

John Coleman, Project Manager c/o Cellco Partnership d/b/a Verizon Wireless Centerline Communications, LLC 750 West Center Street, Floor 3 West Bridgewater, MA 02379 Mobile: (240) 615 -7389

March 21, 2022

JColeman@clinellc.com

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: EM-VER-057-211118 – Cellco Partnership d/b/a Verizon Wireless notice of intent to modify an existing telecommunications facility located at 48 Ritch Avenue West, Greenwich, CT.

Dear Ms. Bachman,

In response to the Council's Incomplete Letter to modify an existing telecommunications facility dated December 30, 2021 for the afore mentioned site, please see the following attachments as outlined below per Councils request:

- 1. The Original Filing sent to the CSC on 11/18/2021 Notice of Exempt Modification // Site: BYRAM PARK CT (ATC: 414240) Cellco Partnership d/b/a/ Verizon Wireless.
- 2. Cumulative Power Density Maximum Permissible Exposure (MPE) Report for all of the existing antenna on the tower including Verizon's proposed antenna.

This list completes the items listed in the afore mentioned Letter of Incompleteness. I appreciate your time and consideration.

Sincerely,

John Coleman

John Coleman, Project Manager c/o Cellco Partnership d/b/a Verizon Wireless Centerline Communications, LLC 750 West Center Street, Floor 3 West Bridgewater, MA 02379 Mobile: (240) 615 -7389

Mobile: (240) 615 - /38 <u>JColeman@clinellc.com</u>

NIER Study Report

SITE NAME:

414240 Byram Park CT

ATC Customer:

Verizon Wireless

LOCATION:

Greenwich, Connecticut

COMPANY:

American Tower Woburn, Massachusetts

March 5th, 2022

Contents

DISCLAIMER 1	NOTICE	2
INTRODUCTIO	ON	3
SITE AND FAC	CILITY CONSIDERATIONS	3
POWER DENS	SITY CALCULATIONS	4
	SATELLITE PHOTO	
	CUMULATIVE MPE CHARTS	
	INFORMATION PERTAINING TO MPE STUDIES	
	MPE STANDARDS METHODOLOGY	
		/

Disclaimer Notice

This work is based upon our best interpretation of available information. However, these data and their interpretation are constantly changing. Therefore, we do not warrant that any undertaking based on this report will be successful, or that others will not require further research or actions in support of this proposal or future undertaking. In the event of errors, our liability is strictly limited to replacement of this document with a corrected one. Liability for consequential damages is specifically disclaimed. Any use of this document constitutes an agreement to hold Tower Engineering Professionals and its employees harmless and indemnify it for all liability, claims, demands, and litigation expenses and attorney's fees arising out of such use.

Work product documents released prior to account settlement remain the sole property of Tower Engineering Professionals and must be returned on demand. Underlying work notes and data relating to this document remain the property of Tower Engineering Professionals. This document shall not be reproduced in whole or part without permission of Tower Engineering Professionals. Any dispute hereunder shall be adjudicated in North Carolina. Any use or retention of this document constitutes acceptance of these terms, the entire work product, and all charges associated therewith.

COPYRIGHT © 2022 BY
TOWER ENGINEERING PROFESSIONALS
KINSTON, NORTH CAROLINA

NIER STUDY REPORT 414240 Byram Park CT

Greenwich, CT

INTRODUCTION

Tower Engineering Professionals (TEP) of Raleigh, NC has been retained by American Tower (ATC) of Woburn, Massachusetts to evaluate the RF emissions of an existing tower at this location.

SITE AND FACILITY CONSIDERATIONS

Site Byram Park CT is located at 48 Rich Ave. in Greenwich, CT at coordinates 41.005067, -73.648303. The support structure is an 82' stealth monopine. Verizon Wireless (VZW) is proposing to add new facilities at this location with a center of radiation of 57' above ground level. All data used in this study was provided by one or more of the following sources:

- 1. ATC furnished data
- 2. Compiled from carrier and manufacturer standard configurations
- 3. Empirical data collected by TEP
- 4. Data obtained from the CT Siting Committee database

A satellite view of the study area is located in Appendix 1.

POWER DENSITY CALCULATIONS

A chart showing the VZW cumulative MPE percentages along with the site cumulative MPE values, compared to FCC MPE general population limits, may be seen in Appendix 2. These limits are based upon the Information Relating to MPE Standards found in Appendix 3. Study methodology may be seen in Appendix 4 which describes the Non-Ionizing Radiation Prediction Models.

March 5th, 2022

Prepared By:

Michael W. Hayden NCE CPBE CBNT AMD Director: RF Designs and Services Tower Engineering Professionals

Approved By:

APPENDIX 1 Satellite Photo

APPENDIX 2 Cumulative MPE Charts

	Carrier Maximum MPE Values						
Carrier	Technology	Frequancy (MHz)	Maximum ERP ¹ (W)	Antenna Centerline (ft)	Allowable Power Density (un-controlled access) (mW/cm²)*	Calculated Power Density (mW.cm²)	Calculated MPE (Allowable)
VZW	LTE 700	751	2954.00	57	0.5007	0.0327	0.0653
VZW	CDMA 700	877.26	998.00	57	0.5848	0.0110	0.0189
VZW	Cellular 800	874	3365.00	57	0.5827	0.0372	0.0639
VZW	PCS	1980	8139.00	57	1.0000	0.0901	0.0901
VZW	AWS	2120	8141.00	57	1.0000	0.0901	0.0901
VZW	C-Band	3730.08	1928.00	57	1.0000	0.0213	0.0213
						MPE Total:	0.3496
	ERP is based on data provided by ATC and includes -10dB off-beam attern adjustment as descriped in CT 16-50j.					Compliance Status:	Compliant

pattern adjustment as descriped in CT 16-50j.

Site Composite MPE (%)			
T-Mobile ² :	10.90		
AT&T ² :	28.94		
Verizon:	35.00		
Site Total MPE:	74.84		
Site Status:	Compliant		

 $^{^{\}rm 2}$ Based on data contained in the Conneticut Siting Committee database

^{*} Calculated as described in FCC OET-65 Table 1 (B)

APPENDIX 3 Information Pertaining to MPE Studies

In 1985, the FCC first adopted guidelines to be used for evaluating human exposure to RF emissions. The FCC revised and updated these guidelines on August 1, 1996, as a result of a rule-making proceeding initiated in 1993. The new guidelines incorporate limits for Maximum Permissible Exposure (MPE) in terms of electric and magnetic field strength and power density for transmitters operating at frequencies between 300 kHz and 100 GHz.

The FCC's MPE limits are based on exposure limits recommended by the National Council on Radiation Protection and Measurements (NCRP) and, over a wide range of frequencies, the exposure limits were developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI) to replace the 1982 ANSI guidelines. Limits for localized absorption are based on recommendations of both ANSI/IEEE and NCRP.

The FCC's limits, and the NCRP and ANSI/IEEE limits on which they are based, are derived from exposure criteria quantified in terms of specific absorption rate (SAR). The basis for these limits is a whole-body averaged SAR threshold level of 4 watts per kilogram (4 W/kg), as averaged over the entire mass of the body, above which expert organizations have determined that potentially hazardous exposures may occur. The MPE limits are derived by incorporating safety factors that lead, in some cases, to limits that are more conservative than the limits originally adopted by the FCC in 1985. Where more conservative limits exist, they do not arise from a fundamental change in the RF safety criteria for whole-body averaged SAR, but from a precautionary desire to protect subgroups of the general population who, potentially, may be more at risk.

The FCC exposure limits are also based on data showing that the human body absorbs RF energy at some frequencies more efficiently than at others. The most restrictive limits occur in the frequency range of 30-300 MHz where whole-body absorption of RF energy by human beings is most efficient. At other frequencies, whole-body absorption is less efficient, and consequently, the MPE limits are less restrictive.

MPE limits are defined in terms of power density (units of milliwatts per centimeter squared: mW/cm²), electric field strength (units of volts per meter: V/m) and magnetic field strength (units of amperes per meter: A/m). The far-field of a transmitting antenna is where the electric field vector (E), the magnetic field vector (H), and the direction of propagation can be considered to be all mutually orthogonal ("plane-wave" conditions).

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment-related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area. Additional details can be found in FCC OET 65.

APPENDIX 4 MPE Standards Methodology

This study predicts RF field strength and power density levels that emanate from communications system antennae. It considers all transmitter power levels (less filter and line losses) delivered to each active transmitting antenna at the communications site. Calculations are performed to determine power density and MPE levels for each antenna as well as composite levels from all antennas. The calculated levels are based on where a human (Observer) would be standing at various locations at the site. The point of interest where the MPE level is predicted is based on the height of the Observer.

Compliance with the FCC limits on RF emissions are determined by spatially averaging a person's exposure over the projected area of an adult human body, that is approximately six-feet or two-meters, as defined in the ANSI/IEEE C95.1 standard. The MPE limits are specified as time-averaged exposure limits. This means that exposure is averaged over an identifiable time interval. It is 30 minutes for the general population/uncontrolled RF environment and 6 minutes for the occupational/controlled RF environment. However, in the case of the general public, time averaging should not be applied because the general public is typically not aware of RF exposure and they do not have control of their exposure time. Therefore, it should be assumed that any RF exposure to the general public will be continuous.

The FCC's limits for exposure at different frequencies are shown in the following Tables.

Limits for Occupational/Controlled Exposure					
Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm²)	Averaging Time E ², H ² or S (minutes)	
0.3 - 3.0	614	1.63	100*	6	
3.0 - 30	1842/f	4.89/f	900/F ²	6	
30 - 300	61.4	0.163	1.0	6	
300 - 1500			f/300	6	
1500 - 100,000			5	6	

f = frequency

^{* =} Plane-wave equivalent power density

Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

	Limits for General Population/Uncontrolled Exposure					
Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm²)	Averaging Time E ², H ² or S (minutes)		
0.3 - 1.34	614	1.63	100*	30		
1.34 - 30	824/f	2.19/f	180/F²	30		
30 -300	27.5	0.073	0.2	30		
300 -1500			f/1500	30		
1500 -100,000			1.0	30		

f = frequency

General population/uncontrolled exposures apply in situations in which the general public may be exposed or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

It is important to understand that these limits apply cumulatively to all sources of RF emissions affecting a given area. For example, if several different communications system antennas occupy a shared facility such as a tower or rooftop, then the total exposure from all systems at the facility must be within compliance of the FCC guidelines.

The field strength emanating from an antenna can be estimated based on the characteristics of an antenna radiating in free space. There are basically two field areas associated with a radiating antenna. When close to the antenna, the region is known as the Near Field. Within this region, the characteristics of the RF fields are very complex and the wave front is extremely curved. As you move further from the antenna, the wave front has less curvature and becomes planar. The wave front still has a curvature but it appears to occupy a flat plane in space (plane-wave radiation). This region is known as the Far Field.

^{* =} Plane-wave equivalent power density

Two models are utilized to predict Near and Far field power densities. They are based on the formulae in FCC OET 65. As this study is concerned only with Near Field calculations, we will only describe the model used for this study. For additional details, refer to FCC OET Bulletin 65.

Cylindrical Model (Near Field Predictions)

Spatially averaged plane-wave equivalent power densities parallel to the antenna may be estimated by dividing the antenna input power by the surface area of an imaginary cylinder surrounding the length of the radiating antenna. While the actual power density will vary along the height of the antenna, the average value along its length will closely follow the relation given by the following equation:

$$S = P \div 2\pi RL$$

Where:

S = Power Density

P = Total Power into antenna

R = Distance from the antenna

L = Antenna aperture length

For directional-type antennas, power densities can be estimated by dividing the input power by that portion of a cylindrical surface area corresponding to the angular beam width of the antenna. For example, for the case of a 120-degree azimuthal beam width, the surface area should correspond to 1/3 that of a full cylinder. This would increase the power density near the antenna by a factor of three over that for a purely omni-directional antenna. Mathematically, this can be represented by the following formula:

$$S = (180 / \theta_{BW}) P \div \pi RL$$

Where:

S = Power Density

 θ_{BW} = Beam width of antenna in degrees (3 dB half-power point)

P = Total Power into antenna

R = Distance from the antenna

L = Antenna aperture length

If the antenna is a 360-degree omni-directional antenna, this formula would be equivalent to the previous formula.

Spherical Model (Far Field Predictions)

Spatially averaged plane-wave power densities in the Far Field of an antenna may be estimated by considering the additional factors of antenna gain and reflective waves that would contribute to exposure.

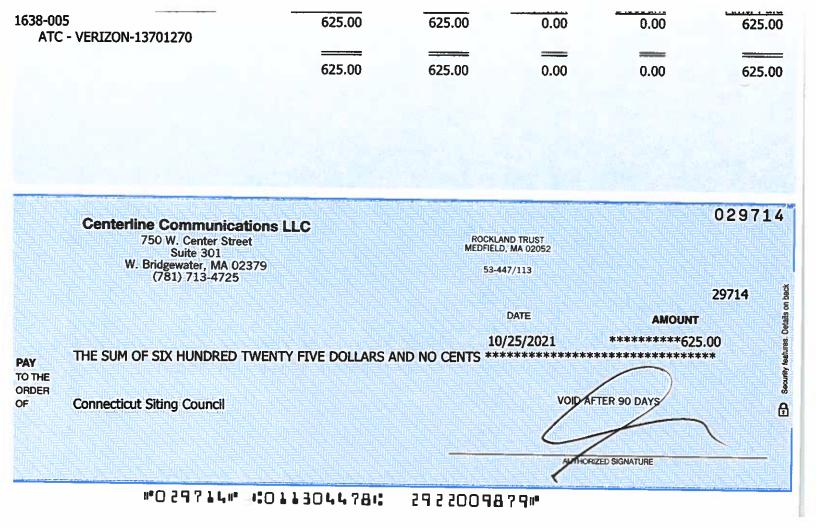
The radiation pattern of an antenna has developed in the Far Field region and the power gain needs to be considered in exposure predictions. Also, if the vertical radiation pattern of the antenna is considered, the exposure predictions would most likely be reduced significantly at ground level, resulting in a more realistic estimate of the actual exposure levels.

Additionally, to model a truly "worst case" prediction of exposure levels at or near a surface, such as at ground-level or on a rooftop, reflection off the surface of antenna radiation power can be assumed, resulting in a potential four-fold increase in power density.

These additional factors are considered and the Far Field prediction model is determined by the following equation:

$$S = EIRP \times Rc \div 4\pi R^2$$

Where:


S = Power Density

EIRP = Effective Radiated Power from antenna

Rc = Reflection Coefficient (2.56)

R = Distance from the antenna

The EIRP includes the antenna gain. If the antenna pattern is considered, the antenna gain is relative based on the horizontal and vertical pattern gain values at that particular location in space, on a rooftop or on the ground. However, it is recommended that the antenna radiation pattern characteristics not be considered to provide a conservative "worst case" prediction. This is the equation is utilized for the Far Field exposure predictions herein.

John Coleman, Project Manager c/o Cellco Partnership d/b/a Verizon Wireless Centerline Communications, LLC 750 West Center Street, Floor 3 West Bridgewater, MA 02379 Mobile: (240) 615 -7389 JColeman@clinellc.com

November 1, 2021

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification // Site: BYRAM PARK CT (ATC: 414240) 48 RITCH AVE WEST, GREENWICH, CT 06830 N 41.00506388 // W -73.64831111

Dear Ms. Bachman,

Cellco Partnership d/b/a Verizon Wireless currently maintains twelve (12) antenna at the 57-ft level on the existing 77ft Monopine tower, located at 48 Ritch Avenue West, Greenwich, CT. The tower is owned by American Tower. The property is owned by 36 Ritch Avenue LLC. The Council approved Verizon Wireless use of the existing tower in July 2011. Verizon Wireless now intends to remove Nine (9) antenna, Nine (9) RRH's, One (1) OVP and associated cabling, and install Nine (9) new antenna for the LTE (3700 MHz) replacements for its 5G upgrade. Additionally, Verizon Wireless intends to install Nine (9) new Remote Radio Heads (RRHs), Three (3) Diplexers, one (1) OVP and associated cabling; altogether updating leased equipment rights, as reflected by the final configuration outlined in the structural analysis and proposed hereby).

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Fred Camillo, First Selectman, its Director of Planning & Zoning, Katie DeLuca, American Tower, the tower owner, and the property owner, 36 Ritch Avenue LLC.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2). Enclosed to accommodate this filing are construction drawings dated September 21, 2021, by A.T. NB&C Engineering Services, LLC, a structural analysis dated July 28, 2021, by American Tower Corp., and a structural mount analysis by Maser Consulting Connecticut date July 7, 2021, and radio frequency (RF) analysis table showing worst-case RF emission calculation by Verizon Wireless RF Design Engineering.

- 1. The proposed modifications will not result in an increase in the height of the existing structure.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the new antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading, as shown in the attached structural analysis by American Tower Corp., dated July 28, 2021, and a structural mount analysis by Maser Consulting Connecticut, dated July 7, 2021, pursuant to certain conditions defined therein. Design and engineering are fully illustrated within final construction drawings, signed and stamped dated September 21, 2021.

For the foregoing reasons, Verizon Wireless respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

John Coleman

John Coleman, Project Manager c/o Cellco Partnership d/b/a Verizon Wireless Centerline Communications, LLC 750 West Center Street, Floor 3 West Bridgewater, MA 02379 Mobile: (240) 615 -7389 JColeman@clinellc.com

Attachments

cc: Fred Camillo – First Selectman – Chief Elected Official Katie DeLuca, Building Official - as P&Z official American Tower Corporation - as tower owner 36 Ritch Avenue LLC – as ground owner

UPS CampusShip: View/Print Label

- 1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to print the label.
- 2. **Fold the printed label at the solid line below.** Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

3. GETTING YOUR SHIPMENT TO UPS

Customers with a Daily Pickup

Your driver will pickup your shipment(s) as usual.

Customers without a Daily Pickup

Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.

Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages. Hand the package to any UPS driver in your area.

UPS Access PointTM CVS STORE # 972 555 WASHINGTON ST SOUTH EASTON ,MA 02375 UPS Access PointTM
CVS STORE # 7232
689 DEPOT ST
NORTH EASTON ,MA 02356

UPS Access PointTM
TOWN LINE GENERAL STORE
450 E CENTER ST
WEST BRIDGEWATER ,MA 02379

FOLD HERE

From: UPS

To: Barbara Kassabian

Subject: UPS Delivery Notification, Tracking Number 1Z9Y45030338391226

Date: Friday, November 5, 2021 10:04:11 AM

Hello, your package has been delivered.

Delivery Date: Friday, 11/05/2021

Delivery Time: 10:02 AM Left At: MAIL ROOM Signed by: CALABRECE

CENTERLINE SITE ACQUISITION

Tracking Number: <u>1Z9Y45030338391226</u>

TOWN OF GREENWICH CT

Ship To: 101 FIELD POINT RD. FIRST FLR.

GREENWICH, CT 068306488

US

Number of Packages: 1

UPS Service: UPS Ground

Package Weight: 1.0 LBS

Reference Number: 414240

Reference Number: BRYAM PARK CT

Download the UPS mobile app

© 2021 United Parcel Service of America, Inc. UPS, the UPS brandmark, and the color brown are trademarks of United Parcel Service of America, Inc. All rights reserved.

All trademarks, trade names, or service marks that appear in connection with UPS's services are the property of their respective owners.

Please do not reply directly to this email. UPS will not receive any reply message.

Review the UPS Privacy Notice

For Questions, Visit Our Help and Support Center

UPS CampusShip: View/Print Label

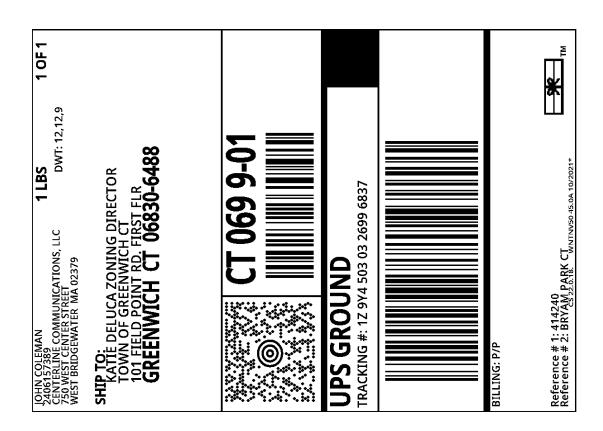
- 1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to print the label.
- 2. **Fold the printed label at the solid line below.** Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

3. GETTING YOUR SHIPMENT TO UPS

Customers with a Daily Pickup

Your driver will pickup your shipment(s) as usual.

Customers without a Daily Pickup


Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.

Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages. Hand the package to any UPS driver in your area.

UPS Access PointTM CVS STORE # 972 555 WASHINGTON ST SOUTH EASTON ,MA 02375 UPS Access PointTM
CVS STORE # 7232
689 DEPOT ST
NORTH EASTON ,MA 02356

UPS Access PointTM
TOWN LINE GENERAL STORE
450 E CENTER ST
WEST BRIDGEWATER ,MA 02379

FOLD HERE

From: UPS

To: Barbara Kassabian

Subject: UPS Delivery Notification, Tracking Number 1Z9Y45030326996837

Date: Friday, November 5, 2021 10:04:11 AM

Hello, your package has been delivered.

Delivery Date: Friday, 11/05/2021

Delivery Time: 10:02 AM Left At: MAIL ROOM Signed by: CALABRECE

CENTERLINE SITE ACQUISITION

Tracking Number: <u>1Z9Y45030326996837</u>

TOWN OF GREENWICH CT

Ship To: 101 FIELD POINT RD. FIRST FLR GREENWICH, CT 068306488

US

Number of Packages: 1

UPS Service: UPS Ground

Package Weight: 1.0 LBS

Reference Number: 414240

Reference Number: BRYAM PARK CT

Download the UPS mobile app

© 2021 United Parcel Service of America, Inc. UPS, the UPS brandmark, and the color brown are trademarks of United Parcel Service of America, Inc. All rights reserved.

All trademarks, trade names, or service marks that appear in connection with UPS's services are the property of their respective owners.

Please do not reply directly to this email. UPS will not receive any reply message.

Review the UPS Privacy Notice

For Questions, Visit Our Help and Support Center

UPS CampusShip: View/Print Label

- 1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to print the label.
- 2. **Fold the printed label at the solid line below.** Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

3. GETTING YOUR SHIPMENT TO UPS

Customers with a Daily Pickup

Your driver will pickup your shipment(s) as usual.

Customers without a Daily Pickup

Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.

Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages. Hand the package to any UPS driver in your area.

UPS Access PointTM CVS STORE # 972 555 WASHINGTON ST SOUTH EASTON ,MA 02375 UPS Access PointTM
CVS STORE # 7232
689 DEPOT ST
NORTH EASTON ,MA 02356

UPS Access PointTM
TOWN LINE GENERAL STORE
450 E CENTER ST
WEST BRIDGEWATER ,MA 02379

FOLD HERE

From: UPS

To: Barbara Kassabian

Subject: UPS Delivery Notification, Tracking Number 1Z9Y45030322895444

Date: Friday, November 5, 2021 2:14:09 PM

Hello, your package has been delivered.

Delivery Date: Friday, 11/05/2021

Delivery Time: 2:12 PM **Left At:** FRONT DOOR

Set Delivery Instructions

Manage Preferences

View My Packages

CENTERLINE SITE ACQUISITION

Tracking Number: <u>1Z9Y45030322895444</u>

36 RITCH AVENUE LLC 16B ARTHER STREET

Ship To: GREENWICH, CT 068315106

US

Number of Packages:

UPS Service: UPS Ground

Package Weight: 1.0 LBS

Reference Number: 414240

Reference Number: BRYAM PARK CT

Download the UPS mobile app

© 2021 United Parcel Service of America, Inc. UPS, the UPS brandmark, and the color brown are trademarks of United Parcel Service of America, Inc. All rights reserved.

All trademarks, trade names, or service marks that appear in connection with UPS's services are the

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, maintenance, and operation of a telecommunications facility, including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate, either alone or cumulatively with other effects, when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to Cellco Partnership d/b/a Verizon Wireless, hereinafter referred to as the Certificate Holder, for a telecommunications facility at 36 Ritch Avenue in Greenwich, Connecticut.

Unless otherwise approved by the Council, the facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be constructed as a 77-foot monopole, designed as a simulated pine tree. Simulated branches shall not extend higher than 84 feet above ground level. The tower shall be no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of Cellco, T-Mobile, AT&T and other entities, both public and private.
- 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be served on the Town of Greenwich for comment, and all parties and intervenors as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction and shall include:
 - a) a final site plan(s) of site development to include specifications for the tower, tower foundation, antennas, equipment compound, radio equipment, access road, utility line, and landscaping; and
 - b) construction plans for site clearing, grading, landscaping, water drainage, and erosion and sedimentation controls consistent with the <u>2002 Connecticut Guidelines for Soil Erosion and Sediment Control</u>, as amended.
 - c) simulated pine tree tower designs and photographs of actual installations from various manufacturers.
 - d) construction schedule.
- 3. Prior to the commencement of operation, the Certificate Holder shall provide the Council worst-case modeling of the electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, and at the nearest point of abutting property lines consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. Additionally, the Certificate Holder shall ensure a recalculated report of the electromagnetic radio frequency power density be submitted to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.

- 4. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 6. The Certificate Holder shall provide reasonable space on the tower for no compensation for any Town of Greenwich public safety services (police, fire and medical services), provided such use can be accommodated and is compatible with the structural integrity of the tower.
- 7. Unless otherwise approved by the Council, if the facility authorized herein is not fully constructed with at least one fully operational wireless telecommunications carrier providing wireless service within eighteen months from the date of the mailing of the Council's Findings of Fact, Opinion, and Decision and Order (collectively called "Final Decision"), this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made. The time between the filing and resolution of any appeals of the Council's Final Decision shall not be counted in calculating this deadline. Authority to monitor and modify this schedule, as necessary, is delegated to the Executive Director. The Certificate Holder shall provide written notice to the Executive Director of any schedule changes as soon as is practicable.
- 8. Any request for extension of the time period referred to in Condition 7 shall be filed with the Council not later than 60 days prior to the expiration date of this Certificate and shall be served on all parties and intervenors, as listed in the service list, and the Town of Greenwich. Any proposed modifications to this Decision and Order shall likewise be so served.
- 9. If the facility ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
- 10. Any nonfunctioning antenna, and associated antenna mounting equipment, on this facility shall be removed within 60 days of the date the antenna ceased to function.
- 11. In accordance with Section 16-50j-77 of the Regulations of Connecticut State Agencies, the Certificate Holder shall provide the Council with written notice two weeks prior to the commencement of site construction activities. In addition, the Certificate Holder shall provide the Council with written notice of the completion of site construction, and the commencement of site operation.
- 12. The Certificate Holder shall remit timely payments associated with annual assessments and invoices submitted by the Council for expenses attributable to the facility under Conn. Gen. Stat. §16-50v.

Docket No. 414 Decision and Order Page 3

- 13. This Certificate may be transferred in accordance with Conn. Gen. Stat. §16-50k(b), provided both the Certificate Holder/transferor and the transferee are current with payments to the Council for their respective annual assessments and invoices under Conn. Gen. Stat. §16-50v. In addition, both the Certificate Holder/transferor and the transferee shall provide the Council a written agreement as to the entity responsible for any quarterly assessment charges under Conn. Gen. Stat. §16-50v(b)(2) that may be associated with this facility.
- 14. The Certificate Holder shall maintain the facility and associated equipment, including but not limited to, the tower, tower foundation, antennas, equipment compound, radio equipment, access road, utility line and landscaping in a reasonable physical and operational condition that is consistent with this Decision and Order and a Development and Management Plan to be approved by the Council.
- 15. If the Certificate Holder is a wholly-owned subsidiary of a corporation or other entity and is sold/transferred to another corporation or other entity, the Council shall be notified of such sale and/or transfer and of any change in contact information for the individual or representative responsible for management and operations of the Certificate Holder within 30 days of the sale and/or transfer.

Pursuant to General Statutes § 16-50p, the Council hereby directs that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in the *Greenwich Time*.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

Applicant

Cellco Partnership d/b/a Verizon Wireless

Its Representative

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597

Alexandria Carter Regulatory Manager Verizon Wireless 99 East River Drive East Hartford, CT 06108

Party

John Hartwell 42 Ritch Avenue W. Greenwich, CT 06830

Intervenor

T-Mobile Northeast LLC

Its Representative

Julie D. Kohler, Esq. Cohen and Wolf, P.C. 1115 Broad Street Bridgeport, CT 06604

Structural Analysis Report

Structure : 83.2 ft Monopine

ATC Site Name : Byram Park CT, CT

ATC Asset Number : 414240

Engineering Number : 13701270_C3_02

Proposed Carrier : VERIZON WIRELESS

Carrier Site Name : BYRAM PARK CT

Carrier Site Number : 468044

Site Location : 48 RITCH AVENUE WEST

GREENWICH, CT 06830-9992

41.005100,-73.648300

County : Fairfield

Date : July 28, 2021

Max Usage : 96%

Result : Pass

Prepared By: Reviewed By:

Sarah Kramer Structural Engineer

Sarah D. Kramer

wed by.

Authorized by "EOR" 28 Jul 2021 09:17:22

cosign

COA: PEC.0001553

Table of Contents

ntroduction	1
Supporting Documents	1
Analysis	1
Conclusion	1
Existing and Reserved Equipment	2
Equipment to be Removed	. 2
Proposed Equipment	3
Structure Usages	4
Foundations	4
Deflection and Sway	4
Standard Conditions	. 5
Calculations	Attached

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 83.2 ft monopine to reflect the change in loading by VERIZON WIRELESS.

Supporting Documents

Tower Drawings	EEI Project #16733 Rev. 3, dated December 9, 2011
Foundation Drawing	Centek Engineering Job #09129 Rev. 0, dated February 14, 2012
Geotechnical Report	DET Job #2010.14, dated October 4, 2010
Modifications	ATC Project #OAA711130_C6_09, dated October 26, 2018

Analysis

The tower was analyzed using American Tower Corporation's tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

	-
Basic Wind Speed:	113.06 mph (3-Second Gust)
Basic Wind Speed w/ Ice:	48.73 mph (3-Second Gust) w/ 0.85" radial ice concurrent
Code:	ANSI/TIA-222-H / 2015 IBC / 2018 Connecticut State Building Code
Exposure Category:	D
Risk Category:	
Topographic Factor Procedure:	Method 1
Topographic Category:	1
Crest Height (H):	0 ft
Spectral Response:	$Ss = 0.28, S_1 = 0.06$
Site Class:	D - Stiff Soil

^{**}Wind load and Ice thickness have been reduced by applicable existing structure load modification factors in accordance with TIA-222-H, Annex S.

Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

Existing and Reserved Equipment

Elev.1 (ft)	Qty	Equipment	Mount Type	Lines	Carrier
90.0	2	dbSpectra DS7C09P36U-D	Dala Mayort	(2) 1/2" Coax	TOWN OF
89.0	1	Bird 428D-83I-01-T	Pole Mount	(2) 7/8" Coax	GREENWICH, CT
	3	Ericsson AIR32 B66Aa/B2a		(6) 4 4 (4) (4 25)	
	3	RFS APXVAARR24_43-U-NA20		(6) 1 1/4" (1.25"-	
	3	Ericsson RRUS 32 B66		31.8mm) Fiber	
77.0	3	Ericsson Air6449 B41	T-Arm	(1) 1 1/4" Hybriflex Cable	T-MOBILE
	3	Ericsson Radio 4449 B71 B85A		(3) 1 5/8" (1.63"-	
	3	Commscope CBC1923Q-43		41.3mm) Fiber	
	3	Ericsson RRUS 4415 B25			
	6	CCI DMP65R-BU4D			
	3	CCI OPA-65R-LCUU-H6		'	
	3	Powerwave Allgon P65-16-XLH-RR			
	6	CCI DTMABP7819VG12A			
	1	Raycap DC6-48-60-0-8C-EV	Site Pro 1 RMV12-496		
67.0	2	Raycap DC6-48-60-18-8F(32.8 lbs)	T-Arms		AT&T MOBILITY
	3	Ericsson RRUS 4426 B66	_ TAIIIS	(12) 1 5/8" Coax	
	3	Ericsson RRUS 4449 B5, B12		(1) 2" conduit	
	3	Ericsson RRUS 4478 B14		(3) 3" conduit	
	3	Ericsson RRUS 32 B2			
	3	Ericsson RRUS-32 (77 lbs)			
56.0	6	Amphenol Antel LPA-80063-6CF-EDIN-X	T-Arm	(16) 1 5/8" Coax	\/EDI7∩N \//IDELESS
30.0	1	VZW Unused Reserve (14306.88 sqin)	I-AIIII	(1) 1 5/8" Hybriflex	ex VERIZON WIRELESS

Equipment to be Removed

Elev.1 (ft)	Qty	Equipment	Mount Type	Lines	Carrier
	3	Alcatel-Lucent RRH 2X60-1900			
	3	Alcatel-Lucent RRH2x60 700			
	3	Alcatel-Lucent B66 RRH4x45		(1) 1 5 (0" (1 62"	
56.0	4	Commscope SBNHH-1D45A	-	(1) 1 5/8" (1.63"- 41.3mm) Fiber	VERIZON WIRELESS
	3	Amphenol Antel BXA-171063-12CF		41.5111111) Fibel	
	2	Commscope SBNHH-1D65A			
	2	Commscope RC2DC-4750-PF-48			

Eng. Number 13701270_C3_02 July 28, 2021 Page 3

Proposed Equipment

Elev.1 (ft)	Qty	Equipment	Mount Type	Lines	Carrier
	3	Commscope CBC78T-DS-43-2X			
	3	Samsung B2/B66A RRH-BR049			
	3	Samsung B5/B13 RRH-BR04C			
56.0	3	Samsung MT6407-77A	T-Arm	(1) 1 5/8" Hybriflex	VERIZON WIRELESS
	1	Raycap RCMDC-6627-PF-48			
	2	Commscope JAHH-65A-R3B			
	4	Commscope JAHH-45A-R3B			

¹Contracted elevations are shown for appurtenances within contracted installation tolerances. Appurtenances outside of contract limits are shown at installed elevations.

Install proposed lines inside the pole shaft.

Structure Usages

Structural Component	Controlling Usage	Pass/Fail
Anchor Bolts	46%	Pass
Shaft	96%	Pass
Base Plate	23%	Pass
Flanges	4%	Pass

Foundations

Reaction Component	Original Design Reactions	Factored Design Reactions*	Analysis Reactions	% of Design
Moment (Kips-Ft)	4,725.0	4,725.0	2,646.4	56%
Shear (Kips)	75.6	75.6	49.9	66%

The structure base reactions resulting from this analysis are acceptable when compared to those shown on the original structure drawings, therefore no modification or reinforcement of the foundation will be required.

Deflection and Sway*

Antenna Elevation (ft)	Antenna	Carrier	Deflection (ft)	Sway (Rotation) (°)
	Commscope CBC78T-DS-43-2X			
	Samsung B2/B66A RRH-BR049			
	Samsung B5/B13 RRH-BR04C		0.172	0.325
56.0	Raycap RCMDC-6627-PF-48	VERIZON WIRELESS		
	Samsung MT6407-77A			
	Commscope JAHH-65A-R3B			
	Commscope JAHH-45A-R3B			

^{*}Deflection and Sway was evaluated considering a design wind speed of 60 mph (3-Second Gust) per ANSI/TIA-222-H

Standard Conditions

All engineering services performed by A.T. Engineering Service, PLLC are prepared on the basis that the information used is current and correct. This information may consist of, but is not limited to the following:

- Information supplied by the client regarding antenna, mounts and feed line loading
- Information from drawings, design and analysis documents, and field notes in the possession of A.T. Engineering Service, PLLC

It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete.

All assets of American Tower Corporation, its affiliates and subsidiaries (collectively "American Tower") are inspected at regular intervals. Based upon these inspections and in the absence of information to the contrary, American Tower assumes that all structures were constructed in accordance with the drawings and specifications.

Unless explicitly agreed by both the client and A.T. Engineering Service, PLLC, all services will be performed in accordance with the current revision of ANSI/TIA-222.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information supplied herein.

© 2007 - 2021 by ATC IP LLC. All rights reserved.

6'-6" 11/32" Thick (35 KSI) 80'-0" 70'-0" 67'-0" 65'-0" 29'-6"1/2 5/16" Thick (65 KSI) 60'-0" 57'-0" 52'-4"9/16 50'-0" 45'-0" 63" 47'-1"15/16 83'-2"3/8 40'-0" 29'-8"5/16 7/16" Thick (65 KSI) 35'-0" 25'-0" 74" 20'-0" 22'-8"1/4 15'-0" 28'-10"3/16 1/2" Thick (65 KSI)

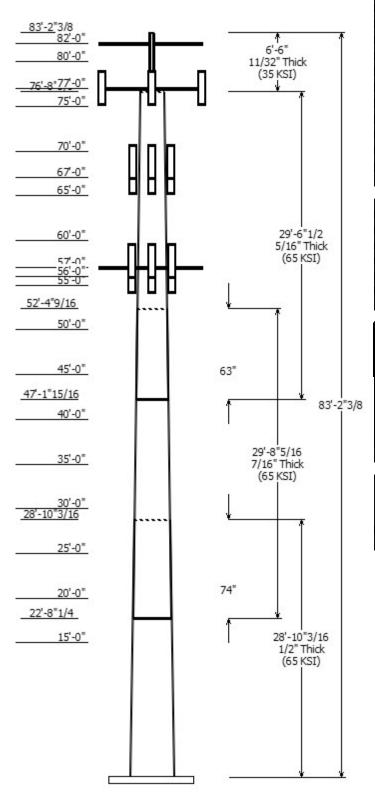
Job Information

Client: VERIZON WIRELESS

Pole: 414240 Code: ANSI/TIA-222-H

Location: Byram Park CT, CT

Description: 83.2 ft monopine Shape: 18 Sides Risk Category: II Exposure: D

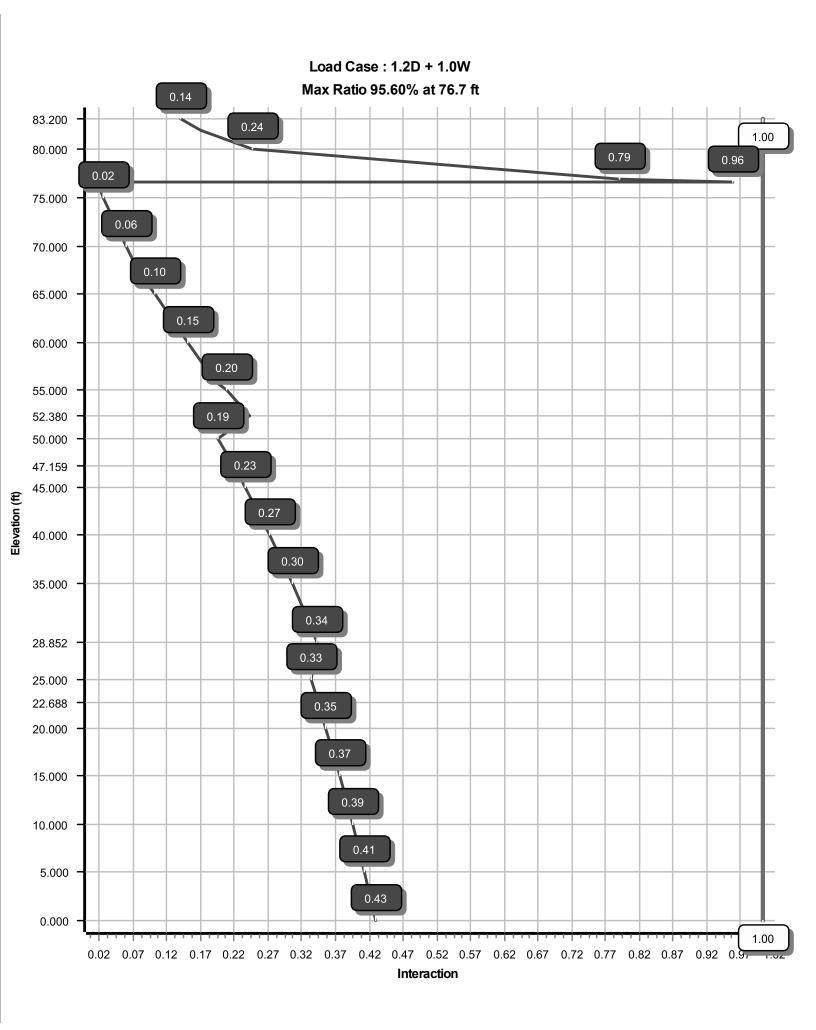

Height: 83.20 (ft) Topo Method: Method 1

Base Elev (ft): 0.00 Topographic Category: 1

Taper: 0.335724in/ft)

	Sections Properties							
Diameter (in) Shaft Length Accross Flats Thick Joint Section (ft) Top Bottom (in) Type					Overlap Length (in)		Steel Grade (ksi)	
1	28.852	42.31	52.00	0.500		0.000	18 Sides	65
2	29.693	35.29	45.25	0.438	Slip Joint	73.969	18 Sides	65
3	29.541	27.75	37.66	0.313	Slip Joint	62.656	18 Sides	65
4	6.500	4.500	4.500	0.337	Butt Joint	0.000	Round	l 35

	Discrete Appurtenance				
Attach	Attach Force				
Elev (ft)	Elev (ft)	Qty	Description		
89.000	89.000	2	dbSpectra DS7C09P36U-D		
89.000	89.000	1	Bird 428D-83I-01-T		
82.000	82.000	2	Pole Mount		
80.000	80.000	1	Pine Branches		
77.000	77.000	3	Ericsson AIR32 B66Aa/B2a		
77.000	77.000	3	Ericsson Air6449 B41		
77.000	77.000	3	Ericsson RRUS 32 B66		
77.000	77.000	3	RFS APXVAARR24_43-U-NA20		
77.000	77.000	3 3	Ericsson RRUS 4415 B25		
77.000	77.000 77.000	ა 3	Ericsson Radio 4449 B71 B85A		
77.000 77.000	77.000 77.000	ა 3	Commscope CBC1923Q-43 Flat T-Arms		
75.000	75.400	1	Pine Branches		
70.000	70.000	1	Pine Branches		
67.000	68.000	3	Powerwave Allgon P65-16-		
67.000	68.000	3	Ericsson RRUS-32 (77 lbs)		
67.000	68.000	3	Ericsson RRUS 32 B2		
67.000	67.000	3	Ericsson RRUS 4478 B14		
67.000	67.000	3	Ericsson RRUS 4449 B5, B12		
67.000	68.000	3	Ericsson RRUS 4426 B66		
67.000	68.000	2	Raycap DC6-48-60-18-8F(32.8 lb		
67.000	67.000	1	Raycap DC6-48-60-0-8C-EV		
67.000	68.000	6	CCÍ DTMABP7819VG12A		
67.000	67.000	3	Site PRO1, RMV12-496		
67.000	68.000	3	CCI OPA-65R-LCUU-H6		
67.000	67.000	6	CCI DMP65R-BU4D		
65.000	65.000	1	Pine Branches		
60.000	60.000	1	Pine Branches		
57.000	57.000	3	Flat T-Arm		
56.000	56.000	1	VZW Unused Reserve		
56.000	57.000	6	Amphenol Antel LPA-80063-		
56.000	56.000	4	Commscope JAHH-45A-R3B		
56.000	56.000	2	Commscope JAHH-65A-R3B		
56.000	56.000	1	Raycap RCMDC-6627-PF-48		
56.000	56.000	3	Samsung MT6407-77A		
56.000	56.000 56.000	3 3	Samsung B5/B13 RRH-BR04C		
56.000	56.000	3	Samsung B2/B66A RRH-BR049		
56.000 55.000	56.000 55.000	3 1	Commscope CBC78T-DS-43-2X Pine Branches		
50.000	50.000	1	Pine Branches		
45.000	45.000	1	Pine Branches		
40.000	40.000	1	Pine Branches		
35.000	35.000	i	Pine Branches		
30.000	30.000	i	Pine Branches		
30.000	30.000	'	i ilio bialiolios		


25.000	25.000	1	Pine Branches
20.000	20.000	1	Pine Branches
15.000	15.000	1	Pine Branches

Linear Appurtenance					
Elev (ft)			Exposed		
From	То	Description	To Wind		
0.000	56.000	1 5/8" Coax	No		
0.000	56.000	1 5/8" Hybriflex	No		
0.000	56.000	1 5/8" Hybriflex	No		
0.000	67.000	0.39" (10mm)	No		
0.000	67.000	0.78" (19.7mm) 8	No		
0.000	67.000	0.78" (19.7mm) 8	No		
0.000	67.000	1 5/8" Coax	No		
0.000	67.000	2" conduit	No		
0.000	67.000	3" conduit	No		
0.000	77.000	1 1/4" (1.25"-	No		
0.000	77.000	1 1/4" (1.25"-	No		
0.000	77.000	1 1/4" Hybriflex	No		
0.000	77.000	1 5/8" (1.63"-	No		
0.000	89.000	1/2" Coax	No		
0.000	89.000	7/8" Coax	No		

Load Cases			
1.2D + 1.0W	113 mph with No Ice		
0.9D + 1.0W	113 mph with No Ice (Reduced DL)		
1.2D + 1.0Di + 1.0Wi	49 mph with 0.85 in Radial Ice		
1.2D + 1.0Ev + 1.0Eh	Seismic		
0.9D - 1.0Ev + 1.0Eh	Seismic (Reduced DL)		
1.0D + 1.0W	Serviceability 60 mph		

Reactions						
Moment Shear Axial Load Case (kip-ft) (kip) (kip)						
1.2D + 1.0W	2646.41	49.86	45.98			
0.9D + 1.0W	2640.27	49.84	34.47			
1.2D + 1.0Di + 1.0Wi	667.14	12.70	56.25			
1.2D + 1.0Ev + 1.0Eh	177.57	3.14	46.11			
0.9D - 1.0Ev + 1.0Eh	177.01	3.14	30.84			
1.0D + 1.0W	666.45	12.57	38.36			

Dish Deflections					
Attach Deflection Rotation Load Case Elev (ft) (in) (deg)					
	0.00	0.000	0.000		

© 2007 - 2021 by ATC IP LLC. All rights reserved. Site Number: 414240 Code: ANSI/TIA-222-H

Site Name: Byram Park CT, CT Engineering Number:13701270_C3_02

7/28/2021 2:56:36 PM

Analysis Parameters

Location: Fairfield County, CT Height (ft): 83.2

Code: ANSI/TIA-222-H 52.00 Base Diameter (in): Shape: 18 Sides. Sect 4: Round Top Diameter (in): 4.50

Pole Type: Custom Taper (in/ft): 0.336

EEI Pole Manfacturer: Rotation (deg): 0.00

0.95 Kd (non-service): Ke: 1.00

Ice & Wind Parameters

Exposure Category: D **Design Wind Speed Without Ice:** 113 mph

П **Design Wind Speed With Ice:** Risk Category: 49 mph **Topographic Factor Procedure:** Method 1 **Operational Wind Speed:** 60 mph

Topographic Category: Design Ice Thickness: 0.85 in

Crest Height: 0 ft HMSL: 50.00 ft

Seismic Parameters

Analysis Method: Equivalent Lateral Force Method

Site Class: D - Stiff Soil

Customer: VERIZON WIRELESS

Period Based on Rayleigh Method (sec): 0.78

0.082 T, (sec): p: 1 C :

S_s: 0.277 0.060 C s Max: 0.082 S₁: F_a: 1.578 F_v: 2.400 C _s Min: 0.030

S_{ds}: 0.291 0.096 S_{d1}:

Load Cases

1.2D + 1.0W 113 mph with No Ice

0.9D + 1.0W113 mph with No Ice (Reduced DL) 1.2D + 1.0Di + 1.0Wi 49 mph with 0.85 in Radial Ice

1.2D + 1.0Ev + 1.0Eh Seismic

Seismic (Reduced DL) 0.9D - 1.0Ev + 1.0Eh 1.0D + 1.0W Serviceability 60 mph

7/28/2021 2:56:36 PM

Site Number: 414240 Code: ANSI/TIA-222-H

Engineering Number:13701270_C3_02 Site Name: Byram Park CT, CT

Customer: VERIZON WIRELESS

Sha	ft Sec	tion	Proj	perti	es				Ro	ttom -					_ +	ор _			
					Slip				_ 50						_ '	ор —			
Sect Info	Length (ft)		,		Joint Len (in)	Weight (lb)	Dia (in)	Elev (ft)	Area (in ²)	lx (in ⁴)	W/t Ratio	D/t Ratio	Dia (in)	Elev (ft)	Area (in²)	lx (in ⁴)	W/t Ratio	D/t Ratio	Taper (in/ft)
11110	(11)	(111)	(KSI)	туре	Len (III)	(ID)	(111)	(11)	(111)	(111)	itatio	italio	(111)	(11)	(111)	(111)	itatio	itatio	(111/11)
1-18	28.852	0.5000	65		0.00	7,269	52.00	0.00	81.73	27386.5	16.93	104.00	42.31	28.85	66.36	14658.0	13.51	84.63	0.335724
2-18	29.693	0.437	5 65	Slip	73.97	5,589	45.25	22.69	62.24	15796.5	16.83	103.45	35.29	52.38	48.39	7427.0	12.81	80.66	0.335724
3-18	29.541	0.312	65	Slip	62.66	3,230	37.66	47.16	37.05	6532.0	19.84	120.54	27.75	76.70	27.21	2588.4	14.25	88.80	0.335724
4-R	6.500	0.3370	35	Butt	0.00	97	4.500	76.70	4.41	9.6	0.00	13.35	4.500	83.20	4.41	9.6	0.00	13.35	0.000000
			SI	haft W	eight	16,186													

Discrete Appurtenance Properties

Attach				Vert		No Ice -			Ice —	
Elev				Ecc	Weight		rientation			rientation
(ft)	Description	Qty	Ka	(ft)	(lb)	(sf)	Factor	(lb)	(sf)	Factor
89.00	Bird 428D-83I-01-T	1	1.00	0.000	8.90	0.465	1.00	18.26	0.719	1.00
89.00	dbSpectra DS7C09P36U-D	2	1.00	0.000	70.00	3.550		119.07	6.250	
82.00	Pole Mount	2	1.00	0.000	40.00	1.630		65.19	2.236	
80.00	Pine Branches	1	1.00	0.000	600.00	45.000	1.00	822.47	61.685	1.00
77.00	Commscope CBC1923Q-43	3	0.80	0.000	7.30	0.318	0.50	13.17	0.532	0.50
77.00	Ericsson Radio 4449 B71 B85A	3	0.80	0.000	75.00	1.650	0.50	106.94	2.101	0.50
77.00	Ericsson RRUS 4415 B25	3	0.80	0.000	46.00	1.842	0.50	72.04	2.318	0.50
77.00	Ericsson RRUS 32 B66	3	0.80	0.000	53.00	2.743		92.06	3.364	
77.00	Ericsson Air6449 B41	3	0.80	0.000	104.00	5.682		176.38	6.525	
77.00	Ericsson AIR32 B66Aa/B2a	3	0.80	0.000	132.20	6.510		216.97	7.673	
77.00	Flat T-Arms	3	0.75	0.000	250.00	12.900		361.00	17.243	
77.00	RFS APXVAARR24_43-U-NA20	3	0.80	0.000	127.90	20.243	0.63	336.40	22.213	
75.00	Pine Branches	1	1.00	0.400	600.00	45.000	1.00	820.71	61.553	
70.00	Pine Branches	1	1.00	0.000	600.00	45.000		819.46	61.459	
67.00	CCI DTMABP7819VG12A	6	0.80	1.000	19.20	0.972		32.52	1.315	
67.00	Raycap DC6-48-60-0-8C-EV	1	0.80	0.000	16.00	1.020		39.69	1.315	
67.00	Raycap DC6-48-60-18-8F(32.8	2	0.80	1.000	32.80	1.470		65.07	1.835	
67.00	Ericsson RRUS 4426 B66	3	0.80	1.000	48.40	1.650		71.75	2.094	
67.00	Ericsson RRUS 4449 B5, B12	3	0.80	0.000	71.00	1.969		104.71	2.457	
67.00	Ericsson RRUS 4478 B14	3	0.80	0.000	59.40	2.021		91.50	2.514	
67.00	Ericsson RRUS 32 B2	3	0.80	1.000	53.00	2.743		91.47	3.355	
67.00	Ericsson RRUS-32 (77 lbs)	3 3	0.80 0.80	1.000 1.000	77.00	3.314 8.133		127.87 139.16	3.985 9.591	
67.00 67.00	Powerwave Allgon P65-16-XLH-	5 6	0.80	0.000	53.00	8.280		162.37	9.339	
	CCI DMP65R-BU4D	3	0.80		67.90					
67.00 67.00	CCI OPA-65R-LCUU-H6	3 3	0.80	1.000 0.000	73.00	9.658 9.700		179.46 617.53	11.108 13.235	
67.00 65.00	Site PRO1, RMV12-496 Pine Branches	ა 1	0.75 1.00	0.000	452.60 600.00	45.000		817.45	61.309	0.67 1.00
60.00	Pine Branches	1	1.00	0.000	600.00	45.000	1.00	816.02	61.202	
57.00	Flat T-Arm	3	0.75	0.000	250.00	12.900	0.67	357.64	17.112	
56.00	Commscope CBC78T-DS-43-2X	3	0.80	0.000	20.70	0.552		32.06	0.813	
56.00	Samsung B2/B66A RRH-BR049	3	0.80	0.000	84.40	1.875		117.20	2.339	
56.00	Samsung B5/B13 RRH-BR04C	3	0.80	0.000	70.30	1.875		99.71	2.339	
56.00	Raycap RCMDC-6627-PF-48	1	0.80	0.000	32.00	4.056		97.34	4.758	
56.00	Samsung MT6407-77A	3	0.80	0.000	81.60	4.709		134.00	5.490	
56.00	Commscope JAHH-65A-R3B	2	0.80	0.000	50.70	6.673		132.01	7.772	
56.00	Commscope JAHH-45A-R3B	4	0.80	0.000	70.50	8.420	0.63	162.31	9.548	0.63
56.00	Amphenol Antel LPA-80063-6CF-	6	0.80	1.000	27.00	9.732	0.75	161.15	11.140	0.75
56.00	VZW Unused Reserve (14306.88	1	0.80	0.000	1,151.60	99.353	0.90	1,564.04	134.936	0.90
55.00	Pine Branches	1	1.00	0.000	600.00	45.000	1.00	814.17	61.063	1.00
50.00	Pine Branches	1	1.00	0.000	600.00	45.000	1.00	812.04	60.903	1.00
45.00	Pine Branches	1	1.00	0.000	600.00	45.000	1.00	809.23	60.692	1.00
40.00	Pine Branches	1	1.00	0.000	600.00	45.000	1.00	806.62	60.497	
35.00	Pine Branches	1	1.00	0.000	600.00	45.000	1.00	803.69	60.277	
30.00	Pine Branches	1	1.00	0.000	600.00	45.000	1.00	801.67	60.126	
25.00	Pine Branches	1	1.00	0.000	600.00	45.000	1.00	797.48	59.811	
20.00	Pine Branches	1	1.00	0.000	600.00	45.000	1.00	791.46	59.360	
15.00	Pine Branches	1	1.00	0.000	600.00	45.000	1.00	785.13	58.885	1.00

Site Name: Byram Park CT, CT Engineering Number:13701270_C3_02 7/28/2021 2:56:37 PM

Customer: VERIZON WIRELESS

Totals Num Loadings:47 111 17,531.50 27,202.09

Linear Appurtenance Properties Load Case Azimuth (deg) :

Elev From	Elev To			Coax Dia	Coax Wt		Max Coax /	Dist Between	Dist Between	Azimuth		Expos To	ed
(ft)	(ft)	Qty	Description	(in)	(lb/ft) FI	at		Rows (in)					d Carrier
0.00	89.00	2	1/2" Coax	0.63	0.15	N	0	0.00	0.00	0	0.00	N	TOWN OF
0.00	89.00	2	7/8" Coax	1.09	0.33	Ν	0	0.00	0.00	0	0.00	N	TOWN OF
0.00	77.00	3	1 1/4" (1.25"- 31.8mm)	1.25	1.05	N	0	0.00	0.00	0	0.00	N	T-MOBILE
0.00	77.00	3	1 1/4" (1.25"- 31.8mm)	1.25	1.05	Ν	0	0.00	0.00	0	0.00	N	T-MOBILE
0.00	77.00	1	1 1/4" Hybriflex Cable	1.54	1.00	N	0	0.00	0.00	0	0.00	N	T-MOBILE
0.00	77.00	3	1 5/8" (1.63"-41.3mm)	1.63	1.61	N	0	0.00	0.00	0	0.00	N	T-MOBILE
0.00	67.00	2	0.39" (10mm) Fiber	0.39	0.06	N	0	0.00	0.00	0	0.00	N	AT&T MOBILITY
0.00	67.00	6	0.78" (19.7mm) 8 AWG	0.78	0.59	Ν	0	0.00	0.00	0	0.00	N	AT&T MOBILITY
0.00	67.00	2	0.78" (19.7mm) 8 AWG	0.78	0.59	N	0	0.00	0.00	0	0.00	N	AT&T MOBILITY
0.00	67.00	12	1 5/8" Coax	1.98	0.82	N	0	0.00	0.00	0	0.00	N	AT&T MOBILITY
0.00	67.00	1	2" conduit	2.38	3.65	Ν	0	0.00	0.00	0	0.00	N	AT&T MOBILITY
0.00	67.00	3	3" conduit	3.50	7.58	N	0	0.00	0.00	0	0.00	N	AT&T MOBILITY
0.00	56.00	16	1 5/8" Coax	1.98	0.82	Ν	0	0.00	0.00	0	0.00	N	VERIZON WIRELESS
0.00	56.00	1	1 5/8" Hybriflex	1.98	1.30	Ν	0	0.00	0.00	0	0.00	N	VERIZON WIRELESS
0.00	56.00	1	1 5/8" Hybriflex	1.98	1.30	N	0	0.00	0.00	0	0.00	N	VERIZON WIRELESS

Site Name: Byram Park CT, CT Engineering Number:13701270_C3_02 7/28/2021 2:56:37 PM

