Ч	r-1	Ч	H	Ч	\sim	\sim	\sim	0	\sim
76	10S	1 0 X	10XY	10Y	11S	11X	11XY	11Y	12S	12X	12XY	12Y	13S	13X	13XY	13Y	14S	14X	14XY	14Y	15P	15X	15XY	15Y	3X	3P	3Ү	3XY	1Y
8Υ	95	76 X6	9XY	76	10S	10X	10XY	10Y	11S	11X	11XY	11Y	12S	12X	12XY	12Y	135	13X	1 3XY	13Y	14S	14X	14XY	14Y	1P	1X	1XY	1Y	3P
Y-GenXY	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	XY-Symmetry	V X-GenXY	XY-GenXY	Y-GenXY	v XY-Symmetry	x-GenXY	u XY-GenXY	u Y-GenXY	u XY-Symmetry	X-GenXY	XY-GenXY	u Y-GenXY	XY-Symmetry	0 X-GenXY	XY-GenXY	0 Y-GenXY	XY-Symmetry
4		4	57	4	51	511	511	đ	10	10	10	10		2 L L L L L L L L L L L L L L L L L L L	2 L L L L L L L L L L L L L L L L L L L	2 CD C	1 . 6 2 2 2 2	,	5 U	 	7 5 0 7 5 0	2 L L L L L L L L L L L L L L L L L L L	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		7 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	6R 0	6R 0	6R 0	6R 0
					C L	- 1		о 1 с - г	•																				2
					с г				0 11P				Ľ	о и •	י י	ים ר י	י י	· ·	n u	∩ ⊔	•	י י	י ר י	7.01 C.C 74Y 74Y C.C	. у то.20 лг лг	.20 15AX	.20 15AXY 25	.23 15AY 25	.27 15BP

Centek Engineering Inc - CL&P # 1281

Page 8/63

Ч	Ч	-1	Ч	Ч	7	1	Ч	£-1	1	1	Ц	Ц	Ч	Ч	Ч	Ч	Ч	Ц	1	Ц	1	Ц	Ч	Ц	Ц	Ч	.0625	.0625
0	0	0	0	0	0	0	0	0	0	0	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.75 1	2.75 1
0.875	0.875	0.875	0.875	0.875	0.875	0.875	0.875	0.875	0.875	0.875	1	1	1	1	1	1	1	1	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	1	1
1 Long only	1 Long only	1 Long only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only
Ч	Ч	1	1	1	1	1	1	1	1	1	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.79	1.79
0	2	2	2	2	2	2	2	2	2	2	ъ	ъ	ഹ	ß	ъ	ъ	ы	ß	4	4	4	4	4	4	4	4	7	2
0.5 5/8 A325	0.5 5/8 A325	0.5 5/8 A325	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Ŋ	Ŋ	ы	Ŋ	ß	ы	ы	ы	ы	Ŋ	Ŋ	Ŋ	Ŋ	Ŋ	Ŋ	Q	Q	Q	ы	Ŋ	ъ	ы	ы	Ŋ	Ŋ	ы	ы	Ŋ	ы
0	7	2	7	7	2	2	7	7	2	2	2	2	7	2	2	7	7	2	2	2	2	2	7	2	2	2	2	5
1 X Y	1X	1P	4 X	4 P	4 X	4 X Y	3Ү	ЗХҮ	3X	3P	5X	5 P	£Σ	5XY	ΥĻ	4XY	4 X	4 P	6X	6Р	К9	6ХҮ	£Σ	5XY	5X	5 P	λX	7P
ЗХ	ЗХҮ	ЗҮ	3 P	3X	ЗХҮ	3Ү	4 P	4 X	4XY	4 X	4 P	4 X	4XY	ΥĻ	5 P	5Χ	5XY	ΞY	5 P	5X	5XY	ΞY	6Р	6X	6XY	49	6P	6X
0 X-GenXY	o XY-GenXY	u Y-GenXY	XY-Symmetry	v X-GenXY	u XY-GenXY	v Y-GenXY	XY-Symmetry	o X-GenXY	XY-GenXY	Y-GenXY	XY-Symmetry	X-GenXY	o XY-GenXY	V-GenXY	XY-Symmetry	x-GenXY	XY-GenXY	V-GenXY	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	XY-Symmetry	X-GenXY
6R 0	6R 0	6R U					о г.	о с г			0 0 0 0 0 0 0 0	2 0 C	с. с. с 2 2 7 С 2 2 7 С	. 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,		2 0 C C C C C C C C C C C C C C C C C C	0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		- - - - - - - - - - - - - - - - - - -	0	0	0	0	0	0	0	0	0
0 0			- 											1 0	1 0	4 C		1 0		0.0.1 0.70	ο'ο'Τ 1 ο 1 ο 1	с, р. т. 1 р. 7 д. г.	то - г 1 0 - г	с, с, г с, с, г л г с, с	с, с, с с, с, с с, с, с	0, 0, 1 0, 0, 1 1, 0, 1	- 0	
15BX	15BXY	15BY	1 6AP	1 6AX	1 6AXY	1 6AY	16BP	2.5 16BX	2.7 16BXY 25	2.7 16BY	су 17АР 5 3 боб	о 0.020 17АХ Б 2 боб				и 0.020 17ВХ Б 2 625	-	и U.) 5	18AX 18AX	18AXY 18AXY 1875	18AY 18AY	1.075 18BP	1.075 18BX	1.075 18BXY	1.075 18BY		4.4375
2.25	с 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	с 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	с ч с ч с	0 0	0.7.0 □ 0 0	0.10	0.2.0 105	101 C		2.1.5 2.10 2.10 2.10 2.10	0 - 1 - C	о 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	с 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	с 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	оло 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	оло 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	лч. ч		•		r <	r <	t' <	÷ ۲	÷ ۲	r <	- - -	7 7

Page 9/63

2.75 1.0625	2.75 1.0625	2.75 1.0625	2.75 1.0625	2.75 1.0625	2.75 1.0625	2.75 1	2.75 1	2.75 1	2.75 1	2.75 1.0625	2.75 1.0625	2.75 1.0625	2.75 1.0625	2.25 1	2.25 1	2.25 1	2.25 1	2.25 1	2.25 1	2.25 1	2.25 1	0 1.0625	0 1.0625	0 1.0625	0 1.0625	0 1.0625	0 1.0625	0 1.0625	0 1.0625
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only
1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.55	1.55	1.55	1.55	1.55	1.55	1.55	1.55	1	1	1	1	1	1	Ч	1
L	L	L	L	L	L	L	L	L	L	L	L	٢	L	9	9	9	9	9	9	9	9	4	4	4	4	4	4	4	4
0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.58 5/8 A394	0.58 5/8 A394	0.58 5/8 A394	0.58 5/8 A394	0.58 5/8 A394	0.58 5/8 A394	0.58 5/8 A394	0.58 5/8 A394	0.56 5/8 A394	0.56 5/8 A394	0.56 5/8 A394	0.56 5/8 A394	0.56 5/8 A394	0.56 5/8 A394	0.56 5/8 A394	0.56 5/8 A394
0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.56	0.56	0.56	0.56	0.56	0.56	0.56	0.56
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.56	0.56	0.56	0.56	0.56	0.56	0.56	0.56
ы	ы	ы	Ŋ	Ŋ	Ŋ	ы	ы	ы	ы	ы	ъ	ы	ы	ы	ß	ß	ß	ß	ы	ы	ы	ы	ы	ы	ы	Ŋ	Ŋ	Ŋ	Ŋ
~	\sim	2	7	2	\sim	0	\sim	7	0	2	2	0	0	0	0	0	0	0	0	\sim	0	2	2	7	\sim	0	0	0	2
ΧL	XX7	6Ү	6ХҮ	6X	6P	8X	8P	81	8 X Y	ΤT	ХХL	ТX	ΤΡ	X6	9S	76	ХХ6	8Ү	8 X Y	8X	8P	1 0 X	10S	1 O Y	10XY	76	УХ 6	X6	98 8
6ХҮ	6Ү	ΤΡ	ТX	TXY	ΤΥ	ΤΡ	ТX	ХХL	ΤL	8 P	8X	8ХҮ	8Ү	8 P	8X	8XY	8Υ	9S	8X	9XY	76	92	X6	УХС	76	10S	10X	10XY	10Y
XY-GenXY	Y-GenXY	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	XY-Symmetry	o X-GenXY	XY-GenXY	Y-GenXY	o XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	o XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	XY-Symmetry	o X-GenXY	o XY-GenXY	U Y-GenXY	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY
c						0								c															
	- · ·	· · ·	· · ·	· · ·	•	· ·	10 10 275	10	10	10	10 10	10	10	11 12	1.120 11 125	1.120 11 125	1.125 11 1255	111	11	11	1.125 11 125	12	12	12	12	12	12	12	12
19AXY 19AXY	2 4.4373 2 19AY 2 4 4375 2	4.43/3 19BP	4.43/3 19BX	4.43/3 19BXY	4.43/5 19BY	4, г 4, г	•		•	С П	20BX	0 4.437/0 20BXY F / /27F	20BY	21AP	21AX	о 4.120 21АХҮ Б 1.125	21AY 21AY		.) 4.120 21BX 7.10F	n u	о. 9 4. 12 9 21ВҮ 3 Б A 12 Б) r	./.5 22AX	./3 22AXY	./5 22AY	1 75 0	.,') 22BX	.,') 22BXY	

Centek Engineering Inc - CL&P # 1281

Page 10/63

0 1.0625	0 1.0625	0 1.0625	0 1.0625	0 1.0625	0 1.0625	0 1.0625	0 1.0625	0 1	0 1	0 1	0 1	0 1	0 1	0 1	0 1	2 1.0625	2 1.0625	2 1.0625	2 1.0625	2 1.0625	2 1.0625	2 1.0625	2 1.0625	0 1	0 1	0 1	0 1	0 1
1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	1	1	1	1	1
1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only
1	1	1	1	1	1	1	1	1	1	1	1	1	Ч	Ч	Ч	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1	Ч	Ч	1	1
m	ω	m	m	m	m	m	m	ς	ŝ	m	с	m	c	c	m	L	L	L	L	L	L	L	L	\sim	2	2	2	~
0.55 5/8 A394	0.55 5/8 A394	0.55 5/8 A394	0.55 5/8 A394	0.55 5/8 A394	0.55 5/8 A394	0.55 5/8 A394	0.55 5/8 A394	0.55 5/8 A394	0.55 5/8 A394	0.55 5/8 A394	0.55 5/8 A394	0.55 5/8 A394	0.55 5/8 A394	0.55 5/8 A394	0.55 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394
0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	Ч	Ч	Ч	1	1	7	Ч	Ч	0.5	0.5	0.5	0.5	0.5
ы	Ŋ	Ŋ	Ŋ	ы	ы	ŝ	ы	ы	ы	ы	ы	ы	ы	ß	ß	ß	ы	ы	ы	ы	ы	ы	ы	ы	ы	Ŋ	Ŋ	ы
7	2	2	2	2	2	7	0	2	2	2	0	0	0	7	0	с	m	m	с	m	Ś	ŝ	с	0	0	0	7	~
11X	115	11Y	11XY	10Y	10XY	1 0 X	105	12X	12S	12Y	12XY	11Y	11XY	11X	11S	20AP	20AP	20AY	20AY	12S	12X	12XY	12Y	135	13X	13XY	13Y	13S
105	1 0 X	10XY	10Y	11S	11X	11XY	11Y	115	11X	11XY	11Y	12S	12X	12XY	12Y	12S	12X	12XY	12Y	20BP	20BX	20BX	20BP	21P	21X	21XY	21Y	22P
0 XY-Symmetry	0 X-GenXY	U XY-GenXY	U Y-GenXY	U XY-Symmetry	U X-GenXY	u XY-GenXY	U Y-GenXY	0 XY-Symmetry	о X-GenXY	o XY-GenXY	Y-GenXY	XY-Symmetry	X-GenXY	0 XY-GenXY	V-GenXY	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	XY-Symmetry
13	13 0	13 0	13 0	13 0	13 0	13 0	13 0	14 0	14 0	14 0	14 0	14 0	14 0	14 0	14 0	15 076	. 0 / J 15 075	15 0	0.075 0 15 0	.8/5 U 15 U			. 0 / J 15 07E	1. a / 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0 0
.75 23AF	.75 23AX	./5 23AXY	./5 23AY	./5 23BP	./5 23BX	./5 23BXY	2.15 U 23BY	24AP	2.23 U 24AX 2.25 D	.23 24AXY 35	.23 24AY	.23 24BP	.23 24BX	2.23 U 24BXY 2.35 O	.23 24BY	.25AP 7 275 0	25AX 0	25AXY 0	25AY 25AY	2 1.375 U 25BP	25BX 0		25BY	26AP	2 6AX	26AXY	5	2

Page 11/63

		1	1	1	1	1	1	1	1	1	1	1	1	Ч	1	1	1	.0625	.0625	.0625	1.0625	.0625	.0625	.0625	.0625	1	1	-
0 0	0	0	0	0	0	0	0	0	0	1.375	1.375	1.375	1.375	1.375	1.375	1.375	1.375	0 1	0 1	0 1	0 1	0 1	0 1	0 1	0 1	0	0	0
	- 1	0.875	0.875	0.875	0.875	0.875	0.875	0.875	0.875	2.875	2.875	2.875	2.875	2.875	2.875	2.875	2.875	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	0.75	0.75	0.75
Long only Long only	onl	Short only	Short only	Short only	Long only	Long only	Long only	Long only	Long only	Long only	Long only	Long only	Long only	Long only	Long only	Long only	Long only	Long only	Long only	Long only	Long only	Long only	Long only					
		1	1	1	Ч	-1	Ц	Ч	Ч	Ч	Ч	Ч	Ч	Ч	1	Ч	Ч	-1	Ч	Ц	1	Ч	Ч	Ч	1	1	1	1
		1	1	1	1	1	1	1	1	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1	1	1	1	1	Ч	Ч	1	1	1	1
0 0		4	4	4	4	4	4	4	4	Ŋ	ы	ß	ъ	Ŋ	ß	ß	С	ß	Û	С	С	С	ы	ъ	л	1	1	Ч
0.5 5/8 A394 0.5 5/8 A394	.5 5/8	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.25 5/8 A394	0.25 5/8 A394	0.25 5/8 A394	0.25 5/8 A394	0.25 5/8 A394	0.25 5/8 A394	0.25 5/8 A394	0.25 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394					
0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1	1	1	1	1	1	1	1	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.5	0.5	0.5
0.5		1	1	1	1	1	1	Т	1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.5	0.5	0.5
വ വ	വ ഗ	IJ	IJ	IJ	ß	ß	ŝ	ŝ	ŝ	4	4	4	4	4	4	4	4	ß	ŝ	ŝ	Ŋ	ŝ	ß	ß	Ŋ	4	4	4
0 0		m	Μ	Μ	с	С	С	m	С	m	С	С	С	m	m	Μ	с	0	2	2	2	2	2	0	2	m	m	m
13X 13XY	13Y	14S	14X	14XY	14Y	20BP	20BX	20BX	20BP	20AP	20AP	20AY	20AY	22P	22X	22XY	22Y	15P	15X	15XY	15Y	22P	22X	22XY	22Y	2P	2Y	2Ү
22X 22XY	22Y	20AP	20AP	20AY	20AY	14S	14X	14XY	14Y	21X	21P	21Y	21XY	20BP	20BX	20BX	20BP	21P	21X	21XY	21Y	15P	15X	15XY	15Y	2X	2XY	2P
X-GenXY XY-GenXY	Y-GenXY	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	Y-Symmetry	Y-Gen	X-Symmetry
0	0 0	5) _								5								~ _		>
16 16	0100	1	17 0	17	17	17 0	17	17	17 0	118	1 18 1 18 2	1. / J 1. 18 1. 75	1. / J 18 / J 18 / J	1 18 (1 18 (1, 1, 0 1, 1, 0 1, 1, 0 1, 0 1, 0 1, 0 1	1. / J 18	1 18 1 18 7	1.00	19	19 0	19	19	19	19 0	19 0	20a	20a	20a
26BX 0 26BXY	0 26BY	27AP	2 TAX	2 TAXY	27AY	27BP	27BX	7 BXY	27BY	28AP 125	28AX 28AX	2.123 28AXY 5 135	28AY 28AY 125	28BP	28BX 28BX	SBXY 8BXY	28BY	29AP	29AX	29AXY	29AY	29BP	29BX	ЭВХҮ	29BY	30AP	30AY	30BP
4		Ц	. 70 10	. v		о ч с	, n , n , n	, ко 2 - КО СССССССО ССССССО СССССССССССОСС	о ч с	, 1 1	י י	о и •	י י	ש ר	n .	റം	ש ר				о С	о - г	о - г	\sim	с, г с г			

	1	1	1.0625	1.0625	1	1	1.0625	1.0625	1	1	1.0625	1.0625	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	1.75	1.75	1.75	1.75	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Short only	1 Short only	1 Short only	1 Short only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Short only	1 Short only	1 Short only	1 Short only
1	1	1	1	1	1	1	1	1	1	1	2	2	1	Ч	Ч	1	1	1	1	1	1	1	1	1	1	1	1	Ц
1	1	1	1	1	1	1	1	1	1	1	1	1	с	m	m	m	2	2	2	2	2	2	2	2	2	2	2	0
0.5 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A325	1 5/8 A325	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394
0.5	Ч	Ч	1	1	1	1	1	1	1	1	1	1	0.5	0.5	0.5	0.5	1	1	1	1	1	1	1	1	1	Ч	1	1
0.5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Ч	1	1	1	1	1	1	1	1	1	1	1	1	Ч
4	4	4	4	4	4	4	4	4	4	4	4	4	9	9	9	9	9	9	9	9	9	9	9	9	Ŋ	Ŋ	Ŋ	Ŋ
m	с	m	m	Μ	m	m	m	С	m	m	С	ю	с	б	С	с	m	с	m	m	m	m	т	с	с	б	m	ω
2XY	3Р	3Y	4Y	4 XY	5 P	5Y	6Ү	6ХҮ	7 P	λL	8Ү	8XY	12S	12Y	12Y	12XY	20AP	20AP	20AY	20AY	20BP	20BX	20BX	20BP	21X	21P	21Y	21XY
2X	3X	ЗХҮ	4 P	4X	5X	5ХҮ	6Р	6X	ХL	ХXL	8 P	8X	12X	12XY	12S	12X	13X	135	13Y	1 3XY	135	13X	1 3XY	13Y	14X	14S	14Y	14XY
X-Gen	Y-Symmetry	Y-Gen	X-Symmetry	X-Gen	Y-Symmetry	Y-Gen	X-Symmetry	X-Gen	Y-Symmetry	Y-Gen	X-Symmetry	X-Gen	Y-Symmetry	Y-Gen	X-Symmetry	X-Gen	XY-Symmetry	V X-GenXY	V XY-GenXY	V Y-GenXY	V XY-Symmetry	о X-GenXY	o XY-GenXY	U Y-GenXY	XY-Symmetry	v X-GenXY	XY-GenXY	v Y-GenXY
0 0		-															0											
0 20a	500	500	500	500	500	500	500	500	500	500	900	36	21	21	21	21	22	22	22	22	22	22	22	22	23	23	23	23
0 30BX	31P	31Y	32P	32X	33P	33Y	34P	34X	35P	35Y	36P	36X	37AP	37AY	37BP	37BX	(,)	38A)	38AX)	38AY	38BF	38B>	38BX)	38BY	39AF	39AX	39AXY	39AY
0 0			-) C	N C	N C	N C	л и С	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 4 0 0 4 0 0 4 0	0 4 C 0 0 0	n ⊔ 0 0 0 0	0 4 0 0 0 0 0	0 4 C	0.10	n ⊔ n n n	0. 4. C	о 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.25

Page 13/63

	1	1	1	1	1	1	1	1	1	1	0625	0.1.0625	0.1.0625	1.0625	1.0625	1.0625	1.0625	1.0625	1	1	1	1	1	1	1	1	-	1
0 0	0	0	0	0	0	0	0	0	0	0	2.375	2.375	2.375	2.375	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	2	2	2	2	0.75	0.75	0.75	0.75	0.875	0.875	0.875	0.875	0.875	0.875
1 Short only 1 Short only		1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0 0	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1	1	1	1	2	2	2	2	2	0
1 5/8 A394 1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394
	Ч	-	2	2	2	2	2	2	2	2	Ч			Ч	Ч	Ц	Ч	Ч	Ц	1	Ц	Ч	Ч	Ц	Ч	Ч	Ч	-
н н	Ч	1	1	1	1	1	1	1	1	1	1	1	Ч	Ч	Ч	Ч	1	1	1	1	1	1	1	Ч	Ч	7	Ч	Ч
പ വ	ы	Ŋ	4	4	4	4	4	4	4	4	9	9	9	9	9	9	9	9	4	4	4	4	Ŋ	Ŋ	Ŋ	Q	Ŋ	Ŋ
ოო	m	m	m	m	m	m	с	с	ω	ω	м	с	ω	ω	ω	ω	ω	m	\sim	2	2	\sim	\sim	0	0	2	0	\sim
22P 22X	22XY	22Y	21XF0.50S	21XF0.50Y	21P	21Y	22PF0.50S	22PF0.50X	22Y	22XY	20BP	20BX	20BX	20BP	22P	22X	22XY	22Y	i0.50E129S	i0.50E129S	i0.50E129S	i0.50E129S	i0.50E113S	i0.50E113S	i0.50E113S	i0.50E113S	i0.50E99S	i0.50E99S
14S 14X	14XY	14Y	21X	21XY	21XF0.50S	21XF0.50Y	22P	22X	22PF0.50S	22PF0.50X	20AP	20AP	20AY	20AY	21P	21X	21XY	21Y	1X 1	1P i	1Y i	1XY j	4X j	4P 1	τ <u>7</u>	4XY 1	6X	6P
XY-Symmetry 0 X-GenXY	×	u Y-GenXY	v Y-Symmetry	v Y-Gen	Y-Symmetry	Y-Gen	X-Symmetry	X-Gen	X-Symmetry	X-Gen	XY-Symmetry	о X-GenXY	0 XY-GenXY	V Y-GenXY		X-GenXY	XY-GenXY	Y-GenXY	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	XY-Symmetry	X-GenXY
23 23 0		23 C				53 C					Ľ	т.23 24 1 об	1.23 24 1.25	1.23 24 1 25	24 24				c 5		щ	с	9					
39BP 3.25 0 39BX	39BXY	3.25 U 39BY	39C1F	3.23 U 39CIY	5.23 U F39C197P	3.23 U F39C197Y 3.25 D	3,23 U 39C2P 3.75 D	39C2X	Э.20 F39C2118P З.25	Э.20 F39C2118X З.25	2.23 40P	40X	TX05 221.	40Y	41P 0	41	41X	41			42XY	42Y	Б.	43A	4 3 A X	4 3 A	4 3B	4 3B

Page 14/63

0 1	0 1	0 1	0 1	0 1	0 1	0 1	0 1	0 1	0 1	0 1	0 1	0 1	0 1	0 1	0 1	0	0 1	0 1	0 1	0 1	0 1.0625	0 1.0625	0 1.0625	0 1.0625	0	0 1	0 1.0625	0 1.0625
Long only 0.875	Short only 1.5	Short only 1.5	Short only 1.5	Short only 0.875																								
1	1 1	1 1	1 1	1 1	1 1	1 1 9	1 1 9	1 1 9	1 1 9	1 1 9	1 1 9	1 1 2	1 1 9	1	1	1	1 1 9	1 1 9	1 1 9	1 1 9	1 1 9	1 1 9	1 1 9	1 1 2	1 1 9	1 1 9	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	7
1 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	0.5 5/8 A394												
7	7	Ч	1	7	1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1	1	Ч	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Ч	Ч	Ч	1	Ч	7	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	1	1	1	1	1	1	Ч	1	Ч	Ч	1
ъ	Ŋ	Ŋ	IJ	IJ	IJ	IJ	IJ	С	Ŋ	വ	വ	ы	Ŋ	Ŋ	ß	ß	С	С	С	С	С	വ	വ	ы	4	4	4	4
0	2	2	2	2	2	2	2	\sim	2	\sim	\sim	\sim	2	\sim	\sim	\sim	0	ω	ω	С	\sim	\sim	\sim	\sim	Ś	Ś	ω	ŝ
i0.50E99S	i0.50E99S	i0.50E85S	i0.50E85S	i0.50E85S	i0.50E85S	28Y	28P	19Y	19P	27Y	27P	18Y	18P	26Y	26P	1 7 Y	17P	17Y	18Y	19Y	2P	2X	2XY	2Υ	17P	17Y	3P	3Ү
6Ү	6XY	8X	8P	8Υ	8XY	8X	8XY	28P	28Y	6X	6ХҮ	27P	27Y	4X	4XY	26P	26Y	17P	18P	19P	16P	16X	16X	16P	3X	3XY	23P	23P
XY-GenXY	Y-GenXY	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	Y-Symmetry	Y-Gen	None	None	None	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY		u Y-Gen	V Y-Symmetry	Y-Gen										
						-	27 0																		30	30	30	
43BX	1.5 43BY	1.5 43CP	43C	4 3 C X	1.5 43CY		4 U 44Y	44AP	- 44AY	44BP	44BY	4 4 4 C P	4 44CY	44DP	4 4DY	44EP	۲ 0 T	45P	45AP	45BP				46	47P	0 474 0 474 0	47AP 0	4 7 A Y

Page 15/63

Ч	1	1	1	1.0625	1.0625	1	1	2.25	2.25	2.25	2.25	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1.5	1.5	1	Ч
0	0	0	0	0 1	0 1	0	0	1.875	1.875	1.875	1.875	7	2	1.75	1.75	1.75	1.75	1.5	1.5	1.5	1.5	2.625	2.625	2.5	2.5	2.5	2.5	2.75	2.75
0.875	0.875	0.875	0.875	0.875	0.875	0.875	0.875	0.75	0.75	0.75	0.75	.1875	.1875	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	1	1	0.5	0.5	1	1	0.75	0.75
1 Short only	1 Short only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only 1	1 Long only 1	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only	1 Long only						
1	Ц	1	Ч	Ч	1	Ч	1	1.59	1.59	1.59	1.59	1.3	1.3	2.24	2.24	1.54	1.54	2.1	2.1	2.1	2.1	2.71	2.71	1.82	1.82	2	2	2.66	2.66
2	2	2	2	2	2	2	7	2	2	2	2	7	7	4	4	4	4	с	m	с	с	ß	ъ	ъ	ы	ы	ъ	9	9
0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	1 5/8 A394	1 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	0.5 5/8 A394	0.5 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394						
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	Ч		0.5	0.5	Ч	Ц	Ц	7	Ч	Ч	0.5	0.5	Ч	Ц	Ч	Ч	Ц	Ч
Ч	1	Ч	Ч	1	1	1	1	0.5	0.5	0.5	0.5	Ч	Ч	0.5	0.5	Ч	1	1	1	1	1	0.5	0.5	Ч	Ч	Ч	Ч	Ч	Ч
4	4	4	4	4	4	4	4	ъ	ъ	ы	ы	9	9	ы	Ŋ	9	9	Q	ы	ы	ß	Ŋ	ы	9	9	Ŋ	Ŋ	Ŋ	Ŋ
m	m	m	m	m	m	m	m	с	с	с	с	с	с	Ś	с	ω	ω	с	ŝ	m	С	m	с	с	с	с	с	ω	m
18P	18Y	Ъ	£Υ	19P	19Y	ΤΡ	ΤŢ	1P	1X	1 X Y	1Y	1P	1Y	4 P	4Υ	4P	4X	26P	26Y	17P	1 7 Y	6P	6Ү	6P	6Ү	27P	27Y	18P	18Y
5X	БХҮ	24P	24P	ТX	XXL	25P	25P	16P	16X	16X	16P	1X	1XY	23P	23P	4 X	4XY	4 X	4XY	26P	26Y	24P	24P	6X	6ХҮ	6X	6ХҮ	27P	27Y
Y-Symmetry	Y-Gen	Y-Symmetry	Y-Gen	Y-Symmetry	u Y-Gen	u Y-Symmetry	Y-Gen	XY-Symmetry	X-GenXY	XY-GenXY	Y-GenXY	Y-Symmetry	Y-Gen	Y-Symmetry	Y-Gen	Y-Symmetry	Y-Gen	Y-Symmetry	Y-Gen	Y-Symmetry	Y-Gen	Y-Symmetry	Y-Gen	Y-Symmetry	Y-Gen	Y-Symmetry	Y-Gen	Y-Symmetry	Y-Gen
c												C						~		>		0		c					>
31	31 0	31 0	31 0	30	30	30	30 0	32 0	32 32	32 32	32 32	32	32 32 0.97	0.0/0 33 23	0.075 33 275	333 333 75	0.075 33 0.275	333.0 333.0 125	1,125 1,125 1,125	120 33 1175	1,125 1,125	1 375	1.075 34 1.075	1.0,0 34 275	0,0 34 275	 34 275	0,04 1,04	373 34 1 625	34
48P	48Y 0	8AP	18AY		49Y 0	9AP	U 19AY	50P 2 125	50X 5125 2125	2.125 0XY 2.125	50Y 50Y	2.120 50AP	0.4Y	51P	51Y 51Y 6.25	0.20 1AP 6.25	0.2J 1AY 6 25	51BP	*.2/2 L 51BY	51CP	3.0/J	52P 125	52Y 52Y	52AP		2BP 1	2BY 1	2CP 275 875	52CY
ſ		· ·	· ·	•	700.	о г •	с/ · т 7 г 4	 1	. 10E	. 10E	10E	- · ·	· ·	V C	· ·	• c	· ·	•		9	. 02J	о 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	л и ч с	· ·	14 <	μ α		о с 0	

Page 16/63

1	1	1	1	2.6875	2.6875	1	1	1.0625	.0625	0	0	0	0	0	0	0	1.25	0	0	0	0	0	0	0	0	0	0	0
1.5	1.5	1.5	1.5	1.5 2	1.5 2	2.25	2.25	0 1	0 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	1.5	1.5	0	0	0	0	0	0	0	m	0	0	0	0	0	0	0	0	0	0	0
1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Short only	1 Long only	1 Long only	1 Long only	1 Long only	0	0	0	0	0	0	0	1 Long only											
2.24	2.24	Ч	⊢1	2	2	2.21	2.21	1	1	0	0	0	0	0	0	0	1	Ц	1	1	1	1	1	Ч	Ч	Ч	Ч	
4	4	4	4	Ś	m	4	4	Ч	Ц	0	0	0	0	0	0	0	1	Ч	1	1	1	Ч	Ч			Ч	Ч	
0.5 5/8 A394	0.5 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1 5/8 A394	1	1	1	1	1	1	1	1 5/8 A325											
0.5	0.5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0.5	0.5	1	Ч	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Ч	1	H
Ŋ	Ŋ	9	9	Ŋ	С	ы	Ŋ	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
m	m	m	ω	m	Μ	m	m	m	с	Ч	Ч	Ч	Ч	Ч	Ч	Ч	m	m	m	m	m	m	с	с	с	ю	ω	m
8P	8Y	8P	8Ү	28P	28Y	19P	19Y	1Y	1 X Y	30P	31P	32P	33P	34P	35P	36P	i0.50E129S	0.50E113S	i0.50E99S	10.50E85S	35P	35P	34P	34P	33P	33P	32P	32P
25P	25P	8X	8XY	8X	8XY	28P	28Y	1 P	1X	29P	30P	31P	32P	33P	34P	35P	35P i	34P i	33P	32P	1X	1P	4X	4 P	6X	6P	8X	8P
Y-Symmetry	Y-Gen	Y-Symmetry	Y-Gen	Y-Symmetry	Y-Gen	Y-Symmetry	Y-Gen	X-Symmetry	X-Gen	None	None	None	None	None	None	None	None	None	None	None	X-Symmetry	X-Gen	X-Symmetry	X-Gen	X-Symmetry	X-Gen	X-Symmetry	X-Gen
0								5 c																				
1.625 33 23	. 020 33 67 E	. 020 33 67E	. 020 33 675	. 020 33	. 020 33 675	. 02J 33 1 1 7E	1.125 1.125	35 35	35	Pwmnt	Pwmnt	Pwmnt	Pwmnt	Pwmnt	Pwmnt	Pwmnt	Plate	PMBR1	PMBR1	PMBR1	ac	BraceR	PMBR2	PMBR2	PMBR2	PMBR2	PMBR2	PMBR2 0
6.875 53P 275	4.37.3 U 53Y	4.3/0 U 53AP	53AY U.	53BP	4.023 U. 53BY 1.625 D	4.020 U. 53CP	0 0.0/0 53CY 5 075		54X	1 4665 0	g100P	g101P	g102P	g103P 0	g104P	g105P	g106P	g107P 0	g108P 0	g109P 0		g110X	g111P	g111X	g112P	g112X	g113P 0	g113X 0

0	0	0	0	0	0	0	0	0																			
0	0	0	0	0	0	0	0	0		Override	Comp.	Capacity		(kips)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0	0	0	0	0	0	0	0			Dist.	Tension Ca	Capacity	(kips)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Long only	Long only	Long only	Long only	Long only	Long only	Long only	Long only			RTE End RTE Edge	Dist. I	Tension Ten	Capacity Capa	(kips) (J	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1	1 1	L L	1	Т	1	1 1	1 1	0					Cape		.000		.000		.000								
Ч	1	1	1	1	1	1	1	0		let Rupture Warnings	Tension ors	Capacity		(kips)	0	0.000	0	0.000	0	0.000	0.000	0.000	60.417	60.417	60.417	60.417	0.000
1	1	Ч	1	1	1	1	1	0		Net Way	Section T or Errors	Tension	Capacity	(kips)	47.340	47.340	47.340	47.340	47.340	47.340	47.340	47.340	47.340	47.340	47.340	47.340	97.650
5/8 A325	5/8 A325	5/8 A325	5/8 A325	5/8 A325	5/8 A325	5/8 A325	5/8 A325			Connection	Bearing	Capacity		(kips)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	54.375	54.375	54.375	54.375	0.000
1 1	1 1	1	1	1	1 1	1 1	1 1	1		Connection Connection	Shear	Capacity		(kips)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	36.400	36.400	36.400	36.400	0.000
Ц	1	1	1	1	1	1	1	1		L/r Co	Comp.	Capacity		(kips)	49.257	49.257	49.257	49.257	49.257	49.257	49.257	49.257	53.833	53.833	53.833	53.833	91.206
3	3 4	3	3	3 4	3 4	3 4	3 4	1		Length		Cal		(ft)	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	7.00	7.00	7.00	7.00	8.00
31P	20AY	31P	31P	30P		30P	30P	37P		L/r Lei					78	78	78	78	78	78	78	78	61	61	61	61	08
					P 21XF0.50Y					Tension	Control	riterion			Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Shear	Shear	Shear	Shear	Net Sect
20AP	31P	20BX	20BP	21XF0.50S	30P	22XY	22Y	36P		Design	Tension Face	Capacity Criterion Member	4	kips)	r 47.340 Antomatic	0	0	0	0	Automatic r 47.340	Automatic r 47.340	0	Automatic r 36.400	Automatic r 36.400	Automatic r 36.400	Automatic r 36.400	Automatic r 97.650 Automatic
None	None	X-Symmetry	X-Gen	None	None	X-Symmetry	X-Gen	None	des:	Comp.	Control Tension	on rol			L/r Ant	ц. т.	L/F	L/r L/r	L/r L/r	Aut L/r	Aut L/r	Aut L/r	Aut Shear	Shear	Aut Shear	Shear	Aut L/r Aut
0) c					5 0		0 0	and Overrides:	Design	Comp. Tension 1	ty itv		(kips) (kips) (kips)	49.257 0 000	49.257	49.257	49.257	u.uuu 49.257	0.000 49.257	0.000 49.257	0.000 49.257	0.000 36.400	U.UUU 36.400	0.000 36.400	0.000 36.400	u.UUU 91.206 0.000
PMBR3 0	PMBR4	PMBR4	PMBR4	PMBR4	U PMBR5	U PMBR5	U PMBR5	u Pwmnt 0	Capacities a	Group	. Label Comp. Te				1	Ч	Ч	Ч	1	1	1	1	1	Ч	1	1	0
g114P 0	g115P	g116P	g116X	g117P	0 g118P 0	0 g120P	0 g120X	о 9121Р 0		6	el)	4		1P	$1 \mathrm{X}$	lXY	1Υ	2 P	2X	2XY	2Υ	3Р	3X	ЗХҮ	3Ү	4 P
0								5 6	Member	Memb		Capacity	-	(kips)	000 0			0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Page 18/63

0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	183.656	183.656	183.656	183.656	0.000	0.000	0.000	0.000	395.849	395.849	395.849	395.849	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	494.812	494.812	494.812	494.812	0.000	0.000	0.000
97.650	97.650	97.650	97.650	97.650	97.650	97.650	231.750	231.750	231.750	231.750	231.750	231.750	231.750	231.750	286.897	286.897	286.897	286.897	286.897	286.897	286.897	286.897	286.897	286.897	286.897	286.897	330.839	330.839	330.839
0.000	0.000	0.000	203.906	203.906	203.906	203.906	0.000	0.000	0.000	0.000	380.624	380.624	380.624	380.624	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	543.749	543.749	543.749	543.749	0.000	0.000	0.000
0.000	0.000	0.000	109.200	109.200	109.200	109.200	0.000	0.000	0.000	0.000	254.800	254.800	254.800	254.800	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	291.200	291.200	291.200	291.200	0.000	0.000	0.000
91.206	91.206	91.206	99.083	99.083	99.083	99.083	249.636	249.636	249.636	249.636	249.636	249.636	249.636	249.636	306.646	306.646	306.646	306.646	306.646	306.646	306.646	306.646	306.646	306.646	306.646	306.646	335.162	335.162	335.162
8.00	8.00	8.00	6.05	6.05	6.05	6.05	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.92	7.92	7.92	7.92	7.92	7.92	7.92	7.92	7.92	7.92	7.92	7.92	10.13	10.13	10.13
8 0	80	80	60	60	60	60	53	53	53	53	53	53	53	53	60	60	60	60	60	60	60	60	60	60	60	60	LL	LL	77
Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect
L/r 97.650	Automatic L/r 97.650	L/r 97.650	L/r 97.650	L/r 97.650	Automatic L/r 97.650	Automatic L/r 97.650	Automatic L/r 231.750	Automatic L/r 231.750	Automatic L/r 231.750	Automatic L/r 231.750	L/r 231.750	L/r 231.750	Automatic L/r 231.750	Automatic L/r 231.750	Automatic L/r 286.897	Automatic Shear 286.897	Automatic Shear 286.897	Automatic Shear 286.897	Ηœ·	Automatic L/r 330.839	Automatic L/r 330.839	L/r 330.839							
2 91.206	0.000 2 91.206 0.000	2 91.206	2 99.083	2 99.083	0.000 2 99.083	0.000 2 99.083	0.000 3 249.636	0.000 3 249.636	0.000 3 249.636	0.000 3 249.636 2 200	0.000 3 249.636 2 200	3 249.636	0.000 3 249.636	0.000 3 249.636	4 306.646	4 306.646	4 306.646	4 306.646	0.000 4 306.646	4 306.646	0.000 4 306.646	4 306.646	0.000 4 291.200	4 291.200	4 291.200	4 291.200	0.000 5 335.162	. UU 35.	5 335.162
4X	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0.000 11P	0.000 11X	0.000 11XY

Page 19/63

0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	000.000	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.000	0.000	000.000	000.000	0.000
0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	672.074	672.074	672.074	672.074	672.074	672.074	672.074	672.074	672.074	672.074	672.074	672.074	24.084	24.084	24.084	24.084	24.084	24.084	24.084	24.084	18.125	18.125	18.125	18.125	18.125	18.125	18.125	18.125
330.839	330.839	330.839	330.839	330.839	330.839	330.839	330.839	330.839	330.839	330,839	330.839	330.839	32.987	32.987	32.987	32.987	32.987	32.987	32.987	32.987	18.650	18.650	18.650	18.650	18.650	18.650	18.650	18.650
0.000	815.624	815.624	815.624	815.624	815.624	815.624	815.624	815.624	815.624	815.624	815.624	815.624	27.187	27.187	27.187	27.187	27.187	27.187	27.187	27.187	20.391	20.391	20.391	20.391	20.391	20.391	20.391	20.391
0.000	364.000	364.000	364.000	364.000	364.000	364.000	364.000	364.000	364.000	364.000	364.000	364.000	33.600	33.600	33.600	33.600	33.600	33.600	33.600	33.600	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200
335.162	385.718	385.718	385.718	385.718	368.010	368.010	368.010	368.010	381.402	381.402	381.402	381.402	20.366	20.366	20.366	20.366	20.366	20.366	20.366	20.366	14.303	14.303	14.303	14.303	14.303	14.303	14.303	14.303
10.13	11.83	11.83	11.83	11.83	15.32	15.32	15.32	15.32	25.53	25.53	25.53	25.53	10.82	10.82	10.82	10.82	10.82	10.82	10.82	10.82	9.22	9.22	9.22	9.22	9.22	9.22	9.22	9.22
L L	45	45	45	45	58	58	58	58	48	48	48	48	132	132	132	132	132	132	132	132	130	130	130	130	130	130	130	130
Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture
Automatic L/r 330.839	Automatic Shear 330.839	Automatic Shear 330.839	Automatic Shear 330.839	Shear 330.839	Automatic Shear 330.839	Automatic Shear 330,839	Automatic Shear 330.839	Automatic Shear 330.839	Automatic Shear 330.839	Automatic Shear 330.839	Auromatic Shear 330.839	Automatic Shear 330.839	Automatic L/r 24.084	L/r 24.084	L/r 24.084	L/r 18.125	Automatic L/r 18.125	Automatic L/r 18.125	Automatic L/r 18.125	L/r 18.125	L/r 18.125	L/r 18.125	Aucomatic L/r 18.125 Automatic					
0.000 5 335.162	5 364.000	5 364.000	5 364.000	5 364.000	0.000 5 364.000	5 364.000	0.000 5 364.000	0.000 5 364.000	5 364.000	5 364.000	5 364.000	0.000 5 364.000	0.000 6R 20.366	U.UU 6R 20.366	U.UU 6R 20.366	U.UU 6R 20.366	0.000 6R 20.366	U.UU 6R 20.366	U.UU 6R 20.366	0.000 6R 20.366	7 14.303	0.000 7 14.303 0.000	0.000 7 14.303 0.000	7 14.303	7 14.303	7 14.303	7 14.303	7 14.303 0.000
	0.000 12P	•	•	0.000 12Y	0.000 13P	0.000 13X	•	0.000 13Y	0.000 14P	0.000 14X	U.UUU 14XY	0.000 14Y	0.000 15AP	U.UUU 15AX	U.UUU 15AXY	0.000 15AY	0.000 15BP	0.000 15BX	•	0.000 15BY	•	0.000 16AX	•	U.UUU 16AY	0.000 16BP	0.000 16BX	U.UUU 16BXY	0.000 16BY

0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
52.912	52,912	52.912	52.912	52.912	52,912	52.912	52.912	42.647	42.647	42.647	42.647	42.647	42.647	42.647	42.647	74.976	74.976	74.976	74.976	74.976	74.976	74.976	74.976	74.976	74.976	74.976	74.976	74.976	74.976
44.185	44.185	44.185	44.185	44.185	44.185	44.185	44.185	40.399	40.399	40.399	40.399	40.399	40.399	40.399	40.399	59.307	59.307	59.307	59.307	59.307	59.307	59.307	59.307	59.307	59.307	59.307	59.307	59.307	59.307
67.969	67.969	67.969	67.969	67.969	67.969	67.969	67.969	54.375	54.375	54.375	54.375	54.375	54.375	54.375	54.375	118.945	118.945	118.945	118.945	118.945	118.945	118.945	118.945	118.945	118.945	118.945	118.945	118.945	118.945
45.500	45.500	45.500	45.500	45.500	45.500	45.500	45.500	36.400	36.400	36.400	36.400	36.400	36.400	36.400	36.400	63.700	63.700	63.700	63.700	63.700	63.700	63.700	63.700	63.700	63.700	63.700	63.700	63.700	63.700
39.613	39.613	39.613	39.613	39.613	39.613	39.613	39.613	32.738	32.738	32.738	32.738	32.738	32.738	32.738	32.738	61.204	61.204	61.204	61.204	61.204	61.204	61.204	61.204	61.204	61.204	61.204	61.204	61.204	61.204
10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	8.52	8.52	8.52	8.52	8.52	8.52	8.52	8.52	9.22	9.22	9.22	9.22	9.22	9.22	9.22	9.22	9.22	9.22	9.22	9.22	9.22	9.22
100	100	100	100	100	100	100	100	104	104	104	104	104	104	104	104	78	78	78	78	78	78	78	78	78	78	78	78	78	78
Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect					
L/r 44.185	Automatic L/r 44.185	L/r 44.185	L/r 44.185	L/r 44.185	L/r 44.185	L/r 44.185	L/r 44.185	L/r 36.400	Automatic L/r 36.400	L/r 36.400	L/r 36.400	L/r 36.400	Auromatic L/r 36.400	Automatic L/r 36.400	Automatic L/r 36.400	Automatic L/r 59.307	Automatic L/r 59.307	Automatic L/r 59.307	Automatic L/r 59.307	L/r 59.307	L/r 59.307	Automatic L/r 59.307	Automatic L/r 59.307	L/r 59.307					
39,613	0.000 39.613 0.000	0.000 39.613 0.000	0.000 39.613 0.000	39.613	39.613	0.000 39.613 0.000	0.000 39.613 0.000	0.000 32.738	0.000 32.738 0.000	32.738	32.738	0.000 32.738	0.000 32.738	0.000 32.738	0.000 32.738 	0.000 61.204	0.000 61.204	0.000 61.204	0.000 61.204	0.000 61.204	0.000 61.204 0.000	0.000 61.204	0.000 61.204 0.000	0.000 61.204 0.000	0.000 61.204 0.000	0.000 61.204 0.000	0.000 61.204	0.000 61.204 0.000	61.204
80	00	ω	ω	ω	ω	80	ω	6	0	6	6	0	6	0	0	10	10	10	10	10	10	10	10	10	10	10	10	10	10
17AP	0.000 17AX	0.000 17AXY)) () (0.000 17BP	· ·	U.UUU 17BXY	U.UUU 17BY	0.000 18AP	U.UUU 18AX	0.000 18AXY	0.000 18AY	0.000 18BP	nn.	0.000 18BXY	0.000 18BY	0.000 19AP	0.000 19AX	0.000 19AXY	0.000 19AY	U.UUU 19BP	U.UUU 19BX	nn.	U.UUU 19BY	nn.	0.000 20AX	0.000 20AXY	U.UUU 20AY	0.000 20BP	0.000 20BX

0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
74.976	74.976	46.012	46.012	46.012	46.012	46.012	46.012	46.012	46.012	42.206	42.206	42.206	42.206	42.206	42.206	42.206	42.206	38.516	38.516	38.516	38.516	38.516	38.516	38.516	38.516	36.250	36.250	36.250
59.307	59.307	45.178	45.178	45.178	45.178	45.178	45.178	45.178	45.178	40.581	40.581	40.581	40.581	40.581	40.581	40.581	40.581	40.419	40.419	40.419	40.419	40.419	40.419	40.419	40.419	40.581	40.581	40.581
118.945	118.945	81.562	81.562	81.562	81.562	81.562	81.562	81.562	81.562	54.375	54.375	54.375	54.375	54.375	54.375	54.375	54.375	40.781	40.781	40.781	40.781	40.781	40.781	40.781	40.781	40.781	40.781	40.781
63.700	63.700	54.600	54.600	54.600	54.600	54.600	54.600	54.600	54.600	36.400	36.400	36.400	36.400	36.400	36.400	36.400	36.400	27.300	27.300	27.300	27.300	27.300	27.300	27.300	27.300	27.300	27.300	27.300
61.204	61.204	44.335	44.335	44.335	44.335	44.335	44.335	44.335	44.335	30.985	30.985	30.985	30.985	30.985	30.985	30.985	30.985	22.542	22.542	22.542	22.542	22.542	22.542	22.542	22.542	21.431	21.431	21.431
9.22	9.22	10.60	10.60	10.60	10.60	10.60	10.60	10.60	10.60	12.25	12.25	12.25	12.25	12.25	12.25	12.25	12.25	14.07	14.07	14.07	14.07	14.07	14.07	14.07	14.07	17.45	17.45	17.45
78	78	96	96	96	96	96	96	96	96	126	126	126	126	126	126	126	126	147	147	147	147	147	147	147	147	174	174	174
Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear
Automatic L/r 59.307	Automatic L/r 59.307	Automatic L/r 45.178	L/r 45.178	L/r 45.178	L/r 45.178	Automatic L/r 45.178	Automatic L/r 45.178	L/r 45.178	L/r 45.178	L/r 36.400	Auromatic L/r 36.400	Automatic L/r 36.400	L/r 27.300	Automatic L/r 27.300	L/r 27.300	L/r 27.300	L/r 27.300	L/r 27.300	L/r 27.300	L/r 27.300	L/r 27.300	L/r 27.300	L/r 27.300 Automatic					
			44.335 0.000						44.335 0.000																		21.431	
10	10	11	11	11	11	11	11	11	11	12	12	12	12	12	12	12	12	13	13	13	13	13	13	13	13	14	14	14
0.000 20BXY	0.000 20BY	00.00	0.000 21AX 0.000	0.000 21AXY 0.000	0.000 21AY	0.000 21BP	0.000 21BX	nn °	0.000 21BY 0.000	22AP	0.000 22AX	nn.	0.000 22AY	00.00	0.000 22BX	00.	0.000 22BY	0.000 23AP 0.000	0.000 23AX	· ·	0.000 23AY	nn.	0.000 23BX	0.000 23BXY 0.000		0.000 24AP	0.000 24AX	0.000 24AXY 0.000

0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
36.250	36.250	36.250	36.250	36.250	72.037	72.037	72.037	72.037	72.037	72.037	72.037	72.037	18.125	18.125	18,125	18.125	18.125	18.125	18.125	18.125	48.333	48.333	48.333	48.333	48.333	48.333	48.333	48.333	60.337
40.581	40.581	40.581	40.581	40.581	36.268	36.268	36.268	36.268	36.268	36.268	36.268	36.268	18.448	18.448	18.448	18.448	18.448	18.448	18.448	18.448	24.381	24.381	24.381	24.381	24.381	24.381	24.381	24.381	47.101
40.781	40.781	40.781	40.781	40.781	95.156	95.156	95.156	95.156	95.156	95.156	95.156	95.156	20.391	20.391	20.391	20.391	20.391	20.391	20.391	20.391	54.375	54.375	54.375	54.375	54.375	54.375	54.375	54.375	67.969
27.300	27.300	27.300	27.300	27.300	63.700	63.700	63.700	63.700	63.700	63.700	63.700	63.700	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	36.400	36.400	36.400	36.400	36.400	36.400	36.400	36.400	45.500
21.431	21.431	21.431	21.431	21.431	33.799	33.799	33.799	33.799	33.799	33.799	33.799	33.799	4.044	4.044	4.044	4.044	4.044	4.044	4.044	4.044	6.420	6.420	6.420	6.420	6.420	6.420	6.420	6.420	11.489
17.45	17.45	17.45	17.45	17.45	14.10	14.10	14.10	14.10	14.10	14.10	14.10	14.10	16.85	16.85	16.85	16.85	16.85	16.85	16.85	16.85	19.19	19.19	19.19	19.19	19.19	19.19	19.19	19.19	15.32
174	174	174	174	174	128	128	128	128	128	128	128	128	257	257	257	257	257	257	257	257	265	265	265	265	265	265	265	265	205
Shear	Shear	Shear	Shear	Shear	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Net Sect	Net Sect	Net Sect	Shear					
ц/т 27.300	Automatic L/r 27.300	L/r 27.300	Automatic L/r 27.300	L/r 27.300	L/r 36.268	Automatic L/r 36.268	Automatic L/r 36.268	L/r 36.268	Aucomatic L/r 36.268	L/r 36.268	L/r 36.268	L/r 36.268	Auromatic L/r 18.125	Automatic L/r 18.125	Auromatic L/r 18.125	Automatic L/r 18.125	L/r 18.125	L/r 18.125	Automatic L/r 18.125	Aucomatic L/r 18.125	L/r 24.381	Aucomatic L/r 24.381	Auromatic L/r 24.381	L/r 24.381	Auromatic L/r 24.381	L/r 24.381	L/r 24.381	Automatic L/r 24.381 Mittomatic	L/r 45.500
21.431	0.000 21.431 0.000	21.431	21.431 21.431	21.431 21.431	33.799	33.799 33.799	33.799	33.799	33.799	33.799	33.799	33.799	4.044 4.044	0.000 4.044 0.020	4.044 4.044	4.044	4.044	4.044	4.044 0.044	4.044	0.000 6.420 0.000	0.000 6.420 0.000		0.000 6.420 0.000	0.000 6.420 0.000	0.000 6.420 0.000	0.000 6.420	0.000 0.420	11.489
14	14	14	14	14	15	15	15	15	15	15	15	15	16	16	16	16	16	16	16	16	17	17	17	17	17	17	17	17	18
24AY	0.000 24BP	0.000 24BX	0.000 24BXY 0.000	0.000 24BY	0.000 25AP	n .	0.000 25AXY 0.000	0.000 25AY	0.000 25BP	0.000 25BX	0.000 25BXY	0.000 25BY	0.000 26AP	0.000 26AX	0.000 26AXY	0.000 26AY	0.000 26BP	0.000 26BX	0.000 26BXY 0.000	0.000 26BY	0.000 27AP	27AX	27AXY 27AXY	U.UUU 27AY 0.000	0.000 27BP	0.000 27BX	27BXY	0.000 27BY 0.000	0.000 28AP

0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
60.337	60.337	60.337	60.337	60.337	60.337	60.337	50.906	50.906	50.906	50.906	50.906	50.906	50.906	50.906	6.609	6.609	6.609	6.609	6.609	6.609	7.017	7.017	6.609	6.609	7.017	7.017	6.609	6.609
47.101	47.101	47.101	47.101	47.101	47.101	47.101	44.469	44.469	44.469	44.469	44.469	44.469	44.469	44.469	15.532	15.532	15.532	15.532	15.532	15.532	15.532	15.532	15.532	15.532	15.532	15.532	15.532	15.532
67.969	67.969	67.969	67.969	67.969	67.969	67.969	67.969	67.969	67.969	67.969	67.969	67.969	67.969	67.969	10.195	10.195	10.195	10.195	10.195	10.195	10.195	10.195	10.195	10.195	10.195	10.195	10.195	10.195
45.500	45.500	45.500	45.500	45.500	45.500	45.500	45.500	45.500	45.500	45.500	45.500	45.500	45.500	45.500	9.100	9.100	9.100	9.100	9.100	9.100	9.100	9.100	9.100	9.100	9.100	9.100	9.100	9.100
11.489	11.489	11.489	11.489	11.489	11.489	11.489	25.652	25.652	25.652	25.652	25.652	25.652	25.652	25.652	13.441	13.441	13.441	13.441	4.027	4.027	4.027	4.027	4.027	4.027	4.027	4.027	4.027	4.027
15.32	15.32	15.32	15.32	15.32	15.32	15.32	28.52	28.52	28.52	28.52	28.52	28.52	28.52	28.52	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
205	205	205	205	205	205	205	136	136	136	136	136	136	136	136	105	105	105	105	210	210	210	210	210	210	210	210	210	210
Shear	Shear	Shear	Shear	Shear	Shear	Shear	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture
Automatic L/r 45.500	L/r 45.500	L/r 45.500	L/r 45.500	L/r 45.500	Automatic L/r 45.500	Automatic L/r 45.500	0	0	0	0	0	0	0	0	Automatic Shear 6.609	Automatic Shear 6.609	Automatic Shear 6.609	Automatic Shear 6.609	Automatic L/r 6.609	L/r 6.609	L/r 7.017	L/r 7.017	Automatic L/r 6.609	Automatic L/r 6.609	L/r 7.017	L/r 7.017	L/r 6.609	Automatic L/r 6.609 Automatic
0.000 11.489	11.489	11.489	11.489	11.489	11.489	0.000 11.489	0.000 25.652 2.052	25.652	25.652	25.652	25.652	0.000 25.652	0.000 25.652	0.000 25.652	9.100	9.100	0.000 9.100	0.000 9.100	4.027	4.027	4.027	4.027	4.027	4.027 4.027	4.027	4.027	4.027	4.027 4.027 0.000
18	18	18	18	18	18	18	19	19	19	19	19	19	19	19	20a	20a	20a	20a	20	20	20	20	20	20	20	20	20	20
0.000 28AX	0.000 28AXY	U.UUU 28AY	0.000 28BP	0.000 28BX	0.000 28BXY	0.000 28BY	. uu	0.000 29AX	nn 0	0.000 29AY	0.000 29BP	0.000 29BX	0.000 29BXY	0.000 29BY	0.000 30AP	0.000 30AY	0.000 30BP	0.000 30BX	0.000 31P	0.000 31Y	0.000 32P	0.000 32X	0.000 33P	0.000 33Y	0.000 34P	0.000 34X	0.000 35P	0.000 35Y

