1280 Route 46 West, Suite 9, Parsippany NJ, 07054

Melanie Bachman
Executive Director
CT Siting Council
10 Franklin Square
New Britain, CT 06051
Re: Notice of Exempt Modification Application
395 Round Hill Road, Greenwich, CT 06831
Latitude: N41.095117
Longitude: W73.6642
Dear Ms. Bachman:
Sprint currently maintains 3 existing panel antennas at the 100^{\prime} ' centerline level of the existing 115^{\prime} flagpole. Sprint proposes to swap 3 panel antennas at the 100^{\prime} centerline on the tower. Sprint further proposes to add 3 remote radio heads at the base of the pole. Sprint is performing a new high-performance upgrade for cellular mobile communications. It is designed to increase the capacity and speed of mobile telephone networks.

Please accept this letter as notification to the Council, pursuant to R.C.S.A. Section 16-50j-73, for construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2). In compliance with R.C.S.A. Section 16-50j-73, a copy of this letter is being sent to First Selectman Peter Tesei of the Town of Greenwich as well as Katie DeLuca, Director of Planning for the Town of Greenwich and Round Hill Community Church, owner of the property

Attached is a summary of the planned modifications, including power density calculations reflecting the change in Sprint's operations at the site. Also included is documentation of the structural sufficiency of the tower with proposed modifications to accommodate the revised antenna configuration as well as the latest CSC decision, tax sheet and tax map.

Existing Facility

CSC Summary Statement - CT43XC856-395 Round Hill Rd, Greenwich CT 06831

The Communications Tower facility is located at 395 Round Hill Rd, Greenwich CT 06831 and is owned by the Round Hill Community Church, the Site coordinates are: N41.095117 W73.6642.

The existing facility consists of a 115 ' Flagpole. Sprint currently operates wireless communications equipment on a platform on a concrete slab at the facility and has 3 antennas mounted at centerline of 100^{\prime}.

The planned modifications to the facility fall within the activities explicitly provided for in R.C.S.A. $16-50 \mathrm{j}$ 72(b)(2)

1. The height of the overall structure will be unaffected.
2. The proposed changes will not require an extension of the property boundaries.
3. The proposed additions will not increase the noise level at the existing facility by six decibels or more, or to levels that exceed state and/or local criteria
4. The changes will not increase the calculated "worst case" power density for the combined operations at the site to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, Sprint respectfully submits that the proposed changes at the referenced site constitute exempt modifications under R.C.S.A Section §16-50j-72(b)(2).

Respectfully submitted,

ryan@mackenzierealtyconsulting.com

Additional Recipients:
First Selectman Peter Tesei for the Town of Greenwich- Via FedEx
Katie DeLuca, Director of Planning for the Town of Greenwich - Via FedEx
Round Hill Community Church, owner of the property

Sprint

Cherundolo Consulting

T-1

2. contractor shatl verif antenna elevaton and azimuth wit rf enginerng pror to
13. ALL STRUCTURAL Elements ShaLL be hor oippeo gallanize Stel.

$\mathrm{COM} \rightarrow \mathrm{EX}$
onsultant

Sprint

Cherundolo Consulting

COM $\rightarrow E X$
Consultants ", wise ic ic

Sprint 4
nama

Cherundolo

 Consulting

FIBER PLUMBING

 DIAGRAM
C-5

(1) TYPICAL POWER \& GROUNDING ONE-LINE DIAGRAM

2.

lectrical ano grounong notes

4. bured conout shaul ee scheoule 40 pvc.

6. RUN TLLCO CoNOUT OR CABEE BETENT TEEPHONE UTUTI

 1. USE He Coper straneo Mre wir oren color

15. APPLY OXXDE NHHITING COMPOUNO TO ALL COMPRESSION TMPE
16. Bono Antenn Mounte grakis, Mrerfer cable ground
17. bond antenna egb's and mge to ground rng.

$\mathrm{COM} \rightarrow \mathrm{Ex}$ ", wisw icic

Sprint

Cherundolo
 Consulting

GROUNDING DETAILS

E-1

Structural Analysis Report

Prepared for:
KGI
805 Las Cimas Parkway
Building Three, Suite 370
Austin, TX 78746

ATTN: Mr. Sean Rock

Prepared By:
Jung Hyun Hong

Table of Contents

Introduction 1
Supporting Documents 1
Analysis 1
Conclusion 1
Existing and Reserved Equipment 2
Equipment to be Removed 2
Proposed Equipment 2
Structure Usages 3
Foundations 3
Deflection, Twist, and Sway 3
Standard Conditions 4
Calculations Attached

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 114 ft monopole to reflect the change in loading by Sprint.

Supporting Documents

Tower Drawings	EEI Drawing \#GS56652-2, dated September 28, 2007
Foundation Drawing	EEI Drawing \#14679S-115.0, dated February 12, 2007
Geotechnical Report	Clarence Welti Associate, dated Feruary 6, 2007

Analysis

The tower was analyzed using American Tower Corporation's tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

Basic Wind Speed:	93 mph (3-Second Gust) Vasd/120 mph (3-Second Gust) Vult
Basic Wind Speed w/ Ice:	50 mph (3-Second Gust) w/3/4" radial ice concurrent
Code:	ANSI/TIA-222-G/2015 IBC/2018 Connecticut State Building Code
Structure Class:	II
Exposure Category:	D (Hurricane Zone)
Topographic Category:	1
Crest Height:	0 ft
Spectral Response:	SS $=0.26, \mathrm{~S}_{1}=0.07$
Site Class:	D-StiffSoil

Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

The pier reinforcement is less than the minimum allowance. Due to this, the pier should be frequently monitored for cracking/spalling.

If you have any questions or require additional information, please contact Semaan Engineering Solutions at 402-289-1888.

Existing and Reserved Equipment

This loading is included in the analysis.

Centerline Elevation(ft)		Oty.	Antenna	Mount Type	Coax (in)	Carrier
Mount	Equip.					
110.0	110.0	3	DBXNH-6565A-A2M	Flush Mount Inside Canister	(12) $15 / 8^{\prime \prime}$	T-Mobile
		3	TMAT1921XB6811A			
		3	78211066			
100.0	-	-	-	Flush Mount Inside Canister	(6) $15 / 8{ }^{\prime \prime}$	Sprint
90.0	-	-	-	Empty Flush Mount Inside Canister	-	-

Equipment to be Removed

This loading is not included in the analysis.

Centerline Elevation(ft)		Qty.	Antenna	Mount Type	Coax (in)	Carrier
Mount	Equip.					
100.0	100.0	3	RR65-18-00DPL2	-	-	Sprint

Proposed Equipment

This loading is included in the analysis.

Centerline Elevation(ft)		Qty.	Antenna	Mount Type	Coax (in)	Carrier
Mount	Equip.					
100.0	100.0	3	APXVSPP18-C-A20	Existing Flush Mount Inside Canister	(2) $11 / 4^{\prime \prime}$	Sprint
		6	KIT-FD9R6004/1C-DL			
		9	IBC1900HG-SA			

Install proposed coax inside the pole shaft.

Structure Usages

Structural Component	Controlling Usage	Pass/Fail
Shaft	31%	Pass
Base Plate	31%	Pass
Anchor Bolts	51%	Pass
Flange Bolts	9%	Pass

Foundations

Reaction Component	Analysis Reactions	\% of Usage
Moment (Kips-Ft)	504.0	46%
Axial (Kips)	27.0	18%
Shear (Kips)	8.9	19%
Reinf. Conc. Foundation Capacity	N/A	22%

The structure base reactions resulting from this analysis were found to be acceptable through analysis based on geotechnical and foundation information, therefore no modification or reinforcement of the foundation will be required.

Deflection and Sway*

Antenna Elevation (ft)	Antenna	Carrier	Deflection (ft)	Sway (Rotation) $\left({ }^{\circ}\right)$
100.0	APXVSPP18-C-A20		0.350	0.752
	KIT-FD9R6004/1C-DL	Sprint		
	IBC1900HG-SA			

[^0]
Standard Conditions

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessary limited, to:
-- Information supplied by the client regarding the structure itself, antenna, mounts and feed line loading on the structure and its components, or other relevant information.
-- Information from drawings in the possession of Semaan Engineering Solutions, or generated by field inspections or measurements of the structure.

It is the responsibility of the client to ensure that the information provided to Semaan Engineering Solutions Holdings and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and that their capacity has not significantly changed from the "as new" condition.

Unless explicitly agreed by both the client and Semaan Engineering Solutions, all services will be performed in accordance with the current revision of ANSI/TIA -222. The design basic wind speed will be determined based on the minimum basic wind speed as prescribed in ANSI/TIA-222. Although every effort is taken to ensure that the loading considered is adequate to meet the requirements of all applicable regulatory entities, we can provide no assurance to meet any other local and state codes or requirements. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Semaan Engineering Solutions Holdings is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

Sections Properties								
Shaft Section	Length (ft)	Diame Accro Top	eter (in) oss Flats Bottom	Thick (in)	Joint Type	Overlap Length (in)	Taper (in/ft)	Steel Grade (ksi)
1	52.658	33.39	41.00	0.250		0.000	0.144341	65
2	36.158	29.25	34.46	0.188	Slip Joint	57.781	0.144341	65
3	10.000	5.750	5.750	2.875	Butt Joint	0.000	0.000000	- 50
4	10.000	4.500	4.500	2.250	Butt Joint	0.000	0.000000	- 50
5	10.000	4.500	4.500	0.674	Butt Joint	0.000	0.000000	35

	Discrete Appurtenance		
Attach Eev (ft)	Force Eev (ft)	Qty	Description
110.000	110.000	3	782 11066
110.000	110.000	3	TMAT1921XB6811A
110.000	110.000	3	DBXNH-6565A-A2M
110.000	110.000	1	Flush Mount
100.000	100.000	9	IBC1900HG-SA
100.000	100.000	6	KT-FD9R6004/1C-DL
100.000	100.000	3	APXVSPP18-C-A20
100.000	100.000	1	Flush Mount
90.000	90.000	1	Flush Mount
81.500	83.000	1	GPS
81.500	81.500	1	3 ft Standoff

Linear Appurtenance			
Elev (ft)			Exposed
From	To	Description	To Wind
104.0	114.0	Concealment	Yes
94.000	104.0	Concealment	Yes
84.000	94.000	Concealment	Yes
0.000	100.0	.32"	No
0.000	100.0	$11 / 4^{\prime \prime}$ Coax	No
0.000	100.0	$15 / 8^{\prime \prime}$ Coax	No
0.000	110.0	$.32^{\prime \prime}$	No
0.000	110.0	$15 / 8^{\prime \prime}$ Coax	No
0.000	81.500	$1 / 2^{\prime \prime}$ Coax	No

Load Cases	
1.2D + 1.6W	93 mph w ith No Ice
0.9D + 1.6W	93 mph with No Ice (Reduced DL)
$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$	50 mph w ith 0.75 in Radial lce
$(1.2+0.2 S d s) * D L+E$	Seismic Equivalent Lateral Forces Method
$(1.2+0.2 \mathrm{Sds}) * \mathrm{DL}+\mathrm{E}$	Seismic Equivalent Modal Analysis Method
(0.9-0.2Sds) * DL + E	Seismic (Reduced DL) Equivalent Lateral
(0.9-0.2Sds) * DL + E	Seismic (Reduced DL) Equivalent Modal
1.0D + 1.0W	Serviceability 60 mph

| Site Number: | $27741 _B$ | Code: ANSI/TIA-222-G | © 2007-2019 by ATCIP LLC. All rights reserved. |
| :--- | :--- | ---: | ---: | ---: |
| Site Name: | Round Hill CT, Greenwich, CT | Engineering Number: REV01 | 9/16/2019 9:52:08 AM |
| Customer: | KG | | |

Analysis Parameters

Location:	Greenwich County, CT		
Code:	ANSI/TIA-222-G	Helght (ft):	114
Shape:	18 Sides. Sect 3: Round Solid. Sect 4: Round Solid. Sect 5: Round	41.00	
Pole Type:	Custom	Top Diameter (in):	4.50
Pole Manfacturer:	田	Taper (in/ft):	0.144

Ice \& Wind Parameters

Structure Class:	II	Design Wind Speed Without Ice:	$\mathbf{9 3 ~ m p h}$
Exposure Catagory:	D	Design Wind Speed With Ice:	$\mathbf{5 0 ~ m p h}$
Topographic Catagory:	1	Operational Wind Speed:	60 mph
Crest Height:	0.0 ft	Design Ice Thickness:	0.75 in

Seismic Parameters

Analys is Method: Equivalent Modal Analysis \& Equivalent Lateral Force Methods
Site Class: D-Stlff Soil
Period Based on Rayleigh Method (sec): 1.53

$\mathrm{T}_{\mathrm{L}}(\mathrm{sec})$:	6	p:	1.3	C_{5} :	0.050
$\mathbf{S}_{\mathbf{s}}$:	0.259	S_{1} :	0.071	C_{8} Max:	0.050
F_{a} :	1.593	$F_{\mathbf{v}}$:	2.400	$C_{\text {s }}$ Min:	0.030
$S_{\text {ds }}$:	0.275	$S_{\text {d1 }}$:	0.114		

Load Cases

$1.2 D+1.6 W$
$0.9 D+1.6 W$
$1.2 D+1.0 D i+1.0 W I$
$(1.2+0.2 S d s)$ * $D L+E E . F M$
$(1.2+0.2 S d s)$ DL. + EEMAM
$(0.9-0.2 S d s)$ * DL + EELFM
$(0.9-0.2 S d s)$ *DL + EEMAM
$1.0 D+1.0 W$

93 mph with No Ice
93 mph with No Ice (Reduced DL)
50 mph with 0.75 in Radial Ice
Seismic Equivalent Lateral Forces Method
Seismic Equivalent Modal Analysis Method
Seismic (Reduced DL) Equivalent Lateral Forces Method
Seismic (Reduced DL) Equivalent Modal Analys is Method
Serviceability 60 mph