Customer: VERIZON WIRELESS

Site Number: 414240

Engineering Number: 13701270_03_02

Seg Top Elev (ft) Description Thick Dia Area Ix (in²) (in²	Segment Propertie	s (Max I	_en : 5.	ft)							
5.00 0.5000 50.321 79.064 24,794.9 16.34 100.64 82.2 970.5 0.0 1,367.8 10.00 0.5000 48.643 76.400 22,372.1 15.74 97.29 82.6 90.59 0.0 1,322.5 15.00 0.5000 45.286 71.072 18,010.6 14.56 90.57 82.6 783.3 0.0 1,231.9 22.69 Bot - Section 2 0.5000 43.83 69.640 16,943.8 14.24 88.77 82.6 75.9 0.0 63.44 25.00 0.5000 43.607 68.408 16,060.4 13.97 87.21 82.6 75.9 0.0 10.28.6 28.85 Top - Section 1 0.4375 42.803 58.828 13,340.4 15.84 97.84 82.6 625.1 0.0 1,672.9 30.00 0.4375 39.446 54.166 10.413.6 14.49 90.16 82.6 655.9 0.0 981.1 40.00 0.4375 36.089 49.50	Elev		^C Dia							_	
10.00	0.00	0.5000	52.000	81.728	27,386.5	16.93	104.00	81.5	1037.	0.0	0.0
10.00	5.00	0.5000	50.321	79.064	24,794.9	16.34	100.64	82.2	970.5	0.0	1,367.8
20.00 Bot - Section 2 0.5000 45.286 71.072 18,010.6 14.56 90.57 82.6 783.3 0.0 1,231.9 22.69 Bot - Section 1 0.5000 44.383 69.640 16,943.8 14.24 88.77 82.6 751.9 0.0 643.4 28.85 Top - Section 1 0.4375 43.189 59.363 13,707.9 16.00 98.72 82.6 625.1 0.0 1,672.9 30.00 0.4375 42.803 58.828 13,340.4 15.84 97.84 82.6 613.9 0.0 230.9 35.00 0.4375 41.125 56.497 11,816.7 15.16 94.00 82.6 550.9 0.0 981.1 40.00 0.4375 37.767 51.835 9,126.3 13.81 86.33 82.6 457.5 0.0 941.4 45.00 0.4375 37.043 50.829 8,605.0 13.52 84.67 82.6 453.9 0.0 371.1 50.00		0.5000	48.643	76.400	22,372.1	15.74	97.29	82.6	905.9		
22.69 Bot - Section 2 0.5000 44.383 69.640 16,943.8 14.24 88.77 82.6 751.9 0.0 643.4 25.00 1.000 43.607 68.408 16,060.4 13.97 87.21 82.6 725.4 0.0 1,028.6 28.85 Top - Section 1 0.4375 43.189 59.363 13,707.9 16.00 98.72 82.6 625.1 0.0 1,672.9 35.00 0.4375 42.803 58.828 13,340.4 15.84 97.84 82.6 613.9 0.0 230.9 35.00 0.4375 41.125 56.497 11,816.7 15.16 94.00 82.6 565.9 0.0 981.1 45.00 0.4375 37.67 51.835 9,126.3 13.81 86.33 82.6 457.9 0.0 991.8 47.16 Bot - Section 3 0.4375 37.043 50.829 8,605.0 13.52 84.67 82.6 457.5 0.0 377.1 <td< td=""><td>15.00</td><td>0.5000</td><td>46.964</td><td>73.736</td><td>20,112.6</td><td>15.15</td><td>93.93</td><td>82.6</td><td>843.5</td><td>0.0</td><td>1,277.2</td></td<>	15.00	0.5000	46.964	73.736	20,112.6	15.15	93.93	82.6	843.5	0.0	1,277.2
25.00 Composition 1 0.5000 (0.4375) 43.607 (0.4375) 68.408 (0.4375) 16.00 (0.4375) 87.21 (0.4375) 82.6 (0.25.4) 0.0 1,028.6 (0.4375) 0.0 1,028.6 (0.4375) 0.4375 (0.43189) 59.363 (0.4375) 13.707.9 (0.4375) 16.00 (0.4375) 98.72 (0.4318) 98.72 (0.4418) 99.72 (0.4418) 99.72 (0.4418) 99.72 (0.4418) 99.72 (0.4418) 99.72 (0.4418) 99.72 (0.4418) 99.72 (0.4418) 99.72 (0.4418) 99.72 (0.4418) 99.72 (0.4418) 99.72 (0.4418) 99.72 (0.4418) 99.72 (0.4418) <	20.00	0.5000	45.286	71.072		14.56	90.57	82.6	783.3	0.0	1,231.9
28.85 Top - Section 1 0.4375 43.189 59.363 13,707.9 16.00 98.72 82.6 625.1 0.0 1,672.9 30.00 0.4375 42.803 58.828 13,340.4 15.84 97.84 82.6 613.9 0.0 230.9 35.00 0.4375 34.125 56.497 11,816.7 15.16 94.00 82.6 565.9 0.0 981.1 40.00 0.4375 39.446 54.166 10,413.6 14.49 90.16 82.6 520.0 0.0 941.4 45.00 0.4375 37.043 50.829 8,605.0 13.52 84.67 82.6 457.5 0.0 377.1 50.00 0.4375 36.089 49.505 7,949.7 13.13 82.49 82.6 433.9 0.0 838.6 52.38 Top - Section 2 0.3125 35.915 35.312 5,654.9 18.85 114.93 79.2 310.1 0.0 685.7 56.00 0.3125 34	22.69 Bot - Section 2	0.5000	44.383	69.640	16,943.8	14.24	88.77	82.6	751.9	0.0	643.4
30.00											
35.00 0.4375 41.125 56.497 11,816.7 15.16 94.00 82.6 565.9 0.0 981.1 40.00 0.4375 39.446 54.166 10,413.6 14.49 90.16 82.6 520.0 0.0 941.4 45.00 0.4375 37.767 51.835 9,126.3 13.81 86.33 82.6 475.9 0.0 901.8 47.16 Bot - Section 3 0.4375 37.043 50.829 8,605.0 13.52 84.67 82.6 457.5 0.0 901.8 50.00 0.4375 36.089 49.505 7,949.7 13.13 82.49 82.6 433.9 0.0 838.6 52.38 Top - Section 2 0.3125 35.915 35.312 5,654.9 18.85 114.93 79.2 310.1 0.0 685.7 55.00 0.3125 34.699 34.106 5,995.4 18.17 111.04 80.0 289.2 0.0 116.6 57.00 0.3125 34.364 33.773 4,947.6 17.98 109.96 80.3 283.6	•									0.0	
40.00 0.4375 39.446 54.166 10,413.6 14.49 90.16 82.6 520.0 0.0 941.4 45.00 0.4375 37.767 51.835 9,126.3 13.81 86.33 82.6 475.9 0.0 901.8 47.16 Bot - Section 3 0.4375 37.043 50.829 8,605.0 13.52 84.67 82.6 457.5 0.0 377.1 50.00 0.4375 36.089 49.505 7,949.7 13.13 82.49 82.6 433.9 0.0 838.6 52.38 Top - Section 2 0.3125 35.915 35.312 5,654.9 18.85 114.93 79.2 310.1 0.0 685.7 55.00 0.3125 34.699 34.106 5,095.4 18.87 112.11 79.8 294.9 0.0 310.9 56.00 0.3125 34.364 33.773 4,947.6 17.98 109.96 80.3 283.6 0.0 115.5 67.00 0.3125 31.678 31.110 3,866.8 16.46 101.37 82.0 240.4											
45.00 0.4375 37.767 51.835 9,126.3 13.81 86.33 82.6 475.9 0.0 901.8 47.16 Bot - Section 3 0.4375 37.043 50.829 8,605.0 13.52 84.67 82.6 457.5 0.0 377.1 50.00 0.4375 36.089 49.505 7,949.7 13.13 82.49 82.6 433.9 0.0 838.6 52.38 Top - Section 2 0.3125 35.915 35.312 5,654.9 18.85 114.93 79.2 310.1 0.0 685.7 55.00 0.3125 34.369 34.106 5,095.4 18.17 111.04 80.0 289.2 0.0 310.9 65.00 0.3125 34.364 33.773 4,947.6 17.98 109.96 80.3 283.6 0.0 115.5 60.00 0.3125 31.678 31.110 3,866.8 16.46 101.37 82.0 240.4 0.0 543.5 67.00 0.3125 31.007 30.444 3,623.7 16.08 99.22 82.5 230.2											
47.16 Bot - Section 3 0.4375 37.043 50.829 8,605.0 13.52 84.67 82.6 457.5 0.0 377.1 50.00 0.4375 36.089 49.505 7,949.7 13.13 82.49 82.6 433.9 0.0 838.6 52.38 Top - Section 2 0.3125 35.915 35.312 5,654.9 18.85 114.93 79.2 310.1 0.0 685.7 55.00 0.3125 35.035 34.439 5,246.1 18.36 112.11 79.8 294.9 0.0 310.9 56.00 0.3125 34.699 34.106 5,095.4 18.17 111.04 80.0 289.2 0.0 116.6 57.00 0.3125 34.364 33.773 4,947.6 17.98 109.96 80.3 283.6 0.0 115.5 60.00 0.3125 33.357 32.774 4,521.4 17.41 106.74 80.9 267.0 0.0 339.7 65.00 0.3125 31.007 30.444 3,623.7 16.08 99.22 82.5 230.2											
50.00 0.4375 36.089 49.505 7,949.7 13.13 82.49 82.6 433.9 0.0 838.6 52.38 Top - Section 2 0.3125 35.915 35.312 5,654.9 18.85 114.93 79.2 310.1 0.0 685.7 55.00 0.3125 35.035 34.439 5,246.1 18.36 112.11 79.8 294.9 0.0 310.9 56.00 0.3125 34.699 34.106 5,095.4 18.17 111.04 80.0 289.2 0.0 116.6 57.00 0.3125 34.364 33.773 4,947.6 17.98 109.96 80.3 283.6 0.0 115.5 60.00 0.3125 33.357 32.774 4,521.4 17.41 106.74 80.9 267.0 0.0 339.7 65.00 0.3125 31.007 30.444 3,623.7 16.08 99.22 82.5 230.2 0.0 209.5 70.00 0.3125 29.999 29.445 3,278.6 15.52 96.00 82.6 215.3 0.0 305											
52.38 Top - Section 2 0.3125 35.915 35.312 5,654.9 18.85 114.93 79.2 310.1 0.0 685.7 55.00 0.3125 35.035 34.439 5,246.1 18.36 112.11 79.8 294.9 0.0 310.9 56.00 0.3125 34.699 34.106 5,095.4 18.17 111.04 80.0 289.2 0.0 116.6 57.00 0.3125 34.364 33.773 4,947.6 17.98 109.96 80.3 283.6 0.0 115.5 60.00 0.3125 33.357 32.774 4,521.4 17.41 106.74 80.9 267.0 0.0 339.7 65.00 0.3125 31.678 31.110 3,866.8 16.46 101.37 82.0 240.4 0.0 543.5 67.00 0.3125 31.007 30.444 3,623.7 16.08 99.22 82.5 230.2 0.0 209.5 75.00 0.3125 27.750											
55.00 0.3125 35.035 34.439 5,246.1 18.36 112.11 79.8 294.9 0.0 310.9 56.00 0.3125 34.699 34.106 5,095.4 18.17 111.04 80.0 289.2 0.0 116.6 57.00 0.3125 34.364 33.773 4,947.6 17.98 109.96 80.3 283.6 0.0 115.5 60.00 0.3125 33.357 32.774 4,521.4 17.41 106.74 80.9 267.0 0.0 339.7 65.00 0.3125 31.678 31.110 3,866.8 16.46 101.37 82.0 240.4 0.0 543.5 67.00 0.3125 31.007 30.444 3,623.7 16.08 99.22 82.5 230.2 0.0 209.5 70.00 0.3125 29.999 29.445 3,278.6 15.52 96.00 82.6 215.3 0.0 305.7 75.00 70.9 - Section 3 0.3125 27.750 27.214 2,588.4 14.25 88.80 82.6 191.5 0.0 48					,						
56.00 0.3125 34.699 34.106 5,095.4 18.17 111.04 80.0 289.2 0.0 116.6 57.00 0.3125 34.364 33.773 4,947.6 17.98 109.96 80.3 283.6 0.0 115.5 60.00 0.3125 33.357 32.774 4,521.4 17.41 106.74 80.9 267.0 0.0 339.7 65.00 0.3125 31.678 31.110 3,866.8 16.46 101.37 82.0 240.4 0.0 543.5 67.00 0.3125 31.007 30.444 3,623.7 16.08 99.22 82.5 230.2 0.0 209.5 70.00 0.3125 29.999 29.445 3,278.6 15.52 96.00 82.6 215.3 0.0 305.7 75.00 0.3125 28.321 27.780 2,753.3 14.57 90.63 82.6 191.5 0.0 486.8 76.70 Top - Section 3 0.3125 27.750 27.214 2,588.4 14.25 88.80 82.6 183.7 0.0 159.											
57.00 0.3125 34.364 33.773 4,947.6 17.98 109.96 80.3 283.6 0.0 115.5 60.00 0.3125 33.357 32.774 4,521.4 17.41 106.74 80.9 267.0 0.0 339.7 65.00 0.3125 31.678 31.110 3,866.8 16.46 101.37 82.0 240.4 0.0 543.5 67.00 0.3125 31.007 30.444 3,623.7 16.08 99.22 82.5 230.2 0.0 209.5 70.00 0.3125 29.999 29.445 3,278.6 15.52 96.00 82.6 215.3 0.0 305.7 75.00 0.3125 28.321 27.780 2,753.3 14.57 90.63 82.6 191.5 0.0 486.8 76.70 Top - Section 3 0.3125 27.750 27.214 2,588.4 14.25 88.80 82.6 183.7 0.0 159.1 76.70 Bot - Section 4 0.3370											
60.00 0.3125 33.357 32.774 4,521.4 17.41 106.74 80.9 267.0 0.0 339.7 65.00 0.3125 31.678 31.110 3,866.8 16.46 101.37 82.0 240.4 0.0 543.5 67.00 0.3125 31.007 30.444 3,623.7 16.08 99.22 82.5 230.2 0.0 209.5 70.00 0.3125 29.999 29.445 3,278.6 15.52 96.00 82.6 215.3 0.0 305.7 75.00 0.3125 28.321 27.780 2,753.3 14.57 90.63 82.6 191.5 0.0 486.8 76.70 Top - Section 3 0.3125 27.750 27.214 2,588.4 14.25 88.80 82.6 183.7 0.0 159.1 76.70 Bot - Section 4 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 77.00 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 4.5 <											
65.00					•						
67.00 0.3125 31.007 30.444 3,623.7 16.08 99.22 82.5 230.2 0.0 209.5 70.00 0.3125 29.999 29.445 3,278.6 15.52 96.00 82.6 215.3 0.0 305.7 75.00 0.3125 28.321 27.780 2,753.3 14.57 90.63 82.6 191.5 0.0 486.8 76.70 Top - Section 3 0.3125 27.750 27.214 2,588.4 14.25 88.80 82.6 183.7 0.0 159.1 76.70 Bot - Section 4 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 77.00 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 4.5 82.00 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 45.0 83.20 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 30.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
70.00 0.3125 29.999 29.445 3,278.6 15.52 96.00 82.6 215.3 0.0 305.7 75.00 0.3125 28.321 27.780 2,753.3 14.57 90.63 82.6 191.5 0.0 486.8 76.70 Top - Section 3 0.3125 27.750 27.214 2,588.4 14.25 88.80 82.6 183.7 0.0 159.1 77.00 Bot - Section 4 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 80.00 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 45.0 82.00 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 45.0 83.20 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 30.0 83.20 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 30.0											
75.00 76.70 Top - Section 3 76.70 Bot - Section 4 77.00 80.00 82.00 83.20 83.20 83.20 83.20 83.21 80.3125 28.321 97.780 27.780 27.780 27.214 2,588.4 14.25 88.80 82.6 191.5 0.0 486.8 14.25 88.80 82.6 191.5 0.0 486.8 14.25 88.80 82.6 191.5 0.0 486.8 14.25 88.80 82.6 191.5 0.0 159.1 14.57 0.0 159.1 14.57 0.0 159.1 14.57 0.0 159.1 14.57 0.0 159.1 159											
76.70 Top - Section 3 0.3125 27.750 27.214 2,588.4 14.25 88.80 82.6 183.7 0.0 159.1 76.70 Bot - Section 4 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 77.00 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 4.5 80.00 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 45.0 82.00 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 30.0 83.20 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 30.0											
76.70 Bot - Section 4 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 77.00 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 4.5 80.00 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 45.0 82.00 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 30.0 83.20 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 18.0											
77.00 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 4.5 80.00 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 45.0 82.00 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 30.0 83.20 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 18.0	•				•						159.1
80.00 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 45.0 82.00 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 30.0 83.20 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 18.0											
82.00 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 30.0 83.20 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 18.0											
83.20 0.3370 4.500 4.407 9.6 0.00 13.35 35.0 4.2 5.9 18.0											
16,185.5	83.20	0.3370	4.500	4.407	9.6	0.00	13.35	35.0	4.2	5.9	18.0
										1	16,185.5

Site Name: Byram Park CT, CT Engineering Number:13701270_C3_02 7/28/2021 2:56:37 PM

Customer: VERIZON WIRELESS

Load Case: 1.2D + 1.0W 113 mph with No Ice 16 Iterations

Gust Response Factor :1.10 Dead Load Factor :1.20 Wind Load Factor :1.00

Applied Segment Forces Summary

		Shaft I	Forces		Discrete	e Forces		Linear F	orces		Sum o	f Forces	
Seg			Dead			Moment	Dead	W. 157	Dead			Torsion	Moment
Elev		Wind FX	Load	Wind FX		MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ
(ft)	Description	(lb)	(lb)	(lb)	(lb-ft)	(lb-ft)	(lb)	(lb)	(lb)	(lb)	(lb)	(lb-ft)	(lb)
0.00		277.8	0.0					0.0	0.0	277.8	0.0	0.0	0.0
5.00		546.5	1,641.4					0.0	419.3	546.5	2,060.7	0.0	0.0
10.00		528.2	1,587.0					0.0	419.3	528.2	2,006.3	0.0	
15.00	Appurtenance(s)	516.9	1,532.6	1,582.5			720.0	0.0	419.3	2,099.4	2,671.9	0.0	0.0
20.00	Appurtenance(s)	396.5	1,478.2	1,663.7	0.0	0.0	720.0	0.0	419.3	2,060.2	2,617.5	0.0	0.0
22.69	Bot - Section 2	261.3	772.1					0.0	225.4	261.3	997.4	0.0	0.0
25.00	Appurtenance(s)	325.2	1,234.4	1,729.6	0.0	0.0	720.0	0.0	193.9	2,054.8	2,148.3	0.0	0.0
28.85	Top - Section 1	263.3	2,007.5					0.0	323.0	263.3	2,330.5	0.0	0.0
30.00	Appurtenance(s)	321.0	277.1	1,785.3	0.0	0.0	720.0	0.0	96.3	2,106.3	1,093.4	0.0	0.0
35.00	Appurtenance(s)	517.3	1,177.3	1,833.8	0.0	0.0	720.0	0.0	419.3	2,351.1	2,316.6	0.0	0.0
40.00	Appurtenance(s)	507.9	1,129.7	1,876.9	0.0	0.0	720.0	0.0	419.3	2,384.8	2,269.0	0.0	0.0
45.00	Appurtenance(s)	357.9	1,082.1	1,915.7	0.0	0.0	720.0	0.0	419.3	2,273.6	2,221.4	0.0	0.0
47.16	Bot - Section 3	247.4	452.5	•				0.0	181.0	247.4	633.5	0.0	0.0
50.00	Appurtenance(s)	257.0	1,006.3	1,951.2	0.0	0.0	720.0	0.0	238.2	2,208.2	1,964.6	0.0	0.0
52.38	Top - Section 2	242.2	822.8					0.0	199.6	242.2	1,022.4	0.0	0.0
55.00	Appurtenance(s)	173.6	373.1	1,983.8	0.0	0.0	720.0	0.0	219.7	2,157.3	1,312.8	0.0	0.0
56.00	Appurtenance(s)	94.8	139.9	6,503.6	0.0	1,554.1	3,000.0	0.0	83.9	6,598.4	3,223.8	0.0	0.0
57.00	Appurtenance(s)	187.0	138.6	862.6	0.0	0.0	900.0	0.0	65.0	1,049.7	1,103.6	0.0	0.0
60.00	Appurtenance(s)	366.1	407.6	2,014.0	0.0	0.0	720.0	0.0	195.0	2,380.2	1,322.6	0.0	0.0
65.00	Appurtenance(s)	314.4	652.1	2,042.2	0.0	0.0	720.0	0.0	325.0	2,356.7	1,697.1	0.0	0.0
67.00	Appurtenance(s)	217.5	251.3	4,147.5	0.0	2,062.9	3,919.7	0.0	130.0	4,365.0	4,301.0	0.0	0.0
70.00	Appurtenance(s)	337.7	366.8	2,068.7	0.0	0.0	720.0	0.0	47.1	2,406.5	1,133.9	0.0	0.0
75.00	Appurtenance(s)	276.9	584.2	2,095.6	0.0	838.3	720.0	0.0	78.5	2,372.6	1,382.7	0.0	0.0
76.70	Top - Section 3	71.1	190.9					0.0	26.7	71.1	217.6	0.0	0.0
77.00	Appurtenance(s)	27.3	5.4	3,679.4	0.0	0.0	2,863.4	0.0	4.7	3,706.8	2,873.6	0.0	0.0
80.00	Appurtenance(s)	41.5	54.0	2,117.3	0.0	0.0	720.0	0.0	3.5	2,158.8	777.4	0.0	0.0
82.00	Appurtenance(s)	26.6	36.0	154.0	0.0		96.0	0.0	2.3	180.7	134.3	0.0	0.0
83.20	.,	10.0	21.6					0.0	1.4	10.0	23.0	0.0	0.0
								To	tals:	49,718.8	45,856.8	0.00	0.00

© 2007 - 2021 by ATC IP LLC. All rights reserved.

Engineering Number:13701270_C3_02 7/28/2021 2:56:40 PM

Site Name: Byram Park CT, CT **Customer: VERIZON WIRELESS**

Code: ANSI/TIA-222-H

16 Iterations

Load Case: 1.2D + 1.0W 113 mph with No Ice **Gust Response Factor :1.10** Dead Load Factor: 1.20

Wind Load Factor: 1.00

Calculated Forces

Site Number: 414240

-														
	Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect I (in)	Rotation (deg)	Ratio
	0.00	-45.98	-49.86	0.00	-2,646.41	0.00	2,646.41	5,994.05	1.434.32	6.672.27	6.339.93	0.00	0.00	0.426
	5.00	-43.80	-49.41	0.00	-2,397.12	0.00	2,397.12	5,848.22	•	•	•	0.07	-0.13	0.409
	10.00	-41.69	-48.97	0.00	-2,150.08	0.00	2,150.08	5,676.12	•	•	•	0.28	-0.26	0.392
	15.00	-38.92	-46.94	0.00	-1,905.23	0.00	1,905.23	5,478.21	1,294.07	5,431.37	5,222.30	0.63	-0.39	0.373
	20.00	-36.25	-44.92	0.00	-1,670.53	0.00	1,670.53	5,280.30	-	-	-	1.11	-0.52	0.353
	22.69	-35.20	-44.69	0.00	-1,549.80	0.00	1,549.80	5,173.92	1,222.19	4,844.84	4,655.34	1.42	-0.59	0.341
	25.00	-33.02	-42.66	0.00	-1,446.46	0.00	1,446.46	5,082.39	1,200.56	4,674.96	4,491.17	1.72	-0.64	0.330
	28.85	-30.65	-42.40	0.00	-1,282.17	0.00	1,282.17	4,410.41	1,041.83	4,023.22	3,870.44	2.28	-0.74	0.340
	30.00	-29.53	-40.32	0.00	-1,233.48	0.00	1,233.48	4,370.63	-	-	-	2.46	-0.76	0.333
	35.00	-27.17	-37.99	0.00	-1,031.91	0.00	1,031.91	4,197.46	•	3,644.15	•	3.33	-0.89	0.302
	40.00	-24.87	-35.61	0.00	-841.98	0.00	841.98	4,024.29	950.62	3,349.71	3,219.28	4.32	-1.00	0.269
	45.00	-22.65	-33.33	0.00	-663.93	0.00	663.93	3,851.11	909.71	3,067.67	2,946.70	5.42	-1.10	0.233
	47.16	-22.00	-33.08	0.00	-591.99	0.00	591.99	3,776.34	892.05	2,949.72	2,832.74	5.93	-1.14	0.216
	50.00	-20.05	-30.85	0.00	-497.99	0.00	497.99	3,677.94	868.80	2,798.03	2,686.19	6.63	-1.19	0.192
	52.38	-19.02	-30.60	0.00	-424.56	0.00	424.56	2,517.80	619.72	1,992.88	1,842.71	7.23	-1.23	0.240
	55.00	-17.74	-28.42	0.00	-344.40	0.00	344.40	2,473.70	604.41	1,895.64	1,765.31	7.92	-1.27	0.204
	56.00	-14.66	-21.76	0.00	-314.42	0.00	314.42	2,456.62	598.57	1,859.17	1,736.02	8.19	-1.29	0.188
	57.00	-13.56	-20.69	0.00	-292.66	0.00	292.66	2,439.40	592.72	1,823.05	1,706.88	8.46	-1.31	0.178
	60.00	-12.28	-18.29	0.00	-230.59	0.00	230.59	2,386.97	575.19	1,716.81	1,620.34	9.30	-1.35	0.148
	65.00	-10.63	-15.90	0.00	-139.12	0.00	139.12	2,296.90	545.97	1,546.84	1,479.25	10.75	-1.41	0.100
	67.00	-6.44	-11.43	0.00	-105.25	0.00	105.25	2,259.94	534.28	1,481.33	1,423.98	11.35	-1.43	0.077
	70.00	-5.36	-9.00	0.00	-70.95	0.00	70.95	2,187.59	516.75	1,385.73	1,332.71	12.25	-1.45	0.056
	75.00	-4.04	-6.60	0.00	-25.10	0.00	25.10	2,063.89	487.53	1,233.47	1,185.51	13.78	-1.47	0.023
	76.70	-3.82	-6.52	0.00	-13.89	0.00	13.89	2,021.83	477.60	1,183.72	1,137.43	14.31	-1.47	0.014
	76.70	-3.82	-6.52	0.00	-13.89	0.00	13.89	138.83	41.65	15.24	15.36	14.31	-1.47	0.956
	77.00	-1.02	-2.75	0.00	-11.93	0.00	11.93	138.83	41.65	15.24	15.36	14.40	-1.47	0.788
	80.00	-0.31	-0.57	0.00	-3.69	0.00	3.69	138.83	41.65	15.24	15.36	15.59	-2.17	0.243
	82.00	-0.19	-0.38	0.00	-2.56	0.00	2.56	138.83	41.65	15.24	15.36	16.54	-2.36	0.168
	83.20	0.00	-0.37	0.00	-2.10	0.00	2.10	138.83	41.65	15.24	15.36	17.14	-2.44	0.137

Site Name: Byram Park CT, CT Engineering Number:13701270_C3_02 7/28/2021 2:56:40 PM

Customer: VERIZON WIRELESS

Load Case: 0.9D + 1.0W 113 mpi

113 mph with No Ice (Reduced DL)

16 Iterations

Gust Response Factor :1.10 Dead Load Factor :0.90 Wind Load Factor :1.00

Applied Segment Forces Summary

		Shaft I	Forces		Discrete	Forces		Linear F	orces		Sum o	f Forces	
Seg Elev (ft)	Description	Wind FX (lb)	Dead Load (lb)	Wind FX	Torsion MY (lb-ft)	Moment MZ (lb-ft)	Dead Load (lb)	Wind FX	Dead Load (lb)	Wind FX (lb)	Dead Load (lb)	Torsion MY (lb-ft)	Moment MZ (Ib)
(10)	Description	(16)	(10)	(16)	(15 10)	(10 10)	(ID)	(10)	(1.0)	(15)	(10)	(10-11)	(10)
0.00		277.8	0.0					0.0	0.0	277.8	0.0	0.0	0.0
5.00		546.5	1,231.1					0.0	314.5	546.5	1,545.5	0.0	0.0
10.00		528.2	1,190.3					0.0	314.5	528.2	1,504.7	0.0	0.0
15.00	Appurtenance(s)	516.9	1,149.5	1,582.5			540.0	0.0	314.5	2,099.4	2,003.9	0.0	0.0
20.00	Appurtenance(s)	396.5	1,108.7	1,663.7	0.0	0.0	540.0	0.0	314.5	2,060.2	1,963.1	0.0	0.0
22.69	Bot - Section 2	261.3	579.1					0.0	169.0	261.3	748.1	0.0	0.0
25.00	Appurtenance(s)	325.2	925.8	1,729.6	0.0	0.0	540.0	0.0	145.4	2,054.8	1,611.2	0.0	0.0
28.85	Top - Section 1	263.3	1,505.6					0.0	242.2	263.3	1,747.8	0.0	0.0
30.00	Appurtenance(s)	321.0	207.8	1,785.3	0.0	0.0	540.0	0.0	72.2	2,106.3	820.1	0.0	0.0
35.00	Appurtenance(s)	517.3	883.0	1,833.8	0.0	0.0	540.0	0.0	314.5	2,351.1	1,737.4	0.0	0.0
40.00	Appurtenance(s)	507.9	847.3	1,876.9	0.0	0.0	540.0	0.0	314.5	2,384.8	1,701.7	0.0	0.0
45.00	Appurtenance(s)	357.9	811.6	1,915.7	0.0	0.0	540.0	0.0	314.5	2,273.6	1.666.0	0.0	0.0
47.16	Bot - Section 3	247.4	339.4	,				0.0	135.8	247.4	475.2	0.0	0.0
50.00	Appurtenance(s)	257.0	754.8	1,951.2	0.0	0.0	540.0	0.0	178.7	2,208.2	1,473.4	0.0	0.0
52.38	Top - Section 2	242.2	617.1	·				0.0	149.7	242.2	766.8	0.0	0.0
55.00	Appurtenance(s)	173.6	279.8	1,983.8	0.0	0.0	540.0	0.0	164.8	2,157.3	984.6	0.0	0.0
56.00	Appurtenance(s)	94.8	105.0	6,503.6	0.0	1.554.1	2,250.0	0.0	62.9	6.598.4	2.417.9	0.0	0.0
57.00	Appurtenance(s)	187.0	103.9	862.6		,	675.0	0.0	48.7	1,049.7	827.7	0.0	0.0
60.00	Appurtenance(s)	366.1	305.7	2,014.0	0.0	0.0	540.0	0.0	146.2	2,380.2	991.9	0.0	0.0
65.00	Appurtenance(s)	314.4	489.1	2,042.2		0.0	540.0	0.0	243.7	2,356.7	1,272.8	0.0	0.0
67.00	Appurtenance(s)	217.5	188.5	4.147.5			2,939.8	0.0	97.5	4,365.0	3.225.8	0.0	0.0
70.00	Appurtenance(s)	337.7	275.1	2,068.7			540.0	0.0	35.3		850.5	0.0	0.0
75.00	Appurtenance(s)	276.9	438.1	2,095.6			540.0	0.0	58.9	2,372.6	1,037.0	0.0	0.0
76.70	Top - Section 3	71.1	143.2	,				0.0	20.0	•	163.2	0.0	0.0
77.00	Appurtenance(s)	27.3	4.0	3,679.4	0.0	0.0	2,147.6	0.0	3.5	3,706.8	2,155.2	0.0	0.0
80.00	Appurtenance(s)	41.5	40.5	2.117.3			540.0	0.0	2.6	2,158.8	583.1	0.0	0.0
82.00	Appurtenance(s)	26.6	27.0	154.0			72.0	0.0	1.7	180.7	100.7	0.0	0.0
83.20		10.0	16.2		3.0	3.0	. 2.0	0.0	1.0	10.0	17.2	0.0	0.0
								To	tals:	49,718.8	34,392.6	0.00	0.00

© 2007 - 2021 by ATC IP LLC. All rights reserved.

Site Number: 414240 Code: ANSI/TIA-222-H 7/28/2021 2:56:43 PM

Site Name: Byram Park CT, CT

Engineering Number:13701270_C3_02

Customer: VERIZON WIRELESS

113 mph with No Ice (Reduced DL)

16 Iterations

Gust Response Factor :1.10 Dead Load Factor: 0.90 Wind Load Factor: 1.00

Load Case: 0.9D + 1.0W

Calculated Forces

•														
	Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect I (in)	Rotation (deg)	Ratio
	0.00	-34.47	-49.84	0.00	-2,640.27	0.00	2,640.27	5,994.05 1	1.434.32	6.672.27	6.339.93	0.00	0.00	0.423
	5.00	-32.81	-49.37	0.00	-2,391.05		2,391.05	5,848.22 1	•	•	•	0.07	-0.13	0.407
	10.00	-31.20	-48.91	0.00	-2,144.19	0.00	2,144.19	5,676.12 1	1,340.82	5,830.83	5,608.53	0.28	-0.26	0.389
	15.00	-29.10	-46.86	0.00	-1,899.65	0.00	1,899.65	5,478.21 1	1,294.07	5,431.37	5,222.30	0.63	-0.39	0.370
	20.00	-27.08	-44.83	0.00	-1,665.34	0.00	1,665.34	5,280.30 1	1,247.31	5,046.08	4,849.84	1.10	-0.52	0.350
	22.69	-26.28	-44.59	0.00	-1,544.86	0.00	1,544.86	5,173.92 1	1,222.19	4,844.84	4,655.34	1.41	-0.58	0.338
	25.00	-24.64	-42.55	0.00	-1,441.74	0.00	1,441.74	5,082.39 1	1,200.56	4,674.96	4,491.17	1.71	-0.64	0.327
	28.85	-22.85	-42.29	0.00	-1,277.84	0.00	1,277.84	4,410.41 1	1,041.83	4,023.22	3,870.44	2.27	-0.73	0.337
	30.00	-22.00	-40.21	0.00	-1,229.27	0.00	1,229.27	4,370.63 1	1,032.43	3,950.99	3,800.59	2.45	-0.76	0.330
	35.00	-20.22	-37.87	0.00	-1,028.25	0.00	1,028.25	4,197.46	991.53	3,644.15	3,503.90	3.32	-0.88	0.300
	40.00	-18.50	-35.49	0.00	-838.90	0.00	838.90	4,024.29	950.62	3,349.71	3,219.28	4.30	-0.99	0.267
	45.00	-16.83	-33.21	0.00	-661.44	0.00	661.44	3,851.11	909.71	3,067.67	2,946.70	5.40	-1.10	0.230
	47.16	-16.33	-32.97	0.00	-589.74	0.00	589.74	3,776.34	892.05	2,949.72	2,832.74	5.91	-1.14	0.214
	50.00	-14.88	-30.74	0.00	-496.08	0.00	496.08	3,677.94	868.80	2,798.03	2,686.19	6.61	-1.19	0.190
	52.38	-14.10	-30.49	0.00	-422.92	0.00	422.92	2,517.80	619.72	1,992.88	1,842.71	7.21	-1.23	0.238
	55.00	-13.15	-28.32	0.00	-343.03	0.00	343.03	2,473.70	604.41	1,895.64	1,765.31	7.90	-1.27	0.202
	56.00	-10.87	-21.67	0.00	-313.16	0.00	313.16	2,456.62	598.57	1,859.17	1,736.02	8.17	-1.29	0.186
	57.00	-10.06	-20.61	0.00	-291.49	0.00	291.49	2,439.40	592.72	1,823.05	1,706.88	8.44	-1.30	0.176
	60.00	-9.10	-18.22	0.00	-229.66	0.00	229.66	2,386.97	575.19	1,716.81	1,620.34	9.27	-1.35	0.147
	65.00	-7.88	-15.83	0.00	-138.59	0.00	138.59	2,296.90	545.97	1,546.84	1,479.25	10.72	-1.41	0.098
	67.00	-4.76	-11.39	0.00	-104.86	0.00	104.86	2,259.94	534.28	1,481.33	1,423.98	11.31	-1.42	0.076
	70.00	-3.96	-8.97	0.00	-70.68	0.00	70.68	2,187.59	516.75	1,385.73	1,332.71	12.21	-1.44	0.055
	75.00	-2.99	-6.57	0.00	-25.01	0.00	25.01	2,063.89	487.53	1,233.47	1,185.51	13.74	-1.47	0.023
	76.70	-2.82	-6.49	0.00	-13.84	0.00	13.84	2,021.83	477.60	1,183.72	1,137.43	14.26	-1.47	0.014
	76.70	-2.82	-6.49	0.00	-13.84	0.00	13.84	138.83	41.65	15.24	15.36	14.26	-1.47	0.946
	77.00	-0.75	-2.74	0.00	-11.90	0.00	11.90	138.83	41.65	15.24	15.36	14.36	-1.47	0.784
	80.00	-0.23	-0.56	0.00	-3.68	0.00	3.68	138.83	41.65	15.24	15.36	15.54	-2.17	0.242
	82.00	-0.14	-0.38	0.00	-2.56	0.00	2.56	138.83	41.65	15.24	15.36	16.49	-2.35	0.168
	83.20	0.00	-0.37	0.00	-2.10	0.00	2.10	138.83	41.65	15.24	15.36	17.09	-2.43	0.137

Site Name: Byram Park CT, CT Engineering Number:13701270_C3_02 7/28/2021 2:56:43 PM

Customer: VERIZON WIRELESS

Load Case: 1.2D + 1.0Di + 1.0Wi 49 mph with 0.85 in Radial Ice 15 Iterations

Gust Response Factor :1.10 Ice Dead Load Factor :1.00

Dead Load Factor :1.20 Ice Importance Factor :1.00

Wind Load Factor :1.00

Applied Segment Forces Summary

		Shaft I	Forces		Discrete	e Forces		Linear F	orces		Sum o	f Forces	
Seg			Dead	-	Torsion	Moment	Dead		Dead		Dead	Torsion	Moment
Elev		Wind FX	Load	Wind FX	MY	MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ
(ft)	Description	(lb)	(lb)	(lb)	(lb-ft)	(lb-ft)	(lb)	(lb)	(lb)	(lb)	(lb)	(lb-ft)	(lb)
0.00		87.0	0.0					0.0	0.0	87.0	0.0	0.0	0.0
5.00		171.4	1,851.2					0.0	419.3	171.4	2,270.4	0.0	0.0
10.00		166.2	1,813.8					0.0	419.3	166.2	2,233.0	0.0	0.0
15.00	Appurtenance(s)	163.1	1,763.3	384.7	0.0	0.0	845.1	0.0	419.3	547.8	3,027.7	0.0	0.0
20.00	Appurtenance(s)	125.3	1,708.6	407.7	0.0	0.0	851.5	0.0	419.3	533.0	2,979.3	0.0	0.0
22.69	Bot - Section 2	82.7	895.9					0.0	225.4	82.7	1,121.3	0.0	0.0
25.00	Appurtenance(s)	103.0	1,342.4	427.1	0.0	0.0	857.5	0.0	193.9	530.1	2,393.8	0.0	0.0
28.85	Top - Section 1	83.5	2,184.4					0.0	323.0	83.5	2,507.4	0.0	0.0
30.00	Appurtenance(s)	101.9	329.9	443.2	0.0	0.0	861.7	0.0	96.3	545.1	1,287.9	0.0	0.0
35.00	Appurtenance(s)	164.5	1,400.4	456.4	0.0	0.0	863.7	0.0	419.3	620.8	2,683.4	0.0	0.0
40.00	Appurtenance(s)	161.8	1,347.1	468.8	0.0	0.0	866.6	0.0	419.3	630.6	2,633.0	0.0	0.0
45.00	Appurtenance(s)	114.2	1.293.1	480.0	0.0	0.0	869.2	0.0	419.3	594.3	2.581.6	0.0	0.0
47.16	Bot - Section 3	79.1	542.7					0.0	181.0	79.1	723.7	0.0	0.0
50.00	Appurtenance(s)	82.2	1,124.6	490.6	0.0	0.0	872.0	0.0	238.2	572.8	2,234.9	0.0	0.0
52.38	Top - Section 2	77.6	920.3					0.0	199.6	77.6	1.119.9	0.0	0.0
55.00	Appurtenance(s)	55.6	478.3	500.1	0.0	0.0	874.2	0.0	219.7	555.8	1,572.2	0.0	0.0
56.00	Appurtenance(s)	30.4	179.9	1,516.0	0.0	330.5	4,578.8	0.0	83.9	1,546.4	4,842.5	0.0	0.0
57.00	Appurtenance(s)	60.1	178.2	212.6			1,132.9	0.0	65.0	272.7	1,376.1	0.0	0.0
60.00	Appurtenance(s)	117.9	523.5	508.9			876.0	0.0	195.0	626.8	1,594.5	0.0	0.0
65.00	Appurtenance(s)	101.4	837.1	516.9	0.0	0.0	877.5	0.0	325.0	618.3	2.039.5	0.0	0.0
67.00	Appurtenance(s)	70.3	324.2	930.2			5.619.8	0.0	130.0	1.000.5	6.074.0	0.0	0.0
70.00	Appurtenance(s)	109.4	473.1	524.9			879.5	0.0	47.1	634.4	1,399.6	0.0	0.0
75.00	Appurtenance(s)	89.9	752.6	532.6			880.7	0.0	78.5	622.5	1,711.8	0.0	0.0
76.70	Top - Section 3	23.1	247.3					0.0	26.7	23.1	274.0	0.0	0.0
77.00	Appurtenance(s)	9.1	7.2	815.2	0.0	0.0	4,132.2	0.0	4.7	824.3	4.144.1	0.0	0.0
80.00	Appurtenance(s)	13.9	72.4	539.2			882.5	0.0	3.5	553.1	958.3	0.0	0.0
82.00	Appurtenance(s)	8.9	48.3	39.3			132.8	0.0	2.3	48.2	183.5	0.0	0.0
83.20	[· [·	3.4	29.0	00.0	0.0	. 0.0	.02.0	0.0	1.4	3.4	30.4	0.0	0.0
00.20		0.7	20.0										
								To	tals:	12,651.3	55,997.9	0.00	0.00

Site Name: Byram Park CT, CT Engineering Number:13701270_C3_02 7/28/2021 2:56:46 PM

Customer: VERIZON WIRELESS

Load Case: 1.2D + 1.0Di + 1.0Wi 49 mph with 0.85 in Radial Ice 15 Iterations

Gust Response Factor :1.10 Ice Dead Load Factor :1.00

Dead Load Factor :1.20 Ice Importance Factor :1.00

Wind Load Factor : 1.00

Calculated Forces

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect I (in)	Rotation (deg)	Ratio
0.00	-56.25	-12.70	0.00	-667.14	0.00	667.14	5,994.05	1,434.32	6,672.27	6,339.93	0.00	0.00	0.115
5.00	-53.97	-12.56	0.00	-603.64	0.00	603.64	5,848.22	,387.57	6,244.46	5,982.13	0.02	-0.03	0.110
10.00	-51.73	-12.42	0.00	-540.86	0.00	540.86	5,676.12 <i>′</i>	1,340.82	5,830.83	5,608.53	0.07	-0.07	0.106
15.00	-48.70	-11.89	0.00	-478.76	0.00	478.76	5,478.21 <i>′</i>	1,294.07	5,431.37	5,222.30	0.16	-0.10	0.101
20.00	-45.72	-11.37	0.00	-419.29	0.00	419.29	5,280.30 ²	1,247.31	5,046.08	4,849.84	0.28	-0.13	0.095
22.69	-44.59	-11.30	0.00	-388.72	0.00	388.72	5,173.92 <i>′</i>	1,222.19	4,844.84	4,655.34	0.36	-0.15	0.092
25.00	-42.20	-10.78	0.00	-362.59	0.00	362.59	5,082.39 ²	1,200.56	4,674.96	4,491.17	0.43	-0.16	0.089
28.85	-39.69	-10.70	0.00	-321.08	0.00	321.08	4,410.41 <i>1</i>	1,041.83	4,023.22	3,870.44	0.57	-0.19	0.092
30.00	-38.40	-10.16	0.00	-308.79	0.00	308.79	4,370.63	1,032.43	3,950.99	3,800.59	0.62	-0.19	0.090
35.00	-35.71	-9.55	0.00	-257.98	0.00	257.98	4,197.46	991.53	3,644.15	3,503.90	0.84	-0.22	0.082
40.00	-33.08	-8.92	0.00	-210.24	0.00	210.24	4,024.29	950.62	3,349.71	3,219.28	1.08	-0.25	0.074
45.00	-30.50	-8.33	0.00	-165.62	0.00	165.62	3,851.11	909.71	3,067.67	2,946.70	1.36	-0.28	0.064
47.16	-29.77	-8.25	0.00	-147.64	0.00	147.64	3,776.34	892.05	2,949.72	2,832.74	1.49	-0.29	0.060
50.00	-27.54	-7.67	0.00	-124.21	0.00	124.21	3,677.94	868.80	2,798.03	2,686.19	1.66	-0.30	0.054
52.38	-26.42	-7.59	0.00	-105.95	0.00	105.95	2,517.80	619.72	1,992.88	1,842.71	1.82	-0.31	0.068
55.00	-24.85	-7.03	0.00	-86.06	0.00	86.06	2,473.70	604.41	1,895.64	1,765.31	1.99	-0.32	0.059
56.00	-20.01	-5.46	0.00	-78.70	0.00	78.70	2,456.62	598.57	1,859.17	1,736.02	2.06	-0.32	0.054
57.00	-18.64	-5.18	0.00	-73.24	0.00	73.24	2,439.40	592.72	1,823.05	1,706.88	2.13	-0.33	0.051
60.00	-17.05	-4.55	0.00	-57.70	0.00	57.70	2,386.97	575.19	1,716.81	1,620.34	2.33	-0.34	0.043
65.00	-15.01	-3.92	0.00	-34.95	0.00	34.95	2,296.90	545.97	1,546.84	1,479.25	2.70	-0.35	0.030
67.00	-8.94	-2.88	0.00	-26.66	0.00	26.66	2,259.94	534.28	1,481.33	1,423.98	2.85	-0.36	0.023
70.00	-7.55	-2.24	0.00	-18.01	0.00	18.01	2,187.59	516.75	1,385.73	1,332.71	3.07	-0.36	0.017
75.00	-5.84	-1.61	0.00	-6.59	0.00	6.59	2,063.89	487.53	1,233.47	1,185.51	3.46	-0.37	0.008
76.70	-5.56	-1.58	0.00	-3.86	0.00	3.86	2,021.83	477.60	1,183.72	1,137.43	3.59	-0.37	0.006
76.70	-5.56	-1.58	0.00	-3.86	0.00	3.86	138.83	41.65	15.24	15.36	3.59	-0.37	0.293
77.00	-1.42	-0.73	0.00	-3.38	0.00	3.38	138.83	41.65	15.24	15.36	3.61	-0.37	0.231
80.00	-0.47	-0.17	0.00	-1.18	0.00	1.18	138.83	41.65	15.24	15.36	3.92	-0.57	0.080
82.00	-0.29	-0.12	0.00	-0.83	0.00	0.83	138.83	41.65	15.24	15.36	4.17	-0.63	0.056
83.20	0.00	-0.12	0.00	-0.68	0.00	0.68	138.83	41.65	15.24	15.36	4.34	-0.66	0.044

Site Name: Byram Park CT, CT Engineering Number:13701270_C3_02 7/28/2021 2:56:46 PM

Customer: VERIZON WIRELESS

Load Case: 1.0D + 1.0W Serviceability 60 mph 15 Iterations

Gust Response Factor :1.10 Dead Load Factor :1.00 Wind Load Factor :1.00

Applied Segment Forces Summary

		Shaft I	Forces			e Forces		Linear F	orces		Sum o	f Forces	
Seg			Dead			Moment	Dead		Dead		Dead		Moment
Elev		Wind FX	Load	Wind FX	IVI T	MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ
(ft)	Description	(lb)	(lb)	(lb)	(lb-ft)	(lb-ft)	(lb)	(lb)	(lb)	(lb)	(lb)	(lb-ft)	(lb)
0.00		70.0	0.0					0.0	0.0	70.0	0.0	0.0	0.0
5.00		137.7	1,367.8					0.0	349.4	137.7	1,717.2	0.0	0.0
10.00		133.1	1,322.5					0.0	349.4	133.1	1,671.9	0.0	0.0
15.00	Appurtenance(s)	130.2	1,277.2	398.8	0.0		600.0	0.0	349.4	529.0	2,226.6	0.0	0.0
20.00	Appurtenance(s)	99.9	1,231.9	419.2	0.0	0.0	600.0	0.0	349.4	519.1	2,181.3	0.0	0.0
22.69	Bot - Section 2	65.8	643.4					0.0	187.8	65.8	831.2	0.0	0.0
25.00	Appurtenance(s)	81.9	1,028.6	435.8	0.0	0.0	600.0	0.0	161.6	517.8	1,790.2	0.0	0.0
28.85	Top - Section 1	66.4	1,672.9					0.0	269.1	66.4	1,942.0	0.0	0.0
30.00	Appurtenance(s)	80.9	230.9	449.8	0.0	0.0	600.0	0.0	80.3	530.7	911.2	0.0	0.0
35.00	Appurtenance(s)	130.3	981.1	462.1	0.0	0.0	600.0	0.0	349.4	592.4	1,930.5	0.0	0.0
40.00	Appurtenance(s)	128.0	941.4	472.9	0.0	0.0	600.0	0.0	349.4	600.9	1,890.8	0.0	0.0
45.00	Appurtenance(s)	90.2	901.8	482.7	0.0	0.0	600.0	0.0	349.4	572.9	1,851.2	0.0	0.0
47.16	Bot - Section 3	62.3	377.1					0.0	150.9	62.3	528.0	0.0	0.0
50.00	Appurtenance(s)	64.8	838.6	491.6	0.0	0.0	600.0	0.0	198.5	556.4	1,637.2	0.0	0.0
52.38	Top - Section 2	61.0	685.7					0.0	166.3	61.0	852.0	0.0	0.0
55.00	Appurtenance(s)	43.7	310.9	499.9	0.0	0.0	600.0	0.0	183.1	543.6	1,094.0	0.0	0.0
56.00	Appurtenance(s)	23.9	116.6	1,638.8	0.0	391.6	2,500.0	0.0	69.9	1,662.6	2,686.5	0.0	0.0
57.00	Appurtenance(s)	47.1	115.5	217.4	0.0	0.0	750.0	0.0	54.2	264.5	919.6	0.0	0.0
60.00	Appurtenance(s)	92.3	339.7	507.5	0.0	0.0	600.0	0.0	162.5	599.7	1,102.2	0.0	0.0
65.00	Appurtenance(s)	79.2	543.5	514.6	0.0	0.0	600.0	0.0	270.8	593.8	1,414.3	0.0	0.0
67.00	Appurtenance(s)	54.8	209.5	1,045.1	0.0	519.8	3,266.4	0.0	108.3	1,099.9	3,584.2	0.0	0.0
70.00	Appurtenance(s)	85.1	305.7	521.3	0.0	0.0	600.0	0.0	39.3	606.4	944.9	0.0	0.0
75.00	Appurtenance(s)	69.8	486.8	528.1	0.0	211.2	600.0	0.0	65.4	597.8	1,152.3	0.0	0.0
76.70	Top - Section 3	18.1	159.1					0.0	22.3	18.1	181.3	0.0	0.0
77.00	Appurtenance(s)	8.8	4.5	927.1	0.0	0.0	2,386.2	0.0	3.9	935.9	2,394.6	0.0	0.0
80.00	Appurtenance(s)	13.3	45.0	533.5	0.0	0.0	600.0	0.0	2.9	546.8	647.9	0.0	0.0
82.00	Appurtenance(s)	8.6	30.0	38.8			80.0	0.0	1.9	47.4	111.9	0.0	0.0
83.20	`,	3.2	18.0					0.0	1.2	3.2	19.1	0.0	0.0
								To	tals:	12,535.4	38,214.0	0.00	0.00

© 2007 - 2021 by ATC IP LLC. All rights reserved.

7/28/2021 2:56:49 PM

Site Name: Byram Park CT, CT **Customer: VERIZON WIRELESS** Engineering Number:13701270_C3_02

Code: ANSI/TIA-222-H

Load Case: 1.0D + 1.0W 15 Iterations Serviceability 60 mph

Gust Response Factor :1.10 Dead Load Factor: 1.00 Wind Load Factor: 1.00

Calculated Forces

Site Number: 414240

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
0.00	-38.36	-12.57	0.00	-666.45	0.00	666.45	5,994.05	1,434.32	6,672.27	6,339.93	0.00	0.00	0.112
5.00	-36.63	-12.45	0.00	-603.61	0.00	603.61	5,848.22	1,387.57	6,244.46	5,982.13	0.02	-0.03	0.107
10.00	-34.96	-12.34	0.00	-541.36	0.00	541.36	5,676.12	1,340.82	5,830.83	5,608.53	0.07	-0.07	0.103
15.00	-32.72	-11.82	0.00	-479.68	0.00	479.68	5,478.21	1,294.07	5,431.37	5,222.30	0.16	-0.10	0.098
20.00	-30.54	-11.31	0.00	-420.57	0.00	420.57	5,280.30	1,247.31	5,046.08	4,849.84	0.28	-0.13	0.093
22.69	-29.70	-11.25	0.00	-390.17	0.00	390.17	5,173.92	1,222.19	4,844.84	4,655.34	0.36	-0.15	0.090
25.00	-27.91	-10.74	0.00	-364.15	0.00	364.15	5,082.39	1,200.56	4,674.96	4,491.17	0.43	-0.16	0.087
28.85	-25.97	-10.67	0.00	-322.78	0.00	322.78	4,410.41	1,041.83	4,023.22	3,870.44	0.57	-0.19	0.089
30.00	-25.05	-10.15	0.00	-310.53	0.00	310.53	4,370.63	1,032.43	3,950.99	3,800.59	0.62	-0.19	0.088
35.00	-23.12	-9.56	0.00	-259.79	0.00	259.79	4,197.46	991.53	3,644.15	3,503.90	0.84	-0.22	0.080
40.00	-21.23	-8.96	0.00	-211.98	0.00	211.98	4,024.29	950.62	3,349.71	3,219.28	1.09	-0.25	0.071
45.00	-19.38	-8.39	0.00	-167.17	0.00	167.17	3,851.11	909.71	3,067.67	2,946.70	1.36	-0.28	0.062
47.16	-18.85	-8.33	0.00	-149.07	0.00	149.07	3,776.34		2,949.72	2,832.74	1.49	-0.29	0.058
50.00	-17.21	-7.76	0.00	-125.41	0.00	125.41	3,677.94	868.80	2,798.03	2,686.19	1.67	-0.30	0.051
52.38	-16.36	-7.70	0.00	-106.93	0.00	106.93	2,517.80	619.72	1,992.88	1,842.71	1.82	-0.31	0.065
55.00	-15.27	-7.15	0.00	-86.76	0.00	86.76	2,473.70	604.41	1,895.64	1,765.31	1.99	-0.32	0.055
56.00	-12.59	-5.48	0.00	-79.21	0.00	79.21	2,456.62	598.57	1,859.17	1,736.02	2.06	-0.32	0.051
57.00	-11.67	-5.21	0.00	-73.74	0.00	73.74	2,439.40	592.72	1,823.05	1,706.88	2.13	-0.33	0.048
60.00	-10.57	-4.60	0.00	-58.11	0.00	58.11	2,386.97	575.19	1,716.81	1,620.34	2.34	-0.34	0.040
65.00	-9.16	-4.00	0.00	-35.09	0.00	35.09	2,296.90	545.97	1,546.84	1,479.25	2.71	-0.36	0.028
67.00	-5.58	-2.88	0.00	-26.56	0.00	26.56	2,259.94	534.28	1,481.33	1,423.98	2.86	-0.36	0.021
70.00	-4.64	-2.27	0.00	-17.91	0.00	17.91	2,187.59	516.75	1,385.73	1,332.71	3.09	-0.36	0.016
75.00	-3.49	-1.67	0.00	-6.35	0.00	6.35	2,063.89	487.53	1,233.47	1,185.51	3.47	-0.37	0.007
76.70	-3.31	-1.65	0.00	-3.52	0.00	3.52	2,021.83	477.60	1,183.72	1,137.43	3.60	-0.37	0.005
76.70	-3.31	-1.65	0.00	-3.52	0.00	3.52	138.83	41.65	15.24	15.36	3.60	-0.37	0.254
77.00	-0.92	-0.70	0.00	-3.02	0.00	3.02	138.83	41.65	15.24	15.36	3.63	-0.37	0.204
80.00	-0.28	-0.14	0.00	-0.93	0.00	0.93	138.83	41.65	15.24	15.36	3.93	-0.55	0.063
82.00	-0.17	-0.10	0.00	-0.65	0.00	0.65	138.83	41.65	15.24	15.36	4.17	-0.60	0.043
83.20	0.00	-0.09	0.00	-0.53	0.00	0.53	138.83	41.65	15.24	15.36	4.32	-0.62	0.034

Site Name: Byram Park CT, CT Engineering Number:13701270_C3_02

Customer: VERIZON WIRELESS

7/28/2021 2:56:49 PM

Equivalent Lateral Forces Method Analysis

Spectral Response Acceleration for Short Period (S s):	0.28
Spectral Response Acceleration at 1.0 Second Period (S 1):	0.06
Long-Period Transition Period (T L):	6
Importance Factor (I _E):	1.00
Site Coefficient F a:	1.58
Site Coefficient F _v :	2.40
Response Modification Coefficient (R):	1.50
Design Spectral Response Acceleration at Short Period (S ds):	0.29
Design Spectral Response Acceleration at 1.0 Second Period (S d1):	0.10
Seismic Response Coefficient (C s):	0.08
Upper Limit C _s	0.08
Lower Limit C _s	0.03
Period based on Rayleigh Method (sec):	0.78
Redundancy Factor (p):	1.00
Seismic Force Distribution Exponent (k):	1.14
Total Unfactored Dead Load:	38.36 k
Seismic Base Shear (E):	3.14 k

<u>Load Case</u> 1.2D + 1.0Ev + 1.0Eh Seismic

	Height Above Base	Weight	Wz		Horizontal Force	Vertical Force
Segment	(ft)	(lb)	(lb-ft)	C _{vx}	(lb)	(lb)
27	82.60	19	3	0.001	3	24
26	81.00	32	5	0.002	5	40
25	78.50	48	7	0.002	7	60
24	76.85	8	1	0.000	1	11
23	75.85	181	25	0.009	27	228
22	72.50	552	73	0.025	79	695
21	68.50	345	43	0.015	46	434
20	66.00	318	38	0.013	41	400
19	62.50	814	91	0.031	98	1,025
18	58.50	502	52	0.018	56	632
17	56.50	170	17	0.006	18	213
16	55.50	187	18	0.006	20	235
15	53.69	494	46	0.016	50	622
14	51.19	852	76	0.026	82	1,072
13	48.58	1,037	87	0.030	94	1,305
12	46.08	528	42	0.014	45	664
11	42.50	1,251	90	0.031	97	1,574
10	37.50	1,291	81	0.028	87	1,624
9	32.50	1,330	71	0.024	76	1,674
8	29.43	311	15	0.005	16	392
7	26.93	1,942	83	0.029	90	2,444
6	23.84	1,190	44	0.015	48	1,498
5	21.34	831	27	0.009	29	1,046
4	17.50	1,581	41	0.014	45	1,990
3	12.50	1,627	29	0.010	31	2,047

 $@\:2007$ - 2021 by ATC IP LLC. All rights reserved. Site Number: 414240 Code: ANSI/TIA-222-H

Site Name: Byram Park CT, CT Engineering Number:13701270_C3_02

7/28/2021 2:56:49 PM

Customer: VERIZON WIRELESS

2	7.50	1,672	17	0.006	18	2.104
1	2.50	1,717	5	0.002	5	2,161
Bird 428D-83I-01-T	83.20	9	1	0.000	1	11
dbSpectra DS7C09P36U	83.20	140	22	0.007	23	176
Pole Mount	82.00	80	12	0.004	13	101
Pine Branches	80.00	600	89	0.030	96	755
Commscope CBC1923Q-4	77.00	22	3	0.001	3	28
Ericsson Radio 4449	77.00	225	32	0.011	34	283
Ericsson RRUS 4415 B	77.00	138	20	0.007	21	174
Ericsson RRUS 32 B66	77.00	159	23	0.008	24	200
Ericsson Air6449 B41	77.00	312	44	0.015	48	393
Ericsson AIR32 B66Aa	77.00	397	56	0.019	61	499
Flat T-Arms	77.00	750	106	0.036	115	944
RFS APXVAARR24 43-U-	77.00	384	54	0.019	59	483
Pine Branches	75.00	600	83	0.028	89	755
Pine Branches	70.00	600	76	0.026	82	755
CCI DTMABP7819VG12A	67.00	115	14	0.005	15	145
Raycap DC6-48-60-0-8	67.00	16	2	0.001	2	20
Raycap DC6-48-60-18-	67.00	66	8	0.003	9	83
Ericsson RRUS 4426 B	67.00	145	18	0.006	19	183
Ericsson RRUS 4449 B	67.00	213	26	0.009	28	268
Ericsson RRUS 4478 B	67.00	178	22	0.007	23	224
Ericsson RRUS 32 B2	67.00	159	19	0.007	21	200
Ericsson RRUS-32 (77	67.00	231	28	0.010	30	291
Powerwave Allgon P65	67.00	159	19	0.007	21	200
CCI DMP65R-BU4D	67.00	407	49	0.017	53	513
CCI OPA-65R-LCUU-H6	67.00	219	26	0.009	29	276
Site PRO1, RMV12-496	67.00	1,358	164	0.056	177	1,709
Pine Branches	65.00	600	70	0.024	76	755
Pine Branches	60.00	600	64	0.022	69	755
Flat T-Arm	57.00	750	75	0.026	81	944
Commscope CBC78T-DS-	56.00	62	6	0.002	7	78
Samsung B2/B66A RRH-	56.00	253	25	0.009	27	319
Samsung B5/B13 RRH-B	56.00	211	21	0.007	22	265
Raycap RCMDC-6627-PF	56.00	32	3	0.001	3	40
Samsung MT6407-77A	56.00	245	24	0.008	26	308
Commscope JAHH-65A-R	56.00	101	10	0.003	11	128
Commscope JAHH-45A-R	56.00	282	28	0.010	30	355
Amphenol Antel LPA-8	56.00	162	16	0.005	17	204
VZW Unused Reserve (56.00	1,152	113	0.039	123	1,449
Pine Branches	55.00	600	58	0.020	63	755
Pine Branches	50.00	600	52	0.018	56	755
Pine Branches	45.00	600	46	0.016	50	755
Pine Branches	40.00	600	40	0.014	43	755
Pine Branches	35.00	600	35	0.012	37	755
Pine Branches	30.00	600	29	0.010	31	755
Pine Branches	25.00	600	24	0.008	25	755
Pine Branches	20.00	600	18	0.006	20	755
Pine Branches	15.00	600	13	0.005	14	755
		38,363	2,913	1.000	3,144	48,272

Load Case 0.9D - 1.0Ev + 1.0Eh

Seismic (Reduced DL)

	Height Above Base	Weight	W _z		Horizontal Force	Vertical Force
Segment	(ft)	(lb)	(lb-ft)	C vx	(lb)	(lb)
27	82.60	19	3	0.001	3	16
26	81.00	32	5	0.002	5	27
25	78.50	48	7	0.002	7	40
24	76.85	8	1	0.000	1	7
23	75.85	181	25	0.009	27	153
22	72 50	552	73	0.025	79	465