0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
14.864	14.864	36.250	36.250	36.250	36.250	18.125	18.125	18.125	18.125	18.125	18.125	18.125	18.125	24.167	24.167	24.167	24.167	24.167	24.167	24.167	24.167	24.167	24.167	24.167	24.167	24.167	24.167	24.167	24.167
31.823	31.823	48.519	48.519	48.519	48.519	30.760	30.760	30.760	30.760	30.760	30.760	30.760	30.760	40.581	40.581	40.581	40.581	40.581	40.581	40.581	40.581	40.581	40.581	40.581	40.581	40.581	40.581	40.581	40.581
20.391	20.391	40.781	40.781	40.781	40.781	20.391	20.391	20.391	20.391	20.391	20.391	20.391	20.391	27.187	27.187	27.187	27.187	27.187	27.187	27.187	27.187	27.187	27.187	27.187	27.187	27.187	27.187	27.187	27.187
16.800	16.800	27.300	27.300	27.300	27.300	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200
19.743	19.743	27.341	27.341	27.341	27.341	11.503	11.503	11.503	11.503	11.503	11.503	11.503	11.503	21.560	21.560	21.560	21.560	21.560	21.560	21.560	21.560	44.853	44.853	44.853	44.853	44.853	44.853	44.853	44.853
6.00	6.00	15.74	15.74	15.74	15.74	9.57	9.57	9.57	9.57	9.57	9.57	9.57	9.57	9.56	9.56	9.56	9.56	9.56	9.56	9.56	9.56	2.21	2.21	2.21	2.21	2.21	2.21	2.21	2.21
134	134	149	149	149	149	193	193	193	193	193	193	193	193	173	173	173	173	173	173	173	173	62	62	62	62	62	62	62	62
Rupture	Rupture	Shear	Shear	Shear	Shear	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear
Shear 14.864	Automatic Shear 14.864	Automatic Shear 27.300	Automatic Shear 27.300	Shear 27.300	Automatic Shear 27.300	Automatic L/r 18.125	Automatic L/r 18.125	L/r 18.125	Automatic L/r 18.125	L/r 18.125	L/r 18.125	L/r 18.125	L/r 18.125	Automatic Shear 18.200	Shear 18.200	Automatic Shear 18.200	Auromatic Shear 18.200	Automatic Shear 18.200	Shear 18.200	Auromatic Shear 18.200	Shear 18.200	Automatic Shear 18.200	Automatic Shear 18.200	Shear 18.200					
16.800	16.800	27.300	27.300	27.300	27.300	11.503	11.503	11.503	u.uu 11.503	11.503	11.503	11.503	11.503	18.200	0.000 18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200
36	36	21	21	21	21	22	22	22	22	22	22	22	22	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23
36P	0.000 36X	· ·	0.000 37AY	· ·	0.000 37BX	nn.	0.000 38AX	nn.	nn.	0.000 38BP	0.000 38BX	0.000 38BXY	n .	0.000 39AP		nn.	0.000 39AY	· ·	0.000 39BX	0.000 39BXY	0,000 39BY	nn.	0.000 39ClY	о Б Ц С Ц С	U.UUU F39C197Y)) ,	0.000 39C2X	U.UUU F39C2118P	539C2118X

0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	000.0	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0	000.0	0.000	0.000
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
25.677	25.677	25.677	25.677	25.677	25.677	25.677	25.677	8.812	8.812	8.812	8.812	12.347	12.347	12.347	12.347	12.347	12.347	12.347	12.347	12.347	12.347	12.347	12.347	18.125	18.125	18.125	18.125	18.125
48.681	48.681	48.681	48.681	48.681	48.681	48.681	48.681	24.381	24.381	24.381	24.381	18.448	18.448	18.448	18.448	18.448	18.448	18.448	18.448	18.448	18.448	18.448	18.448	18.650	18.650	18.650	18.650	18.650
27.187	27.187	27.187	27.187	27.187	27.187	27.187	27.187	13.594	13.594	13.594	13.594	20.391	20.391	20.391	20.391	20.391	20.391	20.391	20.391	20.391	20.391	20.391	20.391	20.391	20.391	20.391	20.391	20.391
18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	9.100	9.100	9.100	9.100	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200
13.386	13.386	13.386	13.386	13.399	13.399	13.399	13.399	15.869	15.869	15.869	15.869	12.587	12.587	12.587	12.587	12.587	12.587	12.587	12.587	12.587	12.587	12.587	12.587	16.678	16.678	16.678	16.678	14.533
13.53	13.53	13.53	13.53	13.52	13.52	13.52	13.52	4.24	4.24	4.24	4.24	4.24	4.24	4.24	4.24	4.24	4.24	4.24	4.24	4.24	4.24	4.24	4.24	8.22	8.22	8.22	8.22	9.13
234	234	234	234	234	234	234	234	130	130	130	130	129	129	129	129	129	129	129	129	129	129	129	129	116	116	116	116	128
Shear	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture							
Automatic L/r 18.200	Automatic L/r 18.200	Auromatic L/r 18.200	Automatic L/r 18.200	Automatic Shear 8.812	Automatic Shear 8.812	Automatic Shear 8.812	Automatic Shear 8.812	Automatic L/r 12.347	L/r 12.347	Automatic L/r 12.347	Automatic L/r 12.347	Automatic L/r 12.347	Automatic L/r 18.125	L/r 18.125	Automatic L/r 18.125	L/r 18.125	Aucomatic L/r 18.125 Automatic											
0.000 13.386	0.000 13.386	u.uuu 13.386	0.000 13.386	13.399	13.399	0.000 13.399	0.000 13.399	0.000	0.000 9.100	9.100	0.000 9.100	0.000 12.587	12.587	12.587	0.000 12.587	u.UUU 12.587	0.000 16.678	16.678	16.678	16.678 16.678	0.000 0.000 0.000							
40P 24	40X 24	0XY 24	40Y 24	41P 24	41X 24	41XY 24	41Y 24	42P AngleR	42X AngleR	ZXY AngleR	42Y AngleR	43AP 26	43AX 26	3AXY 26	43AY 26	3BP 26	43BX 26	3BXY 26	43BY 26	43CP 26	43CX 26	3CXY 26	43CY 26	44P 27	44Y 27	4AP 27	44AY 27	44BP 27
		4								4				511		0.000 43BI		4				040				77	0.000 44	

000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
18.125	18.125	18.125	18.125	18.125	18,125	18,125	24.167	24.167	24.167	12.755	12.755	12.755	12.755	12.755	12.755	14.386	14.386	18.125	18.125	13.978	13.978	13.162	13.162	13.978	13.978	18.125	18,125	18.125	18.125
18.650	18.650	18.650	18.650	18.650	18.650	18.650	40.581	40.581	40.581	18.529	18.529	18.529	18.529	18.650	18.650	18.650	18.650	30.760	30.760	30.760	30.760	18.650	18.650	18.650	18.650	36.997	36.997	36.997	36.997
20.391	20.391	20.391	20.391	20.391	20.391	20.391	27.187	27.187	27.187	20.391	20.391	20.391	20.391	20.391	20.391	20.391	20.391	20.391	20.391	20.391	20.391	20.391	20.391	20.391	20.391	27.187	27.187	27.187	27.187
18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200	18.200
14.533	14.533	14.533	16.678	16.678	16.678	16.678	35.407	35.407	35.407	7.736	7.736	7.736	7.736	5.767	5.767	5.486	5.486	8.465	8.465	8.140	8.140	5.767	5.767	5.486	5.486	21.867	21.867	21.867	21.867
9.13	9.13	9.13	8.22	8.22	8.22	8.22	6.00	6.00	6.00	14.78	14.78	14.78	14.78	13.25	13.25	13.59	13.59	15.02	15.02	15.32	15.32	13.25	13.25	13.59	13.59	14.07	14.07	14.07	14.07
128	128	128	116	116	116	116	111	111	111	202	202	202	202	201	201	206	206	192	192	196	196	201	201	206	206	143	143	143	143
Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Shear	Shear	Shear	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture	Rupture
L/r 18.125	Automatic L/r 18.125	Automatic L/r 18.125	L/r 18.125	L/r 18.125	L/r 18.125	Automatic L/r 18.125	Aucomatic Shear 18.200	Aucomatic Shear 18.200	Aucomatic Shear 18.200	L/r 12.755	L/r 12.755	L/r 12.755	L/r 12.755	L/r 12.755	Automatic L/r 12.755 Mutomotic	L/r 14.386	L/r 14.386	L/r 18.125	L/r 18.125 Dirtomotio	L/r 13.978	L/r 13.978	L/r 13.162	Automatic L/r 13.162	L/r 13.978	Automatic L/r 13.978	Shear 18.125	Aucomatic Shear 18.125	Automatic Shear 18.125	Shear 18.125
14.533	u.uuu 14.533 0.000	14.533 14.533	16.678 16.678	16.678	16.678	16.678 16.678	18.200	18.200	18.200	7.736	7.736	7.736	7.736	0.000 5.767	0.000 5.767 0.000	0.000 5.486 0.000	0.000 5.486	0.000 8.465 0.000	0.000 8.465 0.000	0.000 8.140	8.140 8.140	0.000 5.767	0.000 5.767	0.000 5.486 0.000	0.000 5.486 0.000	18.200	18.200	18.200	18.200
27	27	27	27	27	27	27	28	28	28	29	29	29	29	30	30	30	30	31	31	31	31	30	30	30	30	32	32	32	32
44BY	0.000 44CP	· ·	0.000 44DP	0,000 44DY	0.000 44EP	0.000 44EY	0.000 45P	0.000 45AP	0.000 45BP	0,000 46P	0,000 46X	0.000 46XY	0.000 46Y	0.000 47P	0,000 47Y	0.000 47AP	0.000 47AY	0.000 48P	0,000 48Y	0.000 48AP	0.000 48AY 0.000	0.000 49P	49Y 49Y	n .	0.000 49AY	0.000 50P	0.000 50X	0.000 50XY	50Y

0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
21.146	21.146	42.647	42.647	42.647	42.647	31.985	31.985	31.985	31.985	48.262	48.262	35.539	35.539	71.078	71.078	63.970	63.970	42.647	42.647	42.647	42.647	31.985	31.985	42.647	42.647	9.629	9.629	0.000
38.758	38.758	32.886	32.886	37.138	37.138	33.736	33.736	37.786	37.786	46.393	46.393	51.799	51.799	50.706	50.706	46.696	46.696	32.886	32.886	40.419	40.419	34.344	34.344	37.118	37.118	21.688	21.688	571.199
27.187	27.187	54.375	54.375	54.375	54.375	40.781	40.781	40.781	40.781	67.969	67.969	67.969	67.969	67.969	67.969	81.562	81.562	54.375	54.375	54.375	54.375	40.781	40.781	54.375	54.375	10.195	10.195	0.000
18.200	18.200	36.400	36.400	36.400	36.400	27.300	27.300	27.300	27.300	45.500	45.500	45.500	45.500	45.500	45.500	54.600	54.600	36.400	36.400	36.400	36.400	27.300	27.300	36.400	36.400	9.100	9.100	0.000
27.975	27.975	32.661	32.661	31.965	31.965	33.416	33.416	33.416	33.416	41.627	41.627	45.317	45.317	42.220	42.220	42.220	42.220	32.661	32.661	31.965	31.965	33.416	33.416	33.416	33.416	8.154	8.154	437.242
6.00	6.00	11.64	11.64	6.00	6.00	5.62	5.62	5.63	5.63	14.07	14.07	6.00	6.00	6.88	6.88	6.88	6.88	11.64	11.64	6.00	6.00	5.62	5.62	5.63	5.63	6.00	6.00	29.25
122	122	111	111	114	114	107	107	107	107	106	106	91	91	104	104	104	104	111	111	114	114	107	107	107	107	169	169	80
Shear	Shear	Net Sect	Net Sect	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Rupture	Rupture	Shear	Shear	Net Sect	Net Sect	Net Sect	Net Sect	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Net Sect
Automatic Shear 18.200	Automatic Shear 18.200	Automatic L/r 32.886	Automatic L/r 32.886	L/r 36.400	Automatic L/r 36.400	Automatic Shear 27.300	Automatic Shear 27.300	Automatic Shear 27.300	Aucomatic Shear 27.300	L/r 45.500	L/r 45.500	Automatic L/r 35.539	Automatic L/r 35.539	Automatic L/r 45.500	Automatic L/r 45.500	Automatic L/r 46.696	Automatic L/r 46.696	Automatic L/r 32.886	Automatic L/r 32.886	Automatic L/r 36.400	Automatic L/r 36.400	Automatic Shear 27.300	Automatic Shear 27.300	Automatic L/r 36.400	Automatic L/r 36.400	Automatic L/r 9.100	Automatic L/r 9.100	Automatic L/r 571.199 Automatic
0.000 18.200	18.200	0.000 32.661	0.000 32.661	0.000 31.965	0.000 31.965	27.300	0.000 27.300	27.300	27.300	41.627	41.627	0.000 45.317	0.000 45.317	0.000 42.220	0.000 42.220	0.000 42.220	0.000 42.220	0.000 32.661	0.000 32.661	0.000 31.965 2.200	0.000 31.965	0.000 27.300	27.300	0.000 33.416 0.000	0.000 33.416	0.000 8.154	0.000 8.154	0.000 437.242 0.000
32	32	33	33	33	33	33	33	33	33	34	34	34	34	34	34	34	34	33	33	33	33	33	33	33	33	35	35	Pwmnt
0.000 50AP	0.000 50AY	0.000 51P	0.000 51Y	0.000 51AP	0.000 51AY	0.000 51BP	0.000 51BY	0.000 51CP	0.000 51CY	0.000 52P	U.UUU 52Y	0.000 52AP	0.000 52AY	0.000 52BP	0.000 52BY	0.000 52CP	0.000 52CY	0.000 53P	0.000 53Y	0.000 53AP	0.000 53AY	0.000 53BP	0.000 53BY	0.000 53CP	0.000 53CY	0.000 54P	0.000 54X	0.000 999P

0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			0.000
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	0.000		0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			0.000
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			0.000
0.000	0.000	0.000	0.000	0.000	0.000	45.312	10.343	10.343	10.343	15.104	15.104	11.328	11.328	11.328		11.328	11.328	11.328	11.328	15.104	15.104	15.104	15.104	- 24	15.104	101	гот • ОТ	0.000
571.199	571.199	571.199	571.199	571.199	571.199	129.094	18.827	18.827	18.827	32.987	32.987	25.048	25.048	25.048		84U.C2	25.048	25.048	31.139	49.187	49.187	49.187	49.187		er "gl18P" 57.287	57 287		571.199
0.000	0.000	0.000	0.000	0.000	0.000	40.781	10.195	10.195	10.195	13.594	13.594	10.195	10.195	10.195		C&T.UI	10.195	10.195	10.195	13.594	13.594	13.594	13.594		13.594 5	12 501		0.000
0.000	0.000	0.000	0.000	0.000	0.000	16.800	16.800	16.800	16.800	16.800	16.800	16.800	16.800	16.800		10.8UU	16.800	16.800	16.800	16.800	16.800	16.800	16.800		um of 200.00 16.800	16 200	F C C C C	0.000
535.971	260.146	540.511	540.511	531.117	565.563	109.423	20.042	20.044	20.044	29.101	29.101	22.126	22.126	22.127		171.77	22.127	22.127	11.823	13.207	17.249	17.249	15.339	13.840	ceeds maxim 16.004	16 001	#00.0T	558.517
15.00	44.75	14.00	14.00	16.00	6.00	1.50	1.50	1.50	1.50	3.35	3.35	3.35	3.35	3.35	L C	c	3.35	3.35	8.07	11.07	9.68	9.68	10.27		of 200.30 exc 186 12.34	10 21	· · ·	9.00
41	122	38	38	44	16	83	46	46	46	82	82	81	81	81	, c	αT	81	81	162	191	167	167	178	200	of 200 186	186	0	25
Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Net Sect	Shear	Bearing	Bearing	Bearing	Bearing	Bearing	Bearing	Bearing	Bearing	- -	Bearing	Bearing	Bearing	Bearing	Bearing	Bearing	Bearing	Bearing	Bearing	KL/R value Bearing	η το 	חממו דווע	Net Sect
L/r 571.199	L/r 571.199	L/r 571.199	L/r 571.199	L/r 571.199	L/r 571.199	Automatic Shear 16.800	Automatic Bearing 10.195	Automatic Bearing 10.195	Aucomatic Bearing 10.195	Bearing 13.594	Automatic Bearing 13.594	Automatic Bearing 10.195	Automatic Bearing 10.195	Automatic Bearing 10.195	uto	Bearing IU.195 Automatic	Bearing 10.195 Automatic	Bearing 10.195	Bearing 10.195	L/r 13.594	Bearing 13.594	Automatic Bearing 13.594	Automatic Bearing 13.594		Automatic K Bearing 13.594	utomatic 13 50	earing 19.00 Automatic	L/r 571.199 Automatic
535.971	260.146	540.511	540.511	531.117	0.000 565.563	16.800	0.000 10.195	10.195	10.195	13.594	13.594 13.594	10.195 10.195	u.uuu 10.195	0.000 10.195	0.000	C61.U1	10.195	10.195	10.195	13.207	13.594	U.UUU 13.594	0.000 13.594	0.000 13.594	0.000 13.594	0.000	0.000 O	558.517 0.000
Pwmnt	Pwmnt	Pwmnt	Pwmnt	Pwmnt	Pwmnt	Plate	PMBR1	PMBR1	PMBR1	BraceR	BraceR	PMBR2	PMBR2	PMBR2		PNBK2	PMBR2	PMBR2	PMBR3	PMBR4	PMBR4	PMBR4	PMBR4	PMBR5	PMBR5	2 d d M d	E MDV/	Pwmnt
g100P 0 000	g101P	· ·	g103P	0.000 g104P	0.000 g105P	0.000 g106P	0.000 g107P	0.000 g108P	0.000 g109P 0.000	g110P	.000 g110X	0.000 g111P	U.UUU g111X	0.000 d112P	0.000	0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	g113P 0.000	g113X	0.000 g114P 0.000	0.000 g115P	0.000 g116P	0.000 g116X	0.000 g117P	0.000 <mark>g118P</mark>	0.000 a120P	0.000	0.000	g121P 0.000

The model contains 335 angle members.

Sum of Unfactored Dead Load and Drag Areas From Equipment, Input and Calculated:

Y-Drag Area (ft^2)	16	.42	.22	66.	9.48	101	3.19	6.23	.10	.35	ч с	7.52	.05	8.87	90, 90,	οα 4 4	.46	.25	.25	1.25	. 53. 75	4.80	1.64	5.31	6.37	2.37	ο Γ ο α	.12	. 97	.97	.42	42	.16	.16	. 22	. 17	ν 2 α	, 6 , 6 , 7	.39	.48	.14	.98	9.86	0.80		3.38	3.22	
	i `	. 52.	7.24	0.78	0.95		4.55	6.23	.05	. 78	μ 1 α Γ	0.83	.90	1.89	20.0	, ∪ . 0	04	.81	.72	2.81	. 5 5 7 2	4.53	1.83	5.50	6.56	2.32	ο α ο Γ	.75	.43	.43	. 55 19 19	. J J	.24	.24	7.24	0.55		0.95	0.95	0.95	2.09	1.78	2.21	1.89	50	4.31	4.00	
Dead Load (kips)	10	061	0.12	.21	22.0	0.352	.43	. 65	0.11	.062	080	. 0 v2 0 . 3	40	~	N.	5-	:0	0.05	70	.05	. 10	10	1.4	.70	.75	.57		.12	.12	0.12	55	1901	0.12	.12	.12	. 21) ' C	22	22	.22	.31	0.3	. 32		0.352	.43	.42	
Joint Label	а Г	2 F	3P	4 P	9 C C C	д С С	ч 8 9 9 9	S I	Q	r (χo	40	щ	21P	NC	5 0	ιD	Q	C .	00 0) C) (-1	\sim	$^{\circ}$	4	5	O C	< H	1 X Y	-	N \$	772	3X	ЗХҮ	3Y	4 3	IV5	5X	5XY	ß	9	6XY	6Y	- 2	77	8X	8XY	

Y-Drag	Area Face	(ft^2)	
X-Drag	Area Face	(ft^2)	
l X-Drag Y-Drag	Area All	(kips) (ft^2) (ft^2)	
X-Drag	Area All	(ft^2)	
Section Unfactored	Label Dead Load Area All Area All Area Face Area Face	(kips)	
Section	Label		

Unadjusted Dead Load and Drag Areas by Section:

40000000000000000000000000000000000000	00000000000000000000000000000000000000	10 C
2233 234 2354 2333 2333 2333 2333 2333 2		.25
90000000000000000000000000000000000000	00000000000000000000000000000000000000	014 014 37.
22X 21X 15X 15X 15X 15X 15X 15X 15X 1	. 50E12 . 50E112 . 50E112 . 50E112 . 50E111 . 1XF0.50E8 . 111 . 121 . 1	0.50 1.0ta

139.112	321.570	460.682
139.781	227.007	366.789
337.810	730.724	1068.534
420.113	728.141	1148.254
11.026	26.071	37.096
1	2	Total

Angle Member Weights and Surface Areas by Section:

ctore e Are (ft^2	1715. 3337. 5053.
actored ce Area (ft^2)	1715.817 3034.480 4750.297
	11.02 28.67 39.70
s)	11.02 26.07 37.09
Section Label	Tota

Section Joint Information:

Joint Elevation (ft)	128.800 124.300 124.300 124.300 124.300 128.800 128.800 128.800 119.800 119.800 119.800 119.800 112.800 112.800 98.750 98.750 98.750 91.750 91.750 91.750 91.750 84.7500 84.7500 84.7500 84.7500 84.7500 84.7500 84.7500 84.7500 84.75000000000000000000000000000000000000
Joint Label	11 27 27 27 27 27 27 27 27 27 47 47 77 77 77 77 77 77 77 7
Section Label	

101 101 101 101 101 101 1112 1112 1112	20AY 20BP 20BX 21P 21P 21X 21X
	~ ~ ~ ~ ~ ~ ~

25.000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.00000 255.0000000000	4.75
21Y 22P 22X 22X 22XY 22XY 22XF0.50S 22PF0.50S 22PF0.50S 22PF0.50S 22PF0.50S 31P 31P	\sim
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2

Sections Information:

	Pro	Pro
Face Area ft^2)	28.50 817.275 Pro f the section. ??	6.814
Long. Gross (81 81	122
Face Width (ft)	28.50 he sec	0.00
Long. Bot	J J	
<pre>Tran. Face Tran. Face Long. Face Long. Face Bot Width Gross Area Top Width Bot Width Gross Area (ft) (ft^2) (ft^2)</pre>	0.00 the top of	147 6.00 0.00 1226.814 6.00 0.00 1226.81
Tong Top	not t	
. Face s Area (ft^2)	09.150 Ch is	6.814
Tran. Gross	30 whi	123
Face Width (ft)	6.00 309.150 80 (ft) which is	0.00
Tran. Bot	128	
Face Width (ft)	0.00 evation	6.00
Top.	+ 	
Top Bottom Joint Member Tran. Face Tran. Face Long. Face Long. Face Long. Face Long. Count Count Top Width Bot Width Gross Area Top Width Bot Width Gross Area (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)	188 Zero a	147
Joint l Count	59 dth is	52
Sottom Z (ft)	34.750 11": wi	-4.250
Top I Z (ft)	1 143.750 84.750 59 188 pr section "1": width is zero a	2 84.750 -4.250 52 147 6.00 0.00 1226.814 6.00 0.00 1226.814 Pro
Section Top Bottom Joint M Label Z Z Count (ft) (ft)	1 143.750 84.750 59 188 0.00 6.00 309.150 0.00 28.50 817.275 face for section "1": width is zero at elevation 128 80 (ft) which is not the top of the section 23	2 84.750 -4.250 52

Problem calculating gross area of longitudinal

roblem calculating gross area of longitudinal с. с face for section "2": width is zero at elevation -4.25 (ft) which is not the top of the section.

*** Insulator Data

Clamp Properties:

Holding	Capacity (lbs)	
Stock	Number	
Label		

C-EX1 5e+004

Clamp Insulator Connectivity:

Limit Limit Limit Limit Limit Limit Limit Limit Limit Limit	Limit Limit
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N0 N0
	C-EX1 C-EX1
13Y 14Y 30P 32P 32P 33P 35P 35P 35P 10XY 12XY	
19 28 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	

*** Loads Data

Loads from file: j:\jobs\2100700.wi\68_greenwich 3 ct\05_structural\backup documentation\calcs\pls tower\cl&p # 1281.lca

Insulator dead and wind loads are already included in the point loads printed below.

Loading Method Parameters:

Structure Height Summary (used for calculating wind/ice adjust with height):
Z of ground for wind height adjust 0.00 (ft) and structure Z coordinate that will be put on the centerline ground profile in PLS-CADD.
Ground elevation shift 0.00 (ft)
Z of ground with shift 0.00 (ft)
Z of structure top (highest joint) 143.75 (ft)
Scructure height above ground 143.75 (ft)
Scructure height above ground 143.75 (ft)

e neight e beight above ground - 143 75 75+		nd with shift cture top (highest height heidht showe aroun
	Jula gula	е петупс алоке угоши аре
	3.75 (f	ucture top (highest join
ucture top (highest joint) 143.75 (f	00.0	ground with shift

Load distributed evenly among joints in section for section based load cases

Vector Load Cases:

Joint Displ.		
Ice Temperature sity	(deg F)	0.0
Dens	(in) (lbs/ft^3)	0.000
	[) (ui) 	0.000.0
	(psf) (psf) (in)(lb 	00
Trans. Longit. Wind Wind T Pressure Pressure	(psf)	4 31
Wind/Ice Model P		Wind on Face NESC 2012
Point Loads		
SF for SF For nsuls. Found.		1.0000 1.0000 28 loads 1.0000 1.0000 28 loads
SF for SF For Insuls. Found.		1.0000 1.0000
SF for SF for Poles Guys r Arms and	Cables	00000 1.0000
Dead Wind SF for Load Area Steel Poles Factor Factor Tubular Arms	and Towers Cables	1.00000 1.0000 1.00000 1.0000
Wind Area Factor		2.5000 1.0000
		1.5000 1.0000
Load Case Description		NESC Heavy 1.5000 2.5000 NESC Extreme 1.0000 1.0000

Point Loads for Load Case "NESC Heavy":

Joint Label	Joint Vertical Label Load	Transverse Load	Longitudinal Load	Load Comment
	(lbs)	(sdI)	(lbs)	
16X	1610		1610	ield
16P	1298	8213	-2807	Shield Wire
19P	2332	7785	7437	Conductor - Back
19Y	438	7124	-7493	Conductor - Ahead
18P	3241	9292	7457	Conductor - Back
18Y	573	5259	-5419	Conductor - Ahead
17P	2933	5363	5970	Conductor - Back
17Y	520	5739	-5969	Conductor - Ahead
23P	2393	10693	-4869	Conductor
24P	2366	9228	-2072	Conductor
25P	1702	12051	-5996	Conductor
37P	6929	564	0	Sprint Antennas
36P	\sim		0	Verizon Antennas
37P	838		0	Coax Cable on Powermount
35P	\sim	53	0	Coax Cable on Powermount
34P	605		0	Coax Cable on Powermount
33P	565	93	0	Coax Cable on Powermount
32P	1185	194	0	Coax Cable on Powermount
31P	1205	198	0	Coax Cable on Powermount
30P	1311	215	0	Coax Cable on Powermount

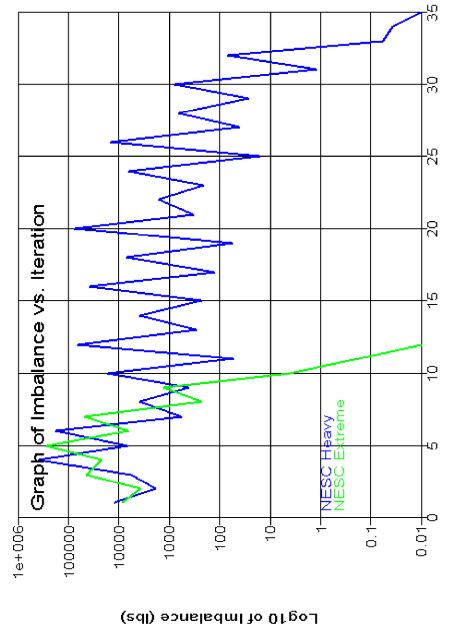
Section Load Case Information (Standard) for "NESC Heavy":

3	(lbs)	16539 43017
Ice Weight	(lbs)	00
Long Wind Load	(1bs)	0.0
Long Drag Coef		3.200 3.500
Long Adj. Wind Pres.	(psf)	0.00
Tran Wind Load	(lbs)	84.75 114.25 10.00 10.00 3.200 4451.6 0.00 3.200 -4.25 40.25 10.00 10.00 3.500 11254.9 0.00 3.500
Tran Drag Coef		3.200 3.500
Tran Adj. Wind Pres.	(þsf)	10.00 10.00
Res. Adj. Wind Pres.	(jsd)	10.00 10.00
Ave. Elev. Above Ground J	(ft)	114.25 40.25
Z of Bottom	(ft)	84.75 -4.25
ч о Г о Г	(ft)	1 143.75 2 84.75
Section Label		2 1

Point Loads for Load Case "NESC Extreme":

Joint	Vertical	Transverse	Longitudinal	Load
гарет	Load (1bs)			
16X		03	01	Shield Wire
16P	681	5012	-2032	Shield Wire
19P	\sim	07	42	Conductor - Back
19Υ		LL	36	Conductor - Ahead
18P	r	63	26	- ЛС
18Υ		02	49	Conductor - Ahead
17P	\sim	\sim	04	л СК
17Y		32	82	Conductor - Ahead
23P	9	48	00	Conductor
24P	39	68	52	Conductor
25P	9	82	14	Conductor
37P	0	27	0	Sprint Antennas
36P	73	32	0	izon
37P	∞	\sim	0	e on Po
35P	-	$^{\circ}$	0	
34P		9	0	Coax Cable on Powermount
33P	$^{\circ}$	\triangleleft	0	Coax Cable on Powermount
32P	\sim	0	0	
31P	$^{\circ}$		0	Coax Cable on Powermount
30P	\sim	Q	0	
2Y	\sim	\sim	0	Coax Cable on Tower
4 Y	S	9	0	Coax Cable on Tower
6Y	5	\sim	0	Coax Cable on Tower
8Υ	∞	9	0	Coax Cable on Tower
	0	9	0	Coax Cable on Tower
12Y		9	0	Coax Cable on Tower
	9	റ	0	Coax Cable on Tower
	0	ω	0	Coax Cable on Tower
	TTO PTT I	. T		

Section Load Case Information (Code) for "NESC Extreme":


Long Long Long Long Long Long Tran Long Tran Tran Tran Tran Tran Tran Tran Res. Ave. N N Section Total

Ice

Gross Soli- Angle Round Wind Weight	dity Drag Drag Load Ratio Coef Coef (1hs) (1hs)		0.00 817.27 0.171 3.200 2.000 0.0	0.00 1226.81 0.204 3.200 2.000 0.0
	Area (ft^2)		00 817.27 0.	00 1226.81 0.
Wind Adj. Angle Round	Face Area		00 139.78 0.	
	Load (1hs)		0 12054.4 0.	32816.8 0.
Gross Soli- Angle Round	Y Drag Drag o Coef Coef		1 143.75 84.75 114.25 32.59 32.59 76.42 62.69 309.15 0.450 3.200 2.000 12054.4 0.00 139.78	2 84.75 -4.25 40.25 32.59 32.59 249.71 104.02 1226.81 0.288 3.200 2.000 32816.8 0.00 249.71
	Area dity Ratio (f+^2)		309.15 0.45	1226.81 0.28
of Elev. Adj. Adj. Angle Round	Top Bottom Above Wind Wind Face Face Ground Pres. Pres. Area Area (f+) (f+) (f+) (nsf) (f+^2) (f+^2)		76.42 62.69	49.71 104.02
dj. Adj.	ind Wind es. Pres. sf) (psf) (.59 32.59	.59 32.59 2
Elev. A	Above W Ground Pro (ft) (no		114.25 32.	40.25 32
of of	Top Bottom (ft) (ft)		43.75 84.75	84.75 -4.25
Label Weight		(Ibs)	1 1,	11026 2 8

*** Analysis Results:

Maximum element usage is 98.99% for Angle "25AP" in load case "NESC Heavy" Maximum insulator usage is 27.17% for Clamp "11" in load case "NESC Heavy"

Iteration #

2

Angle Forces For All Load Cases: Positive for tension - negative for compression

LC 2	(sdty)	-12.910	13.350	10.693	-12.250
LC 1	(K1PS)	-7.172	6.508	4.635	-5.739
Max. Comp. For All LC	(K1PS)	-12.910	0.000	0.000	-12.250
Max. Tens. Ma For All LC Fo	(K1PS)	0.000	13.350	10.693	0.000
Max. Usage For All LC				22.59	
		1P	1X	1 X Y	1Υ
Group Label		1	1	Ч	1

-13.218 12.813 9.866 9.8663 31.257 -30.683 31.257 -51.019 25.704 45.399 -55.704 45.399 -51.019 25.704 45.309 -51.019 25.704 45.309 -51.019 25.704 45.309 -125.614 146.333 -118.333 -126.113 179.257 170.124 177.257 170.124 176.742 -187.833 -176.742 -176.742 -176.742	2232 46 232 46 232 46 246 9 246 9 246 9 246 9 246 9 247 1 147 9 247 9 248 9
-7.805 -7.805 3.672 3.672 3.672 3.672 3.672 112.756 -17.300 122.756 -17.305 -17.305 -17.305 -17.957 -30.856 -301 -12.74 -51.66 -12.876 -12.73.087 -65.2591 -55.2591 -55.2591 -55.2591 -12.876 -12.876 -12.27555 -12.2755 -12.27555 -12.27555 -12.27555 -12.27555 -12.27555 -12.275555 -12.275555 -12.275555 -12.275555 -12.2755555 -12.2755555 -12.2755555 -12.27555555 -12.2755555 -12.2755555555555555 -12.2755555555555555555555555555555555555	222.85 223.85 223.91 223.91 223.92 203.01 203.05 200.05 200.05 200.05 200.05 200.05 200.05 200.05 200.05 20
$\begin{array}{c} -13.218\\ 0.000\\ $	010088008000000000000000000000000000000
0.000 12.813 9.866 0.000 0.000 25.697 25.704 45.399 0.000 82.514 66.867 0.000 82.514 66.867 118.308 118.308 118.308 118.308 118.308 118.308 118.308 118.308 118.308 118.308 118.308 118.308 1170.124 131.110 135.258 135.000 0.000 174.107 131.4107 137.114 136.650 177.124 137.114 136.650 0.000 0.000 176.728 137.114 136.000 136.000 137.1141 137.114114 137.114114 137.114114 137.11411414	32.46 0.000 146.88 23.23 23.23 23.23 23.23 24.7 12.84 12.84 12.95 11.7 12.95 11.7 12.95 11.7 12.95 11.7 12.95
222 222 222 222 222 222 222 222 222 22	
	11XY 11X 12P 12P 12P 12R 12XY 12XY 12XY 13X 13X 13X 14P 14P 14A 14A 14A 14A 14A 15A 15A 15A 15A 15A 15A 15A 15A 15A 15
ーーーーーーーンシックタックタックタックターーーーーーンシックション	οοοοοοο Αφοοοοοο Αφοοοοο

	$\begin{array}{c} -28.872\\ -19.994\\ 10.554\\ -10.554\\ -10.556\\ -356\\ -356\\ -26.424\\ -3.556\\ -26.424\\ -26.426\\ -26.424\\ -26.661\\ -3.5364\\ -3.546\\ -3.566\\ -3.546\\ -3.566\\ -$
$\begin{array}{c} - 5 \\ - 9 \\$	-38.755 -38.755 -9.967 -9.967 -13.4655 -13.4655 -13.4655 -13.4655 -13.4655 -13.4656 -13.4659 -121.0695 -13.626 -13.626 -13.626 -13.626 -13.626 -121.0695 -125.234 -125.244 -125.234 -125.234 -125.244 -125.234 -125.234 -125.234 -125.244 -125.234 -125.2444 -125.2444 -125.2444 -125.2444 -125.24444 -125.24444 -125.2444-125.2444-125
-5.61 13.34 13.34 10.000 -5.61 0.000 -5.626 -5.24 -3.47 -3.47 -5.24 -5.266	$\begin{array}{c} -38, 755 \\ -13, 755 \\ 0, 000 \\ 0, 000 \\ 0, 000 \\ 0, 000 \\ 0, 000 \\ -12, 900 \\ 0, 000 \\ 0, 000 \\ 0, 000 \\ 0, 000 \\ -13, 626 \\ 0, 000 \\ 0, 000 \\ -13, 626 \\ 0, 000 \\ 0, 000 \\ 0, 000 \\ -15, 234 \\ 0, 000 \\ 0, 000 \\ -15, 234 \\ -21, 769 \\ 0, 000 \\ 0, 000 \\ -12, 904 \\ -12, 90$
	$\begin{array}{c} 0.000\\ 1.7.670\\ 1.7.670\\ 0.000$
	63.32 63.32 63.32 63.32 63.32 63.32 63.32 64.5 64.5 74.6 64.5 74.6
00000000000000000000000000000000000000	194X 194X 194 194 194 194 194 194 194 194 194 204 204 204 204 204 204 204 204 204 20
	00000000000000000000000000000000000000

2.176 -2.5563 -2.5563 -2.5563 -3.709 -3.709 -1.873 -1.873 -1.169 -1.375 -1.255 -1.2730 -1.375 -1.2730 -1.375 -1.2730 -1.2730 -1.2730 -2.570 -2.570 -3.216 -3	9000 1177 1177 1177 1177 1177 1177 1177	925000000000000000000000000000000000000
4.715 -6.034 8.574 8.574 -6.310 8.195 -6.310 -8.571 -11.339 -4.133 -4.133 -6.554 -6.554 -6.554 -6.554 -6.554 -6.554 -11.256 -2.678 1.5.001 1.137 2.2.603 1.5.001 1.137 2.2.603 -2.678 -2.788 -2.678 -2.788 -2.678 -2.678 -2.788 -2.678 -2.788 -2.678 -2.7888 -2.7888 -2.7888 -2.7888 -2.7888 -2.7888 -2.7888 -2.7888 -2.7888 -2.7888 -2.788	00000000000000000000000000000000000000	2000 200 2000 2
0.000 -6.034 -6.034 0.000 -6.310 -6.310 -6.310 -6.310 -6.310 -6.310 -6.310 -6.310 -6.310 -6.310 -6.311 -6.321 -6.554 -6.554 -6.554 -6.0000 -6.0000000 -6.0000 -6.0000 -6.000000000 -6.00000 -6.000	558 000 000 000 000 000 000 000 000 000	7522 115 115 115 115 115 115 115
4.715 0.000 8.574 8.195 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 15.710 13.322 13.332 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.000000	960 960 960 960 960 960 960 960 960 960	2312 2312 2312 2312 2312 2312 2312 2312
122 222 222 222 222 222 222 222	0.0000000000000000000000000000000000000	4001001004004000000000
23AXY 23AXY 23BXY 23BXY 23BXY 23BXY 24AX 24AX 24BY 24BY 24BY 24BY 24BY 24BY 25AY 25AY 25AY 25BY 25BY 25BY 25BY 25BY 25BY 25BY	8 8 9 8 8 9 8 9 8 9 8 9 8 9 8 9 8 8 9 8	

00000000000000000000000000000000000000	2.677 -10.348 -3.0.835 -3.256 -1.8355 -1.835 -3.591 -3.591 -3.591 -3.591 -3.591 -3.591 -3.567 -3.231 -3.567 -3.231 -3.258 -6.078 -6.078 -1.611 -1.626 -1.626	00.44.80 10.42.22.22.22.22.22.22.22.22.22.22.22.22.	10000000000000000000000000000000000000
	- 4.151 - 4.513 - 1.0.559 - 0.508 - 0.508 - 0.508 - 0.507 - 0.507 - 0.515 - 0.558 - 0.558 - 1.34 - 1.518 - 1.34 - 1.518 - 1.5188 - 1.5188 - 1.5188 - 1.5188 - 1.5188 - 1.5188	00.1900.1900.1900.1900.1900.1900.1900.1	2. 000 2. 0000 2. 0000 2. 0000 2. 0000 2. 0000 2. 0000 2. 0000 2. 0000 2. 0000000000
00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 0000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.265 0.000 0.265 0.12655 0.12655 0.12655 0.1265555 0.1265555	00.000.0000000000000000000000000000000	000000000000000000000000000000000000000
	4.151 0.348 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	.43 .700 .116 .116 .116 .116 .116 .116 .116 .1	00000000000000000000000000000000000000
691175617368 6911736474	15.20 15.20 15.20 15.53 14.15 14.15 19.48 19.48 19.48 19.48 19.48 19.48	011100000000000000000000000000000000000	00000000000000000000000000000000000000
	37AY 37BP 37BP 37BP 37BP 38BAY 38BAY 38BAY 38BAY 38BAY 38BAY 39AP 39AP 39AP 39AP 39AP 39BAY 39BAY 39BAY	чнърьосоюсоюсою черть стросоюсою черть стросоюсою	42P 42P 42X 42X 42X 42X 43AY 43AY 43AY 43BY 43BX 43BX 43BY
	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		

00001100100100100100000000000000000000		000 000 000 000 000 000 000 000 000 00
	-1.89/ -0.248 -0.248 -0.248 -0.248 -1.756 -1.756 -1.756 -2.328 -2.777 -2.328 -2.7778 -2.778 -2.7778 -2.7778 -2.778 -2.77778 -2.7778 -2.7778 -2.7778 -2.7778 -2.77778 -2.77778 -2.77788 -2.7778 -2.7778 -2.7778 -2.7778778 -2.7778778 -2.77778 -2.77778	855 855 855 855 855 855 855 855 855 855
4.40 0.00 0.21 0.36400000000000000000000000000000000000	-0.000 -0.432 -0.432 -0.000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000000	00000000000000000000000000000000000000
80000000000000000000000000000000000000	$\begin{array}{c} 1.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.000\\ 0.0$	
0.0.00000000000000000000000000000000000	10. 10. 10. 10. 10. 10. 10. 10.	моонм4-госносносос мосносносносто с
	4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	M M M M M M M M M M M M M M M M M M M
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

1.400 -7.254 -5.997 -5.997 -5.997 -5.997 -5.937 -6.083 -6.083 -6.083 -1.486 -6.083 -1.257 -0.371 -0.371 -0.371 -0.372 -0.372 -0.371 -0.372 -0.372 -0.372 -0.372 -0.372 -0.2577 -0.25777 -0.25777 -0.25777 -0.25777 -0.25777 -0.25777 -0.25777 -0.25777 -0.257777 -0.25777 -0.25777777777777777777777777777777777777	0.28 0.05 1.11 1.04 3.57
$\begin{array}{c} 1.369\\ -11.609\\ -11.609\\ -11.609\\ -11.609\\ -1.058\\ -1.273\\ -1.273\\ -1.273\\ -1.273\\ -1.273\\ -1.273\\ -1.266\\ -1.576\\ -1.566\\ -1.3$	0.010.02
$\begin{array}{c} 0 & 0 \\ -11.88 \\ -11.833 \\ -11.833 \\ -11.833 \\ -11.609 \\ -11.609 \\ -11.609 \\ -11.609 \\ -11.609 \\ -11.609 \\ -11.609 \\ -12.058 \\ -11.764 \\ -12.093 \\ -12.003 \\ -1$.05.05.05
1.400 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000	
1 2 2 2 2 2 2 2 2 2 2 2 2 2	1.4.1
533AP 533AP 533AP 533AP 533AP 533AP 533AP 533AP 533AP 533AP 533AP 533AP 61000 61000 61000 61000 61000 61000 61000 61100X 61112X 611112X 61112X 61112X 61112X 61112X	1117 1118 1120 120
9 9 9 9 9 9 9 9 9 9 9 9 9 9	

Joint Label	X-Displ (ft)	Y-Displ (ft)	Z-Displ (ft)	X-Rot (deg)	Y-Rot (deg)	Z-Rot (deg)	X-Pos (ft)	Y-Pos (ft)	Z-Pos (ft)
1P	786	.604	039	.500	.011	. 85	01	.60	28.
2P	780	.565	0387	.608	0.042	. 81	$ \sim 1 $.56	24.
3P	0.0709	.509	0.037	.707	0.050	.76	∩1	.50	19.
4 P	582 102	.438	.0348	. 538	0.058	.70	m	.43	12.
5 P 2 C	.059	.363	0.0319		.003	. 62	5	0 -	04.
10 10	550		0261	100	1000 U		+1 =		
8P 8P	-0.05346	0.2099	-0.02266		0.021	.46	2.947	3.21	84.73
15P				.000	.000	.00	<11	5.4	
16P	286	.560	.172	.569	.006	. 88	10	7.3	28.
17P	.146	.443	.121	.575	.042	.70	<h< td=""><td>13.8</td><td>12.</td></h<>	13.8	12.
18P	0.1	01	0.109	.443	.052	. 63	- /	6.4	ω. ω.
19P DKUC	0.0980.0	01010	1.1.1		107	. 50	50	14.0	84.83 20.02
20AF 20AF	-D 096	0 H • 0	0 02577	- 140 165	054		1 10	- 9	n 0 . 0
21P	.0303	0630	0.0285	0000.	0000	.00	11.7	.27	5.0
22P	.0796	.0132	.0325	.000	.000	.00	2.12	1.7	4.9
23P	0.218	.400	147	.592	.009	. 80	∞	4.6	12.
24P 255	0.214	.278	-0.14	.517	.005	. 68	.214	0.7	. 0 8 9
70F 26D	164 164	25	-0.056737		5 T O 7 3	19.	11 P	- τ τ α	• 0
27P	00000	- 1 L C	0530	510°0	0 1 C	10.10	~ m	0.10 10	+ 00
28P 28P	.0482	.211	.0385	.345	.039	.51	\ 	41	4.7
29P				.000	.000	.00			4.2
30P	.0273	60	.00229	.083	.076	.15	~	050	\sim
31P	.0442	.0640	0.00332	.047	0.035	.24	.45	.0640	4
32P	-0.02711	5	00610	.340	0.016	.45	\sim 1	.197	ſ.'
33P	.0278	90	0.0071		.006	.51	.47	. 29	×. 3
34P 25D	120.0	000	.00830	010. 10	0.008	. 55 7	.40	42	
405 405	665U.	ກິດ	. 1010		2002	. 5 2 2 2	940	283.	870
30F 37D	-0 070 -0 070	ρα	0110 0118	-α00. ΩΩ5	010 0	ο α ο α	0 7 7 7	0000	. 4 7 3 4
21X 1X	06590	24	.0202	480	000.	. 84	00	2.39	28.
1 X Y	54	2	.0192	.519	.028	. 81	2.99	48	28.
1Y	77	2	.0400	.539	.017	. 81	.07	.51	28.
2X	0663	0.5675	•	.611	.031	. 80	3.00	-2.433	4.
XXZ	γ 1 Γ		0610.	100. 101	.003	100	י. טונ	20.	. 42
XC XC	0.6	00	.03%3 0196		. UU . 018	22.	2.UZ	49	- 7 t
3XY	62	0	.0189	594	.015	73	66	-2.5	101
3Ү	46	0	.0384	.586	.048	.74	3.07		19.
4 X	60	68	.0181	.539	.042	.70	.00	2.56	12.
đΧΥ	.00615	54	.0175	.508	.015	.67	.99	.63	12.
4Y	0.0680	60	.0356	0.504	.003	. 68	3.06	3.36	12.
5X Fvv	NO	NO	79T0.	0.514 0 /77	100.	. 63	3.UU	. 63	04.
1VC	00/00.U	JO	03020	1 2 2 7	0 2 0 0 2 2 0	5.0	. 0 2	000 C	70
7.C	.00	0.3127			0.0522	0.5842	0.0 	-2.687	· r
6XY	.00403	.247	.0137	.415	.004	.57	99	2.75	8
6Ү	0.0588	0.2469	.0287	.411	.006	.56	3.05	3.247	•

Equilibrium Joint Positions and Rotations for Load Case "NESC Heavy":

	 Ę	Heavy"	"NESC	Case	Load Cas	for	Reactions	Joint Support F
•	0	0.0000		0.007927	521 -	360.0	0.008463	22PF0.50X (
4	0	-0.0827		-0.07497		-0.01292		21XF0.50Y

	ХН84/4/2/2000/00/2000/2000/2000/2000/2000/
1649 78800000000000000000000000000000000000	· N· · HUG40047400400000000000000000000000000000
0 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.5289 0.5286 0.47333 0.47333 0.47333 0.47333 0.47333 0.47333 0.47333 0.47333 0.47333 0.47333 0.47333 0.47333 0.47233 0.52133	
0.0178 0.03344 0.03374 0.03376 0.001376 0.001376 0.00136 0.00136 0.00186 0.00159 0.00151 0.00159 0.00151 0.0000000000	
WL & W & & O O O O O A L H O 4 N O O O O W N O N O O O O A L H O 4 N O O O O M N O N O O O O O A L H O H O O O	
0.01109 0.02562 0.02562 0.02562 0.0215118 0.0215120 0.0111984 0.0111984 0.0122833 0.0012813 0.02557 0.025593 0.025599 0.025599 0.0255357 0.022654 0.022658 0.02268 0.022658 0.02268 0.02588 0.02588 0.02588 0.02588 0.02588 0.025888 0.025888 0.025888 0.025888 0.025888 0.02588888 0.025888	0008707 0008707 00607134 00607134 00607134 007207 007207 0072083 00720083 00720083 00720083 00720083 00720083 00720083 00720083 00720083 00720083 0072008 00720000000000
	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
0.00000000000000000000000000000000000	0 0
ם כ ע	10.50E129S 10.50E113S 10.50E85S 21XF0.50S 22PF0.50S 9XY 9XY 10XY 11XY 11XY 11XY 112X 112X 12XY 12XY 12

Max. Usage %	00000
z-M. Usage U %	00000
Z Moment ((ft-k)	0.60 -3.83 -0.09 -0.51
H-Bend-M Usage 1 %	00000
Y-M. Usage %	00000
Y Ioment (ft-k)	7.4 5.2 -1.0 0.1
X-M. Usage M % (00000
X Moment (ft-k)	4.07 13.56 5.90 -1.85 -2.34
Result. Usage Mo % (1	00000
Result. Force (kips)	167.11 31.36 173.84 119.81 196.51
Uplift Usage %	000000
Comp. 1 Usage %	00000
Z Force (kips)	-164.15 -31.34 167.73 116.45 -192.54
Y H-Shear Je Usage %	00000
Usac	00000
Y Force (kips)	0.0 -23.81 0.0 -23.87 0.0 -35.87 0.0 -15.26 0.0 -15.26
X Usage %	!
X X Force Usage (kips) %	-20.38 0.17 28.25 -23.68 27.79
Joint Label	15P 15P 29P 15XY 15XY 15Y

Joint Displacements, Loads and Member Forces on Joints for Load Case "NESC Heavy":

Label	Load (kips)	Load (kips)	Load (kips)	Force (kips)	Force (kips)	Force (kips)	Disp. (ft)	Disp. (ft)	Disp. (ft)
1P	0.0000	0.0000	-0.1927	0.0000	-0.0000	0.1927	-0.0786	0.6044	-0.039
2P	0.0000	0.0000	°.	0.0000	-0.0000	0.0923	•	.5659	-0.038
ЗP	0.0000	0.0000	-0.1921	0.0000	-0.0000	0.1921	07	.5093	-0.0377
4 P	0.0000	0.0000	-0.3270	-0.0000	0.0000	0.3270	0		-0.034
ЪЪ	0.0000	0.0000	-0.3335	-0.0000	0	0.3335	-0.0597	0.3633	-0.032
6Р	0.0000	0.0000	511	-0.0000	Î	0.4888	-0.0591	0.3116	-0.028
JΡ	0.0000	0.0000	-0.5277	0.0000	ĩ	0.5277	-0.0519		-0.0262
8 P	0.0000	0.0000	-0.6869	-0.0000	I	0.6869	-0.0535	.2099	-0.0227
15P	0.0000	0.0000	-1.0736	20.3800	23.8134	-163.0743			0.00(
16P	-2.8070	8.2130	-1.4695	2.8070	-8.2130	1.4695	ĩ	5609	-0.1728
17P	5.9700	5.4183	-3.0262	-5.9700	-5.4183	3.0262	0.1	0.4434	0.1218
18P	7.4570	9.3482	-3.3618	-7.4570	-9.3482	3.3618		0.3187	0.1096
19P	7.4370	7.8403	-2.4252	-7.4370		2.4252	0.0	0.2136	0.0777
20AP	0.0000	0.0000	-0.6428	-0.0000		0.6428			-0.0203
20BP	0.0000	0.0000	-0.6645	0.0000		0.6645	-0.0969		-0.025
21P	0.0000	0.0000	-0.3631	0.0000		0.3631		0.0630	0.0285
22P	0.0000	0.0000	-0.3631	-0.0000		0.3631		.0133	-0.0325
23P	-4.8690	10.6930	-2.5433	4.8690	1	2.5433	-0.2189		-0.147
24P	-2.0720	9.2280	-2.5906	2.0720		2.5906	-0.2141		-0.1470
25P	-5.9960	12.0510	-1.8523	5.9960	ï	1.8523	-0.1647		-0.0961
26P	0.0000	0.0000	-0.0795	0.0000	I	0.0795	0.0767	.4414	0.067
27P	0.0000	0.0000	-0.1057	-0.0000	0	0.1057	0.0820	0.3158	0.0590
28P	0.0000	0.0000	-0.0795	0.0000		0.0795	0.0483	0.2118	0.0386
29P	0.0000	0.5439	-1.1969	-0.1666		-30.1383		0.0000	0.0000
30P	0.0000	1.0378	-3.3775	0.0000		3.3775	1	0.0509	-0.0023
31P	0.0000	1.3090	∞	-0.0000		3.8203		.0640	-0.0033
32P	0.0000	1.2641	-3.5552	0.0000		3.5552		.1971	-0.0061
33P	0.0000	0.5690	-1.6248	0.0000		1.6248			-0.007
34P	0.0000	0.6180	-1.7392	-0.0000		1.7392	-0.0311	0.4201	-0.0083
35P	0.0000	0.4440	-1.1793	0.0000		1.1793	-0.0355	0.5831	-0.0098
36P	0.0000	2.3890	-6.4860	-0.0000	ï	6.4860	-0.0374	0.6685	-0.0106
37P	0.0000	0.8160	-8.1018	-0.0000	-0.8160	8.1018	-0.0404	0.8086	-0.0119
1X	0.0000	0.0741	-0.1927	-0.0000	-0.0741	0.1927	0.0066	0.6047	0.0202
1 X Y	0.0000	0.0691	-0.1824	0.0000	-0.0691	0.1824	0.0075	0.5179	0.0193
1Υ	0.0000	0.0000	-0.1824	0.0000	-0.0000	0.1824	-0.0777	0.5173	-0.0400
2X	0.0000	0.0776	-0.0923	-0.0000	-0.0776	0.0923	0.0066	0.5675	0.0198
2XY	0.0000	0.0776	°.	0.0000	-0.0776	0.0923	0.0071	0.4775	0.0190
2Υ	0.0000	0.1760	-0.5683	-0.0000	-0.1760	0.5683	-0.0776	0.4757	-0.0393
ЗX	0.0000	0.1111	-0.1914	0.0000	-0.1111	0.1914	0	0.5092	0.019
ЗХҮ	0.0000	0.1111	-0.1914	0.0000	-0.1111	0.1914	0.0086	0.4299	0.019
3Ү	0.0000	0.0000	-0.1921	-0.000	0.000	D 1921	-0 0747	C 4297	-0 038/
;		•				•	2	1	

			0.311 0.913 0.332 0.332 0.472 0.472 0.464 1.133 0.464 0.462 0.462 0.464 0.527 0.527	000000000000000000000000000000000000000		. 100.000 . 100.0000 . 100.00000 . 100.0000 . 100.0000 . 100.0000 . 100.0000 . 100.0000 . 100.00000 . 100.00000 . 100.00000 . 100.0000000000	0.0068 0.0068 0.0068 0.0072 0.0038 0000000000
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	· · · · · · · · · · · · · · · · · · ·	0.5270 0.6794 1.3651 1.0736 1.0736 1.0736 1.0736 0.6338 0.6132 0.6338 0.6338 0.6711		00000000000000000000000000000000000000		· · · · · · · · · · · · · · · · · · ·
21X 21X 21Y 21Y 22X 22X 22Y 0.0 22Y 0.0 22Y 0.0 0 9S 11S 11S 14S 0.0 0 14S 0.0 0 14S		3674 3674 0000 0000 0000 0000 0000 0000 0000 0	-0.3631 -0.3631 -0.3631 -0.3631 -0.4303 -0.430		-0.0000 -0.0000 -0.0000 -0.3674 -0.3674 -0.3674 -0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	0.3631 0.3631 0.3631 0.3631 0.4303 0.4303 0.4303 0.4303 0.4303 0.4303 0.4303 0.4303 0.0495 0.0755 0.07550 0.07550 0.07550 0.07550 0.07550 0.07550 0.07550 0.07550 0.07550 0.07550 0.07550 0.075500 0.075500 0.07550000000000	
		· · · · · · · · · · · · · · · · · · ·	0.057 0.033 0.057 0.033 0.033 0.033 0.057 0.033 0.057 0.033 0.033 0.033 0.057 0.033 0.033 0.033 0.033 0.057 0.033 0.057 0.033 0.057 0.033 0.057 0.033 0.057 0.033 0.057 0.033 0.057 0.033 0.057 0.033 0.057 0.033 0.057 0.033 0.057 0.033 0.057 0.033 0.057 0.033 0.056 0.033 0.057 0.033 0.056 0.033 0.056 0.033 0.056 0.033 0.057 0.033 0.057 0.033 0.057 0.033 0.0570 0.0570 0.0570 0.0570 0.0570 0.0570 0.0570 0.0570 0.0570 0.05700 0.05700 0.05700 0.0570000000000			00001000000000000000000000000000000000	00357
111X 111X 111X 111X 111Y 112X 112X 112X		2285 251400 251400 251400 251400 251400 2514000000000000000000000000000000000000	1.440 0.854 0.854 1.209 1.209 1.209 0.997 0.997 0.997 0.997		285 285 285 2574 2574 2574 2574 2574 2574 2574 257	24000000000000000000000000000000000000	

-0.0236 -0.0241 -0.0212 -0.0166 -0.01687 -0.00187 -0.00187 -0.00187 -0.00187 -0.00111 0.0080 0.0121 -0.0121 -0.0175 0.0121 -0.0175 -0.0176 -0.0177 -0.0176 -0.0176 -0.0177 -0.0177 -0.0176 -0.0177 -0.0177 -0.0176 -0.0177 -0.0177 -0.0177 -0.0177 -0.0177 -0.0177 -0.0177 -0.0177 -0.0073 -0.0177 -0.0177 -0.0177 -0.0177 -0.0073 -0.