Discrete Appurtenance Properties

Attach Elev (ft)	Description	Qty	Weight (ib)	$\begin{aligned} & \text { No ice } \\ & \text { EPAa } \\ & \text { (sf) } \end{aligned}$	Orientation Factor	Weight (ib)	$\begin{gathered} \text { _ Ice } \\ \text { EPAa } \\ \text { (sf) } \\ \hline \end{gathered}$	Orientation Factor	Distance From Face (ft)	Vert Ecc (ft)
110.00	78211066	3	1.76	0.000	1.00	5.33	0.000	1.00	0.000	0.000
110.00	DBXNH-6565A-A2M	3	34.20	0.000	1.00	153.17	0.000	1.00	0.000	0.000
110.00	Fush Mount	1	120.00	0.000	1.00	282.20	0.000	1.00	0.000	0.000
110.00	TMAT1921XB6811A	3	17.60	0.000	1.00	35.49	0.000	1.00	0.000	0.000
100.00	APXVSPP18-C-A20	3	57.00	0.000	1.00	171.46	0.000	1.00	0.000	0.000
100.00	Fush Mount	1	120.00	0.000	1.00	280.64	0.000	1.00	0.000	0.000
100.00	IBC1900HG-SA	9	22.00	0.000	1.00	66.18	0.000	1.00	0.000	0.000
100.00	KIT-FD9R6004/1C-DL	6	6.40	0.000	1.00	17.57	0.000	1.00	0.000	0.000
90.00	Fush Mount	1	120.00	0.000	1.00	278.93	0.000	1.00	0.000	0.000
81.50	3 ft Standoff	1	40.00	2.630	1.00	115.55	8.247	1.00	0.000	0.000
81.50	GPS	1	10.00	0.070	1.00	13.74	0.200	1.00	0.000	1.500
	Totals	32	978.08	2,768.38				Number of Loadings :		11

Linear Appurtenance Properties

Elev From (ft)	Elev To (ft)	Qty	Description	Coax Diameter (in)	Coax Weight (1 b /ft)	Flat	Protected Width (in)	Exposed To Wind	Carrier
104.00	114.00	1	Concealment (0.5)	30.00	16.95	N	12.75	Y	
0.00	110.00	1	.32"	0.32	0.06	N	0.00	N	T-Mobile
0.00	110.00	12	15/8" Coax	1.98	1.04	N	0.00	N	T-Mobile
94.00	104.00	1	Concealment (0.5)	30.00	16.95	N	12.75	Y	
0.00	100.00	1	.32"	0.32	0.06	N	0.00	N	Sprint
0.00	100.00	2	1 1/4" Coax	1.55	0.66	N	0.00	N	Sprint
0.00	100.00	6	15/8" Coax	1.98	1.04	N	0.00	N	Sprint
84.00	94.00	1	Concealment (0.5)	30.00	16.95	N	12.12	Y	
0.00	81.50	1	1/2" Coax	0.65	0.16	N	0.00	N	Sprint

Site Number: 27741_B
Site Name: Round Hill CT, Greenwich, CT
Customer: KG

Segment Properties (Max Len : 5.ft)

Seg T Elev (ft)	Description	Thick (in)	Flat Dia (in)	Area $\left(\mathrm{in}^{2}\right)$	$\underset{\left(\text { in }^{4}\right)}{ }$	Wht Ratio	D/t Ratio	$\underset{(\mathbf{k s i})}{\text { Fy }}$	$\underset{\left(\mathrm{in}^{3}\right)}{\mathbf{S}}$	$\underset{\left(i^{3}\right)}{\mathbf{Z}}$	Weight (lb)
0.00		0.2500	41.000	32.334	6,783.7	27.51	164.00	69.0	325.9	0.0	0.0
5.00		0.2500	40.278	31.761	6,429.6	27.00	161.11	69.6	314.4	0.0	545.3
10.00		0.2500	39.557	31.189	6.088 .1	26.49	158.23	70.2	303.1	0.0	535.5
15.00		0.2500	38.835	30.616	5,758.9	25.98	155.34	70.8	292.1	0.0	525.8
20.00		0.2500	38.113	30.043	5,441.7	25.47	152.45	71.4	281.2	0.0	516.0
25.00		0.2500	37.391	29.471	5,136.4	24.96	149.57	72.0	270.6	0.0	506.3
30.00		0.2500	36.670	28.898	4,842.8	24.45	146.68	72.6	260.1	0.0	496.5
35.00		0.2500	35.948	28.325	4,560.6	23.94	143.79	73.2	249.9	0.0	486.8
40.00		0.2500	35.226	27.753	4,289.5	23.43	140.91	73.8	239.8	0.0	477.1
45.00		0.2500	34.505	27.180	4,029.4	22.93	138.02	74.4	230.0	0.0	467.3
47.84	Bot-Section 2	0.2500	34.094	26.855	3,886.4	22.64	136.38	74.8	224.5	0.0	261.3
50.00		0.2500	33.783	26.607	3,780.1	22.42	135.13	75.0	220.4	0.0	345.3
52.66	Top - Section 1	0.1875	33.774	19.988	2,848.7	30.35	180.13	65.7	166.1	0.0	421.0
55.00		0.1875	33.436	19.786	2,763.6	30.03	178.33	66.1	162.8	0.0	158.5
60.00		0.1875	32.715	19.357	2,587.5	29.35	174.48	66.9	155.8	0.0	333.0
65.00		0.1875	31.993	18.927	2,419.1	28.68	170.63	67.7	148.9	0.0	325.7
70.00		0.1875	31.271	18.498	2,258.1	28.00	166.78	68.5	142.2	0.0	318.4
75.00		0.1875	30.549	18.069	2,104.4	27.32	162.93	69.3	135.7	0.0	311.1
80.00		0.1875	29.828	17.639	1,957.9	26.64	159.08	70.1	129.3	0.0	303.8
81.50		0.1875	29.611	17.510	1,915.3	26.44	157.93	70.3	127.4	0.0	89.7
84.00	Top - Section 2	0.1875	29.250	17.295	1,845.7	26.10	156.00	70.7	124.3	0.0	148.0
84.00	Bot-Section 3	2.8750	5.750	25.967	53.7	0.00	2.00	50.0	18.7	31.7	
85.00		2.8750	5.750	25.967	53.7	0.00	2.00	50.0	18.7	31.7	88.4
90.00		2.8750	5.750	25.967	53.7	0.00	2.00	50.0	18.7	31.7	441.8
94.00	Top - Section 3	2.8750	5.750	25.967	53.7	0.00	2.00	50.0	18.7	31.7	353.4
94.00	Bot - Section 4	2.2500	4.500	15.904	20.1	0.00	2.00	50.0	8.9	15.2	
95.00		2.2500	4.500	15.904	20.1	0.00	2.00	50.0	8.9	15.2	54.1
100.0		2.2500	4.500	15.904	20.1	0.00	2.00	50.0	8.9	15.2	270.6
104.0	Top - Section 4	2.2500	4.500	15.904	20.1	0.00	2.00	50.0	8.9	15.2	216.5
104.0	Bot - Section 5	0.6740	4.500	8.101	14.8	0.00	6.68	35.0	6.6	10.0	
105.0		0.6740	4.500	8.101	14.8	0.00	6.68	35.0	6.6	10.0	27.6
110.0		0.6740	4.500	8.101	14.8	0.00	6.68	35.0	6.6	10.0	137.8
114.0		0.6740	4.500	8.101	14.8	0.00	6.68	35.0	6.6	10.0	110.3
$9,272.8$											

Site Number: 27741_B
Site Name: Round Hill CT, Greenwich, CT
Engineering Number: REV01
9/16/2019 9:52:09 AM
Customer: KG

Load Case: 1.2D+1.6W
93 mph with No Ice
25 Iterations
Gust Response Factor : 1.10
Wind Importance Factor : 1.00
Dead Load Factor : 1.20
Wind Load Factor : 1.60

Applied Segment Forces Summary

		Shaft Forces		Discrete Forces				Linear Forces		Sum of Forces			
Seg Eev (ft)	Description	Wind FX (lb)	Dead Load (lb)	Wind FX (b)	Torsion MY (lb-ft)	$\begin{aligned} & \text { Moment } \\ & \text { MZ } \\ & \text { (lb-ft) } \end{aligned}$	Dead Load (lb)	Wind FX (b)	Dead Load (lb)	Wind FX (Ib)	Dead Load (b)	$\begin{gathered} \text { Torsion } \\ \text { MY } \\ \text { (lb-ft) } \\ \hline \end{gathered}$	Moment MZ (l)
0.00		213.1	0.0					0.0	0.0	213.1	0.0	0.0	0.0
5.00		422.4	654.3					0.0	121.9	422.4	776.2	0.0	0.0
10.00		414.8	642.6					0.0	121.9	414.8	764.5	0.0	0.0
15.00		414.8	630.9					0.0	121.9	414.8	752.8	0.0	0.0
20.00		423.3	619.2					0.0	121.9	423.3	741.2	0.0	0.0
25.00		431.2	607.5					0.0	121.9	431.2	729.5	0.0	0.0
30.00		436.1	595.8					0.0	121.9	436.1	717.8	0.0	0.0
35.00		438.9	584.2					0.0	121.9	438.9	706.1	0.0	0.0
40.00		439.9	572.5					0.0	121.9	439.9	694.4	0.0	0.0
45.00		345.0	560.8					0.0	121.9	345.0	682.7	0.0	0.0
47.84	Bot - Section 2	220.6	313.6					0.0	69.3	220.6	382.9	0.0	0.0
50.00		213.4	414.4					0.0	52.6	213.4	467.0	0.0	0.0
52.66	Top-Section 1	221.1	505.2					0.0	64.8	221.1	570.0	0.0	0.0
55.00		323.2	190.2					0.0	57.1	323.2	247.3	0.0	0.0
60.00		437.9	399.6					0.0	121.9	437.9	521.5	0.0	0.0
65.00		434.1	390.8					0.0	121.9	434.1	512.7	0.0	0.0
70.00		429.8	382.1					0.0	121.9	429.8	504.0	0.0	0.0
75.00		424.8	373.3					0.0	121.9	424.8	495.2	0.0	0.0
80.00		273.9	364.5					0.0	121.9	273.9	486.4	0.0	0.0
81.50	Appertunance(s)	166.9	107.6	138.5	0.0	5.4	60.0	0.0	36.6	305.4	204.2	0.0	0.0
84.00	Top - Section 2	118.9	177.7					0.0	60.5	118.9	238.1	0.0	0.0
85.00		89.5	106.0					31.3	44.5	120.8	150.6	0.0	0.0
90.00	Appertunance(s)	134.9	530.2	0.0	0.0	0.0	144.0	157.4	222.7	292.2	896.8	0.0	0.0
94.00	Top - Section 3	72.1	424.1					127.0	178.1	199.1	602.3	0.0	0.0
95.00		71.4	64.9					33.5	44.5	104.9	109.5	0.0	0.0
100.00	Appertunance(s)	107.5	324.7	0.0	0.0	0.0	632.9	168.6	222.7	276.2	1,180.3	0.0	0.0
104.00	Top - Section 4	60.0	259.8					136.0	141.6	196.0	401.3	0.0	0.0
105.00		72.6 109.3	33.1 165.4					34.1 171.5	35.4	106.7	68.5	0.0	0.0
$\begin{aligned} & 110.00 \\ & 114.00 \end{aligned}$	Appertunance(s)	109.3 48.8	165.4	0.0	0.0	0.0	336.8	171.5 1389	176.9	280.8	679.2	0.0	0.0
114.00		48.8	132.3					138.2		186.9	213.7	0.0	0.0
								Totals:		9,146.23	15,496.6	0.00	0.00

Site Number: 27741_B
Site Name: Round Hill CT, Greenwich, CT Engineering Number: REV01 9/16/2019 9:52:09 AM
Customer: KG

Load Case: $1.2 \mathrm{D}+1.6 \mathrm{~W}$	93 mph with No lce	25 Iterations
Gust Response Factor : 1.10		Wind Importance Factor : 1.00
Dead Load Factor: 1.20		
Wind Load Factor : 1.60		