Foreign entire, Number 42704270, C2, C2, C2

Code: ANSI/TIA-222-H

Site Name: Byram Park CT, CT Engineering
Customer: VERIZON WIRELESS

Site Number: 414240

Engineering Number:13701270_C3_02

7/28/2021 2:56:49 PM

21 68.50 345 43 0.015 45 290 20 86.00 318 38 0.013 41 227 21 86.50 318 38 0.013 41 227 21 86.50 318 38 0.013 41 227 21 86.50 318 38 0.013 41 227 21 86.50 318 38 0.013 41 227 21 77 55.50 170 77 0.006 18 143 21 77 55.50 170 77 0.006 18 143 21 77 55.50 187 18 0.006 20 187 21 75 55.50 187 18 0.006 20 187 21 75 55.50 187 18 0.006 20 187 21 75 55.50 187 18 0.006 20 187 21 74 4 5.00 18 18 143 21 75 55.50 187 18 0.006 20 187 21 74 4 5.00 18 18 143 21 75 6.00 18 18 143 21 75 6.00 18 18 143 21 75 6.00 18 18 143 21 75 6.00 18 18 143 21 75 6.00 18 18 143 21 75 6.00 18 18 18 18 18 18 18 18 18 18 18 18 18	Customer: VERIZON WIRELE	SS					
20	21	68 50	345	13	0.015	46	290
19							
18							
16							
16							
15							
14							
13							
12							
11							
10 37,50 1,291 81 0,028 87 1,086 9 22,50 1,130 71 0,024 76 1,120 8 29.43 311 15 0,005 16 262 7 26.93 1,140 44 0,015 48 1,002 6 23.84 1,190 44 0,015 48 1,002 6 23.84 1,190 44 0,015 48 1,002 4 1,100 44 1	11	42.50	1.251			97	1.053
8	10	37.50		81	0.028	87	
8	9	32.50	1,330	71	0.024	76	1,120
7	8	29.43	311	15	0.005	16	262
5 21.34 831 27 0.009 29 700 4 17.50 1.681 41 0.014 45 1,331 3 12.50 1.627 29 0.010 31 1,369 2 7.50 1.677 15 0.002 5 1,445 Bird 428D-83I-01-T 8.20 9 1 0.000 1 7.7 dbSpectra DS7C09P36U 83.20 140 22 0.007 23 1188 Pole Mount 82.00 80 12 0.004 13 67 Pine Branches 80.00 600 89 0.030 96 505 Commscope CBC1923Q-4 77.00 22 3 0.001 3 18 Ericsson Ralus 4449 77.00 225 32 0.011 34 489 Ericsson REUS 32 B66 77.00 158 23 0.011 34 489 Ericsson Alit23 B66Aa 77.00 397	7	26.93	1,942		0.029	90	1,635
4 17.50 1,581 41 0.014 45 1,331 3 3 1,250 1,581 41 0.014 45 1,331 3 1,359 2 7,50 1,672 79 0.006 18 1,405 1,369 1 1 2,50 1,717 5 0.006 5 18 1,405 1 1 2,50 1,717 5 0.006 5 1 14 1,405 1 14 28D-83I-01-T 83.20 9 1 0.000 1 7 7 14 1 0.000 1 1 7 7 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6	23.84	1,190	44	0.015	48	1,002
3	5	21.34	831	27	0.009	29	700
2 7.50 1,672 177 0.006 18 1,445 Birl 42BD-83I-01-T 83.20 9 1 0.000 1 7 7 65 0.0002 5 1,445 Birl 42BD-83I-01-T 83.20 9 1 0.000 1 7 7 65 0.0002 5 1,445 Birl 42BD-83I-01-T 83.20 9 1 0.000 1 7 23 118 Pole Mount 82.00 80 12 0.001 13 67 Pine Branches 80.00 600 89 0.030 96 555 Commscope CBC1932Q-4 77.00 22 3 0.001 3 18 Ericsson RRUS 4415 B 77.00 125 3 0.001 3 18 Ericsson RRUS 4415 B 77.00 138 20 0.007 21 116 Ericsson RRUS 4415 B 77.00 159 23 0.001 3 18 Ericsson RRUS 4415 B 77.00 159 23 0.008 24 134 Ericsson RRUS 32 B66 77.00 159 23 0.008 24 134 Ericsson RRUS 32 B66 77.00 159 23 0.008 24 134 Ericsson RRUS 32 B66 77.00 159 23 0.008 24 134 Ericsson ARS2 B66Aa 77.00 337 56 0.019 61 334 First Arams 77.00 337 56 0.019 61 538 Ericsson RRUS 443-D 77.00 337 56 0.019 61 538 Ericsson RRUS 443-D 77.00 344 54 0.019 59 323 Fine Branches 75.00 600 83 0.026 889 505 Pine Branches 75.00 600 83 0.026 889 505 Pine Branches 75.00 600 76 0.026 82 505 Fine Branches 75.00 600 77 0.026 82 600 92 8 179 Fineson RRUS 4447 B 6 67.00 145 18 0.006 19 122 Fineson RRUS 447 B 6 67.00 145 18 0.006 19 122 Fineson RRUS 448 B 67.00 145 18 0.006 19 122 Fineson RRUS 448 B 67.00 178 19 10 0.007 21 134 Fine Branches 65.00 600 600 64 0.007 22 66 66 600 70 0.002 70 52 11 134 Fine Branches 65.00 600 600 64 0.000 70 0.002 70 52 11 134 Fine Branches 65.00 600 600 64 0.000 70 0.002 70 52 11 134 Fine Branches 65.00 600 600 64 0.000 70 0.003 11 88 Fine Branches 65.00 600 600 65 0.000 70 0.000 66 600 67 0.0000 70 0.000 70 0.000 70 0.0000 70 0.0000 70 0.0000 70 0.0000 70 0.0000 70 0.0000 70 0.0000	4	17.50	1,581	41	0.014	45	1,331
1	3	12.50	1,627	29	0.010	31	1,369
Bird 428D-83I-01-T 83.20 9 1 0.000 1 77 dbSpectra DSYC09P36U 83.20 140 22 0.007 23 118 Pole Mount 82.00 80 12 0.004 13 67 Pine Branches 80.00 600 89 0.030 96 505 Commscope CBC1923Q-4 77.00 22 3 0.001 3 18 Ericsson Ratio 4449 77.00 122 3 0.001 3 18 Ericsson Ratio 4449 77.00 122 3 0.001 3 18 Ericsson Ratio 4449 77.00 138 20 0.007 21 116 Ericsson Ratio 4449 77.00 159 23 0.008 24 134 Ericsson Ratio 4449 77.00 159 23 0.008 24 134 Ericsson Rich 449 177.00 159 23 0.008 24 134 Ericsson Rich 449 177.00 312 44 0.015 48 263 Ericsson Rich 449 81 77.00 312 44 0.015 48 263 Ericsson Rich 449 81 77.00 397 56 0.019 61 334 Fiel T-Arms 77.00 750 106 0.036 115 631 RFS APXVAARR24 43-U- 77.00 384 54 0.019 59 323 Pine Branches 75.00 600 83 0.022 89 505 Pine Branches 75.00 600 76 0.026 82 505 CI DTMABP7819VG12A 67.00 116 2 0.001 12 13 Raycap DC6-48-60-0-8 67.00 16 2 0.001 12 13 Raycap DC6-48-60-0-8 67.00 16 2 0.001 12 13 Raycap DC6-48-60-0-8 67.00 145 18 0.006 19 122 Ericsson RIUS 4426 B 67.00 145 18 0.006 19 122 Ericsson RIUS 4426 B 67.00 145 18 0.006 19 122 Ericsson RIUS 4478 B 67.00 178 22 0.007 23 150 Ericsson RIUS 4478 B 67.00 178 22 0.007 23 150 Ericsson RIUS 4478 B 67.00 178 22 0.007 23 150 Ericsson RIUS 4496 67.00 178 22 0.007 23 150 Ericsson RIUS 4496 67.00 178 22 0.007 23 150 Ericsson RIUS 4496 67.00 178 22 0.007 23 150 Ericsson RIUS 4496 67.00 178 22 0.007 23 150 Ericsson RIUS 4496 67.00 178 22 0.007 23 150 Ericsson RIUS 4496 67.00 159 19 0.007 21 134 Ericsson RIUS 4496 67.00 199 26 0.009 27 21 134 Ericsson RIUS 4496 67.00 199 26 0.009 27 17 134 Ericsson RIUS 4496 67.00 159 19 0.007 27 11 134 Ericsson RIUS 4496 67.00 159 19 0.007 21 134 Ericsson RIUS 4496 67.00 199 26 0.009 27 22 178 Raycap DC6-867-LCUU-H6 67.00 407 49 0.017 53 343 CCI DPA-687-EU-U-H6 67.00 407 49 0.007 21 134 Ericsson RIUS 4496 67.00 13.358 164 0.006 19 0.007 21 134 Ericsson RIUS 4496 67.00 13.358 164 0.006 19 0.007 21 134 Ericsson RIUS 4496 67.00 13.358 164 0.006 19 0.007 21 134 Ericsson RIUS 4496 67.00 13.358 164 0.006 19 0.007 22 178 ERICSTON RIUS 4496	2	7.50	1,672	17	0.006	18	1,407
Bospectra DS/C09P36U 83.20 440 22 0.007 23 118 Pole Mount 82.00 80 12 0.004 13 67 Pine Branches 80.00 600 89 0.030 96 505 Commscope CBC1923Q-4 77.00 22 3 0.001 3 18 Ericsson Radio 4449 77.00 225 32 0.011 34 189 Ericsson RRUS 4415 B 77.00 138 20 0.007 21 116 Ericsson RRUS 32 B66 77.00 159 23 0.008 24 134 Ericsson RRUS 4415 B 77.00 312 44 0.015 48 263 Ericsson RRUS 4416 B 77.00 312 44 0.015 48 263 Ericsson RRUS 4416 B 77.00 397 56 0.019 61 334 Filat 7-Arms 77.00 750 106 0.036 115 631 RFS APXVAARR24_43-U- 77.00 384 54 0.019 59 323 Pine Branches 75.00 600 83 0.028 89 505 Pine Branches 75.00 600 83 0.028 89 505 CCI DTMABP7819VG12A 67.00 115 14 0.005 15 97 Raycap DC6-48-60-0-8 67.00 16 2 0.001 2 13 Raycap DC6-48-60-19- 67.00 66 8 0.003 9 55 Ericsson RRUS 4449 B 67.00 213 26 0.009 28 179 Ericsson RRUS 4428 B 67.00 213 26 0.009 28 179 Ericsson RRUS 4478 B 67.00 231 28 0.010 30 194 Ericsson RRUS 437 F 67.00 231 28 0.010 30 194 Ericsson RRUS 437 F 67.00 231 28 0.010 30 194 Ericsson RRUS 437 F 67.00 231 28 0.010 30 194 Ericsson RRUS 437 F 67.00 231 28 0.010 30 194 Ericsson RRUS 437 F 67.00 231 28 0.010 30 194 Ericsson RRUS 437 F 67.00 231 28 0.010 30 194 Ericsson RRUS 437 F 67.00 231 28 0.010 30 194 Ericsson RRUS 437 F 67.00 231 28 0.010 30 194 Ericsson RRUS 437 F 67.00 231 28 0.010 30 194 Ericsson RRUS 437 F 67.00 231 28 0.010 30 194 Ericsson RRUS 437 F 67.00 231 28 0.010 30 194 Ericsson RRUS 437 F 67.00 231 28 0.010 30 27 Ericsson RRUS 437 F 67.00 24 76 505 Ericsson RRUS 438 F 67.00 47 49 0.007 2	1	2.50	1,717	5	0.002	5	1,445
Pole Mount 82.00 80 12 0.004 13 67 Pine Branches 80.00 600 89 0.030 96 505 Commscope CBC1923Q-4 77.00 22 3 0.001 3 18 Ericsson Radio 4449 77.00 125 32 0.011 34 189 Ericsson RRUS 4415 B 77.00 138 20 0.007 21 116 Ericsson RRUS 32 B66 77.00 159 23 0.008 24 134 Ericsson RRIS 32 B66 77.00 159 23 0.008 24 134 Ericsson RRIS 32 B66 77.00 397 56 0.015 48 263 Ericsson RRIS 32 B66 77.00 397 56 0.019 61 334 FIRST APXWAARR24_3-J- 77.00 397 56 0.019 61 334 FIRST APXWAARR24_3-J- 77.00 384 54 0.019 59 323 FIRST APXWAARR24_3-J- 77.00 384 54 0.019 59 323 FIRE Branches 75.00 600 83 0.028 89 5055 Pine Branches 75.00 600 76 0.026 82 505 Pine Branches 75.00 166 2 0.005 15 97 Raycap DC6-48-60-0-8 67.00 115 14 0.005 15 97 Raycap DC6-48-60-18- 67.00 166 2 0.001 2 13 Raycap DC6-48-60-18- 67.00 145 18 0.006 19 122 Ericsson RRUS 4428 B 67.00 145 18 0.006 19 122 Ericsson RRUS 4428 B 67.00 145 18 0.006 19 122 Ericsson RRUS 4428 B 67.00 178 22 0.007 23 150 Ericsson RRUS 4428 B 67.00 178 22 0.007 23 150 Ericsson RRUS 4428 B 67.00 159 19 0.007 21 134 Powerwave Aligon P65 67.00 159 19 0.007 21 134 Powerwave Aligon P65 67.00 159 19 0.007 21 134 Powerwave Aligon P65 67.00 159 19 0.007 21 134 Powerwave Aligon P65 67.00 159 19 0.007 21 134 Powerwave Aligon P65 67.00 159 19 0.007 21 134 Pine Branches 65.00 600 600 64 0.022 69 184 Pine Branches 65.00 600 600 64 0.022 69 505 Pine Branches 65.00 600 600 64 0.022 69 505 Pine Branches 65.00 600 600 64 0.022 69 505 Pine Branches 65.00 245 24 0.008 26 81 631 COmmscope JAHH-45A-R 56.00 245 24 0.009 123 123 989 Pine Branches 56.00 245 24 0.009 123 123 989 Pine Branches 56.00 600 58 0.020 63 505 Pine Branches 55.00 600 58 0.020 63 505 Pine Branches 55.00 600 58 0.020 63 505 Pine Branches 55.00 600 600 600 660 660 660 660 660 660	Bird 428D-83I-01-T	83.20	9	1	0.000	1	7
Pine Branches				22			118
Commscope GBC1923Q-4 77.00 22 3 0.001 3 18 Ericsson RRUS 4415 B 77.00 138 20 0.007 21 118 Ericsson RRUS 32 B66 77.00 138 20 0.007 21 116 Ericsson AIG449 B41 77.00 139 23 0.008 24 134 Ericsson AIG449 B41 77.00 312 44 0.015 48 283 Ericsson AIR32 B66Aa 77.00 397 56 0.019 61 334 Flat T-Arms 77.00 384 54 0.019 59 323 RFS APXVAARR24_43-U- 77.00 384 54 0.019 59 323 Pine Branches 70.00 600 76 0.026 82 505 Pine Branches 70.00 600 76 0.026 82 505 Pine Branches 70.00 616 2 0.001 2 13 Raycap CCel-48-60-18-	Pole Mount	82.00	80	12	0.004		67
Ericsson Ratio 4449				89			
Ericsson RRUS 4415 B 77.00 138 20 0.007 21 116 Ericsson RRUS 32 B66 77.00 159 23 0.008 24 134 Ericsson Air6449 B41 77.00 312 44 0.015 48 263 Ericsson Air6449 B41 77.00 397 56 0.019 61 334 Frist T-Arms 77.00 750 106 0.036 115 631 RFS APXVAARR24, 43-U- 77.00 384 54 0.019 59 323 Pine Branches 75.00 600 83 0.028 88 5055 Pine Branches 70.00 600 76 0.026 82 505 Pine Branches 70.00 600 76 0.026 82 505 Pine Branches 70.00 115 14 0.005 15 97 Raycap DC6-48-60-0-8 67.00 116 2 0.001 2 13 Raycap DC6-48-60-18- 67.00 66 8 0.003 9 55 Ericsson RRUS 4426 B 67.00 145 18 0.006 19 122 Ericsson RRUS 4426 B 67.00 145 18 0.006 19 122 Ericsson RRUS 4428 B 67.00 159 19 0.007 23 150 Ericsson RRUS 4429 B 67.00 159 19 0.007 21 134 Ericsson RRUS 32 B2 67.00 159 19 0.007 21 134 Ericsson RRUS 32 B2 67.00 159 19 0.007 21 134 Ericsson RRUS 32 B3 67.00 159 19 0.007 21 134 Ericsson RRUS 32 B3 67.00 159 19 0.007 21 134 CCI DMP65R-BUAD 67.00 407 49 0.017 53 343 CCI DMP65R-BUAD 67.00 1358 164 0.056 177 134 CCI DMP65R-BUAD 67.00 1358 164 0.056 177 134 CCI DMP65R-BUAD 67.00 1358 164 0.056 177 1343 Ericsson RRUS 4426 67.00 1358 164 0.056 177 1343 Ericsson RRUS 4456 67.00 1358 164 0.056 177 1343 Ericsson RRUS 4456 67.00 1358 164 0.056 177 1343 Ericsson RRUS 4456 67.00 1358 164 0.056 177 1343 Ericsson RRUS 4456 67.00 1358 164 0.056 177 1343 Ericsson RRUS 4456 67.00 1358 164 0.056 177 1343 Ericsson RRUS 4456 67.00 1358 164 0.056 177 1343 Ericsson RRUS 4456 67.00 1358 164 0.056 177 1343 Ericsson RRUS 4456 67.00 1358 164 0.056 177 1343 Ericsson RRUS 4456 67.00 1358 164 0.056 177 1343 Ericsson RRUS 4456 67.00 1358 164 0.056 177 1343 Ericsson RRUS 4456 67.00 1358 164 0.056 177 1343 Ericsson RRUS 4456 67.00 1358 164 0.056 177 1343 Ericsson RRUS 4456 67.00 1358 164 0.056 177 1343 Ericsson RRUS 4456 67.00 1358 164 0.056 177 1343 Ericsson RRUS 4456 67.00 1358 164 0.056 177 1343 Ericsson RRUS 4456 67.00 1358 164 0.056 177 1343 Ericsson RRUS 4456 67.00 1358 164 0.056 177 1343 Ericsson RRUS 4456 67.00 130 130 130 130 130 130 130 130 130 1	•			3			
Ericsson RRUS 32 B66 77, 00 159 23 0.008 24 134 Ericsson Air6449 B41 77,00 397 56 0.019 61 334 Flat T-Arms 77.00 750 106 0.036 115 631 RFS APXVAARR24_43-U- 77.00 384 54 0.019 59 323 Pine Branches 75.00 600 83 0.028 89 505 Pine Branches 75.00 600 76 0.026 82 505 CCI DTMABP7819VG12A 67.00 115 14 0.005 15 97 Raycap DC6-48-60-0-8 67.00 16 2 0.001 2 13 Raycap DC6-48-60-18- 67.00 165 2 0.001 9 28 179 Ericsson RRUS 4449 B 67.00 145 18 0.006 19 122 Ericsson RRUS 32 B2 67.00 178 22 0.007 23 150 <							
Ericsson Alfa449 B41							
Ericsson ARUS 22 B66Aa							
Flat T-Arms							
RFS APXVAARR24_43-U- 77.00 384 54 0.019 59 323 Pine Branches 75.00 600 83 0.028 89 505 Pine Branches 70.00 600 76 0.026 82 505 CCI DTMABP7819VG12A 67.00 115 14 0.005 15 97 Raycap DC6-48-60-0-8 67.00 16 2 0.001 2 13 Raycap DC6-48-60-18- 67.00 66 8 0.006 19 122 Ericsson RRUS 4442B 67.00 145 18 0.006 19 122 Ericsson RRUS 4443B 67.00 145 18 0.006 19 122 Ericsson RRUS 4443B 67.00 178 22 0.007 23 150 Ericsson RRUS 4443B 67.00 178 22 0.007 23 150 Ericsson RRUS 22 67.00 159 19 0.007 21 134 Ericsson RRUS 32 B2 67.00 159 19 0.007 21 134 Ericsson RRUS 32 B2 67.00 159 19 0.007 21 134 Ericsson RRUS 440B 67.00 231 28 0.010 30 194 Powerwave Aligon P65 67.00 159 19 0.007 21 134 CCI DMP687-BU4D 67.00 407 49 0.017 53 343 CCI DMP687-BU4D 67.00 13,358 164 0.056 177 1,143 Pine Branches 65.00 600 70 0.024 76 505 Pine Branches 65.00 600 70 0.024 76 505 Pine Branches 65.00 600 70 0.024 76 505 Pine Branches 65.00 62 6 0.002 7 52 Samsung BS/B66A RRH- 56.00 253 25 0.009 27 213 Samsung BS/B13 RRH-B 56.00 253 25 0.009 27 213 Samsung BS/B65A RRH- 56.00 253 25 0.009 27 213 Samsung BS/B65A RRH- 56.00 253 25 0.009 27 213 Samsung BS/B65A RRH- 56.00 253 25 0.009 27 213 Samsung BS/B65A RRH- 56.00 253 25 0.009 27 213 Samsung BS/B65A RRH- 56.00 253 25 0.009 27 213 Samsung BS/B65A RRH- 56.00 253 25 0.009 27 213 Samsung BS/B65A RRH- 56.00 253 25 0.009 27 213 Samsung BS/B65A RRH- 56.00 245 24 0.008 26 206 Commscope JAHH-65A-R 56.00 121 21 0.007 22 178 Raycap RCMDC-6627-PF 56.00 32 2 3 0.001 3 27 Samsung BS/B65A RRH- 56.00 245 24 0.008 26 206 Commscope JAHH-65A-R 56.00 162 16 0.005 117 136 VZW Unused Reserve (56.00 1,152 113 0.039 123 969 Pine Branches 55.00 600 58 0.000 600 500 500 500 500 500 500 500 500							
Pine Branches 75.00 600 83 0.028 89 505 Pine Branches 70.00 600 76 0.026 82 505 CCI DTMABP7819VG12A 67.00 115 14 0.005 15 97 Raycap DC6-48-60-0-8 67.00 16 2 0.001 2 13 Raycap DC6-48-60-18- 67.00 66 8 0.003 9 55 Ericsson RRUS 44426 B 67.00 145 18 0.006 19 122 Ericsson RRUS 4449 B 67.00 145 18 0.006 19 122 Ericsson RRUS 32 B2 67.00 159 19 0.007 23 150 Ericsson RRUS 32 B2 67.00 159 19 0.007 21 134 Ericsson RRUS 32 C77 67.00 231 28 0.010 30 194 Powerwave Aligon P65 67.00 159 19 0.007 21 134 CCI DMP65R-BU							
Pine Branches	-						
CCI DTMABP7819VG12A 67.00 115 14 0.005 15 97 Raycap DC6-48-60-0-8 67.00 16 2 0.001 2 13 Raycap DC6-48-60-18- 67.00 66 8 0.003 9 55 Ericsson RRUS 4426 B 67.00 145 18 0.006 19 122 Ericsson RRUS 4449 B 67.00 213 26 0.009 28 179 Ericsson RRUS 44478 B 67.00 178 22 0.007 23 155 Ericsson RRUS 4478 B 67.00 159 19 0.007 21 134 Ericsson RRUS 32 E2 67.00 159 19 0.007 21 134 Ericsson RRUS 32 E2 67.00 159 19 0.007 21 134 CCI DMP65R-BU4D 67.00 231 28 0.010 30 194 Powerwave Aligon P65 67.00 159 19 0.007 21 134 CCI DMP65R-BU4D 67.00 407 49 0.017 53 343 CCI OPA-65R-LCUU-H6 67.00 219 26 0.009 29 184 Site PRO1, RMV12-496 67.00 1,358 164 0.056 177 1,143 Pine Branches 65.00 600 70 0.024 76 505 Flat T-Arm 57.00 750 75 0.026 81 631 Commscope CBC78T-DS-56.00 62 6 0.002 7 52 Samsung B2/B66A RRH- 56.00 253 25 0.009 27 213 Samsung B2/B66A RRH- 56.00 253 25 0.009 27 213 Samsung B2/B66A RRH- 56.00 251 25 0.009 27 213 Samsung B3/B13 RRH-B 56.00 211 21 0.007 22 178 Samsung B5/B13 RRH-B 56.00 251 24 0.008 26 206 Commscope JAHH-45A-R 56.00 282 28 0.010 30 237 Amphenol Antel LPA-8 56.00 162 16 0.005 17 136 VZW Unused Reserve (56.00 1,152 113 0.039 123 969 Pine Branches 55.00 600 52 0.018 56 505 Pine Branches 55.00 600 52 0.018 56 505 Pine Branches 55.00 600 600 52 0.018 56 505 Pine Branches 55.00 600 600 52 0.018 56 505 Pine Branches 45.00 600 46 0.014 43 505							
Raycap DC6-48-60-0-8 67.00 16 2 0.001 2 13 Raycap DC6-48-60-18- 67.00 66 8 0.003 9 55 Ericsson RRUS 4426 B 67.00 145 18 0.006 19 122 Ericsson RRUS 4449 B 67.00 213 26 0.009 28 179 Ericsson RRUS 4478 B 67.00 178 22 0.007 23 150 Ericsson RRUS 4478 B 67.00 178 22 0.007 23 150 Ericsson RRUS 32 B2 67.00 159 19 0.007 21 134 Ericsson RRUS-32 (77 67.00 231 28 0.010 30 194 Powerwave Allgon P65 67.00 159 19 0.007 21 134 CCI DMP65R-BU4D 67.00 407 49 0.017 53 343 CCI OPA-65R-LCUU-H6 67.00 219 26 0.009 29 184 Site PRO1, RMV12-496 67.00 1,358 164 0.056 177 1,143 Fine Branches 65.00 600 70 0.024 76 505 Pine Branches 65.00 600 64 0.022 69 505 Fiat T-Arm 57.00 750 75 0.026 81 631 Commscope CBC78T-DS- 56.00 62 6 0.009 27 213 Samsung B2/B66A RRH- 56.00 253 25 0.009 27 213 Samsung B2/B66A RRH- 56.00 253 25 0.009 27 213 Raycap RCMDC-6627-PF 56.00 32 3 0.001 3 27 Samsung MT6407-77A 56.00 245 24 0.008 26 206 Commscope JAHH-65A-R 56.00 245 24 0.008 26 206 Commscope JAHH-65A-R 56.00 101 10 0.003 11 85 Commscope JAHH-65A-R 56.00 162 16 0.005 17 136 Commscope JAHH-65A-R 56.00 282 28 0.010 30 237 Amphenol Antel LPA-8 56.00 162 16 0.005 17 136 Commscope JAHH-65A-R 56.00 282 28 0.010 30 237 Amphenol Antel LPA-8 56.00 162 16 0.005 17 136 CyZW Unused Reserve (56.00 1,152 113 0.039 123 969 Pine Branches 55.00 600 52 0.018 56 505 Pine Branches 55.00 600 52 0.018 56 505 Pine Branches 40.00 600 40 0.014 43 505							
Raycap DC6-48-60-18- Ericsson RRUS 4426 B 67.00 145 18 0.006 19 122 Ericsson RRUS 4449 B 67.00 213 26 0.009 28 179 Ericsson RRUS 4447 B 67.00 178 22 0.007 23 150 Ericsson RRUS 32 B2 67.00 159 19 0.007 21 134 Ericsson RRUS 32 B2 67.00 159 19 0.007 21 134 Ericsson RRUS 32 B2 67.00 159 19 0.007 21 134 CCI DMP65R-BU4D 67.00 159 19 0.007 21 134 CCI DMP65R-BU4D 67.00 407 49 0.017 53 343 CCI OPA-65R-LCUU-H6 67.00 219 26 0.009 29 184 Site PRO1, RMV12-496 67.00 1,358 164 0.056 177 1,143 Pine Branches 65.00 600 70 0.024 76 505 Filat T-Arm 57.00 750 75 0.026 81 631 Commscope CBC78T-DS- 56.00 62 6 0.002 7 52 Samsung BZ/B66A RRH- 56.00 253 25 0.009 27 213 Samsung BZ/B66A RRH- 56.00 253 25 0.009 27 213 Raycap RCMDC-6627-PF 56.00 32 3 0.001 3 27 Samsung BS/B13 RRH-B 56.00 251 21 0.007 22 178 Raycap RCMDC-6627-PF 56.00 32 3 0.001 3 27 Samsung MT6407-77A 56.00 245 24 0.008 26 206 Commscope JAHH-45A-R 56.00 282 28 0.010 30 237 Amphenol Antel LPA-8 56.00 162 16 0.005 17 136 Commscope JAHH-45A-R 56.00 282 28 0.010 30 237 Amphenol Antel LPA-8 56.00 162 16 0.005 17 136 Commscope JAHH-45A-R 56.00 282 28 0.010 30 237 Amphenol Antel LPA-8 56.00 600 52 0.018 56 505 Pine Branches 55.00 600 52 0.018 56 505 Pine Branches 55.00 600 52 0.018 56 505 Pine Branches 45.00 600 46 0.016 50 505 Pine Branches 45.00 600 40 0.014 43 505							
Ericsson RRUS 4426 B 67.00 145 18 0.006 19 122 Ericsson RRUS 4448 B 67.00 213 26 0.009 28 179 Ericsson RRUS 4448 B 67.00 178 22 0.007 23 150 Ericsson RRUS 32 B2 67.00 159 19 0.007 21 134 Ericsson RRUS 32 B2 67.00 231 28 0.010 30 194 Ericsson RRUS-32 (77 67.00 231 28 0.010 30 194 Ericsson RRUS-32 (77 67.00 231 28 0.010 30 194 CCI DMP65R-BU4D 67.00 407 49 0.017 53 343 CCI OPA-65R-LCUU-H6 67.00 219 26 0.009 29 184 Site PRO1, RMV12-496 67.00 1,358 164 0.056 177 1,143 Pine Branches 65.00 600 70 0.024 76 505 Pine Branches 60.00 600 64 0.022 69 505 Flat T-Arm 57.00 750 75 0.026 81 631 Commscope CBC78T-DS- 56.00 62 6 0.002 7 52 Samsung B2/B66A RRH- 56.00 253 25 0.009 27 213 Samsung B5/B13 RRH-B 56.00 251 25 0.009 27 213 Raycap RCMDC-6627-PF 56.00 32 3 0.001 3 27 Samsung MT6407-77A 56.00 245 24 0.008 26 206 Commscope JAHH-65A-R 56.00 162 16 0.005 11 85 Commscope JAHH-65A-R 56.00 162 16 0.005 17 136 Commscope JAHH-65A-R 56.00 162 163 0.005 17 136 Commscope JAHH-65A-R 56.00 160 160 160 160 160 160 160 160 160 1							
Ericsson RRUS 4449 B 67.00 213 26 0.009 28 179 Ericsson RRUS 4478 B 67.00 178 22 0.007 23 150 Ericsson RRUS 32 B2 67.00 159 19 0.007 21 134 Ericsson RRUS-32 (77 67.00 251 28 0.010 30 194 Powerwave Allgon P65 67.00 159 19 0.007 21 134 CCI DMP65R-BU4D 67.00 407 49 0.017 53 343 CCI OPA-65R-LCUU-H6 67.00 219 26 0.009 29 184 Site PRO1, RMV12-496 67.00 1,358 164 0.056 177 1,143 Pine Branches 65.00 600 70 0.024 76 505 Flat T-Arm 57.00 750 75 0.026 81 631 Commscope CBC78T-DS- 56.00 62 6 0.002 7 52 Samsung B2/B66A RRH- 56.00 253 25 0.009 27 213 Samsung B5/B13 RRH-B 56.00 211 21 0.007 22 178 Raycap RCMDC-6627-PF 56.00 32 3 0.001 3 27 Samsung B5/B13 RRH-B 56.00 245 24 0.008 26 206 Commscope JAHH-45A-R 56.00 282 28 0.010 30 237 Amphenol Antel LPA-8 56.00 162 113 0.003 11 85 Commscope JAHH-45A-R 56.00 282 28 0.010 30 237 Amphenol Antel LPA-8 56.00 1,152 113 0.039 123 969 Pine Branches 50.00 600 500 505 Pine Branches 50.00 600 52 0.018 56 505 Pine Branches 50.00 600 52 0.018 56 505 Pine Branches 50.00 600 52 0.018 56 505 Pine Branches 50.00 600 600 600 600 600 600 6000 6000	• •						
Ericsson RRUS 4478 B 67.00 178 22 0.007 23 150 Ericsson RRUS 32 B2 67.00 159 19 0.007 21 134 Ericsson RRUS-32 (77 67.00 231 28 0.010 30 194 Powerwave Allgon P65 67.00 159 19 0.007 21 134 CCI DMP65R-BU4D 67.00 407 49 0.017 53 343 CCI DPA-65R-LCUU-H6 67.00 219 26 0.009 29 184 Site PRO1, RMV12-496 67.00 1,358 164 0.056 177 1,143 Pine Branches 65.00 600 70 0.024 76 505 Pine Branches 60.00 600 64 0.022 69 505 Flat T-Arm 57.00 75 75 0.026 81 631 Commscope CBC78T-DS- 56.00 62 6 0.002 7 52 Samsung B5/B6A RRH							
Ericsson RRUS 32 B2 67.00 159 19 0.007 21 134 Ericsson RRUS-32 (77 67.00 231 28 0.010 30 194 Powerwave Allgon P65 67.00 159 19 0.007 21 134 CCI DMP65R-BU4D 67.00 407 49 0.017 53 343 CCI OPA-65R-LCUU-H6 67.00 219 26 0.009 29 184 Site PRO1, RMV12-496 67.00 1,358 164 0.056 177 1,143 Pine Branches 65.00 600 70 0.024 76 505 Pine Branches 65.00 600 70 0.024 76 505 Flat T-Arm 57.00 750 75 0.026 81 631 631 Commscope CBC78T-DS- 56.00 62 6 0.002 7 52 Samsung B5/B66A RRH- 56.00 253 25 0.009 27 213 Samsung B5/B13 RRH-B 56.00 251 25 0.009 27 213 Samsung B5/B13 RRH-B 56.00 245 24 0.008 26 26 26 Commscope JAHH-65A-R 56.00 245 24 0.008 26 26 26 Commscope JAHH-65A-R 56.00 282 28 0.010 30 237 Amphenol Antel LPA-8 56.00 162 16 0.005 17 136 Commscope JAHH-65A-R 56.00 162 16 0.005 17 136 Commscope JAHH-65A-R 56.00 282 28 0.010 30 237 Amphenol Antel LPA-8 56.00 1152 113 0.039 123 969 Pine Branches 55.00 600 50 46 0.016 50 505 Pine Branches 50.00 600 46 0.016 50 505 Pine Branches 50.00 600 46 0.016 50 505 Pine Branches 45.00 600 46 0.016 50 505 Pine Branches 45.00 600 46 0.016 50 505 Pine Branches 45.00 600 46 0.014 43 505							
Ericsson RRUS-32 (77 67.00 231 28 0.010 30 194 Powerwave Aligon P65 67.00 159 19 0.007 21 134 CCI DMP65R-BU4D 67.00 407 49 0.017 53 343 CCI DMP65R-BU4D 67.00 219 26 0.009 29 184 Site PRO1, RMV12-496 67.00 219 26 0.009 29 184 Site PRO1, RMV12-496 67.00 600 70 0.024 76 505 Pine Branches 65.00 600 70 0.024 76 505 Pine Branches 60.00 600 64 0.022 69 505 Pine Branches 60.00 600 64 0.022 69 505 Pine Branches 60.00 62 6 0.009 27 52 Samsung B2/B66A RRH- 56.00 253 25 0.009 27 213 Samsung B5/B13 RRH-B 56.00 251 21 21 0.007 22 178 Samsung B5/B13 RRH-B 56.00 211 21 0.007 22 178 Samsung MT6407-77A 56.00 245 24 0.008 26 206 Commscope JAHH-65A-R 56.00 101 101 10 0.003 11 85 Commscope JAHH-65A-R 56.00 162 16 0.005 17 136 VZW Unused Reserve (56.00 1,152 113 0.039 123 969 Pine Branches 50.00 600 600 58 0.020 63 505 Pine Branches 40.00 600 40 0.014 43 505							
Powerwave Allgon P65 67.00 159 19 0.007 21 134 CCI DMP65R-BU4D 67.00 407 49 0.017 53 343 CCI OPA-65R-LCUU-H6 67.00 219 26 0.009 29 184 184 185							
CCI DMP65R-BU4D 67.00 407 49 0.017 53 343 CCI OPA-65R-LCUU-H6 67.00 219 26 0.009 29 184 Site PRO1, RMV12-496 67.00 1,358 164 0.056 177 1,143 Pine Branches 65.00 600 70 0.024 76 505 Pine Branches 60.00 600 64 0.022 69 505 Flat T-Arm 57.00 750 75 0.026 81 631 Commscope CBC78T-DS- 56.00 62 6 0.002 7 52 Samsung B2/B66A RRH- 56.00 253 25 0.009 27 213 Samsung B5/B13 RRH-B 56.00 211 21 0.007 22 178 Raycap RCMDC-6627-PF 56.00 32 3 0.001 3 27 Samsung MT6407-77A 56.00 245 24 0.008 26 26 Commscope JAHH-65A-R 56.00 282 28 0.010 30 237 Amphenol Antel LPA-8 56.00 162 16 0.005 17 136 VZW Unused Reserve (56.00 1,152 113 0.039 123 969 Pine Branches 50.00 600 46 0.016 50 Pine Branches 40.00 600 40 0.014 43 505							
CCI OPA-65R-LCUU-H6 67.00 219 26 0.009 29 184 Site PRO1, RMV12-496 67.00 1,358 164 0.056 177 1,143 Pine Branches 65.00 600 70 0.024 76 505 Pine Branches 60.00 600 64 0.022 69 505 Flat T-Arm 57.00 750 75 0.026 81 631 Commscope CBC78T-DS- 56.00 62 6 0.002 7 52 Samsung B2/B66A RRH- 56.00 253 25 0.009 27 213 Samsung B5/B13 RRH-B 56.00 211 21 0.007 22 178 Raycap RCMDC-6627-PF 56.00 32 3 0.001 3 27 Samsung M76407-77A 56.00 245 24 0.008 26 206 Commscope JAHH-65A-R 56.00 101 10 0.003 11 85 Commscope JAHH-45A	· ·						
Site PRO1, RMV12-496 67.00 1,358 164 0.056 177 1,143 Pine Branches 65.00 600 70 0.024 76 505 Pine Branches 60.00 600 64 0.022 69 505 Flat T-Arm 57.00 750 75 0.026 81 631 Commscope CBC78T-DS- 56.00 62 6 0.002 7 52 Samsung B2/B66A RRH- 56.00 253 25 0.009 27 213 Samsung B5/B13 RRH-B 56.00 211 21 0.007 22 178 Raycap RCMDC-6627-PF 56.00 32 3 0.001 3 27 Samsung MT6407-77A 56.00 245 24 0.008 26 206 Commscope JAHH-65A-R 56.00 101 10 0.003 11 85 Commscope JAHH-45A-R 56.00 282 28 0.010 30 237 Amphenol Antel LP							
Pine Branches 65.00 600 70 0.024 76 505 Pine Branches 60.00 600 64 0.022 69 505 Flat T-Arm 57.00 750 75 0.026 81 631 Commscope CBC78T-DS- 56.00 62 6 0.002 7 52 Samsung B2/B66A RRH- 56.00 253 25 0.009 27 213 Samsung B5/B13 RRH-B 56.00 211 21 0.007 22 178 Raycap RCMDC-6627-PF 56.00 32 3 0.001 3 27 Samsung MT6407-77A 56.00 245 24 0.008 26 206 Commscope JAHH-65A-R 56.00 101 10 0.003 11 85 Commscope JAHH-45A-R 56.00 282 28 0.010 30 237 Amphenol Antel LPA-8 56.00 162 16 0.005 17 136 VZW Unused Reserve (<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Pine Branches 60.00 600 64 0.022 69 505 Flat T-Arm 57.00 750 75 0.026 81 631 Commscope CBC78T-DS- 56.00 62 6 0.002 7 52 Samsung B2/B66A RRH- 56.00 253 25 0.009 27 213 Samsung B5/B13 RRH-B 56.00 211 21 0.007 22 178 Raycap RCMDC-6627-PF 56.00 32 3 0.001 3 27 Samsung MT6407-77A 56.00 245 24 0.008 26 206 Commscope JAHH-65A-R 56.00 101 10 0.003 11 85 Commscope JAHH-45A-R 56.00 282 28 0.010 30 237 Amphenol Antel LPA-8 56.00 162 16 0.005 17 136 VZW Unused Reserve (56.00 1,152 113 0.039 123 969 Pine Branche	·						
Flat T-Arm 57.00 750 75 0.026 81 631 Commscope CBC78T-DS- 56.00 62 6 0.002 7 52 Samsung B2/B66A RRH- 56.00 253 25 0.009 27 213 Samsung B5/B13 RRH-B 56.00 211 21 0.007 22 178 Raycap RCMDC-6627-PF 56.00 32 3 0.001 3 27 Samsung MT6407-77A 56.00 245 24 0.008 26 206 Commscope JAHH-65A-R 56.00 101 10 0.003 11 85 Commscope JAHH-45A-R 56.00 282 28 0.010 30 237 Amphenol Antel LPA-8 56.00 162 16 0.005 17 136 VZW Unused Reserve (56.00 1,152 113 0.039 123 969 Pine Branches 50.00 600 58 0.020 63 505 Pine Branche							
Commscope CBC78T-DS- 56.00 62 6 0.002 7 52 Samsung B2/B66A RRH- 56.00 253 25 0.009 27 213 Samsung B5/B13 RRH-B 56.00 211 21 0.007 22 178 Raycap RCMDC-6627-PF 56.00 32 3 0.001 3 27 Samsung MT6407-77A 56.00 245 24 0.008 26 206 Commscope JAHH-65A-R 56.00 101 10 0.003 11 85 Commscope JAHH-45A-R 56.00 282 28 0.010 30 237 Amphenol Antel LPA-8 56.00 162 16 0.005 17 136 VZW Unused Reserve (56.00 1,152 113 0.039 123 969 Pine Branches 55.00 600 58 0.020 63 505 Pine Branches 50.00 600 46 0.016 50 505 Pine Bran							
Samsung B2/B66A RRH- 56.00 253 25 0.009 27 213 Samsung B5/B13 RRH-B 56.00 211 21 0.007 22 178 Raycap RCMDC-6627-PF 56.00 32 3 0.001 3 27 Samsung MT6407-77A 56.00 245 24 0.008 26 206 Commscope JAHH-65A-R 56.00 101 10 0.003 11 85 Commscope JAHH-45A-R 56.00 282 28 0.010 30 237 Amphenol Antel LPA-8 56.00 162 16 0.005 17 136 VZW Unused Reserve (56.00 1,152 113 0.039 123 969 Pine Branches 55.00 600 58 0.020 63 505 Pine Branches 50.00 600 52 0.018 56 505 Pine Branches 45.00 600 46 0.016 50 505 Pine Branche	Commscope CBC78T-DS-	56.00	62		0.002	7	52
Samsung B5/B13 RRH-B 56.00 211 21 0.007 22 178 Raycap RCMDC-6627-PF 56.00 32 3 0.001 3 27 Samsung MT6407-77A 56.00 245 24 0.008 26 206 Commscope JAHH-65A-R 56.00 101 10 0.003 11 85 Commscope JAHH-45A-R 56.00 282 28 0.010 30 237 Amphenol Antel LPA-8 56.00 162 16 0.005 17 136 VZW Unused Reserve (56.00 1,152 113 0.039 123 969 Pine Branches 55.00 600 58 0.020 63 505 Pine Branches 50.00 600 52 0.018 56 505 Pine Branches 45.00 600 46 0.016 50 505 Pine Branches 40.00 600 40 0.014 43 505	Samsung B2/B66A RRH-	56.00	253		0.009	27	213
Samsung MT6407-77A 56.00 245 24 0.008 26 206 Commscope JAHH-65A-R 56.00 101 10 0.003 11 85 Commscope JAHH-45A-R 56.00 282 28 0.010 30 237 Amphenol Antel LPA-8 56.00 162 16 0.005 17 136 VZW Unused Reserve (56.00 1,152 113 0.039 123 969 Pine Branches 55.00 600 58 0.020 63 505 Pine Branches 50.00 600 52 0.018 56 505 Pine Branches 45.00 600 46 0.016 50 505 Pine Branches 40.00 600 40 0.014 43 505		56.00	211	21	0.007	22	178
Samsung MT6407-77A 56.00 245 24 0.008 26 206 Commscope JAHH-65A-R 56.00 101 10 0.003 11 85 Commscope JAHH-45A-R 56.00 282 28 0.010 30 237 Amphenol Antel LPA-8 56.00 162 16 0.005 17 136 VZW Unused Reserve (56.00 1,152 113 0.039 123 969 Pine Branches 55.00 600 58 0.020 63 505 Pine Branches 50.00 600 52 0.018 56 505 Pine Branches 45.00 600 46 0.016 50 505 Pine Branches 40.00 600 40 0.014 43 505	Raycap RCMDC-6627-PF	56.00	32		0.001	3	27
Commscope JAHH-65A-R 56.00 101 10 0.003 11 85 Commscope JAHH-45A-R 56.00 282 28 0.010 30 237 Amphenol Antel LPA-8 56.00 162 16 0.005 17 136 VZW Unused Reserve (56.00 1,152 113 0.039 123 969 Pine Branches 55.00 600 58 0.020 63 505 Pine Branches 50.00 600 52 0.018 56 505 Pine Branches 45.00 600 46 0.016 50 505 Pine Branches 40.00 600 40 0.014 43 505	Samsung MT6407-77A	56.00	245		0.008	26	206
Commscope JAHH-45A-R 56.00 282 28 0.010 30 237 Amphenol Antel LPA-8 56.00 162 16 0.005 17 136 VZW Unused Reserve (56.00 1,152 113 0.039 123 969 Pine Branches 55.00 600 58 0.020 63 505 Pine Branches 50.00 600 52 0.018 56 505 Pine Branches 45.00 600 46 0.016 50 505 Pine Branches 40.00 600 40 0.014 43 505			101				
VZW Unused Reserve (56.00 1,152 113 0.039 123 969 Pine Branches 55.00 600 58 0.020 63 505 Pine Branches 50.00 600 52 0.018 56 505 Pine Branches 45.00 600 46 0.016 50 505 Pine Branches 40.00 600 40 0.014 43 505	•				0.010		
Pine Branches 55.00 600 58 0.020 63 505 Pine Branches 50.00 600 52 0.018 56 505 Pine Branches 45.00 600 46 0.016 50 505 Pine Branches 40.00 600 40 0.014 43 505	Amphenol Antel LPA-8	56.00	162	16	0.005	17	136
Pine Branches 55.00 600 58 0.020 63 505 Pine Branches 50.00 600 52 0.018 56 505 Pine Branches 45.00 600 46 0.016 50 505 Pine Branches 40.00 600 40 0.014 43 505	VZW Unused Reserve (56.00	1,152	113	0.039		969
Pine Branches 45.00 600 46 0.016 50 505 Pine Branches 40.00 600 40 0.014 43 505	Pine Branches	55.00	600	58	0.020	63	505
Pine Branches 40.00 600 40 0.014 43 505				52			
	Pine Branches	45.00	600	46			505
Pine Branches 35.00 600 35 0.012 37 505							
	Pine Branches	35.00	600	35	0.012	37	505

Site Number: 414240 Site Name: Byram Park CT, CT Customer: VERIZON WIRELESS	ame: Byram Park CT, CT Engine				© 2007 - 2021 by ATC IP LLC 7/28 /	2. All rights reserved.
Pine Branches Pine Branches Pine Branches Pine Branches Pine Branches	30.00 25.00 20.00 15.00	600 600 600 600	29 24 18 13	0.010 0.008 0.006 0.005	25 20	505 505 505 505
		38,363	2,913	1.000	3,144	32,290

© 2007 - 2021 by ATC IP LLC. All rights reserved.

Site Name: Byram Park CT, CT Engineering Number:13701270_C3_02 7/28/2021 2:56:49 PM

Code: ANSI/TIA-222-H

Customer: VERIZON WIRELESS

<u>Load Case</u> <u>1.2D + 1.0Ev + 1.0Eh</u>

Seismic

Calculated Forces

Site Number: 414240

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kins)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kins)	phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
			` . ,			• • •	` . ,	,					
0.00	-46.11	-3.14	0.00	-177.57	0.00	177.57	5,994.05 1				0.00	0.00	0.036
5.00		-3.13	0.00	-161.85	0.00	161.85	5,848.22 1	-			0.00	-0.01	0.035
10.00		-3.11	0.00	-146.20	0.00	146.20	5,676.12 1	,	•	,	0.02	-0.02	0.033
		-3.05	0.00	-130.67	0.00	130.67	5,478.21 1	,294.07	5,431.37	5,222.30	0.04	-0.03	0.032
20.00	-37.41	-3.01	0.00	-115.42	0.00	115.42	5,280.30 1	,247.31	5,046.08	4,849.84	0.07	-0.04	0.031
	-35.92	-2.96	0.00	-107.34	0.00	107.34	5,173.92 1	,222.19	4,844.84	4,655.34	0.10	-0.04	0.030
25.00	-32.72	-2.85	0.00	-100.49	0.00	100.49	5,082.39 1	,200.56	4,674.96	4,491.17	0.12	-0.04	0.029
28.85	-32.32	-2.83	0.00	-89.53	0.00	89.53	4,410.41 1	,041.83	4,023.22	3,870.44	0.15	-0.05	0.030
30.00	-29.90	-2.72	0.00	-86.28	0.00	86.28	4,370.63 1	,032.43	3,950.99	3,800.59	0.17	-0.05	0.030
35.00	-27.52	-2.60	0.00	-72.66	0.00	72.66	4,197.46	991.53	3,644.15	3,503.90	0.23	-0.06	0.027
40.00	-25.19	-2.46	0.00	-59.65	0.00	59.65	4,024.29	950.62	3,349.71	3,219.28	0.29	-0.07	0.025
45.00	-23.77	-2.37	0.00	-47.34	0.00	47.34	3,851.11	909.71	3,067.67	2,946.70	0.37	-0.08	0.022
47.16	-22.46	-2.27	0.00	-42.23	0.00	42.23	3,776.34	892.05	2,949.72	2,832.74	0.41	-0.08	0.021
50.00	-20.64	-2.13	0.00	-35.77	0.00	35.77	3,677.94	868.80	2,798.03	2,686.19	0.45	-0.08	0.019
52.38	-20.01	-2.08	0.00	-30.69	0.00	30.69	2,517.80	619.72	1,992.88	1,842.71	0.50	-0.09	0.025
55.00	-19.02	-2.00	0.00	-25.23	0.00	25.23	2,473.70	604.41	1,895.64	1,765.31	0.54	-0.09	0.022
56.00	-15.67	-1.71	0.00	-23.23	0.00	23.23	2,456.62	598.57	1,859.17	1,736.02	0.56	-0.09	0.020
57.00	-14.09	-1.57	0.00	-21.52	0.00	21.52	2,439.40	592.72	1,823.05	1,706.88	0.58	-0.09	0.018
60.00	-12.31	-1.40	0.00	-16.80	0.00	16.80	2,386.97	575.19	1,716.81	1,620.34	0.64	-0.09	0.016
65.00	-11.16	-1.29	0.00	-9.79	0.00	9.79	2,296.90	545.97	1,546.84	1,479.25	0.74	-0.10	0.011
67.00	-6.61	-0.80	0.00	-7.22	0.00	7.22	2,259.94	534.28	1,481.33	1,423.98	0.78	-0.10	0.008
70.00	-5.16	-0.64	0.00	-4.80	0.00	4.80	2,187.59	516.75	1,385.73	1,332.71	0.85	-0.10	0.006
75.00	-4.18	-0.52	0.00	-1.59	0.00	1.59	2,063.89	487.53	1,233.47	1,185.51	0.95	-0.10	0.003
76.70	-4.17	-0.52	0.00	-0.70	0.00	0.70	2,021.83	477.60	1,183.72	1.137.43	0.99	-0.10	0.003
76.70	-4.17	-0.52	0.00	-0.70	0.00	0.70	138.83	41.65	15.24	15.36	0.99	-0.10	0.076
77.00	-1.11	-0.14	0.00	-0.55		0.55	138.83	41.65	15.24	15.36	1.00	-0.10	0.044
80.00	-0.31	-0.04	0.00	-0.11	0.00	0.11	138.83	41.65	15.24	15.36	1.07	-0.13	0.010
82.00	-0.19	-0.03	0.00	-0.03		0.03	138.83	41.65	15.24	15.36	1.13	-0.14	0.003
83.20	0.00	-0.02	0.00	0.00		0.00	138.83	41.65	15.24	15.36	1.16	-0.14	0.000
55.25	0.00	0.02	0.00	0.00	0.00	0.00	.00.00	- 1.JU				V. 1-T	000

7/28/2021 2:56:49 PM

Site Number: 414240 Code: ANSI/TIA-222-H © 2007 - 2021 by ATC IP LLC. All rights reserved.

Site Name: Byram Park CT, CT Engineering Number:13701270_C3_02

Customer: VERIZON WIRELESS

<u>Load Case</u> <u>0.9D - 1.0Ev + 1.0Eh</u>

Seismic (Reduced DL)

Calculated Forces

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
0.00	-30.84	-3.14	0.00	-177.01	0.00	177.01	5,994.05 1	,434.32	6,672.27	6,339.93	0.00	0.00	0.033
5.00	-29.44	-3.13	0.00	-161.30	0.00	161.30	5,848.22 1	,387.57	6,244.46	5,982.13	0.00	-0.01	0.032
10.00	-28.07	-3.10	0.00	-145.67	0.00	145.67	5,676.12 1	,340.82	5,830.83	5,608.53	0.02	-0.02	0.031
15.00	-26.23	-3.04	0.00	-130.17	0.00	130.17	5,478.21 1	,294.07	5,431.37	5,222.30	0.04	-0.03	0.030
20.00	-25.03	-3.00	0.00	-114.95	0.00	114.95	5,280.30 1	,247.31	5,046.08	4,849.84	0.07	-0.04	0.028
22.69	-24.02	-2.95	0.00	-106.89	0.00	106.89	5,173.92 1	,222.19	4,844.84	4,655.34	0.10	-0.04	0.028
25.00	-21.88	-2.84	0.00	-100.07	0.00	100.07	5,082.39 1	,200.56	4,674.96	4,491.17	0.12	-0.04	0.027
28.85	-21.62	-2.82	0.00	-89.14	0.00	89.14	4,410.41 1	,041.83	4,023.22	3,870.44	0.15	-0.05	0.028
30.00	-20.00	-2.71	0.00	-85.90	0.00	85.90	4,370.63 1	,032.43	3,950.99	3,800.59	0.17	-0.05	0.027
35.00	-18.41	-2.59	0.00	-72.33	0.00	72.33	4,197.46	991.53	3,644.15	3,503.90	0.23	-0.06	0.025
40.00	-16.85	-2.45	0.00	-59.37	0.00	59.37	4,024.29	950.62	3,349.71	3,219.28	0.29	-0.07	0.023
45.00	-15.90	-2.36	0.00	-47.11	0.00	47.11	3,851.11	909.71	3,067.67	2,946.70	0.37	-0.08	0.020
47.16	-15.02	-2.26	0.00	-42.02	0.00	42.02	3,776.34	892.05	2,949.72	2,832.74	0.40	-0.08	0.019
50.00	-13.80	-2.12	0.00	-35.60	0.00	35.60	3,677.94	868.80	2,798.03	2,686.19	0.45	-0.08	0.017
52.38	-13.39	-2.07	0.00	-30.54	0.00	30.54	2,517.80	619.72	1,992.88	1,842.71	0.49	-0.09	0.022
55.00	-12.72	-1.99	0.00	-25.11	0.00	25.11	2,473.70	604.41	1,895.64	1,765.31	0.54	-0.09	0.019
56.00	-10.48	-1.70	0.00	-23.12	0.00	23.12	2,456.62	598.57	1,859.17	1,736.02	0.56	-0.09	0.018
57.00	-9.42	-1.56	0.00	-21.41	0.00	21.41	2,439.40	592.72	1,823.05	1,706.88	0.58	-0.09	0.016
60.00	-8.23	-1.40	0.00	-16.72	0.00	16.72	2,386.97	575.19	1,716.81	1,620.34	0.64	-0.09	0.014
65.00	-7.46	-1.28	0.00	-9.74	0.00	9.74	2,296.90	545.97	1,546.84	1,479.25	0.74	-0.10	0.010
67.00	-4.42	-0.80	0.00	-7.18	0.00	7.18	2,259.94	534.28	1,481.33	1,423.98	0.78	-0.10	0.007
70.00	-3.45	-0.64	0.00	-4.78	0.00	4.78	2,187.59	516.75	1,385.73	1,332.71	0.84	-0.10	0.005
75.00	-2.80	-0.52	0.00	-1.59	0.00	1.59	2,063.89	487.53	1,233.47	1,185.51	0.95	-0.10	0.003
76.70	-2.79	-0.52	0.00	-0.70	0.00	0.70	2,021.83	477.60	1,183.72	1,137.43	0.99	-0.10	0.002
76.70	-2.79	-0.52	0.00	-0.70	0.00	0.70	138.83	41.65	15.24	15.36	0.99	-0.10	0.066
77.00	-0.74	-0.14	0.00	-0.54	0.00	0.54	138.83	41.65	15.24	15.36	0.99	-0.10	0.041
80.00	-0.21	-0.04	0.00	-0.11	0.00	0.11	138.83	41.65	15.24	15.36	1.07	-0.13	0.009
82.00	-0.13	-0.03	0.00	-0.03	0.00	0.03	138.83	41.65	15.24	15.36	1.12	-0.14	0.003
83.20	0.00	-0.02	0.00	0.00	0.00	0.00	138.83	41.65	15.24	15.36	1.16	-0.14	0.000

Site Name: Byram Park CT, CT Engineering Number:13701270_C3_02

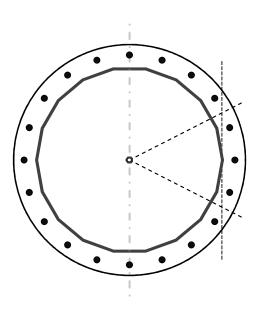
7/28/2021 2:56:49 PM

Customer: VERIZON WIRELESS

Analysis Summary

				Max	Usage			
Load Case	Shear FX (kips)	Shear FZ (kips)	Axial FY (kips)	Moment MX (ft-kips)	Moment MY (ft-kips)	Moment MZ (ft-kips)		nteraction Ratio
1.2D + 1.0W	49.86	0.00	45.98	0.00	0.00	2646.41	76.70	0.96
0.9D + 1.0W	49.84	0.00	34.47	0.00	0.00	2640.27	76.70	0.95
1.2D + 1.0Di + 1.0Wi	12.70	0.00	56.25	0.00	0.00	667.14	76.70	0.29
1.2D + 1.0Ev + 1.0Eh	3.14	0.00	46.11	0.00	0.00	177.57	76.70	0.08
0.9D - 1.0Ev + 1.0Eh	3.14	0.00	30.84	0.00	0.00	177.01	76.70	0.07
1.0D + 1.0W	12.57	0.00	38.36	0.00	0.00	666.45	76.70	0.25

Base Plate & Anchor Rod Analysis


Pole Dimensions								
Number of Sides	18	-						
Diameter	52	in						
Thickness	1/2	in						
Orientation Offset		•						

Base Reactions								
Moment, Mu	2,646.4	k-ft						
Axial, Pu	46.0	k						
Shear, Vu	49.9	k						
Neutral Axis	270	0						

Report Capacities									
Component	Capacity	Result							
Base Plate	23%	Pass							
Anchor Rods	46%	Pass							
Dwyidag	-	-							

Base Plate				
Shape	Round	-		
Diameter, ø	66	in		
Thickness	2 3/4	in		
Grade	A572-50			
Yield Strength, Fy	50 ksi			
Tensile Strength, Fu	65 ksi			
Clip	N/A	in		
Orientation Offset	o			
Anchor Rod Detail	d	η=0.5		
Clear Distance	4 1/2	in		
Applied Moment, Mu	596.1	k		
Bending Stress, фМп	2601.6	k		

Original Anchor Rods				
Arrangement	Radial	-		
Quantity	20	-		
Diameter, ø	2 1/4	in		
Bolt Circle	60	in		
Grade	A615-75			
Yield Strength, Fy	75 ksi			
Tensile Strength, Fu	100	ksi		
Spacing	9.4 in			
Orientation Offset °				
Applied Force, Pu	112.4	k		
Anchor Rods, φPn	243.6	k		

Calculations for Monopole Base Plate & Anchor Rod Analysis

Reaction Distribution

Reaction	Shear Vu	Moment Mu	Factor
-	k	k-ft	-
Base Forces	49.9	2646.4	1.00
Anchor Rod Forces	49.9	2646.4	1.00
Additional Bolt (Grp1) Forces	0.0	0.0	0.00
Additional Bolt (Grp2) Forces	0.0	0.0	0.00
Dywidag Forces	0.0	0.0	0.00
Stiffener Forces	0.0	0.0	0.00

Geometric Properties

Section	Gross Area	Net Area	Individual Inertia	Threads per Inch	Moment of Inertia
-	in ²	in ²	in ⁴	#	in ⁴
Pole	80.4859	4.4714	0.3744		26690.34
Bolt	3.9761	3.2477	0.8393	4.5	26977.81
Bolt1	0.0000	0.0000	0.0000	0	0.00
Bolt2	0.0000	0.0000	0.0000	0	0.00
Dywidag	0.0000	0.0000	0.0000		0.00
Stiffener	0.0000	0.0000	0.0000		0.00

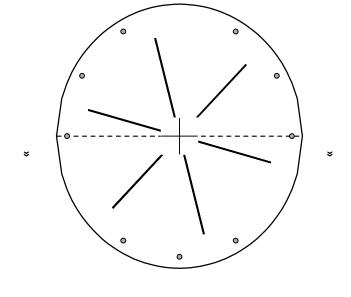
Base Plate		
Shape	Round	-
Diameter, D	66	in
Thickness, t	2.75	in
Yield Strength, Fy	50	ksi
Tensile Strength, Fu	65	ksi
Base Plate Chord	40.645	in
Detail Type	d	-
Detail Factor	0.50	-
Clear Distance	4.5	-

Anchor Rods		
Anchor Rod Quantity, N	20	-
Rod Diameter, d	2.25	in
Bolt Circle, BC	60	in
Yield Strength, Fy	75	ksi
Tensile Strength, Fu	100	ksi
Applied Axial, Pu	112.4	k
Applied Shear, Vu	1.2	k
Compressive Capacity, φPn	243.6	k
Tensile Capacity, φRnt	0.462	ОК
Interaction Capacity	0.232	ОК

External Base Plate			
Chord Length AA	34.485	in	
Additional AA	5.500	in	
Section Modulus, Z	75.597	in ³	
Applied Moment, Mu	596.1	k-ft	
Bending Capacity, φMn	3401.9	k-ft	
Capacity, Mu/φMn	0.175	ОК	
Chord Length AB	33.238	in	
Additional AB	5.500	in	
Section Modulus, Z	73.239	in ³	
Applied Moment, Mu	464.8	k-ft	
Bending Capacity, φMn	3295.7	k-ft	
Capacity, Mu/фМп	0.141	OK	
Bend Line Length	30.579	in	
Additional Bend Line	0.000	in	
Section Modulus, Z	57.814	in ³	
Applied Moment, Mu	596.1	k-ft	
Bending Capacity, φMn	2601.6	k-ft	
Capacity, Mu/фМn	0.229	ОК	

Internal Base Plate			
	0.000	in	
Arc Length	0.000		
Section Modulus, Z	0.000	in ³	
Moment Arm	0.000	in	
Applied Moment, Mu	0.0	k-ft	
Bending Capacity, фMn	0.0	k-ft	
Capacity, Mu/φMn			

Flange Plate Analysis


	Plate Type	Flange	@ 77.00 ft
	Pole Diameter	4.5	in
	Pole Thickness	0.337	in
Plate	Plate Diameter	35	in
ge P	Plate Thickness	1.5	in
Flange	Plate Fy	50	ksi
	Weld Length	0.3125	in
	f _s Resistance	936.85	k-in
	Applied	25.70	k-in

Code Rev.	Н
Moment	13.9 k-ft
Axial	3.8 k

Date	7/28/2021
Engineer	SDK
Site #	414240
Carrier	VERIZON WIRELESS

	#	6	Show
Thickne	ss	0.75	in
을 Length		12	in
Length Height Chamfe		12	in
Chamfe	r	1.25	in
Offset A	ingle	0	0
Fy		50	ksi

#	12	
Bolt Circle	32	in
(R)adial / (S)quare	R	
Bolt Gap		
Diameter	1	in
Hole Diameter	1.125	in
Type	A325	
Fy	92	ksi
Fu	120	ksi
f _s Resistance	54.52	k
Applied	2.00	k

0

Plate Stress Ratio:

3% Pass

Bolt Stress Ratio:

4% Pass

0

Maser Consulting Connecticut 2000 Midlantic Drive, Suite 100 Mount Laurel, NJ 08054 856.797.0412 Greg.Dulnik@colliersengineering.com

Post-Mod Antenna Mount Analysis Report and PMI Requirements

Mount Fix

SMART Tool Project #: 10084892
Maser Consulting Connecticut Project #: 20777259A

July 7, 2021

<u>Site Information</u> Site ID: 468044-VZW / Byram Park CT

Site Name: Byram Park CT
Carrier Name: Verizon Wireless
Address: 36 Ritch Ave W

Greenwich, Connecticut 06830

Fairfield County

Latitude: 41.005064° Longitude: -73.648312°

<u>Structure Information</u>

Tower Type: 79-Ft Monopole

Mount Type: 10.00-Ft T-Frame

FUZE ID # 16231909

Analysis Results

T-Frame: **79.9% Pass**

***Contractor PMI Requirements:

Included at the end of this MA report
Available & Submitted via portal at https://pmi.vzwsmart.com
Contractor - Please Review Specific Site PMI Requirements Upon Award
Requirements also Noted on Mount Modification Drawings
Requirements may also be Noted on A & E drawings

Report Prepared By: Frank Centone

Executive Summary:

The objective of this report is to summarize the analysis results of the antenna support mount including the proposed modifications at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

Sources of Information:

Document Type	Remarks
Radio Frequency Data Sheet (RFDS)	Verizon RFDS, Site ID: 688717, dated November 10, 2020
Mount Mapping Report	Tower Engineering Professionals, Site ID: 468044-VZW, dated October 21, 2020
Previous Mount Analysis Report	Maser Consulting Connecticut Project #: 20777259A, dated July 2, 2021
Mount Modification Drawings	Maser Consulting Connecticut Project #: 20777259A, dated July 7, 2021

Analysis Criteria:

Codes and Standards:	ANSI/TIA-222-H

Wind Parameters:	Basic Wind Speed (Ultimate 3-sec. Gust), Vurz:	116 mph

Ice Wind Speed (3-sec. Gust): 50 mph Design Ice Thickness: 1.00 in Ш Risk Category: **Exposure Category:** D Topographic Category: 1 Topographic Feature Considered: N/A Topographic Method: N/A Ground Elevation Factor, Ke: 0.998

Seismic Parameters: S_S: 0.277

S₁: 0.060

Maintenance Parameters: Wind Speed (3-sec. Gust): 30 mph

Maintenance Live Load, Lv: 250 lbs. Maintenance Live Load, Lm: 500 lbs.