0.3649 0.28649 0.28649 0.29749 0.29749 0.29749 0.29749 0.29749 0.29749 0.29749 0.29749 0.29749 0.29749 0.29749 0.21759 0.21799 0.21799 0.21799 0.21799 0.21799 0.22489 0.22499 0.22489 0.2249 0.22499

0.007	1.5450 0.0097 -0.0113 0.0088	-0.036	-0.027	0.008
-0.6248	-0.6248	-0.5580	-0.0000	-0.0322
-0.0000	-0.0000	-0.0000	-0.0000	-0.0000
-1.5450	-1.5450	-3.0550	-0.0963	-0.0240
0.6248	0.6248	0.5580	0.0000	0.0322
0.0000	0.0000	0.0000	0.0000	0.0000
14X	14XY	14Y	21XF0.50Y	22PF0.50X

Summary of Clamp Capacities and Usages for Load Case "NESC Heavy":

Usage %	5.86	7.2		5.2	2.1	4.0	9.6	7.1		ω.	e.	٢.	<u>с</u> .	ω.	2.	2.	°.	°.	ъ.		9.	2.52	13.82	2.	44	.6	2.15	m,
Factored Holding Capacity (kips)	50.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Input Holding Capacity (kips)	50.00	0.0	50.00	0.0	0.0		0.0	0.0	ō.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	50.00
Force (kips)	2.929 8.803	.61	.34	7.62	1.07	10.391	.80	. 58	.59	.93		.38	.46	.90	. 63	.10	.53	.03	.77		.84	.26	.91	.14	.74	\sim		1.667
Clamp Label	10	ı m	4	9	Ľ	න ෆ		11																			30	

"NESC Extreme":
Case
Load
for
Rotations
and
Positions
Joint
Equilibrium

8288 0.6761 -0.04660 -0.0118 0.3872 2.919 8711 0.4525 -0.01275 -0.8046 0.3697 2.932 8771 0.3716 -0.01275 -0.8046 0.3697 2.932 8771 0.3716 -0.01275 -0.8046 0.3697 2.932 9171 0.3716 -0.01215 -0.01218 0.3217 2.932 9181 0.3175 -0.0215 -0.0215 0.2436 2.962 9182 0.4557 0.01216 -0.0217 0.2336 2.952 9182 0.2435 -0.0217 0.2336 2.952 2.952 9182 0.3165 0.1454 0.0203 0.1454 0.1454 0.1446 9174 0.1455 0.1454 0.01252 0.0000 0.0000 0.0119 9174 0.1456 0.557 0.0125 0.0137 0.1446 0.7546 0.1445 9174 0.1457 0.0137 0.1454 0.0137 0.1446 0.	പ							(II)	(IT)	(ft)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			•	-0.04604	-0.661	0.018	.38	. 91	.67	•
0.4608 0.03376 0.6537 0.0225 0.0333 0.2361 0.0333 0.03251 0.03251 0.03251 0.03251 0.03251 0.03251 0.03251 0.03251 0.03251 0.03251 0.03333 0.0502 0.24651 0.0408 0.02561 0.04012 0.03333 0.01256 0.03116 0.01252 0.01255 0.01255 0.01255 0.01255 0.01255 0.01255 0.01255 0.01255 0.01253 <th0.01253< th=""> <th0.01253< th=""> <th0.01253< <="" td=""><td></td><td>-0.06796</td><td>• C</td><td>-0.04454 -0.04272</td><td>-0.904</td><td>0.096 0 118</td><td>ņ."</td><td>1.0</td><td>3.624</td><td>J 0</td></th0.01253<></th0.01253<></th0.01253<>		-0.06796	• C	-0.04454 -0.04272	-0.904	0.096 0 118	ņ."	1.0	3.624	J 0
		-0.06321	· ·	-0.03776	-0.659	0.099		000	46	
0.3129 -0.02894 0.5442 2.962 0.2557 -0.02561 -0.04601 0.02024 2.961 0 0.2557 -0.02561 0.01000 0.14234 2.961 0 0.5555 -0.02155 0.01153 0.01234 3.01234 0.4555 0.11754 0.0557 0.12234 0.01234 3.0123 0.103578 0.01153 0.01013 0.02034 0.05571 1.145 0.03578 0.010215 0.01164 0.02133 1.145 3.0123 0.03578 0.010215 0.01000 0.0000 0.0000 1.145 0.03578 0.012373 0.01237 0.01131 1.145 1.145 0.03578 0.010013 0.01451 0.01557 1.145 1.147 0.1474 0.01237 0.00001 0.0001 0.1173 1.147 0.1415 0.01332 0.010141 0.01232 0.0117 1.147 0.1415 0.013323 0.01444 0.01117 1.1474		-0.04971	•	-0.03339	-0.603	0.022	~	2.95	3.37	4
8827 0.2537 -0.02256 -0.4611 -0.0228 0.2435 2.961 8829 0.6555 -0.1215 -0.0001 0.0001 0.0001 0.0001 15.44 1165 0.1453 0.1403 -0.0213 0.1453 0.1453 0.1453 0.1453 0.1453 0.1454 0.0302 0.0014 0.0143		-0.0484	•	-0.02894	-0.504	0.080	.2	2.952	с. С	98.72
$ \begin{array}{c} 0.00000 \\ 0.013168 \\ 0.013168 \\ 0.013165 \\ 0.013165 \\ 0.013165 \\ 0.013165 \\ 0.013165 \\ 0.013165 \\ 0.013165 \\ 0.013165 \\ 0.013165 \\ 0.013165 \\ 0.013165 \\ 0.013165 \\ 0.013165 \\ 0.013173 \\ 0.013173 \\ 0.013173 \\ 0.013173 \\ 0.013173 \\ 0.013174 \\ 0.013175 \\ 0.00000 \\ 0.$		-0.03827	•	-0.02561	-0.460	.025	~ ~	2.962	3.25	· · ·
$ \begin{array}{c} -0.182 \\ 0.03168 \\ 0.03216 \\ 0.03216 \\ 0.03761 \\ 0.03216 \\ 0.03761 \\ 0.03761 \\ 0.03212 \\ 0.03761 \\ 0.03776 \\ 0.03776 \\ 0.03776 \\ 0.03776 \\ 0.03776 \\ 0.03776 \\ 0.03776 \\ 0.03776 \\ 0.03776 \\ 0.03776 \\ 0.03776 \\ 0.03776 \\ 0.03776 \\ 0.03776 \\ 0.03776 \\ 0.01446 \\ 0.02541 \\ 0.01144 \\ 0.02143 \\ 0.01257 \\ 0.0000 \\ 0.$		-U.U3921	•	5	00000	000	•	15.44		
$ \begin{array}{c} 0.03168 & 0.4638 & 0.11703 & -0.8881 & 0.0011 & 0.3024 & 3.032 \\ 0.03781 & 0.1455 & 0.01445 & 0.0551 & -0.1453 & 0.1897 & 9.539 \\ 0.05781 & 0.2054 & 0.02143 & -0.6547 & 0.0057 & 0.2046 & 9.539 \\ 0.03578 & 0.20578 & 0.03135 & -0.01445 & 0.0259 & 0.2046 & 9.539 \\ 0.03157 & 0.20578 & -0.01445 & 0.0259 & 0.0000 & 0.0000 & 0.0000 \\ 0.03156 & 0.03578 & -0.01871 & -0.7857 & -0.0366 & 0.33156 & -0.11199 \\ 0.03174 & -0.1237 & -0.1871 & -0.7857 & -0.0346 & 0.31356 & -0.11199 \\ 0.03174 & -0.1237 & -0.1037 & -0.7857 & -0.0473 & 0.33156 & -0.11199 \\ 0.03174 & 0.03144 & 0.0423 & -0.03811 & -0.7474 & 0.0112 & 0.3154 & -0.011919 \\ 0.03146 & 0.03023 & -0.03911 & -0.7057 & 0.0000 & 0.0000 & 0.0000 & 0.0012 \\ 0.03147 & 0.04723 & -0.03911 & -0.7057 & 0.0477 & 0.03156 & -0.11199 \\ 0.03141 & 0.04723 & -0.0003968 & -0.04479 & 0.0762 & 1.474 & 0.033156 & -0.11199 \\ 0.033413 & 0.03024 & -0.001411 & -0.05745 & -0.04173 & 0.2361 & 1.474 & 0.03316 & 0.00120 & 0.0000 & 0.0010 & 0.0112 & 0.03154 & 0.001231 & 0.00534 & 0.001439 & -0.5745 & -0.01473 & 0.2564 & 1.474 & 0.03234 & 0.06742 & 0.002342 & -0.001439 & 0.2564 & 0.2564 & 1.474 & 0.03234 & 0.002328 & 0.00258 & 0.02584 & 0.02744 & 0.474 & 0.0000 & 0.0010 & 0.0010 & 0.00112 & 0.03144 & 0.05648 & -0.05745 & 0.02134 & 0.02144 & 0.02243 & -0.05146 & 0.02164 & 0.02144 & 0.02342 & -0.05144 & 0.02342 & -0.02344 & -0.01234 & -0.04439 & 0.02144 & 0.02342 & -0.02124 & -0.04439 & -0.0586 & 0.22644 & 1.474 & 0.03144 & 0.02342 & -0.02342 & -0.02344 & -0$		-0.1829	°.	0.21	.703	026	• •	-0.1829	17.4	128.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.03168	. 4	; –;	-0.88	0000.	• • •	3.032	- m - H - H	11.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.04945		0.1454	-0.65	.005	~	3.049	-16.4	98.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.03212	0.2	0.09195	-0.56	.010	сч •	3.032	7	84.84
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-0.0286	00	-0.01446	0.025	.145	-	9.539	0930	39.99
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-0.05781	0.0	-0.02143	-0.184	.045	~ ~	-0.05781	0, (39.98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-0.3206	5.0	-0.02833	0.000	. 000	•	145 145	7 · 7 4	24.91
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-0.U58	$\sqrt{1}$	797TN.U	00.00	000.	•	2.149 -01317		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-0.1199		-0.1669	-0.59	036	• •	-0.1199	0.71	98.586
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-0.09174			2	014		-0.09174	14.4	84.65
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.001565	5	.08	L .	001	•	3.002	-8.16	112.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0154	$-\infty$.0730	49	.006	•	3.015	-9.5	98.82
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00924	204	042	-0.3865	-0.009	•	3.009	-8.42	84.75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			C		0.0000	0.000	•	1.5		-4.25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0204		66000	-0.0644 0.0555	-0.047	•	T.48		N 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-0.02597		100.	-0.3635 -0.3635	-0.017	•	1 474	0.197	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-0.03413	• • •	<u> </u>	0	041	\sim	1.466	.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-0.04637	4.	-0.004449	-0.5742	-0.053	~	1.454	0.45	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-0.06328		-0.006191	-1.2793	-0.058	•	1.437	0.66	∞
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-0.07011	ω.	-0.008398	-1.6750	-0.0	•	1.43	0.826	51
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-0.08057	Ļ.	-0.01274	-1.8033	-0.0	•	1.419	1.1	∞
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-0.04474		0.03332	-0.6362	0.0	•	2.955	-2.32	∞
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-0.04423	Ψ.,	0.02716	-0.6796	0.0	•	-3.044	-2.36	∞
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-0.08292	°,	-0.05126	-0.674	0.0	m. (-3.083		∞
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-0.04282	• •	0.0324	-0.807	<u> </u>	•	796.2	-2.37	124 ·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.04270	•	0507070-0-	001.01		•	10.040	-2.4L	1 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-0.03945	• •	0.03182	-0.912		<u>,</u>	2.961	-2.44	† 0
0.07605 0.5153 -0.04811 -0.8437 -0.1014 0.3450 -3.076 0.02985 0.4612 0.02794 -0.6418 0.0016 0.3161 2.97 0.02985 0.4282 0.02297 -0.6341 0.0016 0.3161 2.97 0.02394 0.4282 0.02297 -0.6341 0.0016 0.3161 2.97 0.02781 0.4282 0.02423 -0.6399 -0.0112 0.3175 -3.064 0.02781 0.3715 0.02423 -0.6597 -0.0701 0.2883 2.972 0.01903 0.3416 0.02423 -0.6597 -0.0711 0.2883 2.972 0.01903 0.3416 0.027897 -0.5997 -0.0711 0.2893 2.972 0.01964 0.3134 -0.05997 -0.6651 -0.0711 0.2893 -3.019 0.01953 0.21387 0.01984 -0.19417 0.0065 0.2663 -3.029 0.01953 0.2837 0.01647 -0.4875 -0.0600 <		-0.0319		0.0261	-0.851			-3.032	-2.48	0
0.02985 0.4612 0.02794 -0.6418 0.0016 0.3161 2.97 0.02944 0.4282 0.02297 -0.6341 -0.0817 0.3048 -3.029 0.02351 0.4282 0.02427 -0.6341 -0.0817 0.3048 -3.029 0.02781 0.4274 -0.04279 -0.6399 -0.0112 0.3175 -3.064 0.02781 0.3715 0.04233 -0.6551 -0.0777 0.2803 -3.077 0.01903 0.3406 0.02303 -0.5897 -0.0644 0.2803 -3.079 0.01964 0.31341 -0.037897 -0.0644 0.2803 -3.919 0.01964 0.31341 0.0198 -0.4947 0.0665 -2.693 -3.029 0.01953 0.2837 0.01647 -0.4875 -0.6000 0.2622 -3.02		-0.07605	ц) •	-0.04811	-0.84	0.101	ς.	-3.076	3.51	0
0.02944 0.4282 0.02297 -0.6341 -0.0817 0.3048 -3.029 -3.029 0.06351 0.4274 -0.04279 -0.63399 -0.0112 0.3175 -3.064 -3.029 0.02781 0.3715 0.04273 -0.6551 -0.0707 0.2803 -3.077 -3.064 0.02781 0.3715 0.02423 -0.65517 -0.0707 0.2803 -3.072 -3.019 0.01903 0.3406 0.02033 -0.5587 -0.0444 0.2800 -3.059 0.01964 0.3134 -0.03787 -0.5915 -0.0665 0.2663 -3.059 0.01953 0.2837 0.01647 -0.4875 -0.0600 0.2622 -3.02		-0.02985	4.	0.02794	-0.64	.001	ς.	2.97	-2.53	
0.06351 0.4274 -0.04279 -0.6399 -0.0112 0.3175 -3.064 0.02781 0.3715 0.02423 -0.6051 -0.0707 0.2883 2.972 0.01903 0.3406 0.022003 -0.5897 -0.0044 0.2800 -3.019 0.05897 0.3411 -0.03787 -0.5915 -0.0944 0.2892 -3.059 0.01964 0.3134 0.0198 -0.4947 0.0065 0.2663 2.98 0.01953 0.2837 0.01647 -0.4875 -0.0600 0.2622 -3.02		-0.02944	4	0.02297	-0.634	0.081	~	-3.029	-2.5	\sim
0.02781 0.3715 0.02423 -0.6051 -0.0707 0.2883 2.972 0.01903 0.3406 0.02003 -0.5897 -0.0041 0.2800 -3.019 0.05897 0.3411 -0.03787 -0.5915 -0.0944 0.2892 -3.059 0.01964 0.3134 0.0198 -0.4947 0.0065 0.2663 2.98 0.01953 0.2837 0.01647 -0.4875 -0.0600 0.2622 -3.02		-0.06351	φ.	-0.04279	-0.639	0.011	.317	-3.064	.42	112.8
0.01903 0.3406 0.02003 -0.5897 -0.0041 0.2800 -3.01 0.05897 0.3411 -0.03787 -0.5915 -0.0944 0.2892 -3.05 0.01964 0.3134 0.0198 -0.4947 0.0065 0.2663 2.9 0.01953 0.2837 0.01647 -0.4875 -0.0600 0.2622 -3.0		-0.02781	· ·	0.02423	-0.60	0.070	2	2.972	. 62	511
0.05897 0.3411 -0.03787 -0.5915 -0.0944 0.2892 -3.05 0.01964 0.3134 0.0198 -0.4947 0.0065 0.2663 2.9 0.01953 0.2837 0.01647 -0.4875 -0.0600 0.2622 -3.0		-0.01903	· ·	0.02003	-0.58	0.004	.280	-3.019	. 65	\triangleleft
.01964 0.3134 0.0198 -0.4947 0.0065 0.2663 2.9 .01953 0.2837 0.01647 -0.4875 -0.0600 0.2622 -3.0		-0.05897	.341	-0.03787	-0.591	0.094	.289	-3.059	.34	04
.01953 0.2837 0.01647 -0.4875 -0.0600 0.2622 -3.0		.0196	.313	0.0198	-0.494	.006	.266	2.98	. 68	∞
		.0195	.2	.01	.487	.060	.262	-3.02	-2.716	98.77

••
- -
¥.
9
й
<u>.</u>
<u></u>
프
C)
ŵ.
덛
4
-
Ð
ŝ
, rđ
0
Load Case "NESC Extreme'
Ď
Ó.
н
6
for
чĭ
35
5
٠Ĥ
5
ğ
ä
Å.
5
2
ă.
D.
2
0)
Joint Support Reactions
Ē
·d
В

	1.75 $25.01.77$ 24.99261 $24.1.56$ $24.91.56$ 24.9
0 0 0 0 0 0 0 0 0 0 0 0 0 0	-11.76 - -11.78 - -11.78 - -11.79 0.0
20 20 20 20 20 20 20 20 20 20 20 20 20 2	.0493 .0579 .0396 .3811 .0000 -0
	00000
1 1	1 0 0 4 7 0 4 7 0 4 7 0 6 8 0 0 6 8 0 0 6 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.011642 0.011382 0.011382 0.011382 0.011956 0.011029 0.011029 0.011029 0.011643 0.11637 0.11637 0.11637 0.11637 0.012209 0.000566002 0.002209 0.0122269 0.0022690 0.0126395 0.011644 0.011644 0.011644 0.011644 0.011644 0.011644 0.011644 0.011644 0.0116487 0.0116487 0.0116487 0.0116485 0.0116495 0.0116495 0.0116495 0.0116495 0.0116495 0.0116495 0.0116495 0.0116495 0.0116495 0.0116495 0.0116495 0.0116495 0.0116495 0.0116495 0.0116495 0.0116495 0.0116495 0.011167 0.0116495 0.0111955 0.0111955 0.00116495 0.0111955 0.0111955 0.0111955 0.00111955 0.00111955 0.00111955 0.00111955 0.00111955 0.00111955 0.00111955 0.00111955 0.00111955 0.00111955 0.00111955 0.00111955 0.00111165 0.00111165 0.00111165 0.00111165 0.00111165 0.00111165 0.00111165 0.00111165 0.00111165 0.00111165 0.00111165 0.001111165 0.00111165 0.00111165 0.00111165 0.00111165 0.00111165 0.001111165 0.00111115 0.00111115 0.00111115 0.00111155 0.001111155 0.001111155 0.00111555 0.00111555 0.00111155 0.00111155 0.00111555 0.00111555 0.0010	.0015 .0055 0.014 0.019 0.081
0 0	
$\begin{array}{c} 0.02131\\ 0.00131\\ 0.02131\\ 0.001$	0180025
7X 7X 7X 7X 7X 7X 7X 7X 8X 8X 8X 8X 8X 8X 8X 8X 15X 15X 15X 15X 15X 15X 15X 15X 15X 15	XX 0X 4X 4X

Joint	×	×	Т	ΥE	Y H-Shear	2		Uplift	Result.	Result.	×	. М-Х	Т	⊻-М. І	I-Bend-M	N	Z-M.	Max.
Label	Force (kips)	Usage %	Force (kips)	Usage %	Usage %	Force (kips)	Usage %	Usage %	Force (kips)	Usage Mc % (f	ment (t-k)	Usage	loment ft-k)	Usage %	Usage %	Moment (ft-k)	Usage L %	Usage %
15P	-22.98 0.0	0.0	-23.98	1	i i	-166.12	0.0	0.0	169.41		0.20	0.0	6.8	0.0	0.0	0.45	0.0	0.0
29P	29P 0.20		0.0 -2.06	0.0	0.0	-12.63	0.0	0.0	12.80	0.0	23.33	0.0	4.5	0.0	0.0	-1.84	0.0	0.0
15X	33.23		-38.88			185.44	0.0	0.0	192.37		5.64	0.0	0.2	0.0	0.0	0.24	0.0	0.0
15XY	-26.40		-23.60			136.73	0.0	0.0	141.24		1.15	0.0	-0.8	0.0	0.0	-0.44	0.0	0.0
15Y	28.61		-33.31			-203.54	0.0	0.0	208.23		-1.77	0.0	-2.5	0.0	0.0	-0.51	0.0	0.0

Joint Displacements, Loads and Member Forces on Joints for Load Case "NESC Extreme":

гарет	Load (kips)	Load (kips)	Load (kips)	Force (kips)	Force (kips)	Force (kips)	Disp. (ft)	Disp. (ft)	Disp. (ft)
1P	0.0000	0.2043	-0.1869	-0.0000-	-0.2043	0.1869	-0.0829	0.6761	-0.0460
2P	0.0000	0.2043	-0.1869	0.0000	-0.2043	86	.081	9.	-0.044
ЗP	0.0000	0.2043	-0.1869	0.0000	-0.2043	.186	-0.0680	0.5510	-0.0427
4 P	0.0000	0.2043	-0.1869	-0.0000	-0.2043	.18	-0.0632	0.4608	-0.0378
5 P	0.0000	0.2043	-0.1869	0.0000	-0.2043	0.1869	-0.0497	0.3716	-0.0334
6Р	0.0000	0.2043	-0.1869	0.0000	-0.2043	0.1869	-0.0484	0.3129	-0.028
JΡ	0.0000	0.2043	-0.1869	0.0000	-0.2043	0.1869	-0.0383	0.2537	-0.0256
8P	0.0000	0.8354	-0.7384	-0.0000	-0.8354	0.7384	-0.0392	0.2036	-0.021
15P	0.0000	0.6311	-0.5515	22.9780	23.3531	-165.5702	0.0000	0	0.0000
16P	-2.0320	5.2163	-0.8679	2.0320	-5.2163	0.8679	-0.1829	0	-0.2150
17P	3.0490	3.4333	-2.0219	-3.0490	-3.4333	2.0219	0.0317	0	0.1703
18P	3.2630	4.8413	-1.9979	-3.2630	-4.8413	1.9979	0.0495	0.3165	0.1454
19P	3.4250	4.2833	-1.5199	-3.4250	-4.2833	1.5199	0.0321	0.2054	0.092
20AP	0.0000	0.6311	-0.5515	0.0000	-0.6311	0.5515	-0.0286	0.0930	-0.0145
20BP	0.0000	0.6311	-0.5515	0.0000	-0.6311	0.5515	-0.0578	0.0647	-0.0214
21P	0.0000	0.6311	-0.5515	-0.0000	-0.6311	0.5515	-0.3206	0.0368	-0.0283
22P	0.0000	0.6311	-0.5515	-0.000.0-	-0.6311	0.5515	-0.0590	0.2916	0.0125
23P	-3.0010	7.6933	-1.6499	3.0010	-7.6933	1.6499	-0.1317	0.4436	-0.1871
24P	-1.5210	6.8893	-1.5769	1.5210	-6.8893	1.5769	-0.1199	0.2977	-0.1669
25P	-3.1460	8.0243	-1.1559	3.1460	-8.0243	1.1559	-0.0917	0.1915	-0.1037
26P	0.0000	0.2043	-0.1869	-0.0000	-0.2043	0.1869	0.0016	0.4623	0.0891
27P	0.0000	0.2043	-0.1869	-0.0000	-0.2043	0.1869	0.0155	0.3149	0.073
28P	0.0000	0.2043	-0.1869	-0.0000	-0.2043	0.1869	0.0092	0.2044	0.042
29P	0.0000	0.6311	-0.5515	-0.1980	1.4255	-12.0782	0.0000	0.0000.0	0.0000
30P	0.0000	1.1941	-1.0245	0.0000	-1.1941	1.0245	-0.0205	0.0742	-0.0010
31P	0.0000	1.1481	-0.9865	0.0000	-1.1481	0.9865	-0.0286	0.0697	-0.001
32P	0.0000	1.3444	-1.1664	-0.0000	-1.3444	1.1664	-0.0260	0.1971	-0.002
33P	0.0000	0.4463	-0.3909	0.0000	-0.4463	0.3909	-0.0341	0.3062	-0.0034
34P	0.0000	0.4643	-0.4049	-0.0000	-0.4643	0.4049	-0.0464	₽.	-0.0044
35P	0.0000	0.3433	-0.3029	-0.0000	-0.3433	0.3029	-0.0633	0.6671	-0.0062
36P	0.0000	8.5293	-2.9179	0.0000	-8.5293	2.9179	-0.0701	0.8261	-0.0084
37P	0.0000	2.8053	-3.6589	0.0000	-2.8053	3.6589	-0.0806	1.1027	-0.0127
1X	0.0000	0.2043	-0.1869	-0.0000	-0.2043	0.1869	-0.0447	0.6762	0.0333
1XY	0.0000	0.2043	-0.1869	-0.0000	-0.2043	0.1869	-0.0442	0.6358	0.027
1Υ	0.0000	0.2043	-0.1869	-0.0000	-0.2043	0.1869	-0.0829	0.6350	-0.0513
2X	0.0000	0.2043	-0.1869	0.0000	-0.2043	0.1869	-0.0428	0.6244	0.0324
2XY	0.0000	0.2043	-0.1869	0.0000	-0.2043	0.1869	-0.0427	0.5834	0.0265
2Υ	0.0000	0.7363	-0.3149	0.0000	-0.7363	0.3149	-0.0814	0.5822	-0.0498
3Х	0.0000	0.2043	-0.1869	0.0000	-0.2043	0.1869	-0.0394	0.5511	0.0318
ЗХҮ	0.0000	0.2043	-0.1869	0.0000	-0.2043	0.1869	-0.0319	0.5154	0.0261
ЗҮ	0.0000	0.2043	-0.1869	0,0000	-0.2043	0.1869	-0 0760	0 5153	-0 0481
1	•	•		·			2) 	

023	0.0000 0.1634 0.1654 0.1654 0.0012 0.00012 0.00012 0.00146 0.00146 0.00146 0.0022 0.0020 0.0022 0.00200000000	0.004 0.007 0.007 0.114 0.0012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.007 0.017 0.007 0.017 0.00700000000
000000000000000000000000000000000000000	0.0000 0.4307 0.4307 0.2858 0.2858 0.1887 0.06533 0.06533 0.06533 0.06533 0.06533 0.06533 0.06533 0.0182 0.001 0.0564 0.0766 0.07664 0.1733 0.1733 0.12653 0.127333 0.127333 0.127330 0.127330 0.127330 0.127330 0.127330 0.12	
000000000000000000000000000000000000000	0.00000 0.04490 0.0317 0.0317 0.0256 0.00266 0.01234 0.00256 0.00127 0.000055 0.00127 0.000055 0.00127 0.0000555 0.0000555 0.00005555 0.000055555555	
186 186 186 186 186 186 186 186 186 186	-1222709 0.210927 0.310927 0.3109 0.3109 0.3109 0.55155 0.55155 0.55155 0.55155 0.55155 0.1869 0.1869 0.1869 0.55155 0.5551550 0.5551550 0.5551550000000000	1186 1866
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		10000000004000000000000000000000000000
	- 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.6311 5.2403 4.5263 4.5263 4.9813 0.6311 0.6311 0.6311 0.6311 0.6311 0.6311 0.6311 0.6311 0.6311 0.6311 0.6311 0.6311 0.6311 0.6311 0.6311 0.6311 0.6311 0.6311	NOONOOOO0400000000000000000000000000000
4XY 4XY 5XY 5XX 6X 6X 6X 7XY 7XY 8XX 8XY 8XY	ם ע ע	10.5051135 10.5051135 10.505855 21XF0.505 9X 9X 9X 10X 11X 11X 11X 11X 11X 11X 11X 11X 11

4	9	0	-	9
0.001	5 0.0056	-0.015	-0.196	-0.081
0.0669	0.0186	0.0002	0.0093	0.2056
-0.0020	0.0057	-0.0056	-0.0189	-0.0003
0.5515.	0.5515 0.0057 0.0186	0.9575	0.5515.	0.5515
-0.6311	-0.6311	-2.3191	-0.6311	-0.6311
-0.0000	-0.0000	0.0000	-0.0000	0.0000
-0.5515	-0.5515	-0.9575	-0.5515	-0.5515
0.6311	0.6311	2.3191	0.6311	0.6311
0.0000	0.0000	0.0000	0.0000	0.0000
14X	14XY	14Y	21XF0.50Y	22PF0.50X

Crossing Diagonal Check for Load Case "NESC Extreme" (RLOUT controls):

		6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	Curve No.	
	L/R KL/R Curve No.	0.01 1.70 1.70 7.89 7.89
late- rted	۲ ۲	9 11 9 10 11 9 10
ltern suppo	Ì	168.79 150.01 103.40 111.70 103.40 111.70 103.40 111.70 95.79 107.89 95.79 107.89
Alternate	TUO	15.14 1.000 168.79 150.01 49.22 1.000 103.40 111.70 49.22 1.000 103.40 111.70 49.22 1.000 103.40 111.70 49.22 1.000 103.40 111.70 49.22 1.000 103.40 111.70 42.37 1.000 95.79 107.89 42.37 1.000 95.79 107.89
	L/R RLOUT Cap. [ps]	15.14 1.000 49.22 1.000 49.22 1.000 49.22 1.000 42.37 1.000 42.37 1.000
	L/R Cap. (kips)	15. 49. 42.
	urve No. 	5000000
	KL/R Curve No.	129.32 88.16 88.16 88.16 88.16 101.84 101.84
11		129.32 88.16 88.16 88.16 88.16 101.84 101.84
Original	L/R	132.18 129.32 77.55 88.16 77.55 88.16 77.55 88.16 95.79 101.84 95.79 101.84
Original	RLY RLZ	0.500 0.500 0.580 0.580
0	RLY	
	RLX	.58000
ii	L/R Cap. (kips)	20.37 0.500 0.500 0.500 132.18 129.32 61.20 0.500 0.750 0.500 77.55 88.16 61.20 0.500 0.750 0.500 77.55 88.16 61.20 0.500 0.750 0.500 77.55 88.16 61.20 0.500 0.750 0.500 77.55 88.16 61.20 0.500 0.750 0.500 77.55 88.16 61.20 0.500 0.750 0.500 77.55 88.16 64.33 0.580 0.580 0.580 95.79 101.84 44.33 0.580 0.580 0.580 95.79 101.84
ce Force In In	Comp. Tens. Member Member (kips) (kips)	-2.86 0.29 -3.86 -0.54 -0.54 -3.86 -14.80 1.50 -3.43 -15.15 -15.15 -3.43
Force In	Comp. Member (kips)	-2.86 -3.86 -0.54 -14.80 -3.43 -15.15
Connect Leg for	omp. mber	only only only only only
Con	Ŭ Ĝ	Long Long Long Short Short
Tens. Member	Label	15BXY 19BXY 19BX 20BP 21BY 5 21BY 5
Comp. Member		15BX 19BX 19BXY 20BY 21BP 21BP

Summary of Clamp Capacities and Usages for Load Case "NESC Extreme":

Usage %	111 111 111 111 111 112 112 112 112 112
Factored Holding Capacity (kips)	
Input Holding Capacity (kips)	
Clamp Force Label (kips)	1 5 645 2 5 645 3 5 645 5 6 5 645 6 5 645 65 7 5 649 662 8 6 5 649 9 8 662 662 11 8 666 674 12 0 801 112 0 14 1 0035 115 1 674 15 1 866 674 1 673 16 1 674 1 035 1 573 22 1 1 573 1 573 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3

 30
 0.838
 50.00
 50.00
 1.68

 31
 0.838
 50.00
 50.00
 1.68

*** Overall summary for all load cases - Usage = Maximum Stress / Allowable Stress Printed capacities do not include the strength factor entered for each load case. The Group Summary reports on the member and load case that resulted in maximum usage which may not necessarily be the same as that which produces maximum force.

Group Summary (Compression Portion):

Angle Steel Max Usage Control Comp. Comp. Comp. Comp. Size Strength Usage Cont- Use Control Proce Control Size Strength Usage Cont Use Control Proce Control Size Size 91.43 Si 91.43 Si 93.45 Size Size 0 91.43 Comp 91.43 Size Case Size 0 91.43 Comp 91.43 Size Size Size Size 0 91.43 Comp 91.43 Size Size Case Size 64.50 Comp 91.43 Tens 63.43 Tr Size Case Size 64.50 Comp 91.44 Tr Size Size Case Size Size Size Size Size Size Size Size Case Size		•											
Interpretation Desc. Type Size Strength Usage Control Force Control No. of No. of No In Member Loca noise Boils Same Same Same Camp Amber Loca 1.000 1.201 Same	Group L/R Length Curve	coup Angle No.	Angle	Steel Max	Usage Max	Comp.	Comp. Comp.	L/R	Comp.	Comp.	RLX F	RLY RLZ	Z L/R
rot rot <th>el No</th> <th>sc.</th> <th>Size S</th> <th>trength Usage</th> <th></th> <th></th> <th>Control</th> <th>Capacity Connect.</th> <th></th> <th>Connect.</th> <th></th> <th></th> <th></th>	el No	sc.	Size S	trength Usage			Control	Capacity Connect.		Connect.			
Mottes Comp. Comp. Comp. Case 1 1 4 (kis) 4 (kips) 1 1 1 4 (kis) 3 -33.282MESC Ext 9 1 1 4 (kis) 3 -33.282MESC Ext 9 1 1 4 (kis) 3 -33.282MESC Ext 9 1 1 4 8 (kis) 3 -33.282MESC Ext 3 1 1 1 4 8 6 6 3 3 '32.282MESC Ext 3 1							Load		Shear	Bearing			
(ksi) i (ki) i (ki) 1 1 2 3.5X3.5X0.25 36.0 91.43 37 -33.282NESC Ext 9 1 1 4 6 6.0 91.43 77 -158.33NESC Ext 9 1 1 2 8 8X8X0.5 36.0 91.43 77 -158.33NESC Ext 33 1 1 1 8 8X8X0.625 36.0 91.43 77 -158.33NESC Ext 33 1 1 1 8 8X8X0.625 36.0 91.43 77 -158.33NESC Ext 33 1 1 1 8 8X8X0.625 36.0 64.50 77 -191.743NESC Ext 33 1					Comp.		Case	U	Capacity (Capacity			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	omp. ft)				96		(kips)	(kips)	(kips)	(kips)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			3.5X3.5X0.25		91		1	53.833	36.400	54.375 0	.500 0	.500 0.500	0 60.52
$ \begin{bmatrix} 1263 & 12 \\ 1263 & 5xz \\ 1264 & 5xz \\ 1265 & 5xz \\ 1260 & 0.000 \\ 0 & 0 & 0.000 \\ 0 & 0 & 0.000 \\ 0 & 0 & 0 & 0.000 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 $. 4 JEG2 SAE	6X6X0.3125	36.0 91.18	91			99.083	109.200	203.906 1	.000 1.0	1.000 1.000	0 60.50
$ \begin{bmatrix} \text{LEG}_{1} & \frac{1}{16} \\ \text{LEG}_{1} & \frac{1}{16} \\ \text{LEG}_{1} & \frac{1}{16} \\ \text{LEG}_{1} & \frac{1}{16} \\ \text{SAE} & 8X8X0.625 & 36.0 & 64.50 & 000 & 64.50 & 10Y -187.830NESC Ext 33 \\ 1 & 1 & 0 & 0 & 0.000 \\ 0 & 0 & 0 & 0.000 & 0.000 \\ 0 & 0 & 0 & 0.000 & 0.000 & 0.000 \\ 0 & 0 & 0 & 0.000 & 0.000 & 0.000 \\ 0 & 0 & 0 & 0.000 & 0.000 & 0.000 \\ 0 & 0 & 0 & 0.000 & 0.000 & 0.000 & 0.000 \\ 0 & 0 & 0 & 0.000 & 0.000 & 0.000 & 0.000 \\ 0 & 0 & 0 & 0 & 0.000 & 0.000 & 0.000 & 0.000 \\ 0 & 0 & 0 & 0 & 0.000 & 0.000 & 0.000 & 0.000 \\ 0 & 0 & 0 & 0 & 0.000 & 0.000 & 0.000 & 0.000 \\ 0 & 0 & 0 & 0 & 0 & 0.000 & 0.000 & 0.000 & 0.000 \\ 0 & 0 & 0 & 0 & 0 & 0.000 & 0.000 & 0.000 & 0.000 \\ 0 & 0 & 0 & 0 & 0 & 0.000 & 0.000 & 0.000 & 0.000 \\ 0 & 0 & 0 & 0 & 0 & 0.0156 & Comp & 61.56 & 17AX & -24.380NESC Hea 3 & 0 \\ 0 & 0 & 0 & 0 & 3.5X2.5X0.3125 & 36.0 & 61.85 & Tens & 63.32 & 19AX & -38.755NESC Hea & 6 & 0 \\ 0 & 0 & 0 & 0 & 53.22 & 0.08 & 53.22 & 18AX & -17.423NESC Hea & 6 & 0 \\ 0 & 0 & 0 & 0 & 53.12 & 0.08 & 57.13 & Comp & 57.13 & 21BY & -25.327NESC Hea & 6 & 0 \\ 0 & 0 & 0 & 0 & 57.13 & Comp & 57.13 & 21BY & -25.327NESC Hea & 2 & 0 \\ 0 & 0 & 0 & 0 & 57.13 & Comp & 57.13 & 21BY & -25.327NESC Hea & 2 & 0 \\ 0 & 0 & 0 & 0 & 57.13 & Comp & 57.13 & 21BY & -25.327NESC Hea & 2 & 0 \\ 0 & 0 & 0 & 0 & 57.13 & Comp & 57.13 & 21BY & -25.327NESC Hea & 2 & 0 \\ 0 & 0 & 0 & 0 & 57.13 & Comp & 57.13 & 21BY & -25.327NESC Hea & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 57.13 & Comp & 57.13 & 21BY & -25.327NESC Hea & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$		EG3 SAE	8X8X0.5	36.0 64.31	63	ΧL		249.636	254.800	380.624 1	.000 1.0	.000 1.000	0 52.83
LEG5 SAE 8Y8K0.75 36.0 56.44 Comp 56.44 11Y -189.164NESC Ext 33 X1 5.5 SAU 2.5X2.5X0.1875 36.0 0.00 0.00 0.000<			8X8X0.625	36.0 64.50	64.	10Y	.830NESC	306.646	291.200	543.749 1	.000 1.0	.000 1.000	0 60.12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-	8X8X0.75	36.0 56.44	56	11Y		335.162	0.000	0.000 1	1.000 1.0	1.000 1.000	0 76.95
XZ SAU 2.5X2X0.1875 36.0 93.34 Comp 16AX -13.349NESC Ext 14 Z Z 4X3X0.25 36.0 61.56 Comp 61.56 17AX -24.398NESC Hea 39 Z SAU 4X3X0.25 36.0 61.56 Comp 61.56 17AX -24.398NESC Hea 39 Z SAU 4X3.5X0.3125 36.0 64.85 Tens 63.32 19AX -17.423NESC Hea 30 Z Z SAU 4X3.5X0.3125 36.0 67.13 Comp 57.13 21BX -37.423NESC Hea 44 Z Z A 4X3.5X0.255 36.0 64.95 Tens 63.12 21BX -17.423NESC Hea 44 Z Z A 4X3.5X0.255 36.0 57.13 Comp 51.15 21BX -17.423NESC Hea 40 Z Z A 4X3.5X0.255 36.0 57.13 Comp 51.16 22 41 Z Z SAU 31.916 Comp 41.92 21.32 21.4AX <td>_</td> <td></td> <td>2.5X2.5X0.1875</td> <td></td> <td>0.00</td> <td></td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.000 0</td> <td>0.000 0.0</td> <td>0.000 0.000</td> <td>00.00</td>	_		2.5X2.5X0.1875		0.00		0.000	0.000	0.000	0.000 0	0.000 0.0	0.000 0.000	00.00
3 5 3 0 61.56 Comp 61.56 17AX -24.388NESC Hea 39 2 5 SAU 4X33.5X0.255 36.0 61.56 Comp 61.56 17AX -24.388NESC Hea 39 2 4 X52.55X0.25 36.0 61.65 Tens 63.32 19AX -17.423NESC Hea 31 2 K5 SAU 4X3.5X0.3125 36.0 64.85 Tens 63.32 19AX -38.755NESC Hea 31 2 K6 SAU 5X3.5X0.25 36.0 64.85 Tens 63.32 19AX -38.755NESC Hea 30 2 K6 SAU 4X3.5X0.25 36.0 49.16 Comp 49.16 22AX -11.391NESC Hea 30 5 3 5 36.0 53.15 Comp 53.15 24AX -11.391NESC Hea 21 5 3 53.15 Comp 53.15 Comp 54.14X -11.391NESC Hea 21 5 <td< td=""><td>C</td><td>⊃ ∾</td><td>2.5X2X0.1875</td><td>36.0 93.34</td><td>93</td><td></td><td></td><td>14.303</td><td>18.200</td><td>20.391 0</td><td>.500</td><td>0.500 0.500</td><td>0 129.55</td></td<>	C	⊃ ∾	2.5X2X0.1875	36.0 93.34	93			14.303	18.200	20.391 0	.500	0.500 0.500	0 129.55
x4 54 540 3.5X2.5X0.25 36.0 53.22 Comp 53.22 18AX -17.423NESC Hea 32 x5 sAU 4x3.5X0.3125 36.0 64.85 Tens 63.32 19AX -38.755NESC Hea 61 x6 sAU 5x3.5X0.25 36.0 67.13 comp 57.13 21BY -25.327NESC Hea 44 x7 5AU 4x3x0.25 36.0 49.16 comp 51.13 21BY -25.327NESC Hea 41 x7 5AU 4x3x0.25 36.0 49.16 comp 49.16 22AX -15.234NESC Hea 30 x8 SAU 3.5X3X0.25 36.0 42.65 Tens 41.92 23AX -9.450NESC Hea 22 x8 SAU 3.5X3X0.25 36.0 42.65 Tens 41.92 23AX -11.391NESC Hea 21 5 3 53.15 comp 53.15 comp 51.4X -11.391NESC Hea 21 5 3 53.15 comp 53.15 24AX -11.256NESC Hea 21 <td>21.32 9.220 8 05 22 40 200</td> <td>с</td> <td>4X3X0.25</td> <td>36.0 61.56</td> <td>61</td> <td></td> <td></td> <td>39.613</td> <td>45.500</td> <td>67.969 0</td> <td>0.500 0.7</td> <td>.750 0.500</td> <td>0 100.45</td>	21.32 9.220 8 05 22 40 200	с	4X3X0.25	36.0 61.56	61			39.613	45.500	67.969 0	0.500 0.7	.750 0.500	0 100.45
x $\frac{4}{5}$ $\frac{2}{5}$ $\frac{3}{5}$ $\frac{4}{2}$ $\frac{4}{5}$ $\frac{2}{5}$ $\frac{3}{5}$ $\frac{4}{2}$ $\frac{4}{5}$ $\frac{4}{5}$ $\frac{2}{5}$ $\frac{4}{2}$ $\frac{4}{5}$ $\frac{2}{5}$ $\frac{4}{2}$ $\frac{4}{5}$ $\frac{2}{5}$ $\frac{4}{2}$ $\frac{4}{5}$			3.5X2.5X0.25	36.0 53.22	53			32.738	36.400	54.375 0	0.500 0.7	.750 0.500	0 104.34
x 6 Au 5X3.5X0.25 36.0 57.13 Comp 57.13 21BY -25.327NESC 44 2 6 4 4X3X0.25 36.0 57.13 Comp 49.16 22AX -15.234NESC 46 30 5 4 3.5X3X0.25 36.0 49.16 Comp 49.16 22AX -15.234NESC 46 30 5 3 5.0 42.65 Tens 41.92 23AX -9.450NESC 46a 22 5 3 5.0 5.15 Comp 53.15 24AX -11.391NESC 4ea 21 5 3 5.0 5.15 Comp 53.15 24AX -11.256NESC 4ea 23 5 3 5.0 36.0 98.99 Tens 33.30 25AY -11.256NESC 4ea 21 5 7 D2 SAU 3X2X0.25 36.0 39.49 Tens 14.46 26AX -0.585NESC 4ea 4 5 2 4 4.4.46 26AX -0.585NE		Г	4X3.5X0.3125	36.0 64.85	63			61.204	63.700	118.945 0	0.500 0.7	0.750 0.500	0 77.55
x7 54 4 4X3X0.25 36.0 49.16 Comp 49.16 22AX -15.234NESC Hea 30 5 4 3.5X3X0.25 36.0 49.16 Tens 41.92 23AX -9.450NESC Hea 22 5 3 5.0 42.65 Tens 41.92 23AX -9.450NESC Hea 22 5 3 5x3X0.25 36.0 53.15 Comp 53.15 24AX -11.391NESC Hea 21 5 3 5x3X0.25 36.0 98.99 Tens 33.30 25AY -11.256NESC Hea 33 5 3 5x3X0.25 36.0 98.99 Tens 14.46 26AX -0.585NESC Hea 4 5 7 2 2X2X0.1875 36.0 98.99 Tens 14.46 26AX -0.585NESC Hea 4 5 7 2 2 31.0 25AY -11.256NESC Hea 4 6 7 2 35.0 39.49 Tens 14.46 26AX -0.585NESC Hea 4 5 7 2 2 33.30 25AY -11.256NESC Hea 4 6 6 3 7 <		-	5X3.5X0.25	36.0 57.13	57		5.327NESC	44.335	54.600	81.562 0	.580	0.580 0.580	0 95.79
X8 SAU 3.5X3X0.25 36.0 42.65 Tens 41.92 23AX -9.450NESC Hea 22 5 3 5X3X0.25 36.0 42.65 Tens 41.92 23AX -9.450NESC Hea 22 5 3 5X3X0.25 36.0 53.15 Comp 53.15 24AX -11.391NESC Hea 21 5 3 5X3X0.25 36.0 98.99 Tens 33.30 25AY -11.256NESC Hea 33 5 7 7 23.50.1875 36.0 98.99 Tens 14.46 26AX -0.585NESC Hea 4 5 7 2 35.0 39.49 Tens 14.46 26AX -0.585NESC 4 4 5 4 4X3X0.25 36.0 70.89.53 Comp 98.53 28AXY -11.320NESC Ext 11 6 6 74 74 75 26.0 298.51 20.61 65 65 65 65 65 65 65 65 65 <td>01.03 10.337 12 24 92 12 246</td> <td>2</td> <td>4X3X0.25</td> <td>36.0 49.16</td> <td></td> <td></td> <td></td> <td>30.985</td> <td>36.400</td> <td>54.375 0</td> <td>.560</td> <td>0.560 0.560</td> <td>0 126.41</td>	01.03 10.337 12 24 92 12 246	2	4X3X0.25	36.0 49.16				30.985	36.400	54.375 0	.560	0.560 0.560	0 126.41
X9 5AU 5X3X0.25 36.0 53.15 Comp 53.15 24AX -11.391NESC Hea 21 5 3 D1 SAU 5X3X0.25 36.0 98.99 Tens 33.30 25AY -11.256NESC Hea 33 5 7 D2 SAE 2X2X0.1875 36.0 98.99 Tens 14.46 26AX -0.585NESC Hea 4 5 2 D3 SAU 3X2X0.25 36.0 76.98 Tens 58.20 27AXY -3.737NESC Hea 6 5 4 4 4 5 D4 SAU 4X3X0.25 36.0 98.53 Comp 98.53 28AXY -11.320NESC Ext 11 4 5 D5 5AT 48 Tens 35.50 29AY -11.320NESC Ext 11 7 5 5 4 50 29AY -11.320NESC Ext 11	23.72 12.230 13 40 74 14 070	~	3.5X3X0.25	36.0 42.65	41.			22.542	27.300	40.781 0.	550 0	.550 0.550	0 147.17
D1 5AU 5X3X0.25 36.0 98.99 Tens 33.30 25AY -11.256NESC Hea 33 5 7 7 7 7 -0.585NESC Hea 4 5 7 2 249 Tens 14.46 26AX -0.585NESC Hea 4 5 2 36.0 39.49 Tens 14.46 26AX -0.585NESC Hea 4 5 2 36.0 39.49 Tens 58.20 27AXY -3.737NESC Hea 6 5 4 4 4 58.20 27AXY -3.737NESC Hea 6 5 4 4 4 58.53 28AXY -11.320NESC Ext 11 6 5 36.0 98.53 Comp 98.53 28AXY -11.320NESC Ext 11 6 6 5 36.0 98.53 Comp 98.53 29AXY -11.320NESC Ext 11 6 7 8 7 7 7 7 7 7 7		~	5X3X0.25	36.0 53.15	53			21.431	27.300	40.781 0	.550 0	.550 0.550	0 173.71
D2 SAE 2X2X0.1875 36.0 39.49 Tens 14.46 26AX -0.585NESC Hea 5 2 D3 SAU 3X2X0.25 36.0 76.98 Tens 58.20 27AXY -3.737NESC Hea 5 4 D4 5 d 5 d 5 d 7 5.0 98.53 Comp 98.53 28AXY -11.320NESC Ext 1 4 5 d 5 d 3 5.0 67.48 Tens 35.50 20AV -9.106NESC Tet 2			5X3X0.25	36.0 98.99	33		.256NESC	33.799	63.700	95.156 1	.0000.	.500 0.500	0 127.63
D3 5AU 3X2X0.25 36.0 76.98 Tens 58.20 27AXY -3.737NESC Hea 5 4 D4 5AU 4X3X0.25 36.0 98.53 Comp 98.53 28AXY -11.320NESC Ext 1 4 5 D6 511 3 5X3X0.25 36.0 67.48 Tens 35.50 29AY -9.106NESC Ext 2	23.00 14.103 16 24 16 16 052	0	2X2X0.1875	36.0 39.49	14			4.044	18.200	20.391 0.	500	0.500 0.500	0 256.65
D4 SAU 4X3X0.25 36.0 98.53 Comp 98.53 28AXY -11.320NESC Ext 4 5 D5 SAU 3 5X3X0.25 36.0 67.48 Tens 35.50 20AV -9.106NESC Ext	23.10.107 20.33.10.107	e	3X2X0.25	36.0 76.98	58			6.420	36.400	54.375 1	1.000 0.5	0.500 0.500	0 264.74
ד	00.00 19.194 18 05 10 15 201		4X3X0.25		98.			11.489	45.500	67.969 0.	500	1.000 0.500	0 205.19
0.02020.00 00.00 00.00 TUTE _0.TO TUTE _0.TOONED(FYC	19	D5 SAU	3.5X3X0.25	36.0 67.48	Tens 35.50	29AY	-9.106NESC Ext	25.652	45.500	67.969 0	0.250 0.2	0.250 0.250	0 135.61