Calculated Forces

Seg Elev (ft)	$\begin{gathered} \mathrm{Pu} \\ \mathrm{FY}(-) \\ \text { (kips) } \end{gathered}$	Vu FX (-) (kips)	$\begin{gathered} \text { Tu } \\ \text { MY } \\ \text { (ft-kips) } \end{gathered}$	$\begin{gathered} \text { Mu } \\ \text { MZ } \\ \text { (ft-kips) } \end{gathered}$	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi (kips)	phi (kips)		phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
0.00	-15.49	-8.95	0.00	-503.96	0.00	503.96	2,009.33	1,004.66	3,370.2	1,687.62	0.00	0.00	0.306
5.00	-14.70	-8.55	0.00	-459.22	0.00	459.22	1,990.85	995.43	3,279.75	1,642.31	0.05	-0.10	0.287
10.00	-13.92	-8.16	0.00	-416.48	0.00	416.48	1,971.76	985.88	3,189.37	1,597.06	0.21	-0.20	0.268
15.00	-13.16	-7.76	0.00	-375.70	0.00	375.70	1,952.06	976.03	3,099.16	1,551.88	0.47	-0.29	0.249
20.00	-12.41	-7.35	0.00	-336.91	0.00	336.91	1,931.73	965.87	3,009.15	1,506.81	0.82	-0.38	0.230
25.00	-11.67	-6.93	0.00	-300.16	0.00	300.16	1,910.79	955.40	2,919.43	1,461.88	1.26	-0.46	0.211
30.00	-10.95	-6.50	0.00	-265.52	0.00	265.52	1,889.23	944.62	2,830.03	1,417.12	1.79	-0.54	0.193
35.00	-10.24	-6.07	0.00	-233.01	0.00	233.01	1,867.06	933.53	2,741.01	1,372.54	2.40	-0.61	0.175
40.00	-9.54	-5.63	0.00	-202.68	0.00	202.68	1,844.27	922.13	2,652.43	1,328.19	3.08	-0.68	0.158
45.00	-8.86	-5.28	0.00	-174.52	0.00	174.52	1.820 .86	910.43	2,564.34	1,284.08	3.82	-0.74	0.141
47.84	-8.48	-5.06	0.00	-159.50	0.00	159.50	1,807.27	903.64	2,514.51	$1,259.12$	4.28	-0.78	0.131
50.00	-8.01	-4.85	0.00	-148.58	0.00	148.58	1,796.83	898.42	2,476.80	1,240.24	4.63	-0.80	0.124
52.66	-7.44	-4.62	0.00	-135.69	0.00	135.69	1,181.92	590.96	1,634.85	818.64	5.09	-0.83	0.172
55.00	-7.20	-4.30	0.00	-124.87	0.00	124.87	1,176.68	588.34	1,611.12	806.76	5.50	-0.85	0.161
60.00	-6.68	-3.86	0.00	-103.37	0.00	103.37	1,165.04	582.52	1,560.37	781.35	6.43	-0.91	0.138
65.00	-6.17	-3.42	0.00	-84.07	0.00	84.07	1,152.79	576.40	1,509.51	755.88	7.41	-0.96	0.117
70.00	-5.67	-2.99	0.00	-66.95	0.00	66.95	1.139.92	569.96	1,458.59	730.38	8.45	-1.01	0.097
75.00	-5.18	-2.56	0.00	-52.01	0.00	52.01	1,126.44	563.22	1,407.67	704.88	9.52	-1.05	0.078
80.00	-4.70	-2.28	0.00	-39.22	0.00	39.22	1,112.33	556.17	1,356.80	679.41	10.64	-1.08	0.062
81.50	-4.50	-1.97	0.00	-35.80	0.00	35.80	1,107.98	553.99	1,341.56	671.78	10.98	-1.08	0.057
84.00	-4.27	-1.85	0.00	-30.88	0.00	30.88	1,100.61	550.30	1,316.18	659.07	11.55	-1.10	0.051
84.00	-4.27	-1.85	0.00	-30.88	0.00	30.88	1,168.53	584.26	139.98	118.82	11.55	-1.10	0.264
85.00	-4.11	-1.75	0.00	-29.03	0.00	29.03	1,168.53	584.26	139.98	118.82	11.78	-1.10	0.248
90.00	-3.21	-1.46	0.00	-20.29	0.00	20.29	1,168.53	584.26	139.98	118.82	13.30	-1.76	0.174
94.00	-2.61	-1.25	0.00	-14.45	0.00	14.45	1,168.53	584.26	139.98	118.82	14.93	-2.12	0.124
94.00	-2.61	-1.25	0.00	-14.45	0.00	14.45	715.69	357.85	67.10	56.95	14.93	-2.12	0.257
95.00	-2.49	-1.16	0.00	-13.20	0.00	13.20	715.69	357.85	67.10	56.95	15.38	-2.20	0.235
100.00	-1.32	-0.84	0.00	-7.40	0.00	7.40	715.69	357.85	67.10	56.95	18.10	-2.93	0.132
104.00	-0.93	-0.63	0.00	-4.03	0.00	4.03	715.69	357.85	67.10	56.95	20.70	-3.25	0.072
104.00	-0.93	-0.63	0.00	-4.03	0.00	4.03	255.19	127.60	34.57	26.17	20.70	-3.25	0.158
105.00	-0.86	-0.52	0.00	-3.40	0.00	3.40	255.19	127.60	34.57	26.17	21.38	-3.30	0.133
110.00	-0.20	-0.20	0.00	-0.80	0.00	0.80	256.19	127.60	34.57	26.17	24.97	-3.50	0.031
114.00	0.00	-0.19	0.00	0.00	0.00	0.00	255.19	127.60	34.57	26.17	27.91	-3.53	0.000

Applied Segment Forces Summary

		Shaft Forces		Discrete Forces				Linear Forces		Sum of Forces			
Seg Dev (ft)	Description	Wind FX (Ib)	Dead Load (b)	Wind FX (Ib)	Torsion MY (lb-ft)	$\begin{aligned} & \text { Moment } \\ & \text { MZ } \\ & \text { (lb-ft) } \end{aligned}$	Dead Load (lb)	Wind FX (lb)	Dead Load (lb)	Wind FX (lb)	Dead Load (lb)	Torsion MY (lb-ft)	Moment MZ (b)
0.00		213.1	0.0					0.0	0.0	213.1	0.0	0.0	0.0
5.00		422.4	490.7					0.0	91.4	422.4	582.2	0.0	0.0
10.00		414.8	482.0					0.0	91.4	414.8	573.4	0.0	0.0
15.00		414.8	473.2					0.0	91.4	414.8	564.6	0.0	0.0
20.00		423.3	464.4					0.0	91.4	423.3	555.9	0.0	0.0
25.00		431.2	455.7					0.0	91.4	431.2	547.1	0.0	0.0
30.00		436.1	446.9					0.0	91.4	436.1	538.3	0.0	0.0
35.00		438.9	438.1					0.0	91.4	438.9	529.6	0.0	0.0
40.00		439.9	429.3					0.0	91.4	439.9	520.8	0.0	0.0
45.00		345.0	420.6					0.0	91.4	345.0	512.0	0.0	0.0
47.84	Bot - Section 2	220.6	235.2					0.0	52.0	220.6	287.2	0.0	0.0
50.00		213.4	310.8					0.0	39.5	213.4	350.3	0.0	0.0
52.66	Top - Section 1	221.1	378.9					0.0	48.6	221.1	427.5	0.0	0.0
55.00		323.2	142.7					0.0	42.8	323.2	185.5	0.0	0.0
60.00		437.9	299.7					0.0	91.4	437.9	391.1	0.0	0.0
65.00		434.1	293.1					0.0	91.4	434.1	384.6	0.0	0.0
70.00		429.8	286.5					0.0	91.4	429.8	378.0	0.0	0.0
75.00		424.8	280.0					0.0	91.4	424.8	371.4	0.0	0.0
80.00		273.9	273.4					0.0	91.4	273.9	364.8	0.0	0.0
81.50	Appertunance(s)	166.9	80.7	138.5	0.0	5.4	45.0	0.0	27.4	305.4	153.2	0.0	0.0
84.00	Top - Section 2	118.9	133.2					0.0	45.4	118.9	178.6	0.0	0.0
85.00		89.5	79.5					31.3	33.4	120.8	112.9	0.0	0.0
90.00	Appertunance(s)	134.9	397.6	0.0	0.0	0.0	108.0	157.4	167.0	292.2	672.6	0.0	0.0
94.00	Top - Section 3	72.1	318.1					127.0	133.6	199.1	451.7	0.0	0.0
95.00		71.4	48.7					33.5	33.4	104.9	82.1	0.0	0.0
100.00	Appertunance(s)	107.5	243.5	0.0	0.0	0.0	474.7	168.6	167.0	276.2	885.2	0.0	0.0
104.00	Top - Section 4	60.0	194.8					136.0	106.2	196.0	301.0	0.0	0.0
105.00		72.6	24.8					34.1	26.5	106.7	51.4	0.0	0.0
110.00	Appertunance(s)	109.3	124.1	0.0	0.0	0.0	252.6	171.5	132.7	280.8	509.4	0.0	0.0
114.00		48.8	99.2					138.2	61.0	186.9	160.3	0.0	0.0
								Totals:		$9,146.23$	$11,622.4$	0.00	0.00

Page: 6

Site Number: 27741_B Site Name: Round Hill CT, Greenwich, CT Customer: KG		Code: ANSITTIA-222-G	© 2007-2019 by ATC IP LLC. All
		Engineering Number: REV01	9/16/2019 9:52:10 AM
Load Case: $0.9 \mathrm{D}+1.6 \mathrm{~W}$ Gust Response Factor: 1.10 Dead Load Factor : 0.90 Wind Load Factor : 1.60		93 mph with No Ice (Reduced DL)	25 Iterations
			Wind Importance Factor : 1.00

Calculated Forces

Seg Elev (ft)	$\begin{gathered} \mathrm{Pu} \\ \mathrm{FY}(-) \\ \text { (kips) } \end{gathered}$	Vu FX (-) (kips)	$\begin{gathered} \text { Tu } \\ \text { MY } \\ \text { (ft-kips) } \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Mu } \\ \text { MZ } \\ \text { (ft-kips) } \end{array} \end{gathered}$		Resultant Moment (ft-kips)	phi (kips)	phi (kips)		phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
0.00	-11.61	-8.94	0.00	-501.34	0.00	501.34	2,009.33	1,004.66	3,370.24	1,687.62	0.00	0.00	0.303
5.00	-11.02	-8.54	0.00	-456.62	0.00	456.62	1,990.85	995.43	3,279.75	1,642.31	0.05	-0.10	0.284
10.00	-10.43	-8.14	0.00	-413.92	0.00	413.92	1,971.76	985.88	3,189.37	1,597.06	0.21	-0.20	0.265
15.00	-9.86	-7.74	0.00	-373.22	0.00	373.22	1,952.06	976.03	3,099.16	1,551.88	0.47	-0.29	0.246
20.00	-9.29	-7.33	0.00	-334.53	0.00	334.53	1,931.73	965.87	3,009.15	1,506.81	0.82	-0.38	0.227
25.00	-8.74	-6.90	0.00	-297.90	0.00	297.90	1,910.79	955.40	2,919.43	1,461.88	1.26	-0.46	0.208
30.00	-8.20	-6.47	0.00	-263.39	0.00	263.39	1,889.23	944.62	2,830.03	1,417.12	1.78	-0.54	0.190
35.00	-7.66	-6.04	0.00	-231.02	0.00	231.02	1,867.06	933.53	2,741.01	1,372.54	2.38	-0.61	0.172
40.00	-7.14	-5.60	0.00	-200.83	0.00	200.83	1,844.27	922.13	2,652.43	1,328.19	3.06	-0.68	0.155
45.00	-6.63	-5.25	0.00	-172.83	0.00	172.83	1.820 .86	910.43	2,564.34	1,284.08	3.80	-0.74	0.138
47.84	-6.34	-5.03	0.00	-157.90	0.00	157.90	1,807.27	903.64	2,514.51	1,259.12	4.25	-0.77	0.129
50.00	-5.99	-4.82	0.00	-147.04	0.00	147.04	1,796.83	898.42	2,476.80	1,240.24	4.60	-0.80	0.122
52.66	-5.57	-4.59	0.00	-134.23	0.00	134.23	1,181.92	590.96	1,634.85	818.64	5.05	-0.82	0.169
55.00	-5.38	-4.27	0.00	-123.48	0.00	123.48	1,176.68	588.34	1,611.12	806.76	5.47	-0.85	0.158
60.00	-5.00	-3.83	0.00	-102.12	0.00	102.12	1,165.04	582.52	1,560.37	781.35	6.38	-0.91	0.135
65.00	-4.62	-3.40	0.00	-82.96	0.00	82.96	1,152.79	576.40	1,509.51	755.88	7.36	-0.96	0.114
70.00	-4.24	-2.96	0.00	-65.98	0.00	65.98	1,139.92	569.96	1.458.59	730.38	8.39	-1.00	0.094
75.00	-3.88	-2.53	0.00	-51.17	0.00	51.17	1,126.44	563.22	1,407.67	704.88	9.45	-1.04	0.076
80.00	-3.52	-2.25	0.00	-38.50	0.00	38.50	1,112.33	556.17	1,356.80	679.41	10.56	-1.07	0.060
81.50	-3.37	-1.95	0.00	-35.12	0.00	35.12	1,107.98	553.99	1,341.56	671.78	10.89	-1.08	0.055
84.00	-3.19	-1.82	0.00	-30.25	0.00	30.25	1,100.61	550.30	1,316.18	659.07	11.46	-1.09	0.049
84.00	-3.19	-1.82	0.00	-30.25	0.00	30.25	1,168.53	584.26	139.98	118.82	11.46	-1.09	0.257
85.00	-3.07	-1.72	0.00	-28.43	0.00	28.43	1,168.53	584.26	139.98	118.82	11.69	-1.09	0.242
90.00	-2.39	-1.43	0.00	-19.83	0.00	19.83	1,168.53	584.26	139.98	118.82	13.19	-1.73	0.169
94.00	-1.95	-1.22	0.00	-14.10	0.00	14.10	1,168.53	584.26	139.98	118.82	14.80	-2.09	0.120
94.00	-1.95	-1.22	0.00	-14.10	0.00	14.10	715.69	357.85	67.10	56.95	14.80	-2.09	0.250
95.00	-1.86	-1.13	0.00	-12.88	0.00	12.88	715.69	357.85	67.10	56.95	15.24	-2.16	0.229
100.00	-0.98	-0.82	0.00	-7.22	0.00	7.22	715.69	357.85	67.10	56.95	17.91	-2.87	0.128
104.00	-0.69	-0.61	0.00	-3.93	0.00	3.93	715.69	357.85	67.10	56.95	20.46	-3.19	0.070
104.00	-0.69	-0.61	0.00	-3.93	0.00	3.93	255.19	127.60	34.57	26.17	20.46	-3.19	0.153
105.00	-0.64	-0.51	0.00	-3.32	0.00	3.32	255.19	127.60	34.57	26.17	21.14	-3.24	0.129
110.00	-0.15	-0.20	0.00	-0.78	0.00	0.78	255.19	127.60	34.57	26.17	24.65	-3.44	0.031
114.00	0.00	-0.19	0.00	0.00	0.00	0.00	255.19	127.60	34.57	26.17	27.55	-3.47	0.000

Site Number: $27741 _B$ \quad Code: ANSIITIA-222-G Site Name: Round Hill CT, Greenwich, CT Engineering Number: REV01 Customer: KG:	© 2007-2019 by ATC IP LLC. All rights reserved. 9/16/2019 9:52:10 AM
Load Case: $1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$	24 Iterations
Gust Response Factor: $1.10 \quad$ Ice Dead Load Factor : 1.00 Dead Load Factor: 1.20 Wind Load Factor : 1.00	Wind Importance Factor: 1.00 Ice Importance Factor : 1.00