Analysis Software: RISA-3D (V17)

Final Loading Configuration:

The following equipment has been considered for the analysis of the mounts:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status	
		6	Antel	LPA-80063/6CF	Retained	
		4	Commscope	JAHH-45A-R3B		
			2	Commscope	JAHH-65A-R3B	
F6 00	F7.00	3	Samsung	MT6407-77A		
56.00	57.00	3	Commscope	JAHH-45A-R3B JAHH-65A-R3B		
		3	Samsung	B2/B66A RRH-BR049		
		3	Samsung	B5/B13 RRH-BR04C		
		1	Raycap	RVZDC-6627-PF-48		

The recent mount mapping reported existing OVP units. It is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required unless replacing an existing OVP.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

Standard Conditions:

- All engineering services are performed on the basis that the information provided to Maser Consulting Connecticut and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation. Any deviation from the loading locations specified in this report shall be communicated to Maser Consulting Connecticut to verify deviation will not adversely impact the analysis.
- 2. Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

- 3. For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped by Maser Consulting Connecticut, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- 4. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.

- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.
- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Maser Consulting Connecticut is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.
- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

Channel, Solid Round, Angle, Plate
 HSS (Rectangular)
 Pipe
 Threaded Rod
 Bolts
 ASTM A36 (Gr. 36)
 ASTM 500 (Gr. B-46)
 ASTM A53 (Gr. B-35)
 F1554 (Gr. 36)
 ASTM A325

8. Any mount modifications listed under Sources of Information are assumed to have been installed per the design specifications.

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Maser Consulting Connecticut.

Analysis Results:

Component	Utilization %	Pass/Fail			
Mod Standoff	27.9%	Pass			
Mod Face	20.3%	Pass			
Antenna Pipe	71.2%	Pass			
Face Horizontal	20.8%	Pass			
Standoff	33.6%	Pass			
Standoff Vertical	0.0%	Pass			
Existing Connection	79.9%	Pass			
MOD Connection	26.4%	Pass			

Structure Rating – (Controlling Utilization of all Components)	79.9%
--	-------

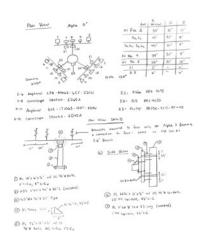
Recommendation:

The existing mounts will be **SUFFICIENT** for the final loading after the proposed modifications are successfully completed.

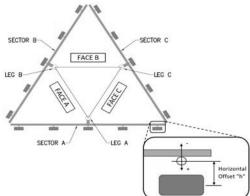
ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other, if required. Separate review fees will apply.

Attachments:

- 1. Mount Photos
- 2. Mount Mapping Report (for reference only)
- 3. Analysis Calculations
- 4. Contractor Required PMI Report Deliverables
- 5. Antenna Placement Diagrams
- 6. TIA Adoption and Wind Speed Usage Letter



V3.0 Updated on 8-31-2020


FCC# **Antenna Mount Mapping Form (PATENT PENDING)** N/A Tower Owner: American Tower Mapping Date: 10/21/2020 Site Name: Byram Park CT Tower Type: Monopole Site Number or ID: 468044-VZW Tower Height (Ft.): Mapping Contractor: TEP Mount Elevation (Ft.): 57

This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication, modification or disclosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA and other safety requirements that may apply. TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements.

		Mount Pip	e Configurat	ion and G	eometries [Unit = Inches]		
Sector / Position	Mount Pipe Size & Length	Vertical Offset Dimension "u"	Offset Offset "C1, Dimension Offset "C1, Position Offset "C1, Offs		Vertical Offset Dimension "u"	Horizontal Offset "C1, C2, C3, etc."	
A1	.4"Øx0.15625"x8'-6" 51.00 28.50 C2 .4"Øx0.15625"x8'-6" 51.00 60.00 C3 .4"Øx0.15625"x8'-6" 51.00 91.50 C4 .4"Øx0.15625"x8'-6" 51.00 116.00 C5 .66	2.4"Øx0.15625"x8'-6"	51.00	4.00			
A2	2.4"Øx0.15625"x8'-6"	51.00	28.50	C2	2.4"Øx0.15625"x8'-6"	51.00	28.50
A3	2.4"Øx0.15625"x8'-6"	51.00	60.00	C3	2.4"Øx0.15625"x8'-6"	51.00	60.00
A4	2.4"Øx0.15625"x8'-6"	51.00	91.50	C4	2.4"Øx0.15625"x8'-6"	51.00	91.50
A5	2.4"Øx0.15625"x8'-6"	51.00	116.00	C5	2.4"Øx0.15625"x8'-6"	51.00	116.00
A6				C6			
B1	2.4"Øx0.15625"x8'-6"	51.00	4.00	D1			
B2	2.4"Øx0.15625"x8'-6"	51.00	28.50	D2			
В3	2.4"Øx0.15625"x8'-6"	51.00	60.00	D3			
B4	2.4"Øx0.15625"x8'-6"	51.00	91.50	D4			
B5	2.4"Øx0.15625"x8'-6"	51.00	116.00	D5			
В6				D6			
	Distance between bottom rai	l and moun	t CL elevati	on (dim d). Unit is inches. See 'Mount Elev Ref' tab	for details. :	0.00
	Distance from to	p of botto	m support r	ail to lowe	est tip of ant./eqpt. of Carrier above. (N/A	if > 10 ft.):	
	Distance from to	p of botton	n support ra	il to highe	est tip of ant./eqpt. of Carrier below. (N/A	if > 10 ft.):	
		Please ent	er additiona	al infomat	ion or comments below.		

Tower Face Width at Mount Elev. (ft.): Tower Leg Size or Pole Shaft Diameter at Mount Elev. (in.): 34.5

	Enter antenna	a model.	If not label	ed, enter "	Unknown'	' .	Mounting Locations [Units are inches and degrees]			Photos of antennas
Ants. Items	Antenna Models if Known	Width (in.)	Depth (in.)	Height (in.)	Coax Size and Qty		Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches)	Horiz. Offset "h" (Use "-" if Ant. is behind)	Antenna Azimuth (Degrees)	Photo Numbers
					Sector A					
Ant _{1a}	1									
Ant _{1b}	LPA-80063-6CF-EDIN	14.96	13.07	70.87	1)FH 1-5/	58	39.00	14.00	2.00	46-47
Ant ₁₀										
Ant _{2a}	B66a RRH 4x45	11.80	10.30	28.93	from Ray	60.8333	5.00	-6.00		51-52
Ant _{2b}	SBNHH-1D65A	11.85	7.09	55.63	from Ray	57.5833	44.00	8.00	3.00	48-50
Ant ₂₀	:									
Ant _{3a}	B13 RRH 4x30	12.00	8.50	21.50	from Ray	60.75	6.00	-6.00		55-56
Ant _{3b}	SBNHH-1D65A	11.85	7.09	55.63	from Ray	57.5833	44.00	8.00	3.00	53-54
Ant _{3c}	:									
Ant _{4a}	1									
Ant _{4b}	BXA-171063-12BF-ED	4.10	6.10	72.50	2)FH 1-5/	58	39.00	8.00	3.00	57-58
Ant _{4c}	:									
Ant _{sa}	1									
Ant _{5b}	LPA-80063-6CF-EDIN	14.96	13.07	70.87	1)FH 1-5/	58	39.00	14.00	2.00	59-60
Ant ₅₀	:									
Ant or Stando										
Ant or										
Stando										
Ant or Tower										
Ant or										
Towe	r									

bib big	Antıь <u>е</u>	Antza Z	Antas 😤	Antab s	Antse
L	- B	<u>.</u>	ــ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ	<u>å</u> .	-11
		:	1		**
<u>C1</u>	Antic	Antze	Antse	Ant4c	Ants
-	C2	C3	_		
		C4	C5	-	

Moun	t Azimuth (Degree		Tower Leg Azimuth	(Degree)						Sector B					,
				for Each Sect		Ant _{1a}										
Sector A:		-			Deg	Ant _{1b}	LPA-80063-6CF-EDIN	14.96	13.07	70.87	1)FH 1-5/	58	39.00	14.00	118.00	61-
Sector B:					Deg	Ant _{1c}										
Sector C:	240.00	Deg	.eg C:		Deg	Ant _{2a}	B66a RRH 4x45	11.80	10.30	28.93	from Ray	60.8333	5.00	-6.00		6
Sector D:		Deg	.eg D:		Deg	Ant _{2b}	SBNHH-1D45A	17.99	7.01	48.03	from Ray	57.5833	44.00	9.00	117.00	64-
		Climbi	ng Faci	ility Information		Ant _{2c}										
ocation:	Flat 1	Deg		Sector A		Ant _{3a}	B13 RRH 4x30	12.00	8.50	21.50	from Ray	60.75	6.00	-6.00		70
	Corrosi			Good condition.		Ant _{3b}	SBNHH-1D45A	17.99	7.01	48.03	from Ray	57.5833	44.00	9.00	118.00	67
Climbing				Climbing path was unobst	tructed.	Ant _{3c}										
Facility				Good condition.		Ant _{4a}										
						Ant _{4b}	BXA-171063-12BF-ED	4.10	6.10	72.50	2)FH 1-5/	58	39.00	8.00	118.00	72
p	1 0		0	G.		Ant _{4c}	BAA 171003 12B1 EB	4.10	0.10	72.50	2)1111 3/1	30	35.00	0.00	110.00	 ''
Γ	1 [Ant _{5a}										-
							LDA GOOGS CCE EDINI	14.00	12.07	70.07	1)511.1.57		20.00	14.00	117.00	-
q	-	++	#			Ant _{5b}	LPA-80063-6CF-EDIN	14.96	13.07	70.87	1)FH 1-5/	58	39.00	14.00	117.00	74
1	, ,	1111	1	The or considera		Ant _{5c}										-
		111				Ant on Standoff										
] Π	111	ШГ	PLATFO OF AN	CE FROM TOP OF MAIN ORM MEMBER TO LOWEST TIP T./EGPT. OF CAPRIEN ABOVE. F > 10 PT.)	Ant on										
4		TIT		D OV/A II	. > rv rty	Standoff										
		1111		<u> </u>		Ant on	RRFDC-3315-PF-48 (N	11.88	8.50	21.50	Hybrid 1.5	60				77
ETING PLATFORM	r/ 'b'		η, σ	U DESTAND OF AND	CE FROM TOP OF MAIN DRW MEMBER TO HICHEST TIP T./EQPT. OF CAPRIEST BELOW. F > 10 FT.)	Tower	DC 3313-11-48 (IV	11.00	0.50	21.50	Tybriu 1.	- 50				L''
		111		TIP OF EQUIPMENT	F > 10 FT.)	Ant on										
L,	for Each Sector A: 0.00 Deg Leg A: B: 120.00 Deg Leg B: C: 240.00 Deg Leg C: D: Deg Leg C: D: Deg Leg C: Cimbing Facility Inform On: Flat 1 Deg Sector A Corrosion Type: Good con Access: Climbing ity Condition: Good con			Tower					Sector C							
				Ant _{1a}					Jector					П		
q						Ant _{1b}	LPA-80063-6CF-EDIN	14.96	13.07	70.87	1)FH 1-5/	50	39.00	14.00	241.00	79
L	ļ			Ļ		-	LI A-00003-DCF-EDIN	14.90	15.07	/0.8/	T)LU T-2/	58	39.00	14.00	241.00	/s
			Ш.	₹)		Ant _{1c}	DCC+ DDU 4::45	11.00	10.30	20.02	fuer: D	CO 8222	F 00	6.00		
	r	1	m	Ĥ		Ant _{2a}	B66a RRH 4x45	11.80	10.30	28.93	from Ray	60.8333	5.00	-6.00	244.55	84
			=	1		Ant _{2b}	SBNHH-1D45A	17.99	7.01	48.03	from Ray	57.5833	44.00	9.00	241.00	82
1 [-		7			Ant _{2c}										-
4				—		Ant _{3a}	B13 RRH 4x30	12.00	8.50	21.50	from Ray	60.75	6.00	-6.00		88
-9	-9		0/	The on comment		Ant _{3b}	SBNHH-1D45A	17.99	7.01	48.03	from Ray	57.5833	44.00	9.00	241.00	86
						Ant _{3c}										
		1 1		SUPPO ANT./I	NOE FROM TOP OF SOTTOM ORT RAIL TO LOWEST TIP OF EGPT. OF CARRIER ABOVE. IF > 10 FT.)	Ant _{4a}										
-			3 =	(N/A	# > 10 FT.)	Ant _{4b}	BXA-171063-12BF-ED	4.10	6.10	72.50	2)FH 1-5/	58	39.00	8.00	241.00	90
0.014						Ant _{4c}										
٦,		J		li		Ant _{5a}										
ISTING SECTOR FRAM MICH	c /			SUPPR ANT,/I	NOE FROM TOP OF BOTTOM ONT RAIL TO HIGHEST TIP OF EGFT. OF CARRIER BELOW. IF > 10 FT.)	Ant _{5b}	LPA-80063-6CF-EDIN	14.96	13.07	70.87	1)FH 1-5/	58	39.00	14.00	241.00	92
1627	100			TIP OF EQUIPMENTS		Ant _{5c}										
The state of	L _a	1	7	The state of the s		Ant on										
4	-	-	= }	-		Standoff										-
			J٢			Ant on										
						Standoff Ant on										
		()E		U		Tower										
						Ant on										
						Tower										
											Sector D					
						Ant _{1a}										
						Ant _{1b}										
						Ant _{1c}										
						Ant _{2a}										
						Ant _{2b}										
						Ant _{2c}										
						Ant _{3a}										
						Ant _{3b}										
						Ant _{3c}										
						Ant _{4a}										
						Ant _{4b}										
						Ant _{4c}										
						Ant _{5a}										
						Ant _{5b}										
						Ant _{5c}										
						Ant on Standoff										
						Ant on										
						Standoff										
						Ant on										
						Tower										+
						Ant on Tower										

Observed Safety and Structural Issues During the Mount Mapping				
Issue #	Description of Issue	Photo #		

1	(6) Unused (cut) FH 1-5/8 at mount	
2		
3		
4		
5		
6		
7		
8		

Mapping Notes

- 1. Please report any visible structural or safety issues observed on the antenna mounts (Damaged members, loose connections, tilting mounts, safety climb issues, etc.)
- 2. If the thickness of the existing pipes or tubing can't be obtained from a general tool (such as Caliper), please use an ultrasonic measurement tool (thickness gauge) to measure the thickness.
- 3. Please create all required detail sketches of the mounts and insert them into the "Sketches" tab.
- 4. Please measure and enter the bolt sizes and types under the Members Box in the spreadsheet of the mount type.
- 5. Take and label the photos of the tower, mounts, connections, antennas and all measurements. Minimum 50 photos are required.
- 6. Please measure and report the size and length of all existing antenna mounting pipes.
- 7. Please measure and report the antenna information for all sectors.
- 8. Don't delete or rearrange any sheet or contents of any sheet from this mapping form.

Standard Conditions

1. Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping are to be reported in this mapping. However, this mount mapping is not a condition assessment of the mount.

Antenna Mount Mapping Form (PATENT PENDING)				
Tower Owner:	American Tower	Mapping Date:	10/21/2020	
Site Name:	Byram Park CT	Tower Type:	Mond	opole
Site Number or ID:	468044-VZW	Tower Height (Ft ₋):	79	
Mapping Contractor:	TEP	Mount Elevation (Ft.):	5	7

This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication, modification or disclosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA and other safety equirements that may apply. TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements

Please Insert Sketches of the Antenna Mount

Byram Park CT

Owner: American Tower - 414240

FCC : N/A

Safety: FL 1, 3/8 0 (7- strand), Height = 14'

FLA Az = 0°

Verizon cour

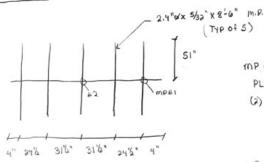
(18) FH 15/2

(1) Hybrid 114 (16 0)

* (6) FH 15/8 CUt @ mnt

T/ Tower = 77'-0"

Verizon:


Mnt CL= 57-0"

Ant CL = Position 223 = 57-0"

Position 1, 4,5= 58-0"

W3FL= 18"

Front View

(TYP 0 + 5)

PL & "x7" x5/16" W/ (2) 1/2 " & U-BOHS, 64" C-C

(2) PL 63/4" x 3" x 5/16" W/ H) 16" & BOHS,

43/4°C-C v, 51/2°C-CH

m.P. cxn #2:

L 3'x3"x 5/16" x 6" L W/

(2) 3/6 × T.R., 3 5 ° e-c, [Go + Wough 455]

(1) 12" × U-BOH, 13/4"GA

(Typ 2) (Top & Bottom ASS)

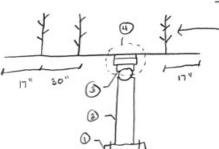
Plan	View	Alpha 0°	
	-	7 8 8 8	
		FTE	10
	" D 49 1	E3 ()	/2/3 1/12
Gamma 240	15 14		13 13 etc

Ant	Vertical	U	1
All Pos 1.	39"	51	14
A2, A3	44 *	51"	8"
Ba, B3, Ba, G3	44"	51"	9 ¹¹
All Pos. 4	39"	51"	8"
A11 Pos. 5	39"	51"	14
EI	5*	-	6"
130° E 2	64	_	6"

1-6 Amphenol LPA-80063-6CF-EDIN

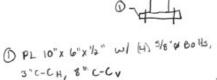
7-8 commscape SBNAH-1D65A

9-11 Ampherol BXA - 171063 - 126F - EDIN

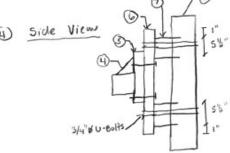

E1 = 8660 RRH 4×45

E2= B13 RR4 4x30

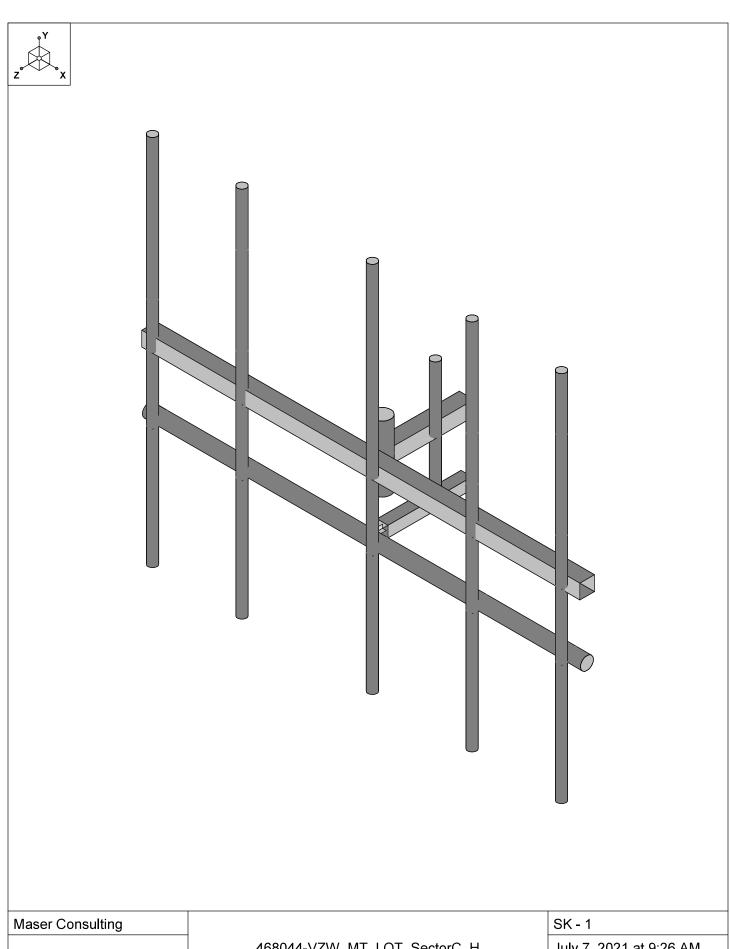
E3 = Ray cap RRFDC - 3315 - PF = 48

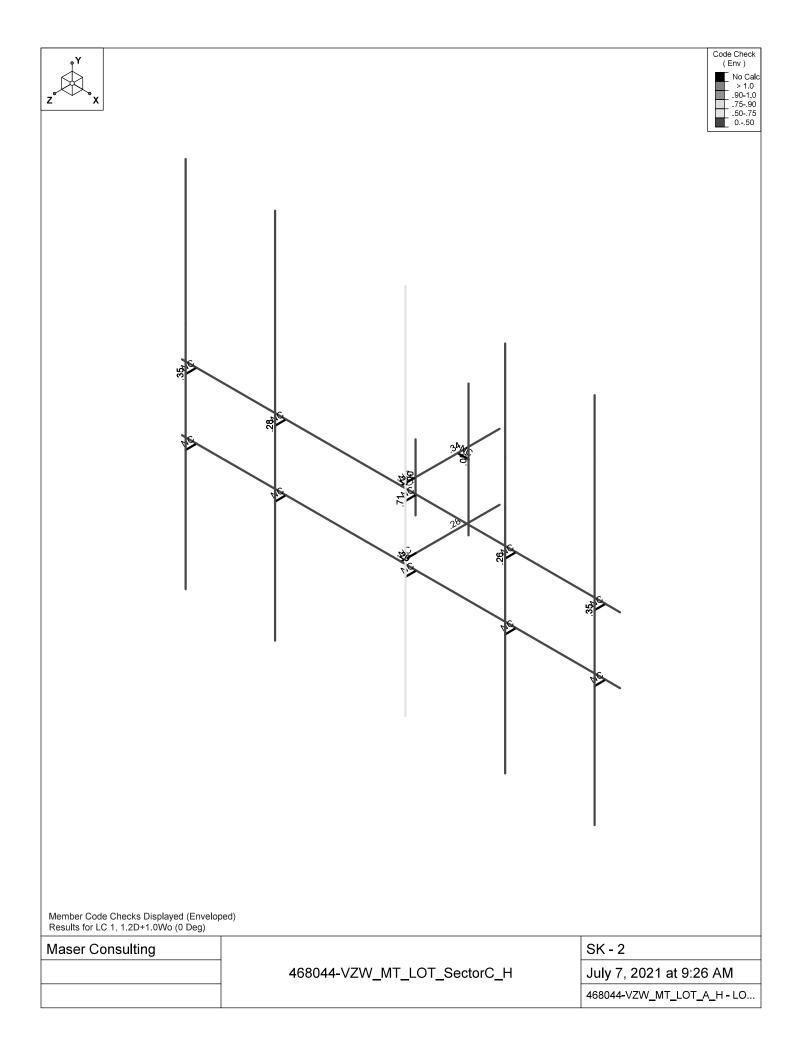

12-15 Commscope SBNHH - 1045A

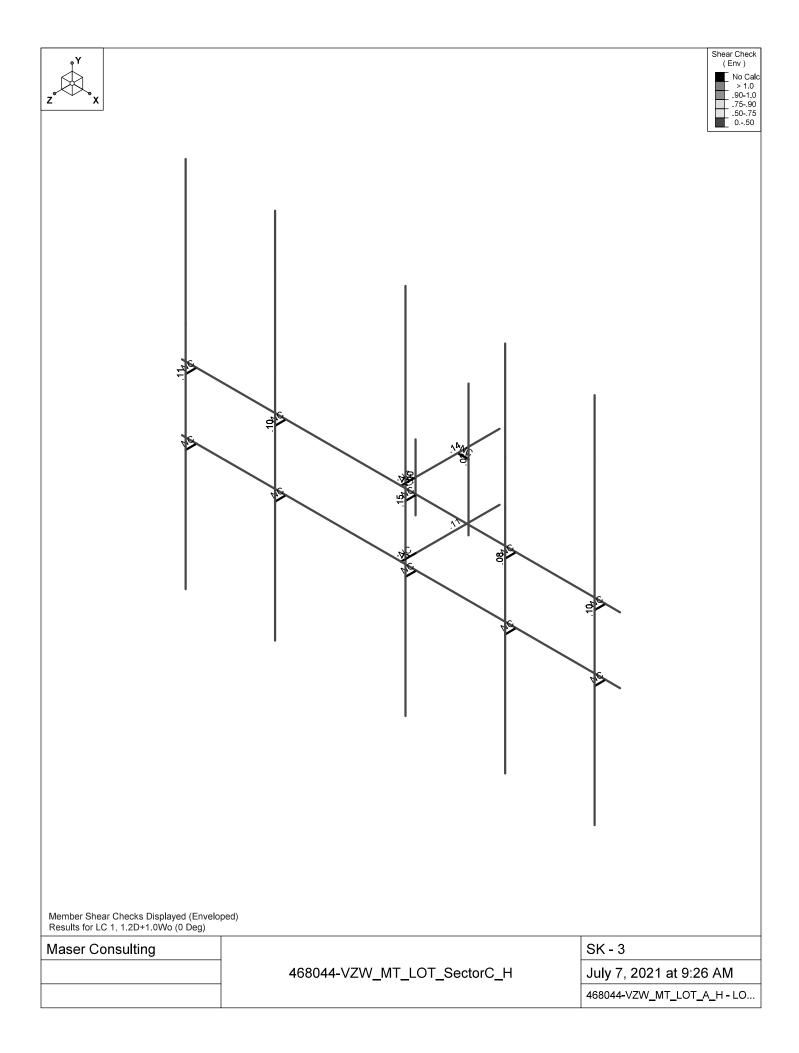
Plan View Details



Branches mounted to face only on Alpha & Gamme * connection to face = same as m.p. cxn #1


± 6' Branch


- 3) 4.5" \$\delta x 4" x 4" x 43" L (welded)
- (1) (2) Triang SHAFF 3"] PL \$1/6"TA, 76"CC
- 5) PL 91/2" x 13" x 1/2" W/ (4) 5/6" of Bolls, 101/2" C-CN, 7"C-CV



- (PL 23 14" x 13" x 13" ω/ (4) 3/4" α U-Botts, 216" ME TOP 1 COTT, 216" C-C
- D PL 3" DX 1/4"TAX 8 4" Long (welded)
 1" ME Top 2 BOH, Sh" C-C

Maser Consulting		SK - 1
	468044-VZW_MT_LOT_SectorC_H	July 7, 2021 at 9:26 AM
		468044-VZW_MT_LOT_A_H - LO

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Antenna D	None					42		,	,
2	Antenna Di	None					42			
3	Antenna Wo (0 Deg)	None					42			
4	Antenna Wo (30 Deg)	None					42			
5	Antenna Wo (60 Deg)	None					42			
6	Antenna Wo (90 Deg)	None					42			
7	Antenna Wo (120 Deg)	None					42			
8	Antenna Wo (150 Deg)	None					42			
9	Antenna Wo (180 Deg)	None					42			
	Antenna Wo (210 Deg)	None					42			
11	Antenna Wo (240 Deg)	None					42			
12	Antenna Wo (270 Deg)	None					42			
13	Antenna Wo (300 Deg)	None					42			
14	Antenna Wo (330 Deg)	None					42			
15	Antenna Wi (0 Deg)	None					42			
16	Antenna Wi (30 Deg)	None					42			
17	Antenna Wi (60 Deg)	None					42			
18	Antenna Wi (90 Deg)	None					42			
19	Antenna Wi (120 Deg)	None					42			
20	Antenna Wi (150 Deg)	None					42			
21	Antenna Wi (180 Deg)	None					42			
22	Antenna Wi (210 Deg)	None					42			
23	Antenna Wi (240 Deg)	None					42			
24	Antenna Wi (270 Deg)	None					42			
	Antenna Wi (300 Deg)						42			
25	Antenna Wi (330 Deg)	None								
26	, ,	None					42			
27	Antenna Wm (0 Deg)	None					42			
28	Antenna Wm (30 Deg)	None					42			
29	Antenna Wm (60 Deg)	None					42			
30	Antenna Wm (90 Deg)	None					42			
31	Antenna Wm (120 Deg)	None					42			
32	Antenna Wm (150 Deg)	None					42			
	Antenna Wm (180 Deg)	None					42			
	Antenna Wm (210 Deg)	None					42			
	Antenna Wm (240 Deg)	None					42			
	Antenna Wm (270 Deg)	None					42			
37	Antenna Wm (300 Deg)	None					42			
38	Antenna Wm (330 Deg)	None					42			
39	Structure D	None		-1						
40	Structure Di	None						11		
41	Structure Wo (0 Deg)	None	1					22		
42	Structure Wo (30 Deg)	None						22		
43	Structure Wo (60 Deg)	None						22		
44	Structure Wo (90 Deg)	None						22		
45	Structure Wo (120 D	None						22		
46	Structure Wo (150 D	None						22		
47	Structure Wo (180 D	None						22		
48	Structure Wo (210 D	None						22		
49	Structure Wo (240 D	None						22		
50	Structure Wo (270 D	None						22		
51	Structure Wo (300 D	None						22		
52	Structure Wo (330 D	None						22		
53	Structure Wi (0 Deg)	None						22		
54	Structure Wi (30 Deg)	None						22		
55	Structure Wi (60 Deg)	None						22		
56	Structure Wi (90 Deg)	None						22		
00	(00 B0g)	TAOLIC								

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:__

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
57	Structure Wi (120 De	None		_				22	,	,
58	Structure Wi (150 De	None						22		
59	Structure Wi (180 De	None						22		
60	Structure Wi (210 De	None						22		
61	Structure Wi (240 De	None						22		
62	Structure Wi (270 De	None						22		
63	Structure Wi (300 De	None						22		
64	Structure Wi (330 De	None						22		
65	Structure Wm (0 Deg)	None						22		
66	Structure Wm (30 De	None						22		
67	Structure Wm (60 De	None						22		
68	Structure Wm (90 De	None						22		
69	Structure Wm (120 D	None						22		
70	Structure Wm (150 D	None						22		
71	Structure Wm (180 D	None						22		
72	Structure Wm (210 D	None						22		
73	Structure Wm (240 D	None						22		
74	Structure Wm (270 D	None						22		
75	Structure Wm (300 D	None						22		
76	Structure Wm (330 D	None						22		
77	Lm1	None					1			
78	Lm2	None					1			
79	Lv1	None					1			
80	Lv2	None					1			

Load Combinations

	Description	SolF	PD	.SR	.BLC	Fact	.BLC	Fact.																
1	1.2D+1.0	Yes	Υ		1	1.2	39	1.2	3	1	41	1												
2	1.2D+1.0	Yes	Υ		1	1.2	39	1.2	4	1	42	1												
3	1.2D+1.0	Yes	Υ		1	1.2	39	1.2	5	1	43	1												
4	1.2D+1.0	Yes	Υ		1	1.2	39	1.2	6	1	44	1												
5	1.2D+1.0	Yes	Υ		1	1.2	39	1.2	7	1	45	1												
6	1.2D+1.0	Yes	Υ		1	1.2	39	1.2	8	1	46	1												
7	1.2D+1.0	Yes	Υ		1	1.2	39	1.2	9	1	47	1												
8	1.2D+1.0	Yes	Υ		1	1.2	39	1.2	10	1	48	1												
9	1.2D+1.0	Yes	Y		1	1.2	39	1,2	11	1	49	1												
10	1.2D+1.0	Yes	Υ		1	1.2	39	1.2	12	1	50	1												
11	1.2D+1.0	Yes	Υ		1	1.2	39	1.2	13	1	51	1												
12	1.2D+1.0	Yes	Υ		1	1.2	39	1.2	14	1	52	1												
13	1.2D + 1.0	Yes	Υ		1	1.2	39	1.2	2	1	40	1	15	1	53	1								
14	1.2D + 1.0	Yes	Υ		1	1.2	39	1.2	2	1	40	1	16	1	54	1								
15	1.2D + 1.0	Yes	Υ		1	1.2	39	1.2	2	1	40	1	17	1	55	1								
16	1.2D + 1.0	Yes	Υ		1	1.2	39	1.2	2	1	40	1	18	1	56	1								
17	1.2D + 1.0	Yes	Υ		1	1.2	39	1.2	2	1	40	1	19	1	57	1								
18	1.2D + 1.0	Yes	Υ		1	1.2	39	1.2	2	1	40	1	20	1	58	1								
19	1.2D + 1.0	Yes	Υ		1	1.2	39	1,2	2	1	40	1	21	1	59	1								
20	1.2D + 1.0	Yes	Υ		1	1.2	39	1.2	2	1	40	1	22	1	60	1								
21	1.2D + 1.0	Yes	Υ		1	1.2	39	1.2	2	1	40	1	23	1	61	1								
22	1.2D + 1.0	Yes	Υ		1	1.2	39	1.2	2	1	40	1	24	1	62	1								
23	1.2D + 1.0	Yes	Υ		1	1.2	39	1.2	2	1	40	1	25	1	63	1								
24	1.2D + 1.0	Yes	Υ		1	1.2	39	1.2	2	1	40	1	26	1	64	1								
25	1.2D + 1.5	Yes	Υ		1	1.2	39	1.2	77	1.5	27	1	65	1										
26	1.2D + 1.5	Yes	Υ		1	1.2	39	1.2	77	1.5	28	1	66	1										
27	1.2D + 1.5	Yes	Ŷ		1	1.2	39	1.2	77	1.5	29	1	67	1										
28	1.2D + 1.5	Yes	Ÿ		1	1.2	39	1.2	77	1.5	30	1	68	1										

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:__

Load Combinations (Continued)

	Description Sol	.PD3	SR	.BLC	Fact	.BLC	Fact	.BLC	Fact	BLC	Fact	.BLC	Fact	.BLC Fa	act	BLC	Fact	.BLC	Fact	.BLC	Fact	.BLC	Fact
29	1.2D + 1.5 Yes	Υ		1	1.2	39	1.2	77	1.5	31	1	69	1										
30	1.2D + 1.5 Yes	Υ		1	1.2	39	1.2	77	1.5	32	1	70	1										
31	1.2D + 1.5 Yes	Υ		1	1.2	39	1.2	77	1.5	33	1	71	1										
32	1.2D + 1.5 Yes	Υ		1	1.2	39	1.2	77	1.5	34	1	72	1										
33	1.2D + 1.5 Yes	Υ		1	1.2	39	1.2	77	1.5	35	1	73	1										
34	1.2D + 1.5 Yes	Υ		1	1.2	39	1.2	77	1.5	36	1	74	1										
35	1.2D + 1.5 Yes	Υ		1	1.2	39	1.2	77	1.5	37	1	75	1										
36	1.2D + 1.5 Yes	~		1	1.2	39	1.2	77	1.5	38	1	76	1										
37	1.2D + 1.5 Yes	Y		1	1.2	39	1.2	78	1.5	27	1	65	1										
38	1.2D + 1.5 Yes	Υ		1	1.2	39	1.2	78	1.5	28	1	66	1										
39	1.2D + 1.5 Yes	Υ		1	1.2	39	1.2	78	1.5	29	1	67	1										
40	1.2D + 1.5 Yes	Υ		1	1.2	39	1.2	78	1.5	30	1	68	1										
41	1.2D + 1.5 Yes	Υ		1	1.2	39	1.2	78	1.5	31	1	69	1										
42	1.2D + 1.5 Yes	Υ		1	1.2	39	1.2	78	1.5	32	1	70	1										
43	1.2D + 1.5 Yes	Υ		1	1.2	39	1.2	78	1.5	33	1	71	1										
44	1.2D + 1.5 Yes	Υ		1	1.2	39	1.2	78	1.5	34	1	72	1										
45	1.2D + 1.5 Yes	Υ		1	1.2	39	1.2	78	1.5	35	1	73	1										
46	1.2D + 1.5 Yes	Υ		1	1.2	39	1.2	78	1.5	36	1	74	1										
47	1.2D + 1.5 Yes	Υ		1	1.2	39	1.2	78	1.5	37	1	75	1										
48	1.2D + 1.5 Yes	Υ		1	1.2	39	1.2	78	1.5	38	1	76	1										
49	1.2D + 1.5 Yes	Υ		1	1.2	39	1.2	79	1.5														
50	1.2D + 1.5 Yes	Υ		1	1.2	39	1.2	80	1.5														
51	1.4D Yes	Υ		1	1.4	39	1.4																
52	Seismic M	Υ		1	1	39	1																
53	1.2D + 1.0	Υ		1	1.2	39	1.2	SX		SY	1	SZ	-1										
54	1.2D + 1.0	Υ		1	1.2	39	1.2	SX	.5	SY	1	-	866										
55	1.2D + 1.0	Υ		1	1.2	39	1.2	SX	.866		_1_	SZ	5										
56	1.2D + 1.0	Υ		1	1.2	39	1.2	SX	1	SY	1	SZ											
57	1.2D + 1.0	Υ		1	1.2	39	1.2	SX	.866		_1_	SZ	.5										
58	1.2D + 1.0	Υ		1	1.2	39	1.2	SX	.5	SY	1	SZ	.866										
59	1.2D + 1.0	Υ		1	1.2	39	1.2	SX		SY	_1_	SZ	1										
60	1.2D + 1.0	Υ		1	1.2	39	1.2	SX	5	SY	1	SZ	.866										
61	1.2D + 1.0	Υ		1	1.2	39	1.2		866		_1_	SZ	.5										
62	1.2D + 1.0	Υ		1	1.2	39	1.2	SX	-1	SY	1	SZ											
63	1.2D + 1.0	Υ		1	1.2	39	1.2		866		1	SZ	5										
64	1.2D + 1.0	Υ		1	1.2	39	1.2	SX	5	SY	1	SZ	866										

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
1	N1	Ó	Ö	0.708333	Ö	·
2	N3	0	0	2.625	0	
3	N4	0	0	2.958333	0	
4	N5	0	75	2.625	0	
5	N6	0	.75	2.625	0	
6	N7	5	0	2.958333	0	
7	N8	-5	0	2.958333	0	
8	N9	-4.666667	0	2.958333	0	
9	N11	4.666667	0	2.958333	0	
10	N12	-4.666667	0	3.208333	0	
11	N13	.35	0	3.208333	0	
12	N14	4.666667	0	3.208333	0	
13	N15	-4.666667	4.25	3.208333	0	
14	N16	.35	4.25	3.208333	0	
15	N17	4.666667	4.25	3.208333	0	
16	N18	-4.666667	-4.25	3.208333	0	

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:___

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
17	N19	.35	-4.25	3.208333	0	
18	N20	4.666667	-4.25	3.208333	0	
19	N20A	0	0	1.666667	0	
20	N21	.25	0	1.666667	0	
21	N22	.25	1,5	1.666667	0	
22	N23	.25	-1.5	1.666667	0	
23	N24	2.625	0	2.958333	0	
24	N25	2.625	0	3.208333	0	
25	N26	2.625	4.25	3.208333	0	
26	N27	2.625	-4.25	3.208333	0	
27	N28	-2.625	0	2.958333	0	
28	N29	-2.625	0	3.208333	0	
29	N30	-2.625	4.25	3.208333	0	
30	N31	-2.625	-4.25	3.208333	0	
31	N31A	4.666667	1	3.208333	0	
32	N32	4.666667	3	3.208333	0	
33	N33	-4.666667	1	3.208333	0	
34	N35	2.625	1	3.208333	0	
35	N36	-2.625	1	3.208333	0	
36	N37	2.625	2	3.208333	0	
37	N38	-2.625	3	3.208333	0	
38	N39	0	-1.5	2.958333	0	
39	N40	5	-1.5	2.958333	0	
40	N41	-5	-1.5	2.958333	0	
41	N42	-4.666667	-1.5	2.958333	0	
42	N43	4.666667	-1.5	2.958333	0	
43	N44	-4.666667	-1.5	3.208333	0	
44	N45	.35	-1.5	3.208333	0	
45	N46	4.666667	-1.5	3.208333	0	
46	N47	2.625	-1.5	2.958333	0	
47	N48	2.625	-1.5	3.208333	0	
48	N49	-2.625	-1.5	2.958333	0	
49	N50	-2.625	-1.5	3.208333	0	
50	N51	0	-1.5	0.708333	0	
51	N52	0	-1.5	2.625	0	
52	N53	.35	0	2.958333	0	
53	N54	.35	- 1.5	2.958333	0	

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design R	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	Antenna Pipe	PIPE_2.0	Beam	Pipe	A53 Gr. B	Typical	1.02	.627	627	1.25
2	Face Horizontal	HSS4X4X4	Beam	SquareTube	A500 Gr	Typical	3.37	7.8	7.8	12.8
3	Standoff Vertical	PIPE_4.0	Column	Pipe	A53 Gr. B	Typical	2.96	6.82	6.82	13.6
4	Standoff	HSS4X4X4	Beam	SquareTube	A500 Gr	Typical	3.37	7.8	7.8	12.8
5	MOD STANDOFF	HSS3X3X4	Beam	SquareTube	A500 Gr	Typical	2.44	3.02	3.02	5.08
6	Prop Antenna Pipe	PIPE_2.5	Beam	Pipe	A53 Gr. B	Typical	1.61	1.45	1.45	2.89
7	MOD FACE	PIPE_3.0	Beam	Pipe	A53 Gr. B	Typical	2.07	2.85	2.85	5.69

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E	.Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A53 Gr. B	29000	11154	.3	.65	.49	35	1.5	60	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1

Company Designer Job Number Model Name : Maser Consulting

July 7, 2021 9:26 AM Checked By:_

468044-VZW_MT_LOT_SectorC_H

Hot Rolled Steel Properties (Continued)

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E	.Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
5	A500 Gr. B 42	29000	11154	.3	.65	.49	42	1.4	58	1.3
6	A500 Gr. B 46	29000	11154	.3	.65	.49	46	1.4	58	1.3

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	M4	N6	N5			Standoff Vertical	Column	Pipe	A53 Gr. B	Typical
2	M3	N1	N3			Standoff	Beam	SquareTube	A500 Gr	Typical
3	M1	N3	N4			RIGID	None	None	RIGID	Typical
4	M9	N9	N12			RIGID	None	None	RIGID	Typical
5	M10	N53	N13			RIGID	None	None	RIGID	Typical
6	M11	N11	N14			RIGID	None	None	RIGID	Typical
7	M11A	N20A	N21			RIGID	None	None	RIGID	Typical
8	M14	N24	N25			RIGID	None	None	RIGID	Typical
9	M16	N28	N29			RIGID	None	None	RIGID	Typical
10	M5	N8	N7			Face Horizontal	Beam	SquareTube	A500 Gr	Typical
11	MP1A	N17	N20			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
12	MP3A	N16	N19			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
13	MP5A	N15	N18			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
14	M17	N22	N23			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
15	MP2A	N26	N27			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
16	MP4A	N30	N31			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
17	M17A	N42	N44			RIGID	None	None	RIGID	Typical
18	M18	N54	N45			RIGID	None	None	RIGID	Typical
19	M19	N43	N46			RIGID	None	None	RIGID	Typical
20	M20	N47	N48			RIGID	None	None	RIGID	Typical
21	M21	N49	N50			RIGID	None	None	RIGID	Typical
22	M22	N41	N40			MOD FACE	Beam	Pipe	A53 Gr. B	Typical
23	M23	N51	N52			MOD STAND	Beam	SquareTube	A500 Gr	Typical
24	M24	N52	N39			RIGID	None	None	RIGID	Typical

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft]	Lcomp bot[ft]	L-torqu	Куу	Kzz	Cb	Function
1	M4	Standoff Ve	1.5	,,,	•	Lbyy						Lateral
2	M3	Standoff	1.917			Lbyy						Lateral
3	M5	Face Horizo	10			Lbyy						Lateral
4	MP1A	Antenna Pipe	8.5			Lbyy						Lateral
5	MP3A	Antenna Pipe	8.5			Lbyy						Lateral
6	MP5A	Antenna Pipe	8.5			Lbyy						Lateral
7	M17	Antenna Pipe	3			Lbyy						Lateral
8	MP2A	Antenna Pipe	8.5			Lbyy						Lateral
9	MP4A	Antenna Pipe	8.5			Lbyy						Lateral
10	M22	MOD FACE	10			Lbyy						Lateral
11	M23	MOD STAN	1.917			Lbyy						Lateral

Member Point Loads (BLC 1 : Antenna D)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Υ	-13.5	1.25
2	MP1A	My	009	1.25
3	MP1A	Mz	0	1.25
4	MP1A	Υ	-13.5	5.25
5	MP1A	My	009	5.25
6	MP1A	Mz	0	5.25

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:__

Member Point Loads (BLC 1 : Antenna D) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
7	MP5A	Υ	-13.5	1.25
8	MP5A	My	009	1.25
9	MP5A	Mz	0	1.25
10	MP5A	Υ	-13.5	5.25
11	MP5A	My	009	5.25
12	MP5A	Mz	0	5.25
13	MP3A	Υ	-36.93	1.25
14	MP3A	My	022	1.25
15	MP3A	Mz	.034	1.25
16	MP3A	Υ	-36.93	5.25
17	MP3A	My	022	5.25
18	MP3A	Mz	.034	5.25
19	MP3A	Y	-36.93	1.25
20	MP3A	My	022	1.25
21	MP3A	Mz	034	1.25
22	MP3A	Y	-36.93	5.25
23	MP3A	My	022	5.25
24	MP3A	Mz	034	5.25
25	MP4A	Υ	-43.55	2.25
26	MP4A	My	015	2.25
27	MP4A	Mz	0	2.25
28	MP4A	Y	-43.55	4.25
29	MP4A	My	015	4.25
30	MP4A	Mz	0	4.25
31	MP3A	Υ	-10.4	7
32	MP3A	My	.003	7
33	MP3A	Mz	0	7
34	MP3A	Υ	-84.4	1.5
35	MP3A	My	.056	1.5
36	MP3A	Mz	0	1.5
37	MP4A	Υ	-70.3	1.5
38	MP4A	My	.047	1.5
39	MP4A	Mz	0	1.5
40	M17	Υ	-32	1
41	M17	My	0	1
42	M17	Mz	0	1

Member Point Loads (BLC 2 : Antenna Di)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Υ	-80.467	1.25
2	MP1A	My	054	1.25
3	MP1A	Mz	0	1.25
4	MP1A	Y	-80.467	5.25
5	MP1A	My	054	5.25
6	MP1A	Mz	0	5.25
7	MP5A	Υ	-80.467	1.25
8	MP5A	My	054	1.25
9	MP5A	Mz	0	1.25
10	MP5A	Υ	-80.467	5.25
11	MP5A	My	054	5.25
12	MP5A	Mz	0	5.25
13	MP3A	Υ	-55.968	1.25
14	MP3A	My	033	1.25
15	MP3A	Mz	.051	1.25
16	MP3A	Υ	-55.968	5.25
17	MP3A	My	033	5.25

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:__

Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
18	MP3A	Mz	.051	5.25
19	MP3A	Υ	-55.968	1.25
20	MP3A	My	033	1.25
21	MP3A	Mz	051	1.25
22	MP3A	Υ	-55.968	5.25
23	MP3A	My	033	5.25
24	MP3A	Mz	051	5.25
25	MP4A	Υ	-32.218	2.25
26	MP4A	My	011	2.25
27	MP4A	Mz	0	2.25
28	MP4A	Υ	-32.218	4.25
29	MP4A	My	011	4.25
30	MP4A	Mz	0	4.25
31	MP3A	Υ	-9.588	7
32	MP3A	My	.003	7
33	MP3A	Mz	0	7
34	MP3A	Υ	-40.562	1.5
35	MP3A	My	.027	1.5
36	MP3A	Mz	0	1.5
37	MP4A	Υ	-36.452	1.5
38	MP4A	My	.024	1.5
39	MP4A	Mz	0	1.5
40	M17	Υ	-79.66	1
41	M17	My	0	1
42	M17	Mz	0	1

Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	1.25
2	MP1A	Z	-182.808	1.25
3	MP1A	Mx	0	1.25
4	MP1A	X	0	5.25
5	MP1A	Z	-182.808	5.25
6	MP1A	Mx	0	5.25
7	MP5A	Χ	0	1.25
8	MP5A	Z	-182.808	1.25
9	MP5A	Mx	0	1.25
10	MP5A	Χ	0	5.25
11	MP5A	Z	-182.808	5.25
12	MP5A	Mx	0	5.25
13	MP3A	Χ	0	1.25
14	MP3A	Z	-170.431	1.25
15	MP3A	Mx	156	1.25
16	MP3A	X	0	5.25
17	MP3A	Z	-170.431	5.25
18	MP3A	Mx	156	5.25
19	MP3A	Χ	0	1.25
20	MP3A	Z	-170.431	1.25
21	MP3A	Mx	.156	1.25
22	MP3A	X	0	5.25
23	MP3A	Z	-170.431	5.25
24	MP3A	Mx	.156	5.25
25	MP4A	Χ	0	2.25
26	MP4A	Z	-89.5	2.25
27	MP4A	Mx	0	2.25
28	MP4A	X	0	4.25

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:___

Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
29	MP4A	Z	-89.5	4.25
30	MP4A	Mx	0	4.25
31	MP3A	X	0	7
32	MP3A	Z	-14.091	7
33	MP3A	Mx	0	7
34	MP3A	X	0	1.5
35	MP3A	Z	-71.219	1.5
36	MP3A	Mx	0	1.5
37	MP4A	Χ	0	1.5
38	MP4A	Z	-71.219	1.5
39	MP4A	Mx	0	1.5
40	M17	X	0	1
41	M17	Z	-139.48	1
42	M17	Mx	0	1

Member Point Loads (BLC 4 : Antenna Wo (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Χ	88.964	1.25
2	MP1A	Z	-154.09	1.25
3	MP1A	Mx	059	1.25
4	MP1A	Χ	88.964	5.25
5	MP1A	Z	-154.09	5.25
6	MP1A	Mx	059	5.25
7	MP5A	Χ	88.964	1.25
8	MP5A	Z	-154.09	1.25
9	MP5A	Mx	059	1.25
10	MP5A	Χ	88.964	5.25
11	MP5A	Z	-154.09	5.25
12	MP5A	Mx	059	5.25
13	MP3A	Χ	73.029	1.25
14	MP3A	Z	-126.49	1.25
15	MP3A	Mx	159	1.25
16	MP3A	Χ	73.029	5.25
17	MP3A	Z	-126.49	5.25
18	MP3A	Mx	159	5.25
19	MP3A	X	73.029	1.25
20	MP3A	Z	-126.49	1.25
21	MP3A	Mx	.073	1.25
22	MP3A	Χ	73.029	5.25
23	MP3A	Z	-126.49	5.25
24	MP3A	Mx	.073	5.25
25	MP4A	X	37.942	2.25
26	MP4A	Z	-65.718	2.25
27	MP4A	Mx	013	2.25
28	MP4A	X	37.942	4.25
29	MP4A	Z	-65.718	4.25
30	MP4A	Mx	013	4.25
31	MP3A	Χ	6.503	7
32	MP3A	Z	-11.264	7
33	MP3A	Mx	.002	7
34	MP3A	Χ	32.658	1.5
35	MP3A	Z	-56.565	1.5
36	MP3A	Mx	.022	1.5
37	MP4A	X	31.527	1.5
38	MP4A	Z	-54.607	1.5
39	MP4A	Mx	.021	1.5

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Point Loads (BLC 4: Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
40	M17	Χ	61.128	1
41	M17	Z	-105.877	1
42	M17	Mx	0	1

Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	145.636	1.25
2	MP1A	Z	-84.083	1.25
3	MP1A	Mx	097	1.25
4	MP1A	X	145.636	5.25
5	MP1A	Z	-84.083	5.25
6	MP1A	Mx	097	5.25
7	MP5A	X	145.636	1.25
8	MP5A	Z	-84.083	1.25
9	MP5A	Mx	097	1.25
10	MP5A	X	145.636	5.25
11	MP5A	Z	-84.083	5.25
12	MP5A	Mx	097	5.25
13	MP3A	X	84.277	1.25
14	MP3A	Z	-48.657	1.25
15	MP3A	Mx	094	1.25
16	MP3A	X	84.277	5.25
17	MP3A	Z	-48.657	5.25
18	MP3A	Mx	094	5.25
19	MP3A	X	84.277	1.25
20	MP3A	Z	-48.657	1.25
21	MP3A	Mx	005	1.25
22	MP3A	X	84.277	5.25
23	MP3A	Z	-48.657	5.25
24	MP3A	Mx	005	5.25
25	MP4A	X	42.136	2.25
26	MP4A	Z	-24.327	2.25
27	MP4A	Mx	014	2.25
28	MP4A	X	42.136	4.25
29	MP4A	Z	-24.327	4.25
30	MP4A	Mx	014	4.25
31	MP3A	X	9.384	7
32	MP3A	Z	-5.418	7
33	MP3A	Mx	.003	7
34	MP3A	X	46.341	1.5
35	MP3A	Z	-26.755	1.5
36	MP3A	Mx	.031	1.5
37	MP4A	X	40.466	1.5
38	MP4A	Z	-23.363	1.5
39	MP4A	Mx	.027	1.5
40	M17	X	103.121	1
41	M17	Z	-59.537	1
42	M17	Mx	0	1

Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Χ	163.285	1.25
2	MP1A	Z	0	1.25
3	MP1A	Mx	109	1.25
4	MP1A	Х	163.285	5.25
5	MP1A	Z	0	5.25

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Point Loads (BLC 6 : Antenna Wo (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
6	MP1A	Mx	109	5.25
7	MP5A	X	163.285	1.25
8	MP5A	Z	0	1.25
9	MP5A	Mx	109	1.25
10	MP5A	X	163.285	5.25
11	MP5A	Z	0	5.25
12	MP5A	Mx	109	5.25
13	MP3A	X	72.942	1.25
14	MP3A	Z	0	1.25
15	MP3A	Mx	043	1.25
16	MP3A	X	72.942	5.25
17	MP3A	Z	0	5.25
18	MP3A	Mx	043	5.25
19	MP3A	X	72.942	1.25
20	MP3A	Z	0	1.25
21	MP3A	Mx	043	1.25
22	MP3A	X	72.942	5.25
23	MP3A	Z	0	5.25
24	MP3A	Mx	043	5.25
25	MP4A	X	35.039	2.25
26	MP4A	Z	0	2.25
27	MP4A	Mx	012	2.25
28	MP4A	X	35.039	4.25
29	MP4A	Z	0	4.25
30	MP4A	Mx	012	4.25
31	MP3A	X	9.75	7
32	MP3A	Z	0	7
33	MP3A	Mx	.003	7
34	MP3A	X	47.606	1.5
35	MP3A	Z	0	1.5
36	MP3A	Mx	.032	1.5
37	MP4A	X	38.561	1.5
38	MP4A	Z	0	1.5
39	MP4A	Mx	.026	1.5
40	M17	X	133.114	1
41	M17	Z	0	1
42	M17	Mx	0	1

Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

member Font Loads (BLOT: Antenna Wo (120 Beg))				
	Member Label	Direction	Magnitude[l b,k-ft]	Location[ft,%]
1	MP1A	Χ	145.636	1.25
2	MP1A	Z	84.083	1.25
3	MP1A	Mx	097	1.25
4	MP1A	Χ	145.636	5.25
5	MP1A	Z	84.083	5.25
6	MP1A	Mx	097	5.25
7	MP5A	Χ	145.636	1.25
8	MP5A	Z	84.083	1.25
9	MP5A	Mx	097	1.25
10	MP5A	Χ	145.636	5.25
11	MP5A	Z	84.083	5.25
12	MP5A	Mx	097	5.25
13	MP3A	Χ	84.277	1.25
14	MP3A	Z	48.657	1.25
15	MP3A	Mx	005	1.25
16	MP3A	Χ	84.277	5.25

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Point Loads (BLC 7 : Antenna Wo (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
17	MP3A	Ζ	48.657	5.25
18	MP3A	Mx	005	5.25
19	MP3A	Χ	84.277	1.25
20	MP3A	Z	48.657	1.25
21	MP3A	Mx	094	1.25
22	MP3A	Χ	84.277	5.25
23	MP3A	Z	48.657	5.25
24	MP3A	Mx	094	5.25
25	MP4A	Χ	42.136	2.25
26	MP4A	Z	24.327	2.25
27	MP4A	Mx	014	2.25
28	MP4A	Χ	42.136	4.25
29	MP4A	Ζ	24.327	4.25
30	MP4A	Mx	014	4.25
31	MP3A	Χ	9.384	7
32	MP3A	Z	5.418	7
33	MP3A	Mx	.003	7
34	MP3A	Χ	46.341	1.5
35	MP3A	Ζ	26.755	1.5
36	MP3A	Mx	.031	1.5
37	MP4A	Χ	40.466	1.5
38	MP4A	Z	23.363	1.5
39	MP4A	Mx	.027	1.5
40	M17	Χ	130.196	1
41	M17	Z	75.169	1
42	M17	Mx	0	1

Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	<u> </u>		-3//	,
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	88.964	1.25
2	MP1A	Z	154.09	1.25
3	MP1A	Mx	059	1.25
4	MP1A	X	88.964	5.25
5	MP1A	Z	154.09	5.25
6	MP1A	Mx	059	5.25
7	MP5A	X	88.964	1.25
8	MP5A	Z	154.09	1.25
9	MP5A	Mx	059	1.25
10	MP5A	X	88.964	5.25
11	MP5A	Z	154.09	5.25
12	MP5A	Mx	059	5.25
13	MP3A	X	73.029	1.25
14	MP3A	Z	126.49	1.25
15	MP3A	Mx	.073	1.25
16	MP3A	X	73.029	5.25
17	MP3A	Z	126.49	5.25
18	MP3A	Mx	.073	5.25
19	MP3A	X	73.029	1.25
20	MP3A	Z	126.49	1.25
21	MP3A	Mx	159	1.25
22	MP3A	X	73.029	5.25
23	MP3A	Z	126.49	5.25
24	MP3A	Mx	159	5.25
25	MP4A	Χ	37.942	2.25
26	MP4A	Z	65.718	2.25
27	MP4A	Mx	013	2.25

July 7, 2021 9:26 AM Checked By:____

Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[l b,k-ft]	Location[ft,%]
28	MP4A	Χ	37.942	4.25
29	MP4A	Z	65.718	4.25
30	MP4A	Mx	013	4.25
31	MP3A	Χ	6.503	7
32	MP3A	Z	11.264	7
33	MP3A	Mx	.002	7
34	MP3A	Χ	32.658	1.5
35	MP3A	Z	56.565	1.5
36	MP3A	Mx	.022	1.5
37	MP4A	Χ	31.527	1.5
38	MP4A	Z	54.607	1.5
39	MP4A	Mx	.021	1.5
40	M17	Χ	76.76	1
41	M17	Z	132.952	1
42	M17	Mx	0	1

Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	1.25
2	MP1A	Z	182.808	1.25
3	MP1A	Mx	0	1.25
4	MP1A	X	0	5.25
5	MP1A	Z	182.808	5.25
6	MP1A	Mx	0	5.25
7	MP5A	X	0	1.25
8	MP5A	Z	182.808	1.25
9	MP5A	Mx	0	1.25
10	MP5A	X	0	5.25
11	MP5A	Z	182.808	5.25
12	MP5A	Mx	0	5.25
13	MP3A	X	0	1.25
14	MP3A	Z	170.431	1.25
15	MP3A	Mx	.156	1.25
16	MP3A	X	0	5.25
17	MP3A	Z	170.431	5.25
18	MP3A	Mx	.156	5.25
19	MP3A	X	0	1.25
20	MP3A	Z	170.431	1.25
21	MP3A	Mx	156	1.25
22	MP3A	X	0	5.25
23	MP3A	Z	170.431	5.25
24	MP3A	Mx	156	5.25
25	MP4A	Χ	0	2.25
26	MP4A	Z	89.5	2.25
27	MP4A	Mx	0	2.25
28	MP4A	X	0	4.25
29	MP4A	Z	89.5	4.25
30	MP4A	Mx	0	4.25
31	MP3A	X	0	7
32	MP3A	Z	14.091	7
33	MP3A	Mx	0	7
34	MP3A	X	0	1.5
35	MP3A	Z	71.219	1.5
36	MP3A	Mx	0	1.5
37	MP4A	X	0	1.5
38	MP4A	Z	71.219	1.5

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Point Loads (BLC 9 : Antenna Wo (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
39	MP4A	Mx	0	1.5
40	M17	X	0	1
41	M17	Z	139.48	1
42	M17	Mx	0	1

Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-88.964	1.25
2	MP1A	Z	154.09	1.25
3	MP1A	Mx	.059	1.25
4	MP1A	X	-88.964	5.25
5	MP1A	Z	154.09	5.25
6	MP1A	Mx	.059	5.25
7	MP5A	X	-88.964	1.25
8	MP5A	Z	154.09	1.25
9	MP5A	Mx	.059	1.25
10	MP5A	X	-88.964	5.25
11	MP5A	Z	154.09	5.25
12	MP5A	Mx	.059	5.25
13	MP3A	X	-73.029	1.25
14	MP3A	Z	126.49	1.25
15	MP3A	Mx	.159	1.25
16	MP3A	X	-73.029	5.25
17	MP3A	Z	126.49	5.25
18	MP3A	Mx	.159	5.25
19	MP3A	X	-73.029	1.25
20	MP3A	Z	126.49	1.25
21	MP3A	Mx	073	1.25
22	MP3A	Х	-73.029	5.25
23	MP3A	Z	126.49	5.25
24	MP3A	Mx	073	5.25
25	MP4A	X	-37.942	2.25
26	MP4A	Z	65.718	2.25
27	MP4A	Mx	.013	2.25
28	MP4A	X	-37.942	4.25
29	MP4A	Z	65.718	4.25
30	MP4A	Mx	.013	4.25
31	MP3A	X	-6.503	7
32	MP3A	Z	11.264	7
33	MP3A	Mx	002	7
34	MP3A	X	-32.658	1.5
35	MP3A	Z	56.565	1.5
36	MP3A	Mx	022	1.5
37	MP4A	X	-31.527	1.5
38	MP4A	Ž	54.607	1.5
39	MP4A	Mx	021	1.5
40	M17	X	-61.128	1
41	M17	Z	105.877	1
42	M17	Mx	0	1

Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-145.636	1.25
2	MP1A	Z	84.083	1.25
3	MP1A	Mx	.097	1.25
4	MP1A	Χ	-145.636	5.25

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Point Loads (BLC 11 : Antenna Wo (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
5	MP1A	Z	84.083	5.25
6	MP1A	Mx	.097	5.25
7	MP5A	X	-145.636	1.25
8	MP5A	Z	84.083	1.25
9	MP5A	Mx	.097	1.25
10	MP5A	X	-145.636	5.25
11	MP5A	Z	84.083	5.25
12	MP5A	Mx	.097	5.25
13	MP3A	X	-84.277	1.25
14	MP3A	Z	48.657	1.25
15	MP3A	Mx	.094	1.25
16	MP3A	X	-84.277	5.25
17	MP3A	Z	48.657	5.25
18	MP3A	Mx	.094	5.25
19	MP3A	X	-84.277	1.25
20	MP3A	Z	48.657	1.25
21	MP3A	Mx	.005	1.25
22	MP3A	X	-84.277	5.25
23	MP3A	Z	48.657	5.25
24	MP3A	Mx	.005	5.25
25	MP4A	X	-42.136	2.25
26	MP4A	Z	24.327	2.25
27	MP4A	Mx	.014	2.25
28	MP4A	X	-42.136	4.25
29	MP4A	Z	24.327	4.25
30	MP4A	Mx	.014	4.25
31	MP3A	X	-9.384	7
32	MP3A	Z	5.418	7
33	MP3A	Mx	003	7
34	MP3A	X	-46.341	1.5
35	MP3A	Z	26.755	1.5
36	MP3A	Mx	031	1.5
37	MP4A	X	-40.466	1.5
38	MP4A	Z	23.363	1.5
39	MP4A	Mx	027	1.5
40	M17	X	-103.121	1
41	M17	Z	59.537	1
42	M17	Mx	0	1

Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-163.285	1.25
2	MP1A	Z	0	1.25
3	MP1A	Mx	.109	1.25
4	MP1A	X	-163.285	5.25
5	MP1A	Z	0	5.25
6	MP1A	Mx	.109	5.25
7	MP5A	X	-163.285	1.25
8	MP5A	Z	0	1.25
9	MP5A	Mx	.109	1.25
10	MP5A	X	-163.285	5.25
11	MP5A	Z	0	5.25
12	MP5A	Mx	.109	5.25
13	MP3A	X	-72.942	1.25
14	MP3A	Z	0	1.25
15	MP3A	Mx	.043	1.25

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Point Loads (BLC 12: Antenna Wo (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
16	MP3A	Χ	-72.942	5.25
17	MP3A	Z	0	5.25
18	MP3A	Mx	.043	5.25
19	MP3A	Χ	-72.942	1.25
20	MP3A	Z	0	1.25
21	MP3A	Mx	.043	1.25
22	MP3A	Χ	-72.942	5.25
23	MP3A	Z	0	5.25
24	MP3A	Mx	.043	5.25
25	MP4A	Χ	-35.039	2.25
26	MP4A	Z	0	2.25
27	MP4A	Mx	.012	2.25
28	MP4A	Χ	-35.039	4.25
29	MP4A	Z	0	4.25
30	MP4A	Mx	.012	4.25
31	MP3A	Χ	-9.75	7
32	MP3A	Z	0	7
33	MP3A	Mx	003	7
34	MP3A	Χ	-47.606	1.5
35	MP3A	Z	0	1.5
36	MP3A	Mx	032	1.5
37	MP4A	X	-38.561	1.5
38	MP4A	Z	0	1.5
39	MP4A	Mx	026	1.5
40	M17	Χ	-133.114	1
41	M17	Z	0	1
42	M17	Mx	0	1

Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Χ	-145.636	1.25
2	MP1A	Z	-84.083	1.25
3	MP1A	Mx	.097	1.25
4	MP1A	X	-145.636	5.25
5	MP1A	Z	-84.083	5.25
6	MP1A	Mx	.097	5.25
7	MP5A	Χ	-145.636	1.25
8	MP5A	Z	-84.083	1.25
9	MP5A	Mx	.097	1.25
10	MP5A	X	-145.636	5.25
11	MP5A	Z	-84.083	5.25
12	MP5A	Mx	.097	5.25
13	MP3A	X	-84.277	1.25
14	MP3A	Z	-48.657	1.25
15	MP3A	Mx	.005	1.25
16	MP3A	Χ	-84.277	5.25
17	MP3A	Z	-48.657	5.25
18	MP3A	Mx	.005	5.25
19	MP3A	X	-84.277	1.25
20	MP3A	Z	-48.657	1.25
21	MP3A	Mx	.094	1.25
22	MP3A	Χ	-84.277	5.25
23	MP3A	Z	-48.657	5.25
24	MP3A	Mx	.094	5.25
25	MP4A	Χ	-42.136	2.25
26	MP4A	Z	-24.327	2.25

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Point Loads (BLC 13: Antenna Wo (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[l b,k-ft]	Location[ft,%]
27	MP4A	Mx	.014	2.25
28	MP4A	Χ	-42.136	4.25
29	MP4A	Z	-24.327	4.25
30	MP4A	Mx	.014	4.25
31	MP3A	X	-9.384	7
32	MP3A	Z	-5.418	7
33	MP3A	Mx	003	7
34	MP3A	X	-46.341	1.5
35	MP3A	Z	-26.755	1.5
36	MP3A	Mx	031	1.5
37	MP4A	X	-40.466	1.5
38	MP4A	Z	-23.363	1.5
39	MP4A	Mx	027	1.5
40	M17	Χ	-130.196	1
41	M17	Z	-75.169	1
42	M17	Mx	0	1

Member Point Loads (BLC 14 : Antenna Wo (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-88.964	1.25
2	MP1A	Z	-154.09	1.25
3	MP1A	Mx	.059	1.25
4	MP1A	X	-88.964	5.25
5	MP1A	Z	-154.09	5.25
6	MP1A	Mx	.059	5.25
7	MP5A	X	-88.964	1.25
8	MP5A	Z	-154.09	1.25
9	MP5A	Mx	.059	1.25
10	MP5A	X	-88.964	5.25
11	MP5A	Z	-154.09	5.25
12	MP5A	Mx	.059	5.25
13	MP3A	X	-73.029	1.25
14	MP3A	Z	-126.49	1.25
15	MP3A	Mx	073	1.25
16	MP3A	X	-73.029	5.25
17	MP3A	Z	-126.49	5.25
18	MP3A	Mx	073	5.25
19	MP3A	X	-73.029	1.25
20	MP3A	Z	-126.49	1.25
21	MP3A	Mx	.159	1.25
22	MP3A	X	-73.029	5.25
23	MP3A	Z	-126.49	5.25
24	MP3A	Mx	.159	5.25
25	MP4A	Х	-37.942	2.25
26	MP4A	Z	-65.718	2.25
27	MP4A	Mx	.013	2.25
28	MP4A	X	-37.942	4.25
29	MP4A	Z	-65.718	4.25
30	MP4A	Mx	.013	4.25
31	MP3A	X	-6.503	7
32	MP3A	Z	-11.264	7
33	MP3A	Mx	002	7
34	MP3A	Х	-32.658	1.5
35	MP3A	Z	-56.565	1.5
36	MP3A	Mx	022	1.5
37	MP4A	X	-31.527	1.5

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Point Loads (BLC 14: Antenna Wo (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
38	MP4A	Z	-54.607	1.5
39	MP4A	Mx	021	1.5
40	M17	Χ	-76.76	1
41	M17	Z	-132.952	1
42	M17	Mx	0	1

Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1_	MP1A	X	0	1.25
2	MP1A	Z	-36.778	1.25
3	MP1A	Mx	0	1.25
4	MP1A	X	0	5.25
5	MP1A	Z	-36.778	5.25
6	MP1A	Mx	0	5.25
7	MP5A	X	0	1.25
8	MP5A	Z	-36.778	1.25
9	MP5A	Mx	0	1.25
10	MP5A	Х	0	5.25
11	MP5A	Z	-36.778	5.25
12	MP5A	Mx	0	5.25
13	MP3A	Χ	0	1.25
14	MP3A	Z	-32.344	1.25
15	MP3A	Mx	03	1.25
16	MP3A	Х	0	5.25
17	MP3A	Z	-32.344	5.25
18	MP3A	Mx	03	5.25
19	MP3A	Х	0	1.25
20	MP3A	Z	-32.344	1.25
21	MP3A	Mx	.03	1.25
22	MP3A	X	0	5.25
23	MP3A	Z	-32.344	5.25
24	MP3A	Mx	.03	5.25
25	MP4A	X	0	2.25
26	MP4A	Z	-18.594	2.25
27	MP4A	Mx	0	2.25
28	MP4A	Х	0	4.25
29	MP4A	Z	-18.594	4.25
30	MP4A	Mx	0	4.25
31	MP3A	X	0	7
32	MP3A	Z	-3.721	7
33	MP3A	Mx	0	7
34	MP3A	X	0	1.5
35	MP3A	Z	-15.596	1.5
36	MP3A	Mx	0	1.5
37	MP4A	Х	0	1.5
38	MP4A	Z	-15.596	1.5
39	MP4A	Mx	0	1.5
40	M17	X	0	1
41	M17	Z	-29.271	1
42	M17	Mx	0	1

Member Point Loads (BLC 16 : Antenna Wi (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	17.925	1.25
2	MP1A	Z	-31.047	1.25
3	MP1A	Mx	012	1.25

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Point Loads (BLC 16: Antenna Wi (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
4	MP1A	X	17.925	5.25
5	MP1A	Z	-31.047	5.25
6	MP1A	Mx	012	5.25
7	MP5A	X	17.925	1.25
8	MP5A	Z	-31.047	1.25
9	MP5A	Mx	012	1.25
10	MP5A	X	17.925	5.25
11	MP5A	Z	-31.047	5.25
12	MP5A	Mx	012	5.25
13	MP3A	X	14.077	1.25
14	MP3A	Z	-24.381	1.25
15	MP3A	Mx	031	1.25
16	MP3A	X	14.077	5.25
17	MP3A	Z	-24.381	5.25
18	MP3A	Mx	031	5.25
19	MP3A	X	14.077	1.25
20	MP3A	Z	-24.381	1.25
21	MP3A	Mx	.014	1.25
22	MP3A	X	14.077	5.25
23	MP3A	Z	-24.381	5.25
24	MP3A	Mx	.014	5.25
25	MP4A	X	7.956	2.25
26	MP4A	Z	-13.779	2.25
27	MP4A	Mx	003	2.25
28	MP4A	X	7.956	4.25
29	MP4A	Z	-13.779	4.25
30	MP4A	Mx	003	4.25
31	MP3A	X	1.743	7
32	MP3A	Z	-3.018	7
33	MP3A	Mx	.000581	7
34	MP3A	X	7.2	1.5
35	MP3A	Z	-12.471	1.5
36	MP3A	Mx	.005	1.5
37	MP4A	Х	6.973	1.5
38	MP4A	Z	-12.077	1.5
39	MP4A	Mx	.005	1.5
40	M17	Х	12.975	1
41	M17	Z	-22.474	1
42	M17	Mx	0	1

Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Χ	29.44	1.25
2	MP1A	Z	-16.997	1.25
3	MP1A	Mx	02	1.25
4	MP1A	Χ	29.44	5.25
5	MP1A	Z	-16.997	5.25
6	MP1A	Mx	02	5.25
7	MP5A	X	29.44	1.25
8	MP5A	Z	-16.997	1.25
9	MP5A	Mx	02	1.25
10	MP5A	Χ	29.44	5.25
11	MP5A	Z	-16.997	5.25
12	MP5A	Mx	02	5.25
13	MP3A	X	17.123	1.25
14	MP3A	Z	-9 <u>.</u> 886	1.25

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Point Loads (BLC 17: Antenna Wi (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
15	MP3A	Mx	019	1.25
16	MP3A	X	17.123	5.25
17	MP3A	Z	-9.886	5.25
18	MP3A	Mx	019	5.25
19	MP3A	Χ	17.123	1.25
20	MP3A	Z	-9.886	1.25
21	MP3A	Mx	000926	1.25
22	MP3A	Х	17.123	5.25
23	MP3A	Z	-9.886	5.25
24	MP3A	Mx	000926	5.25
25	MP4A	X	9.132	2.25
26	MP4A	Z	-5.272	2.25
27	MP4A	Mx	003	2.25
28	MP4A	Χ	9.132	4.25
29	MP4A	Z	-5.272	4.25
30	MP4A	Mx	003	4.25
31	MP3A	X	2.609	7
32	MP3A	Z	-1.506	7
33	MP3A	Mx	.00087	7
34	MP3A	Χ	10.399	1.5
35	MP3A	Z	-6.004	1.5
36	MP3A	Mx	.007	1.5
37	MP4A	X	9.218	1.5
38	MP4A	Z	-5.322	1.5
39	MP4A	Mx	.006	1.5
40	M17	X	21.942	1
41	M17	Z	-12.668	1
42	M17	Mx	0	1

Member Point Loads (BLC 18 : Antenna Wi (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Χ	33.067	1.25
2	MP1A	Z	0	1.25
3	MP1A	Mx	022	1.25
4	MP1A	Χ	33.067	5.25
5	MP1A	Z	0	5.25
6	MP1A	Mx	022	5.25
7	MP5A	Х	33.067	1.25
8	MP5A	Z	0	1.25
9	MP5A	Mx	022	1.25
10	MP5A	Χ	33.067	5.25
11	MP5A	Z	0	5.25
12	MP5A	Mx	022	5.25
13	MP3A	Χ	15.581	1.25
14	MP3A	Z	0	1.25
15	MP3A	Mx	009	1.25
16	MP3A	Χ	15.581	5.25
17	MP3A	Ζ	0	5.25
18	MP3A	Mx	009	5.25
19	MP3A	Χ	15.581	1.25
20	MP3A	Z	0	1.25
21	MP3A	Mx	009	1.25
22	MP3A	Χ	15.581	5.25
23	MP3A	Z	0	5.25
24	MP3A	Mx	009	5.25
25	MP4A	Χ	7.862	2.25

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:___

Member Point Loads (BLC 18: Antenna Wi (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
26	MP4A	Z	0	2.25
27	MP4A	Mx	003	2.25
28	MP4A	Χ	7.862	4.25
29	MP4A	Z	0	4.25
30	MP4A	Mx	003	4.25
31	MP3A	Χ	2.777	7
32	MP3A	Z	0	7
33	MP3A	Mx	.000926	7
34	MP3A	Χ	10.811	1.5
35	MP3A	Z	0	1.5
36	MP3A	Mx	.007	1.5
37	MP4A	Χ	8.993	1.5
38	MP4A	Z	0	1.5
39	MP4A	Mx	.006	1.5
40	M17	Χ	28.044	1
41	M17	Z	0	1
42	M17	Mx	0	1

Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	29.44	1.25
2	MP1A	Z	16.997	1.25
3	MP1A	Mx	02	1.25
4	MP1A	X	29.44	5.25
5	MP1A	Z	16.997	5.25
6	MP1A	Mx	02	5.25
7	MP5A	Χ	29.44	1.25
8	MP5A	Z	16.997	1.25
9	MP5A	Mx	02	1.25
10	MP5A	X	29.44	5.25
11	MP5A	Z	16.997	5.25
12	MP5A	Mx	02	5.25
13	MP3A	X	17.123	1.25
14	MP3A	Z	9.886	1.25
15	MP3A	Mx	000926	1.25
16	MP3A	X	17.123	5.25
17	MP3A	Z	9.886	5.25
18	MP3A	Mx	000926	5.25
19	MP3A	X	17.123	1.25
20	MP3A	Z	9.886	1.25
21	MP3A	Mx	019	1.25
22	MP3A	X	17.123	5.25
23	MP3A	Z	9.886	5.25
24	MP3A	Mx	019	5.25
25	MP4A	X	9.132	2.25
26	MP4A	Z	5.272	2.25
27	MP4A	Mx	003	2.25
28	MP4A	X	9.132	4.25
29	MP4A	Z	5.272	4.25
30	MP4A	Mx	003	4.25
31	MP3A	X	2.609	7
32	MP3A	Z	1.506	7
33	MP3A	Mx	.00087	7
34	MP3A	X	10.399	1.5
35	MP3A	Z	6.004	1.5
36	MP3A	Mx	.007	1.5

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Point Loads (BLC 19: Antenna Wi (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
37	MP4A	X	9.218	1.5
38	MP4A	Z	5.322	1.5
39	MP4A	Mx	.006	1.5
40	M17	Χ	27.162	1
41	M17	Z	15.682	1
42	M17	Mx	0	1

Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	17.925	1.25
2	MP1A	Z	31.047	1.25
3	MP1A	Mx	012	1.25
4	MP1A	X	17.925	5.25
5	MP1A	Z	31.047	5.25
6	MP1A	Mx	012	5.25
7	MP5A	Х	17.925	1.25
8	MP5A	Z	31.047	1.25
9	MP5A	Mx	012	1.25
10	MP5A	X	17.925	5.25
11	MP5A	Z	31.047	5.25
12	MP5A	Mx	012	5.25
13	MP3A	X	14.077	1.25
14	MP3A	Z	24.381	1.25
15	MP3A	Mx	.014	1.25
16	MP3A	X	14.077	5.25
17	MP3A	Z	24.381	5.25
18	MP3A	Mx	.014	5.25
19	MP3A	X	14.077	1.25
20	MP3A	Z	24.381	1.25
21	MP3A	Mx	031	1.25
22	MP3A	X	14.077	5.25
23	MP3A	Z	24.381	5.25
24	MP3A	Mx	031	5.25
25	MP4A	X	7.956	2.25
26	MP4A	Z	13.779	2.25
27	MP4A	Mx	003	2.25
28	MP4A	X	7.956	4.25
29	MP4A	Z	13.779	4.25
30	MP4A	Mx	003	4.25
31	MP3A	X	1.743	7
32	MP3A	Z	3.018	7
33	MP3A	Mx	.000581	7
34	MP3A	X	7.2	1.5
35	MP3A	Z	12.471	1.5
36	MP3A	Mx	.005	1.5
37	MP4A	X	6.973	1.5
38	MP4A	Ž	12.077	1.5
39	MP4A	Mx	.005	1.5
40	M17	X	15.989	1
41	M17	Z	27.693	1
42	M17	Mx	0	1

Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	1.25
2	MP1A	Z	36.778	1.25

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Point Loads (BLC 21 : Antenna Wi (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
3	MP1A	Mx	0	1.25
4	MP1A	X	0	5.25
5	MP1A	Z	36.778	5.25
6	MP1A	Mx	0	5.25
7	MP5A	X	0	1.25
8	MP5A	Z	36.778	1.25
9	MP5A	Mx	0	1.25
10	MP5A	X	0	5.25
11	MP5A	Z	36.778	5.25
12	MP5A	Mx	0	5.25
13	MP3A	X	0	1.25
14	MP3A	Z	32.344	1.25
15	MP3A	Mx	.03	1.25
16	MP3A	Х	0	5.25
17	MP3A	Z	32.344	5.25
18	MP3A	Mx	.03	5.25
19	MP3A	Х	0	1.25
20	MP3A	Z	32.344	1.25
21	MP3A	Mx	03	1.25
22	MP3A	X	0	5.25
23	MP3A	Z	32.344	5.25
24	MP3A	Mx	03	5.25
25	MP4A	Х	0	2.25
26	MP4A	Z	18.594	2.25
27	MP4A	Mx	0	2.25
28	MP4A	Х	0	4.25
29	MP4A	Z	18.594	4.25
30	MP4A	Mx	0	4.25
31	MP3A	X	0	7
32	MP3A	Z	3.721	7
33	MP3A	Mx	0	7
34	MP3A	X	0	1.5
35	MP3A	Z	15.596	1.5
36	MP3A	Mx	0	1.5
37	MP4A	Х	0	1.5
38	MP4A	Z	15.596	1.5
39	MP4A	Mx	0	1.5
40	M17	X	0	1
41	M17	Z	29.271	1
42	M17	Mx	0	1

Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Χ	-17.925	1.25
2	MP1A	Z	31.047	1.25
3	MP1A	Mx	.012	1.25
4	MP1A	Χ	-17.925	5.25
5	MP1A	Z	31.047	5.25
6	MP1A	Mx	.012	5.25
7	MP5A	Χ	-17.925	1.25
8	MP5A	Z	31.047	1.25
9	MP5A	Mx	.012	1.25
10	MP5A	Χ	-17.925	5.25
11	MP5A	Z	31.047	5.25
12	MP5A	Mx	.012	5.25
13	MP3A	X	-14.077	1.25

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
14	MP3A	Ζ	24.381	1.25
15	MP3A	Mx	.031	1.25
16	MP3A	Χ	-14.077	5.25
17	MP3A	Z	24.381	5.25
18	MP3A	Mx	.031	5.25
19	MP3A	Χ	-14.077	1.25
20	MP3A	Z	24.381	1.25
21	MP3A	Mx	014	1.25
22	MP3A	Χ	-14.077	5.25
23	MP3A	Z	24.381	5.25
24	MP3A	Mx	014	5.25
25	MP4A	Χ	-7.956	2.25
26	MP4A	Z	13.779	2.25
27	MP4A	Mx	.003	2.25
28	MP4A	Χ	-7.956	4.25
29	MP4A	Ζ	13.779	4.25
30	MP4A	Mx	.003	4.25
31	MP3A	Χ	-1.743	7
32	MP3A	Z	3.018	7
33	MP3A	Mx	000581	7
34	MP3A	Χ	- 7.2	1.5
35	MP3A	Z	12.471	1.5
36	MP3A	Mx	005	1.5
37	MP4A	Χ	-6.973	1.5
38	MP4A	Z	12.077	1.5
39	MP4A	Mx	005	1.5
40	M17	Χ	-12.975	1
41	M17	Z	22.474	1
42	M17	Mx	0	1

Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Χ	-29.44	1.25
2	MP1A	Z	16.997	1.25
3	MP1A	Mx	.02	1.25
4	MP1A	Χ	-29.44	5.25
5	MP1A	Ζ	16.997	5.25
6	MP1A	Mx	.02	5.25
7	MP5A	Χ	-29.44	1.25
8	MP5A	Z	16.997	1.25
9	MP5A	Mx	.02	1.25
10	MP5A	Χ	-29.44	5.25
11	MP5A	Ζ	16.997	5.25
12	MP5A	Mx	.02	5.25
13	MP3A	Χ	-17.123	1.25
14	MP3A	Z	9.886	1.25
15	MP3A	Mx	.019	1.25
16	MP3A	Χ	-17.123	5.25
17	MP3A	Z	9.886	5.25
18	MP3A	Mx	.019	5.25
19	MP3A	Χ	-17.123	1.25
20	MP3A	Z	9.886	1.25
21	MP3A	Mx	.000926	1.25
22	MP3A	Χ	-17.123	5.25
23	MP3A	Z	9.886	5.25
24	MP3A	Mx	.000926	5.25

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Point Loads (BLC 23 : Antenna Wi (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
25	MP4A	X	-9.132	2.25
26	MP4A	Z	5.272	2.25
27	MP4A	Mx	.003	2.25
28	MP4A	X	-9.132	4.25
29	MP4A	Z	5.272	4.25
30	MP4A	Mx	.003	4.25
31	MP3A	X	-2.609	7
32	MP3A	Z	1.506	7
33	MP3A	Mx	00087	7
34	MP3A	X	-10.399	1.5
35	MP3A	Z	6.004	1.5
36	MP3A	Mx	007	1.5
37	MP4A	X	-9.218	1.5
38	MP4A	Z	5.322	1.5
39	MP4A	Mx	006	1.5
40	M17	X	-21.942	1
41	M17	Z	12.668	1
42	M17	Mx	0	1

Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Χ	-33.067	1.25
2	MP1A	Z	0	1.25
3	MP1A	Mx	.022	1.25
4	MP1A	Χ	-33.067	5.25
5	MP1A	Z	0	5.25
6	MP1A	Mx	.022	5.25
7	MP5A	Χ	-33.067	1.25
8	MP5A	Z	0	1.25
9	MP5A	Mx	.022	1.25
10	MP5A	X	-33.067	5.25
11	MP5A	Z	0	5.25
12	MP5A	Mx	.022	5.25
13	MP3A	Χ	-15.581	1.25
14	MP3A	Z	0	1.25
15	MP3A	Mx	.009	1.25
16	MP3A	Х	-15.581	5.25
17	MP3A	Z	0	5.25
18	MP3A	Mx	.009	5.25
19	MP3A	Χ	-15.581	1.25
20	MP3A	Z	0	1.25
21	MP3A	Mx	.009	1.25
22	MP3A	Χ	-15.581	5.25
23	MP3A	Z	0	5.25
24	MP3A	Mx	.009	5.25
25	MP4A	Χ	-7.862	2.25
26	MP4A	Z	0	2.25
27	MP4A	Mx	.003	2.25
28	MP4A	Χ	-7.862	4.25
29	MP4A	Z	0	4.25
30	MP4A	Mx	.003	4.25
31	MP3A	Χ	-2.777	7
32	MP3A	Z	0	7
33	MP3A	Mx	000926	7
34	MP3A	Χ	-10.811	1.5
35	MP3A	Z	0	1.5

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Point Loads (BLC 24 : Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
36	MP3A	Mx	007	1.5
37	MP4A	X	-8.993	1.5
38	MP4A	Z	0	1.5
39	MP4A	Mx	006	1.5
40	M17	X	-28.044	1
41	M17	Z	0	1
42	M17	Mx	0	1

Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-29.44	1.25
2	MP1A	Z	-16.997	1.25
3	MP1A	Mx	.02	1.25
4	MP1A	X	-29.44	5.25
5	MP1A	Z	-16.997	5.25
6	MP1A	Mx	.02	5.25
7	MP5A	Χ	-29.44	1.25
8	MP5A	Z	-16.997	1.25
9	MP5A	Mx	.02	1.25
10	MP5A	Х	-29.44	5.25
11	MP5A	Z	-16.997	5.25
12	MP5A	Mx	.02	5.25
13	MP3A	Χ	-17.123	1.25
14	MP3A	Z	-9.886	1.25
15	MP3A	Mx	.000926	1.25
16	MP3A	Χ	-17.123	5.25
17	MP3A	Z	-9.886	5.25
18	MP3A	Mx	.000926	5.25
19	MP3A	X	-17.123	1.25
20	MP3A	Z	-9.886	1.25
21	MP3A	Mx	.019	1.25
22	MP3A	Х	-17.123	5.25
23	MP3A	Z	-9.886	5.25
24	MP3A	Mx	.019	5.25
25	MP4A	Χ	-9.132	2.25
26	MP4A	Z	-5.272	2.25
27	MP4A	Mx	.003	2.25
28	MP4A	Χ	-9.132	4.25
29	MP4A	Z	-5.272	4.25
30	MP4A	Mx	.003	4.25
31	MP3A	Χ	-2.609	7
32	MP3A	Z	-1.506	7
33	MP3A	Mx	00087	7
34	MP3A	X	-10.399	1.5
35	MP3A	Z	-6.004	1.5
36	MP3A	Mx	007	1.5
37	MP4A	Χ	-9.218	1.5
38	MP4A	Z	-5.322	1.5
39	MP4A	Mx	006	1.5
40	M17	Χ	-27.162	1
41	M17	Z	-15.682	1
42	M17	Mx	0	1

Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-17.925	1.25

: : 468044-VZW_MT_LOT_SectorC_H July 7, 2021 9:26 AM Checked By:___

Member Point Loads (BLC 26 : Antenna Wi (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
2	MP1A	Z	-31.047	1.25
3	MP1A	Mx	.012	1.25
4	MP1A	X	-17.925	5.25
5	MP1A	Z	-31.047	5.25
6	MP1A	Mx	.012	5.25
7	MP5A	X	-17.925	1.25
8	MP5A	Z	-31.047	1.25
9	MP5A	Mx	.012	1.25
10	MP5A	X	-17.925	5.25
11	MP5A	Z	-31.047	5.25
12	MP5A	Mx	.012	5.25
13	MP3A	X	-14.077	1.25
14	MP3A	Z	-24.381	1.25
15	MP3A	Mx	014	1.25
16	MP3A	X	-14.077	5.25
17	MP3A	Z	-24.381	5.25
18	MP3A	Mx	014	5.25
19	MP3A	X	- 14.077	1.25
20	MP3A	Z	-24.381	1.25
21	MP3A	Mx	.031	1.25
22	MP3A	X	-14.077	5.25
23	MP3A	Z	-24.381	5.25
24	MP3A	Mx	.031	5.25
25	MP4A	X	-7.956	2.25
26	MP4A	Z	-13.779	2.25
27	MP4A	Mx	.003	2.25
28	MP4A	X	-7.956	4.25
29	MP4A	Z	-13.779	4.25
30	MP4A	Mx	.003	4.25
31	MP3A	Х	-1.743	7
32	MP3A	Z	-3.018	7
33	MP3A	Mx	000581	7
34	MP3A	X	-7.2	1.5
35	MP3A	Z	-12.471	1.5
36	MP3A	Mx	005	1.5
37	MP4A	X	-6.973	1.5
38	MP4A	Z	-12.077	1.5
39	MP4A	Mx	005	1.5
40	M17	X	-15.989	1
41	M17	Z	-27.693	1
42	M17	Mx	0	1

Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	1.25
2	MP1A	Z	-12.227	1.25
3	MP1A	Mx	0	1.25
4	MP1A	Χ	0	5.25
5	MP1A	Z	-12.227	5.25
6	MP1A	Mx	0	5.25
7	MP5A	Χ	0	1.25
8	MP5A	Z	-12.227	1.25
9	MP5A	Mx	0	1.25
10	MP5A	Χ	0	5.25
11	MP5A	Z	-12.227	5.25
12	MP5A	Mx	0	5.25

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
13	MP3A	Χ	0	1.25
14	MP3A	Z	-11.399	1.25
15	MP3A	Mx	01	1.25
16	MP3A	Χ	0	5.25
17	MP3A	Z	-11.399	5.25
18	MP3A	Mx	01	5.25
19	MP3A	Χ	0	1.25
20	MP3A	Z	-11.399	1.25
21	MP3A	Mx	.01	1.25
22	MP3A	Χ	0	5.25
23	MP3A	Z	-11.399	5.25
24	MP3A	Mx	.01	5.25
25	MP4A	Χ	0	2.25
26	MP4A	Z	-5.986	2.25
27	MP4A	Mx	0	2.25
28	MP4A	Χ	0	4.25
29	MP4A	Z	-5.986	4.25
30	MP4A	Mx	0	4.25
31	MP3A	Χ	0	7
32	MP3A	Z	943	7
33	MP3A	Mx	0	7
34	MP3A	Χ	0	1.5
35	MP3A	Z	-4.763	1.5
36	MP3A	Mx	0	1.5
37	MP4A	Χ	0	1.5
38	MP4A	Z	-4.763	1.5
39	MP4A	Mx	0	1.5
40	M17	Χ	0	1
41	M17	Z	-9.329	1
42	M17	Mx	0	1

Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	5.95	1.25
2	MP1A	Z	-10.306	1.25
3	MP1A	Mx	004	1.25
4	MP1A	Χ	5.95	5.25
5	MP1A	Z	-10.306	5.25
6	MP1A	Mx	004	5.25
7	MP5A	X	5.95	1.25
8	MP5A	Z	-10.306	1.25
9	MP5A	Mx	004	1.25
10	MP5A	Χ	5.95	5.25
11	MP5A	Z	-10.306	5.25
12	MP5A	Mx	004	5.25
13	MP3A	X	4.885	1.25
14	MP3A	Z	-8.46	1.25
15	MP3A	Mx	011	1.25
16	MP3A	X	4.885	5.25
17	MP3A	Z	-8.46	5.25
18	MP3A	Mx	011	5.25
19	MP3A	X	4.885	1.25
20	MP3A	Z	-8.46	1.25
21	MP3A	Mx	.005	1.25
22	MP3A	X	4.885	5.25
23	MP3A	Z	-8.46	5.25

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Point Loads (BLC 28 : Antenna Wm (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[l b,k-ft]	Location[ft,%]
24	MP3A	Mx	.005	5.25
25	MP4A	Χ	2.538	2.25
26	MP4A	Z	-4.396	2.25
27	MP4A	Mx	000846	2.25
28	MP4A	Χ	2.538	4.25
29	MP4A	Ζ	-4.396	4.25
30	MP4A	Mx	000846	4.25
31	MP3A	Χ	.435	7
32	MP3A	Z	753	7
33	MP3A	Mx	.000145	7
34	MP3A	Χ	2.184	1.5
35	MP3A	Ζ	-3.783	1.5
36	MP3A	Mx	.001	1.5
37	MP4A	Χ	2.109	1.5
38	MP4A	Ζ	-3.652	1.5
39	MP4A	Mx	.001	1.5
40	M17	Χ	4.089	1
41	M17	Z	-7.082	1
42	M17	Mx	0	1

Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Χ	9.741	1.25
2	MP1A	Z	-5.624	1.25
3	MP1A	Mx	006	1.25
4	MP1A	X	9.741	5.25
5	MP1A	Z	-5.624	5.25
6	MP1A	Mx	006	5.25
7	MP5A	Χ	9.741	1.25
8	MP5A	Z	-5.624	1.25
9	MP5A	Mx	006	1.25
10	MP5A	Χ	9.741	5.25
11	MP5A	Z	-5.624	5.25
12	MP5A	Mx	006	5.25
13	MP3A	X	5.637	1.25
14	MP3A	Z	-3.254	1.25
15	MP3A	Mx	006	1.25
16	MP3A	Χ	5.637	5.25
17	MP3A	Z	-3.254	5.25
18	MP3A	Mx	006	5.25
19	MP3A	X	5.637	1.25
20	MP3A	Z	-3.254	1.25
21	MP3A	Mx	000305	1.25
22	MP3A	X	5.637	5.25
23	MP3A	Z	-3.254	5.25
24	MP3A	Mx	000305	5.25
25	MP4A	Χ	2.818	2.25
26	MP4A	Z	-1.627	2.25
27	MP4A	Mx	000939	2.25
28	MP4A	Χ	2.818	4.25
29	MP4A	Z	-1.627	4.25
30	MP4A	Mx	000939	4.25
31	MP3A	Χ	.628	7
32	MP3A	Z	362	7
33	MP3A	Mx	.000209	7
34	MP3A	Х	3.099	1.5

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
35	MP3A	Z	-1.789	1.5
36	MP3A	Mx	.002	1.5
37	MP4A	X	2.707	1.5
38	MP4A	Z	-1.563	1.5
39	MP4A	Mx	.002	1.5
40	M17	Χ	6.897	1
41	M17	Z	-3.982	1
42	M17	Mx	0	1

Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Χ	10.921	1.25
2	MP1A	Z	0	1.25
3	MP1A	Mx	007	1.25
4	MP1A	X	10.921	5.25
5	MP1A	Z	0	5.25
6	MP1A	Mx	007	5.25
7	MP5A	X	10.921	1.25
8	MP5A	Z	0	1.25
9	MP5A	Mx	007	1.25
10	MP5A	X	10.921	5.25
11	MP5A	Z	0	5.25
12	MP5A	Mx	007	5.25
13	MP3A	Х	4.879	1.25
14	MP3A	Z	0	1.25
15	MP3A	Mx	003	1.25
16	MP3A	Х	4.879	5.25
17	MP3A	Z	0	5.25
18	MP3A	Mx	003	5.25
19	MP3A	Χ	4.879	1.25
20	MP3A	Z	0	1.25
21	MP3A	Mx	003	1,25
22	MP3A	Х	4.879	5.25
23	MP3A	Z	0	5.25
24	MP3A	Mx	003	5.25
25	MP4A	Х	2.344	2.25
26	MP4A	Z	0	2.25
27	MP4A	Mx	000781	2.25
28	MP4A	Х	2.344	4.25
29	MP4A	Z	0	4.25
30	MP4A	Mx	000781	4.25
31	MP3A	Χ	.652	7
32	MP3A	Z	0	7
33	MP3A	Mx	.000217	7
34	MP3A	Х	3.184	1.5
35	MP3A	Z	0	1.5
36	MP3A	Mx	.002	1.5
37	MP4A	Х	2.579	1.5
38	MP4A	Z	0	1.5
39	MP4A	Mx	.002	1.5
40	M17	X	8.903	1
41	M17	Z	0	1
42	M17	Mx	0	1

Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Point Loads (BLC 31 : Antenna Wm (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	9.741	1.25
2	MP1A	Z	5.624	1.25
3	MP1A	Mx	006	1.25
4	MP1A	X	9.741	5.25
5	MP1A	Z	5.624	5.25
6	MP1A	Mx	006	5.25
7	MP5A	X	9.741	1.25
8	MP5A	Z	5.624	1.25
9	MP5A	Mx	006	1.25
10	MP5A	X	9.741	5.25
11	MP5A	Z	5.624	5.25
12	MP5A	Mx	006	5.25
13	MP3A	X	5.637	1.25
14	MP3A	Z	3.254	1.25
15	MP3A	Mx	000305	1.25
16	MP3A	X	5.637	5.25
17	MP3A	Z	3.254	5.25
18	MP3A	Mx	000305	5.25
19	MP3A	X	5.637	1.25
20	MP3A	Z	3.254	1.25
21	MP3A	Mx	006	1.25
22	MP3A	X	5.637	5.25
23	MP3A	Z	3.254	5.25
24	MP3A	Mx	006	5.25
25	MP4A	X	2.818	2.25
26	MP4A	Z	1.627	2.25
27	MP4A	Mx	000939	2.25
28	MP4A	X	2.818	4.25
29	MP4A	Z	1.627	4.25
30	MP4A	Mx	000939	4.25
31	MP3A	X	.628	7
32	MP3A	Z	.362	7
33	MP3A	Mx	.000209	7
34	MP3A	X	3.099	1.5
35	MP3A	Z	1.789	1.5
36	MP3A	Mx	.002	1.5
37	MP4A	X	2.707	1.5
38	MP4A	Z	1.563	1.5
39	MP4A	Mx	.002	1.5
40	M17	X	8.708	1
41	M17	Z	5.028	1
42	M17	Mx	0	1

Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Χ	5.95	1.25
2	MP1A	Z	10.306	1.25
3	MP1A	Mx	004	1.25
4	MP1A	Χ	5.95	5.25
5	MP1A	Z	10.306	5.25
6	MP1A	Mx	004	5.25
7	MP5A	Χ	5.95	1.25
8	MP5A	Z	10.306	1.25
9	MP5A	Mx	004	1.25
10	MP5A	Χ	5.95	5.25
11	MP5A	Z	10.306	5.25

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
12	MP5A	Mx	004	5.25
13	MP3A	Χ	4.885	1.25
14	MP3A	Z	8.46	1.25
15	MP3A	Mx	.005	1.25
16	MP3A	Х	4.885	5.25
17	MP3A	Z	8.46	5.25
18	MP3A	Mx	.005	5.25
19	MP3A	Х	4.885	1.25
20	MP3A	Z	8.46	1.25
21	MP3A	Mx	011	1.25
22	MP3A	Χ	4.885	5.25
23	MP3A	Z	8.46	5.25
24	MP3A	Mx	011	5.25
25	MP4A	Х	2.538	2.25
26	MP4A	Z	4.396	2.25
27	MP4A	Mx	000846	2.25
28	MP4A	Х	2.538	4.25
29	MP4A	Z	4.396	4.25
30	MP4A	Mx	000846	4.25
31	MP3A	Χ	.435	7
32	MP3A	Z	.753	7
33	MP3A	Mx	.000145	7
34	MP3A	X	2.184	1.5
35	MP3A	Z	3.783	1.5
36	MP3A	Mx	.001	1.5
37	MP4A	X	2.109	1.5
38	MP4A	Z	3.652	1.5
39	MP4A	Mx	.001	1.5
40	M17	Χ	5.134	1
41	M17	Z	8.892	1
42	M17	Mx	0	1

Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	1.25
2	MP1A	Z	12.227	1.25
3	MP1A	Mx	0	1.25
4	MP1A	X	0	5.25
5	MP1A	Z	12.227	5.25
6	MP1A	Mx	0	5.25
7	MP5A	X	0	1.25
8	MP5A	Z	12.227	1.25
9	MP5A	Mx	0	1.25
10	MP5A	X	0	5.25
11	MP5A	Z	12.227	5.25
12	MP5A	Mx	0	5.25
13	MP3A	X	0	1.25
14	MP3A	Z	11.399	1.25
15	MP3A	Mx	.01	1.25
16	MP3A	X	0	5.25
17	MP3A	Z	11.399	5.25
18	MP3A	Mx	.01	5.25
19	MP3A	X	0	1.25
20	MP3A	Z	11.399	1.25
21	MP3A	Mx	01	1.25
22	MP3A	X	0	5.25

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
23	MP3A	Z	11.399	5.25
24	MP3A	Mx	01	5.25
25	MP4A	Χ	0	2.25
26	MP4A	Z	5.986	2.25
27	MP4A	Mx	0	2.25
28	MP4A	Χ	0	4.25
29	MP4A	Z	5.986	4.25
30	MP4A	Mx	0	4.25
31	MP3A	Χ	0	7
32	MP3A	Z	.943	7
33	MP3A	Mx	0	7
34	MP3A	Χ	0	1.5
35	MP3A	Z	4.763	1.5
36	MP3A	Mx	0	1.5
37	MP4A	Χ	0	1.5
38	MP4A	Z	4.763	1.5
39	MP4A	Mx	0	1.5
40	M17	Χ	0	1
41	M17	Z	9.329	1
42	M17	Mx	0	1

Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-5.95	1.25
2	MP1A	Z	10.306	1.25
3	MP1A	Mx	.004	1.25
4	MP1A	Χ	-5.95	5.25
5	MP1A	Z	10.306	5.25
6	MP1A	Mx	.004	5.25
7	MP5A	X	-5.95	1.25
8	MP5A	Z	10.306	1.25
9	MP5A	Mx	.004	1,25
10	MP5A	Χ	-5.95	5.25
11	MP5A	Z	10.306	5.25
12	MP5A	Mx	.004	5.25
13	MP3A	Χ	-4.885	1.25
14	MP3A	Z	8.46	1.25
15	MP3A	Mx	.011	1.25
16	MP3A	Х	-4.885	5.25
17	MP3A	Z	8.46	5.25
18	MP3A	Mx	.011	5.25
19	MP3A	Χ	-4.885	1.25
20	MP3A	Z	8.46	1.25
21	MP3A	Mx	005	1.25
22	MP3A	X	-4.885	5.25
23	MP3A	Z	8.46	5.25
24	MP3A	Mx	005	5.25
25	MP4A	Χ	-2.538	2.25
26	MP4A	Z	4.396	2.25
27	MP4A	Mx	.000846	2.25
28	MP4A	Χ	-2.538	4.25
29	MP4A	Z	4.396	4.25
30	MP4A	Mx	.000846	4.25
31	MP3A	Χ	435	7
32	MP3A	Z	.753	7
33	MP3A	Mx	000145	7

: : 468044-VZW_MT_LOT_SectorC_H July 7, 2021 9:26 AM Checked By:____

Member Point Loads (BLC 34 : Antenna Wm (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
34	MP3A	X	-2.184	1.5
35	MP3A	Z	3.783	1.5
36	MP3A	Mx	001	1.5
37	MP4A	Χ	- 2.109	1.5
38	MP4A	Z	3.652	1.5
39	MP4A	Mx	001	1.5
40	M17	X	-4.089	1
41	M17	Z	7.082	1
42	M17	Mx	0	1

Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Χ	-9.741	1.25
2	MP1A	Z	5.624	1.25
3	MP1A	Mx	.006	1.25
4	MP1A	Χ	-9.741	5.25
5	MP1A	Z	5.624	5.25
6	MP1A	Mx	.006	5.25
7	MP5A	Χ	-9.741	1.25
8	MP5A	Z	5.624	1.25
9	MP5A	Mx	.006	1.25
10	MP5A	Х	-9.741	5.25
11	MP5A	Z	5.624	5.25
12	MP5A	Mx	.006	5.25
13	MP3A	Х	-5.637	1.25
14	MP3A	Z	3.254	1.25
15	MP3A	Mx	.006	1.25
16	MP3A	X	-5.637	5.25
17	MP3A	Z	3.254	5.25
18	MP3A	Mx	.006	5.25
19	MP3A	Х	-5.637	1.25
20	MP3A	Z	3.254	1.25
21	MP3A	Mx	.000305	1.25
22	MP3A	Х	-5.637	5.25
23	MP3A	Z	3.254	5.25
24	MP3A	Mx	.000305	5.25
25	MP4A	X	-2.818	2.25
26	MP4A	Z	1.627	2.25
27	MP4A	Mx	.000939	2.25
28	MP4A	Х	-2.818	4.25
29	MP4A	Z	1.627	4.25
30	MP4A	Mx	.000939	4.25
31	MP3A	Х	628	7
32	MP3A	Z	.362	7
33	MP3A	Mx	000209	7
34	MP3A	Х	-3.099	1.5
35	MP3A	Z	1.789	1.5
36	MP3A	Mx	002	1.5
37	MP4A	Х	-2.707	1.5
38	MP4A	Z	1.563	1.5
39	MP4A	Mx	002	1.5
40	M17	X	-6.897	1
41	M17	Z	3.982	1
42	M17	Mx	0	1

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-10.921	1.25
2	MP1A	Z	0	1.25
3	MP1A	Mx	.007	1.25
4	MP1A	X	-10.921	5.25
5	MP1A	Ž	0	5.25
6	MP1A	Mx	.007	5.25
7	MP5A	X	-10.921	1.25
8	MP5A	Z	0	1.25
9	MP5A	Mx	.007	1.25
10	MP5A	X	-10.921	5.25
11	MP5A	Z	0	5.25
12	MP5A	Mx	.007	5.25
13	MP3A	X	-4.879	1.25
14	MP3A	Z	0	1.25
15	MP3A	Mx	.003	1.25
16	MP3A	X	-4.879	5.25
17	MP3A	Z	0	5.25
18	MP3A	Mx	.003	5.25
19	MP3A	X	-4.879	1.25
20	MP3A	Z	0	1.25
21	MP3A	Mx	.003	1.25
22	MP3A	X	-4.879	5.25
23	MP3A	Z	0	5.25
24	MP3A	Mx	.003	5.25
25	MP4A	X	-2.344	2.25
26	MP4A	Z	0	2.25
27	MP4A	Mx	.000781	2.25
28	MP4A	X	-2.344	4.25
29	MP4A	Z	0	4.25
30	MP4A	Mx	.000781	4.25
31	MP3A	X	652	7
32	MP3A	Z	0	7
33	MP3A	Mx	000217	7
34	MP3A	X	-3.184	1.5
35	MP3A	Z	0	1.5
36	MP3A	Mx	002	1.5
37	MP4A	X	-2.579	1.5
38	MP4A	Z	0	1.5
39	MP4A	Mx	002	1.5
40	M17	X	-8.903	1
41	M17	Z	0	11
42	M17	Mx	0	1

Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Χ	-9.741	1.25
2	MP1A	Z	-5.624	1.25
3	MP1A	Mx	.006	1.25
4	MP1A	Χ	-9.741	5.25
5	MP1A	Z	-5.624	5.25
6	MP1A	Mx	.006	5.25
7	MP5A	Χ	-9.741	1.25
8	MP5A	Z	-5.624	1.25
9	MP5A	Mx	.006	1.25
10	MP5A	Χ	-9.741	5.25
11	MP5A	Z	-5.624	5.25

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Point Loads (BLC 37 : Antenna Wm (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
12	MP5A	Mx	.006	5.25
13	MP3A	Χ	-5.637	1.25
14	MP3A	Z	-3.254	1.25
15	MP3A	Mx	.000305	1.25
16	MP3A	Χ	-5.637	5.25
17	MP3A	Ζ	-3.254	5.25
18	MP3A	Mx	.000305	5.25
19	MP3A	Χ	-5.637	1.25
20	MP3A	Z	-3.254	1.25
21	MP3A	Mx	.006	1.25
22	MP3A	Х	-5.637	5.25
23	MP3A	Z	-3.254	5.25
24	MP3A	Mx	.006	5.25
25	MP4A	Χ	-2.818	2.25
26	MP4A	Z	-1.627	2.25
27	MP4A	Mx	.000939	2.25
28	MP4A	Χ	-2.818	4.25
29	MP4A	Z	-1.627	4.25
30	MP4A	Mx	.000939	4.25
31	MP3A	Χ	628	7
32	MP3A	Ζ	362	7
33	MP3A	Mx	000209	7
34	MP3A	Χ	-3.099	1.5
35	MP3A	Z	-1.789	1.5
36	MP3A	Mx	002	1.5
37	MP4A	Χ	-2.707	1.5
38	MP4A	Z	-1.563	1.5
39	MP4A	Mx	002	1.5
40	M17	Χ	-8.708	1
41	M17	Z	-5.028	1
42	M17	Mx	0	1

Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-5.95	1.25
2	MP1A	Z	-10.306	1.25
3	MP1A	Mx	.004	1.25
4	MP1A	X	-5.95	5.25
5	MP1A	Z	-10.306	5.25
6	MP1A	Mx	.004	5.25
7	MP5A	X	-5.95	1.25
8	MP5A	Z	-10.306	1.25
9	MP5A	Mx	.004	1.25
10	MP5A	X	-5.95	5.25
11	MP5A	Z	-10.306	5.25
12	MP5A	Mx	.004	5.25
13	MP3A	X	-4.885	1.25
14	MP3A	Z	-8.46	1.25
15	MP3A	Mx	005	1.25
16	MP3A	X	-4.885	5.25
17	MP3A	Z	-8.46	5.25
18	MP3A	Mx	005	5.25
19	MP3A	X	-4.885	1.25
20	MP3A	Z	-8.46	1.25
21	MP3A	Mx	.011	1.25
22	MP3A	X	-4.885	5.25

Company Designer Job Number Model Name : Maser Consulting

: : 468044-VZW_MT_LOT_SectorC_H July 7, 2021 9:26 AM Checked By:____

Member Point Loads (BLC 38 : Antenna Wm (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
23	MP3A	Ζ	-8.46	5.25
24	MP3A	Mx	.011	5.25
25	MP4A	Χ	-2.538	2.25
26	MP4A	Z	-4.396	2.25
27	MP4A	Mx	.000846	2.25
28	MP4A	Χ	-2.538	4.25
29	MP4A	Z	-4.396	4.25
30	MP4A	Mx	.000846	4.25
31	MP3A	Χ	435	7
32	MP3A	Z	753	7
33	MP3A	Mx	000145	7
34	MP3A	Χ	-2.184	1.5
35	MP3A	Z	-3.783	1.5
36	MP3A	Mx	001	1.5
37	MP4A	Χ	-2.109	1.5
38	MP4A	Z	-3.652	1.5
39	MP4A	Mx	001	1.5
40	M17	Χ	-5.134	1
41	M17	Z	-8.892	1
42	M17	Mx	0	1

Member Point Loads (BLC 77 : Lm1)

Member Label		Member Label	Direction Magnitude[lb,k-ft]		Location[ft,%]
	1	M10	Υ	-500	0

Member Point Loads (BLC 78 : Lm2)

Member Label		Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M5	Υ	-500	%9 7

Member Point Loads (BLC 79 : Lv1)

Member Label		Direction Magnitude[lb,k-ft]		Location[ft,%]	
1	M5	Y	-250	0	

Member Point Loads (BLC 80 : Lv2)

Member Label		Member Label	Direction Magnitude[lb,k-ft]		Location[ft,%]	
	1	M5	Υ	-250	%50	

Member Distributed Loads (BLC 40 : Structure Di)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	Y	-7.154	-7.154	0	%100
2	M3	Υ	-8.645	-8.645	0	%100
3	M5	Υ	-8.645	-8.645	0	%100
4	MP1A	Υ	-4.417	-4.417	0	%100
5	MP3A	Υ	-4.417	-4.417	0	%100
6	MP5A	Υ	-4.417	-4.417	0	%100
7	M17	Υ	-4.417	-4.417	0	%100
8	MP2A	Υ	-4.417	-4.417	0	%100
9	MP4A	Υ	-4.417	-4.417	0	%100
10	M22	Y	-5.866	-5.866	0	%100
11	M23	Υ	-6.823	-6.823	0	%100

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg))

Member Label	Direction	Start Magnitude[lb/ft, End Magnitude[lb/ft,F Start Location[ft,%]	End Location[ft,%]

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Distributed Loads (BLC 41: Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	Χ	0	0	0	%100
2	M4	Z	-9.394	-9.394	0	%100
3	M3	Χ	0	0	0	%100
4	M3	Ζ	0	0	0	%100
5	M5	Χ	0	0	0	%100
6	M5	Z	-15.869	-15.869	0	%100
7	MP1A	Х	0	0	0	%100
8	MP1A	Z	-9.045	-9.045	0	%100
9	MP3A	Χ	0	0	0	%100
10	MP3A	Ζ	-9.045	-9.045	0	%100
11	MP5A	Χ	0	0	0	%100
12	MP5A	Z	-9.045	-9.045	0	%100
13	M17	X	0	0	0	%100
14	M17	Ζ	-7.397	-7.397	0	%100
15	MP2A	Χ	0	0	0	%100
16	MP2A	Ζ	-9.045	-9.045	0	%100
17	MP4A	X	0	0	0	%100
18	MP4A	Z	-9.045	-9.045	0	%100
19	M22	Χ	0	0	0	%100
20	M22	Z	-13.33	-13.33	0	%100
21	M23	Х	0	0	0	%100
22	M23	Z	0	0	0	%100

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	Χ	4.697	4.697	0	%100
2	M4	Z	-8.135	-8.135	0	%100
3	M3	X	1.406	1.406	0	%100
4	M3	Z	-2.436	-2.436	0	%100
5	M5	X	5.951	5.951	0	%100
6	M5	Z	-10.307	-10.307	0	%100
7	MP1A	Χ	4.523	4.523	0	%100
8	MP1A	Z	-7.833	-7.833	0	%100
9	MP3A	X	4.523	4.523	0	%100
10	MP3A	Z	-7.833	-7.833	0	%100
11	MP5A	X	4.523	4.523	0	%100
12	MP5A	Z	-7.833	-7.833	0	%100
13	M17	Χ	3.698	3.698	0	%100
14	M17	Ζ	-6.406	-6.406	0	%100
15	MP2A	X	4.523	4.523	0	%100
16	MP2A	Z	-7.833	-7.833	0	%100
17	MP4A	Χ	4.523	4.523	0	%100
18	MP4A	Ζ	-7.833	-7.833	0	%100
19	M22	Χ	4.999	4.999	0	%100
20	M22	Z	-8.658	-8.658	0	%100
21	M23	Χ	1.087	1.087	0	%100
22	M23	Z	-1.882	-1.882	0	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M4	X	8.135	8.135	0	%100
2	M4	Z	-4.697	-4.697	0	%100
3	M3	Χ	7.307	7.307	0	%100
4	M3	Ζ	-4.218	-4.218	0	%100
5	M5	Х	3.436	3.436	0	%100
6	M5	Z	-1.984	-1.984	0	%100

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
7	MP1A	Χ	7.833	7.833	0	%100
8	MP1A	Z	-4.523	-4.523	0	%100
9	MP3A	X	7.833	7.833	0	%100
10	MP3A	Z	-4.523	-4.523	0	%100
11	MP5A	Χ	7.833	7.833	0	%100
12	MP5A	Ζ	-4.523	-4.523	0	%100
13	M17	Χ	6.406	6.406	0	%100
14	M17	Z	-3.698	-3.698	0	%100
15	MP2A	Χ	7.833	7.833	0	%100
16	MP2A	Ζ	-4.523	-4.523	0	%100
17	MP4A	Χ	7.833	7.833	0	%100
18	MP4A	Z	-4.523	-4.523	0	%100
19	M22	Χ	2.886	2.886	0	%100
20	M22	Z	-1.666	-1.666	0	%100
21	M23	Χ	5.646	5.646	0	%100
22	M23	Ζ	-3.26	-3.26	0	%100

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	Χ	9.394	9.394	0	%100
2	M4	Z	0	0	0	%100
3	M3	Χ	11.249	11.249	0	%100
4	M3	Ζ	0	0	0	%100
5	M5	Χ	0	0	0	%100
6	M5	Z	0	0	0	%100
7	MP1A	Χ	9.045	9.045	0	%100
8	MP1A	Z	0	0	0	%100
9	MP3A	Χ	9.045	9.045	0	%100
10	MP3A	Z	0	0	0	%100
11	MP5A	Χ	9.045	9.045	0	%100
12	MP5A	Z	0	0	0	%100
13	M17	Χ	7.397	7.397	0	%100
14	M17	Ζ	0	0	0	%100
15	MP2A	Χ	9.045	9.045	0	%100
16	MP2A	Z	0	0	0	%100
17	MP4A	Χ	9.045	9.045	0	%100
18	MP4A	Ζ	0	0	0	%100
19	M22	Χ	0	0	0	%100
20	M22	Z	0	0	0	%100
21	M23	Χ	8.693	8.693	0	%100
22	M23	Z	0	0	0	%100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	X	8.135	8.135	0	%100
2	M4	Z	4.697	4.697	0	%100
3	M3	X	7.307	7.307	0	%100
4	M3	Ζ	4.218	4.218	0	%100
5	M5	Χ	3.436	3.436	0	%100
6	M5	Z	1.984	1.984	0	%100
7	MP1A	X	7.833	7.833	0	%100
8	MP1A	Z	4.523	4.523	0	%100
9	MP3A	X	7.833	7.833	0	%100
10	MP3A	Ζ	4.523	4.523	0	%100
11	MP5A	X	7.833	7.833	0	%100
12	MP5A	Z	4.523	4.523	0	%100

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
13	M17	Χ	6.406	6.406	0	%100
14	M17	Z	3.698	3.698	0	%100
15	MP2A	Χ	7.833	7.833	0	%100
16	MP2A	Z	4.523	4.523	0	%100
17	MP4A	Χ	7.833	7.833	0	%100
18	MP4A	Z	4.523	4.523	0	%100
19	M22	Χ	2.886	2.886	0	%100
20	M22	Z	1.666	1.666	0	%100
21	M23	Χ	5.646	5.646	0	%100
22	M23	Ζ	3.26	3.26	0	%100

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M4	Χ	4.697	4.697	0	%100
2	M4	Z	8.135	8.135	0	%100
3	M3	Χ	1.406	1.406	0	%100
4	M3	Z	2.436	2.436	0	%100
5	M5	Χ	5.951	5.951	0	%100
6	M5	Z	10.307	10.307	0	%100
7	MP1A	Χ	4.523	4.523	0	%100
8	MP1A	Z	7.833	7.833	0	%100
9	MP3A	Χ	4.523	4.523	0	%100
10	MP3A	Ζ	7.833	7.833	0	%100
11	MP5A	Χ	4.523	4.523	0	%100
12	MP5A	Z	7.833	7.833	0	%100
13	M17	Χ	3.698	3.698	0	%100
14	M17	Z	6.406	6.406	0	%100
15	MP2A	Χ	4.523	4.523	0	%100
16	MP2A	Z	7.833	7.833	0	%100
17	MP4A	Χ	4.523	4.523	0	%100
18	MP4A	Z	7.833	7.833	0	%100
19	M22	Χ	4.999	4.999	0	%100
20	M22	Z	8.658	8.658	0	%100
21	M23	Χ	1.087	1.087	0	%100
22	M23	Z	1.882	1.882	0	%100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	Χ	0	0	0	%100
2	M4	Z	9.394	9.394	0	%100
3	M3	X	0	0	0	%100
4	M3	Z	0	0	0	%100
5	M5	Χ	0	0	0	%100
6	M5	Z	15.869	15.869	0	%100
7	MP1A	Χ	0	0	0	%100
8	MP1A	Z	9.045	9.045	0	%100
9	MP3A	Χ	0	0	0	%100
10	MP3A	Z	9.045	9.045	0	%100
11	MP5A	Χ	0	0	0	%100
12	MP5A	Z	9.045	9.045	0	%100
13	M17	X	0	0	0	%100
14	M17	Z	7.397	7.397	0	%100
15	MP2A	Χ	0	0	0	%100
16	MP2A	Z	9.045	9.045	0	%100
17	MP4A	Χ	0	0	0	%100
18	MP4A	Z	9.045	9.045	0	%100

: 468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Distributed Loads (BLC 47: Structure Wo (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
19	M22	Χ	0	0	0	%100
20	M22	Z	13.33	13.33	0	%100
21	M23	Х	0	0	0	%100
22	M23	Z	0	0	0	%100

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	Χ	-4.697	-4.697	0	%100
2	M4	Z	8.135	8.135	0	%100
3	M3	X	-1.406	-1.406	0	%100
4	M3	Z	2.436	2.436	0	%100
5	M5	Χ	-5.951	-5.951	0	%100
6	M5	Ζ	10.307	10.307	0	%100
7	MP1A	X	-4.523	-4.523	0	%100
8	MP1A	Z	7.833	7.833	0	%100
9	MP3A	Χ	-4.523	-4.523	0	%100
10	MP3A	Ζ	7.833	7.833	0	%100
11	MP5A	Χ	-4.523	-4.523	0	%100
12	MP5A	Z	7.833	7.833	0	%100
13	M17	X	-3.698	-3.698	0	%100
14	M17	Z	6.406	6.406	0	%100
15	MP2A	Χ	-4.523	-4.523	0	%100
16	MP2A	Ζ	7.833	7.833	0	%100
17	MP4A	X	-4.523	-4.523	0	%100
18	MP4A	Z	7.833	7.833	0	%100
19	M22	Χ	-4.999	-4.999	0	%100
20	M22	Ζ	8.658	8.658	0	%100
21	M23	Χ	-1.087	-1.087	0	%100
22	M23	Z	1.882	1.882	0	%100