Centek Engineering Inc - CL&P # 1281

Page 57/63

	6.000 4			•				-0.944NEGC EAC	1) 	•
9.10 3.33.0.1.037 3.6.0 3.0.0 -0.1.311350 10301 10.00 </td <td>œ</td> <td>SAU 3</td> <td>4X3.5X0.25</td> <td>36.0 56.67</td> <td>S</td> <td>.67</td> <td></td> <td>15.471NESC He</td> <td>27.341</td> <td>27.300</td> <td>.781 1.000 0.500 0.500 148.</td>	œ	SAU 3	4X3.5X0.25	36.0 56.67	S	.67		15.471NESC He	27.341	27.300	.781 1.000 0.500 0.500 148.
Mut XXXX0.25 36.0 0.30 0.30 0.200 0.000 0		SAE	3X3X0.1875	36.	ŝ	.78	8BX	4.231NESC Ex	.50	~	0.391 1.000 1.000 1.000 192.
36.8 3.5X3.5X0.1373 36.0 1.9 0.00 0.000		SAU	5X3X0.25	53.	S	.07	39AP	9.658NESC He	•		.187 1.000 1.000 1.000 173.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	SAE SAE	3.5X3.5X0.25	.0 19.	-	•	4 0 X	2.634NESC He	3.38	∞	.187 1.000 1.000 1.000 233.
	c	z SAE 1	75X1.75X0.1875	0.	0			•			.000 0.000 0.000 0.000
310 $2.5XZX0.1875$ 36.0 $1.2.73$ 0.00 $1.268MBSC$ $1.64.37$ $1.6.5200$ $2.0.331$ 0.750 0.500 <td>⊃</td> <td></td> <td>2X2X0.1875</td> <td>39.</td> <td>\sim</td> <td>.32 4</td> <td>SCXY</td> <td>.950NESC He</td> <td>2.58</td> <td>18.200</td> <td>.391 1.000 1.000 1.000 129.</td>	⊃		2X2X0.1875	39.	\sim	.32 4	SCXY	.950NESC He	2.58	18.200	.391 1.000 1.000 1.000 129.
4x3x0.25 5.0 4.154 Tens 0.00 55.0 7.154 10.00 1.000		2 SAU	.5X2X0.187	6.0 12.	-	.73	[4BP	.849NESC He	4.53	∞	.391 0.750 0.500 0.500 128.
M_1 $XXX0.1875$ 36.0 71.67 $Coup$ 71.67 $Coup$ 71.67 $Coup$ 71.67 $Coup$ $2.54.86$ 19.200 2.531 10.00 5.00		2 SAU	4X3X0.25	41.		.00	5B	•	5.40	°.	.187 1.000 1.000 1.000 110.
\tilde{J}_{all} 2.5X2X0.187536.04.5.1 $rot6.306.3015.005.500.50$		2 SAU	3X2X0.1875	37.		•	46X	.914NESC He	.73		.391 1.000 0.500 0.500 201.
AIR 3X3X0.1875 36.0 45.3 Func 0.00 48.1 0.000 8.140 18.200 20.391 10.00 0.500 <th< td=""><td></td><td>SAU</td><td>2.5X2X0.1875</td><td>44.</td><td></td><td>.00</td><td>I 9AY</td><td>•</td><td>.48</td><td>~</td><td>.391 1.000 0.500 0.500 205.</td></th<>		SAU	2.5X2X0.1875	44.		.00	I 9AY	•	.48	~	.391 1.000 0.500 0.500 205.
\tilde{S}_{AB} 3X3X0.2536.067.35Tens16.3550X-2.975NESCXxt21.86718.20027.1870.5000.5000.5000.500100 \tilde{S}_{A} 3.5X3X0.2536.049.96Tens43.3.553BP-11.838NESCHea3.3.41627.30040.7811.0001.0001000100 \tilde{S}_{A} $\chi XX0.25$ 36.049.96Tens43.3.553BP-21.364NESCExt19.14010.1951.0001.0001.0001000 <td< td=""><td></td><td>SAE</td><td>3X3X0.1875</td><td>45.</td><td></td><td>.00</td><td>I8AY</td><td>•</td><td>8.140</td><td>•</td><td>.391 1.000 0.500 0.500 195.</td></td<>		SAE	3X3X0.1875	45.		.00	I8AY	•	8.140	•	.391 1.000 0.500 0.500 195.
xai 3:X3X0.25 3:0.0 49:30 Tend 10000 10000 1000	η, Π	SAE		67.3	-	.35	XX09	2.975NESC	21.867	∞	.187 0.500 0.500 0.500 142.
$\tilde{A}L$ $4.24.X0.25$ 36.0 48.23 $Comp$ 48.23 $54.NESC$ $14.86NSESC$ 42.220 45.500 67.969 1.000	0 r	2 SAU		49	4	.36	പ	.838NESC He	41	.30	.781 1.000 1.000 1.000 106.
	.) (SAE	4X4X0.25	48.2	4	.23	52BP -	.364NESC He	.22	5.50	.969 1.000 1.000 1.000 103.
Date by the state of	r) <	sau	2.5X2X0.1875	18.	Η.	.2	54X	.486NESC Ex	.15	9.100	.195 1.000 1.000 1.000 168.
P_{mint} Pipe 12" std.42.08.76G101P-22.794/NESC Hea260.1460.0000.0001.0	7' 5	Ϊ.	75X1.75X0.1875	61.		.4		.330NESC Ex	9.74	16.800	.391 1.000 1.000 1.000 134.
Xas 2x2x0.1875 36.0 7.65 Gomp 7.65 g108P -0.780NESC Hea 20.044 16.800 10.195 1.000 1.000 45 1 A potentially damaging moment exists in the following members (make sure your system is well triangulated to minimize 36.0 46.47 g111P -4.738NESC Ext 22.126 16.800 10.195 1.000 1.000 81 3AE 3X3X0.1875 36.0 46.47 g114P -0.124NESC Ext 22.126 16.800 10.195 1.000 1.000 100 </td <td>4 Pipe</td> <td>L Pwmnt O</td> <td>Pipe 12" Std.</td> <td>ω</td> <td>Comp</td> <td>.76</td> <td></td> <td>22.794NESC Hea</td> <td>60.14</td> <td>0.000</td> <td>.000 1.000 1.000 1.000 122.</td>	4 Pipe	L Pwmnt O	Pipe 12" Std.	ω	Comp	.76		22.794NESC Hea	60.14	0.000	.000 1.000 1.000 1.000 122.
SAE $2.5X2.5X0.1875$ $36.0 46.47$ Comp 46.47 $g111P$ $-4.738NESC$ Ext 12.126 16.800 10.195 1.000 1.000 1000 </td <td>L2x2x3/16 3</td> <td>SAE 1 A pote</td> <td>2X2X0.1875 entially damaging</td> <td>7.65 t exis</td> <td>Comp ts in</td> <td>.65 follc</td> <td>.08P .ng men</td> <td>80NESC Hea (make sure</td> <td>044 sys</td> <td>.800 is wel</td> <td>10.195 1.000 1.000 1.000 45. 1 triangulated to minimize</td>	L2x2x3/16 3	SAE 1 A pote	2X2X0.1875 entially damaging	7.65 t exis	Comp ts in	.65 follc	.08P .ng men	80NESC Hea (make sure	044 sys	.800 is wel	10.195 1.000 1.000 1.000 45. 1 triangulated to minimize
XM 2.1.2.2.10.1 0.1.2.2 0.11.2.2 0.11.4.4 -0.1.24MESC Hea 11.823 16.800 10.1.95 1.000	07P ??) EVO EVO 107E	16	(m)		с Г С	TO DIA C L	5	000 91	100 1 000 1 000 1 301
3x3/16 SAE 3x3X0.1875 36.0 1.22 Comp 1.22 g114P -0.124NESC Hea 11.823 16.800 10.195 1.000 1.000 100 <td< td=""><td>4 3</td><td></td><td>0 0 T · 0 T · 0 T · 5 T · 5</td><td>•</td><td>diiroo</td><td>•</td><td>4</td><td></td><td>•</td><td>>>> •></td><td></td></td<>	4 3		0 0 T · 0 T · 0 T · 5 T · 5	•	diiroo	•	4		•	>>> •>	
$5xi/4$ $\overline{5}AE$ $3.5X3.5X0.25$ 36.0 11.20 $0116X$ $-1.523NESC$ Ext 17.249 16.800 13.594 1.000 1.000 1.000 1000 <	L3x3x3/16 8 4	SAE 1	3X3X0.1875	1		.22	.14P	.124NESC	.82	16.800	.195 1.000 1.000 1.000 162.
 72 73 741/4 74 75 74/4 PL 75 74 74* PL 75 74* PL 75 76 76 76 77 76 76 76 76 76 77 76 77 76 77 76 76 76 77 76 76<td>5x3.5x1/4</td><td></td><td>3.5X3.5X0.25 centially damaging</td><td>36.0 11.20 moment exi</td><td>Comp ts in</td><td>.20 e foll</td><td></td><td>3NESC F (make</td><td>19 svs</td><td>. 800 is</td><td>3.594 1.000 1.000 1.000 167 triangulated to minimize</td>	5x3.5x1/4		3.5X3.5X0.25 centially damaging	36.0 11.20 moment exi	Comp ts in	.20 e foll		3NESC F (make	19 svs	. 800 is	3.594 1.000 1.000 1.000 167 triangulated to minimize
4 1 A potentially damaging moment exists in the following members (make sure your system is well triangulated to minimize BP ?? 8 1 A potentially damaging moment exists in the following members (make sure your system is well triangulated to minimize 3 1 1 A potentially damaging moment exists in the following members (make sure your system is well triangulated to minimize 3 1 2.5X1.75X0.1875 36.0 27.78 2000 27.78 30AY -2.528NESC Hea 13.441 9.100 100.195 0.500 0.500 100.130 1 2.2X2X1/4 SAE 2X2X0.25 36.0 60.84 Tens 54.05 42XY -4.919NESC Ext 15.869 9.100 1.000 1.000 1.000 130. 2.5X21/4 SAE 2.5X2.5X0.25 36.0 75.94 Tens 75.32 9110X -10.239NESC Ext 29.101 16.800 1.000 <td>117P ??</td> <td></td> <td></td> <td>LF 0 0 90</td> <td></td> <td>5</td> <td></td> <td>, jweco</td> <td>' 2</td> <td>000</td> <td>2 EQ1 1 000 1 000 1 000 100</td>	117P ??			LF 0 0 90		5		, jweco	' 2	000	2 EQ1 1 000 1 000 1 000 100
H1 SAE 1.75X1.75X0.1875 36.0 27.78 30AY -2.528NESC Hea 13.441 9.100 100 1050 0.500 0.500 104. 1 1 2 1 2 2 4 1 9.100 10.195 0.500 0.500 100 1000 130. 22X2X1/4 SAE 2X2X0.25 36.0 60.84 Tens 54.05 42XY -4.919NESC Ext 15.869 9.100 1.000 1.000 130. 2 2 3 0 75.32 9110X -10.239NESC Ext 29.101 16.800 13.594 1.000 1.000 81. 2 5 3 0 7.32 9110X -10.239NESC Ext 29.101 16.800 13.594 1.000		1 A pot	tentially damaging	moment exi	sts in t	foll		(make		is.	triangulated to minimize
³ ¹ ² 2×2×1/4 ⁵ AE 2×2×0.25 36.0 60.84 Tens 54.05 42×Y -4.919NESC Ext 15.869 9.100 13.594 1.000 1.000 1.000 130. ⁴ ¹ ² ³ ¹ ¹ ¹ ¹ ² .5×2.5×0.25 36.0 75.94 Tens 75.32 g110X -10.239NESC Ext 29.101 16.800 13.594 1.000 1.000 81. ³ ¹ ³ ¹ ³ ¹ ³ potentially damaging moment exists in the following members (make sure your system is well triangulated to minimize ¹ ² ¹ ¹ ¹ ¹ ² ¹ ¹ ² ¹	er o		75X1.75X0.1875	27		.78	30AY	2.528NESC	44		0.195 0.500 0.500 0.500 104.
 4 1 2.5X1/4 SAE 2.5X2.5X0.25 36.0 75.94 Tens 75.32 g110X -10.239NESC Ext 29.101 16.800 13.594 1.000 1.000 1.000 81. 3 1 A potentially damaging moment exists in the following members (make sure your system is well triangulated to minimize)P g110X ? 9.101 1.001 1.000 1.000 1.000 1.000 83. 	10 3 L2x2x1/4	1 SAE	2X2X0.25	60		.05	12XY	.919NESC	5.86	9.100	.594 1.000 1.000 1.000 130.
0F g110X ?? x3/4" PL Bar 6x3/4 36.0 4.93 Tens 0.00 g106P 0.000 109.423 16.800 40.781 1.000 1.000 1.000 83.1	3 4 5x2.5x1/4 4 3	L SAE 1 A	2.5X2.5X0.25 centially damaging	36.0 75 moment	Tens ts in	12 foll		9NESC F (make		. 800 is	3.594 1.000 1.000 1.000 81. triangulated to minimize
	g110P g110X 6"x3/4" PL	, Bar	6x3/4	36.0 4.	Tens	•	-06P	.000	.42	9	.781 1.000 1.000 1.000 83

Image: constraint of the state of	6R X1 129.32 10.817 5	2 2	2.5X2.5X0.25	36.0 80.44	Comp 80.44	15AX	-16.382NESC Ext	20.366	33.600	27.187 0	.500 0.500	0.500 1	32.18
Motion	Group Summary (Tensio	n Porti	: (uo										
Type Type State State Current	Group	Angle	Angle		Usage	Tension		Net	Tension	Tension		ength	No.
Image: construct of the stand of t	Desc.			trength Usage	Cont-							rens.	of
Anticipate Tena, (15) Tena, (Capacity	Shear	Bearing			lts
Index 3.3,3,3,3,0,23 36.0 9.1.4 Comp 6.4.5 3.4.1,3,NEG 3.4.1 3.6.0 9.1.4 Comp 6.4.5 3.4.3,3,NEG 3.4.1 7.00 3.4.1 7.00 3.1.3,NEG 3.4.1 7.00 3.0.0 3.1.3,NEG 3.1.3,NEG 3.1.3,NEG 3.1.3,NEG 3.1.3,NEG 3.1.3,NEG 3.1.3,NEG 3.1.3,NEG 3.1.1,NEG 3.1.1.1,NEG 3.1.1.1,NEG					Tens					Capacity (kips)	Capacity (kips)		. su
1202 54.5 6.KG(0.3112 56.0 61.1.1 71.1 1.0 57.5 1.0			3.5X3.5X0.25	91	Comp 85.8		.257NESC	47.340	36.400	.37	.41	7.000	4
10 31 32 8x380.5 36.0 64.3 1×149.045 7×149.045 36.0 64.3 7×149.045 36.0 64.5 50.0 64.5 50.0 54.1 50.0 54.1 50.0 54.1 50.0 54.1 50.0 54.1 50.0 54.1 50.0 54.1 50.0 54.1 50.0 54.1 50.0 54.1 50.050 54.1 50.0 50.00 5			6X6X0.3125	36.0 91.18	Comp 84.		.514NESC	97.650	109.200	203.906	83.656	6.050	
1206 31 81880.623 56.0 6.1.0 Cum 51.4 Dir Dir <			8X8X0.5		Tens 64.	ΤX	.045NESC	Ŀ.	254.800	380.624	95.849	7.000	14
Line Matrix Matrix </td <td></td> <td></td> <td>8X8X0.625</td> <td></td> <td>1 Comp 62.4</td> <td>Х6</td> <td>.258NESC</td> <td>•</td> <td>0.000</td> <td>0.000</td> <td>.000</td> <td>.91</td> <td>0</td>			8X8X0.625		1 Comp 62.4	Х6	.258NESC	•	0.000	0.000	.000	.91	0
XI AAA $2.5X2.5X0.1875$ 56.0 0.00 0.000 <th< td=""><td></td><td></td><td>8X8X0.75</td><td></td><td>Comp 53.</td><td></td><td></td><td>330.839</td><td>0.000</td><td>0.000</td><td></td><td>0.131</td><td>0</td></th<>			8X8X0.75		Comp 53.			330.839	0.000	0.000		0.131	0
X2 SAU $2.5XZX0.187$ 5.0 9.13 $CON<$ 7.05 16.65 18.120 18.125 18.125 18.125 18.125 18.125 18.125 18.125 12.12 12.00 $X3$ $X3$ $X3.5X2.5X0.125$ 36.0 61.36 CON 17.75 $26.660NSC$ 41.135 45.307 57.375 25.327 10.001 $X6$ $X3.5X2.5X0.125$ 36.0 61.36 10.8 12.8 12.8 12.8 12.8 12.8 12.920 <td></td> <td></td> <td>2.5X2.5X0.1875</td> <td></td> <td>0.</td> <td></td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td></td> <td>0.000</td> <td>0</td>			2.5X2.5X0.1875		0.		0.000	0.000	0.000	0.000		0.000	0
X3 Au $4X3X0.25$ 36.0 61.56 Comp 60.79 17A 26.860NBSC 44.185 45.500 67.969 52.912 10.000 X4 SAU $3.5X2.5X0.25$ 36.0 64.85 Teap 51.36 18A 19.695NBSC 40.399 36.400 54.375 42.647 8.201 X5 SAU $5X3.5X0.255$ 36.0 64.85 Teap 64.95 20A 39.459NBSC 49.370 51.05 74.976 74.976 9.220 X6 SAU $5X3.5X0.25$ 36.0 64.85 Teap 64.95 20A 212X 222 74.916 74.976 9.220 X7 SAU $3.5X3.0.25$ 36.0 49.16 700 218X 24.616 40.191 74.976 9.220 74.96 X7 SAU $3.5X3.0.25$ 36.0 94.9.16 74.96 74.916 74.916 74.916 74.916 74.916 74.916 74.916 74.916 74.916 74.916 <td></td> <td></td> <td>2.5X2X0.1875</td> <td></td> <td>Comp 79</td> <td></td> <td>4.363NESC</td> <td>18.650</td> <td>00</td> <td>20.391</td> <td>.125</td> <td>9.220</td> <td>7</td>			2.5X2X0.1875		Comp 79		4.363NESC	18.650	00	20.391	.125	9.220	7
χ_i $3.5 \times 2.5 \times 0.25$ 36.0 $5.1.36$ 18.6 18.65 BSS 40.337 64.376 42.547 42.647 42.547 χ_i χ_i χ_i χ_i χ_i χ_i 3.5×0.05125 36.0 64.85 128×0.646 81.456 81.562 46.012 10.945 9.220 χ_i χ_i $5 \times 3.5 \times 0.225$ 36.0 64.18 1200 218×1 $22.22 \times 1218 \times 164$ 45.118 54.600 81.562 46.012 10.591 χ_i $3u$ 433.5×0.225 36.0 49.205 218×1 $22.22 \times 1218 \times 164$ 40.511 54.600 81.562 46.012 10.591 χ_i $3u$ $3.5 \times 3.5 \times 3.5 \times 3.5 \times 3.5 \times 3.5 \times 3.60$ 42.265 72.06 11.642×125 40.612 10.591 10.206 χ_i $3u$ $3.5 \times 3.5 \times $			4X3X0.25		Comp 60.7		.860NESC	.18	сı.	67.969	.912	0.000	ഹ
X5AU $4X3.5X0.3125$ 36.0 64.85 Tens 64.85 $20AP$ $38.459NESC$ 18.945 74.976 74.976 12.527 X6SAU $5X3.5X0.255$ 36.0 57.13 Comp 49.30 $218X'$ $22.272NESC$ 46.012 54.600 81.562 46.012 10.597 X7SAU $4X3X0.25$ 36.0 49.16 Comp 38.88 $218X'$ $22.272NESC$ 46.718 54.600 81.562 46.012 10.597 X7SAU $3.5X3X0.25$ 36.0 49.16 Comp 38.88 $223P$ $11.642NESC$ 40.581 40.781 38.716 14.070 X8SAU $3.5X3X0.25$ 36.0 42.65 Tens 42.65 $23AP$ $11.642NESC$ 40.581 40.781 38.516 14.070 X9SAU $5.X3X0.25$ 36.0 42.65 Tens 42.65 $23AP$ 40.781 36.720 17.450 X9SAU $5X3X0.25$ 36.0 42.65 Tens 42.65 40.781 26.26 12.246 X9SAU $5X3X0.25$ 36.0 89.99 Tens $25AP$ $25.90NESC$ 40.781 27.300 40.781 36.200 14.005 X9SAU $5X3X0.25$ 36.0 89.99 Tens 24.98 36.266 71.46 71.402 71.300 70.781 14.102 Y9SAU $3X2X0.25$ 36.0 61.69 Tens 71.300 71.40 71.202 12.14			3.5X2.5X0.25		Comp 51.3	1	8.695NESC He	.39	36.400	.37	2.647	8.521	4
Xi SXJ.5X0.25 36.0 57.13 Comp 49.30 Z127ZNESC 45.178 54.600 81.562 46.012 10.537 Xi SAU 4X3X0.25 36.0 49.16 Comp 38.88 222P 14.152NESC Hea 40.561 36.400 81.562 45.012 10.237 Xi SAU 3.5X3X0.25 36.0 49.16 Comp 38.88 11.642NESC Hea 40.581 36.400 81.375 42.205 17.450 Xi SAU 5.3X3X0.25 36.0 49.16 Zomp 23AP 21.642NESC Hea 40.511 36.10 36.156 17.450 Xi SAU 5.3X0.255 36.0 98.99 YaP 2590NESC Hea 40.581 36.16 17.150 14.103 Xi SAU 5X3X0.25 36.0 98.99 YaP 2590NESC Hea 40.516 17.150 14.103 14.103 Xi Ji Xi 18.164NESC Hea <td></td> <td></td> <td>4X3.5X0.3125</td> <td></td> <td>Tens 64.8</td> <td></td> <td>.459NESC</td> <td>•</td> <td>63.700</td> <td>.94</td> <td>.976</td> <td>•</td> <td>L</td>			4X3.5X0.3125		Tens 64.8		.459NESC	•	63.700	.94	.976	•	L
X1 X10 4.33X0.25 36.0 49.16 Comp 38.88 22PF 14.152NESC 40.581 36.400 54.375 42.206 12.246 X8 SAU 3.5X3X0.25 36.0 42.65 Tens 42.65 23AP 11.642NESC 40.419 27.300 40.781 38.516 14.070 X9 SAU 5.5X3X0.25 36.0 42.65 Tens 42.65 23AP 11.642NESC Hea 40.419 27.300 40.781 38.516 14.070 X9 SAU 5X3X0.25 36.0 98.99 Tens 23.503NESC Hea 40.581 21.300 40.781 36.250 17.450 X1 SAU 5X3X0.25 36.0 98.99 Tens 26.50 71.168 36.260 17.150 36.250 17.450 X1 SAU 5X3X0.25 36.0 98.99 Tens 71.58NESC Hea 47.161 47.400 47.125 14.125 16.833 19.194			5X3.5X0.25	57.1	Comp 49.		.272NESC He	5.17	4	81.562	6.012 1	•	9
X8 X3.1 3.5X3X0.25 36.0 4.2.65 Tans 4.2.65 1.64ZNESC 40.419 27.300 40.781 38.516 14.070 X9 SAU 5X3X0.25 36.0 53.15 comp 25.34 24AP 6.918NESC Hea 40.581 36.730 40.781 36.250 17.450 D1 SAU 5X3X0.25 36.0 98.99 Z5.34 24AP 6.918NESC Hea 40.581 36.730 40.781 36.250 17.450 D1 SAU 5X3X0.25 36.0 98.99 Tens 98.99 25AP 35.903NESC Hea 36.268 72.037 14.103 D2 SAU 3X2X0.1875 36.0 98.99 Z6N 2713NESC Hea 36.268 72.037 14.103 D3 SAU 3X2X0.25 36.0 76.98 Tens 71.30NESC Hea 24.381 36.400 57.351 16.194 D3 SAU 48.68NESC Hea 27.13NE			4X3X0.25		Comp 38.8	22B	4.152NESC	•	36.400	37	2.206	.24	4
X9 X0 5X3X0.25 36.0 53.15 Comp 25.34 24AP 6.918NESC 40.581 27.300 40.781 36.250 17.450 D1 SAU 5X3X0.25 36.0 98.99 Tens 98.99 25AP 35.903NESC Hea 36.268 63.770 95.156 72.037 14.103 D2 SAE 2X2X0.1875 36.0 98.99 Tens 39.49 26BX 7.158NESC Ext 18.448 18.200 95.156 72.037 14.103 D3 SAU 3X2X0.25 36.0 98.93 Tens 70.158NESC Ext 18.448 18.200 95.156 43.333 19.194 D3 SAU 4X3X0.25 36.0 76.98 Tens 70.134NESC Hea 47.101 45.500 67.969 60.337 15.321 D4 SAU 3.5X3X0.25 36.0 67.48 Tens 71.34NESC Hea 47.469 45.500 67.969 60.95.23 26.05			3.5X3X0.25	42	Tens 42.6		.642NESC He	.41	27.300	40.781	.516	•	Μ
D1 SAU 5X3X0.25 36.0 98.99 Tens 98.99 25AP 35.903NESC Head 36.268 63.700 95.156 72.037 14.103 D2 SAE 2X2X0.1875 36.0 39.49 Tens 39.49 26BX 7.158NESC Ext 18.448 18.200 95.156 72.037 14.103 D3 SAU 3X2X0.25 36.0 76.98 Tens 76.98 27AX 18.768NESC Ext 18.448 18.200 26.371 18.103 D4 SAU 3X2X0.25 36.0 76.98 Tens 76.98 27AX 18.768NESC Ext 18.448 18.200 54.375 48.333 19.194 D4 SAU 4X3X0.25 36.0 78.53 Comp 59.64 28AX 20.010NESC Ext 47.101 45.500 67.969 60.337 15.321 D5 SAU 3.5X3X0.25 36.0 67.463 27.150 47.469 45.500 67.969 <td< td=""><td></td><td></td><td>5X3X0.25</td><td></td><td>Comp 25.</td><td></td><td></td><td>40.581</td><td>27.300</td><td>40.781</td><td>20</td><td>•</td><td>Μ</td></td<>			5X3X0.25		Comp 25.			40.581	27.300	40.781	20	•	Μ
D2 SAE 2X2X0.1875 36.0 39.49 Tens 39.49 26BX 7.158NESC Ext 18.448 18.200 20.391 18.125 16.853 D3 SAU 3X2X0.25 36.0 76.98 Tens 76.98 27AX 18.768NESC Hea 24.381 36.400 54.375 48.333 19.194 D4 SAU 4X3X0.25 36.0 98.53 Comp 59.64 28AP 27.134NESC Hea 47.101 45.500 67.969 60.337 15.321 D5 SAU 3.5X3X0.25 36.0 67.48 Tens 67.48 29.13 44.469 45.500 67.969 60.337 15.321 D5 SAU 3.5X3X0.25 36.0 67.48 Tens 67.48 29.300 67.969 60.337 15.321 D4 SAU 3.5X3X0.25 36.0 67.469 45.500 67.969 60.906 28.523 H1 SAE 1.775X1.75X0.1875 36.0 <t< td=""><td></td><td></td><td>5X3X0.25</td><td></td><td>Tens 98.9</td><td></td><td></td><td>36.268</td><td>63.700</td><td>95.156</td><td>.037 1</td><td>•</td><td>L</td></t<>			5X3X0.25		Tens 98.9			36.268	63.700	95.156	.037 1	•	L
D3 SAU 3X2X0.25 36.0 76.98 Tens 76.98 27AX 18.768NESC Hea 24.381 36.400 54.375 48.333 19.194 D4 SAU 4X3X0.25 36.0 98.53 Comp 59.64 28AP 27.134NESC Hea 47.101 45.500 67.969 60.337 15.321 D5 SAU 3.5X3X0.25 36.0 67.48 Tens 67.48 29AX 30.010NESC Ext 44.469 45.500 67.969 60.337 15.321 H1 SAE 1.75X1.75X0.1875 36.0 51.13 Tens 51.13 337 3.379NESC Hea 15.532 9.100 10.195 6.609 6.000 H2 SAU 4X3.5X0.25 36.0 56.67 Comp 15.20 377NESC Hea 15.532 9.100 10.195 6.609 6.000 H2 SAU 4X3.5X0.25 36.0 56.67 Comp 15.20 373NESC 15.532 9.100 10.195 6.609 6.000 H2 SAU 4X3.5X0.25			2X2X0.1875		Tens 39.4		.158NESC	18.448	18.200	20.391	.125 1	6.853	2
D4 SAU 4X3X0.25 36.0 98.53 Comp 59.64 28AP 27.134NESC Hea 47.101 45.500 67.969 60.337 15.321 D5 SAU 3.5X3X0.25 36.0 67.48 Tens 67.48 29.500 67.969 60.337 15.321 H1 SAE 1.75X1.75X0.1875 36.0 51.13 Tens 51.13 337 3.379NESC Hea 15.532 9.100 10.195 6.609 6.000 H2 SAU 4X3.5X0.25 36.0 56.67 Comp 15.20 37AY 4.151NESC Hea 15.532 9.100 10.195 6.609 6.000 H2 SAU 4X3.5X0.25 36.0 56.67 Comp 15.20 37AY 4.151NESC Hea 18.519 27.300 40.781 36.250 15.738			3X2X0.25		Tens 76.			24.381	36.400	.37	.333 1	9.194	4
D5 SAU 3.5X3X0.25 36.0 67.48 Tens 67.48 29AX 30.010NESC Ext 44.469 45.500 67.969 50.906 28.523 H1 SAE 1.75X1.75X0.1875 36.0 51.13 Tens 51.13 33Y 3.379NESC Hea 15.532 9.100 10.195 6.609 6.000 H2 SAU 4X3.5X0.25 36.0 56.67 Comp 15.20 37AY 4.151NESC 48.519 27.300 40.781 36.250 15.738			4X3X0.25		Comp 59			47.101	ß	67.969	1	5.321	IJ
H1 SAE 1.75X1.75X0.1875 36.0 51.13 Tens 51.13 33Y 3.379NESC Hea 15.532 9.100 10.195 6.609 6.000 H2 SAU 4X3.5X0.25 36.0 56.67 Comp 15.20 37AY 4.151NESC Hea 48.519 27.300 40.781 36.250 15.738			3.5X3X0.25		Tens 67.4	2		.46	5.	67.969	.906	.52	ß
H2 SAU 4X3.5X0.25 36.0 56.67 Comp 15.20 37AY 4.151NESC Hea 48.519 27.300 40.781 36.250 15.738		SAE	1.75X1.75X0.1875		Tens 51.1		.379NESC He	ъ.	9.100	10.195	609	6.000	1
			4X3.5X0.25		Comp 1		.151NESC He	.51	27.300	40.781	Η	5.738	т

7	2	2	0	2	2	2	2	2	2	2	4	ß	1	1	0	1 g107P	1	1	1 g117P	1 g118P	1	1	1 g110P	1	0
9.559	2.208	13.531	0.000	4.243	9.125	6.000	14.775	13.250	15.022	14.073	11.643	14.073	6.000	6.000	9.000	1.500 moments):	3.354	8.058	1 9.685 moments):	l 12.340 moments):	6.000	4.243	3.354 moments):	1.501	10.817
18.125	24.167	25.677	0.000	12.347	18.125	24.167	12.755	12.755	18.125	18.125	42.647	48.262	9.629	14.864	0.000	5 10.3 4 3 minimize m	11.328	11.328	594 15.104 to minimize m	594 15.104 to minimize m	6.609	8.812	l 15.10 4 minimize m	45.312	24.084
20.391	27.187	27.187	0.000	20.391	20.391	27.187	20.391	20.391	20.391	27.187	54.375	67.969	10.195	20.391	0.000	10.195 ted to	10.195	10.195			10.195	13.594	13.594 ted to	40.781	27.187
18.200	18.200	18.200	0.000	18.200	18.200	18.200	18.200	18.200	18.200	18.200	36.400	45.500	9.100	16.800	0.000	16.800 triangula	16.800	16.800	16.800 13 triangulated	16.800 13 triangulated	9.100	9.100	16.800 triangula	16.800	33.600
30.760	40.581	48.681	0.000	18.448	18.650	40.581	18.529	18.650	30.760	36.997	32.886	46.393	21.688	31.823	571.199	18.827 is well	25.048	31.139	4 9.187 is well	57.287 is well	15.532	24.381	32.987 is well	129.094	32.987
0.000	8.132NESC Ext	2.963NESC Hea	0.000	3.296NESC Hea	1.897NESC Hea	7.560NESC Hea	0.000	5.679NESC Hea	8.219NESC Hea	12.208NESC Hea	16.429NESC Hea	7.680NESC Hea	0.737NESC Ext	8.807NESC Ext	0.000	0.000 sure your system	4.158NESC Ext	0.020NESC Ext	1.358NESC Ext sure your system	1.047NESC Ext sure your system	0.554NESC Hea	5.361NESC Ext	10.323NESC Ext sure your system	0.827NESC Hea	17.947NESC Ext
38BY	39C2118X	40P		4 3BX	4 4 C Y	45BP	4 6 Y	47P	48P	50P	53P	52P	54P	36X	g121P	g109P ers (make	g111X	g114P	g116P ers (make	g120X ers (make	30BP	42Y	g110P ers (make	g106P	15AP
Comp 0.00	Comp 44.68 F3	Comp 16.28	0.00	Comp 26.70	Comp 10.47	Tens 41.54	Comp 0.00	Tens 44.52	Tens 45.34	Tens 67.35	Tens 49.96	Comp 16.88	Comp 8.10	Comp 59.25	Comp 0.00	Comp 0.00 following members	Comp 40.78	Comp 0.20	Comp 9.99 following members	Comp 7.70 following members	Comp 8.38	Tens 60.84	Tens 75.94 following members	Tens 4.93	Comp 74.52
36.0 36.78	36.0 53.07	36.0 19.68	36.0 0.00	36.0 39.32	36.0 12.73	36.0 41.54	36.0 37.67	36.0 44.52	36.0 45.34	36.0 67.35	36.0 49.96	36.0 48.23	36.0 18.22	36.0 61.49	42.0 8.76	7.65 the	36.0 46.47	36.0 1.22	36.0 11.20 exists in the fo	36.0 8.17 exists in the fo	36.0 27.78	36.0 60.84	94 94	36.0 4.93	36.0 80.44
3X3X0.1875	5X3X0.25	3.5X3.5X0.25	1.75X1.75X0.1875	2X2X0.1875	2.5X2X0.1875	4X3X0.25	3X2X0.1875	2.5X2X0.1875	3X3X0.1875	3X3X0.25	3.5X3X0.25	4X4X0.25	2.5X2X0.1875	1.75X1.75X0.1875	Pipe 12" Std.	0.6875 A potentially damaging moment exists in	2.5X2.5X0.1875	3X3X0.1875	13.5x3.5x1/4 SAE 3.5x3.5x0.25 13.5x3.5x1/4 Camaging moment exi	L4x4x1/4 SAE 4X4X0.25 0.6875 A potentially damaging moment exi	1.75X1.75X0.1875	2X2X0.25	L2.5x2.5x1/4 SAE 2.5X2.5X0.25 36.0 75. 0.6875 A potentially damaging moment exists in th	6x3/4	2.5X2.5X0.25
SAE	SAU	SAE	SAE 1	SAE	SAU	SAU	SAU	SAU	SAE	SAE	SAU	SAE	SAU	DAE 1	Pwmnt	SAE tially	SAE	SAE	SAE tially	SAE tially	SAE 1	SAE	SAE tially	Bar	SAE
22 H3	m	24 U.13 H5		9	7	ω	0	0	31 U.75 HGR2	32 0.75 A1	33 0.75 A2	4	D 2	36 U.13 H8	12" S		(2 L2.5x2.5x3/16	ŝ	4			0.75 R L2x2x1/4	' ж	e 6"x3/4" PL	с
1 000	1,000 2	1.000 2	1.000 2 2 2 2 2	0.000 1 000 2	1.000 2	1.000 2	1.000 2	ллл.т 1 род	оло-т 1 000	1 F 60 3	рас. т С 2 2 0 С 2 2 2	0 4 4 0 0 1 1 0 0 0 1	0T/-7	оло т т	2.000 Pwmnt	1.000	PMBR2	PMBR3	1.000	PMBR5 1.000	20a	AngleR	BraceR 1.000	Plate	1.000 6.

Centek Engineering Inc - CL&P # 1281

Page 60/63

Summary of Maximum Usages by Load Case:

Typ	P Angle Y Angle
ent bel	9 25AP 3 28AXY
E %	98.99 98.53
Load Case	NESC Heavy 98.9 NESC Extreme 98.5

Summary of Insulator Usages:

Insulator Label	Insulator Type	Maximum Usage %	Load Case	Weight (1bs)
1	Clamp	0	NESC Extreme	0.0
2	ൻ		NESC Heavy	0.0
Υ	Clamp		NESC Heavy	0.0
4	Clamp	6.6	NESC Heavy	0.0
Û	Clamp	4.8	NESC Heavy	0.0
9	Clamp	5.2	NESC Heavy	0.0
L	Clamp	2.1	NESC Heavy	0.0
8	Clamp	•	NESC Heavy	0.0
0	Clamp	4.	NESC Heavy	0.0
10	Clamp	9.6	NESC Heavy	0.0
	Clamp		NESC Heavy	0.0
12	Clamp	9.	NESC Extreme	0.0
	Clamp	°°.	NESC Heavy	0.0
	Clamp	2.32	NESC Heavy	0.0
15	Clamp	Γ.		0.0
	Clamp	e.	NESC Extreme	•
	Clamp	°°.	NESC Heavy	0.0
		∼.	NESC Heavy	0.0
	Clamp	∼.	NESC Heavy	0.0
	Clamp		NESC Heavy	0.0
21	Clamp	8.08	NESC Heavy	•
	Clamp	£.	NESC Heavy	0.0
	Clamp	₽.	NESC Heavy	0.0
	Clamp	3.69	NESC Heavy	0.0
	Clamp	£.	NESC Heavy	0.0
	Clamp	•	NESC Extreme	0.0
	Clamp		NESC Heavy	0.0
	Clamp	9.	NESC Extreme	0.0
29	Clamp	9.	NESC Heavy	0.0
30	Clamp	2.15	SC	0.0
31	Clamp	Ϋ́.	NESC Heavy	0.0

Loads At Insulator Attachments For All Load Cases:

ructure Structure Attach Attach Load Z Load Res. (kips) (kips)	2.929 8.803
Load Insulator Insulator Structure Structure Structure Structure Structure Case Label Type Attach Attach Attach Attach Attach Attach Case Label Load X Load Y Load Z Load Res. (kips) (kips) (kips) (kips) (kips)	1.781 1.469
Structure Attach Load Y (kips)	1.677 8.213
Structure Attach Load X (kips)	1.610 -2.807
Structure Attach Label	16X 16P
Insulator Type	Clamp Clamp
Insulator Label	
Load Case	NESC Heavy NESC Heavy

Centek Engineering Inc - CL&P # 1281

	8.34	- 4Z	1.07	.39	2.0	. 58 28	0.59	. 93	.15	. 46 . 46	. 90	. 63	.10	.03	Γ.	. 72	- 84 26	. 91	.14	.74	1.339	10.	0 7	. 66	.01	. 93	1010	. 69	. 62	.42	8.696	.80	6.	00.	.67	57	.50	. 50		0.0	. 59	. 61	.45	10.	200		. 83
.02	0.613	200	.42	.53	.54	 	.56	.91	.13	44	88	.61	.05	. 82	.55	.62	. 13	48	.10	.67	.20	חע שר	.06 106	.86	.02	.31	у С. У С.	.52	.28	. 65	. 5 / 15 /	.31	.34	.36	75	73	.71	. 95	20.	.16	.39	.40	. 30	5.0	າ ທ ວ ທ	. 55.	. 55
5.418	5.794	τς.	.84	.17	. 69	277	0.17	.21	. 24	28.	.25	.22	. 55	.30	.26	. 56	.61	.38	.81	.32	.57	04. €2	U. 023 5.240	21	.43	.52	10.	. 28	. 98	. 69	20.0	.73	.86	. 93	. 49	.39	.32	.31	. L 4	- T - T	.44	.46	. 34	29.0	6.6	. 63	. 6
. 97	0,	04.7 711	.43	7.49	.86	5.99	0.00	.00	00.00	• •	000.	.00	00.	<u> </u>	00	00.		· •	.00	.00	00.00			03	.04	. 82	0 7 0	3.42	4.36	3.00	-1.521	00.	.00	00.	00.00	00.	.00	00.	000		000.	0.	.00			00	•
17P	17Y	181 Va1	19P	19Y	23P	777 77 7	2Y	ЧX	6Y	10Y	- 25 12Y	13Y	14Y	31P	32P	33P	34P 25D	36P	37P	10XY		1001		16P	17P	17Y 101	10 <i>F</i> 18Y	19P	19Y	23P	24P 25P	2Y	4 <i>X</i>	тө 67	8Y 10Y	12Y	13Ү	14Y	405 915	0.1F 3.2P	33P	34P	35P	36P 070	375 10XY		13XY
Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	duranto	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	CTamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp	Clamp
m	4	ບດ	0 F-	ω	6,	110	12	13	14	16 16	1.7	18	19	21	22	23	2 C 7 G	26	2.7	28	29	00	1 1	2	Ś	4	n v) [-	80	0 (1	11	12	13	14						22							
NESC Heavy	SC He	C He		SC He	Φ	NESC HEAVY NESC HEAVV	SC He	SC He	не Не	NESC Heavy	SC He	SC H	NESC Heavy	ວ ບ	SC He	н Н	SC He	Ï	SC He	SC He	E E U U		n	SC Extrem	SC Extr	SC Extrem	່ວຍ	SC Extrem	SC Extr	SC Ext	NESC Extreme NESC Extreme	SC Extr	SC Extr	SC Extr	NESC Extreme NESC Extreme	SC Extrem	SC Ext	SC Extrem	C EXTREM	່ວຍ	SC Extrem	SC Extrem	SC Extr	SC EXtr	່ວ	SC Extrem	SC Extr

Overturning Moments For User Input Concentrated Loads:

Moments are static equivalents based on central axis of 0,0 (i.e. a single pole).

Load Case	2. 2.	Total Long.	Total Vert.	Transverse I Overturning	ongit Overt	Torsional Moment
	Load (kips)		Load Load (kips) (kips)	Moment (ft-k)	Moment (ft-k)	(ft-k)
NESC Heavy 88.217 -12.151 44.282 NESC Extreme 76.955 -12.661 20.425	88.217 76.955	-12.151 -12.661	44.282 20.425	8924.582 7994.732	-1210.619 -1322.643	300.402 72.925
<pre>*** Weight of structure (lbs): Weight of Angles*Section DLF: Total:</pre>	structu Angles*	ure (lbs) Section	: DLF:	39703.5 39703.5		

*** End of Report

CENTER	〈 engineering
Centered on Solutions=	www.centekena.com
63-2 North Branford Road	P: (203) 488-0580
Branford, CT 06405	F: (203) 488-8587

Anchor Bolt Analysis for Tower #1281

Greenwich, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 21007.68

Location:

Rev. 0: 2/15/22

Tower Anchor Bolt Analysis

Max Leg Reactions:

Uplift=	Uplift:= 185.5-kips	(User Input)
Shear =	Shear := 51.2·kips	(User Input)
Compression =	Compression := 203.5 kips	(User Input)

Anchor Bolt Data:

UseASTMA36	(Assumed Conservativ	e Value - Actual Grade Unknown)
Number of Anc hor Bolts =	N := 4	(User Input)
Bolt Ultimate Strength =	F _u ≔ 58ksi	(User Input)
Bolt Yield Strength =	F _y ≔ 36ksi	(User Input)
Diameter of Bolts =	D := 2.0in	(User Input)
Threads per Inch =	n:= 4.5	(User Input)
Coefficient of Friction =	$\mu := 0.55$	(User Input)

Anchor Bolt Area:

GrossArea of Bolt=

NetArea of Bolt =

$$A_{g} := \frac{\pi}{4} \cdot D^{2} = 3.142 \cdot in^{2}$$
$$A_{n} := \frac{\pi}{4} \cdot \left(D - \frac{0.9743 \cdot in}{n} \right)^{2} = 2.498 \cdot in^{2} \qquad (AISC \ 13th \ Ed. \ pg. \ 7-83)$$

Location:

Anchor Bolt Analysis for Tower #1281

Greenwich, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 21007.68

Check Tensile Force:

Rev. 0: 2/15/22

Maximum Tensile Force (Gross Area) =

Maximum Tensile Force (NetArea) =

Allowable Tension =

Applied Tension =

 $F_{gross.area} := 1.0 \cdot \left(0.33 \cdot A_g \cdot F_u \right) = 60.1 \cdot kips$

 $F_{net.area} := 1.0 \cdot (0.60 \cdot A_n \cdot F_y) = 54 \cdot kips$

AllowableTension := F_{gross.area} if F_{gross.area} < F_{net.area} F_{net.area} if F_{net.area} < F_{gross.area}

AllowableTension = 54 kips

MaxTension :- Uplift - 46.38-kips

 $\frac{\text{MaxTension}}{\text{F}_{\text{net.area}}} = 85.9 \text{ \%}$

 $Condition1 := if \left(\frac{MaxTension}{F_{net.area}} \le 1.00, "OK", "Overstressed" \right)$ Condition1 = "OK"

Check Anchor Bolt Area:

Required Area =

Provided Area =

Based on the ASCE 10-97 Design of Laticed Steel Transmission Structures

$$\begin{split} \mathsf{A}_{s1} &\coloneqq \frac{\mathsf{Uplift}}{\mathsf{F}_y} + \frac{\mathsf{Shear}}{\mu \cdot .85 \cdot \mathsf{F}_y} = 8.2 \cdot \mathsf{in}^2 \\ \mathsf{A}_{s2} &\coloneqq \left[\frac{\mathsf{Shear} - (0.3 \cdot \mathsf{Compression})}{\mu \cdot .85 \cdot \mathsf{F}_y} \right] = -0.585 \cdot \mathsf{in}^2 \end{split}$$

 $A_{sprovided} := A_n \cdot N = 10 \cdot in^2$

Condition2 := if
$$\left(\frac{A_{s1}}{A_{sprovided}} \le 1.00, "OK", "Overstressed"\right)$$

Condition2 = "OK"

Condition3 := if
$$\left(\frac{A_{s2}}{A_{sprovided}} \le 1.00, "OK", "Overstressed"\right)$$

Condition3 = "OK"

	Subject:		FOUNDATI	ON ANALYSIS
Centered on Solutions* www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587	Location:		Greenwich,	СТ
	Rev. 0: 2/15/22		Prepared by Job No. 210	y: T.J.L. Checked by: C.F.C. 007.68
Fo	undation:			
In	put Data:			
	Tower Data			
Shear (Compres	sion Leg) =	Shear _{comp} := 43.9·1.1·kip	s = 48.3 kips	(User Input from PLS Tower)
Shear(I	Jplift Leg) =	Shear _{up} := 51.2·1.1·kips =		(User Input from PLS Tower)
C	ompression =	Comp := 203.5 · 1.1 · kips = 2		(User Input from PLS Tower)
	Uplift=	Uplift:= 185.5·1.1·kips = 2	04.1·kips	(User Input from PLS Tower)
То	wer Height =	H _t := 129⋅ft		(User Input)
	Conting Data:			
L Depth to Bottom of F	Footing Data:		(User Input)	
	gth of Pier =	$D_f := 8 \cdot ft$	(User Input)	
Extension of Pier Above	-	$L_p := 8.5 \cdot ft$	(User Input)	
	idth of Pier =	$L_{pag} \coloneqq 0.5 \cdot ft$	(User Input)	
	epth of Soil =	W _p := 5⋅ft	(User Input)	
	th of Rock=	D _{soil} ≔ 8 ft	(User Input)	
200		$D_{rock} \coloneqq 12 \cdot ft$		
Material	Properties:			
Concrete Compressive S	Strength =	f _c := 3500 ⋅ psi	(User Input)	
Steel Reinforcment Yield Str	ength =	f _y := 60000∙psi	(User Input)	
Anchor Bolt Yield S	tength =	f _{ya} ≔ 75000 psi	(User Input)	
Internal Friction Angle	of Soi =	$\Phi_{s} \coloneqq 30 \cdot \text{deg}$	(User Input)	
Soil Bearing	Capacity =	$q_{S} \coloneqq 9000 \cdot psf$	(User Input)	
Rock Bearing	Capacity =	q _{rock} ≔ 50000 psf	(User Input)	
UnitWeig	ght of Soil =	γ _{soil} := 100 pcf	(User Input)	
Unit Weight of 0	Concrete =	$\gamma_{conc} \coloneqq 150 \cdot pcf$	(User Input)	
UnitWeig	ht of Rock =	$\gamma_{\text{rock}} \coloneqq 160 \cdot \text{pcf}$	(User Input)	
Foundation E	ouyancy =	Bouyancy := 0	(User Input)	(Yes=1 / No=0)
Depth	o Neglect=	n := 1.0 ft	(User Input)	
Cohesion of Clay Ty	pe Soil =	c:= 0·ksf	(User Input)	(Use 0 for Sandy Soil)
Seismic Zo	ne Factor =	Z := 2	(User Input)	(UBC-1997 Fig 23-2)
Coefficient of Friction Between Con	crete =	$\mu\coloneqq 0.45$	(User Input)	

Location:

RockAnch or Properties:

Rev. 0: 2/15/22

FOUNDATION ANALYSIS

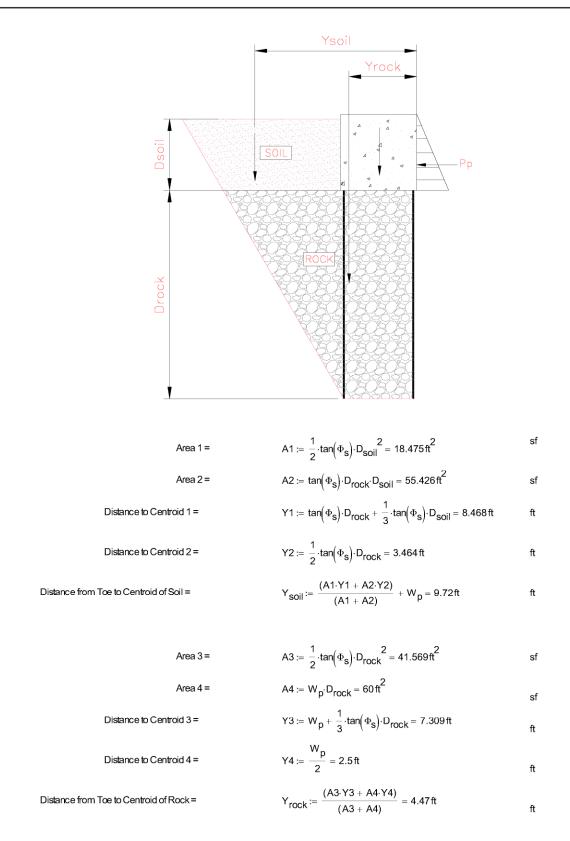
Greenwich, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 21007.68

AST MA615 Grade 60			
Bolt Ultimate Strength =	F _u ≔ 90·ksi	(User Input)	
Bolt Yield Strength =	F _y ≔ 60·ksi	(User Input)	
Anchor Diameter =	$d_{ra1} := 1.128 \cdot in$	(User Input)	(1 # 9 and 1 # 11 per Rock Group)
Anchor Diameter =	d _{ra2} := 1.41 in	(User Input)	per Nock Group)
Hole Diameter =	$d_{Hole} := 4 \cdot in$	(User Input)	
Grout Strength =	τ := 120·psi	(User Input)	
Distance to RockAnchor Group 1 =	$D_{a1} := 24 \cdot in$	(User Input)	
Number of RockAnchors in Group 1 =	N _{a1} := 6	(User Input)	
Total Number of Rock Bolts =	N _{atot} := 8	(User Input)	

Check Uplift:

Adjusted Concrete Unit Weight =	$\gamma_{c} := if(Bouyancy = 1, \gamma_{conc} - 62.4pcf, \gamma_{conc}) = 150 \cdot pcf$
Adjusted Soil Unit Weight =	$\gamma_{\text{S}} \coloneqq \text{if} \Big(\text{Bouyancy = 1}, \gamma_{\text{SOil}} - 62.4 \text{pcf}, \gamma_{\text{SOil}} \Big) = 100 \cdot \text{pcf}$
W eight of Concrete =	$WT_{c} := \left(W_{p}^{2} \cdot L_{p}\right) \cdot \gamma_{c} = 31.875 \cdot kip$
Base Area 1 of Resisting Pyramid =	$B_1 := (D_{a1} \cdot 2)^2 = 16 t^2$
Base Area 2 of Resisting Pyramid =	$B_{2} \coloneqq \left[tan \left(\Phi_{s} \right) \cdot \left(D_{rock} \cdot 0.5 \right) \cdot 2 + D_{a1} \cdot 2 \right]^{2} = 119.4ft^{2}$
Base Area 3 of Resisting Pyramid =	$B_{3} \coloneqq \left[tan\left(\Phi_{s}\right) \cdot \left(D_{rock} \cdot 0.5 + D_{soil}\right) \cdot 2 + D_{a1} \cdot 2\right]^{2} = 406.7 ft^{2}$
Weight of Soil =	$WT_{soil} := \left[\frac{D_{soil}}{3} \cdot \left(B_2 + B_3 + \sqrt{B_2 \cdot B_3}\right) - W_p^2 \cdot L_p\right] \cdot \gamma_s = 177.806 \cdot kip$
Weight of Rock =	$WT_{rock} := \left[\frac{D_{rock} \cdot 0.5}{3} \cdot \left(B_1 + B_2 + \sqrt{B_1 \cdot B_2}\right)\right] \cdot \gamma_{rock} = 57.324 \cdot kip$
Total Resistance =	$\text{WT}_{tot} \coloneqq \text{WT}_{c} + \text{WT}_{rock} + \text{WT}_{soil} = 267 \text{-kips}$
Factor of SafetyActual =	$FS := \frac{WT_{tot}}{Uplift} = 1.31$
Factor of Safety Required =	FS _{req} := 1.0
	Uplift_Check := if(FS ≥ FS _{req} , "Okay" , "No Good") Uplift_Check = "Okay"


FOUNDATION ANALYSIS

Location:

Rev. 0: 2/15/22

Greenwich, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 21007.68

Location:

Rev. 0: 2/15/22

FOUNDATION ANALYSIS

Greenwich, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 21007.68

Check Oveturning:

Coefficient of Lateral Soil Pressure =

Passive Pressure =

$$\kappa_{p} \coloneqq \frac{1}{1 - \sin(\Phi_{s})} =$$

$$P_{top} \coloneqq 0 = 0 \cdot ksf$$

 $1 + \sin(\Phi_s)$

 $\mathsf{P}_{bot} \coloneqq \mathsf{K}_p \cdot \gamma_s \cdot \mathsf{D}_f + c \cdot 2 \cdot \sqrt{\mathsf{K}_p} = 2.4 \cdot \mathsf{ksf}$

$$P_{ave} \coloneqq \frac{P_{top} + P_{bot}}{2} = 1.2 \cdot ksf$$
$$A_p \coloneqq W_p \cdot (L_p - L_{pag}) = 40 \text{ ft}^2$$

 $WT_c := \left(W_p^2 \cdot L_p\right) \cdot \gamma_c = 31.875 \cdot kip$

 $S_u := P_{ave} \cdot A_p = 48 \cdot kip$

Ultimate Shear =

Weight of Concrete Pad =

Weight of Soil Wedge at Back Face Corners =

Total Weight of Soil =

Total Weight of Rock =

Resisting Moment =

Overturning Moment =

Factor of Safety Actual =

Factor of Safety Required =

$$\begin{split} & \mathsf{WT}_{S2} \coloneqq 2 \cdot \left[\left(\mathsf{D}_{Soil} \right)^3 \cdot \frac{\mathsf{tan} \left(\Phi_S \right)}{3} \right] \cdot \gamma_S = 19.707 \cdot \mathsf{kips} \\ & \mathsf{WT}_{Stot} \coloneqq (\mathsf{A1} + \mathsf{A2}) \cdot \mathsf{W}_p \cdot \gamma_S + \mathsf{WT}_{S2} = 56.7 \cdot \mathsf{kips} \\ & \mathsf{WT}_{Rtot} \coloneqq (\mathsf{A3} + \mathsf{A4}) \cdot \mathsf{W}_p \cdot \gamma_{rock} = 81.3 \cdot \mathsf{kips} \\ & \mathsf{M}_r \coloneqq \left(\mathsf{WT}_c \right) \cdot \frac{\mathsf{W}_p}{2} + \mathsf{S}_u \cdot \frac{\mathsf{L}_p}{3} + \mathsf{WT}_{Stot} \cdot \mathsf{Y}_{soil} + \mathsf{WT}_{Rtot} \cdot \mathsf{Y}_{rock} = 1129 \cdot \mathsf{kip} \cdot \mathsf{ft} \\ & \mathsf{M}_{ot} \coloneqq \mathsf{Uplift} \cdot \frac{\mathsf{W}_p}{2} + \mathsf{Shear}_{up} \cdot \mathsf{L}_p = 989 \cdot \mathsf{kip} \cdot \mathsf{ft} \\ & \mathsf{M}_r \end{split}$$

$$FS := \frac{1}{M_{ot}} = 1.14$$

FS_{req} := 1.0

 $\label{eq:constraint} OverTurning_Moment_Check := if \Bigl(\mathsf{FS} \geq \mathsf{FS}_{req}, "Okay"\,, "No \; Good" \Bigr) \\ OverTurning_Moment_Check = "Okay" \\ \hline$

Location:

Rev. 0: 2/15/22

FOUNDATION ANALYSIS

Greenwich, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 21007.68

Check Bearing Pressure:

Area of the Pier =

Section Modulus of Pier =

$$A_{mat} := W_p^2 = 25 \text{ ft}^2$$

 $S := \frac{W_p^3}{6} = 20.83 \cdot \text{ft}^3$

Maximum Bearing Pressure =

$$\mathsf{P}_{max} \coloneqq \frac{\mathsf{WT}_{\mathsf{c}} + \mathsf{Comp}}{\mathsf{A}_{mat}} + \frac{\mathsf{Shear}_{\mathsf{comp}} \cdot \mathsf{L}_{\mathsf{p}}}{\mathsf{S}} = 29.931 \cdot \mathsf{ksf}$$

Max_Pressure_Check := if(P_{max} < q_{rock}, "Okay", "No Good")

Max_Pressure_Check = "Okay"

Check Rock Anchors:

RockAnch or Chec k

Maximum Tension Force =

GrossArea of BoltGroup=

Allowable Tension =

$$\begin{split} I_p &\coloneqq \left(\mathsf{D}_{a1}^{-2} \cdot \mathsf{N}_{a1} \right) = 3456 \cdot \mathsf{in}^2 \\ T_{Max} &\coloneqq \frac{\mathsf{Uplift}}{\mathsf{N}_{atot}} + \frac{\mathsf{Shear}_{up} \cdot \mathsf{L}_p \cdot \mathsf{D}_{a1}}{\mathsf{I}_p} - \frac{\mathsf{WT}_c}{\mathsf{N}_{atot}} = 61.4 \cdot \mathsf{kips} \\ \mathsf{A}_g &\coloneqq \frac{\pi}{4} \cdot \left(\mathsf{d_{ra1}}^2 + \mathsf{d_{ra2}}^2 \right) = 2.561 \cdot \mathsf{in}^2 \\ T_{all} &\coloneqq \mathsf{A}_g \cdot \mathsf{F}_y = 153.6 \cdot \mathsf{kips} \\ \frac{\mathsf{T}_{Max}}{\mathsf{T}_{all}} = 40 \cdot \% \end{split}$$

Condition1 := if $(T_{Max} < T_{all}, "OK", "NG")$

Condition1 = "OK"

Check Bond Strength:

Bond Strength =

$$Bond_Strength := d_{Hole} \cdot \pi \cdot \left(\mathsf{D}_{rock} \cdot 0.5 \right) \cdot \tau = 109 \cdot kips$$

 $\frac{T_{Max}}{Bond_Strength} = 56.6 \cdot \%$

Condition2 := if(T_{Max} < Bond_Strength, "OK", "NG")

Condition2 = "OK"

20
Ξő
Ou
Ň-
0
7 B
₹=

EAST > North East > New England > New England West > GREENWICH 3 CT

Gadasu, Shiva - shiva.gadasu@verizonwireless.com - 5/12/2021 11:38:25

Project Details Lo	Location Information
Carrier Aggregation: false	Site ID: 323974
MPT Id: 366857	E-NodeB ID: 065159
eCIP-0: false	PSLC: 469290
Project Name: 850 ADD	Switch Name: Wallingford 2
FUZE Project ID: 15444631	Tower Owner:
Designed Sector Carrier 4G: 21	Tower Type: Monopole
Designed Sector Carrier 5G: N/A	Site Type: MACRO
Additional Sector Carrier 4G: N/A	Street Address: 9 Sound Shore Drive
Additional Sector Carrier 5G: N/A	City: Greenwich
Site Traker Project Id:	State: CT
FP Solution Type & Tech Type: MODIFICATION;4G_700,4G_850,4G_AWS,4G_PCS,4G	Zip Code: 06830
Swap,5G_850,5G_L-Sub6-Prep	County: Fairfield
Suffix: Rev5_05.12.2021	Latitude: 41.029711 / 41° 1' 46.9596" N
	Longitude: -73.59835 / 73° 35' 54.06" W
RFDS Project Scope: 4th sector add, Antenna, RRH swap 850LTE, CBRS, LSub6 add	

Mount JMA antennas 2" edge-to-edge using mounting brackets as shown in plumbing Remove all existing equipment except CDMA coax

Rev3_02.27.2020 : Revised to delete OVP/Hybrid/700/AWS TRDU's reference from Removed non-antenna summary section, proposed to Rev4_03.02.2020 : Revised to mount RRHs in shelter with new multiband Triplexers and new Hexport antennas. Plumbing attached Rev2_20190917 : reverted back the design to Ant/RRH swap only, no CBRS Rev5_05.12.2021 : revised to add 4th sector and fully upgrade the site remove unused coax and any diplexers/SBT from shelter/tower Rev1_20190212 : Initial design

	Quantity	4	4	m	N
	Inst. Type Quantity	PHYSICAL	PHYSICAL	PHYSICAL	PHYSICAL 2
	4xRx	false	false	false	false
	RET	false	false	false	false
	Azimuth	10(01) 10(19) 315(04) 315(22)	110(02) 110(D2) 240(03) 240(D3)	0(0001) 120(0002) 240(0003)	110(20) 240(21)
	Centerline Tip Height	142	142	140.5	139.4
	Centerline	139	139	139	139
	Model	MX10FR0640	MX06FR0660-03	MT6407-77A	XXDWMM-12.5-65
	Make	AML	JMA WIRELESS	Samsung	Samsung
	CBRS L-Sub6 Make			56	
		L			LTE
	AWS	LTE	LTE		
	1900	LTE	LTE		
	850	CDMA LTE	CDMA LTE		
Added	200	Ë	Ë		

Antenna Summary

Removed

antity			
Inst. Type Quantity	PHYSICAL 3	PHYSICAL 3	PHYSICAL 6
Inst. 7	ЗЛНА	зλна	зλна
4xRx	false	false	false
RET	false	false	false
Azimuth	120(02) 240(03) 350(01)	120(02) 240(03) 350(01)	0(D1) 120(D2) 240(D3)
Centerline Tip Height Azimuth	141.1	142	141
Centerline	139	139	139
Model	HBXX-6516DS-A2M	SBNHH-ID65B	DB854DG65ESX (96902)
Make	ANDREW	ANDREW	DECIBEL PRODUCTS
CBRS L-Sub6 Make			
CBRS			
AWS	LTE		
1900		LTE	
850			CDMA
200		LTE	

	Quantity	
	Inst. Type	
	4xRx	
	RET	
	Azimuth	lo data available.
	Tip Height	NO 0
	Centerline	
	Model	
	Make	
	L-Sub6	
	CBRS	
	AWS	
	1900	
bei	850	
Retained	200	

Retained: 0
Removed: 12
Added: 13

Equipment Summary

Added													
Equipment Type	Location	200	850	1900	AWS	CBRS	L-Sub6 Make	Make	Model	Cable Length Cable Size Install Type Quantity	le Size In	Istall Type	Quantity
Diplexer	Tower	LTE	CDMA LTE					Commscope	TD-850B-LTE78-43			PHYSICAL 3	e
Mount	Tower							AML	2" side by side mounting bracket for MX06 antennas		L	PHYSICAL	N
Mount	Tower							AML	2" side by side mounting bracket for MX10 antennas		Ľ.	PHYSICAL 2	N
RRU	Tower			TTE	비			Samsung	B2/B66A RRH-BR049 (RFV01U-D1A)			PHYSICAL	4
RRU	Tower	LTE	LTE					Samsung	B5/B13 RRH-BR04C (RFV01U-D2A)		L	PHYSICAL	4
RRU	Tower					ΠE		Samsung	CBRS RRH - RT4401-48A		4	PHYSICAL	4
RRU	Tower						5G	Samsung	MT6407-77A			PHYSICAL	e
Removed													
Equipment Type	Location	200	850	1900	AWS	CBRS	L-Sub6 Make	Make	Model	Cable Length Cable Size Install Type Quantity	le Size In	Istall Type	Quantity
Coaxial Cables	Tower										4	PHYSICAL 12	12
RRU	Shelter			LTE				Nokia	UHFA B25 RRH 4x30		4	PHYSICAL	8
Retained													
Equipment Type Location	Location	200	850	1900	AWS	CBRS	CBRS L-Sub6 Make	Make	Model	Cable Length Cable Size Install Type Quantity	le Size Ir	Istall Type	Quantity

PHYSICAL 6

CDMA

Coaxial Cables Tower

0
≘
Ξ
a)
ŭ
5
ς
ð
5

	Sector	Azimuth	Cell / ENode B ID	Antenna Model	Antenna Make	Antenna Centerline(Ft)	Mechanical Down-Tilt(Deg.)	Electrical Down-Tilt	Tip Height	Regulatory Power	Total ERP (W)	TMA Make	TMA Model	RRU Make	RRU Model	Number of Tx, Rx Lines	Position	Transmitter Id	Source												
	9	350	065159	SBNHH-1D65B	ANDREW	139	0	œ	142	52.79				Nokia	UHBC B13 TRDU 2x40	2,2		1961258	ATOLL_API												
0000	02	120	065159	SBNHH-1D65B	ANDREW	139	0	4	142	53.83				Nokia	UHBC B13 TRDU 2x40	2,2		1961261	ATOLL_API												
	03	240	065159	SBNHH-1D65B	ANDREW	139	0	6	142	53.81				Nokia	UHBC B13 TRDU 2x40	2,2		1961264	ATOLL_API												
	01	10	065159	MX10FR0640	IMA	139	0	2	142	81.8				Samsung	B5/B13 RRH-BR04C (RFV01U-D2A)	4,4		10303270	ATOLL_API	04	315 065159	MX10FR0640	 JMA 130	0	2	142	81.8		Samsung	B5/B13 KKH-BK04C (KFV010-D2A) 4,4	10303273
04L3	02	110	065159	MX06FR0660-03	IMA WIRELESS	139	0	4	142	47.05				Samsung	B5/B13 RRH-BR04C (RFV01U-D2A)	4,4		10303271	ATOLL_API												
	03	240	065159	MX06FR0660-03	IMA WIRELESS	139	0	6	142	48.15				Samsung	B5/B13 RRH-BR04C (RFV01U-D2A)	4,4		10303272	ATOLL_API												

5GLS		10 110	0 6	40 MX06FRO660-03 MX0	AINIL									Samsung Samsung Samsung Samsung	FV01U-D2A) B5/B13 RRH-BR04C (RFV01U-D2A) B5/B13 RRH	4.4				04	315	065150	MX10FR0640	IMA	139	0	2	142	367.13		Samsting	B5/B13 RRH-BR04C (RFV01U-D2A)	4,4	
850 MH2 LTE	Sector	Azimuth	Cell / ENode B ID	Antenna Model		Antenna Centerline(Ft)	Mechanical Down-Tilt(Deg.)	Electrical Down-Tilt	Tip Height	Regulatory Power	Total ERP (W)	TMA Make	TMA Model	RRU Make	RRU Model	Number of Tx. Bx Lines	Position	Transmitterid	Surre															

850 MHz CDMA		0000			2GLS	
Sector	5	D2	D3	5	D2	
Azimuth	0	120	240	10	110	240
Cell / ENode B ID						
Antenna Model	DB854DG65ESX (96902)	DB854DG65ESX (96902)	DB854DG65ESX (96902)	MX10FR0640	MX06FR0660-03	MX06FR0660-03
Antenna Make	DECIBEL PRODUCTS	DECIBEL PRODUCTS	DECIBEL PRODUCTS	JMA	JMA WIRELESS	JMA WIREL
Antenna Centerline(Ft)	139	139	139	139	139	139
Mechanical Down-Tilt(Deg.)	2	2	4	0	0	0
Electrical Down-Tilt	0	0	0	2	10	10
Tip Height	141	141	141	142	142	142
Regulatory Power	374.11	374.11	374.11	395.37	286.95	286.95
Total ERP (W)						
TMA Make						
TMA Model						
RRU Make						
RRU Model						
Number of Tx, Rx Lines						
Position						
Transmitter Id						
Source	ATOLL_API	ATOLL_API	ATOLL API	ATOLL_API	ATOLL API	ATOLL_API

2100 MHZ LIE	Sector	Azimuth	Cell / ENode B ID	Antenna Model	Antenna Make	Antenna Centerline(Ft)	Mechanical Down-Tilt(Deg.)	Electrical Down-Tilt	Tip Height	Regulatory Power	Total ERP (W)	TMA Make	TMA Model	RRU Make	RRU Model	Number of Tx, Rx Lines	Position	Transmitter Id	Source									
	0	350	065159	HBXX-6516DS-A2M	ANDREW	139	0	1	141.1	110.98				Nokia	UHIB B4 TRDU 2×60	2,2		1961260	ATOLL_API									
0000	02	120	065159	HBXX-6516DS-A2M	ANDREW	139	0	2	141.1	114.22				Nokia	UHIB B4 TRDU 2×60	2,2		1961263	ATOLL_API									
	03	240	065159	HBXX-6516DS-A2M	ANDREW	139	0	2	141.1	114.22				Nokia	UHIB B4 TRDU 2×60	2,2		1961266	ATOLL_API									
	6	10	065159	MX10FR0640	JMA	139	0	0	142	119.32				Samsung	B2/B66A RRH-BR049 (RFV01U-D1A)	4,4		10303370	ATOLL_API	04 315 065159 MX10FR0640	JMA 139	0	0	119.32		Samsung R2/R66A RRH_RR049 (REV0111-D14)	4,4	10303373
2GLS	02	110	065159	MX06FR0660-03	JMA WIRELESS	139	0	2	142	96.95					B2/B66A RRH-BR049 (RFV01U-D1A)	4,4		10303371	ATOLL_API									
	03	240	065159	MX06FR0660-03	JMA WIRELESS	139	0	2	142	96.95					B2/B66A RRH-BR049 (RFV01U-D1A)	4,4		10303372	ATOLL_API									

6		065159	MX10FR0640			p. 1		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9 1 5					CBRS RRH - RT4401-48A CBRS RRH - RT4401-48A CBRS RRH - RT4401-48A			10303377	ATOLL_API	8	315	065159	MX10FR0640	MA	139	0	2	142	9.12		Samsung	CBRS RRH R T 4401-48A	
Sector	Azimuth	Cell / ENode B ID	Antenna Model	A minimum Marks	Anterna Make	Machanical Down-Tilt/Dac)	Ficer Down-Tili(Deg.)	Tip Height	Regulatory Power	Total ERP (W)	TMA Make	TMA Model	RRU Make	RRU Model	Number of Tx, Rx Lines	Position	Transmitter Id	Source														

	20LS	
000	0002	0003
0	120	240
MT6407-77A	MT6407-77A	MT6407-77A
Samsung	Samsung	Samsung
139	139	139
0	0	0
6	6	9
140.5	140.5	140.5
657.94	657.94	657.94
Samsung	Samsung	Samsung
MT6407-77A	MT6407-77A	MT6407-77A
4,4	4,4	4,4
10303374	10303375	10303376
ATOLLAPI	ATOLL API	ATOLL API

C
2
5
e
-
5
4
-
Ð
α,
ns
ġ.
2
-
3
Ū.

	39 GHz	
	31 GHz	
	28 GHz	
	2100	
	1900	
	850	
Callsigns	200	
egulatory	ower	ata available.
Beamwidth Regulatory C	<u>α</u>	No di
Mechanical	III	
Electrical	Lift	
Tip Height Azimuth (TI Electrical Mechanical Gain		
Antenna Ma Antenna Mc Ant CL	Height AGL	
na Ma Ante.		
Anten		
Sector		

S
2
5
-51
S
-
c,
U.
-

Approved	for Insvc	Yes	Yes	Yes	Yes	Yes	Νο	Yes	Yes	Yes	Yes	Yes	Yes
Action		added	added	added	added	added	added	added	added	added	added	added	added
Status		Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active
POPs/Sq Mi Status		1467.18	1467.18	1467.18	1467.18	1467.18	1467.18	00.	00.	00.	00.	1467.18	1467.18
Threshold	(M)	1000	400	1640	1640	1640						1640	1640
Regulatory	Power	81.8	395,37	94.78	94.78	94.78	9.12	9.12	9.12	9.12	9.12	119.32	119.32
	4	000-000	890.000- 891.500	000-000	000-000	000-000	UNLICENSED-UNLICE	000-000	000-000	000-000	000-000	000-000	000-000
	e 3	000-000	845.000- 846.500	000-000	000-000	000-000	UNLICENSED-UNLICE	000-000	000-000	000-000	000-000	000-000	000-000
	e 2	776.000- 787.000	869.000- 880.000	1980.000- 1990.000	1975.000 1980.000	1970.000 1975.000	UNLICENSED-UNLICE	000-000	000-000	000'-000'	000-000	2110.000 2120.000	2120.000-
	Range 1	746.000- 757.000	824.000- 835.000	1900.000- 1910.000	1895.000- 1900.000	1890.000- 1895.000	UNLICENSED-UNLICE	3550.000-3650.000	3550.000-3650.000	3550.000-3650.000	3550.000-3650.000	1710.000 1720.000	1720.000
Total MHZ		22.000	25,000	20.000	10.000	10.000	UNLICENSE	100.000	100.000	100.000	100.000	20.000	20.000
Wholly	Owned	Yes	Yes	Yes	Yes	Yes	UNLICENSE UNLICENSE	Yes	Yes	Yes	Yes	Yes	Yes
	Name	Cellco Partnership	Celico Partnership	AirTouch Cellular	Celico Partnership	Celico Partnership	UNLICENSE	kimiteksi hasi hase LP	kimiteks khat hure L P	kim Veis Hhot have	kimiteksi hasi hase L.P	Celico Partnership	Celico Partnership
County		Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield
State		ст	ե	ст	сī	ст	ст	ե	ե	b	ե	ե	t
Block		U	۲	U	U	L.	UNLICENSE UNLICENSE CT	0	0	0	0	۲	α,
Market	Number	REA001	CMA042	BTA321	BTA321	BTA321	UNLICENSE	10060Q	10060Q	10060Q	10060Q	CMA042	BEA010
Radio		WU	CL	CW	CW	CW	3.5 GHz	٦d	Γl	Γ	Γ	AW	AW
Market		Northeast	Bridgeport-Stamford- Norwalk- Danbury, CT	New York, NY	New York, NY	New York, NY	CBRS_CALL UNLICENSE 3.5 GHz	D09001 - Fairfield, CT	D09001 - Fairfield, CT	D09001 - Fairfield, CT	D09001 - Fairfield, CT	Bridgeport.Stamford- Norwalk- Danbury, CT	New York-No. New Jer Long Island, NY-NJ- CT-PA- MA-
Callsign		WQJQ689	KNKA363	KNLF644	WQBT539	KNLH264	CBRS_CALL	WRLD511	WRLD510	WRLD512	WRLD509	WQGB279	WQGA906

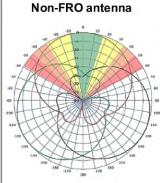
No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	N
Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active
1467.18	1467.18	1467.18	1467.18	1467.18	1467.18	1467.18	1467.18	1467.18	1467.18	1467.18	1467.18	1467.18	1467.18	1467.18
000-000.	000-000	000-000	000-000.	000-000	000-000	000-000	000-000	000-000	000-000	000-000	000-000	000-000	000-000	000-000
000-000	000-000	000-000	000-000	000-000	000-000	000-000	000-000	000-000	000-000	000-000	000-000	000-000	000-000	000-000
31075.000-31225.000	31225.000-31300.000	000-000	28050.000-28350.00	000-000	000-000	000-000	000-000	000-000	000-000	000-000	000-000	000-000	000-000	000-000
29100.000-29250.000	31000.000-31075.00(27600.000-27925.00	27925.000-27960.000	37600.000-37700.001	38500,000-38600,00	37700,000-37800,001	37800,000-37900,00	37900,000-38000,001	380,00,000-38100,00	38100,000-38200,000	38200.000-38300.00	38500,000-39400,00	38400,000-38500,00	38600.000-38700.00
300.000	150.000	325.000	325.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Cellco Partnership	Cellco Partnership	Cellco Partnership	Cellco Partnership	Straight Path urm, LLC	Straight Path um, LLC									
Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield	Fairfield
cT	ст	ст	ст	cT	cī	cT	cī	CT	cī	cī	cī	cī	cī	cī
٩	в	5	12	łW	OLM	M2	M3	M4	M5	MG	M7	M8	6W	¥
BTA321	BTA321	BTA321	BTA321	PEA001	PEA001	PEA001	PEA001	PEA001	PEA001	PEA001	PEA001	PEA001	PEA001	PEA001
P	9	n	n	З	R	n	n	n	nn	n	n	n	n	В
New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY
WPOH942	WPLM397	WRBA702	WRBA703	WRHD609	WRHD610	WRHD611	WRHD612	WRHD613	WRHD614	WRHD615	WRHD616	WRHD617	WRHD618	WRHD619

Proprietary and Confidential. Not for disclosure outside of Verizon.

Page 13 of 13

MX10FRO640-xx

NWAV™ X-Pol Ten-Port Antenna


X-Pol Ten-Port 6 ft, 40° Fast Roll Off, with Smart Bias Ts, 698-4200 MHz:

2 ports 698-894 MHz, 4 ports 1695-2180 MHz, and 4 ports 3400-4200 MHz

- Fast Roll Off (FRO[™]) azimuth beam pattern improves Intra- and Inter-cell SINR
- Excellent passive intermodulation (PIM) performance reduces harmful interference.
- · Fully integrated (iRETs) with independent RET control for low band and mid band
- FET configured with internal RET for high band & ease of future network optimization.
- · SON-Ready array spacing supports beamforming capabilities
- · Suitable for 3G, 4G, and 5G interface technologies
- Integrated Smart Bias-Ts reduce leasing costs

Fast Roll-Off antennas increase data throughput without compromising coverage

The horizontal beam produced by Fast Roll-Off (FRO) technology increases the Signal to Interference & Noise Ratio (SINR) by eliminating overlap between sectors .

Large traditional antenna pattern overlap creates harmful interference. JMA's FRO antenna pattern minim

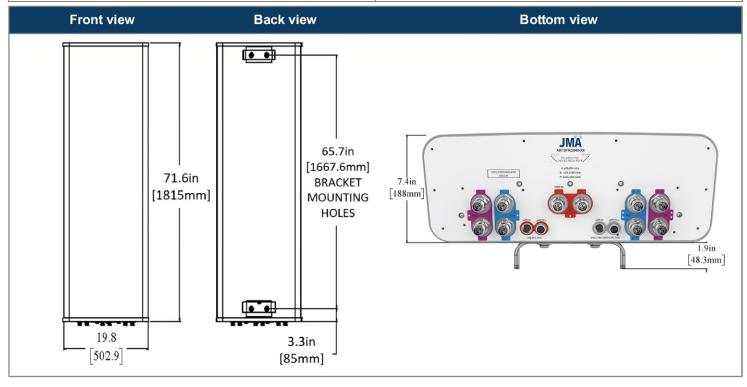
ference LTE throughput SINR

The LTE radio automatically selects the best throughput based on measured SINR.

verlap creates harmful interference.			
nizes ov	verlap, t	hereby minimi	zing inter-
	eed s/Hz)	Speed increase	CQI
>	4.5	333+%	8-10
3.3	8-4.5	277%	6-7
2-	3.3	160%	4-6

Electrical specification (minimum/maximum)	Ports 1, 2		Ports 3, 4, 5, 6		
Frequency bands, MHz	698-798	824-894	1695-1880	1850-1990	1920-2180
Polarization	± 45°		± 45°		
Average gain over all tilts, dBi	16.3	17.2	19.3	20.1	20.4
Horizontal beamwidth (HBW), degrees ¹	42	37	40	39	37
Front-to-back ratio, co-polar power @180°± 30°, dB	>25.0	>25.0	>28.0	>28.0	>28.0
X-Pol discrimination (CPR) at boresight, dB	>18.0	>15.0	>18	>18	>15
Vertical beamwidth (VBW), degrees ¹	13.1	11.8	6.0	5.7	5.3
Electrical downtilt (EDT) range, degrees	2-14		0-9		
First upper side lobe (USLS) suppression, dB ¹	≤-15.0	≤-15.0	≤-16.0	≤-16.0	≤-16.0
Cross-polar isolation, port-to-port, dB ¹	25	25	25	25	25
Max VSWR / return loss, dB	1.5:1 / -14.0		1.5:1 / -14.0		
Max passive intermodulation (PIM), 2x20W carrier, dBc	-153		-153		
Max input power per any port, watts	300		250		
Total composite power all ports (1-10), watts		1500			

¹ Typical value over frequency and tilt


©2020 JMA Wireless. All rights reserved. This document contains proprietary information. All products, company names, brands, and logos are trademarks™ or registered® trademarks of their respective holders. All specifications are subject to change without notice. +1 315.431.7100 customerservice@jmawireless.com

MX10FRO640-xx

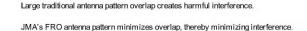
NWAV™ X-Pol Ten-Port Antenna

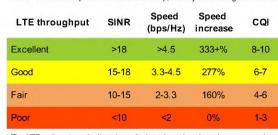
Mechanical specifications	
Dimensions height/width/depth, inches (mm)	71.6/ 19.8/ 7.4 (1815/ 503/ 188)
Shipping dimensions length/width/height, inches (mm)	76.2/23.8/14.5(1935/605/368)
No. of RF input ports, connector type, and location	10 x 4.3-10 female, bottom
RF connector torque	96 lbf·in (10.85 N·m or 8 lbf·ft)
Net antenna weight, lb (kg)	76.3 (35)
Shipping weight, lb (kg)	115.9 (53)
Antenna mounting and downtilt kit included with antenna	91900318
Net weight of the mounting and downtilt kit, lb (kg)	20.3 (9.2)
Range of mechanical up/down tilt	-2° to 12°
Rated wind survival speed, mph (km/h)	150 (241)
Frontal, lateral, and rear wind loading @ 150 km/h, lbf (N)	183.3 (815), 40.7 (181), 276.8 (1231)
Equivalent flat plate @ 100 mph and Cd=2, sq ft	3.69

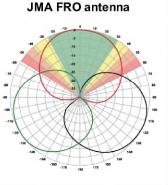
MX06FRO660-03

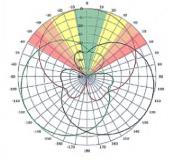
NWAV™ X-Pol Hex-Port Antenna

X-Pol Hex-Port 6 ft 60° Fast Roll Off antenna with independent tilt on 700 & 850 MHz:


2 ports 698-798, 824-894 MHz and 4 ports 1695-2180 MHz


- Fast Roll Off (FRO™) azimuth beam pattern improves Intra- and Inter-cell SINR
- Compatible with dual band 700/850 MHz radios with independent low band EDT without external diplexers
- Fully integrated (iRETs) with independent RET control for low and high bands for ease of network optimization
- SON-Ready array spacing supports beamforming capabilities
- Suitable for LTE/CDMA/PCS/UMTS/GSM air interface technologies
- Integrated Smart Bias-Ts reduce leasing costs


Fast Roll-Off antennas increase data throughput without compromising coverage


The horizontal beam produced by Fast Roll-Off (FRO) technology increases the Signal to Interference & Noise Ratio (SINR) by eliminating overlap between sectors .

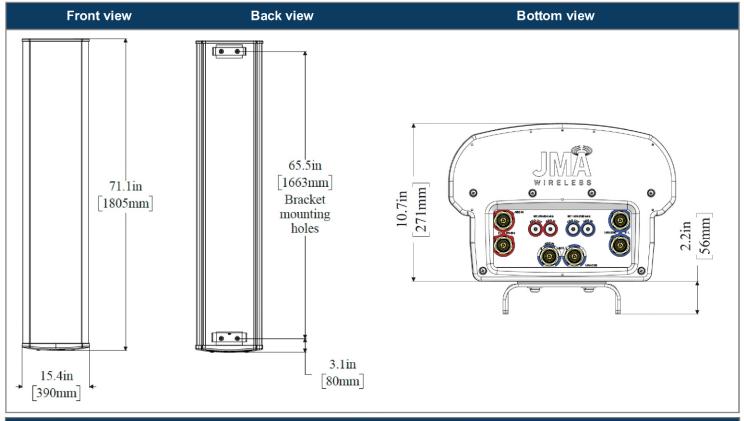
Non-FRO antenna

The LTE radio automatically selects the best throughput based on measured SINR.

Electrical specification (minimum/maximum)	Ports 1, 2		Ports 3, 4, 5, 6			
Frequency bands, MHz	698-798	824-894	1695-1880	1850-1990	1920-2180	
Polarization	± 4	45°		± 45°		
Average gain over all tilts, dBi	14.4	14.0	17.6	18.0	18.2	
Horizontal beamwidth (HBW), degrees	60.5	53.0	55.0	55.0	55.5	
Front-to-back ratio, co-polar power @180°± 30°, dB	>24	>24.0	>25.0	>25.0	>25.0	
X-Pol discrimination (CPR) at boresight, dB	>15.0	>14.2	>18	>18	>15	
Sector power ratio, percent	<3.5	<3.0	<3.7	<3.8	<3.6	
Vertical beamwidth (VBW), degrees ¹	13.1	11.8	6.0	5.5	5.5	
Electrical downtilt (EDT) range, degrees	2-14	2-14	0-9			
First upper side lobe (USLS) suppression, dB ¹	≤-15.0	≤-16.5	≤-16.0	≤-16.0	≤-16.0	
Cross-polar isolation, port-to-port, dB ¹	25	25	25	25	25	
Max VSWR / return loss, dB	1.5:1 / -14.0		1.5:1 / -14.0			
Max passive intermodulation (PIM), 2x20W carrier, dBc	-153		-153			
Max input power per any port, watts	300		250			
Total composite power all ports, watts		1500				

¹ Typical value over frequency and tilt

©2019 JMA Wireless. All rights reserved. This document contains proprietary information. All products, company names, brands, and logos are trademarks[™] or registered® trademarks of their respective holders. All specifications are subject to change without notice. +1 315.431.7100 customerservice@jmawireless.com


NWAV

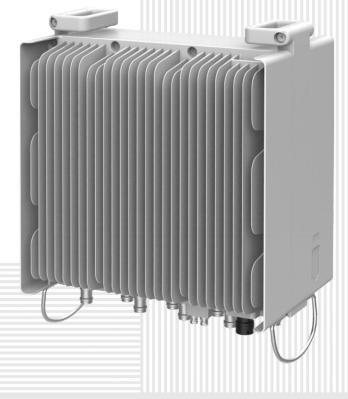
MX06FRO660-03

NWAV™ X-Pol Hex-Port Antenna

Mechanical specifications				
Dimensions height/width/depth, inches (mm)	71.3/ 15.4/ 10.7 (1811/ 392/ 273)			
Shipping dimensions length/width/height, inches (mm)	82/20/15 (2083/508/381)			
No. of RF input ports, connector type, and location	6 x 4.3-10 female, bottom			
RF connector torque	96 lbf·in (10.85 N·m or 8 lbf·ft)			
Net antenna weight, lb (kg)	60 (27.0)			
Shipping weight, lb (kg)	90 (41.0)			
Antenna mounting and downtilt kit included with antenna	91900318			
Net weight of the mounting and downtilt kit, lb (kg)	18 (8.18)			
Range of mechanical up/down tilt	-2° to 14°			
Rated wind survival speed, mph (km/h)	150 (241)			
Frontal, lateral, and rear wind loading @ 150 km/h, lbf (N)	154 (685), 73 (325), 158 (703)			
Equivalent flat plate @ 100 mph and Cd=2, sq ft	2.6			

Ordering information

Antenna model	Description			
MX06FRO660-03	6F X-Pol HEX FRO 60° independent tilt 700/850 RET, 4.3-10 & SBT			
Optional accessories				
AISG cables	M/F cables for AISG connections			
PCU-1000 RET controller	Stand-alone controller for RET control and configurations			

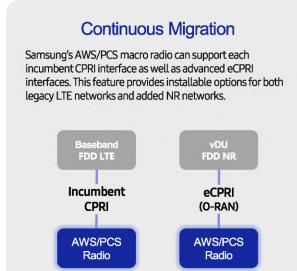

SAMSUNG

AWS/PCS MACRO RADIO DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This AWS/PCS 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

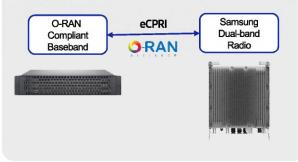
Model Code

RF4439d-25A



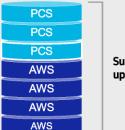
Homepage samsungnetworks.com

Youtube www.youtube.com/samsung5g


Points of Differentiation

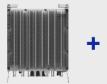
O-RAN Compliant

A standardized O-RAN radio can help in implementing costeffective networks, which are capable of sending more data without compromising additional investments.


Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). Supporting many carriers is essential for using all frequencies that the operator has available.


The new AWS/PCS dual-band radio can support up to 3 carriers in the PCS (1.9GHz) band and 4 carriers in the AWS (2.1GHz) band, respectively.

Supports up to 7 carriers

Brand New Features in a Compact Size

Samsung's AWS/PCS macro radio offers several features, such as dual connectivity for baseband for both CDU and vDU, O-RAN capability, more carriers and an enlarged PCS spectrum, combined into an incumbent radio volume of 36.8L.

Same as an

incumbent radio volume

 2 FH connectivity
 O-RAN capability
 More carriers and spectrum

Technical Specifications

Item	Specification
Tech	LTE/NR
Brand	B25(PCS), B66(AWS)
Frequency Band	DL: 1930 – 1995MHz, UL: 1850 – 1915MHz DL: 2110 – 2200MHz, UL: 1710 – 1780MHz
RF Power	(B25) 4 × 40W or 2 × 60W (B66) 4 × 60W or 2 × 80W
IBW/OBW	(B25) 65MHz / 30MHz (B66) DL 90MHz, UL 70MHz / 60MHz
Installation	Pole, Wall
Size/ Weight	14.96 x 14.96 x 10.04inch (36.8L) / 74.7lb

SAMSUNG

700/850MHZ MACRO RADIO

DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This 700/850MHz 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

Model Code

RF4440d-13A

Youtube www.youtube.com/samsung5g

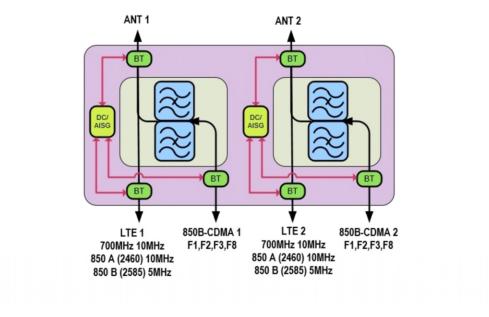
TD-850B-LTE78-43 | E14Z00P06

Twin In-band Diplexer 850 MHz, DC Sense

- Enables LTE carrier to share the RF path with other CDMA/EVDO services
- LTE port supports the use of dual band 700/850 radios or diplexed radio ports
- CDMA port supports carriers F1(384), F2(425), F3(466) and F8(770/777)
- Optimized for 5MHz LTE carrier on B-Block CH 2585 and 10MHz LTE carrier on A-Block CH 2460
- Narrow guard band to maximize utilization of licensed spectrum

Product Classification	
Product Type	Diplexer
General Specifications	
Application	Indoor Outdoor
Antenna Interface	4.3-10 Female
Connector Interface Style	Long neck
Dimensions	
Height	392 mm 15.433 in
Width	387 mm 15.236 in
Depth	162 mm 6.378 in
Ground Screw Diameter	6 mm 0.236 in

Outline Drawing


Page 1 of 4

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or " are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: May 18, 2021

TD-850B-LTE78-43 | E14Z00P06

Block Diagram

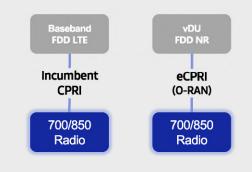
Logic Table

DC input	t voltage	ANT Port		
LTE Port	CDMA Port	DC/AISG path selection		
<7	<7	All Ports OFF		
7 < 1 < 20	<7	LTE Port to ANT Port ON		
7 ≤ V ≤ 30	</td <td colspan="3">CDMA Port to ANT OFF</td>	CDMA Port to ANT OFF		
<7	7 ≤ V ≤ 30	LTE Port to ANT Port OFF		
</td <td>727250</td> <td colspan="3">CDMA Port to ANT ON</td>	727250	CDMA Port to ANT ON		
7 ≤ V ≤ 30	7 ≤ V ≤ 30	All Ports OFF		

Environmental Specifications

Operating Temperature	-40 °C to +65 °C (-40 °F to +149 °F)		
Ingress Protection Test Method	IEC 60529:2001, IP67		
Packaging and Weights			
Included	Brackets		
Weight, net	24 kg 52.911 lb		

Page 4 of 4


©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or " are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: May 18, 2021

Points of Differentiation

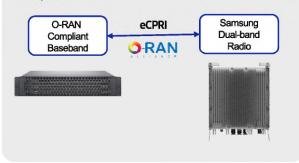
Continuous Migration

Samsung's 700/850MHz macro radio can support each incumbent CPRI interface as well as an advanced eCPRI interface. This feature provides installable options for both legacy LTE networks and added NR networks.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). The ability to support many carriers is essential for using all frequencies that the operator has available.

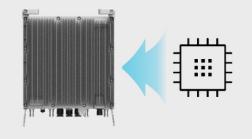
The new 700/850MHz dual-band radio can support up to 2 carriers in the B13 (700MHz) band and 3 carriers in the B5 (850MHz) band, respectively.


Technical Specifications

Item	Specification
Tech	LTE / NR
Brand	B13(700MHz), B5(850MHz)
Frequency Band	DL: 746 – 756MHz, UL: 777 – 787MHz DL: 869 – 894MHz, UL: 824 – 849MHz
RF Power	(B13) 4 × 40W or 2 × 60W (B5) 4 × 40W or 2 × 60W
IBW/OBW	(B13) 10MHz / 10MHz (B5) 25MHz / 25MHz
Installation	Pole, Wall
Size/ Weight	14.96 x 14.96 x 9.05inch (33.2L) / 70.33 lb

O-RAN Compliant

A standardized O-RAN radio can help when implementing cost-effective networks because it is capable of sending more data without compromising additional investments.


Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Secured Integrity

Access to sensitive data is allowed only to authorized software.

The Samsung radio's CPU can protect root of trust, which is credential information to verify SW integrity, and secure storage provides access control to sensitive data by using dedicated hardware (TPM).

Tower Top and Base Power Protection/Fiber Connection System for HYBRIFLEX® Cable

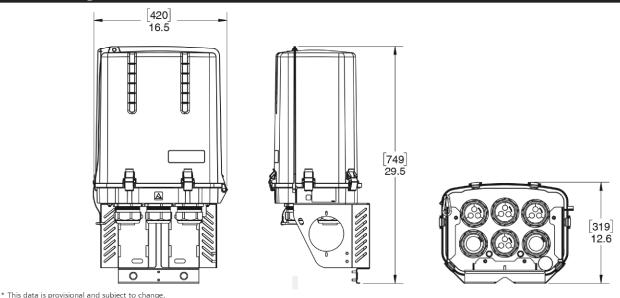
Product Description

RFS' flexible Tower, Base Stations and Rooftop protection and Distribution products provide protection for up to 12 Remote Radio Heads/Integrated Antennas. The solutions mitigate the risk of damage due to lightning and provide high levels of availability and reliability to radio equipment.

Features

- Designed for distribution to 12 RRH circuits, DC power and fiber optics.
- Alarms for moisture detection and intrusion
- Digital Voltmeter with twelve (12) position switch to monitor each DC circuit
- Power alarms for wiring anomalies and power disruptions
- Employs the Strikesorb® 30-V1-2CHV Surge Protective Device (SPD) specifically designed for the Remote Radio Head (RRH) installation environment and certified for use in DC applications and at low DC operating voltages (48V)
- The Strikesorb 30-V1-2CHV is a Class I SPD certified by VDE per the IEC 61643-11standard as suitable for installation in areas where direct lightning exposure is expected. Strikesorb 30-V1-2CHV is able to withstand direct lightning currents of up to 5kA (10/350) and induced surge currents of up to 60kA (8/20)
- Provides very low let through / clamping voltage unique for a Class I product

 as it does not employ spark gaps or other switching elements. Strikesorb
 offers unique protection levels to the RRH equipment as well as the Base Band
 Units
- RS485 communication link uses two (2) twisted pair (+ground) wires per hybrid cable, and communicates all voltage, boost system and alarm data


Mounting Bracket Included

Patent pending design

Benefits

- Distributes DC up to 12 Remote Radio Heads and connects up to 24 LC fiber pairs
- Utilizes an IP 67 rated enclosure, also rated to NEBS and UL, allowing for indoor or outdoor installation on a roof or tower top
- Six total cable ports for cable access with custom configurable UL rated glands that accommodate varying diameters of hybrid (combined power and fiber optic) or standard cables with diameters up to 2" (will fit most standard 15/8" coax class cables), depending upon port configuration
- Lightweight aerodynamic design provides maximum flexibility for tower top installation

Product Diagram

Tower Top and Base Power Protection/Fiber Connection System for HYBRIFLEX® Cable

Technical Specifications

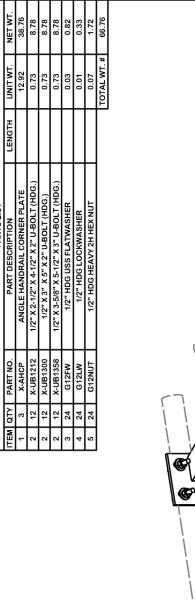
Electrical	Specifications

Nominal Operating Voltage	48 VDC
Nominal Discharge Current [I _n]	20 kA 8/20 μs
Maximum Surge Current [I _{max}]	60 kA 8/20 µs
Maximum Impulse (Lightning) Current per IEC 61643-11	5 kA 10/350 μs
Maximum Continuous Operating Voltage [Uc]	75 VDC
Voltage Protection Rating (VPR) per UL 1449 4th Edition	400V
Protection Class as per IEC 61643-11	Class I
Power Alarm	Cross polarity, short circuit, or power outage
Intrusion Sensor	Microswitch
Moisture Sensor	infrared moisture detector
Strikesorb Module Type	30-V1-2CHV
	Strikesorb modules installed to protect 12 Remote Radio Heads
Power Boost Ready	RS485 twisted pair connection available

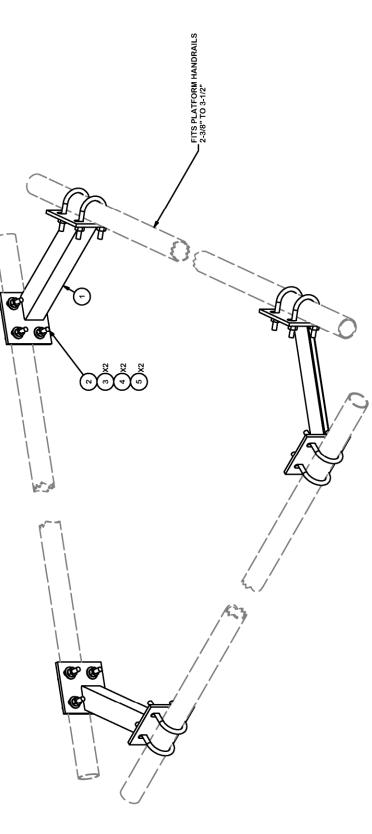
Mechanical Specifications

Suppression Connection Method Compression lug, #14 - #2 AWG (2 mm2 - 33 mm2)		
LC-LC Single mode		
Gore™ Vent		
IP 67		
-40° C to +80° C		
Yes		
12.6" x 16.5" x 29.5" [319mm x 420mm 749mm]		
32 lbs (14.51 kg)		
150mph (sustained): 185 lbs (823 N)		
	LC-LC Single mode Gore™ Vent IP 67 -40° C to +80° C Yes 12.6" x 16.5" x 29.5" [319mm x 420mm 749mm] 32 lbs (14.51 kg)	

Standards Compliance


Strikesorb modules are compliant to the following Surge Protective Device (SPD) Standards:

UL 1449 4th Edition, IEC 61643-11:2011, EN 61643-11:2012, IEEE C62.11, IEEE C62.41.2, IEEE C62.45 NEBS certified to: GR-63-CORE Issue 4, GR-1089-CORE Issue 6, GR-3108-CORE Issue 3, GR-487-CORE Issue 4, GR-950-CORE Issue 1



* This data is provisional and subject to change.

PARTS LIST

Maser Consulting Connecticut 2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ 08054 856.797.0412 peter.albano@colliersengineering.com

Antenna Mount Analysis Report with Hardware Upgrades and PMI Requirements

Mount Analysis

SMART Tool Project #: 10105321 Maser Consulting Connecticut Project #: 21781145A

October 28, 2021

Site Information

Site ID: Site Name: Carrier Name: Address: 469290-VZW / GREENWICH 3 CT GREENWICH 3 CT Verizon Wireless 9 Sound Shore Drive Greenwich, Connecticut 06830 Fairfield County 41.029711° -73.59835°

Latitude: Longitude:

Tower Type:

Mount Type:

Structure Information

148-Ft Monopole 6.50-Ft T-Arm

FUZE ID # 15444631

Analysis Results

T-Arm: **75.9% Pass*** *Results valid after hardware upgrades noted in the PMI Requirements are installed.

***Contractor PMI Requirements:

Included at the end of this MA report Available & Submitted via portal at https://pmi.vzwsmart.com Contractor - Please Review Specific Site PMI Requirements Upon Award Requirements may also be Noted on A & E drawings For additional questions and support, please reach out to: pmisupport@colliersengineering.com

Report Prepared By: Frank Centone

Executive Summary:

The objective of this report is to determine the capacity of the antenna support mount at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards. Any modification listed under Sources of Information was assumed completed and was included in this analysis.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

Sources of Information:

Document Type	Remarks
Radio Frequency Data Sheet (RFDS)	Verizon RFDS, Site ID: 323974, dated July 12, 2021
Desktop Mount Mapping Form	Colliers Engineering & Design, Project #: 21781145A, Dated September 29, 2021

Analysis Criteria:

Codes and Standards:	ANSI/TIA-222-H	
Wind Parameters:	Basic Wind Speed (Ultimate 3-sec. Gust), V _{ULT} : Ice Wind Speed (3-sec. Gust): Design Ice Thickness: Risk Category: Exposure Category: Topographic Category: Topographic Feature Considered: Topographic Method: Ground Elevation Factor, K _e :	117 mph 50 mph 1.00 in II C 1 N/A N/A 0.999
Seismic Parameters:	S _S . S ₁ .	0.270 g 0.059 g
Maintenance Parameters:	Wind Speed (3-sec. Gust): Maintenance Live Load, Lv: Maintenance Live Load, Lm:	30 mph 250 lbs. 500 lbs.
Analysis Software:	RISA-3D (V17)	

Final Loading Configuration:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status
		4	JMA Wireless	MX10FRO640	
		4	JMA Wireless	MX06FRO660-03]
		3	Samsung	MT6407-77A]
		2	Samsung	XXDWMM-12.5-65-8T-CBRS]
139.00	139.00	3	Commscope	TD-850B-LTE78-43	Added
		2	RFS	DB-C1-12C-24AB-0Z]
		4	Samsung	B2/B66A RRH-BR049]
		4	Samsung	B5/B13 RRH-BR04C]
		4	Samsung	CBRS RRH - RT4401-48A	

The following equipment has been considered for the analysis of the mounts:

Any proposed antennas not currently installed should be mounted such that the centerline of the antennas does not exceed 6 inches vertically from the center of the antenna mount(s).

The provided closeout photos did not report existing OVP units. However, it is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

Standard Conditions:

- All engineering services are performed on the basis that the information provided to Maser Consulting Connecticut and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation. Any deviation from the loading locations specified in this report shall be communicated to Maser Consulting Connecticut to verify deviation will not adversely impact the analysis.
- 2. Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

- 3. For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped in accordance with the NSTD-446 Standard, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- 4. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.

- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.
- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Maser Consulting Connecticut is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.
- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

0	Channel, Solid Round, Angle, Plate	ASTM A36 (Gr. 36)
0	HSS (Rectangular)	ASTM 500 (Gr. B-46
~	Dino	ASTM 452 (Cr. P. 26

- Pipe
 Threaded Rod
- o Bolts

ASTM 500 (Gr. B-46) ASTM A53 (Gr. B-35) F1554 (Gr. 36) ASTM A325

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Maser Consulting Connecticut.

Analysis Results:

Component	Utilization %	Pass/Fail		
RRU Pipe	62.1%	Pass		
Antenna Pipe	66.9%	Pass		
Horizontal	62.9%	Pass		
Standoff Pipe	79.4%	Pass		
Mount Connection	75.9%	Pass		

Structure Rating – (Controlling Utilization of all Components)	75.9%*
--	--------

* Results valid after hardware upgrades noted in the PMI Requirements are installed.

The mount has been found structurally adequate for all steel and external connection capacities. Serviceability in accordance with TIA-222-H Section 4.9.11.3 has not been considered.

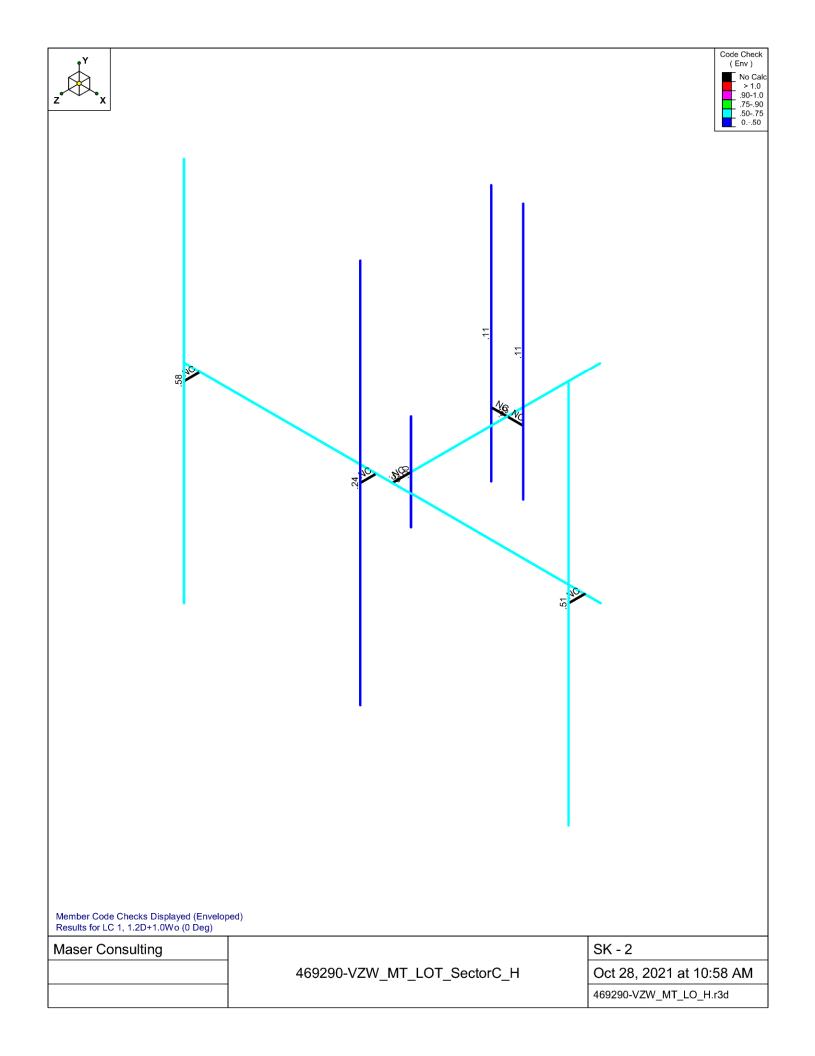
Recommendation:

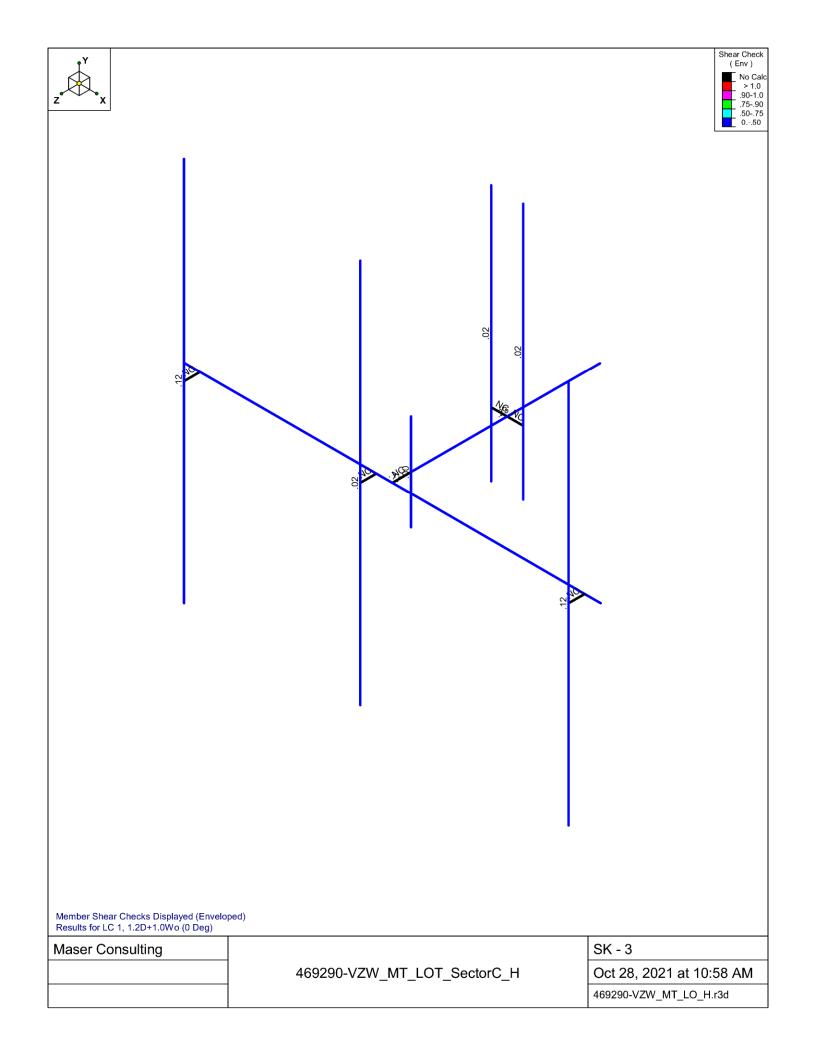
The existing mounts will be **SUFFICIENT** for the final loading configuration upon the completion of the recommendations listed in the Special Instructions section of the below referenced PMI document.

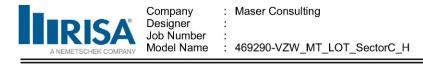
ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other, if required. Separate review fees will apply.