Applied Segment Forces Summary

		Shaft Forces		Discrete Forces				Linear Forces		Sum of Forces			
Seg ■ev (ft)	Description	Wind FX (Ib)	Dead Load (b)	Wind FX (Ib)	Torsion MY (lb-ft)	$\begin{aligned} & \text { Moment } \\ & \text { MZ } \\ & \text { (lb-ft) } \end{aligned}$	Dead Load (lb)	Wind FX (b)	Dead Load (lb)	Wind FX (Ib)	Dead Load (lb)	$\begin{gathered} \text { Torsion } \\ \text { MY } \\ \text { (lb-ft) } \end{gathered}$	Moment MZ (lb)
0.00		75.2	0.0					0.0	0.0	75.2	0.0	0.0	0.0
5.00		149.5	965.7					0.0	121.9	149.5	1,087.6	0.0	0.0
10.00		147.6	977.9					0.0	121.9	147.6	1,099.8	0.0	0.0
15.00		148.1	976.4					0.0	121.9	148.1	1,098.3	0.0	0.0
20.00		151.7	969.7					0.0	121.9	151.7	1,091.6	0.0	0.0
25.00		154.9	960.3					0.0	121.9	154.9	1,082.2	0.0	0.0
30.00		157.1	949.0					0.0	121.9	157.1	1,070.9	0.0	0.0
35.00		158.5	936.5					0.0	121.9	158.5	1,058.4	0.0	0.0
40.00		159.3	923.1					0.0	121.9	159.3	1,045.0	0.0	0.0
45.00		125.2	908.9					0.0	121.9	125.2	1,030.8	0.0	0.0
47.84	Bot - Section 2	80.2	511.0					0.0	69.3	80.2	580.3	0.0	0.0
50.00		77.6	565.3					0.0	52.6	77.6	617.9	0.0	0.0
52.66	Top-Section 1	80.5	690.0					0.0	64.8	80.5	754.8	0.0	0.0
55.00		117.9	352.3					0.0	57.1	117.9	409.5	0.0	0.0
60.00		160.1	740.8					0.0	121.9	160.1	862.7	0.0	0.0
65.00		159.1	727.7					0.0	121.9	159.1	849.6	0.0	0.0
70.00		158.0	714.3					0.0	121.9	158.0	836.3	0.0	0.0
75.00		156.6	700.7					0.0	121.9	156.6	822.6	0.0	0.0
80.00		101.2	686.8					0.0	121.9	101.2	808.7	0.0	0.0
81.50	Appertunance(s)	61.8	204.1	78.3	0.0	2.8	126.3	0.0	36.6	140.1	366.9	0.0	0.0
84.00	Top - Section 2	42.8	336.9					0.0	60.5	42.8	397.4	0.0	0.0
85.00		25.5	120.9					14.4	161.5	39.9	282.4	0.0	0.0
90.00	Appertunance(s)	38.4	605.0	0.0	0.0	0.0	422.9	72.4	808.1	110.8	1,836.0	0.0	0.0
94.00	Top - Section 3	20.9	484.4					58.5	647.4	79.4	1,131.8	0.0	0.0
95.00		22.5	77.5					15.3	162.0	37.8	239.5	0.0	0.0
100.00	Appertunance(s)	33.9	387.8	0.0	0.0	0.0	1,563.7	76.9	810.5	110.8	2,762.0	0.0	0.0
104.00	Top - Section 4	19.0	310.5					62.1	612.7	81.0	923.2	0.0	0.0
105.00		23.0	45.8					15.6	153.3	38.5	199.1	0.0	0.0
110.00	Appertunance(s)	34.6	229.3	0.0	0.0	0.0	921.9	78.4	767.1	113.0	1,918.2	0.0	0.0
114.00		15.5	183.7					63.2	554.2	78.7	737.9	0.0	0.0
								Totals:		3,390.81	27,001.4	0.00	0.00

Page: 8

Site Number: 27741_B
Site Name: Round Hill CT, Greenwich, CT
Engineering Number: REV01
9/16/2019 9:52:10 AM
Customer: KGI

Load Case: $1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$	50 mph with 0.75 in Radial Ice	24 Iterations
Gust Response Factor: 1.10	Ice Dead Load Factor : 1.00	Wind importance Factor: 1.00
Dead Load Factor: 1.20	Ice Importance Factor : 1.00	
Wind Load Factor: 1.00		

Calculated Forces

Seg Elev (ft)	$\begin{gathered} \mathrm{Pu} \\ \mathrm{FY}(-) \\ \text { (kips) } \\ \hline \end{gathered}$	Vu FX (-) (kips)	$\begin{gathered} \text { Tu } \\ \text { MY } \\ \text { (ft-kips) } \end{gathered}$	$\begin{gathered} M \mathbf{M u} \\ \text { MZ } \\ \text { (ft-kips) } \end{gathered}$	$\begin{gathered} \text { Mu } \\ \text { MX } \\ \text { (ft-kips) } \end{gathered}$	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	$\begin{gathered} \text { phi } \\ \text { In } \\ \text { (ft-kips) } \end{gathered}$	$\begin{gathered} \text { phi } \\ \text { Mn } \\ \text { (ft-kips) } \end{gathered}$	Total Deflect (in)	Rotation (deg)	Ratio
0.00	-27.00	-3.32	0.00	-196.12	0.00	196.12	2,009.33	1,004.66	3,370.24	1,687.62	0.00	0.00	0.130
5.00	-25.91	-3.19	0.00	-179.50	0.00	179.50	1,990.85	995.43	3,279.75	1,642.31	0.02	-0.04	0.122
10.00	-24.81	-3.06	0.00	-163.54	0.00	163.54	1,971.76	985.88	3.189.37	1,597.06	0.08	-0.08	0.115
15.00	-23.71	-2.92	0.00	-148.24	0.00	148.24	1,952.06	976.03	3,099.16	1,551.88	0.18	-0.11	0.108
20.00	-22.62	-2.78	0.00	-133.61	0.00	133.61	1,931.73	965.87	3,009.15	1,506.81	0.32	-0.15	0.100
25.00	-21.53	-2.64	0.00	-119.70	0.00	119.70	1,910.79	955.40	2,919.43	1,461.88	0.50	-0.18	0.093
30.00	-20.46	-2.49	0.00	-106.51	0.00	106.51	1,889.23	944.62	2,830.03	1,417.12	0.70	-0.21	0.086
35.00	-19.40	-2.33	0.00	-94.07	0.00	94.07	1,867.06	933.53	2,741.01	1,372.54	0.94	-0.24	0.079
40.00	-18.36	-2.18	0.00	-82.39	0.00	82.39	1,844.27	922.13	2,652.43	1,328.19	1.21	-0.27	0.072
45.00	-17.33	-2.05	0.00	-71.50	0.00	71.50	1,820.86	910.43	2,564.34	1.284.08	1.51	-0.30	0.065
47.84	-16.75	-1.98	0.00	-65.66	0.00	65.66	1,807.27	903.64	2,514.51	,259.12	1.69	-0.31	0.061
50.00	-16.13	-1.90	0.00	-61.40	0.00	61.40	1,796.83	898.42	2,476.80	1,240.24	1.83	-0.32	0.058
52.66	-15.37	-1.82	0.00	-56.35	0.00	56.35	1,181.92	590.96	1,634.85	818.64	2.01	-0.33	0.082
55.00	-14.96	-1.70	0.00	-52.10	0.00	52.10	1,176.68	588.34	1,611.12	806.76	2.18	-0.34	0.077
60.00	-14.10	-1.54	0.00	-43.60	0.00	43.60	1,165.04	582.52	1,560.37	781.35	2.55	-0.37	0.068
65.00	-13.25	-1.38	0.00	-35.90	0.00	35.90	1,152.79	576.40	1,509.51	755.88	2.94	-0.39	0.059
70.00	-12.42	-1.22	0.00	-29.00	0.00	29.00	1,139.92	569.96	1,458.59	730.38	3.36	-0.41	0.051
75.00	-11.60	-1.06	0.00	-22.90	0.00	22.90	1,126.44	563.22	1,407.67	704.88	3.79	-0.42	0.043
80.00	-10.79	-0.95	0.00	-17.60	0.00	17.60	1,112.33	556.17	1,356.80	679.41	4.24	-0.44	0.036
81.50	-10.42	-0.81	0.00	-16.17	0.00	16.17	1,107.98	553.99	1,341.56	671.78	4.38	-0.44	0.033
84.00	-10.02	-0.77	0.00	-14.13	0.00	14.13	1,100.61	550.30	1,316.18	659.07	4.61	-0.45	0.031
84.00	-10.02	-0.77	0.00	-14.13	0.00	14.13	1,168.53	584.26	139.98	118.82	4.61	-0.45	0.128
85.00	-9.74	-0.75	0.00	-13.37	0.00	13.37	1.168.53	584.26	139.98	118.82	4.71	-0.45	0.121
90.00	-7.90	-0.66	0.00	-9.60	0.00	9.60	1,168.53	584.26	139.98	118.82	5.34	-0.75	0.088
94.00	-6.77	-0.57	0.00	-6.98	0.00	6.98	1,168.53	584.26	139.98	118.82	6.05	-0.93	0.065
94.00	-6.77	-0.57	0.00	-6.98	0.00	6.98	715.69	357.85	67.10	56.95	6.05	-0.93	0.132
95.00	-6.53	-0.55	0.00	-6.41	0.00	6.41	715.69	357.85	67.10	56.95	6.25	-0.96	0.122
100.00	-3.77	-0.40	0.00	-3.64	0.00	3.64	715.69	357.85	67.10	56.95	7.46	-1.32	0.069
104.00	-2.85	-0.30	0.00	-2.02	0.00	2.02	715.69	357.85	67.10	56.95	8.64	-1.48	0.039
104.00	-2.85	-0.30	0.00	-2.02	0.00	2.02	255.19	127.60	34.57	26.17	8.64	-1.48	0.088
105.00	-2.65	-0.26	0.00	-1.72	0.00	1.72	255.19	127.60	34.57	26.17	8.95	-1.50	0.076
110.00	-0.74	-0.10	0.00	-0.40	0.00	0.40	255.19	127.60	34.57	26.17	10.59	-1.61	0.018
114.00	0.00	-0.08	0.00	0.00	0.00	0.00	255.19	127.60	34.57	26.17	11.95	-1.62	0.000

Site Number: 27741_B
Code: ANSI/TIA-222-G
© 2007-2019 by ATC IP LLC. All rights reserved.
Site Name: Round Hill CT, Greenwich, CT
Engineering Number: REV01
9/16/2019 9:52:10 AM
Customer: KG

Load Case: $1.0 \mathrm{D}+1.0 \mathrm{~W}$	Serviceability 60 mph	23 Iterations
Gust Response Factor: 1.10	Wind Importance Factor: 1.00	
Dead Load Factor: 1.00		
Wind Load Factor: 1.00		

Applied Segment Forces Summary

		Shaft Forces		Discrete Forces				Linear Forces		Sum of Forces			
Seg日ev (ft)	Description	Wind FX (lb)	Dead Load (lb)	Wind FX (b)	$\begin{aligned} & \text { Torsion } \\ & \text { MY } \\ & \text { (lb-ft) } \end{aligned}$	$\begin{aligned} & \text { Moment } \\ & \text { MZ } \\ & \text { (lb-ft) } \end{aligned}$	Dead Load (lb)	Wind FX (lb)	Dead Load (Ib)	Wind FX (Ib)	Dead Load (lb)	$\begin{gathered} \text { Torsion } \\ \text { MY } \\ \text { (lb-ft) } \end{gathered}$	Moment MZ (Ib)
0.00		55.4	0.0					0.0	0.0	55.4	0.0	0.0	0.0
5.00		109.9	545.3					0.0	101.6	109.9	646.9	0.0	0.0
10.00		107.9	535.5					0.0	101.6	107.9	637.1	0.0	0.0
15.00		107.9	525.8					0.0	101.6	107.9	627.4	0.0	0.0
20.00		110.1	516.0					0.0	101.6	110.1	617.6	0.0	0.0
25.00		112.2	506.3					0.0	101.6	112.2	607.9	0.0	0.0
30.00		113.5	496.5					0.0	101.6	113.5	598.1	0.0	0.0
35.00		114.2	486.8					0.0	101.6	114.2	588.4	0.0	0.0
40.00		114.4	477.1					0.0	101.6	114.4	578.7	0.0	0.0
45.00		89.7	467.3					0.0	101.6	89.7	568.9	0.0	0.0
47.84	Bot - Section 2	57.4	261.3					0.0	57.8	57.4	319.1	0.0	0.0
50.00		55.5	345.3					0.0	43.8	55.5	389.2	0.0	0.0
52.66	Top-Section 1	57.5	421.0					0.0	54.0	57.5	475.0	0.0	0.0
55.00		84.1	158.5					0.0	47.6	84.1	206.1	0.0	0.0
60.00		113.9	333.0					0.0	101.6	113.9	434.6	0.0	0.0
65.00		112.9	325.7					0.0	101.6	112.9	427.3	0.0	0.0
70.00		111.8	318.4					0.0	101.6	111.8	420.0	0.0	0.0
75.00		110.5	311.1					0.0	101.6	110.5	412.7	0.0	0.0
80.00		71.3	303.8					0.0	101.6	71.3	405.4	0.0	0.0
81.50	Appertunance(s)	43.4	89.7	36.0	0.0	1.4	50.0	0.0	30.5	79.4	170.2	0.0	0.0
84.00	Top - Section 2	30.9	148.0					0.0	50.4	30.9	198.4	0.0	0.0
85.00		23.3	88.4					8.1	37.1	31.4	125.5	0.0	0.0
90.00	Appertunance(s)	35.1	441.8	0.0	0.0	0.0	120.0	40.9	185.5	76.0	747.4	0.0	0.0
94.00	Top - Section 3	18.8	353.4					33.0	148.4	51.8	501.9	0.0	0.0
95.00		18.6	54.1					8.7	37.1	27.3	91.2	0.0	0.0
100.00	Appertunance(s)	28.0	270.6	0.0	0.0	0.0	527.4	43.9	185.5	71.8	983.5	0.0	0.0
104.00	Top - Section 4	16.6	216.5					35.4	118.0	51.0	334.4	0.0	0.0
105.00		18.9	27.6					8.9	29.5	27.8	57.1	0.0	0.0
110.00	Appertunance(s)	28.4	137.8	0.0	0.0	0.0	280.7	44.6	147.4	73.1	566.0	0.0	0.0
114.00		12.7	110.3					35.9	67.8	48.6	178.1	0.0	0.0
									ls:	2,379.35	12,913.8	0.00	0.00