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M4	Χ	-8.135	-8.135	0	%100
2	M4	Ζ	4.697	4.697	0	%100
3	M3	Χ	-7.307	-7.307	0	%100
4	M3	Z	4.218	4.218	0	%100
5	M5	Х	-3.436	-3.436	0	%100
6	M5	Z	1.984	1.984	0	%100
7	MP1A	Х	-7.833	-7.833	0	%100
8	MP1A	Z	4.523	4.523	0	%100
9	MP3A	Χ	-7.833	-7.833	0	%100
10	MP3A	Z	4.523	4.523	0	%100
11	MP5A	Χ	-7.833	-7.833	0	%100
12	MP5A	Z	4.523	4.523	0	%100
13	M17	Χ	-6.406	-6.406	0	%100
14	M17	Z	3.698	3.698	0	%100
15	MP2A	Х	-7.833	-7.833	0	%100
16	MP2A	Ζ	4.523	4.523	0	%100
17	MP4A	Χ	-7.833	-7.833	0	%100
18	MP4A	Z	4.523	4.523	0	%100
19	M22	Χ	-2.886	-2.886	0	%100
20	M22	Z	1.666	1.666	0	%100
21	M23	Х	-5.646	-5.646	0	%100
22	M23	Z	3.26	3.26	0	%100

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	Χ	-9.394	-9.394	0	%100
2	M4	Z	0	0	0	%100
3	M3	X	-11.249	-11.249	0	%100
4	M3	Z	0	0	0	%100
5	M5	Χ	0	0	0	%100
6	M5	Ζ	0	0	0	%100
7	MP1A	Χ	-9.045	-9.045	0	%100
8	MP1A	Z	0	0	0	%100
9	MP3A	Χ	-9.045	-9.045	0	%100
10	MP3A	Z	0	0	0	%100
11	MP5A	Χ	-9.045	-9.045	0	%100
12	MP5A	Z	0	0	0	%100
13	M17	Χ	-7.397	-7.397	0	%100
14	M17	Z	0	0	0	%100
15	MP2A	Χ	-9.045	-9.045	0	%100
16	MP2A	Z	0	0	0	%100
17	MP4A	Χ	-9.045	-9.045	0	%100
18	MP4A	Z	0	0	0	%100
19	M22	Χ	0	0	0	%100
20	M22	Ζ	0	0	0	%100
21	M23	Χ	-8.693	-8.693	0	%100
22	M23	Z	0	0	0	%100

Member Distributed Loads (BLC 51: Structure Wo (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	Χ	-8.135	-8.135	0	%100
2	M4	Z	-4.697	-4.697	0	%100
3	M3	Χ	-7.307	-7.307	0	%100
4	M3	Z	-4.218	-4.218	0	%100
5	M5	Χ	-3.436	-3.436	0	%100
6	M5	Z	-1.984	-1.984	0	%100
7	MP1A	Χ	-7.833	-7.833	0	%100
8	MP1A	Z	-4.523	-4.523	0	%100
9	MP3A	Χ	-7.833	-7.833	0	%100
10	MP3A	Z	-4.523	-4.523	0	%100
11	MP5A	Χ	-7.833	-7.833	0	%100
12	MP5A	Z	-4.523	-4.523	0	%100
13	M17	Χ	-6.406	-6.406	0	%100
14	M17	Z	-3.698	-3.698	0	%100
15	MP2A	Χ	-7.833	-7.833	0	%100
16	MP2A	Z	-4.523	-4.523	0	%100
17	MP4A	Χ	-7.833	-7.833	0	%100
18	MP4A	Z	-4.523	-4.523	0	%100
19	M22	Χ	-2.886	-2.886	0	%100
20	M22	Z	-1.666	-1.666	0	%100
21	M23	Χ	-5.646	-5.646	0	%100
22	M23	Z	-3.26	-3.26	0	%100

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M4	X	-4.697	-4.697	0	%100
2	M4	Z	-8.135	-8.135	0	%100
3	M3	Χ	-1.406	-1.406	0	%100
4	M3	Ζ	-2.436	-2.436	0	%100
5	M5	Χ	-5.951	-5.951	0	%100
6	M5	Z	-10.307	-10.307	0	%100

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Distributed Loads (BLC 52: Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
7	MP1A	X	-4.523	-4.523	0	%100
8	MP1A	Z	-7.833	-7.833	0	%100
9	MP3A	X	-4.523	-4.523	0	%100
10	MP3A	Z	-7.833	-7.833	0	%100
11	MP5A	Χ	-4.523	-4.523	0	%100
12	MP5A	Z	-7.833	-7.833	0	%100
13	M17	X	-3.698	-3.698	0	%100
14	M17	Z	-6.406	-6.406	0	%100
15	MP2A	Χ	-4.523	-4.523	0	%100
16	MP2A	Z	-7.833	-7.833	0	%100
17	MP4A	Χ	-4.523	-4.523	0	%100
18	MP4A	Z	-7.833	-7.833	0	%100
19	M22	X	-4.999	-4.999	0	%100
20	M22	Z	-8.658	-8.658	0	%100
21	M23	Χ	-1.087	-1.087	0	%100
22	M23	Z	-1.882	-1.882	0	%100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	Χ	0	0	0	%100
2	M4	Z	-2.983	-2.983	0	%100
3	M3	Χ	0	0	0	%100
4	M3	Ζ	0	0	0	%100
5	M5	Χ	0	0	0	%100
6	M5	Z	-4.44	-4.44	0	%100
7	MP1A	Χ	0	0	0	%100
8	MP1A	Z	-3.173	-3.173	0	%100
9	MP3A	Χ	0	0	0	%100
10	MP3A	Z	-3.173	-3.173	0	%100
11	MP5A	Χ	0	0	0	%100
12	MP5A	Z	-3.173	-3.173	0	%100
13	M17	Χ	0	0	0	%100
14	M17	Ζ	-2.647	-2.647	0	%100
15	MP2A	Χ	0	0	0	%100
16	MP2A	Z	-3.173	-3.173	0	%100
17	MP4A	Χ	0	0	0	%100
18	MP4A	Z	-3.173	-3.173	0	%100
19	M22	Χ	0	0	0	%100
20	M22	Z	-3.969	-3.969	0	%100
21	M23	Χ	0	0	0	%100
22	M23	Z	0	0	0	%100

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	Χ	1.491	1.491	0	%100
2	M4	Z	-2.583	-2.583	0	%100
3	M3	X	.399	.399	0	%100
4	M3	Ζ	691	691	0	%100
5	M5	X	1.665	1.665	0	%100
6	M5	Ζ	-2.884	-2.884	0	%100
7	MP1A	X	1.586	1.586	0	%100
8	MP1A	Z	-2.747	-2.747	0	%100
9	MP3A	Χ	1.586	1.586	0	%100
10	MP3A	Ζ	-2.747	-2.747	0	%100
11	MP5A	X	1.586	1.586	0	%100
12	MP5A	Z	-2.747	-2.747	0	%100

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:__

Member Distributed Loads (BLC 54: Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
13	M17	Χ	1.324	1.324	0	%100
14	M17	Z	-2.293	-2.293	0	%100
15	MP2A	X	1.586	1.586	0	%100
16	MP2A	Ζ	-2.747	-2.747	0	%100
17	MP4A	Χ	1.586	1.586	0	%100
18	MP4A	Ζ	-2.747	-2.747	0	%100
19	M22	X	1.488	1.488	0	%100
20	M22	Z	-2.578	-2.578	0	%100
21	M23	Χ	.34	.34	0	%100
22	M23	Z	588	588	0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	Χ	2.583	2.583	0	%100
2	M4	Z	-1.491	-1.491	0	%100
3	M3	Χ	2.074	2.074	0	%100
4	M3	Ζ	-1.197	-1.197	0	%100
5	M5	Χ	.961	.961	0	%100
6	M5	Z	555	555	0	%100
7	MP1A	Χ	2.747	2.747	0	%100
8	MP1A	Z	-1.586	-1.586	0	%100
9	MP3A	Χ	2.747	2.747	0	%100
10	MP3A	Z	-1.586	-1.586	0	%100
11	MP5A	Χ	2.747	2.747	0	%100
12	MP5A	Z	-1.586	-1.586	0	%100
13	M17	Χ	2.293	2.293	0	%100
14	M17	Z	-1.324	-1.324	0	%100
15	MP2A	Χ	2.747	2.747	0	%100
16	MP2A	Z	-1.586	-1.586	0	%100
17	MP4A	Χ	2.747	2.747	0	%100
18	MP4A	Z	-1.586	-1.586	0	%100
19	M22	Χ	.859	.859	0	%100
20	M22	Z	496	496	0	%100
21	M23	Χ	1.765	1.765	0	%100
22	M23	Z	-1.019	-1.019	0	%100

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	Χ	2.983	2.983	0	%100
2	M4	Z	0	0	0	%100
3	M3	Χ	3.193	3.193	0	%100
4	M3	Z	0	0	0	%100
5	M5	Χ	0	0	0	%100
6	M5	Z	0	0	0	%100
7	MP1A	Χ	3.173	3.173	0	%100
8	MP1A	Z	0	0	0	%100
9	MP3A	Χ	3.173	3.173	0	%100
10	MP3A	Z	0	0	0	%100
11	MP5A	Χ	3.173	3.173	0	%100
12	MP5A	Z	0	0	0	%100
13	M17	Χ	2.647	2.647	0	%100
14	M17	Z	0	0	0	%100
15	MP2A	Χ	3.173	3.173	0	%100
16	MP2A	Z	0	0	0	%100
17	MP4A	Χ	3.173	3.173	0	%100
18	MP4A	Z	0	0	0	%100

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Distributed Loads (BLC 56: Structure Wi (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
19	M22	Χ	0	0	0	%100
20	M22	Z	0	0	0	%100
21	M23	Х	2.718	2.718	0	%100
22	M23	Z	0	0	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	Χ	2.583	2.583	0	%100
2	M4	Z	1.491	1.491	0	%100
3	M3	Χ	2.074	2.074	0	%100
4	M3	Z	1.197	1.197	0	%100
5	M5	Χ	.961	.961	0	%100
6	M5	Ζ	.555	.555	0	%100
7	MP1A	X	2.747	2.747	0	%100
8	MP1A	Z	1.586	1.586	0	%100
9	MP3A	Χ	2.747	2.747	0	%100
10	MP3A	Z	1.586	1.586	0	%100
11	MP5A	X	2.747	2.747	0	%100
12	MP5A	Z	1.586	1.586	0	%100
13	M17	X	2.293	2.293	0	%100
14	M17	Z	1.324	1.324	0	%100
15	MP2A	X	2.747	2.747	0	%100
16	MP2A	Ζ	1.586	1.586	0	%100
17	MP4A	X	2.747	2.747	0	%100
18	MP4A	Z	1.586	1.586	0	%100
19	M22	Χ	.859	.859	0	%100
20	M22	Z	.496	.496	0	%100
21	M23	Х	1.765	1.765	0	%100
22	M23	Z	1.019	1.019	0	%100

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	Χ	1.491	1.491	0	%100
2	M4	Ζ	2.583	2.583	0	%100
3	M3	X	.399	.399	0	%100
4	M3	Z	.691	.691	0	%100
5	M5	X	1.665	1.665	0	%100
6	M5	Ζ	2.884	2.884	0	%100
7	MP1A	Χ	1.586	1.586	0	%100
8	MP1A	Z	2.747	2.747	0	%100
9	MP3A	Χ	1.586	1.586	0	%100
10	MP3A	Z	2.747	2.747	0	%100
11	MP5A	Χ	1.586	1.586	0	%100
12	MP5A	Z	2.747	2.747	0	%100
13	M17	X	1.324	1.324	0	%100
14	M17	Z	2.293	2.293	0	%100
15	MP2A	X	1.586	1.586	0	%100
16	MP2A	Ζ	2.747	2.747	0	%100
17	MP4A	Χ	1.586	1.586	0	%100
18	MP4A	Z	2.747	2.747	0	%100
19	M22	Χ	1.488	1.488	0	%100
20	M22	Z	2.578	2.578	0	%100
21	M23	Χ	.34	.34	0	%100
22	M23	Z	.588	.588	0	%100

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	X	0	0	0	%100
2	M4	Z	2.983	2.983	0	%100
3	M3	X	0	0	0	%100
4	M3	Ζ	0	0	0	%100
5	M5	Χ	0	0	0	%100
6	M5	Ζ	4.44	4.44	0	%100
7	MP1A	X	0	0	0	%100
8	MP1A	Z	3.173	3.173	0	%100
9	MP3A	Χ	0	0	0	%100
10	MP3A	Ζ	3.173	3.173	0	%100
11	MP5A	Χ	0	0	0	%100
12	MP5A	Z	3.173	3.173	0	%100
13	M17	Χ	0	0	0	%100
14	M17	Z	2.647	2.647	0	%100
15	MP2A	Χ	0	0	0	%100
16	MP2A	Ζ	3.173	3.173	0	%100
17	MP4A	Χ	0	0	0	%100
18	MP4A	Z	3.173	3.173	0	%100
19	M22	Х	0	0	0	%100
20	M22	Z	3.969	3.969	0	%100
21	M23	Х	0	0	0	%100
22	M23	Z	0	0	0	%100

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	Χ	-1.491	-1.491	0	%100
2	M4	Ζ	2.583	2.583	0	%100
3	M3	Χ	399	399	0	%100
4	M3	Z	.691	.691	0	%100
5	M5	Χ	-1.665	-1.665	0	%100
6	M5	Z	2.884	2.884	0	%100
7	MP1A	Χ	-1.586	-1.586	0	%100
8	MP1A	Ζ	2.747	2.747	0	%100
9	MP3A	X	-1.586	-1.586	0	%100
10	MP3A	Z	2.747	2.747	0	%100
11	MP5A	Χ	-1.586	-1.586	0	%100
12	MP5A	Z	2.747	2.747	0	%100
13	M17	Χ	-1.324	-1.324	0	%100
14	M17	Z	2.293	2.293	0	%100
15	MP2A	Χ	-1.586	-1.586	0	%100
16	MP2A	Z	2.747	2.747	0	%100
17	MP4A	Χ	-1.586	-1.586	0	%100
18	MP4A	Z	2.747	2.747	0	%100
19	M22	Χ	-1.488	-1.488	0	%100
20	M22	Z	2.578	2.578	0	%100
21	M23	Χ	34	34	0	%100
22	M23	Z	.588	.588	0	%100

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	X	-2.583	-2.583	0	%100
2	M4	Z	1.491	1.491	0	%100
3	M3	Χ	-2.074	-2.074	0	%100
4	M3	Ζ	1.197	1.197	0	%100
5	M5	X	961	961	0	%100
6	M5	Z	.555	.555	0	%100

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Distributed Loads (BLC 61: Structure Wi (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
7	MP1A	Χ	-2.747	-2.747	0	%100
8	MP1A	Z	1.586	1.586	0	%100
9	MP3A	X	-2.747	-2.747	0	%100
10	MP3A	Z	1.586	1.586	0	%100
11	MP5A	Χ	-2.747	-2.747	0	%100
12	MP5A	Z	1.586	1.586	0	%100
13	M17	Χ	-2.293	-2.293	0	%100
14	M17	Z	1.324	1.324	0	%100
15	MP2A	Χ	-2.747	-2.747	0	%100
16	MP2A	Z	1.586	1.586	0	%100
17	MP4A	Χ	-2.747	-2.747	0	%100
18	MP4A	Z	1.586	1.586	0	%100
19	M22	X	859	859	0	%100
20	M22	Z	.496	.496	0	%100
21	M23	Χ	-1.765	-1.765	0	%100
22	M23	Z	1.019	1.019	0	%100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	Χ	-2.983	-2.983	0	%100
2	M4	Z	0	0	0	%100
3	M3	Χ	-3.193	-3.193	0	%100
4	M3	Z	0	0	0	%100
5	M5	Χ	0	0	0	%100
6	M5	Z	0	0	0	%100
7	MP1A	Χ	-3.173	-3.173	0	%100
8	MP1A	Z	0	0	0	%100
9	MP3A	Χ	-3.173	-3.173	0	%100
10	MP3A	Z	0	0	0	%100
11	MP5A	Χ	-3.173	-3.173	0	%100
12	MP5A	Z	0	0	0	%100
13	M17	Χ	-2.647	-2.647	0	%100
14	M17	Z	0	0	0	%100
15	MP2A	Χ	-3.173	-3.173	0	%100
16	MP2A	Z	0	0	0	%100
17	MP4A	Χ	-3.173	-3.173	0	%100
18	MP4A	Z	0	0	0	%100
19	M22	Χ	0	0	0	%100
20	M22	Z	0	0	0	%100
21	M23	Χ	-2.718	-2.718	0	%100
22	M23	Z	0	0	0	%100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	Χ	-2.583	-2.583	0	%100
2	M4	Z	-1.491	-1.491	0	%100
3	M3	Χ	-2.074	-2.074	0	%100
4	M3	Z	-1.197	-1.197	0	%100
5	M5	Χ	961	961	0	%100
6	M5	Z	555	555	0	%100
7	MP1A	Χ	-2.747	-2.747	0	%100
8	MP1A	Z	-1.586	-1.586	0	%100
9	MP3A	Χ	-2.747	-2.747	0	%100
10	MP3A	Z	-1.586	-1.586	0	%100
11	MP5A	Χ	-2.747	-2.747	0	%100
12	MP5A	Z	-1.586	-1.586	0	%100

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Distributed Loads (BLC 63: Structure Wi (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
13	M17	X	-2.293	-2.293	0	%100
14	M17	Z	-1.324	-1.324	0	%100
15	MP2A	Х	-2.747	-2.747	0	%100
16	MP2A	Z	-1.586	-1.586	0	%100
17	MP4A	Χ	-2.747	-2.747	0	%100
18	MP4A	Z	-1.586	-1.586	0	%100
19	M22	Х	859	859	0	%100
20	M22	Z	496	496	0	%100
21	M23	X	-1.765	-1.765	0	%100
22	M23	Z	-1.019	-1.019	0	%100

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	Χ	-1.491	-1.491	0	%100
2	M4	Z	-2.583	-2.583	0	%100
3	M3	Χ	399	399	0	%100
4	M3	Z	691	691	0	%100
5	M5	Χ	-1.665	-1.665	0	%100
6	M5	Z	- 2.884	-2.884	0	%100
7	MP1A	Χ	-1.586	-1.586	0	%100
8	MP1A	Z	-2.747	-2.747	0	%100
9	MP3A	Χ	-1.586	-1.586	0	%100
10	MP3A	Ζ	-2.747	-2.747	0	%100
11	MP5A	X	-1.586	-1.586	0	%100
12	MP5A	Z	-2.747	-2.747	0	%100
13	M17	Χ	-1.324	-1.324	0	%100
14	M17	Z	-2.293	-2.293	0	%100
15	MP2A	Χ	-1.586	-1.586	0	%100
16	MP2A	Z	-2.747	-2.747	0	%100
17	MP4A	Χ	-1.586	-1.586	0	%100
18	MP4A	Z	-2.747	-2.747	0	%100
19	M22	Χ	-1.488	-1.488	0	%100
20	M22	Z	-2.578	-2.578	0	%100
21	M23	Χ	34	34	0	%100
22	M23	Z	588	588	0	%100

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M4	X	0	0	0	%100
2	M4	Z	628	628	0	%100
3	M3	X	0	0	0	%100
4	M3	Z	0	0	0	%100
5	M5	Χ	0	0	0	%100
6	M5	Z	-1.061	-1.061	0	%100
7	MP1A	X	0	0	0	%100
8	MP1A	Z	605	605	0	%100
9	MP3A	Х	0	0	0	%100
10	MP3A	Z	605	605	0	%100
11	MP5A	Χ	0	0	0	%100
12	MP5A	Z	605	605	0	%100
13	M17	X	0	0	0	%100
14	M17	Z	495	495	0	%100
15	MP2A	Χ	0	0	0	%100
16	MP2A	Z	605	605	0	%100
17	MP4A	Χ	0	0	0	%100
18	MP4A	Z	605	605	0	%100

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Distributed Loads (BLC 65: Structure Wm (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
19	M22	X	0	0	0	%100 ⁻
20	M22	Z	892	892	0	%100
21	M23	Х	0	0	0	%100
22	M23	Z	0	0	0	%100

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	Χ	.314	.314	0	%100
2	M4	Z	544	544	0	%100
3	M3	Χ	.094	.094	0	%100
4	M3	Z	163	163	0	%100
5	M5	Χ	.398	.398	0	%100
6	M5	Ζ	689	689	0	%100
7	MP1A	X	.302	.302	0	%100
8	MP1A	Z	524	524	0	%100
9	MP3A	X	.302	.302	0	%100
10	MP3A	Z	524	524	0	%100
11	MP5A	Χ	.302	.302	0	%100
12	MP5A	Ζ	524	524	0	%100
13	M17	X	.247	.247	0	%100
14	M17	Z	428	428	0	%100
15	MP2A	Χ	.302	.302	0	%100
16	MP2A	Ζ	524	524	0	%100
17	MP4A	X	.302	.302	0	%100
18	MP4A	Z	524	524	0	%100
19	M22	Χ	.334	.334	0	%100
20	M22	Ζ	579	579	0	%100
21	M23	Χ	.073	.073	0	%100
22	M23	Z	126	126	0	%100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	Χ	.544	.544	0	%100
2	M4	Z	314	314	0	%100
3	M3	Χ	.489	.489	0	%100
4	M3	Z	282	282	0	%100
5	M5	Χ	.23	.23	0	%100
6	M5	Z	133	133	0	%100
7	MP1A	Χ	.524	.524	0	%100
8	MP1A	Z	302	302	0	%100
9	MP3A	Χ	.524	.524	0	%100
10	MP3A	Z	302	302	0	%100
11	MP5A	Χ	.524	.524	0	%100
12	MP5A	Z	302	302	0	%100
13	M17	Χ	.428	.428	0	%100
14	M17	Z	247	247	0	%100
15	MP2A	Χ	.524	.524	0	%100
16	MP2A	Z	302	302	0	%100
17	MP4A	Χ	.524	.524	0	%100
18	MP4A	Z	302	302	0	%100
19	M22	Χ	.193	.193	0	%100
20	M22	Z	111	111	0	%100
21	M23	Χ	.378	.378	0	%100
22	M23	Z	218	218	0	%100

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	Χ	.628	.628	0	%100
2	M4	Z	0	0	0	%100
3	M3	Χ	.752	.752	0	%100
4	M3	Z	0	0	0	%100
5	M5	Χ	0	0	0	%100
6	M5	Z	0	0	0	%100
7	MP1A	Х	.605	.605	0	%100
8	MP1A	Z	0	0	0	%100
9	MP3A	Χ	.605	.605	0	%100
10	MP3A	Z	0	0	0	%100
11	MP5A	Х	.605	.605	0	%100
12	MP5A	Z	0	0	0	%100
13	M17	Χ	.495	.495	0	%100
14	M17	Z	0	0	0	%100
15	MP2A	Χ	.605	.605	0	%100
16	MP2A	Ζ	0	0	0	%100
17	MP4A	Χ	.605	.605	0	%100
18	MP4A	Z	0	0	0	%100
19	M22	Χ	0	0	0	%100
20	M22	Z	0	0	0	%100
21	M23	Х	.581	.581	0	%100
22	M23	Z	0	0	0	%100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	X	.544	.544	0	%100
2	M4	Ζ	.314	.314	0	%100
3	M3	Χ	.489	.489	0	%100
4	M3	Z	.282	.282	0	%100
5	M5	Χ	.23	.23	0	%100
6	M5	Z	.133	.133	0	%100
7	MP1A	Χ	.524	.524	0	%100
8	MP1A	Ζ	.302	.302	0	%100
9	MP3A	X	.524	.524	0	%100
10	MP3A	Z	.302	.302	0	%100
11	MP5A	X	.524	.524	0	%100
12	MP5A	Z	.302	.302	0	%100
13	M17	Χ	.428	.428	0	%100
14	M17	Ζ	.247	.247	0	%100
15	MP2A	Χ	.524	.524	0	%100
16	MP2A	Z	.302	.302	0	%100
17	MP4A	Χ	.524	.524	0	%100
18	MP4A	Ζ	.302	.302	0	%100
19	M22	X	.193	.193	0	%100
20	M22	Z	.111	.111	0	%100
21	M23	Χ	.378	.378	0	%100
22	M23	Z	.218	.218	0	%100

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M4	Χ	.314	.314	0	%100
2	M4	Z	.544	.544	0	%100
3	M3	Χ	.094	.094	0	%100
4	M3	Ζ	.163	.163	0	%100
5	M5	X	.398	.398	0	%100
6	M5	Z	.689	.689	0	%100

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
7	MP1A	Χ	.302	.302	0	%100
8	MP1A	Z	.524	.524	0	%100
9	MP3A	Χ	.302	.302	0	%100
10	MP3A	Z	.524	.524	0	%100
11	MP5A	Χ	.302	.302	0	%100
12	MP5A	Z	.524	.524	0	%100
13	M17	Х	.247	.247	0	%100
14	M17	Z	.428	.428	0	%100
15	MP2A	Χ	.302	.302	0	%100
16	MP2A	Z	.524	.524	0	%100
17	MP4A	Χ	.302	.302	0	%100
18	MP4A	Z	.524	.524	0	%100
19	M22	Χ	.334	.334	0	%100
20	M22	Z	.579	.579	0	%100
21	M23	Χ	.073	.073	0	%100
22	M23	Z	.126	.126	0	%100

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	Χ	0	0	0	%100
2	M4	Z	.628	.628	0	%100
3	M3	X	0	0	0	%100
4	M3	Ζ	0	0	0	%100
5	M5	X	0	0	0	%100
6	M5	Z	1.061	1.061	0	%100
7	MP1A	Χ	0	0	0	%100
8	MP1A	Z	.605	.605	0	%100
9	MP3A	Χ	0	0	0	%100
10	MP3A	Z	.605	.605	0	%100
11	MP5A	Χ	0	0	0	%100
12	MP5A	Z	.605	.605	0	%100
13	M17	Χ	0	0	0	%100
14	M17	Ζ	.495	.495	0	%100
15	MP2A	Χ	0	0	0	%100
16	MP2A	Z	.605	.605	0	%100
17	MP4A	Χ	0	0	0	%100
18	MP4A	Ζ	.605	.605	0	%100
19	M22	Χ	0	0	0	%100
20	M22	Z	.892	.892	0	%100
21	M23	Χ	0	0	0	%100
22	M23	Z	0	0	0	%100

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	X	314	314	0	%100
2	M4	Z	.544	.544	0	%100
3	M3	X	094	094	0	%100
4	M3	Ζ	.163	.163	0	%100
5	M 5	Χ	398	398	0	%100
6	M5	Z	.689	.689	0	%100
7	MP1A	X	302	302	0	%100
8	MP1A	Z	.524	.524	0	%100
9	MP3A	Χ	302	302	0	%100
10	MP3A	Ζ	.524	.524	0	%100
11	MP5A	X	302	302	0	%100
12	MP5A	Z	.524	.524	0	%100

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:___

Member Distributed Loads (BLC 72: Structure Wm (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
13	M17	Χ	247	247	0	%100
14	M17	Z	.428	.428	0	%100
15	MP2A	X	302	302	0	%100
16	MP2A	Ζ	.524	.524	0	%100
17	MP4A	Χ	302	302	0	%100
18	MP4A	Ζ	.524	.524	0	%100
19	M22	Χ	334	334	0	%100
20	M22	Z	.579	.579	0	%100
21	M23	Χ	073	073	0	%100
22	M23	Z	.126	.126	0	%100

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	Χ	544	544	0	%100
2	M4	Z	.314	.314	0	%100
3	M3	Χ	489	489	0	%100
4	M3	Z	.282	.282	0	%100
5	M5	Χ	23	23	0	%100
6	M5	Z	.133	.133	0	%100
7	MP1A	Χ	524	524	0	%100
8	MP1A	Z	.302	.302	0	%100
9	MP3A	Х	524	524	0	%100
10	MP3A	Z	.302	.302	0	%100
11	MP5A	Х	524	524	0	%100
12	MP5A	Z	.302	.302	0	%100
13	M17	Χ	428	428	0	%100
14	M17	Ζ	.247	.247	0	%100
15	MP2A	Χ	524	524	0	%100
16	MP2A	Ζ	.302	.302	0	%100
17	MP4A	Χ	524	524	0	%100
18	MP4A	Z	.302	.302	0	%100
19	M22	Χ	193	193	0	%100
20	M22	Z	.111	.111	0	%100
21	M23	Χ	378	378	0	%100
22	M23	Z	.218	.218	0	%100

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	X	628	628	0	%100
2	M4	Z	0	0	0	%100
3	M3	Χ	752	752	0	%100
4	M3	Z	0	0	0	%100
5	M5	Χ	0	0	0	%100
6	M5	Ζ	0	0	0	%100
7	MP1A	X	605	605	0	%100
8	MP1A	Z	0	0	0	%100
9	MP3A	Χ	605	605	0	%100
10	MP3A	Ζ	0	0	0	%100
11	MP5A	Χ	605	605	0	%100
12	MP5A	Z	0	0	0	%100
13	M17	Χ	495	495	0	%100
14	M17	Z	0	0	0	%100
15	MP2A	Χ	605	605	0	%100
16	MP2A	Z	0	0	0	%100
17	MP4A	Χ	605	605	0	%100
18	MP4A	Z	0	0	0	%100

468044-VZW_MT_LOT_SectorC_H

July 7, 2021 9:26 AM Checked By:____

Member Distributed Loads (BLC 74: Structure Wm (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
19	M22	Χ	0	0	0	%100
20	M22	Z	0	0	0	%100
21	M23	Х	581	581	0	%100
22	M23	Z	0	0	0	%100

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	Χ	544	544	0	%100
2	M4	Z	314	314	0	%100
3	M3	Χ	489	489	0	%100
4	M3	Z	282	282	0	%100
5	M5	Χ	23	23	0	%100
6	M5	Ζ	133	133	0	%100
7	MP1A	Χ	524	524	0	%100
8	MP1A	Z	302	302	0	%100
9	MP3A	Χ	524	524	0	%100
10	MP3A	Z	302	302	0	%100
11	MP5A	Χ	524	524	0	%100
12	MP5A	Z	302	302	0	%100
13	M17	Χ	428	428	0	%100
14	M17	Z	247	247	0	%100
15	MP2A	Χ	524	524	0	%100
16	MP2A	Z	302	302	0	%100
17	MP4A	Χ	524	524	0	%100
18	MP4A	Z	302	302	0	%100
19	M22	Χ	193	193	0	%100
20	M22	Z	111	111	0	%100
21	M23	Χ	378	378	0	%100
22	M23	Z	218	218	0	%100

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M4	Χ	314	314	0	%100
2	M4	Z	544	544	0	%100
3	M3	Χ	094	094	0	%100
4	M3	Z	163	163	0	%100
5	M5	Χ	398	398	0	%100
6	M5	Z	689	689	0	%100
7	MP1A	Χ	302	302	0	%100
8	MP1A	Z	524	524	0	%100
9	MP3A	Χ	302	302	0	%100
10	MP3A	Z	524	524	0	%100
11	MP5A	Χ	302	302	0	%100
12	MP5A	Z	524	524	0	%100
13	M17	Χ	247	247	0	%100
14	M17	Z	428	428	0	%100
15	MP2A	Χ	302	302	0	%100
16	MP2A	Z	524	524	0	%100
17	MP4A	Χ	302	302	0	%100
18	MP4A	Z	524	524	0	%100
19	M22	Χ	334	334	0	%100
20	M22	Z	579	579	0	%100
21	M23	Χ	073	073	0	%100
22	M23	Z	126	126	0	%100

July 7, 2021 9:26 AM Checked By:___

Member Area Loads

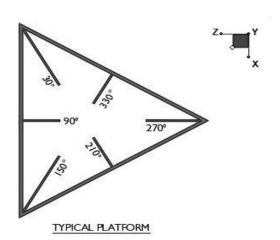
 Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
		No Data	a to Print			

Envelope Joint Reactions

	Joint		X [l b]	LC	Y [lb]	LC	Z [l b]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N1	max	2141.075	10	1566.92	13	2422.851	1	527	1	3.933	10	1.523	39
2		min	-2002.487	4	309.206	7	-3422.625	7	-2.719	19	-3.666	4	-1.087	49
3	N51	max	749.689	41	835.369	19	1208.908	18	.136	1	1.442	47	.6	39
4		min	-482.534	49	-48.593	1	177.799	1	-1.296	19	926	49	436	49
5	Totals:	max	1702.948	10	2221.259	19	2600.65	1						
6		min	-1702.948	4	1058.347	1	-2600.649	7						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[ft]	LC	Shear	.Loc[ft]	Dir	LC	phi*Pnc	.phi*Pnt [.phi*Mn y	.phi*Mn z.	.Cb	Egn
1	M4	PIPE 4.0	.000	.75	8	.000	.75		8	92571.3	93240	10.631	10.631	1	H1-1b
2	М3	HSS4X4X4	.336	0	9	.143	0	У	39	137389	139518	16.181	16.181	1	H1-1b
3	M5	HSS4X4X4	.208	5	7	.119	5	z	1	91806.5	139518	16.181	16.181	1	H1-1b
4	MP1A	PIPE 2.0	.346	4.25	7	.104	4.25		4	13511.2	32130	1.872	1.872	1	H1-1b
5	MP3A	PIPE 2.0	.712	4.25	1	.155	5.313		9	13511.2	32130	1.872	1.872	4	H1-1b
6	MP5A	PIPE 2.0	.347	4.25	7	.110	4.25		10	13511.2	32130	1.872	1.872	1	H1-1b
7	M17	PIPE 2.0	.046	1.5	6	.017	1.5		6	28843.4	32130	1.872	1.872	1	H1-1b
8	MP2A	PIPE 2.0	.263	4.25	41	.084	4.25		6	13511.2	32130	1.872	1.872	1	H1-1b
9	MP4A	PIPE 2.0	.281	4.25	1	.101	4.25		8	13511.2	32130	1.872	1.872	1	H1-1b
10	M22	PIPE 3.0	.203	5	12	.167	5.313		6	38176.7	65205	5.749	5.749	1	H1-1b
11	M23	HSS3X3X4	.279	0	44	.110	1.917	z	40	98153.0	101016	8.556	8.556	2	H1-1b


Client:	Verizon Wireless	Date:	7/7/2021
Site Name:	Byram Park CT		
Project No.	20777259A		
Title:	Antenna Mount Analysis	Page:	1

Version 3.1

I. Mount-to-Tower Connection Check

RISA Mode<u>l Data</u>

Nodes (labeled per RISA)	Orientation (per graphic of typical platform)
N1	90

Tower Connection Bolt Checks

Any moment resistance?:

Bolt Quantity per Reaction:

 d_x (in) (Delta X of typ. bolt config. sketch):

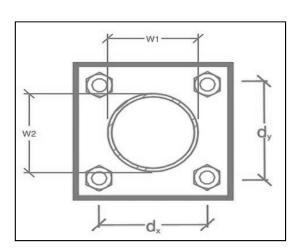
 d_y (in) (Delta Y of typ. bolt config. sketch):

Bolt Type:

Bolt Diameter (in):

Required Tensile Strength (kips):

Required Shear Strength (kips):


Tensile Strength / bolt (kips):

Shear Strength / bolt (kips):

Tensile Capacity Overall:

Shear Capacity Overall:

_
_

*Note: Tension reduction not required if tension or shear capacity < 30%

Tower Connection Plate and Weld Check

Connecting Standoff Member Shape:

Plate Width (in):

Plate Height (in):

W1 (in):

W2 (in):

Fy (ksi, plate):

t_{Plate} (in):

Weld Size (1/16 in):

Phi*Rn (kip/in):

Required Weld Strength (kip/in):

Plate Bending Capacity:

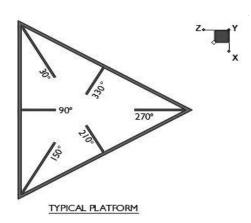
Weld Capacity:

Rect
6
10
4
4
36
0.5
3
4.18
2.44
79.9%
58.4%

Max Plate Bending Strengths

Mu_{xx} (kip-in):
Phi*Mn_{xx} (kip-in):
Mu_{yy} (kip-in):
Phi*Mn_{yy} (kip-in):

9.9
12.2
-0.3
20.3


Client:	Verizon Wireless	Date:	7/7/2021
Site Name:	Byram Park CT		
Project No.	20777259A		
Title:	Antenna Mount Analysis	Page:	1

Version 3.1

I. Mount-to-Tower Connection Check - Proposed

RISA Model Data

TIIS/TWOUCT BUTU	
Nodes (labeled per RISA)	Orientation (per graphic of typical platform)
N51	90

Tower Connection Bolt Checks

Any moment resistance?:

Bolt Quantity per Reaction:

 d_x (in) (Delta X of typ. bolt config. sketch):

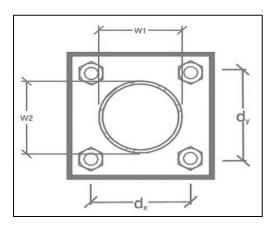
 d_y (in) (Delta Y of typ. bolt config. sketch):

Bolt Type:

Bolt Diameter (in):

Required Tensile Strength (kips):

Required Shear Strength (kips):


Tensile Strength / bolt (kips):

Shear Strength / bolt (kips):

Tensile Capacity Overall:

Shear Capacity Overall:

yes
4
6
6
A325N
0.625
6.0
6.8
20.7
12.4
7.3%*
13.8%

*Note: Tension reduction not required if tension or shear capacity < 30%

Tower Connection Plate and Weld Check

Connecting Standoff Member Shape:

Plate Width (in):

Plate Height (in):

W1 (in):

W2 (in):

Fy (ksi, plate):

t_{Plate} (in):

Weld Size (1/16 in):

Phi*Rn (kip/in):

Required Weld Strength (kip/in):

Plate Bending Capacity:

Weld Capacity:

Rect
8.25
8.25
3
3
50
0.75
5
6.96
1.84
14.7%
26.4%

Max Plate Bending Strengths

Mu_{xx} (kip-in): Phi*Mn_{xx} (kip-in): Mu_{yy} (kip-in):

TVI Gyy (A	ρ
Phi*Mn _{yy}	(kip-in):

_	
	3.1
	52.2
	4.6
	52.2

Mount Desktop – Post Modification Inspection (PMI) Report Requirements

Documents & Photos Required from Contractor – Mount Modification

<u>Purpose</u> – to provide Maser Consulting Connecticut the proper documentation in order to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the modification was completed in accordance with the modification drawings.
- Contractor shall relay any data that can impact the performance of the mount or the mount modification, this includes safety issues.

Base Requirements:

- Any special photos outside of the standard requirements will be indicated on the drawings
- Provide "as built drawings" showing contractor's name, preparer's signature, and date. Any deviations from the drawings (proposed modification) must be shown.
- Notation that all hardware was properly installed, and the existing hardware was inspected for any issues.
- Verification that loading is as communicated in the modification drawings. NOTE If loading is different than what is conveyed in the modification drawing contact Maser Consulting Connecticut immediately.
- Each photo should be time and date stamped
- Photos should be high resolution and submitted in a Zip File and should be organized in the file structure as depicted in Schedule A attached.
- Contractor shall ensure that the safety climb wire rope is supported and not adversely impacted by the install of the modification components. This may involve the install of wire rope guides, or other items to protect the wire rope.
- The photos in the file structure should be uploaded to https://pmi.vzwsmart.com as depicted on the drawings

Photo Requirements:

- Base and "During Installation Photos"
 - Base pictures include
 - Photo of Gate Signs showing the tower owner, site name, and number
 - Photo of carrier shelter showing the carrier site name and number if available
 - Photos of the galvanizing compound and/or paint used (if applicable), clearly showing the label and name
 - o "During Installation Photos if provided must be placed only in this folder

• Photos taken at ground level

- o Overall tower structure before and after installation of the modifications
- Photos of the appropriate mount before and after installation of the modifications; if the mounts are at different rad elevations, pictures must be provided for all elevations that the modifications were installed

• <u>Photos taken at Mount Elev</u>ation

- Photos showing each individual sector before and also after installation of modifications. Each entire sector must be in one photo to show in the inter-connection of members.
 - These photos should also certify that the placement and geometry of the equipment on the mount is as depicted on the sketch and table in the mount analysis
- Close-up photos of each installed modification per the modification drawings; pictures should also include connection hardware (U-bolts, bolts, nuts, all-threaded rods, etc.)
- Photos showing the measurements of the installed modification member sizes (i.e. lengths, widths, depths, diameters, thicknesses)
- Photos showing the elevation or distances of the installed modifications from the appropriate reference locations shown in the modification drawings
- Photos showing the installed modifications onto the tower with tape drop measurements (if applicable) (i.e. ring/collar mounts, tie-backs, V-bracing kits, etc.); if the existing mount elevation needs to be changed according to the modification drawings, a tape drop measurement shall be provided before the elevation change
- Photos showing the safety climb wire rope above and below the mount prior to modification.
- Photos showing the climbing facility and safety climb if present.

Material Certification:

- Materials utilized must be as per specification on the drawings or the equivalent as validated by Maser Consulting Connecticut.
 - If the drawings are as specified on the drawings
 - The contractor should provide the packing list or the materials utilized to perform the mount modification
 - If an equivalent is utilized

Certifying Individual: Company

- It is required that the Maser Consulting Connecticut certification of such is included in the contractor submission package. There may be an additional charge for this certification if the equivalent submission doesn't meet specifications as prescribed in the drawings.
- The contractor must certify that the materials meet these specifications by one of these methods.

☐ The Material utilized was as specified on the Maser Consulting Connecticut Mount Modification Drawings and included in the Material certification folder is a packing list or invoice for these materials	
☐ The material utilized was an "equivalent" and included as part of the contractor submission the Maser Consulting Connecticut certification, invoices, or specifications validating accepted status	

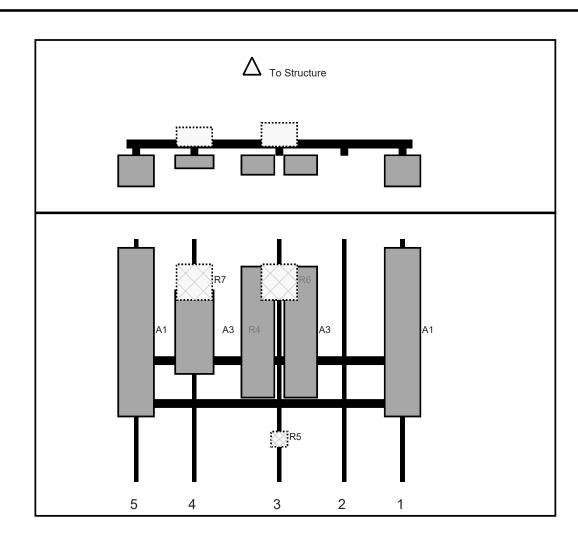
		e antenna placement diagrams as included in this mount analysis.
		ifies that the photos support and the equipment on the mount is as depicted tent diagrams as included in this mount analysis.
]		es that the equipment on the mount is not in accordance with the antenna is and has accordingly marked up the diagrams or provided a diagram ences.
Certifyiı	ng Individual:	Company
		Name
		Signature
Issue: Contracto the s	ctor to Install safety ot contact the existin ctor to install 36" lon	climb wire clip on existing/proposed standoff such that the existing safety climb wg/proposed mount members. g P2.0 STD mount pipe on Gamma standoff horizontal. Attach proposed mount per plate (Site Pro 1 – SQCX4-K, or EOR approved equivalent). Contractor shall attach proposed mount pipe.

Schedule A - Photo & Document File Structure

VzW Site Number / Name Base & "During Installation" Photos
Pre-Installation Photos Alpha Beta Gamma Ground Level Tape Drop
Post-Installation Photos Alpha Beta Gamma Ground Level Tape Drop Photos of climbing facility and safety climb – If Present
Certifications – Submission of this document including certifications
Specific Required Additional Photos

Structure: 468044-VZW - Byram Park CT

Sector: **A** 7/7/2021


Structure Type: Monopole 10084892

Mount Elev: 56.00 Page: 1

Plan View

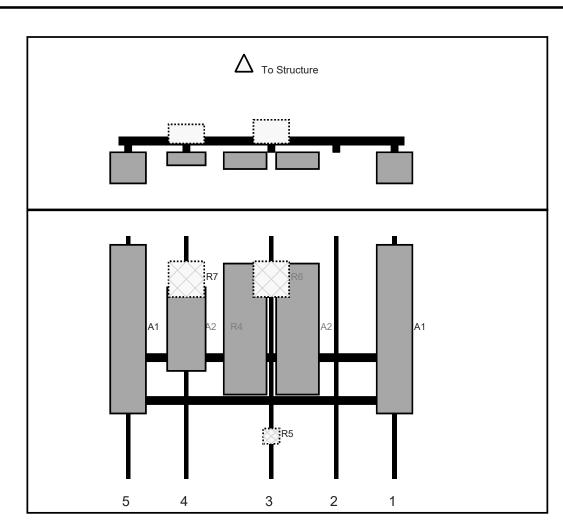
Front View Looking at Structure

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A1	LPA-80063/6CF	70.9	15	116	1	а	Front	39	0	Retained	10/21/2020
A3	JAHH-65A-R3B	55.1	13.8	64.2	3	а	Front	39	9	Added	
A3	JAHH-65A-R3B	55.1	13.8	64.2	3	b	Front	39	-9	Added	
R5	CBC78T-DS-43	6.4	6.9	64.2	3	а	Behind	84	0	Added	
R6	B2/B66A RRH-BR049	15	15	64.2	3	а	Behind	18	0	Added	
R4	MT6407-77A	35.1	16.1	28.5	4	а	Front	39	0	Added	
R7	B5/B13 RRH-BR04C	15	15	28.5	4	а	Behind	18	0	Added	
A1	LPA-80063/6CF	70.9	15	4	5	а	Front	39	0	Retained	10/21/2020

Structure: 468044-VZW - Byram Park CT

Sector: **B** 7/7/2021

Structure Type: Monopole 10084892


Mount Elev: 56.00 Pa

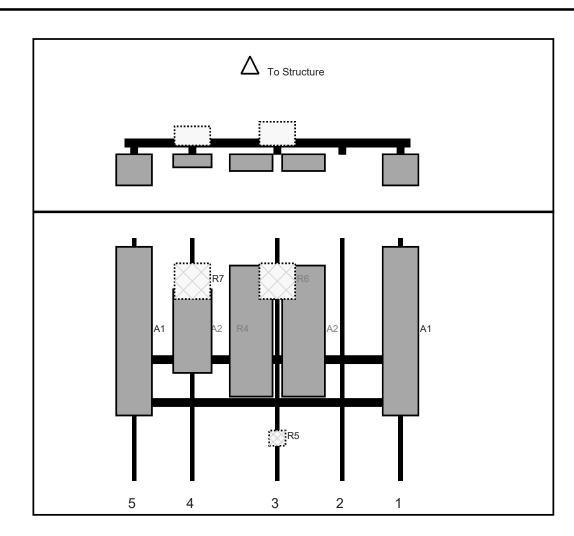
Page: 2

Front View Looking at Structure

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A1	LPA-80063/6CF	70.9	15	116	1	а	Front	39	0	Retained	10/21/2020
A2	JAHH-45A-R3B	55.08	17.99	64.2	3	а	Front	39	11	Added	
A2	JAHH-45A-R3B	55.08	17.99	64.2	3	b	Front	39	-11	Added	
R5	CBC78T-DS-43	6.4	6.9	64.2	3	а	Behind	84	0	Added	
R6	B2/B66A RRH-BR049	15	15	64.2	3	а	Behind	18	0	Added	
R4	MT6407-77A	35.1	16.1	28.5	4	а	Front	39	0	Added	
R7	B5/B13 RRH-BR04C	15	15	28.5	4	а	Behind	18	0	Added	
A1	LPA-80063/6CF	70.9	15	4	5	а	Front	39	0	Retained	10/21/2020

Structure: 468044-VZW - Byram Park CT

Sector: **C** 7/7/2021


Structure Type: Monopole 10084892

Mount Elev: 56.00 Page: 3

Plan View

Front View Looking at Structure

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A1	LPA-80063/6CF	70.9	15	116	1	а	Front	39	0	Retained	10/21/2020
A2	JAHH-45A-R3B	55.08	17.99	64.2	3	а	Front	39	11	Added	
A2	JAHH-45A-R3B	55.08	17.99	64.2	3	b	Front	39	-11	Added	
R5	CBC78T-DS-43	6.4	6.9	64.2	3	а	Behind	84	0	Added	
R6	B2/B66A RRH-BR049	15	15	64.2	3	а	Behind	18	0	Added	
R4	MT6407-77A	35.1	16.1	28.5	4	а	Front	39	0	Added	
R7	B5/B13 RRH-BR04C	15	15	28.5	4	а	Behind	18	0	Added	
A1	LPA-80063/6CF	70.9	15	4	5	а	Front	39	0	Retained	10/21/2020

Maser Consulting Connecticut

<u>Subject</u> TIA-222-H Usage

<u>Site Information</u> Site ID: 468044-VZW / Byram Park CT

Site Name: Byram Park CT
Carrier Name: Verizon Wireless
Address: 36 Ritch Ave W

Greenwich, Connecticut 6830

Fairfield County

Latitude: 41.005064° Longitude: -73.648312°

<u>Structure Information</u> Tower Type: 79-Ft Monopole

Mount Type: 10.00-Ft T-Arm

To Whom It May Concern,

We respectfully submit the above referenced Antenna Mount Structural Analysis report in conformance with ANSI/TIA-222-H, Structural Standard for Antenna Supporting Structures and Antennas and Small Wind Turbine Support Structures.

The 2015 International Building Code states that, in Section 3108, telecommunication towers shall be designed and constructed in accordance with the provisions of TIA-222. TIA-222-H is the latest revision of the TIA-222 Standard, effective as of January 01, 2018.

As with all ANSI standards and engineering best practice is to apply the most current revision of the standard. This ensures the engineer is applying all updates. As an example, the TIA-222-H Standard includes updates to bring it in line with the latest AISC and ACI standards and it also incorporates the latest wind speed maps by ASCE 7 based on updated studies of the wind data.

The TIA-222-H standard clarifies these specific requirements for the antenna mount analysis such as modeling methods, seismic analysis, 30-degree increment wind directions and maintenance loading. Therefore, it is our opinion that TIA-222-H is the most appropriate standard for antenna mount structural analysis and is acceptable for use at this site to ensure the engineer is taking into account the most current engineering standard available.

Sincerely,

Derek Hartzell, PEV Technical Specialist Site Name: **BYRAM PARK CT**

Cumulative Power Density

Operator	Operating Frequency	Number of Trans.	ERP Per Trans.	Total ERP	Distance to Target	Calculated Power Density	Maximum Permissible Exposure*	Fraction of MPE
	(MHz)		(watts)	(watts)	(feet)	(mW/cm^2)	(mW/cm^2)	(%)
VZW 700	751	4	739	2954	57	0.0327	0.5007	6.53%
VZW CDMA	877.26	2	499	998	57	0.0110	0.5848	1.89%
VZW Cellular	874	4	841	3365	57	0.0372	0.5827	6.39%
VZW PCS	1980	4	2035	8139	57	0.0901	1.0000	9.01%
VZW AWS	2120	4	2035	8141	57	0.0901	1.0000	9.01%
VZW CBAND	3730.08	4	6531	26125	57	0.2892	1.0000	28.92%
								1
Total Percentage of	of Maximum Permiss	ible Exposure					1	61.75%

MHz = Megahertz mW/cm^2 = milliwatts per square centimeter ERP = Effective Radiated Power

Absolute worst case maximum values used.

^{*}Guidelines adopted by the FCC on August 1, 1996, 47 CFR Part 1 based on NCRP Report 86, 1986 and generally on ANSI/IEEE C95.1-1992

^{**}Calculation includes a -10 dB Off Beam Antenna Pattern Adjustment pursuant to Attachments B and C of the Siting Council's November 10, 2015 Memorandum for Exempt Modification fillings

Legend **Topology Features Property Lines Road Features** Contours 10ft Town Boundary Contours 1ft Cement-Paved **Utility Features** Construction **Cultural Features** Island Street Light Cemetery Traffic Signal Paved **Under Construction** Parking Meter Unpaved Landfill Tree Pedestrian signals **Recreation Features** Marine Features **Fences** Building Docks Stone Walls Fairway Piers **Retaining Walls** Green Marine Structure Hydrology Sand Railroad Boardwalk Water Roads Centerline **Golf Gourses** Sidewalk **Hydrology Features** Baseball\Athletic Fields Crosswalk Island Swimming Pools **Tennis Courts** Pond **Building Features** Reservoir Path Features Residential-Single Family River Residential-Two Family Sea Paved Residential- Multi Family Unpaved Wetlands Commercial/Industrial **Driveway Features** Estuarine Institutional Freshwater Open Lake Paved Public Freshwater Open Water with Vegetation Unpaved Other Structure Freshwater Shrub Scrub Residential Garages **Parking Features** Freshwater Emergent Building under construction (4/2013) Freshwater Wooded Scrub Paved Water Towers Unpaved Flood Zones Foundations (4/2013) 100 Year Flood Zone Patio **Bridge Features** 500 Year Flood Zone Deck Bridge (FEMA Base: 7/8/13) Courtyards Overpass Non-building polygons

36 RITCH AVENUE LLC

RITCH AVENUE 0036

Tax ID 182/005

Printed 01/12/2021 card No. 1

of 1

\$0

\$0

\$125000

ADMINISTRATIVE INFORMATION

PARCEL NUMBER 04-2334/S

Parent Parcel Number

Property Address RITCH AVENUE 0036 Neighborhood

2700 BYRAM Property Class

270 Telecommunications TAXING DISTRICT INFORMATION

Jurisdiction 57 Greenwich, CT

Area 001 057 Corporation District 04 Section & Plat 040 Routing Number 7117N0001

Site Description

Topography:

Public Utilities:

Water, Sewer, Electric Street or Road:

Neighborhood:

Zoning:

R-7 Single Family 7,500 Primary Commercial

Land Type

Legal Acres: 0.2670

OWNERSHIP

36 RITCH AVENUE LLC 16B ARTHER STREET GREENWICH, CT 06831

LOT NO PT5 & PT7A-1-1-3 R ITCH AV N1B

Frontage Frontage

TRANSFER OF OWNERSHIP

02/15/2002 KELLY BRIAN & LAURA W/S

Bk/Pg: 3786, 114 11/16/2000 CATALANO ANTHONY ETAL DBA CATALANO B Bk/Pg: 3492, 86

08/20/1986 NΑ Bk/Pg: 1611, 290

COMMERCIAL

VALUATION RECORD

10/01/2015 10/01/2015 10/01/2016 10/01/2017 10/01/2018 10/01/2019 10/01/2020 Assessment Year Reason for Change 2015 Final 2015 BAA 2016 List 2017 List 2018 List 2019 List 2020 List VALUATION L 664000 664000 664000 664000 664000 664000 664000 Market В 2350700 2236000 2236000 2236000 2236000 2236000 2236000 Т 3014700 2900000 2900000 2900000 2900000 2900000 2900000 VALUATION L 464800 464800 464800 464800 464800 464800 464800 70% Assessed В 1645490 1565200 1565200 1565200 1565200 1565200 1565200 Τ 2110290 2030000 2030000 2030000 2030000 2030000 2030000

LAND DATA AND CALCULATIONS

Rate

Rating Measured Table Prod. Factor Soil ID Acreage -or--or-Actual Effective Effective

Depth

Depth Factor -or-Square Feet

Adjusted Base Rate 11630.52 57.09

Extended Value 57.09 664000 Influence Factor

Value

664000

BA10: Sustained

BA15: Decrease Total value by \$114,700 BP15: 15-0972, \$15,000 9 Antenna Panels

BP17: 16-3234, 16-4235, 16-4392: Cellular Work, \$85,000

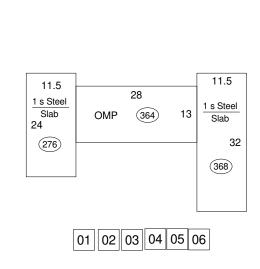
CKMP: 8586

DBA: Telecommunications site w/ a 70' flagpole monopole owned by Cingular (and carrier), and a 77' monopine (pole) owned by Verizon (w/ Verizon, ATT & Mobile carriers) both serviced by a

custom utility bldg. LAND: See BP03 memo. Permit Number Type

FilingDate Est. Cost Field Visit Est. SqFt

Supplemental Cards


TRUE TAX VALUE

664000

Property Class: 270 RITCH AVENUE 0036

IMPROVEMENT DATA

PHYSICAL CHARACTERISTICS ROOFING Built-up WALLS 2 U Frame Brick Metal Guard FRAMING U F Res 0 644 0 0 HEATING AND AIR CONDITIONING 1 U 0 644 0 Heat 0 0 644 0 Sprink

Item Description Units Cost Total Pct M & S Cost Database Date: 01/2015 Base Cost 644 61.99 39922 Exterior Walls 644 31.57 20331 Heating & Cooling 644 53.92 34724 Sprinklers 644 7.68 4946 Basic Structure Cost 644 155.16 99923 Physical 0 0.00 2998 3.00 Depreciated Cost 644 150.50 96925 Rounded Total 0.00 96900 0 33.87 12330 Total Exterior Features Value 12330 Depreciated Ext Features 11960 Total Before Adjustments 108860 Neighborhood Adjustment 54440 50.00 TOTAL VALUE 163300

(LCM: 150.00)

								(LCM
SPECIAL FEATURES			SUMMARY (OF IMPROVE	MENTS			
Description Value	ID Use	Stry Const Hgt Type Grade	Year Eff Const Year Cond	Base Feat- Rate ures	Adj Size or Rate Area	Computed Phys Ob Value Depr De	solMarket % epr Adj Comp	Value
	C STGCA 01 TOWERMON	0.00 Goo			0.00 64 3323 7		0 150 100 0 100 100	16330
	02 STNWALGS	8.00 God	od 2012 2012 AV	125.00 N	281.25 9920	0 279000 2	0 100 100	77920
	03 PAVING 04 RTWCBREF	0.00 85 Avg 0.00 41C God			7.80 285 38.25 4x11		0 100 100 0 100 100	6220 4790
	05 TOWERMON 06 COMCNPYH	0.00 5PF Exe			0.00 7 226.80 8x 1		SV 100 100 0 100 100	55860 9120
		0.00 01 2.00	. 2012 2012 111	00.00	220.00	0 02000 2	0 100 100	712
	Data Collector	r/Date Apprai	ser/Date	Neig	hborhood	Supplemental Car		236
	TD 08/03/2017	7 TOG	10/01/2015	Neig	jh 2700 AV	TOTAL IMPROVEMEN	I VALUE	230

Call before you dig.