Attachments:

- 1. Mount Photos
- 2. Desktop Mount Mapping Form (for reference only)
- 3. Analysis Calculations
- 4. Contractor Required Post Installation Inspection (PMI) Report Deliverables
- 5. Antenna Placement Diagrams
- 6. TIA Adoption and Wind Speed Usage Letter

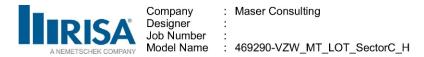





			De	sktop Mount Ma	pping For	m	
Colliers	Site Name:		Greenwich 3 CT		Tower Type:		Self-Support Tower
	Site ID:	469290 D: 15444631			Tower Owner:		
Engineering	FUZE Project ID:			Tower Heigh		148'	
& Design	Customer:		Verizon Wireless		Mount Eleva	tion (Ft.):	138.75
	Colliers Project N		21781145A		Date:		•
he information contained herein is cons ohibited except by express written perr		ture and is to be used i	only for the specific custo	mer it was intended for. Repro	duction, transmis	sion, publication, m	nodification or disclosure by any method
Document Type	Provided? (Yes/No)	Engin	eering Firm	Project No.	Dated		Comments/Remarks
revious Mount Mapping	No						
evious Mapping Photos	No						
evious Mount Analysis	No						
evious Mount Modifications	No						
revious Structural Analysis	No						
onstruction Drawings	Yes	Centek Engineering	1	15001.017	7/10/2015	Not a primary sou	urce for mount information
loseout Package	No					Photos show ovist	ting mount to be T-Arm with square tube
loseout Photos	Yes	Greenwich+3+COP		•	-	standoffs	ting mount to be 1-Arm with square tub
andover Package	No				_		
lew Build 445 Documentation	No				_		
Other	No						
Previous PMI	No						
			Cond	lusion			
Full Mount Mapping Required?	No	Data supports Moving Forward					
bove, provide an accurate representation	on of the existing mount all questions, confirmation	EOR reserves the rig	ht and will typically requ	ire additional clarification and	verification as wi	ll be included in th	information provided in the documents e PMI requirements. During the PMI pr ned in accordance to the ANSI/TIA-222-1
DOTTING T-HANG (T/P)	Proprosed AMT		3 лавата такжа такжа 2007 г. 1979 жил. (пто с. и такжа) 1 пто с. и так 1 пто с. и так 1 пто с. и так 1 пто с. и так 2 лабот с. и так 1 такжа 1 пто с. и так 2 пто с. и так 1 такжа 1 так 1 такжа 1 такжа 1 такжа 1 та	- 10			Top of Antenna Gunna 240 PCS

aken from: Construction Drawings

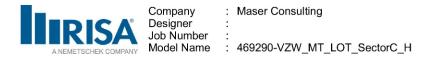
Maser Consulting	469290-VZW_MT_LOT_SectorC_H	SK - 1 Oct 28, 2021 at 10:58 AM 469290-VZW_MT_LO_H.r3d



Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Antenna D	None			-		51			
2	Antenna Di	None					51			
3	Antenna Wo (0 Deg)	None					51			
4	Antenna Wo (30 Deg)	None					51			
5	Antenna Wo (60 Deg)	None					51			
6	Antenna Wo (90 Deg)	None					51			
7	Antenna Wo (120 Deg)	None					51			
8	Antenna Wo (150 Deg)	None					51			
9	Antenna Wo (180 Deg)	None					51			
10	Antenna Wo (210 Deg)	None					51			
11	Antenna Wo (240 Deg)	None					51			
12	Antenna Wo (270 Deg)	None					51			
13	Antenna Wo (300 Deg)	None					51			
	Antenna Wo (330 Deg)	None					51			
15	Antenna Wi (0 Deg)	None					51			
16	Antenna Wi (30 Deg)	None					51			
17	Antenna Wi (60 Deg)	None					51			
18	Antenna Wi (90 Deg)	None					51			
19	Antenna Wi (120 Deg)	None					51			
20	Antenna Wi (150 Deg)	None					51			
21	Antenna Wi (180 Deg)	None					51			
22	Antenna Wi (210 Deg)	None					51			
23	Antenna Wi (240 Deg)	None					51			
24	Antenna Wi (270 Deg)	None					51			
25	Antenna Wi (300 Deg)	None	-	-			51			
26	Antenna Wi (330 Deg)	None					51			
27	Antenna Wm (0 Deg)	None					51			
28	Antenna Wm (30 Deg)	None					51			
20	Antenna Wm (60 Deg)						51			
	Antenna Wm (90 Deg)	None					51			
30	Antenna Wm (90 Deg)	None	-	-						
31	Antenna Wm (120 Deg)	None					51			
32		None					51			
	Antenna Wm (180 Deg)	None					51			
	Antenna Wm (210 Deg)	None					51			
	Antenna Wm (240 Deg)	None					51			
	Antenna Wm (270 Deg)	None	_				51			
37	Antenna Wm (300 Deg)	None					51			
38	Antenna Wm (330 Deg)	None					51			
39	Structure D	None		-1						
40	Structure Di	None						8		
41	Structure Wo (0 Deg)	None						16		
42	Structure Wo (30 Deg)	None						16		
	Structure Wo (60 Deg)	None						16		
44	Structure Wo (90 Deg)	None						16		
	Structure Wo (120 D	None						16		
46	Structure Wo (150 D	None						16		
47	Structure Wo (180 D	None						16		
48	Structure Wo (210 D	None						16		
	Structure Wo (240 D	None						16		
50	Structure Wo (270 D	None						16		
51	Structure Wo (300 D	None						16		
52	Structure Wo (330 D	None						16		
53	Structure Wi (0 Deg)	None						16		
54	Structure Wi (30 Deg)	None						16		
55	Structure Wi (60 Deg)	None						16		
56	Structure Wi (90 Deg)	None						16		
00	(1	1	1					

Basic Load Cases (Continued)


	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
57	Structure Wi (120 De	None						16		
58	Structure Wi (150 De	None						16		
59	Structure Wi (180 De	None						16		
60	Structure Wi (210 De	None						16		
61	Structure Wi (240 De	None						16		
62	Structure Wi (270 De	None						16		
63	Structure Wi (300 De	None						16		
64	Structure Wi (330 De	None						16		
65	Structure Wm (0 Deg)	None						16		
66	Structure Wm (30 De	None						16		
67	Structure Wm (60 De	None						16		
68	Structure Wm (90 De	None						16		
69	Structure Wm (120 D	None						16		
70	Structure Wm (150 D	None						16		
71	Structure Wm (180 D	None						16		
72	Structure Wm (210 D	None						16		
73	Structure Wm (240 D	None						16		
74	Structure Wm (270 D	None						16		
75	Structure Wm (300 D	None						16		
76	Structure Wm (330 D	None						16		
77	Lm1	None					1			
78	Lm2	None					1			
79	Lv1	None					1			
80	Lv2	None					1			
81	Antenna Ev	None					51			
82	Antenna Eh (0 Deg)	None					34			
83	Antenna Eh (90 Deg)	None					34			
84	Structure Ev	ELY								
85	Structure Eh (0 Deg)	ELZ	03							
86	Structure Eh (90 Deg)	ELX			.03					

Load Combinations

	Description	So	.P	S	BLC	Fac	.BLC	Fac	BLC	Fac	.BLC	Fac	BLC	Fac										
1	1.2D+1.0Wo (0				1	1.2		1.2	3	1	41	1												
2	1.2D+1.0Wo (30.				1	1.2	39	1.2	4	1	42	1												
3	1.2D+1.0Wo (60.				1	1.2	39		5	1	43	1												
4	1.2D+1.0Wo (90.	_	<u> </u>		1			1.2	6	1	44	1												
5	1.2D+1.0Wo (12.				1	1.2	39		7	1	45	1												
6	1.2D+1.0Wo (15.				1			1.2	8	1	46	1												
7	1.2D+1.0Wo (18.				1			1.2		1	47	1												
8	1.2D+1.0Wo (21.				1		39		10	1	48	1												
9	1.2D+1.0Wo (24.				1			1.2	11	1	49	1												
10	1.2D+1.0Wo (27.				1		39		12	1	50	1												
11	1.2D+1.0Wo (30.				1	1.2	39		13	1	51	1												
12	1.2D+1.0Wo (33.				1	1.2	39		14	1	52	1												
13	1.2D + 1.0Di + 1.				1	1.2	39		2	1	40	1	15	1	53	1								
	1.2D + 1.0Di + 1.				1		39		2	1	40	1	16	1	54	1								
	1.2D + 1.0Di + 1.	_	<u> </u>		1		39		2	1	40	1	17	1	55	1								
	1.2D + 1.0Di + 1.				1			1.2	2	1	40	1	18	1	56	1								
17	1.2D + 1.0Di + 1.				1			1.2	2	1	40	1	19	1	57	1								
	1.2D + 1.0Di + 1.	_			1			1.2	2	1	40	1	20	1	58	1								
19	1.2D + 1.0Di + 1.	_	<u> </u>		1	1.2	39	1.2	2	1	40	1	21	1	59	1								
	1.2D + 1.0Di + 1.	-			1		39		2	1	40	1	22	1	60	1								
21	1.2D + 1.0Di + 1.	-	<u> </u>		1		39		2	1	40	1	23	1	61	1								
22	1.2D + 1.0Di + 1.	Yes	Y		1	1.2	39	1.2	2	1	40	1	24	1	62	1								

Load Combinations (Continued)

	Description	So					BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac
23	1.2D + 1.0Di + 1			5	1			1.2	2	1	40	1	25		63	1		<u>rac</u>	.DLC	rac		Fac		<u>rac</u>
	1.2D + 1.0Di + 1				1	1.2			2	1	40	1	26		64	1								
	1.2D + 1.5Lm1 +				1			1.2		1.5		1	65		04									_
	1.2D + 1.5Lm1 +				1							1	66	1										
	1.2D + 1.5Lm1 +							1.2		1.5		1		1										
		-			1			1.2				1	67	1										
	1.2D + 1.5Lm1 + 1.2D + 1.5Lm1 +				1			1.2				1	68											_
					1			1.2			31	1	69											
	1.2D + 1.5Lm1 +				1			1.2				1	70											
	1.2D + 1.5Lm1 +				1			1.2			33	1	71	1										
	1.2D + 1.5Lm1 +				1	1.2			77		34	1	72	1										
	1.2D + 1.5Lm1 +				1			1.2	77	1.5	35	1	73	1										
	1.2D + 1.5Lm1 +				1			1.2	77		36	1	74	1										
	1.2D + 1.5Lm1 +				1			1.2			37	1	75	1										
	1.2D + 1.5Lm1 +				1			1.2				1	76	1										
	1.2D + 1.5Lm2 +				1			1.2			27	1	65	1										
	1.2D + 1.5Lm2 +				1			1.2			28	1	66	1										
	1.2D + 1.5Lm2 +				1			1.2			29	1	67	1										
	1.2D + 1.5Lm2 +				1			1.2				1	68											
	1.2D + 1.5Lm2 +				1			1.2		1.5	31	1	69	1										
	1.2D + 1.5Lm2 +				1	1.2			78	1.5	32	1	70	1										
	1.2D + 1.5Lm2 +				1	1.2	39	1.2	78		33	1	71	1										
44	1.2D + 1.5Lm2 +	Yes	Y		1	1.2	39	1.2	78	1.5	34	1	72	1										
45	1.2D + 1.5Lm2 +	Yes	Y		1			1.2			35	1	73	1										
46	1.2D + 1.5Lm2 +	Yes	Y		1			1.2			36	1	74	1										
47	1.2D + 1.5Lm2 +	Yes	Υ		1			1.2	78		37	1	75	1										
48	1.2D + 1.5Lm2 +	Yes	Υ		1					1.5		1	76	1										
49	1.2D + 1.5Lv1	Yes	Υ		1			1.2																
50	1.2D + 1.5Lv2				1			1.2																
51	1.4D	Yes			1	1.4																		
	1.2D + 1.0Ev + 1.	Yes	Y		1			1.2	81	1	ELY	1	82	1	83		ELZ	1	ELX					
	1.2D + 1.0Ev + 1.				1	1.2		1.2			ELY	1	82					.866	ELX	5				
	1.2D + 1.0Ev + 1.				1			1.2			ELY		82			.866								
	1.2D + 1.0Ev + 1.				1			1.2			ELY	1	82		83		ELZ		ELX					
	1.2D + 1.0Ev + 1.	-	<u> </u>		1			1.2		-	ELY		82	- 5		.866								
	1.2D + 1.0Ev + 1.				1	1.2		1.2			ELY							866						
	1.2D + 1.0Ev + 1.	_			1			1.2			ELY		82	-1	83		ELZ		ELX					
~~	1.2D + 1.0Ev + 1.		•		1			1.2			ELY	1	82							- 5				_
	1.2D + 1.0Ev + 1.				1			1.2			ELY		82			866								
	1.2D + 1.0Ev + 1.				1					-	ELY		-	0			ELZ		ELX					
	1.2D + 1.0Ev + 1.				1			1.2			ELY		82 82	E	83	866								
	1.2D + 1.0Ev + 1.				1								02	.5	03	800 5	ELZ	.0		000				
	0.9D - 1.0Ev + 1.				1			1.2										.866	ELX	ə				
					1	.9			81			-1	82	1	83									
	0.9D - 1.0Ev + 1				1	.9	39		81					.866	83	.5		.866		.5				
	0.9D - 1.0Ev + 1				1	.9	39		81		ELY		82			.866		.5		.866				
	0.9D - 1.0Ev + 1				1	.9	39	.9	81		ELY		82	_	83		ELZ		ELX					
	0.9D - 1.0Ev + 1	.Yes	Y		1	.9	39	.9	81		ELY					.866		5		.866				
	0.9D - 1.0Ev + 1				1	.9	39	.9	81		ELY			866										
	0.9D - 1.0Ev + 1				1	.9	39	.9	81		ELY		82	-1	83				ELX					
	0.9D - 1.0Ev + 1				1	.9	39	.9	81		ELY				83	5	ELZ	866	ELX	5				
	0.9D - 1.0Ev + 1				1	.9	39	.9	81		ELY		82			866								
	0.9D - 1.0Ev + 1				1	.9	39	.9	81		ELY		82		83		ELZ		ELX					
	0.9D - 1.0Ev + 1				1	.9	39		81		ELY					866								
75	0.9D - 1.0Ev + 1	.Yes	Y		1	.9	39	.9	81	-1	ELY	-1	82	.866	83	5	ELZ	.866	ELX	5				

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
1	N1	0	0	-1.041667	0	
2	N2	0	0	1.90625	0	
3	N3	0	75	1.90625	0	
4	N4	0	.75	1.90625	0	
5	N5	0	0	2.197917	0	
6	N6	3.25	0	2.197917	0	
7	N7	-3.25	0	2.197917	0	
8	N11	3	0	2.197917	0	
9	N12	3	0	2.447917	0	
10	N13	3	3	2.447917	0	
11	N14	3	-3	2.447917	0	
12	N15	-3	0	2.197917	0	
13	N16	-3	0	2.447917	0	
14	N17	-3	3	2.447917	0	
15	N18	-3	-3	2.447917	0	
16	N17A	25	0	2.197917	0	
17	N18A	25	0	2.447917	0	
18	N19	25	3	2.447917	0	
19	N20	25	-3	2.447917	0	
20	N20A	0	0	-1.541667	0	
21	N21	0	0	0.40625	0	
22	N22	.25	0	0.40625	0	
23	N23	25	0	0.40625	0	
24	N24	.25	3	0.40625	0	
25	N25	25	3	0.40625	0	
26	N26	.25	-1	0.40625	0	
27	N27	25	-1	0.40625	0	

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	Antenna Pipe	PIPE 2.0	Column	Pipe	A53 Gr. B	Typical	1.02	.627	.627	1.25
2	Standoff Arm	HSS4X4X4	Beam	Tube	A500 Gr.46	Typical	3.37	7.8	7.8	12.8
3	Standoff Pipe	PIPE 3.0	Column	Pipe	A53 Gr. B	Typical	2.07	2.85	2.85	5.69
4	Horizontal	PIPE 3.0	Column	Pipe	A53 Gr. B	Typical	2.07	2.85	2.85	5.69
5	Delta Horizontal	PIPE 2.5	Column	Pipe	A53 Gr. B	Typical	1.61	1.45	1.45	2.89
6	OVP Pipe	PIPE 2.0	Column	Pipe	A53 Gr. B	Typical	1.02	.627	.627	1.25

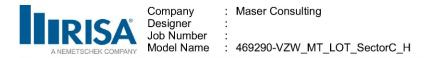
Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E	.Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
3	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.42	29000	11154	.3	.65	.49	42	1.4	58	1.3
5	A500 Gr.46	29000	11154	.3	.65	.49	46	1.4	58	1.3
6	A53 Gr. B	29000	11154	.3	.65	.49	35	1.5	60	1.2
7	A500 Gr 50	29000	11154	.3	.65	.49	50	1.5	58	1.2

Member Primary Data

		Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
1	1	M1	N1	N2			Standoff Arm	Beam	Tube	A500 Gr.46	Typical
2	2	M2	N4	N3			Standoff Pipe	Column	Pipe	A53 Gr. B	Typical

Member Primary Data (Continued)


	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
3	M4	N7	N6			Horizontal	Column	Pipe	A53 Gr. B	Typical
4	MP1A	N13	N14			Antenna Pipe	Column	Pipe	A53 Gr. B	Typical
5	LIVE1	N11	N12			RIGID	None	None	RIGID	Typical
6	MP3A	N17	N18			Antenna Pipe	Column	Pipe	A53 Gr. B	Typical
7	LIVE2	N15	N16			RIGID	None	None	RIGID	Typical
8	M10A	N2	N5			RIGID	None	None	RIGID	Typical
9	MP2A	N19	N20			Antenna Pipe	Column	Pipe	A53 Gr. B	Typical
10	M10B	N17A	N18A			RIGID	None	None	RIGID	Typical
11	RRU1	N24	N26			OVP Pipe	Column	Pipe	A53 Gr. B	Typical
12	RRU2	N25	N27			OVP Pipe	Column	Pipe	A53 Gr. B	Typical
13	M13	N21	N22			RIGID	None	None	RIGID	Typical
14	M14	N21	N23			RIGID	None	None	RIGID	Typical

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft]	Lcomp bot[ft]	L-torqu	. Kyy	Kzz	Cb	Function
1	M1	Standoff Arm	2.948			Lbyy			••			Lateral
2	M2	Standoff Pipe	1.5									Lateral
3	M4	Horizontal	6.5									Lateral
4	MP1A	Antenna Pipe	6									Lateral
5	MP3A	Antenna Pipe	6									Lateral
6	MP2A	Antenna Pipe	6									Lateral
7	RRU1	OVP Pipe	4									Lateral
8	RRU2	OVP Pipe	4									Lateral

Member Point Loads (BLC 1 : Antenna D)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Y	-48.3	1
2	MP3A	My	.034	1
3	MP3A	Mz	033	1
4	MP3A	Y	-48.3	5
5	MP3A	My	.034	5
6	MP3A	Mz	033	5
7	MP3A	Y	-48.3	1
8	MP3A	My	.013	1
9	MP3A	Mz	.045	1
10	MP3A	Y	-48.3	5
11	MP3A	My	.013	5
12	MP3A	Mz	.045	5
13	MP1A	Y	-23	1
14	MP1A	My	008	1
15	MP1A	Mz	018	1
16	MP1A	Y	-23	5
17	MP1A	My	008	5
18	MP1A	Mz	018	5
19	MP1A	Y	-23	1
20	MP1A	My	.019	1
21	MP1A	Mz	002	1
22	MP1A	Y	-23	5
23	MP1A	My	.019	5
24	MP1A	Mz	002	5
25	MP2A	Y	-43.55	1
26	MP2A	My	.011	1
27	MP2A	Mz	019	1
28	MP2A	Y	-43.55	3

Member Point Loads (BLC 1 : Antenna D) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
29	MP2A	My	.011	3
30	MP2A	Mz	019	3
31	MP2A	Y	-4.4	5
32	MP2A	My	.001	5
33	MP2A	Mz	002	5
34	MP1A	Y	-52.9	4
35	MP1A	My	013	4
36	MP1A	Mz	.023	4
37	MP1A	Υ	-84.4	2
38	MP1A	My	021	2
39	MP1A	Mz	.037	2
40	MP2A	Y	-70.3	.5
41	MP2A	My	018	.5
42	MP2A	Mz	.03	.5
43	MP3A	Υ	-18.7	4
44	MP3A	My	003	4
45	MP3A	Mz	009	4
46	RRU1	Y	-84.4	1.5
47	RRU1	My	.021	1.5
48	RRU1	Mz	.037	1.5
49	RRU2	Υ	-70.3	1.5
50	RRU2	My	.018	1.5
51	RRU2	Mz	.03	1.5

Member Point Loads (BLC 2 : Antenna Di)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Y	-85.167	1
2	MP3A	My	.06	1
3	MP3A	Mz	058	1
4	MP3A	Y	-85.167	5
5	MP3A	My	.06	5
6	MP3A	Mz	058	5
7	MP3A	Y	-85.167	1
8	MP3A	My	.023	1
9	MP3A	Mz	.08	1
10	MP3A	Y	-85.167	5
11	MP3A	My	.023	5
12	MP3A	Mz	.08	5
13	MP1A	Y	-82.515	1
14	MP1A	My	027	1
15	MP1A	Mz	063	1
16	MP1A	Y	-82.515	5
17	MP1A	My	027	5
18	MP1A	Mz	063	5
19	MP1A	Y	-82.515	1
20	MP1A	My	.068	1
21	MP1A	Mz	008	1
22	MP1A	Y	-82.515	5
23	MP1A	My	.068	5
24	MP1A	Mz	008	5
25	MP2A	Y	-35.636	1
26	MP2A	My	.009	1
27	MP2A	Mz	015	1
28	MP2A	Y	-35.636	3
29	MP2A	My	.009	3
30	MP2A	Mz	015	3



Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
31	MP2A	Y	-13.458	5
32	MP2A	My	.003	5
33	MP2A	Mz	006	5
34	MP1A	Y	-37.406	4
35	MP1A	My	009	4
36	MP1A	Mz	.016	4
37	MP1A	Y	-44.929	2
38	MP1A	My	011	2
39	MP1A	Mz	.019	2
40	MP2A	Y	-40.405	.5
41	MP2A	Μγ	01	.5
42	MP2A	Mz	.017	.5
43	MP3A	Y	-19.852	4
44	MP3A	My	003	4
45	MP3A	Mz	009	4
46	RRU1	Y	-44.929	1.5
47	RRU1	Μγ	.011	1.5
48	RRU1	Mz	.019	1.5
49	RRU2	Y	-40.405	1.5
50	RRU2	My	.01	1.5
51	RRU2	Mz	.017	1.5

Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Х	0	1
2	MP3A	Z	-240.435	1
3	MP3A	Mx	.162	1
4	MP3A	Х	0	5
5	MP3A	Z	-240.435	5
6	MP3A	Mx	.162	5
7	MP3A	X	0	1
8	MP3A	Z	-240.435	1
9	MP3A	Mx	225	1
10	MP3A	Х	0	5
11	MP3A	Z	-240.435	5
12	MP3A	Mx	225	5
13	MP1A	X	0	1
14	MP1A	Z	-161.824	1
15	MP1A	Mx	.124	1
16	MP1A	X	0	5
17	MP1A	Z	-161.824	5
18	MP1A	Mx	.124	5
19	MP1A	Х	0	1
20	MP1A	Z	-161.824	1
21	MP1A	Mx	.016	1
22	MP1A	Х	0	5
23	MP1A	Z	-161.824	5
24	MP1A	Mx	.016	5
25	MP2A	X	0	1
26	MP2A	Z	-51.871	1
27	MP2A	Mx	.022	1
28	MP2A	Х	0	3
29	MP2A	Z	-51.871	3
30	MP2A	Mx	.022	3
31	MP2A	Х	0	5
32	MP2A	Z	-14.349	5

Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
33	MP2A	Mx	.006	5
34	MP1A	Х	0	4
35	MP1A	Z	-44.907	4
36	MP1A	Mx	019	4
37	MP1A	Х	0	2
38	MP1A	Z	-57.048	2
39	MP1A	Mx	025	2
40	MP2A	Х	0	.5
41	MP2A	Z	-49.815	.5
42	MP2A	Mx	022	.5
43	MP3A	Х	0	4
44	MP3A	Z	-22.715	4
45	MP3A	Mx	.011	4
46	RRU1	Х	0	1.5
47	RRU1	Z	-57.048	1.5
48	RRU1	Mx	025	1.5
49	RRU2	Х	0	1.5
50	RRU2	Z	-49.815	1.5
51	RRU2	Mx	022	1.5

Member Point Loads (BLC 4 : Antenna Wo (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Х	120.217	1
2	MP3A	Z	-208.222	1
3	MP3A	Mx	.225	1
4	MP3A	Х	120.217	5
5	MP3A	Z	-208.222	5
6	MP3A	Mx	.225	5
7	MP3A	Х	120.217	1
8	MP3A	Z	-208.222	1
9	MP3A	Mx	162	1
10	MP3A	Х	120.217	5
11	MP3A	Z	-208.222	5
12	MP3A	Mx	162	5
13	MP1A	Х	74.486	1
14	MP1A	Z	-129.014	1
15	MP1A	Mx	.074	1
16	MP1A	Х	74.486	5
17	MP1A	Z	-129.014	5
18	MP1A	Mx	.074	5
19	MP1A	Х	74.486	1
20	MP1A	Z	-129.014	1
21	MP1A	Mx	.074	1
22	MP1A	Х	74.486	5
23	MP1A	Z	-129.014	5
24	MP1A	Mx	.074	5
25	MP2A	X	18.678	1
26	MP2A	Z	-32.351	1
27	MP2A	Mx	.019	1
28	MP2A	X	18.678	3
29	MP2A	Z	-32.351	3
30	MP2A	Mx	.019	3
31	MP2A	X	3.543	5
32	MP2A	Z	-6.137	5
33	MP2A	Mx	.004	5
34	MP1A	X	16.674	4
. .			101011	

Member Point Loads (BLC 4 : Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
35	MP1A	Z	-28.881	4
36	MP1A	Mx	017	4
37	MP1A	Х	25.377	2
38	MP1A	Z	-43.954	2
39	MP1A	Mx	025	2
40	MP2A	Х	20.555	.5
41	MP2A	Z	-35.603	.5
42	MP2A	Mx	021	.5
43	MP3A	Х	16.117	4
44	MP3A	Z	-27.915	4
45	MP3A	Mx	.01	4
46	RRU1	Х	34.817	1.5
47	RRU1	Z	-60.305	1.5
48	RRU1	Mx	017	1.5
49	RRU2	Х	33.612	1.5
50	RRU2	Z	-58.218	1.5
51	RRU2	Mx	017	1.5

Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Х	156.296	1
2	MP3A	Z	-90.238	1
3	MP3A	Mx	.17	1
4	MP3A	Х	156.296	5
5	MP3A	Z	-90.238	5
6	MP3A	Mx	.17	5
7	MP3A	Х	156.296	1
8	MP3A	Z	-90.238	1
9	MP3A	Mx	043	1
10	MP3A	Х	156.296	5
11	MP3A	Z	-90.238	5
12	MP3A	Mx	043	5
13	MP1A	Х	140.144	1
14	MP1A	Z	-80.912	1
15	MP1A	Mx	.016	1
16	MP1A	X	140.144	5
17	MP1A	Z	-80.912	5
18	MP1A	Mx	.016	5
19	MP1A	X	140.144	1
20	MP1A	Z	-80.912	1
21	MP1A	Mx	.124	1
22	MP1A	Х	140.144	5
23	MP1A	Z	-80.912	5
24	MP1A	Mx	.124	5
25	MP2A	Х	44.922	1
26	MP2A	Z	-25.936	1
27	MP2A	Mx	.022	1
28	MP2A	Х	44.922	3
29	MP2A	Z	-25.936	3
30	MP2A	Mx	.022	3
31	MP2A	X	12.427	5
32	MP2A	Z	-7.175	5
33	MP2A	Mx	.006	5
34	MP1A	Х	38.891	4
35	MP1A	Z	-22.454	4
36	MP1A	Mx	019	4

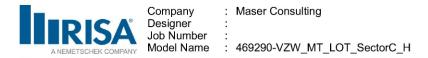


Member Point Loads (BLC 5 : Antenna Wo (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
37	MP1A	Х	49.405	2
38	MP1A	Z	-28.524	2
39	MP1A	Mx	025	2
40	MP2A	Х	43.141	.5
41	MP2A	Z	-24.908	.5
42	MP2A	Mx	022	.5
43	MP3A	Х	34.634	4
44	MP3A	Z	-19.996	4
45	MP3A	Mx	.003	4
46	RRU1	Х	65.756	1.5
47	RRU1	Z	-37.964	1.5
48	RRU1	Mx	0	1.5
49	RRU2	Х	65.756	1.5
50	RRU2	Z	-37.964	1.5
51	RRU2	Mx	0	1.5

Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Х	120.516	1
2	MP3A	Z	0	1
3	MP3A	Mx	.084	1
4	MP3A	Х	120.516	5
5	MP3A	Z	0	5
6	MP3A	Mx	.084	5
7	MP3A	Х	120.516	1
8	MP3A	Z	0	1
9	MP3A	Mx	.032	1
10	MP3A	Х	120.516	5
11	MP3A	Z	0	5
12	MP3A	Mx	.032	5
13	MP1A	Х	187.526	1
14	MP1A	Z	0	1
15	MP1A	Mx	061	1
16	MP1A	Х	187.526	5
17	MP1A	Z	0	5
18	MP1A	Mx	061	5
19	MP1A	X Z	187.526	1
20	MP1A		0	1
21	MP1A	Mx	.155	1
22	MP1A	Х	187.526	5
23	MP1A	Z	0	5
24	MP1A	Mx	.155	5
25	MP2A	Х	80.902	1
26	MP2A	Z	0	1
27	MP2A	Mx	.02	1
28	MP2A	Х	80.902	3
29	MP2A	Z	0	3
30	MP2A	Mx	.02	3
31	MP2A	Х	28.874	5
32	MP2A	Z	0	5
33	MP2A	Mx	.007	5
34	MP1A	Х	68.024	4
35	MP1A	Z	0	4
36	MP1A	Mx	017	4
37	MP1A	Х	69.635	2
38	MP1A	Z	0	2

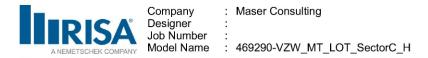


Member Point Loads (BLC 6 : Antenna Wo (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
39	MP1A	Mx	017	2
40	MP2A	Х	67.224	.5
41	MP2A	Z	0	.5
42	MP2A	Mx	017	.5
43	MP3A	X	38.234	4
44	MP3A	Z	0	4
45	MP3A	Mx	007	4
46	RRU1	Х	69.635	1.5
47	RRU1	Z	0	1.5
48	RRU1	Mx	.017	1.5
49	RRU2	Х	67.224	1.5
50	RRU2	Z	0	1.5
51	RRU2	Mx	.017	1.5

Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Х	104.37	1
2	MP3A	Z	60.258	1
3	MP3A	Mx	.032	1
4	MP3A	Х	104.37	5
5	MP3A	Z	60.258	5
6	MP3A	Mx	.032	5
7	MP3A	Х	104.37	1
8	MP3A	Z	60.258	1
9	MP3A	Mx	.084	1
10	MP3A	Х	104.37	5
11	MP3A	Z	60.258	5
12	MP3A	Mx	.084	5
13	MP1A	Х	173.532	1
14	MP1A	Z	100.189	1
15	MP1A	Mx	- 134	1
16	MP1A	Х	173.532	5
17	MP1A	Z	100.189	5
18	MP1A	Mx	134	5
19	MP1A	X	173.532	1
20	MP1A	Z	100.189	1
21	MP1A	Mx	.134	1
22	MP1A	Х	173.532	5
23	MP1A	Z	100.189	5
24	MP1A	Mx	.134	5
25	MP2A	X	82.634	1
26	MP2A	Z	47.709	1
27	MP2A	Mx	0	1
28	MP2A	Х	82.634	3
29	MP2A	Z	47.709	3
30	MP2A	Mx	0	3
31	MP2A	X	31.296	5
32	MP2A	Z	18.068	5
33	MP2A	Mx	0	5
34	MP1A	Х	68.92	4
35	MP1A	Z	39.791	4
36	MP1A	Mx	0	4
37	MP1A	Х	65.756	2
38	MP1A	Z	37.964	2
39	MP1A	Mx	0	2
40	MP2A	X	65.756	.5

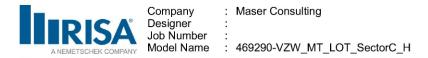


Member Point Loads (BLC 7 : Antenna Wo (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
41	MP2A	Z	37.964	.5
42	MP2A	Mx	0	.5
43	MP3A	Х	24.869	4
44	MP3A	Z	14.358	4
45	MP3A	Mx	011	4
46	RRU1	Х	49.405	1.5
47	RRU1	Z	28.524	1.5
48	RRU1	Mx	.025	1.5
49	RRU2	Х	43.141	1.5
50	RRU2	Z	24.908	1.5
51	RRU2	Mx	.022	1.5

Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Х	90.238	1
2	MP3A	Z	156.296	1
3	MP3A	Mx	043	1
4	MP3A	Х	90.238	5
5	MP3A	Z	156.296	5
6	MP3A	Mx	043	5
7	MP3A	Х	90.238	1
8	MP3A	Z	156.296	1
9	MP3A	Mx	.17	1
10	MP3A	Х	90.238	5
11	MP3A	Z	156.296	5
12	MP3A	Mx	.17	5
13	MP1A	Х	93.763	1
14	MP1A	Z	162.402	1
15	MP1A	Mx	155	1
16	MP1A	Х	93.763	5
17	MP1A	Z	162.402	5
18	MP1A	Mx	155	5
19	MP1A	Х	93.763	1
20	MP1A	Z	162.402	1
21	MP1A	Mx	.061	1
22	MP1A	Х	93.763	5
23	MP1A	Z	162.402	5
24	MP1A	Mx	.061	5
25	MP2A	Х	40.451	1
26	MP2A	Z	70.063	1
27	MP2A	Mx	02	1
28	MP2A	Х	40.451	3
29	MP2A	Z	70.063	3
30	MP2A	Mx	02	3
31	MP2A	X Z	14.437	5
32	MP2A	Z	25.006	5
33	MP2A	Mx	007	5
34	MP1A	Х	34.012	4
35	MP1A	Z	58.911	4
36	MP1A	Mx	.017	4
37	MP1A	Х	34.817	2
38	MP1A	Z	60.305	2
39	MP1A	Mx	.017	2
40	MP2A	Х	33.612	.5
41	MP2A	Z	58.218	.5
42	MP2A	Mx	.017	.5

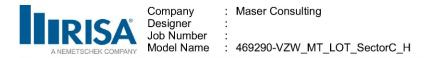


Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
43	MP3A	X	10.478	4
44	MP3A	Z	18.149	4
45	MP3A	Mx	01	4
46	RRU1	Х	25.377	1.5
47	RRU1	Z	43.954	1.5
48	RRU1	Mx	.025	1.5
49	RRU2	Х	20.555	1.5
50	RRU2	Z	35.603	1.5
51	RRU2	Mx	.021	1.5

Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	0	1
2	MP3A	Z	240.435	1
3	MP3A	Mx	162	1
4	MP3A	Х	0	5
5	MP3A	Z	240.435	5
6	MP3A	Mx	162	5
7	MP3A	Х	0	1
8	MP3A	Z	240.435	1
9	MP3A	Mx	.225	1
10	MP3A	Х	0	5
11	MP3A	Z	240.435	5
12	MP3A	Mx	.225	5
13	MP1A	X	0	1
14	MP1A	Z	161.824	1
15	MP1A	Mx	124	1
16	MP1A	Х	0	5
17	MP1A	Z	161.824	5
18	MP1A	Mx	124	5
19	MP1A	X	0	1
20	MP1A	Z	161.824	1
21	MP1A	Mx	016	1
22	MP1A	X	0	5
23	MP1A	Z	161.824	5
24	MP1A	Mx	016	5
25	MP2A	X	0	1
26	MP2A	Z	51.871	1
27	MP2A	Mx	022	1
28	MP2A	Х	0	3
29	MP2A	Z	51.871	3
30	MP2A	Mx	022	3
31	MP2A	Х	0	5
32	MP2A	Z	14.349	5
33	MP2A	Mx	006	5
34	MP1A	Х	0	4
35	MP1A	Z	44.907	4
36	MP1A	Mx	.019	4
37	MP1A	X	0	2
38	MP1A	Z	57.048	2
39	MP1A	Mx	.025	2
40	MP2A	X	0	.5
41	MP2A	Z	49.815	.5
42	MP2A	Mx	.022	.5
43	MP3A	X	0	4
44	MP3A	Z	22.715	4

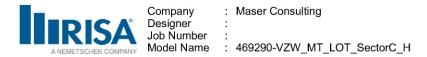


Member Point Loads (BLC 9 : Antenna Wo (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
45	MP3A	Mx	011	4
46	RRU1	Х	0	1.5
47	RRU1	Z	57.048	1.5
48	RRU1	Mx	.025	1.5
49	RRU2	X	0	1.5
50	RRU2	Z	49.815	1.5
51	RRU2	Mx	.022	1.5

Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X Z	-120.217	1
2	MP3A	Z	208.222	1
3	MP3A	Mx	225	1
4	MP3A	X	-120.217	5
5	MP3A	Z	208.222	5
6	MP3A	Mx	225	5
7	MP3A	X	-120.217	1
8	MP3A	Z	208.222	1
9	MP3A	Mx	.162	1
10	MP3A	X	-120.217	5
11	MP3A	Z	208.222	5
12	MP3A	Mx	.162	5
13	MP1A	X	-74.486	1
14	MP1A	Z	129.014	1
15	MP1A	Mx	074	1
16	MP1A	X	-74.486	5
17	MP1A	Z	129.014	5
18	MP1A	Mx	074	5
19	MP1A	X	-74.486	1
20	MP1A	Z	129.014	1
21	MP1A	Mx	074	1
22	MP1A	X	-74.486	5
23	MP1A	Z	129.014	5
24	MP1A	Mx	074	5
25	MP2A	X	-18.678	1
26	MP2A	Z	32.351	1
27	MP2A	Mx	019	1
28	MP2A	X	-18.678	3
29	MP2A	Z	32.351	3
30	MP2A	Mx	019	3
31	MP2A	X	-3.543	5
32	MP2A	Z	6.137	5
33	MP2A	Mx	004	5
34	MP1A	X	-16.674	4
35	MP1A	Z	28.881	4 4
	MP1A MP1A	Mx	.017	4 4
36	MP1A MP1A		-25.377	
37	MP1A MP1A	Z		2
38 39	MP1A MP1A	Mx	<u>43.954</u> .025	
40				2.5
	MP2A	X Z	-20.555	.5
<u>41</u> 42	MP2A		35.603	.5
	MP2A	Mx	.021	
43	MP3A	Z	-16.117	4 4
44	MP3A		27.915 01	
45 46	MP3A RRU1	Mx X	01 -34.817	<u>4</u> 1.5
40	KKUI	λ	-34.817	1.5

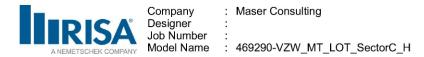


Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
47	RRU1	Z	60.305	1.5
48	RRU1	Mx	.017	1.5
49	RRU2	X	-33.612	1.5
50	RRU2	Z	58.218	1.5
51	RRU2	Mx	.017	1.5

Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-156.296	1
2	MP3A	Z	90.238	1
3	MP3A	Mx	17	1
4	MP3A	X	-156.296	5
5	MP3A	Z	90.238	5
6	MP3A	Mx	17	5
7	MP3A	X	-156.296	1
8	MP3A	Z	90.238	1
9	MP3A	Mx	.043	1
10	MP3A	X	-156.296	5
11	MP3A	Z	90.238	5
12	MP3A	Mx	.043	5
13	MP1A	X	-140.144	1
14	MP1A	Z	80.912	1
15	MP1A	Mx	016	11
16	MP1A	X	-140.144	5
17	MP1A	Z	80.912	5
18	MP1A	Mx	016	5
19	MP1A	Х	-140.144	11
20	MP1A	Z	80.912	1
21	MP1A	Mx	124	11
22	MP1A	X	-140.144	5
23	MP1A	Z	80.912	5
24	MP1A	Mx	124	5
25	MP2A	X	-44.922	11
26	MP2A	Z	25.936	1
27	MP2A	Mx	022	11
28	MP2A	X	-44.922	3
29	MP2A	Z	25.936	3
30	MP2A	Mx	022	3
31	MP2A	X	-12.427	5
32	MP2A	Z	7.175	5
33	MP2A	Mx	006	5
34	MP1A	X	-38.891	4
35	MP1A	Z	22.454	4
36	MP1A	Mx	.019	4
37	MP1A	<u> </u>	-49.405	2
38	MP1A	Z	28.524	2
39	MP1A	Mx	.025	2
40	MP2A	<u> </u>	-43.141	.5
41	MP2A	Z	24.908	.5
42	MP2A	Mx	.022	.5
43	MP3A	X Z	-34.634	4
44	MP3A		19.996	4
45	MP3A	Mx	003	4
46	RRU1	X	-65.756	1.5
47	RRU1	Z	37.964	1.5
48	RRU1	Mx	0	1.5

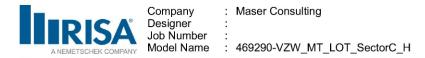


Member Point Loads (BLC 11 : Antenna Wo (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
49	RRU2	Х	-65.756	1.5
50	RRU2	Z	37.964	1.5
51	RRU2	Mx	0	1.5

Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-120.516	1
2	MP3A	Z	0	1
3	MP3A	Mx	084	1
4	MP3A	X	-120.516	5
5	MP3A	Z	0	5
6	MP3A	Mx	084	5
7	MP3A	X	-120.516	1
8	MP3A	Z	0	1
9	MP3A	Mx	032	1
10	MP3A	X	-120.516	5
11	MP3A	Z	0	5
12	MP3A	Mx	032	5
13	MP1A	<u> </u>	-187.526	1
14	MP1A	Z	0	1
15	MP1A	Mx	.061	1
16	MP1A	X	-187.526	5
17	MP1A	Z	0	5
18	MP1A	Mx	.061	5
19	MP1A	X Z	-187.526	1
20	MP1A		0 155	1
21 22	MP1A	Mx X	-187.526	5
22	MP1A MP1A	Z	-107.520	5
23	MP1A MP1A	Mx	155	5
25	MP1A MP2A	X	-80.902	1
26	MP2A	Z	0	1
27	MP2A	Mx	02	1
28	MP2A	X	-80.902	3
29	MP2A	Z	0	3
30	MP2A	Mx	02	3
31	MP2A	X	-28.874	5
32	MP2A	Z	0	5
33	MP2A	Mx	007	5
34	MP1A	Х	-68.024	4
35	MP1A	Z	0	4
36	MP1A	Mx	.017	4
37	MP1A	Х	-69.635	2
38	MP1A	Z	0	2
39	MP1A	Mx	.017	2
40	MP2A	Х	-67.224	.5
41	MP2A	Z	0	.5
42	MP2A	Mx	.017	.5
43	MP3A	X Z	-38.234	4
44	MP3A		0	4
45	MP3A	Mx	.007	4
46	RRU1	<u>X</u>	-69.635	1.5
47	RRU1	Z	0	1.5
48	RRU1	Mx	017	1.5
49	RRU2	X Z	-67.224	1.5
50	RRU2	L Z	0	1.5

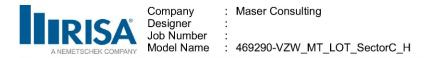


Member Point Loads (BLC 12 : Antenna Wo (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
51	RRU2	Mx	017	1.5

Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-104.37	1
2	MP3A	Z	-60.258	1
3	MP3A	Mx	032	1
4	MP3A	X	-104.37	5
5	MP3A	Z	-60.258	5
6	MP3A	Mx	032	5
7	MP3A	X	-104.37	1
8	MP3A	Z	-60.258	1
9	MP3A	Mx	084	1
10	MP3A	X	-104.37	5
11	MP3A	Z	-60.258	5
12	MP3A	Mx	084	5
13	MP1A	X	-173.532	1
14	MP1A	Z	-100.189	1
15	MP1A	Mx	.134	1
16	MP1A	X	-173.532	5
17	MP1A	Z	-100.189	5
18	MP1A	Mx	.134	5
19	MP1A	X	-173.532	1
20	MP1A	Z	-100.189	1
21	MP1A	Mx	134	1
22	MP1A	X	-173.532	5
23	MP1A	Z	-100.189	5
24	MP1A	Mx	134	5
25	MP2A	X	-82.634	1
26	MP2A	Z	-47.709	1
27	MP2A	Mx	0	1
28	MP2A	X	-82.634	3
29	MP2A	Z	-47.709	3
30	MP2A	Mx	0	3
31	MP2A	X	-31.296	5
32	MP2A	Z	-18.068	5
33	MP2A	Mx	0	5
34	MP1A	X	-68.92	4
35	MP1A	Z	-39.791	4
36	MP1A	Mx	0	4
37	MP1A	Х	-65.756	2
38	MP1A	Z	-37.964	2
39	MP1A	Mx	0	2
40	MP2A	Х	-65.756	.5
41	MP2A	Z	-37.964	.5
42	MP2A	Mx	0	.5
43	MP3A	X	-24.869	4
44	MP3A	Z	-14.358	4
45	MP3A	Mx	.011	4
46	RRU1	X	-49.405	1.5
47	RRU1	Z	-28.524	1.5
48	RRU1	Mx	025	1.5
49	RRU2		-43.141	1.5
50	RRU2	X Z	-24.908	1.5
51	RRU2	Mx	022	1.5

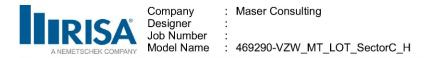


Member Point Loads (BLC 14 : Antenna Wo (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-90.238	1
2	MP3A	Z	-156.296	1
3	MP3A	Mx	.043	1
4	MP3A	X	-90.238	5
5	MP3A	Z	-156.296	5
6	MP3A	Mx	.043	5
7	MP3A	X	-90.238	1
8	MP3A	Z	-156.296	1
9	MP3A	Mx	17	1
10	MP3A	X	-90.238	5
11	MP3A	Z	-156.296	5
12	MP3A	Mx	17	5
13	MP1A	X	-93.763	1
14	MP1A	Z	-162.402	1
15	MP1A	Mx	.155	1
16	MP1A	X	-93.763	5
17	MP1A	Z	-162.402	5
18	MP1A	Mx	.155	5
19	MP1A	X	-93.763	1
20	MP1A	Z	-162.402	1
21	MP1A	Mx	061	1
22	MP1A	X	-93.763	5
23	MP1A	Z	-162.402	5
24	MP1A	Mx	061	5
25	MP2A	X	-40.451	1
26	MP2A	Z	-70.063	1
27	MP2A	Mx	.02	1
28	MP2A	X	-40.451	3
29	MP2A	Z	-70.063	3
30	MP2A	Mx	.02	3
31	MP2A	X	-14.437	5
32	MP2A	Z	-25.006	5
33	MP2A	Mx	.007	5
34	MP1A	X	-34.012	4
35	MP1A	Z	-58.911	4
36	MP1A	Mx	017	4
37	MP1A	X	-34.817	2
38	MP1A	Z	-60.305	2
39	MP1A	Mx	017	2
40	MP2A	X	-33.612	.5
40	MP2A	Z	-58.218	.5
42	MP2A	Mx	017	.5
43	MP3A	X	-10.478	4
43	MP3A MP3A	Z	-18.149	4 4
44	MP3A	Mx	.01	4 4
46	RRU1	X	-25.377	1.5
40	RRU1	^ Z	-43.954	1.5
47	RRU1	Mx	-43.954	1.5
48	RRU1		025 -20.555	1.5
49 50	RRU2	X Z	-20.555 -35.603	1.5
50	RRU2	Mx	021	1.5
01			021	1.0

Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	0	1
2	MP3A	Z	-47.442	1

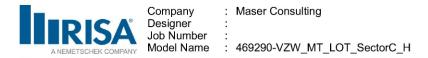


Member Point Loads (BLC 15 : Antenna Wi (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
3	MP3A	Mx	.032	1
4	MP3A	Х	0	5
5	MP3A	Z	-47.442	5
6	MP3A	Mx	.032	5
7	MP3A	Х	0	1
8	MP3A	Z	-47.442	1
9	MP3A	Mx	044	1
10	MP3A	Х	0	5
11	MP3A	Z	-47.442	5
12	MP3A	Mx	044	5
13	MP1A	Х	0	1
14	MP1A	Z	-32.619	1
15	MP1A	Mx	.025	1
16	MP1A	Х	0	5
17	MP1A	Z	-32.619	5
18	MP1A	Mx	.025	5
19	MP1A	X	0	1
20	MP1A	Z	-32.619	1
21	MP1A	Mx	.003	1
22	MP1A	Х	0	5
23	MP1A	Z	-32.619	5
24	MP1A	Mx	.003	5
25	MP2A	Х	0	1
26	MP2A	Z	-11.212	1
27	MP2A	Mx	.005	1
28	MP2A	Х	0	3
29	MP2A	Z	-11.212	3
30	MP2A	Mx	.005	3
31	MP2A	Х	0	5
32	MP2A	Z	-4.024	5
33	MP2A	Mx	.002	5
34	MP1A	Х	0	4
35	MP1A	Z	-10.374	4
36	MP1A	Mx	004	4
37	MP1A	Х	0	2
38	MP1A	Z	-12.805	2
39	MP1A	Mx	006	2
40	MP2A	Х	0	.5
41	MP2A	Z	-11.366	.5
42	MP2A	Mx	005	.5
43	MP3A	X Z	0	4
44	MP3A		-5.791	4
45	MP3A	Mx	.003	4
46	RRU1	X	0	1.5
47	RRU1	Z	-12.805	1.5
48	RRU1	Mx	006	1.5
49	RRU2		0	1.5
50	RRU2	X Z	-11.366	1.5
51	RRU2	Mx	005	1.5

Member Point Loads (BLC 16 : Antenna Wi (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Х	23.721	1
2	MP3A	Z	-41.086	1
3	MP3A	Mx	.044	1
4	MP3A	Х	23.721	5

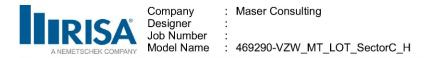


Member Point Loads (BLC 16 : Antenna Wi (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
5	MP3A	Z	-41.086	5
6	MP3A	Mx	.044	5
7	MP3A	X	23.721	1
8	MP3A	Z	-41.086	1
9	MP3A	Mx	032	1
10	MP3A	X	23.721	5
11	MP3A	Z	-41.086	5
12	MP3A	Mx	032	5
13	MP1A	X	15.095	1
14	MP1A	Z	-26.145	1
15	MP1A	Mx	.015	1
16	MP1A	X	15.095	5
17	MP1A	Z	-26.145	5
18	MP1A	Mx	.015	5
19	MP1A	X	15.095	1
20	MP1A	Z	-26.145	1
21	MP1A	Mx	.015	1
22	MP1A	X	15.095	5
23	MP1A	Z	-26.145	5
24	MP1A	Mx	.015	5
25	MP2A	X	4.193	1
26	MP2A	Z	-7.263	1
27	MP2A	M×	.004	1
28	MP2A	X	4.193	3
29	MP2A	Z	-7.263	3
30	MP2A	Mx	.004	3
31	MP2A	X	1.257	5
32	MP2A	Z	-2.177	5
33	MP2A	Mx	.001	5
34	MP1A	X	4.049	4
35	MP1A	Z	-7.013	4
36	MP1A	Mx	004	4
37	MP1A	X	5.771	2
38	MP1A	Z	-9.996	2
39	MP1A	Mx	006	2
40	MP2A	X	4.812	.5
41	MP2A	Z	-8.334	.5
42	MP2A	Mx	005	.5
43	MP3A	<u> </u>	3.87	4
44	MP3A	Z	-6.702	4
45	MP3A	Mx	.002	4
46	RRU1	X	7.665	1.5
47	RRU1	Z	-13.277	1.5
48	RRU1	Mx	004	1.5
49	RRU2	<u> </u>	7.425	1.5
50	RRU2	Z	-12.861	1.5
51	RRU2	Mx	004	1.5

Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	31.387	1
2	MP3A	Z	-18.121	1
3	MP3A	Mx	.034	1
4	MP3A	X	31.387	5
5	MP3A	Z	-18.121	5
6	MP3A	Mx	.034	5

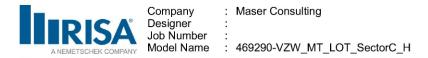


Member Point Loads (BLC 17 : Antenna Wi (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
7	MP3A	X Z	31.387	1
8	MP3A	Z	-18.121	1
9	MP3A	Mx	009	1
10	MP3A	Х	31.387	5
11	MP3A	Z	-18.121	5
12	MP3A	Mx	009	5
13	MP1A	X	28.249	1
14	MP1A	Z	-16.31	1
15	MP1A	Mx	.003	1
16	MP1A	Х	28.249	5
17	MP1A	Z	-16.31	5
18	MP1A	Mx	.003	5
19	MP1A	Х	28.249	1
20	MP1A	Z	-16.31	1
21	MP1A	Mx	.025	1
22	MP1A	Х	28.249	5
23	MP1A	Z	-16.31	5
24	MP1A	Mx	.025	5
25	MP2A	X	9.71	1
26	MP2A	Z	-5.606	1
27	MP2A	Mx	.005	1
28	MP2A	X	9.71	3
29	MP2A	Z	-5.606	3
30	MP2A	Mx	.005	3
31	MP2A	X	3.485	5
32	MP2A	Z	-2.012	5
33	MP2A	Mx	.002	5
34	MP1A	X	8.984	4
35	MP1A	Z	-5.187	4
36	MP1A	Mx	004	4
37	MP1A	X	11.09	2
38	MP1A	Z	-6.403	2
39	MP1A	Mx	006	2
40	MP2A	Х	9.843	.5
41	MP2A	Z	-5.683	.5
42	MP2A	Mx	005	.5
43	MP3A	X	8.077	4
44	MP3A	Z	-4.664	4
45	MP3A	Mx	.00081	4
46	RRU1	X	14.37	1.5
47	RRU1	Z	-8.297	1.5
48	RRU1	Mx	0	1.5
49	RRU2	X	14.37	1.5
50	RRU2	Z	-8.297	1.5
51	RRU2	Mx	0	1.5
V I	11102		· · · · · ·	1.0

Member Point Loads (BLC 18 : Antenna Wi (90 Deg))

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft.%]
1	MP3A	X	25.043	1
2	MP3A	Z	0	1
3	MP3A	Mx	.017	1
4	MP3A	Х	25.043	5
5	MP3A	Z	0	5
6	MP3A	Mx	.017	5
7	MP3A	Х	25.043	1
8	MP3A	Z	0	1

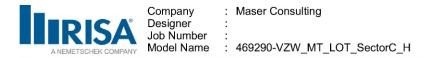


Member Point Loads (BLC 18 : Antenna Wi (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
9	MP3A	Mx	.007	1
10	MP3A	X	25.043	5
11	MP3A	Z	0	5
12	MP3A	Mx	.007	5
13	MP1A	X	37.477	1
14	MP1A	Z	0	1
15	MP1A	Mx	012	1
16	MP1A	Х	37.477	5
17	MP1A	Z	0	5
18	MP1A	Mx	012	5
19	MP1A	Х	37.477	1
20	MP1A	Z	0	1
21	MP1A	Mx	.031	1
22	MP1A	Х	37.477	5
23	MP1A	Z	0	5
24	MP1A	Mx	.031	5
25	MP2A	X	16.862	1
26	MP2A	Z	0	1
27	MP2A	Mx	.004	1
28	MP2A	Х	16.862	3
29	MP2A	Z	0	3
30	MP2A	Mx	.004	3
31	MP2A	X	7.043	5
32	MP2A	Z	0	5
33	MP2A	Mx	.002	5
34	MP1A	X	14.928	4
35	MP1A	Z	0	4
36	MP1A	Mx	004	4
37	MP1A	Х	15.331	2
38	MP1A	Z	0	2
39	MP1A	Mx	004	2
40	MP2A	Х	14.851	.5
41	MP2A	Z	0	.5
42	MP2A	Mx	004	.5
43	MP3A	X	8.967	4
44	MP3A	Z	0	4
45	MP3A	Mx	002	4
46	RRU1	X	15.331	1.5
47	RRU1	Z	0	1.5
48	RRU1	Mx	.004	1.5
49	RRU2	X	14.851	1.5
50	RRU2	Z	0	1.5
51	RRU2	Mx	.004	1.5

Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Х	21.688	1
2	MP3A	Z	12.522	1
3	MP3A	Mx	.007	1
4	MP3A	Х	21.688	5
5	MP3A	Z	12.522	5
6	MP3A	Mx	.007	5
7	MP3A	Х	21.688	1
8	MP3A	Z	12.522	1
9	MP3A	Mx	.017	1
10	MP3A	X	21.688	5

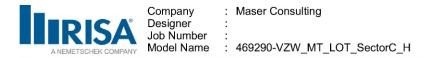


Member Point Loads (BLC 19 : Antenna Wi (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
11	MP3A	Z	12.522	5
12	MP3A	Mx	.017	5
13	MP1A	X	34.56	1
14	MP1A	Z	19.953	1
15	MP1A	Mx	027	1
16	MP1A	X	34.56	5
17	MP1A	Z	19.953	5
18	MP1A	Mx	027	5
19	MP1A	X Z	34.56	1
20	MP1A	Z	19.953	1
21	MP1A	Mx	.027	1
22	MP1A	X	34.56	5
23	MP1A	Z	19.953	5
24	MP1A	Mx	.027	5
25	MP2A	X	17.05	1
26	MP2A	Z	9.844	1
27	MP2A	Mx	0	1
28	MP2A	X	17.05	3
29	MP2A	Z	9.844	3
30	MP2A	Mx	0	3
31	MP2A	X Z	7.407	5
32	MP2A		4.276	5
33	MP2A	Mx	0	5
34	MP1A	X	14.899	4
35	MP1A	Z	8.602	4
36	MP1A	Mx	0	4
37	MP1A	X	14.37	2
38	MP1A	Z	8.297	2
39	MP1A	Mx	0	2
40	MP2A	X	14.37	.5
41	MP2A	Z	8.297	.5
42	MP2A	Mx	0	.5
43	MP3A	X Z	6.079	4
44	MP3A		3.51	4
45	MP3A	Mx	003	4
46	RRU1	X	11.09	1.5
47	RRU1	Z	6.403	1.5
48	RRU1	Mx	.006	1.5
49	RRU2	X	9.843	1.5
50	RRU2	Z	5.683	1.5
51	RRU2	Mx	.005	1.5

Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Х	18.121	1
2	MP3A	Z	31.387	1
3	MP3A	Mx	009	1
4	MP3A	Х	18.121	5
5	MP3A	Z	31.387	5
6	MP3A	Mx	009	5
7	MP3A	Х	18.121	1
8	MP3A	Z	31.387	1
9	MP3A	Mx	.034	1
10	MP3A	Х	18.121	5
11	MP3A	Z	31.387	5
12	MP3A	Mx	.034	5

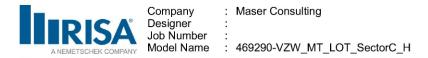


Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
13	MP1A	Х	18.739	1
14	MP1A	Z	32.456	1
15	MP1A	Mx	031	1
16	MP1A	Х	18.739	5
17	MP1A	Z	32.456	5
18	MP1A	Mx	031	5
19	MP1A	Х	18.739	1
20	MP1A	Z	32.456	1
21	MP1A	Mx	.012	1
22	MP1A	Х	18.739	5
23	MP1A	Z	32.456	5
24	MP1A	Mx	.012	5
25	MP2A	Х	8.431	1
26	MP2A	Z	14.603	1
27	MP2A	Mx	004	1
28	MP2A	Х	8.431	3
29	MP2A	Z	14.603	3
30	MP2A	Mx	004	3
31	MP2A	Х	3.522	5
32	MP2A	Z	6.1	5
33	MP2A	Mx	002	5
34	MP1A	Х	7.464	4
35	MP1A	Z	12.928	4
36	MP1A	Mx	.004	4
37	MP1A	Х	7.665	2
38	MP1A	Z	13.277	2
39	MP1A	Mx	.004	2
40	MP2A	X Z	7.425	.5
41	MP2A	Z	12.861	.5
42	MP2A	Mx	.004	.5
43	MP3A	Х	2.716	4
44	MP3A	Z	4.704	4
45	MP3A	Mx	003	4
46	RRU1	Х	5.771	1.5
47	RRU1	Z	9.996	1.5
48	RRU1	Mx	.006	1.5
49	RRU2	X	4.812	1.5
50	RRU2	Z	8.334	1.5
51	RRU2	Mx	.005	1.5

Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Х	0	1
2	MP3A	Z	47.442	1
3	MP3A	Mx	032	1
4	MP3A	Х	0	5
5	MP3A	Z	47.442	5
6	MP3A	Mx	032	5
7	MP3A	Х	0	1
8	MP3A	Z	47.442	1
9	MP3A	Mx	.044	1
10	MP3A	Х	0	5
11	MP3A	Z	47.442	5
12	MP3A	Mx	.044	5
13	MP1A	Х	0	1
14	MP1A	Z	32.619	1

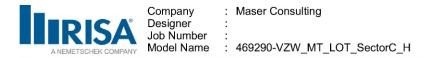


Member Point Loads (BLC 21 : Antenna Wi (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
15	MP1A	Mx	025	1
16	MP1A	Х	0	5
17	MP1A	Z	32.619	5
18	MP1A	Mx	025	5
19	MP1A	Х	0	1
20	MP1A	Z	32.619	1
21	MP1A	Mx	003	1
22	MP1A	Х	0	5
23	MP1A	Z	32.619	5
24	MP1A	Mx	003	5
25	MP2A	Х	0	1
26	MP2A	Z	11.212	1
27	MP2A	Mx	005	1
28	MP2A	Х	0	3
29	MP2A	Z	11.212	3
30	MP2A	Mx	005	3
31	MP2A	Х	0	5
32	MP2A	Z	4.024	5
33	MP2A	Mx	002	5
34	MP1A	Х	0	4
35	MP1A	Z	10.374	4
36	MP1A	Mx	.004	4
37	MP1A	Х	0	2
38	MP1A	Z	12.805	2
39	MP1A	Mx	.006	2
40	MP2A	Х	0	.5
41	MP2A	Z	11.366	.5
42	MP2A	Mx	.005	.5
43	MP3A	Х	0	4
44	MP3A	Z	5.791	4
45	MP3A	Mx	003	4
46	RRU1	Х	0	1.5
47	RRU1	Z	12.805	1.5
48	RRU1	Mx	.006	1.5
49	RRU2	Х	0	1.5
50	RRU2	Z	11.366	1.5
51	RRU2	Mx	.005	1.5

Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Х	-23.721	1
2	MP3A	Z	41.086	1
3	MP3A	Mx	044	1
4	MP3A	Х	-23.721	5
5	MP3A	Z	41.086	5
6	MP3A	Mx	044	5
7	MP3A	Х	-23.721	1
8	MP3A	Z	41.086	1
9	MP3A	Mx	.032	1
10	MP3A	Х	-23.721	5
11	MP3A	Z	41.086	5
12	MP3A	Mx	.032	5
13	MP1A	Х	-15.095	1
14	MP1A	Z	26.145	1
15	MP1A	Mx	015	1
16	MP1A	Х	-15.095	5



Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
17	MP1A	Z	26.145	5
18	MP1A	Mx	015	5
19	MP1A	Х	-15.095	1
20	MP1A	Z	26.145	1
21	MP1A	Mx	015	1
22	MP1A	Х	-15.095	5
23	MP1A	Z	26.145	5
24	MP1A	Mx	015	5
25	MP2A	Х	-4.193	1
26	MP2A	Z	7.263	1
27	MP2A	Mx	004	1
28	MP2A	Х	-4.193	3
29	MP2A	Z	7.263	3
30	MP2A	Mx	004	3
31	MP2A	Х	-1.257	5
32	MP2A	Z	2.177	5
33	MP2A	Mx	001	5
34	MP1A	Х	-4.049	4
35	MP1A	Z	7.013	4
36	MP1A	Mx	.004	4
37	MP1A	Х	-5.771	2
38	MP1A	Z	9.996	2
39	MP1A	Mx	.006	2
40	MP2A	Х	-4.812	.5
41	MP2A	Z	8.334	.5
42	MP2A	Mx	.005	.5
43	MP3A	Х	-3.87	4
44	MP3A	Z	6.702	4
45	MP3A	Mx	002	4
46	RRU1	Х	-7.665	1.5
47	RRU1	Z	13.277	1.5
48	RRU1	Mx	.004	1.5
49	RRU2	Х	-7.425	1.5
50	RRU2	Z	12.861	1.5
51	RRU2	Mx	.004	1.5

Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Х	-31.387	1
2	MP3A	Z	18.121	1
3	MP3A	Mx	034	1
4	MP3A	Х	-31.387	5
5	MP3A	Z	18.121	5
6	MP3A	Mx	034	5
7	MP3A	Х	-31.387	1
8	MP3A	Z	18.121	1
9	MP3A	Mx	.009	1
10	MP3A	Х	-31.387	5
11	MP3A	Z	18.121	5
12	MP3A	Mx	.009	5
13	MP1A	Х	-28.249	1
14	MP1A	Z	16.31	1
15	MP1A	Mx	003	1
16	MP1A	Х	-28.249	5
17	MP1A	Z	16.31	5
18	MP1A	Mx	003	5



Member Point Loads (BLC 23 : Antenna Wi (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
19	MP1A	Х	-28.249	1
20	MP1A	Z	16.31	1
21	MP1A	Mx	025	1
22	MP1A	Х	-28.249	5
23	MP1A	Z	16.31	5
24	MP1A	Mx	025	5
25	MP2A	Х	-9.71	1
26	MP2A	Z	5.606	1
27	MP2A	Mx	005	1
28	MP2A	Х	-9.71	3
29	MP2A	Z	5.606	3
30	MP2A	Mx	005	3
31	MP2A	Х	-3.485	5
32	MP2A	Z	2.012	5
33	MP2A	Mx	002	5
34	MP1A	Х	-8.984	4
35	MP1A	Z	5.187	4
36	MP1A	Mx	.004	4
37	MP1A	Х	-11.09	2
38	MP1A	Z	6.403	2
39	MP1A	Mx	.006	2
40	MP2A	Х	-9.843	.5
41	MP2A	Z	5.683	.5
42	MP2A	Mx	.005	.5
43	MP3A	Х	-8.077	4
44	MP3A	Z	4.664	4
45	MP3A	Mx	00081	4
46	RRU1	Х	-14.37	1.5
47	RRU1	Z	8.297	1.5
48	RRU1	Mx	0	1.5
49	RRU2	Х	-14.37	1.5
50	RRU2	Z	8.297	1.5
51	RRU2	Mx	0	1.5

Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Х	-25.043	1
2	MP3A	Z	0	1
3	MP3A	Mx	017	1
4	MP3A	Х	-25.043	5
5	MP3A	Z	0	5
6	MP3A	Mx	017	5
7	MP3A	Х	-25.043	1
8	MP3A	Z	0	1
9	MP3A	Mx	007	1
10	MP3A	Х	-25.043	5
11	MP3A	Z	0	5
12	MP3A	Mx	007	5
13	MP1A	Х	-37.477	1
14	MP1A	Z	0	1
15	MP1A	Mx	.012	1
16	MP1A	Х	-37.477	5
17	MP1A	Z	0	5
18	MP1A	Mx	.012	5
19	MP1A	Х	-37.477	1
20	MP1A	Z	0	1



Member Point Loads (BLC 24 : Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
21	MP1A	Mx	031	1
22	MP1A	Х	-37.477	5
23	MP1A	Z	0	5
24	MP1A	Mx	031	5
25	MP2A	Х	-16.862	1
26	MP2A	Z	0	1
27	MP2A	Mx	004	1
28	MP2A	Х	-16.862	3
29	MP2A	Z	0	3
30	MP2A	Mx	004	3
31	MP2A	Х	-7.043	5
32	MP2A	Z	0	5
33	MP2A	Mx	002	5
34	MP1A	Х	-14.928	4
35	MP1A	Z	0	4
36	MP1A	Mx	.004	4
37	MP1A	X	-15.331	2
38	MP1A	Z	0	2
39	MP1A	Mx	.004	2
40	MP2A	Х	-14.851	.5
41	MP2A	Z	0	.5
42	MP2A	Mx	.004	.5
43	MP3A	X	-8.967	4
44	MP3A	Z	0	4
45	MP3A	Mx	.002	4
46	RRU1	Х	-15.331	1.5
47	RRU1	Z	0	1.5
48	RRU1	Mx	004	1.5
49	RRU2	Х	-14.851	1.5
50	RRU2	Z	0	1.5
51	RRU2	Mx	004	1.5

Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Х	-21.688	1
2	MP3A	Z	-12.522	1
3	MP3A	Mx	007	1
4	MP3A	Х	-21.688	5
5	MP3A	Z	-12.522	5
6	MP3A	Mx	007	5
7	MP3A	Х	-21.688	1
8	MP3A	Z	-12.522	1
9	MP3A	Mx	017	1
10	MP3A	Х	-21.688	5
11	MP3A	Z	-12.522	5
12	MP3A	Mx	017	5
13	MP1A	Х	-34.56	1
14	MP1A	Z	-19.953	1
15	MP1A	Mx	.027	1
16	MP1A	Х	-34.56	5
17	MP1A	Z	-19.953	5
18	MP1A	Mx	.027	5
19	MP1A	Х	-34.56	1
20	MP1A	Z	-19.953	1
21	MP1A	Mx	027	1
22	MP1A	Х	-34.56	5



Member Point Loads (BLC 25 : Antenna Wi (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
23	MP1A	Z	-19.953	5
24	MP1A	Mx	027	5
25	MP2A	X	-17.05	1
26	MP2A	Z	-9.844	1
27	MP2A	Mx	0	1
28	MP2A	Х	-17.05	3
29	MP2A	Z	-9.844	3
30	MP2A	Mx	0	3
31	MP2A	X	-7.407	5
32	MP2A	Z	-4.276	5
33	MP2A	Mx	0	5
34	MP1A	Х	-14.899	4
35	MP1A	Z	-8.602	4
36	MP1A	Mx	0	4
37	MP1A	X	-14.37	2
38	MP1A	Z	-8.297	2
39	MP1A	Mx	0	2
40	MP2A	X	-14.37	.5
41	MP2A	Z	-8.297	.5
42	MP2A	Mx	0	.5
43	MP3A	X	-6.079	4
44	MP3A	Z	-3.51	4
45	MP3A	Mx	.003	4
46	RRU1	X	-11.09	1.5
47	RRU1	Z	-6.403	1.5
48	RRU1	Mx	006	1.5
49	RRU2	X	-9.843	1.5
50	RRU2	Z	-5.683	1.5
51	RRU2	Mx	005	1.5

Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Х	-18.121	1
2	MP3A	Z	-31.387	1
3	MP3A	Mx	.009	1
4	MP3A	Х	-18.121	5
5	MP3A	Z	-31.387	5
6	MP3A	Mx	.009	5
7	MP3A	Х	-18.121	1
8	MP3A	Z	-31.387	1
9	MP3A	Mx	034	1
10	MP3A	Х	-18.121	5
11	MP3A	Z	-31.387	5
12	MP3A	Mx	034	5
13	MP1A	Х	-18.739	1
14	MP1A	Z	-32.456	1
15	MP1A	Mx	.031	1
16	MP1A	Х	-18.739	5
17	MP1A	Z	-32.456	5
18	MP1A	Mx	.031	5
19	MP1A	Х	-18.739	1
20	MP1A	Z	-32.456	1
21	MP1A	Mx	012	1
22	MP1A	Х	-18.739	5
23	MP1A	Z	-32.456	5
24	MP1A	Mx	012	5

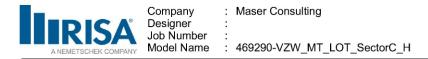


Member Point Loads (BLC 26 : Antenna Wi (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
25	MP2A	Х	-8.431	1
26	MP2A	Z	-14.603	1
27	MP2A	Mx	.004	1
28	MP2A	Х	-8.431	3
29	MP2A	Z	-14.603	3
30	MP2A	Mx	.004	3
31	MP2A	Х	-3.522	5
32	MP2A	Z	-6.1	5
33	MP2A	Mx	.002	5
34	MP1A	Х	-7.464	4
35	MP1A	Z	-12.928	4
36	MP1A	Mx	004	4
37	MP1A	Х	-7.665	2
38	MP1A	Z	-13.277	2
39	MP1A	Mx	004	2
40	MP2A	Х	-7.425	.5
41	MP2A	Z	-12.861	.5
42	MP2A	Mx	004	.5
43	MP3A	Х	-2.716	4
44	MP3A	Z	-4.704	4
45	MP3A	Mx	.003	4
46	RRU1	Х	-5.771	1.5
47	RRU1	Z	-9.996	1.5
48	RRU1	Mx	006	1.5
49	RRU2	Х	-4.812	1.5
50	RRU2	Z	-8.334	1.5
51	RRU2	Mx	005	1.5

Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Х	0	1
2	MP3A	Z	-15.808	1
3	MP3A	Mx	.011	1
4	MP3A	Х	0	5
5	MP3A	Z	-15.808	5
6	MP3A	Mx	.011	5
7	MP3A	Х	0	1
8	MP3A	Z	-15.808	1
9	MP3A	Mx	015	1
10	MP3A	Х	0	5
11	MP3A	Z	-15.808	5
12	MP3A	Mx	015	5
13	MP1A	Х	0	1
14	MP1A	Z	-10.639	1
15	MP1A	Mx	.008	1
16	MP1A	Х	0	5
17	MP1A	Z	-10.639	5
18	MP1A	Mx	.008	5
19	MP1A	Х	0	1
20	MP1A	Z	-10.639	1
21	MP1A	Mx	.001	1
22	MP1A	Х	0	5
23	MP1A	Z	-10.639	5
24	MP1A	Mx	.001	5
25	MP2A	Х	0	1
26	MP2A	Z	-3.41	1



Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
27	MP2A	Mx	.001	1
28	MP2A	Х	0	3
29	MP2A	Z	-3.41	3
30	MP2A	Mx	.001	3
31	MP2A	Х	0	5
32	MP2A	Z	943	5
33	MP2A	Mx	.000408	5
34	MP1A	Х	0	4
35	MP1A	Z	-2.952	4
36	MP1A	Mx	001	4
37	MP1A	Х	0	2
38	MP1A	Z	-3.751	2
39	MP1A	Mx	002	2
40	MP2A	Х	0	.5
41	MP2A	Z	-3.275	.5
42	MP2A	Mx	001	.5
43	MP3A	Х	0	4
44	MP3A	Z	-1.493	4
45	MP3A	Mx	.000701	4
46	RRU1	Х	0	1.5
47	RRU1	Z	-3.751	1.5
48	RRU1	Mx	002	1.5
49	RRU2	X	0	1.5
50	RRU2	Z	-3.275	1.5
51	RRU2	Mx	001	1.5

Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Х	7.904	1
2	MP3A	Z	-13.69	1
3	MP3A	Mx	.015	1
4	MP3A	Х	7.904	5
5	MP3A	Z	-13.69	5
6	MP3A	Mx	.015	5
7	MP3A	Х	7.904	1
8	MP3A	Z	-13.69	1
9	MP3A	Mx	011	1
10	MP3A	Х	7.904	5
11	MP3A	Z	-13.69	5
12	MP3A	Mx	011	5
13	MP1A	Х	4.897	1
14	MP1A	Z	-8.482	1
15	MP1A	Mx	.005	1
16	MP1A	Х	4.897	5
17	MP1A	Z	-8.482	5
18	MP1A	Mx	.005	5
19	MP1A	Х	4.897	1
20	MP1A	Z	-8.482	1
21	MP1A	Mx	.005	1
22	MP1A	Х	4.897	5
23	MP1A	Z	-8.482	5
24	MP1A	Mx	.005	5
25	MP2A	Х	1.228	1
26	MP2A	Z	-2.127	1
27	MP2A	Mx	.001	1
28	MP2A	Х	1.228	3



Member Point Loads (BLC 28 : Antenna Wm (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
29	MP2A	Z	-2.127	3
30	MP2A	Mx	.001	3
31	MP2A	X	.233	5
32	MP2A	Z	404	5
33	MP2A	Mx	.000233	5
34	MP1A	X	1.096	4
35	MP1A	Z	-1.899	4
36	MP1A	Mx	001	4
37	MP1A	X	1.668	2
38	MP1A	Z	-2.89	2
39	MP1A	Mx	002	2
40	MP2A	Х	1.351	.5
41	MP2A	Z	-2.341	.5
42	MP2A	Mx	001	.5
43	MP3A	X	1.06	4
44	MP3A	Z	-1.835	4
45	MP3A	Mx	.000681	4
46	RRU1	X	2.289	1.5
47	RRU1	Z	-3.965	1.5
48	RRU1	Mx	001	1.5
49	RRU2	X	2.21	1.5
50	RRU2	Z	-3.828	1.5
51	RRU2	Mx	001	1.5

Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Х	10.276	1
2	MP3A	Z	-5.933	1
3	MP3A	Mx	.011	1
4	MP3A	Х	10.276	5
5	MP3A	Z	-5.933	5
6	MP3A	Mx	.011	5
7	MP3A	Х	10.276	1
8	MP3A	Z	-5.933	1
9	MP3A	Mx	003	1
10	MP3A	Х	10.276	5
11	MP3A	Z	-5.933	5
12	MP3A	Mx	003	5
13	MP1A	Х	9.214	1
14	MP1A	Z	-5.32	1
15	MP1A	Mx	.001	1
16	MP1A	Х	9.214	5
17	MP1A	Z	-5.32	5
18	MP1A	Mx	.001	5
19	MP1A	Х	9.214	1
20	MP1A	Z	-5.32	1
21	MP1A	Mx	.008	1
22	MP1A	Х	9.214	5
23	MP1A	Z	-5.32	5
24	MP1A	Mx	.008	5
25	MP2A	Х	2.953	1
26	MP2A	Z	-1.705	1
27	MP2A	Mx	.001	1
28	MP2A	Х	2.953	3
29	MP2A	Z	-1.705	3
30	MP2A	Mx	.001	3



Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
31	MP2A	Х	.817	5
32	MP2A	Z	472	5
33	MP2A	Mx	.000409	5
34	MP1A	Х	2.557	4
35	MP1A	Z	-1.476	4
36	MP1A	Mx	001	4
37	MP1A	Х	3.248	2
38	MP1A	Z	-1.875	2
39	MP1A	Mx	002	2
40	MP2A	Х	2.836	.5
41	MP2A	Z	-1.638	.5
42	MP2A	Mx	001	.5
43	MP3A	Х	2.277	4
44	MP3A	Z	-1.315	4
45	MP3A	Mx	.000228	4
46	RRU1	Х	4.323	1.5
47	RRU1	Z	-2.496	1.5
48	RRU1	Mx	0	1.5
49	RRU2	Х	4.323	1.5
50	RRU2	Z	-2.496	1.5
51	RRU2	Mx	0	1.5

Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	MP3A	X	7.923	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	MP3A	Z	0	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	MP3A	Mx	.006	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	MP3A	X	7.923	5
7MP3AX7.92318MP3AZ019MP3AMx.002110MP3AX7.923511MP3AZ0512MP3AMx.002513MP1AX12.329114MP1AZ0116MP1AX12.329517MP1AZ0518MP1AX12.329519MP1AZ0120MP1AX12.329523MP1AX12.329523MP1AX12.329524MP1AX12.329525MP2AZ0126MP2AZ0127MP2AX5.319128MP2AZ0330MP2AZ03	5	MP3A	Z	0	5
7MP3AX7.92318MP3AZ019MP3AMx.002110MP3AX7.923511MP3AZ0512MP3AMx.002513MP1AX12.329114MP1AZ0115MP1AX12.329517MP1AZ0518MP1AZ0519MP1AX12.329517MP1AZ0120MP1AZ0121MP1AX12.329523MP1AZ0124MP1AX5.319125MP2AZ0126MP2AZ0128MP2AZ0330MP2AZ03		MP3A	Mx	.006	
8 MP3A Z 0 1 9 MP3A Mx .002 1 10 MP3A X 7.923 5 11 MP3A Z 0 5 12 MP3A Mx .002 5 13 MP1A X 12.329 1 14 MP1A Z 0 1 15 MP1A X 12.329 5 17 MP1A X 12.329 5 17 MP1A X 12.329 5 17 MP1A Z 0 5 18 MP1A Z 0 1 20 MP1A Z 0 1 21 MP1A X 12.329 5 23 MP1A Z 0 5 24 MP1A Mx .01 5 25 MP2A Z 0 1	7	MP3A	X	7.923	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	MP3A	Z	0	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	MP3A	Mx	.002	1
12 MP3A Mx .002 5 13 MP1A X 12.329 1 14 MP1A Z 0 1 15 MP1A Mx 004 1 16 MP1A X 12.329 5 17 MP1A X 12.329 5 17 MP1A Z 0 5 18 MP1A X 12.329 1 20 MP1A X 12.329 1 20 MP1A X 12.329 1 20 MP1A Z 0 1 21 MP1A Z 0 1 22 MP1A Z 0 5 23 MP1A Z 0 5 23 MP1A Z 0 1 26 MP2A X 5.319 1 26 MP2A X 5.319 3	10	MP3A	X	7.923	5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	11		Z		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12	MP3A	Mx	.002	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13	MP1A	X	12.329	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	14	MP1A	Z	0	1
16 MP1A X 12.329 5 17 MP1A Z 0 5 18 MP1A Mx 004 5 19 MP1A X 12.329 1 20 MP1A X 12.329 1 20 MP1A Z 0 1 21 MP1A Z 0 1 22 MP1A X 12.329 5 23 MP1A X 12.329 5 23 MP1A X 12.329 5 23 MP1A Z 0 5 24 MP1A X 5.319 1 25 MP2A X 5.319 1 26 MP2A Z 0 1 28 MP2A X 5.319 3 29 MP2A Z 0 3 30 MP2A Mx .001 3 <td>15</td> <td></td> <td>Mx</td> <td>004</td> <td>1</td>	15		Mx	004	1
17 MP1A Z 0 5 18 MP1A Mx 004 5 19 MP1A X 12.329 1 20 MP1A Z 0 1 21 MP1A Z 0 1 22 MP1A X 12.329 5 23 MP1A X 12.329 5 23 MP1A Z 0 5 23 MP1A Z 0 5 24 MP1A Z 0 1 25 MP2A X 5.319 1 26 MP2A Z 0 1 28 MP2A X 5.319 3 29 MP2A Z 0 3 30 MP2A Mx .001 3		MP1A	Х	12.329	
19 MP1A X 12.329 1 20 MP1A Z 0 1 21 MP1A Mx .01 1 22 MP1A X 12.329 5 23 MP1A X 12.329 5 23 MP1A Z 0 5 24 MP1A Z 0 5 25 MP2A X 5.319 1 26 MP2A Z 0 1 27 MP2A X 5.319 3 29 MP2A X 001 1 30 MP2A Z 0 3	17	MP1A	Z	0	5
20 MP1A Z 0 1 21 MP1A Mx .01 1 22 MP1A X 12.329 5 23 MP1A Z 0 5 24 MP1A Mx .01 5 25 MP2A X 5.319 1 26 MP2A Z 0 1 27 MP2A X 5.319 1 28 MP2A Z 0 1 29 MP2A Z 0 3 30 MP2A Mx .001 3	18	MP1A	Mx	004	5
21 MP1A Mx .01 1 22 MP1A X 12.329 5 23 MP1A Z 0 5 24 MP1A Mx .01 5 25 MP2A X 5.319 1 26 MP2A Z 0 1 27 MP2A X 5.319 1 28 MP2A Z 0 1 29 MP2A Z 0 3 30 MP2A Mx .001 3	19	MP1A	X	12.329	1
22 MP1A X 12.329 5 23 MP1A Z 0 5 24 MP1A Mx .01 5 25 MP2A X 5.319 1 26 MP2A Z 0 1 27 MP2A Mx .001 1 28 MP2A X 5.319 3 29 MP2A Z 0 3 30 MP2A Mx .001 3	20	MP1A	Z	0	1
23 MP1A Z 0 5 24 MP1A Mx .01 5 25 MP2A X 5.319 1 26 MP2A Z 0 1 27 MP2A Mx .001 1 28 MP2A X 5.319 3 29 MP2A Z 0 3 30 MP2A Mx .001 3	21	MP1A	Mx	.01	1
24 MP1A Mx .01 5 25 MP2A X 5.319 1 26 MP2A Z 0 1 27 MP2A Mx .001 1 28 MP2A X 5.319 3 29 MP2A Z 0 3 30 MP2A Mx .001 3	22	MP1A		12.329	5
25 MP2A X 5.319 1 26 MP2A Z 0 1 27 MP2A Mx .001 1 28 MP2A X 5.319 3 29 MP2A Z 0 3 30 MP2A Mx .001 3	23	MP1A	Z	0	5
26 MP2A Z 0 1 27 MP2A Mx .001 1 28 MP2A X 5.319 3 29 MP2A Z 0 3 30 MP2A Mx .001 3		MP1A			5
27 MP2A Mx .001 1 28 MP2A X 5.319 3 29 MP2A Z 0 3 30 MP2A Mx .001 3		MP2A	X	5.319	1
28 MP2A X 5.319 3 29 MP2A Z 0 3 30 MP2A Mx .001 3	26	MP2A	Z	0	1
29 MP2A Z 0 3 30 MP2A Mx .001 3	27	MP2A	Mx	.001	1
30 MP2A Mx .001 3			X	5.319	
	29	MP2A	Z		
	30	MP2A	Mx		
		MP2A	X	1.898	5
32 MP2A Z 0 5	32	MP2A	Z	0	5



Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
33	MP2A	Mx	.000474	5
34	MP1A	Х	4.472	4
35	MP1A	Z	0	4
36	MP1A	Mx	001	4
37	MP1A	Х	4.578	2
38	MP1A	Z	0	2
39	MP1A	Mx	001	2
40	MP2A	Х	4.42	.5
41	MP2A	Z	0	.5
42	MP2A	Mx	001	.5
43	MP3A	Х	2.514	4
44	MP3A	Z	0	4
45	MP3A	Mx	00043	4
46	RRU1	Х	4.578	1.5
47	RRU1	Z	0	1.5
48	RRU1	Mx	.001	1.5
49	RRU2	Х	4.42	1.5
50	RRU2	Z	0	1.5
51	RRU2	Mx	.001	1.5

Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	6.862	1
2	MP3A	Z	3.962	1
3	MP3A	Mx	.002	1
4	MP3A	X	6.862	5
5	MP3A	Z	3.962	5
6	MP3A	Mx	.002	5
7	MP3A	Х	6.862	1
8	MP3A	Z	3.962	1
9	MP3A	Mx	.006	1
10	MP3A	X	6.862	5
11	MP3A	Z	3.962	5
12	MP3A	Mx	.006	5
13	MP1A	X	11.409	1
14	MP1A	Z	6.587	1
15	MP1A	Mx	009	1
16	MP1A	Х	11.409	5
17	MP1A	Z	6.587	5
18	MP1A	Mx	009	5
19	MP1A	Х	11.409	1
20	MP1A	Z	6.587	1
21	MP1A	Mx	.009	1
22	MP1A	Х	11.409	5
23	MP1A	Z	6.587	5
24	MP1A	Mx	.009	5
25	MP2A	Х	5.433	1
26	MP2A	Z	3.137	1
27	MP2A	Mx	0	1
28	MP2A	X	5.433	3
29	MP2A	Z	3.137	3
30	MP2A	Mx	0	3
31	MP2A	X	2.058	5
32	MP2A	Z	1.188	5
33	MP2A	Mx	0	5
34	MP1A	X	4.531	4
.				

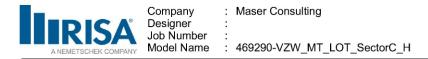


Member Point Loads (BLC 31 : Antenna Wm (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
35	MP1A	Z	2.616	4
36	MP1A	Mx	0	4
37	MP1A	Х	4.323	2
38	MP1A	Z	2.496	2
39	MP1A	Mx	0	2
40	MP2A	Х	4.323	.5
41	MP2A	Z	2.496	.5
42	MP2A	Mx	0	.5
43	MP3A	Х	1.635	4
44	MP3A	Z	.944	4
45	MP3A	Mx	000723	4
46	RRU1	Х	3.248	1.5
47	RRU1	Z	1.875	1.5
48	RRU1	Mx	.002	1.5
49	RRU2	Х	2.836	1.5
50	RRU2	Z	1.638	1.5
51	RRU2	Mx	.001	1.5

Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	5.933	1
2	MP3A	Z	10.276	1
3	MP3A	Mx	003	1
4	MP3A	X	5.933	5
5	MP3A	Z	10.276	5
6	MP3A	Mx	003	5
7	MP3A	X	5.933	1
8	MP3A	Z	10.276	1
9	MP3A	Mx	.011	1
10	MP3A	X	5.933	5
11	MP3A	Z	10.276	5
12	MP3A	Mx	.011	5
13	MP1A	X	6.165	1
14	MP1A	Z	10.677	1
15	MP1A	Mx	01	1
16	MP1A	X	6.165	5
17	MP1A	Z	10.677	5
18	MP1A	Mx	01	5
19	MP1A	X	6.165	1
20	MP1A	Z	10.677	1
21	MP1A	Mx	.004	1
22	MP1A	X	6.165	5
23	MP1A	Z	10.677	5
24	MP1A	Mx	.004	5
25	MP2A	X	2.66	1
26	MP2A	Z	4.606	1
27	MP2A	Mx	001	1
28	MP2A	Х	2.66	3
29	MP2A	Z	4.606	3
30	MP2A	Mx	001	3
31	MP2A	Х	.949	5
32	MP2A	Z	1.644	5
33	MP2A	Mx	000475	5
34	MP1A	Х	2.236	4
35	MP1A	Z	3.873	4
36	MP1A	Mx	.001	4

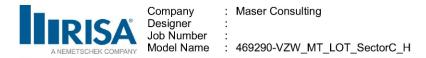


Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
37	MP1A	Х	2.289	2
38	MP1A	Z	3.965	2
39	MP1A	Mx	.001	2
40	MP2A	Х	2.21	.5
41	MP2A	Z	3.828	.5
42	MP2A	Mx	.001	.5
43	MP3A	Х	.689	4
44	MP3A	Z	1.193	4
45	MP3A	Mx	000678	4
46	RRU1	Х	1.668	1.5
47	RRU1	Z	2.89	1.5
48	RRU1	Mx	.002	1.5
49	RRU2	Х	1.351	1.5
50	RRU2	Z	2.341	1.5
51	RRU2	Mx	.001	1.5

Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	0	1
2	MP3A	Z	15.808	1
3	MP3A	Mx	011	1
4	MP3A	X	0	5
5	MP3A	Z	15.808	5
6	MP3A	Mx	011	5
7	MP3A	Х	0	1
8	MP3A	Z	15.808	1
9	MP3A	Mx	.015	1
10	MP3A	X	0	5
11	MP3A	Z	15.808	5
12	MP3A	Mx	.015	5
13	MP1A	X	0	1
14	MP1A	Z	10.639	1
15	MP1A	Mx	008	1
16	MP1A	X	0	5
17	MP1A	Z	10.639	5
18	MP1A	Mx	008	5
19	MP1A	X	0	1
20	MP1A	Z	10.639	1
21	MP1A	Mx	001	1
22	MP1A	X	0	5
23	MP1A	Z	10.639	5
24	MP1A	Mx	001	5
25	MP2A	X	0	1
26	MP2A	Z	3.41	1
27	MP2A	Mx	001	1
28	MP2A	Х	0	3
29	MP2A	Z	3.41	3
30	MP2A	Mx	001	3
31	MP2A	X	0	5
32	MP2A	Z	.943	5
33	MP2A	Mx	000408	5
34	MP1A	Х	0	4
35	MP1A	Z	2.952	4
36	MP1A	Mx	.001	4
37	MP1A	Х	0	2
38	MP1A	Z	3.751	2

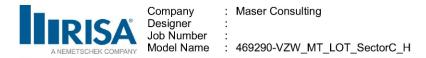


Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
39	MP1A	Mx	.002	2
40	MP2A	Х	0	.5
41	MP2A	Z	3.275	.5
42	MP2A	Mx	.001	.5
43	MP3A	Х	0	4
44	MP3A	Z	1.493	4
45	MP3A	Mx	000701	4
46	RRU1	Х	0	1.5
47	RRU1	Z	3.751	1.5
48	RRU1	Mx	.002	1.5
49	RRU2	X	0	1.5
50	RRU2	Z	3.275	1.5
51	RRU2	Mx	.001	1.5

Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Х	-7.904	1
2	MP3A	Z	13.69	1
3	MP3A	Mx	015	1
4	MP3A	Х	-7.904	5
5	MP3A	Z	13.69	5
6	MP3A	Mx	015	5
7	MP3A	Х	-7.904	1
8	MP3A	Z	13.69	1
9	MP3A	Mx	.011	1
10	MP3A	Х	-7.904	5
11	MP3A	Z	13.69	5
12	MP3A	Mx	.011	5
13	MP1A	X	-4.897	1
14	MP1A	Z	8.482	1
15	MP1A	Mx	005	1
16	MP1A	Х	-4.897	5
17	MP1A	Z	8.482	5
18	MP1A	Mx	005	5
19	MP1A	Х	-4.897	1
20	MP1A	Z	8.482	1
21	MP1A	Mx	005	1
22	MP1A	Х	-4.897	5
23	MP1A	Z	8.482	5
24	MP1A	Mx	005	5
25	MP2A	Х	-1.228	1
26	MP2A	Z	2.127	1
27	MP2A	Mx	001	1
28	MP2A	Х	-1.228	3
29	MP2A	Z	2.127	3
30	MP2A	Mx	001	3
31	MP2A	Х	233	5
32	MP2A	Z	.404	5
33	MP2A	Mx	000233	5
34	MP1A	X	-1.096	4
35	MP1A	Z	1.899	4
36	MP1A	Mx	.001	4
37	MP1A	Х	-1.668	2
38	MP1A	Z	2.89	2
39	MP1A	Mx	.002	2
40	MP2A	X	-1.351	.5

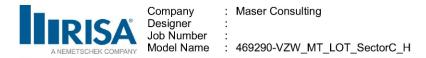


Member Point Loads (BLC 34 : Antenna Wm (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
41	MP2A	Z	2.341	.5
42	MP2A	Mx	.001	.5
43	MP3A	Х	-1.06	4
44	MP3A	Z	1.835	4
45	MP3A	Mx	000681	4
46	RRU1	Х	-2.289	1.5
47	RRU1	Z	3.965	1.5
48	RRU1	Mx	.001	1.5
49	RRU2	Х	-2.21	1.5
50	RRU2	Z	3.828	1.5
51	RRU2	Mx	.001	1.5

Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Х	-10.276	1
2	MP3A	Z	5.933	1
3	MP3A	Mx	011	1
4	MP3A	Х	-10.276	5
5	MP3A	Z	5.933	5
6	MP3A	Mx	011	5
7	MP3A	Х	-10.276	1
8	MP3A	Z	5.933	1
9	MP3A	Mx	.003	1
10	MP3A	Х	-10.276	5
11	MP3A	Z	5.933	5
12	MP3A	Mx	.003	5
13	MP1A	Х	-9.214	1
14	MP1A	Z	5.32	1
15	MP1A	Mx	001	1
16	MP1A	Х	-9.214	5
17	MP1A	Z	5.32	5
18	MP1A	Mx	001	5
19	MP1A	Х	-9.214	1
20	MP1A	Z	5.32	1
21	MP1A	Mx	008	1
22	MP1A	X	-9.214	5
23	MP1A	Z	5.32	5
24	MP1A	Mx	008	5
25	MP2A	X	-2.953	1
26	MP2A	Z	1.705	1
27	MP2A	Mx	001	1
28	MP2A	Х	-2.953	3
29	MP2A	Z	1.705	3
30	MP2A	Mx	001	3
31	MP2A	X	817	5
32	MP2A	Z	.472	5
33	MP2A	Mx	000409	5
34	MP1A	X	-2.557	4
35	MP1A	Ž	1.476	4
36	MP1A	Mx	.001	4
37	MP1A	X	-3.248	2
38	MP1A	Z	1.875	2
39	MP1A	Mx	.002	2
40	MP2A	X	-2.836	.5
41	MP2A	Z	1.638	.5
42	MP2A	Mx	.001	.5
14				

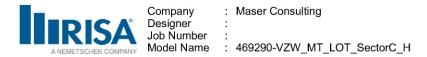


Member Point Loads (BLC 35 : Antenna Wm (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
43	MP3A	X	-2.277	4
44	MP3A	Z	1.315	4
45	MP3A	Mx	000228	4
46	RRU1	X	-4.323	1.5
47	RRU1	Z	2.496	1.5
48	RRU1	Mx	0	1.5
49	RRU2	Х	-4.323	1.5
50	RRU2	Z	2.496	1.5
51	RRU2	Mx	0	1.5

Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-7.923	1
2	MP3A	Z	0	1
3	MP3A	Mx	006	1
4	MP3A	Х	-7.923	5
5	MP3A	Z	0	5
6	MP3A	Mx	006	5
7	MP3A	X	-7.923	1
8	MP3A	Z	0	1
9	MP3A	Mx	002	1
10	MP3A	Х	-7.923	5
11	MP3A	Z	0	5
12	MP3A	Mx	002	5
13	MP1A	Х	-12.329	1
14	MP1A	Z	0	1
15	MP1A	Mx	.004	1
16	MP1A	Х	-12.329	5
17	MP1A	Z	0	5
18	MP1A	Mx	.004	5
19	MP1A	Х	-12.329	1
20	MP1A	Z	0	1
21	MP1A	Mx	01	1
22	MP1A	X	-12.329	5
23	MP1A	Z	0	5
24	MP1A	Mx	01	5
25	MP2A	Х	-5.319	1
26	MP2A	Z	0	1
27	MP2A	Mx	001	1
28	MP2A	X	-5.319	3
29	MP2A	Z	0	3
30	MP2A	Mx	001	3
31	MP2A	Х	-1.898	5
32	MP2A	Z	0	5
33	MP2A	Mx	000474	5
34	MP1A	Х	-4.472	4
35	MP1A	Z	0	4
36	MP1A	Mx	.001	4
37	MP1A	Х	-4.578	2
38	MP1A	Z	0	2
39	MP1A	Mx	.001	2
40	MP2A	Х	-4.42	.5
41	MP2A	Z	0	.5
42	MP2A	Mx	.001	.5
43	MP3A	Х	-2.514	4
44	MP3A	Z	0	4

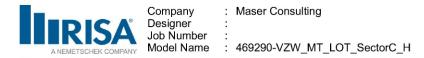


Member Point Loads (BLC 36 : Antenna Wm (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
45	MP3A	Mx	.00043	4
46	RRU1	Х	-4.578	1.5
47	RRU1	Z	0	1.5
48	RRU1	Mx	001	1.5
49	RRU2	X	-4.42	1.5
50	RRU2	Z	0	1.5
51	RRU2	Mx	001	1.5

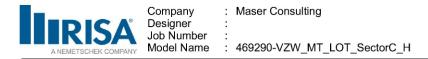
Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-6.862	1
2	MP3A	Z	-3.962	1
3	MP3A	Mx	002	1
4	MP3A	X	-6.862	5
5	MP3A	Z	-3.962	5
6	MP3A	Mx	002	5
7	MP3A	X	-6.862	1
8	MP3A	Z	-3.962	1
9	MP3A	Mx	006	1
10	MP3A	X	-6.862	5
11	MP3A	Z	-3.962	5
12	MP3A	Mx	006	5
13	MP1A	X	-11.409	1
14	MP1A	Z	-6.587	1
15	MP1A	Mx	.009	1
16	MP1A	X	-11.409	5
17	MP1A	Z	-6.587	5
18	MP1A	Mx	.009	5
19	MP1A	X	-11.409	1
20	MP1A	Z	-6.587	1
20	MP1A	Mx	009	1
22	MP1A	X	-11.409	5
23	MP1A	Z	-6.587	5
23	MP1A	Mx	009	5
25	MP2A	X	-5.433	
26	MP2A MP2A	Z	-3.137	1
20	MP2A MP2A	Mx	-3.137	1
28	MP2A MP2A		-5.433	3
20	MP2A MP2A	X Z	-3.137	3
30	MP2A MP2A	Mx	-3.137	3
31	MP2A MP2A	X	-2.058	5
32	MP2A		-2.058	5
32		Mx	-1.188	
33	MP2A			5
34	MP1A	X Z	-4.531	4
35	MP1A		-2.616	4
36	MP1A	Mx	0	4
37	MP1A	X Z	-4.323	2
38	MP1A		-2.496	2
39	MP1A	Mx	0	2
40	MP2A	X 7	-4.323	.5
41	MP2A	Z	-2.496	.5
42	MP2A	Mx	0	.5
43	MP3A	<u> </u>	-1.635	4
44	MP3A	Z	944	4
45	MP3A	Mx	.000723	4
46	RRU1	X	-3.248	1.5



Member Point Loads (BLC 37 : Antenna Wm (300 Deg)) (Continued)

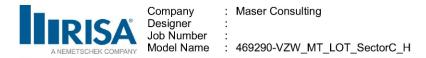
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
47	RRU1	Z	-1.875	1.5
48	RRU1	Mx	002	1.5
49	RRU2	X	-2.836	1.5
50	RRU2	Z	-1.638	1.5
51	RRU2	Mx	001	1.5


Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	X	-5.933	1
2	MP3A	Z	-10.276	1
3	MP3A	Mx	.003	1
4	MP3A	Х	-5.933	5
5	MP3A	Z	-10.276	5
6	MP3A	Mx	.003	5
7	MP3A	Х	-5.933	1
8	MP3A	Z	-10.276	1
9	MP3A	Mx	011	1
10	MP3A	Х	-5.933	5
11	MP3A	Z	-10.276	5
12	MP3A	Mx	011	5
13	MP1A	X Z	-6.165	1
14	MP1A	Z	-10.677	1
15	MP1A	Mx	.01	1
16	MP1A	Х	-6.165	5
17	MP1A	Z	-10.677	5
18	MP1A	Mx	.01	5
19	MP1A	Х	-6.165	1
20	MP1A	Z	-10.677	1
21	MP1A	Mx	004	1
22	MP1A	Х	-6.165	5
23	MP1A	Z	-10.677	5
24	MP1A	Mx	004	5
25	MP2A	X	-2.66	1
26	MP2A	Z	-4.606	1
27	MP2A	Mx	.001	1
28	MP2A	Х	-2.66	3
29	MP2A	Z	-4.606	3
30	MP2A	Mx	.001	3
31	MP2A	X	949	5
32	MP2A	Z	-1.644	5
33	MP2A	Mx	.000475	5
34	MP1A	Х	-2.236	4
35	MP1A	Z	-3.873	4
36	MP1A	Mx	001	4
37	MP1A	Х	-2.289	2
38	MP1A	Z	-3.965	2
39	MP1A	Mx	001	2
40	MP2A	Х	-2.21	.5
41	MP2A	Z	-3.828	.5
42	MP2A	Mx	001	.5
43	MP3A	X Z	689	4
44	MP3A		-1.193	4
45	MP3A	Mx	.000678	4
46	RRU1	Х	-1.668	1.5
47	RRU1	Z	-2.89	1.5
48	RRU1	Mx	002	1.5

Member Point Loads (BLC 38 : Antenna Wm (330 Deg)) (Continued)

Wieniber	TOINT LOAUS (DEC 50.			
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
49	RRU2	X	-1.351	1.5
50	RRU2	Z	-2.341	1.5
51	RRU2	Mx	001	1.5
	11102		.001	
Mombor	Point Loads (BLC 77 :	(m1)		
	FOINT LOAUS (BLC // .			
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	LIVE2	Y	-500	0
· · · ·		•		
Member	Point Loads (BLC 78 :	: Lm2)		
monibol				
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	LIVE1	Y	-500	0
Member	Point Loads (BLC 79 :	: Lv1)		
4	Member Label	Direction Y	Magnitude[lb,k-ft]	Location[ft,%]
	M4	Ť.	-250	0
Member	Point Loads (BLC 80 :	: Lv2)		
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	Member Laber	Y	-250	%50
	1014		-230	/850
	Deint Leede (DLO 01)			
wember	Point Loads (BLC 81 :	Antenna EV)		
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Y	0	1
2	MP3A	My	0	1
3	MP3A	Mz	0	1
4	MP3A	Y	0	5
5				
	MP3A	My	0	5
6	MP3A	Mz	0	5
7	MP3A	Y	0	1
8	MP3A	My	0	1
9	MP3A	Mz	0	1
10	MP3A	Y	0	5
11	MP3A	My	0	5
12	MP3A	Mz	0	5
13	MP1A	Y	0	1
14	MP1A	My	0	1
15	MP1A	Mz	0	1
16	MP1A	Y	0	5
17	MP1A	My	0	5
18	MP1A	Mz	0	5
19	MP1A	Y	0	1
20	MP1A	My	0	1
21	MP1A	Mz	0	11
22	MP1A	Y	0	5
23	MP1A	My	0	5
24	MP1A	Mz	0	5
25	MP2A	Y	0	1
26	MP2A	My	Ő	1
27	MP2A	Mz	0	1
28	MP2A	Y	0	3
20		My	0	3
	MP2A			3
30	MP2A	Mz	0	
31	MP2A	Y	0	5
32	MP2A	My	0	5
52			•	• • • • • • • • • • • • • • • • • • •



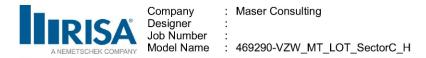
Member Point Loads (BLC 81 : Antenna Ev) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
33	MP2A	Mz	0	5
34	MP1A	Y	0	4
35	MP1A	My	0	4
36	MP1A	Mz	0	4
37	MP1A	Y	0	2
38	MP1A	My	0	2
39	MP1A	Mz	0	2
40	MP2A	Y	0	.5
41	MP2A	My	0	.5
42	MP2A	Mz	0	.5
43	MP3A	Y	0	4
44	MP3A	My	0	4
45	MP3A	Mz	0	4
46	RRU1	Y	0	1.5
47	RRU1	My	0	1.5
48	RRU1	Mz	0	1.5
49	RRU2	Y	0	1.5
50	RRU2	My	0	1.5
51	RRU2	Mz	0	1.5

Member Point Loads (BLC 82 : Antenna Eh (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Z	-1.449	1
2	MP3A	Mx	.000979	1
3	MP3A	Z	-1.449	5
4	MP3A	Mx	.000979	5
5	MP3A	Z	-1.449	1
6	MP3A	Mx	001	1
7	MP3A	Z	-1.449	5
8	MP3A	Mx	001	5
9	MP1A	Z	69	1
10	MP1A	Mx	.000529	1
11	MP1A	Z	69	5
12	MP1A	Mx	.000529	5
13	MP1A	Z	69	1
14	MP1A	Mx	6.9e-5	1
15	MP1A	Z	69	5
16	MP1A	Mx	6.9e-5	5
17	MP2A	Z	-1.306	1
18	MP2A	Mx	.000566	1
19	MP2A	Z	-1.306	3
20	MP2A	Mx	.000566	3
21	MP2A	Z	132	5
22	MP2A	Mx	5.7e-5	5
23	MP1A	Z	-1.587	4
24	MP1A	Mx	000687	4
25	MP1A	Z	-2.532	2
26	MP1A	Mx	001	2
27	MP2A	Z	-2.109	.5
28	MP2A	Mx	000913	.5
29	MP3A	Z	561	4
30	MP3A	Mx	.000264	4
31	RRU1	Z	-2.532	1.5
32	RRU1	Mx	001	1.5
33	RRU2	Z	-2.109	1.5
34	RRU2	Mx	000913	1.5

Member Point Loads (BLC 83 : Antenna Eh (90 Deg))


	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP3A	Х	1.449	1
2	MP3A	Mx	.001	1
3	MP3A	Х	1.449	5
4	MP3A	Mx	.001	5
5	MP3A	Х	1.449	1
6	MP3A	Mx	.000387	1
7	MP3A	Х	1.449	5
8	MP3A	Mx	.000387	5
9	MP1A	Х	.69	1
10	MP1A	Mx	000226	1
11	MP1A	Х	.69	5
12	MP1A	Mx	000226	5
13	MP1A	Х	.69	1
14	MP1A	Mx	.000571	1
15	MP1A	Х	.69	5
16	MP1A	Mx	.000571	5
17	MP2A	Х	1.306	1
18	MP2A	Mx	.000327	1
19	MP2A	Х	1.306	3
20	MP2A	Mx	.000327	3
21	MP2A	Х	.132	5
22	MP2A	Mx	3.3e-5	5
23	MP1A	Х	1.587	4
24	MP1A	Mx	000397	4
25	MP1A	Х	2.532	2
26	MP1A	Mx	000633	2
27	MP2A	Х	2.109	.5
28	MP2A	Mx	000527	.5
29	MP3A	Х	.561	4
30	MP3A	Mx	-9.6e-5	4
31	RRU1	Х	2.532	1.5
32	RRU1	Mx	.000633	1.5
33	RRU2	Х	2.109	1.5
34	RRU2	Mx	.000527	1.5

Member Distributed Loads (BLC 40 : Structure Di)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Y	-9.609	-9.609	0	%100
2	M2	Y	-6.566	-6.566	0	%100
3	M4	Y	-6.566	-6.566	0	%100
4	MP1A	Y	-4.979	-4.979	0	%100
5	MP3A	Y	-4.979	-4.979	0	%100
6	MP2A	Y	-4.979	-4.979	0	%100
7	RRU1	Y	-4.979	-4.979	0	%100
8	RRU2	Y	-4.979	-4.979	0	%100

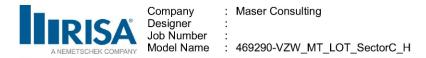
Member Distributed Loads (BLC 41 : Structure Wo (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	Х	0	0	0	%100
4	M2	Z	-8.916	-8.916	0	%100
5	M4	Х	0	0	0	%100
6	M4	Z	-13.266	-13.266	0	%100
7	MP1A	Х	0	0	0	%100

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
8	MP1A	Z	-9.643	-9.643	0	%100
9	MP3A	Х	0	0	0	%100
10	MP3A	Z	-9.643	-9.643	0	%100
11	MP2A	Х	0	0	0	%100
12	MP2A	Z	-9.643	-9.643	0	%100
13	RRU1	X	0	0	0	%100
14	RRU1	Z	-8.788	-8.788	0	%100
15	RRU2	X	0	0	0	%100
16	RRU2	Z	-8.788	-8.788	0	%100

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg))


	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	1.583	1.583	0	%100
2	M1	Z	-2.742	-2.742	0	%100
3	M2	Х	4.458	4.458	0	%100
4	M2	Z	-7.721	-7.721	0	%100
5	M4	Х	4.975	4.975	0	%100
6	M4	Z	-8.617	-8.617	0	%100
7	MP1A	Х	4.822	4.822	0	%100
8	MP1A	Z	-8.351	-8.351	0	%100
9	MP3A	Х	4.822	4.822	0	%100
10	MP3A	Z	-8.351	-8.351	0	%100
11	MP2A	Х	4.822	4.822	0	%100
12	MP2A	Z	-8.351	-8.351	0	%100
13	RRU1	Х	4.394	4.394	0	%100
14	RRU1	Z	-7.611	-7.611	0	%100
15	RRU2	Х	4.394	4.394	0	%100
16	RRU2	Z	-7.611	-7.611	0	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	8.227	8.227	0	%100
2	M1	Z	-4.75	-4.75	0	%100
3	M2	X	7.721	7.721	0	%100
4	M2	Z	-4.458	-4.458	0	%100
5	M4	X	2.872	2.872	0	%100
6	M4	Z	-1.658	-1.658	0	%100
7	MP1A	X	8.351	8.351	0	%100
8	MP1A	Z	-4.822	-4.822	0	%100
9	MP3A	X	8.351	8.351	0	%100
10	MP3A	Z	-4.822	-4.822	0	%100
11	MP2A	X	8.351	8.351	0	%100
12	MP2A	Z	-4.822	-4.822	0	%100
13	RRU1	X	7.611	7.611	0	%100
14	RRU1	Z	-4.394	-4.394	0	%100
15	RRU2	X	7.611	7.611	0	%100
16	RRU2	Z	-4.394	-4.394	0	%100

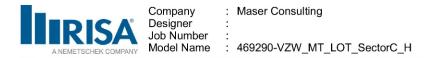
Member Distributed Loads (BLC 44 : Structure Wo (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	12.666	12.666	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	8.916	8.916	0	%100
4	M2	Z	0	0	0	%100
5	M4	X	0	0	0	%100

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
6	M4	Z	0	0	0	%100
7	MP1A	Х	9.643	9.643	0	%100
8	MP1A	Z	0	0	0	%100
9	MP3A	Х	9.643	9.643	0	%100
10	MP3A	Z	0	0	0	%100
11	MP2A	Х	9.643	9.643	0	%100
12	MP2A	Z	0	0	0	%100
13	RRU1	Х	8.788	8.788	0	%100
14	RRU1	Z	0	0	0	%100
15	RRU2	X	8.788	8.788	0	%100
16	RRU2	Z	0	0	0	%100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg))


	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	8.227	8.227	0	%100
2	M1	Z	4.75	4.75	0	%100
3	M2	Х	7.721	7.721	0	%100
4	M2	Z	4.458	4.458	0	%100
5	M4	Х	2.872	2.872	0	%100
6	M4	Z	1.658	1.658	0	%100
7	MP1A	Х	8.351	8.351	0	%100
8	MP1A	Z	4.822	4.822	0	%100
9	MP3A	Х	8.351	8.351	0	%100
10	MP3A	Z	4.822	4.822	0	%100
11	MP2A	Х	8.351	8.351	0	%100
12	MP2A	Z	4.822	4.822	0	%100
13	RRU1	Х	7.611	7.611	0	%100
14	RRU1	Z	4.394	4.394	0	%100
15	RRU2	Х	7.611	7.611	0	%100
16	RRU2	Z	4.394	4.394	0	%100