Page: 10

Calculated Forces

Seg Elev (ft)	$\begin{gathered} \mathrm{Pu} \\ \mathrm{FY}(-) \\ \text { (kips) } \end{gathered}$	$\begin{aligned} & \text { Vu } \\ & \text { FX }(-) \\ & \text { (kips) } \end{aligned}$	$\begin{gathered} \text { Tu } \\ \text { MY } \\ \text { (ft-kips) } \end{gathered}$	$\begin{gathered} \text { Mu } \\ \text { MZZ } \\ \text { (ft-kips) } \end{gathered}$		Resultant Moment (ft-kips)	phi Pn (kips)	$\begin{gathered} \text { phi } \\ \mathbf{V n} \\ \text { (kips) } \\ \hline \end{gathered}$	$\begin{gathered} \text { phi } \\ \mathrm{Tn} \\ \text { (ft-kips) } \end{gathered}$		Total Deflect (in)	Rotation (deg)	Ratio
0.00	-12.91	-2.33	0.00	-130.62	0.00	130.62	2,009.33	,004.66	3,370.24	1,687.62	0.00	0.00	0.084
5.00	-12.27	-2.22	0.00	-118.99	0.00	118.99	1,990.85	995.43	3,279.75	1,642.31	0.01	-0.03	0.079
10.00	-11.63	-2.12	0.00	-107.88	0.00	107.88	1,971.76	985.88	3,189.37	1,597.06	0.06	-0.05	0.073
15.00	-11.00	-2.01	0.00	-97.28	0.00	97.28	1,952.06	976.03	3,099.16	1,551.88	0.12	-0.08	0.068
20.00	-10.38	-1.91	0.00	-87.21	0.00	87.21	1,931.73	965.87	3,009.15	1,506.81	0.21	-0.10	0.063
25.00	-9.77	-1.80	0.00	-77.67	0.00	77.67	1,910.79	955.40	2,919.43	1,461.88	0.33	-0.12	0.058
30.00	-9.17	-1.69	0.00	-68.69	0.00	68.69	1,889.23	944.62	2,830.03	1,417.12	0.46	-0.14	0.053
35.00	-8.59	-1.57	0.00	-60.26	0.00	60.26	1,867.06	933.53	2,741.01	1,372.54	0.62	-0.16	0.049
40.00	-8.01	-1.46	0.00	-52.39	0.00	52.39	1,844.27	922.13	2,652.43	1,328.19	0.80	-0.18	0.044
45.00	-7.44	-1.37	0.00	-45.10	0.00	45.10	1,820.86	910.43	2,564.34	1,284.08	0.99	-0.19	0.039
47.84	-7.12	-1.31	0.00	-41.20	0.00	41.20	1,807.27	903.64	2,514.51	1,259.12	1.11	-0.20	0.037
50.00	-6.73	-1.26	0.00	-38.37	0.00	38.37	1,796.83	898.42	2,476.80	1,240.24	1.20	-0.21	0.035
52.66	-6.26	-1.20	0.00	-35.04	0.00	35.04	1,181.92	590.96	1,634.85	818.64	1.32	-0.21	0.048
55.00	-6.05	-1.11	0.00	-32.23	0.00	32.23	1,176.68	588.34	1,611.12	806.76	1.42	-0.22	0.045
60.00	-5.61	-1.00	0.00	-26.67	0.00	26.67	1,165.04	582.52	1,560.37	781.35	1.66	-0.24	0.039
65.00	-5.19	-0.89	0.00	-21.67	0.00	21.67	1,152.79	576.40	1,509.51	755.88	1.92	-0.25	0.033
70.00	-4.77	-0.77	0.00	-17.24	0.00	17.24	1.139.92	569.96	1,458.59	730.38	2.19	-0.26	0.028
75.00	-4.36	-0.66	0.00	-13.38	0.00	13.38	1,126.44	563.22	1,407.67	704.88	2.47	-0.27	0.023
80.00	-3.95	-0.59	0.00	-10.08	0.00	10.08	1,112.33	556.17	1,356.80	679.41	2.75	-0.28	0.018
81.50	-3.78	-0.51	0.00	-9.19	0.00	9.19	1,107.98	553.99	1,341.56	671.78	2.84	-0.28	0.017
84.00	-3.58	-0.48	0.00	-7.92	0.00	7.92	1,100.61	550.30	1,316.18	659.07	2.99	-0.28	0.015
84.00	-3.58	-0.48	0.00	-7.92	0.00	7.92	1,168.53	584.26	139.98	118.82	2.99	-0.28	0.070
85.00	-3.46	-0.45	0.00	-7.45	0.00	7.45	1.168.53	584.26	139.98	118.82	3.05	-0.28	0.066
90.00	-2.71	-0.37	0.00	-5.20	0.00	5.20	1,168.53	584.26	139.98	118.82	3.44	-0.45	0.046
94.00	-2.21	-0.32	0.00	-3.70	0.00	3.70	1,168.53	584.26	139.98	118.82	3.86	-0.55	0.033
94.00	-2.21	-0.32	0.00	-3.70	0.00	3.70	715.69	357.85	67.10	56.95	3.86	-0.55	0.068
95.00	-2.12	-0.30	0.00	-3.38	0.00	3.38	715.69	357.85	67.10	56.95	3.98	-0.57	0.062
100.00	-1.13	-0.22	0.00	-1.90	0.00	1.90	715.69	357.85	67.10	56.95	4.68	-0.75	0.035
104.00	-0.80	-0.16	0.00	-1.03	0.00	1.03	715.69	357.85	67.10	56.95	5.34	-0.83	0.019
104.00	-0.80	-0.16	0.00	-1.03	0.00	1.03	255.19	127.60	34.57	26.17	5.34	-0.83	0.043
105.00	-0.74	-0.13	0.00	-0.87	0.00	0.87	255.19	127.60	34.57	26.17	5.52	-0.85	0.036
110.00	-0.18	-0.05	0.00	-0.21	0.00	0.21	255.19	127.60	34.57	26.17	6.44	-0.90	0.009
114.00	0.00	-0.05	0.00	0.00	0.00	0.00	255.19	127.60	34.57	26.17	7.20	-0.91	0.000

Site Number: 27741_B
Site Name: Round Hill CT, Greenwich, CT
Customer:

Equivalent Lateral Forces Method Analysis

(Based on ASCE7-10 Chapters 11, 12, 15)

Spectral Response Acceleration for Short Period $\left(S_{s}\right): \quad 0.26$

Spectral Response Acceleration at 1.0 Second Period $\left(S_{1}\right): \quad 0.07$
Long-Period Transition Period (T_{L}): 6
Importance Factor (I_{E}): 1.00
Site Coefficient $F_{a}: \quad 1.59$
Site Coeffiecient $F_{\mathbf{v}}$: 2.40
$\begin{array}{ll}\text { Response Modification Coefficient (R): } & 1.50\end{array}$
Design Spectral Response Acceleration at Short Period (\mathbf{S}_{ds}): $\mathbf{0 . 2 8}$
Design Spectral Response Acceleration at 1.0 Second Period ($\mathbf{S}_{\mathrm{d} 1}$): 0.11
Seismic Response Coefficient $\left(C_{s}\right): \quad 0.05$
Upper Limit $\mathrm{C}_{8} \quad 0.05$
Lower Limit $\mathrm{C}_{\mathrm{s}} \quad 0.03$
$\begin{array}{ll}\text { Period based on Rayleigh Method (sec): } & 1.53\end{array}$
Redundancy Factor (p): 1.30
Seismic Force Distribution Exponent (k): 1.51
Total Unfactored Dead Load: 12.91 k
Seismic Base Shear (日): 0.83 k

| Site Number: | $27741 _B$ | Code: ANSITTIA-222-G | © 2007-2019 by ATC IP LLC. All nights reserved. |
| :--- | :--- | :--- | ---: | :--- |
| Site Name: | Round Hill CT, Greenwich, CT | Engineering Number: REV01 | 9/16/2019 9:52:11 AM |
| Customer: | KG | | |

Equivalent Modal Forces Analysis

(Based on ASCE7-10 Chapters 11, 12 \& 15 and ANSI/TIA-G, section 2.7)

Spectral Response Acceleration for Short Period $\left(S_{s}\right):$	0.26
Spectral Response Acceleration at 1.0 Second Period $\left(S_{1}\right):$	0.07
Importance Factor $\left(I_{E}\right):$	1.00
Site Coefficient $F_{\mathrm{a}}:$	1.59
Site Coefficient F_{v}	2.40
Response Modification Coefficient (R):	1.50
Design Spectral Response Acceleration at Short Period $\left(S_{d s}\right):$	0.28
Desing Spectral Response Acceleration at 1.0 Second Period $\left(S_{d 1}\right):$	0.11
Period Based on Rayleigh Method (sec):	1.53
Redundancy Factor $(p):$	1.30

Load Case $(1.2+0.2 S d s)^{*}$ DL + EELFM Seismic Equivalent Lateral Forces Method

Segment	Height Above Base (ft)	Weight (b)	a	b	C	Saz	Horizontal Force (Ib)	Vertical Force (b)
29	112.00	178	1.824	1.651	1.020	0.470	72	150
28	107.50	285	1.681	1.050	0.785	0.348	86	241
27	104.50	57	1.588	0.742	0.654	0.277	14	48
26	102.00	334	1.513	0.534	0.558	0.223	65	283
25	97.50	456	1.382	0.252	0.414	0.139	55	385
24	94.50	91	1.299	0.119	0.335	0.092	7	77
23	92.00	502	1.231	0.036	0.278	0.058	25	424
22	87.50	627	1.113	-0.062	0.195	0.010	6	530
21	84.50	125	1.038	-0.098	0.151	-0.013	-1	106
20	82.75	198	0.996	-0.111	0.129	-0.023	-4	168
19	80.75	120	0.948	-0.119	0.107	-0.032	-3	102
18	77.50	405	0.873	-0.121	0.077	-0.040	-14	343
17	72.50	413	0.764	-0.104	0.044	-0.039	-14	349
16	67.50	420	0.663	-0.075	0.023	-0.023	-9	355
15	62.50	427	0.568	-0.041	0.011	0.000	0	361
14	57.50	435	0.481	-0.009	0.006	0.025	10	367
13	53.83	206	0.421	0.011	0.006	0.041	7	174
12	51.33	475	0.383	0.023	0.007	0.050	21	401
11	48.92	389	0.348	0.033	0.009	0.056	19	329
10	46.42	319	0.313	0.042	0.011	0.062	17	270
9	42.50	569	0.263	0.053	0.016	0.067	33	481
8	37.50	579	0.205	0.062	0.023	0.069	34	489
7	32.50	588	0.154	0.068	0.030	0.068	34	497
6	27.50	598	0.110	0.071	0.036	0.065	34	505
5	22.50	608	0.074	0.072	0.040	0.063	33	514
4	17.50	618	0.045	0.071	0.042	0.060	32	522
3	12.50	627	0.023	0.065	0.039	0.055	30	530
2	7.50	637	0.008	0.052	0.030	0.045	25	538
1	2.50	647	0.001	0.023	0.013	0.022	12	547
Flush Mount	110.00	120	1.760	1.362	0.909	0.414	43	101
DBXNH-6565A-A2M	110.00	103	1.760	1.362	0.909	0.414	37	87
TMAT1921XB6811A	110.00	53	1.760	1.362	0.909	0.414	19	45
78211066	110.00	5	1.760	1.362	0.909	0.414	2	4
Flush Mount	100.00	120	1.454	0.395	0.490	0.184	19	101

Page: 13

Site Number: 27741_B
Code: ANSITTIA-222-G © 2007-2019 by ATC IP LLC. All ights reserved.
Site Name: Round Hill CT, Greenwich, CT
Engineering Number: REV01
9/16/2019 9:52:11 AM
Customer: KG

APXVSPP18-C-A20	100.00	171	1.454	0.395	0.490	0.184	27	144
KIT-FD9R6004/1C-DL	100.00	38	1.454	0.395	0.490	0.184	6	32
IBC1900HG-SA	100.00	198	1.454	0.395	0.490	0.184	32	167
Flush Mount	90.00	120	1.178	-0.015	0.239	0.035	4	101
3 ft Standoff	81.50	40	0.966	-0.117	0.115	-0.029	-1	34
GPS	81.50	10	0.966	-0.117	0.115	-0.029	0	8
		12,914	36.276	11.065	11.157	4.560	813	10,912