ATC SITE NAME: BYRAM PARK CT

ATC SITE NUMBER: 414240

VERIZON SITE NAME: BYRAM PARK CT

VERIZON SITE NUMBER: 468044

SITE ADDRESS: 48 RITCH AVENUE WEST

GREENWICH, CT 06830-9992

LOCATION MAP

VERIZON ANTENNA AMENDMENT DRAWINGS

COMPLIANCE CODE	PROJECT SUMMARY	PROJECT DESCRIPTION		SHEET INDEX	<		
ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE	SITE ADDRESS:	THE PROPOSED PROJECT INCLUDES MODIFYING GROUND BASED AND TOWER MOUNTED EQUIPMENT AS INDICATED PER BELOW:	SHEET NO:	DESCRIPTION:	REV:	DATE:	BY:
FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNMENT AUTHORITIES. NOTHING IN THESE PLANS IS	48 RITCH AVENUE WEST	REMOVE (9) ANTENNA(s), (6) RRH(s), (1) OVP(s), AND (2) 1-5/8" HYBRID	G-001	TITLE SHEET	0	09/21/21	BIW
TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES.	GREENWICH, CT 06830-9992	CABLE(s)	G-002	GENERAL NOTES	0	09/21/21	BIW
INTERNATIONAL BUILDING CODE (IBC)	COUNTY: FAIRFIELD	INSTALL MOUNT MODIFICATIONS, (9) ANTENNA(s), (9) RRH(s), (3)	C-101	DETAILED SITE PLAN	0	09/21/21	BIW
2. NATIONAL ELECTRIC CODE (NEC)	GEOGRAPHIC COORDINATES:	DIPLEXER(s), (1) OVP(s), AND (2) 1-5/8" HYBRID CABLE(s)	C-201	TOWER ELEVATION	0	09/21/21	BIW
3. LOCAL BUILDING CODE	LATITUDE: 41.00506388	EXISTING (3) ANTENNA(s), AND (16) 1-5/8" COAX CABLE(s) TO REMAIN					
4. CITY/COUNTY ORDINANCES	LONGITUDE: -73.64831111		C-401	ANTENNA INFORMATION & SCHEDULE	0	09/21/21	BIW
	GROUND ELEVATION: 53' AMSL		C-501	CONSTRUCTION DETAILS	0	09/21/21	BIW
			E-501	GROUNDING DETAILS	0	09/21/21	BIW
			R-601	SUPPLEMENTAL			
_		PROJECT NOTES	R-602	SUPPLEMENTAL			
	PROJECT TEAM	THE FACILITY IS UNMANNED. A TECHNICIAN WILL VISIT THE SITE APPROXIMATELY ONCE A	R-603	SUPPLEMENTAL			
	TOWER OWNER: APPLICANT:	MONTH FOR ROUTINE INSPECTION AND MAINTENANCE. 3. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT LAND	R-604	SUPPLEMENTAL			
	AMERICAN TOWER VERIZON WIRELESS	DISTURBANCE OR EFFECT OF STORM WATER DRAINAGE. 4. NO SANITARY SEWER, POTABLE WATER OR TRASH		MOUNT MODIFICATION DRAWINGS			
	10 PRESIDENTIAL WAY 180 WASHINGTON VALLEY RE WOBURN, MA 01801 BEDMINSTER, NJ 07921	DISPOSAL IS REQUIRED. 5. HANDICAP ACCESS IS NOT REQUIRED.					
UTILITY COMPANIES	ENGINEER:	THE PROJECT DEPICTED IN THESE PLANS QUALIFIES AS AN ELIGIBLE FACILITIES REQUEST ENTITLED TO EXPEDITED					
POWER COMPANY: EVERSOURCE PHONE: (866) 554-6025	NB+C ENGINEERING SERVICES, LLC 8601 SIX FORKS ROAD, SUITE 540	REVIEW UNDER 47 U.S.C. 1455(A) AS A MODIFICATION OF AN EXISTING WIRELESS TOWER THAT INVOLVES THE COLLOCATION REMOVAL AND/OR REPLACEMENT OF					
TELEPHONE COMPANY: UNKNOWN PHONE: (000) 000-0000	RALEIGH, NC 27615	TRANSMISSION EQUIPMENT THAT IS NOT A SUBSTANTIAL CHANGE UNDER CFR 1.61000 (B)(7).					+
PHONE: (000) 000-0000	PROPERTY OWNER: 36 RITCH AVENUE LLC	PROJECT LOCATION DIRECTIONS					
Know what's below.	48 RITCH AVENUE WEST GREENWICH, CT 06830-9992	TAKE RITCH AVE W AND HAMILTON AVE TO GLEN ST IN GREENWICH, 4 MIN (1.6 MI), HEAD NORTHEAST ON 1-95 N, 0.2 MI, TAKE EXIT 2 FOR BYRAM TOWARD DELAVAN AVE, 0.2 MI, CONTINUE ONTO DORAN AVE, 361 FT, TURN LEFT ONTO BYRAM SHORE RD, 167 FT, TURN RIGHT ONTO RITCH AVE W, 0.6 MI, CONTINUE ONTO HAMILTON AVE, 0.5 MI, TAKE RODWELL AVE TO HAMILTON AVE, 43 S (0.2 MI), TURN RIGHT ONTO GLEN ST, 351 FT, GLEN ST TURNS LEFT AND BECOMES RODWELL AVE, 476 FT, RODWELL AVE TURNS LEFT AND BECOMES STONE AVE, 358 FT, CONTINUE ON HAMILTON AVE. DRIVE TO RITCH AVE W, 3 MIN (1.1 MI), TURN LEFT GROTO HAMILTON AVE. DRIVE TO RITCH AVE W, 3 MIN (1.1 MI), TURN LEFT GROTO HAMILTON AVE. DRIVE TO RITCH AVE W, 3 MIN (1.1 MI),					

TURN LEFT ONTO HAMILTON AVE, 0.6 M, CONTINUE ONTO RITCH AVE W,
DESTINATION WILL BE ON THE RIGHT,

3500 REGENCY PARKWAY SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112 COA: P-1177

8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

REV.	DESCRIPTION	BY	DATE
<u> </u>	PRELIM	TH	07/23/21
\wedge	FOR CONSTRUCTION	BIW	09/21/21
$\overline{\wedge}$			
$\overline{\wedge}$			

ATC SITE NUMBER: 414240

ATC SITE NAME: **BYRAM PARK CT**

VERIZON SITE NAME:

BYRAM PARK CT

SITE ADDRESS: 36 RITCH AVE WEST GREENWICH, CT 06830-9992

09/21/21

verizon v

ı		
1	DATE DRAWN:	09/21/21
	ATC JOB NO:	13701270
	CUSTOMER ID:	BYRAM PARK CT
ı	CUSTOMER #:	468044

TITLE SHEET

SHEET NUMBER:

G-001

REVISION: 0

GENERAL CONSTRUCTION NOTES:

- OWNER FURNISHED MATERIALS, VERIZON "THE COMPANY" WILL PROVIDE AND THE CONTRACTOR WILL INSTALL
- A. BTS EQUIPMENT FRAME (PLATFORM) AND ICEBRIDGE SHELTER (GROUND
 - BUILD/CO-LOCATE ONLY) AC/TELCO INTERFACE BOX (PPC)
 - C. ICE BRIDGE (CABLE TRAY WITH COVER) (GROUND BUILD/CO-LOCATE ONLY, GC TO FURNISH AND INSTALL FOR ROOFTOP INSTALLATION)
 - D. TOWERS, MONOPOLES
 - TOWER LIGHTING
 - GENERATORS & LIQUID PROPANE TANK
 - G. ANTENNA STANDARD BRACKETS, FRAMES AND PIPES FOR MOUNTING
 - ANTENNAS (INSTALLED BY OTHERS)
 - TRANSMISSION LINE
 - TRANSMISSION LINE JUMPERS
 - TRANSMISSION LINE CONNECTORS WITH WEATHERPROOFING KITS
 - TRANSMISSION LINE GROUND KITS
 - M. HANGERS
 - HOISTING GRIPS
 - O. BTS EQUIPMENT
- THE CONTRACTOR IS RESPONSIBLE TO PROVIDE ALL OTHER MATERIALS FOR THE COMPLETE INSTALLATION OF THE SITE INCLUDING, BUT NOT LIMITED TO, SUCH MATERIALS AS FENCING, STRUCTURAL STEEL SUPPORTING SUB-FRAME FOR PLATFORM, ROOFING LABOR AND MATERIALS GROUNDING RINGS GROUNDING WIRES. COPPER-CLAD OR XIT CHEMICAL GROUND ROD(S), BUSS BARS, TRANSFORMERS AND DISCONNECT SWITCHES WHERE APPLICABLE, TEMPORARY ELECTRICAL POWER, CONDUIT, LANDSCAPING COMPOUND STONE, CRANES, CORE DRILLING, SLEEPERS AND RUBBER MATTING, REBAR, CONCRETE CAISSONS, PADS AND/OR AUGER MOUNTS, MISCELLANEOUS FASTENERS, CABLE TRAYS, NON-STANDARD ANTENNA FRAMES AND ALL OTHER MATERIAL AND LABOR REQUIRED TO COMPLETE THE JOB ACCORDING TO THE DRAWINGS AND SPECIFICATIONS, IT IS THE POSITION OF VERIZON TO APPLY FOR PERMITTING AND CONTRACTOR RESPONSIBLE FOR PICKUP AND PAYMENT OF REQUIRED
- ALL WORK SHALL CONFORM TO ALL CURRENT APPLICABLE FEDERAL, STATE, AND LOCAL CODES, INCLUDING ANSI/EIA/TIA-222, AND COMPLY WITH ATC CONSTRUCTION SPECIFICATIONS.
- CONTRACTOR SHALL CONTACT LOCAL 811 FOR IDENTIFICATION OF UNDERGROUND UTILITIES PRIOR TO START OF CONSTRUCTION.
- CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATING ALL REQUIRED INSPECTIONS.
- ALL DIMENSIONS TO, OF, AND ON EXISTING BUILDINGS, DRAINAGE STRUCTURES, AND SITE IMPROVEMENTS SHALL BE VERIFIED IN FIELD BY CONTRACTOR WITH ALL DISCREPANCIES REPORTED TO THE ENGINEER.
- DO NOT CHANGE SIZE OR SPACING OF STRUCTURAL ELEMENTS
- DETAILS SHOWN ARE TYPICAL: SIMILAR DETAILS APPLY TO SIMILAR CONDITIONS UNLESS
- THESE DRAWINGS DO NOT INCLUDE NECESSARY COMPONENTS FOR CONSTRUCTION SAFETY WHICH SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- CONTRACTOR SHALL BRACE STRUCTURES UNTIL ALL STRUCTURAL ELEMENTS NEEDED FOR STABILITY ARE INSTALLED. THESE ELEMENTS ARE AS FOLLOWS: LATERAL BRACING,
- CONTRACTOR SHALL DETERMINE EXACT LOCATION OF EXISTING UTILITIES, GROUNDS DRAINS, DRAIN PIPES, VENTS, ETC, BEFORE COMMENCING WORK,
- 12. INCORRECTLY FABRICATED, DAMAGED, OR OTHERWISE MISFITTING OR NONCONFORMING MATERIALS OR CONDITIONS SHALL BE REPORTED TO THE VERIZON REP PRIOR TO REMEDIAL OR CORRECTIVE ACTION, ANY SUCH REMEDIAL ACTION SHALL REQUIRE WRITTEN APPROVAL BY THE VERIZON REP PRIOR TO PROCEEDING.
- EACH CONTRACTOR SHALL COOPERATE WITH THE VERIZON REP, AND COORDINATE HIS WORK WITH THE WORK OF OTHERS.
- CONTRACTOR SHALL REPAIR ANY DAMAGE CAUSED BY CONSTRUCTION OF THIS PROJECT TO MATCH EXISTING PRE-CONSTRUCTION CONDITIONS TO THE SATISFACTION
- ALL CABLE/CONDUIT ENTRY/EXIT PORTS SHALL BE WEATHERPROOFED DURING 15. INSTALLATION USING A SILICONE SEALANT
- WHERE EXISTING CONDITIONS DO NOT MATCH THOSE SHOWN IN THIS PLAN SET. CONTRACTOR SHALL NOTIFY THE VERIZON REP AND ENGINEER OF RECORD
- 17. CONTRACTOR SHALL ENSURE ALL SUBCONTRACTORS ARE PROVIDED WITH A COMPLETE AND CURRENT SET OF DRAWINGS AND SPECIFICATIONS FOR THIS PROJECT.
- CONTRACTOR SHALL REMOVE ALL RUBBISH AND DEBRIS FROM THE SITE AT THE END OF EACH DAY.
- CONTRACTOR SHALL COORDINATE WORK SCHEDULE WITH AMERICAN TOWER CORPORATION (ATC) AND TAKE PRECAUTIONS TO MINIMIZE IMPACT AND DISRUPTION OF
- CONTRACTOR SHALL FURNISH VERIZON AND AMERICAN TOWER CORPORATION (ATC) WITH A PDF MARKED UP AS-BUILT SET OF DRAWINGS UPON COMPLETION OF WORK
- PRIOR TO SUBMISSION OF RID. CONTRACTOR SHALL COORDINATE WITH VERIZON, REP. TO DETERMINE WHAT, IF ANY, ITEMS WILL BE PROVIDED. ALL ITEMS NOT PROVIDED SHALL BE PROVIDED AND INSTALLED BY THE CONTRACTOR. CONTRACTOR WILL INSTALL

- 22. PRIOR TO SUBMISSION OF BID. CONTRACTOR SHALL COORDINATE WITH VERIZON REP TO DETERMINE IF ANY PERMITS WILL BE OBTAINED BY CONTRACTOR. ALL REQUIRED PERMITS NOT OBTAINED BY VERIZON MUST BE OBTAINED, AND PAID FOR, BY THE
- 23. CONTRACTOR SHALL INSTALL ALL SITE SIGNAGE IN ACCORDANCE WITH VERIZON
- 24. CONTRACTOR SHALL SUBMIT ALL SHOP DRAWINGS TO VERIZON FOR REVIEW AND APPROVAL PRIOR TO FABRICATION.
- ALL EQUIPMENT SHALL BE INSTALLED ACCORDING TO MANUFACTURER'S SPECIFICATIONS AND LOCATED ACCORDING TO VERIZON SPECIFICATIONS, AND AS SHOWN IN THESE PLANS
- 26. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES AND PROCEDURES AND FOR COORDINATING ALL PORTIONS OF THE WORK UNDER THE CONTRACT.
- CONTRACTOR SHALL NOTIFY VERIZON, REP A MINIMUM OF 48 HOURS IN ADVANCE OF POURING CONCRETE OR BACKFILLING ANY UNDERGROUND UTILITIES, FOUNDATIONS OR SEALING ANY WALL, FLOOR OR ROOF PENETRATIONS FOR ENGINEERING REVIEW AND
- CONTRACTOR SHALL BE RESPONSIBLE FOR SITE SAFETY INCLUDING COMPLIANCE WITH ALL APPLICABLE OSHA STANDARDS AND RECOMMENDATIONS AND SHALL PROVIDE ALL NECESSARY SAFETY DEVICES INCLUDING PPE AND PPM AND CONSTRUCTION DEVICES. SUCH AS WELDING AND FIRE PREVENTION, TEMPORARY SHORING, SCAFFOLDING, TRENCH BOXES/SLOPING, BARRIERS, ETC.
- THE CONTRACTOR SHALL PROTECT AT HIS OWN EXPENSE, ALL EXISTING FACILITIES AND SPECIAL CONSTRUCTION SUCH OF HIS NEW WORK LIABLE TO INJURY DURING THE CONSTRUCTION PERIOD. ANY DAMAGE CAUSED BY NEGLECT ON THE PART OF THIS CONTRACTOR OR HIS REPRESENTATIVES, OR BY THE ELEMENTS DUE TO NEGLECT ON THE PART OF THIS CONTRACTOR OR HIS REPRESENTATIVES, EITHER TO THE EXISTING WORK, OR TO HIS WORK OR THE WORK OF ANY OTHER CONTRACTOR, SHALL BE REPAIRED AT HIS EXPENSE TO THE OWNER'S SATISFACTION.
- ALL WORK SHALL BE INSTALLED IN A FIRST CLASS, NEAT AND WORKMANLIKE MANNER BY MECHANICS SKILLED IN THE TRADE INVOLVED. THE QUALITY OF WORKMANSHIP SHALL BE SUBJECT TO THE APPROVAL OF THE VERIZON REP. ANY WORK FOUND BY THE VERIZON, REP TO BE OF INFERIOR QUALITY AND/OR WORKMANSHIP SHALL BE REPLACED AND/OR REWORKED AT CONTRACTOR EXPENSE UNTIL APPROVAL IS
- 31. IN ORDER TO ESTABLISH STANDARDS OF QUALITY AND PERFORMANCE, ALL TYPES OF MATERIALS LISTED HEREINAFTER BY MANUFACTURER'S NAMES AND/OR MANUFACTURER'S CATALOG NUMBER SHALL BE PROVIDED BY THESE MANUFACTURERS AS SPECIFIED.
- VERIZON FURNISHED FOUIPMENT SHALL BE PICKED-UP AT THE VERIZON WAREHOUSE NO LATER THAN 48HR AFTER BEING NOTIFIED INSURED, STORED, UNCRATE, PROTECTED AND INSTALLED BY THE CONTRACTOR WITH ALL APPURTENANCES REQUIRED TO PLACE THE EQUIPMENT IN OPERATION, READY FOR USE. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE EQUIPMENT AFTER PICKING IT UP.
- 33. VERIZON OR HIS ARCHITECT/ENGINEER RESERVES THE RIGHT TO REJECT ANY EQUIPMENT OR MATERIALS WHICH, IN HIS OWN OPINION ARE NOT IN COMPLIANCE WITH THE CONTRACT DOCUMENTS, EITHER BEFORE OR AFTER INSTALLATION AND THE EQUIPMENT SHALL BE REPLACED WITH EQUIPMENT CONFORMING TO THE REQUIREMENTS OF THE CONTRACT DOCUMENTS BY THE CONTRACTOR AT NO COST TO VERIZON OR THEIR ARCHITECT/ENGINEER.

STRUCTURAL STEEL NOTES:

- STRUCTURAL STEEL SHALL CONFORM TO THE LATEST EDITION OF THE AISC "SPECIFICATION FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL
- STRUCTURAL STEEL ROLLED SHAPES, PLATES AND BARS SHALL CONFORM TO THE FOLLOWING ASTM DESIGNATIONS:
 - A. ASTM A-572, GRADE 50 ALL W SHAPES, UNLESS NOTED OR A992 OTHERWISE
 - B. ASTM A-36 ALL OTHER ROLLED SHAPES, PLATES AND BARS UNLESS NOTED
 - C. ASTM A-500, GRADE B HSS SECTION (SQUARE, RECTANGULAR, AND ROUND)
 - D. ASTM A-325, TYPE SC OR N ALL BOLTS FOR CONNECTING STRUCTURAL
 - E. ASTM F-1554 07 ALL ANCHOR BOLTS, UNLESS NOTED OTHERWISE
- ALL EXPOSED STRUCTURAL STEEL MEMBERS SHALL BE HOT-DIPPED GALVANIZED AFTER FABRICATION PER ASTM A123. EXPOSED STEEL HARDWARE AND ANCHOR BOLTS SHALL BE GALVANIZED PER ASTM A153 OR B695
- ALL FIELD CUT SURFACES, FIELD DRILLED HOLES AND GROUND SURFACES WHERE EXISTING PAINT OR GALVANIZATION REMOVAL WAS REQUIRED SHALL BE REPAIRED WITH (2) BRUSHED COATS OF ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURER'S RECOMMENDATIONS.
- DO NOT DRILL HOLES THROUGH STRUCTURAL STEEL MEMBERS EXCEPT AS SHOWN AND DETAILED ON STRUCTURAL DRAWINGS.
- CONNECTIONS:
 - A. ALL WELDING TO BE PERFORMED BY AWS CERTIFIED WELDERS AND CONDUCTED IN ACCORDANCE WITH THE LATEST EDITION OF THE AWS WELDING

- ALL WELDS SHALL BE INSPECTED VISUALLY. 25% OF WELDS SHALL BE INSPECTED WITH DYE PENETRANT OR MAGNETIC PARTICLE TO MEET THE ACCEPTANCE CRITERIA OF AWS D1.1, REPAIR ALL WELDS AS NECESSARY
- C. INSPECTION SHALL BE PERFORMED BY AN AWS CERTIFIED WELD INSPECTOR.
- D. IT IS THE CONTRACTORS RESPONSIBILITY TO PROVIDE BURNING/WELDING PERMITS AS REQUIRED BY LOCAL GOVERNING AUTHORITY AND IF REQUIRED SHALL HAVE FIRE DEPARTMENT DETAIL FOR ANY WELDING ACTIVITY.
- E. ALL ELECTRODES TO BE LOW HYDROGEN, MATCHING FILLER METAL, PER AWS
- F. MINIMUM WELD SIZE TO BE 0.1875 INCH FILLET WELDS, UNLESS NOTED
- G. PRIOR TO FIELD WELDING GALVANIZING MATERIAL. CONTRACTOR SHALL GRIND OFF GALVANIZING ½" BEYOND ALL FIELD WELD SURFACES. AFTER WELD AND WELD INSPECTION IS COMPLETE, REPAIR ALL GROUND AND WELDED SURFACES WITH ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURERS RECOMMENDATIONS.
- H. THE CONTRACTOR SHALL PROVIDE ADEQUATE SHORING AND/OR BRACING WHERE REQUIRED DURING CONSTRUCTION UNTIL ALL CONNECTIONS ARE
- ANY FIELD CHANGES OR SUBSTITUTIONS SHALL HAVE PRIOR APPROVAL FROM THE ENGINEER, AND T- MOBILE PROJECT MANAGER IN WRITING

ANTENNA INSTALLATION NOTES:

- WORK INCLUDED:
 - ANTENNA AND COAXIAL CABLES ARE FURNISHED BY VERIZON UNDER A SEPARATE CONTRACT. THE CONTRACTOR SHALL ASSIST ANTENNA INSTALLATION CONTRACTOR IN TERMS OD COORDINATION AND SITE ACCESS. ERECTION SUBCONTRACTOR SHALL BE RESPONSIBLE FOR THE PROTECTION OF PERSONNEL AND
 - B. INSTALL ANTENNA AS INDICATE ON DRAWINGS AND VERIZON SPECIFICATIONS.
 - C. INSTALL GALVANIZED STEEL ANTENNA MOUNTS AS INDICATED ON DRAWINGS
 - D. INSTALL FURNISHED GALVANIZED STEEL OR ALUMINUM WAVEGUIDE AND PROVIDE PRINTOUT OF THAT TEST
 - F CONTRACTOR SHALL PROVIDE FOUR (4) SETS OF SWEEP TESTS USING ANRITZU-PACKARD 8713B RF SCALAR NETWORK ANALYZER. SUBMIT FREQUENCY DOMAIN REFLECTOMETER(FDR) TESTS RESULTS TO THE PROJECT MANAGER. SWEEP TESTS SHALL BE AS PER ATTACHED RFS "MINIMUM FIELD TESTING RECOMMENDED FOR ANTENNA AND HELIAX COAXIAL CABLE SYSTEMS" DATED 10/5/93, TESTING SHALL BE PERFORMED BY AN INDEPENDENT TESTING SERVICE AND BE BOUND AND SUBMITTED WITHIN ONE WEEK OF WORK COMPLETION.
 - F. INSTALL COAXIAL CABLES AND TERMINATING BETWEEN ANTENNAS AND EQUIPMENT PER MANUFACTURER'S RECOMMENDATIONS. WEATHERPROOF ALL CONNECTIONS BETWEEN THE ANTENNA AND EQUIPMENT PER MANUFACTURER'S REQUIREMENTS. TERMINATE ALL COAXIAL CABLE THREE (3) FEET IN EXCESS OF ENTRY PORT LOCATION UNLESS OTHERWISE STATED.
 - G. ANTENNA AND COAXIAL CABLE GROUNDING:
- ALL EXTERIOR #6 GREED GROUND WIRE "DAISY CHAIN" CONNECTIONS ARE TO BE WEATHER SEALED WITH RFS CONNECTORS/SPLICE WEATHERPROOFING KIT #221213 OR
- ALL COAXIAL CABLE GROUNDING KITS ARE TO BE INSTALLED ON STRAIGHT RUNS OF COAXIAL CABLE (NOT WITHIN BENDS)

ALL DISCREPANCIES FROM WHAT IS SHOWN ON THESE CONSTRUCTION DRAWINGS SHALL BE COMMUNICATED TO ATC ENGINEERING IMMEDIATELY FOR CORRECTION OR RE-DESIGN FAILURE TO COMMUNICATE DIRECTLY WITH ATC ENGINEERING OR ANY CHANGES FROM THE DESIGN CONDUCTED WITHOUT PRIOR APPROVAL FROM ATC ENGINEERING SHALL BE THE SOLE RESPONSIBILITY OF THE GENERAL CONTRACTOR.

A.T. ENGINEERING SERVICE, PLLC 3500 REGENCY PARKWAY

SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112 COA: P-1177

8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

DESCRIPTION BY DATE TH 07/23/21 FOR CONSTRUCTION BIW 09/21/21

> ATC SITE NUMBER: 414240

ATC SITE NAME: BYRAM PARK CT

VERIZON SITE NAME:

BYRAM PARK CT

SITE ADDRESS: 36 RITCH AVE WEST GREENWICH, CT 06830-9992

09/21/21

DATE DRAWN: 09/21/21 ATC JOB NO: 13701270 CUSTOMER ID: BYRAM PARK CT CUSTOMER #: 468044

GENERAL NOTES

SHEET NUMBER:

G-002

0

REVISION

SITE PLAN NOTES:

TRN

1. THIS SITE PLAN REPRESENTS THE BEST PRESENT KNOWLEDGE AVAILABLE TO THE ENGINEER AT THE TIME OF THIS DESIGN. THE CONTRACTOR SHALL VISIT THE SITE PRIOR TO CONSTRUCTION AND VERIFY ALL EXISTING CONDITIONS RELATED TO THE SCOPE OF WORK FOR THIS PROJECT.

2. ICE BRIDGE, CABLE LADDER, COAX PORT, AND COAX CABLE ARE SHOWN FOR REFERENCE ONLY. CONTRACTOR SHALL CONFIRM THE EXACT LOCATION OF ALL PROPOSED AND EXISTING EQUIPMENT AND STRUCTURES DEPICTED ON THIS PLAN. BEFORE UTILIZING EXISTING CABLE SUPPORTS, COAX PORTS, INSTALLING NEW

PORTS OR ANY OTHER EQUIPMENT, CONTRACTOR SHALL VERIFY ALL ASPECTS OF THE COMPONENTS MEET THE ATC SPECIFICATIONS.

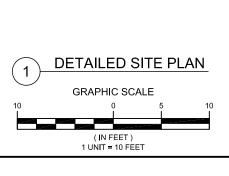
THIS PROJECT INCLUDES NO INSTALL OR MODIFICATION AT GRADE.

LEGEND

⊗ GROUNDING TEST WELL ATS AUTOMATIC TRANSFER SWITCH **BOLLARD** CSC CELL SITE CABINET D DISCONNECT ELECTRICAL FIBER GEN **GENERATOR** GENERATOR RECEPTACAL HH, V HAND HOLE, VAULT ΙB ICE BRIDGE KENTROX BOX LC LIGHTING CONTROL M METER PB PULL BOX PP POWER POLE TELCO.

TRANSFORMER

CHAINLINK FENCE


EXISTING (16) 1-5/8" COAX CABLES (TO REMAIN)

(2) 1-5/8" HYBRID CABLES (TO BE REMOVED)

VERIZON 6'-3" X 15'-6" CON. PAD (COVERED)

PROPOSED CABLE LENGTH:

- ESTIMATED LENGTH OF PROPOSED CABLE IS <u>75</u>.
 ESTIMATED LENGTH OF CABLE WAS PROVIDED BY
 CUSTOMER OR CALCULATED BY ADDING THE RAD
 CENTER AND THE DISTANCE FROM THE SHELTER
 ENTRY PLATE TO THE TOWER (ALONG THE ICE
 BRIDGE) AND A SAFETY FACTOR MEASUREMENT OF
 15% (OF THE TWO PREVIOUS VALUES), CDS DEFER
 TO GREATEST CABLE LENGTH.
- 2. ROUTE PROPOSED CABLES ALONG SAME PATH AS EXISTING CABLES AND IN ACCORDANCE WITH STRUCTURAL ANALYSIS. IF ADEQUATE SPACE EXISTS, ROUTE CABLES THROUGH ENTRY PORT HOLE, UP INSIDE OF MONOPOLE, AND THROUGH EXIT PORT HOLE. IF ROUTING OUTSIDE THE MONOPOLE, ATTACH CABLES USING STAND-OFF ADAPTERS MOUNTED TO TOWER USING STAINLESS STEEL BANDING. ADEQUATELY SECURE CABLES USING EITHER APPROPRIATELY SIZED STAINLESS STEEL SNAP-INS OR MOUNTING HARDWARE AND BRACKETS AS SPECIFIED BY CABLE MANUFACTURER.

STONE RETAINING WALL

9'-6" X 28'-6"

11'-10" X 30'-0" SHELTER

VERIZON

11'-10" X 22'-0"

SHELTER

3500 REGENCY PARKWAY SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112 COA: P-1177

NB+C ENGINEERING SERVICES, LLC.

8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

REV.	DESCRIPTION	BY	DATE
<u>A</u> _	PRELIM	_TH_	07/23/21
<u> </u>	FOR CONSTRUCTION	BIW	09/21/21
$\overline{\wedge}$			
$\overline{\wedge}$			
$\overline{\wedge}$			

ATC SITE NUMBER: 414240

ATC SITE NAME:
BYRAM PARK CT

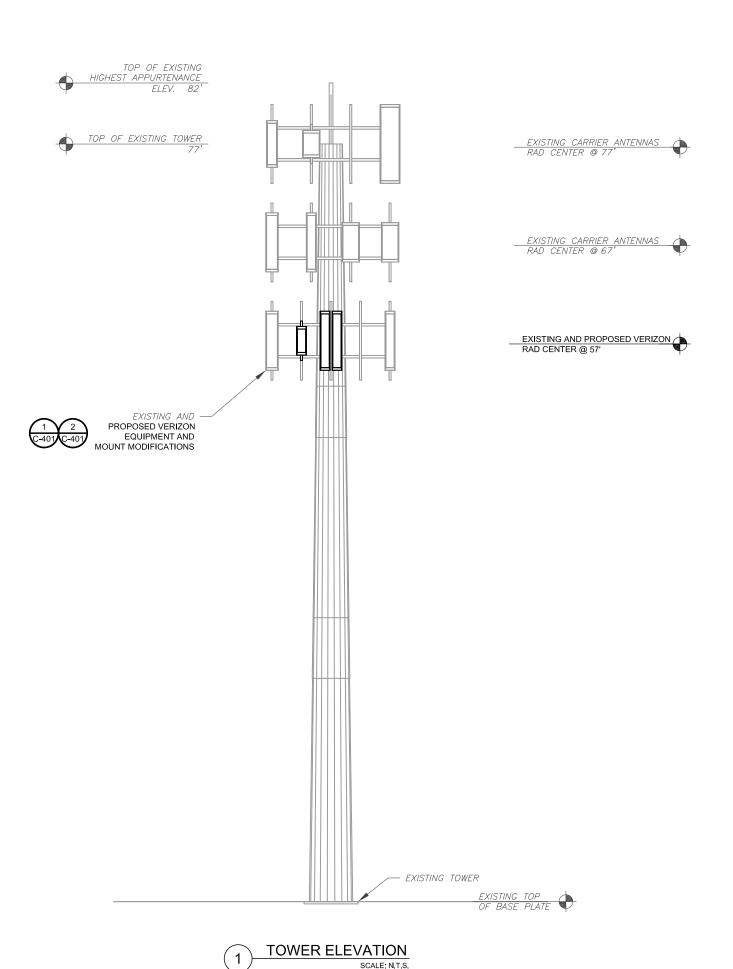
VERIZON SITE NAME:

BYRAM PARK CT

WOODEN FENCE

SITE ADDRESS: 36 RITCH AVE WEST GREENWICH, CT 06830-9992

verizon V


	DATE DRAWN:	09/21/21
	ATC JOB NO:	13701270
	CUSTOMER ID:	BYRAM PARK CT
	CUSTOMER #:	468044

DETAILED SITE PLAN

SHEET NUMBER:

C-101

REVISION

PER MOUNT ANALYSIS COMPLETED BY MASER CONSULTING, DATED 07/07/2021, THE EXISTING MOUNT MUST BE MODIFIED TO ADEQUATELY SUPPORT THE PROPOSED LOADING. THE MOUNT MODIFICATION PROPOSED IN THE MOUNT ANALYSIS, INCLUDED AT THE END OF THIS PLAN SET, MUST BE INSTALLED PRIOR TO THE INSTALLATION OF THE PROPOSED ANTENNAS AND OTHER EQUIPMENT.

- IT IS THE CONTRACTOR'S RESPONSIBILITY TO CONFIRM WITH THE PROJECT MANAGER THAT THEY HAVE THE MOST RECENT VERSION OF THE STRUCTURAL ANALYSIS BEFORE COMMENCING WORK. EXISTING AND PROPOSED TOWER APPURTENANCES, MOUNTS, AND ANTENNAS ARE SHOWN BASED ON THE STRUCTURAL ANALYSIS.
- 2. WHERE APPLICABLE, ALL NEW ANTENNAS, EQUIPMENT, MOUNTS, CABLING, ETC. SHALL BE PAINTED/SOCKED TO MATCH EXISTING EQUIPMENT IN ACCORDANCE WITH FAA, JURISDICTION, AND/OR OTHER LOCAL REQUIREMENTS.
- ROUTE PROPOSED CABLES ALONG SAME PATH AS EXISTING CABLES AND IN ACCORDANCE WITH STRUCTURAL ANALYSIS. IF ADEQUATE SPACE EXISTS, ROUTE CABLES THROUGH ENTRY PORT HOLE, UP INSIDE OF MONOPOLE, AND THROUGH EXIT PORT HOLE. IF ROUTING OUTSIDE THE MONOPOLE, ATTACH CABLES USING STAND-OFF ADAPTERS MOUNTED TO TOWER USING STAINLESS STEEL BANDING. ADEQUATELY SECURE CABLES USING EITHER APPROPRIATELY SIZED STAINLESS STEEL SNAP-INS OR MOUNTING HARDWARE AND BRACKETS AS SPECIFIED BY CABLE MANUFACTURER.
- 4. TOWER ELEVATIONS ARE MEASURED FROM TOP OF BASE PLATE TO MATCH STRUCTURAL ANALYSIS. ELEVATIONS DO NOT REFLECT TRUE ABOVE GROUND LEVEL (A.G.L.)

AMERICAN TOWER®

A.T. ENGINEERING SERVICE, PLLC 3500 REGENCY PARKWAY SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112 COA: P-1177

NB+C ENGINEERING SERVICES, LLC.

8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

REV.	DESCRIPTION	BY	DATE
<u> </u>	PRELIM	_TH_	07/23/21
\wedge	FOR CONSTRUCTION	BIW	09/21/21
$\overline{\wedge}$			
$\overline{\wedge}$			
\square			

ATC SITE NUMBER: 414240

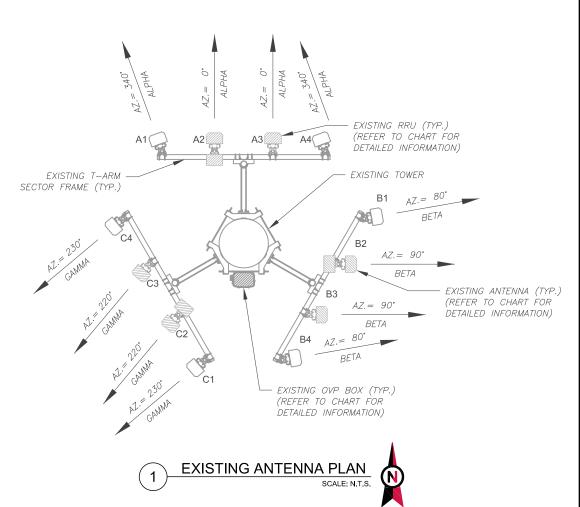
ATC SITE NAME: **BYRAM PARK CT**

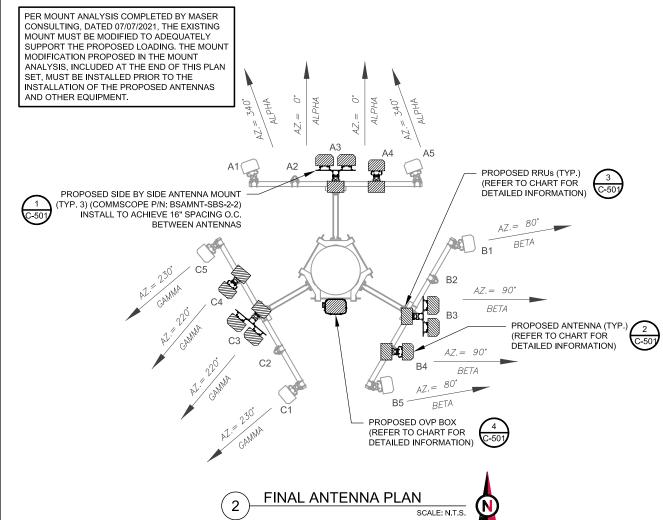
VERIZON SITE NAME:

BYRAM PARK CT

SITE ADDRESS: 36 RITCH AVE WEST GREENWICH, CT 06830-9992

09/21/21


	DATE DRAWN:	09/21/21
	ATC JOB NO:	13701270
	CUSTOMER ID:	BYRAM PARK CT
	CUSTOMER #:	468044


TOWER ELEVATION

SHEET NUMBER:

REVISION

C-201

		EXIS	TING ANTENNA SO	CHEDULE				NOTES				I	FINAL ANTENNA SCH	HEDULE																					
LOCATION		ANTENN	NA SUMMARY			NON ANTENNA SUMMA	ARY	1. CONFIRM WITH VERIZON REP	LO	CATION		ANTE	ENNA SUMMARY			NON ANTENNA SUMM	/ARY																		
SECTOR RAD	AZ POS	S ANTENNA	BAND	MECH/ELEC D-TILT	STATUS	ADDITIONAL TOWER MOUNTED EQUIPMENT	STATUS	FOR APPLICABLE UPDATES/REVISIONS AND	SECTOR	RAD	AZ POS	ANTENNA	BAND	MECH/ELEC D-TILT	STATUS	ADDITIONAL TOWER MOUNTED EQUIPMENT	STATUS																		
	340° A1	LPA-80063/6CF-EDIN-X	850 CDMA	2/0	RMN			MOST RECENT RFDS FOR NSN CONFIGURATION (CONFIG). GC			340° A1	LPA-80063/6CF-EDIN-X	850 CDMA	2/0	RMN	-	-																		
	340 A7	,				UHBA B13 RRH 4X30		TO CAP ALL UNUSED PORTS.			- A2	-	-	-	-	-	-																		
ALPHA 57,	0° A2	SBNHH-1D65A	700/AWS	0/4/2	RMV	UHIE B66A RRH 4X45	RMV	2. CONFIRM SPACING OF PROPOSED EQUIP DOES NOT			0° A3	JAHH-65A-R3B	700/850/1900	0/4/4/2	ADD	B5/B13 RRH-BR04C	ADD																		
, 127 7 17 7 7	0° A3		-	-	RMV	-	-	CAUSE TOWER CONFLICTS AL	CAUSE TOWER CONFLICTS ALPHA	CAUSE TOWER CONFLICTS ALPH	CAUSE TOWER CONFLICTS ALF	CAUSE TOWER CONFLICTS ALPHA	CAUSE TOWER CONFLICTS ALPHA	CAUSE TOWER CONFLICTS ALPH	CAUSE TOWER CONFLICTS ALP	CAUSE TOWER CONFLICTS AL	CAUSE TOWER CONFLICTS ALPHA		0° A3	JAHH-65A-R3B	700/850/AWS	0/4/4/2	ADD	CBC78T-DS-43-2X B2/B66A RRH-BR049	ADD										
	340° A4	/	850 CDMA	2/0	RMN	_	_	PEGS.			0° A4	MT6407-77A	L-SUB6	0/6	ADD	<u>-</u>	-																		
	80° B1	LPA-80063/6CF-EDIN-X	850 CDMA	2/0	RMN	_	_				340° A5	LPA-80063/6CF-EDIN-X	850 CDMA	2/0	RMN	-	-																		
BETA 57'	90° B2	SBNHH-1D45A	700/AWS	0/6/3	RMV	UHBA B13 RRH 4X30 UHIE B66A RRH 4X45	RMV	STATUS ABBREVIATIONS			80° B1	LPA-80063/6CF-EDIN-X	850 CDMA	2/0	RMN	-	-																		
	90° B3	BXA-171063-12CF	_	_	RMV	-	_	RMV: TO BE REMOVED			- B2	=	-	-	-	=	-																		
	80° B4	LPA-80063/6CF-EDIN-X	850 CDMA	2/0	RMN	=	_	RMN: TO REMAIN	RMN: TO REMAIN	RMN: TO REMAIN	RMN: TO REMAIN	RMN: TO REMAIN	RMN: TO REMAIN	RMN: TO REMAIN	RMN: TO REMAIN	RMN: TO REMAIN		RMN: TO REMAIN	RMN: TO REMAIN	RMN: TO REMAIN		RMN: TO REMAIN		NAME TO REMAIN	RMN: TO REMAIN	RMN: TO REMAIN			90° B3	JAHH-45A-R3B	700/850/1900	0/6/10/3	ADD	B5/B13 RRH-BR04C	ADD
	230° C1	LPA-80063/6CF-EDIN-X	850 CDMA	2/0	RMN	_	-	ADD: TO BE ADDED		BETA	57'	90° B3	JAHH-45A-R3B	700/850/AWS	0/6/10/3	ADD	CBC78T-DS-43-2X B2/B66A RRH-BR049	ADD																	
	220° C2	SBNHH-1D45A	700/AWS	0/6/2	RMV	UHBA B13 RRH 4X30 UHIE B66A RRH 4X45	RMV					90° B4	MT6407-77A	L-SUB6	0/6	ADD	-	-																	
GAMMA 57'	220° C3	BXA-171063-12CF		_	RMV	- OTIL DOOR NINT 4X43	—				80° B5	LPA-80063/6CF-EDIN-X	850 CDMA	2/0	RMN	-	-																		
	230° C4		850 CDMA	2/0	RMN			CABLE LENGTHS FOR JUMPERS			230° C1	LPA-80063/6CF-EDIN-X	850 CDMA	2/0	RMN	-	-																		
	230 04	EFA-800037 OCT -EBIN-X	030 CDINIA	2/0	TAIVITY			JUNCTION BOX TO RRU: 15'	JUNCTION BOX TO RRU: 15'	JUNCTION BOX TO RRU: 15'			- C2	-	-	-	-	-	-																
								RRU TO ANTENNA: 10'			220° C3	JAHH-45A-R3B	700/850/1900	0/6/6/2	ADD	B5/B13 RRH-BR04C	ADD																		
									GAMMA	57'	220° C3	JAHH-45A-R3B	700/850/AWS	0/6/6/2	ADD	CBC78T-DS-43-2X B2/B66A RRH-BR049	ADD																		
											220° C4	MT6407-77A	L-SUB6	0/6	ADD	-	-																		
											230° C5	LPA-80063/6CF-EDIN-X	850 CDMA	2/0	RMN	=	-																		

EXISTING FIBER DISTRIBUTION/O	VP BOX	EXISTING CABLING SUMMARY					
MODEL NUMBER	STATUS	COAX	HYBRID	STATUS			
RC2DC-4750-PF-48	RMV	(16) 1-5/8"	_	RMN			
-	_	(1) 1-5/8"	(2) 1-5/8"	RMV			

3 EQUIPMENT SCHEDULES

FINAL FIBER DISTRIBUTION / OVI	Р ВОХ	FINAL CABLING SUMMARY				
MODEL NUMBER	STATUS	COAX	HYBRID	STATUS		
RCMDC-6627-PF-48	ADD	(16) 1-5/8"	_	RMN		
-	-		(2) 1-5/8"	ADD		

A.T. ENGINEERING SERVICE, PLLC 3500 REGENCY PARKWAY SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112

COA: P-1177

NB+C ENGINEERING SERVICES, LLC.

8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

REV.	DESCRIPTION	BY	DATE
A.	PRELIM	TH_	07/23/21
\triangle	FOR CONSTRUCTION	BIW	09/21/21
$\overline{\wedge}$			
$\overline{\wedge}$			

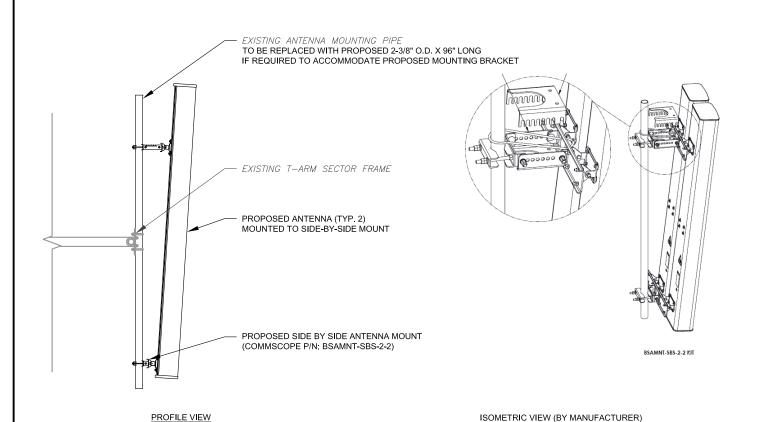
ATC SITE NUMBER: 414240

ATC SITE NAME:
BYRAM PARK CT

VERIZON SITE NAME:

BYRAM PARK CT

SITE ADDRESS: 36 RITCH AVE WEST GREENWICH, CT 06830-9992

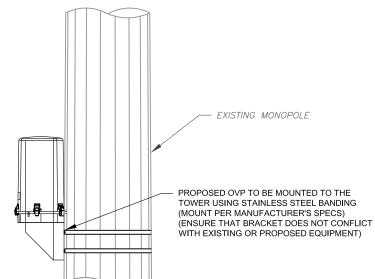

verizon /

	DATE DRAWN:	09/21/21
	ATC JOB NO:	13701270
	CUSTOMER ID:	BYRAM PARK CT
	CUSTOMER #:	468044

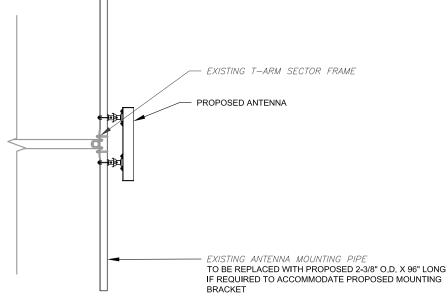
ANTENNA INFORMATION & SCHEDULE

SHEET NUMBER:

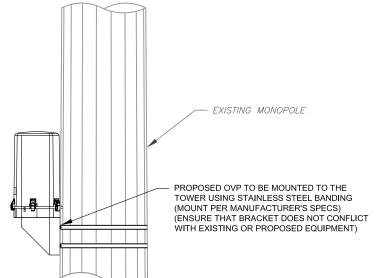
REVISION:


PROPOSED SIDE-BY-SIDE MOUNT

PROPOSED RRU (OPTION 2) (MOUNT PER MANUFACTURER'S SPECS)


EXISTING OR PROPOSED EQUIPMENT)

(ENSURE THAT BRACKET DOES NOT CONFLICT WITH


SCALE: NOT TO SCALE

PROPOSED OVP MOUNTING SCALE: N.T.S.

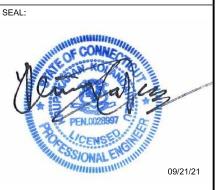
AMERICAN TOWER® A.T. ENGINEERING SERVICE, PLLC 3500 REGENCY PARKWAY SUITE 100 CARY, NC 27518

PHONE: (919) 468-0112 COA: P-1177

NB+C ENGINEERING SERVICES, LLC.

8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615 (919) 657-9131

REV.	DESCRIPTION	BY	DATE
<u> </u>	PRELIM	TH_	07/23/21
\wedge	FOR CONSTRUCTION	BIW	09/21/21
$\overline{\wedge}$			
$\overline{\wedge}$			
$\overline{\wedge}$			


ATC SITE NUMBER: 414240

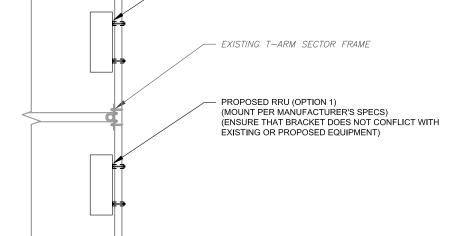
ATC SITE NAME: **BYRAM PARK CT**

VERIZON SITE NAME:

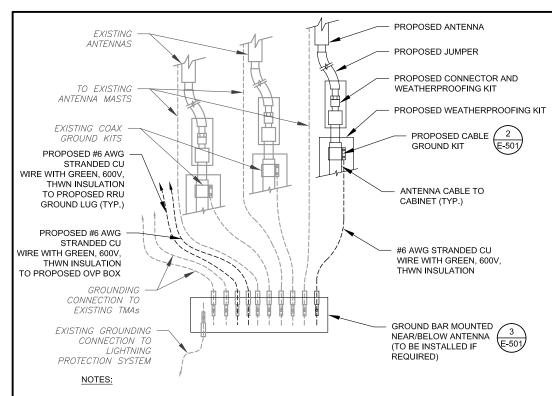
BYRAM PARK CT

SITE ADDRESS: 36 RITCH AVE WEST GREENWICH, CT 06830-9992

ı			
I		DATE DRAWN:	09/21/21
I		ATC JOB NO:	13701270
I		CUSTOMER ID:	BYRAM PARK CT
I		CUSTOMER #:	468044
1			

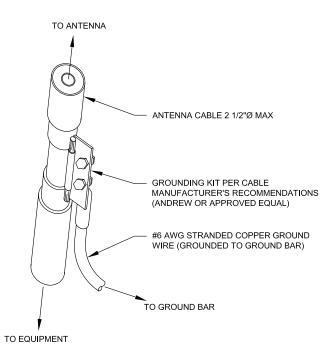

CONSTRUCTION **DETAILS**

SHEET NUMBER:


C-501

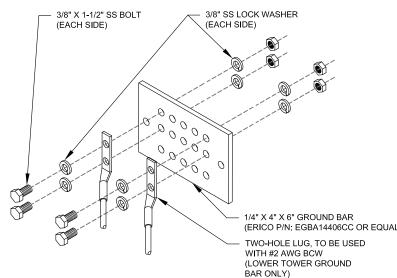
0

REVISION



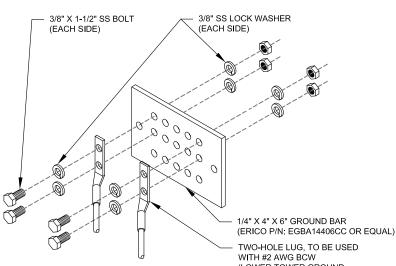
PROPOSED RRU MOUNTING DETAIL - TYPICAL

- 1. THIS DETAIL IS INTENDED TO SHOW THE GENERAL GROUNDING REQUIREMENTS. SLIGHT ADJUSTMENTS MAY BE REQUIRED BASED ON EXISTING SITE CONDITIONS. THE CONTRACTOR SHALL MAKE FIELD ADJUSTMENTS AS NEEDED AND INFORM THE CONSTRUCTION MANAGER OF ANY CONFLICTS.
- SITE GROUNDING SHALL COMPLY WITH VERIZON GROUNDING STANDARDS, LATEST EDITION, AND COMPLY WITH VERIZON GROUNDING CHECKLIST, LATEST VERSION. WHEN NATIONAL AND LOCAL GROUNDING CODES ARE MORE STRINGENT THEY SHALL GOVERN.



- GROUND KIT NOTES:

 1. DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO GROUND BAR.
- 2. CONTRACTOR SHALL PROVIDE WEATHERPROOFING KIT (ANDREW PART NUMBER 221213) AND INSTALL/TAPE PER MANUFACTURER'S SPECIFICATIONS.


CABLE GROUND KIT CONNECTION DETAIL

GROUND BAR NOTES:

- GROUND BAR KITS COME WITH ALL HARDWARE, NUTS, BOLTS,
- 2. GROUND BAR TO BE BONDED DIRECTLY TO TOWER.

- WASHERS, ETC. EXCEPT THE STRUCTURAL MOUNTING MEMBER(S).

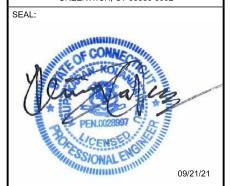
A.T. ENGINEERING SERVICE, PLLC 3500 REGENCY PARKWAY

SUITE 100 **CARY, NC 27518** PHONE: (919) 468-0112 COA: P-1177

NB+C ENGINEERING SERVICES, LLC.

8601 SIX FORKS ROAD, SUITE 540 RALEIGH, NC 27615

DESCRIPTION BY DATE TH 07/23/21 BIW 09/21/21 FOR CONSTRUCTION

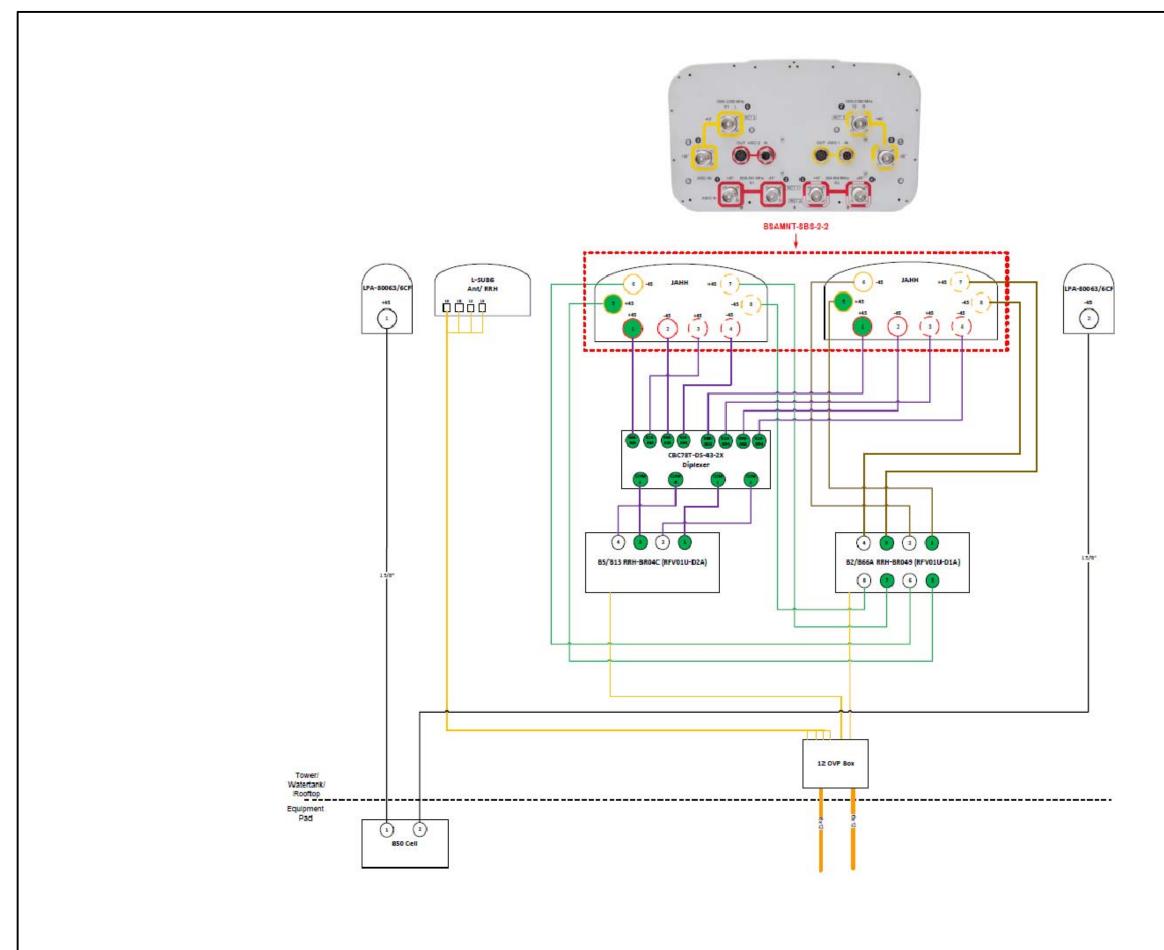

> ATC SITE NUMBER: 414240

ATC SITE NAME: **BYRAM PARK CT**

VERIZON SITE NAME:

BYRAM PARK CT

SITE ADDRESS: 36 RITCH AVE WEST GREENWICH, CT 06830-9992



DATE DRAWN: 09/21/21 ATC JOB NO: 13701270 CUSTOMER ID: BYRAM PARK CT CUSTOMER #: 468044

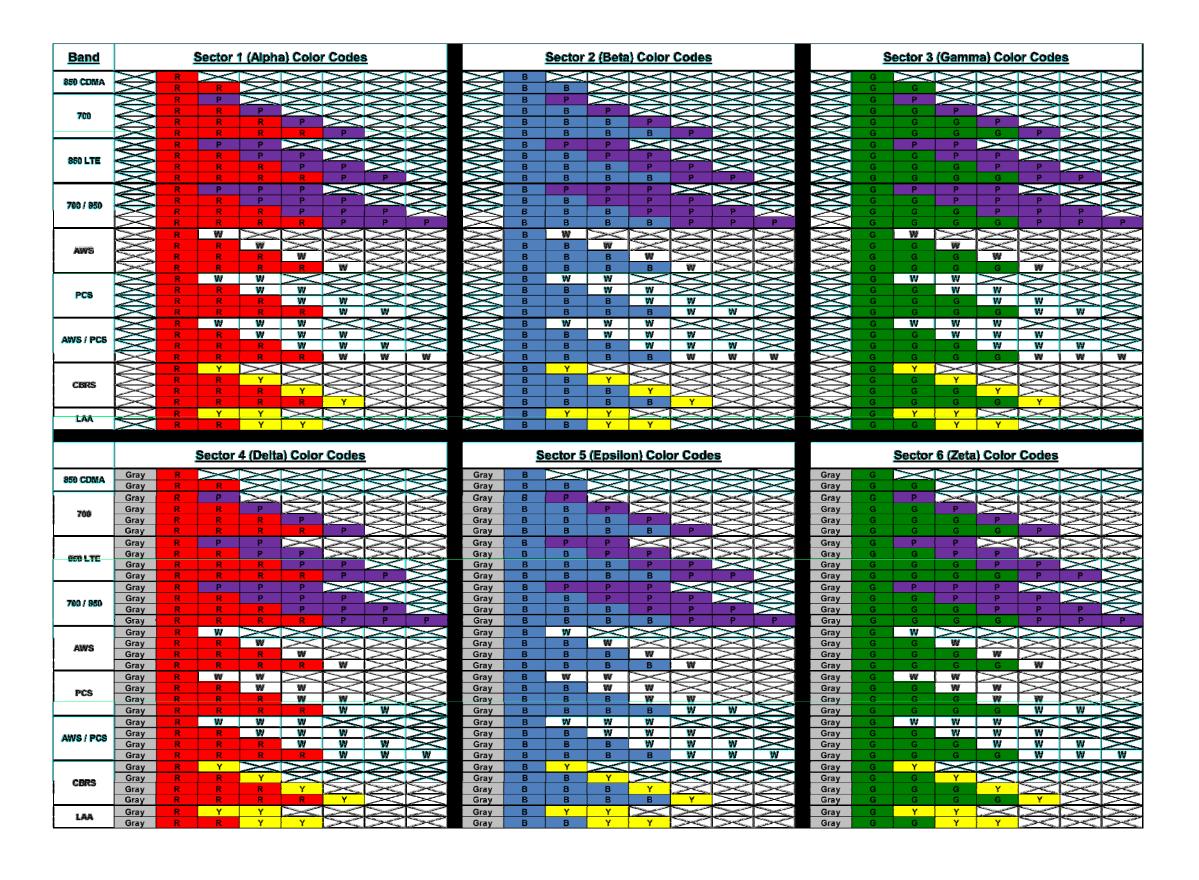
GROUNDING DETAILS

SHEET NUMBER:

REVISION E-501

PLUMBING DIAGRAM
SCALE: NOT TO SCALE

NOTE: THIS SHEET WAS CREATED BY OTHERS AND PROVIDED AT THE REQUEST OF THE CUSTOMER WITHOUT EDIT. PLEASE REFERENCE THE MOUNT ANALYSIS REPORT FOR COMPLETE MOUNT ANALYSIS CALCULATIONS AND DETAILS. SUPPLEMENTAL PAGES INCLUDED IN THE CONSTRUCTION DRAWINGS ARE FOR REFERENCE ONLY. GENERAL CONTRACTOR IS TO VERYIFY THEY HAVE THE MOST RECENT MOUNT ANALYSIS PRIOR TO CONTRUCTION.


SUPPLEMENTAL

SHEET NUMBER:

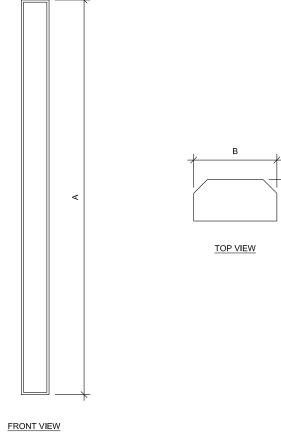
REVISION:

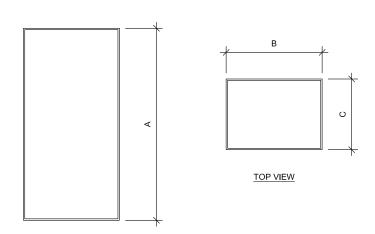
R-601

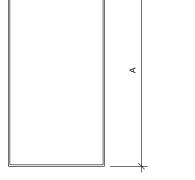
0

1 CABLE COLOR GUIDE
SCALE: NOT TO SCALE

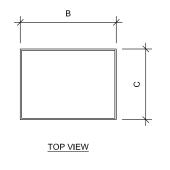
NOTE: THIS SHEET WAS CREATED BY OTHERS AND PROVIDED AT THE REQUEST OF THE CUSTOMER WITHOUT EDIT. PLEASE REFERENCE THE MOUNT ANALYSIS REPORT FOR COMPLETE MOUNT ANALYSIS CALCULATIONS AND DETAILS. SUPPLEMENTAL PAGES INCLUDED IN THE CONSTRUCTION DRAWINGS ARE FOR REFERENCE ONLY. GENERAL CONTRACTOR IS TO VERYIFY THEY HAVE THE MOST RECENT MOUNT ANALYSIS PRIOR TO CONTRUCTION.


SUPPLEMENTAL


SHEET NUMBER:


REVISION

R-602


U

FRONT VIEW

FRONT VIEW

1 ANTENNA SPECIFICATIONS FOR ILLUSTRATIVE PURPOSES ONLY - NOT TO SCALE

ANTENNA SPECIFICATIONS						
ANTENNA MODEL	А	В	С	WEIGHT (LBS)		
JAHH-65A-R3B	55.0"	13.8"	8.2"	50.7		
JAHH-45A-R3B	55.0"	18.0"	7.0"	70.5		
MT6407-77A	35.1"	16.1"	5.5"	81.6		

2 RRU SPECIFICATIONS FOR ILLUSTRATIVE PURPOSES ONLY - NOT TO SCALE

RRU SPECIFICATIONS							
RRU MODEL	А	В	С	WEIGHT (LBS)			
B2/B66A RRH-BR049	15.0"	15.0"	10.0"	84.4			
B5/B13 RRH-BR04C	15.0"	15.0"	8.1"	70.3			

TMA SPECIFICATIONS

FOR ILLUSTRATIVE PURPOSES ONLY - NOT TO SCALE

TMA SPECIFICATIONS						
	TMA MODEL	A	В	С	WEIGHT (LBS)	
	CBC78T-DS-43-2X	9.6"	6.9"	6.4"	20.7	

SUPPLEMENTAL

SHEET NUMBER:

REVISION:

R-603

0

Maser Consulting Connecticut 2000 Midlantic Drive, Suite 100 Mount Laurel, NJ 08054 856.797.0412 Greg.Dulnik@colliersengineering.com

Post-Mod Antenna Mount Analysis Report and PMI Requirements

Mount Fix

SMART Tool Project #: 10084892 Maser Consulting Connecticut Project #: 20777259A

July 7, 2021

Site ID: Site Information

Site Name:

468044-VZW / Byram Park CT Byram Park CT

Carrier Name:

Verizon Wireless

36 Ritch Ave W

Address:

Greenwich, Connecticut 06830

Fairfield County

Latitude:

41.005064° -73.648312" Longitude:

Structure Information

Tower Type: Mount Type:

79-Ft Monopole 10.00-Ft T-Frame

FUZE ID # 16231909

Analysis Results

T-Frame: 79.9% Pass

***Contractor PMI Requirements:

Included at the end of this MA report

Available & Submitted via portal at https://pmi.vzwsmart.com

Contractor - Please Review Specific Site PMI Requirements Upon Award Requirements also Noted on Mount Modification Drawings

Requirements may also be Noted on A & E drawings

Report Prepared By: Frank Centone

Mount Post-Modification Analysis Report (3) 10.00 T-Frame

July 7, 2021 Site ID: 468044-VZW / Byram Park CT

- 5. The mount was checked up to, and including, the bolts that fasterr it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.
- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Maser Consulting Connecticut is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.
- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

o Channel, Solid Round, Angle, Plate ASTM A36 (Gr. 36) ASTM 500 (Gr. B-46) HSS (Rectangular) ASTM A53 (Gr. B-35) o Pipe F1554 (Gr. 36) Threaded Rod Bolts ASTM A325

8. Any mount modifications listed under Sources of Information are assumed to have been installed per the design specifications.

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Maser Consulting Connecticut.

Analysis Results:

Component	Utilization %	Pass/Fail
Mod Standoff	27.9%	Pass
Mod Face	20.3%	Pass
Antenna Pipe	71.2%	Pass
Face Horizontal	20.8%	Pass
Standoff	33.6%	Pass
Standoff Vertical	0.0%	Pass
Existing Connection	79.9%	Pass
MOD Connection	26.4%	Pass

Structure Rating – (Controlling Utilization of all Components) 79.9%
--

Recommendation:

The existing mounts will be SUFFICIENT for the final loading after the proposed modifications are successfully

ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other, if required. Separate review fees will apply.