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	1.583	1.583	0	%100
2	M1	Z	2.742	2.742	0	%100
3	M2	X	4.458	4.458	0	%100
4	M2	Z	7.721	7.721	0	%100
5	M4	X	4.975	4.975	0	%100
6	M4	Z	8.617	8.617	0	%100
7	MP1A	Х	4.822	4.822	0	%100
8	MP1A	Z	8.351	8.351	0	%100
9	MP3A	Х	4.822	4.822	0	%100
10	MP3A	Z	8.351	8.351	0	%100
11	MP2A	X	4.822	4.822	0	%100
12	MP2A	Z	8.351	8.351	0	%100
13	RRU1	X	4.394	4.394	0	%100
14	RRU1	Z	7.611	7.611	0	%100
15	RRU2	Х	4.394	4.394	0	%100
16	RRU2	Z	7.611	7.611	0	%100

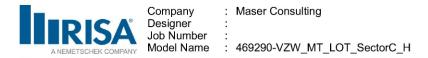
Member Distributed Loads (BLC 47 : Structure Wo (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	0	0	0	%100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
4	M2	Z	8.916	8.916	0	%100
5	M4	X	0	0	0	%100
6	M4	Z	13.266	13.266	0	%100
7	MP1A	Х	0	0	0	%100
8	MP1A	Z	9.643	9.643	0	%100
9	MP3A	Х	0	0	0	%100
10	MP3A	Z	9.643	9.643	0	%100
11	MP2A	Х	0	0	0	%100
12	MP2A	Z	9.643	9.643	0	%100
13	RRU1	Х	0	0	0	%100
14	RRU1	Z	8.788	8.788	0	%100
15	RRU2	X	0	0	0	%100
16	RRU2	Z	8.788	8.788	0	%100

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg))


	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	-1.583	-1.583	0	%100
2	M1	Z	2.742	2.742	0	%100
3	M2	Х	-4.458	-4.458	0	%100
4	M2	Z	7.721	7.721	0	%100
5	M4	Х	-4.975	-4.975	0	%100
6	M4	Z	8.617	8.617	0	%100
7	MP1A	Х	-4.822	-4.822	0	%100
8	MP1A	Z	8.351	8.351	0	%100
9	MP3A	Х	-4.822	-4.822	0	%100
10	MP3A	Z	8.351	8.351	0	%100
11	MP2A	Х	-4.822	-4.822	0	%100
12	MP2A	Z	8.351	8.351	0	%100
13	RRU1	Х	-4.394	-4.394	0	%100
14	RRU1	Z	7.611	7.611	0	%100
15	RRU2	Х	-4.394	-4.394	0	%100
16	RRU2	Z	7.611	7.611	0	%100

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg))

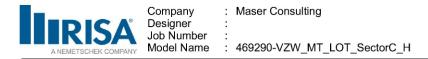
	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	-8.227	-8.227	0	%100
2	M1	Z	4.75	4.75	0	%100
3	M2	Х	-7.721	-7.721	0	%100
4	M2	Z	4.458	4.458	0	%100
5	M4	Х	-2.872	-2.872	0	%100
6	M4	Z	1.658	1.658	0	%100
7	MP1A	Х	-8.351	-8.351	0	%100
8	MP1A	Z	4.822	4.822	0	%100
9	MP3A	Х	-8.351	-8.351	0	%100
10	MP3A	Z	4.822	4.822	0	%100
11	MP2A	Х	-8.351	-8.351	0	%100
12	MP2A	Z	4.822	4.822	0	%100
13	RRU1	Х	-7.611	-7.611	0	%100
14	RRU1	Z	4.394	4.394	0	%100
15	RRU2	Х	-7.611	-7.611	0	%100
16	RRU2	Z	4.394	4.394	0	%100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	-12.666	-12.666	0	%100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
2	M1	Z	0	0	0	%100
3	M2	X	-8.916	-8.916	0	%100
4	M2	Z	0	0	0	%100
5	M4	X	0	0	0	%100
6	M4	Z	0	0	0	%100
7	MP1A	X	-9.643	-9.643	0	%100
8	MP1A	Z	0	0	0	%100
9	MP3A	X	-9.643	-9.643	0	%100
10	MP3A	Z	0	0	0	%100
11	MP2A	X	-9.643	-9.643	0	%100
12	MP2A	Z	0	0	0	%100
13	RRU1	X	-8.788	-8.788	0	%100
14	RRU1	Z	0	0	0	%100
15	RRU2	X	-8.788	-8.788	0	%100
16	RRU2	Z	0	0	0	%100


Member Distributed Loads (BLC 51 : Structure Wo (300 Deg))

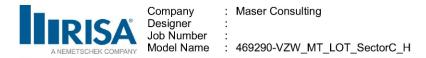
	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	-8.227	-8.227	0	%100
2	M1	Z	-4.75	-4.75	0	%100
3	M2	Х	-7.721	-7.721	0	%100
4	M2	Z	-4.458	-4.458	0	%100
5	M4	Х	-2.872	-2.872	0	%100
6	M4	Z	-1.658	-1.658	0	%100
7	MP1A	Х	-8.351	-8.351	0	%100
8	MP1A	Z	-4.822	-4.822	0	%100
9	MP3A	Х	-8.351	-8.351	0	%100
10	MP3A	Z	-4.822	-4.822	0	%100
11	MP2A	Х	-8.351	-8.351	0	%100
12	MP2A	Z	-4.822	-4.822	0	%100
13	RRU1	Х	-7.611	-7.611	0	%100
14	RRU1	Z	-4.394	-4.394	0	%100
15	RRU2	Х	-7.611	-7.611	0	%100
16	RRU2	Z	-4.394	-4.394	0	%100

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	-1.583	-1.583	0	%100
2	M1	Z	-2.742	-2.742	0	%100
3	M2	X	-4.458	-4.458	0	%100
4	M2	Z	-7.721	-7.721	0	%100
5	M4	X	-4.975	-4.975	0	%100
6	M4	Z	-8.617	-8.617	0	%100
7	MP1A	X	-4.822	-4.822	0	%100
8	MP1A	Z	-8.351	-8.351	0	%100
9	MP3A	X	-4.822	-4.822	0	%100
10	MP3A	Z	-8.351	-8.351	0	%100
11	MP2A	X	-4.822	-4.822	0	%100
12	MP2A	Z	-8.351	-8.351	0	%100
13	RRU1	Х	-4.394	-4.394	0	%100
14	RRU1	Z	-7.611	-7.611	0	%100
15	RRU2	X	-4.394	-4.394	0	%100
16	RRU2	Z	-7.611	-7.611	0	%100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg))

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg)) (Continued)


	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	Х	0	0	0	%100
4	M2	Z	-2.808	-2.808	0	%100
5	M4	X	0	0	0	%100
6	M4	Z	-4.177	-4.177	0	%100
7	MP1A	X	0	0	0	%100
8	MP1A	Z	-3.474	-3.474	0	%100
9	MP3A	Х	0	0	0	%100
10	MP3A	Z	-3.474	-3.474	0	%100
11	MP2A	Х	0	0	0	%100
12	MP2A	Z	-3.474	-3.474	0	%100
13	RRU1	Х	0	0	0	%100
14	RRU1	Z	-3.184	-3.184	0	%100
15	RRU2	X	0	0	0	%100
16	RRU2	Z	-3.184	-3.184	0	%100

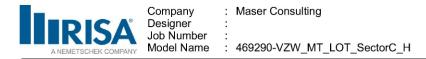
Member Distributed Loads (BLC 54 : Structure Wi (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.465	.465	0	%100
2	M1	Z	805	805	0	%100
3	M2	Х	1.404	1.404	0	%100
4	M2	Z	-2.432	-2.432	0	%100
5	M4	Х	1.566	1.566	0	%100
6	M4	Z	-2.713	-2.713	0	%100
7	MP1A	Х	1.737	1.737	0	%100
8	MP1A	Z	-3.008	-3.008	0	%100
9	MP3A	Х	1.737	1.737	0	%100
10	MP3A	Z	-3.008	-3.008	0	%100
11	MP2A	Х	1.737	1.737	0	%100
12	MP2A	Z	-3.008	-3.008	0	%100
13	RRU1	Х	1.592	1.592	0	%100
14	RRU1	Z	-2.757	-2.757	0	%100
15	RRU2	Х	1.592	1.592	0	%100
16	RRU2	Z	-2.757	-2.757	0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	2.415	2.415	0	%100
2	M1	Z	-1.394	-1.394	0	%100
3	M2	Х	2.432	2.432	0	%100
4	M2	Z	-1.404	-1.404	0	%100
5	M4	Х	.904	.904	0	%100
6	M4	Z	522	522	0	%100
7	MP1A	Х	3.008	3.008	0	%100
8	MP1A	Z	-1.737	-1.737	0	%100
9	MP3A	Х	3.008	3.008	0	%100
10	MP3A	Z	-1.737	-1.737	0	%100
11	MP2A	Х	3.008	3.008	0	%100
12	MP2A	Z	-1.737	-1.737	0	%100
13	RRU1	Х	2.757	2.757	0	%100
14	RRU1	Z	-1.592	-1.592	0	%100
15	RRU2	Х	2.757	2.757	0	%100
16	RRU2	Z	-1.592	-1.592	0	%100

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg))


	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	3.719	3.719	0	%100
2	M1	Z	0	0	0	%100
3	M2	Х	2.808	2.808	0	%100
4	M2	Z	0	0	0	%100
5	M4	Х	0	0	0	%100
6	M4	Z	0	0	0	%100
7	MP1A	X	3.474	3.474	0	%100
8	MP1A	Z	0	0	0	%100
9	MP3A	X	3.474	3.474	0	%100
10	MP3A	Z	0	0	0	%100
11	MP2A	Х	3.474	3.474	0	%100
12	MP2A	Z	0	0	0	%100
13	RRU1	Х	3.184	3.184	0	%100
14	RRU1	Z	0	0	0	%100
15	RRU2	X	3.184	3.184	0	%100
16	RRU2	Z	0	0	0	%100

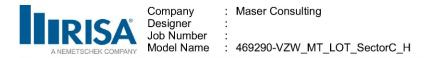
Member Distributed Loads (BLC 57 : Structure Wi (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F.,	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	2.415	2.415	0	%100
2	M1	Z	1.394	1.394	0	%100
3	M2	Х	2.432	2.432	0	%100
4	M2	Z	1.404	1.404	0	%100
5	M4	Х	.904	.904	0	%100
6	M4	Z	.522	.522	0	%100
7	MP1A	Х	3.008	3.008	0	%100
8	MP1A	Z	1.737	1.737	0	%100
9	MP3A	Х	3.008	3.008	0	%100
10	MP3A	Z	1.737	1.737	0	%100
11	MP2A	Х	3.008	3.008	0	%100
12	MP2A	Z	1.737	1.737	0	%100
13	RRU1	Х	2.757	2.757	0	%100
14	RRU1	Z	1.592	1.592	0	%100
15	RRU2	Х	2.757	2.757	0	%100
16	RRU2	Z	1.592	1.592	0	%100

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.465	.465	0	%100
2	M1	Z	.805	.805	0	%100
3	M2	Х	1.404	1.404	0	%100
4	M2	Z	2.432	2.432	0	%100
5	M4	Х	1.566	1.566	0	%100
6	M4	Z	2.713	2.713	0	%100
7	MP1A	Х	1.737	1.737	0	%100
8	MP1A	Z	3.008	3.008	0	%100
9	MP3A	Х	1.737	1.737	0	%100
10	MP3A	Z	3.008	3.008	0	%100
11	MP2A	Х	1.737	1.737	0	%100
12	MP2A	Z	3.008	3.008	0	%100
13	RRU1	Х	1.592	1.592	0	%100
14	RRU1	Z	2.757	2.757	0	%100
15	RRU2	Х	1.592	1.592	0	%100
16	RRU2	Z	2.757	2.757	0	%100

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg))


	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	Х	0	0	0	%100
4	M2	Z	2.808	2.808	0	%100
5	M4	X	0	0	0	%100
6	M4	Z	4.177	4.177	0	%100
7	MP1A	X	0	0	0	%100
8	MP1A	Z	3.474	3.474	0	%100
9	MP3A	X	0	0	0	%100
10	MP3A	Z	3.474	3.474	0	%100
11	MP2A	Х	0	0	0	%100
12	MP2A	Z	3.474	3.474	0	%100
13	RRU1	Х	0	0	0	%100
14	RRU1	Z	3.184	3.184	0	%100
15	RRU2	Х	0	0	0	%100
16	RRU2	Z	3.184	3.184	0	%100

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	465	465	0	%100
2	M1	Z	.805	.805	0	%100
3	M2	Х	-1.404	-1.404	0	%100
4	M2	Z	2.432	2.432	0	%100
5	M4	Х	-1.566	-1.566	0	%100
6	M4	Z	2.713	2.713	0	%100
7	MP1A	Х	-1.737	-1.737	0	%100
8	MP1A	Z	3.008	3.008	0	%100
9	MP3A	Х	-1.737	-1.737	0	%100
10	MP3A	Z	3.008	3.008	0	%100
11	MP2A	Х	-1.737	-1.737	0	%100
12	MP2A	Z	3.008	3.008	0	%100
13	RRU1	Х	-1.592	-1.592	0	%100
14	RRU1	Z	2.757	2.757	0	%100
15	RRU2	Х	-1.592	-1.592	0	%100
16	RRU2	Z	2.757	2.757	0	%100

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	-2.415	-2.415	0	%100
2	M1	Z	1.394	1.394	0	%100
3	M2	Х	-2.432	-2.432	0	%100
4	M2	Z	1.404	1.404	0	%100
5	M4	Х	904	904	0	%100
6	M4	Z	.522	.522	0	%100
7	MP1A	Х	-3.008	-3.008	0	%100
8	MP1A	Z	1.737	1.737	0	%100
9	MP3A	Х	-3.008	-3.008	0	%100
10	MP3A	Z	1.737	1.737	0	%100
11	MP2A	Х	-3.008	-3.008	0	%100
12	MP2A	Z	1.737	1.737	0	%100
13	RRU1	Х	-2.757	-2.757	0	%100
14	RRU1	Z	1.592	1.592	0	%100
15	RRU2	X	-2.757	-2.757	0	%100
16	RRU2	Z	1.592	1.592	0	%100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	-3.719	-3.719	0	%100
2	M1	Z	0	0	0	%100
3	M2	Х	-2.808	-2.808	0	%100
4	M2	Z	0	0	0	%100
5	M4	X	0	0	0	%100
6	M4	Z	0	0	0	%100
7	MP1A	X	-3.474	-3.474	0	%100
8	MP1A	Z	0	0	0	%100
9	MP3A	X	-3.474	-3.474	0	%100
10	MP3A	Z	0	0	0	%100
11	MP2A	Х	-3.474	-3.474	0	%100
12	MP2A	Z	0	0	0	%100
13	RRU1	Х	-3.184	-3.184	0	%100
14	RRU1	Z	0	0	0	%100
15	RRU2	X	-3.184	-3.184	0	%100
16	RRU2	Z	0	0	0	%100

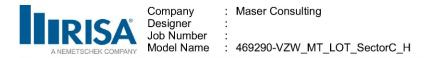
Member Distributed Loads (BLC 63 : Structure Wi (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft.F.	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	-2.415	-2.415	0	%100
2	M1	Z	-1.394	-1.394	0	%100
3	M2	Х	-2.432	-2.432	0	%100
4	M2	Z	-1.404	-1.404	0	%100
5	M4	Х	904	904	0	%100
6	M4	Z	522	522	0	%100
7	MP1A	Х	-3.008	-3.008	0	%100
8	MP1A	Z	-1.737	-1.737	0	%100
9	MP3A	Х	-3.008	-3.008	0	%100
10	MP3A	Z	-1.737	-1.737	0	%100
11	MP2A	Х	-3.008	-3.008	0	%100
12	MP2A	Z	-1.737	-1.737	0	%100
13	RRU1	Х	-2.757	-2.757	0	%100
14	RRU1	Z	-1.592	-1.592	0	%100
15	RRU2	Х	-2.757	-2.757	0	%100
16	RRU2	Z	-1.592	-1.592	0	%100

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	465	465	0	%100
2	M1	Z	805	805	0	%100
3	M2	Х	-1.404	-1.404	0	%100
4	M2	Z	-2.432	-2.432	0	%100
5	M4	Х	-1.566	-1.566	0	%100
6	M4	Z	-2.713	-2.713	0	%100
7	MP1A	Х	-1.737	-1.737	0	%100
8	MP1A	Z	-3.008	-3.008	0	%100
9	MP3A	Х	-1.737	-1.737	0	%100
10	MP3A	Z	-3.008	-3.008	0	%100
11	MP2A	Х	-1.737	-1.737	0	%100
12	MP2A	Z	-3.008	-3.008	0	%100
13	RRU1	Х	-1.592	-1.592	0	%100
14	RRU1	Z	-2.757	-2.757	0	%100
15	RRU2	Х	-1.592	-1.592	0	%100
16	RRU2	Z	-2.757	-2.757	0	%100

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg))


	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft.F.	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	Х	0	0	0	%100
4	M2	Z	586	586	0	%100
5	M4	Х	0	0	0	%100
6	M4	Z	872	872	0	%100
7	MP1A	X	0	0	0	%100
8	MP1A	Z	634	634	0	%100
9	MP3A	Х	0	0	0	%100
10	MP3A	Z	634	634	0	%100
11	MP2A	Х	0	0	0	%100
12	MP2A	Z	634	634	0	%100
13	RRU1	X	0	0	0	%100
14	RRU1	Z	578	578	0	%100
15	RRU2	X	0	0	0	%100
16	RRU2	Z	578	578	0	%100

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.104	.104	0	%100
2	M1	Z	18	18	0	%100
3	M2	Х	.293	.293	0	%100
4	M2	Z	508	508	0	%100
5	M4	Х	.327	.327	0	%100
6	M4	Z	567	567	0	%100
7	MP1A	Х	.317	.317	0	%100
8	MP1A	Z	549	549	0	%100
9	MP3A	Х	.317	.317	0	%100
10	MP3A	Z	549	549	0	%100
11	MP2A	Х	.317	.317	0	%100
12	MP2A	Z	549	549	0	%100
13	RRU1	Х	.289	.289	0	%100
14	RRU1	Z	5	5	0	%100
15	RRU2	Х	.289	.289	0	%100
16	RRU2	Z	5	5	0	%100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.541	.541	0	%100
2	M1	Z	312	312	0	%100
3	M2	Х	.508	.508	0	%100
4	M2	Z	293	293	0	%100
5	M4	Х	.189	.189	0	%100
6	M4	Z	109	109	0	%100
7	MP1A	Х	.549	.549	0	%100
8	MP1A	Z	317	317	0	%100
9	MP3A	Х	.549	.549	0	%100
10	MP3A	Z	317	317	0	%100
11	MP2A	Х	.549	.549	0	%100
12	MP2A	Z	317	317	0	%100
13	RRU1	Х	.5	.5	0	%100
14	RRU1	Z	289	289	0	%100
15	RRU2	Х	.5	.5	0	%100
16	RRU2	Z	289	289	0	%100

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.833	.833	0	%100
2	M1	Z	0	0	0	%100
3	M2	Х	.586	.586	0	%100
4	M2	Z	0	0	0	%100
5	M4	Х	0	0	0	%100
6	M4	Z	0	0	0	%100
7	MP1A	X	.634	.634	0	%100
8	MP1A	Z	0	0	0	%100
9	MP3A	Х	.634	.634	0	%100
10	MP3A	Z	0	0	0	%100
11	MP2A	Х	.634	.634	0	%100
12	MP2A	Z	0	0	0	%100
13	RRU1	Х	.578	.578	0	%100
14	RRU1	Z	0	0	0	%100
15	RRU2	X	.578	.578	0	%100
16	RRU2	Z	0	0	0	%100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.541	.541	0	%100
2	M1	Z	.312	.312	0	%100
3	M2	Х	.508	.508	0	%100
4	M2	Z	.293	.293	0	%100
5	M4	Х	.189	.189	0	%100
6	M4	Z	.109	.109	0	%100
7	MP1A	Х	.549	.549	0	%100
8	MP1A	Z	.317	.317	0	%100
9	MP3A	Х	.549	.549	0	%100
10	MP3A	Z	.317	.317	0	%100
11	MP2A	Х	.549	.549	0	%100
12	MP2A	Z	.317	.317	0	%100
13	RRU1	Х	.5	.5	0	%100
14	RRU1	Z	.289	.289	0	%100
15	RRU2	Х	.5	.5	0	%100
16	RRU2	Z	.289	.289	0	%100

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.104	.104	0	%100
2	M1	Z	.18	.18	0	%100
3	M2	Х	.293	.293	0	%100
4	M2	Z	.508	.508	0	%100
5	M4	Х	.327	.327	0	%100
6	M4	Z	.567	.567	0	%100
7	MP1A	Х	.317	.317	0	%100
8	MP1A	Z	.549	.549	0	%100
9	MP3A	Х	.317	.317	0	%100
10	MP3A	Z	.549	.549	0	%100
11	MP2A	Х	.317	.317	0	%100
12	MP2A	Z	.549	.549	0	%100
13	RRU1	Х	.289	.289	0	%100
14	RRU1	Z	.5	.5	0	%100
15	RRU2	Х	.289	.289	0	%100
16	RRU2	Z	.5	.5	0	%100

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	Х	0	0	0	%100
4	M2	Z	.586	.586	0	%100
5	M4	Х	0	0	0	%100
6	M4	Z	.872	.872	0	%100
7	MP1A	Х	0	0	0	%100
8	MP1A	Z	.634	.634	0	%100
9	MP3A	Х	0	0	0	%100
10	MP3A	Z	.634	.634	0	%100
11	MP2A	Х	0	0	0	%100
12	MP2A	Z	.634	.634	0	%100
13	RRU1	Х	0	0	0	%100
14	RRU1	Z	.578	.578	0	%100
15	RRU2	X	0	0	0	%100
16	RRU2	Z	.578	.578	0	%100

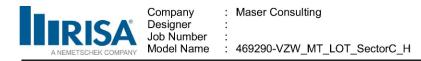
Member Distributed Loads (BLC 72 : Structure Wm (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	104	104	0	%100
2	M1	Z	.18	.18	0	%100
3	M2	Х	293	293	0	%100
4	M2	Z	.508	.508	0	%100
5	M4	Х	327	327	0	%100
6	M4	Z	.567	.567	0	%100
7	MP1A	Х	317	317	0	%100
8	MP1A	Z	.549	.549	0	%100
9	MP3A	Х	317	317	0	%100
10	MP3A	Z	.549	.549	0	%100
11	MP2A	Х	317	317	0	%100
12	MP2A	Z	.549	.549	0	%100
13	RRU1	Х	289	289	0	%100
14	RRU1	Z	.5	.5	0	%100
15	RRU2	Х	289	289	0	%100
16	RRU2	Z	.5	.5	0	%100

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	541	541	0	%100
2	M1	Z	.312	.312	0	%100
3	M2	X	508	508	0	%100
4	M2	Z	.293	.293	0	%100
5	M4	X	189	189	0	%100
6	M4	Z	.109	.109	0	%100
7	MP1A	X	549	549	0	%100
8	MP1A	Z	.317	.317	0	%100
9	MP3A	X	549	549	0	%100
10	MP3A	Z	.317	.317	0	%100
11	MP2A	Х	549	549	0	%100
12	MP2A	Z	.317	.317	0	%100
13	RRU1	X	5	5	0	%100
14	RRU1	Z	.289	.289	0	%100
15	RRU2	X	5	5	0	%100
16	RRU2	Z	.289	.289	0	%100

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg))


	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	833	833	0	%100
2	M1	Z	0	0	0	%100
3	M2	Х	586	586	0	%100
4	M2	Z	0	0	0	%100
5	M4	X	0	0	0	%100
6	M4	Z	0	0	0	%100
7	MP1A	X	634	634	0	%100
8	MP1A	Z	0	0	0	%100
9	MP3A	X	634	634	0	%100
10	MP3A	Z	0	0	0	%100
11	MP2A	Х	634	634	0	%100
12	MP2A	Z	0	0	0	%100
13	RRU1	Х	578	578	0	%100
14	RRU1	Z	0	0	0	%100
15	RRU2	X	578	578	0	%100
16	RRU2	Z	0	0	0	%100

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	541	541	0	%100
2	M1	Z	312	312	0	%100
3	M2	Х	508	508	0	%100
4	M2	Z	293	293	0	%100
5	M4	Х	189	189	0	%100
6	M4	Z	109	109	0	%100
7	MP1A	Х	549	549	0	%100
8	MP1A	Z	317	317	0	%100
9	MP3A	Х	549	549	0	%100
10	MP3A	Z	317	317	0	%100
11	MP2A	Х	549	549	0	%100
12	MP2A	Z	317	317	0	%100
13	RRU1	Х	5	5	0	%100
14	RRU1	Z	289	289	0	%100
15	RRU2	Х	5	5	0	%100
16	RRU2	Z	289	289	0	%100

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	104	104	0	%100
2	M1	Z	18	18	0	%100
3	M2	Х	293	293	0	%100
4	M2	Z	508	508	0	%100
5	M4	Х	327	327	0	%100
6	M4	Z	567	567	0	%100
7	MP1A	Х	317	317	0	%100
8	MP1A	Z	549	549	0	%100
9	MP3A	Х	317	317	0	%100
10	MP3A	Z	549	549	0	%100
11	MP2A	Х	317	317	0	%100
12	MP2A	Z	549	549	0	%100
13	RRU1	Х	289	289	0	%100
14	RRU1	Z	5	5	0	%100
15	RRU2	Х	289	289	0	%100
16	RRU2	Z	5	5	0	%100

Member Area Loads

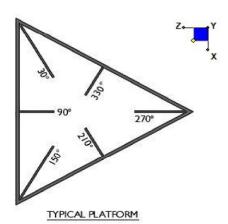
 Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]			
No Data to Print									

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N1	max	2097.424	10	2319.402	15	2351.952	1	-2.41	64	6.379	10	2.41	40
2		min	-2097.424	4	844.283	71	-2351.952	7	-6.913	19	-6.36	4	-2.161	34
3	Totals:	max	2097.424	10	2319.402	15	2351.952	1						
4		min	-2097.424	4	844.283	71	-2351.952	7						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Che	Loc[ft]	LC	Shear	Loc[ft]	Dir	LC	phi*Pn	phi*Pnt		phi*Mn	Cb Eqn
1	M1	HSS4X4X4	.594	0	10	.225	0	y	40	134534	139518	16.181	16.181	1H1-1b
2	M2	PIPE 3.0	.000	.75	7	.000	.75		7	64424	65205	5.749	5.749	1 H1-1b
3	M4	PIPE 3.0	.577	3.25	1	.109	3.25		7	52006	65205	5.749	5.749	1H1-1b
4	MP1A	PIPE 2.0	.510	3	5	.122	1.938		8	20866	32130	1.872	1.872	1H1-1b
5	MP3A	PIPE 2.0	.582	3	8	.123	3		9	20866	32130	1.872	1.872	1H1-1b
6	MP2A	PIPE 2.0	.240	3	5	.023	3		6	20866	32130	1.872	1.872	1H1-1b
7	RRU1	PIPE 2.0	.111	3	3	.024	3		7	26521	32130	1.872	1.872	1H1-1b
8	RRU2	PIPE_2.0	.106	3	3	.021	3		7	26521	32130	1.872	1.872	1H1-1b


	Client:	Verizon Wireless	Date:	10/28/2021
	Site Name:	GREENWICH 3 CT		
MASER CONSULTING	Project No.	21781145A		
- CONNECTICUT-	Title:	Mount Analysis	Page:	1

Version 3.1

I. Mount-to-Tower Connection Check

RISA Model Data

Nodes (labeled per RISA)	Orientation (per graphic of typical platform)
N1	90
N41	330
N21	210

Tower Connection Bolt Checks

Any moment resistance?:

Bolt Quantity per Reaction: dx (in) (Delta X of typ. bolt config. sketch):

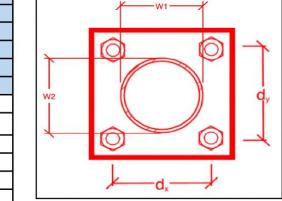
 d_y (in) (Delta Y of typ. bolt config. sketch):

Bolt Type:

Bolt Diameter (in):

Required Tensile Strength (kips):

Required Shear Strength (kips):


Tensile Strength / bolt (kips): Shear Strength / bolt (kips):

Tensile Capacity Overall:

Shear Capacity Overall:

Shear capacity overall.

F	
yes	
4	
6	
6	
A325N	
0.625	
30.0	
27.6	
20.7	
12.4	
36.2%*	
55.6%	

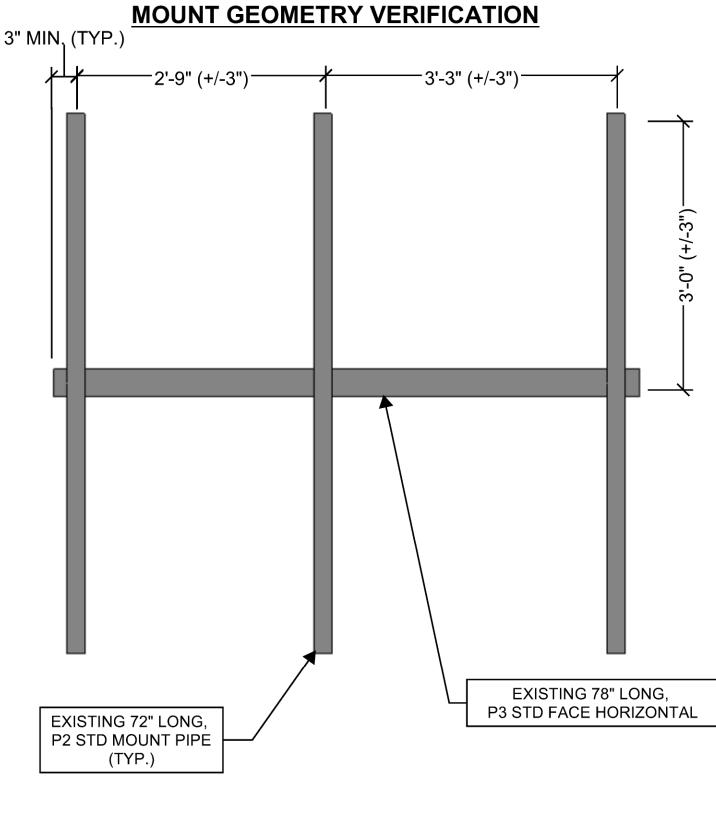
*Note: Tension reduction not required if tension or shear capacity < 30%

Tower Connection Plate and Weld Check

Connecting Standoff Member Shape: Plate Width (in): Plate Height (in): W1 (in): W2 (in): Fy (ksi, plate): t_{Plate} (in): Weld Size (1/16 in):

Phi*Rn (kip/in): Required Weld Strength (kip/in):

Plate Bending Capacity:

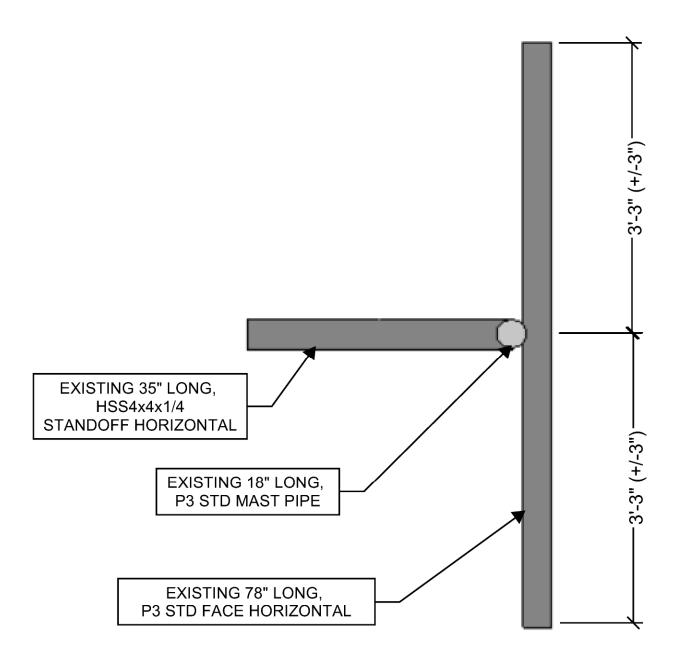

Weld Capacity:

Rect
8
8
4
4
36
0.625
4
5.57
4.03
75.9%
72.4%

Max Plate Bending Strengths

Mu_{xx} (kip-in): Phi*Mn_{xx} (kip-in): Mu_{yy} (kip-in): Phi*Mn_{yy} (kip-in):

 5
6.5
25.3
12.8
25.3

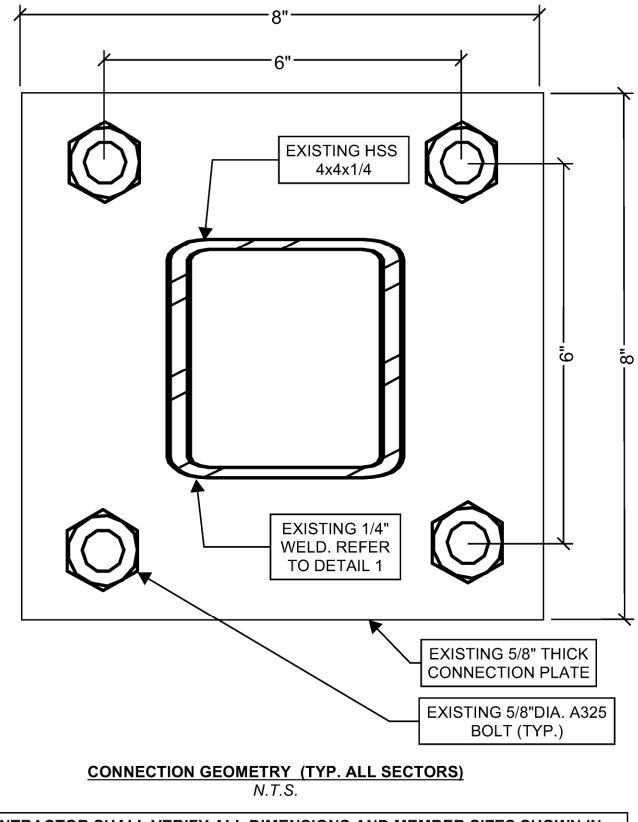


MOUNT FRONT ELEVATION VIEW (TYP. ALL SECTORS)

N.T.S.

CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND MEMBER SIZES SHOWN IN THIS SKETCH. DOCUMENT ALL VARIATIONS OR DEVIATIONS VIA PHOTOS AND SKETCHES AND PROVIDE TO THE EOR FOR EVALUATION

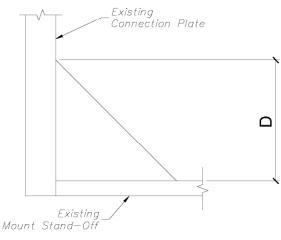
MOUNT GEOMETRY VERIFICATION



MOUNT PLAN VIEW (TYP. ALL SECTORS)

N.T.S.

CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND MEMBER SIZES SHOWN IN THIS SKETCH. DOCUMENT ALL VARIATIONS OR DEVIATIONS VIA PHOTOS AND SKETCHES AND PROVIDE TO THE EOR FOR EVALUATION


MOUNT GEOMETRY VERIFICATION

CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND MEMBER SIZES SHOWN IN THIS SKETCH. DOCUMENT ALL VARIATIONS OR DEVIATIONS VIA PHOTOS AND SKETCHES AND PROVIDE TO THE EOR FOR EVALUATION

MOUNT GEOMETRY VERIFICATION

STANDARD PIPE DIMENSIONS										
		THICKNESS (IN.)								
PIPE SIZE	O.D. (IN.)	STD	XSTR	XXSTR						
P1 1/2	1.900	0.145	0.200	0.400						
P2	2.375	0.154	0.218	0.436						
P2 1/2	2.875	0.203	0.276	0.552						
P3	3.500	0.216	0.300	0.600						
P3 1/2	4.000	0.226	0.318	0.636						
P4	4.500	0.237	0.337	0.674						
P4 1/2	5.000	0.247	0.355	0.710						
P5	5.563	0.258	0.375	0.750						
P6	6.625	0.280	0.432	0.864						

WELD MEASUREMENT NOTE:

CONTRACTOR SHALL MEASURE WELD SIZE 'D' AS SHOWN IN THIS DETAIL.

1 WELD MEASUREMENT DETAIL

CONTRACTOR SHALL USE MEMBER SIZES AND DETAILS TO FACILITATE GEOMETRY VERIFICATION. CONTACT EOR FOR ADDITIONAL CLARIFICATION IF NEEDED

Mount Desktop – Post Modification Inspection (PMI) Report Requirements

Documents & Photos Required from Contractor – Passing Mount Analysis

Passing Mount Analysis requires a PMI due to a modification in loading. Electronic pdf version of this can be downloaded at <u>https://pmi.vzwsmart.com</u>. For additional guestions and support, please reach out to pmisupport@colliersengineering.com

<u>**Purpose**</u> – to provide SMART Tool structural vendor the proper documentation in order to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the installation was completed in accordance with this Passing Mount Analysis.
- Contractor shall relay any data that can impact the performance of the mount, this includes safety issues.

Base Requirements:

- If installation will cause damage to the structure, the climbing facility, or safety climb if present or any installed system, SMART Tool vendor to be notified prior to install. Any special photos outside of the standard requirements will be indicated on the drawings.
- Provide "as built mount drawings" showing contractor's name, contact information, preparer's signature, and date. Any deviations from the drawings (Proposed modification) shall be shown. NOTE: If loading is different than what is conveyed in the passing mount analysis (MA) contact the SMART Tool vendor immediately.
- Each photo should be time and date stamped
- Photos should be high resolution.
- Contractor shall ensure that the safety climb wire rope is supported and not adversely impacted by the install of the modification components. This may involve the install of wire rope guides, or other items to protect the wire rope. If there is conflict, contact the SMART Tool engineer for recommendations.
- The PMI can be accessed at the following portal: https://pmi.vzwsmart.com

Photo Requirements:

- Photos taken at ground level
 - Photo of Gate Signs showing the tower owner, site name, and number.
 - Overall tower structure after installation.
 - Photos of the mount after installation; if the mounts are at different rad elevations, pictures must be provided for all elevations that equipment was installed.
- <u>Photos taken at Mount Elevation</u>
 - Photos showing the safety climb wire rope above and below the mount prior to installation.
 - Photos showing the climbing facility and safety climb if present.

- Photos showing each individual sector after installation. Each entire sector shall be in one photo to show the interconnection of members.
 - These photos shall also certify that the placement and geometry of the equipment on the mount is as depicted in the antenna placement diagram in this form.
- Photos that show the model number of each antenna and piece of equipment installed per sector.

Antenna & equipment placement and Geometry Confirmation:

• The contractor shall certify that the antenna & equipment placement and geometry is in accordance with the sketch and table as included in the mount analysis and noted below.

<u>Special Instructions / Validation as required from the MA or any other information the contractor</u> <u>deems necessary to share that was identified:</u>

Issue:

Prior to installation of equipment, contractor shall verify all dimensions and member sizes shown in the mount geometry verification requirements section of the mount analysis report. Escalate any discrepancies to EOR immediately as it may render the results of this analysis invalid and require additional modifications. Contact EOR if these documents are not available to the general contractor.

Contractor to install two (2) 48" long P2 STD mount pipe on Alpha standoff horizontal 18" from the mount connection. Attach proposed mount pipes, cantilevered 30" from the standoff with crossover plate (VZWSMART-MSK6). Contractor shall attach proposed OVP's 12" from top of each mount pipe.

Contractor to install two (2) 48" long P2 STD mount pipe on Gamma standoff horizontal 18" from the mount connection. Attach proposed mount pipes, cantilevered 36" from the standoff with crossover plate (VZWSMART-MSK6). Contractor shall attach proposed RRU's not shown in the attached placement diagrams 18" from top of each mount pipe.

Contractor to replace the position 2 mount pipe to face horizontal connection with crossover plate (Part #: VZWSMART-MSK2) in all sectors.

Response:

<u>Contractor certifies that the climbing facility / safety climb was not damaged or obstructed prior to starting work:</u>

Yes] No

Contractor certifies no new damage/obstructions created during the current installation:

🗆 Yes 🛛 🗆 No

Mount Structural Analysis Report (3) 6.50-Ft T-Arm

October 28, 2021 Site ID: 469290-VZW / GREENWICH 3 CT Page | 3

<u>Contractor to certify the condition of the safety climb and verify no obstructions when leaving the site:</u>

Safety climb in good condition with no obstructions
 Safety Climb Obstructed

□ Safety Climb Damaged

Comments:

□ All hardware has been properly installed, and the existing hardware was inspected.

□ The material utilized was as specified on the SMART Tool engineering vendor Mount Modification Drawings and included in the material certification folder is a packing list or invoice for these materials.

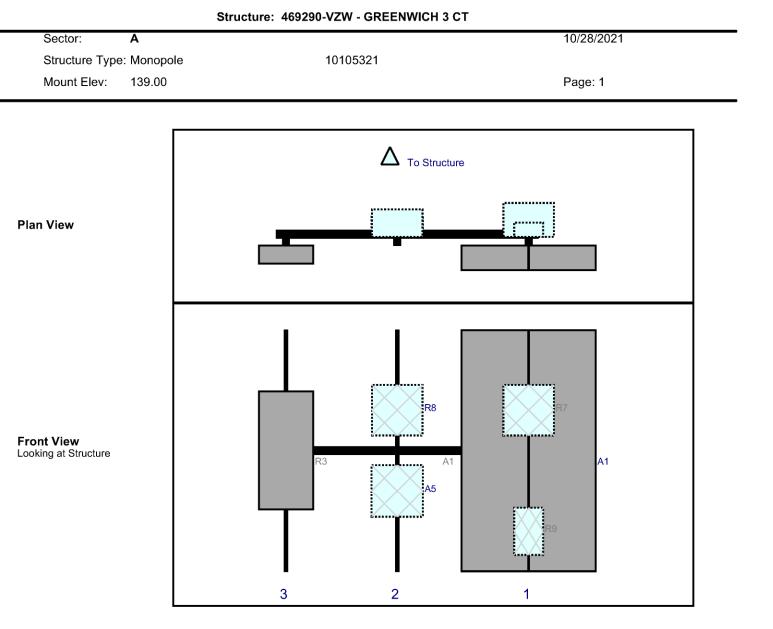
OR

□ The material utilized was approved by a SMART Tool as an "equivalent" and this approval is included as part of the contractor submission.

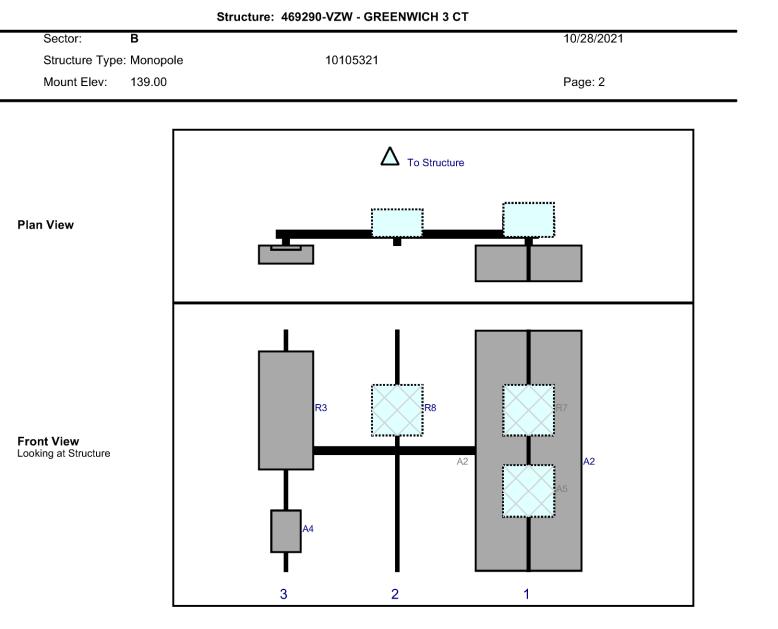
Antenna & equipment placement and Geometry Confirmation:

□ The contractor certifies that the photos support and the equipment on the mount is as depicted on the sketch and table included in this form and with the mount analysis provided.

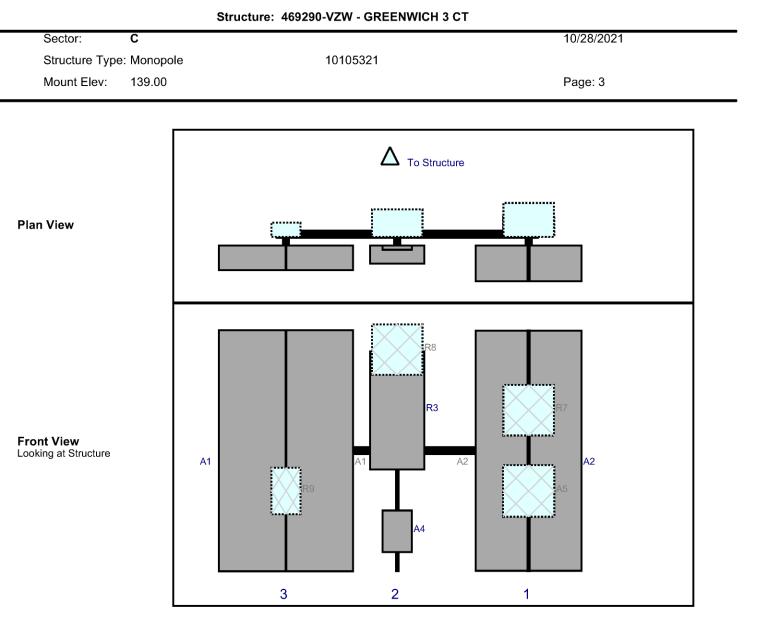
OR


□ The contractor notes that the equipment on the mount is not in accordance with the sketch and has noted the differences below and provided photo documentation of any alterations.

Special Instruction Confirmation:


□ The contractor has read and acknowledges the above special instructions.

Certifying Individual:


Company:	
Employee Name: Contact Phone:	
Contact Phone:	
Email:	
Date:	

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A1	MX10FRO640	71.6	19.8	75	1	а	Front	36	-10	Added	
A1	MX10FRO640	71.6	19.8	75	1	b	Front	36	10	Added	
R7	B2/B66A RRH-BR049 (RFV01U-D1A)	15	15	75	1	а	Behind	24	0	Added	
R9	CBRS RRH - RT4401-48A	13.9	8.6	75	1	а	Behind	60	0	Added	
A5	TD-850B-LTE78-43	15.4	15.2	36	2	а	Behind	48	0	Added	
R8	B5/B13 RRH-BR04C (RFV01U-D2A)	15	15	36	2	а	Behind	24	0	Added	
R3	MT6407-77A	35.1	16.1	3	3	а	Front	36	0	Added	

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A2	MX06FRO660-03	71.3	15.4	75	1	а	Front	36	-8	Added	
A2	MX06FRO660-03	71.3	15.4	75	1	b	Front	36	8	Added	
A5	TD-850B-LTE78-43	15.4	15.2	75	1	а	Behind	48	0	Added	
R7	B2/B66A RRH-BR049 (RFV01U-D1A)	15	15	75	1	а	Behind	24	0	Added	
R8	B5/B13 RRH-BR04C (RFV01U-D2A)	15	15	36	2	а	Behind	24	0	Added	
A4	XXDWMM-12.5-65-8T-CBRS	12.3	8.7	3	3	а	Front	60	0	Added	
R3	MT6407-77A	35.1	16.1	3	3	а	Front	24	0	Added	

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A2	MX06FRO660-03	71.3	15.4	75	1	а	Front	36	8	Added	
A2	MX06FRO660-03	71.3	15.4	75	1	b	Front	36	-8	Added	
A5	TD-850B-LTE78-43	15.4	15.2	75	1	а	Behind	48	0	Added	
R7	B2/B66A RRH-BR049 (RFV01U-D1A)	15	15	75	1	а	Behind	24	0	Added	
A4	XXDWMM-12.5-65-8T-CBRS	12.3	8.7	36	2	а	Front	60	0	Added	
R3	MT6407-77A	35.1	16.1	36	2	а	Front	24	0	Added	
R8	B5/B13 RRH-BR04C (RFV01U-D2A)	15	15	36	2	а	Behind	6	0	Added	
A1	MX10FRO640	71.6	19.8	3	3	а	Front	36	10	Added	
A1	MX10FRO640	71.6	19.8	3	3	b	Front	36	-10	Added	
R9	CBRS RRH - RT4401-48A	13.9	8.6	3	3	а	Behind	48	0	Added	

Copyright 2019 by Tower Engineering Solutions, LLC. All Rights Reserved

Maser Consulting Connecticut

<u>Subject</u>	TIA-222-H Usage	
<u>Site Information</u>	Site ID: Site Name: Carrier Name: Address:	469290-VZW / GREENWICH 3 CT GREENWICH 3 CT Verizon Wireless 9 Sound Shore Drive Greenwich, Connecticut 06830 Fairfield County
	Latitude: Longitude:	41.029711° -73.59835°
Structure Information	Tower Type: Mount Type:	148-Ft Monopole 6.50-Ft T-Arm
To Whom It May Concern,		

We respectfully submit the above referenced Antenna Mount Structural Analysis report in conformance with ANSI/TIA-222-H, Structural Standard for Antenna Supporting Structures and Antennas and Small Wind Turbine Support Structures.

The 2015 International Building Code states that, in Section 3108, telecommunication towers shall be designed and constructed in accordance with the provisions of TIA-222. TIA-222-H is the latest revision of the TIA-222 Standard, effective as of January 01, 2018.

As with all ANSI standards and engineering best practice is to apply the most current revision of the standard. This ensures the engineer is applying all updates. As an example, the TIA-222-H Standard includes updates to bring it in line with the latest AISC and ACI standards and it also incorporates the latest wind speed maps by ASCE 7 based on updated studies of the wind data.

The TIA-222-H standard clarifies these specific requirements for the antenna mount analysis such as modeling methods, seismic analysis, 30-degree increment wind directions and maintenance loading. Therefore, it is our opinion that TIA-222-H is the most appropriate standard for antenna mount structural analysis and is acceptable for use at this site to ensure the engineer is taking into account the most current engineering standard available.

Sincerely,

Pete Albano, P.E. Project Manager

ATTACHMENT 5

This map was produced from the Town of Greenwich Geographic Information System. The Town expressly disclaims any liability that may result from the use of this map. Aerial: 4/2/08. Data: 10/1/10. Map: 4/4/11. Copyright © 2005 by the Town of Greenwich.

TOWN OF, GREENWICH TAX MAP 368

02-1708/S

CONNECTICUT LIGHT & POWER CO

ADMINISTRATIVE INFORMATION

PARCEL NUMBER 02-1708/S

Parent Parcel Number

Property Address SOUND SHORE DRIVE 0012

Neighborhood

OWNERSHIP

CONNECTICUT LIGHT & POWER CO PO BOX 270 HARTFORD, CT 06101 LOT NO 15 & 18A SOUND SHORE DR S4Z

SOUND S	HORE DRIVE 0012
Tax ID 368/039	Printed 04/27

10/01/2019

27/2022 Card No. 1

10/01/2021

TRANSFER OF OWNERSHIP

Date

12/29/1959

NA

10/01/2020

6808900 1 -65%

\$0

of 1

10/01/2021

Bk/Pg: 626, 322

2300 EAST PUTN	AM						
Property Class 402 Electical TAXING DISTRICT I	Transformer Station NFORMATION		IJ	ТП ЛТ	Y		
Jurisdiction 5	7 Greenwich, CT		\mathbf{U}		—		
Area 0	01					VALUATION	RECORD
Corporation 0	57	Assessment Yea:	r	10/01/2016	10/01/2017	10/01/2018	10/01/
District 0	2	Reason for Char					
Section & Plat 2	36	incusion for char	ige	2016 List	2017 List	2018 List	2019
Routing Number 7	890S0004Z	VALUATION	L	2383100	2383100	2383100	2383
		Market	в	93500	93500	93500	93
			т	2476600	2476600	2476600	2476
Site Descript:	Lon	VALUATION	L	1668170	1668170	1668170	1668
		70% Assessed	B	CE 4EO	CEAEO	CEAEO	CE

Neighborhood:	Land Type	Actual	Effective Frontage	Effective Depth		Base Rate	Adjusted Rate	Extended Value		nfluence Factor	Value
Street or Road:		Rating Soil ID -or-	Measured Acreage -or-	Table 100	Prod. Factor -or- Depth Factor						
Public Utilities: Electric						DATA AN	D CALCULI	ATIONS			
Topography:		70% Assessed		5450 3620	65450 1733620	65450 1733620		5450 8620	65450 1733620	66290 1734460	66290 1734460
Site Description		VALUATION	L 166	76600 58170	2476600 1668170	2476600 1668170			2476600 1668170	2477800 1668170	2477800 1668170
Routing Number 7890S0	004Z	VALUATION Market	в	3100 3500	2383100 93500	2383100 93500	93	3500	2383100 93500	2383100 94700	2383100 94700
Section & Plat 236		Reason for Change	2016	List	2017 List	2018 List	Contract of the second		2020 List	2021 Prelim	2021 Final

65340.00

104.21

104.21

WB Waterfront Busines. 1 Primary Commercial Zoning:

Legal Acres:

1.5000

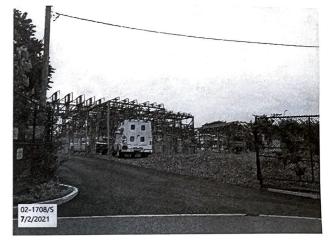
BP18: 15-3958: \$55,000 Verizon Replace Antennas GEN: CL&P Transformer Station. Improved w/ Jet Generators owned by CT Jet Power PP Acnt # 01-27287. added 's' 2/27/14 per e-mail from c mandras 0/0: Owner-Occupied Commercial

Permit Number Type

FilingDate Est. Cost Field Visit Est. SqFt

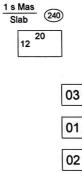
2383100

2383100


2383100

Supplemental Cards

TRUE TAX VALUE


02-1708/S

Property Class: 402 SOUND SHORE DRIVE 0012

SPECIAL FEATURES						S	UMMAR	Y O	F IMP	ROVE	MENTS							
Description Value	ID	Use		Const Type Gr		Year Const	Eff Year Co		Base Rate	Feat- ures	Adj s Rate		Computed Value	Phys C Depr				Value
03 : BW	C 01 02 03	HUTLSTOR UTLSHED UTLSHED FENCECL	0.00 1.00 1.00 6.00	1 1	Good Fair Fair Avg	1980 1970	5 2006) 1985) 1985) 1985	GD AV AV AV	0.00 44.50 44.50 19.20	N N	0.0 53.4 53.4 28.8	0 20x 0 20x		50 45	0 1	150 100 100	100 100 100 100	4050 2350 2120 950

PHYSICAL CHARACTERISTICS ROOFING Built-up WALLS в 1 2 U Frame Brick Metal Guard FRAMING U в 2 1 240 0 0 F Res 0 HEATING AND AIR CONDITIONING U в 1 2 0 Heat 0 240 0

IMPROVEMENT DATA

(LCM: 150.00)

ATTACHMENT 6

GREENWICH 3 Certificate of Mailing — Firm

Name and Address of Sender	TOTAL NO. of Pieces Listed by Sender of Pieces Received at Post Office	Affix Stamp Here	e		
Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103		Postmark with Date	e of Receipt.	\$002.99 \$7470 P 06103 220893 2022	7
USPS® Tracking Number Firm-specific Identifier	Address (Name, Street, City, State, and ZIP Code™)	Postage	Fee	Special Handling	Parcel Airlift
1. 2. 3.	Fred Camillo, First SelectmanTown of Greenwich101 Field Point RoadGreenwich, CT 06830Katie DeLuca, Director of Planning and ZoniTown of Greenwich101 Field Point RoadGreenwich, CT 06830Connecticut Light & PowerP.O. Box 270Hartford, CT 06101	ng	US	PS	
4.					
5.					

PS Form **3665**, January 2017 (Page 1 of 1) PSN 7530-17-000-5549

See Reverse for Instructions