Load Case $1.2+0.2 S d s) *$ DL + EEMAM Seismic Equivalent Modal Analysis Method

29	112.00	178	1.824	1.651	1.020	0.470	72	150
28	107.50	285	1.681	1.050	0.785	0.348	86	241
27	104.50	57	1.588	0.742	0.654	0.277	14	48
26	102.00	334	1.513	0.534	0.558	0.223	65	283
25	97.50	456	1.382	0.252	0.414	0.139	55	385
24	94.50	91	1.299	0.119	0.335	0.092	7	77
23	92.00	502	1.231	0.036	0.278	0.058	25	424
22	87.50	627	1.113	-0.062	0.195	0.010	6	530
21	84.50	125	1.038	-0.098	0.151	-0.013	-1	106
20	82.75	198	0.996	-0.111	0.129	-0.023	-4	168
19	80.75	120	0.948	-0.119	0.107	-0.032	-3	102
18	77.50	405	0.873	-0.121	0.077	-0.040	-14	343
17	72.50	413	0.764	-0.104	0.044	-0.039	-14	349
16	67.50	420	0.663	-0.075	0.023	-0.023	-9	355
15	62.50	427	0.568	-0.041	0.011	0.000	0	361
14	57.50	435	0.481	-0.009	0.006	0.025	10	367
13	53.83	206	0.421	0.011	0.006	0.041	7	174
12	51.33	475	0.383	0.023	0.007	0.050	21	401
11	48.92	389	0.348	0.033	0.009	0.056	19	329
10	46.42	319	0.313	0.042	0.011	0.062	17	270
9	42.50	569	0.263	0.053	0.016	0.067	33	481
8	37.50	579	0.205	0.062	0.023	0.069	34	489
7	32.50	588	0.154	0.068	0.030	0.068	34	497
6	27.50	598	0.110	0.071	0.036	0.065	34	505
5	22.50	608	0.074	0.072	0.040	0.063	33	514
4	17.50	618	0.045	0.071	0.042	0.060	32	522
3	12.50	627	0.023	0.065	0.039	0.055	30	530
2	7.50	637	0.008	0.052	0.030	0.045	25	538
1	2.50	647	0.001	0.023	0.013	0.022	12	547
Flush Mount	110.00	120	1.760	1.362	0.909	0.414	43	101
DBXNH-6565A-A2M	110.00	103	1.760	1.362	0.909	0.414	37	87
TMAT1921XB6811A	110.00	53	1.760	1.362	0.909	0.414	19	45
78211066	110.00	5	1.760	1.362	0.909	0.414	2	4
Flush Mount	100.00	120	1.454	0.395	0.490	0.184	19	101
APXVSPP18-C-A20	100.00	171	1.454	0.395	0.490	0.184	27	144
KT-FD9R6004/1C-DL	100.00	38	1.454	0.395	0.490	0.184	6	32
IBC1900HG-SA	100.00	198	1.454	0.395	0.490	0.184	32	167
Flush Mount	90.00	120	1.178	-0.015	0.239	0.035	4	101
3 ft Standoff	81.50	40	0.966	-0.117	0.115	-0.029	-1	34
GPS	81.50	10	0.966	-0.117	0.115	-0.029	0	8
12,914			36.276	11.065	11.157	4.560	813	10,912

Site Number: 27741_B Site Name: Round Hill CT, Greenwich, CT Customer: KG			Code: ANSIITIA-222-G Engineering Number: REV01				© 2007-2019 by ATC IP LLC. All rights reserved. 9/16/2019 9:52:11 AM	
Load Case (0.9-0.2Sds) * DL + E ELFM			Seismic (Reduced DL.) Equivalent Lateral Forces Method					
Segment	Height Above Base (ft)	Weight (b)	a	b	c	Saz	Horizontal Force (b)	Vertical Force (lb)
29	112.00	178	1.824	1.651	1.020	0.470	72	150
28	107.50	285	1.681	1.050	0.785	0.348	86	241
27	104.50	57	1.588	0.742	0.654	0.277	14	48
26	102.00	334	1.513	0.534	0.558	0.223	65	283
25	97.50	456	1.382	0.252	0.414	0.139	55	385
24	94.50	91	1.299	0.119	0.335	0.092	7	77
23	92.00	502	1.231	0.036	0.278	0.058	25	424
22	87.50	627	1.113	-0.062	0.195	0.010	6	530
21	84.50	125	1.038	-0.098	0.151	-0.013	-1	106
20	82.75	198	0.996	-0.111	0.129	-0.023	-4	168
19	80.75	120	0.948	-0.119	0.107	-0.032	-3	102
18	77.50	405	0.873	-0.121	0.077	-0.040	-14	343
17	72.50	413	0.764	-0.104	0.044	-0.039	-14	349
16	67.50	420	0.663	-0.075	0.023	-0.023	-9	355
15	62.50	427	0.568	-0.041	0.011	0.000	0	361
14	57.50	435	0.481	-0.009	0.006	0.025	10	367
13	53.83	206	0.421	0.011	0.006	0.041	7	174
12	51.33	475	0.383	0.023	0.007	0.050	21	401
11	48.92	389	0.348	0.033	0.009	0.056	19	329
10	46.42	319	0.313	0.042	0.011	0.062	17	270
9	42.50	569	0.263	0.053	0.016	0.067	33	481
8	37.50	579	0.205	0.062	0.023	0.069	34	489
7	32.50	588	0.154	0.068	0.030	0.068	34	497
6	27.50	598	0.110	0.071	0.036	0.065	34	505
5	22.50	608	0.074	0.072	0.040	0.063	33	514
4	17.50	618	0.045	0.071	0.042	0.060	32	522
3	12.50	627	0.023	0.065	0.039	0.055	30	530
2	7.50	637	0.008	0.052	0.030	0.045	25	538
1	2.50	647	0.001	0.023	0.013	0.022	12	547
Flush Mount	110.00	120	1.760	1.362	0.909	0.414	43	101
DBXNH-6565A-A2M	110.00	103	1.760	1.362	0.909	0.414	37	87
TMAT1921XB6811A	110.00	53	1.760	1.362	0.909	0.414	19	45
78211066	110.00	5	1.760	1.362	0.909	0.414	2	4
Flush Mount	100.00	120	1.454	0.395	0.490	0.184	19	101
APXVSPP18-C-A20	100.00	171	1.454	0.395	0.490	0.184	27	144
KIT-FD9R6004/1C-DL.	100.00	38	1.454	0.395	0.490	0.184	6	32
IBC1900HG-SA	100.00	198	1.454	0.395	0.490	0.184	32	167
Flush Mount	90.00	120	1.178	-0.015	0.239	0.035	4	101
3 ft Standoff	81.50	40	0.966	-0.117	0.115	-0.029	-1	34
GPS	81.50	10	0.966	-0.117	0.115	-0.029	0	8
		12,914	36.276	11.065	11.157	4.560	813	10,912

Load Case (0.9-0.2Sds) * DL + E EMAM Seismic (Reduced DL) Equivalent Modal Analysis Method

Segment	Height Above Base (ft)	Weight (ib)	a	b	c	Saz	Horizontal Force (Ib)	Vertical Force (Ib)
29	112.00	178	1.824	1.651	1.020	0.470	72	150
28	107.50	285	1.681	1.050	0.785	0.348	86	241
27	104.50	57	1.588	0.742	0.654	0.277	14	48
26	102.00	334	1.513	0.534	0.558	0.223	65	283
25	97.50	456	1.382	0.252	0.414	0.139	55	385

| Site Number: | 27741_B | Code: ANSITTIA-222-G | © 2007-2019 by ATC IP LLC. All inghts reserved. |
| :--- | :--- | ---: | ---: | ---: |
| Site Name: | Round Hill CT, Greenwich, CT | Engineering Number: REV01 | |
| Customer: | KG | | |

24	94.50	91	1.299	0.119	0.335	0.092	7	77
23	92.00	502	1.231	0.036	0.278	0.058	25	424
22	87.50	627	1.113	-0.062	0.195	0.010	6	530
21	84.50	125	1.038	-0.098	0.151	-0.013	-1	106
20	82.75	198	0.996	-0.111	0.129	-0.023	-4	168
19	80.75	120	0.948	-0.119	0.107	-0.032	-3	102
18	77.50	405	0.873	-0.121	0.077	-0.040	-14	343
17	72.50	413	0.764	-0.104	0.044	-0.039	-14	349
16	67.50	420	0.663	-0.075	0.023	-0.023	-9	355
15	62.50	427	0.568	-0.041	0.011	0.000	0	361
14	57.50	435	0.481	-0.009	0.006	0.025	10	367
13	53.83	206	0.421	0.011	0.006	0.041	7	174
12	51.33	475	0.383	0.023	0.007	0.050	21	401
11	48.92	389	0.348	0.033	0.009	0.056	19	329
10	46.42	319	0.313	0.042	0.011	0.062	17	270
9	42.50	569	0.263	0.053	0.016	0.067	33	481
8	37.50	579	0.205	0.062	0.023	0.069	34	489
7	32.50	588	0.154	0.068	0.030	0.068	34	497
6	27.50	598	0.110	0.071	0.036	0.065	34	505
5	22.50	608	0.074	0.072	0.040	0.063	33	514
4	17.50	618	0.045	0.071	0.042	0.060	32	522
3	12.50	627	0.023	0.065	0.039	0.055	30	530
2	7.50	637	0.008	0.052	0.030	0.045	25	538
1	2.50	647	0.001	0.023	0.013	0.022	12	547
Flush Mount	110.00	120	1.760	1.362	0.909	0.414	43	101
DBXNH-6565A-A2M	110.00	103	1.760	1.362	0.909	0.414	37	87
TMAT1921XB6811A	110.00	53	1.760	1.362	0.909	0.414	19	45
78211066	110.00	5	1.760	1.362	0.909	0.414	2	4
Flush Mount	100.00	120	1.454	0.395	0.490	0.184	19	101
APXVSPP18-C-A20	100.00	171	1.454	0.395	0.490	0.184	27	144
KIT-FD9R6004/1C-DL	100.00	38	1.454	0.395	0.490	0.184	6	32
IBC1900HG-SA	100.00	198	1.454	0.395	0.490	0.184	32	167
Flush Mount	90.00	120	1.178	-0.015	0.239	0.035	4	101
3 ft Standoff	81.50	40	0.966	-0.117	0.115	-0.029	-1	34
GPS	81.50	10	0.966	-0.117	0.115	-0.029	0	8
		12,914	36.276	11.065	11.157	4.560	813	10,912

Site Number: 27741_B
Site Name: Round Hill CT, Greenwich, CT
Customer: KG

Analysis Summary

Load Case	Reactions						Max Usage	
	Shear FX (kips)	Shear FZ (kips)	Axial FY (kips)	$\begin{aligned} & \text { Moment } \\ & \text { MX } \\ & \text { (ft-kips) } \end{aligned}$	Moment MY (ft-kips)	Moment MZ (ft-kips)		Interaction Ratio
1.2D + 1.6W	8.95	0.00	15.49	0.00	0.00	503.96	0.00	0.31
$0.9 \mathrm{D}+1.6 \mathrm{~W}$	8.94	0.00	11.61	0.00	0.00	501.34	0.00	0.30
$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$	3.32	0.00	27.00	0.00	0.00	196.12	94.00	0.13
$(1.2+0.2 \mathrm{Sds})^{*}$ DL + E ELFM	0.83	0.00	15.40	0.00	0.00	67.58	84.00	0.06
(1.2 + 0.2Sds) * DL + E EMAM	0.80	0.00	15.40	0.00	0.00	61.07	94.00	0.09
(0.9-0.2Sds) * DL + E ELFM	0.83	0.00	10.37	0.00	0.00	67.07	84.00	0.06
(0.9-0.2Sds) * DL + E EMAM	0.80	0.00	10.37	0.00	0.00	60.55	94.00	0.09
1.0D + 1.0W	2.33	0.00	12.91	0.00	0.00	130.62	0.00	0.08

Base Plate and Bolt Analysis

Reinforcement:

Moment:
Shear/Leg:
Compression/Leg:
TIA-222 Code Revision (F/G):
Anchor Bolt Arrangement:
Monopole Shaft Diameter (Across Flats):
Lower Monopole Thickness:
\# of Sides of Pole:
Monopole Shaft Yield Strength:
Baseplate Diameter / Length:
Base Plate Thickness:
Base Plate Yield Strength:
Baseplate Detail Type:
Include Plate Thickness Beyond Bolt Circle:
Stress Increase:
Fillet Weld Size:
Weld Type (CJP or F/F):
Weld Strength:

G
Corners
41.0 in
0.250 in
18
65 ksi
47.50
2.00 in
60 ksi

D
Y
1.00
0.375 in

CJP
70 ksi

Anchor Bolts

Anchor Bolt Yield Strength:	75 ksi
Anchor Bolt Ultimate Strength:	100 ksi
Anchor Bolt Diameter:	2.25 in
Anchor Bolt Circle:	49.00 in
\# of Anchor Bolts:	4
Minimum Anchor Bolt Separation:	6.00 in
Additional Anchor Bolts Installed:	N

| | Baseplate Flexural Capacity | | | | | Baseplate Shear Capacity | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Failure
 Mode: | Effective
 Width (in) | Moment
 $(\mathrm{k}$ - in$)$ | S/Z
 $\left(\mathrm{in}^{5}\right)$ | Capacity
 $(\mathrm{k}$-in) | Usage | Shear
 (k) | Area
 $\left(\mathrm{in}^{〔}\right)$ | Capacity
 (k) | Usage |
| AA | 29.84 | 468.5 | 29.8 | 1611.4 | 0.29 | 127.2 | 59.7 | 1933.7 | 0.07 |
| AB | 29.84 | 461.4 | 29.8 | 1611.4 | 0.29 | 127.2 | 59.7 | 1933.7 | 0.07 |
| BA | 30.83 | 508.7 | 30.8 | 1665.0 | 0.31 | 127.2 | 61.7 | 1998.0 | 0.06 |
| BB | 30.83 | 508.7 | 30.8 | 1665.0 | 0.31 | 127.2 | 61.7 | 1998.0 | 0.06 |

Anchor Bolt Capacity

Area of Bolt:
Inertia of Bolt:
Total Bolt Inertia:
Maximum Bolt Tension:
Maximum Bolt Compression:
Bolt Shear:
Tensile Bolt Capacity:
Compressive Bolt Capacity:
Shear Bolt Capacity:
Interaction Equation:
$3.25 \mathrm{in}^{2}$
0.84 in 4
3902.2 in 4
119.4 k
127.2 k
2.2 k
259.8 k
259.8 k
140.3 k
0.51 Result:

OK

Base Weld Capacity

Force / Weld:
Weld Capacity:
Interaction Equation:
SES Base Plate Design Moment:
Design Stress:
SES Base Plate Allowable Stress / Moment Capacity:
Usage:

Moment Factor:

$$
3.6 \text { k/in }
$$

$23.8 \mathrm{k} / \mathrm{in}$
0.15 Result:

OK
508.7 k-in
15.8 ksi
1738.9 ksi / k-in
0.29

Length Factor:
1.00
0.96

Site Number:	SE60XC302
Site Name:	Splinter
Job Number:	REV01
Engineer:	AHB
Date:	$\mathbf{9 / 1 6 / 2 0 1 9}$

Flange @ 84'
Reinforcement:
Moment:
Shear/Leg:
Compression/Leg:
N
$30.9 \mathrm{k}-\mathrm{ft}$
1.9 k
4.3 k

TIA-222 Code Revision (F/G):
Anchor Bolt Arrangement:
Monopole Shaft Diameter:
Lower Monopole Thickness:
Monople Shaft Yield Strength:
Baseplate Diameter / Length:
Base Plate Thickness:
Base Plate Yield Strength:
Fillet Weld Size:
Weld Type (CJP or F/F):
Weld Strength:
Baseplate Detail Type:
Include Plate Thickness Beyond Bolt Circle:
Stress Increase:
Additional Anchor Bolts Installed:

Anchor Bolts
Anchor Bolt Yield Strength:
Anchor Bolt Ultimate Strength:
Anchor Bolt Diameter:
Anchor Bolt Circle:
\# of Anchor Bolts:
Minimum Anchor Bolt Separation:
Additional Anchor Bolts Installed:

92 ksi
120 ksi
1.00 in
26.00 in

12
6.00 in

N

Anchor Bolt Capacity

Area of Bolt:
Inertia of Bolt:
Total Bolt Inertia:
Maximum Bolt Tension:
Maximum Bolt Compression:
$0.61 \mathrm{in}^{2}$
$0.03 \mathrm{in}^{4}$
614.6 in 4
4.4 k

Bolt Shear: $\quad 0.2 \mathrm{k}$
Tensile Bolt Capacity: 58.2 k
Compressive Bolt Capacity: 58.2 k
Shear Bolt Capacity:
Interaction Equation:
26.2 k
0.09 Result:

OK

Site Number:	SE60XC302
Site Name:	Splinter
Job Number:	REV01
Engineer:	AHB
Date:	$\mathbf{9 / 1 6 / 2 0 1 9}$

Flange @ 94'

Reinforcement:

Moment:
Shear/Leg:
Compression/Leg:
TIA-222 Code Revision (F/G):
Anchor Bolt Arrangement:
Monopole Shaft Diameter:
Lower Monopole Thickness:
Monople Shaft Yield Strength:
Baseplate Diameter / Length:
Base Plate Thickness:
Base Plate Yield Strength:
Fillet Weld Size:
Weld Type (CJP or F/F):
Weld Strength:
Baseplate Detail Type:
Include Plate Thickness Beyond Bolt Circle:
Stress Increase:
Additional Anchor Bolts Installed:

```
N
14.5 k - ft
1.3 k
2.6 k
```

Round
N

Anchor Bolt Capacity

Area of Bolt:	$0.61 \mathrm{in}^{2}$
Inertia of Bolt:	$0.03 \mathrm{in}^{4}$
Total Bolt Inertia:	$614.6 \mathrm{in}^{4}$
Maximum Bolt Tension:	2.0 k
Maximum Bolt Compression:	2.4 k
Bolt Shear:	0.1 k
Tensile Bolt Capacity:	58.2 k
Compressive Bolt Capacity:	58.2 k
Shear Bolt Capacity:	26.2 k
Interaction Equation:	0.04 Result:
	OK

OK

Anchor Bolts
Anchor Bolt Yield Strength: Anchor Bolt Ultimate Strength:
Anchor Bolt Diameter:
Anchor Bolt Circle:
\# of Anchor Bolts:
Minimum Anchor Bolt Separation:
Additional Anchor Bolts Installed:

92 ksi 120 ksi 1.00 in 26.00 in

12
6.00 in

Site Number:
Site Name:
Job Number: Engineer:

SE60XC302

Date:

Splinter REV01 AHB 9/16/2019

Flange @ 104'

Reinforcement:
Moment:
Shear/Leg:
Compression/Leg:


```
4.0 k -ft
0.6 k
0.9 k
```

TIA-222 Code Revision (F/G):
Anchor Bolt Arrangement:
Monopole Shaft Diameter:
Lower Monopole Thickness:
Monople Shaft Yield Strength:
Baseplate Diameter / Length:

Base Plate Thickness:

Base Plate Yield Strength:
Fillet Weld Size:
Weld Type (CJP or F/F):
Weld Strength:
Baseplate Detail Type:
Include Plate Thickness Beyond Bolt Circle: Stress Increase:
Additional Anchor Bolts Installed:

Anchor Bolts
Anchor Bolt Yield Strength:
92 ksi
Anchor Bolt Ultimate Strength:
120 ksi
Anchor Bolt Diameter:
1.00 in

Anchor Bolt Circle:
\# of Anchor Bolts:
Minimum Anchor Bolt Separation:
Additional Anchor Bolts Installed:

Anchor Bolt Capacity

Area of Bolt:
$0.61 \mathrm{in}^{2}$
Inertia of Bolt:
Total Bolt Inertia:
Maximum Bolt Tension:
$0.03 \mathrm{in}^{4}$ 614.6 in 4 0.5 k

Maximum Bolt Compression:
0.7 k

Bolt Shear:
0.1 k

Tensile Bolt Capacity:
58.2 k

Compressive Bolt Capacity:
58.2 k
26.2 k
0.01 Result:

OK

Site Name:
Site Number:
Engineering Number:
Engineer:
Date:
Tower Type:

Design Loads (Factored) - Analysis per TIA-222-G Standards

Design / Analysis / Mapping:
Compression/Leg:
Uplift/Leg:
Total Shear:
Moment:
Tower + Appurtenance Weight:
Depth to Base of Foundation $(1+t-h)$:
Diameter of Pier (d):
Height of Pier above Ground (h):
Width of Pad (W):
Length of Pad (L):
Thickness of Pad (t):
Tower Leg Center to Center:
Number of Tower Legs:
Tower Center from Mat Center:
Depth Below Ground Surface to Water Table:
Unit Weight of Concrete:
Unit Weight of Soil Above Water Table:
Unit Weight of Water:
Unit Weight of Soil Below Water Table:
Friction Angle of Uplift:
Ultimate Coefficient of Shear Friction:
Ultimate Compressive Bearing Pressure:
Ultimate Passive Pressure on Pad Face:
$\phi_{\text {Soil and Concrete Weight: }}$:
$\phi_{\text {soil }}$:

Round Hill CT
27741_B
REVO1
JHH
09/16/19
MP

Program Last Updated: 5/13/2014

Concrete Strength ($f_{\text {c }}$):	4000 psi
Pad Tension Steel Depth:	32.00 in
$\phi_{\text {Shear }}$:	0.75
$\phi_{\text {Flexure / Tension: }}$	0.90
$\phi_{\text {compression: }}$	0.65
β :	0.85
Bottom Pad Rebar Size \#:	8
\# of Bottom Pad Rebar:	16
Pad Bottom Steel Area:	$12.64 \mathrm{in}^{2}$
Pad Steel F_{y} :	60000 psi
Top Pad Rebar Size \#:	8
\# of Top Pad Rebar:	16
Pad Top Steel Area:	$12.64 \mathrm{in}^{2}$
Pier Rebar Size \#:	8
Pier Steel Area (Single Bar):	$0.79 \mathrm{in}^{2}$
\# of Pier Rebar:	22
Pier Steel F_{Y} :	60000 psi
Pier Cage Diameter:	64.0 in
Rebar Strain Limit:	0.008
Steel Elastic Modulus:	29000 ksi
Tie Rebar Size \#:	4
Tie Steel Area (Single Bar):	$0.20 \mathrm{in}^{2}$
Tie Spacing:	6 in
Tie Steel F_{y} :	60000 psi

Overturning Moment Usage

Design OTM:
557.7 k-ft

OTM Resistance:
1201.7 k-ft

Design OTM / OTM Resistance:
0.46 Result: OK

Soil Bearing Pressure Usage

Net Bearing Pressure: 1601 psf
Factored Nominal Bearing Pressure:
Net Bearing Pressure/Factored Nominal Bearing Pressure:
Load Direction Controling Design Bearing Pressure:
9000 psf
0.18 Result: OK

Diagonal to Pad Edge

Sliding Factor of Safety

Total Factored Sliding Resistance:
Sliding Design / Sliding Resistance:
46.7 k
0.19 Result: OK

Factored One Way Shear $\left(V_{u}\right)$:
One Way Shear Capacity $\left(\phi V_{c}\right)$:
$V_{u} / \phi V_{c}$:
Load Direction Controling Shear Capacity:
Lower Steel Pad Factored Moment $\left(\mathrm{M}_{\mathrm{u}}\right)$:
Lower Steel Pad Moment Capacity ($\phi \mathrm{M}_{\mathrm{n}}$):
$M_{u} / \phi M_{n}$:
Load Direction Controling Flexural Capacity:
Upper Steel Pad Factored Moment (M_{u}):
Upper Steel Pad Moment Capacity $\left(\phi \mathrm{M}_{\mathrm{n}}\right)$:
$M_{u} / \phi M_{n}$:
Lower Pad Flexural Reinforcement Ratio:
Upper Pad Flexural Reinforcement Ratio:
Lower Pad Reinforcement Spacing:
Upper Pad Reinforcement Spacing:
Factored Punching Shear $\left(V_{u}\right)$:
Nominal Punching Shear Capacity $\left(\phi_{c} V_{n}\right)$:
$V_{u} / \phi V_{c}$:
Factored Moment in $\operatorname{Pier}\left(\mathrm{M}_{\mathrm{u}}\right)$:
Pier Moment Capacity $\left(\phi \mathrm{M}_{\mathrm{n}}\right)$:
$M_{u} / \phi M_{n}$:
Factored Shear in Pier $\left(\mathrm{V}_{\mathrm{u}}\right)$:
Pier Shear Capacity $\left(\phi V_{n}\right)$:
$V_{u} / \phi V_{c}$:
Pier Shear Reinforcement Ratio:
Factored Tension in Pier $\left(T_{u}\right)$:
Pier Tension Capacity $\left(\phi T_{n}\right)$:
$T_{u} / \phi T_{n}$:
Factored Compression in $\operatorname{Pier}\left(\mathrm{P}_{\mathrm{u}}\right)$:
Pier Compression Capacity $\left(\phi P_{n}\right)$:
$\mathrm{P}_{\mathrm{u}} / \phi \mathrm{P}_{\mathrm{n}}$:
Pier Compression Reinforcement Ratio:
$M_{u} / \phi_{B} M_{n}+T_{u} / \phi_{T} T_{n}:$
28.7 k
359.9 k - ACI11.3.1.1
0.08 Result: OK

Diagonal to Pad Edge
162.9 k-ft
1736.8 k-ft - ACl10.3
0.09 Result: OK

Diagonal to Pad Edge
100.2 k-ft
$1790.2 \mathrm{k}-\mathrm{ft}$
0.06 Result: OK
0.0022 OK - Minimum Reinforcement Ratio Met - ACI10.5.1
0.0022 OK - Minimum Reinforcement Ratio Met - ACI10.5.1

11 in - Pad Reinforcing Spacing OK - ACI7.12.2.2 \& 10.5.4
11 in - Pad Reinforcing Spacing OK - ACI7.12.2.2 \& 10.5.4
0.0 k
1983.7 k - ACI11.12.2.1
0.00 Result: OK
530.8 k-ft
2451.3 k-ft
0.22 Result: OK
9.0 k
386.3 k
0.02 Result: OK
0.0005 No Ties Necessary for Shear - ACI11.5.6.1
0.0 k
938.5 k
0.00 Result: OK
0.0 k
7167.7 k - ACII0.3.6.2
0.00 Result: OK
0.004 NG - Increase Pier Steel - ACl10.9.1 \& 10.8.4
0.22 Result: OK

Nominal and Design Moment Capacity and Factored Design Loads

ASCE 7 Hazards Report

Standard:	ASCE/SEI 7-10	Elevation: 378.96 ft (NAVD 88)
Risk Category:	II	Latitude: 41.095117
Soil Class:	D-Stiff Soil	Longitude: $-\mathbf{7 3 . 6 6 4 2 1 9}$

AMERICAN SOCIETY OF CIVIL ENGINEERS

Seismic

Site Soil Class:

D - Stiff Soil

Results:

$\mathrm{S}_{\mathrm{S}}:$	0.259
$\mathrm{~S}_{1}:$	0.071
$\mathrm{~F}_{\mathrm{a}}:$	1.593
$\mathrm{~F}_{\mathrm{V}}:$	2.4
$\mathrm{~S}_{\mathrm{MS}}:$	0.412
$\mathrm{~S}_{\mathrm{M} 1}:$	0.169

Seismic Design Category

B

$\mathrm{S}_{\mathrm{DS}}:$	0.275
$\mathrm{~S}_{\mathrm{D1}}:$	0.113
$\mathrm{~T}_{\mathrm{L}}:$	6
$\mathrm{PGA}:$	0.152
$\mathrm{PGA}:$	0.228
$\mathrm{~F}_{\mathrm{PGA}}:$	1.495
$\mathrm{I}_{\mathrm{B}}:$	1

Data Accessed:
Date Source:

Wed Sep 112019
USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Results:

Ice Thickness:	0.75 in.
Concurrent Temperature:	15 F

Gust Speed: $\quad 50 \mathrm{mph}$
Data Source:
Date Accessed:
Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Wed Sep 112019
Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3 -second gust speeds, for a 50 -year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