NOTE: THIS SHEET WAS CREATED BY OTHERS AND PROVIDED AT THE REQUEST OF THE CUSTOMER

ANALYSIS CALCULATIONS AND DETAILS. SUPPLEMENTAL PAGES INCLUDED IN THE CONSTRUCTION DRAWINGS ARE FOR REFERENCE ONLY. GENERAL CONTRACTOR IS TO

VERYIFY THEY HAVE THE MOST RECENT MOUNT ANALYSIS PRIOR TO CONTRUCTION.

WITHOUT EDIT. PLEASE REFERENCE THE MOUNT ANALYSIS REPORT FOR COMPLETE MOUNT

Attachments:

- 1. Mount Photos
- 2. Mount Mapping Report (for reference only)
- 3. Analysis Calculations
- 4. Contractor Required PMI Report Deliverables
- 5. Antenna Placement Diagrams
- 6. TIA Adoption and Wind Speed Usage Letter

MOUNT ANALYSIS SCALE: NOT TO SCALE SUPPLEMENTAL

PROIECT NOTES

- SEE MODIFICATION NOTES
- THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE CODES ORDINANCES, LAWS AND REGULATIONS OF ALL MUNICIPALITIES, UTILITY COMPANIES OR OTHER PUBLIC/GOVERNING AUTHORITIES.
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND INSPECTIONS THAT MAY BE REQUIRED BY ANY FEDERAL, STATE, COUNTY OR MUNICIPAL AUTHORITIES.
- THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER IN WRITING OF ANY CONFLICTS FRRORS OR OMISSIONS PRIOR TO THE SUBMISSION OF BIDS OR PERFORMANCE
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROTECTING ALL EXISTING SITE IMPROVEMENTS PRIOR TO COMMENCING CONSTRUCTION. THE CONTRACTOR SHALL REPAIR ANY DAMAGE AS A RESULT OF CONSTRUCTION OF THIS FACILITY AT THE CONTRACTOR'S EXPENSE TO THE SATISFACTION OF THE OWNER.
- THE SCOPE OF WORK FOR THIS PROJECT SHALL INCLUDE PROVIDING ALL MATERIALS, EQUIPMENT AND LABOR REQUIRED TO COMPLETE THIS PROJECT. ALL EQUIPMENT SHALL BE INSTALLED IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS.
- THE CONTRACTOR SHALL VISIT THE PROJECT SITE PRIOR TO SUBMITTING THE BID TO VERIFY THAT THE PROJECT CAN BE CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS AND CONSTRUCTION DRAWINGS
- THE CONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THESE DRAWINGS MUST BE VERIFIED. THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.
- SINCE THE CELL SITE MAY BE ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE REQUIRED TO BE WORN TO ALERT OF ANY POTENTIALLY DANGEROUS EXPOSURE LEVELS.
- NO NOISE, SMOKE, DUST OR ODOR WILL RESULT FROM THIS FACILITY AS TO CAUSE A NUISANCE.
- THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION (NO HANDICAP ACCESS IS REQUIRED).

MOUNT MODIFICATION DRAWINGS EXISTING 10.00' T-ARM

SITE NAME: BYRAM PARK CT **SITE NUMBER: 468044**

> 36 RITCH AVE W GREENWICH, CT 06830 **FAIRFIELD COUNTY**

PROJECT INFORMATION

SITE INFORMATION

LATITUDE: 41.005064° N 73.648312° W FAIRFIELD COUNTY LONGITUDE JURISDICTION:

APPLICANT/LESSEE

COMPANY: **VERIZON WIRELESS**

CLIENT REPRESENTATIVE

VERIZON WIRELESS

118 FLANDERS ROAD, THIRD FLOOR WESTBOROUGH, MA 01581 ANDREW CANDIELLO CITY, STATE, ZIP:

CONTACT: ANDREW.CANDIELLO@VERIZONWIRELESS.COM EMAIL:

PROJECT MANAGER

MASER CONSULTING CONNECTICUT COMPANY:

CONTACT **GREG DULNIK** (615) 686-2575 PHONE:

GREG.DULNIK@COLLIERSENGINEERING.COM

	OTTERT IN VEREN
SHEET	DESCRIPTION
T-I	TITLE SHEET
S-I	BILL OF MATERIALS
S-2	MODIFICATION NOTES
S-3	MODIFICATION NOTES
S-4	MODIFICATION DETAILS
S-5	MODIFICATION DETAILS
S-6	MOUNT PHOTOS
	SPECIFICATION SHEETS

SHEET INDEX

CONTRACTOR PMI REQUIREMENTS

HTTPS://PMI.VZWSMART.COM PMI LOCATION:

SMART TOOL PROJECT #: 10084892 VZW LOCATION CODE (PSLC): 468044

PMI REQUIREMENTS EMBEDDED WITHIN MOUNT MODIFICATION REPORT

REFERENCED DOCUMENTS

FAILING MOUNT ANALYSIS REPORT SMART TOOL PROJECT #: MASER CONSULTING PROJECT #: 10017683 20777259A ANALYSIS DATE:

- PENNSYLVANIA
- FLORIDA
- NORTH CAROLINA

■ GEORGIA

TEXAS

	SCALE :	AS SHO\	WN	JOB NUMBER : 20777259A		
	$\overline{}$					
ı		-				
		-				
	0	7/7/2021	ISSUED FOR CONSTRUCTI	ON	FAC	DH
	REV	DATE	DESCRIPTIO	N	DRAWN BY	CHECKED BY

IT IS A VIOLATION OF LAW FOR ANY PERSON, JNLESS THEY ARE ACTING UNDER THE DIRECTION OF THE RESPONSIBLE LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SITE NAME:

BYRAM PARK CT 468044

36 RITCH AVE W GREENWICH, CT 06830 FAIRFIELD COUNTY

Phone: 856.797.0412 Fax: 856.722.1120

TITLE SHEET

T-I

NOTE: DO NOT SCALE DRAWINGS FOR CONSTRUCTION

COPYRIGHT ©2021 MASER CONSULTING CONNECTICUT ALL RIGHTS RESERVED

THIS DRAWING AND ALL THE INFORMATION CONTAINED HEREIN IS AUTHORIZED FOR USE ONLY BY THE PARTY FOR WHOM THE WORK WAS CONTRACTED OR TO WHOM IT IS CERTIFIED. THIS DRAWING MAY NOT BE COPIED, REUSED, DISCLOSED, DISTRIBUTED OR RELIED UPON FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN CONSENT OF MASER CONSULTING

BILL OF MATERIALS

			, ,, , , ,	
			VZWSMART KIT	-5
QUANTITY	MANUFACTURER	PART NUMBER	DESCRIPTION	NOTES
3		VZWSMART-SFK4	T-ARM KIT	CONTRACTOR TO VERIFY THE LENGTH REQUIRED AND TRIM AS NECESSARY IN ACCORDANCE WITH THE 'STRUCTURAL STEEL' NOTES ON SHEET S-2
I		VZWSMART-PLK7	MONOPOLE COLLAR MOUNT ASSEMBLY	
15		VZWSMART-MSK2	CROSSOVER PLATE	
	=			
			OTHER REQUIRED P	PARTS
QUANTITY	MANUFACTURER	PART NUMBER	DESCRIPTION	NOTES
3	-	-	120" LONG, P3.0 STD	GALVANIZED
3	-	-	102" LONG, P2.5 STD	GALVANIZED
4	SITE PRO I	SQCX4-K	CROSSOVER PLATE KIT W/ SQUARE U-BOLTS AND STD. U-BOLTS	OR EOR APPROVED EQUAL, CONTACT MASER CONSULTING FOR APPROVAL OF SUBSTITUTION
I	-	-	36" LONG, P2.0 STD	GALVANIZED

NOTE: ALL MATERIALS REQUIRED FOR THE DESIGNED MODIFICATIONS BUT NOT LISTED IN THIS SHEET ARE ASSUMED TO BE PROVIDED BY THE CONTRACTOR

VZWSMA	RT KITS - APPROVED VENDORS					
	COMMSCOPE					
CONTACT	SALVADOR ANGUIANO					
PHONE	(817) 304-7492					
EMAIL	SALVADOR.ANGUIANO@COMMSCOPE.COM					
WEBSITE	WWW.COMMSCOPE.COM					
N	IETROSITE FABRICATORS, LLC					
CONTACT	KENT RAMEY					
PHONE	(706) 335-7045 (O), (706) 982-9788 (M)					
EMAIL	KENT@METROSITELLC.COM					
WEBSITE	METROSITEFABRICATORS.COM					
	PERFECTVISION					
CONTACT	WIRELESS SALES					
PHONE	(844) 887-6723					
EMAIL	WWW.PERFECT-VISION.COM					
WEBSITE	WIRELESSSALES@PERFECT-VISION.COM					
SABRE INDUSTRIES, INC.						
CONTACT	ANGIE WELCH					
PHONE	(866) 428-6937					
EMAIL	AKWELCH@SABREINDUSTRIES.COM					
WEBSITE	www.sabresitesolutions.com					
	SITE PRO 1					
CONTACT	PAULA BOSWELL					
PHONE	(972) 236-9843					
EMAIL	PAULA.BOSWELL@VALMONT.COM					
WEBSITE	WWW.SITEPRO I.COM					

NOTE: WHEN SPECIFIED, VZWSMART KITS SHALL BE REQUIRED AND WILL BE VERIFIED DURING THE DESKTOP PMI

_						
SCALE :	AS SHO	WN	JOB NUMBER :	0777259	Α	
		ļ.			$\overline{}$	
0	7/7/2021	ISSUED FOR CONSTRUCTION	ON	FAC	DH	
RFV	DATE	DESCRIPTIO	N	DRAWN	CHECKEE	

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF THE RESPONSIBLE LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SITE NAME:

BYRAM PARK CT 468044

36 RITCH AVE W GREENWICH, CT 06830 FAIRFIELD COUNTY

Phone: 856.797.0412 Fax: 856.722.1120

BILL OF MATERIALS

S-I

GENERAL NOTES

- I. THESE MODIFICATIONS HAVE BEEN DESIGNED IN ACCORDANCE WITH THE GOVERNING PROVISIONS OF THE TELECOMMUNICATIONS INDUSTRY STANDARD TIA-222-H, MATERIALS AND SERVICES PROVIDED BY THE CONTRACTOR SHALL CONFORM TO THE ABOVE MENTIONED CODES.
- 2. CONTRACTOR SHALL TAKE ALL PRECAUTIONS NECESSARY TO PREVENT DAMAGE TO EXISTING STRUCTURES, ANY DAMAGE TO EXISTING STRUCTURES AS A RESULT OF THE CONTRACTOR'S WORK OR FROM DAMAGE DUE TO OTHER CAUSES SHALL BE REPAIRED AT THE CONTRACTOR'S EXPENSE TO THE SATISFACTION OF THE OWNER.
- CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND EXISTING CONDITIONS BEFORE BEGINNING WORK, ORDERING MATERIAL, AND PREPARING OF SHOP DRAWINGS, ANY DISCREPANCIES BETWEEN FIELD CONDITIONS AND THE CONTRACT DOCUMENTS SHALL BE BROUGHT TO THE IMMEDIATE ATTENTION OF THE ENGINEER. IF THE CONTRACTOR DISCOVERS ANY EXISTING CONDITIONS THAT ARE NOT REPRESENTED ON THESE DRAWINGS, OR ANY CONDITIONS THAT WOULD INTERFERE WITH THE INSTALLATION OF THE MODIFICATIONS, NOTIFY THE ENGINEER IMMEDIATELY
- 4. IT IS ASSUMED THAT ANY STRUCTURAL MODIFICATION WORK SPECIFIED ON THESE PLANS WILL BE ACCOMPLISHED BY KNOWLEDGEABLE WORKMEN WITH TOWER CONSTRUCTION EXPERIENCE.
- 5. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION METHODS, MEANS, TECHNIQUES, SEQUENCES, AND PROCEDURES.
- ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN AND SHALL MEET ANSI/TIA-322 (LATEST EDITION), OSHA, AND GENERAL INDUSTRY STANDARDS ALL RIGGING PLANS SHALL ADHERE TO ANSI/TIA-322 (LATEST EDITION) INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION.
- 7. THE CONTRACTOR IS SOLELY RESPONSIBLE FOR INITIATING, MAINTAINING, AND SUPERVISING ALL SAFETY PROGRAMS IN ACCORDANCE WITH APPLICABLE SAFETY CODES.
- WORK SHALL ONLY BE PERFORMED DURING CALM DRY DAYS (WINDS LESS THAN 30-MPH). THE STRUCTURE SHOWN ON THE DRAWINGS IS STRUCTURALLY SOUND ONLY IN THE COMPLETED FORM. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE STRENGTH AND STABILITY OF THE STRUCTURE DURING ERECTION. CONTRACTOR SHALL PROVIDE TEMPORARY SUPPORT, SHORING, BRACING AND ANY OTHER STRUCTURAL SYSTEMS AS REQUIRED TO RESIST ALL FORCES THAT MAY OCCUR DURING HANDLING AND ERECTION UNTIL THE STRUCTURE IS FULLY COMPLETED. TEMPORARY SUPPORTS, BRACING AND OTHER STRUCTURAL SYSTEMS REQUIRED DURING CONSTRUCTION SHALL REMAIN THE CONTRACTOR'S PROPERTY AFTER THEIR USE.
- ALL INSTALLATIONS PERFORMED ON THIS STRUCTURE SHALL BE COMPLETED IN ACCORDANCE WITH THE GOVERNING PROVISIONS OF THE STANDARD FOR INSTALLATION, ALTERATION AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS, ANSI/TIA-322.
- 10. CONTRACTOR SHALL SECURE SITE BACK TO EXISTING CONDITION UNDER SUPERVISION OF OWNER, ALL FENCE, STONE, GEOFABRIC, GROUNDING. AND SURROUNDING GRADE SHALL BE REPLACED AND REPAIRED AS REQUIRED TO ACHIEVE OWNER APPROVAL. POSITIVE DRAINAGE AWAY FROM TOWER SITE SHALL BE MAINTAINED.
- II. CONNECTIONS BETWEEN ITEMS SUPPORTED BY THE STRUCTURE AND THE STRUCTURE NOT SPECIFICALLY DETAILED IN THE CONTRACT DOCUMENTS ARE THE RESPONSIBILITY OF THE CONTRACTOR, SUCH CONNECTIONS SHALL BE DESIGNED, COORDINATED AND INSPECTED BY A PROFESSIONAL STRUCTURAL ENGINEER LICENSED IN THE STATE OF THE PROJECT. SUBMIT SIGNED AND SEALED CALCULATIONS DURING SHOP DRAWING REVIEW.
- 12. DO NOT SCALE DRAWINGS.
- 13. DO NOT USE THESE DRAWINGS FOR ANY OTHER SITE.
- 14. ALL MATERIAL UTILIZED FOR THIS PROJECT MUST BE NEW AND FREE OF ANY DEFECTS. ANY MATERIAL SUBSTITUTIONS, INCLUDING BUT NOT LIMITED TO ALTERED SIZE AND/OR STRENGTHS, MUST BE APPROVED BY THE OWNER AND ENGINEER IN WRITING.
- 15. THE MOUNT UNDER NO CIRCUMSTANCES SHOULD BE USED AS A TIE OFF

DESIGN LOADS

WIND LOADS

- a. BASIC WIND SPEED (3 SECOND GUST), V = 116 MPH
- b. EXPOSURE CATEGORY C
- c. TOPOGRAPHIC CATEGORY I
- d. MEAN BASE ELEVATION (AMSL) = 50.68'

- a. ICE WIND SPEED (3 SECOND GUST), V = 50 MPH
- b. ICE THICKNESS = 1.00 IN

SEISMIC LOADS

- a. SEISMIC DESIGN CATEGORY B
- b. SHORT TERM MCER GROUND MOTION, $S_s = .277$
- c. LONG TERM MCER GROUND MOTION, S₁ = .060

STRUCTURAL STEEL

- I. DESIGN, DETAILING, FABRICATION AND ERECTION OF STRUCTURAL STEEL SHALL CONFORM TO THE FOLLOWING PUBLICATIONS EXCEPT AS SPECIFICALLY INDICATED IN THE CONTRACT DOCUMENTS.
 - a. AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) MANUAL OF STEEL CONSTRUCTION (15TH EDITION)
 - b. SPECIFICATION FOR STRUCTURAL JOINTS USING ASTM A325 OR A490 BOLTS
 - c. AISC CODE OF STANDARD PRACTICE
- 2. STRUCTURAL STEEL SHALL CONFORM TO THE FOLLOWING UNLESS OTHERWISE SHOWN:

CHANNELS, ANGLES, PLATES, ETC. ASTM A36 (GR 36) STEEL PIPE ASTM A53 (GR 35) **BOLTS** ASTM A325 NUTS ASTM A563

LOCK WASHERS LOCKING STRUCTURAL GRADE

- 3. ALL SUBSTITUTIONS PROPOSED BY THE CONTRACTOR SHALL BE APPROVED IN WRITING BY THE ENGINEER. CONTRACTOR SHALL PROVIDE DOCUMENTATION TO ENGINEER FOR VERIFYING THE SUBSTITUTE IS SUITABLE FOR USE AND MEETS ORIGINAL DESIGN CRITERIA. DIFFERENCES FROM THE ORIGINAL DESIGN, INCLUDING MAINTENANCE, REPAIR AND REPLACEMENT, SHALL BE NOTED, ESTIMATES OF COSTS/CREDITS ASSOCIATED WITH THE SUBSTITUTION (INCLUDING RE-DESIGN COSTS AND COSTS TO SUB-CONTRACTORS) SHALL BE PROVIDED TO THE ENGINEER, CONTRACTOR SHALL PROVIDE ADDITIONAL DOCUMENTATION AND/OR SPECIFICATIONS TO THE ENGINEER AS REQUESTED.
- 4. PROVIDE STRUCTURAL STEEL SHOP DRAWINGS TO ENGINEER FOR APPROVAL PRIOR TO FABRICATION.
 - a SUBMIT SHOP DRAWINGS TO GREG.DULNIK@COLLIERSENGINEERING.COM
 - b. PROVIDE MASER CONSULTING PROJECT # AND MASER CONSULTING PROJECT ENGINEER CONTACT IN THE BODY OF THE EMAIL.
- 5. DRILL NO HOLES IN ANY NEW OR EXISTING STRUCTURAL STEEL MEMBERS OTHER THAN THOSE SHOWN ON STRUCTURAL DRAWINGS WITHOUT THE APPROVAL OF THE ENGINEER OF RECORD.
- 6. GALVANIZED ASTM A325 BOLTS SHALL NOT BE REUSED.
- 7. ALL NEW STEEL SHALL BE HOT BE DIPPED GALVANIZED FOR FULL WEATHER PROTECTION. IN ADDITION ALL NEW STEEL SHALL BE PAINTED TO MATCH EXISTING STEEL. CONTRACTOR SHALL OBTAIN WRITTEN PERMISSION TO PROTECT STEEL BY ANY OTHER MEANS.
- 8. ALL BOLT ASSEMBLIES FOR STRUCTURAL MEMBERS REPRESENTED IN THIS DRAWING REQUIRE LOCKING DEVICES TO BE INSTALLED IN ACCORDANCE WITH TIA-222-H SECTION 4.9.2 REQUIREMENTS.
- 9. WHERE CONNECTIONS ARE NOT FULLY DETAILED ON THESE DRAWINGS, FABRICATOR SHALL DESIGN CONNECTIONS TO RESIST LOADS AND FORCES WHERE SHOWN ON DRAWINGS AND AS OUTLINED IN SPECIFICATIONS.
- 10. FOR MEMBERS BEING REPLACED, PROVIDE NEW BOLTS AND MATCH EXISTING SIZE AND GRADE. MAINTAIN AISC REQUIREMENTS FOR MINIMUM BOLT DISTANCE AND SPACING.
- II. ALL PROPOSED AND/OR REPLACED BOLTS SHALL BE OF SUFFICIENT LENGTH SUCH THAT THE END OF THE BOLT IS AT LEAST FLUSH WITH THE FACE OF THE NUT. IT IS NOT PERMITTED FOR THE BOLT END TO BE BELOW THE FACE OF THE NUT AFTER TIGHTENING IS COMPLETED.
- 12. GALVANIZED ASTM A325 BOLTS SHALL NOT BE REUSED.
- 13. ALL NEW STEEL SHALL BE HOT BE DIPPED GALVANIZED FOR FULL WEATHER PROTECTION, CONTRACTOR SHALL OBTAIN WRITTEN PERMISSION TO

PROTECT STEEL BY ANY OTHER MEANS.

- 14 ALL EXISTING PAINTED/GALVANIZED SURFACES DAMAGED DURING REHAB INCLUDING AREAS UNDER STIFFENER PLATES SHALL BE WIRE BRUSHED CLEAN, REPAIRED BY COLD GALVANIZING (ZINGA OR ZINC COTE), AND REPAINTED TO MATCH THE EXISTING FINISH (IF APPLICABLE).
- 15. ALL HOLES IN STEEL MEMBERS SHALL BE SIZED 1/16" LARGER THAN THE BOLT DIAMETER. STANDARD HOLES SHALL BE USED UNLESS NOTED OTHERWISE.

- NEW IERSEY
- PENNSYLVANIA
- FLORIDA
- NORTH CAROLINA ■ COLORADO SOUTH CAROLINA

MARYLAND


GEORGIA

TEXAS

REV DATE DESCRIPTION

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF THE RESPONSIBLE LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SITE NAME:

BYRAM PARK CT 468044

36 RITCH AVE W GREENWICH, CT 06830 FAIRFIELD COUNTY

MT. LAUREL OFFICE 2000 Midlantic Drive

Phone: 856.797.0412 Fax: 856.722.1120

MODIFICATION NOTES

NOTE: DO NOT SCALE DRAWINGS FOR CONSTRUCTIO

MODIFICATION INSPECTION NOTES

	MI CHECKLIST			
CONSTRUCTION/ INSTALLATION INSPECTIONS AND TESTING REQUIRED (COMPLETED BY EOR)				
	PRE-CONSTRUCTION			
Χ	MI CHECKLIST DRAWING			
X	EOR APPROVED SHOP DRAWINGS			
NA	FABRICATION INSPECTION			
NA	FABRICATOR CERTIFIED WELD INSPECTION			
X	MATERIAL TEST REPORT (MTR)			
NA	FABRICATOR NDE INSPECTION			
X	PACKING SLIPS			
DDITIONAL TESTING AND INSPECTIONS:				
	CONSTRUCTION			
X	CONSTRUCTION CONSTRUCTION INSPECTIONS			
X NA	CONSTRUCTION INSPECTIONS			
	CONSTRUCTION INSPECTIONS			
NA	CONSTRUCTION INSPECTIONS CONTRACTOR'S CERTIFIED WELD INSPECTION AND NDE REPORTS			
NA X	CONSTRUCTION INSPECTIONS CONTRACTOR'S CERTIFIED WELD INSPECTION AND NDE REPORTS ON SITE COLD GALVANIZING VERIFICATION GC AS-BUILT DOCUMENTS			
NA X X	CONSTRUCTION INSPECTIONS CONTRACTOR'S CERTIFIED WELD INSPECTION AND NDE REPORTS ON SITE COLD GALVANIZING VERIFICATION GC AS-BUILT DOCUMENTS			
NA X X	CONSTRUCTION INSPECTIONS CONTRACTOR'S CERTIFIED WELD INSPECTION AND NDE REPORTS ON SITE COLD GALVANIZING VERIFICATION GC AS-BUILT DOCUMENTS			
NA X X	CONSTRUCTION INSPECTIONS CONTRACTOR'S CERTIFIED WELD INSPECTION AND NDE REPORTS ON SITE COLD GALVANIZING VERIFICATION GC AS-BUILT DOCUMENTS DNS:			
NA X X DITIONAL TESTING AND INSPECTIO	CONSTRUCTION INSPECTIONS CONTRACTOR'S CERTIFIED WELD INSPECTION AND NDE REPORTS ON SITE COLD GALVANIZING VERIFICATION GC AS-BUILT DOCUMENTS ONS: POST-CONSTRUCTION			
NA X X DITIONAL TESTING AND INSPECTIO	CONSTRUCTION INSPECTIONS CONTRACTOR'S CERTIFIED WELD INSPECTION AND NDE REPORTS ON SITE COLD GALVANIZING VERIFICATION GC AS-BUILT DOCUMENTS DNS: POST-CONSTRUCTION MI INSPECTOR REDLINE OR RECORD DRAWING(S)			

NOTE: X DENOTES A DOCUMENT REQUIRED FOR THE MI REPORT NA DENOTES A DOCUMENT THAT IS NOT REQUIRED FOR THE MI REPORT

THE MODIFICATION INSPECTION (MI) IS A VISUAL INSPECTION OF MODIFICATIONS AND A REVIEW OF CONSTRUCTION INSPECTIONS AND OTHER REPORTS TO ENSURE THE INSTALLATION WAS CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS, NAMELY THE MODIFICATION DRAWINGS, AS DESIGNED BY THE ENGINEER OF RECORD (EOR)

THE MI IS TO CONFIRM INSTALLATION CONFIGURATION AND WORKMANSHIP ONLY AND IS NOT A REVIEW OF THE MODIFICATION DESIGN ITSELF, NOR DOES THE MI INSPECTOR TAKE OWNERSHIP OF THE MODIFICATION DESIGN. OWNERSHIP OF THE STRUCTURAL MODIFICATION DESIGN EFFECTIVENESS AND INTEGRITY RESIDES WITH THE EOR AT ALL TIMES.

TO ENSURE THAT THE REQUIREMENTS OF THE MI ARE MET, IT IS VITAL THAT THE GENERAL CONTRACTOR (GC) AND THE MI INSPECTOR BEGIN COMMUNICATING AND COORDINATING AS SOON AS A PURCHASE ORDER (PO) IS RECEIVED. IT IS EXPECTED THAT EACH PARTY WILL BE PROACTIVE IN REACHING OUT TO THE OTHER PARTY

MI INSPECTOR

THE MI INSPECTOR IS REQUIRED TO CONTACT THE GC AS SOON AS RECEIVING A PO FOR THE MI

- REVIEW THE REQUIREMENTS OF THE MI CHECKLIST
- WORK WITH THE GC TO DEVELOP A SCHEDULE TO CONDUCT ON-SITE INSPECTIONS

THE MI INSPECTOR IS RESPONSIBLE FOR COLLECTING ALL GC INSPECTION AND TEST REPORTS, REVIEWING THE DOCUMENTS FOR ADHERENCE TO THE CONTRACT DOCUMENTS, CONDUCTING THE IN-FIELD INSPECTIONS. AND SUBMITTING THE MI REPORT TO EOR.

GENERAL CONTRACTOR

THE GC IS REQUIRED TO CONTACT THE MI INSPECTOR AS SOON AS RECEIVING A PO FOR THE MODIFICATION INSTALLATION OR TURNKEY PROJECT TO, AT A MINIMUM:

- REVIEW THE REQUIREMENTS OF THE MI CHECKLIST
- WORK WITH THE MI INSPECTOR TO DEVELOP A SCHEDULE TO CONDUCT ON-SITE MI INSPECTIONS, INCLUDING FOUNDATION INSPECTIONS
- BETTER UNDERSTAND ALL INSPECTION AND TESTING REQUIREMENTS

THE GC SHALL PERFORM AND RECORD THE TEST AND INSPECTION RESULTS IN ACCORDANCE WITH THE REQUIREMENTS OF THE MI CHECKLIST.

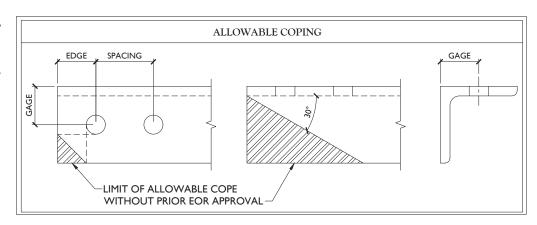
RECOMMENDATIONS

THE FOLLOWING RECOMMENDATIONS AND SUGGESTIONS ARE OFFERED TO ENHANCE THE EFFICIENCY AND EFFECTIVENESS OF DELIVERING AN MI REPORT:

- IT IS SUGGESTED THAT THE GC PROVIDE A MINIMUM OF 5 BUSINESS DAYS NOTICE, PREFERABLY 10, TO THE MI INSPECTOR AS TO WHEN THE SITE WILL BE READY FOR THE MI
- THE GC AND MI INSPECTOR COORDINATE CLOSELY THROUGHOUT THE ENTIRE PROJECT.
- WHEN POSSIBLE, IT IS PREFERRED TO HAVE THE GC AND MI INSPECTOR ON-SITE SIMULTANEOUSLY FOR ANY GUY WIRE TENSIONING OR RE-TENSIONING OPERATIONS.
- IT MAY BE BENEFICIAL TO INSTALL ALL MODIFICATIONS PRIOR TO CONDUCTING THE FOUNDATION INSPECTIONS TO ALLOW THE FOUNDATION AND MI INSPECTION(S) TO COMMENCE WITH ONE SITE VISIT
- WHEN POSSIBLE, IT IS PREFERRED TO HAVE THE GC AND MI INSPECTOR ON-SITE DURING THE MI TO HAVE ANY DEFICIENCIES CORRECTED DURING THE INITIAL MI. THEREFORE, THE GC MAY CHOOSE TO COORDINATE THE MI CAREFULLY TO ENSURE ALL CONSTRUCTION FACILITIES ARE AT THEIR DISPOSAL WHEN THE MI INSPECTOR IS ON SITE

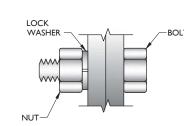
CORRECTION OF FAILING MI'S

IF THE MODIFICATION INSTALLATION WOULD FAIL THE MI ("FAILED MI"), THE GC SHALL WORK WITH THE OWNER TO COORDINATE A REMEDIATION PLAN:


CORRECT FAILING ISSUES TO COMPLY WITH THE SPECIFICATIONS CONTAINED IN THE ORIGINAL CONTRACT DOCUMENTS AND COORDINATE A SUPPLEMENT MI.

REQUIRED PHOTOS

BETWEEN THE GC AND THE MI INSPECTOR THE FOLLOWING PHOTOGRAPHS, AT A MINIMUM, ARE TO BE TAKEN AND INCLUDED IN THE MI REPORT:


- PRE-CONSTRUCTION GENERAL SITE CONDITION
- PHOTOGRAPHS DURING THE REINFORCEMENT MODIFICATION CONSTRUCTION/ERECTION AND INSPECTION
- RAW MATERIALS
- PHOTOS OF ALL CRITICAL DETAILS
- FOUNDATION MODIFICATIONS WELD PREPARATION
- BOLT INSTALLATION
- FINAL INSTALLED CONDITION
- SURFACE COATING REPAIR
 POST CONSTRUCTION PHOTOGRAPHS
- FINAL INFIELD CONDITION

PHOTOS OF ELEVATED MODIFICATIONS TAKEN ONLY FROM THE GROUND SHALL BE CONSIDERED INADEQUATE.

BOLT SCHEDULE (IN.)					
BOLT DIAMETER	STANDARD HOLE	SHORT SLOT	MIN. EDGE DISTANCE	SPACING	
1/2	9/16	9/16 x 11/16	7/8	1 1/2	
5/8	11/16	11/16 x 7/8	1 1/8	I 7/8	
3/4	13/16	13/16 x 1	1 1/4	2 1/4	
7/8	15/16	15/16 x 1 1/8	1 1/2	2 5/8	
I	1 1/16	1 1/16 x 1 5/16	1 3/4	3	

WORKABLE GAGES (IN.)				
LEG	GAGE			
4	2 1/2			
3 1/2	2			
3	I 3/4			
2 1/2	I 3/8			
2	I I/8			

TYP. BOLT ASSEMBLY

NOTES:

- ALL DIMENSIONS REPRESENTED IN THE ABOVE TABLES ARE AISO MINIMUM REQUIREMENTS. CONTRACTOR SHALL VERIFY EXISTING CONDITIONS IN FIELD AND NOTIFY ENGINEER IF DISTANCES ARE LESS THAN THOSE PROVIDED.
- THE DIMENSIONS PROVIDED ARE MINIMUM REQUIREMENTS. ACTUAL DIMENSIONS OF PROPOSED MEMBERS WITHIN THESE DRAWINGS MAY VARY FROM THE AISC MINIMUM REQUIREMENTS.
- SHORT SLOT HOLES SHALL ONLY BE USED WHEN DEPICTED IN THE DRAWINGS
- MATCH EXISTING GAGES WHEN APPLICABLE, UNLESS MINIMUM EDGE DISTANCES ARE COMPROMISED

- NEW IERSEY MARYLAND
- PENNSYLVANIA ■ GEORGIA TEXAS FLORIDA
- NORTH CAROLINA ■ COLORADO SOUTH CAROLINA

WWW.CALLBITICOTT							
SCALE	AS SHO	ΝN	JOB NUMBER :	0777259	Α		
<u> </u>							
	-						
	-						
0	7/7/2021	ISSUED FOR CONSTRUCTI	ON	FAC	DH		
DD/	DATE	DECCRIPTIO	NI	DRAWN	CHECKED		

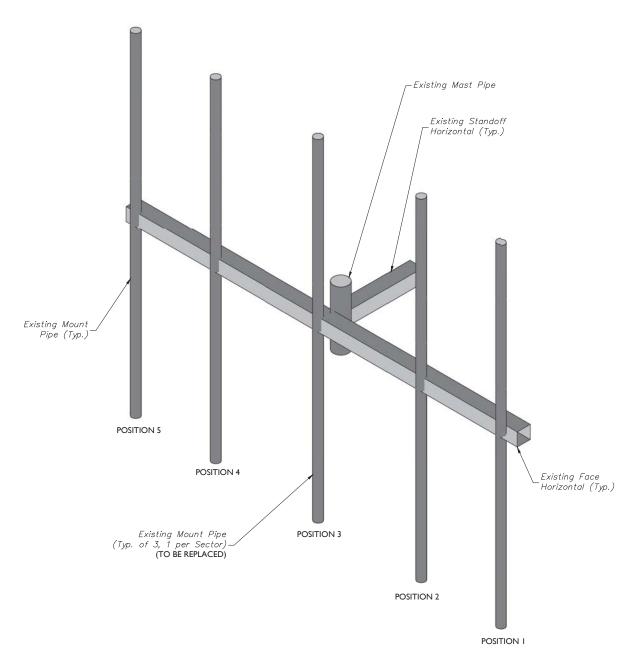
Digitally signed by Derek R. Hartze Date: 2021.07.07 08:44:05-04'00

IT IS A VIOLATION OF LAW FOR ANY PERSON, JNLESS THEY ARE ACTING UNDER THE DIRECTION OF THE RESPONSIBLE LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SITE NAME:

BYRAM PARK CT 468044

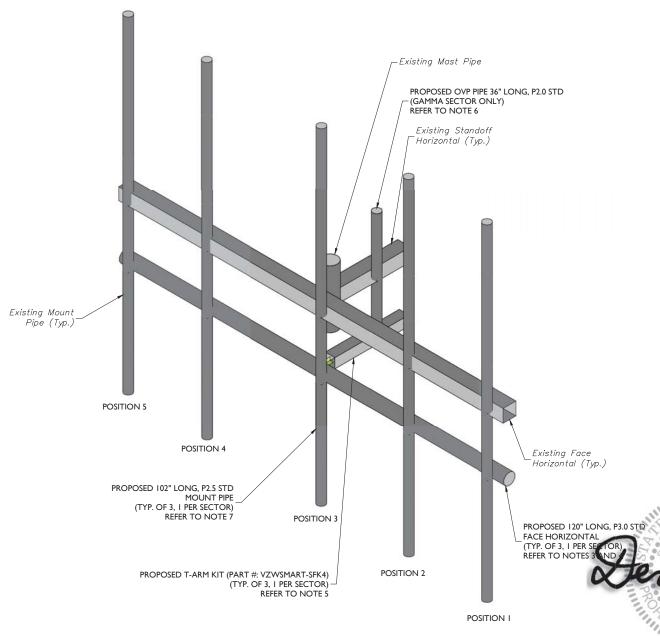
36 RITCH AVE W GREENWICH, CT 06830 FAIRFIELD COUNTY


MT. LAUREL OFFICE 2000 Midlantic Drive

Phone: 856.797.0412 Fax: 856.722.1120

MODIFICATION NOTES

S-3


NOTE: DO NOT SCALE DRAWINGS FOR CONSTRUCTION

STRUCTURAL NOTES:

- I. PER THE MOUNT MAPPING COMPLETED BY TOWER ENGINEERING PROFESSIONALS ON 10/21/2020, THE SAFETY CLIMB AND CLIMBING FACILITIES UP TO THE VERIZON MOUNT ELEVATION (56'-0") ARE IN GOOD CONDITION. MASER DOES NOT WARRANT THIS INFORMATION.
- INSTALL SHALL NOT CAUSE HARM TO THE STRUCTURE, CLIMBING FACILITY, SAFETY CLIMB, OR ANY SYSTEM INSTALLED ON THE STRUCTURE. TIMELY NOTICE AND DOCUMENTATION SHALL BE PROVIDED BY CONTRACTORS TO THE EOR (OF STRUCTURAL DESIGN) IF AN OBSTRUCTION WAS REQUIRED TO MEET THE RF SYSTEM DESIGN REQUIREMENTS AND PERFORMANCES.
- CONTRACTOR TO REMOVE AND REPLACE ARTIFICIAL BRANCHES AS NEEDED FOR INSTALLATION.
- 4. CONTRACTOR TO WORK WITH TOWER OWNER TO REMOVE TOWER BRANCHES AS NEEDED TO INSTALL PROPOSED MOUNT CONNECTION.

PROPOSED T-ARM ISOMETRIC VIEW (TYP. ALL SECTORS) SCALE: N.T.S.

MODIFICATION NOTES:

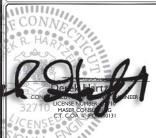
- I. MOUNT MEMBERS NOT SHOWN FOR CLARITY U.N.O.
- CONTRACTOR TO VERIFY THE LENGTH REQUIRED AND TRIM AS NECESSARY IN ACCORDANCE WITH THE 'STRUCTURAL STEEL' NOTES ON SHEET S-2.
- 3. RADIO AND/OR TME POSITIONS SHALL BE ADJUSTED VERTICALLY AS NEEDED IN ORDER TO ACHIEVE INSTALLATION OF HORIZONTAL AS SHOWN. EOR SHALL BE NOTIFIED IF EQUIPMENT NEEDS TO BE RELOCATED TO ANOTHER MOUNT PIPE.
- 4. CONNECT NEW HORIZONTAL TO ALL VERTICAL MOUNT PIPES WITH CROSSOVER PLATES (PART #: VZWSMART-MSK2).
- . CONNECT OTHER END OF T-ARM KIT TO MONOPOLE COLLAR MOUNT ASSEMBLY (PART #: VZWSMART-PLK7).
- CONNECT NEW OVP PIPE TO EXISTING STANDOFF HORIZONTAL WITH CROSSOVER PLATE (PART #: SITE PRO I SQCX4-K, OR EOR APPROVED EQUAL).
- CONNECT NEW MOUNT PIPE TO EXISTING FACE HORIZONTAL WITH CROSSOVER PLATE (PART #: SITE PRO I SQCX4-K, OR EOR APPROVED EQUAL.

Customer Loyalty through Client Satisfaction

- NEW JERSEY
- NEW YORK PENNSYLVANIA

■ SOUTH CAROLINA

Copyright © 2021. Maser Consulting All Rights Reserved. This drawing and all the inforcertained herein is authorized for use only by the party for whom the services were control whom the scribed. This drawing may not be copied, reused, disclosed distributed of whom it is certified. This drawing may not be copied, reused, disclosed distributed of



Call before you dig.

FOR STATE SPECIFIC DIRECT PHONE NUMBERS VISIT WWW.CALLBI I.COM

	SCALE :	AS SHO	WN	JOB NUMBER: 20777259A			
ı							
Ш							
ı							
Ш	0	7/7/2021	ISSUED FOR CONSTRUCTION		FAC	DH	
	REV	DATE	DESCRIPTIO	N	DRAWN BY	CHECKED BY	

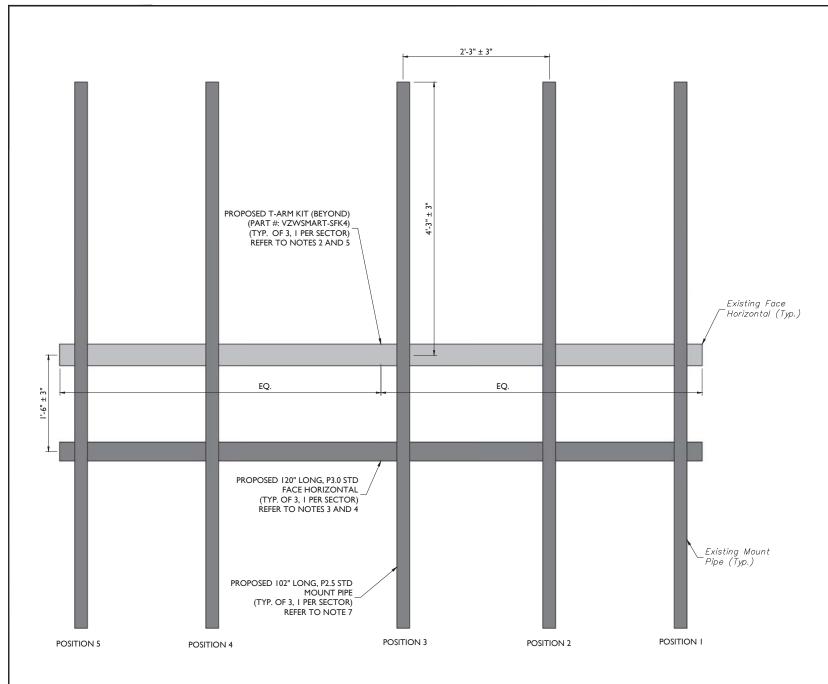
Digitally signed by Derek R. Hartz Date: 2021.07.07 08:44:05-04'0

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF THE RESPONSIBLE LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SITE NAME:

BYRAM PARK CT 468044

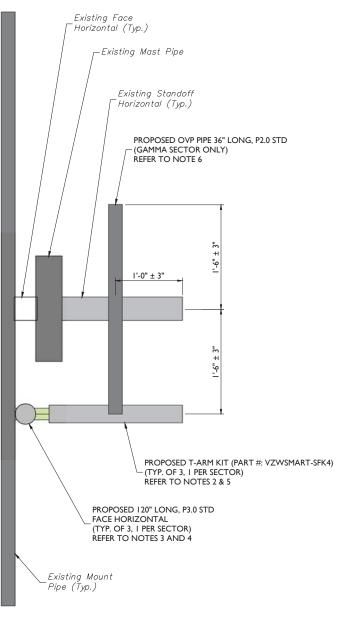
36 RITCH AVE W GREENWICH, CT 06830 FAIRFIELD COUNTY

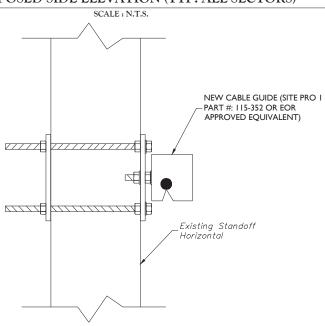


MT. LAUREL OFFICE
2000 Midlantic Drive
Suite 100
Mount Laurel, NJ 08054

Phone: 856.797.0412 Fax: 856.722.1120

MODIFICATION DETAILS


JMBER :



MODIFICATION NOTES:

- I. MOUNT MEMBERS NOT SHOWN FOR CLARITY U.N.O.
- 2. CONTRACTOR TO VERIFY THE LENGTH REQUIRED AND TRIM AS NECESSARY IN ACCORDANCE WITH THE 'STRUCTURAL STEEL' NOTES ON SHEET S-2.
- 3. RADIO AND/OR TME POSITIONS SHALL BE ADJUSTED VERTICALLY AS NEEDED IN ORDER TO ACHIEVE INSTALLATION OF HORIZONTAL AS SHOWN. EOR SHALL BE NOTIFIED IF EQUIPMENT NEEDS TO BE RELOCATED TO ANOTHER MOUNT PIPE.
- 4. CONNECT NEW HORIZONTAL TO ALL VERTICAL MOUNT PIPES WITH CROSSOVER PLATES (PART #: VZWSMART-MSK2).
- 5. CONNECT OTHER END OF T-ARM KIT TO MONOPOLE COLLAR MOUNT ASSEMBLY (PART #: VZWSMART-PLK7).
- CONNECT NEW OVP PIPE TO EXISTING STANDOFF HORIZONTAL WITH CROSSOVER PLATE (PART #: SITE PRO I SQCX4-K, OR EOR APPROVED EQUAL).
- 7. CONNECT NEW MOUNT PIPE TO EXISTING FACE HORIZONTAL WITH CROSSOVER PLATE (PART #: SITE PRO I SQCX4-K, OR EOR APPROVED FOLIAL

PROPOSED SIDE ELEVATION (TYP. ALL SECTORS)

PROPOSED CABLE GUIDE STANDOFF SQUARE TUBE ATTACHMENT - PLAN VIEW

SCALE : N.T.S.

Customer Loyalty through Client Satisfaction

www.maserconsulting.com

■ MARYLAND ■ GEORGIA

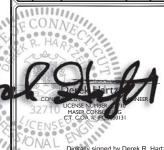
TEXAS TENNESSEE

■ COLORADO

NEW JERSEY NEW YORK

NEW YORK
PENNSYLVANIA
VIRGINIA
FLORIDA
NORTH CAROLINA

SOUTH CAROLINA


ppyright © 2021. Maser Consulting All Rights Reserved. This drawing and all the
ained herein is authorized for use only by the parry for whom the services were
whom it is corrided. This drawing may not be cooled, reused, disclosed, distribut

detore you dig. OR STATE SPECIFIC DIRECT PHONE NUMBER

AS SHOWN JOB NUMBER: 207777259A

REV DATE

Digitally signed by Derek R. Hartz Date: 2021.07.07 08:44:05-04'0

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF THE RESPONSIBLE LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SITE NAME:

BYRAM PARK CT 468044

36 RITCH AVE W GREENWICH, CT 06830 FAIRFIELD COUNTY

MT. LAUREL OFFICE
2000 Midlantic Drive
Suite 100
Mount Laurel, NJ 08054

Phone: 856.797.0412 Fax: 856.722.1120

MODIFICATION DETAILS

SHEET NUMBE

MOUNT PHOTO 1

MOUNT PHOTO 3

MOUNT PHOTO 2

MOUNT PHOTO 4

INCOME NEW MEXICO

MARYLAND

GEORGIA

TEXAS

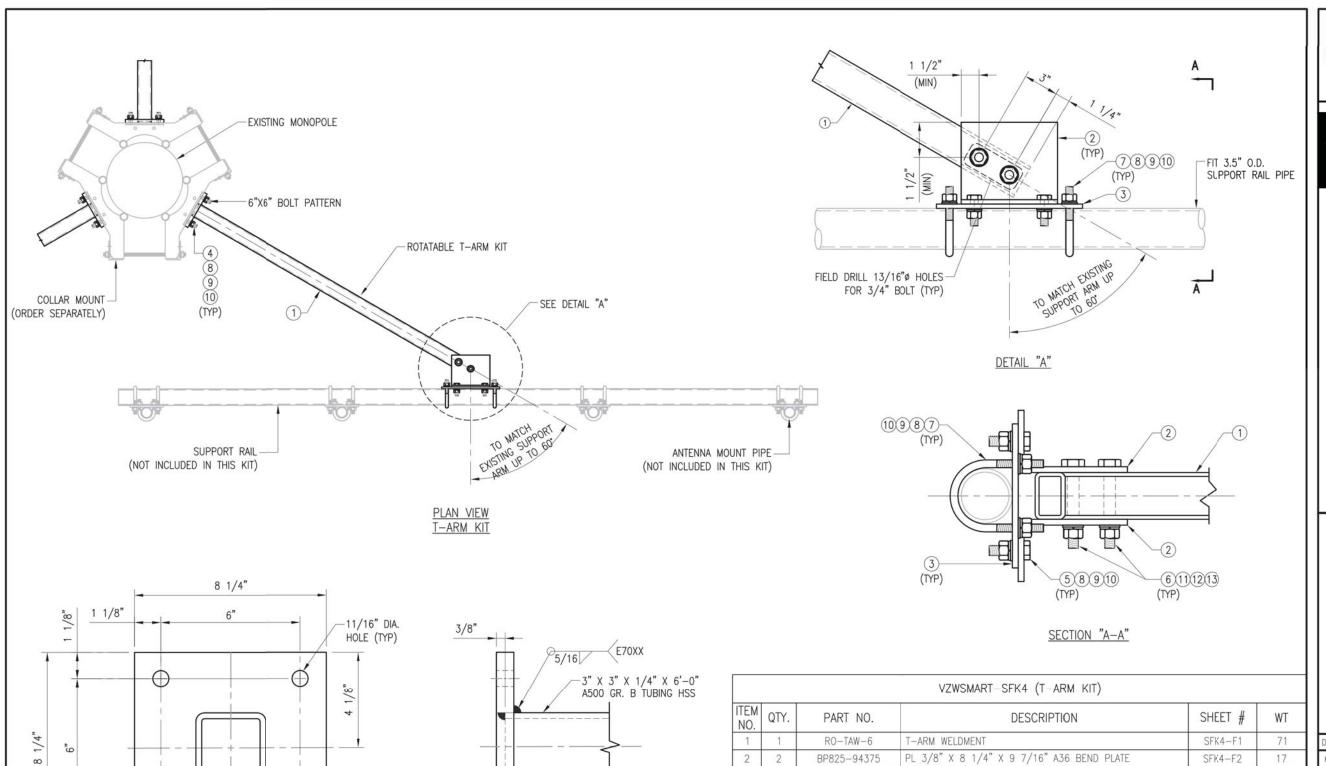
TENNESSEE

COLORADO

WILLE KNOWN AC COLURE INCINERING A DESIGN IN 201
Customer Loyalty through Client Satisfaction
W W W . m a s e r c o n s u l t i ng . c o m
Office Locations:

NEW JERSEY
NEW YORK
NEW YORK
SHAYLANIA
FENNSYLVANIA
FINISHE
FLORIDA
FLORIDA
FLORIDA
NORTH CAROLINA
SOUTH CAROLINA
Copyright 2, 2011. Plate Consulting A flight Reserved. The drongs and all her informational hearing a florid are used by the second process and the second process a

_					
(SCA	AS SHO	WN	JOB NUMBER : 20777259A		
	1 .				
0	7/7/2021	ISSUED FOR CONSTRUCTI	ON	FAC	DH
RE	/ DATE	DESCRIPTIO	N	DRAWN BY	CHECKEI BY


SITE NAME:

BYRAM PARK CT 468044

36 RITCH AVE W GREENWICH, CT 06830 FAIRFIELD COUNTY

MOUNT PHOTOS

E70XX 5/16 8

RO-TAW-6 WELDMENT

4 1/8"

1. HOT-DIPPED GALVANIZED PER ASTM A123.

FRONT VIEW

3

5

7

9

10

11

13

-PL 3/4" X 8 1/4" X 8 1/4" A572

SIDE VIEW

4

2

12

12

12

PL375-92512025

FW-625

LW-625

NUT-625

FW-75

LW-75

NUT-75

PL 3/8" X 9 1/4" X 1'-0 1/2" A36

BOLT 5/8" X 2 1/4" A325

BOLT 3/4" X 5 1/4" A325

5/8" HDG USS FLAT WASHER
5/8" HDG LOCK WASHER

3/4" HDG USS FLAT WASHER

3/4" HDG LOCK WASHER

MS02-625-3625-600 RU-BOLT 5/8" X 3 5/8" I.W. X 6" I.L. A36 (OR EQUIV.)

BOLT 5/8" X 2" A325

5/8" HDG HEX NUT

3/4" HDG HEX NUT

VzW SMART Tool[©] Vendor

verizon

DRAWN BY: BT	CHECKED B	: HMA/KW
REV. DESCRIPTION FIRST ISSUE	BY BT	05/08/20
SHEET TITLE: VZWSMAF T-AR	RT-SFI M KIT	<4
SHEET NUMBER:		REV #:

VZWSMART-SFK4

SFK4-F3

RBC-1

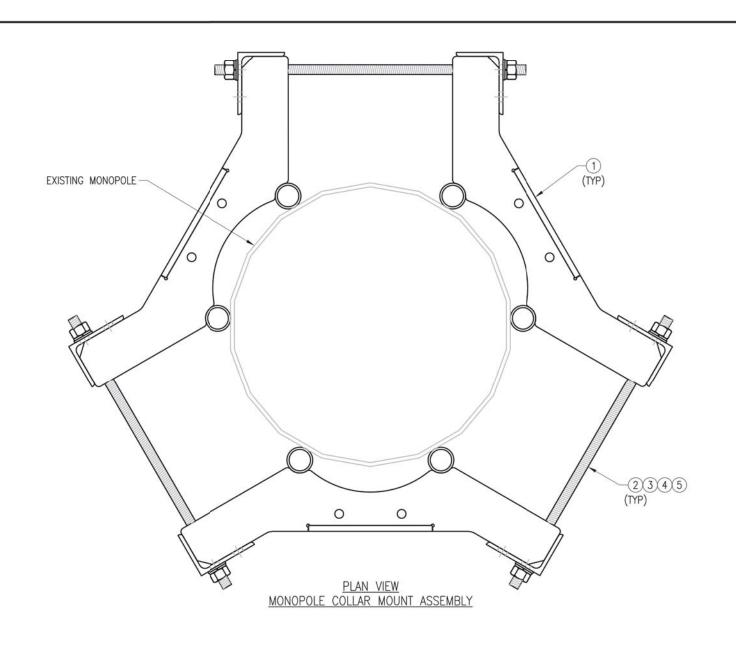
GALVANIZED WT

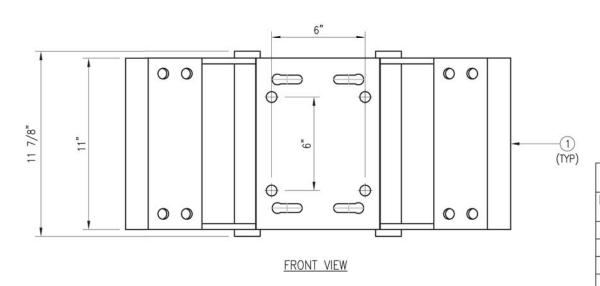
12

0

0

0


3


0

0

0

106

	VZWSMART-PLK7 (MONOPOLE COLLAR MOUNT ASSEMBLY)							
ITEM NO.	QTY.	PART NO.	DESCRIPTION	SHEET #	WT			
1	3	CM-1245	COLLAR MOUNT ASSEMBLY	PLK7-F1	147			
2	6	1	THREADED ROD 5/8" X 4'-0" A193-B7					
3	12	FW-625	5/8" HDG USS FLAT WASHER		1			
4	12	LW-625	5/8" HDG LOCK WASHER		0			
5	12	NUT-625	5/8" HDG HEX NUT		1			

NOTES: 1. FIT 12" TO 45" DIA MONOPOLE.

2. HOT-DIPPED GALVANIZED PER ASTM A123.

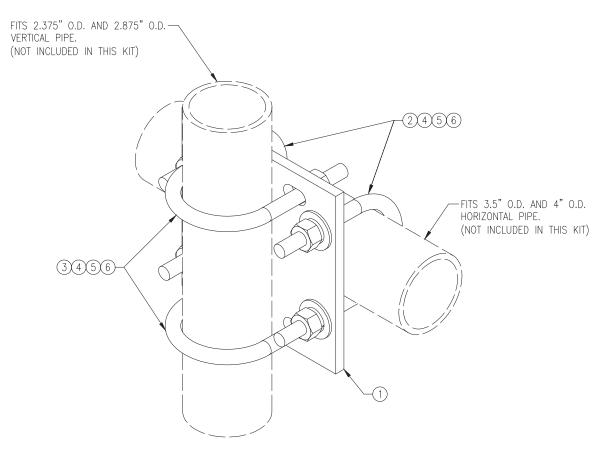
VzWSMART Tool® Vendor

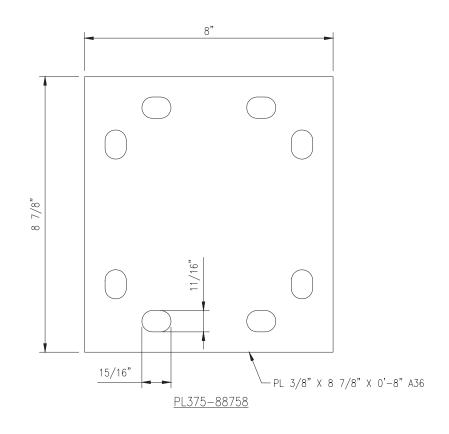
verizon

DRAWN BY: BT	CHECKED BY: HMA/K		
REV. DESCRIPTION FIRST ISSUE	BY BT	05/11/20	

SHEET TITLE:

GALVANIZED WT

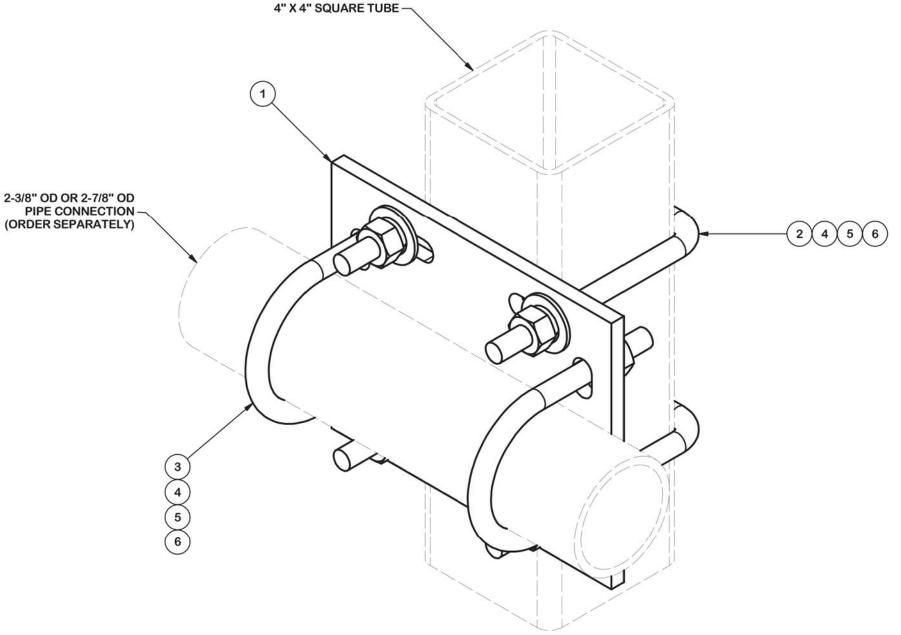

150


VZWSMART-PLK7 MONOPOLE COLLAR MOUNT ASSEMBLY

SHEET NUMBER:	REV #:
VZWSMART-PLK7	0

VzW**SMART Tool**[©] Vendor

verizon


ITEM NO.	QTY.	PART NO.	DESCRIPTION	SHEET #	WT	CUEFF TITLE	
1	1	PL375-88758	PL 3/8" X 8 3/4" X 0'-8" A36	MSK2-F1	8	SHEET TITLE:	
2	2	MS02-625-4125-600	RU-BOLT 5/8" X 4 1/8" I.W. X 6" I.L. A36 (OR EQUIV.)	RBC-1	3	VZWSMART-MSŁ	
3	2	MS02-625-300-500	RU-BOLT 5/8" X 3" I.W. X 5" I.L. A36 (OR EQUIV.)	RBC-1	3	CROSSOVER PL	
4	8	FW-625	5/8" HDG USS FLAT WASHER		1	01103301211 12/	
5	8	LW-625	5/8" HDG LOCK WASHER		0	SHEET NUMBER:	
6	8	NUT-625	5/8" HDG HEX NUT		1	LIZWOMA DT. MOKO	
	GALVANIZED WT 15				VZWSMART-MSK2		

NOTES:

1. HOT-DIPPED GALVANIZED PER ASTM A123.

DRAWN BY: H.R	CHECKED BY: HMA
REV. DESCRIPTION	BY DATE
FIRST ISSUE	H.R 05/08/20
\land	
$ \overline{\wedge} $	
$\overline{\wedge}$	
SHFFT TITLE:	
SHEEL HILLE:	
1/7/1/01/1	RT-MSK2
1 = 11 = 1111	
CROSSO\	/ER PLATE
SHEET NUMBER:	REV #:

ITEM	QTY PART NO.		PART DESCRIPTION	LENGTH	UNIT WT.	NET WT.
1	1	SCX4	CROSSOVER PLATE	8 1/2 in	6.02	6.02
2	2	X-SUB1418	SQUARE U-BOLT 0.5" DIA. X 4.125" IW X 6" IL X 3" TR		0.98	1.95
3	2	X-UB1212	1/2" X 2-1/2" X 4-1/2" X 2" U-BOLT (HDG.)		0.60	1.19
3	2	X-UB1300	1/2" X 3" X 5" X 2" U-BOLT (HDG.)		0.67	1.34
4	8	G12FW	1/2" HDG USS FLATWASHER	3/32 in	0.03	0.27
5	8	G12LW	1/2" HDG LOCKWASHER	1/8 in	0.01	0.11
6	8	G12NUT	1/2" HDG HEAVY 2H HEX NUT		0.07	0.57
100	724 - 105			35	TOTAL WT. #	11.35

TOLERANCE NOTES

TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES ($\pm\,0.030$ ")

DRILLED AND GAS CUT EDGES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE

ALL OTHER MACHINING (± 0.030")

ALL OTHER ASSEMBLY (± 0.060")

PROPRIETARY NOTE:
THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT
INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF
VALMONT INDUSTRIES IS STRICTLY PROHIBITED.

DESCRIPTION

CROSSOVER PLATE KIT W/ SQUARE U-BOLTS AND STD. U-BOLTS

Engineering Support Team: 1-888-753-7446

Locations: New York, NY Atlanta, GA Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX

_								
CPD NO.		DRAWN BY		ENG. APPROVAL		PART NO.	د ا	
		CSL	CSL 9/18/2018		PARTY	SQCX4-K	0	
LASS	SUB	DRAWING	USAGE	CHECKE	D BY	DWG. NO.		
87	02	CUS	STOMER	вмс	11/12/2018	SQCX4-K		