(APPENDIX N) MUNICIPALITY - SPECIFIC STRUCTURAL DESIGN PARAMETERS												
		MCE Spectral Accelerations (\%g)		Wind Design Parameters								
$\frac{2}{\overline{1}}$				Ultimate Design Wind Speeds, $V_{\text {ult }}$ (mph)			Nominal Design Wind Speeds, $V_{\text {asd }}$ (mph)			Wind-Borne Debris Regions ${ }^{1}$		
N		Ss	S_{1}	Risk Cat.I	Risk Cat.II	Risk Cat III-IV	Risk Cat. I	Risk Cat. II	Risk Cat. III-IV			
Enfield	35	0.176	0.065	110	125	130	85	97	101			Yes
Essex	30	0.168	0.059	120	135	145	93	105	112		Type A	Yes
Fairfield	30	0.215	0.065	115	125	135	89	97	105		Type B	Yes
Farmington	35	0.183	0.064	115	125	135	89	97	105			Yes
Franklin	30	0.171	0.061	120	130	140	93	101	108		Type A	Yes
Glastonbury	30	0.180	0.063	115	125	135	89	97	105			Yes
Goshen	40	0.181	0.065	105	115	125	81	89	97			
Granby	35	0.176	0.065	110	120	130	85	93	101			Yes
Greenwich	30	0.259	0.070	110	120	130	85	93	101			Yes
Griswold	30	0.168	0.060	125	135	145	97	105	112		Type A	Yes
Groton	30	0.160	0.058	125	135	145	97	105	112	Type B	Type A	Yes
Guilford	30	0.176	0.061	120	130	140	93	101	108		Type B	Yes
Haddam	30	0.175	0.061	120	130	140	93	101	108			Yes
Hamden	30	0.185	0.063	115	125	135	89	97	105			Yes
Hampton	35	0.172	0.062	120	130	140	93	101	108			Yes
Hartford	30	0.181	0.064	115	125	135	89	97	105			Yes
Hartland	40	0.175	0.065	110	120	125	85	93	97			Yes
Harwinton	35	0.183	0.065	110	120	130	85	93	101			Yes
Hebron	30	0.177	0.063	120	130	140	93	101	108			Yes
Kent	40	0.188	0.065	105	115	120	81	89	93			
Killingly	40	0.171	0.062	120	130	140	93	101	108			Yes
Killingworth	30	0.173	0.061	120	130	140	93	101	108			Yes
Lebanon	30	0.173	0.062	120	130	140	93	101	108			Yes
Ledyard	30	0.163	0.059	125	135	145	97	105	112		Type A	Yes
Lisbon	30	0.169	0.061	125	135	145	97	105	112		Type A	Yes
Litchfield	40	0.184	0.065	110	120	125	85	93	97		Type ${ }^{\text {a }}$	Yes
Lyme	30	0.164	0.059	125	135	145	97	105	112		Type A	Yes
Madison	30	0.173	0.060	120	130	140	93	101	108		Type B	Yes
Manchester	30	0.178	0.064	115	125	135	89	97	105			Yes
Mansfield	35	0.173	0.062	120	130	140	93	101	108			Yes
Marlborough	30	0.177	0.062	120	130	140	93	101	108			Yes
Meriden	30	0.183	0.063	115	125	135	89	97	105			Yes
Middlebury	35	0.191	0.064	110	120	130	85	93	101			Yes
Middlefield	30	0.181	0.063	115	125	135	89	97	105			Yes
Middletown	30	0.180	0.063	115	130	135	89	101	105			Yes
Milford	30	0.194	0.063	115	125	135	89	97	105		Type B	Yes
Monroe	30	0.205	0.065	110	120	130	85	93	101			Yes
Montville	30	0.165	0.059	125	135	145	97	105	112		Type A	Yes
Morris	35	0.187	0.065	110	120	125	85	93	97			Yes
Naugatuck	30	0.190	0.064	110	125	135	85	97	105			Yes
New Britain	30	0.183	0.064	115	125	135	89	97	105			Yes
New Canaan	30	0.240	0.068	110	120	130	85	93	101			Yes
New Fairfield	35	0.212	0.067	105	115	125	81	89	97			
New Hartford	40	0.180	0.065	110	120	130	85	93	101			Yes

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Sprint Existing Facility
Site ID: CT43XC856
Round Hill Community Ranch
395 Round Hill Road
Greenwich, Connecticut 0683I
October 7, 2019
EBI Project Number: 6219005060

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{1 4 . 9 4 \%}$

environmental | engineering | due diligence

October 7, 2019
Sprint
Attn: RF Engineering Manager
I International Boulevard, Suite 800
Mahwah, New Jersey 07495

Emissions Analysis for Site: CT43XC856-Round Hill Community Ranch

EBI Consulting was directed to analyze the proposed Sprint facility located at $\mathbf{3 9 5}$ Round Hill Road in Greenwich, Connecticut for the purpose of determining whether the emissions from the Proposed Sprint Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-Oland ANSI/IEEE Std C95.I. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR I.I307(b)(I) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately $400 \mu \mathrm{~W} / \mathrm{cm}^{2}$ and $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$, respectively. The general population exposure limit for the $1900 \mathrm{MHz}(\mathrm{PCS}), 2100 \mathrm{MHz}(\mathrm{AWS})$ and II GHz frequency bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.
environmental | engineering | due diligence

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Sprint Wireless antenna facility located at 395 Round Hill Road in Greenwich, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Sprint is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6 -foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 2 CDMA channels (800 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 50 Watts per Channel.
2) 4 PCS channels (1900 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-0I recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
4) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused
environmental | engineering | due diligence
parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
5) The antennas used in this modeling are the RFS APXVSPPI8-C-A20 for the $800 \mathrm{MHz} / 1900$ MHz channel(s) in Sector A, the RFS APXVSPPI8-C-A20 for the $800 \mathrm{MHz} / 1900 \mathrm{MHz}$ channel(s) in Sector B, the RFS APXVSPPI8-C-A20 for the $800 \mathrm{MHz} / 1900 \mathrm{MHz}$ channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
6) The antenna mounting height centerline of the proposed antennas is 100 feet above ground level (AGL).
7) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
8) All calculations were done with respect to uncontrolled / general population threshold limits.
environmental | engineering | due diligence

Sprint Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	I	Antenna \#:	I	Antenna \#:	I
Make / Model:	RFS APXVSPPI8-C-A20	Make / Model:	RFS APXVSPPI8-C-A20	Make / Model:	RFS APXVSPPI8-C-A20
Frequency Bands:	$800 \mathrm{MHz} / 1900 \mathrm{MHz}$	Frequency Bands:	$800 \mathrm{MHz} / 1900 \mathrm{MHz}$	Frequency Bands:	$800 \mathrm{MHz} / 1900 \mathrm{MHz}$
Gain:	13.4 dBd / 15.9 dBd	Gain:	13.4 dBd / 15.9 dBd	Gain:	13.4 dBd / 15.9 dBd
Height (AGL):	100 feet	Height (AGL):	100 feet	Height (AGL):	100 feet
Channel Count:	6	Channel Count:	6	Channel Count:	6
Total TX Power (W):	260 Watts	Total TX Power (W):	260 Watts	Total TX Power (W):	260 Watts
ERP (W):	8,412.48	ERP (W):	8,412.48	ERP (W):	8,412.48
Antenna AI MPE \%:	3.71%	Antenna BI MPE \%:	3.71%	Antenna CI MPE \%:	3.71%

environmental | engineering | due diligence

Site Composite MPE \%	
Carrier	MPE \%
Sprint (Max at Sector A):	3.71%
AT\&T	4.89%
T-Mobile	2.58%
Verizon	3.76%
Site Total MPE \%:	14.94%

Sprint MPE \% Per Sector	
Sprint Sector A Total:	3.71%
Sprint Sector B Total:	3.71%
Sprint Sector C Total:	3.71%
Site Total MPE \% :	14.94%

Sprint Maximum MPE Power Values (Sector A)

Sprint Frequency Band / Technology (Sector A)	$\#$ Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density $\left(\boldsymbol{\mu W} / \mathbf{c m}^{2}\right)$	Frequency (MHz)	Allowable MPE $\left(\boldsymbol{\mu W} / \mathbf{c m}^{2}\right)$	Calculated \% MPE
Sprint 800 MHz CDMA	2	1093.88	100.0	7.87	800 MHz CDMA	533	
Sprint 1900 MHz PCS	4	1556.18	100.0	22.38	1900 MHz PCS	1000	1.48%
2.24%	Total:	3.71%					

- NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.
environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Sprint facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Sprint Sector	Power Density Value (\%)
Sector A:	3.71%
Sector B:	3.71%
Sector C:	3.71%
Sprint Maximum MPE \% (Sector A):	3.71%
Site Total:	
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{I 4 . 9 4 \%}$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

DOCKET NO. 309 - Cellco Partnership d/b/a Verizon Wireless application for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance, and operation of a wireless telecommunications facility located at the Round Hill Community Church, 395 Round Hill Road, Greenwich, \} Connecticut.

Connecticut
Siting
Council
February 6, 2007

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a telecommunications facility, including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate, either alone or cumulatively with other effects, when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes $\S 16-50 \mathrm{k}$, be issued to Cellco Partnership d/b/a Verizon Wireless, hereinafter referred to as the Certificate Holder, for a telecommunications facility at 395 Round Hill Road Greenwich, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

1. The facility shall be constructed as a two-monopole facility with internally mounted antennas, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of Cellco Partnership $\mathrm{d} / \mathrm{b} / \mathrm{a}$ Verizon Wireless and other entities, both public and private, but such towers shall not exceed a height of 115 feet above ground level.
2. The Certificate Holder shall prepare a Development and Management (D\&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D\&M Plan shall be served on the Town of Greenwich for comment, and all parties and intervenors as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction and shall include:
a) a final site plan(s) of site development to include specifications for the towers, tower foundations, antennas, equipment compound, radio equipment, access road, utility line, and landscaping; and
b) construction plans for site clearing, water drainage, and erosion and sedimentation control consistent with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, as amended.
3. The Certificate Holder shall, prior to the commencement of operation, provide the Council worst-case modeling of electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the base of the facility, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of electromagnetic radio frequency power density is submitted to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.
4. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
5. The Certificate Holder shall permit public or private entities to share space on the proposed facility for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
6. The Certificate Holder shall provide reasonable space within one of the towers for no compensation for any Town of Greenwich public safety services (police, fire and medical services), provided such use can be accommodated and is compatible with the structural integrity of the tower.
7. If the facility authorized herein is not fully constructed and providing wireless services within eighteen months from the date of the mailing of the Council's Findings of Fact, Opinion, and Decision and Order (collectively called "Final Decision"), this Decision and Order shall be void, and the Certificate Holder shall dismantle both towers and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made. The time between the filing and resolution of any appeals of the Council's Final Decision shall not be counted in calculating this deadline.
8. If the one or both towers of the facility ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the unused portion of the facility and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
9. The Certificate Holder shall remove any nonfunctioning antenna, and associated antenna mounting equipment, within 60 days of the date the antenna ceased to function.
10. Any request for extension of the time periods referred to in Conditions $7 \& 8$ shall be filed with the Council not later than sixty days prior to the expiration date of this Certificate and shall be served on all parties and intervenors, as listed in the service list, and the Town of Greenwich. Any proposed modifications to this Decision and Order shall likewise be so served.
11. In accordance with Section 16-50j-77 of the Regulations of Connecticut State Agencies, the Certificate Holder shall provide the Council with written notice two weeks prior to the commencement of site construction activities. In addition, the Certificate Holder shall provide the Council with written notice of the completion of site construction and the commencement of site operation.

Pursuant to General Statutes § $16-50$ p, the Council hereby directs that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in The Greenwich Time.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

Docket No. 309
Decision and Order
Page 3
The parties and intervenors to this proceeding are:
Applicant
Cellco Partnership d/b/a
Verizon Wireless

Representatives

Sandy Carter, Regulatory Manager
Verizon Wireless
99 East River Drive
East Hartford, CT 06108
Kenneth C. Baldwin, Esq.
Robinson \& Cole LLP
280 Trumbull Street
Hartford, CT 06103-3597
Representative
Diane Whitney, Esq.
Pullman \& Comley
80 State House Square
Hartford, CT 06103

Representative

Ira W. Bloom, Esq.
Wake, See, Dimes, Brynizcka, Day \& Bloom
27 Imperial Avenue, P.O. Box 777
Westport, CT 06881-0777

Representative

Christopher B. Fisher, Esq.
Cuddy \& Feder LLP
90 Maple Avenue
White Plains, New York 10601

Representative

Thomas J. Regan, Esq.
Brown Rudnick Berlack Israels LLP
CityPlace I, 185 Asylum Street
Hartford, CT 06103-3402

Representative

Ira W. Bloom, Esq.
Wake, See, Dimes, Brynizcka, Day \& Bloom
27 Imperial Avenue, P.O. Box 777
Westport, CT 06881-0777

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on
fedex.com. FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, nona timely claim. Limitations found in th, unless you declare a higher value, pay an additional charge, document your actual loss and file intrinsic value of the package, loss of sales, incomex Service Guide apply. Your right to recover from FedEx for any loss, including incidental, consequential, or special is limited to the interest, profit, attorney's fees, costs, and other forms of damage whether direct, documented loss.Maximum for items of extraordinary value is $\$ 100$ or the authorized declared value. Recovery cannot exceed actual items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on
fedex.com. FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, nondelivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual items listed in our ServiceGuide Written extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number. Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, nondelivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including incidental, consequential, or special is limies, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, documented loss.Maximum for items of extraordinary value is $\$ 100$ or the authorized declared value. Recovery cannot exceed actual items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number,
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage delivery,misdelivery,or misinformation, unless you declare a higher a timely claim. Limitations found in the current FedEx Ser value, pay an additional charge, document your actual loss and file intrinsic value of the package, loss of sales, income inerve Guide apply. Your right to recover from FedEx for any loss, including incidental, consequential, or special is limited to the grest, profit, attorney's fees, costs, and other forms of damage whether direct, documented loss.Maximum for items of extraordinary items listed in our ServiceGuide. Written claims must be file $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other

[^0]: *Deflection and Sway was evaluated considering a design wind speed of 60 mph (3-Second Gust) per ANSI/TIA-222-G

